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ABSTRACT

This thesis is devoted to studying a class of quantum error-correcting codes —
topological quantum codes. We explore the question of how one can achieve fault-
tolerant quantum computation with topological codes. We treat quantum error-
correcting codes not only as a compelling ingredient needed to build a quantum
computer, but also as a useful theoretical tool in other areas of physics. In particular,
we explore what insights topological codes can provide into challenging questions,
such as the classification of quantum phases of matter.

In this thesis, we focus on a family of topological codes — color codes, which are
particularly intriguing due to the rich physics they display and their computational
power. We start by introducing color codes and explaining their basic properties.
Then, we show how to perform fault-tolerant universal quantum computation with
three-dimensional color codes by transverse gates and code switching. We later
compare the resource overhead of the code-switching approach with that of a state
distillation scheme. We discuss how to perform error correction with the toric and
color codes, as well as introduce local decoders for those two families of codes.
By exploiting a connection between error correction and statistical mechanics we
estimate the storage threshold error rates for bit-flip and phase-flip noise in the
three-dimensional color code. We finish by showing that the color and toric code
families in d dimensions are equivalent in a sense of local unitary transformations
and explore implications of this equivalence.
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C h a p t e r 1

INTRODUCTION

It is a privilege to be able to explore.
If you know what you’re doing, don’t do it!
—H. Jeff Kimble

The field of quantum computing [Pre99; NC10] and the idea of the quantum com-
puter can be traced back Feynman’s question of simulating physics with computers
[Fey82]. Feynman hypothesized that there could be two classes of computation:
classical and quantum. At that time it was already known that a universal Turing ma-
chine could efficiently simulate any classical computation [Tur36; Chu36]. However,
it was unclear if there could exist a universal quantum simulator powerful enough
to efficiently simulate any quantum system. This question was positively resolved
by introducing the notion of a quantum Turing machine, which provided a concrete
realization of the idea of a universal quantum computer [Ben80; Deu85]. Since then,
different models of quantum computation, such as adiabatic [Far+00], topological
[Kit03; Fre+03], measurement-based [RB01] and quantum circuit [Deu89] models,
have been proposed and proven to be equivalent to the quantum Turing machine.

Quantum computing promises a technological breakthrough if a quantum computer
is ever built. As originally suggested, we could use such a machine to efficiently
simulate physics of quantummany body systems and quantumfield theories [JLP11],
tasks believed to be computationally intractable with classical devices. A timely
question to think of now is to understand what specific computational tasks and
simulations can be performed on small quantum computers operating on a couple
hundred noisy physical qubits. We expect that in the future we will most likely be
able to circumvent engineering limitations and manufacture devices with millions
of logical qubits. Such computational power will allow us to run any quantum
algorithm, for instance Shor’s famous factorization algoritm [Sho94; Sho99], which
offers exponential speedup compared to known classical counterparts.

Building a quantum computer is, unfortunately, a daunting task. One of the main
reasons is that resources needed to perform quantum computation, such as entangle-
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ment, are very fragile to uncontrolled interactions with the environment. Decoher-
ence tends to destroy quantum information that is in a superposition of states, which
subsequently leads to a failure in the computation. Since we will never be able to
manufacture ideal quantum (or even classical) computer components and perfectly
isolate them to prevent the leakage of quantum information into the surrounding
environment, there will always be some physical noise present at the hardware level.
Fortunately, in order to reliably operate a quantum computer, it suffices to reduce the
level of physical noise below a certain critical value, the accuracy threshold, which
can be achieved by improving the quality and control of hardware components.
This impressive and far-reaching result is captured the quantum threshold theorem
[Sho96; AB97; KLZ98; Pre98], which asserts that an arbitrarily long quantum com-
putation can be performed with reasonable overhead, provided the physical noise is
smaller that the accuracy threshold and not too correlated.

One of the key ideas of protecting quantum information is to encode it into quantum
error-correcting codes [Sho95; Ste96a], which are formed by highly entangled
many-body states that are robust to typical errors. By doing so, one can achieve a
level of effective noise affecting the encoded information, which we call the logical
error rate, that is below the physical error rate for unencoded information. However,
we do not only want to reliably store quantum information on a noisy quantum
computer — we would like to perform quantum algorithms as well. In order to do
that, we need to be able to implement logical operations on the encoded information.
According to the Solovay-Kitaev theorem [Kit97; NC10], one can find a finite set of
gates, called a universal set, such that any unitary can be efficiently approximated
by using exclusively gates from that set. Thus, it would suffice to know how to
implement logical operations which form a universal gate set. At the same time,
we require that all the operations we apply to the system are fault-tolerant, i.e. do
not spread errors in an uncontrollable way. This motivates a search for quantum
error-correcting codes which simultaneously provide good protection against typical
noise and admit a fault-tolerant implementation of logical gates which are universal.

One of the most promising approaches to fault-tolerant quantum computing is topo-
logical quantum codes and the scheme of topological quantum computation intro-
duced by Kitaev [Kit03; Kit06; Kit01]. The ingenious insight of Kitaev was to
realize that one can use anyons, i.e. quasiparticles in a two-dimensional system with
unusual statistics [Wil82], to perform quantum computation. In this approach, errors
are suppressed at the hardware level and operations are implemented by braiding
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and fusing anyons. We remark that recently there has been a lot of experimental
effort devoted to showing the existence of anyons, in particular Majorana fermions
[Ali12]. Kitaev also proposed a class of many-body systems on a lattice realizing
so-called quantum double models [Kit03] whose highly entangled ground states
can be viewed as a quantum error-correcting code and their localized excitations
as errors in the code. The corresponding codes, called topological quantum codes
[Den+02; Bom13], have many desirable features, such as geometric locality and
high physical error rate tolerance. Despite their simplicity, quantum double models
and the corresponding topological quantum codes capture and describe a lot of inter-
esting concepts, such as quantum phases of matter and topological order [Wen90].
We can also view those models as toy examples to study and explore the connection
between condensed matter physics and quantum error correction.

The main goal of this thesis is to study topological quantum codes as leading
candidates for realizing fault-tolerant quantum computation. Moreover, we explore
the insights that topological quantum codes can provide into challenging problems
of many-body physics. We focus a lot of attention on a particularly intriguing
topological code called the color code. The questions addressed in this thesis can
be grouped into three broad categories: fault-tolerant computation, error correction
and quantum phases of matter. We illustrate the basic structure of the thesis in
Fig. 1.1.

Intro

Part I

Fault-tolerant 
computation

Part II

Error  
correction

Part III

Quantum 
phases of matter

cost of 
universality 3

logical 
operators 2

equivalence of toric 
and color codes 6

decoding 
algorithms 4

fundamental 
limitations 5

Topological
quantum codes

Figure 1.1: Structure of the thesis
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Fault-tolerant computation
We investigate how one can perform fault-tolerant computation with topological
codes. In particular, we provide methods of implementing logical operators in a
very simple fault-tolerant way. We also analyze the resource overhead of achieving
a universal gate set.

Error correction
We would like to understand how to reliably protect information against arbitrary
noise by encoding it into topological quantum codes. We explore fundamental
limitations on error-correction capabilities of topological codes and develop algo-
rithms to perform error correction. In order to do that, we study phase transitions
in new statistical-mechanical models and propose local decoders based on cellular
automata.

Quantum phases of matter
Wefocus on a class of systems related to topological codes and described by stabilizer
Hamiltonians. We prove the equivalence of two well-known models: the toric and
color codes in D ≥ 2 dimensions. Furthermore, we describe tools to study models
with non-commuting Hamiltonians and try to understand what ingredients, such as
symmetries, are needed to achieve error suppression.

This thesis might serve as a small step toward understanding the fundamental prin-
ciples behind error correction, which eventually could help with engineering many-
body systems suited for fault-tolerant quantum computation. We would like to
emphasize that ideas from quantum error correction go beyond quantum computa-
tion and seem to permeate many fields of physics including condensed matter and
quantum gravity. For instance, it was recently noticed that quantum error-correcting
codes can provide new insight into the bulk/boundary correspondence [ADH15;
Pas+15]. We believe that techniques and methods used in quantum error correction
will soon become a standard toolset used by any physicist, and thus exploring them
is an important and fascinating scientific quest.

In the rest of this chapter, we provide a brief introduction to topological stabilizer
codes, which are the main focus of this thesis. We hope that the next section is un-
derstandable for everyone even without extensive knowledge of quantummechanics.
We also provide a concise summary of the results and contributions presented in the
subsequent chapters of this thesis.
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1.1 Brief introduction to topological stabilizer codes
Classical and quantum codes
Classical and quantum computation can suffer from noise due to uncontrolled inter-
actions with the environment. In order to protect information from errors one can
encode it using error-correcting codes [Sha01; MS77]. The simplest example of
a code is the classical repetition code — one encodes a logical bit of information,
either 0 or 1, into multiple physical bits, each either zero or one:

0→ 00 . . . 0, 1→ 11 . . . 1. (1.1)

Then, provided that a fewer than half of the physical bits are corrupted, one can still
recover the encoded information by majority vote.

In order to store one quantum bit of information — a qubit, which is an arbitrary

superposition of two quantum states |0〉 = *
,

1
0

+
-
and |1〉 = *

,

0
1

+
-
— we cannot

immediately use an idea similar to the repetition code. Namely, due to the no-
cloning theorem [WZ82], an arbitrary quantum state |ψ〉 = α |0〉 + β |1〉 cannot be
copied, where α and β are complex numbers satisfying |α |2 + | β |2 = 1. Also, a
quantum version of the repetition code

|0〉 → |00 . . . 0〉 |1〉 → |11 . . . 1〉 (1.2)

would protect the encoded qubit against the bit-flip Pauli X = *
,

0 1
1 0

+
-
error

|0〉
X
7−→ |1〉 |1〉

X
7−→ |0〉 (1.3)

but would not prevent the other type of error, the phase-flip Pauli Z = *
,

1 0
0 −1

+
-error

|0〉
Z
7−→ |0〉 |1〉

Z
7−→ −|1〉. (1.4)

Fortunately, there exist quantum error correcting codes that reliably protect encoded
qubits against the bit- and phase-flip errors.

One of the simplest examples of a quantum code is the nine qubit code by Shor
[Sho95]

|0〉 →
1

2
√
2

(|000〉 + |111〉) ⊗ ( |000〉 + |111〉) ⊗ (|000〉 + |111〉), (1.5)

|1〉 →
1

2
√
2

(|000〉 − |111〉) ⊗ ( |000〉 − |111〉) ⊗ (|000〉 − |111〉), (1.6)
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which protects the encoded logical qubit against any single-qubit Pauli X , Z and
Y = iX Z errors. In fact, the nine qubit code allows for detection and correction of
any single-qubit error, which can be an arbitrary CPTP map applied to any of the
physical qubits. It is possible to extend Shor’s construction and find quantum codes
which can protect encoded information against more errors. In particular, we now
focus on a systematic construction of a class of quantum error-correcting codes,
introduced by Gottesman [Got96; Cal+97], called stabilizer codes.

Stabilizer codes
Stabilizer codes are quantum codes which are at the heart of many fault-tolerant
quantum computation schemes. A stabilizer code is specified by the stabilizer group
S, which is an Abelian subgroup of the Pauli group Pn = {I, X,Y, Z }⊗n generated by
tensor products of Pauli operators on n qubits. The code space associated with the
stabilizer group S is spanned by +1 eigenvectors of stabilizers S ∈ S. For the code
space to be non-trivial we require−I < S. Operators which transform encoded states
of the stabilizer code in the same way as Pauli operators would transform unencoded
states are called logical Pauli operators. They can be found as the elements of the
normalizer N = {P ∈ Pn |PSP† ∈ S} of the stabilizer group S in the Pauli group
Pn. Two logical operators are equivalent if they differ by some stabilizer.

To diagnose errors affecting a stabilizer code we measure generators of the stabilizer
group. The presence of errors is signalled by any non-trivial syndrome, which is the
set of all stabilizers returning −1 measurement outcomes. Since two errors which
differ by some stabilizer have the same syndrome, we cannot distinguish them by
stabilizer measurements and thus treat them as equivalent. We can always perform
error correction with stabilizer codes by choosing some Pauli operator consistent
with the observed syndrome, which brings the encoded state back to the code space.
However, the recovery might fail if the returned state in the code space is different
from the original one. In other words, the recovery fails if and only if it implements
any non-trivial logical Pauli operator on the code space, i.e. an element of the
normalizer N of S that is not in S. This motivates the definition of a notion of
the distance of a quantum code to be the minimum weight of any non-trivial logical
Pauli operator

d = min
P∈N\S

|P |, (1.7)

where |P | denotes the weight of an operator P ∈ Pn, i.e. the number of terms in the
tensor product not equal to identity. The distance is related to the error-correcting
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capabilities of a code. Namely, a code with distance d can correct arbitrary errors
on any bd/2c qubits.

We illustrate notions from this section with the nine qubit code. The stabilizer group
S of the nine qubit code is generated by the following stabilizer generators

S = 〈Z1Z2, Z2Z3, Z4Z5, Z5Z6, Z7Z8, Z8Z9, X1X2X3X4X5X6, X4X5X6X7X8X9〉,

(1.8)
where Xi and Zi denote Pauli X and Z operators acting on the qubit i. Two logical
Pauli X and Z operators can be represented as

X = X1X2X3 Z = Z1Z4Z7. (1.9)

One can verify that the distance of the nine qubit code is d = 3.

Decoding of stabilizer codes
The problem of finding a suitable correction of errors in a stabilizer code, based on
the observed syndrome, is called decoding. In general, optimal decoding, which
reduces to finding the most probable equivalence class of errors for the observed
syndrome, is computationally intractable [IP15]. However, there exist efficient
methods for the decoding of some codes, for instance by finding the most probable
error with the given syndrome [Den+02]. Also, the problem of decoding can be
simplified for a class of stabilizer codes, called CSS codes [CS96; Ste96b], whose
stabilizer group is generated by independent X- and Z-type stabilizer generators.
Namely, the decoding of CSS codes can be separated into independent correction
of Pauli X and Z errors.

We now consider the problem of decoding for a family of codes with growing
distance. Since error correction might fail, we can define an effective error rate as
the probability of unsuccessful decoding for a given code and physical error rate.
We say that a code family has a threshold pc if the effective error rate goes to zero in
the limit of infinite distance for any physical error rate p smaller than pc. Intuitively,
the threshold pc describes the maximum error rate that the code family can tolerate.
We would like to emphasize that the property of non-zero threshold is exhibited
only by certain families of codes, such as topological codes.

Topological stabilizer codes
Topological stabilizer codes [Kit03; BK98; FM01; BM06] are a class of stabilizer
codes with geometrically local generators. In other words, physical qubits can
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be placed on a manifold, for instance a torus, so that the code only has stabilizer
generators with local support, see Fig. 1.2 for illustration. We further require that the
number of qubits in the support of any stabilizer generator as well as the number of
stabilizer generators supported on any given qubit are bounded. Topological codes
protect information against local errors by encoding it into global degrees of freedom
associated with the topology of the manifold. At the same time, topological codes
require only geometrically local syndrome extraction and thus seem well suited for
experimental implementations, for which locality is an important constraint.

Figure 1.2: An illustration of a topological stabilizer code with qubits (red dots)
placed on a torus. Stabilizer generators of the code (shaded in blue) are geometrically
local, whereas non-trivial logical operators (shaded in green) are supported on non-
contractible regions. Code properties, such as the number of logical operators, are
related to the topology of the manifold.

The locality restriction that defines topological codes comes at a price. For instance,
for any D-dimensional topological code where D ≥ 2, the distance d and the number
of encoded logical qubits k are related to the number of physical qubits n via the
scaling

kd
2

D−1 ≤ O(n), (1.10)

as shown by [BHM10]. At first, the scaling of the distance d with the total number of
qubits n might suggest that topological codes do not provide good protection against
high-weight errors. It turns out, however, that the contrary is true: topological codes
can correct most of the likely errors and and tend to have high threshold [Den+02;
KBM09]. There is also a restriction on the computational power with topological
codes in D dimensions if one requires quantum circuits to be local. Namely, for any
topological code the group of logical gates implemented via local quantum circuits
of constant depth must be contained in the Dth level of the Clifford hierarchy CD,
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where C1 = Pn and the Dth level is defined recursively as the set of all unitaries
which map the Pauli group Pn onto unitaries in the (D − 1)-level [ZCC11; EK09;
BK13; PY15; JKY18]. In particular, this restriction applies to transversal logical
gates, i.e. code-preserving operations composed of separate unitaries applied to
each physical qubit.

1.2 Thesis organization and contributions
The thesis is divided into three parts, which respectively focus on fault-tolerant
computation, error correction and quantum phases of matter. In Chapters 2 and 3
we discuss fault-tolerant implementation of logical gates with the color code and
the associated resource overhead. In Chapters 4 and 5 we analyze how to decode
the toric and color codes and provide fundamental limitations on error-correcting
capabilities of the latter. In Chapter 6 we prove that two models described by
stabilizer Hamiltonians associated with the toric and color codes are equivalent in
D ≥ 2 dimensions. In the rest of this section we describe the main contributions of
this thesis using more technical language.

Chapter 2 — Universal transversal gates with color codes: A simplified ap-
proach
In this chapter we provide an accessible introduction to color codes in two or more
dimensions. We provide an explicit construction of a family of color codes in
arbitrary dimensions and describe some of their crucial properties. Within this
framework, we explicitly show how to transversally implement the generalized
phase gate Rn = diag(1, e2πi/2n ). We describe how to implement the Hadamard
gate H fault tolerantly using code switching. In three dimensions, this yields,
together with the transversal controlled-not (CNOT), a fault-tolerant universal gate
set {H,CNOT, R3} without state distillation.

This chapter is based on [KB15].

Chapter 3 — The cost of universality in surface and color codes: State distilla-
tion versus code switching
In this chapter, we compare two methods of achieving a fault-tolerant universal
gate set with topological color codes: state distillation and code switching. In our
comparison, we focus on the qubit overhead of implementing a non-Clifford gate,
the T = diag(1, e2πi/8) gate. For state distillation, we use the 15-qubit Reed Muller
code to distill logical T-states encoded into two-dimensional triangular color codes.
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In the case of code switching, we transfer the logical state between two- and three-
dimensional color codes and perform a transverse logical T gate in the 3D code.
Our results indicate that the code switching technique offers no advantage over state
distillation.

This chapter is based on [BKS18].

Chapter 4 — Local decoders for topological toric and color codes in any di-
mensions
In this chapter, we address a question of performing error correction in topological
stabilizer codes with a local update rule. First, we propose the Sweep Rule, which
is a generalization of Toom’s rule. The Sweep Rule shrinks k-dimensional domain
walls on any d-dimensional locally Euclidean lattice built of d-simplices, where
d ≥ 2 and k ∈ {1, . . . , d − 1}. Based on the Sweep Rule, we design a local decoder
for the d-dimensional toric code without point-like excitations. Then, we construct
a new class of local decoders of the color code in d ≥ 2 dimensions. The two
key components of our construction include a local reduction of the problem of
color code decoding to that of the toric code and using the Sweep Rule to decode
the resulting toric code. Finally, we obtain a lower bound on the performance of
decoders for the toric and color codes based on the Sweep Rule. Our results provide
a rigorous proof of a non-zero threshold, and thus clarify the success of Toom’s rule
as an error-correction method for topological stabilizer codes.

This chapter is based on [KDP18].

Chapter 5—Three-dimensional color code thresholds via statistical-mechanical
mapping
This chapter is devoted to finding the storage threshold error rates for bit-flip and
phase-flip noise in the three-dimensional color code on the body-centererd cubic
lattice, assuming perfect syndrome measurements. In particular, by exploiting
a connection between error correction and statistical mechanics, we estimate the
threshold for 1D string-like and 2D sheet-like logical operators to be p(1)

3DCC ' 1.9%
and p(2)

3DCC ' 27.5%. We obtain these results by using parallel tempering Monte
Carlo simulations to study the disorder-temperature phase diagrams of two new 3D
statistical-mechanical models: the 4- and 6-body random coupling Ising models.
Our estimates provide thresholds for optimal decoding of bit-flip and phase-flip
noise for the 3D color code and thus can be used to benchmark performance of the
color code decoders we describe in Chapter 4.
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This chapter is based on [Kub+18].

Chapter 6 — Unfolding the color code
In this chapter we show that the color code on a d-dimensional closed manifold is
equivalent to multiple decoupled copies of the d-dimensional toric code up to local
unitary transformations and adding or removing ancilla qubits. This result not only
generalizes the proven equivalence for the d = 2 case, but also provides an explicit
recipe for how to decouple independent components of the color code, highlighting
the importance of colorability in the construction of the code. Moreover, for the
d-dimensional color code with d +1 boundaries of d +1 distinct colors, we find that
the code is equivalent to multiple copies of the d-dimensional toric code which are
attached along a (d − 1)-dimensional boundary. In particular, for d = 2, we show
that the (triangular) color code with boundaries is equivalent to the (folded) toric
code with boundaries. We also find that the d-dimensional toric code admits logical
non-Pauli gates from the dth level of the Clifford hierarchy, and thus saturates the
bound by Bravyi andKönig. In particular, we show that the logical d-qubit control-Z
gate can be fault-tolerantly implemented on the stack of d copies of the toric code
by a local unitary transformation.

This chapter is based on [KYP15].
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C h a p t e r 2

UNIVERSAL TRANSVERSAL GATES WITH COLOR CODES: A
SIMPLIFIED APPROACH

To build a fully functioning quantum computer, it is necessary to encode quantum
information to protect it from noise. In physical systems, one expects noise to
act locally. Therefore, topological codes [Kit03; LW05; BM06; Bon+10], which
naturally protect against local errors, represent our best hope for storing quantum
information. However, a quantum computer must also be capable of processing
this information. This motivates the search for topological codes allowing the
implementation of a set of gates which (i) can operate in the presence of typical noise
without corrupting the stored information, and (ii) can perform any computation on
the encoded information. A theoretical framework has been developed around
these ideas — a gate which is fault-tolerant does not propagate typical errors into
uncorrectable errors [Sho96; Pre98], and therefore satisfies (i). A set of gates which
is universal can generate any unitary on the code space with arbitrary precision
[Kit97; NC10], and therefore satisfies (ii).

The known methods of implementing a universal, fault-tolerant gate set in topo-
logical codes typically require an enormous amount of overhead. For instance,
magic state distillation [BK05] with the two-dimensional toric code requires many
additional ancilla qubits [Fow+12], whereas computing by braiding non-abelian
anyons [Kit03; Nay+08] requires additional time to move anyons around macro-
scopic loops [Bec+01]. These forms of overhead can make quantum processing
orders of magnitude less efficient than storage alone in topological codes. This
may render such approaches impractical given the experimental difficulty of scaling
up quantum hardware [Fow+12; DS13; Wec+14]. In this chapter we focus on a
new construction by Bombín [Bom15a], for a universal fault-tolerant gate set with
topological color codes. This seems not to involve significant additional overhead,
however a lattice of at least three dimensions is required, limiting the construction’s
practicality for reasons of architecture.

Following Bombín’s construction, we use the simplest form of fault-tolerant gate —
the transversal gate, which is a code-space preserving unitary composed of separate
unitaries applied to each physical qubit. However, according to a no-go theorem by



14

Eastin and Knill [EK09], for any code which protects against arbitrary single-qubit
errors, the set of transversal gates forms a finite group and therefore cannot be
universal. Some recent approaches to circumvent this no-go theorem in order to
implement a universal gate set with transversal gates have been put forward [JL14;
PR13; ADP14].

In Ref. [Bom15a], Bombín applies the approach of gauge fixing [PR13; ADP14]
to color codes in a d-dimensional lattice. Color codes were first introduced in two
dimensions by Bombín and Martin-Delgado in Ref. [BM06]. They are topological
stabilizer codes [Got96; Cal+97; Kit03; BK13], meaning they are defined on a
lattice and have macroscopic distance together with geometrically local stabilizer
generators. The main new conceptual contribution in Ref. [Bom15a] is that gauge
fixing allows one to fault-tolerantly switch between a (stabilizer) color code on a
d-dimensional lattice, in which CNOT and Rd = diag

(
1, exp( 2πi

2d )
)
are transversal,

and a different (subsystem) color code on the same lattice, in which H is transversal.
Critically, for d ≥ 3, {H,CNOT, Rd } forms a universal gate set. To the author’s
knowledge, this represents the first construction using gauge fixing to achieve a
universal gate set in a topological code.

In Ref. [Bom15a], Bombín argues that for every d ≥ 2, there exists a d-dimensional
color code with a transversal implementation of Rd ∈ Pd \ Pd−1, which is the
main technical contribution therein. At the same time, for any topological stabilizer
code, Bravyi and König [BK13] showed that the group of logical gates implemented
transversallymust be contained inPd , the d th level of theClifford hierarchy1 [GC99].
These results have been extended beyond the stabilizer code setting [PY15; Bev+16].
Color codes are the only family of topological stabilizer codes currently known to
saturate the Bravyi-König classification in every dimension d ≥ 2.

In this chapter, we provide a simplified yet rigorous presentation of the ideas in
Ref. [Bom15a]. The organization is as follows. First, to build some intuition,
we introduce color codes in two dimensions in Section 2.1. We explain how to
transversally implement the gate set {H,CNOT, R2}, which generates the Clifford
group. Then, we describe the generalization of color codes to d dimensions in
Section 2.2. Next, in Section 2.3 we discuss transversal gates in those codes with
an emphasis on the phase gate Rn, and show that in certain d-dimensional color
codes Rd is transversal. Our construction utilizes the bipartite property of the lattice

1The Clifford hierarchy is defined sequentially for j > 1 according to Pj = {unitary U |UPU† ∈
Pj−1 ∀P ∈ P1}, with P1 representing the Pauli group. Note that P2 is the well-known Clifford group.
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allowing for a simpler verification than in Ref. [Bom15a]. Finally, in Section 2.4 we
explain how to switch between color codes fault-tolerantly using the technique of
gauge fixing. In particular, this allows one to implement a fault-tolerant universal
gate set {H,CNOT, R3} in a color code in three dimensions.

2.1 Color code in two dimensions
In this section, we give an explicit construction of a stabilizer color code in two
dimensions [BM06; Bom13]. We consider a 3-valent lattice formed as a tiling of a
sphere, such that faces of the lattice are colored with three colors, where neighboring
faces have distinct colors. Qubits are placed at the vertices of this lattice. To define
a color code on this lattice, we associate an X- and a Z-type stabilizer generator
with every face. This code encodes no logical qubits. A new code, which encodes
a single logical qubit, can be formed through the removal of a single physical qubit.
We describe the transversal implementation of the logical gates CNOT, H and R2

in the new code2.

Color code with no encoded qubits
Color codes in two dimensions are CSS stabilizer codes [Got96; Cal+97], and are
therefore specified by their stabilizer group S generated by X- and Z-type stabilizer
generators. The code space is the simultaneous +1 eigenspace of every stabilizer
generator. In the construction, we use a two-dimensional lattice L∗0, obtained from
a tiling of the 2-sphere, and satisfying the following requirements

• valence — every vertex is 3-valent, meaning it belongs to exactly 3 edges,

• colorability — faces can be colored with 3 colors: red, green and blue, such
that every two faces sharing an edge have different colors.

An example of such a tiling of the 2-sphere is presented in Fig. 2.1(a). From these
properties alone, one can show that the total number of vertices in L∗0 is even. To
see this, note that the Euler characteristic gives V − E + F = 2, where V , E and
F denote the number of vertices, edges and faces in L∗0, respectively. Since every
vertex is 3-valent, we obtain E = 3

2V , and then V = 2(F − 2), which is even.

At every vertex in L∗0 we place a qubit. We refer to the set of all qubits by Q,
whereas by Q(Π) ⊂ Q we denote the set of vertices of a face Π. Alternatively,

2We use a bar to indicate action on logical code space. The absence of a bar indicates action on
physical qubits.
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a) b)

c) d)

Figure 2.1: Construction of color codes in two dimensions. In (a) and (b), qubits
are placed at vertices, and X- and Z-type stabilizer generators are associated with
faces. In (c) and (d) (the dual picture), qubits are placed on faces, and X- and Z-type
stabilizer generators are associated with vertices. (a) Take a lattice L∗0, which is a
tilling of the 2-sphere with 3-colorable faces and 3-valent vertices. The surrounding
circle is identified with a vertex v. The color code on L∗0 encodes no logical qubits.
(b) To obtain L∗, remove from L∗0 the vertex v, together with the three edges and
three faces containing it. The color code on L∗ encodes one logical qubit. (c)
(Dual) lattice L0 is obtained from L∗0 by replacing faces, edges and vertices by
vertices, edges and faces, respectively. All faces are triangles, and the vertices are
3-colorable. The color code on L0 encodes no logical qubits. (d) Lattice L formed
from L0 by removing a single face. No stabilizer generators are associated with
those vertices belonging to the boundary of the removed face. The color code on L
encodes one logical qubit.

we can think of Q(Π) as the set of qubits belonging to Π. To define the color
code, it is sufficient to specify X- and Z-type stabilizer generators. For every face
Π, we define an X-type stabilizer generator X (Π) to be a tensor product of Pauli
X operators supported on qubits Q(Π), similarly for Z-type generators. Then, the
stabilizer group S is generated by

S = 〈X (Π), Z (Π), for every face Π in L∗0〉. (2.1)

To prove that this specifies a well-defined stabilizer code, we must verify that all
the generators of S commute. It is sufficient to check that for any two faces Π1 and
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Π2 in L∗0, X (Π1) and Z (Π2) commute. First take the case Π1 , Π2. If Π1 and Π2

share no vertices, then X (Π1) and Z (Π2) trivially commute. If they share a vertex,
then by 3-valence, they also share an edge. Moreover, due to 3-colorability, Π1 and
Π2 cannot share two consecutive edges, and thus their intersection has to contain an
even number of vertices,

|Q(Π1) ∩ Q(Π2) | ≡ 0 mod 2. (2.2)

For the case Π1 = Π2 = Π, due to 3-colorability and 3-valence, the number of
vertices belonging to a face Π is even,

|Q(Π) | ≡ 0 mod 2. (2.3)

Therefore, we obtain commutation of X (Π1) and Z (Π2) for arbitrary Π1 and Π2.

From the construction of the lattice, one obtains that each vertex belongs to exactly
three faces, colored with three different colors. Thus, one can express the set of
vertices in L∗0 as the disjoint union3 of vertices belonging to red faces, and similarly
for green and blue [BM06; Bom13], namely

Q =
⊔
ΠR

Q(ΠR) =
⊔
ΠG

Q(ΠG) =
⊔
ΠB

Q(ΠB), (2.4)

where {ΠR}, {ΠG} and {ΠB} are the sets of all red, green and blue faces, respectively.
This implies that not all the stabilizer generators we have defined are independent∏

ΠR

X (ΠR) =
∏
ΠG

X (ΠG) =
∏
ΠB

X (ΠB), (2.5)∏
ΠR

Z (ΠR) =
∏
ΠG

Z (ΠG) =
∏
ΠB

Z (ΠB). (2.6)

In fact, these are the only conditions [BM07a; Bom13] which relate the stabilizer
generators to one another.

We can now verify that the color code which we have defined on the lattice L∗0
encodes no logical qubits. As before, using the Euler characteristic we obtain F−2 =
E − V , and from 3-valence of vertices — E = 3

2V . We have placed physical qubits
at vertices, thus |Q | = V . There are 2F − 4 independent stabilizer generators, since
there are two stabilizer generators for every face and four conditions (2.5) and (2.6).
The number of logical qubits is equal to the number of physical qubits minus the
number of independent stabilizer generators, and we obtain

|Q | − (2F − 4) = V − 2(E − V ) = 0. (2.7)
3We use the disjoint union A t B in place of the union A ∪ B of two sets A and B when their

instrsection is empty, A ∩ B = ∅.
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Color code with one logical qubit
To obtain a color code with one encoded logical qubit, we can remove one vertex
from the latticeL∗0, togetherwith three edges and three faces it belongs to, obtaining a
new latticeL∗ (see Fig. 2.1b). By removing one vertex, we also discard six stabilizer
generators associated with the removed faces, and thus the stabilizer generators no
longer have to satisfy (2.5) and (2.6). One can check that this new code encodes one
logical qubit, since there is one qubit more than independent stabilizer generators.
By removing more vertices, one could encode more logical qubits, but we will not
analyze that case. Note that the total number of qubits inL∗ is odd, |Q | ≡ 1 mod 2,
which plays an important role in our considerations.

On physical grounds, it is of interest to consider stabilizer codes with stabilizer
generators which are low-weight and geometrically local. In the construction we
have presented, this can be achieved if each face in the lattice L∗ is geometrically
local and contains a small number of vertices, as in Fig. 2.1b. It can be shown
that following this construction, the resulting color code has macroscopic distance
[BM06], and therefore is a topological stabilizer code.

Later, whenwediscuss color codes in d dimensions, we follow a similar construction.
We briefly outline the procedure here, deferring detailed discussion to Section 2.2.
We start with a tiling of a d-sphere, place qubits at vertices and define (gauge group)
generators to be supported on suitable cells. Then, we remove one vertex and all the
cells containing it. In particular, we discard generators supported on the removed
cells. Such a code encodes only one logical qubit [BM07a].

Transversal gates
In this chapter we consider stabilizer codes encoding only one logical qubit, with
the stabilizer group S. In this setting, a transversal gate U on a single logical qubit
is implemented as a tensor product of single physical qubit unitariesU1 ⊗ . . .⊗U|Q |,
which preserves the code space. On the other hand, a logical gate on two logical
qubits requires two copies of the code, in which case we say that the overall code
space is the +1 eigenspace of the elements in S ⊗ S. A transversal gate on two
logical qubits is implemented as a tensor product of two qubit gates on pairs of
corresponding qubits in both copies of the code, which preserves the overall code
space. Observe that transversal gates are fault-tolerant since they do not spread
errors within each copy of the code.

We now show that in the two-dimensional color code described in the previous
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subsection, one can transversally implement the gate set {H,CNOT, R2}, which
generates the (non-universal) Clifford group. The Clifford group, combined with
computational basis state preparation and measurement, can be simulated efficiently
on a classical computer [Got98; AG04]. For each gate, H , CNOT and R2, we verify
that a particular transversal unitary implements the logical gate by showing that it
has the correct action under conjugation on generators of the logical Pauli group,
and that the stabilizer group is preserved4.

The two-dimensional color code is a CSS stabilizer code encoding a single logical
qubit with logical Pauli operators X = X (Q) and Z = Z (Q). In addition it is a
self-dual CSS stabilizer code — a code with the same support for X- and Z-type
stabilizer group elements (for each face, there is an X- and a Z-type generator).
This implies that the logical Hadamard gate can be implemented transversally, as
under conjugation by H (Q), X 7→ H (Q)X (Q)H (Q)† = Z and similarly Z 7→ X .
Moreover, X (Π) 7→ Z (Π), Z (Π) 7→ X (Π), and thus S is preserved.

The logical gate CNOT can be implemented transversally between two identical
copies of this color code by applying a physical gate CNOT to every pair of corre-
sponding qubits in the first and the second copy. This can be verified by checking
that under conjugation by CNOT, X I 7→ X X , I X 7→ I X , Z I 7→ Z I, I Z 7→ Z Z

and S ⊗ S is preserved5.

To show that R2 can be implemented transversally, we use the fact that the set of
vertices in L∗ is bipartite (see Fig. 2.2(a)). In other words, Q can be split into two
subsets, T and T c := Q \ T , such that vertices in T are connected only to vertices in
T c and vice versa. To prove this, first note that every face in L∗0 has an even number
of edges. Moreover, every cycle in L∗0 (as a tiling of the 2-sphere) is contractible.
This implies that every cycle in L∗0 is a boundary of faces and is therefore even.
Using the following lemma

Lemma 1 (Graph Bipartition) A graph containing only even cycles is bipartite
[Wil96].

we see that L∗0 must be bipartite, and so is the lattice L∗ due to its construction from
L∗0.

4Preservation of the stabilizer group is a sufficient (but not necessary) condition that implies
preservation of the code.

5Notice that generators of S ⊗S are mapped under conjugation to a different generators, namely
X (Π) ⊗ I (Π) 7→ X (Π) ⊗ X (Π), Z (Π) ⊗ I (Π) 7→ I (Π) ⊗ Z (Π), I (Π) ⊗ X (Π) 7→ I (Π) ⊗ X (Π) and
I (Π) ⊗ Z (Π) 7→ Z (Π) ⊗ Z (Π).
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Now, we can show that R = Rk
2 (T )R−k

2 (T c) implements R2, for some choice of
integer k. We use the relations R2X R†2 = iX Z and R2Z R†2 = Z . Since |Q | ≡ 1
mod 2, then |T | − |T c | = 2|T | − |Q | ≡ ±1 mod 4, and picking k = |T | − |T c |

mod 4 ensures that k (|T | − |T c |) ≡ 1 mod 4. With this choice of k, the action by
conjugation of R = Rk

2 (T )R−k
2 (T c) on the logical X and Z is

RX R† = ik ( |T |−|Tc |) X Z = iX Z, (2.8)

RZ R† = Z . (2.9)

Furthermore, as every face Π in the lattice L∗ has an equal number of vertices in T

and T c, under the action of R the stabilizer generators X (Π) and Z (Π) become:

RX (Π)R† = ik ( |T∩Π |−|Tc∩Π |) X (Π)Z (Π) (2.10)

= X (Π)Z (Π) ∈ S, (2.11)

RZ (Π)R† = Z (Π), (2.12)

implying that the stabilizer group S is preserved. This completes the verification
that R implements R2.

a) b)

Figure 2.2: (a) The set of vertices of L∗, the lattice used to define the color code, is
bipartite— it can be split into two subsets: T (hollow circles), and its complimentT c

(filled circles). Vertices inT are only connected to vertices inT c and vice versa. The
logical gate R2 can implemented by applying Rk

2 to qubits in T , and R−k
2 to qubits in

T c, where k ≡ |T | − |T c | mod 4. (b) The dual lattice L. Faces are bipartite.

Dual lattice picture
We can alternatively express the construction of color codes in the dual lattice
picture, which we use extensively in the later discussion for d > 2 dimensions. We
use a two-dimensional (dual) lattice L0, obtained from a tiling of the 2-sphere, and
satisfying the following requirements
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• all faces are triangles,

• vertices are 3-colorable, meaning two vertices belonging to the same edge are
colored with different colors.

See Fig. 2.1(c) for a simple example. Note that these conditions are equivalent to
the conditions of 3-valence of vertices and 3-colorability of faces required for the
tiling L∗0 of the 2-sphere, where lattices L

∗
0 and L0 are dual to one another.

A qubit is placed on every face of L0, and an X- and a Z-type stabilizer generator is
associated with every vertex, meaning they are supported on qubits corresponding
to faces containing that vertex. The resulting color code is exactly the same as that
described in Section 2.1, and therefore has zero logical qubits. To encode a single
logical qubit, one should remove a face from L0, together with stabilizer generators
associated with the vertices belonging to the removed face, see Fig. 2.1(d).

The bipartition of vertices in L∗ corresponds to a bipartition of faces in L, meaning
that faces can be split into two sets, T and its compliment T c, such that faces in T

share an edge only with faces in T c and vice-versa. See Fig. 2.2(b).

2.2 Color code in higher dimensions
Here we present a construction of color codes on d-dimensional lattices. In higher
dimensions it is easier to describe the construction in the language of the dual lattice.
The majority of this section is devoted to defining dual lattices satisfying certain
conditions and analyzing their properties. The discussion is a generalization of that
already presented for two dimensions. The basic idea of how to construct the dual
lattice L is to first tile a d-sphere with d-simplices to form a lattice L0. We require
that every vertex in L0 can be assigned one of d + 1 distinct colors and two vertices
belonging to the same edge have different colors. The lattice L, used to define the
color code, is formed by removing one d-simplex from L0.

Simplicial complexes and colorability
A d-simplex δ is a d-dimensional polytope which is a convex hull of its d+1 affinely
independent vertices v0, v1, . . . , vd , namely

δ =



d∑
i=0

tivi

������
0 ≤ ti ∧

d∑
i=0

ti = 1


. (2.13)

In particular, 0-simplices are vertices, 1-simplices are edges, 2-simplices are trian-
gles, 3-simplices are tetrahedra and so on.
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A convex hull of a subset of vertices of size k+1 ≤ d+1 is a k-simplex σ, which we
call a k-face of δ, and σ ⊂ δ. For example, the faces of a 3-simplex (a tetrahedron)
are: four 0-simpices, six 1-simplices, four 2-simplices and a single 3-simplex. More
generally, δ contains

(
d+1
k+1

)
k-faces, since every k-face is uniquely determined by

the choice of k + 1 vertices spanning it. By ∆k (δ) we call the set of all k-faces of
δ, namely

∆k (δ) = {σ ⊂ δ |σ is a k-simplex}. (2.14)

Instead of having only one simplex, we can consider a collection of them. Moreover,
we can create new objects, called simplicial complexes [Hat02], by gluing simplices
along their proper faces of matching dimension. We restrict ourselves to simplicial
complexes containing finitely many simplices. Wewill define a d-dimensional color
code on a lattice L obtained by gluing together d-simplices. The technical name for
such a lattice is a homogeneous simplicial d-complex.

AlthoughL is formally a collection of simplices, by the same symbol we also denote
the union of these simplices as a topological space. Notice that L is a manifold with
a boundary, which we can think of as being embedded in real space. We denote by
∂L the set of simplices belonging to the boundary of L, where the boundary of L
is the set of points in the closure of L not belonging to the interior of L. Moreover,
by ∆′k (L) we understand a set of all k-simplices belonging to L \ ∂L. Note that
∆′d (L) = ∆d (L).

We say that a simplicial d-complex L is (d + 1)-colorable if we can introduce a
function

color : ∆0(L) → Zd+1, (2.15)

where Zd+1 = {0, 1, . . . , d} is a set of d + 1 colors, and two vertices belonging to
the same edge have different colors. Moreover, by color(δ) we understand the set
of colors assigned to all the vertices of a simplex δ, namely

color(δ) =
⊔

v∈∆0(δ)

color(v). (2.16)

An example of a 3-colorable, homogeneous, simplicial 2-complex is the lattice L
shown in Fig. 2.1(d). Note in particular that it is composed of nineteen 2-simplices
(triangles). The exact shape of objects in L is not important due to its topological
nature — the lattice is not rigid and can be smoothly deformed. In this example,
∆′0(L) consists of the set of 9 vertices (the three vertices in the boundary are
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excluded). ∆′1(L) is the set of 27 edges, (the three edges in the boundary are
excluded). ∆′2(L) is the set of all 19 triangular faces.

Definition of color code
Here we define color codes on a d-dimensional lattice L, which must satisfy the
following conditions

Condition 1 L is a homogeneous simplicial d-complex obtained as a triangulation
of the interior of a d-simplex.

Condition 2 L is (d + 1)-colorable.

One can obtain such a lattice L from any (d + 1)-colorable tiling of the d-sphere
with d-simplices, followed by the removal of one d-simplex. In d = 2 dimensions,
this is precisely the procedure described in Section 2.1. An explicit construction
of a family of lattices satisfying these conditions is outlined in the later part of this
section.

Qubits are placed on each and every d-simplex of L, and thus the set of all qubits
Q is equal to ∆d (L). This motivates the next definition, namely for a simplex
δ ⊂ L \ ∂L we define

Q(δ) = {σ ∈ ∆d (L) |σ ⊃ δ}. (2.17)

In other words, Q(δ) can be thought of as the set of qubits placed on d-simplices
containing δ. We say that qubits Q(δ) are supported on δ. By saying that an
operator is supported on δ we mean that it is supported on the set Q(δ), for example
X (δ) := X (Q(δ)).

A color code is a CSS subsystem code [Pou05; Bac06]. Recall that a CSS subsystem
code is specified by its gauge group G. Each X-type gauge group generator X (Gx)
consists of Pauli X operators applied to qubits Gx; similarly for Z-type generators.
The stabilizer group S ⊂ G is the group generated by all Pauli operators X (Sx) and
Z (Sz) contained in G, which commute with every element of G. Note that −I < S.
The codewords are +1 eigenvectors of all elements of S.

We define a d-dimensional color code [Bom15a] on the latticeL, where d = dimL,
as the CSS subsystem code with X- and Z-type gauge generators supported on
(d − 2 − z)- and (d − 2 − x)-simplices in L,

G = 〈X (δ), Z (σ) |∀δ ∈ ∆′d−2−z (L), σ ∈ ∆′d−2−x (L)〉, (2.18)
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where x + z ≤ d − 2. The X- and Z-type generators of the stabilizer group S are
supported on x- and z-simplices, namely

S= 〈X (δ), Z (σ) |∀δ∈ ∆′x (L), σ ∈ ∆′z (L)〉. (2.19)

We refer to this code byCCL (x, z). When contextmakes the lattice unambiguous, we
sometimes use CCd (x, z) to emphasize the dimensionality of the lattice, dimL = d.
Note that the generators of the gauge and stabilizer groups are supported on simplices
which do not belong to ∂L, the boundary of the lattice L.

To illustrate the language introduced in this section, we revisit the two-dimensional
color code described in Sections 2.1 and 2.1. We begin with the lattice L shown
in Fig. 2.1d. Qubits are placed on 2-simplices (triangular faces). Since x + z ≤

dimL − 2 = 0, there is only one color code on the two-dimensional lattice L,
namely CCL (0, 0), which is a stabilizer code. Stabilizer generators are associated
with 0-simplices (vertices). Note that no stabilizer generators are assigned to the
three vertices belonging to the boundary of L.

Properties of the lattice
Here we present some properties of any (d + 1)-colorable homogeneous simplicial
d-complex L. We use these properties to verify that CCL (x, z) is a valid code, and
later that there is a transversal implementation of Rn. We start with the following
two lemmas

Lemma 2 (Intersection) Let δ andσ be two simplices inL\∂L. IfQ(δ)∩Q(σ) ,
∅, then Q(δ)∩Q(σ) = Q(τ), where τ is the smallest simplex containing both δ and
σ.

Proof: If Q(δ) ∩ Q(σ) , ∅, then there exists ε ∈ ∆d (L) such that ε ⊃ δ, σ. Let
C = color(δ) ∪ color(σ) and set τ to be the unique (|C | − 1)-simplex in ε , colored
with the set of colors C. Clearly, τ is the smallest simplex containing δ and σ, and
Q(δ) ∩ Q(σ) = Q(τ). �

Lemma 3 (Even Support) Let δ be a k-simplex not belonging to the boundary of
the lattice, δ ⊂ ∆′k (L), with 0 ≤ k < d. Then

|Q(δ) | ≡ 0 mod 2. (2.20)
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Before we prove the (Even Support) Lemma 3, we explain its consequences. For
CCd (x, z) to be a subsystem code, the stabilizer generators have to commute with
each other, as well as with the gauge group generators. Notice that for two arbitrary
X- and Z-type stabilizer generators to commute, the intersection of their supports
has to contain even number of elements. Let X- and Z-type stabilizer generators
be supported on δ ⊂ ∆′x (L) and σ ⊂ ∆′z (L), respectively. If the intersection
Q(δ) ∩ Q(σ) is non-empty, then due to the (Intersection) Lemma 2 there exists a
simplex τ such that Q(δ) ∩ Q(σ) = Q(τ). Moreover, since δ is spanned by x + 1
vertices and σ by z + 1 vertices, then τ is spanned by at most x + z + 2 ≤ d vertices.
Thus, τ is a k-simplex with k < d, and the (Even Support) Lemma 3 applies,
|Q(δ) ∩ Q(σ) | = |Q(τ) | ≡ 0 mod 2, showing that X (δ) and Z (σ) commute. The
commutation of stabilizer generators with the gauge generators follows similarly.

