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ABSTRACT

Formulating a universally satisfactory theory of quantum gravity is a long-standing

open problem in theoretical physics. Relatively recently, the use of techniques from

quantum information has emerged as a powerful tool for analyzing phenomena that

lie at the intersection of quantum theory and gravitation. This thesis describes

several advances and novel proposals that were made regarding information theoretic

aspects of quantum gravity in three broad areas: holography, cosmology, and the

black hole information problem.

Regarding holography, we first assess the differences between typical holographic

states and fully random states. Next, we show that determining Ryu-Takayanagi

surfaces in AdS3/CFT2 is computationally easy from a complexity-theoretic stand-

point. Finally, we identify precise consistency conditions that constrain the validity

of an early tensor network model for the AdS/CFT correspondence that uses the

Multiscale Entanglement Renormalization Ansatz (MERA).

Regarding cosmology, we propose an alternative interpretation of the MERA as

a discretization of de Sitter spacetime. Next, we return to holographic ideas and

show that an appropriately-defined Generalized Second Law implies a cosmic no-

hair theorem for certain classes of cosmological spacetimes. Finally, we advance an

information-theoretic proposal for calculating the signature of a quantum gravity-

motivated, fully covariant, natural ultraviolet cutoff in the spectrum of inflationary

perturbations.

Regarding the black hole information problem, we begin by exhibiting a simple

protocol which, under highly specific circumstances, allows one to retrieve a single

qubit from a black hole. Next, we propose an operational resolution of the black

hole information problem in which observers who enter the black hole could never

detect an inconsistency between their experiences and quantum mechanics due to

the finite amount of time available before reaching the central singularity. Finally, we

discuss a proposal to understand the emergence of an ensemble of definite geometries
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during the process of black hole evaporation as a decoherence process, as well as its

implications for the black hole information problem.
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C h a p t e r 1

INTRODUCTION

The two most important physical theories of the last century are general relativity

and quantum mechanics. It is no exaggeration to say that every major development

in physics has relied on one or both of these two theories since their mainstream

adoption, and an important pending development is the satisfactory characterization

of their direct intersection. Finding a successful theory of quantum gravity that is

universal in scope is a major open direction of research.

Of course, given that we have successful quantum descriptions of physical phenomena

as well as successful general relativistic descriptions of gravitational phenomena, it

is natural to hunt for a quantum description of gravity. Besides logical satisfaction,

however, practical reasons require us to confront the issue of quantum gravity.

By now there is ample evidence, both direct and indirect, that there exist energy

scales and regimes of curvature in the universe for which both quantum and gravita-

tional effects are important—the two most conspicuous being the very early universe

and black holes, due to the extreme energy and curvature scales involved. Less con-

spicuous settings include, for example, satellite-based quantum communication ex-

periments, where spacetime curvature influences the distribution and exploitation of

entanglement among parties which sit at different points in the Earth’s gravitational

field [10]. Another setting is the conventional laboratory, where certain precision

tabletop experiments propose to measure interference between paths which cross

different gravitational potentials [11], while others propose to place mesoscopic ob-

jects in superpositions of different states of motion [12].

There are myriad approaches to trying to quantize gravity (or, alternatively, to try-

ing to gravitize quantum theory1). Among all of these approaches, an important
1I attribute this terminology to ChunJun Cao. I first heard it in his Ph.D. thesis defence on

May 1, 2018 at the California Institute of Technology.
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tool to emerge over the last few decades is the use of quantum information tech-

niques as a means of analyzing quantum gravity. This is because the abstractions

of information theory appear to be a common language between gravitational and

quantum mechanical systems.

A linchpin of this program is the link between entanglement entropy and the geo-

metric area of surfaces in spacetime. Thought experiments in relativity indicate that

the entropy of gravitational systems is bounded by the area of appropriate bounding

surfaces [13,14]. If spacetime is to admit a description in terms of quantum degrees

of freedom in a Hilbert space, then this bound suggests that gravity is holographic.

That is, the number of degrees of freedom corresponding to a region of spacetime

should not scale with the volume of the region, but rather with the area of a bound-

ing surface in one lower dimension. The entanglement entropy of these degrees of

freedom is then the source of the entropy of the gravitational system.

An important testing ground that explicitly realizes holography and which further

purports to be an exact theory of quantum gravity is the AdS/CFT correspon-

dence [15,16]. According to AdS/CFT, the states of certain conformal field theories

(CFTs) are in exact correspondence with states of a quantum gravitational theory

of asymptotically Anti de Sitter (AdS) spacetimes in one higher dimension, where

the CFT may be identified with the spacetime boundary. Within AdS/CFT, the

link between entropy and area is made explicit by the Ryu-Takayanagi formula for

static spacetimes in the large-N limit [17], which relates the entanglement entropy

of a region A on the boundary to the area of a surface Ã in the bulk:

S(A) =
area(Ã)

4G
. (1.1)

The bulk surface Ã is chosen such that ∂A = ∂Ã, Ã is homologous to A, and such

that it has maximal area over all surfaces that satisfy the first two criteria.

The first part of this dissertation deals with topics in AdS/CFT. Ch. 2 gives a

pedagogical account of what it means to be a typical holographic state. Not all

states in AdS/CFT have well-defined semiclassical geometric duals, and so one must
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be careful when trying to derive statistics on average holographic states.

Next, Ch. 3 is directly concerned with the Ryu-Takayanagi formula itself. This chap-

ter assesses the computational complexity of computing Ryu-Takayanagi surfaces in

AdS3/CFT2. This task is computationally difficult in higher dimensions, but the

task is determined to be computationally easy in the special case of AdS3/CFT2

where the geometry is particularly simple. As a result, combinatorial complexity is

clearly separated from geometric considerations.

The next chapter broaches a technique that has important applications to AdS/CFT:

tensor networks. These were originally developed for use in condensed matter theory

as a way to efficiently represent complicated quantum states of many-body systems.

In essence, tensor networks trade algebraic complexity for geometric information, and

as such have been adopted by the gravity community as possible “building blocks”

for models of spacetime. Ch. 4 examines the limitations of a model for AdS/CFT

built out of the Multiscale Entanglement Renormalization Ansatz (MERA) tensor

network.

Ch. 5 continues with the theme of tensor network models for spacetime while opening

the second part of this dissertation, which pertains to topics in cosmology. As an

alternative to AdS/CFT, this chapter proposes an interpretation for the MERA as

a cosmological de Sitter spacetime.

Ch. 6 returns to holographic ideas, but now in a cosmological context. In particular,

a generalized second law of thermodynamics which relates the increase in entropy of

gravitational systems to the increase in area of families of compact surfaces in the

geometry is examined. Here it is shown that this generalized second law implies a

cosmic no-hair theorem. That is, it is established that the increase of generalized

entropy up to a finite maximum value in certain cosmological models implies that

the spacetime asymptotes to a de Sitter configuration in the future. In this sense,

de Sitter is a cosmological equilibrium state.

Then, Ch. 7 ends the cosmological part of this dissertation with a topic that is
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situated in a very different regime of cosmology: the inflationary universe. This

chapter is concerned with characterizing the signatures of Planck-scale physics in

the spectrum of inflationary perturbations. More precisely, this chapter presents the

computation of the signature of a natural covariant minimum length scale, where the

minimum length scale takes the form of a covariant bandlimit in the sense of Shannon

information theory. In other words, the existence of a finite natural minimum length

scale is reflected as a cutoff on the density of degrees of freedom in spacetime.

The last part of this dissertation covers topics having to do with the other major area

of overlap between quantum theory and general relativity mentioned at the beginning

of the introduction: the black hole information problem. Here, the application of

information theory to black holes leads to a stark dilemma: it would appear that

black holes either destroy quantum information, or local effective field theory must

break down in a significant way in the presence of gravity. This dilemma is known

as the black hole information problem and is further reviewed in Ch. 8.

Ch. 9 constitutes a first foray into addressing the black hole information problem, in

which an information-theoretic protocol is discussed whereby it is possible to retrieve

a single qubit from a black hole under special conditions. However, the seriousness of

the black hole information problem lies in longer timescales, over which a significant

portion of the black hole evaporates.

Two approaches to overcoming the black hole information problem on longer timescales

are discussed in the next two chapters. Ch. 10 explores an operational resolution.

The basic idea is that an observer who crosses the event horizon of a black hole does

not have enough time to detect violations of quantum mechanics before reaching the

singularity, under reasonable assumptions about their computing power.

The spirit of Ch. 11 is to take seriously the idea that, on timescales of order the black

hole mass, evaporation does not lead to a single black hole geometry, but rather an

ensemble of possible definite geometric configurations. Decoherence is proposed as

a mechanism for understanding the quantum mechanical emergence of this ensem-

ble. Given that the black hole information problem is based on postulates that are
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partially formulated using effective field theory on a curved spacetime background,

said postulates are re-examined in light of the decoherence proposal to conclude

that there may be no problem in the first place. An important independent lesson

from this chapter is that foundational aspects of quantum theory appear to have

important ramifications for quantum gravitational phenomena.

1.1 How it all fits together

As an alternative way of understanding how the topics addressed in this thesis fit into

the bigger picture of quantum gravity, I have laid them out in a mind map alongside

other principles, ideas, and directions in Fig. 1.1. A short glossary of the terms

appearing in this mind map are also given below, along with selected references.

The selection of topics shown is by no means comprehensive, but instead reflects my

own interests and those of my colleagues.

Glossary

AdS/CFT – The Anti de Sitter/Conformal Field Theory correspondence [15,16].

Amplitudes – The program of calculating scattering amplitudes for processes that

involve gravitons and other species in the framework of perturbative quantum grav-

ity.

AMPS – Almheiri, Marolf, Polchinski, and Sully; authors of the celebrated “firewalls”

papers which succinctly formulated the modern black hole information problem [18,

19].

Black Holes/Information – By this, I mean the specific sub-field of black hole physics

that examines the issue of whether the evolution of black holes is unitary or not.

Bulk Emergent Gravity – The proposal to understand the emergence of a spacetime

metric from quantum correlations in a qudit system and the emergence of gravita-

tional dynamics from the dynamics of entanglement [20,21].

Classicalizaton/Decoherence – The process by which manifestly quantum fluctua-
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tions of the inflaton field become classical stress-energy/curvature perturbations.

See, e.g., [22].

Complementarity – The idea that an infalling observer and an observer who remains

outside of a black hole can have complementary descriptions of where they think

quantum information is stored in spacetime [23].

Distance/Mutual Info – This refers to Van Raamsdonk’s finding that mutual infor-

mation in the CFT can serve as a proxy for geodesic spacetime distance in AdS [24].

Emergence – By this I mean any “bottom-up” approach to quantum gravity, which

starts with a quantum mechanical systems and aims to discover gravity lurking

within.

Entropy Cone – Constraints on holographic states from saturating multi-party en-

tanglement entropy inequalities [25].

Error Correction – Seminal references on the interpretation of AdS/CFT as error

correction are Refs. [26,27].

Extremal Surface Zoo – The specific program of interpreting extremal bulk surfaces

as entropic quantities, e.g., Ref. [28].

Generalized Holography – The program of realizing holography in other gravitational

theories besides those that describe asymptotically AdS spacetimes.

Generalized Second Law – See Ref. [29].

Geometrization – By this I mean the program of interpreting information theoretic

objects in the CFT as geometric structures in the gravitational bulk.

Gravitational Wave Spectroscopy – The ambition to eventually extract detailed in-

formation about the quantum structure of black holes and the epochs which precede

recombination from gravitational radiation [30].

Holographic Codes – Quantum error correcting codes that serve as toy models for

holography, e.g., Ref. [31].
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Holography – The idea that it may be possible to encode complete information about

a gravitating system in one fewer dimension than is apparent in the gravitational

description.

HRT – Hubeny-Rangamani-Takayanagi; a covariant version of the Ryu-Takayanagi

formula [32].

Perturbative Quantum Gravity – A regime of quantum gravity where gravitational

perturbations are treated as quantized propagating excitations on a background

spacetime.

Planck-Scale Effects in Cosmology – The program of looking for the signatures of

Planck-scale effects in cosmic microwave background (CMB) data.

Quantum Energy Conditions – Generalizations of classical stress-energy conditions

that aim to retain their validity at next to leading order in 1/G in gravity [33,34].

Quantum Mereology – An attempt to understand the emergence of preferred factor-

izations of Hilbert space on entropic grounds [35].

Ryu-Takayanagi – See Ref. [17].

Semiclassical Quantum Gravity – By this I mean approaches and topics in quan-

tum gravity in which a semiclassical notion of a background spacetime still figures

prominently.

State Measures – Refers to the general topic of characterizing what proportion of

CFT states have well-defined geometric duals, as well as the statistics of this distri-

bution.

Tensor Networks – For a review, see Ref. [36].

Weak Gravity Conjecture – The conjecture that gravity coupled to a species with

a U(1) charge should have state such that its charge exceeds its mass. See, e.g.,

Refs. [37, 38].
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Part I

Holography
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C h a p t e r 2

PUZZLES AND PITFALLS INVOLVING HAAR-TYPICALITY IN
HOLOGRAPHY

Typical holographic states that have a well-defined geometric dual in AdS/CFT are

not typical with respect to the Haar measure. As such, trying to apply principles

and lessons from Haar-random ensembles of states to holographic states can lead to

apparent puzzles and contradictions. We point out a handful of these pitfalls.

This chapter is available in preprint form as Ref. [1], N. Bao and A. Chatwin-Davies,

“Puzzles and pitfalls involving Haar-typicality in holography,” arXiv:1708.08561.

2.1 Introduction

Typical states and the technique of averaging over ensembles of states are powerful

tools in quantum information theory. In high-energy physics, these tools have been

a central component of quantum gravity studies over the last several years. In

particular, the notion of Haar-typical states and Page’s theorem are two workhorses

of quantum information in quantum gravity.

Roughly speaking, a Haar-typical state is a fully-random quantum state. Given a

finite-dimensional Hilbert space H and any reference state |ψ0〉 ∈ H, a Haar-typical

state may be thought of as a realization of the random variable |ψ(U)〉 = U |ψ0〉,

where U is a random unitary matrix drawn with uniform probability from the set of

all unitary matrices. The uniform probability distribution over the unitaries is the

normalized Haar measure over the set of unitary matrices. For convenience, we will

just refer to this as “the Haar measure” for the rest of this note.

The Haar measure is a key ingredient in both the statement and proof of Page’s

theorem [39]. Suppose now that the Hilbert space splits into two subfactors, H =

HA ⊗HB. If |ψ〉 is a Haar-typical state on H, then Page’s theorem essentially says

that, with high probability, the reduced state of |ψ〉 in the HA subfactor is very

http://arxiv.org/abs/1708.08561
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nearly maximally entangled with the part of the state in the HB subfactor if the

dimension of HA is much smaller than that of HB. Taken together, Page’s theorem

and Haar typicality are a precise statement of the notion that a small subsystem

generically tends to be maximally entangled with its larger complement in a fixed

Hilbert space.

Page’s theorem has been fruitfully applied to the physics of semiclassical black holes

[18, 40–42]. Here, one usually considers a collection of matter that is initially in a

pure state and that collapses into a black hole, which over time dissipates via the

process of Hawking evaporation [43]. From a quantum-mechanical standpoint, the

whole process is modelled as taking place in a single Hilbert space, H, in which

a finite number of degrees of freedom are divided up between the black hole and

radiation. Of course, the factorization of H varies from Cauchy slice to Cauchy slice

as the black hole evaporates, but if black holes do not destroy information, then the

evolution of the total state is unitary and the size of the total Hilbert space must be

constant in this model.

While the quantum-gravitational dynamics of black hole degrees of freedom are un-

known, for information-theoretic purposes at least, it seems that it is reasonable

to model the dynamics in the black hole’s Hilbert space by Haar-random unitary

evolution (or a 2-design approximation thereof [42]), at least on timescales that are

shorter than the rate of Hawking emissions so that the size of the black hole Hilbert

space is constant. Therefore, shortly after the black hole forms1, the total state in

H is Haar-typical in this model, and so Page’s theorem may be used to study the

entanglement properties of the state across the changing factorization of H during

the subsequent evolution. For example, this sort of analysis revealed that if you

toss a small quantum system into a black hole, then information about its state is

rapidly returned via Hawking radiation once the black hole has given up more than

half of its degrees of freedom through evaporation [42]. Similar considerations are

at the heart of the ongoing debates that surround complementarity [23], the black
1Or more precisely, one scrambling time after the black hole forms [42].
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hole information problem [44], and the firewall puzzle [18].

However, an area in which Page’s theorem and Haar-typicality have significantly

less applicability is AdS/CFT [15, 16]. This is because a typical holographic state

in a large-N CFT that has a well-defined geometric gravitational dual is not typical

with respect to the Haar measure. To see this, note that holographic states are

significantly less entangled on small scales, per the Ryu-Takayanagi formula, than

Haar-typical states. Given some small spacelike region A in the CFT, the reduced

state on A of a Haar-typical state per Page’s theorem must have extensive entan-

glement entropy that scales like the volume of A. For a holographic state, when A

is small enough, the minimal surface anchored to ∂A only probes the region of the

bulk gravitational dual near its asymptotically AdS boundary. Therefore, the area

of the minimal surface, and hence the entropy of the reduced state on A, must be

sub-extensive in the volume of A. Haar-typical states are therefore not holographic.

Nevertheless, careful use of random state statistics and suitable generalizations of

Haar-typicality, such as typicality with respect to the microcanonical ensemble in a

fixed energy window, can serve as useful tools for holography.

That typical holographic states are not typical with respect to the Haar measure is

well-known in the community. Nevertheless, it is quite easy to momentarily overlook

this fact, which can lead to apparent puzzles in holography. Our main goals in

writing this short note are to highlight the fact that Haar-typical states are not

holographic and to point out a handful of potential pitfalls that could arise from

overextending Page’s theorem when it enters into discussions about holography in

the literature. We hope that both veterans and novices will find this note to be

digestible and helpful in avoiding confusions that have befallen us in the past.

In Section 2.2, we review the precise definition of Haar-typicality and the precise

statement of Page’s theorem, and we reiterate the argument for why Haar-typical

states are not holographic in commensurate language. Then, in Section 2.3, we point

out several puzzles and potential pitfalls in the literature. We offer some concluding

remarks in Section 2.4.
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2.2 Properties of random states

Let H be a finite-dimensional Hilbert space with dimension n and consider the group

of unitary transformations, U(n), acting on H.

Definition 2.2.1. The normalized Haar measure on U(n) is the unique measure µ

measuring subsets of U(n) such that:

• µ(US) = µ(SU) = µ(S) for all S ⊂ U(n) and U ∈ U(n), where US =

{UV | V ∈ S} and SU is similarly defined.

• µ(U(n)) = 1

From the properties above, it also follows that µ is non-negative, so the normalized

Haar measure on U(n) is a uniform probability distribution on the group of unitary

transformations as such.

To state Page’s theorem, we also need the trace norm, which is defined as ‖T‖1 =

tr
√
T †T for any linear operator T on H. The trace norm gives a good notion of

distinctness of states because if ‖ρ−σ‖1 < ε for any two density operators (i.e., states)

ρ and σ on H, then ‖P (ρ − σ)‖1 < ε for any projector P so that the probabilities

for measurement outcomes in the states ρ and σ are close [45].

Now suppose that H = HA ⊗ HB, where dim HA = dA and dim HB = dB with

n = dAdB. Without loss of generality, suppose that dA ≤ dB. A precise statement

of Page’s theorem is as follows2:

Theorem 2.2.2 (Page). Let |ψ0〉 ∈ H be a fixed reference state and let |ψ(U)〉 =

U |ψ0〉 for any U ∈ U(n). Let ρA(U) = trB |ψ(U)〉〈ψ(U)| denote the reduced state of

|ψ(U)〉 on HA. Then it follows that∫
dµ(U)

∥∥∥∥ ρA(U)− IA
dA

∥∥∥∥
1

≤
√
dA
dB
, (2.1)

2As a historical note, the theorem originally proved by Page [39] was formulated in terms of
entanglement entropies and built upon earlier works by Lubkin [46] and Lloyd & Pagels [47]. The
version of Page’s theorem given here is based on the statement appearing in [45]. A detailed
yet accessible proof of Page’s theorem can be found in Sec. 10.9 of [48] under the name of “the
decoupling inequality.”
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where IA is the identity operator on HA.

Page’s theorem therefore says that the average distance between a random reduced

state ρA(U) and the maximally mixed state on HA, IA/dA, is bounded by
√
dA/dB.

The bite of Page’s theorem comes when dA � dB, in which case the average distance

is very small. We note this can be the case for qubit systems even when the number

of qubits associated with A is only a little smaller than those associated with B, as

the dimensionality scales exponentially in the number of qubits. In this case, the

interpretation of Page’s theorem is that the reduced state on a small subfactor of a

randomly-chosen pure state is, with high probability, close to the maximally mixed

state. Or, in other words, for a Haar-typical state, the reduced state on a small

subfactor of Hilbert space is very nearly maximally entangled with its complementary

degrees of freedom.

Now consider a CFT in D dimensions. Let the theory have both ultraviolet and

infrared regulators so that it sits on a periodic lattice with spacing ε with (finite-

dimensional) Hilbert space subfactors at every vertex, and let H be the Hilbert space

of the regulated theory. For example, the theory could describe an Ising spin chain,

where the CFT is recovered in the continuum limit. It is formally necessary to work

with a finite-dimensional regularization so that the Haar measure and Page’s theorem

apply. Consider a subregion of the CFT labelled by A that has a characteristic linear

dimension l, such as a (D − 1)-dimensional ball. Now let |ψ〉 be some Haar-typical

state on H. Then, provided that A is a small subregion of the entire CFT, the

reduced state on A, call it ρA, is very close to being maximally mixed by Page’s

theorem. In particular, this means that its von Neumann entropy scales extensively

with the volume of A:

S(ρA) ∝
(
l

ε

)D−1

. (2.2)

The reason why a Haar-typical state is not holographic is because the von Neumann

entropy in Eq. (2.2) above is in tension with the Ryu-Takayanagi formula [17]. Sup-

pose now that the CFT in question has a state |φ〉 with a well-defined, asymptotically
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AdS geometric dual in D+1 dimensions where we can think of the CFT as living on

the bulk geometry’s boundary. Per the Ryu-Takayanagi formula, the von Neumann

entropy of the reduced state on A, call it σA, is given by the area in Planck units of

a bulk minimal surface Ã that is homologous to A and such that ∂A = ∂Ã:

S(σA) =
area(Ã)

4G
. (2.3)

The tension comes when A is small enough such that the minimal surface Ã only

probes the near-boundary region, which has asymptotic AdS geometry. Since such

Ã only sees AdS geometry, its area will be subextensive compared to the volume of

A in the boundary. For example, when D = 3 and when A is a small disk of radius

l, the area of Ã scales like l/ε, cf. Eq. (2.2). In general, the scaling is

area(Ã) ∝
∫ 1

ε/l
dζ

(1− ζ2)(D−3)/2

ζD−1
≤
∫ 1

ε/l

dζ

ζD−1
, (2.4)

which is subextensive compared to (l/ε)D−1. Therefore, typical holographic states

cannot be typical with respect to the Haar measure, and arguments which depend

critically on Haar typicality will generally not apply to states with classical holo-

graphic bulk duals.

2.3 Puzzles resolved and pitfalls espied

Having reviewed Haar-typicality and Page’s theorem, we now identify a handful of

situations in the literature on holography where intuition from and use of Haar-

typical states can be misleading. We also discuss two situations in which the use of

Haar-typicality is appropriate.

2.3.1 Measures of holographic states

A current area of research is what fraction of quantum states are allowed to be

holographic states. In particular, the measure computed using the entropy cone [25]

seems to conflict with a recent numerical study by Rangamani and Rota [49] for

reasons that we now clarify.
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In their work, Rangamani and Rota study how measures of entanglement and the

structure of entanglement among different partitions of a pure state characterize the

structure of the state. Given a randomly-chosen pure state of N qubits, they first

trace out k < N qubits and then compute various measures of entanglement among

partitions of the remaining N − k qubits. For example, one entanglement measure

that they check is whether states generated in this way obey monogamy of mutual

information (MMI):

SAB + SBC + SAC ≥ SA + SB + SC + SABC . (2.5)

In the above, A, B, and C denote subsets of the remaining N − k qubits, and all

permutations such that 3 ≤ |ABC| ≤ N−k are checked. (|A|, |AB|, etc. denotes the

number of qubits in A, AB, etc.) MMI is an inequality which holographic states must

obey but generic quantum states need not [50]. In their work, it was found that when

the method described above is Monte Carlo iterated, almost all states generated in

this way satisfy MMI. It is further believed that the higher party-number holographic

inequalities [25] would be generically obeyed, as well.

The entropy cone measure, by contrast, does not randomly generate states directly,

but rather the entanglement entropies SA, SB, SAB, . . . directly. Once the requisite

entanglement entropies are generated, it is then determined whether they (a) are

entanglement entropies that are valid for a quantum state and (b) satisfy the further

holographic entanglement entropy inequalities, such as MMI. The ratio of the number

of sets of randomly generated entanglement entropies that are consistent with both

holography and quantum mechanics as a fraction of the number of such entropies

consistent with quantum mechanics is then computed. When using this measure, it is

found that just over half of all sets of entropies consistent with quantum constraints

do not obey the holographic inequalities for three parties, and that this fraction

appears to fall off rapidly as a function of party number [51].

We stress that Rangamani and Rota’s goal was not to compute a measure of holo-

graphic states; however, the entropy cone measure is somewhat puzzling in light

of how weakly-constraining MMI is in their numerical assays. At this point, it is
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useful to note that Rangamani and Rota’s construction is generic with respect to

the Haar measure; the way that the states are constructed there could have been

equivalently done via the application of a Haar-random unitary. For example, from

the perspective of this measure, if |A|, |B|, |C| � N − k, then generically we would

expect MMI to be not only satisfied, but saturated—not because of any holographic

consideration, but because MMI is a balanced inequality and all of the entropies

are approximately equal to the logarithms of the dimensions of the states’ selfsame

Hilbert spaces by Page’s theorem.

In general, MMI tends to be satisfied for arbitrary partitions of Haar-typical states,

since SK = SKc with Page’s theorem applied to the complementKc for any collection

of qubits such that |K| > N/2. If holographic states are fundamentally atypical with

respect to the Haar measure, then attempting to conclude which fraction of states

can be holographic using a measure that is typical with respect to the Haar measure

would yield false positives. The entropy cone measure, by contrast, is unbiased with

respect to subregion entropies, as it does not directly generate the states.

2.3.2 Error correction

The assumption that holographic states are well-governed by Page’s theorem also

appears within the original paper positing the connection between quantum error

correction and AdS/CFT [26]. Here, typicality with respect to the Haar measure

is used to argue that deletion of arbitrary sets of l qubits in the boundary can be

totally corrected given that more than half of the boundary conformal field theory is

retained. The reason given for this sharp transition is that this is the point at which

the deleted portion of the CFT changes between being just less than and just more

than half of the number of qubits in the CFT. Then, once the deleted region becomes

less than half of the CFT, it becomes exponentially close to maximally mixed. In

particular, this is how the relationship between the error correction picture and the

entanglement wedge was originally argued. For a more detailed and complete picture

of this argument, see [26].
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In reality, the constraint provided by Ryu-Takayanagi prevents the deleted region of

the boundary CFT from being close to maximally mixed, and thus a key portion of

the argument above is no longer supported. Indeed, while it is true that a generic

state with respect to the Haar measure can be corrected by a typical code with

a random k qubit code subspace of n qubits so long as n − 2l − k � 1, because

holographic states are atypical with respect to the Haar measure, this statement

has little traction in holography. Thus, this portion of the error correcting picture

of holography is not actually suggestive of the entanglement wedge, unless another

measure that holographic states can be typical with respect to can be shown to yield

similar results. Further works [27,52] eventually established the relationship between

the entanglement wedge and quantum error correction. Nevertheless, we stress that

these Page-type arguments about the relationship between quantum error correction

and holograph are specious, and must be taken with a large grain of salt, if at all,

particularly in the construction of new arguments in this field.

2.3.3 Butterfly effects and shockwaves

Haar-randomness has also been used in the context of [53] to model the behavior

of a shockwave acting on the left half of a thermofield double state. To the past of

the shockwave, the thermofield double state has a classical bulk black hole geometry.

The state is conjectured to have a classical bulk geometry after the shockwave, whose

sole effect should be the displacement of the event horizon. This would be difficult

to realize by approximating the shockwave as a Haar-random unitary. Based on the

previous discussion, acting with a Haar random unitary on a CFT state with a well-

defined geometric dual would typically create a generic state whose dual geometry

(at least on the left half) would be totally non-classical (in order for boundary sub-

regions to obey Page’s theorem). This is undesirable for approximating shockwave

geometries, as one loses the ability to reproduce holographic entanglement entropies

on spacelike slices of the left region.



20

2.3.4 Random tensor networks

We note, however, that holographic models can exploit Haar-randomness, as long as

the objects that are Haar-random are Haar-random below the curvature scale. For

example, the random tensor model of holography [54] has Haar-random unitaries

involved in the creation of each individual tensor site. This should not, however,

create a global Haar-typical state, as the spatial arrangement of the tensors in the

tensor network would provide a structure to the entanglement that is consistent with

that of holography. In this way the overall global state avoids being Haar-typical.

It is possible that such models may have issues with reproducing physics below the

curvature scale, but that is outside of the scope of this work.

2.3.5 Other probability distributions

Similarly, states that are typical with respect to other random state distributions

that deviate from the Haar measure on the full Hilbert space can also serve as

good models for holographic states. For example, let H[E,E+δE] denote the subspace

spanned by the eigenstates of the Hamiltonian whose energies lie within the range

[E,E+δE] for some δE � E. A random state drawn with uniform probability from

this energy shell (or in other words, sampled from the microcanonical ensemble)

typically has a pure-state black hole dual [55–57]. In this case, the Haar measure on

H[E,E+δE] is admissible because the resulting measure on H is not itself the Haar

measure.

2.4 Conclusion

A randomly-chosen state is probably not holographic. We all know this fact very

well, but it can be easy to overlook when tempted with results from Haar-typical

states. From this perspective, we clarified some potentially confusing points in the

literature. We hope that this will help newcomers to the field avoid being misled by

Haar-random intuition.
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C h a p t e r 3

THE COMPLEXITY OF IDENTIFYING RYU-TAKAYANAGI SURFACES
IN ADS3 / CFT2

We present a constructive algorithm for finding Ryu-Takayanagi surfaces in AdS3/

CFT2 which exploits previously noted connections between holographic entangle-

ment entropy and max-flow/min-cut. We then show that the algorithm runs in

polynomial time.

This chapter was published as Ref. [2], N. Bao and A. Chatwin-Davies, “The com-

plexity of identifying Ryu-Takayanagi surfaces in AdS3/CFT2,” JHEP 11 (2016)

034, arXiv:1609.01727.

3.1 Introduction

The calculation of entanglement entropy S is a key aspect in understanding the de-

gree of quantumness of a system. While this is a problem that is generically difficult

for arbitrary quantum systems, Ryu and Takayanagi [17] beautifully simplified the

calculation for field theories that possess classical gravitational duals [15] through

their eponymous formula,

S(A) =
area(Ã)

4GN
. (3.1)

In the above, A is a region in the boundary conformal field theory, and Ã is a

minimal-area surface in the bulk gravitational dual such that ∂A = ∂Ã. The Ryu-

Takayanagi formula essentially translates the abstract algebra question of taking

partial traces of density matrices into a geometric one.

A natural question to ask is exactly how difficult is it to use the Ryu-Takayanagi

formula to calculate the entanglement entropy of a boundary region? In arbitrary di-

mensions, even in the case where A consists of a single simply-connected region, the

problem of finding the bulk minimal surface is famously difficult. It is known, for ex-

ample, that even a discretized version of the problem is NP-hard for a bulk that has

http://dx.doi.org/10.1007/JHEP11(2016)034
http://dx.doi.org/10.1007/JHEP11(2016)034
http://arxiv.org/abs/1609.01727
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three spatial dimensions [58]. The problem simplifies considerably in AdS3/CFT2,

where a spacelike slice through the spacetime results in a one-dimensional boundary

and a two-dimensional bulk. Simply-connected boundary regions are just intervals

that are entirely characterized by their two endpoints, and when the bulk is itself

simply-connected, the corresponding bulk minimal-area surface is a single geodesic

that is anchored on the boundary at the interval’s endpoints. Nevertheless, the story

becomes more complicated when A consists of a set of disjoint subregions in the one-

dimensional boundary conformal field theory. The question boils down to finding

the correct union of geodesics (which run between boundary subregion endpoints)

that is altogether both minimal and homologous to A. For A which is the union

of n subregions, the brute force solution consists of checking every combination of

n geodesics that run between the 2n endpoints—a task that scales exponentially in

n. Is there a more efficient way to identify the correct union of geodesics, or is the

combinatorics of boundary subregions a source of hardness even in a one-dimensional

boundary?

We find that there is a strong simplification to a polynomial time algorithm in

three-dimensional gravity. Following previous inspiring and precise statements of a

connection between the Ryu-Takayanagi conjecture and max-flow/min-cut [25, 59],

we first devise a constructive algorithm that reduces the problem of determining

the minimal-area surface in the context of AdS3/CFT2 to solving max-flow/min-cut

on a graph. Crucially, the latter problem can be solved in polynomial time. We

then analyze the computational overhead that is required to reduce the problem to

max-flow/min-cut and verify that it requires no more than polynomial time as well.

The organization of the chapter is as follows: In Sec. 3.2 we present the algorithm to

identify the bulk minimal surface in mathematical terms, and in Sec. 3.3 we analyze

the complexity of this algorithm. In Sec. 3.4, we discuss how our approach generalizes

to nontrivial bulk topologies. Finally, in Sec. 3.5 we conclude with a few remarks.
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3.2 An algorithm to identify minimal-length bulk surfaces

We begin by precisely stating the problem. Let X be a spatial slice of an asymptot-

ically AdS3 spacetime, and suppose that X is simply-connected. Further, suppose

that X is holographically dual to a CFT state ρ defined on its boundary, ∂X. Let

{Ai}ni=1 with n ≥ 2 be a collection of non-empty, simply-connected, closed, disjoint

boundary regions, i.e., Ai ⊂ ∂X, Ai 6= ∅, Ai = cl(Ai) for i ∈ [n],1 and Ai ∩ Aj = ∅

for i 6= j. What is the Ryu-Takayanagi surface, i.e., the minimal-length bulk sur-

face Ã that is homologous to A =
⋃n
i=1Ai? Or, if there are several minimal-length

surfaces, what is one of them? Note that we may consider strictly disjoint regions

without loss of any generality; two overlapping or touching regions Ai and Ai+1 may

be fused, since the area of any surface that subtends Ai and Ai+1 separately can

only be greater than or equal to the area of a surface that subtends Ai ∪Ai+1.

Our approach to identifying Ã is to reformulate the question as a problem on a

graph using a construction that is a variation on the one presented in section 3

of [25]. Without loss of generality, suppose that the Ai are numbered according to

the order in which they appear going counter-clockwise along ∂X and let Ai = [ai, bi],

again with respect to counter-clockwise ordering. Next, for each ai, draw geodesics

between it and every bj so that each geodesic subtends a boundary region [ai, bj ]

whose interior contains zero or an even number of boundary endpoints2 (Fig. 3.1a).

Because X is two-dimensional and simply-connected, these geodesics are precisely

the curves that could possibly make up the bulk minimal surface, or in other words, Ã

is a subset of these geodesics. Since each ai is connected to each of the n endpoints bj ,

there are n2 geodesics in total, and since in the minimal surface each endpoint must

be connected to only one other endpoint by a geodesic, Ã consists of n geodesics.

Therefore, the task of finding Ã amounts to identifying n of the n2 geodesics whose

cumulative length is minimal, subject to the constraint that they must together

subtend A.
1We use the notation [n] ≡ {1, 2, . . . , n} as in [25].
2The graph formed by the endpoints as vertices and the geodesics as edges is an example of a

complete bipartite graph.
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The set of these geodesics, together with ∂X, partition X into a collection of bulk

pieces {Xα}. Define a weighted graph Γ̃ by placing a vertex vα in each of these

pieces, and connect two vertices vα, vα′ with an edge eαα′ if the pieces to which

they belong share an edge, which is itself a segment of a single geodesic (Fig. 3.1b).

Define the weight of eαα′ to be the proper length of this geodesic segment, i.e.,

ω(eαα′) = |Xα ∩ Xα′ |, where | · | denotes proper length in this context. Finally,

merge all of the vertices for which (Xα ∩ ∂X) ⊂ A into a single vertex vA, and

similarly merge all of the vertices for which (Xα ∩ ∂X) ⊂ Ac, where Ac = ∂X − A,

into another single vertex vAc (Fig. 3.1c).

Next, define a cut in the following way3:

Definition 3.2.1. A k-cut C is a subset of the edges of a graph G such that, upon

removal of the edges in C, G is partitioned into k disjoint connected components.

The weight of the cut, denoted by |C|, is defined as the sum of the weights of the

edges that constitute the cut, i.e.,

|C| =
∑
e∈C

ω(e) . (3.2)

We then arrive at the following result:

Proposition 3.2.2. Let C∗ be a minimal-weight 2-cut that separates vA and vAc

in the graph construction above. Then, the union of the geodesic segments to which

each eαα′ ∈ C∗ corresponds is Ã, i.e.,

Ã =
⋃

eαα′∈C∗
(Xα ∩Xα′). (3.3)

Proof: Upon close examination, one can see that the proposition follows from the

proof of lemma 3 in [25]. To show this, first recall the definition of the graph

from [25]. Their final graph, which we denote by G, is constructed out of boundary-

anchored geodesics in the same way as Γ̃ (except for the final step where the two

sets of boundary vertices are merged); however, the set of geodesics is different.
3Note that this definition is slightly different from that of [25].
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Figure 3.1: Variation on the graph construction from [25] (cf. their figure 4), illus-
trated for n = 4. (a) The boundary regions A1, . . . , A4 are shown in red and the
geodesics which link each ai and bj pair, 1 ≤ i, j ≤ 4, are shown in blue. (b) The
graph Γ̃ is constructed by placing a vertex in each bulk region Xα, and vertices are
linked when their respective bulk regions share a geodesic segment as an edge. All
of the hollow circular nodes are identified as a single vertex vA, and all of the hollow
square nodes are identified as a single vertex vAc . This identification is illustrated
in (c).
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Namely, only those geodesics which constitute the actual minimal surfaces for all

possible unions of subsets of {Ai}ni=1 are used. Explicitly, for all subsets I ⊆ [n], let

AI =
⋃
i∈I Ai and let ÃI be the corresponding Ryu-Takayanagi surface. Then, G is

obtained by placing a vertex in each of the pieces into which X is split by
⋃
I⊆[n] ÃI .

In particular, note that
⋃
I⊆[n] ÃI is contained in the set of geodesics that we use to

define our graph Γ̃.

Next, recall the content of lemma 3 of [25]. For each I ⊆ [n], define the discrete

entropy as

S∗(I) = min
|CI |
4GN

, (3.4)

where GN is Newton’s constant and where the minimization is over all k-cuts CI

that separate the |I| boundary vertices corresponding to the pieces Xα for which

(Xα ∩ ∂X) ⊆ AI from the rest of the graph. [25, Lemma 3] then states that S∗(I)

coincides exactly with the conventional Ryu-Takayanagi entropy S(I) = |ÃI |/4GN ,

and so it also follows that |ÃI | = min |CI |. Moreover, the proof of this lemma

further establishes that the minimal cut, call it C∗I , actually corresponds to the Ryu-

Takayanagi surface ÃI (or possibly another equivalent surface with the same length

if the minimal surface is not unique).

Now, if the two sets of geodesics that are used to define our graph Γ̃ and the graph

G from [25] had been the same, then the proof would be complete since we would

have that C∗ = C∗[n]. However, we must establish that the minimal cut C∗ actu-

ally corresponds to a Ryu-Takayanagi surface, given that the set of geodesics that

generates Γ̃ can be larger than the set that generates G. This result follows from

the observation that a minimal cut C∗I in G correctly identifies a Ryu-Takayanagi

surface when I 6= [n]. In this case, one may iteratively think of G as being generated

by more geodesics than those contained in
⋃
I′⊆I ÃI′ . This is precisely the case for

Γ̃, which is itself generated by at least those geodesics which make up
⋃
I⊆[n] ÃI , and

so the minimal cut C∗ corresponds to Ã.

�
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Therefore, in our graph construction, the problem of finding the Ryu-Takayanagi

surface for the collection of boundary regions A corresponds to finding C∗, i.e.,

solving the max-flow/min-cut problem between the two vertices vA and vAc on the

graph Γ̃. Importantly, this is a problem that can be solved efficiently in a time

that is polynomial in the number of vertices and edges of Γ̃ (see e.g. [60, Chapter

5.4]). Therefore, in order to show that the whole task of finding the Ryu-Takayanagi

surface can be completed in polynomial time, all that is left is to establish that the

overhead in setting up the graph construction above takes no more than polynomial

time in n and that the number of vertices of Γ̃ is no more than polynomial in n.

3.3 Complexity analysis

We now revisit the algorithm presented above and verify that that each step has

an algorithmic complexity that is polynomial in the number of boundary regions, n.

First, we note that the problem can be restated as a decision problem:

Problem 3.3.1. Given as input

i. a Riemannian metric gij(x) together with a coordinate ultraviolet cutoff Λ that

describes a simply-connected, asymptotically-hyperbolic, two-dimensional man-

ifold X,

ii. a list of n pairs of points on the conformal boundary of X, {[ai, bi]}ni=1, that

specify n non-empty, disjoint, closed, simply-connected intervals in ∂X, and

iii. a permutation σ : [n]→ [n] that identifies n geodesics that connect ai with bσ(i)

for i ∈ [n] and that together subtend the intervals [ai, bi],

does there exist another permutation σ′ such that
n∑
i=1

|γi,σ′(i)|Λ <
n∑
i=1

|γi,σ(i)|Λ (3.5)

up to a numerical precision ε, where γi,σ′(i) denotes the geodesic between ai and bσ′(i)

and |γi,σ′(i)|Λ is its proper length with the cutoff Λ in place? (Assume that the ai and

bi have enough digits of precision to compute at the global precision ε.)
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Of course, the decision problem can be answered by carrying out the algorithm above

to actually find the minimal surface. One reason for writing out this restatement it to

clearly identify two sources of algorithmic complexity: complexity in n, the number

of boundary regions, as well as the numerical complexity that is a consequence of

having to compute real-valued geometric quantities up to precision ε. We will focus

on the complexity in n, but it should be understood that the overall complexity has

some multiplicative scaling O(f(ε)) which depends on the numerical techniques that

one uses to compute geometric quantities.

A dual for a dual

As a preliminary step, it is useful to define a second graph, Γ, by placing a vertex

at every point where two or more geodesics intersect and at each of the ai and bi.

Connect two vertices with an edge if they are adjacent to each other on a single

geodesic, and also add an edge in between each adjacent boundary endpoint (so that

the vertices at a1 and b1, at b1 and a2, at a2 and b2, etc. gain an additional edge

connecting them). With this definition, Γ̃ is (up to the merger of the boundary

vertices into vA and vAc) the dual graph of Γ, which will be useful for counting

(Fig. 3.2).

Finding the geodesics

Since X is two-dimensional, any boundary-anchored geodesic can be parametrized

by two real numbers, for instance, its two endpoints on ∂X. As such, drawing the

n2 geodesics between the ai and the bj consists of solving the geodesic equation in

terms of the two free parameters and then listing the n2 specific solutions. When

the geodesic equation has a closed-form solution, obtaining each geodesic is an O(1)

overhead. For example, when X is the hyperbolic plane, it is straightforward to

show that geodesics in the Poincaré disk are circular arcs that are normal to the

boundary, and a specific arc can be labelled by its endpoints. Here, one must only

solve the geodesic equation once with its endpoints as free parameters. If the geodesic

equation does not have a closed-form solution and/or one works numerically, then
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Figure 3.2: The graph Γ is constructed by placing a vertex at each point where
two or more geodesics intersect and at the boundary interval endpoints ai and bj .
Vertices are connected by the geodesic and boundary segments on which they lie.

constructing and digitally representing each geodesic will have some complexity that

depends on ε. Note, however, that this is independent of the number of boundary

regions, n. Therefore, the scaling of this step is O(n2). We will suppose that the

output of this subroutine is a list of functions γi,j : [0, 1]→ X that parametrize the

geodesics, i.e., γi,j(0) = ai, γi,j(1) = bj , and whose runtime is independent of n.

Number of vertices in Γ

Let V be the number of vertices in Γ. This is equal to 2n (the number of boundary

region endpoints) plus the number of times that the n2 geodesics intersect each other.

We can upper bound the latter quantity by p ·
(
n2

2

)
, which would be the number of

intersections if every geodesic intersected every other geodesic at most p times. We

must assume that p is a bounded constant. Generically, we expect that p = 1; in the

case where X is simply-connected and has nonpositive curvature everywhere, then

p = 1 is implied by the Cartan-Hadamard Theorem, which guarantees that pairs

of points are connected by a unique geodesic (see, for instance, [61, Theorem 4.5]).
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This point is further discussed in Sec. 3.6. With this assumption on p, we have that

V ≤ 2n+ p

(
n2

2

)
= 2n+ 1

2pn
2(n2 − 1) = O(n4) . (3.6)

Number of edges in Γ and Γ̃

Let E be the number of edges in Γ. This is equal to 2n (the number of edges that lie

on ∂X) plus the number of geodesic segments in the interior of X. Note that since

Γ̃ is, up to the vertex mergers, the dual graph of Γ̃, this latter quantity is also the

number of edges in Γ̃, which we denote by Ẽ.

Similarly to the counting of vertices above, the largest number of interior edges is

upper bounded by the number of interior edges in a configuration where each geodesic

is intersected p times by the n2−1 other geodesics in distinct locations. In this case,

each geodesic is divided into p(n2 − 1) + 1 segments, and so

Ẽ ≤ n2
[
p(n2 − 1) + 1

]
= O(n4) ,

E ≤ 2n+ n2
[
p(n2 − 1) + 1

]
= O(n4) .

(3.7)

Number of vertices in Γ̃

The number of vertices in Γ̃ is the number of faces in Γ (or equivalently the number

of pieces Xα), which we denote by F , less 2(n−1) to account for the vertices that are

merged into vA and vAc . Since Γ is a planar graph, we can use its Euler characteristic

to bound F . From V − E + F = 2, it follows that

F = 2 + E − V ≤ 2 + E = n2
[
p(n2 − 1) + 1

]
+ 2n+ 2 = O(n4) . (3.8)

As such, the number of vertices and edges in Γ̃ altogether scales like O(n4).

Connectivity of the vertices and edge weights

So far we have established that the size of Γ and Γ̃ scales like O(n4), but we must also

establish that the graphs can be constructed in a number of steps that is polynomial

in n. In other words, we must be able to locate vertices, determine their connectivity,

and compute edge weights efficiently.
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Roughly, locating vertices in Γ amounts to checking if each pair of geodesics in-

tersects, where each check is a constant overhead if closed-form solutions for the

geodesics are known, or some ε-dependent overhead if one works numerically. This

task scales like
(
n2

2

)
= O(n4). Then, as noted above, the faces of Γ are the vertices

of Γ̃. The weight of an edge in Γ (and also Γ̃) is given by the proper length of its

corresponding geodesic segment, and so computing this weight amounts to perform-

ing a line integral along the geodesic segment. At worst, if the exact antiderivative

is unknown, evaluating this integral numerically up to a fixed numerical accuracy is

again a computational task that must be performed less than Ẽ times, and so the

algorithmic complexity of this step scales like O(n4).

To be a bit more concrete, let us sketch an algorithm to construct a digital represen-

tation of Γ. Represent Γ with a V × V upper-triangular matrix M , and denote the

vertices of Γ by wα. For α < β, the entries of M will be Mαβ = −1 if wα and wβ

are adjacent vertices on the boundary, Mαβ = ω(eαβ) if wα and wβ are connected

via a shared geodesic segment, and zero otherwise. Let the first 2n vertices be the

boundary vertices, i.e., w2α−1 ≡ aα and w2α ≡ bα for 1 ≤ α ≤ n. For each geodesic

γi,j , 1 ≤ i, j ≤ n, we will construct a list Li,j whose entries are pairs (wα, sα) which

identify the vertices wα that lie on γi,j , as well as the sα ∈ [0, 1] which specifies the

location γi,j(sα) in X (and hence also on the geodesic itself) where the vertex lies.

Each Li,j can therefore be initialized with two elements,

Li,j = {(wi, 0), (wj+1, 1)} . (3.9)

The following pseudo-code then sketches how to construct the Li,j and M . A bold

index will denote a composite index, i.e., i ≡ i, j.

% First fill in M for boundary vertices

for λ from 1 to 2n−1

Mλλ+1 = −1

end for

M1 2n = −1
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% Next fill in the interior vertices

κ = 2n+ 1

for i from 1 to n2 %∗

% Build up the Li

for j > i

if γi and γj intersect

label this vertex wκ

find the intersection location s(i)
κ on γi and s

(j)
κ on γj %∗∗

append (wκ, s
(i)
κ ) to Li and (wκ, s

(j)
κ ) to Lj;

κ++

end if

end for

sort Li according to increasing sα

% Compute edge weights and fill in M

for k from 1 to (Length[Li]−1)

let (wαk , sαk) be the kth element of Li

compute the length of γi from sαk to sαk+1
, i.e., ω(eαkαk+1

) %∗∗

Mαkαk+1
= ω(eαkαk+1

)

end for

end for

Note that the nested loop beginning on the line with an asterisk (*) executes O(n4)

times as expected. The steps that may contribute numerical ε-dependent overhead

occur the lines with two asterisks (**). Finally, the various array accesses and other

tasks (such as the sorting operation) will only contribute a polynomial number of

steps.

We therefore ultimately find that the time it takes to set up our graph construction

scales like O(n4), and that Γ̃ itself has a number of vertices and a number of edges

that are each O(n4). The complexity of max-flow/min-cut is O(ẼṼ 2) [60], and so the



34

overall complexity of our algorithm is O(n12). As such, the algorithmic complexity

of finding the Ryu-Takayanagi surface for n boundary regions is poly(n) as claimed.

3.4 Other bulk topologies

The algorithm as described above applies to simply-connected bulk geometries. In

situations where the bulk is topologically nontrivial, there is a new parameter which

the algorithm could scale with, namely, the genus q of the bulk topology. This

is because it is no longer true that the minimal surface that is homologous to a

single simply-connected boundary region is necessarily made up of a single geodesic.

Consequently, the number of geodesics changes from n2 to some O(f(q)n2). But,

once all of the possible minimal surfaces are determined, one can simply continue

apace with the max-flow/min-cut algorithm as before.

The scaling with q will not change the scaling with the number of boundary intervals;

it enters as another independent multiplicative factor. As a last discussion item,

let us estimate what the worst scaling with q could be. First, consider drawing

an extremal path C between two boundary endpoints ai and bj when there are q

punctures in X (Fig. 3.3). In theory, provided that the geodesics exist, we could

choose to include anywhere from zero up to all q of the punctures in int([ai, bj ]∪C),

where int(·) denotes the interior of a closed curve. Then, noting that there may be

up to
(
q
k

)
ways to include k punctures, we identify up to

∑q
k=0

(
q
k

)
= 2q geodesics in

this way. However, each time that a puncture is included in int([ai, bj ] ∪ C), we also

must draw a geodesic around the puncture so that the total (multiply-connected)

extremal curve is homologous to [ai, bj ]. So, we must also consider the set of all

geodesics that enclose anywhere from one to all q of the punctures, where there are(
q
k′

)
ways to enclose k′ punctures. This gives us another

∑q
k′=1

(
q
k

)
= 2q−1 geodesics.

Repeating this analysis for every pair of points ai and bj , we conclude that there are

at most 2qn2 geodesics that connect boundary endpoints and 2q − 1 geodesics that

enclose punctures (which remain the same for every pair of boundary endpoints).

Therefore, there will be at most 2qn2 + 2q − 1 geodesics that seed the rest of the
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(a) (b) (c)

(d) (e)

Figure 3.3: Possible ways that the extremal surface for a single simply-connected
boundary region could include or exclude punctures, illustrated for q = 2. The
boundary interval is shown in red, the extremal curve is shown in blue, and punctures
are represented by crosses.

algorithm. As expected, the scaling in n is unchanged, but the scaling in q can be

very large indeed.

3.5 Conclusion

We have demonstrated that the task of finding the Ryu-Takayanagi surface in three-

dimensional gravity for a collection of n boundary subregions has polynomial com-

plexity by exhibiting an algorithm that completes this task in poly(n) time. The

algorithm consists of converting the geometric problem into a graph-theoretic prob-

lem whose solution is given by the max-flow/min-cut between two vertices on a

graph. The procedure is essentially a discretization of Freedman and Headrick’s bit

thread model [59] with the flow being between the boundary subregions
⋃n
i=1Ai ≡ A

and the rest of the boundary, ∂X −A.

It should be noted that performing this calculation holographically in many ways

complements the computation of entanglement entropy using only CFT2 techniques,

e.g. [62,63]. On one hand, results for simply-connected boundary regions such as the
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Cardy-Calabrese formula S = c
3 log l

Λ do not extend to multiply-disjoint regions. On

the other hand, entanglement entropies of simply-connected regions are the “prim-

itives” in our algorithm, and so in pure AdS3/CFT2 for example, one can use the

Cardy-Calabrese formula to avoid finding geodesics altogether. By extension, if you

knew how to compute S for simply-connected regions in the boundary for some given

holographic CFT2 state, then assuming the Ryu-Takayanagi conjecture, computing

geodesics becomes unnecessary since geodesic length is automatically given by 4GS.

See, for example, [64], which demonstrates powerful algebraic methods to compute

these geodesic lengths in a broad class of CFT states.

Some future interesting directions would be to use our line of reasoning to clearly

delineate the sources of complexity that make the higher dimensional caseNP-Hard.

For example, it is plausible that the combinatorial aspect of the problem is in general

not difficult, but rather that the difficulty arises from the fact that simply-connected

boundary regions do not have a canonical shape in higher dimensions. In a related

way, it would also be interesting to extend the algorithm to higher dimensions, but

where boundary subregions are restricted to only have certain shapes, e.g., filled

Sd−1 spheres on a Sd conformal boundary. This sort of setting is important for

holographic derivations of the Einstein equations [65–67] among other applications.

It has also been pointed out that the relationship of holographic entanglement en-

tropy to max-flow/min-cut may extend to covariant formulations [32, 59, 68, 69]. If

this is fully established, it would certainly be interesting to see whether our analyses

can be extended past minimal surfaces to maximin formulations to arrive at a similar

style of conclusion.
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3.6 Intersections of geodesics

Here we consider the question of how many times two distinct boundary-anchored

geodesics in X can intersect. When X has nonpositive curvature everywhere and

is simply-connected, such as the case where X is the hyperbolic plane, then the

Cartan-Hadamard theorem implies that every pair of points is connected by a unique

geodesic. We can use this fact to obtain the following result:

Proposition 3.6.1. Let X by a simply-connected Riemannian manifold with non-

positive curvature everywhere. Then, two distinct geodesics can intersect each other

at most once.

Proof: We establish the proof by contradiction. Let C1 and C2 be two distinct

geodesics, and suppose that they intersect more than once. Let p1 and p2 be two

intersection points, and denote the segment of C1 (resp. C2) that connects p1 and

p2 by S1 (resp. S2). The lengths of S1 and S2 cannot be the same. This is because

the Cartan-Hadamard theorem holds, and so the geodesic that connects p1 and p2 is

unique. Without loss of generality, suppose that |S1| < |S2|. But then, (C2−S2)∪S1

is shorter than C2, which contradicts the assumption that C2 is a geodesic.

�

Note that this proposition does not exclude the case where C1 and C2 overlap on a

finite interval. However, such behaviour does not change the scaling of the number

of vertices in Γ if we only place vertices at the points where the geodesics first
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meet. Also note that the result holds for Riemannian manifolds X of any dimension,

and X can be relaxed to a metric space if the curvature is taken to be Alexandrov

curvature [61].

● ●

Figure 3.4: Spatial slice through the (1+2)-dimensional BTZ spacetime. Two an-
tipodal points (shown in black) on the black hole (the hatched disk) are connected
by two distinct geodesics (shown in blue).

Cases where two boundary-anchored geodesics can intersect more than once are

necessarily cases where there exist points in X such that the geodesic connecting

them is not unique. An example of such a configuration occurs when X is a slice

of the BTZ black hole spacetime [70] (and is therefore not simply-connected). Two

points in the bulk that are antipodal with respect to the black hole are connected

by geodesics of the same length that wrap around either side of the black hole

(Fig. 3.4). The boundary-anchored geodesics on which the two points lie share their

boundary endpoints, however, and so this particular configuration is excluded from

the configurations that we consider. As such, it seems reasonable to expect that cases

where two boundary-anchored geodesics can intersect more than once and which are

allowed by the problem under consideration, if they exist, are pathological and could

be excluded with an appropriate generic condition.
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C h a p t e r 4

CONSISTENCY CONDITIONS FOR AN ADS/MERA
CORRESPONDENCE

The Multi-scale Entanglement Renormalization Ansatz (MERA) is a tensor network

that provides an efficient way of variationally estimating the ground state of a critical

quantum system. The network geometry resembles a discretization of spatial slices of

an AdS spacetime and “geodesics” in the MERA reproduce the Ryu–Takayanagi for-

mula for the entanglement entropy of a boundary region in terms of bulk properties.

It has therefore been suggested that there could be an AdS/MERA correspondence,

relating states in the Hilbert space of the boundary quantum system to ones defined

on the bulk lattice. Here we investigate this proposal and derive necessary conditions

for it to apply, using geometric features and entropy inequalities that we expect to

hold in the bulk. We show that, perhaps unsurprisingly, the MERA lattice can only

describe physics on length scales larger than the AdS radius. Further, using the

covariant entropy bound in the bulk, we show that there are no conventional MERA

parameters that completely reproduce bulk physics even on super-AdS scales. We

suggest modifications or generalizations of this kind of tensor network that may be

able to provide a more robust correspondence.

This chapter was published as Ref. [3], N. Bao, C. Cao, S. M. Carroll, A. Chatwin-

Davies, N. Hunter-Jones, J. Pollack, and G. N. Remmen, “Consistency conditions

for an AdS multiscale entanglement renormalization ansatz correspondence,” Phys.

Rev. D 91 (2015) 125036, arXiv:1504.06632.

4.1 Introduction

The idea that spacetime might emerge from more fundamental degrees of freedom

has long fascinated physicists. The holographic principle suggests that a (D+1)-

dimensional spacetime might emerge from degrees of freedom in aD-dimensional the-

http://dx.doi.org/10.1103/PhysRevD.91.125036
http://dx.doi.org/10.1103/PhysRevD.91.125036
http://arxiv.org/abs/1504.06632
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ory without gravity [71,72]. While a completely general implementation of this idea

is still lacking, the AdS/CFT correspondence provides a specific example in which to

probe the holographic emergence of spacetime. AdS/CFT is a conjectured correspon-

dence between D-dimensional conformal field theories (CFTs) in Minkowski space

and (D+1)-dimensional asymptotically anti-de Sitter (AdS) spacetimes [15, 16, 73].

An intriguing aspect of this duality is the Ryu–Takayanagi formula [17,74], according

to which the entanglement entropy of a region B on the boundary is proportional

to the area of a codimension-two extremal surface B̃ embedded in the bulk curved

spacetime whose boundary is B:

S(B) =
area(B̃)

4G
+ corrections. (4.1)

In other words, given a CFT state, one may think of bulk distance and geometry (at

least near the boundary) as being charted out by the entanglement properties of the

CFT state.

A central question in this picture of spacetime emerging from entanglement is: What

is the precise relationship between bulk degrees of freedom and boundary degrees

of freedom? Expressed in a different way, what is the full map between states and

operators in the boundary Hilbert space and those in the bulk? While investigations

of AdS/CFT have thrown a great deal of light on this question, explicit simple models

are still very helpful for studying it in more detail.

Meanwhile, from a very different perspective, tensor networks have arisen as a useful

way to calculate quantum states in strongly-interacting many-body systems [36].

One significant example is the Multi-scale Entanglement Renormalization Ansatz

(MERA) [75], which is relevant for critical (gapless) systems, i.e., CFTs. Starting

from a simple state in a low-dimensional Hilbert space, acting repeatedly with fixed

tensors living on a network lattice produces an entangled wave function for the

quantum system of interest; varying with respect to the tensor parameters efficiently

computes the system’s ground state.

Working “backwards” in the MERA, starting with the ground state and gradually re-
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moving entanglement, produces a set of consecutively renormalized quantum states.

This process reveals a renormalization direction along the graph, which may be

thought of as an emergent radial direction of space. As pointed out by Swingle [76],

the MERA graph can serve as a lattice discretization of spatial slices of AdS. Fur-

thermore, one can use the MERA to calculate the entanglement entropy of regions

of the original (boundary) critical system; this calculation amounts to tracing over

bonds in the tensor network that cross the causal cone of the boundary region. The

causal cone is a sort of extremal surface for the MERA, motivating comparison to

the Ryu–Takayanagi formula.

It is therefore natural to conjecture that the MERA provides a concrete imple-

mentation of the emergence of spacetime, in the form of a correspondence between

boundary and bulk regions reminiscent of AdS/CFT [76]. Such an AdS/MERA cor-

respondence would be extremely useful, since the basic building blocks of the MERA

are discrete quantum degrees of freedom from which quantities of physical interest

may be directly calculated. Some specific ideas along these lines have recently been

investigated [31,77–79].

In this paper, we take a step back and investigate what it would mean for such

a correspondence to exist and the constraints it must satisfy in order to recover

properties we expect of physics in a bulk emergent spacetime. After reviewing the

MERA itself and possible construals of the AdS/MERA correspondence in the next

section, in Sec. 4.3 we then derive relationships between the MERA lattice and the

geometry of AdS. We find that the MERA is unable to describe physics on scales

shorter than the AdS radius. In Sec. 4.4 we explore constraints from calculating

the entanglement entropy of regions on the boundary, in which we are able to relate

MERA parameters to the central charge of the CFT. Finally, in Sec. 4.5 we apply

the covariant entropy (Bousso) bound to regions of the bulk lattice. In the most

naïve version of the AdS/MERA correspondence, we find that no combination of

parameters is consistent with this bound, but we suggest that generalizations of the

tensor network may be able to provide a useful correspondence.
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4.2 AdS/MERA

Let us begin by recalling the definition and construction of the MERA. We will

then introduce the AdS/MERA correspondence and discuss the motivation for and

consequences of this proposal.

4.2.1 Review of the MERA

The MERA is a particular type of tensor network that provides a computationally

efficient way of finding the ground states of critical quantum many-body systems,

i.e. CFTs, in D dimensions. (For a recent review of tensor networks in general, see

Ref. [36]. Detailed analyses of the MERA are given in [75, 80, 81] and references

therein.) In this work, we restrict our attention to the case D = 1 + 1.

The MERA tensor network is shown in Fig. 4.1. The quantum system being modeled

by the MERA lives at the bottom of the diagram, henceforth “the boundary” in

anticipation of the AdS/MERA connection to be explored later. We can think of

the tensor network as a quantum circuit that either runs from the top down, starting

with a simple input state and constructing the boundary state, or from the bottom

up, renormalizing a boundary state via coarse-graining. One defining parameter of

the MERA is the rescaling factor k, defining the number of sites in a block to be

coarse-grained; in Fig. 4.1 we have portrayed the case k = 2. The squares and

triangles are the tensors: multilinear maps between direct products of vector spaces.

Each line represents an index i of the corresponding tensor, ranging over values from

1 to the “bond dimension” χ. The boundary Hilbert space Hboundary = V ⊗Nboundary

is given by a tensor product of Nboundary individual spaces V , each of dimension χ.

(In principle the dimension of the factors in the boundary could be different from

the bond dimension of the MERA, and indeed the bond dimensions could vary over

the different tensors. We will assume these are all equal.)

