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ABSTRACT

New manufacturing techniques, such as 3D printing, allow for greater control over
material properties and can be used to create custom heterogeneous materials.
Heterogeneities can be leveraged to increase fracture toughness by redistributing the
stresses, such as due to an elastic heterogeneity, or by impeding crack propagation,
such as the renucleation at a material interface or edge of a void. The goal of
this research is to study the mechanisms by which heterogeneities work to make
composite materials more resistant to fracture than either of the individual base
materials.

The influence of heterogeneities on the deformation and fracture of 3D printed
fracture specimens is investigated. Brick-like heterogeneities are studied in compact
tension and plate specimens with soft, stiff, and void heterogeneities. Horizontally
layered heterogeneities are studied in compact tension specimens. The specimens are
manufactured using a printer capable of printing multiple materials. The specimens
are loaded until failure, and full-field displacement and strain data are collected using
digital image correlation. The evolution of resistance to fracture is quantified by the
energy release rate and fracture toughness values calculated using load, load-point
displacement measurements, and crack extension data determined from images of
the specimen. Both in soft specimenswith stiff heterogeneities and in stiff specimens
with soft heterogeneities, stresses are observed to be higher in the stiffer material.
Fracture toughness is observed to increase in the presence of stiff inclusions and
voids, although in the case of voids this is due to the crack terminating at the edge
of the void and renucleating at the other edge.

The effects of interfaces on crack propagation in periodic media are experimentally
studied. Comparative experiments on two proposed heterogeneity architectures aim
to separate the effects of elastic deformation caused by heterogeneous inclusions in a
composite from the effects of passing through an interface during crack propagation.
The first, ’stripe’ specimens, alternate equal width stripes perpendicular to the plane
of the crack. The second, ’cross’ specimens, have the same stripe pattern but with
a narrow strip of one of the constituent materials in the plane of crack propagation.
The ’cross’ is wide enough to contain the crack to an area without material interfaces
but thin enough that its overall effect on elastic deformation is minimal. Specimens
are manufactured from two polymers using polyjet 3D printing. Energy release rate
for fracture is calculated from load and displacement measurements. Digital image
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correlation is used to study strain and stress fields during crack propagation. While
the stress fields during crack propagation appear similar, the fracture toughness in
the ’stripe’ specimens was found to be higher than that of the ’cross’ specimens,
indicating that fracture toughness is enhanced by renucleation at the interfaces.
Additionally, the amount of enhancement was observed to depend on the width of
the heterogeneous layers.

The interaction between the cohesive zone and elastic stiffness heterogeneity in the
peeling of an adhesive tape from a rigid substrate is examined experimentally and
with finite element simulations. It is understood that elastic stiffness heterogeneities
can greatly enhance the adhesion of a tape without changing the properties of the
interface. However, in peeling experiments performed on pressure sensitive adhesive
tapes with both an elastic stiffness heterogeneity and a substantial cohesive zone,
muted adhesion enhancement was observed. It is proposed that the cohesive zone
acts to smooth out the effect of the discontinuity at the edge of the elastic stiffness
heterogeneities, suppressing their effect on peel force enhancement. The results of
numerical simulations show that the peel force enhancement depends on the strength
of the adhesive and the size of the cohesive zone.
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C h a p t e r 1

INTRODUCTION

Heterogeneities and complex architectures are pervasive in manufactured and nat-
ural materials. As a result, many studies have been completed examining how
heterogeneities and complex geometries result in increased susceptibility to frac-
ture. Complex geometries suggest corners, edges, and holes: features that lead to
stress concentrations that ultimately cause material failure. Heterogeneities imply
stress or strain concentrations: inclusions or voids in a material that weaken it.
However, in some cases heterogeneities can contribute to toughening the material as
in the case of fiber reinforced composites. Toughening mechanisms fall into two cat-
egories: intrinsic (ahead of the crack) and extrinsic (behind the crack) toughening.
Intrinsic mechanisms are dominant in polymeric materials. One type of mecha-
nism, microvoid coalescence, blunts the crack, reducing the stress concentration
at its tip and possibly arresting crack growth [1]. Crack deflection toughening, an
intrinsic mechanism common in polycrystalline ceramics, increases the toughness
by inducing residual stresses where the crack has been deflected from propagating
in a straight line (usually by propagating along grain boundaries) [2]. Polymers do
not have a crystal structure, but it is possible to harness these concepts by designing
micro- and macro-scale material architectures resulting in a "material by design"
toughness tailored to the application of the material.

Additive manufacturing, commonly known as 3D printing, is emerging as a fab-
rication technique useful for manufacturing complex components, prototypes and
one-off designs. The American Society for Testing and Materials (ASTM) recog-
nizes seven types of additive manufacturing processes that encompass techniques
for printing in many types of materials from polymers to metals and even ceramics
[3, 4]. One of the more recent developments in additive manufacturing is the abil-
ity to print in multiple materials simultaneously. As a result, highly heterogeneous
parts can be easily manufactured. Harnessing this new capability to control material
architectures motivates this study of individual mechanisms and their contribution
to fracture resistance.

Fracture mechanics quantifies fracture toughness using the quantities K, G, and J:
the stress intensity factor, Griffith energy release rate for brittle materials, and the
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J-integral, which is the generalized measure of the energy release rate for nonlinear
materials, respectively. K uses crack size, orientation, and applied load to determine
whether crack extension will occur. If K is greater than a critical value (a material
property) the material can withstand, the crack will extend; otherwise, it does not. G

and J both measure the energy required to extend a crack, although in different ways
and are equivalent if linear elasticity is assumed. In linear elastic fracturemechanics,
G = J = E∗K2

I , where E* takes different values depending on whether plane stress
or plane strain conditions are assumed [5]. The subscript I’s refer to mode I, or
opening mode fracture where the load is being applied normal to the crack causing
it to open. Modes II and III refer to in- and out-of-plane shear fractures. In isotropic
materials, cracks tend to propagate in a direction where mode I is maximized and
the other modes minimized, kinking as necessary to achieve this [6].

Peeling an adhesive tape from an adherend (substrate) can be viewed as a one-
dimensional crack. Early work suggested that the stiffness of the adhesive seemed
to affect the work required to propagate a crack between the adhesive and adherend
[7]. Further work found that varying the stiffness of the adhesive in the direction of
peeling had the effect of either retarding or accelerating crack growth near interfaces
between sections of different elastic moduli. It is possible to design a composite
material using varying elastic moduli that is more resistant to fracture than the
individual components[8, 9].

These findings relating variation inmechanical properties and fracture toughness are
mirrored in experiments and theory in higher dimensions. Hossain et al. modeled
cracks propagating through heterogeneous materials and found that heterogeneities
can behave as toughening mechanisms by redistributing stress and inducing tortu-
osity [10]. In experiments performed on bio-inspired heterogeneous specimens,
Dimas et al. observed that heterogeneities embedded in a matrix redistribute strains
from the crack tip throughout the matrix leading to flaw tolerant behavior [11, 12].
Furthermore, in their theoretical work, Dimas et al. observed that increasing the
variance of material strengths within a composite led to crack-arrest behavior and
higher ultimate strengths [13].

ASTM has developed widely used standards for measuring fracture toughness and
quantifying toughening behavior in homogeneous materials [14, 15]. Additionally,
fracture properties of amaterial can be determined from studying the fracture surface
post-fracture using quantitative fractography techniques [16, 17, 18]. However, the
characterization of fracture properties in heterogeneous media is less well defined.
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The difficulty with applying ASTM standard tests to heterogeneous media is that
ASTMmethods are designed to assign a single (unique) value or curve to amaterial’s
properties, whereas the properties of a heterogeneous media are variable and could
vary across the material. Dimas et al. use a quantity called the toughness modulus
(the area under the stress-strain curve) to quantify fracture toughness [11, 12].
However, this value is dependent upon specimen geometry and is difficult to compare
between different geometries. Rice’s J-integral is a popular measure of fracture
toughness due to its path independence and can be calculated from full-field and/or
boundary data collected during an experiment. However, one of the assumptions of
the J-integral is that the material is homogeneous; when this assumption is violated
it loses its path independence. As a result, J-integral methods are very accurate for
homogeneous specimens but could be inaccurate for heterogeneous specimens [19,
20].

1.1 Fracture Mechanics
Griffith proposed the energy based criterion for fracture [21]:

GC = 2γ , (1.1)

where GC is the energy required to propagate a crack by unit distance and γ is
the fracture surface energy. That is, the energy required to extend a crack is equal
to the amount of energy created in the formation of the new fracture surfaces.
While an intuitive and elegant argument, the criterion only works for extremely
brittle materials but is inadequate for many engineering materials [22]. In materials
that are not perfectly brittle, many other factors contribute to the energy required
to propagate a crack such as crack blunting and crack-tip plasticity. Building on
the idea of defining fracture resistance as the rate of energy release, consider the
definition [21]:

G = −∂V
∂a

, (1.2)

where V is potential energy per unit thickness and a is the crack length. Figure 1.1a
shows a general configuration for a loaded cracked plate. To determine the energy
release rate from Eq. 1.2, calculate the potential energy:

V = SE −Wext =
1
2

Pv − Pv = −1
2

Pv , (1.3)

with SE the strain energy and Wext the work done by the external force. For a
prescribed load:

G = −∂V
∂a
= −1

2
∂

∂a
(−Pv) = 1

2
P
∂v

∂a
. (1.4)
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Figure 1.1: a. Edge-cracked plate with applied load P (per unit thickness), displace-
ment v, and initial crack length a; b. Center-cracked plate with applied stress σ∞
and initial elliptical crack with major axis, 2a and minor axis, 2b.

Define compliance as the slope of the displacement-load curve:

C = v/P . (1.5)

Rearranging and taking the derivative with respect to crack length (for prescribed
P):

∂v

∂a
= P

∂C
∂a

. (1.6)

Substituting this equation into Eq. (1.4) gives the energy release rate, G, in terms
of compliance:

GC =
1
2

P2 ∂C
∂a

. (1.7)

The energy release rate can be determined using Eq. (1.7) if the load and the
compliance can be measured.

Rice proposed calculating the energy driving the crack forward by integrating the
energy flux passing through a contour around a crack tip (see Fig. 1.2) [23, 24].
Assuming the loading is quasi-static and the material is homogeneous and elastic,
the 2D J-integral is given by:

J =
∫
Γ

(Wδ j1 − σi j
∂ui

∂x1
)n j ds , (1.8)

where W is strain energy density, δ j1 the Kronecker delta, σi j the stress field in the
solid, ∂ui

∂x1
the displacement gradient, x1 and x2 the coordinate directions, and n j the

outward normal to the contour, Γ. This formulation is particularly useful because it
is path independent; as long as it encloses the crack tip, the value will be the same.
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Figure 1.2: Crack with contour Γ around the crack tip with outward normal n.

Now consider the center-ellipse-cracked plate in Fig. 1.1b. Inglis found that the
normal stress at the tip of the ellipse (point A) is [25]:

σ = σ∞[1 +
2a
b
] . (1.9)

Holding the radius of the major axis constant, as the radius of the minor axis
approaches zero, the ellipse approaches a sharp crack and the stresses at the crack
tip approach infinity. Physically speaking, this is impossible. The material will
yield in a region surrounding, resulting in finite stresses. This region, the plastic
zone, is proportional to K2/σ2

0 , where σ0 is the yield stress of the material.

In 2D linear elasticity, the stress field at the tip of a crack tip in an infinite solid is:

σrr =
KI√
2πr
(5
4

cos
θ

2
− 1

4
cos

3θ
2
) + KI I√

2πr
(−5

4
sin

θ

2
+

3
4

sin
3θ
2
)

σθθ =
KI√
2πr
(3
4

cos
θ

2
+

1
4

cos
3θ
2
) − KI I√

2πr
(3
4

sin
θ

2
+

3
4

sin
3θ
2
)

σrθ =
KI√
2πr
(1
4

sin
θ

2
− 1

4
sin

3θ
2
) + KI I√

2πr
(1
4

cos
θ

2
+

3
4

cos
3θ
2
) .

(1.10)

Equivalently in Cartesian coordinates:

σ11 =
KI√
2πr

cos
θ

2
(1 − sin

θ

2
sin

3θ
2
) − KI I√

2πr
sin

θ

2
(2 + cos

θ

2
cos

3θ
2
)

σ22 =
KI√
2πr

cos
θ

2
(1 + sin

θ

2
sin

3θ
2
) + KI I√

2πr
cos

θ

2
sin

θ

2
cos

3θ
2

σ12 =
KI√
2πr

cos
θ

2
sin

θ

2
cos

3θ
2
+

KI I√
2πr

cos
θ

2
(1 − sin

θ

2
sin

3θ
2
) .

(1.11)

Williams obtains this result by considering the V-notch system loaded in tension
shown in the inset of Fig. 1.3 [24, 26, 27, 28]. Williams uses the following ansatz:

φ(r, θ) = rλ+2 f (θ), (1.12)
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in the Airy stress biharmonic equilibrium equation (body forces are assumed to be
zero):

∇4φ = 0. (1.13)

The V-notch is not loaded on the notch surfaces, leading to traction boundary
conditions:

σθθ(r, θ = π ± ω/s) = σrθ(r, θ = π ± ω/s) = 0, 0 < r < +∞. (1.14)

The general solution for symmetric loading is the resulting ordinary differential

Figure 1.3: Strength of the singularity (1 − λ) versus angle of the notch [29].

equation:
φ(r, θ) = rλ+2 A cos λθ + B cos(λ + 2)θ. (1.15)

Using the traction-free boundary conditions results in the equations:

A cos(λ(π − ω/2)) + B cos((λ + 2)(π − ω/2)) = 0,

Aλ sin(λ(π − ω/2)) + B(λ + 2) cos((λ + 2)(π − ω/2)) = 0.
(1.16)

The determinant of this system must equal zero for non-trivial solutions:

sin(2λ(π − ω)) + λ sin(2(π − ω)) = 0 . (1.17)

The plot in Fig. 1.3 shows the value of singularity versus the half-angle notch, ω.
The singularity disappears for ω = π/2, or no notch. The most singular solution
with bounded energy occurs at λ = −1

2 for a crack-like notch, ω = 0. This leads to
the well known results in Eq. (1.11). Tanné et al. used this geometry to study crack
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nucleation in variational phase-field simulations of brittle fracture, concluding that
this type of model could accurately be used to predict crack nucleation [30].

