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ABSTRACT

Deep learning has seen great success training deep neural networks for complex
prediction problems, such as large-scale image recognition, short-term time-series
forecasting, and learning behavioral models for games with simple dynamics.
However, neural networks have a number of weaknesses: 1) they are not sample-
efficient and 2) they are often not robust against (adversarial) input perturbations.
Hence, it is challenging to train neural networks for problems with exponential
complexity, such as multi-agent games, complex long-term spatiotemporal dynamics,
or noisy high-resolution image data.

This thesis contributes methods to improve the sample efficiency, expressive power,
and robustness of neural networks, by exploiting various forms of low-dimensional
structure, such as spatiotemporal hierarchy and multi-agent coordination. We show
the effectiveness of this approach in multiple learning paradigms: in both the
supervised learning (e.g., imitation learning) and reinforcement learning settings.

First, we introduce hierarchical neural networks that model both short-term actions
and long-term goals from data, and can learn human-level behavioral models for
spatiotemporal multi-agent games, such as basketball, using imitation learning.

Second, in reinforcement learning, we show that behavioral policieswith a hierarchical
latent structure can efficiently learn forms of multi-agent coordination, which enables
a form of structured exploration for faster learning.

Third, we showcase tensor-train recurrent neural networks that can model high-order
mutliplicative structure in dynamical systems (e.g., Lorenz dynamics). We show that
this model class gives state-of-the-art long-term forecasting performance with very
long time horizons for both simulation and real-world traffic and climate data.

Finally, we demonstrate two methods for neural network robustness: 1) stability
training, a form of stochastic data augmentation to make neural networks more robust,
and 2) neural fingerprinting, a method that detects adversarial examples by validating
the network’s behavior in the nieghborhood of any given input.

In sum, this thesis takes a step to enable machine learning for the next scale of
problem complexity, such as rich spatiotemporal multi-agent games and large-scale
robust predictions.
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C h a p t e r 1

INTRODUCTION: CHALLENGES TOWARDS SCALABLE AND
ROBUST MACHINE LEARNING

In recent years, the rapid increase in availability of large-scale data and computational
power has fueled a great surge in the development and application of machine
learning. Broadly speaking, the goal of machine learning is to understand and
develop models and algorithms that can discover, describe, and leverage useful
structure in data. There are numerous successful applications of this approach in a
wide range of domains, such as computer vision (e.g., image classifiers), language
processing (e.g., translation), recommendation systems, and many others.

In this work, we primarily consider machine learning in the setting of sequential
decision problems, in which an intelligent agent interacts with its environment,
which could contain other agents. In particular, we consider complex problem
settings where the environment dynamics are highly nonlinear (e.g., agents move
along piecewise smooth trajectories of high curvature), possess non-trivial long-term
correlations (e.g., processes with long memory), or are exponentially large (e.g.,
high-dimensional input spaces due to high-resolution images, or many agents). Figure
1.1 shows two example multi-agent settings: professional basketball and synthetic
predator-prey games.

Figure 1.1: Visualization of data from multi-agent environments, Left: basketball
tracking data. A player (green) has possession of the ball (orange) and passes the
ball to team-mates (faint green) while running to the basket (center-left). Defenders
are faint red. Right: synthetic predator-prey game. Predators are orange-red, prey
are green. The predators’ goal is to capture all the prey, arrows indicate the prey that
each predator aims to capture.

Specifically, Figure 1.1 shows an example of multi-agent tracking data from profes-
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sional NBA players (Zheng, Yue, and Lucey, 2016). Here, a human player (agent)
interacts with the ball, his teammates and opponents in an environment with complex
spatiotemporal dynamics (ball and agent movements) that are a result of the game
rules, the physics, and decision-making of the agents.

A key characteristic of learning a good decision-making model (policy) in such
domains, is that models with good performance often require exponentially many
samples to learn. In particular, we will focus on deep learning which focuses on
deep neural networks, a very powerful class of functions that have seen great success
in many domains. Hence, the first contribution of this thesis is to improve the sample
efficiency of deep neural networks in complex spatiotemporal problems.