As its name promises, the MERA serves to renormalize the initial boundary state

via coarse-graining. If we were to implement the MERA for only a few levels, we

would end up with a quantum state in a smaller Hilbert space (defined on a fixed
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|0〉 |0〉|0〉 |0〉 |0〉 |0〉|0〉 |0〉 |0〉 |0〉

|0〉 |0〉 |0〉|0〉 |0〉

|0〉

(a)

j1 j2

i2i1

U
j1j2
i1i2

(b)

|0〉

i1 i2

j

W
j
i1i2

(c)

Figure 4.1: (a) Basic construction of a k = 2 MERA (2 sites renormalized to 1). (b)
The squares represent disentanglers: unitary maps that, from the moving-upward
perspective, remove entanglement between two adjacent sites. (c) The triangles
represent isometries: linear maps that, again from the moving-upward perspective,
coarse-grain two sites into one. Moving downward, we may think of isometries as
unitary operators that, in the MERA, map a state in V ⊗ |0〉 into V ⊗V . The i and
j labels in (b) and (c) represent the tensor indices of the disentangler and isometry.

level of the tensor network), retaining some features of the original state but with

some of the entanglement removed. However, we can also run the MERA backwards,

to obtain a boundary state from a simple initial input. By varying the parameters

in the individual tensors, we can look for an approximation of the ground state of

the CFT on the boundary. Numerical evidence indicates that this process provides

a computationally efficient method of constructing such ground states [81,82].

The tensors, or gates, of the MERA come in two types. The first type are the

disentanglers, represented by squares in Fig. 4.1. These are unitary maps U : V ⊗

V → V ⊗ V, as in Fig. 4.1 (b). The name comes from thinking of moving upward
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through the network, in the direction of coarse-graining, where the disentanglers

serve to remove local entanglement; as we move downward, of course, they take

product states and entangle them. The second type of tensors are the isometries,

represented by triangles. From the moving-downward perspective these are linear

maps W : V → V ⊗ V; moving upward, they implement the coarse-graining, see

Fig. 4.1 (c). The isometries are subject to the further requirement that W †W = IV ,

where IV is the identity map on V , and WW † = PA , where PA is a projector onto

some subspace A ⊂ V ⊗ V. From the top-down perspective, we can also think of

the isometries as bijective unitary operators WU : V ⊗ V → V ⊗ V, for which a fixed

“ancilla” state (typically the ground state |0〉) is inserted in one of the input factors,

as shown in Fig. 4.1 (c). More generally, isometries could map q < k sites onto k

sites, W : V ⊗q → V ⊗k.

The MERA is not the simplest tensor network which implements coarse-graining.

For instance, the tree tensor network [83] (also considered in a holographic context in

Ref. [77]), similar to MERA but without any disentanglers, also implements coarse-

graining. However, tensor networks without disentanglers fail to capture the physics

of systems without exponentially-decaying correlations, and consequently cannot

reproduce a CFT ground state.

An example that invites analysis with a MERA is the transverse-field Ising model

[84]. In 1 + 1 dimensions, the model describes a chain of spins with nearest-neighbor

interactions subject to a transverse magnetic field. Its Hamiltonian is

Ĥ = −J
∑
i

σ̂zi σ̂
z
i+1 − h

∑
i

σ̂xi , (4.2)

where σ̂zi and σ̂xi are Pauli operators and where J and h set the strength of the

nearest-neighbor interactions and the magnetic field, respectively. Notably, the sys-

tem achieves criticality at J = h, where a quantum phase transition occurs between

ordered (J > h) and disordered (J < h) phases. In this example, the open legs

at the bottom of the MERA describe the state of the one-dimensional lattice of

spins. A single application of disentanglers and isometries can be thought of as a
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true real-space renormalization, producing a lattice of spins that is less dense than

the preceding lattice by a factor of q/k.

In general, much information is required to describe an arbitrary MERA. In principle,

the Hilbert spaces, the disentanglers, and the isometries could all be different. Also,

for k > 2, there is no canonical way of laying out the disentanglers and isometries; the

circuit itself must be specified. We will restrict ourselves to the case q = 1, so that

isometries have 1 upward-going leg and k downward-going legs. Further, without

loss of generality, we take the same vector spaces, disentanglers, and isometries

everywhere in the MERA, a simplification that is enforced by the symmetries of

the boundary ground state. These symmetries — namely, translation- and scale-

invariance — dictate that the MERA parameters and structure be homogeneous

across the whole tensor network.

For geometric considerations, it is useful to abstract away all of the information about

unitary operators and to draw a MERA as a graph as shown in Fig. 4.2. In such a

graph, we only indicate the connectivity of sites at any given level of coarse-graining

as well as the connectivity of sites under renormalization group flow.

4.2.2 An AdS/MERA Correspondence?

The possibility of a correspondence between AdS and the MERA was first proposed

by Swingle in Ref. [76], where it was noted that the MERA seems to capture certain

key geometric features of AdS. At the most basic level, when viewed as a graph with

legs of fixed length, a MERA may be thought of as a discretization of the hyperbolic

plane, which is a spatial slice of AdS3. In this discretization, the base of the MERA

tree lies on the boundary of the AdS slice and the MERA lattice sites fill out the

bulk of the slice [76,85].

Interestingly, the structure of a MERA is such that it seems to go beyond a simple

discretization of the hyperbolic plane. Certain discrete paths in the MERA naturally

reproduce geodesics of the hyperbolic plane [76, 86]. Moreover, this phenomenon

makes it possible to understand the computation of CFT entanglement entropy using
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dimV = χ
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Figure 4.2: (a) A k = 2 MERA, and (b) the same MERA with its disentanglers
and isometries suppressed. The horizontal lines in the graph on the right indicate
lattice connectivity at different renormalization depths, and the vertical lines indicate
which sites at different depths are related via coarse-graining due to the isometries.
Each site, represented by a circle, is associated with a Hilbert space V with bond
dimension χ. In the simplest case, a copy of the same Hilbert space is located at
each site. When assigning a metric to the graph on the right, translation and scale
invariance dictate that there are only two possible length scales: a horizontal proper
length L1 and a vertical proper length L2.

a MERA as a discrete realization of the Ryu–Takayanagi formula [87]. These and

other examples [76,86] seem to suggest that a MERA may in fact be elucidating the

structural relationship between physics on the boundary of AdS and its bulk.

In this work we take the term “AdS/MERA correspondence” to mean more than

simply a matching of graph geometry and continuous geometry. In the spirit of the

AdS/CFT correspondence, we suppose that (at least some aspects of) both boundary

and bulk physics are described by appropriate Hilbert spaces Hboundary and Hbulk

respectively, which must have equal dimensions. A full AdS/MERA correspondence

would then be a specification of these Hilbert spaces, as well as a prescription which

makes use of the MERA to holographically map states and operators in Hboundary

to corresponding states and operators in Hbulk and vice-versa. To preserve locality
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in the bulk and the symmetries of AdS, it is natural to identify Hbulk with the

tensor product of individual spaces Vbulk, each located at one site of the MERA. If it

exists, this correspondence provides a formulation of bulk calculations in terms of the

MERA. An AdS/MERA correspondence should allow us to, for example, calculate

bulk correlation functions, or bulk entanglement entropies using tools from or the

structure of the MERA.

There is one straightforward way to construct such a map Hboundary ↔ Hbulk. We

have noted that the isometries W : V → V ⊗ V can be thought of as unitaries

WU : V ⊗ V → V ⊗ V by imagining that a fixed ancillary state |0〉 is inserted in the

first factor; for a k-to-one MERA, one would insert k − 1 copies of the |0〉 ancilla

at each site to unitarize the isometries. From that perspective, running upwards in

the tensor network provides a map from the MERA ground state on the boundary

to a state |0〉⊗(k−1)Nbulk ∈ V ⊗(k−1)Nbulk , where at each isometry there is a copy of

V ⊗(k−1) and Nbulk denotes the number of bulk lattice sites, excluding the boundary

layer. As we ultimately show in Sec. 4.5, one has Nboundary = (k − 1)Nbulk. We

can then identify Hboundary = Hbulk = V ⊗Nboundary and think of the tensor network

as a quantum circuit providing a map between arbitrary states Hboundary → Hbulk.

In this construction, the MERA ground state on the boundary gets mapped to the

factorized bulk state |0〉⊗(k−1)Nbulk , but other boundary states will in general produce

entangled states in the bulk (keeping the tensors themselves fixed).

Something very much like this construction was proposed by Qi [77], under the name

“Exact Holographic Mapping" (EHM). That work examined a tensor network that

was not quite a MERA, as no disentanglers were included, only isometries. As a

result, while there is a map Hboundary → Hbulk, the boundary state constructed

by the tensor network does not have the entanglement structure of a CFT ground

state. In particular, it does not seem to reproduce the Ryu–Takayanagi formula in a

robust way. Alternatively, we can depart from Qi by keeping a true MERA with the

disentanglers left in, in which case the bulk state constructed by the quantum circuit

has no entanglement: it is a completely factorized product of the ancilla states. Such
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a state doesn’t precisely match our expectation for what a bulk ground state should

look like, since there should be at least some entanglement between nearby regions

of space.

Therefore, while it is relatively simple to imagine constructing a bulk Hilbert space

and a map between it and the boundary Hilbert space, it is not straightforward to

construct such a map that has all of the properties we desire. It might very well

be possible to find such a construction, either by starting with a slightly different

boundary state, or by adding some additional structure to the MERA.

For the purposes of this paper we will be noncommittal. That is, we will imagine

that there is a bulk Hilbert space constructed as the tensor product of smaller spaces

at each MERA site, and that there exists a map Hboundary → Hbulk that can be

constructed from the MERA, but we will not specify precisely what that map might

be. We will see that we are able to derive bounds simply from the requirements that

the hypothetical correspondence should allow us to recover the properties we expect

of bulk physics, including the background AdS geometry and features of semiclassical

quantum gravity such as the Bousso bound on bulk entropy.

4.3 MERA and Geometry

If a MERA is a truly geometrical object that describes a slice of AdS, then the

graph geometry of a MERA should give the same answers to geometric questions as

the continuous geometry of a slice of AdS. Here, we reconsider the observation by

Swingle [76, 86] that certain trajectories on the MERA coincide with trajectories in

AdS and we investigate the constraints that this correspondence places on the graph

metric of the MERA. We find that a MERA necessarily describes geometry on super-

AdS length scales, moreover, there is no redefinition of the MERA coordinates that

results in the proper distance between MERA sites mapping to any sub-AdS length

scale.
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4.3.1 Consistency conditions from matching trajectories

In order to speak of graph geometry, one must put a metric on the MERA graph, i.e.,

one must assign a proper length to each bond in the graph of Fig. 4.2. Presumably,

the metric should originate from correlations between the sites in the MERA. In the

absence of an explicit identification of the origin of the graph metric, however, at

least in the case of a MERA describing the ground state of a CFT, it is sensible

to identify two length scales. Explicitly, we must assign a proper length L1 to

horizontal bonds and a proper length L2 to vertical bonds. Indeed, translational

and conformal invariance guarantee that these are the only two length scales in any

graph metric one can assign to a MERA for which an AdS/MERA correspondence

exists. In particular, the ground state of a CFT is translation invariant, so each

horizontal bond in the finest (UV-most) lattice should have the same proper length

so as to respect this symmetry. Self-similarity at all scales then requires that any

horizontal bond at any level of renormalization have this same proper length. There

is no a priori reason why the vertical bonds should share the proper length of the

horizontal bonds and indeed we will see that their proper length will be different.

However, again by self-similarity and translation invariance, all vertical bonds must

be assigned the same proper length.

The observation in Ref. [76] that certain paths in the MERA graph coincide with

corresponding paths in slices of AdS is what established the possibility of an Ad-

S/MERA correspondence. Here we will carefully examine these paths and determine

what constraints the requirements that they match place on MERA parameters, i.e.,

on the bond lengths L1 and L2 and on the rescaling factor k.

Consider a constant-time slice of AdS3 with the following metric:

ds2 =
L2

z2
(dz2 + dx2). (4.3)

We will compare the proper lengths of straight horizontal lines and geodesics in the

AdS slice to the proper lengths of the corresponding paths in the MERA graph. In

the AdS slice, let γ1 be a straight horizontal line (dz = 0) sitting at z = z0 with
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coordinate length x0. Let γ2 be a geodesic whose endpoints lie near the boundary

z = 0 and are separated by a coordinate distance x0 at the boundary. In this

choice of coordinates, such a geodesic looks like a semicircle (see Fig. 4.3). It is a

straightforward computation to show that the proper lengths of these curves are

|γ1|AdS =
L

z0
x0 and |γ2|AdS = 2L ln

(x0

a

)
. (4.4)

Note that there is a UV cutoff at z = a � x0 and that we have neglected terms of

order a/x0.

z

x

γ1

γ2

a

x0

z0

Figure 4.3: A horizontal line (γ1) and a geodesic (γ2) in a spatial slice of AdS3.

We fix L1 and L2 by comparing γ1 and γ2 to horizontal lines and “geodesics" in the

MERA, respectively. Consider two sites in a horizontal lattice at depth m (i.e., m

renormalizations of the UV-most lattice) and separated by a coordinate distance x0

in the coordinate system shown in Fig. 4.2. By fiat, this lattice sits at z0 = kma.

The number of bonds between the two sites at depth m is x0/(k
ma) (see Fig. 4.2

for the case k = 2). It follows that the proper length of the line connecting the two

points is just

|γ1|MERA = L1 · (number of bonds between endpoints)

= L1
x0

z0

∣∣∣∣
z0=kma

.
(4.5)

To have |γ1|AdS = |γ1|MERA, we should therefore set L1 = L.

Similarly, consider two lattice sites on the UV-most lattice separated by a coordinate

distance x0. If we assume that x0 � a, then the shortest path (geodesic) in the

MERA connecting the two lattice sites is the path that goes up in the renormalization
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direction and then back down again. The two sites are separated by x0/a bonds on

the UV-most lattice, so logk(x0/a) renormalization steps are needed to make the

sites either adjacent or superimposed. This means that the geodesic that connects

the endpoints is made up of 2 logk(x0/a) bonds (as we have to go up and then back

down again, giving the factor of 2). It follows that the proper length of the geodesic

is
|γ2|MERA = L2 · (number of bonds in the geodesic)

= 2L2 logk

(x0

a

) (4.6)

To have |γ2|AdS = |γ2|MERA, we should therefore set L2 = L ln k.

4.3.2 Limits on sub-AdS scale physics

One aspect of the matching of geodesics that is immediately apparent is that the

MERA scales L1 and L2 that parametrize the proper distance between lattice sites

are of order the AdS scale L or larger, as was also noted in Refs. [76, 85]. This

runs counter to the typical expectation that, in a discretization of spacetime, one

expects the granularity to be apparent on the UV, rather than the IR, scale. That

is, sub-AdS scale locality is not manifested in the MERA construction and must be

encoded within each tensor factor [86].

One could try to evade this difficulty by attempting to redefine the MERA coordi-

nates (x, z)MERA (those of Fig. 4.2) as functions of the AdS coordinates (x, z)AdS

(those of Fig. 4.3) and taking a continuum limit; above, we assumed that the two

sets of coordinates were simply identified. That is, suppose xMERA = f(xAdS)

and zMERA = g(zAdS). (For example, one could consider f(x) = εx for small ε

and imagine taking the continuum limit, with the aim of making L1 much smaller

than the AdS scale.) If a is still the UV cutoff on the AdS side, then in the

MERA we have f(a) as the UV-most lattice spacing and g(a) as the UV cutoff

in the holographic direction. Consider the computation of |γ1|. From the AdS

side, we have |γ1|AdS = LxAdS
0 /zAdS

0 . On the MERA side, the number of sites

spanned by xMERA
0 = f(xAdS

0 ) is xMERA
0 /kmf(a), while the holographic coordinate
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is zMERA
0 = kmg(a). Thus,

|γ1|MERA = L1
f(xAdS

0 )

f(a)

g(a)

g(zAdS
0 )

. (4.7)

Equating |γ1|AdS = |γ1|MERA ≡ |γ1|, we have

g(zAdS
0 )

∂

∂xAdS
0

|γ1| = L1
f ′(xAdS

0 )

f(a)
g(a) = L

g(zAdS
0 )

zAdS
0

. (4.8)

Since the right side of the first equality only depends on xAdS
0 and the second equal-

ity only depends on zAdS
0 , but we can vary both parameters independently, both

expressions must be independent of both AdS coordinates. Therefore, we must have

f(x) = εxx and g(z) = εzz for some constants εx and εz. Plugging everything

back into Eq. (4.7) and comparing with |γ1|AdS, we again find that L1 = L, so no

continuum limit is possible. Similarly, in computing |γ2|, we note that the number

of bonds between the endpoints on the UV-most lattice level is xMERA
0 /f(a), so the

geodesic connecting the endpoints has 2 logk(x
MERA
0 /εxa) bonds. On the other hand,

we have |γ2|AdS = 2L ln(xAdS
0 /a) = 2L ln(xMERA

0 /εxa). That is, in equating |γ2|AdS

and |γ2|MERA, we must again set L2 = L ln k. We thus also find that no continuum

limit is possible in the holographic direction. That is, we have shown that there is a

constant normalization freedom in the definition of each of the coordinate distances

on the AdS and MERA sides of any AdS/MERA duality, but such a coordinate

ambiguity is unphysical and does not allow one to take a continuum limit. One still

finds that the physical MERA parameters L1 and L2 are AdS scale. This means

that there truly is no sense in which a discrete MERA can directly describe sub-AdS

scale physics without the addition of supplemental structure to replace the individ-

ual tensors. This fact limits the ability of the MERA to be a complete description

of the gravity theory without such additional structure. It might be the case that

one needs a field theoretic generalization of the MERA, such as continuous MERA

(cMERA) [88–90] or some local expansion of the individual tensors into discrete ten-

sor networks with a different graph structure to describe sub-AdS physics, but such

a significant generalization of the tensor network is beyond the scope of this work

and in any case would no longer correspond to a MERA proper.
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4.4 Constraints from Boundary Entanglement Entropy

Because the MERA can efficiently describe critical systems on a lattice, quantities

computed in the MERA on scales much larger than the lattice spacing should agree

with CFT results. In this section, we will compute the entanglement entropy of `0

contiguous sites in the MERA and exploit known CFT results to obtain constraints

on the properties of the MERA. In particular, we will find an inequality relating the

MERA rescaling factor k and bond dimension χ to the CFT central charge c. This

constraint is interesting in its own right, but it will prove critical in the next section

when we begin to compute bulk properties.

4.4.1 MERA and CFT Entanglement Entropy

For a (1+1)-dimensional CFT in a pure state, the von Neumann entropy of a finite

interval B, which is typically referred to as the entanglement entropy, is known to

be [62,63]

S(B) =
c

3
ln `0 , (4.9)

where the length of the interval is much smaller than the system size. Here, `0 is the

length of the interval in units of the UV cutoff. In the notation of the last section, we

have `0 = x0/a. In the special case that the CFT is dual to AdS in 2+1 dimensions,

the central charge is set by the Brown–Henneaux formula [91],

c =
3L

2G
. (4.10)

Also note that the length of the geodesic that connects the two ends of B (the curve

γ2 in Fig. 4.3) is given in Eq. (4.4) by |γ2| = 2L ln `0. The Brown–Henneaux relation

allows us to reproduce the Ryu–Takayanagi formula [17, 92] from the entanglement

entropy,

S(B) =
area(B̃)

4G
, (4.11)

where B̃ = γ2 is the extremal bulk surface with the same boundary as B. For a

boundary with one spatial dimension and a bulk with two spatial dimensions, any

simply-connected region B is an interval, the extremal bulk surface is a geodesic,

area(B̃) is a length, and G has mass dimension −1.
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The MERA calculation of the entanglement entropy of `0 sites in the CFT has an

analogous geometric interpretation. Suppose one is given the MERA representation

of a lattice CFT ground state, i.e., one uses a MERA to generate the CFT state.

Denote by SMERA(`0) the entanglement entropy of the resulting state restricted to

`0 sites. In Ref. [87], it is shown that for a specific, optimal choice of `0 sites, for `0

parametrically large, the following bound is placed on SMERA(`0) for a MERA with

k = 2:

SMERA(`0) ≤ 2 log2 `0 lnχ. (4.12)

Parsing the equation above, this bound essentially counts the number of bonds that

the causal cone of the `0 sites in question crosses (∼ 2 log2 `0) and lnχ is the max-

imum entanglement entropy that a single bond can possess when the rest of the

MERA is traced out.

The causal cone of a region B consisting of `0 contiguous UV sites in a MERA

resembles a bulk extremal surface for the boundary region B. Given `0 sites in the

UV, their causal cone is defined as the part of the MERA on which the reduced

density matrix (or in other words, the state) of B depends. An example of a causal

cone is illustrated in Fig. 4.4.

In particular, note that the number of bonds that a causal cone crosses up to any

fixed layer scales like the length of the boundary of the causal cone up to that layer.

It is in this sense that Eq. (4.12) is a MERA version of Ryu–Takayanagi. Also

note that the width of the causal cone shrinks by a factor of ∼ 1/k after every

renormalization step until its width is comparable to k. As such, if one denotes the

width of the causal cone at a layer m by `m, then `m is roughly constant for all m

greater than some m̄ (see Fig. 4.4). The scale m̄ is called the crossover scale.

For general k, it is also possible to formulate a bound similar to Eq. (4.12) for the

entanglement entropy of `0 sites. For parametrically large `0, we find that

SMERA(`0;B) ≤ 4(k − 1) logk `0 lnχ . (4.13)

We demonstrate this bound in Sec. 4.7 using techniques that are similar to those
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Figure 4.4: Causal cone (shaded) for a set of `0 = 6 sites in a MERA with k = 2.
The width `m of the causal cone at depth m is `1 = 4, `2 = 3, `3 = 3, `4 = 3, etc.
The crossover scale for this causal cone occurs at m̄ = 2. Between the zeroth and
first layer, ntr

1 = 2 bonds are cut by the causal cone. Similarly, ntr
2 = 2, ntr

3 = 3, etc.

developed in Ref. [87]. In particular, note that we do not allow ourselves to choose

the location of the `0 sites in question. As such, we remind ourselves that SMERA can

depend on the location of the region B (and not only its size) by including it in the

argument of SMERA. This is also the reason why our Eq. (4.13) is more conservative

than the optimal bound given in Eq. (4.12).

4.4.2 Constraining SMERA

Let us examine Eq. (4.13) a bit more closely. As discussed in Sec. 4.7, 4(k − 1)

is an upper bound on the number of bonds that the causal cone could cut at any

given depth m below the crossover scale m̄. (The crossover scale m̄ is attained after

roughly logk `0 renormalization steps.) For a given causal cone, i.e., for `0 sites at

a given location with respect to the MERA, let us parametrize our ignorance by

writing

SMERA(`0;B) ≤ 4fB(k) logk `0 lnχ , (4.14)
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where fB(k) grows no faster than (k− 1) and counts the (average) number of bonds

cut by the causal cone at any depth up to the crossover scale. Explicitly,

fB(k) ≡ 1

4m̄

m̄−1∑
m=0

ntr
m , (4.15)

where ntr
m denotes the number of bonds that the causal cone cuts at the mth level.

Each cut bond contributes at most lnχ to the entropy (the case of maximal en-

tanglement). As such, it is instructive to introduce a parameter ηB ∈ [0, 1] that

describes the degree of entanglement of the sites in the causal cone. In doing so we

may rewrite the inequality (4.14) as an equality:

SMERA(`0;B) = 4fB(k) logk `0 · ηB lnχ. (4.16)

The quantity ηB lnχ is the average entanglement entropy per cut bond in the causal

cone of B. Equivalently, Eq. (4.16) may be taken as the definition of ηB.

This definition of ηB of course depends on the location of B and only applies to

bonds that are cut by the causal cone of B. In what follows, it will be advantageous

to have a notion of average entanglement entropy per bond that applies to all bonds

in the MERA. To this end, start with a lattice consisting of `tot sites in total and

consider the limit in which the size of a region B is unbounded but where the ratio

`0/`tot is held constant (so that B does not grow to encompass the whole domain

of the CFT). In this limit, SMERA(`0;B) → SMERA(`0) and fB(k) → f(k) should

be independent of the exact location of B, i.e., SMERA should exactly agree with

Eq. (4.9). Let us consequently define the average entanglement entropy per bond in

the MERA:

η lnχ = lim
`0→∞

SMERA(`0)

4f(k) logk(`0)
. (4.17)

The quantity η is then a property of the MERA itself.

Intuitively, one would not expect each individual bond in the MERA to be maximally

entangled and so it should be possible to constrain η more tightly than η ≤ 1.

This expectation is made more precise via the following considerations. To begin,

consider a MERA with k = 2 and examine a pair of isometries at a fixed depth
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m. As indicated in Fig. 4.5 (a), let ρ2 denote the density matrix of the bonds and

ancillae emanating from the two isometries and let ρ1 denote the density matrix of

the four highlighted bonds below the isometries. We again assume that the ancillae

are initialized to the pure product state composed of factors of |0〉. Taking into

account the ancillae, or in other words promoting the isometries to unitaries, we

see that ρ1 and ρ2 are related by a unitary transformation, so S(ρ1) = S(ρ2). By

assumption, the state of each ancilla is |0〉, so ρ2 = ρ̃2 ⊗ |0〉〈0| ⊗ |0〉〈0| for some

density matrix ρ̃2. This in turn implies that S(ρ2) = S(ρ̃2) ≤ 2 lnχ. From the

definition of η above, the entanglement entropy of a single bond is asymptotically

given by η lnχ, so S(ρ1) ' 4η lnχ. It therefore follows that η ≤ 1/2.

b b b

b b b

b b b

ρ2

ρ1

|0〉 |0〉

bb b b

(a)

b
b

b

b b b

b b b

b b b

b

b b b

b b b

b b b

b
b

b

|0〉⊗(k−1) |0〉⊗(k−1)

ρ2

ρ1

b b b

b b b

(b)

Figure 4.5: A pair of isometries with their ancillae explicitly indicated for a MERA
with (a) k = 2 and (b) general k. The thick bonds below the isometries, the state
of which is denoted by ρ1, are unitarily related to the bonds that exit the isometries
and the ancillae, the state of which is denoted by ρ2.

For general k, the argument is nearly identical. We again begin by considering

a pair of isometries at a given level m (see Fig. 4.5 (b)). Analogously with the

k = 2 case, let ρ2 denote the density matrix of the two bonds and 2k − 2 ancillae

emanating from the two isometries and let ρ1 denote the density matrix of the 2k

highlighted bonds below the isometries. There is only one disentangler that straddles

both of the isometries in question for any layout of the MERA. As such, at most k

of the lower bonds enter a disentangler from below and the rest directly enter the

isometries. Here as well ρ1 and ρ2 are related by a unitary transformation so that
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S(ρ1) = S(ρ2). Similarly, ρ2 = ρ̃2 ⊗ (|0〉〈0|)⊗2k−2 for some density matrix ρ̃2, so

S(ρ2) = S(ρ̃2) ≤ 2 lnχ. The region described by ρ1 always consists of 2k bonds,

so we may again asymptotically write S(ρ1) ' 2kη lnχ. It therefore follows that

kη ≤ 1, and since f(k) ≤ (k − 1), we may write

ηf(k) ≤ k − 1

k
. (4.18)

We note that, in computational practice, one typically does not use the “worst-case

scenario” construction explored in Sec. 4.7; a more conventional construction would

result in a tighter bound on f(k) and hence a stricter inequality than Eq. (4.18).

For our purposes, however, we will remain as conservative as possible and therefore

use the inequality (4.18) in our subsequent bounds.

4.4.3 Matching to the CFT

Finally, we obtain a constraint on k, χ, and η in terms of the central charge c by

collecting the results of this section. Let us work in the limit where the interval

is much larger than the lattice spacing, logk `0 � 1. We have seen that this is

precisely the regime in which η and f(k) are well-defined quantities independent

of the choice of B. It is also the regime in which we can equate the CFT entropy

S(`0) = (c/3) ln `0 with the MERA entropy (4.16). Doing so, the central charge is

given by

c =
3L

2G
= 12η f(k)

lnχ

ln k
. (4.19)

Then in light of Eq. (4.18), we find that

c ≤ 12

(
k − 1

k ln k

)
lnχ . (4.20)

To recapitulate, given a CFT with central charge c and a MERA representation of

its ground state, a necessary condition for a consistent AdS/MERA correspondence

is that the MERA parameters k and χ satisfy the constraint (4.20). Importantly,

this implies that, for a well-defined semiclassical spacetime (for which c � 1), the

bond dimension χ must be exponentially large in the size of the AdS scale compared

to the Planck scale.
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Let us also note that we can still obtain a bound from Eq. (4.19), albeit a weaker

one, without using the result of Eq. (4.18). Recall that this latter result relies on

having unentangled ancillae in the MERA. This is not necessarily the case for other

tensor network bulk constructions, as we will subsequently discuss. As such, if we

disregard the result of Eq. (4.18), we still have by virtue of their definitions that

f(k) ≤ k − 1 and η ≤ 1. The following weaker but more general bound on the

central charge therefore follows from Eq. (4.19) for such generalized tensor networks:

c ≤ 12

(
k − 1

ln k

)
lnχ. (4.21)

4.5 Constraints from Bulk Entanglement Entropy

In addition to the compatibility conditions from geodesic matching and boundary

entanglement entropy, it is well-motivated to seek out any other possible quantities

that can be computed in both the MERA and AdS/CFT frameworks, so as to place

further constraints on any AdS/MERA correspondence. One important example of

such a quantity is the entropy associated with regions in the bulk, as opposed to on

the boundary.

4.5.1 The Bousso Bound

The notion of placing bounds on the entropy of regions of spacetime in a quan-

tum gravity theory has been explored for many years, first in the context of black

hole thermodynamics [93] and the Bekenstein bound [94] and later in more general

holographic contexts, culminating in the covariant entropy bound, i.e., the Bousso

bound [95,96].

The statement of the Bousso bound is the following: given a spacelike surface B of

area A, draw the orthogonal null congruence on the surface and choose a direction

in which the null generators have non-positive expansion. Let the null geodesics

terminate at caustics, singularities, or whenever the expansion becomes positive.

The null hypersurface swept out by these null geodesics is called the lightsheet. Then

the entropy S going through the lightsheet is less than A/4G.
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Let our spacelike surface B be a 2-ball of area A on a spacelike slice of AdS and

choose as the lightsheet the ingoing future-directed null congruence. This lightsheet

will sweep out the entire interior of B and will terminate at a caustic at the center

of B. Since the system is static, the entropy S passing through this lightsheet is the

entropy of the system on B, which by the Bousso bound satisfies

S(B) ≤ A

4G
. (4.22)

It is natural to cast the Bousso bound as a constraint on the dimension of the bulk

Hilbert space. As argued in Ref. [97], the thermodynamic entropy of a system about

which we only know the boundary area A is just the logarithm of the dimension of

the true Hilbert space of the bulk region in question (as opposed to the naïve Hilbert

space in quantum field theory), which the Bousso bound implies is less than A/4G.1

As such, if we denote the Hilbert space of B by HB, let us replace Eq. (4.22) with

the slightly more concrete statement

ln dimHB ≤
A

4G
. (4.23)

4.5.2 A MERA version of the Bousso Bound

Our aim is to compute both sides of the inequality (4.23) using the MERA. For this

calculation, it is instructive to change our parametrization of the hyperbolic plane

from coordinates (x, z), which take values in the half-plane z > 0, to coordinates

(ρ, θ), which take values in a disk 0 ≤ ρ < 1, 0 ≤ θ < 2π. Embeddings of the MERA

in a disk are often depicted in the literature, e.g., [100]; here we make this coordinate

transformation explicit, since we wish to carefully study the geometric properties of

the MERA.

To begin, consider a MERA consisting of a single tree that contains a finite number

of layers m. This situation is illustrated in Fig. 4.6 (a) for k = 2 and m = 4. Note
1Moreover, it is known that there exists an asymptotically-AdS bulk configuration that saturates

the Bousso bound, namely, the BTZ black hole [70, 98], which further implies that ln dimHB in
fact equals A/4G. However, we will not need this stronger assertion in what follows. A similar
but unrelated result equating the area of a region with its entanglement entropy in vacuum was
obtained in Ref. [99].
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that such a MERA begins with a top-level tensor at the mth level that seeds the rest

of the MERA in the IR.

(a)

a

2a

2
2
a

2
3
a

2
4
a

z

x

0 2
4
a

(b)

ρ
θ

(c)

Figure 4.6: (a) A k = 2 MERA consisting of m = 4 layers and with periodic
boundary conditions, (b) the corresponding embedding in (x, z) coordinates, and (c)
the embedding in (ρ, θ) coordinates.

The base of the MERA is made up of km sites. Without loss of generality, let us

locate the leftmost site of the base of the MERA at x = 0, so that the UV-most

sites sit at coordinates (x, z) = (na, a), where n = 0, 1, 2, . . . , (km − 1) as shown in

Fig. 4.6 (b). Let us also assume periodic boundary conditions for this MERA and

hence identify x = 0 and x = kma.
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Next, define the coordinates (ρ, θ) as follows:

ρ =
kma− z
kma

,

θ = 2π
x

kma
.

(4.24)

In these coordinates, the metric reads

ds2 =
L2

(1− ρ)2

[
dρ2 +

(
dθ

2π

)2
]
, (4.25)

cf. Eq. (4.3). This embedding of the MERA is shown in Fig. 4.6 (c); the top-level

tensor always sits at ρ = 0 and the lower layers of the MERA are equally spaced on

circles of radii 1/2, 3/4, 7/8, . . . that are centered at ρ = 0.

More generally, one could construct a top-level tensor that has T legs, each of which

begets a tree of sites. In this case, x = 0 and x = Tkm−1a are identified, so one

should define the angular variable as θ ≡ 2πx/(Tkm−1a). The metric (4.25) is

correspondingly modified and reads

ds2 =
L2

(1− ρ)2

[
dρ2 +

T 2

k2

(
dθ

2π

)2
]
. (4.26)

This situation is depicted in Fig. 4.7. (If T = k, however, then it is not necessary to

introduce any new structure in addition to the disentanglers and isometries that were

already discussed, i.e., one may take the top-level tensor to be one of the isometries.)

We may immediately compute the right-hand side of Eq. (4.23). Let the ball B be

centered about ρ = 0, and suppose B contains the top-level tensor, the sites at the

top tensor’s legs, and then the first NB generations of the MERA emanating from

these sites, as indicated in Fig. 4.7. The boundary of B is a circle at constant ρ, so

its circumference according to the MERA is A = TkNBL. As such, we may write

A

4G
=
TkNBL

4G
=
TkNBc

6
, (4.27)

where in the second equality we used the Brown-Henneaux relation, Eq. (4.10).

How one evaluates the left-hand side of Eq. (4.23) using the MERA is not as imme-

diate. Recall that HB is the Hilbert space of bulk states. The MERA, however, does
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Figure 4.7: Disk parametrization of the Poincaré patch of AdS in which a MERA
has been embedded. The top tensor of the MERA shown has T = 6. The shaded
region is a ball B, which is this case contains NB = 1 generation.

not directly prescribe the quantum-gravitational state in the bulk; it is not by itself

a bulk-boundary dictionary. As we mentioned in Sec. 4.2.2, the minimal assump-

tion that one can make is to posit the existence of a bulk Hilbert space factor Vbulk

associated with each MERA site that is not located at the top tensor. To keep the

assignment general, we assign a factor VT to the top tensor. The dimensionality of

each Vbulk factor should be the same in order to be consistent with the symmetries

of the hyperbolic plane. The assumption of a Hilbert space factor at every MERA

site is minimal in the sense that it introduces no new structure into the MERA.

A true AdS/MERA correspondence should dictate how states in the bulk Hilbert

space are related to boundary states. However, for our analysis, it is enough to

simply postulate the existence of the bulk Hilbert space factors Vbulk and VT, each

of which may be thought of as localized to an AdS-scale patch corresponding to the

associated MERA site.

In addition to the site at the top tensor, the number of regular MERA sites that the

ball B contains is given by

NB = T

NB∑
i=0

ki = T

(
kNB+1 − 1

k − 1

)
. (4.28)

As such, the Hilbert space of bulk states restricted to B is HB = (Vbulk)⊗NB ⊗ VT.
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Next, suppose that dimVbulk = χ̃ and that dimVT = χ̃T, where, like χ, χ̃ and χ̃T

are some fixed, NB-independent numbers. Then dimHB = χ̃T(χ̃NB). Note that one

would expect χ and χ̃ to have a very specific relationship in a true bulk/boundary

correspondence, the nature of which will be explored later in this section. Combining

Eqs. (4.27) and (4.28), the dimensionality of HB is upper bounded as follows:

ln dimHB ≤
A

4G
=⇒ T

(
kNB+1 − 1

k − 1

)
ln χ̃+ ln χ̃T ≤

TkNB c

6
. (4.29)

After isolating c in Eq. (4.29) and using the result of Eq. (4.19), we find that

c = 12ηf(k)
lnχ

ln k
≥ 6

(
kNB+1 − 1

kNB(k − 1)
ln χ̃+

1

TkNB
ln χ̃T

)
. (4.30)

Next, let us consider this inequality in the limit of large NB. A motivation for this

limit is the fact that the natural scale of validity of an AdS/MERA correspondence

is super-AdS, as was established in Sec. 4.3. Moreover, by virtue of its definition,

there is always an ambiguity of order the AdS scale in the radius of the ball B. That

is, the region in AdS denoted by B is only well-defined in the MERA if B is large

compared to the AdS scale L. Taking the limit of large NB, Eq. (4.30) reduces to

ηf(k) ≥ k ln k

2(k − 1)

(
ln χ̃

lnχ

)
. (4.31)

By using the bound on ηf(k) given by Eq. (4.18), we arrive at a constraint on k, χ,

and χ̃:
k2 ln k

2(k − 1)2

(
ln χ̃

lnχ

)
≤ 1. (4.32)

In principle, the above inequality could be satisfied for any k, provided that the

dimension χ̃ of the factors Vbulk can be arbitrarily chosen with respect to the bond

dimension χ. However, the essence of holography, that the bulk and boundary are

dual descriptions of the same degrees of freedom and therefore have isomorphic

Hilbert spaces [73], implies a relation between χ and χ̃. Namely, for a MERA with

a total of N levels of sites in the bulk strictly between the UV-most level and the

top-level tensor, the number of bulk sites Nbulk that are not located at the top

tensor is given by Eq. (4.28) with NB = N , and the number of sites in the boundary
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description is Nboundary ≡ TkN+1. The bulk Hilbert space thus has dimension

χ̃Nbulkχ̃T and the boundary Hilbert space has dimension χNboundary . Equating2 the

dimension of the bulk and boundary Hilbert spaces then yields

ln χ̃

lnχ
=

1

Nbulk

(
TkN+1 − ln χ̃T

lnχ

)
N large→ k − 1, (4.33)

where we took the limit of N large, consistent with Eq. (4.31) and in keeping with

the expectation that the UV cutoff be parametrically close to the boundary at ρ = 1.

Putting together Eqs. (4.32) and (4.33), we obtain a constraint on k alone:

k2 ln k

2(k − 1)
≤ 1. (4.34)

This constraint cannot be satisfied for any allowed value of the rescaling factor

k, which must be an integer greater than or equal to 2. We thus learn that a

conventional MERA cannot yield a consistent AdS/MERA correspondence. The

MERA cannot simultaneously reproduce AdS geodesics, respect the Ryu–Takayanagi

relation, and (using the only construction for the bulk Hilbert space available to the

MERA by itself) satisfy the Bousso bound. That is, there exists no choice of MERA

parameters that can faithfully reproduce geometry, holographic properties, and bulk

physics.

If we relax this bound and, instead of Eq. (4.18), only observe the weaker, natural

bounds η ≤ 1 and f(k) ≤ k − 1 as discussed at the end of Sec. 4.4.3, the constraint

(4.34) is correspondingly modified:

k ln k

2(k − 1)
≤ 1. (4.35)

In contrast to Eq. (4.34), this latter bound can be satisfied, but only for k = 2, 3,

or 4. As such, other AdS/tensor network correspondences, in which the ancillae are

perhaps entangled and therefore do not describe a conventional MERA, are not ruled

out. Note that we never needed to compute bulk entanglement entropy explicitly —
2We recognize that there are other proposals [26, 31] that do not require an exact equivalence

between the bulk and boundary Hilbert spaces, but, even in these cases, there is the requirement
of an exact equivalence between the logical qubits on the boundary with the Hilbert space of the
bulk.
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and therefore did not need to treat separately the possibility of entanglement among

ancillae — because we cast the Bousso bound as a constraint on the size of the bulk

Hilbert space itself. The appearance of η in Eq. (4.31) corresponds to entanglement

in the boundary theory as computed by the tensor network; Eqs. (4.31) and (4.33)

still apply.

4.6 Conclusion

The notion of emergence of spacetime based on a correspondence between AdS and

a tensor network akin to AdS/CFT is a tantalizing one. A necessary step in such a

program is the evaluation and comparison of calculable quantities on both sides of the

duality. In this work, we have subjected the proposed AdS/MERA correspondence

to such scrutiny. To summarize, let us restate our three main findings:

1. In matching the discrete graph geometry of the MERA to the continuous ge-

ometry of a spatial slice of AdS, we demonstrated that the MERA describes

geometry only on scales larger than the AdS radius. Concretely, as shown in

Sec. 4.3, the proper length assigned to the spacing between adjacent sites in

the MERA lattice must be the AdS scale.

2. By requiring that the entropy of a set of boundary sites in the MERA —

whose computation is a discrete realization of the Ryu–Takayanagi formula

— be equal to the CFT ground state entropy of the same boundary region

in the thermodynamic limit, we obtained a constraint on the parameters that

describe a MERA in terms of the CFT central charge [Eqs. (4.20) and (4.21)],

which implies that the bond dimension χ must be exponentially large in the

ratio of the AdS scale to the Planck scale.

3. In the natural construction of a bulk Hilbert space (Hbulk) using the MERA, we

used the Bousso bound to constrain the dimension of Hbulk. When combined

with our previous results, we found that any strict AdS/MERA correspondence

cannot satisfy the resulting constraint, Eq. (4.34). Upon relaxing the definition
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of the MERA or allowing for additional structure, however, we obtained a

looser constraint, Eq. (4.35), which may not rule out some other AdS/tensor

network correspondences.

In particular, more general correspondences between AdS and MERA-like tensor

networks, in which we allow the ancillae to be entangled when reproducing the CFT

ground state [and for which Eq. (4.35) applies in place of Eq. (4.34)] are not ruled

out by our bounds, provided that the rescaling factor k = 2, 3, or 4. Further, it is

interesting to note that our bounds extend to states other than the vacuum that are

described by a MERA. One such example, namely, states at finite temperature dual

to black holes in AdS, is discussed in Sec. 4.8 below.

While the consistency conditions that we found are specific to the MERA tensor

network, many of the ideas and techniques that we used apply equally well to other

tensor networks. In the EHM, for instance, the type of bulk Hilbert space dimen-

sionality arguments that we made based on the covariant entropy bound may be

directly transferred to the EHM. The same stringent final constraints that we de-

rived do not apply to the EHM, however, since it is unclear to what extent the

EHM reproduces the Ryu–Takayanagi formula (which renders the results of Sec. 4.4

inapplicable). Our bulk Hilbert space arguments similarly apply to the holographic

error-correcting code proposal in Ref. [31], which furthermore purports to reproduce

a version of the Ryu–Takayanagi formula. It is presently unknown, however, whether

the boundary state of a holographic code can represent the ground state of a CFT,

so an identification of entropies similar to the identification SMERA = SCFT, upon

which our boundary entropy constraints so crucially depend, cannot yet be made.

In closing, we have found several consistency conditions that any AdS/MERA corre-

spondence must satisfy. The totality of these constraints rules out the most straight-

forward construal of an AdS/MERA correspondence. Other interesting holographic

correspondences that are described by tensor networks more general than the MERA

and that respect all of our bounds may indeed be possible. Our consistency con-

ditions are nice validity checks for these correspondences when applicable and in
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other cases they may inspire similar consistency conditions. The program of identi-

fying the emergence of spacetime from the building blocks of quantum information

is an ambitious one; stringent consistency conditions, such as those presented in this

paper, are important for elucidating the subtleties in this quest and in providing

guidance along the way.
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4.7 Entropy bound for general MERAs

Following the method presented in Ref. [87], let us compute an upper bound for the

entanglement entropy of a region B consisting of `0 sites in a MERA with rescaling

factor k. We will use the notation of Ref. [87] throughout.

First, recall the result from Ref. [87] that the entanglement entropy of a region

consisting of `0 sites is bounded by

SMERA(`0;B) ≤ (`m′ +N tr
m′) lnχ. (4.36)

The quantity `m′ is the width of the causal cone at depth m′ and N tr
m′ =

∑m′−1
m=0 n

tr
m

is the total number of sites that are traced out along the boundary of the causal

cone. In other words, N tr
m′ is the number of bonds that are cut by the causal cone

up to a depth m′ (cf. Fig. 4.4). The quantity lnχ is the maximum entanglement
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entropy that each site that is traced out could contribute to SMERA(`0;B). Note

that Eq. (4.36) holds for all m′ ≥ 0.

The width of the causal cone for a givenm′ depends sensitively on the structure of the

MERA. In particular, the number of sites that are traced out at each renormalization

step depends on the choice of disentanglers, as well as how they are connected to the

isometries. For instance, in a MERA with a rescaling factor k, any given disentangler

could have anywhere from 2 up to k incoming and outgoing legs. (It should be

reasonable to require that any disentangler can have no more than k incoming and

k outgoing legs so that it straddles no more than two isometries.) It is thus clear

that the number of bonds that one cuts when drawing a causal cone, and hence the

entanglement entropy of the region subtended by that causal cone, depends on the

choice of disentanglers and connectivity.

Nevertheless, we can compute an upper bound for SMERA(`0;B) by considering a

worst-case scenario for the number of bonds cut by the causal cone. We begin by

asking: What is the largest number of bonds that a causal cone could cut in one

renormalization step at a depth m′? The layout of disentanglers and isometries that

produces this situation is shown at one side of a causal cone in Fig. 4.8. If the

causal cone at the bottom of the renormalization step incorporates a single bond

that goes into a disentangler accepting k bonds, then the causal cone must cut the

other k − 1 bonds entering the disentangler. Then if this disentangler is arranged

so that its leftmost outgoing bond is the first bond to enter an isometry from the

right, the causal cone must cut the other k − 1 bonds entering the isometry. If this

arrangement is mirrored on the other side of the causal cone, we see that 4(k − 1)

bonds are cut by the causal cone in this renormalization step, i.e., ntr
m′ = 4(k − 1).

Recall that for any finite `0, after a fixed number of renormalization steps, the width

of the causal cone remains constant for any further coarse-grainings. The depth at

which this occurs is called the crossover scale and is denoted by m̄. Therefore, the

causal cone will cut the largest possible number of bonds when the arrangement

described above and depicted in Fig. 4.8 occurs at every step up until the crossover
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k − 1k − 1

Figure 4.8: Left side of a causal cone that cuts the maximum possible number of
bonds over the course of one renormalization step. The rectangles are disentanglers
that accept k bonds as input and the triangles are isometries that coarse-grain k
bonds into one. The causal cone is the shaded region. If this situation is mirrored on
the right side of the causal cone, then 4(k− 1) bonds are cut in this renormalization
step.

scale. Then, by Eq. (4.36), the entropy bound is given by

SMERA(`0;B) ≤ (`m̄ + 4(k − 1)m̄) lnχ, (4.37)

where `m̄ is the width of the causal cone at the crossover scale.

For any given causal cone in a MERA with scale factor k ≥ 2, the maximum number

of additional sites the causal cone can pick up at some level m′ is 4(k−1). Therefore,

for a causal cone that contains `m′ sites at depth m′, the number of sites in the

causal cone after one renormalization step `m′+1 ≤ d(`m′ + 4(k − 1))/ke ≤ `m′/k+5.

Applying the relation recursively, we find that the number of sites `m′ at any layer

m′ < m̄ is bounded,

`m′ ≤
`0
km′

+ 5
m′∑
m=1

1

km
≤ `0

km′
+ 5 . (4.38)

Setting m′ = m̄, it trivially follows that the crossover scale obeys m̄ ≤ logk `0.

Furthermore, we notice that this is the scale at which the entanglement entropy is

minimized if we trace over the remaining sites. In other words, the number of bonds

cut by going deeper into the renormalization direction is no less than the bonds cut

horizontally, so 4(k − 1) ≥ `m̄
3. Applying the bounds for m̄ and `m̄ on Eq. (4.37),

3Alternatively, we can see this from a heuristic argument by noting that the crossover scale is
the scale at which the causal cone has a constant width for further coarse-grainings, i.e., (`m̄ +
4(k − 1))/k ≈ `m̄. Therefore, `m̄ . 4 ≤ 4(k − 1).
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we arrive at an upper bound on SMERA(`0;B) for a k-to-one MERA,

SMERA(`0;B) ≤ 4(k − 1)(1 + logk `0) lnχ. (4.39)

When `0 is parametrically large, we neglect the O(1) contribution to the bound on

SMERA(`0;B), which yields Eq. (4.13).

4.8 BTZ Black Holes and Thermal States in AdS/MERA

Thus far, we have found constraints on the structure of a MERA that can describe

CFT states dual to the AdS3 vacuum. One might ask whether these results extend

to other constructions that exist in three-dimensional gravity. Although pure gravity

in AdS3 has no local or propagating degrees of freedom, there exist interesting non-

perturbative objects, namely, BTZ black holes [70]. In this section, we extend our

constraints on boundary entanglement entropy to these objects.

The non-rotating, uncharged BTZ black hole solution is given in Schwarzschild co-

ordinates by

ds2 = −
(r2 − r2

+)

L2
dt2 +

L2

(r2 − r2
+)

dr2 + r2dφ2 , (4.40)

with a horizon at r = r+. Noting that Euclidean time is compactified by identifying

τ ∼ τ+2πL2/r+, the horizon temperature of the black hole is given by T = r+/2πL
2.

Additionally, the Bekenstein–Hawking entropy of the black hole is

SBH =
Area

4G
=
πr+

2G
. (4.41)

Let us now consider applying a MERA with rescaling factor k and bond dimension

χ to a CFT at a finite temperature, where instead of minimizing the energy of the

boundary state, one minimizes the free energy. In the CFT, turning on a tempera-

ture introduces a scale, going as the inverse temperature, which screens long-range

correlations. Thus, the state will have classical correlations in addition to entan-

glement and the effect of a finite temperature on the entanglement entropy is the

appearance of an extensive contribution. As one runs the MERA and coarse-grains,

the thermal correlations that cannot be removed become more relevant. The MERA,
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which is unable to remove the extensive contribution, truncates at a level with mul-

tiple sites. The schematic entanglement renormalization process is illustrated in

Fig. 4.9. The state at the top level effectively factorizes, where each factor appears

maximally mixed [76, 86]. A tractable realization of this tensor network structure

recently appeared in Ref. [101], which found a MERA representation of a thermal

state.
ρ ρ ρ ρ

1

Z
exp









−

ĤCFT

T









Figure 4.9: The MERA, when applied to a thermal CFT state Z−1 exp(−ĤCFT/T ),
where Z = tr(exp(−ĤCFT/T )), truncates after a finite number of layers. The bound-
ary state at the top of the truncated MERA effectively factorizes into a product of
maximally mixed states ρ = I/χ.

Keeping in mind that the holographic dual of a finite-temperature state in the CFT is

a black hole in AdS, where the temperature of the CFT corresponds to the Hawking

temperature of the black hole, we note that the truncated MERA is suggestive of

a black hole horizon [76]. If the MERA is to be interpreted as a discretization of

the geometry, then the geometry has ended at some scale. Also, as we approach the

horizon, the amount of Hawking radiation that we see increases and the temperature

measured by an observer at the horizon diverges. The density matrix of some system

in the infinite-temperature limit is given by the product of a maximally mixed state

at each site, just like the state at the top of the MERA. It is important to note that,
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as was pointed out in Ref. [101], in order to reproduce the correct thermal spectrum

of eigenvalues, a small amount of entanglement must be present between the sites

at the horizon. If the bond dimension were taken to be infinite, then the sites at

the horizon truly would factorize. But for a finite bond dimension, one should really

think of the horizon as a high-temperature state, with sites effectively factorized.

For small regions on the boundary, the length of the subtending bulk geodesic is

subextensive and so the Ryu–Takayanagi formula maintains that the boundary re-

gion’s entanglement entropy is subextensive as well. However, if we consider a large

enough region on the boundary, the geodesic will begin to probe the horizon of the

black hole. The geodesic will run along the black hole horizon and pick up an exten-

sive contribution to the entropy. We consider a boundary theory living on a lattice

consisting of nb sites, with total system coordinate length xsys = nba. In the limit

as r approaches the boundary in the metric (4.40), we see that Txsys = r+/L, as

was pointed out in Refs. [17, 92]. We further note that this implies that the system

coordinate size is of order AdS radius, xsys = 2πL.

Let us now view the MERA of Fig. 4.9 as a discretization of a BTZ spacetime and

repeat the analysis of Sec. 4.3. In this discretization, the layers of the MERA lie

along circles of fixed radius r in the coordinates of Eq. (4.40). Again, we ask what

proper length L1 separates sites in any given layer of the MERA.

First, note that a path at fixed r0 that subtends an angle φ0 has proper length

r0φ0. At the boundary of the MERA, we consider a region defined by 0 ≤ φ ≤

φ0 = 2πx0/xsys, where x0 is the coordinate length of the interval, consisting of `0

lattice sites. The boundary of the MERA is at a fixed radius r = rb. Naturally, the

boundary radius rb can be interpreted as a UV cutoff and is related to the lattice

spacing a by rb = L2/a [17]. By equating the proper distance of the region in the

MERA, `0L1, with that at the boundary of the BTZ spacetime, rbφ0, we find the

proper length between horizontal bonds to be L1 = L.

With the foresight that the top of the MERA is suggestive of a black hole horizon with

proper length 2πr+, the number of sites at the final layer is therefore nh = 2πr+/L.
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This further tells us that the MERA truncates after a finite number of layers m,

given by

m = logk

(
nb

nh

)
= logk

1

2πTa
. (4.42)

This coincides with the conclusion in Refs. [101,102] that the MERA representation

of a thermal state is obtained after O(logk(1/T )) iterations of coarse-graining.

Now consider a region B on the boundary consisting of `0 sites and for which the

corresponding geodesic contains a segment running along the BTZ horizon. The

subextensive contribution to the entropy in the MERA is exactly as before, in which

we pick up at most lnχ from each bond we cut with the causal cone of the region B.

Furthermore, we will now pick up an extensive contribution from the horizon, where

the number of horizon sites within the causal cone is `h and each such site in the

product state on the horizon contributes maximally to the entropy by an amount

lnχ. Combining the contributions, we find

SMERA(B) = 4ηBfB(k) logk

(
`0
`h

)
lnχ+ `h lnχ . (4.43)

Recall that the entanglement entropy of a single interval B of coordinate length x0

in a CFT at finite temperature [62] is given, up to a non-universal constant, by

SCFT(B) =
c

3
ln

(
1

πaT
sinhπx0T

)
, (4.44)

where x0 is much smaller than the total system size xsys. The standard field-theoretic

derivation of the above entropy is done by computing the Euclidean path integral on

an n-sheeted Riemann surface and analytically continuing to find the von Neumann

entropy. The same result can be derived by computing geodesic lengths on spatial

slices of BTZ spacetimes and making use of the Ryu–Takayanagi formula.

When T → 0 in Eq. (4.44), we recover the usual result (4.9). In the T → ∞ limit,

the von Neumann entropy gives the usual thermal entropy as entanglement vanishes.

Taking Tx0 � 1, the leading and subleading contributions to the entanglement

entropy are

SCFT =
c

3
πx0T +

c

3
ln

1

2πaT
, (4.45)
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where the first term is the thermal entropy for the region B.

Now let us consider a finite-temperature CFT that is dual to a BTZ black hole with

horizon temperature T = r+/2πL
2. In terms of geometric MERA parameters, we

find that Eq. (4.45) becomes

SCFT =
c

6
`h +

c

3
m ln k . (4.46)

Here we used the fact that `h = x0r+/L
2 as well as Eq. (4.42), where we note that

m can also be written as logk(`b/`h). The result (4.46) coincides precisely with the

extensive and subextensive contributions calculated using the MERA in Eq. (4.43)

provided that c/ lnχ ∼ O(1). Therefore, we find that the truncated MERA correctly

captures the entanglement structure of thermal CFT states and their dual BTZ

spacetimes. These conclusions are in agreement with those in Refs. [85, 102].

As a check of the claim that c and lnχ should be of the same order, we can compare

the horizon entropy given by the contribution from the sites at the final layer with

the Bekenstein–Hawking entropy (4.41) of a BTZ black hole. There are nh sites

comprising the horizon, each with Hilbert space dimension χ. The system is in the

infinite-temperature limit — and hence described by a maximally mixed density

matrix, with entropy contribution lnχ from each site — so

Shorizon = nh lnχ . (4.47)

Making use of the Brown–Henneaux relation and requiring that the entropy (4.47)

coincide with the Beckenstein-Hawking entropy, we again find that c/ lnχ ∼ O(1).

More specifically, taking the counting to be precise, we find that

c/ lnχ = 6 , (4.48)

which is qualitatively in agreement with the previous conclusion (4.20) that the

Hilbert space dimension must be exponentially large in c.

With this relation, the extensive terms in Eqs. (4.43) and (4.46) agree precisely.

Further identifying the subextensive terms, we find ηBfB(k) = (ln k)/2. If we then
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impose the constraint (4.18), we find that

k ln k

2(k − 1)
≤ 1 . (4.49)

This last inequality exactly reproduces Eq. (4.35) and thus constrains k to be 2, 3,

or 4. Interestingly, we have found the weaker of the two bounds derived in Sec. 4.5,

without needing to consider the Bousso bound.

As desired, the truncated MERA computation of entanglement entropy agrees with

the expected entanglement entropy given by the application of the Ryu–Takayanagi

formula to the length of the minimal surface in a BTZ spacetime. The fact that the

results of matching boundary entanglement entropy given in Sec. 4.4 further hold in

BTZ spacetimes might not be too surprising given that such spacetimes are quotients

of pure AdS3.
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Part II

Cosmology
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C h a p t e r 5

DE SITTER SPACE AS A TENSOR NETWORK

We investigate the proposed connection between de Sitter spacetime and the MERA

(Multiscale Entanglement Renormalization Ansatz) tensor network, and ask what

can be learned via such a construction. We show that the quantum state obeys a

cosmic no-hair theorem: the reduced density operator describing a causal patch of

the MERA asymptotes to a fixed point of a quantum channel, just as spacetimes with

a positive cosmological constant asymptote to de Sitter. The MERA is potentially

compatible with a weak form of complementarity (local physics only describes single

patches at a time, but the overall Hilbert space is infinite-dimensional) or, with

certain specific modifications to the tensor structure, a strong form (the entire theory

describes only a single patch plus its horizon, in a finite-dimensional Hilbert space).

We also suggest that de Sitter evolution has an interpretation in terms of circuit

complexity, as has been conjectured for anti-de Sitter space.

This chapter was published as Ref. [4], N. Bao, C. Cao, S. M. Carroll, and A. Chatwin-

Davies, “De Sitter space as a tensor network: Cosmic no-hair, complementarity, and

complexity,” Phys. Rev. D 96 (2017) 123536, arXiv:1709.03513.

5.1 Introduction

Even in the absence of a completely-formulated theory of quantum gravity, a great

deal can be learned by combining insights from classical gravity, semiclassical entropy

bounds, the principles of holography and complementarity, and the general structure

of quantum mechanics. A natural testing ground for such ideas is de Sitter space, a

maximally symmetric spacetime featuring static causal patches with a finite entropy.

De Sitter is also of obvious phenomenological relevance, given the positive value of

the cosmological constant in the real world. In this paper we apply ideas from

quantum circuits and tensor networks to investigate quantum properties of de Sitter

http://dx.doi.org/10.1103/PhysRevD.96.123536
http://arxiv.org/abs/1709.03513
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on super-horizon scales.

The Multiscale Entanglement Renormalization Ansatz (MERA) is a well-studied

tensor network that was originally developed to find ground states of 1+1 dimensional

condensed matter theories [75]. In recent years, an interesting connection has been

drawn between the MERA and AdS3/CFT2, by way of using the MERA to discretize

the AdS space [76,86]. The argument was made that this could be seen as a way of

emerging AdS space from the boundary CFT, thus establishing AdS/CFT as a theory

in which bulk spacetime emerges from entanglement properties on the boundary.

Further work exploring this direction and generalizing it to other types of tensor

networks has been done by [31, 54, 77], and a p-adic approach to AdS/CFT using

trees is explored by [103, 104]. However, the AdS/MERA correspondence seems to

have tensions with other known results in holography. For example, it is puzzling

that AdS/MERA appears to suggest a “bulk geometry” in the form of a tensor

network even for a CFT with a small central charge. Additionally, it needs to satisfy

a set of stringent constraints, brought on by the fact that it is supposed to duplicate

the established results of AdS/CFT [15, 17]. It appears that AdS/MERA in its

simplest form is not able to satisfy all of the constraints imposed by holography

with AdS geometry [3, 105, 106], although extensions may be able circumvent this

difficulty [107].

There is also considerable interest in studying a more general notion of geometry from

entanglement beyond the context of AdS/CFT [20], where geometries are related to

our physical universe [108, 109]. A connection between the MERA and de Sitter

spacetime has been suggested, where we think of the tensors as describing time

evolution, rather than as relating different spatial regions [79, 105, 110]. In the case

of 1+1 dimensions, it is also claimed [105] that the MERA can be thought of as

a discretization of a slice in the “kinematic space” [78, 111], which corresponds to

the space of geodesics in the hyperbolic plane in the particular case of AdS3/CFT2.

This beautifully illustrates a correspondence between regions in the dual kinematic

space, which take on information-theoretic interpretations, and the individual tensors
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localized in the MERA. More tentatively, quantum circuits have been proposed as a

way of studying realistic cosmological evolution from inflation to the present epoch

and beyond [112].

In this paper we investigate this proposed connection between the MERA and de Sit-

ter, under the assumption that a MERA-like circuit is able to simulate effective

quantum gravitational dynamics on super-Hubble scales for some subset of quantum

states in a theory of quantum gravity. We show that the structure of the MERA is

able to reproduce some desirable features of evolution in a de Sitter background. In

particular, we identify a scale invariant past causal cone as the static patch where

an analogous light-like surface functions as the cosmic horizon. Then we show that

a version of the cosmic no-hair theorem can be derived from the fixed point of the

quantum channel, whereby any state will asymptote to the channel fixed point at

future infinity. We next examine the issue of horizon complementarity in the MERA

context, and argue that the global and local descriptions of de Sitter [113, 114] can

be equivalent up to a unitary change of basis. We observe similarities between a

strong version of local de Sitter and the implementation of a quantum error cor-

recting code. Lastly, we derive a bound on the quantum complexity of the MERA

circuit, and show that the complexity scales in a manner that is consistent with the

“complexity equals action” conjecture [115].

5.2 The MERA and the de Sitter causal patch

In Fig. 5.1 we illustrate the MERA tensor network. In its original conception as

an ansatz for constructing ground states of 1-d spin systems, one starts with a sim-

ple quantum state at the top of the diagram, and propagates it downward through

a series of gates to a final state at the bottom. Each line represents a factor of

Hilbert space, which might be quite high-dimensional. Moving downward is the

“fine-graining” direction, and upward is “coarse-graining.” The square gates are “dis-

entanglers” (although they create entanglement as we flow downward), which take

two factors in and output another two factors. The triangular gates are “isometries,”
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|0〉 |0〉 |0〉|0〉

|0〉 |0〉 |0〉 |0〉 |0〉 |0〉 |0〉 |0〉

|0〉|0〉 |0〉|0〉 |0〉|0〉 |0〉|0〉 |0〉|0〉 |0〉|0〉 |0〉|0〉 |0〉|0〉

t

Figure 5.1: A periodic binary MERA. The green triangles denote the isometries
and the blue squares denote the disentanglers. The kets labeled |0〉 are ancilla states
inserted into each isometry. The action of the circuit is to take a state at the top and
evolve it downward. In anticipation of the connection to de Sitter, the fine-graining
direction is labelled as the direction of increasing t.

which can be thought of as taking in a single factor and outputting two factors;

alternatively, we can imagine inputting two factors, one of which is a fixed state |0〉,

and outputting another two, so that the total dimensionality entering and exiting

each tensor is equal. We will adopt the latter perspective in this paper. It is often

convenient to consider generalizations where k > 2 factors enter and exit each tensor.

