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ABSTRACT

During animal development from zygote to adult, a limited set of regulatory
molecules are autonomously deployed in the service of tissue-specific gene ex-
pression (reviewed in chapter 1). Inherent in the process is the tension that single
cells sample heterogeneous expression states while robustly maintaining a collective
final outcome. This thesis addresses theoretical issues that help resolve the paradox
that one cell simultaneously contains the fate information of many.

Previous models of development have likened cell fate to minima on a
smooth potential energy surface. Such static pictures can be misleading because
they suggest the egg knows the path it will take to the adult before it divides even
once. Recognition that the potential analogy is an oversimplification has led others
to propose that the surface is actually nonsmooth. Chapter 2 reviews the theoretical
basis for smooth potentials and resolves these problems by appealing to the tangent
space of gene expression. It is then shown that if the potential difference is sufficient
to characterize the difference between egg and adult, then the tangent space controls
on gene expression are one-dimensional. Furthermore, a shortcoming of models
ignoring the connectivity and common origin of dividing cells is that they erect
artificial barriers between alternative fates. A fundamentally different picture is
sketched wherein the difference between egg and adult is schematized as the shape
of the locus of equipotential fates accessible at the same point in time. The conjugacy
of space and time is invoked to explain how the requirement that each fate be on a
line of equipotential is the same as requiring that each alternative fate move the same
distance down the surface at each step. The developmental trajectory is deterministic
but not known in advance because it needs to be ascertained at each step which way
cells "turn" in order to maintain their equipotential relationship. Chapters 3 and 4
refine this sequential model of collective development with specific examples.

A simple solution to the problem of cell-type specific gene expression is
combinatorial binding of transcription factors at promoters. It is shown in chapter
3 that such models result in substantial information bottlenecks, because all cell
fate information is concentrated at the start. We explore a novel, noncommutative
model of gene regulation—known as sequential logic—that spreads the information
out over time. It is shown using time sequences of noncommutative controllers that
targets which otherwise would have been activated together can be regulated inde-
pendently. We derive scaling laws for two noncommutative models of regulation,

motivated by phosphorylation/neural networks and chromosome folding, respec-
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tively, and show that they scale super-exponentially in the number of regulators. Itis
also shown that specificity in control is robust to loss of a regulator. Consequently,
sequential logic overcomes the information bottleneck in complex problems and
enables novel solutions through roundabout strategies. The theoretical results are
connected to real biological networks demonstrating specificity in the context of
promiscuity.

Noncommutative sequential logic has improved storage capacity, but it
does not specify who or what supplies the sequences of input that determine cell
fate. Chapter 4 offers a solution by way of the seemingly unrelated problem of
looping in twisted strings. Cells and strings obey a set of common space-time
constraints, ultimately due to the conservation of energy. It is argued that the most
parsimonious allocation of energy from the straight to strained string is the one in
which each segment sees the same share of the total. Planar looping is shown to
be a consequence of the parsimony principle and the Euler-Poincaré equations for
rotational motion in the presence an applied torque. We then solve the problem
for the looping of a twisted string; with two strains, the Euler-Poincaré equations
predict a different answer than the classical Frenet-Serret equations. Using the
results of chapter 2, it is concluded that the Frenet-Serret curvatures assigned ahead
of time are not guaranteed to generate space curves that conserve energy: the
predicted string has localized strains the Euler-Poincaré solution lacks. Rotational
dynamics of strings are connected to developing organisms by postulating conserved
RNA polymerase as an analog of angular momentum, and transcriptional activity
as energy. Alternative fates along a one-dimensional "string" of dividing cells are
possible by finding the RNAP distribution that conserves transcriptional activity
along a curve of constant developmental potential. Consequently, each alternative
fate samples a different sequence of changes to the distribution as it follows a local
gradient downhill from high to low developmental potential over time.

In conclusion, regulation in the tangent space of gene expression resolves
the paradox that development has a unique solution specified in the DNA of the egg
which cannot be determined with certainty until completion of the adult. Noncom-
mutative sequential logic generates complexity that cannot be realized at the start,
while interdependent cells (and strings) require time to ensure that each fate is at the
same potential difference from a common ancestor. This fundamental reimagining
of the Waddington framework can be tested using new multiplexed mRNA imaging

technologies that preserve the spatial context of cells in developing tissue.
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NOMENCLATURE

Ad,  Adjoint action of a Lie group on its Lie algebra by L, o R,-10¢.

ad, adjoint action of a Lie algebra on itself by 7 (Lg o Ry ) o =TcLyRy10
E+ LT R 08 —>no&~Eomnas g — e atthe identity of the group.

adj A Adjugte or classical matrix adjoint defined by the transpose of the co-
factor matrix of signed determinants of the matrices formed by deleting
the i row and j® column of A; it satisfies A~' = (det M) " adj A for
A non-singular.

am{z | p} Elliptic amplitude, defined as the circular angle required to subtend the
arc length = on an ellipse with eccentricity p.

Xi, i Body frame representation of the i body frame and fixed axis unit
vectors.

&
33

Spatial angular velocity of RNAP exchange as a vector or skew-symmetric
matrix of with units dist.™*

w,Q  Angular velocity as a vector or skew-symmetric matrix with units dist.™

or time™!.

¢,v  Orthogonal vector fields (f, g) and (—g, f) of the gradient system corre-
sponding to flow along curves of constant potential and constant stress.

O (s"),0%(s") Vector of current and initial cumulative distribution functions O, (s')
of RNAP allocation.

(11

Applied torque with units force.
k,7  Curvature and torsion of a space curve with units dist.”

K Angular rate of transfer of RNAP from locus 7 to 7, with units of dist.™!

A Loading parameter of the elastica / % with units dist.™
A, [ Spatial and temporal delays expressing the space time constraints.

[,-]  The matrix commutator [A, B] = AB—-BA or the Lie bracket [ X, Y] =

;00 i dai D
i 3.7 — V5t 5.7 of vector fields.
(.-} The vector inner product (&, ) = 7 - = p™ - € assigning a real number
to two n-dimensional vectors.

I;;,I  Cost function tensors for the amount of RNAP (number of transcripts)
at locus 7 freed from one transcript (worth one RNAP) at locus j, with
units RNAP x trans.”! (RNAP ™! x trans.).



€;
IJ

n,b.t
r,R

u®v

Xii

Worth of transcripts (RNAP) at 7 in terms of the number of transcripts
(amount of RNAP) produced by a single unit of RNAP (freed from a
single transcript) at 7.

Vector fields corresponding to torsion and curvature.
State of a target regulated by ¢; from pool 1, etc.
i!" director basis vector.

i'h basis vector in an orthonormal frame attached to the body’s center of
mass.

1™ fixed basis vector.

The identity matrix on R" and the symplectic matrix (—I 0

I) on R2n,

Principal normal, binormal, and tangent vectors.
Coordinates of space curve in fixed and body-centered representations.
Dyadic or tensor product defined by (u® v)w=(v-w)u=(u@w)v.

Vector of states of the targets controlled by all regulators and the subset
g.

o)
ox*

A (contravariant) vector field with coordinates a’
the tangent space at point g € R™.

or (a',...,a") in

Elliptic integral of the second kind defined by £ (¢ | p) = fod) 1 - p2sin® tdt
for an ellipse with eccentricity p subtended by the circular angle ¢; said
to be complete when ¢ = 7.

Elliptic integral of the first kind defined by K (¢ | p) = f0¢ \/%,
giving the elliptic arc length subtended by a circular angle ¢ on an
ellipse with eccentricity p; said to be complete when ¢ = 3.

Lie derivative with a vector field X.
Two-dimensional counterclockwise rotation through an angle ¢.
Element of the dual Lie algebra g*.

n-dimensional vector and covector of the components of a 2n-dimensional
symplectic vector field.

Euler angle between n axis and d;; gene regulatory potential fx + gy =
xy; elliptic amplitude am {x | p}.



o(t,s)

xiii

Flow along vector field X for time ¢, defined as a path o () in the group
whose Lie algebra is realized by X.

Euler angle between fixed x axis and n; conjugate gene regulatory po-
tential —gz + fy = 1 (22 - y?).

Mapping from vectors to forms and forms to vectors by the association
vle; + e, S oplda! + ~-u"dx™; also denotes a linear map Qb (Qf)

f
acting from the left (right) sending column vectors (row covectors) to
row covectors (column vectors) via the symplectic matrix J7 (J).

Curve in the Lie group parametrized by time and space.

sn(z | p),cen (x| p) Jacobielliptic functions defined by sn (z | p) = sin (am {x | p})

To
0,0

O, (s")

§n
B

and cn (z | p) = cos (am {z | p}).

Hodge dual to the k-form w = dz?t A--- A dz? defined such that w A xw =
dxl A--- A dx™, the volume element in R” for k < n.

Initial axial strain Q’TT” of n turns.
Euler angle between fixed 2 axis and d3 = t.
Canonical one- and two-forms with basis elements dg® and dp; A dg'.

Cumulative distribution functions for the fraction seen at spatial position
s" of the total amount of RNAP that locus 7 will see.

The hat map™: R? — R3*3 defined such that w x v = @v for all v € R3.
Elements of a Lie algebra g.

Poly-Bernoulli number with indices n, m.

dzx" @ -+ ® dxin (vy,...v,) Covariant tensor product of a covectors (rows) on vec-

tors (columns) defined by dx™ (vy) ---dzi (v,).

dxt A -« A dzin Wedge product of n covectors defined by Y, dz#' ® - ® dxin o 0,

with the sum taken over for all permutations ¢ in the symmetric group;
volume element in R".

ET, GJ,GI; Bending, torsional, and localized spiral rigidities with units force x dist.2

19

G,g,9*
I

Ki7-Pi

Gene regulatory functions — and —y of the gradient potential system.
Lie group, its Lie algebra, and dual Lie algebra.
Information at time ¢ and position s.

Activating and deactivating regulators in a switching network.
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Total length in linear and logarithmic coordinates.
Left and right translation by an element g € G of a Lie group.
The number of regulators to which each target connects.
Number of unique targets in a switching network.

The number of K’s and P’s in the network.

Eccentricity p = /1 - Z—z of an ellipse with semimajor and semiminor
axes a and b, also defined as the ratio of the focal length to the length of
the semimajor axis; related to the initial angular deviation 6 (0) = « of
the planar elastica by p = sin (%)

p(s),g(s) Angular momentum matrix I (with units force x dist.) and rotation

Sl

s,r(s)

matrix.
Log-transformed distance coordinate s’ = log s.

Arc length and space curve parametrized by arc length.

SE(n),se(n) Special euclidean group SO (n) x R™ of rigid n-dimensional rota-

tions plus translations, and its Lie algebra.

SO (n),s0(n) Special orthogonal group of rigid n-dimensional rotations and its

T

u, ng, lni

X;, 7

X, 2

Lie algebra.

Number of steps in a sequence; activation threshold in the ratchet net-
work; string tension; tangent space of a manifold; (when superscripted)
matrix transpose.

The number of pools, the number of regulators in pool ¢, and the con-
nectivity to regulators in pool :.

Spatial rates of RNAP allocation and transcription at locus ¢.

RNAP and transcripts at locus <.



Chapter 1

INTRODUCTION: AUTONOMOUS DECISION-MAKING IN
THE EMBRYO AND BEYOND

1.1. Biological mechanisms of development

Multicellular life starts from a single fertilized egg cell called the zygote.
After many rounds of division, the zygote is transformed into an adult composed
of O (10?) cell types, each expressing different subsets of O (10*) genes, under the
control of O (103) transcription factors [176, 275, 282]. The task of assigning each
cell its proper expression state is not a trivial one. It is made more complex by
the fact that early development has only O (10') intercellular signaling pathways
to channel cell fate information [90]. Hinegardner and Engleberg have argued that
the biological complexity of the adult is not much greater than that of the fertilized
egg [117], a position sustained by the general conservation of body plans across
metazoans [90, 91]. But Valentine and coworkers have countered that complexity
should include the sequential process of ordering and arranging expression states
among cells [275]. While the adult and zygote refer to the same list of parts in the
DNA, it is unknown where the instructions for putting them together reside. Does
the egg "know"—in the sense that, is there sufficient information at the egg stage
to know—what it will look like as an adult? Even if the egg were so prescient, it
would appear that there is an information bottleneck between the instructions and
their execution: development does not occur all at once, but in a robust series of
steps, as has been repeatedly observed in nature [80, 227] and in in vitro culture [21,
67, 276]. Alternatively, the instructions could change over time in such a way that
the egg doesn’t know where it’s going until it gets there. Which (if either) of each
these two strategies do cells in the embryo use to learn what fate they should adopt
in the adult? And how do so many fates emerge from such a limited number of
signals? The aim of this thesis is to provide theoretical insight into these questions.

It has long been known from fluorescent tracer and microscopy studies
that model organisms have a predictable [262] yet flexible [143, 151, 180] fate map
from the earliest embryonic stages. Pioneering experiments have revealed numerous
mechanisms that descendent cells use to realize their fates. Maternal transcripts in
the oocyte guide gene expression for the first several cell divisions, after which

time the zygote takes over production of the essential factors for transcription,
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metabolism, and DNA replication [186, 304]. By the 16-cell stage in mouse,
progenitors have segregated into layers known as that trophectoderm and the inner
cell mass. The latter subsequently differentiates into the primitive ectoderm and
the epiblast, which later becomes endoderm, mesoderm, and ectoderm (reviewed in
[306]). Differentiation into the three primary germ layers is controlled by alleviating
repression mediated by the so-called pluripotency factors Oct4, Sox2/3, and Nanog
in the stem cell stage, which are then repurposed for repressing incompatible fates
[271, 293]. For example, Oct4-expressing embryonic stem cells (ESCs) respond
to a BMP signal for the transcription of genes such as Brachyury (T), associated
with the mesoderm fate, whereas Sox2 knockdown relieves repression of 7' [293].
Additional regulation occurs at the chromatin level, allowing poised ESCs to choose
between alternative fates. For example, the neural Oligl gene in ESCs is marked
bivalently with repressive (H3K27me3) and activating (H3K4me3) modifications
on lysine residues of the histone proteins, but monovalently in fibroblasts and neural
progenitors, respectively [177].

Once the basic radial symmetry of the germ layers is established, the
anterior-posterior, left-right, and dorso-ventral body axes, which underlie metazoan
body plans, must be specified. Initial asymmetries in shape and gene expression
at the early stages are the basis of polarity in subsequent ones, as has been seen
in organisms as diverse as flies [152], worms [185, 188, 191], frogs [264, 285],
fish [17, 30, 31, 202], chicken [11, 205], mice [197, 276, 210, 266], and humans
[294]. A unifying mechanism is that directional transport of vesicles and proteins
regionalizes gene expression [69, 188, 202, 266]. The role of hydrodynamics
during symmetry-breaking was elegantly shown by culturing mouse embryos in a
specialized chamber and subjecting them to fluid flow both parallel and antiparallel
to the intrinsic direction of ciliary rotation in the node: the latter condition reversed
the pattern of a normally asymmetrically-expressed gene [197]. Cortical flow and
cytoskeletal reorganization following sperm entry in C. elegans embryos lead to
asymmetric localization of the PAR proteins at the one-cell stage [185, 188]. Once
localized, posterior PAR2 excludes other anterior PARs by phosphorylating PARI,
typifying a general mechanism whereby upstream genes restrict transcripts that
otherwise would be found ubiquitously in the embryo [30, 185, 191, 285, 294].
Homologs of the conserved TGF-$3 family members Lefty and Nodal act in a similar
manner though a complex feedback loop during left-right patterning of the fish
heart: Wnt signaling activates Lefty [17], which is promoted by, and subsequently

inhibits, Nodal in an asymmetrical manner [30, 285]; Nodal is responsible for the
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localization of the transcription factor Brachyury to the mesoderm [294]; loss of
Nodal results in bilateral Lefty expression [31].

Once started down a developmental path, cells maintain their unique iden-
tities through contact inhibition [114, 251] and asymmetric cell division [118, 216].
The balance between progenitors and differentiated cells is regulated during neural
fate specification, for example, when cells expressing the Delta ligand prevent cells
with Notch receptors from differentiating as neurons [114]. It was also shown in
the ascidian Ciona that ephrin signaling in the 8-cell stage induced polarization of
notochord/neural mother cells and led to suppression of notochord fate in half of the
embryo [216]. Whereas in these examples interactions serve to prevent neighboring
and daughter cells from adopting the same fate, cell-cell contact also plays a role
in regulating the arrival time of signals. It was shown that during C. elegans vulva
induction, secondary progenitor cells differentiate normally even if they are blocked
from receiving an upstream signal: they receive a downstream signal instead from
primary cells [251]. In many cases, diffusible molecules provide the inductive sig-
nal, while cell context determines the interpretation. For example, the ubiquitous
signaling molecule Wnt, which has multiple roles in axis formation (reviewed in
[90, 116]), is kept under tight regulation to avoid misexpression. In a study of Wnt
signaling in the intestine, several hundred target genes were found to be specifi-
cally and significantly co-bound by an intestine-restricted transcription factor and a
Wnt effector [280]. But in another study of anterior development in the mouse, a
homeobox transcription factor drove expression of Wnt antagonists specifically in
the anterior mesendoderm, forestalling head defects [81]. Although in these cases
cofactors mediate Wnt specificity, in other tissues cofactors are dispensable. For
example, the Wnt transducer (3-catenin requires the Xenopus transcription factor
XTcf3 for target gene activation in dorsal, but not ventral, tissue in early embryo-
genesis [110]. XTcf3 was also shown to regulate 3-catenin-mediated transcription
during mesoderm induction, but not to be required for later patterning [160]. Al-
though it is not always clear what causes the change in cofactor dependency over
time, it is possible that the effects of an early deficiency are merely delayed to a
later checkpoint. For instance, it is not necessary for mouse [3-catenin to bind Tcfl
protein in order for cells progress through the DN1 and DN2 stages of thymoge-
nesis, although complete absence of Tcfl later results in apoptosis by the DN3
stage [299]. Of course, cell death need not indicate a patterning error: interdigital
cartilage [88], plant embryos [36], and motoneurons [204] all undergo programmed

apoptosis during development as a means of shape remodeling.
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Knock-out studies like those cited above can reveal the causal role of each
gene in a developmental regulatory network of interrelated components. An alter-
native view of development, informed by conventional and single-cell sequencing
technologies, is that stochasticity and heterogeneous gene expression in the early
stages lead to different fates in the adult [54, 99, 306]. In support of this idea,
heterogeneous expression of pluripotency regulators [53, 135, 252] and asymmetric
partitioning of maternal transcripts [247] have been shown to influence which fates
embryonic cells are likely to adopt. For example, there is a small but reproducible
population of pluripotent cells with transiently low Nanog and high Gata6 expres-
sion biased toward endoderm fate [135, 252]. Populations of cells appear to control
their overall level of heterogeneity: sorted cells eventually recapitulate the original
distribution of expression states by stochastic switches [53, 135]. Heterogeneity is
not restricted to cell culture assays, but also occurs in intact blastomeres. It has
been shown by sequencing that transcriptional noise increases expression variation
in individual genes between single blastomeres over time [247]. Increasing varia-
tion is in line with Markovian models of evolution in which multicellular lineages
(i.e., cells) stochastically choose to add or remove a cell type (change the expression
level of a gene) independently of their history [275]. Nevertheless, heterogeneity
and stochasticity should be regarded in light of the observation that development
is extraordinarily robust, not only in the final outcome it achieves, but also in the
timing and coordination of steps along the way. Genetic circuits have been found
that modulate embryos’ sensitivity to inductive signals like retinoic acid [44] and
BMP [208], with the result that animals have reduced variation in organ size [208].
Other testaments to reproducibility include the following: less than 10% variation
of bicoid copy number in individual fly embryos [213], characteristic morpholog-
ical transitions that occur at predictable times in mouse epiblast culture [21], and
intransigence of chick forebrain development to hypoblast transplantation experi-
ments [80]. The tension between robustness and stochasticity has been partially
resolved by highly multiplexed in situ single-cell mRNA profiling heterogeneity in
the mouse hippocampus [244] and chicken neural tube [157]. With cells’ spatial
context preserved, these studies make it possible to resolve broader organization
underlying single-cell heterogeneity, suggesting that cells’ stochastic decisions do
not happen in isolation. It is therefore desirable to find a framework that reconciles
top-down (deterministic) and bottom-up (stochastic) decision-making processes in

development.



1.2. The potential landscape analogy

It is relatively easy to mathematically formulate development when cell
fate is characterized by expression of a single gene: changes that increase expression
from a referrence level are positive, those that decrease it are negative, and the
desired level is a minimum with respect to some regulatory function. It is not so
clear what it means to increase or decrease such a function when there are multiple
genes, because alternative fates increase the expression of some genes and lower the
expression of others. In the hematopoietic lineage, for example, Gatal and PU.1
have alternate extremes of expression during myeloid and erythroid specification,
respectively [53]. With increasing numbers of genes to define cell types, there are
correspondingly more minima, and more paths between minima. As an example,
astrocyte fate can be reached not only from the natural developmental trajectory
of neural progenitors, but also from mature neurons by transcriptome transfer of
mRNA from a mature astrocyte host [261], showing that recipient cells sense a
different stable state after traversing a potential barrier. In multiple dimensions,
figuring out which direction is "up" out of the basin of a stable fate is accomplished
by the use of a gene regulatory function. This function sees attempted changes dx
in the genes’ expression levels and outputs a tangent vector df of changes permitted
by the regulatory logic. There is no universal direction in a multidimensional space
that is "up", but if a state is stable, then no tangent vectors can point "down". The
preceding observation, making no reference to any fixed coordinate system, implies
that the tangent vectors span a positive volume of gene expression space. It turns
out that the enclosed volume is the determinant of the matrix spanned by the tangent
vectors 8% (see Appendix 1.5.1). Therefore, stable states are those points where the
(linearized) regulatory function has a positive determinant.

The linear theory outlined above is the mathematical basis of the Wadding-
ton landscape of cell fate canalization during development [288]. As long as the
landscape is constant in time, the gene regulatory function permits pluripotent pro-
genitors to fluctuate within a delimited region of gene expression space without
lineage commitment. The cue to differentiate from initially homogeneous starting
conditions is often modeled as a bifurcation [26, 125, 155, 224, 245, 290, 291], or
as the creation or elimination of a fixed point on a vector field of a multistable circuit
[75, 125, 135], both of which change the underlying landscape. The model has had
some success, for example, in explaining the progressive restriction of Drosophila
olfactory receptors: deletion of a transcription factor (Rotund) required by two tri-

choid sensilla subtypes converts the gene expression profiles of those subtypes into
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that of an Rn-independent upstream subtype, suggesting that differentiation lowers
a potential barrier [155]. Another study demonstrated that erythropoietin changes
the landscape felt by bone marrow progenitors: whereas progenitors are metastable,
addition of growth factor eliminates barriers to the alternative erythroid and myeloid
fates (via a supercritical pitchfork) [125]. This was an important finding because it
(i.) showed that the same initial conditions (growth factor) can lead to different final
conditions (myeloid or lymphoid fate) and (ii.) fit within the mathematical theory of
gene regulatory logic. It was proven mathematically that when the gene regulatory
functions corresponding to two different fate minima intersect at a midpoint a in
gene expression space, their determinants (i.e., derivatives) at a are both positive,
implying that gene-gene interaction network must have a nonlinear cycle [254]. A
cycle in which two genes mutually repressed each other was in fact the basis of
the bistability results in [125]. Nonlinearity in the interaction between genes and
their regulators can lead to other unexpected effects, such as the context-specific
interpretation of a signal. BMP was recently found to repress the Vgl gene in the
posterior of the chick embryo, but to promote it in the anterior [11]. This effect
could be reproduced by mathematical modeling if BMP promoted transcription fac-
tors of both genes, and if the transcription factors mutually repressed each other via
a nonlinear circuit.

Despite the success and conceptual simplicity of the Waddington land-
scape, it has its limitations. Bhattacharya and coworkers have emphasized that
biological landscapes need not represent a gradient potential like gravity [26],
which obeys a clear conservation law. In cells, gene 1 can change more or less inde-
pendently of a functionally unrelated gene 2, but in a gravitational field, the height
of a tossed ball necessarily trades off against its upward velocity. A hyperbolic
landscape is illustrated in Figure 1.1A to show the implications of a gradient system.
The difference A¢ (z,y) in heights of the surface at two points represents the ten-
dency of the expression levels x, y of two genes to change in the direction between
those points. The red and blue lines in the lower plot which represent the time
derivatives — f(x,y) = and 63’ =g(z,y) = 1n the x and y directions,
are the resultants of forces on the genes, analogous to those of a circulation-free
stress field in an elastic material (see [79] ch. 2, 4 and 7, [163] ch. II and XIV,
[242] ch. 2, [243] ch. 4). And like an elastic sheet at equilibrium, the continuity
equations require that the y-rate-of-change of f balance the x-rate-of-change of g
(see section 2.2.1). The two functions "know" about each other in the sense that, at

fixed transcriptional activity (see section 4.2.5), the x rate of change is completely
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determined by the rate of change of y. As a consequence, the tendency to transit
between any two points in space (as measured by the difference in heights on the
surface) is path-independent.