A second focus of this thesis is robustness: complex policies, such as deep neural
networks, are often unstable when the input space is very high-dimensional, e.g., for
image, video and audio input. Such instability is caused by adversarial examples
(Christian Szegedy et al., 2013), e.g., an adversary can add (imperceptible) visual
perturbations that fool neural networks. Figure 1.2 shows a (strong) adversarial
example: adversarial perturbations can change the neural network’s correct output
on the clean image, to an incorrect output on the altered image.

"bird" "bus"

Figure 1.2: Adversarial examples can a state-of-the-art neural network f (x) to
misclassify images: the image x on the left is classified as a “bird”, while the
adversarial image on the right is classified as “bus”.

In this thesis, we focus on 1) “weak” adversarial examples: a wide class of natural
perturbations that can cause neural networks to be unstable, such as JPEG image
compression, and 2) “strong” adversarial examples: imperceptible perturbations
as in Figure 1.2. The main contribution of this thesis in this problem setting are
techniques to stabilize neural networks and detect adversatial examples.

In sum, the central challenge we address in this work is to develop machine learning
methods that can learn efficiently (e.g., requiring few data samples) and yield
expressive and robust decision-making models that are optimal. Here, “expressive”
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models are those that are applicable in complex environments and “robust” models
are those that are stable under (adversarial) input or environment noise. Informally,
optimality of an agent’s decision-making model is defined with respect to a metric,
such as maximizing the score that the agent can achieve during a game under the
model.

We next present a succinct and more formal definition of the sequential decision-
making setting and several learning approaches and models that play a central role in
this thesis.

1.1 Sequential Decision-Making in a Markov Decision Process
Formally, such sequential decision-making problems can be modeled as aMarkov
Decision Process (MDP), which is the common setting for this work. In an MDP,
the interaction between agent and environment can be decomposed into a cycle of
three phases. At each time t, the agent executes:

• Perception: the agent observes the state st of itself and the environment, and
any environment feedback, such as a scalar reward r ,

• Decision: the agent uses a policy model π to determine its next action,

• Transition: the agent and environment transitions to the next state st+1 under
dynamics p (st+1 | st, at).

Figure 1.3: Visualization of a Markov Decision Process. An agent interacts with its
environment by iteratively observing a state s, executing an action a and receiving a
reward r .

Formally, this is captured by the tuple:

(S, A, r, p) , (1.1)

where S is the space of states, A is the space of actions, r is the environment reward,
and p is the environment transition function (dynamics). In this work, we typically
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work with both discrete or continuous state-action spaces. This formulation admits
many generalizations that also model e.g., partial observability of the state (e.g.,
POMDPs (Braziunas, 2003; Shani, Pineau, and Kaplow, 2013; Ross, Pineau, et al.,
2008)) or multi-agent generalizations (Dec-POMDPs (Oliehoek, 2012)).

The learning problem now is to learn an optimal policy, which is a map π : s 7→ a,
that “solves” the MDP. An optimal policy is one that maximizes the total expected
reward:

max
π
E

[∑
t

rt | at ∼ π, st+1 ∼ p (st+1 | st, at)

]
. (1.2)

In this work, we will only consider parametric policies π (s; θ), which are conditional
distributions over actions p(a | s). Typically, we will assume that the environment
transitions p is not perfectly known.

There are two general paradigms to find the optimal policy: learning from interaction
with a simulator (“reinforcement learning”) and learning interactively from expert
data (“imitation learning”).

Imitation Learning
In this setting, the agent learns the optimal policy from a fixed dataset of expert
demonstrations, and / or can dynamically query experts that can provide demon-
strations (Ross, Gordon, and Bagnell, 2011). The former setting is also known as
behavioral cloning. Here, the experts are humans or other models that are assumed
to have good performance in the MDP, i.e., achieve high reward.

A key challenge in imitation learning is error propagation due to model drift from the
data. In an MDP, in a sequence of states and actions, the states are not iid samples.
Rather, the next state is determined via the actions of the agent and the environment
dynamics. Hence, if a learned policy does not exactly match the expert policy and
the data coverage of the state space is low, the next state is very likely not in the data.
Hence, an imperfect model that does not generalize well can cause compounding
errors by executing suboptimal actions in the unfamiliar states. This causes the
learned policy to drift far from the data, which is typical in the imitation learning
setting.