In the AdS/MERA correspondence, tensors are taken to represent factors of Hilbert

space, and the two-dimensional geometry of the graph is mapped to the hyperbolic

plane. Here, where we are interested in studying a dS/MERA correspondence, flow

through the circuit represents evolution through time. Note that, while it is com-

mon in general relativity to draw spacetime diagrams with the future at the top, the

convention in quantum circuits for MERA is to start with one or more “top tensors”

and evolve downward. Here we will stick to the conventions of the respective com-

munities; time flows downward in MERA circuit diagrams, and upward in spacetime

diagrams.1

In this work, we will mostly be concerned with MERAs that are scale and transla-
1We will occasionally draw circuit diagrams in which time flows from left to right, just to keep

things lively.
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tionally invariant (the same disentanglers and isometries appear everywhere in the

network). We use the term “site” in the MERA to refer to a Hilbert space factor

that lives on a leg that exits a disentangler (or equivalently, that enters an isome-

try). When the MERA is used as a variational ansatz for a physical system like a

spin chain, the collection of sites at any given layer corresponds to the state of the

physical lattice at that renormalization scale. For more extensive reviews of tensor

networks and the MERA see [3, 80,100].

Viewed as a circuit in which the fine-graining direction corresponds to the future or

past direction (away from the de Sitter throat), the MERA reproduces the causal

structure of de Sitter spacetime [79, 105, 110]. Recently, as a part of their studies

of kinematic space, Czech et al. further pointed out that there is a natural way of

associating the MERA with half of the 1+1-dimensional de Sitter manifold [105].

Here we briefly explain how this works.

LetM be 1+1-dimensional de Sitter spacetime with the usual global coordinatiza-

tion:

ds2 = `2dS(−dt2 + cosh2 t dθ2). (5.1)

The timelike coordinate t takes all real values, and θ is an angular coordinate that

is 2π-periodic. In these coordinates, M looks like a hyperboloid whose constant-t

sections are circles that attain a minimum radius at t = 0 and that grow in either

θ = 0 π 2π

α = 0

−π/2

π/2

Figure 5.2: The Penrose diagram of global (1+1)-dimensional de Sitter spacetime.
As this is a spacetime diagram, time now runs from bottom to top. The boundaries
of two complete disjoint causal patches, one centered at θ = 0 and the other centered
at θ = π, are drawn with a dashed line, and the interiors of the patches are shaded.
Light rays travel along 45◦ lines in this diagram.
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Figure 5.3: A geometric de Sitter-MERA correspondence, mapping the MERA cir-
cuit to the top half of the de Sitter geometry. Note that the fine-graining direction
of the MERA in this diagram points upward to match the future direction in the
Penrose diagram. The domain of dependence of any pair of adjacent sites in the ini-
tial layer of the MERA is entirely contained within a single static patch in de Sitter.
Two of the four possible static patch interiors are shaded in red. (The other two
static patches are centered at θ = π/2 and θ = 3π/2.)

direction away from t = 0. The proper radius at t = 0 is equal to `dS, which is called

the de Sitter radius. A convenient coordinate transformation is to set cosh t = secα,

under which the metric becomes conformally flat:

ds2 =
`2dS

cos2 α

(
−dα2 + dθ2

)
. (5.2)

Because of this, the full de Sitter manifold is often represented by a rectangle in the

θ-α plane with −π/2 < α < π/2 and 0 < θ < 2π, as in the Penrose diagram of

de Sitter, Fig. 5.2.

Consider now the top half of the de Sitter manifold with t ≥ 0 (or 0 ≤ α < π/2).

Starting at t0 ≡ 0, the length of the constant-tn slice doubles at every subsequent

time tn = arccosh 2n with n = 1, 2, . . . This suggests identifying the top of a trans-

lationally invariant binary MERA with the t0 = 0 slice, and subsequent layers of the

MERA with the subsequent tn slices, so that the MERA describes the top half of

the de Sitter hyperboloid. This identification is illustrated in Fig. 5.3, in which the

sites of the nth layer of the MERA have been chosen to lie at the angles

θ
(n)
j =

π

2n+1

(
j +

1

2

)
j = 0, . . . , 2n+2 − 1 . (5.3)

The fact that the top of the MERA was chosen to have four sites was no coincidence.

With this choice, the future domain of dependence of any two adjacent sites at the
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top of the MERA precisely coincides with (the top half of) a single static patch of

de Sitter. Or, to use terminology that is more familiar in the MERA literature, each

static patch of de Sitter that is centered at θ = 0, π/2, π, or 3π/2 coincides with

a causal cone [87] in the MERA such that every layer of the causal cone contains

precisely two sites of the MERA (i.e., the causal cone is stationary).

Let us elaborate a bit on the terminology above. First, recall how a domain of

dependence is defined on a smooth manifold:

Definition 5.2.1. Let S ⊂M be a subset of a smooth Lorentzian manifoldM. The

future (resp. past) domain of dependence of S is the set of all points p ∈ M such

that every past (resp. future) inextensible causal curve through p intersects S.

This suggests the following analogous definition for a domain of dependence in a

MERA:

Definition 5.2.2. Let S be a collection of sites in a MERA. The future (resp. past)

domain of dependence of S is the set of all MERA sites p such that starting at p and

moving only in the past, or coarse-graining direction (resp future, or fine-graining

direction), one inevitably arrives at a site in S.

In de Sitter space, the proper radius of the cosmological horizon is constant. Given

an inextendible timelike geodesic, a static patch is defined as the set of all points

connected to that geodesic by both past- and future-oriented causal curves, and its

size is given by the horizon radius. In particular, in 1+1 dimensions the horizon

radius is π`dS/2. Within a constant-t slice, a horizon volume is an interval of proper

length π`dS, and static patches are diamonds in the Penrose diagram (cf. Fig. 5.2).

In line with [105], we here adopt a correspondence between the MERA and half

of the full 1+1-dimensional de Sitter manifold in which stationary causal cones in

the MERA are in correspondence with static patches of de Sitter. In the spirit of

tensor-network/spacetime correspondences, one should think of the MERA and the

state that it describes as some state of quantum gravity describing quantum fields
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evolving in a semiclassical de Sitter background. In other words, despite lacking

an explicit theory of quantum gravity, we suggest that some aspects of the effective

dynamics for a quantum gravity state that describes classical de Sitter spacetime

can be described and organized at a fundamental level by a suitably-chosen MERA.

In this picture, each site of the MERA carries a Hilbert space H∗, and the Hilbert

space that corresponds to a given horizon volume (call itHstatic) is the tensor product

of the Hilbert spaces of the sites that lie within the horizon. We do not count the

Hilbert spaces that correspond to unentangled ancillae as part of the static patch

Hilbert space, since we only attach a spacetime interpretation to entangled degrees of

freedom in the MERA proper. To be consistent with the Gibbons-Hawking entropy

of de Sitter spacetime [116], it should be that ln dimHstatic ∼ SdS, where SdS is the

de Sitter entropy. Therefore, for our Universe, where SdS ∼ 10122, the corresponding

bond dimension (i.e., the dimensionality of H∗) is of order dimH∗ ∼ exp(10122) per

site.

This is a very coarse-grained description of de Sitter spacetime. For a binary MERA,

there are only two sites per horizon volume, and layers of the MERA within a

static patch are separated by cosmological timescales. Furthermore, a binary MERA

only accommodates 4 distinct static patches (Fig. 5.2). We imagine, however, that

it should be possible to refine this horizon-scale description via, e.g., local gadget

expansions, in which the large Hilbert space H∗ could be factorized according to

sub-horizon locality. This perhaps can be achieved by some version of cMERA

[88,89,117].

One might wonder whether it is possible to pack more MERA sites into a single

slice of the static patch by starting with more sites at the top of the MERA, or

by considering a MERA with a larger branching factor. The number of sites at

the top of the MERA is fixed by the number of sites per layer in the stationary

causal cone, however. If the stationary causal cone has m sites per layer, then the

t = 0 slice contains 2m sites. The reason is simply because the t = 0 slice of de Sitter

contains exactly two disjoint horizon volumes. The quantitym in turn is fixed by the
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Figure 5.4: A ternary MERA. Ancillae are suppressed in this diagram. A stationary
causal cone with three sites per layer is indicated by the shaded region.

branching factor and the structure of the MERA. For a binary MERA, a stationary

causal cone always has m = 2 sites per layer. A ternary MERA has m = 3 sites per

layer in a stationary causal cone (Fig. 5.4). However, in general for a k-nary MERA,

in which the number of sites increases k-fold in each layer of the MERA, there can

only ever be m = 2 or 3 sites per layer in a stationary causal cone. Further details

of stationary causal cones and a proof of this last fact are given in Sec. 5.7.

Unfortunately, the global de Sitter-MERA correspondence as formulated on a (hy-

per)cubic lattice does not easily generalize to higher dimensions due to discretization

artifacts. The possibility of a de Sitter-MERA correspondence in higher dimensions

is discussed in Sec. 5.8.

5.3 Cosmic No-Hair as a channel property

Via the correspondence described above, each constant-t slice of a de Sitter static

patch is assigned a Hilbert space

Hstatic = H∗ ⊗H∗, (5.4)

where H∗ is the Hilbert space of a single MERA site. If we restrict our attention to

a single static patch, then the MERA also defines a superoperator, E , which maps

a state in Hstatic forward by one Hubble time to a state on the next slice. With the

disentanglers and isometries held fixed and uniform across the MERA, the action of

E may be written explicitly as

E(ρ) = UBC TrAD

[
VAB ⊗ VCD(|0〉〈0|A ⊗ ρBC ⊗ |0〉〈0|D)V †AB ⊗ V

†
CD

]
U †BC . (5.5)
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The labels A, B, C, and D indicate on which Hilbert space factors operators act,

but we may subsequently omit them when it does not cause confusion. The ancillae

are labelled by A and D, and Hstatic is labelled by B and C, cf. Fig. 5.5.

|0〉 |0〉

ρ

A

CB

D

E(ρ)
(a)

ρ

|0〉〈0|

|0〉〈0|

V †

V †

V

V

U †U

E(ρ)

(b)

Figure 5.5: (a) A single step of the MERA within the causal patch, viewed as a
channel E , and (b) the equivalent circuit diagram. Time runs in the downward
direction in (a).

In the MERA literature, E is known as the descending superoperator [80,118]. It is a

quantum channel by construction, i.e., it is completely positive and trace-preserving

on the set of states (density operators), which for future reference we will denote by

S(Hstatic). In precise language, given a Hilbert space H, if H (H) denotes the space

of Hermitian operators on H, then the set of states is

S(H) ≡ {ρ ∈H (H) | Tr ρ = 1, 〈ψ|ρ|ψ〉 ≥ 0 ∀ |ψ〉 ∈ H} . (5.6)

Consider now starting at some given layer with a state ρ0 ∈ S(Hstatic) and repeatedly

applying the map E . Intuitively, every application of E dilutes the original state ρ0 by

entangling it with the same ancillary state |00〉〈00|AD before taking a partial trace,

at which point information about ρ0 flows out of the static patch. It is therefore

natural (and correct) to expect that the state on the static patch should settle down

to a future asymptotic steady state, regardless of the initial state ρ0.

We will make this expectation rigorous below, but first we note that this observation

suggests a sort of cosmic no-hair theorem for the de Sitter-MERA correspondence.
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In classical general relativity, a cosmic no-hair theorem is roughly the statement

that a positive cosmological constant causes a spacetime to asymptotically tend to

a de Sitter state in the future. The following theorem of Wald pertaining to Bianchi

spacetimes, which are homogeneous but anisotropic cosmological models, is perhaps

the most precise statement of a cosmic no-hair theorem [119]:

Theorem 5.3.1 (Wald). All Bianchi spacetimes (except certain strongly-curved

Bianchi IX spacetimes) that are initially expanding, that have a positive cosmological

constant, and whose matter content obeys the strong and dominant energy conditions

asymptote to de Sitter in the future.

Various generalizations and variations of this theorem exist in the literature [5,120–

128]. In particular, quantum cosmic no-hair theorems show that the quantum states

of fields tend to their respective vacuum states on an asymptotically de Sitter back-

ground [129–131]. The MERA results here are reminiscent of these quantum cosmic

no-hair theorems.

Let us now add some rigor to the above observations. When H is finite-dimensional,

quantum channels are necessarily contractions on S(H) [132]. Recall that a linear

map T : X → X on a Banach space X is a contraction if there exists 0 < κ ≤ 1

such that d(T (x1), T (x2)) ≤ κ d(x1, x2) for all x1, x2 ∈ X, where d is the metric on

X. For S(H), the metric is most commonly defined using the 1-norm,

d(ρ, σ) ≡ ||ρ− σ||1, (5.7)

where ||A||1 = Tr
√
A†A for any linear operator A.2 A contraction is strict when

0 < κ < 1, in which case the contraction mapping principle guarantees that there

is a unique fixed point x? ∈ X such that T (x?) = x?. Furthermore, the sequence

{Tn(x0)}∞n=1 converges to the fixed point x? for any choice of the starting point x0.

Quantum channels need not be strict contractions in general; however, it is certainly

easy to write down channels that are strict contractions [132]. Returning to the
2All norms are equivalent in finite dimensions, i.e., for any two norms ‖ · ‖a and ‖ · ‖b, there

exist constants m > 0 and M > 0 such that m‖v‖a ≤ ‖v‖b ≤M‖v‖a for all v in the normed space.
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de Sitter-MERA correspondence, we may simply suppose that the disentanglers U

and isometries V are chosen such that the superoperator E is a strict contraction.

Moreover, numerical assays seem to indicate that this is generally the case for random

U and V [80,118]. Our intuition that the state in a causal patch should tend to some

asymptotic fixed state in the future is therefore warranted.

Regardless of the channel’s contractive properties, it is easy to see that E has at least

one fixed point by examining its adjoint. To define the adjoint, take the domain of E

to be the space of Hermitian operators, H (H), which is closed under addition and

multiplication by real numbers. The space H (H) with the Frobenius inner product

〈T, S〉 ≡ Tr
(
S†T

)
(5.8)

is then a Hilbert space over the real numbers. As usual, the adjoint operator is

defined by the relation 〈E(T ), S〉 = 〈T, E†(S)〉. Using this definition, it is straight-

forward to show that the action of E† is

E†(S) = AD〈00|V †ABV
†
CD

[
IAD ⊗ (U †SU)BC

]
VABVCD|00〉AD . (5.9)

In the MERA literature, E† is known as the ascending superoperator. In this form,

it is clear that the identity operator is an eigenvector of E† with eigenvalue λ = 1.

Therefore, λ̄ = λ = 1 is also in the spectrum of E , or in other words, E necessarily

has a fixed point.

That λ = 1 is an eigenvalue of E is well-known [80, 118]; however, we exhibited

E† because it clearly shows that, in general, E is not self-adjoint. In particular,

this means that the eigenvector of E to the eigenvalue 1, call it ρ?, is not trivially

the identity operator. An interesting question is how much freedom is possible in

choosing ρ? by specifying the disentanglers and isometries U and V . Clearly there

are families fixed points. For example, if ρ? is such that E(ρ?) = ρ? for a given choice

of U and V , then ρ̃? ≡ (W † ⊗W †)ρ?(W ⊗W ) is the fixed point of the channel Ẽ

with Ũ = W †U and Ṽ = (I⊗W )V for any unitary operatorW on H∗. From exactly

what subset of S(H) the fixed point ρ? may be chosen is an open problem.
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5.4 Global de Sitter and Complementarity

In classical general relativity, there are no barriers to describing de Sitter spacetime

in a global way. However, in light of complementarity [23], an interesting question

is whether quantum gravity also accommodates a global description of de Sitter, or

whether a fully quantum theory only exists on a single causal patch. We will suggest

that a local picture (describing only a single patch) is possible via the MERA if the

Hamiltonian is essentially time-dependent; as a result, this perspective also avoids

Poincaré recurrences.

Complementarity, as it was originally envisioned for black holes, asserts that the abil-

ity of an observer to describe the region around them in terms of local quantum field

theory on a smooth spacetime background does not extend into the unobservable

region behind a horizon. For example, when describing physics outside of the black

hole in a black hole spacetime, one should think of all of the black hole’s degrees

of freedom as residing just above its apparent horizon on a stretched horizon [133].

Nevertheless (and neglecting possible issues regarding firewalls [18]), there should

also exist a complementary description of the black hole that is appropriate to, e.g.,

an observer who crosses the horizon, where the black hole interior is very much a

real place. Any possible discrepancies in these two descriptions are then purportedly

resolved by the fact that an observer who crosses the horizon becomes causally dis-

connected from the black hole exterior, and so information about these discrepancies

cannot be communicated to the exterior. Applied to de Sitter cosmology, horizon

complementarity suggests that a single observer can only describe physics using local

quantum field theory in a region that stretches out to the horizon, but no farther.

To this observer, the only sign of the rest of the universe is encoded on a stretched

horizon. If one considers two observers that have overlapping horizon volumes, then

there is presumably some partial mapping between their respective local descriptions

of physics.

The question then arises as to whether an infinitely big spacetime outside the de Sit-

ter horizon actually exists in this picture. A weak version of complementarity
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might posit that it does, but that its existence cannot be described by any one

observer; the underlying quantum theory would nevertheless still describe states in

an infinite-dimensional Hilbert space. A stronger version would postulate that the

entire quantum theory has a finite-dimensional Hilbert space (with dimension of

order eSdS), and all that exists can be described by a single Hubble patch and its

horizon [113,114,134–140]. The descriptions of physics in different horizon volumes

contained in different causal patches are then related by a global unitary transforma-

tion. The distinction might seem academic, but is actually crucial: unitary evolution

with a time-independent Hamiltonian in a finite-dimensional Hilbert space leads to

Poincaré recurrences and Boltzmann brains [139, 141, 142], which can be avoided if

Hilbert space is infinite-dimensional [143].

Let us refer to the weak complementarity perspective as the “global” view (different

regions of the classical de Sitter spacetime have an independent existence, and Hilbert

space is infinite-dimensional), and the strong complementarity perspective as the

“local” view (there is only one patch worth of information, and Hilbert space is finite-

dimensional). The MERA tensor network, we will argue, can accommodate the local

description, and with a bit of modification, the global description as well. We find

that there is a natural sense in which the information associated with any single

static patch can be localized on the static patch and its horizon. We then propose

a modified network that we call SCMERA (“Strong Complementarity MERA”) that

could, in principle, capture the local strong complementarity view. In order to have

consistent time-evolution in the SCMERA, we will see that it is effectively generated

by a time-dependent Hamiltonian, i.e., the unitary operator that maps a layer in the

SCMERA to the next layer changes as a function of depth in the network. While such

evolution is in tension with our expectations in cosmology, where the Hamiltonian

evolution should be time-independent, it does avoid certain undesirable phenomena

like Poincaré recurrences. Given how little we know about quantum cosmology, it

seems worth keeping different perspectives in mind.
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5.4.1 Slicing, weak complementarity, and pseudo-holography

A notable feature of the MERA is that it naturally provides a way to both define

different Cauchy slices and relate the states defined on them. Up until now, we have

thought of states in global de Sitter as being defined on constant time slices, or in

other words, on a single layer at constant depth in the MERA. However, given such

a state that we label by |Ψ〉dS, by picking some collection of sites on which it is

defined, one can define a new state |Ψ̃〉dS (which is in a tensor product with some

collection of n ancillae) and a new Cauchy slice by pushing the state on the chosen

sites back up (i.e., backwards in time) through the MERA. In other words, |Ψ〉dS

and |Ψ̃〉dS ⊗ |0〉⊗n are related by partial unitary evolution, and the horizontal cut

through the MERA on which |Ψ̃〉dS⊗|0〉⊗n is defined constitutes a new Cauchy slice.

In particular, given a static patch, the state |Ψ〉dS can be pushed back up through the

MERA in this way so that the resulting state is supported entirely on the sites that

comprise Hstatic and sites that are on the lightlike horizon, as illustrated in Fig. 5.6.

Note that this wouldn’t be possible for a generic state living on a constant t = T

slice in the Hilbert space of the complete theory, but can be done for the specific

states that arise via the MERA from the initial state at t = 0 (the top tensors).

Figure 5.6: Sites outside the horizon at any given layer (indicated by white dots) are
unitarily related, via the MERA, to a state on the horizon (indicated by red dots)
and a collection of ancillae (not shown), |Ψ̃〉dS⊗ |0〉⊗n. A state |Ψ〉dS corresponding
to the de Sitter spatial slice is prepared at the bottom layer. The sites inside the
static patch are indicated by the filled black dots.
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The observation above suggests a toy model for weak complementarity as well as

a sort of “pseudo-holography.” The network clearly admits a global de Sitter de-

scription on constant time slices, but a more observer-centric view of the local patch

consists of the state defined on Hstatic and a collection of horizon sites, as discussed

above and shown in Figure 5.6. For a stationary observer OA who travels along a

timelike geodesic at the center of the static patch, all information relevant to OA’s

local description of physics is given by the degrees of freedom in the static patch

interior. The information about the exterior is encoded in the degrees of freedom

that reside on the horizon. However, for another observer OB who travels away from

OA and leaves the patch, their surrounding spacetime geometry and description of

the quantum state can be “manufactured” by propagating OA’s horizon degrees of

freedom down through the MERA. In this way, the region that is accessible to OB is

realized by decompressing [105] the information that is contained on OA’s horizon.

The information that was previously understood to have localized on the horizon

for OA is, up to inclusion of ancillae, unitarily transformed to a state defined on

spacetime that is to the exterior of OA’s static patch. This map between the lo-

cal descriptions of different observers is a realization of weak complementarity, with

information about spacetime to the exterior of an observer’s cosmic horizon being

encoded on the horizon in a way that seems holographic.

This picture of weak complementarity is not really holographic, however, because

the number of apparent degrees of freedom associated with the horizon increases

toward the future in the MERA, i.e., the number of horizon sites grows with every

subsequent layer. In a true holographic model, the size of the boundary Hilbert

space should remain constant. We investigate this possibility, or in other words, the

possibility of strong complementarity, in the next section.

5.4.2 Strong Complementarity, recoverability, and quantum error correction

In the local, strong complementarity picture, the degrees of freedom represented by

the static patch of a single observer, plus those on the corresponding horizon, to-
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gether describe a closed system constituting the entirety of Hilbert space, which is

correspondingly finite-dimensional. Ordinarily, assuming a time-independent Hamil-

tonian, such a setup would lead to recurrences and Boltzmann brains. What we

will find, however, is that it is more natural from the MERA perspective to imagine

evolution inside the patch that is equivalent to a time-dependent Hamiltonian. (Cos-

mological evolution with a time-dependent Hamiltonian also plays a role in Banks

and Fischler’s approach to holographic spacetime [144–146].)

A local picture is possible in the MERA because of its particular circuit construction

that begins with a finite number of inputs (4 for a binary MERA), where only two

non-overlapping static patches at t = 0 are present. Consequently, the total number

of quantum degrees of freedom for the input is limited to that of two non-overlapping

patches and is, of course, finite. Let χ∗ ≡ dimH∗ denote the dimension of the Hilbert

space of a single MERA site (the bond dimension). Then, even though the number

of sites in the MERA grows as a function of depth, the global state at any given

subsequent layer of the MERA only resides in a subspace of dimension χ4
∗. Because

dimHstatic = χ2
∗ remains the same at every step in the MERA within the static

patch, there always exists a purification of the state ρstatic ∈ S(Hstatic) in a Hilbert

space with dimension χ2
∗. Therefore, simply by counting Hilbert space dimensions,

we could imagine that such a purifying Hilbert space, call it Hhorizon, resides on the

horizon of the static patch. The horizon state would have to be unitarily related

to the global state of the MERA outside the static patch (which is a preferred

purification of ρstatic).

To turn the network into a description of a single-patch universe, we propose modify-

ing the MERA circuit as follows. First, choose any single static patch in the MERA

(cf. Fig. 5.3). At t = 0, we identify the degrees of freedom inside a static patch as

interior degrees of freedom living in the Hilbert space Hstatic. The remaining exterior

degrees of freedom in the other patch can now be identified with the horizon within

the Hilbert space Hhorizon, with dimHstatic = dimHhorizon <∞. For a local picture,

we preserve the circuit structure for the static patch interior, but now we introduce
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separate circuit dynamics for Hhorizon, as shown in Fig. 5.7. In particular, a recovery

tensor (indicated by the ellipse) acts to extract ancilla states at the horizon. Be-

cause the interior network is unchanged, the previous cosmic no-hair result about

the interior state continues to hold.

|0〉

|0〉

|0〉

S A S

|0〉 |0〉

Figure 5.7: The strong complementarian version of the MERA that describes a static
patch for a local observer with horizon degrees of freedom. The future direction
points downward in the fine-graining direction. Dashed red lines demarcate the
interior of the de Sitter static patch. The combined system, including a constant
number of ancillae, evolves unitarily. The horizon degrees of freedom at each time
step are acted upon by a single recovery tensor (orange ellipse), which serves as a
map that distills the same ancillary state (represented by |0〉 in the figure) that is
entangled in the interior at the horizon. (Half-ellipses on opposite sides of the tensor
network are identified.) The ancillary system is denoted by S while the horizon
degrees of freedom are denoted by A.

This circuit structure constrains the action of the recovery tensor that acts on

Hhorizon in Fig. 5.7 if we demand unitary evolution. At each time step, new ancillae

are mixed with the interior via the action of the isometries (triangular tensors), and

then some information will flow to the horizon and become inaccessible to any inte-

rior observer via the action of the disentanglers (square tensors). To be consistent

with the literature, label the Hilbert space of the ancillae by S, the static patch

Hilbert space by E (i.e., Hstatic ≡ E), and the horizon Hilbert space by A (i.e.,

Hhorizon ≡ A). If it is always the same ancillary state σS (which we have simply

taken to be σS = |0〉〈0|S throughout) that gets mixed in via the isometries, then

in order to have consistent unitary evolution, it must be that the recovery tensor,

which acts on AS, must spit out a state of the form ρ′′A ⊗ σS . Put another way, if
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Ancillae (S)

Interior (E)

Horizon (A)

ρAE ⊗ σS ρ′
AES

ρ′′
AE

⊗ σS

USE

USA

Figure 5.8: Each time step of SCMERA can be condensed into a circuit diagram.
The dashed lines mark the resulting quantum state at the end of a subprocess. In
the case where the MERA global state is pure, which is the case we consider here,
it follows that ρSEA, ρ′SEA, and ρ

′′
SEA are all pure states.

at every time step we re-introduce a fresh “copy” of the ancillary state σS , then uni-

tarity in each time step demands that σS be restored after evolving forward in time.

(Alternatively we could drop the requirement of unitary evolution; we will return to

this possibility at the end of this section.) We call such a circuit for the local picture

the Strong Complementarity MERA (SCMERA). The usual global picture can be

easily restored by allowing ourselves more ancillary degrees of freedom and replacing

the horizon tensors with the usual MERA circuit. As a result, the local and global

pictures are related by some global unitary transformation that act on the extended

set of ancillae.

Let us ask whether it is possible to have a circuit with the tensor structure in Fig. 5.7

that spits out the state σS at every time step. To answer this question, it is useful to

analyze the SCMERA circuit from the perspective of recovery maps. At each time

step of SCMERA, we can describe the quantum process by

ρAES = ρAE ⊗ σS
USE⊗IA−−−−−→ ρ′AES

USA⊗IE−−−−−→ ρ′′AES = ρ′′AE ⊗ σS , (5.10)

as shown in the quantum circuit diagram in Fig. 5.8. USE corresponds to the isome-

tries that entangle the ancillae and the interior degrees of freedom, as well as the

disentanglers, while USA acts on the horizon. Since USA, which corresponds to the el-

liptical orange tensor in Figure 5.7, must recover the state σS , we call it the recovery

tensor.
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Although the existence of such a recovery tensor is not always guaranteed, we can

examine the necessary conditions that these tensors and states must satisfy to allow

such a recovery operation. For instance, if the ancillary qudit is always initialized in a

fixed vector, e.g., |0〉S , or more generally is always chosen from some fixed subspace

of S, then one can derive necessary conditions for recoverability by appealing to

results from quantum error correction.

To understand the recoverability of the ancillary state, we first consider the action

of USE as a quantum channel on S, NρSE : S(HS)→ S(HS). This is always possible

because the initial state is uncorrelated across S and E. However, because the

state in E is in principle arbitrary (and certainly will change at each time step if

the mapping is not at a fixed point), the channel can depend on the input ρSE .

Likewise, the recovery tensor will not remain fixed at every time step. This is what

we mean when we say that the SCMERA describes evolution that is generated by a

time-dependent Hamiltonian; the recovery tensor will change at every time step if it

must recover σS exactly.

Given such a channel and knowledge of the fixed ancillary state σ, there always exists

a process in the reduced system S that recovers σ. Let σ ≥ 0 be the known state

in which the ancillary system is initialized. In general, there exists a completely

positive trace preserving (CPTP) recovery map R such that R ◦ NρSE (σ′) = σ′ for

all σ′ if and only if the monotonicity condition is saturated [147–150]:

D(σ′‖σ) = D(NρSE (σ′)‖NρSE (σ)), (5.11)

where D(σ′‖σ) is the relative entropy between σ′ and σ. In particular, σ is always

recoverable because the monotonicity condition is trivially saturated when σ′ = σ.

For the finite-dimensional case, one can construct an explicit Petz recovery map P

that will always recover σ′:

Pσ,NρSE : X 7→ σ1/2N †ρSE (NρSE (σ)−1/2XNρSE (σ)−1/2)σ1/2. (5.12)

Since we here consider the trivial case where σ′ = σ, the Petz map can always recover

σ.
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Unfortunately, in the case of interest here the existence of a Petz recovery map does

not lead us to the sought-after unitary USA, since the Petz map doesn’t necessarily

take the form of a partial trace TrA(USA ρ
′
SA U

†
SA). Indeed, we can in fact argue

that the Petz map cannot identically be the map TrA(USA ρ
′
SA U

†
SA). This latter

recovery map cannot be CP over the set of all density operators if A,S,E are in an

entangled state, which will generally be the case3, whereas the Petz map is CP by

construction. So while USA may exist, it cannot be found in this way.

In light of this difficulty, a different line of attack is to use the given unitary structure

of the SCMERA as a starting point and see whether recovery can be engineered.

This amounts to interpreting recovery as an instance of quantum error correction

that protects against deletion of E. Think of the state σS that the ancillae are

initialized in as an encoded message. At any given time step, the message is encoded

into the combined SEA system by entangling it with EA. A part of the system,

E, subsequently becomes inaccessible to us. We then wish to recover the encoded

message by acting on the reduced SA system only with USA. If this is to be possible,

then the allowed interactions USE are constrained. (This picture is reminiscent of

quantum secret sharing.)

Since σS is the message that we want to recover and since we discard E, here NρSE

is essentially a noisy channel, which we suppose takes on a particular Kraus form,

NρSE : X 7→
∑
µ

NµXN
†
µ, (5.13)

for a given initial state ρSE4. In this context, in order for a recovery map R to exist,

the Kraus operators Nµ must obey the following necessary and sufficient condition

[152]. For the sake of generality, suppose that instead of wanting to recover a fixed

state |0〉S , the encoded message was chosen from a fixed subspace of S that has an

orthonormal basis {|φi〉S} (the specific case for SCMERA corresponds to there only

being one basis vector, namely, |0〉S). Then, the Kraus operators must obey the
3Even if one fixes a particular input at t = 0 to be a product state, entanglement will still be

generated at a later time. This is because S,E generically become entangled after the isometry.
4Recall that any trace-preserving channel on a reduced system can be written using a (poten-

tially input-dependent) set of Kraus operators {Nµ}, where
∑
µN

†
µNµ = I [151].
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Knill-Laflamme condition,

〈φi|N †µNν |φj〉 = Cµνδij , (5.14)

where Cµν is a Hermitian matrix. This condition places a constraint on what USE

are allowed.

In the case of a single fixed state |0〉S , the condition above is trivially satisfied, and

so recovery is always possible. However, here as well it is not guaranteed whether

there is a quantum error correcting code (QECC) on the whole SEA system that is

consistent with SCMERA such that the ancillary state can always be recovered on

the SA subsystem on the horizon. We do not know whether such a code exists, but

it would have to satisfy certain requirements that we now explore.

In the case where the ancillary qudit is fixed to be a particular state, the code

subspace is 1-dimensional. An implementation that allows one to decode the message

may be possible to realize with the help of a k = 0 code5. (See [152] for a detailed

review.) For a binary MERA, in which the interior, horizon, and ancillary Hilbert

spaces are altogether comprised of 8 qudits, a satisfactory encoding would require a

[[8, k, d]] code, where k = 0 if the ancillary states are always fixed to be |0〉S . Because 2

qudits are effectively erased in discarding the interior (i.e., a known erasure location),

the distance of the code must satisfy d ≥ t+ 1 with t = 2. As a zeroth order check,

we see that this requirement is consistent with the quantum Singleton bound

n− k ≥ 2(d− 1) (5.15)

for 3 ≤ d ≤ 5 with k = 0. Also note that, while we mainly consider the case where

k = 0, larger code spaces with k > 0 (i.e., a situation where the ancillary state

is chosen among several options at each step) are not ruled out. For example, a

hypothetical tensor network that encodes k = 2 qudits worth of information could

realize a QECC with d = 3, 4. We note that there exist binary codes that are

compatible with our requirements on n, k, and d, for example, the [[8, 3, 3]] code (see
5The properties of a quantum error correcting code on qudits of dimension χ are often abbre-

viated by the notation [[n, k, d]] where n is the block size, k is the number of encoded qudits, and d
the code distance. For k = 0, the χk-dimensional code subspace is precisely one dimensional.
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section 7.12.3 in [153]), and presumably there also exist codes for qudit systems;

however, we are unaware of their specific forms, and much less whether or not they

are compatible with the tensor structure of SCMERA.

In summary, by interpreting SCMERA as a recovery operation or an error correct-

ing code, we identify several necessary but generally insufficient criteria that the

SCMERA circuit must meet. Note, however, that failure to meet these criteria

cannot rule out strong complementarity, but it can rule out SCMERA as a model.

Finally, we elaborate a bit more on the unitarity of the proposed SCMERA circuit.

The overall SCMERA tensor network can be understood as a circuit by including the

ancillary degrees of freedom, S. In the case of perfect recovery of the ancillary state

on the horizon, the ancillary state that was added in the interior can be discarded

from the horizon at the end of the computation in each time step so that the total size

of Hilbert space remains constant throughout. Alternatively, we can also understand

the adding-and-discarding process as recycling the ancillary degrees of freedom at

each step. It is clear in this sense that we have a unitary process on the same

finite-dimensional Hilbert space. However, note that the unitary recovery mapping

on the horizon need not recover the ancillary state perfectly. In fact, a universal

(i.e., constant in time) unitary recovery map applied to every time step cannot

in general achieve perfect recovery. In this case, recycling of the approximately

recovered ancillary qudit will lead to information backflow into the static patch

interior, which in turn leads to Poincaré recurrences. Discarding such ancillary

qudits on the horizon avoids recurrences even when using a universal recovery map,

but breaks unitarity. If we demand perfect recovery of the ancillary qudit, then

the unitary evolution is necessarily time-dependent. It is, however, unclear if such

time-dependence is only limited to swapping operations on the horizon.

5.5 Circuit Complexity and de Sitter Action

In AdS/CFT, the “complexity equals action” proposal [115] suggests that the com-

plexity of a CFT thermofield double state as it evolves in time is proportional to the
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Einstein-Hilbert (EH) action of a region of the bulk known as the Wheeler-De Witt

patch. Explicitly, C = qSEH, where the proportionality constant is calculated to be

q = 1/π~. Similarly, here we can show that complexity, calculated using the MERA

circuit, scales in the same way as the corresponding spacetime action in de Sitter

space.

For a given MERA-like circuit that is translationally and scale invariant, it is possible

to estimate its complexity by choosing a reference state and gate set. It is natural

to choose the reference state to be the initial state of dS/MERA, which we write as

|Ψ(t = 0)〉 = |ψ〉⊗ |φ〉⊗N . |Ψ〉 consists of the initial entangled component |ψ〉 which

encodes the entanglement information needed to reconstruct the de Sitter spatial

geometry at t = 0, and |φ〉⊗N denotes all the ancillary degrees of freedom that will

later get entangled up to some time t = T . Here, because we only consider bounds

on complexity, the estimate won’t depend on the particular form of |ψ〉; we can take

it to be an arbitrary state that lives on the initial few sites of the MERA at t = 0.

We obtain a straightforward estimate of complexity if we choose a reference gate set

that corresponds to the exact disentanglers and isometries, {U, V }, that were used

to build the MERA circuit. For a k-nary MERA, suppose that U, V are k-local and

denote the total number of ancillae that get entangled up to time t ≤ T by

N(T ) =

T∑
j=0

kj . (5.16)

It then follows that for any non-trivially entangled state |Ψ(T )〉, where none of the

qudits in |Ψ(T )〉 can be written as a product state between the qudit and its com-

plement6, a lower bound on its complexity C(T ) is proportional to N(T ). This is

because, even using an optimal circuit that could potentially be more efficient than

the MERA, it takes at least N(T )/k k-local gates to even minimally entangle all

of the product ancillae. The actual complexity to create the state with the correct

entanglement structure at t = T is therefore strictly lower-bounded. In addition,

the MERA circuit itself that constructs the state |Ψ(T )〉 constitutes a trivial com-

plexity upper bound. Hence, for generic scale and translationally invariant MERA
6For example, this is expected for a CFT vacuum state.
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in arbitrary dimensions with k-local disentanglers and isometries, the complexity

satisfies

C0N(T ) ≤ C(T ) ≤ C1N(T ), (5.17)

where C1 > C0 are order-unity numbers that depend on the specific circuit con-

struction. For the (1+1)-dimensional binary MERA shown, C0 = 4 and C1 = 8.

Choosing a different reference gate set would give different coefficients C0 and C1,

but the exponential dependence on T would remain unchanged.

An important distinction from the usual holographic complexity proposal [115] is the

lack of a boundary theory, and hence a notion of bulk-boundary duality. Similarly,

the proposal also differs from [154], where the complexity of the state on the de Sitter

boundary is compared to the action or volume of a holographic asymptotically anti-

de Sitter bulk. Because only the de Sitter bulk is present, we test a bulk complexity-

action (volume) proposal by directly comparing the circuit complexity of MERA,

which is conjectured to describe de Sitter spacetime, to the Einstein-Hilbert action

(spacetime volume) of the same region in de Sitter.

The Einstein-Hilbert action of the portion of de Sitter spacetime covered by the

global time interval 0 ≤ t ≤ T in D dimensions is given by

SEH =
1

16πG

∫ T

0
dt

∫
dΩD−1

√
−gR

=
R`DdSSD−1

16πG

∫ T

0
dt coshD−1 t

=
R`DdSSD−1

16πG

1

(D − 1)2D−1
e(D−1)T + subleading,

where R = D(D − 1)/`2dS = 2DΛ/(D − 2) is the Ricci curvature for de Sitter space

with cosmological constant Λ and SD−1 is the volume of the (D− 1)-sphere. We see

that the scaling behavior is indeed consistent with the circuit complexity computed

above, and the action satisfies the complexity bound for some appropriate choice of

constant q. Note that each tensor in the MERA is mapped to a proper volume in de

Sitter [105]. Therefore, comparison of other spacetime regions would yield a similar

conclusion. It cannot differentiate the complexity = volume versus complexity =
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action proposal, because the constant Ricci curvature in de Sitter space only changes

q by a constant factor.

The proportionality constant between complexity and action depends on the choice

of gate set, and differs from q = 1/π~ in the original proposal. See [155, 156] for

similar conclusions from more detailed studies in the context of quantum field the-

ory. Interestingly, assuming the validity of the conjecture, the (`dS/`pl)
D−2 scaling

behavior in the action may suggest that the complexity of a correct circuit with

sub-Hubble features should approximately scale as the horizon area (recall that R

scales like `−2
dS ). In the case of the MERA, this is encoded in the otherwise arbitrary

choice of q, because the network structure is not sensitive to `dS/`pl.

5.6 Discussion

Discretizing de Sitter spacetime using the MERA seems to provide some interesting

interpretations, in particular in terms of giving a natural information-theoretic reason

for cosmic no-hair, constraining de Sitter complementarity, and giving the de Sitter

action an information-theoretic interpretation. It would be interesting to ask what

other consequences thinking of de Sitter spacetime in a tensor network/information-

theoretic way could provide. For example, would a different tensor network dis-

cretization be more natural for answering other questions, or is the choice of tensor

network discretization fixed by the spacetime metric one is attempting to dupli-

cate? If so, are there other natural spacetimes (Lorentzian or Euclidean), for which

different tensor networks might provide insights into open problems?

The MERA is naturally suited to describing de Sitter spacetime on super-Hubble

scales, since structure within a horizon volume is not resolved. The state within a

patch can nevertheless be encoded in the tensors inside the horizon, and perturba-

tions of such a state in the de Sitter background can be initialized in the MERA

input state. The cosmic no-hair result is then the fact that such perturbations flow

to a fixed-point of the evolution superoperator within a patch.

Another limitation of this de Sitter-MERA correspondence is that it clearly breaks
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the rotational symmetry of spacelike sections of de Sitter; a binary MERA that cor-

responds to (1+1)-dimensional de Sitter spacetime picks out four preferred causal

patches, or equivalently, fixes the cardinal directions on the circle. It also breaks

boost symmetry in that the MERA fixes a preferred global t = 0 slice. To this

end, hyperinvariant tensor networks may be an interesting improvement on the

MERA [107]. Hyperinvariant tensor networks were introduced to address, among

other issues, a similar problem for AdS-MERA correspondences that the MERA

picks out a preferred center point of the hyperbolic plane. In a hyperinvariant ten-

sor network, any node in the tensor network can be taken to be the “center” of

the hyperbolic plane, thus restoring a significant amount of symmetry. Since the

radial direction in AdS corresponds to the renormalization direction of the MERA,

which here corresponds to the timelike direction of de Sitter, a hyperinvariant tensor-

network/de Sitter correspondence would likely no longer fix a preferred global t = 0

slice. Instead, the effective causal cone of any pair of adjacent nodes could be used

to define a de Sitter static patch.

It would be interesting to push the present analysis beyond a strict de Sitter back-

ground. For example, it should be possible to adapt the tensor network to allow

for bubble nucleation and eternal inflation. A classical variant of this was already

considered in [157], and it would be useful to further investigate the evolution of

quantum states using the kind of methods explored here.
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5.7 Stationary causal cones of the MERA

Given a k-nary MERA, in which the number of sites in each layer increases k-fold

with every fine-graining step, what is the number of sites per layer of a stationary

causal cone?

Example 5.7.1. Consider a binary MERA as in Fig. 5.1. Within the MERA,

consider a set of sites at some layer and draw their causal cone in the coarse-graining

direction. If the smallest simply-connected region that contains all of the initial sites

is made up of L sites, then after ∼ log2 L steps in the coarse-graining direction, the

causal cone will contain 2 or 3 sites [87]. Once the cone at some layer contains 2 or

3 sites, Fig. 5.9 illustrates how the width of the causal cone can evolve under further

coarse-graining. Notice that if the cone contains 2 sites at some layer, then it is

possible for the next layer to have either 2 or 3 sites, but if a given layer contains 3

sites, then all subsequent layers will contain 3 sites. Therefore, a stationary causal

cone having the same width at every layer can only have 2 sites per layer or 3 sites

per layer. In particular, only the stationary causal cone with 2 sites per layer is

left/right-symmetric in a binary MERA.

(a) (b) (c)

Figure 5.9: Ways in which a minimal-width causal cone can propagate between layers
in a binary MERA. (a) 2→ 2, (b) 2→ 3, (c) 3→ 3.

Example 5.7.2. Consider a ternary MERA as in Fig. 5.4. Similarly, the causal cone

of any given collection of sites will contain 2 or 3 sites after ∼ log3 L steps in the

coarse-graining direction. If the cone contains 3 sites at some layer, then it is possible

for the next layer to have either 2 or 3 sites, but if a given layer contains 2 sites,

then all subsequent layers will contain 2 sites (Fig. 5.10). Therefore, a stationary

causal cone having the same width at every layer can only have 2 sites per layer
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or 3 sites per layer. Here, only the stationary causal cone with 3 sites per layer is

left/right-symmetric in a ternary MERA.

(a) (b)

(c) (d)

Figure 5.10: Ways in which a minimal-width causal cone can propagate between
layers in a ternary MERA. (a) 3→ 3, (b) 3→ 2, (c) 2→ 2, first instance, (d) 2→ 2,
second instance.

The case of a general k-nary MERA follows straightforwardly from the two examples

above:

Proposition 5.7.3. A stationary causal cone having the same width at every layer

in a homogeneous k-nary MERA has 2 or 3 sites per layer.

Proof: Given some homogeneous k-nary MERA with any arrangement of disentan-

glers and isometries, all of the legs in the tensor network can be blocked together

to form composite legs so that the network takes the form of a binary or ternary

MERA, as illustrated in Fig. 5.11, whence the proposition follows from the examples

above. �

· · ·

· · ·· · ·

· · · · · ·

· · ·· · ·

· · ·

Figure 5.11: Legs in an arbitrary MERA can be blocked together. In this way, that
the causal structure matches that of a binary or ternary MERA becomes apparent.
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5.8 Higher-dimensional generalizations

Consider a d-dimensional MERA, where each layer is a hypercubic d-dimensional

lattice. Here, the MERA is k-nary when each site in one layer gives rise to kd sites

in the next layer (see Fig. 5.12). The global MERA-de Sitter correspondence does

not carry through in this case, simply because, on the de Sitter side, there is no way

to latticize the d-sphere using a regular hypercubic lattice that is self-similar under

fine-graining (although see [158] for a generalization to 2 dimensions).

Figure 5.12: A 2D MERA. In a single coarse-graining step, blocks of 4 sites are acted
on by a disentangler (blue), then blocks of 4 sites that are displaced from the last
set of blocks are acted on by an isometry (green), reducing the number of sites by a
factor of 4.

This is not to say that a generalization to higher dimension is impossible. One could

consider a different tiling of global de Sitter that preserves uniformity and is self-

similar under some refinement operation. For example, on a 2-sphere, regular or

semi-regular tilings are possible using triangularizations, but these different tilings

would necessarily require some sort of variation on the MERA tensor network. To

the best of our knowledge, such generalizations are still unexplored.

On the other hand, one could still study the correspondence between de Sitter and a

hypercubic MERA by restricting one’s attention to only a single static patch. In this

scenario, it is consistent to think of the MERA as defining a superoperator which

maps the state on md sites of a given slice of a single static patch to the next slice.

(Remember, the number of sites per horizon volume, i.e., per slice of the static patch,

remains constant.) Therefore, the usual unmodified MERA may still be useful for

understanding local aspects of de Sitter quantum gravity in higher dimensions.
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C h a p t e r 6

COSMIC EQUILIBRATION: A HOLOGRAPHIC NO-HAIR THEOREM
FROM THE GENERALIZED SECOND LAW

In a wide class of cosmological models, a positive cosmological constant drives cos-

mological evolution toward an asymptotically de Sitter phase. Here we connect

this behavior to the increase of entropy over time, based on the idea that de Sit-

ter spacetime is a maximum-entropy state. We prove a cosmic no-hair theorem for

Robertson-Walker and Bianchi I spacetimes that admit a Q-screen (“quantum” holo-

graphic screen) with certain entropic properties: If generalized entropy, in the sense

of the cosmological version of the Generalized Second Law conjectured by Bousso

and Engelhardt, increases up to a finite maximum value along the screen, then the

spacetime is asymptotically de Sitter in the future. Moreover, the limiting value of

generalized entropy coincides with the de Sitter horizon entropy. We do not use the

Einstein field equations in our proof, nor do we assume the existence of a positive

cosmological constant. As such, asymptotic relaxation to a de Sitter phase can, in a

precise sense, be thought of as cosmological equilibration.

This chapter was published as Ref. [5], S. M. Carroll and A. Chatwin-Davies, “Cos-

mic equilibration: A holographic no-hair theorem from the generalized second law,”

Phys. Rev. D 97 (2018) 046012, arXiv:1703.09241.

6.1 Introduction

Like black holes, universes have no hair, at least if they have a positive cosmolog-

ical constant Λ [119–128]. A cosmic no-hair theorem states that, if a cosmological

spacetime obeys Einstein’s equation with Λ > 0, then the spacetime asymptotically

tends to an empty de Sitter state in the future.1 A more precise statement is due to

Wald, who proved the following theorem [119]:
1For a different definition of cosmic hair which more closely parallels black hole hair, see [159].

http://dx.doi.org/10.1103/PhysRevD.97.046012
http://arxiv.org/abs/1703.09241
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Theorem 6.1.1 (Wald). All Bianchi spacetimes (except for certain type IX space-

times) that are initially expanding, that have a positive cosmological constant Λ > 0,

and whose matter content besides Λ obeys the strong and dominant energy conditions,

tend to a de Sitter state in the future.

Bianchi spacetimes are cosmologies that are homogeneous but in general anisotropic

[160, 161]. For example, the metric of the 1+3-dimensional Bianchi I spacetime in

comoving Cartesian coordinates is given by

ds2 = −dt2 + a2
1(t) dx2 + a2

2(t) dy2 + a2
3(t) dz2. (6.1)

It is essentially a Robertson-Walker (RW) spacetime in which the scale factor can be

different in different directions in space. In this case, when the necessary conditions

are satisfied, Wald’s theorem implies that each ai(t) tends to the same de Sitter scale

factor, exp(
√

Λ/3 t) for a cosmological constant Λ > 0, as t tends to infinity.

The intuition behind why one would expect a cosmic no-hair theorem to hold is

that as space expands, the energy density of ordinary matter decreases while the

density of vacuum energy remains constant. As such, the cosmological constant

eventually dominates regardless of the initial matter content and geometry, and a

universe in which a positive cosmological constant is the only source of stress-energy

is de Sitter. For Bianchi I spacetimes, one can make this intuition explicit by writing

down a Friedmann equation for the average scale factor, ā(t) ≡ [a1(t)a2(t)a3(t)]1/3,

which gives [162, Ch. 8.6](
˙̄a(t)

ā(t)

)2

∝ (ρΛ + ρmatter + ρan) . (6.2)

On the right-hand side, ρΛ and ρmatter denote the energy densities due to the cos-

mological constant and matter respectively, while ρan is an effective energy density

due to anisotropy, similar to how one can think of spatial curvature as an effective

source of stress-energy. Crucially, ρan scales at most like ā−2, and so as the uni-

verse expands, only the constant contribution due to ρΛ persists. The exception to

Wald’s theorem is the case of a Bianchi IX spacetime (which has positive spatial
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curvature) whose initial matter energy density is so high that the spacetime recol-

lapses before the cosmological constant can dominate [119]. Intuitively, we expect

not only anisotropies, but also perturbative inhomogeneities to decay away at late

times, though this is harder to prove rigorously [120,127,163,164]. For arbitrary in-

homogeneous and anisotropic cosmologies, one can always find regions that expand

at least as fast as de Sitter, thus realizing a type of local no-hair theorem [165]. Be-

yond classical general relativity, various generalizations of Wald’s theorem attempt

to demonstrate analogous no-hair theorems for the quantum states of fields on a

curved spacetime background [129–131].

As the universe expands and the cosmological constant increases in prominence with

respect to other energy sources, something else is also going on: entropy is increas-

ing. According to the Second Law of Thermodynamics, the entropy of any closed

system (such as the universe) will increase or stay constant, at least until it reaches a

maximum value. It is interesting to ask whether there is a connection between these

two results, the cosmic no-hair theorem and the Second Law. Can the expansion

of the universe toward a quiescent de Sitter phase be interpreted as thermodynamic

equilibration to a maximum-entropy state? It is well established that de Sitter has

many of the properties of an equilibrium maximum-entropy state, including a locally

thermal density matrix with a constant temperature [116,166], and the relationship

between entropy and de Sitter space has been examined from a variety of perspec-

tives [112,137–141,167–169].

In this paper we try to make one aspect of these ideas rigorous, showing that a cosmic

no-hair theorem can be derived even without direct reference to Einstein’s equation,

simply by invoking an appropriate formulation of the Second Law. This strategy of

deducing properties of spacetime from the behavior of entropy is reminiscent of the

thermodynamic and entropic gravity programs [93,170–173], as well as of the gravity-

entanglement connection [20, 24, 65–67, 76, 86, 174]. Though we do not attempt to

derive a complete set of gravitational field equations from entropic considerations, it

is interesting that a specific spacetime can be singled out purely from the requirement
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that entropy increases to a maximum finite value.

To derive our theorem, we require a precise formulation of the Second Law that is

applicable in curved spacetime, and that includes the entropy of spacetime itself.

A step in this direction is Bekenstein’s Generalized Second Law (GSL) [13]. Recall

that the entropy of a black hole with area A is given by SBH = A/4G. The GSL

is the conjecture that generalized entropy, Sgen, which is defined as the sum of the

entropy of all black holes in a system as well as the ordinary thermodynamic entropy,

increases or remains constant over time. Unfortunately this form of the GSL does not

immediately help us in spacetimes without any black holes. Recently, Bousso and

Engelhardt proposed a cosmological version of the GSL [29], building on previous

work on holography [175], apparent horizons [176–181], and holographic screens [182,

183]. They define a version of generalized entropy on a hypersurface they call a “Q-

screen.” A Q-screen is a quantum version of a holographic screen, which in turn

is a modification of an apparent horizon. Given a Cauchy hypersurface Σ and a

codimension-2 spatial surface with no boundary σ ⊂ Σ that divides Σ into an interior

region and an exterior region, the generalized entropy is the sum of the area entropy

of σ, i.e., its area in Planck units, and the entropy of matter in the exterior region:

Sgen[σ,Σ] =
A[σ]

4G
+ Sout[σ,Σ]. (6.3)

Bousso and Engelhardt’s version of the GSL is the statement that generalized entropy

increases strictly monotonically with respect to the flow through a specific preferred

foliation of a Q-screen:
dSgen

dr
> 0 , (6.4)

where r parameterizes the foliation. Although it is unproven in general, this ver-

sion of the GSL is well motivated and known to hold in specific circumstances (the

discussion of which we defer to the next section).

In this work, we use the GSL to establish a cosmic no-hair theorem purely on ther-

modynamic grounds. In an exact de Sitter geometry, the de Sitter horizon is a

holographic screen2, and every finite horizon-sized patch is associated with a fixed
2Pure de Sitter spacetime does not, however, satisfy the generic conditions outlined in [183].
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entropy that is proportional to the area of the horizon in Planck units [184]. We

therefore conjecture that evolution toward such a state is equivalent to thermody-

namic equilibration of a system with a finite number of degrees of freedom, and

therefore a finite maximum entropy. Specifically, assuming the GSL, we show that if

a Bianchi I spacetime admits a Q-screen along which generalized entropy monoton-

ically increases up to a finite maximum, then the anisotropy necessarily decays and

the scale factor approaches de Sitter behavior asymptotically in the future. At no

point do we use the Einstein field equations, nor do we assume the presence of a pos-

itive cosmological constant. The GSL and that entropy tends to a finite maximum

along the Q-screen take the logical place of these two respective ingredients.

The proof essentially consists of first showing that an approach to a finite maximum

entropy heavily constrains the possible asymptotic structure of a Q-screen. Second,

we show that the spacetime must necessarily be asymptotically de Sitter (and in

particular, isotropic as well) in order to admit a Q-screen with the aforementioned

asymptotic structure.

The structure of the rest of this paper is as follows. We review Q-screens and the

GSL in Sec. 6.2. In Sec. 6.3, we first prove a cosmic no-hair theorem for the simpler

case of RW spacetimes using the GSL. Then, in Sec. 6.4, we move on to the proof

for Bianchi I spacetimes, first in 1+2 dimensions to illustrate our methods, and then

in 1+3 dimensions, which also illustrates how to generalize to arbitrary dimensions.

We discuss aspects of the theorems and their proofs as well as some implications in

Sec. 6.5.

6.2 The generalized second law for cosmology

We begin by briefly reviewing Bousso and Engelhardt’s conjectured Generalized

Second Law (GSL). The GSL can be thought of as a quasilocal version of Bekenstein’s

entropy law for black holes [13], but which also applies to cosmological settings.

Moreover, the GSL is a natural semiclassical extension of Bousso and Engelhardt’s

area theorem for holographic screens in the same way that Bekenstein’s entropy law
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extends Hawking’s area theorem to evaporating black holes.

An early cornerstone of classical black hole thermodynamics [185,186] was Hawking’s

area theorem: in all spacetimes which satisfy the null curvature condition, the total

area of all black hole event horizons can only increase, i.e., dA/dt ≥ 0 [187]. Of

course, the area theorem fails for evaporating black holes, the technical evasion

being that they do not satisfy the null curvature condition. Bekenstein pointed

out, however, that if one instead interprets the area of the black hole event horizon

as horizon entropy and includes the entropy of the Hawking radiation outside the

black hole, Sout, in the total entropy budget, then the generalized entropy, Sgen =

A/4G+ Sout, increases monotonically or stays constant, dSgen/dt ≥ 0 [13].

From the perspective of trying to understand the thermodynamics of spacetime,

both Hawking’s and Bekenstein’s results suffer from two inconveniences. First,

they are fundamentally nonlocal, since identifying event horizons requires that one

know the full structure of a Lorentzian spacetime. Second, these results only ap-

ply to black holes; it would be desirable to understand thermodynamic aspects of

spacetime in other geometries as well. These considerations motivate holographic

screens [182, 183], a subset of which obey a classical area theorem, as well as their

semiclassical extensions called Q-screens [29], a subset of which are conjectured to

obey an entropy theorem. Importantly, both holographic screens and Q-screens are

quasilocally defined and are known to be generic features of cosmologies in addition

to black hole spacetimes.

Let us first review holographic screens. Following the convention of Bousso and En-

gelhardt, here and throughout we will refer to a spacelike codimension-2 hypersurface

simply as a “surface.”

Let σ be a compact connected surface. At every point on σ, there are two distinct

future-directed null directions (or equivalently, two distinct past-directed null direc-

tions) that are orthogonal to σ: inward- and outward-directed. The surface σ is said

to be marginal if the expansion of the null congruence corresponding to one of these

directions, say kµ, is zero everywhere on σ. Consequently, σ is a slice of the null sheet



114

generated by kµ that locally has extremal area. This last point is particularly clear

if one observes that the expansion, θ = ∇µkµ, at a point y ∈ σ, can be equivalently

defined as the rate of change per unit area of the area of the slice, A[σ], when a small

patch of proper area A is deformed along the null ray generated by kµ at y with an

affine parameter λ:

θ(y) = lim
A→0

1

A
dA[σ]

dλ

∣∣∣∣
y

(6.5)

This definition is illustrated in Fig. 6.1 below.

Σ

σ

kµ

b
y

Figure 6.1: Given a Cauchy hypersurface Σ, the surface σ ⊂ Σ (drawn with a solid
line) splits Σ into an interior and exterior. Deformations of σ (drawn with a dotted
line) are defined by dragging σ along the null ray generated by kµ at any point y ∈ σ.
More precisely, a deformation is defined by transporting a small area element A ⊂ σ
at y in the kµ direction.

A holographic screen is a smooth codimension-1 hypersurface that can be foliated

by marginal surfaces, which are then called its leaves. Note that while the leaves σ

are spacelike, in general a holographic screen need not have a definite character. A

marginal surface σ is said to be marginally trapped if the expansion of the congruence

in the other null direction is negative everywhere on σ, and a future holographic screen

is a holographic screen whose leaves are marginally trapped; marginally anti-trapped

surfaces and past holographic screens are defined analogously. Then, assuming the

null curvature condition as well as a handful of mild generic conditions, Bousso and

Engelhardt proved that future and past holographic screens obey the area theorem

paraphrased below [182,183]:

Theorem 6.2.1 (Bousso & Engelhardt). Let H be a regular holographic screen. The

area of its leaves changes strictly monotonically under the flow through the foliation

of H.
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Q-screens are related to holographic screens, but with expansion replaced by what is

dubbed the “quantum expansion.” Let σ again denote a compact connected surface.

The quantum expansion at a point y ∈ σ in the orthogonal null direction kµ is

defined as the rate of change per unit proper area of the generalized entropy (6.3),

i.e., the sum of both area and matter entropy, with respect to affine deformations

along the null ray generated by kµ:

Θk[σ; y] = lim
A→0

4G

A
dSgen

dλ

∣∣∣∣
y

(6.6)

Then similar to before, a quantum marginal surface is a surface σ such that the

quantum expansion in one orthogonal null direction vanishes everywhere on σ. Just

as a marginal surface locally extremizes area along a lightsheet, a quantum marginal

surface locally extremizes the generalized entropy along the lightsheet generated by

kµ.

The adjective “quantum” can be confusing in this context. In this work it denotes

a shift from classical general relativity, where one proves theorems about the area

of surfaces, to quantum field theory on a semiclassical background, where analogous

theorems refer to a generalized entropy that adds the entropy of matter degrees of

freedom to such an area. That matter entropy may be be calculated as the quantum

(von Neumann) entropy of a density operator, but in the right circumstances (which

we will in fact be dealing with below) it is equally appropriate to treat it as a classical

thermodynamic quantity. So here “quantum” should always be interpreted as “adding

an entropy term to the area of some surface,” whether or not quantum mechanics is

directly involved.

The remaining constructions have similarly parallel definitions. A Q-screen is a

smooth codimension-1 hypersurface that can be foliated by quantum marginal sur-

faces. A quantum marginal surface σ is marginally quantum trapped if the quantum

expansion in the other null direction is negative everywhere on σ, and a future

Q-screen is a Q-screen whose leaves are marginally quantum trapped. Analogous

definitions apply for anti-trapped surfaces and past Q-screens. A Q-screen may be

timelike, null, spacelike, or some combination thereof in different regions. Future and
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past Q-screens that also obey certain generic conditions analogous to those for holo-

graphic screens are the objects that are conjectured to obey a Generalized Second

Law [29]:

Conjecture 6.2.2 (Generalized Second Law). Let Q be a regular future (resp. past)

Q-screen. The generalized entropy of its leaves increases strictly monotonically under

the past and outward (resp. future and inward) flow along Q.

Note that while the GSL remains unproven in general, it is known to hold in several

examples, and it can in fact be shown to hold if one assumes the Quantum Focusing

Conjecture [34].

So far we have not said much about the precise definition of generalized entropy, so

let us discuss how it is defined in more careful terms. Our context here is quantum

field theory in curved spacetime, rather than a full-blown theory of quantum gravity.

Given some spacetime, suppose that it comes equipped with a foliation by Cauchy

hypersurfaces, and suppose that the spacetime’s matter content is described by a

density matrix ρ(Σ) on each Cauchy hypersurface Σ. Let σ be a compact connected

surface that divides a Cauchy hypersurface Σ into two regions: the interior and

exterior of σ. The generalized entropy computed with respect to σ and Σ is then

the sum of the area of σ in Planck units and Sout, the von Neumann entropy of the

reduced state of ρ restricted to the exterior of σ, cf. Eq. (6.3). The reduced state of

ρ outside σ, which we denote ρout, is obtained by tracing out degrees of freedom on

Σ in the interior of σ,

ρout ≡ trintσ[ρ(Σ)] , (6.7)

and the Von Neumann entropy of ρout is

Sout[σ,Σ] = −tr [ρout ln ρout] . (6.8)

For a general field-theoretic state, the von Neumann entropy Sout[σ,Σ] is a formally

divergent quantity. Consequently, there is some subtlety surrounding how it should

be regulated, whether through an explicit ultraviolet cutoff or via subtracting a
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divergent vacuum contribution [29, 95]. Since we will exclusively be concerned with

cosmology, we will work in a regime where the matter content of the spacetime has a

conserved “thermodynamic,” or coarse-grained entropy s per unit comoving volume.

(Entropy per comoving volume is approximately conserved in cosmologies that do

not have too much particle production [162, Ch 3.4].) The von Neumann entropy

of a quantum mechanical system coincides with the thermodynamic Gibbs entropy

in the classical limit where the state ρout has no coherence, i.e., is diagonal in the

energy eigenbasis of Gibbs microstates.

