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ABSTRACT

Charge transport properties like electrical conductivity or the Seebeck coefficient
are defined phenomenologically from near-equilibrium thermodynamics, while the
analysis or modeling of them often involves a physical model based on mechanistic
principles. In other words, physical models connect microscopic and physical
parameters to phenomenological and experimental properties. One of the challenges
is that the complexity of solid state requires many physical parameters, whereas the
measurable properties which help to determine those parameters are limited. The
interrelations of measured properties are very important to overcome this challenge,
but this aspect is not well recognized in conventional analysis themes. In this
thesis, the concept of using a phenomenological transport function is devised to help
combine a collection of measurements into an intermediate level of phenomenology,
relevant for fermion transport but not dependent on a particular physical model.
This phenomenological transport function can be determined by examining the
electrical conductivity, the Seebeck coefficient, and potentially the Lorenz number.
Because the phenomenological transport function combines information from a set
of multiple measurable properties, a direct comparison to the transport function of
a physical model serves as a strong test for the model.

Particular usefulness comes from extracting transport functions from the Seebeck
coefficient-conductivity relation, especially in doped semiconductors. This ap-
proach is applied to contrast CeO2-x and n-type SrTiO3 as narrow and dispersive
transport function materials, each consistent with polaron and band conduction, re-
spectively. In band conductors such as SrTiO3 and Mg3Sb2, the approach is used to
test and refute previous claims about the scattering mechanism and find consistency
with deformation potential scattering in both cases. In conducting polymers, which
do not resemble any other type of conventional conductors, the Seebeck-conductivity
relation reveals a qualitative disagreement with the commonly cited Mott’s mod-
els. For the case of Cu2Se, a peculiar band conductor which shows anomalies in
the Hall measurement of the high temperature phase and also in other transport
properties at the phase transition, the transport function approach is applied as a
workaround for modeling. On the practical side, for thermoelectric applications, the
transport function approach is used to characterize material quality factors for both
majority carrier conduction and bipolar conduction. Finally, experimental efforts
for improving the accuracy and applicability of Seebeck measurements is discussed.
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C h a p t e r 1

CHARGE TRANSPORT ANALYSIS: PHENOMENOLOGICAL
VS. PHYSICAL MODEL APPROACH

In solid state, charge transport is the central phenomena in a majority of electronic
applications. In addition to itswide technical relevance, it is also intimately related to
basic solid state properties such as the crystal structure, electronic structure, defect
distribution, microstructure, and phonon properties. Because of such property
relations, charge transport is routinely used as a tool to study the basic properties of
a solid. It is apparent from the wide involvement that analysis of charge transport
phenomena is one of the most fundamental topics in the study of solid materials.

Charge transport happens because of the presence of a driving force. For example,
stationary driving forces like static electric or magnetic fields, thermal gradients,
and chemical potential gradients are all capable of inducing steady-state charge
transport. In fact, thermodynamics states that any general driving force can induce
charge transport. How charge transport happens in response to a specific driving
force (or a set of them) is what is called the transport properties.

Charge transport properties are phenomenologically (i.e. without specification about
the mechanism of transport) defined using thermodynamics (see Appendix A for a
detailed description). The presence of a driving force and charge transport indicates
a non-equilibrium situation, according to the second law of thermodynamics. Nev-
ertheless, transport properties can be well described with equilibrium properties in
the limit of small driving forces, a regime referred to as “near-equilibrium” or the
linear response regime. In this regime, fluxes (e.g. charge flux) are proportional
to driving forces (e.g. electric field), from which the proportional constant can be
defined as a transport property (e.g. electrical conductivity). Properties defined by
this general phenomenology include electrical and thermal conductivity, the See-
beck coefficient, Lorenz number, and Hall coefficient. The phenomenology is not
restricted to stationary driving forces; however, the primary interest of this thesis is
on stationary properties.

Charge transport properties can be modeled using physical parameters and mecha-
nistic principles, an approach that could be termed the “physical model” approach,
or alternatively, the “mechanistic model” approach. For example, one could model
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electrical conductivity with a function F(a, b, c) where a, b, c are parameters related
to specific physical quantities like temperature, mass, or velocity and F is a func-
tion that describes elementary physics principles. As seen in this example, physical
models make the connection between elementary physical quantities and the general
phenomenology.

Doing experimentalmeasurements is naturally a phenomenological approach, whereas
the analysis of experiments is ultimately a physical model approach. For example,
because phenomenology defines what electrical conductivity is, it also dictates how
electrical conductivity should be measured. Then, one would ideally want to either
be able to predict conductivity with a function F(a, b, c) or be able to infer a, b, c

from the measurement, based on a physical model that gives the expression for F.

A general difficulty associated with validating a physical model is that numerous
physical parameters (like a, b, c, . . .) are needed to describe a single property. This
difficulty is partly overcome by testing if the derivative with respect to each param-
eter, such as the temperature dependency of conductivity, agrees with experiments.
However, more than often, physically controllable or measurable parameters are
limited and the analysis is challenged with the risk of over-fitting (mathematically
too many degrees-of-freedom for fitting). A much stronger test for a model is to
see if the same set of model parameters also explain other transport properties,
like the Seebeck coefficient or Lorenz number, simultaneously. However, this test
for self-consistency is not always straightforward due to complexities in transport
models. Above all, it is not a well-established procedure to study the interrelation
of transport properties in the context of testing transport models (some cases are
found in Refs.[1, 2]).

This difficulty in directly tackling the most general phenomenology (i.e. exper-
imental measurements) could be eased if we had a phenomenological model or
framework that can be extracted from experimental measurements in a manner that
is not dependent on a particular physical model. For example, if the information in
electrical conductivity and the Seebeck coefficient could be combined to determine
an underlying phenomenological function that determines both properties, this phe-
nomenological function would help the experimentalist to test the self-consistency
of physical models (or see if the existing data allows one to meaningfully test the
model at all). Furthermore, in the event when no physical model provides a satisfac-
tory description, the phenomenological function could serve as a model itself for a
set of transport properties until a better physical model is developed. This approach
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could be called a “phenomenological approach” in contrast with the physical model
approach, and the two can play a complementary role in the analysis of charge
transport.

To find such an “advanced” level of phenomenology that is less general than that
defined by the near-equilibrium limit, but still general enough to bewidely applicable
in the cases of interest, we must identify common features that allow to construct
a useful phenomenological framework. For this purpose, both the semiclassical
band transport model and a simple fermion hopping model will be reviewed in this
chapter. Then, by focusing on the features that result simply from the commonality
that fermionsmediate charge transport, a phenomenological function that determines
three different transport properties – electrical conductivity, the Seebeck coefficient,
and the Lorenz number – will be found. The usefulness of this framework will
be demonstrated by applying it to a number of material systems in the following
chapters. The Seebeck-conductivity relation will prove to be particularly useful for
this framework and also provide additional insight in the use or testing of physical
models like electron scattering models in band transport.

1.1 Semiclassical band transport
Limitations of the Drude model
The classical Drude model is the most elementary transport model used for describ-
ing charge transport in crystals. It states that electrical conductivityσ is proportional
to the carrier concentration n:

σ = µden. (1.1)

Here, e is the absolute charge of an electron and µd is referred to as the Drude
mobility, or drift mobility. The various shortfalls of the Drude model in its physical
description is an elementary topic covered in standard solid state physics textbooks
[3]. Nevertheless, it is one of the most widely used models in practice because it
works well in many situations; for instance, for describing silicon in conventional
transistor devices, the Drude model works sufficiently well [4]. Then, the relevant
question is: why does it work at all? Knowing the answer to this question is
important in understanding why one has to go further than the Drude model for
other types of semiconductors like narrow gap or heavily doped semiconductors.

The reason why the Drude model apparently works in some cases is because of the
fortuitous proportionality σ ∝ n when the Fermi-level is within the band gap and
sufficiently far from the band edge. In general, only a part of the free carriers n
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near the Fermi surface participates in charge transport due to the Pauli exclusion
principle, and thus σ is hardly proportional to n, especially in metals. In low
doped semiconductors or insulators (the non-degenerate limit) both n and σ are
proportional to the same exponential function of the Fermi-level1, making σ ∝ n.
For this reason, µd is simply a proportional coefficient (that happens to be constant
with respect to n in the non-degenerate limit), rather than a true mobility (steady-
state velocity gained per electric field strength) originally envisioned by the Drude
model.

In narrow gap or heavily doped semiconductors, one will usually notice that σ
increases sublinearly with n (i.e. µd decreases with n). This is not necessarily
because the mobility is actually decreasing, but is simply an artifact of the Drude
equation; even for a fixed (true) mobility that is constant with respect to energy, µd

will decrease as the Fermi-level gets close or into the band. As soon as a simple
exponential function (Boltzmann statistics) can no longer describe the distribution
of electrons, the fortuitous proportionality of the Drude model is lost.

Therefore, to describe band transport in the general case where the non-degenerate
statistics of fermions is not guaranteed, Fermi-Dirac statistics must be taken into
account explicitly. Semiclassical band transport theory is the framework that de-
scribes band transport by combining Fermi-Dirac statistics with classical particle
kinematics.

In this section, basic semiclassical band transport will be reviewed using the Boltz-
mann transport equation. Equations derived in this section will be an important
basis for extracting the semiclassical phenomenological equations.

The Boltzmann transport equation for charge transport
Near-equilibrium transport phenomena describes the linear response to driving
forces that perturb the equilibrium state, the regime in which thermodynamic quan-
tities like temperature are well defined at any local position despite the macroscopic
system being in non-equilibrium [5] (detailed discussion in Appendix A). In finding
the coefficients that characterize the flux from a given driving force (e.g. conduc-
tivity characterizes charge flux due to an electric field), the fundamental quantity
that needs to be described is the distribution function for the quasiparticle (fermion)
being driven. The Boltzmann transport equation states that, in steady state, all

1The distribution function for electrons (fermions) reduces to an exponential function in the
non-degenerate limit.
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processes perturbing the equilibrium must net to zero:∑ ∂ fneq(r, k, t)
∂t

����
process

= 0. (1.2)

Here, fneq is the particle distribution function at non-equilibrium, r is position, k
is the wave vector of the quasiparticle, and t is time. By taking into account time
variances in fneq due to diffusion (no-field limit), stationary fields (external forces),
and scattering (redistribution of momenta):

− vk
∂ fneq

∂r
− ∂k
∂t

∂ fneq

∂k
+
∂ fneq

∂t

����
scattering

= 0. (1.3)

The first term (position derivative) describes the diffusion of particles, and the
second term (momentum derivative) describes external forces exerted on the particle
by fields. The negative signs reflect that the distribution function decreases at
a particular phase space coordinate (r, k) due to such events at that coordinate
(particles are “removed” from (r, k) due to diffusion or field effects). The third
term describes the scattering events. A specific description for this scattering
term is required to solve the Boltzmann transport equation. It is seen that Eq.1.3
governs the particle kinetics under non-equilibrium, by which the particle transport
properties are determined.

Relaxation time approximation
For small departures from equilibrium, the scattering process can be described as a
Poisson process with a relaxation time τ (i.e. rate of 1/τ):

∂ fneq

∂t

����
scattering

= − fneq − feq

τ
= − f∆

τ
, (1.4)

where feq is the equilibrium distribution function and f∆ denotes the small linearized
departure from equilibrium. It is seen in Eq.1.4 that the relaxation of fneq due to
scattering in the absence of field or diffusion effects is proportional to the departure
f∆, a differential equation that yields an exponentially decaying solution towards
equilibrium. By using the relaxation time approximation in Eq.1.4, the Boltzmann
transport equation Eq.1.3 becomes a solvable form:

− vk
∂( f + f∆)

∂r
− ∂k
∂t

∂( f + f∆)
∂k

=
f∆
τ
. (1.5)

Here, feq has been replacedwith the Fermi-Dirac distribution function f for fermions
(Fig.1.1a):

feq = f =
1

1 + exp E−EF
kBT

. (1.6)
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EF is the Fermi-level, or electron chemical potential2.

Electrical Conductivity
Direct current (DC) electrical conductivity σ is the proportional constant for current
density J under a stationary electric fieldE (boldface representing vector quantities),
but with no thermal gradients or magnetic fields:

J = σE . (1.7)

Because σ describes the linear response regime, we are interested in the leading
order term in response to the perturbation f∆. Higher order terms like the derivatives
∂ f∆/∂r and ∂ f∆/∂k can thus be neglected. Furthermore, the ∂ f /∂r term is also
dropped since σ is defined in the limit where there is no temperature gradient. From
Eq.1.5, the transport equation relevant for σ becomes

− ∂k
∂t

∂ f
∂k
=

f∆
τ
. (1.8)

Electric field causes qE = ~∂k/∂t here, where q is the charge of the carrier. Then,
the perturbation can be expressed as

f∆ = −τq
1
~

∂ f
∂k
· E = −τq

1
~

∂E
∂k

∂ f
∂E
· E = τq

(
− ∂ f
∂E

)
vk · E, (1.9)

where E (normal font weight representing scalar quantities) is the energy of the
carrier. Now J in Eq.1.7 also needs to be expressed using similar terms. Current
density is the flux of charges, and flux is simply the velocity of particles multiplied
by the volume density of those particles. Since velocity is dependent on k ,

J = q
∫

BZ
vk fneq = q

∫
BZ

vk( f + f∆) = q
∫

BZ
vk f∆. (1.10)

Here
∫

BZ fneq is an integral over each k-state in the Brillouin zone3 that gives the
density of particles. Note that

∫
BZ vk f = 0 because at equilibrium there is no flux;

only after a perturbation from equilibrium ( f∆) is when particles are transported.
By substituting Eq.1.9 into 1.10 and then comparing to 1.7, the expression for

2It is customary to use µe (electron chemical potential) interchangeably with EF (Fermi-level) in
the literature. In this usage, EF is distinguished from “Fermi-energy” which some may use to refer
to the 0 K property of a system.

3The volume element for integration 2d3k
(2π)3 is implied and omitted except for the end results. The

factor of 2 is for spin degeneracy, and 2π is the length per k point in each dimension
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conductivity is obtained:

σi j = e2
∫

BZ
τvk,ivk, j

(
− ∂ f
∂E

)
=

e2

4π2

∫
BZ
τvk,ivk, j

(
− ∂ f
∂E

)
d3k .

(1.11)

Here q was substituted with ±e (charge for holes and electrons, respectively4) and
the explicit volume element in k space was given (including the spin degeneracy
of two). For the scalar quantity in a particular direction, one could set i = j = x.
Since k and E are related through a band dispersion relation, Eq.1.11 can also be
expressed with an integral over energy space5:

σxx = e2
∫

τ(E)v2
x(E)

(
− ∂ f
∂E

)
g(E)dE, (1.12)

where g(E) is the density of states. Here −∂ f /∂E is a peak function centered
around EF (Fig.1.1b) that “samples” contributions from only near the Fermi surface.
This feature reflects the mutually exclusive character of fermions that only make the
near-Fermi surface relevant for transport.

Seebeck Coefficient
A temperature gradient can also drive electrical current, just like an electric field.
In an open circuit where current cannot flow, an electric field develops instead, until
the thermal drive is exactly countered. The proportionality between the thermal
gradient and electric field in an open circuit condition is the Seebeck coefficient S:

S = −∇V
∇T

. (1.13)

Here ∇V = −E is the electric potential gradient6 in the same direction as the
thermal gradient. To derive the semiclassical expression for S, the Boltzmann

4Here the convention for hole notation is used where holes are positively charged particles that
increase in energy when moving into the valence band away from the band edge. This notation
allows to use identical equations for both electrons and holes by just changing the sign of q.

5This process of converting τ(k) and v(k) to τ(E) and v(E), respectively, is equivalent to
constructing an effective band. Construction of an effective band might be not straightforward with
band structure complexity.

6Strictly speaking, E here is an observed, measured, or apparent electric field Eobs but not
the true electric field. Eobs = E − ∇EF

q , where ∇EF could be induced by temperature gradients.
Therefore, Eobs = −∇V − ∇EF

q . The strict definition for S may be written as S = Eobs

∇T =
−∇V−∇EF/q

∇T .
See Appendix A for the thermodynamic connection. This distinction has no apparent consequences
in the transport property expressions derived in this chapter because one can simply substitute E
with Eobs and arrive at the same results. Eobs could therefore be considered an effective E in a solid.
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Figure 1.1: Fermi-Dirac distribution function and related “sampling” functions.
(a) Fermi-Dirac distribution function (b) Sampling function relevant for electrical
conductivity. Contribution to conduction comes from only near the Fermi-level
EF. (c) Sampling function relevant for the Seebeck coefficient. Contribution comes
from only near the EF, but with an opposite sign with respect to EF. (d) Sampling
function relevant for the (zero field) electronic thermal conductivity. Contribution
comes from both above and below the EF with the same sign, but is zero at the EF.



9

transport equation (Eq.1.5) is used again, but for a thermal driving force ∇T . By
dropping the field term and retaining only the first order perturbation terms in Eq.1.5,
the Boltzmann transport equation for diffusion becomes

− vk
∂ f
∂r
=

f∆
τ
. (1.14)

Diffusion is caused by the thermal gradient:

∂ f
∂r
=
∂ f
∂T

∂T
∂r

. (1.15)

By carrying out the derivative ∂ f /∂T , it can be rewritten in terms of an energy
derivative (one might find it helpful to use the identity shown in Fig.1.1b for this
procedure):

∂ f
∂T
=

E − EF
T

(
− ∂ f
∂E

)
. (1.16)

Then, the thermal perturbation can be expressed as

f∆ = −τE − EF
T

(
− ∂ f
∂E

)
vk · ∇T . (1.17)

The current density due to a thermal gradient can be found by substituting Eq.1.17
into the same equation that we used for a field-driven current (Eq.1.10):

J = −q
∫

BZ
τvkvk

E − EF
T

(
− ∂ f
∂E

)
∇T . (1.18)

The total current density under both a thermal gradient and electric field can be
obtained by adding the electric field contribution (Eq.1.7) to Eq.1.18:

J = −q
∫

BZ
τvkvk

E − EF
T

(
− ∂ f
∂E

)
∇T − σ∇V . (1.19)

This process is equivalent to adding two perturbation terms Eqs.1.9 and 1.17 and
then substituting into Eq.1.10. By applying the open circuit condition J = 0 in
Eq.1.19 and comparing to Eq.1.13, the expression for S is found:

Sxx =
q
σxx

∫
BZ
τvxvx

E − EF
T

(
− ∂ f
∂E

)
. (1.20)

By writing out the expression for σ and explicitly adding the volume element for
integration,

Sxx =
kB
q

∫
BZ τvxvx

(
E−EF
kBT

) (
− ∂ f
∂E

)
d3k∫

BZ τvxvx

(
− ∂ f
∂E

)
d3k

. (1.21)
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By changing into an integration in energy space,

Sxx =
kB
q

∫
τvxvx

(
E−EF
kBT

) (
− ∂ f
∂E

)
g(E)dE∫

τvxvx

(
− ∂ f
∂E

)
g(E)dE

. (1.22)

Notice that q determines the sign of the Seebeck coefficient. kB/e is 86.17 µV/K, the
natural unit for thermopower7. It is also found in the numerator that the “sampling”
at EF comes with a weighting factor E−EF

kBT (plotted in Fig.1.1c), that makes it an
odd function with respect to EF. This asymmetry is because moving a particle with
more energy than the chemical potential contributes to positive heat or energy flow,
whereas moving a particle with less actually contributes to negative heat or energy
flow (recall that chemical potential is an indicator for particle energy of the system
– i.e. the partial molar Gibbs free energy).

Lorenz Number
Aflowof charges is also a flow of heat. In fact, the heat transported by charge carriers
can be orders of magnitude larger than that from phonons in highly conductive
metals. The proportionality between electrical conductivity and its contribution to
thermal conductivity is characterized by the Lorenz number L:

L =
κe
σT

, (1.23)

where κe is the electronic contribution to thermal conductivity8. This equation is

referred to as the Wiedemann–Franz law, and L for a classical metal is π2

3

(
kB
e

)2
. In

general, L is dependent on the kinetic transport parameters and also EF just like the
Seebeck coefficient, which will be shown in this subsection.

Heat flux9 U due to charge carriers can be expressed in a fashion similar to current
density in Eq.1.10, but by tracking energy instead of charge:

U =

∫
BZ

vk(Ek − EF) f∆. (1.24)

7The term thermopower will be used to refer to the magnitude of the Seebeck coefficient |S |.
The term “absolute Seebeck coefficient” is avoided because, in a metrology context, it often refers
to simply S, but not |S |, in the sense that a measured Smeas (“relative” Seebeck coefficient) must be
converted to an “absolute” Seebeck coefficient by subtracting the S of the probe wires.

8When there are two different type of carriers (e.g. electrons and holes), there is an additional
electronic contribution due to bipolar diffusion. In the notation used here, we do not include the
bipolar term in κe. This bipolar term is discussed and derived in sections 6.4 and 6.5, respectively.

9The heat flux definition here is not a unique definition. For example, Ref.[5] uses an alternative
definition and explains the freedom to include other terms like particle flux carrying their chemical
potentials in heat flux (Eq.A.6). All definitions arrive at same descriptions about the physical
phenomena.
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Note that q was replaced with energy. Here Ek − EF was placed instead of Ek ,
because replacing a carrier at the electron chemical potential (which is the Fermi-
level EF) with a carrier with energy above and below EF makes that system warmer
and cooler, respectively; in other words, the indicator or reference of the electron
energy is the electron chemical potential. The perturbation term can be found by
adding together the electric field term Eq.1.9 and the thermal gradient term Eq.1.17,
which gives

f∆ = τq
(
− ∂ f
∂E

)
vk · E − τE − EF

T

(
− ∂ f
∂E

)
vk · ∇T . (1.25)

By substituting f∆ into Eq.1.24, one can obtain

U = TSσE − κ0∇T, (1.26)

where we have used the result for S obtained in the previous section for writing the
coefficient for E as TSσ here10, and κ0 is

κ0 =
1

4π3

∫
BZ
τvkvk

(E − EF)2
T

(
− ∂ f
∂E

)
d3k . (1.27)

Note that both Sσ and κ0 are tensors in general, indicated by the vkvk term.