We can obtain the (Even Support) Lemma 3 as a corollary of the following

Lemma 4 (Disjoint Union) Let L be a simplicial d-complex which is (d + 1)-
colorable. Then, for a simplex δ ⊂ L \ ∂L and a chosen set of colors C, such that
color(δ) ⊂ C ⊂ Zd+1, there exists a partition of the set of qubits supported on δ
into a disjoint union of sets of qubits supported on (|C | − 1)-simplices containing δ,
namely

Q(δ) =
⊔
σ⊃δ

σ∈∆′
|C |−1(L)

color(σ)=C

Q(σ). (2.21)

Proof: First note, that two different k-simplices δ1 and δ2 in L \ ∂L colored with
the same colors, color(δ1) = color(δ2), cannot belong to the same l-simplex, l ≥ k,
thus do not share a qubit, Q(δ1) ∩ Q(δ2) = ∅. Moreover, if Q(ε ) ⊂ Q(δ), where
ε ∈ ∆d (L), then ε ⊃ δ and there exists a unique simplex σ ⊂ ε colored with colors
B. Since color(σ) = C ⊃ color(δ), then σ ⊃ δ, which finishes the proof of the
(Disjoint Union) Lemma 4. �

In particular, the set of qubits supported on any k-simplex δ in L \ ∂L with k < d

can be decomposed as a disjoint union of qubits suppoted on (d − 1)-simplices σ
containing δ and colored with a chosen set of d colors, C ⊃ color(δ). Notice, that
|Q(σ) | = 2 for any σ ∈ ∆′d−1(L), which immediately yields

|Q(δ) | =
∑
σ⊃δ

σ∈∆′
d−1(L)

color(σ)=C

|Q(σ) | ≡ 0 mod 2, (2.22)
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showing the (Even Support) Lemma 3.

The property needed for the transversal implementation of the gate Rn, presented in
Section 2.3, can be encapsulated in the following lemma

Lemma 5 (Bipartition of Qubits) The set of d-simplices inL, ∆d (L), is bipartite.

Let us first explain the (Bipartition of Qubits) Lemma 5— the d-simplices in L can
be split into two disjoint sets, where d-simplices in the first set share (d − 1)-faces
only with d-simplices from the second set, and vice versa.

Proof: First, construct a graph G = (V, E) with the set of vertices V = ∆d (L)
and the set of edges E = ∆′d−1(L). Two vertices v,w ∈ V are connected by an edge
e ∈ E iff d-simplices corresponding to v and w share a (d − 1)-face corresponding
to e. Since for all δ ∈ ∆′d−2(L) the (Even Support) Lemma 3 gives |Q(δ) | ≡ 0
mod 2, and every cycle in L is contractible, we obtain that every cycle in the graph
G is even. Using the (Graph Bipartition) Lemma 1 we immediately obtain that G is
bipartite. This shows that the set of d-simplices in L, which is equal to the set of
qubits, ∆d (L) = Q, is bipartite. �

Construction of a lattice in d dimensions
A recipe to obtain a lattice L satisfying the Conditions 1 and 2 required to define
color codes in d dimensions is as follows (see Fig. 2.3 for an example in d = 2).

1. Start with a d-simplex δ, with vertices which are colored with d + 1 colors
Zd+1.

2. Construct a homogeneous simplicial d-complexK from δ by dividing k-faces
of δ into k-simplices. We also require that the coloring is preserved, i.e. every
k-face σ ⊂ δ colored with C = color(σ) is divided into k-simplices colored
with C and the whole complex K is (d + 1)-colorable.

3. Place the d-complex K inside a d-simplex τ colored with Zd+1.

4. For every k-face % ( τ and for every (d − k − 1)-simplex ω ⊂ K obtained
from a (d − k − 1)-face σ ⊂ δ with complementary colors, color(ω) =
Zd+1 \ color(%), attach a d-simplex spanned by % and ω.
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Figure 2.3: Construction of a color code in 2D with spatially local (stabilizer)
generators. (a) Take a 2-simplex δ, with vertices colored in red, green and blue.
(b) Divide δ into “smaller” simplices with matching colors. This is a 3-colorable
homogeneous simplicial 2-complexK . (c) PlaceK inside a 2-simplex τ and attach
2-simplices between τ andK . The resulting homogeneous simplicial 2-complex L
is 3-colorable, and thus we can define a color code on the lattice L.

5. Choose L to be the collection of all d-simplices added in Step 4, together
with simplices belonging toK and τ. This can be used to define a color code
on the lattice L as specified in Section 2.2.

Note that in the above recipe, step 2 is not fully specified. Any homogeneous
simplicial d-complex K obtained from a d-simplex δ will work, as long as K is
(d + 1)-colorable. Such lattices always exist — below we give an explicit example
of a family of lattices in any dimension d ≥ 2. Following steps 3-5, we always
obtain a lattice on which we can define a color code in d dimensions.

There is a systematic construction of a family of (fractal) color codes in d dimensions,
for which there is an explicit recipe forK . The resulting codes neither have spatially
local generators nor have macroscopic distance, and do not result in color codes,
which are topological stabilizer codes. The prescription is as follows.

1. The first member is defined on the lattice L1, obtained from the recipe by
setting K to be a d-simplex.

2. The i + 1 member of the family is defined on the lattice Li+1, obtained from
the recipe by setting K = Li.
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The first three members of the family of the two-dimensional (fractal) color codes
are illustrated in Fig. 2.4.

In Ref. [Bom15a], a systematic construction in two and three dimensions for families
of color codes with spatially local generators is presented. In two dimensions, K is
chosen to be a part of triangular lattice (as in Fig. 2.3), whereas in three dimensions
K is a part of the BCC lattice. Bombín’s constructions result in topological color
codes.

Figure 2.4: The family of (fractal) color codes in two dimensions. The first three
members of the family — two-dimensional color codes encoding one logical qubit
using (a) 7, (b) 13 and (c) 19 physical qubits.

Quantum Reed-Muller codes as color codes
There exists a family of codes known as the quantum Reed-Muller codes [MS77;
Ste99; ADP14]. Here we are concerned with the subfamily of quantum Reed-
Muller codes with members labeled uniquely by an integer m ≥ 3 with parameters
[[2m − 1, 1, 3]], i.e. encoding one logical qubit into 2m − 1 physical qubits, with a
distance of three. We denote by QRM (m) the mth member of this subfamily. These
codes are defined in terms of matrices Mi satisfying the recursion relations

M1 = (1), Mi+1 = *
,

Mi 0 Mi

0 . . . 0 1 1 . . . 1
+
-
. (2.23)

Note that the set of columns of Mm is the set of all non-zero binary vectors of length
m. By M⊥m we denote a matrix dual to Mm, namely a matrix with rows being a
basis of the kernel of Mm. Clearly, Mm(M⊥m )T = 0. We can define QRM (m) as the
stabilizer code with the stabilizer group Sm generated by rows of Mm and M⊥m with
0’s and 1’s replaced by I’s and X’s or Z’s , namely

Sm = 〈M X
m , (M⊥m )Z〉. (2.24)
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We now show thatQRM (m) is the same as the stabilizer color codeCCm−1(0,m−3)

obtained from the construction described in preceding subsection by taking the
simplicial complexK to be a (m − 1)-simplex δ,K = δ. In other words, QRM (m)
is equal to the first member of the (fractal) color code family in m − 1 dimensions
(see Fig. 2.4 (a) for m = 3 case). In particular, QRM (3) is Steane’s 7-qubit code
and QRM (4) is the 15-qubit Reed-Muller code.

Figure 2.5: Quantum Reed-Muller code QRM (m) as a special case of a (stabilizer)
color code CCm−1(0,m − 3) for (a) m = 3 — Steane’s 7-qubit code, and (b) m = 4
— the 15-qubit Reed-Muller code. Steane’s code with all the possible transversal
gates has recently been implemented experimentally [Nig+14].

To prove this equivalence, it is sufficient to show that there is a one-to-one identifi-
cation of physical qubits of QRM (m) with those of CCm−1(0,m − 3) such that the
logical Pauli operators X and Z are identical, and that the X-type stabilizer gener-
ators are identical. Note that this completely specifies the stabilizer group S, since
the Z-type generator matrix is a dual to the X-type generator matrix. In particular,
we show that the X-type generator matrix M′m for CCm−1(0,m − 3) is the same as
Mm for QRM (m) up to a permutation of columns.

Using the construction described in the preceding subsection, and taking the sim-
plicial complex K = δ, where δ is a (m − 1)-simplex, results in a lattice L, with
dimL = m − 1. The total number of (m − 1)-simplices in L is 2m − 1. This is
because we attach (m − 1)-simplices between every (k − 1)-face % ⊂ τ, for every
1 ≤ k ≤ m − 1, and the (m − k − 1)-face σ ⊂ δ colored with the complementary
colors, color(σ) = Zd+1 \ color(%). We can pick a subset of k vertices of τ in(

m
k

)
different ways and thus the number of newly attached (m − 1)-simplices is(

m
1

)
+

(
m
2

)
+ . . . +

(
m

m−1

)
= 2m − 2. Therefore, including a qubit placed at δ, there

are exactly 2m − 1 physical qubits in CCL (0,m − 3). On the other hand, there are
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exactly m vertices in L \ ∂L, and thus there are m X-type stabilizer generators in
CCL (0,m − 3). The weight of a column in M′m, corresponding to a qubit supported
on a (m − 1)-simplex π, is given by the number of X-type stabilizer generators
supported on that qubit, i.e. the number of vertices belonging to π but not to ∂L.
There are exactly

(
m

m−k

)
(m−1)-simplices containing k vertices not belonging to ∂L

and each of them contains a different set of k vertices. Thus, there are
(

m
k

)
different

columns of weight k in M′m and the only way this can occur is if the columns of M′m
are the set of all non-zero binary vectors of length m. Thus, up to a relabeling of
physical qubits, M′m and Mm are identical. Also note that the logical operators of
both codes are X = X (Q) and Z = Z (Q). Therefore the codes are the same.

2.3 Transversal gates in color codes
Asmentioned in the introduction, transversal gates are fault-tolerant. In this section,
we first review some relevant features of a class of CSS subsystem codes, which in-
cludes the color codes defined in Sectionrefsec:Ddim. Then, we examine transversal
gates of codes in this class. We show that CNOT is transversal in any such code and
under certain additional conditions the Hadamard and Rn can be transversal, too.
Finally, we show that the additional conditions are satisfied by certain color codes.

Subsystem codes
A CSS subsystem code [Pou05; Bac06] is specified by its gauge group G, which
is a subgroup of the Pauli group on physical qubits Q. Each X-type gauge group
generator X (Gx) consists of Pauli X operators applied to qubits Gx; similarly for
Z-type generators. The stabilizer group S ⊆ G is the group generated by all Pauli
operators X (Sx) and Z (Sz) contained in G, which commute with every element
of G. Note that a stabilizer code is a special case of a subsystem code, for which
G = S. The codewords are the +1 eigenvectors of all elements of S. We say that
two codewords are equivalent if they differ by application of a linear combination of
elements of G \ S. This allows one to decompose the subspace of codewords into
a tensor product of two spaces: logical qubits and gauge qubits. Elements of G \ S
have no effect on the state of the logical qubits, but may change that of the gauge
qubits.

For a subsystem code, we say a unitary implements a logical gate if it preserves the
space of all codewords, and has an action on the logical qubits which is independent
of any action on the gauge qubits. A logical gate U can be implemented on the
logical qubits |ψ〉 as a bare gate Ubare which leaves gauge qubits |g〉 unchanged,
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Ubare : |ψ〉|g〉 7→ (U |ψ〉) |g〉, or more generally as a dressed gate Udressed, which can
affect the gauge qubits too, Udressed : |ψ〉|g〉 7→ (U |ψ〉) |g′〉.

Consider the class of CSS subsystem codes which

• encode one logical qubit,

• have bare logical X and Z implemented by X (Q) and Z (Q).

Note that these codes are defined on an odd number of physical qubits, |Q | ≡ 1
mod 2, since X and Z anticommute.

We can define a pair of inequivalent (and not normalized) codewords, which are
representatives of logical |0〉 and |1〉, namely

|0〉|gX 〉 =
∑

X (G)∈G

X (G) |0〉, (2.25)

|1〉|gX 〉 = X |0〉|gX 〉, (2.26)

where |0〉 is a state with every physical qubit set to |0〉, and |gX 〉 is a fixed state
of the gauge qubits. One can verify that the states |0〉|gX 〉 and |1〉|gX 〉 are +1
eigenstates of S, and satisfy Z |0〉|gX 〉 = |0〉|gX 〉, Z |1〉|gX 〉 = −|1〉|gX 〉. They are
also+1 eigenstates of every X-type generator of G. All equivalent codewords can be
generated from |0〉|gX 〉, |1〉|gX 〉 by application of a linear combination of elements
from G \ S. An alternative pair of representatives of logical |0〉 and |1〉 is

|0〉|gZ〉 =
∑

X (S)∈S

X (S) |0〉, (2.27)

|1〉|gZ〉 = X |0〉|gZ〉, (2.28)

which are +1 eigenstates of all Z-type generators of G.

Transversal gates in subsystem codes
Consider a CSS subsystem code with one logical qubit, and X and Z implemented
by X (Q) and Z (Q). To check that a physical unitaryU implements a dressed logical
gate U in such a code, one can verify its action on |0〉|g〉, and |1〉|g〉 for every state
|g〉 of the gauge qubits. Alternatively, it is sufficient to verify that U has the correct
action by conjugation on X and Z , and that it preserves6 the gauge group G.

6Note that preservation of the gauge group under the action of a physical unitaryU is a sufficient,
but not a necessary condition for U to implement a dressed logical gate.
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The logical gate CNOT can be implemented transversally between two identical
copies of a CSS subsystem code by applying a physical gate CNOT to every pair
of corresponding qubits in the first and the second copy. This can be verified by
checking that under conjugation by CNOT, X I 7→ X X , I X 7→ I X , ZI 7→ ZI,
I Z 7→ Z Z and G ⊗ G is preserved7.

For a self-dual CSS subsystem code, namely a code with X- and Z-type gauge
group generators supported on the same sets of qubits, G = 〈X (Gi), Z (Gi)〉, a
dressed logical Hadamard gate can be implemented transversally as H = H (Q). To
see this, observe that under conjugation by H (Q), X 7→ Z , Z 7→ X , X (G) 7→ Z (G)
and Z (G) 7→ X (G), and thus G is preserved.

The last logical gate we analyze is Rn = diag
(
1, e

2πi
2n

)
, for an integer n > 0. We aim

to implement Rn transversally as a bare logical gate by applying the same single-
qubit unitary to some subsetT ⊂ Q of the physical qubits, and applying that unitary’s
inverse to the rest of the qubits T c := Q \ T . Specifically, we now prove that Rn is
implemented by R = Rk

n (T )R−k
n (T c), for some suitably chosen k ∈ {1, 2, . . . , 2n−1},

provided that T and G satisfy

∀X (G) ∈ G : |T ∩ G | ≡ |T c ∩ G | mod 2n. (2.29)

First, pick k such that
k (|T | − |T c |) ≡ 1 mod 2n. (2.30)

The existence of k is guaranteed by Bezout’s lemma, since |Q | is odd, |T | − |T c | =

2|T | − |Q | ≡ 1 mod 2, and thus gcd(2|T | − |Q |, 2n) = 1. Noting that R±k
n |0〉 = |0〉

and R±k
n X = e±

2πik
2n X R∓k

n , we obtain

R|0〉|gX 〉 =
∑

X (G)∈G

Rk
n (T )R−k

n (T c)X (G) |0〉 (2.31)

=
∑

X (G)∈G

e
2πik
2n |T∩G |e−

2πik
2n |T

c∩G |X (G) |0〉 (2.32)

=
∑

X (G)∈G

X (G) |0〉 = |0〉|gX 〉, (2.33)

R|1〉|gX 〉 = Rk
n (T )R−k

n (T c)X (Q) |0〉|gX 〉 (2.34)

= e
2πik
2n |T |e−

2πik
2n |T

c |X (Q)R|0〉|gX 〉 (2.35)

= e
2πi
2n X (Q) |0〉|gX 〉 = e

2πi
2n |1〉|gX 〉, (2.36)

7Notice, that generators of G ⊗ G are mapped under conjugation to another set of generators,
namely X (G)⊗ I (G) 7→ X (G)⊗X (G), Z (G)⊗ I (G) 7→ I (G)⊗ Z (G), I (G)⊗X (G) 7→ I (G)⊗X (G)
and I (G) ⊗ Z (G) 7→ Z (G) ⊗ Z (G).
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which shows that R correctly implements logical Rn when the gauge qubits are in
the state |gX 〉. However, all other states of the gauge qubits can be reached by
application of Z-type operators from G \ S, which all commute with R (since it is
diagonal in the Z-basis). Therefore for any state |g〉 of the gauge qubits, it must be
that R : |0〉|g〉 7→ |0〉|g〉, |1〉|g〉 7→ e

2πi
2n |1〉|g〉, verifying that R implements the bare

logical gate Rn.

It may not be obvious that there exists a set T ⊂ Q satisfying (2.29) for a given code.
In the later parts of this chapter we show an explicit construction ofT for color codes
in d dimensions, with n ≤ d. Notice that condition (2.29) can be inferred from the
following condition

������
T ∩

m⋂
i=1

Gi

������
≡

������
T c ∩

m⋂
i=1

Gi

������
mod 2n−m+1, (2.37)

where m = 1, . . . , n and {X (G1), . . . , X (Gm)} is any subset of the X-type generators
of the gauge group G. To see the implication (2.37) =⇒ (2.29) notice, that for any
X (G) ∈ G, we can write it as product of generators, namely X (G) =

∏m
i=1 X (Gi).

Then
G = G1 Y G2 Y . . . Y Gm, (2.38)

where we used the symmetric difference of sets, AY B := (A \ B) ∪ (B \ A). Using
the Inclusion-Exclusion Principle for symmetric difference8 we obtain

|T ∩ G | = |T ∩ (G1 Y G2 Y . . . Y Gm) | (2.39)

=
∑

i

|T ∩ Gi | − 2
∑
i, j

|T ∩ (Gi ∩ G j ) | + (2.40)

4
∑

i, j,k

|T ∩ (Gi ∩ G j ∩ Gk ) | − . . . (2.41)

+(−2)m−1 |T ∩ (G1 ∩ G2 ∩ . . . ∩ Gm) |, (2.42)

and a similar expression for |T c ∩ G |. Clearly, if condition (2.37) holds, then
|T ∩ G | − |T c ∩ G | ≡ 0 mod 2n, showing (2.29). Moreover, condition (2.37) is
easier to verify than condition (2.29), since we only need to check it for the X-type
generators of G, rather than for every X-type element of G.

We can summarize the discussion of how to implement transversal Rn in the follow-
ing lemma

8For sets A1, A2, . . . , Am , we have |A1 Y A2 Y . . . Y Am | =
∑

i |Ai | − 2
∑

i, j |Ai ∩ Aj | + . . . +

(−2)m−1 |A1 ∩ A2 ∩ . . . ∩ Am |.
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Lemma 6 (Sufficient Condition) Consider a CSS subsystem code encoding one
logical qubit. Let the code be defined on a set of physical qubits Q, where |Q | is odd
and with bare logical operators X = X (Q) and Z = Z (Q). If there exists T ⊂ Q,
such that for any m = 1, . . . , n:

������
T ∩

m⋂
i=1

Gi

������
≡

������
T c ∩

m⋂
i=1

Gi

������
mod 2n−m+1, (2.43)

for every subset {X (G1), . . . , X (Gm)} of the X-type gauge generators of the code,
then

R = Rk
n (T )R−k

n (T c) (2.44)

implements logical Rn, where k is a solution to k (|T | − |T c |) ≡ 1 mod 2n and
T c = Q \ T .

Transversal implementation of Rn in color code
Here we show how to implement the logical gate Rn transversely in the color code
CCL (x, z), for any integer n ≤ dim(L)/(x+1). One applies R = Rk

n (T )R−k
n (T c) for

some integer k, where T and its compliment T c = Q \ T correspond to the bipartite
decomposition of qubits Q specified in the (Bipartition of Qubits) Lemma 5. We
make use of the following property

Lemma 7 (Property of T) For any m-simplex σ in L \ ∂L with m < d

|T ∩ Q(σ) | = |T c ∩ Q(σ) |. (2.45)

Proof: By the choice of the set T , every (d − 1)-simplex δ has one qubit in T ,
and one qubit in T c = Q \ T , which is equivalent to |T ∩ Q(δ) | = |T c ∩ Q(δ) |.
Using the (Disjoint Union) Lemma 4, we can decompose the set of qubits Q(σ)
supported on an m-simplex σ, where m < d, as a disjoint union of qubits supported
on (d − 1)-simplices colored with a chosen set of d colors C ⊃ color(σ) , and then
we immediately obtain

|T ∩ Q(σ) | − |T c ∩ Q(σ) | =
∑
δ⊃σ

δ∈∆′
d−1(L)

color(δ)=C

|T ∩ Q(δ) | − |T c ∩ Q(δ) | = 0, (2.46)

which shows the (Property of T) Lemma 7. �
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Note that (2.43) in the (Sufficient Condition) Lemma 6 follows from the (Property
of T) Lemma 7. To see this, observe first that every stabilizer generator X (δi) is
supported on a x-simplex δi, thus Gi = Q(δi) and we obtain

m⋂
i=1
Q(δi) = ∅ or

m⋂
i=1
Q(δi) = Q(τ), (2.47)

where τ is a simplex colored with colors C =
⋃m

i=1 color(δi), such that τ ⊃
δ1, . . . , δm. The case of an empty intersection is trivial. Since |color(δi) | = x + 1,
then obviously |C | ≤ m(x + 1) ≤ d, and thus τ is at most (d − 1)-simplex. Using
the (Property of T) Lemma 7 we obtain that for any m = 1, ..., n:

������
T ∩

m⋂
i=1
Q(δi)

������
−

������
T c ∩

m⋂
i=1
Q(δi)

������
= (2.48)

|T ∩ Q(τ) | − |T c ∩ Q(τ) | = 0, (2.49)

which implies (2.43). The (Sufficient Condition) Lemma 6 implies that R im-
plements the logical Rn. In particular, one can implement Rd using the code
CCd (0, d − 2), since dimL = d, x = 0 and thus

⌊
dimL
x+1

⌋
= d.

2.4 Universal transversal gates with color codes
A finite set of gates which is universal can be used to implement any logical unitary,
with arbitrary precision. In particular, due to the Solovay-Kitaev [Kit97; NC10]
theorem, the number of applied gates scales poly-logarithmically with the precision
of approximation. Note that the set {H,CNOT, Rn} is universal for any integer
n > 2.

In this section, we show how to achieve a universal transversal gate set with color
codes by using the technique of gauge fixing to switch between different codes. This
technique allows one to take advantage of the transversally implementable gates
for different color codes. We first illustrate the method with a simple example of
two 15-qubit codes [PR13; ADP14]. Then, we define a partial order between color
codes. One can switch between color codes which are comparable to implement a
universal gate set in three or higher dimensions.



36

Switching between codes using gauge fixing
First, let us define matrices H1 and H2 given by

H1 =

*......
,

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 1 1 1 1 0 0 0
1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

+//////
-

, (2.50)

H2 =

*............
,

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 1 1 0 0 0 0 0
1 0 1 0 0 0 0 0 1 0 1 0 0 0 0
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0

+////////////
-

. (2.51)

Moreover, for a binary matrix M , we define M X to be a matrix obtained from M

by the following substitutions, 0 7→ I and 1 7→ X . Similarly for M Z , we substitute
0 7→ I and 1 7→ Z . Let CA be the stabilizer code with the stabilizer group SA

generated by rows of H X
1 , H Z

1 and H Z
2 , which we denote by

SA = 〈H X
1 , H Z

1 , H Z
2 〉. (2.52)

Let CB be the subsystem code with the stabilizer group SB and the gauge group GB

chosen as follows

SB = 〈H X
1 , H Z

1 〉, GB = 〈H X
1 , H X

2 , H Z
1 , H Z

2 〉. (2.53)

We can consider both codes CA and CB to be defined on the same 15 physical qubits.
One can check that CA represents the [[15, 1, 3]] quantum Reed-Muller (stabilizer)
code [MS77; Ste99; ADP14] and CB is a [[15, 1, 3]] (subsystem) code, which can
be thought of as the [[15, 7, 3]] Hamming code, with six of the seven logical qubits
treated as gauge qubits. Note also that SB ⊂ GA = SA and GB has X- and Z-type
generators supported on the same qubits (i.e. CB is a self-dual subsystem code).

Since the X-type generators of GB coincide with the X-type generators of SA, the
codewords of CA and CB are the same when the latter has a gauge state |gZ〉. In
other words, codewords |0̄〉, |1̄〉 forCA are the same as codewords |0̄〉|gZ〉, |1̄〉|gZ〉 for
CB, as defined in Eqs. (2.27) and (2.28). On the other hand the codewords |0̄〉|gX 〉,
|1̄〉|gX 〉 for CB (as defined in Eqs. (2.25) and (2.26)), are not valid codewords for
CA.
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Now we show that R⊗153 implements R3 transversally in CA. Consider any three of
the four X-type generators for GA, and specify their support on subsets of qubits
G1, G2, G3, which correspond to rows of H1. One can verify that |Ga | = 8 ≡ 0
mod 23, |Ga ∩ Gb | = 4 ≡ 0 mod 22, and |Ga ∩ Gb ∩ Gc | = 2 ≡ 0 mod 2, where
{a, b, c} = {1, 2, 3}. Therefore by the (Sufficient Condition) Lemma 6, and by setting
T to be an empty set, T = ∅, we see that R⊗153 implements R3 transversally in
the code CA. In contrast to the code CB, the extra X-type generators in GB \ GA

do not satisfy these conditions, and thus one cannot show that R3 is implemented
transversally in CB.

It is straightforward to verify that H is implemented transversally by H⊗15 in CB. It
swaps X and Z on any physical qubit, and therefore acts on the representative states
as H⊗15 : |ψ〉|gZ〉 7→ (H |ψ〉) |gX 〉. Since the state of the gauge qubits has changed,
H⊗15 is a dressed implementation of H in CA. Clearly, H⊗15 does not implement
H in CA, since it takes the state |ψ〉|gZ〉 ∈ CA to (H |ψ〉) |gX 〉 < CA.

To implement H fault-tolerantly in CA, we use the technique of gauge fixing. First,
one should apply H⊗15, resulting in mapping |ψ〉|gZ〉 to (H |ψ〉) |gX 〉, which is a
codeword of CB, but not of CA. Then, to switch from code CB to CA, one should
sequentially measure each of the six Z-type stabilizer generators generated by rows
of H Z

2 , i.e. those in SA \ SB. Note that it is possible to fault-tolerantly measure
the stabilizer generators in any stabilizer code [NC10]. If the measurement reveals
that a particular Z-type generator is not satisfied, then one should apply an X-type
Pauli operator which commutes with all generators in H Z

2 and H Z
1 , except for the

violated stabilizer generator (with which it must anticommute). Such an X-type
Pauli operator always exists. Following this application, the Z-type generator will
no longer be violated. Therefore, after this is carried out for all six generators
in H Z

2 , the state will have changed from (H |ψ〉) |gX 〉 to (H |ψ〉) |gZ〉, as required.
Specifically, we use the term gauge fixing to refer to the process of measuring and
setting the gauge qubits to a desired state.

To recap, in the [[15, 1, 3]] Reed-Muller code CA, one can implement H fault-
tolerantly with the following procedure

|ψ〉|gZ〉
H ⊗15
7−−−−→ (H |ψ〉) |gX 〉

gauge fixing
7−−−−−−−−−→ (H |ψ〉) |gZ〉. (2.54)

In combination with the transversal gates of CA, this allows one to implement a
fault-tolerant universal gate set {H,CNOT, R3}. We will repeat essentially the same
procedure for color codes later.
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Partial order of color codes
Given a d-dimensional lattice L, dimL = d, satisfying Conditions 1 and 2, we can
catalog all color codes defined on L. Namely, a pair of integers x, z ≥ 0, such that
x+z ≤ d−2, corresponds to a color code, denoted asCCL (x, z), with X- and Z-type
gauge generators supported on (d − 2 − z)- and (d − 2 − x)-simplices. Note that
the X- and Z-type stabilizer generators of CCL (x, z) are supported on x-simplices
and z-simplices, respectively. In two dimensions, d = 2, there is only one color
code, CC2(0, 0) — a stabilizer code, with both X- and Z-type stabilizer generators
supported on 0-simplices, whereas in three dimensions, d = 3, there are three color
codes, CC3(1, 0), CC3(0, 1) — stabilizer codes, and CC3(0, 0) —a subsystem code.

One can define a partial order for subsystem color codes defined on the same lattice
L if each codeword of code C is also a codeword of the other code C ′. In particular,
we say that C � C ′ holds if

• C andC ′ encode the same number of logical qubits, with identical bare logical
Pauli operators,

• the gauge group G of C is contained in the gauge group G′ of C ′, G ⊂ G′.

Note that G ⊂ G′ implies S′ ⊂ S, thus any codeword of C is also a codeword of C ′,
and since the bare Pauli operators for the logical qubit are the same in both codes,
it actually represents the same logical codeword in both codes. Observe, that the
partial order we have just defined can be succinctly expressed as

CCL (x, z) � CCL (x′, z′) ⇐⇒ x ≥ x′ ∧ z ≥ z′, (2.55)

as illustrated in Fig. 2.6. This follows from the observation that due to the (Disjoint
Union) Lemma 4 the X-type gauge generators ofCCL (x, z), which are supported on
(d−2− z)-simplices, can be expressed as the product of the X-type gauge generators
ofCCL (x′, z′) supported on (d−2− z′)-simplices, since z ≥ z′. Similarly for Z-type
gauge generators. We represent the family of color codes in Fig. 2.6, and show their
partial order using arrows.

Universal fault-tolerant gate set in color codes
Here we apply the techniques just discussed to color codes defined on the same
lattice L. One can switch back and forth between two codes which are comparable,
CCL (x, z) ≺ CCL (x′, z′), as follows
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(0, 0) (1, 0) (2, 0) (3, 0)
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25

1 x
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d = 2

d = 3
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Figure 2.6: Family of color codes. For a given lattice L, only color codes below the
d th diagonal line can be realized, where d = dimL and the point (x, z) corresponds
to the color code CCL (x, z). This constraint holds, since x and z have to satisfy
x + z ≤ d − 2. An arrow from code C to C ′ indicates partial order between
them, C � C ′. The number placed at (x, z) indicates the maximum gate Rn which
can be implemented transversally with the stabilizer color code CCd (x, z), with
d = x + z + 2, resulting in n =

⌊
d

x+1

⌋
.

• CCL (x, z) 7→ CCL (x′, z′): one does nothing, since codewords of CCL (x, z)
are codewords of CCL (x′, z′),

• CCL (x′, z′) 7→ CCL (x, z): one can view the codewords ofCCL (x, z) as those
for CCL (x′, z′) with the additional gauge qubits present in CCL (x, z) set to a
particular state. To switch, one fixes the state of the additional gauge qubits
to the appropriate state.

Given a three-dimensional lattice L, dimL = 3, one can implement a universal
gate set starting with a code CCL (0, 1). As explained earlier, one can transversally
perform the logical CNOT and R3 on that code. To form a universal gate set, it
suffices to also implement logical H . This gate cannot be implemented transversally
in CCL (0, 1), but can be achieved in CCL (0, 0). Note that CC3(0, 0) ≺ CC3(0, 1),
therefore any codeword in CC3(0, 1) is a valid codeword in CC3(0, 0). In particular,
we can think of |ψ〉 ∈ CC3(0, 1) as |ψ〉|g〉 ∈ CC3(0, 0), where |g〉 is a state of the
gauge qubits of CC3(0, 0). By applying H (Q) we perform the logical H on the
logical qubits of CC3(0, 0), which also changes the state of the gauge qubits, namely

H (Q)
(
|ψ〉|g〉

)
=

(
H |ψ〉

)
|g′〉. (2.56)

Note that the resulting codeword
(
H |ψ〉

)
|g′〉 ∈ CC3(0, 0) is not a valid codeword of

CC3(0, 1), since the gauge qubits are in the state |g′〉 , |g〉. To return to CC3(0, 1),
one needs to fix the gauge qubits to the correct state, namely |g′〉 7→ |g〉, and we
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obtain a codeword H |ψ〉|g〉 ∈ CC3(0, 1). Since CC3(0, 1) is a stabilizer code, it
is possible to measure and correct the violated stabilizers in a fault-tolerant way,
just as in Section 2.4. Therefore, to fix the gauge, one should first measure all Z-
type stabilizer generators supported on 1-simplices, and then apply the appropriate
X-type Pauli operators in order to correct any violated stabilizer generators. After
this, assuming no errors have occurred, all the stabilizer generators for CC3(0, 1)
are satisfied.

To summarize, we can perform the logical H on CC3(0, 1) by first applying H (Q)
and subsequently fixing the gauge to return to the codespace of CC3(0, 1),

|ψ〉|g′〉
H (Q)
7−−−−→

(
H |ψ〉

)
|g′〉

gauge fixing
7−−−−−−−−−−→

(
H |ψ〉

)
|g〉. (2.57)

Since CNOT and R3 can be performed transversally in CC3(0, 1), one can fault-
tolerantly implement a universal gate-set {H,CNOT, R3} in CC3(0, 1). This proce-
dure can be directly generalized to fault-tolerantly implement the universal gate set
{H,CNOT, Rd } with the code CCd (0, d − 2) in d dimensions.
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C h a p t e r 3

THE COST OF UNIVERSALITY IN SURFACE AND COLOR
CODES: STATE DISTILLATION VERSUS CODE SWITCHING

Quantum error correction allows to use faulty quantum hardware to build a reliable
quantum computer. It is a significant challenge for the field of quantum computing
to develop good quantum error correction schemes, which lead to reliable, scalable
storage and processing of quantum information with the weakest possible quality
and minimum overhead requirements.

Topological stabilizer codes [BK13; Kit03; BM06], in particular the toric code and
the color code, are the promising candidates for quantum computer architecture.
With typically higher error correction thresholds than other schemes, such as con-
catenated codes [AB97; CJL16], topological codes can be used to reliably store
quantum information with relatively imperfect physical qubits. The classical de-
coding is a process that diagnoses errors and proposes appropriate correction given
the measurement outcomes can be done efficiently. Moreover, in both the toric and
color codes, many logical gates can be implemented transversly [BM06; Den+02],
and therefore reliably despite the inevitable presence of noise. These features, along
with the fact that the stabilizer measurements required to implement the codes are
geometrically local, make these codes excellent candidates for quantum hardware.

The fault-tolerant transverse gates in both the two-dimensional (2D) toric and color
codes are in theClifford group and therefore do not form a universal quantumgate set.
A number of results rule out the possibility of designing similar 2D topological codes
with a richer set of transverse gates [EK09; BK13; Bev+16; JKY18]. Magic state
distillation [BK05; Kni04b; Kni04a] overcomes this shortcoming by implementing
Clifford operations alone to distill from many noisy copies a high fidelity resource
state, which later can be used to implement a non-Clifford gate. Unfortunately,
despite significant recent improvements [BH12; Haa+17], the distillation overhead
is formidable [Fow+12]. Code switching [PR13; ADP14] in 3D color codes is
currently the only fault-tolerant alternative to distillation for topological schemes
[Bom15a; KB15].

The experimental difficulty of moving to three-dimensional architectures could be
justified if they result in significant overhead savings. Our goal is therefore to
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extend previous studies which have focused on distillation [Fow+12; CO16] to
estimate and compare the overhead of code switching. In particular, we set out to
answer the following question: Consider a hybrid architecture mainly consisting of
2D quantum-local regions for Clifford operations, along with a special 3D quantum-
local region only to produce resource states. Are fewer qubits required in the special
3D region if used for code-switching or state distillation?

By quantum local [Bom15b], we allow measurements of only geometrically local
operators, but permit classical information to be passed without geometric restric-
tion. The main result of this chapter is that even in the most favorable treatment of
code-switching, we find no improvement in the overhead compared with magic state
distillation using the standard Bravyi-Kitaev protocol. However, one may hope that
better alternative forms of code switching could be found in future which outperform
those presented here.

In order to estimate the overhead of universality in color codes, we need to implement
a decoder of the 2D triangular color code. In particular, we adapted the 2D color
code decoder from Ref. [Del14a] to the case of the code with boundaries and noisy
syndrome extraction. We further optimize performance of the decoder in terms of
the circuit-level threshold for the depolarizing channel, obtaining the value of 0.3 %
for the color code on the hexagonal lattice.

The organization of this chapter is as follows. In Sec. 3.1, we outline stabilizer and
subsystem codes, focusing on 2D and 3D color codes. In Sec. 3.2 we specify the
circuit-level noise model we assume and various relevant aspects of error correction.
In Sec. 3.3 and Sec. 3.4 we explain the two approaches to achieve toplogically
encoded magic states: state distillation and code switching. In Sec. 3.5, we find
circuit-level thresholds for the 2D hexagonal lattice color code using an efficient
decoder. Lastly, we compare the overhead of distillation and code switching in
Sec. 3.6.

3.1 Overview of stabilizer and subsystem codes
A stabilizer code [Got97] is specified by the stabilizer group S, which is an Abelian
subgroup of the Pauli group Pn on n qubits generated by Pauli X , Y and Z operators.
The code space is defined to be the +1 eigenspace of operators in S. Here we abuse
notation and write |ψ〉 ∈ S for a code state |ψ〉, i.e., we use S to represent both the
stabilizer group of Pauli operators, and the code space. When referring to this state
at the logical level in the code space, we write |ψ〉 = |ψ〉. For the code space to be
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non-trivial we require −I < S. We say that the code encodes k logical qubits if the
number of (independent) generators of the stabilizer group S is n − k.

The distance d of the code is defined to be the minimum weight of a Pauli operator
P which commutes with the elements in S but does not belong to S. In other words,
we look for a minimum-weight operator in the normalizer N (S) of the stabilizer
group S which does not belong to S, namely

d = min
P∈N (S)\S

|P |. (3.1)

This can be generalized: a subsystem code is defined by its gauge group G ⊂ P,
which can be non-Abelian. The center of the gauge group defines another stabilizer
group S(G). The code states of S(G) are also code states of the subsystem code,
i.e., |ψ〉 ∈ S(G) =⇒ |ψ〉 ∈ G. The key conceptual idea of a subsystem code is
that elements of G do not affect the encoded information. Let |ψ〉 ∈ S(G) be a
code state and U ∈ A[G] be a unitary in the algebra generated by G. We say that
the state U |ψ〉 ∈ S(G) is logically equivalent to |ψ〉 for the subsystem code and
writeU |ψ〉 ∼ |ψ〉. This motivates our thinking of the code states as a tensor product
between a logical subsystem and a gauge subsystem, namely

|ψ〉 = |ψ〉L ⊗ |0〉G, (3.2)

U |ψ〉 = |ψ〉L ⊗ (U |0〉G), (3.3)

with U ∈ A[G] acting non-trivially only on the gauge subsystem. A Pauli operator
is a logical operator for G iff it commutes with all the elements of S(G) but is not
in G. It is always possible to choose representations of the logical operators which
commute with all elements of G, which we call bare logical operators L. Then, for
a unitary V in the bare logical operator algebra, V ∈ A[L], only the logical state is
affected,

V |ψ〉 = (V |ψ〉L) ⊗ |0〉G . (3.4)

Since G can be non-Abelian, multiplying bare logical operators by elements of G
will give dressed representations of the logical operators which may not commute
with all the elements of G. The distance d(G) of a subsystem code is defined as
follows

d(G) = min
P∈N (S)\G

|P |. (3.5)

Note that a stabilizer code can be viewed as a subsystem code whose gauge group
is Abelian, i.e., G = S(G).
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Topological stabilizer codes [BK13; Kit03; BM06] are a special case of stabilizer
codes, which have geometrically local stabilizer generators. We can think of qubits
of a topological stabilizer code as being embedded in a manifold, e.g. a torus.
Properties of the topological stabilizer code, such as its distance or the number of
logical qubits, are related to the topology of the manifold. The most famous example
of a topological stabilizer code is the toric code. It is defined on a 2D lattice, i.e. a
tessellation of a 2-manifold with or without boundaries, by placing qubits on edges
and identifying vertices and faces with stabilizer generators of X- and Z-type; see
Fig. 3.1(a). Another example of a topological stabilizer code is the color code. An
advantage of the 2D color code is that all single logical qubit Clifford gates can be
implemented transversely, i.e., as a tensor product of single-qubit unitaries. The
code is defined on a 2D lattice, which satisfies two constraints

• 3-valence: each vertex belongs to three edges,

• 3-colorability: faces can be colored in three colors {r, g, b} in such a way that
two neighboring faces are of different color.

Qubits are placed at vertices and the stabilizer group of the color code is generated
by X- and Z-face operators, which are tensor products of Pauli X and Z operators
on qubits on corresponding faces. In particular, we will be interested in the 2D
triangular color code on the hexagonal lattices.

The color code construction can be generalized to d dimensions [BM07a]. In
particular, the 3Dcolor code is defined on a 4-valent latticewith 4-colorable volumes,
i.e., two neighboring volumes have different colors. Qubits are placed on vertices
and the stabilizer group is generated by X- and Z-type operators associated with
3- and 2-cells; see Fig. 3.1(c)(d). The 3D color code lattice we focus on is the
dual lattice of the body-centered cubic (bcc) lattice. Two key properties [Bom15a;
ADP14; KB15] of the 3D color code are that it (i) admits a transverse non-Clifford
logical gate, T = diag

(
1, eiπ/4

)
, and (ii) allows information transfer to the 2D color

code by local measurements and Pauli corrections; see Fig. 3.1(c) and (d). The
transverse T gate follows from features of the bipartite lattice. We describe the
dimensional jump in more detail in Sec. 3.4, and refer the reader to Refs. [Bom15a;
KB15] for thorough derivations of the transverse properties of these code families.
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(a) (b)

(c) (d)

Figure 3.1: (a) The 2D toric code on a square lattice with qubits placed on the edges
of the lattice. The X-vertex (respectively Z-face) stabilizers are products of four
Pauli X (or Pauli Z) operators applied to qubits on edges incident at any given vertex
(or on edges around any face), as indicated in red (green). (b) The hexagonal lattice
is 3-valent and has 3-colorable faces. With qubits on vertices, the 2D color code’s
stabilizer generators are composed of either Pauli X or Z operators on all vertices
for any given face. (c) The smallest 3D color code is the 15-qubit Reed-Muller code.
Qubits are placed on the vertices of the 3D lattice, whose volumes are 4-colorable.
The lattice consists of four volumes, one of which has been shaded for clarity. The
3D color code has a X-volume stabilizer supported on all the qubits of any volume
in the lattice. For every face, there is a Z-face stabilizer supported on the qubits on
the face. The lattice is bipartite, and to implement the logical T , one applies T to
the dark qubits and T† to the light qubits. (d) By measuring generators of the 2D
color code, and applying appropriate Pauli operations, one can switch from the 3D
to the 2D color code.

3.2 Error correction with stabilizer codes
Error correction can reliably protect quantum information from sufficiently weak
(and not adversarial) noise. In this section, we outline howwemodel error correction
using stabilizer codes.

Noise model
To make the analysis tractable, we need to make some simplifying assumptions
about the noise present in the system. The depolarizing channel on a single- and
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two-qubit density matrices %(1) and %(2) is defined as follows

E
(1)
p : %(1) 7→

(
1 − p

)
%(1) +

p
3

∑
P∈{X,Y,Z }

P%(1) P, (3.6)

E
(2)
p : %(2) 7→

(
1 − p

)
%(2) +

p
15

∑
P1,P2∈{I,X,Y,Z }

P1⊗P2,I⊗I

(P1 ⊗ P2)%(2) (P1 ⊗ P2), (3.7)

where the parameter p can be interpreted as the error probability. The deloparizing
channel leaves a single-qubit state unaffected with probability 1− p and with proba-
bility p

3 applies one out of three errors X ,Y or Z . Similarly, the deloparizing channel
leaves a two-qubit state unaffected with probability 1 − p and with probability p

15
applies our out of 15 non-trivial Pauli errors P1 ⊗ P2 , I.

Now we explain how we model a noisy quantum circuit. We approximate every
noisy gate, i.e., Pauli X , Y and Z operators, the Hadamard gate H , the phase gate
T , the controlled-not gate CNOT, and the idle gate I, by an ideal gate followed by
the depolarizing channel on qubits acted on by the gate; see Fig. 3.2. In particular,
we fix the strength of the depolarizing channel for both single- and two-qubit gates
to have the same error probability p. We model preparation of ancilla qubits in Z

or X bases by ideal preparation followed by the bit-flip X or phase-flip Z errors
with probability p, respectively. Similarly, we model single-qubit measurements
in Z or X bases by ideal measurements followed by a flip of the classical bit
representing the measurement outcome with probability p. We assume that every
elementary operation, i.e., preparation of an ancilla qubit, implementation of a
gate and measurement of a qubit, can be performed in one time step. These
assumptions significantly simplify our analysis, however in real-life experiment the
implementation time as well as the noise model and its strength heavily depend on
the type of performed operation. For instance, entangling gates seem to be more
noisy and take more time to execute than single-qubit gates.

Syndrome extraction
In order to diagnose errors in the systemwe have to perform stabilizermeasurements.
The set of all stabilizerswhich return−1measurement outcome is called a syndrome.
Any non-trivial syndrome indicates that some errors affected the system. We note
that in a realistic setting we cannot measure stabilizers perfectly. Rather, we can only
use noisy components which in principle can introduce even more errors into the
system. Fortunately, reliable syndrome extraction is possible provided the strength
and correlations of the noise are sufficiently weak.
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Figure 3.2: (a)An example of an ideal circuit on three qubits (idle gates not depicted).
We assume that every gate, as well as preparation of ancilla qubits or single-qubit
measurements take one time step. (b) We model a noisy circuit as composed of
ideal gates followed by the depolarizing channel, with the probability of no error
being 1 − p for both one- and two-qubit gates. We describe noisy preparation
and measurement steps as ideal operations followed by the bit-flip X- or phase-flip
Z-errors with probability p, depending on the choice of basis.