Stress intensity factors are defined to be:

KI = lim
r→0

√
2πrσ22 |θ=0; KI I = lim

r→0

√
2πrσ12 |θ=0 . (1.18)

Stress intensity factors can be calculated for various geometries. If linear elasticity is
assumed, the stress intensity factors of simple loadings can be added and subtracted
to find the solution to a more complicated loading scenario by the principle of
superposition [24].

Dugdale applied the principle of superposition to the problem shown in Fig. 1.4 to
determine the size of the plastic zone in thin steel sheets [31, 32]. The problem is
modeled as a slit, 2a, in an infinite plate loaded in tension, σ∞. The stress in zones
of length s at the slit tips is limited to the yield strength of the material, σ0. This
problem is modeled as three simple problems: (1) a slit in an infinite plate loaded in
tension, σ∞, (2) a slit in an infinite plate with the entire slit loaded in compression,
σ0, and (3) the portion of the slit from −a to a loaded in tension, σ0. The solution
to the original problem is found by superposition of the three simpler problems:

KI = K (1)I + K (2)I + K (3)I . (1.19)

In order to find the size of the yield zone, it is desired to solve the problem such that
the stress is always finite (there is no stress singularity), KI = 0. The solution is [22,
31, 32]:

s = a sec
σ∞π

2σ0
− a . (1.20)

It is important to note that the material is not failed in the sense of fracture in the
region s ahead of the crack tip; that is, there is still material in this region but the
maximum stress it can hold is given by the yield strength of the material. Figure
1.5 shows the stresses ahead of the crack tip. If there were no yielded material,
the stresses would approach infinity near the crack tip (the dotted line); however,
because the material has yielded ahead of the crack tip, the stresses are finite in the
region s (the solid line). This figure is misleading, however, as the length of the
yielded zone is not merely the distance at which the stress field ahead of the crack tip
equals the yield strength of the material. The yielded zone is larger because the load
cutoff by limiting the stress to the yield strength of the material must be accounted
for (the area between the solid horizontal line, σ0, and the dashed line). Finally, note
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Figure 1.4: Dugdale problem for determining the size of the plastic zone.

the definition of the COD, or, the crack opening displacement in Fig. 1.5. Because
the crack surfaces separate before failure, it is useful to define the separation of the
fracture surfaces at the crack tip, a, as the COD [22, 32].

Figure 1.5: Stresses in the yielded zone.

Building on this formulation, Barenblatt generalized the problem to include stresses
that are a function of the opening displacement in s, renaming s a ’cohesive zone’
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[32, 33]. Figure 1.6 shows some common cohesive laws, also called traction-
separation laws, of stress as a function of separation, δ, in the cohesive zone. The
stress equals zero at δC , the critical COD. The area under the curve is defined to be
the critical energy release rate of the material:

GC =

∫ δC

0
σ(δ)dδ. (1.21)

Figure 1.6: Commonly used cohesive (traction-separation) laws.

1.2 Heterogeneous Fracture Mechanics
High stiffness materials, such as ceramics and glass, are rarely used as structural
materials. The reason for this is that, although the materials deform little when
subjected to high loads, they are very brittle leaving them susceptible to failure
originating from cracks and other small defects. As a result, increasing the resistance
to fracture has been studied extensively in ceramics. One of the topics that has
received a great deal of attention is toughening due to crack penetration in and
deflection around second-phase particles [2, 34]. Crack penetration and deflection
at bi-material interfaces has been studied more generally, such as in the works by He
and Hutchinson and Cotterell and Rice [22, 35]. Building on the analysis presented
in section 1.1, Zak and Williams showed that in the case of a bi-material interface,
varies with the contrast of material properties [36]. Figure 1.7 shows the variation
of the strength of the singularity versus the elastic contrast of the two materials. If
E1 << E2, as in the case of the crack propagating from a soft to a stiff material,
the power of r tends towards zero. This means the singularity vanishes so the crack



10

Figure 1.7: Strength of singularity vs material contrast as crack approaches the
interface [29].

must renucleate to pass through the interface. Instead if E1 >> E2, as in the case of a
crack propagating from a stiff to a soft material, the power of r increases, amplifying
the strength of the singularity and driving the crack forward. In this case, the crack
is likely to jump across the interface.

Hossain et al. performed variational phase-field simulations studying the crack
propagation through heterogeneous media and showed that the elastic contrast can
have significant influence on the fracture toughness. Additionally, they showed
that fracture toughness could be asymmetric by implementing asymmetric material
architectures [10]. Taking advantage of developments in additive manufacturing
that allow for parts to be printed with variable material properties, Weng and Xia
performed fracture experiments on heterogeneous materials, and found toughness
enhancement in agreement with numerical simulations performed on the same [37].

1.3 Tape Peeling
Tape peeling can be considered a simplified one-dimensional fracture problem.
Consider the problem in Fig. 1.8a. The peel front of the tape moves forward by
creating new surfaces, analogous to Griffith fracture. Following Griffith’s energy
balance approach, Kendall related the adhesion energy to the measured peel force
and angle, θ [21, 38]. The total amount of energy in the system is equal to the elastic
energy stored due to deformation of the tape plus the potential energy due to the
movement of the applied load plus the energy required to move the peel front from



11

Figure 1.8: a. Schematic of a homogeneous tape peeling experiment; b. Schematic
of a discontinuous tape peeling experiment. Tape has width, b.

point A to point B by forming new surfaces:

Utot = Uel +Up +Us . (1.22)

The elastic energy is equal to the area under the load-displacement curve:

Uel =
1
2

Pδ . (1.23)

The stress in the tape due to the applied force, P is:

σt =
P
bd

, (1.24)

where b is the width of the tape and d is the tape thickness. The displacement of
the peeled tape in the region A-B is:

δ = ε∆c = (σ
E
)∆c =

P
Ebd
∆c . (1.25)

Putting this into the equation for elastic energy gives:

Uel =
P2∆c
2Ebd

. (1.26)

Thework due to peeling the tape is equal to the peel force times the distance it moves.
If the elastic strains in the tape are small, this can be accurately approximated as
inextensible and this distance is δC(1 − cosθ):

Up = P(1 − cos θ)∆c . (1.27)

The energy associated with the creation of the new surfaces is:

Us = −bG∆c , (1.28)



12

where G is the adhesive energy. Using energy conservation to solve for G:

dUtot

d∆c
= 0 =

P2

2Edb2 +
P
b
(1 − cos θ) − G = 0 . (1.29)

Rearranging gives the equation for adhesion energy:

G =
P2

2Edb2 +
P
b
(1 − cos θ) . (1.30)

The inextensible case,
P
b
=

G
1 − cos θ

, (1.31)

was given by Rivlin [7]. Because adhesion strength is generally very low, the stresses
in the tape are usually negligible and the elastic term can generally be ignored [38].

Kendall modified the analysis for a two segment film to study the effects of dis-
continuous material properties across an interface, such as in Fig. 1.8b [8]. The
energies are now described by the integrals:

Us = Gb
∫ Z

0
dz

Uel =
1
2

P2
∫ Z

0

y2

EnIn
dz

Up = −P
∫ X

0
dx .

(1.32)

The integrals are evaluated using the beam equation:

d2y/dx2

1 + (dy/dx)2
3
2
=

Py

EnIn
. (1.33)

Solving for equilibrium as in Eq. (1.29), the maximum toughening enhancement is
achieved when the peel front is at the interface and the force is [8]:

P
b
=

E2I2
E1I1

G . (1.34)

Xia et al. derived a relation for the toughening enhancement in periodic heteroge-
neous tapes [39]. Xia defines the length scale of the tape subject to bending under an
applied load, λ =

√
DE/G, where DE is a representative bending rigidity based on

the length fraction of the individual rigidities (EI) in the periodic tape. For periods
much greater than λ, Kendall’s equation is recovered. For periods on the same order
as λ, the toughening enhancement is suppressed.
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From Eq. (1.34) it can be observed that toughening can be induced either by varying
the moment of inertia ( I2

I1
) or by alternately stiffening the tape (E2

E1
). Kendall varied

the moment of inertia by alternately thickening the tape (I = bd3

12 , where b is the
width and d the thickness of the tape). In experiments on the thickened tape, Kendall
showed that the radius of curvature as the peel front approaches and passes through
the interface varies dramatically. This shape change is responsible for the increase
of energy required to propagate the crack further. Kendall’s experiments on both
thickened and stiffened tape show that the velocity of the crack propagation slows
near the interface to the higher bending rigidity and increases near the interface
to the lower bending rigidity. Outside of areas near the interface, the velocity is
a constant value despite the local stiffness or thickness. Xia et al.’s experiments
on tape with variable thickness were in good agreement with theory; under the
appropriate conditions, the peel force enhancement was proportional to the cube of
the thickness.

1.4 Outline
This thesis examines fracture tougheningmechanisms due to heterogeneities through
experiments, simulations and analysis with the goal of developing a better under-
standing of how individualmechanisms contribute to toughening. Chapter 2 presents
experiments exploring the effect of heterogeneities on crack propagation. Several
material architectures, including a stiff matrix with soft inclusions and a soft matrix
with stiff inclusions, are investigated. Generally, stresses are observed to be higher
in the stiffer material. Fracture toughness is observed to increase in the presence
of stiff inclusions and voids, although in the case of voids this is due to the crack
terminating at the edge of the void and renucleating at the other edge.

Chapter 3 presents experiments, simulations, and theory studying the contribution of
renucleation at material interfaces to overall toughening. A theoretical framework
to predict the relative enhancements in toughening is presented. A comparative
experiment of two material architectures is proposed to separate the effect of renu-
cleation from the toughening enhancement due to elastic contrast. The results of
the experiments show good agreement with the theory and variational phase-field
simulations of the material architectures. The effect of renucleation was observed to
be more substantial than that of the elastic contrast alone. Additionally, the amount
of enhancement was observed to depend on the width of the heterogeneous layers.

Chapter 4 presents experiments and simulations studying the interactions of the
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elastic stiffness heterogeneity with the resulting cohesive zone. Observations from
the experimental peel test indicate that the cohesive zone suppresses the effect of
the stiffness heterogeneity. The results of numerical simulations show that the peel
force enhancement depends on the adhesive energy and the size of the cohesive
zone.

Chapter 5 summarizes the thesis and provides recommendations for further studies.
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C h a p t e r 2

TOUGHENING MECHANISMS IN PERIODIC LAYERED
MEDIA

Heterogeneities change how a material deforms resulting in stress fields that can
be leveraged to increase fracture toughness. Until recently, experiments studying
cracks in heterogeneous materials have generally been limited to laminate materials
due to the difficulty of manufacturing heterogeneous solids. New manufacturing
techniques, such as 3D printing, allow for control over material properties and can be
used to create custom heterogeneous materials. The last decade has seen the emer-
gence of commercial 3D printers capable of fabricating engineered heterogeneous
materials. The Stratasys Connex3 Objet series printer is a particularly common
commercially available printer that can print heterogeneous materials. Such print-
ers have been used widely in research in the study of base-line material behavior
of homogeneous additive manufactured materials, such as anisotropy due to the
printing process and the effect of aging [40, 41]. Because of the ability to print
in materials with contrasting mechanical properties, 3D printers have also been
used to study material architectures. Dimas et al. performed systematic studies
of material architectures based on those found in nature to explore the effect of
material contrasts on mechanical properties such as fracture toughness [11]. Gu et
al. examined nacre-inspired material architectures to study the role of hierarchical
microstructures in material strength [42, 43]. Additionally, Gu et al. and Dimas et
al. used the results of such studies to determine parameters that can be varied in
architectures in order to tune material properties [11, 12, 43]. Gu et al. performed
studies attempting to optimize the fracture toughness of a geometry under a specific
load [44, 45, 46].

Simple architectures of layered materials have been used to examine the effect of
elastic contrasts on fracture toughness enhancement in heterogeneous materials.
Hossain et al. modeled crack propagation through layered materials and found that
fracture toughness varies with proximity to interfaces [10]. Additionally, they found
that the elastic contrasts could be used to introduce stress fields which caused the
crack to meander rather than propagate straight ahead, which also increased fracture
toughness. Wang and Xia studied crack propagation through heterogeneous layered
materials using models and experiments on specimens printed on a 3D printer [37].
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This chapter begins with experiments to determine the homogeneous material prop-
erties of 3D printed materials. Studies on the effect of simple material architectures
on fracture toughness follow. Printed specimens with various material architectures
are evaluated to determine their fracture toughness with digital image correlation,
which is used to visualize and quantify the strain fields around the crack tip in the
specimens.

2.1 Component Homogeneous Material Properties
The base resins used in the following sections are Stratasys’ VeroWhitePlus (Vero)
and TangoBlackPlus (Tango) using the Connex3 Objet500 PolyJet printer1. Due to
the large print bed, all of the specimens for a test can be printed at one time. Vero is
a proprietary acrylic photopolymer resin that cures into a rigid material. Tango is a
proprietary urethane photopolymer resin that cures into a compliant material. The
two resins can be mixed in different discrete proprietary ratios during the printing to
achieve a range of material properties between those of Vero and Tango. DM8530
is the third mixture more compliant than Vero. DM8530 is the most compliant
mixture available that fractures without tearing. Vero and DM8530 are selected to
be studied because they maximize the elastic contrast available to be printed while
still failing without large plastic deformations. The printer works by spraying the
base resins out of a print head and passing a UV light over the deposited resins to
cure them. By repeating this process many times, the parts are built up on the print
bed. After printing, the specimens are removed from the print bed and cleaned.
Specimens are stored in sealed bags to limit exposure to air until they are tested;
specimens are tested five days after printing2.

