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ABSTRACT

Over the past decades DNA sequencing has become significantly cheaper and faster,
which has enabled the accumulation of a huge amount of genomic data. However,
much of this genomic data is illegible to us. For noncoding regions of the genome in
particular, it is difficult to determine what role is played by specific DNA sequences.
Here we focus on regions of DNA that play a role in transcriptional regulation. We
develop models and techniques that allow us to discover new regulatory sequences
and better understand how DNA sequence determines regulatory output.

We start by considering how quantitative models serve as a powerful tool for testing
our understanding of biological systems. We apply a statistical mechanical frame-
work that incorporates the Monod-Wyman-Changeux model to analyze the effects
of allostery in simple repression, using the lac operon as a test case. By fitting our
model to experimental data, we are able to determine the values of the unknown pa-
rameter values in our model. We then show that we can use the model to accurately
predict the induction responses of an array of simple repression constructs with a
variety of repressor copy numbers and repressor binding energies.

Next, we consider how the DNA sequence of a promoter region can provide details
about how the promoter is regulated. We begin by describing an approach for dis-
covering regulatory architectures for promoters whose regulation has not previously
been studied. We focus on six promoters from E. coli including three well-studied
promoters (rel, mar, and lac) to serve as test cases. We use the massively parallel
reporter assay Sort-Seq to identify transcription factor binding sites with base-pair
resolution, determine the regulatory role of each binding site, and infer energy ma-
trices for each binding site. Then, we use DNA affinity chromatography and mass
spectrometry to identify each transcription factor.

We conclude with an in vivo approach for analyzing the sequence-dependence of
transcription factor binding energies. Again using Sort-Seq, we show that we can
represent transcription factor binding sites using energy matrices in absolute energy
units. We then show that these energy matrices can be used to accurately predict
the binding energies of mutated binding sites. We provide several examples of
how understanding the relationship between DNA sequence and transcription factor
binding provides us with a foundation for addressing additional scientific topics,
such as the co-evolution of transcription factors and their binding sites.
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C h a p t e r 1

INTRODUCTION

It has been said that we live in the “genomic era,” a time where we can readily
sequence the human genome (or any other genome, if we can get a sufficient DNA
sample) [1]. However, it remains difficult to interpret the information within a
genome. This is especially true of non-coding sequences such as promoters, for
which there is no straightforward regulatory “code.” Our ability to interpret these
non-coding sequences relies on our understanding of how DNA sequence directs
activities such as transcriptional regulation. This understanding is aided significantly
when we can devise quantitative models that predict what will occur if the DNA
sequence is altered.

In this dissertation, I focus on the challenge of creating an effective theory-experiment
dialogue for dissecting transcriptional regulation. My work is built on a foundation
of previous work from the Phillips lab which aimed to address the same challenge
[2–11]. As a lab we are driven by the philosophy that a system cannot be considered
well-understood if one cannot make falsifiable predictions about the system using
generalizable models. By engaging with the many challenges of modeling transcrip-
tional regulation, we learn information that is useful to the study of transcription and
the interpretation of DNA sequences. More broadly, we help establish a quantitative
approach to biology that can be applied to any system, large or small.

In this chapter, I provide a background for the work that will be presented in Chapters
2-4. I begin by discussing the role of transcription in the central dogma of molecular
biology and reviewing the various mechanisms by which cells regulate gene activity.
Next, I provide a primer on techniques for modeling transcriptional regulation using
statistical mechanics. This approach to modeling transcriptional regulation is used
throughout this dissertation. I then discuss what is known about transcriptional
regulation in E. coli, and make the argument that there is much left to discover
even for this highly-studied model organism. Finally, I provide an overview of the
experimental and computational techniques used in this work.

I proceed in Chapter 2 with a thorough analysis of a thermodynamic model for
a transcriptional regulatory system that incorporates the concept of allostery. In
allosteric regulation, a ligand can act as a signal that stabilizes an active or inactive
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form of a transcription factor. My coauthors and I present a general theory of
allosteric transcriptional regulation using theMonod-Wyman-Changeuxmodel [12].
We then rigorously test this model over a broad range of experimental parameter
space using a promoter construct in which an allosteric repressor may bind to the
promoter to prevent transcription. As shown in Figure 1.1A, we fit the model to
a single data set to determine the values of a pair of parameters with previously
unknown values. These were the only unknown parameter values for this system
that were relevant to the model. With these parameter values in hand we were able
to accurately predict the induction responses of multiple bacterial strains.

The aims of the study described in Chapter 2 are twofold. First, by comparing
the predictions of our theoretical model against experimental measurements, we
aim to confirm whether the assumptions underlying our model accurately describe
allosteric transcriptional regulation. Second, we contrast our approach of predictive
modeling against the common approach of descriptive modeling, in which a model
such as a Hill function is fitted to the data after the fact. While descriptive models
of this sort may be useful for identifying certain elements of the system, such
as cooperativity between ligand binding sites, our predictive modeling approach
allows us to predict how any perturbation to system parameters alters the system’s
phenotypic response. This ability to predict a system’s response to perturbations
implies a deep understanding of the primary inputs that determine the system’s
output.

In order to write a predictive thermodynamic model for a promoter, it is necessary to
know the promoter’s regulatory structure. A promoter’s regulatory structure consists
of its specific arrangement of transcription factor binding sites and the interactions
between the transcription factors that bind to these sites. For the majority of
promoters, however, the regulatory structure is unknown or only partially known,
which limits rigorous modeling to synthetic promoters or the handful of natural
promoters for which we definitively know the regulatory structure. In Chapter 3
we address this problem by introducing a novel approach to discovering regulatory
structures for individual promoters. We use the assay Sort-Seq [13] in conjunction
with DNA affinity chromatography and mass spectrometry to find transcription
factor binding sites, determine the transcription factors’ identities, and ascertain
whether each transcription factor behaves as an activator or a repressor. We identify
and test putative regulatory structures for a set of promoters which previously had no
regulatory annotation. Figure 1.1B shows an example of a regulatory architecture
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that was inferred using this method for a previously-unannotated regulatory region.

Regulatory architectures are necessary in order to make accurate predictions of
transcriptional activity, but it is also necessary to know the binding energies of the
transcription factors within the architecture. In Chapter 4 we discuss an approach
to modeling DNA sequence-specific transcription factor binding energies in vivo,
again using Sort-Seq. We develop models that allow us to predict the binding
energy between a transcription factor and a mutated version of its binding site,
using lac repressor as a test case. Figure 1.1C shows the agreement between
predictions made using these models and experimental measurements of binding
energies for an array of binding site mutants. We then show that this modeling
technique can be used to address a number of scientific questions. For example,
we observe how transcription factor sequence specificity changes when amino acid
mutations are made to the transcription factor’s DNA binding domain, which helps
us to understand how transcription factors and their binding sites co-evolve. This
provides yet another example of the importance of quantitative models for deeply
understanding biological mechanisms.

In total, this work presents significant progress toward the goal of being able to
dissect and quantitatively model the regulation of any promoter at will. My coau-
thors and I show that our predictive models provide insights beyond the outputs of
specific regulatory constructs. We demonstrate our ability to identify new regula-
tory architectures and analyze the energetics of transcription factor binding in vivo.
Additionally, I hope that this work will serve as a foundation for future studies that
increase the scope and throughput of regulatory architecture analysis.
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CHAPTER THREE: DISSECTING THE MOLECULAR MECHANISMS OF TRANSCRIPTIONAL REGULATION 

CHAPTER FOUR: MAPPING DNA SEQUENCE TO TRANSCRIPTION FACTOR BINDING ENERGY 
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Figure 1.1: Quantitative modeling of transcriptional regulation. (A) In Chapter
2 we devised a model for simple repression with induction (left), which we used to
predict induction responses for strains with a variety of regulatory parameters. (B)
In Chapter 3 we identified regulatory architectures for unannotated promoters. We
quantified the shift in expression due to mutations at each sequence position in the
promoter (left) and combined these observations with DNA affinity chromatography
and mass spectrometry to infer regulatory architectures (right). (C) In Chapter 4 we
used in vivo techniques to infer energy matrices in absolute energy units, specifically
kBT (left). We used these energy matrices to predict the binding energies of binding
site mutants and confirmed our predictions with experimental measurements (right).
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1.1 The central dogma of molecular biology
As first described by Francis Crick [14], the central dogma of molecular biology
describes how information is transferred from DNA to proteins that carry out the
essential tasks of running and maintaining a cell. Figure 1.2 illustrates the basic
elements of the central dogma.

The transfer of genetic data begins in the genome itself, where genes reside as
regions of double-stranded DNA that code for proteins. It is important to note
that not all DNA in the genome acts as a gene. A gene must be organized into a
series of three-nucleotide groups (codons) that can be translated into amino acids,
beginning with a “start” codon that signals the beginning of the gene and ending
with a “stop” codon that signals the end of the gene. In order for a gene to be
functional, it also requires sequence elements that allow it to be recognized by the
protein complexes that read genetic data (RNA polymerases) and build proteins
(ribosomes), as described below.

To translate a gene’s DNA code into a protein, it must first be copied into a message
that can be read by the ribosomes that build proteins. In a process known as tran-
scription, an RNA polymerase (RNAP) recognizes and binds to a region upstream
of the gene known as a promoter, and then copies the gene into a single-stranded
RNA message known as mRNA.

Next, the mRNA is read by a ribosome. The ribosome facilitates the matching of the
mRNA message to transfer RNAs (tRNAs), which are structures made out of RNA
that include a codon recognition sequence on one end and carry the corresponding
amino acid as cargo on the other end. The ribosome moves along the mRNA codon
by codon. When it encounters a tRNA that correctly matches the current codon, it
removes the amino acid from the tRNA and adds it to a growing polypeptide chain.
Once the polypeptide chain is complete, it self-assembles into three-dimensional
protein structure.

The remarkable thing about this process is that it is nearly identical for all organisms
on earth, hence earning it the title of “central dogma.” There are, however, a few dif-
ferences between prokaryotes and eukaryotes that are worth noting. First, eukaryotic
genes include both coding and non-coding regions. The non-coding regions must
be removed after translation so that the ribosome can read a single coherent mRNA
message. Prokaryotic genes are much more concise by contrast, as they only include
coding DNA. Another notable difference is in the organization of the genome itself.
Eukaryotic genomes are typically distributed across a number of chromosomes in
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Figure 1.2: The central dogma of molecular biology. Genes are encoded as
DNA sequences within the genome. RNA polymerase (RNAP) copies the DNA
as a single-stranded mRNA transcript. Then, ribosomes translate the mRNA into
protein by facilitating the pairing of tRNAs with the mRNA transcript and joining
the associated amino acids together into a polypeptide chain. This polypeptide chain
then generally self-assembles into a protein.

which the DNA is tightly wound around clusters of protein complexes known as
histones to create a DNA packaging complex known as a nucleosome. Importantly,
DNA must be unwound from a nucleosome in order to be accessible for transcrip-
tion. Prokaryotes have smaller genomes that are often contained on a single circular
chromosome, and while structural proteins do play some role in organizing the
genome, the DNA is not as tightly sequestered as it is in eukaryotic nucleosomes
and is generally available for transcription. In spite of these differences, the central
dogma accurately describes the transfer of information fromDNA to protein for both
prokaryotes and eukaryotes. In this work we primarily focus on prokaryotes, and
we note that while eukaryotic genomes possess some complicating factors beyond
what is encountered in prokaryotic genomes, the essential principles governing the
prokaryotic genome can be applied almost without reservation to the eukaryotic
genome.
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1.2 Regulation of protein abundance and activity
As cells enter different environmental conditions or growth states, the copy numbers
and activities of proteins are altered to suit the cells’ changing needs. This is true
for both prokaryotes and eukaryotes [15–19]. It applies to global changes such as
increases in ribosome copy number as a cell’s growth rate increases [16] as well
as highly specific changes like the activation of the lac operon in the presence of
allolactose [20]. There are many mechanisms for controlling protein copy number
and activity, and control can be enacted at any stage of the central dogma: dur-
ing transcription, post-transcription, or even after proteins have been synthesized.
Figure 1.3 illustrates examples of regulation at each stage of the central dogma.

Transcriptional regulation refers to any regulatory mechanism that either helps or
hinders the process of creating an mRNA transcript. In general this is accomplished
by modulating the probabilty that RNAP will bind to the promoter and proceed to
copy the gene. The probability of RNAP binding depends in part on the sequence of
the promoter itself, as the polymerase and any associated sigma factors have DNA
sequence binding preferences and deviating from these preferences will reduce
the probability of binding. However, the promoter sequence is static and cannot
respond to changes in environment or growth state. In order to enact transcriptional
regulation that can change in response to a stimulus, the cell produces DNA-binding
proteins known as transcription factors that bind to the promoter near the RNAP
binding site and modulate RNAP binding activity. For example, in a regulatory
scheme known as simple activation, a transcription factor known as an activator
may bind to the DNA immediately upstream of the RNAP. The activator interacts
with RNAP in a manner that encourages RNAP binding, effectively decreasing the
free energy of RNAP binding and raising the probability that RNAP will bind and
initiate transcription. Similarly, in simple repression a transcription factor known as
a repressor binds within or near the RNAP binding site so that it blocks the RNAP
from binding, thereby reducing the probability of RNAP binding.

Post-transcriptional regulation refers to any modification made to the mRNA tran-
script that affects the number of proteins that can be copied from the transcript. Post-
transcriptional regulation can differ significantly between eukaryotes and prokary-
otes. In eukaryotes, the mRNA must be prepared for translation by removing
non-coding segments and exporting the mRNA from the nucleus. Any alterations to
the mRNA that interfere with these processes can regulate protein abundance by pre-
venting translation. Because prokaryotes do not have these processes, many mecha-
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Figure 1.3: Regulation of protein abundance and activity at each stage of the
central dogma. Gene expression and activity can be regulated at any stage in
the process of translating a gene into a protein. For example, transcription can be
regulated when a transcription factor such as an activator binds to the DNA near the
RNA polymerase binding site and modulates the probability of RNAP binding. A
gene can also be regulated post-transcription, for instance when an mRNA-binding
protein binds to the ribosomal binding site and prevents a ribosome from binding
and translating the gene. Even after proteins have been translated, their activity can
be modulated by modifications such as phosphorylation.

nisms for post-transcriptional regulation in eukaryotes do not occur in prokaryotes.
However, some forms of post-transcriptional regulation are present in prokaryotes.
For example, an mRNA-binding protein such as CsrA may bind at or near the ri-
bosomal binding site and prevent the ribosome from binding to and translating the
mRNA, similar to simple repression in transcriptional regulation [21]. Another
common mechanism for post-transcriptional regulation in prokaryotes is the use of
small RNA regulators (sRNAs). These RNAs possess extensive complementarity
to their target mRNAs and modulate their activity by either binding to the mRNA
and sequestering it (often with the help of a chaperone protein such as Hfq) or by
directing cleavage of mRNAs by RNAse [22].

Finally, post-translational regulation is any modification to a protein that modulates
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its activity. One very common example of this is phosphorylation, whereby the
covalent attachment of a phosphate to a protein instigates a change in the protein’s
structure that switches it between an “active” and “inactive” state. Phosphorylation
often occurs in response to some external signal. For example, in two-component
signal transduction, a small molecule serves as a signal indicating some environ-
mental change. The small molecule binds noncovalently to the receptor region of
a membrane protein and induces the transfer of a phosphate from the membrane
protein to a second protein that creates some response [23]. Alternatively, a small
molecule can bind directly to an allosteric protein, thus inducing a structural change
and creating a response to the signal. Allostery is a key component of the present
work and is discussed in more detail in the next section.

We mention examples of regulation at each stage of the central dogma to give a
sense of the complex interplay of stimuli and responses that determine a cell’s state
at any given time. While mechanisms of regulation at all stages of the central dogma
certainly inform one another, the focus of this work is the quantitative analysis of
transcriptional regulation in prokaryotes. In the following sections we will go into
greater detail regarding the mechanisms of regulation during transcription.
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1.3 Quantitative models of transcriptional regulation
A core principle of this work is the power of quantitative modeling for developing
an understanding of the natural world. Quantitative models allow us to make predic-
tions regarding a system’s behavior. Additionally, analytically-derived quantitative
models allow us to test our understanding of the essential mechanisms that drive a
system.

As an example of how models can be used to test assumptions, for transcription
we typically use models that rely on the assumption that the probability of RNAP
binding to the promoter, pbound , is proportional to gene expression. This assumption
relies on the “occupancy hypothesis” as utilized in Ref. [24]. The occupancy
hypothesis posits that binding of RNAP or a transcription factor to a binding site
indicates that the protein is actively playing a role in transcription. This means
that for RNAP, occupancy of a promoter implies that transcription is taking place;
for a transcription factor, occupancy of a binding site implies that transcriptional
regulation is taking place. We often apply this assumption when writing models for
transcriptional regulation (see model in Chapter 2), but it is not always valid. In Ref.
[6] it was found that the occupancy hypothesis could not adequately describe the
mechanism of repression in a particular regulatory architecture. In this architecture,
RNAP and a repressor could bind simultaneously such that the repressor prevented
RNAP from proceeding with transcription. Occupancy of RNAP at this promoter
did not necessarily imply that transcription would take place. This violation of
the occupancy hypothesis was identified by comparing gene expression data to
predictions from a model that used the occupancy hypothesis, and observing that
the model did not adequately describe the data.

In this section we will demonstrate howmodels can be used to represent constitutive
transcription, and then show how one can generalize these models to include addi-
tional regulatory mechanisms. We provide full derivations for several models. Note
that these derivations are discussed in detail elsewhere [2, 25], but are reproduced
here for the benefit of the reader.

A statistical mechanical approach to modeling constitutive transcription
Here we will consider a statistical mechanical approach for modeling constitutive
transcription. Statistical mechanics concerns itself with the probability of differ-
ent microstates in systems containing a large number of interacting particles. A
microstate is a unique arrangement of particles, which may or may not have prop-
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erties that are distinguishable from other microstates. The probability of a specific
microstate is given by the Boltzmann distribution,

p(εi) =
1
Z

e−βεi, (1.1)

where εi is the energy of microstate i, Z is the partition function (as described
below), and β is equal to 1/kBT where kB is Boltzmann’s constant and T is the
temperature of the system. The quantity e−βεi is referred to as the Boltzmann factor.
The partition function can be thought of the sum of the statistical mechanical weights
of all microstates in the system, and is given by

Z =
N∑

i=1
e−βεi . (1.2)

When modeling transcription, our goal is to determine the probability that an RNAP
will bind to a promoter and initiate transcription. When using a statistical me-
chanical approach, we identify the various states that a system can adopt, where a
state is a set of microstates with indistinguishable properties. We assign statistical
mechanical weights to each state and use these weights to determine the probability
of RNAP binding, pbound . This identification of states and weights is modeled for
the case of constitutive transcription in Figure 1.4. Here we provide a derivation of
a statistical mechanical expression for the probability of RNAP binding at a consti-
tutive promoter. We show how this derivation can be represented by a states and
weights diagram, which can then be used to greatly simplify the process of deriving
models for more complex regulatory scenarios.

In the case of constitutive transcription, the system’s interacting particles are the
cell’s many copies of RNAP and the many DNA binding sites available to the
RNAP. A microstate can be thought of as a “snapshot” of the positions of all RNAP
relative to the genome at a given time. If we are interested in the transcription of
a specific gene, then we wish to know the probability that a single copy of RNAP
is bound to that gene’s promoter. We can determine this probability using Equation
1.1 provided we know (A) the energy εi of the state, (B) the multiplicity of the state
(i.e., the number of possible microstates in which RNAP is bound to the promoter
of interest) and (C) the partition function Z that represents all possible microstates
of the system.
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To simplify the problem, we abstract the genome as a single specific RNAP binding
site and a series of nonspecific binding sites that bind weakly with the RNAP. In
reality, there are many specific RNAP binding sites in the genome, and any given
stretch of DNAwill have a unique RNAP binding energy that ranges from very weak
to very strong. For the purpose of this problem, however, we can view all DNA
aside from our binding site of interest as being part of a “pool” of DNA binding
sites with some average weak binding energy. There are NN S of these nonspecific
binding sites, where we assume that NN S is approximately equal to the length of the
genome. We assign an energy of εS

P to an RNAP bound to the specific binding site
and εN S

P to an RNAP bound to any of the nonspecific sites.

The energy of any microstate i in which an RNAP is bound to the specific site must
account for both the energy of one RNAP binding to the specific site and P − 1
RNAPs binding to nonspecific sites, where P is the total number of RNAPs in the
system, such that εi = (P− 1)εN S

P + ε
S
P. The Boltzmann factor for such a microstate

is thus e−β(P−1)εNS
P e−βε

S
P . The value of pbound is given by the sum of the Boltzmann

weights for all microstates in which an RNAP is bound to the specific site, giving us

pbound =

∑N
i=1 e−β(P−1)εNS

P e−βε
S
P

Ztot
, (1.3)

where we define Ztot as the total partition function of the system. We can re-organize
pbound as

pbound =
e−βε

S
P
∑N

i=1 e−β(P−1)εNS
P

Ztot
, (1.4)

which can then be rewritten as

pbound =
e−βε

S
P ZN S (P − 1, NN S)

Ztot
, (1.5)

where ZN S (P− 1, NN S) is a partial partition function representing all microstates in
which (P − 1) RNAP are distributed among NN S nonspecific binding sites. We can
further recognize that Ztot is the sum of all microstates in which an RNAP is bound
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to the specific site and all microstates in which no RNAP is bound to the specific
site, such that Ztot = e−βε

S
P ZN S (P − 1, NN S) + ZN S (P, NN S), which gives us

pbound =
e−βε

S
P ZN S (P − 1, NN S)

e−βε
S
P ZN S (P − 1, NN S) + ZN S (P, NN S)

. (1.6)

We can now see that theEquation for pbound is composed of a set of partition functions
in which each partition function represents the statistical mechanical weight of one
of the system’s states. In the case of constitutive transcription, the states are either
bound, which consists of all microstates in which an RNAP is bound to the specific
site and has a weight given by e−βε

S
P ZN S (P − 1, NN S), or unbound, which consists

of all microstates in which no RNAP is bound to the specific site and has a weight
given by ZN S (P, NN S). These states are represented pictorially in the “STATES”
column of Figure 1.4.

Next we wish to rewrite Equation 1.6 using measurable parameters. A partition
function can be thought of as the product of a state’s Boltzmann factor and the state’s
multiplicity, or the number of microstates that comprise the state. We have already
determined the Boltzmann factors for each state in our model, and the multiplicities
can be determined combinatorially. This gives us the statistical mechanical weight
of the bound state,

e−βε
S
P ZN S (P − 1, NN S) =

(NN S)!
(P − 1)!(NN S − P + 1)!

e−β(P−1)εNS
P e−βε

S
P, (1.7)

and the statistical mechanical weight of the unbound state,

ZN S (P, NN S) =
(NN S)!

P!(NN S − P)!
e−βPεNS

P . (1.8)

These weights can be simplified using the approximation (NNS )!
P!(NNS−P)! ≈

(NNS )P
P! where

NN S � P. The simplified weights are represented in the “WEIGHTS” column of
Figure 1.4. We can now rewrite pbound as

pbound =

(NNS )(P−1)

(P−1)! e−β(P−1)εNS
P e−βε

S
P

(NNS )(P−1)

(P−1)! e−β(P−1)εNS
P e−βε

S
P +

(NNS )P
P! e−βPεNS

P

. (1.9)

Finally, we can greatly simplify the form of the equation by dividing the weight
for each state by the weight for the unbound state. The unbound state then has
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a renormalized weight equal to 1, and the bound state has a renormalized weight
of P

NNS
e−β(εSP−ε

N
P S). We can then define ∆εP = εS

P − ε
N S
P where ∆εP represents

the difference in RNAP binding energy between the specific binding site and the
nonspecific genomic background. The renormalized weights for each state are
illustrated in Figure 1.4 column “RENORMALIZED WEIGHTS.” Substituting the
renormalized values into equation 1.9 gives us our final equation for the probability
of RNAP binding to a constitutive promoter,

pbound =

P
NNS

e−β∆εP

1 + P
NNS

e−β∆εP
. (1.10)

STATES

(A)

(B)

1

1+
+

=

RENORMALIZED WEIGHTSWEIGHTS

-β∆εP
P

eNNS

-βPεNS(NNS)P

eP!

-β∆εP
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eNNS

-β∆εP
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eNNS

=pbound 

P

-β(P-1)εNS(NNS)P-1

e -βεS
e(P-1)!

P P

Figure 1.4: Modeling transcription using statistical mechanics. To model gene
expression, we make the assumption that gene expression is proportional to the
probability that RNAP is bound to the promoter, pbound [24]. (A) To determine the
value of pbound we then enumerate all of the states available to the system and assign
statistical mechanical weights based on the energy associated with each state and the
multiplicity of each state. Renormalizing the weights such that the unbound state
has a weight of 1 then provides us with a clean set of statistical mechanical weights
that can be used to determine the value of pbound . (B) The value of pbound is equal
to the statistical mechanical weight of the RNAP bound state divided by the sum of
the weights of all possible states.

This equation for pbound provides us with a foundation which we can build upon to
create models for more complex regulatory scenarios. To provide examples of how
this works, we now consider the cases of simple activation and simple repression.
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Using the “states and weights” approach to model transcriptional regulation
The renormalized states and weights in Figure 1.4 reveal a pattern that can be used
to easily determine states and weights for more complex architectures. Specifically,
the multiplicity associated with some DNA-binding protein X can be represented
as X

NNS
, and the Boltzmann factor associated with it can be represented as e−β∆εx .

Any other energies associated with any of the states, such as an interaction energy
between proteins, can likewise be represented using a Boltzmann factor.

Simple Repression

We consider the case of simple repression, in which a repressor binds adjacent to
an RNAP binding site and prevents RNAP from binding. In this case there are
three states available to the system: no proteins bound, repressor bound, and RNAP
bound. These states and their associated weights are enumerated in Figure 1.5A.

The expression for the probability of RNAP binding in a simple repression archi-
tecture is again found by dividing the statistical weight of the RNAP bound state by
the sum of the statistical weights of all states, which gives us

pbound =

P
NNS

e−β∆εP

1 + P
NNS

e−β∆εP + R
NNS

e−β∆εR
. (1.11)

As noted previously, it is assumed that gene expression is proportional to pbound .
However, it is difficult to determine the exact proportionality between these quanti-
ties, and we lack a straightforward way to measure pbound in vivo. It is therefore more
convenient to model regulatory systems using the fold-change, which quantifies the
change in expression due to regulation. This quantity is straightforward to measure
experimentally and has a clear interpretation in regards to regulatory strength. For
repression the fold-change is given by

fold-change =
pbound (R)

pbound (R = 0)
. (1.12)

To obtain a more detailed expression for fold-change, we substitute Equation 1.11
into Equation 1.12, which gives us

fold-change = *
,

P
NNS

e−β∆εP

1 + P
NNS

e−β∆εP + R
NNS

e−β∆εR
+
-
*
,

1 + P
NNS

e−β∆εP

P
NNS

e−β∆εP
+
-
. (1.13)



16

To simplify this expression, wemake use of theweak promoter approximation, where
we assume RNAP binds weakly to the promoter which implies that P

NNS
e−β∆εP � 1.

This allows us to write

fold-change ≈ *
,

P
NNS

e−β∆εP

1 + R
NNS

e−β∆εR
+
-
*
,

1
P

NNS
e−β∆εP

+
-
, (1.14)

which leads to our final expression for the fold-change of a simple repression system,

fold-change ≈
1

1 + R
NNS

e−β∆εR
. (1.15)

STATES WEIGHTSSTATES WEIGHTS

ACTIVATION
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1 + 
fold-change ≈

(B)(A)
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A e
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NNS

1 
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1 + R e
NNS
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Figure 1.5: The probability of RNAP binding is regulated by transcription fac-
tors. Transcription factors bind to DNA within a promoter and alter the probability
that RNAP will bind to the promoter and initiate transcription. (A) Simple repres-
sion occurs when a single transcription factor binds in the vicinity of the RNAP
binding site and prevents RNAP binding. (B) Simple activation occurs when a sin-
gle transcription factor binds in the vicinity of the RNAP binding site and promotes
RNAP binding.

Simple Activation

The case of simple activation is similar to simple repression, though it incorporates
the complicating factor of cooperative interactions between proteins. In simple
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activation, an activator and RNAP can bind to the promoter simultaneously, as
noted in the states and weights diagram for simple activation shown in Figure 1.5B.
The binding of multiple proteins gives this state a multiplicity of A

NNS

P
NNS

, where
A is the number of activators in the system. An interaction energy between the
activator and RNAP, εap, serves to solidify RNAP binding and must be included
in the Boltzmann factor, which is then represented as e−β(∆εA+∆εP+εap ), where ∆εA

represents the binding energy of the activator to its binding site.

For a simple activation system, pbound is given by

pbound =

P
NNS

e−β∆εP + A
NNS

P
NNS

e−β(∆εA+∆εP+εap )

1 + A
NNS

e−β∆εA + P
NNS

e−β∆εP + A
NNS

P
NNS

e−β(∆εA+∆εP+εap )
. (1.16)

The fold-change for simple activation is given by

fold-change =
pbound (A)

pbound (A = 0)
. (1.17)

We note that while the form of the fold-change for simple activation mirrors the
form for simple repression, we expect the fold-change values for simple activation
to be greater than 1 and we expect the fold-change values for simple repression to be
less than 1. This is a result of the greater expression values that occur when A > 0
and the lower expression values that occur when R > 0.

To obtain a more detailed expression for the fold-change of a simple activation
system, we first simplify Equation 1.16 by rewriting it as

pbound =

P
NNS

e−β∆εP + A
NNS

P
NNS

e−β(∆εA+∆εP+εap )

1 + P
NNS

e−β∆εP + A
NNS

e−β∆εA
(
1 + P

NNS
e−β(∆εP+εap )

) , (1.18)

which enables us to use the weak promoter approximations P
NNS

e−β∆εP � 1 and
P

NNS
e−β(∆εP+εap ) � 1 to obtain

pbound ≈

P
NNS

e−β∆εP + A
NNS

P
NNS

e−β(∆εA+∆εP+εap )

1 + A
NNS

e−β∆εA
. (1.19)
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Now we plug this expression into Equation 1.17 to get

fold-change ≈ *
,

P
NNS

e−β∆εP + A
NNS

P
NNS

e−β(∆εA+∆εP+εap )

1 + A
NNS

e−β∆εA
+
-
*
,

1
P

NNS
e−β∆εP

+
-
. (1.20)

This simplifies to the final form of the fold-change equation for simple activation,

fold-change ≈
1 + A

NNS
e−β(∆εA+εap )

1 + A
NNS

e−β∆εA
. (1.21)

The examples of simple repression and simple activation show how statistical me-
chanical models can be applied to simple architectures. One can use this same
approach to derive models for more complex architectures, provided that the inter-
actions between the various elements of the architectures (e.g., transcription factors,
binding sites, etc.) are sufficiently understood. Chapter 2 addresses how the model
for simple repression can be adapted to account for the addition of an inducer ligand.
Refs. [7, 8] apply the states and weights approach to the case of DNA looping in
the lac operon. Ref. [2] explains further how statistical mechanical models can be
applied to a broad variety of regulatory architectures.



19

1.4 The diversity of transcriptional regulatory mechanisms
There is great diversity in bacterial regulatory architectures, often representing
sophisticated control systems that respond sensitively to environmental changes [23,
26–28]. At a basic level, we can think of regulatory architectures as arrangements
of transcription factors that interact with one another and with RNAP. Figure 1.6
shows the diversity of known regulatory architectures in E. coli as recorded in
RegulonDB. Many of the promoters in RegulonDB have no regulatory annotations,
which indicates either that the promoters are constitutive or their architectures have
not yet been identified. Among promoters with regulatory annotations, we see that
it is most common for a promoter to have a single binding site annotation, but there
remain many promoters with two or three recorded transcription factor binding sites.
The data for promoters with four or more binding sites are not included in this plot.

The distribution of transcription factor binding sites can give us a sense of how
a promoter is regulated, but there are a number core regulatory mechanisms that
cannot be captured by mapping binding sites alone. In Figure 1.7 we use the classic
example of the lacZYA operon to illustrate three important regulatory mechanisms
that go beyond simple transcription factor binding. These mechanisms are allostery,
looping, and binding by architectural proteins.

Allostery
Allostery is an exceedingly common phenomenon in both eukaryotes and prokary-
otes, in multiple classes of proteins. As discussed in detail in Chapter 2, an allosteric
protein switches between two or more conformations which can have different prop-
erties. Binding of a ligand to the protein can dramatically increase the probability
that the protein will adopt a particular conformation. For transcription factors, this
means that allostery serves as a form of “one-component signaling,” where a small
molecule signal directly stimulates a response such as a change in gene regulation
[23].

Both CRP and LacI are allosteric transcription factors. In the case of the global
regulator CRP, the small molecule cAMP must be present in order for CRP to
adopt a conformation that binds to DNA with high affinity. Conversely, when the
small molecule allolactose (a derivative of lactose) binds to LacI, LacI adopts a
conformation that has a weak affinity for DNA. Because LacI acts as a repressor
for the lacZYA operon, this means that allolactose acts as a signal that induces
transcription of the lacZYA operon. This initiates production of the proteins that
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Figure 1.6: Distribution of regulatory architectures in E. coli. (A) We classify
regulatory architectures according to the number of activator sites A and repressor
sites R in a promoter region, using the notation (A, R). This classification does not
specify the positions of the binding sites. (B) We plot the frequencies of different
regulatory architectures as noted in RegulonDB. Note that many promoters lack
complete regulatory annotations, which skews the data towards (0,0).

enable the cell to metabolize lactose. In laboratory settings IPTG (isopropyl β-D-1-
thiogalactopyranoside) is frequently used as an inducer for the lacZYA operon instead
of allolactose. IPTG is used because unlike allolactose, IPTG is not degraded by
β-galactosidase, meaning that the concentration remains constant for the duration
of the experiment.
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ALLOSTERY LOOPING ARCHITECTURAL
PROTEINS

SIMPLE ACTIVATION SIMPLE REPRESSION

LacI

IPTG

CRP RNAP HU

Figure 1.7: Architecture of the lacZYA operon. The lacZYA operon is regulated by
CRP, which acts as a simple activator, and LacI, which acts as a repressor. LacI is an
allosteric repressor that can adopt either an “active” conformation (red) that binds
strongly to the DNA and prevents RNAP binding, or an “inactive” conformation
(purple) that binds weakly to the DNA.When the ligand allolactose (or, alternatively,
IPTG) binds to LacI, it stabilizes the inactive conformation and prevents repression.
LacI can perform either simple repression or repression by looping. Looping is
facilitated by binding of the architectural protein HU.

Looping
Looping is a form of action at a distance in which a transcription factor binds
simultaneously to two binding sites that are separated by hundreds of base pairs or
more, which requires the intervening DNA to form a loop. Action at a distance is
a common strategy employed by eukaryotic enhancers [29]. While only a handful
of looping architectures have been studied in prokaryotes, a scan of RegulonDB
indicates at least ∼ 50 instances of binding sites for the same transcription factor
that are spaced approximately 90 bp apart, which is the minimum distance observed
in well-studied natural looping architectures [30]. The prevalence of looping in E.
coli may be much higher than this, as Ref. [30] explored a narrow range of loop
sizes and there are likely to be many transcription factor binding sites in the E. coli
genome that are not currently reported in RegulonDB.
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The lacZYA operon is a classic example of looping as a component of a regulatory
architecture which has been studied extensively to better understand the physics
of DNA bending in the context of gene regulation [7, 8, 31–39]. Looping in
lacZYA promotes repression by increasing the local concentration of repressor [29]
and providing an additional state in which RNAP is prevented from binding to the
promoter. Repression appears to be the most common usage of looping architectures
in prokaryotes, though there are examples of looping being used for activation ofσ54-
dependent transcription in a manner similar to eukaryotic enhancers, as reviewed
extensively in Ref. [40].

Architectural Proteins
Bacteria possess a class of proteins that are analogous to histones in eukaryotes.
These proteins are alternatively known as architectural proteins, nucleoid-associated
proteins, or histone-like proteins. Like histones, they are known to play a role in
gene regulation (reviewed in Ref. [41]) and chromatin organization (reviewed in
Ref. [42]). Some bind to specific DNA sequences, while others appear to bind
nonspecifically or bind preferentially to bent DNA.

The architectural protein HU binds to deformed DNA and bends it. In the lacZYA
operon, HUcontributes to repression by binding to the looping region and facilitating
looping between two LacI binding sites. Cells lackingHU exhibit significantly lower
repression levels at the lacZYA operon than cells possessing HU. Furthermore, while
loopingmechanics are known to depend on the DNA sequence of the looping region,
bending due to HU does not appear to be affected by the relative “stiffness” of the
DNA [8].

We discuss these examples to give a sense of the diverse modes of transcriptional
regulation in prokaryotes, and we note that this is not a comprehensive list of types
of transcriptional regulation. There are a number of other schemes that are worthy
of discussion and have been addressed thoroughly elsewhere, including (but not
limited to) regulatory role switching as in the araBAD operon [27], toxin-antitoxin
systems (see Chapter 3 for the example of the relBE operon), the role of DNA shape
[43], and altering DNA specificity using methylation [44].
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1.5 The state of knowledge of transcriptional regulation
Although a number of regulatory architectures and mechanisms have been subject
to rigorous study, we still know very little about how most genes are regulated.
For example, E. coli is arguably the most well-studied and well-documented model
organism, yet most operons lack any regulatory annotation in databases like Reg-
ulonDB and EcoCyc [45, 46]. Figure 1.8A shows a map of the E. coli genome,
color-coded by whether each operon has any regulatory annotation in RegulonDB.
As of the present work, only 33% of operons in E. coli are annotated as having
transcription factor binding sites in their promoter regions.

If an operon lacks any regulatory annotation, it is possible that it is constitutively
expressed. However, another hypothesis is that transcription factor binding sites
exist for many of these unannotated operons, but have just not been discovered yet.
A look at data from previous releases of RegulonDB indicates that transcription
factor binding sites are being discovered at a steady rate (see the RegulonDB Sum-
mary History at http://regulondb.ccg.unam.mx/menu/about_regulondb/
regulondb_history/database_summary.jsp). Figure 1.8B plots the relative
numbers of genes and transcription factor binding sites recorded in RegulonDB
over a 10 year period (note that updates to RegulonDB occur every few months to
incorporate results from new literature). While the number of genes remains fairly
constant, the number of transcription factor binding sites has nearly doubled over
the last 10 years and appears to be continuing to increase. This lends support to the
hypothesis that an operon’s lack of regulatory annotation often indicates ignorance
rather than constitutive expression. If this hypothesis is correct, it also is likely that
many annotated promoters have incomplete information and have more complex
regulatory architectures than it would appear.

Even for operons with well-annotated regulatory regions, it can be difficult to de-
termine how the transcription factors interact with one another to regulate gene
expression. As discussed in Section 1.4, simply knowing the arrangement of activa-
tors and repressors does not always accurately capture the regulatory mechanisms in
play, and tells us nothing about important features like allostery. This represents a
significant gap in our understanding of transcriptional regulation. While it remains
difficult to determine these details on a high-throughput scale, this work makes
significant progress towards this goal by deciphering regulatory architectures, mod-
eling complex regulatory mechanisms, and analyzing the energetics of transcription
factor binding.

http://regulondb.ccg.unam.mx/menu/about_regulondb/regulondb_history/database_summary.jsp
http://regulondb.ccg.unam.mx/menu/about_regulondb/regulondb_history/database_summary.jsp
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Figure 1.8: Lack of regulatory annotation in E. coli. (A) Operons in the E.
coli genome are color-coded according to whether they have regulatory annotation
(blue) or no regulatory annotation (red) in RegulonDB. (B) The relative number of
recorded genes (red) and transcription factor binding sites (green) are plotted for
each RegulonDB release over the past 10 years.
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1.6 Experimental methods for discovering and analyzing regulatory motifs
A central goal of the present work is to dissect regulatory regions “from start
to finish,” which includes discovering and identifying transcripiton factor binding
sites for unannotated promoters, determining the identities and regulatory roles
of these transcription factors, and measuring transcription factor binding energies.
Ultimately it is desirable to perform such an analysis in a high-throughput manner
for unannotated promoters genome-wide, but this will require the development of
new methodology. However, a number of methods currently exist that can be
leveraged to dissect regulatory architectures on a low- to mid-throughput scale.
Here we discuss three classes of methods that have been used previously to analyze
regulatory architectures: occupancy assays (Figure 1.9A), in vitro affinity assays
(Figure 1.9B), and massively parallel reporter assays (MPRAs) (Figure 1.9C). We
give special attention to MPRAs as they are used extensively in this work.

Occupancy assays create maps of the locations of nucleotide-binding elements
throughout the genome. For example, Chromatin ImmunoPrecipitation (ChIP)-seq
is a common technique for determining the locations of transcription factors and hi-
stones [47, 48]. In a ChIP-seq experiment, the genome is fragmented and antibodies
are introduced which target a transcription factor or histone of interest. These anti-
bodies are immunoprecipitated to produce a sample containing the targeted protein
along with any bound DNA fragments. These DNA fragments are sequenced and
aligned to the genome to create a map of the binding sites for the targeted protein.
Similar occupancy-based techniques can be used for applications such as determin-
ing the distribution of ribosomes [49] and identifying nucleosome binding regions,
regions of open chromatin, and other regulatory elements in eukaryotes [50–54].

Occupancy assays can be used to determine the rough sequence specificity of a
specific transcription factor, as they provide multiple examples of sequences that
bind to the transcription factor of interest. However, these assays provide no infor-
mation regarding transcription factor affinity–that is, the binding energy between the
transcription factor and a given sequence. A number of in vitro methods have been
devised to sensitively determine transcription factor sequence specificity and bind-
ing affinity [55–58]. In vitro methods allow one to assay the interactions between
purified transcription factors and thousands of sequence variants. For example,
protein-binding microarrays (PBMs) are a common, straightforward assay for as-
sessing sequence specificity. In this assay, a microarray spotted with thousands of
DNA sequence variants is incubated with fluorescently labeled transcription factor.
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The transcription factor binds with some probability to each DNA spot, depend-
ing on the affinity of the transcription factor to the DNA sequence. Measuring
the fluorescent intensity of each spot allows one to determine the affinity of the
transcription factor for the DNA sequence within the spot [55]. Other in vitro
methods such as MITOMI [56], HT-SELEX [57], and Spec-seq [58] similarly al-
low for high-sensitivity measurements of transcription factor binding affinities and
sequence specificities. A distinct advantage of in vitro techinques is that they can
be used to analyze low-affinity binding events [56, 59, 60]. However, a major draw-
back of in vitro techniques is that they cannot fully capture the subtleties of in vivo
protein binding, which includes competition from other proteins, the influence of
small molecules, and DNA shape effects. Additionally, both in vitro methods and
occupancy methods focus on specific proteins that must be purified or immunopre-
cipitated, and thus are not especially useful for analyzing the regulatory architectures
of specific promoters which may lack full regulatory annotation.

Massively parallel reporter assays (MPRAs, reviewed in Refs. [61, 62] and schema-
tized in Figure 1.9C) are a diverse, versatile class of assays that can be used to analyze
multiple aspects of transcriptional regulation either locally or genome-wide. In gen-
eral, MPRAs are performed by positioning a library of promoter variants upstream
of a reporter gene. Variations to the promoter can include single-nucleotide muta-
tions to the promoter region [13, 63–65], transcription factor arrangement [66–68],
spacing between binding sites [66, 68], or any other modification that can be made
at the nucleotide level. These variations alter the promoter’s regulatory properties,
resulting in a change in the reporter gene’s expression level. If the reporter gene is
fluorescent, the cells may then be sorted into bins according to their fluorescence
using fluorescence-activated cell sorting (FACS) [13, 66]. The contents of each bin
are sequenced, and the sequence of each promoter variant is thereby associated with
the reporter gene’s expression level. Another common strategy is to associate the
promoter variant with a barcode that is transcribed along with the reporter gene [63–
65, 67, 68]. One can then sequence the reporter gene’s mRNA transcripts and count
the number of times that each barcode appears, thus associating gene expression
with promoter variant in a fine-grained manner.

A number of studies use MPRAs to assay systematic perturbations to individual
promoters [13, 63–68]. In addition, many variations onMPRAs have been developed
to assay numerous other aspects of transcriptional regulation, such as analyzing
regulatory “parts” for synthetic biology applications [69] or testing models for
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predicting regulatory motifs in human cells [70, 71]. With minor modifications, the
technique is also well-suited to genome-wide analysis and discovery of transcription
factor binding sites [72–77]. Additionally, MPRAs can be combined with other
techniques to obtain a more detailed understanding of regulatory systems. For
example, MPRAs have been combined with occupancy assays to identify candidate
enhancers and correlate transcription factor occupancy with regulation [78–80].

In this work wemake use of theMPRA Sort-Seq [13] to discover transcription factor
binding sites, infer the sites’ regulatory roles and interactions, and create predictive
models of transcription factor-DNA binding. We innovate by showing that we can
thoroughly dissect promoters with diverse regulatory mechanisms given little to
no initial information regarding a promoter’s regulation. Additionally, we show
that when combined with the proper analysis techniques, Sort-Seq can be used to
determine transcription factor binding affinity with accuracy comparable to in vitro
assays.
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Figure 1.9: Diverse methods assay multiple aspects of transcription factor bind-
ing. (A) Occupancy-based methods can determine the locations of regulatory ele-
ments throughout the genome. For example, ChIP-seq works by digesting DNA and
then immunoprecipitating a transcription factor of interest. Sequencing the DNA
fragments attached to the transcription factor and aligning these fragments to the
genome provides a map of transcription factor binding sites. (B) In vitro assays
provide highly accurate readings of transcription factor sequence specificity and
affinity. For example, protein binding microarrays (PBMs) contain thousands of
DNA sequences to which fluorescently-labeled transcription factors can bind. The
fluorescent intensity of each DNA spot on the microarray then serves as a readout
of the transcription factor’s affinity for the associated DNA sequence. (C) MPRAs
are performed by positioning a library of promoter variants upstream of a reporter
gene. Measuring the expression of the reporter gene and correlating expression with
promoter sequence makes it possible to ascertain the roles of promoter elements.
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1.7 Computational methods for analyzing data
This work focuses on using quantitative thinking to interpret and predict biological
phenomena. A key component of a theory-experiment dialogue is the ability to
analyze data using appropriate computational methods. The question of which
computational methods are “appropriate” is a deep subject that goes beyond the
scope of this work (consider, for instance, the current debate about p-values and
the reproducibility of results [81]). In general we seek to analyze our data in ways
that allow us to honestly assess the plausibility of our hypotheses. Additionally, we
seek analysis methods that allow us to draw deeper inferences from our data, as in
Chapter 4 where we apply inference methods that allow us to use massively parallel
sequencing data to analyze the energetics of transcription factor binding in addition
to the simpler task of identifying sequence preferences. Throughout this work,
we make extensive use of methods for inferring parameter values and assessing
the significance of experimental results. Here we discuss some key concepts that
inform these methods: Bayesian inference, Markov Chain Monte Carlo, and mutual
information.

The basics of Bayesian inference
Parameter fitting plays an important role in this work. Fitting can be accomplished
using a number of methods, such as least squares fitting or linear regression. In
general, the fitting methods used throughout this work rely on Bayesian inference
(see Sivia and Skilling, Ref. [82] for a thorough treatment on the subject). Bayesian
inference uses the premise that any hypothesis has a probability associatedwith it that
represents one’s certainty about the hypothesis. In the context of parameter fitting,
the hypothesis is a proposed value for the parameter of interest. The probability that
the proposed value is correct will change as one learns more about the system, for
example by gathering data.

To provide an example of how this premise is used to infer parameter values, we
can consider the example of a transcription factor binding site with an unknown
binding energy, ∆εt f . We wish to determine the value of ∆εt f . Given no additional
information about the binding site, but knowing a little bit about how transcription
factor binding sites work, we may be able to make a rough guess about the value of
∆εt f in the form of a probability distribution, P(∆εt f ). We know that ∆εt f must be
less than 0 kBT , otherwise it would not be energetically favorable for a transcription
factor to bind to the site. We can also assume that∆εt f must be greater than−20 kBT ,
which provides a buffer around the approximate theoretical limit of transcription
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factor binding energy of ∼ 15 kBT [83]. If we make no further assumptions, we can
represent our guess about the value of ∆εR as a uniform distribution given by

P(∆εt f ) =



1
20 −20 kBT ≤ ∆εt f ≤ 0 kBT

0 otherwise
. (1.22)

In the language of Bayesian inference, we can refer to P(∆εt f ) as the “prior,” as
it reflects our knowledge of the parameter value prior to learning any additional
information about the system.

The prior distribution doesn’t do much to help us determine the value of ∆εt f . This
is where we need to use the Bayesian concept of updating our hypothesis with new
information. For example, let’s say we can go in and directly measure the binding
energy of the binding site. As we’ll see in Chapter 4, determining transcription
factor binding energies isn’t as simple as just taking a direct measurement, but for
the purpose of illustration we will imagine that we have some kind of nanoscale
“energymeter” that can take these sorts ofmeasurements. This hypothetical set-up is
illustrated in Figure 1.10A. Even if we could measure the binding energy in this way,
each measurement would have some amount of error associated with it. Therefore
we should take some number of measurements to build up a data set, D, which will
allow us to infer a more accurate value for the binding energy. This allows us to
update our prior probability distribution P(∆εt f ) (shown in Figure 1.10B) given
our data D, giving us the posterior probability distribution P(∆εt f |D). This term
is referred to as the “posterior,” as it reflects our knowledge of the parameter value
after we learn more information about the system.

How do we come up with an expression for P(∆εt f |D)? Bayesian statistics provides
us a solution in the form of Bayes’ theorem,

P(A|B) =
P(B |A)P(A)

P(B)
. (1.23)

Rewriting this for the example of our transcription factor binding site gives us

P(∆εt f |D) =
P(D |∆εt f )P(∆εt f )

P(D)
. (1.24)

We have already discussed P(∆εt f |D) and P(∆εt f ), but the terms P(D |∆εt f ) and
P(D) are new. P(D |∆εt f ) is the probability that our data set could occur given
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some proposed value for ∆εt f . This term is referred to the “likelihood,” and it will
be discussed further below. P(D) is the probability of the data set occurring at all,
which can be difficult to determine, but fortunately we can treat it as a proportionality
constant, giving us

P(∆εt f |D) ∝ P(D |∆εt f )P(∆εt f ). (1.25)

This works because we are only interested in the relative probabilities of different
values for ∆εt f . Now, in order to update our hypothesis for the value of ∆εt f based
on our data set D, we need to find an expression for the likelihood, P(D |∆εt f ). This
is simple enough in our hypothetical scenario in which we can directly measure the
transcription factor binding energy, as we can assume that our energy readings are
normally distributed about the true energy value, ∆εt f . Each data point x then has
the associated probability distribution

P(x |∆εt f , σ) =
1

√
(2πσ)

exp

−

(x − ∆εt f )2

2σ2


, (1.26)

where the error in the measurement x is represented by the quantity (x −∆εt f ). We
also note that we have introduced a new parameter, σ, which represents the standard
deviation of the normal distribution. As will be discussed later, in many situations
we will not know the value of σ, and there are ways to get around this. However,
for the purposes of this illustration, we will assume that we know our hypothetical
“energy meter” has an accuracy of ±1.0 kBT , so that σ = 1.0.

Now we have a probability distribution for each individual data point, but we want
an expression for P(D |∆εt f ), where D is a data set containing multiple energy
readings. If we assume that each energy reading is independent, then P(D |∆εt f ) is
just the product of the probability for each individual reading in D, giving us

P(D |∆εt f , σ) =
N∏
i

1
√

(2πσ)
exp


−

(xi − ∆εt f )2

2σ2


= (2πσ)−

N
2 exp


−

1
2σ2

N∑
i

(xi − ∆εt f )2

,

(1.27)

where xi is the ith measurement of N total measurements.
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Now that we have expressions for the prior P(∆εt f ) and the likelihood P(D |∆εt f ),
we can write an expression for P(∆εt f |D),

P(∆εt f |D) ∝



1
20 (2πσ)−

N
2 exp

[
− 1

2σ2
∑N

i (xi − ∆εt f )2
]
−20 kBT ≤ ∆εt f ≤ 0 kBT

0 otherwise
.

(1.28)

We can simplify this quite a bit. Since we are working with proportionalities, and
since we can expect the normal distribution to go to zero at high or low values of
∆εt f , we can work with a simplified expression for the posterior,

P(∆εt f |D) ∝ exp

−

1
2σ2

N∑
i

(xi − ∆εt f )2

. (1.29)

The posterior probability distribution P(∆εt f |D) is plotted in Figure 1.10C for
several example data sets with different numbers of data points, N . Each curve is
normalized so that it sums to 1. The true value of ∆εt f that was used to generate
these curves is ∆εt f = −14kBT , represented by the gray dotted line in Figure 1.10C.
We see that larger data sets give us better estimates of this binding energy, and they
also result in much narrower distributions, which reflects the amount of certainty
associated with the estimate.