κ0 is not the conventionally used thermal conductivity; it is a thermal conductivity for
zero field (see footnote 6 for the precise condition of zero field). The conventionally
used thermal conductivity measured in the lab is under zero current conditions. To
find this condition, we rewrite the current density driven by both∇T and E (Eq.1.19)
using S and σ previously derived:

J = −Sσ∇T + σE . (1.28)

It is seen that the zero current condition is equivalent to E = S∇T , which is just
the condition that defines the Seebeck coefficient. By substituting this relation
into Eq.1.26, U |J=0 = −(−TS2σ + κ0)∇T which yields the thermal conductivity by
charge carriers:

κe = κ0 − TS2σ. (1.29)

The Lorenz number follows by using Eq.1.23 with this result:

L =
κ0
σT
− S2. (1.30)

10This relation is not a simple coincidence, but from an identity originating from time-reversal
symmetry. Onsager reciprocity is discussed in Appendix A.
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By writing out the full expression:

L =
(

kB
e

)2
∫

BZ τvkvk

(
E−EF
kBT

)2 (
− ∂ f
∂E

)
d3k∫

BZ τvkvk

(
− ∂ f
∂E

)
d3k

− S2,

L =
(

kB
e

)2

∫

BZ τvkvk

(
E

kBT

)2 (
− ∂ f
∂E

)
d3k∫

BZ τvkvk

(
− ∂ f
∂E

)
d3k

−
©«
∫

BZ τvkvk

(
E

kBT

) (
− ∂ f
∂E

)
d3k∫

BZ τvkvk

(
− ∂ f
∂E

)
d3k

ª®®¬
2 .
(1.31)

It is seen that natural unit for L is
(

kB
e

)2
. Also note the sampling function in the

numerator of the first term, which is plotted in Fig.1.1d. Other than the sampling
function and constants, the expression constitutes the same terms that described
both conductivity and the Seebeck coefficient. This common structure will play a
key role in formulating the semiclassical phenomenology later in section 1.3.

Hall Coefficient
The Hall coefficient is a measured property classically related to the sign and
concentration of charge carriers. For a magnetic B field along the z-axis and an
electric field driving current along the x-axis, an electric field is developed along
the y-axis due to the Lorentz force acting on the carriers. The Hall coefficient RH is
defined from the measurement of this field developed along y:

RH =
Ey

Bz Jx
. (1.32)

This definition also defines the Hall carrier concentration nH =
1

qRH
, which derives

from the Drude model for the Hall effect11.

Although the Hall coefficient will not be a primary means for analyzing transport in
this thesis, it is important to see how the usefulness of the Hall effect is different than
that of conductivity or the Seebeck coefficient. Here the semiclassical expression for
the Hall coefficient will be derived to show that, in addition to the kinetic parameters
τ and v, introduction of an effective mass is necessary to describe the RH.

The simultaneous application of electric and magnetic fields can be taken into
account by

∂k

∂t
=

q
~
(E + v × B). (1.33)

11Hall carrier concentration nH is only equal to the actual carrier concentration n under special
conditions. Therefore nH should be considered as a type of measurement. A Hall factor rH is
conventionally defined to account for the difference: n = nHrH.
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If one attempts to find f∆ by substituting this equation into Eq.1.8 as was done for
electrical conductivity, one would notice that the perturbation due to the magnetic
field becomes zero:

( f∆)B,leading order = τq(v × B) · v
(
− ∂ f
∂E

)
= 0 (1.34)

This result indicates that the next order term must be considered for describing the
response to a magnetic field. From Eq.1.5, the equivalent to Eq.1.8 that is relevant
for E and B fields is found by including the next order term for the B field:

−
(
∂k

∂t
∂ f
∂k

)
E−field

−
(
∂k

∂t
∂ f∆
∂k

)
B−field

=
f∆
τ
. (1.35)

By using ∂k
∂t =

q
~E for the E-field and ∂k

∂t =
q
~ (v × B) in Eq.1.35, the equation for

the perturbation term can be obtained:

qE · v
(
− ∂ f
∂E

)
=

(
1
τ
+ q(v × B) ∂v

~∂k

∂

∂v

)
f∆. (1.36)

Notice that, contained in the magnetic perturbation term is

∂v

~∂k
=

[
m∗−1

b
]

i j , (1.37)

where m∗b is the band effective mass. Subscripts i j indicate that the quantity is a
second rank tensor.

The involvement of the band effective mass in Eq.1.36 is what distinguishes a
measurement involving a magnetic field from others like conductivity, the Seebeck
coefficient, or the Lorenz number. On one hand, the magnetic field allows one to
extractmore information from thematerial – information related to the band structure
that governs the quasiparticle transport. On the other hand, the information extracted
from a magnetic measurement is only relevant for σ, S, or L when there is a good
physical understanding about how quantities like m∗b or RH should be interpreted.
Therefore, for developing a phenomenological framework to tackle some of themore
general cases, measurements under a magnetic field is less useful; it is just one more
measurement and one more unknown at the same time. In the case where a material
of interest turns out to be a conventional band conductor, magnetic measurements
become an extremely useful tool to further advance the understanding of the band
structure underlying transport properties.

For completeness, derivation of the Hall coefficient will be continued. Readers
mostly interested in the development of the semiclassical phenomenology are en-
couraged to move on to the next section.
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To simplify the problem, here it will be assumed that the µb is a scalar quantity
(isotropic case). Then, f∆, the solution to Eq.1.36 is needed, which is obtained12 as

f∆ = qτ
(
− ∂ f
∂E

)
v · E + (µbB · E)µbB + µbB × E

1 + (µbB)2 . (1.38)

Here, µb was defined as
µb =

qτ
m∗b

. (1.39)

It is seen that the sensitivity to the magnetic field is governed by the dimension-
less quantity µbB (containing a sign). The current density under the influence of
general electric and magnetic fields can be obtained by substituting Eq.1.38 into
Eq.1.10. For the Hall coefficient, the magnetic field is only along the z-direction
(Bz) perpendicular to the electric field. In this situation, f∆ in Eq.1.38 simplifies to
an expression with only x and y components:

f Bz

∆
= qτ

(
− ∂ f
∂E

)
1

1 + (µbB)2 v ·
(

1 µbBz

−µbBz 1

)
E, (1.40)

where v and E here only have x and y components. By substituting Eq.1.40 into
Eq.1.10, the current density can be obtained. It is convenient to show the result in
the matrix form of a magnetoconductivity tensor:

σ(Bz) =
(
σxx σxy

σyx σyy

)
=

(
σxx −σyx

σyx σxx

)
, (1.41)

where

σxx =
q2

4π3

∫
BZ

τ v2

3

(
− ∂ f
∂E

)
1 + (µbBz)2

d3k, (1.42)

σyx = −q2Bz

4π3

∫
BZ

τ v2

3

(
− ∂ f
∂E

)
µb

1 + (µbBz)2
d3k . (1.43)

Here, v2
x = vxvy = v2/3 was used since an isotropic case was already assumed. Note

that µb is inside the integral because it is dependent on k; τ and (and in some cases
also µb) are k-dependent.

12Solving is similar to a first order differential equation, where the solution would be of a form
av+b. Instead of a being a scalar constant, it should be a vector that is independent of v. Substitution
shows that b must be zero because all the remaining terms contain v. Therefore f∆ = a · v. Then,
it can be noticed that all the directional degrees of freedom possible in the equation is covered by a
linear combination of B, E, and B × E in a. With three unknown coefficients, the solution can be
found.
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The Hall effect is measured using weak magnetic fields where (µbBz)2 � 1, which
simplifies σxx in Eq.1.42 to just that identical to normal conductivity σ. σyx

simplifies to

σyx = −q3Bz

4π3

∫
BZ
τ2 v2

3m∗b

(
− ∂ f
∂E

)
d3k . (1.44)

The Hall coefficient is equivalent to

RH =
ρyx

Bz
, (1.45)

where ρyx is a component of the magnetoresistivity tensor, for which the magneto-
conductivity tensor must be inverted:

ρyx =
−σyx

σ2 + σ2
yx
. (1.46)

When (σyx/σ)2 � 1 is satisfied, which is usually the case because the condition
is approximately same as the weak field condition ((µbBz)2 � 1), the relation
simplifies to ρyx = −σyx/σ2. Therefore, RH in the weak magnetic field limit finally
becomes

RH =
q
σ

∫
BZ

τ2

m∗b
v2

(
− ∂ f
∂E

)
d3k∫

BZ τv
2
(
− ∂ f
∂E

)
d3k

. (1.47)

It is seen that, RH depends on the sign of q. Also notice that, by assuming a Drude
model where τ/m∗b is k-independent, σ = ne2τ/m∗, and m∗b = m∗, Eq.1.47 reduces
to RH =

1
nq as originally envisioned by the Drude model.

Transport properties with scattering models
In the previous sections, transport properties were derived using general kinematic
parameters such as τ or v placed inside integrals over k or E . To actually calculate
the integrals, the k or E dependencies must be specified. That of velocity v can be
specified by referring to the band structure because it represents the group velocity of
Bloch waves. τ, on the other hand, requires a specific physical model for scattering.
Here, some typical scatteringmodels will be used to find the corresponding transport
property expressions. This exercise will help identifying a generally useful form for
a phenomenological transport function in section 1.3.

In this section, an isotropic free electron dispersion relation E = ~
2k2

2m∗b
will be used

(E is 0 at the band edge), while also allowing for valley degeneracy (multiple bands
that are identical by symmetry). In a semiconductor, the free electron term is the
leading order term for the dispersion relation at the band edge, providing the most
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Table 1.1: Parameters in τ = τ0(T) ·
(

E
kBT

)r
for various scattering mechanisms. The

exponent r is the leading order term for the energy dependency.

Scattering source Scattering parameter, r τ0(T)

Point defects −1
2 ∝ Tr

Acoustic or non-polar optical phonons
(deformation potential) −1

2 ∝ T−1+r

Polar optical or piezoacoustic phonons 1
2 ∝ T−1+r

Ionized impurities 3
2 ∝ Tr

efficient means of describing transport; transport is governed only within an energy
range of a few kBT from the band edge. Extensions to anisotropic cases can be
done by considering different m∗b’s in each direction, although it is not done here for
simplicity.

A common structure found in the expression for τ in various scattering models is
a power dependency on the carrier energy (or, one could understand it as a leading
order dependency on energy). Considering this commonality, the relaxation time
(inverse of scattering rate) can be expressed in a general form such as

τ = τ0(T) ·
(

E
kBT

)r

. (1.48)

Here, τ0 is temperature dependent but energy independent, and a reduced energy
E/kBT scale is used because it becomes a convenient scale for calculating the
transport properties. Table 1.1 summarizes the parameters corresponding to various
scattering mechanisms, including the energy dependency (scattering parameter r)
needed to calculate the integrals for transport properties. For details including the
model description of τ0 in each scattering mechanism given in terms of microscopic
physical parameters, see the following: Refs.[6–10].

Using the general form in Eq.1.48, transport properties can be calculated using
Eqs.1.11, 1.21, and 1.31. Each integral over the Brillouin zone should multiplied
by valley degeneracy NV; i.e. 1

4π2

∫
BZ d3k converts to NV

∫ ∞
0 gb(E)dE where the

density of states of each band is gb(E) = 4π
h3 (2m∗b)3/2E1/2. v2

x can be replaced with
v2/3 (isotropy). Then, by changing variables to reduced energy (ε = E/kBT) and
taking care of the Fermi derivative using integration by parts, conductivity becomes

σ =
8π
3

e2τ0NV

h3m∗b
(2kBTm∗b)

3
2 ·

(
r +

3
2

)
Fr+ 1

2
(η). (1.49)
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Here, the reduced Fermi-level η,

η =
EF

kBT
, (1.50)

and (non-normalized) complete Fermi-Dirac integral,

Fi(η) =
∫ ∞

0

ε i

eε−η + 1
dε, (1.51)

were defined. Mobility parameter µ0 is commonly used, defined as

µ0 =
eτ0
m∗b

. (1.52)

A weighted mobility µw is then defined:

µw = µ0NV

(m∗b
me

) 3
2

, (1.53)

where me is the mass of an electron. Eq.1.49 can then be recast:

σ =
8πe(2mekBT) 3

2

3h3 µw ·
(
r +

3
2

)
Fr+ 1

2
(η). (1.54)

It is seen that the magnitude of conductivity is proportional to weighted mobility
for a given η and T .

An analogous procedure for the Seebeck coefficient yields

S =
(

kB
q

) −η +
(
r + 5

2

)
Fr+ 3

2
(η)(

r + 3
2

)
Fr+ 1

2
(η)

 . (1.55)

It is seen that S is a function of only η, independent of µw.

The Lorenz number is calculated as

L =
(

kB
q

)2

(
r + 7

2

)
Fr+ 5

2
(η)(

r + 3
2

)
Fr+ 1

2
(η)
−

©«
(
r + 5

2

)
Fr+ 3

2
(η)(

r + 3
2

)
Fr+ 1

2
(η)

ª®®¬
2 . (1.56)

It is seen that L is also a function of only η, independent of µw.

The Hall coefficient can be calculated using Eq.1.47:

RH =
3h3

8πq(2mekBT) 3
2

1

NV

(
m∗b
me

) 3
2

(
2r + 3

2

)
F2r+ 1

2
(η)[(

r + 3
2

)
Fr+ 1

2
(η)

]2 , (1.57)
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which shows that RH is sensitive to NV

(
m∗b
me

) 3
2 . When valley degeneracy is not

explicitly considered, NV

(
m∗b
me

) 3
2 is sometimes simply expressed as

(
m∗H
me

) 3
2 , where

m∗H = N2/3
V m∗b is another type of an effective mass13. The Hall factor rH = n/nH =

qnRH can be calculated using the expression for n:

n =
∫

g(E) f dE . (1.58)

Calculation yields

rH =
3
2

(
2r + 3

2

)
F2r+ 1

2
(η)[(

r + 3
2

)
Fr+ 1

2
(η)

]2 . (1.59)

It is seen that rH is also a function of only η.

Drude mobility can be calculated from the definition Eq.1.1:

µd =
2
3

eτ0
m∗b
·

(
r + 3

2

)
Fr+ 1

2
(η)

F1
2
(η) . (1.60)

It is customary in the literature to use the temperature dependency of µd or µH

to distinguish scattering mechanisms. These temperature dependencies and their
pitfalls will be discussed in Ch.4 (section 4.1).

Up to here, the essential parts of the semiclassical band transport theory needed
for developing the semiclassical phenomenological transport formalism has been
reviewed. Formore details related to theBoltzmann transport equation, the following
textbooks can be consulted: Refs.[6, 7, 11, 12].

1.2 Nearest neighbor hopping
One of the simplest hopping models for conduction is nearest neighbor hopping,
which is similar to the atomic diffusion model with atoms diffusing through nearest
neighbor sites but for fermionic quasiparticles (charge carriers) instead of atoms. In
this section, the hoppingmodel given by Cutler andMott [13] is derived. This model
will be used to help notice some general features by comparing to the semiclassical
band transport model in the next section.

13The Hall effective mass m∗H in this context is sometimes interpreted as a density-of-states mass
(m∗DOS) due to its connection to Hall carrier concentration. However, as seen from Eq.1.47, the Hall
coefficient is a weighted measure of τ/m∗ rather than m∗ alone, and thus does not simply reflect only
the density of states. In this thesis, m∗DOS is reserved for the quantity that yields the true density of
states at energy E through the relation g(E) = 4π

h3 (2m∗DOS)3/2E1/2.
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Consider two localized states 1 and 2 of identical energy, both with a spatial density
of N , separated by average distance L. For a characteristic hopping time τ, the
current density from this hopping motion is q L

τ N multiplied by the probability of
the hopping action to happen. For the hopping to occur from state 1 to 2, state 1 must
be occupied (noted f1 using the distribution function) and state 2must be unoccupied
(1− f2), which results in a probability of f1(1− f2). The presence of an electric field
changes these hopping rates. For a charge q hopping along the direction of an Ex

field, potential energy gain due to the hopping is qEx L/2, which gives modulation to
the hopping rate by a factor of exp

(
qExL
2kBT

)
assuming an exponential dependency on

energy for the hopping rate. After subtracting the hoping in the backwards direction
calculated in the same manner, the total current density from the 1 to 2 hopping is

J12 =
qLN
τ

[
f1(1 − f2) exp

(
qEx L
2kBT

)
− f2(1 − f1) exp

(−qEx L
2kBT

)]
. (1.61)

The leading order terms for Ex and dT
dx must be found from this equation to find

conductivity and the Seebeck coefficient. The expansion of f1 and f2 are

f1 = f − dT
dx

df
dT

L
2
+ ...

f2 = f +
dT
dx

df
dT

L
2
+ ... ,

(1.62)

where f is the average distribution between the two states. Then, the 0th order term
with respect to E/T in J12 is found by replacing the exponential terms with 1, giving

J0th

12 = −
qL2N
τ

dT
dx

df
dT
= −qL2N

τ

E − EF
T

(
− ∂ f
∂E

)
dT
dx
, (1.63)

where the equality Eq.1.16 was used. The 1st order term with respect to E/T is then
found by replacing the ex with x:

J1st

12 =
q2L2N
τKBT

Ex f (1 − f ) = q2L2N
τ

(
− ∂ f
∂E

)
Ex, (1.64)

where the equality in Fig.1.1b was used. Eqs.1.63 and 1.64 are the leading order
terms for the driving forces dT

dx and Ex , respectively, which could be added to write
the expression for J12 in the linear response regime:

J12 = q2ND
(
− ∂ f
∂E

)
Ex − qND

E − EF
T

(
− ∂ f
∂E

)
dT
dx
, (1.65)

where D = L2

τ was defined as diffusivity. Next, to take into account states with other
energies, N can be replaced with

∫
g(E). The final result for current density due to
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nearest neighbor hopping is

J = q2
∫

D(E)g(E)
(
− ∂ f
∂E

)
dE · Ex − q

∫
D(E)g(E)E − EF

T

(
− ∂ f
∂E

)
dE · dT

dx
.

(1.66)
Here, conductivity and the Seebeck coefficient is found (compare to Eq.1.28):

σ = q2
∫

D(E)g(E)
(
− ∂ f
∂E

)
dE, (1.67)

and,

S =
kB
q

∫
D(E)g(E)E−EF

kBT

(
− ∂ f
∂E

)
dE∫

D(E)g(E)
(
− ∂ f
∂E

)
dE

. (1.68)

Despite completely different physical meanings in the parameters and mechanistic
description used compared with the band conduction case, obvious similarities are
found when the end results are compared: see Eqs.1.9 and 1.22.

1.3 Semiclassical phenomenology of transport
Transport models described in the previous sections (band transport model in 1.1
and hopping transport model in 1.2) are physical models that describe the micro-
scopic physical processes that underly the macroscopic transport phenomena. By
contrast, phenomenological models do not describe the microscopic physical pro-
cesses, but are more general because they are based on principles independent of the
microscopic process. For example, the equation defining conductivity, J = σE, is
also a phenomenological model. It predicts a quantity σ based on near-equilibrium
thermodynamics, but does not specify how microscopic processes actually consti-
tute σ; it only specifies that J is proportional to E under certain thermodynamic
conditions. Obviously, phenomenological models play a different role than physical
models. Phenomenological models allow one to assess experimental results onmore
general grounds, especially when the microscopic processes are not understood very
well. They also help to compare different physical models. For example, it is much
easier to compare σ of a band conduction model with that of a hopping model,
rather than to compare the descriptions for J . In this section, the objective is to
establish a phenomenological model that is more specific than the thermodynamic
phenomenology, but still general enough to be widely applicable to charge transport
phenomena.

Phenomenological models are built around a common and general feature. The
feature that is common for any case described by linearized transport equations is that
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a local equilibrium is well defined at an arbitrary infinitesimal region of the system.
For electronic charge transport, a common and important feature that is applicable
to a wide variety of experiments is that the charge carrier is a fermion that behaves
according to the Fermi-Dirac distribution function. This feature is equivalent to the
charge carrier being a non-interacting fermion, which is an assumption underlying
band theory andmany other theories for electronic phenomena. Evenwhen electron-
electron interactions are present, they are often described using terms relevant
for non-interacting fermions (e.g. DFT+U theory for effective bands) because
of the difficulty of describing electronic properties with a many-body framework.
Therefore, phenomenology relevant for fermion charge carriers and the Fermi-Dirac
distribution function should be widely applicable. The phenomenology established
in such a manner will be referred to as “semiclassical phenomenology,” where the
fermion nature is considered in addition to the classical (irreversible) thermodynamic
equations (analogous to how semiclassical band transport is termed).

Extracting semiclassical phenomenology from physical models
From the previously derived band and hopping transport models, one can notice that
the common feature related to the Fermi-Dirac distribution function is the presence
of a − ∂ f

∂E term in conductivity (Eqs.1.12 and 1.67), which we referred to as the
sampling function for conductivity (Fig.1.1b). The identity − ∂ f

∂E =
f (1− f )

kBT offers an
easy interpretation of its physical origin: the exclusive fermion nature that needs an
empty state (1 − f ) for a particle in an occupied fermion state ( f ) to be transported.
Similarly, the common feature in the Seebeck coefficient was E−EF

T

(
− ∂ f
∂E

)
(Eqs.1.22

and 1.68), which could be thought of as a modified sampling function (Fig.1.1c).
Physically, this feature is associated with the need to quantify the heat transported
by a carrier (E −EF), as opposed to the need to simply count the number of charges.

Based on these sampling functions that result from the general property of fermion
transport, it is possible to abstract a phenomenological function that governs trans-
port. From the conductivity equation (Eqs.1.12 or 1.67), by grouping all of the
parameters, expect for the sampling function, into σE (E), we obtain

σ =

∫
σE (E)

(
− ∂ f
∂E

)
dE . (1.69)

Through an analogous process for the Seebeck coefficient, we obtain

S =
(

kB
q

) ∫
σE (E)

(
E−EF
kBT

) (
− df

dE

)
dE∫

σE (E)
(
− ∂ f
∂E

)
dE

. (1.70)
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One can notice that σE (E) is self-consistent within each model (band or hopping),
but different in terms of physical meaning. For band transport:

σE (E) = q2τ(E)v2
x(E)g(E), (1.71)

where τ and vx are for Bloch waves. For hopping transport,

σE (E) = q2D(E)g(E), (1.72)

where D is for localized carriers. We name this phenomenological function σE (E)
the “transport function14” because it is a function that determines each of the
transport properties.

The Lorenz number can also be described self-consistently (within a particular
model like band transport). The phenomenological equation for Lorenz number
becomes

L =
(

kB
e

)2

∫
σE (E)

(
E

kBT

)2 (
− df

dE

)
dE∫

σE (E)
(
− ∂ f
∂E

)
dE

−
©«
∫
σE (E)

(
E

kBT

) (
− df

dE

)
dE∫

σE (E)
(
− ∂ f
∂E

)
dE

ª®®¬
2 . (1.73)

It has been seen that, with a phenomenological σE (E), transport properties σ, S,
and L are determined. On the other hand, RH is not determined by σE (E). By
considering Eq.1.47, we find

RH =
q
σ2

∫ (
τ

m∗I

)
σE (E)

(
− ∂ f
∂E

)
dE, (1.74)

where m∗I is the inertial mass from changing the integral to energy space (multiple
bands will result in an inertial effective mass that is smaller than the band effective
mass of each band). One could alternatively write an expression for Hall mobility:

µH = σRH = ± 1
σ

∫
µ(E)σE (E)

(
− ∂ f
∂E

)
dE, (1.75)

where the sign is determined by the sign of q and µ(E) is the mobility of a carrier at
a particular energy. Therefore, Hall measurements are not relevant for determining
σE (E) (but can be useful for extracting µ(E) if σE (E) is already known).