As has been pointed by others [182, 295], it is unrealistic to expect reg-
ulatory landscapes to be gradient potentials with symmetric interactions between
expression states. One alternative non-gradient landscape is the spiral surface of
Figure 1.1B, having a discontinuity at the origin. In this picture, the same expression
state (, y) can be associated with high potential or low potential depending on how
it is reached. Path-dependence is quantified by the curl V x (f,g) = g—fj - % of the
velocity field. Some authors have likened such cross product terms to a curl-flux
force associated with oscillations in gene activity due to the input of external energy
[290, 291], while others have interpreted them as manifestations of discontinuous
transition states [182]. According to the elastic sheet analogy, it is possible to un-
derstand "tearing" of the surface as the decoupling of expression state dynamics that
occurs when one gene is hidden from the regulatory influence of another, perhaps
by the chromatin. Nevertheless, recent single-cell RNA sequencing data in actively
differentiating lineages have painted a picture where (inferred) transitions between
cell types are largely smooth [148, 238, 295], even when velocities are measured
independently of the assumption of an underlying field [148]. One of the main
contributions of this thesis is the idea that a smooth landscape is compatible with
path-dependence or noncommutativity if controls are taken, via differentiation, to
the tangent space of gene expression, where rates (both in time over space) are
independently controlled. Indeed, recent results on RNA velocity [148] imply that
cells select their fate indirectly by modulating intron splicing of new transcripts.
Section 2.2.2 in chapter 2 shows how a non-gradient potential arises in gene ex-
pression space as the system traverses a certain vector field with nonzero circulation
in the tangent space. As a consequence, the dynamics projected to the base space
circulate as well, even as the surface itself remains smooth. Different realizations
of noncommutativity are the subjects of chapters 3 and 4.

Aside from the theoretical issue of the potential is the more immediate
problem that gene expression differences alone do not always account for fate selec-
tion. In a recent example, the photo-induced decision of individual plasmodial cells
to sporulate did not appear to have an obvious relationship with gene expression:
divergent responses occurred even among cells with highly similar transcription
profiles [224]. Recent theoretical research has explored the possibility that, in ad-
dition to expression levels, factors such as speed [194] and direction [206] through
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Figure 1.1: Potential landscapes in gene expression. (A) A gradient landscape described
by the surface ¢ (z,y) = xy = fx + gy, with f and g the negative rates of change of
gene expression in the z and y. Height measures the tendency for gene expression to
change. The tangent vectors in the lower plot move the system between different states.
The direction of change is determined by the sign of dx or dy, and the magnitude by
vector length. The red paths on the surface are mappings of the intervals x € [0,c],y = 0
and = € [¢(0,v) /y, ¢ (c,y) y],y = —c, and the blue paths y € [0,—c],x = 0 and y €
[¢(x,0) [z, ¢ (x,-c) [x],z = c with with ¢ = 0.8. Note that the negative derivatives point
in the direction of expression change. The inset illustrates the circulation-free nature of
vector field, as all tangent vectors entering a region subsequently leave it. (B) A pseudo-
potential landscape not described by a gradient having a discontinuity at the origin. Alternate
pathways differ because the curl of the vector field (f, g) is nonzero. The two-dimensional

surface is parametrized by (v sin (u) ,v cos (u) ,u) forv € [0,3] and u € [—37”, 37“] The red

paths are parametrized by (7 tan,r tan 6y, — 260) for 6 € [%7_%] ,7=1.5,0p = 7 and
(rtand,rtanfy,0) for 0 € [%, %] ,7=1.5,00 = 7. The blue paths are defined similarly.

The inset illustrates the divergence-free nature of the vector field, as all tangent vectors
circulate around a region.

gene expression space may play a role in cell fate canalization. In a model of
Delta-Notch signaling, for example, physically connected cells could transit from an

all-Delta no-Notch state to a hexagonally-patterned some-Delta some-Notch state by
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first increasing the production rate of Notch and then lowering the production rate
of Delta, but not if the order of the paths was reversed [206]. The result is similar to
a model showing that "cheater" bacteria can invade a social population if they first
evolve a novel "deaf" receptor, but not if they first evolve a novel signal: the first
pathway gives them transient immunity to production cues, but the second has them
doing double duty in responding and signaling [68]. These toy models are valuable
because they are far more parsimonious than the simple-minded explanation that
context-dependence of gene expression is the result of yet another cofactor: pursuing
their implications will likely yield more biological insight in the long term. Finally,
only a single prior state needed to be remembered for path-dependence to emerge in
the models of [68, 194, 206]; chapter 3 of this thesis considers what happens when

networks remember longer sequences of input.

1.3. Combinatorial logic in development

Combinations of inputs specify cell fate, but whether or not those inputs
are remembered over time makes different outcomes possible. The theoretical
framework broadly known as combinatorial logic (Figure 1.2A) is a memoryless
(i.e., Markovian) scheme which postulates that different outcomes result for inputs
A, B, and A AND B, and additionally when A is replaced with C. The probabilistic
nature of DNA binding has made combinatorial logic a popular model for analyzing
the statistical mechanics of independent and synergistic transcription factor binding
at promoters [29, 113, 137, 239, 246], and therefore has helped inform the design of
many synthetic circuits (see below). Perhaps more important than thermodynamics,
however, are the propositions that combinatorial logic extracts additional diversity
from a limited number of transcription factors [25, 39, 225], and that it tunes the
response of undifferentiated cells to morphogen gradients [14, 46, 101]. How
could a single transcription factor have different effects in different contexts? By
acting in combination with others. One comprehensive microarray study found that
several genes involved in Drospholia wing development could be turned on or off
in response to Myc (A) binding at the promoter, and that the response depended
on the presence or absence of alternate (B and C) elements at a distal enhancer
or cis-regulatory element [199]. An even clearer example was observed in the
action of signaling molecules cAMP and DIF on the three cell types of the amoeba
Dictyostelium discoideum: cAMP alone promoted prespore and prestalk A cell fate;
DIF alone prestalk A and prestalk B; and the combination prestalk A specifically

[23]. Morphogens are diffusible signals that act in a dose-dependent manner to
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control gene expression [14]. FGF and activin act as morphogens in the Xenopus
embryo, generating muscle alone when activin is low and FGF high, or notochord
alone when both are high [101]. The advantage of controlling development with
overlapping gradients in this manner is that there is less need for precision in the
inputs; robustness is thereby enhanced. For example, it was demonstrated that
when Drosophila embryos are assumed to function as optimal decoders of a few
combinatorial inputs, segmented gene expression can be reproduced to within 1%

accuracy [214].

A. Combinatorial Logic

Figure 1.2: Combinatorial and sequential logic. Developmental signals (square, triangle,
circle) can be interpreted in two different ways. (A) In memoryless combinatorial logic,
iteration of the same tristable regulatory function f produces three stable expression states.
Here the signals are also gene products, and the combination of expressed genes is the state.
(B) In sequential logic, each cell remembers the sequence of the inputs it has seen when
choosing its fate.

Despite its advantages, the unavoidable consequence of combinatorial
logic is that cell fate is set at time zero (Figure 1.2A). Using the language of the gene
regulatory function of the previous section, three signals (square, triangle, circle)
lead to a change in gene expression in each cell at step one, a different change at step
two, and so on until the minima have been reached and development is complete.
Might such a process permit a switch in basins of attraction midway? In the absence
of noise, the answer is, No. A cell initially poised to adopt fate 1 using combinatorial
logic cannot later find out it adopts fate 2. The paradox of a Markovian process
like combinatorial logic is that since information cannot be created over time, any
changes to the regulatory function must be programmed at the start. It is the nature

of a potential minimum that all states sufficiently close by get no farther away as
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time goes on, unless energy or information is supplied. Conversely, it is not possible
to say that the information for the adult (parts and order) is present in the egg if it
can’t be known until later. The foregoing reasoning leads to the conclusion that if a
cell uses combinatorial logic, then it must know its fate at time zero (see also section
4.3).

To be sure, there are well-documented cases in C. elegans [10, 221],
Drosophila [24, 78, 155, 309], rodents [259, 260, 308], and amoeba [23] in
which combinatorial inputs explain gene expression choice in different tissues. Two
Drosophila photoreceptor proteins Tsh and Hth promote (or fail to inhibit) the Eya
gene when expressed alone, but function as repressors when expressed in combina-
tion [24]. Suppression of Eya in a specific context ensures that tissue anterior to the
pre-proneural zone ahead of the morphogenic furrow is maintained in a proliferative
state antagonistic to photoreceptor differentiation. In the C. elegans pharynx, PHA-
4 and two HRL factors regulate the gland-specific hlh6 gene, activating it in gland
and suppressing it in non-gland cells [221]. Deletion or mutation of one of the HRL
sites results in derepression, showing that a different complement of factors regu-
lates the gene in non-gland tissue. In addition to single genes, combinatorial inputs
operate on the cell fate level. Sox9 in the mouse spinal cord represses motoneurons
and promotes astrocytes [259], while Olig2 represses astrocytes and promotes both
oligodendrocytes and motoneurons [308]. These two genes give rise to a combina-
torial code whereby oligodendrocyte identity is specified by high levels of Sox9 and
Olig2 together; motoneurons and astrocytes are favored by the respective absence
of either antagonist. Finally, a hybrid scheme was identified in the fly eye, involving
combinatorial signaling molecules Notch and EGF regulating combinatorial input
to Pax2, which designated the fates of at least four different cell types [78]. These
examples show how combinatorial logic concisely explains expression differences in
individual genes [23, 24, 221] and the emergence of specific cell types [24, 46, 101,
78, 155, 259, 260, 308]. Yet shortcomings are apparent when combinatorial logic
is used to regulate groups of genes and cells at once, particularly in that specificity
appears to require a specialized factors for each fate (see chapter 3). As the example
in the amoeba shows, combinatorial codes can result in some cell types (e.g. pre-
stalk A) emerging under all conditions [23], clearly an undesirable and unrealistic
outcome in organisms with diversified cell types. Therefore, simple combinatorial
logic may not be suitable for explaining de novo development from a symmetric
starting state. New technology for characterizing combinatorial transcription bind-

ing on the whole-genome level [10, 309], although valuable for identifying these
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diverse cell types, may not be appropriate for addressing the question of initial
symmetry breaking. Alternative models, which are the subject of this thesis, will
be necessary for the design of experiments that leverage the increasingly rich data
now at our disposal.

An alternative to combinatorial logic, proposed in [153] (and reproduced
in chapter 3 of this thesis), is that all inputs are remembered in the process of gene
regulation. In this model, termed sequential logic (Figure 1.2B), several inputs act
in sequence to specify developmental fate. In this way, cells seeing the same signal
in the egg stage can later adopt divergent fates if they see different signals later
(cf. fin versus tail in Figure 1.2B), or even if they see some of the same signals
in different orders (tail versus scale, tail versus mouth fin versus scale, fin versus
mouth). This noncommutative model addresses the information bottleneck inherent
in the Markovian nature of combinatorial logic: information is spread out over time
instead of concentrated in the egg. The idea that there is such a bottleneck has to
some extent been anticipated. One study found that the Drosophila transcription
factor Rn acts in nested fashion in patterning the fates of olfactory receptor neurons
on progenitors that have already reached a certain state [155]. Another showed that
the timing of neurogenesis and gliogenesis in the mouse spinal cord depends on when
the patterning factors Pax6, Olig2, and Nkz2.2 are turned off, and when pro- and
anti-neural factors are turned on [260]. This result is similar to the subjugation of the
switch from early neurogenesis to later generation of oligodendrocytes to the timing
of Sox9 activation [259, 308]. While the role of time in sequential development is
well-established, the extent to which it demands revised models going beyond static
landscapes and simple combinatorial logic has been under-appreciated.

It might reasonably be asked of Figure 1.2B what accounts for the different
sequences seen by each cell. Although the zygotic cells don’t know their fate at time
zero, it appears that something does. Put another way, abandoning combinatorial
logic is sufficient to make the time dimension informative. But in order for sequential
logic to be a necessary feature development, the landscape must change as cells move
along it. Although some authors have included the a time-dependent remodelling
of the landscape [75, 125, 290, 291], truly autonomous development needs to be
free of external influences once initiated. Chapter 4 develops a new hypothesis
that autonomy emerges from the space-time constraints of limited transcriptional

resources.
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1.4. Combinatorial and sequential logic in synthetic biology

An alternative approach to studying cellular decision-making during de-
velopment in vivo is to build synthetic gene circuits. Implementation of combinato-
rial and sequential logic circuits in live cells as components of biological computers
is an ongoing project in synthetic biology. Rational design of genetic circuits is
useful not only for engineering purposes, including designing oscillators for ther-
apeutics [112] and long-term storing of data [55], but also for gaining insight into
how cells use circuits for processing information in vivo (e.g. [8]). Just as computers
built from a small variety of electronic components have widespread functionality,
cells use limited signals to solve the problem of development [214]; it is imperative
to understand how.

In the last two decades, the purview of synthetic biology has expanded
from combinatorial transcriptional circuits in E. coli to stably writing into the DNA
of eukaryotes. Studies thus fall on three (not-quite-orthogonal) axes spanning
circuit type (combinatorial versus sequential), computational platform (RNA versus
DNA), and cell system (eukaryotic versus prokaryotic). Although work continues in
all regions of this space, the general desire is to engineer circuits with memory for
application in human systems. This section reviews the different synthetic systems
with an eye toward understanding the information-processing strategies that may be
used in development in vivo.

Fluorescence in bacterial cells is driven by a limited number of small-
molecule inducers to gene promoters, in a manner that is strongly dependent on cir-
cuit topology. Arabinose (Ara) and acyl homoserine lactone (AHL) directly activate
the AraC and LuxR promoters pBAD and pLux [20, 59, 181, 289, 307], leading to
reporter expression, but Lacl and TetR repress the operators pLacO and pTetO con-
trolling lactose metabolism and tetracycline resistance [59, 89, 105, 181, 189]; they
must be repressed with the small molecules isopropyl 3-D-1-thiogalactopyranoside
(IPTG) and anhydrotetracycline (aTc). Additionally, the A phage repressor cl in-
hibits transcripts from the pR promoter controlling the lytic response [105, 161],
but it must be supplied transcriptionally. There are a number of caveats to the use
of inducers in cells. Although repression of repressors and activation of activators
logically have the same outcome, it has been shown that repression is in general
dominant: when pBAD and pTetO jointly controlled downstream gene expression,
Ara alone could not activate a GFP reporter, while aTc alone could [59]. In an-
other study of co-regulated genes, cooperativity between TFs bound at primary

and auxiliary sites was asymmetric with respect to activation and repression [115].
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Aucxiliary sites bound their regulators more tightly in activating circuits, whereas
primary sites did so in repressive ones. Assuming that the higher affinity regulator
is the first on and the last off, then the most switch-like response occurs when the
primary activator (repressor) is the last be added (removed), in agreement with the
observed affinities. Even the relative placement of activators from the transcription
start site can influence the sharpness and leakiness of the response [189]. These and
other concerns regarding genetic context and promoter strength [105, 289] mean
that small molecule inputs to prokaryotic circuits are best treated as approximations
of Boolean inputs to electronic circuits. Optimization through directed evolution
[161, 237, 307] and other methods [181, 289] is a necessary first step in circuit
design.

Once optimized, prokaryotic circuits can activate reporter expression in cis
or in trans. When multiple binding sites are inserted upstream of a single promoter,
fluorescence is a function only of the inputs [20, 40, 59, 105, 189, 237, 307]. This
strategy has lent itself to circuits that compute AND [40, 237], NOR [40, 307], NOT
[20, 40], and OR [40]. The more complex IF/ANDN (one of two inputs being on
by itself is uniquely forbidden/allowed) appears to require regulation in trans (see
below). The same elements were realized in a mammalian system using as input
various antibiotics to disrupt the regulator-DNA interaction [144]. These simple
circuit elements can be used to generate large-scale patterns: in one experiment,
a mixed population of cells placed at different distances from a signal source with
promoters of different strengths were induced to form fluorescent bulls’ eyes [20].
With more than two inputs to a promoter, a range of computations are possible if
one or more inputs is held constant [40]. Exhaustive sampling of different promoter
architectures has shown that cells actually compute a linear combination of AND
and OR, leading to a ladder of increasing fluorescence when A, B, and A + B
are added [59]. When multiple promoters are used, input-output circuits become
bistable. In one highly-cited study, IPTG relieved repression of pLacO by Lacl,
leading to 7etR transcription and further repression of Lacl at a locus in cis [89].
The opposite Lacl-high state could be induced in real-time by adding aTc following
IPTG, showing that the circuit was operating in a bistable region of parameter (i.e.,
promoter strength) space. Although integrated on a single plasmid, the circuit in
this study was actually a special case of regulation in trans with two promoters
regulated by separate but interconnected promoters, a necessary feature for circuits
with memory.

Not all circuits regulated in trans are bistable, but in general they are more
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modular than their counterparts in cis. This is because the products of the first input
layer can be fed into a second, swappable layer downstream. The architecture of such
circuits can be funnel-like [7, 16, 181, 289] or nonlinear [84, 161]. The funnel variety
feed inputs into two different promoters, and the expressed products interact in some
way to control transcription at a third. For example, input promoters have been
engineered to produce enhancer-binding factors that interact with RNA polymerase
[289], bacterial chaperones [181], and suppressors of amber stop-codons [7]. In all
cases, both inputs were necessary to control output at a third locus, showing that
funnel gates are similar to electronic summing junctions. The modularity of such
systems was demonstrated by Moon and colleagues, who showed that orthogonal
chaperone-transcription factor pairs could be chained together to produce a four-
input AND gate with minimal faults, owing to different kinetics of the separate
two-input modules [181]. A two-input one-output circuit that computes the logical
XOR from two linked ANDN modules was also constructed using regulation in trans
in a mammalian system [16]. The major difference between the prokaryotic and
eukaryotic contexts is that small molecule repressors are replaced by antibiotics.
Briefly, antibiotic A at one promoter inhibited the RNA-binding repressor of a
fluorescent reporter transcribed from a distant locus, itself transcriptionally inhibited
by antibiotic B. Because transcription is upstream of RNA-binding, the circuit
computed the ANDN operation, only generating fluorescence when A is present
alone; it is the complement of A — B.

Besides the funnel-type circuits that take multiple inputs to produce a
single output, regulation in trans can be adapted to produce sequential circuits with
memory. In this type of circuit, a single input initiates a chain of events that delays the
output by virtue of a nonlinearity. Nonlinearity (i.e., a feedback loop) is necessary for
memory (i.e., multiple steady states) [254]. In one example of a sequential-counting
circuit, T7 RNA polymerase and GFP were both tagged with a mutated ribosome
binding sequence [84]. Because mRNA binding was downstream of transcription,
Ara-mediated post-transcriptional relief of riborepression was achieved only while
the inducer was present. With GFP under the control of T7 RNA polymerase, this
system during the first Ara pulse effectively functions as an incoherent feedforward
loop [6]; it is not until a second pulse of Ara appears that GFP mRNA is translated.
This report was widely cited as an example of a genetic circuit that can count pulses.
In another study of sequential logic, a memory module was combined with a NOR
gate to reversibly switch a circuit between RFP- and GFP-expressing states using the
UV-triggered RecA proteasome pathway [161]. The RFP-GFP module, a bistable
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switch controlled by mutually repressive cl inhibitors, operated in a monostable
regime thanks to the superior strength of the GFP promoter. But a UV pulse that
triggered proteolysis of cl also induced transcription of third cI variant, giving the
system an additional "kick" to the RFP-expressing state. The final component was
the production of Lacl by the RFP operon, resulting in repression of cI number 3,
so that a second UV pulse could restore the GFP-RFP switch to its default GFP-
expressing state. Although highly complex, and showing only middling switching
efficiency, the push-on push-off switch is a unique realization of a circuit able to
remember sequences of input. In a final example, yeast cells were engineered with
a feedback loop in which a GFP gene expressed from a CYC! locus was activated
by Gall-driven LexA DNA-binding at the promoter [2]. The system could transit
between high- and low-GFP states depending on the kinetic parameters. The high-
GFP state persisted in the absence of galactose, although it ultimately decayed to
the low state due to dilution during cell growth. These examples show the great
versatility of genes driven from multiple promoters to generate sequential logic
circuits that do much more than simply produce a fixed output to a given input.
Uniting the examples discussed above is their reliance on fluorescence
output. A parallel approach to logic functions in cells is to write changes directly
into the DNA using recombinases [35, 74, 84, 108, 121, 253] or CRISPR-Cas9
DNA-editing technologies [71, 83]. DNA is a more stable storage medium than
the transcriptional circuitry, because it persists for multiple generations and can
even be read after cell death. Thus, DNA recombinases are a natural avenue for
pursuing sequential logic in cells. Different recombinases such as Fim (B and E)
[74, 108], HbiF [74], Cre [84], Hin [108], and Bxb1 [35, 121], and TP901-1 [121]
recognize specific DNA sequences and have different levels of reversibility, but their
overall mechanism is conserved. In the Bxbl serine integrase system, the phage
attP site (palindromic except for a central dinucleotide) undergoes recombination
with the host attB site, generating attR and attL sites from alternate halves of the
original partners; the reverse reaction is not allowed [92]. In order for proper
synapsis to occur, the DNA strands must be in opposite — and « orientations when
corresponding halves of the double helix pair as . Imagine the arrows being cut
in the middle and the heads being attached to opposite tails (Figure 1.3). When
the sites lie in cis on a circular plasmid, the cuts necessarily remove a contiguous
portion of the DNA, which may contain two heads (panel A), or a head and a tail
from opposite sites (panel B). Therefore, case A with the geometry — < results

in the the intervening DNA being reversed, and case B with - — in looping out.
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In A, intervening elements such as transcription start- and termination sites can be
rotated with respect to one other and with respect to downstream genes, but they
must be collinear in order to have an effect on transcription. For example, a DNA
bit was switched from off to on (i.e., GFP-expressing) by introducing a pulse of
HbiF recombinase to flip a start site from up to down, and FimE to flip it back again
[74]. Strikingly, the recombinases recognize opposite sites irreversibly, and can
be arranged to make a NOT gate if one is expressed constitutively. State-sensitive
recombination is a useful feature, as the authors of a prior study were compelled to
express the recombinase together with an excisionase in order to effect the reverse
flip; as a result, they observed a mixed population of on and off states, a situation
termed stoichiometric mismatch [35]. Nevertheless, once the kinetic parameters
were adjusted, both studies observed stability of the DNA switching devices over
time and upon multiple cycles, suggesting that such systems may be useful for long-
term memory storage. A major drawback, however, is the problem of addressing
specific bits with only one or two molecules available to catalyze the switch reaction
at any bit. The synthetic biology toolbox has several different parts [284], and
one solution is to try to supplement it with newly designed recombinases; this
strategy is likely to have diminishing marginal returns. Another way to circumvent
the bottleneck of limited switches is to spread them out in time. Friedland and
coworkers employed a type of recombinase sequential logic to expose transcription
start sites and terminators in an ordered fashion to build a DNA device capable of
counting pulses [84]. A novel strategy employed by both Hsiao and colleagues and
Ham and colleagues was to stagger the sites recognized by different recombinases,
and then to expose cells to different sequences of events [108, 121]. Examination of
the DNA state afterward by either fluorescence [121] or culture PCR [108] showed
that it was possible to detect which recombinase was seen first. A theoretical version
of this switching strategy in explored chapter 3.

Besides building bacterial computers, there is an emerging interest in
using circuits with memory to learn about the dynamics of living cells using the
DNA molecule as a recording device. In principle, any locus in the bacterial genome
can be "written" into by expression of a retron unit in the SCRIBE system [71]. A
single-stranded DNA molecule containing the edited gene is reversibly incorporated
into the parent locus by the Beta recombinase, and the state is stored at the population
level (i.e., only some cells are edited). It was shown that multiple edits could be made
using multiple plasmids, albeit with low efficiency, providing one solution to the

scalability problem of recombinase circuits. Alternatively, recorded events can be
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Figure 1.3: Two outcomes for oppositely oriented DNA recombinase switches. Phage-
derived recombinases are able to flip or cut DNA when recognition sites are aligned head-
to-tail. (A) Antiparallel recognition sites are flipped because the arrowheads are connected
when the recombinase introduces a nick. (B) The intervening stretch is excised and the sites
are parallel because the arrowheads are disconnected.

"read" off the genome by the marks they leave there using the MEMOIR system [83].
Frieda and coworkers introduced 28 DNA stem loop "scratchpads" into the genome
of proliferating mouse embryonic stem cells, and used CRISPR-Cas9 to introduce an
irreversible deletion. Probing the state of transcripts from the scratchpad loci using
smFISH allowed the relatedness of daughters to be quantitatively assessed. This
scheme makes it possible to answer the question of whether single cells remember

the history of signals presented to them.

1.5. Appendix

1.5.1 The n-dimensional volume element

Letay,...,a,-1,b € R™ be elements of a vector space with unit magnitude,
each having the form a; = a‘g e; relative to the standard basis {e; }. If each of these n
elements is referred to the origin, then they span an n-dimensional volume element

no bigger than the n-cube. Let

A= Ay -5 Qn-11> b (11)

be the column span of the n elements. We seek to prove
Theorem 1.5.1. The volume spanned by n elements of R™ is det A.

Proof. The theorem is proved by induction on the dimension of A. For the n = 2

case, it is easy to see that the parallelogram spanned by orienting a; = a and b at the
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origin is the area (a' + b') (a? + b?) of the square subtending them, less the areas
2a?b! of the corners and a'a? + b'b? of the external triangular elements. The sum
of these contributions is a'b? — a?b! = det A, relative to a right-handed coordinate
system. Note that if the roles of axes e; and e, are reversed, then the area b'a? — b%a!
has the opposite sign.