Of course, we cannot actually directly measure transcription factor binding energy
using a nanoscale energy meter. In order to actually determine transcription factor
binding energies, one must devise experiments that make it possible to infer the
binding energy based on some other measurement. This type of inference is a central
element of Chapter 4, wherein we create simple repression constructs with repressor
binding sites of unknown binding energies, and take fold-change measurements that
allow us to infer the energies. We compare our fold-change measurements to a
theoretical value for the fold-change given by Equation 1.15, which we denote
as f c(∆εR, R). This gives us a value for the error in our measurement given a
proposed value of ∆εR and a known value of R. This results in a scenario quite
similar to the hypothetical one outlined in Figure 1.10. We are again dealing with
Gaussian-distributed error, which allows us to assume aGaussian distribution for the
likelihood function and a uniform distribution for the prior. Unlike our hypothetical
example, however, we do not know the value of σ. As has been covered in detail
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Figure 1.10: Using Bayesian inference to determine the value of a parameter.
(A) For the purposes of illustration, we imagine a transcription factor and binding
site with unknown binding energy ∆εt f . We are able to measure the binding energy
using a hypothetical nanoscale energy meter. However, the energy meter is not
perfectly accurate, and takes measurements that are normally distributed about the
true value of ∆εt f . (B) Before taking any measurements, we can make a guess as to
what the transcription factor binding energymay be. This is our prior, notated here as
P(∆εt f ). This represents the information we know about a parameter before taking
data. For this system, our prior is uniform within the range of allowed transcription
factor binding energies, and 0 everywhere else. (C) After taking measurements,
we can update our knowledge about the value of ∆εt f given the data to obtain
P(∆εt f |D). This is our posterior distribution for the value of ∆εt f . The shape and
position of the posterior varies depending on the the data set that is used to construct
it. This reflects the fact that both accuracy and certainty are improved by taking
more data. The true value of ∆εt f is illustrated by the vertical dotted line in the plot.

elsewhere [82], under these conditions the posterior distribution can be represented
by a student-t distribution, which for our simple repression system is given by

P(∆εR |D) ∝


N∑
i

(
f ci,exp − f c(∆εR, Ri)

)2


N
2

, (1.30)

where f ci,exp is the value of the ith data point and Ri is the value of R used to
obtain that data point. In Chapter 4, we compute this distribution using theoretical
fold-change values that are calculated using an array of values for ∆εR. In this way,
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we fit the fold-change equation to the fold-change data in order to find the most
probable value of ∆εR for the repressor binding site.



35

The basics of Markov Chain Monte Carlo
In the previous section, we provided examples of parameter estimation by Bayesian
inference. The expressions we worked with in that section were relatively simple
and could be manipulated analytically. They also had a very straightforward inter-
pretation: the parameter value that produced the largest posterior probability is the
most likely parameter value.

However, we will often want to infer parameter values under conditions that are
not so tidy. The posterior distribution may be difficult or impossible to work with
analytically, or we may wish to infer many parameters at once, some of which might
be correlatedwith one another. Chapters 2 through 4 contain examples ofmodels that
present some of these difficulties. In Chapter 2, in which we implement predictive
models of allosteric simple repression, we wish to infer two or more parameters at
once, which is complicated by some troublesome correlations between parameters.
Chapters 3 and 4 involve modeling transcription factor binding sites using energy
matrices, which require us to use Sort-Seq data to infer 4 × L parameters at once,
where L is the length of the transcription factor binding site. These examples require
a more powerful method than simply plotting posterior distributions and finding the
parameter value that maximizes the posterior.

A method that is commonly used for these types of scenarios is Markov Chain
Monte Carlo, or MCMC. MCMC is a deep topic that lends itself to highly technical
discussions. Here we aim to explain the basics of MCMC in straightforward terms,
following the example set forth in Ref. [84].

MCMC gets its name from two processes, Monte Carlo and Markov Chain. Monte
Carlo is a method for estimating features of a distribution by randomly drawing
samples from the distribution. For example, one could estimate themean or standard
deviation of a distribution by drawing random samples and computing the mean
and standard deviation for those samples. Figure 1.11A schematizes this process.
Markov Chain is a type of algorithm for drawing random samples. In a Markov
Chain, schematized in Figure 1.11B, some calculation is performed on each sample
to generate the next sample. While each sample relies on the previous sample,
however, there is no memory of any samples before the previous one. When we put
these concepts together in MCMC, we get a randomly-generated chain of samples
that can be used to approximate the properties of a posterior distribution. In fact,
the histogram of the values that make up the chain should approximately reproduce
the posterior distribution.
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The process of generating random samples in a way that will approximate a posterior
distribution is the topic of much study, and there are a number of algorithms that are
used to perform this process depending on the scenario [85]. One of the simplest
and most common algorithms is the Metropolis-Hastings algorithm. The algorithm
begins by choosing a starting trial parameter value, if possible one that is believed
to be close to the true parameter value. Then, a new trial is generated by adding a
random “jump” parameter to the current value. The jump parameter is drawn from
a symmetric distribution that is centered at zero. The new trial will now either be
accepted and added to the chain or rejected and discarded. If the trial is discarded,
then the next value in the chain is a copy of the previous value. If the posterior
probability calculated with the new trial is higher than the posterior probability
calculated with the previous value, then the new trial is accepted. If not, then the
new trial is accepted with a probability equal to P(µnew |D)

P(µold |D) , where µ is the proposed
parameter value. Occasionally accepting trials with lower posterior probabilities
than the previous value allows the chain to avoid getting stuck in local maxima.
This algorithm is repeated until a specified number of iterations is reached. After
completing MCMC using the Metropolis-Hastings algorithm, the histogram of the
samples in the chain should approximate the posterior distribution from which you
were drawing the samples.

To provide a simple example of MCMC in action, we now will use it to approximate
the binding energy of a repressor binding site. We use data from Chapter 4 in which
fold-change measurements were taken for simple repression constructs using this
binding site. These measurements were taken using multiple background strains
with varying known repressor copy numbers R. While MCMC is not necessary to
fit for the value of ∆εR for this binding site, and indeed was not used to perform
this fit in Chapter 4, we use MCMC here to provide a conceptually straightforward
example. As mentioned earlier, the posterior distribution for the transcription factor
binding energy can be represented by the student-t distribution given in Equation
1.30. To estimate the value of ∆εR given a set of fold-change data, we use the
Metropolis-Hastings algorithm, plugging the proposed value of ∆εR and our set
of experimental fold-change measurements D into Equation 1.30 to evaluate the
posterior probability for each trial, and then add trials to the chain according to the
rules of the algorithm.

As an example of what MCMC chains look like, a short 100-iteration chain estimat-
ing the binding energy of a repressor binding site is shown in Figure 1.11C. We note
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that MCMC chains are generally much longer than this, and the short length was
chosen so that each step in the chain could be visually distinguished in the figure.
The chain shown in Figure 1.11C started with a trial of ∆εR = −12 kBT , which is
close to the fitted value of ∆εR = −12.24 kBT for this binding site. Because the
starting trial is close to the fitted value, the chain never strays far from the fitted value.
The histogram of the values in the chain, plotted in Figure 1.11D, approximates the
actual posterior distribution for ∆εR, shown as a dotted line.

In actual practice, MCMC chains will be much longer than 100 iterations. This is
partially due to the fact that estimates improve as the number of samples increases.
Another reason that it is important to do many iterations is a phenomenon known
as “burn-in.” Burn-in relates to the dilemma of choosing a good initial trial value.
If possible, it is a good idea to start with the maximum likelihood estimate for the
parameter value. Depending on how much is known about the system, however, it
may not be possible to reliably choose an initial parameter trial that is close to the
actual parameter value. If the initial parameter value is sufficiently distant from the
actual value, the chain may search parameter space for some time before coming
close enough to the actual value for the chain to converge around the actual value.
This search is known as the burn-in period. Figure 1.11E illustrates the burn-in
period for the case of our repressor binding site with ∆εR = −12.24 kBT . When
our initial parameter value is −12 kBT there is no burn-in to speak of, and the chain
immediately converges to a distribution around −12.24 kBT . However, if we choose
an initial parameter value of −15 kBT there is a noticeable burn-in period, and if
we stray farther from the true binding energy with an initial parameter value of
−18 kBT , the burn-in period is even longer. The elements of the chain associated
with the burn-in period should not be included when using the chain to estimate
parameter values. For situations where it is difficult to begin with a good estimate
for the parameter value, it is common to run multiple MCMC chains with a variety
of initial trial values to increase the chances of finding a chain that quickly converges
around the true parameter value.

Here we have provided a basic primer regarding the use of MCMC for parameter
estimation. We go into greater detail in Chapters 3 and 4 regarding how MCMC
was implemented in our work.
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Figure 1.11: Parameter inference usingMarkovChainMonteCarlo. (A) “Monte
Carlo” refers to the process of taking random samples from a distribution and using
these samples to estimate properties of the distribution. (B) “Markov Chain” refers
to a process of generating random samples in which an operation is performed on
the current sample to generate the next sample. The identity of each sample depends
only on the sample immediately preceding it, and no other previous samples. (C)
A short MCMC chain was generated using a student-t posterior distribution and
fold-change data from a simple repression construct from Chapter 4. The chain
was formed by generating trial values for the repressor binding energy, ∆εR, using a
Metropolis-Hastings algorithm. (D) A histogram generated from the chain plotted in
(C) shows that the chain approximates a student-t posterior distribution (dotted line)
centered at the best estimate for the repressor binding energy, ∆εR = −12.24 kBT .
(E) Initiating an MCMC chain with different trial values can cause the chain to have
a “burn-in” period in which it searches parameter space before converging around
the best estimate for the parameter.
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Mutual information
In a genome’s coding regions, it is clear that DNA contains a wealth of information
in the form of instructions for building proteins. Although there is no distinct
code connecting DNA sequence to regulatory activity, the noncoding DNA in the
promoter region is information-rich as well. In this work we borrow tools from
information theory to help interpret the relationship between DNA sequence and
transcriptional regulation.

The two key information theory concepts used in this work are Shannon entropy and
mutual information. The Shannon entropy is given by the equation

S(pi) = −
N∑
i

pilog2pi, (1.31)

where pi is the probability of the ith microstate or outcome available to the system.
The Shannon entropy, or “missing information,” reflects our level of uncertainty
about the state of a system. To show how Shannon entropy quantifies uncertainty,
we consider the example of a fair coin versus a biased coin. Both a fair coin and
a biased coin have two states available to them: heads or tails. For a fair coin,
pheads = ptails = 0.5. For a biased coin, however, pheads , ptails. For this example
let’s say that for the biased coin pheads = 0.75 and ptails = 0.25. Now if we flip a
coin, how certain are we that it will land heads? For the biased coin we are more
certain that it will land heads than we are for the fair coin. To quantify this certainty
using Shannon entropy we can calculate

Sfair(pi) = −
(
0.5log20.5 + 0.5log20.5

)
= 1.0 bits (1.32)

and

Sbiased(pi) = −
(
0.75log20.75 + 0.25log20.25

)
≈ 0.81 bits. (1.33)

Here we use the unit “bits” to quantify information, as will be discussed further
below. We can see that Sfair(pi) > Sbiased(pi). This indicates that we have greater
uncertainty regarding the outcome of a coin flip using a fair coin than a biased coin.

How does measuring our uncertainty allow us to relate DNA sequence to gene
regulation? This becomes clearer whenwe introduce the idea of mutual information.
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Mutual information quantifies the relatedness between two quantities. Specifically,
it quantifies the extent to which knowing the value of parameter B reduces your
uncertainty regarding the value of parameter A. Mutual information can be written
in terms of Shannon entropy as

I (A; B) = S(A) − S(A|B). (1.34)

When we employ the definition of Shannon entropy given in Equation 1.33, this
evaluates to

I (A; B) =
N∑

i, j

P(Ai, B j )log2

(
P(Ai, B j )

P(Ai)P(B j )

)
. (1.35)

We can use mutual information to quantify the extent to which a given regulatory se-
quence element (A) contributes to the level of gene expression (B). As an example of
how this works, we consider a hypothetical dinucleotide placed upstream of a RNAP
binding site, as schematized in Figure 1.12A. For a variety of dinucleotide sequence
combinations we measure the gene expression associated with this promoter. We
wish to determine the extent to which the identities of the bases in the dinucleotide
influence the level of gene expression, which we can do using Equation 1.35. To
keep this example simple, we consider only whether each base in the dinucleotide
is a purine or a pyrimidine (denoted R or Y , respectively) and whether the gene
expression is high or low (see Figure 1.12B). We outline all relevant probabilities in
Figure 1.12C. We can plug the values for position 1 (indicated as a subscript in the
equation below) into Equation 1.35 to get

I (A1; B) = P(R1, high) log2

(
P(R1, high)

P(R1) × P(high)

)
+ P(R1, low) log2

(
P(R1, low)

P(R1) × P(low)

)
+ P(Y1, high) log2

(
P(Y1, high)

P(Y1) × P(high)

)
+ P(Y1, low) log2

(
P(Y1, low)

P(Y1) × P(low)

)
= 0.25 log2

(
0.25

0.5 × 0.5

)
+ 0.25 log2

(
0.25

0.5 × 0.5

)
+ 0.25 log2

(
0.25

0.5 × 0.5

)
+ 0.25 log2

(
0.25

0.5 × 0.5

)
= 0 bits. (1.36)

Next we plug the values for position 2 (indicated as a subscript in the equation
below) into Equation 1.35 to get
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I (A2; B) = P(R2, high) log2

(
P(R2, high)

P(R2) × P(high)

)
+ P(R2, low) log2

(
P(R2, low)

P(R2) × P(low)

)
+ P(Y2, high) log2

(
P(Y2, high)

P(Y2) × P(high)

)
+ P(Y2, low) log2

(
P(Y2, low)

P(Y2) × P(low)

)
= 0 log2

(
0

0.5 × 0.5

)
+ 0.5 log2

(
0.5

0.5 × 0.5

)
+ 0.5 log2

(
0.5

0.5 × 0.5

)
+ 0 log2

(
0

0.5 × 0.5

)
= 1.0 bits. (1.37)

We find that I (A1; B) = 0 bits and I (A2; B) = 1 bit. These are the minimum and
maximum possible mutual information values for this system, respectively. This
means that the expression level for our hypothetical promoter is entirely determined
by the identity of the base at position 2. The use of the information unit “bit”
references the number of yes/no questions regarding A that are required in order to
determine the value of B. In this case, one yes/no question is required (i.e., is A a
purine?) so the maximum mutual information between parameters is 1 bit.

In actual practice in Chapters 3 and 4, we look at much longer segments of regulatory
DNA, consider all four base identities for each sequence position, and measure four
different levels of gene expression. The mutual information between sequence and
expression in these experiments is also much less definitive than in the toy example
given in Figure 1.12A-C. We rarely, if ever, see situations in which the identity
of a single nucleotide is the sole determinant of a promoter’s expression level.
However, as discussed in detail in Chapter 3, mutual information serves as a useful
tool for identifying the relative importance of each nucleotide in a promoter region,
which makes it possible to identify the locations of binding sites. Additionally, as
discussed in Chapters 3 and 4, it provides a vital metric for inferring energy matrices
and sequence logos. In Figure 1.12D we show examples from Chapter 3. Here,
the mutual information between base identity and gene expression is calculated for
the relBE promoter. Regions of high mutual information indicate possible RNAP
or transcription factor binding sites. Additionally, energy matrices for binding sites
are inferred using an MCMC technique in which the mutual information between
predicted and measured gene expression values is maximized (see supplemental
sections of Chapters 3 and 4 for more details). These principles are addressed in
great detail in refs [13, 86].
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Figure 1.12: Mutual information quantifies the relatedness of parameters. (A)
For the purposes of illustration, we consider a simplified promoter in which a
regulatory dinucleotide is placed immediately upstream of the RNAP binding site.
The identities of the bases in this dinucleotide are related to the expression level of
the promoter. (B) We list some hypothetical data points in which we sequence the
bases in the dinucleotide (which are labeled either as purines (R) or pyrimidines (Y))
and note whether the promoter’s expression is high or low for each sequence. (C)
We list the individual and joint probabilities associated with each base identity and
expression level. These are used to calculate the mutual information between base
identity and expression in the main text. (D) In Chapter 3 we use mutual information
as a tool in characterizing regulatory architectures. Here we plot an “information
footprint” in which we quantify the mutual information between base identity and
gene expression for the relBE promoter. We also show the energy matrices for the
RelBE and RNAP binding sites, which were inferred using mutual information.
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C h a p t e r 2

TUNING TRANSCRIPTIONAL REGULATION THROUGH
SIGNALING: A PREDICTIVE THEORY OF ALLOSTERIC

INDUCTION

A version of this chapter is in press as Manuel Razo-Mejia, Stephanie L. Barnes,
Nathan M. Belliveau, Griffin Chure, Tal Einav, Mitchell Lewis, and Rob Phillips.
Tuning transcriptional regulation through signaling: A predictive theory of allosteric
regulation. Cell Systems, In press, 2018.

M.R.M., S.L.B., N.M.B., G.C., T.E. contributed equally to this work.

2.1 Introduction
Understanding how organisms sense and respond to changes in their environment
has long been a central theme of biological inquiry. At the cellular level, this
interaction is mediated by a diverse collection of molecular signaling pathways.
A pervasive mechanism of signaling in these pathways is allosteric regulation,
in which the binding of a ligand induces a conformational change in some target
molecule, triggering a signaling cascade [1]. One of the most important examples of
such signaling is offered by transcriptional regulation, where a transcription factor’s
propensity to bind to DNA will be altered upon binding to an allosteric effector.

Despite allostery’s ubiquity, we lack a formal, rigorous, and generalizable framework
for studying its effects across the broad variety of contexts in which it appears. A key
example of this is transcriptional regulation, in which allosteric transcription factors
can be induced or corepressed by binding to a ligand. An allosteric transcription
factor can adopt multiple conformational states, each of which has its own affinity
for the ligand and for its DNA target site. In vitro studies have rigorously quantified
the equilibria of different conformational states for allosteric transcription factors
and measured the affinities of these states to the ligand [2, 3]. In spite of these
experimental observations, the lack of a coherent quantitative model for allosteric
transcriptional regulation has made it impossible to predict the behavior of even a
simple genetic circuit across a range of regulatory parameters.

The ability to predict circuit behavior robustly—that is, across both broad ranges of
parameters and regulatory architectures—is important for multiple reasons. First, in
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the context of a specific gene, accurate prediction demonstrates that all components
relevant to the gene’s behavior have been identified and characterized to sufficient
quantitative precision. Second, in the context of genetic circuits in general, robust
prediction validates the model that generated the prediction. Possessing a validated
model also has implications for future work. For example, when we have sufficient
confidence in the model, a single data set can be used to accurately extrapolate a
system’s behavior in other conditions. Moreover, there is an essential distinction
between a predictive model, which is used to predict a system’s behavior given
a set of input variables, and a retroactive model, which is used to describe the
behavior of data that has already been obtained. We note that even some of the
most careful and rigorous analysis of transcriptional regulation often entails only a
retroactive reflection on a single experiment. This raises the fear that each regulatory
architecture may require a unique analysis that cannot carry over to other systems, a
worry that is exacerbated by the prevalent use of phenomenological functions (e.g.
Hill functions or ratios of polynomials) that can analyze a single data set but cannot
be used to extrapolate a system’s behavior in other conditions [4–8].

This work explores what happens when theory takes center stage, namely, we first
write down the equations governing a system and describe its expected behavior
across a wide array of experimental conditions, and only then do we set out to
experimentally confirm these results. Building upon previous work [9–11] and the
work of Monod, Wyman, and Changeux [12], we present a statistical mechanical
rendering of allostery in the context of induction and corepression (shown schemat-
ically in 2.1A and henceforth referred to as the MWC model) and use it as the basis
of parameter-free predictions which we then test experimentally. More specifically,
we study the simple repression motif—a widespread bacterial genetic regulatory
architecture in which binding of a transcription factor occludes binding of an RNA
polymerase, thereby inhibiting transcription initiation. The MWC model stipu-
lates that an allosteric protein fluctuates between two distinct conformations—an
active and inactive state—in thermodynamic equilibrium [12]. During induction,
for example, effector binding increases the probability that a repressor will be in
the inactive state, weakening its ability to bind to the promoter and resulting in
increased expression. To test the predictions of our model across a wide range of
operator binding strengths and repressor copy numbers, we design an E. coli genetic
construct in which the binding probability of a repressor regulates gene expression
of a fluorescent reporter.



54

In total, the work presented here demonstrates that one extremely compact set of
parameters can be applied self-consistently and predictively to different regulatory
situations including simple repression on the chromosome, cases in which decoy
binding sites for repressor are put on plasmids, cases in which multiple genes
compete for the same regulatory machinery, cases involving multiple binding sites
for repressor leading to DNA looping, and induction by signaling [9, 10, 13–16].
Thus, rather than viewing the behavior of each circuit as giving rise to its own
unique input-output response, the MWC model provides a means to characterize
these seemingly diverse behaviors using a single unified framework governed by a
small set of parameters.
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Figure 2.1: Transcription regulation architectures involving an allosteric re-
pressor. (A) We consider a promoter regulated solely by an allosteric repressor.
When bound, the repressor prevents RNAP from binding and initiating transcrip-
tion. Induction is characterized by the addition of an effector which binds to the
repressor and stabilizes the inactive state (defined as the state which has a low
affinity for DNA), thereby increasing gene expression. In corepression, the effector
stabilizes the repressor’s active state and thus further reduces gene expression. We
list several characterized examples of induction and corepression in E. coli [17, 18].
(B) A schematic regulatory response of the two architectures shown in Panel A
plotting the fold-change in gene expression as a function of effector concentration.
Phenotypic properties that describe each response curve include the leakiness, sat-
uration, dynamic range, the concentration of ligand which generates a fold-change
halfway between the minimal and maximal response ([EC50]), and the log-log slope
at the midpoint of the response (effective Hill coefficient). (C) Over time we have
refined our understanding of simple repression architectures. A first round of exper-
iments used colorimetric assays and quantitative Western blots to investigate how
single-site repression is modified by the repressor copy number and repressor-DNA
binding energy [9]. A second round of experiments used video microscopy to probe
how the copy number of the promoter and presence of competing repressor binding
sites affect gene expression [11]. Here we used flow cytometry to determine the
inducer-repressor dissociation constants.
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2.2 Results
CharacterizingTranscriptionFactor Inductionusing theMonod-Wyman-Changeux
(MWC) Model
We begin by considering a simple repression genetic architecture in which the bind-
ing of an allosteric repressor occludes the binding of RNA polymerase (RNAP) to
the DNA [19, 20]. When an effector (hereafter referred to as an “inducer” for the
case of induction) binds to the repressor, it shifts the repressor’s allosteric equilib-
rium towards the inactive state as specified by the MWC model [12]. This causes
the repressor to bind more weakly to the operator, which increases gene expression.
Simple repression motifs in the absence of inducer have been previously character-
ized by an equilibrium model where the probability of each state of repressor and
RNAP promoter occupancy is dictated by the Boltzmann distribution [9, 10, 19–22]
(we note that non-equilibrium models of simple repression have been shown to have
the same functional form that we derive below [23]). We extend these models to
consider allostery by accounting for the equilibrium state of the repressor through
the MWC model.

Thermodynamic models of gene expression begin by enumerating all possible states
of the promoter and their corresponding statistical weights. As shown in Figure
2.2A, the promoter can either be empty, occupied by RNAP, or occupied by either
an active or inactive repressor. The probability of binding to the promoter will be
affected by the protein copy number, which we denote as P for RNAP, RA for active
repressor, and RI for inactive repressor. We note that repressors fluctuate between
the active and inactive conformation in thermodynamic equilibrium, such that RA

and RI will remain constant for a given inducer concentration [12]. We assign
the repressor a different DNA binding affinity in the active and inactive state. In
addition to the specific binding sites at the promoter, we assume that there are NN S

non-specific binding sites elsewhere (i.e. on parts of the genome outside the simple
repression architecture) where the RNAP or the repressor can bind. All specific
binding energies are measured relative to the average non-specific binding energy.
Thus, ∆εP represents the energy difference between the specific and non-specific
binding for RNAP to the DNA. Likewise, ∆εRA and ∆εRI represent the difference
in specific and non-specific binding energies for repressor in the active or inactive
state, respectively.

Thermodynamic models of transcription [9–11, 19–22, 24–26] posit that gene ex-
pression is proportional to the probability that the RNAP is bound to the promoter
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Figure 2.2: States and weights for the simple repression motif. (A) RNAP (light
blue) and a repressor compete for binding to a promoter of interest. There are RA
repressors in the active state (red) and RI repressors in the inactive state (purple).
The difference in energy between a repressor bound to the promoter of interest versus
another non-specific site elsewhere on the DNA equals ∆εRA in the active state and
∆εRI in the inactive state; the P RNAP have a corresponding energy difference
∆εP relative to non-specific binding on the DNA. NN S represents the number of
non-specific binding sites for both RNAP and repressor. (B) A repressor has an
active conformation (red, left column) and an inactive conformation (purple, right
column), with the energy difference between these two states given by ∆εAI . The
inducer (blue circle) at concentration c is capable of binding to the repressor with
dissociation constants KA in the active state and KI in the inactive state. The eight
states for a dimer with n = 2 inducer binding sites are shown along with the sums
of the active and inactive states.
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pbound, which is given by

pbound =
P

NNS
e−β∆εP

1 + RA

NNS
e−β∆εRA +

RI

NNS
e−β∆εRI + P

NNS
e−β∆εP

, (2.1)

with β = 1
kBT where kB is the Boltzmann constant and T is the temperature of the

system. As kBT is the natural unit of energy at the molecular length scale, we treat
the products β∆ε j as single parameters within our model. Measuring pbound directly
is fraught with experimental difficulties, as determining the exact proportionality
between expression and pbound is not straightforward. Instead, we measure the
fold-change in gene expression due to the presence of the repressor. We define
fold-change as the ratio of gene expression in the presence of repressor relative to
expression in the absence of repressor (i.e. constitutive expression), namely,

fold-change ≡
pbound(R > 0)
pbound(R = 0)

. (2.2)

We can simplify this expression using twowell-justified approximations: (1) P
NNS

e−β∆εP �

1 implying that the RNAP binds weakly to the promoter (NN S = 4.6 × 106,
P ≈ 103 [27], ∆εP ≈ −2 to − 5 kBT [14], so that P

NNS
e−β∆εP ≈ 0.01) and (2)

RI

NNS
e−β∆εRI � 1 + RA

NNS
e−β∆εRA which reflects our assumption that the inactive re-

pressor binds weakly to the promoter of interest. Using these approximations, the
fold-change reduces to the form

fold-change ≈
(
1 +

RA

NN S
e−β∆εRA

)−1
≡

(
1 + pA(c)

R
NN S

e−β∆εRA

)−1
, (2.3)

where in the last step we have introduced the fraction pA(c) of repressors in the
active state given a concentration c of inducer, such that RA(c) = pA(c)R. Since
inducer binding shifts the repressors from the active to the inactive state, pA(c)
grows smaller as c increases [28].

We use the MWC model to compute the probability pA(c) that a repressor with n

inducer binding sites will be active. The value of pA(c) is given by the sum of
the weights of the active repressor states divided by the sum of the weights of all
possible repressor states (see Figure 2.2B), namely,

pA(c) =

(
1 + c

KA

)n(
1 + c

KA

)n
+ e−β∆εAI

(
1 + c

KI

)n , (2.4)

where KA and KI represent the dissociation constant between the inducer and
repressor in the active and inactive states, respectively, and ∆εAI = εI − εA is
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the free energy difference between a repressor in the inactive and active state (the
quantity e−∆εAI is sometimes denoted by L [12, 28] or KRR∗ [26]). In this equation,

c
KA

and c
KI

represent the change in free energy when an inducer binds to a repressor
in the active or inactive state, respectively, while e−β∆εAI represents the change
in free energy when the repressor changes from the active to inactive state in the
absence of inducer. Thus, a repressor which favors the active state in the absence of
inducer (∆εAI > 0) will be driven towards the inactive state upon inducer binding
when KI < KA. The specific case of a repressor dimer with n = 2 inducer binding
sites is shown in Figure 2.2B.

Substituting pA(c) from Equation 2.4 into Equation 2.3 yields the general formula
for induction of a simple repression regulatory architecture [23], namely,

fold-change = *.
,
1 +

(
1 + c

KA

)n(
1 + c

KA

)n
+ e−β∆εAI

(
1 + c

KI

)n
R

NN S
e−β∆εRA+/

-

−1

. (2.5)

While we have used the specific case of simple repression with induction to craft this
model, the same mathematics describe the case of corepression in which binding of
an allosteric effector stabilizes the active state of the repressor and decreases gene
expression (see Figure 2.1B). Interestingly, we shift from induction (governed by
KI < KA) to corepression (KI > KA) as the ligand transitions from preferentially
binding to the inactive repressor state to stabilizing the active state. Furthermore, this
general approach can be used to describe a variety of other motifs such as activation,
multiple repressor binding sites, and combinations of activator and repressor binding
sites [10, 11, 24].

The formula presented in Equation 2.5 enables us to make precise quantitative
statements about induction profiles. Motivated by the broad range of predictions
implied by Equation 2.5, we designed a series of experiments using the lac system
in E. coli to tune the control parameters for a simple repression genetic circuit.
As discussed in Figure 2.1C, previous studies from our lab have provided well-
characterized values for many of the parameters in our experimental system, leaving
only the values of the theMWCparameters (KA, KI , and∆εAI) to be determined. We
note that while previous studies have obtained values for KA, KI , and L = e−β∆εAI

[26, 29], they were either based upon biochemical experiments or in vivo conditions
involving poorly characterized transcription factor copy numbers and gene copy
numbers. These differences relative to our experimental conditions and fitting
techniques led us to believe that it was important to perform our own analysis of
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these parameters. After inferring these three MWC parameters (see Supplemental
Section 2.5 for details regarding the inference of ∆εAI , which was fitted separately
from KA and KI), we were able to predict the input/output response of the system
under a broad range of experimental conditions. For example, this framework can
predict the response of the system at different repressor copy numbers R, repressor-
operator affinities ∆εRA, inducer concentrations c, and gene copy numbers (see
Supplemental Section 2.6).
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Experimental Design
We test ourmodel by predicting the induction profiles for an array of strains that could
be made using previously characterized repressor copy numbers and DNA binding
energies. Our approach contrasts with previous studies that have parameterized
induction curves of simple repression motifs, as these have relied on expression
systems where proteins are expressed from plasmids, resulting in highly variable
and unconstrained copy numbers [26, 30–33]. Instead, our approach relies on a
foundation of previous work as depicted in Figure 2.1C. This includes work from
our laboratory that used E. coli constructs based on components of the lac system
to demonstrate how the lac repressor (LacI) copy number R and operator binding
energy ∆εRA affect gene expression in the absence of inducer [9]. Ref. [34]
extended the theory used in that work to the case of multiple promoters competing
for a given transcription factor, which was validated experimentally by Ref. [10],
who modified this system to consider expression from multiple-copy plasmids as
well as the presence of competing repressor binding sites.

The present study extends this body of work by introducing three additional bio-
physical parameters—∆εAI , KA, and KI—which capture the allosteric nature of the
transcription factor and complement the results shown by Ref. [9] and Ref. [10].
Although the current work focuses on systems with a single site of repression, in
Section 2.5 we utilize data from Ref. [10], in which multiple sites of repression
are explored, to characterize the allosteric free energy difference ∆εAI between the
repressor’s active and inactive states. As explained in that Section, this additional
data set is critical because multiple degenerate sets of parameters can characterize an
induction curve equally well, with the ∆εAI parameter compensated by the inducer
dissociation constants KA and KI (see Figure 2.8). After fixing ∆εAI as described
in the Section 2.5, we can use data from single-site simple repression systems to
determine the values of KA and KI .

We determine the values of KA and KI by fitting to a single induction profile
using Bayesian inferential methods [35]. We then use Equation 2.5 to predict
gene expression for any concentration of inducer, repressor copy number, and DNA
binding energy and compare these predictions against experimental measurements.
To obtain induction profiles for a set of strains with varying repressor copy numbers,
we used modified lacI ribosomal binding sites from Ref. [9] to generate strains
with mean repressor copy number per cell of R = 22 ± 4, 60 ± 20, 124 ± 30,
260 ± 40, 1220 ± 160, and 1740 ± 340, where the error denotes standard deviation
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of at least three replicates as measured by Ref. [9]. We note that R refers to the
number of repressor dimers in the cell, which is twice the number of repressor
tetramers reported by Ref. [9]; since both heads of the repressor are assumed
to always be either specifically or non-specifically bound to the genome, the two
repressor dimers in each LacI tetramer can be considered independently. Gene
expression was measured using a Yellow Fluorescent Protein (YFP) gene, driven
by a lacUV5 promoter. Each of the six repressor copy number variants were paired
with the native O1, O2, or O3 lac operator [36] placed at the YFP transcription start
site, thereby generating eighteen unique strains. The repressor-operator binding
energies (O1 ∆εRA = −15.3 ± 0.2 kBT , O2 ∆εRA = −13.9 kBT ± 0.2, and O3
∆εRA = −9.7 ± 0.1 kBT) were previously inferred by measuring the fold-change
of the lac system at different repressor copy numbers, where the error arises from
model fitting [9]. Additionally, we were able to obtain the value ∆εAI = 4.5 kBT by
fitting to previous data as discussed in Section 2.5. We measure fold-change over a
range of known IPTG concentrations c, using n = 2 inducer binding sites per LacI
dimer and approximating the number of non-specific binding sites as the length in
base-pairs of the E. coli genome, NN S = 4.6 × 106.

Our experimental pipeline for determining fold-change using flow cytometry is
shown in Figure 2.3. Briefly, cells were grown to exponential phase, in which
gene expression reaches steady state [37], under concentrations of the inducer IPTG
ranging between 0 and 5mM. We measure YFP fluorescence using flow cytometry
and automatically gate the data to include only single-cellmeasurements (see Section
2.7). To validate the use of flow cytometry, we also measured the fold-change of
a subset of strains using the established method of single-cell microscopy (see
Supplemental Section 2.8). We found that the fold-change measurements obtained
from microscopy were indistinguishable from that of flow-cytometry and yielded
values for the inducer binding constants KA and KI that were within error.
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Figure 2.3: An experimental pipeline for high-throughput fold-change mea-
surements. Cells are grown to exponential steady state and their fluorescence is
measured using flow cytometry. Automatic gating methods using forward- and
side-scattering are used to ensure that all measurements come from single cells
(see Methods). Mean expression is then quantified at different IPTG concentrations
(top, blue histograms) and for a strain without repressor (bottom, green histograms),
which shows no response to IPTG as expected. Fold-change is computed by dividing
the mean fluorescence in the presence of repressor by the mean fluorescence in the
absence of repressor.
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Determination of the in vivo MWC Parameters
The three parameters that we tune experimentally are shown in Figure 2.4A, leaving
the three allosteric parameters (∆εAI , KA, and KI) to be determined by fitting.
We used previous LacI fold-change data [10] to infer that ∆εAI = 4.5 kBT (see
Supplemental Section 2.5). Rather than fitting KA and KI to our entire data set
of eighteen unique constructs, we performed Bayesian parameter estimation on
data from a single strain with R = 260 and an O2 operator (∆εRA = −13.9 kBT

[9]) shown in Figure 2.4D (white circles). Using Markov Chain Monte Carlo,
we determine the most likely parameter values to be KA = 139+29

−22 × 10−6 M and
KI = 0.53+0.04

−0.04 × 10−6 M, which are the modes of their respective distributions,
where the superscripts and subscripts represent the upper and lower bounds of the
95th percentile of the parameter value distributions (see Figure 2.4B). Unfortunately,
we are not able to make a meaningful value-for-value comparison of our parameters
to those of earlier studies [26, 31] because of uncertainties in both gene copy number
and transcription factor copy numbers in these studies, as illustrated by the plots in
Section 2.6. We then predicted the fold-change for the remaining seventeen strains
with no further fitting (see Figure 2.4C-E) together with the specific phenotypic
properties described in Figure 2.1 and discussed in detail below (see Figure 2.4F-
J). The shaded regions in Figure 2.4C-J denote the 95% credible regions. Factors
determining the width of the credible regions are explored in Supplemental Section
2.9.

We stress that the entire suite of predictions in Figure 2.4 is based upon the induction
profile of a single strain. Our ability to make such a broad range of predictions stems
from the fact that our parameters of interest—such as the repressor copy number
and DNA binding energy—appear as distinct physical parameters within our model.
While the single data set in Figure 2.4D could also be fit using a Hill function,
such an analysis would be unable to predict any of the other curves in the figure
(see Supplemental Section 2.10). Phenomenological expressions such as the Hill
function can describe data, but lack predictive power and are thus unable to build our
intuition, help us design de novo input-output functions, or guide future experiments
[25, 30].
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Figure 2.4: Predicting induction profiles for different biological control parameters.
(A) We can quantitatively tune R via ribosomal binding site (RBS) modifications, ∆εRA by
mutating the operator sequence, and c by adding different amounts of IPTG to the growth
medium. (B) The unknown dissociation constants KA and KI between the inducer and
the repressor in the active and inactive states, respectively, can be inferred using Bayesian
parameter estimation from a single induction curve. (C-E) Predicted IPTG titration curves
for different repressor copy numbers and operator strengths. Values for KA and KI are fitted
to titration data for theO2 strain (white circles in PanelD)with R = 260,∆εRA = −13.9 kBT ,
n = 2, and ∆εAI = 4.5 kBT . The remaining solid lines predict the fold-change Equation 2.5
all other strains. Error bars of experimental data show the standard error of the mean (eight
or more replicates) when this error is not smaller than the diameter of the data point. The
shaded regions denote the 95% credible region, although the credible region is obscured
when it is thinner than the curve itself. Additionally, our model allows us to investigate
key phenotypic properties of the induction profiles (see Figure 2.1B). Specifically, we show
predictions for the (F) leakiness, (G) saturation, (H) dynamic range,(I) [EC50], and (J)
effective Hill coefficient of the induction profiles.
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Comparison of Experimental Measurements with Theoretical Predictions
We tested the predictions shown in Figure 2.4 by measuring fold-change induction
profiles in strains with a broad range of repressor copy numbers and repressor
binding energies as characterized in Ref. [9]. With a few notable exceptions, the
results shown in Figure 2.5 demonstrate agreement between theory and experiment.
We note that there was an apparently systematic shift in the O3 ∆εRA = −9.7 kBT

strains (Figure 2.5C) and all of the R = 1220 and R = 1740 strains. This may
be partially due to imprecise previous determinations of their ∆εRA and R values.
By performing a global fit where we infer all parameters including the repressor
copy number R and the binding energy ∆εRA, we found better agreement for these
strains, although a discrepancy in the steepness of the response for all O3 strains
remains (see Supplemental Section 2.11). We considered a number of hypotheses
to explain these discrepancies such as including other states (e.g. non-negligible
binding of the inactive repressor), relaxing the weak promoter approximation, and
accounting for variations in gene and repressor copy number throughout the cell
cycle, but none explained the observed discrepancies. As an additional test of our
model, we considered strains using the synthetic Oid operator which exhibits an
especially strong binding energy of ∆εRA = −17 kBT [9]. The global fit agrees well
with the Oid microscopy data, though it asserts a stronger Oid binding energy of
∆εRA = −17.7 kBT (see Supplemental Section 2.12).

To ensure that the agreement between our predictions and data is not an accident of
the strain we used to perform our fitting, we also inferred KA and KI from each of the
other strains. As shown in Supplemental Section 2.13 and Figure 2.5D, the inferred
values of KA and KI depend minimally upon which strain is chosen, indicating that
these parameter values are highly robust. We also performed a global fit using
the data from all eighteen strains in which we fitted for the inducer dissociation
constants KA and KI , the repressor copy number R, and the repressor DNA binding
energy ∆εRA (see Supplemental Section 2.11). The resulting parameter values were
nearly identical to those fitted from any single strain. For the remainder of the text
we continue using parameters fitted from the strain with R = 260 repressors and an
O2 operator.
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Figure 2.5: Comparison of predictions against measured and inferred data.
Flow cytometry measurements of fold-change over a range of IPTG concentrations
for (A) O1, (B) O2, and (C) O3 strains at varying repressor copy numbers, overlaid
on the predicted responses. Error bars for the experimental data show the standard
error of the mean (eight or more replicates). As discussed in Figure 2.4, all of the
predicted induction curves were generated prior to measurement by inferring the
MWC parameters using a single data set (O2 R = 260, shown by white circles in
Panel B). The predictions may therefore depend upon which strain is used to infer
the parameters. (D) The inferred parameter values of the dissociation constants KA
and KI using any of the eighteen strains instead of the O2 R = 260 strain. Nearly
identical parameter values are inferred from each strain, demonstrating that the same
set of induction profiles would have been predicted regardless of which strain was
chosen. The points show the mode, and the error bars denote the 95% credible
region of the parameter value distribution. Error bars not visible are smaller than
the size of the marker.
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Predicting the Phenotypic Traits of the Induction Response
A subset of the properties shown in Figure 2.1 (i.e. the leakiness, saturation,
dynamic range, [EC50], and effective Hill coefficient) are of significant interest to
synthetic biology. For example, synthetic biology is often focused on generating
large responses (i.e. a large dynamic range) or finding a strong binding partner (i.e.
a small [EC50]) [38, 39]. While these properties are all individually informative,
when taken together they capture the essential features of the induction response.
We reiterate that a Hill function approach cannot predict these features a priori and
furthermore requires fitting each curve individually. The MWC model, on the other
hand, enables us to quantify how each trait depends upon a single set of physical
parameters as shown by Figure 2.4F-J.

We define these five phenotypic traits using expressions derived from the model,
Equation 2.5. These results build upon extensive work by Ref. [40], who computed
many such properties for ligand-receptor binding within the MWC model. We
begin by analyzing the leakiness, which is the minimum fold-change observed in
the absence of ligand, given by

leakiness = fold-change(c = 0)

=

(
1 +

1
1 + e−β∆εAI

R
NN S

e−β∆εRA

)−1
, (2.6)

and the saturation, which is the maximum fold change observed in the presence of
saturating ligand,

saturation = fold-change(c → ∞)

=
*.
,
1 +

1
1 + e−β∆εAI
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. (2.7)

Systems that minimize leakiness repress strongly in the absence of effector while
systems that maximize saturation have high expression in the presence of effector.
Together, these two properties determine the dynamic range of a system’s response,
which is given by the difference

dynamic range = saturation − leakiness. (2.8)

These three properties are shown in Figure 2.4F-H. We discuss these properties
in greater detail in Supplemental Section 2.14. Figure 2.6A-C shows that the
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measurements of these three properties, derived from the fold-change data in the
absence of IPTG and the presence of saturating IPTG, closely match the predictions
for all three operators.

Figure 2.6: Predictions and experimental measurements of key properties of
induction profiles. Data for the (A) leakiness, (B) saturation, and (C) dynamic
range are obtained from fold-change measurements in Figure 2.5 in the absence
of IPTG and at saturating concentrations of IPTG. The three repressor-operator
binding energies in the legend correspond to the O1 operator (−15.3 kBT), O2
operator (−13.9 kBT), and O3 operator (−9.7 kBT). Both the (D) [EC50] and (D)
effective Hill coefficient are inferred by individually fitting each operator-repressor
pairing in Figure 2.5A-C separately to Equation 2.5 in order to smoothly interpolate
between the data points. Error bars for A-C represent the standard error of the mean
for eight or more replicates; error bars for D-E represent the 95% credible region
for the parameter found by propagating the credible region of our estimates of KA
and KI into Equation 2.9 and Equation 2.10.

Two additional properties of induction profiles are the [EC50] and effective Hill
coefficient, which determine the range of inducer concentration inwhich the system’s
output goes from its minimum to maximum value. The [EC50] denotes the inducer
concentration required to generate a system response Equation 2.5 halfway between
its minimum and maximum value,

fold-change(c = [EC50]) =
leakiness + saturation

2
. (2.9)

The effective Hill coefficient h, which quantifies the steepness of the curve at the
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[EC50] [28], is given by

h =
(
2

d
d log c

[
log

(
fold-change(c) − leakiness

dynamic range

)])
c=[EC50]

. (2.10)

Figure 2.4I-J shows how the [EC50] and effective Hill coefficient depend on the
repressor copy number. In Supplemental Section 2.14, we discuss the analytic
forms of these two properties as well as their dependence on the repressor-DNA
binding energy.

Figure 2.6D-E shows the estimated values of the [EC50] and the effective Hill
coefficient overlaid on the theoretical predictions. Both properties were obtained by
fitting Equation 2.5 to each individual titration curve and computing the [EC50] and
effective Hill coefficient using Equation 2.9 and Equation 2.10, respectively. We
find that the predictions made with the single strain fit closely match those made
for each of the strains with O1 and O2 operators, but the predictions for the O3
operator are markedly off. In Supplemental Section 2.10, we show that the large,
asymmetric error bars for the O3 R = 22 strain arise from its nearly flat response,
where the lack of dynamic range makes it impossible to determine the value of the
inducer dissociation constants KA and KI , as can be seen in the uncertainty of both
the [EC50] and effective Hill coefficient. Discrepancies between theory and data
for O3 are improved, but not fully resolved, by performing a global fit or fitting the
MWC model individually to each curve (see Supplemental Sections 2.11 and 2.13).
It remains an open question how to account for discrepancies in O3, in particular
regarding the significant mismatch between the predicted and fitted effective Hill
coefficients.
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Data Collapse of Induction Profiles
Our primary interest heretofore was to determine the system response at a specific
inducer concentration, repressor copy number, and repressor-DNA binding energy.
However, the cell does not necessarily “care about” the precise number of repressors
in the system or the binding energy of an individual operator. The relevant quantity
for cellular function is the fold-change enacted by the regulatory system. This
raises the question: given a specific value of the fold-change, what combination
of parameters will give rise to this desired response? In other words, what trade-
offs between the parameters of the system will give rise to the same mean cellular
output? These are key questions both for understanding how the system is governed
and for engineering specific responses in a synthetic biology context. To address
these questions, we follow the data collapse strategy used in a number of previous
studies [41–43], and rewrite Equation 2.5 as a Fermi function,

fold-change =
1

1 + e−F (c) , (2.11)

where F (c) is the free energy of the repressor binding to the operator of interest
relative to the unbound operator state in kBT units [23, 42, 43], which is given by

F (c) =
∆εRA

kBT
− log

(
1 + c

KA

)n(
1 + c

KA

)n
+ e−β∆εAI

(
1 + c

KI

)n − log
R

NN S
. (2.12)

The first term in F (c) denotes the repressor-operator binding energy, the second the
contribution from the inducer concentration, and the last the effect of the repressor
copy number. We note that elsewhere, this free energy has been dubbed the Bohr
parameter since such families of curves are analogous to the shifts in hemoglobin
binding curves at different pHs known as the Bohr effect [23, 44, 45].

Instead of analyzing each induction curve individually, the free energy provides a
natural means to simultaneously characterize the diversity in our eighteen induction
profiles. Figure 2.7A demonstrates how the various induction curves from Figure
2.4C-E all collapse onto a single master curve, where points from every induction
profile that yield the same fold-change are mapped onto the same free energy. Figure
2.7B shows this data collapse for the 216 data points in Figure 2.5A-C, demonstrating
the close match between the theoretical predictions and experimental measurements
across all eighteen strains.

There are many different combinations of parameter values that can result in the
same free energy as defined in Equation 2.12. For example, suppose a system
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originally has a fold-change of 0.2 at a specific inducer concentration, and then
operator mutations increase the ∆εRA binding energy [46]. While this serves to
initially increase both the free energy and the fold-change, a subsequent increase
in the repressor copy number could bring the cell back to the original fold-change
level. Such trade-offs hint that there need not be a single set of parameters that evoke
a specific cellular response, but rather that the cell explores a large but degenerate
space of parameters with multiple, equally valid paths.
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Figure 2.7: Fold-change data fromabroad collection of different strains collapse
onto a single master curve. (A) Any combination of parameters can be mapped
to a single physiological response (i.e. fold-change) via the free energy, which
encompasses the parametric details of the model. (B) Experimental data from
Figure 2.5 collapse onto a single master curve as a function of the free energy
Equation 2.12. The free energy for each strain was calculated from Equation 2.12
using n = 2, ∆εAI = 4.5 kBT , KA = 139 × 10−6 M, KI = 0.53 × 10−6 M, and the
strain-specific R and ∆εRA. All data points represent the mean, and error bars are
the standard error of the mean for eight or more replicates.



73

2.3 Discussion
Since the early work by Monod, Wyman, and Changeux [12, 47], an array of bio-
logical phenomena have been tied to the existence of macromolecules that switch
between inactive and active states. Examples can be found in a wide variety of
cellular processes, including ligand-gated ion channels [48], enzymatic reactions
[45, 49], chemotaxis [42], quorum sensing [43], G-protein coupled receptors [50],
physiologically important proteins [51, 52], and beyond. One of the most ubiqui-
tous examples of allostery is in the context of gene expression, where an array of
molecular players bind to transcription factors to influence their ability to regulate
gene activity [17, 18]. A number of studies have focused on developing a quan-
titative understanding of allosteric regulatory systems. Ref. [28, 40] analytically
derived fundamental properties of the MWC model, including the leakiness and
dynamic range described in this work, noting the inherent trade-offs in these prop-
erties when tuning the model’s parameters. Work in the Church and Voigt labs,
among others, has expanded on the availability of allosteric circuits for synthetic
biology [7, 8, 53, 54]. Recently, Daber et al. theoretically explored the induction of
simple repression within the MWC model [31] and experimentally measured how
mutations alter the induction profiles of transcription factors [26]. Vilar and Saiz
analyzed a variety of interactions in inducible lac-based systems including the ef-
fects of oligomerization and DNA folding on transcription factor induction [6, 55].
Other work has attempted to use the lac system to reconcile in vitro and in vivo
measurements [33, 56].

Although this body of work has done much to improve our understanding of al-
losteric transcription factors, there have been few attempts to explicitly connect
quantitative models to experiments. Here, we generate a predictive model of al-
losteric transcriptional regulation and then test the model against a thorough set
of experiments using well-characterized regulatory components. Specifically, we
used the MWC model to build upon a well-established thermodynamic model of
transcriptional regulation [9, 24], allowing us to compose the model from a minimal
set of biologically meaningful parameters. This model combines both theoretical
and experimental insights; for example, rather than considering gene expression
directly we analyze the fold-change in expression, where the weak promoter approx-
imation (see Equation 2.3) circumvents uncertainty in the RNAP copy number. The
resulting model depended upon experimentally accessible parameters, namely, the
repressor copy number, the repressor-DNA binding energy, and the concentration
of inducer. We tested these predictions on a range of strains whose repressor copy
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number spanned two orders of magnitude and whose DNA binding affinity spanned
6 kBT . We argue that one would not be able to generate such a wide array of
predictions by using a Hill function, which abstracts away the biophysical meaning
of the parameters into phenomenological parameters [57].

More precisely, we tested our model in the context of a lac-based simple repression
system by first determining the allosteric dissociation constants KA and KI from a
single induction data set (O2 operator with binding energy ∆εRA = −13.9 kBT and
repressor copy number R = 260) and then using these values to make parameter-free
predictions of the induction profiles for seventeen other strains where ∆εRA and R

were varied significantly (see Figure 2.4). We next measured the induction profiles
of these seventeen strains using flow cytometry and found that our predictions
consistently and accurately captured the primary features for each induction data
set, as shown in Figure 2.5A-C. Importantly, we find that fitting KA and KI to
data from any other strain would have resulted in nearly identical predictions (see
Figure 2.5D and Supplemental Section 2.13). This suggests that a few carefully
chosen measurements can lead to a deep quantitative understanding of how simple
regulatory systems work without requiring an extensive sampling of strains that
span the parameter space. Moreover, the fact that we could consistently achieve
reliable predictions after fitting only two free parameters stands in contrast to the
common practice of fitting several free parameters simultaneously, which can nearly
guarantee an acceptable fit provided that the model roughly resembles the system
response, regardless of whether the details of the model are tied to any underlying
molecular mechanism.

Beyond observing changes in fold-change as a function of effector concentration,
our application of the MWC model allows us to explicitly predict the values of the
induction curves’ key parameters, namely, the leakiness, saturation, dynamic range,
[EC50], and the effective Hill coefficient (see Figure 2.6). We are consistently able
to accurately predict the leakiness, saturation, and dynamic range for each of the
strains. For both the O1 and O2 data sets, our model also accurately predicts the
effective Hill coefficient and [EC50], though these predictions for O3 are noticeably
less accurate. While performing a global fit for all model parameters marginally
improves the prediction for O3 (see Supplemental Section 2.11), we are still unable
to accurately predict the effective Hill coefficient or the [EC50]. We further tried
including additional states (such as allowing the inactive repressor to bind to the
operator), relaxing the weak promoter approximation, accounting for changes in
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gene and repressor copy number throughout the cell cycle [58], and refitting the
original binding energies from Ref. [13], but we were still unable to account for the
O3 data. It remains an open question as to how the discrepancy between the theory
and measurements for O3 can be reconciled.