In this thesis, we will focus on how to learn expressive policy models in the setting
of behavioral cloning, with relative small amounts of data. We are specifically
interested in learning policy models that can generalize well to long time horizons,
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where error propagation becomes a particularly salient issue. We show in Chapter 2
how to train hierarchical policy models that learn long-term planning structure from
expert data.

Reinforcement Learning
In the reinforcement learning setting, the agent can freely interactwith the environment
and collects its own training data by executing policies and observing the empirical
state transitions and reward. It then uses this experience to perform credit assignment:
the agent has to learn which sequences of states and actions lead to high reward.
A key challenge in this setting is the exploration-exploitation tradeoff: during
training the agent can sample actions from a (fixed) distribution (“exploration”), or
execute actions according to its best known policy (“exploitation”). How to balance
between these two modes strongly influences whether the agent can discover states
with high reward, the statistical properties of the collected trainingd data, and how
accurate future reward estimates are. In effect, reinforcement learning is often a
highly challenging learning setting. For an extensive introduction into reinforcement
learning, see Sutton and Barto, 1998.

In this thesis, we study domains where the action space is high-dimensional, such
as in multi-agent settings (e.g., the full action space is the product space of the
individual agent action spaces, which is exponentially large). In Chapter 4, we
describe an approach to structured exploration, which improves the sample efficiency
of reinforcement learning in this setting by learning a low-dimensional coordinated
policy subspace that contains the optimal multi-agent policy.

1.2 Deep Learning
In this work, we primarily focus on learning models f : x 7→ y, such as policies
π, that are instantiated using deep neural networks. Recently, the field of deep
learning that develops and applies these models has grown significantly in scope and
innovation. Deep neural networks have transformed computer vision (Russakovsky
et al., 2015), speech recognition (Amodei et al., 2016), speech generation (Oord et al.,
2016; Wang et al., 2017), machine translation (Wu et al., 2016), and many other
areas. Their effectiveness stems from their typically large model capacity, while still
being trainable using various forms of stochastic training algorithms, e.g., stochastic
gradient descent.

Two classes of neural networks that are particularly relevant in this thesis are deep
sequence models and deep probabilistic models, which we will survey below. For an
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extended introduction into the subject, see I. Goodfellow, Y. Bengio, and Courville,
2016.

Sequence Modeling with Recurrent Neural Networks
For sequential prediction problems, a general class of neural networks are recurrent
neural networks (RNN). RNNs model functions f : x0:T 7→ y0:T ′ mapping sequences
x0:T to sequences y0:T ′ with a hidden state ht that summarizes the information in the
first t − 1 timesteps:

ht = ϕ(xt, ht−1), yt = ψ(ht), (1.3)

where ϕ, ψ are nonlinear functions, such as the ReLU (max(0, x)) or tanh-functions.
For instance, a standard RNN with tanh-activation computes the next hidden state
using a linear map of input and previous hidden state:

ϕ(xt, ht−1) = tanh (Uxt + V ht + b) . (1.4)

Such standard RNNs with simple output distributions often struggle to capture
complex relationships in highly variable and structured sequential data, such as
long-term dependencies. More complex alternative RNNs exist, such as LSTMs
(Hochreiter and Schmidhuber, 1997) or GRUs (Cho et al., 2014), although these
often still do not fully capture complex sequential dependencies.

Learning Deep Probabilistic Models using Implicit Optimization
Another key application of neural networks is to model complex probability distribu-
tions (“generative models”) p(x) over the data x. This is a challenging problem, as
1) sampling the full distribution is often intractable for real data, 2) p(x) often has
complicated structure and 3) real data often has many nuisance or noise factors.

One approach that will recur in this thesis is to learn latent factor models that
decompose

p(x) =
∫

dλp(x, λ) (1.5)

over high-dimensional data x using latent variables λ. The idea is that the λ can
learn to parametrize a low-dimensional structure in the data x. For instance, x could
be an image or a sequence of actions a0:T , and λ could parametrize the different
classes of objects or actions.