(a)
|+〉 X b (b)

|0〉 Z b

Figure 3.3: Ideal circuits used to measure weight-two stabilizers: (a) X-type and
(b) Z-type. The bottom line represents an ancilla qubit, which is prepared in either
|0〉 or |+〉 state. In our simulations we assume that every component of the circuits
is affected by noise.

We model syndrome extraction with two quantum circuits measuring X- or Z-
stabilizers, depicted in Fig. 3.3. We start by preparing an ancilla qubit in either the
|+〉 or |0〉 state, then apply the CNOT gates between the ancilla qubit and all the
qubits of the stabilizer, and finally measure the ancilla qubit in the corresponding
X- or Z-basis. Since we focus our attention on a realistic scenario of syndrome
extraction via noisy quantum circuits, we need to repeatedly measure each stabilizer
in order to reliably infer the syndrome. We would like to emphasize that at each
time step new errors can appear in the system and thus it is important to design
a shallow circuit which does not propagate errors badly to extract the syndrome.
When searching for such a circuit, we need to satisfy two restrictions:

• at each time step at most one operation can be applied to any given qubit,

• the circuit preserves the combined stabilizer group of the code and measure-
ment ancilla qubits.
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Decoding and thresholds
The problem of decoding can be stated as: given the extracted stabilizer measure-
ment syndrome, find and apply an appropriate correction. Note that we do not
need to identify the errors exactly: decoding succeeds if and only if our estimate
of the error differs from the actual error by a stabilizer. For a given error model,
in our case the depolarizing channel, optimal decoding finds the most probable
equivalence class of errors consistent with the observed syndrome. In general, the
complexity of optimal decoding can scale exponentially with the number of qubits
and thus is computationally intractable in the regime of interest. However, one can
consider efficient decoding strategies, such as the Minimum-Weight Perfect Match-
ing algorithm for the 2D toric code which finds the most probable error. To decode
the 2D color code we choose the projection decoder by Delfosse, which we describe
in Sec. 3.5.

Let us consider a family of error-correcting codes of growing distance d, for instance
the family of 2D triangular color codes. We say that a code family has a non-
zero error-correction threshold pc if for any physical error probability p < pc the
probability of unsuccessful decoding pL(p, d) approaches 0 as the distance goes to
infinity. If a code family has a non-zero threshold, thenwe can reliably store quantum
information by first encoding it into a code of distance d from that family, and then
performing repeated rounds of syndrome extraction followed by error correction.
This way we can make the probability of logical error pL, which we also call the
effective error probability, to be arbitrarily small by choosing codes of sufficiently
large distance d. For a given code family, the effective error probability pL of the
encoded qubits is a function of the physical error probability p and the distance d

of the code and is expected to behave as

pL(p, d) ≈ α
(

p
pc

)d/2
, (3.8)

for p less than but comparable to pc; see [Fow+12; LAR11] for details. We will later
use this heuristic scaling to estimate the probability of a logical error in the encoded
information. For some choices of code family and decoding algorithm, there will
be no finite error correction threshold. Although some codes could still be useful
in particular regimes, usually we take the absence of a threshold to be a sign that an
error correction scheme is not scalable.

We remark that the threshold for perfect syndrome extraction can be established
by connecting to phase transitions in certain statistical-mechanical models. No
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such connection exists for circuit-level noise however. One can prove lower bounds
on circuit-level thresholds, however the bounds are typically quite loose. In order
to estimate the circuit-level threshold, one typically uses numerical Monte Carlo
simulations, see Sec. 3.5.

Universal computation
The Clifford group is the group of unitary gates which preserve the Pauli group
when acting by conjugation. Gates in the Clifford group include X , Y , Z , S H , and
CNOT . We collectively refer to the set of all Clifford group elements, along with
preparation of states and measurement in the Pauli basis as Clifford operations. A
state is referred to as a stabilizer state if and only if it can be prepared by Clifford
operations. The set of Clifford operations is not universal for quantum computation,
and can be efficiently simulated on a classical computer [NC10]. However, the
addition of any non-Clifford gate to the Clifford operations renders the resulting set
universal, i.e., it generates a dense cover of the unitary group.

In most error correction schemes, the quantum information is stored in a stabi-
lizer code, and many fault-tolerant gates are achieved by applying code-preserving
transverse operations

U = U1 ⊗ U2 ⊗ · · · ⊗ Un, (3.9)

where eachUi is a unitary that acts on at most one qubit (in each code block). Trans-
verse gates are automatically fault-tolerant as they do not spread errors. However,
no quantum error correcting code can have a universal set of transverse gates [EK09;
ZCC11; JKY18].

A wide range of schemes of practical interest are capable of fault-tolerantly applying
all Clifford operations. To generate a non-Clifford gate to render such a scheme
universal, a resource state (which cannot be formed by Clifford operations) can be
used. For example, the so-called “magic state" |T〉 = T |+〉 = (|0〉+ eiπ/4 |1〉)/

√
2 can

be used as in the circuit depicted in Fig. (3.4). There are a number of approaches to
obtain the coveted fault-tolerant non-Clifford gate in such schemes. However, only
two are known to be applicable to topological codes, magic state distillation and
code switching, which we explain in Sec. 3.3 and Sec. 3.4, respectively.

Logical level circuit analysis
As we will discuss in Sec. 3.6, in order to distill magic states one needs to execute
certain Clifford circuits. Due to the presence of the noise affecting physical qubits
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|T 〉
|ϕ〉 Sa

a

T |ϕ〉

Figure 3.4: A T state |T〉 = ( |0〉 + eiπ/4 |1〉)/
√
2 can be used to implement the

non-Clifford T = diag(1, eiπ/4) gate using Clifford operations. The measurement
outcome a controls the application of the Clifford gate S = diag(1, i) to yield the
state T |ϕ〉 up to an unimportant global phase.

we would like to run those quantum circuits on the logical level. In other words, we
require that every qubit involved in the quantum circuit is not just a physical qubit
but a logical qubit of some code, say the 2D triangular color code of distance d. We
choose the 2D color code because it can be used for both code switching (to the 3D
color code) and distillation, by implementing logical Clifford gates transversely. We
note that the error probability on the physical qubits in the system and the logical
qubits is different. Namely, if p is the physical error probability, then according
to Eq. (3.8) the effective error probability on the logical qubits is pL(p, d). To
analyze the chances of successful implementation of the quantum circuit, we make
a simplifying assumption that the effective noise in the circuit is captured by the
depolarizing channel with error probability pL(p, d).

3.3 Non-Clifford gates from distillation
Although no encoded resource state | R̄〉 can be generated using Clifford operations
(which we will assume can be performed fault-tolerantly using the chosen error
correction scheme), some number of encoded | R̄〉 states with sufficiently weak noise
(which could be produced by a non-fault-tolerant process) can be distilled by using
only Clifford operations into fewer | R̄〉 states but with improved fidelity [BK05]. The
encoded resource state can then be used to fault-tolerantly implement a non-Clifford
gate using a circuit such as that in Fig. 3.4. Any given state distillation protocol
takes Ni copies of a resource state |R〉 affected by depolarizing noise with error
probability p, and on average produces N f (p) copies with effective error probability
cpm+O(pm+1). The dependence of N f (p) on p is due to the fact that many protocols
have a test which leads to the state being discarded upon failure. We also define
C(p) = Ni/N f (p), the average number of input copies per output.

Here we outline three approaches to distill |R〉. To our knowledge, all known
proposals can be viewed as variations of these three. Consider the distillation of a
non-stabilizer resource state |R〉, which is stabilized by an operator CR |R〉 = |R〉,
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Figure 3.5: The three known classes of approaches to distill a resource state |R〉.
The circuits are depicted for perfect input states, but noisy states would be used in
practice, with post selection onto all zero measurement outcomes. Enc. and Dec.
denote the (Clifford) encoding and decoding circuits. (a) A code with a transverse
non-Clifford gate UR is needed, such that UR |S〉 = |R〉 for a stabilizer state |S〉.
(b) A code with a transverse gate CR such that CR |R〉 = |R〉 is required, and the
measurement of the stabilizers of the code will be probabilistic even when |R〉 input
is free of noise, with post-selected state |ϕ(0, . . . , 0)〉 = |R〉. (c) A code with a
transverse gate CR such that CR |R〉 = |R〉 is required, where CR = URPU†R for a
Pauli operator P.

and can be obtained from a stabilizer state |S〉 by the application of a non-Clifford
gate UR, i.e., |R〉 = UR |S〉. We will refer to CR and UR as the resource stabilizer
and resource rotator, respectively. In all three approaches (see Fig. 3.5), each wire
in the circuits represents a logical qubit of an error correction scheme that can fault-
tolerantly perform all Clifford gates. For now we assume that these Clifford gates
can therefore be performed perfectly, but we will relax this assumption later.

1. Code projector then resource rotator [LC13; BK05; BH12]. Find a code with
a transverse logicalUR gate UR = UR ⊗UR ⊗ · · · ⊗UR. By preparing the code
in the logical stabilizer state | S̄〉, then using n copies of the noisy resource
state |R〉 to implement the transverse gate as in Fig. 3.4, one prepares the
(noisy) logical state | R̄〉. By decoding | R̄〉 and post-selecting on +1 outcomes
of the code’s stabilizers gives a distilled resource state with error probability
reduced from p to O(pd) for code distance d; see Fig. 3.5(a).
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2. Resource stabilizer then code projector [BK05; Rei05]. Find a code with a
transverse logical CR gate CR = CR ⊗CR ⊗ · · · ⊗CR as a transverse gate. Start
with n noisy resource states |R〉⊗n, which by construction satisfies CR |R〉⊗n =

|R〉⊗n, then measure the stabilizers of the code, with outcomes which are
unaffected by the logical operator C̄R. If all outcomes are +1 then | R̄〉 has
been prepared, which can then be decoded to yield a distilled resource state
|R〉 with error suppressed from p to O(pd). The post-selection probability
will not become unity given perfect resource states since the initial state is
not in the code space, see right Fig. 3.5(b). This feature seems to render this
approach less promising than the other two.

3. Code projector then resource stabilizer [Kni04b; Kni04a; MEK13; Jon13;
DP15; CO16; Haa+17]. Consider a case in which CR |R〉 = |R〉 and |R〉 =
UR |S〉, and URCRU†R = P ∈ P is a Pauli operator. Find a code which has
CR = CR ⊗ CR ⊗ · · · ⊗ CR as a transverse gate. First encode one of the
noisy |R〉 states in the code, giving | R̄〉, plus noise terms. Then, construct
a special gadget to measure the logical CR of the code, and post-select on
the +1 outcome to reduce the contribution of the noise terms. The gadget
involves first applying UR ⊗ UR ⊗ · · · ⊗ UR, using n noisy |R〉 states as in
Fig. 3.4, followed by the Clifford gate control-(P ⊗ P ⊗ · · · ⊗ P), controlled
by an ancilla state |+〉, before applying U†R ⊗ U†R ⊗ · · · ⊗ U†R, using another n

noisy |R〉 states. The resulting | R̄〉 is decoded and kept as a distilled resource
state only if the stabilizers of the code were all satisfied. Errors on the |R〉
states other than that uncoded are suppressed to the order of the code distance.
Errors on the |R〉 that is encoded are not as suppressed, but can be boosted by
(for example) repeating the measurement. See the lower panel of Fig. 3.5. 1

Although for simplicity we have described each case with a code that encodes a
single logical qubit k = 1, many of the best schemes make use of codes with k > 1
such that k/n is large, while maintaining a high post-selection success probability
and non-trivial code distance d.

We will focus on the first type of distillation scheme from above. As a benchmark,
consider 15-qubit code, which is defined in Fig. 3.1 and the surrounding text, where
we explained the transverse implementation of the T gate.

1It is worth pointing out that if R is a gate from the third level of the Clifford heirarchy such as
T , then CR will be in the Clifford group, but by using this approach with a code which implements a
non-Clifford transverse gate CR , distillation for higher order schemes should be possible.
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To simplify the analysis of distillation protocols it is standard to imagine first apply-
ing a channel to diagonalize the state in the basis of the resource state. Continuing
with the above notation, for a resource state |R〉with a stabilizing operatorCR. Then,
CR |R〉 = |R〉 and assume that CR |R⊥〉 = e

2πi
m |R⊥〉 for some integer m, and where

|R⊥〉 is orthogonal to |R〉. We can always write an arbitrary single qubit state as

% = %00 |R〉〈R| + %01 |R〉〈R⊥ | + %10 |R⊥〉〈R| + %11 |R⊥〉〈R⊥ |. (3.10)

The following twirling channel forces the density matrix into the simple form,

% 7→

m∑
k=1

Ck
R%(Ck

R)†, (3.11)

=

m∑
k=1

(
%00 |R〉〈R| + e

2πik
m %01 |R〉〈R⊥ | + e−

2πik
m %10 |R⊥〉〈R| + %11 |R⊥〉〈R⊥ |

)
,(3.12)

= %00 |R〉〈R| + %11 |R⊥〉〈R⊥ | = (1 − p) |R〉〈R| + p|R⊥〉〈R⊥ |, (3.13)

where p = 〈R⊥ |%|R⊥〉. Defining an error operator E which satisfies |R⊥〉 = E |R〉,
we can represent the noise on a set of n such states as the binary vector c ∈ {0, 1}n,
where Ec1 ⊗ Ec2 · · · ⊗ Ecn , which occurs with probability p|c| (1 − p)n−|c | where |c |
is the bit string’s Hamming weight. For example, for the state |T〉, the stabilizing
operator is HSHSH and the error operator is Z .

Code projector then resource rotator with the [[15, 1, 3]] code
An encoding circuit for the 15-qubit code is shown in Fig. 3.6. For clarity, we have
shown only one gate per time step, however the circuit length is reduced in practice
by parallelizing. Almost all of the CNOT gates in the encoding circuit commute.
To implement the protocol, we set |ψ〉 = |+〉, which allows the four CNOT gates
with the first qubit as the target to be removed.

If we assume the Clifford operations are perfect, then the only source of error is
from the magic states themselves. Since the input is % = (1− p) |T〉〈T |+ pZ |T〉〈T |Z ,
we can think of the errors as being a Z-type Pauli inserted before the decoder in an
otherwise perfect circuit from Fig. 3.6 with a probability p|c | (1 − p)n−|c| for c the
bit string representing the support of the operator. We will obtain a false positive
for this protocol iff the Z is a logical operator, in which case the output will be Z |T〉

instead of |T〉. As the code has distance d = 3 all weight one and two errors are
detected. There are 35 weight 3 Z-type logical operators which each occur with
probability p3(1 − p)12, therefore the output is %′ = (1 − p′) |T〉〈T | + p′Z |T〉〈T |Z

with p′ = 35p3 + O(p4).
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Figure 3.6: (a) A circuit to distill a |T〉 state using the fifteen qubit code. As the
logical gate of the code is T̄† = T⊗15, the S† operation is required to return |T〉 = T |+〉
rather than T† |+〉. The output %′ is accepted if all of the stabilizers are satisfied (i.e.
si = 0). If % = (1 − p) |T〉〈T | + pZ |T〉〈T |Z , then %′ = (1 − p′) |T〉〈T | + p′Z |T〉〈T |Z
with p′ = 35p3 + O(p4). The transverse gate is implemented using |T〉 states using
the gadget shown in Fig. 3.5. (b) A circuit Enc. which encodes the arbitrary state
|ψ〉 into the 15 qubit code. To apply the decoding circuit Dec., simply run Enc. in
reverse.

3.4 Non-Clifford gates from code switching
If one can fault-tolerantly transfer information encoded in an error correction scheme
which admits transverse Clifford operations to one which admits any transverse non-
Clifford gate, a universal gate set can be achieved. Code switching is also known as
gauge fixing or, in the context of topological codes of different spatial dimension,
as dimensional jump. In this section we first give an explicit example of switching
between the well-known Steane and 15-qubit Reed-Muller codes, which are the
smallest 2D and 3D color codes. After a general description in terms of subsystem
codes, we explain code switching in detail between arbitrarily large 2D and 3D color
codes. Finally, we discuss the issue of fault tolerance of code switching.
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Code switching between the 15-qubit and Steane codes
Suppose we begin with the density operator %initial in the 15-qubit code space of
Fig. 3.7(a). Our goal will be to end up with a final state encoded in the Steane
code defined over those seven qubits making up the triangular red-green-blue facet
in Fig. 3.7(a). The logical operators for both codes can be chosen to be X = X⊗7,
Y = Y ⊗7 and Z = Z⊗7 for all seven qubits in the red-green-blue facet. We can write
the initial state as

%initial ∝ c0I + c1X + c2Y + c3Z . (3.14)

The Z type stabilizers of our target Steane code are already satisfied in the 15-qubit
code. We force the X type stabilizers to be either +1 or −1 by simply measuring
them. It is important that these measurements commute with X,Y, Z . Any −1
outcome can be flipped to +1 by applying Z stabilizers of the original code, which
commute with X,Y, Z; see Fig. 3.7. The result is that all stabilizers of the Steane
code are satisfied, giving a state %final in the Steane code space. Moreover, since
all the steps we took commute with X,Y and Z , it must be that %final = %inital. An
analogous procedure can be used to switch from the Steane code in Fig. 3.7(d) back
to the 15-qubit code.

Code switching viewed as fixing a subsystem code’s gauge state
Consider a subsystem code with the gauge group G and the stabilizer group S =
S(G). Let two stabilizer codes SA and SB contain S, i.e., S ⊂ SA and S ⊂ SB.
Assume that bare logical operators L for all three codes can be represented as the
same operators. Note that any states |ψ〉A ∈ SA and |ψ〉B ∈ SB are also subsystem
code states, i.e., |ψ〉A, |ψ〉B ∈ G. Moreover, as L is common for all three codes, if
|ψ〉A and |ψ〉B represent the same logical state in their respective stabilizer codes,
then they must be logically equivalent in the subsystem code, namely

|ψ〉A = |ψ〉L ⊗ |ϕA〉G, (3.15)

|ψ〉B = |ψ〉L ⊗ |ϕB〉G, (3.16)

for different gauge states |ϕA〉G and |ϕB〉G . We can therefore think about switching
from SA to SB as fixing the gauge state of the subsystem code G from |ϕA〉G to
|ϕB〉G . The process of code switching from SA to SB requires two steps.

1. Measure those generators of SB that are not in S, which results in a syndrome
σ.



56

(a) (b)

(c) (d)

Figure 3.7: Conversion between code states |ψ3D〉 and |ψ2D〉 of the 3D and 2D color
codes. (a) In the 3D code, X-stabilizers are supported on volumes, and Z-stabilizers
on faces. (b) By measuring the X-face operator supported on the green face fG
on the rightmost boundary, we project |ψ3D〉 into a (+1)- or (−1)-eigenspace of
X ( fG). If the measurement outcome of X ( fG) is −1, then we apply an operator
Z ( f RB) on the face f RB separating the red and blue volumes and subsequently return
to the +1-eigenspace of X ( fG). (c) We repeat the procedure and measure X-face
operators for red and blue faces on the rightmost boundary, and conditioned on the
measurement outcomes apply appropriate Z-face operators to ensure that the state
is in the +1-eigenspace of all measured X-face stabilizers. (d) The final state is a
tensor product of some state |ψ̃〉 of eight qubits (yellow volume) and a code word
|ψ2D〉 of the 2D color code on seven qubits on the rightmost boundary. Since the
logical operators of the two codes commute with all the X-face measurements and
Z-face corrections in the conversion |ψ3D〉 7→ |ψ̃〉 ⊗ |ψ2D〉, the unchanged encoded
information is transferred from the 3D into the 2D color code.

2. In order to satisfy all the elements of SB, find and apply an element of G
which has the syndrome σ.

In order for code-switching to be fault-tolerant, we should reliably infer σ despite
noise on the physical qubits along with errors in the measurements. We will return
to this after describing a particular case of gauge-fixing: the dimensional jump for
color codes.
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Code switching between 2D and 3D color codes (dimensional jump)
In this case the relevant subsystem code is the 3D gauge color code. The gauge
group G is generated by all X and Z faces of the lattice L3D, which is dual to the
bcc lattice. Note that X- and Z-type stabilizer generators of S(G) are identified
with the volumes of L3D. Here, SA = S3D is the stabilizer group for the 3D color
code defined on L3D, and SB = 〈Sbulk,S2D〉 is generated by two stabilizer groups
on disjoint sets of qubits. In particular, S2D is the 2D color code stabilizer group on
the boundary L2D of the lattice L3D, and Sbulk is a trivial stabilizer code (with no
logical qubits) supported on Lbulk = L3D \ L2D.

The generators of S3D are X-volumes, and Z-faces L3D. The generators of S2D are
X-faces, and Z-faces in the facet L2D. The generators of Sbulk are the restriction of
the generators of S3D to the bulk lattice Lbulk, which amounts to all X-type 3-cells
and Z-faces, along with additional X-faces along where the facet was removed.
Finally, we can choose representatives of non-trivial logical operators L = {X,Y, Z }

as products of Pauli X , Y and Z applied to all the qubits on the boundary L2D.
We remark that those operators implement logical operators for both SA = S3D and
SB = Sbulk · S2D, as well as the bare logical operators for G.

Following our general description from above, in order to implement a dimensional
jump from the 2D to the 3D color code, we should have an initial state prepared
in the 2D color code in the facet L2D, along with the qubits in Lbulk prepared in
the unique code state of Sbulk. Then, one should measure the Z-face operators
near the facet. For any subset of these Z-face operators that return a −1 outcome,
there will be a product of a set of X-face operators in L2D which anticommute with
precisely that set and can therefore be applied to force all Z-face operators to have
+1 outcome. The reverse process of a dimensional jump from 3D to 2D is very
similar (and is depicted in Fig. 3.7).

Fault tolerance during code switching
Consider once more the example of switching from the 15-qubit code to the Steane
code depicted in Fig. 3.7. We would like to argue that the process can be made
fault-tolerant, such that a single error can occur during any location in the circuit
used to implement the switching procedure without resulting in a logical error.

First imagine that the measurements are performed perfectly. Suppose that a single
X type error appears on any of the 15 qubits at any stage in the process. This error
will not alter the X-face measurements of the r − g − b facet, and will be left as
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an unpropagated X error at the end of the switching protocol, which (if acting on
a qubit in the facet) will be corrected in the next round of error correction in the
2D code where our information is now stored. Therefore single X errors pose no
problems for fault tolerance.

By the CSS nature of both the 2D and 3D color codes, it is sufficient to assume either
a single Z error or no error at all occurs. A Z error can occur on a qubit either (1) in
the facet, or (2) in the remaining 8 qubits of the bulk. Clearly, the above procedure
fails for (1), since the Z will flip some the X-face measurements in the facet, causing
us to apply the wrong Z-type gauge operators to ensure +1 X-face outcomes. To
deal with this problem, we should identify the outcomes of the opposing X-faces of
the bulk, along with the 3-cell X operator in the bulk (acting on all of its 8 qubits).
Then, if the pairs of X-faces in the facet and their counterparts agree, we conclude
that either no Z-error occurred, or the Z-error was in the bulk qubit furthest from
the facet, and we proceed as if no error occured. If the pairs of X-faces in the facet
and their counterparts disagree, then we conclude that a Z error occurred either in
the facet, or in one of the 7 adjacent qubits in the bulk. Moreover, the pattern of
the disagreement in the pairs specifies which of the 7 pairs of qubits contain the Z

error (but not whether the Z is on the facet or the bulk qubit of the pair). However,
we can determine which one from the pair of Z operators was applied. Namely,
if the X-volume measurement is −1, then the Z operator was applied to the bulk.
Therefore we have seen that the procedure can be made fault-tolerant (with perfect
measurements) if we also measure X-stabilizers in the bulk. By implementing each
of the measurements three times with verified cat states, and taking the majority
vote, the entire process can be made fault-tolerant for faults in the measurement
process.

A proof of quantum local fault-tolerance is given in [Bom14a] for code switching
between the 2D color code and the 3D gauge color code. As usual in the topological
setting, verified cat-states are not needed formeasurements as the geometrically local
measurement errors can be handled by the code (below a threshold error probability).
We point out however that theT gate is not transverse in the 3D gauge color code. To
our knowledge, there is no rigorous proof that that code-switching between the 2D
and 3D stabilizer codes is fault-tolerant (with local quantum operations) for larger
codes.
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3.5 Error threshold analysis
As the toric and color codes are closely related [KYP15], one might hope to be
able to reduce the problem of decoding of the color code to that of the toric code.
This intuition is correct, as pointed out by Delfosse, who proposed the projection
decoder for the 2D color code based on this strategy [Del14a]. In fact, it turns
out that the color code in d ≥ 2 dimensions can be decoded using any decoder of
the corresponding d-dimensional toric code [KDP18]. In this section, we adapt
the projection decoder for color codes on lattices with boundaries and imperfect
syndrome extraction. We use this in numerical simulations to obtain the circuit-
level threshold for the 2D triangular color code to be around 0.3%; see Fig. 3.8.
These results are the first circuit-level noise analysis of the hexagonal lattice color
code with an efficient decoder. Previous circuit-level noise analysis were performed
for the square-octagon lattice color code, but with non-efficient [LAR11] decoders,
or with a decoder that formally has no threshold [Ste14].
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Figure 3.8: The failure probability pfail(p, d) of the 2D color code decoder from
Ref. [Del14b] adapted to the case of the triangular color code with boundaries and
noisy syndrome extraction. We can estimate the circuit-level thresholds for (a) the
X-type and (b) Z-type correction by plotting pfail(p, d) for different d and finding
their crossing point.

The (sublattice) projection decoder for the color code with boundaries
Let us consider the 2D color code on a lattice L with boundaries, such as the
2D triangular color code. Since the color code is a self-dual CSS code, we will
decode X- and Z-errors separately and focus on the correction of X-errors, since
the correction of Z-errors is analogous. Assume that ε ⊂ ∆0(L) is the set of
qubits affected by X-errors. Then, the syndrome σ ⊂ ∆2(L) is the set of all faces
neighboring odd number of errors; see Fig. 3.9(a) for illustration.
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We construct the dual lattice L∗, which has a vertex for every face of L as well
as one special vertex, called the boundary vertex, corresponding to all boundaries.
Edges and faces of the dual lattice L∗ are obtained by replacing edges and vertices
of L, respectively. In particular, two vertices of L∗ are connected by an edge iff the
corresponding two faces (or the face and the boundary) ofL share an edge. We note
that a defining feature of a color code lattice is 3-colorability of its faces, and this
implies 3-colorability of the vertices of the dual lattice L∗. For every pair of colors
i j ∈ {rg, rb, gb} we define the projected lattice L∗i j to be composed of vertices of
L∗ of color i or j and edges connecting them.

We now briefly discuss the projection decoder in the case of the lattice L with
boundaries and perfect syndrome extraction. The input of the decoder is the syn-
drome σ ⊂ ∆2(L) and the output — an estimated error ε̃ ⊂ ∆0(L) resulting in
the syndrome σ. First we note that the syndrome σ corresponds to a subset of
vertices V ⊂ ∆0(L∗). We call elements of V excitations and denote by Vi j the set
of all excitations of color i or j. If the number of excitations in Vi j is odd, then
we also include in Vi j the boundary vertex. Then, for every pair of colors i j we
treat excitations in Vi j as the toric code excitations on the projected lattice L∗i j ; see
Fig. 3.9(b)-(d). We can use any toric code decoder to find a suitable correction,
i.e. a subset of edges Ei j ⊂ ∆1(L∗i j ) which corresponds to pairings of excitations in
Vi j within the projected lattice L∗i j . In particular, we choose the Minimum-Weight
Perfect Matching algorithm since it is an efficient toric code decoder. The last
step of the decoder combines all three corrections for i j ∈ {rg, rb, gb} and finds an
estimated error ε̃ as a region enclosed by Erg, Erb and Egb with minimum number
of qubits in it; see Fig. 3.9(e). For a rigorous description of the projection decoder,
see [Del14a; KDP18].

Adaptation of the (sublattice) projection decoder to noisy syndrome extraction
Weare interested in decoding the 2D color code under circuit-level noise described in
Sec. 3.2, i.e. we measure stabilizers with noisy quantum circuits. In order to reliably
extract the syndrome and perform error correction one needs to repeat stabilizer
measurements multiple times. Our input data consists of stabilizer measurements
(possibly incorrect) at error correction (EC) steps labeled by integers and can be
visualized as a (2+1)-dimensional lattice K ∗ = L∗ × Z, where the extra dimension
represents time; see Fig. 3.10. By an EC step, we simply mean a full cycle of
stabilizer measurement circuits. Temporal edges, which vertically connect matching
vertices in two copies of the 2D dual lattice L∗ at EC steps t and t + 1, correspond



61

(b)

(e)

(a)

(d)

(c)

(f)

Figure 3.9: An illustration of how the projection decoder works. (a) The 2D
triangular color code of distance d = 7 with errors ε ⊂ ∆2(L) (black dots) and
the corresponding syndrome σ ⊂ ∆0(L) (shaded faces). (b)-(d) Decoding on the
projected lattices L∗rg, L∗rb and L∗

gb, respectively. Note that in (b) and (c) (but not
in (d)) the boundary vertex (depicted as the enclosing circle) is included in the set
of excitations Vrg and Vrb. We find pairings of excitations which minimize the total
length. (e)We find an error estimate ε̃ as a region (shaded) with the minimal number
of qubits (white dots), which is enclosed by combined corrections Erg, Erb and Egb
(thick black lines). (f) The decoding succeeds since the error ε combined with the
estimate ε̃ result in a stabilizer (black dots).

to stabilizer measurements at EC step t.

We propose a decoding strategy for the 2D color code with boundaries and noisy
syndrome extraction, which is similar to the projection decoder we just described.
For every pair of colors i j ∈ {rg, rb, gb} we consider three (2+1)D lattices K ∗i j =

L∗i j × Z, each of which consists of copies of the 2D projected lattice Li j at different
EC steps and corresponding vertices connected by temporal edges. Let E (σ) be a
subset of temporal edges which correspond to violated stabilizers. Let V (σ) to be
the set of vertices which are adjacent to exactly one edge in E (σ), i.e. elements of
V (σ) are endpoints of segments from E (σ). We define V (σ)

i j be a subset of vertices of
V (σ) of color i or j. The (sublattice) projection decoder with boundaries and noisy
syndrome extraction consists of the following step.
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t+1

t-1

t

Figure 3.10: (2+1)D color code lattice. At each EC step, some errors might appear
(shaded triangles). We find violated stabilizer (highlighted temporal edges) via
noisy syndrome extraction. Notice that some stabilizer measurements are incorrect
(the red and green at EC steps t − 1 and t, respectively)

1. Using the Minimum-Weight Perfect Matching find the pairing E (σ)
i j of ele-

ments in V (σ)
i j within the projected lattice K ∗i j .

2. Combine obtained pairings, Ẽ = E (σ)
rg t E (σ)

rb t E (σ)
gb and decompose Ẽ as

disjoint sum of maximal connected components, Ẽ =
⊔

i ε i.

3. For every connected component ε i:

• find the minimal time window [t (1)
i , t (2)

i ] enclosing ε i, i.e. ε ⊂ L∗ ×

[t (1)
i , t (2)

i ],

• project ε i onto the lattice L∗ at the EC step t (2)
i in order to obtain

“flattened pairing" ε̃ i = πi (ε i), where πi : ∆1(L∗ × [t (1)
i , t (2)

i ]) →
∆1(L∗ × {t (2)

i }) removes temporal edges and adds horizontal ones mod-
ulo two,

• find a correction ϕi ⊂ ∆2(L∗ × {t (2)
i }) at EC step t (2)

i for ε̃ i as theminimal
region enclosed by the “flattened pairing” ε̃ i.

We make two additional technical remarks about the decoder. First, in step 1 we
identify boundary vertices at all EC steps in K ∗i j and if the number of vertices in
V (σ)

i j is odd, then we include in V (σ)
i j the boundary vertex. Second, in step 2 we
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distinguish boundary vertices at different EC steps and find connected components
of Ẽ without temporal edges between boundary vertices.

We would like to establish the effective logical error probability pL(p, d) which
describes the probability of logical information being changed in a single EC step.
Assume that ε t is the set of errors after EC step t. We define the cumulative error
correction ϕ≤t as all error corrections ϕi applied at EC steps t (2)

i ≤ t. Since syndrome
extraction is noisy, we do not have a guarantee that at EC step t the cumulative error
correction returns the encoded state to the code space. Most likely there is some
residual noise %t = ε t + ϕ≤t with the syndrome σt . We would obtain σt as the
violated set of stabilizers if we could perform perfect syndrome extraction at time
t. We define Lt as a logical operator which we would implement by decoding the
syndrome σt of the residual error %r . This leads us to the effective logical error
probability pL to be proportional to the inverse of the average flip time. More
explicitly, we write

pL = lim
∆T→∞

*
,

2
∆T

T+∆T∑
t=T

flip(t)+
-

−1

, (3.17)

where flip(t) is the number of EC steps between the last logical flip and EC step t,
and T is the EC step at which we begin to take data (which should be large enough
such that the system reaches equilibrium). The factor of 2 in Eq. (3.17) ensures that
if the system flips every kth EC step, then pL = 1/k.

We remark that the “noisy projection decoder with boundaries” described here
differs from the one discussed by Stephens [Ste14] in one important detail. Namely,
we perform local “flattening” of pairings, which form a connected component. In
contract, Stephens flattens all pairings in the same time window of the length O(d)
at once and only then finds the correction. For any physical error probability p

and for codes with sufficiently large code distance d the probability of successful
correction is vanishingly small, i.e. the decoder does not have a non-zero threshold.
Another remark is that in the discussion we assume that stabilizer measurements
are performed infinitely many times at integer EC steps. In numerical simulations
the number of EC steps ∆T � d2 is necessarily finite and we estimate the effective
logical error probability as p̃eff =

(
2
∆T

∑T+∆T
t=T min{flip(t),T + ∆T − t}

)−1
.

3.6 Overhead comparison
We would like to compare code switching with state distillation in the physically
motivated setting of geometrically local operations on qubits arranged on the plane
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(2D local operations). However the only known scalable example of topological
code switching requires the 3D color code as described in Sec.3.4, which involves
3D local operations. To accommodate this in our setting we ask: Consider a hybrid
architecture mainly consisting of 2D quantum local regions for Clifford operations,
along with special 3D quantum local regions only to produce resource states. Are
fewer qubits required in the special 3D regions if used for code-switching or state
distillation? Although a special 3D region is not required for state distillation, a
fair comparison with code-switching ought to permit the same physical operations
to be used. Outside the special 3D region, we envisage an architecture based on the
2D color code, as this would connect straightforwardly to the 3D color code inside
the special region via the dimensional jump technique described in Sec. 3.4. In
3.6 and 3.6 we explain how to estimate the number N (p, ptarget) of physical qubits
with error probability p required to produce an encoded resource state |T〉 (or a
Clifford-equivalent state) of logical error probability pL at most ptarget. Then we use
these techniques to compare various methods of code switching and distillation.

State distillation
We already mentioned that the Clifford distillation circuit is implemented at the
logical level, i.e., every qubit in the circuit is a logical qubit of some base code of
distance d. We assume that the noise affecting logical qubits is captured by the
depolarizing noise of strength pL(p, d) ≈ α(p/pc)d/2. The physical qubit overhead
of every logical qubit in the distillation circuit is N (d) ∝ 3d2/4, since we choose the
base code to be the 2D triangular color code. We denote by Ldis and NR the number
of locations in the distillation circuit and the number of required input resource
states to produce one output state. Let the infidelity of each input resource state
is q. If the output of the distillation circuit passes certain test, which occurs with
probability Prsucc(q), then the infidelity of of the output resource state is suppressed
to pdis(q) = c · qm + O(qm+1), where c is some constant. We emphasize that
in the discussion we neglect any noise introduced by the distillation circuit itself,
which is a reasonable assumption if the circuit is implemented with the base code
of sufficiently large distance.

We envision performing k rounds of distillation, in which the output resource state
of one round is the input resource state into the next. Let us denote by d (i) and
p(i) the distance of the base code and the infidelity of the input resource state |T〉 in
the ith distillation round; see Fig. 3.11 for an illustration. We assume that we can
grow the distance of the base code from d (i) to d (i+1)in between the rounds i and
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i + 1 without introducing any additional errors. The error probability p(i+1) of the
output of the ith distillation round depends on the error probability p(i) of encoded
magic states input into the ith round, and on the the physical error probability p and
distance d (i) of the base code.

|Ri
grow

d(i) ! d(i+1)|Ri1

|Ri2

|RiNR

N(d(i))

p(i)

d(i) d(i+1)

p(i+1)

N(d(i+1))

Prsucc(p
(i))

Figure 3.11: A schematic depiction of the ith round of distillation. The input of
the distillation circuit consists of NR resource states |R〉, each encoded in the base
code of distance d (i) using N (d (i)) physical qubits. The infidelity of input states
is p(i). The distillation protocol succeeds with probability Prsucc(p(i)) and reduces
the infidelity of the resource state to p(i+1). Then, the distance of the base code
is increased from d (i) to d (i+1). The output resource state |R〉 with parameters
(p(i+1), d (i+1)) is the input of the distillation round i + 1.

Before starting the first distillation round resource states are encoded in distance
d (1) codes with error probability p(1), which depends on p. We require that the
infidelity of the output resource state from the last round is below the target value,
i.e., p(k+1) ≤ ptarget. We want to find the distances d (1) < . . . < d (k) of base
codes used in distillation, which result in the minimum qubit overhead during the
procedure. Note that the error probabilities p(1) > p(2) > . . . > p(k+1) have to
decrease and satisfy the condition p(i+1) > a(p/b)d (i)/2 for some constants a and
b, which corresponds to the lower bound on the infidelity of the logical state in the
path-counting regime.

Overhead given protocol parameters: We can estimate the average number of input
states each round of distillation requires so that the last round returns one resource
state with parameters (p(k+1), d (k)). Since the distillation protocol in the last round
succeeds with probability Prsucc(p(i)) thus on average we need NR/Prsucc(p(k))
input resource states at the input of the last round, which in turn have to be suc-
cessfully distilled in the round k − 1. In order to have NR/Prsucc(p(k)) output
states in the round k − 1, we need N2

R/(Prsucc(p(k))Prsucc(p(k−1))) resource states
as the input of that round. In general, we need N k+1−i

R /(
∏k

j=i Prsucc(p( j))) resource
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states as the input of the ith distillation round. Since every resource state needed
in the ith distillation round is encoded into the base code using N (d (i)) physical
qubits, thus the total number of physical qubits required at the start of that round
is N (d (i))N k+1−i

R /(
∏k

j=i Prsucc(p( j))). Then, the qubit overhead of the distillation
protocol can be found as the number of qubits needed in the most qubit-expensive
distillation round, namely

Ndis(d (1), . . . , d (k); p(1), . . . , p(k)) = max
i=1,...,k

N (d (i))N k+1−i
R /(

k∏
j=i

Prsucc(p( j)))

(3.18)

Estimating resource state error probabilities: First we consider how to estimate
p(1), the error probability of inputs into the first distillation round. There are two
main contributions to this error: (1) the encoding circuit using physical qubits with
error probability p to encode the physical single-qubit state |T〉 into the smallest
instance of the relevant code family2, and (2) growing the code to reach the required
distance d (1). We will neglect any errors added by code growing here and in what
follows. As a fault has a probability p of occurring at any of the Len locations in the
encoding circuit, we estimate

p(1) ≈ Len · p. (3.19)

To upper bound the infidelity p(i+1) of the output resource state of the ith round, we
note that the output has an error if an error occurs in the Clifford distillation circuit
(occuring with probability Ldis · pL(p, d (i))), or if there is an error associated with
noisy inputs (occurring with probability c · (p(i))m). We therefore obtain

p(i+1) ≤ 1 −
[
1 − Ldis · pL(p, d (i))

] [
1 − c · (p(i))m

]
. (3.20)

and approximate p(i) by its upper bound.

We can sequentially estimate p(1), . . . , p(k+1) given the base code distances d (1), . . .,
d (k) and the error rate p on the physical qubits. Finally, we find the distillation
overhead Ndis(p, ptarget) as the minimal qubit overhead for any possible k-round
distillation scheme returning the output with infidelity below ptarget, namely

Ndis(p, ptarget) = min
k∈Z+

min
d (1),...,d (k )

Ndis(d (1), . . . , d (k); p(1), . . . , p(k)). (3.21)

Hence, in order to estimate the overhead required for a distillation scheme, we
need to know the distillation parameters Ldis, NR, c, m, Prsucc(q), along with the
properties of the underlying code N (d), pL(p, d), Len.

2For the color code on either the 4.8.8 or 6.6.6 lattice families, the smallest instance is the
[[7, 1, 3]] Steane code.



67

Code switching
Here we consider code switching involving three stabilizer codes S2D, S3D and
Sbulk, which we discussed in Sec. 3.4. Note that each of the first two codes encodes
a single logical qubit and has distance d. The codes we consider require qubit
overhead N2D(d), N3D(d) and Nbulk(d) = N3D(d) − N2D(d), respectively. We take
R2D and R3D to be the number of time steps in a single error correction round for
S2D and S3D. Our analysis does not require that the codes referred to as 2D and 3D
be implemented in two or three spatial dimensions, although in the cases of most
interest they are. However, all Clifford operations should be transverse in S2D and
S3D should admit a transverse T . Under equilibrium conditions with active error
correction and circuit noise with error probability p, the logical error probabilities
per time step are pL,2D(p, d) and pL,3D(p, d). We do not define pL,bulk since Sbulk
encodes no logical qubits. We then assume code switching is implemented (under
circuit noise with error probability p) with the following steps.

1. Over d error correction rounds (requiring d ·R2D time steps), an encoded state
|+〉 is prepared in S2D using N2D(d) qubits. The unique code state of Sbulk
comes pre-prepared in Nbulk(d) adjacent qubits, and is maintained throughout
with error correction.

2. The generators of S3D are measured for d error correction rounds (requiring
d · R3D time steps), reliably inferring the subset of generators σswitch,3D ∈

S3D \ 〈S2D,Sbulk〉.

3. The Pauli operator E(σswitch,3D) ∈ 〈S2D,Sbulk〉 \S3D which has the syndrome
σswitch,3D is applied. The system is now in the encoded state |+〉 of S3D, up
to residual noise. This takes no time steps since we can assume it is done off
line by Pauli frame3 tracking.

4. The transverse T gate of S3D is applied (in a single time step), resulting in the
encoded resource state |T〉 of S3D.

5. The generators of S2D and Sbulk are measured for d error correction rounds
(requiring d · R2D time steps), inferring the subset of generators σswitch,2D ∈

〈S2D,Sbulk〉 \ S3D.
3Here Pauli tracking amounts to modifying the application of the transverse T to be

E(σswitch)T E(σswitch)†.
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6. The Pauli operator F (σswitch,2D) ∈ S3D \ (S2D ·Sbulk) which has the syndrome
σswitch,2D is applied. This can be handled by Pauli frame tracking. The system
is now in the encoded state |T〉 of S2D, up to residual noise. The unique
codestate of Sbulk is left in the Nbulk(d) adjacent qubits, ready for the next use.

Now we explain σswitch,3D which appears in the above steps. After the first round
of these measurements, the system will already have been projected into a code
equivalent to S3D (for which σswitch,3D of the generators of S3D are flipped). There
will also be residual Pauli noise P on the qubits, with an associated syndrome σP,
and the reported measurement outcomes will be σobserved such that

σobserved = σswitch,3D + σP + σM, (3.22)

with σM attributed to faulty measurements, and the fact that some of the Pauli
operators in P were applied part-way through the measurement circuit. We assume
that after d rounds, it is possible to reliably infer σswitch,3D, in addition to performing
regular error correction. To our knowledge, it is an open question if this is the case.
The explanation for σswitch,2D is entirely analogous to that for σswitch,3D.

We expect S3D to have a higher residual error rate affecting physical qubits than
S2D. This can be modeled taking a first time step in (5) above with enhanced error
probability peffective(p, d) > p, followed by subsequent time steps with the usual
error probability p. Taking the scheme to succeed only if no logical errors occur
throughout the d(2R2D + R3D) + 1 time steps, we seek the smallest odd d for which
the switching success probability[

1 − pL,2D(peffective, d)
]
×

[
1 − pL,2D(p, d)

]2R2D·d−1 (3.23)

×
[
1 − pL,2D(p, d)

]R3D·d+1 > 1 − ptarget, (3.24)

which we will call dmin(p, ptarget). The overhead of code switching is then

Nsw(p, ptarget) = N3D(dmin(p, ptarget)). (3.25)

Hence, in order to estimate the overhead required for code switching, we need to
know N2D(d), N3D(d), R2D, R3D, pL,2D(p, d), pL,3D(p, d), peffective(p, d).

Plots and discussion
Here we describe the calculation in full detail using the 2D triangular color code
on the hexagonal lattice with Bravyi-Kitaev distillation scheme. The well-known
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(a)

|+〉
|+〉
|+〉
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|0〉
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|+〉
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Figure 3.12: (a) Encoding circuit for Steane code. (b) A compressed version of the
encoding circuit, which has a total of three time steps and seven qubits, giving a
total circuit area of 21 in which a fault can occur.

parameters of this distillation scheme are NR = 15, c = 35, m = 3, Prsucc(q) =
1 − 15q. We assume the distillation circuit in Fig. 3.6, which contains 34 CNOT
gates, is implemented in a layered stack of 2D codes, with CNOT gates only possible
between adjacent layers. We assume an average of 15/2 swaps are needed to ensure
the the correct layers are adjacent. Each swap requires 3 CNOT gates, therefore the
total of 34 · 15/2 · 3 = 756 logical gates are needed. As there are 15 logical qubits
involved, we take the number of logical locations to be Ldis = 15 · 756 = 11475.

For the triangular color code of distance d on the hexagonal lattice, the total number
of vertices (corresponding to data qubits) is |V | = 3(d2 − 1)/4 + 1, and the total
number of faces (corresponding to two measurement qubits each) is |F | = 3(d2 −

1)/8. Therefore, there is a total number of N (d) = 3(d2 − 1)/2 + 1 qubits. From
our threshold study in section 3.5, we take pL(p, d) = 0.03

( p
0.003

)d/2
. The encoding

circuit into the Steane code can be performed in 3 time steps using 7 qubits. We
therefore take Len = 21; see Fig. 3.12.

Now we provide estimates of the required details for code switching between the
triangular color code on the hexagonal lattice and the 3D color code on the dual-bcc
lattice. Again, the overhead of the 2Dcolor code is N2D(d) = 3(d2−1)/2+1. We take
the length of the shortest measurement circuit for the 2D color code to be R2D = 7.
As above, pL,2D(p, d) = 0.03

( p
0.003

)d/2
. For the 3D code, there are |V | = d(d2+1)/2

vertices (corresponding to data qubits), |F | = 4d3/3 + O(d2) faces (corresponding
to Z measurement qubits), and |C | = d3/(12)+O(d2) volumes (corresponding to X

measurement qubits). Each volume (except for the ones along the boundary of the
lattice) contains 24 quibits, whereas the the faces either contain four or six qubits.
For each volume, we can use either a single ancilla or multiple ancillas prepared in
an unverified cat state to measure the qubits on the face belonging to that volume.
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Figure 3.13: A comparison of the qubit overhead for state distillation (blue) and
code switching in two scenarios: optimistic (red) and realistic (yellow). We set (a)
p = 0.0003, (b) p = 0.0001, (c) p = 0.00003 and (d) p = 0.00001.