Tensile testing is performed to determine the Young’s modulus and Poisson’s ratio
of the Polyjet materials VeroBlackPlus (the same as Vero except a different color)
and DM8530. The tests are performed following the ASTM standard D638 [50],
using type I dog bone specimens at the nominal strain rate 0.1 mm/mm-min. The
experiment is performed on anMTS Servohydraulic load frame (Model No. 358.10,

1Printer Specifications[47]:
Maximum Build Size (XYZ): 490 x 300 x 200 mm
Resolution: X- and Y-axis: 600 dpi; Z-axis 1600 dpi
Minimum Layer Thickness: 16 microns
Accuracy (XY): 20-85 microns for features below 50 mm; 200 microns for full model size
Support Material: Soluble support material

2The specimens are damp immediately after printing due to the cleaning process. The specimens
are allowed to dry for five days to mitigate the effects of absorbed water on the mechanical properties
of the material. The specimens are stored in sealed bags to limit exposure to air as oxidation is a
possible source of degradation of acrylates [48, 49]
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max load: 14.7 kN). The full-field strain ismeasured usingDigital ImageCorrelation
(DIC) from a series of images taken during the loading [51]. As opposed to a
displacement gage or a strain gagewhich is either bonded to the surface of a specimen
or otherwise mechanically attached to it and provides only one measurement, DIC
is a contact-free optical method that provides full-field displacements and strains.
Specimens are prepared for DIC analysis by painting a random speckle pattern on
the surface to be studied. Images of the prepared surface are captured during the
experiment and then post-processed using DIC software. The software splits the
images into smaller subsets of adjacent pixels and tracks the subsets, from which
displacement and strain information can be determined. Open source Matlab-based
DIC algorithms developed by Jones [52] and Blaber [53] are used in this work.
In-plane strains in the specimen (εxx , εyy, and εxy) are determined by processing
images of the gage length of the specimen taken during loading. Nominal stress is
determined from the load readings from the load frame and plotted against εyy, the
initial slope of which is used to determine the Young’s modulus, E. Poisson’s ratio,
ν, is determined by averaging the x- and y-strains in each image and calculating,
ν = −εxx/εyy for each image which are then averaged to calculate the Poisson’s ratio
for the material.

For the tensile tests, the images are acquired using a CCD camera (UNIQ UP-
2000CL, Uniqvision, Santa Clara, CA) connected to a frame grabber (NI PCIe-1430,
National Instruments, Austin, TX) with image acquisition started at the same time
as the loading begins. Plots of stress versus strain for VeroBlackPlus are shown
in Fig. 2.1 (although three of the specimens were tested to failure, the strain data
does not cover that period of the test, so failure is not shown). Vero and DM8530
specimens from a different print were tested separately using the same process. The
mechanical properties of all tested specimens are shown in Table 2.1.

Using all of the specimens, the Young’s modulus and Poisson’s ratio for the Vero
material is determined to be 1960±120 MPa and 0.399±0.012, respectively. The
peak tensile stress occurs at yield and is 48.3 MPa. The Young’s modulus and
Poisson’s ratio for DM8530 (one specimen) are 1020 MPa and 0.414, respectively.
The modulus of Vero is higher than that of DM8530. Henceforth, Vero will be
referred to as the stiff material and DM8530 will be referred to as the compliant
material. For both materials, the Young’s modulus is on the lower end of the values
published by 3D printing service providers: 2000-3000 MPa and 1100-1700 MPa,
respectively [54, 55]. Part of this discrepancy may be due to the portion of the
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Figure 2.1: Stress versus strain plots of ASTM D638 dogbone tests of VeroBlack-
Plus. Only the initial portion specimen #VB4 was captured and shown.

Poisson’s
ratio

Young’s modulus Peak tensile stress
E [MPa] σpeak [MPa]

ν 1.50 % 2.50 %
Vero

VB1 0.399 1970 1730 47.4
VB2 0.387 1900 1720 46.8
VB3 0.409 2080 1760 47.6
VB4 0.383 1780 1630 48.5
VB5 0.409 2100 1820 51.3
VW1 0.411 1910 - -

DM8530
DM1 0.414 1020 - -

Table 2.1: Mechanical properties of Vero and DM8530. Percent indicates range of
percent strain used for calculation of the Young’s modulus, E.

plot used to calculate these values; the stress strain plots for the VeroBlackPlus tests
in Fig. 2.1 show that the material has a fairly small linear region. The values of
Young’s modulus calculated for different upper limits of strain for VB1-5 shown in
Table 2.1 demonstrate that the Young’s modulus value increases dramatically as the
upper limit is decreased. The Young’s modulus using the linear region is the value
that is used in the following work (Table 2.2).

Using the experimental setup, tensile tests were also performed on Vero specimens
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Poisson’s ratio, ν Young’s modulus, E [MPa]
Vero 0.399 1960

DM8530 0.414 1020

Table 2.2: Mechanical properties of Vero and DM8530.

with the layers oriented in the direction of the tensile loading (along the z-axis
of the printer). Additionally, these specimens were aged 12 months. The results
of tensile tests are shown in Fig. 2.2 and Table 2.3. The Young’s modulus and
Poisson’s ratio are 1710±90 MPa and 0.358±0.008, respectively. The ultimate
strength is 26.5 MPa. Both the Young’s modulus and the ultimate strength are found
to have lower values when compared to the results presented earlier. Specimen
elongation at failure is dramatically reduced. It is not clear how much aging and
layer orientation individually contribute to the reduction in material properties. In
comparison, for specimens aged ten weeks, Bass et al. found that the elongation at
failure was greatly reduced but the Young’s modulus changed only a little and the
ultimate strength increased. In un-aged specimens, they found very little variability
in material properties for specimens oriented in the xy-plane of the print bed [40].

Figure 2.2: Stress versus strain plot of ASTM D638 dogbone test of vertically
printed and aged Vero.
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Poisson’s ratio, ν Young’s modulus, E [MPa] Failure stress, σ f ail [MPa]
VWV1 0.358 1840 28.9
VWV2 0.363 1660 35.0
VWV3 0.347 1640 22.2
VWV5 0.364 1690 20.2
AVG 0.358 1710 26.5

Table 2.3: Mechanical properties of vertically printed and aged Vero. Loading
occurs in a direction normal to the print interface.

2.2 Heterogeneous Bricks
Initial experiments are performed to study the influence of a stiff heterogeneity
on crack propagation through a compliant matrix. This experiment is based on
methods for determining fracture toughness and the fracture resistance curve of
homogeneous polymers detailed in ASTM D5045 and ASTM D6068 [14, 15]. The
goal of the experiments is to characterize the evolution of resistance to stable crack
growth initiated from a preexisting sharp crack using load, displacement, and crack
extension measurements. The energy release rate G is calculated using the double
cantilever beam analysis found in Hutchinson [56].

Specimen Selection
Design studies are performed in order to create a specimen in which the hetero-
geneities affect the stress distribution in the matrix ahead of the crack. The speci-
mens are manufactured using a Stratasys Connex3 Objet500 3D printer. Stratasys
proprietary materials DM9895 (E=45 MPa [57]) and Vero (E=1960 MPa, ν=0.399)
are selected as the respective compliant matrix and stiff heterogeneity materials.
These materials are selected due to their compliance mismatch: DM9895 is the
next more compliant polymer than DM8530 while Vero is the stiffest polymer the
Stratasys Connex3 Objet500 can print. A simple brick-like pattern is used as the
base configuration. Figure 2.3 shows an example of such a pattern. The width
of the matrix between heterogeneities (Fig. 2.3a), the width of the heterogeneities
(Fig. 2.3b), and the height of matrix in between the heterogeneities (Fig. 2.3c) are
varied and stresses in the specimen are simulated in Solidworks using prescribed
displacement boundary conditions. Because cracks tend to propagate in the direc-
tion of highest tensile stresses, contour plots of circumferential (hoop) stresses for
different variations are compared qualitatively. The variation whose contour plot
demonstrates the largest tensile hoop stress is selected as the configuration for the
3D printed specimens. Figure 2.4 shows hoop stresses in the selected configuration
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as the crack extends through the specimen. Overall specimen dimensions are 50.8
mm x 45.7 mm x 9.5 mm.

Figure 2.3: Front view of fracture specimen with brick architecture. Design studies
vary lengths (a), (b), and (c). Matrix (grey) printed in DM9895; inclusions (white)
printed in Vero.

Figure 2.4: Design study showing magnitude of hoop stress (σΘΘ) for a propagating
crack in the selected configuration. Red denotes large positive (tensile) stress and
blue denotes large negative stress. a. ∆a=1.9 mm, arrows denote location of
simulated application of prescribed displacement loading; b. ∆a=3.2 mm; and c.
∆a=4.4 mm.

Experimental
Initial notches of width 0.6 mm with a 30° tip are modeled and printed into the
specimens. A fresh razor blade is pressed into the tip of the notch to a depth of
1.3 mm to ensure an initial sharp crack. The specimens are pulled to failure in a
load frame at a loading rate of 2.54 mm per minute. A camera pointed at a face
of the specimen speckled for DIC analysis begins to acquire images at the same
time as the loading. To ensure good contrast for DIC everywhere on the face of the



22

specimen, the face is first spray painted white before being spray painted with black
speckles. The camera captures, timestamps, and saves images of the experiment at
a rate of approximately seven images per second for the entire duration of the test.
DIC is used to compute the full field strains in deformed specimens [51, 52]. Load
and displacement data is collected by the load frame, while crack extension data is
measured from the collected images post-test. It is assumed that the crack front is
straight through the material; that is, that the crack front visible on the surface is the
length as the crack front through the interior of the specimen.

Results
Figure 2.5 shows a fracture resistance curve for the heterogeneous specimen. The
curve is calculated using the equation for the energy release rate:

G =
12P2a2

Eb3 , (2.1)

where P is the measured load (per unit thickness), a the crack length, and b the flank
height [56].

Figure 2.5: Fracture resistance curve from load test data.

Young’s modulus, E, is estimated using finite element simulations of the heteroge-
neous material. The fracture resistance curve indicates an increase in toughness as
the crack approaches the heterogeneity.



23

Figure 2.6: Equivalent strain obtained from the DIC measurement overlaid with
outline of deformed specimen.

Figure 2.7: Optical images of the fracture surface.

Figure 2.6 shows equivalent strain determined from DIC overlaid with the outline
of the deformed specimen. The strain is redistributed mainly into the compliant
matrix and the stiff inclusions carry very little strain. This result is consistent
with experiments carried out by Dimas [12, 13] studying the effects of decreasing
stiffness ratio versus flaw tolerant behavior in bio-inspired composites. The matrix
in between the inclusions ahead of the crack appears to carry considerably less strain
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than the rest of the matrix. It is possible that the heterogeneities are shielding this
area or could be a result of edge effects.

Discussion
Results from this experiment indicated that the stiff inclusions in the specimens
studied increase the fracture resistance as the crack tip approaches the inclusion.
However, it is difficult to draw definitive conclusions from this experiment because
of the limitations of the experiment. For instance, the matrix material was very
compliant, resulting in extreme deformations in the specimen. The deformations
resulted in >20% strains which are too large to be measured precisely using DIC.
Additionally, large out of plane deformations were observed at these strains; in
addition to negating the plane strain assumption, these deformations also reduce
the accuracy of DIC. Furthermore, the specimens were small relative to size of
the heterogeneities so edge effects could have influenced the outcome significantly.
Finally, this experiment assumed that the crack does not renucleate at the interfaces
between the heterogeneities and that the observed increase in fracture toughness is
not solely a result of arresting and renucleating the crack. Fractographic evidence
does not support this assumption. Figure 2.7 shows microscopic images taken of
the fracture surfaces. Circled in yellow in Fig. 2.7a appears to be a flaw indicating
a point of origin for the fracture through the heterogeneity. The existence of a
flaw indicates that the crack renucleated in the heterogeneity at that point. It is not
clear how much the renucleation event contributed to the overall increase in fracture
toughness.

2.3 Heterogeneous Plates
Subsequent experiments are performed to build upon results from the initial exper-
iments while improving experimental design and data collection methods. Signifi-
cantly stiffer materials are selected to prevent excessive deformations and specimens
are much larger to reduce edge effects. The change in specimen geometry prompts a
change in analysis methods; the energy release rate G is calculated using the infinite
strip (Fig. 2.8a) analysis found in Hutchinson [56].

Experimental
The brick-like pattern from the previous experiment was modified with fillets at the
corners of the bricks and printed into a plate. Figure 2.8b shows the specimen in
the loading configuration. Overall specimen dimensions are 163.2 mm x 104.1 mm
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x 9.5 mm. The hole pattern is positioned in the center of the plate with a height
of 120 mm with 21.6 mm flanges at the top and bottom of the plate to grip. The
specimens are fabricated using a Stratasys Connex3 Objet500 3D printer. DM8530
(E=1020 MPa, ν=0.414) and DM8510 (E=1700-2300 MPa [54]) are selected as
materials for different plates. These materials are selected because they are more
rigid than DM9895 and less brittle than Vero while maintaining a fairly large elastic
contrast. Plates are tested with unfilled holes and with holes filled with an alternate
material. Initial notches of length 28 mm, width 0.6 mm and a 30° tip are modeled
and printed into specimens. The 20-85 micron print tolerance of small features of
the 3D printer is assumed to be sharp enough that further initial cracking is not
deemed necessary. The plates with holes are pulled monotonically to failure in
a MTS Servohydraulic load frame (Model No. 358.10, max load: 14.7 kN) at a
loading rate of 1 mm/min. The plates with filled holes are pulled monotonically to
5340 N (the load was limited due to the loading grips). No crack propagation was
observed at this load. The image acquisition procedure described in section 2.2 was
also used for these experiments.