However, for flexible distributions p(x) (i.e., non-Gaussian) and a fixed p(λ), learning
the exact distribution p(x | λ) is intractable as computing integrals over λ becomes
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intractable. An end-to-end learning solution is to use implicit optimization. A salient
example is the variational autoencoder (VAE) (Kingma and Welling, 2014), which
introduces an inference network qφ(λ | x) parametrized by φ to approximate the true
posterior p(λ | x), and a learned generation model pθ(x | λ). The inference model
qφ(λ | x) and generative model pθ(x | λ) are commonly implemented with neural
networks.

The key idea is that qφ can be learned via back-propagation by constructing a
differentiable stack consisting of the inference network qφ, followed by a learned
generative model pθ(x | λ). The learning objective is to maximize the evidence
lower-bound (ELBO) of the log-likelihood with respect to the model parameters:

log p(x) ≥ Eqφ(λ |x) [log pθ(x | λ)] + DKL
[
qφ(λ | x) | | p(λ)

]
. (1.6)

The first term is known as the reconstruction term and can be approximated with
Monte Carlo sampling. The second term is the Kullback-Leibler divergence between
the approximate posterior and the prior, and can be evaluated analytically (i.e., if
both distributions are Gaussian with diagonal covariance).

As the objective 1.6 approximates (e.g., lower-bounds) the true objective, this
approach is an instance of implicit optimization. Another recent popular approach is
to learn p(x) using Generative Adversarial Networks (I. Goodfellow, Pouget-Abadie,
et al., 2014), although evaluating GANs for our problem setting is beyond the scope
of this thesis.

1.3 Thesis Structure and Contributions
In this work, we address several shortcomings of standard deep neural networks when
applied to complex sequential decision-making problems: deep policy models are
typically “flat” and can be “brittle”. These limitations imply that learning policies for
complex problems using imitation learning or reinforcement learning can be highly
sample inefficient and lead to unstable solutions. As such, this thesis is broadly
organized around two themes.

Theme 1: From Flat to Hierarchical Models
The first major theme of this work is the benefit of using models that have hierar-
chical structure, rather than being “flat”. We use hierarchy in two distinct ways:
spatiotemporal hierarchy and agent-team hierarchy. In general, such approaches offer
an efficient, low-dimensional representation of the data or environment that enables
learning expressive policy models.
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We first study structured methods in the supervised learning domain, where we
assume a labeled dataset of expert agent behavior or environment dynamics is given,
and our goal is to learn a policy or dynamics models from that data. In Chapter 2 we
demonstrate how modeling spatiotemporal hierarchies leads to realistic basketball
player behavior models implemented as hierarchical neural networks. Hence, we
model temporal hierarchies, e.g., two networks predict both short-term actions and
long-term goals, as well as spatial hierarchies: goals are sub-regions of the basketball
court, and can be seen as subsets of the raw state space (e.g., the positions of all
the players). We showcase such hierarchical policy networks first for a single-agent
policy, and also for a central controller for 5 agents on offense.

InChapter 3, we present Tensor-TrainRecurrentNeural Networks, powerful sequential
prediction models that can capture higher-order structure in environment dynamics,
e.g., multiplicative interactions. Such dynamics give rise to non-trivial short-term
(e.g., highly oscillatory) and long-term (e.g., chaos) behavior, which is characteristic
of many time-series data, such climate and traffic network data.

Next, we turn to the reinforcement learning setting, where instead of a fixed dataset,
the learning agent has access to a simulator, in which it has to collect training data
using exploration (i.e., iterative trial-and-error). We show in Chapter 4 that learning
the low-dimensional coordination patterns between many agents leads to an effective
dimension reduction which enables much more efficient exploration, as the collective
learns to only explore well-coordinated actions.

Theme 2: Towards Robust Deep Learning
The second theme in this thesis, is how to make neural networks more robust against
various forms of input perturbations, which is a significant challenge when the
input space X is high-dimensional, e.g., natural images or multi-agent state space.
(I. J. Goodfellow, Shlens, and C. Szegedy, 2014; Christian Szegedy et al., 2013)
have shown in the computer vision domain that a wide class of imperceptible small
perturbations can significantly change the output of prediction models, making them
vulnerable to malicious attackers that craft adversarial examples that deliberately
confuse models such as neural networks. Similar examples of adversarial attacks
have been demonstrated in other domains, e.g., natural language processing (Jia and
Liang, 2017).