The dynamic range, which is of considerable interest when designing or characteriz-
ing a genetic circuit, is revealed to have an interesting property: although changing
the value of ∆εRA causes the dynamic range curves to shift to the right or left, each
curve has the same shape and in particular the same maximum value. This means
that strains with strong or weak binding energies can attain the same dynamic range
when the value of R is tuned to compensate for the binding energy. This feature
is not immediately apparent from the IPTG induction curves, which show very
low dynamic ranges for several of the O1 and O3 strains. Without the benefit of
models that can predict such phenotypic traits, efforts to engineer genetic circuits
with allosteric transcription factors must rely on trial and error to achieve specific
responses [7, 8].

Despite the diversity observed in the induction profiles of each of our strains, our data
are unified by their reliance on fundamental biophysical parameters. In particular,
we have shown that our model for fold-change can be rewritten in terms of the
free energy Equation 2.12, which encompasses all of the physical parameters of the
system. This has proven to be an illuminating technique in a number of studies
of allosteric proteins [41–43]. Although it is experimentally straightforward to
observe system responses to changes in effector concentration c, framing the input-
output function in terms of c can give the misleading impression that changes in
system parameters lead to fundamentally altered system responses. Alternatively, if
one can find the “natural variable” that enables the output to collapse onto a single
curve, it becomes clear that the system’s output is not governed by individual system
parameters, but rather the contributions ofmultiple parameters that define the natural
variable. When our fold-change data are plotted against the respective free energies
for each construct, they collapse cleanly onto a single curve (see Figure 2.7). This
enables us to analyze how parameters can compensate each other. For example,
rather than viewing strong repression as a consequence of low IPTG concentration
c or high repressor copy number R, we can now observe that strong repression is
achieved when the free energy F (c) ≤ −5kBT , a condition which can be reached in
a number of ways.

While our experiments validated the theoretical predictions in the case of simple
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repression, we expect the framework presented here to apply much more generally
to different biological instances of allosteric regulation. For example, we can
use this model to study more complex systems such as when transcription factors
interact with multiple operators [24]. We can further explore different regulatory
configurations such as corepression, activation, and coactivation, each of which are
found in E. coli (see Supplemental Section 2.15). This work can also serve as a
springboard to characterize not just themean but the full gene expression distribution
and thus quantify the impact of noise on the system [59]. Another extension of this
approach would be to theoretically predict and experimentally verify whether the
repressor-inducer dissociation constants KA and KI or the energy difference ∆εAI

between the allosteric states can be tuned by making single amino acid substitutions
in the transcription factor [23, 26]. Finally, we expect that the kind of rigorous
quantitative description of the allosteric phenomenon provided here will make it
possible to construct biophysical models of fitness for allosteric proteins similar to
those already invoked to explore the fitness effects of transcription factor binding
site strengths and protein stability [60–62].

To conclude, we find that our application of the MWC model provides an accurate,
predictive framework for understanding simple repression by allosteric transcription
factors. To reach this conclusion, we analyzed the model in the context of a well-
characterized system, in which each parameter had a clear biophysical meaning. As
many of these parameters had been measured or inferred in previous studies, this
gave us a minimal model with only two free parameters which we inferred from
a single data set. We then accurately predicted the behavior of seventeen other
data sets in which repressor copy number and repressor-DNA binding energy were
systematically varied. In addition, our model allowed us to understand how key
properties such as the leakiness, saturation, dynamic range, [EC50], and effective
Hill coefficient depended upon the small set of parameters governing this system.
Finally, we show that by framing inducible simple repression in terms of free energy,
the data from all of our experimental strains collapse cleanly onto a single curve,
illustrating the many ways in which a particular output can be targeted. In total,
these results show that a thermodynamic formulation of theMWCmodel supersedes
phenomenological fitting functions for understanding transcriptional regulation by
allosteric proteins.
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2.4 Methods
Bacterial Strains and DNA Constructs
All strains used in these experiments were derived from E. coli K12 MG1655
with the lac operon removed, adapted from those created and described in Ref.
[9, 13]. Briefly, the operator variants and YFP reporter gene were cloned into a
pZS25 background which contains a lacUV5 promoter that drives expression as is
shown schematically in Figure 2.2. These constructs carried a kanamycin resistance
gene and were integrated into the galK locus of the chromosome using λ Red
recombineering [63]. The lacI gene was constitutively expressed via a PLtetO-1
promoter [53], with ribosomal binding site mutations made to vary the LacI copy
number as described in Ref. [64] using site-directed mutagenesis (Quickchange
II; Stratagene), with further details in Ref. [9]. These lacI constructs carried a
chloramphenicol resistance gene and were integrated into the ybcN locus of the
chromosome. Final strain construction was achieved by performing repeated P1
transduction [65] of the different operator and lacI constructs to generate each
combination used in this work. Integration was confirmed by PCR amplification
of the replaced chromosomal region and by sequencing. Primers and final strain
genotypes are listed in Supplemental Section 2.16.

It is important to note that the rest of the lac operon (lacZYA) was never expressed.
The LacY protein is a transmembrane protein which actively transports lactose as
well as IPTG into the cell. As LacY was never produced in our strains, we assume
that the extracellular and intracellular IPTG concentration was approximately equal
due to diffusion across the membrane into the cell as is suggested by previous work
[66].

To make this theory applicable to transcription factors with any number of DNA
binding domains, we used a different definition for repressor copy number than has
been used previously. We define the LacI copy number as the average number of
repressor dimers per cell whereas in Ref. [9], the copy number is defined as the
average number of repressor tetramers in each cell. To motivate this decision, we
consider the fact that the LacI repressor molecule exists as a tetramer in E. coli
[67] in which a single DNA binding domain is formed from dimerization of LacI
proteins, so that wild-type LacI might be described as dimer of dimers. Since each
dimer is allosterically independent (i.e. either dimer can be allosterically active or
inactive, independent of the configuration of the other dimer) [31], a single LacI
tetramer can be treated as two functional repressors. Therefore, we have simply
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multiplied the number of repressors reported in Ref. [9] by a factor of two. This
factor is included as a keyword argument in the numerous Python functions used to
perform this analysis, as discussed in the code documentation.

A subset of strains in these experiments were measured using fluorescence mi-
croscopy for validation of the flow cytometry data and results. To aid in the high-
fidelity segmentation of individual cells, the strains were modified to constitutively
express an mCherry fluorophore. This reporter was cloned into a pZS4*1 backbone
[53] in which mCherry is driven by the lacUV5 promoter. All microscopy and flow
cytometry experiments were performed using these strains.

Growth Conditions for Flow Cytometry Measurements
All measurements were performed with E. coli cells grown to mid-exponential
phase in standard M9 minimal media (M9 5X Salts, Sigma-Aldrich M6030; 2mM
magnesium sulfate, Mallinckrodt Chemicals 6066-04; 100 µM calcium chloride,
Fisher Chemicals C79-500) supplemented with 0.5% (w/v) glucose. Briefly, 500 µL
cultures of E. coli were inoculated into Lysogeny Broth (LB Miller Powder, BD
Medical) from a 50% glycerol frozen stock (-80◦C) and were grown overnight in
a 2mL 96-deep-well plate sealed with a breathable nylon cover (Lab Pak—Nitex
Nylon, Sefar America Inc. Cat. No. 241205) with rapid agitation for proper
aeration. After approximately 12 to 15 hours, the cultures had reached saturation
and were diluted 1000-fold into a second 2mL 96-deep-well plate where each
well contained 500 µL of M9 minimal media supplemented with 0.5% w/v glucose
(anhydrous D-Glucose, Macron Chemicals) and the appropriate concentration of
IPTG (Isopropyl β-D-1 thiogalactopyranoside Dioxane Free, Research Products
International). These were sealed with a breathable cover and were allowed to
grow for approximately eight hours. Cells were then diluted ten-fold into a round-
bottom 96-well plate (Corning Cat. No. 3365) containing 90 µL of M9 minimal
media supplemented with 0.5% w/v glucose along with the corresponding IPTG
concentrations. For each IPTG concentration, a stock of 100-fold concentrated
IPTG in double distilled water was prepared and partitioned into 100 µL aliquots.
The same parent stock was used for all experiments described in this work.

Flow Cytometry
Unless explicitly mentioned, all fold-change measurements were collected on a
Miltenyi Biotec MACSquant Analyzer 10 Flow Cytometer graciously provided by
the Pamela Björkman lab at Caltech. Detailed information regarding the voltage
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settings of the photo-multiplier detectors can be found in Table 2.1. Prior to each
day’s experiments, the analyzer was calibrated usingMACSQuant CalibrationBeads
(Cat. No. 130-093-607) such that day-to-day experimentswould be comparable. All
YFP fluorescence measurements were collected via 488 nm laser excitation coupled
with a 525/50 nm emission filter. Unless otherwise specified, all measurements were
taken over the course of two to three hours using automated sampling from a 96-well
plate kept at approximately 4◦ - 10◦C on a MACS Chill 96 Rack (Cat. No. 130-
094-459). Cells were diluted to a final concentration of approximately 4× 104 cells
per µL which corresponded to a flow rate of 2,000-6,000 measurements per second,
and acquisition for each well was halted after 100,000 events were detected. Once
completed, the data were extracted and immediately processed using the following
methods.

Unsupervised Gating of Flow Cytometry Data
Flow cytometry data will frequently include a number of spurious events or other
undesirable data points such as cell doublets and debris. The process of restricting
the collected data set to those data determined to be “real” is commonly referred
to as gating. These gates are typically drawn manually [68] and restrict the data
set to those points which display a high degree of linear correlation between their
forward-scatter (FSC) and side-scatter (SSC). The development of unbiased and
unsupervised methods of drawing these gates is an active area of research [69, 70].
For our purposes, we assume that the fluorescence level of the population should
be log-normally distributed about some mean value. With this assumption in place,
we developed a method that allows us to restrict the data used to compute the mean
fluorescence intensity of the population to the smallest two-dimensional region of the
log(FSC) vs. log(SSC) space inwhich 40%of the data is found. Thiswas performed
byfitting a bivariateGaussian distribution and restricting the data used for calculation
to those that reside within the 40th percentile. This procedure is described in
more detail in the supplementary information as well as in a Jupyter notebook
located in this paper’s Github repository (https://rpgroup-pboc.github.io/
mwc_induction/code/notebooks/unsupervised_gating.html).

Experimental Determination of Fold-Change
For each strain and IPTG concentration, the fold-change in gene expression was cal-
culated by taking the ratio of the population mean YFP expression in the presence
of LacI repressor to that of the population mean in the absence of LacI repressor.

https://rpgroup-pboc.github.io/mwc_induction/code/notebooks/unsupervised_gating.html
https://rpgroup-pboc.github.io/mwc_induction/code/notebooks/unsupervised_gating.html
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However, the measured fluorescence intensity of each cell also includes the aut-
ofluorescence contributed by the weak excitation of the myriad protein and small
molecules within the cell. To correct for this background, we computed the fold
change as

fold-change =
〈IR>0〉 − 〈Iauto〉
〈IR=0〉 − 〈Iauto〉

, (2.13)

where 〈IR>0〉 is the average cell YFP intensity in the presence of repressor, 〈IR=0〉

is the average cell YFP intensity in the absence of repressor, and 〈Iauto〉 is the
average cell autofluorescence intensity, as measured from cells that lack the lac-YFP
construct.

Bayesian Parameter Estimation
In this work, we determine the the most likely parameter values for the inducer
dissociation constants KA and KI of the active and inactive state, respectively, using
Bayesian methods. We compute the probability distribution of the value of each
parameter given the data D, which by Bayes’ theorem is given by

P(KA, KI | D) =
P(D | KA, KI )P(KA, KI )

P(D)
, (2.14)

where D is all the data composed of independent variables (repressor copy number
R, repressor-DNA binding energy ∆εRA, and inducer concentration c) and one
dependent variable (experimental fold-change). P(D | KA, KI ) is the likelihood of
having observed the data given the parameter values for the dissociation constants,
P(KA, KI ) contains all the prior information on these parameters, and P(D) serves
as a normalization constant, which we can ignore in our parameter estimation.
Equation 2.5 assumes a deterministic relationship between the parameters and the
data, so in order to construct a probabilistic relationship as required byEquation 2.14,
we assume that the experimental fold-change for the ith datum given the parameters
is of the form

fold-change(i)
exp =

*..
,
1 +

(
1 + c(i)

KA

)2

(
1 + c(i)

KA

)2
+ e−β∆εAI

(
1 + c(i)

KI

)2
R(i)

NN S
e−β∆ε

(i)
RA
+//
-

−1

+ ε (i),

(2.15)
where ε (i) represents the departure from the deterministic theoretical prediction for
the ith data point. If we assume that these ε (i) errors are normally distributed with
mean zero and standard deviation σ, the likelihood of the data given the parameters
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is of the form

P(D |KA, KI, σ) =
1

(2πσ2)
n
2

n∏
i=1

exp

−

(fold-change(i)
exp − fold-change(KA, KI, R(i),∆ε(i)

RA, c
(i)))2

2σ2


,

(2.16)
where fold-change(i)

exp is the experimental fold-change and fold-change( · · · ) is the
theoretical prediction. The product

∏n
i=1 captures the assumption that the n data

points are independent. Note that the likelihood and prior terms now include
the extra unknown parameter σ. In applying Equation 2.16, a choice of KA and
KI that provides better agreement between theoretical fold-change predictions and
experimental measurements will result in a more probable likelihood.

Both mathematically and numerically, it is convenient to define k̃A = − log KA

1M and
k̃I = − log KI

1M and fit for these parameters on a log scale. Dissociation constants are
scale invariant, so that a change from 10 µM to 1 µM leads to an equivalent increase
in affinity as a change from 1 µM to 0.1 µM. With these definitions we assume
for the prior P(k̃A, k̃I, σ) that all three parameters are independent. In addition, we
assume a uniform distribution for k̃A and k̃I and a Jeffreys prior [35] for the scale
parameter σ. This yields the complete prior

P(k̃A, k̃I, σ) ≡
1

(k̃max
A − k̃min

A )
1

(k̃max
I − k̃min

I )
1
σ
. (2.17)

These priors are maximally uninformative meaning that they imply no prior knowl-
edge of the parameter values. We defined the k̃A and k̃A ranges uniform on the range
of −7 to 7, although we note that this particular choice does not affect the outcome
provided the chosen range is sufficiently wide.

Putting all these terms together we can now sample from P(k̃A, k̃I, σ | D) us-
ing Markov Chain Monte Carlo (see Github repository, https://rpgroup-pboc.
github.io/mwc_induction/code/notebooks/bayesian_parameter_estimation)
to compute the most likely parameter as well as the error bars (given by the 95%
credible region) for KA and KI .

Data Curation
All of the data used in this work as well as all relevant code can be found at the
dedicated website http://rpgroup-pboc.github.io/mwc_induction. Data
were collected, stored, and preserved using the Git version control software in
combination with off-site storage and hosting website GitHub. Code used to gen-
erate all figures and complete all processing step as and analyses are available on

https://rpgroup-pboc.github.io/mwc_induction/code/notebooks/bayesian_parameter_estimation
https://rpgroup-pboc.github.io/mwc_induction/code/notebooks/bayesian_parameter_estimation
http://rpgroup-pboc.github.io/mwc_induction
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the GitHub repository. Many analysis files are stored as instructive Jupyter Note-
books. The scientific community is invited to fork our repositories and open con-
structive issues on the Github repository https://www.github.com/rpgroup-
pboc/mwc_induction.

https://www.github.com/rpgroup-pboc/mwc_induction
https://www.github.com/rpgroup-pboc/mwc_induction
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2.5 Supplemental Information: Inferring Allosteric Parameters from Previ-
ous Data

The fold-change profile described by Equation 2.5 features three unknown parame-
ters KA, KI , and ∆εAI . In this section, we explore different conceptual approaches
to determining these parameters. We first discuss how the induction titration profile
of the simple repression constructs used in this paper are not sufficient to determine
all three MWC parameters simultaneously, since multiple degenerate sets of param-
eters can produce the same fold-change response. We then utilize an additional data
set from Ref. [10] to determine the parameter ∆εAI = 4.5 kBT , after which the
remaining parameters KA and KI can be extracted from any induction profile with
no further degeneracy.

Degenerate Parameter Values
In this section, we discuss how multiple sets of parameters may yield identical fold-
change profiles. More precisely, we shall show that if we try to fit the data in Figure
2.4C to the fold-change Equation 2.5 and extract the three unknown parameters (KA,
KI , and ∆εAI), then multiple degenerate parameter sets would yield equally good
fits. In other words, this data set alone is insufficient to uniquely determine the
actual physical parameter values of the system. This problem persists even when
fitting multiple data sets simultaneously as in Supplemental Section 2.11.

In Figure 2.8A, we fit the R = 260 data by fixing ∆εAI to the value shown on the
x-axis and determine the parameters KA and KI given this constraint. We use the
fold-change function Equation 2.5 but with β∆εRA modified to the form β∆ε̃RA in
Equation 2.21 to account for the underlying assumptions used when fitting previous
data (see Supplemental Section 2.5 for a full explanation of why this modification
is needed).

The best-fit curves for several different values of∆εAI are shown in Figure 2.8B.Note
that these fold-change curves are nearly overlapping, demonstrating that different
sets of parameters can yield nearly equivalent responses. Without more data, the
relationships between the parameter values shown in Figure 2.8A represent the
maximum information about the parameter values that can be extracted from the
data. Additional experiments which independently measure any of these unknown
parameters could resolve this degeneracy. For example, NMR measurements could
be used to directly measure the fraction (1 + e−β∆εAI )−1 of active repressors in the
absence of IPTG [71, 72].
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Figure 2.8: Multiple sets of parameters yield identical fold-change responses.
(A) The data for the O2 strain (∆εRA = −13.9 kBT) with R = 260 in Figure 2.4C
was fit using Equation 2.5 with n = 2. ∆εAI is forced to take on the value shown on
the x-axis, while the KA and KI parameters are fit freely. (B) The resulting best-fit
functions for several value of ∆εAI all yield nearly identical fold-change responses.

Computing ∆εAI
As shown in the previous section, the fold-change response of a single strain is
not sufficient to determine the three MWC parameters (KA, KI , and ∆εAI), since
degenerate sets of parameters yield nearly identical fold-change responses. To
circumvent this degeneracy, we now turn to some previous data from the lac system
in order to determine the value of ∆εAI in Equation 2.5 for the induction of the
lacrepressor. Specifically, we consider two previous sets of work from: (1) Ref.
[9] and (2) Ref. [10], both of which measured fold-change with the same simple
repression system in the absence of inducer (c = 0) but at various repressor copy
numbers R. The original analysis for both data sets assumed that in the absence of
inducer all of the lacrepressors were in the active state. As a result, the effective
binding energies they extracted were a convolution of the DNA binding energy
∆εRA and the allosteric energy difference ∆εAI between the lac repressor’s active
and inactive states. We refer to this convoluted energy value as ∆ε̃RA. We first
disentangle the relationship between these parameters in Garcia and Phillips (Ref.
[9]) and then use this relationship to extract the value of ∆εAI from the Brewster et
al. dataset.

Garcia and Phillips determined the total repressor copy numbers R of different
strains using quantitative Western blots. Then they measured the fold-change at
these repressor copy numbers for simple repression constructs carrying the O1, O2,
O3, and Oid lac operators integrated into the chromosome. These data were then
fit to the following thermodynamic model to determine the repressor-DNA binding
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energies ∆ε̃RA for each operator,

fold-change(c = 0) =
(
1 +

R
NN S

e−β∆ε̃RA

)−1
. (2.18)

Note that this functional form does not exactly match our fold-change Equation 2.5
in the limit c = 0,

fold-change(c = 0) =
(
1 +

1
1 + e−β∆εAI

R
NN S

e−β∆εRA

)−1
, (2.19)

since it is missing the factor 1
1+e−β∆εAI

which specifies what fraction of repressors
are in the active state in the absence of inducer,

1
1 + e−β∆εAI

= pA(0). (2.20)

In other words, Garcia and Phillips assumed that in the absence of inducer, all
repressors were active. In terms of our notation, the convoluted energy values
∆ε̃RA extracted by Garcia and Phillips (namely, ∆ε̃RA = −15.3 kBT for O1 and
∆ε̃RA = −17.0 kBT for Oid) represent

β∆ε̃RA = β∆εRA − log
(

1
1 + e−β∆εAI

)
. (2.21)

Note that if e−β∆εAI � 1, then nearly all of the repressors are active in the absence of
inducer so that ∆ε̃RA ≈ ∆εRA. In simple repression systems where we definitively
know the value of ∆εRA and R, we can use Equation 2.19 to determine the value of
∆εAI by comparing with experimentally determined fold-change values. However,
the binding energy values that we use from Ref. [9] are effective parameters ∆ε̃RA.
In this case, we are faced with an undetermined system in which we have more
variables than equations, and we are thus unable to determine the value of ∆εAI . In
order to obtain this parameter, we must turn to a more complex regulatory scenario
which provides additional constraints that allow us to fit for ∆εAI .

A variation on simple repression in which multiple copies of the promoter are
available for repressor binding (for instance, when the simple repression construct
is on plasmid) can be used to circumvent the problems that arise when using ∆ε̃RA.
This is because the behavior of the system is distinctly different when the number
of active repressors pA(0)R is less than or greater than the number of available
promoters N . Repression data for plasmids with known copy number N allows us
to perform a fit for the value of ∆εAI .
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To obtain an expression for a system with multiple promoters N , we follow Ref.
[11], writing the fold-change in terms of the the grand canonical ensemble as

fold-change =
1

1 + λr e−β∆εRA
, (2.22)

where λr = eβµ is the fugacity and µ is the chemical potential of the repressor.
The fugacity will enable us to easily enumerate the possible states available to the
repressor.

To determine the value of λr , we first consider that the total number of repressors
in the system, Rtot, is fixed and given by

Rtot = RS + RN S, (2.23)

where RS represents the number of repressors specifically bound to the promoter
and RN S represents the number of repressors nonspecifically bound throughout the
genome. The value of RS is given by

RS = N
λr e−β∆εRA

1 + λr e−β∆εRA
, (2.24)

where N is the number of available promoters in the cell. Note that in counting
N , we do not distinguish between promoters that are on plasmid or chromosomally
integrated provided that they both have the same repressor-operator binding energy
[11]. The value of RN S is similarly give by

RN S = NN S
λr

1 + λr
, (2.25)

where NN S is the number of non-specific sites in the cell (recall that we use NN S =

4.6 × 106 for E. coli).

Substituting in Equations 2.24 and 2.25 into the modified Equation 2.23 yields the
form

pA(0)Rtot =
1

1 + e−β∆εAI

(
N

λr e−β∆εRA

1 + λr e−β∆εRA
+ NN S

λr

1 + λr

)
, (2.26)

where we recall from Equation 2.21 that β∆εRA = β∆ε̃RA + log
(

1
1+e−β∆εAI

)
. Nu-

merically solving for λr and plugging the value back into Equation 2.22 yields a
fold-change function in which the only unknown parameter is ∆εAI .

With these calculations in hand, we can now determine the value of the ∆εAI param-
eter. Figure 2.9A shows how different values of ∆εAI lead to significantly different
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fold-change response curves. Thus, analyzing the specific fold-change response
of any strain with a known plasmid copy number N will fix ∆εAI . Interestingly,
the inflection point of Equation 2.26 occurs near pA(0)Rtot = N (as shown by the
triangles in Figure 2.9A), so that merely knowing where the fold-change response
transitions from concave down to concave up is sufficient to obtain a rough value for
∆εAI . We note, however, that for ∆εAI & 5 kBT , increasing ∆εAI further does not
affect the fold-change because essentially every repressor will be in the active state
in this regime. Thus, if the ∆εAI is in this regime, we can only bound it from below.

100 101 102 103

repressors/cell

10 4

10 3

10 2

10 1

100

fo
ld

-c
ha

ng
e

( )
-4
-2
0
2
4

100 101 102 103

repressors/cell

10 4

10 3

10 2

10 1

100

fo
ld

-c
ha

ng
e

( ),
-15.3, 64
-15.3, 52
-17.0, 10

(A) (B)

Figure 2.9: Fold-change ofmultiple identical genes. (A) In the presence of N = 10
identical promoters, the fold-change Equation 2.22 depends strongly on the allosteric
energy difference ∆εAI between the lac repressor’s active and inactive states. The
vertical dotted lines represent the number of repressors at which RA = N for each
value of ∆εAI . (B) Using fold-change measurements from [10] for the operators and
gene copy numbers shown, we can determine the most likely value ∆εAI = 4.5 kBT
for LacI.

Wenowanalyze experimental induction data for different strainswith knownplasmid
copy numbers to determine ∆εAI . Figure 2.9B shows experimental measurements
of fold-change for two O1 promoters with N = 64 and N = 52 copy numbers and
one Oid promoter with N = 10 from Ref. [10]. By fitting these data to Equation
2.22, we extracted the parameter value ∆εAI = 4.5 kBT . Substituting this value into
Equation 2.20 shows that 99% of the repressors are in the active state in the absence
of inducer and ∆ε̃RA ≈ ∆εRA, so that all of the previous energies and calculations
made by Refs. [9, 10] were accurate.
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2.6 Supplemental Information: Induction of SimpleRepressionwithMultiple
Promoters or Competitor Sites

Wemade the choice to perform all of our experiments using strains in which a single
copy of our simple repression construct had been integrated into the chromosome.
This stands in contrast to the methods used by a number of other studies [4, 6, 26,
31, 33, 36, 39, 73], in which reporter constructs are placed on plasmid, meaning that
the number of constructs in the cell is not precisely known. It is also common to
express repressor on plasmid to boost its copy number, which results in an uncertain
value for repressor copy number. Here we show that our treatment of the MWC
model has broad predictive power beyond the single-promoter scenario we explore
experimentally, and indeed can account for systems in which multiple promoters
compete for the repressor of interest. Additionally, we demonstrate the importance
of having precise control over these parameters, as they can have a significant effect
on the induction profile.

Chemical Potential Formulation to Calculate Fold-Change
In this section, we discuss a simple repression construct which we generalize in
two ways from the scenario discussed in the text. First, we will allow the repressor
to bind to NS identical specific promoters whose fold-change we are interested in
measuring, with each promoter containing a single repressor binding site (NS = 1
in the main text). Second, we consider NC identical competitor sites which do
not regulate the promoter of interest, but whose binding energies are substantially
stronger than non-specific binding (NC = 0 in the main text). As in the main text, we
assume that the rest of the genome contains NN S non-specific binding sites for the
repressor. As in Supplemental Section 2.5, we can write the fold-change Equation
2.2 in the grand canonical ensemble as

fold-change =
1

1 + λr e−β∆εRA
, (2.27)

where λr is the fugacity of the repressor and ∆εRA represents the energy difference
between the repressor’s binding affinity to the specific operator of interest relative
to the repressor’s non-specific binding affinity to the rest of the genome.

We now expand our definition of the total number of repressors in the system, Rtot,
so that it is given by

Rtot = RS + RN S + RC, (2.28)

where RS, RN S, and RC represent the number of repressors bound to the specific
promoter, a non-specific binding site, or to a competitor binding site, respectively.
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The value of RS is given by

RS = NS
λr e−β∆εRA

1 + λr e−β∆εRA
, (2.29)

where NS is the number of specific binding sites in the cell. The value of RN S is
similarly give by

RN S = NN S
λr

1 + λr
, (2.30)

where NN S is the number of non-specific sites in the cell (recall that we use NN S =

4.6 × 106 for E. coli), and RC is given by

RC = NC
λr e−β∆εC

1 + λr e−β∆εC
, (2.31)

where NC is the number of competitor sites in the cell and ∆εC is the binding energy
of the repressor to the competitor site relative to its non-specific binding energy to
the rest of the genome.

To account for the induction of the repressor, we replace the total number of repres-
sors Rtot in Equation 2.28 by the number of active repressors in the cell, pA(c)Rtot.
Here, pA denotes the probability that the repressor is in the active state (Equation
2.4),

pA(c) =

(
1 + c

KA

)n(
1 + c

KA

)n
+ e−β∆εAI

(
1 + c

KI

)n . (2.32)

Substituting in Equations 2.29, 2.30 and 2.31 into the modified Equation 2.28 yields
the form

pA(c)Rtot = NS
λr e−β∆εRA

1 + λr e−β∆εRA
+ NN S

λr

1 + λr
+ NC

λr e−β∆εC

1 + λr e−β∆εC
. (2.33)

For systems where the number of binding sites NS, NN S, and NC are known, together
with the binding affinities ∆εRA and ∆εC , we can solve numerically for λr and then
substitute it intoEquation 2.27 to obtain a fold-change at any concentration of inducer
c. In the following sections, we will theoretically explore the induction curves
implied byEquation 2.33 for a number of different combinations of simple repression
binding sites, thereby predicting how the system would behave if additional specific
or competitor binding sites were introduced.

Variable Repressor Copy Number (R) with Multiple Specific Binding Sites
(NS > 1)
In the the main text, we consider the induction profiles of strains with varying R

but a single, specific binding site NS = 1 (see Figure 2.5). Here we predict the
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induction profiles for similar strains in which R is varied, but NS > 1, as shown in
Figure 2.10. The top row shows induction profiles in which NS = 10 and the bottom
row shows profiles in which NS = 100, assuming three different choices for the
specific operator binding sites given by the O1, O2, and O3 operators. These values
of NS were chosen to mimic the common scenario in which a promoter construct
is placed on either a low or high copy number plasmid. A few features stand out
in these profiles. First, as the magnitude of NS surpasses the number of repressors
R, the leakiness begins to increase significantly, since there are no longer enough
repressors to regulate all copies of the promoter of interest. Second, in the cases
where ∆εRA = −15.3 kBT for the O1 operator or ∆εRA = −13.9 kBT for the O2
operator, the profiles where NS = 100 are notably sharper than the profiles where
NS = 10, and it is possible to achieve dynamic ranges approaching 1. Finally, it is
interesting to note that the profiles for the O3 operator where ∆εRA = −9.7 kBT are
nearly indifferent to the value of NS.
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Figure 2.10: Induction with variable R and multiple specific binding sites.
Induction profiles are shown for strains with variable R and ∆εRA = −15.3, −13.9,
or −9.7 kBT . (A-C) The number of specific sites, NS, is held constant at 10 as R and
∆εRA are varied. (D-F) NS is held constant at 100 as R and ∆εRA are varied. These
situations mimic the common scenario in which a promoter construct is placed on
either a low or high copy number plasmid.



92

Variable Number of Specific Binding Sites NS with Fixed Repressor Copy
Number (R)
The second set of scenarios we consider is the case in which the repressor copy
number R = 260 is held constant while the number of specific promoters NS is
varied (see Figure 2.11). Again we see that leakiness is increased significantly when
NS > R, though all profiles for ∆εRA = −9.7 kBT exhibit high leakiness, making
the effect less dramatic for this operator. Additionally, we find again that adjusting
the number of specific sites can produce induction profiles with maximal dynamic
ranges. In particular, the O1 and O2 profiles with ∆εRA = −15.3 and −13.9 kBT ,
respectively, have dynamic ranges approaching 1 for NS = 50 and 100.
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Figure 2.11: Induction with variable specific sites and fixed R. Induction profiles
are shown for strains with R = 260 and (A) ∆εRA = −15.3 kBT , (B) ∆εRA =

−13.9 kBT , or (C) ∆εRA = −9.7 kBT . The number of specific sites NS is varied
from 1 to 500.

Competitor Binding Sites
An intriguing scenario is presented by the possibility of competitor sites elsewhere
in the genome. This serves as amodel for situations in which a promoter of interest is
regulated by a transcription factor that hasmultiple targets. This is highly relevant, as
the majority of transcription factors in E. coli have at least two known binding sites,
with approximately 50 transcription factors having more than ten known binding
sites [74, 75]. If the number of competitor sites and their average binding energy
is known, however, they can be accounted for in the model. Here, we predict the
induction profiles for strains in which R = 260 and NS = 1, but there is a variable
number of competitor sites NC with a strong binding energy ∆εC = −17.0 kBT .
In the presence of such a strong competitor, when NC > R the leakiness is greatly
increased, as many repressors are siphoned into the pool of competitor sites. This
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is most dramatic for the case where ∆εRA = −9.7 kBT , in which it appears that no
repression occurs at all when NC = 500. Interestingly, when NC < R the effects of
the competitor are not especially notable.
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Figure 2.12: Induction with variable competitor sites, a single specific site, and
fixed R. Induction profiles are shown for strains with R = 260, Ns = 1, and (A)
∆εRA = −15.3 kBT for the O1 operator, (B) ∆εRA = −13.9 kBT for the O2 operator,
or (C) ∆εRA = −9.7 kBT for the O3 operator. The number of specific sites, NC , is
varied from 1 to 500. This mimics the common scenario in which a transcription
factor has multiple binding sites in the genome.

Properties of the Induction Response
As discussed in the main body of the paper, our treatment of the MWCmodel allows
us to predict key properties of induction responses. Here, we consider the leakiness,
saturation, and dynamic range (see Figure 2.1) by numerically solving Equation 2.33
in the absence of inducer, c = 0, and in the presence of saturating inducer c → ∞.
Using Equation 2.32, the former case is given by

Rtot
1

1 + e−β∆εAI
= NS

λr e−β∆εRA

1 + λr e−β∆εRA
+ NN S

λr

1 + λr
+ NC

λr e−β∆εC

1 + λr e−β∆εC
, (2.34)

whereupon substituting in the value of λr into Equation 2.27 will yield the leakiness.
Similarly, the limit of saturating inducer is found by determining λr from the form

Rtot
1

1 + e−β∆εAI
(

KA

KI

)2 = NS
λr e−β∆εRA

1 + λr e−β∆εRA
+ NN S

λr

1 + λr
+ NC

λr e−β∆εC

1 + λr e−β∆εC
.

(2.35)

In Figure 2.13 we show how the leakiness, saturation, and dynamic range vary
with R and ∆εRA in systems with NS = 10 or NS = 100. An inflection point
occurs where NS = R, with leakiness and dynamic range behaving differently when
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R < NS than when R > NS. This transition is more dramatic for NS = 100 than for
NS = 10. Interestingly, the saturation values consistently approach 1, indicating that
full induction is easier to achieve whenmultiple specific sites are present. Moreover,
dynamic range values for O1 and O2 strains with ∆εRA = −15.3 and −13.9 kBT

approach 1 when R > NS, although when NS = 10 there is a slight downward dip
owing to saturation values of less than 1 at high repressor copy numbers.
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Figure 2.13: Phenotypic properties of induction with multiple specific binding
sites. The leakiness (A, D), saturation (B, E), and dynamic range (C, F) are shown
for systems with number of specific binding sites NS = 10 (A-C) or NS = 100 (D-F).
The dashed vertical line indicates the point at which NS = R.

In Figure 2.14 we similarly show how the leakiness, saturation, and dynamic range
vary with R and∆εRA in systems with NS = 1 andmultiple competitor sites NC = 10
or NC = 100. Each of the competitor sites has a binding energy of∆εC = −17.0 kBT .
The phenotypic profiles are very similar to those for multiple specific sites shown in
Figure 2.13, with sharper transitions at R = NC due to the greater binding strength
of the competitor site. This indicates that introducing competitors has much the
same effect on the induction phenotypes as introducing additional specific sites, as
in either case the influence of the repressors is dampened when there are insufficient
repressors to interact with all of the specific binding sites.

This section gives a quantitative analysis of the nuances imposed on induction
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Figure 2.14: Phenotypic properties of induction with a single specific site and
multiple competitor sites. The leakiness (A, D), saturation (B, E), and dynamic
range (C, F) are shown for systems with a single specific binding site NS = 1 and a
number of competitor sites NC = 10 (A-C) or NC = 100 (D-F). All competitor sites
have a binding energy of ∆εC = −17.0 kBT . The dashed vertical line indicates the
point at which NC = R.

response in the case of systems involving multiple gene copies as are found in the
vast majority of studies on induction. In these cases, the intrinsic parameters of the
MWC model get entangled with the parameters describing gene copy number.
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2.7 Supplemental Information: Flow Cytometry
In this section, we provide information regarding the equipment used to make ex-
perimental measurements of the fold-change in gene expression in the interests
of transparency and reproducibility. We also provide a summary of our unsuper-
vised method of gating the flow cytometry measurements for consistency between
experimental runs.

Equipment
Due to past experience using the Miltenyi Biotec MACSQuant flow cytometer dur-
ing the Physiology summer course at the Marine Biological Laboratory, we used the
same flow cytometer for the formal measurements in this work graciously provided
by the Pamela Björkman lab at Caltech. All measurements were made using an
excitation wavelength of 488 nm with an emission filter set of 525/50 nm. This ex-
citation wavelength provides approximately 40% of the maximum YFP absorbance
[76], and this was found to be sufficient for the purposes of these experiments. A use-
ful feature of modern flow cytometry is the high-sensitivity signal detection through
the use of photomultiplier tubes (PMT) whose response can be tuned by adjusting
the voltage. Thus, the voltage for the forward-scatter (FSC), side-scatter (SSC), and
gene expression measurements were tunedmanually to maximize the dynamic range
between autofluorescence signal and maximal expression without losing the details
of the population distribution. Once these voltages were determined, they were used
for all subsequent measurements. Extremely low signal producing particles were
discarded before data storage by setting a basal voltage threshold, thus removing the
majority of spurious events. The various instrument settings for data collection are
given in Table 2.1.

Table 2.1: Instrument settings for data collection using the Miltenyi Biotec
MACSQuant flow cytometer. All experimental measurements were collected
using these values.

Laser Channel Sensor Voltage
488 nm Forward-Scatter (FSC) 423V
488 nm Side-Scatter (SSC) 537V
488 nm Intensity (B1 Filter, 525/50nm) 790V
488 nm Trigger (debris threshold) 24.5V
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Experimental Measurement
Prior to each day’s experiments, the analyzer was calibrated using MACSQuant
Calibration Beads (Cat. No. 130-093-607) such that day-to-day experiments would
be comparable. A single data set consisted of seven bacterial strains, all sharing
the same operator, with varying repressor copy numbers (R = 0, 22, 60, 124, 260,
1220, and 1740), in addition to an autofluorescent strain, under twelve IPTG con-
centrations. Data collection took place over two to three hours. During this time,
the cultures were held at approximately 4◦C by placing the 96-well plate on a MAC-
SQuant ice block. Because the ice block thawed over the course of the experiment,
the samples measured last were approximately at room temperature. This means
that samples may have grown slightly by the end of the experiment. To confirm that
this continued growth did not alter the measured results, a subset of experiments
were run in reverse meaning that the fully induced cultures were measured first and
the uninduced samples last. The plate arrangements and corresponding fold-change
measurements are shown in Figure 2.15A and Figure 2.15B, respectively. The mea-
sured fold-change values in the reverse ordered plate appear to be drawn from the
same distribution as those measured in the forward order, meaning that any growth
that might have taken place during the experiment did not significantly affect the
results. Both the forward and reverse data sets were used in our analysis.

[IPTG]

 R

no YFP
∆lacI

FORWARD

0µM 5mM

22

1740

[IPTG]

 R

REVERSE

0µM5mM

22

1740

PLATE ARRANGEMENT INFLUENCE ON FOLD-CHANGEA B

no YFP

∆lacI

Figure 2.15: Plate arrangements for flow cytometry. (A) Samples were measured
primarily in the forward arrangement with a subset of samples measured in reverse.
The black arrow indicates the order in which samples were processed by the flow
cytometer. (B) The experimentally measured fold-change values for the two sets of
plate arrangements show that samples measured in the forward arrangement appear
to be indistinguishable from those measured in reverse order.
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Unsupervised Gating
Flow cytometry data will frequently include a number of spurious events or other
undesirable data points such as cell doublets and debris. The process of restricting
the collected data set to those data determined to be “real” is commonly referred
to as gating. These gates are typically drawn manually [68] and restrict the data
set to those points which display a high degree of linear correlation between their
forward-scatter (FSC) and side-scatter (SSC). The development of unbiased and
unsupervised methods of drawing these gates is an active area of research [69, 70].

For this study, we used an automatic unsupervised gating procedure to filter the
flow cytometry data based on the front and side-scattering values returned by the
MACSQuant flow cytometer. We assume that the region with highest density of
points in these two channels corresponds to single-cell measurements. Everything
extending outside of this region was discarded in order to exclude sources of error
such as cell clustering, particulates, or other spurious events.

In order to define the gated region we fit a two-dimensional Gaussian function to the
log10 forward-scattering (FSC) and the log10 side-scattering (SSC) data. We then
kept a fraction α ∈ [0, 1] of the data by defining an elliptical region given by(

x − µ
)T Σ−1 (

x − µ
)
≤ χ2

α (p), (2.36)

where x is the 2 × 1 vector containing the log(FSC) and log(SSC), µ is the 2 × 1
vector representing the mean values of log(FSC) and log(SSC) as obtained from
fitting a two-dimensional Gaussian to the data, and Σ is the 2× 2 covariance matrix
also obtained from the Gaussian fit. χ2

α (p) is the quantile function for probability
p of the chi-squared distribution with two degrees of freedom. Figure 2.16 shows
an example of different gating contours that would arise from different values of
α in Equation 2.36. In this work, we chose α = 0.4 which we deemed was a
sufficient constraint to minimize the noise in the data. As explained in Supplemental
Section 2.8 we compared our high throughput flow cytometry data with single cell
microscopy, confirming that the automatic gating did not introduce systematic biases
to the analysis pipeline. The specific code where this gating is implemented can
be found in the Github repository, https://github.com/RPGroup-PBoC/mwc_
induction/blob/master/code/analysis/unsupervised_gating.ipynb.

https://github.com/RPGroup-PBoC/mwc_induction/blob/master/code/analysis/unsupervised_gating.ipynb
https://github.com/RPGroup-PBoC/mwc_induction/blob/master/code/analysis/unsupervised_gating.ipynb
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Figure 2.16: Representative unsupervised gating contours. Points indicate indi-
vidual flow cytometry measurements of forward scatter and side scatter. Colored
points indicate arbitrary gating contours ranging from 100% (α = 1.0) to 5%
(α = 0.05). All measurements for this work were made computing the mean
fluorescence from the 40th percentile (α = 0.4), shown as orange points.

Comparison of Flow Cytometry with Other Methods

Previous work from our lab experimentally determined fold-change for similar
simple repression constructs using a variety of different measurement methods
[10, 13]. Garcia andPhillips used the samebackground strains as the ones used in this
work, but gene expression was measured with Miller assays based on colorimetric
enzymatic reactions with the LacZ protein [9]. Ref. [10] used a LacI dimer with the
tetramerization region replaced with an mCherry tag, where the fold-change was
measured as the ratio of the gene expression rate rather than a single snapshot of the
gene output.

Figure 2.17 shows the comparison of these methods along with the flow cytometry
method used in this work. The consistency of these three readouts validates the
quantitative use of flow cytometry and unsupervised gating to determine the fold-
change in gene expression. However, one important caveat revealed by this figure
is that the sensitivity of flow cytometer measurements is not sufficient to accurately
determine the fold-change for the high repressor copy number strains in O1 without
induction. Instead, a method with a large dynamic range such as the Miller assay is
needed to accurately resolve the fold-change at such low expression levels.
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Figure 2.17: Comparison of experimentalmethods to determine the fold-change.
The fold-change in gene expression for equivalent simple-repression constructs has
been determined using three independent methods: flow cytometry (this work),
colorimetric Miller assays [9], and video microscopy [10]. All three methods give
consistent results, although flow cytometry measurements lose accuracy for fold-
change less than 10−2. Note that the repressor-DNA binding energies ∆εRA used for
the theoretical predictions were determined in Ref. [9].
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2.8 Supplemental Information: Single-Cell Microscopy
In this section, we detail the procedures and results from single-cell microscopy
verification of our flow cytometry measurements. Our previous measurements of
fold-change in gene expression have been measured using bulk-scale Miller assays
[9] or through single-cell microscopy [10]. In this work, flow cytometry was an
attractive method due to the ability to screen through many different strains at
different concentrations of inducer in a short amount of time. To verify our results
from flow cytometry, we examined two bacterial strains with different repressor-
DNAbinding energies (∆εRA) of−13.9 kBT and−15.3 kBT with R = 260 repressors
per cell using fluorescencemicroscopy and estimated the values of the parameters KA

and KI for direct comparison between the two methods. For a detailed explanation
of the Python code implementation of the processing steps described below, please
see this paper’s Github repository, https://rpgroup-pboc.github.io/mwc_
induction/code/notebooks/unsupervised_gating.html. An outline of our
microscopy workflow can be seen in Figure 2.18.

Strains and Growth Conditions
Cells were grown in an identical manner to those used for measurement via flow
cytometry (see Methods). Briefly, cells were grown overnight (between 10 and 13
hours) to saturation in rich media broth (LB) with 100 µg · mL−1 spectinomycin
in a deep-well 96 well plate at 37◦C. These cultures were then diluted 1000-
fold into 500 µL of M9 minimal medium supplemented with 0.5% glucose and the
appropriate concentration of the inducer IPTG. Strains were allowed to grow at 37◦C
with vigorous aeration for approximately 8 hours. Prior to mounting for microscopy,
the cultures were diluted 10-fold intoM9 glucose minimal medium in the absence of
IPTG. Each construct was measured using the same range of inducer concentration
values as was performed in the flow cytometry measurements (between 100 nM and
5mM IPTG). Each condition was measured in triplicate in microscopy whereas
approximately ten measurements were made using flow cytometry.

Imaging Procedure
During the last hour of cell growth, an agarose mounting substrate was prepared
containing the appropriate concentration of the IPTG inducer. This mounting sub-
strate was composed of M9 minimal medium supplemented with 0.5% glucose and
2% agarose (Life Technologies UltraPure Agarose, Cat. No. 16500100). This
solution was heated in a microwave until molten followed by addition of the IPTG

https://rpgroup-pboc.github.io/mwc_induction/code/notebooks/unsupervised_gating.html
https://rpgroup-pboc.github.io/mwc_induction/code/notebooks/unsupervised_gating.html
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Figure 2.18: Experimental workflow for single-cell microscopy. For comparison
with the flow cytometry results, the cells were grown in an identical manner to those
described in the main text. Once cells had reached mid to late exponential growth,
the cultures were diluted and placed on agarose substrates and imaged under 100×
magnification. Regions of interest representing cellular mass were segmented and
average single-cell intensities were computed. The means of the distributions were
used to compute the fold-change in gene expression.

to the appropriate final concentration. This solution was then thoroughly mixed and
a 500 µL aliquot was sandwiched between two glass coverslips and was allowed to
solidify.

Once solid, the agarose substrates were cut into approximately 10mm × 10mm
squares. An aliquot of one to two microliters of the diluted cell suspension was then
added to each pad. For each concentration of inducer, a sample of the autofluores-
cence control, the ∆lacI constitutive expression control, and the experimental strain
was prepared yielding a total of thirty-six agarose mounts per experiment. These
samples were then mounted onto two glass-bottom dishes (Ted Pella Wilco Dish,
Cat. No. 14027-20) and sealed with parafilm.

All imaging was performed on a Nikon Ti-Eclipse inverted fluorescent microscope
outfitted with a custom-built laser illumination system and operated by the open-
source MicroManager control software [77]. The YFP fluorescence was imaged
using aCrystaLaser 514 nmexcitation laser coupledwith a laser-optimized (Semrock
Cat. No. LF514-C-000) emission filter.

For each sample, between fifteen and twenty positions were imaged allowing for
measurement of several hundred cells. At each position, a phase contrast image,
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an mCherry image, and a YFP image were collected in that order with exposures
on a time scale of ten to twenty milliseconds. For each channel, the same expo-
sure time was used across all samples in a given experiment. All images were
collected and stored in ome.tiff format. All microscopy images are available on
the CaltechDATA online repository under DOI: 10.22002/D1.229.

Image Processing
Correcting Uneven Illumination

ORIGINAL IMAGE CORRECTED IMAGE

pixel intensity (a.u.)

Figure 2.19: Correction for uneven illumination. A representative image of the
illumination profile of the 512 nm excitation beam on a homogeneously fluorescent
slide is shown in the left panel. This is corrected for using Equation 2.37 and is
shown in the right panel.

The excitation laser has a two-dimensional gaussian profile. To minimize non-
uniform illumination of a single field of view, the excitation beam was expanded to
illuminate an area larger than that of the camera sensor. While this allowed for an
entire field of view to be illuminated, there was still approximately a 10% difference
in illumination across both dimensions. This nonuniformity was corrected for in
post-processing by capturing twenty images of a homogeneously fluorescent plastic
slide (Autofluorescent Plastic Slides, Chroma Cat. No. 920001) and averaging
to generate a map of illumination intensity at any pixel IYFP. To correct for shot
noise in the camera (Andor iXon+ 897 EMCCD), twenty images were captured in
the absence of illumination using the exposure time used for the experimental data.
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Averaging over these images produced a map of background noise at any pixel Idark.
To perform the correction, each fluorescent image in the experimental acquisition
was renormalized with respect to these average maps as

Iflat =
I − Idark

IYFP − Idark
〈IYFP − Idark〉, (2.37)

where Iflat is the renormalized image and I is the original fluorescence image. An
example of this correction can be seen in Figure 2.19.

Cell Segmentation

Each bacterial strain constitutively expressed an mCherry fluorophore from a low
copy-number plasmid. This served as a volume marker of cell mass allowing us to
segment individual cells through edge detection in fluorescence. We used the Marr-
Hildreth edge detector [78] which identifies edges by taking the second derivative
of a lightly Gaussian blurred image. Edges are identified as those regions which
cross from highly negative to highly positive values or vice-versa within a specified
neighborhood. Bacterial cells were defined as regions within an intact and closed
identified edge. All segmented objects were then labeled and passed through a series
of filtering steps.

To ensure that primarily single cells were segmented, we imposed area and eccentric-
ity bounds. We assumed that single cells projected into two dimensions are roughly
2 µm long and 1 µm wide, so that cells are likely to have an area between 0.5 µm2

and 6 µm. To determine the eccentricity bounds, we assumed that the a single cell
can be approximated by an ellipse with semi-major (a) and semi-minor (b) axis
lengths of 0.5 µm and 0.25 µm, respectively. The eccentricity of this hypothetical
cell can be computed as

eccentricity =

√
1 −

(
b
a

)2
, (2.38)

yielding a value of approximately 0.8. Any objects with an eccentricity below this
value were not considered to be single cells. After imposing both an area (Figure
2.20A) and eccentricity filter (Figure 2.20B), the remaining objects were considered
cells of interest (Figure 2.20C) and the mean fluorescence intensity of each cell was
extracted.
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Figure 2.20: Segmentation of single bacterial cells. (A) Objects were selected if
they had an eccentricity greater than 0.8 and an area between 0.5 µm2 and 6 µm2.
Highlighted in blue are the regions considered to be representative of single cells.
The black lines correspond to the empirical cumulative distribution functions for
the parameter of interest. (B) A representative final segmentation mask is shown in
which segmented cells are depicted in cyan over the phase contrast image.

Calculation of Fold-Change

Cells exhibited background fluorescence even in the absence of an expressed flu-
orophore. We corrected for this autofluorescence contribution to the fold-change
calculation by subtracting the mean YFP fluorescence of cells expressing only the
mCherry volume marker from each experimental measurement. The fold-change in
gene expression was therefore calculated as

fold-change =
〈IR>0〉 − 〈Iauto〉
〈IR=0〉 − 〈Iauto〉

, (2.39)

where 〈IR>0〉 is the mean fluorescence intensity of cells expressing LacI, 〈Iauto〉 is
the mean intensity of cells expressing only the mCherry volume marker, and 〈IR=0〉

is the mean fluorescence intensity of cells in the absence of LacI. These fold-change
values were very similar to those obtained through flow cytometry and were well
described using the thermodynamic parameters used in the main text. With these
experimentally measured fold-change values, the best-fit parameter values of the
model were inferred and compared to those obtained from flow cytometry.
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Parameter Estimation and Comparison
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Figure 2.21: Comparison of measured fold-change between flow cytometry
and single-cell microscopy. (A) Experimentally measured fold-change values
obtained through single-cell microscopy and flow cytometry are shown as white
filled and solid colored circles, respectively. Solid and dashed lines indicate the
predicted behavior using themost likely parameter values of KA and KI inferred from
flow cytometry data and microscopy data, respectively. The red and blue plotting
elements correspond to the different operators O1 and O2 with binding energies
∆εRA of−13.9 kBT and−15.3 kBT , respectively [9]. (B) Themarginalized posterior
distributions for KA and KI are shown in the top and bottom panel, respectively.
The posterior distribution determined using the microscopy data is wider than that
computed using the flow cytometry data due to a smaller fig collection of data sets
(three for microscopy and ten for flow cytometry).