Figure 2.8: a. Schematic of the infinite strip fracture specimen b. Schematic of the
of experimental setup.
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Discussion
For the plates with unfilled holes, the crack initially propagated horizontally through
the remaining ligament of material between the tip of the initial crack and the next
hole in the material. Further crack propagation in DM8530 occurred individually in
remaining ligaments, stair-stepping up as shown in Fig. 2.9a. Further crack propa-
gation in DM8510 occurred catastrophically, with all of the remaining ligaments in
the original crack plane rupturing simultaneously. Figure 2.9 shows the stress-strain
loading plots overlaid with the stress intensity factor (K) values calculated each
time the crack extends. The energy release rate G is calculated using the following
relation [56]:

G = 2b(SED)∞ , (2.2)

where b is shortest distance between the crack plane and the loading grips, the strain
energy density is given by:

(SED)∞ = 1
2
σyyεyy . (2.3)

The stress intensity factor K can be calculated using the Irwin relation:

G =
K2

E
. (2.4)

Figure 2.9 shows the load versus displacement during the experiment overlaid with
the stress intensity factor calculated using this method for DM8530 and DM8510
plates with holes. Despite having the same material architecture, the two plates
exhibit very different failure behavior. The load for DM8530 plate (more compliant
plate, Fig. 2.9a) increases until it reaches a maximum, when the first ligament (with
an initial notch) breaks. The load drops a little before increasing again, reaching
a maximum (lower than the previous maximum) where the next ligament breaks
and the load drops again. This process repeats itself for each ligament, with the
load dropping as each ligament ruptures individually. The load for the DM8510
plate (stiffer plate, Fig. 2.9b) is very different. The load increases until it reaches a
local maximum, when the first ligament (with an initial notch) breaks and the load
drops a little. Then, the load continues increasing (much higher than the previous
maximum), until it reaches a new maximum and the rest of the ligaments fail at
once. For both plates, the calculated critical stress intensity factor, K, is much lower
for the failure of the first ligament (with the notch) than for the second ligament
(without the notches). This is not surprising. Recalling the work of Williams on a
V-shaped notch, the strength of the singularity at the tip of the sharp notch is much
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higher than that of the free face of ligament [26]. Essentially, the crack terminates
in the void and must renucleate in order to continue.

The stress in the y-direction, σyy, is calculated by dividing the measured load by the
remaining cross sectional area in plane with the crack as shown in Fig. 2.9b. The
strain in the y-direction, εyy, is calculated by dividing the applied displacement by
the height of the specimen. The Young’s modulus, E, of the composite material is
estimated using finite element simulations of the heterogeneous material. The plots
indicate increased fracture toughness after an initial crack propagation event.
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Figure 2.9: Load-displacement plots of plates with holes tensile tests overlaid with
markers indicating K values as crack extends for a. DM8530 plate and b. DM8510
plate.

Figure 2.10 shows the hoop (εθθ) strain obtained from DIC measurements for both
the plates with holes. These results are obtained by transforming Cartesian strains
assuming the origin is at the location the crack will next propagate. The maximum
hoop strain is isolated on the ligament immediately adjacent to the crack tip but
distributed relatively uniformly elsewhere.
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Figure 2.10: Hoop (circumferential) strains (εθθ) and post failure images for (a)
DM8530 plate with holes and (b) DM8510 plate with holes. Origin indicated by a
black dot at the crack tip.

Figures 2.11 and 2.12 show the individual components of the strain and von Mises
stress in the undeformed configuration at the highest load in the experiment. The
color of the material can be used to identify the material and therefore the local
Young’s modulus at any given point in the specimen, because DM8510 is light gray
in color while DM8530 is dark grey. However, speckling the surface of the specimen
for DIC obscures the color of the material. To determine the Young’s modulus, the
front (DIC) and back (unpainted) faces of the plates are imaged during the experiment
and the images are matched in post-processing using an affine transformation of
registration points incorporated into the loading grips. The location of each strain
point produced by the DIC algorithm is sampled in the transformed unpainted image
and a threshold operation is used to determine the color of the material at the point.
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Figure 2.11: Full-field map of strain components and von Mises stress at the highest
load for the composite with DM8530 matrix with DM8510 filled holes.
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Figure 2.12: Full-field map of strain components and von Mises stress at the highest
load for the composite with DM8510 matrix with DM8530 filled holes.

The results indicate increased toughness as the crack propagates through the spec-
imen. This is expected because the crack propagates to the nearest hole where it
terminates and must be re-nucleated to continue. It is interesting to note that the
’toughness’ of propagating through a ligament with no initial crack was twice that
of propagating from a sharp notch for both specimens. Figure 2.10 shows the front
faces of the specimens post-experiment. It is notable that the ligaments did not break
at the corner of the holes of specimen 1 but rather approximately half a millimeter
away while the ligaments of specimen 2 broke at the corners.

For the soft matrix with stiff inclusions (Fig. 2.11), the stress is concentrated in the
heterogeneities. For the stiff matrix with the soft inclusions (Fig. 2.12), the stress is
concentrated in the matrix.
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2.4 Heterogeneous Stripes
Exploratory experiments were performed to determine the influence of the size of
heterogeneities on fracture toughness. For this experiment, the heterogeneities are
oriented parallel to the crack (also called crack divider orientation) to simplify the
analysis. DM8530 (E=1020 MPa, ν=0.414) and Vero (E=1960 MPa, ν=0.399) are
used to maximize the material contrast while still being brittle enough to allow the
crack to propagate.

Theory

Figure 2.13: Schematic of the double cantilever beam specimen (DCB), cross
sectional view of the specimen and equivalent area.

Recall from the introduction that the energy release rate can be written as:

G =
1
2

P2 dC
da

, (2.5)

where P is the load (per unit thickness), C is the compliance, and a is the crack
length. Considering the specimen in Fig. 2.13, the top and bottom of the specimen
can be considered as cantilever beams, and the compliance is given as:

C =
2
3

a3

EI
, (2.6)

where I is the moment area of inertia [56]. Because the moment area of inertia is
independent of the length of the cantilever, the equation for the energy release rate
can be given in terms of I:

G =
P2a2

EI
. (2.7)

Using the method of equivalent areas and the superposition of moments, two ma-
terials with different stiffnesses can be approximated as one material to find the
composite moment area of inertia.
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The specimens are designed so that the crack is in the midplane of a layer of Vero.
Assuming that because of this the material will fail at the fracture toughness of the
Vero material, using the relation between the energy release rate, G, and the critical
stress intensity factor, KIc, G = K2

E , and rearranging Eq. (2.7) for the critical applied
force gives:

F =
bKIc

a

√
I
b
, (2.8)

where P = F
b and b is the width of the specimen. Figure 2.14 shows a plot of the

difference between the force calculated using Eq. (2.8) for two horizontal layers
and twenty horizontal layers in each beam for volume fraction of Vero between 0.01
and 0.99. The purpose of this plot is to determine the optimum volume fraction for
maximizing toughness due to the horizontal layers. The optimum volume fraction
is found to be roughly 0.40.

Figure 2.14: Difference in fracture force between a double cantilever beam with two
horizontal layers and one with twenty horizontal layers in each beam versus volume
fraction of Vero.

Figure 2.15 shows the analytical results of calculating the fracture force for the
selected size of compact tension specimen assuming a volume fraction of 0.40.
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Figure 2.15: Predicted fracture force versus number of Vero layers in each beam.

Experimental
Compact tension specimens designed to the specifications in ASTM standard 5045
are shown in Fig. 2.16 [14]. A volume fraction of 0.40 Vero is used, and specimens
are printed with 2, 4, 6, 10, 20, 30 and 40 layers in each beam (three of each layer
number are printed). Vero layers are 4.57, 2.29, 1.52, 0.91, 0.46, 0.31 and 0.23
mm thick and DM8530 layers are 13.71, 4.57, 2.74, 1.52, 0.72, 0.47, and 0.35 mm
thick, respectively. An initial notch is printed into the specimen. For the 2, 4, 6 and
10 layer specimens, the final depth of the precrack is reached by pressing a razor
blade into the notch. Several specimens cracked completely during this operation,
leaving some of the layer numbers without the three tests, which was planned for
each layer thickness. To reduce the rate at which specimens failed prior to testing,
for the 20, 30 and 40 layer specimens the final depth is achieved by sliding a razor
across the notch. Only one specimen failed during this operation. The experiments
are performed on an MTS Servohydraulic load frame at a displacement rate of 1
mm/min (Model No. 358.10, max load: 14.7 kN). Displacement and load are
measured and recorded from the load frame. Some specimens are prepared for
DIC with speckle patterns and images of the speckled patterns are taken during the
loading. The image acquisition procedure described in section 2.2 was also used for
these experiments.
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Figure 2.16: Schematic and dimensions (in mm) of compact tension specimen. The
specimen is 12.7 mm thick.

Results
Figure 2.17 shows the measured load at fracture. The specimens designated as
HH-0616-10-1 and HH-0616-40-3 failed at much lower loads than any of the other
specimens. Upon inspection of the fracture surfaces, both specimens show evidence
of two fracture events; it is possible the first occurred during precracking compro-
mising the strength of the specimens. Figure 2.18a shows a typical fracture surface
with the failure starting at the notch. Figure 2.18b shows the fracture surface for
HH-0616-10-1 showing a crack that started and stopped from the lower right edge,
and a second crack starting where it ends and propagating through the rest of the
specimen. Figure 2.19 shows the full-field strain components and Fig. 2.20 shows
the von Mises stress for 2, 4, 20, and 30 layer specimens prior to failure.

Figure 2.21 shows the results of calculating the energy release rate, G, according to
ASTM standard 5045 and the J-integral using area based J-integrals from the DIC
data (G and J are equivalent in linear elasticity) [56]. Hsueh et al. showed that
the J-integral can be calculated for heterogeneous media provided the contour is
sufficiently large compared to the the size of the heterogeneity [58]. Calculating the
J-integral from DIC data is difficult to do accurately, as the J-integral requires both
displacements and strains. DIC measures displacements and calculates the strains
by taking the derivatives of the displacements. Noise is inherent to experimentally
measured data, and taking the derivative of noisy data amplifies the noise. When the
J-integral is computed from this data, the results can be off by orders of magnitude
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Figure 2.17: Measured fracture load versus number of Vero layers. Two specimens
that appear to be outliers are noted with specimen numbers.

[19, 20]. In order to reduce the effects of noise, the DIC strain data is smoothed
prior to calculating the J-integral using principal component analysis with local
pixel grouping (LPG-PCA) [59]. Principal component analysis (PCA) determines
the orthogonal set of vectors that describes the variation in a group of data points.
By using only the set of vectors that contributes most to the variation and discarding
the rest, data can be smoothed [60]. Local pixel grouping is a technique that uses
smaller subsets of the data to effectively denoise data while better preserving local
structures. The algorithm used in this work is a two-stage LPG-PCA developed by
Zhang et al. [59].

Discussion
The trend predicted by the theory (section 2.4) for the force (toughness) for fracture
and the trend observed in the experiment are not in agreement. The fracture force
in the experiments rises asymptotically to the 600-700 N while the fracture force
predicted by theory descends asymptotically to 700 N. One of the possible reasons
for the discrepancy is that the Euler-Bernoulli beam theory is not applicable to the
compact tension specimen because the ’beams’ are not slender enough. Another
possible reason is that the layers of DM8530 are too far away to contribute to fracture
toughness in the specimens with a few layers. In the von Mises stress distributions
in the specimen shown in Fig. 2.20, the stress is concentrated in a circular region
around the crack tip in the two layer specimens and develops into a lobed shape as
the number of layers increases.
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Figure 2.18: a. Fracture surface of HH-0616-10-3 resulting from crack originating
at the razor-sharpened notch only. b. Fracture surface of HH-0616-10-1 showing a
crack that started and stopped from the lower right edge, and a second crack starting
where it ends and propagating through the rest of the specimen.

The LPG-PCA algorithm produced values for J-integral (energy release rate) agree
with those determined by using the methodology in ASTM standard 5045 for the
smaller number of layers but poorly for the larger number of layers. There may
be some error at the large number of layers due to the size of the layers being
comparable to the resolution of DIC in the experiments.

2.5 Conclusion
This chapter presented investigations into the fracture behavior of heterogeneous
materials. The heterogeneous brick experiment shows that a compliant material can
be toughened by the inclusion of stiff heterogeneities. The heterogeneous plate with
holes experiments study the inverse problem: a stiff matrix with compliant (E = 0)
inclusions. These experiments showed that once the crack reached a hole, continued
propagation was dominated by renucleation in the next ligament, greatly increasing
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Figure 2.19: Full-field strain components obtained using DIC prior to failure for a.
2; b. 4; c. 20; and d. 30 layer specimens.

resistance to continued fracture.

While useful as preliminary experiments of toughening behavior in heterogeneous
materials, experiments employing the brick heterogeneity structure contain toomany
variables (e.g. the spacing, length, and pattern of the bricks) to determine gener-
alizations that are broadly applicable to all fracture problems. The heterogeneous
stripes experiment attempted to study the effect of the size of heterogeneities on
toughening behavior in layered materials with the heterogeneities oriented in the
plane of the crack. The experimental results did not agree with the proposed theory,
and several explanations are proposed. Ultimately, this investigation was abandoned
because heterogeneities oriented parallel to the crack only provide minimal tough-
ening and the toughening may not have been measurable separate from the variation
seen between specimens of the same configuration.

The following chapter (Ch. 3) builds on the ideas and lessons learned in the
experiments presented in this chapter.
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Figure 2.20: Contours of von Mises stress prior to failure for a. 2; b. 4; c. 20; and
d. 30 layer specimens.

Figure 2.21: G calculated fromASTM5045 (filled circles, assuming linear elasticity
G=J) and J calculated from LPG-PCA smoothed DIC data (triangles, error bars
represent standard deviation of many contours).
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C h a p t e r 3

CRACK RENUCLEATION AND PROPAGATION IN PERIODIC
LAYERED MEDIA

[1] C.-J. Hsueh, L. Avellar, B. Bourdin, G. Ravichandran, and K. Bhattacharya.
“Stress Fluctuation, Crack Renucleation and Toughening in Layered Materi-
als”. Journal of the Mechanics and Physics of Solids (2018). doi: 10.1016/
j.jmps.2018.04.011.