For the general case, assume A is the volume of the region O R spanned by
n—1vectors a',...,a™'. Adjoin b to the list, and refer it to a basis (b, b*), where
bt-a' =0 forall i. Let X = % be the vector field everywhere defined by tangent
vectors in the direction of b; then V- X = 1. The divergence theorem [50] shows

that the volume V' of the n-dimensional region R subtended by the n vectors is
V:de=[V~XdV=f X -ndA = b A, (12)
R R OR

where n is the unit normal to the boundary OR, and % = bt is the amount of
n traversed when traveling on b. Eq. (1.2) is equivalently interpreted as sum-
ming up small volume units V' over the entire region R, or flowing along b and
adding "slices" of the n — 1-dimensional area A. Now let a!,...,a" 1 b € R
be referred to the standard basis so that b* = b - e; is perpendicular to the "face"
(see [13] ch. 7) of OR with no components in e;. The area of this face is
det [al coooatt ettt a”‘l] := det A;, the i principal minor of A; its
orientation (—1)"" corrects the sign error that results when ai*! is an even number
column. Therefore the n-dimensional volume with vectors referred to the standard

basis is
brA = b (~1)" det A; = det A, (1.3)
=1

]

If the columns of A are vectors % of gene expression changes due to
attempted changes in the expression values x; of each of the n genes, then det A > 0

at a point a is the condition that a stationary point is stable.
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Chapter 2

THEORY OF SMOOTH POTENTIALS

2.1. Introduction

Waddington’s theory [288] of a potential landscape for differentiating cells
has recently become experimentally testable thanks in part to advances in single-
cell sequencing technologies [182]. The gene expression states of individual cells
at various time points in the process of hematopoietic [133, 179, 295] and neural
[148, 217] differentiation, cellular reprogramming [147, 238], and preimplantation
development [107, 169, 201] have been visualized as clusters in a high dimensional
space, supporting a picture of hierarchical development in which cells roll down
a surface. Taking cells out of their biological context was a necessary first step
in perfecting these powerful techniques, but an unintended consequence has been
neglect of the role of time in development. In particular, the Waddington landscape
suggests that in the absence of expression noise, a cell picks its fate by falling into
the basin of its nearest attractor state. And although the landscape may change due
to the tuning of some external control parameter [75, 290, 291], development is an
autonomous process that proceeds robustly with minimal guidance. These features
beg the question, Why don’t cells start at the end if they know the end at the start?

To resolving the paradox, it is necessary to reexamine the mathematical
basis for the theory of potential landscapes. The Waddington landscape is a smooth
surface, but as others have pointed out, gene expression levels need not reflect a
gradient potential [26, 295]; both concepts are made precise in section 2.2.1. It
is shown in section 2.2.2 that non-gradient dynamics arise on a smooth surface
by transportation to the tangent space where rates (in space and time) of gene
expression are independently controlled. Development proceeds as the flow from
high to low potential of a locus of accessible states during which time information in
the DNA of the progenitor is unpackaged; the condition for the potential difference
to uniquely determine the trajectory at time zero is shown in section 2.2.3 to be
the one-dimensionality of the controls. It is suggested that a system with many
controls becomes one-dimensional as it orients to the direction of the applied forces
at each step; in so doing, the trajectory is no longer known in advance. In 2.2.4,
the conjugacy of space and time is invoked to explain how connected cells moving

down a potential surface as group, abolishing the need for additional barriers between
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alternative fates. By spreading out information in both space and time, the so-called
parsimony principle resolves the fundamental information paradox that a single

progenitor cell encompasses the fates of all its progeny.

2.2. Results and Discussion

2.2.1 Consequences of a smooth potential

Generalized forces can be defined from a smooth potential function ¢ (, /)
by its derivatives. It is the objective of this section to show that smoothness of the
gene regulatory function leads to a gradient system in gene expression space. By a
gradient system it is meant that transcripts at any point in expression space change in
a direction that is a right angles to lines of equipotential relative to a reference state;
motion of the (conservative) system is entirely due conversion of potential energy
into kinetic. The consequences of a non-gradient potential are characterized by the
negation of the sufficiency conditions.

Let the gene regulatory function of a two-gene system (,y) be defined
by the vector field (f (z,y),g(x,y)), where —& = f and —y = g are the negative
rates of escape from two states x and y, similar to the assumptions of [26]. Define

the potential function ¢ : R? — R over regions in gene expression space by

¢(z,y) = f(z,y)x+g(z,y)y, (2.1a)

with differential

do (z,y) = f (z,y)dx + g (x,y)dy. (2.1b)

The condition (2.1b) is equivalent to the requirement that potential differences f = g—x
and g = g—i reflect the tendency of the system to transit between two points. Then

flow of the system is represented by the (bold face) vector field

0 0
¢=f%+ga—y=(f79)~ (2.2)

Because ¢ in (2.1a) defines a surface, it may assume the role of the warping function
of a torsion bar in the St. Venant problem from continuum mechanics [79, 163,
243]. A surface ¢ is said to be continuous in a neighborhood containing (z,y) if
im s ky-0,0) @ (x + h,y + k) = ¢ (x,y) for all directions v = (h, k), and smooth if
lim, m (¢ (z+h,y+k)-¢(x,y)) exists and is always equal to a tangent vector
(f,g) for continuous functions f and g. These definitions suffice to prove the

following version of the Implicit Function Theorem.
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Lemma 2.2.1. If ¢ is a smooth surface with a continuous differential dp = fdx+gdy,

then there is a path in gene expression space with constant .

Proof. If (x,y) is not an extremum of ¢, then there are at least two tangent vectors
v1,vs with v; = (f@, g®)" such that det [(vl) (VQ):I = 0. Otherwise attempted
changes dx and dy would always result in changes f and g of the same sign, which
is only the case for extrema. Because the sign of the volume element spanned by
the output tangent vectors must change, and because f and g are continuous, the
determinant must at some point vanish. Therefore, the system of equations which

must hold for the condition d¢ = 0 to be true, viz.

f(l)dx + g(l)dy =0 (2.3a)
f(2)dx + g(2)dy =0, (2.3b)

has a nontrivial solution (dzx, dy)T (see Lemma 2.2.2 below). Upon substituting
this solution into (2.1b), we find that

dy __z
o g (2.4)

The differential equation (2.4) defines the locus of points in the (z,y) plane with
constant ¢. [

The solvability of system (2.3) is a consequence of the following technical

lemma:

Lemma 2.2.2. Let A be a linear operator with det A = 0. Then there is a nonzero

vector v such that Av = 0.

Proof. In general, A maps vectors to vectors by Av = w. Because A is linear,

w = (w',...,w")" may be written as (\'v!, ..., A"v")" for some constants \i. By
appropriate choice of the v as v’ — i—ivi, w may instead be written \ (v?,...,v")"

for A = Al. This transformation is well-defined if it is restricted to A’ # 0. Assuming
without loss of generality that this substitution has been made, we may solve for A
by taking the determinant of both sides of the equation Av — AI = 0, which follows
from Av = w = AIv. The permutation definition of the determinant satisfies

det (A - M) = Y sign (o) [ (A7 - A57®)

)

= sign (o) [] A% & homogeneous polynomial in A, (2.5)
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using the ASUmn convention [172]. Because det A = 0, Eq. (2.5) is itself a
homogeneous polynomial in A (i.e., having no constant term), and must therefore

have at least one root A = 0. Therefore, Av = w = 0. ]

Being a velocity potential, the locus of constant ¢ not only determines
a relationship between x and y, but also how the (negative) velocities f and g
must change in order for ¥ and x to maintain their equipotential relationship. This
idea is generalized using the language of vector fields in the tangent space of gene
expression, where directions rather than positions are the independent variables.
The next result shows that if f and g are well-behaved, like common gene regulatory
functions, then the vector field ¢ can be defined as the harmonic conjugate of another
field @. The relationship between these two fields determines how the velocities

change in order to maintain constant potential and constant stress, respectively.

Theorem 2.2.3. If f and g are velocities of a smooth potential ¢, then there is an
orthogonal vector field v such that

V-¢p=-Vx1 (2.6a)
V- =Vxao. (2.6b)

Proof. Using Eq. (2.1b), the total derivative of ¢ becomes

do=df -x+ fdx+dg-y+ gdy
O=df-z+dg-vy. (2.7)

This is the Legendre transformation of ¢. On a curve of constant ¢, which must

exist by Lemma 2.2.1, Eq. (2.1b) also vanishes:
0= fdx + gdy. (2.8)

Rearranging (2.7) and (2.8) and taking their ratio gives the constraint

dfjdy _y g
dg/dz oz f
(F)(Le)=1=42 29)

that must hold between the expression states x,y and their velocities f, g on the
equipotential curve. Eq. (2.9) shows that £ and % may not depend on different

variables; the simplest case is that they are both lines with the same slope, i.e.,
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g (x) = ax and f (y) = ay. This condition is assumed in the torsion problem [163,
243], and is the one illustrated in Figure 1.1A.
Now, the vector field ¢ = (f, g) of velocities is

¢ = (ay,ax), (2.10)

with divergence and curl given by ([50] ch. 1, [255] ch. 7)

LU0 o)
_8a:+8y_a ax+8y =0 (e-11a)
of 0Og (8y 835)
=—-—=a|l=—-—|-= 2.11
Vxe Oy Ox « Jdy Oz (2.110)
The field 1) defined by
w = (_g7f) = (—ax,ay) (212)
has divergence and curl given by
V~d)=—@+g=vxq’> (2.13a)
or Oy
99 0Of
-2 _ZL__y. 2.1
Vx 9y oz V-9, (2.13b)
and is at right angles to ¢. O

Theorem 2.2.3 shows that ¢ defines a smooth gradient system in expression
space because the field ) specifies the direction of motion that at any point moves
the system between level sets of the function ¢. An example for the two-gene system
is shown in Figure 2.1. The concentric circles represent the loci of z2 = const. and
—y? = const.,! relative to a reference level. Then at any point in space there is an
imbalance x? — y? by virtue of the fact that the system lies on exactly two of these
circles. The motion of the system from any point (z,y) is found by flow along
¢ = (y, ), i.e., by moving by the amount y along the Z unit vector and by x along
¥; in contrast, flow along the orthogonal field v = (—z,y) changes the potential. In
this way, the system always knows the allowed directions of motion at any point in
space.

The landscape analogy cannot be taken as too literal a metaphor for de-
velopment, at least not until a few modifications are made. In a physical landscape,

you walk uphill and over a ridge into another valley; in a potential landscape, you

!'The minus sign indicates that increasing z is attendant on decreasing y, e.g., if y is an inhibitor
of x.
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high-(-y) state

x? = const. \

Figure 2.1: A gradient potential in gene expression space. Gene expression transfers
population from the y state (blue) to the x state (state) in a conservative two-gene system in
such a manner that the potential ¢ = xy is constant as ¢ = % (:1:2 - y2) is adjusted. Circles are
loci of constant transcripts > and —y?, so that the sum of any two circles is the imbalance.
As the energy ¢ increases, the midpoint of zero imbalance moves up and to the right. The
senses in which the distances x and —y are increasing (toward darker hues) are shown with
red and blue arrows pointing to/from the current state of the system. The local coordinate
system corresponds to the fixed axes drawn in black. The dashed lines show the tangent and
normal directions along a curve of zy = const. The conjugate vector fields 1) := qﬁ =(-z,y)
and ¢ := g% = (y, z) defining these respective directions are orthogonal relative to the skew
coordinate system. Colored lines with chevrons show how the distance vectors are projected
along the (signed) unit vectors & and —§.

walk on a path where ¢ (z,y) is constant. Going up- or downhill in the poten-

tial landscape changes the depths of the valleys in the physical landscape, in the
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sense that the more energy you have, the higher the hill you can climb. Notice
that the several hyperbolic paths in Figure 2.1 connect the same endpoints at differ-
ent heights, a feature that appears to violate the injectivity (one-to-one-ness) of a
smooth ¢. The interpretation is that adding energy to the system lowers the entire
surface, so that the equipotential hyperbolas approach a straight line. A spaceship
flying between two planets rather than marbles rolling downhill is perhaps a more
accurate picture of the gene regulatory potential. Figure 2.1 is an attractive analogy
for development because high-energy progenitors can exist in a bipotent intermedi-
ate state associated with high levels of multiple lineage-promoting factors, whereas
low energy differentiated cells have to go around a barrier. Although some studies
have found that progenitors stochastically turn on separate lineages programs [207,
217], there is ample single-cell evidence that stem cells in the kidney [42], intestine
[142], bone marrow [82], hematopoietic lineages [122, 203, 219], and early blastula
[201] simultaneously express genes associated with alternative fates. These bipo-
tent progenitors are extremely rare and may not always translate nascent transcripts
into protein products, but the very fact that single bipotent cells can be trapped
and converted to alternative fates [203] suggests that the picture in Figure 2.1 of
a high potential locus of states is not farfetched. Even reports suggesting that fate
is fixed by mutually exclusive stochastic events at the progenitor stage have found
latent capacity for stem cells to adopt multi-lineage transcription states when certain
genes are knocked down [207]. This is an important refinement to the Waddington
landscape, because it suggests that cells do not roll downhill independently. Instead,
a collection of cells at the same potential take different trips downhill in such a way
that they remain at the same height throughout the process (see section 2.2.4 below).
There is no need to invoke additional barriers between states of low developmental
potential, because alternative fates can only be reached by going back in time.

What are the allowed equipotential trajectories the system? The conjugate
vector fields ¢ and 1) are the equivalent of the Cauchy-Riemann equations for the
imaginary and real parts of a harmonic function of a complex variable [77]. Vector
fields (2.10) and (2.12) give the x and y components of the derivatives of functions
¢ and ¢. Comparing like terms shows that

0¢ _ oy
¢ _ Y
92 - oy (2.14b)

by which it is clear that ¢ defines the imaginary part of an analytic function in the
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complex plane. With o = 1, Egs. (2.14) lead to

w=§(:c2—y2) (2.152)

¢ = 1y, (2.15b)

the latter being the surface plotted in Figure 1.1A and the level sets plotted in
Figure 2.1. Eqgs. (2.15) correspond to the strain and warp, respectively, of a rod
with an elliptical cross section under torsion. Moving on an hyperbolic trajectory
xy = const. means that ¢ is constant as the system moves between different circles
of constant 2% and —y2. Depending on the value of ¢, the point at which z and y
are equal moves to progressively higher levels until the allowed trajectory between
the two states is a straight line; otherwise the system goes around the barrier on an
hyperbolic curve. Also observe that

¢=—m—yy=—%%(x2+y2), (2.16)
so that in a gradient system, constant transcriptional activity corresponds to the total
amount of transcripts changing at a fixed rate.

The foregoing reasoning asserts that a smooth potential surface and linear
gene regulatory functions lead to a gradient system in gene expression. In this case,
the velocities are uniquely determined from the difference A¢ between two points:
by the commutativity of the controls (see below), the path between endpoints is
always broken up into flows ¢ and 1) parallel and perpendicular to the gradient.
Conversely, if the system is not a gradient, the controls f and g may be noncommu-

tative. Hence the change in velocity between two points is path dependent.

2.2.2 Projection of the dynamics in the tangent space leads to noncommutative
paths in gene expression space

The smooth potential ¢ = fz + gy need not be a gradient if the second
line of (2.9) does not hold: if the mixed partials of ¢ are not equal, then alternative
paths from (zg,y0) to (x1,y1) in general have different values of ¢ (as in the
spiral landscape of Figure 1.1B). Although it is relatively easy to construct such a
discontinuous surface in the base space, it is more illuminating to derive it from
the curl of a vector field in the tangent space, where gene expression is actually
controlled. Denote by M the manifold of gene expression states (z,y), and by 7'M
its tangent space with local coordinates (z,y, Z,y) = (z,y, - f,—g). Insection 2.2.1,
it was shown that flow along the field ¢ on M restricted gene expression to level

sets of the function ¢ by virtue of its being everywhere perpendicular to V¢ = ¢.
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The content of the following theorem is that level sets of a candidate potential ¢ on

M are not invariant to the curl of a vector field ( f, g) of controls in T'M.

Theorem 2.2.4. If f and g are the conjugate forces of a smooth potential ¢ defined
on M, then there is a projection mapping 7 : T M — M such that the following
diagram commutes:
(f; g)’ = v/, g)’
Tl I 2.17)

(v, - Vx@y)|,
Proof. Define the real-valued function ¢ : R? > R on M by

o(x,y)=f(z,y)r+g(z,y)y (2.1a)
do (z,y) = f (z,y) dv + g (x,y) dy, (2.1b)

as in Egs. (2.1). It follows from Egs. (2.10) and (2.12) in Theorem 2.2.3 that there
is a field ¢ = (f, ¢) and a conjugate field 1) = (—g, f) at right angles to ¢ such that
V-¢p=Vxtand V-1 = -V x ¢. The field ¢ was found by stipulating that the
function ¢ be constant. Then the fact that V¢ and 1) are orthogonal implies that the
direction V1 that maximizes the rate of change of a function ¢ (and hence transfers
population from y to x the fastest) is orthogonal to ¢. Therefore, the divergence
V1 of 4 (the net change in 1 over a region) is the total change in the components f
and g of ¢ around a loop in (z,y, —f,—¢) that maintains constant ¢. In a gradient
potential, there is no change when returning to the same point; in a non-conservative
potential, there is a nonzero circulation V x ¢ when returning to (o, o).

If 7 is the projection mapping (z,y,—f,—¢g) ~ (z,y), then the matrix of

of  of

-1 _ ox 0

= - ( 99 8_?; ) (2.19)
or Oy

is the differentiation map 7=! : M — T'M. The strategy to prove the theorem will

the inverse mapping

be to use Eq. (2.19) to find the forward transformation 7 and show that it commutes
with the cross product in diagram (2.17). For small At the instantaneous x derivative

is approximated by
e Ar T-z
AL A
and similarly for . Here, (Z,7) is a fixed intermediate point on the (approximate)

(2.20)

tangent vector through a point r (¢) = (x (¢) ,y (¢)) of the trajectory r. Then

-1 +1

P o s 1 1
- |- B 221
TTA gg NS Y )= Ah 2.21)
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0z,
8,2]‘

intermediate to the original coordinates; it vanishes in the tangent space where the

where I is the identity on R? and F = 5% is the deformation gradient [50] relating the

dependent variable is Az instead of z. Inverting (2.21) using the classical adjugate

gives the projection mapping as

N A1
adj (m )=7E(adj (F)-T)=-At-1, (2.22)

where J = det F —Tr F + 1 = 1. Therefore, the top/right path in diagram (2.17) is

ToVX@ = —At-Vx(%,%) = [(awag(f) - 83({);25)) - (g—i - %)] =Vx(z,y),
(2.23)

which shows that the circulation of a trajectory (x (t),y (t)) is exactly balanced

ﬂ' =
det 71

by circulation in the opposite direction of the chord (Az, Ay). For the left/bottom
path, observe that the (transpose) adjugate deformation gradient acting on ¢ from

the right can be written

- choadi(F) = (D, 0T, O @)
i (F) o @ = padi (F)" = (517 + 59, 50+ 5
- (W Ty, @)
= dt(aydx+aydy, 8xd$+(‘3xdy' (2.24a)

Then using the constancy of (Z,7) and the identity %dzi =4},

P -
V x ¢ - adj (F)T:—%(g—z—%):& (2.24b)

We are left with
\% XT[‘Od):—V XAt(fag) =-VX (A.Z‘,Ay) =Vx ($,y)7 (225)

exactly as in Eq. (2.23), and where the time-dependence of (z,y) is understood.

Therefore, diagram (2.17) is commutative. [

The consequence of Theorem 2.2.4 is that if the actions f and g controlling
the rates of change of gene expression do not commute, then the potential landscape
in gene expression space is not a gradient, even if the potential surface itself is
smooth. If the expression levels x and y are the independent variables, then it is
only in the commutative case (2.9) when % - g—g = 0 that the rate at which one
gene changes is balanced by the rates and expression levels of the other gene(s) (cf.
Figure 1.1A). A physical example of this balance is the way in which a spaceship’s

rate of escape from Earth depends on its distance from Earth, as well as its distance
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and rate of escape from the moon. A similar coupling between distances and rates
is at work in Michaelis-Menten kinetics, where the too much of a substrate inhibits
the catalysis rate of an enzyme. When a cell receives an independent signal to
increase transcription of gene x, however, there is no balance law that says how
the rate of transcription of gene y must change, and so the potential cannot be a
gradient. Theorem 2.2.4 permits us to project the tangent space dynamics back into
gene expression space in a manner that preserves the degree % - g—g to which they
fail to commute. The foregoing arguments show that appealing to the tangent space

of gene expression alleviates the need for unrealistic potentials in the base space.

2.2.3 When the potential difference alone determines the trajectory

Theorem 2.2.4 shows that when f and ¢ are independent controls, there
is no guarantee that ¢ is conserved. It is of interest to know when ¢ can be used
to determine the trajectory of the system in advance. The following corollary of
Theorems 2.2.3 and 2.2.4 characterizes the necessary and sufficient conditions when

control in the tangent space defines a gradient system in the base space.

Theorem 2.2.5. When only one dimension is controlled in the tangent space T'M
of a manifold M, the potential ¢ on M defines a gradient.

This is an important corollary which will be appealed to in chapter 4
for making statements about when prior knowledge of forces provides advance
knowledge of position. We prove it in two different ways, first geometrically by
referring to the level sets of ¢ in Figure 2.1, and second using a more general,

algebraic approach without refernce to the preceding theorems.

Geometric proof of Theorem 2.2.5. This is a statement of the foorm A «— B,
meaning A = B and B == A. To prove it we show both that A == B and
A = B: the latter is the same as B=B—>A4=A.

The potential ¢ = fx + gy is smooth if and only if Eq. (2.9) holds, i.e.,

%4
oxdy

to ¢ has a conjugate field ¢ = (—g, f). First suppose the one dimensional control is

mixed partials and aa;—g; are equal. By Theorem 2.2.3, the field ¢ corresponding

f = ay; then g = 0 by definition. But since g = —y = 0, we must have that f = ayj for

of _ 99 _
oy Oz

is a gradient. The condition holds for any general function f = f (x,y) because y is

some constant yy. Then the smoothness condition 0 holds, and the system
constant and g = 0.
Conversely, assume the controls are two-dimensional; then the applied

force A is not parallel to the direction vector v of the current point. There is an
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cosf -sinf

orthogonal matrix T = |
sinf  cos6

) such that v € R? has a one-dimensional

0 . )
representation via the transformation Tv = if @ = tan™' % and u = vl +02|".
u

If the controls f, g are applied for sufficient times ¢4, t5 such that

1 0
)\.v:(tl t2> v :(751 tQ)TT = (t1sinf +tycosf)u + 0
v? u

2

— fy %ty (2.26)
v

then the controls are two-dimensional. Now assume that an external source of energy
promotes the system between two level sets ¢; and ¢5 > ¢; of the potential, and let
this change be broken down into two sequential steps via a (variable) intermediate
state ¢*. The control f promotes the system in the & direction toward the x origin,
and ¢ takes it along ¢ toward the y origin. By adjusting the durations ¢q,%s of
the first and second steps, the alternate paths f, g and g, f have the same energy
endpoints. Because of the constancy of ¢ on a level set, the tangent vectors are
uniquely determined at each spatial point: the direction ¢* after the application of
control f differs from ¢; similarly, * after the application of control g points in a
different direction than 2. For if it were possible to reach curve ¢* along = with
intact, say, then the y origin would be at the terminus of the same direction vector
emanating from two different points; this can only happen if the two points are one,
in which case the controls are one-dimensional (e.g. the path parallel to the line
of increasing z in Figure 2.1). Now, both sequences of input f, g and g, f change
the potential from ¢, to ¢ via ¢*, but the uniqueness of the tangent vectors shows
that it is impossible for x and y to change by the same amounts on the alternate
paths. That the same A¢ is associated with different translations (Azy, Ays) and
(Ayi, Axy) at steps 1 and 2 implies that

of 99 Af Ag A% A2

Jdy Oz b Ay - Az; Ay Az, - Ax1Ays

A2
= Az1Ays — Az Ayy) # 0. 2.27
A-TleQAylAQQ ( T1AY2 ) yl) ( )
. Axy Az .
The last equality holds because det = 0 only if the columns (or rows)
Ayr Ay

are linearly dependent; they are not if the paths start together and end apart. Thus by
Theorem 2.2.4, a system controlled in the tangent space by two-dimensional inputs

is not a gradient. 0
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Algebraic proof of Theorem 2.2.5. First we prove sufficiency. Let f1,. .., f, be col-
umn vectors of controls f; = F f e; relative to the standard basis e, ..., e,. Then the

condition that, given an input set of controls, the energy completely determines the

trajectory of the variables x4, ..., x, on M is expressed as
d
0¢ dxt
=[] | /n S F (2.28)
' dx™
0

meaning that the only output channel containing information about the inputs dx?
is the energy. System (2.28) is a single equation; it is solvable if it has at most
one unknown. By hypothesis, this condition is met, because it is another way
of expressing the one-dimensionality of the controls. Observe that there is an

orthogonal matrix T = T, dependent on the current direction such that

0
dx! _
T| : |=]| | 2.29
0 (2.29)
dz™
du
For if
. Qin e =8l ein _ dz
T = ® S where 0, = tan 1( L ) (2.30a)
dz™
sin#;, - cosb;,
then
n—-1 ]
T = H T (2.30b)
i=1

is an orthogonal matrix that maps the direction vector dx by successive rotations
of the projections in the i, n plane onto a single direction (the n), with magnitude
equal to the sum of the squares of the components. Using T to refer the dynamics to

a one-dimensional trajectory parallel to dx, we can rewrite the solubility condition
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of Eq. (2.28) as

dx!
do=||n| = |5 ||T7T
dx"
T 0 0
“\rl{lal - 12 o =(0 0 1) (’) “Mu. (231
du du

Thus, the controls of a solvable system are written as a potential of mean force

A= @, (2.32a)
ou
or upon taking the Legendre transform
9¢
= —. 2.32b
U= oy ( )

Therefore, the energy differential is sufficient to characterize the trajectory u on M
if the controls can be reduced to a single vector \.

When is this reduction possible? To prove necessity, observe that in order
that the first of n — 1 columns of the control matrix vanish under the action of

T = [aﬂ, we must have that
a%fl + a%fg +--al fr, = 0. (2.33)

This is the condition that n vectors be linearly dependent. Rearranging (2.33) and

inserting f; = —ail (a2 fy +---a? f,,) into the equation for the second column
1

1

a
afi+aifotayfo==——(alfo+alfu) v a3fo+aifu=0  (234)

1

expresses the condition that n — 1 vectors be linearly dependent. In general, the
equation for the A™ column is a statement about the linear dependence of control
vectors f, ..., f,, conceived of as an equation for f; in terms of the other n — k.