We will suppose that we can take the matter contribution to the generalized entropy,

which is formally given by the von Neumann entropy Sout[σ,Σ], to be given by a

coarse-grained entropy SCG[σ,Σ] in the interior of σ:

Sout[σ,Σ] → SCG[σ,Σ] = s · volc[σ,Σ]. (6.9)

Here, volc[σ,Σ] denotes the comoving (coordinate) volume of intσ on Σ. (This ap-

proach is also taken in the examples of [29].) This expression is appropriate for

cosmology, where observers find themselves on the inside of Q-screens and cosmolog-

ical horizons when present, as opposed to observers who remain outside of a black

hole and who are unable to access the interior of the black hole’s horizon. Moreover,

in the field-theoretic case where ρ(Σ) is a pure state, then it follows that Sin = Sout,

where Sin is the Von Neumann entropy of ρin ≡ trextσ[ρ(Σ)].

The fact that each leaf of a Q-screen extremizes the generalized entropy on an or-

thogonal lightsheet leads to a useful method for constructing Q-screens [175]. Given

some spacetime with a foliation by Cauchy surfaces, suppose that one is also supplied

with a foliation of the spacetime by null sheets with compact spatial cross-sections.

Let each null sheet be labeled by a parameter r, and on each null sheet, let σ(r)

be the spatial section with extremal generalized entropy, when it exists. (Not every

spacetime contains Q-screens, such as Minkowski space. But in Big Bang cosmolo-

gies, we expect both the area of, and entropy inside, a light cone to decrease in the

very far past, so the generalized entropy will have an extremum somewhere.) It fol-

lows that each σ(r) is a quantum marginal surface, and so if the quantum expansion
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has a definite sign in the other orthogonal null direction on each σ(r), the union of

these surfaces, Q =
⋃
r σ(r), is by construction a Q-screen.

One way to generate a null foliation of a spacetime is to consider the past light cones

of some timelike trajectory. Q-screens constructed from this type of foliation will

be particularly useful for our purposes. This construction is illustrated through a

worked example in Section 6.6.

6.3 A cosmic no-hair theorem for RW spacetimes

We can used the notions reviewed above to show that spacetimes that expand and

approach a constant maximum entropy along Q-screens will asymptote to de Sitter

space. The basic idea of our proof is made clear by the simple example of a metric

that is already homogeneous and isotropic, so that all we are showing is that the scale

factor approaches eHt for some fixed constant H. The anisotropic case, considered

in the next section, is considerably more complex, but the ideas are the same.

LetM be a Robertson-Walker (homogeneous and isotropic) spacetime with the line

element

ds2 = −dt2 + a2(t)
(
dχ2 + χ2dΩ2

d−1

)
, (6.10)

where t ∈ (ti,∞). Our aim is to show that ifM admits a past Q-screen along which

the generalized entropy monotonically increases up to a finite maximum value, then

this alone, together with a handful of generic conditions on M, implies that M is

asymptotically de Sitter, or in other words, that

lim
t→∞

a(t) = eHt (6.11)

for some constant H. In particular, we will neither make use of the Einstein field

equations nor assume that there is a positive cosmological constant.

Begin by foliating M with past-directed light cones whose tips lie at the spatial

origin χ = 0, and suppose that M admits a past Q-screen, Q, constructed with

respect to this foliation. In other words, suppose that each light cone has a spatial

slice with extremal generalized entropy so that Q is the union of all of these extremal
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slices. Past light cones will generically have a maximal entropy slice in cosmologies

which, for example, begin with a big bang where a(ti) = 0. An example is portrayed

in Fig. 6.2, which shows a holographic screen and a Q-screen in a cosmological

spacetime with a past null singularity and a future de Sitter evolution; this example

is explained in more detail in Section 6.6. The intuition here is that while the past-

directed null geodesics that make up a light cone may initially diverge, eventually

they must meet again in the past when the scale factor vanishes and space becomes

singular. Ultimately, however, we need only assume that the Q-screen exists, and

we only remark on its possible origins for illustration.

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

χ = 0

η = 0

η = −∞

Figure 6.2: Holographic screen and Q-screen illustrated on the Penrose diagram for
a homogeneous and isotropic spacetime with a positive cosmological constant. Null
sheets that make up the foliation by past-directed light cones are shown in yellow,
and the cosmological horizon is the dashed black line. The dotted green line and
large green dots are the holographic screen and its leaves, respectively. The solid
purple line and large purple dots are the Q-screen and its leaves.

Because RW spacetimes are spherically symmetric, the extremal-entropy light cone

slices will be spheres, i.e., constant-t slices. If the quantum expansion vanishes in the

lightlike direction along the light cone and is positive in the other lightlike direction

at a single point on some test sphere, then it maintains these properties at every

point on that sphere due to symmetry. This sphere is by construction a marginally

quantum anti-trapped surface, or equivalently has extremal generalized entropy on

the light cone. We therefore take the Cauchy surfaces Σ with respect to which
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generalized entropy is defined to be the constant-t surfaces in M, since constant-t

slices of light cones are spheres.

We will also make a handful of generic assumptions aboutM and Q without which

a cosmic no-hair theorem is not guaranteed. Indeed, Wald’s theorem does not hold

in completely general cosmologies either; it requires that the spacetime is initially

expanding and that its matter content satisfies the strong and dominant energy

conditions. Here, we will assume that space continues to expand for all cosmic

time.3 We want to avoid cosmologies that crunch or that otherwise clearly do not

admit a no-hair theorem. We will also suppose that Q satisfies the generic conditions

outlined in [29].

With these considerations in mind, the theorem that we wish to prove is the following:

Theorem 6.3.1. LetM be a RW spacetime with the line element (6.10) and whose

matter content has constant thermodynamic entropy s per comoving volume. Suppose

thatM admits a past Q-screen, Q, constructed with respect to a foliation ofM with

past-directed light cones that are centered on the origin, χ = 0, and suppose that

the Generalized Second Law holds on Q. Suppose thatM and Q together satisfy the

following assumptions:

(a) a(t)→∞ as t→∞,

(b) Sgen → Smax <∞ along Q.

Then,M is asymptotically de Sitter and the scale factor a(t) approaches eHt, where

H is a constant.

Proof: For convenience we work in d = 3 spatial dimensions, but the generalization

to arbitrary dimensions is straightforward. As discussed above, the leaves of Q are

spheres. Letting the leaves be labeled by some parameter r, the generalized entropy
3In principle, the expansion need not be monotonic, but we will find that monotonicity is

implied whenM admits a Q-screen such as Q.
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is then given by

Sgen[σ(r),Σ(r)] ≡ Sgen(r) =
π

G
χ2(r)a2(t(r)) + 4

3πχ
3(r)s . (6.12)

The hypersurface Σ(r) is the constant-t(r) surface in which the leaf σ(r) is embedded,

and χ(r) denotes the radius of the leaf.

First, we need to establish that Q extends out to future timelike infinity. In principle,

Q could become spacelike and consequently not extend beyond some time t (or in

other words, t(r) could have some finite maximum value), but it turns out that this

does not happen.

Recall the property of Q-screens that generalized entropy is extremized on each leaf

with respect to lightlike deformations. Here we may write

kµ∂µSgen = 0 , (6.13)

where kµ = (a(t),−1, 0, 0) is the lightlike vector that is tangent to the light cone and

with respect to which Sgen is extremal. (Any point xµ belongs to a unique sphere on

a past-directed light cone and may therefore be associated with a particular value of

Sgen. This lets us define the partial derivative in Eq. (6.13) above.) The deformation

corresponds to dragging the leaf σ(r) up and down the light cone, and by construction

Sgen(r) is extremal on the leaf σ(r). Note that in more general settings we should

consider deformations with respect to null geodesics, since the null generators of the

light cone could have different normalizations at different points on σ(r). Or, in

other words, the geometry of the leaf σ(r) could change as it is dragged by some

fixed affine amount along the light cone. Here, however, the spherical symmetry of

RW ensures that the null generators on σ(r) all have the same normalization, so that

kµ as defined above is proportional to the null generators everywhere on σ(r).

Writing out the partial derivatives, (6.13) becomes

0 = (a ∂t − ∂χ)
( π
G
χ2a2 + 4

3πχ
3s
)

=
2π

G
χ2a2ȧ− 2π

G
χa2 − 4πχ2s. (6.14)
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(One must be careful to distinguish between the coordinate t and the value t(r)

which labels leaves in the Q-screen.) If χ 6= 0, then it follows that

1

χ
= ȧ(t)− 2Gs

a2(t)
. (6.15)

Eq. (6.15) lays out the criterion for when there is a leaf in a constant-t slice; when

the right side is finite and positive, then there must be a leaf in that slice.

Observe that the right side of Eq. (6.15) does not diverge for any finite t > ti

since a(t) is defined for all t ∈ [ti,∞) and only diverges in the infinite t limit by

assumption. Furthermore, if the right side is nonzero and positive for some time

ttime (and consequently there is a leaf σ(r) in the t(r) = ttime slice), then the right

side cannot approach zero, since this would cause the radius of subsequent leaves

to grow infinitely large, which contradicts the assumption that Sgen remains finite.

Therefore, if Q has a leaf at some time, then Eq. (6.15) shows that Q must have

leaves in all future slices. Q is therefore timelike and extends out to future timelike

infinity.4 Furthermore, that the right side of Eq. (6.15) cannot vanish immediately

implies that ȧ > 2Gs/a2 > 0 for t > ttime, so that the expansion must be monotonic.

Because Q is timelike, we can label each leaf by the constant-t1 surface in which

it lies, i.e., let the parameter r be a time t1 (subscripted as such to distinguish it

from the coordinate t). Referring to Eq. (6.12), since a(t) grows without bound by

assumption, it must be that χ(t1) decreases at least as fast as a−1(t1) in order for

the area term in Sgen to remain finite (as it must, since by hypothesis Sgen ≤ Smax).

The matter entropy term therefore becomes irrelevant in the asymptotic future, and

so that Sgen → Smax, it must be that

χ(t1)→
√
GSmax

π

1

a(t1)
(6.16)

as t1 →∞.
4Alternatively, we could instead replace Assumption (a) with the assumption that Q is timelike

and extending out to future timelike infinity and argue that a → ∞. The arguments given here
show that these two points are logically equivalent.
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Next, rearrange Eq. (6.15) to solve for ȧ. Using the asymptotic form for χ(t1) in

Eq. (6.16), to leading order in a we find that

ȧ→
√

π

GSmax
a + (subleading) . (6.17)

Therefore, it follows that a(t) → eHt as t → ∞, where H = (π/GSmax)1/2, demon-

strating that the metric approaches the de Sitter form, as desired. The entropy

Smax = π/GH2 coincides with the usual de Sitter horizon entropy. �

We close this section by briefly remarking that the result above extends straightfor-

wardly to open and closed RW spacetimes as well.

Corollary 6.3.2. More generally, the result of Theorem 6.3.1 applies to a RW space-

timeM of any spatial curvature, i.e., with the line element

ds2 = −dt2 + a2(t)
(
dχ2 + f2(χ)dΩ2

d−1

)
, (6.18)

where

f(χ) =


sinχ χ ∈ [0, π] (closed)

χ χ ∈ [0,∞) (flat)

sinhχ χ ∈ [0,∞) (open)

. (6.19)

Proof: The overall proof technique is the same as in the proof of Theorem 6.3.1.

Working in 1+3 dimensions, in the more general case, the generalized entropy of the

leaves of Q is given by

Sgen[σ(r),Σ(r)] ≡ Sgen(r) =
π

G
f2(χ(r))a2(t(r)) + v(χ(r))s . (6.20)

WhenM is closed, the comoving volume v(χ) is given by v(χ) = 2π(χ− sinχ cosχ),

and whenM is open, v(χ) is given by v(χ) = 2π(sinhχ coshχ− χ). Consequently,

the condition kµ∂µSgen = 0, which determines when there is a leaf in the constant-t

hypersurface, gives
1

f2(χ)
=

(
ȧ(t)− 2Gs

a2(t)

)2

+ k , (6.21)
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where k = +1, 0, or −1 if M is respectively closed, flat, or open. Here as well, if

there is a leaf at some time ttime so that the right-hand side of Eq. (6.21) is nonzero,

then there are leaves in all subsequent constant-t slices, since the finiteness of Sgen

demands that the right-hand side cannot approach zero. Therefore, Q extends out

to future timelike infinity.

For the general case, the condition in Eq. (6.16) that Sgen → Smax reads5

f(χ(t1))→
√
GSmax

π

1

a(t1)
. (6.22)

Upon substituting Eq. (6.22) into Eq. (6.21) (and taking the positive root, sinceM

is expanding), we recover Eq. (6.17), and so the rest of the proof follows as before.

�

6.4 A cosmic no-hair theorem for Bianchi I spacetimes

In a RW spacetime, we demonstrated that the existence of a Q-screen along which

entropy monotonically increases to a finite maximum implies that the scale factor

tends to the de Sitter scale factor far in the future. Now we will go one step fur-

ther and show that in the case where the cosmology is allowed to be anisotropic,

similar assumptions imply that any initial anisotropies decay at late times as well.

Specifically, we will prove a cosmic no-hair theorem for Bianchi I spacetimes. The

calculations in the proof for Bianchi I spacetimes are more involved than the RW

case, so we will begin with a proof in 1+2 dimensions, where the anisotropy only has

one functional degree of freedom. We will then generalize to 1+3 dimensions, which

also makes apparent how to generalize to arbitrary dimensions.

6.4.1 1+2 dimensions

LetM be a Bianchi I spacetime in 1+2 dimensions with the line element

ds2 = −dt2 + a2
1(t) dx2 + a2

2(t) dy2, (6.23)
5A minor technical point worth noting is that the condition in Eq. (6.22) is not identically

equivalent to the condition χ(t1) →
√
GSmax/π/a(t1) when M is closed. In this case, χ(t1) →

π −
√
GSmax/π/a(t1) is also admissible.
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where t ∈ (ti,∞). Once again foliate M with past-directed light cones whose tips

lie at x = y = 0, and suppose that M admits a past Q-screen Q, constructed

with respect to this foliation, together with an accompanying foliation by Cauchy

hypersurfaces. Our aim is to show that if generalized entropy tends to a finite

maximum along Q, then the GSL implies that a1(t), a2(t)→ eHt as t→∞ for some

constant H.

Here as well we will assume that space expands for all time, with a1(t), a2(t) → ∞

as t → ∞. We will also further assume that Q is timelike and extends out to

future timelike infinity past some time ttime. We suspect that it might be possible

to show that this latter property follows from the assumption that a1(t) and a2(t)

grow without bound, as in the case of a RW spacetime, but we do not know of a

straightforward way to show this.

We will assume that generalized entropy is globally maximized on each light cone by

the corresponding screen leaf (as opposed to only assuming local extremality). In

other words, we will assume that there are no other slices of each light cone whose

generalized entropy is larger than that of the screen leaf. This property of leaves is

certainly true when the Quantum Focusing Conjecture (QFC) holds [34]. Moreover,

the GSL is provably true when the QFC holds.

The QFC is the conjecture that the quantum expansion of a null congruence is

nonincreasing along the congruence. In symbols, for a null congruence generated by

kµ with an affine parameter λ on a given null ray, the QFC reads

dΘk

dλ
≤ 0 . (6.24)

The QFC is the semiclassical analogue of classical focusing, dθ/dλ ≤ 0, which holds

when the null curvature condition holds. In particular, Eq. (6.24) makes it clear that

if a light cone slice locally maximizes generalized entropy with respect to deforma-

tions on the light cone, then it is also the unique global maximum. A leaf σ that

locally maximizes generalized entropy obeys Θk[σ, y] = 0 for all y ∈ σ. Therefore, if
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Θk is nonincreasing on the light cone6, there are no deformations of σ that lead to a

larger generalized entropy, and so σ defines a globally maximal generalized entropy.

It is interesting to explore ways in which this assumption about global maximality of

generalized entropy can be relaxed, which we shall do after the proof of the no-hair

theorem.

Next, we introduce conformal light cone coordinates [188,189], which are more con-

venient coordinates to work in when dealing with anisotropy. First, observe that we

may rewrite the line element (6.23) as

ds2 = −dt2 + a2(t)
[
e2b(t)dx2 + e−2b(t)dy2

]
(6.25)

with a1(t) = a(t) eb(t) and a2(t) = a(t) e−b(t) [161]. In this parameterization, the

“volumetric scale factor” a(t) describes the overall expansion of space while b(t)

characterizes the anisotropy. Next, make the coordinate transformation to conformal

time defined by dt = ±a(η) dη so that the line element (6.25) reads

ds2 = a2(η)
[
−dη2 + e2b(η)dx2 + e−2b(η)dy2

]
. (6.26)

Choose the sign of η so that η(t) is a monotonically increasing function of t, and

denote the limiting value of η(t) as t→∞ by η∞. Conformal light cone coordinates

are then defined by the following coordinate transformation:

x(η, ηo, θ) = cos θ

∫ ηo

η

e−2b(ζ)√
cos2 θ e−2b(ζ) + sin2 θ e2b(ζ)

dζ (6.27)

y(η, ηo, θ) = sin θ

∫ ηo

η

e2b(ζ)√
cos2 θ e−2b(ζ) + sin2 θ e2b(ζ)

dζ. (6.28)

The point with coordinates (η, ηo, θ) is reached by firing a past-directed null geodesic

from the spatial origin x = y = 0 at an angle θ ∈ [0, 2π) counterclockwise relative to

the x-axis at conformal time ηo and following the light ray in the past down to the

conformal time η (Fig. 6.3). Note that while η is a timelike coordinate, ηo acts as a

radial coordinate at each η.
6The pathological case of dΘk/dλ = 0 on a subset of the congruence with nonzero measure is

ruled out by appropriate genericity conditions.
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ηo
b

θ

η
y

x

Figure 6.3: Conformal light cone coordinates. At the conformal time ηo, fire a past-
directed null geodesic (shown in yellow) from the origin at an initial angle θ relative
to the positive x-axis and follow it until the conformal time η.

The surfaces of constant ηo are precisely the past-directed light cones with respect

to which Q is constructed. We can therefore label the leaves σ of Q by the values of

ηo corresponding to the light cones on which they lie (Fig. 6.4):

Q =
⋃
ηo

σ(ηo). (6.29)

Similarly, label the Cauchy hypersurfaces with respect to which each leaf is defined

by Σ(ηo). In various instances, it will be useful to use another coordinate,

χ = ηo − η, (6.30)

which may be thought of as a comoving radius in a sense that will be made precise

later. We will also sometimes work in the coordinates (η, χ, θ) or (χ, ηo, θ) in addition

to the conformal light cone coordinates (η, ηo, θ).

The no-hair theorem that we will prove is as follows:

Theorem 6.4.1. Let M be a Bianchi I spacetime with the line element (6.23) and

whose matter content has constant thermodynamic entropy s per comoving volume.

Suppose that M admits a past Q-screen Q, with globally maximal entropy leaves
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η

x

y

Q

σ(ηo)

Figure 6.4: A Q-screen Q (the solid black hypersurface) constructed with respected
to a foliation by past-directed light cones (sketched in yellow). Each leaf σ(ηo)
(shown in blue) is labelled by the value of ηo where the tip of its parent light cone
sits.

constructed with respect to a foliation of M with past-directed light cones that are

centered on the origin, x = y = 0. Suppose that the Generalized Second Law holds

on Q and thatM and Q together satisfy the following assumptions:

(i) a1(t), a2(t)→∞ as t→∞,

(ii) Q is timelike past some ttime and extends out to future timelike infinity

(iii) ȧ1(t), ȧ2(t) > 0 after some tmono,

(iv) Sgen → Smax <∞ along Q.

Then, M is asymptotically de Sitter and the scale factors a1(t) and a2(t) approach

C1e
Ht and C2e

Ht, respectively, where H, C1, and C2 are constants.

Notes: To obtain a manifestly isotropic metric, rescale the coordinates x and y

by C1 and C2, i.e., set X = C1x and Y = C2y. Then, the line element (6.23)

asymptotically reads ds2 → −dt2 + e2Ht(dX2 + dY 2). Also note that we have

introduced an additional assumption compared to the RW case: Assumption (iii),
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that a1(t) and a2(t) grow monotonically past some time tmono. Finally, also note

that in terms of a(η) and b(η), Assumption (i) becomes:

(i′) a(η)→∞ as η → η∞ and a(η)e±b(η) →∞.

In terms of a(η) and b(η), the theorem is established by showing that a(η)→ −1/Hη

and b(η)→ B as η → 0− (and also that η∞ = 0) for some constant B.

Proof: The proof can be broken down into three parts. First, we show that, asymp-

totically, Q squeezes into the comoving coordinate origin. Second, we use this asymp-

totic squeezing behaviour to demonstrate that the volumetric scale factor a(η) tends

to the de Sitter scale factor. Finally, we show that the asymptotic behaviour of a(η)

and Assumption (iii) together imply that anisotropy decays.

Showing that Q squeezes into the coordinate origin χ = 0 as η → η∞.

Consider the leaves of Q and work in x̃µ = (η, ηo, θ) coordinates. On the light cone

whose tip is at ηo, each leaf σ(ηo) is a closed path parameterized by

x̃µ(u; ηo) = (η(u; ηo), ηo, u) u ∈ [0, 2π). (6.31)

Our first task is to show that χ(u; ηo) ≡ ηo − η(u; ηo) tends to zero for all values of

u as η → η∞. We will do so through a proof by contradiction.

Suppose to the contrary that Q never squeezes into the comoving coordinate origin.

That is, suppose that there exists M > 0 such that, given any ηo > ηtime, one can

find values η̃o > ηo and ũ such that χ(ũ; η̃o) ≥ M . Let η̃ ≡ η(ũ; η̃o) and consider

the constant η = η̃ slice of the light cone whose tip is at η̃o (Fig. 6.5). Denote this

(co-dimension 2) surface by ς(η̃; η̃o), and denote the (co-dimension 1) hypersurface

of constant-η̃ by X(η̃). Since the generalized entropy of the leaf σ(η̃o) is globally

maximal on this light cone by assumption, it must follow that

Sgen[σ(η̃o),Σ(η̃o)] ≥ Sgen[ς(η̃; η̃o), X(η̃)] ≥ A[ς(η̃; η̃o)]

4G
, (6.32)
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where the last inequality follows because Sgen is always greater than or equal to

just the area term. Our basic strategy will be to show that A[ς(η̃; η̃o)] diverges as

η̃o → η∞, which contradicts the assumption (iv) that Sgen must remain finite on Q.

η

x

y

Q

ς(η̃; η̃o)

σ(η̃o)
η̃o − η̃ ≥ M

Figure 6.5: The leaf σ(η̃o) and the constant-η̃ slice, ς(η̃; η̃o), of its parent light cone.

To do this, let us compute the proper area A[ς(η̃; η̃o)]. In three dimensions, the

induced metric on a surface of constant η and ηo has only a single component, given

by

γ =
∂xµ

∂θ

∂xν

∂θ
gµν = a2(η)

[
e2b(η)

(
∂x

∂θ

)2

+ e−2b(η)

(
∂y

∂θ

)2
]
≡ a2(η) γ̃ , (6.33)

where the coordinate partial derivatives read7

∂x

∂θ
=

∫ ηo

η

− sin θ(
cos2 θ e−2b(s) + sin2 θ e2b(s)

)3/2 ds

∂y

∂θ
=

∫ ηo

η

cos θ(
cos2 θ e−2b(s) + sin2 θ e2b(s)

)3/2 ds.

It follows that the area of this surface is

A(η, ηo) =

∫ 2π

0

√
γ dθ = a(η)

∫ 2π

0

√
γ̃ dθ . (6.34)

7A Maple worksheet which implements the calculations in this article is available through the
online repository [190].
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It is fairly straightforward to place a lower bound on this area:

A(η, ηo) ≥ a(η)eb(η)

∫ 2π

0

∣∣∣∣∂x∂θ
∣∣∣∣ dθ

= a(η)eb(η)

∫ ηo

η
ds

∫ 2π

0
dθ

|sin θ|(
cos2 θ e−2b(s) + sin2 θ e2b(s)

)3/2
= 4 a(η)eb(η)

∫ ηo

η
ds e−b(s).

One arrives at a similar expression using ∂y/∂θ. Note that in the middle line above,

we were able to bring the absolute value into the integrand of ∂x/∂θ because it has

a definite sign for any given θ. Then, if e−b(s) is minimized at s = ηm ∈ [η, ηo], it

follows that

A(η, ηo) ≥ 4 a(η)eb(η)e−b(ηm)(ηo − η) ≥ 4 a(η)(ηo − η). (6.35)

Applied to our surface ς(η̃; η̃o), for which η̃o − η̃ ≥M , the bound reads

A[ς(η̃; η̃o)] ≡ A(η̃, η̃o) ≥ 4Ma(η̃) , (6.36)

which diverges as η̃o and η̃ are chosen arbitrarily large. We therefore have the

contradiction that we sought, and so the leaves of the Q-screen must squeeze into

the comoving coordinate origin in the asymptotic future.

Showing that a(η) is asymptotically de Sitter.

Now we turn our attention to calculating Sgen[σ(ηo),Σ(ηo)] itself, and using its

asymptotic properties as ηo → η∞ to demonstrate that a(η)→ −1/Hη for a constant

H with η∞ = 0. First, we we will argue that the matter entropy term, which we as-

sume can be calculated using the coarse-grained entropy SCG[σ(ηo),Σ(ηo)], vanishes

asymptotically in the future. To this end, let us prove the following useful lemma

about constant-η slices of light cones when χ = ηo − η is infinitesimally small:

Lemma 6.4.2. Let ς(η; η + χ) be the constant-η slice of the past-directed light cone

whose tip is at ηo = η + χ. The generalized entropy defined by this slice is given by

Sgen[ς(η; η + χ), X(η)] =
A(η, η + χ)

4G
+ cg(η, χ)χ2s, (6.37)
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where A(η, η + χ) is given by

A(η, η + χ) = a(η) ·
[
2πχ+O(χ3)

]
, (6.38)

and cg(η, χ) is some O(1) geometric factor due to anisotropy that does not depend

on a(η).

Proof: First we justify the parameterization of the coarse-grained entropy SCG =

cg(η, χ)χ2s. In the coordinates of the metric (6.26), SCG is given by

SCG[ς(η; η + χ), X(η)] = s · volc[ς(η; η + χ), X(η)] = s

∫∫
int ς

dx dy , (6.39)

where int ς(η; η + χ) denotes the region on X(η) inside ς(η; η + χ). In terms of the

coordinates (η, χ, θ), SCG is

SCG[ς(η; η + χ), X(η)] ≡ SCG(η, χ) = s

∫ χ

0

∫ 2π

0

∣∣∣∣ ∂(x, y)

∂(χ′, θ)

∣∣∣∣ dθ dχ′ . (6.40)

Formally, the Jacobian can be calculated from the coordinate transformation (6.27)-

(6.28) above. Expanding in powers of χ, one finds that

SCG(η, χ) = s ·
(
πχ2 +

π

8
b′(η)2χ4

)
+O(χ5) . (6.41)

Therefore, we can simply define the function cg(η, χ) to be the function

cg(η, χ) ≡ SCG(η, χ)

χ2s
= π +

π

8
b′(η)2χ2 +O(χ3) . (6.42)

The function cg(η, χ) is O(χ0) by construction, and from the coordinate transfor-

mation (6.27)-(6.28), in which a(η) never appears, we see that cg cannot depend on

a(η), as claimed.

The expansion of A(η, η + χ) for small χ follows from expanding
√
γ̃ in Eq. (6.34)

in powers of χ and then integrating. Note that Eq. (6.38) demonstrates the sense in

which χ is a comoving radius (at least for small values of χ). �

We can use the result of Lemma 6.4.2 to show that SCG[σ(ηo),Σ(ηo)] vanishes asymp-

totically in the future. Given a leaf σ(ηo), let ηmin be the minimum value attained
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η

x

y

Q

ς(ηmin; ηo)

σ(ηo)

Figure 6.6: Given a leaf σ(ηo), the constant-η = ηmin slice of its parent light cone is
the surface ς(ηmin; ηo).

by η(u; ηo):

ηmin = min
u
{η(u; ηo)} . (6.43)

Consider the constant-ηmin slice of the light cone whose tip is at ηo, which we label

by ς(ηmin; ηo) (Fig. 6.6). The comoving volume of σ(ηo) is contained within the

comoving volume of ς(ηmin; ηo), which, according to Lemma 6.4.2, vanishes in the

asymptotic future limit. Therefore, the comoving volume of σ(ηo) vanishes as well,

so SCG[σ(ηo),Σ(ηo)] vanishes asymptotically in the future.

Next we investigate the asymptotic behaviour of A[σ(ηo)]. For this part of the

proof, we will work in the coordinates (χ, ηo, θ). In these coordinates, the leaf σ(ηo)

is parameterized by some path x̃µ(u) = (χ(u; ηo), ηo, u) with ηo held constant and

0 ≤ u < 2π. In the future when SCG becomes negligible, this path is the maximal

area (also known as length in 1+2 dimensions) path on the light cone whose tip is

at ηo, and so A[σ(ηo)] satisfies

δA[σ(ηo)]

δχ(u; ηo)
= 0 . (6.44)

In principle, one can therefore solve the Euler-Lagrange problem above to obtain the

path χ(u; ηo) and hence also the maximal area A[σ(ηo)].
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The tangent to the path is tµ = dx̃µ/du = (χ̇(u; ηo), 0, 1) (where a dot denotes a

derivative with respect to the parameter u). Therefore, the area of σ(ηo) is given by

A[σ(ηo)] =

∫ 2π

0

√
g̃µνtµtν du =

∫ 2π

0

√
g̃00χ̇2 + 2g̃02χ̇+ g̃22 du, (6.45)

where g̃µν is the metric of Eq. (6.26) but rewritten in (χ, ηo, θ) coordinates. One

finds that g̃00 = 0 exactly, but g̃02 and g̃22 do not admit any such simplifications.

Because of this, solving the full Euler-Lagrange problem to actually obtain the path

χ(u; ηo) is intractable in general.

Nevertheless, we can exploit the fact that Q squeezes into the coordinate origin and

perform a small-χ expansion of A[σ(ηo)]. First, pull out a factor of a(ηo − χ) from

the square root:

A[σ(ηo)] =

∫ 2π

0
a(ηo − χ)

√
2f02χ̇+ f22 du . (6.46)

In so doing we have defined g̃µν = [a(ηo − χ)]2fµν . Then, expand the square root in

χ. The result is

A[σ(ηo)] =

∫ 2π

0
a(ηo − χ)

[
χ

R(u; ηo)
+

1

2
b′(ηo)

Q(u; ηo)

R2(u; ηo)
χ2 +O(χ3)

]
du, (6.47)

where

R(u; ηo) = e−2b(ηo) cos2 u+ e2b(ηo) sin2 u

Q(u; ηo) = e−2b(ηo) cos2 u− e2b(ηo) sin2 u. (6.48)

Pulling out the scale factor is necessary to avoid pathologies that arise because both

χ and ηo become small in the same limit (see Section 6.6 for illustration).

Only keeping the first order term, the variation δA/δχ = 0 gives

0 = −a′(ηo − χ)
χ

R(u; ηo)
+ a(ηo − χ)

1

R(u; ηo)
, (6.49)

so asymptotically, the maximizing path χ(u; ηo) = χ(ηo) is given implicitly by the

solution of

χ =
a(ηo − χ)

a′(ηo − χ)
. (6.50)
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To first order, A[σ(ηo)] is given by

A[σ(ηo)] = 2π
a2(ηo − χ)

a′(ηo − χ)
. (6.51)

But the requirement that Sgen → Smax means that A[σ(ηo)]/4G must tend to the

constant value Smax, or in other words,

lim
ηo→η∞
χ→0

a2(ηo − χ)

a′(ηo − χ)
=

2GSmax

π
≡ 1

H
. (6.52)

Therefore, a(η) asymptotically approaches de Sitter, a(η) → −1/Hη as η → 0−,

with H = π/2GSmax.

Since χ(ηo) is a function of ηo, a technical detail to address is to check that the

higher-order coefficients in the expansion (6.47), which themselves depend on ηo

through b(ηo) and its derivatives, do not cause the higher-order terms to be larger

than the term that is first-order in χ. This we can achieve by bounding the remainder,

r1(χ; ηo) ≡
√

2f02χ̇+ f22 − χ/R.

Let F =
√

2f02χ̇+ f22. We may write its second derivative with respect to χ as

∂2F

∂χ2
= b′(ηo − χ)

Q(u; ηo − χ)

R2(u; ηo − χ)
+ ε(χ; ηo), (6.53)

where the term ε(χ; ηo) → 0 as χ → 0 for any ηo. As such, choose χ and ηo both

small enough such that |ε(χ; ηo)| < |b′(ηo − χ)|/R(u; ηo − χ) for all u.8 With this

choice, and since |Q/R| ≤ 1, we have that∣∣∣∣∂2F

∂χ2

∣∣∣∣ < 2|b′(ηo − χ)|
R(u; ηo − χ)

. (6.54)

Next we invoke the monotonicity Assumption (iii). Let η? = max{ηmono, ηtime}. In

terms of a(η) and b(η), Assumption (iii) reads (a(η)e+b(η))′ > 0 and (a(η)e−b(η))′ >

0, or |b′(η)| < a′(η)/a(η). Therefore, upon additionally requiring 0 > ηo − χ > η?

(i.e. possibly making χ and ηo smaller), it follows that∣∣∣∣∂2F

∂χ2

∣∣∣∣ < 2

R(u; ηo − χ)

a′(ηo − χ)

a(ηo − χ)
−→ 2

R(u; ηo − χ)χ(ηo)
. (6.55)

8The only instance in which this is not possible is if |b′(ηo − χ)|/R(u; ηo − χ) vanishes faster
than |ε(χ; ηo)|. But, in this case, the remainder |r1(χ; ηo)| can be bounded arbitrarily tightly, since
|∂2F/∂χ2| can be made arbitrarily small.
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So, by Taylor’s remainder theorem we have that |r1(χ; ηo)| < R(u; ηo−χ1)−1(χ2/χ(ηo))

on any interval χ ∈ [χ(ηo), χ2], where χ1 ∈ [χ(ηo), χ2] minimizes R(u; ηo − χ). Or,

at the edge of the interval,

|r1(χ(ηo); ηo)| <
χ(ηo)

R(u; ηo − χ1)
. (6.56)

Since
∫ 2π

0 R(u; ηo)
−1 du = 2π irrespective of the value of ηo, it follows that remainder

in the expansion is strictly smaller than the first-order term, so we were safe in

restricting our attention to the first-order solution.

Showing that the anisotropy decays.

The decay of anisotropy is directly implied by Assumption (iii) once we have estab-

lished that the volumetric scale factor a(η) is asymptotically de Sitter. In the far

future limit, Assumption (iii) recast as (a(η)e±b(η))′ > 0 gives

|b′(η)| < a′(η)

a(η)

η→0−−→ Ha(η) =
1

−η
. (6.57)

Therefore, to capture the asymptotic scaling of b′(η), we can write

b′(η) =
f(η)

(−η)1−p , (6.58)

where p > 0 and where |f(η)| ≤ F for some bounded constant F when η > η?. In

other words, b′(η) cannot grow faster than 1/η as η → 0−, so that (−η)1−pb′(η) is

some bounded function. To establish that the anisotropy decays, and thus complete

the proof of the theorem, we need only establish that b(η) goes to a fixed limit at

late times:

Lemma 6.4.3. If b′(η) satisfies Eq. (6.58) on (η?, 0), then limη→0− b(η) exists.

Proof: We show that the limit exists by showing that b(η) is a Cauchy function.

Let ε > 0. We must find δ > 0 such that 0 < −η1 < δ and 0 < −η2 < δ implies that
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|b(η2)− b(η1)| < ε. Without loss of generality, suppose that η? < η1 < η2. Then:

|b(η2)− b(η1)| =
∣∣∣∣∫ η2

η1

f(u)

(−u)1−p du

∣∣∣∣
≤
∫ η2

η1

|f(u)|
(−u)1−p du

≤ F
∫ η2

η1

1

(−u)1−p du

≤ F

p
(−η1)p. (6.59)

Therefore, let δ = (εF/p)1/p. Then |b(η2)− b(η1)| < ε as required. �

�

It is interesting to briefly consider how one may relax the assumption that each light

cone has a globally maximal generalized entropy section.9 If we do not assume that

each light cone has a maximum generalized entropy surface, then the proof above

pauses at Eq. (6.32). In this case, it is no longer true that Sgen[σ(η̃o),Σ(η̃o)] must

be greater than Sgen[ς(η̃; η̃o), X(η̃)]; the generalized entropy of the leaf σ(η̃o) could

just be a local maximum, and the entropy of the constant-η̃ slice ς(η̃; η̃o) could be

larger. We must therefore make a slightly different argument. It turns out that a

weaker but sufficient assumption is to only assume that each light cone has a unique

maximum area surface.

As before, let us still suppose that Q never squeezes into the comoving coordinate

origin and find a contradiction. We again suppose that there existsM > 0 such that,

given any ηo > ηtime, one can find values η̃o > ηo and ũ such that χ(ũ; η̃o) ≥ M .

First note that in order for Sgen[σ(η̃o),Σ(η̃o)] to remain finite, it must be that the

function χ(u; η̃o) is only greater than M on an interval that has vanishing measure

in the limit as η̃o → η∞. Otherwise, the proper area of σ(η̃o) diverges. Therefore,

the leaves of Q develop “tendrils” in the asymptotic future limit, as illustrated in

Fig. 6.7. In this case, however, the comoving volume that is enclosed by σ(η̃o)

9A particularly astute reader may have noticed that the light cones in the example in Sec. 6.6
do not satisfy this global maximality property, but this is just because the approximation in which
Sout is estimated by SCG breaks down. More precisely, SCG is not a good estimate of the matter
contribution to generalized entropy for light cone slices that are far to the past of the light cone’s
tip. For such slices, the comoving volume enclosed by the slice grows arbitrarily large.
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vanishes as η̃o → η∞, which means that the (locally) maximal entropy slice of each

light cone coincides with the (globally) maximal area slice in the asymptotic future

limit. We can then repeat the same arguments presented in the proof above for the

constant-η̃ slice, but applied in comparison to the maximal area slice, to construct

the required contradiction. Once it is established that Q squeezes into the comoving

coordinate origin, the proof continues as before.

η

x

y

σ(η̃o)

Figure 6.7: A hypothetical leaf σ(η̃o) that remains bounded away from the comoving
coordinate origin. The leaf has two long tendrils that extend out from the comoving
coordinate origin.

This relaxation is interesting (albeit somewhat artificial) because it makes it possible

to avoid assuming the Quantum Focusing Conjecture. Moreover, as is shown in

Sec. 6.7, if a RW spacetime admits a continuous holographic screen that has maximal

area leaves on every past-directed light cone, then the screen itself is unique and there

is always a finite globally maximal area slice of each light cone. (However, this slice

is not necessarily unique and may not be part of the unique continuous holographic

screen with leaves on every past-directed light cone.) This result suggests that it

might in general be possible to relate continuity properties of screens to the properties

of extremal-area light cone slices. For practical purposes, however, it is much cleaner

to simply assume the QFC (which also guarantees that the GSL holds).
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6.4.2 1+3 dimensions

Now suppose thatM is a Bianchi spacetime in 1+3 dimensions with the line element

ds2 = −dt2 + a2
1(t) dx2 + a2

2(t) dy2 + a2
3(t) dz2 . (6.60)

The case where M has 3 dimensions of space parallels the 1+2-dimensional case

with only a handful of technical complications. The main difference is that now the

anisotropy has two functional degrees of freedom:

ds2 = −dt2 + a2(t)
[
e2b1(t)dx2 + e2b2(t)dy2 + e2b3(t)dz2

]
. (6.61)

One arrives at the equation above by setting ai(t) = a(t)ebi(t) for i = 1, 2, 3, where

the bi(t) are subject to the constraint
∑3

i=1 bi(t) = 0. The definition of conformal

light cone coordinates (η, ηo, θ, φ) is correspondingly modified:

xj(η, ηo, θ, φ) = Dj(θ, φ)

∫ ηo

η

e−2bj(ζ)√∑3
i=1D

i(θ, φ)2 e−2bi(ζ)
dζ, (6.62)

where

Dj(θ, φ) = (sin θ cosφ, sin θ sinφ, cos θ).

Nevertheless, the essential construction remains unchanged. We still consider a past

Q-screen, Q, constructed with respect to a foliation of M by past-directed light

cones, and the leaves of Q are still labeled by the conformal time ηo where the tip

of their corresponding light cone is located. The no-hair theorem also generalizes in

a straightforward way:

Theorem 6.4.4. Let M be a Bianchi I spacetime with the line element (6.60) and

whose matter content has constant thermodynamic entropy s per comoving volume.

Suppose that M admits a past Q-screen, Q, with globally maximal entropy leaves

constructed with respect to a foliation of M with past-directed light cones that are

centered on the origin, x = y = z = 0. Suppose that the Generalized Second Law

holds on Q and that M and Q together satisfy the following assumptions for i ∈

{1, 2, 3}:

(i) ai(t)→∞ as t→∞,
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(ii) Q is timelike past some ttime and extends out to future timelike infinity,

(iii) ȧi(t) > 0 past some tmono,

(iv) Sgen → Smax <∞ along Q.

Then,M is asymptotically de Sitter and the axial scale factors ai(t) approach CieHt,

where H and Ci are constants.

Note: In terms of a(η) and the bi(η), Assumption (i) becomes:

(i′) a(η)→∞ as η → η∞ and a(η)ebi(η) →∞.

Proof: The proof for 1+3 dimensions exactly parallels the proof of Theorem 6.4.1, so

we only note the most important modifications. Beginning with Part 1, in (η, ηo, θ, φ)

coordinates, the leaves σ(ηo) are now parameterized surfaces,

x̃µ(u, v; ηo) = (η(u, v; ηo), ηo, u, v) u ∈ [0, π] v ∈ [0, 2π) . (6.63)

Our first task is again to show that χ(u, v; ηo) ≡ ηo − η(u, v; ηo) tends to zero for all

values of u and v as ηo → η∞.

As before, let us construct a contradiction of Assumption (iv) by supposing that

Q never squeezes into the comoving coordinate origin. Suppose that there exists

M > 0 such that, given any ηo > ηtime, one can find values η̃o > ηo, ũ, and ṽ such

that χ(ũ, ṽ; η̃o) ≥ M . Let η̃ ≡ η(ũ, ṽ; η̃o) and consider the constant η = η̃ slice of

the light cone whose tip is at η̃o. Denote this (co-dimension 2) surface by ς(η̃; η̃o),

and denote the (co-dimension 1) hypersurface of constant-η̃ by X(η̃). Here as well,

Eq. (6.32) will lead us to the contradiction via a divergence in A[ς(η̃; η̃o)].

In 1+3 dimensions, the induced metric on a surface of constant η and ηo is given by

γab =
∂xµ

∂θa
∂xν

∂θb
gµν = a2(η)

3∑
j=1

e2bj(η)∂x
j

∂θa
∂xj

∂θb
, (6.64)
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and where xj and gµν refer to Eqs. (6.61) and (6.62) with θa ≡ (θ, φ). The area of

this surface is now given by the surface integral

A(η, ηo) =

∫ π

0

∫ 2π

0

√
γ dφ dθ , (6.65)

where the determinant of the induced metric is

γ = a4(η)
∑
i<j

e2(bi(η)+bj(η))

(
∂xi

∂θ

∂xj

∂φ
− ∂xj

∂θ

∂xi

∂φ

)2

. (6.66)

One may therefore bound the area of ς(η; ηo) by, e.g.,

A(η, ηo) ≥ a2(η)eb1(η)+b2(η)

∫∫
dθ dφ

∣∣∣∣∂x∂θ ∂y∂φ − ∂y

∂θ

∂x

∂φ

∣∣∣∣ . (6.67)

Using the coordinate transformation Eq. (6.62), one can show that the Jacobian in

the integrand above is given by∣∣∣∣∂x∂θ ∂y∂φ − ∂y

∂θ

∂x

∂φ

∣∣∣∣ =

∫∫ ηo

η
ds ds′ sin θ |cos θ|

(
sin2 θ cos2 φ e2(b2(s)+b3(s′))

+ sin2 θ sin2 φ e2(b3(s)+b1(s′)) + cos2 θ e2(b2(s)+b1(s′))
)

×

(
3∑
i=1

Di(θ, φ)2 e−2bi(s)

)−3/2
 3∑
j=1

Dj(θ, φ)2 e−2bi(s
′)

−3/2

.

(6.68)

This is quite beastly, but fortunately we can bound it nicely:∣∣∣∣∂x∂θ ∂y∂φ − ∂y

∂θ

∂x

∂φ

∣∣∣∣ ≥∫∫ ηo

η
ds ds′ sin θ

∣∣cos3 θ
∣∣ e2(b2(s)+b3(s′))

×
(

(e−2b1(s) + e−2b2(s)) sin2 θ + e−2b3(s) cos2 θ
)−3/2

×
(

(e−2b1(s′) + e−2b2(s′)) sin2 θ + e−2b3(s′) cos2 θ
)−3/2

. (6.69)

(One would arrive at similar results by choosing different terms to keep in the nu-

merator of Eq. (6.68).) Then, inserting Eq. (6.69) into Eq. (6.67) and performing

the angular integration, one arrives at

A(η, ηo) ≥ 4πa2(η)eb1(η)+b2(η)

∫∫ ηo

η
ds ds′ f̃(s, s′) ,
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where

f̃(s, s′) =
eb1(s)+3b2(s)+3b1(s′)+b2(s′)[√

e2b1(s) + e2b2(s)e2(b1(s′)+b2(s′)) +
√
e2b1(s′) + e2b2(s′)e2(b1(s)+b2(s))

]2

≥ eb1(s)+3b2(s)+3b1(s′)+b2(s′)[
(eb1(s) + eb2(s))e2(b1(s′)+b2(s′)) + (eb1(s′) + eb2(s′))e2(b1(s)+b2(s))

]2
≡ f(s, s′) .

Note that we have also used the fact that b3 = −b1 − b2 to eliminate b3. Then, if

f(s, s′) is minimized at sm, s′m ∈ [η, ηo], it follows that

A(η, ηo) ≥ 4π(ηo − η)2a2(η)eb1(η)+b2(η)f(sm, s
′
m) . (6.70)

Given this result, we now apply it to our surface ς(η̃; η̃o), for which (η̃o − η̃) ≥ M .

Doing so, we arrive at

A[ς(η̃; η̃o)] ≡ A(η̃, η̃o) ≥ 4πM2a2(η̃)eb1(η̃)+b2(η̃)f(sm, s
′
m) . (6.71)

The right-hand side of the bound above then diverges as η̃ and η̃o are chosen ar-

bitrarily large. The only subtlety arises if either or both of b1 and b2 also di-

verge, but because the numerator and the denominator of the b-dependent part

of the bound Eq. (6.71) contain equal powers of b1 and b2, the overall divergent

behaviour induced by a(η) is unchanged. (Recall that a(η)eb1(η), a(η)eb2(η), and

a(η)eb3(η) = a(η)e−b1(η)−b2(η) all grow infinitely large by assumption.) We therefore

arrive at the desired contradiction of Assumption (iv) via Eq. (6.32), and so the

leaves of Q squeeze into the comoving coordinate origin in the asymptotic future.

Next we turn to showing that the scale factor a(η) is asymptotically de Sitter (Part 2).

Consider the generalized entropy Sgen[σ(ηo),Σ(ηo)] once more. First, Lemma 6.4.2

is correspondingly modified:

Lemma 6.4.5. Let ς(η; η + χ) be the constant-η slice of the past-directed light cone

whose tip is at ηo = η + χ. The generalized entropy defined by this slice is given by

Sgen[ς(η; η + χ), X(η)] =
A(η, η + χ)

4G
+ cg(η, χ)χ3s, (6.72)
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where A(η, η + χ) is given by

A(η, η + χ) = a2(η) ·
[
4πχ2 +O(χ4)

]
, (6.73)

and cg(η, χ) is some O(1) geometric factor due to anisotropy that does not depend

on a(η).

Proof: Repeating the steps described in Lemma 6.4.2, one finds that

cg(η, χ) ≡ SCG(η, χ)

χ3s
=

4π

3
+

8π

45

(
b′1(η)2 + b′1(η)b′2(η) + b′2(η)2

)
χ2 +O(χ3). (6.74)

The expansion of A(η, η + χ) for small χ follows from expanding √γ in Eq. (6.65)

in powers of χ and then integrating. �

From Lemma 6.4.5, it therefore again follows that the matter contribution to the

generalized entropy, SCG[σ(ηo),Σ(ηo)], vanishes in the asymptotic future limit. Con-

sequently, we focus on the area term, A[σ(ηo)].

For this part of the proof, we will work in the coordinates (χ, ηo, θ, φ). The leaf

σ(ηo) is parameterized by some surface x̃µ(u, v) = (χ(u, v; ηo), ηo, u, v) with ηo held

constant and 0 ≤ u ≤ π, 0 ≤ v < 2π. In the asymptotic future, this surface is the

surface on the light cone with tip at ηo with maximal area, and so it is the solution

of
δA[σ(ηo)]

δχ(u, v; ηo)
= 0 . (6.75)

The induced metric on this surface is, as usual, given by

hab =
∂x̃µ

∂ua
∂x̃ν

∂ub
g̃µν , (6.76)

where g̃µν is the metric of Eq. (6.61) but rewritten in (χ, ηo, θ, φ) coordinates. The

area of σ(ηo) is given by

A[σ(ηo)] =

∫ π

0

∫ 2π

0

√
deth dv du , (6.77)
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and the components of hab are as follows:

huu = (∂uχ)2g̃00 + 2(∂uχ)g̃02 + g̃22

huv = (∂uχ)(∂vχ)g̃00 + (∂uχ)g̃03 + (∂vχ)g̃02 + g̃23

hvv = (∂vχ)2g̃00 + 2(∂vχ)g̃03 + g̃33. (6.78)

Once more, solving the full Euler-Lagrange problem for χ(u, v; ηo) to obtain the

maximal area A is intractable, so we use the same trick where we extract an overall

factor of a4(ηo − χ) from deth and then expand the square root of the quotient in

powers of χ. The result is

A[σ(ηo)] =

∫ π

0

∫ 2π

0
a2(ηo−χ)

[
sin θ

R(u, v; ηo)3/2
χ2 +

Q(u, v; ηo) sin θ

R(u, v; ηo)5/2
χ3 +O(χ4)

]
dv du,

(6.79)

where

R(u, v; ηo) =

3∑
i=1

e−2bi(ηo)Di(u, v)2

Q(u, v; ηo) =
3∑
i=1

b′i(ηo)e
−2bi(ηo)Di(u, v)2. (6.80)

Only keeping the lowest order term, the variation δA/δχ = 0 gives the maximal path

χ(u, v; ηo) = χ(ηo) as the solution of

χ =
a(ηo − χ)

a′(ηo − χ)
. (6.81)

So, to lowest order, A[σ(ηo)] is given by

A[σ(ηo)] = χ2a2(ηo − χ)

∫ π

0

∫ 2π

0

sin θ

R(u, v; ηo)3/2
dv du = 4π

(
a2(ηo − χ)

a′(ηo − χ)

)2

. (6.82)

But the requirement that Sgen → Smax means that A[σ(ηo)]/4G must tend to the

constant value Smax, or in other words,

lim
ηo→η∞
χ→0

a2(ηo − χ)

a′(ηo − χ)
=

√
GSmax

π
≡ 1

H
. (6.83)

Therefore, a(η) asymptotically approaches de Sitter, a(η)→ −1/Hη as η → 0−, with

H2 = π/GSmax. Note that we recover the same Hubble constant as in Theorem 6.3.1

for RW spacetimes in 1+3 dimensions.
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Finally, as in the case of 1+2 dimensions, the condition (a(η)ebi(η))′ > 0 is enough

to show that limη→0− b
′
i(η) exists for each i. �

6.5 Discussion

Assuming the Generalized Second Law, we have shown that if a Bianchi I spacetime

admits a past Q-screen along which generalized entropy increases up to a finite max-

imum, then this implies that the spacetime is asymptotically de Sitter. We recover

a version of Wald’s cosmic no-hair theorem by making thermodynamic arguments

about spacetime, without appealing to Einstein’s equations.

While the proof of these cosmic no-hair theorems is most tractable (and certainly

easiest to visualize) in 1+2 dimensions, the generalization to 1+3 dimensions was

fairly immediate. In principle, the proof strategy for arbitrary dimensions is the

same, albeit more difficult from the perspective of calculation. This is chiefly be-

cause calculating area elements of codimension-2 surfaces in arbitrary dimensions

is cumbersome. Nevertheless, it is natural to expect that analogous cosmic no-hair

theorems hold for Bianchi I spacetimes of arbitrary dimensions.

Within the proof itself, it would be interesting to see if the monotonicity assumptions,

a′i(η) > 0, could be eliminated. The fact that the Generalized Second Law asserts

that Sgen increases monotonically along a Q-screen does offer some leverage. In

particular, asymptotically this implies that the average scale factor

a(η) =

(
d∏
i=1

ai(η)

)1/d

increases monotonically; however, we learn nothing about the anisotropies bi(η),

since the leading order behaviour of Sgen does not depend on the bi(η) in the asymp-

totic future regime. We also note that the monotonicity assumptions do not trivi-

alize the cosmic no-hair theorems demonstrated in Sec. 6.4. For example, assuming

monotonicity does not rule out exponential expansion with different rates in different

spatial directions, nor asymptotically power-law scale factors, nor does it even imply

accelerated expansion at all.
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An interesting extension would be to try to prove a no-hair theorem for classical

cosmological perturbations [191], or for quantum fields in curved spacetime. Given a

scalar field on a curved spacetime background, the task is to show that the combined

metric and scalar field perturbations approach the Bunch-Davies state [192] at late

times. In principle it would suffice to show that the background spacetime still tends

to de Sitter in the future in this case, since one could then simply invoke known no-

hair results about scalar fields in curved backgrounds [129–131]. Conceptually, such

a calculation would be interesting because one can explicitly write down the quantum

state of cosmological perturbations, and so a full treatment of the matter entropy as

von Neumann entropy (modulo ultraviolet divergences) is possible.

To prove our theorem, it was not strictly necessary to assume that the gravitational

contribution to the entropy was precisely proportional to the surface area. We could

imagine choosing some other function of the area, such that

Sgen[σ,Σ] = f(A[σ]/G) + SCG[σ,Σ]. (6.84)

For example, returning to the RW case, if one sets f(A/G) = C(A/G)p for some

constants C and p, exactly the same analysis as in the proof of Theorem 6.3.1 leads

to the conclusion that (cf. Eq. (6.17))

ȧ(t)→

√
4π

G

(
C

Smax

)1/p

a(t) (6.85)

in the limit as t → ∞. In other words, one still concludes that the scale factor is

asymptotically de Sitter, albeit with a Hubble constant that differs from the usual

case of f(A/G) = A/4G.

Finally, while we did not make use of the Einstein field equations in our derivation,

upon reinvoking them, we note that the cosmic no-hair theorems established here

imply a pure dark energy phase asymptotically in the future (in the sense that the

stress energy tensor becomes proportional to the metric, gµν). However, the GSL

is not sensitive to the nature of the dark energy (whether it is a pure cosmological

constant, whether it turns on, whether it’s due to a slowing scalar field, and so on).
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This work can be thought of as part of the more general program of connecting

gravitation to entropy, thermodynamics, and entanglement [20, 24, 65–67, 76, 86, 93,

170–174]. As in attempts to derive Einstein gravity from entropic considerations, we

deduce the behavior of the geometry of spacetime from thermodynamics, without

explicit field equations. Our result is less general, as we only obtain the asymp-

totic behavior of the universe, but is perhaps also more robust, as our assumptions

are correspondingly minimal. Thinking of spacetime as emerging thermodynami-

cally from a set of underlying degrees of freedom can change our perspective on the

knotty problems of quantum gravity; for example, as emphasized by Banks [137],

the cosmological constant problem becomes the question of “Why does Hilbert space

have a certain number of dimensions?” rather than “Why is this parameter in the

low-energy effective Lagrangian so small?” Problems certainly remain (including

why the entropy was so low near the Big Bang), but this alternative way of thinking

about gravitation may prove useful going forward.
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6.6 Q-screens, a worked example

In this section, we illustrate Q-screens by explicitly constructing one in a RW space-

time that is asymptotically de Sitter. Consider a RW spacetime in 1+3 dimensions

with the line element ds2 = −dt2 + a2(t)(dχ2 + χ2dΩ2
2) and where the scale fac-

tor is a(t) = sinh t, t ∈ (0,∞). Conformal time is given by η(t) = −2 arccoth(et),



148

η ∈ (−∞, 0), and the scale factor in conformal time is

a(η) =
1

sinh(−η)
. (6.86)

Foliate the spacetime with past-directed light cones centered at the coordinate origin

χ = 0, and let the Cauchy hypersurfaces of the spacetime be the constant-η hyper-

surfaces. Let us now construct a Q-screen by extremizing the generalized entropy

on each light cone.

Consider a past-directed light cone whose tip is at the conformal time ηo. A constant-

η < ηo slice of this light cone is a 2-sphere of coordinate radius ηo − η, and so the

generalized entropy computed with respect to this slice is

Sgen(η; ηo) =
π

G

(
ηo − η

sinh(−η)

)2

+
4

3
π(ηo − η)3s . (6.87)

A plot of Sgen(η; ηo) as a function of η for several values of ηo is shown in Fig. 6.8.

The area term A(η; ηo)/4G alone is also overlaid on the plot, which illustrates that

it is the dominant contribution to the generalized entropy at late times. Notice that

in addition to having a local maximum, Sgen(η; ηo) also has a local minimum, and

below a certain critical value ηcrit
o there is in fact no nonzero value of η which locally

extremizes Sgen(η; ηo). As such, the Q-screen, which is defined as the union of the

slices with maximal generalized entropy, is only defined for ηo ≥ ηcrit
o . This is in

contrast to the area A(η; ηo), which has a locally maximizing value of η for all ηo.

The holographic screen, which is made up of extremal area slices, is therefore defined

for all times. Both the Q-screen and the holographic screen were schematically

illustrated previously in Fig. 6.2.

Generalized entropy is extremal when ∂Sgen/∂η = 0. Excluding η = 0 and η → −∞,

the extremizing values of η are the real-valued solutions of

ηo − η =
sinh(−η)

cosh(−η)− 2Gs sinh(−η)3
(6.88)

when they exist. Let ηQ(ηo) denote the maximizing value, and hence also define the

Q-screen leaf radius χQ(ηo) ≡ ηo−ηQ(ηo). A plot of χQ(ηo) is shown in Fig. 6.9. As

expected, χQ(ηo) vanishes as ηo → 0−. For comparison, we also plot the holographic
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Figure 6.8: Plots of area (solid) and generalized entropy (dashed) along light cones.
From the lowest peak to the highest peak, the values of ηo are −2, −1, −0.5, −0.1,
−0.01, and −0.001. Here we have taken G = 1 and we have picked s = 0.001.

screen radius χH(ηo) ≡ ηo − ηH(ηo), where ηH(ηo) maximizes the area of the light

cone slice, i.e., it is the solution of

ηo − η = tanh(−η) . (6.89)

In particular note that χQ(ηo) is always slightly larger than χH(ηo), but they ulti-

mately coincide in the limit η → 0− (cf. Fig. 6.2).

Figure 6.9: Asymptotic behaviour of the radius of the Q-screen leaves (χQ(ηo),
dashed) and holographic screen leaves (χH(ηo), solid).

As a final exercise, let us investigate the asymptotic dependence of χH(ηo) on ηo

(which is also the asymptotic dependence of χQ(ηo), since the two coincide as ηo →

0−) to illustrate some of the subtleties involved in performing asymptotic expansions.
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Consider Eq. (6.89) and let η = ηo − χ so that we have χ = tanh(χ − ηo). Since,

asymptotically, χ → 0, one may be tempted to expand this last equation for small

values of χ:

χ = tanh(−ηo) + (1− tanh2(−ηo))χ+O(χ2) ⇒ χH(ηo)
?
=

1

tanh(−ηo)
(6.90)

Notice, however, that since 0 < tanh(−ηo) < 1, this expression for χH(ηo) can-

not be infinitesimally small—the expansion is inconsistent! Rather, χ and ηo are

simultaneously infinitesimal. Consider instead the double Taylor series in χ and ηo:

χ = χ−ηo− 1
3χ

3+ηoχ
2−η2

oχ+ 1
3η

3
o+· · · ⇒ χH(ηo) = (−3ηo)

1/3+ηo+· · · (6.91)

This last result is the correct asymptotic behaviour of χH(ηo).

Similarly, writing A = 4πχ2a2(ηo − χ), one arrives at the wrong expressions for

extremal values if one tries to expand A in small values of χ, ηo, or even both at

the same time. The key is to keep a(ηo−χ) intact so that one arrives at Eq. (6.89).

Doing so leaves just enough nonlinearity to be able to restore the correct asymptotic

behaviour of χH(ηo). This technique is exploited in Sec. 6.4.1.

6.7 Holographic screen continuity and maximal area light cone slices

When the null curvature condition holds, the Raychaudhuri equation guarantees that

light rays focus, or in other words, that the expansion of a null congruence is always

nonincreasing: dθ/dλ ≤ 0. In particular, this means that if a null congruence has a

spacelike slice whose area is maximal with respect to local deformations, then this is

in fact the unique globally maximal area slice. A consequence of this observation is

that if one’s aim is to construct a holographic screen by stitching together maximal

area slices of each null sheet in a null foliation, then the holographic screen is uniquely

fixed by the choice of foliation.

Here, we connect the uniqueness of locally maximal area slices to continuity prop-

erties of holographic screens in RW spacetimes. What we will first show is that,

given a foliation of a RW spacetime by past-directed light cones, there is at most one

continuous holographic screen that can be constructed with respect to this foliation
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that has maximal area leaves on every light cone. We will then show that a con-

sequence of this observation is that if a spacetime admits a continuous holographic

with maximal area leaves on every light cone, then each light cone necessarily has a

globally maximal finite area slice.

Proposition 6.7.1. LetM be a RW spacetime with the line element

ds2 = a2(η)
(
−dη2 + dχ2 + χ2dΩ2

d−1

)
, (6.92)

where the conformal time η takes values in an unbounded (connected) interval I ⊆ R.

Consider a foliation ofM by past-directed light cones whose tips are at χ = 0. If there

is a past-directed light cone that has multiple spacelike slices that have maximal area

with respect to local deformations, then M admits at most one holographic screen,

H, constructed with respect to the given foliation that is both (a) continuous, and (b)

has maximal area leaves on every past-directed light cone.

Proof: Consider a past-directed light cone whose tip is at ηo. For η < ηo, the area

of the constant-η slice of this light cone is given by

A(η, ηo) = Nd [(ηo − η)a(η)]d−1 , (6.93)

where Nd is a dimension-dependent constant. BecauseM is spherically symmetric,

such a slice has extremal area if ∂A/∂η = 0, or equivalently, if

ηo = η +
a(η)

a′(η)
≡ f(η) . (6.94)

Therefore, constant-η slices of the past-directed light cone whose tip is at ηo for

which f(η) = ηo and η < ηo are potential holographic screen leaves.

Now suppose that there is a light cone whose tip is at ηo that has n locally maximal

area slices at η = η1, η2, ..., ηn where, for convenience, these conformal times are

ordered such that η1 > η2 > · · · > ηn. This means that a graph of f(η) must intersect

the horizontal line at ηo at least 2n − 1 times. (Between any two adjacent local

maxima ηi and ηi+1, there must be a local minimum of area at some ηmin
i ∈ (ηi, ηi+1),

and there may also be inflection points.) Consider any two adjacent local maxima
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ηi and ηi+1. Schematically, in the vicinity of these points, the graph of f(η) must

look like one of the two configurations shown in Fig. 6.10 (a,b), since f is continuous

if a/a′ is continuous. Now consider shifting the horizontal line at ηo up and down.

This corresponds to shifting the tip of the light cone to the future and past of ηo.

Where the horizontal line intersects the graph of f(η) tracks how the location of

the local maxima and the local minimum of A move. In particular, notice that by

moving the horizontal line sufficiently far to the future or the past, one of the local

maxima and the local minimum must eventually meet and become an inflection point

before disappearing altogether. (Note that we may always move the horizontal line

sufficiently far in at least one of the past or future directions, since the interval I

in which the conformal time takes its values is unbounded in at least one direction.)