3.1 Introduction
Many intrinsic and extrinsic factors contribute to toughening a material against
fracture. Intrinsic toughening happens ahead of the crack tip and is associated with
nucleation and propagation toughening. Crack tip blunting, the process by which the
sharpness of the crack tip is reduced due to plastic deformation at the crack tip, is an
example of intrinsic toughening. On the other hand, extrinsic toughening happens
behind the crack tip and is associated with a crack that is already propagating. Crack
bridging, the spanning of the crack opening by material, applies a closing force to
the crack, reducing the force driving it forward [1]. While many studies have been
devoted to understanding how many of these factors work together to contribute
to toughening as a system, it is not understood how they individually contribute to
toughening.

Zak and Williams established through theoretical consideration that a layered ma-
terial heterogeneity enhances fracture toughness in a layered composite material
[36]. However, heterogeneities do not need to be layered in order to contribute to
toughening. Faber and Evans determined that heterogeneous particles embedded
in a material can cause crack deflection that results in toughening [34]. Using
theoretical considerations, Bower and Ortiz determined that tough particles in a
brittle matrix contribute to crack trapping and crack bridging behavior which are
effective toughening mechanisms [61]. Argon and Cohen’s experimental studies
on polycarbonate rod reinforced brittle epoxies agreed well with Bower and Ortiz’s
theory [62].

Using variational phase field simulation, Hossain et al. showed that elastic contrasts
can be incorporated into material architectures that increase fracture toughness [10].
Wang and Xia used computational analysis and experiments to show that contrast
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in elastic modulus could be used to increase fracture resistance in layered materials,
subject to the size of the layers being sufficiently large compared to the size of the
cohesive zone and provided an appropriate volume fraction of constituent materials
is present [37]. Hsueh et al. performed experiments on heterogeneous materials
showing improved fracture toughness due to the presence of elastic heterogeneity
[63].

One of the common results of studies of heterogeneous fracture toughness is that
increasing the complexity of material architecture increases resistance to fracture
[11, 64]. It is understood that heterogeneities contribute to fracture resistance
both by redistributing the stress at the crack tip thereby reducing the crack driving
force and, in some cases, reducing the stress intensity to zero causing the crack to
renucleate in order penetrate an interface; however, the relative importance of each
of these mechanisms is not well understood.

This chapter investigates the individual contributions of elastic contrast and crack
renucleation to fracture toughening through experiments using 3D printed layered
architectures. VeroWhitePlus and DM8530 (Young’s modulus: E=1960 MPa and
E=1020 MPa, respectively section 2.1) are the two 3D printed constituent materials
used in the experimental architectures. This chapter begins with experiments to de-
termine the homogeneous fracture properties of the two materials. Computational
modeling, theoretical considerations and experiments on material architectures de-
signed to separate the effects of elastic contrast and renucleation follow.

3.2 Evaluation of Fracture Toughness in Homogeneous Materials
Quantitative Fractography
A great deal of information about fracture can be determined from observations of
the fracture surfaces post material failure using fractography. Information about
the initiation and nucleation of a crack from a flaw and subsequent propagation can
be determined from observing the fracture surfaces at low levels of magnification
using optical microscopy. The fundamental features of a fracture surface after
brittle fracture (i.e. little to no yielding is present) are the flaw, mirror, mist, and
hackle (Fig. 3.1a) [16, 65, 66]. The crack originates at the flaw, which acts as a
stress concentration. When the load reaches a critical value, the crack propagates
resulting in the failure of the material. The crack propagates slowly in the mirror
region where the surface is smoothest and quickly in the hackle region where the
surface is roughest; as the crack picks up speed in the mist region, resulting in a
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a [mm] b [mm] σyield [MPa] σ f ail [MPa] KIC [MPa m0.5]
1A 1.10 1.04 47.9 31.5 1.30
1B 1.10 0.94 47.9 31.5 1.27
4A 1.27 0.98 48.9 32.4 1.37
4B 1.26 0.96 48.9 32.4 1.36
5B 0.97 0.64 51.8 33.4 1.18
AVG 1.30

Table 3.1: Flaw dimensions and mechanical and fracture properties of VeroBlack-
Plus. The flaw size is determined from quantitative fractography (Fig. 3.1c) and
mechanical properties from tensile tests.

transition where the surface has parabolic gouges [16, 65]. In fracture experiments
on ceramics, it was observed that:

σ
√

c = material const , (3.1)

where σ is the fracture stress and c is the critical flaw size [66]. Irwin derived the
critical stress intensity factor (KIc) of an elliptic flaw in a plate (Fig. 3.1b):

K2
IC =

1.2σ2a
Φ2 − 0.212( σσYS )

2 , (3.2)

where σ is the fracture load, a is the radius of the minor axis of the flaw, σY S is
the yield strength and Φ is the elliptic integral of the second kind [67]. Randall
combined Eqs. (3.1) and (3.2) to develop an experimental technique to determine
the fracture toughness of ceramics by measuring the size of the flaw and the failure
stress of a uniaxial tension specimen [68]. Plangsangmas showed that the technique
could be extended to polymers and diFrancesco showed that it was accurate for
polymers compared to other methods of calculating fracture toughness, such as
compact tension and single edge notch bend tests [18, 65].

Quantitative fractography is used to determine the fracture toughness of VeroBlack-
Plus, the stiffer of the constituent materials. Dogbone specimens (ASTM D638)
were tested to failure as described in section 2.1. After failure, the fracture surfaces
were analyzed to measure the major (a) and the minor (b) axes of the flaw using a
NikonMeasurescopeMM-22 with 2.5x-5.0x objectives. The data from the elliptical
crack can be used to construct an equivalent circular crack with radius c = (ab) 12
[65].

Using the flaw size from the quantitative fractography (Fig. 3.1c) analysis (Table
3.1) and the mechanical properties from the tensile test (Section 2.1, Table 2.1), the
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Figure 3.1: a. Schematic of the flaw, mirror, mist and hackle regions on a fracture
surface; b. Schematic of the elliptical crack in a plate problem; c. Fracture surface
of a VeroBlackPlus specimen (2.5x magnification) subjected to uniaxial tension.
The black arrow points to the flaw.

Mode I average critical stress intensity factor for VeroBlackPlus using Eq. (3.2) was
estimated to be KIC = 1.3 MPa

√
m.

Compliance Method
Recall from section 1.1 that the critical energy release rate, GC , of a material can
be determined by measuring the change of compliance with respect to crack length
GC =

1
2 P2 dC

da , where C is the compliance (slope of the displacement versus load
during a tensile test), a is the crack length, and P is the load at failure. This method
is used to determine the energy release rate of DM8530, the more compliant of the
two constituent materials. Quantitative fractography is not being used for DM8530
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because its elongation at break is much higher than Vero1; as a result, the ASTM
tensile dogbone specimens could not be pulled to failure with the stroke available
in the load frame that was used to measure the tensile material properties.

Experimental

Figure 3.2: a. Picture of the wedge loading experimental setup; b. Schematic of the
specimen and the rail; c. Schematic of the specimen with the dimensions in mm.

The experimental test setup and specimen dimensions are shown in Fig. 3.2. The
specimen is suspended from the load cell using two aluminum arms that support
the top pair of holes (Fig. 3.2). Each loading hole is fitted with a stub with a
clearance fit steel bushing and ball-bearing collars. The brass wedge is water-jetted
and polished to create a smooth contact surface between the collars and the wedge.

1The values published by Stratasys for elongation at break are 10-15% for Vero and 15-25% for
DM8530 [54]
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The specimen is suspended from the top two loading holes and is, initially, the only
contact point. The wedge is mounted on a PI M-410.CG motor controlled via a C-
863 Mercury controller. The opening displacement is applied by pulling the wedge
down through the loading points, pushing them apart. The angle of the wedge is
2.20◦. The other loading points keep the specimen aligned symmetrically on the
rail and help prevent out of plane deformation as the test progresses. The wedge is
monotonically pulled down at a rate of 0.5 mm/s, which corresponds to an opening
displacement, δ, of 0.0383 mm/s (2.3 mm/min). Additionally, the motor controller
is programmed to provide digital signals corresponding to its motion, from which
applied displacement can be determined using the known stage velocity.

The load applied by pulling the wedge down is measured using an Interface Inc.
(Scottsdale, AZ) WMC-25 load cell. An Omega DP25B-S-A1 (Omega, Norwalk,
CT) strain meter processes the load signal and converts it to a scaled analog output.
A NI USB-6251 BNC DAQ (National Instruments, Austin, TX) acquires the digital
signals from the motor controller and analog signal from the strain meter. The front
face of the specimen is prepared for DIC imaging with a speckle pattern if that is
desired and imaged during the experiment. Images are captured using an Edmund
Optics (Barrington, NJ) EO-1312M CCD Monochrome Camera. A LabVIEW
(National Instruments, Austin, TX) virtual instrument (VI) gathers and saves data
from the camera, strain meter and motor controller.

The compliance is calculated by measuring the slope of the displacement versus
load plots, excluding the initial loading toe. The slope of the compliance curve,
dC/da, is found by plotting the individual compliance values against the measured
crack lengths, fitting a line to the data and taking its slope. The load, P, is taken as
the failure load of the specimen.

Validation Using Acrylic

Fracture specimens with an initial notch are laser cut from 3.175 mm thick acrylic.
A sharp crack is introduced into the specimen by pressing a fresh razor blade into
the notch until the depth of the sharp crack is at least as long as the width of
the initial notch. Pre-crack length ranges from 14.5 to 16.5 mm (22% - 25% of
specimen length). The precise measurement of the length of the initial crack is
taken after specimen failure using calipers from the failure surface. The compliance
measurements versus the measured crack length are shown in Fig. 3.3. The critical
strain energy release rate for the normal pull speed of 0.5 mm/s was estimated using
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the compliance method to be 1.05±0.23 kJ/m2.

Figure 3.3: Compliance vs crack length plot for acrylic with a sharp crack.

Toughness of DM8530

Specimens of the compliant material are 3D-printed by Stratasys Direct Manu-
facturing (Eden Prairie, MN) and sent by overnight mail. The specimens were
individually saran-wrapped and bagged to mitigate exposure to air. Specimens are
printed without an initial notch to make them more robust to shipment. The initial
notch is sawed into the specimens using a fine-toothed saw. The notch position is
controlled using a laser-cut jig. The initial sharp crack front is achieved by pressing
a fresh razor blade into the specimen to a depth of at least the width of the initial
notch. The precise measurement of the total length of the initial notch is taken after
specimen failure using calipers on the failure surface.

The specimens are loaded twice to a sub-critical load before the final loading to
failure. The compliance for each of these loadings is averaged. The compliance
measurements versus the measured crack length are shown in Fig. 3.4. The critical
strain energy release rate (G) was estimated using the compliance method to be
27.6±9.7 kJ/m2.
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Figure 3.4: Compliance vs crack length plot for homogeneous DM8530.

3.3 Renucleation and Toughening
Two mechanisms of toughening are to be considered in this section: the effect of
an elastic contrast at a bi-material interface and of crack renucleation as it passes
through the interface. In order to separate the effects of these mechanisms, it is
proposed to ’remove’ the interfaces by introducing a thin spine of material in the
plane of fracture. Schematics of these architectures are shown in Fig. 3.5. By
comparing the results of propagating a crack through a material with and without
interfaces, the individual contribution of renucleation to overall toughening can be
determined.

Computational Analysis
The computational analysis described in this section is adapted from the dissertation
of Chun-Jen Hsueh [63]. Simulations are performed using the phase field fracture
approach [69, 70, 71, 72]. This is a regularized method that introduces a scalar
field v taking values in [0, 1] to describe the material state with regions with v = 0
representing intact material and regions with v > 0 representing regularized cracks.
The energy functional for this approach is:

E`(u, v) =
∫
Ω

(1 − v)2
2

e(u) : C : e(u) + 3G
8
(v
`
+ ` |∇v |2)dx , (3.3)
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Figure 3.5: a. Periodic layered media without spine; b. Periodic layered media with
spine. Red is the stiff material and green is the compliant material [29].

where C is the elastic modulus, e(u) is the strain associated with the displacement
u, G is the critical energy release rate and ` is an internal length. It can be
rigorously shown that this phase field fracture method in Eq. (3.3) approximates
(i.e., Γ-converges to) the classical brittle fracture model when the internal length
` approaches 0 [73]. The body is subjected to some time-dependent boundary
condition and at each time the energy is minimized subject to the boundary condition
and the constraints that v is monotone increasing and 0 ≤ v ≤ 1. The solutions are
characterized by crack-like regions of width O(`) which are the regularized cracks.
It has been shown that cracks nucleate in this model when the stress reaches a critical
value that depends on the domain and the loading mode. In uniaxial tension, the
critical stress is:

σc =

√
3GE
8`

. (3.4)

This critical stress for crack nucleation increases with decreasing `, and ` may be
regarded as a parameter that determines crack nucleation [74, 75]. For details of the
numerical implementation, refer to Bourdin [71].

Following Hossain et al. [10], the so-called surfing boundary condition is used in
the following simulations. This boundary condition is a time-dependent steadily
translating crack opening displacement field:

u∗(e1, x2, t) = U(x1 − vt, x2) (3.5)
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with U to be the mode I crack opening field

U(x1, x2) =
KI

2µ

√
r

2π
(κ − cos θ)(cos

θ

2
ê1 + sin

θ

2
ê1) (3.6)

for some fixed stress intensity factor KI , effective shear modulus µ, effective bulk
modulus κ, r =

√
x2

1 + x2
2 , θ = arctan(x2/x1) and v is the translation velocity.

This boundary condition forces a macroscopic mode I crack opening that translates
at a steady velocity, but does not constrain the crack growth at the microscopic
scale. In particular, if the material is heterogeneous, the crack can propagate in
an unsteady manner, meander, branch, nucleate daughter cracks, etc. As it does
so, the forces on the boundary fluctuate. The energy release rate or J-integral is
computed at the boundary at each instant; this value fluctuates and the peak value
is taken to be the effective toughness. If the domain is large compared to the scale
of the heterogeneities and if the crack is sufficiently far from the boundary then the
J-integral is path independent [58]. Further, the effective toughness is independent
of the specific form of U and of v [10].