The penultimate condition is

a%t—lf1+a31—lf2+"'a2—lfn:Oéfn—l"'ﬁfnzoa (2.35)

expressing the requirement that two vectors be linearly dependent. Thus, all vectors

are parallel to f,,, and we conclude that the controls are one-dimensional. 0
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The consequence of Theorem 2.2.5 is that controlling the deviation from
two reference states in general makes it impossible to know the trajectory of the
system in advance. Because there are many possible paths between the same energy
endpoints, the system does not know to which reference state it converges unless
it also knows its position. In contrast, the reference state is always the same for
a single potential well; the unique position trajectory x (¢) is dual to the velocity
trajectory f (t) specified at the start. As the same level set of ¢ is reached when
controls are applied for different times, different level sets ¢; and ¢, are reached if f
and g are applied for equal times but in different orders. The "extra" energy ¢, — ¢,
in the noncommutative system must be stored if it is not translated into motion. A
possibility considered in chapter 4 is that the dynamics can slow down if certain of
the genes have more resistance or "inertia" to being transcribed than others.

Alternatively, the trajectory is completely determined by the input controls
if at each step they are linearly dependent under the action of T, i.e., if they add up

to the (orthogonal) direction of motion dx. The reaction force vector f; = gfi is

orthogonal to the direction vector dx’ so that the area they span is equal to the energy
increment (see Materials and Methods section 4.4.1.3 in chapter 4). With only one
reference state, the Legendre transform of ¢ is always directed along level sets of ¢,
and the direction dx achieving the specified potential difference d¢ is the orthogonal
one down the gradient. In other words T is always a rotation of 90°. But with n
directions, T4 represents a 90° rotation in a skew coordinate system (cf. tan and
gray areas in Figure 2.1); the rotation relative to fixed coordinates is not known until
the position in space is known, and so the sequence of T4 ’s is not known before
the trajectory is. Therefore, the n-dimensional controls determine the trajectory in
advance only if you check at all steps that they induce transport between level sets
of ¢. By the time you’ve done this, the system is no longer determined in advance!
The interpretation favored here is that it is possible to have advance knowledge of
the future, but that interpreting this knowledge requires all time up until when the

future becomes the present.

2.2.4 The parsimony principle

The results so far paint a picture of progressive lineage restriction on a
smooth potential surface. The requirement for time is shown here to be conjugate
to the spatial connectivity of developing cells. We argue that there is a "kernel" of
information in the egg that can be made to fit within the adult either by specifying

all fates at once or letting development proceed over time. The minimal size
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requirement for fitting this information in space-time follows from the parsimony
principle.

Development is at heart a process taking a system from high to low
potential over time. Theorem 2.2.5 states that the potential difference between the
end points is sufficient to characterize the trajectory when there is only one velocity
being independently controlled. We can understand this statement as a condition
on energy partitioning using the parsimony principle. The conversion of energy is
measurable in single-cell data that show increased RNA splicing velocity [148] and
decreased expression heterogeneity [182, 217]. The simplest or most parsimonious
explanation for why cells moves faster (through expression space) when their fate
is more certain is that potential energy is converted into kinetic. In more abstract
terms, one dimensionality means that the trajectory never leaves the surface ¢,
because one direction g—; is always balanced by another % during the step Ag.
One-dimensionality also means that the higher derivatives of the curve of ¢ versus
t are zero, although this does not mean the surface ¢ has to have a constant slope:
the marble follows a zig-zag (or "canalized") path down the hill if the path suddenly
becomes too steep. In the absence of other information, the most we can say is that
each time point is the same as the last, being characterized by the same decrease in
potential.

The tradeoff between pluripotency and certainty of fate reflects a tradeoff
in a conserved quantity called information. Just as the sum of potential and kinetic
energy is conserved for the marble, so the total information present in the egg
is constant in the space and time of development. The increment of a function
I(z) = I(t,s) of conjugate variables can be regarded as the pairing (¢, 1)) of
conjugate n-dimensional vector fields (see Materials and Methods section 4.4.1.3
in chapter 4), so that its space-time derivative of [ can be written using a 2n-
dimensional vector field

dl
—=X({)=dI-X 2.36
T =X () =dI X, (236)

where the second equality follows from writing X = (¢, %) = ¢ (t,s) 2 +¢ (¢, s) &
in coordinates and applying the chain rule. We hypothesize that development can be
schematized in Figure 2.1 as the transformation of the locus of equipotential fates
from a straight line to a curved one. If information is conserved during development,
we should find it entirely contained in the area spanned by two equipotential lines.
According to the parsimony principle, we are agnostic as to how the information is

distributed; our best guess is that the areal distribution is uniform. We may write
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this condition as the vanishing of the variation

M:(sfdf(X):fd)dswdt:af[(g—f—g—f)dsdtzo, (2.37)

where we have applied Green’s theorem [77] to a counterclockwise loop in the (¢, s)
plane. The condition holds for all bounding space-time curves if the integrand on
the r.h.s. of (2.37) vanishes, i.e., if

¢ O
5 Bs (2.38)
Compare this equation with the Cauchy-Riemann equations (2.14), where now the
transformed time variable ¢ — x + y is associated with increasing distance from the
reference states and the transformed space variable s — = — y with balance between
them.

Eq. (2.38) hypothesizes that collective development is more like flow of
an incompressible fluid or straining of a rubber band than it is a marble rolling
downhill. Cell fates that are nearby (with respect to the expression space coordinate
s) are related to each other by how far back in time they diverged. There is no
need for extra extra barriers between alternative fates in the present because the
only way they communicate is by going backwards in time. We can also understand
the balance implied in Eq. (2.38) by the idea that the egg contains a "kernel" of
information to be distributed among alternative fates (Figure 2.2A). With a small
number n of signaling inputs, each fate is encoded in time by one of n’ possible
sequences over 7' discrete events. That these fates are encoded in the egg implies

that the total information is bounded by

I<n? (2.39a)
log I <T'logn. (2.39b)

Eq. (2.39b) shows that it is much more efficient to increase the number of steps 7T’
when assembling complex instructions than it is to increase the number of inputs.
Both strategies lead to the same total information 7, but it requires an exponential
increase in n to specify all fates in a single step (blue area in Figure 2.2A); a linear
increase in I’ encompasses the same information using only a few n (red area). This
tradeoff is examined in chapter 3 with specific coding models.

The infinitesimal version of Egs. (2.39) expresses the idea of local balance.
If at some point in time or expression space the information contained in one cell

exceeds the amount allocated to in by the parsimony principle, its neighbors in time
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Figure 2.2: The information kernel. (A) The parsimony principle is at work in two
alternative plots of total information. With an exponential number of inputs, all fates can
be specified in one step, whereas using more steps and fewer inputs results in a fatter
rectangle of the same area (not to scale). Conservation reflects the fact that the egg contains
the total information content of the adult. (B) The infinitesimal version of the parsimony
principle shows that locally increasing the number of signaling inputs necessarily decreases
the information allocated later.

and space must have less (Figure 2.2B). A biological example is lateral inhibition
in the Delta-Notch signaling pathway. A cell expressing the Delta ligand inhibits
its Notch-expressing neighbors from adopting a neural fate [9, 114]. Delta is a very
informative gene, defining the fate of both the expressing and receiving cell. But by
the balance condition (2.38), excess information that flows into one cell now must
flow out again later. In other words, the cost of extra knowledge is a limited horizon;
the future moves toward the present until the information rectangle becomes a spike.
An investigation of such space-time trade-offs in the physics of strings is described

in chapter 4.

2.3. Conclusions

Here we have provided a two-gene example of how a cell can fail to know
its fate in advance. The parsimony principle required that the cell at each step see
the same decrease in information instead of following its original trajectory to a
minimum. In answer to the paradox posed in section 2.1, although a cell might
know its end at the start, it does not know how to get there. The biological basis for
the parsimony principle was that multipotent cells have a range of expression states
along a level set of the potential. Absent of other sources of information during the
process, development was autonomous if cells maintained this relationship in time.

The balance condition (2.38) meant that some steps could break the equipotential
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relationship by locally increasing the signaling input into other cells, but at the cost
of the endpoint being reached earlier. Development of connected cells entails a
reimagining of the Waddington’s analogy of the marble in terms of an elastic string
or an incompressible fluid. Single-cell sequencing technologies that maintain cells’

spatial context [157, 244] are beginning to make this hypothesis testable.



39
Chapter 3

NONCOMMUTATIVE BIOLOGY: SEQUENTIAL REGULATION
OF COMPLEX NETWORKS

1. Letsou W, Cai L. Noncommutative Biology: Sequential Regulation of Com-
plex Networks. PLoS Comput Biol. 2016; 12: e1005089. por: 10. 1371/
journal.pcbi.1005089.

3.1. Introduction?!

A fundamental question in systems biology is how a small number of
signaling inputs specifies a large number of cell fates through the coordinated ex-
pression of thousands of genes. This problem is especially challenging given that
gene regulatory and other types of networks in biology tend to be highly intercon-
nected and their regulators promiscuous, with regulators affecting multiple targets
and targets being affected by multiple regulators. Examples of this architecture in-
clude: transcription factor binding networks in bacteria [166], yeast [18, 103], plants
[215], and animals [195, 226]; cellular signalling pathways involved in growth and
differentiation [123, 130, 164]; the interactome of protein kinases and phosphatases
[232, 279]; and synaptic connections between different layers of the brain [234].
Furthermore, because the targets and regulators are often well-mixed and mutually
accessible in the cell, most actions are likely to have nonspecific and undesired
effects.

At the same time, regulatory molecules drive networks to a large number
of highly specific outcomes or cell fates. Although there are approximately four
hundred canonical cell types in the adult human [281], recent single-cell RNA
expression profiling experiments in the developing embryo [201, 300], brain [303],
hematopoietic system [133, 179], and other organs [42, 273] have indicated that
there may be thousands more.

Given there are only a few signaling pathways used in metazoan develop-
ment [91, 283], understanding how cells reach their final outcomes when there are

fewer regulators than fates and/or targets is an unsolved problem. One extensively

I'The formatting of the original article has been made to agree with the rest of this thesis. Typos
have been fixed, the word "the" was deleted before theorems in Materials and Methods sections 3.4.4,
3.4.5, and 3.4.8, and a few non-critical mathematical errors were corrected in section 3.2.8.
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studied solution for the control of promiscuous gene networks is combinatorial bind-
ing of DNA-binding transcription factors (TFs) at the promoter [43, 63, 72, 113,
137, 138, 268, 212, 298]. At the level of individual promoters, combinatorial bind-
ing ensures that individual genes are ON only when specific combinations of TFs
are present (Figure 3.1A). However, on the genome level, combinatorial regulation
restricts which sets of genes may be ON at the same time. For example, using AND
logic, gene H in Figure 3.1A is only ON in the case that the three TFs K, K5, and
K3 are concurrent at the H promoter; but these stringent requirements mean that H
can never be transcribed independently of the less highly-regulated genes A-G. (A

similar conclusion holds for OR logic.)

A. A one-to-one correspondence between regulators and targets C. Feedback decreases the number of accessible configurations by
in combinatorial logic linking similarly regulated targets
Promoters B A Promoters Targets Activated
Targets Activated B A 0 A A
_— 0 A A S g g ¢
] [] K AB ABEFH
E c o AB ABEFH E c K ABCE  ABCE
> > K, AC ACEGH > > . 0 ADFGH
ue ] Ky AD ADFGH e [ I” .
|:F |:D Ki, Ks ABCE ABCEFGH |:F D e ABCE ABCE
] Ky, K3 ABDF ABDEFGH ] - Ki, K3 ABDF ABDEFGH
H G Ko Ky ACDG ACDEFGH H s Ky, K3 ABCDEFGH ABCDEFGH
> > Ky, K2, K5  ABCDEFGHABCDEFGH — — K, K, K&; ABCDEFGHABCDEFGH
[ ) [ ne ) : :
Regulators AND Logic  OR Logic Regulators AND Logic OR Logic

B. Promiscuity results in information bottlenecks

i. Promiscuous regulators ii. Promiscuous signals

0 Jergets Activated Signals (§1) Targets Activated

o F 0

s A ABD 0 A A
A A8Co
AB ABD Regulators 5 A ABCD
A ABCD
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A ABCD S A ABCD
2 A8 e
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$1, 52,85, 81 ABCD ABCD

Signals  AND Logic  OR Logic Signals  AND Logic OR Logic

Figure 3.1: Combinatorial logic bottlenecks information flow in networks. (A) The
number of ways that three TFs (K7, Ko, K3) can be ON or OFF (tabulated at right) is the
same as the number of ways they can bind at promoters (left). An equal number of gene
expression states are observed whether the TFs use AND logic (requiring all factors be
present) or OR logic (requiring at least one of the factors). (B) Signal-to-target information
flow is bottlenecked by regulators if (i.) the regulators respond to multiple targets, or
(@i.) if the signals activate multiple regulators. The allowed target states are tabulated for
signals using AND logic and regulators using AND/OR logic. (C) A feedback loop causes
constitutive activation of a regulator (K1) and leads to fewer accessible configurations
(tabulated at right).

In fact, using combinatorial control, there is a one-to-one correspondence
between configurations of the targets and configurations of the regulators. As shown
in Figure 3.1A, the ON/OFF states of 3 TFs uniquely define the binding combinations
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at 23 = 8 promoters. A similar conclusion holds when the regulators are expressed
in a graded fashion.

This one-to-one correspondence is the fundamental limitation of combi-
natorial regulation: it requires an equal number of regulators and independently
controlled targets and/or cell fates. Applied to embryonic development, combinato-
rial control requires that hundreds or thousands of cell-type specific TF combinations
be generated in a spatially precise manner at the start. However, the combinatorial
scheme does not explain how the TF states are regulated in the first place, and thus
it offers no new insight into how cell fate is specified.

The limitations of combinatorial logic can also be understood from an in-
formation theoretic point of view. In particular, it is impossible to specify arbitrary
cell fates if the regulatory layer bottlenecks the capacity of the targets to receive
messages from extracellular signals. It is known that some ten to twenty types of
signals [91, 283] converge onto membrane-bound regulators in many different com-
binations, permitting messages to be passed to the downstream targets. Much of this
information stands to be lost, however, if the network relies on combinatorial logic
alone: the regulatory layer simply cannot transmit messages in their entirety if there
are more signals than regulators. Thus, combinatorial logic strongly circumscribes
what fates are ultimately reachable. Cell fate information is lost not only if the
signals are more numerous than the regulators, but also if the connections between
signals and regulators are promiscuous (Figure 3.1B). When different signals acti-
vate the same regulators (Figure 3.1B.i), certain signaling inputs become redundant.
On the other hand, when same signal activates different regulators (Figure 3.1Bii),
some of the regulators become redundant. One may determine by direct enumer-
ation exactly how redundancy decreases the number of configurations available to
the targets (Materials and Methods sections 3.4.1 and 3.4.2). These preliminary
conclusions are at odds with the observation that signaling molecules are deployed
over time in a complex code [129]. How do these messages in the signal space reach
the targets if the regulatory layer imposes a bottleneck on information flow?

In addition, feedback regulation—a common feature of regulatory net-
works—exacerbates information bottlenecks when coupled with combinatorial logic.
Stated another way, feedback merely widens the basin of attraction of certain pro-
moter configurations at the expense of the number of distinct configurations. In
Figure 3.1C, constitutive expression of /&y by C means that C is never ON indepen-
dently of the targets regulated by /;. Thus, the number of accessible configurations

decreases from 8 to 6 without allowing new target configurations to be explored.
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We need an alternative to combinatorial logic in cell fate specification
that overcomes information bottlenecks. Here, we considered time-ordered control
schemes, which we refer to as sequential logic. In this scheme, regulators can be
applied in a stepwise manner; the entire sequence matters, so the final configurations
can differ if the same regulators are permuted in time. In order for different tem-
poral sequences to carry distinct information, the actions of the regulators must be
noncommutative. This is the case, for example, when a regulator protects its targets
from the action of another regulator, as when loci recruited to repressive chromatin
compartments are protected from further modification [52, 236].

While it is not surprising that noncommutative sequences like this re-
sult in different outcomes at the single promoter level, these simple mechanisms
may have nontrivial implications for regulation at the genome level. In particular,
noncommutativity permits the same regulators to be used at different times with
distinct effects. This is seen in development when ubiquitous signaling molecules
like FGF family members exert different effects depending on the time and context
of their expression [132, 178, 249, 287]. Reuse of factors could greatly expand the
information capacity of the major signaling pathways.

A number of examples show that noncommutativity may be a general
strategy in other areas of biology. In hematopoietic stem cells, activation of GATA?2
and C/EBPu in different orders results in different cell fates [131]. In neurobiology,
different temporal orderings of the same inputs lead to distinct firing patterns [1,
93, 183]. In the field of synthetic biology, a DNA switch was developed that
could detect the order in which invertase enzymes were applied [108]. And in
evolutionary biology, the order in which mutations arise was recently implicated
in determining a genotype’s fitness [34, 68, 209, 292]. There is also accumulating
evidence for sequential logic in transcriptional control: signaling molecules and
TFs in mammalian cells, including ERK [5], NF-xB [139, 193], pS3 [150], as well
as in yeast [45, 61, 158] have been observed to pulse, suggesting that TF timing may
be used to control the transcriptional state of the cell.

By applying sequential logic, we show that, even in complex and promis-
cuously regulated networks, specific target configurations can be reached using a
temporal sequence of regulators. In particular, we consider two models inspired by
(i.) kinase/neural networks and (ii.) chromosome folding and show analytically that
both scale super-exponentially. We further show that noncommutative networks are
robust to the loss of regulators, suggesting a mechanism for regulator evolution.

We also show that regulators induce different orbits in expression space, which is



43

related to the number of networks that can be controlled in parallel. We conclude
by discussing how these models apply to interconnected networks in and outside
biology and by providing possible experimental tests of the theoretical concepts.

Theorems and proofs are given in the Materials and Methods.

3.2. Results

3.2.1 A time-sequence ratchet model generates more diversity than combina-
torial logic in multiply-connected networks

To consider how time-ordered sequences of regulators can specifically
control groups of targets, we begin by analyzing a generic two-layer network that
is an extension of combinatorial logic (Figure 3.2, Materials and Methods sections
3.4.1 and 3.4.2). In this model, each regulator controls multiple targets, and each
target is accessible to any of its regulators. The model is meant to be analogous to the
cellular environment wherein regulators and targets are well-mixed. For example,
targets could be substrate proteins capable of multi-site phosphorylation [228, 270],
and regulators the kinases and phosphatases. Targets could also be neurons and
regulators their upstream excitatory and inhibitory inputs [234]. We denote by K
the set of activators (i.e., kinases) and P the set of deactivators (i.e., phosphatases).
Each target has a ladder of (integer-valued) stafes, and together the states of the
targets are a configuration of the network. (This distinction is in contrast to the
common usage of "state" as a gene expression vector.) An additional parameter, the
threshold 7', determines the number of rungs on the ladder. Regulators ratchet the
targets through their states, and only targets that have reached threshold will be ON
at the end of a sequence of regulators. If each target in the group can be controlled
by a unique combination of K’s and P’s, what ON/OFF configurations are possible?

In this model, termed the ratchet network (Figure 3.2A), each of n K’s
and m P’s control N = ( Z:l )( ZZ ) unique targets, with the connectivity parameters [,,
and [,,, specifying the number of regulators to which each target connects. Consider
the sequence KK, P, acting on the targets A, B,C, and D (Figure 3.2B). In the
final configuration, B and D are ON together even though no single A connects to
both, and A and C' are OFF, even though both share and activator with B and D.
Therefore, this simple model illustrates the important point that similarly regulated
targets can be in independently controlled using sequential logic.

With threshold 7" = 1, not all configurations are reachable. Observe that
there is no way to specifically activate A and D while leaving B and C' OFF. This

result is surprising given that A and D share no regulators: specificity depends
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A. An example ratchet network
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D. Scaling in the ratchet network
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Figure 3.2: The ratchet model attains configurations not reachable by combinatorial
logic. (A) The ratchet model for n = m = 2 and [,, = l,, = 1. Activators (K’s) and
deactivators (P’s) turn targets ON and OFF, respectively. (B) An example temporal sequence
for the network with a threshold equal to 1. Black targets are in the 1 state. (C) An example
sequence for the same network with threshold equal to 2. Gray targets are in the 1 state, and
black targets are in the 2 state. (D) Scaling laws for the threshold 7" = 1 (red) and T = 2
(yellow) are shown for symmetric networks (n = m). A comparison to combinatorial logic
with an equivalent number of regulators (n + m) is shown in blue.

on the network as a whole, not just individual targets. By going to 71" = 2, the
forbidden configuration becomes accessible (Figure 3.2C), along with all ON/OFF

states (below).
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3.2.2 A combinatorial formulation of the model as a connectivity matrix

The model described above can be formalized as a combinatorial object
that we refer to as the connectivity matrix A. This formulation is useful because it
is amenable to studying scaling, and it permits a direct comparison between non-
commutative ratchet networks and standard combinatorial logic. For the interested
reader, the models considered in this paper have a universal formulation as non-
commutative matrix operators on the vector space of configurations (Materials and
Methods section 3.4.9).

Typically, the state of [V targets is represented as an /V-dimensional vector.
If each target is controlled by a unique (X;, P;) pair (i.e., l,, = l,, = 1), the N = nm-

dimensional vector can be re-formulated as an n x m matrix

P1 Pm,
K Al,l Al,m

N | 3.1)
Kn An,l An,m

where each entry A, ; € {0,1,...,T'} is the state of the target regulated by K; and

P;. For example, the connectivity matrix for the network in Figure 3.2 is

P P

(A B
A=K , (3.2)

Ko C D

In general, a regulator may connect to multiple targets (i.e., [, 1, > 1,
see below), so that each entry of A may be thought of as an M -dimensional vector
(M determined in Materials and Methods section 3.4.1). It turns out that this is
an unnecessary complication; we instead let each A, ; = 1 if at least one of the M
targets regulated by K; and P; is ON, and A, ; = 0 only if all M targets are OFF.

In this formulation K; and P; are raising and lowering operators that map

n X m matrices to n x m matrices via the rules

Ai,j +1 if Ai,j <T

K (Aij) =
Ai,j lf Az’,j = T
Ai,j -1 if Ai,j >0

P (Aij) = (3.3)
O lf Ai,j = 0

From Eq. (3.3), any sequence K; K,,---K;, of all K’s is commutative, because
any target controlled by ¢ < k of the K’s will be in state ¢ < 7" at the end of the
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sequence, regardless of the order. A similar argument holds for the P’s. However,
sequences consisting of both K’s and P’s are in general noncommutative. This is
due to edge effects when A, ; =0 or 7. If A, ; = T', for example, then K; P; results
in A;; =T -1, whereas P;K; gives A; ; = T. Therefore, A gives insight into both
the configuration of the targets and the noncommutativity of the regulators.

The problem of determining the number of accessible configurations in a
network is reduced to finding the number of matrices satisfying certain patterns. For
example, combinatorial logic with 7" = 1 corresponds to the special case in which
the only sequences are the 2" combinations of the n K’s. In an n x 1 connectivity
matrix, activating K; corresponds to turning all 0’s in row ¢ into 1’s. There are
2™ matrices generated by this procedure. More complicated cases of combinatorial
logic can be studied this way (Materials and Methods section 3.4.2), but it turns out
that the total number of network configurations is always less than 2™ with n +m
the total number of regulators. This is important because noncommutative models

can bypass the exponential limit.

3.2.3 The ratchet model scales as the poly-Bernoulli numbers

We used the connectivity matrix representation of the ratchet network to
determine the scaling as function of the number of regulators n and m, with each
target connected to a unique (K, P) pair (i.e., [, = [,,, = 1) and the threshold 7" = 1.
K; turns 0’s to 1’s in row ¢ and F; turns 1’s to 0’s in column j. The rules are
consistent with the one-pot reaction model in which all substrates receptive to K;

are promoted when K is active. For example, the sequence K K5 P, in Figure 3.2B

L)) e
0 0 0 0 11 01

01

10
in any 2 x 2 sub-block (Materials and Methods section 3.4.3). Brewbaker [38]

enumerated the n x m binary matrices avoiding these patterns and showed that they

can be recast as

The main result is that A must avoid the patterns

scale as the poly-Bernoulli numbers [136]

pr=m =8 e ey TS go e s

i 20 j+1)+1

where {?} is a Stirling number of the second kind, defined combinatorially as the

number of ways to put j labelled balls into n unlabelled boxes such that no box
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is empty [175]. These numbers scale not quite as fast as 2V = 2™ but much
faster than 27, the maximum number of states in the equivalent combinatorial
network (Figure 3.2D). Thus, a simple time-sequence model is able to generate

super-exponential scaling.

3.2.4 All binary ON/OFF states are reachable for an increased threshold
Are more configurations accessible if multiple activation events are needed
before reaching threshold? For example, neurons require the summation of multiple
excitatory inputs to reach action potential, and proteins need to be phosphorylated at
multiple sites before they are activated [228, 270]. We found that by increasing the
threshold to T = 2, all 2V ON/OFF configurations of the NV targets become reachable.

1 1
In the connectivity matrix formulation, 01 and Lo are no longer forbidden,

which we show with an inductive proof (Materials and Methods section 3.4.4). This
scaling law (Figure 3.2D) achieves the maximum of reachability and specificity; it
far exceeds the scaling 2"*"™ of the combinatorial model.

Being able to reach the entire ON/OFF space of NV targets is overkill for
most biological networks, which only display a relatively small number of stable
configurations. The major implication of this result is that multiple levels of activity

permit more targets to be controlled independently.

3.2.5 Increased regulatory connectivity generates robustness

As sequential logic allows a large number of configurations to be reached
in a complex network, we asked whether increasing the connectivity of the network
(l,, and [,,,) can maintain the specificity of the network while making it robust to the
loss of a regulator. This is potentially relevant to evolution of biological networks,
because redundant connections allow the network to repurpose regulators for new
functions without severely impairing existing ones [267].