We imagine that four qubits are used per volume, and thus R3D = 24/4 = 6 and we
arrive at N3D(d) = |V | + |F | + 4|C | = 26d3/12 + O(d2). Unfortunately, we do not
know exactly what pL,3D(p, d) might be. Thus, we will consider two cases.

1. Optimistic scenario: To get an estimated lower bound of the code switching
overhead, we can imagine very favorable properties for the 3D color code.
We imagine that pL,3D(p, d) = pL,2D(p, d), i.e., that the code performs as well
as the 2D color code. If this were the case, then the 3D code would not be
expected to result in significantly increased residual error after switching back
to the 2D code, hence peffective(p, d) = p.

2. Realistic scenatio: It seems probable that the 3D color code has a very
small circuit level threshold due to its high weight stabilizer generators. We
know that the circuit-level threshold for the 6.6.6 color code is reduced by a
factor of 35 compared to its threshold using an optimal decoder with perfect
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measurements. Since the threshold for the 3D color code with an optimal
decoder and ideal measurements is 0.02, the estimate for the circuit-level
threshold we get is pth,3D = 0.0006. We take pL,3D(p, d) = 0.005

( p
0.0006

)d/2

and peffective(p, d) = 10p.

We present the results of state distillation and code switching overhead comparison
for different values of the target error probability ptarget in Fig. 3.13. We notice that
the code switching approach provides no advantage over a state distillation scheme
in terms of the qubit overhead.
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C h a p t e r 4

LOCAL DECODERS FOR TOPOLOGICAL TORIC AND COLOR
CODES IN ANY DIMENSIONS

Cellular automata are simple discretemodelswhich can capture complex phenomena
in the theory of computation, statistical physics and biology. An example of a cellular
automaton is Toom’s rule [Too80; Gri04], which describes the evolution of classical
±1 spins placed on the faces of the 2D square lattice; see Fig. 4.1. At each time
step, deterministic Tooms’ rule sets the value of the spin si to match the value of
spins s j and sk on neighboring faces to the north and to the east if and only if these
two neighboring spins are in the same state, i.e., si ←

1−s j sk
2 si +

1+s j sk
2 s j . One

can incorporate some non-deterministic element into the rule and then the resulting
dynamics of the spin system is non-ergodic with the stationary state which (unlike
in the Ising model) cannot be described by the Boltzmann distribution [BG85]. Yet
another unexpected feature of the model is the existence of a non-zero measure
region in its phase space where two stable phases can coexist [Too80]. Importantly,
Toom’s rule can be used to correct errors appearing in a three-dimensional cellular
automaton that can simulate a universal Turing machine [GR88; Gác90; Gra01].

(a) 1 1 1 1 1

1 1 1 1 1

1 -1 -1 -1 1

1 1 -1 1 1

1 1 1 1 1

(b)

1 -1

-1

Figure 4.1: (a) The 2D square lattice with ±1 spins on faces. The domain wall
(blue) is a one-dimensional boundary which separates spins of different values. (b)
Toom’s rule sets the value of a spin si depending on the values s j and sk of its north
and east neighbors. Namely, if s j and sk are the same, then set si to match s j and
sk . Note that Toom’s rule flips the spin si only if the north-east corner of that face
(blue) contains the domain wall.

Let us discuss how deterministic Toom’s rule can help with preserving the state of a
classical memory in the presence of noise. For simplicity, we consider the 2D square
lattice with periodic boundary conditions. We encode one bit of information in the
system by setting all the spins to be either +1 or −1. We would like to protect the



74

(b)(a) (c)

(e)(d) (f)

Figure 4.2: Toom’s rule on the 2D square lattice (a) and the 3D cubic lattice (b)-(f).
Edges and faces in red (solid) or blue (dashed) indicate configurations before and
after the application of Toom’s rule, respectively. For 1D loop-like domain walls
in (a) and (d)-(f), the rule moves the specified corner of the domain wall (red two
edges) in the direction of an arrow and results in two new edges (dashed blue).
(b)-(c) For 2D surface-like domain walls, the rule moves the specified corner (red
three faces) and results in three new faces (blue).

encoded bit against some random spin flips, ±1 7→ ∓1. A straightforward approach
is to check every spin, perform the majority vote and restore the spin values to
the dominant value. However, collecting global information about the values of
all the spins takes time during which more errors could occur. In order to avoid
an accumulation of errors, it is natural to try to remove errors at every time step
by implementing a local rule, such as Toom’s rule. This provides a local error-
correction method with performance almost as good as the optimal but non-local
majority voting.

It is illuminating to think of Toom’s rule as a local rule governing the movement of
one-dimensional domain walls separating spins of different values. Namely, Toom’s
rule moves the north-east corner of the domain wall in the south-west direction by
flipping a spin on the corresponding square face, see Fig. 4.2(a). Toom’s rule can be
generalized to the 3D cubic lattice (or in general to the hypercubic lattice in d ≥ 4
dimensions) [BAS92]. In three dimensions, however, one could place spins on either
cubic volumes or square faces of the lattice, which would result in two qualitatively
different types of domain walls: 2D surface-like and 1D string-like. The local
rules for how to move the domain walls on the 3D cubic lattice are illustrated in
Fig. 4.2(b)–(f).

Unfortunately, a generalization of the Toom’s rule beyond the 2D square lattice (or
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(a) (b)

Figure 4.3: (a) A 2D lattice built of three different types of parallelograms. Toom’s
rule can be viewed as a rule “locally move NE corners of the domain wall in the SW
direction”. Namely, if the NE corner (blue) of a face supports a 1D domain wall
(thick line), then flip the spin on that face (indicated by an arrow). Note that this
simple rule fails to remove even small domain walls, such as the one depicted in red.
(b) It is unclear whether a rule à la Toom can be introduced on triangulated lattices.

its higher-dimensional analogs) seems far from obvious. For instance, consider a
2D lattice built of three different types of parallelograms and choose two 1D domain
walls as shown in Fig. 4.3(a). If one independently applies a simple rule “locally
move NE corners of faces containing the domain wall in the SW direction” to every
face of the lattice, then there exist configurations of loops which are not removed by
such a rule. Moreover, it is not clear whether a rule à la Toom can be introduced on
triangulated lattices, as exemplified in Fig. 4.3(b).

As suggested byDennis et al. [Den+02], Toom’s rule can be used to protect quantum
memory encoded into the topological quantum-error correcting code, the 4D toric
code on the four-dimensional hypercubic lattice. Recent works [BT15; DBT17;
PCC11] have numerically indicated that error correction schemes based on Toom’s
rule may have a non-zero threshold pc. In other words, correction of errors succeeds
almost surely in the limit of infinite system size provided the rate of stochastic local
errors is below pc. These examples demonstrate the effectiveness of error correction
with cellular automata, however fundamental reasons for the success of Toom’s rule
as a decoder have remained poorly understood.

The main question we address in this chapter is how to define a local update rule à
la Toom on any lattice and prove that an associated topological code decoder has a
non-zero threshold. (i) We propose the Sweep Rule which shrinks k-dimensional
domain walls on any reasonable lattice embedded in the d-dimensional Euclidean
space for any k ∈ {1, . . . , d − 1}. In particular, the rule can be used on the d-
dimensional torus. (ii) We design a local decoder, i.e. an error-correction scheme,
for the d-dimensional toric code based on the Sweep Rule. (iii) We construct a new
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class of local decoders of d-dimensional the color code. The two key components
of our construction include a local reduction of the problem of color code decoding
to that of the toric code and using the Sweep Rule to decode the resulting toric
code. (iv) We obtain a lower bound on the performance of decoders for the toric
and color codes based on the Sweep Rule. We also present numerical estimates of
the thresholds of 3D topological codes. Our results provide a rigorous proof of a
non-zero threshold, and thus clarify the success of Toom’s rule as an error-correction
method for topological stabilizer codes.

The chapter is structured as follows. In Section 4.1, we set the stage by introduc-
ing the notation, defining the Sweep Rule and showing its properties. Then, in
Section 4.2 we discuss how to decode the toric code using the Sweep Rule. In Sec-
tion 4.3 we prove that the Sweep Decoder based on the Sweep Rule has a non-zero
threshold. Next, in Section 4.4 we explain how to decode the color code by using
any toric code decoder and introduce a new class of local decoders of the color
code. We finish in Section 4.5 by presenting results of the numerical simulations of
proposed decoders and providing lower bounds on the color code threshold.

Description of the lattice
A d-dimensional lattice L can be constructed by attaching d-dimensional cells to
one another along their (d − 1)-dimensional faces. We denote by ∆k (L) the set of
all k-cells of the lattice L, where k ∈ {0, 1, . . . , d}. In particular, the sets ∆0(L),
∆1(L), ∆2(L) and ∆3(L) correspond to vertices, edges, two-dimensional faces and
three-dimensional volumes ofL. We say that the latticeL is a simplicial d-complex
if for any k all of the k-cells of L are just k-simplices; see [Gla72; Hat02].

In order to avoid technical difficulties we will be interested in lattices L without
boundaries which contain countably many cells and fill the d-dimensional Euclidean
space Rd . Moreover, each d-cell of L is contained in some d-dimensional ball of
constant radius. We remark that in the discussion of the toric and color codes we
consider lattices L, which are discretizations of the d-dimensional torus. However,
we will be able to use the notions introduced in the rest of this section since the
torus is locally Euclidean and we will only be interested in local properties of L.

Now let us analyze the local structure of a d-dimensional lattice L. Let κ ∈ ∆k (L)
be a k-simplex, where k ∈ {0, 1, . . . , d}. We abuse the notation and denote by ∆l (κ)
the set of all l-faces of κ, where l ≤ k. The set of all n-simplices of L which contain
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κ as a k-face is called the n-star of κ and we denote it by

Stn(κ) = {ν ∈ ∆n(L) |κ ∈ ∆k (ν)}. (4.1)

We define Lkn(κ) to be the set of all n-simplices of L which do not intersect with
κ but belong to the same d-simplices as κ, i.e.,

Lkn(κ) = {ν ∈ ∆n(L) |ν ∩ κ = ∅ and ∃δ ∈ Std (κ) : ν ∈ ∆n(δ)}. (4.2)

We call Lkn(κ) the n-link of κ. We provide examples of stars and links in two and
three dimensions in Fig. 4.4. It will also be useful to introduce the restriction σ |v of
some subset of k-simplices σ ⊆ ∆k (L) to the neighborhood of a vertex v ∈ ∆0(L)
as follows

σ |v = σ ∩ Stk (v). (4.3)

Figure 4.4: Examples of stars and links in 2D and 3D. In (a) and (b), we depict the
2-star St2(v) and the 3-star St3(v) of the vertex v (red), which correspond to the sets
of six triangular faces and eight tetrahedra (shaded in green) containing v. (c) The
1-link Lk1(e) of the edge e (red) contains five edges (green), each of which belongs
to the same tetrahedron as e but does not overlap with e. (d) The 3-star St3(e) of the
edge e (red) corresponds to five tetrahedra (shaded in green) containing e.

A chain complex [Hat02] associated with a lattice L is the underlying structure that
makes possible the definition of the toric code in Sec. 4.2. Let us recall the definition
of this structure. The role of the chain complex is to encode the relationship between
any k-cell o the latticeL and its (k−1)-dimensional faces that belong to its boundary.
Formally, the boundary of a k-cell κ is defined to be the set of all (k − 1)-faces of κ.
Using the previous notations, it is the set ∆k−1(κ). It is useful to extend the notion
of a boundary and view it as a linear map in the following sense. Let the chain
space Ck (L) or simply Ck be the F2-vector space with the set ∆k (L) as a basis. The
vectors ofCk are the formal sums of k-cells. Note that there is a one-to-one mapping
between vectors inCk and subsets of∆k (L), and thus we treat them interchangeably.
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The boundary map ∂k : Ck → Ck−1 is a linear map specified for every basis element
δ ∈ ∆k (L) by

∂k κ =
∑

ν∈∆k−1(κ)

ν· (4.4)

The set of d + 1 chain spaces Ci for i ∈ {0, 1, . . . , d} equipped with the boundary
maps ∂i is called a chain complex associated with L and is denoted by

Cd
∂d
−−→ Cd−1

∂d−1
−−−→ . . .

∂2
−−→ C1

∂1
−−→ C0. (4.5)

The defining property of a chain complex is the fact that the boundary of a boundary
is empty, i.e., ∂i ◦ ∂i+1 = 0 for all i ≥ 1. An element σ ∈ im ∂k+1 is called
a k-dimensional boundary. Later in the chapter we will also refer to σ as a k-
dimensional domain wall. Moreover, an element of ker ∂k is called a k-dimensional
cycle. Note that every k-boundary is a k-cycle, but there might be a k-cycle which
is not a k-boundary.

The structure of the chain complex in Eq. (4.5) is tightly connectedwith the boundary
operator defined in Eq. (4.4). However, it will be convenient to introduce a notion
of the generalized boundary operator ∂k,n : Ck → Cn for all k , n as a linear map
defined on every basis element κ ∈ ∆k (L) by

∂k,nκ =



∑
σ∈∆n (κ) ν if k > n,∑
σ∈Stn (κ) ν if k < n.

(4.6)

In this notation, ∂k = ∂k,k−1. We will keep in mind that in general we do not have
a trivial composition of two generalized boundary operators, i.e., ∂n,m ◦ ∂k,n , 0,
unless the lattice has some extra structure or k = n + 1 = m + 2. Generalized
boundary operators will be used in the discussion of the color code decoding in
Sec. 4.4.

Partial order
Since the lattice L contains countably many simplices and is locally embedded in
the Euclidean space Rd , we can find a vector ~t ∈ Rd such that no edge (u,w) ∈
∆1(L) between two vertices u and w (treated as a vector from u to w in Rd) is
perpendicular to it, ~t · (u,w) , 0. We call the vector ~t the sweep direction. We
define a path (u : w) between two vertices u and w of the lattice L to be a set
of edges (v1, v2), (v2, v3), . . . , (vn−1, vn) ∈ ∆1(L), where vi ∈ ∆0(L) and v1 = u,
vn = w. Since there could be many paths between u and w, the notation (u : w)
does not specify which path we consider. If the sign of the inner product~t · (vi, vi+1)
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is the same for all edges in the path (u : w), then we call the path causal and denote
it by (u l w). We remark that any pair of the vertices of L is connected by a path
but there might not exist a causal path between them; see Fig. 4.5(a).

We observe that the sweep direction ~t induces a binary relation � over the set of
vertices ∆0(L). Namely, we say that u precedes w, i.e., u � w for u, v ∈ ∆0(L), iff
there exists a causal path (u l w) and~t ·(vi, vi+1) > 0 for any edge (vi, vi+1) ∈ (u l w).
Thus, the set of vertices ∆0(L) with the relation � forms a partially ordered set.
Let V ⊂ ∆0(L) be any finite subset of vertices. We require that there exist a unique
infimum inf V (greatest lower bound) and a unique supremum supV (least upper
bound) of V . 1 Abusing the notation, we denote by inf σ and supσ the infimum and
supremum of the set of vertices ∆0(σ), which belong to some subset σ of simplices
of the lattice L. We define the up-set ↑(v) and down-set ↓ (v) of a vertex v ∈ ∆0(L)
as the collection of all simplices ofL whose vertices succeed and precede v, namely

↑(v) = {κ ∈ ∆k (L) |k ∈ {0, 1, . . . , d},∀u ∈ ∆0(κ) : v � u}, (4.7)

↓ (v) = {κ ∈ ∆k (L) |k ∈ {0, 1, . . . , d},∀u ∈ ∆0(κ) : u � v}. (4.8)

For an introduction to ordered structures and partial orders, see e.g. [DP02].

~t

(a) (b) (c)

~t ~t

u

v

w v

v1

v2 v3 v4

sup V

inf V

Figure 4.5: The sweep direction ~t induces a partial order over the set of vertices of
the triangular lattice L. (a) Two vertices u and v are connected by a path (u : v)
(red), but there does not exist a causal path between them. Note that v and w are
connected by a causal path (u l v) (blue). (b) The future light cone ↑(v) (shaded in
green) and the past light cone ↓ (v) (shaded in blue) of a vertex v. (c) The causal
diamond ♦ (V ) (shaded in blue) of a subset of vertices V = {v1, v2, v3, v4} can be
found as the intersection of the future light cone of the infimum of V with the past
light code of the supremum of V .

Informally, we can think of the partial order � between vertices of the lattice as a
causality relation between points in the spacetime Rd , where ~t corresponds to the

1This condition states that the partially ordered set (∆0(L), �) is a lattice in the sense of order
theory. However, we refrain from using this term in order to avoid confusion with the lattice L
defined as a simplicial complex. We also remark that the infimum and supremum of V are often
denoted by

∧
V and

∨
V , respectively.
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time direction. Then, we would say that u is in the past of v (or equivalently v is
in the future of u) iff u precedes v, i.e., u � v for u, v ∈ ∆0(L). We could also
treat the up-set ↑(v) and down-set ↓ (v) as the future and past light cones of the
vertex v, respectively. Lastly, we define a causal diamond ♦ (V ) of any finite subset
of vertices V ⊂ ∆0(L) to be the intersection of the future and past light cones of
respectively the supremum and infimum of V , i.e.,

♦ (V ) =↑(inf V )∩ ↓ (supV ). (4.9)

Note that uniqueness of the causal diamond of V is equivalent to uniqueness of the
infimum and supremum of V . We illustrate the concepts of light cones and causal
diamonds in Fig. 4.5(b)(c).

In the rest of the chapter we require that the lattice L satisfy the following condition

• (local structure) for any vertex v ∈ ∆0(L) and the k-dimensional boundary
σ ∈ im ∂k+1, if the restriction σ |v ⊂ ↑(v), then there exists a subset of (k +1)-
simplices ϕ(v) ⊂ Stk+1(v)∩ ↑(v) in the future neighborhood of v satisfying
(i) (∂k+1ϕ(v)) |v = σ |v and (ii) sup ϕ(v) = supσ |v.

In other words, the condition on the local structure of L guarantees that if the
restriction of any k-boundary σ ∈ im ∂k+1 to the neighborhood of the vertex v is
contained in the future light cone of v, then there exists a subset ϕ(v) of (k + 1)-
simplices in the future neighborhood of v whose restricted boundary (∂k+1ϕ(v)) |v
matches σ |v and the supremum of vertices in ϕ(v) is the same as the supremum of
vertices in σ |v. Note that the latter condition happens to be equivalent to♦

(
ϕ(v)

)
=

♦ (σ |v).

The local structure condition, as well as uniqueness of the causal diamond of any
finite subset of verticesV ⊂ ∆0(L) can be easily checked for translationally-invariant
lattices, such as the 3D bcc lattice depicted in Fig. 4.7(a). Indeed, let us identify
the set of vertices of the body-centered cubic (bcc) lattice with the elements in
(2Z)3 ∪ (2Z + 1)3 and choose the sweep direction to be ~t = (1, 1, 1) ∈ R3. Then,
we verify that the local structure condition is satisfied by exhaustively checking it
for every possible choice of σ |v. Moreover, we can explicitly find a unique infimum
and supremum for any pair of vertices u, v ∈ ∆0(L), which can be subsequently
used to show by induction uniqueness of the infimum and supremum for any finite
subset of vertices. Note that we will use the bcc lattice to study thresholds of the
3D color code in Sec. 4.5. For less regular lattices one might in principle need to
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verify the local structure condition independently for every vertex of L. However,
we conjecture that it is satisfied by any finite homogeneous simplicial d-complex
embedded in the Euclidean space Rd with some fixed sweep direction ~t ∈ Rd .

Finally, we remark that the discussion of the partial order induced by the sweep di-
rection~t translates into the setting when the latticeL is defined on the d-dimensional
torus. However, one has to exercise caution since in that case the partial order is
well-defined only locally, i.e., within a d-dimensional ball of radius at most some
fraction of the linear size of the torus. We will see in Sec. 4.3 that this technical
point does not pose a problem in the proof of the threshold.

4.1 Beyond Toom’s rule
As we have already seen, generalizing Toom’s rule beyond the square lattice poses
some challenge. In this section we introduce the Sweep Rule in d ≥ 2 dimensions,
which is a local update rule governing the dynamics of k-dimensional domain walls
on any d-dimensional lattice for any k ∈ {1, . . . , d − 1}. Here we consider lattices
built of d-dimensional simplices. We remark that we focus on the combinatorial
structure of the lattices since it is the key ingredient in the definition of topological
quantum error-correcting codes.

Sweep Rule in 2D
Westart by choosing a two-dimensional locally Euclidean latticeL built of triangular
faces and fixing the sweep direction~t ∈ R2. Recall that the sweep direction~t induces
a partial order on the set of vertices ∆0(L). We place a ±1 spin on every triangular
face of L and denote by ε ⊆ ∆2(L) the set of all faces with −1 spins. We can find
the boundary σ = ∂2ε of ε , which we also call the domain wall. We assume that we
do not know ε , however we want to estimate it from the corresponding domain wall
σ. We will see in Sec. 4.2 that ε and σ will be related to locations of errors and the
observed syndrome in the toric code.

We are interested in a local update rule for the spin values, which can be simul-
taneously applied (possibly multiple times) to different local regions of the lattice
L and eventually allows us estimate ε . Let % ⊆ ∆2(L) denote a subset of faces,
which keeps track of all the spins we have flipped. We perceive a rule which only
uses local information about the domain wall σ to decide which spins to flip. By
applying a rule in a local region, the values of some spins within that region are
flipped, the domain wall σ is locally modified and the set of flipped spins % is locally
updated. Note that if at some point the domain wall disappears, namely σ = 0,
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then % provides an estimate of ε in the sense of having the same boundary as ε , i.e.,
∂2% = ∂2ε .

Now we describe such a local rule, which we call the Sweep Rule. The Sweep
Rule is defined for every vertex v of the lattice L. Recall that we denote by σ |v the
restriction of the domain wall σ to the edges incident to v. A vertex v is said to be
extremal if σ |v is not empty and is contained in the future lightcone of v, namely
σ |v ⊂ ↑(v); see Fig. 4.6. The basic idea behind the Sweep Rule is to identify a subset
of faces ϕ(v) ⊆ St2(v) around the extremal vertex v, such that by flipping the values
of spins on those faces we will move the domain wall σ away from v in the direction
of~t. To be more precise, we find a subset of faces ϕ(v) ⊆ St2(v)∩ ↑(v) containing v
and belonging to the future lightcone of v, such that the restriction of the boundary
of ϕ(v) locally matches the restriction of the domain wall σ , i.e., (∂2ϕ(v)) |v = σ |v.
Then, the Sweep Rule flips spins on faces ϕ(v) and updates the set of flipped spins
% ← % + ϕ(v). This results in the updated domain wall σ ← σ + ∂2ϕ(v) being
removed from the neighborhood of v. Note that the Sweep Rule does nothing if the
vertex is not extremal. In Fig. 4.6 we illustrate three consecutive time steps when
the the Sweep Rule is simultaneously applied to every vertex of L.

One can straightforwardly use the Sweep Rule to estimate the locations of −1 spins
ε from the corresponding domain wall σ = ∂2ε . Namely, (i) initialize %← 0, (ii) for
every vertex v ∈ ∆0(L) apply the Sweep Rule to find ϕ(v) and update %← %+ϕ(v)
and σ ← σ + ∂2ϕ(v), (iii) repeat step (ii) until σ = 0. If the procedure terminates,
then % is a subset of faces whose boundary ∂2% matches ∂2ε . In other words, by
flipping the values of spins identified with the faces in % we remove the initial
domain wall ∂2ε . Note that we are neither guaranteed that the procedure terminates
nor to have % = ε .

We finally remark that in two dimensions, there is a unique choice of ϕ(v) for
the extremal vertex v. However, as we will see in the next subsection, in d ≥ 3
dimensions there could be many possible ϕ(v) with the boundary locally matching
the domain wall. Thus, we will have to impose an extra condition on the choice
of ϕ(v), which, roughly speaking, guarantees that the local causal structure of the
domain wall is preserved after flipping spins identified with ϕ(v). This condition is
automatically satisfied in two dimensions.
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(a) (b) (c)

~t ~t ~t

Figure 4.6: The action of the Sweep Rule in the two-dimensional triangular lattice.
At each consecutive time step (a),(b) and (c), the Sweep Rule is applied to extremal
vertices (red) of the domain wall σ (think black line). For each extremal vertex v we
find a subset ϕ(v) of neighbouring faces (shaded in green), which are in the future
lightcone ↑(v) of v and their boundary ∂2ϕ(v) locally matches the domain wall σ.
By flipping spins on the faces in ϕ(v) the domain wall is pushed away from v in
the direction of ~t. We note that the flipped spins as well as the domain wall always
belong to the causal diamond ♦ (σ) (shaded in blue) of the initial domain wall.

General Sweep Rule
Now we ready to generalize the Sweep Rule to be applicable to a d-dimensional
lattice L build of d-simplices, which is embedded in Rd . We fix the sweep direction
~t ∈ Rd as before, i.e., no edge is perpendicular to ~t. First, we choose an integer
k ∈ {1, . . . , d−1} and place±1 spins on all (k+1)-simplices ofL. Let ε ⊆ ∆k+1(L)
be the set of all (k + 1)-simplices corresponding to −1 spins and σ = ∂k+1ε be the
corresponding domain wall, i.e., the k-dimensional boundary of ε . We can define
a notion of an extremal vertex in the same way as in the two-dimensional case.
Namely, a vertex v is extremal iff the restriction σ |v = σ ∩ Stk (v) of the domain
wall to the neighborhood of v is non-empty and is contained in the future lightcone
↑(v) of v, i.e., σ |v ⊆ Stk (v)∩ ↑(v).

The Sweep Rule finds for every extremal vertex v a set of (k + 1)-simplices ϕ(v) ⊆
Stk+1(v)∩ ↑(v) in the neighborhood of v, which are also contained in the future
lightcone ↑(v). The set of (k + 1)-simplices ϕ(v) has to satisfy two conditions: (i)
the boundary of ϕ(v) locally matches the domain wall, i.e., (∂k+1ϕ(v)) |v = σ |v, and
(ii) the causal diamond of the restriction of the domain wall σ |v matches the causal
diamond of ϕ(v), i.e., ♦

(
ϕ(v)

)
= ♦ (σ |v). The Sweep Rule can be succinctly

formulated as follows.

As we claimed the Sweep Rule is local. In order to apply it to the vertex v, we
only require the knowledge of the restriction σ |v of the domain wall and the set of
(k + 1)-simplices Stk+1(v)∩ ↑(v). The cardinality |Stk+1(v)∩ ↑(v) | depends on the
details of the lattice L, but we are interested in cases where it is upper-bounded by
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Algorithm 1: Sweep Rule

Require: a vertex v in the d-dimensional lattice L, the sweep direction ~t ∈ Rd

Input: the k-dimensional domain wall σ ∈ im ∂k+1 and the set of flipped spins
% ⊆ ∆k+1(L)

Output: locally updated σ and %
find the restriction σ |v of the domain wall
if v is extremal, i.e., σ |v ⊂↑(v), then:

1. find a subset ϕ(v) ⊆ Stk+1(v)∩ ↑(v), such that

(i) (∂k+1ϕ(v)) |v = σ |v
(ii) ♦

(
ϕ(v)

)
= ♦ (σ |v)

2. locally update the domain wall σ ← σ + ∂k+1ϕ(v)

3. locally update the set of flipped spins %← % + ϕ(v)

return σ and %

some constant. Thus, finding a subset ϕ(v) can be done in constant time by checking
all possible subsets of Stk+1(v)∩ ↑(v) and finding the one satisfying conditions (i)
and (ii). In some special cases, one can find ϕ(v) more efficiently, as we discussed
earlier in the context of two-dimensional lattices. Lastly, we comment why for
any extremal vertex v and the domain wall σ we can always find ϕ(v) satisfying
conditions (i) and (ii). Recall that in the discussion of partial order in Sec. 4 we
assumed that the lattice L satisfies the local structure condition, which turns out to
be equivalent to conditions (i) and (ii).

We remark that we can apply the Sweep Rule to any d-dimensional locally Euclidean
lattice (not necessarily built of simplices) as long as it satisfies the local structure
condition in Sec. 4. From that viewpoint, the Sweep Rule is a generalization of
Toom’s rule. For instance, if we choose the vector ~t = −(1, 1, 1) ∈ R3, then the
Sweep Rule on the 3D cubic lattice for one- and two-dimensional domain walls
reduces to Toom’s rule presented in Fig. 4.2(b)-(f).

The Sweep Rule governs the dynamics of the k-dimensional domain wall σ ∈
im ∂k+1 in the lattice L in the following sense. At each time step n ≥ 1, we
simultaneously apply the Sweep Rule to every vertex v ∈ ∆0(L) and locally move
the domain wall by flipping spins on the (k + 1)-simplices from ϕ(n) (v). Thus,
the set of all spins flipped at time step n is equal to

∑
v∈∆0(L) ϕ

(n) (v), where we
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set ϕ(n) (v) = 0 if the vertex v is not extremal. Let us denote by σ(n) and %(n)

the updated domain wall and the set of flipped spins after n time steps, where we
define σ(0) = σ and %(0) = 0. Then, we have %(n) = %(n−1) +

∑
v∈∆0(L) ϕ

(n) (v)
and σ(n) = σ(n−1) + ∂k+1(

∑
v∈∆0(L) ϕ

(n) (v)). We can view the Sweep Rule as
a prescription of how to move the domain wall by locally flipping spins in the
neighborhood of every extremal vertex v so that the domain wall is pushed away
from v in the direction specified by the sweep direction ~t.

4.2 Decoding of the toric code
In this section, we describe decoding of CSS stabilizer codes, i.e., the problem
of finding a suitable error-correction operator for errors in the system given the
observed syndrome. We start by constructing a CSS chain complex for any CSS
code. The formalism of chain complexes can not only be useful for decoding, but
also exemplifies the intimate connection between the CSS codes and the systematic
procedure of gauging and ungauging stabilizer symmetries [KY18]. We focus on
the toric code, which is an example of a topological CSS code, and explain how
to decode the 1D or higher-dimensional syndrome of the toric code in d ≥ 3
dimensions using the Sweep Rule.

Decoding problem
Stabilizer codes are quantum error correcting codes [Sho95; Got96] which are at
the heart of many fault-tolerant quantum computation schemes. A stabilizer code is
specified by the stabilizer group S, which is an Abelian subgroup of the Pauli group
Pn generated by tensor products of Pauli operators on n qubits. The code space
associated with the stabilizer group S is spanned by +1 eigenvectors of stabilizers
S ∈ S, and thus for the code space to be non-trivial we require −I < S.

We focus our emphasis on CSS stabilizer codes [CS96; Cal+97], whose stabilizer
group is generated by X- and Z-type stabilizer generators. A CSS code can be
described by a CSS chain complex

D2
∂̃2
−−→ D1

∂̃1
−−→ D0

Z-stabilizers qubits X-stabilizers
(4.10)

where D2, D1 and D0 are F2-vector spaces with bases B2 = Z-stabilizer generators,
B1 = physical qubits and B0 = X-stabilizer generators, respectively. We choose
linear maps ∂̃2 and ∂̃1, called the boundary operators, in such a way that

• the support of any Z-stabilizer ω ∈ D2 is given by ∂̃2ω,
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• the X-type syndrome, which is the set of violated X-type stabilizer generators
for some Z-error ε ∈ D1, can be found as ∂̃1ε .

The boundary operators can be identified with the parity-check matrices HT
Z and HX

of the CSS code. Note that the condition ∂̃1 ◦ ∂̃2 = 0 is equivalent to the fact that
any Z-stabilizer has a trivial X-syndrome. We can consider a dual chain complex

D∗2
∂̃∗1
←−− D∗1

∂̃∗0
←−− D∗0

Z-stabilizers qubits X-stabilizers
(4.11)

where dual vector spaces D∗i are isomorphic to Di, namely D∗i � Di for i = 0, 1, 2,
and the coboundary operators satisfy ∂̃∗1 ◦ ∂̃

∗
0 = 0. Then, the support of any X-

stabilizer ω∗ ∈ D∗0 is ∂̃
∗
0ω
∗, and Z-syndrome corresponding to any X-error ε∗ ∈ D∗1

is given by ∂̃∗1 ε
∗.

Let us assume that X- and Z-errors appear at subsets of physical qubits ε∗ ∈ D∗1 and
ε ∈ D1, respectively. Since X- and Z-errors are diagnosed by measuring Z- and
X-type stabilizers, we can choose to perform X- and Z-error correction separately,
which further simplifies the discussion. To decode X- and Z-errors we need to
guess from the observed syndrome of Z-type ∂̃∗1 ε

∗ and X-type ∂̃1ε which subsets of
physical qubits ϕ∗ ∈ D∗1 and ϕ ∈ D1 might have been affected by X- and Z-errors,
respectively. Decoding succeeds iff the error and our guess differ by some stabilizer,
namely there exist ω ∈ D∗0 and ω ∈ D2 such that ε∗ + ϕ∗ = ∂̃∗0ω

∗ and ε + ϕ = ∂̃2ω.

Toric code
Topological stabilizer codes [Kit03; BK98; BM06; BM07a; Bom13; FM01] are a
special class of CSS stabilizer codes, which have geometrically local generators of
the stabilizer group S. One of the most studied examples of topological codes is
the toric code [Kit03]. The d-dimensional toric code of type k ∈ {1, . . . d − 1} can
be defined on a d-dimensional lattice L built of d-dimensional cells. We place one
qubit at every k-cell κ in L. For every (k − 1)-cell µ and (k + 1)-cell ν we define
X- and Z-stabilizer generators SX (µ) and SZ (ν) to be the product of either Pauli X

or Z operators on qubits in the neighborhood of µ and ν, namely

SX (µ) =
∏

κ∈Stk (µ)

X (κ), SZ (ν) =
∏

κ∈∆k (ν)

Z (κ). (4.12)

The logical X- and Z-operators of the d-dimensional toric code can be chosen as
Pauli X and Z operators, whose support forms (d − k)- and k-dimensional objects.
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The X- and Z-syndromes can be thought of as (k − 1)- and (d − k − 1)-objects,
which we call excitations. 2 Note that the CSS chain complex associated with
the toric code can be obtained by setting in Eq. (5.3) the vector spaces D2 = Ck+1,
D1 = Ck , D0 = Ck−1 and defining the boundary and coboundary operators as follows
∂̃2 = ∂k+1,k , ∂̃1 = ∂k,k−1, ∂̃∗0 = ∂k−1,k , ∂̃∗1 = ∂k,k+1. To summarize

Ck+1
∂k+1,k
−−−−→ Ck

∂k,k−1
−−−−→ Ck−1

Z-stabilizers qubits X-stabilizers
(4.13)

To illustrate the toric code construction, let us analyze the three-dimensional case.
The 3D toric code of type k = 1 is obtained by placing qubits on edges of a three-
dimensional lattice L and choosing X- and Z-stabilizer generators for every vertex
v and face f of L to be supported on qubits adjacent to v and f , namely

SX (v) =
∏

e∈St1(v)

X (v), SZ ( f ) =
∏

e∈∆1( f )

Z (v). (4.14)

The logical X and Z operators form2D sheet-like and 1D string-like objects, whereas
X- and Z-syndromes can be viewed as 0D point-like and 1D loop-like excitations.

Most likely error decoding of the toric code
The problem of decoding the 2D toric code has been extensively studied [Den+02;
Fow+12; DP13; Har04; BH13;MKJ18], especially in the case of uncorrelated errors.
We assume that each qubit is affected independently with the same probability p

by X- and Z-errors, i.e., we consider the bit- and phase-flip noise models. For the
sake of concreteness let us focus on correcting of Z-errors, since X-errors can be
handled in a similar way. One of the best 2D toric code decoders is based on the
Minimum-Weight PerfectMatching algorithm (MWPM),which finds themost likely
Z-error consistent with the observed X-syndrome. The complexity of the MWPM
is polynomial in the number of lattice constituents. The MWPM can only handle
0D point-like excitations but in d ≥ 3 dimensions the toric code of type k on the
lattice L always has one- or higher-dimensional excitations, since either k − 1 ≥ 1
or d − k − 1 ≥ 1. Thus, one needs a generalization of the MWPM, which we call
the k-Minimum-Weight Filling problem (MWF): for any k-dimensional boundary
σ ∈ im ∂k+1 find the smallest subset % ⊆ ∆k+1(L) of (k + 1)-simplices of L whose

2Observe that the X-syndrome can be though of as the (k − 1)-dimensional domain wall in the
lattice L. On the other hand, the Z-syndrome can be viewed as the (d − k − 1)-dimensional domain
wall in the dual lattice L∗.
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k-boundary matches σ. We can succinctly write

k-MWF(σ) = argmin
%⊆∆k+1(L)
∂k+1%=σ

|%|. (4.15)

Unfortunately, it is not known how to efficiently implement a solution to the k-MWF
unless k ∈ {0, d − 2, d − 1}. We remark that the case of k = 0 corresponds to the
MWPM algorithm, and the case of k = d − 1 is equivalent to finding “inside” and
“outside” of the region in d dimensions enclosed by a (d − 1)-dimensional closed
manifold. The case of k = d − 2 was solved by Sullivan [Sul90] using an approach
based on the max-flow min-cut theorem.

Local toric code decoder based on the Sweep Rule
We adopt a different approach to decoding the d-dimensional toric code (of type
k , 1). Instead of most-likely error decoding, we introduce the Sweep Decoder
based on the Sweep Rule. The Sweep Decoder is a local decoder (unlike the
MWPM) which attempts to find an error correction % ⊆ ∆k (L) from the syndrome
σ ∈ im ∂k by applying the Sweep Rule at most N times. Typically, we set N to be
comparable with the linear size of L; see Sec. 4.3 for further discussion. We remark
that for the Sweep Decoder to work the lattice L has to satisfy certain conditions
(which we already discussed in the previous section) and we need to specify the
sweep direction ~t ∈ Rd .

Algorithm 2: Sweep Decoder

Require: the toric code of type k , 1 on the d-dimensional lattice L, the Sweep
Rule on L

Input: (k − 1)-dimensional syndrome σ ∈ im ∂k

Output: k-dimensional error correction % ⊆ ∆k (L)
initialize n = 0, σ(0) = σ and %(0) = 0
unless n > N or σ(n) = 0 repeat:

1. update time step n ← n + 1

2. apply the Sweep Rule simultaneously to every vertex of L to get updated
σ(n) and %(n)

if n ≤ N , then % = %(n), otherwise % = FAIL
return %

Note that if % , FAIL, then the resulting error correction removes the input excitation
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σ, namely

∂k % = ∂k

n∑
i=1

(%(i) + %(i−1)) =
n∑

i=1
(σ(i) + σ(i−1)) = σ(n) + σ(0) = σ. (4.16)

The Sweep Decoder can fail for two reasons. First, the Sweep Decoder may not
succeed at finding the error correction in N time steps, which results in % = FAIL.
Second, the correction % combined with the actual error ε ⊆ ∆k (L) (whose syn-
drome ∂kε = σ we tried to decode) may implement a non-trivial logical operator,
i.e., %+ε < im ∂k . Lastly, we remark that the SweepDecoder described here corrects
Z-errors; correction of X-errors is described analogously but in the dual lattice L∗

and for (d − k − 1)-dimensional excitations.

4.3 Proof of threshold
In order to argue that the decoder of the d-dimensional toric code of type k , 1 based
on the Sweep Rule has a non-zero threshold one might be tempted to exploit similar-
ities with the Ising model and use reasoning similar to Peierls’ argument [Bro+16].
However, in this section we provide a rigorous proof based on the renormalization
group (RG) ideas. Our proof is inspired by previous works [GR88; Har04; BH13].
In particular, the notation for chunk decomposition and the arguments about sup-
pression of high-level chunks closely follow Ref. [BH13]. While it is natural to use
the RG approach to analyze e.g. the performance of the Broom Decoder, which is
an RG decoder, it is somehow unexpected to derive the existence of a threshold for
the Sweep Rule.

Two notions of distance
In the proof, we need a notion of the distance and the causal distance. The distance
d(u, v) between two vertices u and v in the lattice L is defined to be the length of
the shortest path connecting u and v

d(u, v) = min
(u:v)
|(u : v) |, (4.17)

whereas the causal distance dl (u, v) is the length of the shortest causal path between
u and v

dl (u, v) = min
(ulv)
|(u l v) |. (4.18)

We note that there is always a path between u and v, but a causal path might not
exist and in that case we set dl (u, v) = ∞. Also, the following inequality holds

d(u, v) ≤ dl (u, v) . (4.19)
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We define the distance d(U,V ) between two subsets of vertices U and V as the
minimal distance between any two vertices of U and V , namely

d(U,V ) = min
u∈U,v∈V

d(u, v). (4.20)

It will be also useful to define the diameter of a subset of vertices V as the maximal
distance between any two vertices of V , i.e.,

diam(V ) = max
u,v∈V

d(u, v) (4.21)

Properties of the Sweep Rule
Now we discuss some properties of the Sweep Rule which will be needed to a prove
non-zero threshold of the Sweep Decoder.

Lemma 8 (Properties of the Sweep Rule) Let L be a d-dimensional lattice and
σ ∈ im ∂k+1 be the initial k-dimensional domain wall of finite size, where k ∈

{1, . . . , d − 1}. At each time step we apply the Sweep Rule simultaneously to every
vertex of L. Then, after n ≥ 0 time steps

1. (Support Property) the domain wall σ(n) stays within the causal diamond
♦ (σ), i.e.,

σ(n) ⊂ ♦ (σ) , (4.22)

2. (Propagation Property) for every vertex v of the domain wall σ(n) the causal
distance between v and σ is at most n, i.e.,

dl (v, σ) ≤ n, (4.23)

3. (Removal Property) the domain wall is removed, namely σ(n) = 0, provided
that n is at least the length of the longest causal path between the infimum
inf σ and supremum supσ, i.e.,

n ≥ max
(inf σlsupσ)

|(inf σ l supσ) | (4.24)

We remark that we can strengthen the Support Property by showing that σ(n) ⊂ ↓

(supσ) ∩
⋃

v∈∆0(σ) ↑(v). Also, we can bake the bound in the Removal Property
tighter by showing n ≥ maxv∈∆0(σ) max(supσlv) |(supσ l v) |. However, to prove
a non-zero threshold it suffices to use weaker conditions in Eq. (4.22) and (4.24),
which are simpler to state and explain.
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Proof: We prove the properties of the Sweep Rule by induction. For n = 0 all of
them trivially hold. In the rest of the proof, we use the following simple fact about
causal diamonds: for any finiteU,W ⊂ ∆0(L) ifU ⊆ W , thenU ⊆ ♦ (U) ⊆ ♦ (W ).

Now we show the induction step for the Support Property. Let V (n−1) ⊂ ∆0(σ(n−1))
denote the set of extremal vertices of the domain wall σ(n−1) at time step n − 1.
Note that at time step n for every extremal vertex v ∈ V (n−1) the Sweep Rule finds
a certain subset ϕ(n) (v) of neighboring (k + 1)-simplices, which locally matches
σ(n−1) |v. Then, by flipping spins on ϕ(n) (v) the domain wall is locally modified and
it becomes

σ(n) = σ(n−1) +
∑

v∈V (n−1)

ϕ(n) (v). (4.25)

Note that ϕ(n) (v) is chosen in such a way that ♦
(
ϕ(n) (v)

)
= ♦

(
σ(n−1) |v

)
, and thus

♦
(
ϕ(n) (v)

)
⊆ ♦

(
σ(n−1)

)
⊆ ♦ (σ). We conclude that

♦
(
σ(n)

)
⊆ ♦ *.

,
♦

(
σ(n−1)

)
∪

⋃
v∈V (n−1)

♦
(
ϕ(n) (v)

)+/
-
⊆ ♦ (σ) . (4.26)

It is straightforward to prove the Propagation Property. Namely, every vertex v

in the domain wall σ(n) either belongs to σ(n−1) or is connected to some vertex
u ∈ ∆0(σ(n−1)) via an edge (u, v) ∈ ∆1(L), such that (u, v) · ~t > 0. Note that the
latter case can arise when we locally modify σ(n−1) by flipping (k + 1)-simplices
around its extremal vertex u. Thus, by using the induction hypothesis and triangle
inequality we arrive at

dl (v, σ) ≤ dl (v, u) + dl (u, σ) ≤ n, (4.27)

where we set u = v if v ∈ ∆0(σ(n−1)).

To show the Time Property we argue that the following integer-valued function

fσ (n) = max
v∈∆0(σ(n) )

max
(supσlv)

|(supσ l v) |, (4.28)

which is the length of the longest causal path between the supremum of σ and any
vertex v in the domain wall σ(n), is a monotone of the Sweep Rule. In other words,
the function fσ (n) is monotonically decreasing with n until the domain wall σ(n) is
removed, and then and we set fσ (n) = 0. First, note that if v is a vertex ofσ(n) which
maximizes the function fσ (n), then it has to be extremal. Thus, at time step n + 1
the Sweep Rule modifies the domain wall in the neighborhood of v. In particular, v
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is not included in σ(n+1), however some new vertices from the neighborhood of v,
which are necessarily closer (in the sense of the longest causal path) to supσ may
be included. Thus, we conclude that fσ (n + 1) < fσ (n), as desired.

We observe that Time Property follows immediately from the monotone fσ (n).
Namely, the initial value fσ (0) is upper-bounded bymax(inf σlsupσ) |(inf σ l supσ) |.
As long as the domain wall σ(n) , 0, the monotone fσ (n) is decreased by at least
one at each time step. Thus, after n ≥ max(inf σlsupσ) |(inf σ l supσ) | time steps
we have fσ (n) = 0 and the domain wall is guaranteed to disappear, which in turn
shows the Time Property. �

Properties of the lattice revisited
Before we proceed, let us define a discrete d-dimensional ball Bv (r) of radius r

centered at the vertex v of the d-dimensional lattice L to be a collection of all
k-simplices, whose distance from v is less than r , namely

Bv (r) = {κ ∈ ∆k (L) |k ∈ {0, 1, . . . , d} ∧ d(v, κ) < r }. (4.29)

Note that a unit ball Bv (1) corresponds to the collection of all k-simplices containing
v for any k ∈ {0, 1, . . . , d}, i.e., Bv (1) =

⊔d
k=0 Stk (v).

Now we briefly revisit the assumptions on the d-dimensional lattice L we need to
make in the rest of this section. The lattice L, which is built of d-dimensional
simplices, has to satisfy the following properties.