Figure 3.6: Crack propagation through a layered material without a spine. a. Crack
tip position and J-integral versus time with Ec/E s = 0.5 and layer thickness 4. b.
Effective toughness (Gc) versus layer thickness (t) for two elastic contrasts [29].
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Figure 3.7: Crack propagation through a layered material with a spine. a. Crack
tip position and J-integral versus time with Ec/E s = 0.5 and layer thickness 4. b.
Effective toughness (Gc) versus layer thickness (t) for two elastic contrasts. The
dashed lines are the exponential fits Ge f f

c = c0 + c1 exp−
t
c3 [29].

Figure 3.8: Comparison of the toughening for the two microstructures for two
separate elastic heterogeneities: a. Ec/E s = 0.6674 and b. Ec/E s = 0.5. Both
microstructures result in toughening, but it is more pronounced in the case of the
layered material (without the spine) [29].

Phase field fracture simulations are used to study the two microstructures shown
in Fig. 3.5. All of the following computational results are presented in non-
dimensional units. Figure 3.5a shows a microstructure with alternating layers while
Fig. 3.5b shows a microstructure with alternating layers with a thin central spine
running through it. Plane strain conditions are assumed where both constituent
materials have uniform toughness Gc = 1, Poisson’s ratio ν = 0 and internal length
` = 0.45. The Young’s moduli are different and Es = 1 in the stiff phase (red)
material and either Ec = 0.5 or Ec = 0.667 in the compliant (green) material.
The thin central spine is always made of the compliant material. The crack is
introduced on the left and the surfing boundary condition drives the crack to the
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right. Because of the symmetry of the microstructure and the loading, the crack
remains straight. However, it propagates in an unsteady manner as the state of stress
is not uniform. Further, it is forced to move from one material to another in the
layered microstructure but is always confined to one material in the presence of
the central spine. Heuristically, the stress distribution is similar in both materials,
but one has renucleation in the layered material (Fig. 3.5a) but not in the layered
material with a spine (Fig. 3.5b).

Figure 3.6 shows the results of crack propagation in the layered material. Figure
3.6a shows that the crack is pinned at the interface going from the compliant to
the stiff material leading to a rise in the J-integral. This determines the effective
toughness which is significantly higher than the uniform material value of one
thereby demonstrating the toughening due to elastic heterogeneity. The effective
toughness is shown for two separate contrasts and for various layer thickness in
Fig. 3.6b. The effective toughness increases with contrast, and it increases with
layer thickness reaching an asymptotic value for large layer thickness. Figure 3.7
shows the corresponding result in the layered material with a central channel. There
is toughening in this system as well, but the amount of toughening is smaller in
this case. These results for the two materials are contrasted in Fig. 3.8. There is
toughening in both microstructures for each layer thickness, but the toughening is
more pronounced in the specimen without the channel and with the larger elastic
contrast.

Theory
The state of stress near an interface is not uniform due the elastic contrast, thus
the crack-tip experiences different driving force. Because the channel containing
the crack is narrow, this stress heterogeneity mechanism is operative in both mate-
rials. The following simple model is proposed to estimate the toughening due to
stress heterogeneity. Consider a layered architecture of two materials with Young’s
modulus E s > Ec under tensile loading along the layers. Due to compatibility,
the longitudinal strain in both layers must be the same. This implies that the ratio
between the stresses in a layer and the average stress is equal to the ratio of the
Young’s modulus of the material to the average Young’s modulus:

ε s = ε c ⇒ Ee f f = 〈E〉, σi

〈σ〉 =
E i

〈E〉 i = s, c , (3.7)

where 〈·〉 indicates the volume average. If the layer thickness is large enough that
the K-dominant region is in a single layer and the crack tip is in material i, then the
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stress-intensity factor at the crack tip is proportional to the stress σi in the material i.
From Irwin’s formula for the energy release rate under plane stress G = (1 − ν2)K

2
I

E :

Gi = C
|σi |2
E i = C

〈σ〉2
〈E〉

E i

〈E〉 = Gi
macro

E i

〈E〉 ⇒ Gi

Gi
macro

=
E i

〈E〉 , (3.8)

where C is a geometric factor and Gi
macro is the macroscopic energy release rate

when the crack-tip is in the ith layer using Eq. (3.7). The ratio between the local and
macroscopic energy release rate is equal to the ratio between the local and average
elastic modulus. Because G = Gc for the crack to propagate:

Gmacro =


Gc
C
〈E〉

Ec crack-tip in compliant material
Gs
C
〈E〉

Es crack-tip in stiff material
(3.9)

The effective toughness is given by the maximum macroscopic energy release rate:

Ge f f
C = max{Gc

C
〈E〉
Ec ,G

s
C
〈E〉
E s } . (3.10)

Recall the Zak and Williams analysis of the strength of singularity at the crack tip
near a bi-material interface from section 1.2 [36]. They showed that in the case of
the crack propagating from a soft to a stiff material, the power of r tends towards
zero sending the crack driving force to zero. The crack must renucleate at this
interface. In order to do so, additional driving force must be applied which results
in increased fracture toughness. The additional toughness is the difference between
the toughness of the layers with and without the channel containing the crack.

In order to quantify the additional toughening, consider the crack nucleation criterion
Tanné et al. proposed based on simulations of crack initiation due to a V-notch of
half-angle ω described in section 1.1 [75]. Define the generalized stress-intensity
factor:

K =
σθθ

rλ−1 |r→0 . (3.11)

The crack nucleates when this generalized stress-intensity factor reaches a critical
value Kc that depends on λ. The variational phase-field simulations presented by
Tanné et al. are well approximated by:

Kc = K2−2λ
Ic σ2λ−1

c , (3.12)

where KIc is the critical stress intensity factor and σc is the critical stress at which
a crack nucleates at a free edge. When ω = 0, λ = 1/2, Eq. (3.12) recovers the
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crack propagation criterion KI = KIc. When ω = π/2, λ = 1, Eq. (3.12) recovers
the critical stress crack nucleation criterion σ = σc. Tanné et al. showed that their
results were in agreement with numerous experimental observations.

This nucleation criterion, Eq. (3.12), is used to study the toughening due to renu-
cleation at interfaces in a layered system. Define the generalized stress-intensity
factor:

K =
σ

Lλ−1 , (3.13)

where σ is the macroscopic stress and L is a configuration dependent characteristic
length. The crack nucleates when:

σ f

Lλ−1 = K2−2λ
Ic σ2λ−1

c =
KIcLλ−1

l
2λ−1

2
ch

, (3.14)

where σ f is the stress at which failure occurs, and lch = (KIc/σc)2 is a material
length. The failure stress is related to the effective critical energy release rate:

Ge f f ,rn
c = L

σ2
f

E
, (3.15)

where ’rn’ indicate that this is toughening due to renucleation. Combining with 3.14
and the critical energy release rate in plane strain Gc = (1 − ν2)K2

Ic/E:

Ge f f ,rn
c =

Gc

1 − ν2 (
L

lch
)2λ−1 . (3.16)

Figure 3.9 compares Eq. (3.16) to the results of Tanné et al. and finds good
agreement if L = 0.962. The renucleation toughening of 0.178 and 0.317 for
Ec/Es = 0.667 and Ec/Es = 0.5 agree well with the asymptotic difference between
toughening in layered materials with and without a spine in Fig. 3.8.

Specimen Design and Printing
Figure 3.10 shows representative dimensions of the specimens. Layer thicknesses
of 1.5 mm and 3.0 mm are used with a spine thickness of 0.6 mm. Five specimens
of both layer thicknesses with and without the spine are printed in a single print.
Features, such as loading holes, side groove, and initial crack are 3D printed into the
specimens. The specimens are grooved on only one side to allow for DIC visualiza-
tion of the other side. The specimens are printed in stiff and brittle VeroWhitePlus
(Vero) and more compliant DM8530. In specimens containing a spine, the spine
material is DM8530.
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Figure 3.9: Comparison of toughening due to renucleation predicted by Tanné et al.
[30] and toughening due to renucleation predicted by Eq. (3.16) [29].

Figure 3.10: Representative specimen dimensions for the stripe geometry. Grey is
DM8530; white is Vero. Dimensions are in mm [29].

Specimens of different types are alternated on the print bed in order to mitigate
the effects of any local imperfections introduced by the printer. Additionally, the
specimens are distributed at a 45° angle relative to the travel direction of the print
head. Poor interface strength was observed in experiments when the stripe direction
was aligned with the motion of the print head. It was common for the interfaces
to debond before the crack could reach the interface or for the crack to turn and
propagate along the interface. Neither of these behaviors have been observed in
specimens that were oriented at 45° during printing.

Post-printing, specimens are stored for five days prior to testing in a sealed bag to



55

mitigate exposure to air. Multiple material thickness measurements are taken and
averaged for each specimen. Manufacturer published printer tolerances are similar
to that of a blunt crack, so a razor blade is pressed into the crack to create a sharper
crack tip.

Methods and Results
Specimens are loaded using the wedge loading setup shown in Fig. 3.2ab and
described in section 3.2. The wedge is monotonically pulled down at a rate of
0.5 mm/s, which corresponds to an opening displacement, δ, of 0.0383 mm/s (2.3
mm/min). Depending on the size of the region of interest of the images, data
acquisition ranges from 5 to 10 points per second. Measurements of crack advance
are determined post-test by manually locating the crack tip in each of the images. If
the crack is not continuous, the forward-most point that thematerial is visibly cracked
is taken as the crack tip. Attempts were made to automate the process; however, the
crack tip was too subtle to be reliably identified using simple thresholding and the
images were too similar to train a robust neural network.

Plots of representative raw load and crack length data are shown in Figs. 3.11 and
3.12, respectively. The raw load data include an offset for theweight of the aluminum
arms, bolts, bushings, and bearings which is accounted for prior to subsequent data
processing. The load increases smoothly until the crack begins to propagate. At
that point, the load stays roughly constant while the crack propagates slowly near
the Vero (stiff) to DM8530 (compliant) interface and drops sharply when the crack
propagates rapidly across the DM8530 layer and into the next Vero layer where it
is arrested and begins to propagate slowly again. An early experiment imaged the
specimens without DIC speckle pattern and the results showing the locations of the
crack arrest and slow propagation is shown in Fig. 3.13. The drops in load in Fig.
3.11 correspond with the crack length jumps in Fig. 3.12.

The vertical load, Pv, is scaled with the net thickness, t, of the specimen (thickness
of the thinnest point, at the tip of the side notch). The vertical load per unit thickness
is integrated against the vertical displacement of the stepper motor, δv, to find the
area under the Pv − δv curve. The resulting energy per unit thickness, U/t, is used
to determine the energy release rate.

A representative U/t is plotted against crack location in Fig. 3.14. The energy has
a defined stair-step structure. The increasing part of the stair-step comes from the
crack slowly advancing near the stiff to soft interface while the energy increases due
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Figure 3.11: Representative raw load data versus vertical displacement of the rail
(Specimen #S300-01). The 5 N offset is due to the weight of the fixture, which is
accounted for prior to further data processing.

to loading the specimen. After the crack has propagated through the region with
the elastic heterogeneity, the local resistance to fracture reduces abruptly and the
crack is rapidly driven forward through the adjacent soft and stiff layers, forming
the horizontal part of the stair step. In order to calculate the critical energy release
rate, Gc = dU/da, the 10-90% rise time for each stair step is considered. The final
stair step is discarded due to crack propagation out of the field of view, therefore
it is not possible to measure crack extension for the full stair step. Using a linear
fit, the slope of each step is determined for all specimens. The data are plotted
to determine outliers, as in Fig. 3.15. All results are shown in Table 3.2 with
the outliers highlighted in yellow. The outliers are associated with the crack not
propagating smoothly (generally the first or second step) or with there being few
points (< 10) available for the calculation. Tests numbered C300-01, S300-02 and
S30-01 ruptured early in the test. The means are calculated for each group of
specimens, excluding all of the identified outliers, and are shown in Table 3.3.

A Mann Whitney U2 test is performed on the distributions to determine the signif-
icance of the results. The U test is selected because the results are not normally

2A t-test is not applicable because the samples are not normally distributed nor sufficiently large.
A Mann Whitney U test (Wilcoxon Rank Sum Test) is an alternative test for when the samples are
small and not normally distributed.
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Figure 3.12: Crack length versus vertical displacement (Specimen #S300-01).
Crack-tip position measured from the edge of the image frame. Shaded horizontal
stripes are approximate locations of DM8530 (compliant) layers determined from
image registration of the first image of the test.

distributed so Student’s t test may be inaccurate [76]. The null hypothesis (that
the samples come from populations with identical medians) is rejected at a 85%
(α=0.1269) and 97.5% (α=0.0246) confidence interval for the 1.5 mm and 3.0 mm
stripe specimens (excluding all outliers), respectively.

Using digital image correlation, plots of strain in the y-direction (normal to the
crack) for selected points of a step are shown for specimens with and without a
spine in Figs. 3.16 and 3.17, respectively. The strain plots for both specimens are
very similar at points 1 and 2, with both demonstrating a lobed strain distribution at
the crack tip. However, at points 3 and 4 the specimen without the spine sharpens
the lobe intersection at the crack tip while the specimen with a spine sees the lobes
merge.

3.4 Discussion
The theory, computational and experimental results indicate that fracture toughness
due to a crack propagating across an interface is affected by both the redistribution of
stresses at the crack tip due to the elastic contrast and by renucleating at the interface
due to vanishing stress intensity. The agreement between the renucleation theory
of Tanné et al. and the computational results indicates that renucleation in layered
materials is necessary and that this material architecture can be used to study it.
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Figure 3.13: Crack propagating through layered stripe specimen. The forward-most
point of the crack is marked with an arrow and considered as the crack tip.
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Figure 3.14: Representative result of integrating the vertical load versus vertical
displacement (Specimen #S300-01). 10-90% rise is highlighted in red [29].