Therefore, if we track how the locations of the maxima at ηi and ηi+1 change as we

move the location of the light cone’s tip, we see that one of these local maxima must

eventually disappear, as illustrated in Fig. 6.10 (d).

Inductively, then, there exists at most one continuous function, call it ηmax(ηo),

whose domain is all ηo ∈ I and is such that η = ηmax(ηo) is a local maximum of

A(η, ηo) for all ηo. The union of the constant-ηmax(ηo) slices of all past-directed

light cones is precisely the holographic screen H described in the statement of the

proposition. �

Examples of various f(η) are sketched below. Fig. 6.11 (a) depicts a case in which

there exists a continuous holographic screen with leaves on every light cone. Fig. 6.11

(b) depicts a case in which there is no such holographic screen. In fact, from this

example, one can see that if I = R, then there can never be a continuous holographic

screen with leaves on every light cone if there is a light cone that has multiple maximal

area slices. Referring to the proof above, the technical reason is that in this case,

the horizontal line of constant ηo can be pushed arbitrarily far up and down since

ηo can take all values in R, and so any pair of adjacent maxima and minima will

eventually merge (as a function of ηo).
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Figure 6.10: In the vicinity of two local maxima of A(η, ηo) at ηi and ηi+1 with
ηo held fixed, the graph of the function f(η) must schematically resemble one of
the configurations shown in (a) and (b). The dashed line is the ηo = η line; η
can only take values to the left of this line. The graph (c) depicts a configuration
with additional inflection points. The graph (d) illustrates how the maxima and the
minimum eventually meet and annihilate as the horizontal constant ηo line is shifted
up and down.

Finally, there is a partial converse of the result above:

Proposition 6.7.2. If M as described in Proposition 6.7.1 admits a continuous

holographic screen, H, with maximal area leaves on every past-directed light cone,

then each light cone has a spatial slice which is a global maximum of the area of all

spatial slices of the light cone, and the area of this slice is finite.

Proof: Consider first the case where there is a unique local maximum on each past-

directed light cone and H is the union of these maximal area surfaces. Again denote

the value of η that maximizes A(η, ηo) for a given ηo by ηmax(ηo). The only way that
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η

f(η)

0

(a)

η

f(η)

(b)

Figure 6.11: (a) An example of a function f(η), where I = (−∞, 0), which admits a
continuous holographic screen with leaves on every light cone, but where some light
cones have two local maxima of A(η, ηo) when their tips are close enough to the
endpoint ηo = 0. (b) An example of a function f(η), where I = R, which admits no
continuous holographic screen with leaves on every light cone.

ηmax(ηo) could not be a global maximum of area is if there was some ηM < ηmax(ηo)

such that A(ηM , ηo) > A(ηmax(ηo), ηo). However, for this to be possible, there must

be a local minimum of A in between ηM and ηmax(ηo). In other words, the function

f(η) must intersect the horizontal constant-ηo line once for the local maximum, once

for the local minimum, and then possibly an additional even number of times for

pairs of inflection points—there cannot be more intersections if ηmax(ηo) is the unique

local maximum of area. This means that the graph of f(η) must be concave up or

concave down (Fig. 6.12), in which case there will be some horizontal ηo lines that

do not intersect the graph of f(η), which contradicts the requirement that H have

leaves on every light cone. Therefore, η = ηmax(ηo) is in fact a global maximum of

A(η, ηo).

Then, according to Proposition 6.7.1, the other case is where some light cones have

multiple local maxima of A(η, ηo), in which case I is only semi-infinite. This can

only happen for light cones whose tips are near the finite endpoint of the interval

I. Beyond some threshold value of η in the direction in which I is unbounded, f(η)

must still be monotonic in order for there to be leaves on every light cone. Therefore,

for ηo beyond the threshold, the first case applies, and when there are multiple local
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η

f(η)

η
o

Figure 6.12: An example of f(η) that is concave up, with I = R. Above the
horizontal ηo line shown, this f(η) intersects a horizontal line twice, which means
that light cones that correspond to such horizontal lines have a local maximum and a
local minimum of A(η, ηo). However, light cones that correspond to horizontal lines
drawn below the horizontal line shown have no local extrema, since these lines do
not intersect f(η).

maxima of area on a given light cone for ηo between the threshold and the finite

endpoint of I, at least one of them is a global maximum of A(η, ηo). �
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C h a p t e r 7

NATURAL COVARIANT PLANCK SCALE CUTOFFS AND THE
COSMIC MICROWAVE BACKGROUND

We calculate the impact of quantum gravity–motivated ultraviolet cutoffs on infla-

tionary predictions for the cosmic microwave background spectrum. We model the

ultraviolet cutoffs fully covariantly to avoid possible artifacts of covariance breaking.

Imposing these covariant cutoffs results in the production of small, characteristically

k−dependent oscillations in the spectrum. The size of the effect scales linearly with

the ratio of the Planck to Hubble lengths during inflation. Consequently, the relative

size of the effect could be as large as one part in 105, i.e., eventual observability may

not be ruled out.

This chapter was published as Ref. [6], A. Chatwin-Davies, A. Kempf, and R. T. W.

Martin, “Natural covariant Planck scale cutoffs and the cosmic microwave back-

ground spectrum,” Phys. Rev. Lett. 119 (2017) 031301, arXiv:1612.06445.

7.1 Introduction

It is widely expected that the very notion of distance in space and time breaks down

at or before the Planck scale, due to quantum fluctuations of the metric (see [193]

for a review). To understand the structure of spacetime at the Planck scale will,

therefore, require a theory of quantum gravity. There are several current approaches

to a consistent theory of quantum gravity, including string theory, loop quantum

gravity, and others [194, 195]. It has proven exceedingly difficult, however, to test

models for Planck-scale physics experimentally, chiefly due to the extremely small

scales involved.

One of the most promising approaches to experimentally probing quantum gravity

theories is to look for small imprints that Planck-scale physics may have left in

the cosmic microwave background (CMB) and the subsequent structure formation

http://dx.doi.org/10.1103/PhysRevLett.119.031301
http://arxiv.org/abs/1612.06445
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[196–201]. This is because, according to the standard inflationary scenario, the

quantum fluctuations that seeded the CMB’s inhomogeneities likely originated only

about 5 or 6 orders of magnitude away from the Planck scale [201], namely when

the comoving modes’ fluctuations froze at their Hubble horizon crossing.

The magnitude of the imprint of Planck-scale physics in the CMB has been estimated

using various approaches. These generally model the influence that Planck-scale

physics exerts on inflationary quantum field theory through an ultraviolet (UV)

cutoff at the Planck scale and through generalized dispersion relations [200,202–213].

Of crucial importance is the question of how the magnitude of the effect scales with

the ratio of the Planck and Hubble lengths during inflation [201,214]. Let us denote

the Hubble scale at the end of inflation by LHubble and define σ = LPlanck/LHubble.

Several studies found that the imprint of quantum gravity in the CMB should be of

the order of σα with either α = 1 [206] or α = 2 [200]. If indeed α = 1, then we may

be a mere five orders of magnitude away from measuring Planck-scale physics, which

is relatively close when compared to accelerator physics, where there are about 15

orders of magnitude to cross.

Models for how Planck-scale physics influences inflationary quantum field theory,

such as modified dispersion relations, generally break local Lorentz invariance [201].

This makes it unclear to what extent the predicted imprints on the CMB are due

to Planck-scale physics and to what extent the predicted imprints are caused by the

breaking of local Lorentz invariance. Therefore, to isolate the effect of Planck-scale

physics on the CMB, we employ functional analytic methods that allow us to model

natural UV cutoffs fully covariantly.

Our main results are that covariant UV cutoffs can produce small characteristic

oscillations in the fluctuation spectrum and that this imprint on the CMB is of first

order, i.e., α = 1. The overall amplitude is sensitive to the timing of the comoving

modes’ quantum-to-classical transition. This transition is generally expected to have

occurred soon after horizon crossing [22, 215–218]. This is because, after horizon

crossing, comoving modes quickly become extremely squeezed, which makes them
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extremely susceptible to environment-induced decoherence [219]. We will be able to

conclude, therefore, that the relative size of the imprint of a covariant Planck-scale

cutoff in the CMB could be as large as one part in 105 so that eventual observability

may not be ruled out.

7.2 Fully covariant natural ultraviolet cutoffs.

Our aim is to covariantly model possible first order corrections to standard quantum

field theory (QFT) as the Planck scale is approached from low energies. To this end,

recall that in the path integral formulation of QFT, the path integral is normally

assumed to run over all field configurations. This includes on-shell fields, i.e., fields

that extremize the action, as well as fields that are arbitrarily far off-shell. In order to

ensure the preservation of covariance, we will here consider UV cutoffs that remove

or suppress field configurations—and therefore field fluctuations—that are off-shell

by an amount that is on the order of or past the Planck scale. Technically, the

eigenfunctions of the d’Alembertian to eigenvalues beyond the Planck scale will be

considered too far off-shell and will therefore be modeled as being suppressed or

eliminated entirely from the path integration. Such cutoffs are manifestly covariant

and diffeomorphism invariant since the spectra of covariant differential operators

such as the d’Alembertian, and the corresponding operators for fields other than

scalars, are independent of the choice of coordinates.

Concretely, let � denote a self-adjoint d’Alembertian on a Lorentzian manifold,M.

Its eigenfunctions form an orthonormal basis for L2(M) and can be taken to span

the space of functions in the quantum field theoretic path integral. A cutoff on

the spectrum of � is operationally defined via (real linear combinations of) spectral

projectors,

f(�) =
∑

λ∈spec(�)

f(λ) 〈ψλ, · 〉ψλ , (7.1)

where f is the non-negative function which defines the cutoff, ψλ is an eigenfunction

of �, and 〈·, ·〉 denotes the inner product on L2(M).

Choosing f(λ) = θ(Ω2−|λ|) produces a sharp cutoff on the spectrum of� at |λ| = Ω2.
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We will focus on this most extreme case of an UV cutoff. It is straightforward to

smooth out the step function so that the spectral cutoff is not as sharp and the

positive operator f(�) describes models of smoother UV cutoffs. These covariant

cutoffs amount to suppressing far off-shell field fluctuations from the path integral.1

The class of cutoffs that we consider is the most general type of kinematic covariant

cutoff within the framework of QFT. We are not going beyond the framework of

QFT because inflation appears to have happened well within the range of validity

of QFT. Among these cutoffs, we focus on the most extreme case, the sharp cutoff,

to obtain a prediction for the maximal impact on the fluctuation spectrum.

As an aside, we also note that with the above choice of a sharp cutoff f , the quantity

Ω can be interpreted as a covariant bandlimit: a conventional bandlimit, i.e., a

minimum wavelength imposed on functions in Rn, can be thought of as a cutoff

on the spectrum of the Laplacian, 4, on Rn. The eigenfunctions of 4 are the

plane waves exp(ik · x) and cutting off the spectrum of 4 is to impose a limit on

the length of the wave vector k2. As a consequence, Shannon’s sampling theorem

applies: any function that is Ω-bandlimited is determined everywhere if known on any

regular discrete lattice {xn} with a spacing smaller than 1/(2Ω) [220–222], in each

direction. The d’Alembertian generalizes the Laplacian to Lorentzian spacetimes,

leading to a covariant generalization of sampling theory [223, 224]: Each mode of

a particular spatial wavelength possesses a corresponding bandwidth and therefore

obeys a sampling theorem in time. Those modes whose wavelengths are smaller than

the Planck length possess an exceedingly small bandwidth, which effectively freezes

them out. This ultraviolet behavior is beautifully covariant, as the notions of spatial

wavelength and temporal bandwidth Lorentz transform appropriately.

Returning to our main program, we express the space of covariantly-bandlimited

scalar fields onM in terms of eigenfunctions of the d’Alembertian as

BM(Ω) = span
{
ψ | �ψ = λψ, λ ∈ [−Ω2,Ω2]

}
. (7.2)

1We remark that, since proton decay is mediated by far off-shell processes, such a covariant
ultraviolet cutoff may help explain the exceedingly large proton lifetime.
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Here, Ω sets the ultraviolet scale. In general, the spectrum of a self-adjoint d’Alembert

operator is not bounded below for Lorentzian-signature manifolds, and so the spec-

trum must be cut off from above and below.

In the path integral formulation of QFT, we implement the covariant bandlimitation

by only integrating over covariantly-bandlimited fields instead of all field configura-

tions. For example, the covariantly-bandlimited Feynman propagator of a quantized

scalar field, which we denote by GΩ
F , is given by

iGΩ
F (x, x′) =

∫
BM(Ω)Dφ φ(x)φ(x′)eiS[φ]∫

BM(Ω)Dφ eiS[φ]
. (7.3)

Covariant bandlimitation here amounts to excluding the most extreme off-shell fluc-

tuations from the quantum field theoretic path integral. Concretely, GΩ
F can be

computed by acting on the conventional propagator GF to the left and right with

the spectral projectors θ(Ω2 − �) ≡ PΩ, where GF (x, x′) is understood to be the

kernel of an integral operator.

7.3 Application to inflation.

LetM be an inflating Friedmann-Robertson-Walker (FRW) spacetime with the line

element ds2 = a2(η)[−dη2 + dx2], where the conformal time η takes values in an

interval I ⊆ (−∞, 0). Consider a massless scalar field φ on this background. Such a

field is a proxy for quantities such as the Mukhanov-Sasaki variable, which describes

combined quantized perturbations of the inflaton and scalar metric degrees of free-

dom, or tensor perturbations of the metric, which describe primordial gravitational

waves.

The strength of the field’s quantum fluctuations is quantified by its fluctuation spec-

trum:
δφk(η) = 1

2πk
3/2|vk(η)|

=
√

4πk3/2|GF (η = η′; k)|1/2 .
(7.4)

Here, vk(η) is the field’s mode function and k is comoving wavelength. We define

the covariantly-bandlimited fluctuation spectrum by replacing GF in the equation
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above with GΩ
F = PΩGFPΩ. Note that the spectrum of the d’Alembertian in a

FRW spacetime is preserved (up to degeneracy) under spatial Fourier transforms,

i.e., if �u(η,x) = λu(η,x), then �kuk(η) = λuk(η). This allows us to calculate the

bandlimited propagator comoving mode by comoving mode.

We now consider the flat slicing of de Sitter spacetime in 1+3 dimensions, which

is the most computationally tractable model for an inflating FRW spacetime. The

scale factor is a(η) = −1/Hη with −∞ < η < 0, and H is the Hubble parameter. We

take the state of the field to be the Bunch-Davies vacuum [192] so that the Feynman

propagator without cutoff reads, as usual:

GF (η, η′; k) = − iπ
4

√
ηη′

a(η)a(η′)

[
θ(η − η′)H(1)

3/2(k|η|)H(2)
3/2(k|η′|)

+θ(η′ − η)H
(2)
3/2(k|η|)H(1)

3/2(k|η′|)
]
. (7.5)

Here, H(1)
3/2 and H(2)

3/2 denote Hankel functions of the first and second kind, respec-

tively.

Our strategy is as follows: for each comoving mode k, construct the spectral projec-

tors PΩ from the eigenfunctions and eigenvalues of �k, and then apply these to the

left and right of GF (η, η′; k) to obtain GΩ
F . Equivalently, we can write PΩ = I −P⊥Ω ,

where P⊥Ω projects onto eigenspaces corresponding to |λ| > Ω2, so that

GΩ
F = GF − (P⊥Ω GF +GFP

⊥
Ω − P⊥Ω GFP⊥Ω ) (7.6)

and the quantity in brackets gives the correction to the full propagator.

We notice first that each k-d’Alembertian on L2((−∞, 0), a4(η)dη) is not uniquely

self-adjoint. In functional analytic language [225–227], the minimal symmetric oper-

ator generated by each �k has deficiency indices (1, 1), which implies the existence

of a one-parameter family of self-adjoint extensions of �k, each corresponding to a

generalized boundary condition. We identify the correct self-adjoint extension by

matching the generalized boundary condition to the boundary condition implied by
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GF as given in Eq. (7.5). The fact that GF is a right inverse of the d’Alembertian,

i.e., that �kGF (η, η′; k) = a−4(η)δ(η − η′), means that GF is diagonal in the same

basis as �k and so it shares the same boundary condition.

For each λ ∈ R, the eigenfunction equation �ku(η) = λu(η) yields a Sturm-Liouville

differential equation,

(a2u′)′ + k2a2u+ λa4u = 0. (7.7)

This can be solved to obtain two linearly independent solutions [225]. For λ <

9H2/4, Eq. (7.7) admits one normalizable solution and so the self-adjoint extensions

of �k will have point spectrum in this range. For λ ≥ 9H2/4, both solutions are

non-normalizable, and so this range can only contain continuous spectrum. The

possible normalizable solutions for λ < 9H2/4 are

ψn(η) = H2
√

2pn |η|3/2Jpn(k|η|) , (7.8)

where pn = p0 + 2n with n ∈ N ensures orthonormality and the value of p0 ∈

(0, 2] fixes the self-adjoint extension. (Here, Jp denotes the Bessel-J function of

order p). The corresponding eigenvalues are λn = H2(9
4 − p

2
n). We determined the

correct choice of self-adjoint extension by examining the action of GhF − λ−1
n I on

test eigenfunctions as a function of p0, where GhF denotes the Hermitian part of

GF . When p0 takes the value that is implied by GF as given in Eq. (7.5), then

(GhF − λ−1
n I)ψn(η ; p0) must be in the kernel of �k. By varying p0 and checking

when this last condition is satisfied, we found that p0 = 3/2 (so that λ0 = 0) is the

self-adjoint extension that is implied by Eq. (7.5).

Orthonormality then implies that all λ ≥ 9H2/4 are in the continuous spectrum,

and that the corresponding eigenfunctions are

ψq(λ)(η) =H2
√

1
2q tanh(πq)

[
sech(π2 q)|η|

3/2Re Jiq(k|η|)

−csch(π2 q)|η|
3/2Im Jiq(k|η|)

]
, (7.9)

with q(λ) = ( λ
H2 − 9

4)1/2. The eigenfunctions of the continuous spectrum have been
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normalized so that ∫ 0

−∞
ψq(η)ψq′(η) a4(η)dη = δ(q − q′) . (7.10)

We deduced this normalization numerically by requiring that∫ q+ε

q−ε

∫ 0

−∞
ψq(η)ψq′(η) a4(η)dη = 1. (7.11)

Upon exchanging the order of integration, the double integral becomes Riemann-

integrable and thus calculable numerically.

Assembling the results, the projectors P⊥Ω are given by

P⊥Ω (η, η′) =
∑
n>N

ψn(η)ψn(η′) +

∫ ∞
Q

ψq(η)ψq(η
′) dq , (7.12)

whereQ = q(Ω2) andN = max{n : |λn| < Ω2}. The full correction to the propagator

in Eq. (7.6) can then be calculated using a combination of exact antiderivatives when

possible and numerical integration otherwise. The contribution from the point spec-

trum is several tens of orders of magnitude smaller than the contribution from the

continuous spectrum, and is therefore negligible in Eq. (7.12). A plot of ∆(δφk)/δφk

is shown in Fig. 7.1, where

∆(δφk(η)) =
√

4πk3/2
(
|GΩ

F (η = η′; k)|1/2

−|GF (η = η′; k)|1/2
)
. (7.13)

The quantity ∆(δφk)/δφk characterizes the magnitude of the impact of the covariant

UV cutoff on inflationary predictions for the CMB.

Fig. 7.1 shows that the impact of the covariant bandlimit on inflationary pertur-

bations is sensitive to when the perturbations were in effect measured and became

classical. As is well known, after horizon crossing, comoving modes quickly become

highly squeezed. This squeezing makes the quantum statistics of field fluctuations

indistinguishable from those of a classical stochastic ensemble, which leads to an

“apparent” quantum-to-classical transition [217]. If the comoving modes had con-

tinued to evolve as a closed system until re-heating, then our calculations, which
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Figure 7.1: Relative change in δφk as a function of comoving mode number with
|η| = 1 fixed. Horizon crossing (k|η| = 1) is marked with a solid line. The ratio of
Planck to Hubble scales is set to H/Ω = 10−2 so that the numerical computation
remains tractable. The oscillations are due to an oscillatory integrand that appears
in GΩ

F which dominates at small k. Roughly, the oscillations may be understood as
an interference effect, with dips occurring when an integer number of wavelengths
fit between the Planck and Hubble scales.

hold as long as the modes are independent closed systems, would be valid up until

re-heating. At this point the re-heating interactions will decohere the inflationary

perturbations, which would then be described according to open system dynamics.

In this scenario, the imprint that Planck-scale physics could have left in the CMB

would, in effect, be measured and fixed as late as re-heating. The imprint would

therefore be exponentially suppressed.

However, the modes’ squeezing at horizon crossing is generally expected to have also

led to a quantum-to-classical transition through environmental decoherence already

shortly after horizon crossing, therefore requiring an open system description at that

stage. For our calculation, this means that the imprint of Planck-scale physics in

the CMB was in effect measured soon after horizon crossing. We therefore predict

that this imprint is not suppressed.

For completeness, let us briefly discuss why decoherence is expected to have occurred

soon after horizon crossing (for a more extensive review, see [217]). During infla-

tion, there are several environmental sources of decoherence for the comoving modes.
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These include nonlinear gravitational interactions among the modes as well as inter-

actions with the fields of other species. (There is also the effect of decoherence from

tracing over degrees of freedom beyond the cosmological horizon.) The weakness

of these environmental interactions is offset by the well-known [219] extreme sensi-

tivity of highly-squeezed states, such as the comoving modes after horizon crossing,

to environmental decoherence. We remark that these decoherence mechanisms are

indeed such that the pointer basis is approximately the field eigenbasis and that the

modes’ standing wave behavior can account for the acoustic oscillations in the CMB,

as required by phenomenology [217].

Within this standard scenario for the quantum-to-classical transition in inflation,

we can then conclude that the cutoff-induced modulation of the primordial quan-

tum fluctuations’ amplitudes that we calculate was effectively fixed by measurement

through environmental decoherence near horizon crossing. The imprint in the CMB

scales as σα with α = 1, and here, σ = LPlanck/LHubble ∼ H/Ω could be as large as

10−5 for realistic values of H and Ω. While still far from being measurable, it is con-

ceivable that such an effect might eventually become observable, thereby providing

some access to Planck-scale physics.

We determined the order, α, by holding k|η| fixed and plotting ∆(δφk)/δφk as a

function of H/Ω. This is shown in Fig. 7.2, where the scaling behavior can be read

off: the effect scales almost exactly linearly, i.e., α ≈ 1, when k|η| is fixed close to

horizon crossing.

We now consider the realistic case of inflationary spacetimes with a slowly-varying

Hubble parameter. The exact calculations would be challenging since the correspond-

ing d’Alembertian would be computationally even more difficult to diagonalize. We

therefore model this case with an “adiabatic” approximation in which the spacetime

is instantaneously de Sitter at every conformal time η, but in which we let H slowly

vary as a function of η. Fig. 7.3 shows a plot of ∆(δφk)/δφk for this model. At

each k, |η| is set to 1/k and the Hubble parameter is set to the value taken at the

mode’s horizon crossing by the time-varying Hubble parameter H(η) of a power
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Figure 7.2: Relative change in δφk as a function of the ratio of Planck to Hubble
scales. The upper series of points is at horizon crossing (k|η| = 1), and the lower
series is well past horizon crossing (k|η| = 1/20). The inset shows a sliver of the
lower series at higher resolution, where the apparent scatter in the data is resolved
as rapid oscillations.

law spacetime. As the magnitude of ∆(δφk)/δφk tracks the effective time-varying

Hubble parameter, an interesting characteristic pattern of oscillations appears. Intu-

itively, these oscillations may be thought of as arising from the time-varying number

of Planckian wavelengths that fit into a Hubble length. If observed, such oscillations

in the CMB spectra may serve as an experimental signature of a covariant natu-

ral UV cutoff that could not easily be alternatively explained through a plausible

inflaton potential. Our results are consistent with prior literature [199, 204, 205] in

that we also predict superimposed oscillations. However, our new predictions for

the type and magnitude of such oscillations are obtained covariantly and our predic-

tions, including the prediction that the effect is of first order (α = 1), are now free

of potential artifacts due to covariance breaking.
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Figure 7.3: Relative change in the fluctuation spectrum for a slowly-varying Hubble
parameter. For each k, |η| is set to 1/k and the Hubble parameter is matched to
that of a power law spacetime: H(η) = p[C(p − 1)|η|]1/(p−1), where a(t) = Ctp in
cosmic time. Here we set p = 10 and we fixed C such that H(−1) = 1, so as to
coincide with horizon crossing in Fig. 7.1. The value of H ranges from 1 to 7.74 as k
goes from 1 to 10−8; this change is tracked by the linear trend in ∆(δφk)/δφk. The
inset shows a detail of the oscillations on top of the trend.
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Part III

The Black Hole Information

Problem
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C h a p t e r 8

HAWKING RADIATION AND INFORMATION: A REVIEW

An important discovery in theoretical physics during the last century was Stephen

Hawking’s finding that black holes radiate, which, over timescales of order M3 for

a black hole of initial mass M , should cause a black hole to dissipate into a dilute

ensemble of radiation. The topic of Hawking radiation is a point of overlap between

gravity and quantum theory, and the black hole information problem is an especially

puzzling open question. In its modern form, the essential implication of the black

hole information problem is that black holes either do not evolve unitarily, or our

understanding of local effective field theory and black holes as quantum mechanical

objects must change when gravity is taken into account.

Since an appreciable portion of this thesis concerns the black hole information prob-

lem, this chapter reviews the phenomenon of Hawking radiation as well as the black

hole information problem. The topics covered, in the order that they follow, are

radiation from black holes that formed from collapsing matter, thermal properties of

eternal black holes, and finally the black hole information problem in both its origi-

nal form (as addressed by Hawking [43], Page [40,228], and Susskind et. al [23]), as

well as its modern form (due to Almheiri et. al [18, 19]).

My motivation for writing this chapter was to create a chance for myself to carefully

go through Hawking’s original work and the accompanying original literature. As

a result, the derivation in Sec. 8.1 of the production of radiation from black holes

that formed from collapsing matter is quite detailed. The discussion about thermal

properties of eternal black holes in Sec. 8.2 is less detailed, but has all of the necessary

ingredients for setting up the black hole information problem in Sec. 8.3. In this last

section, I attempt to be as careful and precise as I can in my formulation of the

problem. In particular, the argument given for the black hole information problem

in terms of strong subadditivity of von Neumann entropy is the argument that I
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believe to be most robust, and I make an effort to identify where assumptions and

approximations are made in the argument.

This chapter draws heavily on Hawking’s original article [43], as well as the texts by

Wald [160], Birrell & Davies [192], and Mukhanov [229]. Other specific references

are indicated throughout when drawn upon.

8.1 Black holes that formed from collapse

Consider a black hole that formed from the spherical collapse of matter of total mass

M .1 That is, we shall consider a spacetime M such that, outside of some timelike

surface r(t) which describes the surface of the collapsing matter, the metric is that

of a Schwarzschild black hole in the usual coordinates (t, r, θ, φ):

ds2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2dθ2 + r2 sin2 θ dφ2 (8.1)

The relevant Penrose diagram is shown in Fig. 8.1.

i
−

i
0

I
−

I
+

H
+

Figure 8.1: The Penrose diagram for a black hole that formed from the collapse of
matter. The collapsing matter is shown as the grey region. The black hole horizon,
H+, is indicated by the dashed null line. The singularity at r = 0 is indicated by
the jagged line.

Let ϕ be a scalar field of mass µ on this spacetime. With a view of eventually

discussing the quantized field’s mode functions, let us first investigate the classical
1To be certain, Hawking radiation is still produced in situations that are not spherically sym-

metric. For some discussion, refer to Ref. [43].
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propagation of the field, i.e., let us investigate the solutions of its classical equation

of motion, the Klein-Gordon equation:

(�− µ2)ϕ = 0 . (8.2)

As usual, the d’Alembertian is given by

� =
1√
−g

∂α

(√
−ggαβ∂β

)
. (8.3)

SinceM is spherically symmetric, it makes sense to expand ϕ in terms of spherical

harmonics,

ϕ(t, r, θ, φ) =
1

r
f(t, r)Y m

l (θ, φ). (8.4)

Using this ansatz, one finds using Eq. (8.2) and the metric (8.1) that, outside of the

collapsing matter whereM is Schwarzschild, the function f(t, r) obeys

− ∂2f

∂t2
+
∂2f

∂r2
∗
−
(

1− 2M

r

)(
l(l + 1)

r2
+

2M

r3
+ µ2

)
f = 0, (8.5)

where

r∗ = r + 2M ln
∣∣∣ r
2M
− 1
∣∣∣ (8.6)

is the usual tortoise coordinate. Therefore, in the coordinates (t, r∗), we can think

of f(t, r∗) as a wave that scatters in a potential

V (r) =

(
1− 2M

r

)(
l(l + 1)

r2
+

2M

r3
+ µ2

)
, (8.7)

at least in the region ofM that lies outside the collapsing matter.

Consider now the asymptotic behaviour of V (r). When r∗ → −∞ (or equivalently

r → 2M), for all values of the field’s mass, one finds that

V (r) ∼ 1− 2M

r
∼ er?/2M . (8.8)

The potential decays exponentially quickly in r∗, so solutions f(t, r∗) will behave like

free waves e−iω(t±r∗) near the black hole’s event horizon. In the other asymptotic

limit as r∗ →∞, we have that

V (r) ∼


(
1− 2M

r

)
µ2 µ > 0

l(l+1)
r2 µ = 0

. (8.9)
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Therefore, in the massless case, the solutions f(t, r∗) will also behave like asymp-

totically free waves near the future and past asymptotic boundaries of M, but the

massive case receives a correction due to the 1/r potential.

For simplicity, from this point onward we will assume that µ = 0 and only study

the massless case. A heuristic way to motivate this assumption is by observing

that the effective potential for massive fields is larger than the massive case. Since

Hawking radiation consists of particle content that reaches the asymptotic future of

M, one should expect that a higher effective potential would suppress the emission

of massive Hawking radiation and that massless species will dominate the radiation.

This expectation is indeed confirmed by careful numerical calculations [230, 231].

It is still possible to perform an analysis for massive fields that is similar to what

follows, but we refer the reader to Ref. [192] for details. Similarly, while we will

limit ourselves to scalar fields, the analysis also generalizes to fields with nonzero

spin [43,192].

We now turn to the quantization of ϕ. A comprehensive review of the quantization

of fields in curved spacetimes may be found in Ref. [192]. Alternatively, the second

chapter of Ref. [232] gives a brief introduction to the quantization of a scalar field in

a curved spacetime that is very much congruous with the development here. Very

briefly, though, recall that the quantized field ϕ in a globally hyperbolic spacetime

may be faithfully written as2

ϕ(x) =
∑
i

(
fi(x)ai + f̄i(x)a†i

)
, (8.10)

where a†i and ai are creation and annihilation operators that obey

[ai, a
†
j ] = δij . (8.11)

The functions fi(x) are solutions of the equation of motion (8.2) and are called mode

functions. That the mode functions solve the Klein-Gordon equation ensures that
2The discrete sum should only be taken as a schematic illustration; in certain cases (such

as those we will encounter below), the sums may be continuous integrations, in which case the
Kronecker delta function normalization converts to Dirac delta function normalization.
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the field operator itself obeys the Klein-Gordon equation. Furthermore, the mode

functions must be chosen so that

(fi, fj) ≡
i

2

∫
Σ

(
fif̄j;a − f̄jfi;a

)
dΣa = δij (8.12)

for any given Cauchy surface Σ. One can show that if Eq. (8.12), also called the

Wronskian condition, holds for one Cauchy surface, then it holds on all Cauchy

surfaces. TheWronskian condition guarantees that the field’s canonical commutation

relations hold everywhere on the manifold. The mode functions then also form a

complete orthonormal basis with respect to the bilinear form (8.12).

The mode functions are solutions of the Klein-Gordon equation (8.2), so they may

be fixed by specifying initial data on a Cauchy surface. Since our field is massless,

two natural Cauchy surfaces to consider in light of the discussion above are the past

null boundary of spacetime, I −, and the union of the black hole event horizon and

future null boundary of spacetime, H+ ∪I +.

First consider the past null boundary. That solutions of the Klein-Gordon equation

behave as free waves here motivates choosing the mode functions to be

fωlm(t, r, θ, φ) =
1√
2πω

1

r
Fωl(r)e

−iωvY m
l (θ, φ), (8.13)

where v = t + r∗. The function Fωl(r) is fixed by the Klein-Gordon equation and

the Wronskian condition, but must approach the value 1 as r → ∞ as dictated

by the asymptotic structure of solutions of Eq. (8.2). These mode functions fωlm

therefore describe free inward-propagating spherical waves at I − with frequency ω

(as measured with respect to the null time v)3 and angular quantum numbers l and

m. The full field then takes the form

ϕ =
∞∑
l=0

l∑
m=−l

∫ ∞
0

dω
(
fωlmaωlm + f̄ωlma

†
ωlm

)
. (8.14)

With this choice of mode functions, the operators a†ωlm and aωlm may be naturally

interpreted as creating and annihilating quanta of ingoing free spherical waves at
3Note that this choice of positive frequency modes is opposite to Hawking’s original convention,

i.e., Hawking’s mode functions are proportional to eiωv in Ref. [43]. The convention used here is
the same as in Ref. [160] and also happens to be the convention that I usually use.
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I −. The vacuum state defined by these operators, i.e., the state |0−〉 such that

aωlm|0−〉 = 0 ∀ ω, l,m (8.15)

therefore corresponds to the state with no incoming excitations of the field in the

asymptotic past.

Now consider the future boundary H+ ∪I +. That the future boundary is bipartite

suggests defining new mode functions that are split into two sets, {pωlm} and {qωlm},

where the pωlm vanish on the event horizon and the qωlm vanish on I +. Here we

choose

pωlm(t, r, θ, φ) =
1√
2πω

1

r
Pωl(r)e

−iωuY m
l (θ, φ), (8.16)

where u = t − r∗, so that the mode functions pωlm describe outward-propagating,

free spherical waves at I +. With a similar choice for the qωlm, we can conclude that

these mode functions describe free waves that are crossing into the black hole at its

event horizon. Then, together with a set of new creation and annihilation operators,

bωlm, b
†
ωlm and cωlm, c

†
ωlm, we can expand the field operator in terms of these new

modes:

ϕ =
∞∑
l=0

l∑
m=−l

∫ ∞
0

dω
(
pωlmbωlm + p̄ωlmb

†
ωlm + qωlmcωlm + q̄ωlmc

†
ωlm

)
. (8.17)

We briefly note that there is some ambiguity in how to choose the modes qωlm, which

is discussed in more detail in Ref. [160]. However, as long as we are only concerned

with making predictions about quantities at I +, then the choice of the qωlm does

not matter for the following reason. In reference to the abstract mode decomposition

(8.10), the structure of the resulting Fock space is naturally a tensor product over

the modes i:

H =
⊗
i

(⊕
ni

span{|ni〉}

)
. (8.18)

In the equation above, |ni〉 denotes the state obtained from ni applications of the

creation operator a†i to the vacuums state. In particular, this means that we can

arrange the Hilbert space, defined with respect to the Cauchy surface H+ ∪I +, as
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a tensor product of Fock states for the bi, b
†
i and ci, c

†
i :

HH+∪I + = HH+ ⊗HI + . (8.19)

In other words, we can just group those indices i in Eq. (8.18) that correspond to

the pωlm mode functions into HI + , and group those indices that correspond to the

qωlm into HH+ . Then, provided that we are only interested in making predictions at

I +, we can always trace out the part of the state that has support on HH+ . The

resulting reduced state on HI + is unaffected by redefinitions of the mode functions

qωlm.

Since the first set of mode functions, {fωlm, f̄ωlm} forms a complete basis, we can

express the new mode functions pωlm as a linear combination of the former for some

coefficients αωω′ and βωω′ :

pωlm =

∫ ∞
0

dω′
(
αωω′fω′lm + βωω′ f̄ω′l(−m)

)
. (8.20)

This expansion, via the commutation relations of φ and aωlm, a
†
ωlm imply that

bωlm =

∫ ∞
0

dω′
(
ᾱωω′aω′lm − β̄ωω′a†ω′l(−m)

)
. (8.21)

In particular, we will find that the state |0−〉 is not annihilated by the bωlm. In

other words, starting with no field excitations in the asymptotic past, we will find

excitations on I + with nonzero probability:

〈0−|b†ωlmbωlm|0
−〉 =

∫ ∞
0

dω′ |βωω′ |2 . (8.22)

This is precisely the Hawking radiation.

The program to calculate the spectrum of the produced radiation is therefore quite

simple in principle:

• Write down fωlm.

• Write down pωlm.

• Use the bilinear form (8.12) to extract (pωlm, f̄ω′l(−m)) = βωω′ .
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However, the functions Fωl(r) and Pωl(r) are not expressible in terms of elementary

functions, and so the best we can do without resorting to numerics is an approximate

calculation, such as the one that follows.

Here we will follow the basic approach outlined in Ref. [160] with some hybridization

with Hawking’s original work [43]. Our strategy will be to consider a solution pωlm

starting at I + and study how it propagates back to I − so that we may compute

its overlap with fωlm.

First, note that the plane wave-like part of these mode functions, e−iωu, causes the

mode function’s oscillation frequency to diverge near the event horizon. Indeed, any

freely-falling observer who crosses into the black hole would report that these mode

functions have a diverging oscillation frequency, which we can confirm by rewriting

e−iωu in terms of the observer’s geodesic in a coordinate chart that is smooth across

the horizon.

Namely, recall that the null Kruskal-Szekeres coordinate U is related to u by

U = −e−κu, (8.23)

where κ = 1/(4M) is the surface gravity of a Schwarzschild black hole, and that the

Kruskal-Szekeres coordinate system smoothly covers the black hole horizon with the

horizon located at U = 0 (refer to Eqs. (8.41-8.43) and Fig. 8.5 below). Therefore,

in terms of U , we may write

e−iωu = e−iωκ
−1 ln(−U) . (8.24)

Now let γ be the geodesic of a freely-falling observer who enters the black hole outside

of the region of collapsing matter. Choose the geodesic’s affine parameter λ such

that λ = 0 corresponds to the horizon crossing point U = 0. On this geodesic, U(λ)

is a smooth function of λ, so Taylor-expanding about λ = 0, we find that Eq. (8.24)

reads

e−iωu ≈ e−iωκ−1 ln(−αλ), (8.25)

where

α =
dU

dλ

∣∣∣∣
λ=0

6= 0. (8.26)
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We see that a freely-falling observer indeed reports that the phase of pωlm has an

oscillatory divergence at the event horizon.

We went to the trouble of illustrating this oscillatory divergence both because we

will refer back to it in the following sections, but also in order to motivate using

a geometric optics approximation to follow pωlm back from I + to I −. Starting

on I + and propagating it backward, part of pωlm will be directly scattered off the

gravitational field, and another part will enter the collapsing matter. Therefore, let

pωlm = p
(1)
ωlm + p

(2)
ωlm, where p

(1)
ωlm is the directly scattered part and p(2)

ωlm is the part

that enters the collapsing matter. It turns out that the p(1) part only contributes a

term proportional to δ(ω−ω′) in αωω′ and βωω′ , which does not result in any particle

production, so, let us focus on the p(2) part.

This is where the geometric optics approximation is useful. On I +, p(2) has an

oscillatory profile that oscillates more and more quickly as u → ∞, i.e., near the

event horizon. Since the oscillation frequency remains large near the event horizon

throughout spacetime, the surfaces of constant phase of p(2) will be null surfaces near

the event horizon. In other words, for large values of u, we can pull the waveform of

p(2) on I + back through the collapsing matter to a waveform on I − by connecting

corresponding points with null surfaces, as illustrated in Fig. 8.2 below. This is

the geometric optics approximation. As long as the oscillation frequency is large

compared to the local curvature, surfaces of constant phase are (very nearly) null

surfaces, with the approximation getting better and better the closer one is to the

event horizon.

Let ρ be a null generator of the event horizon. Continue this generator back through

the coordinate origin (where the event horizon ends) toward the past so that it

intersects I −. For convenience choose the null time v on I − so that this intersection

point happens at v = 0. Values of p(2) for points u(v) near the event horizon on I +

will therefore be mapped to points v < 0 for small enough negative v. For v > 0,
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I −

I +

u

v

Figure 8.2: Illustration of the geometric optics approximation. This figure illustrates
how troughs in a waveform at I + are mapped onto corresponding troughs of a
waveform at I − via null rays.

the waveform will be vanishing.4 Therefore, on I − near v = 0, we conclude that

p(2) is approximately given by

p
(2)
ωlm ≈


1√
2πω

1

r
P−ωle

−iωu(v)Y m
l (θ, φ) v < 0

0 v > 0

. (8.27)

In the above, P−ωl ≡ Pωl(2M), i.e., the value of Pωl(r) on the event horizon.

What is the correspondence between points v < 0 on I − and points u(v) on I +?

These points are connected by null geodesics σ that remain close to the horizon.

Therefore, we can characterize them using the geodesic deviation vector ηa that

points from ρ to σ (Fig. 8.3). In particular, since −ηa coincides with generators of v

translations on I −, the functional dependence of u(v) on v will be the same as how

u depends on the affine parameter of a geodesic that is generated by −ηa. However,

we already worked this out in Eq. (8.25) above! Therefore, it follows that on I −

4Alternatively, if we instead think about sending a waveform from I− toward the future, points
with v > 0 fall into the black hole and do not make it to I +.
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I −

I +

u

v

ρ
η
a

η
a

σ

v = 0

Figure 8.3: Geodesic deviation from a horizon generator, ρ, to a null geodesic, σ.
The horizon generator is continued through r = 0 and out to I −. The null time
where ρ hits I − is chosen to be v = 0.

near v = 0,

p
(2)
ωlm ≈


1√
2πω

1

r
P−ωle

iωκ−1 ln(−αv)Y m
l (θ, φ) v < 0

0 v > 0

. (8.28)

We can now deduce the coefficients α(2)
ωω′ and β

(2)
ωω′ by Fourier transforming this

expression for p(2)
ωlm with respect to v. (Note that here we have also defined αωω′ =

α
(1)
ωω′ + α

(2)
ωω′ , and similarly for βωω′ .) According to the expansion (8.20), on I − we

have that

p
(2)
ωlm =

∫ ∞
0

dω′

α(2)
ωω′

 1√
2πω′

1

r
Fω′l(r)︸ ︷︷ ︸
→1

e−iω
′vYlm


+β

(2)
ωω′

 1√
2πω′

1

r
Fω′l(r)︸ ︷︷ ︸
→1

eiω
′vȲl(−m)

 (8.29)

and so it follows that

α
(2)
ωω′′ =

1

2π

(
ω′′

ω

)1/2

P−ωl

∫ ∞
0

dv eiωκ
−1 ln(−αv)+iω′′v (8.30)

β
(2)
ωω′′ =

1

2π

(
ω′′

ω

)1/2

P−ωl

∫ ∞
0

dv eiωκ
−1 ln(−αv)−iω′′v . (8.31)
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These integrals may evaluated by any handful of methods (contour integration, con-

volving multiple Fourier transforms, ...), and an explicit expression for them may be

found in Ref. [43] for example. However, it turns out that |β(2)
ωω′′ |

2 ∝ (ω′′)−1, and

so Eq. (8.22) is divergent. One way to overcome this divergence is to quantize in

terms of wave packets. Nevertheless, we can immediately deduce the thermal form of

〈0−|b†ωlmbωlm|0
−〉 at the expense of a bit of mathematical rigour with the following

slick trick.

In particular, all we need is the relation [43]

|α(2)
ωω′ | = eπωκ

−1 |β(2)
ωω′ | (8.32)

as well as the distributional identity

δ(ω − ω′) =

∫
dω′′

(
ᾱωω′′αω′ω′′ − β̄ωω′′βω′ω′′

)
. (8.33)

This last identity may be established by inserting Eq. (8.21) into the commutation

relation [b†ω, b
†
ω′ ] = δ(ω − ω′). Then, we formally have that

lim
ω′→ω

δ(ω − ω′) !
=

∫
dω′′

(
|αωω′′ |2 − |βωω′′ |2

)
!

=

∫
dω′′(e2πωκ−1 − 1)|βωω′′ |2 ,

whence, brutally, ∫ ∞
0

dω′ |βωω′ |2
!

=
δ(0)

e2πωκ−1 − 1
. (8.34)

Therefore, barring the unpalatable divergence, we already see that the spectrum of

mode occupation at I + is Planckian with a temperature κ/2π.

Alternatively, one may arrive at the Planckian spectrum of radiation more rigor-

ously by arguing using wave packets. Hawking discuss this approach in detail, but

here we will at least describe the prescription for building and working with wave

packets. Following Ref. [43] (with the appropriate modifications due to the opposite

convention for positive frequency modes), define

p
(2)
jn =

1√
ε

∫ (j+1)ε

jε
dω eiω(2πn/ε)p(2)

ω , (8.35)
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where we have suppressed the lm subscripts to avoid clutter. Here, j, n ∈ Z, j ≥ 0,

and ε > 0. Defined as such, the p(2)
jn are wave packets of frequency ∼ jn and width

∼ ε−1 that are centered on the null time u = 2πn/ε. For illustration, |p(2)
jn | is plotted

as a function of u in Fig. 8.4 for p(2)
ω set equal to e−iωu. From their definition, it

follows that

p
(2)
jn =

∫ ∞
0

dω′
(
α

(2)
jnω′fω′ + β

(2)
jnω′ f̄ω′

)
, (8.36)

where

α
(2)
jnω′ =

1√
ε

∫ (j+1)ε

jε
dω eiω(2πn/ε)α

(2)
ωω′ (8.37)

and similarly for β(2)
jnω′ . The field is then correspondingly quantized as

ϕ =

∞∑
j=0

∞∑
n=−∞

pjnbjn + p̄jnb
†
jn + (q terms). (8.38)

(We have still suppressed the lm indices above.) Note that the pjnlm defined as

such are still orthonormal with respect to (8.12), which can be easily checked by

calculating (pjnlm, pj′n′l′m′) and using the (continuum) orthonormality of the pωlm.

Figure 8.4: A plot of |p(2)
jn | for p

(2)
ω set equal to e−iωu. Plot parameters are ε = 2,

j = 4, and n = 5.

At this point, α(2)
jnω′ and β

(2)
jnω′ still obey the important property [43]

|α(2)
jnω′ | = eπωκ

−1 |β(2)
jnω′ |, (8.39)
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which ultimately lets one compute

〈0−|b†jnbjn|0
−〉 =

∫ ∞
0

dω′ |βjnω′ |2, (8.40)

once more yielding a thermal distribution. The calculation is very similar to the

mathematically perverse trick discussed above, so we refer the reader to Ref. [43] for

further details.

We end this section by reminding ourselves that the calculations above all stemmed

from approximating the propagation of the mode functions back through the bulk

spacetime from I + to I −. The geometric optical approximation is increasingly

accurate near the event horizon, which, in the wave packet formalism, means that

the approximate calculation above is increasingly exact for wavepackets that are

centered about late null times u on I +. A striking implication of this observation

is that the spectrum of late radiation is insensitive to the details of the collapse—

the spectrum is almost exactly thermal. The full spectrum of Hawking radiation is

not thermal, however, instead receiving ω- and l-dependent corrections in the form

of greybody factors. Further discussion of greybody factors may be found in [45]

and [230,231].

8.2 Eternal black holes

In the derivation of Hawking radiation discussed above, the collapsing matter was

absolutely crucial for finding particle creation in the asymptotic future. However,

we saw that the late-time behaviour of the radiation was insensitive to the precise

details of the collapse, which suggests (as Birrell and Davies also note [192]) that

the presence of radiation is mostly due to the spacetime topology and the presence

of a horizon. Therefore, while on one hand it may even seem antithetical to look

for Hawking radiation on an eternal black hole background, we will see that we can

deduce the thermal properties of the radiation via judicious choices of the vacuum

state.5

5This section only paints an overview of the most important points for setting up the black hole
information problem. We will not go into the same level of mathematical detail as the previous
section. Instead, Refs. [192,229] are good resources for further calculational details.



183

I +I +

I − I −

i
−

i
−

i
+

i
+

H
+

H
+

H
−

H
−

i
0

i
0

I

II

III

IV

Figure 8.5: Penrose diagram for the maximally extended Schwarzschild spacetime.
Regions I and III are asymptotically flat regions outside the black hole (region II)
and the white hole (region IV). The black hole horizon is labelled H+ and the white
hole horizon is labelled H−.

Here we will consider a scalar field on a maximally-extended Schwarzschild back-

ground, for which the relevant Penrose diagram is shown in Fig. 8.5.

Recall that Kruskal-Szekeres coordinates constitute a coordinate system that covers

the entire maximally-extended manifold. These are coordinates (U, V, θ, φ) given by

U = −e−u/4M (8.41)

V = ev/4M (8.42)

(where, as before, u = t− r∗ and v = t+ r∗) in which the metric reads

ds2 = −32M3 e
−r/2M

r
dUdV. (8.43)

(A good resource for further discussion of this coordinate system is Ch. 6.4 of

Ref. [160].) Similarly to Eqs. (8.4) and (8.5), if one lets T = 1
2(U+V ), X = 1

2(V −U),

and then takes as an ansatz

ϕ(T,X, θ, φ) =
1

r
h(T,X)Y m

l (θ, φ), (8.44)

the resulting differential equation for h(T,X) is

− ∂2h

∂T 2
+
∂2h

∂X2
− 1

r

[
32M3e−r/2M

(
l(l + 1)

r2
+ µ2

)
− ∂2r

∂T 2
+

∂2r

∂X2

]
h = 0 . (8.45)
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One can therefore define a set of mode functions fKωlm ∼ e−iωU , e−iωV that are regular

everywhere on the spacetime and use these to quantize the scalar field:

ϕ =
∑
lm

∫
dω
(
fKωlma

K
ωlm + f̄Kωlm(aKωlm)†

)
. (8.46)

This choice of mode functions defines the Kruskal vacuum (also known as the Hartle-

Hawking state) via the condition

aKωlm|0K〉 = 0 ∀ ω, l,m. (8.47)

We could also choose to expand the field using mode functions whose positive fre-

quency part behaves like e−iωu and e−iωv at I + and I − as before. Again, the

price we pay is that these mode functions are singular on both the future black

hole horizon (H+) and past white hole horizon (H−); however, these are the modes

that describe free spherical waves at I − and I +. Note that since the maximally

extended Schwarzschild spacetime has two copies each of I − and I +, we should

double the set of modes, meaning that the quantized field is given by

ϕ =
∑
lm

∫
dω
(
pI
ωlmb

I
ωlm + p̄I

ωlm(bIωlm)† + pIII
ωlmb

III
ωlm + p̄III

ωlm(bIIIωlm)†
)
. (8.48)

As such, bIωlm and (bIωlm)† annihilate and create excitations in the asymptotically

flat region I, while the other creation and annihilation operators act in the region

III. The state that is annihilated by all of the bIωlm and bIIIωlm is known as both the

Schwarzschild vacuum and the Boulware vacuum, which here we denote by |0S〉.

The strategy is then very similar to that for the collapsing black hole. One again

writes

pI
ωlm =

∫
dω
(
αI
ωω′f

K
ωlm + βωω′ f̄

K
ωlm

)
(8.49)

and once more arrives at the conclusion that 〈0K |(bIωlm)†bIωlm|0K〉 has a thermal dis-

tribution. One could argue that the Kruskal vacuum |0K〉 is the “natural” vacuum for

the maximally extended spacetime simply on the grounds that its modes are regular

everywhere except the singularities. However, one can also show that this vacuum

also results in an ingoing flux of thermal radiation at I −. The Kruskal vacuum
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therefore describes a situation in which the eternal black hole is in equilibrium with

a bath of thermal radiation, which is perhaps a more compelling argument that |0K〉

should be the “natural” vacuum.

Finally, one can show that it is possible to write the Kruskal vacuum in terms of the

Fock basis states generated by acting with (bIωlm)† and (bIIIωlm)† on the Schwarzschild

vacuum [192]:

|0K〉 =
⊗
ωlm

[√
1− e−2πωκ−1

∞∑
n=0

|n〉Iωlm|n〉IIIωl(−m)

]
. (8.50)

In the equation above, |n〉Iωlm (resp. |n〉IIIωlm) denotes the state obtained by acting n

times with the creation operator (bIωlm)† (resp. (bIIIωlm)†) on |0S〉. In particular, note

that the state of each mode ωlm is entangled across the regions I and III.

The last observation that we will make is that we could equally well repeat the same

analysis with wave packets like those discussed in the last section. Explicitly, we can

define

pI
jn =

1√
ε

∫ (j+1)ε

jε
dω eiω(2πn/ε)pI

ω, (8.51)

with pIII
jn defined similarly. It immediately follows that we can write |0K〉 in terms

of these wave packets instead so that

|0K〉 ∼
⊗
jnlm

∞∑
ν=0

e−π(jε)νκ−1 |ν〉Ijnlm|ν〉IIIjnl(−m) (8.52)

and where the pI
jn are localized near the horizon for large n.

8.3 The Black Hole Information Problem

So far we have only discussed the dynamics of a quantum field on a black hole

spacetime background without taking into account the backreaction of the field on

the geometry. One can show that the Hawking radiation results in a positive energy

flux out to I + that is balanced by a negative energy flux into the black hole [192].

Therefore, if we take backreaction into account, we conclude that the emission of

Hawking radiation will cause the black hole to slowly lose its mass over time and

eventually disappear. While such a process is decidedly dynamical, we should still
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be able to trust the picture built up from studying field theory on a fixed black hole

background because the evaporation process is so slow. In other words, to a very

good approximation, one should be able to think of a dynamical evaporating black

hole as being instantaneously stationary (at least until the black hole’s mass is on

the order of the Planck scale) and be able to extrapolate based on the calculations

of the previous two sections.

An unfortunate consequence of this picture is that the complete evaporation of a

black hole is at odds with the unitarity of quantum mechanics. Consider again the

black hole formed from the collapse of matter. Suppose that the collapsing matter is

massive and starts out in some pure state at i− and that we have the (pure) ingoing

vacuum on I −. If the black hole fully evaporates so that the spacetime approaches

a Minkowski configuration in the future (or in other words, so that there is no event

horizon, as shown in Fig. 11.1), then our calculation of Hawking radiation suggests

that the final state on I + (and also on i+ if we have massive fields) is a mixed

state that is nearly thermal. The process of black hole formation and evaporation

therefore maps pure states into mixed states, and so we conclude that black holes can

destroy coherent quantum information. This is the original black hole information

problem.

The “original resolution” of the black hole information problem, as was suggested by

Page [228] among others, is to assert that the final state of the Hawking radiation is

actually pure, and that it only appears approximately thermal (e.g., with respect to

any local probe). After all, a sequence of instantaneously stationary black holes can

only be an approximation to the full dynamical black hole. In this picture, quantum

information is preserved via subtle correlations in the state of the radiation field.

This idea was formalized by the principle of black hole complementarity [23]. Accord-

ing to complementarity, unitarity is preserved by maintaining that, from the point

of view of an observer who remains outside the black hole, no quantum information

actually crosses the apparent horizon. Instead, it appears encoded in a structure

called the “stretched horizon” [23, 133] that is located just above the black hole’s



187

apparent horizon and whose boundary in spacetime is timelike. The stretched hori-

zon has complicated dynamics, but is responsible for gradually returning quantum

information to outgoing Hawking radiation in this picture.

At the same time, an observer who tries to enter the black hole sees no stretched

horizon, nor anything that they would deem “out of the ordinary” based on their

knowledge of general relativity and quantum field theory on a curved spacetime

background. In particular, they would report than any system that fell into the

black hole, as well as the quantum information that it carries, is still there behind

the horizon, provided that the observer and the system in question are still far away

from the singularity. To the infalling observer, the black hole interior is very much

a real place that can store quantum information. In other words, the stationary

observer and the infalling observer have complementary descriptions of where and

how quantum information is stored in spacetime. There are no information theoretic

contradictions (such as violations of no-cloning) because an infalling observer who

crosses the apparent horizon cannot communicate the results of any measurements

they make to an exterior observer.

The modern black hole information problem consists of an inconsistency with the

picture of complementarity described above that was identified by Almheri, Marolf,

Polchinski, and Sully (collectively known as “AMPS”) [18, 19]. More precisely, they

argued that the following four postulates cannot all be true at the same time:

1. Unitarity — As viewed by an observer who remains far away from the black

hole, the formation and evaporation of the hole is a unitary quantum-mechanical

process.

2. Local Effective Field Theory — To the exterior of the black hole’s stretched

horizon, the physics of matter is well described by a local effective field theory

on a black hole spacetime background.

3. Sbh = SBH —As viewed by an observer who remains far away from the horizon,

the black hole is a quantum-mechanical system that is represented by a finite
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dimensional Hilbert space. Moreover, the von Neumann entropy of an old black

hole, Sbh, is (if not exactly, approximately) equal to its Bekenstein-Hawking

entropy, SBH.

4. No Drama — An observer who crosses the apparent horizon of the black hole

(but remains far from its central singularity) encounters nothing that runs

contrary to the predictions of semiclassical general relativity and effective field

theory.

In my view, the most robust way to argue that these four postulates are inconsistent

is to construct a violation of strong subadditivity of von Neumann entropy (SSA).

The following construction makes use of the wave packets discussed earlier and con-

stitutes an attempt on my part to be as careful as possible in defining the relevant

Hilbert space factors.

Consider a quantization of a massless scalar field on an evaporating black hole back-

ground in terms of wave packets of the form given in Eq. (8.35). On I +, pick a

particular wave packet jn0lm, where n0 is chosen so that the wave packet is excited

late during the black hole’s lifetime. Denote the Fock space of this mode by B. Sim-

ilarly, let R denote the Hilbert space factor corresponding to the joint Fock space of

all those modes for which n < n0. These spaces B and R are careful definitions of

the “late” and “early” radiation that are referenced in the literature.

On I +, the mode B is localized about u = 2πn0/ε, and it remains localized and near

the horizon when propagated back toward the black hole. According to postulates 2

and 4, that an infalling observer sees nothing out of the ordinary as they cross the

horizon means that the state of the field should be in a state that is extremely close

to the Kruskal vacuum, in analogy with the eternal black hole analysis. In particular,

the crucial requirement is that B must be entangled with some other mode A on the

other side of the horizon. Moreover, based on the eternal black hole case, we should

expect the joint state of A and B to be a pure state. In the Kruskal case, this joint
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state would be, up to relative weights in individual terms,

|ψ〉AB ∼
∑
ν

|ν〉Ijn0lm|ν〉
III
jn0l(−m) . (8.53)

Now let us assess the entropies that go into the strong subadditivity (SSA) relation

for these three systems:

SAB + SBR ≥ SB + SABR . (8.54)

If AB is pure, then it follows that SAB = 0 and SABR = SR. According to postulate

1, if the final state resulting from black hole evaporation is pure and B is chosen to

be late enough, it must be that B purifies the early radiation R. Or, in terms of

entropies, it must be that SBR < SR. Putting these conditions together, however,

leads to a contradiction:

SB + SABR = SB + SR (2) + (4)

≤ SAB + SBR (SSA)

= 0 + SBR (2) + (4)

< SR (1) .

(8.55)

It cannot be that SB + SR < SR, so we have an inconsistency.

Despite being as careful as possible, there are still plenty of objections that can be

made about the construction above. For example, most of the entropies above are

divergent, and so a better treatment would be more careful with regulating these

divergences. Or, the conclusions drawn about the entropies of A and B were based

on facts about the Kruskal vacuum, so one should really quantify to what extent

SAB ≈ 0 and SABR ≈ SR are good approximations.

A different sort of objection is that Schwarzschild modes of the form pωlm or wave

packets pjn are physically unreasonable from the perspective of any infalling observer.

Naïvely, Schwarzschild modes have an oscillatory divergence at the horizon, but

even if one deals with this divergence by constructing a wave packet that vanishes

at the horizon, any wave packet with a finite width centered on a fixed frequency

asymptotically will receive an enormous blueshift near the horizon. Such a blueshift
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seems unreasonable from the perspective of an effective field theory that an infalling

observer might try to write down. Nevertheless, that no drama seems to demand

an entanglement structure like that of Eq. (8.52) in a basis that is appropriate for

asymptotic observers is still problematic as an “in principle” statement.

Be that as it may, the prevailing opinion in the community is that in order to resolve

the modern black hole information problem, one must either abandon or invalidate

one or more of the postulates (1)-(4) above. “Firewalls” refers to a scenario in which

one abandons the 4th postulate. Namely, one can preserve unitarity by letting A and

B be unentangled, but this results in a large expectation value for the local stress-

energy tensor at the horizon [45]. The resulting interpretation is that a energetic

curtain of radiation—the firewall—lurks just behind the event horizon, violating

postulate (4) in a flagrant way.

While Chapter 9 is concerned with the task of recovering a single qubit from a black

hole, Chapters 10 and 11 examine two ways in which AMPS’ postulates may be

relaxed or rebutted.
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C h a p t e r 9

HOW TO RECOVER A QUBIT THAT HAS FALLEN INTO A BLACK
HOLE

We demonstrate an algorithm for the retrieval of a qubit, encoded in spin angular

momentum, that has been dropped into a no-firewall black hole. Retrieval is achieved

analogously to quantum teleportation by collecting Hawking radiation and perform-

ing measurements on the black hole. Importantly, these methods only require the

ability to perform measurements from outside the event horizon.

This chapter was published as Ref. [7], A. Chatwin-Davies, A. S. Jermyn, and S. M.

Carroll, “How to recover a qubit that has fallen into a black hole,” Phys. Rev. Lett.

115 (2015) 261302, arXiv:1507.03592.

9.1 Introduction

Recovering the complete quantum state of a black hole from the Hawking radiation

[43] into which it evaporates is notoriously difficult [45]. In this letter we tackle a

simpler problem: recovering the quantum state of a single spin qubit that has fallen

into an evaporating black hole.

Our protocol uses information about the spin state of the black hole before and after

the qubit entered, as well as the state of pairs of Hawking particles. The outline of

the procedure, sketched in Fig. 9.1, is as follows:

1. The initial spin state of the black hole is measured, putting the density ma-

trix of the black hole in the form ρB = ρ
(int)
B ⊗ |j,m〉〈j,m|, where j,m are

the quantum numbers for total and projected angular momentum, and ρ(int)
B

characterizes the internal degrees of freedom. Perfect fidelity can be achieved

only if m = 0; the experimenter can measure the spin along different axes until

this outcome is attained.

http://dx.doi.org/10.1103/PhysRevLett.115.261302
http://dx.doi.org/10.1103/PhysRevLett.115.261302
http://arxiv.org/abs/1507.03592
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2. The experimenter collects a single Hawking photon that is part of a Bell pair,

the other photon of which falls into the hole.

3. The qubit, a photon in an arbitrary helicity state |φ〉A = α|ε+〉A + β|ε−〉A, is

dropped into the hole.

4. The black hole’s spin state is again measured, so that the density matrix be-

comes ρ′B = ρ
′(int)
B ⊗|j′,m′〉〈j′,m′|. Dephasing of the hole’s spin does not occur

if the interactions between the hole’s spin and its internal state are rotationally-

invariant (conserve angular momentum).1

5. The initial state of the qubit can then be reconstructed from the state of the

collected Hawking photon.

1

2

3

4

Figure 9.1: Sketch of the qubit recovery protocol on a Penrose diagram. The numbers
correspond to the steps enumerated above (details of the initial measurement 1. are
not shown). The dashed line represents the event horizon, the solid line represents the
stretched horizon [23], and the dotted line represents the experimenter’s trajectory.

This falls far short of a resolution to the information-loss problem [40,233–235], but it

does provide a concrete illustration of how information can escape from a black hole

in certain special circumstances, and is similar in spirit to earlier discussions about

using conserved quantities to recover black hole information [236, 237]. Moreover,

whether or not the Page time [41] has elapsed does not affect information recovery,
1Concretely, suppose that there was some conditional interaction between the black hole’s

internal degrees of freedom and its spin which would take a state |BH〉⊗ (α|ε+〉+β|ε−〉) to a state
α|BH+〉 ⊗ |ε+〉 + β|BH−〉 ⊗ |ε−〉, where 〈BH+|BH−〉 = 0. If, for example, α = β = 1/

√
2, then

angular momentum in the x direction would not be conserved by the interaction.
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since the protocol is not concerned with reconstructing the state of the black hole.