In the ratchet model, an increase in the connectivity parameters to [,, = 2
K’s and [,,, = 2 P’s permits multiple targets to share a common (K, P) pair (Figure
3.3A). The connectivity matrix incorporating the extra links in the network in Figure
33Ais

P P Py
k. [ ABDE ACDF CDEF
A=k, | ABGH ACGI BCHI |. (3.6)

ks \ DEFG DFGI FEFHI

Now that each entry of A is a group of M > 1 targets, it makes sense to track the state
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of the group as a whole with a single number A; ;. Even though a target appears in
multiple entries of A, the rules prevent a regulator from altering the state of groups
at remote locations (e.g. K cannot change the state of the group at A ).

We prove in the Materials and Methods that all sequences using at least
n—Il,+1 K’sand m —[,, P’s are redundant with shorter sequences (Figures 3.3B
and C, Materials and Methods section 3.4.5). For example, the sequences /Ky Ky K3
is required to turn ON all targets in the case [,, = [,,, = 1, butifl,, = [,,, = 2, the shorter
sequences K Ko, K1 K3, and K9 K3 have the same effect. We derived a recursive
formula that eliminates the redundant sequences in each (n,m,l,,!,,) instance to
derive the number of sequences in (n,m,l, + 1,,,) and (n,m,l,,l,, + 1) (Figure
3.3D and S2 Fig). The formula agreed exactly with an algorithm designed to find all
minimal length sequences (Materials and Methods 3.4.5). Notably, increasing l,,, [,,,
reduced the number of configurations. We observed a similar effect in combinatorial
logic (S1 Fig).

To investigate the robustness of sequential logic networks, we studied
the effect of deleting regulators in increasingly connected networks on the num-
ber of reachable configurations (Figure 3.4A). We hypothesized that sequences that
activate similar subsets of targets should be able to recoup permanently lost config-
urations. To test this, we computed the normalized correlation coefficient between
configurations in the network using all K’s (the full network) and configurations
in the network without K (the impaired network), subject to the constraint that
those configurations were reached using longer sequences (Figure 3.4B). To focus
on the recoverable fraction, we deleted all configurations that had an exact match.
Highly similar configurations (yellow) clustered to the right of the plot, indicating
that longer sequences can be used to recover lost configurations.

How similar are the recouped configurations? As connectivity increased,
the maximum similarity became increasingly concentrated above 0.8 (Figure 3.4C).
There is generally a tradeoff between reachability and the size of the fraction above
0.8 (Figure 3.4D). The tradeoff is nonlinear, however: using [,, = 2 gave the greatest
increase recoverability for the smallest loss of configurations, showing that an inter-
mediate level of redundancy can buffer the network to loss of regulators. The above
analyses demonstrate that specificity of control is not compromised when regulators

are lost or repurposed in heavily interconnected networks.
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A. A network with extra connections B. Sequences in a network with minimal
connections

Connecitivity to
K's
I, =2

uonoe jo adA |

Connectivity to
P's
I =2

3
Sequence length

C. Sequences in a network with extra D. Number of unique sequences
connections
Ky 10" L=1 =1
K 2
2 , 10° 3
[k S
14
5 =3 ®
=] ® ..6
g =3 =04
1] o o 10
P> 2
3
z 2 |
P, 10
' P. 0 ' ' '
1 2 4 8 107 2 6 7 8

3 3 4 5
Sequence length Number of on/off regulators n = m

Figure 3.3: Multiple connections in the ratchet network decreases the number of
configurations. (A) An example network where each target has /,, = 2 connections to
the K’s (red) and l,,, = 2 connections to the P’s (blue). (B) A list of the minimal length
sequences generating unique configurations in the network in when /,, = [,,, = 1. Red bars
are K actions and blue bars are P actions. (C) The list of minimal length sequences when
lp =l = 2. Some sequences now map to the same configuration. (D) Analytical solution
for the number of sequences as a function of n = m for different [,, = [,,, families.

3.2.6 Sequestration networks generate diversity through protected states

In the ratchet model, all targets are accessible to their regulators at all times.
However, in some cases targets may be shielded from regulators: for example, genes
can be silenced by sequestration in various nuclear compartments [211, 310]. This
was seen in a landmark study by Filion and coworkers [76], who used a DNAse
accessibility assay to show that genes associate with different regulators depending
on their chromatin "color" or accessibility status.

To study the effect of accessibility and silencing on activating specific
subsets of genes, we constructed the following sequestration model. In addition to
the OFF state 0 and the ON state 1, each target/gene is endowed with additional
orthogonal states 2 to n (allowing for a total of 2"~! — 1 genes). If RNA polymerase
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A. A network with redundant connectivity B. Similarity of configurations in the
full and impaired networks
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Figure 3.4: The ratchet network is robust to loss of a regulator. (A) A schematic illus-
tration of the experiment. The regulator K; was deleted from networks with m = 2 P’s and
variable n for different values of the connectivity [,,. The resulting number of configurations
was computed by simulation. (B) Correlation coefficient between configurations in the full
network (all K’s; rows) and the impaired network (without K; columns). All rows with
exact matches were deleted. (C) Cumulative distribution F'(z) of the maximum correlation
coefficient x for each row in C for different values of /,,. The dashed line is the similarity
cutoff 0.8. (D) Tradeoff between reachability and robustness. The number of reachable
configurations as a function of (n,l,) is plotted versus the fraction of states above the
similarity cutoff 0.8 (i.e., 1 — F'(0.8)) for different values of n.

(RNAP) is associated with /{7, what genes can be independently activated? In this
model (Figure 3.5) a regulator K; promotes targets in the O state to state ¢, and P,
returns targets in state ¢ to 0. Any target in state ¢ is protected from regulators other

than P;. As an example of gene regulation on a three-dimensional chromosome
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(Figure 3.5A), the sequence K3K 4 K;Ps;P, first clusters all genes having a 3 in
a repressive compartment, and then the remaining genes having a 4 in another
repressive compartment. The net effect is that RNAP can only act on the gene
represented by {1,2}. We represent this abstractly as a configuration vector of k-
armed targets (Figure 3.5B), where each entry corresponds to the state {0, 1,...,n}
of a gene able to access k < n of the states (see below for a mathematical description
of the model). Therefore, protected states in the sequestration model allow genes to

be transcribed specifically in a well-mixed environment.

A. Pictorial view of noncommutative sequestration

01,4 01,4
013 @ O e
01,2 01,2
® 0123 . 0123 013
Y 01234 239014
01234 2.4
® ’ 0,134
01234 0124 1,24
01,34

0,14

3@ @
m 123 O
0124

01,23
01234
01,34
01234 0,1,2,4 @
0,1,3,4

B. The same sequence using multi-arm targets
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Figure 3.5: The sequestration network is a noncommutative model of gene regulation
by chromosome folding. (A) A sequence of moves K3K,K; P3P, on a hypothetical
chromosome with K and P actions represented as DNA-binding factors and K playing the
role of RNAP. Red circles correspond to genes and numbers correspond to allowed binding
partners. (B) The same sequence in A represented as a collection of targets with up ton =4
arms. For example, the target {0, 1,2} corresponds to the gene locus with states 1 and 2 in
A. The filled circle represents the current state.
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We derived (see below) that the number of reachable configurations scales

with the number of regulator pairs n as

n-1 | m (m m_(n-1y_(m
Fn) =221 mzz( . ) (2&:3 (") - 1) (2&:3(1@71) (H)) T
Forn =1,2,3,4,5,6, this formula gives f (n) = 1,2,7,89, 16897, 780304385 (Fig-
ure 3.6). We also relaxed the constraint that all genes have a 1 state (allowing
for a total of 2" — 1 genes) and found that the number of configurations scales as
Cn =2,7,94,37701 with n = 1,2,3,4. The full model does not have an analytical
solution, but it does have upper and lower bounds related to Eq. (3.7) (Materials
and Methods section 3.4.7, S3 Fig).

A. configurations B. sequences C. scaling
Ks w= Reachable 4
K, Space .
o 1080} = = = Total Space
2 K 5 B
g 2 5 s COmbinatorial
E] P 5 Logic
o 1< o
3 -8 % 40
2 o g8
.
3 "S5 B
S P, £ 1o
(&) z
P3
P
5 10 15 20 ¢ 10°
sequence Iength Number of regulator pairs n

Figure 3.6: Scaling in the sequestration model is super-exponential.(A) A plot of all
the allowed configurations of a set of targets of n = 4 regulator pairs in the sequestration
model. Yellow represents targets that are ON, and blue those that are OFF. (B) A list of
the sequences generating the corresponding states in A. K actions are shown in the red
spectrum, and P in the blue. (C) A logarithmic plot of the scaling in the sequestration
model. The total space is the 22"_1‘1, the reachable space is calculated from Eq. (3.7), and
the combinatorial model is 227

Combinatorial scaling laws of this sort are not uncommon [66, 100, 209].
Edwards and Glass [66] saw an explosion in the number of states when studying tra-
jectories on n-cubes, and Green and Rees [100] saw a super-exponential jump when
enumerating certain types of nonrepeating sequences on n letters. Furthermore,
a similar small number (four) of factors are necessary and sufficient to reprogram
fibroblasts to stem cells [265]. Together, these results indicate that sequences can far
exceed the 2" limit set by combinatorial regulation, and that only a few regulators

are necessary to make large changes in the configuration of a cell.
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3.2.7 Regulators act on the configuration vector in the sequestration model
The sequestration network with n regulator pairs (referred to as the n-
network) is described using the 1 x 2™ — 1 configuration vector x. This is a simpler
description than the connectivity matrix because a target affected by K; is necessarily
affected by P;. The entries of x are the states of each target g able to be controlled by
k < n of the regulator pairs. Each target g is a list {0, 7y, ..., 4} of the k regulators
to which it responds. Because of their radial appearance, such targets are said to
have k arms (see Figure 3.5B).
The regulators act on x according to the rules
X+ ifie gandx, =0

Ki(xy) =
X, else

0 ifie gandx, =1
P (x) = (3.8)

x, else.
Eq. (3.8) guarantees that the regulators are orthogonal in the sense that a target in
state j is protected from K; and P; if ¢ # j; and also idempotent in that K? = K;.
Furthermore, sequences of regulators are noncommutative unless the only actions
are P’s. This is a consequence of the fact that P’s put all affected targets into the 0
state. Although these rules are different from the ratchet model, a formulation exists
that generalizes the K’s and P’s to matrix operators consistent with both models
(Materials and Methods section 3.4.9).

If x is restricted to the 271 — 1 targets all able to be regulated by K and
at least one other K, the network is said to be reduced; otherwise we say x is full.
This distinction was used in Figure 3.5.

A one-coloring is a configuration of x that uses only one of the states and
0. For example, the configuration x = (1,0,0,1,1,0,0) in the full n = 3-network
is a one-coloring of 1; so is the reduced network formed by (x4, x5,x7) = (1,1,0).
This concept is easily extended to k£ > 1-colorings. One-colorings are particularly
important because they resemble the ON/OFF configurations of genes in an RNA-
seq experiment, and we would like to know how many such configurations can be

reached.

3.2.8 A simple counting argument for the connected one-colorings illustrates
super-exponential scaling in the sequestration model
As in the ratchet model, finding the accessible states of the sequestration

network amounts finding restricted patterns in x. We determined that the restricted
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one-colorings are those that violate a property referred to as connectivity (Materials
and Methods section 3.4.6). A configuration of x is said to be connected if all
k > 3-arm targets gl(k) = {0,41,...,ix} match the state of at least one of (’;) of
the 2-arm targets {0,41,4s},. .., {0,4x_1,%x } sharing the indices 7. If the network is
reduced, no k-arm target may be in the 1 state when all of 2-arm targets with which
it overlaps (i.e., shares an index other than 1) are in the O state. This restricts the
one-colorings and suggests a method to determine the scaling law for the model in
Figure 3.5.

As an example, in the n = 4 network on the reduced set of 23 — 1 targets
illustrated in Figure 3.5, {0,1,3} and {0, 1,4} both being 0 constrains {0,1,3,4}
to be 0 as well. Furthermore, even though {0, 1,2} is in the 1 state, {0,1,2,4} and
{0,1,2,3,4} may be 0. It is only the two-arm targets that constrain the possible
configurations: for example, the longer sequence

KoKy Py K3 Ko Py Ky P Ky P K3 Py K Py Py

obtains the statex = (0,0, 1,0, 0,0, 1) in which only the targets {1,4} and {0, 1,2,3,4}
are ON, showing that {0,1,2,3,4} need not be in the same state as {0, 1,2, 3},
{0,1,2,4}, 0r {0,1,3,4}. In Figure 3.6A and B we show the allowed states and the
sequences that generate them for n = 4; there are 90 out of a possible 22* -1 = 128
configurations.

There are 22"~ one-colorings on 27! — 1 targets. How many of these
violate the connectivity rule? Suppose there are m 0’s among the 2-arm targets.
If m =1, then (,fl) = ( kfl) = 0 of the k£ > 3-arm targets are constrained to be 0,
as there is always another 2-arm target (in the 1 state) that each k-arm target can

match. If m > 1 and £ — 1 < m, however, then ( m ) > 0, so ( m ) k-arm targets

k-1 k-1
whose states {i1,. .., 1} are completely contained within the set of 2-arm targets
{0,1,51},...,{0,1, j,, } must be 0. Hence in any violation of the connectivity rules

at least one of > ;' ( ,fl) k-arm targets will be in the 1 state and the remaining
Yies (Zj) — () k-arm targets will be 0 or 1. Furthermore, there are (”T:Ll) ways

of specifying m 0’s, so the total number of violations is

"Z_:l (n - 1) (2 () 1) (222”:3 (Zj)‘(kﬁll)) . (3.9

m=2 m

Subtraction from 27! — 1 gives Eq. (3.7).
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3.2.9 The ratchet and sequestration networks divide the configuration space
into orbits

Until now we have considered the reachable space of a single group of
targets each starting in 0. An ensemble of networks could each start with their
targets in some arbitrary state, and when a sequence is applied to the ensemble the
different networks will in general span different configurations. Determining the
number of orbits (defined precisely in Materials and Methods section 3.4.8) within
the set of possible configurations tells us how many networks can be controlled in
parallel.

Enumerating the reachable space for both the ratchet and sequestration
networks involved finding configurations that violated at least one rule. If two
configurations have distinct violations, then there is no way they can communicate
using the regulators. Therefore, the different orbits are the groups of configurations
having the same forbidden patterns. It is possible that a violation could be alleviated
by an action that changes the state of an offending target, so we require that each
orbit be immune to a subset of the regulators. This could be achieved in biological
networks by locking targets in protective chromatin states or by shutting down certain
cellular receptors.

We determined a recursive formula for the number of orbits in the ratchet
network for an arbitrary n,m (Materials and Methods section 3.4.8). In Figure
3.7A we plot the orbits for the n = 4, m = 2 case. There is one large component of
size B;™ and several smaller orbits of size B;” with i < n and j < m. There are
only a handful of singleton orbits in Figure 3.7A, but the number of isolated states
dominates the space as n, m increase.

We were unable to find a similar solution for the sequestration network
because we lack a general solution for the number of states in the main orbit.
However, Figure 3.7B shows the computationally discovered orbits for the full
network on 2" — 1 targets. A nontrivial feature is that there are orbits which use all
pairs of regulators, but which do not communicate with the main orbit. For example,
the sequence K, K3 from x = (1,0,0,0,0,0, 1) reaches the same configuration as
the sequence K starting from x = (0,2,3,2,2,3,0); these configurations are part
of the same orbit because both violate the connectivity rule between x7 = {0,1,2,3}
and the 2-arm targets x4, X5, and Xg.

Another observation is that some pathways cannot be reversed by a legal
action in the ratchet network orbits (indicated by a directed arrow in Figure 3.7),

whereas there always exists a reversible path between configurations in the seques-
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tration network orbits (no arrowheads). It can be proved that this is true in general
for the sequestration network (Materials and Methods section 3.4.8). This feature
permits orbits to be found computationally by looking for reversible one-step paths

in the entire configuration space.

A. Orbits in the ratchet network B. Orbits in the sequestration
(n=4,m=2) network (n = 3) fevasite
o e éOne-way path
&‘_. Co——o
e (oo
oo
lo—o
lo—o
lo<—o
L]
[ ]
oo ©®
L ]
L J
oo ©
L ]
L J L ] L ] L ] L ] L ] L J

Figure 3.7: Noncommutative models induce orbits in the configuration space. Graphical
representation of the orbits in (A) the n = 4, m = 2 ratchet network and (B) the full n = 3
sequestration network. Configurations are indicated by red circles, and those accessible to
each other are connected with blue lines. Arrows in A indicate whether a path is irreversible.

The orbits are one explanation for the phenomenon the same signal can
cause cells to behave differently [287]. More generally, the orbits demonstrate an
intriguing symmetry between the targets responding to a restricted subset of the

regulators on one hand, and the orbits restricted to the same subset on the other.

3.3. Discussion

In this paper we first show how noncommutative, sequential logic can re-
lieve information bottlenecks in multilayer networks. Bottlenecks in combinatorial
logic may occur whenever a downstream layer has fewer elements than the layer up-
stream, which poses the problem of how networks process complex signals without
loss of information. Noncommutative solutions such as the ratchet and seques-
tration models, in which the number of configurations scales super-exponentially
in the number of regulators (Egs. (3.5) and (3.7)), permit longer, more complex

messages to reach the targets via information "pulses." These pulses encode a large
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diversity of signals into configurations of the targets that would otherwise be lost
using combinatorial logic.

Noncommutativity has long been recognized as a central concept in con-
trol theory, because it allows systems with few controllers to explore a broader
configuration space. For example, one generates z rotations in 3D by R_,R,R,,
so control over z is generated by a pulse sequence of rotations in x and ¥, as in
airplane control where roll and pitch generate yaw [190]. Infinitesimal motions
in the form of generating matrices are translated into flows in a vector space by
exponentiation. Because matrix multiplication is noncommutative, composition of
flows is not simply the addition of generators, but rather a higher order polynomial
of commutators of the generators given by the Baker-Campbell-Hausdorff formula
[258]. Noncommutativity also appears in experimental physical chemistry where
pulse sequences can prepare spin systems in nontrivial population configurations
[47]. A formal description of these phenomena is based on the Heisenberg picture
of quantum mechanics, wherein evolution of a system of many variables is given by
a differential equation involving the commutator of a Hamiltonian operator.

The significance of noncommutative control for systems biology is that it
becomes possible to independently control targets that would otherwise be activated
by the same promiscuous regulator. In this paper, we argue that noncommutative
sequences permit control over new directions in gene expression space, allowing
more specific sets of targets to be controlled. Several studies have shown that
TFs that can bind genes in one tissue type are in fact precluded from binding the
same genes in another [15, 146]. The C. elegans TF LIN35 fails to bind targets
in the germline that it binds in the intestine [146], and the SMARCA4 complex
in mouse binds enhancer elements in heart, limb, and brain tissue in a tissue-
specific manner [15]. One hypothetical explanation for these observations, based
on the sequestration model, is that cell-type specific gene expression is the result
of noncommutative sequences like K1 K5 and K, K that silence certain promoters.
The three-dimensional structure of the genome is a likely setting for this type of
regulation.

Gene regulation is known to take place in three-dimensions, as observa-
tions of DNA looping [198], nonrandom chromosome packing [192], and clustered
transcription factories [241] have shown. However, the factors that affect chro-
mosome structure are non-specific. One such factor is the ubiquitous zinc finger
protein CCCTC binding factor (CTCF) [174], which functions as both an activator

of transcription by bringing enhancers and promoters together [111, 256] and as a
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repressor by insulating genes [22, 120]. Epigenetic modifications, such as histone
methylation and acetylation [104, 177, 305], also affect three-dimensional struc-
ture. In addition, DNA looping was observed in the context of allelic exclusion
during B- and T-cell lineage specification where individual alleles were recruited to
heterochromatic regions while the other underwent recombination [52, 236]. Con-
sequently, the sequestration model predicts that temporal permutations of a small
set of chromatin modifying factors could specify a large number of potential chro-
mosomal conformations and lead to different expression states and corresponding
cell fate decisions.

New technologies such RNA-seq and ChIP-seq can be used to test the pre-
dictions of the noncommutativity hypothesis at the genome level. Epigenetic drugs
such as azacytidine and trichostatin A inhibit DNA methylation [184] and histone
deacetylation [301], respectively, and have been shown to cause global changes in
gene expression alone and in combination [62, 184]. The sequestration hypothesis
predicts that perturbations to the three-dimensional structure of the chromosome are
noncommutative, so distinct gene expression states may be reached by permuting
the order in which epigenetic drugs are applied. While the sequestration model may
underlie chromosome folding, the ratchet model could form the basis of phospho-
rylation networks. For example, mass spectrometry studies have revealed complex
phosphorylation patterns [127, 220], though the number of kinases and phosphatases
is comparatively small and the networks are highly interconnected [232, 279]. As
phosphoproteins are the mediator of extracellular signals, ordered disruption of
signaling pathways could also lead to distinct gene expression configurations.

Analogously, the ratchet model may aid in the specification of distinct
neural activity patterns, owing to the fact that connections between the different
hippocampal layers overlap [234, 240]. While superficial neurons can be activated in
response to spatial cues, deeper layers can be selectively activated by time sequences
of inputs [1, 41, 93]. These results suggest the hypothesis that neural networks may
be noncommutative. In particular, experimental support exists for the role of the
dentate gyrus in pattern separation and orthogonalization by way of ensuring that
even quite similar memory representations use distinct subsets of neurons [49,
154]. The ratchet model, by ordering inputs in time, is one way of reaching these
specific subsets if the number of input neurons is smaller than the number of targets
neurons. Memories share many common elements, including shape, color, smell,
and sound, which poses problems for recall. We hypothesize that older, "fuzzier"

memories could be those relegated to very long ratchet sequences. According to
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this hypothesis, memories are not forgotten, but are instead increasingly difficult to
access, and memories that are not consolidated are those that never formed a unique
ratchet sequence.

Beyond resolving bottlenecks and generating specificity, noncommutative
actions offer a new interpretation of how cell fate decisions and other stepwise pro-
cesses occur on abstract regulatory landscapes. The classical Waddington landscape
view of development holds that cells decay to attractor configurations representing
terminal outcomes [288]; this is consistent with a boolean network with many vari-
ables X converging to a fixed point [124]. In a static landscape, the final outcome
is determined a priori by the nearest energy minimum. What then determines the
initial configuration? In organisms such as Drosophila, maternal patterning of the
embryo may account for this initial bias [257]; but in other organisms that employ
mechanisms like multilineage priming [3, 177], it is not clear that every cell fate
decision is made at the beginning.

Sequential logic allows cells to reach their final fate on a dynamic land-
scape. In the system of Figure 3.8A (top), for example, it is not possible for cells
in the blue configuration to transition to the red fate by increasing X5, because this
involves an uphill climb. However, the regulators of genetic networks may also af-
fect the landscape directly. This is seen in Figure 3.8A (bottom) where the sequence
K, K5 P, changes the landscape in such a way that the overall cost of reaching the
same endpoint is much lower than the direct path (Figure 3.8A, top). This can
be understood as the effect of regulators acting on additional variables V', which
modulates the landscape in X space. For example, TFs can recruit chromatin reg-
ulators that modify global three-dimensional chromosome structure and future TF
accessibility [27, 111, 241, 286], or kinases can sequester substrates in the nucleus
to prevent their subsequent activation [45, 61]. Because sequential logic acts on the
V’s as well as the X’s, changes that appear to be small in one dimension (Figure
3.8B, left) actually involve large excursions in the full space (Figure 3.8B, right).
As a consequence, in noncommutative regulation, the landscape changes and cells
can take on fates that were not accessible at the beginning.

Previous theoretical models have explored dynamic regulatory landscapes
in the form of bifurcations [75, 125]. In these models, a set of kinetic parameters
determines the positions of minima and maxima in the landscape. However, the
noncommutative model advanced here is fundamentally different, in that using the
regulators to move through X changes the landscape directly. This could happen,
for example, if acting on X; with K hides it from the effect of K. Uncoupling of
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A. The regulatory landscape can be dynamic in sequential logic

Direct path

"’/0’-‘
-, -

X

Roundabout path

B. Making a small change in one dimension may require a large change
in a hidden dimension
X

Xq

dX, X,

Figure 3.8: Sequential logic on regulatory landscapes. (A) The regulatory landscape
for the 2-mRNA system X, X7 for two hypothetical paths with configurations represented
by balls. It is difficult to directly increase X5 because of a potential barrier (top). In the
roundabout path (bottom), visiting two intermediate configurations via K7 K P; results in
an altered regulatory landscape. (B) The initial and final configurations in A projected onto
(X1, X9) space (left) and (X1, X2, V1) space (right). The regulators affect not only X; and
Xo, but also an additional variable, denoted V7, that alters the landscape of X; and Xs. The
arrows indicate the instantaneous direction of the trajectory.

targets in this way may underlie the distinct effects of signals like FGF at different
stages of development [132, 178, 249, 287]. It will be interesting to explore time

series data for hints that some genes pulse ON and OFF in order to protect their



61

promoters from the actions of promiscuous regulators.

Multistep processes other than development can benefit from the type of
noncommutative regulation highlighted in Figure 3.8. What seems like an intractable
problem at the start becomes much more feasible if one realizes that the effects of
actions change with time and context. This intuition is why thinking in terms of
commutators [A, B] = AB — BA can make complex problems more soluble: the
desired effect is often what is leftover after performing and undoing a sequence of
actions. Several examples illustrate this concept.