For the architecture with the spine (the only toughening is due to elastic heterogene-
ity), the theoretical consideration that the effective toughness of a specimen with
sufficiently large layers is equal to the larger ratio: max{Gc

c
〈E〉
Ec ,Gs

c
〈E〉
Es } (Eq. (3.9))

was confirmed through computational modeling. The value predicted by Eq. (3.9),
40.1 kJ/mm, agrees well with the experimentally observed value of 44.2 kJ/mm.

For the architecture without the spine (the toughening is due to both elastic hetero-
geneity and renucleation), the theoretical consideration based on the work of Tanné
et al, Eq. (3.16) was in good agreement with the computational modeling. The
value predicted by this method, 57.5 kJ/mm, agrees well with the experimentally
observed value of 56.3 kJ/mm. Additionally, from the computational modeling in
both cases, it was expected to see the effective toughness increase with layer width,
which was in agreement with the experimental observations in Table 3.3.

The simulations, theory, and experiments described in this chapter demonstrate that
both elastic contrast and crack renucleation at interfaces contribute to toughening
behavior in layered materials. It is important to note that this result depends on the
bi-material interface being sufficiently strong to allow crack propagation into the ad-
jacent material, rather than the crack deflecting and propagating along the interface.
Additionally, the work presented in chapter shows that toughening requires a mini-
mum size of the heterogeneity. If the heterogeneities are too small, full toughening
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Table 3.2: Summary of all measured values of dU/da for the fracture specimens.
Outliers highlighted in yellow

Table 3.3: Experimental results for the energy release rate, Gc for the four archi-
tectures considered with values predicted by Eq. (3.10) and (3.16) assuming large
layer width [kJ/m2]

.
Layer Size [mm] 1.5 3.0 Theory

w/ Spine 27.3 44.3 40.1
w/o Spine 30.6 56.2 57.5

enhancement is not achieved; once the heterogeneities reach a sufficiently large size,
there is no further enhancement.
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Figure 3.15: Box-and-whiskers distribution of slopes for 3.00 mm stripe specimens.
The median is indicated by the horizontal red line. The outlier is identified by the
red cross [29].
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Figure 3.16: Full-field map of the strain component εyy at selected loading points
for specimen with spine (Specimen C300-03).
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Figure 3.17: Full-field map of the strain component εyy at selected loading points
for specimen without spine (Specimen S300-03).
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C h a p t e r 4

PROCESS ZONE SMOOTHING OF HETEROGENEOUS
EFFECTS IN TAPE PEELING

4.1 Introduction
In the fracture of 2D- and 3D-materials, it is well understood that elastic contrasts in
composite materials affect crack propagation [36, 77]. In tape or film peeling, often
studied as a one-dimensional approximation to fracture, either an elastic contrast or
a difference in thickness can be used to introduce a bending stiffness heterogeneity
that has a similar effect in influencing the force required to advance the peel front
[8, 9, 39, 78]. It has been shown that substantial enhancement in peel force can be
achieved by introducing elastic heterogeneities in the tape. Kendall showed that in
order for the peel front to pass through a contrast in bending stiffness, the shape of
the peeling profile changes dramatically; the bending energy required to change the
peeling profile is what causes variation in the overall peeling force [8]. Furthermore,
he proposed design criteria for peel resistant composites. He also showed that for
toughness enhancement to occur, the stiff heterogeneities should be on the order
of the size of the stress field in the stiffened region and spaced at a minimum on
the order of the size of the stress field in the unstiffened (compliant) region. If the
stiffened region is not sufficiently large, it will fail to pin the crack. If the spacing
is not sufficient, the crack will not decelerate enough to be pinned by the next stiff
interface. Xia et al. used numerical studies and experiments on nominally brittle
adhesive systems to show that at a step-up in thickness in laminate peeling with
sufficiently large heterogeneities, the amount of peel force increases as the cube
of the thickness, and can be predicted based on Euler-Bernoulli beam theory [39,
78]. They also showed that the amount of toughening resulting from stiffening
depends strongly on the size and spacing of the heterogeneities with respect to the
characteristic length. The characteristic length scale of a tape subjected to bending
during peeling is λ =

√
De/2G, where De is characteristic bending stiffness of the

periodic tape and G the adhesive energy.

Past experiments and theories have been developed assuming brittle peeling; that
is, that the cohesive zone at the peel front is negligible. The work presented in this
chapter studies peeling of a heterogeneous pressure sensitive tape with a substantial
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cohesive zone. The present study aims to understand the role of the cohesive zone
on the enhancement on the peel force during the peeling of elastically heterogeneous
tapes. This chapter begins with experiments on a heterogeneous pressure sensitive
tape. Simulations performing a parametric study of the adhesive strength, G, and
cohesive zone size follow.

4.2 Experimental
Materials and Method
Peel experiments of a pressure sensitive tape (3M810Scotch™ tape, acetate backing
with acrylic adhesive) adhered to a substrate are performed using the setup shown
in Fig. 4.1a. The 3M 810 tape has a Young’s modulus (E) of 1.65 GPa and has an
adhesive energy (G) for bonding to glass of 34.5 N/mwhen pulled at 0.01mm/s [79].
The width and the thickness of the tape are 19.05 mm and 0.0635 mm, respectively.
The primary substrate considered is glass; sand-blasted acrylic, Teflon, and 1200-
grit sandpaper are also examined as substrates. Prior to the adhesion of the tape, the
glass, acrylic, and Teflon substrates are cleaned by wiping with an ethanol wetted
Kimwipe followed by a dry Kimwipe. The substrate is then allowed to dry for one to
two minutes. In the case of the 1200-grit sandpaper, it is adhered to a rigid substrate
and inspected for grit integrity and replaced if degradation is observed. The base
layer of tape is applied to the substrate and smoothed using a squeegee. The tape is
long enough that it can be clamped in the loading grip. The initial length of the tape
from the substrate to the grip is long enough so that the change in peel angle during
peeling is minimized. Heterogeneities are applied to the base layer by the following
process: if the heterogeneity is to be more than one layer, the heterogeneities are
laid up by applying the first layer to wax paper and smoothing subsequent layers on
top of the first layer until the desired layer count is reached. Strips of the tape 1-5
mm in width, but much longer than the width of tape are cut from the built-up tape.
The strip is then removed from the wax paper and applied to the base layer spaced
4-5 mm apart.

Following Xia et al., the sufficient size for the stiff heterogeneities is [39]:

λ =

√
D
2G

, (4.1)

where D = (∑m=2
m=1 χ

(m)/D(m))−1, and χ(m) is the length fraction and D(m) is the
bending stiffness of each stiffness heterogeneity,m. Theminimumheterogeneity size
and spacing (for equal length fraction heterogeneities) is evaluated to be λ = 0.78
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mm for the 3M 810 tape peeling from glass substrate1.

A 10-15 mm length of adhered tape is left without heterogeneities before the first
heterogeneity. The average value of the peel force in this region is used to normalize
the results. The heterogeneity is trimmed to the width of the tape and smoothed
using a squeegee. An image of the tape with heterogeneities is shown in Fig. 4.1b.
The tape is left a minimum of 20 minutes before the beginning of the peel test to
ensure consistency of adhesion [79]. The tape is then installed in the loading grip,
with a 20 cm peel arm to reduce the effects of the change in peel angle over the
course of the test 5 cm peel distance.

The loading grip is pulled up at the rate of 0.05 mm/s using a PI 410.2S stepper
motor and PI Mercury C663 controller (Physik Instrumente, Irvine, CA). The peel
force is measured during the test using an LC101-50 load cell (Omega, Norwalk,
CT), DP41-BA-C24 strain meter (Omega, Norwalk, CT) and NI USB-6251 DAQ
box (National Instruments, Austin, TX). A Navitar Inc (Rochester, NY) microscope
lens (1-6010 C-mount coupler, 1-6030 2X Standard Adapter, 1-60135 6.5X Zoom
12 mm Fine Focus) is attached to a µEye EO-1312m USB camera (Edmund Optics,
Barrington, NJ) and images are taken while the peel front is in the field of view. The
images and load cell readings are collected and recorded using a LabVIEW Virtual
Instrument (National Instruments, Austin, TX).

Results
Figures 4.2 through 4.6 show the results for the heterogeneous peel experiments.
There are five phases of the load evolution during the experiment:

1. The load reaches a steady state (after an initial transient phase) while the tape
is being pulled through the homogeneous region;

2. As the peel front edge of the tape approaches the heterogeneity, the load in-
creases and peaks when the peel front reaches the step up in the heterogeneity;

3. After propagating through the front side of the heterogeneity (step up side),
the tape returns to the steady state peel force (1) in the region of increased
(multi-layer) thickness heterogeneity;

1The adhesion strength of Scotch™ tape depends on the peel speed. A peel speed of 0.05 mm/s
was used in the following experiments and the associated adhesion strength was found to be 50 N/m.
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Figure 4.1: a. Tape peeling experiment configuration; b. Close up view of the
heterogeneities.

4. At the back side of the heterogeneity (step down side), the load experiences
an abrupt drop to a value below the steady state value of peel force associated
with peeling of a homogeneous tape, (1);

5. The peel force recovers from the drop and reaches the steady state value
associated with homogeneous peeling, (1).

These phases are present in the load plots for all the substrate materials considered
here. Figure 4.2 shows the results for peeling 3M 810 Scotch™ tape with 1-, 2- and
3- layer heterogeneities from a glass substrate; the normalized peak peel loads range
from 1.5-2.1 times the homogeneous peel force. These values are substantially lower
than the 8, 27 and 64 times predicted by Euler-Bernoulli beam theory [39]. The
normalized valley peel loads are 0.3-0.5 times the homogeneous peel force. The
normalized peaks and valleys do not appear to be greatly affected by the number
of layers of tape making up the heterogeneity; that is, the amount of load increase
appears to saturate.

Using the relation between the adhesive energy, G, and peel force, P:

P =
G

1 − cos(θ) , (4.2)

the effective G can be varied by varying P. This is achieved by using different
substrates with the same tape. Figure 4.3 shows the results of these experiments.
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Figure 4.2: Results for peeling Scotch™ tape with heterogeneities from a glass
substrate. a. 1- b. 2- and c. 3- layer heterogeneities (see inset). Heterogeneities are
6 mm wide spaced 2 mm apart.

While sandpaper and Teflon have slightly lower peel forces (slightly lower effective
G) than glass, the normalized peak values are slightly higher than those of glass.
The sand-blasted acrylic has slightly higher peel force and the normalized peak
appears to be further suppressed.

Figure 4.3: Results of peeling Scotch™ tape with heterogeneities from various
substrates; a. 1200 grit sandpaper (2 layers, 5 mm long spaced 4 mm apart); b.
Teflon (3 layers, 6 mm long spaced 3 mm apart); c. sand-blasted acrylic (2 layers, 5
mm long spaced 2 mm apart, 0.025 mm/s peel velocity).

Additional peeling experiments with the 3M 810 pressure sensitive Scotch™ tape
from a glass substrate were performed to study the effect of very narrow hetero-
geneities. Figure 4.4 shows the results of a test with 1 mm wide heterogeneities
(2-layers, 6 mm spacing). The normalized peak and valley values are roughly the
same as in the tests with wider heterogeneities (see Fig. 4.2 for 6 mm wide hetero-
geneities). The only major difference is the absence of a steady state region, which
can be attributed to the small width of the heterogeneities.
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Figure 4.4: Peel force versus vertical displacement for peeling adhesive tape with
2-layer heterogeneities (1 mm wide, 6 mm spacing) from a glass substrate.

Occasionally, for narrow heterogeneities, the heterogeneity deadhered from the base
layer. Figure 4.5 shows an example of this behavior. In image A the tape approaches
the heterogeneity at the steady-state peel force. The load begins to increase at B, but
at C the adhesive bonding of the heterogeneity to the base layer fails, resulting in a
visible gap between the base layer and the heterogeneity. The load drops at D as it
returns to a steady state at E and F without exhibiting a load drop to a valley. The
deadhesion of the heterogeneity is so pronounced when it occurs that the absence
of a visible gap in the photographic records of other tests gives confidence that this
is not the primary mechanism of peak load suppression.

In order to determine whether the suppression of the highest value of the peak was
due to a similar deadhesion event at the front of the heterogeneity, an experiment
is performed with packing tape (3M 142) as the heterogeneity and with 3M 810
as the base uniform layer. Figure 4.6 shows the normalized (with respect to the
homogeneous single layer peel force) peel variation and the evolution of the radius
of curvature near the peel front. The heterogeneities are two layers thick; since 3M
142 (0.0787 mm [80]) is thicker than 3M 810 (0.0635 mm [81]), the total thickness
is slightly more than 3 times the base layer thickness. The normalized peak load is
2.65, which is substantially less than the 27 that would be predicted by the Euler-
Bernoulli theory [39]. The tape is peeled from a glass substrate at 0.05 mm/s. The
normalized minimum (valley) load is 0.35. The tape starts with a relatively small
radius of curvature in the homogeneous region, A-B. When the tape approaches the
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Figure 4.5: Peeling adhesive tape with 2-layer heterogeneities from a glass substrate.
Peel force versus vertical displacement is plotted. The images A-F show the various
stages of peeling and the cohesive zone.
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Figure 4.6: Images A-L show the various stages of peeling a heterogeneous tape
with two layers of packing tape on a uniform layer of Scotch™ tape. Normalized
peel force is plotted as a function of vertical displacement.
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heterogeneity, the radius of curvature increases at C-E before becoming a steady
state larger curvature at F-H. At the step down, I-K, the radius of curvature reduces
back to the original radius of curvature at L. The width of the cohesive zone can also
be observed to vary in these images. The cohesive zone in the beginning and end
of this process, A-C and J-L, is narrower than in the middle, D-I. Also note that the
peel front has begun to penetrate into the heterogeneous region as early as C, even
though the peak load is reached at D. In fact, the cohesive zone in D can be seen to
be entirely contained in the heterogeneous region.