To confirm quantitative consistency between flow cytometry and microscopy, the
parameter values of KA and KI were also estimated from three biological replicates
of IPTG titration curves obtained by microscopy for strains with R = 260 and
operatorsO1 andO2. Figure 2.21A shows the data from thesemeasurements (orange
circles) and the ten biological replicates from our flow cytometry measurements
(blue circles), along with the fold-change predictions from each inference. In
comparison with the values obtained by flow cytometry, each parameter estimate
overlappedwith the 95%credible region of our flowcytometry estimates, as shown in
Figure 2.21B. Specifically, these values were KA = 142+40

−34 µMand KI = 0.6+0.1
−0.1 µM

from microscopy and KA = 149+14
−12 µM and KI = 0.57+0.03

−0.02 µM from the flow
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cytometry data. We note that the credible regions from the microscopy data shown
in Figure 2.21B are much broader than those from flow cytometry due to the fewer
number of replicates performed.
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2.9 Supplemental Information: Fold-Change Sensitivity Analysis
In Figure 2.5 we found that the width of the credible regions variedwidely depending
on the repressor copy number R and repressor operator binding energy ∆εRA. More
precisely, the credible regions were much narrower for low repressor copy numbers
R and weak binding energy ∆εRA. In this section, we explain how this behavior
comes about. We focus our attention on the maximum fold-change in the presence
of saturating inducer given by Equation 2.7. While it is straightforward to consider
the width of the credible regions at any other inducer concentration, Figure 2.5
shows that the credible regions are widest at saturation.

The width of the credible regions corresponds to how sensitive the fold-change is to
the fit values of the dissociation constants KA and KI . To be quantitative, we define

∆fold-changeKA
≡ fold-change(KA, Kfit

I ) − fold-change(Kfit
A , K

fit
I ), (2.40)

the difference between the fold-change at a particular KA value relative to the best-
fit dissociation constant Kfit

A = 139 × 10−6 M. For simplicity, we keep the inactive
state dissociation constant fixed at its best-fit value Kfit

I = 0.53 × 10−6 M. A larger
difference ∆fold-changeKA

implies a wider credible region. Similarly, we define the
analogous quantity

∆fold-changeKI
= fold-change(Kfit

A , KI ) − fold-change(Kfit
A , K

fit
I ) (2.41)

to measure the sensitivity of the fold-change to KI at a fixed Kfit
A . Figure 2.22

shows both of these quantities in the limit c → ∞ for different repressor-DNA
binding energies ∆εRA and repressor copy numbers R. See our Github repos-
itory (https://github.com/RPGroup-PBoC/mwc_induction/blob/master/
code/analysis/sensitivity_analysis.ipynb) for the code that reproduces
these plots.

To understand how the width of the credible region scales with ∆εRA and R, we
can Taylor expand the difference in fold-change to first order, ∆fold-changeKA

≈
∂fold-change

∂KA

(
KA − Kfit

A

)
, where the partial derivative has the form

∂fold-change
∂KA

=
e−β∆εAI n

KI

(
KA

KI

)n−1

(
1 + e−β∆εAI

(
KA

KI

)n)2
R

NN S
e−β∆εRA *.

,
1 +

1
1 + e−β∆εAI

(
KA

KI

)n
R

NN S
e−β∆εRA+/

-

−2

.

(2.42)

https://github.com/RPGroup-PBoC/mwc_induction/blob/master/code/analysis/sensitivity_analysis.ipynb
https://github.com/RPGroup-PBoC/mwc_induction/blob/master/code/analysis/sensitivity_analysis.ipynb
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Similarly, the Taylor expansion ∆fold-changeKI
≈

∂fold-change
∂KI

(
KI − Kfit

I

)
features

the partial derivative

∂fold-change
∂KI

= −
e−β∆εAI n

KI

(
KA

KI

)n

(
1 + e−β∆εAI

(
KA

KI

)n)2
R

NN S
e−β∆εRA *.

,
1 +

1
1 + e−β∆εAI

(
KA

KI

)n
R

NN S
e−β∆εRA+/

-

−2

.

(2.43)
FromEquations 2.42 and 2.43, we find that both∆fold-changeKA

and∆fold-changeKI

increase in magnitude with R and decrease in magnitude with ∆εRA. Accordingly,
we expect that the O3 strains (with the least negative ∆εRA) and the strains with
the smallest repressor copy number will lead to partial derivatives with smaller
magnitude and hence to tighter credible regions. Indeed, this prediction is carried
out in Figure 2.22.

Lastly, we note that Equations 2.42 and 2.43 enable us to quantify the scaling
relationship between the width of the credible region and the two quantities R and
∆εRA. For example, for the O3 strains, where the fold-change at saturating inducer
concentration is ≈ 1, the right-most term in both equations which equals the fold-
change squared is roughly 1. Therefore, we find that both ∂fold-change

∂KA
and ∂fold-change

∂KI

scale linearly with R and e−β∆εRA. Thus the width of the R = 22 strain will be
roughly 1/1000 as large as that of the R = 1740 strain; similarly, the width of the
O3 curves will be roughly 1/1000 the width of the O1 curves.
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Figure 2.22: Determining how sensitive the fold-change values are to the fit
values of the dissociation constants.(A) The difference ∆fold-changeKA

in fold
change when the dissociation constant KA is slightly offset from its best-fit value
KA = 139+29

−22 × 10−6 M, as given by Equation 2.40. Fold-change is computed in
the limit of saturating inducer concentration (c → ∞, see Equation 2.7) where
the credible regions in Figure 2.5 are widest. The O3 strain (∆εRA = −9.7 kBT)
is about 1/1000 as sensitive as the O1 operator to perturbations in the parameter
values, and hence its credible region is roughly 1/1000 as wide. All curves were
made using R = 260. (B) As in Panel A, but plotting the sensitivity of fold-change
to the KI parameter relative to the best-fit value KI = 0.53+0.04

−0.04 × 10−6 M. Note that
only the magnitude, and not the sign, of this difference describes the sensitivity of
each parameter. Hence, the O3 strain is again less sensitive than the O1 and O2
strains. (C) As in Panel A, but showing how the fold-change sensitivity for different
repressor copy numbers. The strains with lower repressor copy number are less
sensitive to changes in the dissociation constants, and hence their corresponding
curves in Figure 2.5 have tighter credible regions. All curves were made using
∆εRA = −13.9 kBT . (D) As in Panel C, the sensitivity of fold-change with respect
to KI is again smallest (in magnitude) for the low repressor copy number strains.
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2.10 Supplemental Information: Alternate Characterizations of Induction
In this section we discuss a different way to describe the induction data, namely,
through using the conventional Hill approach. We first demonstrate how using a
Hill function to characterize a single induction curve enables us to extract features
(such as the midpoint and sharpness) of that single response, but precludes any
predictions of the other seventeen strains. We then discuss how a thermodynamic
model of simple repression coupled with a Hill approach to the induction response
can both characterize an induction profile and predict the response of all eighteen
strains, although we argue that such a description provides no insight into the
allosteric nature of the protein and how mutations to the repressor would affect
induction. We conclude the section by discussing the differences between such a
model and the statistical mechanical model used in the main text.

Fitting Induction Curves using a Hill Function Approach
The Hill equation is a phenomenological function commonly used to describe data
with a sigmoidal profile [7, 30, 32]. Its simplicity and ability to estimate the
cooperativity of a system (through the Hill coefficient) has led to its widespread use
in many domains of biology [79]. Nevertheless, the Hill function is often criticized
as a physically unrealistic model and the extracted Hill coefficient is often difficult
to contextualize in the physics of a system [80]. In the present work, we note that a
Hill function, even if it is only used because of its simplicity, presents no mechanism
to understand how a regulatory system’s behavior will change if physical parameters
such as repressor copy number or operator binding energy are varied. In addition,
the Hill equation provides no foundation to explore how mutating the repressor
(e.g., at its inducer-binding interface) would modify its induction profile, although
statistical mechanical models have proved capable of characterizing such scenarios
[42, 43, 45].

Consider the general Hill equation for a single induction profile given by

fold-change = (leakiness) + (dynamic range)

(
c
K

)n

1 +
(

c
K

)n , (2.44)

where, as in the main text, the leakiness represents the minimum fold-change, the
dynamic range represents the difference between the maximum and minimum fold-
change, K is the repressor-inducer dissociation constant, and n denotes the Hill
coefficient that characterizes the sharpness of the curve (n > 1 signifies positive
cooperativity, n = 1 denotes no cooperativity, and n < 1 represents negative coop-
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erativity). Figure 2.23 shows how the individual induction profiles can be fit (using
the same Bayesian methods as described in Supplemental Section 2.11) to this Hill
response, yielding a similar response to that shown in Figure 2.4D. However, charac-
terizing the induction response in this manner is unsatisfactory because each curve
must be fit independently, thus removing our predictive power for other repressor
copy numbers and binding sites.

The fitted parameters obtained from this approach are shown in Figure 2.24. These
are rather unsatisfactory because they do not clearly reflect the properties of the
physical system under consideration. For example, the dissociation constant K

between LacI and inducer should not be affected by either the copy number of the
repressor or the DNA binding energy, and yet we see upward trends as R is increased
or the binding energy is decreased. Here, the K parameter ultimately describes
the midpoint of the induction curve and therefore cannot strictly be considered a
dissociation constant. Similarly, the Hill coefficient n does not directly represent
the cooperativity between the repressor and the inducer as the molecular details of
the copy number and DNA binding strength are subsumed in this parameter as well.
While the leakiness and dynamic range describe important phenotypic properties of
the induction response, this Hill approach leaves us with no means to predict them
for other strains. In summary, the Hill equation Equation 2.44 cannot predict how
an induction profile varies with repressor copy number, operator binding energy,
or how mutations will alter the induction profile. To that end, we turn to a more
sophisticated approach where we use the Hill function to describe the available
fraction of repressor as a function of inducer concentration.

Fitting InductionCurves using aCombination ThermodynamicModel andHill
Function Approach
Motivated by the inability in the previous section to characterize all eighteen strains
using the Hill function with a single set of parameters, here we combine the Hill
approach with a thermodynamic model of simple repression to garner predictive
power. More specifically, we will use the thermodynamic model in Figure 2.2A
but substitute the statistical model in Figure 2.2B with the phenomenological Hill
function Equation 2.44.

Following Equations 2.1, 2.2, and 2.3, fold-change is given by

fold-change =
(
1 + pA(c)

R
NN S

e−β∆εRA

)−1
, (2.45)
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Figure 2.23: Hill function and MWC analysis of each induction profile. Data
for each individual strain was fit to the general Hill function in Equation 2.44. (A)
strains with O1 binding site, (B) strains with O2 binding site, and (C) strains with
O3 binding site. Shaded regions indicate the bounds of the 95% credible region.

where the Hill function

pA(c) = pmax
A − prangeA

(
c

KD

)n

1 +
(

c
KD

)n (2.46)

represents the fraction of repressors in the allosterically active state, with pmax
A

denoting the fraction of active repressors in the absence of inducer and pmax
A − prangeA

the minimum fraction of active repressors in the presence of saturating inducer. The
Hill function characterizes the inducer-repressor binding while the thermodynamic
model with the known constants R, NN S, and ∆εRA describes how the induction
profile changes with repressor copy number and repressor-operator binding energy.

As in the main text, we can fit the four Hill parameters—the vertical shift and stretch
parameters pmax

A and prangeA , the Hill coefficient n, and the inducer-repressor dissoci-
ation constant KD—for a single induction curve and then use the fully characterized
Equation 2.45 to describe the response of each of the eighteen strains. Figure 2.25
shows this process carried out by fitting the O2 R = 260 strain (white circles in
Panel B) and predicting the behavior of the remaining seventeen strains.
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Figure 2.24: Parameter values for the Hill equation fit to each individual titra-
tion. The resulting fit parameters from the Hill function fits of Figure 2.23 are
summarized. The large parameter intervals for many of the O3 strains are due to the
flatter induction profile (as seen by its smaller dynamic range), and the ability for a
large range of K and n values to describe the data.

Although the curves in Figure 2.25 are nearly identical to those in Figure 2.4 (which
were made using the MWC model Equation 2.5), we stress that the Hill function
approach is more complex than theMWCmodel (containing four parameters instead
of three) and it obscures the relationships to the physical parameters of the system.
For example, it is not clear whether the fit parameter KD = 4+2

−1 × 10−6 M relays the
dissociation constant between the inducer and active-state repressor, between the
inducer and the inactive-state repressor, or some mix of the two quantities.

In addition, the MWC model Equation 2.5 naturally suggests further quantitative
tests for the fold-change relationship. For example, mutating the repressor’s inducer
binding site would likely alter the repressor-inducer dissociation constants KA and
KI , and it would be interesting to find out if suchmutations also modify the allosteric
energy difference ∆εAI between the repressor’s active and inactive conformations.
For our purposes, the Hill function Equation 2.46 falls short of the connection to
the physics of the system and provides no intuition about how transcription depends
upon such mutations. For these reasons, we present the thermodynamic model
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Figure 2.25: A thermodynamic model coupled with a Hill analysis can charac-
terize induction. Combining a thermodynamic model of simple repression with
the Hill function to characterize the repressor-inducer binding successfully charac-
terizes the induction profiles of all eighteen strains. As in the main text, data was
only fit for the O2 R = 260 strain using Equations 2.45 and 2.46 and the parameters
pmax

A = 0.90+0.03
−0.01, prangeA = −0.90+0.02

−0.03, n = 1.6+0.2
−0.1, and KD = 4+2

−1 × 10−6 M. Shaded
regions indicate bounds of the 95% credible region.

coupled with the statistical mechanical MWC model approach in the paper.
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2.11 Supplemental Information: Global Fit of All Parameters
In the main text, we used the repressor copy numbers R and repressor-DNA binding
energies ∆εRA as reported by Ref. [9]. However, any error in these previous
measurements of R and ∆εRA will necessarily propagate into our own fold-change
predictions. In this section we take an alternative approach to fitting the physical
parameters of the system to that used in the main text. First, rather than fitting
only a single strain, we fit the entire data set in Figure 2.5 along with microscopy
data for the synthetic operator Oid (see Supplemental Section 2.12). In addition,
we also simultaneously fit the parameters R and ∆εRA using the prior information
given by the previous measurements. By using the entire data set and fitting all
of the parameters, we obtain the best possible characterization of the statistical
mechanical parameters of the system given our current state of knowledge. As a
point of reference, we state all of the parameters of the MWC model derived in the
text in Table 2.2.

To fit all of the parameters simultaneously, we follow a similar approach to the
one detailed in the Methods section. Briefly, we perform a Bayesian parameter
estimation of the dissociation constants KA and KI , the six different repressor copy
numbers R corresponding to the six lacI ribosomal binding sites used in our work,
and the four different binding energies∆εRA characterizing the four distinct operators
used to make the experimental strains. As in the main text, we fit the logarithms
k̃A = − log KA

1M and k̃I = − log KI

1M of the dissociation constants, which grants better
numerical stability.

As in Equation 2.15 and 2.16, we assume that deviations of the experimental fold-
change from the theoretical predictions are normally distributed with mean zero and
standard deviation σ. We begin by writing Bayes’ theorem,

P(k̃A, k̃I,R,∆εRA, σ | D) =
P(D | k̃A, k̃I,R,∆εRA, σ)P(k̃A, k̃I,R,∆εRA, σ)

P(D)
,

(2.47)
where R is an array containing the six different repressor copy numbers to be
fit, ∆εRA is an array containing the four binding energies to be fit, and D is
the experimental fold-change data. The term P(k̃A, k̃I,R,∆εRA, σ | D) gives
the probability distributions of all of the parameters given the data. The term
P(D | k̃A, k̃I,R,∆εRA, σ) represents the likelihood of having observed our exper-
imental data given some value for each parameter. P(k̃A, k̃I,R,∆εRA, σ) contains
all the prior information on the values of these parameters. Lastly, P(D) serves as
a normalization constant and hence can be ignored.
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Given n independent measurements of the fold-change, the first term in Equation
2.47 can be written as

P(D | k̃A, k̃I,R,∆εRA, σ) =
1

(2πσ2)
n
2

n∏
i=1

exp

−

(fc(i)
exp − fc(k̃A, k̃I, R(i),∆ε(i)

RA, c
(i)))2

2σ2


,

(2.48)

where fc(i)
exp is the ith experimental fold-change and fc(···) is the theoretical prediction.

Note that the standard deviation σ of this distribution is not known and hence needs
to be included as a parameter to be fit.

The second term in Equation 2.47 represents the prior information of the parameter
values. We assume that all parameters are independent of each other, so that

P(k̃A, k̃I,R,∆εRA, σ) = P(k̃A) · P(k̃I ) ·
∏

i

P(R(i)) ·
∏

j

P(∆ε( j)
RA) · P(σ), (2.49)

where the superscript (i) indicates the repressor copy number of index i and the
superscript ( j) denotes the binding energy of index j. As above, we note that a prior
must also be included for the unknown parameter σ.

Because we knew nothing about the values of k̃A, k̃I , and σ before performing the
experiment, we assign maximally uninformative priors to each of these parameters.
More specifically, we assign uniform priors to k̃A and k̃I and a Jeffreys prior to σ,
indicating that KA, KI , and σ are scale parameters [35]. We do, however, have
prior information for the repressor copy numbers and the repressor-DNA binding
energies from Ref. [9]. This prior knowledge is included within our model using
an informative prior for these two parameters, which we assume to be Gaussian.
Hence each of the R(i) repressor copy numbers to be fit satisfies

P(R(i)) =
1√

2πσ2
Ri

exp *
,
−

(R(i) − R̄(i))2

2σ2
Ri

+
-
, (2.50)

where R̄(i) is the mean repressor copy number and σRi is the variability associated
with this parameter as reported in Ref. [9]. Note that we use the given value of σRi

from previous measurements rather than leaving this as a free parameter.

Similarly, the binding energies∆ε( j)
RA are also assumed to have aGaussian informative

prior of the same form. We write it as

P(∆ε( j)
RA) =

1√
2πσ2

ε j

exp *
,
−

(∆ε( j)
RA − ∆ε̄

( j)
RA)2

2σ2
ε j

+
-
, (2.51)
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where ∆ε̄( j)
RA is the binding energy and σε j is the variability associated with that

parameter around the mean value as reported in Ref. [9] .

TheσRi andσε j parameterswill constrain the range of values for R(i) and∆ε( j)
RA found

from the fitting. For example, if for some i the standard deviation σRi is very small,
it implies a strong confidence in the previously reported value. Mathematically,
the exponential in Equation 2.50 will ensure that the best-fit R(i) lies within a few
standard deviations of R̄(i). Since we are interested in exploring which values could
give the best fit, the errors are taken to be wide enough to allow the parameter
estimation to freely explore parameter space in the vicinity of the best estimates.
Putting all these terms together, we use Markov Chain Monte Carlo to sample the
posterior distribution P(k̃A, k̃I,R,∆εRA, σ | D), enabling us to determine both the
most likely value for each physical parameter as well as its associated credible
region (see the Github repository for the implementation, https://rpgroup-
pboc.github.io/mwc_induction/code/notebooks/global_fits.html).

Figure 2.26 shows the result of this global fit. When compared with Figure 2.5 we
can see that fitting for the binding energies and the repressor copy numbers improves
the agreement between the theory and the data. Table 2.3 summarizes the values
of the parameters as obtained with this MCMC parameter inference. We note that
even though we allowed the repressor copy numbers and repressor-DNA binding
energies to vary, the resulting fit values were very close to the previously reported
values. The fit values of the repressor copy numbers were all within one standard
deviation of the previous reported values provided in Ref. [9]. And although some
of the repressor-DNA binding energies differed by a few standard deviations from
the reported values, the differences were always less than 1 kBT , which represents a
small change in the biological scales we are considering. The biggest discrepancy
between our fit values and the previous measurements arose for the synthetic Oid
operator, which we discuss in more detail in Supplemental Section 2.12.

Figure 2.27 shows the same key properties as in Figure 2.6, but uses the parameters
obtained from this global fitting approach. We note that even by increasing the
number of degrees of freedom in our fit, the result does not change substantially due
to only minor improvements between the theoretical curves and data. For the O3
operator data, again, agreement between the predicted [EC50] and the effective Hill
coefficient remains poor due the theory being unable to capture the steepness of the
response curves.

https://rpgroup-pboc.github.io/mwc_induction/code/notebooks/global_fits.html
https://rpgroup-pboc.github.io/mwc_induction/code/notebooks/global_fits.html
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Table 2.2: Key model parameters for induction of an allosteric repressor.

Parameter Description
c Concentration of the inducer

KA, KI Dissociation constant between an inducer and the repressor in the active/inactive state
∆εAI The difference between the free energy of repressor in the inactive and active states
∆εP Binding energy between the RNAP and its specific binding site

∆εRA,∆εRI Binding energy between the operator and the active/inactive repressor
n Number of inducer binding sites per repressor
P Number of RNAP

RA, RI, R Number of active/inactive/total repressors
pA =

RA

R Probability that a repressor will be in the active state
pbound Probability that an RNAP is bound to the promoter of interest, assumed to be proportional to gene expression

fold-change Ratio of gene expression in the presence of repressor to that in the absence of repressor
F Free energy of the system

NNS The number of non-specific binding sites for the repressor in the genome
β = 1

kBT
The inverse product of the Boltzmann constant kB and the temperature T of the system
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Figure 2.26: Global fit of dissociation constants, repressor copy numbers and
binding energies. Theoretical predictions resulting from simultaneously fitting the
dissociation constants KA and KI , the six repressor copy numbers R, and the four
repressor-DNA binding energies ∆εRA using the entire data set from Figure 2.5 as
well as the microscopy data for the Oid operator. Error bars of experimental data
show the standard error of the mean (eight or more replicates) and shaded regions
denote the 95% credible region. Where error bars are not visible, they are smaller
than the point itself. For the Oid operator, all of the data points are shown since
a smaller number of replicates were taken. The shaded regions are significantly
smaller than in Figure 2.5 because this fit was based on all data points, and hence
the fit parameters are much more tightly constrained. The dashed lines at 0 IPTG
indicate a linear scale, whereas solid lines represent a log scale.
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Figure 2.27: Key properties of induction profiles as predicted with a global
fit using all available data. Data for the (A) leakiness, (B) saturation, and (C)
dynamic range are obtained from fold-change measurements in Figure 2.5 in the
absence and presence of IPTG. All prediction curves were generated using the
parameters listed in 2.3. Both the (D) [EC50] and (E) effective Hill coefficient are
inferred by individually fitting all parameters—KA, KI, R, ∆εRA—to each operator-
repressor pairing in Figure 2.5A-C separately to Equation 2.5 in order to smoothly
interpolate between the data points. Note that where error bars are not visible, this
indicates that the error bars are smaller than the point itself.
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Table 2.3: Global fit of all parameter values using the entire data set in Figure
2.5. In addition to fitting the repressor inducer dissociation constants KA and KI
as was done in the text, we also fit the repressor DNA binding energy ∆εRA as
well as the repressor copy numbers R for each strain. The middle columns show
the previously reported values for all ∆εRA and R values, with ± representing the
standard deviation of three replicates. The right column shows the global fits from
this work, with the subscript and superscript notation denoting the 95% credible
region. Note that there is overlap between all of the repressor copy numbers and that
the net difference in the repressor-DNA binding energies is less than 1 kBT . The
logarithms k̃A = − log KA

1M and k̃I = − log KI

1M of the dissociation constants were fit
for numerical stability.

Reported Values [9] Global Fit
k̃A − −5.33+0.06

−0.05
k̃I − 0.31+0.05

−0.06
KA − 205+11

−12 µM
KI − 0.73+0.04

−0.04 µM
R22 22 ± 4 20+1

−1
R60 60 ± 20 74+4

−3
R124 124 ± 30 130+6

−6
R260 260 ± 40 257+9

−11
R1220 1220 ± 160 1191+32

−55
R1740 1740 ± 340 1599+75

−87
O1 ∆εRA −15.3 ± 0.2 kBT −15.2+0.1

−0.1 kBT
O2 ∆εRA −13.9 ± 0.2 kBT −13.6+0.1

−0.1 kBT
O3 ∆εRA −9.7 ± 0.1 kBT −9.4+0.1

−0.1 kBT
Oid ∆εRA −17.0 ± 0.2 kBT −17.7+0.2

−0.1 kBT
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2.12 Supplemental Information: Applicability of Theory to the OidOperator
Sequence

In addition to the native operator sequences (O1, O2, and O3) considered in the main
text, we were also interested in testing our model predictions against the synthetic
Oid operator. In contrast to the other operators, Oid is one base pair shorter in length
(20 bp), is fully symmetric, and is known to provide stronger repression than the
native operator sequences considered so far. While the theory should be similarly
applicable, measuring the lower fold-changes associated with this YFP construct
was expected to be near the sensitivity limit for our flow cytometer, due to the
especially strong binding energy of Oid (∆εRA = −17.0 kBT) [13]. Accordingly,
fluorescence data for Oid were obtained using microscopy, which is more sensitive
than flow cytometry. Supplemental Section 2.8 gives a detailed explanation of how
microscopy measurements were used to obtain induction curves.

We follow the approach of the main text and make fold-change predictions based on
the parameter estimates from our strain with R = 260 and an O2 operator. These
predictions are shown in Figure 2.28A, where we also plot data taken in triplicate for
strains containing R = 22, 60, and 124, obtained by single-cell microscopy. We find
that the data are systematically below the theoretical predictions. We also considered
our global fitting approach (see Supplemental Section 2.11) to see whether we might
find better agreement with the observed data. Interestingly, we findthat the majority
of the parameters remain largely unchanged, but our estimate for the Oid binding
energy ∆εRA is shifted to −17.7 kBT instead of the value −17.0 kBT found by Ref.
[9]. In Figure 2.28B we again plot the Oid fold-change data but with theoretical
predictions using the new estimate for the Oid binding energy from our global fit
and find substantially better agreement.

Figure 2.29 shows the cumulative data from Ref. [9] and Ref. [10], as well as our
data with c = 0 µM, which all measured fold-change for the same simple repression
architecture utilizing different reporters and measurement techniques. We find that
the binding energies from the global fit, including ∆εRA = −17.7 kBT , compare
reasonably well with all previous measurements.
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Figure 2.28: Predictions of fold-change for strains with anOid binding sequence
versus experimental measurements with different repressor copy numbers. (A)
Experimental data is plotted against the parameter-free predictions that are based
on our fit to the O2 strain with R = 260. Here we use the previously measured
binding energy ∆εRA = −17.0 kBT [9]. (B) The same experimental data is plotted
against the best-fit parameters using the complete O1, O2, O3, and Oid data sets to
infer KA, KI , repressor copy numbers, and the binding energies of all operators (see
Supplemental Section 2.11). Here the major difference in the inferred parameters is
a shift in the binding energy for Oid from ∆εRA = −17.0 kBT to ∆εRA = −17.7 kBT ,
which now shows agreement between the theoretical predictions and experimental
data. Shaded regions from the theoretical curves denote the 95% credible region.
These are narrower in Panel B because the inference of parameters was performed
with much more data, and hence the best-fit values are more tightly constrained.
Individual data points are shown due to the small number of replicates. The dashed
lines at 0 IPTG indicate a linear scale, whereas solid lines represent a log scale.
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Figure 2.29: Comparison of fold-change predictions based on binding energies
fromGarcia and Phillips and those inferred from this work. Fold-change curves
for the different repressor-DNA binding energies ∆εRA are plotted as a function
of repressor copy number when IPTG concentration c = 0. Solid curves use the
binding energies determined from Ref. [9], while the dashed curves use the inferred
binding energies we obtained when performing a global fit of KA, KI , repressor
copy numbers, and the binding energies using all available data from our work.
Fold-change measurements from our experiments (outlined circles) Ref. [9] (solid
circles), and Ref. [10] (diamonds) show that the small shifts in binding energy that
we infer are still in agreement with prior data. Note that only a single flow cytometry
data point is shown for Oid from this study, since the R = 60 and R = 124 curves
from Figure 2.28 had extremely low fold-change in the absence of inducer (c = 0)
so as to be indistinguishable from autofluorescence, and in fact their fold-change
values in this limit were negative and hence do not appear on this plot.
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2.13 Supplemental Information: Comparison of Parameter Estimation and
Fold-Change Predictions across Strains

The inferred parameter values for KA and KI in the main text were determined
by fitting to induction fold-change measurements from a single strain (R = 260,
∆εRA = −13.9 kBT , n = 2, and ∆εAI = 4.5 kBT). After determining these
parameters, we were able to predict the fold-change of the remaining strains without
any additional fitting. However, the theory should be independent of the specific
strain used to estimate KA and KI ; using any alternative strain to fit KA and KI

should yield similar predictions. For the sake of completeness, here we discuss
the values for KA and KI that are obtained by fitting to each of the induction data
sets individually. These fit parameters are shown in Figure 2.5D of the main text,
where we find close agreement between strains, but with some deviation and poorer
inferences observed with the O3 operator strains. Overall, we find that regardless
of which strain is chosen to determine the unknown parameters, the predictions laid
out by the theory closely match the experimental measurements. Here we present
a comparison of the strain specific predictions and measured fold-change data for
each of the three operators considered.

We follow the approach taken in the main text and use Equation 2.5 to infer values
for KA and KI by fitting to each combination of binding energy ∆εRA and repressor
copy number R. We then use these fitted parameters to predict the induction curves
of all other strains. In Figure 2.30 we plot these fold-change predictions along with
experimental data for each of our strains that contains an O1 operator. To make
sense of this plot consider the first row as an example. In the first row, KA and KI

were estimated using data from the strain containing R = 22 and an O1 operator (top
leftmost plot, shaded in gray). The remaining plots in this row show the predicted
fold-change using these values for KA and KI . In each row, we then infer KA and
KI using data from a strain containing a different repressor copy number (R = 60
in the second row, R = 124 in the third row, and so on). In Figure 2.31 and Figure
2.32, we similarly apply this inference to our strains with O2 and O3 operators,
respectively. We note that the overwhelming majority of predictions closely match
the experimental data.The notable exception is that using the R = 22 strain provides
poor predictions for the strains with large copy numbers (especially R = 1220 and
R = 1740), though it should be noted that predictions made from the R = 22 strain
have considerably broader credible regions. This loss in predictive power is due to
the poorer estimates of KA and KI for the R = 22 strain as shown in Figure 2.5D.
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O1 15.3

Figure 2.30: O1 strain fold-change predictions based on strain-specific param-
eter estimation of KA and KI . Fold-change in expression is plotted as a function
of IPTG concentration for all strains containing an O1 operator. The solid points
correspond to the mean experimental value. The solid lines correspond to Equation
2.5 using the parameter estimates of KA and KI . Each row uses a single set of
parameter values based on the strain noted on the left axis. The shaded plots along
the diagonal are those where the parameter estimates are plotted along with the data
used to infer them. Values for repressor copy number and operator binding energy
are from Ref. [9]. The shaded region on the curve represents the uncertainty from
our parameter estimates and reflects the 95% highest probability density region of
the parameter predictions.
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Figure 2.31: O2 strain fold-change predictions based on strain-specific param-
eter estimation of KA and KI . Fold-change in expression is plotted as a function
of IPTG concentration for all strains containing an O2 operator. The plots and data
shown are analogous to Figure 2.30, but for the O2 operator.
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O3 9.7

Figure 2.32: O3 strain fold-change predictions based on strain-specific param-
eter estimation of KA and KI . Fold-change in expression is plotted as a function
of IPTG concentration for all strains containing an O3 operator. The plots and
data shown are analogous to Figure 2.30, but for the O3 operator. We note that
when using the R = 22 O3 strain to predict KA and KI , the large uncertainty in
the estimates of these parameters (see Figure 2.5D) leads to correspondingly wider
credible regions.
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2.14 Supplemental Information: Properties of Induction Titration Curves
In this section, we expand on the phenotypic properties of the induction response
that were explored in the main text (see Figure 2.1). We begin by expanding on
our discussion of dynamic range and then show the analytic form of the [EC50] for
simple repression.

As stated in the main text, the dynamic range is defined as the difference between the
maximum and minimum system response, or equivalently, as the difference between
the saturation and leakiness of the system. Using Equations 2.6, 2.7, and 2.8, the
dynamic range is given by

dynamic range = *.
,
1 +

1
1 + e−β∆εAI

(
KA

KI

)n
R

NN S
e−β∆εRA+/

-

−1

−

(
1 +

1
1 + e−β∆εAI

R
NN S

e−β∆εRA

)−1
.

(2.52)
The dynamic range, saturation, and leakiness were plotted with our experimental
data in Figure 2.6A-C as a function of repressor copy number. Figure 2.33 shows
how these properties are expected to vary as a function of the repressor-operator
binding energy. Note that the resulting curves for all three properties have the
same shape as in Figure 2.6A-C, since the dependence of the fold-change upon the
repressor copy number and repressor-operator binding energy are both contained in
a single multiplicative term, Re−β∆εRA. Hence, increasing R on a logarithmic scale
(as in Figure 2.6A-C) is equivalent to decreasing ∆εRA on a linear scale (as in Figure
2.33).

An interesting aspect of the dynamic range is that it exhibits a peak as a function of
either the repressor copy number (or equivalently of the repressor-operator binding
energy). Differentiating the dynamic range Equation 2.52 and setting it equal to
zero, we find that this peak occurs at

R∗

NN S
= e−β(∆εAI−∆εRA)

√
e∆εAI + 1

√
e∆εAI +

(
KA

KI

)n

. (2.53)

The magnitude of the peak is given by

max dynamic range =

(√
e∆εAI + 1 −

√
e∆εAI +

(
KA

KI

)n
)2

(
KA

KI

)n
− 1

, (2.54)

which is independent of the repressor-operator binding energy ∆εRA or R, and will
only cause a shift in the location of the peak but not its magnitude.
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Figure 2.33: Dependence of leakiness, saturation, and dynamic range on the
operator binding energy and repressor copy number. Increasing repressor copy
number or decreasing the repressor-operator binding energy suppresses gene ex-
pression and decreases both the (A) leakiness and (B) saturation. (C) The dynamic
range retains its shape but shifts right as the repressor copy number increases. The
peak in the dynamic range can be understood by considering the two extremes for
∆εRA: for small repressor-operator binding energies, the leakiness is small but the
saturation increases with ∆εRA; for large repressor-operator binding energies the
saturation is near unity and the leakiness increases with ∆εRA, thereby decreasing
the dynamic range. Repressor copy number does not affect the maximum dynamic
range (see Equation 2.54). Circles, diamonds, and squares represent ∆εRA values
for the O1, O2, and O3 operators, respectively, demonstrating the expected values
of the properties using those strains.

We now consider the two remaining properties, the [EC50] and effective Hill coeffi-
cient, which determine the horizontal properties of a system. That is, they determine
the range of inducer concentration in which the system’s response goes from its min-
imum to maximum values. The [EC50] denotes the inducer concentration required
to generate fold-change halfway between its minimum and maximum value and was
defined implicitly in Equation 2.9. For the simple repression system, the [EC50] is



132

given by

[EC50]
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Using this expression, we can then find the effective Hill coefficient h, which
equals twice the log-log slope of the normalized fold-change evaluated at c =

[EC50] (see Equation 2.10). In Figure 2.6D-E we show how these two properties
vary with repressor copy number, and in Figure 2.34 we demonstrate how they
depend on the repressor-operator binding energy. Both the [EC50] and h vary
significantly with repressor copy number for sufficiently strong operator binding
energies. Interestingly, for weak operator binding energies on the order of the
O3 operator, it is predicted that the effective Hill coefficient should not vary with
repressor copy number. In addition, the maximum possible Hill coefficient is
roughly 1.75, which stresses the point that the effective Hill coefficient should not
be interpreted as the number of inducer binding sites, which is exactly 2.
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Figure 2.34: [EC50] and effective Hill coefficient depend strongly on repressor
copy number and operator binding energy. (A) [EC50] values range from very
small and tightly clustered at weak operator binding energies (e.g. O3) to relatively
large and spread out for stronger operator binding energies (O1 and O2). (B) The
effective Hill coefficient generally decreases with increasing repressor copy number,
indicating a flatter normalized response. The maximum possible Hill coefficient is
roughly 1.75 for all repressor-operator binding energies. Circles, diamonds, and
squares represent ∆εRA values for the O1, O2, and O3 operators, respectively.
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2.15 Supplemental Information: Applications to Other Regulatory Architec-
tures

In this section, we discuss how the theoretical framework presented in this work is
sufficiently general to include a variety of regulatory architectures outside of simple
repression by LacI. We begin by noting that the exact same formula for fold-change
given in Equation 2.5 can also describe corepression. We then demonstrate how our
model can be generalized to include other architectures, such as a coactivator binding
to an activator to promote gene expression. In each case, we briefly describe the
system and describe its corresponding theoretical description. For further details,
we invite the interested reader to read Refs. [24, 28].

Corepression
Consider a regulatory architecture where binding of a transcriptional repressor
occludes the binding of RNAP to the DNA. A corepressor molecule binds to the
repressor and shifts its allosteric equilibrium towards the active state in which it
binds more tightly to the DNA, thereby decreasing gene expression (in contrast,
an inducer shifts the allosteric equilibrium towards the inactive state where the
repressor binds more weakly to the DNA). As in the main text, we can enumerate
the states and statistical weights of the promoter and the allosteric states of the
repressor. We note that these states and weights exactly match Figure 2.2 and yield
the same fold-change equation as Equation 2.5,

fold-change ≈ *.
,
1 +

(
1 + c
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)n(
1 + c
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)n
+ eβ∆εAI

(
1 + c
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)n
R

NN S
e−β∆εRA+/

-

−1

, (2.56)

where c now represents the concentration of the corepressor molecule. Mathemati-
cally, the difference between these two architectures can be seen in the relative sizes
of the dissociation constants KA and KI between the inducer and repressor in the
active and inactive states, respectively. The corepressor is defined by KA < KI ,
since the corepressor favors binding to the repressor’s active state; an inducer must
satisfy KI < KA, as was found in the main text from the induction data (see Figure
2.4). Much as was performed in the main text, we can make some predictions about
the how the response of a corepressor. In Figure 2.35A, we show how varying the
repressor copy number R and the repressor-DNA binding energy ∆εRA influences
the response. We draw the reader’s attention to the decrease in fold-change as the
concentration of effector is increased.



134

Activation
We now turn to the case of activation. While this architecture was not studied
in this work, we wish to demonstrate how the framework presented here can be
extended to include transcription factors other than repressors. To that end, we
consider a transcriptional activator which binds to DNA and aids in the binding of
RNAP through the energetic interaction term εAP. Note that in this architecture,
binding of the activator does not occlude binding of the polymerase. Binding
of a coactivator molecule shifts its allosteric equilibrium towards the active state
(KA < KI), where the activator is more likely to bind to the DNA and promote
expression. Enumerating all of the states and statistical weights of this architecture
and making the approximation that the promoter is weak generates a fold-change
equation of the form

fold-change =

1 +

(
1+ c
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)n
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where A is the total number of activators per cell, c is the concentration of a
coactivator molecule, ∆εAA is the binding energy of the activator to the DNA in
the active allosteric state, and εAP is the interaction energy between the activator
and the RNAP. Unlike in the cases of induction and corepression, the fold-change
formula for activation includes terms from when the RNAP is bound by itself on the
DNA as well as when both RNAP and the activator are simultaneously bound to the
DNA. Figure 2.35B explores predictions of the fold-change in gene expression by
manipulating the activator copy number, DNA binding energy, and the polymerase-
activator interaction energy. Note that with this activation scheme, the fold-change
must necessarily be greater than one. An interesting feature of these predictions is
the observation that even small changes in the interaction energy (< 0.5 kBT) can
result in dramatic increase in fold-change.

As in the case of induction, the Equation 2.57 is straightforward to generalize.
For example, the relative values of KI and KA can be switched such that KI <

KA in which the secondary molecule drives the activator to assume the inactive
state represents induction of an activator. While these cases might be viewed as
separate biological phenomena, mathematically they can all be described by the
same underlying formalism.
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Figure 2.35: Representative fold-change predictions for allosteric corepression
and activation. (A) Contrary to the case of induction described in the main text,
addition of a corepressor decreases fold-change in gene expression. The left and
right panels demonstrate how varying the values of the repressor copy number R and
repressor-DNA binding energy ∆εRA, respectively, change the predicted response
profiles. (B) In the case of inducible activation, binding of an effector molecule to an
activator transcription factor increases the fold-change in gene expression. Note that
for activation, the fold-change is greater than 1. The left and center panels show how
changing the activator copy number A and activator-DNA binding energy∆εAA alter
response, respectively. The right panel shows how varying the polymerase-activator
interaction energy εAP alters the fold-change. Relatively small perturbations to this
energetic parameter drastically change the level of activation and play a major role
in dictating the dynamic range of the system.
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2.16 Supplemental Information: E. coli Primer and Strain List
Here we provide additional details about the genotypes of the strains used, as well as
the primer sequences used to generate them. E. coli strains were derived from K12
MG1655. For those containing R = 22, we used strain HG104 which additionally
has the lacYZA operon deleted (positions 360,483 to 365,579) but still contains the
native lacI locus. All other strains used strain HG105, where both the lacYZA and
lacI operons have both been deleted (positions 360,483 to 366,637).

All 25x+11-yfp expression constructs were integrated at the galK locus (between
positions 1,504,078 and 1,505,112) while the 3*1x-lacI constructs were integrated
at the ybcN locus (between positions 1,287,628 and 1,288,047). Integration was
performed with λ Red recombineering [63] as described in Ref. [9] using the
primers listed in Table 4.2. We follow the notation of Lutz and Bujard [53] for the
nomenclature of the different constructs used. Specifically, the first number refers
to the antibiotic resistance cassette that is present for selection (2 = kanamycin, 3
= chloramphenicol, and 4 = spectinomycin) and the second number refers to the
promoter used to drive expression of either YFP or LacI (1 = PLtetO−1, and 5 =
lacUV5). Note that in 25x+11-yfp, x refers to the LacI operator used, which is
centered at +11 (or alternatively, begins at the transcription start site). For the
different LacI constructs, 3*1x-lacI, x refers to the different ribosomal binding site
modifications that provide different repressor copy numbers and follows from Ref.
[9]. The asterisk refers to the presence of FLP recombinase sites flanking the
chloramphenicol resistance gene that can be used to lose this resistance. However,
we maintained the resistance gene in our constructs. A summary of the final
genotypes of each strain is listed in Table 2.5. In addition each strain also contained
the plasmid pZS4*1-mCherry and provided constitutive expression of the mCherry
fluorescent protein. This pZS plasmid is a low copy (SC101 origin of replication)
where like with 3*1x-lacI, mCherry is driven by a PLtetO−1 promoter.
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Table 2.4: Promoter sequences and primers used in this work. The listed
promoter sequences were randomly mutated to produce libraries for use in Sort-Seq
experiments. The primer sequences were used to generate plasmids for Sort-Seq
experiments or for use in creating strains with mutated operators or LacI.

Primer Sequence Comments

General sequencing primers

pZSforwseq2 TTCCCAACCTTACCAGAGGGC Forward primer for 3*1x-lacI

251F CCTTTCGTCTTCACCTCGA Forward primer for 25x+11-yfp

YFP1 ACTAGCAACACCAGAACAGCCC
Reverse primer for 3*1x-lacI
and 25x+11-yfp

Integration primers:

HG6.1 (galK) gtttgcgcgcagtcagcgatatccattttcgcgaatccgg
agtgtaagaaACTAGCAACACCAGAACAGCC

Reverse primer for 25x+11-yfp
with homology to galK locus.

HG6.3 (galK) ttcatattgttcagcgacagcttgctgtacggcaggcacc
agctcttccgGGCTAATGCACCCAGTAAGG

Forward primer for 25x+11-yfp
with homology to galK locus.

galK-control-upstream1 TTCATATTGTTCAGCGACAGCTTG To check integration.

galK-control-downstream1 CTCCGCCACCGTACGTAAATT To check integration.

HG11.1 (ybcN) acctctgcggaggggaagcgtgaacctctcacaagacggc
atcaaattacACTAGCAACACCAGAACAGCC

Reverse primer for 3*1x-lacI with
homology to ybcN locus.

HG11.3 (ybcN) ctgtagatgtgtccgttcatgacacgaataagcggtgtag
ccattacgccGGCTAATGCACCCAGTAAGG

Forward primer for 3*1x-lacI with
homology to ybcN locus.

ybcN-control-upstream1 AGCGTTTGACCTCTGCGGA To check integration.

ybcN-control-downstream1 GCTCAGGTTTACGCTTACGACG To check integration.
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Table 2.5: E. coli strains used in this work. Each strain contains a unique operator-
yfp construct formeasurement of fluorescence and R refers to the dimer copy number
as measured by Ref. [9].

Strain Genotype

O1, R = 0 HG105::galK〈〉25O1+11-yfp
O1, R = 22 HG104::galK〈〉25O1+11-yfp
O1, R = 60 HG105::galK〈〉25O1+11-yfp, ybcN〈〉3*1RBS1147-lacI
O1, R = 124 HG105::galK〈〉25O1+11-yfp, ybcN〈〉3*1RBS1027-lacI
O1, R = 260 HG105::galK〈〉25O1+11-yfp, ybcN〈〉3*1RBS446-lacI
O1, R = 1220 HG105::galK〈〉25O1+11-yfp, ybcN〈〉3*1RBS1-lacI
O1, R = 1740 HG105::galK〈〉25O1+11-yfp, ybcN〈〉3*1-lacI (RBS1L)
O2, R = 0 HG105::galK〈〉25O2+11-yfp
O2, R = 22 HG104::galK〈〉25O2+11-yfp
O2, R = 60 HG105::galK〈〉25O2+11-yfp, ybcN〈〉3*1RBS1147-lacI
O2, R = 124 HG105::galK〈〉25O2+11-yfp, ybcN〈〉3*1RBS1027-lacI
O2, R = 260 HG105::galK〈〉25O2+11-yfp, ybcN〈〉3*1RBS446-lacI
O2, R = 1220 HG105::galK〈〉25O2+11-yfp, ybcN〈〉3*1RBS1-lacI
O2, R = 1740 HG105::galK〈〉25O2+11-yfp, ybcN〈〉3*1-lacI (RBS1L)
O3, R = 0 HG105::galK〈〉25O3+11-yfp
O3, R = 22 HG104::galK〈〉25O3+11-yfp
O3, R = 60 HG105::galK〈〉25O3+11-yfp, ybcN〈〉3*1RBS1147-lacI
O3, R = 124 HG105::galK〈〉25O3+11-yfp, ybcN〈〉3*1RBS1027-lacI
O3, R = 260 HG105::galK〈〉25O3+11-yfp, ybcN〈〉3*1RBS446-lacI
O3, R = 1220 HG105::galK〈〉25O3+11-yfp, ybcN〈〉3*1RBS1-lacI
O3, R = 1740 HG105::galK〈〉25O3+11-yfp, ybcN〈〉3*1-lacI (RBS1L)
Oid, R = 0 HG105::galK〈〉25Oid+11-yfp
Oid, R = 22 HG104::galK〈〉25Oid+11-yfp
Oid, R = 60 HG105::galK〈〉25Oid+11-yfp, ybcN〈〉3*1RBS1147-lacI
Oid, R = 124 HG105::galK〈〉25Oid+11-yfp, ybcN〈〉3*1RBS1027-lacI
Oid, R = 260 HG105::galK〈〉25Oid+11-yfp, ybcN〈〉3*1RBS446-lacI
Oid, R = 1220 HG105::galK〈〉25Oid+11-yfp, ybcN〈〉3*1RBS1-lacI
Oid, R = 1740 HG105::galK〈〉25Oid+11-yfp, ybcN〈〉3*1-lacI (RBS1L)
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C h a p t e r 3

A SYSTEMATIC APPROACH FOR DISSECTING THE
MOLECULAR MECHANISMS OF TRANSCRIPTIONAL

REGULATION IN BACTERIA

A version of this chapter is in press as Nathan M. Belliveau, Stephanie L. Barnes,
William T. Ireland, Daniel L. Jones, Michael Sweredoski, Annie Moradian, Sonja
Hess, Justin B. Kinney, and Rob Phillips. A systematic approach for dissecting the
molecular mechanisms of transcriptional regulation in bacteria. Proceedings of the
National Academy of Sciences, In press, 2018.

Author contribution note: for this chapter, I (SB) assisted with experimental design,
Sort-Seq sample processing, and writing the manuscript.

3.1 Introduction
The sequencing revolution has left in its wake an enormous challenge: the rapidly
expanding catalog of sequenced genomes is far outpacing a sequence-level under-
standing of how the genes in these genomes are regulated. This ignorance extends
from viruses to bacteria to archaea to eukaryotes. Even in E. coli, the model organ-
ism in which transcriptional regulation is best understood, we still have no indication
if or how more than half of the genes are regulated (See Supplemental Figure 3.8;
see also RegulonDB [1] or EcoCyc [2]). In other model bacteria such as Bacillus
subtilis, Caulobacter crescentus, Vibrio harveyii, or Pseudomonas aeruginosa, far
fewer genes have established regulatory mechanisms [3–5].

New approaches are needed for studying regulatory architecture in these and other
bacteria. Chromatin immunoprecipitation and other high-throughput techniques are
increasingly being used to study gene regulation in E. coli [6–11], but these methods
are incapable of revealing either the nucleotide-resolution location of all functional
transcription factor binding sites, or the way in which interactions between DNA-
bound transcription factors and RNA polymerase modulate transcription. Although
an arsenal of now classic genetic and biochemical methods have been developed for
dissecting promoter function at individual bacterial promoters (reviewed inMinchin
et al. [12]), these methods are not readily parallelized and often require purification
of promoter-specific regulatory proteins.
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In recent years a variety ofmassively parallel reporter assays have been developed for
dissecting the functional architecture of transcriptional regulatory sequences in bac-
teria, yeast, and metazoans. These technologies have been used to infer biophysical
models of well-studied loci, to characterize synthetic promoters constructed from
known binding sites, and to search for new transcriptional regulatory sequences
[13–19]. CRISPR assays have also shown promise for identifying longer range
enhancer-promoter interactions in mammalian cells [20]. However, no approach
for using massively parallel reporter technologies to decipher the functional mecha-
nisms of previously uncharacterized regulatory sequences has yet been established.

Here we take a first step toward quantitative, multi-promoter dissection and describe
a systematic approach for identifying the functional architecture of previously un-
characterized bacterial promoters at nucleotide resolution using a combination of
genetic, functional, and biochemical measurements. First, a massively parallel
reporter assay (Sort-Seq [13]) is performed on a promoter in multiple growth condi-
tions in order to identify functional transcription factor binding sites. DNA affinity
chromatography and mass spectrometry [21, 22] are then used to identify the reg-
ulatory proteins that recognize these sites. In this way one is able to identify both
the functional transcription factor binding sites and cognate transcription factors
in previously unstudied promoters. Subsequent massively parallel assays are then
performed in gene-deletion strains to provide additional validation of the identified
regulators. The reporter data thus generated is also used to infer sequence-dependent
quantitative models of transcriptional regulation. In what follows, we first illustrate
the overarching logic of our approach through application to four previously anno-
tated promoters: lacZYA, relBE, marRAB, and yebG. We then apply this strategy to
the previously uncharacterized promoters of purT, xylE, and dgoRKADT, demon-
strating the ability to go from regulatory ignorance to explicit quantitative models
of a promoter’s input-output behavior.
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3.2 Results
To dissect how a promoter is regulated, we begin by performing Sort-Seq [13]. As
shown in Figure 3.1A, Sort-Seq works by first generating a library of cells, each of
which contains a mutated promoter that drives expression of GFP from a low copy
plasmid (5-10 copies per cell [23]) and provides a read-out of transcriptional state.
We use fluorescence-activated cell sorting (FACS) to sort cells into multiple bins
gated by their fluorescence level and then sequence the mutated plasmids from each
bin. We found it sufficient to sort the libraries into four bins and generated data
sets of about 0.5-2 million sequences across the sorted bins (Section 3.6, Figure
3.6A-D). To identify putative binding sites, we calculate ’expression shift’ plots that
show the average change in fluorescence when each position of the regulatory DNA
is mutated (Figure 3.1B, top plot). Mutations to the DNA will in general disrupt
binding of transcription factors [24], so regions with a positive shift are suggestive
of binding by a repressor, while a negative shift suggests binding by an activator or
RNA polymerase (RNAP).

The identified binding sites are further interrogated by performing information-based
modeling with the Sort-Seq data. Here we generate energy matrix models [13, 25]
that describe the sequence-dependent energy of interaction of a transcription factor
at each putative binding site. For each matrix, we use a convention that the wild-
type sequence is set to have an energy of zero (see example energy matrix in Figure
3.1B). Mutations that enhance binding are identified in blue, while mutations that
weaken binding are identified in red. We also use these energy matrices to generate
sequence logos [26]which provides a useful visualization of the sequence-specificity
(see above matrix in Figure 3.1B).