In this regard the protocol is entirely distinct from the Hayden-Preskill result [238].

9.2 A protocol for retrieving individual qubits

Suppose that Alice sits outside a black hole and has in her possession a photon in

some state |φ〉A = α|ε+〉A + β|ε−〉A that is unknown to her. Here, the basis states

|ε+〉A and |ε−〉A represent the photon’s helicity, and thus have angular momentum

projection +1 and −1 respectively. First, Alice measures the black hole’s angular

momentum and finds it in the state |j,m〉B. (We suppress the state of the black

hole’s internal degrees of freedom, which will play no role in our analysis.) Such a

measurement is technologically formidable, but one which Alice could in principle

perform with the help of a sufficiently large Stern-Gerlach apparatus or by carefully

measuring frame dragging.

Before dropping her qubit into the black hole, Alice collects a single Hawking photon.

We assume that the emitted photon is one half of a pair, the other one of which

falls into the hole. We also assume that Alice completes the protocol before any

more Hawking particles are emitted. The pairs of particles will have equal mass and

opposite gauge and Poincaré quantum numbers. Let us focus on angular momentum.

The states of photons with definite angular momentum are spherical waves that

may be labelled by the quantum numbers for linear momentum, k ∈ (0,∞); total

(spin plus orbital) angular momentum, η ∈ {1, 2, . . . }; projected angular momentum,

µ ∈ {−η, ..., η}; and parity, ω̄ ∈ {+1,−1} [239]. We assume that the photons are each

produced in the lowest angular momentum state (η = 1) since this is the dominant

mode of Hawking photon production. Alternatively, Alice can measure her photon’s

total angular momentum and then discard her photon and restart the protocol if it

does not have η = 1. In order to preserve CPT , the two photons are produced with

the same parity, since they are uncharged and since the wavefunctions of different

parity for each (kηµ) have the same sign under T . The photons must also be created

in a zero total angular momentum state to conserve angular momentum. As such,
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after Alice measures the parity of her photon, the angular momentum of the ingoing

(i) and outgoing (o) Hawking photons is

|0, 0〉io ≡
1√
3

(|1, 1〉i|1,−1〉o + |1,−1〉i|1, 1〉o − |1, 0〉i|1, 0〉o) . (9.1)

(Further justification for this model is provided in the next section.)

Next, Alice measures the squared projected angular momentum of her photon. If

she obtains the result µ2 = 0, then she discards her photon and restarts the protocol.

Otherwise, the ingoing and outgoing photons are projected into the Bell state |Φ〉io =

(|1, 1〉i|1,−1〉o + |1,−1〉i|1, 1〉0)/
√

2. Finally, Alice drops in her qubit, and then

measures the angular momentum of the hole again, determining it to be |j′,m′〉B.

After Alice collects a suitable Hawking photon and drops her qubit into the black

hole, the total state of the black hole and the three photons is therefore |Ψ〉 =

|j,m〉B⊗|φ〉A⊗|Φ〉io. Alice is ignorant of what happens inside the black hole. What

Alice can know, however, is the total angular momentum of the black hole and the

projection of its angular momentum vector along some axis. As such, let us rewrite

the AiB subsystem in the total angular momentum basis:

|Ψ〉 =
1√
2

{
2∑

σ=−2

[
〈jm 2

2|
j+σ
m+2〉|j + σ,m+ 2〉 ⊗ α|1,−1〉o

+〈jm 2
−2|

j+σ
m−2〉|j + σ,m− 2〉 ⊗ β|1, 1〉o

]
+

1√
6

2∑
σ=−2

[
〈jm 2

0|j+σm 〉|j + σ,m〉 ⊗ (α|1, 1〉o + β|1,−1〉o)
]

(9.2)

+
1√
2

1∑
δ=−1

[
〈jm 1

0|j+δm 〉|j + δ,m〉⊥ ⊗ (α|1, 1〉o − β|1,−1〉o)
]

+
1√
3
|j,m〉` ⊗ (α|1, 1〉o + β|1,−1〉o)

}
.

The symbols 〈j1m1

j2
m2 |

j
m〉 ≡ 〈j1,m1; j2,m2|j,m〉 denote appropriate Clebsch-Gordan

coefficients. We have also suppressed the label AiB on the total angular momentum

kets. Note that some of the 〈j1m1

j2
m2 |

j
m〉 could be zero. For now, we will assume that

−j + 2 < m < j − 2. In particular note the following states: |j,m〉, which comes
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from j ⊗ 2; |j,m〉⊥, which comes from j ⊗ 1; and |j,m〉`, which comes from j ⊗ 0.

These states have the same angular quantum numbers, but are orthogonal.

Next, Alice queries the black hole’s total angular momentum by performing the

following orthogonal measurement on AiB:

F̂1 =
∑
a

|a,m〉〈a,m|,

F̂2 =
∑
a

|a,m+ 2〉〈a,m+ 2|+ |a,m− 2〉〈a,m− 2|,

F̂3 = ÎAiB − F̂1 − F̂2.

(9.3)

Note that by construction, only the results F̂1 and F̂2 may be obtained for black hole

states which may emerge from this protocol. The protocol for retrieving the state

|φ〉 is then as follows:

Case 1: Alice obtains the result F̂1. In this case, the whole system collapses to a state

that is proportional to the second and third lines of Eq. (9.2). Alice then measures

the total angular momentum Ĵ2 of the black hole.

If Alice measures the result J2 = (j ± 2)(j ± 2 + 1), then she knows that the spin

that she holds is in the desired state |φ〉o = α|1, 1〉o + β|1,−1〉o.

If Alice measures the result J2 = (j ± 1)(j ± 1 + 1), then the total system is in the

state

|Ψ′〉 ∝ 1√
6
〈jm 2

0|j±1
m 〉|j ± 1,m〉 ⊗ |φ〉o

+
1√
2
〈jm 1

0|j±1
m 〉|j ± 1,m〉⊥ ⊗ |φ′〉o, (9.4)

while if she measures the result J2 = j(j + 1), then the total system is in the state

|Ψ′〉 ∝
[

1√
6
〈jm 2

0|jm〉|j,m〉+
1√
3
|j,m〉`

]
⊗ |φ〉o

+
1√
2
〈jm 1

0|jm〉|j,m〉⊥ ⊗ |φ′〉o, (9.5)

where |φ′〉o = α|1, 1〉o − β|1,−1〉o. Each of these states represents a mixed density

matrix for the spin that Alice holds unless some of the Clebsh-Gordan coefficients
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vanish. In particular, some algebra reveals that

〈jm 2
0|
j+1
m 〉2 = 3m2(j+m+1)(j−m+1)

j(j+1)(j+2)(2j+1)

〈jm 2
0|
j−1
m 〉2 = 3m2(j+m)(j−m)

j(j+1)(j−1)(2j+1)

〈jm 1
0|
j
m〉2 = m2

j(j+1) .

(9.6)

At the beginning of the protocol, Alice may measure j and determine if it is an

integer. If not, she may repeatedly throw spin-1/2 particles into the black hole and

measure j until she measures an integral value. She may then repeatedly measure

the black hole’s angular momentum projection along different axes until she obtains

m = 0, before collecting a Hawking photon and tossing her qubit into the hole.

In this way, the Clebsch-Gordan coefficients (9.6) may be made to vanish, allowing

Alice to recover the qubit.

Case 2: Alice obtains the result F̂2. In this case, the whole system collapses to a

state that is proportional to the first line of Eq. (9.2). Next, Alice measures the

total angular momentum Ĵ2, obtaining the result J2 = (j + σ)(j + σ + 1) for some

σ ∈ {−2, . . . , 2}. The total state is then

|Ψ′′〉 ∝ α 〈jm 2
2|
j+σ
m+2〉|j + σ,m+ 2〉 ⊗ |1,−1〉o

− β 〈jm 2
−2|

j+σ
m−2〉|j + σ,m− 2〉 ⊗ |1, 1〉o. (9.7)

We are faced with the problem of disentangling the AiB part of the system from the

o part which Alice holds. She may accomplish this task with the help of a spin-2

ancilla and a local entangling unitary. Suppose Alice holds a spin-2 ancilla, A′, that

she prepares in the state |2, 0〉A′ . If she then implements a local entangling unitary

operator UoA′ such that

UoA′ |1, 1〉o|2, 0〉A′ = |1, 1〉o|2, 2〉A′

UoA′ |1,−1〉o|2, 0〉A′ = |1,−1〉o|2,−2〉A′ , (9.8)

upon acting with UoA′ on the spins that she holds, the total state

IAiB ⊗ UoA′
(
|Ψ′′〉 ⊗ |2, 0〉A′

)
(9.9)
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is proportional to

α 〈jm 2
2|
j+σ
m+2〉|j + σ,m+ 2〉AiB|1,−1〉o|2,−2〉A′

− β 〈jm 2
−2|

j+σ
m−2〉|j + σ,m− 2〉AiB|1, 1〉o|2, 2〉A′ . (9.10)

Next, Alice tosses her ancilla into the black hole and then measures the black hole’s

total angular momentum. The AiBA′ terms will consist of linear combinations of

|j + σ + 2,m〉, . . . , |j + σ − 2,m〉 weighted by the appropriate Clebsch-Gordan

coefficients. If Alice finds AiBA′ in a total angular momentum j + σ + τ state,

where τ ∈ {−2, . . . , 2}, it is straightforward to show that the spin that she still

holds collapses to the state

|φ′′〉o ∝ α 〈jm 2
2|
j+σ
m+2〉〈

j+σ
m+2

2
−2|j+σ+τ

m 〉|1,−1〉o

− β 〈jm 2
−2|

j+σ
m−2〉〈

j+σ
m−2

2
2|j+σ+τ
m 〉|1, 1〉o. (9.11)

As long as Alice measured the black hole angular momentum at the beginning of

the protocol and ensured that |m| � j, then none of these coefficients vanish. Alice

then performs the appropriate unitary transformation on the spin that she holds to

restore the state |φ〉o.

9.3 Discussion

We now consider several aspects of the proposed algorithm, as well as its conse-

quences for black hole information theory.

9.3.1 State of the Hawking Photons

To see why the Hawking particles must be created in a zero total angular momentum

state, note that spacetime is locally flat on the horizon and becomes increasingly flat

as the black hole mass M increases. As a result, the only way for a Hawking pair to

have non-zero angular momentum is for the pair to pick it up via interactions with

the vacuum, i.e., with another Hawking pair. This requires, roughly speaking, that

two Hawking pairs be present within one wavelength λ of one another in the time t

it takes for a pair to separate. The relevant scaling relations in general are λ ∝ T−1,



198

t ∝ λ, and F ∝ T d, where d is the number of spatial dimensions, T is the Hawking

temperature, and F is the particle number flux across the horizon. The fraction f of

Hawking pairs which interact with an additional Hawking pair scales at tree order

as f ∝ |A|2(Fλd−1t)2 ∝ |A|2, where the mass-dependence of the phase-space factors

dropped out.2

For photons, which are the exponentially dominant form of Hawking radiation at

large M , the matrix element |A|2 must depend on the probability of producing a

virtual electron-positron pair to mediate the Hawking pair interaction. This scales

as e−me/Eγ ∼ e−meGM . Thus for large black holes, we expect these interactions to

be exceedingly rare, and hence are justified in assuming that the photon pair carries

no net angular momentum. We note that the creation of Hawking pairs in the zero

angular momentum state relies on the assumption that the local spacetime around

the horizon of the black hole is a low-energy, quiescent environment. Were there

instead an energetic firewall at the horizon, we could not expect outgoing quanta to

come from such a state.

When performing this analysis for other quantum numbers the same arguments

apply: for large black holes, the Hawking pair must be created with zero net quantum

number. The algorithm we describe will work for any conserved quantum number

which photons may carry, so long as the evolution of the relevant sector of the Hilbert

space is unitary. Notably, the algorithm does not require the hole’s evolution in the

total Hilbert space to be unitary over long timescales If the relevant number is not

quantized, the information recovered is only up to a precision limit given by the

number of bits recovered. For those quantum numbers which photons do not carry,

superpositions of states cannot be recovered except by waiting exponentially long in

M for the relevant particles to be emitted. If, on the other hand, it is known that

a quantum number eigenstate fell in, and hence that only classical information was

encoded in this way, then direct measurement of the black hole allows for recovery.
2This is not entirely unexpected. Consider, for instance, that the characteristic wavelength of

Hawking photons is on the order of the Schwarzschild radius. Roughly speaking, since t ∝ λ, any
two photons at the black hole horizon will therefore overlap before they separate.
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For example, in order to learn the mass of a particle that fell into the black hole,

then one may of course measure the mass of the black hole afterwards, assuming

that the initial mass of the black hole was known. Altogether, this allows for unique

recovery of classical information about any particle that fell in. This is because each

known fundamental particle has a unique set of gauge quantum numbers—mass,

spin, charge, and color. This feature is not necessary—it would not hold in a theory

with two unbroken U(1) symmetries—but it does hold true in the Standard Model.

9.3.2 Resource Considerations

In its essence, our protocol amounts to a quantum teleportation scheme [240] between

a transmitting party—the black hole—and a receiving party—Alice. Its perfect

fidelity when m = 0 is due to the fact that setting m = 0 eliminates any degeneracy

in the states that the transmitting party could find after measuring in the total

angular momentum basis, as opposed to a (nondegenerate) maximally-entangled

basis. Alice would not be able to use an analogous procedure to recover more that

a single qubit at a time, since the degeneracy of total angular momentum states

rapidly increases as more and more spins are added.

We can also understand the difficulty of the multiple qubit case from the point of

view of resources. Suppose that Alice wishes to recover more than a single qubit at a

time through a quantum number conservation protocol. As these protocols amount

to quantum teleportation schemes, Alice is bound by the resource inequality [241]

2[c→ c] + [qq] ≥ [q → q], (9.12)

which says that two classical bits, or cbits, of communication and one entangled

qubit pair shared between the two parties is necessary to achieve one qubit of com-

munication. If Alice drops N photons into the black hole and collects N Hawking

photons, she only obtains ∼ log2(N2) = 2 log2N cbits since there are 4N + 1 pos-

sible outcomes for the total angular momentum measurement and ∼ 2N possible

outcomes for the measurement of the projection of the angular momentum along

the axis of quantization. As such, she cannot hope to recover some general state of
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N qubits, which would require 2N cbits. On the other hand, she may be able to

recover a state that is encoded in some subspace of H. For instance, Alice could try

encoding her data in the total angular momentum of a set of N qubits with total

angular momentum s. Thus she is encoding her data in a Hilbert space Hs with

dimHs = 2s + 1. Resource considerations do not prohibit the recovery of a state

in Hs, which only requires the extraction of log2 dimHs ≤ log2(N + 1) qubits and

hence ∼ 2 log2N cbits. We suspect that the general method for doing this is similar

to the single qubit case.

9.3.3 Timescale Considerations

During the protocol, Alice must wait for the black hole to emit a quantum of Hawking

radiation. Hawking emission rates have been calculated by Page [230]; for instance,

photons are emitted in their lowest angular momentum mode at a rate given by

t−1
h = 1.463 × 10−4 c3/GM for Schwarzschild black holes. Photon emission rates

vary as a function of the black hole spin and can be on the order of one hundred

times larger in the case of an extremal Kerr black hole [231], so let us express the

timescale of Hawking emissions as th = f · GM/c3. The factor f contains both

geometric and tunnelling factors, and is a function only of the spin of the black hole.

It is interesting to compare the emission time to the scrambling time [53,238,242,243],

which may be thought of as the time it takes for Alice’s infalling qubit to become

incorporated into (the stretched horizon of) the black hole [23]. The scrambling time

is

ts =
1

2πT
lnS, (9.13)

where S denotes the entropy of the black hole and where we have used units in

which ~, c, and kB are 1. This increases faster than th as a function of the black hole

radius R, since S ∝ R2 and T ∝ 1/R, so there is a critical radius Rcrit above which

the scrambling time is greater than the time required for a Hawking particle to be

emitted. In light of our single-qubit protocol, R > Rcrit means that the qubit which

falls in is essentially bounced off of the black hole, rather than being incorporated
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into it. The numerical factors involved, as well as the difference in scaling being

in a logarithm, mean that the critical radius for a Schwarzschild black hole is very

large (Rcrit ≈ e853lp, which is considerably larger than the current Hubble radius).

However, the dependence of T , S, and the numerical factors on spin means that this

radius can be made arbitrarily small by tuning the angular momentum J of the hole,

since an extremal Kerr black hole has zero temperature but finite entropy.

9.4 Conclusion

We have described a protocol, based on quantum teleportation, that allows an ex-

ternal observer to recover a single spin qubit that has been dropped into a black

hole, if the spin of the hole is measured before and after the qubit is dropped. Our

procedure relies on the fact that the angular momentum states of the black hole span

the possible states of the qubit; for more than one qubit, this condition would not

hold, and an analogous procedure would be unable to recover the information. On

the other hand, the fact that an external observer would see apparent information

loss due to angular momentum state degeneracy is perhaps interesting in its own

right.

This protocol retrieves a very specific kind of information: a single qubit encoded in

a conserved quantity such as angular momentum; this is broad enough to include the

information contained in any one particle within the Standard Model. Importantly, it

is the full quantum state of the qubit, not merely the classical angular momentum.

While our protocol does not extend to information encoded in the entanglement

between multiple particles, the general idea of using quantum teleportation to recover

information deserves further study.
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C h a p t e r 10

RESCUING COMPLEMENTARITY WITH LITTLE DRAMA

The AMPS paradox challenges black hole complementarity by apparently construct-

ing a way for an observer to bring information from the outside of the black hole

into its interior if there is no drama at its horizon, making manifest a violation

of monogamy of entanglement. We propose a new resolution to the paradox: this

violation cannot be explicitly checked by an infalling observer in the finite proper

time they have to live after crossing the horizon. Our resolution depends on a weak

relaxation of the no-drama condition (we call it “little-drama”) which is the “com-

plementarity dual” of scrambling of information on the stretched horizon. When

translated to the description of the black hole interior, this implies that the fine-

grained quantum information of infalling matter is rapidly diffused across the entire

interior while classical observables and coarse-grained geometry remain unaffected.

Under the assumption that information has diffused throughout the interior, we con-

sider the difficulty of the information-theoretic task that an observer must perform

after crossing the event horizon of a Schwarzschild black hole in order to verify a

violation of monogamy of entanglement. We find that the time required to complete

a necessary subroutine of this task, namely the decoding of Bell pairs from the inte-

rior and the late radiation, takes longer than the maximum amount of time that an

observer can spend inside the black hole before hitting the singularity. Therefore,

an infalling observer cannot observe monogamy violation before encountering the

singularity.

This chapter was published as Ref. [8], N. Bao, A. Bouland, A. Chatwin-Davies,

J. Pollack, and H. Yuen, “Rescuing complementarity with little drama,” JHEP 12

(2016) 026, arXiv:1607.05141.

http://dx.doi.org/10.1007/JHEP12(2016)026
http://dx.doi.org/10.1007/JHEP12(2016)026
http://arxiv.org/abs/1607.05141
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10.1 Introduction

The information paradox [233] and its more modern AMPS incarnation [18, 19] are

deeply puzzling issues lying at the center of any attempts at reconciling quantum

mechanics with gravity. Black hole complementarity, as proposed by [23], attempted

to resolve the information paradox by asserting that information that falls into the

black hole interior is also retained at the stretched horizon. Observers are only able

to access this information in one of two “complementary” descriptions, either in the

interior or at the horizon, so that the apparent violation of the no-cloning theorem

visible in a global description could never be verified. AMPS, however, considered a

scenario in which an observer first collects information on the outside by gathering

Hawking radiation, then jumps through the horizon and into the black hole interior.

Assuming standard postulates of black hole complementarity, namely

1. unitarity,

2. the validity of low-energy effective field theory outside the stretched horizon,

3. that the black hole is a quantum mechanical system with dimension given by

eA/4,

and further

4. that the horizon is not a special place—that “no drama” happens at the horizon,

so an observer can actually enter the black hole interior,

AMPS pointed out an apparent violation of monogamy of entanglement1 among

three systems: the black hole interior, the recently emitted Hawking radiation (late

radiation), and the previously emitted Hawking radiation (early radiation). To avoid

this violation, it therefore seemed necessary to give up one of the assumptions men-

tioned above, all of which are cherished pillars of modern physics. Giving up the
1Monogamy of entanglement is the statement that no single qubit can be simultaneously max-

imally entangled with two different systems.
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final assumption would mean that observers who attempt to enter the black hole

would be violently destroyed by high-energy excitations, hence the name “firewall

paradox.”

This led to a flurry of attempts to resolve the paradox by weakening one or more of

the core axioms, or by changing the paradigm completely [174, 244–252]. Reaching

consensus as to which resolution is the correct one has proven challenging.

An interesting proposed resolution to the information paradox, based on arguments

from computational complexity, was given by Harlow and Hayden [253]. They ar-

gued that the part of the AMPS experiment where the experimenter has to decode2

entanglement between the old radiation and the late radiation of the black hole in-

volves an extremely difficult computational task. Under very plausible conjectures in

computational complexity3, the time required to perform this quantum computation

in general would be exponentially longer than the evaporation time of the black hole.

Thus, by the time that the entanglement is decoded, there will remain no black hole

within which to check for the violation of monogamy of entanglement. While the two

quantum mechanical descriptions of the black hole appear to imply a violation of

monogamy, this apparent violation cannot be “revealed” by the AMPS experiment,

and thus the experimenter does not see any contradiction with quantum mechanics.

Just like the original violation of no-cloning in black hole complementarity itself, this

would signal that only the various partial descriptions accessible by a single observer

should be considered.

The main appeal of this argument is that it does not require a weakening of any of

the core assumptions mentioned previously. However, it is not without its vulnera-

bilities. For example, Oppenheim and Unruh [255] gave an argument showing that

a very motivated experimenter could evade the Harlow-Hayden complexity barrier

by offloading the hard computation into a “precomputation” phase before the black
2To “decode the entanglement” of a state |ψ〉AB is to act with local unitaries on A and B to

create a Bell pair across A and B. This is similar to the notion of entanglement distillation [254],
except here we have only one copy of the state |ψ〉AB , whereas in distillation one has multiple
identical copies of the state.

3Namely, that quantum computers cannot efficiently invert cryptographic one-way functions.



206

hole had even formed, and then perform the AMPS experiment efficiently using the

“cached computation.” Another vulnerability is that the computational hardness

of the Harlow-Hayden argument assumes that the black hole in question somehow

encodes a cryptographically difficult one-way function; however, one may be able to

set up a black hole so that the entanglement decoding task is particularly easy [256].

Nevertheless, the Harlow-Hayden proposal remains a compelling one, and it sets

the context for the argument that we present in this paper. Here, we also study

whether ideas from information theory and computer science can help resolve the

information paradox, but in another setting: whereas Harlow and Hayden focus on

the computational complexity of the AMPS experiment outside the black hole, we

examine the information processing that must be performed inside the black hole

in order to check for violations of monogamy of entanglement. This is a potentially

different line of argument, because while it might be possible to evade computational

limits outside of the horizon [19,255], one certainly cannot extend one’s time inside

the horizon, as an infalling observer invariably hits the singularity in a bounded

amount of time.

In this paper we study an observer who begins outside of an evaporating Schwarzschild

black hole well after the Page time and who has learned that a subset of late Hawking

radiation that she holds is maximally entangled with the early Hawking radiation4.

We suppose that the observer then enters the black hole, sees no firewall, and then

attempts to decode maximal entanglement between the late radiation that she holds

and the black hole interior. If she succeeds in completing this task, she can then

perform measurements on an ensemble of her decoded Bell pairs in order to proba-

bilistically detect a violation of monogamy of entanglement. We compare the proper

time it takes for the observer to perform this procedure with the infall time before

the observer hits the singularity. We find that, under the assumption that the sub-

system of the black hole interior with which the observer’s late radiation is entangled

has diffused throughout the whole interior at the time she crosses the horizon, the
4Though this is the task that Harlow and Hayden argue is difficult, we assume for the purpose

of the argument that this task has been achieved.
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observer will not have enough time to complete even the first step of the procedure,

i.e., entanglement decoding, before encountering the singularity. As such, while a

global description, if it existed, would contain an implicit violation of monogamy

of entanglement, an observer who entered the black hole would unable to directly

verify any such violation. Therefore, our resolution of the firewalls paradox is simi-

lar in spirit to complementarity [23] in the sense that apparent global violations of

quantum mechanics are not verifiable by local observers.

The assumption that we make about dynamics inside the horizon is a mild weakening

of the no-drama condition that is typically considered: while we expect no-drama

to hold for macroscopic, classical objects that cross the event horizon, fine-grained

quantum information should be scrambled throughout the black hole’s degrees of

freedom, regardless of whether these degrees of freedom are described as the black

hole horizon or as the black hole interior. In particular, the assertion that an observer

inside the black hole sees such scrambling is the novel assumption of our paper. We

thus call this assumption “little drama,” and it is central to our argument.

The organization of this paper is as follows. In Sec. 10.2, we review facts about black

holes and their scrambling from the perspective of different observers in spacetime.

In Sec. 10.3, we focus on the specific task of collecting a late-time Hawking radiation

particle, assess the degree of scrambling that has occurred prior to the observer

crossing the stretched horizon of the black hole, and give a discussion of the little-

drama condition. In Sec. 10.4, we combine all the ingredients from the previous

sections and analyze the time needed to perform the task of checking for violations

of monogamy. Finally, we discuss and conclude in Sec. 10.5 and Sec. 10.6.

10.2 Background: Black Holes and Scrambling

In the thought experiments to follow, we will consider black holes that formed from

the gravitational collapse of matter and that eventually evaporate into a gas of

Hawking radiation. We will assume that the initial mass of any black hole that

we consider is large enough that physics outside the black hole is well-described
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by effective field theory on a black hole background in regions of spacetime that

are sufficiently distant from the end of evaporation. We will also suppose that the

process of black hole formation and evaporation is a fundamentally unitary process.

As such, if the matter that collapsed to form a black hole was initially in a pure

quantum state, then the state of the Hawking radiation after evaporation—as well

as any combined intermediate state of the black hole and hitherto emitted Hawking

radiation—is also a pure state.

Consider now some observer who resides outside the black hole. We will adopt the

viewpoint that such an observer’s observations are described according to comple-

mentarity [23] and the membrane paradigm [133]. Explicitly, suppose that the black

hole spacetime is foliated by some set of achronal (spacelike or null) surfaces with re-

spect to which the observer performs field-theoretic calculations. In accordance with

complementarity, an observer outside the black hole should not associate a Hilbert

space to an entire surface Σ if it intersects the event horizon. In such a case, she

instead organizes the physical Hilbert space associated to Σ into a tensor product

H = O⊗D. The space O describes the degrees of freedom on the portion of Σ that

lies outside of the black hole, and D is a Hilbert space that describes the black hole’s

degrees of freedom and that is localized about the event horizon (Fig. 10.1). From

the outside observer’s point of view, all of physics is described by, and all processes

play out in, these two Hilbert spaces; she never has to (and in fact may not) make

reference to the the black hole interior.5

We will suppose that D is localized to the stretched horizon of the black hole [23].

We take the outer boundary of the stretched horizon to be at a proper distance on

the order of a Planck length above the event horizon. As such, the outer boundary

of the stretched horizon is a timelike surface with which an outside observer can

interact.

Despite the fact that a complete theory of quantum gravity is not known and that
5See also [113] (in particular Sec. 4) as well as Sec. 10.5.4 for further discussion of the way in

which H factorizes and the ways in which different factorizations are related as a consequence of
assuming complementarity.
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Figure 10.1: Penrose diagram of a black hole that forms from the gravitational
collapse of matter and that ultimately evaporates.

the full dynamics of black holes are not understood, it is widely expected that the

quantum state of matter gets scrambled when it enters the stretched horizon [42,257,

258]. There are many possible ways to define scrambling, but informally speaking, a

system scrambles if it diffuses quantum information over all its degrees of freedom.

In particular, a black hole has scrambled the information in a small subset D′ ⊂

D when any initial entanglement between D′ and the outside O gets distributed

evenly throughout D, i.e., when almost all small subsets of D have nearly the same

amount of entanglement with O. After scrambling, an observer cannot recover this

entanglement unless she examines a sizable fraction of the entire horizon D.

The characteristic timescale over which scrambling occurs, called the scrambling

time, is given by

ts =
1

2πT
ln S , (10.1)

where T and S are the temperature and entropy of the black hole respectively [42,

53, 242, 243, 257]. (Both in this expression and throughout the paper we have set

c = kB = ~ = 1.) This time is measured with respect to the clock of an asymptotic

observer who is far away from the black hole. For example, for a Schwarzschild black
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hole in 3 + 1 dimensions, the metric is given by

ds2 = −
(

1− rs
r

)
dt2 +

(
1− rs

r

)−1
dr2 + r2 dΩ2

2, (10.2)

the temperature is

T =
1

8πGM
=

1

4πrs
, (10.3)

and the entropy is

S =
A

4G
=

4πrs
2

4l2P
=
πrs

2

l2P
. (10.4)

As such, the scrambling time is given by

ts = rs ln

√
πrs
lP

. (10.5)

The event horizon is located at r = rs = 2GM , and lP denotes the Planck length.

Importantly, a stationary observer who hovers at some fixed value of r = r0 above

the black hole sees scrambling happen faster, since her clock ticks faster relative to

Schwarzschild time. In other words, the scrambling time as measured in the proper

time of a stationary observer at coordinate height r0 is

τs(r0) =

√
1− rs

r0
ts . (10.6)

In particular, we can work out what the scrambling time at the stretched horizon

must be. If we fix the boundary of the stretched horizon to lie at a proper distance

lP above the event horizon, one finds that this corresponds to a coordinate distance

r = rs + δr, where

δr =
l2P
4rs

+O

(
l3P
rs2

)
. (10.7)

It then follows that

τs(rs + δr) =

√
l2P

l2P + 4rs2
rs ln

[√
πrs
lP

]

≈ lP
2

ln

[√
πrs
lP

]
, (10.8)

which is consistent with other calculations of the scrambling time at the stretched

horizon [42,257].
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10.3 Hawking radiation and scrambling: what Alice sees

Having established the preliminaries, we can now begin to investigate the central

question of this work: whether an observer who crosses the event horizon of an evap-

orating black hole can, in the absence of a firewall, verify a violation of monogamy

of entanglement before she hits the singularity. The answer to this question depends

on several considerations: in particular, the nature of scrambling from the point

of view of an observer inside the black hole, under what circumstance an ingoing

Hawking mode is scrambled before an observer carrying the corresponding outgoing

mode crosses the horizon, and the difficulty of undoing scrambling inside the black

hole. We address the first two points, the nature of scrambling and under what con-

ditions scrambling occurs, in this section. In particular, we motivate the little-drama

assumption used in the argument of this paper.

10.3.1 Scrambling, inside and out

Suppose that Alice has been monitoring a black hole since its formation and that she

collects any Hawking radiation that it emits. At some point well past the Page time,

she decides to perform her ultimate experiment: an experimental test of the AMPS

paradox. To this end, she collects k particles of (late) Hawking radiation and first

checks whether they are maximally entangled with the radiation that was emitted

earlier. Let us momentarily grant Alice unlimited computational power outside of

the black hole and suppose that she finds that these late quanta of radiation are

indeed maximally entangled with the early radiation. She then holds on to these

final Hawking particles and enters the black hole. To her transient relief, suppose

that she does not encounter a firewall at the horizon. As such, suspecting a possible

violation of monogamy of entanglement, her next objective is to check whether the

k Hawking particles that she collected outside of the black hole are entangled with

degrees of freedom in the black hole interior.

Recall that Hawking radiation consists of paired entangled excitations of field modes.

The outgoing modes constitute the radiation that is visible to stationary observers,
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but for each outgoing mode there is also an ingoing mode which remains confined

to the black hole interior. In principle, Alice’s task is to “catch up” with the ingoing

excitations that correspond to the k particles that she collected and check whether

they are entangled. In the next section, we will consider whether and how Alice can

actually perform this check. For now, we will consider a prerequisite question: what

do the ingoing excitations look like to Alice should she catch up to them inside the

black hole?

Because of complementarity, while Alice is outside of the black hole, she should not

think of an ingoing excitation as some particle which falls toward the singularity.

Rather, she sees it as some excitation of the stretched horizon, which begins to

scramble as the dynamics of the stretched horizon unfold. Yet, also because of

complementarity, Alice’s description of physical processes changes once she crosses

the event horizon of the black hole. The stretched horizon is no more and she is now

fully entitled to describe physics in the black hole interior. For example, she can

now associate a Hilbert space with each of her past lightcones and make the division

H = A ⊗ O, where A and O describe degrees of freedom on the intersection of her

past lightcone with the interior and exterior of the black hole respectively. It is in

this frame that she must look for the ingoing excitations.

Our aim is to understand the interplay between scrambling in the stretched horizon

and the change in Alice’s description of physics as she enters the black hole. Or, in

other words, complementarity maintains that physics as described from inside and

outside the black hole should, in an appropriate sense, be equivalent; we want to un-

derstand how scrambling—which is a process that occurs from an outside observer’s

point of view—appears to an observer inside the black hole.

To be more precise, suppose that Alice follows a timelike trajectoryA that crosses the

event horizon and ultimately hits the singularity, as shown in Fig. 10.2. (Partially)

foliate the spacetime with her past lightcones. When she is inside the black hole,

we associate A to the portion of her lightcone that lies inside the black hole. For all

of her lightcones, we associate O to the part of the lightcone that lies outside the
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Figure 10.2: Alice’s trajectory A and past lightcones (shown in yellow) as she falls
toward the singularity. The stretched horizon is shown in grey, and the trajectories
of the outgoing and ingoing Hawking particles are shown as dotted lines. We suggest
that scrambling causes information about the ingoing excitation to spread out behind
the event horizon so that it is delocalized on the intersection of Alice’s past lightcones
with the causal future of the excitation’s horizon crossing point (shaded region).

black hole and D to the surface where her lightcone intersects the stretched horizon.

According to complementarity, we postulate that for each lightcone whose tip lies

inside the black hole, there exists a unitary map

Ucomp : D ⊗O −→ A⊗O (10.9)

that relates the complementary descriptions of physics on either side of the event

horizon. (Ucomp is a effectively a change of basis.) If scrambling amounts to a unitary

process in the stretched horizon, Uscr : D → D, then scrambling causes the state of

the ingoing modes that Alice finds inside the black hole to evolve according to the

action of

Ũscr ≡ Ucomp (Uscr ⊗ Iout)U†comp . (10.10)

Intuitively, one would expect that scrambling should persist behind the event hori-

zon. For instance, if one were to drop a qubit into the stretched horizon and wait

for it to be well-scrambled, it would be surprising to find it more or less intact and

localized after jumping into the black hole. Moreover, such a discovery would be

troubling in light of Hayden and Preskill’s finding that the information contained

in that qubit is very rapidly returned to the exterior of the black hole [42]. Math-

ematically, this expectation is equivalent to the statement that we do not expect
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the unitary operator (10.10) to act trivially on the physically relevant states in A.

We note, however, that it is not logically impossible that Ucomp exactly undoes the

action of Uscr.

On the other hand, it would also be desirable to reconcile the unitary (10.10) with the

semiclassical expectation that spacetime and macroscopic gravitating objects near

the event horizon are well-described by general relativity. Put another way, the field

equations of general relativity should be sufficient, at least to a first approximation,

to track classical matter thrown into the black hole on timescales where Hawking

evaporation is unimportant. For example, from a semiclassical point of view, if you

were to drop a rock into a black hole, you would still expect to find the rock on its

freefall trajectory if you accelerated to catch up with it behind the event horizon.

We therefore expect that Ũscr should act highly nontrivially on fine-grained quantum

degrees of freedom, but preserve the coarse-grained state of macroscopically robust

and decohered objects. More precisely, we expect that the classical geometry inside

the black hole should be described by some coarse-graining of A, and that the re-

sulting coarse-graining of Ũscr should act trivially on classical states in this reduced

Hilbert space, but that its action on typical states in the full Hilbert space is highly

nontrivial. In particular, this implies that typical ingoing Hawking quanta, which

are of course fully quantum, should be rapidly mixed with the rest of the modes in

the black hole interior. On the other hand, a classical observer like Alice should be

relatively unaffected by the same dynamics, though of course she will be destroyed

in an infall time anyway. We leave it as an open problem to find a reasonable family

of scrambling unitaries that implements little-drama, i.e., dynamics that scrambles

small quanta, but leaves classical objects largely intact. However the arguments that

follow will only make use of the fact that the ingoing Hawking quanta are rapidly

scrambled over the black hole interior, and not the fact that macroscopic objects are

preserved. As such, we will model Uscr (and hence Ũscr) as a generic unitary6.

We emphasize that the dynamics that we have proposed constitute a violation of
6See Sec. 10.5 for a discussion on this simplifying assumption.
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the no-drama condition, albeit a far milder one than firewalls. In classical general

relativity, the equivalence principle remains intact: the black hole geometry is still

described by the Schwarzschild metric, and nothing special happens at the horizon.

Even semiclassically, expectation values of operators should remain unchanged: we

are not changing the emission rate of Hawking quanta or the effective temperature

of the black hole. However, working with Hawking emission on a particle-by-particle

basis requires a more detailed description. We can write the quantum state de-

scribing the evaporating black hole in a basis of states which each contain Hawking

particles. In each basis state, individual Hawking quanta are pair-produced as gen-

uine particles (i.e., wavepackets) at a specific spot on the horizon of the black hole,

with one wavepacket excitation describing a particle produced in A and a corre-

sponding particle in O. In each basis state, Ũscr acts to rapidly spread the excitation

in A into many other modes, so that after a scrambling time it can no longer be

described as a wavepacket or particle. It is this evolution, which differs dramatically

from the propagation of a particle on an empty background metric, that can be seen

as violating no drama.

10.3.2 Scrambling and kinematics

Next we investigate under what circumstances scrambling of the ingoing modes oc-

curs from Alice’s point of view. Let a clock fixed at the stretched horizon begin

ticking when Alice’s final particle of Hawking radiation is emitted. We shall use its

reading when Alice reaches the stretched horizon to determine whether or not the

corresponding ingoing excitation—which, again, Alice sees as an excitation on the

stretched horizon while outside the black hole—has scrambled.

In principle, Alice could wait arbitrarily closely to the stretched horizon so that the

ingoing excitation has little time to scramble. We note, however, that the scrambling

time at the stretched horizon is a fantastically small amount of time. For example,

for a supermassive black hole like Sagittarius A* with a mass of about four million

solar masses, Eq. (10.8) predicts that the scrambling time at the stretched horizon
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should be τs ≈ 3 × 10−42 s, or about 50 Planck times. As such, Alice does not

have much time at all outside of the black hole before scrambling happens, and in

practice she will have some amount of computational overhead if she verifies the

entanglement between late radiation and early radiation before entering the black

hole. Furthermore, if Alice collects k > 1 Hawking particles, then scrambling of

the first k − 1 ingoing excitations is virtually guaranteed to have happened before

Alice can cross the horizon. This is because the average rate of Hawking emissions

is (much) slower than the rate of scrambling [230, 231]. Consequently, instances

where Alice can cross the horizon before ingoing modes have scrambled are (k − 1)-

fold exponentially suppressed.7 As we will discuss in the next section, Alice will

need to collect k > 1 Hawking particles in order to be statistically confident in her

measurements inside the horizon.

Separately from the considerations above, it is also interesting to ask what the theo-

retical minimum height at which Alice can wait above the black hole is above which

scrambling is guaranteed to have happened when Alice enters the black hole. This

is the height for which exactly one scrambling time elapses at the stretched horizon

in the time it takes a light ray to make a round trip between the stretched horizon

and a mirror at the height in question. This situation is depicted in Schwarzschild

coordinates in Fig. 10.3.

The radial lightlike geodesics are given by

r − (rs + δr) + rs ln

[
rs − r

rs − (rs + δr)

]
= ±

(
t+

ts
2

)
, (10.11)

with ts and δr as given in Eqs. (10.5) and (10.7) respectively. The minimum coor-

dinate height is obtained by setting t = 0 in Eq. (10.11) and solving for r:

rmin = rs ·W
(
δr

rs
exp

[
2δr + ts

2rs

])
. (10.12)

7From [230], the cumulative Hawking emission rate for a Schwarzschild black hole is about
10−4 c3/GM , so take the characteristic timescale of Hawking emissions to be tH ∼ 104 GM/c3.
Note that this is measured in Schwarzschild time, so with the relevant boost factor of lP /2rs and
for the supermassive black hole discussed above, the characteristic (proper) timescale of Hawking
emissions at the stretched horizon is about (103−104) lP /c, which is much larger than the scrambling
time. Also c.f. footnote 9 below.
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Figure 10.3: Minimum height above which scrambling is guaranteed to occur.

In the above, W (·) denotes the Lambert W function. The minimum proper distance

is therefore given by

r̃min =

∫ rmin

rs

(
1− rs

r

)−1
dr

= 2
√
rsets/2R

√
δr +O

(
(δr)3/2

)
≈
√
πrs . (10.13)

This result is interesting in light of proposals by Nomura, Sanches, and Weinberg

[251] and by Giddings [259] which both suggest that Hawking radiation is largely

invisible to observers unless they are at least on the order of a few Schwarzschild

radii away from the horizon of a black hole, which further limits Alice’s ability to

evade scrambling.

10.4 Computation behind the horizon

To summarize the previous section, if excitations at the stretched horizon are scram-

bled when Alice reaches the stretched horizon, then we are proposing that the state

of the ingoing Hawking modes is thoroughly mixed with other degrees of freedom

in the black hole’s interior. In this section we assume that this scrambling has had

time to occur; as we explain in Sec. 10.3.2, such a situation should be generic. As

such, Alice is forced to access and process a large number of degrees of freedom

that are distributed throughout the interior of the black hole if she wants to verify

monogamy of entanglement. In this section, we discuss how to model the task of
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verifying entanglement and we investigate its complexity. In the rest of this paper

we will set lP = 1 for brevity.

10.4.1 Model for verifying entanglement

Following the convention of [18], we continue to denote the Hilbert space of the

interior of the black hole by A, and we label the Hilbert spaces of the early radiation

and late radiation by R and B respectively (so that R and B are subsets of the

space O that we defined in Sec. 10.2). Let b(k) ⊂ B denote the Hilbert space of

the k outgoing Hawking modes that Alice collected and a(k) ⊂ A the Hilbert space

of the corresponding k ingoing modes. We model b(k) and a(k) each as a collection

of k qubits. Referring to Eq. (10.9), since the Hilbert space O is the same in both

complementary descriptions of physics8, it follows that |A| = |D| = eSBH , where

SBH is the Bekenstein-Hawking entropy of the black hole and where | · | denotes the

dimension of a Hilbert space. As such, we model A as a collection of n ∼ SBH qubits

that are distributed throughout the interior of the black hole and that are visible to

Alice on her past lightcones.

First, what do we mean by “detecting a violation of the monogamy of entangle-

ment?” This is nonsensical from the point of view of quantum mechanics, in which

monogamy of entanglement is inviolable. Here, we are given an apparent quantum

description of entanglement between b(k) and R outside the horizon, and an appar-

ent quantum description of entanglement between b(k) and a(k) across the horizon.

While the AMPS paradox shows that there cannot be a global quantum picture that

is consistent with both descriptions, the crucial question now is whether Alice can

perform an experiment to detect this paradox: in other words, whether she can ver-

ify the entanglement between R and b(k), and then verify the entanglement between

b(k) and a(k). If Alice succeeds in verifying both entanglements, then we say that

she has detected a violation of monogamy.

What do we mean by verifying entanglement? In quantum theory, there is no
8We stress, though, that Ucomp does not factorize over D and O.
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measurement that reliably distinguishes between entangled states and unentangled

states—this is because the set of unentangled pure states is non-convex. However,

it is possible to statistically test if an unknown state is in a particular entangled

state. For example, if we let |Φ〉 = 1√
2

(|00〉+ |11〉) denote an EPR pair, then the

two-outcome measurement M = {|Φ〉〈Φ|, I − |Φ〉〈Φ|} will probabilistically indicate

whether a given pair of particles |ψ〉 is an EPR pair or not. If |ψ〉 is indeed an EPR

pair, then this measurement will always return outcome |Φ〉〈Φ| with certainty. On

the other hand, if |ψ〉 is an unentangled state |φ〉 ⊗ |θ〉, then it will return outcome

I − |Φ〉〈Φ| with probability at least 1/2. While the error of this statistical test is

rather large, it can be reduced exponentially by repeating it many times. Let V and

W denote two disjointed quantum systems. When we say that Alice has “verified

maximal entanglement between V and W ,” we mean that Alice has decoded k pairs

of particles from V and W , measured each pair using the two outcome measurement

M , and verified that all k pairs projected to an EPR pair. This occurs with probabil-

ity 1 if Alice did indeed decode k EPR pairs; if V andW were unentangled, then this

occurs with probability at most 2−k. Therefore as k grows, the probability that Alice

thinks that V and W are entangled (when they are actually unentangled) becomes

exponentially small. For example, if Alice wants to obtain 5 sigma certainty (error

probability 1 in 3.5 million) that V and W share maximally entangled particles, she

only needs to decode k = 22 EPR pairs from V and W .

10.4.2 Alice’s computational task

In this argument, we focus on Alice’s task of verifying the entanglement between b(k)

and a(k) when she jumps into the black hole—we will assume that she has already

verified the entanglement between b(k) and R prior to jumping in. We consider the

quantum description of the black hole interior A, along with the late-time Hawking

modes b(k)a(k). Consider the moment at the stretched horizon that k Hawking pairs
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b(k)a(k) were produced9. The state of the Hawking pairs and the black hole interior

can be described by the density matrix

σb
(k)a(k)A = (|Φ〉〈Φ|⊗k)b(k)a(k) ⊗ ρA ,

where |Φ〉 = 1√
2

(|00〉+ |11〉) is a maximally entangled Hawking pair, and ρA is the

density matrix of the black hole interior right before the pair production event. By

Page’s theorem [40, 41], after the Page time ρA is close to being maximally mixed;

for the remainder of this argument, we will assume that ρA is exactly the maximally

mixed state on n qubits.10

As discussed in the previous section, by the time that Alice arrives at the stretched

horizon with b(k) in tow, the black hole interior (which now includes a(k)) has ex-

perienced extensive scrambling. We model this as follows. Let U be the unitary

representing the scrambling dynamics, which acts on A′ = a(k)A. From Alice’s point

of view, the state of the scrambled interior A′ and b(k) can then be described by

τ b
(k)A′ = (Ib

(k) ⊗ UA′)σb(k)A′(Ib
(k) ⊗ UA′)†.

Because our understanding of the quantum mechanical evolution of black holes is

rather limited, we will model the unitary U as being Haar-random. (In fact our

arguments will carry through in the case that U is chosen from an ensemble of

efficiently constructible unitaries that is sufficiently randomizing; we will discuss

this in more detail in Sec. 10.5.)

As Alice falls towards the singularity, she attempts to interact with a set S of qubits

of the interior in order to recover at least one unit of entanglement between the

interior and b(k). First, suppose S is a subsystem of A′ that has at most n/2 qubits.
9For simplicity here we assume that they are produced simultaneously rather than one-by-one,

but this does not hinder the argument. Indeed, if they are produced sequentially, then due to
arguments by Page [230,231], the average rate of Hawking pair production is less than one pair per
scrambling time. Therefore, in a sequential production picture, all but the last Hawking pair will
have been scrambled by the time that Alice can enter the black hole. If Hawking radiation can be
modeled thermally, sequential emission is exponentially preferred over simultaneous emission.

10If ρA is ε-close to the maximally mixed state, then our final bounds will only acquire an
additional ε additive error.
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Then, by [42], we have that∫
dU
∥∥∥τ b(k)S − τ b(k) ⊗ τS

∥∥∥2

1
≤ |b(k)S| · Tr

[
(σb

(k)A′)2
]
. (10.14)

We have that Tr
[
(σb

(k)A′)2
]

= Tr
[
(|Φ〉〈Φ|b(k)a(k)

)⊗k ⊗ (ρA)2
]

= Tr[(ρA)2] = 2−n.

The dimension of b(k)S is at most 2n/2+k, so therefore∫
dU
∥∥∥τ b(k)S − τ b(k) ⊗ τS

∥∥∥2

1
≤ 2−n/2+k.

Thus, by the time Alice reaches the event horizon, with probability exponentially

close to one (over the choice of unitary U), any subset S of at most n/2 qubits of the

interior of the black hole will essentially be uncorrelated with her Hawking modes

b(k): the black hole dynamics “smears” the entanglement between b(k) and a(k) over

the entirety of the black hole. This holds for as long as k � n/2, i.e., as long as

the amount of material that Alice brings with her into the black hole is negligible

compared to the size of the black hole11. Therefore, unless Alice interacts with more

than half of the qubits of the black hole, she has no hope of decoding a partner qubit

that is maximally entangled with b(k) after crossing the event horizon.

However, can Alice interact with more than half of the qubits in A′? We assume that

Alice is a localized experimenter (such that she is unable to do parallel computation

on a spacelike region), so that she can only process at most O(1) qubits of the

black hole interior per Planck time. Thus, to touch at least n/2 qubits, Alice would

require Ω(n) Planck times. However, Alice also has no chance of doing this before

experiencing an untimely demise: the longest amount of time that can elapse on

Alice’s clock before she reaches the singularity is O(rs) = O(
√
n) in Planck units.

Again, she has no hope of decoding any entanglement between b(k) and A′. In other

words, because of black hole scrambling, Alice does not have enough time to verify

the entanglement between b(k) and a(k), and thus is unable to perform the AMPS

experiment.
11Otherwise, if Alice is bringing a sizable fraction of the black hole’s mass with her across the

horizon, this could plausibly take the state of the black hole to before the Page time, change the
horizon size, or any number of other nonperturbative effects which break the setup of the paradox.
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10.5 Discussion

We now elaborate upon several aspects of our argument, including discussing possible

objections.

10.5.1 Modeling scrambling dynamics

In our argument, we model the scrambling dynamics of the black hole as a generic

unitary sampled from the Haar distribution. As mentioned before, we model Uscr as a

generic unitary in order to capture the part of little-drama where fine-grained quanta

get scrambled. It does not model the other part of little-drama where macroscopic

objects are preserved, but we do not use this part in our argument.

An immediate objection to this modeling choice is that black hole dynamics cannot,

strictly speaking, look anything like a Haar-random unitary. This is because a generic

unitary will have exponential complexity: the minimum number of local quantum

operations that need to be applied in order to implement the unitary—known as

the circuit complexity of the unitary—is exponential in the number of its degrees of

freedom. Assuming the Physical Church-Turing Thesis12, an n-qubit black hole that

evolves for poly(n) Planck times should only be able to realize unitaries that have

poly(n) circuit complexity, where poly(n) denotes some polynomial in n. Perhaps

unitary matrices with polynomial circuit complexity will not adequately “smear”

entanglement across the entire black hole interior, as required by our argument.

As noted by Hayden and Preskill [42], one can model the dynamics of a black hole

using random unitary designs. Informally speaking, unitary designs are ensembles of

unitaries with polynomial circuit complexity that in many respects behave like Haar-

random unitaries. In our argument, the Haar unitary ensemble can be replaced by

an (approximate) unitary design and our conclusion remains essentially unchanged:

unitary designs, though possessing small circuit complexity, still “smear” quantum

information across all degrees of freedom. Unitary designs have been extensively
12Briefly, the Physical Church-Turing Thesis states that all computations in the physical universe

can be simulated, with polynomial time overhead, by a universal quantum computer.
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studied in the quantum information community. By now, we know several examples

of (approximate) unitary designs [260,261].

Still, what do we mean when we say that a particular black hole behaves like a

unitary randomly chosen from an ensemble? After all, a black hole behaves according

to none other but the unitary given by the theory of quantum gravity. Unfortunately,

since this theory is still unavailable to us, in our calculations we must make a “best

guess” at what a black hole unitary must look like. Without presupposing unjustified

constraints on the theory of quantum gravity, our best guess for black hole dynamics

is that the Hamiltonian governing the interior should be local and strongly mixing,

and that the black hole evolves in polynomial time. The Maximum Entropy Principle

from statistics and learning theory tells us that our best guess for the black hole

unitary is a randomly chosen one from the uniform distribution over unitaries with

polynomial circuit complexity13. We note that this ensemble of unitaries is known

to form an approximate unitary design [260], and thus has the scrambling properties

required by our argument.

10.5.2 Black holes in other dimensions.

One may also object that this argument is specific to spacetimes of dimension 3+1.

In higher dimensions this argument only becomes stronger, since in spacetimes with

spatial dimension d, the number of qubits that make up the interior Hilbert space,

|A|, scales like O(rd−2
s ), while the infall time scales like O(rs). As such, the infall

time is increasingly smaller with respect to |A| for d > 3. But, this is not necessarily

true for lower spatial dimensions. For example, in AdS3, the number of qubits and

the infall time both scale linearly with rs. Consequently, our previous trivial bound

on the number of accessible qubits does not suffice here. In this case one can appeal

to the fast scrambling conjecture to render the computation impossible. The fast

scrambling conjecture of Sekino and Susskind [257] states (among other things) that
13The Maximum Entropy Principle is a formalization of Occam’s Razor in machine learning

and statistical learning theory [262]. It says that, given a set of hypotheses consistent with one’s
observations, one’s best hypothesis is the maximum entropy one: a randomly chosen one from that
set.
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black holes are the fastest scramblers in nature14. Lashkari et al. [258] formalized

this notion in terms of quantum information by stating that black holes saturate

the rs log rs lower bound for scrambling time. In this work, we consider a quantum

complexity formulation:

Conjecture 10.5.1. Let k � n/2, i.e., let k be much smaller than the number

of qubits in the black hole. Let U be the unitary corresponding to running black

hole dynamics for time t on A′ = a(k)A, as measured by an asymptotic observer.

Then recovering the entanglement between a(k) and b(k) from A′ and b(k) requires

time at least t. More formally, for any unitary V acting on system A′, if νb(k)A′ =

(Ib
(k) ⊗V A′UA

′
)σb

(k)A′(Ib
(k) ⊗V A′UA

′
)† is the state of the system after applying V U

to A′ , and if ∥∥∥νb(k)A′ − νb(k) ⊗ νA′
∥∥∥2

1
≥ δ ,

where δ is a small constant (say 0.01), then V has circuit depth at least t.

This is a circuit-depth version of the statement “black holes are the fastest scramblers

in nature.” It says that if one wishes to invert the scrambling performed by the black

hole, then one requires at least the scrambling time to do so. If such a statement

is true, then in our model, unscrambling the entanglement between a(k) and b(k)

requires at least rs log rs time in any dimension, whereas the infall time scales as

rs. Therefore, such a conjecture would suffice for our arguments to hold in any

dimension.

10.5.3 Localization of the experimenter.

In our argument, we assume that Alice is localized throughout our experiment, and

therefore can access only O(rs) qubits after crossing the horizon. One might object

that if one knew the exact dynamics of Ũscr, one could set up the infalling matter

such that a nonlocal experiment is performed on the interior modes and the result is

then sent to Alice. However, this is impossible because Alice is out of causal contact
14We note that the fast scrambling conjecture stating that the fastest scrambling time for a

black hole is rs log rs is an asymptotic statement, and thus not broken by earlier statements of
log rs scrambling time at the stretched horizon.
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with most of the black hole interior [263] from which the results of the nonlocal

experiment would have to be sent. Therefore, even this non-local experiment cannot

reveal entanglement between the interior and exterior Hawking modes before Alice

hits the singularity.

10.5.4 Relation to prior works

We first note that in [263] arguments have already been made about the inability of

the infalling observer to access the entirety of the interior of the black hole except at

the singularity. These arguments are quite different in nature from the information-

theoretic ones of this paper. In particular, there appears to be the possibility to

work around the arguments in [263] by using multiple observers [264], something

which does not seem to be an issue in the more information-theoretic arguments of

this note.

Readers may notice that our argument significantly resembles that given by Hayden

and Preskill [42]. While the techniques are similar, our conclusions and assumptions

differ in several ways. First, [42] concludes that black holes, rather than being infor-

mation sinks, are plausibly more like information “mirrors;” information deposited

into the black hole gets released (in scrambled form) as quickly as possible. On the

other hand, our goal is to demonstrate a lower bound on Alice’s ability to recover a

single qubit of information within the black hole after it has been scrambled. Second,

Hayden and Preskill explicitly model the joint state of the black hole, its radiation,

as well as some reference system as a pure state. However, in the context of the

firewalls paradox, we cannot write down such a description to begin with! In our

setting, we focus solely on the part of the black hole that Alice sees after she has

collected her Hawking mode and has crossed the event horizon. This is consistent

with complementarity; we only need to provide a valid description of physics inside

the horizon, which need not be in a tensor product with the description of physics

outside the horizon.

Our proposal also shares some spiritual similarities with fuzzball complementarity
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[265], in which undisturbed freefall through the horizon is recovered in the limit

where the incident energy of the observer is much larger than the temperature of the

black hole, in the sense that local properties of the infalling observer are important

to consider in both cases. We note that in the context of the fuzzball program,

the definition of complementarity invoked by AMPS—which we follow in Sec. 10.2

when we define the Hilbert space relevant to the problem—is replaced by a different

and perhaps more correct definition involving the definition of the state along the

complete slice, both inside and outside of the horizon. While it would be interesting

to reformulate our results in that lens, it is perhaps unnecessary: in that limit

the fuzzballs program already precludes the need for a different resolution to the

information paradox! Instead, we emphasize that, even when cleaving as close to

AMPS-style complementarity definitions as possible, information- and complexity-

theoretic arguments by themselves strongly constrain the ability for any observer to

actually observe violation of monogamy of entanglement.

We also differ from the fuzzballs approach in analyzing operationally what is possible

for the observer to compute after crossing the stretched horizon of the black hole on

the way to an existent singularity. In this work, the singularity plays a vital role in

determining the longest possible time available to perform the computation. But, in

fuzzball complementarity, the singularity is fuzzed out and resolved at some char-

acteristic fuzzball radius, behind which space stops existing. It may be interesting

to see by what degree our bounds would tighten in the specific case of fuzzballs; we

reiterate, though, that we are already able to demonstrate that we cannot opera-

tionally detect monogamy of entanglement even without the shorter longest possible

time for the computation given by the fuzzball program.

Finally, we also note the recent paper [266], which provides a concrete toy model for

fuzzball complementarity. It would be interesting to examine our proposals in the

context of this work, since the dynamics of infalling excitations discussed in [266]

may be able to inspire and inform a similarly concrete realization of the scrambling

dynamics that we discussed in Sec. 10.3.1.
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10.5.5 Other black hole geometries

We have thus far restricted our attention to only Schwarzschild black holes. It is

a reasonable question to ask what happens once we consider other geometries with

nonzero spin or charge. With regard to these, the addition of spin or charge to a

black hole splits the horizon into an inner and an outer horizon. It is possible in

such geometries to spend a longer amount of time between the two horizons, so in

principle Alice could have enough time to complete her monogamy verification before

hitting the singularity, thus implying a naive breakdown of the story up to this point.

Alternatively, in maximal extensions of these black hole spacetimes, Alice could pass

from the black hole interior into other asymptotically flat spacetime regions and

continue to exist indefinitely.

We note, however, that the inner horizon is not entirely understood, both from

the perspective of general relativity and quantum theory [267, 268]. (For example,

the inner horizon is strongly believed to be unstable.) As such, it is likely that

our assumptions about quantum mechanics and general relativity would need to be

modified (at least in the vicinity of the inner horizon) in order to discuss charged

spinning black holes, and it is another question entirely what form the AMPS paradox

would take if it persists.

10.6 Conclusion

We have described a resolution of the information paradox that amounts to a weak-

ening of the no-drama condition — a new condition that we call little-drama. We

suppose that quantum systems that cross the event horizon of a black hole experi-

ence nontrivial evolution which entangles them with other degrees of freedom in the

black hole interior. Such evolution inside the horizon is the complementary descrip-

tion of scrambling on the stretched horizon and constitutes a mild departure from

the predictions of a non-gravitating field theory.

The little-drama condition allows for an apparent violation of monogamy of entan-

glement that is similar in spirit to the Harlow-Hayden proposal. Past the Page
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time, an observer can verify that early and late Hawking radiation have the right

entanglement structure outside of a black hole and then smoothly pass through

the event horizon. While the smooth crossing implies a violation of monogamy of

entanglement—it would seem that the late radiation is maximally entangled with

both the early radiation and the black hole interior—we found that the observer

could not verify this violation before encountering the singularity.

It is also worth emphasizing that, as an information-theoretic proof, our arguments

for larger than three spacetime dimensions are resilient to the Oppenheim-Unruh

precomputation-style attacks, which are complexity-theoretic in nature. Though our

complexity-theoretic argument (which holds in all dimensions) does not necessarily

share this feature, it is possible that precomputation cannot simultaneously prevent

both our construction and the Harlow-Hayden argument from resolving the AMPS

paradox. Two distinct and mutually exclusive precomputation style attacks are

required to foil both obstacles to AMPS. In the first, one collapses halves of Bell

pairs into a black hole to evade Harlow-Hayden. In the second, one takes entire Bell

pairs and collapses them into a black hole to evade our arguments. We note it is

not simultaneously possible to do both for any single qubit. Therefore these two

resolutions of the information paradox might be complementary in a different sense

of the word.

Directions for future research include finding a model for black hole dynamics that

faithfully captures all parts of little-drama. Other directions include working out the

details for other black hole geometries with nonzero spin or charge. As previously

discussed, it is not clear that such geometries would be precluded from violation of

monogamy of entanglement in the same way, but a parametric comparison of how

much leeway they have would be interesting to conduct. It would also be interesting

if the information-theoretic proof method could be extended to spacetimes with fewer

than three spatial dimensions without assuming the fast-scrambling conjecture.
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C h a p t e r 11

BRANCHES OF THE BLACK HOLE WAVE FUNCTION NEED NOT
CONTAIN FIREWALLS

We discuss the branching structure of the quantum-gravitational wave function that

describes the evaporation of a black hole. A global wave function which initially

describes a classical Schwarzschild geometry is continually decohered into distinct

semiclassical branches by the emission of Hawking radiation. The laws of quantum

mechanics dictate that the wave function evolves unitarily, but this unitary evolution

is only manifest when considering the global description of the wave function: it is

not implemented by time evolution on a single semiclassical branch. Conversely, ge-

ometric notions like the position or smoothness of a horizon only make sense on the

level of individual branches. We consider the implications of this picture for probes

of black holes by classical observers in definite geometries, like those involved in the

AMPS construction. We argue that individual branches can describe semiclassical

geometries free of firewalls, even as the global wave function evolves unitarily. We

show that the pointer states of infalling detectors that are robust under Hamilto-

nian evolution are distinct from, and incompatible with, those of exterior detectors

stationary with respect to the black hole horizon, in the sense that the pointer bases

are related to each other via nontrivial transformations that mix system, appara-

tus, and environment. This result describes a Hilbert-space version of black hole

complementarity.

This chapter is available in preprint form as Ref. [9], N. Bao, S. M. Carroll, A. Chatwin-

Davies, J. Pollack, and G. N. Remmen, “Branches of the black hole wave function

need not contain firewalls,” arXiv:1712.04955.

http://arxiv.org/abs/1712.04955
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11.1 The black hole information puzzle

In 1975, Stephen Hawking showed that, in coordinates stationary with respect to

a static black hole, quantum fields outside the black hole horizon are in a state

of outgoing radiation that is very nearly thermal [43]. The backreaction of this

thermal emission should lead even astrophysical black holes to evaporate over time,

gradually transferring their mass into an ensemble of dilute radiation. However, upon

extrapolating Hawking’s result to the case of a completely evaporating black hole,

one is confronted with an apparent departure from quantum mechanics: it appears

that when a pure state of matter—and the quantum information that it encodes—

collapses into a black hole that then evaporates, it has evolved into a thermal mixed

state and lost its coherent information. Whether and how the quantum state can

evolve unitarily from before a black hole is formed to after it evaporates is known as

the black hole information puzzle [23,43,44,269].

Several renditions of the black hole information puzzle have emerged over the last

few decades. In its modern form, the information puzzle is neatly summarized as a

conflict between the following four postulates, articulated by Almheiri et al. (AMPS)

[18]:

1. Unitarity — As viewed by an observer who remains far away from the black

hole, the formation and evaporation of the hole is a unitary quantum-mechanical

process.