1. Causal structure:

(i) for any finite subset of vertices V ⊂ ∆0(L) there exists a unique causal
diamond ♦ (V ),

(ii) (local condition) for any v ∈ ∆0(L) and σ ∈ im ∂k if σ |v ⊂ ↑ (v),
then there exists ϕ(v) ⊆ Stk (v)∩ ↑(v) satisfying (∂kϕ(v)) |v = σ |v and
sup ϕ(v) = supσ |v.

2. Locally Euclidean:

(i) for any ball Bv (R) of radius R one finds a cover⋃
u∈U

Bu(r) ⊃ Bv (R) (4.30)

with balls of radius r < R indexed by U ⊂ ∆0(L), such that |U | ≤
cB (R/r)d and cB is a constant,
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(ii) for any finite subset of vertices V ⊂ ∆0(L) the diameters of V and the
causal diamond of V are comparable, i.e., there exists a constant cD such
that

diam(♦ (V )) ≤ cD · diam(V ). (4.31)

(iii) for any pair of vertices u � v the distance between them and the maximal
length of any causal path between them are comparable, i.e., there exists
a constant cP such that

max
(ulv)
|(u l v) | ≤ cP · d (u, v) (4.32)

Note that cD ≥ 1 since ♦ (V ) ⊃ V . Moreover, cP ≥ d since by choosing u = inf δ
and v = sup δ for any d-simplex δ we get d (u, v) = 1 and max(ulv) |(u l v) | ≥ d.

We remark that the properties regarding the causal structure of the lattice L (which
we already discussed in the previous section) are needed if one wants to define the
Sweep Rule onL. Additionally, one requires the property of being locally Euclidean
in order to prove that the Sweep Decoder has non-zero threshold for the toric code
of type k ∈ {2, . . . , d − 1} defined on L. Note that hyperbolic lattices do not satisfy
the property of being locally Euclidean, and thus we cannot readily use the Sweep
Decoder in that setting.

Chunk decomposition and connected components
Let ε ⊆ ∆k (L) be an error in the d-dimensional toric code of type k, i.e., the set
of k-simplices identified with qubits affected by Pauli Z errors. We define a level-0
chunk E[0] to be an element of ε . In other words, a level-0 chunk corresponds to a
single location of error. We recursively define a level-n chunk E[n] = E[n−1]

1 tE[n−1]
2

to be a disjoint union of two level-(n − 1) chunks E[n−1]
1 and E[n−1]

2 , such that
diam(E[n]) ≤ Qn/2 for some constant Q. We define level-n error En ⊆ ε to be a
union of all level-n chunks

En =
⋃

i

E[n]
i . (4.33)

Note that by definition ε = E0. Also, we have the following sequence of inclusions

ε = E0 ⊇ E1 ⊇ . . . ⊇ Em ) Em+1 = ∅, (4.34)

which allows us to define Fi = Ei \ Ei+1 for i = 0, 1 . . . ,m. Note that for any finite
ε there exists a finite m satisfying Eq. (4.34). Lastly, we arrive at the following
disjoint decomposition of the error

ε = F0 t F1 t . . . t Fm. (4.35)
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We say that a subset of errors M ⊆ ε is an l-connected component if it cannot
be split into two disjoint non-empty sets M1 and M2 separated by more than l. In
other words, for any M1, M2 , ∅ if M = M1 t M2, then d(M1, M2) ≤ l. One can
show that, roughly speaking, the diameter of any connected component is not too
big and different connected components are far from each other. This important
observation is captured by the following lemma [BH13], whose proof we include
for completeness.

Lemma 9 (Connected Components) Let Q ≥ 6 be some constant and a subset
of errors M ⊆ ε be a Qi-connected component of Fi. Then, diam(M) ≤ Qi and
d(M, Ei \ M) > Qi+1/3.

Proof: We prove the lemma by contradiction. Let us pick any a ∈ ∆0(Fi) and
assume that there exists b ∈ ∆0(Ei), such that Qi < d(a, b) ≤ Qi+1/3. Then, a and
b cannot be in the same level-n chunk. Moreover, a and b belong to two different
level-n chunks A and B, which are necessarily disjoint. Using triangle inequality
and Q ≥ 6 we get

diam(A t B) ≤ diam(A) + d(A, B) + diam(B) ≤ Qi +Qi+1/3 ≤ Qi+1/2. (4.36)

This implies that At B is a level-(i+ 1) chunk, and subsequently a ∈ At B ⊆ Ei+1,
which is in contradiction with a ∈ Fi = Ei \ Ei+1. We thus conclude that for any
b ∈ ∆0(Ei) we either have d(a, b) < Qi or d(a, b) > Qi+1/3. The former case leads
us to a conclusion that any Qi-connected component M ⊆ Fi has diameter at most
Qi. The latter case allows us to argue that the distance between M and Ei \ M is
more than Qi+1/3. �

We remark that the (Connected Components) Lemma 9 will be used to show that
the Sweep Decoder removes different connected components independently of one
another since they are sufficiently far apart.

Suppression of high-level chunks
Wewould like to show that the probability of observing a high-level chunk is doubly-
exponentially suppressed in the level of the chunk. We do it by using results from
the percolation theory, in particular the van den Berg and Kesten inequality [Gri99].

First, we discuss the probability of observing different error configurations ε ⊆
∆k (L). We assume that with probability p every qubit is independently affected by
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Pauli Z error, which is equivalent to the corresponding k-simplex being included
in ε . Thus, in the case of a lattice L with a finite number of k-simplices, the
probability of the error configuration ε is given by pr(ε ) = p|ε | (1 − p) |∆k (L) |−|ε |. A
collection of (error) configurations is called an event A. We say that the event A
is increasing if ε ∈ A implies ε′ ∈ A for any two configurations ε ⊆ ε′ ⊆ ∆k (L).
The disjoint occurrence A ◦ B of two events A and B is defined as the collection
of configurations ε = εA t εB , which are a disjoint union of εA ∈ A and εB ∈ B.

Let us consider a d-dimensional latticeL and a randomly chosen error configuration
ε ⊆ ∆k (L). We define the following events:

• Av,n: Bv (Qn/2) has a non-zero overlap with a level-n chunk of ε ,

• Bv,n: Bv (Qn) contains a level-n chunk of ε ,

• Cv,n: Bv (Qn) contains two disjoint level-(n − 1) chunks of ε ,

• Dv,n: Bv (Qn) contains a level-(n − 1) chunk of ε .

By definition of chunks we have

pr(Av,n) ≤ pr(Bv,n) ≤ pr(Cv,n). (4.37)

To relate the probabilities of events Cv,n and Dv,n we first note that the event
Cv,n = Dv,n ◦ Dv,n is the disjoint occurrence. Then, we can use the van den Berg
and Kesten inequality: if A and B are two increasing events, then the probability
pr(A ◦B) of the disjoint occurrence ofA and B is upper-bounded by pr(A)pr(B).
Thus, we find pr(Cv,n) ≤ pr(Dv,n)2. Now, consider a cover of the ball Bv (Qn)
with balls of radius Qn−1/2 indexed by U ⊂ ∆0(L). Using the property that the
lattice L is locally Euclidean, we can find a cover with |U | ≤ (2Q)dcB. Note that if
Bv (Qn) contains a level-(n − 1) chunk, then there exists a vertex u ∈ U , such that
the ball Bu(Qn−1/2) has non-zero overlap with that chunk. We remark that the latter
condition describes the event Au,n−1. Thus, using union bound we arrive at

pr(Dv,n) ≤
∑
u∈U

pr(Au,n−1) ≤ |U |max
u∈U

pr(Au,n−1). (4.38)

Let us denote the probability of the event Av,n maximized over the set of vertices
∆0(L) by

pA,n = max
v∈∆0(L)

pr(Av,n). (4.39)
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Combining all previous inequalities and applying them recursively we arrive at

pA,n ≤ ((2Q)dcBpA,n−1)2 ≤ . . . ≤ ((2Q)dcB)−2(((2Q)dcB)2pA,0)2
n

. (4.40)

Note that the event Av,0 describes the situation that at least one qubit in the neigh-
borhood of v is affected by the error ε . Thus, pr(Av,0) is upper bounded by |Stk (v) |p
and subsequently pA,0 ≤ maxv∈∆0(L) |Stk (v) |p. We finally conclude that for any
given ball Bv (Qn/2) the probability pr(Av,n) of any level-n chunk of ε intersecting
with Bv (Qn/2) is suppressed doubly exponentially in n as long as

p < pth =
(
((2Q)dcB)2 max

v∈∆0(L)
|Stk (v) |

)−1
. (4.41)

Putting things together
Now we are ready to prove that the Sweep Decoder for the d-dimensional toric code
of type k ∈ {2, . . . , d − 1} has a non-zero threshold, which is lower-bounded by pth
defined in Eq. (4.41). For concreteness, we consider a family of lattices L on the
d-dimensional torus of growing linear size L → ∞, which satisfy the conditions
from Sec. 4.3. Note that by the linear size of L we mean the length of the shortest
non-contractible path in L. The toric code defined on the lattice L has

(
d
k

)
logical

qubits and the corresponding logical Z operators can be represented as Pauli Z

operators with support forming non-contractible k-dimensional sheets.

Let ε ⊆ ∆k (L) be a randomly chosen Z-type error, where each qubit is independently
affected with probability p < pth. We can find the disjoint decomposition of the
error ε = F0 t F1 t . . . t Fm, where m is the maximal level of any chunk of ε .
The main main idea behind the proof is to show that: (i) with high probability the
maximal level of any chunk satisfies m < m∗ = blogQ (L/cD)c and (ii) the Sweep
Decoder successfully corrects any level-n chunk of of the error ε for all n < m∗.

To show (i), we use the bound in Eq. (4.40). Namely, if there exists a level-
m∗ chunk of the error ε , then it has to intersect one of the balls from the set
{Bv (Qm∗/2)}v∈∆0(L). Using union bound and Eq. (4.40) we find the following upper
bound on the probability of ε containing a level-m∗ chunk

pr(level-m∗ chunk) ≤
∑

v∈∆0(L)

pr(Av,m∗ ) ≤ |∆0(L) |pA,m∗ ≤ poly(L) · exp(−αL β),

(4.42)
where α = c−βD log(pth/p), β = logQ 2 and we set |∆0(L) | = poly(L). This
concludes the proof of (i).
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To show (ii), we need to discuss the behavior of the Sweep Decoder. Let us
choose a constant Q = 6cDcP. At every time step n = 1, 2, . . . the Sweep Decoder
simultaneously applies the Sweep Rule to every vertex of the lattice and locally
modifies the domain wall (corresponding to the syndrome σ(n) ∈ im ∂k , where
we set σ(0) = ∂kε). Consider any non-empty subset of errors M ⊆ ε , which is
a Q0-connected component of F0. Then, within first t0 = cDcPQ0 time steps the
Sweep Rule removes the part ∂k M of the domain wall ∂kε , which corresponds to M .
Namely, using the (Connected Components) Lemma 9we get that diam(M) ≤ Q0. 3
SinceL is locally Euclidean, from Eq. (4.31) we get cDdiam(M) ≥ diam(♦ (M)) ≥
d

(
inf M, sup M

)
, which combined with Eq. (4.32) results in the bound |(inf M l

sup M) | ≤ cDcPdiam(M) = t0 on the maximal length of any causal path within the
causal diamond ♦ (M). Note that ♦ (∂k M) ⊆ ♦ (M), and thus from the Removal
Property in Lemma 8 we obtain that ∂k M is guaranteed to be removed after t0 ≥

max(inf σlsupσ) |(inf σ l supσ) | time steps.

Importantly, in the presented reasoning we use the fact that the distance between
∂k M and ∂kε \ ∂k M is greater than Q1/3. This fact follows from the (Connected
Components) Lemma 9. Thus, the time evolution of the rest of the domain wall
∂kε \ ∂k M due to the Sweep Rule does not affect the removal of ∂k M . This follows
from the fact that both ∂kε \ ∂k M and ∂k M can only propagate over the distance
at most t0 = cDcPQ0 ≤ Q1/6 toward each other; see the Propagation Property in
Lemma 8. Thus, they will not cover the total distance of more than Q1/3, which is
the separation between them.

We remark that the reasoning is applicable to Qi-connected components of Fi for
higher levels i ≥ 1. We summarize our discussion in the following lemma, which
can be analogously proven by induction on the level i.

Lemma 10 Let ε ⊆ ∆k (L) be an error with the disjoint decomposition ε = F0 t

F1 t . . . t Fm and choose Q = 6cDcP. Then, for any Qi-connected component M

of Fi the corresponding part ∂k M of the domain wall ∂kε is removed by the Sweep
Rule within first ti = cDcPQi time steps. Moreover, the removal of ∂k M is not
affected by any other part ∂k M′ of the domain wall, irrespective of the level j of the
Q j-connected component M′ of Fj .

3Note that diam(M) = 1 implies that all the vertices of M belong to the same d-simplex δ. This,
however, does not imply that the Sweep Rule can remove the corresponding part ∂k M of the domain
wall in one step. Rather, at most d − 1 time steps may be required, as can be seen in the case of the
one-dimensional domain wall visiting all vertices of δ in a sequence induced by the sweep direction
~t.
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We run the Sweep Decoder for N = tm∗−1 time steps. The Lemma 10 guarantees
that after N time steps any Qn-connected component M of Fn is removed for all
n < m∗. Moreover, for each M the Sweep Decoder finds (independently of the other
connected components) a correction of the part ∂k M of the domain wall, which is
contained in the causal diamond of ♦ (M). This follows from the Support Property
in Lemma 8. Note that the diameter of the causal diamond ♦ (M) is smaller than
the linear size of the system

diam(♦ (M)) ≤ cD · diam(M) ≤ cDQn < cDQm∗ ≤ L, (4.43)

where we use Eq. (4.31) and the (Connected Components) Lemma 9. Thus, any
operator supported within ♦ (M) cannot implement a non-trivial logical operator.
This finishes the proof of (ii).

Lastly, we conclude that the Sweep Decoder can fail only if there exists a level-m∗

chunk of the error ε . We arrive at an upper-bound on the decoding failure probability

pr(fail) ≤ pr(level-m∗ chunk) ≤ poly(L) · exp(−αL β), (4.44)

which goes to zero in the limit of infinite size L → ∞ for p < pth, where pth
is a positive constant specified in Eq. (4.41). This finishes the proof of a non-
zero threshold of the Sweep Decoder for the d-dimensional toric code of type
k ∈ {2, . . . , d − 1}.

4.4 Decoding of the color code
The color and toric codes are closely related in d ≥ 2 dimensions [KYP15]. Thus,
one would expect to be able to use toric code decoders to decode the color code.
This intuition is indeed correct, as was shown in two dimensions [Del14b; BDP12].
However, the question in d ≥ 3 dimensions remained mostly unexplored [BNB15].
Other 2D color code decoders have been studied [Wan+10; SR12], but it has been far
from obvious whether one could use similar strategies to decode higher-dimensional
color code. In this section, we describe how one can always locally reduce the
problem of decoding the color code to that of the toric code. We would like to
emphasize that we can use any toric code decoder for the reduced problem. We
finish by introducing a new class of local decoders of the color code in d dimensions
based on the Sweep Rule.

Color code
To define the color code [BM06; BM07a; KB15], we need a d-dimensional lattice
L built of d-simplices. In addition, we require that the vertices of L are (d + 1)-
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colorable, i.e., we can introduce a function

color : ∆0(L) → Zd+1, (4.45)

where Zd+1 = {0, 1, . . . , d} is a set of d + 1 colors and any two vertices connected
by an edge have different color. By color(κ) we denote the set of colors of all the
vertices ∆0(κ) of a k-simplex κ.

The d-dimensional color code of type k is constructed by placing one qubit at every
d-simplex δ. For every (k − 1)-simplex µ and (d − k − 1)-simplex ν we define X-
and Z-stabilizer generators SX (µ) and SZ (ν) to be the product of either Pauli X or
Z operators on qubits adjacent to µ and ν, namely

SX (µ) =
∏

δ∈Std (µ)

X (δ), SZ (ν) =
∏

δ∈Std (ν)

Z (δ). (4.46)

The representatives of logical X and Z operators of the d-dimensional color code
can be chosen to form (d− k)- and k-dimensional objects. The X- and Z-syndromes
can be thought of as (k−1)- and (d− k−1)-objects, which we call excitations. Note
that we can construct a CSS chain complex associated with the color code by setting
in Eq. (5.3) the vector spaces D2 = Cd−k−1, D1 = Cd , D0 = Ck−1 and defining
the boundary and coboundary operators as follows ∂̃2 = ∂d−k−1,d , ∂̃1 = ∂d,k−1,
∂̃∗0 = ∂k−1,d , ∂̃∗1 = ∂d,d−k−1. To summarize

Cd−k−1
∂d−k−1,d
−−−−−−→ Cd

∂d,k−1
−−−−→ Ck−1

Z-stabilizers qubits X-stabilizers
(4.47)

To illustrate the color code construction, we consider the three-dimensional case.
The 3D color code of type k = 1 is obtained by placing qubits on tetrahedra of
a three-dimensional lattice L built of tetrahedra, whose vertices are 4-colorable.
An example of such a lattice is the bcc lattice obtained from two interleaved cubic
lattices; see Fig. 4.7(a). We choose X- and Z-stabilizer generators for every vertex
v and edge e of L to be supported on qubits adjacent to v and e, namely

SX (v) =
∏

t∈St3(v)

X (t), SZ (e) =
∏

t∈St3(e)

Z (t), (4.48)

The logical X- and Z-operators of the 3D color code can be supported within
2D sheet-like and 1D string-like regions, whereas X- and Z-syndromes form 0D
point-like and 1D loop-like excitations.
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We would like to emphasize that there is a qualitative difference between the toric
and color code excitations. Similarly to the toric code, there are two types of color
code excitations, electric and magnetic, which correspond to violated X- and Z-
type stabilizers. In addition, there are

(
d+1

k

)
species of (k − 1)-dimensional electric

excitations in the color code compared to just one in the toric code. Different species
of electric excitations are labelled by different subsets of k colors C ⊂ Zd+1, which
are the colors of (k − 1)-simplices identified with violated stabilizers. In case of
(d − k − 1)-dimensional magnetic excitations, we have

(
d+1
d−k

)
species. The fact that

there are different species of color code excitations plays a role when one locally
creates or removes excitations. Namely, only certain processes are allowed, as can
be easily seen in the case of zero-dimensional point-like electric excitations, i.e.,
k = 1. A single-qubit Pauli Z error on a d-simplex δ ∈ ∆d (L) violates X-type
stabilizers associated with vertices ∆0(δ), and thus creates or removes d + 1 point-
like electric excitations. However, a two-qubit Pauli Z error on neighboring qubits
(on d-simplices sharing a (d − 1)-face) results in creation or removal of just two
point-like excitations of the same color. The fact that one might not be able to locally
remove certain incompatible species of excitations of the color code is one of the
reasons why color code decoding seems to pose a harder challenge than toric code
decoding.

Definition of the projected lattice
An important part of the ProjectionDecoder is the reduction of the decoding problem
for the color code on the d-dimensional lattice L, which is built of d-simplices and
has (d + 1)-colorable vertices, to that for the toric code defined on the projected
lattice LC . In this section we define the projected lattice LC obtained from L by
some local modifications of the lattice structure.

Let us pick a subset C ⊂ Zd+1 of k + 1 colors. The projected lattice LC is a lattice
containing all the vertices of L of color in C. Moreover, for all i = 1, . . . , k all
the i-simplices ι of L, whose color is included in C, i.e., color(ι) ⊆ C, are also
included in LC . In other words, the first step of constructing LC is to delete from
L all the simplices whose color is not completely included in C. Note that this
implies that we remove all i-simplices for i > k. Then, for i = k +1, . . . , d and every
removed (d− i)-simplex of color in Zd+1 \C we will successively attach a new i-cell
and eventually construct the d-dimensional projected lattice LC . We illustrate the
construction of the projected lattice with an example of the three-dimensional bcc
lattice in Fig. 4.7.
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Definition 1 (Projected Lattice) LetL be a valid d-dimensional color code lattice
and C ⊂ Zd+1 be a subset of k + 1 colors, where k ∈ {1, . . . , d − 1}. The projected
lattice LC is a cell d-complex constructed inductively from L in the following way

• for 0 ≤ i ≤ k: i-cells in LC are the same as i-simplices in L of color included
in C,

• for i = k+1: for every removed (d−k−1)-dimensional simplex δ ∈ ∆d−k−1(L)
of color Zd+1 \ C add a new (k + 1)-cell α(δ) to LC by attaching a (k + 1)-
dimensional ball Bk+1 to the k-link Lkk (δ)

• for k + 2 ≤ i ≤ d: every i-cell of LC corresponds to some (d − i)-simplex
δ ∈ ∆d−i (L) of color in Zd+1 \ C and is constructed by first finding all
(d − i + 1)-simplices of color in Zd+1 \C, which contain δ, and then attaching
an i-ball Bi to the corresponding (i − 1)-dimensional balls Bi−1 (which have
already been attached in the preceding inductive step).

We remark that for i ≥ k each step of the inductive construction of the projected
lattice LC can be viewed as a description of the i-skeleton of a cell complex
corresponding to LC . Note that in this construction we use a fact that for any i-
simplex ι of the d-dimensional latticeL the corresponding (d−i−1)-link Lkd−i−1(δ)
is homeomorphic to a (d − i − 1)-sphere and thus we can attach a (d − i)-ball Bd−i

to it. For more details, see [Hat02; Gla72].

We emphasize that in order to define the toric code of type k on the projected
lattice LC we just need to have cells of dimension up to k + 1 in LC . However,
we choose to include higher-dimensional cells in the projected latttice LC so that
it can be treated on the same footing as L, namely as a discretization of some d-
dimensional manifold. Moreover, the local modifications of the lattice L which we
implement to construct LC do not change the topology of the lattice. In particular,
we are interested in the structure of the k-cycles and k-boundaries in LC , since they
determine the toric code logical subspace. First, let us verify that for any (k + 1)-
dimensional face α(δ) ∈ ∆k+1(L) its boundary ∂k+1α(δ) is indeed a k-boundary in
LC . Recall that α(δ) is constructed by attaching a (k + 1)-ball Bk+1 to the k-link
Lkk (δ) of some removed (d − k −1)-simplex δ ∈ ∆d−k−1(L), and thus by definition
∂k+1α(δ) = Lkk (δ). Note that Lkk (δ) is homeomorphic to a k-dimensional sphere,
and thus ∂k (∂k+1α(δ)) = ∂kLkk (δ) = 0, since the boundary of any discretization of
a k-sphere is trivial. We also remark that k-cycles inLC which are not k-boundaries,
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(a) (b)

Figure 4.7: (a) The bcc lattice L is a three-dimensional lattice constructed from two
interleaved cubic lattices (one corresponding to vertices of color red or green, and
the other to blue or yellow) by filling in tetrahedra (shaded in green). The vertices of
the bcc lattice are 4-colorable. (b) The projected lattice LRG obtained from the bcc
lattice L by removing all vertices of color blue or yellow, as well as all the edges,
faces and volumes containing them. For each removed edge of color blue-yellow we
attach a square face (shaded in blue) to LRG, and for each removed vertex we add
a cubic volume. We remark that the projected lattice LRB forms what we call the
half-bcc lattice. The figures were made using vZome available at http://vzome.com.

i.e., the logical operators of the toric code on LC , are in one-to-one correspondence
with certain elements from ker ∂d,k−1 \ im ∂d−k−1,d , which correspond to logical
operators of the color code on L with the associated color Zd+1 \C. We will discuss
the structure of logical operators of the color code in Sec. 4.4.

Morphism between color and toric code chain complexes
Nowwewould like to relate decoding of the color code of type k defined on the lattice
L to that of the toric code of type k on the lattice LC , where C ⊂ Zd+1 is a subset
of k + 1 colors. Namely, we are going to find a way to map stabilizers, errors and
syndromes of the color code on the lattice L onto stabilizers, errors and syndromes
of the toric code on the lattice LC , respectively. In addition, the mapping should
preserve relations between them, such as the syndrome of any stabilizer is trivial.
This is not an obvious task, sincewewant to relate objects of different dimensionality,
for example color code errors are identified with d-simplices, whereas toric code
errors — with k-cells.

In order to relate the color and toric codes we introduce the projection πC , which
maps the chain complex of the color code of type k on the d-dimensional lattice L

Cd−k−1(L)
∂d−k−1→d
−−−−−−−→ Cd (L)

∂d→k−1
−−−−−→ Ck−1(L) (4.49)
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onto the CSS chain complex of the toric code on the projected lattice LC

Ck+1(LC)
∂k+1
−−−→ Ck (LC)

∂k
−−→ Ck−1(LC). (4.50)

The projection πC is defined in the following way.

Definition 2 (Projection) The projection πC is a triple of linear operators
(π(0)

C , π(1)
C , π(2)

C ) defined as follows

π(0)
C : Ck−1(L) → Ck−1(LC), (4.51)

π(0)
C (µ) =




µ if color(µ) ⊂ C,

0 otherwise,
(4.52)

π(1)
C : Cd (L) → Ck (LC), (4.53)

π(1)
C (δ) = δ |C, (4.54)

π(2)
C : Cd−k−1(L) → Ck+1(L), (4.55)

π(2)
C (ν) =




α(ν) if color(ν) = Zd+1 \ C,

0 otherwise,
(4.56)

where δ |C is the k-simplex of color C, which belongs to the d-simplex δ ∈ ∆d (L).

Recall that α(ν) is the (k + 1)-face of LC attached to the k-link Lkk (ν), which
corresponds the the (d − k − 1)-simplex ν removed from L. The boundary of α(ν)
is by definition the k-link Lkk (ν).

We claim that the projection πC applied to the color code chain complex in Eq. (4.49)
preserves its structure and results in the toric code chain complex in Eq. (4.50). This
means, for instance, that if we map errors in the color code onto errors in the toric
code and evaluate their toric code syndrome, then this syndrome will match the
mapped color code syndrome. The structure that ensures that the projection πC

preserves the relations between stabilizers, errors and syndromes is a notion of a
morphism of chain complexes [Del14b].

Lemma 11 (Morphism of Chain Complexes) Let C ⊂ Zd+1 be a subset of k + 1
colors, where k ∈ {1, . . . , d − 1}. Let L be a valid d-dimensional color code lattice.
Then, the projection πC is a morphism between chain complexes of the color code
of type k on L and the toric code of type k on LC . In other words, the following
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diagram is commutative

Cd−k−1(L)
∂d−k−1,d
−−−−−−→ Cd (L)

∂d,k−1
−−−−−→ Ck−1(L)

yπ(2)
C

yπ(1)
C

yπ(0)
C

Ck+1(LC)
∂k+1
−−−−−→ Ck (LC)

∂k
−−−−−→ Ck−1(LC)

(4.57)

Proof: Let us pick δ ∈ ∆d (L) and consider the right side of the diagram. We want
to show that π(0)

C ◦ ∂d,k−1(δ) = ∂k ◦ π
(1)
C (δ). Note that for any n ∈ {0, 1, . . . , k − 1}

all n-simplices of δ of colors included in C belong to the k-simplex δ |C = π(1)
C (δ)

of δ, namely
∆n(δ |C) = {ν ∈ ∆n(δ) |color(ν) ⊂ C}. (4.58)

Thus, we obtain

π(0)
C ◦ ∂d,k−1(δ) = π(0)

C
*.
,

∑
µ∈∆k−1(δ)

µ
+/
-
=

∑
µ∈∆k−1(δ)
color(µ)⊂C

µ =
∑

µ∈∆k−1(δ |C )

µ (4.59)

= ∂k (δ |C) = ∂k ◦ π
(1)
C (δ), (4.60)

which shows commutativity of the right side of the diagram.

Now we analyze the left side of the diagram. Let us pick δ ∈ ∆d−k−1(L) and
consider two cases. In the first case, when color(δ) = Zd+1 \ C, all the k-simplices
in the k-link of δ have color C. Note that the elements of the k-link Lkk (δ) of δ are
in one-to-one correspondence with the elements of the d-star Std (δ) of δ, namely

κ ∈ Lkk (δ) ⇐⇒ ∃µ ∈ Std (δ) : µ = δ ∗ κ, (4.61)

where by µ = δ ∗ κ we denote that the simplex µ is spanned by the disjoin union of
vertices of two simplices δ and κ. Then, we also have π(1)

C (δ ∗ κ) = κ and thus

π(1)
C ◦ ∂d−k−1,d (δ) = π(1)

C
*.
,

∑
µ∈Std (δ)

µ
+/
-
= π(1)

C
*.
,

∑
κ∈Lkk (δ)

δ ∗ κ
+/
-

(4.62)

=
∑

κ∈Lkk (δ)

κ = ∂k+1(α(δ)) = ∂k+1 ◦ π
(2)
C (δ). (4.63)

In the other case, i.e., color(δ) , Zd+1 \ C, there exists a simplex ω ⊂ δ such that
color(ω) = color(δ) ∩ C. Then, as was shown in Ref. [KYP15], the d-star Std (δ)
of δ admits the following disjoint decomposition

Std (δ) =
⊔

κ∈Stk (ω)
color(κ)=C

Std (κ), (4.64)
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where we use the fact that the lattice L is built of d-simplices and its vertices are
(d + 1)-colorable. Moreover, for any n-simplex ν with n ∈ {0, 1, . . . , d − 1} the
cardinality of the d-star Std (ν) is even, i.e., |Std (ν) | ≡ 0 mod 2; see [KYP15] for
the proof. Thus,

∑
µ∈Std (ν) ν = 0 and we get

π(1)
C ◦ ∂d−k−1,d (δ) = π(1)

C
*.
,

∑
µ∈Std (δ)

µ
+/
-
= π(1)

C

*....
,

∑
κ∈Stk (ω)
color(κ)=C

∑
µ∈Std (κ)

µ

+////
-

(4.65)

=
∑

κ∈Stk (ω)
color(κ)=C

∑
µ∈Std (κ)

π(1)
C (µ) =

∑
κ∈Stk (ω)
color(κ)=C

∑
µ∈Std (κ)

κ (4.66)

= 0 = ∂k+1 ◦ π
(2)
C (δ), (4.67)

where in the last step we use π(2)
C (δ) = 0 since color(δ) , Zd+1 \ C. This shows

commutativity of the left side of the diagram in Eq. (4.57) and thus concludes the
proof. �

How to use any toric code decoder for the color code
We have just seen that the projection πC is a morphism of chain complexes of the
color and toric codes of type k ∈ {1, . . . , d − 1} defined on L and LC , respectively.
Recall that C ⊂ Zd+1 denotes a subset of k + 1 colors. We now analyze the
implications of this morphism for the problem of decoding the color code. Let
ε ⊆ ∆d (L) be the set of qubits of the color code, which are affected by Pauli Z

errors. Then, the corresponding X-type syndrome is σ = ∂d,k−1ε . We denote by
σC = π(0)

C (σ) the projected syndrome, i.e., the subset of (k − 1)-simplices of σ,
whose color is included in C. Let us assume that for every possible choice of k + 1
colors C ⊂ Zd including one specified color c∗ we decode the projected syndrome
σC of the toric code on the projected lattice LC . In other words, for every C ⊂ Zd+1

with c∗ ∈ C we find %C ⊆ ∆k (LC) such that ∂k %C = σC . We would like to infer
the color code correction τ ⊆ ∆d (L) satisfying ∂d,k−1τ = σ from the combined
toric code correction % =

∑
C %C , where the sum is over C ⊂ Zd+1 of k + 1 colors

containing c∗. We can achieve that by a local procedure, which we call the Lift: for
every vertex v in L of color d locally “lift” the k-dimensional toric code correction
to get the d-dimensional color code correction.

We can always find τ(v) ⊆ Std (v) in the Lift, which satisfies the condition
(∂d,kτ(v)) |v = %|v. Namely, one can show that ∂k (%|v) ⊆ Lkk−1(v) is a valid
(k − 1)-dimensional syndrome of the color code defined on the (d − 1)-dimensional
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Algorithm 3: Lift

Require: a vertex v in the d-dimensional color code lattice L
Input: the k-dimensional combined toric code correction % =

∑
C %C ⊆ ∆k (L)

Output: the d-dimensional local color code correction τ(v) ⊆ Std (v)
find a restriction of % to the neighborhood of v, i.e., %|v = % ∩ Stk (v)
if %|v , 0, then find τ(v) ⊆ Std (v) satisfying (∂d,kτ(v)) |v = %|v, otherwise
τ(v) = 0
return τ(v)

sphere Sd−1 around v, i.e., Sd−1 '
⊔d−1

i=0 Lki (v). By using an inductive argument,
we can find the correction ς ⊆ Lkd−1(v) for the decoding problem on Sd−1, since it
is a decoding problem for the (d − 1)-dimensional color code. Finally, we set τ(v)
to be the set of all d-simplices in the neighborhood of v spanned by v and ς, i.e.,
τ(v) = v ∗ ς. We remark that one may find τ(v) by exhaustively considering all
possible subsets of Std (v) and checking which one satisfies the condition specified
in the Lift.

Algorithm 4: Projection Decoder

Require: the d-dimensional color code of type k on the lattice L, any decoder of
the d-dimensional toric code of type k

Input: the (k − 1)-dimensional color code syndrome σ ∈ im ∂d,k−1

Output: the d-dimensional color code correction τ ⊆ ∆d (L)
initialize τ = 0 and choose any color c∗ ∈ Zd+1

for every subset of k + 1 colors C ⊂ Zd+1 containing c∗:
1. find the projected lattice LC and the projected syndrome σC = π

(0)
C (σ)

2. decode σC of the toric code on LC by finding %C ⊆ ∆k (LC) such that
∂k %C = σC

find the combined toric code correction % =
∑

C %C

for every vertex v of L of color c∗:

1. apply the Lift to %|v in order to find a local color code correction
τ(v) ⊆ Std (v)

2. update τ ← τ + τ(v)

return τ

We would like to emphasize that the Lift is a fully local procedure (unlike the lifting
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procedure discussed in [Del14b]), which does not depend on the toric code decoder
used to find the combined toric code correction % =

∑
C %C . We conclude that using

the Lift we can define the Projection Decoder of the d-dimensional color code of
type k based on any decoder of the d-dimensional toric code of type k. This resolves
a long-standing question of how to relate decoding of the color and toric codes by
providing an explicit procedure.

We remark that the Projection Decoder always removes all excitations from the
color code. In other words ∂d,k−1τ = σ. However, the initial error ε combined with
the correction τ may support non-trivial logical operator, i.e., ε + τ ∈ ker ∂d,k−1 \

im ∂d−k−1,d . We would like to understand when the Projection Decoder successfully
corrects errors in the color code. We show the following result.

Lemma 12 (Successful Decoding) Consider the color code of type k ∈ {1, . . . , d−
1} defined on a d-dimensional lattice L. Let ε ⊆ ∆d (L) be the set of qubits affected
by Z-type errors and σ = ∂d,k−1ε be the corresponding X-type syndrome. Assume
that for all subsets of k + 1 colors C ⊂ Zd+1 the projected syndrome π(0)

C (σ) in
the toric code on the projected lattice LC is successfully decoded. In other words,
the toric code correction %C ⊆ ∆k (L) combined with the projected error π(1)

C (ε )
forms some toric code stabilizer, i.e., %C + π

(1)
C (ε ) ∈ im ∂k+1. Then, the Projection

Decoder output τ ⊆ ∆d (L) successfully corrects the error ε in the color code, i.e.,
ε + τ ∈ im ∂d−k−1,d .

Before we prove (Successful Decoding) Lemma 12, we need to discuss the structure
o the logical operators of the color code. We consider the color code of type k on the
latticeL, which is a discretization of the d-dimensional manifold without boundary,
such as the d-dimensional torus. We can construct representatives of different logical
Pauli Z operators as follows. First, we choose a subset of d − k +1 colors C ⊂ Zd+1.
Then, we find a k-dimensional non-contractible surfaceM, such that it only contains
(k − 1)-simplices of L of color Zd+1 \ C and cuts the subset ω(M) ⊂ ∆d−k (L)
of (d − k)-simplices of L of color C; see Fig. 4.8 for an illustration. Next, we
define a subset λ

M,C ⊂ ∆d (L) as the set of all d-simplices of L, which are in the
neighborhood of (d − k)-simplices of color C cut byM, namely

λ
M,C =

⊔
κ∈ω(M)

Std (κ). (4.68)

One can show that λ
M,C ∈ ker ∂d,k−1 \ im ∂d−k−1,d and thus the operator∏

δ∈∆d (λ
M,C ) Z (δ) is a representative of a non-trivial logical Z operator. We re-
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(a) (b)

v

Figure 4.8: The 2D color code on the triangular lattice L. (a) The support λM,RB ⊂

∆2(L) of a non-trivial string-like logical operator can be found as a union of faces
(shaded in grey) in the neighborhood of the set ω(M) of all the red-blue edges
(thick green) cut by some non-contractible curveM (dashed magenta). The support
St2(v) of the stabilizer generator associated with a vertex v is the set of faces (shaded
in blue), which contain v. (b) The projection π(1)

RG (λM,RB) (thick grey) of the logical
operator is a non-contractible curve in the projected lattice LRG, i.e., it is a 1-cycle
which is not a 1-boundary. On the other hand, the projection π(1)

RG (St2(v)) (thick
blue) of the stabilizer is a contractible loop in LRG, i.e., it is a 1-boundary.

mark that any generator of the group of logical Z operators can be found in this
way.

Let us apply the generalized boundary operator ∂d,k to λM,C . One can show that

∂d,kλM,C =
∑

κ∈ω(M)

∑
v∈∆0(κ)

v ∗ Lkk−1(κ), (4.69)

where v ∗ Lkk−1(κ) denotes the set of k-simplices spanned by the vertex v and the
(k − 1)-simplices from Lkk−1(κ). Note that k-simplices in v ∗Lkk−1(κ) are of color
C = (Zd+1 \ C) t {c}, where c = color(v). Thus, one can view ∂d,kλM,C as a sum
of k-simplices which belong to d − k + 1 non-contractible k-dimensional surfaces
alongM in different projected lattices LC for all c ∈ C. In other words, the subset
of k-simplices in ∂d,kλM,C restricted to the ones of color C, which corresponds
to π(1)

C (λ
M,C), is a k-cycle which is not a k-boundary in LC . We illustrate the

discussion with a two-dimensional example in Fig. 4.8.

We can also apply the generalized boundary operator ∂d,k to the support of Z-
type stabilizers of the color code of type k. Let us consider a stabilizer generator
SZ (ν) =

∏
δ∈Std (ν) Z (ν) identified with the (d − k − 1)-simplex ν of color C. One

can show that
∂d,kStd (ν) = Lkk (ν) = ∂k+1α(ν), (4.70)
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where α(ν) is the (k+1)-dimensional face in the projected latticeLZd+1\C identified
with the removed (d − k −1)-simplex ν of color C. Thus, ∂d,kStd (ν) = π(1)

C (Std (ν))
is the k-boundary in the projected latticeLC , i.e., ∂d,kStd (ν) ∈ im ∂k+1. By linearity
we conclude that the (generalized) k-boundary of the support of any Z-type stabilizer
can be viewed as a sum of k-boundaries in different projected lattices LC for all
subsets C ⊂ Zd+1 of k + 1 colors.

We use the (Morphism of Chain Complexes) Lemma 11, as well as the aforemen-
tioned facts about the (generalized) k-boundary of logical operators and stabilizers
of the color code in the following proof of the (Successful Decoding) Lemma 12.

Proof: In the decoding problem, we do not know the error ε but instead we know
its syndrome σ = ∂d,k−1ε . Since the Projection Decoder returns the correction τ
with the same syndrome as ε , i.e., ∂d,k−1τ = σ, we can write

ε + τ = ω + λ, (4.71)

where ω ∈ im ∂d−k−1,d corresponds to some stabilizer and λ is a representative of
one of the logical operators from ker ∂d,k−1/ im ∂d−k−1,d .

We proceed with a proof by contradiction. Let us assume that the Projection
Decoder fails, i.e., ε + τ < im ∂d−k−1,d , which is equivalent to λ supporting a non-
trivial logical Z operator. Thus, for some subset C ⊂ Zd+1 of k + 1 colors ∂d,kλ

restricted to the projected lattice LC is not the k-boundary, i.e., π(1)
C (λ) < im ∂k+1.

Let us apply the projection π(1)
C to the both sides of Eq. (4.71), which is equivalent

to applying the generalized boundary operator ∂d,k and restricting our attention to
k-simplices of colorC. Since π(1)

C (ω) is a k-boundary inLC and π(1)
C (λ) is not, then

π(1)
C (ε + τ) < im ∂k+1 is not a k-boundary in LC . Lastly, π(1)

C (ε + τ) = π(1)
C (ε ) + %C

leads to a contradiction with the assumption that the toric code decoder successfully
corrects the projected syndrome π(0)

C (σ) in the projected lattice LC . This concludes
the proof. �

We remark that we can interpret the (Successful Decoding) Lemma 12 in the follow-
ing way: successful decoding of the projected syndrome π(0)

C (σ) in the toric code
on any projected lattice LC implies successful color code decoding of the initial
syndrome σ. This fact allows us to lower-bound the threshold of the Projection
Decoder for the color code on L by (some function of) the threshold of the Sweep
Decoder for the toric code on LC , as we will see in Sec. 4.5.



110

Decoding in 2D revisited and simplified
Now we illustrate color code decoding in the two-dimensional case, as well as
describe a practical and very simple implementation of the decoder. We remark
that the difficulty of color code decoding comes partly from the fact that for any
zero-dimensional syndrome associated with a subset of vertices of the lattice L we
have to find a corresponding two-dimensional recovery operator identified with a
subset of faces of L. We contrast that with toric code decoding, where for the zero-
dimensional syndrome we can straightforwardly find (e.g. by using the Minimum-
Weight PerfectMatching algorithm) a recovery operator as a one-dimensional object,
whose boundary is the given syndrome.

For simplicity, let us consider the triangular lattice L with 3-colorable vertices,
which is a discretization of the two-dimensional torus. For every triangular face we
have one qubit associated with it. The stabilizer generators of X- and Z-type are
defined for every vertex v ∈ ∆0(L) as a product of Pauli X or Z operators on qubits
on neighboring faces. We denote by ε ⊆ ∆2(L) the subset of faces, whose qubits
are affected by Z errors, and by σ ⊆ ∆0(L) the corresponding X-type syndrome,
∂2,0ε = σ; see Fig. 4.9(a).

Unlike in the original version of the 2D color code decoder in [Del14b], we start
with only two projected lattices LRG and LRB. Note that LRG (respectively LRB) is
obtained from L according to the prescription in Sec. 4.4, namely we first remove
all the vertices of color B (color G), as well as edges and faces incident to those
vertices and then for every removed vertex we add a face; see Fig. 4.9(b). For
each restricted syndrome, σRG and σRB, we find a subset of edges, respectively
%RG ⊆ ∆1(LRG) ⊂ ∆1(L) and %RB ⊆ ∆1(LRB) ⊂ ∆1(L). We achieve that by
treating σRG and σRB as if they were the syndromes of the toric code on LRG

and LRB and using any toric code decoder. The final step is local lifting, which
finds the correction τ ⊆ ∆2(L) by applying the Lift to every vertex of color R

contained in %RG+ %RB; see Fig. 4.9(c). We emphasize that the final step is the main
improvement over the original version of the 2D color code decoder, which requires
a global lifting procedure; see Fig. 4.9(d). The Lift is important in our generalization
of the Projection Decoder to higher dimensions, since it allows us to construct a
fully local color code decoder in 3D, as we will see in the next subsection.

We remark that one can further simplify decoding in two dimensions. Namely,
one does not need to construct projected lattices at all! Rather, one restricts the
syndrome to either σRG or σRB and then treats them as if they were the syndromes
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(a)

(c)

(b)

(d)

Figure 4.9: The Projection Decoder for the 2D color code on the triangular lattice
L. Note that qubits are placed on faces, whereas the stabilizers are associated with
vertices of L. (a) The qubits on the subset ε ⊆ ∆2(L) of faces (shaded in grey)
are affected by Pauli Z errors, which result in the X-type syndrome σ = ∂2,0ε
(highlighted vertices). (b) We can use any toric code decoder to find the correction
%RG ⊆ ∆1(LRG) (blue thick edges) of the projected syndrome σRG in the projected
lattice LRG. (c) We find the color code correction τ ⊆ ∆2(L) (hatched in magenta)
by a local procedure, i.e., applying the Lift to all red vertices which belong to
%RG + %RB (thick blue and green edges). Note that the initial error ε and the
correction τ are not the same; rather, they form a stabilizer, i.e., ε + τ ∈ im ∂0,2.
(d) The original 2D color code decoder in [Del14b] requires decoding in three
projected lattices LRG, LRG and LRG, as well as a global lifting procedure to find
the correction (hatched in magenta).

of the toric code on the original lattice L. Similarly as before, by using any toric
code decoder for σRG and σRB we find one-dimensional objects %̃RG ⊂ ∆1(L) and
%̃RB ⊂ ∆1(L). Note that this time %̃RG and %̃RB may contain vertices of color B

or G, respectively. Thus, in the last step we not only apply the Lift to the vertices
of color R contained in %̃RG + %̃RB, but also to all the vertices of color B and G

contained in %̃RG and %̃RB, respectively. We illustrate this significant simplification
of the 2D Projection Decoder in Fig. 4.10.
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(a) (b)

Figure 4.10: The simplified version of the Projection Decoder for the 2D color
code. We assume the same error configuration ε ⊆ ∆2(L) as in Fig. 4.9. (a) We
use any toric code decoder to find the correction %̃RG ⊂ ∆1(L) (blue thick edges)
of the projected syndrome σRG in the original lattice L (not the projected lattice!).
Note that there are some blue vertices which belong to %̃RG. (b) We find the color
code correction τ ⊆ ∆2(L) by applying the Lift to all red vertices belonging to
%̃RG + %̃RB, as well as to blue and green vertices belonging to %̃RG and %̃RB. Note
that the output of the Lift for vertices of color R, G and B is depicted as the faces
hatched in magenta, light green and light blue, respectively.

Fully local color code decoder in 3D
We note that it seems impossible to have a strictly local (in the sense of space and
time) decoder for two-dimensional topological stabilizer codes, since their syndrome
is identified with zero-dimensional objects and they always have one-dimensional
string-like logical operators [Bom14b; Yos11]. For instance, in the 2D toric code one
could have a pair of violated stabilizers separated by an arbitrarily large distance due
to a string-like error. If the decoder used only local information about the syndrome,
it would not know the relative positioning of the pair of violated stabilizers and thus
could not find a recovery operator. This observation is consistent with all known
decoding strategies, which rely on non-local information, either explicitly, as in the
case of the Minimum-Weight Perfect Matching algorithm, or implicitly, as in the
case of the decoder by Harrington with the hierarchical structure of update rules.