14In the literature [14], this function is sometimes referred to as the “transport distribution
function.” However, what really describes the actual transport distribution is σE (E)

(
− ∂ f∂E

)
rather

than just σE (E). For example, at energies far away from EF, the transport distribution should be zero;
the potential capability to transport if EF were to be shifted, however, can still be finite. Therefore,
“transport function” appears to be a more appropriate term.
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General forms of the phenomenological transport function σE (E)
The main purpose of the phenomenological formalism using σE (E) is to extract
σE (E) from experimentally measured σ, S, and L. A general or ideal functional
form of σE (E) can be useful for this process, and will also help to identify outlying
cases. In many cases, σE (E) scales with energy in a simple power law above a
certain edge. In Eq.1.71, τ, vx , and g(E) all scale with a power of energy above
the band edge for the most typical case described in section 1.1. Thus, σE (E) ∝ E s

could be thought of as the most typical case for a dispersive σE (E). Another case
that represents a number of models when σE (E) is a narrow function that can be
approximated as a Dirac delta function. Both cases will be discussed in this section.

Dispersive Transport Function

As a general form of a dispersive σE (E), it will prove useful to define parameters
such as

σE (E) = σE0 ·
(

E − Et
kBT

) s

(E ≥ Et)

= 0. (E < Et)
(1.76)

Here, Et is a phenomenological transport edge15, s is a transport exponent, and
σE0 is a transport coefficient in the units of conductivity. With this definition, phe-
nomenological equations for the transport properties can be obtained. Conductivity
from Eqs.1.69 and 1.76:

σ = σE0 · sFs−1(η), (1.77)

where Fi was defined in Eq.1.51. Note that the definition of η, first given in Eq.1.50,
is generalized here to explicitly reference the transport edge:

η =
EF − Et

kBT
. (1.78)

Inmost contexts, Et = 0, making no difference in the equations. SeebeckCoefficient
from Eqs.1.70 and 1.76:

S =
(

kB
q

) [
−η + (s + 1) Fs(η)

sFs−1(η)

]
. (1.79)

Finally, Lorenz number from Eqs.1.73 and 1.76:

L =
(

kB
q

)2
[
(s + 2)Fs+1(η)

sFs−1(η) −
( (s + 1)Fs(η)

sFs−1(η)

)2
]
. (1.80)

15For example, in a band conductor, the band edge plays the role of a transport edge. Then one
can set Et = 0 since the free carrier energy is 0 at the band edge
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Figure 1.2: The thermopower-conductivity relation plotted for a number of phe-
nomenological exponents. In the degenerate limit (low |S |) the linear slope of the
log-log plot is −1

s . In the non-degenerate limit (high |S |), all cases have an iden-
tical curve shape. The narrow transport function case is shown together in green
for comparison (for which conductivity is normalized such as σ/σE0), being very
similar to s = 0. Practically, s = 0 is not considered a physically feasible case.

Correspondence between the phenomenological (σE0 , s) and a particular physical
model can be easily found by comparing the equations for σ, S, and L. For
example, the deformation potential scattering model for band transport (section 1.1)
would be observed with a phenomenological exponent s = 1. Ionized impurity
scattering would be observed with s = 3. In both cases, σE0 is proportional
to weighted mobility. Here it is seen that the exponent s is a parameter useful for
distinguishing different transport mechanisms, whereas σE0 is useful for quantifying
how conductive a sample could be for a given η.

Narrow transport function

The narrow transport function regime describes charge transport phenomena that
results from having a transport channel that is narrow in energy such as an impurity
band with almost no dispersion or for polaron states that are essentially centered
around a particular energy level. Because extended states naturally form a dispersive
energy landscape, the regime described with a narrow transport function could be
considered a characteristic regime for transport through localized states.
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The transport function in this regime could be a function with arbitrary shape that
has finite values only around a particular energy level Et. Since the energy scale
relevant for the Fermi-Dirac distribution is kBT , any function that is sufficiently
narrow relative to kBT could be approximated as a Dirac delta function around Et.
That is, when

σE (E) , 0 E − Et < kBT,

σE (E) = 0 Otherwise,
(1.81)

the transport function can be approximated such as

σE (E) = At · δ(E − Et), (1.82)

where δ is a Dirac delta function and At is an energy-independent integrated property
representing

∫
σE dE . By using Eqs.1.69 and 1.70, conductivity and the Seebeck

coefficient become
σ = σE0 · f (Et)[(1 − f (Et)], (1.83)

and
S =

Et − EF
qT

=
kB
q
· ln

(
1 − f (Et)

f (Et)

)
, (1.84)

where q is the (signed) charge quantity of the charge carrier and σE0 = At/kBT is a
coefficient in units of conductivity that determines the magnitude of conductivity.

It is interesting to note that, by setting f (Et) = c (c: state occupancy) in Eqs.1.83
and 1.84, one obtains the Heikes formulae that are commonly referred to in the
oxide literature. If one decides to use “site occupancy” as a parameter, which
we here define as c′, instead of state occupancy c, then spin degeneracy allows
f (Et) = c = c′/2, giving themodifiedHeikes formulae [15, 16]. From the derivation
here, it is seen that the difference between two versions of the formulae are simply
a change in parameterization, and avoidable if one keeps the notation in terms of
state occupancy. In the literature [15, 16], the Heikes formulae are often derived
with the infinite temperature assumption, but mathematically it is equivalent to the
narrow transport function assumption.

By calculating the Lorenz number using Eqs.1.73with the narrow transport function:

L = 0. (1.85)

This result is an interesting prediction of the phenomenology that has not yet been
studied experimentally.
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Using the S − σ relation to determine σE (E)
In the dispersive transport function case, from Eqs.1.77-1.80, it is seen that σE0 and
s can both be determined by the relation of either S−σ or L−σ where both relations
are parameterized by η; S and L are a function of only η and s while σ is a function
of σE0 in addition to η and s. In practice, L is more challenging to determine than
S because: first, L does not change much (only about 60 % at maximum for s = 1)
with η; second, it is difficult to distinguish whether thermal conductivity is changing
with respect to η due to the Wiedemann-Franz law (effect of Lorenz number) or
a variation in lattice thermal conductivity (e.g. doping causing increased phonon
scattering).

The practically more rewarding approach is to thus investigate the S − σ relation.
In general, the S − σ relation does not have an analytical expression, but the de-
generate (η � 1) and non-degenerate (η � −1) limits can be studied to show that
transport mechanisms are best distinguished in the degenerate limit. In the degener-
ate limit, Eqs.1.77 and 1.79 can be simplified by using the Sommerfeld expansion.
Conductivity becomes

σ = σE0η
s (η � 1). (1.86)

The Seebeck coefficient becomes

S =
(

kB
q

)
π2

3
s
η
(η � 1). (1.87)

By combining Eqs.1.86-1.87, the S − σ relation in this limit becomes

S =
(

kB
q

)
π2

3
s
(
σ

σE0

)− 1
s

(η � 1). (1.88)

From this limit, it is seen that the s exponent can be readily found by examining the
linear slope in a log S − logσ plot (Fig.1.2). This type of plot is different than the
traditional Jonker plot (linear S-logσ). On the other hand, in the non-degenerate
limit, conductivity becomes

σ = σE0 sΓ(s) exp(η) (η � −1), (1.89)

where Γ is the gamma function (Γ(n) = (n−1)! for positive integer n). The Seebeck
coefficient becomes

S =
(

kB
q

)
(s + 1 − η) (η � −1). (1.90)
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By combining Eqs.1.89-1.90, the S − σ relation in this limit becomes

S =
(

kB
q

) [
s + 1 − ln

(
σ

σE0 sΓ(s)

)]
(η � −1). (1.91)

It is seen that, regardless of s, the relation is always S/
(

kB
q

)
= lnσ+constant, making

it hard to distinguish s in this limit (Fig.1.2). The Jonker plot (linear S-logσ) yields
a linear relation in this limit, which is a good way to visually demonstrate that the
sample is in the non-degenerate limit and determine σE0 if s is already known.

In the narrow transport function case, by combining Eqs.1.83 and 1.84 to eliminate
f , the S − σ relation can be obtained:

σ

σE0

·
[
1 + exp

(
S

kB/q

)]
·
[
1 + exp

( −S
kB/q

)]
= 1. (1.92)

This equation determines the log |S | − logσ curve shape, which is different than
the dispersive cases (other than the non-physical s = 0). In Ch.2, two experimental
cases, one showing s = 1 and the other showing narrow transport, will be contrasted.

Overall, for the purpose of phenomenologically characterizing the transport mecha-
nism, it is best to have low thermopower (|S | < 200 µV/K) samples and study them
on a log S − logσ plot.
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C h a p t e r 2

POLARON VS. BAND CONDUCTION: CeO2 AND SrTiO3

In certain metal oxides where conductivity is thermally activated and has a magni-
tude typically much lower than doped semiconductors, whether charge is transported
through the hopping of localized small polarons1 or the propagation of Bloch waves
has been an elusive subject since the earliest studies [1]. Nowadays it is still not
uncommon to find a lack of wide consensus on the electrical charge transport mech-
anism in broadly studied materials such as oxide perovskites. For example, the
thermally activated electrical conduction observed in some SrCoO3-based deriva-
tives is not understood very well despite of much interest on those materials for
their electrical conductivity in the air electrodes of electrochemical cells. In Nb-
substituted polycrystals, the activation energy shows an apperent linear dependency
on oxygen deficiency that extrapolates to zero [2], which is unexpected for polaron
conduction. Impedance spectroscopy seems to preclude grain boundary effects,
whereas single crystal measurements on the parent compound [3] suggest that the
bulk conductivity should be band conduction. Relating the possible shift in the
Fermi-level [4] to the activation energy could offer a good explanation, but ad-
ditional measurements such as the Seebeck coefficient would be required to test
different transport models. With materials being newly developed or discovered
everyday, similar examples of materials that are technologically relevant, but are
not yet well-understood fundamentally, seem to be increasing in number as well.
A good case study demonstrating how transport analysis could be used to distin-
guish transport mechanisms would be helpful for motivating experimental effort
on fundamental transport properties and for eventually facilitating the mechanistic
understanding on modern materials.

The biggest reason why the conduction mechanism is not straightforwardly deter-
mined frombasic conductivitymeasurements is because the temperature dependence
σ(T), by itself, does not provide an unambiguous signature. Even though polaron
hopping [5–7] and band conduction [8] are completely different mechanisms in the
physical description, they could both look similar in their exponential thermal acti-
vation behavior. In a non-degenerate band conductor where the Fermi-level is more

1“Polarons” are to be understood as small polarons unless noted otherwise.
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than a few kBT away from the band edge, exponential thermal activation behavior
would be observed due to

σ = σE0 · sFs−1(η) → σE0 · exp η (η � −1), (2.1)

using the phenomenological description of conductivity (Eq.1.77 in Ch.1). This
exponential dependency, exp η = exp

(
EF−Et
kBT

)
, is often understood as activation in

the carrier concentration in Drude model terminology (see process 1O in Fig.2.1).
On the other hand, in small polaron conduction, the mobility of charge carriers are
modeled as a thermally activated process such as µ ∝ 1

T exp
(
− Ea

kBT

)
, where Ea is

an activation energy for polaron hopping. In the phenomenological description,
activation in mobility corresponds to

σE0 ∝
1
T

exp
(
− Ea

kBT

)
, (2.2)

which would, most of the times, combine with the activation effect of Eq.2.1 when
measuring σ(T), as illustrated in Fig.2.1 (process 2O in addition to 1O). Even in the
more general case when the transport function is not exactly in a form of a power
law [9] as was assumed in Eq.2.1, or when the mobility is described with a different
type of thermal activation (e.g. exp

[(
− Ea

kBT

)γ]
which appears in both variable range

hopping or percolation models [5]), the ambiguity between the EF − Et < 0 effect
and the thermally activated mobility effect remains to be a problem in interpreting
σ(T).
It should be noted that extrinsic effects like grain boundary resistance [10] could
also give rise to a thermally activated σ(T) (see Ch.4). Although it is desired
to avoid such complications from the perspective of understanding the intrinsic
charge transport mechanism of the material, grain boundary effects more than often
dominate the behavior of σ(T). This tendency is partly inevitable because our
interest is in non-metals where grain boundary effects cannot be screened very well
by charges [11]. Such extrinsic effects could be ruled out if measurements on single
crystals are available.

Due to such a variety of causes that couldmake conductivity appear to be a thermally
activated property, attribution to a particular cause could be based on support from
circumstantial observations. For example, signatures in optical measurements are
able to be associated with the presence of polarons [6, 12–14]. However, the mere
presence of polarons, or their contribution to optical conductivity, does not warrant
that they significantly contribute to the direct current (DC) charge transport behavior.
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Figure 2.1: Schematic illustration of two processes that result in thermally activated
conduction. Process 1O is due to the Fermi-level being below the transport edge,
whereas process 2O is due to the transport function itself being a thermally activated
process.

Therefore, it is difficult to pinpoint a mechanism when the essential data – stationary
transport data – is limited to only DC conductivity.

Seebeck coefficient has been used in some studies to complement the analysis on
conductivity. In one of the rare cases where narrow band conduction has been
shown unambiguously, Tuller and Nowick [15] investigate both conductivity and
the Seebeck coefficient of ceria; particularly, their dependencies on temperature and
carrier concentration is compared with the Heikes model. In general, the Seebeck
coefficient is a very useful addition in understanding transport because it reflects
the same transport function σE(E) as conductivity, but with a different weighting at
each energy of the carrier (recall from Ch.1 that the same σE (E) described both S

and σ and the difference was mainly the sampling functions shown in Fig.1.1).

In this chapter, it will be shown that the thermopower-conductivity |S | − σ relation
could be examined to determine the transport function and characterize the transport
mechanism in a more straightforward manner compared with studying S and σ

separately. SrTiO3 and CeO2 are used as examples to show that these materials show
charge transport behavior consistent with band and polaron conduction, respectively
[16].
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Figure 2.2: Analysis of the log |S | − logσ relation in single crystal n-type SrTiO3
doped with either La (circles) or Nb (squares). At (a) 450 K, data clearly follow
the s = 1 relation rather than the Heikes relation, indicating band transport. At
(b) 1050 K, the thermopower of the samples are too large to distinguish between
different mechanisms. Data are from Ref.[17].

2.1 Band conduction in SrTiO3
Strontium titanate SrTiO3 is one of the most widely studied perovskites for its elec-
tronic properties [19–21]. SrTiO3 has been widely recognized as a band conductor
in the literature [17, 18, 22–26], although some reports on the polycrystalline form
cite hopping conduction [27–30]. Precisely how band conduction should be justified
and what models should be used to quantitatively analyze transport measurements
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Figure 2.3: Low temperature (120 K) analysis of the log |S | − logσ relation in single
crystal n-type SrTiO3 doped with La. Conductivity of the open circle data point
was interpolated from adjacent compositions. Data are from Ref.[18].

are topics with not much consensus; found in the literature are mixed assessments
on the scattering mechanisms including ionized impurity scattering [18, 22], defor-
mation potential scattering [17], and polar optical phonon scattering [17]. Here, we
show through a Seebeck-conductivity analysis that doped n-type SrTiO3, at 120 K
and above, clearly follows the model curve for band conduction as predicted by
deformation potential scattering.

The experimental log |S | − logσ relation in n-type doped SrTiO3 is seen to follow
the s = 1 curve (Fig.2.2 and 2.3), which corresponds to the typical relation of band
conduction with deformation potential scattering (acoustic or non-polar optical
phonons). On the other hand, the curve predicted for a narrow transport function,
which includes the case of small polaron hopping, shows a steeper decrease in
thermopower at high doping levels. This analysis allows us to unambiguously
conclude that the energy dependency of the transport function is σE ∝ E above the
transport edge.

At this point the transport function is phenomenologically determined to be s = 1,
but not particularly associated with a physical model. This phenomenology already
allows one to reject the claim of narrow-energy polaron mediated transport (see
section 1.3) in favor of band transport. To find a physical model consistent with
the phenomenology, the energy and temperature dependencies of the function σE
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should be further investigated.

s = 1 is consistent with the energy dependency of deformation potential scattering.
It is worth noting why this correspondence is still true in SrTiO3 despite of the non-
spherical complex Fermi-surface. For deformation potential scattering, the energy
dependency of scattering originates from the dependency on the density of states
g(E):

τ(E) ∝ 1
g(E), (2.3)

Therefore, in the transport function, the energy dependencies of τ(E) and g(E)
cancel each other and the energy dependency of σE (E) is determined by the square
of group velocity vx of Bloch waves (for transport in the a particular direciton x):

σE (E) = e2 〈
v2

x(E)
〉

E τ(E)g(E) ∝
〈
v2

x(E)
〉

E . (2.4)

Here, the bracket 〈〉E indicats an average at energy E . To understand the relevant
v2(E) relation for the SrTiO3 Fermi-surface which has a three-fold symmetry from
the cubic crystal system, one could conceptually decompose the Fermi-surface
into three interpenetrating prolate ellipsoids that are orthogonal to each other. In
ellipsoids,

〈
v2

x(E)
〉

E ∝ E , yielding the s = 1 relation. In general, as long as the
Fermi-surface can be described well-enough with an effective inertial mass, the
transport function for deformation potential scattering will be well described with
s = 1.

The identification of the s = 1 relation also indicates that polar-optical phonon
scattering, which has been suggested in Ref.[17], is not the dominating transport
mechanism in SrTiO3. From an argument analogous to that for deformation poten-
tial scattering, polar-optical phonon scattering can be shown to yield a s = 2 relation
[31], which is discrepant than the experimental observation shown in Fig.2.2. In
Ref.[17], analysis on the scattering mechanism was done by fitting the scattering
parameter to reproduce the thermopower-carrier concentration relation. However,
unlike conductivity or thermopower which could be effectively characterized by
a single effective mass in SrTiO3, for carrier concentration the actual dispersion
matters since it takes into account all states regardless of its contribution to trans-
port. In other words, the effective mass for density of states is not energy- and
temperature-independent. This complication illustrates another reason why it is
more straightforward to investigate the thermopower-conductivity relation when
studying the transport mechanism. Carrier concentration is more useful for un-
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Figure 2.4: The temperature dependent relaxation time of the light carriers in
n-type single crystal SrTiO3 extracted from thermopower and conductivity using
Eq.2.5. A dashed line of ∝ T−2 dependency is drawn for comparison. High and low
temperature data are from Ref.[17] and Ref.[18], respectively. The lattice constant
was fixed at a = 3.905 Å [32] for the calculation.

derstanding the structure of the Fermi-surface rather than for understanding the
transport mechanism due to their dependency on density of states.

Ionized impurity scattering, which has been suggested as the dominant mechanism
at low temperatures [18, 22], is also excluded at temperatures above 120 K since it
would result in s = 3.

It is seen from Fig.2.2b that, at 1050 K, the thermopower of the samples are too
high to be able to distinguish between different scattering mechanisms. However,
since no obvious signs of a crossover in the transport mechanism is observed with
increasing temperature, it is most likely that the transport mechanism remains con-
sistent throughout the temperature range. To illustrate this point more clearly, τ(T)
is examined by assuming s = 1. To quantify τ, a more specific model of the
Fermi-surface is needed, which can be done in a simplified way by decomposing
the SrTiO3 Fermi-surface into three prolate ellipsoids. Each ellipsoid is then char-
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acterized by one light effective mass for the two short principal axes and another
heavy effective mass for the one long principal axis. The big contrast between the
light and heavy effective masses makes only the light one important for transport.
The identical mass determines the transport in the other two prolate ellipsoids due
to the three-fold cubic symmetry. As a result, a single effective mass largely deter-
mines the isotropic transport in the SrTiO3 conduction band, even when the actual
dispersion is highly non-spherical. In this limit where each prolate ellipsoid of the
Fermi-surface is characterized by a single effective mass (i.e. an ellipsoid becomes
a cylinder), the conductivity can be described as (see Section 2.4 of the chapter)

σ =
8πe2kBT

ah2 τlc(T) · ln(1 + exp η), (2.5)

where a is the lattice constant and τlc is the relaxation time of the light carriers
(which is independent of energy due to the two-dimensional nature of the density
of states of the light carriers). The extracted relaxation time using Eq.2.5 is shown
in Fig.2.4. It is seen that the relaxation time largely follows an identical trend over
the entire temperature range, suggesting that the form of the transport function is
unchanged at high temperatures.

The next question is whether τ ∝ T−2 is consistent with deformation potential
scattering. At first glance, it may seem not because τ ∝ T−1 for deformation
potential scattering from a typical 3D Fermi-surface, as summarized in Table 1.1.
However, when the Fermi surface is elongated like a cylinder, it has been pointed
out [33] that a distinct regime with τ ∝ T−2 emerges when the phonon wave vectors
responsible for deformation potential scattering are thermally saturated in the Fermi
surface short axis while still under-saturated in the long-axis. This behavior has
been observed in Bi at low temperature (noted as ρ ∝ T2, where ρ is resistivity)
[33, 34], but in SrTiO3 it is expected to be observed at a higher temperature because
of the much larger Fermi surface. The lower bound of this temperature range can
be estimated by finding at which temperature the relevant phonon waves exceed the
diameter of the Fermi surface cylinder (TD). The highest doping sample will have
the highest TD: using the S ≈ 40 µV/K sample at 120 K (Fig.2.3), TD ≈ 180 K
(speed of sound of vs = 7900 m/s in the [100] direction and m∗l = 1.1me assumed
for this estimation). Therefore, this explanation is consistent with the observation
of τ ∝ T−2 in Fig.2.4.

Consideration of the upper temperature bound of the τ ∝ T−2 suggests that optical
deformation potential could be involved, in addition to the acoustic deformation
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potential. The Fermi surface of n-type SrTiO3 is elongated along the entire Brillouin
zone, making the upper temperature bound simply limited to the Debye temperature
for the contribution from acoustic phonons. Using vs = 7900 m/s, the Debye
temperature is estimated as 485 K, but the τ ∝ T−2 seems to continue above this
temperature in Fig.2.4. The dispersive optical branches in SrTiO3 could contribute
in a similar way to acoustic phonons. The energy dependencies of acoustic and long
range optical phonons (i.e. non-polar optical phonons) are the same [31].