In Chapter 5, we demonstrate two methods that improve the robustness of neural
networks against such input perturbations. First, in Section 5.2 we demonstrate
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Stability Training, a method to stabilize network outputs against weak adversarial
perturbations, such as image compression artefacts. Second, in Section 5.5 we
showcase NeuralFingerprinting, a method to detect strong adversarial examples,
which changemodel outputs by only changing themodel input by small, imperceptible
amounts.

In Chapter 6 we conclude with interesting directions for future research.
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C h a p t e r 2

LONG-TERM PLANNING VIA HIERARCHICAL POLICY
NETWORKS

Zheng, Stephan, Yisong Yue, and Patrick Lucey (2016). “Generating long-term
trajectories using deep hierarchical networks”. In: Advances in Neural Information
Processing Systems. S.T.Z. participated in the conception of the project, formu-
lated, implemented and analyzed the method, prepared the data, conducted all
experiments and user studies, and participated in the writing of the manuscript.,
pp. 1543–1551. url: https://papers.nips.cc/paper/6520-generating-
long-term-trajectories-using-deep-hierarchical-networks.

Zhan, Eric et al. (2018). “Generative Multi-Agent Behavioral Cloning”. In: arXiv
preprint arXiv:1803.07612. S.T.Z. participated in the conception of the project
and formulation of the method, analyzed the method and experimental results, and
participated in the writing of the manuscript.

Summary We study the problem of modeling spatiotemporal trajectories over long
time horizons using expert demonstrations. For instance, in sports, agents often
choose action sequences with long-term goals in mind, such as achieving a certain
strategic position. Conventional policy models are often “flat” and can only model
short-term decision-making, and hence fail at efficiently learning policies that scale
well to problems with long time horizons. We instead propose a hierarchical policy
class that automatically reasons about both long-term and short-term goals, which we
instantiate as a hierarchical neural network. We showcase our approach in case studies
for both single-agent and multi-agent behavioral cloning, i.e., learning to imitate
demonstrated basketball trajectories, and show that it generates significantly more
realistic trajectories compared to non-hierarchical baselines as judged by professional
sports analysts.

2.1 Introduction
Modeling long-term behavior is a key challenge in many learning problems that
require complex decision-making. Consider a sports player determining a movement
trajectory to achieve a certain strategic position. The space of such trajectories is

https://papers.nips.cc/paper/6520-generating-long-term-trajectories-using-deep-hierarchical-networks
https://papers.nips.cc/paper/6520-generating-long-term-trajectories-using-deep-hierarchical-networks
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prohibitively large, and precludes conventional approaches, such as those based on
simple Markovian dynamics.

The study of such fine-grained behavior is enabled by the ongoing explosion of
recorded tracking data. Beyond sports Miller et al., 2014; Yue et al., 2014b; Zheng,
Yue, and Lucey, 2016; Le et al., 2017, examples include video games Ross, Gordon,
and Bagnell, 2011, video & motion capture Suwajanakorn, Seitz, and Kemelmacher-
Shlizerman, 2017; Taylor et al., 2017; Xue et al., 2016, navigation & driving Ziebart
et al., 2009; J. Zhang and Cho, 2017; Li, Song, and Ermon, 2017, laboratory animal
behaviors Johnson et al., 2016; Eyjolfsdottir et al., 2017, and tele-operated robotics
Abbeel and Ng, 2004; Lin et al., 2006. One popular research direction, which we
also study, is to learn a policy that imitates demonstrated behavior, also known as
imitation learning Abbeel and Ng, 2004; Ziebart et al., 2008; Daumé, Langford, and
Marcu, 2009; Ross, Gordon, and Bagnell, 2011; Ho and Ermon, 2016. The arguably
simplest form of imitation learning is known as behavioral cloning, where the goal is
to mimic a batch of pre-collected demonstration data, e.g., from human experts.

Many decision problems can be naturally modeled as requiring high-level, long-term
macro-goals, which span time horizons much longer than the timescale of low-level
micro-actions (cf. (He, Brunskill, and Roy, 2010; Hausknecht and Stone, 2016)).
A natural example for such macro-micro behavior occurs in spatiotemporal games,
such as basketball where players execute complex trajectories. The micro-actions
of each agent are to move around the court and, if they have the ball, dribble, pass,
or shoot the ball. These micro-actions operate at the centisecond scale, whereas
their macro-goals, such as "maneuver behind these 2 defenders towards the basket",
span multiple seconds. Figure 2.1 depicts an example from a professional basketball
game, where the player must make a sequence of movements (micro-actions) in order
to reach a specific location on the basketball court (macro-goal).