2. Local Effective Field Theory — To the exterior of the black hole’s stretched

horizon [23, 133], the physics of matter is well described by a local effective

field theory on a black hole spacetime background.

3. Sbh = SBH —As viewed by an observer who remains far away from the horizon,

the black hole is a quantum-mechanical system that is represented by a finite

dimensional Hilbert space. Moreover, the von Neumann entropy of an old black

hole, Sbh, is (if not exactly, approximately) equal to its Bekenstein-Hawking

entropy, SBH.
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4. No Drama — An observer who crosses the apparent horizon of the black hole

(but remains far from its central singularity) encounters nothing that runs

contrary to the predictions of semiclassical general relativity and effective field

theory.

Taken together, these postulates seemingly imply a violation of monogamy of en-

tanglement [270]. This is because while the second and fourth postulates together

imply maximal entanglement between a portion of the the black hole interior and

the late Hawking radiation, the first and third together imply that the late Hawking

radiation must purify the early radiation as it is emitted. These constraints on the

entanglement shared among the black hole, the early Hawking radiation, and the

late Hawking radiation cannot be mutually satisfied without violating strong sub-

additivity of entanglement entropy. It would seem that taking all four postulates to

be true leads to a contradiction, which must be resolved by requiring at least one of

them to be violated in practice.

Several different resolutions to this puzzle have been proposed,1 from those that mod-

ify quantum mechanics [245,246], to those that allow a breakdown of no drama [18]

or of unitarity [271], identify the early Hawking radiation with the black hole in-

terior [174], modify the interior geometry [247, 250, 272], invoke quantum complex-

ity theory [8, 253, 273], allow for black hole remnants [244], or take nonlocal ap-

proaches [248,274].

By formulating black hole formation and evaporation as a process in Hilbert space in

the context of Everettian quantum mechanics, we will argue that the four postulates

above are made mutually consistent once we appreciate that the situations they

refer to are not directly comparable. In particular, a prerequisite for both local

effective field theory and no drama is the presence of a semiclassical background

geometry. We will argue, as have several authors before us [272, 275–277], that

in a fully quantum-gravitational treatment, an evaporating black hole is described
1This list is not meant to be exhaustive—for one listing see the comprehensive bibliography in

Ref. [19].



233

not by a single semiclassical background but rather a superposition of many such

geometries, each corresponding to different branches of the wave function.2

In short, while unitarity applies to the global wave function, the no-drama condition

only applies on branches of the wave function. Therefore, the AMPS construction [18]

does not lead to a paradox, as its components do not necessarily imply violation of

monogamy of entanglement. Similar points have previously been made schematically

[272,275–277,281–283], but in this work we will give a more precise articulation of this

view. In doing so, we will also find that—under the reasonable assumption that each

Hawking quantum has the opportunity to interact with the rest of the universe after

it has been emitted—the production of a large number of decohered branches allows

Hilbert space subfactors associated with the emitted radiation to have a large von

Neumann entropy in the global wavefunction, even while they remain unentangled in

every branch. This sort of entropic structure allows firewall-free individual branches

while preserving the Page curve as a statement about the global wave function. Such

a picture is heuristic at best, however, since the factorization of Hilbert space into

early radiation, late radiation, and black hole degrees of freedom is highly branch-

dependent.

According to the principle of black hole complementarity [23], we should not expect

to be able to use local quantum field theory to simultaneously describe physics on

both sides of a spacelike slice crossing an event horizon; what appear as local degrees

of freedom inside a black hole will be distributed across the stretched horizon from

the point of view of an external observer. Following our Hilbert-space perspective,

we argue that this principle can be implemented in terms of how Hilbert space is

factorized into subsystems and what basis of pointer states is associated with the

resulting decomposition. The states that are robust with respect to environmental
2This conclusion could be viewed as a (mild and well-understood) violation of the second postu-

late above—there is not one local effective field theory for a single background but rather a different
effective field theory on each semiclassical background. Because properties (such as the location) of
the horizon can differ from branch to branch, our argument is reminiscent of state-dependent resolu-
tions to the firewall paradox, e.g., Refs. [278–280]. We emphasize that this state-dependence arises
naturally from the decoherence of the wave function and is not a violation of quantum mechanics,
but rather a consequence of the fact that geometric properties differ from branch to branch.
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monitoring from the point of view of an infalling observer will appear fragile to

an outside observer. We exhibit an example decomposition of the relevant Hilbert

spaces for each observer to show how this can work in practice.

Many puzzles about black hole evolution and evaporation certainly remain, such

as whether the no-drama condition can be preserved at the level of the global wave

function [284], how to reconstruct the black hole interior [246], and whether entangle-

ment and wormholes are inextricably related [174]. Moreover, determining whether

firewalls or smooth horizons with no drama are typical requires an analysis of the

detailed branching structure of the global wave function for an evaporating black

hole.

The rest of this paper is structured as follows. We begin in Sec. 11.2 by carefully

formulating the process of black hole formation and evaporation so that we may prop-

erly discuss unitarity in a fully quantum-gravitational sense. Within this framework,

we then investigate what it means to operationally probe entanglement between the

black hole and exterior degrees of freedom in Sec. 11.3. We end with some brief

concluding remarks in Sec. 11.4.

11.2 What is unitary and what is not

11.2.1 Setup

To examine unitarity for black hole formation and evaporation, let us set up the

problem as a scattering experiment, employing the S-matrix ansatz [285] for asymp-

totically flat spacetime. Suppose that the initial state is a pure state of dilute matter

that will collapse to form a black hole, specified on the past boundary of an asymp-

totically flat spacetime,

|Ψi〉 ≡ |Ψ(i− ∪I −)〉. (11.1)

We define the initial state on the asymptotic past boundary so that it can be thought

of as effectively some free-field-theoretic state without gravitational interactions.3 If
3We will not consider the subtleties in the S-matrix formulation relating to infrared divergences;

see [285,286] and references therein.
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quantum gravity is unitary, then this state unitarily evolves to another pure state;

according to the S-matrix ansatz, the final pure state is given as a superposition of

states each defined on the future boundary of an asymptotically flat spacetime,

|Ψf 〉 ≡ S|Ψi〉 =
∑
j

Si→j |Ψj(i
+ ∪I +)〉. (11.2)

Although the asymptotically flat spacetimes, each corresponding to a branch j, are

not identical, by definition each of them has the same boundary geometry (with I +

topology SD−2 × R). With an appropriate choice of coordinates, therefore, we can

think of |Ψf 〉 as a state that describes a superposition of definite field configurations

on i+ ∪I +. In general this time evolution is not described by a single Penrose di-

agram, since, in the bulk, the quantum-gravitational evolution of the wave function

does not correspond to a single classical geometry.4 Nevertheless, since the states

at past and future null infinity are effectively noninteracting, we can identify all of

these boundaries even in the absence of a well-defined bulk spacetime. A Penrose

diagram for each individual process Si→j , if it exists, should look somewhat like

the diagram sketched in Fig. 11.1: an asymptotically flat spacetime with some in-

termediate evaporating black hole geometry, the details of which we cannot resolve

without an explicit understanding of quantum gravity.5

11.2.2 The Page curve: late-time entanglement structure

Consider factorizing the state |Ψf 〉 as follows. Given a particular value of retarded

time u on I +, with u = +∞ corresponding to i+, let us split the Hilbert space into

the part with support to the past of u and the part with support to the future of u,

HI +∪i+ = H<u ⊗H>u. (11.3)

The reduced state of the “early” Hawking radiation is then given by tracing over

H>u,

ρ<u = Tr>u |Ψf 〉〈Ψf |, (11.4)
4The most general S-matrix setup would describe a wave function defined on some number of

copies of i− ∪I− (only one for our choice of initial state |Ψi〉) that evolves to one defined on some
number of copies of i+ ∪I +, with no definitive spacetime structure in the interior.

5See also Fig. 5 of Ref. [277], which had previously advanced a similar view.
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Figure 11.1: The Penrose diagram for the spacetime that corresponds to a classi-
cal branch of the global wave function that itself describes the unitary formation
and evaporation of a black hole in asymptotically flat spacetime. On the asymp-
totic future boundary, we divide the global Hilbert space into two factors, H<u and
H>u, whose degrees of freedom lie to the past and future of the retarded time u,
respectively. The direction of increasing u is indicated by the dotted arrow. The
asymptotic future i+ ∪I + is identified across every classical branch of |Ψ〉 so that
H<u and H>u are globally defined.

and the “Page curve” [40]6 is the plot of the von Neumann entropy of ρ<u as a

function of u, which decreases to zero as u grows to cover all of I + ∪ i+,

S(ρ<u)|u=+∞ = 0. (11.5)

That S(ρ<u) vanishes when u = +∞ is simply a consequence of unitary evolution,

since the final state |Ψf 〉 is correspondingly pure.7 In other words, in the global

wave function, the “late” Hawking radiation purifies the “early” radiation.8

6See Ref. [45] for further discussion of the Page curve.
7Maudlin [287] has recently emphasized that global unitary evolution is in principle consistent

with information loss outside the black hole, since one can define disconnected Cauchy surfaces
with respect to which the black hole interior persists as an effective “baby universe.” We do not
consider this possibility here, as it would violate Postulate 3, Sbh = SBH. See also Ref. [269].

8We could have considered a spacetime with a timelike boundary, e.g., an asymptotically anti-de
Sitter spacetime, but in that case defining the S-matrix proves difficult, for reasons discussed in for
example Ref. [288].
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We define the Page curve in terms of portions of the asymptotic future boundary

because this definition does not rely on any particular choice of basis (for example,

wave packets) for the Hawking radiation. We also remain agnostic about the exact

shape of the Page curve resulting from this division of the final state into early and

late radiation. Nevertheless, it is certainly true that S(ρ<u) vanishes when ρ<u has

support either nowhere or everywhere on the asymptotic future boundary.

11.2.3 Unitary evolution, branches, and decoherence

The modern black hole information problem arises when trying to interpret the

entanglement structure at earlier times. Previously, we have only discussed the

initial-state and late-time structure of the global wave function. However, because

in this paper we are assuming that the (as yet unknown) theory of quantum gravity

is a bona fide quantum-mechanical theory, we can also write down the wave function

at intermediate times. Thus, the evolution of the state is, as usual, governed by the

Schrödinger equation:9

Ĥ|Ψ〉 = i
d

dλ
|Ψ〉. (11.6)

We emphasize that this equation genuinely implements time evolution; however,

because λ need not have any relation to any coordinate or proper time in a geometric

description,10 we have chosen to use λ rather than t. Implementing our chosen

boundary conditions, we must have |Ψ(0)〉 = |Ψi〉 and |Ψ(1)〉 = |Ψf 〉. Because its

evolution is governed by the Schrödinger equation, |Ψ〉 manifestly evolves unitarily.

A challenge in interpreting the state |Ψ(λ)〉 at intermediate values of λ lies in the

fact that it does not describe a single black hole geometry. That is, a single geometry

at one time (for example, λ = 0) must evolve to a state that describes an ensemble

of many possible geometries at a later time. An observer or detector present in the
9In canonical quantum gravity, we could also take the point of view that the wave function

should obey the Wheeler-DeWitt equation [289]. In this case, Ĥ is the Hamiltonian constraint,
Ĥ|Ψ〉 = 0, and we need some additional information to implement time evolution as an emergent
phenomenon. This approach is also proposed in Refs. [272,277].

10In a holographic description, we could think of λ as the time coordinate of the boundary
theory.
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initial state would see different measurement outcomes depending on what geometry

they were in at a later time.

For instance, while the expectation value of the black hole position and momentum

remains fixed and constant in the global wave function, an observer who is monitoring

the black hole would measure a drift in its position and momentum as it receives

kicks from Hawking quanta that are emitted and interact with the surrounding

environment, leading to decoherence. In Everettian language, the notion of a classical

black hole geometry exists only on decohered branches of the global wave function.

Therefore, in order to have an idea of a definite geometry throughout black hole

formation and evaporation, it is necessary to specify what the decohered branches

of the wave function are and what determines this branching structure.

This leads us to conjecture that the emergence of an ensemble of classical geome-

tries from the unitary evolution of |Ψ(λ)〉 can be understood as a decoherence

process, which determines a pointer basis for |Ψ(λ)〉 whose elements describe de-

cohered geometries and configurations of matter. The lesson of the decoherence

program [290–294] is that branching of the wave function is set by the interaction

dynamics between a particular subsystem and the environment monitoring this sub-

system. In order to determine the branching structure, we need to decompose the

Hilbert space into “system” and “environment” degrees of freedom. For our purposes,

we suppose that there exists a set of degrees of freedom in the total Hilbert space

that can serve as an environment that, minimally, yields a definite geometry when

traced over. For example, one could conjecture this environment to be comprised of

some inherently quantum gravitational degrees of freedom.11 Alternatively, recent

studies suggest that the modes of soft gravitons and other soft massless gauge bosons

may constitute such an environment [296–301]. Regardless, we conjecture that the

global Hilbert space may be written as

H = Heff ⊗Henv, (11.7)
11For some discussion of this kind of UV/IR factorization, see Refs. [21,172,295].
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so that the global state takes the form of a sum over branches,

|Ψ(λ)〉 =
∑
b

αb(λ)|Ψb〉, (11.8)

where each branch |Ψb〉 decomposes as

|Ψb〉 = |ψb〉eff ⊗ |εb〉env . (11.9)

Then |ψb〉eff ∈ Heff is the part of the state that we may think of as describing a

semiclassical geometry and the states of quantum fields in the theory on top of this

geometry, while |εb〉env is a state of the environmental degrees of freedom that are

responsible for decohering the state to a semiclassical geometry. How the global

wave function branches depends on how the |εb〉env are determined.

Depending on the superselection rules of quantum gravity, we might only need to

consider, e.g., branches b that correspond to asymptotically flat geometries, geome-

tries with identical topologies to the initial state, etc. We can either implement these

rules by working in a smaller Hilbert space than the full Hilbert space of quantum

gravity or by imposing that αb(λ) = 0 for all branches b corresponding to geometries

that do not obey these superselection rules.12

Trivially, the Hilbert space Heff admits a direct sum structure [113,303],

Heff =
⊕
b

span{|ψb〉eff}. (11.10)

However, we expect that it should be possible to group sets of states together that

have the same background geometry to form subspaces

HBeff ≡ span {|ψb〉eff | b ∈ B} , (11.11)

where any given B contains the labels of a set of branches that all correspond to

the same background geometry (to within some precision that specifies a coarse-

graining). As such, we envision each HBeff as being the Hilbert space of fields coupled

to the background geometry of the branches in B. Each HBeff can of course be further
12For example, thought experiments in AdS/CFT suggest the existence of topological superse-

lection rules for holographic wormhole geometries [302].
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decomposed, for example, as a tensor product over the Hilbert spaces of the different

species of fields contained in the effective theory. Because field theories are defined

on fixed spacetime backgrounds, a tensor product in each individual HBeff does not

necessarily extend to a tensor product on the entire semiclassical Hilbert space Heff .

Generally we can therefore write

Heff =
⊕
B
HBeff =

⊕
B

(⊗
i

H(B)
i

)
, (11.12)

where the H(B)
i represent factors defined on the Hilbert space of the specific back-

ground geometry B. In particular, notions such as “modes of outgoing Hawking

radiation near the horizon” are only well-defined on specific branches, not on the

global wave function.

During the process of decoherence itself, the action of the Hamiltonian entangles

system and environment states and the entropy of the system density operator

ρeff = Trenv |Ψ〉〈Ψ| increases. After decoherence, ρeff will be diagonal with respect to

a basis of “pointer states” for Heff, each pointer state defining a different branch of

the wave function. For us, the pointer states are the {|ψb〉}, representing quantum

fields on a definite semiclassical background. Once this occurs, branches interact

minimally with each other (they decohere), so that the time evolution of a superpo-

sition of branches is approximately the same as evolving each branch individually. In

particular, the branches retain their product-state structure (11.9) under the action

of the Hamiltonian implementing time evolution.

Returning to Eq. (11.8), we see that at each time λ there are a number of decohered

branches, describing a superposition of the geometries corresponding to those |ψb〉eff

with αb(λ) 6= 0. As λ increases, so does the number of decohered branches, i.e., the

size of the set {|Ψb〉|αb(λ) 6= 0}. It seems natural to relate this repeated branching

to the production of entropy. As a result, the increase in the number of decohered

branches is important for the interpretation of the Hawking entropy formula and the

Page curve, as we discuss in Sec. 11.2.5.
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11.2.4 Entanglement structure at intermediate times

The basic reason why the consideration of branching structure is relevant to the

black hole information puzzle is that, while evolution of the global wave function is

unitary, evolution via conditioning on a specific background geometry (i.e., projection

onto individual branches of the wave function) is not. A particular sequence of

classical states is produced by repeated non-unitary projection of the wave function

onto states of definite background geometry; we refer colloquially to wave function

“collapse” during the measurement process (which for us is simply decoherence and

branching). In particular, the Page curve, which we have seen above is a consequence

of unitarity, only needs to hold for the global wave function.

Our main observation is that arguments for the modern information puzzle—and in

particular Postulates 2 and 4 above—only apply at the level of the |ψb〉eff parts of the

classical branches [275,276]. Again, evolution of the global wave function is unitary,

but evolution at the level of individual classical geometries is not. In Sec. 11.3, we will

discuss what it means to operationally probe the information puzzle in the context

of this observation. In essence, at intermediate times, it is not clear how to calculate

the Page curve as we have formulated it in Sec. 11.2.2 because the specification of

what degrees of freedom constitute “early” radiation is a branch-dependent notion.

One possibility could be to make a branch-dependent local tensor product decomposi-

tion of the type suggested by AMPS, whereHeff is taken to be A(b)⊗B(b)⊗R(b)⊗C(b),

where R(b) denotes degrees of freedom that correspond to early radiation, A(b) corre-

sponds to the black hole degrees of freedom, B(b) is the late radiation, and C(b) (for

“complement”) is everything else. However, such a decomposition is problematic for

a number of reasons. Generically, it will not be the case that R(b), B(b), A(b) are the

same factors on every classical branch |Ψb〉. For instance, we can identify a space A(b)

of black hole degrees of freedom on branches where a black hole exists and it is likely

that this space may be consistently identified across all branches b ∈ B with the same

background geometry. But we cannot speak of anything like a global space of black

hole degrees of freedom in the Hilbert space of all semiclassical states. Moreover,
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even within branches that describe the same background geometry, Hilbert space

subfactors that consist of quanta of field excitations, such as R(b), will vary from

branch to branch. (For example, a branch with one decohered graviton of energy E

and a branch with two decohered gravitons of energies E1 + E2 = E are distinct.)

Furthermore, a decomposition such as A(b) ⊗ B(b) ⊗ R(b) ⊗ C(b) becomes a highly

“observer-dependent” refinement, in the sense that the Hilbert space factors are nei-

ther dictated by the theory itself nor have a fixed spacetime interpretation. For

example, according to the description of an observer outside of a black hole on a

branch b, states in A(b) describe states of the black hole’s stretched horizon. For

such an observer, the interior of the black hole is not a geometric place, which runs

counter (but complementary) to the description of an infalling observer if the hori-

zon is transparent. We will return to the question of complementarity and further

decomposition of the classical branches in Heff in Sec. 11.3, but for now we stress

that none of our arguments assume that the exterior observer can assign any classical

geometric interpretation to the black hole interior.

One of our main conclusions about black hole evolution in the global wave function

is that unitary evolution and the no-drama condition are compatible in principle,

even without violating monogamy of entanglement. Unitarity is a global concept; it

applies only to the global wave function and not to individual semiclassical branches

of particular geometry. On the other hand, the requirement of no drama is a state-

ment about individual decohered branches describing such semiclassical geometries;

in particular, it is a requirement that the state of the quantum fields near the black

hole take a particular structure (corresponding to the vacuum) on the branch, i.e.,

within |ψb〉eff , for most of the branches.

Let us consider a toy model to illustrate that what parties appear entangled on

decohered branches of a wave function can be very different from the structure of

entanglement entropies in the global wave function. Consider, for example, four

qubits labeled A, B, C, and D in the state

|Ψ〉ABCD = 1√
2

(|00〉AD + |11〉AD)⊗ 1√
2

(|00〉BC + |11〉BC) . (11.13)
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In this state and tensor decomposition, the pairs AD and BC are unentangled, while

A and D, as well as B and C, are entangled. However, suppose that we treat CD

as an environment and posit a Hamiltonian with an interaction term between AB

and CD of the form

Hint =
∑
±
O(1),±
AB ⊗ |φ±〉〈φ±|CD +O(2),±

AB ⊗ |ψ±〉〈ψ±|CD, (11.14)

where |φ±〉 = 1√
2
(|00〉 ± |11〉) and |ψ±〉 = 1√

2
(|01〉 ± |10〉) denote Bell states. Then

it follows that the branching structure of |Ψ〉ABCD (whose environmental CD parts

commute with the interaction Hamiltonian) looks like

|Ψ〉ABCD =
1

2

(
|φ+〉AB ⊗ |φ+〉CD + |φ−〉AB ⊗ |φ−〉CD

+|ψ+〉AB ⊗ |ψ+〉CD − |ψ−〉AB ⊗ |ψ−〉CD
)
.

(11.15)

In other words, while AD and BC are unentangled in the global wave function, in

the sense that S(AD) = 0, the “system” subfactors A and B are entangled on every

branch. Tracing out CD to obtain a reduced density matrix for AB would reveal a

set of distinct branches, all of which exhibit maximal entanglement between A and

B.

More generally, the production of a large number of orthogonal branches through

decoherence can lead to large von Neumann entropies for subsystems in the global

wave function. Heuristically, this is what we expect to happen for AMPS-like tensor

product factors; A(b) and B(b) must be highly entangled for drama-free branches, yet

decoherence can produce large von Neumann entropies for the collections of A(b)B(b)

and R(b) on the branches, due to classical uncertainty. This is only a heuristic

picture, since there is no consistent identification of AMPS-like tensor product factors

across all branches that may be used to compute the Page curve at intermediate

times. Nevertheless, it is interesting to assess just how much entropy is produced by

branching, e.g., within a given sector B, which we now discuss.

11.2.5 Branch counting

Consider a simple idealization, according to which AB ⊂ U †(λ; 1)[H>u] and R ⊂

U †(λ; 1)[H<u] actually are consistently identified as the same factors across all branches
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(even though, as discussed above, that’s not precisely the case in our scenario). Here

U(λ1;λ2) is the unitary evolution operator that maps a state at parameter value λ1

to the state at parameter value λ2 > λ1. In other words, here we explicitly hypoth-

esize that the Hilbert-space decomposition (A(b)⊗B(b)⊗R(b)⊗C(b)) holds globally

across all branches and we explore the resulting consequences.13

Tracing over Henv and C in the global wave function, the reduced state on ABR can

take the form

Trenv,C |Ψ(λ)〉〈Ψ(λ)| =
∑
b

pb(λ) ρABb ⊗ ρRb , (11.16)

where, on each branch, AB and R are unentangled (even though they are correlated

globally). Such entanglement structure is required in order to avoid, for example,

a firewall arising from broken entanglement across the AB subsystems between the

black hole and outgoing late radiation modes. That is, on each branch defining a

classical spacetime geometry, we let the quantum fields take the vacuum configura-

tion at the horizon, as required by Postulate 4.

Even though AB and R are unentangled on every branch, there is still nonzero

von Neumann entropy for AB and R globally. Consider the reduced state on AB

alone,

ρAB(λ) =
∑
b

pb(λ)ρABb . (11.17)

The Holevo information [304,305] of ρAB is given by

χ(ρAB) = S(ρAB)−
∑
b

pb S(ρABb ) (11.18)

and is an upper bound on the accessible information of ρAB and its corresponding

ensemble. More importantly for our purposes, it is bounded by the Shannon entropy,

−
∑

b pb log pb, with saturation occurring when each ρABb has orthogonal support

[304]. Moreover, S(ρAB) can be bounded from below by using the concavity of
13Alternatively, we can think of the mental exercise discussed here as taking place within a

collection of branches B that initially have the same geometry: We first project onto a collection of
branches |Ψb〉, b ∈ B, on which we make this decomposition of Heff into ABRC and we then study
further evolution of entanglement.
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entanglement entropy. Putting these bounds together, we have

∑
b

pb S(ρABb ) ≤ S(ρAB) ≤
∑
b

pb S(ρABb )−
∑
b

pb log pb . (11.19)

In particular, S(ρAB) can in fact be quite large. For example, in the case where

each ρABb has orthogonal support, then S(ρAB) ≈ logN if each pb ≈ 1/N , where

N is the number of branches (i.e., the sum over b runs from 1 to N). An old black

hole of mass M will have been emitting Hawking quanta of typical energy . 1/M ,

so greater than O(M/(1/M)) = O(M2) emissions will have occurred in the black

hole’s past. If each emission branches the global wave function by a constant factor,

then the scaling of N goes as eM2 . In order to specify a branch, we must choose

not only the mass and momentum of the black hole itself, but the entire exterior

spacetime geometry, which, via back reaction, depends on the distribution of all the

Hawking radiation between the black hole and I +. It is therefore plausible that each

Hawking emission indeed branches the global wave function, as long as the emitted

quantum becomes entangled with the environment.14 Had we only considered the

macroscopic properties of the black hole itself, the number of branches would be

much smaller [19]. However, as long as there is anything else in the universe aside

from the black hole for a Hawking quantum to interact with on its way to infinity, it

is reasonable to treat the back reaction of the Hawking quantum on the spacetime as

decohering the wave function into states of definite geometry. Even with no exterior

matter outside the black hole, it is conceivable that the gravitational interaction

of Hawking quanta is itself enough to decohere the geometry; an exploration of

this question and its possible connection to recent work on soft gravitons and their

associated symmetries [299] lies beyond the scope of the present work. Note that,

in our setup, S(ρAB) scales in the same way as the Bekenstein-Hawking entropy of

the black hole, SBH ∼M2, so it may be possible to recover Postulate 3, Sbh = SBH,

via the branching structure alone,15 but the details of the branch counting also lie
14If Hawking quanta never become entangled with something that could be labeled “an envi-

ronment,” branching would not occur. In that case, however, there is no sensible way to assign a
semiclassical geometry to the state and it is not appropriate to speak of a black hole, much less a
firewall.

15We note that a similar argument was made in the context of the fuzzball program in Ref. [306].
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beyond the scope of the present work. Such an analysis of the branching structure

would be necessary in order to guarantee that no-drama states are indeed generic for

a randomly-selected black hole horizon in the global wave function; here we merely

want to emphasize that such states are plausible.

11.3 Operational tests of the information puzzle

We now turn to the question of how a pair of observers would practically implement

the AMPS thought experiment [18] to probe the state of the black hole inside and

outside the event horizon. Our main concern is to understand this implementation

in the context of unitarity of the global wave function. In particular, we will ar-

gue that the branching structure of the global wave function is such that the state

vectors that are robust under Hamiltonian evolution—the pointer states into which

the global wave function branches—are very different inside and outside the horizon.

Specifically, the pointer bases corresponding to measurements made by an interior,

infalling observer and an external, static observer are related to each other via non-

trivial transformations that manifest the complexity of black hole scrambling. This

means that it is impossible for both the infalling observer behind the horizon and

the external observer to exist on the same semiclassical branch of the wave function

at their level of coarse-graining.16

Let us suppose that, as part of the initial asymptotic data, we specify that there are

two detectors at i−, Dinf and Dst, corresponding to infalling and stationary observers

and that each begins in some ready state d0. Assume that the detectors are local,

can be switched on and off, and are identical in operation. We can decompose the

effective Hilbert space as

Heff = H̃eff ⊗Dinf ⊗Dst. (11.20)

Specifically, we isolate the finite-dimensional Hilbert spaces Dinf and Dst that repre-

sent the detectors’ internal degrees of freedom that ultimately couple to some local

system to realize measurement. We suppose that all of the detectors’ other degrees
16See Ref. [281] for a discussion of related ideas.



247

of freedom, such as kinematic degrees of freedom like position and momentum, are

a part of H̃eff. At intermediate parameter values λ with the detectors switched off,

we therefore write the global wave function as

|Ψ(λ)〉 =
∑
b

αb(λ)|ψ̃b〉eff ⊗ |d0〉Dinf
⊗ |d0〉Dst ⊗ |εb〉env . (11.21)

Our aim is to consider a situation in which one detector, Dst, remains stationary

outside of a black hole and the other, Dinf , falls into the same black hole and to

compare the measurements reported by the two detectors. We therefore begin by

projecting onto a branch of the wave function corresponding to a single spacetime so

that the two detectors agree on the background geometry. The object of interest is

thus a particular branch b∗ of the form |ψ̃b?〉eff ⊗ |d0〉Dinf
⊗ |d0〉Dst . For convenience,

we have temporarily dropped the Henv factor because it plays no role once we have

projected onto a branch (keeping in mind that Henv is necessary for further evolution

of the initial branch to be unitary).

Equipped with a notion of background spacetime, we can now attempt to interpret

Heff in terms of spacetime regions and in the context of measurements performed

by the detectors on the branch b?. Suppose that, on the branch in question, Dinf

falls into the black hole while Dst remains outside. Further suppose that, on this

branch, at some moment, both detectors switch on and become entangled with the

local degrees of freedom that they probe. Let us define factors of Heff on a Cauchy

surface chosen such that its intersection with the infalling detector’s worldline occurs

inside the black hole.

Consider first the following decomposition of Heff, appropriate from the point of view

of the stationary detector:

Heff = A⊗ S ⊗ E ⊗Dst

≡ S ⊗Dst ⊗ E . (11.22)

Here,
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• A is the black hole Hilbert space, which, in the spirit of complementarity, we

suppose represents states of the stretched horizon,

• Dst is the Hilbert space of the stationary detector,

• S is the collection of local degrees of freedom that constitute the system that

the stationary detector measures, and

• E are any remaining exterior degrees of freedom. Altogether, E ≡ A⊗E is the

environment for the stationary detector.

Similarly, we can also decompose Heff in a way that is appropriate for an infalling

description:

Heff = Dinf ⊗ T ⊗ F ⊗G

≡ Dinf ⊗ T ⊗F . (11.23)

Here,

• Dinf is the Hilbert space of the infalling detector,

• T is the system that the interior detector measures, and

• F and G are other degrees of freedom inside and outside the black hole, respec-

tively. Altogether, F ≡ F ⊗G is the environment for the stationary detector.

How the various Hilbert space decompositions overlap is illustrated in Fig. 11.2.

One of the key results of black hole complementarity is that horizon dynamics, as

seen by a stationary exterior observer, appear to be approximately typical with

respect to the Haar measure on sufficiently long timescales. This is discussed in,

for example, Refs. [253, 257].17 In the remainder of this section, we will find that

black hole scrambling has important implications for the structure of the global wave

function in terms of the pointer bases of interior and exterior observers.
17Ref. [133] discusses classical black hole scrambling in the context of the membrane paradigm.
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Dst

Dinf

A

S ⊗ E

T ⊗ F

i0

I +

I −

Horizon

Cauchy surface

Interior Exterior

Figure 11.2: Diagrammatic representation of the decompositions of Heff in
Eqs. (11.22) and (11.23) on a Penrose diagram representing some particular semi-
classical branch b?. The detectors and their associated internal Hilbert spaces, Dst

and Dinf , are denoted by the white boxes. The location of the stretched horizon and
its associated Hilbert space, A, is denoted by the gray circle. According to black
hole complementarity, we suppose that A = Dinf ⊗ T ⊗ F are identified as the same
Hilbert space. This is indicated by the shading of the part of the Cauchy surface in
the black hole interior. The interior Hilbert space factors and the interior geometry
are only resolved by observers who cross the black hole’s horizon. From the point
of view of an exterior observer, these degrees of freedom are precisely the degrees
of freedom of the stretched horizon. Also note that, according to Eqs. (11.22) and
(11.23), G = Dst ⊗ S ⊗ E.

Let us first develop some intuition for what to expect. Consider an infalling object

crossing the stretched horizon as seen by either an observer falling along with the ob-

ject or a stationary observer at some fixed position outside of the black hole. While

for the infalling observer the object will seem to pass through the horizon without

any apparent effect, for the external observer the object will appear to scramble

across and thermalize with the stretched horizon. If the infalling object is a classi-

cal object—which in particular means that it is robust against decoherence due to

monitoring by its environment in the infalling frame—this picture suggests that the

object is explicitly not robust against decoherence due to environmental interactions

in the frame of the external observer, in which it is seen to quantum-mechanically

scramble and delocalize across the entirety of the stretched horizon. As the states

that are robust against decoherence are by definition the pointer states, this high-

lights the fact that the pointer states in the infalling frame, when viewed in the

frame of the static external observer, appear to be totally scrambled and delocal-
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ized. In the context of black holes, this feature has traditionally been implemented

by a unitary 2-design [42], which up to its second moment is indistinguishable from

a Haar-typical unitary.

Consider decomposing the particular state |ψb?〉eff according to the two branching

structures implied by the two detectors and their decohering dynamics:

|ψb?〉eff =
∑
i

c′i|si〉S |di〉Dst |αi〉E (stationary)

|ψb?〉eff =
∑
j

c′′j |sj〉T |dj〉Dinf
|βj〉F (infalling) ,

(11.24)

where “stationary” and “infalling” remind us whether we are expressing the state in

the basis of the detector stationary outside or infalling inside the black hole. Let us

focus on the branching structure from the stationary point of view and start writing

E in terms of Hilbert space subfactors as |αi〉E =
∑

kl µ
i
kl|φk〉A|el〉E . A state |φk〉A

describing the stretched horizon can be decomposed into its constituent factors in

Dinf , T , and F ,

|φk〉A =
∑
abc

Ukabc|sa〉T |db〉Dinf
|fc〉F , (11.25)

where Ukabc implements a unitary change of basis from abc to k. Black hole scrambling

implies that this unitary is, to a good approximation, Haar-typical for a generic

choice of basis for A and its constituent Hilbert-space factors. We therefore have

|ψb?〉eff =
∑
i

c′i|si〉S |di〉Dst

∑
kl

µikl

(∑
abc

Ukabc|sa〉T |db〉Dinf
|fc〉F

)
|el〉E . (11.26)

Rearranging the sums, we have

|ψb?〉eff =
∑
ab

|sa〉T |db〉Dinf

∑
c

[∑
i

c′i

(∑
l

[∑
k

µiklU
k
abc

]
|el〉E

)
|si〉S |di〉Dst

]
|fc〉F

=
∑
a

c′′a|sa〉T |da〉Dinf
|βa〉F .

(11.27)

To recap: In Eq. (11.26), we wrote each |αi〉E in an orthonormal basis for the horizon

(A) and E, taking each horizon state and expanding it in the pointer state basis for

T and Dinf , along with some arbitrary basis for F . We can also express |ψb?〉eff in

the pointer basis of the infalling detector, writing it with the branching structure as
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given in the second line of Eq. (11.27). Hence, if both the infalling and stationary

detector have decohered, it must be that Ukabc = 0 if a 6= b so that

|ψb?〉eff =
∑
a

|sa〉T |da〉Dinf

∑
c

[∑
i

c′i

(∑
l

[∑
k

µiklU
k
aac

]
|el〉E

)
|si〉S |di〉Dst

]
|fc〉F

≡
∑
a

|sa〉T |da〉Dinf

∑
c

[∑
i

c′i|ẽiac〉E |si〉S |di〉Dst

]
|fc〉F︸ ︷︷ ︸

c′′a |βa〉F

.

(11.28)

That the horizon scrambles means that the components Ukaac are approximately

typical with respect to the Haar measure.

Were we to find that
∑

k µ
i
klU

k
aac ∝ δia, then the sum in Eq. (11.28) would collapse

to a single term:

|ψb?〉eff =
∑
a

|sa〉T |da〉Dinf
c′a|sa〉S |da〉Dst

(∑
c

|ẽaac〉E |fc〉F

)
. (11.29)

Such a situation would be pathological because it would mean that pointer states

of the black hole exterior would correlate perfectly with states of the black hole

interior, which would mean that they would be stable under the action of their joint

environment, i.e., classical and long-lived. This would seem to contradict what is

believed about black hole fast scrambling. Moreover, such a conspiracy between the

matrices µ and U is implausible since U is Haar-typical and furthermore dependent

on the detector that we choose. To see this, note that U describes how the state

of the stretched horizon decomposes in the infalling detector’s pointer basis, while

µ is independent of the detector properties, simply describing the joint state of the

stretched horizon and exterior environment, and has no reason to be correlated with

the Haar-typical properties of U .

Thus, we have shown that the pointer bases for the interior and exterior observer are

not compatible. Specifically, Eq. (11.28) shows that the environment states |βa〉F for

the infalling detector are given by nontrivial transformations (under µiklU
k
aac) of the

joint state of the exterior system, detector, and environment, along with the interior

environment. Similarly, the environment states associated with the pointer basis for
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the exterior detector are given by nontrivial transformations of the joint state of the

interior system, detector, and environment, along with the exterior environment.

What this means physically is that it is not possible to isolate a single branch of

the wave function, via a natural dynamical decoherence process, that corresponds to

a pointer state for the interior and exterior detector simultaneously. This property

of the global wave function reconciles the complementary points of view of infalling

and stationary observers, without requiring the existence of a firewall to preserve

unitarity. Black hole complementarity is therefore implemented in Hilbert space in

terms of the relationship between pointer states as defined by different observers

across a horizon.

11.4 Conclusions

The information paradox, as sharpened by AMPS, seemingly necessitated modifying

a cherished pillar of modern physics in effective field theory, relativity, or unitarity.

In this work, we argued using decoherence and pointer bases that such a dramatic

conclusion is not directly implied by the ingredients of the AMPS discussion. In

particular, different components of the AMPS argument apply either globally or

on individual branches of the wave function: unitarity applies to the global wave

function, while the absence of drama at the horizon is a statement about individual

semiclassical branches. They can therefore, as far as we can tell, be satisfied si-

multaneously without violating unitarity, monogamy of entanglement, or any other

principles of quantum mechanics.

Since the existence of firewalls would stand in gross violation of our classical intuition,

we should judge them to be unlikely unless their absence would require violating an

even-more-cherished belief, which we have argued it does not. Given our best current

understanding of quantum mechanics and black hole thermodynamics, there is no

reason to insist that an observer falling into a black hole sees anything other than a

reason to regret their decision.



253

Acknowledgements

We thank Ahmed Almeiri, Raphael Bousso, William Donnelly, Masahiro Hotta,

Cindy Keeler, Yasunori Nomura, Don N. Page, Guillaume Verdon, and Koji Yam-

aguchi for helpful discussions. This work was supported by the U.S. Department

of Energy, Office of Science, Office of High Energy Physics, under Award Number

DE-SC0011632. N.B. was supported by the National Science Foundation, under

grant number 82248-13067-44-PHPXH. A.C.-D. was supported by a Beatrice and

Sai-Wai Fu Graduate Fellowship in Physics and the Gordon and Betty Moore Foun-

dation through Grant 776 to the Caltech Moore Center for Theoretical Cosmology

and Physics. J.P. was supported in part by the Simons Foundation and in part

by the Natural Sciences and Engineering Research Council of Canada. G.N.R. was

supported by the Miller Institute for Basic Research in Science at the University of

California, Berkeley.



254

BIBLIOGRAPHY

[1] N. Bao and A. Chatwin-Davies, “Puzzles and pitfalls involving
Haar-typicality in holography,” arXiv:1708.08561.

[2] N. Bao and A. Chatwin-Davies, “The complexity of identifying
Ryu-Takayanagi surfaces in AdS3/CFT2,” JHEP 11 (2016) 034,
arXiv:1609.01727.

[3] N. Bao, C. Cao, S. M. Carroll, A. Chatwin-Davies, N. Hunter-Jones,
J. Pollack, and G. N. Remmen, “Consistency conditions for an AdS
multiscale entanglement renormalization ansatz correspondence,” Phys. Rev.
D 91 (2015) 125036, arXiv:1504.06632.

[4] N. Bao, C. Cao, S. M. Carroll, and A. Chatwin-Davies, “De Sitter space as a
tensor network: Cosmic no-hair, complementarity, and complexity,” Phys.
Rev. D 96 (2017) 123536, arXiv:1709.03513.

[5] S. M. Carroll and A. Chatwin-Davies, “Cosmic equilibration: A holographic
no-hair theorem from the generalized second law,” Phys. Rev. D 97 (2018)
046012, arXiv:1703.09241.

[6] A. Chatwin-Davies, A. Kempf, and R. T. W. Martin, “Natural covariant
Planck scale cutoffs and the cosmic microwave background spectrum,” Phys.
Rev. Lett. 119 (2017) 031301, arXiv:1612.06445.

[7] A. Chatwin-Davies, A. S. Jermyn, and S. M. Carroll, “How to recover a qubit
that has fallen into a black hole,” Phys. Rev. Lett. 115 (2015) 261302,
arXiv:1507.03592.

[8] N. Bao, A. Bouland, A. Chatwin-Davies, J. Pollack, and H. Yuen, “Rescuing
complementarity with little drama,” JHEP 12 (2016) 026,
arXiv:1607.05141.

[9] N. Bao, S. M. Carroll, A. Chatwin-Davies, J. Pollack, and G. N. Remmen,
“Branches of the black hole wave function need not contain firewalls,”
arXiv:1712.04955.

[10] D. E. Bruschi, T. Ralph, I. Fuentes, T. Jennewein, and M. Razavi,
“Spacetime effects on satellite-based quantum communications,” Phys. Rev.
D 90 (2014) 045041, arXiv:1309.3088.

[11] P. Stamp, “Correlated worldline theory of quantum gravity: low-energy
consequences & table-top tests.” Talk given at the Caltech IQI Seminar,
November, 2015.

[12] Q. Lin, J. Rosenberg, D. Chang, R. Camacho, M. Eichenfield, K. J. Vahala,
and O. Painter, “Coherent mixing of mechanical excitations in
nano-optomechanical structures,” Nat. Photonics 4 (2010) 236–242,
arXiv:0908.1128.

http://arxiv.org/abs/1708.08561
http://dx.doi.org/10.1007/JHEP11(2016)034
http://arxiv.org/abs/1609.01727
http://dx.doi.org/10.1103/PhysRevD.91.125036
http://dx.doi.org/10.1103/PhysRevD.91.125036
http://arxiv.org/abs/1504.06632
http://dx.doi.org/10.1103/PhysRevD.96.123536
http://dx.doi.org/10.1103/PhysRevD.96.123536
http://arxiv.org/abs/1709.03513
http://dx.doi.org/10.1103/PhysRevD.97.046012
http://dx.doi.org/10.1103/PhysRevD.97.046012
http://arxiv.org/abs/1703.09241
http://dx.doi.org/10.1103/PhysRevLett.119.031301
http://dx.doi.org/10.1103/PhysRevLett.119.031301
http://arxiv.org/abs/1612.06445
http://dx.doi.org/10.1103/PhysRevLett.115.261302
http://arxiv.org/abs/1507.03592
http://dx.doi.org/10.1007/JHEP12(2016)026
http://arxiv.org/abs/1607.05141
http://arxiv.org/abs/1712.04955
http://dx.doi.org/10.1103/PhysRevD.90.045041
http://dx.doi.org/10.1103/PhysRevD.90.045041
http://arxiv.org/abs/1309.3088
http://dx.doi.org/10.1038/nphoton.2010.5
http://arxiv.org/abs/0908.1128


255

[13] J. D. Bekenstein, “Generalized second law of thermodynamics in black hole
physics,” Phys. Rev. D 9 (1974) 3292–3300.

[14] R. Bousso, “A covariant entropy conjecture,” JHEP 07 (1999) 004,
arXiv:hep-th/9905177.

[15] J. M. Maldacena, “The large N limit of superconformal field theories and
supergravity,” Int. J. Theor. Phys. 38 (1999) 1113–1133,
arXiv:hep-th/9711200. [Adv. Theor. Math. Phys. 2 (1998) 231].

[16] E. Witten, “Anti-de Sitter space and holography,” Adv. Theor. Math. Phys. 2
(1998) 253–291, arXiv:hep-th/9802150.

[17] S. Ryu and T. Takayanagi, “Holographic derivation of entanglement entropy
from AdS/CFT,” Phys. Rev. Lett. 96 (2006) 181602, arXiv:hep-th/0603001.

[18] A. Almheiri, D. Marolf, J. Polchinski, and J. Sully, “Black holes:
complementarity or firewalls?,” JHEP 02 (2013) 062, arXiv:1207.3123.

[19] A. Almheiri, D. Marolf, J. Polchinski, D. Stanford, and J. Sully, “An apologia
for firewalls,” JHEP 09 (2013) 018, arXiv:1304.6483.

[20] C. Cao, S. M. Carroll, and S. Michalakis, “Space from Hilbert space:
Recovering geometry from bulk entanglement,” Phys. Rev. D 95 (2017)
024031, arXiv:1606.08444.

[21] C. Cao and S. M. Carroll, “Bulk entanglement gravity without a boundary:
Towards finding Einstein’s equation in Hilbert space,” arXiv:1712.02803.

[22] K. K. Boddy, S. M. Carroll, and J. Pollack, “How decoherence affects the
probability of slow-roll eternal inflation,” arXiv:1612.04894.

[23] L. Susskind, L. Thorlacius, and J. Uglum, “The stretched horizon and black
hole complementarity,” Phys. Rev. D 48 (1993) 3743–3761,
arXiv:hep-th/9306069.

[24] M. Van Raamsdonk, “Building up spacetime with quantum entanglement,”
Gen. Rel. Grav. 42 (2010) 2323–2329, arXiv:1005.3035. [Int. J. Mod.
Phys.D19,2429(2010)].

[25] N. Bao, S. Nezami, H. Ooguri, B. Stoica, J. Sully, and M. Walter, “The
holographic entropy cone,” JHEP 09 (2015) 130, arXiv:1505.07839.

[26] A. Almheiri, X. Dong, and D. Harlow, “Bulk locality and quantum error
correction in AdS/CFT,” JHEP 04 (2015) 163, arXiv:1411.7041.

[27] X. Dong, D. Harlow, and A. C. Wall, “Reconstruction of bulk operators
within the entanglement wedge in gauge-gravity duality,” Phys. Rev. Lett.
117 (2016) 021601, arXiv:1601.05416.

[28] N. Bao and I. F. Halpern, “Holographic inequalities and entanglement of
purification,” JHEP 03 (2018) 006, arXiv:1710.07643.

http://dx.doi.org/10.1103/PhysRevD.9.3292
http://dx.doi.org/10.1088/1126-6708/1999/07/004
http://arxiv.org/abs/hep-th/9905177
http://dx.doi.org/10.1023/A:1026654312961, 10.4310/ATMP.1998.v2.n2.a1
http://arxiv.org/abs/hep-th/9711200
http://dx.doi.org/10.4310/ATMP.1998.v2.n2.a2
http://dx.doi.org/10.4310/ATMP.1998.v2.n2.a2
http://arxiv.org/abs/hep-th/9802150
http://dx.doi.org/10.1103/PhysRevLett.96.181602
http://arxiv.org/abs/hep-th/0603001
http://dx.doi.org/10.1007/JHEP02(2013)062
http://arxiv.org/abs/1207.3123
http://dx.doi.org/10.1007/JHEP09(2013)018
http://arxiv.org/abs/1304.6483
http://dx.doi.org/10.1103/PhysRevD.95.024031
http://dx.doi.org/10.1103/PhysRevD.95.024031
http://arxiv.org/abs/1606.08444
http://arxiv.org/abs/1712.02803
http://arxiv.org/abs/1612.04894
http://dx.doi.org/10.1103/PhysRevD.48.3743
http://arxiv.org/abs/hep-th/9306069
http://dx.doi.org/10.1007/s10714-010-1034-0, 10.1142/S0218271810018529
http://arxiv.org/abs/1005.3035
http://dx.doi.org/10.1007/JHEP09(2015)130
http://arxiv.org/abs/1505.07839
http://dx.doi.org/10.1007/JHEP04(2015)163
http://arxiv.org/abs/1411.7041
http://dx.doi.org/10.1103/PhysRevLett.117.021601
http://dx.doi.org/10.1103/PhysRevLett.117.021601
http://arxiv.org/abs/1601.05416
http://dx.doi.org/10.1007/JHEP03(2018)006
http://arxiv.org/abs/1710.07643


256

[29] R. Bousso and N. Engelhardt, “Generalized second law for cosmology,” Phys.
Rev. D 93 (2016) 024025, arXiv:1510.02099.

[30] Virgo, LIGO Scientific Collaboration, B. P. Abbott et al., “Observation
of gravitational waves from a binary black hole merger,” Phys. Rev. Lett. 116
(2016) 061102, arXiv:1602.03837.

[31] F. Pastawski, B. Yoshida, D. Harlow, and J. Preskill, “Holographic quantum
error-correcting codes: Toy models for the bulk/boundary correspondence,”
JHEP 06 (2015) 149, arXiv:1503.06237.

[32] V. E. Hubeny, M. Rangamani, and T. Takayanagi, “A covariant holographic
entanglement entropy proposal,” JHEP 07 (2007) 062, arXiv:0705.0016.

[33] R. Bousso, Z. Fisher, J. Koeller, S. Leichenauer, and A. C. Wall, “Proof of
the quantum null energy condition,” Phys. Rev. D 93 (2016) 024017,
arXiv:1509.02542.

[34] R. Bousso, Z. Fisher, S. Leichenauer, and A. C. Wall, “Quantum focusing
conjecture,” Phys. Rev. D 93 (2016) 064044, arXiv:1506.02669.

[35] A. Singh and S. M. Carroll, in preparation.

[36] R. Orus, “A practical introduction to tensor networks: Matrix product states
and projected entangled pair states,” Annals Phys. 349 (2014) 117–158,
arXiv:1306.2164.

[37] C. Cheung and G. N. Remmen, “Naturalness and the weak gravity
conjecture,” Phys. Rev. Lett. 113 (2014) 051601, arXiv:1402.2287.

[38] C. Cheung and G. N. Remmen, “Infrared consistency and the weak gravity
conjecture,” JHEP 12 (2014) 087, arXiv:1407.7865.

[39] D. N. Page, “Average entropy of a subsystem,” Phys. Rev. Lett. 71 (1993)
1291–1294, arXiv:gr-qc/9305007.

[40] D. N. Page, “Information in black hole radiation,” Phys. Rev. Lett. 71 (1993)
3743–3746, arXiv:hep-th/9306083.

[41] D. N. Page, “Time dependence of Hawking radiation entropy,” JCAP 1309
(2013) 028, arXiv:1301.4995.

[42] P. Hayden and J. Preskill, “Black holes as mirrors: Quantum information in
random subsystems,” JHEP 09 (2007) 120, arXiv:0708.4025.

[43] S. W. Hawking, “Particle creation by black holes,” Commun. Math. Phys. 43
(1975) 199–220.

[44] J. Polchinski, “The black hole information problem,” in Proceedings,
Theoretical Advanced Study Institute in Elementary Particle Physics: New
Frontiers in Fields and Strings (TASI 2015): Boulder, CO, USA, June 1-26,
2015, pp. 353–397. 2017. arXiv:1609.04036.

http://dx.doi.org/10.1103/PhysRevD.93.024025
http://dx.doi.org/10.1103/PhysRevD.93.024025
http://arxiv.org/abs/1510.02099
http://dx.doi.org/10.1103/PhysRevLett.116.061102
http://dx.doi.org/10.1103/PhysRevLett.116.061102
http://arxiv.org/abs/1602.03837
http://dx.doi.org/10.1007/JHEP06(2015)149
http://arxiv.org/abs/1503.06237
http://dx.doi.org/10.1088/1126-6708/2007/07/062
http://arxiv.org/abs/0705.0016
http://dx.doi.org/10.1103/PhysRevD.93.024017
http://arxiv.org/abs/1509.02542
http://dx.doi.org/10.1103/PhysRevD.93.064044
http://arxiv.org/abs/1506.02669
http://dx.doi.org/10.1016/j.aop.2014.06.013
http://arxiv.org/abs/1306.2164
http://dx.doi.org/10.1103/PhysRevLett.113.051601
http://arxiv.org/abs/1402.2287
http://dx.doi.org/10.1007/JHEP12(2014)087
http://arxiv.org/abs/1407.7865
http://dx.doi.org/10.1103/PhysRevLett.71.1291
http://dx.doi.org/10.1103/PhysRevLett.71.1291
http://arxiv.org/abs/gr-qc/9305007
http://dx.doi.org/10.1103/PhysRevLett.71.3743
http://dx.doi.org/10.1103/PhysRevLett.71.3743
http://arxiv.org/abs/hep-th/9306083
http://dx.doi.org/10.1088/1475-7516/2013/09/028
http://dx.doi.org/10.1088/1475-7516/2013/09/028
http://arxiv.org/abs/1301.4995
http://dx.doi.org/10.1088/1126-6708/2007/09/120
http://arxiv.org/abs/0708.4025
http://dx.doi.org/10.1007/BF02345020, 10.1007/BF01608497
http://dx.doi.org/10.1007/BF02345020, 10.1007/BF01608497
http://dx.doi.org/10.1142/9789813149441_0006
http://arxiv.org/abs/1609.04036


257

[45] D. Harlow, “Jerusalem lectures on black holes and quantum information,”
Rev. Mod. Phys. 88 (2016) 015002, arXiv:1409.1231.

[46] E. Lubkin, “Entropy of an n-system from its correlation with a k-reservoir,”
J. Math. Phys 19 (1978) 1028.

[47] S. Lloyd and H. Pagels, “Complexity as thermodynamic depth,” Annals Phys.
188 (1988) 186.

[48] J. Preskill, “Quantum Shannon theory,” arXiv:1604.07450.

[49] M. Rangamani and M. Rota, “Entanglement structures in qubit systems,” J.
Phys. A48 (2015) 385301, arXiv:1505.03696.

[50] P. Hayden, M. Headrick, and A. Maloney, “Holographic mutual information
is monogamous,” Phys. Rev. D 87 (2013) 046003, arXiv:1107.2940.

[51] N. Bao, S. Blitz, and B. Stoica, “Holographic entropy cone measures,”
arXiv:1701.03498.

[52] J. Cotler, P. Hayden, G. Salton, B. Swingle, and M. Walter, “Entanglement
wedge reconstruction via universal recovery channels,” arXiv:1704.05839.

[53] S. H. Shenker and D. Stanford, “Black holes and the butterfly effect,” JHEP
03 (2014) 067, arXiv:1306.0622.

[54] P. Hayden, S. Nezami, X.-L. Qi, N. Thomas, M. Walter, and Z. Yang,
“Holographic duality from random tensor networks,” JHEP 11 (2016) 009,
arXiv:1601.01694.

[55] T. Banks, M. R. Douglas, G. T. Horowitz, and E. J. Martinec, “AdS
dynamics from conformal field theory,” arXiv:hep-th/9808016.

[56] A. W. Peet and S. F. Ross, “Microcanonical phases of string theory on
AdS(m) x S**n,” JHEP 12 (1998) 020, arXiv:hep-th/9810200.

[57] S. G. Avery and D. A. Lowe, “Typical event horizons in AdS/CFT,” JHEP
01 (2016) 082, arXiv:1501.05573.

[58] I. Agol, J. Hass, and W. P. Thurston, “The computational complexity of knot
genus and spanning area,” Trans. Amer. Math. Soc. 358 (2006) 3821,
arXiv:math/0205057.

[59] M. Freedman and M. Headrick, “Bit threads and holographic entanglement,”
Commun. Math. Phys. 352 (2017) 407–438, arXiv:1604.00354.

[60] G. Chartrand and O. R. Oellermann, Applied and algorithmic graph theory.
McGraw-Hill, New York, New York, 1993.

[61] W. Ballmann, Lectures on spaces of nonpositive curvature. Birkhäuser, Basel,
1995.

[62] P. Calabrese and J. L. Cardy, “Entanglement entropy and quantum field
theory,” J. Stat. Mech. 0406 (2004) P06002, arXiv:hep-th/0405152.

http://dx.doi.org/10.1103/RevModPhys.88.015002
http://arxiv.org/abs/1409.1231
http://dx.doi.org/10.1063/1.523763
http://dx.doi.org/10.1016/0003-4916(88)90094-2
http://dx.doi.org/10.1016/0003-4916(88)90094-2
http://arxiv.org/abs/1604.07450
http://dx.doi.org/10.1088/1751-8113/48/38/385301
http://dx.doi.org/10.1088/1751-8113/48/38/385301
http://arxiv.org/abs/1505.03696
http://dx.doi.org/10.1103/PhysRevD.87.046003
http://arxiv.org/abs/1107.2940
http://arxiv.org/abs/1701.03498
http://arxiv.org/abs/1704.05839
http://dx.doi.org/10.1007/JHEP03(2014)067
http://dx.doi.org/10.1007/JHEP03(2014)067
http://arxiv.org/abs/1306.0622
http://dx.doi.org/10.1007/JHEP11(2016)009
http://arxiv.org/abs/1601.01694
http://arxiv.org/abs/hep-th/9808016
http://dx.doi.org/10.1088/1126-6708/1998/12/020
http://arxiv.org/abs/hep-th/9810200
http://dx.doi.org/10.1007/JHEP01(2016)082
http://dx.doi.org/10.1007/JHEP01(2016)082
http://arxiv.org/abs/1501.05573
http://dx.doi.org/10.1090/S0002-9947-05-03919-X
http://arxiv.org/abs/math/0205057
http://dx.doi.org/10.1007/s00220-016-2796-3
http://arxiv.org/abs/1604.00354
http://dx.doi.org/10.1007/978-3-0348-9240-7
http://dx.doi.org/10.1088/1742-5468/2004/06/P06002
http://arxiv.org/abs/hep-th/0405152


258

[63] C. Holzhey, F. Larsen, and F. Wilczek, “Geometric and renormalized entropy
in conformal field theory,” Nucl. Phys. B424 (1994) 443–467,
arXiv:hep-th/9403108.

[64] H. Maxfield, “Entanglement entropy in three dimensional gravity,” JHEP 04
(2015) 031, arXiv:1412.0687.

[65] N. Lashkari, M. B. McDermott, and M. Van Raamsdonk, “Gravitational
dynamics from entanglement ’thermodynamics’,” JHEP 04 (2014) 195,
arXiv:1308.3716.

[66] T. Faulkner, M. Guica, T. Hartman, R. C. Myers, and M. Van Raamsdonk,
“Gravitation from entanglement in holographic CFTs,” JHEP 03 (2014) 051,
arXiv:1312.7856.

[67] B. Swingle and M. Van Raamsdonk, “Universality of gravity from
entanglement,” arXiv:1405.2933.

[68] M. Headrick and V. E. Hubeny, “Riemannian and Lorentzian flow-cut
theorems,” arXiv:1710.09516.

[69] A. C. Wall, “Maximin surfaces, and the strong subadditivity of the covariant
holographic entanglement entropy,” Class. Quant. Grav. 31 (2014) 225007,
arXiv:1211.3494.

[70] M. Banados, C. Teitelboim, and J. Zanelli, “The black hole in
three-dimensional space-time,” Phys. Rev. Lett. 69 (1992) 1849–1851,
arXiv:hep-th/9204099.

[71] L. Susskind, “The world as a hologram,” J. Math. Phys. 36 (1995)
6377–6396, arXiv:hep-th/9409089.

[72] G. ’t Hooft, “Dimensional reduction in quantum gravity,”
arXiv:gr-qc/9310026.

[73] O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri, and Y. Oz, “Large N
field theories, string theory and gravity,” Phys. Rept. 323 (2000) 183–386,
arXiv:hep-th/9905111.

[74] A. Lewkowycz and J. Maldacena, “Generalized gravitational entropy,” JHEP
08 (2013) 090, arXiv:1304.4926.

[75] G. Vidal, “Class of quantum many-body states that can Be efficiently
simulated,” Phys. Rev. Lett. 101 (2008) 110501, quant-ph/0610099.

[76] B. Swingle, “Entanglement renormalization and holography,” Phys. Rev. D
86 (2012) 065007, arXiv:0905.1317.

[77] X.-L. Qi, “Exact holographic mapping and emergent space-time geometry,”
arXiv:1309.6282.

[78] B. Czech, L. Lamprou, S. McCandlish, and J. Sully, “Integral geometry and
holography,” JHEP 10 (2015) 175, arXiv:1505.05515.

http://dx.doi.org/10.1016/0550-3213(94)90402-2
http://arxiv.org/abs/hep-th/9403108
http://dx.doi.org/10.1007/JHEP04(2015)031
http://dx.doi.org/10.1007/JHEP04(2015)031
http://arxiv.org/abs/1412.0687
http://dx.doi.org/10.1007/JHEP04(2014)195
http://arxiv.org/abs/1308.3716
http://dx.doi.org/10.1007/JHEP03(2014)051
http://arxiv.org/abs/1312.7856
http://arxiv.org/abs/1405.2933
http://arxiv.org/abs/1710.09516
http://dx.doi.org/10.1088/0264-9381/31/22/225007
http://arxiv.org/abs/1211.3494
http://dx.doi.org/10.1103/PhysRevLett.69.1849
http://arxiv.org/abs/hep-th/9204099
http://dx.doi.org/10.1063/1.531249
http://dx.doi.org/10.1063/1.531249
http://arxiv.org/abs/hep-th/9409089
http://arxiv.org/abs/gr-qc/9310026
http://dx.doi.org/10.1016/S0370-1573(99)00083-6
http://arxiv.org/abs/hep-th/9905111
http://dx.doi.org/10.1007/JHEP08(2013)090
http://dx.doi.org/10.1007/JHEP08(2013)090
http://arxiv.org/abs/1304.4926
http://dx.doi.org/10.1103/PhysRevLett.101.110501
http://arxiv.org/abs/quant-ph/0610099
http://dx.doi.org/10.1103/PhysRevD.86.065007
http://dx.doi.org/10.1103/PhysRevD.86.065007
http://arxiv.org/abs/0905.1317
http://arxiv.org/abs/1309.6282
http://dx.doi.org/10.1007/JHEP10(2015)175
http://arxiv.org/abs/1505.05515


259

[79] C. Bény, “Causal structure of the entanglement renormalization ansatz,” New
J. Phys. 15 (Feb., 2013) 023020, arXiv:1110.4872.

[80] G. Evenbly and G. Vidal, “Algorithms for entanglement renormalization,”
Phys. Rev. B 79 (2009) 144108, arXiv:0707.1454.

[81] R. N. C. Pfeifer, G. Evenbly, and G. Vidal, “Entanglement renormalization,
scale invariance, and quantum criticality,” Phys. Rev. A 79 (2009) 040301,
arXiv:0810.0580.

[82] G. Evenbly, P. Corboz, and G. Vidal, “Nonlocal scaling operators with
entanglement renormalization,” Phys. Rev. B 82 (Oct., 2010) 132411,
arXiv:0912.2166.

[83] Y.-Y. Shi, L.-M. Duan, and G. Vidal, “Classical simulation of quantum
many-body systems with a tree tensor network,” Phys. Rev. A 74 (2006)
022320, quant-ph/0511070.

[84] P. Pfeuty, “The one-dimensional ising model with a transverse field,” Annals
Phys. 57 (1970) 79 – 90.

[85] T. Hartman and J. Maldacena, “Time evolution of entanglement entropy
from black hole interiors,” JHEP 1305 (2013) 014, arXiv:1303.1080.

[86] B. Swingle, “Constructing holographic spacetimes using entanglement
renormalization,” arXiv:1209.3304.

[87] G. Evenbly and G. Vidal, “Scaling of entanglement entropy in the
(branching) multiscale entanglement renormalization ansatz,” Phys. Rev. B
89 (2014) 235113, arXiv:1310.8372.

[88] J. Haegeman, T. J. Osborne, H. Verschelde, and F. Verstraete,
“Entanglement renormalization for quantum fields in real space,” Phys. Rev.
Lett. 110 (2013) 100402, arXiv:1102.5524.

[89] M. Nozaki, S. Ryu, and T. Takayanagi, “Holographic geometry of
entanglement renormalization in quantum field theories,” JHEP 10 (2012)
193, arXiv:1208.3469.

[90] A. Mollabashi, M. Nozaki, S. Ryu, and T. Takayanagi, “Holographic
geometry of cMERA for quantum quenches and finite temperature,” JHEP
1403 (2014) 098, arXiv:1311.6095.

[91] J. Brown and M. Henneaux, “Central charges in the canonical realization of
asymptotic symmetries: An example from three dimensional gravity,”
Commun. Math. Phys. 104 (1986) 207–226.