In the literature, the τ ∝ T−2 (or ρ ∝ T2) dependency has mostly been discussed
in the context of Fermi liquid behavior and electron-electron interactions [35].
However, it is not clear whether electron-electron scattering should dominate over
deformation potential scattering at temperatures as high as 1000 K . Furthermore,
whether electron-electron scattering should closely follow s = 1 is also unclear.
Overall, deformation potential scattering seems to provide a better explanation for
the charge transport in n-type SrTiO3.

Most transition metal oxide perovskites have a similar orbital and bonding con-
figuration, and thus have similar features in the Fermi surface (cylinder-like and
elongated). A number of these materials have been highlighted for its T2 resistivity
behavior at temperatures not too low: PrNiO3 [36], KTaO3 [37], SrNbO3 [38], and
SrMoO3 [39]. These examples with similar behavior further support the idea that
τ ∝ T−2 is related to the Fermi surface anisotropy rather rather than electron-electron
scattering.

Overall, the observed s = 1 relation in single crystals concludes the transport mech-
anism in n-type SrTiO3 to be band conduction as opposed to polaron hopping.
Deformation potential scattering is found to be consistent with the energy and tem-
perature dependency of the phenomenological transport function. The thermally
activated conduction behavior observed in some polycrystalline samples should
therefore be attributed to grain boundary effects rather than an intrinsic conduction
mechanism of SrTiO3. The mathematically identical S − σ relation between band
transport and hopping at low doping levels illustrates how any hopping model could
appear to apparently explain the transport when only low doping samples are studied.
Although the temperature dependency of the transport function, which would in-
crease with temperature in hopping models, would still allow to show disagreement
with experiments, interpretation of the temperature dependence could be ambiguous
if σ(T) is analyzed instead of properly extracting the transport function. Finally, it
should be noted that features of band transport do indicate it as the dominant trans-
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Figure 2.5: Analysis of the log |S | − logσ relation in single crystal n-type CeO2-x ,
reduced to different compositions by CO/CO2 atmosphere control. The data follow
the Heikes relation rather than s = 1, indicating that a narrow transport function is
governing the transport in this material (such as small polaron conduction). Data
are from Ref.[15]. To find the thermopower corresponding to each conductivity
measurement, the Seebeck coefficient vs. composition data reported in the same
reference was fitted to find an empirical relation, which was then applied to the
conductivity vs. composition data.

port mechanism in doped n-type SrTiO3, but does not preclude polaron conduction
entirely for other regimes. In pure and stoichiometric SrTiO3 where the extrinsic or
self-doping level is extremely low, the conductivity due to band conduction could be
low enough to make polaron hopping conduction possibly the dominant transport
mechanism [40, 41].

2.2 Small polaron conduction in CeO2
Ceria is amaterial widely used for its promising oxygen redox properties [42, 43]; for
instance, in electrochemical cells, the electro-oxidation of hydrogen gas is effective
with ceria, owing to its electrical conductivity that increases the reaction zone at
which the electrochemical reaction can happen [44]. The mechansim by which
charge is transported has been described as small polaron conduction [15]. Here,
it is shown that the identical conclusion can be reached thorugh a simpler route of
analyzing the S−σ relation at a given temperature. The complicated phase diagram
of CeO2-x , which limits the temperature and off-stoichiometry range in which the
material is a single fluorite phase, makes the simple S − σ analysis more meritable.
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Figure 2.6: Temperature dependency of the Seebeck coefficient in single crystal
CeO2-x . The data set is a compilation from two studies as reported in Ref.[15].
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temperature.

The log |S | − logσ relation observed in single crystal CeO2-x at 1273 K follows that
predicted by a narrow transport function, which is significantly different than what
is predicted by band transport (Fig.2.5). A narrow transprot function indicates that
transport only occurs at or near a particular energy level (the transport edge) but
not at energies above or below more than ≈ kBT . Such a feature is characteristic of
polarons as opposed to band carriers with an energy dispersion.

Note that information about polaron site occupancy (c′, see notes in section 1.3), or
even composition, is not explicitly required for the analysis in Fig.2.5. This analysis
is more straightforward than analyzing S(c′) or σ(c′) because of the ambiguity
of how c′ corresponds to a particular composition. As long as it is known how
a particular S corresponds to a particular σ, which is a matter of experimental
control rather than an issue of making assumptions about polaronic states and defect
concentrations, the S − σ relation can be examined. This advantage of analyzing
S−σ is analogous to not requiring information about the carrier concentration when
studying band conductors.

The temperature dependence of the Seebeck coefficient could be used to support the
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conclusion of a narrow transport function. When the number of charge carriers is
extrinsically fixed in a material (e.g. a fixed defect concentration while having no
bipolar exciations), thermopower becomes temperature independent for a desnity
of states that is a narrow peak function around a particular energy level. This
independency results from the Fermi-level self-adjusting with temperature in a way
that gives a constant reduced Fermi-level. Suppose that the number of electrons
provided by defects or dopants is fixed at n0. Then, the Fermi-level would be
determined by

n0 =

∫
g(E) f

(
E − EF

kBT

)
dE, (2.6)

where f is the Fermi-Dirac distribution function. When the density of states is a
narrow function around Et, g(E) ≈ N · δ(Et). As a result,

n0 ≈ N · f
(

Et − EF
kBT

)
= N · f (−η). (2.7)

Therefore, when c = n0/N is fixed with respect to temperature, η is also fixed (i.e.
EF shifts in a way that keeps η constant). Recalling that the Seebeck coefficient
is a function of only η for a given system, a temperature-independent η makes the
Seebeck coefficient also temperature-independent.

The Seebeck coefficient of CeO2-x is indeed observed to be insensitive to temperature
for a fixed oxygen deficiency x, as shown in Fig.2.6. In this measurement, the
composition of CeO2-x was fixed by equilibrating with a predetermined reducing
atmosphere and then quenching to lower temperatures. Since the electrons are
provided by the oxygen vacancies in CeO2-x , fixing the composition is equivalent
to fixing n0 or c. The observation that S and η appears to be fixed with respect to
temperature under these measurement conditions thus supports the conclusion from
the log |S | − logσ that the transport is described with a narrow transport function.

2.3 Notes on assumptions related to modeling oxide materials
On the use of a homogeneous transport function
Decomposing conductivity in energy space such as σ =

∫
σE (E)−∂ f

∂E dE is a pro-
cedure that relies on the assumption that the material system can be described with
a single homogeneous transport function [10]. This assumption is conventionally
discussed in terms of phase or compositional homogeneity, but it should be noted
that there could be subtle but significant differences between the transport function
homogeneity and chemical homogeneity. For example, a phase-pure and com-
positionally homogeneous polycrystalline sample could be considered chemically
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homogeneous if the impact of grain boundaries on compositional variation is neg-
ligible. However, even for a chemically ideal grain boundary, the grain boundary
electronic structure is always different than the grain, inducing some charge trans-
fer (of varying degrees). Depending on how significant the charge transfer is and
how well the transfered charges are screened, the consequential electronic structure
change in the grain (e.g. band bending) could be significant enough to result in an
added resistance larger than that of the grain boundary itself. In this case, the trans-
port function would be inhomogeneous, requiring to integrate the transport function
separately near the grain boundary (which effectively results in a multi-phase prob-
lem; see Ch.4 showing a case where the use of an effective homogeneous function is
not a sufficient workaround), despite of chemical homogeneity. Now, suppose that
the polycrystalline material was modified to have a more conductive composition
near the grain boundary such that the grain boundaries do not provide added resis-
tance anymore (e.g. n-type oxides synthesized under reducing conditions [45–47]).
Then, the material could possibly be described well enough with a homogeneous
transport function because of the grain boundary only being a minuscule part of the
entire material, but chemically the material has become inhomogeneous.

Therefore, it is critical to consider whether the material being studied can be de-
scribed effectively with a homogeneous transport function. When single crystal
samples are not available and the impact of grain boundaries is unknown, this
question about the homogeneous assumption could limit the conclusiveness of a
log |S | − logσ analysis. This issue is of more concern in oxides where the re-
dox kinetics, combined with ineffective screening, make the sample prone to the
development of space charge regions near the grain boundary.

On the rigid transport function assumption
Inferring the form of the transport function from a log |S | − logσ plot requires
multiple samples with different Fermi-levels. In oxides, EF can be controlled
either by extrinsic doping or by oxygen off-stoichiometry control. Whether such
processeswill keep the transport function unchanged could be a challenging question
to answer. Largely two different cases should be considered when rethinking the
starting assumption of a “rigid” transport function (the term “rigid” originates from
the “rigid band assumption” in electronic structure studies).

The first concern is whether the functional form of the transport function is changing
as the sample is tuned in order to change EF . Since a change in the functional form
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is indicative of a change or crossover in the dominant transport mechanism, it is
expected to exhibit other accompanying changes that signify the crossover. For
example, crossovers in the temperature dependency of mobility, relaxation time, or
σE0 would indicate possible crossovers in the transport mechanism.

Another concern is the transport coefficient σE0 being systematically correlated to
changes in the EF . A common example would be a dopant – intended to only
change the EF but not the band itself – rather acting as an alloying element to
change the band effective mass, such as the case of Fe-substituted SrTiO3 [23].
This type of breakdown of the rigid transport function is harder to notice because
of its continuous and systematic dependence of σE0 on the chemical substitution;
a system with a transport function of s = 1 could appear to have a significantly
different curve shape in the log |S | − logσ plot due to a continuously changing σE0 .
Measurement of the Hall mobility could help notice such changes, but only if Hall
mobility is converted to an η-independent transport parameter (e.g. µ0 or σE0); Hall
mobility itself is intrinsically η-dependent in the heavily doped regime even for a
rigid transport function. Comparing the effect of multiple types of dopants (e.g.
comparing Nb and La dopants in SrTiO3) is a useful way to confirm the validity of
a rigid transport function assumption. Investigation of the non-degenerate limit, in
which Hall mobility is expected to be constant with respect to EF for a rigid transport
function, is an alternative way to test the rigidity assumption.

2.4 Appendix: Physical transport model for n-type SrTiO3
The Fermi-surface of n-type SrTiO3 originates from three interpenetrating prolate
ellipsoids along each principal axis that are symmetrically identical. The dispersion
relation of a prolate ellipsoid aligned along the z-axis is

E =
~2(k2

x + k2
y)

2m∗lc
+
~2k2

z

2m∗hc
, (2.8)

where ki is the Bloch wave number along the i-direction. Due to the order-of-
magnitude difference between m∗lc and m∗hc in SrTiO3, transport is dominated by the
light carriers with an effective mass of m∗lc. Therefore, in terms of transport, the
second term in Eq.2.8 becomes non-significant, making the cylindrical geometry a
good model Fermi-surface.

Conductivity along the x-direction in a cylindrical Fermi-surface aligned with z can
be calculated by using the solution of the Boltzmann transport equation (Eq.1.12):

σxx = e2
∫

v2
x(E)τ(E)g(E)

(−∂ f
∂E

)
dE . (2.9)
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By taking advantage of the rotational symmetry in the x − y plane of a cylinder, v2
x

can be replaced with v2/2 = E/m∗lc (equipartition). g(E) can be derived from that
of a 2D k-space (m∗/π~2) by multiplying it with the number of k-points along the
z-axis (1/a where a is the lattice parameter in real space):

gcylinder =
m∗lc

aπ~2 . (2.10)

The conductivity of a cylindrical Fermi-surface becomes

σ
cylinder
xx =

e2

aπ~2

∫
Eτ(E)

(−∂ f
∂E

)
dE . (2.11)

In SrTiO3, two cylinders (aligned along z- and y−axes) contribute to conduction in
the x-direction such thatσx = 2σcylinder

x , which is also the isotropic conductivity. For
τ(E), it is known from the phenomenological identification of s = 1 that τ should
be energy-independent. This conclusion is consistent with deformation potential
scattering because the density-of-states, which determines the energy dependency
of τ for deformation potential scattering (Eq.2.3), is energy-independent (Eq.2.10).
Taking into account these understandings, the conductivity in SrTiO3 due to light
carriers becomes:

σ
SrTiO3
lc =

2e2τlc

aπ~2

∫
E

(−∂ f
∂E

)
dE

=
2e2kBTτlc

aπ~2 F0(η).
(2.12)

For a full derivation, one could integrate in k-space to obtain the identical result.
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C h a p t e r 3

PHENOMENOLOGY IN CONDUCTING POLYMERS

In the previous chapter (Ch.2), the phenomenological characterization of transport
eventually led to the identification of physical models that are consistent with the
phenomenology. However, it may not always be the case that there is a relevant
physical model for the material system. It might be even unrecognized in the litera-
ture that existing physical models fail to explain the reported phenomenology. It will
be seen in this chapter that conducting polymers exemplify such a case [1]. Here,
the phenomenological characterization method using the Seebeck-conductivity re-
lation will help to clearly manifest the failure of models currently employed in the
literature. In the absence of a proper physical model, the phenomenological model
will be useful for its predictive power, which will be applied to the quality factor
analysis for thermoelectrics in Ch.6.

3.1 Failure of Mott’s models for conducting polymers
The unique merit of conducting polymers as “plastic semiconductors” has spurred
much motivation for implementing these flexible materials into electronic applica-
tions such as transistors [2], photovoltaics [3], and thermoelectrics [4]. The field
has seen exciting progress such as mobilities exceeding that of amorphous silicon
[5, 6], solar cells with ≈ 10% conversion efficiency [7, 8], and thermoelectric
figure-or-merit zT > 0.1 [9, 10].

The understanding for charge transport in conducting polymers, on the other hand,
has not changed much fundamentally since some of the earliest ideas despite in-
tensive research on the topic. A mechanistic understanding for conduction was
naturally one of the earliest interests following the first development of doped
polyacetylene [11] that exhibited an increase in conductivity by seven orders of
magnitude after doping. For a charge in an isolated 1D chain (or in the limit of
weak interchain coupling), localization by the formation of solitons or polarons
has been highlighted in many studies [12]. For high macroscopic conductivity,
preventing this 1D localization through strong interchain coupling has been consid-
ered a crucial element [13]. Structurally coherent domains, in which interchain or
intermolecular coupling is strong, were thus expected to have charges delocalized
and contribute to some metallic signatures [14]. In amorphous regions where such
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interchain coupling is weak, charge transport has been understood with hopping
models (based on Mott’s variable range hopping model) describing the interchain
hopping of localized charges [15]. The consistency between experiments and the
variable range hopping model has been emphasized largely around one central fea-
ture: that the measured temperature dependency of conductivity is approximately

σ(T) ∝ exp
[
−

(
W

kBT

)γ=1/2]
, with γ = 1

2 considered as a result of hopping in poly-

mers being different in dimensionality than silicon or germanium (for which Mott’s
model was originally devised [16]). In light of the variable range hopping-type σ(T)
being observed in conductivity, measurements on the Seebeck coefficients have also
been typically interpreted with the variable range hopping model [14]. Further
scrutiny into the model-experiment consistency has been very limited, with many
studies analyzing conductivity or thermopower only separately.

Only recently has the charge transport phenomenology been revisited to unveil
previously unnoticed features. Glaudell et al. have showed that a large number of
conducting polymers exhibit a strikingly similar S − σ relation [17]. This universal
relation was not successfully explained with any of the existing transport models
nowadays used for conducting polymers. A particularly interesting part of the
analysis was the failure of Mott’s transport models (both the variable range hopping
model and mobility edge model). The astonishing aspect of the failure of Mott’s
models is not the failure itself, but the fact that the inability of the models has
not been properly recognized for such a long time. Highlighted from such long
ignorance is once again the ambiguity in interpreting σ(T) as a signature for a
particular transport mechanism, as was discussed previously in Ch.2.

The polythiophene data reported by Glaudell et al. are plotted in Fig.3.1, showing
disagreement with Mott’s models. The model fittings labeled “ME-based fitting”
and “VRH” are model estimations based onMott’s mobility edge and variable range
hopping models, respectively, given in the same reference; models were allowed to
free-fit the data with a relaxed restriction on parameters, but nevertheless could not
describe the experimental data. As an alternate way of testing the hopping picture,
the S − σ relation from a narrow transport function is also compared with data in
Fig.3.1, but shows disagreement. In an earlier chapter in section 1.3, it has been
discussed that a narrow transport function is associated with hopping. In fact, even
for variable range hopping models, if model equations for transport are found to use
the transport energy concept [16, 18, 19], the model is mathematically equivalent
to a narrow transport function case.
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Figure 3.1: The thermopower-conductivity relation found from F4TCNQ- and FTS-
doped polythiophenes at room temperature. Data are from Ref.[17]. The gray
dashed line is a fitting based on the mobility edge model as presented in the same
reference. The gray dotted line is an evaluation of the variable range hopping
model as presented in the same reference. The black dashed-dotted line is the
relation for a narrow transport function. The black solid line is the relation with
a phenomenological exponent s = 3, showing the best fit to the data. Chemical
abbreviations are listed in Table.3.1.

The best fit to the data in Fig.3.1 is found to rather be a dispersive phenomenological
transport function (Eq.1.76) with an exponent s = 3. Hopping models do not offer
an explanation for such a dispersive function.

3.2 Phenomenological characterization of conducting polymers
Not having any relevant physical model in hand, one should resort to phenomenol-
ogy. A phenomenological model is established in this section, which will be used
as a basis for discussing physical origins.

Transport function from temperature-dependency analysis
For gaining insight from temperature dependency, it has been shown in Ch.2 that
analyzing σ(T)-S(T) data pairs (i.e. S(T) and σ(T) from the identical sample) is
much more useful than analyzing σ(T) alone. Such experimental data are rare in the
conducting polymer literature, but one study by Park reports σ(T)-S(T) data pairs
measured from polyacetylene [21]. In this subsection, we use polyacetylene data to
establish the phenomenological model.

First interest is in the exponent s; by testing the s = 3 found from polythiophenes
(Fig.3.1) on a literature compilation of room temperature polyacetylene data, we
find that s = 3 also describes polyacetylene reasonably well (Fig.3.2a).
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Figure 3.2: Phenomenological characterization of charge transport in polyacety-
lene. (a) Literature compilation of polyacetylene thermopower-conductivity data,
as reported in Ref.[20]. The s = 3 transport exponent identified from polythio-
phenes (Fig.3.1) appears to also approximately fit the overall trend of polyacetylene.
(b) Analysis of the temperature dependency. Using thermopower-conductivity data
from three samples reported in Ref.[21], σE0 was extracted using the s = 3 relation
and plotted (black data points; left axis). The activation energy (W 1

2
≈ 1 eV; Eq.3.1)

appears identical in all three samples despite vastly different doping levels (the slope
is identical in the three black fits). By contrast, a simple variable range hopping
analysis (gray data points; right axis) shows activation energies dependent on the
doping level.
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Then, using s = 3, the phenomenological coefficient σE0 (Eq.1.76) is extracted from
the temperature dependent data reported in Ref.[21]. It is seen in Fig.3.2b that the
coefficient is well described with the following form:

σE0(T) = σE00 exp
−

(
W 1

2

kBT

)1/2 . (3.1)

Here σE00 is simply an energy and temperature-independent coefficient1. Recall that
σE0 is expected to be independent of EF for a rigid transport function (see discussion
in section 2.3). It is found from the identical slopes in Fig.3.2b (which indicate W 1

2
)

that this rigidity is observed within each polyacetylene sample. To ones surprise,
W 1

2
is identical even when one of the three samples has a very different σE00 value

(i.e. not all three samples collapse onto a single line in Fig.3.2b, which means that
the s = 3 curve corresponding to each sample in a log S − logσ plot will be at a
different horizontal position). Said differently, even when the transport function is
not entirely rigid with respect to repeated synthesis (even when there are some “bad”
samples), the samples have an identical W 1

2
. This EF-independence of W 1

2
suggests

that the s = 3 description for transport is working well because it indicates that
conductivity is properly “normalized” with respect to EF using the S data and s = 3
relation. The EF-independence of W 1

2
is also in direct contrast to the variable range

hopping analysis in which conductivity is analyzed by σ(T) ∝ exp
[
−

(
WVRH
kBT

)1/2]
;

it is seen in Fig.3.2b that WVRH is dependent on the doping level.

Combining the energy and temperature dependencies found from the analysis in 3.2,
the phenomenological transport function could be expressed as

σE (E,T) = σE00 exp
−

(
W 1

2

kBT

)1/2 ·
(

E − Et
kBT

)3
(E ≥ Et)

= 0. (E < Et)
(3.2)

Application to other conducting polymers
The resemblance between polyacetylene and polythiophenes (Figs.3.1 and 3.2) im-
plies that the phenomenological transport model (Eq.3.2) could possibly be used to
characterize a wider variety of conducting polymer samples. An extended compila-
tion of literature data consisting of Seebeck and conductivity measurements at room

1It is not possible from the given data to phenomenologically determine whether σE00 should
weakly contribute to the temperature dependency of σE0 such as σE00 ∝ 1

T .
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Figure 3.3: Compilation of room temperature Seebeck-conductivity data of various
conducting polymers. Data are from Refs.[17, 20, 22–24]. The dashed lines show
the s = 3 model relation with different values of σE0 as annotated on each line.
As a guide to eyes, the markers are colored in accordance to the approximate value
of average σE0 observed in each data set. Chemical abbreviations are listed in
Table.3.1.

temperature are shown in Fig.3.3. Compared to the data is the s = 3 model curves
with different values of σE0(T = 300 K). It is seen that, despite significant sample
variation, the overall trend in data resembles the s = 3 relation. It should be kept
in mind that much of these experimental data were obtained from the intent of im-
proving σE0 (which allows one to reach a higher power factor S2σ near the optimum
doping level), rather than trying to keep σE0 constant with the intent of keeping the
transport function “rigid” and facilitating mechanistic studies. A resemblance in the
overall trend despite the lack of such efforts indicates that there exists a common
underlying mechanism that strongly restricts, or determines, the charge transport in
these conducting polymers. The s = 3 phenomenological transport function seems
to capture this universality, suggesting that it represents, at least to leading order,
the underlying mechanism that should be resolved.
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Data are from Refs.[9, 25]. The black lines show the s = 1 model relation with
different values of σE0 as annotated on each line. The s = 3 relation found from
other polythiophenes in Fig.3.1 is plotted together (gray dotted line) for reference.
Chemical abbreviations are listed in Table.3.1.

On the other hand, some variants show a clearly distinctive S − σ relation that
is better described with s = 1, as shown in Fig.3.4. It is interesting that these
materials are also the types that generally exhibit better electric characteristics such
as a higher thermoelectric power factor or field effect mobility (note that the data
points in Fig.3.4 are populated on the upper right side of the reference curve for
other s = 3 polythiophenes). Understanding these exceptional cases would help
to understand the mechanism underlying s = 1 or 3 and possibly lead to better
performing materials.