In order to identify the putative transcription factors, we next perform DNA affinity
chromatography experiments using DNA oligonucleotides containing the binding
sites identified by Sort-Seq. Here we apply a stable isotopic labeling of cell culture
(SILAC [27–30]) approach, which enables us to perform a second reference affinity
chromatography that is simultaneously analyzed by mass spectrometry. We perform
chromatography using magnetic beads with tethered oligonucleotides containing
the putative binding site (Figure 3.1C). Our reference purification is performed
identically, except that the binding site has been mutated away. The abundance
of each protein is determined by mass spectrometry and used to calculate protein
enrichment ratios, with the target transcription factor expected to exhibit a ratio
greater than one. The reference purification ensures that non-specifically bound
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Figure 3.1: Overview of approach to characterize transcriptional regulatory
DNA, using Sort-Seq and mass spectrometry. (A) Schematic of Sort-Seq. A
promoter plasmid library is placed upstream of GFP and is transformed into cells.
The cells are sorted into four bins by FACS and after regrowth, plasmids are purified
and sequenced. The entire intergenic region associated with a promoter is included
on the plasmid and a separate downstream ribosomal binding site sequence is used
for translation of theGFP gene. The fluorescence histograms show the fluorescence
from a library of the rel promoter and the resulting sorted bins. (B) Regulatory
binding sites are identified by calculating the average expression shift due tomutation
at each position. In the schematic, positive expression shifts are suggestive of
binding by repressors, while negative shifts would suggest binding by an activator
or RNAP. Quantitative models can be inferred to describe and further interrogate
the associated DNA-protein interactions. An example energy matrix that describes
the binding energy between an as yet unknown transcription factor to the DNA
is shown. By convention, the wild-type nucleotides have zero energy, with blue
squares identifying mutations that enhance binding (negative energy), and where
red squares reduce binding (positive energy). The wild-type sequence is written
above the matrix. (C) DNA affinity chromatography and mass spectrometry is used
to identify the putative transcription factor (TF) for an identified repressor site. DNA
oligonucleotides containing the target binding site are tethered tomagnetic beads and
used to purify the target transcription factor from cell lysate. Protein abundance is
determined by mass spectrometry and a protein enrichment is calculated as the ratio
in abundance relative to a second reference experiment where the target sequence is
mutated away.
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proteins will have a protein enrichment near one. This mass spectrometry data and
the energy matrix models provide insight into the identity of each regulatory factor
and potential regulatory mechanisms. In certain instances these insights then allow
us to probe the Sort-Seq data further through additional information-basedmodeling
using thermodynamic models of gene regulation. As further validation of binding
by an identified regulator, we also perform Sort-Seq experiments in gene deletion
strains, which should no longer show the associated positive or negative shift in
expression at their binding site.

Sort-Seq recovers the regulatory features of well-characterized promoters
Tofirst demonstrate Sort-Seq as a tool to discover regulatory binding sites de novowe
began by looking at the promoters of lacZYA (lac), relBE (rel), and marRAB (mar).
These promoters have been studied extensively [31–33] and provide a useful testbed
of distinct regulatory motifs. To proceed we constructed libraries for each promoter
by mutating their known regulatory binding sites. We begin by considering the lac
promoter, which contains three lac repressor (LacI) binding sites, two of which we
consider here, and a cyclic AMP receptor (CRP) binding site. It exhibits the classic
catabolic switch-like behavior that results in diauxie when E. coli is grown in the
presence of glucose and lactose sugars [31]. Here we performed Sort-Seq with
cells grown in M9 minimal media with 0.5% glucose. The expression shifts at each
nucleotide position are shown in Figure 3.2A, with annotated binding sites noted
above the plot. The expression shifts reflect the expected regulatory role of each
binding site, showing positive shifts for LacI and negative shifts for CRP and RNAP.
The difference in magnitude at the two LacI binding sites likely reflect the different
binding energies between these two binding site sequences, with LacI O3 having an
in vivo dissociation constant that is almost three orders of magnitude weaker than
the LacI O1 binding site [31, 34].

Next we consider the rel promoter that transcribes the toxin-antitoxin pair RelE and
RelB. It is one of about 36 toxin-antitoxin systems found on the chromosome, with
important roles in cellular physiology including cellular persistence [35]. When
the toxin, RelE, is in excess of its cognate binding partner, the antitoxin RelB, the
toxin causes cellular paralysis through cleavage of mRNA [36]. Interestingly, the
antitoxin protein also contains a DNA binding domain and is a repressor of its own
promoter [37]. We similarly performed Sort-Seq, with cells grown in M9 minimal
media. The expression shifts are shown in Figure 3.2B and were consistent with
binding by RNAP and RelBE. In particular, a positive shift was observed at the



151

0

-35 -10 LacI (O1)CRPLacI (O3)

-35 -10 RelBE

(A)

(C)

lacZYA promoter

marRAB promoter

relBE promoter(B)

MarA -35 -10 MarR

MarR

MarA RNAP (σ70)

repressor

activator

RNAP

CRP LacI

RNAP (σ70)

RelBE

RNAP (σ70)

rbs, start
codon

energy (a.u.)

Fis

+-

Figure 3.2: Characterization of the regulatory landscape of the lac, rel, and mar
promoters. (A) Sort-Seq of the lac promoter. Cells were grown in M9 minimal
media with 0.5% glucose at 37◦C. Expression shifts and energy matrices are shown,
with annotated binding sites for CRP (activator), RNAP (-10 and -35 subsites), and
LacI (repressor) noted. (B) Sort-Seq of the rel promoter. Cells were also grown in
M9 minimal media with 0.5% glucose at 37◦C. The expression shifts identify the
binding sites of RNAP and RelBE (repressor), and energy matrices and sequence
logos are shown for these. (C) Sort-Seq of the mar promoter. Cells were grown in
lysogeny broth (LB) at 30◦C. The expression shifts identify the known binding sites
of Fis and MarA (activators), RNAP, and MarR (repressor). Energy matrices and
sequence logos are shown for MarA and RNAP.
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binding site for RelBE, and the RNAP binding site mainly showed a negative shift
in expression.

The third promoter, mar, is associated with multiple antibiotic resistance since its
operon codes for the transcription factor MarA, which activates a variety of genes
including the major multi-drug resistance efflux pump, ArcAB-tolC, and increases
antibiotic tolerance [33]. The mar promoter is itself activated by MarA, SoxS, and
Rob (via the so-called marbox binding site), and further enhanced by Fis, which
binds upstream of this marbox [38]. Under standard laboratory growth it is under
repression by MarR [33]. We found that the promoter’s fluorescence was quite
dim in M9 minimal media and instead grew libraries in lysogeny broth (LB) at
30◦C [39]. Again, the different features in the expression shift plot (Figure 3.2C)
appeared to be consistent with the noted binding sites. One exception was that
the downstream MarR binding site was not especially apparent. Both positive and
negative expression shifts were observed along its binding site, which may be due
to overlap with other features present including the native ribosomal binding site.
There have also been reported binding sites for CRP, Cra, CpxR/CpxA, and AcrR
[1]. However the studies associated with these annotations either required over-
expression of the associated transcription factor, were computationally predicted, or
demonstrated through in vitro assays and not necessarily expected under the growth
condition considered here.

While each promoter qualitatively showed the expected regulatory behavior in each
expression shift plot, it was important to show that we could also recover the
quantitative features of binding by each transcription factor. Here we inferred
energy matrices and associated sequence logos for the binding sites of RNAP, LacI,
CRP, RelBE,MarA, and Fis. These are shown in Figure 3.2A-C and in Supplemental
Figure 3.11, and indeed, the matrices agreed well with those generated from known
genomic binding sites for each transcription factor (Pearson correlation coefficient
r=0.5-0.9; see Supplemental Section 3.7).

For the repressors RelBE and MarR, there was no data available that characterized
their sequence specificitywithwhich to compare against. Here, instead, we validated
our data by performing Sort-Seq in strains where the relBE or marR genes were
deleted. In each case this resulted in a loss of the expression shift associated with
binding by these repressors (Figure 3.3) and an inability of the energy matrices to
explain the data in the deletion strain (Supplemental Section 3.11, Figure 3.14),
suggesting that the observed features in the wild-type strain data are due to binding
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Figure 3.3: Expression shifts reflect binding by regulatory proteins. (A) Expres-
sion shifts for the rel promoter, but in a ∆rel genetic background. Cells were grown
in conditions identical to Figure 3.2B but do not show a positive expression shift
across the entire RelBE binding site. (B) Expression shifts for themar promoter, but
in a∆marR genetic background. The positive expression shift observed whereMarR
is expected to bind is no longer observed. Binding site annotations are identified in
blue for RNAP sites, green for repressor sites, yellow for activator sites, and gray
for ribosomal binding site and start codons. These annotations refer to the binding
sites noted on RegulonDB that were observed in the Sort-Seq data.

by these transcription factors.

Identification of transcription factors with DNA affinity chromatography and
quantitative mass spectrometry
It was next important to show that DNA affinity chromatography could be used to
identify transcription factors inE. coli. In particular, a challenge arises in identifying
transcription factors in most organisms due to their very low abundance. In E. coli
the cumulative distribution in protein copy number shows that more than half have
a copy number less than 100 per cell, with 90% having copy number less than 1,000
per cell. This is several orders of magnitude below that of many other cellular
proteins [40].

We began by applying the approach to known binding sites for LacI and RelBE. For
LacI, which is present in E. coli in about 10 copies per cell, we used the strongest
binding site sequence, Oid (in vivo Kd ≈ 0.05 nM), and the weakest natural operator
sequence, O3 (in vivo Kd ≈ 110 nM) [31, 34, 41]. In Figure 3.4Awe plot the protein
enrichments from each transcription factor identified by mass spectrometry. LacI
was found with both DNA targets, with fold enrichment greater than 10 in each
case, and significantly higher than most of the proteins detected (indicated by the
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shaded region, which represents the 95% probability density region of all proteins
detected, including non-DNA binding proteins). Purification of LacI with about 10
copies per cell using the weak O3 binding site sequence are near the limit of what
would be necessary for most E. coli promoters.

To ensure this success was not specific to LacI, we also applied chromatography
to the RelBE binding site. RelBE provides an interesting case since the strength
of binding by RelB to DNA is dependent on whether RelE is bound in complex to
RelB (with at least a 100 fold weaker dissociation constant reported in the absence
of RelE [42, 43]). As shown in Figure 3.4B, we found over 100 fold enrichment
of both proteins by mass spectrometry. To provide some additional intuition into
these results we also considered the predictions from a statistical mechanical model
of DNA binding affinity (See Supplemental Section 3.8). As a consequence of
performing a second reference purification, we find that fold enrichment should
mostly reflect the difference in binding energy between the DNA sequences used in
the two purifications, and be much less dependent on whether the protein was in low
or high abundance within the cell. This appeared to be the case when considering
other E. coli strains with LacI copy numbers between about 10 and 1,000 copies
per cell (Supplemental Figure 3.12). Further characterization of the measurement
sensitivity and dynamic range of this approach is noted in Supplemental Section
3.9.

Sort-Seq discovers regulatory architectures in unannotated regulatory regions
Given that more than half of the promoters in E. coli have no annotated transcrip-
tion factor binding sites in RegulonDB, we narrowed our focus by using several
high-throughput studies to identify candidate genes to apply our approach [44, 45].
The work by Schmidt et al. [45] in particular measured the protein copy number of
about half the E. coli genes across 22 distinct growth conditions. Using this data,
we identified genes that had substantial differential gene expression patterns across
growth conditions, thus hinting at the presence of regulation and even how that reg-
ulation is elicited by environmental conditions (see further details in Supplemental
Section 3.5 and Supplemental Figure 3.9A-C).

On the basis of this survey, we chose to investigate the promoters of purT, xylE, and
dgoRKADT. To apply Sort-Seq in a more exploratory manner, we considered three
60 bp mutagenized windows spanning the intergenic region of each gene. While it
is certainly possible that regulatory features will lie outside of this window, a search
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of known regulatory binding sites suggests that this should be sufficient to capture
just over 70% of regulatory features in E. coli and provide a useful starting point
(Supplemental Figure 3.13).

The purT promoter contains a simple repression architecture and is repressed
by PurR

The first of our candidate promoters is associated with expression of purT, one of
two genes found in E. coli that catalyze the third step in de novo purine biosynthesis
[46, 47]. Due to a relatively short intergenic region, about 120 bp in length that
is shared with a neighboring gene yebG, we also performed Sort-Seq on the yebG
promoter (oriented in the opposite direction [48]; see schematic in Figure 3.5A). To
begin our exploration of the purT and yebG promoters, we performed Sort-Seq with
cells grown in M9 minimal media with 0.5% glucose. The associated expression
shift plots are shown in Figure 3.5A. While we performed Sort-Seq on a larger

relBE promoter
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RelBE target

lacZYA promoter

O3 Oid
LacI target (Kd(Oid) < Kd(O3))

DNA-TF binding 
energy

(A) (B)
RelB, RelE
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Figure 3.4: DNA affinity purification and identification of LacI and RelBE by
mass spectrometry using known target binding sites. (A) Protein enrichment
using the weak O3 binding site and strong synthetic Oid binding sites of LacI.
LacI was the most significantly enriched protein in each purification. The target
DNA region was based on the boxed area of the lac promoter schematic, but with
the native O1 sequence replaced with either O3 or Oid. Data points represent
average protein enrichment for each detected transcription factor, measured from a
single purification experiment. (B) For purification using the RelBE binding site
target, both RelB and its cognate binding partner RelE were significantly enriched.
Data points show the average protein enrichment from two purification experiments.
The target binding site is similarly shown by the boxed region of the rel promoter
schematic. Data points in each purification show the protein enrichment for detected
transcription factors. The gray shaded regions show where 95% of all detected
protein ratios were found.
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region than shown for each promoter, we only plot the regions where regulation was
apparent.

For the yebG promoter, the features were largely consistent with prior work, contain-
ing a binding sites for LexA and RNAP. However, we found that the RNAP binding
site is shifted 9 bp downstream from what was identified previously. The previously
annotated binding site was based on a computational search [48] and not confirmed
experimentally. We were also able to confirm that the yebG promoter was induced
in response to DNA damage by repeating Sort-Seq in the presence of mitomycin
C (a potent DNA cross-linker known to elicit the SOS response and proteolysis of
LexA [49]; see Supplemental Figure 3.15A, B, and D).

Given the role of purT in the synthesis of purines, and the tight control over purine
concentrations within the cell [46], we performed Sort-Seq of the purT promoter
in the presence or absence of the purine, adenine, in the growth media. In growth
without adenine (Figure 3.5A, right plot), we observed two negative regions in the
expression shift plot. Through inference of an energy matrix, these two features
were identified as the -10 and -35 regions of an RNAP binding site. While these
two features were still present upon addition of adenine, as shown in Figure 3.5B,
this growth condition also revealed a putative repressor site between the -35 and -10
RNAP binding sites, indicated by a positive shift in expression (green annotation).

Following our strategy to find not only the regulatory sequences, but also their
associated transcription factors, we next appliedDNA affinity chromatography using
this putative binding site sequence. In our initial attempt however, we were unable to
identify any substantially enriched transcription factor (Supplemental Figure 3.15C).
With repression observed only when cells were grown in the presence of adenine, we
reasoned that the transcription factor may require a related ligand in order to bind the
DNA, possibly through an allosteric mechanism. Importantly, we were able to infer
an energy matrix to the putative repressor site whose sequence-specificity matched
that of the well-characterized repressor, PurR (r=0.82; see Supplemental Figure
3.11). We also noted ChIP-chip data of PurR that suggests it might bind within this
intergenic region [47]. We therefore repeated the purification in the presence of
hypoxanthine, which is a purine derivative that also binds PurR [50]. As shown in
Figure 3.5C, we now observed a substantial enrichment of PurR with this putative
binding site sequence. As further validation, we performed Sort-Seq once more in
the adenine-rich growth condition, but in a ∆pur R strain. In the absence of PurR,
the putative repressor binding site disappeared (Figure 3.5D), which is consistent
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with PurR binding at this location.

In Figure 3.5E we summarize the regulatory features between the coding genes
of purT and yebG, including the new features identified by Sort-Seq. With the
appearance of a simple repression architecture [51] for the purT promoter, we
extended our analysis by developing a thermodynamic model to describe repression
by PurR. This enabled us to infer the binding energies of RNAP and PurR in absolute
kBT energies [52], and we show the resulting model in Figure 3.5E (see additional
details in Supplemental Section 3.12).

The xylE operon is induced in the presence of xylose, mediated through
binding of XylR and CRP

The next unannotated promoter we considered was associated with expression of
xylE, a xylose/proton symporter involved in uptake of xylose. From our analysis of
the Schmidt et al. [45] data, we found that xylEwas sensitive to xylose and proceeded
by performing Sort-Seq in cells grown in this carbon source. Interestingly, the
promoter exhibited essentially no expression in other media (see Schmidt et al.
[45], and Supplemental Figure 3.15E). We were able to locate the RNAP binding
site between -80 bp and -40 bp relative to the xylE gene (Figure 3.6A, annotated in
blue). In addition, the entire region upstream of the RNAP appeared to be involved
in activating gene expression (annotated in orange in Figure 3.6A), suggesting the
possibility of multiple transcription factor binding sites.

We applied DNA affinity chromatography using a DNA target containing this entire
upstream region. Due to the stringent requirement for xylose to be present for any
measurable expression, xylose was supplemented in the lysate during binding with
the target DNA. In Figure 3.6B we plot the enrichment ratios from this purification
and find XylR to be most significantly enriched. From an energy matrix inferred for
the entire region upstream of the RNAP site, we were able to identify two correlated
15 bp regions (dark yellow shaded regions in Figure 3.6C; Pearson correlation r

= 0.74 between energy matrices from each binding site). Mutations of the XylR
protein have been found to diminish transport of xylose [53], which in light of our
result, may be due in part to a loss of activation and expression of this xylose/proton
symporter. This is in addition to the loss of activation expected by XylR of the high-
affinity xylose uptake system XylFHG [53]. These binding sites were also similar to
those found on two other promoters known to be regulated by XylR (xylA and xylF
promoters), whose promoters also exhibit tandem XylR binding sites and strong
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binding energy predictions with our energy matrix (Supplemental Figure 3.15F).

Within the upstream activator region in Figure 3.6A there still appeared to be a
binding site unaccounted for with these tandem XylR binding sites. From the en-
ergy matrix, we were further able to identify a binding site for CRP, which is noted
upstream of the XylR binding sites in Figure 3.6C.While we did not observe a signif-
icant enrichment of CRP in our protein purification, the most energetically favorable
sequence predicted by our model, TGCGACCNAGATCACA, closely matches the
CRP consensus sequence of TGTGANNNNNNTCACA. In contrast to the lac pro-
moter, binding by CRP here appears to depend more on the right half of the binding
site sequence. CRP is known to activate promoters by multiple mechanisms [54],
and CRP binding sites have been found adjacent to the activators XylR and AraC
[53, 55], in line with our result. While further work will be needed to character-
ize the specific regulatory mechanism here, it appears that activation of RNAP is
mediated by both CRP and XylR and we summarize this result in Figure 3.6D (and
consider it further in Supplemental Section 3.12).

The dgoRKADT promoter is auto-repressed by DgoR, with transcription
mediated by class II activation by CRP

As a final illustration of the approach developed here, we considered the unan-
notated promoter of dgoRKADT. The operon codes for D-galactonate-catabolizing
enzymes; D-galactonate is a sugar acid that has been found as a product of galac-
tose metabolism [56]. We began by measuring expression from a non-mutagenized
dgoRKADT promoter reporter to glucose, galactose, andD-galactonate. Cells grown
in galactose exhibited higher expression than in glucose, as found by Schmidt et al.
[45], and even higher expression when cells were grown in D-galactonate (Supple-
mental Figure 3.16A). This likely reflects the physiological role provided by the
genes of this promoter, which appear necessary for metabolism of D-galactonate.
We therefore proceeded by performing Sort-Seq with cells grown in either glucose
or D-galactonate, since these appeared to represent distinct regulatory states, with
expression low in glucose and high in D-galactonate. Expression shift plots from
each growth conditions are shown in Figure 3.7A.

We begin by considering the results from growth in glucose (Figure 3.7A, top
plot). Here we identified an RNAP binding site between -30 bp and -70 bp, relative
to the native start codon for dgoR (Supplemental Figure 3.16B). Another distinct
feature was a positive expression shift in the region between -140 bp and -110
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bp, suggesting the presence of a repressor binding site. Applying DNA affinity
chromatography using this target region, we observed an enrichment of DgoR
(Figure 3.7B), suggesting that the promoter is indeed under repression, and regulated
by the first coding gene of its transcript. As further validation of binding by DgoR,
the positive shift in expression was no longer observed when Sort-Seq was repeated
in a ∆dgoR strain (Figure 3.7D and Supplemental Figure 3.16C). We also were able
to identify additional RNAP binding sites that were not apparent due to binding
by DgoR. While only one RNAP -10 motif is clearly visible in the sequence logo
shown Figure 3.7C (top sequence logo; TATAAT consensus sequence), we used
simulations to demonstrate that the entire sequence logo shown can be explained by
the convolution of three overlapping RNAP binding sites (See Supplemental Figure
3.16).

Next we consider the D-galactonate growth condition (Figure 3.7A, bottom plot).
Like in the expression shift plot for the ∆dgoR strain grown in glucose, we no
longer observe the positive expression shift between -140 bp and -110 bp. While
there are still several positions between -120 bp and -100 bp that are still positive,
this can be attributed to a non-optimal -10 binding site sequence for RNAP (wild-
type TACATT, Figure 3.7C). The loss of the repressive feature therefore suggests
that DgoR may be induced by D-galactonate or a related metabolite. However, in
comparison with the expression shifts in the ∆dgoR strain grown in glucose, there
were some notable differences in the region between -160 bp and -140 bp. Here
we find evidence for another CRP binding site. The sequence logo identifies the
sequence TGTGA (Figure 3.7C, bottom logo), which matches the left side of the
CRP consensus sequence. In contrast to the lac and xylE promoters however, the
right half of the binding site directly overlaps with where we would expect to find
a -35 RNAP binding site. This type of interaction by CRP has been previously
observed and is defined as class II CRP dependent activation [54], though this
sequence-specificity has not been previously described.

In order to isolate and better identify this putative CRP binding site we repeated
Sort-Seq inE. coli strain JK10, grown in 500 µMcAMP. Strain JK10 lacks adenlyate
cyclase (cyaA) and phosphodiesterase (cpdA), which are needed for cAMP synthesis
and degradation, respectively, and is thus unable to control intracellular cAMP levels
necessary for activation by CRP (derivative of TK310 [41]). Growth in the presence
of 500 µM cAMP provided strong induction from the dgoRKADT promoter and
resulted in a sequence logo at the putative CRP binding site that even more clearly
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resembled binding by CRP (Supplemental Figure 3.16E). This is likely because
expression is now dominated by the CRP activated RNAP binding site. Importantly,
this data allowed us to further infer the interaction energy between CRP and RNAP,
which we estimate to be -7.3 kBT (further detailed in Supplemental Section 3.12).
We summarize the identified regulatory features in Figure 3.7E.
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Figure 3.5: Sort-Seq distinguishes directional regulatory features and uncovers
the regulatory architecture of the purT promoter. (A) A schematic is shown for
the approximately 120 bp region between the yebG and purT genes, which code in
opposite directions. Expression shifts are shown for 60 bp regions where regulation
was observed for each promoter, with positions noted relative to the start codon of
each native coding gene. Cells were grown inM9minimal media with 0.5% glucose.
The -10 and -35 RNAP binding sites of the purT promoter were determined through
inference of an energy matrix and are identified in blue. (B) Expression shifts for
the purT promoter, but in M9 minimal media with 0.5% glucose supplemented
with adenine (100 µg/ml). A putative repressor site is annotated in green. (C) DNA
affinity chromatographywas performed using the identified repressor site and protein
enrichment values for transcription factors are plotted. Cell lysate was produced
from cells grown in M9minimal media with 0.5 % glucose. Binding was performed
in the presence of hypoxanthine (10 µg/ml). Error bars represent the standard error
of the mean, calculated using log protein enrichment values from three replicates,
and the gray shaded region represents 95% probability density region of all protein
detected. (D) Identical to (B) but performed with cells containing a ∆purR genetic
background. (E) Summary of regulatory binding sites and transcription factors that
bindwithin the intergenic region between the genes of yebG and purT. Energyweight
matrices and sequence logos are shown for the PurR repressor and RNAP binding
sites. Data was fit to a thermodynamic of simple repression, yielding energies in
units of kBT .
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Figure 3.6: Sort-Seq identifies a set of activator binding sites that drive ex-
pression of RNAP at the xylE promoter. (A) Expression shifts are shown for
the xylE promoter, with Sort-Seq performed on cells grown in M9 minimal media
with 0.5% xylose. The -10 and -35 regions of an RNAP binding site (blue) and a
putative activator region (orange) are annotated. (B) DNA affinity chromatography
was performed using the putative activator region and protein enrichment values
for transcription factors are plotted. Cell lysate was generated from cells grown in
M9 minimal media with 0.5% xylose and binding was performed in the presence
of xylose supplemented at the same concentration as during growth. Error bars
represent the standard error of the mean, calculated using log protein enrichment
values from three replicates. The gray shaded region represents 95% probability
density region of all proteins detected. (C) An energy matrix was inferred for the
region upstream of the RNAP binding site. The associated sequence logo is shown
above the matrix. Two binding sites for XylR were identified (see also Supplemental
Section 3.7, Supplemental Figure 3.11 and Supplemental Figure 3.15F) along with
a CRP binding site. (D) Summary of regulatory features identified at xylE promoter,
with the identification of an RNAP binding site and tandem binding sites for XylR
and CRP.
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Figure 3.7: The dgoRKADT promoter is induced in the presence of D-
galactonate due to loss of repression by DgoR and activation by CRP. (A)
Expression shifts due to mutating the dgoRKADT promoter are shown for cells
grown in M9 minimal media with either 0.5% glucose (top) or 0.23% D-galactonate
(bottom). Regions identified as RNAP binding sites (-10 and -35) are shown in blue
and putative activator and repressor binding sites are shown in orange and green,
respectively. (B) DNA affinity purification was performed targeting the region be-
tween -145 to -110 of the dgoRKADT promoter. The transcription factor DgoR
was found most enriched among the transcription factors plotted. Error bars repre-
sent the standard error of the mean, calculated using log protein enrichment values
from three replicates, and the gray shaded region represents 95% probability den-
sity region of all proteins detected. (C) Sequence logos were inferred for the most
upstream 60 bp region associated with the upstream RNAP binding site annotated in
(A). Multiple RNAP binding sites were identified using Sort-Seq data performed in
a ∆dgoR strain, grown inM9minimal media with 0.5% glucose. (further detailed in
Supplemental Figure 3.16). Below this, a sequence logo was also inferred using data
from Sort-Seq performed on wild-type cells, grown in D-galactonate, identifying a
CRP binding site (class II activation [54]). (D) Expression shifts are shown for the
dgoRKADT promoter when performed in a ∆dgoR genetic background, grown in
0.5% glucose. This resembles growth in D-galactonate, suggesting D-galactonate
may act as an inducer for DgoR. (E) Summary of regulatory features identified at
dgoRKADT promoter, with the identification of multiple RNAP binding sites, and
binding sites for DgoR and CRP. The interaction energy between CRP and RNAP,
εi, was inferred to be −7.3+1.9

−1.4kBT , where the superscripts and subscripts represent
the upper and lower bounds of the 95th percentile of the parameter value distribution.
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3.3 Discussion
Wehave established a systematic procedure for dissecting the functionalmechanisms
of previously uncharacterized regulatory sequences in bacteria. Amassively parallel
reporter assay, Sort-Seq [13], is used to first elucidate the locations of functional
transcription factor binding sites. DNA oligonucleotides containing these binding
sites are then used to enrich the cognate transcription factors and identify them by
mass spectrometry analysis. Information-based modeling and inference of energy
matrices that describe the DNA binding specificity of regulatory factors provide
further quantitative insight into transcription factor identity and the growth condition
dependent regulatory architectures.

To validate this approach we examined four previously annotated promoters of
lac, rel, mar, and yebG, with our results consistent with established knowledge
[13, 31, 33, 34, 39, 43]. Importantly, we find that DNA affinity chromatography
experiments on these promoters were highly sensitive. In particular, LacI was
unambiguously identified with the weak O3 binding site, even though LacI is present
in only about 10 copies per cell [34]. Emboldened by this success, we then studied
promoters having little or no prior regulatory annotation: purT, xylE, and dgoR. Here
our analysis led to a collection of new regulatory hypotheses. For the purT promoter,
we identified a simple repression architecture [51], with repression by PurR. The xylE
promoter was found to undergo activation only when cells are grown in xylose, likely
due to allosteric interaction between the activator XylR and xylose, and activation
by CRP [53, 55]. Finally, in the case of dgoR, the base-pair resolution allowed us
to tease apart overlapping regulatory binding sites, identify multiple RNAP binding
sites along the length of the promoter, and infer further quantitative detail about the
interaction between the newly identified binding sites for CRP and RNAP. We view
these results as a critical first step in the quantitative dissection of transcriptional
regulation, which will ultimately be needed for a predictive understanding of how
such regulation works.

While our results show the successful identification of regulatory binding sites
and regulatory mechanism at previously unannotated promoters, there also remain
important challenges. The uncharacterized genes were selected based upon genome-
wide studies [44, 45] and indeed, the hints of regulation in these datawere a necessary
part of our strategy to systematically dissect each promoter. Data sets that quantitate
protein abundance across a number of growth conditions, like those available in E.
coli [45] and yeast [57], or alternatively, transcript abundance using RNA-seq, will
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provide an important starting point for the dissection of regulatory mechanism in
other bacteria.

An important aspect of the presented approach is that it can be applied to any pro-
moter sequence, and there are a number of ways that throughput can be increased
further. Microarray-synthesized promoter libraries and measurement of expression
from barcoded transcripts using RNA-seq, instead of flow cytometry, can be used
to allow multiple loci to be studied simultaneously [14, 18]. Landing pad technolo-
gies for chromosomal integration [58–60] should enable massively parallel reporter
assays to be performed in chromosomes instead of on plasmids. Techniques that
combine these assays with transcription start site readout [61] may provide addi-
tional resolution, further allowing the molecular regulators of overlapping RNAP
binding sites to be deconvolved, or the contributions from separate RNAP binding
sites, like those observed on the dgoR promoter, to be better distinguished. As the
number of regulatory regions under study increases, it will also be important to
develop additional analysis tools that provide automated identification of regulatory
binding sites.

In order to identify transcription factors across many target binding sites, DNA-
affinity chromatography samples can be further mutliplexed using isobaric labeling
strategies [62, 63]. Continued performance improvements in mass spectrometer
sensitivity and sample processing [64–66] will also make this assay less onerous to
apply across many targets and different binding conditions. This will be especially
important for situations where the data suggests a small-molecule effector might be
acting tomodulate binding of the transcription factor to its target sequence, requiring
multiple binding conditions to be tested. Performing reporter assays in transcription
factor deletion strains will continue to play an important role in promoter dissection,
as we have shown for a variety of the promoters, and provide a secondarymeans with
which to identify and validate binding sites. Genome-wide knockout libraries are
now available for awide variety of bacteria [67–72], and it is now possible to perform
genetic perturbations using CRISPRi [73, 74] that should open up the possibility of
applying such perturbation strategies more easily in less-studied organisms.

Although our work was directed toward regulatory regions of E. coli, there are no
intrinsic limitations that restrict the analysis to this organism. Rather, most bacte-
ria contain small intergenic regions several hundred base-pairs in length that make
this approach especially suitable. The sequence specificity of most characterized
prokaryotic transcription factors [75, 76], and the sigma factors that allow RNAP to
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recognize each promoter [54, 77], suggests that this approach will permit regulatory
dissection in any bacterium that supports efficient transformation by plasmids. And
although we have focused on bacteria, our general strategy should be feasible for
dissecting regulation in a number of eukaryotic systems – including human cell cul-
ture – using massively parallel reporter assays [14–16] and DNA-mediated protein
pull-down methods [21, 22] that have already been established.
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3.4 Methods
Bacterial strains
All E. coli strains used in this work were derived from K-12 MG1655, with deletion
strains generated by the lambda red recombinase method [78]. In the case of
deletions for lysA (∆lysA::kan), purR (∆pur R::kan), and xylE (∆xylE::kan), strains
were obtained from the Coli Genetic Stock Center (CGSC, Yale University, CT,
USA) and transferred into a fresh MG1655 strain using P1 transduction. The others
were generated in house and include the following deletion strains: ∆lacI ZY A,
∆relBE::kan,∆marR::kan,∆dgoR::kan. Details on strain construction are provided
in Supplemental Section 3.13.

Sort-Seq
Mutagenized single-stranded oligonucleotide pools were purchased from Integrated
DNA Technologies (Coralville, IA). Library oligonucleotides were PCR amplified
and inserted into the PCR amplified plasmid backbone (i.e. vector) of pJK14 (SC101
origin) [13] byGibson assembly and electroporated into cells following drop dialysis
in water. Cell libraries were then grown to saturation in LB and then diluted 1:10,000
into the appropriate growthmedia for the promoter under consideration. ABeckman
Coulter MoFlo XDP cell sorter was used to sort cells by fluorescence, with 500,000
cells collected into each of the four bins. Sorted cells were then re-grown overnight
in 10 ml of LB media, under kanamycin selection. The plasmid in each bin were
miniprepped (Qiagen, Germany) following overnight growth and PCR was used
to amplify the mutated region from each plasmid for Illumina sequencing. See
Supplemental Section 3.13 for additional details on library construction and Sort-
Seq, and Section H on calculating expression shift plots and energy matrices.

DNA affinity chromatography and LC-MS/MS
SILAC labeling [27, 28, 30] was implemented by growing cells (MG1655 ∆lysA)
in either the stable isotopic form of lysine (13C6H14

15N2O2) or natural form. See
Supplemental Section 3.13 for details on lysate preparation.

DNA affinity chromatography was performed by incubating cell lysate (∼150 mg/ml
protein) with magnetic beads (Dynabeads MyOne T1, ThermoFisher, Waltham,
MA) containing tethered DNA (streptavidin-biotin linkage). Single-stranded DNA
was purchased from Integrated DNA Technologies with the biotin modification
on the 5’ end of the oligonucleotide sense strand. Cell lysates were incubated
on a rotating wheel with the DNA tethered beads overnight at 4◦C. Elution was



168

achieved by cleaving the DNA with the restriction enzyme PstI, and samples were
then prepared for mass spectrometry by in-gel digestion with endoproteinase Lys-
C. Liquid chromatography tandem-mass spectrometry (LC-MS/MS) experiments
were carried out as previously described [79] and further detailed in Supplemental
Section 3.13. Thermo RAWfiles were processed usingMaxQuant (v. 1.5.3.30) [80].

Code availability and data analysis
All code used for processing data and plotting, as well as the final processed data,
plasmid sequences, and primer sequences can be found on our GitHub reposi-
tory (https://www.github.com/RPGroup-PBoC/sortseq_belliveau; DOI:
https://doi.org/10.5281/zenodo.1184169). Thermo RAW files for mass
spectrometry are available on the jPOSTrepo repository [81] under accession code
PXD007892. Sort-Seq sequencing files are available on the Sequence Read Archive
(accession code SRP121362; will be made available upon publication).

https://www.github.com/RPGroup-PBoC/sortseq_belliveau
https://doi.org/10.5281/zenodo.1184169
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3.5 Supplemental Information: Identification of unannotated promoters in
E. coli with growth-dependent differential expression.

Here we briefly describe how the unannotated promoters of the main text (purT,
xylE, and dgoR) were chosen. Figure 3.8 summarizes the current state of regulatory
knownledge in E. coli and those promoters considered in this work. Here, we parse
the database RegulonDB that lists all known regulatory reatures in E. coli, with the
striking finding that more than half the operons lack any annotated transcription
factor binding sites (denoted by red lines). To identify candidate promoters with
which to apply Sort-Seq, we made use of a variety of genome-wide datasets [40, 44,
45]. Specifically, in the case of the purT promoter, network inference approaches
[44] led us to a number of unannotated genes that appeared to be sensitive to purine
(others included yieH and adeP). Since the purT promoter lacked any experimental
characterization and with ChIP-chip data suggesting PurR may be involved [47], it
appeared to be a good starting point with which to apply our approach.

The promoters of xylE and dgoR, were identified from a recent study by Schmidt
et al. [45]. They measured the copy number per cell of more than 2,300 proteins
(about 55% of the E. coli proteome) across 22 growth conditions. These conditions
included different carbon sources, temperature and pH, growth phase, media, and
growth in chemostats. This provided us with a rich set of measurements with which
to identify unannotated promoters where a particular growth condition influenced
expression and may be under transcriptional regulation. The rest of this section
describes how that data was used to identify candidate promoters.

In order to identify candidate genes using the mass spectrometry data, we ranked
each protein based on its copy number in a particular growth condition, divided by the
average copy number across the 22 conditions. Regulated proteins should be among
those that exhibit a large change in copy number in one or a few growth conditions.
As a confirmation of this, among the proteinswith known regulation, we came across
the GalE protein which was found to have significantly higher expression when cells
were grown in galactose (Figure 3.9A). GalE is involved in galactose catabolism,
and its expression is known to increase due to loss of repression of the galE promoter
when cells were grown in galactose [82, 83]. Among promoters without any known
regulation, we show the expression of DgoD in Figure 3.9B for several different
carbon sources. Cells grown in galactose showed much higher expression of the
DgoD gene, with about 675 copies per cell, compared to at most 15 copies per cell
across the other growth conditions. This is only one of many examples where a
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Figure 3.8: Summary of transcriptional regulatory knowledge in E. coli. left
panel: Well-characterized promoters considered in this work. The schematics
highlight the known regulatory architectures for the annotated promoters ofmarRAB,
relBE, and lacZYA. The center plot identifies the genomic location of different
operons in E. coli. Operons with annotated TF binding sites are shown in blue, while
those lacking regulatory descriptions are shown in red [1]. The genomic location of
the promoters considered in thiswork are labeled. Right panel: promoters associated
with the operons of yebG and the poorly-characterized operons purT, xylE, and
dgoRKADT. The promoters of yebG and purT are oriented in opposite directions.
Repressor binding sites are shown in green, activator binding sites in yellow, and
RNA polymerase (RNAP) binding sites in blue. The poorly characterized regulatory
DNA is noted by a hashed pattern. The identification of regulated operons was
performed using the annotated operons listed on RegulonDB [1], which are based on
manually curated experimental and computational data. An operon was considered
to be regulated if it had at least one transcription factor binding site associated with
it.

protein showed a large differential expression level across growth conditions and
suggests many of these unannotated promoters may possibly be under regulation.

Another way to view this data is to calculate the coefficient of variation (the ratio of
the standard deviation to the mean protein copy number) for each gene across the
22 growth conditions. In Figure 3.9C, the coefficient of variation is plotted for each
of the proteins measured in this study, separated by whether their promoter contains
any known transcription factor binding sites (identified from RegulonDB [1]). For
GalE, whose expression was perturbed by growth in galactose, we find a calculated
coefficient of variation of 1.18. Using this as our reference for a regulated gene that
was perturbed in the study, there appear to be many unannotated genes that may
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in fact be under regulation. Among these, DgoD for example has a coefficient of
variation of 3.64. Among the other proteins we investigated, XylE also has a high
coefficient of variation, equal to 2.73, and shows almost no expression unless cells
are grown in the presence of xylose as the carbon source. While we only pursued
the promoters associated with expression of DgoR, DgoD, DgoK, DgoA, and XylE,
there are many other unannotated promoters that will be of interest in future work.
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Figure 3.9: Identification of unannotated genes with potential regulation and
distribution of known transcription factor binding sites in E. coli. (A) Here
we show the protein copy numbers per cell for GalE across several carbon sources.
Expression was sensitive to the presence of galactose which is consistent with its
known regulation (with about 5000 copies per cell, versus about 500 for most other
growth conditions). (B) DgoD was also found to be sensitive to the presence of
galactose as the carbon source. The copy number was measured to be 675 copies
per cell when cells were grown in galactose, and 15 copies per cell or less in all
other conditions considered. For both (A) and (B), values are shown for growth in
M9 minimal media, with glucose, xylose, acetate, galactose, and glycerol as carbon
sources and obtained from [45]. (C) Coefficient of variation (standard deviation
divided by mean copy number) across the 22 growth conditions for each protein
measured in [45]. Proteins are identified as either having regulatory annotation
(blue) or not (red) using the annotations in RegulonDB [1]. GalE is noted among
the annotated genes and provides a reference as a gene that is known to be regulated
and be perturbed in this study, as shown in (A).
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3.6 Supplemental Information: Characterization of library diversity and
sorting sensitivity.

Sort-Seq of the rel promoter using different sorting conditions.
In the work of the main text, Sort-Seq was performed by sorting cell libraries
into four bins based on their fluorescence, each containing about 15 percent of
the population. The remaining population was not collected and was discarded to
waste. Due to the variability in expression of a single clonal population (Figure
3.6A), sorting into a larger number of narrower bins was not expected to provide
additional resolution for the sequence-dependent fluorescence distribution. Given
the success in identifying the known regulatory binding sites of the lacZ, relB, and
marR promoters, and agreement between the inferred sequences logos and available
sequence logos (see Figure 3.11), these conditions appeared to provide sufficient
information to accurately analyze our libraries.

However, in order to further confirm that our results were not being influenced by
the specific sorting scheme, we also tested several other sorting conditions using our
relB promoter library. Here cells were sorted into either 4 or 8 bins, with a sorting
gate containing between 10 and 22 percent of the population per bin. The associated
expression shift plots and information footprints (defined in Supplemental Section
3.12) are shown in Figure 3.6B-D. In general we found little difference between
each of these experiments. Energy matrices for the binding sites were similarly
in agreement, with a Pearson correlation coefficient between matrix parameters
generally greater than 0.9 across the different conditions tested.

Analysis of library diversity using data from the mar promoter.
Here we provide additional characterization of the mutagenized promoter libraries,
using a library from the marR promoter as a representative example (70 bp re-
gion containing RNAP and MarR repressor sites). With the exception of the lacZ
promoter, all library oligonucleotide pools were purchased from Integrated DNA
Technologies (USA) with a target mutation rate of nine percent per nucleotide po-
sition. For the lacZ promoter library, we purchased an oligonucleotide pool using
their Ultramer branded technology to allow for a longer mutagenized region that
covered the known set of regulatory binding sites. While we intended to have a sim-
ilar mutation rate, we found a mutation rate closer to three percent per nucleotide
position. While unexpected, this allowed us to test two different mutation rates in
our initial validation of the methodology using well-characterized promoters.
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To get a better sense of how the mutation rate varies across the libraries, we plot a
histogram of the number of mutations per base pair for the entire set of sequences
found in the marR promoter library (Figure 3.6E). While we obtained an average
mutation rate of 10.4% in this library, close to our target rate of 9%, there is some
variability in this mutation rate as might be expected given that the incorporation of
mutations in the DNA synthesis procedure is a random process. Since we are using
these sequence data sets to infer sequence-specific models of binding between DNA
and transcription factors, it was also of interest to consider the mutational coverage
found within the library. As shown in Figure 3.6F, all single-point mutations and
a large fraction of two-point mutations were present within the library. Due to the
large number of possible three point mutants in a 60 bp region, only a small subset
of the possible sequences will be found in the library.
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4 bins, 15 percentile gate per bin(B)

4 bins, 22 percentile gate per bin

8 bins, 10 percentile gate per bin(D)
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(C)

sorted bin population

(E) (F)

Figure 3.10: Analysis of the library mutation spectrum and effect of Sort-Seq
sorting conditions.
(A) Here we used our relBE promoter library to test whether the sorting procedure
influenced our Sort-Seq data analysis. The fluorescence histogram of the wild-type
promoter plasmid (single clonal population) and the mutated library for the relB
promoter are shown. Expression shifts and information footprints are shown for
cells sorted under three different scenarios in (B) -(D). In (B) cells were sorted using
the approach of the main text where cells were sorted into 4 bins, each containing
15% of the population. (continued on next page)
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Figure 3.10: (continued from previous page) In (C) cells were similarly sorted into
4 bins, but where each bin contained about 22% of the population. In (D) cells were
sorted into 8 bins, each containing about 10% of the population. The histograms
beside each information footprint identify the approximate gating windows used to
sort each fluorescence bin population. Histograms were based on between 400,000-
500,000 cell counts. The same cell culture was used for each of the three Sort-Seq
experiments performed here, sorted during the same sorting session. Cells were
grown in M9 minimal media with 0.5% glucose like in the main text. (E) Histogram
showing the mutation rate across all sequences found in the 60 bp marRAB library
containing the RNAP and MarR repressor binding sites. Analysis was based on
sequences from all fluorescence sorted bins. (F) The fraction of all possible unique
sequences with one, two, or three mutations is shown for the marRAB library of
(E). The coverage quickly drops for possible three-point mutations due to the large
sequence space at this mutation frequency.
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3.7 Supplemental Information: Generation of sequence logos.
Sequence logos provide a simple way to visualize the sequence specificity of a
transcription factor to DNA, as well as the amount of information present at each
position [26]. Here we describe how we generate them using either known genomic
binding sites or the energy matrices that were determined from our Sort-Seq data.
In each case we need to calculate a 4xL position weight matrix for a binding site
of length L, which is used to estimate the position-dependent information content
needed to construct a sequence logo.

Generating position weight matrices from known genomic binding sites.
FromRegulonDB, we find there are Ng = 260 known binding sites for CRP on the E.
coli genome [1]. To construct a position weight matrix using these genomic binding
sites, we must first align all the sequences and determine the nucleotide statistics at
each position. Specifically, we count the number of each nucleotide, Ni j , at each
position along the binding site. Here the subscript i refers to the position, while j

refers to the nucleotide, A, C, G, or T . We can then calculate a position probability
matrix (also 4xL) where each entry is found by dividing these counts by the total
number of sequences in our alignment,

pi j =
Ni j

Ng
. (3.1)

Note that in situations where the number of aligned sequences is small (e.g. less
than five), pseudocounts [84] are often added to regularize the probabilities of the
counts in the calculation of position probabilities,

pi j =
Ni, j + Bp

Ng + 4 · Bp
, (3.2)

where Bp is the value of the pseudocount. The argument for their use is that when
selecting from a small number of binding site sequences, just by chance infrequent
nucleotides will be absent, and assigning them a probability (pi j , noted above)
of zero may be too stringent of a penalty [84, 85]. We let Bp = 0.1. In the
limit of zero binding site sequences (i.e., with no sequences observed), this will
result in probabilities pi j approximately equal to the background probability used
in calculating the position weight matrix below (and a non-informative sequence
logo).
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Finally, the values of the position weight matrix are found by calculating the log
probabilities relative to a background model [86],

PW M i j = log2
pi j

b j
. (3.3)

The background model reflects assumptions about the genomic background of the
system under investigation. For instance, in many cases it may be reasonable to
assume each base is equally likely to occur. Given that we know the base frequencies
for E. coli, we choose a background model that reflects these frequencies (b j : A

= 0.246, C = 0.254, G = 0.254, and T = 0.246 for strain MG1655; BioNumbers
ID 100528, http://bionumbers.hms.harvard.edu). From Equation 3.3, we
can see that the value at the i, jth position will be zero if the probability, pi j ,
matches that of the background model, but non-zero otherwise. This reflects the
fact that base frequencies matching the background model tell us nothing about the
binding preferences of the transcription factor, while deviation from this background
frequency indicates sequence specificity.

Generating position weight matrices from Sort-Seq data.
Next we construct a position weight matrix using the CRP energy matrix from our
Sort-Seq data. Here we appeal to the result from Berg and von Hippel, that the
logarithms of the base frequencies above should be proportional to their binding
energy contributions [86, 87]. Berg and von Hippel considered a statistical me-
chanical system containing L independent binding site positions, with the choice
of nucleotide b j at each position corresponding to a change in the energy level by
εi j relative to the lowest energy state at that position. This εi j corresponds to the
energy entry in our energy matrix, scaled to absolute units, A · θi j + B (where θi j is
the i, jth entry as noted in Supplemental Section 3.12). An important assumption is
that all nucleotide sequences that provide an equivalent binding energy must have
equal probability of being present as a binding site. In this way, we can relate the
binding energies considered here to the statistical distribution of binding sites in
the previous section. The probability pi j of choosing nucleotide b j at position i

for protein binding will then be proportional to the probability that position i has
energy εi j . Specifically, the probabilities will be given by their Boltzmann factors

http://bionumbers.hms.harvard.edu
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normalized by the sum of states for all nucleotides,

pi j =
b j · e−βA·θi j ·si j∑T

j=A b j · e−βA·θi j ·si j
, (3.4)

where β = 1/kBT , with kB is Boltzmann’s constant and T the absolute temperature.
Note that the energy scaling factor B drops out of this equation since it is shared
across each term. As above, b j refers to the background probabilities of each
nucleotide.

One difficulty that arises whenwe use energymatrices that are not in absolute energy
units is that we are left with an unknown scale factor A, preventing calculation of
pi j . We appeal to the expectation that mismatches usually involve an energy cost of
1-3 kBT [75]. In other work within our group, we have found this to be a reasonable
assumption for LacI. Therefore, we approximate it such that the average cost of a
mutation 〈A × θi, j〉 = 2kBT . We can then calculate a position weight matrix from
Equation 3.3.

Construction of sequence logo
With our position weight matrices in hand we can now construct sequence logos by
calculating the average information content at each position along the binding site.
With our four letter alphabet there is a maximum amount of information of 2 bits
(log2 4 = 2 bits) at each position i. The information content will be zero at a position
when the nucleotide frequencies match the genomic background, and will have a
maximum of 2 bits only if a specific nucleotide is completely conserved. The total
information content at position i is determined through calculation of the Shannon
entropy, and is given by

Ii =

T∑
j=A

pi j · log2
pi j

bi
=

T∑
j=A

pi j · PWMi j . (3.5)

Here, PWMi j refers to the i, jth entry in the position weight matrix [86, 88]. The
total information content contained in the position weight matrix is then the sum of
information content across the length of the binding site.

To construct a sequence logo, the height of each letter at each position i is determined
by

Seqlogoi j = pi j · Ii, (3.6)
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which is in units of bits. This causes each nucleotide in the sequence logo to be
displayed as the proportion of the nucleotide expected at that position scaled by the
amount of information contained at that position [26]. To construct sequence logos
we use custom Python code written by Justin Kinney and available on our GitHub
repository for this work (https://www.github.com/RPGroup-PBoC/sortseq_
belliveau; DOI: https://doi.org/10.5281/zenodo.1184169).

Comparison of Sort-Seq sequence logos.
For the various annotated binding sites identified in this work we used our Sort-Seq
data to generate energy matrices. While these energy matrices provide a concrete
way to understand the sequence-dependent DNA-protein interaction, it was also
useful to generate sequence logos from energy matrices to visually compare with
sequence logos more conventionally generated using known genomic binding site
sequences. In Figure 3.11 we show this comparison for transcription factors with
three or more known genomic binding sites, with agreement more apparent when
genomic binding site logos are based on a larger number of known sequences.

We also report the Pearson correlation coefficient between the position weight
matrices from the Sort-Seq inference and the genomic alignment. To compare the
two position weight matrices we first apply gauge fixing to each matrix in a similar
manner as our energy matrix (see Supplemental Section 3.12). Each column is set to
have a mean energy of zero and the matrix norm (or inner product) is normalized to
have value one. Under this constraint, the Pearson correlation coefficient is simply
given by the summed product of matrix entries,

r =
COV (PWM’X, PWM’Y )

σX · σY
=

L∑
i=1

T∑
j=A

PWM’X,i, j · PWM’Y,i, j . (3.7)

Here, COV refers to the covariance between PWM’X and PWM’Y , where the super-
script prime indicates that the matrices have been gauge fixed (mean energy in each
column of zero and the matrix norm of 1). The subscript X, for example, would
correspond to the Sort-Seq matrix, and Y, to the genomic matrix. σX and σY refer to
the standard deviation of the matrix entries for PWM’X and PWM’Y . We note that
while Pearson correlation coefficient provide one useful metric to compare energy
matrices, there are alternative metric that are also commonly used (Kullback-Leibler
divergence, Euclidean distance, and Pearson χ2 test, among others; see Gupta et al.
2007 [89], which is the publication for the TOMTOM motif comparison software
and provides a good summary of these).

https://www.github.com/RPGroup-PBoC/sortseq_belliveau
https://www.github.com/RPGroup-PBoC/sortseq_belliveau
https://doi.org/10.5281/zenodo.1184169
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Figure 3.11: Comparison between Sort-Seq and genomic-based sequence logos.
Comparisons are shown for LacI, CRP, MarA, Fis, PurR, XylR, LexA, and RNAP.
Binding site sequences were obtained from RegulonDB, where n identifies the
number of genomic binding sites that were used to construct the sequence logo.
The Sort-Seq RNAP logo is based on data from the rel promoter. For the genomic
RNAP logo, sequences were taken from computationally predicted RNAP binding
sites on RegulonDB (top 3.3 % scored sequences using their reported metric) for the
6 bp regions of the -10 and -35 binding sites. Pearson correlation coefficients are
calculated with Equation 3.7 using the position weight matrices from the Sort-Seq
and genomic matrices. For LexA, the first four bp were not used in the calculation
due to overlap with the -10 RNAP binding site of the yebG promoter.
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3.8 Supplemental Information: Statistical mechanical model of the DNA
affinity chromatography approach.