It is possible, however, to have a fully local decoder of the color code in three
dimensions, since one type of the syndrome necessarily forms one-dimensional
loop-like objects. We remark that if one wanted a fully local decoder for both X-
and Z-type of errors, then one would need to consider the 4D color code of type
k = 2. For simplicity of discussion, we now present the three-dimensional case
with k = 2 since it captures all the important aspects of local decoding based on the
Sweep Rule.
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Similarly as in the two-dimensional case, we do not need to construct projected
lattices. Let ε ⊆ ∆3(L) be the set of qubits affected by Z errors and σ = ∂3,1ε

be the corresponding X-type syndrome. It suffices to consider three restrictions of
the syndrome σRGB, σRGY , σRBY and for each of them use the Sweep Decoder in
the original lattice L to find %̃RGB ⊂ ∆2(L), %̃RGY ⊂ ∆2(L) and %̃RBY ⊂ ∆2(L).
Finally, in order to find the correction τ ⊆ ∆3(L) weapply the local lifting procedure.
As in the two-dimensional case, %̃RGB may contain vertices of color Y since we do
not use the projected lattice LRGB but the original lattice L; similarly for %̃RGY and
%̃RBY . Thus, we need to apply the Lift to all the vertices of color R, which belong to
%̃RGB + %̃RGY + %̃RBY , as well as to all the vertices of color Y , B and G belonging to
%̃RGB, %̃RGY and %̃RBY , respectively.

For the convenience of the reader we summarize the simplified Projection Decoder
of the Z-type errors in the 3D color code of type k = 2 on the lattice L.

1. For every triple of colors C ∈ {RGB, RGY, RBY } use the Sweep Decoder on
the lattice L for the projected syndrome σC in order to find %̃C .

2. Apply the Lift to every vertex of color R belonging to %̃RGB + %̃RGY + %̃RBY ,
as well as to every vertex of color RGBY \ C belonging to %̃C .

Since this simplified version of the color code decoder is fully local and only uses
the initial lattice L (instead of at least three projected lattices), thus it is relatively
easy to implement.

4.5 Thresholds of 3D toric and color code decoders
In this section, we present our numerical estimates of the error-correction threshold
of the Projection Decoder for point-like excitations in the 3D color code on the
bcc lattice; see Fig. 4.11. In particular, we implement the Projection Decoder
based on the Minimum-Weight Perfect Matching algorithm and the local Lift. As
a necessary step toward estimating the color code threshold, we find the thresholds
of the Minimum-Weight Perfect Matching algorithm for point-like excitations in
the 3D toric code on the cubic and half-bcc lattices. We also discuss an analytic
lower bound on the threshold of the Projection Decoder in terms of the toric code
threshold. Lastly, we numerically investigate the performance of the Sweep Decoder
for the 3D toric code in the presence of faulty measurements.
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Figure 4.11: The failure probability pfail(p, d) of the Minimum-Weight Perfect
Matching algorithm for point-like excitations in the 3D toric code on (a) the cubic
lattice and (b) the half-bcc lattice as a function of the error rate p and the linear size
of the lattice d. We can estimate the error-correction thresholds qcub ≈ 0.0295 and
qhalf ≈ 0.058 by plotting pfail(p, d) for different d and finding their crossing point.
(c) The failure probability pfail(p, d) of the Projection Decoder for the point-like
excitations of the 3D color code on the bcc lattice. We estimate the threshold of the
Projection Decoder to be qbcc ≈ 0.0077.

Analytic lower bound on color code threshold
We can find an analytic lower-bound on the error-correction threshold of the Pro-
jection Decoder for the color code in terms of the threshold of the corresponding
toric code decoder. Namely, from the (Successful Decoding) Lemma 12 we know
that if decoding of the toric code on different projected lattices succeeds, then the
Projection Decoder of the color code successfully corrects the error. We assume that
the errors appearing in the color code are captured by the X-type bit-flip or Z-type
phase-flip noise models. Then, one can show that the effective noise model in the
toric code on any projected lattice is also described by the bit-flip or phase-flip noise
models. Importantly, no correlations between errors within the same projected toric
code are introduced. However, the effective strength of the noise changes and it may
vary for different qubits.
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For concreteness, let us consider the 3D color code on the bcc lattice. Let p be the
Z-type phase-flip error rate affecting the qubits of the color code. The projected
lattices form either the cubic lattice or the half-bcc lattice (which is obtained e.g.
by keeping vertices of color red or blue in Fig. 4.7). We can find that the effective
physical error rates for the toric code on the cubic and half-bcc lattices are

pcub(p) = 4p(1 − p)3 + 4p3(1 − p), (4.72)

phalf(p) = 6p(1 − p)5 + 20p3(1 − p)3 + 6p5(1 − p). (4.73)

This follows from the fact that there is an error on the edge in the projected lattice
iff there is an odd number of errors on tetrahedra containing that edge in the original
lattice. From our numerical simulations presented in Fig. 4.11(a)(b) we estimate
the toric code thresholds on the cubic and half-bcc lattices to be qcub ≈ 0.0295 and
qhalf ≈ 0.058, respectively. We conclude that if the physical error rate p in the color
code satisfies two conditions, pcub(p) ≤ qcub and phalf(p) ≤ qhalf, then the projected
toric code decoders are guaranteed to succeed with high probability, and thus the
color code decoder succeeds as well. This leads us to the following lower bound on
the Projection Decoder threshold for the color code on the bcc lattice

qbcc ≥ min{p−1cub(qcub), p−1half(qhalf)}, (4.74)

where p−1cub(·) denotes the inverse function of pcub(·); similarly p−1half(·). We remark
that the numerical value 0.0075 of the lower bound fromEq. (4.74) is consistent with
our estimates of the Projection Decoder threshold qbcc ≈ 0.0077 from Fig. 4.11(c).

Toom’s rule and the phenomenological noise model
So far in our discussion of various decoders we have assumed perfect syndrome
extraction. However, a realistic scenario of error correction should accommodate
for the possibility of incorrect syndrome measurements. Thus, in the rest of this
section we numerically investigate the performance of local decoders for the phe-
nomenological noise model. For concreteness, we focus on the Sweep Decoder
based on Toom’s rule for the 3D toric code (of type k = 2) on the cubic lattice
L with qubits on faces; see Fig. 4.2(d)-(f). We study the phenomenological noise
model with the phase-flip error rate p matching the probability of the incorrect
stabilizer measurement. Our numerical simulation can be succinctly described as
follows.

1. Initialize the residual error ε̃ ⊆ ∆2(L) by randomly choosing faces of L with
probability p.
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2. For the imperfect correction cycle i = 1, 2, . . . , Ncyc:

(i) find the faulty syndrome σ̃ ⊆ ∆1(L) corresponding to the residual error
ε̃ ,

(ii) apply only one time step of the Sweep Decoder for σ̃ to find a one-time-
step correction %̃ ⊆ ∆2(L),

(iii) find a new error ε ⊆ ∆2(L) by randomly choosing faces of L with
probability p and update the residual error ε̃ ← ε̃ + %̃ + ε .

3. Find the exact syndrome σ = ∂2ε̃ and run the Sweep Decoder for σ to get the
correction % ⊆ ∆2(L).

4. Check if the correction succeeds, i.e., ε̃ + % ∈ im ∂2.

We emphasize that the faulty syndrome σ̃ does not have to be a 1-boundary in L
since we allow for imperfect syndrome extraction. Subsequently, the Sweep Rule
may not be able to find for some extremal vertex v a subset ϕ(v) ⊆ St2(v) of faces,
whose spins should be flipped. In this case, i.e., when σ̃ |v is not a restriction of any
valid syndrome, we modify the Sweep Rule to do nothing.
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Figure 4.12: (a) The failure probability pfail(p, d) of the Sweep Decoder based on
Toom’s rule for the 3D toric code on the cubic lattice after Ncyc = 27 correction
cycles, where p is the error rate and d is the linear size of the lattice. We estimate
the threshold pth(Ncyc) ≈ 0.0225 from the crossing point of different curves. (b)
The sustainable threshold psus is defined to be the limit of pth(Ncyc) as Ncyc → ∞.
We estimate psus ≈ 0.02 by fitting the numerical ansatz from Eq. (4.75) (blue line)
to the data.

In order to analyze the performance of the Sweep Decoder for the phenomenological
noise model, we fix the number of correction cycles Ncyc. Then, using Monte Carlo
simulations we estimate the decoder failure probability pfail(p, d) and plot it as a
function of the error rate p for different lattices of the linear size d; see Fig. 4.12(a).
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This allows us to identify the threshold pth(Ncyc). Note that the threshold pth(0)
after zero correction cycles corresponds to the threshold of the Sweep Decoder for
perfect syndrome extraction. We are, however, interested in the so-called sustainable
threshold psus = limNcyc→∞ pth(Ncyc) defined as the limit of pth(Ncyc) as the number
of correction cycles Ncyc goes to infinity [BNB15; Ter15]. We find that the threshold
pth(Ncyc) is very well approximated by the following numerical ansatz

pth(Ncyc) ∼ psus(1 − (1 − pth(0)/psus)N−γcyc) (4.75)

with the fitting parameters γ and psus. This allows us to estimate the sustainable
threshold of the Sweep Decoder for the 3D toric code on the cubic lattice to be
psus ≈ 0.02; see Fig. 4.12(b).

4.6 Discussion
In this chapter, we proposed a simple local update rule for classical ±1 spins, the
Sweep Rule. It is a generalization of Toom’s rule in the sense that it can be used to
shrink k-dimensional domain walls on any locally Euclidean d-dimensional lattice,
where k ∈ {1, . . . , d − 1}. We used the Sweep Rule to design a local decoder of
the toric code and rigorously prove its non-zero threshold. We could readily use
this decoder for other topological code, the color code, since we found a generic
reduction of the problem of color code decoding to that of the toric code. However, it
would be worth thinking of a version of the Sweep Rule which would work natively
for the color code syndrome. We believe that such a modified local rule necessarily
uses the information about the colorability of the lattice.

In our discussion we mostly focused on decoding with perfect stabilizer measure-
ments. We also numerically investigated the performance of local decoders for the
phenomenological noise model. It seems that local decoders can be applied to the
phenomenological noise model without much modification. Thus, a conceivable
extension of our work could be to incorporate measurement errors in the proof of a
non-zero threshold.

Finally, we remark that a question not immediately related to decoding but nev-
ertheless worth exploring would be to study the spin dynamics generated by a
non-deterministic version of the Sweep Rule. Namely, at each time step every spin
is first updated according to the Sweep Rule, and then a probabilistic flip can happen
depending on the value of the spin, as in the case of non-deterministic Toom’s rule.
In particular, one could explore the phase diagram of the underlying spin model and
possibly find regions, where multiple stable phases coexist.
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C h a p t e r 5

THREE-DIMENSIONAL COLOR CODE THRESHOLDS VIA
STATISTICAL-MECHANICAL MAPPING

Some approaches to building scalable quantum computers are more practical than
others due to their more favorable noise and resource requirements. The two-
dimensional (2D) surface code approach [Kit03; BK98; Den+02] has very desirable
features: (1) geometrically local syndrome measurements, (2) a high accuracy and
(3) fault-tolerant Clifford gates with low overhead. Unfortunately, the surface code
is not known to admit a (4) fault-tolerant non-Clifford gate with low overhead.
The formidable qubit overhead cost of state distillation [BK05; Fow+12] for the
necessary non-Clifford gate motivates the quest for alternatives to the surface code
with all features (1)–(4).

Such alternatives may be sought in the general class of topological codes [Kit03;
BK98; LW05; BM06; Bom13], which includes the surface code as a special case.
By definition, topological codes require only geometrically local syndrome mea-
surements and tend to have high accuracy thresholds. Topological codes often
admit some fault-tolerant transversal gates (implemented by the tensor product of
single-qubit unitaries), which have low overhead cost. However, no quantum error-
detecting code (whether topological or not), has a universal transversal encoded gate
set [ZCC11; EK09].

Here we focus on the 3D topological color codes [BM07a; Bom15a] closely related
to the 3D toric code [KYP15], which come in two types. The stabilizer type
has 1D string-like Z and 2D sheet-like X logical operators, and a logical non-
Clifford gate T = diag(1, eiπ/4) is transversal. In the subsystem type, there are
1D string-like X and Z dressed logical operators, and all logical Clifford gates are
transversal. Moreover, in the subsystem color code it is possible to reliably detect
measurement errors in a single time step [Bom15b; BNB15]. By fault-tolerantly
switching between the stabilizer and subsystem color codes [Bom15a; KB15], one
can combine the desirable features (1), (3) and (4).

In this chapter, we address feature (2) for the 3D color codes by finding thresh-
olds p(1)

3DCC ' 1.9% and p(2)
3DCC ' 27.5% for phase-flip Z and bit-flip X noise,

respectively. Our results assume optimal decoders for independent X and Z noise
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with perfect measurements, and thereby give fundamental error-correction bounds
against which efficient, but suboptimal decoders (such as that studied in [BNB15])
can be compared. These thresholds are comparable to the analogous thresholds for
the cubic lattice 3D toric code: p(1)

3DTC ' 3.3% and p(2)
3DTC ' 23.5% [OI98; Has+07;

Ohn+04], but compare unfavorably to p2DTC ' 10.9% for the square lattice 2D toric
code [HPP01].

Our approach extends techniques known for other codes [Den+02; WHP03; KP15;
Bom13; KBM09; Bom+12; And12] in order to relate the 3D color code thresholds
to phase transitions in two new 3D statistical-mechanical models: the 4- and 6-body
random coupling Isingmodels (RCIM).We use large-scale parallel temperingMonte
Carlo simulations [HN96] and analyze specific heat, sublattice magnetization and
Wilson loop operators to map the relevant parts of the disorder-temperature (p,T )-
phase diagram, see Fig. 5.1. The 6-body RCIM is an example of a lattice gauge
theory with a local Z2 × Z2 symmetry, which makes this model both interesting and
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Figure 5.1: The disorder-temperature (p,T )-phase diagrams of the 4-body (top) and
6-body (bottom) 3D random coupling Ising models. Both models are defined on the
3D body-centered cubic lattice built of tetrahedra. The 4- and 6-body models have
spins on vertices and edges, respectively. The error correction threshold pc can be
found as the intersection of the Nishimori line (blue line) with the anticipated phase
boundary (red dotted line).
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challenging to study.

5.1 3D stabilizer color code
Let L be a three-dimensional lattice built of tetrahedra such that its vertices are 4-
colorable, i.e. vertices connected by an edge are of different colors. An example of
such a lattice is the body-centered cubic (bcc) lattice obtained from two interleaved
cubic lattices, see Fig. 5.2(b). We denote by ∆i (L) the set of all i-simplices of L.
Then, 0-simplices of L are vertices, 1-simplices are edges, etc. We place one qubit
at every tetrahedron t ∈ ∆3(L). For every vertex v ∈ ∆0(L) and edge e ∈ ∆1(L) we
define operators SX (v) and SZ (e) to be the product of either Pauli X or Z operators
on qubits identified with tetrahedra in the neighborhood of the vertex v or edge e,
namely

SX (v) =
∏

t∈∆3(L)
t⊃v

X (t), SZ (e) =
∏

t∈∆3(L)
t⊃e

Z (t). (5.1)

The 3D stabilizer1 color code is defined by specifying its stabilizer group [Got96]

S = 〈SX (v), SZ (e) |v ∈ ∆0(L), e ∈ ∆1(L)〉. (5.2)

Using the colorability condition one can show that S is an Abelian subgroup of the
Pauli group not containing −I. The code space is the +1 eigenspace of all elements
of S and the lowest-weight logical X and Z operators of the 3D color code are 2D
sheet-like and 1D string-like objects, see Fig. 5.2(a). In general, the color code
can be defined in d ≥ 2 dimensions on a lattice, provided it is a (d + 1)-colorable
simplical d-complex [KB15].

Error correction in CSS codes
Since the color code is a CSS code [Cal+97], we choose to separately correct
X- and Z-type errors, which simplifies the discussion. We also assume perfect
measurements. For concreteness, we focus on X-error correction; Z-errors can be
analyzed analogously 2.

The set of all Z-type stabilizers which return −1 measurement outcomes is called
a Z-type syndrome. Note that any nontrivial Z-syndrome signals the presence of
some X-errors in the system. Correction of X-errors in a CSS code can be succinctly

1 The 3D subsystem color code has the gauge groupG = 〈
∏
∆3 (L)3t⊃e X (t),

∏
∆3 (L)3t⊃e Z (t) |e ∈

∆1(L)〉 and the stabilizer group S = 〈
∏
∆3 (L)3t⊃v X (t),

∏
∆3 (L)3t⊃v Z (t) |v ∈ ∆0(L)〉.

2For correction of Z-errors, exchange X ↔ Z and redefine B2 = ∆1(L), B1 = ∆3(L), B0 =

∆0(L), ∂2e =
∑
∆3 (L)3t⊃e t and ∂1t =

∑
∆0 (L)3v⊂t v for any e ∈ ∆1(L) and t ∈ ∆3(L).
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(b) (c)(a)

Figure 5.2: (a) The 3D stabilizer color code has both 1D string-like (red) and 2D
sheet-like (blue) logical operators. (b) The bcc lattice can be constructed starting
from two interleaved cubic lattices (red and blue) and filling in with tetrahedra
(green). Not all tetrahedra are depicted. (c) The neighborhood of any vertex in the
bcc lattice looks the same — every vertex belongs to 24 edges, 36 triangular faces
and 24 tetrahedra. The bcc lattice is 4-colorable, i.e. every vertex is colored in red,
green, blue or yellow, and no two neighboring vertices are of the same color.

described by introducing a chain complex [FM01; Del14b]

C2
∂2
−−→ C1

∂1
−−→ C0

X-stabilizers qubits Z-stabilizers
(5.3)

where C2, C1 and C0 are vector spaces over Z2 with bases B2 = X-stabilizer genera-
tors, B1 = physical qubits and B0 = Z-stabilizer generators, respectively. The linear
maps ∂2 and ∂1, called boundary operators, are chosen in such a way that support
of any X-stabilizer ω ∈ C2 is given by ∂2ω, and the Z-syndrome corresponding
to any X-error ε ∈ C1 can be found as ∂1ε . Note that ∂1 ◦ ∂2 = 0, since any
X-stabilizer has a trivial Z-syndrome. One can think of the boundary operators as
parity-check matrices HT

X and HZ of the CSS code. In the case of the 3D color
code, C2, C1, C0 are generated by vertices, tetrahedra, and edges respectively, i.e.
B2 = ∆0(L), B1 = ∆3(L) and B0 = ∆1(L). The boundary operators are defined to
be ∂2v =

∑
∆3(L)3t⊃v t and ∂1t =

∑
∆1(L)3e⊂t e for any v ∈ ∆0(L) and t ∈ ∆3(L).

Let ε, ϕ ∈ C1 be two X-errors with the same Z-syndrome, ∂1ε = ∂1ϕ. We say that ε
and ϕ are equivalent iff they differ by some X-stabilizerω ∈ C2, namely ε+ϕ = ∂2ω.
To correct errors, we need a decoder — an algorithm which takes the Z-syndrome
σ ∈ C0 as an input and returns a Z-correction ϕ which will restore all X-stabilizers
to have +1 outcomes, i.e. ∂1ϕ = σ. The decoder succeeds iff the actual error ε and
the correction ϕ are equivalent. An optimal decoder finds a representative ϕ of the
most probable equivalence class of errors ϕ = {ϕ + ∂2ω |∀ω ∈ C2}.



123

5.2 Statistical-mechanical models
In this section, we provide a brief derivation of the connection between optimal
error-correction thresholds and phase transitions [Den+02; WHP03; KP15; Bom13;
KBM09; Bom+12; And12]. In particular, we derive two new statistical-mechanical
models relevant for the 3D color code.

We assume bit-flip noise, i.e. every qubit is independently affected by Pauli X error
with probability p. The probability of an X-error ε ∈ C1 affecting the system is

pr(ε ) =
∏
j∈B1

p[ε] j (1 − p)1−[ε] j ∝
(

p
1 − p

)∑
j ∈B1 [ε] j

, (5.4)

where [ε] j ∈ Z2 denotes the j coefficient of ε in B1 basis, ε =
∑

j∈B1[ε] j j.

For a general CSS code family with the chain complex in Eq. (5.3), the X-error
correction threshold is the largest pc such that for all p < pc the probability of
successful decoding goes to 1 in the limit of infinite system size

pr(succ) =
∑
ε∈C1

pr(ε )pr(succ|ε ) → 1. (5.5)

With the optimal decoder, the conditional probability pr(succ|ε ) equals 1 if ε belongs
to the most probable error equivalence class consistent with the syndrome ∂1ε , and
0 otherwise. The probability of equivalence class ε is

pr(ε ) =
∑
ω∈C2

pr(ε + ∂2ω) ∝
∑
ω∈C2

e−2β(p)
∑

j ∈B1 [ε+∂2ω] j, (5.6)

where we use Eq. (5.4) and introduce

β(p) = −
1
2
log

p
1 − p

. (5.7)

To rewrite Eq. (5.6), we use two equalities

[∂2ω] j ≡
∑

i∈B2∧∂2i3 j

[ω]i mod 2, (5.8)

1 − 2[ε + ∂2ω] j = (−1)[ε] j (−1)[∂2ω] j = (−1)[ε] j
∏

i∈B2∧∂2i3 j

(−1)[ω]i . (5.9)

By introducing new (classical spin) variables si = (−1)[ω]i for all i ∈ B2, we can
replace the sum over ω ∈ C2 in Eq. (5.6) by a sum over different configurations
{si = ±1}, yielding

pr(ε ) ∝
∑
{si=±1}

e−β(p)Hε ({si }), (5.10)
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where we introduce the Hamiltonian

Hε ({si}) = −
∑
j∈B1

(−1)[ε] j
∏
i∈B2

[∂2i] j=1

si . (5.11)

We define the random coupling Ising model (RCIM) to be a classical spin si = ±1
randommodel with quenched couplings (−1)[ε] j described by Hε ({si}) in Eq. (5.11).
The RCIM has two independent parameters: disorder strength p (i.e. the probability
of negative couplings) and inverse temperature β. The partition function of the
RCIM with disorder ε at temperature β−1 is given by

Zε (β) =
∑
{si=±1}

e−βHε ({si }) . (5.12)

Note that for the proportionality pr(ε ) ∝ Zε (β) in Eq. (5.12) to hold one requires
β = β(p).

For the 3D color code, Eq. (5.11) leads to the following two new statistical-
mechanical models

H X
ε ({sv }) = −

∑
t∈∆3(L)

(−1)[ε]t sa

sb
sc

sdse

sf

, (5.13)

H Z
ε ({se}) = −

∑
t∈∆3(L)

(−1)[ε]t
sa

sb

sc sd

, (5.14)

relevant to correction of X- and Z-errors, respectively. Note that H X
ε ({sv }) (respec-

tively H Z
ε ({se})) contains 4-body (6-body) terms, which are products of vertex (edge)

spins of every tetrahedron. We observe that for p = 0, i.e. the case with no disorder,
these two models are mutually dual in the sense that the low-temperature expansion
of each model matches the high-temperature expansion of the other [Weg71]. We
are going to explain this duality in the following section.

5.3 Duality of models for zero disorder
Wealreadymentioned that the 4- and 6-bodyRCIMdescribed byEqs. (5.13) and (5.60)
are dual for p = 0, i.e., the case with no disorder. Here we say that two models are
dual if the low-temperature expansion of the partition function of onemodel matches
the high-temperature expansion of the partition function of the other and vice versa.
For concreteness, we consider the spin models on the bcc lattice, however similar
reasoning is applicable to any valid color code lattice. Let us follow the standard
procedure [Weg71; Kar07] and write a series expansion for the partition function of
the 4-body RCIM in two limits.
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• Low temperature βX � 1 — there are 8 ground states, which are related by
the global Z2 × Z2 × Z2 symmetry to the ferromagnetic state with sv = +1
for all spins and thus one can expand the partition function by including low
energy excitations around the ground space to obtain

Z X
0 (βX ) =

∑
{sv=±1}

e−β
X HX

0 ({sv }) ∝ eβ
X |∆3(L) | (1 + |∆0(L) |e−48β

X

+ . . .). (5.15)

• High temperature βX � 1 — we treat spins independently and expand the
partition function in powers of tanh βX to obtain

Z X
0 (βX ) =

∑
{sv=±1}

e−βHX
0 ({sv }) =

∑
{sv=±1}

∏
t∈∆3(L)

exp
(
βX

sa

sb
sc

sdse

sf

)
(5.16)

= (cosh βX ) |∆3(L) |
∑
{sv=±1}

∏
t∈∆3(L)

(
1 + sa

sb
sc

sdse

sf

tanh βX
)
(5.17)

= 2|∆0(L) | (cosh βX ) |∆3(L) | (5.18)

×(1 + E4(tanh βX )4 + E6(tanh βX )6 + . . .), (5.19)

where E4 =
3
7∆1(L) and E6 =

4
7∆1(L) are the numbers of edges whose

neighborhoods (i.e., 3-stars) contain 4 and 6 tetrahedra, respectively3. Note
that contributions to the second and third terms in the expansion are due
to selecting an edge e ∈ ∆1(L) and multiplying all 4 or 6 (depending on
the edge) weight-four spin operators identified with tetrahedra containing e,
which results in all spin terms canceling each other.

In a similar way we can find a series expansion for the partition function of the
6-body RCIM on the bcc lattice in the limit of low and high temperatures.

• Low temperature βZ � 1 — the number of lowest-energy configurations
(related by local Z2 × Z2 gauge transformations) is proportional to 22|∆0(L) |

and expanding around the ground space

Z Z
0 (βZ ) =

∑
{se=±1}

e−β
Z HZ

0 ({se }) (5.20)

∝ 22|∆0(L) |eβ
Z |∆3(L) | (1 + E4e−8β

Z

+ E6e−12β
Z

+ . . .).(5.21)
3 If we choose the coordinates of vertices of the bcc lattice to be triples of either integers or

half-integers, then edges surrounded by 4 tetrahedra are aligned with directions (1, 0, 0), (0, 1, 0) and
(0, 0, 1), whereas edges surrounded by 6 tetrahedra are aligned with directions (±1,±1,±1).
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• High temperature βZ � 1 — expand the partition function in powers of
tanh βZ to obtain

Z Z
0 (βZ ) = (cosh βZ ) |∆3(L) |

∑
{se=±1}

∏
t∈∆3(L)

(
1 +

sa

sb

sc sd

tanh βZ
)

(5.22)

= 2|∆1(L) | (cosh βZ ) |∆3(L) | (1 + |∆0(L) |(tanh βZ )24 + . . .), (5.23)

where contributions to the second term in the expansion are due to selecting a
vertex v ∈ ∆0(L) and multiplying all 24 weight-six spin operators identified
with tetrahedra in the neighborhood (i.e., the 3-star) of v so that spin terms
cancel each other.

We conclude that if e−2β
Z
= tanh βX (or equivalently e−2β

X
= tanh βZ ), then the

terms in the series expansions in Eqn. (5.19) and (5.21) match each other up to a
constant prefactor; similarly for terms in Eqn. (5.15) and (5.23). In particular, if
there is only one phase transition in the first model at temperature T X

c , then there is
a unique phase transition in the dual model at temperature

T Z
c = −2

(
log tanh

1
T X

c

)−1
. (5.24)

This serves as a consistency check for our results. Indeed, for zero disorder p = 0
the critical temperatures T X

c = 8.77(2) and T Z
c = 0.918(3) for the 4- and 6-body

RCIM are related according to Eq. (5.24) within the statistical uncertainty.

5.4 Heuristic estimates of the threshold
For a family of topological CSS codes, such as the toric or color codes, one can use
the following, nonrigorous reasoning to arrive at the heuristic estimates of thresholds
pX and pZ for the bit-flip and phase-flip noise models with optimal decoders and
perfect measurements. Let L denote the linear system size, n = n(L) be the number
of physical qubits, NX = NX (L) be the number of independent X-type stabilizers,
and p be the phase-flip error rate. Thus, the average number of Z-type errors in
the system is np, the number of different error patterns is

(
n

np

)
, and the number of

different X-type syndromes is 2NX . As long as the error rate p ≤ pZ we expect the
following inequality to hold

number of Z-error configurations . number of X-syndrome configurations,
(5.25)

which after taking the logarithm of both sides and using Stirling’s approximation
leads to nH (p) ' log2

(
n

np

)
. NX, where H (p) = −p log2 p + (1 − p) log2(1 − p) is
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the Shannon entropy. Thus, the heuristic estimate of the phase-flip threshold pZ is
obtained as the solution of the equation

H (pZ ) = lim
L→∞

NX

n
, (5.26)

such that pZ ≤ 1/2; one similarly obtains the estimate of the bit-flip threshold pX .

Let us consider the 3D color code on the bcc lattice of linear size L, which contains
V = 2L3 vertices, E = 14L3 edges, F = 24L3 faces and T = 12L3 tetrahedra. Since
the number of physical qubits is n = T and the number of independent X-stabilizers
is NX = V − 3, thus by solving Eq. (5.26) we arrive at the heuristic estimate of
the threshold pZ

3DCC ' 0.0246. Similarly, we obtain the heuristic estimate of the
threshold pX

3DCC ' 0.2644, where we use the fact that the number of independent
Z-stabilizers is NZ = E − 2V − 6, see [KYP15]. We emphasize that the threshold
estimates pZ

3DCC and pX
3DCC are not rigorous and should serve only as an intuition

about the actual values p(1)
3DCC ' 1.9% and p(2)

3DCC ' 27.5%. We remark that by
applying the same reasoning to the 3D toric code on the cubic lattice we find
the thresholds for the phase- and bit-flip noise models to be pZ

3DTC ' 0.0615 and
pX
3DTC ' 0.1740, which should be compared with the actual values p(1)

3DTC ' 3.3%
and p(2)

3DTC ' 23.5%.

5.5 Proof of implication
Here we show that successful decoding implies diverging average energy cost of
introducing any non-trivial domain wall. We used this fact in the derivation of
statistical-mechanical models to relate the threshold pc of optimal error correction
to the critical point pN on the Nishimori line. Note that this implication allows us to
only infer that pc ≤ pN . However, we expect that successful decoding be possible
throughout the ordered phase and thus these two values should coincide.

Lemma 13 Consider a CSS code described by the chain complex in Eq. (5.3). Let
H1 = ker ∂1/ im ∂2 be the first homology group of finite cardinality, |H1 | < ∞. If the
probability of successful optimal X-error correction goes to 1 in the limit of infinite
system size

pr(succ) =
∑
ε∈C1

pr(ε )pr(succ|ε ) → 1, (5.27)

then the average free energy cost of introducing any non-trivial domain wall λ ∈
ker ∂1 \ im ∂2 diverges

〈∆λ〉 =
∑
ε∈C1

pr(ε )∆λ (ε ) → ∞. (5.28)
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Proof: Let ε = {ε + ∂2ω |ω ∈ C2} denote the equivalence class of errors for ε ∈ C1

and E = {ε, . . .} be the set of all equivalence classes. We define a representative of
the most probable equivalence class of errors consistent with the syndrome σ ∈ C0

to be
%(σ) = arg max

%∈C1
∂1%=σ

pr(%). (5.29)

The conditional probability of successful decoding using the optimal (maximum
likelihood) decoder is given by

pr(succ|ε ) =



1 if ε ∈ %(∂1ε ),

0 otherwise.
(5.30)

Thus, we have

pr(succ) =
∑
ε∈C1

pr(ε )pr(succ|ε ) =
∑

σ∈im ∂1

pr(%(σ)). (5.31)

By rewriting the sum over all equivalence classes of errors ε ∈ E as the sum over
all possible syndromes σ ∈ im ∂1 and different representatives λ′ ∈ H1 of the
homology group we arrive at

1 =
∑
ε∈E

pr(ε ) =
∑

σ∈im ∂1

∑
λ ′∈H1

pr(%(σ) + λ′) (5.32)

= pr(succ) +
∑

σ∈im ∂1

∑
0,λ ′∈H1

pr(%(σ) + λ′). (5.33)

We want to show two inequalities

pr(succ) ≥
∑
ε∈E

pr(ε )
pr(ε )∑

λ ′∈H1 pr(ε + λ′)
≥ 2pr(succ) − 1. (5.34)

In order to show the first inequality (5.34) note that

pr(succ) =
∑

σ∈im ∂1

∑
λ ′′∈H1

pr(%(σ) + λ′′)
pr(%(σ))∑

λ ′∈H1 pr(%(σ) + λ′)
(5.35)

≥
∑

σ∈im ∂1

∑
λ ′′∈H1

pr(%(σ) + λ′′)
pr(%(σ) + λ′′)∑

λ ′∈H1 pr(%(σ) + λ′)
(5.36)

=
∑
ε∈E

pr(ε )
pr(ε )∑

λ ′∈H1 pr(ε + λ′)
, (5.37)
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where we use pr(%(σ)) ≥ pr(%(σ) + λ′′) for all σ ∈ im ∂1 and λ′′ ∈ H1. The
second inequality (5.34) follows from

pr(succ) =
∑

σ∈im ∂1

pr(%(σ)) (5.38)

=
∑

σ∈im ∂1

pr(%(σ))
pr(%(σ))∑

λ ′∈H1 pr(%(σ) + λ′)
(5.39)

+
∑

σ∈im ∂1

pr(%(σ))
∑

0,λ ′∈H1 pr(%(σ) + λ′)∑
λ ′∈H1 pr(%(σ) + λ′)

(5.40)

≤
∑

σ∈im ∂1

∑
λ ′′∈H1

pr(%(σ) + λ′′)
pr(%(σ) + λ′′)∑

λ ′∈H1 pr(%(σ) + λ′)
(5.41)

+
∑

σ∈im ∂1

∑
0,λ ′∈H1

pr(%(σ) + λ′) (5.42)

=
∑
ε∈E

pr(ε )
pr(ε )∑

λ ′∈H1 pr(ε + λ′)
+ (1 − pr(succ)). (5.43)

If pr(succ) → 1, then from inequalities (5.34) we infer that∑
ε∈E

pr(ε )
pr(ε )∑

λ ′∈H1 pr(ε + λ′)
→ 1, (5.44)

and thus for λ ∈ ker ∂1 \ im ∂2 we have∑
ε∈E

pr(ε )
pr(ε + λ)∑

λ ′∈H1 pr(ε + λ′)
→ 0. (5.45)

In the last step we used the following inequalities

0 ≤
∑
ε∈E

pr(ε )
pr(ε + λ)∑

λ ′∈H1 pr(ε + λ′)
≤

∑
ε∈E

pr(ε )
∑

0,λ ′∈H1 pr(ε + λ′)∑
λ ′∈H1 pr(ε + λ′)

(5.46)

= 1 −
∑
ε∈E

pr(ε )
pr(ε )∑

λ ′∈H1 pr(ε + λ′)
. (5.47)

We rewrite 〈∆λ〉 in the following way

〈∆λ〉 =
∑
ε∈C1

pr(ε )∆λ (ε ) =
∑
ε∈E

pr(ε ) log
pr(ε̄ )

pr(ε + λ)
(5.48)

=
∑
ε∈E

pr(ε ) log
pr(ε̄ )∑

λ ′∈H1 pr(ε + λ′)
−

∑
ε∈E

pr(ε ) log
pr(ε + λ)∑

λ ′∈H1 pr(ε + λ′)
.(5.49)
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Using the inequality log x ≥ 1− 1
x to lower-bound the first term and Jensen inequality

for the second term we obtain

〈∆λ〉 ≥ (1 − |H1 |) − log
∑
ε∈E

pr(ε )
pr(ε + λ)∑

λ ′∈H1 pr(ε + λ′)
→ ∞. (5.50)

�

5.6 Phase diagram
We describe how to map out the (p,T )-phase diagrams of the two RCIMs, H X

ε ({sv })
and H Z

ε ({se}). The discontinuity in energy density across a first order phase tran-
sition allows for straightforward identification of the phase boundary in the regime
of low disorder. However, more reliable order parameters are required to probe
a (higher-order) phase transition close to the critical point on the Nishimori line.
Moreover, an appropriate order parameter takes symmetries of the model into ac-
count. Note that flipping a subset of spins {si}i∈I , i.e. si 7→ −si for i ∈ I, is a
symmetry if it leaves the Hamiltonian describing the model invariant.

The 4-body RCIM in Eq. (5.13) has a global Z2×Z2×Z2 symmetry. An example of a
symmetry operation is a simultaneous flip of vertex spins on all red and blue vertices,
since it leaves every term of H X

ε ({sv }) unchanged. Due to this symmetry, the total
magnetization is not a good order parameter, however the sublattice magnetization
of spins of a single color is. Instead of using the sublattice magnetization directly,
more precise estimations are obtained by considering the finite-size scaling of the
spin-spin correlation function [PC99]. Near phase transition, for fixed disorder
strength p and temperatures T close to the critical temperature Tc(p), the correlation
length ξL is expected to scale as

ξL (p,T )/L ∼ f (L1/ν (T − Tc(p))), (5.51)

where L is the linear system size, f is a scaling function and ν is the correlation
length critical exponent [Gol92]. We can estimate Tc(p) by plotting ξL (p,T )/L as
a function of temperature T for different system sizes L and finding their crossing
point, see Fig. 5.4(a)(b). If no crossing is observed, then we conclude that there is
no phase transition.

The 6-body RCIM in Eq. (5.60) describes a lattice gauge theory with a local (gauge)
Z2 × Z2 symmetry. An example of a symmetry operation is a flip of edge spins
on edges from a single yellow vertex to all neighboring red and blue vertices, see
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Fig. 5.2(c). Due to Elitzur’s theorem [Eli75], the gauge symmetry rules out existence
of any local order parameter. We define a Wilson loop operator [Wil74; Kog79]

W (γ) =
∏
e∈γ

se, (5.52)

which is a product of edge spins along a loop γ ⊂ ∆1(L). For W (γ) to be gauge-
invariant the loop γ can only be composed of edges connecting vertices of two
(out of four possible) colors. The phase transition can be identified by analyzing
scaling of the thermal expectation value of W (γ) averaged over different disorder
configurations

〈W (γ)〉 =
∑

ε⊂∆3(L)

pr(ε )
∑
{se }

W (γ)
e−βHZ

ε ({se })

Zε (β)
. (5.53)

Namely, in the limit of large square loops [CJR79; WHP03; Ohn+04], − log〈W (γ)〉
scales linearly with the loop’s perimeter P(γ) in the ordered (Higgs) phase, whereas
in the disordered (confinement) phase scales linearly with the minimum area A(γ)
enclosed by γ, see Fig. 5.4(d)-(f).

We find the (p,T )-phase diagrams of the 4- and 6-body RCIM by the performing
parallel tempering Monte Carlo simulations [HN96]; see Fig. 5.1. We test equili-
bration of the system by logarithmic binning of the data; we define the system to
equilibrate when the last three bins agree within statistical uncertainty [KBM09;
And12]. Since we simulate systems of finite size, a careful analysis of finite-size
effects is necessary.

5.7 Finding phase transitions
In order to map the disorder-temperature phase diagrams of the 4- and 6-body RCIM
in Fig. 5.1 we need to reliably identify phase transitions. Here we describe in detail
how we achieve that by analyzing specific heat, the spin-spin correlation function
and the Wilson loop operator.

Specific heat
For a second-order phase transition, the specific heat c(T ) as a function of tempera-
ture T is expected to have a discontinuity near a phase transition at temperature Tc in
the limit of infinite system size L → ∞. However, for a system of finite linear size L,
the peak of the specific heat cL (T ) appears at temperature Tc(L) = argmaxT cL (T )
shifted from that in the infinite system by an amount

�����
TL − Tc

Tc

�����
∝ L−1/ν, (5.54)



132

(a) Energy per spin for p=0. (b) Specific heat for p=0.

(c) Correlation length for p=0. (d) Correlation length for p=0.27.
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Figure 5.3: Results for the 3D 4-body RCIM. (a) The discontinuity in energy per
spin E/N suggests a first-order phase transition. (b) By finding peaks of specific
heat cL for different system sizes L and exploiting finite-size scaling we estimate the
critical temperature of a phase transition to be Tc = 8.77(2). (c) The normalized
correlation length ξL/L does not seem to be described well by the scaling ansatz in
Eq. (5.51) possibly due to a transition being first-order. (d)We identifyTc = 2.56(4)
as the intersection of normalized spin-spin correlation functions ξL/L for different
L. (e) Close to the critical point on the Nishimori line pN = p(2)

3DCC detecting a phase
transition and estimating its critical temperature becomes difficult. (f) For p = 0.28
there is no indication of a phase transition.
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(a) Energy per spin for p=0. (b) Specific heat for p=0.

(c) Wilson loop scaling for p=0.018. (d) Wilson loop scaling for p=0.021.

(f) Fit coefficient a for p=0.018.(e) Wilson loop scaling for T=0.42.

Figure 5.4: Results for the 3D 6-body RCIM. (a) The discontinuity in energy per
spin E/N suggests a first-order phase transition. (b) By finding peaks of specific
heat cL for different system sizes L and exploiting finite-size scaling we estimate
the critical temperature of a phase transition to be Tc = 0.918(3). In (c)-(e) we
check if the Wilson loop operator W (γ) satisfies the perimeter law by plotting
− log〈W (γ)〉/P(γ) as a function of perimeter P(γ) of the square loop γ. Solid lines
show a numerical ansatz aP(γ) + b+ c log P(γ) with fitting parameters a, b, c. The
parameter a allows to identify a phase transition. A change of scaling in (c) and (e)
signalizes a phase transition at T = 0.75(3) and p = 0.019(1), respectively, whereas
in (d) there is no indication that the system undergoes a phase transition. (f) By
finding a fit − log〈W (γl )〉/l ∼ al+b+c log l we can identify the critical temperature
Tc = 0.75(3) of a transition as a location where a = 0.
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where ν is the correlation length critical exponent [Gol92]. A similar scaling be-
havior has been established for first-order phase transitions [CLB86; Bin87; LK91;
BK92]. Thus, we find the critical temperature Tc by fitting a function

Tc(L) ∼ aL−b + Tc (5.55)

to the position of the specific heat peaks for different system sizes and evaluating
Tc(L = ∞).

Correlation function
One might not be able to identify a phase transition of higher order by looking at the
specific heat. Rather, one needs to analyze the behavior of e.g. the order parameter
correlation length ξ. In particular, for the system of finite size L and with fixed
disorder strength p we define the two-point finite-size correlation length ξL as a
function of temperature T

ξL (T ) =
1

2 sin(k0/2)

√√
〈χ(~0)〉

〈χ(~k0)〉
− 1, (5.56)

where 〈χ(~k)〉 =
∑
ε⊂∆3(L) pr(ε ) χ(~k), ~k is the wavevector and ~k0 = (2π/L, 0, 0).

In the above, we use the thermal expectation value of the wavevector-dependent
sublattice magnetic susceptibility

χ(~k) =
∑
{sv }

1
N

*
,

∑
u∈U

suei~k · ~ru+
-

2
e−βHX

ε ({sv })

Zε (β)
. (5.57)

where ~ru denotes the position of the vertex spin su in a sublattice U ⊂ ∆0(L) of
single-color vertices. Near a phase transition at temperature Tc, the normalized
correlation length is expected to scale as

ξL (T )
L
∼ f (L1/ν (T − Tc)), (5.58)

where f is a dimensionless scaling function and ν is the correlation length critical
exponent. We can estimate Tc by plotting ξL (T )/L as a function of temperature T

for different system sizes L and finding their crossing point. If there is no crossing,
then we conclude that there is no phase transition.

Wilson loop operator
When the system under consideration has a local (gauge) symmetry, one cannot use
a local order parameter to detect a phase transition. Rather, one needs to consider
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gauge-invariant quantities, such as the Wilson loop operator W (γ) in Eq. (5.52).
Suppose γ is a square loop. We denote by P(γ) and A(γ) the perimeter of γ and the
minimal area enclosed by γ, respectively. The scaling of the averaged Wilson loop
operator 〈W (γ)〉 in the limit of large loops changes between the ordered (Higgs) and
disordered (confinement) phases. Namely,

• in the disordered phase: 〈W (γ)〉 ∼ exp(− const ·A(γ)),

• in the ordered phase: 〈W (γ)〉 ∼ exp(− const ·P(γ)).

We consider a system of finite size L and denote by γl a square loop of linear
size l ≤ L/2. Since A(γl ) ∝ l2 and P(γl ) ∝ l, then log〈W (γl )〉 should scale
either quadratically or linearly in l, depending on the phase of the system. Due to
finite-size effects, there are some corrections to the area and perimeter scaling. In
particular, we numerically find that

−
log〈W (γl )〉

l
∼ al + b + c log l, (5.59)

where a, b, c are some constants. We identify the disordered phase as the region
where the fitting parameter a is positive, a > 0.

Classical Ising gauge theory
As an example of using specific heat and the scaling of the Wilson loop operator to
identify a phase transition we study a known model, the three-dimensional random
plaquette Ising model (RPIM), see Fig. 5.6. The RPIM is a generalization of the
Z2 Ising gauge theory, which is relevant for studying the optimal error correction
threshold for 1D string-like operators in the 3D toric code [Den+02]. The RPIM is a
statistical-mechanical model with classical spins se = ±1 placed on edges e ∈ ∆1(C)
of the cubic latticeC and disorder ε ⊂ ∆2(C). TheHamiltonian describing theRPIM

HRPIM
ε ({se}) = −

∑
f ∈∆2(C)

(−1)[ε] f (5.60)

contains 4-body terms, which are products of four edge spins around every square
face f ∈ ∆2(C) of the lattice C. We set [ε] f = 1 if f ∈ ε , otherwise [ε] f = 0. We
observe that HRPIM

ε ({se}) has a local Z2 symmetry, generated by flips of spins on
all edges incident on any vertex v ∈ ∆0(C). The Wilson loop operator W (γl ) is a
gauge-invariant quantity, where γl is a square loop of linear size l. The disorder-
temperature phase diagram of the 3D RPIM is shown in Fig. 5.5.
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Figure 5.5: The disorder-temperature (p,T )-phase diagram of the 3D random pla-
quette Ising model on the cubic lattice. The intersection of the Nishimori line (blue)
with the anticipated phase boundary (red dotted line) gives the 3D toric code thresh-
old p(1)

3DTC ' 3.3% for optimal error correction associated with 1D string-like logical
operators (and point-like excitations). Note that the location of a phase transition
for T = 0 was found in [WHP03].

Numerical simulation details
The numerical complexity of simulating the statistical-mechanical models, such
as the 4- and 6-body RCIM and the RPIM, increases with the disorder strength
p, which is reminiscent of a spin glass behavior. To speed up simulations we
use the parallel tempering technique. The parallel tempering technique requires
simultaneous simulation of multiple copies k = 1, . . . , NT of the system with the
same disorder ε but different spin configurations {si}k and temperatures T1 < . . . <

TNT . After performing single-spin Metropolis updates for all spins in every copy of
the system, swaps of spin configurations {si}k ↔ {si}k+1 of copies at neighboring
temperatures Tk and Tk+1 are allowed with probability

pr(k ↔ k + 1) = exp
(
(Ek − Ek+1)

(
1
Tk
−

1
Tk+1

))
, (5.61)

where Ek and Ek+1 denote energies of spin configurations {si}k and {si}k+1. We
choose temperatures T1 < . . . < TNT is such a way that the exchange rate {si}k ↔

{si}k+1 estimated by counting the number of (successful) swaps of systems at neigh-
boring temperatures is constant up to statistical fluctuations; for more in-depth
discussions see e.g. [Kat+06]. Equilibration of the system is tested by a logarith-
mic binning of data. Namely, the total number of time steps of the simulation
is 1 + t1 + t2 + . . . + tτ = 2τ, where ti = 2i−1 and one time step consists of an
update of every spin in all NT copies of the system followed by (attempted) swaps
{si}k ↔ {si}k+1 of spin configurations. We say that the system equilibrates if the
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(a) Specific heat for p=0. (b) Wilson loop scaling for p=0.