Although the phenomenology of the s exponent, by itself, does not offer a reason for
its correlation to better performance in electronic applications, the phenomenology
provides a curious analogical comparison to a similar case observed in inorganic
materials. In band conductors, deformation potential scattering maps to the phe-
nomenology of s = 1 while ionized impurity scattering maps to the phenomenology
of s = 3 (see Table 1.1). It is generally true that, at a given temperature, band
conductors dominated by deformation potential scattering are better conductors (or
of higher mobility) than those governed by ionized impurity scattering. The math-
ematical form provided by the ionized impurity scattering or s = 3 might lead one
to expect better conduction in such cases (conductivity increases more rapidly with
EF); however, ionized impurity scattering dominates when it is a much stronger
scattering source than the deformation potential, meaning that the conductivity will
only decrease from the additional influence of ionized impurity scattering.

Associated with the better conductance (for a given EF or S) in PEDOT-based
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materials is a lower activation energy. Galliani et al. have shown that W 1
2
≈ 0.1 eV

in PEDOT:tosylate, which is an order of magnitude lower than the 1.0 eV found
from polyacetylene in Fig.3.2 [26]. Similarly low W 1

2
values of 0.2 − 0.3 eV have

also been found in PEDOT:PSS (although W 1
2
was extracted from σ rather than σE0

in this study, W 1
2
is expected to be similar either way in this case because of the

sample most likely being in the degenerate regime) [27].

3.3 Physical interpretation of the phenomenological transport function
Although the s = 3 (or 1) phenomenological transport functions have some immedi-
ate usefulness as a transport model (which will be used as a basis for thermoelectric
quality factor analysis in Ch.6), the ultimate goal would be to develop a physical
model that is consistent with the phenomenology. Some important aspects that must
be considered or further experimented will be discussed in this section.

One of the biggest questions is why a homogeneous transport function is sufficiently
effective in describing such inherently inhomogeneous materials like conducting
polymers. The inhomogeneous microstructure has been studied extensively in the
recent literature [28–31] revealing locally ordered domains as small as < 10 nm
embedded in an amorphous matrix with varying degrees and types of disorder.
Although inhomogeneity does not necessary make it impossible for a homogeneous
transport function to be an effective description (e.g. use of Matthiessen’s rule to
combine different scattering mechanisms is a homogeneous approach but is often
used to described inhomogeneous features such as grain boundaries [32, 33]), the
high resistivity and volume fraction of the amorphous region renders a regime in
which the effective homogeneous function typically breaks down (this topic will be
the focus of Ch.4).

Another feature that requires a physical explanation is the (phenomenological) pres-
ence of a transport edge. The large thermopowers observed in conducting polymers
cannot be explained without presuming that there should be a transport edge. How-
ever, those materials with large thermopower can be doped to have such a small
thermopower (“metallic” values) while retaining the thermally activated conduction
behavior. From studies on homogeneously disordered amorphous materials like
silicon, it is known that the band edges are smeared out due to disorder. Instead of
a band edge, there could exist a mobility edge that sharply delineates the localized
and extended states. Moving EF above the mobility edge (Anderson transition),
however, is supposed to accompany a change in the thermally activated conduction
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behavior as well. The coexistence of metallic thermopower and thermally activated
conduction has generally been attributed to inhomogeneity, but the physical origin
of a transport edge (or even the existence of one) has not been bought to attention
in the literature.

One explanation that could be conceived in the context of the inhomogeneous
microstructure is that the s = 3 phenomenology reflects the inhomogeneity itself;
i.e. the character of the inhomogeneous microstructure could be the origin of
such a power-law transport function, as in percolation networks. Classically, the
power law in percolative microstructures is more often discussed in terms of volume
fraction, because the power law has been heavily studied from experiments onmetal-
embedded dielectric media with varying metal volume fractions [34–36]. Such a
power law in volume fraction implies a power law also for energy, which can be
illustrated with the approach illustrated by Eggarter [37]. Suppose that the space
in a media can be divided into allowed and disallowed volumes for each particle.
This division will depend on the potential landscape of the media and the energy
of the particle. If the volume fraction V allowed at for a particle with energy E

is defined as c(E), this function will be a monotonically increasing function with
energy [37]. At a critical energy Ec, c(Ec) will be such that particles can transport
across the media effectively (delocalized). This Ec is referred to as the percolation
edge, and c(Ec) is the critical volume fraction Vc. Now, assume that conductivity
is empirically observed to be σ(V) ∝ (V − Vc)α. Then, for a metal inclusion with
EF = Ec, one could infer that σ(E) ∝ [c(E) − c(Ec)]α. If c(E) is expanded around
Ec, the leading order term in the expansion c ∝ (E − Ec)β would yield an exponent
s ≈ αβ above the percolation edge. This argument offers a possible explanation for
both a power-law relation and also the origin of the transport edge as a percolation
edge.

The temperature dependence of the phenomenological function does also sug-
gest a connection to percolation, but with a difficulty in interpreting the transport
edge. What is most interesting is that the temperature dependency of the type

exp
[
−

(
W

kBT

)1/2]
observed in conducting polymers is also observed similarly2 in

classical percolation system, such as Ni-SiO2, W-Al2O3 and many more [34–36].
However, in those metal-dielectric percolation systems, the thermally activated be-
havior disappears as the volume fraction reaches the critical percolation volume,

2Another lesson here is that the power-exponential dependency in temperature should be under-
stood to have a broader implication than just variable range hopping.
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which is in contrast to the conducting polymer system where the activation behavior
persists above the transport edge. Because of this inconsistency, the transport edge
is not fully explained with a percolation edge.

The difficulty of the percolation edge concept in simultaneously explaining the
transport edge and temperature dependency suggests that the transport edge and
s = 3 could be of different origin. It is feasible in many aspects to suppose that the
transport edge (and at least part of the s = 3) originate from the ordered domains
within the conducting polymer. Above all, such a dispersive transport function
above an edge is naturally explained from an ordered phase with delocalized wave
functions. It is also generally true that the phenomenological transport character is
determined by the conductive phasewhile themagnitude of conductivity is limited by
the non-conductive phase3 (a detailed example case will be discussed with Mg3Sb2
in Ch.4). A number of studies also show how the relatively ordered domains
control a number of transport related phenomena such as electroluminescence [28],
microwave conductivity [39], or local conductivity [30].

If the ordered domains are assumed to be responsible for the transport edge, the

exp
[
−

(
W

kBT

)1/2]
should be attributed to the system being below the percolation

edge (or, equivalently, the ordered domain volume fraction being below the critical
percolation volume). W 1

2
remaining constant regardless of doping and finite even at

EF > Et (Fig.3.2) are then both consistent with the assumption.

In summary of the most probable physical explanation based on the discussion so
far, the transport edge seems to originate from the ordered domains that should
also provide a dispersive transport function. The overall system is limited by being
below the percolation threshold which dominates the temperature dependency. The
phenomenological transport function in Eq.3.2 should be an approximate form that
combines the effect of ordered domains and a percolation network.

Carefully designed experiments could provide much insight in furthering the under-
standing. The most direct experiment would be to measure the S−σ relation locally
from ordered domains. The small structural coherence length scale of conducting
polymers make this experiment a challenging one. Use of scanning probes [29, 30,
40] or nano-patterned electrodes could be a good strategy to overcome experimental
challenges. Development of films with larger ordered domains would make it easier
to probe local transport properties.

3When far from the threshold in a percolation system, effective medium theory is a reasonable
framework for describing an inhomogeneous system [38].
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3.4 Appendix: Chemical abbreviations

Table 3.1: Abbreviations for chemical formulae used in the current chapater

Abbreviation Chemical formula
PA polyacetylene
P3HT poly(3-hexylthiophene)
P3HTT poly(3-hexylthiothiophene)
PBTTT-C14 poly(2,5-bis(3-tetradecylthiophen2-yl)thieno[3,2-b]thiophene)
P2TDC17-FT4 poly(2,5-bis(thiphen-2-yl)-(3,7-diheptadecantyltetrathienoacene))
F4TCNQ tetrafluorotetracyanoquinodimethane
FTS alkyl silane (tridecafluoro-1,1,2,2,-tetrahydrooctyl)-trichlorosilane

PDPP3T
poly[2,5-bis(2-hexyldecyl)-2,3,5,6-tetrahydro-3,6
-dioxopyrrolo[3,4-c]pyrrole-1,4-diyl-alt
-[2,2′:5′,2′′-terthiophene]-5,5′′-diyl

PSBTBT poly[(4,4′-bis(2-ethylhexyl)dithieno[3,2-b:2′,3′-d]silole)-2,6-diyl
-alt-(2,1,3-benzothiadiazole)-4,7-diyl]

PEDOT poly(3,4-ethylenedioxythiophene)
PEDOS-C6 poly(hexyl-3,4-ethyl-enedioxyselenophene)
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C h a p t e r 4

INHOMOGENEOUS TRANSPORT: Mg3Sb2

It has been discussed how the transport equations used so far assume a homogeneous
transport function for the material system. In the conducting polymer case (Ch.3),
this assumption was one of the puzzling factors due to the highly inhomogeneous
microstructure of conducting polymers that is evident from structure characterization
studies. In oxides (Ch.2), this complication was avoided by analyzing data measured
from single crystals. Then, exactly how does the homogeneous transport function
approach breakdown? What are the pitfalls that could lead to erroneous conclusions?
The answers to these questions are very well illustrated by the transport properties
observed in Mg3Sb2-based polycrystalline materials [1, 2].

4.1 Erroneous interpretation of the thermally activated conduction
The majority of the polycrystalline Mg3Sb2-based samples reported in the literature
exhibit thermally activated conduction, even when heavily doped. Both variable
range hopping [5] and ionized impurity scattering-dominated band transport [3, 4,
6] have been suggested as the cause for this thermally activated behavior. Due to
the lack of any reports on heavily doped single crystals, determining the validity of
those suggestions requires analysis of the transport properties rather than a simple
experimental comparison. The S − σ relation will once again help to show that the
simple suggestions based on σ(T) are inconsistent with the phenomenology of the
transport function.

The thermally activated conduction in n-type Mg3+δSb1.5Bi0.5 and Mg3+δSb2 sam-
ples doped with various amounts of Te (on the Sb/Bi site) is shown in Fig.4.1, where
µH ∝ Tn and also σ(T) ∝ Tn with n ≈ 1.5 is observed near room temperature. This
behavior has been the basis of an ionized impurity scattering argument because it
is customary to associate a T1.5 mobility with such a scattering mechanism; the
crossover in temperature dependence has been attributed to a crossover to acoustic
phonon scattering [3, 4, 6]. Some insight can be gained by reviewing where this
T1.5 argument originates from. The Drude mobility in band conductors was derived
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Figure 4.1: Temperature dependent properties of n-typeMg3Sb2-based compounds:
(a) Hall mobility (data from Ref.[3]); (b) Conductivity (data from Ref.[4]).
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in Eq.1.60. In the non-degenerate limit, the equation reduces to

µd =
2
3

eτ0(T)
m∗b

·

(
r + 3

2

)
Γ(r + 3

2 )
Γ(32 )

. (η � −1) (4.1)

By recalling the form of τ0(T) from Table 1.1, µd becomes T1.5 for ionized impurity
scattering and T−1.5 for deformation potential scattering in the non-degenerate limit.
Because the temperature dependency of rH(T) is weak, µH = rHµd also follows a
similar temperature dependency. In systems where carrier concentration is fixed (no
bipolar excitation), conductivity will also follow a similar temperature dependency
as µd. In the degenerate limit, the temperature dependency is different:

µd =
eτ0(T)

m∗b
·
(

EF
kBT

)r

. (η � 1) (4.2)

It is seen that µd becomes temperature-independent for ionized impurity scattering
and T−1 for deformation potential scattering. Because samples investigated for
thermoelectrics usually have doping levels in between the two limits (small |η |), as
is the case in Fig.4.1 as well, a temperature exponent n in the range of 0 < n < 1.5
and −1.5 < n < −1 is customarily associated with ionized impurity scattering and
deformation potential scattering, respectively.

Numerous literature cases have been discussed in the previous chapters where a sim-
ple analysis of the temperature dependency misled to erroneous conclusions about
transport. Using a similar approach as previous cases, the S − σ relation in Fig.4.2
clearly shows that ionized impurity scattering fails to explain the experimental data.
The usefulness of investigating the S − σ relation is once again demonstrated here:
the ability to test previous hypotheses based on temperature dependencies by simply
plotting data that was already reported in the original report.

An interesting feature found in Fig.4.2 is that the S −σ relation at 550 K is virtually
identical to that observed at 330 K, within experimental resolution. This similarity
indicates that the phenomenological energy-dependency of the transport function
is similar. However, the temperature dependencies at those two temperatures are
completely opposite, as see in Fig.4.1. None of the physical models discussed so far
simultaneously explain the energy and temperature dependency of the 330 K data,
nor do any of them offer a good explanation for the crossover behavior. It is evident
that a different physical model is required to describe this material system.

A key experimental observation [2] sheds light on this puzzling situation: it has been
shown that the thermal activation behavior can be greatly mitigated by increasing
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Figure 4.2: The S − σ relation in n-type Mg3+δSb1.5Bi0.5 polycrystalline samples
doped with various amounts of Te. The S − σ relation for deformation potential
scattering (dashed line) and ionized impurity scattering (dotted line) are drawn
together for comparison. The data at each temperature show a relation that better
resembles deformation potential scattering rather than ionized impurity scattering.
The two-phase grain boundary model is shown to well describe the data at both low
and high temperatures. Data are from Refs.[3, 4]. Regions of bipolar conduction
were excluded from the plot and analysis.

the grain size (i.e. by decreasing the grain boundary density). After the grain size
was increased by a factor of eight (average size from 1 to 8 µm), the temperature
dependent conductivity became a monotonically decreasing function with respect
to temperature and the 300 K conductivity increased by more than four-fold. This
observation once again falsifies the previous suggestions about ionized impurity
scattering. Furthermore, it hints that the proper physical model for polycrystalline
Mg3Sb2 should address the grain boundary resistance.

4.2 Limitations in the homogeneous approach
In conventional grain boundary transport models such as those for classical metals
[7, 8], the grain boundary contribution to resistance is treated by usingMatthiessen’s
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rule on the carrier scattering rate such as

τ−1 =
∑

processes
τ−1

i . (4.3)

The assumption in this approach is that the scattering processes are independent and
also that they are homogeneously probable in space. The justification for using this
approach for grain boundaries is that the grain boundary region is physically small
enough to be approximated as a homogeneous system, just as defects or impurities
are modeled. The approach has been applied not just to metals but also for doped
silicon semiconductors such as SiGe [9]. Use of this approach allows one to model
the transport system with a homogeneous transport function.

Use of this homogeneous approach for Mg3Sb2-based materials, however, faces
challenges both physically andmathematically. Physically, it is questionablewhether
the grain boundary region is small enough in doped semiconductors like Mg3Sb2.
Unlike classical metals such as Cu or Al, charge screening is not as effective in
semiconductors. In the extreme case of insulators, the grain boundary region is
known to have an influence in the electronic structure over a length scale large
enough (much larger than what the atomic structure length scale might suggest) that
it must be modeled as a separate phase [10]. Since the charge transfer due to grain
boundaries is a generic phenomenon, a similar issue is of concern in semiconductors
[11, 12], although to a lesser extent than insulators. The physical extension of the
grain boundary-induced space charge region is estimated to be around 10 nm in
Mg3Sb2 based on the calculation scheme described in Ref.[11]. This length scale is
comparable to the electron mean free path in Mg3Sb2. For example, a mobility of
< 50 cm2/V · s, Fermi velocity of 106 m/s, and an effective mass of 0.3me [13, 14]
yield a mean free path of < 8 nm. This comparison suggests that treating the grain
boundary simply as a scattering source could be irrelevant.

The mathematical challenge is that a homogeneous function built from mixing
scattering mechanisms cannot produce a crossover in the temperature dependency
as sharp as that shown in Fig.4.1; in addition, keeping the energy-dependency
consistent before and after the crossover is even more prohibitive. The inability to
produce a crossover can be illustrated most easily using an imaginary Drude model
system in which the temperature dependency of µd is simply identical to that of τ(T)
(although this is not true in the semiclassical model, even in the non-degenerate
limit, as shown in Eq.4.1, we make this assumption for simplicity; the conclusion is
not affected). In this Drude model system two scattering mechanisms are combined
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perature (normalized with the crossover temperature) as described in Eq.4.6. The
crossover is gradual with respect to the normalized temperature.

to describe the temperature dependencies in the low and high temperature limits:

τ−1 = τ−1
LT + τ

−1
HT. (4.4)

Here, τLT ∝ T3/2 and τHT ∝ T−3/2 dominate the temperature dependencies at low
and high temperature, respectively (in the semiclassical model, it would be τ0’s
rather than τ). For a crossover in temperature dependency to exist, there must be
a crossover temperature TC at which the two scattering mechanisms have identical
rates:

τLT(TC) = τHT(TC). (4.5)

Then the power exponent of the temperature dependency can be written in terms of
T/TC:

d log τ
d log T

=
3
2
− 3(T/TC)3

1 + (T/TC)3
. (4.6)

This equation is plotted in Fig.4.3, where it is seen that the crossover happens grad-
ually. For a crossover temperature of 500 K, the transition would have to happen
from about 250 K to 1000 K rather than a drastic change as seen in Fig.4.1. Now
coming back to the semiclassical model, recall that τLT and τHT would actually have
energy dependencies that are different with each other. Accordingly, a crossover
temperature would have to also accompany a change in the phenomenological ex-
ponent s. It can therefore be concluded that a homogeneous transport function is
mathematically not viable for describing the behavior in Mg3Sb2,
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Use of Matthiessen’s rule on mobility such as µ−1 =
∑
µ−1

i [15–17] suffers from
similar problems. An additional issue in this approach is that it fails to take into
account the different energy dependencies of each scattering mechanism.

4.3 Mg3Sb2 modeled with an inhomogeneous approach
The limitations of a homogeneous transport function approach for polycrystalline
Mg3Sb2 has been explained in the previous chapter. Unlike the SrTiO3 or Ce2O
examples discussed in Ch.2 where such problems were avoided by analyzing single
crystal data, Mg3Sb2 is a case where technological interest is actually in the poly-
crystalline form for its strong merits as a mid-temperature n-type thermoelectric
material [2, 3, 18] (not many material options exist for a n-type thermoelectrics
at < 600K). In this section, the simplest form of an inhomogeneous model (a
two phase model) is developed to describe the transport in n-type polycrystalline
Mg3Sb2-based materials.

Developing the model
The effect of grain boundaries on the electronic structure is generally understood
in terms of a charge transfer between the grain and grain boundary that results in
either a potential barrier or valley across the grain boundary [11, 12, 19, 20]. The
occurrence of charge transfer is a generic phenomenon because any type of lattice
mismatch, defects, or impurities will always result in a different electronic structure
and work function, causing charge transfer in order to maintain an equilibrated
Fermi-level across the material. Grain boundaries especially become a resistant
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Figure 4.5: The simplified two phase grain boundary transport model. (a) An
effective band offset of∆E takes into account the potential barrier. This offset relates
the Fermi-level of each phase (defined relative to the band edge of each phase). (b)
A series circuit representation of the two phase model, which is equivalent to the
core-shell effective medium model in the limit of a small grain boundary phase
relative to the grain phase.

part of the sample when a potential barrier (rather than a valley) develops. Fig.4.4
illustrates such a potential barrier.

The exact shape, barrier height, and extent of the potential barrier has been modeled
in many ways in the literature [11], and those models generally requires numerous
physical parameters that cannot be determined easily and independently. Developing
an inhomogeneous transport model based on those detailed models obviously results
in an overfitting situation.

The approach that is the simplest (i.e. least number of parameters) while still
being able to capture the most essential feature – the potential barrier – is to model
the system with only two phases: one that represents the grain and the other that
represents the grain boundary region with an effective and constant band energy
offset, as illustrated in Fig.4.5a. The two model phases are simply referred to as
the "grain phase" and the "grain boundary" phase. The transport properties of each
model phase will be determined with their own transport function.

Since the model contains two separate phases, the overall transport properties must
be determined from the properties of each model phase, for which effective medium
theory can be used. The effective medium theory for a core-shell geometry (Hashin-
Shtrikman microstructure [21]) should be relevant for grain-grain boundary geom-
etry. Properties of this type of effective medium can be solved by using equations
given by Bergman et al. [22, 23]. It can be shown that, in the limit of small grain
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boundary phase fractions, the effective medium is identical to that of a simple series
circuit model that is shown in Fig.4.5b, which allows one to greatly simplify the
equations for the effective transport properties. The electrical conductivity is

σ−1 = (1 − tGB)σ−1
G + tGBσ

−1
GB, (4.7)

where tGB is the size fraction of the grain boundary phase in the total sample, and
subscripts G and GB refer to the grain and grain boundary phase, respectively. The
Seebeck coefficient is

S =
SG

1−tGB
κG
+ SGB

tGB
κGB

1−tGB
κG
+

tGB
κGB

, (4.8)

where κ is thermal conductivity. Since tGB is very small and Si’s and κi’s are each
similar in orders of magnitude between the two phases, Eq.4.8 simply reduces to

S ≈ SG. (4.9)

A key feature of the model seen from Eqs.4.7 and 4.9 is that the thermopower is
virtually unchanged due to the grain boundaries whereas the conductivity could be
significantly reduced when σGB is much less conductive than σG. This behavior
is consistent with many experimental observations in grain boundary dominated
materials such as SiGe [9], Mg2Si [15], CoSb3 [24], and Ca3AlSb3 [25]. This
behavior is in direct contrast to what a Matthiessen’s rule approach (homogeneous
approach) would predict: a significant change in the Seebeck coefficient due to grain
boundaries.

Determining the model parameters
Each model phase is described with their own transport functions. For the grain
phase, s = 1 is used because the high temperature limit of transport and also
the S − σ relation indicate that deformation potential scattering is the transport
mechanism. For the grain boundary phase, s = 3 for ionized impurity scattering is
used considering the potential barrier.

Table 4.1: Parameters for the two-phase transport model of polycrystalline n-type
Mg3+δSb1.5Bi0.5 doped with Te

Grain phase σE0 = 900 S/cm (s=1)
Grain boundary phase σE0 = 0.2 S/cm at 300 K (s=3)

tGB = 0.001
Band offset ∆E0 = 60 meV

a = 0.3



71

∆E
 (m

eV
)

35

40

45

50

55

70

75

65

60

-50 -40 -30 -20 200-10 3010
EF,G (meV)

330 K
470 K

Figure 4.6: Band offsets that give the best fit for individual samples at a given
temperature. The overall trend shows an increasing relation between the band offset
and Fermi-level, which is a trend that is expected from the charge transfermechanism
that produces the offset. A linear fit to the individually determined offset values
is used as an empirical function for determining the band offset in the data set.
While this procedure apparently reduces the quality of the fits, it greatly reduces the
fitting degree-of-freedom and also gives predictive power to the model. Circled and
squared data points are from Refs.[4] and [3], respectively.