In order to better understand the factors that govern the success of the DNA affinity
chromatography method, we took a statistical-mechanical approach to help identify
the key parameters that will influence the fold enrichment of transcription factors that
we measure. We are interested in calculating the probability that the transcription
factor of interest binds to the target DNA sequence used for purification. We
will ignore possible binding by proteins to the magnetic beads, to which the DNA
oligonucleotides are tethered.

To calculate the probability that the transcription factor of interest is bound, we will
simplify our problem by assuming that all other proteins in the lysate will bind the
DNA with some average nonspecific binding energy. This must be included since
these proteins will act as potential competitors for the tethered DNA. We must first
enumerate the possible states of our DNA. For each DNA affinity purification, this
will include the following three states: 1) no protein bound to the DNA, 2) the target
transcription factor bound, and 3) a nonspecific protein is bound. These are shown
in Supplemental Figure 3.12D for each of the DNA oligonucleotides used for the
two different purifications performed.

The non-normalized probability of each state occurring is simply given by e−β(εi−µi ).
Here, εi is the protein-DNA binding energy and µi, the chemical potential, for
species i [90]. β = 1/kBT , where kB is Boltzmann’s constant and T is the absolute
temperature. The chemical potential contains information about concentration, and
it is possible to alternatively write the non-normalized probability in terms of these,
which is given by Ci/Coe−β∆εi . Here, Ci is the concentration of protein species i,
and Co, is the standard concentration, which is taken as 1 M. ∆εi is the binding
energy for species i, relative to the unbound state.

We can nowwrite the statistical weight for each state, which is summarized in Figure
3.12D. We allow the unbound state to act as our reference state with an energy equal
to zero, and a corresponding statistical weight of 1. The probability of our target
protein being bound to a certain DNA target, Pbound,DN A, will then be given by the
statistical weight for the state where the target protein is bound, divided by the sum
of statistical weights for each state. This is given by

Pbound,DN A =

CTF

Co
e−β∆εTF,DNA

1 + Cns

Co
e−β∆εns + CTF

Co
e−β∆εTF,DNA

, (3.8)
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where the subscript ‘TF, DN A’ identifies the target transcription factor and its
binding to a specific DNA target. In regard to our two purifications shown in Figure
3.12D, ∆εTF,s refers to the binding energy of the transcription factor to its target
binding site, while ∆εTF,ns refers to the nonspecific binding energy to non-target
reference DNA. In addition, ∆εns refers to the binding energy of other proteins
present in the lysate, which may bind the DNA nonspecifically.

We can now calculate the fraction of bound transcription factor, Pbound,DN A, using
some reasonable values for E. coli [51, 91]. Here we use CTF = 10−8M (about
10 copies per cell), Co = 1M , ∆εTF,s = - 15kBT , and ∆εns = - 5kBT . Cns =

3 · 10−3M , which is the approximate number of proteins in E. coli. The specific
numbers will depend on the DNA target sequence used, the concentration of target
protein, as well as the lysate preparation itself. Here we find Pbound ≈ 0.02.
In contrast, for the nonspecifically bound fraction we calculate about a ten-fold
higher fraction of protein bound to the DNA. Even though the binding energy for
a target transcription factor is significantly stronger than the competitor proteins
that bind nonspecifically, the target transcription factor is generally several orders of
magnitude lower in abundance. This result in particular highlights our rationale for
using a additional reference purification to distinguish the target transcription factor
from non-specifically bound proteins [21]. We consider the consequences of this
next.

In this second reference purification, the DNA no longer has the target binding site,
and thus the value of Pbound,DN A for the transcription factor should be significantly
smaller. We can use Equation 3.8 to calculate expected ratio of transcription factor
bound to target DNA versus reference DNA, given by

Pbound,target

Pbound,re f erence
=

CTF

Co
e−β∆εTF,s

1 + Cns

Co
e−β∆εns + CTF

Co
e−β∆εTF,s

·
1 + Cns

Co
e−β∆εns + CTF

Co
e−β∆εTF,ns

CTF

Co
e−β∆εTF,ns

(3.9)

=
e−β∆εTF,s

e−β∆εTF,ns

1 + Cns

Co
e−β∆εns + CTF

Co
e−β∆εTF,ns

1 + Cns

Co
e−β∆εns + CTF

Co
e−β∆εTF,s

. (3.10)

Again, the subscript∆εTF,ns refers to the binding energy of the transcription factor to
the non-target (i.e. non-specific) reference DNA. Using the example values from our
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calculation of Pbound above, we find that 1 + Cns

Co
e−β∆εns � e−β∆εTF,s � e−β∆εTF,ns ,

with Equation 3.10 simplifying to

Pbound,target

Pbound,re f erence
≈

e−β∆εTF,s

e−β∆εTF,ns
= e−β(∆εTF,s−∆εTF,ns ) . (3.11)

This result suggests that the enrichment ratio should mainly depend on the difference
in binding energy between the DNA sequences used in the two purifications. Our
results from purifying LacI with strains containing different LacI copy number
per cell and with different DNA target sequences (see Figure 3.12C) appear to
agree with this result in general, where we see greater enrichment when using
the strong Oid target LacI binding site sequence than the weaker O3 binding site
sequence. This appears to influence the enrichment ratio more significantly than
protein concentration, although further work will be needed to fully characterize
this relationship.
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3.9 Supplemental Information: DNAaffinity chromatography andmass spec-
trometry experimentation and analysis.

In this section we provide additional details on the use of DNA affinity chromatog-
raphy and mass spectrometry to identify the transcription factors that bind to our
putative binding sites. In particular, we provide additional data to demonstrate
protein labeling and characterize the dynamic range expected from our enrichment
measurements (see Methods Section for more details about the approach). We also
provide data from an affinity chromatography experiment in which the same DNA
oligonucleotide sequence was used for both target and control purifications. The
ideal result from such an experiment is that each protein detected is found in equal
abundance between the two purifications performed, yielding an enrichment ratio
equal to one. However, there is some inherent variability in such a measurement
and we provide some characterization of that uncertainty here. Lastly, we provide
additional data showing that we can purify and identify transcription factors at
concentrations ranging from about 10 to 1,000 copies per cell.

Characterization of SILAC labeling and measurement of protein enrichment
ratios.
To ensure E. coli cells incorporated the heavy isotope of lysine (13C15

6 N2-L-lysine,
heavy lysine), we first generated an auxotropic strain which was unable to synthesize
its own lysine through deletion of the lysA gene [92]. LysA is an enzyme that
catalyzes the last step in lysine biosynthesis. Furthermore, to ensure proteins would
be sufficiently labeled when growing cultures for lysate preparation we inoculated
our cultures with a large dilution of 1:5,000. This large dilution is important since
the inoculate represents an unlabeled fraction of the cell population. We checked
the effective labeling efficiency by combining lysates from cells grown with heavy
and light (natural) lysine over a range of ratios between 0.1/1 to 1,000/1 (heavy /
light). The measured ratio in abundance for each of the proteins detected among
the two lysates are plotted in Figure 3.12A. In calculating these values, we found
that the median average was measured to be 0.71 (heavy / light). We do not expect
a discrepancy between measured heavy and light protein of similar abundance,
and this suggested there may have been some inaccuracy in the Bradford assay
used to measure protein concentration prior to mixing our lysates. We therefore
renormalized the ratios according to this measured ratio. The data suggests a
labeling efficiency of at least 99% (red dashed line, in comparison to perfect labeling
shown by the gray dashed line). One important aspect highlighted by this data is
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that the highest enrichment ratio we should expect to measure in our DNA affinity
experiments is several hundred fold.

Characterization of protein enrichment variability from identical DNA targets.
For each DNA affinity chromatography experiment, we are trying to identify a DNA-
binding protein that shows up in higher abundance when we use the target binding
site sequence identified by Sort-Seq (i.e. a transcription factor binding site), relative
to a purificationwhere that target sequence has beenmutated away. To ensure that our
measured enrichment ratios were not an artifact of noise in the measurement, it was
important to also check the measurement variability when both lysate purifications
used an identical DNA sequence. In this way, we could characterize the inherent
variability in such a measurement. To proceed, we performed experiments using the
control DNA sequence that was used in our purification of the purT promoter target
(Fig. 5C, though any DNA oligonucleotide could have been used). We performed
this in triplicate and consider the average enrichment ratios for each proteinmeasured
across the three experiments. In the left panel of Figure 3.12B we show the average
enrichment values that were measured for each of the detected proteins. Since many
of the data points fall on top of one another, we also provide a histogram of the
associated data (Figure 3.12B, right plot). Here we have taken the logarithm of the
enrichment ratios so that the bins are equally spaced. The shaded region in both
plots identifies the range between the 2.5th and 97.5th percentiles, highlighting that
the majority of proteins were found between an enrichment ratio of 0.2 and 3.3
(or log enrichment ratio of between -1.5 and 1.2). The ideal enrichment expected
would be a value of 1.0 or log ratio of 0. In the main text, the enrichment values for
transcription factors found using targets associated with the lacZ, relB, purT, xylE,
and dgoR promoters fall well outside of the range of variability established here.

Identification of LacI by mass spectrometry using strains with a variable LacI
copy number.
Finally, one experiment that we performed, in addition to purifying LacI with
different strength binding site targets (i.e., Fig. 4A), was to consider the copy number
per cell of the LacI target, as copy number should influence the fraction of bound
LacI (see details in Supplemental Section 3.8). Here we used strains whose protein
concentration has been measured during growth in M9 minimal media with 0.5%
glucose and whose average LacI number had previously been measured to range
from the native expression of 11± 2 tetramers per cell, to a maximum concentration
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of 870 ± 170 tetramers per cell. In Figure 3.12C we show the enrichment ratios
measured for LacI from individual experiments (n = 1-2 per strain). Here we were
able to purify LacI using either the weak O3 or strong Oid binding site sequence for
each of the different strains, though we also see that the O3 target sequence provides
an enrichment that is much closer to the tail of the control experiment in Figure
3.12B. Additionally, while the copy number of LacI appears to affect the enrichment
ratio in some experiments, it does not have a consistently significant effect.
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Figure 3.12: Identification of transcription factors using DNA-affinity chromatogra-
phy and mass spectrometry. (A) Characterization of stable isotopic lysine labeling and
mass spectrometry measurement sensitivity. Lysates from cell cultures grown in either
heavy (13C15

6 N2-L-lysine) or normal L-lysine were combined at ratios between 0.1:1 to
1000:1 heavy:light and the measured ratios in abundance are plotted for each protein. Note
that for the 1:1 ratio we found a median ratio of 0.71. We therefore renormalized the ratio
values using this as a correction factor. Data points represent the average values from n = 3
replicates. The gray line represents the expected measurement under perfect labeling, while
the red line represents a 99.1 % labeling efficiency (assuming that some fraction of heavy
lysate is unlabeled). (B) DNA-affinity purification using the same DNA oligonucleotide
to purify protein for both heavy and light cell lysates (n = 3). The scatter plot shows the
average enrichment values for each protein detected. Proteins with DNA binding motifs
[2] are shown in red (n = 41), while other detected proteins are in blue (n = 581). Error
bars represent the standard deviation, calculated from log protein enrichment values. The
histogram shows the distribution of the measured ratios for all detected proteins, with 95%
of the measurements contained between a log enrichment of -1.5 and 1.2, as indicated by
the shaded region. Lysates were prepared from cells grown in M9 minimal media with
0.5% glucose. (C) DNA-affinity purification of LacI using three different E. coli strains
with repressor copy numbers per cell of 11± 2, 130± 20, and 870± 170 (tetramers per cell)
[34]. Operator strength was varied by purifying LacI with either the weak O3 or strong Oid
operators. LacI was detected as the most significantly enriched protein among all proteins
detected. Each data point represents the enrichment from a single purification experiment
(n = 1-2 for each strain). (D) States and weights are shown for an oligonucleotide in which
a target transcription factor and other cellular proteins compete for a DNA binding site.
Within the cell lysate, the target protein is present at a concentration CTF , while all other
proteins, which may bind the DNA nonspecifically are present at a concentration Cns. Co

is the standard concentration. The difference in energy between a repressor bound to the
target DNA binding site and an unbound DNA is ∆εTF,s when the binding site is present.
Otherwise, the binding energy is given by ∆εTF,ns. Other proteins that bind nonspecifically,
irrespective of the DNA sequence, have a binding energy of ∆εns.
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3.10 Supplemental Information: Selection of the mutagenesis window for
promoter dissection by Sort-Seq.

In designing our mutagenized promoter libraries, we found it useful to consider what
was known regarding both the genes of interest and general patterns of transcrip-
tional regulation in E. coli and bacteria more broadly. Two useful resources were
RegulonDB [1] and EcoCyc [2], which summarize much of what is known about
transcriptional regulation in E. coli. RegulonDB, in particular, aims to compile all
available data regarding gene regulation in E. coli into a single database and is the
most complete record available for E. coli [93].

While Sort-Seq enables us to identify all proteins involved at a promoter, one
potential limitation is that a transcription factor binding site will only be identified
if it was contained within our mutagenized region. Using the known transcription
factor binding sites in E. coli as a guide in our design, we made an educated guess
regarding where we should search for transcription factor binding sites. Figure
3.13 shows a histogram of all of the transcription factor binding site positions from
RegulonDB. By staggering a set of 60bp windows to cover a 150 bp region, we
found we would expect to capture 73 percent of the known transcription factor
binding sites. We chose 60 bp-70 bp windows for most libraries since they could
be readily synthesized by Integrated DNA Technologies (USA) and were more
economical than longer oligonucleotides. We also included about 15 bp of overlap
between staggered regions to provide some replicates of the mutated base pairs on
the different libraries.

It is also useful to note that our approach does not require that this specific strategy
be used to create mutagenized promoter constructs. The methodology only requires
compatibility between the length of the mutagenized region probed and the se-
quencing platform used. Microarray synthesized oligonucleotides provide another
approach for targeted oligonucleotide design [94], and error-prone PCR can enable
longer mutagenized windows within a single library [59, 95]. In addition, advances
in sequencing, either through longer reads or alternative sequencing platforms such
as PacBio (Pacific Bioscience, USA) and MinION (Oxford Nanopore Technologies,
UK) are making it possible to sequence longer mutagenized regions, and CRISPR
technologies could make it possible to identify longer range interactions such as
DNA looping in bacteria (e.g. the 1 megabase region considered in [20]).
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Figure 3.13: Distribution of known transcription factor binding sites in E. coli.
The histogram shows the genome-wide distribution of transcription factor binding
sites relative to their respective transcription start sites. Binding sites were compiled
from RegulonDB and used to calculate the number of overlapping binding sites
at each position using the length and position of each binding site sequence. The
location of the 150 bpmutation window used in this study is shown in blue, expected
to capture upwards of 70% of known transcription factor binding site position.
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3.11 Supplemental Information: Additional data from Sort-Seq experiments
of the main text.

Here we provide additional data and analysis on the promoters of rel, mar, yebG,
purT, xylE, and dgoR to provide additional support for the results and conclusions
made in the main text.

The rel and mar promoters
In our analysis of the rel and mar promoters in the main text, it was noted that the
sequence specificity of the repressors RelBE and MarR lacked any prior character-
ization. In order to validate that the observed features of the expression shift plots
were due to binding by these regulatory proteins, we performed additional Sort-Seq
experiments in deletion strains for these regulators. The expression shift plots were
shown in the main text (Fig. 3). Here we provide a more quantitative analysis to
show that the energy matrices for binding by RelBE and MarR poorly describe the
sequence data when relBE and marR are deleted, respectively.

Since the transcription factors have been deleted, we expect the energy matrix
predictions of each sequence’s binding energy to provide no clear trend across the
sorted bins (i.e., zero or little mutual information). To first give a sense for how
mutual information is calculated, in Figure 3.14A and Figure 3.14B we first show
the estimated joint distributions when we apply the RelBE energy matrix (from Fig.
2B of main text) to either a replicate Sort-Seq experiment or to the ∆relBE deletion
data. When applying the RelBE energy matrix to the wild-type data, we find a clear
trend, with the strongest binding energies (lowest rank order) more likely found at
the lowest fluorescence bin, and the weakest binding energies more likely found in
the highest fluorescence bin.

Next we focus in on our data from the deletion strains of relBE and mar R (Fig-
ure 3.14C and 3.14D, respectively). In each case, we find that our energy matrices
poorly describe the data and are not substantially better than a randomly generated
matrix. In Figure 3.14B it might have been noted that there were still some positions
with non-zero expression shift (i.e., still appear informative). In order to show that
this remaining information cannot be accounted for from our energy matrices, we
also estimated the maximum information present in the ∆ strain data sets (by di-
rectly fitting a matrix to the ∆ strain data). Importantly, we find that this remaining
information cannot be explained by our RelBE andMarR energy matrices, and must
be due to other features in the data (for example, for MarR, this region overlaps with
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the region that RNAP binds).

The yebG promoter
The yebG promoter is among a variety of genes known to increase expression when
cells are under DNA damage stress [49], and shared the intergenic region with the
purT promoter. In the main text we considered the yebG promoter in cells grown
in standard M9 minimal media with 0.5% glucose (Fig. 5A). While the expression
shifts appeared to align with annotated binding sites for LexA (positive shift), and
the RNAP binding site (negative shift), we did not show evidence for the identity of
each binding protein in the main text. Here we present results from our inference of
energy matrices using our Sort-Seq data, which confirm the identity of the binding
proteins. We also explore the regulation of yebG by perturbing the regulatory state
through induction of the SOS response [48, 49].

We begin by considering the Sort-Seq data from cells grown in M9 minimal media
with 0.5% glucose. In Figure 3.15Awe show the inferred energymatrices associated
with the annotated site for LexA. This was in excellent agreement with the known
sequence specificity of LexA (see Figure 3.11 for a direct comparison with the
genomic sequence logos). We note, however, that the RNAP binding site was
shifted by 9 bp from the annotated binding site [48], with an overlap between the
-10 RNAP site and 4 bp of the LexA binding site.

We were also interested in confirming that the yebG promoter responds DNA stress
and is induced as part of the SOS response. By repeating Sort-Seq in cells grown
in non-lethal concentrations of mitomycin C (1 µg/ml) [48] we observed a dra-
matic increase in expression relative to growth without mitomycin C. Fluorescence
histograms showing expression from our plasmid reporter in non-mutagenized pro-
moter constructs are shown in Figure 3.15B. From the expression shift plots and
information footprint (which are defined in Supplemental Section 3.12 and used in
Kinney et al. [13]) in Figure 3.15D we find that this is due to loss of repression at
the LexA binding site. This is consistent with the expectation that LexA undergoes
proteolysis as part of the SOS response [49].

The purT promoter
When cells were grown in the presence of adenine, we identified a putative repressor
site between the -10 and -35 regions of the RNAP binding site of the purT promoter.
In our initial attempt to identify the associated transcription factor we performed a
DNAaffinity purification using conditions thatmatched the growth conditionswhere
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repression was observed. However, as shown in Figure 3.15C, the most significantly
enriched protein (GlpR) only showed an enrichment of about 2.9, which was near
the shaded region associated with most other non-specific proteins detected. Only
upon repeating our purification in the presence of hypoxanthine (10 µg/ml) (Fig.
5C) did we find enrichment of PurR (approximately 350 fold relative to our reference
purification).

The xylE promoter
In the main text it was noted that we could not perform Sort-Seq on the xylE pro-
moter unless cells were grown in xylose. In Figure 3.15E, we show the associated
fluorescence histograms from libraries grown in either glucose or xylose. Interest-
ingly, each mutated window was essentially identical to autofluorescence when cells
were grown in glucose. In contrast, growth in xylose showed differential expression
for each of the mutated regions. While the promoter was expected to be sensitive
to the presence of xylose (causing an increase in expression [45]), this was still a
non-obvious result without prior knowledge of whether repressors or activators were
involved.

In our analysis we also noted that the identified set of activator binding sites con-
formedwell with the two other promoters regulated by XylR and CRP, namely xylFG
and xylAB. Here we scanned our inferred energy weight matrix across the intergenic
regions of xylFG and xylAB, in order gain further confidence that the identified
feature matched the known binding specificity of these transcription factors. These
are shown in Figure 3.15F. At each position in these plots, we use the energy matrix
to calculate the binding energy of the putative transcription factors. For each we
identify a strong peak that does indeed align well with the annotated binding sites of
XylR and CRP. While our predicted binding energies are not in absolute kBT units,
they are much more negative than the promoter background and predict a similar
binding energy (in arbitrary units) to the binding site region of the xylE promoter.

The dgoR promoter
The last promoterwe consideredwas associatedwith the expression of thedgoRKADT
operon. Due to the complexity observed, we were unable to show all data in the
main text that supported our identification of the regulatory architecture. In par-
ticular, here we show the sensitivity to the different carbon sources considered and
additional analysis of the identified regulatory binding sites for DgoR, RNAP, and
CRP.



193

The dgoR promoter is induced when cells are grown in galactose and
D-galactonate.

Prior to performing Sort-Seq on this promoter, we confirmed prior observations
that expression was sensitive to the presence of galactose and D-galactonate [45,
56]. Using a wild-type promoter plasmid for the dgoR promoter, cells were grown
in M9 minimal media with either 0.5% glucose, 0.23% D-galactose, or 0.23%
D-galactonate. Fluorescence histograms are shown in Figure 3.16A, where we
observed higher expression in galactose over glucose, and even higher expression
when cells were grown in D-galactonate.

An RNAP binding site is apparent in the downstream region of the dgoR
promoter when cells were grown in glucose.

In Fig. 7A we showed plots comparing the expression shifts upon mutation when
cells were grown in either glucose or D-galactonate. In Figure 3.16B we repro-
duce the expression shift plots along with an energy matrix for the region from
approximately -70 to -30, which helped us to identify the RNAP binding site in this
region. While the -10 TATAAT motif is quite apparent, the -35 site is less clear.
Interestingly, while the -35 region shows a most energetically favorable sequence of
TTTACA (close to the consensus of TTGACA), the wild-type sequence is CCCCCC
and suggests this is a weak RNAP binding site.

Deletion of the dgoR gene recovers the induced phenotype.

Comparing the expression shift values at each position in cells grown in either
glucose or D-galactonate, we find that they are poorly correlated (Figure 3.16C,
left plot). However, upon identifying DgoR as a putative regulator in the upstream
region of the promoter, we then performed Sort-Seq in a ∆dgoR strain. This was
shown in Fig. 7D with cells grown in glucose. Interestingly, the expression shifts
were much more similar to the wild-type cells grown in D-galactonate, suggesting
that deletion of dgoR has switched regulation to the induced state (Figure 3.16C,
right plot).

While it is unclear what causes the noisy profiles in the expression shift plots,
one hypothesis was that the different RNAP binding sites were producing at least
two distinct mRNA transcriptions, whose 5’ untranslated might influence transcript
stability and GFP expression. In particular, the upstream RNAP binding site will
generate a much longer 5’ untranslated region, and mutations that influence mRNA
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structure and stability might show up as an effect on expression within the region
we considered by Sort-Seq. Using the Salis lab ribosomal binding site calculator
[96] and RNA structure predictions with NUPACK [97], we predicted the secondary
structure of the two expected mRNAs transcripts (Figure 3.16D). We find that the
longer transcript (expected when cells are grown with D-galactonate), does indeed
predict a strong secondary structure that alter translation from this transcript.

Simulations of upstream promoter region identify multiple overlapping
RNAP binding sites.

Next we consider additional analysis to support the presence of overlapping RNAP
sites that was noted in Fig. 7C. Since Sort-Seq does not differentiate between
multiple transcription start sites, the sorted data will represent a mixture of all
transcripts generated from the promoter. Using our RNAP energy matrix from the
relBE promoter (with an additional 1 bp spacer included to increase the distance
between -10 and -35 to 18 bp), we were able to identify multiple overlapping
sequences that each predicted a similar binding energy by RNAP. The sequence logo
in Fig. 7C of the main text (top logo) therefore likely represents the convolution of
these multiple binding sites and would explain why we do not see the conventional
-35 RNAP motif in the sequence logo.

To convince ourselves that this was a reasonable hypothesis, we performed several
Sort-Seq simulations of the dgoR promoter to estimate what we may have expected
if 1-3 of these identified RNAP binding sites were functional. These simulations
use energy matrices and a thermodynamic model of regulation to predict gene
expression as a function of regulatory sequence in an attempt tomimic a real Sort-Seq
experiment. The code used is available on our GitHub repository (https://www.
github.com/RPGroup-PBoC/sortseq_belliveau; DOI: https://doi.org/
10.5281/zenodo.1184169) and we briefly describe the approach here. We began
by first generating a library of five million mutated dgoR promoter sequences (10%
mutation rate). We then assumed that transcription from each RNAP is proportional
to P/NN S · e−βE where P is the RNAP copy number per cell, NN S = 4.6 × 106

refers to the number of non-specific binding sites on the genome, and β = 1/kBT ,
where kB is Boltzmann’s constant and T is the absolute temperature. We introduced
noise into our simulation by assuming that the RNAP copy number P was normally
distributed across our library with a mean value of 3, 000 and standard deviation of
750 copies per cell [45, 98]. As defined in Supplemental Section 3.12, E represents

https://www.github.com/RPGroup-PBoC/sortseq_belliveau
https://www.github.com/RPGroup-PBoC/sortseq_belliveau
https://doi.org/10.5281/zenodo.1184169
https://doi.org/10.5281/zenodo.1184169
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the binding energy as determined from the energy matrix.

Using these calculations to predict expression from each mutated sequence, the
sequences were then computationally sorted in the same manner as that performed
experimentally. We did this assuming the presence of one, two, or three active
RNAP binding sites based on those identified. As shown in Figure 3.16F, the
presence of three RNAP binding sites produces a result that conforms much better
with experimental results than the presence of only one RNAP binding site. Note
that binding sites were successively included into the model based on their predicted
binding energies (wild-typeRNAP1: -1.99 a.u., wild-typeRNAP2: -1.74 a.u., wild-
type RNAP 3: -1.60 a.u.; versus an average of -0.14 a.u. and standard deviation of
0.56 a.u. when the energy matrix is scanned across the promoter).

The presence of the class II CRP activator binding site is enhanced using
strain JK10, grown with cAMP.

Lastly, we show additional evidence to support the claim of a putative binding site
for CRP. Since CRP binds to DNA by co-activation through binding with cAMP,
we used the strain JK10 (based on TK310 [13]; MG1655 ∆cyaA∆cpdA), where
we could control binding of CRP to DNA by direct supplement of cAMP to the
growth media. Here we grew cells in EZrich MOPS media (Teknova, CA, USA)
with D-galactonate as the carbon source and supplemented with 500 µM cAMP.
While the sequence logos in Fig. 7E showed a good match with the left site of the
CRP binding site, our hypothesis here was that addition of a high concentration of
cAMP might enhance the CRP motif in our data. This appeared to be the case, and
the right side of the binding site (which overlaps the -35 RNAP binding site) shows
a stronger preference for the sequence CAC than present with the wild-type E. coli
strain (important for binding by CRP in both the lac and xylE promoters).
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Figure 3.14: Predictive information of transcription factor energy matrices
when applied to Sort-Seq data. In (A) and (B) we use our RelBE energy ma-
trix to predict binding energies across all sequence data for a replicate experiment
with wild-type E. coli and a ∆relBE strain, respectively. The 2-d histograms show
the estimated joint probability distributions between bin and rank-ordered energies
(generated by binning sequences into 1000 bins). The calculated information (in
mbits) shown in the joint distribution plot represents the mutual information from
these estimated joint distributions. In (C) and (D) we focus on our transcription
factor deletion strains (relBE in (C) and mar R in (D)), and similarly calculate
mutual information between bin and energy matrix predictions (again, using their
rank-ordered predictions). The ‘maximum information’ represents the estimated
maximum information that might be obtained by fitting an energy matrix to the ∆
strain data. The ‘random matrix’ represents the average mutual information calcu-
lated from 20 randomly generated energy matrices (error bar represents standard
deviation) applied to the sequence data. To provide consistent comparisons, all
matrices were ‘gauge fixed’ such that the mean energy in each column of zero and
the matrix norm of 1. Note that for MarR we show analysis for the left MarR binding
site. In the right binding site, there is additional information corresponding to the
ribosomal binding site. The joint probability distribution and associated mutual
information are calculated following the procedure described in Section 3.12.
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Figure 3.15: Extended analysis of the yebG, purT, and xylE promoters. (A) Energy
matrices were inferred for the binding sites of LexA and RNAP. Data are from cells grown
in M9 minimal media with 0.5% glucose. (B) Fluorescence histograms for a wild-type
yebG promoter plasmid are shown for cells grown in M9 minimal media with 0.5% glucose,
and with or without mitomycin C (1 µg/ml). Mitomycin C induces the SOS response
[48] and dramatically increases expression from the yebG promoter. Autofluorescence
histograms refer to cells that did not contain the GFP promoter plasmid. (C) DNA affinity
chromatography performed using the identified repressor site on the purT promoter. Cell
lysate was produced from cells grown in M9 minimal media with 0.5 % glucose and binding
was performed in the presence of adenine (100 µg/ml) to match the growth conditions where
repression was observed. (D) Information footprints and expression shift plots are shown
for the yebG promoter in the presence or absence of mitomycin C (1 µg/ml). Cells were
grown in M9 minimal media 0.5% glucose. (E) Fluorescence histograms are shown for
the three xylE libraries (different mutated regions), with cells grown in M9 minimal media
with either 0.5% glucose or 0.5% xylose. While xylose led to differential expression for
the different libraries, cells grown in glucose were identical to autofluorescence. (F) The
energy matrix associated with two tandem putative binding sites for xylR and CRP (Fig.
6C) was scanned across the intergenic regions of xylAB, xylFG, and xylE. The predicted
energy is plotted for each position, and a strong binding site was identified in each promoter
(red arrow). For xylAB, and xylFG, this matched the known binding sites for XylR and CRP
on these promoters and their sequences and binding energy predictions are noted below
the plots. The promoters of xylAB and xylFG share the same intergenic regions, but are in
opposite coding directions. The reverse complement of the binding site identified in the
xylAB promoter also showed a strong binding energy prediction (gray arrow in xylFG scan).
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Figure 3.16: Extended analysis of the dgoR promoter. (A) Flow cytometry histograms of
cells containing awild-type dgoR promoter plasmid are shown for cells grown inM9minimal
media with 0.5% glucose, 0.23% galactose, or 0.23% D-galactonate. (B) Identification of
an RNAP binding site that appears active when cells are grown in M9 minimal media
with 0.5% glucose. The inferred energy matrix exhibits a clear -10 RNAP binding site
(consensus sequence is TATAAT) and a poor -35 binding site (CCCCCC). (C) Expression
shift values are plotted against each other (glucose vs. D-galactonate, and ∆dgoR glucose
vs. D-galactonate) for positions -120 bp to -14 bp relative to the dgoR coding gene. Note that
these are the same values used to generate the plot in Fig. 7A, just plotted against each other
for each position. ∆dgoR cells appear to have the same regulatory phenotype as cells grown
in D-galactonate, with a line of best fit showing much higher correlation between these data
sets. (D) Predicted RNA transcript structure based on the two distinct RNAP binding sites.
Growth in D-galactonate leads to the long 5’ untranslated region and is found to produce
strong secondary structure which predicts significantly lower translation rates of the dgoR
gene than with the short transcript. The ATG start codon is identified. (E) Sequence logos
were generated for the most upstream 60bp region containing the putative RNAP and CRP
binding sites. Data is from Sort-Seq in strain JK10 (derivative of TK310 [13]) and binding
of CRP was induced through addition of 500 µM cAMP. Cells were grown in EZrich MOPS
media (Teknova, CA, USA) with D-Galactonate as the carbon source. In comparison to
the sequence logos shown in Fig. 7C (growth in D-galactonate), the right side of the CRP
binding site is now in better agreement with the logo from the lac promoter. (F) Sequence
logos are shown for simulated data for the upstream region of the dgoR promoter assuming
one, two, or three RNAP binding sites. The top sequence logo shows the experimental result
for Sort-Seq performed in a ∆dgoR genetic background, with cells grown in glucose.
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3.12 Supplemental Information: Extended Sort-Seq data analysis details.
Calculation of expression shifts
One of the first ways we analyze the sequence data from our Sort-Seq experiment is
to look at the consequence of mutations at each position on the overall fluorescence.
Specifically, at each position we calculate the average fluorescence bin of mutated
nucleotides and compare this to the average bin for all the sequences in the data
set (i.e. expression shift). Since we find that most mutations are deleterious to the
binding of transcription factors or RNAP, we can use the change in fluorescence
to identify regions associated with binding by repressors or activators and RNAP.
This provides an alternative to the information footprints calculated in Kinney et al.,
2010. While the information footprints can also be useful, the sign of the expression
shifts is useful to determine the type of regulatory protein.

First we calculate the average bin for all the sequences in the data set. We let N f

be the total number of sequences in each bin, where f refers to the bin number ( f

= 1, 2, 3, and 4, for four bins). The average fluorescence bin is then given by the
arithmetic average across all bins,

〈 f 〉 =
4∑

f=1
f · p( f ) =

4∑
f=1

f ·
N f∑4

f=1 N f
, (3.12)

where p( f ) is the fraction of sequences in bin f . Note that the denominator is
just the total number of sequences, N =

∑4
f=1 N f , and that this average will be

independent of position.

Next we need to determine the average fluorescence bin of a mutated nucleotide at
each position i. Since the number of mutated nucleotides may differ at each position,
we define the number of mutated nucleotides in each bin and position as M f ,i. The
subscript ‘ f , i’ is used to identify which bin f and position i are being considered.
The average fluorescence bin of a mutated nucleotide can then similarly be found,

〈 fmut,i〉 =

4∑
f=1

f · pmut,i ( f ) =
4∑

f=1
f ·

M f ,i∑4
f=1 M f ,i

, (3.13)

where in this case, pmut,i ( f ) refers to the fraction of mutated nucleotides in bin f ,
and at position i.

Finally, we can now calculate the average fluorescence bin shift upon mutation,
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which is given by the differences in Equation 3.13 and Equation 3.12,

〈∆ fmut,i〉 = 〈 fmut,i〉 − 〈 f 〉 ==
4∑

f=1
f · (

M f ,i∑4
f=1 M f ,i

−
N f∑4

f=1 N f
). (3.14)

Note that whenwe plot the fluorescence bin shift for a region where we havemultiple
data points (i.e. from different mutated, but overlapping regions of the DNA), we
plot the average calculated value of 〈∆ fmut,i〉 from the different experiments.

We also note that it is possible to re-weight each bin by its mean fluorescence, f̃ (i.e.
instead of f = 1, 2, 3, 4, use the average fluorescence shift in arbitrary fluorescence
units). Here we replace f with f̃ in Equation 3.14. For example, under situations
where different sort conditions were used across experiments, this re-normalization
should allow better comparison of values across experiments. The fluorescence
values for f̃ can be determined by regrowing the sorted cells and measuring the
mean fluorescence of each sorted cell population.

Calculation of information footprints
Another way that we analyze the data from our Sort-Seq experiments is to calculate
an information footprint [13]. This allows us to identify whether there are any
positions along the mutagenesis window that are informative in relating sequence S

and fluorescence bin f . Said differently, an informative region would be one that
if given some knowledge about the sequence, we should be able to predict which
fluorescence bin the promoter sequencemight be found in. Themathematical way of
implementing this intuition is to use the quantity known as the mutual information.

We can calculate the mutual information between sequence and fluorescence bin,
I (b j, f ), at each position i along the mutagenesis window by calculating the fraction
of each nucleotide b j (= A, C, G, T) found within each bin f . This allows us to
estimate the joint probability distribution pi (b j, f ) at each position i. For example,
p10(A, 2) would denote the probability that we observe an A in the second fluo-
rescence bin at position i=10 along our promoter. The mutual information at each
position is then defined by

Ii (b j, f ) =
T∑

bj=A

Nf∑
f=1

pi (b j, f ) log
(

pi (b j, f )
pi (b j )pi ( f )

)
, (3.15)

where we have summed over all nucleotides and the N f fluorescent bins that the
sequences were found in. There is also a finite sample correction that can be applied,
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[99], since Equation 3.15 tends to overestimate the true mutual information. This is
given by

Ii (b j, f ) =
T∑

bj=A

Nf∑
f=1

pi (b j, f ) log
(

pi (b j, f )
pi (b j )pi ( f )

)
−

(nbj − 1) · (n f − 1) · log2e

2 · N
+O(N−2),

(3.16)
where nbj = 4 is the number of nucleotides, and n f is the number of bins that cells
have been sorted into.

Inference of energy matrix models with Sort-Seq data.
In order to predict the influence of DNA sequence on binding by regulatory proteins,
we use the Sort-Seq data to generate quantitative models of the sequence-dependent
binding energy. Through a relationship between likelihood and mutual information,
Kinney et al. [13, 100] showed that in the large data limit it is possible to infer bio-
physical parameters such as the binding energies that relate the interaction between
proteins and DNA sequence. In this section we describe in detail the approach used
to infer energy matrices from our Sort-Seq data using Markov Chain Monte Carlo
(MCMC). A full discussion ofMCMC is beyond the scope of this work, but we point
the interested reader to further details regarding inference using mutual information
in work fromKinney et al. [13, 52, 98]. We also stress that while we make extensive
use of linear energy matrix models, the inference procedure is in no way limited to
such models and can be extended to allow, for example, epistatic effects through the
addition of other parameters. The simple linear models, however, provide us with a
useful starting point to gain insight and describe the protein-DNA interaction.

We begin with a summary of the procedure used to infer an energy matrix model
using MCMC, and use the RNAP binding site of the relB promoter as an example.
The inference was performed using theMPAthic software [25]. A general schematic
of the procedure is shown in Figure 3.17. More specific details are then discussed in
the following subsections. First we must initialize a 4xL set of energy parameters,
Θ = {θi, j }, for a binding site of length L and four base pairs (see Figure 3.17, part
1). We begin by randomly selecting parameter values for our energy matrix with
which to initialize the MCMC. Here we select values from a normal distribution
centered at zero with variance equal to 1, although this choice does not appear to
be too critical, and rather just provides us with a starting point for our MCMC
chain. Using this energy matrix we then estimate the mutual information between
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the binned sequences and the associated set of energy model predictions. As shown
in Figure 3.17, part 2, initially the energy matrix will be of little value in describing
the observed sequence data since it was randomly chosen. This is shown by the
almost uniform joint probability distribution and low mutual information in Figure
3.17A, and Figure 3.17B.

We now begin the MCMC by perturbing the energy matrix parameters using the
Metropolis-Hastings algorithm with the PyMC package in Python [101] (within
the MPAthic software [25]). After each step of the chain, we re-calculate the
mutual information between the data and new model predictions, which allows us
to calculate how well this new set of energy matrix parameters describe the data.
Dependent on whether the new energy matrix parameters lead to an improvement in
mutual information, these new parameters are either retained or discarded and the
process is repeated (again, according to the Metropolis-Hastings algorithm [101]).
We also renormalize the matrix entries to constrain certain gauge freedoms after
each iteration.

After a sufficient number of steps, and assuming that a model exists that can describe
the Sort-Seq data, we will arrive at a model whose joint probability distribution
between model predictions and binned sequences show a clear correlation. This is
shown by the joint probability distribution in Figure 3.17C, as well as the plateau
in the mutual information trace in Figure 3.17A, since changes to the energy matrix
parameters are unable to increase the mutual information any further. In this first
portion of MCMC we have performed many samplings to reach a high probability
region where the energy matrix will be more representative of the distribution we
are sampling from. This first step is usually referred to as the ‘burn-in’ period [101]
and allows us to begin sampling from the distribution, p(Θ|data), that describes the
distribution of energy matrix model parameters.

Finally, now that we are sampling from the desired distribution, we can estimate en-
ergy matrix parameters just by sampling this distribution many times. This brings us
to part 3 of Figure 3.17. While the mutual information no longer shows a substantial
change, the parameters of the energy matrix are continuing to be perturbed follow-
ing theMetropolis-Hastings algorithm, and according to the distribution p(Θ|data).
We can now estimate each entry in the energy matrix by taking the arithmetic mean
of the matrix parameters across all the sampling steps. This is shown by a set of
contour plots and marginalized distributions for the binding energy parameters from
column five of the RNAP energy matrix (Figure 3.17D). To ensure that multiple
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energy minima were not present in this energy landscape, we repeated the inference
procedure 20 times and used the average across all appropriate MCMC chains to
estimate the energy matrix parameters. The calculated mutual information will be
indifferent the particular sign of the energy matrix and adjust the energy matrices
such that the wild-type sequence has a negative predicted binding energy and check
that energy predictions from the energy matrices from each MCMC are correlated
(keeping energy matrices that provide a Pearson correlation coefficient of 0.85 or
greater across model predictions). Note that for inference of parameters using ther-
modynamic models, separate from these energy weight matrices, we did find the
presence of multiple minima and apply a parallel tempering MCMC procedure to
properly sample these distributions.

Using the schematic in Figure 3.17 as our guide, the sub-sections that follow expand
on the details introduced here to perform this inference procedure. In particular, we
begin by describing the linear energy matrix model. We then outline the Bayesian
approach taken to formally write the posterior distribution, p(Θ|data), that provides
us with a relationship between the energy matrix parameters and observed sequence
data. When sampling this distribution we need to estimate mutual information at
each iteration of the MCMC sampling procedure, and describe how to calculate
later in this section.

Linear energy matrix models are used to describe DNA-protein interaction.

We begin by outlining the linear energy matrix model shown in Figure 3.17A that
describes the binding interaction between the DNA and a DNA-binding protein.
We treat each base pair position j along a binding site as contributing a certain
amount to the binding energy, where the total binding energy is then the sum of
the contributions from all base pairs. Mathematically the energy matrix model is
described by a 4xL matrix, Θ, consisting of energy parameters {θi j }. Here each
column j of matrix parameters will represent the energies for each nucleotide i =
A,C,G, or T (= 1, 2, 3, or 4) associated with position j of the binding site. For
example, θ2,3 represents the energy parameter for nucleotide C at position 3. To
make our computation of binding energies more convenient, we also represent
our DNA sequence as another matrix, S, having identical dimensions, 4xL. This
matrix consists of parameters {si j }, where the i jth entry again corresponds to the
the nucleotide identity i and sequence position j. Each parameter will have a value
of 1 if it corresponds to the sequence’s nucleotide identity at position j, and a value
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Figure 3.17: Schematic of the inference procedure used to determine energy
matrices from Sort-Seq data using Markov Chain Monte Carlo. 1. To begin
the inference of a set of 4xL model parameters, {θi j }, are chosen from a normal
distribution. (A) Example set of parameters used to initialize the MCMC sampling.
Matrix entries are first normalized such that energy predictions have mean of zero
and standard deviation of one. For plotting energy matrices, each column has been
shifted such that the wild-type sequence has zero energy. The associated sequence
logo is shown above the energy matrix. (B) Estimated joint probability distribution
between fluorescence bin and rank order energy predictions using the energy matrix
in (A), using all sequences in the rel promoter data set. The bottom plot shows,
the histogram of rank ordered predictions of only bin four, corresponding to the red
boxed region, which is nearly uniform due to the randomly chosen matrix entries
used to predict energies from each sequence. Since the matrix parameters were
randomly chosen, the nearly uniform distribution results in low mutual information
(0.7 mbits, where 1 mbit = 10−3 bits) between fluorescence bin and rank order
energy predictions. (Caption continued on next page)
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Figure 3.17: (continued from previous page) 2. MCMC sampling of the energy
matrix model is performed using the Sort-Seq data associated with the rel RNAP
binding site. (C) The log posterior, Equation 3.20, is plotted for the first 1000
iterations and corresponds to the “burn-in” period. The log posterior is proportional
to themutual information between fluorescent bin and rank order energy predictions.
During each sampling iteration, the parameters will be retained or discarded with
some probability given by the the Metropolis-Hasting algorithm [101]. (D) The
energy matrix and sequence logos are shown using the set of parameters at the
1000th iteration. (E) Estimated joint probability distribution between fluorescence
bin and rank order energy predictions using the energy matrix in (D). The energy
matrix provides energy predictions for each sequence that clearly distributes across
the sorted bins and results inmuch highermutual information (274mbits). 3. Finally,
matrix parameters are estimated by continuing to sample the posterior distribution
many more times and determined from a weighted average of these samples. (F)
The log posterior is plotted for the entire set of MCMC iterations. The sampled
model parameters during the shaded region are used to estimation each matrix entry.
(G) The mean energy matrix entries from these samples are plotted. (H) Contour
plots and marginalized distributions summarize the sampled values for each of the
four parameters at position five of the RNAP energy matrix. Note that entries in (G)
have been shifted such that the wild-type nucleotide has zero energy.

of 0 otherwise. For example, for a sequence with a C at position j = 4, the entry
s2,4 = 1 and si=1,3,4, j=4 = 0. The binding energy, E, of any sequence, S, will then be
given by

E =
T∑

i=A

L∑
j=1

θi j · si j . (3.17)

One aspect we have not considered thus far is the scale of the energy parameter.
When considering binding between between DNA and a DNA-binding protein, a
statistical mechanical approach would suggest that the probability of such an event
occurring will be given by the Boltzmann factor, e−εs/(kBT ) [51]. Here εs is the
binding energy that describes this interaction in absolute energy units (e.g. units
of kBT ; 1 kcal/mol = 1.62 kBT at 37◦C), kB is the Boltzmann constant, and T
is temperature. In relation to the binding energy, E, described by our Equation
3.17 above, εs = A · E + B, where the constant A scales the energy matrix into
absolute energy units, while B provides an additive shift that depends on the choice
of reference energy. Here, the matrix entries that are used to calculate E are ‘gauge
fixed’ such that the mean energy in each column is set to zero and the matrix norm
(or inner product) has a value of 1. Note however that when plotting each energy
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matrix we find it useful to shift the energy in each column such that the wild-type
sequence has zero energy.

When fitting the data to a model of the form e−εs/(kBT ), the fitting procedure is
unable to determine the scale factors A and B noted above. For example, in most
instances we report energy values in arbitrary units. This is consequence of the
fitting procedure, where in the absence of a specific thermodynamic model, there
remain some scale parameters that cannot be determined [13]. This parameter
insensitivity has been termed ‘diffeomorphic modes’ and is discussed at length in
other work [52]. One especially interesting aspect of this is that when considering
biophysical models of regulation, diffeomorphic modes often disappear and make it
possible to infer parameters that were not accessible by fitting simpler models. For
the cases of repression by PurR at the purT promoter, or activation by CRP at the
dgoR promoter, this allowed us to estimate binding energy in absolute energy. We
discuss this further later in this section, and in Chapter 4 we consider energy matrix
scaling in more detail.

Probability distribution relating energy matrix model parameters to the
Sort-Seq data.

Given our FACS-sorted sequence data, we want to find the set of energy matrix
parameters that best describe the distribution of sequences across our fluorescence
bins (i.e. parameters that provide binding energy predictions that describe the data
as shown in Figure 3.17C). To perform this inference we take a Bayesian approach in
our analysis, and as mentioned earlier, rely on MCMC to sample from the complex
distribution relating our energy matrix parameters to the sequence data. While a full
discussion of Bayesian analysis is outside the scope of this section, the book, Data
Analysis by Sivia and Skilling [102], and online material available from the Caltech
course, BE/Bi 103: Data analysis in the biological sciences, taught by Justin Bois
(http://bois.caltech.edu/teaching.html), are excellent resources.

Formally, we want to find the set of energy matrix parameters that maximize the
probability distribution of our energy predictions (through our energymatrix model)
given our Sort-Seq sequence data, p(E |{S, f }), where {S, f } refers to our array of
N sequences S and the bin f where they were found (referred to as the ‘data’ in the
initial summary of the inference procedure). xS is the binding energy as defined in

http://bois.caltech.edu/teaching.html
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Equation 3.17. From Bayes’ theorem, we can re-write this distribution as

p(E |{S, f }) =
p({S, f }|E)p(E)

p({S, f })
∝ p({S, f }|E)p(E), (3.18)

where the term p({S, f }|E) is called the likelihood, and p(E) is known as the prior
and encompasses our prior knowledge on the energymatrix parameters. The denom-
inator p({S, f }) is known as the marginalized likelihood and acts as a normalization
factor, but is unimportant for our inference.

To proceed we follow the approach of Kinney et al. [13, 100]. We assume a uniform
prior over the energy matrix model parameters. In addition, we also assume our
sequence measurements are independent. The second assumption allows us to write
p({S, f }|E) as the product of probabilities across all sequences contained within
our data set, p({S, f }|E) =

∏N
s=1 p((Si, fi) |E). This is also referred to as the error

model since by relating the binned sequence data to binding energy, it must also
encompass the additional noise sources from our experiment that actually led to
our array of sequence data. Noise sources that might influence this include the
sensitivity of the FACS GFP measurements, and the rate of mis-sorting events.
Expression variability due to stochastic gene expression, differences in cell size, and
plasmid copy number fluctuations are also likely to contribute. However, since these
are not known exactly, Kinney et al. computed the likelihood by averaging over an
ensemble of all possible error models. Using a uniform prior over the possible error
models they found,

p({S, f }|E) =
〈 N∏

s=1
p((Si, fi) |E)

〉
all possible p(Si, f i |E)

= C · 2N ·(I ( f ,E)+∆), (3.19)

where N is the total number of sequences considered, I ( f , E) is the mutual infor-
mation between the observed fluorescence bins and binding energies predicted by
the energy matrix for all the sequences, and C is a constant of integration that will
be unimportant to us. Here, ∆ is a small correction that goes to zero as N goes to
infinity [100]. Inserting Equation 3.19 into Equation 3.18, we can write

p(E |{S, f }) ∝ 2N ·I ( f ,E) . (3.20)

Here we have assumed that N is sufficiently large so that the prior (which does not
scale with N), as well as the ∆ term in Equation 3.19 can be ignored. To reiterate
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in reference to our MCMC procedure (shown in Figure 3.17), this is the probability
distribution that we are sampling from to find the set of energy matrix parameters
that describe our sorted sequence data set. The mutual information values shown in
the plots of Figure 3.17C, F (mutual information traces in part 2 and 3) are reflected
by our choice of energy matrix parameters. MCMC enables us to sample from
the distribution and essentially find the set of matrix parameters that maximize this
mutual information. In the next section we continue by describing how we estimate
mutual information.

Estimating mutual information using the energy model predictions.

In the last section we found that the energy matrix parameters should be related to
the data through Equation 3.20. By performing many samples from this distribution
usingMCMC, it is possible to estimate the most probable energy matrix parameters,
θi, j , that make up our energy matrix. Here we consider how to estimate the mutual
information term in Equation 3.20 needed for our calculation. While a non-trivial
problem in general, the following approach appears to work well in practice. In this
case the fluorescence bins, f , are discrete variables while our binding energies, E,
are continuous, with the mutual information given by

I ( f , E) =
∫ E=∞

E=−∞
dE

∑
f

p( f , E) log2
p( f , E)

p(E) · p( f )
. (3.21)

In our sequence data set, we can easily estimate p( f ) by counting the number of
sequences in each fluorescence bin. However, we do not have direct access to the
probability distribution p(E) a priori.

To proceed, we further bin our N sequences into 1000 bins, by rank ordering them by
their associated binding energy predictions (using the energy matrix of the current
MCMC step). This provides us with an estimate of the probability distribution in
binding energy across our sequences. Specifically, this is shown for fluorescence bin
4 in Figure 3.17B and E. While this is not a direct estimate of p(E), we invoke the
fact that the mutual information will be invariant under monotonic transformations
(I ( f , E) = I ( f , zs)) [13]. Hence, instead of calculating I ( f , E), we instead calculate
I ( f , zs), where zs is instead the ranked ordering of the N sequences.

In order to calculate the mutual information we now construct a 2-d histogram (joint
distribution) by binning the rank ordered energy predictions into zs = 1 to 1000
bins across each of the different fluorescence bins. We define this by the frequency
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matrix F ( f , zs), and from our finite data set, use kernel density estimation with a
kernel width equal to 4% to estimate the joint distribution. This is what is plotted
in Figure 3.17B, and E, where the mutual information is then calculated as

I ( f , zs)smooth =

1000∑
zs=1

∑
f

F ( f , zs) log2
F ( f , zs)

F (zs) · F ( f )
. (3.22)

Inference of thermodynamic model parameters using parallel tempering
Markov chain Monte Carlo (MCMC).

So far, we have applied MCMC using an error-model-averaged likelihood to infer
the parameters of an energy matrix. One limit initially observed by Kinney et al.
[13] was an inability of the fitting procedure to constrain certain parameters (due
to free diffeomorphic modes, noted earlier). Interestingly however, it was found
that certain diffeomorphic modes often disappear when fitting the Sort-Seq data to
non-linear models. For a thorough discussion of diffeomorphic modes refer to the
work of Kinney et al. [103]. We applied this strategy in several of our data sets
from the purT, dgoR, and xylE, where specific thermodynamic models appeared
appropriate. Here we briefly outline the models used and the main results from our
MCMC analysis.