In order to study the origin of the valley in the peel force (lowest value), it is
interesting to consider the brittle (no cohesive zone) case. The numerical simulations
and experimental observations presented byXia et al. for heterogeneous film peeling
experiments do not show the same 5 phases described above [39]. Rather, the load
increases and reaches its maximum as the peel front approaches the step-up in
film thickness, then the load rapidly decreases to its lowest value as the peel front
propagates rapidly through the specimen until it is pinned by the next step-up in
film thickness where the load begins to increase, again. Because there is no obvious
valley (lowest value) in these experiments, it is desired to determine if the brittle
case is unaffected by a step-down in film thickness (i.e., the peel front propagates at
constant force through the step-down interface) or if the load does, in fact decrease
abruptly, but this behavior is obscured by the peel front rapidly propagating all the
way through the heterogeneity to the step-up of the next one.

Following the experiment preformed by Xia et al. [39], a single step-down hetero-
geneity was studied using PET film (0.1778 mm thick) adhered to epoxy (Devcon
2 Ton clear epoxy) and cured overnight, which approximates brittle peeling. The
tape (2 cm wide) was formed by gluing a second layer of the same thickness of
PET onto the base layer using a UV curable super glue. Each tape has only one
thickness step-down discontinuity. The epoxy/PET tape was adhered to a substrate
of acrylic which was secured in the peel test setup. The tape is pulled at 0.15 mm/s.
A schematic of this experiment and representative results are shown in Fig. 4.7. At
points A-C, the peel front propagates under a relatively steady state force. Between
C-D, the crack rapidly propagates approximately 9 mm while the applied vertical
displacement increased 0.72 mm; hence, the load decreases rapidly. Since the tape
is very stiff and constrained at the peel front end and in the loading grip, a resultant
compressive force is observed. The load remains low while slack is removed from
the tape, D-E. Subsequently the crack begins to propagate and reaches a new steady
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state, E-F. The rapidly decreasing load from C-D indicates that the brittle case is
affected by the step down in film thickness, it is likely that the rapid crack propa-
gation that follows the pinning results in slack in the system that must be removed,
obscuring this phenomenon.

4.3 Simulation
Model
The ABAQUS/Standard finite element software package is used to simulate the
peeling of heterogeneous adhesive tapes from a rigid substrate. The simulations are
used to develop insights on the experimental observations described above. The 2D
finite element model geometry is shown in Fig. 4.8. The model consists of two parts
- the tape and the adhesive. The tape is 0.10 mm thick and it is 10 mm wide in the
z-direction. Four-node plane strain elements are used (CPE4R); mesh size is 0.014
(thickness) by 0.5 mm (length). Material properties of the tape, Young’s modulus
and Poisson’s ratio, are chosen to be, E = 1000 MPa and ν=0.35, respectively. The
thickness of the cohesive (adhesive) layer is 0.001 mm. Two-dimensional cohesive
elements are used (COH2D4) with element deletion with a uniform mesh size of
0.001 x 0.025 mm. The bottom of the tape and the top of the cohesive layer are
connected using a tie constraint.

The cohesive behavior of the adhesive layer is modeled using the traction separation
law, as shown in Fig. 4.9. The parameters which describe the traction separation
law are T, Ei, and δ f . T defines the load at which the cohesive elements begin to
fail. δ f defines the opening displacement at which the element fails. Ei is a penalty
parameter that depends on the size of the elements, T, and the ratio of initiation of
damage δ0 to element failure δ f . If Ei is too large, the simulation runs into numerical
problems. However, if Ei is too small it introduces compliance into the system [82,
83]. The area under the traction-separation relation defined by these parameters
is GC , the adhesive or fracture energy of the tape. Ei is varied with T and δ f to
maintain constant ratio of initiation of damage δ0 to failure δ f at 4e-5.

The tape is loaded by applying a vertical displacement to ∆y (Fig. 4.8). The bottom
edge of the cohesive layer and the far right edge of the tape and cohesive layer
are fixed in the x- and y- directions (clamped boundary conditions). An artificial
viscosity coefficient of 0.001 and NLGEOM with a stabilization parameter of 1e-7
to 1e-9 are used in the simulations to assist convergence.

Simulations are performed for various values of GC and δ f to study how the tough-
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Figure 4.7: Peeling of a PET/epoxy tape from an acrylic substrate with a step down
heterogeneity; a. Schematic of the tape; b. Peel force versus tape displacement. A-F
show images of the peel front (marked with an arrow) corresponding to the loads in
b.
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Figure 4.8: Geometry of the tape and simulation parameters for modeling the
heterogeneous adhesive tape peeling from a rigid substrate.

Figure 4.9: Traction separation laws and associated parameters used in ABAQUS
simulations.

ness and the size of the cohesive zone affect the peak and valley loads in peeling
heterogeneous tapes.

Results
Figures 4.10 and 4.11 show representative results of the tape peeling simulations.
These simulations are for an adhesive energy, Gc = 25 N/m and δ f = 0.1. Peel
force and the cohesive zone size are plotted as a function of time (applied vertical
displacement). The peel force reaches a steady state value in the homogeneous
section of the tape as it approaches the heterogeneity at A in Fig. 4.10. The load
begins to rise and the size of the cohesive zone increases as the crack front reaches
the heterogeneity at B-C. The load peaks at C, and the cohesive zone has penetrated
well into the heterogeneous region of the tape. The load begins to decrease and
as the crack front passes through the heterogeneity at D the stress is more evenly
distributed through the deadhered portion of the tape. The load decreases rapidly as
the front reaches the other side of the heterogeneity at E-F and the load is once again
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concentrated in the uniform thinner portion of the tape. The size of the cohesive
zone returns to its original value. The tape reaches the same steady state value at F
as in the beginning at A as the peel angle returns to 90 degrees.

Figure 4.11 shows additional detail of the variation of the cohesive zone size with
peel force. The size of the cohesive zone takes two constant values during crack
propagation associated with the thickness of the tape above the crack front. The size
of the cohesive zone does not begin to increase until after the peel force has reached
roughly half of its peak value. The peak load coincides with the maximum size of
the cohesive zone.

The beginning of the cohesive zone size increase varies with the size of the cohesive
zone. Figure 4.12a-d show selected load and cohesive zone size results for δ f = 0.05.
The beginning of the cohesive zone size increase is marked with a dashed vertical
line. In the simulations, as the crack approaches the heterogeneity it is pinned and
the load begins to increase while the cohesive zone stays the same size or reduces
slightly. At some load prior to the peak, the cohesive zone size begins to increase
which coincides with the beginning of peel front penetration into the heterogeneous
region. The location of this increase relative to the peak load varies with adhesive
strength, G. In order to quantify this variation, the increase load is normalized by
calculating the ratio of the load at the onset of increasing cohesive zone size to peak
load:

Pinc − Phom

Ppeak − Phom
, (4.3)

where Pinc is the peel force when the cohesive zone size begins to increase, Ppeak

is the peak peel force, and Phom is the homogeneous peel force. Figure 4.12e plots
onset of the increase in cohesive zone size versus the size of the cohesive zone in
the initial homogeneous region. There is a correlation between the size of the initial
cohesive zone and the onset of peel front penetration into the heterogeneous region;
as the cohesive zone size increases, the peel front penetrates into the heterogeneous
region at a proportionally lower load relative to the peak load. However, Fig.
4.12f plots onset of the increase in cohesive zone size versus the normalized peak
force and does not demonstrate nearly as clear of a correlation between the two
quantities. For individual values of adhesion strength, G, higher peak loads occur
with later penetration into the heterogeneous region. However, the onset of the
increase in cohesive zone size depends on the adhesion strength as well, and lower
values of adhesion strength correspond with earlier onsets of penetration into the
heterogeneous region.
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Figure 4.10: Normalized peel force and cohesive zone size are plotted as a function
of time. Contour of plots of von Mises stress are plotted at various stages of the
peeling process (A-F). Parametric values, G=25 N/m, δ f = 0.1.
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Figure 4.11: Normalized peel force and cohesive zone size are plotted as functions
of time for G=25 N/m; a-c: δ f = 0.025, 0.05, 0.10.

Figure 4.13 shows the normalized peak loads (Ppeak

Phom
) versus normalized cohesive

zone size and Fig. 4.14 shows the normalized valley loads (Pvalley

Phom
) versus normalized

cohesive zone size for all simulations. The cohesive zone size is normalized against
λ calculated for the simulations according to Eq.4.1. Fig. 4.13 indicates that smaller
normalized cohesive zone sizes are related to higher peak loads. Fig. 4.14 shows
that smaller normalized cohesive zone size is related to lower normalized minimum
(valley) loads.

4.4 Discussion
Experiments and simulations indicate that the cohesive zone works to smooth out
the bending stiffness heterogeneity introduced by the step up in thickness, thereby
smoothing out the toughening inducing discontinuity and reducing the toughening
effect of the additional thickness in the heterogeneous region. The simulation results
agreed with the experimental observation that the presence of a cohesive zone
works to suppress the toughening effects of the elastic heterogeneity. Furthermore,
the experimental (Figs. 4.2, 4.3) and simulation (Figs. 4.13 and 4.14) results
agree in showing that the normalized peak load increases with decreasing adhesive
energy G and that the normalized valley (minimum) force decreases with decreasing
normalized cohesive zone size.

The peel front began to penetrate into the heterogeneous region prior to the peak
load value being reached in both the experiments and the simulations. Studying the
plots e and f in Fig. 4.12, later onset of penetration into the heterogeneous region
is strongly correlated with smaller cohesive zone size and moderately correlated
with higher normalized peak forces. However, from Fig. 4.12f, the strength of
the adhesion, G, also affects the normalized peak force, with lower values of G
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Figure 4.12: Normalized peel force and cohesive zone size are plotted as a function
of time for δ f = 0.05, a-d: G = 12.5, 25, 50, and 100 N/m. e. Initial cohesive
zone increase (onset of penetration into the heterogeneous region) versus the lower
cohesive zone size and f. versus normalized peak force.
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Figure 4.13: Normalized peak load versus normalized cohesive zone size.

Figure 4.14: Normalized valley load versus normalized cohesive zone size.

corresponding the higher normalized peak forces.

The experiments and simulations show that in order to achieve the maximum peel
force enhancement due to a stiffness heterogeneity, the cohesive zone of the adhe-
sive must be much smaller than the characteristic length, λ =

√
D
2G , of the tape.

Additionally, they show that the peel force enhancement at the step up in stiffness
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is accompanied by a peel force reduction at the step down in stiffness. Peel front
penetration into the heterogeneous region was observed in both the experiments and
simulations, and later onset of penetration was generally related to higher peel force
enhancement. Extrapolating this to the brittle case (cohesive zone size is zero),
the highest normalized peak loads would occur with very little crack penetration
into the heterogeneous region. The mechanism for toughening for heterogeneous
laminate is additional energy input involved in changing the radius of curvature of
the tape from one steady state value to another as the tape passes through the hetero-
geneous interface [8]. The influence of the peel front penetration (and subsequent
involvement of more of the heterogeneity while changing the radius of curvature of
the peeling tape), is a contributing factor to the smoothing process.
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C h a p t e r 5

SUMMARY AND FUTURE WORK

This thesis examined the mechanics of crack propagation through periodic het-
erogeneous media using experiments, finite element simulations, and theoretical
analysis with the aim of developing a greater understanding of the role various
mechanisms play in enhancing toughness. Chapter 2 presented the results from ex-
periments investigating crack propagation in brick-like architectures. Renucleation
in the brick-like architectures when the crack front passed from a region of no or
low elastic modulus to a region of relatively high elastic modulus was identified
as a toughening mechanism. Chapter 2 also presented theoretical considerations
and experimental studies of a horizontally layered heterogeneous architecture. The
trend observed in the experiments does not agree with the trend predicted by the
theory, which needs additional study. Further analysis and experiments are needed
to understand the role of layered architectures on fracture toughness.

Chapter 3 presents studies examining the relative contribution of elastic heterogene-
ity and renucleation to fracture toughness enhancement. Comparative experiments
to isolate the additional enhancement due to renucleation are presented. Theoretical
considerations that propose models for the fracture toughness due to elastic contrast
and due to renucleation are discussed. The results of phase field numerical simula-
tions and experiments are in good agreement with the proposed models. The effect
of renucleation was observed to be more substantial than that of the elastic contrast
alone. Additionally, the amount of enhancement was observed to depend on the
width of the heterogeneous layers. The theoretical and computational analysis pre-
sented in this thesis assumed linear elasticity; however, there was limited inelasticity
in the experiments. The simulations presented by Wang and Xia took cohesive zone
size into account and showed that the amount of toughening depended on the size
of the heterogeneity with respect to the size of the cohesive zone of the material
[37]. Extension of the work presented in this thesis to elastic plastic materials
would provide further insights in toughening behavior in heterogeneous materials
and introduce crack-tip blunting as another mechanism of fracture toughening.

Chapter 4 investigates the effect of cohesive zone size and stiffness heterogeneity on
adhesive strength (fracture toughness) in tape peeling experiments. Experimental
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observations and finite element simulations are used to investigate the relation-
ship between fracture toughness enhancement, cohesive zone size, and adhesive
strength for crack propagation through periodic heterogeneous layered media. The
experimental observations and simulations are in agreement that the enhancement
in fracture toughness generally increases with decreasing cohesive zone size and
adhesive strength. Additionally, experimental observations and simulations agree
that the crack front penetrates into the stiffer heterogeneous region prior to the
peak enhancement being reached. The experiments and simulations indicate that
the cohesive zone works to smooth out the stiffness discontinuity and reduces its
toughening effect. Further parametric studies of the effects of G, cohesive zone
size, and penetration into the heterogeneous region on normalized peak force are
necessary to develop a model relating these quantities. Additionally, experimental
results showed that the amount of enhancement saturates at some thickness of the
heterogeneity. Further studies investigating why this appears to be the case would be
valuable in understanding the limits of using stiffness contrast to toughen composite
tapes against peeling.
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