The band offset ∆E is an increasing function of the Fermi level of the grain phase
EF,G. To find the band offset function empirically, the band offset is first let to be a
free parameter. By fitting the S − σ relation and also the temperature derivative of
σ at both 330 and 470 K, the best band offset ∆E parameters are found and plotted
with respect to EF,G in Fig.4.6. This empirical trend is fit with a linear function:

∆E = ∆E0 + aEF,G. (4.10)

The band offset is now restricted to be this linear function form rather than being
allowed to be a free parameter. This approach decreases the fitting degree of
freedom.

Finally, the best parameter set is found by fitting all S and σ measurements at all
temperatures to produce the best fit in the S − σ and σ(T) plots. The parameters
found by this procedure are listed in Table 4.1.

The final grain boundary model is plotted as solid lines in Fig.4.2 (S − σ relation)
and Fig.4.7a (temperature dependency of conductivity) showing good agreement
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(a) Conductivity as a function of temperature, showing good agreement with data.
Data points are from Refs.[3, 4]. (b)Drift mobility calculated from the conductivity
in (a) and using a density-of-states effective mass of m∗DOS = N2/3

V m∗b ≈ 62/30.3me.

with the reported data. It is seen that the grain boundary model shows a S − σ
relation very similar to that of deformation potential scattering (s = 1) while also
reproducing the thermally activated conduction behavior at low temperature. The
essential feature in the model that makes it possible to capture this key behavior
of the experimental data is the thin second phase with a band offset, but not the
s = 3 setting of the grain boundary phase; a same fitting quality can be achieved
by alternatively assuming s = 1 for the grain boundary phase (the only difference is
that this alternative setting produces much larger band offset values). Therefore, it
can be concluded that the simplified model devised to take into account the potential
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Figure 4.8: The grain boundary model applied to a different data set where the grain
size was changed. All model parameters were fixed to that in Table 4.1 expect for
tGB. The scaling in tGB required to best fit the data is similar to that of the measured
average grain size. The model limit with no grain boundary resistance (tGB = 0) is
also shown for comparison. Data points are from Ref.[2].

barrier with a simplified offset is working as intended.

The drift mobility is also calculated from the model, showing the temperature
dependencies that led to the previous suggestions about ionized impurity scattering.
Within a small temperature span, the dependency resembles that of not just a
power law, but also that of an exponential or even a variable range hopping type
dependency. This resemblance once again demonstrates how one should be cautious
in interpreting temperature dependencies of measured conductivity or mobility.

The predictive power of the model for grain size scaling is tested by fitting to
a different set of experimental data measured from samples with different average
grain sizes. The results plotted in Fig.4.8 shows reasonable agreement, which allows
to project the conductivity limit of a single crystal.

This big increase predicted in the low temperature conductivity (recall that the See-
beck coefficient remains unchanged) has important implications for thermoelectric
applications, because it indicates a possible increase in the figure-or-merit if the ben-
efit could outweigh any increases in thermal conductivity. Such improvements were
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demonstrated in Refs.[1, 2]. Based on the understanding gained from the Mg3Sb2
model, similar opportunities could be explored in other thermoelectric materials that
also show signatures of grain boundary dominated transport near room temperature.
Some examples include polycrystalline SnSe [17], KAlSb4 [26], Sr3GaSb3 [27],
NbFeSb [16], Ca5Al2Sb6 [28], and Ca3AlSb3 [25].
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C h a p t e r 5

ANOMALOUS TRANSPORT: SUPERIONIC Cu2Se

In degenerate semiconductor crystals showing metallic transport behavior, one
would model and analyze transport properties by applying typical concepts relevant
for band conductors. The conceptual distinction between transport phenomenol-
ogy (i.e. transport function) and the physical model (effective mass and kinematic
parameters) may not be necessarily beneficial if the system is well described with
effective masses and mobilities. However, when those band parameters do not be-
have like a typical band conductor, it could be challenging to determine whether
conventional analysis methods remain valid in such a system. The copper selenide
material system is such an example [1, 2], and it will be shown that many analysis
concepts can still be used if one avoids the determination of effective mass or carrier
concentration and rather rely on phenomenological concepts. Because of the prac-
tical interest in copper selenide as a thermoelectric material, this approach provides
some useful means for evaluating the practical values of this material.

Copper selenide, Cu2Se, is the prototypical compound that represents the class of
superionic thermoelectric materials [3]. The ionic conductivity of these materials in
their high temperature solid phase are comparable to that of an ionic liquid (≈ 1S/cm)
due to high cation diffusivity [4, 5], which is believed to be associated with a
high degree of structural disorder that results in a low lattice thermal conductivity
advantageous for thermoelectrics [6]. The electrical properties resemble that of a
heavily doped semiconductor, which is also good for obtaining the optimum carrier
concentration required for thermoelectrics. The native defects (e.g. Cu vacancies
in Cu2-xSe) are abundant enough to provide carrier concentrations on the order of
1020 /cm3 without using foreign dopants.

In Cu2Se, the high temperature transport properties are of primary interest because
of its competitive thermoelectric figure-of-merit zT ; however, modeling transport
through the typical route of determining an effective mass could be puzzling be-
cause of the apparent order-of-magnitude increase in the Hall carrier concentration
from a temperature increase of about 600 K. This unexplained behavior has some-
times raised questions about whether band equations could be used for these highly
disordered materials. In Section 5.1, it is shown that, by avoiding the individual
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Figure 5.1: Measured (a)Hall carrier concentration (nH = 1/RH/e) and (b) Seebeck
coefficient of Cu1.985Se in the superionic cubic phase. Solid lines are guides to the
eyes.

determination of m∗ and n, the Seebeck coefficient and conductivity can still be
described with the phenomenological relation s = 1, which is the typical behavior
of a high temperature degenerate semiconductor. This modeling strategy is used to
explore routes for material improvement and also to understand the uncertainty in
some zT values reported in the literature.

Another interesting phenomenon in Cu2Se for thermoelectrics is the superionic
phase transition where a sharp peak in zT and thermopower is found. High estima-
tions for zT of > 2 have been suggested around the phase transition, and theories of
critical phenomena enhancing the thermopower or zT has also been proposed. In
Section 5.2, the controversies over the phase transition is elucidated with the help
of transport analysis.

5.1 Transport analysis of the superionic phase
Anomaly in the Hall effect
The effective mass is not straightforwardly determined in the high temperature
cubic phase of Cu2-xSe. This difficulty is due to the peculiar feature observed in
Hall measurements, where the Hall carrier concentration increases significantly with
temperature as shown in Fig.5.1a. It is rather unphysical to attribute this increase
to an actual increase in the (chemical) carrier concentration – the real number of
carriers populated in the valence band as a function of chemical composition –
because the thermopower shows a typical curve resembling that of a degenerate
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semiconductor with a fixed carrier concentration (Fig.5.1b). This peculiarity is
most obviously seen by combining the thermopower and Hall measurements into a
Seebeck effective mass1 m∗Seeb. It is seen in Fig.5.2 that m∗Seeb increases significantly
from≈ 2.8 (500K) to≈ 5.2 (800K),which is in contrast to the valence band structure
of the phase where no other bands than the Γ band are expected to contribute to
transport [7].

Considering the possibility that the anomalous Hall coefficient is simply an issue
related to the Hall measurement rather than effective mass, the S − σ relation2 is
used to extract the temperature dependency of the transport function and compared
to the band conduction model. Fig.5.3 shows the measured S and ρ = 1/σ values
from a number of Cu2-xSe samples in the high temperature cubic phase. To test the
band conduction model with deformation potential scattering, weighted mobility
µw (Eq.1.53) is evaluated from S−σ data pairs at each temperature while assuming
s = 1 (i.e. r = −1

2 ). This procedure avoids the direct determination of effective
mass because it is mathematically equivalent to determining the phenomenological

1m∗Seeb is defined by the effective mass experimentally determined combining measurements of
the Seebeck coefficient and Hall coefficient with the use of Eqs.1.55 and 1.57. m∗H = N2/3

V m∗b in
Eq.1.57 should be replaced with m∗Seeb for this definition: i.e. m∗Seeb is an estimate of m∗H by using S
as a means to find η, which one could also refer to as the Seebeck-Hall mass.

2Unfortunately, the S − σ relation at a given temperature cannot be studied directly using
samples with different Seebeck coefficients as has been done to confirm the s exponent in previous
chapters because Cu2-xSe or Li-doped Cu2-xSe do not show a rigid band behavior with respect to
off-stoichiometry or doping.
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81

transport coefficient (σE0) and converting to a weighted mobility withT and physical
constants. The extracted µw values are shown in Fig.5.4, where T−3/2 behavior is
seen in the non-bipolar region. These results are compared to the deformation
potential scattering model for acoustic phonons [8] which also predicts T−3/2:

µw =
NVπe~4Cl√

2m∗I (kBT)3/2Ξ2
. (5.1)

Here, Cl is the longitudinal elastic constant, m∗I is the inertial effective mass ≈ m∗b
and Ξ is the deformation potential. Had the apparent increase in m∗Seeb (Fig.5.2)
represented an actual increase in the effectivemass, µwwould have not shown a linear
scaling with T−3/2. Therefore, it seems reasonable to attribute the apparent increase
in effective mass to a complication in the Hall measurement (or its interpretation).

Although the particular physical origin for the anomalous Hall measurement is
unclear, it is worth to note that it is not uncommon to have challenges in interpreting
Hall measurements even when other transport properties are reasonably understood
or described. One suspect is the presence of a high mobility impurity phase. Since
high mobility bands are much more sensitive to an applied magnetic field (roughly
speaking, mobility acts as a weighting factor for sensitivity in magnetoresistance
measurements as shown by the τ

m∗b
factor in Eq.1.47), even a small amount of

impurities at the level not detectable with diffraction could contribute significantly
to the Hall measurement if they have high mobility carriers. For example, a small
amount of Cu precipitates would contribute negatively to the Hall coefficient and
partially cancel the positive value of Cu2-xSe, producing an apparent increase in the
Hall carrier concentration. The impact of such impurities would be negligible for
Seebeck measurements because the Seebeck coefficient of a composite is weighted
by electrical conductance and thermal resistance [9]which is usually negligiblewhen
in small amounts. This example scenario illustrates how the Seebeck coefficient is
often a more robust measurement than the Hall coefficient for extracting information
about EF.

In the next sections, we center the analysis around S andσ rather than RH or effective
mass. This approach will also be used for the quality factor evaluation in Ch.6.

Assessment of the high temperature zT variation in the literature
One of the difficulties in evaluating the true potential of Cu2-xSe compounds for
thermoelectric applications is related to the significantly varied high temperature
zT values reported in the literature. As shown in Fig.5.5, the peak zT of the
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Figure 5.5: Determining the thermoelectric figure-of-merit in Cu2Se. (a) Thermal
conductivity evaluated by measuring the thermal diffusivity with the laser flash
method. Identical heat capacity values as reported in Ref.[3] were used for the
comparison. (b) Thermoelectric figure-of-merit zT evaluated. It is seen that the
literature data apparently shows no sign of bipolar conduction in the zT curve. In
the current study, suppressed bipolar conduction is only seen in Li-doped samples,
in which the band gap is enlarged due to the alloying effect with Li2Se, a wide band
gap compound [10]. The discrepancy is attributed to the Seebeck measurement as
seen in Figs.5.3 and 5.4.

undoped compound varies not only in its value (≈ 30% difference) but also the peak
temperature (900 vs. > 1000 K). It is interesting to note that the earliest reports on
the identical material [11] also showed only moderate zT values.

The biggest source of variation in zT = S2σT/κ is identified in the difference in
Seebeck measurements. The Seebeck coefficient difference of ≈ 15% at 1000 K
contributes to a > 30% difference in zT . The identification of a well behaved µw in
the samples from the present study (solid lines in Fig.5.4), which is in contrast to the
rather unphysical behavior of that extracted from literature data (gray dashed line),
suggests that the steep increase in the literature Seebeck coefficient values might be
associated with measurement issues.

Majority of the recent literature data are obtained using a commercial four-probe
configuration with type S thermocouples and a static atmosphere [12]; many issues
relating to potential measurement errors in this commercial system have been dis-
cussed in the literature [13, 14]. An overestimation due to the cold finger effect
inherent in the four-probe configuration, platinum reactivity with the material, and
oxidation due to the poorly controlled atmosphere (which is not dynamic vacuum)
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Figure 5.6: Thermoelectric figure-of-merit evaluation near the superionic phase
transition of Cu2Se. Use of the Dulong-Petit value results in an erroneous overesti-
mation in the zT value. Literature data are from Refs.[16, 17].

are a number of possible causes that could explain the overestimation. The Seebeck
coefficient measured in the present study uses a home built system which circum-
vents many of the potential issues discussed above [15]. Above all, the Seebeck
coefficients measured in the present study are highly reproducible and steady over
long periods of time which is in contrast to anecdotal notes from commercial sys-
tem users that note unstable and noisy measurements very often encountered in the
measurement of copper chalcogenide materials. More details regarding Seebeck
measurements will be discussed in Ch.7.

5.2 Two-phase description of the anomalous transport observed during the
superionic phase transition

Cu2Se goes through a phase transition around 350-400 K, during which the room
temperature phase gradually transforms into a superionic high temperature phase.
This superionic phase transition has drawn great interest because of a number
of interesting observations accompanied during the transformation. The Seebeck
coefficient and zT both show a sharp peak around 400K. Thermal diffusivity plunges
to almost zero. The phenomena have brought up a great discussion regarding the
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thermodynamic nature of the transition and also about the true peak zT value.
Clarifications regarding the phenomena have been published in Ref.[1]; here, the
key conclusions are summarized, and then it will be briefly demonstrated how the
transport analysis of S and σ support those conclusions.

Whether the true peak zT value is as high as > 2, or is a moderate value < 1, has been
one of the issues that results from using different heat capacity values for converting
thermal diffusivity into thermal conductivity. Use of the Dulong-Petit value results
in a peak zT > 2 as shown in Fig.5.6, but measurements from scanning calorimetry
show a peak in the heat capacity measurement which gives a peak zT < 1 if taken
into account. Using the Dulong-Petit value is not correct regardless of assuming the
phase transition to be 1st or 2nd order. If a 2nd order phase transition is assumed,
the measured peak in heat capacity would be due to critical fluctuations, an inherent
part of the heat capacity that would have to be included in the conversion in any case.
If a 1st order phase transition is assumed, the measured peak would be due to the
transformation enthalpy that is distributed over the two-phase region temperatures.
Then, as long as the transformation enthalpy can contribute during the diffusivity
measurement, it should be taken into account. Alternative measurements of thermal
effusivity also indicate that the plunging diffusivity is due to the peak in heat capacity,
regardless of the physical origin of the peak.

Many reports have suggested that the superionic phase transition is a 2nd order
transition [16–20], but closer examination strongly suggests that the phase transition
is of 1st order [1]. Above all, it has been shown that the Landau criterion for a 2nd
order phase transition based on group theory [21, 22] is violated in Cu2Se. Then, it
has been pointed out that most features that had been associated with the continuous
nature of the transition is simply explained with a gradual change in the phase
fractions between two phases. The misconception about gradual vs. abrupt changes
being associated with 1st and 2nd order transitions, respectively, seems to result
from the simplified schematics used for elementary introduction where only unary
systems (one component) are considered. In binary systems, the degree of freedom
to adjust phase fractions always makes the transformation a 1st order transition
unless at a special point of particular composition or pressure. The observation
of similar phenomena from a wide range of off-stoichiometry is then additional
evidence that the phenomena is not from a 2nd order phase transition.

The two-phase mixture picture for the phase transformation offers an excellent
explanation for the transport propertiesmeasured during the transformation as shown
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Figure 5.7: Transport properties of Cu1.99Se near the superionic phase transition.
(a)Conductivity measured upon heating with a rate of 6 K/h. The kink around 380K
indicates the onset of the phase transformation. The red solid line represents the
calculated result from effective medium theory. (b) Seebeck coefficient measured
upon repeated heating cycles with a ramping rate of 25 K/h. Each marker type
represents a measurement with a different sample loading (cycled multiple times
with a given loading) using the same sample. The filled circle markers represent the
behavior observed in the majority of loadings. The open square markers represent
a minority behavior occasionally observed. The difference is attributed to different
microstructure evolution during the phase transformation with respect to the loaded
probes. The dashed line shows the calculated upper bound from effective medium
theory (microstructure equivalent to a series circuit connection of two phases) and
dotted line shows the lower bound (equivalent to a parallel circuit).

in Fig.5.7. According to the phase diagram reported in [1] (based on information
from Refs.[23] and [24]), Cu1.99Se nucleates the high temperature phase near 378 K
and completes the transformation near 411 K. Nucleation of a new phase causes a
big decrease in the copper vacancy concentration in the lower temperature phase
(which is the main phase during the majority of the heating transformation), which
explains the decrease in conductivity and increase in Seebeck coefficient.

Conductivity can be calculated with effective medium theory using the phase di-
agram, and the results agree well with the measured data (Fig.5.7a). The phase
diagram provides the relative phase fractions throughout the transition temperature
range, and also the chemical compositions for both phases. Using this information,
the changes in the Fermi-level for each phase can be calculated. One can also cal-
culate the phenomenological trend of the transport coefficient σE0(T) by fitting to
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the single phase region at below and above the phase transition temperature range.
Combining these information, and assuming spherical grains, the effective medium
conductivity during the phase transformation can be calculated with no fitting pa-
rameters. The result shows good agreement despite a simplistic assumption about
the microstructure. It should be noted that the most critical factor for this calculation
is the phase diagram information, rather than the detailed procedure of the transport
modeling. A more simplified transport calculation as was previously given in [1]
yields results similar to that shown in Fig.5.7a.

The Seebeck coefficient during the phase transformation is also well explained with
effective medium theory using the phase diagram (Fig.5.7b). Previously, it has been
argued that the increase in the Seebeck coefficient is in “excess” to what is expected
from a single phase material [17]. However, with the two-phase picture, it is shown
in Fig.5.7b that the upper and lower limits of effective medium (calculated using
the theory by Bergman et al. [9]) envelope any of the measured instances. The
actual experimental manifest is highly dependent on the particular microstructure
evolution that happens in the measurement loading, which is due to the nature of
Seebeck coefficient highly depending on the microstructure of the effective medium.
Indeed, measuring upon many different loadings result in a number of different
transformation curves. Data of two of the most representative cases are plotted in
Fig.5.7b.

Overall, transport analysis support the two-phase mixture picture based on a first
order phase transition. The apparently “anomalous” behavior that was thought to
resemble signatures of critical phenomena has been shown to be well explained with
classical effective medium theory.

5.3 Experimental notes on synthesis and stoichiometry control
Sample variation in Cu2Se depending on synthesis routes has been another major
source for some of the discrepancies found in the literature. Much of the variation is
caused by the native oxides and hydroxides present in the raw Cu elements provided
by standard market suppliers. These native impurities react with conventional reac-
tion vessels such as fused quartz (even when they are carbon coated), in addition to
compromising the purity and stoichiometry of the final compound. Such complica-
tions could be easily avoided by reducing the raw Cu material under H2 atmosphere.
Purchasing pre-reduced materials from suppliers (often labeled “oxygen-free”) is an
alternative that yields similar results.
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Most notable difference is seen from the properties of the sample with a nominally
stoichiometric composition of Cu2Se. Most literature reports [3, 11, 16, 25–29] on
the nominally stoichiometric Cu2Se show transport properties (S or room tempera-
ture nH) that are similar to oxygen-reduced samples with a nominal stoichiometry
of Cu1.98Se or Cu1.985Se. Another difference is the sample reproducibility. Sam-
ples synthesized with oxygen-reduced copper show very reproducible properties for
a given nominal composition, whereas significant sample variation is seen in the
literature even for samples synthesized from the same lab.
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C h a p t e r 6

APPLICATION TO THERMOELECTRICS: MATERIAL
QUALITY FACTOR

It has been shown through many examples that stationary charge transport can
be phenomenologically characterized even when there is no satisfactory physical
model to explain the phenomenology. As long as a transport function σE (E) can
be identified, predictions on how S, σ, and L will change upon changing EF (e.g.
doping) can be made. This predictive ability of the transport function makes it
immediately useful for thermoelectric applications. In thermoelectrics, the figure-
of-merit is a function of both EF and material quality. Thus, knowing how transport
properties change with respect to EF allows one to understand the optimization
process of different types of materials and also quantify the quality of materials.
This process is referred to as the material quality factor analysis and effective mass
modeling in thermoelectrics [1], which will be discussed in this chapter. The
practical message of the method we introduce in this chapter is that, in contrary
to the common belief, quality factor analysis and optimum doping analysis require
neither a Hall measurement nor explicit determination of the effective mass.

6.1 Concept and derivation of the thermoelectric material quality factor
One of the primary goals for thermoelectricmaterials research is to developmaterials
with the best possible thermoelectric figure-of-merit, which is defined as

zT =
S2σ

κ
T . (6.1)

All transport properties constituting zT are functions of η as shown in Fig.6.1a
(recall that η is defined positive when above the transport edge; i.e. positive when
inside the band for band conductors). Thermal conductivity is also an increasing
function of η because the electronic term κe is proportional to σ (Eq.1.23):

κ = κL + LσT + κB. (6.2)

Here, κL is lattice thermal conductivity. κB is bipolar (or ambipolar) thermal
conductivity which will be neglected for now and later addressed separately in
section 6.4. As a result of competing dependencies, zT is a peak function with
respect to η. In material synthesis, η is controlled by tuning the carrier concentration
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Figure 6.1: Thermoelectrics-related properties as a function of reduced Fermi-level.
(a) Thermopower is a decreasing function with η whereas conductivity and thermal
conductivity is an increasing function with η. Figure-of-merit is thus a peaked
function with respect to η. (b) Carrier concentration is an increasing function with
η and is the primary means for controlling η.

(Fig.6.1b), from which the concept of optimum doping originates. The optimum
zT reached after tuning the carrier concentration is, obviously, dependent on the
material. Some materials can reach higher zT values at optimum, which one could
refer to as higher quality thermoelectric materials. Since zT depends on both the
doping level and “material quality”, a practical question is whether the two factors
can be separated so that the material quality can be assessed before spending time
and resources to optimally dope the material. The material quality factor is a tool
that fulfills this purpose, a concept first devised by Chasmar and Stratton [2]. The
concept was first introduced with the concepts relevant for band conductors, but
here it will be derived based on phenomenological functions that do not necessarily
require a particular physical system.