We begin with the purT promoter. Here we identified an RNAP binding site that
is repressed by PurR, which binds between the -10 and -35 RNAP sites. Given
the presence of only these two binding sites, we modeled the promoter as having a
simple repression architecture [51]. Some additional complexity arises due to the
presence of other PurR binding sites on the genome, and the allosteric dependence
of a purine metabolite for co-repression. Following the approach of Weinert et al.
[90], this can be quantitatively described by

Pbound =
λpe−βεp

1 + λpe−βεp + λr e−βεr
. (3.23)

Here λp and λr represent the fugacity, which describes the relative availability of
RNAP and PurR, respectively, to bind their binding sites. These parameters depend
on the concentration of each protein (through their chemical potentials), and for
PurR, will also depend on its allosteric state. εp and εr represent the binding
energies of RNAP and PurR to their binding sites, respectively.
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We can also describe each binding energy through the gauge-fixed energymatrix pre-
diction, which is multiplied by a scale factor and additive shift (e.g. εr = Ar · xr+Br ,
where Ar is the scale factor, xr is the energy matrix prediction, and Br is the additive
shift). To being fitting to the model described by Equation 3.23, we first inferred the
energy matrices for RNAP and PurR following the MCMC procedure noted above.
We then performed a second MCMC to fit the remaining thermodynamic param-
eters. In this second MCMC we sampled using error-model-averaged likelihood
against the posterior p(Pbound |{S, f }). This allowed us to infer the following pa-
rameters: Ar = −11.55+0.2

−0.5kBT , λr e−βBr = e0.64+0.1
−0.3, and Ap = 2.4+0.4

−0.1kBT , where
Ap is the RNAP scale factor. Here the error bars represent the median of their
respective distributions, where the superscripts and subscripts represent the upper
and lower bounds of the 95th percentile of the parameter value distributions. Note
that in this second MCMC, we performed parallel tempering MCMC (using the
PTSampler in package emcee, [104]) to better sample the posterior distributions of
our thermodynamic parameters (see supplemental material of Kinney et al, 2010).

Next we consider the dgoR promoter. While we found the promoter to be quite
complex, here we use data from the JK10 strain (see Supplemental Section 3.11)
where activation by CRP appeared to dominate transcription. Here we apply the
model used by Kinney et al. [13], which consists of a binding site for RNAP and
CRP, but also includes an interaction energy between these two proteins. Again
using fugacity terms to describe the availability of each protein, this will be given
by

Pbound =
λpe−βεp + λa · λpe−β(εp+εa+εi )

1 + λpe−βεp + λae−βεa + λa · λpe−β(εp+εa+εi )
. (3.24)

In this architecture we have the fugacity λa for the activator CRP and its binding
energy to the binding site, εa. In addition, there is an additional energy term εi that
describes the interaction betweenRNAP andCRP.Again, we canwrite εp = Ap ·xp+

Bp. We can also write the CRP binding energy as εa = Aa · xa+Ba, where similarly,
Aa is the scale factor, xa is the gauge-fixed energy prediction, and Ba is an additive
shift. Using parallel tempering MCMC to sample p(Pbound |{S, f }), we obtained the
following values: εi = −7.3+1.9

−1.4kBT , Aa = −13.6+2.6
−2.2kBT , λae−βBa = e−1.89+0.4

−0.6,
and Ap = −12.7+3.4

−2.8kBT . As with the purT case above, the error bars represent
the median of their respective distributions, where the superscripts and subscripts
represent the upper and lower bounds of the 95th percentile of the parameter value
distributions.
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Lastly we consider the xylE promoter. This promoter contains two XylR sites which
are likely bound as a dimer [53]. There is also a CRP site directly upstream of
the xylR sites. The binding signature of CRP is only observed for the right half of
the binding site, implying the left half of the protein does not make as significant
DNA contact. Since CRP still has a powerful impact on gene expression, it suggests
that there is a cooperative interaction between xylR and the weak CRP site. The
short distance between the xylR sites and the RNAP also suggests that there is a
direct interaction between the xylR sites and the RNAP. In addition, there is also a
spacing between the RNAP polymerase and the CRP site of 35 bp (approximately
three helical turns of the DNA). For this spacer length in the lac promoter there
is a expected to be a significant interaction energy even in the absence of XylR
[105, 106]. A thermodynamic model of RNAP polymerase binding probability for
this architecture will be

Pbound =
f (λp, λx, λc, εp, εx, εc, εxi, εci, εcxi )
g(λp, λx, λc, εp, εx, εc, εxi, εci, εcxi )

, (3.25)

where

f (λp, λx, λc, εp, εx, εc, εxi, εci, εcxi ) = λpe−βεp + λpλxe−β(εp+εx+εxi )

+λpλce−β(εp+εc+εci ) + λpλcλxe−β(εp+εx+εc+εci+εxi+εcxi )(3.26)

g(λp, λx, λc, εp, εx, εc, εxi, εci, εcxi ) = 1 + λxe−βεx + λce−βεc + λxλce−β(εx+εc+εcxi )

+λpe−βεp + λpλxe−β(εp+εx+εxi )

+λpλce−β(εp+εc+εci )

+λpλcλxe−β(εp+εx+εc+εci+εxi+εcxi ) . (3.27)

Here, the λx and εx termsmark the fugacity and binding energy of XylR respectively.
The λc and εc represent the fugacity and binding energy of CRP, and λp and εp do
the same for RNAP. The terms εxi , εci , and εcxi are interaction terms between XylR
and RNAP, CRP and RNAP, and CRP and XylR, respectively.

Due to the position of the library windows (with a 60 bp window containing the
two XylR binding sites, but only partial binding sites for CRP and RNAP), we were
unable to fit this model to the data. The fitting procedure requires sequences with
mutations throughout the multiple binding sites and further experimentation will be
needed to fit and characterize the proposed model further.
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3.13 Supplemental Information: Extended experimental details
In this section we provide additional details to describe the specifics of the work
flow. In general, an experiment is begun by constructing the mutated promoter
libraries for Sort-Seq. Next transform libraries into cells and use FACS to sort
by fluorescence. Using putative regulatory sequences identified by Sort-seq, we
perform DNA affinity chromatography and mass spectrometry, which is necessary
to identify the transcription factors that bind to these putative binding sites.

E. coli strain construction
Here we describe the approach used to generate these deletion strains. Briefly, an
overnight culture of MG1655 containing the plasmid pSIM6 was diluted 1:100 in 50
ml LBmedia and grown to an OD600 of≈ 0.4 at 30◦C. The culture was immediately
placed in a water bath shaker at 43◦C for 15 minutes and then cooled in an ice bath
for 10 minutes. Cells were then spun down for 10 minutes (4,000 g, 4◦C) and
resuspended on ice in 50 ml of chilled water. This was repeated three times before
resuspending in 200 µL of chilled water to generate competent cells. Homologous
primer extension sequences for the appropriate gene were obtained from Baba et
al. [67] and used to generate linear DNA containing a kanamycin resistance gene
insert by PCR, which contained homology for the region on the chromosome to
be deleted [78]. Electroporation of the competent cells was performed using 1 µL
purified PCR product (about 100 ng DNA), mixed with 50 µL cells. Cells were
immediately resuspended in 750 µL SOC media and placed on a shaker at 30◦C
for outgrowth, for 90-120 minutes. Cells were then plated on an LB-agar plate
containing kanamycin (30 µg/ml) and grown overnight at 30◦C. The deletions were
confirmed by both colony PCR and sequencing. After confirmation, the deletion
was transferred to a clean MG1655 strain through P1 transduction and selection on
kanamycin. In the case of the lysine auxotrophic strain, we also confirmed deletion
of lysA by checking that the cells were unable to grow in M9 minimal media unless
lysine was supplemented (40 µg/ml).

To generate strains with different LacI tetramer copy numbers per cell (associated
with data in Figure 3.12C), the LacI constructs from Garcia et al. [34] were P1
transduced into the ∆lacI ZY A strain (integrated at the ybcN locus).

Sort-Seq library construction
Mutagenized single-stranded oligonucleotide pools were purchased from Integrated
DNA Technologies (Coralville, IA), with a target mutation rate of 9%. Note that in
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the case of the lacZ promoter, the library is identical to that used in the experiments
of Razo-Mejia et al. [107], and had a mutation rate of approximately 3%.

Note that to assemble PCR amplified library inserts with the plasmid backbone,
we used Gibson assembly [108] (New England Biolabs, MA, USA). Otherwise, we
follow the approach of Kinney et al. and amplify the backbone using a template
plasmid containing the toxic gene ccdB (locatedwhere the librarywas to be inserted).
This helped ensure that no template plasmid was propagated into the final plasmid
library (see methods in reference [13] for more detail).

For each library construction, 40 ng of insert and 50 ng of backbone were combined
in a 20 µL Gibson assembly reaction. To achieve high transformation efficiency,
reaction buffer components from the Gibson Assembly reaction were removed by
drop dialysis and cells were transformed by electroporation of freshly prepared cells.
Following an initial outgrowth in 1 mL of SOC media, cells were diluted into 50
mL of LB media and grown overnight under kanamycin selection. Transformation
typically yielded 106 − 107 colonies as assessed by plating 100 µL of cells diluted
1:104 onto an LB plate containing kanamycin.

Sort-Seq experiments
Cells were grown to saturation in LB and then diluted 1:10,000 into the appropriate
growth media for the promoter under consideration. For cells grown in 0.23%
D-galactonate in M9 minimal media, D-galactonate appeared to form precipitates,
but cells otherwise appeared to grow normally. Upon reaching an OD600 of about
0.3, the cells were washed two times with chilled PBS by spinning down the cells
at 4000 rpm for 10 minutes at 4◦C. After washing with PBS, they were then diluted
twofold with PBS to an OD of 0.1-0.15. This diluted cell solution was then passed
through a 40 µm cell strainer to eliminate large clumps of cells.

A Beckman Coulter MoFlo XDP cell sorter was used for all Sort-Seq experiments.
Prior to sorting, we would obtain fluorescence histograms using between 200,000
and 500,000 cell events per culture. These histograms were used to set the four
binning gates, which each covered ∼ 15% of the histogram. During sorting of each
library, 500,000 cells were collected into each of the four bins. Finally, sorted cells
were re-grown overnight in 10 ml of LB media, under kanamycin selection.
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Sort-Seq sequencing
The plasmid from cells in each bin were miniprepped following overnight growth
(Qiagen, Germany). PCR was used to amplify the mutated region from each
plasmid for Illumina sequencing, adding Illumina adapter sequences and custom
barcode sequences. Sequencing was performed by either the Millard and Muriel
Jacobs Genetics and Genomics Laboratory at Caltech (HiSeq 2500) or NGX Bio
(NextSeq sequencer; San Fransisco, CA). Single-end 100bp or paired-end 150bp
flow cells were used, with a target read count of about 500,000 sequences per library
bin. Joining of paired-end reads was performed with the FLASH tool [109]. For
quality filtering, we collected sequences whose barcodes had a PHRED score greater
than 20 at each position. Some libraries also contained non-mutagenized regions,
and sequences that did not contain the expected sequence were excluded from our
analysis. The total number of useful reads available to produce expression shift
plots, energy weight matrices, and sequence logos from each Sort-Seq experiment
generally ranged between 300,000 to 2,000,000 reads. Energymatriceswere inferred
using Bayesian parameter estimation with an error-model-averaged likelihood as
previously described [13, 52], using the MPAthic software [25]. A more detailed
description of the data analysis procedures is available in Supplemental Section
3.12.

DNA affinity chromatography and mass spectrometry
Here we provide additional details on SILAC incorporation, preparation of DNA-
tethered magnetic beads, and the LC-MS/MS method.

Lysate preparation and SILAC incorporation

SILAC labeling [27, 28, 30] was implemented by growing cells in either the stable
isotopic form of lysine (13C6H14

15N2O2), referred to as the heavy label, or natural
lysine, referred to as the light label. By differentially labeling cell lysates we were
able to simultaneously quantify the abundance of protein between two DNA affinity
purification samples (i.e. one using a target binding site sequence and another as a
reference control). This allows us to identify whether any protein shows a preference
for the target binding site sequence. Cell lysates were prepared using MG1655
∆lysA cells. For each heavy and light labelled cells, 500 ml M9 minimal media
was inoculated 1:5,000 with an overnight LB culture of ∆lysA cells, and grown to
an OD600 of ≈ 0.6 (supplemented with the appropriate lysine; 40 µg/ml). Cultures
were pelleted, and lysed using a Cell Disruptor (CF Range, Constant Systems Ltd.,
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UK) and concentrated to ∼150 mg/ml using Amicon Ultra-15 centrifugation units
(3kDa MWCO, Millipore).

To generate each lysate an overnight starter culture of cells was grown in LB media
supplemented with kanamycin (30 µg/ml). An aliquot was washed twice in M9
minimal media and resuspended to an OD600 of ≈1.0. For both heavy and light
labeling, 500 ml M9 minimal media was then inoculated at 1:5,000 and grown to
an OD600 of ≈0.6 (supplemented with the appropriate lysine; 40 µg/ml). Cultures
were pelleted using an ultracentrifuge (8,000 g, 40 minutes) at 4◦C and resuspended
in chilled 20 ml lysis buffer containing 1% (w/v) n-dodecyl-beta-maltoside. The
pellets could also be stored at -80◦C for later use. Cells were then lysed with
a Cell Disruptor (CF Range, Constant Systems Ltd., UK) and following removal
of debris by centrifugation, concentrated to ∼150 mg/ml using Amicon Ultra-15
centrifugation units (3kDaMWCO,Millipore). This provided about 600 µl of lysate,
suitable for about six 80 µl DNA affinity purifications. Total protein concentration
was assayed using the Bradford reagent (Sigma-Aldrich, St. Louis, MO). Following
adjustment of protein concentration, sheared salmon sperm competitor DNA was
added to the lysates (1 µg/ml; Life Technologies, Carlsbad, CA) and incubated for
10 minutes at 4◦C. Finally, following centrifugation at 14,000 g to remove insoluble
matter, the cell lysates were incubated for 1 hour with washed magnetic beads that
contained no tethered DNA (0.5 mg beads per 100 µl lysate). Lysates were then
either placed on ice or stored at 4◦C prior to use.

Before performing affinity chromatography experiments, we also confirmed heavy
lysine was being incorporated. Here, MG1655 ∆lysA::kan cells from an overnight
M9 minimal media culture were diluted 1:200 and 1:1,000, and grown in 1 ml M9
minimal media supplemented with 40 µg/ml heavy lysine. Following approximately
7 and 10 cell divisions, cells were resuspended in lysis buffer (50mMHEPES pH7.5,
70 mM potassium acetate, 5 mM magnesium acetate, 0.2% (w/v) n-dodecyl-beta-
D-maltoside, Roche protease inhibitor cOmplete tablet) and lysed by performing 10
freeze-thaw cycles with dry ice. Cellular debris was removed by centrifugation at
14000 g at 4◦C on a tabletop centrifuge. Finally cellular lysates were prepared for
mass spectrometry by in-solution digestion with endoproteinase Lys-C (Promega,
Madison, WI). Digestion was performed as described elsewhere [110] and labeling
of the heavy isotope was confirmed by mass spectrometry measurement. In addi-
tion, we also characterized the SILAC enrichment ratio measurement by directly
combining measurements from heavy and light lysates over a range from 0.1:1 to
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1,000:1 heavy:light (see Supplemental Section 3.9).

Preparation of DNA-tethered magnetic beads

DNA affinity chromatography was performed by incubating cell lysate with mag-
netic beads (Dynabeads MyOne T1, ThermoFisher, Waltham, MA) containing teth-
ered DNA. The DNA was tethered through a linkage between streptavidin on the
beads and biotin on the DNA. Note that single-stranded DNA was purchased from
Integrated DNA Technologies with the biotin modification on the 5’ end of the
oligonucleotide sense strand.

To begin preparation of tethered beads, DNA was suspended in annealing buffer (20
mM Tris-HCl, 10 mM MgCl2, 100 mM KCl) to 50 µM. Complementary strands
were annealed by mixing 30 µL of the sense strand and 40 µL of the complement
strand. Excess complement strand ensured all biotinylated-DNA would be in a
double stranded form. Annealing was then performed using a thermocycler: 90◦C
for 5 minutes, gradient from 90◦C to 65◦C @ 0.1C /sec, incubated for 10 minutes
at 65◦C and allowed to return to room temperature on the thermocycler. Prior
to attaching DNA, 150 µL beads were washed twice with 600 µL TE buffer (10
mM Tris-HCl pH 8.0, 1 mM EDTA) and then twice with DW buffer (20 mM
Tris-HC pH 8.0, 2 M NaCl, 0.5 mM EDTA [21]). Approximately 640 pmol of
DNA were then diluted to 600 µL in DW Buffer and incubated with the washed
beads overnight at 4◦C and on a rotatory wheel. Bound DNA was measured by
determining the DNA concentration before and after incubation with beads using a
NanoDrop (ThermoFisher, Waltham, MA). Finally, beads were washed once with
600 µL TE buffer and three washes of 600 µL DW buffer, and resuspended in 150
µL DW buffer.

DNA affinity chromatography
DNAaffinity chromatographywas performed by incubating cell lysatewithmagnetic
beads (Dynabeads MyOne T1, ThermoFisher, Waltham, MA) containing tethered
DNA. The DNA was tethered through a linkage between streptavidin on the beads
and biotin on the DNA. Single-stranded DNA was purchased from Integrated DNA
Technologies with the biotin modification on the 5’ end of the oligonucleotide sense
strand. Prior to DNA affinity purification the DNA tethered beads were incubated
with blocking buffer (20mMHepes, pH 7.9, 0.05mg/ml BSA, 0.05mg/ml glycogen,
0.3 M KCl, 2.5 mM DTT, 5 mg/ml polyvinylpyrrolidone, 0.02% (w/v) n-dodeyl-
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β-D-maltoside; about 1.3 ml/mg beads [21]) for one hour at 4◦C for passivation.
Excess blocking buffer was removed by washing the beads twice with 600 µL lysis
buffer.

Cell lysates were incubated on a rotating wheel with the DNA tethered beads
overnight at 4◦C. Beads were recovered with a magnet and washed three times
using an equivalent volume of lysis buffer. The beads were then washed once more,
but with NEB Buffer 3.1 (New England Biolabs, MA, USA). Both purifications
(with the target DNA and reference control) were combined by resuspending in 50
µL NEB Buffer 3.1, and 10 µl of the restriction enzyme PstI (100,000 units/ml,
New England Biolabs) was added and incubated for 1.5 hours at 25◦C. PstI cleaves
the sequence CTGCAG, which was included between the biotin label and binding
site sequence, allowing the DNA to be released from the magnetic beads. The
beads were then removed and the samples prepared for mass spectrometry by in-gel
digestion with endoproteinase Lys-C.

Note that in general, proteins were purified from a heavy lysate using DNA con-
taining the target binding site sequence, while devoting the light lysate to a control
DNA sequence. However, for our LacI and RelBE experiments, we also performed
the alternative scenario, using the target sequence with the light lysate, and did not
observe notable differences.

In-gel digestion of purified protein samples
Protein samples were diluted with 4x SDS-PAGE sample buffer and incubated for
five minutes at 95◦C and loaded on a SDS-PAGE gel (Any kD Mini-PROTEAN
TGX Precast Protein Gels, 10-well , 50 µl; BioRad, CA, USA). Electrophoresis was
performed for 45-55 minutes (200V) to provide 1-D size separation, and stained
using the Colloidal Blue Staining Kit (ThermoFisher Scientific, MA, USA) for
visualization. Destaining was performed with 100 mM ammonium bicarbonate,
and the gel was cut into four sections, each of which was cut into roughly 1 mm
pieces for in-gel digestion. The gel pieces were reduced, alkylated, and digested
by endoproteinase Lys-C overnight at 37◦C. This enzymatically cleaves proteins
after lysine residues and is necessary for determining whether detected peptides are
from the light or heavy lysine labeled purification. Digested peptides were then
extracted from the gel and lyophilized. The peptide samples were further purified
using StageTips to remove residual salts [111] and re-suspended in 0.2% formic
acid.
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LC-MS/MS method details

Liquid chromatography tandem-mass spectrometry (LC-MS/MS) experiments were
carried out as previously described [79].

The LacI target purification experiments were performed on a nanoflow LC system,
EASY-nLC II coupled to a hybrid linear ion trap Orbitrap Classic mass spectrometer
equipped with a Nanospray Flex Ion Source (Thermo Fisher Scientific). The in-gel
digested peptides were directly loaded at a flow rate of 500 nl/min onto a 16-cm
analytical HPLC column (75 µm ID) packed in-house with ReproSil-Pur C18AQ
3 µm resin (120 Å pore size, Dr. Maisch, Ammerbuch, Germany). The column
was enclosed in a column heater operating at 45◦C. After 30 min of loading time,
the peptides were separated in a solvent gradient at a flow rate of 350 nl/min.
The gradient was as follows: 0–30% B (80 min), and 100% B (10 min). The
solvent A consisted of 97.8% H2O, 2% ACN, and 0.2% formic acid and solvent
B consisted of 19.8% H2O, 80% ACN, and 0.2% formic acid. The Orbitrap was
operated in data-dependent acquisition mode to automatically alternate between
a full scan (m/z=400–1600) in the Orbitrap (resolution 100,000) and subsequent
15 CID MS/MS scans (Top 15 method) in the linear ion trap. Collision induced
dissociation (CID) was performed at normalized collision energy of 35% and 30
msec of activation time.

All other measurements were performed on a hybrid ion trap-Orbitrap Elite mass
spectrometer (Thermo Fisher Scientific), which provided greater detection sensi-
tivity and other fragmentation techniques as described. The Orbitrap was operated
in data-dependent acquisition mode to automatically alternate between a full scan
(m/z=400–1,800) in the Orbitrap (resolution 120,000) and subsequent 5 MS/MS
scans also acquired in Orbitrap with 15,000 resolution. The MS/MS spectra were
acquired for the top 5 ions alternating between higher collision dissociation (HCD)
and electron transfer dissociation (ETD) fragmentations that are well suited for
higher charge peptides. Higher collision dissociation was performed at a normal-
ized collision energy of 30% and electron transfer dissociation reaction time was set
to 100 msec. The analytical column for this instrument was a PicoFrit column (New
Objective, Woburn, MA) packed in house with ReproSil-Pur C18AQ 1.9 µm resin
(120Å pore size, Dr. Maisch, Ammerbuch, Germany) and the column was heated
to 60◦C. The peptides were separated either with a 90 or 60 min gradient (0-30% B
in 90 min or 0-30% B in 60 min) at a flow rate of 220 nL/min.
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Mass spectrometry data processing

Thermo RAWfiles were processed usingMaxQuant (v. 1.5.3.30) [80, 112]. Spectra
were searched against the UniProt E. coli K-12 database (4318 sequences) as well
as a contaminant database (256 sequences). Additional details are provided in the
supplemental methods. Precursor ion mass tolerance was 4.5 ppm after recalibra-
tion by MaxQuant. Fragment ion mass tolerance was 20 ppm for high-resolution
HCD and ETD spectra, and 0.5 Da for low-resolution CID spectra. Variable modi-
fications included oxidation of methionine and protein N-terminal acetylation. Car-
boxyamidomethylation of cysteine was specified as a fixed modification. LysC was
specified as the digestion enzyme and up to two missed cleavages were allowed. A
decoy database was generated byMaxQuant and used to set a score threshold so that
the false discovery rate was less than 1% at both the peptide and protein level. For
all experiments match between runs and re- quantify were enabled. One evidence
ratio per replicate per protein was required for quantitation.

To calculate the overall protein ratio, the non-normalized protein replicate ratioswere
log transformed and then shifted so that the median protein log ratio within each
replicate was zero (i.e., the median protein ratio was 1:1). The overall experimental
log ratio was then calculated from the average of the replicate ratios. Proteins were
considered if they were known to be transcription factors, or predicted to bind DNA
(using gene ontology term GO:0003677, for DNA-binding in BioCyc).
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C h a p t e r 4

MAPPING DNA SEQUENCE TO TRANSCRIPTION FACTOR
BINDING ENERGY IN VIVO

This work was performed in collaboration with N. M. Belliveau, W. T. Ireland, J. B.
Kinney, and R. Phillips.

Author contribution note: for this chapter, I (SB) performed Sort-Seq sample pro-
cessing, strain construction, fold-change measurements, data analysis, and was the
primary writer for the manuscript. This work is in preparation for publication in a
peer-reviewed journal.

4.1 Introduction
High-throughput sequencing allows us to sequence the genome of nearly any species
at will. The amount of genomic data available is already enormous and will only
continue to grow. However, this mass of data is largely uninformative without
appropriate methods of analyzing it. Despite decades of research, much genomic
data still defies our efforts to interpret it. It is particularly challenging to interpret
non-coding DNA such as intergenic regulatory regions. We can infer the locations
of some transcription start sites and transcription factor binding sites, but these
inferences tell us little about the functional role of these putative sites. In order to
better interpret these types of sequences, we need a better understanding of how
sequence elements control gene expression. An important avenue for developing
this level of understanding is to propose models that map sequence to function and
perform experiments that test these models.

Over half of the genes in E. coli, which is arguably the best-understood model or-
ganism, lack any regulatory annotation (see RegulonDB [1]). Those operons whose
regulation is well described (e.g. the lac, rel, and mar operons [2–4]) required
decades of work, often involving laborious genetic and biochemical experiments
[5]. A wide variety of new techniques have been proposed and implemented to
simplify the process of determining how a gene is regulated. Chromatin immuno-
precipitation (ChIP) basedmethods such as ChIP-chip andChIP-seqmake it possible
to determine the genome-wide binding locations of individual transcription factors
of interest. Massively parallel reporter assays (MPRAs) havemade it possible to read
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out transcription factor binding position and occupancy in vivo with base-pair reso-
lution, and provide a means for analyzing non-binding features such as “insulator”
sequences [6–8]. In vitro methods based on protein-binding microarrays [9], SE-
LEX [10–12], MITOMI [13–15], and binding assays performed in high-throughput
sequencing flow cells [16, 17] have made it possible to measure transcription factor
affinity to a broad array of possible binding sites and can also account for features
such as flanking sequences [15, 18, 19]. However, in vitro methods cannot fully ac-
count for the in vivo consequences of binding site context and interactions with other
proteins. Current in vivo methods for measuring transcription factor binding affini-
ties, such as bacterial one-hybrid [20, 21], require a restructuring of the promoter
so that it no longer resembles its genomic counterpart. Additionally, efforts to com-
putationally ascertain the locations of transcription factor binding sites frequently
produce false positives [22, 23]. Furthermore, a common assumption underlying
many of these methods is that transcription factor occupancy in the vicinity of a
promoter implies regulation, but it has been shown that occupancy cannot always
accurately predict the effect of a transcription factor on gene regulation [24, 25].
As these examples show, it remains challenging to integrate multiple aspects of
transcription factor binding into a cohesive understanding of gene regulation.

Here we work to develop such a cohesive understanding by integrating rigorous
thermodynamic modeling with in vivo transcription factor binding experiments. In
Ref. [26], we showed that the MPRA Sort-Seq [27], combined with a simple linear
model for protein-DNA binding specificity, can be used to accurately predict the
binding energies of multiple RNAP binding site mutants, serving as a jumping off
point for the use of such models as a quantitative tool in synthetic biology. Here
we apply this technique to transcription factor binding sites in an effort to better
understand how transcription factors interact with regulatory DNA under different
conditions. Specifically, we use Sort-Seq to map sequence to binding energy for a
repressor-operator interaction, andwe rigorously characterize the variables thatmust
be considered in order to obtain an accurate sequence-binding energy map. We then
use our sequence-energy mapping to design a series of operators with a hierarchy
of controlled binding energies measured in kBT units. To demonstrate our control
over these operators and their associated regulatory logic, we use these characterized
binding sites to design a wide range of induction responses with different phenotypic
properties such as leakiness, dynamic range and [EC50]. Next, we focus our attention
on the synergy betweenmutations in the amino acid sequence of transcription factors
and their corresponding binding sites. Finally, we show the broader reach of these
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results by exploring how binding site position and regulatory context can change the
DNA-protein sequence specificity for multiple different transcription factors.
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4.2 Results
Obtaining energy matrices using Sort-Seq
A major goal of this study was to show that one can use Sort-Seq to precisely
map DNA sequence to binding energy for a transcription factor binding site, thus
making it possible to predict and manipulate transcriptional activity in vivo. While
numerous in vitro studies have successfully mapped sequence to affinity [9–11, 13,
14, 16, 17], and some in vivo studies have used methods such as bacterial one-
hybrid to provide such mappings as well [20, 21], these studies are limited because
they cannot be adapted to reflect the actual wild-type arrangement of regulatory
elements, thus potentially missing vital regulatory information. Moreover, while
position-weight matrices (PWMs) derived from genomic data have traditionally
been used to ascertain in vivo sequence specificities, it can be difficult to convert
these specificities into quantitative binding energy mappings due to the relatively
small number of sequences that are used to generate these PWMs.

Sort-Seq has previously been shown to be a promising technique formapping protein
binding sequences to binding energies. In Ref. [26], binding energy predictions
for RNAP were made from an energy matrix generated in Ref. [27] that used
the wild-type lac promoter as a reference sequence (i.e. the sequence that was
mutated to perform Sort-Seq). Here, we design experiments that use the Sort-Seq
technique described in [27] with the specific intent of creating energy matrices
with maximum predictive power (see Figure 4.1), and we test the predictions from
these matrices against measured binding energies. We show that such predictive
matrices can be produced for multiple transcription factors (e.g. XylR, PurR, and
LacI) implicated in an array of regulatory architectures. To thoroughly test the
accuracy of our predictive matrices, we begin with promoters that employ “simple
repression,” in which a repressor binds to an operator such that it occludes RNAP
binding, thereby preventing transcription and repressing the gene [28]. As a model
for how sequence-energy mappings might be used for transcription factor binding
sites in simple repression architectures, we interrogate the binding specificity of the
lac repressor (LacI). LacI was chosen for this role because it is well-characterized
and has known binding sites in only one operon within the genome, making it an
ideal choice for this kind of systematic and rigorous analysis. We create three
distinct energy matrices in which each of the natural lac operators (O1, O2, or O3
[2]) acts as the reference sequence. Supplemental Section 4.5 lists the wild-type
sequences for these simple repression constructs.
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As described in Figure 4.1, to perform Sort-Seq we start by mutating the promoter
at a rate of ∼ 10%. Here we mutate both the RNAP binding site and the operator,
starting with either O1, O2, or O3 for the operator sequence. While our analysis
focuses on the operators themselves, mutating the RNAP as well aids in model-
fitting as described in Supplemental Section 4.6. We place the promoters upstream
of a fluorescent reporter gene and create a plasmid library of these constructs. We
transform this plasmid library into a population of E. coli in which lacI and lacZYA
have been deleted, but lacI has been reintroduced to the genome with a synthetic
RBS that allows us to precisely control the LacI copy number within the cell, as
described in Ref. [29]. We require at least 106 transformants for each plasmid
library to ensure sufficient library diversity. Then, we use fluorescence-activated
cell sorting (FACS) to sort E. coli containing these plasmids into four bins based
on their expression levels. We perform high-throughput sequencing on the libraries
from each bin. We infer energy matrices that maximize the mutual information
between sequence and expression bin (see Supplemental Sections 3.12 and 4.6 for
details). We perform Bayesian parameter estimation using a Markov Chain Monte
Carlo algorithm to determine the scaling factor that should be applied to the energy
matrix to convert each position into kBT energy units. We infer the scaling factor
using the same data set that was used to infer the energy matrix, as the ideal scaling
factor should maximize the mutual information between promoter sequence and
gene expression (see Supplemental Section 4.7 for a comparison to other methods
for obtaining the scaling factor). At this point, one can compute the expected binding
energy of any operator mutant within several mutations of the reference sequence by
simply adding together the energy values associated with each base in the operator
mutant.



236

YFP
RNAP

O1
O2
O3

AATTGTGAGCGGATAACAATT
AAATGTGAGCGAGTAACAACC
GGCAGTGAGCGCAACGCAATT

Simple repression motif
Mutated regions

1. Create promoter mutant library 2. Sort cells with FACS 3. Sequence sorted cells 4. Create energy matrices

binsequence

4

AATTGTGAGCGG...
1

2

3

AATCGTGAGCGG...
AATTGTGGGCGG...
AAATGTGAGCGG...
AATTGTGTGCGG...
AATTATGAGCGG...
AATTATGAGAGG...
AATTGTGTGCGG...
AATAGTGAGCGC...
AACTGTGAGCGG...
AATTGTAAGCGG...
ATTTGTGAGCGG...

1 2 3 4

sequence position

stronger
binding

weaker
binding

Figure 4.1: Process flow for using Sort-Seq to obtain energy matrices. To
begin, we design a simple repression motif in which a repressor binding site is
placed immediately downstream of the RNAP site. When RNAP binds, it initiates
transcription of the GFP reporter gene. We analyze simple repression constructs
using each of the three natural lac operators, O1, O2, andO3. Sort-Seq then proceeds
according to the following process flow. 1. We create a mutant library in which
the RNAP and operator sequences are randomly mutated at a rate of approximately
10%, and transform this library into a cell population such that each cell contains
a different mutant operator sequence. 2. To measure gene expression, we sort the
cell population into bins based on fluorescence level. 3. We then sequence variant
promoter sequences within each bin. The bin in which each promoter is found serves
as a measure of that promoter’s activity. 4. From this information, we can infer an
energy matrix for the repressor binding site indicating which mutations result in a
higher or lower binding energy relative to the reference sequence.
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Choice of reference sequence can alter the repressor’s apparent sequence speci-
ficity
One might assume that affinity experiments should reveal the same binding speci-
ficity regardless of the set of binding site mutants used in the experiment. To
test this possibility, we generated energy matrices using three different reference
sequences. A reference sequence refers to the sequence which serves as the “wild-
type” for each experiment. For each library, the promoter is mutated relative to
its reference sequence. Additionally, when assigning binding energies to an en-
ergy matrix, all binding energies are calculated relative to the reference sequence.
For our reference sequences we use the three natural E. coli lac operators (O1 =
AATTGTGAGCGGATAACAATT, O2 = AAATGTGAGCGAGTAACAACC, and
O3 = GGCAGTGAGCGCAACGCAATT). For our primary analysis we use energy
matrix models. These models assume that each nucleotide position within a binding
site contributes independently to the binding energy (see Supplemental Section 4.8
for predictions using higher-order models). Each operator has a distinct LacI bind-
ing energy, with O1 being the strongest at -15.3 kBT , O2 being the second strongest
at -13.9 kBT , and O3 being the weakest at -9.7 kBT [29]. The operator sequences
are rather dissimilar to each other, with O2 having 5 mutations relative to O1 and
O3 having 8 mutations relative to O1 (and 11 mutations relative to O2). For each
library, the average operator sequence has only 2 mutations relative to the reference
sequence. As a result, a library generated with O1 as the reference sequence is un-
likely to share any mutant sequences with a library generated with O2 or O3 as the
reference sequence. Here we assess whether dissimilar mutant libraries generated
from different reference sequences produce similar energy matrices and sequence
logos from their respective Sort-Seq data sets.

As shown in Figure 4.2(A), the three operators each produce qualitatively similar
energy matrices, with the left side of the binding site showing greater sequence
dependence than the right side, as evidenced by the larger magnitude of the binding
energies assigned to each matrix position. Note that we set the binding energy of the
reference sequence to 0 kBT for these energy matrices, so that the binding energies
assigned to each possible mutation are calculated relative to the reference sequence.
For all energy matrices, positions 4-10 show the greatest sequence preference. This
preference is reflected in the natural lac operator sequences themselves, as the
bases from 4-10 are conserved in each of the operators. Notably, the majority of
mutations available to O1 incur a penalty to binding energy, while many of the
mutations available to O3 enhance the binding energy. This is consistent with the
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observation that O1 has a strong binding energywhile O3 has a weak binding energy.

When the energy matrices are used to produce sequence logos (see Ref. [30] and
Supplemental Section 3.7), we see a consistent preference for a slightly asymmetric
binding site, reflecting the fact that LacI is known to bind asymmetrically to its
operators. Additionally, clear differences arise for the different operators (see Figure
4.2(B)). One of the most striking differences is the information content of each
sequence logo; as the binding energy of the reference sequence grows weaker, the
average information content of each nucleotide position grows smaller. Additionally,
while the sequence logos derived from O1 and O2 indicate very similar sequence
preferences, the preferred sequence suggested by the O3 sequence logo differs in
some prominent positions. In Supplemental Section 4.9 we note that weaker binding
sites exhibit a greater variation in the quality of their sequence logos; thus it may be
that the O3 binding site is simply too weak to provide an informative sequence logo.
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Figure 4.2: Energy matrices and sequence logos for the natural lac operators.
(A) Energy matrices show how mutations can be expected to affect binding energy.
Reference sequences for each energy matrix (either the O1, O2, or O3 sequence)
have been set at 0 kBT (gray squares), and the energy values at all other positions
of the matrix are thus relative to the reference sequence. Red squares represent
mutations that create a stronger binding energy than the reference sequence, and
blue squares represent mutations that create a weaker binding energy. In columns
where multiple squares are gray, this indicates that there is no significant change
in binding energy relative to the reference sequence. Positions where preferred
bases differ from the O1 matrix are noted with arrows. (B) While the energy
matrices are qualitatively similar for all three operators, the sequence logos indicate
clear differences in the information that can be provided by each operator. The
O1 and O2 operators produce similar sequence logos, but the O3 sequence logo
incorrectly predicts the preferred binding sequence for LacI. The O3 sequence logo
also indicates a much lower information content than for O1 and O2. Positions
where preferred bases differ from the O1 sequence logo are noted with arrows.
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Linear energy matrix models predict measured energy values
The energy matrices obtained via Sort-Seq should allow us to map sequence to
phenotype. The relevant phenotype for simple repression constructs is the degree
to which the system is repressed, which can be measured using the fold-change. We
define fold-change as the ratio of expression in a repressed system to expression in
a system with no repressors, as described by the equation

fold-change =
expression(R)

expression(R = 0)
. (4.1)

As discussed in further detail elsewhere [28, 29], the fold-change can also be
computed using a thermodynamic model given by

fold-change =
1

1 + 2R
NNS

e−β∆εR
, (4.2)

where R is the repressor copy number, NN S is the number of nonspecific binding
sites available in the genome (∼ 4.6×106 in E. coli), and ∆εR is the operator binding
energy. We note that this model makes the simplifying assumption that the RNAP
binds weakly to the promoter.

In principle, the linear energy matrix models shown in Figure 4.2 can be used to
predict the binding energy of an operator mutant. To explore the ability of energy
matrices to predict the effects ofmutations on operator binding strength, we designed
a number of mutant operators with 1, 2, or 3 mutations relative to the O1 operator.
Experimentally-determined values for the binding energies of these mutants could
then be compared against values predicted by our LacI energy matrices.

To obtain experimental values formutant binding energies, we startwith chromosomally-
integrated simple repression constructs for each mutant that were incorporated into
strains with LacI tetramer copy numbers of R = 11 ± 1, 30 ± 10, 62 ± 15, 130 ± 20,
610±80, and 870±170, where the error denotes the standard deviation of at least three
Western blot replicates as measured in Ref. [29]. We determined the fold-change by
measuring the GFP fluorescence levels of each strain by flow cytometry and substi-
tuting them into Equation 4.1. We determine each mutant’s binding energy, ∆εR, by
performing a single-parameter fit of Equation 4.2 to the resulting data via nonlinear
regression. Figure 4.3(A) shows several fold-change values for 1 bp, 2 bp, and 3
bp mutants overlaid with these fitted curves. To provide a sense of scale for how
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inaccuracies in binding energy predictions might affect the expected fold-change,
the fitted curves are surrounded by a colored region representing ∆εR ± 1 kBT .

The energy matrices derived from Sort-Seq can be used to predict the value of ∆εR

associated with a given operator mutant, as discussed in detail in Supplemental
Section 4.6. Figure 4.3(B) shows how binding energy values measured by fitting
to repressor titration data compare to values predicted using energy matrices. For
single base pair mutations most predictions perform well and are accurate to within
1 kBT , with many predictions differing from the measured values by less than 0.5
kBT . Predictions are less accurate for 2 bp or 3 bp mutations, although the majority
of these predictions are still within 1.5 kBT of the measured value.

The quality of matrix predictions degrades as mutants deviate farther from the
wild-type sequence used to generate the energy matrix. To evaluate predictions for
a broader range of deviations from the energy matrix, we made predictions from
both the O1 energy matrix and the energy matrix for O2, which has five mutations
relative to O1. This allowed us to access predictions for operators that are mutated
by several base pairs relative to the matrix. In Figure 4.3(C) we show how prediction
error, defined as the discrepancy in kBT between a predicted and measured energy
value, varies depending on the number of mutations relative to the wild-type binding
site sequence. We find that predictions remain relatively accurate for mutants that
differ by up to 4 bp relative to the wild-type sequence, with median deviations of
∼ 1.5 kBT or less from the measured binding energy. Other studies have noted that
linear energy matrix models fail to accurately predict binding energies for mutants
with multiple mutations relative to the reference sequence [31, 32]. Thus we find
that the relatively low errors depicted in Figure 4.3(C) exceed expectations for what
a linear model can achieve.

We note that energy matrix quality, as measured by the accuracy of its predictions,
may be affected by the experimental design. In Supplemental Section 4.9, we assess
whether energymatrix quality is affected by the LacI copy number of the background
strain, and find that it has little effect on matrix quality. Additionally, we compare
predictions made from energy matrices with different reference sequences (i.e. O1,
O2, or O3), and find that using O1 as a reference sequence produces the most
accurate energy matrices, while using O3 produces energy matrices that are almost
entirely non-predictive. In Supplemental Section 4.10, we consider whether better
energy matrices are made using libraries in which the entire promoter is mutated or
only the operator is mutated. We find that mutating the operator alone can provide



242

more accurate energy matrices, though one must fit to binding energy measurements
in order to convert these matrices into kBT units.
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Figure 4.3: Energy matrix predictions compared to binding energies derived
from fold-change data. (A) Fold-change data were obtained by flow cytometry for
each of the mutant operators by measuring their respective fluorescence levels at
multiple LacI copy numbers and normalizing by the fluorescence when R = 0. The
solid lines in each plot represent a fold-change curve that has been fitted to the data
set to obtain a binding energy measurement. The colored region surrounding each
fold-change curve indicates the error in fold-change prediction that would result
from an error in binding energy prediction of ±1 kBT . Each plot shows data and fits
for two operator mutants, one weak and one strong, for 1 bp (left), 2 bp (middle),
and 3 bp (right) mutants. All remaining data is shown in Supplemental Section 4.11.
Approximately 30 operator mutants were measured in total. We note that expression
measurements become less accurate as they grow weaker, due to autofluorescence
and limitations in the flow cytometer’s ability to measure weak signals. This
adversely affects the accuracy of fold-change values for strongly repressed strains.
(B) The measured binding energy values ∆εR (y axis) are plotted against binding
energy values predicted from an energy matrix derived from the O1 operator (x
axis). While the quality of the binding energy predictions does appear to degrade as
the number of mutations relative to O1 is increased, the O1 energymatrix is still able
to approximately predict the measured values. (C) Binding energies for each mutant
were predicted using both the O1 and O2 energy matrices and compared against
measured binding energy values. The prediction error, defined as the magnitude
of the difference in kBT between a predicted binding energy and the corresponding
measured binding energy, is plotted here against the number of mutations relative
to the reference sequence whose energy matrix was used to make the prediction.
Each data point is shown in purple, and box plots representing the data are overlaid
to clearly show the median error and variability in error. For sequences with 4 or
fewer mutations, the median prediction error is consistently lower than 1.5 kBT .
The dashed horizontal line represents the point at which the error corresponds to an
approximately 10-fold difference in fold-change.
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Designed induction responses
Our predictive energy matrices suggest a promising strategy for addressing the
challenge of genetic circuit design, which has typically relied on trial and error to
achieve specific outputs [33, 34]. By contrast, previous studies have shown how
thermodynamic models can be used to predict gene outputs given a set of inputs
[28, 29], which can suggest appropriate inputs to produce a desired output. For
example, the key inputs for the fold-change Equation 4.2 are repressor copy number
R and repressor-operator binding energy∆εR, and one can easily use Equation 4.2 to
determine a set of R and ∆εR values that can be used to target a desired fold-change
response. Energy matrix predictions can be used to design operator sequences with
a particular value of ∆εR, thereby making it possible to tune genetic circuits and
target specific phenotypes. As shown in Figure 4.3B, mutating an operator by as
little as one base pair can provide a broad range of ∆εR values that can be predicted
accurately.

One particularly useful class of simple genetic circuit, which can be layered with
other genetic components to create complex logic [35], is inducible simple repression
[36–39]. In such a system, an allosteric repressor can switch between an active form,
which binds to an operator with high affinity, and an inactive form, which has a low
affinity to the operator. An inducer may bind to the repressor and stabilize the
repressor’s inactive form, thereby reducing the probability that the repressor will
bind to the operator and increasing the probability that RNAP will bind and initiate
transcription. The result is that an inducible system can access a broad range of
fold-change values simply by tuning the concentration of inducer. As discussed in
Chapter 2, the fold-change of an inducible simple repression circuit can be described
by the equation

(c) = *.
,
1 +

(
1 + c

KA

)n(
1 + c

KA

)n
+ e−β∆εAI

(
1 + c

KI

)n
2R
NN S

e−β∆εR+/
-

−1

, (4.3)

where c is the concentration of inducer, n is the number of inducer binding sites on the
repressor, KA and KI are the dissociation constants of the inducer and repressor when
the repressor is in its active or inactive state, respectively, and ∆εAI is the difference
in free energy between the repressor’s active and inactive states. In Chapter 2
we determined that these values are KA = 139+29

−22 µM, KI = 0.53+0.04
−0.04 µM, and

∆εAI = 4.5 kBT for lac repressor with the inducer IPTG. Where noted, superscripts
and subscripts indicate the upper and lower bounds for the 95th percentile of the
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parameter value distributions. There are n = 2 inducer binding sites on each LacI
dimer.

We can use these parameter values for the lac-based system considered here to
explore how tuning the operator-repressor binding energy∆εR can alter the induction
response when an effector (i.e. IPTG) is introduced to the system. Importantly,
our sequence-energy mapping provides a straightforward avenue for tuning ∆εR

by altering the binding sequence rather than mutating the repressor itself, which
is much more difficult to characterize. We note that an induction response can be
described by a number of key phenotypic parameters. The leakiness is the minimum
fold-change when no inducer is present, given by (c → 0). The saturation is the
maximum fold-change when inducer is present at saturating concentrations, given
by (c → ∞). The dynamic range is the difference between the saturation and
leakiness, and represents the magnitude of the induction response. The [EC50]
is the inducer concentration at which the fold-change is equal to the midpoint of
the induction response. Full expressions for these parameters are first listed in
Chapter 2 and reproduced for convenience in Supplemental Section 4.12, Equations
4.13, 4.14, 4.16, and 4.17. Figures 4.4(A) and 4.4(B) show how these phenotypic
parameters vary with ∆εR given the values of KA, KI , and ∆εAI listed above and
the repressor copy number R = 130. We can see that there are inherent trade-offs
between phenotypic parameter values. For instance, in this particular system one
cannot tune ∆εR to obtain a small dynamic range (e.g. a dynamic range of 0.1)
while also having an intermediate leakiness value (e.g. a leakiness of 0.4). Rather,
one must design an induction response by choosing from the available phenotypes,
or else alter the system by tuning additional parameters such as KA and KI , which
requires mutating the protein itself or using a different transcription factor altogether
as in Ref. [33].

To show how energy matrices can be used to design specific induction responses,
we used the phenotypic trade-offs shown in Figures 4.4(A) and 4.4(B) to choose
values of ∆εR that would provide distinct outputs. A strong binding energy lies
below ∆εR ≈ −14 kBT , which provides a minimal leakiness level but not full
saturation, and gives a high [EC50] value. A moderate binding energy lies in
the range ∆εR ≈ −14 to − 12 kBT , maximizing dynamic range and giving an
intermediate [EC50] value. Finally, weak binding energies lie above∆εR ≈ −12 kBT ,
which provides a narrower dynamic range and a lower [EC50] value. We chose six
of our single base-pair mutants with predicted binding energies in these ranges.
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Induction responses for each of these mutants were measured by growing cultures
in the presence of varying IPTG concentrations and measuring the fold-change
at each concentration, following the procedure described in Chapter 2. Figure
4.4(C-H) shows how the induction data compare against theory curves plotted using
∆εR values predicted from the energy matrix. For operators with stronger binding
energies, the data match well with the theory curves plotted using predicted binding
energies (Figure 4.4(C-E)). For operators with weaker binding energies, however,
we find that the data do not match as well with the predicted theory curves (Figure
4.4(F-H)). Theory curves plotted using the measured binding energy (rather than the
predicted binding energy) match well with the data, indicating that the mis-match
between the data and the predicted theory curve is due to error in the predicted
binding energy.
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Figure 4.4: Energy matrix predictions can be used to design phenotypic re-
sponses Phenotypic parameters exhibit trade-offs as ∆εR is varied. (A) The values
of the leakiness, saturation, and dynamic range are plotted as a function of transcrip-
tion factor binding energy, ∆εR, for a strain with R = 130. Different values of ∆εR
fall into different binding regimes (strong, medium, or weak) with different pheno-
typic properties. Several operators were chosen whose predicted binding energies
(squares) fall into these different binding regimes. (B) The value of the [EC50] is
plotted as a function of ∆εR for a strain with R = 130. The [EC50] decreases as the
value of ∆εR increases. (C-H) Operators with different values of ∆εR were chosen
to have varying induction responses based on the phenotypic trade-offs shown in
(A) and (B). The fold-change is shown for each operator as IPTG concentrations are
varied. (C-E) For operators with stronger binding energies, the data match well with
both the predicted theory curves and the theory curves based on measured binding
energies. (F-H) For operators with weaker binding energies, the data match well
with theory curves based on measured binding energies, but do not match as well
with predicted theory curves, due to inaccuracies in the energy matrix predictions.
For each of these operators, the predicted binding energy ∆εpred differs from the
measured binding energy ∆εmeas by ∼ 1 kBT .
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Analysis of amino acid-nucleotide interactions
Predictive energy matrices offer a simple way of analyzing direct interactions be-
tween amino acids and nucleotides. Mutating individual amino acids in the re-
pressor’s DNA-binding domain and then observing changes in the energy matrix
makes it possible to determine how changing the amino acid composition of the
DNA-binding domain alters sequence preference. If sequence specificity is altered
only for specific base pairs when an amino acid is mutated, this may indicate that
the amino acid interacts directly with those base pairs. While it is possible to obtain
such information using binding assays [40] or labor-intensive structural biology ap-
proaches, Sort-Seq makes it possible to efficiently sample a full array of operator
mutations in a single experiment. To analyze the effects of mutations on sequence
specificity, we chose mutations which had previously been found to alter LacI-DNA
binding properties without entirely disrupting the repressor’s ability to bind DNA
[40, 41]. We performed Sort-Seq using strains containing one of three LacI mutants,
Y20I, Q21A, or Q21M, where the first letter indicates the wild-type amino acid, the
number indicates the amino acid position, and the last letter indicates the identity of
the mutated amino acid.

The energymatrices for each LacI mutant are shown in Figure 4.5(A), along with the
wild-type energy matrix for comparison. Sequence logos derived from each energy
matrix are shown in Figure 4.5(B). The energy matrices remain remarkably similar
to one another. As with the wild-type repressor, for each of the mutant repressors we
find that the left half-site of the sequence logo has a stronger sequence preference.
For both Y20I and Q21M, the same sequence is preferred in the left half-site as for
the wild-type LacI. This contrasts with the results from Ref. [40], in which it was
found that Y20I prefers an adenine at sequence position 6, rather than the guanine
preferred at this position by the wild-type repressor. As in Ref. [40], we find that
an adenine is preferred at sequence position 6 for the Q21A mutant. Additionally,
when comparing the left and right half-sites of each energy matrix, we find that for
each mutant the preferred sequence is not entirely symmetric. Thus we see that the
lac repressor’s notable preference for a pseudo-symmetric operator is preserved in
each of the mutants we tested.
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Figure 4.5: Mutations to LacI DNA-binding domain cause subtle changes to
sequence specificity. Mutations were made to residues 20 and 21 of LacI, both of
which lie within the DNA-binding domain. The mutations Y20I and Q21A weaken
the repressor-operator binding energy, while the mutation Q21M strengthens the
binding energy [41]. The sequence preferences of each mutant are represented
as (A) energy matrices and (B) sequence logos. Y20I exhibits minor changes to
specificity in low-information regions of the binding site, and Q21A experiences
a change to specificity within a high-information region of the binding site (see
arrows). Specifically, Q21A prefers A at operator position 6 while the wild-type
repressor prefers G at this position. The Pearson’s corellation coefficient ρ is noted
for each mutant, calculated by comparing the energy matrix values for each mutant
to the wild-type energy matrix values. For comparison, replicates of the O1 energy
matrix with wild-type LacI all have values of ρ ≥ 0.93 relative to one another (see
Supplemental Section 4.9).
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Binding site context can influence a transcription factor’s binding specificity
In this work we have used the lac system to demonstrate how Sort-Seq can be used
to map binding site sequence to binding energy, and we used these mappings to
rationally design novel genetic circuit elements and identify the effects of amino
acid mutations on LacI’s sequence specificity. Importantly, this approach is not
specific to the lac system and can be applied to any system in which transcription
factors alter gene expression by binding to DNA within the promoter region. In
Chapter 3 we showed how Sort-Seq could be used alongside mass spectrometry to
determine the locations of transcription factor binding sites in a promoter of interest
and identify which transcription factors bind to these sites. We generated energy
matrices for a number of transcription factors (e.g. RelBE, MarA, PurR, XylR, and
others), but we did not use these energy matrices to perform quantitative analyses
as we do here. Here we analyze selected energy matrices from Chapter 3 to show
how energy matrices can be used to understand transcriptional activity in promoters
with varied architectures beyond simple repression.