With its increased capacity for generating diversity, sequential logic is
likely to be used in evolution. A recent theoretical example in social bacteria
demonstrated that in evolving a new quorum sensing receptor-ligand pair, adding
new receptors prior to ligands is preferred over the opposite path [68]. An analysis
of the stability and catalytic activity of a family of bacterial (3-lactamase mutants
showed that the ability to evolve new substrate specificity is contingent on mutations
that first stabilize the protein active site [229, 292]. Finally, biological networks
evolve the same functions in different orders, but the order in which these functions
arise dictates which other genotypes can be reached by neutral mutations [209].
These results suggest that permuted sequences of mutation events may have different
fitness costs. With extensive artificial evolution experiments underway in protein
engineering [229] and bacterial mutation accumulation [34], coupled with progress
in sequencing technologies, it will be possible to test this hypothesis by permuting
the conditions that promote mutation.

Sequential logic can also be applied in synthetic biology to build circuits
with memory [85, 108, 161, 170]. In general, the toolkit that permits up- and
downregulation of genes is small, with a few staples like Lac, Tet, and Ara [284].
Significant effort has been put into generating logic gate (AND/OR) promoters [43].
To further expand the toolkit, it has been proposed that more orthogonal regulators
be developed [223]. We suggest that sequential logic may be a more promising
strategy to scale up the number of targets that can be independently controlled by
permuting in time a small number of controllers.

More broadly, sequential logic can be used to accomplish experimental
goals not possible in single-step approaches. For example, in multiplexing mRNA
detection in single cells, we previously used a sequential hybridization scheme
that permits the number of barcodes to exponentially [165], whereas combinatorial
schemes can only specify approximately 30 barcodes. We expect many single-

cell experiments to benefit from a sequential strategy in which detours facilitate
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achievement of the main goal with high efficiency.

Finally, our results connect outside of biology to strategic planning in
social, political, and economic arenas. Anyone familiar with negotiating knows
about the limitations inherent in trying to make interconnected groups of people
move in specific directions, especially when the actions affect all participants at once.
Multiparty negotiations and tournaments may benefit from time-ordered strategies in
which enemies temporarily team up, or fringe interest groups are transiently pacified.
Indeed, a conclusion from the sequestration model is that the most highly regulated
targets need to be protected prior to satisfying the ones with fewer connections.
Determining whether this prediction is borne out in congressional and international
negotiations, for example, is an interesting question for political science. Evidence
for noncommutative effects in games exists in that the initial seeding in a tournament
can bias its outcome [102], and that long-term goals change players’ strategies in in
the repeated prisoner’s dilemma [86]. In conclusion, the direct path to an outcome in
a networks with many interacting parts may have many unintended and prohibitively
expensive consequences. A multi-step strategy may achieve the same outcome with

minimal cost and side effects.

3.4. Materials and Methods

3.4.1 The connectivity matrix with multiple targets

In this section we determine how many targets are controlled by the same
regulators in the connectivity matrix A. Then we extend A to more than 2 dimen-
sions.

If I, = I, = 1itis clear that each A;; corresponds to a single target
and that each target appears only once. In general, however, a target can appear
in multiple entries of A (cf. Eq. (3.6)). To see this, consider the bipartite graph
formed by all the targets and all the /’s, but none of the P’s. The handshaking
lemma from graph theory [175] says that the total number of edges is one half the
sum of the degrees of each vertex, which is either /,, for a target or some number
p, for a K regulator. There are NI, total edges, so we find % (NI, +np,) = Ni,
or p, = %ln for the number of links coming from each K. Similarly, the number
of links emanating from each P is p,, = %lm. In terms of the connectivity matrix,
pn and p,, correspond to the number of unique targets in each row and column,
respectively.

Because K connects to a fraction % of the targets, it follows that K; and

P, together connect to a fraction % of the targets. Therefore, the total number
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of targets connecting to K and P, is M = N (’%) = bafm - Another way to see
this is to consider one target in the intersection of /; and P;. This one target uses
up one of each of the regulators and one unit of connectivity, leaving a total of
M = ( l:__ll)( lTn_—ll) ways to connect other targets to the same pair of regulators. It
is easily verified that these two formulations for the number of targets per matrix
entry M are equivalent. This illustrates that there is not simply a one-to-one
correspondence between the entries of A and the targets.

There was nothing special about the labels K and P in the above para-
graphs. Thus, the connectivity matrix can easily be extended to a u-dimensional
connectivity tensor where v is the number of pools of regulators. Each pool has n;
regulators connecting to /,,; targets, and each target connects to p,,; = %lm regulators
of pool i, Vi € {1,...,u}. The total number of targets and the total number of targets

per entry are extensions of the u = 2 case, giving

N = H(zn) (3.10)
i=1 \tme
distinct targets and
[Tis Pri 1 (nz - 1)
M=——-= 3.11
Nut g lni—l ( )

targets controlled by one factor from each of the u pools. S1 Fig A shows an example

network with u = 3 pools.

3.4.2 Counting configurations in combinatorial networks using the connec-
tivity matrix

The number of configurations in combinatorial logic is the number of
ways that [V targets can each be bound by exactly u regulators, where each regulator
comes from a different pool. In the main text we analyzed the case v = 1 and [,, = 1.
Here we extend those results to arbitrary « and [,,.

First consider the case u = 2, corresponding to a pool of K’s and a pool of
P’s. Whereas in the ratchet model, K; and P; acted separately on the entries of A,
in combinatorial logic the pair (X, P;) is needed to switch A, ; from 0 to 1. Many

such pairs may be active at any one time. We write this formally as

1 if K;e{K} and P; ¢ { P}
(K} {PH)[Ai] = (3.12)
0 else,
where { K’} denotes a subset of the K’s. The notation (-, -) means that a combination

of factors acts on the target, instead of just a single factor.
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If I, = I, = 1 there are (2 —1) (2™ - 1) + 1 ways to pick at least one
of n K’s and one of m P’s, plus one way to pick nothing. If /,, = 1 and [,, > 1,
then for a certain number « < n of the K’s, any subset containing o or more K’s
has the same effect as activating all n K’s at once. For example, in Eq. (3.6), the
action of ({ Ky, K>}, { P, P»}) is sufficient to activate all targets in the n = m = 3,
l, =, = 2 network. To determine «, recall that there are M targets in each entry of
the connectivity matrix A. Choosing ¢+ K’s means that the total number of targets
is M x 1, but a single column of A only contains p,, unique targets. Each target is
connected to [,, K’s, so for a target in the intersection of 7 A’s and a single P, there
are [,, — ¢ spots left over to choose n—+ K’s and [,,, — 1 spots left over to choose m — 1
P’s, or ( z: __ZZ) ( ;Z __11) ways total. Using the principle of inclusion-exclusion [175] this
means that « is the smallest ¢ such that

min (4,15, ey o _
LA R0 I S

By choosing av K’s, the number of unique targets in a column of A that can be turned
ON is exactly the number represented in that column. Because all subsets with o, o+
1,...,n-1 K’s are redundant, here are only (2" — 1) - Y7 (ZL) subsets of K’s that
contribute to unique configurations, leaving a total of [(2” -1) -yl (?)] (2m-1)+
1 unique configurations.

If the P’s also have redundant connections, the result generalizes to

Theorem 3.4.1. The number of configurations in combinatorial logic with param-

eters n,m, l,,, l,,, and u = 2 is

(2" -1) (2" - 1) +1

(E0)e-n-e-o (L) (EO)(E )

where o (resp. () is the smallest number of K'’s (resp. P’s) having the same effect

as all K’s (resp. P’s) at once.

This result is obtained by counting all pairings of K’s and P’s, and
then subtracting those pairings that have a redundant effect. For example, any
combination using K3 is redundant in the connectivity matrix of Eq. (3.6). Finally,
those pairings that were excluded twice are added back in.

This result generalizes to all « with slight modifications. Because one

factor from each of u pools is now required, the combinatorial equation determining
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state of a target is

({K}l ) {K}Q )t {K}u) [Ai,j7---7k]
1 if Ky e {K},, Ky e{K},,...,Kyc{K},
0 else.

(3.15)

Here the double subscript K;; indicates the k£ factor in the i pool. Determining
«y; for each pool 7 of regulators requires finding the pool j # ¢ which maximizes
the number N; of targets controlled in two dimensions. If we choose a; or more
regulators in the ¢ pool, then there is a redundancy in the j® dimension, whereas
any choice of fewer than «; regulators activates fewer than N; targets. Write
N; = max;.; {(Z)(l’:j] )} the total number of targets and p,,; = JX—J

targets in any column of the the equivalent n; x n; connectivity matrix regulated

l,; the number of

by pools ¢ and j. It is easy to see that these parameters reduce to their previous

definitions for v = 2. Now define M; = ( l"’__ll)(l”f_ll) as the number of targets in
ni nj

each entry of the equivalent n; x n; connectivity matrix. As above, «; is now the

smallest 7 such that
min (rvlni) N — ,r.l n: — 1
M; xr— I ! )2 - 3.16
T lez:Q ( ) (lni_r,)(ln]’—l p] ( )
Once «; is determined for each pool 7, the inclusion-exclusion sum can be

extended using standard arguments [175]. Define by

SOESS {H (nf (?))H(zn - 1)}, (3.17)

05(1’:) €0 \j=qy ito
where o denotes all k-subsets of {1,...,u}. Then we have the final result

Theorem 3.4.2. The total number of configurations in combinatorial logic with u

pools and parameters n;, l,;, i € {1,... u} is
S=1+Y (-1)"s®. (3.18)
k=0

This result reduces to Theorem 3.4.1 when there are only u = 2 pools. At
most there are [];-, (2" — 1) ways to specify at least one target, corresponding to
the Ot-order term in Eq. (3.18). Increasing the connectivity through the [,,; can
only reduce the number of configurations. This behavior is shown in S1 Fig B for
the symmetric case that all the n; and [,,; are equal. As u is increased the number
of configurations increases dramatically, but the scaling is actually subexponential,
i.e., less than 2V, Increasing connectivity through [,,; shifts the curves to the right.
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3.4.3 Using the connectivity matrix to establish a one-to-one correspondence
between the ratchet network and the lonesum matrices
To establish the correspondence between the reachable configurations of

ratchet network (I,, = [,,, = 1, T' = 1) and the lonesum matrices, we must show (i.)
10 01
that A avoids the patterns (0 1) and ) 0) in any 2 x 2 sub-block, and (ii.) that

any lonesum matrix can be constructed from K and P actions. First observe that
the value 1 in A, ; indicates the last K affecting that index must have followed a

P, whereas 0O indicates the last P must have followed a K. For the first restriction

. [P Ky Ky Py .
we have implies . This means P; follows K; follows
0 1 KoP, Py-K,

P, follows K, follows P, which is a contradiction, showing that this 2 x 2 block is
unreachable. The other five unique 2 x 2 blocks are all reachable with elementary
sequences. This establishes point (i.) that the reachable configurations are a subset
of the lonesum matrices.

To establish point (ii.) that the lonesum matrices are a subset of the
reachable configurations, we use an equivalent formulation of the lonesum matrices
as staircase matrices composed of the rows a; = (1,...,1,0,...,0) with the last 1
appearing at position i, subject to the constraint that ¢; <i; 4 forall Vj € {2,...,n}
[141]. It is easy to see that the pattern of ones resembles an inverted staircase.
We show via induction that any staircase matrix can be constructed from K and P
actions. The n'" row is obtained by the sequence K, P;, .1---P,, which leaves 1’s at
the first 7,, indices and 0’s at the remainder. Now assume that the k™ row is obtained
by the sequence K F;, .-+ F,, without affecting any of the rows n,n-1,... k+ 1.
Then the sequence Kj_1F;,_,+1---F,, puts 1’s at the first ¢,_; indices of row k - 1.
Because ij_1 > % > -+ > 4, none of the P, .1,..., P, turn a 1 to a 0 in rows
n,n—-1,...,k+ 1,k This proves the induction hypothesis and shows that the
staircases matrices are a subset of the reachable configurations.

Together with the fact that the reachable configurations are a subset of the
staircase matrices, this implies that the reachable configurations and the lonesum

matrices are in fact the same set, and we have

Theorem 3.4.3. The number of reachable configurations in the (n,m) ratchet
network with l,, = l,, = 1 and threshold 1 scales as the poly-Bernoulli numbers
B =B
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3.4.4 Inductive proof that all binary ON/OFF configurations are reachable in
the ratchet network with threshold greater than 1

With 7" = 2, only targets in state 2 are ON. Once a 0-1 configuration of A

is obtained, however, it is a simple matter to convert it into an ON/OFF configuration

by applying all the K’s. Here we use the fact that 1’s can be reached from above

and below to prove

Theorem 3.4.4. In the ratchet network represented by the matrix A withl,, =, = 1
and threshold T' = 2, all binary 0-1 configurations are reachable.

Proof. We use an induction argument analogous to the proof of Theorem 3.4.3.
Suppose that in row n a set of r < m indices {n;} = {n;,,...,n;.} should be ON.
First prepare every target in row n in the 1 state using K, then use the sequence
K.P,

assume that we can prepare rows n,n — 1,...,k + 1 in a similar 1-2 configuration

D, to obtain 2’s at {n,,,...,n; } and I's at {n;_,,...,n,;. }. Now
with the rest of the matrix 0. We want to show that we can add row £ to this set
without affecting any of the previous rows. Assuming that a set of s < m indices
{kj,,...,k;,} should be ON, apply the sequence P;,---P; K?P;
2’s at {kj,,...,k;,} and I's at {k;
(P,
I’s and O’s, respectively. Applying the sequence K, K, _1---K},; reestablishes the

... P}, to obtain
,k;. }. Now, because {P; P ju

P, y={P,...,P,},all 2’sand I’s inrows n,n - 1,...,k + 1 are now

s+17 " °° 19

s+17 00

1-2 configuration we had prior to fixing row &k and leaves 0’s at rows 1,...,k — 1.
Now that row £ is also in the proper 1-2 configuration, we have proved the induction
hypothesis. Once all rows in the proper 1-2 configuration, the sequence P;---P,,
obtains the matrix in the 0-1 configuration. Since this procedure can be repeated for
any collection of indices {{1,},...,{n;}}, it follows that all binary 0-1 matrices

are reachable. [

3.4.5 A recursive formula for the number of non-redundant sequences in the
ratchet network

When the connectivity parameters /,, and [,,, exceed 1, certain sequences
in the threshold 1 ratchet network become redundant. Our goals in this section are
to (i.) to characterize the redundant sequences by the number of /K’s and P’s, and
(ii.) count the non-redundant sequences. This will obtain an upper bound on the
number of configurations.

We want the shortest sequences that can activate or (deactivate) all targets;

any sequences longer than this are redundant. To see why this is so, we need the
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concept of a cycle. We say that a target has gone through a cycle if has traversed the

states 0, 1, 0 at some subsequent time points. We have the following lemma.
Lemma 3.4.5. Any sequence that takes all targets through a cycle is redundant.

Proof. The final configuration of any sequence is represented by the positions of
the 1’s and 0’s of the connectivity matrix. Recall that A;; = 0 if and only if all
targets represented by A; ; are OFF in the final configuration. Permute the rows
and columns of A until it is in staircase form with r < min (n,m) steps, where a
step is a group of adjacent rows or columns having the same number of 1’s and 0’s.
The steps partition the rows and columns of A into subsets of indices {1,142, ..., }
and {j1, j2, ..., j-} where the k' step is defined by 1’s at rows iy, to 5.1 — 1 and 0’s
at columns jj to jz1 — 1. Then the sequence [],_; K;,---K;,_1P;,---Pj,-1 obtains
the desired configuration of 1’s and 0’s. Being able to write a staircase matrix for
the final configuration means that every target ON in the final configuration occurs
only where there are 1’s in the matrix. These targets are never affected by a P in
this procedure; they do not go through a cycle. Because any allowed configuration
can be reached from this procedure, it follows that any sequence that uses a cycle is
redundant. ]

Knowing that the non-redundant sequences must avoid cycles, it suffices

to find the longest sequences that can be written before cycles appear.

Lemma 3.4.6. For each value of l,, (1,,,), the maximum number of K’s (P’s) that

can be used before all targets are activated (deactivated) is n — 1, + 1 (m —,,).

Proof. A sequence that activates all targets has no intervening P’s. Recall that a
single /K activates at most %ln targets. Then, prior to the last K being used, the
number of activated targets is N - &1, = ¥ (n-1,) < &, (n-1,). This means
there are at most n — [,, groups of targets controlled by different K’s. Thus, at most
n — 1, K’s are used before the last K is used, and n —[,, + 1 K’s must be sufficient
to activate the complete set. The maximum number of P’s that can be used is only
m — l,, because we can think of every sequence starting in the zero configuration as
having been preceded by a single P; this modification puts the P’s on equal footing
with the K’’s. [

With this characterization of the non-redundant sequences our goal is to
recursively eliminate sequences that use n —[,, + 1 K’s and m —[,,, P’s. We first

find the number of sequences that use up to m — [,,, P’s, which forms the top row
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in each (n,m) block in S2 Fig. Then we use these values to recursively find the
number of sequences using up to n— [, + 1 K’s. The strategy is to subtract from the
total number of sequences at a given (1, ,,,) all those sequences using the forbidden
number of regulators in order to get the new total.

Denote by a!" the number of sequences using m P’s when the total number
of K’sis n. If m =1, then all B{™ = 2" sequences (except for the empty sequence)
use a K and none use a P. If m = 2, the maximum number of P’s that can be used
is m —[,,, = 1. Discarding the 2" sequences with no P, the number of sequences
using a single P is

al = w (3.19)

2
Division by m = 2 is required to account for the fact that there are (T) = m different
ways of starting each sequence with a P, and we consider both of these equivalent.
Having determined a, it is straightforward to determine a/*!. Because there are

1 . .
m + 1 P’s to choose from, there are (mwt )anm ways to write sequences with m

m+1
0

sequences with 0 P’s, the only remaining sequences are those with m + 1 P’s.

P’s, (m“)aﬁ‘l ways to write sequences with m -1 P’s,. .., ( )1 ways to write

m-1

Knowing that the total number of sequences is 5,", this leaves

B;nn —9on _ ZT:O (m;—l)a’% (3 20)

m+1 _
" =

a
m+1

total sequences using m + 1 P’s when the total number of K’s is n. Having
determined this number, we can sum up all the sequences using m —[,,, P’s to get
the first row of the (n,m) block in S2 Fig. Denote by ¢ (1,,l,,) the [, column
and [, row of the (n, m) block. The column headers ¢ (1,1,,) are given by
o (1,1,,) = 2N+m§ljm (m)ag. 3.21)
j=0 \J
We can determine the row entries for /,, > 1 in the same way that we
determined the column headers, the only difference being that the total number of
sequences is ¢ (1,1,,), not B," unless [, = 1. Denote by b2 (l,,) the number of
sequences using n K’s when the total number of P’s is m and the P connectivity is
l,,. For fixed m, [,, and n = 1, there are
bL (1) = 2™ - lmzl (m) (3.22)
j=0 \J
sequences, as all but the empty sequence use a single /. In complete analogy to
(3.20) we find there are
bt )= ()= 5 (0 o) 623)

J=0
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sequences using n+1 K’s when the total number of P’s is m. Unlike in the equation
for a™, there is no division by n + 1 because all sequences starting with a different

K are different. Finally, we can sum up all the sequences using n —1,, + 1 K’s to get

Theorem 3.4.7. The number of minimal length sequences in the (n,m,l,,ly)
ratchet network with threshold T = 1 using no more than n — 1, + 1 K’s and

m—1,, P’sis
n-l,+1

(I ln) = > (;‘)bﬂ,‘n (L) (3.24)

=0

We used this formula to compute each entry in S2 Fig. Because of the
complexity of this procedure, we checked it against a computer algorithm operating
with the following steps. In step 1 find all B sequences in the [, = [,, = 1 case. In
step 2 increase the connectivity (/,, or ,,,) and find all sequences of a given length;
group them by the configuration they generate. Some of these sequences will not
appear in the list generated by step 1: for example, both K K5 and Ky K5 will
be found in step 2. We are interested in index permutation e.g. 1 — 3, not letter
permutation, so in step 3 delete all sequences in each length group not appearing in
step 1. Repeat steps 1-3 with this new list of sequences until /,, = n — 1. This code,

implemented in Matlab Version 2015b, gave exact agreement with Theorem 3.4.7.

3.4.6 Proof that the reachable configurations are equivalent to the connected
one-colorings

We now show that rules restrict the reachable configurations of the se-

questration model in the main text to the connected one-colorings of the reduced

n-network.

Theorem 3.4.8. There is a one-to-one correspondence between the reachable con-

figurations of the reduced n-network and the connected one-colorings.

Proof. The converse direction, reachable implies connected, is easier to prove and
will be discussed first. Assume that all configurations in the reduced n-network
so far reached are connected. The next configuration will be reached by turning
all 0’s to ¢’s or all j’s to 0’s by application of K; or P;, respectively. The k-arm
targets sharing state ¢ with the 2-arm target {0, 1,7} are either in the same state
as some other 2-arm target {0, 1,7’} or are in the O state. So application of K;
cannot change the connectivity of the configuration. Furthermore, a k-arm target

can be in the j state only if the target {0, 1, j} is in the j state, so these targets will
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still be matched after application of P;. Thus, any configurations reachable from a
reachable configuration must be connected.

The forward direction, connected implies reachable, is less trivial. In
order to prove that all connected one-colorings in the n-network are reachable, we
will use the strong form of mathematical induction. Assume the theorem holds for
all networks up to n — 1. Embedded within the full n-network of 2" — 1 targets is the
reduced n-network on 27! targets. Within the reduced n-network is a set of 272
targets able to access {0, 1, 2} and all subsets (including @) of the integers {3, ..., n}.
Thus, we can substitute 2 — 1 as the ON state in this embedded network and all
connected one-colorings (of 2) will be reachable. The same holds in general for all
2n-F targets able to access {0, 1, k} and all subsets of the integers {k + 1,...,n}. In
each of these embedded networks the substitution k£ — 1 as the ON state will enable
us create any connected one-coloring.

Pick any connected one-coloring (of 1) in the n-network. Its opposite
configuration is formed by the transformation at each target g of 1 — 0 and 0 — k.,
where k,,,;, = min {k € gXpos(f0,j,k}) = O} is the smallest index that g shares with a
corresponding 2-arm target at position pos ({0, j,k}) of x (possibly in the full
network) currently in the O state. The opposite of a connected one-coloring is
clearly connected, because all the connected 1’s are now 0, and all the 0’s are in
the same state as the 2-arm target {0, j, ki, ;- If it is possible to reach the opposite
configuration, then application of the sequence K1 P ... P, yields the desired one-
coloring of the n-network.

To show that the opposite configuration of the chosen one-coloring is
indeed reachable, isolate the embedded networks one-by-one by application of the
sequence K KPP, for k = 2,...,n, so that the targets in the n — k + 1-network
are the only targets in the O state. By hypothesis, the connected one-colorings are
reachable in all embedded networks which have at most n — k states besides O, 1,
and k. The opposite configuration in the n-network is composed of connected one-
colorings (of k) in each embedded network; these are are reachable. Therefore, the
one-coloring of the n-network is reachable via K1 P, ... F,. This procedure holds

for any one-coloring. 0

3.4.7 Lower and upper bounds for the full n-network
How many configurations are reachable in the full n-network? Let this
number be c¢,. The following theorems derive lower and upper bounds for ¢, in

terms of the number of one-colorings.
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Theorem 3.4.9. The formula f (n + 1) for the number of connected one-colorings

in the reduced n + 1-network is a lower bound for c,.

Proof. The full n + 1-network can be partitioned into a set of 2" targets having a 1
and all subsets of {2,...,n + 1}, and 2" - 1 targets that lack 1 but have all nonempty
subsets of {2,...,n + 1}. The latter set of targets is an embedded full n-network,
while the former is the reduced n + 1-network. All 2(n + 1) letters are needed to
form the one-colorings in the reduced n + 1-network. Every one-coloring is finally
obtained by applying some permutation of Ky, P, ..., P,,; to a configuration that
uses (at most) the states 2,...,n + 1 and 0, i.e., the full n-network. Because K
and P; do not affect the targets of the the embedded full n-network, there must be
(at least) one sequence using only { Ks, ..., K1} and { P, ..., P,,1} that prepares
the embedded full n-network in the aforementioned configuration, which means we
may associate a one-coloring to (at least) one of the c¢,, sequences in the embedded
full n-network. Therefore, multiple configurations in the full n-network may map
to the same one-coloring in the reduced n + 1-network. Conversely, if two one-
colorings are different, they are distinguishable by their configurations immediately
preceding the final Ky, P, ..., P, sequence, and must therefore map to different
configurations in the full n-network. Together, these statements imply that the map
from configurations in the full n-network to one-colorings in the reduced n + 1-
network is many-to-one, but the map from one-colorings to configurations in the

full n-network is one-to-one. Therefore, f (n+1) < ¢,. O]

Theorem 3.4.10. An upper bound on c,, is
nf(n)+n(n-1)(f(n)-1)f(n-1)+-+nl(f(n)-1)-(f(2)-1) f(1)+1
(n)k{ ﬁ (f(j)—l)}f(n—k+1)+1, (3.25)

j=n—k+2

M=

k=1

where (n), =n(n—-1)--(n—k+1) is the falling factorial.

Proof. There are nf (n) one-colorings in the full n-network, plus one origin. Each
one of the one-colorings can be thought of as the origin of an n — 1-network, which
in turn generate (n— 1) f (n — 1) one-colorings in an embedded n — 1-network, for

a total of

nf(n)(n-1)f(n-1)

configurations using 1, 2, and perhaps 0, hence termed two-colorings. However, one

of the f (n) one-colorings is the O state of the n-network, so it does not generate any



73

two-colorings. Thus, there are at most 1 + nf (n) +n(n-1)(f(n)-1) f(n-1)

zero-, one-, and two-colorings. Now assume that the number of k-colorings is

n(n=1)-(n-k+1)(f(n)-1)(f(n-1)-1)
o (f(n=k+2)-1) f(n-k+1).