(c) Wilson loop scaling for p=0.031. (d) Wilson loop scaling for p=0.035.

(e) Wilson loop scaling for T=0.45. (f) Fit coefficient a for p=0.031.
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Figure 5.6: Results for the 3D RPIM. (a) We can estimate the critical temperature
Tc = 1.316(4) of a phase transition by finding the peak positions of specific heat cL
for different system sizes L and exploiting finite-size scaling. In (b)-(d) we check
whether the Wilson loop operator W (γ) satisfies the perimeter law by plotting
− log〈W (γ)〉/P(γ) as a function of perimeter P(γ) of the square loop γ for different
temperatures T and L = 24. (e) For fixed temperature T = 0.45 we analyze
scaling of − log〈W (γ)〉/P(γ) for different disorder values p. (f) We find a fit
− log〈W (γl )〉/l ∼ al + b + c log l to the data in (c) and plot the fit coefficient a as
a function of temperature T . We identify the critical temperature Tc = 0.84(3) of a
phase transition in (c) as a location where a = 0. In (b),(c) and (e) we see a change
of scaling as the system undergoes a phase transition at Tc = 1.317(6), Tc = 0.84(3)
and pc = 0.032(1), respectively. In (d) there is no indication of a transition.
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quantities of interest, such as the correlation length or the Wilson loop operator,
evaluated based on the data from the last three periods of time tτ−2, tτ−1 and tτ
agree up to statistical uncertainty, see e.g. [KBM09; And12]. Numerical simulation
details for the 4-body RCIM, the 6-body RCIM and the RPIM are presented in
Table 5.1.

To estimate statistical error bars of quantities analyzed in the simulation we use
the bootstrap technique. The main idea behind the bootstrap technique is to repeat
sampling from the existing data set D = {d1, . . . , dN } and evaluating a quantity of
interest q = q(D). In particular, for i = 1, . . . , n we perform the following steps

1. from the data set D randomly choose N data points di( j), where i( j) ∈
{1, . . . , N },

2. evaluate the quantity qi = q(Di) from the data set Di = {di(1), . . . , di(N )}.

Note that in step 1 we allow to choose the same data point multiple times. The
relevant quantity q is estimated to be

q = q̄ ±

√√ n∑
i=1

(q̄ − qi)2

n − 1
, (5.62)

where q̄ = 1
n
∑n

i=1 qi.

5.8 Discussion
The 3D color code is a zero-rate code, thus from the quantum Gilbert-Varshamov
bound [Gil52; Var57; CS96] we obtain the inequality H (p(1)

3DCC) + H (p(2)
3DCC) ≤ 1

relating the phase- and bit-flip thresholds, where H (p) = −p log2 p− (1−p) log2(1−
p) is the Shannon entropy. Our numerical estimates p(1)

3DCC ' 1.9% and p(2)
3DCC '

27.5% satisfy that constraint.

The X-stabilizers detecting Z-errors are the same for the 3D stabilizer and subsystem
color codes. Since the subsystem code has X- and Z-generators of identical support,
its phase- and bit-flip thresholds for perfect measurements and optimal decoding are
both equal to p(1)

3DCC. For the 3D color code on the bcc lattice, the threshold of the
(efficient) projection decoder p(1)

proj ' 0.75% is less than a half of p(1)
3DCC, justifying a

search for better decoders.

Quantum codes can motivate studies of unusual systems, such as spin models on
fractal lattices [KY14; YK14]. We hope our work provides a first step toward better
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p Lmax Nε τ NT Tmin Tmax
0.000 16 500 20 55 2.40 12.80
0.050 16 500 20 42 2.30 11.40
0.100 16 500 20 41 2.20 10.15
0.150 16 500 20 42 2.10 8.42
0.200 16 500 20 41 2.00 6.80
0.250 16 500 20 42 1.90 4.97
0.265 16 500 20 34 1.80 3.53
0.270 16 500 20 34 1.60 3.32
0.272 12 500 20 34 1.60 3.30
...

...
...

...
...

...
...

0.280 12 500 20 34 1.33 3.18
0.000 14 250 20 47 0.20 1.28
0.003 12 250 20 44 0.20 1.25
0.006 12 250 20 42 0.20 1.22
0.009 12 250 20 39 0.20 1.17
0.012 12 250 20 38 0.20 1.14
0.015 10 250 22 37 0.20 1.08
0.016 10 250 22 37 0.20 1.08
...

...
...

...
...

...
...

0.023 10 250 22 37 0.20 1.10
0.000 24 500 19 51 0.40 2.08
0.006 24 500 19 43 0.40 1.95
0.012 24 500 19 41 0.40 1.77
0.018 24 500 19 43 0.35 1.64
0.024 24 500 19 42 0.30 1.49
0.027 24 250 19 43 0.20 1.28
...

...
...

...
...

...
...

0.035 24 250 19 43 0.20 1.28

Table 5.1: Numerical simulation parameters for: the 4-body RCIM (top), the 6-body
RCIM (middle), and the IGT (bottom). Lmax and Nε denote the linear size of the
biggest simulated system and the number of randomly chosen disorder samples.
NT denotes the number of temperatures in the range [Tmin,Tmax] chosen in a way
that the exchange rate of spin configurations is approximately constant. 2τ is the
number of equilibration steps, where one equilibration step consists of an update of
every spin in all NT copies of the system followed by swaps {si}k ↔ {si}k+1 of spin
configurations.
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understanding of the 3D random coupling Isingmodels. We conjecture the existence
of a spin-glass phase [BY86] in the 6-body RCIM. A future extension of this work
might incorporate measurement errors which would require the study of 4D RCIMs
and thus use more computational resources. If successful, this research program
could provide a deeper understanding of single-shot error correction [Bom15b;
BNB15] from the standpoint of statistical mechanics.
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C h a p t e r 6

UNFOLDING THE COLOR CODE

Quantumerror-correcting codes [Sho96; Pre98] are vital for fault-tolerant realization
of quantum information processing tasks. Of particular importance are topological
quantum codes [Kit03; Den+02] where quantum information is stored in non-local
degrees of freedom while the codes are characterized by geometrically local gener-
ators. An essential feature of such codes is to admit a fault-tolerant implementation
of a universal gate set as this would guarantee that the physical errors propagate in a
benign and controlled manner. Thus, the search for novel quantum error-correcting
codes and the classification of fault-tolerantly implementable logical gates in these
codes have been central problems in quantum information science [EK09; BK13;
PR13; PY15; Bev+16].

The quest of analyzing topological quantum codes is also closely related to the
central problem in quantum many-body physics, namely the classification of quan-
tum phases [Sac99; CGW10]. A fruitful approach is to view topological quantum
codes as exactly solvable toy models which correspond to representatives of gapped
quantum phases. This approach has led to a complete classification of translation
symmetric two-dimensional stabilizer Hamiltonians [Yos11; Bom14b], as well as
to the discovery of novel three-dimensional topological phases which do not fit into
previously known theoretical framework [Haa11; Yos13].

Topological color codes [BM07b] are important examples of topological stabilizer
codes that admit transversal implementation of a variety of logical gates, which may
not be fault-tolerantly implementable in other topological stabilizer codes. In two
spatial dimensions, the color code admits transversal implementation of all logical
Clifford gates. In three and higher dimensions, the color code admits transversal
implementation of logical non-Clifford gates [BM09]. A naturally arising question
is to identify the physical properties allowing the extension of the set of transversally
implementable logical gates with respect to other topological codes.

Given two codes with different sets of fault-tolerantly implementable logical gates,
one may naturally expect that they correspond to different topological phases of
matter. However, physical properties of color codes and toric codes are known to be
very similar. For instance, both of the codes have logical Pauli operators with similar
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geometric shapes, which leads to essentially identical braiding properties of anyonic
excitations from the viewpoint of long-range physics. Furthermore, it has been
proven that translation symmetric stabilizer codes, supported on a two-dimensional
torus, are equivalent to multiple decoupled copies of the two-dimensional toric code
up to local unitary transformations and adding or removing ancilla qubits [Yos11].
This result implies that the two-dimensional color code supported on a torus is
equivalent to two decoupled copies of the toric code, and thus they belong to the
same quantum phase [BDP12].

However, the aforementioned results do not consider the effect of boundaries on the
classification of quantum phases [BK98; KK12; BSW11]. In fact, the color code
admits transversal implementation of computationally useful logical gates only if
it is supported on a system with appropriately designed boundaries. Perhaps, the
presence of boundaries may render additional computational power to topological
quantum codes and may result in richer structure of topological phases of matter.
Complete understanding of the relation between the color code and the toric code
will be the necessary first step to clarify the connection between boundaries and
achievable fault-tolerant logical gates, and its implications to the classification of
quantum phases.

Summary of main results
In this chapter, we establish a connection between the color code and the toric code
in the presence or absence of boundaries, and study fault-tolerantly implementable
logical gates in these two codes. Our first result, presented in Section 6.1, focuses on
the equivalence between the color code and the toric code on d-dimensional lattices
without boundaries, d ≥ 2.

Result 1 (Closed manifold) The topological color code on a d-dimensional closed
manifold (without boundaries) is equivalent to multiple decoupled copies of the d-
dimensional toric code up to local unitary transformations and adding or removing
ancilla qubits.

This extends the known results from [Yos11; Bom14b; BDP12] to the family of color
codes in arbitrary dimensions. While previous results are limited to either translation
symmetric systems or do not provide an explicit method of transformations, we
provide a specific construction of how to map the color code into multiple decoupled
toric code components. The recipe emphasizes the importance of colorability in the
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construction of the color code. Our result implies that the topological color code
belongs to the same quantum phase as two copies of the toric code, according to the
definition widely accepted in the condensed matter physics community [CGW10].

In Section 6.3, we analyze the case of topological codes with boundaries and present
the following result.

Result 2 (Boundaries) The d-dimensional topological color code with boundaries
is equivalent to d copies of the d-dimensional toric code which are attached along
a (d − 1)-dimensional boundary.

unfolding

folding

(a)

sm
oo
th

rough(b)

@AL

@BL
@CL

Figure 6.1: The topological color code (a) with three boundaries ∂AL, ∂BL and
∂CL viewed as the folded toric code (b) with two smooth and two rough boundaries.
The boundary ∂AL of color A is equivalent to a pair of boundaries — smooth in the
front and rough in the rear layer; similarly ∂BL. The boundary ∂CL is the fold.

In two dimensions, we find that the (triangular) color code with three boundaries is
equivalent to the toric code with boundaries (i.e. the surface code) which is folded
(see Fig. 6.1). We find that the d > 2 version of the color code with point-like
excitations and d + 1 distinctly colored boundaries is equivalent to d copies of
the toric code which are attached along a (d − 1)-dimensional boundary. On this
(d − 1)-dimensional boundary, a composite point-like electric charge composed of
all d electric charges from the different copies of the toric code may condense.
Other boundaries are decoupled and allow condensation of a single electric charge
associated with a specific copy.

In Section 6.4, we study logical non-Clifford gates fault-tolerantly implementable
in the d-dimensional toric code. Our third result concerns the implementability of
the d-qubit control-Z gate, i.e. a gate which applies a −1 phase only if all d qubits
are in a |1〉 state.
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Result 3 (Logical gate) A stack of d copies of the d-dimensional toric code with
point-like excitations admits fault-tolerant implementation of the logical d-qubit
control-Z gate by local unitary transformations.

In particular, we find that transversal application of physical Rd = diag(1, e2πi/2d )
phase gates in the d-dimensional topological color code is equivalent to the logical
d-qubit control-Z gate acting on d copies of the toric code. Note that the d-qubit
control-Z gate belongs to the d-th level of the Clifford hierarchy, but is outside of
the (d − 1)-th level. Thus, a stack of d copies of the d-dimensional toric code
saturates the bound by Bravyi and König on fault-tolerant logical gates which are
implementable by local unitary transformations [BK13]. For a definition of the
Clifford hierarchy, see [GC99; BK13; PY15].

We believe that our findings will shed light on the techniques of code deforma-
tion [BM09] and lattice surgery [Hor+12; LR14], allowing for computation with
fewer physical qubits, higher fault-tolerant error suppression and shorter time. The
ability to transform and relate different codes may turn out to be crucial in ana-
lyzing the available methods of computation with topological codes. In particular,
we might be able to improve the decoding scheme for the color code proposed in
Ref. [Del14b], and generalize it to any dimension. Also, our findings may lead to
a systematic method of composing known quantum codes to construct new codes
with larger set of fault-tolerant logical gates. Finally, an interesting future problem
is to apply the disentangling unitary to the gauge color codes [Bom15a; KB15].

Our discussion mostly concerns the d-dimensional topological color code and the
toric code with point-like excitations as it is the most interesting case from the
viewpoint of transversal non-Clifford gates. For the sake of simplicity, we present
proof sketches relying on many figures. We also provide rigorous proofs which
require the language of algebraic topology [Gla72; Hat02], however they might be
technically challenging and could obscure the main ideas presented in this chapter.

6.1 Topological color code without boundaries
In this section, we show that the d-dimensional topological color code supported on
a closed manifold is equivalent to multiple decoupled copies of the toric code.

Brief introduction to the color code and the toric code
We begin by briefly reviewing the construction of the topological color code and
the toric code. The starting point to define either the toric code or the color code is
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a two-dimensional lattice L. We can think of L as a homogeneous cell 2-complex,
i.e. a collection of vertices V , edges E and faces F, glued together in a certain way.
In general, L can be defined on a manifold with boundaries, but in this section we
restrict our attention to closed manifolds.

The toric code in two dimensions is defined on a lattice L by placing one qubit on
every edge, and associating X- and Z-type stabilizer generators with vertices and
faces of L, namely

∀v ∈ V : X (v) =
⊗
e⊃v

X (e), ∀ f ∈ F : Z ( f ) =
⊗
e⊂ f

Z (e). (6.1)

Here, X (e) and Z (e) denote Pauli X and Z operators on the qubit placed on the
edge e ∈ E; see Fig. 6.2(a) for an example. We denote such a code, as well as its
stabilizer group by TC(L). One can verify that X- and Z-type stabilizer generators
commute.

The color code is defined on a lattice L, which satisfies two additional conditions:

• valence — each vertex belongs to exactly three edges,

• colorability — there is a coloring1 of faces of L with three colors, A, B and
C, such that any two adjacent faces have different colors.

For instance, the honeycomb lattice satisfies the valence and colorability conditions;
also see Fig. 6.2(b). In the case of the color code, we place one qubit at every vertex,
and associate X- and Z-type stabilizer generators with every face of L, namely

∀ f ∈ F : X ( f ) =
⊗
v⊂ f

X (v), ∀ f ∈ F : Z ( f ) =
⊗
v⊂ f

Z (v). (6.2)

To verify that X- and Z-type stabilizers commute, one uses the valence and col-
orability conditions. We denote such a code, as well as its stabilizer group by
CC(L).

We can generalize the definition of the toric code and the color code to d dimensions
by considering a d-dimensional lattice (i.e. a homogeneous cell d-complex) L.
There are d − 1 different ways of defining the toric code on L — place qubits on
m-cells, m = 1, 2, . . . , d − 1, and associate X- and Z-type stabilizer generators with

1Note that due to the valence condition, this coloring is unique up to permutation of colors for
any connected component of the lattice L.
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(m− 1)- and (m+ 1)-cells, respectively. In the case of the color code, the additional
conditions are that L is (d + 1)-valent and its d-cells are (d + 1)-colorable. There
are d − 1 ways of defining the color code on L — place qubits on vertices, and
associate X- and Z-type stabilizer generators with m- and (d + 2 − m)-cells, where
m = 2, 3, . . . , d. For a rigorous definition of the toric code and the color code in d

dimensions see Sec. 6.2.

In the main body of the chapter, we restrict our attention to the color code and the
toric code with point-like excitations, which significantly simplifies the discussion.
In particular, the color code has X- and Z-type stabilizers associated with d-cells
and 2-cells (faces), whereas the toric code has qubits placed on edges.

X

X X

X

Z

Z
Z

Z

Z

Z

Z
Z

Z

Z

Z

X X

XX
X

X

(a) (b)

Figure 6.2: (Color online) The toric code and the color code in two dimensions.
(a) The toric code has qubits (red dots) placed on edges, and X-vertex (green) and
Z-face (blue) stabilizer generators. (b) The color code has qubits placed on vertices,
and X-face and Z-face stabilizer generators. Note that the color code can only be
defined on a 3-valent and 3-colorable lattice.

Equivalence in two dimensions
In this subsection, we prove that the two-dimensional color code supported on a
closed manifold (without boundaries) is equivalent to two copies of the toric code.

Theorem 1 Let CC(L) be the two-dimensional topological color code defined on
a lattice L without boundaries, colored in A, B and C. There exists a local Clifford
unitary U, and two lattices LA and LB obtained from L by shrinking faces of color
A and B, respectively, such that

U[CC(L)]U† = TC(LA) ⊗ TC(LB). (6.3)
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Moreover, one can choose U to be

U =
⊗
f ∈C

U f , (6.4)

where C represents the set of all faces in L colored with C, and U f is a Clifford
unitary acting only on qubits of the face f .

Here, the tensor product TC(LA) ⊗ TC(LB) indicates that the stabilizer group can
be factored into two independent stabilizer groups associated with two decoupled
copies of the toric code on the latticesLA andLB. We shall refer toLA andLB sup-
porting two decoupled copies of the toric code as shrunk lattices (see Refs. [BM07a;
Bom13]).

As described in the theorem, the disentangling unitary transformationU has a tensor
product structure, U =

⊗
f ∈CU f . Thus, U is a local unitary transformation, and

two systems belong to the same quantum phase.

The proof of the Theorem 1 consists of three steps:

1. performing certain local unitary U f at each and every face f of color C in L,

2. checking that the stabilizer generators CC(L) are mapped by U =
⊗

f ∈CU f

into two sets of generators TC(LA) and TC(LB) supported on disjoint sets
of qubits,

3. visualizing two codes TC(LA) and TC(LB) as codes defined on lattices LA

and LB obtained from L by local deformations.

Step 1: Let us pick a face f of L colored in C. Since L is 3-colorable and 3-valent,
the face f has even number of vertices, 2n. Moreover, we can color every edge in
two distinct colors of faces it separates. Let us enumerate vertices of f in counter-
clockwise order in such a way that the edge (1, 2) between vertices 1 and 2 has color
AC. We would like to find a unitary transformation U f of the Hilbert space HV

of (color code) qubits placed on vertices into the Hilbert space HE of (toric code)
qubits placed on edges2 such that some operators on HV are mapped into certain

2Note that since the number of vertices of f is equal to the number of edges of f , then
HV ' HE ' (C2)⊗2n . Moreover, to perform such a transformation, one does not need any ancilla
qubits.
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operators onHE . In particular, we would require the following mappings to hold

Z j Z j+1 → Z( j, j+1) ( j = 1, . . . , 2n − 1),(6.5)

*.
,

2n⊗
j=1

X j
+/
-
· Z2n Z1 → Z(2n,1), (6.6)

X j X j+1 → X( j−1, j) X( j+1, j+2) ( j = 1, . . . , 2n − 2), (6.7)

*.
,

2n⊗
j=1

X j
+/
-
· X j X j+1 → X( j−1, j) X( j+1, j+2) ( j = 2n − 1, 2n), (6.8)

where X j represents Pauli X operator on a qubit on the vertex j, while X( j, j+1)

represents Pauli X operator on a qubit on the edge ( j, j+1) and 2n+1 ≡ 1; similarly
for Z j and Z( j, j+1). The conditions imposed on U f by Eqs. (6.5)–(6.8) for the face
f with six vertices are illustrated in Fig. 6.3.
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Figure 6.3: Transformation of the operators of the color code CC(L) supported on
qubits of the face f colored in C under the disentangling unitary transformationU f .

We claim that there exists a Clifford unitary U f which satisfies Eqs. (6.5)–(6.8).
The proof of existence of such a unitary transformation is presented later. Note that
under the unitaryU f the operators on the qubits on vertices of f (up to the stabilizer⊗2n

j=1 X j) transform into the operators on the qubits placed on edges of f in the
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following way

(

(
Z Z Z X X XX

(

(ff ff

(

(
Z Z Z X X XX

(

(ff ff

(6.9)

where parenthesis indicate that operators might be multiplied by the stabilizer⊗2n
j=1 X j .

Step 2: Let us analyze what happens to the stabilizer generators of the color code
CC(L) after performing Step 1 for each and every face of color C, i.e. after action
of U =

⊗
f ∈CU f by conjugation. Note that the stabilizer group CC(L) does not

have a unique representation in terms of its generators — for instance, CC(L) can
be generated by Y - and Z-type stabilizers associated with every face of L.

For a face f colored in C, the unitary U transforms the Z-face stabilizer on qubits
on vertices into the Z-type operator on qubits on edges colored in AC. Similarly,
the Y -face stabilizer on vertices is transformed into the Z-type operator on qubits
on edges of f colored in BC. For a face f ′ colored in A (respectively B), the
unitary U transforms the Z-face stabilizer on vertices (up to multiplication by X-
face stabilizers on faces of color C neighboring f ′ — this depends on the choice
of U in Step 1) into the Z-type operator on qubits on edges of f ′ colored in AC

(respectively BC). On the other hand, the X-face stabilizer is transformed into the
X-type operator on qubits on edges radiating out of f ′, which are colored in BC

(respectively AC).

Fig. 6.4 summarizes how the stabilizers of the color code transform under U de-
scribed in Fig. 6.3. The parentheses to the left indicate that the stabilizer of the color
code might be multiplied by the X-face stabilizers on certain neighboring faces of
color C, depending on the disentangling procedure, i.e. the choice of U.

One can observe that after performingU =
⊗

f ∈CU f , the Z-type stabilizers on faces
of color A and C, as well as the X-type stabilizers on faces of color B transform
into Z- and X-type stabilizers, respectively, on qubits on AC edges. Similarly, the
Y -type stabilizers on faces of color C, the Z-type stabilizers on faces of color B, and
the X-type stabilizers on faces of color A transform into stabilizers on qubits on BC

edges.

We conclude that after performing U, the stabilizer generators CC(L) transform
into two sets of stabilizer generatorsTC(LA) andTC(LB) supported on two disjoint
sets of qubits, either placed on BC or AC edges.



150

(

( B

C

A

A A

CC
B

C

A

A A

CC

(

(

C

A

B

B B

AA
C

A

B

B B

AA
C

A

B

B B

AA
C

A

B

B B

AA

(

(
Z Z

Z Z
Z Z

Z
Z Z

X X

X X
X X

X X

X X
X X

Z Z

Z Z
Z Z

Z
Z Z

B

C

A

A A

CC
B

C

A

A A

CC

Z Z

Z Z
Z Z

Z
Z ZA

C

B

B B

CC
A

C

B

B B

CC

Y Y

Y Y
Y Y Z

Z
Z

A

C

B

B B

CC
A

C

B

B B

CC

X X

X X
X X

X X

X X
X X

Figure 6.4: The effect of applying the disentangling unitary transformation U to
the stabilizer group of the color code CC(L). The parentheses indicate that the
stabilizer of the color code might be multiplied by the X-face stabilizers on certain
neighboring faces of color C, depending on the disentangling procedure, i.e. Step
1.

Step 3:

We would like to show that the stabilizer generators TC(LA) and TC(LB) define
the toric code on two lattices, LA and LB, obtained from L by local deformations.
A recipe for the shrunk lattice LA is as follows:

• Vertices of LA are centers of A faces in L.

• Edges of LA are BC edges in L.

• Faces of LA are B and C faces in L.

In short, one obtains LA by shrinking A faces to points while expanding B and C

faces. [BM07a; Bom13]. Similarly, LB is obtained by shrinking B faces. Examples
of shrunk lattices are depicted in Fig. 6.5 for the case of the hexagonal lattice L. In
this case, one obtains two copies of the toric code supported on triangular lattices.

The stabilizer generators TC(LA) and TC(LB) are respectively supported on LA

and LB lattices. In particular,
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Figure 6.5: (Color online) Fragments of the shrunk lattices: (a) LA and (b) LB,
obtained from L by shrinking A and B faces, respectively. Qubits are placed on
edges, and the stabilizer generators are X-vertex and Z-face operators.

• the X-vertex stabilizers in TC(LA) (respectively TC(LB)) are obtained from
X-face stabilizers3 of CC(L) on A (respectively B) faces,

• the Z-face stabilizers inTC(LA) (respectivelyTC(LB)) are obtained from Z-
face stabilizers3 on B faces (respectively A) and Y -face (respectively Z-face)
stabilizers on C faces.

To summarize, the unitaryU =
⊗

f ∈CU f transforms the generators of the stabilizer
groupCC(L) of the color code into generator sets for two stabilizer groupsTC(LA)
andTC(LB), which define the toric code on two disjoint latticesLA andLB obtained
fromL by shrinking either A or B faces. This concludes the proof of the equivalence
in two-dimensions.

Note that the equivalence between the two-dimensional color code and copies of
the toric code has been proven for systems with translation symmetries [Yos11;
Bom14b]. Our results not only generalize the previous results to the color code on
an arbitrary latticeL on a closedmanifold, but also present an explicit construction of
the local unitary and shrunk lattices. This leads to new observations for topological
color codes with boundaries, which are presented in Section 6.3.

3 Up to multiplication by X-face stabilizers on certain neighboring faces of color C.
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Isomorphism between Pauli subgroups
In this subsection, we prove the existence of the disentangling unitary transformation
U =

⊗
f ∈CU f . We begin by developing some useful technical tools concerning

subgroups of the Pauli operator group. Consider a system of n qubits and two
subgroups of Pauli operatorsO1,O2 ⊆ Pauli(n), wherePauli(n) is the Pauli operator
group on n qubits. We shall neglect complex phases in O1,O2. We say that O1 and
O2 are isomorphic to each other iff there exists a Clifford unitary transformation U

such that

UO1U† = O2. (6.10)

Let Z (O1) and Z (O2) be centers of O1 and O2, respectively. Then, the following
lemma holds [YC10]:

Lemma 14 (Isomorphic Groups) Two subgroups of Pauli operators O1,O2 ⊂
Pauli(n) are isomorphic iff

G(O1) = G(O2), G(Z (O1)) = G(Z (O2)), (6.11)

where G(O) represents the number of independent generators of O ⊂ Pauli(n).

Let {g j } and {h j } be two sets of independent generators for two isomorphic groups
O1 and O2. We say that {g j } and {h j } satisfy the same commutation relations if

∀i, j : gig jg
†

i g
†

j = hih j h
†

i h†j . (6.12)

We have the following lemma.

Lemma 15 (Clifford Transformation) Let O1 and O2 be two isomorphic groups
generated by two sets of independent generators, {g j } and {h j }. If {g j } and {h j } have
the same commutation relations, then there exists a Clifford unitary transformation
U such that

Ug jU† = h j ∀ j . (6.13)

Proof: Let us find a set of independent generators for O1, which we call canonical:

O1 =

〈
A1, . . . , An1, An1+1, . . . , An2

An2+1, . . . , An1+n2

〉
, (6.14)
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where n2 ≥ n1, and two Pauli operators Ai and A j commute unless they are in the
same column, in which case they anti-commute by definition. Note that n1 is the
number of pairs of anticommuting canonical generators, whereas n2 is the number
of commuting canonical generators. Observe that any canonical generator can be
written as a product of generators {g j }.

For a binary vector ~a = (a1, . . . , an1+n2 ), we define

O1(~a) =
n1+n2∏

j=1
g

a j

j , O2(~a) =
n1+n2∏

j=1
ha j

j . (6.15)

Then, there exists a set of independent n1 + n2 binary vectors ~a( j) such that

A j = O1(~a( j)). (6.16)

Let B j = O2(~a( j)). Since commutation relations of {g j } and {h j } are identical, then
B j are canonical generators for O2:

O2 =

〈
B1, . . . , Bn1, Bn1+1, . . . , Bn2

Bn2+1, . . . , Bn1+n2

〉
(6.17)

Then, as shown in Ref. [YC10], there exists a Clifford unitary U such that

U A jU† = B j ∀ j ∈ {1, . . . , n1 + n2}. (6.18)

Such a unitary transformation also satisfies

Ug jU† = h j ∀ j ∈ {1, . . . , n1 + n2}, (6.19)

which completes the proof of the (Clifford Transformation) Lemma 15 �

We are ready to show the existence of a Clifford unitaryU f , which satisfies the rules
in Eqs. (6.5)–(6.8). First, let us introduce the notion of the overlap group of the
stabilizer group [YC10]. For a given subset of qubits, denoted by Q, the overlap
group on Q is defined as the group generated by the restriction of generators of the
stabilizer group S onto Q. Namely,

OQ =
〈
u|Q ��u ∈ S

〉
, (6.20)

where u|Q represents a restriction of u onto Q (see Fig. 6.6). Note that the overlap
group is not necessarily Abelian and is defined up to a global phase.

The key idea in the proof of existence of U is that the overlap groups for the color
code and the toric code for the set of C faces are isomorphic. In particular, let us
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Q

Figure 6.6: The overlap group of the stabilizer group S on the region Q is defined as
the group generated by the restriction of the generators of S onto Q. Dotted circles
represent the stabilizer generators of S with support intersecting Q.

consider a C face f ∈ L with 2n vertices, and two corresponding faces f A ∈ LA

and f B ∈ LB derived from f . Then, the overlap group of CC(L) on f is generated
by

O f = 〈Z j Z j+1, X j X j+1 | j ∈ {1, . . . , 2n}〉, (6.21)

whereas the overlap group of TC(LA) and TC(LB) on f A t f B is generated by

O f At f B = 〈Z( j, j+1), X( j−1, j) X( j+1, j+2) | j ∈ {1, . . . , 2n}〉. (6.22)

Observe that both O f and O f At f B have 4n − 2 independent generators and their
centers are generated by 2 independent operators. Namely,

G(O f ) = G(O f At f B ), (6.23)

G(Z (O f )) = G(Z (O f At f B )). (6.24)

Using the (Isomorphic Groups) Lemma 14, we obtain that O f and O f At f B are
isomorphic.

Let us choose a set of independent generators for O f as follows

g j = Z j Z j+1 ( j = 1, . . . , 2n − 1), (6.25)

g2n =
(⊗2n

i=1 Xi
)

Z2n Z1 (6.26)

g j+2n = X j X j+1 ( j = 1, . . . , 2n − 2). (6.27)

We then label a set of independent generators for O f At f B in the following way

h j = Z( j, j+1) ( j = 1, . . . , 2n), (6.28)

h j+2n = X( j−1, j) X( j+1, j+2) ( j = 1, . . . , 2n − 2). (6.29)
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By direct calculation one can verify that {g j } and {h j } have the same commutation
relations. Thus, from the (CliffordTransformation) Lemma15, there exists aClifford
unitary U f such that

U f g jU
†

f = h j ∀ j ∈ {1, . . . , 4n − 2}. (6.30)

Therefore, the localClifford unitaryU =
⊗

f ∈CU f transformsCC(L) intoTC(LA)⊗
TC(LB), and this completes the proof of Theorem 1.

One might find the labelings in Eqs. (6.25)–(6.29) arbitrary. Yet, once we have
chosen g j for j = 1, . . . , 2n, it is not difficult to find the right labeling for j =

2n + 1, . . . , 4n − 2 by checking the commutation relations. Note that the choice
of g2n =

(⊗2n
j=1 X j

)
Z2n Z1 is crucial to ensure that the generators {g j }

2n
j=1 are

independent.

Three (or more) dimensions
A similar equivalence between the topological color code and the toric code holds
in any dimension. It can be summarized in the following theorem.

Theorem 2 (Equivalence) Let CC(L) be the stabilizer group of the topological
color code defined on a d-dimensional lattice L without boundaries, which is
(d + 1)-valent and colored with C0, . . . ,Cd . Let X- and Z-type stabilizer generators
be supported on respectively d-cells and 2-cells, where d ≥ 2. Then, there exists a
local Clifford unitary U such that

U[CC(L) ⊗ S]U† =
d⊗

j=1
TC(L j ), (6.31)

where S represents the stabilizer group of decoupled ancilla qubits, and TC(L j ) –
the stabilizer group of the toric code defined on the shrunk latticeL j derived fromL
by local deformations, i.e. shrinking d-cells of color Cj . Moreover, one can choose
the disentangling unitary U to be of the form

U =
⊗
c∈C0

Uc, (6.32)

where C0 is the set of d-cells of color C0 in L, and Uc is a Clifford unitary acting
only on qubits on vertices of the d-cell c.

Note that the color code qubits are placed on vertices, whereas the toric code qubits
are placed on edges. Thus, for every d-cell c colored in C0, we shall add E − V
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ancilla qubits, where V and E denote the number of vertices and edges in c. We can
assume that ancilla qubits are stabilized by single-qubit Pauli Z operators. Since the
lattice L is (d + 1)-valent, then E = dV/2 and E − V ≥ 0 for d ≥ 2. In particular,
ancilla qubits are required for the three- or higher-dimensional cases.

Since the color code and the toric code in d dimensions support excitations whose
braiding properties are similar (there exists an isomorphism between anyon labels
for two codes), the equivalence should not be very surprising. The study of topo-
logical invariants gives valuable insight into the equivalence of models. It has been
argued that two topologically ordered systems with isomorphic anyon labels and
modular matrices belong to the same topological phase [CGW10; HW05; LW05].
This hypothesis has been proven for two-dimensional stabilizer Hamiltonians with
translation symmetries [Yos11]. Also, this hypothesis has been tested for the two-
dimensional Levin-Wenmodel in Ref. [KK12], where a construction of a transparent
domain wall between two Levin-Wen models (with tensor unitary categories satis-
fying certain equivalence conditions) was presented.

The idea of themapping is a straightforward generalization of the proof of Theorem 1
presented in Section 6.1B. First, we perform a local Clifford unitary, whose existence
is guaranteed by the (Clifford Transformation) Lemma 15. Then, we analyze how
the stabilizer generators of the color code transform under such a unitary. Finally,
we check that the stabilizers can be split into d sets, each of them defining a copy
of the toric code on a lattice obtained by deforming the initial lattice L. For the
sake of clarity, we focus on d = 3. We also first present the construction of shrunk
lattices, before explaining how to construct a local Clifford unitary transforming the
color code into d decoupled copies of the toric code.

In three dimensions, the lattice L has volumes colored with four colors, A, B, C

and D. Recall that we can assign colors to faces and edges, too. Namely, a face
has two colors of two volumes it belongs to, whereas an edge has three colors (of
three volumes it belongs to). We obtain three shrunk lattices LA, LB and LC by
shrinking volumes of color A, B and C, respectively. In particular, LA consists of

• vertices — centers of A volumes in L,

• edges — BCD edges in L,

• faces — BC, BD and CD faces in L,

• volumes — B, C and D volumes in L.
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For an example, see Fig. 6.7. Similarly for other shrunk lattices LB and LC . In
general, a d-dimensional lattice L is colored with d + 1 colors, C0, . . . ,Cd , and one
obtains the shrunk lattice Li, where i = 1, . . . , d, by shrinking d-cells of color Ci.
Namely, Li consists of

• vertices — centers of d-cells in L of color Ci,

• edges — edges in L of color {C0, . . . ,Cd } \ {Ci},

• faces — faces in L of color {C0, . . . ,Cd } \ {Ci,Cj } for all j , i.

Figure 6.7: (Color online) (a) The boundary ∂c of a volume c of color D in the
lattice L. Note that ∂c can be viewed as a 3-colorable and 3-valent lattice on a
closed manifold (a sphere), with faces colored in AD, BD and CD. (b) A volume
in the shrunk lattice LA derived from c after shrinking volumes of color A. Note
that qubits are placed on (a) vertices and (b) edges. The figures were created using
Robert Webb’s Stella software (http://www.software3d.com/Stella.php).

We construct the disentangling unitary U as a tensor product of local Clifford
unitaries, U =

⊗
c∈D Uc, where D is the set of all volumes of color D. Let us

consider a volume c of color D. The overlap group Oc of the stabilizer group of the
color code on c is generated by Z-edge operators and X-face operators, for each and
every edge and face belonging to c. Namely,

Oc =

〈

(

(
Z Z Z X X XX

(

(ff ff

X X

X X
X Xf

X X

X X
X X

Z Z
,

(

(
Z Z Z X X XX

(

(ff ff

X X

X X
X Xf

X X

X X
X X

〉
. (6.33)

LetHV ' (C2)⊗V andHE ' (C2)⊗E be the Hilbert spaces of color code qubits and
toric code qubits, respectively placed on vertices and edges of the volume c. Since
E − V > 0, we need to add E − V ancilla qubits to qubits on vertices to match the
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dimensionality of Hilbert spaces,HV ⊗Hancilla ' HE , whereHancilla is the Hilbert
space of ancilla qubits. Let Sc = 〈Zi | ∀i ∈ {1, . . . , E − V }〉 be the stabilizer group
of the ancilla qubits, where Zi is the Pauli Z operator acting on the ancilla qubit i.
We would like to construct a Clifford unitary Uc which maps the group Oc ⊗ Sc of
operators on the Hilbert spaceHV ⊗ Hancilla into the group

OTC
c =

〈

(

(
Z Z Z X X XX

(

(ff ff

X X

X X
X Xf

X X

X X
X X

Z Z Z
,

(

(
Z Z Z X X XX

(

(ff ff

X X

X X
X Xf

X X

X X
X X

Z Z Z

X X

X X
X X

〉
(6.34)

of operators onHE according to the rules

*
,

(

(
Z Z Z X X XX

(

(ff ff

X X

X X
X Xf

X X

X X
X X

Z Z +
-
→

(

(
Z Z Z X X XX

(

(ff ff

X X

X X
X Xf

X X

X X
X X

Z Z Z
, *

,

(

(
Z Z Z X X XX

(

(ff ff

X X

X X
X Xf

X X

X X
X X +

-
→

(

(
Z Z Z X X XX

(

(ff ff

X X

X X
X Xf

X X

X X
X X

Z Z Z

X X

X X
X X . (6.35)

The parenthesis indicate that the mapping holds up to multiplication by the elements
of the center Z (Oc ⊗ Sc).

Let us analyzewhat happens to the stabilizer group of the color code and the stabilizer
group of ancilla qubits,CC(L)

⊗
c∈D Sc, after applying the unitaryU =

⊗
c∈D Uc.

One can verify that

• X-vertex stabilizers of TC(LA), TC(LB) and TC(LC) are obtained from
X-volume stabilizers4 in CC(L) of color A, B and C, respectively,

• Z-face stabilizers in TC(LA) are obtained from Z-face stabilizers4 of color
BD, CD and BC; similarly for TC(LB) and TC(LC),

• the elements in the center Z (Oc ⊗ Sc) are mapped into the center Z (OTC
c ).

Moreover, the generators of the group U
(
CC(L)

⊗
c∈D Sc

)
U† are supported on

either LA, or LB, or LC , and thus one obtains three decoupled copies of the toric
code.

The last thing we need to justify is the existence of Uc consistent with the rules in
Eq. (6.35). We start with showing that Oc ⊗ Sc and OTC

c are isomorphic. Clearly,
Oc ⊗ Sc,O

TC
c ⊂ Pauli(n = E). First, let us look at the independent generators of

Oc⊗Sc. There areV−1 independent operators of type

(

(
Z Z Z X X XX

(

(ff ff

X X

X X
X Xf

X X

X X
X X

Z Z
, denoted by {gi}

V−1
i=1 ,

supported on edges of a (spanning) tree T ⊂ E of the graph G = (V, E). To see
4 Up to multiplication by elements of the center Z (Oc ⊗ Sc ) for any neighboring volume c of

color D.
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this, note that edge operators are independent as long as the corresponding edges do
not form a closed loop. This implies that independent edge generators correspond
to a tree consisting of V − 1 edges in the graph G. In the case of operators of type

(

(
Z Z Z X X XX

(

(ff ff

X X

X X
X Xf

X X

X X
X X , there are exactly two independent relations between them, namely

∏
f ∈AD

(

(
Z Z Z X X XX

(

(ff ff

X X

X X
X Xf

X X

X X
X X =

∏
f ∈BD

(

(
Z Z Z X X XX

(

(ff ff

X X

X X
X Xf

X X

X X
X X =

∏
f ∈CD

(

(
Z Z Z X X XX

(

(ff ff

X X

X X
X Xf

X X

X X
X X , (6.36)

where the products are taken over all X-face operators associated with faces of c of
color AD, BD, and CD, respectively. Thus, there are F − 2 independent X-face
operators. We set F − 3 generators {gi}

V+F−4
i=V to be X-face operators, associated

with all faces of c but three — one of each color AD, BD and CD. We also set
gV+F−3 =

⊗
v∈V X (v), where

⊗
v∈V X (v) is the X-volume operator on c. Including

E −V single-qubit Pauli Z stabilizer generators {gi}
E+F−3
i=V+F−2 for ancilla qubits, there

are
(V − 1) + (F − 2) + (E − V ) = E + F − 3 (6.37)

independent generators of Oc ⊗ Sc, and thus G(Oc ⊗ Sc) = E + F − 3. Note that
since

Z (Oc ⊗ Sc) =
〈 Z Z

Z Z
Z Z

Z Z
Z Z

Z
Z

X X
X X

X
X

X X

X X
X X

Z
Z

Z

(

(X X

X X
X X

X X

X X
X X

Z
Z Z

,
⊗
v∈V

X (v), Zi

〉
, (6.38)

then G(Z (Oc ⊗ Sc)) = (F − 2) + 1 + (E − V ).

In the case of OTC
c , there are E independent generators of type

(
(
Z Z Z X X XX

(
(ff ff

X X

X X
X Xf

X X

X X
X X

Z Z Z
. Observe

that there are only three independent relations between generators of type

(
(
Z Z Z X X XX

(
(ff ff

X X

X X
X Xf

X X

X X
X X

Z Z Z

X X

X X
X X ,

namely ∏
f ∈AD

(

(
Z Z Z X X XX

(

(ff ff

X X

X X
X Xf

X X

X X
X X

Z Z Z

X X

X X
X Xf =

∏
f ∈BD

(

(
Z Z Z X X XX

(

(ff ff

X X

X X
X Xf

X X

X X
X X

Z Z Z

X X

X X
X Xf =

∏
f ∈CD

(

(
Z Z Z X X XX

(

(ff ff

X X

X X
X Xf

X X

X X
X X

Z Z Z

X X

X X
X Xf = I, (6.39)

and thus G(OTC
c ) = E + (F − 3). Since the group OTC

c has single qubit Pauli
Z operators as generators, the center Z (OTC

c ) can only be generated by Z-type
operators,

Z (OTC
c ) =

〈

Z Z

Z Z
Z Z

Z Z
Z Z

Z
Z

X X
X X

X
X

X X

X X
X X

Z
Z

Z

(

(X X

X X
X X

X X

X X
X X

Z
Z Z

〉
. (6.40)

There are 2F operators of type

Z Z

Z Z
Z Z

Z Z
Z Z

Z
Z

X X
X X

X
X

X X

X X
X X

Z
Z

Z

(

(X X

X X
X X

X X

X X
X X

Z
Z Z , and they satisfy three independent relations,

namely a product of all Z-face operators with qubits placed on edges not colored in
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i, for i ∈ {A, B,C}. Thus G(Z (OTC
c )) = 2F − 3 and using Euler characteristic for c,

V − E + F = 2, we obtain G(Z (OTC
c )) = G(Z (Oc ⊗ Sc)). From the (Isomorphic

Groups) Lemma 14 we obtain that Oc ⊗ Sc and OTC
c are isomorphic.

We have already chosen independent generators {gi} of Oc ⊗ Sc. We choose inde-
pendent generators {hi} of OTC

c as follows:

• for i = 1, . . . ,V − 1: gi =

(

(
Z Z Z X X XX

(

(ff ff

X X

X X
X Xf

X X

X X
X X

Z Z
→ hi =

(

(
Z Z Z X X XX

(

(ff ff

X X

X X
X Xf

X X

X X
X X

Z Z Z
,

• for i = V, . . . ,V + F − 4: gi =

(

(
Z Z Z X X XX

(

(ff ff

X X

X X
X Xf

X X

X X
X X → hi =

(

(
Z Z Z X X XX

(

(ff ff

X X

X X
X Xf

X X

X X
X X

Z Z Z

X X

X X
X X ,

• for i = V + F − 3: gi =
⊗

v∈V X (v) → hi =
⊗

e∈E Z (e),

• for i = V + F − 2, . . . , E + F − 3: gi = Zi → hi ∈ Z (OTC
c ),

where Zi is the Pauli Z operator on the ancilla qubit i. We would like to emphasize
that the choice of {hi}

E+F−3
i=V+F−2 does not matter, as long as they belong to the center

Z (OTC
c ) and {hi}

E+F−3
i=1 is the set of independent operators. One can verify that

{gi} and {hi} have the same commutation relations, and thus from the (Clifford
Transformation) Lemma 15, there exists a Clifford unitary Uc such that

UcgiU†c = hi ∀i ∈ {1, . . . , E + F − 3}. (6.41)

Moreover, the choice of generators {gi} and {hi} guarantees that the rules in Eq. (6.35)
are satisfied. This concludes the proof of the (Equivalence) Theorem 2 in d = 3
dimensions.