The goal of the derivation is to express zT with two independent variables: η and
another independent variable which will be referred to as the quality factor B. Then,
one can separate η dependencies from zT(η, B) to find a convenient definition for B.
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For this procedure, it is assumed that only one type of majority carrier dominates
the transport. The zT equation (Eq.6.1) can be decomposed by identifying terms
that only depend on η (for a given phenomenological exponent s):

zT(η, B) = S2σ

κL + LσT
T

=
S2

κL
Tσ + L

=
S2(η)

κL
TσE0 sFs−1(η) + L(η)

=
S2(η)(

kB
e

)2 1
B

1
sFs−1(η) + L(η)

.

(6.3)

Here, Eq.1.77 was used for decomposing conductivity. B combines all the η-
independent material parameters, which was defined as

B =
(

kB
e

)2 σE0

κL
T . (6.4)

This expression defines the dimensionless thermoelectric material quality factor B.

The natural unit of the Lorenz number
(

kB
e

)2
was multiplied to make B dimension-

less1. The phenomenological exponent s was also excluded so that the definition
of B could have the same expression regardless of the s exponent2. It is seen from
Eq.6.3 that B determines the zT vs. η function; thus the peak zT value with respect
to η and the optimum η at which the peak zT occurs are both determined for a given
B. In other words, the material quality factor allows one to quantify the potential

1Some authors [3] use the non-dimensionless quality factor β = B/
(
kB
e

)2
; however, β is much

more inconvenient than B not just because of the awkward units but also because of the big numerical
value on the order of 107 (in SI units). By contrast, B is elegantly normalized to a numerical value
on the order of 10−1 − 100.

2In the original introduction [2], B was defined from a parameter σ0 that refers to the non-
degenerate limit equation for conductivity such as σ = σ0 exp(η). In the typical s = 1 case which
is applicable to the majority of thermoelectric materials, σ0 = σE0 and therefore the definition in
Eq.6.4 coincides with that in Ref.[2]. However, the original definition is an inconvenient choice
for thermoelectrics in practice because thermoelectric materials are always optimized at small η
values (heavily doped samples) which is far from the non-degenerate limit. The non-degenerate limit
is often not accessible due to spontaneous defect formation, or is often a regime with a different
scattering description not applicable to heavily doped samples. For this reason, some authors have
reformulated the definition of B using parameters relevant for heavily doped semiconductors (such
as µ0 in Eq.1.52 or µw in Eq.1.53). Use of σE0 is analogous to such expressions, but keeps the
definition at a phenomenological level. It should be noted that σE0 is related to the σ0 parameter in
Ref.[2] through σE0 sΓ(s) = σ0. Therefore, the definition of B differs, for example, by a factor of
3Γ(3) = 6 in the case of s = 3.
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of a material to reach a certain zT value, and also provides a guideline for doping
optimization. The approach works well as long as σE0 and κL are insensitive to η
(in addition to having no bipolar conduction).

The correspondence between a particular B and zT vs. η curve depends on the
phenomenological exponent s. Thus, comparison of B between materials require
that the transport is described with the same s. Current interest is the case of s = 1
which is applicable to the majority of thermoelectric materials and also the special
case of s = 3.

The zT vs. η curve for the case of s = 1 is shown in Fig.6.2a. Most thermoelectric
materials, which are band conductors dominated by deformation potential scattering,
fall into this category. It is seen that B > 0.4 is when the material is able to reach a
zT > 1. This is a good reference value to use for evaluating “good” thermoelectric
materials. The peak zT obtainable with each B value is plotted in Fig.6.2b.

The optimum η that yields the best zT for a given material is conveniently tracked by
converting the optimum η into |S | as shown in Fig.6.2c. It is seen that a material with
B > 0.4 is optimized at |S | > 240 µV/K. For synthesis, carrier concentration could
be an easier way to track optimization, but this requires knowledge of a density-
of-states effective mass. Fig.6.2c plots the optimum carrier concentration (scaled
with m∗DOS and T) which could be used to find the target doping level. The Seebeck
effective mass m∗Seeb determined by combining S and nH measurements3 (Eqs.1.55
and 1.57) provides a good approximate for m∗DOS.

The case of s = 3 is shown in Fig.6.3. At first glance the s = 3 case might appear
to be more favorable than s = 1 because a higher zT is obtainable with a lower B

factor. However, σE0 values for s = 3 cases are generally found to be much lower
than those for s = 1 materials. See the discussion in section 3.2.

3The following approximate equations can be used do quickly determinem∗Seeb within 2%without
numerical integration. When |S | > 75 µV/K:

m∗Seeb ≈
h2

2kBT

{
3nH

16
√
π

(
exp

[ |S |
(kB/e) − 2

]
− 0.17

)}2/3
. (6.5)

When |S | < 75 µV/K:

m∗Seeb ≈
3h2

8π2kBT
|S |
(kB/e)

(
3nH
π

)2/3
. (6.6)
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Figure 6.2: Quality factor analysis for s = 1, applicable to thermoelectric materials
dominated by deformation potential scattering. (a) The zT(η) curve is determined
for a given B. The curves are calculated by substituting Eqs.1.77,1.79, and 1.80 into
Eq.6.3. (b) The peak zT value for a given B. Note that B = 0.4 gives a peak zT > 1.
(c) The optimum thermopower |S | at at which the peak zT occurs (d) The optimum
carrier concentration nopt at which the peak zT occurs, multiplied by a scaling factor
that depends on the density-of-states effective mass and temperature. Example
calculation: at B = 0.4 the vertical axis reads 1.2 × 1019 /cm3; if m∗DOS = 3me and
T = 500 K, then nopt = 1.2 × 1019 · (500

300 × 3)3/2 = 1.3 × 1020 /cm3.
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Figure 6.3: Quality factor analysis for s = 3. (a) The peak zT value for a given B.
(b) The optimum thermopower at at which the peak zT occurs.

6.2 Determination of B from measurements on S, σ, and κ
B can be determined with at least one sample with measurements of S, σ, and κ at
a given temperature of interest. In the literature, Hall measurements are also used,
but as has been shown in the previous section a Hall measurement is not required
for the derivation or determination of the quality factor. One does need to know
the s exponent in prior, which would require a S − σ analysis as was done in Ch.2.
However, even when the transport mechanism is not well studied, s = 1 is a good
initial guess that will usually turn out to be valid for most thermoelectric materials.

One needs to first find η of the sample, which could be done by finding the η that
gives the measured Seebeck (Eq.1.79). Then, one could also calculate L(η) from
Eq.1.80, which allows one to calculate kL from Eq.6.2 (assuming κB = 0), which is
one of the two values need to calculate B. The other need value σE0 can be simply
obtained by dividing the measured σ with sFs−1(η) (calculated from the η obtained
above) as was derived in Eq.1.77.

With this procedure outlined above, the explicit determination of the effective mass
or mobility4 is completely avoided (and proved redundant) for the determination of
B. Hall measurements are only needed for mapping the optimum η to the optimum

4Historically, evaluation of B using mobilities has led to some inconsistencies due to the mix-
matching of different mobility definitions. For s = 1 band conductors, σE0 can be written in terms of
band parameters such as: σE0 =

8πe(2mekBT )3/2
3h3 µw, where µw was defined in Eq.1.53 using µ0. Some

authors [4] use the notation “µ0” to refer to the classical mobility µcl, which is the Drude mobility
in the non-degenerate limit. The two are related by µcl = 4/3√πµ0 ≈ 0.75µ0. Using µcl in place of
µ0 in the equations defined here causes a 25% underestimation in B.
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carrier concentration.

6.3 Application to thermoelectric materials
Typical s = 1 materials
The B factor analysis with s = 1 applies to the most typical cases encountered in
thermoelectric materials and has been discussed extensively in the literature [4].
Here, two non-typical cases are briefly noted.

First is the Cu2Se case discussed previously in Ch.5. It has been shown how Hall
measurements, the conventional means for determining B, are not easy to understand
in this material. Instead, the approach using S −σ to determine σE0 as explained in
section 6.2 can be used to find B and also examine if the sample is properly doped to
an optimum level. Fig.6.4 shows that the Li-doped sample is indeed at an optimum
doping level, with a zT corresponding to that predicted by the calculated B factor.

Next is the case of PEDOT and PEDOS-based conducting polymers, previously
discussed in Section 3.2 and Fig.3.4. Although the physical origin for s = 1 is not
known in this case, since the phenomenology is identical to that of band conduction
with deformation potential scattering, B factors can be compared. The quality factor

2-4 -1 10-2
η
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0.6

0.4

0.2

1.0
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1.4
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(bipolar)

B=
0.

58

Figure 6.4: Quality factor analysis for Cu2Se. The Li-doped sample (filled circle),
calculated to have a quality factor of B = 0.58 at 930 K based on the data shown
in Figs.5.3-5.5, appears to be doped to a near-optimum level. The undoped sample
(open circle) has a similar B factor if the B of majority p-type carriers is inferred
from extrapolation (Fig.5.4), but the actual zT is smaller due to the bipolar effect
reducing the Seebeck coefficient. The η value of the undoped sample is an effective
value converted from S with the non-bipolar equation (Eq.1.79).
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for PEDOT:tosylate is evaluated as B ≈ 0.06 at 300 K with σE0 = 75 S/cm and
κL ≈ 0.3 W/m·K. From Fig.6.2, this B value corresponds to a maximum zT > 0.2 at
an optimum thermopower of |S | ≈ 190 µV/K. These values indeed agree well with
those reported in Ref.[5]. Furthermore, the quality factor can be compared on the
same scale with values from band conductors like Sb2Te3-Bi2Te3 where B > 0.4 at
300 K [6].

Conducting polymers with s = 3
In Ch.3, it was shown that most conducting polymers show s = 3. Again, this
phenomenology makes it possible to find B despite of the physical origin being
unknown. The polythiophene data compiled in 3.1 was fit withσE0 = 2×10−2 S/cm.
Assuming κL ≈ 0.3 W/m·K, B > 10−5 (300 K) is obtained. From Fig.6.3, it is seen
that this B value predicts a maximum zT > 10−2 at an optimum thermopower of
|S | > 35 µV/K.

6.4 Quality factors for bipolar conduction and peak zT

So far, primary interest was on materials with a single type of carrier. In transport
data on heavily doped semiconductors, the onset of bipolar conduction (i.e. the onset
of minority carrier conduction) is most easily seen in the thermopower |S | measured
as a function of temperature, where it starts to roll over and show a sublinear increase
as was shown in Fig.5.3 for undoped Cu2Se. It is this bipolar conduction that makes
the zT have a maximum at a peak temperature (unless the material stability limit
is reached first) rather than increase indefinitely. Since the peak zT value is of
popular interest in the thermoelectric research community, here it is discussed how
an approach analogous to the quality factor analysis can be developed for predicting
the peak zT value from material parameters.

With bipolar conduction, largely three additional phenomena must be addressed.
One is the increased conductivity due to the minority carriers.

σ = σp + σn, (6.7)

where σ now has two contributors, p- and n-type carriers, instead of one. This
increase, by itself, is beneficial for thermoelectrics, but greatly outweighed by the
other two effects. The first is a decrease in thermopower because of the canceling
effect of the two different carriers (derived from Eq.1.28 by separately considering
n- and p-type contributions):

S =
Spσp + Snσn

σ
. (6.8)
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Here, Sp and Sn will have different signs, decreasing the magnitude of S. Lastly,
bipolar (or ambipolar) thermal conduction5 starts to contribute to thermal conduc-
tivity in Eq.6.2:

κB =
σpσn

σ
(Sp − Sn)2T . (6.9)

This term is derived in the appendix of this chapter (section 6.5). This additional
term is based on very general thermodynamic phenomenology, occurring whenever
there is parallel conduction by two different types of carriers. It allows the electronic
conduction to produce more heat transport than for each individually combined.

The equation for zT reflecting the bipolar conducting phenomena becomes

zT =

(
Spσp+Snσn

σ

)2(σp+σn)
κL+LpσpT+LnσnT+

σpσn
σ (Sp−Sn)2T

T . (6.10)

As for the derivation of B, η dependencies can be separated from material property
terms. A number of new terms can be defined to make this process more transparent.
The contributing fraction of each carrier to conductivity is defined as fi = σi/σ.
Dimensionless properties S′ = S/(kB/e) and L′ = L/(kB/e)2 are defined. The
quality factor for p- and n-type conductors are separately defined such as

Bi =

(
kB
e

)2 σE0,i

κL
T . (6.11)

Finally, the reduced Fermi-level of each carrier type is defined separately. That is,
ηp and ηn are each defined with respect the transport edges (band edges) of p- and
n-type, respectively, and each of them are positive when moving into their respective
bands. Assuming s = 1 for both carrier types, the zT equation reduces to

zT =
( fpS′p+ fnS′n)2

1
BpF0(ηp)+BnF0(ηn)+ fpL ′p+ fnL ′n+ fp fn(S′p−S′n)2 . (6.12)

It is noticed from Eq.6.12 that

zT = zT(Bp, Bn, ηp, ηn). (6.13)

Temperature dependency is only implicit through Bi terms. The ηi terms are re-
stricted through

− (ηp + ηn) = ηg =
Eg

kBT
. (6.14)

5Some authors [7–9] classify this bipolar term as part of κe. Here, it is kept separate to make a
clear distinction from the κe contribution through the Wiedemann–Franz law.
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Here, Eg is the band gap (only positive gaps are of interest here). While temperature
is unrestricted, the reduced band gap ηg can be any value.

From Eq.6.13, it is seen that, for a given set of (Bp, Bn), i.e. for a given material
with an unspecified or unrestricted band gap, zT is a function of only (ηp, ηn).
Furthermore, since zT is a peaked function (with two peaks from the majority
carrier being either p- or n-type; the following arguments apply for any of those
two peaks), the peak in zT for a given (Bp, Bn) will always occur at (ηp, ηn)peak. A
corollary is that, the peak in zT always occurs at a fixed (ηg)peak for a given (Bp, Bn).

Next, assume that the band gap is also given so that information about the material is
complete: with a given (Bp, Bn, Eg), the temperatureTpeak atwhich the peak zT occurs
is decided because kBTpeak = Eg/(ηg)peak, where (ηg)peak is determined by (Bp, Bn).
The relation is somewhat recursive because the Bi’s actually depend on T , which is
taken into account for now by referring to (Bi)peak. Now, the goal is to extract the two
independent parameters from [(Bp)peak, (Bn)peak, Eg] that will dictate (zT)peak (it has
been identified in the previous argument that there should be only two independent
variables that determine (zT)peak). The first independent variable is (Bn/Bp)peak,
which is simply (σE0,n/σE0,p)peak. Recall that, for deformation potential scattering,
σE0 is ideally temperature-independent. Even when it is moderately dependent on
temperature, the dependency is likely to be similar for the two types of carriers.
Therefore, it seems fairly general to use σE0,n/σE0,p, not necessarily restricted to a
temperature of T = Tpeak. Next, we identify that

(Bn)peak =

(
kB
e

)2 σE0,n

κL
Tpeak =

(
kB
e

)2 σE0,n

κL

Eg

kB(ηg)peak
. (6.15)

Again, the peak subscript was dropped from σE0,n, anticipating a nearly tempera-
ture independent value. Notice here that (ηg)peak is what is already determined by
(Bn)peak and σE0,n/σE0,p which makes it a redundant term for extracting indepen-
dent variables. Finally, the p- and n-type is replaced with minority and majority
carriers, because the interest usually is in the peak zT obtainable with majority
carriers regardless of its type. Therefore, we can write (zT)peak as a function of two
independent dimensionless variables:

(zT)peak = f
(

kB

e2
σE0,major

κL
Eg ,

σE0,major

σE0,minor

)
. (6.16)

These two independent variables could be defined as the set of dimensionless ma-
terial quality factors for peak zT . For a more linear prediction of peak zT , a square
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Figure 6.5: Peak zT and Tpeak due to majority carriers from the quality factors
(B1, B2) for bipolar conductors. (a) The peak zT value obtainable for given quality
factors (B1, B2). (b) The reduced band gap Eg/kBT at which the peak zT occurs.
Example calculation: if B2 = 1 and B1 = 1.7, the peak zT obtainable is zT ≈ 1; this
peak zT occurs at a reduced gap Eg/kBT ≈ 6.1; if the band gap is Eg = 0.3 eV, then
the peak zT would occur at 0.3 eV/6.1kB ≈ 570 K .
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root is taken on the first:

(B1, B2) =
(√

kB

e2
σE0,major

κL
Eg ,

σE0,major

σE0,minor

)
. (6.17)

The relation between (zT)peak and (B1, B2) is plotted in Fig.6.5a. It is seen that the
(zT)peak is approximately linear with respect to B1 for a given B2 in the practical
range. Fig.6.5b shows how ηg changes with the bipolar quality factors, allowing one
to deduce Tpeak from a known Eg or the other way around.

The bipolar quality factor analysis also provides a quantitative evaluation of how
Tpeak is increased from an enlarged band gap. For a fixed (B1, B2), Tpeak ∝ Eg

as shown in Fig.6.5b. In real materials, however, B1 and Eg are correlated [10,
11], where an increase in Eg (e.g. by alloying) results in a decreased B1 due to
an increased band effective mass [12]. As a result, the increase in Tpeak from
an enlarged Eg is somewhat more than the linear scaling. For example, assume
a material with (B1, B2) = (2, 1) and band gap 0.2 eV. From Fig.6.5b, ηg ≈ 6.7
meaning that Tpeak ≈ 350 K. Then, assume that the band gap is enlarged to 0.25 eV
at the expense of a decrease in B1 to 1.8. The simple scaling relation would suggest
an increase in Tpeak to ≈ 430 K, but the reduced B1 now means ηg ≈ 6.3 which gives
Tpeak ≈ 460 K.

This method of evaluatingTpeak could be useful for high throughput material search-
ing where a proper descriptor is needed to evaluate the potential of a material.
Using the band gap as one of the descriptors is common in high throughput material
searching and screening [13–15], but there is no good descriptor for Tpeak other than
the qualitative understanding that narrow gap materials give a lower Tpeak. Use of
(B1, B2) can provide this information. For example, to screen for the requirement of
Tpeak > 300 K, one could look for Eg/(ηg)peak > 300 K, where (ηg)peak can be found
from a look up table similar to that of Fig.6.5b.

The benefit of having a large B2, demonstrated in Fig.6.5, highlights the significance
of having a high contrast in the weightedmobility between themajority andminority
carriers (in band conductors, the ratio ofσE0’s is equivalent to the ratio of µw’s). High
valley degeneracy in the majority carrier band is one of the electronic structures that
could give rise to a high B2. Many n-type Zintl compounds and related materials are
predicted to have high valley degeneracy in the conduction band (and low degeneracy
in the valence band) [16–19], which would result in a high B2.
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6.5 Appexdix: Derivation of bipolar thermal conductivity
Here, the electronic bipolar thermal conductivity (ambipolar diffusion thermal con-
ductivity), shown in Eq.6.9, is derived. Although originally studied in the context
of bipolar conduction [7], it will be shown that whenever there are two different
types of electronic carriers contributing to conduction in parallel channels, there
is additional thermal transport [9]. In fact, even when the two carriers are both
n-type (or both p-type), there is additional thermal transport if those two carriers
have different individual Seebeck coefficients (as suggested by Eq.6.9). The effect
is simply much larger when the two carriers have opposite signs in the Seebeck
coefficient.

Assume the presence of two types of electronic carriers p and n, which will be noted
with italic subscripts. Although labeled p and n, each does not necessarily have
to be p- or n-type in this derivation (they can be any type). Recall the heat flux
equation in the presence of both an electric field and temperature gradient (Eq.1.26)
which can be rewritten by taking into account of the carrier types:

U = TSσE − (κ0,p + κ0,n)∇T . (6.18)

Here, S and σ are now that from the combined contribution from both types as in
Eqs.6.7 and 6.8. Since thermal conductivity is defined in the zero current condition
(i.e. J = 0), E is substituted with S∇T :

U |J=0 = −(−TS2σ + κ0,p + κ0,n)∇T = −κ∇T . (6.19)

The electronic thermal conductivity in the presence of only one type of carrier is
κe,i = κ0,i − TS2

i σi (Eq.1.29). Then substituting κ0,i’s in Eq.6.19 gives

κ = κe,p + κe,n + TS2
pσp + TS2

nσn − TS2σ

= κe,p + κe,n +
σpσn

σ

(
Sp − Sn

)2 T

= κe,p + κe,n + κB.

(6.20)

Setting p =p-type and n =n-type gives Eq.6.9, the bipolar thermal conductivity.
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C h a p t e r 7

SEEBECK METROLOGY: THERMOCOUPLE PROBE ISSUES
AND IMPROVEMENT STRATEGIES

How information of the Seebeck coefficient can add much insight into the under-
standing of solids has been shown throughout the previous chapters. Measuring the
Seebeck coefficient is a relatively easy experiment, and many commercial instru-
ments offer the capability to quickly obtain a Seebeck value. However, in contrast
to the easiness of the measurement itself, ensuring the accuracy of a Seebeck
measurement is a very challenging process. Several concerns regarding popular
measurement systems have been raised, but the general lack of appreciation on the
issue, partly stemming from the reward system in the modern research community
where there is little incentive to scrutinize such issues, has limited improvements in
the Seebeck metrology.

In this chapter, measurement issues related to the thermocouple probe are discussed.
This is a topic that has not been discussed much compared with other issues such as
the cold-finger effect in four-probe measurements systems. Ongoing experimental
effort to resolve some of the probe issues are discussed.

7.1 Limitations in using conventional thermocouples as probes
A Seebeck measurement requires the simultaneous measurement of temperature
and voltage on a sample (Eq.1.13). Thermocouples are used as the sample probes
because the couple junction gives a measurement of the temperature and those same
wires can be used to measure the voltage at two sample terminals (Fig.7.1). Most
popularly used in Seebeck measurements are type K (Chromel alloy Ni90–Cr10
wt.% as p-wire; Alumel alloy Ni95–Mn2–Al2–Si1 wt.% as n-wire) and type S
(Pt90–Rh10 wt.% as p-wire; Pt as n-wire) thermocouples. Customized couples of
Chromel/Nb or W/Nb are also used by a number of groups [2]. Limitations of these
thermocouples will be discussed in this section.