Of these,

n(n=1)-(n-k+1)(f(n)-1)(f(n-1)-1)-(f(n-k+2)-1)

are origins of an n — k-network, meaning they are actually k£ — 1-colorings; they

cannot generate any k + 1-colorings. The remaining

n(n=1)-(n-k+1)(f(n)-1)(f(n-1)-1)
o (fn-k+2)=1) (f(n-k+1)-1)

are genuine k-colorings which can generate f (n — k) one-colorings in the n — k-
network, or equivalently, k£ + 1-colorings. Thus, the total number of zero-, one-,

two-, ..., k + 1-colorings is no more than

nn-1)-m-k+1)(f(n)-1)(f(n-1)-1)
o (fn—k+2)=1) (f(n—k+1)-1).

This induction argument proves the statement. [

3.4.8 Properties of the orbits in the ratchet and sequestration network

First we define what it means to be an origin and an orbit in the threshold-
1 ratchet network and determine the number of orbits as a function of n and m.
Then we prove that the configurations in the sequestration network are defined by
reversible paths.

A forbidden configuration in the ratchet network contains some row or
10
column permutation of the pattern 0 1 on any 2 x 2 sub-block of the connectivity

matrix A. This is the minimum violation, but larger blocks may violate this pattern
10
as well, forexample | 0 1 | has 2 violations. Furthermore, application of any of the

10
K’s or P’s in this sub-block will relieve at least one of these violations. Therefore,

we define an ¢, j-orbit in the ratchet network as the locus of configurations having
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a forbidden configuration on an 7 x 7 sub-block that does not use the corresponding
set of ¢ K’s and 5 P’s. The origin of any i, j-orbit is the configuration having all
remaining nm — ij entries of A equal to O (or all 1 to make the case of having only
P actions symmetric with having only /K’s). A matrix X having the same forbidden
1 x 7 sub-block as an origin Y is not considered to be in the orbit of Y if (i.) there
is no sequence of actions that transforms Y to X, or (ii.) if the sequence involves
one of the forbidden K’s or P’s. With these restrictions, the number of origins is
equal to the number of orbits.

Denote by cf the number of orbits in a ratchet network of size n x m with
violations involving i <n K’s and j <m P’s. If i = j = 2 there are 27 — B;% = 2
forbidden configurations that turn into origins for the remaining n -7 K’s and n — j
P’s. There are more orbits in these smaller networks. For every ', 5 > 2 there are
(;,)( j],)cf,/ Bi__(g_j ) configurations reached by orbits using i/ K’s and j/ P’s. Only
configurations not reached by these orbits are available as new origins when the
number of K’s and P’s not to be used is ¢ and j, respectively. Finally, there are

(%)("") ways to specify i <n K’s and j < m P’s. Then we have

7

Theorem 3.4.11. For a given set of i < n K’s and j < m P’s, the number of

. . L] i
_ (9% _ *J)_
a-(-57)- 3 ()
i',j'>2
i +j'<i+j-1

1, J-orbits is

!

{)cj, B, (3.26)

J

and the total number of i, j-orbits in the n x m ratchet network is

C (n,m) = (TZ)(Z”)(:? , (3.27)

where
B Y9 ifi—i'>0and j-j' >0
BT =tomt =0 . (328)
273" ifi—i =0
The modification B’ ensures that an orbit lacking allowable P’s (/’s) can
still use K’s (P’s). A table of values of Eq. (3.27) is given in S4 Fig.
We noted in the main text that configuration in the sequestration network
can be joined by reversible paths. A path K; P; or P; K; is reversible if a configuration

reached by the sequence of actions w is also reached by the either the sequence

wkK; P; or wP;K;, but not wK; or wP;, respectively. Thus we can also prove
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Theorem 3.4.12. There always exists a reversible path between any two configura-

tions in an orbit of the sequestration network.

Proof. Let x be a configuration in an orbit using m < n of the actions, and let P
denote the locus of configurations reached from x. We now need to show that P
must be reversibly reached from the origin. Denote by P the complement of P, so
that any y € P is reversibly reached from the origin. In order for there to be no
reversible path between x € P and y € P, there must always be a state i such that K;
increases the number of targets {-,7} in the i state and P; increases the number of
targets {-,7} in the zero state. Now assume there is a configuration z € P using all m
allowed states. z must have at least one target in the O state, but this is un-allowed,
because then z would violate the connection rule. Therefore, there is a maximum
number m’ < m of states used by any x € P. Now assume there is a configuration
z’ ¢ P using all m’ allowed states. But this implies that there is a single-arm target
{0, 7} that must be in the zero state. Then the action K takes z’ to a configuration
y € P and P; takes y to z. This path must be reversible, and z’ is reached reversibly
from the origin. By induction we conclude that m’ = 0 and that P = &. Finally,
because any two configurations are reached reversibly from the origin, there is a

reversible path between them. 0

Theorem 3.4.12 defines the orbits of the sequestration network as those

configurations connected by reversible paths.

3.4.9 A universal formulation of the actions as matrix operators

In this section we show how to write the /K and P regulators as matrix
operators in a manner consistent with both models considered in the paper. First
we define the vector space V of configurations of the /V targets, then we derive the
operators that transform ).

Let x € V. For a network with IV targets we require that ) ; z; = N. This
means that x has at least NV entries, and in general dim x > N. Therefore, we cannot
use the standard state space of /N-dimensional vectors, because the operators will
not conserve the number of targets. Each target has a 0 state. The number D of
independent directions accessible from 0 is called the dimension of the network, and
the number 7" of steps one can move along each dimension is called the threshold. In
the ratchet model, each target has a single ladder of states with variable threshold, so
D =1 and T is allowed to vary; in the sequestration model D = n but the threshold
isT =1.
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Denote by A; the fraction of the targets of type A in state i € {0,1,...,7T}
along dimension d. For a subset of the targets a K -type action causes population
transfer between states (d, j) and (d, i) with ¢ = j+1, and a P-type action the reverse.

If a K regulator acts for a short time we can write the "reaction rate" equation as

:i:A]. = —gAl’Aj (3.293)
x'Ai = +gAIAj, (329b)

where g4 > 0is aproportionality constant. This defines a matrix differential equation
X = Gdj X (330)

with x € RN(PT+1)x1 the vector of populations of the DT + 1 states of the NV targets
and Gg; € RN(PT+D)xN(DT+1) the block diagonal matrix of rate constants between

the 7 and j + 1 population states along dimension d. Egs. (3.29) can be rewritten

(%A]’) - (_gA 0) : (“]’). (3.31)
T A, ga 0 T A,

Because Gg; is block diagonal, Eq. (3.30) can be solved by exponentiation on each
block:

2, (1) P 0 A [ (O _[ e+ 0] [4,(0) (3.32)
za, (1) P ga O x4, (0) 1-e9at 1 x4, (0) S

The restriction of the model from a continuous range of population states
x4, € [0,1] to the boolean values {0, 1} formally emerges by considering the "reac-
tion" K catalyzes on its targets to have gone to completion. We do this by taking
the the limit £ — oo in Eq. (3.32) to get

ZEA].(t) _ 0 0 ) IAJ. (0) (333)
L 4, (t) 11 L A, (O) ’ ‘
so that the matrix Kg; defined by
de = thm exXp {Gth} (334)

is the block diagonal matrix having 1’s at (row, column) positions (1 +(d-1)T+

i, 1+ d-1)T+ j) of each block that responds to K in dimension d and admits

population transfer between from j to .
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Because K acts on all targets at once, it is insensitive to the initial state j.

Thus the matrix corresponding to the action of K is
Ky = H Ka;j, (3.35)
J
which is the block diagonal matrix having 1’s at (row, column) positions

(1+(d—1)T+1,1+(d—1)T+0),...,(1+(d—1)T+T,1+(d—1)T+T—1)

and (1+(d=1)T+T,1+(d-1)T+T)

of each block that responds to K in dimension d.

This derivation can be repeated in the case that population goes in the
opposite direction from at state j to a state 7 < j using a different set of rate matrices
H g; corresponding to the reverse of Eq. (3.31). We obtain the block diagonal matrix
P4 corresponding to the action of P in dimension d having 1’s at (row, column)

positions

(1+(d—1)T+0,1+(d—1)T+1),...,(1+(d—1)T+T—1,1+(d—1)T+T)

and (1+(d=1)T+0,1+(d-1)T+0)

of each block that responds to P in dimension d. Whereas K4 is sub-diagonal, P4
is super-diagonal.

The Baker-Campbell-Hausdorf expansion shows that K4 in Eq. (3.35) and
in general any product of matrices K4 and P4 are generated by matrix exponentiation
of commutators of the generators Gqj, Hgj. This is the origin of noncommutativity
in both the ratchet and sequestration models.

An example in the sequestration network illustrates population transfer be-

tween states. Inthe n = 2 network on the targets A, B, and C' the initial configuration
T
of the network is represented by (AO Ay Ay By By By Cy Chy 6’21) =

T
(1 0010O0T1O0 O) . Only targets A and C' can access dimension 1, and

only targets B and C' can access dimension 2. Therefore the ¢ — oo action of K on
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the network is given by

e9at 00000 0 0 0\f1 0)
l-e9at 1.0 0 0 O 0 0 0}10 1
0 00 00O 0 0 0110 0
0 00100 0 0 0|1 1
0 00 00O 0 0 0}10 P 0 (3.36)
0 00 0O01 0 0 0110 0
0 00000 ev9t 0O0f]1 0
0 000 0O0 1I-ew9t 1 0]f0 1
0 00000 0 0 1)\0 0
Only A and C advance to state 1 and the number of targets (3) is conserved.
3.5. Supplementary Information
A. A combinatorial network with multiple B. Scaling laws vs. n for an increasing number
regulators pools of pools
u = 3 pools 10°
In = 1 connection to g
each regulator 'c‘;sms
o WKL e
Jo N CCCCCGCOMELN I I
. o .:. e 102
@ ’ 1%, 2 3 4 5 6 7 8
enans : e Number of regulators per pool (n)

Figure S3.1: Scaling in combinatorial networks is sub-exponential. (A) An example
network with v = 3 pools of n = 2 regulators each. A target is only ON if all u of its
regulators bind. (B) Plots of Eq. (3.18) versus n for an increasing number of pools v and
increasing redundancy [,
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Figure S3.2 (preceding page): Number of unique words in the threshold 1 ratchet
network as a function of n, m,[,,, and [,,, found using Eq. (3.24). n and m increase the
across the rows and up the columns. [,, and [/, increase down the columns and across the
rows of the sub-blocks.
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Figure S3.3: The full n-network model has upper and lower bounds. (A) A plot of all
the allowed configurations of a set of targets controlled by n = 3 regulators pairs in the full
n-network. Blue, cyan, yellow, and red correspond to states 0, 1, 2, and 3, respectively. (B)
A list of the words generating the corresponding states in A. K actions are shown in the red
spectrum, and P in the blue. (C) A logarithmic plot of the bounds on the full model. The
total space is [}, (7 + 1)(7;), the upper and lower bounds are calculated from Eqgs. (3.25)
and (3.7), respectively, and the combinatorial model is 227,
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Figure S3.4 (preceding page): Number of orbits restricted from using i of the K’s and
7 of the P’s in the threshold 1 ratchet network as a function of » and m calculated
using Eq. (3.27). n and m increase the across the rows and up the columns. 7 and j increase
down the columns and across the rows of the sub-blocks.



83
Chapter 4

STRING THEORY MEETS BIOLOGY: APPLICATION OF
ROTATIONAL DYNAMICS TO AUTONOMOUS
DEVELOPMENT

4.1. Introduction

The fundamental problems in using combinatorial logic to explain devel-
opment have been reviewed in section 1.3, and an alternative using sequential logic
was proposed in chapter 3. The information bottleneck at the egg stage could be
circumnavigated by extracting the information content of the adult in a stepwise
fashion. However, the paradox remained unresolved as to how sequences could
arise autonomously. As reviewed in section 1.1, the need for sequential processes
is hardly surprising in experimental embryology. Inductive signals in the form of
morphogen gradients initiate development [ 14, 233], and over time the cell translates
these messages into tissue-specific gene expression profiles. Yet, it has been argued
that such an "ordering process" adds no new information to instructions present in
the egg, in the same way that a differential equation with boundary conditions pro-
vides no more information than the solution curve [117]. It was described in chapter
2 how regulation in the tangent space of gene expression led to a stepwise process
in as related cells maintained their equipotential relationship over time. It is the aim
of the current chapter to make this abstract theory more tangible by showing how
imposition of conserved transcriptional activity translates into spatially-restricted
gene expression. These goals are accomplished via a seemingly unrelated question:
What happens to a string whose ends are subjected to twisting and bending?

Strings are bent and twisted due to the action of forces and torques supplied
at their ends; it is desirable to predict the resultant shape and stability. Initial
studies on strings were motivated by the problems of kinking in undersea cable
[60, 159, 302], and wave propagation in wires [56, 274], but similar analyses have
been extended to looping and supercoiling in DNA [87, 248]; see also [98] for a
perspective. Exact results are possible when the string is cast in the form of the
inflectional Euler elastica (see [28], [163], ch. XIX, [200] ch. 4, [272] ch. 2.7, and
the Supplementary Information 4.5.1), a curved planar arc of fixed length, which
may double back on itself to form loops. This well-studied model has shed much

light on the elastic stability of strings.
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One may want to know, for example, under what conditions planar loops
"pop out" of the plane. A popular strategy for determining the loads that lead to
pop out or kinking has been to use nonlinear stability analysis near a bifurcation in
the string’s energy [98, 159, 167, 196, 277, 278, 302]. The idea of this approach,
when applied to the related problem of beam buckling, is to postulate a relationship
between the axial and (sinusoidal) transverse displacements of a loaded elastic rod,
and then to solve a differential equation for the amplitude of a particular mode as a
function of the axial compression [296]. One may also relate the total energy of the
deformed rod to the transverse displacement (cf. [272] ch. 1.11), an approach which
when applied to the string led Maddocks to a bifurcation diagram in the deflection
angle 6 between the string axis and the line of action of the load [167]. The critical
tension from the beam buckling problem (derived in [272] ch. 2.21) has also been
related to the bending angle 6 [278]. In reference [278], phase portraits in the (6,0")
plane revealed qualitative differences in shape as the tension was tuned, from those
with full loops (O > 27) to those that merely nutate (0 < 0, < 27); the analysis
paralleled that of the heavy top precessing in time (see [13] ch. 6.30). Tension-
displacement phase diagrams have also been used to determine when twisted strings
whose ends are brought together pop out into loops [97, 196, 269, 277]. Thompson
and Champneys originally made the distinction between wave-like helical loops, in
which one turn of axial twist coincides with one turn of the helix, and localized
loops with three twists; they derived equilibrium conditions relating the energy of the
localized state to the moment and tension applied in the helical state [269]. Similarly,
van der Heijden and coworkers described two behaviors in pretwisted strings whose
ends were brought together: (i.) those that jumped into self-contacting loops before
the ends met, and (ii.) those that smoothly made the transition through a circular
ring [277]. In general, buckling relieves torsional strain—by reducing the angular
deformation that must be accommodated—at the expense of increased bending
strain; the critical point is where the two strains match [98]. In addition to these
studies, others have explicitly measured pop out curves using specialized apparatus
[97], derived perturbation expansions in the angular velocities [96], and analyzed
vibrations in clamped elasticas [70]. This last study made use of the central idea [56,
57, 272] that first differences in space of forces and moments over small sections of
the string result in second differences in time (i.e., acceleration) of spatial points of
the material.

Instead of a stability analysis, one may want to know the explicit equation

of the space curve of the string’s central line. Although the planar elastica has a
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closed-form solution, being loaded only with tension, the nonplanar loop is nontrivial
because end shortening interacts with twist. The combined torques and tensions
change the direction of all three so-called director basis vectors {d;} [56, 57, 167,
200], which define an orthogonal basis that moves with the string. The directors are
related to a fixed Euclidean coordinate system by elements of the Lie group SO (3)
of rigid rotations of a three-dimensional object. Furthermore, because twist and
bending are accounted for using angular rates of the directors, the applied loads
are actually members of the tangent space of SO (3), known at the group identity
as the Lie algebra so (3). Fortunately, there is a well-development mathematical
theory called Hamiltonian mechanics [12, 13, 119, 172] that prescribes how angular
velocities change in a dynamical system with fixed energy. Previous authors have
successfully used this framework to describe n-dimensional rotation, fluid flow,
plasma dynamics, and heavy tops [33, 106, 173, 222]. The main idea is that
since vector fields represent the tangent vectors of flows, it is possible, using the
Legendre transform and a device called the Lie bracket, to find a new differential
equation that maintains constant energy along vector fields of interacting forces.
The Euler-Poincaré equations for the rotation of a body in three-dimensional space,
for example, can be written as the Lie bracket of angular momentum and angular
velocity. In turn, the Euler-Poincaré equations are a special case of the analysis
using the more general semidirect product group, a group in which the symmetry of
the free system is broken by the application of a force in a distinguished direction
[106, 119, 172, 173]. This chapter examines the case when the symmetry of the
string’s director basis is broken by both axial and bending strains. It is concluded
that the Euler-Poincaré equations represent the most parsimonious path between
energy states of a string controlled only at its ends, but that in the case of more than
one force, a closed form trajectory cannot be known in advance.

When stated as a constraint on information, string dynamics illuminate
the problem of development by resolving the paradox of how a process can be
deterministic but not realizable until the passage of time. To see how this works,
imagine drawing the (unique) line through the tangent vectors of a single vector
field starting at time zero; where would this line be if there were two overlaid fields?
Following the vector field 2 for a short time means that the line traces a different
tangent vector of field 1, just as following field 1 in reverse for a short time discloses
a different tangent vector of field 2. The two tangent lines found by this procedure
approximate the trajectory of the system when field 2 modifies field 1 (and vice

versa). The (possibly non-integrable) field obtained as the time span approaches
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zero is known formally as the Lie derivative. The Lie derivative of the two fields
determines the trajectory at later times, but only because the input signals provide
"steering assistance," not exact "GPS coordinates." We can’t know final state until
we follow the flow lines till their ends. If biological signals could be formulated
as vector fields, they too would steer development on highly contingent trajectories
set by their Lie brackets in the egg. This chapter develops such a formulation used
conserved total RNA polymerase to represent the more abstract concept of constant
total information. Just as torsion and curvature of a string are constrained by the total
energy, conserved transcriptional activity determines the spatial variation of gene
expression throughout the embryo. The emphasis on constants of motion imposes
symmetry on the system via Noether’s theorem [119], resulting in an autonomous
theory of development that does not appeal to noise or stochasticity in expression

dynamics.

4.2. Results

The Results are organized as follows. First in section 4.2.1, the differential
equation in the arc length for the angular momentum of a looped string is derived,
and the connection is made to the analogous problem of the heavy top. It is shown
in section 4.2.2 how to account for pure twist of fibers about the central line;
how twist interacts with looping to become torsion is addressed in section 4.2.3.
The results of the Lie framework are compared with the classical Frenet-Serret
equations using known equations for the angular velocities. It is concluded that
differences emerge due to misalignment of forces and velocities along the length of
the string. In section 4.2.4, the Zassenhaus expansion for mixed forces propagating
from a localized point on the string is derived. The remaining sections 4.2.5-4.2.7
connect the string results to the problem of autonomous development. Section
4.2.5 presents a derivation of the rotational equations for the allocation of limited
RNA polymerase, section 4.2.6 describes a rigid parametrization of a growing one-
dimensional organism, and section 4.2.7 applies the model to interacting morphogen
gradients during development. Supplementary derivations are found in the Materials
and Methods section 4.4.

4.2.1 String looping without twist
Combinations of forces in strings lead to shapes not predicted by either
force alone. Before studying combined forces, we show how to translate tension at

the string ends into the evolution of the angular velocity of the binormal curvature
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vector along the arc length of the string. Formulating force in the tangent space of
allowed motions of the string makes it possible to treat the combinatorial problem
in a unified way using Lie algebras.

According to Love [163], Kirchhoff was the first to make an analogy
between the equations governing the periodic motion of pendula and the helical
looping of strings. With the time variable ¢ replaced by the spatial variable s,
looping becomes the problem of how the principal unit vectors (n,b,t) in the
normal, binormal, and tangential directions rotate relative to a (moving) body-
centered coordinate frame. The principal vectors are everywhere defined by drawing
the unit normal out from the center of curvature to the origin of the body frame
and orienting the unit tangent in the direction of motion; binormal is the direction
mutually orthogonal to n and b. Of course, there is no reason a point referred to an
independent set {d;} of mutually orthogonal vectors in the body frame at s should
have the same coordinates relative to the principal frame. Derived and used in many
works dealing with strings [56, 57, 95, 200, 274], the fundamental equation for
updating the body position vector d in R? is

0 —W3 W9 dl
d=wxd=|ws 0 -w||d?|=02-d, 4.1)
—Wo W1 0 dS

where the components of d are the positions coordinates of a point mass relative to
the body-centered orthonormal basis (d;,ds,d3), and w is the vector of rotational
velocities (radians per length) about the three axes in the body. The directors
(dy,ds,d3) are initially parallel to the principal (n, b, t) vectors and to the fixed
Euclidean (ei, es, e3) basis, although they become misaligned as a result of the
applied curvature, twist, and torsion. The vector w and the skew-symmetric matrix
Q are related by the so-called hat map ~: R3 — R3*3 in the obvious manner [119];
~ can be extended to vectors in R™ (see [126] for one realization). To understand,
for example, the total displacement w;d? — wod!' of of the third component of d
when multiplying out Eq. (4.1), one uses a construction, due to Routh [231],
for moving the north pole (axis 3) of a rotating globe: counterclockwise rotation
about axis 1 increases the distance between the north pole and (the old) axis 2 by a
circumferential arc length w; d? while leaving the distance to axis 1 fixed; subsequent
counterclockwise rotation about (the new or old) axis 2 decreases the distance to
(the old) axis 1 by wod!. Such are the only rotations that move the north pole, which

is invariant to rotations about itself.
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An alternative formulation for determining the space curve of a string
relies entirely on the principal basis. In the Frenet-Serret equations, the principal

basis is updated as

t' = —kn (4.2a)
n' =xt-7n (4.2b)
b’ = tn. (4.2¢)

There are only two distinguished velocities, viz. wy = k£ and w3 = 7, corresponding
to the curvature and geometric torsion of the space curve r (s) of the central line
[218]. In this basis, the normal direction, not d;, is chosen to rotate with the body.
The principal t and body d3 tangents are assumed to be parallel, but points not on
the central line are referred to different axes in the two formulations (4.1) and (4.2).

A loop is an instance of the inflectional Euler elastica, a well-known shape
that also satisfies the pendulum equation 6" = —A\2sin@ in the (azimuthal) Euler
angle 6, where the rate of change of angular velocity ws = x = #’ (and hence the
bending moment) vanishes at the end point [28, 163, 200, 272, 296]. Loops can be
fully described by the end tension 7' = A\? El»(= force) which maintains the shape
without any additional supports along s. For a loop localized to the xz plane, the
bending moment is El,x = force x dist., where E = force x dist.”? is the Young’s
modulus and I, = pio [ p(z,2) (2% + 22) dedz = dist." is the y component of the
(diagonal) tensor pio [ p(x,y,2) (r?e; ® e; —r ®r) dr of the second moments of
area about an axis through cross section > [13, 119, 200]; as in [200, 242], the mass
density of p(x,y,z) is normalized by the overall density p, at a particular cross

m”..r

section in order that ET have units of force x dist.” The curvature x = f:,i:,z)3jc2 [218]

corresponds to the Frenet-Serret curvature and is determined by differentiation of

the z and x coordinates of the elastica versus arc length s.

The elastica and Frenet-Serret pictures of the looped string are identical
in the case of a planar loop, as we now show. In the absence of applied torques, the
body-centered and fixed space bases at position s along the string are related to each
other by a rotation matrix g (s), which is an element of Lie group G = SO (n) of
n-dimensional rotations. So to write the (z,y, z) components of a position vector r
relative to the moving body frame (d;, dz, d3), one computes R (s) = g7 (s) r (s).
Differentiating both sides and using the identity (gg7)" = ¢’g"1 + g (¢71)" = 0 gives
that

R'(s)=-g7"(s)g' (s)g (s)r(s) =g (5) g () R(5) = -0 (s5) - R(s),
4.3)
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where g1¢’ = € = @ is the the angular velocity matrix, an element of the Lie algebra
g of GG. The Lie algebra is the tangent space of the GG at the origin of the group, i.e.
the identity on R™. Using the vector ET of moments, there is conjugate to €2 is an
angular momentum matrix p = Flw (also written EIQ + QET for ET the diagonal
matrix of moments), which evolves in the cotangent space g* of functions over g
under the action of g € G as per Hamilton’s equations in presence of an applied

torque:

p'(s)=[p(s), ()] +E(s) (4.42)

9'(5) =g (s)2(s). (4.4b)
Eqgs. (4.4) are derived from Hamilton’s equations in the Materials and Methods
section 4.4.1.1, and an alternative using Lie groups and Lie algebras is presented
in section 4.4.1.3. 1In (4.4a), p = P is regarded as a skew-symmetric matrix of
an angular momentum vector p with components ET;w;, and [-,-] is the matrix
commutator. The situation = = 0 where the applied torque vanishes corresponds
to an orbit in the cotangent space 7*SO (n) of angular momenta associated with
the rotational motion of n-dimensional bodies [172]. When E # 0, symmetry is
broken, and angular momenta evolve in a reduced space se (3) tangent to the group
SE (3) = SO (3) x R3 of rotations plus translation in a distinguished direction. For
example, the so-called semidirect product group applies to the case of a heavy top
where the fixed direction of gravity is known even in the rotating frame, leading to
conservation of angular momentum about the vertical [106, 172, 173] .