Finally, we present a proof sketch for a higher-dimensional case (for a rigorous
proof, see the next section). The color code is defined on a d-dimensional lattice
L with d-cells colored in C0,C1, . . . ,Cd . Let c be a d-cell in L of color C0 with
V vertices, E edges and F (d − 1)-cells. Let Oc be the overlap group of the
stabilizer group CC(L) of the color code on c and Sc be the stabilizer group of
E − V ancilla qubits. Note that Oc ⊗ Sc is generated by Z-edge operators, X-type
(d − 1)-cell-like operators and single Pauli Z operators on ancilla qubits. Thus,
G(Oc ⊗ Sc) = (V − 1) + (F − d + 1) + (E − V ) = E + F − d. Let OTC

c be
defined as a group of operators on qubits placed on the edges of c. Namely, OTC

c

is generated by single qubit Pauli Z operators on edges and X-vertex-like operators
with support on all edges radiating out of (d − 1)-cells of c. Note that there are
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d independent relations between X-vertex-like operators, namely a product of all
X-vertex-like operators associated with (d − 1)-cells of certain color is identity.
Thus, G(OTC

c ) = E + F − d. By relating the number of independent generators
of Z (Oc ⊗ Sc) and Z (OTC

c ) to the number of i-cells of c, for i = 0, 1, . . . , d, and
the Betti numbers of c, we can prove G(Z (Oc ⊗ Sc)) = G(Z (OTC

c )) (see the next
section for more details). From the (Isomorphic Groups) Lemma 14 we obtain that
Oc ⊗ Sc and OTC

c are isomorphic. We then choose independent generators {gi} and
{hi} of Oc ⊗ Sc and OTC

c as follows

• {gi}
V−1
i=1 — independent Z-edge operators related to a spanning tree T ⊂ E of

the graph G = (V, E) → {hi}
V−1
i=1 — single qubit Pauli Z operators on qubits

placed on edges associated with the spanning tree T ,

• {gi}
F+V−d−1
i=V — independent X-type (d − 1)-cell operators associated with all

(d − 1)-cells of c except for d of them, namely one (d − 1)-cell for each
colors C0C1, C0C2, . . . ,C0Cd → {hi}

F+V−d−1
i=V — X-vertex-like operators with

support on edges radiating out of F − d corresponding (d − 1)-cells of c,

• gi=F+V−d =
⊗

v∈V X (v) → hi=F+V−d =
⊗

e∈E Z (e),

• {gi}
E+F−d
i=F+V−d+1 —single Pauli Z operators on ancilla qubits→ {hi}

E+F−d
i=F+V−d+1 ∈

Z (OTC
c ) — elements of the center of OTC

c chosen in such a way that all the
operators {hi} are independent.

One can verify that {gi} and {hi} have the same commutation relations. From the
(Clifford Transformation) Lemma 15, there exists of a local Clifford unitaryUc such
that

UcgiU†c = hi ∀i ∈ {1, . . . , E + F − d}. (6.42)

By applying the disentangling unitary transformationU =
⊗

c∈C0
Uc to the stabilizer

groupCC(L) of the color code and the stabilizer groupS =
⊗

c∈C0
Sc of the ancilla

qubits, one obtains the stabilizer groups of the toric code supported on d decoupled
lattices L1, . . . ,Ld , namely

U[CC(L) ⊗ S]U† =
d⊗

j=1
TC(L j ), (6.43)

which concludes the proof of the (Equivalence) Theorem 2.
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6.2 Rigorous proof of the equivalence
Here, we briefly revisit the equivalence of the color code and (multiple decoupled
copies of) the toric code in d dimensions without the restriction of point-like excita-
tions. In particular, we focus on the construction of lattices supporting the decoupled
copies of the toric code, which can be succinctly described using some notions from
algebraic topology. The discussion in this section is presented in the language of
the dual lattice unless mention otherwise.

Basic definitions of combinatorial geometry
We start with some basic notions in combinatorial geometry. A d-simplex δ is a
convex hull of d + 1 affinely independent vertices v0, v1, . . . , vd , namely

δ =



d∑
i=0

tivi

������
0 ≤ ti ∧

d∑
i=0

ti = 1


. (6.44)

There is a combinatorial definition of a simplex, which we adopt for the rest of
the discussion. Namely, a d-simplex δ is the power set of the set of vertices
V = {v0, . . . , vd } spanning it, δ = P (V ). A subset W ⊂ V of size k + 1 ≤ d + 1
spans a k-simplex σ = P (W ), and we call σ a k-face of δ. We denote the set of
all k-faces of δ by ∆k (δ). Note that ∆k (δ) = Pk+1(V ), where Pk (V ) denotes the
collection of subsets of V of cardinality k.

Let V =
⊔k

i=1 Wi be a decomposition of the set of vertices V into the union of k

disjoint sets W1, . . . ,Wk . Let δ = P (V ) and σi = P (Wi). Then, we can represent δ
as a Cartesian product of its faces σ1, . . . , σk , namely

δ = σ1 × . . . × σk . (6.45)

We say that L is a simplicial d-complex if it is a set of simplices satisfying the
following conditions

• every face of a simplex in L is also in L,

• the intersection of two simplices in L is a face of both of them,

• the dimension of the largest simplex in L is d,

If in addition

• for every k < d, every k-simplex in L is a face of a d-simplex in L,
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then L is homogeneous. By ∆k (L) we denote the set of all k-simplices belonging
to L. An n-skeleton of L, denoted by skeln(L), is a collection of all k-faces of L
for all k ≤ n, namely skeln(L) =

⊔n
k=0 ∆k (L).

We might generalize the notion of a simplex to a cell. Namely, a (closed) d-cell δ is
the image of a d-dimensional (closed) ball Bd under an attaching map. Similarly to
the combinatorial definition of a simplex, we want to think about δ as a collection of
all its k-faces, for all k = 0, 1, . . . , d. We can define a cell complex5 in an analogous
way to a simplicial complex, allowing for the faces to be cells.

Fromnowon, we only consider complexes containing finitelymany simplices (cells).
Although a homogeneous simplicial (cell) d-complex L is defined as a collection
of simplices (cells), by the same symbol we also denote the union of these simplices
(cells) as a topological space. In general,L is a manifold with a boundary embedded
in real space, but for the rest of the discussion we assume L has no boundary. We
also assume L is a homogeneous simplicial d-complex unless stated otherwise.

The n-star of δ ∈ ∆k (L), denoted by Stn(δ), is the set of all n-simplices in L which
contain δ as a face, namely

Stn(δ) = {σ ∈ ∆n(L) | σ ⊃ δ}. (6.46)

Note that σ ∈ Stn(δ) ⇐⇒ δ ∈ ∆k (σ).

The n-link of δ ∈ ∆k (L), denoted by Lkn(δ), is the set of all n-simplices inL which
are the n-faces of d-simplices containing δ, but do not intersect with δ, namely

Lkn(δ) = {σ ∈ ∆n(L) | σ ⊂ τ ∈ Std (δ) ∧ σ ∩ δ = ∅}. (6.47)

Observe that for a k-simplex δ in L there is a one-to-one mapping between the
elements of Lkd−k−1(δ) and Std (δ), namely

σ ∈ Lkd−k−1(δ)
δ×σ=τ
←−−−−→ τ ∈ Std (δ). (6.48)

We say that L is (d + 1)-colorable if there exists a function

color : ∆0(L) → Zd+1, (6.49)

where Zd+1 = {0, 1, . . . , d} is the set of d + 1 colors, and two vertices connected by
an edge have different colors. We define color(δ) to be the set of colors assigned to

5For a rigorous definition of a CW complex, see Ref. [Hat02].
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vertices of a simplex δ, namely

color(δ) =
⊔

v∈∆0(δ)

color(v). (6.50)

Now, we are ready to define the color code and the toric code in d dimensions.
The color code is a stabilizer code with the stabilizer group CCk (L) defined on a
(d + 1)-colorable homogeneous simplicial d-complex L, where k ∈ {0, . . . , d − 2}.
One qubit is placed at each and every d-simplex in L, and X- and Z-type stabilizer
generators are associated with (d − k − 2)- and k-simplices as follows

∀δ ∈ ∆d−k−2(L) : X (δ) =
⊗

σ∈Std (δ)

X (σ), (6.51)

∀δ ∈ ∆k (L) : Z (δ) =
⊗

σ∈Std (δ)

Z (σ), (6.52)

where X (σ) is the Pauli X operator on a qubit placed at σ ∈ ∆d (L); similarly Z (σ).

The toric code is a stabilizer code with the stabilizer group TCk (L) defined on a
homogeneous cell d-complex L, where k ∈ {1, . . . , d − 1}. One qubit is placed at
each and every k-cell in L, and X- and Z-type stabilizer generators are associated
with (k + 1)- and (k − 1)-cells in the following way

∀δ ∈ ∆k+1(L) : X (δ) =
⊗

σ∈∆k (δ)

X (σ), (6.53)

∀δ ∈ ∆k−1(L) : Z (δ) =
⊗

σ∈Stk (δ)

Z (σ). (6.54)

Equivalence revisited
Let us revisit the (Equivalence) Theorem 2. Note that for the sake of simplicity
we assumed earlier that the color code on a d-dimensional lattice L has point-
like excitations, and this corresponds to the CCd−2(L) case. Now we state the
equivalence between the color code and the toric code in full generality in the
following theorem.

Theorem 3 Let the topological color codeCCk (L) be defined on a (d+1)-colorable
homogeneous simplicial d-complex L without boundary, where 0 ≤ k ≤ d − 2.
Then, there exists a local Clifford unitary U such that

U [CCk (L) ⊗ S1]U† =
⊗

N∈Pd−1−k (Zd )

TCk+1(LN ) ⊗ S2 (6.55)
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where S1 and S2 represent the stabilizer groups of decoupled ancilla qubits, and
TCk+1(LN ) is a copy of the toric code defined on a homogeneous cell (k + 2)-
complex LN obtained from L by removing all simplices with faces of colors in N .
Moreover, one can choose the disentangling unitary U to be of the form

U =
⊗

δ∈∆0(L)
color(δ)={d}

U (δ), (6.56)

where U (δ) is a Clifford unitary acting only on qubits placed on d-simplices in
Std (δ), and some ancilla qubits associated with δ.

Note that after the disentangling one obtains
(

d
d−1−k

)
=

(
d

k+1

)
decoupled copies of

the toric code, enumerated by different choices of the subset N of d − 1 − k colors
from Zd . Moreover, one might need to locally add ancilla qubits either to the color
code, or the toric code depending on the simplicial d-complex L. Clearly, the
(Equivalence) Theorem 2 is a special case of Theorem 3, with k = d−2, S2 = ∅ and
C0 = d. The rest of this section is devoted to the construction of the cell complexes
supporting decoupled copies of the toric code and the explanation of how to find a
local Clifford unitary U .

To obtainLN fromL, where N ∈ Pd−1−k (Zd), one follows the following procedure.

1. Take the (k + 1)-skeleton skelk+1(L) of L and construct a new (k + 1)-
skeleton, skel′k+1(L), by removing from skelk+1(L) all simplices with faces
of colors in N , namely

skel′k+1(L) = {σ ∈ skelk+1(L) |color(σ) ⊂ Zd+1 \ N }. (6.57)

2. For every τ ∈ ∆d−2−k (L), such that color(τ) = N , attach a (k + 2)-cell to
Lkk+1(τ) ⊂ skel′k+1(L). Resulting (k + 2)-skeleton is LN .

Note that in Step 2 we used a fact that Lkk+1(τ) is homeomorphic to a (k+1)-sphere,
and thus we can attach a (k + 2)-ball to Lkk+1(τ) (see Ref. [Gla72] for a proof and
an illustrative discussion on combinatorial manifolds).

The disentangling unitary U in Eq. (6.56) has a tensor product structure. Thus, let
us have a closer look at one of its constituents, U (δ), where δ is a 0-simplex in L
of color {d}. Let U (δ) be a Clifford unitary transforming the Hilbert space of color
code qubits placed on d-simplices in Std (δ) and A = |Stk+1(δ) | − |Std (δ) | ancilla
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qubits6, H (Std (δ)) ⊗ Hancilla, into the Hilbert space H (Stk+1(δ)) of toric code
qubits placed on (k + 1)-simplices in Stk+1(δ). Let Oδ := OStd (δ) be the overlap
group of the color code CCk (L) on the set of qubits Std (δ), and Sδ be the stabilizer
group generated by single-qubit Pauli Z operators on the ancilla qubits, namely

Oδ =

〈 ⊗
α∈Std (σ)

X (α),
⊗

α∈Std (τ)

Z (α)
�����
∀σ ∈ Std−1−k (δ), τ ∈ Stk+1(δ)

〉
, (6.58)

Sδ = 〈Zi | ∀i ∈ {1, . . . , A}〉 . (6.59)

Let OTC
δ be a group of operators acting on qubits placed on (k + 1)-simplices in

Stk+1(δ) defined as follows

OTC
δ =

〈 ⊗
α∈Lkk+1(σ)∩Stk+1(δ)

X (α), Z (τ)
�����
∀σ ∈ Lkd−2−k (δ), τ ∈ Stk+1(δ)

〉
, (6.60)

We require that U (δ) maps the generators of Oδ ⊗ Sδ into the generators of OTC
δ

according to the following rules

∀σ ∈ Lkd−2−k (δ) : gi =
(⊗

α∈Std (σ×δ) X (α)
)
→ hi =

⊗
α∈Lkk+1(σ)∩Stk+1(δ)

X (α), (6.61)

∀τ ∈ Stk+1(δ) : g′i =
(⊗

α∈Std (τ) Z (α)
)
→ h′i = Z (τ), (6.62)

i ∈ {1, . . . , A} : g′′i = Zi → h′′i ∈ Z (OTC
δ ). (6.63)

where the parenthesis indicate that the mapping holds up to multiplication by el-
ements of the center Z (Oδ ⊗ Sδ) and we choose {hi, h′i, h

′′
i } to be independent.

Note that we had to add A = |Stk+1(δ) | − |Std (δ) | ancilla qubits to guarantee
that Oδ ⊗ Sδ,OTC

δ ∈ Pauli(n = |Stk+1(δ) |). One can check that {gi, g
′
i, g
′′
i } and

{hi, h′i, h
′′
i } have the same commutation relations. The existence of the unitary U (δ)

follows from the (Clifford Transformation) Lemma 15, given Oδ ⊗ Sδ and OTC
δ are

isomorphic. We will show this fact invoking the (Isomorphic Groups) Lemma 14.

We want to verify that G(Oδ ⊗ Sδ) = G(OTC
δ ) and G(Z (Oδ ⊗ Sδ)) = G(Z (OTC

δ )).
First note that the elements of the center Z (OTC

δ ) are generated by only Z-type
operators which are derived from k-simplices in Stk (δ), namely

Z (OTC
δ ) =

〈 ⊗
τ∈Stk+1(σ)

color(τ)=color(σ)t{n1}

Z (τ)
�����
∀σ ∈ Stk (δ), n1 ∈ Zd \ color(σ)

〉
. (6.64)

Since for any σ ∈ Stk (δ) we can choose n1 ∈ Zd \color(σ) in
(

d−k
1

)
ways, then there

are
(

d−k
1

)
|Stk (δ) | generators of Z (OTC

δ ). Note that not all of them are independent.
6If A < 0, then U (δ) is a map betweenH (Std (δ)) andH (Stk+1(δ)) ⊗ Hancilla .
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Rather, they have to satisfy certain relations, which we call R1, namely

∀%1 ∈ Stk−1(δ), {n1, n2} ⊂ Zd \ color(%1) : (6.65)

∏
σ∈Stk (%1)

color(σ)⊂color(%1)t{n1,n2}

*....
,

⊗
τ∈Stk+1(σ)

color(τ)=color(%1)t{n1,n2}

Z (τ)
+////
-

= I . (6.66)

Since for any %1 ∈ Stk−1(δ) we can choose {n1, n2} ⊂ Zd \ color(%1) in
(

d−k+1
2

)
ways, then there are

(
d−k+1

2

)
|Stk−1(δ) | relations R1. Note that not all relations R1

are independent. They have to satisfy
(

d−k+2
3

)
|Stk−2(δ) | relations R2 obtained for

any choice of %2 ∈ Stk−2(δ) and {n1, n2, n3} ⊂ Zd \ color(%2). But relations R2

are not independent, and so on. Proper counting of independent relations between
generators of Z (OTC

δ ) gives the following alternating sum |R1 | − |R2 | + |R3 | −

. . . + (−1)k−1 |Rk |. Once the constraints have been properly accounted for, since
G(Z (OTC

δ )) is equal to the number of generators minus the number of independent
relations between them, then we obtain

G(Z (OTC
δ )) =

(
d − k
1

)
|Stk (δ) |−

(
d − k + 1

2

)
|Stk−1(δ) |+. . .+(−1)k

(
d

k + 1

)
|St0(δ) |.

(6.67)
Using the fact that the toric code on an n-sphere does not encode logical qubits,
we obtain that the number of independent X-type generators of OTC

δ is equal to
|Stk+1(δ) |−G(Z (OTC

δ )). Thus, including |Stk+1(δ) | independent Z-type generators,

G(OTC
δ ) = 2|Stk+1(δ) | − G(Z (OTC

δ )). (6.68)

To analyze the number of independent generators of Oδ ⊗ Sδ and its center Z (Oδ ⊗
Sδ), we use results from the Appendix D in Ref. [BM07a]. First, let us rephrase our
problem in the language of the primal lattice. Note that a 0-simplex δ corresponds
to a d-cell c, qubits are placed on vertices of c, and X- and Z-type stabilizers are
supported on qubits on vertices of (k + 2)- and (d − k)-faces of c. Let ∂c be the
boundary of c, which can be thought of as a d-colorable and d-valent homogeneous
cell (d − 1)-complex. Let us denote by Ci the number of i-faces of c, where
i = 0, . . . , d. Clearly, Ci = |Std−i (δ) |. The overlap group of the color code on the
qubits of c is thus generated by X- and Z-type operators on (k +1)- and (d − k −1)-
faces of c. Note that (k + 1)- and (d − k − 1)-faces of c can be thought of as faces
of ∂c, and thus the number of independent generators of Oδ ⊗ Sδ is

G(Oδ⊗Sδ) = Ck+1−I (d−1, k+1)+Cd−k−1−I (d−1, d−k−1)+(Cd−k−1−C0), (6.69)
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where we included A = Cd−k−1 − C0 single-qubit Pauli Z operators on the ancilla
qubits. By I (d − 1, i) we denote the number of independent relations between
operators on i-cells of ∂c. In particular (see Eq. (D14) in Ref. [BM07a]),

I (d − 1, s) =
(
d − 1
s − 1

) d−1−s∑
i=0

(−1)ihs+i +

d−s−2∑
i=0

(
s + i
s − 1

)
(−1)iCs+i+1 (6.70)

=

(
d − 1
s − 1

)
(−1)d−1−s +

d−s−2∑
i=0

(
s + i
i + 1

)
(−1)iCs+i+1, (6.71)

where hi is the i-th Betti number of ∂c. Since ∂c is homeomorphic to a (d − 1)-
sphere, then hi = 1 if i = 0, d − 1; otherwise hi = 0. The center Z (Oδ ⊗ Sδ)
is generated by X- and Z-type operators on (k + 2)- and (d − k)-faces of c, and
single-qubit Pauli Z operators on ancilla qubits. Thus7,

G(Z (Oδ⊗Sδ)) = Ck+2−I (d−1, k+2)+Cd−k−I (d−1, d−k)+(Cd−k−1−C0). (6.72)

We can express Eqs. (6.67) and (6.68) is terms of Ci’s, namely

G(Z (OTC
δ )) =

(
d − k
1

)
Cd−k −

(
d − k + 1

2

)
Cd−k+1 + . . . + (−1)k

(
d

k + 1

)
Cd (6.73)

=

k∑
i=0

(−1)i
(
d − k + i

i + 1

)
Cd−k+i, (6.74)

G(OTC
δ ) = 2Cd−k−1 − G(Z (OTC

δ )). (6.75)

There are many relations between the number of i-cells of ∂c, which is a d-colorable
and d-valent homogeneous cell (d−1)-complex homeomorphic to a (d−1)-sphere.
In particular, the following identities hold

−

(
d − 1

s

)
χ + (−1)sC0 +

s−1∑
i=0

(−1)i
(

d − 2 − i
d − 1 − s

)
Cd−1−i +

d−1∑
i=s+1

(−1)i
(
i − 1

s

)
Ci = 0,

(6.76)
for any s = 0, . . . , d − 1, where χ = 1 + (−1)d−1 (see Eq. (D16) in Ref. [BM07a]).
One can straightforwardly verify that G(Oδ ⊗ Sδ) − G(OTC

δ ) = 0 and G(Z (Oδ ⊗
Sδ))−G(Z (OTC

δ )) = 0, since they are obtained from Eq. (6.76) by setting s = k and
s = k+1, respectively. This finishes the proof that Oδ ⊗Sδ and OTC

δ are isomorphic.

6.3 Topological color code with boundaries
Realistic physical systems have boundaries. Moreover, the transversal imple-
mentability of logical gates in the topological color code crucially depends on

7If k = 0, d − 2, then we set I (d − 1, d) = 0.
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the choice of boundaries. In this section we show that the color code defined on a
d-dimensional lattice with d + 1 boundaries of d + 1 distinct colors is equivalent
to d copies of the toric code attached together at a (d − 1)-dimensional boundary.
We also briefly describe how the choice of boundaries of the color code determines
if the copies of the toric code are attached or decoupled. We then discuss such
boundaries from the viewpoint of condensation of excitations.

Physical intuition behind folding
Webeginwith presenting some physical intuition concerningwhy the toric codewith
two smooth and two rough boundaries needs to be folded if one hopes for transversal
logical non-Pauli gates such as the Hadamard gate H . Let us recall known results
about gapped boundaries of the toric code. In two spatial dimensions, the toric
code may have two types of boundaries, smooth and rough [BK98]. The rough
boundaries are defined as the boundaries with open edges (see Fig. 6.8). Similarly
to the toric code without boundaries, there are X-vertex and Z-face stabilizers,
although Z-face stabilizers have to be modified along the rough boundaries. An
X-type (Z-type) string-like logical operator can only start from and end on smooth
(rough) boundaries. One says that the electric charge e, i.e. the violated X-vertex
stabilizer, condenses on the rough boundary and the magnetic flux m, i.e. the
violated Z-face stabilizer, is confined since single e, unlike m, can be created or
absorbed on the rough boundary. Similarly, m condenses and e is confined on the
smooth boundary.

Consider the two-dimensional toric code with two smooth and two rough boundaries
as depicted in Fig. 6.8(a). Since there is only one pair of anti-commuting logical
operators, X and Z , the code encodes a single logical qubit. There is one crucial
difference between the toric code and the color code (with boundaries) — the latter
admits transversal implementation of the Hadamard gate H while the former does
not. Recall that the Hadamard gate swaps Pauli X and Z operators. Suppose that
the Hadamard gate can be implemented by a local unitary operatorU. Let X and X ′

be two equivalent implementations of the logical X operator, supported on string-
like horizontal regions (see Fig. 6.8(a)). Then, U XU† implements the logical Z

operator, which has to anti-commute with X ′. On the other hand, since U is a local
unitary, then U XU† and X ′ have no overlap, and thus they commute, leading to a
contradiction. We conclude that the logical Hadamard gate cannot be implemented
by a local unitary operator in the toric code with boundaries. This is a simple version
of the argument presented in Ref. [Bev+16].
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Figure 6.8: (Color online) Origami of the toric code with boundaries. (a) Blue line,
starting from and ending on rough boundaries, represents the logical Z operator.
Green lines, starting from and ending on smooth boundaries, represent the logical X
operator. (b) The color code with three boundaries, ∂AL, ∂BL and ∂CL, obtained
by folding the toric code with two smooth and two rough boundaries. After folding,
two logical operators X and Z are supported on overlapping regions.

We note that if the logical Hadamard is transversal, then both logical X and Z

operators must have representations which are supported on overlapping regions.
By folding the toric code, both logical X and Z operators can be supported on
overlapping regions, as shown in Fig. 6.8(b). Thus, for the logical Hadamard to be
transversal folding of the toric code is indeed necessary.

Unfolding in two dimensions
We now return to the analysis of the topological color code CC(L) supported on a
(3-valent and 3-colorable) two-dimensional lattice L with the Euler characteristic8
χ = 2 − 2g − b and the boundary ∂L =

⊔n
i=1 ∂iL, where ∂iL is the (maximum)

connected component of the boundary ∂L of certain color. For conciseness, we
simply refer to ∂iL as a boundary. We say that the boundary ∂iL is of color C1 if
all the faces adjacent to ∂iL have colors C2 and C3, where {C1,C2,C3} = {A, B,C}.
One can show that the color code CC(L) encodes µ − 2χ + 2(δn,0 + δn,b) logical
qubits, where µ is the number of two-valent vertices belonging to ∂L and δi, j is
the Kronecker delta. In particular, one important case corresponds to the triangular
color code (with three boundaries of color A, B and C as shown in Fig. 6.9(a); see
also Fig. 6.8(b)), which encodes one logical qubit regardless of the system size, and
has transversal logical Hadamard H and the phase gate R2 .

8We can think ofL as a tiling of a 2-manifoldM with boundary, and then the Euler characteristic
is χ = 2− 2g − b, where g is the genus ofM and b is the number of connected components of ∂M.
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We would like to understand how the color codeCC(L) with boundaries transforms
under the disentangling unitary U =

⊗
f ∈CU f described in Section 6.1B. In the

bulk, the disentangling unitary U transforms the stabilizers of the color code into
stabilizers of the toric code supported on two decoupled latticesLA andLB, obtained
from L by shrinking faces of color A and B, respectively. On the other hand, the
stabilizers of the color code supported on qubits near the boundaries may transform
into stabilizers supported on both shrunk latticesLA andLB, depending on the colors
of ∂L. Unless there is no boundary of color C, we cannot transform the color code
CC(L) into the toric code supported on two decoupled lattices, TC(LA)⊗TC(LB).
Rather, the toric code is defined on a lattice LA#LB obtained by attaching9 LA and
LB, i.e. identifying some of their boundaries. Namely,

U[CC(L)]U† = TC(LA#LB). (6.77)

In the rest of this subsection we analyze the triangular color code (see Fig. 6.9), but
the discussion is applicable to the color code on any homogeneous cell 2-complex
with boundary, which is 3-colorable and 3-valent.
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Figure 6.9: (Color online) (a) The (triangular) color code on a two-dimensional
lattice L with the boundary ∂L comprising three components of color A, B and C,
namely ∂L = ∂ALt∂BLt∂CL. Qubits are represented by dots. (b) A fragment of
the lattice LA derived from L by shrinking faces of color A. The smooth boundary
arises in LA on the boundary ∂BL. (c) A fragment of the lattice LB derived from
L by shrinking faces of color B. The rough boundary arises in LB on the boundary
∂BL .

9Wewould like to point out similarities between the attaching procedure we describe andwelding
defined in Ref. [Mic14].
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Let us describe how to obtain the lattice LA#LB supporting the toric code. Recall
that in the bulk, LA and LB are obtained from L by shrinking faces of color A and
B. Let ∂AL, ∂BL and ∂CL be the boundaries of color A, B and C, respectively.
We find that shrunk lattices LA and LB are decoupled along ∂AL and ∂BL, but are
identified along ∂CL. In particular,

• on the boundary ∂AL: the lattice LB has open edges (rough boundary),
whereas LA — no open edges (smooth boundary),

• on the boundary ∂BL: the lattice LA has open edges (rough boundary),
whereas LB — no open edges (smooth boundary),

• on the boundary ∂CL: since the disentangling unitary U does not affect the
qubits placed on vertices belonging to ∂CL, both lattices LA and LB share
these qubits.

See Fig. 6.9 and Fig. 6.10(a)(b) for examples of how smooth and rough boundaries
arise in the disentangling procedure. Note that along ∂CL, the lattices LA and LB

are identified. This implies that the electric excitation e on LA can be transformed
into the excitation e on LB by going through the boundary ∂CL; similarly for the
magnetic excitation m.

We can visualize the lattice LA#LB by horizontally flipping LB and attaching it to
LA (see Fig. 6.10(c)). Observe that starting from the color code CC(L) with three
boundaries, performing the disentangling unitary U =

⊗
f ∈CU f and unfolding the

resulting lattice LA#LB, one obtains a single copy of the toric code TC(LA#LB)
with two smooth and two rough boundaries. We can summarize the discussion by
the following theorem.

Theorem 4 (Unfolding) The (triangular) color code CC(L) on a two-dimensional
lattice L with three boundaries, ∂AL, ∂BL and ∂CL, is equivalent to one folded
copy of the toric codeTC(LA#LB) defined on a latticeLA#LB with two smooth and
two rough boundaries. Moreover, LA#LB is constructed by attaching two lattices
LA andLB (derived fromL by shrinking faces of color A and B, respectively) along
the boundary ∂CL.
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Figure 6.10: (Color online) Attaching two lattices: (a)LA and (b)LB by identifying
qubits along the boundary ∂CL. (c) Unfolded toric code TC(LA#LB). Blue qubits
belong to the lattice LA, whereas red qubits belong to the (flipped) lattice LB.

Three (or more) dimensions
The toric code on a d-dimensional lattice with boundaries, d ≥ 3, does not differ
substantially from the two-dimensional model— qubits are placed on edges, and X-
and Z-type stabilizer generators are associated with vertices and faces. There are
two types of boundaries, rough and smooth, which may absorb point-like electric
charges and (d−1)-dimensional magnetic fluxes, respectively. Moreover, string-like
logical Z (respectively (d−1)-dimensional membrane-like logical X) operators can
only start from and end on rough (respectively smooth) boundaries (see Fig. 6.14(b)).

The color code can be defined on a (d+1)-valent and (d+1)-colorable d-dimensional
lattice L with the boundaries ∂L =

⊔n
i=1 ∂iL, where each (maximum) connected

component ∂iL has one out of d + 1 colors, C0, . . . ,Cd . We say that ∂iL is of color
Cj if all d-cells adjacent to ∂iL have colors different from Cj . Qubits are placed
on vertices, and X- and Z-type stabilizer generators are associated with d-cells and
2-cells (faces), respectively. For the sake of clarity, in the rest of this subsection
we focus on the three-dimensional color code CC(L) defined on a tetrahedron-like
lattice L with four boundaries of color A, B, C and D (see Fig. 6.11(a)).
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Figure 6.11: (a) A tetrahedron-like lattice L with boundaries ∂AL, ∂BL, ∂CL and
∂DL. Three shrunk lattices: (b) LA, (c) LB, (d) LC derived from L. The shaded
boundary represents the attaching boundary ∂DL.

We would like to analyze what happens to CC(L) if we apply the disentangling
unitary U =

⊗
c∈D Uc described in Section 6.1D. In the bulk, the disentangling

unitary U transforms the stabilizers of the color code into stabilizers of the toric
code supported on three decoupled lattices, LA, LB and LC , obtained from L by
shrinking volumes of color A, B and C, respectively. Since LA, LB and LC share
qubits along the boundary ∂DL, we cannot transform the color codeCC(L) into the
toric code supported on three decoupled lattices, TC(LA) ⊗ TC(LB) ⊗ TC(LC).
Rather, the toric code is defined on a lattice LA#LB#LC obtained by attaching three
shrunk lattices along the boundary ∂DL. We then obtain

U[CC(L) ⊗ S]U† = TC(LA#LB#LC), (6.78)

where S is the stabilizer group of the ancilla qubits. Note that U does not transform
qubits on vertices belonging to the boundary ∂DL.

Let us have a closer look at the shrunk lattices and the identified boundary. Li

has one rough boundary ∂iL, and two smooth boundaries ∂jL and ∂kL, where
{i, j, k} = {A, B,C} (see Fig. 6.11). Recall that shrunk lattices share only qubits
placed on vertices of the identified boundary ∂DL. To obtain LA#LB#LC one
attaches the shrunk lattices by identifying the qubits placed on vertices of ∂DL (see
Fig. 6.12). Note that a single-qubit Pauli Z operator on a qubit on the boundary
∂DL causes three X-vertex stabilizers to be violated, i.e. one in each of three shrunk
lattices. Put another way, such an operator creates a triple of electric charges, eA,
eB and eC . This implies that the composite electric charge eAeBeC can condense on
the boundary ∂DL. We focus on condensation of excitations on the boundaries in
the next subsection.

The discussion here can be straightforwardly generalized to d dimensions, yielding
the equivalence between the color code and the toric code with boundaries. We



175

(a) (b) (c)

Figure 6.12: (Color online) The identified boundary ∂DL of three shrunk lattices:
(a) LA, (b) LB and (c) LC . The shrunk lattices are attached by identifying qubits
on vertices of ∂DL.

conclude with the following theorem.

Theorem 5 (Attaching) Let CC(L) be the color code on a d-simplex-like lattice
L with d + 1 boundaries ∂0L, . . . , ∂dL, where ∂iL has color Ci. Then, there exists
a local Clifford unitary U =

⊗
c∈C0

Uc (described in Section 6.1D) such that

U[CC(L) ⊗ S]U† = TC(#d
i=1Li), (6.79)

where S is the stabilizer group of the ancilla qubits. The toric code TC(#d
i=1Li)

is defined on the lattice #d
i=1Li obtained by attaching lattices L1, . . . ,Ld along the

boundary ∂0L, where Li is derived from L by shrinking d-cells of color Ci, and
has one rough boundary, ∂Li.

Let us mention that the lattice L from Theorem 5 can be obtained from a certain
tiling of a d-sphere (see Ref. [KB15] for details).

Condensation of anyonic excitations
It is instructive to interpret the equivalence between the color code and the toric
code with boundaries from the viewpoint of condensation of anyonic excitations. In
the two-dimensional toric code, the anyonic excitations are: electric e — a single
violated X-vertex stabilizer, magnetic m — a single violated Z-face stabilizer, and
fermionic ε = e × m — a composite excitation obtained by fusing e and m. The
label 1 corresponds to the vacuum (no excitations).

The gapped boundaries of two-dimensional systems are classified by maximum sets
of mutually bosonic excitations which may condense [KK12; LG12; BJQ13; Lev13;
LWW15]. In the case of a single layer of the toric code, possible sets of anyonswhich
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may condense on the boundaries are {1, e} and {1,m}. Note that ε has fermionic
self-statistics and thus cannot condense on the gapped boundaries. The sets {1, e}
and {1,m} correspond to rough and smooth boundaries, respectively [BK98]. On
the other hand, the folded toric code has three boundaries (see Fig. 6.8(b)). If we
denote by ei, mi and ε i the excitations in the front (i = 1) and rear (i = 2) layer of the
folded toric code, then we can associate the boundaries with the sets of condensing
anyons. Namely,

∂AL ↔ {1, e1,m2, e1m2} (6.80)

∂BL ↔ {1, e2,m1, e2m1} (6.81)

∂CL ↔ {1, e1e2,m1m2, ε1ε2} (6.82)

As depicted in Fig. 6.13(a), two electric charges e1 and e2 created on boundaries
∂AL and ∂BL can be jointly annihilated (or created) on ∂CL.

e1e2e3

e1

e2
e3

(b)

e1 e2

e1e2

(a)

@CL

@AL @BL
@CL

@DL

@AL

@BL

Figure 6.13: (Color online) Condensation of electric charges in (a) two and (b)
three dimensions. Observe that single electric charges can condense on all but one
boundary, which is the identified boundary. On the identified boundary, a composite
electric charge (a) e1e2 and (b) e1e2e3 can be created or annihilated.

By associating the boundaries with the sets of condensing anyons we can find the
correspondence between anyonic excitations in the toric code and the color code.
We can label excitations in the color code by iP, where P ∈ {X, Z } indicates the type
of the violated stabilizer, and i ∈ {A, B,C} indicates the color of the face associated
with the violated stabilizer. Observe that not all six excitations are independent.
For instance, a single qubit Pauli X operator on a vertex v creates excitations, AZ ,
BZ and CZ , on three neighboring faces sharing v. This implies that in the bulk the
following fusion channels exist

AX × BX × CX = 1, AZ × BZ × CZ = 1. (6.83)
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Note that excitations iX and iZ can only condense on the boundary ∂iL. This leads
to the following isomorphism between labels of anyonic excitations of the toric and
color codes

e1 ↔ AX, e2 ↔ BX, m1 ↔ BZ, m2 ↔ AZ . (6.84)

In d > 2 dimensions, the excitations of the color code are point-like electric charges
and (d − 1)-dimensional magnetic fluxes. Let us first focus on condensation of
electric charges. We find that the boundaries of the d-dimensional color code on a
d-simplex-like lattice are given by

∂0L ↔ {e1e2 . . . ed }, (6.85)

∂iL ↔ {ei} for i = 1, . . . , d. (6.86)

(See Fig. 6.13 for two- and three-dimensional examples). Yet, none of the magnetic
fluxes can individually condense on the boundary ∂0L. Rather, any pair of fluxes
can condense on ∂0L, and thus we might think of the fluxes as being equivalent.
To sum up, we find the following condensations of (d − 1)-dimensional magnetic
fluxes:

∂0L ↔
{
mim j | ∀i , j

}
, (6.87)

∂iL ↔
{
m j | ∀ j , i

}
. (6.88)

One may observe that, as expected, the set of condensing magnetic and electric
excitations on every boundary is mutually bosonic.

Wewould like to emphasize that while the gapped boundaries in (2+1)-dimensional
TQFTs have been throughly classified [KK12; BSW11], the understanding of the
gapped boundaries in higher-dimensional TQFTs is still incomplete. Characteriza-
tion of condensing excitations in the color code may provide instructive examples
that help with classification of the gapped boundaries in higher-dimensional TQFTs.
Namely, different boundaries of various colors in the color code may lead to a rich
variety of gapped boundaries in the corresponding toric code models. Moreover,
logical action of the transversal R̃n operator (see Eq. (6.89)) on the code space
crucially depends on the choice of boundaries in the color code. Thus, one may be
able to characterize gapped boundaries by analyzing the logical action of transversal
operators, and vice versa.
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6.4 Transversal gates
We have seen that the color code is equivalent to (multiple copies of) the toric
code, both in the presence or the absence of boundaries. Our findings hint that
there might be non-trivial logical gates from the d-th level of the Clifford hierarchy
in the d-dimensional toric code which admit fault-tolerant implementation. In this
section, we show that one can implement by local unitary transformations the logical
d-qubit control-Z gate on the stack of d copies of the d-dimensional toric code with
point-like excitations.

Transversal Rd operator and boundaries
Let us start with reviewing the transversal implementation of the physical phase gate
Rn = diag(1, e2πi/2n ) in the color code [Bom15a; KB15]. Consider the topological
color code CC(L) on a d-dimensional lattice L, which is (d + 1)-valent and
(d + 1)- colorable. It is known that the graph G = (V, E) of vertices and edges of
L is bipartite, namely the set of vertices V can be split into two subsets, T and T c,
such that V = T tT c and vertices in T are connected only to vertices in T c, and vice
versa. Then, regardless of the lattice L, the following unitary operator preserves the
code space

R̃d :=
⊗
j∈T

Rd ( j)
⊗
j∈Tc

R−1d ( j). (6.89)

Here, we adopt a convention that R̃d denotes a transversal operator implemented
by physical Rd gates or their powers. When the lattice L is d-simplex-like (see
Section 6.3C and Fig. 6.11), then R̃d implements the logical Rd gate in the code
space. For other choices of boundaries, the action of R̃d in the code space does not
necessarily coincide with the logical Rd gate.

For the sake of simplicity, in the rest of this section we shall consider the d-
dimensional color code supported on a d-hypercube-like lattice L colored with
C0, . . . ,Cd (see Fig. 6.15(a) and Fig. 6.14(a)). In particular, we choose L to have
the opposite boundaries colored in the same color. Namely, we assume that two
boundaries perpendicular to the direction ĵ have color Cj , where j = 1, . . . , d. One
can show that the color code CC(L) encodes d logical qubits. In order to do this,
consider the disentangling unitaryU =

⊗
c∈C0

Uc, which is a tensor product of local
unitaries supported on d-cells of color C0 (see Section 6.1D and Section 6.3C).
Then, U transforms the color code CC(L) into d decoupled copies of the toric
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code,

U[CC(L) ⊗ S]U† =
d⊗

i=1
TC(Li) (6.90)

where S is the stabilizer group of the ancilla qubits and the lattice Li is derived
from L by shrinking d-cells of color Ci. Moreover, Li is a d-hypercube-like lattice
with two rough boundaries which are perpendicular to the direction î and all the
other boundaries smooth. Thus, for i = 1, . . . , d, the toric code TC(Li) encodes
one logical qubit, with a string-like logical Z operator in the direction î, and a
(d − 1)-dimensional membrane-like logical X operator perpendicular to î.

With the above choice of boundaries, R̃d does not implement the logical Rd gate in
the code space. One verifies this by observing that R̃d

2
= I in the code space of the

color code. Rather, we find that R̃d implements the logical d-qubit control-Z gate
on the stack of d copies of the toric code. (Note that a similar observation holds for
the color code supported on a d-torus, i.e. a d-hypercube-like lattice with periodic
boundary conditions). We devote the rest of this section to describe this finding.

(a)

1̂

2̂
3̂

L

C3

C2

C1

(b) L3

1̂

2̂
3̂ smooth

rough

smooth X

Z

Figure 6.14: (Color online) (a) The color codeCC(L) on a three-dimensional cube-
like lattice L with pairs of boundaries perpendicular to the direction î colored with
Ci. (b) The toric codeTC(L3) on a cube-like latticeL3 derived fromL by shrinking
3-cells of color C3. Note that L3 has two rough boundaries (shaded) and TC(L3)
encodes one logical qubit with a string-like logical Z operator (red) connecting two
opposite rough boundaries and a membrane-like logical X operator (blue).

Transversal d-qubit control-Z gate in the toric code
We discuss the two-dimensional case first. The topological color code on a square-
like lattice L with four boundaries of color C1 and C2 encodes two logical qubits
(see Fig. 6.15(a)). We label by X (i) and Z (i) the logical Pauli X and Z operators,
which are perpendicular or parallel to the direction î, respectively, for i = 1, 2. Since
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a unitary operator R2 transforms Pauli X into X Z and leaves Z unchanged, then the
logical operators transform under the conjugation by R̃2 as follows

X (1) → X (1) Z (2), Z (1) → Z (1), X (2) → Z (1) X (2), Z (2) → Z (2) .

(6.91)
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Figure 6.15: (Color online) (a) The topological color code CC(L) on a square-like
lattice L with four boundaries of color C1 and C2 encodes two logical qubits, with
logical operators X (i) and Z (i) for i = 1, 2. The toric code TC(Li) (b) for i = 1 and
(c) for i = 2 derived from L by shrinking faces of color Ci encodes one logical qubit
with logical operators Xi and Zi.

Note that since there is no boundary of color C0, then the disentangling unitary U

(see Eq. (6.90)) transforms the color code CC(L) into two decoupled copies of the
toric code, TC(L1) and TC(L2). The mapping defines an isomorphism between
logical operators of the color code and the toric code (see Fig. 6.15). Namely,

X (1) ↔ X1⊗ I, X (2) ↔ I⊗X2, Z (1) ↔ Z1⊗ I, Z (2) ↔ I⊗Z2, (6.92)

where P1 ⊗ P2 denotes an operator which acts as a logical P1 operator on the first
copy TC(L1) of the toric code, and as P2 on the second copy TC(L2). Thus, one
can immediately deduce the effect of U R̃2U† on logical operators of TC(L1) and
TC(L2)

X1⊗I → X1⊗Z2, I⊗X2 → Z1⊗X2, Z1⊗I → Z1⊗I, I⊗Z2 → I⊗Z2. (6.93)

This implies that the action of R̃2 in the color code is equivalent (up to the local
Clifford unitary U) to the logical control-Z gate between two copies of the toric
code.

Let us consider a d-dimensional case, d ≥ 2. The d-qubit control-Z gate is a
generalization of the control-Z gate and is defined in the computational basis as

C⊗d−1Z |x1, . . . , xd〉 = (−1)x1...xd |x1, . . . , xd〉. (6.94)
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Note that the action of C⊗d−1Z is invariant under permutation of qubits. Similar to
the phase gate Rd , the d-qubit control-Z belongs to the d-th level of the Clifford
hierarchy10 but is outside the (d − 1)-th level, which can be seen from the following
relations

K[Rn, X] = e−2πi/2n Rn−1 ∝ Rn−1, (6.95)

K
[
C⊗n−1Z, X ⊗ I⊗n−1

]
= I ⊗ C⊗n−2Z (6.96)

where n ≥ 2 and the commutator is defined as K[A, B] = ABA†B†.

We label logical X and Z operators in the color code by X (i) and Z (i) for i = 1, . . . , d.
Namely, Z (i) is a string-like logical operator parallel to the direction î (i.e. connecting
two opposite boundaries of color Ci) and X (i) is a (d − 1)-dimensional membrane-
like logical operator perpendicular to the direction î. We define the operator R̃i

recursively for i = d − 1, . . . , 1 as follows

IRd−1 = K
[

R̃d, X (1)
]
, (6.97)

IRd−2 = K
[

IRd−1, X (2)
]
, (6.98)

... (6.99)

R̃1 = K
[

R̃2, X (d−1)
]
= Z (d) . (6.100)

Note that the above relations hold for any permutation of colors C1, . . . ,Cd . Let X j

and Z j be logical X and Z operators in the toric code TC(L j ). Then, the following
correspondence holds

X ( j) ↔ X j, Z ( j) ↔ Z j . (6.101)

We can verify that using R̃d one can implement the logical d-qubit control-Z gate
on the stack of d copies of the toric code. Namely,

I ⊗ C⊗d−2Z ∝ K
[
C⊗d−1Z, X1

]
, (6.102)

I⊗2 ⊗ C⊗d−3Z ∝ K
[
I ⊗ C⊗d−2Z, X2

]
, (6.103)

... (6.104)

I⊗d−1 ⊗ Z ∝ K
[
CZ, Xd−1

]
. (6.105)

In the above equations proportionality indicates the same action of the operators on
the code space. Since the disentangling unitary U is a local unitary transformation,

10The Clifford hierarchy is defined recursively: P1 is the Pauli group and Pj =

{unitary U |UPU† ∈ Pj−1∀P ∈ P1} for j > 1.
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U R̃dU† is a local unitary transformation implementing the logical C⊗d−1Z gate on
the stack of d copies of the toric code. We summarize the discussion in this section
by the following theorem.

Theorem 6 (Transversal Implementation) Consider a (d+1)-colorable and (d+

1)-valent d-hypercube-like lattice L with pairs of boundaries perpendicular to the
direction î colored in Ci for i = 1, . . . , d. Let Li be a lattice derived from L by
shrinking all d-cells of color Ci. Then, the logical d-qubit control-Z gate can be
implemented on TC(L1), . . . ,TC(Ld) — the stack of d-copies of the toric code, by
a local unitary transformation

C⊗d−1Z ∝ U R̃dU†, (6.106)

where R̃d is a transversal Rd gate (see Eq. (6.89)) implemented in the color code
CC(L) andU is the disentangling unitary transformingCC(L) into

⊗d
i=1 TC(Li).

Observe that the implementation of C⊗d−1Z seems to require a set of d lattices
{Li} which satisfy certain constraints, i.e. are derived from L described in the
(Transversal Implementation) Theorem 6. In general, it may not be clear whether
there exists a local unitary transformation implementing C⊗d−1Z in d copies of
the toric code. Yet, one can freely deform the lattices on which the toric code is
supported by local operations. Specifically, consider the toric code TC(L) on a
d-dimensional lattice L. We claim that one can transform TC(L) into TC(L′) by
local unitary transformations (and adding or removing ancilla qubits), where L′ is
a lattice derived from the original lattice L by adding or removing edges. Such
local deformations of the lattices allow us to obtain d copies of the toric code with
C⊗d−1Z implementable by local unitary transformations as long as the boundaries of
d copies of the toric code are appropriately arranged. In particular, this implies that
three copies of the three-dimensional toric code admit fault-tolerant implementation
of a logical non-Clifford gate, which saturates the bound by Bravyi and König in
three dimensions.

Koniec i bomba, a kto czytał, ten tra̧ba!
—Witold Gombrowicz, “Ferdydurke”
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