One of the questions we wish to answer is to what extent altering the context of
a binding site within a regulatory architecture will alter sequence specificity. One
hypothesis is that a transcription factor’s preferred binding sequence will remain
the same regardless of how its binding site is positioned within the regulatory
architecture. However, it is known that factors beyond the core operator sequence,
such as flanking sequences and DNA shape, can affect sequence specificity [19, 42,
43]. Additionally, interactions with other proteins may alter the way a transcription
factor contacts the DNA, which could affect sequence specificity as well [44]. It
is important to know whether a transcription factor’s specificity is sensitive to the
context of the binding site within the promoter architecture, as this determines the
extent to which an energy matrix can be used to analyze binding sites throughout the
genome. Additionally, observing how sequence specificities change with binding
site context may alert us to changes in regulatory mechanisms as the operator is
moved to different positions in the promoter.

In Chapter 3, we used Sort-Seq to obtain energy matrices and sequence logos for
the transcription factors XylR and PurR in the context of the natural promoters for
xylE and purT, respectively. The xylE promoter has two XylR binding sites directly
adjacent to one another, allowing us to compare these two energy matrices against
each other. In this context, we find that XylR appears to act as an activator in tandem
with a CRP binding site. Sequence logos for the two XylR binding sites are shown
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in Figure 4.6A. The energy matrices and sequence logos for these binding sites have
some significant dissimilarities. Dissimilarities are particularly notable at positions
6-8, where the left-hand site prefers “TTT” and the right-hand site prefers “AAA”. In
the xylE promoter the left-hand XylR site is adjacent to a CRP site, while the right-
hand XylR site is adjacent to the RNAP site. The close proximity of these binding
sites suggests that there may be direct interactions between proteins, which could
alter how each XylR interacts with the DNA, thus altering sequence preferences.
The Pearson’s corellation coefficient ρ between the two energy matrices is ρ = 0.57.

In Chapter 3 we find that PurR acts as a repressor in the purT promoter, with
a single binding site between the -10 and -35 sites. In order to compare the
associated energy matrix with a PurR energy matrix from a different regulatory
context, here we create a synthetic promoter in which the PurR binding site has been
moved directly downstream of the RNAP site. This should continue to be a simple
repression architecture in which repressor binding occludes RNAP binding, but the
change in operator position may alter the repressor’s interaction with the DNA.
Sequence logos for both PurR binding sites are shown in Figure 4.6B. The two PurR
sequence logos are very similar to one another, indicating no significant changes
in the interactions between the repressor and the DNA. We calculate the Pearson’s
corellation coefficient between the two energy matrices to be ρ = 0.90, which is
significantly higher than the value calculated for the two XylR energy matrices.

We additionally performed Sort-Seq on a LacI simple repression construct in which
the lac operator was placed upstream of the RNAP binding site rather than down-
stream. In Ref. [26] it is shown that LacI binding to an upstream operator still
represses, but whereas a downstream operator represses by preventing RNAP from
binding, an upstream operator appears to directly contact a bound RNAP and prevent
it from escaping the promoter. Moreover, an upstream operator’s binding strength
does not directly correspond with the level of repression associated with the pro-
moter. These factors make repression by an upstream lac operator an interesting
architecture to compare with repression by a downstream lac operator. Sequence
logos for the upstream and downstream LacI binding sites are shown in Figure
4.6(C). These logos are very similar to one another, despite the fact that the repres-
sion mechanisms and protein interactions differ for these two architectures. The
Pearson’s corellation coefficient between the two matrices is ρ = 0.95.

Because a definitive thermodynamic model was not available for all of the architec-
tures examined in Figure 4.6, the energy matrices used to make the sequence logos
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were scaled using a theoretical “average” binding penalty derived from a statistical
mechanical analysis of transcriptional regulation (see Supplemental Section 4.7).
Supplemental Section 4.5 shows the wild-type binding sites that act as reference
sequences for the sequence logos.

(A) (B) (C)

Figure 4.6: Regulatory context can alter sequence preference. Sequence logos
were obtained for the same transcription factors in different regulatory contexts
and compared against one another. The Pearson’s corellation coefficient ρ between
energy matrices is noted for each pair of binding sites. (A) Sequence logos are
shown for the two adjacent binding sites for the activator XylR in the xylE promoter,
shown schematically at top. The sequence logos for the two binding sites indicate
that they have significantly different sequence preferences. (B) Sequence logos
are shown for the PurR binding site in the purT promoter and a PurR binding site
for a synthetic simple repression promoter in which the binding site is positioned
differently, shown schematically at top. The sequence logos for the two binding
sites indicate nearly identical sequence preferences. (C) Sequence logos are shown
for a LacI binding site upstream of the RNAP binding site and a LacI binding site
downstream of the RNAP. Although regulatory mechanisms differ between these
two binding sites, their sequence logos are nearly identical.
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4.3 Discussion
In this work, we apply quantitative modeling to in vivo experimental techniques
to analyze interactions between transcription factors and their binding sites under
multiple conditions. As an example of how our approach might be used to analyze a
transcription factor’s sequence-specific binding energy, we used Sort-Seq to create
energy matrices that map DNA sequence to binding energy for the lac repressor
(Figure 4.2). We performed this work in the context of a simple repression archi-
tecture, which is widespread among bacterial promoters [45] and is frequently used
in synthetic biology [39, 46, 47]. We test our model’s predictions against binding
energies inferred from fold-change measurements of roughly 30 lac operator mu-
tants (Figure 4.3). These predictions proved to be approximately accurate, even for
operators with multiple mutations.

Because we are able to accurately predict operator binding energies, our sequence-
energy mappings can be used to design specific regulatory responses, which is of
great utility to synthetic biology. We combine energy matrices with the thermo-
dynamic model of inducible simple repression introduced in Chapter 2 to design
induction curves, as demonstrated in Figure 4.4. We note that in spite of the overall
success of our predictions, there remain some predictions that are significantly dif-
ferent from themeasured values (see the outliers in Figure 4.3(C)). Such inaccuracies
are particularly problematic when using energy matrices for design applications, as
discrepancies between a system’s expected and actual response may render a de-
signed system unsuitable for its intended application. We can see examples of this
in Figure 4.4(F-H). The prediction curves corresponding to operators with weaker
binding energies do not accurately describe the data, with the data exhibiting higher
or lower leakiness values than was predicted. If the leakiness is a vital parameter in
the designed system, then such a mis-match could cause the system to fail.

We also explore how sequence specificity is altered when transcription factor amino
acids are mutated. To do this, we repeat our Sort-Seq experiments in bacterial
strains expressing LacI mutants in which the DNA-binding domain has been altered
(Figure 4.5). Because all nucleotides in the binding site are mutated with some
frequency in Sort-Seq experiments, we are able to identify changes in specificity
throughout the entire binding site. Other methods for analyzing the sequence prefer-
ence of transcription factor mutants tend to be more laborious and less fine-grained,
often focusing on a small set of nucleotides within the binding site. These include
binding experiments between DNA mutants and protein mutants [40], gene expres-
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sion experiments using chimeric transcription factor proteins [48], and comparative
genomics [49].

We further explore how regulatory context alters sequence specificity. We generate
sequence logos from energy matrices obtained for the transcription factors XylR,
PurR, and LacI in different regulatory contexts, as shown in Figure 4.6. We find that
the two adjacent XylR binding sites exhibit significantly different binding specifici-
ties, while the simple repression constructs analyzed for PurR and LacI have nearly
identical sequence specificities. By itself, our method is unable to determine the
causes of context-dependent changes in sequence specificity, though it is known
that DNA shape or binding to cofactors can alter a transcription factor’s specificity
[42–44]. Rather, our approach can be used to determine whether a given binding
site’s sequence preferences diverge from the “standard” sequence specificity for the
relevant transcription factor, and further experiments (such as SELEX-seq in the
presence of a transcription factor and possible cofactors [44]) can be performed to
determine the cause of the change in sequence specificity.

A major advantage of our in vivo approach is that it allows us to analyze transcrip-
tion factors in their natural context, in the presence of interacting proteins, small
molecules, and DNA shape effects. This is especially important when analyzing
regulatory regions that have not been previously annotated, as was the case for the
XylR and PurR matrices obtained in Chapter 3. However, a clear advantage of
in vitro approaches is that they can accurately measure low-affinity binding sites
[12, 13, 15]. When using our in vivo approach, weaker reference sequences produce
energy matrices with variable quality and are more likely to make poor predictions
(see Supplemental Section 4.9). However, accuracy may be improved by inves-
tigating ways to reduce the experimental noise associated with in vivo systems,
for instance by incorporating promoter constructs as single copies in the chromo-
some rather than multiple copies on plasmid, for example using the “landing pad”
technique described in Ref. [50].

Thiswork provides a foundation for further studies thatwould benefit from sequence-
energy mappings. For example, our analysis of three LacI amino acid mutants could
be expanded to include a full array of DNA-binding mutants, which would allow one
tomake inferences regarding repressor-operator coevolution. Additionally, while we
make extensive use of LacI in the present work, similar analyses could be performed
with any transcription factor, making it possible to improve upon the genomically-
inferred sequence logos presently available for many transcription factors. Further,
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for cases in which it is known that sequence specificity is affected by DNA shape,
flanking sequences, cofactor binding, or other factors outside of the operator binding
sequence, our approach can be used to obtain a finely-detailed map of the effects
on sequence specificity. Finally, we note that one of the primary strengths of
our approach is that it can be used to elucidate the transcriptional regulation of
a gene with a previously-unknown regulatory architecture. As we have already
shown in Chapter 3, Sort-Seq can be combined with mass spectrometry to identify
transcription factor binding sites and those sites’ regulatory roles for any gene of
interest. Here we show that data sets obtained in this manner can also be used to
map sequence to binding energy, thus showing that a single experiment can be used
to characterize multiple aspects of a previously-unannotated regulatory sequence.
Futhermore, our approach does not rely specifically on the Sort-Seq technique used
here, but can be adapted to multiple experimental designs, such as RNA-seq based
MPRAs that have been demonstrated in multiple model systems [7, 51–53]. Over
time, we envision incorporating high-throughput synthesis and analysis techniques
to adapt our approach for genome-wide studies in both prokaryotes and eukaryotes.
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4.4 Methods
Sort-Seq libraries
To generate promoter libraries for Sort-Seq, mutagenized oligonucleotide poolswere
purchased from Integrated DNA Technologies (Coralville, IA). These consisted of
single-stranded DNA containing the lacUV5 promoter and LacI operator plus 20 bp
on each end for PCR amplification and Gibson Assembly. Either both the lacUV5
promoter and LacI binding site or only the LacI binding site was mutated with a
ten percent mutation rate per nucleotide. These oligonucleotides were amplified
by PCR and inserted back into the pUA66-operator-GFP construct using Gibson
Assembly. To achieve high transformation efficiency, reaction buffer components
from the Gibson Assembly reaction were removed by drop dialysis for 90 minutes
and cellswere transformed by electroporation of freshly prepared cells. Following an
initial outgrowth in SOCmedia, cells were diluted with 50 mL LBmedia and grown
overnight under kanamycin selection. Transformation typically yielded 106 − 107

transformants as assessed by plating 100 µL of cells diluted 1:104 onto an LB plate
containing kanamycin and counting the resulting colonies.

DNA Constructs for fold-change measurements of mutant operators
Simple repression motifs used in fold-change measurements were adapted from
those in Garcia et al.[29]. Briefly, a simple repression construct with the O1 operator
sequence was cloned into a pZS25 plasmid background directly downstream of a
lacUV5 promoter, driving expression of a YFP gene when the operator is not bound
by LacI. This plasmid contains a kanamycin resistance gene for selection. Mutant
LacI operator constructs (listed in Table 4.1) were generated by PCR amplification of
the lacUV5 O1-YFP plasmid using primers containing the point mutations as well
as sufficient overlap for re-circularizing the amplified DNA by one-piece Gibson
Assembly.

A second construct was generated to express LacI at a specified copy number.
Specifically, lacI was cloned into a pZS3*1 background that provides constitutive
expression of LacI from a PLtetO−1 promoter [54]. This plasmid contains a chlo-
ramphenicol resistance gene for selection. The LacI copy number is controlled by
mutating the ribosomal binding site (RBS) for the lacI gene as described in [55]
using site-directed mutagenesis (Quickchange II; Stratagene, San Diego, CA) and
further detailed in [29]. Here, we mutated the RBS such that it would produce a
LacI copy number of ∼ 130 tetramers once the construct had been integrated into
the chromosome.
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Once the plasmids had been generated, the promoter and lacI constructs were each
amplified by PCR and integrated into the chromosome by lambda-red recombineer-
ing using the pSIM6 expression plasmid [56]. The promoter construct and YFP
gene were inserted into the galK locus in the E. coli genome and the lacI construct
was inserted into the ybcN locus.

Construction of LacI Amino Acid Mutants
As previously mentioned, wild-type lacI was cloned into a pZS3*1 background
providing constitutive expression of LacI, with the LacI copy number mediated by
a mutated RBS. We used the RBS corresponding to a LacI tetramer copy number
of ∼ 130 for each mutant. To create DNA-binding mutants for LacI we used
site-directed mutagenesis (Quickchange II; Stratagene, San Diego, CA) using the
mutagenesis primers listed in Table 4.2. We mutated the amino acid Y to I at
position 20 and Q to A or M at position 21. We chose these mutations based on
data from previous studies [40, 41], though we note that our amino acid numbering
system is shifted by +3 relative to the mutants in these previous studies since we
use a slightly different version of lacI. As with the wild-type lacI, we integrate the
mutants into the genome at the ybcN locus by lambda-red recombineering using the
pSIM6 expression plasmid.

Bacterial Strains
E. coli strains used in this work were derived from K12 MG1655. To generate
strains with different LacI copy number, the lacI constructs were integrated into a
strain that additionally has the entire lacI and lacZYA operons removed from the
chromosome. These constructs were integrated at the ybcN chromosomal location.
This resulted in strains containing mean LacI tetramer copy numbers of R = 11± 2,
30 ± 10, 62 ± 15, 130 ± 20, 610 ± 80, and 870 ± 170, where the error denotes the
standard deviation of at least three replicates as measured by quantitative western
blots in Ref. [29].

For Sort-Seq experiments, plasmid promoter libraries were constructed as described
below and then transformed into the strains with R = 30, 62, 130 or 610. For
fold-change measurements, each O1 operator mutant was integrated into strains
containing each of the listed LacI copy numbers. These simple repression constructs
were chromosomally integrated at the galK chromosomal location via lambda red
recombineering. Generation of the final strains containing a simple repression motif
and a specific LacI copy number was achieved by P1 transduction. For each LacI



258

titration experiment, we also generated a strain in which the operator-YFP construct
had been integrated, but the lacI and lacZYA operons had been removed entirely.
This provided us with a fluorescence expression measurement corresponding to
R = 0, which is necessary for calculation of fold-change.

Sort-Seq fluorescence sorting
For each Sort-Seq experiment, cells were grown to saturation in lysogeny broth (LB)
and then diluted 1:10,000 into minimal M9 + 0.5% glucose for overnight growth.
Once these cultures reached an OD of 0.2-0.3 the cells were washed three times with
PBS by centrifugation at 4000 rpm for 10 minutes at 4◦C. They were then diluted
two-fold with PBS to reach an approximate OD of 0.1-0.15. These cells were then
passed through a 40 µm cell strainer to eliminate any large clumps of cells.

A Beckman Coulter MoFlo XDP cell sorter was used to obtain initial fluorescence
histograms of 500,000 events per library in the FL1 fluorescence channel with a PMT
voltage of 800 V and a gain of 10. The histograms were used to set four binning
gates that each covered ∼ 15% of the histogram. 500,000 cells were collected into
each of the four bins. Finally, sorted cells were regrown overnight in 10 mL of LB
media, under kanamycin selection.

Sort-Seq sequencing and data analysis
Overnight cultures from each sorted bin were miniprepped (Qiagen, Germany),
and PCR was used to amplify the mutated region from each plasmid for Illumina
sequencing. The primers contained Illumina adapter sequences as well as barcode
sequences that were unique to each fluorescence bin, enabling pooling of the sorted
samples. Sequencing was performed by either the Millard and Muriel Jacobs
Genetics and Genomics Laboratory at Caltech or NGX Bio (San Fransisco, CA).
Single-end 100bp or paired-end 150bp flow cells were used, with about 500,000
non-unique sequences collected per library bin. After performing a quality check
and filtering for sequences whose PHRED score was greater than 20 for each base
pair, the total number of useful reads per bin was approximately 300,000 to 500,000
per million reads requested. Energy weight matrices for binding by LacI and RNAP
were inferred using Bayesian parameter estimation with a error-model-averaged
likelihood as previously described [27, 57] and further detailed in Supplemental
Section 4.6.
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Fold-change measurements by flow cytometry
Fold-change measurements were collected as previously described in Chapter 2 on
a MACSquant Analyzer 10 Flow Cytometer (Miltenyi Biotec, Germany). Briefly,
YFP fluorescence measurements were collected using 488nm laser excitation, with
a 525/50 nm emission filter. Settings in the instrument panel for the laser were as
follows: trigger on FSC (linear, 423V), SSC (linear, 537 V), and B1 laser (hlog,
790V). Before each experiment the MACSquant was calibrated using MACSQuant
Calibration Beads (Miltenyi Biotec, CAT NO. 130-093-607). Cells were grown
to OD 0.2-0.3 and then diluted tenfold into ice-cold minimal M9 + 0.5% glucose.
Cells were then automatically sampled from a 96-well plate kept at approximately
4◦ - 10◦C using a MACS Chill 96 Rack (Miltenyi Biotec, CAT NO. 130-094-459)
at a flow rate of 2,000 - 6,000 measurements per second.

For thosemeasurements that were taken for IPTG induction curves, cells were grown
as above with the addition of an appropriate concentration of IPTG (Isopropyl β-D-
1 thiogalactopyranoside Dioxane Free, Research Products International). For each
IPTG concentration, a stock of 100-fold concentrated IPTG in double distilled water
was prepared and partitioned into 100 µL aliquots. The same parent stock was used
for all induction experiments described in this work.

The fold-change in gene expression was calculated by taking the ratio of the mean
YFP expression of the population of cells in the presence of LacI to that in the
absence of LacI. Since the measured fluorescence intensity of each cell also includes
autofluorescence which is present even in the absence of YFP, we account for this
background by computing the fold change as

fold-change =
〈IR>0〉 − 〈Iauto〉
〈IR=0〉 − 〈Iauto〉

, (4.4)

where 〈IR>0〉 is the average cell YFP intensity in the presence of repressor, 〈IR=0〉 is
the average cell YFP intensity in the absence of repressor, and 〈Iauto〉 is the average
cell autofluorescence intensity as determined by measuring the fluorescence of cells
in which R = 0 and there is no fluorescent reporter.

Data curation
All datawas collected, stored, and preserved using theGit version control software in
combination with off-site storage and hosting website GitHub. Raw flow cytometry
data files (.fcs and .csv) files were stored on-site under redundant storage. Due to
size limitations, these files are available upon request. Sequencing data is available
through the NCBI website under accession number SAMN08930313.
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Table 4.1: Mutant operator sequences. Each of the listed operator sequences were
used to evaluate energy matrix predictions. They are mutated relative to the O1 lac
operator. The predicted binding energy was generated using the matrix with an O1
reference sequence with R = 130 LacI tetramers in the background strain.

Sequence Predicted ∆εR (kBT) Measured ∆εR (kBT)

1 bp mutants:
AATTGTGAGCGGAGAACAATT -12.63 -12.24
AATTGTGAGCGCATAACAATT -15.71 -15.30
AATTGTGAGCGGATCACAATT -15.22 -14.99
AATTGTGAGCGGAAAACAATT -12.91 -12.50
AATTGCGAGCGGATAACAATT -12.14 -11.30
AATTGTGAGGGGATAACAATT -13.16 -12.35
AATTGTGAGCGGATATCAATT -13.66 -13.29
AATTGTGAGCAGATAACAATT -11.11 -10.25
AATTGTGAGAGGATAACAATT -8.89 -10.00
2 bp mutants:
AATTGTGAGCGGGTAACAACT -13.82 -14.79
AAATGTGAGCGGATAACAACT -13.61 -14.40
AATTGTGAGCGAGTAACAATT -14.36 -15.12
ATTTGTGAGCGGAGAACAATT -12.55 -11.52
CATTGTGAGCGCATAACAATT -15.34 -14.80
AATTGTGAGCGGAACACAATT -12.83 -13.31
AATTGTGAGCGGAATACAATT -11.70 -12.03
AATTGCGAGCGGATAACAAAT -12.06 -10.78
AATTGTGAGGGGATAACAATC -14.13 -12.15
3 bp mutants:
AAATGTGAGCGAGTAACAATT -13.84 -14.57
AATTGTGAGCGAGTAACAACT -13.19 -14.67
ATTTGTGAGCGAAGAACAATT -11.92 -10.83
CATTGTGAGCGCATAACATTT -15.39 -14.18
AATTGTGAGCGGAACACAATG -13.72 -12.17
AATTGTGAGCGGGATACAATT -11.39 -11.86
AATTGCGAGCGGATAACAAAG -12.96 -10.62
AATTGTGAGGGTATAACAATC -14.10 -11.79
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Table 4.2: Primers used in this work. The listed primer sequences were used
to generate plasmids for Sort-Seq experiments or for use in creating strains with
mutated operators or LacI.

Name Sequence Comments

lac_ins_fwd CCCTTTCGTCTTCAC
Used to amplify lac promoter
insert for Gibson

lac_ins_rev CCTTTACTCATATGTATATCTCCTTTTAAATCTAGAGGAT
Used to amplify lac promoter
insert for Gibson

pUA66_frameshift_fwd GATATACATATGAGTAAAGGAGAAGAACTT
Used to amplify pUA66
vector for Gibson

pUA66_rev TCGAGGTGAAGACGAAAG
Used to amplify pUA66
vector for Gibson

GCMWC-001_Q21_rev CCGGCATACTCTGCGACA
Mutagenesis primer for
LacI residue 21

GCMWC-002_Q21M GTGTCTCTTATATGACCGTTTCCCGC
Mutagenesis primer for
LacI residue 21 Q→ M

GCMWC-003_Q21A TGTCTCTTATGCGACCGTTTCCCGC
Mutagenesis primer for
LacI residue 21 Q→ A

GCMWC-009_Y20_rev GCATACTCTGCGACATCGTATAAC
Mutagenesis primer for
LacI residue 20

GCMWC-010_Y20I CGGTGTCTCTATTCAGACCGTTTC
Mutagenesis primer for
LacI residue 20 Y→ I
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4.5 Supplemental Information: Sequences used in this work

...CCCTTTCGTCTTCACCTCGA TTTACACTTTATGCTTCCGGCTCGTATAATGTGTGG AATTGTGAGCGGATAACAATT ATCCTCTAGATTTAAGAAGGAGATATACAT ATGAGTAAAGGAGAAGAAC...

Simple lac repression construct

Upstream lac repression construct

RNAP binding site O1 operator

AAATGTGAGCGAGTAACAACC

O2 operator

GGCAGTGAGCGCAACGCAATT

O3 operator

GFP gene

...CCCTTTCGTCTTCACCTCGA TTTACACTTTATGCTTCCGGCTCGTATAATGTGTGG ACGCAAACGTTTTCGT ATCCTCTAGATTTAAGAAGGAGATATACAT ATGAGTAAAGGAGAAGAAC...

Simple pur repression construct

AAGACAC TTATACT

Inferred PurR binding site

RNAP binding site PurR binding site

ACGCAAACGTTTTCGT

PurR binding site-35 -10

Inferred XylR binding sites

AAAAGACATTACGTAA TGTAAAAAATGATAA

XylR right siteXylR left site
AGCCAT

GFP gene

...CCCTTTCGTCTTCACCTCGA TTTACACTTTATGCTTCCGGCTCGTATAATGTGTGGGGC ATCCTCTAGATTTAAGAAGGAGATATACAT ATGAGTAAAGGAGAAGAAC...

RNAP binding site
AATTGTGAGCGGATAACAATT

O1 operator GFP gene

(A)

(B)

Figure 4.7: List of wild-type reporter constructs. (A) Wild-type versions of
reporter constructs that were used either for Sort-Seq (all) or for measuring operator
mutant binding energies (simple lac repression, though we note that constructs used
for fold-change measurements used YFP rather than GFP). (B) Wild-type versions
of sequences that were inferred for PurR and XylR in Chapter 3.
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4.6 Supplemental Information: Bayesian Inference of EnergyMatrix Models
We use Sort-Seq data to generate energy matrices that map sequence to binding
energy. As discussed in Refs. [27, 58], one can infer these energy matrices by
Bayesian parameter estimation using the observation that for large data sets,

p(data | model) ∝ 2N I (σ;µ), (4.5)

where N is the number of data points and I (σ; µ) represents the mutual information
between the promoter sequence σ and the fluorescence bin µ. Using a method
discussed in detail in Refs. [27, 59], we use a Markov Chain Monte Carlo (MCMC)
algorithm to infer a set of energy values (in arbitrary units) for each energy matrix
position that maximizes the mutual information between binding site sequence and
fluorescence bin. This inference is performed using the MPAthic software package
[60].

In order to convert energy matrices into absolute energy units (such as the kBT units
used in this work), one must obtain a scaling factor that can be applied to the matrix.
To obtain this scaling factor, we first observe that energy matrices derived from
Sort-Seq can be used to predict the binding energy associated with a given operator
mutant (∆εR) using the linear equation

∆εR = αεmat + ∆εwt, (4.6)

where εmat is the energy value obtained by summing the matrix elements associated
with a sequence, α is a scaling factor that converts the matrix values into kBT units,
and ∆εwt is the binding energy associated with the wild-type operator. The values
of the matrix positions associated with the wild-type sequence are fixed at 0 kBT ,
so that εmat = 0 for the wild-type sequence. Thus, αεmat can be interpreted as the
change in binding energy relative to the wild-type caused by the specific mutations
in the sequence of interest. The value of α can be determined in a number of ways
(as discussed further in Supplemental Section 4.7), but the method employed in the
main text is to use Bayesian parameter estimation by MCMC. The advantage of this
method is that if a thermodynamic model for the promoter is known, one can use
the Sort-Seq data to infer the value of α without having to perform any additional
experiments. Here we describe in detail how MCMC is used to infer a value for α.

If the energy matrix is properly converted into kBT units, then one can use energy
matrix predictions, along with a thermodynamic model for gene expression, to
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discern which fluorescence bin a given promoter sequence should have fallen into.
We discuss above how one can infer the energy matrix parameters by maximizing
the mutual information between sequence and expression bin. Similarly, we can
obtain an estimate for α by finding the value of α that maximizes the mutual
information between the Sort-Seq data and the expression predictions from the
matrix and thermodynamic model. For the thermodynamic model, we begin with
the expression for pbound for a simple repression system,

pbound =

P
NNS

e−β∆εP

1 + P
NNS

e−β∆εP + 2R
NNS

e−β∆εR
, (4.7)

where P is the number of RNAP molecules in the system, NN S is the number of
nonspecific binding sites available in the system (i.e. the length of the genome), R

is the number of repressors in the system, ∆εP is the binding energy of RNAP to its
binding site, and ∆εR is the binding energy of the repressor to its binding site. We
can rearrange this equation to make it easier to work with. First, we divide the top
and bottom by the numerator, giving us

pbound =
1

1 +
1+ 2R

NNS
e−β∆εR

P
NNS

e−β∆εP

. (4.8)

Importantly, in order to evaluate themutual information between∆εR and pbound , it is
not necessary to adhere to the full expression for pbound . Rather, we can manipulate
the expression in ways that make it easier for us to work with, provided that the
mutual information between ∆εR and pbound is preserved. As noted in [57], the
mutual information is preserved provided that any manipulations to the expression
do not disrupt the rank ordering of an expression’s values as the value of ∆εR is

varied. We note that the term
1+ 2R

NNS
e−β∆εR

P
NNS

e−β∆εP
has the same rank ordering as the full

expression for pbound . Furthermore, taking the log of this term will also not affect
the rank ordering, and it will make the calculation simpler, so we take the log to get
an expression which we will refer to as p′bound , giving us

p′bound = ln
(
1 +

2R
NN S

e−β∆εR
)
− ln

(
P

NN S

)
+ β∆εP. (4.9)

We observe that the constant ln
(

P
NNS

)
also does not affect rank ordering, so we can

drop this term. Additionally, we recall that ∆εR = αεmat,R + ∆εwt,R. Likewise, we
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can say that ∆εP = γεmat,P + ∆εwt,P, where γ is the scaling factor for the RNAP
matrix. As before, we can drop the constant∆εwt,P as it will not affect rank ordering.
This leaves us with the expression

p′bound = ln
(
1 +

2R
NN S

e−β(αεmat,R−∆εwt,R)
)
+ βγεmat,P. (4.10)

With this expression in hand we can sample values of γ and α to identify values
that maximize the mutual information between p′bound and the expression bin which
a particular sequence was sorted into during Sort-Seq. Note that while the rest of
the discussion will focus on α, a value for γ comes out of this analysis as well.

The mutual information surface is very rough, with many peaks, so we need to
use a method which can avoid getting stuck in local maxima. We use a parallel
tempering MCMC algorithm (PTMC) to achieve this. The parallel tempering
MCMC algorithm works by randomly sampling possible values for α and rejecting
the valuewith some probability if it does not increase themutual information relative
to the previous sampled value of α. In this respect it is similar to a “standard”MCMC
algorithm. By contrast with a standard MCMC algorithm, a parallel tempering
algorithm runs multiple chains at once at different temperatures. In our case, we
use 10 different temperatures ranging from β = 0.02 to β = 4 on a log scale,
where β = 1/kBT . Periodically throughout the MCMC run, the current α values
from different temperature chains will swap. This allows the algorithm to sample α
values at different levels of precision. Specifically, the high temperature chains will
explore widely and not get stuck in local minima, while the low temperature chains
will then carefully explore the peak that was found by the high temperature chain.
The output is a distribution of values, and we take the median of this distribution to
obtain our estimate for α.
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4.7 Supplemental Information: Alternate Methods for Obtaining Energy
Matrix Scaling Factor

As discussed in Supplemental Section 4.6, in order to convert an energy matrix
into kBT units one must infer an appropriate scaling factor α. In the main text
we primarily use Bayesian parameter estimation by MCMC to infer this factor, but
other methods can be used as well. Here we discuss two alternative methods: least
squares regression tomeasured binding energy values, and calibrating to a theoretical
mutation parameter. In this section we will discuss the strengths and weaknesses
of each method and compare predictions using these methods to predictions using
MCMC.

Fitting by Least Squares Regression to Measured Binding Energy Values
To obtain a value for α using least squares regression, we first define a least-squares
function f (α) as

f (α) =
n∑

i=1

(
∆εmeas,i − α∆εpred,i − ∆εwt

)2
, (4.11)

where ∆εmeas is the measured binding energy for an operator mutant and ∆εpred

is the corresponding binding energy prediction from our unscaled energy matrix.
To determine the best-fit value of α, we identify the value of α that minimizes the
function. We perform this fit using measurements from the nine single base pair
mutants used in this work.

Fitting to the Average Energy per Mutation
In many cases, we will not have thermodynamic models available to use for inferring
scaling factors by fitting or Bayesian inference. This raises the question of whether it
is possible to estimate the scaling factor by other means, for example by determining
some average binding penalty incurred by making a mutation to a binding site. To
explore how we might think about such an average binding penalty, we consider
the effects of mutations away from the lowest-energy binding sequence for LacI
(Figure 4.8). As shown in Figure 4.8A, a wide range of binding energies are
available to binding site mutants. The distribution of binding penalties of single
base-pair mutations to this binding site is shown in Figure 4.8B. The distribution
is fairly broad, yet we find that the mean predicted binding energy for binding site
mutants, as shown in Figure 4.8C, is strongly related to the mean binding penalty
of a single base pair mutation. Specifically, the slope of the predicted energy versus
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the number of mutations is approximately equal to the mean binding penalty of a
single mutation. This tells us that the average energy per mutation is a meaningful
metric that provides information about the general behavior of a transcription factor
binding site.
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Figure 4.8: Average effect of a binding sitemutation. (A)Cumulative distributions
are shown for the predicted binding energies of lac operator mutants. The mean
predicted binding energy increases substantially with the number of mutations,
as does the width of the distribution. The dotted line shows the point at which
∆εR = 0 kBT , which is the average energy of nonspecific binding. (B)Ahistogramof
binding penalties for single base pair mutations to theminimum-energy LacI binding
sequence shows that themean binding penalty of amutation is 3.28 kBT . (C) Plotting
the mean binding energy of an operator against the number of mutations relative
to the minimum-energy sequence shows a linear trend with a slope approximately
equal to the average energy penalty per mutation.

Next we need to determine how one would estimate the average energy per mutation
for an energy matrix that has not already been converted into absolute energy
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mutants. We turn to Ref. [61] in which they make an estimate for the average
energy penalty, εmut , of a single base pair mutation relative to the minimum-energy
sequence. We can use this estimate to infer a value for α when no thermodynamic
model is available to perform a fit for α. We note that unlike the other methods for
obtaining α, this method does not rely on expression information from the promoter
of interest and thus is best interpreted as a rough “guess.”

To begin this estimate, we assume a minimal organism in which there is a single
transcription factor with a copy number of 1, and this transcription factor regulates
gene expression by binding to a single minimum-energy operator, which has an
energy of∆εmin. The remaining sequence in this minimal genome is mostly random,
but it includes a number of weaker binding sites for the transcription factor such that
all possible single base-pair mutations to the binding site are represented. From a
statistical mechanics perspective, in order for the transcription factor to bind reliably
to theminimum-energy operator, the operator’s statistical weight (given by e−β∆εmin)
must outweigh the total statistical weight of all possible single base-pair binding site
mutants (given by le−β(∆εmin+εmut )), where l is the length of the binding site in base
pairs. This gives us

e−β∆εmin ≥ le−β(∆εmin+εmut ) . (4.12)

This implies that the minimum average binding energy penalty due to a mutation is
given by εmut = ln l, which for a binding site of 21 bp (the length of a lac operator)
comes out to εmut ≈ 3 kBT . This is remarkably close to the mean energy penalty of
3.28 kBT calculated for LacI as noted in Figure 4.8B.

Based on this estimate, one can find a value for α by setting the minimum binding
energy of an energy matrix to 0, then taking the mean of the nonzero elements of
the matrix, εmean, and finding a scaling factor α such that αεmean = ln l kBT .

Method comparison
Each of the methods outlined above is capable of producing a value of α that can be
used to convert an energy matrix into kBT units. Each of these methods has its own
advantages and disadvantages. Here we will outline these trade-offs and compare
the accuracy of the predictions that can be made using each method.

The primary advantage of the Bayesian regression byMCMCmethod, which is used
for the LacI binding energy predictions in the main text, is that it can be implemented
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using the same Sort-Seq data that was used to obtain the energy matrices. No further
data collection is required. However, in order to implement this method one must
have a thermodynamic model that predicts gene expression for a given operator
binding energy. This is trivial for systems with simple regulatory architectures, as is
the case with the simple repression architecture used in this study. However, while
models for more complex architectures have been proposed [28], identifying the
correct model may not be straightforward and a number of additional experiments
may be required in order to validate the proposed model. Additionally, significant
computing power is required in order to infer a scaling factor using this method.

The advantages of the least-squares fitting method are that it is conceptually straight-
forward, it requires little computing power, and it provides a very accurate scaling
factor. However, multiple fold-change measurements for different operator mutants
are required to perform the regression and calculate the best-fit value of α, and any
outliers must be identified in order to maximize the accuracy of the fit. Additionally,
a thermodynamic model for the system is again required if binding energies are to
be measured using fold-change data.

The advantage of the theoretical mutation parameter method is that it is very simple,
and requires no knowledge of the regulatory architecture of the promoter. All that is
needed is an energy matrix for an operator and an estimate of the operator’s length.
Indeed, for XylRwe lack sufficient information to confidently infer a thermodynamic
model of gene expression, so this is the method used to produce energy matrices for
this transcription factor (we note that the theoretical mutation parameter method is
also used for PurR energy matrices in the main text, though a thermodynamic model
is available for PurR as shown inChapter 3). For the lac operator it produces a scaling
factor that is approximately as accurate as the other inference methods discussed
here (see Figure 4.9). However, this method is based on simplified biophysical
arguments, and it is likely that there are a number of regulatory scenarios for which
it would not be as successful.

Figure 4.9 compares predictions made using each method for obtaining a scaling
factor. The same matrix was used for each prediction, with O1 as the wild-type
sequence and R = 130 LacI tetramers in the strain used for Sort-Seq. We find
that all methods produce predictions that generally describe the data, but when
comparing the mean squared error (MSE) of the predictions, it is clear that some
methods perform better than others. Note that elsewhere in the supplement we
compare predictions using the Pearson correlation coefficient (ρ). We use the
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MSE here instead because an inaccurate scaling factor will not effect the linear
relationship between predictions and measurements, but it will affect the accuracy
of the predictions. Thus a set of predictions may have a high ρ value corresponding
to a strong linear relationship, but still have a high MSE corresponding to inaccurate
predictions. The Bayesian parameter estimation (Figure 4.9A) and least-squares
regression (Figure 4.9B) methods perform nearly identically. However, while the
value for α that was inferred from the theoretical mutation parameter (Figure 4.9C)
makes predictions that generally describe the data, the MSE values associated with
its predictions are notably larger than the other methods, particularly for the 1 bp
mutants.
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Figure 4.9: Alternatemethods of obtaining energymatrix scaling factor produce
similar results. Shown are data for predicted vs. measured binding energies of 1, 2,
or 3 bpmutants. The binding energy predictions aremade using energymatrices that
have been scaled using one of three methods: (A) Bayesian parameter estimation
using MCMC, (B) least-squares regression, or (C) inference from a theoretical
mutation parameter. All predictions were made using an energy matrix with O1 as
the wild-type sequence and R = 130 LacI tetramers in the cells used to perform
Sort-Seq. The mean squared error (MSE) associated with each set of predictions is
noted in the legend.
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4.8 Supplemental Information: Comparing linear energymatrixmodels with
higher-order models

A commonly cited problemwith energymatrices is that linear bindingmodels do not
accurately describe the mechanism of transcription factor binding to DNA. While
linear models assert that each base pair contributes independently to the binding
energy, it is known that interactions between two or more base pairs can play an
important role in determining binding affinity [32, 62]. In spite of this, linear models
are still commonly used because they often perform nearly as well as higher-order
models [22, 63], and they require many fewer parameters than a higher-order model.
For example, a linear model for LacI binding to a 21 bp long operator requires that 84
parameters be inferred, one for each base at each position. By contrast, a two-point
model for LacI that accounts for all possible interactions between any two bases
in the binding site requires 3660 parameters. Obtaining high-quality estimates for
these parameters requires a great deal more data and computing power than inferring
parameters for linear models. Thus it is important to carefully consider whether
higher-order models will dramatically improve predictions.

Here we take advantage of our large Sort-Seq data sets to infer two-point binding
energy models for LacI binding. As with linear models, two-point binding energy
models are inferred by identifying a set of parameters that maximizes mutual in-
formation between sequence and expression bin (see Supplemental Section 4.6 for
more details). In Figure 4.10 we compare binding energy measurements to a pre-
dictions from a linear model (Fig. 4.10(A)) and a two-point model (Fig. 4.10(B)).
We also make this comparison for models in which each sequence with only one
sequencing count are removed from the data set and then all other sequences are
weighted equally 4.10(C-D)). This weighting scheme removes possible sequencing
errors from the data set and then gives low-frequency sequences the same influence
as high-frequency sequences, compensating for any inequalities that may arise if
the library itself has an unequal representation of sequences. The same data set
was used to infer each model, namely the data set for the strain with repressor copy
number R = 130 and an O1 reference sequence. The quality of the predictions
for each model is quantified by noting the Pearson’s correlation coefficient ρ for
each data set. Surprisingly, the unweighted two-point model does not outperform
the linear model. In fact, it performs substantially worse. The weighted two-point
model, however, performs better than the weighted linear model.
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(C) weighted linear model
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(D) weighted two-point model
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Figure 4.10: A comparison of linear models with two-point models. Binding
energy measurements are compared against predictions from energy matrix models
obtained using a strain where R = 130 and O1 is the reference sequence. (A)
Predictions are made using a linear energy matrix in which each sequence position is
considered independently. This matrix is used to obtain the predictions discussed in
the main text. (B) Predictions are made using an energy matrix model that accounts
for all two-point interactions between nucleotides at different sequence positions.
The Pearson’s correlation coefficients for the measurements and predictions indicate
that this matrix model performs substantially worse than the linear matrix model,
particularly for multiple mutations. (C) Predictions are again made using a linear
matrix model, though this model has been weighted so that all sequences (aside from
single-count sequences, which were dropped) have the same weight. This matrix
model has been inferred after removing all single-count sequences from the data set
and then weighting all sequences evenly. (D) Predictions are made using a two-point
matrix model using the same weighting scheme as in (C). This weighting procedure
results in a two-point matrix model that makes improved predictions relative to the
weighted linear matrix model.
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4.9 Supplemental Information: Influence of Regulatory Parameters on En-
ergy Matrix Quality

The level of repression in a repressible system is dependent on a number of factors.
In this work we primarily focus on operator binding energy, but other key parameters
include operator copy number, repressor copy number, and competition from other
binding sites, as discussed in detail in Ref. [64]. Here we consider how two
parameters influence energy matrix quality: namely, repressor copy number R and
the binding energy of the operator reference sequence.

Because our promoter constructs are on plasmids and thus have multiple copies
(N ≈ 10), there is some concern that there might not be a sufficient number of
repressors in the cell to demonstrate significant changes in expression when the lac
operator is mutated. The wild-type copy number of LacI tetramers in E. coli is
R = 11, which is comparable to the plasmid copy number used in this study. We
increase the LacI copy number by using synthetic RBSs that have been shown to
increase gene expression [29]. Additionally, we consider the fact that the binding
energy of the reference sequence influences the distribution of binding energies
present in the mutant library, and therefore the “ideal” value of R may be different
for different reference sequences. To explore these factors, we performed Sort-Seq
experiments for each combination of R (i.e. R = 30, 62, 130, or 610) and reference
binding energy (i.e. ∆εR = −15.3 kBT for O1, ∆εR = −13.9 kBT for O2, or
∆εR = −9.7 kBT for O3).

Comparison of binding energy predictions
Figure 4.11 shows how predicted andmeasured binding energy values for single base
pair mutants compare for each combination of repressor copy number and reference
sequence. We show predictions from energy matrices that have been scaled using
the least squares method (see Supplemental Section 4.7), as this is the most accurate
method for obtaining a scaling factor. The Pearson’s correlation coefficient (ρ) for
each set of predictions is shown as a way of quantifying which of these combinations
produces the “best” energy matrices, as defined by which matrices give the best
agreement between prediction and measurement. We see that the best agreement
between prediction and measurement occurs when O1 is the reference sequence.
Conversely, predictions from matrices made using O3 as a reference sequence do
not predict the measured values at all, as indicated by the especially low ρ values.
While the choice of repressor copy number does not appear to have a large effect on
the quality of matrix predictions, particularly for matrices with O1 as the reference
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sequence, we do observe that R = 610 consistently corresponds with the most
accurate predictions. We note that in the main text we make predictions using the
energy matrix with the O1 reference sequence and R = 130. This is because in the
main text we obtain our scaling factors using Bayesian inference by MCMC (see
Supplemental Section 4.6), and the most accurate scaling factor inferred by this
method was for R = 130.
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Figure 4.11: Repressor copy number and reference sequence affect accuracy
of energy matrix predictions. Sort-Seq was performed with all combinations
of four different repressor copy numbers (R = 30, 62, 130, and 610) and three
different reference operator sequences (O1, O2, and O3) to produce a total of
12 energy matrices. Predictions from each of these energy matrices are plotted
against measured binding energy values for single base-pair mutants. The Pearson’s
correlation coefficient (ρ) is noted for each plot as a measure of prediction accuracy.

Variation in energy matrix replicates
In addition to the matrices analyzed in Figure 4.11, we performed two additional
replicates for each of the energy matrices obtained from strains with R = 30 or
R = 62. This allows us to determine the level of variation in energy matrices and
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Figure 4.12: Variation in sequence logo results. Replicates of Sort-Seq experi-
ments were performed using O1 or O2 as a reference sequence. The O1 experiments
(left) produced very consistent sequence logos, while the O2 experiments (right)
produced sequence logos that varied significantly in quality.

their associated sequence logos. As shown in Figure 4.12, replicates using O1 as a
reference sequence produce very consistent sequence logos, while replicates using
O2 as a reference sequence produce less consistent sequence logos. This suggests
that the strength of the binding site is a significant factor determining the consistency
of experiment outcomes.

As another point of comparison, we computed the Pearson’s correlation coefficient
ρ between the lists of values comprising each of our unscaled energy matrices
with O1 and O2 reference sequences (see Figure 4.13). This allows us to ascertain
whether the matrices themselves are substantially different under different experi-
mental conditions. We find that all of the matrices with an O1 reference sequence
are highly correlated with one another. By contrast, the matrices with an O2 ref-
erence sequence are less correlated with one another, even among replicates of the
same experimental conditions. The second replicate of the O2 matrix with R = 30
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is particularly poorly correlated with other matrices. However, the O2 matrices do
generally have a higher ρ value with one another than with the O1 matrices. An
exception to this is the O2 matrices with R = 130 and R = 610, which appear to
be moderately well-correlated with the O1 matrices. These results suggest that the
choice of reference sequence used to perform the Sort-Seq experiment is a more
important determinant of matrix quality than repressor copy number, though the
results may also support the hypothesis that higher repressor copy numbers corre-
spond with improved matrix quality, particularly for weaker reference sequences
such as O2.

O1

O1 O2

O2

Figure 4.13: Correlation coefficients between unscaled linear energy matrices.
The Pearson’s correlation coefficient (ρ) was calculated for each pair of linear energy
matrices with an O1 or O2 reference sequence. Those experiments conducted using
strains with repressor copy number R = 30 and R = 62 were repeated three times,
as denoted by replicate number r1, r2, or r3. We find that all O1 matrices are highly
correlated with one another, while O2matrices are generally less correlated with one
another. In general there is low correlation between O1 and O2 matrices, with the
exception of O2 matrices with high repressor copy numbers, R = 130 and R = 610.
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4.10 Supplemental Information: Comparison of full-promoter and operator-
only energy matrix predictions

In the main text, we perform Sort-Seq using libraries in which the entire promoter
region was mutated, namely both the RNAP site and the operator. Here we consider
whether one can improve energy matrix accuracy by using libraries in which only
the operator is mutated.

In order to infer the energy matrix scaling factor α from Sort-Seq data alone (see
Supplemental Section 4.6), it is necessary tomutate the full promoter, becausemuta-
tions to both the operator and RNAP binding sites are relevant to the thermodynamic
model used to perform the inference. Because of this we use full promoter mutant
libraries in the main text. This means that an alternate method is required in order
to infer an energy matrix scaling factor for matrices derived from libraries in which
only the operator was mutated. Here, we obtain a scaling factor by least-squares
regression to a set of measured binding energies for nine 1 bp mutants, as discussed
in Supplemental Section 4.7. We then compare measured binding energies against
predictions for 1, 2, and 3 bp mutants that were produced using either full-promoter
energy matrices or operator-only energy matrices (see Figure 4.14). All matrices
were scaled using a least-squared derived scaling factor. We find that operator-only
energy matrices produce somewhat more accurate predictions than full-promoter
energy matrices. We quantify this by noting the Pearson correlation coefficient (ρ)
for each set of predictions, which clearly indicates that the O1 operator-only matrix
produces the most accurate predictions. This shows us that operator-only energy
matrices are a good option when it is feasible to infer the scaling factor from binding
energy measurements.
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Figure 4.14: Mutating the operator alone can improve energy matrix accuracy.
Binding energy measurements are plotted against energy matrix predictions from
full-promoter (A, C) and operator-only (B, D) energy matrices using either O1 (A,
B) or O2 (C, D) as a reference sequence. The Pearson correlation coefficient (ρ)
is noted for each set of predictions. We see that the operator-only energy matrices
produce more accurate predictions than the full-promoter energy matrices.
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4.11 Supplemental Information: Summary of all fold-change data
To measure binding energies for each mutant, fold-change measurements first were
obtained by flow cytometry for each mutant in strains with repressor copy numbers
R = 11 ± 1, 30 ± 10, 62 ± 15, 130 ± 20, 610 ± 80, and 870 ± 170. The data were fit
to the fold-change Equation 4.2. Nonlinear regression was used to obtain the most
probable value of ∆εR for each mutant. The fold-change data, fitted theory curve,
and predicted theory curve are shown here for all 1 bp (Figure 4.15), 2 bp (Figure
4.16), and 3 bp mutants (Figure 4.17).
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Figure 4.15: Fold-change measurements for 1 bp mutants. Fold-change
measurements are shown for nine 1 bp operator mutants in strains with R =
11, 30, 62, 130, 610, or 870. These measurements are overlaid with the measured
(fitted) binding energy measurements for each mutant (solid line) and the predicted
measurements (dashed line) as listed in the main text. Note that the bottom three
plots do not display data points for R = 62, as the data for these strains were outliers.
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Figure 4.16: Fold-change measurements for 2 bp mutants. Fold-change
measurements are shown for nine 2 bp operator mutants in strains with R =
11, 30, 62, 130, 610, or 870. These measurements are overlaid with the measured
(fitted) binding energy measurements for each mutant (solid line) and the predicted
measurements (dashed line) as listed in the main text.
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Figure 4.17: Fold-change measurements for 3 bp mutants. Fold-change
measurements are shown for eight 3 bp operator mutants in strains with R =
11, 30, 62, 130, 610, or 870. These measurements are overlaid with the measured
(fitted) binding energy measurements for each mutant (solid line) and the predicted
measurements (dashed line) as listed in the main text.
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4.12 Supplemental Information: Expressions for phenotypic parameters of
induction responses

As discussed in greater detail in Chapter 2, the thermodynamic model we use
to predict induction responses allows us to derive expressions for the phenotypic
parameters of the induction response. Here we briefly list the expressions for the
phenotypic parameters we address in the present work.

The leakiness of the induction curve is the minimum fold-change observed in the
absence of ligand, given by

leakiness = (c = 0)

=

(
1 +

1
1 + e−β∆εAI

2R
NN S

e−β∆εR
)−1

, (4.13)

where c is the concentration of inducer, n is the number of inducer binding sites
on the repressor, and ∆εAI is the difference in free energy between the repressor’s
active and inactive states.

The saturation is the maximum fold change observed in the presence of saturating
ligand,

saturation = (c → ∞)

=
*.
,
1 +

1
1 + e−β∆εAI

(
KA

KI

)n
2R
NN S

e−β∆εR+/
-

−1

, (4.14)

where KA and KI are the dissociation constants of the inducer and repressor when
the repressor is in its active or inactive state, respectively.

Together, these two properties determine the dynamic range of a system’s response,
which is given by the difference

dynamic range = saturation − leakiness. (4.15)

The full expression for dynamic range is then given by

dynamic range = *.
,
1 +

1
1 + e−β∆εAI

(
KA

KI

)n
2R
NN S

e−β∆εR+/
-
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−

(
1 +

1
1 + e−β∆εAI

2R
NN S

e−β∆εR
)−1

.

(4.16)
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The [EC50] of the induction response denotes the inducer concentration required to
generate a system response halfway between its minimum and maximum value such
that

(c = [EC50]) =
leakiness + saturation

2
. (4.17)

The full expression for the [EC50] is then given by

[EC50]
KA
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KI
− 1

KA

KI
− *
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2
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