The first result of this chapter is to show that the situation of the looped
string is that of the top. Let a string localized to the xz plane be loaded axially
with tension T = 7T, with I'; the unit tangent vector relative to the fixed basis,
given at any point by inverse rotation g~ (s) x; of the body tangent (0,0,1)". At
any point s the radius of curvature g has magnitude m = é in the body normal
direction x,, = (1,0, O)T, and the component of the loading force along the string
is T'cos 6 (Figure 4.1A.i-ii). The moment g x F of this force about the center of
curvature is thus p (s) = % cos (0)xp in the binormal direction. Assuming that the
angular velocity ko = % is constant over the infinitesimal length over which it acts,
the moment of the tension force at a nearby pointis p (s + As) = % cos (0 + Af)xs.

The change in the moment is the applied torque, and its magnitude is equal to

_ T 1 2 1 4 1, 1,
’Ap”‘g[(l‘g(“M) v (0+20) +---)-(1_§9 -0 +)]

_ zAQ (—9 + %93 + ) +0 (A92) = —zl’{,gAS sinf = -T'Assin6, (4.5)

R2 R2
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for sufficiently small Af. If p is directed along X, then Ap is in the orthogonal

direction defined
Xb = (¢ xT) = X} x T = Xn x T, (4.6)

which can be used to replace sin 6 term in Eq. (4.5). Here the opposite perspective
has been invoked to regard the reference normal as a constant while the body tangent
and binormal change. Taking As — 0, the extra force Z—E that must be supplied to
rotate the frame by an infinitesimal amount df is p’ = A>EI,T",, x x,,. One checks

that the units make sense for FI, = force x dist.?, \ = dist.”!, and p = force x dist.
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Figure 4.1: Looping of the Euler elastica. The Euler elastica with loading parameter

A= \/g = 1—?;), bending stiffness ET; = ETy = 10 and length L = 10 (plotted in bold
in panels B and C) gives rises to curvature xo (directed in the binormal direction along y)
in a straight string originally parallel to z. (A) Diagram showing how looping is caused
by tangential tension at different points along the string. Different tensions T (s) and
T (s + ds) in a string loaded at the ends with | T|| = T = 3 cause rotation between frames i.
and ii. by the amount Af. The extra torque misaligns the body normal 'x,, (drawn in blue
directed toward the center of curvature) and the fixed normal x. iii. Rotation of the (old)
body frame 7 and £ vectors due to the resultant moment (in the b direction) of the force F
on a vector ds in the (old) tangential direction. (B) Integration of the Euler equations (4.8)
leads to a planar loop of the central line (R = 0, black) identical to the Euler elastica (red).
Overlaid twist 79 = 2% results in rotation of the R > 0 fibers (blue) as per the screw velocity
matrices (4.10) and (4.11). (C) The same as panel B with integration performed using the
Frenet-Serret relations (4.1) on the central line, again in agreement with the Euler elastica
(green). Filled circles indicate s = 0 and s = 0.5L; open circles s = L.
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One can also verify that the extra force rotates the body frame by Af. The
change % = 1" (s) of the tangent vector of a space curve is directed in the binormal
direction, given by t x n [218].! Then using the vector triple product identity we

find that the tangent changes by the amount
dt =(txn)xds=(t-ds)n—(n-ds)t=dscos(Af)n —dssin (Ad)t, (4.7)

corresponding to a counterclockwise rotation of the body-centered basis by Af
(Figure 4.1A.iii). The applied force causing ds to differ from t and n is p’ =
AN ELT, x Xn.

The preceding arguments determine the applied torque = in the looping
problem. Recalling that p = P, the differential equations for angular momentum

evolution become

P (s)=[p(s),Q(s)] + N EL [T, (s) x X»] (4.82)
T/, (s)=[Tn(s),2(s)] (4.8b)
9'(s)=9g(s)Q2(s), (4.8¢)

where we have used the easily verified property of the hat map Txy-= [f, Q] The
derivative of T, = g~'x,, in (4.8b) keeps track of the evolving angle between T',
and x,,, which are initially parallel (see Materials and Methods section 4.4.1.2).
With s replaced by t, and \? ET, by the gravitational moment, Egs. (4.8)
agree with the heavy top equations [106, 119, 172, 173]. Although the applied
forces in the top and string are directed along different fixed vectors (I',, versus I';),
geometry of similar triangles shows that both systems refer to the azimuthal angle
6, and hence the forms of the evolution equations are the same. A more subtle point
is that the time (as opposed to spatial) rate of change of angular momentum has

units force x dist. x time™!

, so that one understands division of Ap by the unitless
quantity wy At (instead of As) as an applied forque in the top problem, as opposed
to an applied force in the string.

Figure 4.1B and C show the evolution of the central fiber (R = 0) of a
string with T, = 10 and 1" = 3, corresponding to the Euler elastica shown in bold
in both panels. Panel B is computed by specifying the initial tangent vector in the
fixed basis at s = 0 and updating g (s) by the angular momentum equations (4.8);
rotation of the central line in the body frame is then evolved stepwise by adding

g1 (s)T;(0)ds. Panel C is calculated using the Frenet-Serret relations (4.2) with

"Note that because n is defined to be the outward normal, the lobe of the loop in Figure 4.1B
and C lies in the —z direction in order that the coordinate system at the origin be right-handed.
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the curvature « of the elastica used to get the new tangent vector t directly in fixed-
space coordinates. The results are essentially identical, both to each other and to

the elastica.

4.2.2 Looping with pure twist

Having reviewed the situation with a single force, we now introduce a
second: twist. Twist is important because it distinguishes an additional direction,
the axial one about which the fiber rotates. Although it is colloquial to use the terms
interchangeably, twist is not the same as torsion; both make separate contributions
to the axial strain of the director basis (see below). Twist is rotation of the d; and d»
directors independently of the principal normal n and binormal b (see Figure 4.2B
below), and thus it cannot affect the motion of the central line, a point originally
made by Love [163]. Although the distinction will be important in section 4.2.3,
in this section we show how to incorporate twist about looped space curves if it
does not affect the principals. A useful analogy for twist is a bent candy cane: the
painted-on red stripe twists about the central line r (s) at a rate dependent on arc
length s, but no matter the number of wraps, the plane of the candy cane is always
TZ.

To model twist in a looped space curve, we need to introduce space-time
constraints that express the connection between rotation at a fixed s and simulta-
neous translation along s. Because twist takes time to propagate, the string under
combined twist and tension is actually a four-dimensional object parametrized in
space r and time ¢. The dimensionality is reduced to two, however, by the natural
parametrization s — r(s) of the string along its arc length [218]. If twist is a
wave that propagates with velocity c in the s direction, then the time when the wave
reaches arc length s — A is ¢, and the arc length accumulated when the clock reads

t + 1 is s. The spatial and temporal delays A and y are related by
A=s—tc (4.92)
u=21 (4.9b)
c
similar to those used in [56]. In Materials and Methods section 4.4.2 it is shown
how Eqgs. (4.9) partition the full four-dimensional configuration space into free and
dependent coordinates, or more generally, into vertical and horizontal parts [32,

171]. The result is that the permitted elements of the Lie algebra g = se (3) of the
special Euclidean group SE (3) are

£ =Qds +cLg1 (vy), (4.10a)
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or as a 4 x 4 matrix

Qds  cLg1 (vy)
= 4.10b
) o

with L -1 representing left translation by g~! of a unit step v, in time. Materials and
Methods section 4.4.2 also shows how £ may be integrated to give a trajectory in

the group. The result is
g(s+ds)=h(s)exp(2(s)ds)+r(s), (4.11a)

or equivalently

(4.11b)

o(5 +d5) :(h(s)exp(ﬂ(s)ds) r(s))7

0 1

where h € SO (3) is a rigid rotation and r € R3 is a point on the space curve. Both
Eqgs. (4.10b) and (4.11Db) agree with the semidirect product structure of se (3) [106,
134, 172, 173]: the first is the screw velocity matrix of [73], and the second satisfies
94 = identity on R*. The group element ¢ (s) operates on four-dimensional
VGSCtOI'S (R(s=0),1)"; if Q is a twist about the third body axis, then ¢ rotates

d; and d, about the tangent line at the translated position r (s). Thus we arrive
at the intuitive notion of twist as rotation overlaid on the central line of the string,
regardless of its shape.

Although the preceding exposition emphasized traveling waves, common
experience says that twist waves in strings are stationary. For a twist wave to be a
standing wave after it has reached the terminus, the ratio of its temporal period and
spatial wavelength much be commensurate, i.e., the twists accumulated in time and
space must agree at both ends (cf. [13] ch. 6.30 for the case of the top). Therefore, c
must be rational; it drops out of the final equations after the standing wave has been

2mn
L
has the angular velocity matrix €2 = (0,0, TO)TA. With these values, Eqgs. (4.10) and

established. Furthermore, a twist 7y = of n rotations per unit length of the string
(4.11) give the twist about the central line of a looped string. As rotation about the
body dj =t axis leaves the central line unchanged, only body vectors with nonzero
d; and d; components are subject to twist. The R > 0 lines in Figure 4.1B and C
are rotations of the body vectors (R, 0,0)".
4.2.3 Looping with torsion converted to localized spiraling

Pure twist of ( radians per unit length about the central line does not leave

room for any interactions with looping. According Love’s formula in the 3-2-3 Euler
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angles 1, 0, and ¢ (Figure 4.1A and B; [200] ch. 5; [163] ch. XVIII) for the total

axial strain, viz. 5
K3 =—+ —cost = —=+T, (4.12)

¢

specifying r3 = 7o = 3 in the previous section on pure twist meant zero torsion 7 in

the Frenet-Serret equations: the directors rotated, but the binormal stayed the same.

In contrast, loading the string with 7 = 2”” radians per length in torsion with 8< =0

0

twist means the pr1n01pals rotate as well The spiraling terms ¢ and d¢ paI'tltIOI‘l

T into rotation 8— cos 6 of the directors and the normals about the ﬁxed z axis and

09 _
Bs

contributions to spiraling mean that the axial strains affecting the shape of the space

=79 (1 — cos ) of only the directors about the bent central line. These separate

curve are modified by bending.

The subtle differences between torsion, twist, and spiraling are illuminated
by the short-string model of Figure 4.2. Spiraling will be the general term for axial
strain the directors d; and d», which may (panel A) or may not (panel B) rotate
with the principal normal n and binormal b of the space curve. Rotation about the
fixed z axis is encompased by the angle 1) as spatial spiraling, while the remaining
rotation about the string’s tangent d3 is accounted for by ¢ as localized spiraling.
Torsion only contributes to spatial spiraling, but twist does not only contribute to
localized spiraling; thus ‘94 # 6¢. To see this another way, let the unbent (6 = 0)
string be loaded only Wlth torswn To; then n and b spiral around the z axis, tracing
out the blue area of the tall string in panel A. Now if the string is bent, n and b
spiral about a foreshortened z axis, accounting for only cos 6 of the input torsion;
the remainder - 8¢ = 7o (1 — cos @) is converted into local splrahng (red area) of the
directors relatlve to the principals. Next imagine a candy cane with % = 7p in twist
being bent by compression of the ends (panel B). Although the space curve of the
central line has no torsion, the stripe can still only rise by cosf along z (blue), the
rest being twist about d3 (red). Relative to the fixed basis, n and b in panel B do
not move. The two cases illustrate that local spiraling can be nonzero when twist is
(panel A), and that spatial spiraling can be nonzero when twist isn’t (panel B). Panel
C shows that in general, spiraling may be broken into the two contributions from
twist (green) and torsion (blue) for any bending angle 6. The director bases (black)
of the short and tall strings must agree, but the principal bases (blue) need not.
Bending converts equal fractions of twist and torsion into local spirals (highlighted
in red), with the effect that overall torsion is reduced. One also sees that twist is akin
to shear of the radial fibers: if the green areas vanished, the meridional coordinate

of the d; fiber would not vary along its length.
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Figure 4.2: The difference between torsion and twist using the short string model. (A,
B) Views of the straight and bent string having axial strain that is entirely torsional (A) or
entirely in twisting (B). The bent string is projected onto the z axis to show its foreshortened
height in that dimension, although its radial length is preserved. The Euler angles v, 0,
and ¢ are indicated; rotation of the director basis vectors d; and d» due to v is shown in
blue, and that due to ¢ in red. The principal n and b vectors rotate with the directors under
torsional strain (A), but are stationary during twist (B). (C) A topdown view of the string
shows that twist introduces shear of the short string fibers relative to the radius drawn from
the long string. At any bending angle 6, a fraction cos 6 of twist (green) and torsion (blue)
are both converted to spatial spiraling. The "missing" rotation is accounted for by local
spiraling about string’s axis (traced in red). The director d; in the short string is parallel to
that in the long string, but the normal spirals less due to bending.

The twist-torsion distinction is particularly relevant to the buckling of
helical space curves, as discussed by in [269]. A helix of length L, height S, radius
R and inclination angle 7 — ¢ is loaded with a total of n loops. It follows from the

elementary geometry of "unwinding" the helix at its inclination angle that the input
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strain about z is QWT" = Sige. Durning compression of the ends, 7 = w reduces
the strain by a factor cos@ (as per the usual formula, [200] ch. 1); the remaining

strain % = 70 (1 —cosf) goes into local spiraling. Buckling into a planar loop

may reduce the string’s total energy if the torsional rigidity GJ exceeds the bending
rigidities ET; and ET,.

How bending and torsion combine to produce novel curves is the subject
of the next two sections of this chapter. As in section 4.2.1, the approach is to find
the differential force supplied at each point along s and represent it as an element
of g. Just as looping distinguishes the y direction, so spiraling distinguishes z, the
direction coincident with the axis of the undeformed string. It is assumed that all
spiraling is due to torsion. Let the local spiraling moment be G1;, so that GI;y is
the torque (force x dist.) supplied to produce n turns over the length L of the unbent
string. As aresult of bending, local spiraling is converted in spatial spiraling, a mode
which in general has a different moment of inertia GJ. At any point s the torque is
directed along the body tangent x; = d3, and is decomposable into the cross product
M = o x F of a (conserved) wrench force F' acting on an orthogonal lever arm g.

The lever arm is the radius of curvature, being of magnitude 5—12 and directed along
1
le|®
has magnitude GJ7yks in the direction of the body binormal x;. At s =0, x, =T

the body normal x,,. Thus the force F' = M x o responsible for spatial torquing
is in the direction of the fixed y axis; later x; accumulates an angle v relative to
I';, reducing F' by the cosine of this amount. The angular momentum supplied by
the binormal torquing at two closely spaced points is p (s) = GJ7okz cos (1) x ,}2 Xt
and p (s +ds) = GIrorg cos (¢ + AY) x Lx;. As in Eq. (4.5), the extra moment

responsible for the change is
|Ap| = GIToAY (—@b + %@/ﬁ’ + ) + 0 (AY?) = -Gl Assing.  (4.13)

Here, (] is the torsional rigidity, defined as the product of the shear modulus GG and
a factor J equal to the sum I3 of the area moments of 22 and y? at an zy cross section
(cf. [163] ch. XIV). This is in agreement with the earlier definition of section 4.2.1.

Next we want to use Eq. (4.13) to update the Euler equations (4.8). If p
is directed along x, then a similar argument leading to Eq. (4.6) shows that Ap
is directed along the cross product x; x I',. Using this to replace the factor sin ¢
in Eq. (4.13), we find that in the limit As — 0 the extra torque is supplied by a
force p’ = GJ72T';, x X, proportional to the angle between the body and fixed the
binormals. One also checks that the units agree for G.J = force x dist.?, 7 = dist.”"

and p = force x dist., as expected. With p = P, the modified angular momentum
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equations for the interaction of bending and torsion are

' (s)=[p(s), 2 ()] + ¥EL[T, (s), X

+GIT [Ty (3), X] (4.14a)

i"\; (s) :[fn (s) ,Q(s)] (4.14b)
T (s) =[Th (s),Q2(s)] (4.14c)
g (s)=9g(s)Q(s). (4.14d)

The middle two Egs. (4.14) explicitly give the rotation of body frame relative to
the fixed frame; they are not the same even though the body X, and X, vectors are
defined to be orthogonal. The rotations in Eqs. (4.14b) and (4.14c) account for
the extra torque in (4.14a). The conversion of some of 7, to spatial spiraling leaves
7o (1 = cos @) available for local spiraling, being the w3 component of €2 in the screw
velocity equations (4.11). These modifications imply that torsion and bending are
no longer known functions of s: they are differential equations that may only solved
after traversing s.

The initial conditions of Eqgs. (4.14) are also important for modeling the
interactions between looping and spiraling. We measure 6 relative to the tangent
line at a point s so that the supplied axial strain has its maximum value 7 cos (0)
there. Physically, this means taking the tangent line for the undeformed string. No
generality is lost because a twisted string can be rigidly rotated before the ends are
brought together. In the limit L - oo the undeformed line at s, approaches the fixed
z axis. Also recall that before bending, the initial angular momentum is G1;7, for
local spiraling, not GJ7 for spatial spiraling.

The importance of evolving k = w, and 7 = w3 simultaneously is illustrated
schematically in Figure 4.3, panels A and D. Whereas the Euler equations (4.14) use
the current direction of I'; and I'; to update all components of €2, the Frenet-Serret
equations (4.2) use a fixed x and 7. The two methods are similar, except that the
Euler equations result in additional bending at the ends of the string (panels B and
D). Where along s one begins integrating also has an effect on the shape. Choosing
sg = 0.4L (C, F) results in the lower end of the Euler loop (C) being transposed to
the right of the elastica, whereas the lower end of the Frenet-Serret loop lies to the
left.

Why should the two methods differ in the case of mixed forces, but not
in the case of a single force (as in Figure 4.1)? Section 2.2.3 in chapter 2 provides
necessary and sufficient conditions for when the dynamics of a system controlled

in the tangent space can be known in advance. When bending strain is supplied
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singly, all potential energy is converted to kinetic in the form of rotation about a
single axis. With nowhere else for the energy to go but into w», it is possible to get
the unique trajectory from the Legendre transformation of the total energy change
by an angular velocity function €2 (s) written down at a starting point so. The
curvature of the planar elastica is the unique function giving the unique shape. In
contrast, when two strains are supplied—in bending and spiraling, say—the energy
can go into different degrees of freedom; the space curve in general fails to be
unique. Chapter 2 outlines a theory of gradient and non-gradient systems, in which
it is shown that multidimensional controls make the dynamics unknowable at the
start. The dynamics can be made one-dimensional (i.e., parallel to a gradient) if
the rotating angular velocity vector is given time to reorient to the direction of the
applied forces. It is suggested here that misalignment of the forces and velocities in
the Frenet-Serret equations violates the parsimony principle that each segment see
the same increase in energy: by dissipating energy in the form of localized strains,
the angular trajectory occasionally moves skew to the potential gradient. Certainly
the predicted shape is a valid space curve, but realizing it would require additional
inputs of energy in the form of localized strains. In contrast, the Euler-Poincaré
equations are derived by minimizing the Lagrangian action functional [119], which
predicts that the most likely path between the unstrained and strained states is the
one that has the least deviation between level sets of the the potential. In this way,
a sequential process 4 la those studied chapter 3 arises autonomously in the form
the response of each segment of the string to a force imposed at the start. This
theory could be falsified by measuring excess strain in strings forced into the shapes
of Figure 4.3: the Euler-Poincaré string should have less localized strain than the

Frenet-Serret one.

4.2.4 Looping with a propagating end-shortening force

Another way spiraling and looping can interact is by treating forces as
vector fields on a certain Lie group; they evolve along each other over the body of
the string and cause it to turn in space. The aim of this section is to show how
to combine the fields and approximate the shape of a twisted string when a force
propagates from its center.

In experiments [97, 269], a compressive end-shortening force applied to
a pre-twisted causes looping. Propagation of the force means that different portions
of the string see different values of the field representing it (Figure 4.4A). Consider

dividing the string into many infinitesimal segments (black dots), a consecutive
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Figure 4.3: Strings with interacting forces. (A, D) Digram of distinguished directions. In
the Euler picture (A), curvature and torsion are updated along s by extra torques applied in the
normal and tangential directions. In the Frenet-Serret picture (D) curvature « is a specified
function of arc length s, and torsion 7 is a function of the angle 6 (s). (B, E) Integration
of the Euler (B) and Frenet-Serret (E) equations starting from the point s = 0.1L for fibers
of increasing distance from the central line. The central line (R = 0, black) experiences
only spatial spiralling, while the R > 0 fibers (blue, red) experience local spiraling due to
the screw velocity. (C, F) The same as panels B and E except that integration is started at
sg = 0.4L. Parameters are Ely = FEly; = 10, GJ =15, GI; =1, L =10, 19 = 27” Filled
circles mark s = 0 and s = 0.5L; open circles s = L.

number of which define a section. In the Materials and Methods section 4.4.3.1,
a model is described wherein stressed sections (red) push out into unstressed ones
(blue). By Newton’s third law, the unstressed sections push back, entangling more
and more segments into the force wave, which propagates with velocity c. (It

is sometimes convenient to think of the string moving with velocity —c toward a
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stationary origin sy.) Equilibrium is reached when the numbers of right-pushing
and left-pushing segments in any section are equal. Because vector fields represent
velocities, it should be possible, from the space-time constraints in discussed in
section 4.2.2, to write an equation versus space for the shape of the string under the
loading force; conservation of energy makes this goal not strictly attainable.

The notion that forces take time to propagate motivates the introduction
of the flow ®% for time ¢ along a vector field X € g. Flow is the solution curve to

the differential equation
o (t)=X(o(t)) (4.15)

for a path o defined on GG (cf. Eq. (4.49a) in Materials and Methods section 4.4.1.3).
We say that vector fields A and B—representing spiraling and bending—are the
exponential generators of the their corresponding forces, because the formal solution
of Eq. (4.15)is o (t) = 0 (0)exp (Xt). Due to the space-time constraints (4.9),
the first temporal derivative ¢ in (4.15) is related to the spatial derivative ¢’/| =X
of the rotation matrices; the higher derivatives are found from the Lie derﬁl?:ltive,
introduced below.

The first question is, what flow is relevant to strings? In the force propaga-
tion model, sections at the string ends saw only axial stress, while those in the middle
experienced axial and bending strains. By the time the force wave represented by
B reached the ends, its effect had changed (Figure 4.4B). But because space and
time are equivalent, it is possible to relate the direction of field B at a point s in
the present ¢ = 0 to a point of origin s, in the past ¢y < 0. To make this connection
precise, undo the spiraling force field A for a time At, and then apply A and B
together for the same amount of time. The flow ® = ®4* 5 o &, maps the points of
one manifold M onto another N, each representing a different local section of the
string. Now apply B € T'M to the new coordinates ® o z on \; transform between
tangent spaces using the chain rule and multiplying by a Jacobean "conversion"
factor DO = dq;—iz) to get

B=D® - Dd'-B=D® -B(d'o)=,B. (4.16)

This map @, : TM — TN is known as the push forward [172] because the vector
field "catches up" with the coordinates (Figure 4.4B). The first derivative of Eq.
(4.16), i.e.,

d
B’ = LxB = %D%Bo@ﬂ - [X,B], (4.17)
t=0

is the Lie derivative of B along X (see Materials and Methods section 4.4.3.2).
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Figure 4.4: Propagation of a force in the presence of background twist. (A) Establish-
ment of equilibrium in a twisted and bent string. Each infinitesimal segment of the string is
represented by a black dot. The force exerted during a single time step by one section of the
string on another is shown by a red line; unstressed segments are connected to themselves
in blue. The stress pattern evolves by Newton’s third law: unopposed exterior sections push
outward, while opposed interior sections reverse the stress direction. The initial force has
the strength of n = 16 segments. (Inset) Equilibrium is established in a finite section in one
time step. (B) Change in the direction of a vector field (representing a force) at different
points of the string. The map ® changes the history of the finite section M of the string
(experiencing only spiral motion) into A/ (experiencing end-shortening and spiraling) by
reverse flow along A (blue) and forward flow along A + B (red). The vector field push
forward map ®. is the expression of the force of manifold M on manifold N. Blue sections
of the string have been exposed to twist only (@2), while red sections have been exposed to
twist and end-shortening ((I)fA +B)- (C) Illustration of space-time constraints in a rigid string
on which the end-shortening force acts over time. In the absence of this force, sections
(violet) keep the same s over time (magenta), but in the presence of a force at sg, they move
toward the source at rate —c along s. Backward flow along A (blue) and forward flow along
A + B (red) shifts the force at sg at t = —At to s at t = 0. The delay A is the size of the
shift measured from s. Each infinitesimal segment has the same value of A\ = As — cAt
because the propagation velocity ¢ does not vary with s.
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It is shown in Materials and Methods 4.4.3.3 that the higher order deriva-
tives of B along the path defined by ® are

d— AdexpBr © Adexp-at 0B| = Z (n) (—1)k adf Foadk 0B, (4.18)
dtn t=0 (H\k

B™ =
and that they are related by a multiplicative factor to the Zassenhaus coefficients
of the expansion exp { (A + B) At} for the simultaneous application of two matrix
operators [263, 297]; their calculation, which has been the subject of much previous
research in mathematical physics [48, 263], is greatly facilitated by the simple
binomial expansion of Eq. (4.18).

With the derivatives (4.18) it is possible to approximate the angular veloc-
ity matrix €2 as a polynomial in s. Letting A + B = g7! (s0) ¢’ (s0) be the velocity
field at an origin of force propagation, the velocity £2(1) at an arbitrary s may be

found by the n-order Zassenhaus expansion as

QW (s) = Ais log [exp {(A +B) As} - exp (-AAs)]
= ALS log [eXp (B(”)W)...exp (B’%) ~exp (B (s - 80))]~
(4.19)

The sense in which As = s — s is increasing is shown in Figure 4.4C. Also shown
is how increments A\ of the spatial delay parameter (brown) pick out the next
space-time trajectory (green) of material points that, As away from the origin s,
experience the force after a time delay At. Of course, we should really be u<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>