[92] S. Ryu and T. Takayanagi, “Aspects of holographic entanglement entropy,”
JHEP 08 (2006) 045, arXiv:hep-th/0605073.

[93] T. Jacobson, “Thermodynamics of space-time: The Einstein equation of
state,” Phys. Rev. Lett. 75 (1995) 1260–1263, arXiv:gr-qc/9504004.

http://dx.doi.org/10.1088/1367-2630/15/2/023020
http://dx.doi.org/10.1088/1367-2630/15/2/023020
http://arxiv.org/abs/1110.4872
http://dx.doi.org/10.1103/PhysRevB.79.144108
http://arxiv.org/abs/0707.1454
http://dx.doi.org/10.1103/PhysRevA.79.040301
http://arxiv.org/abs/0810.0580
http://dx.doi.org/10.1103/PhysRevB.82.132411
http://arxiv.org/abs/0912.2166
http://dx.doi.org/10.1103/PhysRevA.74.022320
http://dx.doi.org/10.1103/PhysRevA.74.022320
http://arxiv.org/abs/quant-ph/0511070
http://dx.doi.org/http://dx.doi.org/10.1016/0003-4916(70)90270-8
http://dx.doi.org/http://dx.doi.org/10.1016/0003-4916(70)90270-8
http://dx.doi.org/10.1007/JHEP05(2013)014
http://arxiv.org/abs/1303.1080
http://arxiv.org/abs/1209.3304
http://dx.doi.org/10.1103/PhysRevB.89.235113
http://dx.doi.org/10.1103/PhysRevB.89.235113
http://arxiv.org/abs/1310.8372
http://dx.doi.org/10.1103/PhysRevLett.110.100402
http://dx.doi.org/10.1103/PhysRevLett.110.100402
http://arxiv.org/abs/1102.5524
http://dx.doi.org/10.1007/JHEP10(2012)193
http://dx.doi.org/10.1007/JHEP10(2012)193
http://arxiv.org/abs/1208.3469
http://dx.doi.org/10.1007/JHEP03(2014)098
http://dx.doi.org/10.1007/JHEP03(2014)098
http://arxiv.org/abs/1311.6095
http://dx.doi.org/10.1007/BF01211590
http://dx.doi.org/10.1088/1126-6708/2006/08/045
http://arxiv.org/abs/hep-th/0605073
http://dx.doi.org/10.1103/PhysRevLett.75.1260
http://arxiv.org/abs/gr-qc/9504004


260

[94] J. D. Bekenstein, “Black holes and the second law,” Lettere al Nuovo Cimento
(1971-1985) 4 (1972) 737–740.

[95] R. Bousso, H. Casini, Z. Fisher, and J. Maldacena, “Proof of a quantum
Bousso bound,” Phys. Rev. D 90 (2014) 044002, arXiv:1404.5635.

[96] R. Bousso, H. Casini, Z. Fisher, and J. Maldacena, “Entropy on a null surface
for interacting quantum field theories and the Bousso bound,”
arXiv:1406.4545.

[97] R. Bousso, “The holographic principle,” Rev. Mod. Phys. 74 (2002) 825–874,
arXiv:hep-th/0203101.

[98] C. Martinez, C. Teitelboim, and J. Zanelli, “Charged rotating black hole in
three space-time dimensions,” Phys. Rev. D 61 (2000) 104013,
arXiv:hep-th/9912259.

[99] M. Srednicki, “Entropy and area,” Phys. Rev. Lett. 71 (1993) 666–669,
arXiv:hep-th/9303048.

[100] G. Evenbly and G. Vidal, “Tensor network states and geometry,” J. Stat.
Phys. 145 (Nov., 2011) 891–918, arXiv:1106.1082.

[101] G. Evenbly and G. Vidal, “Tensor network renormalization yields the
multi-scale entanglement renormalization ansatz,” 1502.05385.

[102] J. Molina-Vilaplana and J. Prior, “Entanglement, tensor networks and black
hole horizons,” Gen. Rel. Grav. 46 (2014) 1823, arXiv:1403.5395.

[103] M. Heydeman, M. Marcolli, I. Saberi, and B. Stoica, “Tensor networks, p-adic
fields, and algebraic curves: arithmetic and the AdS3/CFT2 correspondence,”
arXiv:1605.07639.

[104] S. S. Gubser, M. Heydeman, C. Jepsen, M. Marcolli, S. Parikh, I. Saberi,
B. Stoica, and B. Trundy, “Edge length dynamics on graphs with applications
to p-adic AdS/CFT,” arXiv:1612.09580.

[105] B. Czech, L. Lamprou, S. McCandlish, and J. Sully, “Tensor networks from
kinematic space,” JHEP 07 (2016) 100, arXiv:1512.01548.

[106] B. Czech, G. Evenbly, L. Lamprou, S. McCandlish, X.-L. Qi, J. Sully, and
G. Vidal, “Tensor network quotient takes the vacuum to the thermal state,”
Phys. Rev. B 94 (2016) 085101, arXiv:1510.07637.

[107] G. Evenbly, “Hyperinvariant tensor networks and holography,” Phys. Rev.
Lett. 119 (2017) 141602, arXiv:1704.04229.

[108] A. Strominger, “The dS / CFT correspondence,” JHEP 10 (2001) 034,
arXiv:hep-th/0106113.

[109] Y. Sekino and L. Susskind, “Census taking in the hat: FRW/CFT duality,”
Phys. Rev. D 80 (2009) 083531, arXiv:0908.3844.

http://dx.doi.org/10.1007/BF02757029
http://dx.doi.org/10.1007/BF02757029
http://dx.doi.org/10.1103/PhysRevD.90.044002
http://arxiv.org/abs/1404.5635
http://arxiv.org/abs/1406.4545
http://dx.doi.org/10.1103/RevModPhys.74.825
http://arxiv.org/abs/hep-th/0203101
http://dx.doi.org/10.1103/PhysRevD.61.104013
http://arxiv.org/abs/hep-th/9912259
http://dx.doi.org/10.1103/PhysRevLett.71.666
http://arxiv.org/abs/hep-th/9303048
http://dx.doi.org/10.1007/s10955-011-0237-4
http://dx.doi.org/10.1007/s10955-011-0237-4
http://arxiv.org/abs/1106.1082
http://arxiv.org/abs/1502.05385
http://dx.doi.org/10.1007/s10714-014-1823-y
http://arxiv.org/abs/1403.5395
http://arxiv.org/abs/1605.07639
http://arxiv.org/abs/1612.09580
http://dx.doi.org/10.1007/JHEP07(2016)100
http://arxiv.org/abs/1512.01548
http://dx.doi.org/10.1103/PhysRevB.94.085101
http://arxiv.org/abs/1510.07637
http://dx.doi.org/10.1103/PhysRevLett.119.141602
http://dx.doi.org/10.1103/PhysRevLett.119.141602
http://arxiv.org/abs/1704.04229
http://dx.doi.org/10.1088/1126-6708/2001/10/034
http://arxiv.org/abs/hep-th/0106113
http://dx.doi.org/10.1103/PhysRevD.80.083531
http://arxiv.org/abs/0908.3844


261

[110] R. Sinai Kunkolienkar and K. Banerjee, “Towards a dS/MERA
correspondence,” arXiv:1611.08581.

[111] B. Czech, L. Lamprou, S. McCandlish, B. Mosk, and J. Sully, “A stereoscopic
look into the bulk,” JHEP 07 (2016) 129, arXiv:1604.03110.

[112] N. Bao, C. Cao, S. M. Carroll, and L. McAllister, “Quantum circuit
cosmology: The expansion of the universe since the first qubit,”
arXiv:1702.06959.

[113] Y. Nomura, “Physical theories, eternal inflation, and quantum universe,”
JHEP 11 (2011) 063, arXiv:1104.2324.

[114] Y. Nomura, “Quantum mechanics, spacetime locality, and gravity,” Found.
Phys. 43 (2013) 978–1007, arXiv:1110.4630.

[115] A. R. Brown, D. A. Roberts, L. Susskind, B. Swingle, and Y. Zhao,
“Holographic complexity equals bulk action?,” Phys. Rev. Lett. 116 (2016)
191301, arXiv:1509.07876.

[116] G. W. Gibbons and S. W. Hawking, “Cosmological event horizons,
thermodynamics, and particle creation,” Phys. Rev. D 15 (1977) 2738–2751.

[117] M. Miyaji, T. Takayanagi, and K. Watanabe, “From path integrals to tensor
networks for the AdS/CFT correspondence,” Phys. Rev. D 95 (2017) 066004,
arXiv:1609.04645.

[118] R. N. C. Pfeifer, G. Evenbly, and G. Vidal, “Entanglement renormalization,
scale invariance, and quantum criticality,” Phys. Rev. A 79 (Apr., 2009)
040301, arXiv:0810.0580.

[119] R. M. Wald, “Asymptotic behavior of homogeneous cosmological models in
the presence of a positive cosmological constant,” Phys. Rev. D 28 (1983)
2118–2120.

[120] A. A. Starobinskii, “Isotropization of arbitrary cosmological expansion given
an effective cosmological constant,” JETP Lett. 37 (1983) 66.

[121] J. D. Barrow, “Cosmic no hair theorems and inflation,” Phys. Lett. B 187
(1987) 12–16.

[122] J. D. Barrow and G. Goetz, “The asymptotic approach to de Sitter
space-time,” Phys. Lett. B 231 (1989) 228–230.

[123] Y. Kitada and K.-i. Maeda, “Cosmic no hair theorem in power law inflation,”
Phys. Rev. D 45 (1992) 1416–1419.

[124] Y. Kitada and K.-i. Maeda, “Cosmic no hair theorem in homogeneous
space-times. 1. Bianchi models,” Class. Quant. Grav. 10 (1993) 703–734.

[125] M. Bruni, S. Matarrese, and O. Pantano, “A local view of the observable
universe,” Phys. Rev. Lett. 74 (1995) 1916–1919, arXiv:astro-ph/9407054.

http://arxiv.org/abs/1611.08581
http://dx.doi.org/10.1007/JHEP07(2016)129
http://arxiv.org/abs/1604.03110
http://arxiv.org/abs/1702.06959
http://dx.doi.org/10.1007/JHEP11(2011)063
http://arxiv.org/abs/1104.2324
http://dx.doi.org/10.1007/s10701-013-9729-1
http://dx.doi.org/10.1007/s10701-013-9729-1
http://arxiv.org/abs/1110.4630
http://dx.doi.org/10.1103/PhysRevLett.116.191301
http://dx.doi.org/10.1103/PhysRevLett.116.191301
http://arxiv.org/abs/1509.07876
http://dx.doi.org/10.1103/PhysRevD.15.2738
http://dx.doi.org/10.1103/PhysRevD.95.066004
http://arxiv.org/abs/1609.04645
http://dx.doi.org/10.1103/PhysRevA.79.040301
http://dx.doi.org/10.1103/PhysRevA.79.040301
http://arxiv.org/abs/0810.0580
http://dx.doi.org/10.1103/PhysRevD.28.2118
http://dx.doi.org/10.1103/PhysRevD.28.2118
http://www.jetpletters.ac.ru/ps/1488/article_22720.shtml
http://dx.doi.org/10.1016/0370-2693(87)90063-3
http://dx.doi.org/10.1016/0370-2693(87)90063-3
http://dx.doi.org/10.1016/0370-2693(89)90204-9
http://dx.doi.org/10.1103/PhysRevD.45.1416
http://dx.doi.org/10.1088/0264-9381/10/4/008
http://dx.doi.org/10.1103/PhysRevLett.74.1916
http://arxiv.org/abs/astro-ph/9407054


262

[126] M. Bruni, F. C. Mena, and R. K. Tavakol, “Cosmic no hair: Nonlinear
asymptotic stability of de Sitter universe,” Class. Quant. Grav. 19 (2002)
L23–L29, arXiv:gr-qc/0107069.

[127] W. Boucher and G. W. Gibbons, “Cosmic baldness,” in Nuffield Workshop on
the Very Early Universe Cambridge, England, June 21-July 9, 1982,
pp. 273–278. 2011. arXiv:1109.3535.

[128] A. Maleknejad and M. M. Sheikh-Jabbari, “Revisiting cosmic no-hair theorem
for inflationary settings,” Phys. Rev. D 85 (2012) 123508, arXiv:1203.0219.

[129] S. Hollands, “Correlators, Feynman diagrams, and quantum no-hair in de
Sitter spacetime,” Commun. Math. Phys. 319 (2013) 1–68, arXiv:1010.5367.

[130] D. Marolf and I. A. Morrison, “The IR stability of de Sitter: Loop corrections
to scalar propagators,” Phys. Rev. D 82 (2010) 105032, arXiv:1006.0035.

[131] D. Marolf and I. A. Morrison, “The IR stability of de Sitter QFT: results at
all orders,” Phys. Rev. D 84 (2011) 044040, arXiv:1010.5327.

[132] M. Raginsky, “Strictly contractive quantum channels and physically
realizable quantum computers,” Phys. Rev. A 65 (Mar., 2002) 032306,
quant-ph/0105141.

[133] K. S. Thorne, R. H. Price, and D. A. Macdonald, Black holes: The membrane
paradigm. Yale University Press, New Haven, Connecticut, 1986.

[134] W. Fischler, “Taking de Sitter seriously.” Talk given at Role of Scaling Laws
in Physics and Biology (Celebrating the 60th Birthday of Geoffrey West),
Santa Fe, Dec., 2000.

[135] T. Banks, “QuantuMechanics and CosMology.” Talk given at the festschrift
for L. Susskind, Stanford University, May 2000, 2000.

[136] R. Bousso, “Positive vacuum energy and the n-bound,” JHEP 2000 (2000)
038, https://arxiv.org/abs/hep-th/0010252.

[137] T. Banks, “Cosmological breaking of supersymmetry?,” Int. J. Mod. Phys. A
16 (2001) 910–921, arXiv:hep-th/0007146.

[138] E. Witten, “Quantum gravity in de Sitter space,” in Strings 2001:
International Conference Mumbai, India, January 5-10, 2001. 2001.
arXiv:hep-th/0106109.

[139] L. Dyson, M. Kleban, and L. Susskind, “Disturbing implications of a
cosmological constant,” JHEP 10 (2002) 011, arXiv:hep-th/0208013.

[140] M. K. Parikh and E. P. Verlinde, “De Sitter holography with a finite number
of states,” JHEP 01 (2005) 054, arXiv:hep-th/0410227.

[141] A. Albrecht and L. Sorbo, “Can the universe afford inflation?,” Phys. Rev. D
70 (2004) 063528, arXiv:hep-th/0405270.

http://dx.doi.org/10.1088/0264-9381/19/5/101
http://dx.doi.org/10.1088/0264-9381/19/5/101
http://arxiv.org/abs/gr-qc/0107069
http://arxiv.org/abs/1109.3535
http://dx.doi.org/10.1103/PhysRevD.85.123508
http://arxiv.org/abs/1203.0219
http://dx.doi.org/10.1007/s00220-012-1653-2
http://arxiv.org/abs/1010.5367
http://dx.doi.org/10.1103/PhysRevD.82.105032
http://arxiv.org/abs/1006.0035
http://dx.doi.org/10.1103/PhysRevD.84.044040
http://arxiv.org/abs/1010.5327
http://dx.doi.org/10.1103/PhysRevA.65.032306
http://arxiv.org/abs/quant-ph/0105141
http://arxiv.org/abs/https://arxiv.org/abs/hep-th/0010252
http://dx.doi.org/10.1142/S0217751X01003998
http://dx.doi.org/10.1142/S0217751X01003998
http://arxiv.org/abs/hep-th/0007146
http://arxiv.org/abs/hep-th/0106109
http://dx.doi.org/10.1088/1126-6708/2002/10/011
http://arxiv.org/abs/hep-th/0208013
http://dx.doi.org/10.1088/1126-6708/2005/01/054
http://arxiv.org/abs/hep-th/0410227
http://dx.doi.org/10.1103/PhysRevD.70.063528
http://dx.doi.org/10.1103/PhysRevD.70.063528
http://arxiv.org/abs/hep-th/0405270


263

[142] S. M. Carroll, “Why Boltzmann brains are bad,” arXiv:1702.00850.

[143] K. K. Boddy, S. M. Carroll, and J. Pollack, “De Sitter space without
dynamical quantum fluctuations,” Found. Phys. 46 (2016) 702–735,
arXiv:1405.0298.

[144] T. Banks and W. Fischler, “Holographic cosmology 3.0,” Phys. Scripta T117
(2005) 56–63, arXiv:hep-th/0310288.

[145] T. Banks, “Holographic space-time: The takeaway,” arXiv:1109.2435.

[146] T. Banks and W. Fischler, “Holographic inflation revised,”
arXiv:1501.01686.

[147] D. Petz, “Sufficient subalgebras and the relative entropy of states of a von
neumann algebra,” Commun. Math. Phys. 105 (1986) 123–131.

[148] D. Petz, “Sufficiency of channels over von neumann algebras,” Q. J. Math. 39
(1988) 97–108.

[149] D. Petz, “Monotonicity of quantum relative entropy revisited,” Rev. Math.
Phys. 15 (2003) 79–91.

[150] M. Junge, R. Renner, D. Sutter, M. M. Wilde, and A. Winter, “Universal
recovery from a decrease of quantum relative entropy,” arXiv:1509.07127.

[151] Á. Rivas and S. F. Huelga, Open quantum systems: An introduction.
Springer, Berlin, 2012.

[152] M. A. Nielsen and I. L. Chuang, Quantum computation and quantum
information: 10th Anniversary Edition. Cambridge University Press,
Cambridge, 10th ed., 2011.

[153] J. Preskill, “Lecture notes for physics 219: Quantum computation,” 1997.
http:
//www.theory.caltech.edu/people/preskill/ph229/notes/chap7.pdf.

[154] A. Reynolds and S. F. Ross, “Complexity in de Sitter space,” Class. Quant.
Grav. 34 (2017) 175013, arXiv:1706.03788.

[155] R. A. Jefferson and R. C. Myers, “Circuit complexity in quantum field
theory,” arXiv:1707.08570.

[156] S. Chapman, M. P. Heller, H. Marrochio, and F. Pastawski, “Towards
complexity for quantum field theory states,” arXiv:1707.08582.

[157] D. Harlow, S. H. Shenker, D. Stanford, and L. Susskind, “Tree-like structure
of eternal inflation: A solvable model,” Phys. Rev. D 85 (2012) 063516,
arXiv:1110.0496.

[158] G. Evenbly and G. Vidal, “Entanglement renormalization in two spatial
dimensions,” Phys. Rev. Lett. 102 (May, 2009) 180406, arXiv:0811.0879.

http://arxiv.org/abs/1702.00850
http://dx.doi.org/10.1007/s10701-016-9996-8
http://arxiv.org/abs/1405.0298
http://dx.doi.org/10.1238/Physica.Topical.117a00056
http://dx.doi.org/10.1238/Physica.Topical.117a00056
http://arxiv.org/abs/hep-th/0310288
http://arxiv.org/abs/1109.2435
http://arxiv.org/abs/1501.01686
http://dx.doi.org/10.1007/BF01212345
http://dx.doi.org/10.1093/qmath/39.1.97
http://dx.doi.org/10.1093/qmath/39.1.97
http://dx.doi.org/10.1142/S0129055X03001576
http://dx.doi.org/10.1142/S0129055X03001576
http://arxiv.org/abs/1509.07127
http://dx.doi.org/10.1007/978-3-642-23354-8
http://www.theory.caltech.edu/people/preskill/ph229/notes/chap7.pdf
http://www.theory.caltech.edu/people/preskill/ph229/notes/chap7.pdf
http://dx.doi.org/10.1088/1361-6382/aa8122
http://dx.doi.org/10.1088/1361-6382/aa8122
http://arxiv.org/abs/1706.03788
http://arxiv.org/abs/1707.08570
http://arxiv.org/abs/1707.08582
http://dx.doi.org/10.1103/PhysRevD.85.063516
http://arxiv.org/abs/1110.0496
http://dx.doi.org/10.1103/PhysRevLett.102.180406
http://arxiv.org/abs/0811.0879


264

[159] D. Kastor, S. Ray, and J. Traschen, “Genuine cosmic hair,” Class. Quant.
Grav. 34 (2017) 045003, arXiv:1608.04641.

[160] R. M. Wald, General relativity. University of Chicago Press, Chicago, Illinois,
1984.

[161] B. K. Berger, Singularities in cosmological spacetimes, pp. 437–460. Springer,
Berlin, 2014.

[162] E. Kolb and M. Turner, The early universe. Westview Press, Boulder,
Colorado, 1994.

[163] H. J. Schmidt, “De Sitter space-time as an attractor solution in fourth order
gravity,” Class. Quant. Grav. 5 (1988) 233.

[164] U. Brauer, A. Rendall, and O. Reula, “The cosmic no hair theorem and the
nonlinear stability of homogeneous Newtonian cosmological models,” Class.
Quant. Grav. 11 (1994) 2283–2296, arXiv:gr-qc/9403050.

[165] M. Kleban and L. Senatore, “Inhomogeneous anisotropic cosmology,” JCAP
1610 (2016) 022, arXiv:1602.03520.

[166] M. Spradlin, A. Strominger, and A. Volovich, “Les Houches lectures on de
Sitter space,” in Unity from duality: Gravity, gauge theory and strings.
Proceedings, NATO Advanced Study Institute, Euro Summer School, 76th
session, Les Houches, France, July 30-August 31, 2001, pp. 423–453. 2001.
arXiv:hep-th/0110007.

[167] S. M. Carroll and J. Chen, “Spontaneous inflation and the origin of the arrow
of time,” arXiv:hep-th/0410270.

[168] A. Albrecht, “De Sitter equilibrium as a fundamental framework for
cosmology,” J. Phys. Conf. Ser. 174 (2009) 012006, arXiv:0906.1047.

[169] P. B. Krishna and T. K. Mathew, “Holographic equipartition and the
maximization of entropy,” Phys. Rev. D 96 (2017) 063513,
arXiv:1702.02787.

[170] T. Padmanabhan, “Thermodynamical aspects of gravity: New insights,”
Rept. Prog. Phys. 73 (2010) 046901, arXiv:0911.5004.

[171] E. P. Verlinde, “On the origin of gravity and the laws of Newton,” JHEP 04
(2011) 029, arXiv:1001.0785.

[172] T. Jacobson, “Entanglement equilibrium and the Einstein equation,” Phys.
Rev. Lett. 116 (2016) 201101, arXiv:1505.04753.

[173] S. M. Carroll and G. N. Remmen, “What is the entropy in entropic gravity?,”
Phys. Rev. D 93 (2016) 124052, arXiv:1601.07558.

[174] J. Maldacena and L. Susskind, “Cool horizons for entangled black holes,”
Fortsch. Phys. 61 (2013) 781–811, arXiv:1306.0533.

http://dx.doi.org/10.1088/1361-6382/aa5735
http://dx.doi.org/10.1088/1361-6382/aa5735
http://arxiv.org/abs/1608.04641
http://dx.doi.org/10.1088/0264-9381/5/1/027
http://dx.doi.org/10.1088/0264-9381/11/9/010
http://dx.doi.org/10.1088/0264-9381/11/9/010
http://arxiv.org/abs/gr-qc/9403050
http://dx.doi.org/10.1088/1475-7516/2016/10/022
http://dx.doi.org/10.1088/1475-7516/2016/10/022
http://arxiv.org/abs/1602.03520
http://arxiv.org/abs/hep-th/0110007
http://arxiv.org/abs/hep-th/0410270
http://dx.doi.org/10.1088/1742-6596/174/1/012006
http://arxiv.org/abs/0906.1047
http://dx.doi.org/10.1103/PhysRevD.96.063513
http://arxiv.org/abs/1702.02787
http://dx.doi.org/10.1088/0034-4885/73/4/046901
http://arxiv.org/abs/0911.5004
http://dx.doi.org/10.1007/JHEP04(2011)029
http://dx.doi.org/10.1007/JHEP04(2011)029
http://arxiv.org/abs/1001.0785
http://dx.doi.org/10.1103/PhysRevLett.116.201101
http://dx.doi.org/10.1103/PhysRevLett.116.201101
http://arxiv.org/abs/1505.04753
http://dx.doi.org/10.1103/PhysRevD.93.124052
http://arxiv.org/abs/1601.07558
http://dx.doi.org/10.1002/prop.201300020
http://arxiv.org/abs/1306.0533


265

[175] R. Bousso, “Holography in general space-times,” JHEP 06 (1999) 028,
arXiv:hep-th/9906022.

[176] S. A. Hayward, “General laws of black-hole dynamics,” Phys. Rev. D 49 (Jun,
1994) 6467–6474, arXiv:gr-qc/9303006.

[177] A. Ashtekar and B. Krishnan, “Dynamical horizons: Energy, angular
momentum, fluxes and balance laws,” Phys. Rev. Lett. 89 (2002) 261101,
arXiv:gr-qc/0207080.

[178] A. Ashtekar and B. Krishnan, “Dynamical horizons and their properties,”
Phys. Rev. D 68 (2003) 104030, arXiv:gr-qc/0308033.

[179] A. Ashtekar and B. Krishnan, “Isolated and dynamical horizons and their
applications,” Living Rev. Rel. 7 (2004) 10, arXiv:gr-qc/0407042.

[180] I. Booth, “Black hole boundaries,” Can. J. Phys. 83 (2005) 1073–1099,
arXiv:gr-qc/0508107.

[181] I. Booth, L. Brits, J. A. Gonzalez, and C. Van Den Broeck, “Marginally
trapped tubes and dynamical horizons,” Class. Quant. Grav. 23 (2006)
413–440, arXiv:gr-qc/0506119.

[182] R. Bousso and N. Engelhardt, “New area law in general relativity,” Phys.
Rev. Lett. 115 (2015) 081301, arXiv:1504.07627.

[183] R. Bousso and N. Engelhardt, “Proof of a new area law in general relativity,”
Phys. Rev. D 92 (2015) 044031, arXiv:1504.07660.

[184] F. Sanches and S. J. Weinberg, “Holographic entanglement entropy conjecture
for general spacetimes,” Phys. Rev. D 94 (2016) 084034, arXiv:1603.05250.

[185] J. M. Bardeen, B. Carter, and S. W. Hawking, “The four laws of black hole
mechanics,” Commun. Math. Phys. 31 (1973) 161–170.

[186] T. Jacobson, “Introductory lectures on black hole thermodynamics,” Given at
Utrecht U. in (1996) 30–59.

[187] S. W. Hawking, “Black holes in general relativity,” Commun. Math. Phys. 25
(1972) 152–166.

[188] P. T. Saunders, “Observations in some simple cosmological models with
shear,” Monthly Notices of the Royal Astronomical Society 142 (1969)
213–227.

[189] P. Fleury, F. Nugier, and G. Fanizza, “Geodesic-light-cone coordinates and
the Bianchi I spacetime,” JCAP 1606 (2016) 008, arXiv:1602.04461.

[190] A. Chatwin-Davies, “Companion calculations for ‘cosmic equilibration: A
holographic no-hair theorem from the generalized second law’.”
https://doi.org/10.5281/zenodo.1184720, 2018.

http://dx.doi.org/10.1088/1126-6708/1999/06/028
http://arxiv.org/abs/hep-th/9906022
http://dx.doi.org/10.1103/PhysRevD.49.6467
http://dx.doi.org/10.1103/PhysRevD.49.6467
http://arxiv.org/abs/gr-qc/9303006
http://dx.doi.org/10.1103/PhysRevLett.89.261101
http://arxiv.org/abs/gr-qc/0207080
http://dx.doi.org/10.1103/PhysRevD.68.104030
http://arxiv.org/abs/gr-qc/0308033
http://dx.doi.org/10.12942/lrr-2004-10
http://arxiv.org/abs/gr-qc/0407042
http://dx.doi.org/10.1139/p05-063
http://arxiv.org/abs/gr-qc/0508107
http://dx.doi.org/10.1088/0264-9381/23/2/009
http://dx.doi.org/10.1088/0264-9381/23/2/009
http://arxiv.org/abs/gr-qc/0506119
http://dx.doi.org/10.1103/PhysRevLett.115.081301
http://dx.doi.org/10.1103/PhysRevLett.115.081301
http://arxiv.org/abs/1504.07627
http://dx.doi.org/10.1103/PhysRevD.92.044031
http://arxiv.org/abs/1504.07660
http://dx.doi.org/10.1103/PhysRevD.94.084034
http://arxiv.org/abs/1603.05250
http://dx.doi.org/10.1007/BF01645742
http://dx.doi.org/10.1007/BF01877517
http://dx.doi.org/10.1007/BF01877517
http://dx.doi.org/10.1093/mnras/142.2.213
http://dx.doi.org/10.1093/mnras/142.2.213
http://dx.doi.org/10.1088/1475-7516/2016/06/008
http://arxiv.org/abs/1602.04461
https://doi.org/10.5281/zenodo.1184720


266

[191] V. F. Mukhanov, H. A. Feldman, and R. H. Brandenberger, “Theory of
cosmological perturbations. Part 1. Classical perturbations. Part 2. Quantum
theory of perturbations. Part 3. Extensions,” Phys. Rept. 215 (1992) 203–333.

[192] N. D. Birrell and P. C. W. Davies, Quantum fields in curved space.
Cambridge University Press, Cambridge, 1984.

[193] S. Hossenfelder, “Minimal length scale scenarios for quantum gravity,” Living
Rev. Rel. 16 (2013) 2, arXiv:1203.6191.

[194] C. Rovelli, “Strings, loops and others: a critical survey of the present
approaches to quantum gravity,” arXiv:gr-qc/9803024v3.

[195] S. Carlip, D.-W. Chiou, W.-T. Ni, and R. Woodard, “Quantum gravity: A
brief history of ideas and some prospects,” Int. J. Mod. Phys. D 24 (2015)
1530028, arXiv:1507.08194.

[196] T. Jacobson, “Trans-planckian redshifts and the substance of the space-time
river,” Prog. Theor. Phys. Supp. 136 (1999) 1–17, arXiv:1507.08194.

[197] R. H. Brandenberger, “Principles, progress, and problems in inflationary
cosmology,” AAPPS Bulletin 11 (2001) 20–29, arXiv:astro-ph/0208103.

[198] A. Kempf, “Mode generating mechanism in inflation with a cutoff,” Phys.
Rev. D 63 (2001) 083514, arXiv:astro-ph/0009209.

[199] J. Martin and R. H. Brandenberger, “Trans-planckian problem of inflationary
cosmology,” Phys. Rev. D 63 (2001) 123501, arXiv:hep-th/0005209.

[200] A. Kempf and J. C. Niemeyer, “Perturbation spectrum in inflation with a
cutoff,” Phys. Rev. D 64 (2001) 103501, arXiv:astro-ph/0103225.

[201] G. Shiu, “Inflation as a probe of trans-Planckian physics: a brief review and
progress report,” JPCS 18 (2005) 188.

[202] T. Padmanabhan, “Acceptable density perturbations from inflation due to
quantum gravitational damping,” Phys. Rev. Lett. 60 (1988) 2229–2230.

[203] T. Padmanabhan, T. R. Seshadri, and T. P. Singh, “Making inflation work:
Damping of density perturbations due to planck energy cutoff,” Phys. Rev. D
39 (1989) 2100–2107.

[204] R. H. Brandenberger and J. Martin, “The robustness of inflation to changes
in super-planck-scale physics,” Mod. Phys. Lett. A 16 (2001) 999–1006,
arXiv:astro-ph/0005432.

[205] R. H. Brandenberger and J. Martin, “On signatures of short distance physics
in the cosmic microwave background,” Int. J. Mod. Phys. A17 (2002)
3663–3680, arXiv:hep-th/0202142.

[206] R. Easther, B. R. Greene, W. H. Kinney, and G. Shiu, “Inflation as a probe
of short distance physics,” Phys. Rev. D 64 (2001) 103502,
arXiv:hep-th/0104102.

http://dx.doi.org/10.1016/0370-1573(92)90044-Z
http://dx.doi.org/10.1017/CBO9780511622632
http://dx.doi.org/10.12942/lrr-2013-2
http://dx.doi.org/10.12942/lrr-2013-2
http://arxiv.org/abs/1203.6191
http://arxiv.org/abs/gr-qc/9803024v3
http://dx.doi.org/10.1142/S0218271815300281
http://dx.doi.org/10.1142/S0218271815300281
http://arxiv.org/abs/1507.08194
http://dx.doi.org/10.1143/PTPS.136.1
http://arxiv.org/abs/1507.08194
http://arxiv.org/abs/arXiv:astro-ph/0208103
http://dx.doi.org/10.1103/PhysRevD.63.083514
http://dx.doi.org/10.1103/PhysRevD.63.083514
http://arxiv.org/abs/astro-ph/0009209
http://dx.doi.org/10.1103/PhysRevD.63.123501
http://arxiv.org/abs/hep-th/0005209
http://dx.doi.org/10.1103/PhysRevD.64.103501
http://arxiv.org/abs/astro-ph/0103225
http://dx.doi.org/10.1088/1742-6596/18/1/005
http://dx.doi.org/10.1103/PhysRevLett.60.2229
http://dx.doi.org/10.1103/PhysRevD.39.2100
http://dx.doi.org/10.1103/PhysRevD.39.2100
http://dx.doi.org/10.1142/S0217732301004170
http://arxiv.org/abs/astro-ph/0005432
http://dx.doi.org/10.1142/S0217751X02010765
http://dx.doi.org/10.1142/S0217751X02010765
http://arxiv.org/abs/hep-th/0202142
http://dx.doi.org/10.1103/PhysRevD.64.103502
http://arxiv.org/abs/hep-th/0104102


267

[207] J. C. Niemeyer, “Inflation with a planck-scale frequency cutoff,” Phys. Rev. D
63 (2001) 123502, arXiv:astro-ph/0005533.

[208] R. Easther, B. R. Greene, W. H. Kinney, and G. Shiu, “Generic estimate of
trans-planckian modifications to the primordial power spectrum in inflation,”
Phys. Rev. D 66 (2002) 023518, arXiv:hep-th/0204129.

[209] R. Easther, B. R. Greene, W. H. Kinney, and G. Shiu, “Imprints of short
distance physics on inflationary cosmology,” Phys. Rev. D 67 (2003) 063508,
arXiv:hep-th/0110226.

[210] R. H. Brandenberger and J. Martin, “Back-reaction and the trans-planckian
problem of inflation reexamined,” Phys. Rev. D 71 (2005) 023504,
arXiv:hep-th/0410223.

[211] R. Easther, W. H. Kinney, and H. Peiris, “Boundary effective field theory and
trans-planckian perturbations: astrophysical implications,” J. Cosmol.
Astropart. Phys. 2005 (2005) 001, arXiv:astro-ph/0505426.

[212] B. R. Greene, K. Schalm, G. Shiu, and J. P. van der Schaar, “Decoupling in
an expanding universe: backreaction barely constrains short distance effects
in the cosmic microwave background,” J. Cosmol. Astropart. Phys. 2005
(2005) 001, arXiv:hep-th/0411217.

[213] L. Sriramkumar and T. Padmanabhan, “Initial state of matter fields and
trans-planckian physics: Can cmb observations disentangle the two?,” Phys.
Rev. D 71 (2005) 103512, arXiv:gr-qc/0408034.

[214] U. H. Danielsson, “Note on inflation and trans-planckian physics,” Phys. Rev.
D 66 (2002) 023511, arXiv:hep-th/0203198.

[215] D. Polarski and A. A. Starobinsky, “Semiclassicality and decoherence of
cosmological perturbations,” Class. Quant. Grav. 13 (1996) 377–392,
arXiv:gr-qc/9504030.

[216] C. Kiefer, D. Polarski, and A. A. Starobinsky, “Quantum-to-classical
transition for fluctuations in the early universe,” Int. J. Mod. Phys. D 07
(1998) 455–462, arXiv:gr-qc/9802003.

[217] C. Kiefer and D. Polarski, “Why do cosmological perturbations look classical
to us?,” Adv. Sci. Lett. 2 (2009) 164–173, arXiv:0810.0087.

[218] E. Nelson, “Quantum decoherence during inflation from gravitational
nonlinearities,” J. Cosmol. Astropart. Phys. 2016 (2016) 22,
arXiv:1601.03734.

[219] E. Joos, H. D. Zeh, C. Kiefer, D. J. W. Giulini, J. Kupsch, and I.-O.
Stamatescu, Decoherence and the appearance of a classical world in quantum
theory. Springer-Verlag, Berlin, 2003.

[220] C. Shannon, The mathematical theory of communication. University of
Illinois Press, Champaign, Illinois, 1949.

http://dx.doi.org/10.1103/PhysRevD.63.123502
http://dx.doi.org/10.1103/PhysRevD.63.123502
http://arxiv.org/abs/astro-ph/0005533
http://dx.doi.org/10.1103/PhysRevD.66.023518
http://arxiv.org/abs/hep-th/0204129
http://dx.doi.org/10.1103/PhysRevD.67.063508
http://arxiv.org/abs/hep-th/0110226
http://dx.doi.org/10.1103/PhysRevD.71.023504
http://arxiv.org/abs/hep-th/0410223
http://dx.doi.org/10.1088/1475-7516/2005/08/001
http://dx.doi.org/10.1088/1475-7516/2005/08/001
http://arxiv.org/abs/astro-ph/0505426
http://dx.doi.org/10.1088/1475-7516/2005/02/001
http://dx.doi.org/10.1088/1475-7516/2005/02/001
http://arxiv.org/abs/hep-th/0411217
http://dx.doi.org/10.1103/PhysRevD.71.103512
http://dx.doi.org/10.1103/PhysRevD.71.103512
http://arxiv.org/abs/gr-qc/0408034
http://dx.doi.org/10.1103/PhysRevD.66.023511
http://dx.doi.org/10.1103/PhysRevD.66.023511
http://arxiv.org/abs/hep-th/0203198
http://dx.doi.org/10.1088/0264-9381/13/3/006
http://arxiv.org/abs/gr-qc/9504030
http://dx.doi.org/10.1142/S0218271898000292
http://dx.doi.org/10.1142/S0218271898000292
http://arxiv.org/abs/gr-qc/9802003
http://dx.doi.org/10.1166/asl.2009.1023
http://arxiv.org/abs/0810.0087
http://dx.doi.org/10.1088/1475-7516/2016/03/022
http://arxiv.org/abs/1601.03734
http://dx.doi.org/10.1007/978-3-662-05328-7
http://dx.doi.org/10.1007/978-3-662-05328-7


268

[221] H. J. Landau, “Necessary density conditions for sampling and interpolation of
certain entire functions,” Acta Mathematica 117 (1967) 37–52.

[222] A. Jerri, “The Shannon sampling theorem - its various extensions and
applications: A tutorial review,” Proc. IEEE 65 (1977) 1565–1596.

[223] A. Kempf, A. Chatwin-Davies, and R. T. W. Martin, “A fully covariant
information-theoretic ultraviolet cutoff for scalar fields in expanding
Friedmann Robertson Walker spacetimes,” J. Math. Phys. 54 (2013) 022301,
arXiv:1210.0750.

[224] A. Kempf and R. Martin, “Information theory, spectral geometry, and
quantum gravity,” Phys. Rev. Lett. 100 (2008) 021304, arXiv:0708.0062.

[225] M. A. Naimark, Linear differential operators, part II. Frederick Ungar
Publishing Company, New York, New York, 1968.

[226] W. Amrein, A. M. Hinz, and D. Pearson, eds., Sturm-Liouville theory: past
and present. Springer Science & Business Media, Berlin, 2005.

[227] A. Zettl, Sturm-Liouville theory. Mathematical Surveys and Monographs.
American Mathematical Society, Providence, Rhode Island, 2005.

[228] D. N. Page, “Is black hole evaporation predictable?,” Phys. Rev. Lett. 44
(1980) 301.

[229] V. Mukhanov and S. Winitzki, Introduction to quantum effects in gravity.
Cambridge University Press, Cambridge, 2007.

[230] D. N. Page, “Particle emission rates from a black hole: Massless particles
from an uncharged, nonrotating hole,” Phys. Rev. D 13 (1976) 198–206.

[231] D. N. Page, “Particle emission rates from a black hole. 2. Massless particles
from a rotating hole,” Phys. Rev. D 14 (1976) 3260–3273.

[232] Chatwin-Davies, Aidan, “A covariant natural ultraviolet cutoff in inflationary
cosmology,” Master’s thesis, University of Waterloo, 2013.
http://hdl.handle.net/10012/7759.

[233] S. W. Hawking, “Information loss in black holes,” Phys. Rev. D 72 (2005)
084013, arXiv:hep-th/0507171.

[234] L. Susskind and J. Lindesay, An introduction to black holes, information and
the string theory revolution: The holographic universe. World Scientific,
Singapore, 2005.

[235] S. D. Mathur, “The information paradox: a pedagogical introduction,” Class.
Quantum Grav. 26 (2009) 224001, arXiv:0909.1038.

[236] V. Balasubramanian, D. Marolf, and M. Rozali, “Information recovery from
black holes,” Gen. Rel. Grav. 38 (2006) 1529–1536, arXiv:hep-th/0604045.

[237] D. Marolf, “Unitarity and holography in gravitational physics,” Phys. Rev. D
79 (2009) 044010, arXiv:0808.2842.

http://dx.doi.org/10.1007/BF02395039
http://dx.doi.org/10.1109/PROC.1977.10771
http://dx.doi.org/10.1063/1.4790482
http://arxiv.org/abs/1210.0750
http://dx.doi.org/10.1103/PhysRevLett.100.021304
http://arxiv.org/abs/0708.0062
http://dx.doi.org/10.1103/PhysRevLett.44.301
http://dx.doi.org/10.1103/PhysRevLett.44.301
http://dx.doi.org/10.1103/PhysRevD.13.198
http://dx.doi.org/10.1103/PhysRevD.14.3260
http://hdl.handle.net/10012/7759
http://dx.doi.org/10.1103/PhysRevD.72.084013
http://dx.doi.org/10.1103/PhysRevD.72.084013
http://arxiv.org/abs/hep-th/0507171
http://dx.doi.org/10.1088/0264-9381/26/22/224001
http://dx.doi.org/10.1088/0264-9381/26/22/224001
http://arxiv.org/abs/0909.1038
http://dx.doi.org/10.1007/s10714-006-0344-8
http://arxiv.org/abs/hep-th/0604045
http://dx.doi.org/10.1103/PhysRevD.79.044010
http://dx.doi.org/10.1103/PhysRevD.79.044010
http://arxiv.org/abs/0808.2842


269

[238] P. Hayden and J. Preskill, “Black holes as mirrors: quantum information in
random subsystems,” JHEP 2007 (2007) 120, arXiv:0708.4025.

[239] A. Messiah, Quantum mechanics volume II. North-Holland, Amsterdam,
1965.

[240] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K.
Wootters, “Teleporting an unknown quantum state via dual classical and
Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70 (1993) 1895–1899.

[241] M. Wilde, Quantum information theory. Cambridge University Press,
Cambridge, 2013.

[242] S. H. Shenker and D. Stanford, “Stringy effects in scrambling,” JHEP 05
(2015) 132, arXiv:1412.6087.

[243] J. Maldacena, S. H. Shenker, and D. Stanford, “A bound on chaos,” JHEP 08
(2016) 106, arXiv:1503.01409.

[244] P. Chen, Y. C. Ong, and D.-h. Yeom, “Black hole remnants and the
information loss paradox,” Phys. Rept. 603 (2015) 1, arXiv:1412.8366.

[245] S. Lloyd and J. Preskill, “Unitarity of black hole evaporation in final-state
projection models,” JHEP 08 (2014) 126, arXiv:1308.4209.

[246] K. Papadodimas and S. Raju, “An infalling observer in AdS/CFT,” JHEP 10
(2013) 212, arXiv:1211.6767.

[247] S. D. Mathur, “The fuzzball proposal for black holes: an elementary review,”
Fortsch. Phys. 53 (2005) 793, arXiv:hep-th/0502050.

[248] S. B. Giddings, “Nonviolent nonlocality,” Phys. Rev. D 88 (2013) 064023,
arXiv:1211.7070.

[249] M. Hotta and A. Sugita, “The fall of black hole firewall: natural nonmaximal
entanglement for Page curve,” PTEP 2015 (2015) 123B04,
arXiv:1505.05870.

[250] Y. Nomura, F. Sanches, and S. J. Weinberg, “Black hole interior in quantum
gravity,” Phys. Rev. Lett. 114 (2015) 201301, arXiv:1412.7539.

[251] Y. Nomura, F. Sanches, and S. J. Weinberg, “Relativeness in quantum
gravity: limitations and frame dependence of semiclassical descriptions,”
JHEP 04 (2015) 158, arXiv:1412.7538.

[252] Y. Nomura and N. Salzetta, “Why firewalls need not exist,” Phys. Lett. B
761 (2016) 62–69, arXiv:1602.07673.

[253] D. Harlow and P. Hayden, “Quantum computation vs. firewalls,” JHEP 06
(2013) 085, arXiv:1301.4504.

[254] C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher,
“Concentrating partial entanglement by local operations,” Phys. Rev. A 53
(1996) 2046–2052, arXiv:quant-ph/9511030.

http://dx.doi.org/10.1088/1126-6708/2007/09/120
http://arxiv.org/abs/0708.4025
http://dx.doi.org/10.1103/PhysRevLett.70.1895
http://dx.doi.org/10.1017/CBO9781139525343
http://dx.doi.org/10.1007/JHEP05(2015)132
http://dx.doi.org/10.1007/JHEP05(2015)132
http://arxiv.org/abs/1412.6087
http://dx.doi.org/10.1007/JHEP08(2016)106
http://dx.doi.org/10.1007/JHEP08(2016)106
http://arxiv.org/abs/1503.01409
http://dx.doi.org/10.1016/j.physrep.2015.10.007
http://arxiv.org/abs/1412.8366
http://dx.doi.org/10.1007/JHEP08(2014)126
http://arxiv.org/abs/1308.4209
http://dx.doi.org/10.1007/JHEP10(2013)212
http://dx.doi.org/10.1007/JHEP10(2013)212
http://arxiv.org/abs/1211.6767
http://dx.doi.org/10.1002/prop.200410203
http://arxiv.org/abs/hep-th/0502050
http://dx.doi.org/10.1103/PhysRevD.88.064023
http://arxiv.org/abs/1211.7070
http://dx.doi.org/10.1093/ptep/ptv170
http://arxiv.org/abs/1505.05870
http://dx.doi.org/10.1103/PhysRevLett.114.201301
http://arxiv.org/abs/1412.7539
http://dx.doi.org/10.1007/JHEP04(2015)158
http://arxiv.org/abs/1412.7538
http://dx.doi.org/10.1016/j.physletb.2016.08.003
http://dx.doi.org/10.1016/j.physletb.2016.08.003
http://arxiv.org/abs/1602.07673
http://dx.doi.org/10.1007/JHEP06(2013)085
http://dx.doi.org/10.1007/JHEP06(2013)085
http://arxiv.org/abs/1301.4504
http://dx.doi.org/10.1103/PhysRevA.53.2046
http://dx.doi.org/10.1103/PhysRevA.53.2046
http://arxiv.org/abs/quant-ph/9511030


270

[255] J. Oppenheim and W. G. Unruh, “Firewalls and flat mirrors: An alternative
to the AMPS experiment which evades the Harlow-Hayden obstacle,” JHEP
03 (2014) 120, arXiv:1401.1523.

[256] S. Aaronson, “Computation complexity underpinnings of the Harlow-Hayden
argument.”
http://online.kitp.ucsb.edu/online/fuzzorfire_m13/aaronson/.

[257] Y. Sekino and L. Susskind, “Fast scramblers,” JHEP 10 (2008) 065,
arXiv:0808.2096.

[258] N. Lashkari, D. Stanford, M. Hastings, T. Osborne, and P. Hayden, “Towards
the fast scrambling conjecture,” JHEP 04 (2013) 022, arXiv:1111.6580.

[259] S. B. Giddings, “Hawking radiation, the Stefan–Boltzmann law, and
unitarization,” Phys. Lett. B 754 (2016) 39–42, arXiv:1511.08221.

[260] F. G. S. L. Brandão, A. W. Harrow, and M. Horodecki, “Local random
quantum circuits are approximate polynomial-fesigns,” Commun. Math.
Phys. 346 (2016) 397–434, arXiv:1208.0692.

[261] C. Dankert, R. Cleve, J. Emerson, and E. Livine, “Exact and approximate
unitary 2-designs and their application to fidelity estimation,” Phys. Rev. A
80 (2009) 012304.

[262] J. Shore and R. Johnson, “Axiomatic derivation of the principle of maximum
entropy and the principle of minimum cross-entropy,” IEEE Trans. Inf.
Theory 26 (1980) 26–37.

[263] B. Freivogel, R. Jefferson, L. Kabir, B. Mosk, and I.-S. Yang, “Casting
shadows on holographic reconstruction,” Phys. Rev. D 91 (2015) 086013,
arXiv:1412.5175.

[264] S. Raju, “Smooth causal patches for AdS black holes,” Phys. Rev. D 95
(2017) 126002, arXiv:1604.03095.

[265] S. D. Mathur and D. Turton, “The flaw in the firewall argument,” Nucl.
Phys. B 884 (2014) 566–611, arXiv:1306.5488.

[266] S. D. Mathur, “A model with no firewall,” arXiv:1506.04342.

[267] G. Dotti and R. J. Gleiser, “Gravitational instability of the inner static
region of a Reissner-Nordstrom black hole,” Class. Quant. Grav. 27 (2010)
185007, arXiv:1001.0152.

[268] N. Engelhardt and G. T. Horowitz, “Holographic consequences of a no
transmission principle,” Phys. Rev. D 93 (2016) 026005, arXiv:1509.07509.

[269] D. Wallace, “Why black hole information loss is paradoxical,”
arXiv:1710.03783.

[270] E. H. Lieb and M. B. Ruskai, “A fundamental property of
quantum-mechanical entropy,” Phys. Rev. Lett. 30 (1973) 434.

http://dx.doi.org/10.1007/JHEP03(2014)120
http://dx.doi.org/10.1007/JHEP03(2014)120
http://arxiv.org/abs/1401.1523
http://online.kitp.ucsb.edu/online/fuzzorfire_m13/aaronson/
http://dx.doi.org/10.1088/1126-6708/2008/10/065
http://arxiv.org/abs/0808.2096
http://dx.doi.org/10.1007/JHEP04(2013)022
http://arxiv.org/abs/1111.6580
http://dx.doi.org/10.1016/j.physletb.2015.12.076
http://arxiv.org/abs/1511.08221
http://dx.doi.org/10.1007/s00220-016-2706-8
http://dx.doi.org/10.1007/s00220-016-2706-8
http://arxiv.org/abs/1208.0692
http://dx.doi.org/10.1103/PhysRevA.80.012304
http://dx.doi.org/10.1103/PhysRevA.80.012304
http://dx.doi.org/10.1109/TIT.1980.1056144
http://dx.doi.org/10.1109/TIT.1980.1056144
http://dx.doi.org/10.1103/PhysRevD.91.086013
http://arxiv.org/abs/1412.5175
http://dx.doi.org/10.1103/PhysRevD.95.126002
http://dx.doi.org/10.1103/PhysRevD.95.126002
http://arxiv.org/abs/1604.03095
http://dx.doi.org/10.1016/j.nuclphysb.2014.05.012
http://dx.doi.org/10.1016/j.nuclphysb.2014.05.012
http://arxiv.org/abs/1306.5488
http://arxiv.org/abs/1506.04342
http://dx.doi.org/10.1088/0264-9381/27/18/185007
http://dx.doi.org/10.1088/0264-9381/27/18/185007
http://arxiv.org/abs/1001.0152
http://dx.doi.org/10.1103/PhysRevD.93.026005
http://arxiv.org/abs/1509.07509
http://arxiv.org/abs/1710.03783
http://dx.doi.org/10.1103/PhysRevLett.30.434


271

[271] W. G. Unruh and R. M. Wald, “Information loss,” Rept. Prog. Phys. 80
(2017) 092002, arXiv:1703.02140.

[272] T. Hertog and J. Hartle, “Observational implications of fuzzball formation,”
arXiv:1704.02123.

[273] N. Bao, A. Bouland, and S. P. Jordan, “Grover search and the no-signaling
principle,” Phys. Rev. Lett. 117 (2016) 120501, arXiv:1511.00657.

[274] K. Osuga and D. N. Page, “Qubit transport model for unitary black hole
evaporation without firewalls,” arXiv:1607.04642.

[275] S. D. H. Hsu, “Macroscopic superpositions and black hole unitarity,”
arXiv:1302.0451.

[276] S. D. H. Hsu, “Factorization of unitarity and black hole firewalls,”
arXiv:1308.5686.

[277] J. Hartle and T. Hertog, “Quantum transitions between classical histories,”
Phys. Rev. D 92 (2015) 063509, arXiv:1502.06770.

[278] K. Papadodimas and S. Raju, “Remarks on the necessity and implications of
state-dependence in the black hole interior,” Phys. Rev. D 93 (2016) 084049,
arXiv:1503.08825.

[279] Y. Nomura, J. Varela, and S. J. Weinberg, “Black holes or firewalls: a theory
of horizons,” Phys. Rev. D 88 (2013) 084052, arXiv:1308.4121.

[280] E. Verlinde and H. Verlinde, “Passing through the firewall,”
arXiv:1306.0515.

[281] Y. Nomura, J. Varela, and S. J. Weinberg, “Complementarity endures: no
firewall for an infalling observer,” JHEP 03 (2013) 059, arXiv:1207.6626.

[282] Y. Nomura and J. Varela, “A note on (no) firewalls: the entropy argument,”
JHEP 07 (2013) 124, arXiv:1211.7033.

[283] D.-h. Yeom, “Information loss problem and roles of instantons,” in
Proceedings, 2nd LeCosPA Symposium: Everything about Gravity,
Celebrating the Centenary of Einstein’s General Relativity (LeCosPA2015):
Taipei, Taiwan, December 14-18, 2015, p. 566. 2017. arXiv:1601.02366.

[284] R. Bousso, “Firewalls from double purity,” Phys. Rev. D 88 (2013) 084035,
arXiv:1308.2665.

[285] S. B. Giddings and R. A. Porto, “The gravitational S-matrix,” Phys. Rev. D
81 (2010) 025002, arXiv:0908.0004.

[286] A. Strominger, “On BMS invariance of gravitational scattering,” JHEP 07
(2014) 152, arXiv:1312.2229.

[287] T. Maudlin, “(Information) paradox lost,” arXiv:1705.03541.

http://dx.doi.org/10.1088/1361-6633/aa778e
http://dx.doi.org/10.1088/1361-6633/aa778e
http://arxiv.org/abs/1703.02140
http://arxiv.org/abs/1704.02123
http://dx.doi.org/10.1103/PhysRevLett.117.120501
http://arxiv.org/abs/1511.00657
http://arxiv.org/abs/1607.04642
http://arxiv.org/abs/1302.0451
http://arxiv.org/abs/1308.5686
http://dx.doi.org/10.1103/PhysRevD.92.063509
http://arxiv.org/abs/1502.06770
http://dx.doi.org/10.1103/PhysRevD.93.084049
http://arxiv.org/abs/1503.08825
http://dx.doi.org/10.1103/PhysRevD.88.084052
http://arxiv.org/abs/1308.4121
http://arxiv.org/abs/1306.0515
http://dx.doi.org/10.1007/JHEP03(2013)059
http://arxiv.org/abs/1207.6626
http://dx.doi.org/10.1007/JHEP07(2013)124
http://arxiv.org/abs/1211.7033
http://dx.doi.org/10.1142/9789813203952_0079
http://arxiv.org/abs/1601.02366
http://dx.doi.org/10.1103/PhysRevD.88.084035
http://arxiv.org/abs/1308.2665
http://dx.doi.org/10.1103/PhysRevD.81.025002
http://dx.doi.org/10.1103/PhysRevD.81.025002
http://arxiv.org/abs/0908.0004
http://dx.doi.org/10.1007/JHEP07(2014)152
http://dx.doi.org/10.1007/JHEP07(2014)152
http://arxiv.org/abs/1312.2229
http://arxiv.org/abs/1705.03541


272

[288] A. L. Fitzpatrick and J. Kaplan, “Unitarity and the holographic S-matrix,”
JHEP 10 (2012) 032, arXiv:1112.4845.

[289] B. S. Dewitt, “Quantum theory of gravity. I. the canonical theory,” Phys.
Rev. 160 (1967) 1113.

[290] H. D. Zeh, “On the interpretation of measurement in quantum theory,”
Found. Phys. 1 (1970) 69.

[291] W. H. Zurek, “Pointer basis of quantum apparatus: into what mixture does
the wave packet collapse?,” Phys. Rev. D 24 (1981) 1516.

[292] R. B. Griffiths, “Consistent histories and the interpretation of quantum
mechanics,” J. Stat. Phys. 36 (1984) 219.

[293] E. Joos and H. D. Zeh, “The emergence of classical properties through
interaction with the environment,” Z. Phys. B 59 (1985) 223.

[294] M. Schlosshauer, “Decoherence, the measurement problem, and
interpretations of quantum mechanics,” Rev. Mod. Phys. 76 (2004) 1267,
arXiv:quant-ph/0312059.

[295] D. Harlow, “The Ryu-Takayanagi formula from quantum error correction,”
Commun. Math. Phys. 354 (2017) 865, arXiv:1607.03901.

[296] D. Carney, L. Chaurette, D. Neuenfeld, and G. W. Semenoff, “Infrared
quantum information,” Phys. Rev. Lett. 119 (2017) 180502,
arXiv:1706.03782.

[297] D. Carney, L. Chaurette, D. Neuenfeld, and G. W. Semenoff, “Dressed
infrared quantum information,” Phys. Rev. D 97 (2018) 025007,
arXiv:1710.02531.

[298] D. Carney, L. Chaurette, D. Neuenfeld, and G. Semenoff, “On the need for
soft dressing,” arXiv:1803.02370.

[299] A. Strominger and A. Zhiboedov, “Gravitational memory, BMS
supertranslations and soft theorems,” JHEP 01 (2016) 086,
arXiv:1411.5745.

[300] S. W. Hawking, M. J. Perry, and A. Strominger, “Soft hair on black holes,”
Phys. Rev. Lett. 116 (2016) 231301, arXiv:1601.00921.

[301] A. Strominger, “Black hole information revisited,” arXiv:1706.07143.

[302] D. Marolf and A. C. Wall, “Eternal black holes and superselection in
AdS/CFT,” Class. Quant. Grav. 30 (2013) 025001, arXiv:1210.3590.

[303] J. Pollack and A. Singh, “Towards space from Hilbert space: Finding lattice
structure in finite-dimensional quantum systems,” arXiv:1801.10168.

[304] A. S. Holevo, “The capacity of the quantum channel with general signal
states,” IEEE Trans. Inf. Theory 44 (1998) 269, arXiv:quant-ph/9611023.

http://dx.doi.org/10.1007/JHEP10(2012)032
http://arxiv.org/abs/1112.4845
http://dx.doi.org/10.1103/PhysRev.160.1113
http://dx.doi.org/10.1103/PhysRev.160.1113
http://dx.doi.org/10.1007/BF00708656
http://dx.doi.org/10.1103/PhysRevD.24.1516
http://dx.doi.org/10.1007/BF01015734
http://dx.doi.org/10.1007/BF01725541
http://dx.doi.org/10.1103/RevModPhys.76.1267
http://arxiv.org/abs/quant-ph/0312059
http://dx.doi.org/10.1007/s00220-017-2904-z
http://arxiv.org/abs/1607.03901
http://dx.doi.org/10.1103/PhysRevLett.119.180502
http://arxiv.org/abs/1706.03782
http://dx.doi.org/10.1103/PhysRevD.97.025007
http://arxiv.org/abs/1710.02531
http://arxiv.org/abs/1803.02370
http://dx.doi.org/10.1007/JHEP01(2016)086
http://arxiv.org/abs/1411.5745
http://dx.doi.org/10.1103/PhysRevLett.116.231301
http://arxiv.org/abs/1601.00921
http://arxiv.org/abs/1706.07143
http://dx.doi.org/10.1088/0264-9381/30/2/025001
http://arxiv.org/abs/1210.3590
http://arxiv.org/abs/1801.10168
http://dx.doi.org/10.1109/18.651037
http://arxiv.org/abs/quant-ph/9611023


273

[305] N. Bao and H. Ooguri, “Distinguishability of black hole microstates,” Phys.
Rev. D 96 (2017) 066017, arXiv:1705.07943.

[306] S. D. Mathur, “How fast can a black hole release its information?,” Int. J.
Mod. Phys. D 18 (2009) 2215, arXiv:0905.4483.

http://dx.doi.org/10.1103/PhysRevD.96.066017
http://dx.doi.org/10.1103/PhysRevD.96.066017
http://arxiv.org/abs/1705.07943
http://dx.doi.org/10.1142/S0218271809016004
http://dx.doi.org/10.1142/S0218271809016004
http://arxiv.org/abs/0905.4483

	Acknowledgements
	Abstract
	Published Content and Contributions
	Table of Contents
	List of Illustrations
	Preliminaries
	Introduction
	How it all fits together


	Holography
	Puzzles and Pitfalls Involving Haar-Typicality in Holography
	Introduction
	Properties of random states
	Puzzles resolved and pitfalls espied
	Measures of holographic states
	Error correction
	Butterfly effects and shockwaves
	Random tensor networks
	Other probability distributions

	Conclusion

	The Complexity of Identifying Ryu-Takayanagi Surfaces in AdS3 / CFT2
	Introduction
	An algorithm to identify minimal-length bulk surfaces
	Complexity analysis
	Other bulk topologies
	Conclusion
	Intersections of geodesics

	Consistency Conditions for an AdS/MERA Correspondence
	Introduction
	AdS/MERA
	Review of the MERA
	An AdS/MERA Correspondence? 

	MERA and Geometry
	Consistency conditions from matching trajectories
	Limits on sub-AdS scale physics

	Constraints from Boundary Entanglement Entropy
	MERA and CFT Entanglement Entropy
	Constraining SMERA
	Matching to the CFT 

	Constraints from Bulk Entanglement Entropy
	The Bousso Bound
	A MERA version of the Bousso Bound

	Conclusion
	Entropy bound for general MERAs 
	BTZ Black Holes and Thermal States in AdS/MERA


	Cosmology
	De Sitter Space as a Tensor Network
	Introduction
	The MERA and the de Sitter causal patch
	Cosmic No-Hair as a channel property
	Global de Sitter and Complementarity
	Slicing, weak complementarity, and pseudo-holography
	Strong Complementarity, recoverability, and quantum error correction

	Circuit Complexity and de Sitter Action
	Discussion
	Stationary causal cones of the MERA
	Higher-dimensional generalizations

	Cosmic Equilibration: A Holographic No-Hair Theorem from the Generalized Second Law
	Introduction
	The generalized second law for cosmology
	A cosmic no-hair theorem for RW spacetimes
	A cosmic no-hair theorem for Bianchi I spacetimes
	1+2 dimensions
	1+3 dimensions

	Discussion
	Q-screens, a worked example
	Holographic screen continuity and maximal area light cone slices

	Natural Covariant Planck Scale Cutoffs and the Cosmic Microwave Background
	Introduction
	Fully covariant natural ultraviolet cutoffs.
	Application to inflation.


	The Black Hole Information Problem
	Hawking Radiation and Information: A Review
	Black holes that formed from collapse
	Eternal black holes
	The Black Hole Information Problem

	How to Recover a Qubit that has Fallen into a Black Hole
	Introduction
	A protocol for retrieving individual qubits
	Discussion
	State of the Hawking Photons
	Resource Considerations
	Timescale Considerations

	Conclusion

	Rescuing Complementarity with Little Drama
	Introduction
	Background: Black Holes and Scrambling
	Hawking radiation and scrambling: what Alice sees
	Scrambling, inside and out
	Scrambling and kinematics

	Computation behind the horizon
	Model for verifying entanglement
	Alice's computational task

	Discussion
	Modeling scrambling dynamics
	Black holes in other dimensions.
	Localization of the experimenter.
	Relation to prior works
	Other black hole geometries

	Conclusion

	Branches of the Black Hole Wave Function Need Not Contain Firewalls
	The black hole information puzzle
	What is unitary and what is not
	Setup
	The Page curve: late-time entanglement structure
	Unitary evolution, branches, and decoherence
	Entanglement structure at intermediate times
	Branch counting

	Operational tests of the information puzzle
	Conclusions

	Bibliography