First to be pointed out is that a near-zero thermopower is preferred as one of
the thermocouple wires, so that it could be used as the voltage probing wire that
contacts with the sample (i.e. red wire in Fig.7.1). This requirement is related to
the voltage and temperature probe position difference illustrated in Fig.7.1, which
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Sample
TC1+ TC2+

TC1- TC2-

∆T

∆V

Figure 7.1: Schematic of the thermocouple placement on a sample for Seebeck
measurements. The temperature difference ∆T is measured between two thermo-
couple junctions, whereas the voltage difference ∆V is measured between the two
sample terminals. This position difference for ∆T and ∆V contributes to an error
in the Seebeck coefficient measurement. Another source of error is the temper-
ature difference between the two probe wire contacts (red wire contacts with the
sample). Because the temperatures are different, an additional voltage from the red
wire Seebeck coefficient is measured in ∆V , which should be corrected from the
measurement. However, that correction relies on the measured ∆T , which is from
a different position. Therefore, the error due to the position difference between ∆V
and ∆T is amplified with this second source of error.

is an inherent problem in any thermocouple-sample contact geometry. This error is
minimized by avoiding the use of junction beads (welded junctions in commercial
thermocouples) and also by using wires as thin as possible; nevertheless the error
cannot be completely eliminated. Then, this error propagates into the probe wire
Seebeck voltage that must be corrected from the measured voltage difference ∆V .
This second error related to the wire thermoelectric voltage can be minimized if the
wire Seebeck coefficient is close to zero. Nb is a very good metal in this regards
because its thermopower is |S | < 2 µV/K up to around 750 °C as shown in Fig.7.2.
Standard thermocouples like type K or type S are not ideal for this issue because of
the large Seebeck coefficient on both p- and n-wires.

Next is the reactivity of the thermocouple with sample materials. While thermocou-
ple reactivity is a sample specific issue, there are some important general tendencies.
Pt-based type S thermocouples are considered to be one of the most stable materials
being resistant against oxidation; thus they are often used for standard references and
for measurements on oxides where an oxygen atmosphere might be needed. How-
ever, Pt is reactive with many chalcogenide or pnictide materials, or with the vapor
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Figure 7.2: Thermoelectric properties of Nb. (a) Seebeck coefficient (b) Thermo-
electric voltage with respect to a reference junction at 0°C. Curves are based on data
from Ref.[1].

pressure produced from those materials (for example, see Fig.7.3 demonstrating the
reactivity of Pt with Sb vapor pressure). For thermoelectric research where much of
the high performance materials are chalcogenides or pnictides, this issue could be
a potential issue for both thermocouple degradation and inaccurate measurements.
It is not well studied if a reaction concurrent to the measurement could contribute
to additional voltages (e.g. temperature dependent electrochemical potentials), but
such hypothetical scenarios would be able to explain some unexplained systematic
tendencies observed when measuring thermoelectric materials with type S thermo-
couples. In both Type K and Chromel/Nb thermocouples, the Ni contained in the
Chromel alloy is of primary concern. Although Ni is generally stable with most
materials at moderate temperatures, at higher temperatures it becomes reactive with
many materials. For example, Chromel reactivity with Cu2Se has been observed at
above 600 °C in the course of studies presented in Ch.5, even when Graphoil (flexi-
ble graphite) was placed between the thermocouple and the sample. 500-600 °C is
considered as a general guideline for the upper limit in measurements on thermo-
electric materials. In this regard, Nb and W are excellent materials because they are
inert against most thermoelectric materials up to higher temperatures above 750 °C.

Last is the small thermopower at low temperatures leading to a limited tempera-
ture range where the thermocouples remain practical. W has a thermopower of
|S | < 5 µV/K below 100 °C. As a result, a W/Nb couple, which is one of the
most inert thermocouples at high temperatures for thermoelectric materials, only
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after annealing 72h @500 °C

control tube

test tube
 TC

Sb shots

Figure 7.3: Pt reactivity with Sb vapor pressure. A type S thermocouple was sealed
in a vacuumed fused quartz tube together with shots of Sb. The thermocouple
and Sb were placed at opposite ends of the tube. After annealing at 500 °C, the
thermocouple exposed to Sb vapor pressure turned black while no visual sign of Sb
deposition was observed at any other places in the tube. Compare with the control
where the thermocouple remained intact after the identical annealing conditions but
without the Sb vapor pressure.

produces≈ 0.3 mV for a 0-100 °C difference (Fig.7.4). This does not only mean that
the measurement signal is susceptible to noise, but also that the thermocouple cali-
bration table accuracy could be limited around room temperature. It is empirically
known that W/Nb thermocouples yield poor measurements at <200 °C. This limited
range becomes inconvenient in the study of wide temperature materials because one
often needs to combine two measurements, one with Chromel/Nb for near room
temperature and then another with W/Nb for high temperature to get one full data
set.

7.2 Candidate thermocouples and testing
To overcome the limitations of Chromel/Nb or W/Nb, it is desired to have a p-wire
that could replace Chromel and W: a material that is inert with most chalcogenides
or pnictides, usable up to high temperatures (minimally > 750 °C), and with a
sufficiently large thermopower at room temperature to produce > 1 mV for a 0-
100 °C difference. The first candidate is the p-wire of type C thermocouples, which
is a W-based alloy (W95–Re5 wt.%, abbreviated W95Re5 hereafter) that shares
much of the features of W but with a higher low temperature thermopower due to
the addition ofRe. Since typeC is an industry-level standard thermocouple (although
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Figure 7.4: W95Re5/Nb thermocouples for Seebeck measurements. (a) Calibrated
thermoelectric voltage of W95Re5/Nb with respect to a reference junction at 0°C
(solid line), comparedwith typeChromel/Nb (dashed line) andW/Nb thermocouples
(dotted line). Calibration was done by putting W95Re5/Nb in contact with a type S
thermocouple in a vacuum furnace, and repeating heating and cooling cycles while
recording voltage readings. Chromel data is from ITS-90 [3, 4]; W data is from
Refs.[5, 6]; Nb data is from Fig.7.2. (b) Near room-temperature measurement test
on a Bi2Te3 sample. The Seebeck coefficients measured using pristine W95Re5/Nb
thermocouples agree well with those made using Chromel/Nb thermocouples.

not ANSI standard), it is expected to meet the other basic stability requirements as
a thermocouple. However, it will be shown in this section that, surprisingly, the
W-Re alloy lacks the basic stability required for use in the < 1000 °C range. Other
candidate materials will be discussed at the end.

Measurement tests in Fig.7.4 show that the signal level of the W95Re5/Nb thermo-
couple is good enough to make reliable Seebeck measurements near room temper-
ature. For the test, high purity W95Re5 wires were purchased from GoodFellow
(W025120). The thermoelectric voltage table for reading temperatures was cal-
ibrated against a type S thermocouple. The results (Fig.7.4a) show signal level
intermediate between Chromel/Nb and W/Nb. Especially near room temperature,
where the W/Nb shows a slope approaching zero in the voltage curve, W95Re5/Nb
maintains a finite slope. Using the calibration table and pristine W95Re5/Nb ther-
mocouples, Seebeck measurements on a Bi2Te3 sample were made. As shown in
Fig.7.4b, the results showed very good agreement with the results measured using
Chromel/Nb thermocouples.

In the stability test, however, the W95Re5/Nb couple showed drift that resulted
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Figure 7.5: Drift in the thermoelectric voltage signal inW95Re5/Nb thermocouples.
(a) During a 3d annealing test at 900 °C, a reduction in the thermoelectric voltage
is observed. (b) The resulting voltage curve after the 900 °C annealing shows a
permanent reduction in signal.

in permanent reduction in the voltage signal. Fig.7.5 shows the result from a
900 °C annealing test revealing the stability problem. It is rather unexpected for
a thermocouple used widely in the industry for high temperature environments to
exhibit such drift behavior. An interesting report by Williams et al. indicates that
the phase boundary for Re solubility could be incorrect in the phase diagram; from
studies on the W95Re5 composition, Re was found to precipitate from irradiation
at 900 °C [7]. The driving force for Re precipitation would explain the reduction in
the Seebeck coefficient because without Re the main phase W has a much smaller
Seebeck coefficient. Decalibration of type C thermocouples at higher temperatures
(1200-1500 °C) has also been noted in Ref.[8]. The findings in this section and
the few literature reports suggest that one may have to be cautious for using type C
thermocouples, not just for Seebeck measurements but for any instrumentation.

What could be another candidate if W95Re5 does not work? To avoid concerns
about precipitation, it seems best to use single element materials that share the key
properties of W95Re5. Single element refractory metals other than W and Nb are
Re, Ta, Mo. Out the three, Mo seems to be promising candidate. It has the highest
Seebeck coefficient among the three (S > 6 µV/K near room temperature [1]), much
more ductile than W, and known to be inert against a large variety of thermoelectric
materials.
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7.3 Thermocouple vacuum feedthroughs: issues in commercial products and
custom solutions

One of the unfortunate customs in temperaturemeasurement is the use of thermocou-
ple extension wires. They are cheap alternatives of the actual thermocouple material
that approximately match the thermoelectric voltage curve of the real thermocouple.
Because they are only approximately matched, any temperature difference between
the extension wire terminals contribute to measurement errors. Unless making ex-
tensions across virtually isothermal environments, use of extension wires should be
avoided. Often it is not clearly specified by vendors or manufacturers whether their
product use extension wires or not, and more than often they are used even when
the specifications suggest otherwise.

The problem is much more serious for Seebeck measurements. The extension wires
are made of completely different material, and the approximate matching in signal
is only designed to be achieved in pairs. The Seebeck coefficient of the individual
extension wire (e.g. the p-leg extension wire of type C) could even have a different
sign than the original thermocouple material. Now, recall that for the sample voltage
measurement in a Seebeck measuring setup, only one wire (not the pair) is used, and
the subtraction of wire-contributed thermoelectric voltage is necessary. In this case,
use of extension wire means that one would be erroneously correcting the measured
voltage (which could even be of different sign to only make the the error bigger by
the “correction”). Therefore, for Seebeck measurements the use of extension wires
should be avoided altogether.

The problem with avoiding the use of extension wires is that it is sometimes not
possible by just using commercially available products. To feed the thermocouple
wires into a vacuum chamber, one needs a vacuum feedthrough. However, almost
all commercial vacuum feedthroughs are made with extension grade material, not
the actual thermocouple material (testing products that were advertised to use the
actual thermocouplematerial showed that it was just false advertising possibly due to
ignorance). Building a reference junction inside the chamber is also not a convenient
solution.

Here, a very easy way to build custom vacuum feedthroughs with almost any type of
wires is introduced. The idea is to pass thermocouple wires through thin gas tubes
(typically 1/4 in.) and seal the inner tube with vacuum-rated sealants. Then the gas
tube could be fed into the chamber through commercially available gas feedthroughs.
TorrSeal (Agilent) is a good sealant epoxy that could be used. It is rated for ultra
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(a)
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(c)
after 24h curing at RT

electrical insulation >100M Ohms

(d)

Figure 7.6: Making a custom thermocouple feedthrough for vacuum chambers. (a)
For easy placement and isolation between two wires, the wires are inserted in a
multi-bore alumina tube. The tube is then inserted into a stainless steel 1/4 in. tube.
Stuffing in wax paper at one side of the tube can help to maintain the tube in a neutral
position throughout the process. (b) The tube is filled in with TorrSeal epoxy. After
applying the expoxy, the ceramic tube is pulled into the stainless steel tube to help
move the epoxy in. Multiple cycles are repeated to get a thick layer of epoxy. (c)
Cured at room temperature for a day. (d) The gas tube is attached to a commercial
gas feed through using standard compression fittings with sleeves.
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high vacuum, curable at room temperature (it is important to be able to easily cure
without oxidizing the thermocouple wire), has extremely good adhesion and strength
that works well as long as it is kept away from hot zones (< 90 °C). Ceramabond
552 (Armeco) is another good option that stands up to higher temperatures (up to
1600 °C), but it requires curing by annealing, has a shorter shelf life, and has inferior
adhesion properties compared to TorrSeal. The process is illustrated in Fig.7.6.
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C h a p t e r 8

CONCLUDING REMARKS

Motivation to establish better charge transport analysis methods or procedures
stemmed from the lack of successful effort in the literature for testing transport
models with experimental data. Previously, experimental data have usually been
interpreted by focusing on the temperature dependency of electrical conductivity,
Seebeck coefficient, or Hall mobility. While these signatures do provide general
clues in the early stage of investigation, there are many cases where experimental
data have been reported with questionable interpretations or conclusions based on
such simple temperature-dependency analyses.

In this thesis, it has been demonstrated that a simple analysis on the interrelation
between the Seebeck coefficient and electrical conductivity offers powerful insight
about transport mechanisms. Different mechanisms were more straightforwardly
distinguished in the interrelation analysis, as exemplified by cases where previous
interpretations regarding particular transport mechanisms were shown to be incon-
sistent with the claimed model by using only the data already reported in the same
study. Some examples include: near-room temperature activated conduction in poly-
crystalline Mg3Sb2-based alloys shown to be from grain boundary resistance rather
than ionized-impurity scattering; high temperature transport in n-type SrTiO3 to be
consistent with deformation potential scattering rather than polar optical phonon
scattering, ionized impurity scattering, or electron-electron scattering; conducting
polymers to have a dispersive transport spectrum rather than that described by
hopping models with relatively narrow energy ranges.

Moreover, it has been shown that, from a more general perspective, the interre-
lation between transport properties could be understood as information about the
underlying function that governs transport properties for a given Fermi-level. This
function — the transport function — was shown to govern the Seebeck coefficient,
conductivity, and also the Lorenz number of fermion quasiparticles. In this con-
text, the analysis scheme established in this thesis could be viewed as an attempt to
change the practice of testing physical models from an individually-projected level
to a governing-function level; rather than comparing each measured property with a
different function for each property, comparing the transport function, phenomeno-
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logically determined from experiments, with the transport function underlying a
particular physical or mechanistic model is found to be more useful.

Although this analysis framework was able to yield new insight in the numerous
cases tackled throughout this thesis, certain challenges and limitations are expected
to be encountered when applied to a wider variety of cases with increased complex-
ity. All cases studied in this thesis followed one of the archetype type functional
forms; however, in general, deviations from such typical behavior can result from
a variety of causes. For example, in band conductors, when multiple bands with
different symmetry are involved, the transport function becomes more complicated
than a simple power dependency on energy. Other complexities such as strong in-
tervalley scattering, multiple scattering processes with comparative rates, or strong
non-parabolicity near the band edge could potentially make the transport analysis
more difficult. In hopping conductors, the narrow energy treatment might prove
to be an oversimplification especially at lower temperatures. Another big ques-
tion related to the analysis framework described in this thesis is the influence of
electron-electron interactions; at a certain point, strong interactions are anticipated
to make the fermion quasiparticle description not effective. Last, but not least, is the
inherent limitation in the ability to flesh out mechanistic details about transport from
the interrelation analysis. For example, although the transport function of SrTiO3
was found to be consistent with deformation potential scattering in its energy and
temperature dependency, it is not clear why such a simple behavior, as if determined
by a single deformation potential value, is observed when different phonon branches
are supposed to be involved. On one hand, this is also an inherent limit on the infor-
mation that can be inferred from transport analysis. On the other hand, one might
be able to benefit from expanding the Seebeck coefficient-conductivity analysis to,
for example, strain dependencies. Much benefit is anticipated from future studies
tackling these challenges and limitations.

As a final remark, it is hoped that the charge transport analysis framework shown
here becomes a useful tool especially for experimentalists. With increased reports
on the Seebeck coefficient and its interrelation to conductivity, facilitation of a
better understanding on charge transport and related fundamental properties of the
solid-state is anticipated.
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A p p e n d i x A

NEAR-EQUILIBRIUM TRANSPORT EQUATIONS:
THERMODYNAMIC PHENOMENOLOGY

The transport properties like conductivity in Ch.1 were defined based on the linear
response regime where departure from an equilibrium quantity was described with
the leading order term of the equilibrium-restoring process that produced a flux lin-
early proportional to the departure from equilibrium (e.g. Current density according
to a linear Ohm’s law to restore a charge distribution to a state where electric field
is zero). This leading order term of the equilibrium-restoring process was also the
recurring theme in the Boltzmann transport equation solving.

Transport phenomena can be understood inmore general terms of the thermodynam-
ics for irreversible processes, which leads to thermodynamic phenomenology that
defines transport properties and also explains certain identities such as the Kelvin
relations (relations between the Seebeck coefficient, Peltier coefficient, and Thomp-
son coefficient). In this appendix 1, the heat and charge transport will be described
in terms of generalized driving forces and fluxes. The second Kelvin relation will
be obtained using Onsager reciprocity.

A.1 Generalized forces, fluxes, and Onsager reciprocity
An equilibrium state is when there is no change in entropy dS with respect to any
system variable ξi. In non-equilibrium, the change in entropy could be written in an
expansion form:

dS =
∑

i

dS
δξi

δξi + . . . , (A.1)

where dS > 0 and entropy is always produced. Then, the leading order term for
entropy production rate (entropy source strength) is

dS
dt
=

∑
i

Fi
δξi

dt
, (A.2)

whereFi =
dS
δξi

is a “generalized force” that drives the systemback to equilibriumwith
the means of a “generalized flux” δξi

dt . When the irreversible processes in a system
1Symbols in this appendix will be defined independently from those in other chapters to deliver

the content more easily with conventional thermodynamics convention. Here, S is entropy and the
Seebeck coefficient is replaced with α. Fluxes will be generalized to Ji with i indicating the species
or kind. µ is chemical potential rather than mobility.
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are described with this linear term Fi, it is referred to as “near-equilibrium” and
produces a steady-state such that fluxes are proportional to Fi’s. In near-equilibrium,
equilibrium thermodynamic variables such as temperature T or chemical potential
µ are well defined at a local position in space as stationary states that minimize
the local entropy production [1]. Therefore, non-equilibrium phenomena can be
described with equilibrium thermodynamic variables.

Onsager coefficients L are defined as the proportional constants between the gener-
alized forces and fluxes:

δξi

dt
=

∑
i j

Li j Fj . (A.3)

For a single isolated process (i = j), the flux only depends on its own driving force.
In general, however, any generalized driving force Fj in the system can drive other
fluxes δξi

dt (i , j) as long as the Onsager coefficient is non-zero (Lij , 0). Time-
reversal symmetry dictates certain identities between these “interference” terms,
which is the Onsager reciprocity. For parameters ξi such as energy or particle
number that do not depend on the direction of particle motion (even parity), the
Onsager reciprocity relation is

Li j = L ji . (A.4)

A.2 Charge transport from electric fields and temperature gradients
Primary interest here is charge transport under the presence of two driving forces:
an electric field E and temperature gradient ∆T . Because not just charge but also
heat is transported, Eq.A.3 suggests that both fluxes need to be considered for a
complete and proper description which takes into account of the interference terms
(i , j). We wish to identify the forms of the generalized forces and fluxes in the
presence of E and ∆T by finding expressions for the entropy production rate, but
then how should flux be related to entropy? The answer depends on how one decides
to define heat flux (the non-uniqueness of heat flux is discussed in Ref.[1]). The
definition we will use here is

JQ = T JS, (A.5)

where JQ and JS are heat flux and entropy flux, respectively. This definition was
used by Callen [2] and is in analogy to the equilibrium thermodynamic relation
δQ = TdS. This definition seems to be more popular in the literature, possibly
because it is more intuitive. The flux equations containing the Onsager coefficients
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depend on the heat flux definition, but the description for final physical quantities
are not affected2.

To use Eq.A.5 to relate entropy production to charge flux, we use the thermody-
namic identity for open systems under an electric potential (no mechanical work is
considered):

dU = TdS +
∑

i

(µi + qiφ)dNi

= TdS +
∑

i

µ̃idNi .
(A.7)

Here U is internal energy, q is particle charge, and φ is electric potential. µ̃i is an
alternate definition for chemical potential including the long range electric potential
contribution. To make connection to Eq.A.5, the identity Eq.A.7 is converted to
fluxes:

JU = T JS + µ̃eJe, (A.8)

where JU is energy flux and Je is the particle number flux of charges. Since we are
only considering electronic charge carriers, no other particle species appear in this
flux equation.

Recall that an expression for entropy production rate is needed (Eq.A.2) to find
generalized forces and fluxes. In steady-state, local entropy production is equal to
the divergence of entropy flux such as dS/dt = ∇ · JS, which can be used to find the
entropy production rate from Eq.A.8. Noting that there is no divergence in energy
or particle (conserved quantities) fluxes at steady-state (∇ · JU = 0 and ∇ · Je = 0,
respectively), it is found that

dS
dt
= ∇ · JS

= JU · ∇
(

1
T

)
− Je · ∇

(
µ̃e
T

)
.

(A.9)

Although this equation identifies generalized [force↔ flux] pairs as
[
∇

(
1
T

)
↔ JU

]
and

[
∇

(
µ̃e
T

)
↔ −Je

]
through comparison with Eq.A.2, it is favored to have an

2Another definition worth noting is the one used by deGroot [1] in his monograph which is one
of the most complete and comprehensive references on non-equilibrium transport.

JdeGroot
Q = T JS +

∑
i

µi Ji, (A.6)

where µi is the chemical potential of species i and Ji is its flux. When reading the literature, it
should be kept in mind that depending on the heat flux definition the Onsager equations could be
quite different and thus should not be mix-matched.
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expression for JQ rather than JU . Eqs.A.5 and A.8 can be substituted into Eq.A.9
to find

dS
dt
= JQ · ∇

(
1
T

)
− Je

T
· ∇µ̃e. (A.10)

Here, the relevant pairs for generalized forces andfluxes are identified as
[
∇

(
1
T

)
↔ JQ

]
and

[∇µ̃e
T ↔ −Je

]
. Associating theminus signwith either force or flux is an arbitrary

choice.

The Onsager coefficients can then be defined from the flux equations:

JQ = LQQ∇
(

1
T

)
+ LQe

∇µ̃e
T

−Je = LeQ∇
(

1
T

)
+ Lee

∇µ̃e
T
,

(A.11)

where Onsager reciprocity (Eq.A.4) guarantees LQe = LeQ. By rewriting the equa-
tion in terms of conventional forms of driving forces:

JQ = −
LQQ

T2 ∇T +
LQe

T
∇µ̃e

Je = +
LeQ

T2 ∇T − Lee
T
∇µ̃e.

(A.12)

Now, transport properties can be expressed in terms of these Onsager coefficients.
Current density I is qJe (recall that q contains a sign) and the measured or observed
potential gradient is ∇µ̃e/q (rather than just ∇φ as was discussed in footnote 6 in
Ch.1). Electrical conductivity σ therefore becomes

σ =
qJe
−∇µ̃e/q

����
∇T=0

= e2 Lee
T
, (A.13)

where q2 was replaced with e2 since the sign of q does not matter in squared from.
The Seebeck coefficient α is defined at Je = 0, which gives

α =
−∇µ̃e/q
∇T

����
Je=0
= − LeQ

qT Lee
. (A.14)

The Peltier coefficient Π is obtained as

Π =
JQ

qJe

����
∇T=0

= − LQe

qLee
. (A.15)

Recall that LQe = LeQ from Onsager reciprocity. Then Π and α can be related from
Eqs.A.14 and A.15:

Π = Tα, (A.16)

which is the second Kelvin relation.
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