Intuitively, agents need to trade-off between short-term and long-term behavior: often
sequences of individually reasonable micro-actions do not form a cohesive trajectory
towards a macro-goal. For instance, in Figure 2.1 the player (green) takes a highly
non-linear trajectory towards his macro-goal of positioning near the basket. As such,
conventional approaches are not well suited for these settings, as they generally use
a single (low-level) state-action policy, which is only successful when myopic or
short-term decision-making leads to the desired behavior.

In this chapter, we propose a novel class of hierarchical policy models, which we
instantiate using recurrent neural networks, that can simultaneously reason about
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Figure 2.1: The player (green) has two macro-goals: 1) pass the ball (orange) and 2)
move to the basket.

both macro-goals and micro-actions. Our model utilizes an attention mechanism
through which the macro-policy guides the micro-policy. Our model is further
distinguished from previous work on hierarchical policies by dynamically predicting
macro-goals instead of following fixed goals, which gives additional flexibility to
our model class that can be fitted to data (rather than having the macro-goals be
specifically hand-crafted).

Single-agent case. We showcase our approach in a case study on behavioral
cloning, i.e., learning to imitate demonstrated behavior in professional basketball.
Our primary result is that our approach generates significantly more realistic player
trajectories compared to non-hierarchical baselines, as judged by professional sports
analysts. We also provide a comprehensive qualitative and quantitive analysis, e.g.,
showing that incorporating macro-goals can actually improve 1-step micro-action
prediction accuracy.

Multi-agent case. We then generalize our hierarchical approach to the multi-agent
case, and introduce a novel problem setting for behavioral cloning, where the optimal
agent policy is probabilistic and multi-modal in nature, and must reason over the
behavior of multiple interacting agents. Here, we introduce a hierarchical generative
policy class that can use macro-goals to capture coordination between agents, as
well as long-term intent. We show how to derive a principled learning approach that
utilizes amortized variational inference, and that this model generates significantly
more realistic long-term trajectories than conventional baselines.
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2.2 Behavioral Cloning
We are interested in learning policies that can produce high quality trajectories,
where quality is some global measure of the trajectory (e.g., realistic trajectories as
in Figure 2.1). We first set notation:

• At time t, an agent i is in state si
t ∈ S and takes action ai

t ∈ A. The full state
and action are st =

{
si

t
}
players i, at =

{
ai

t
}
players i. The history of events is

τ = {(su, au)}0≤u<t .

• Let e≤T = {et}1≤t≤T denote a demonstration, where

et = (st, at) = ({sk
t }agents k, {ak

t }agentsk). sk
t ∈ S, ak

t ∈ A (2.1)

are the state, action of agent k at time t.

• Let πE denote the (multi-agent) expert stochastic policy that generated the data
D, and e≤T ∼ πE to denote that e≤T was generated from policy πE .

• Macro policies also use a goal space G, e.g., regions in the court that a player
should reach.

• Let π(st, τ) denote a policy that maps state and history to a distribution over
actions P(at |st, τ). If π is deterministic, the distribution is peaked around a
specific action. We also abuse notation to sometimes refer to π as determinis-
tically taking the most probable action π(st, τ) = argmaxa∈AP(a|st, τ) – this
usage should be clear from context.

• LetM(st, at) denote a (possibly probabilistic) transition function on states:
st+1 ∼ pM(st+1 |st, at).

Learning Objective
The goal in behavioral cloning is to find a policy that behaves like the expert
demonstrations D, e.g., by solving an optimization problem with respect to a loss
function `:

θ∗ = argminθ Ee≤T∼πE

[
T∑

t=1
`
(
at, πθ(st, τt−1)

) ]
≈ argminθ

∑
D

T∑
t=1

`
(
at, πθ(st, τt−1)

)
. (2.2)
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Figure 2.2: Depicting two macro-goals (blue boxes) as an agent moves to the top left.

2.3 Long-Term Trajectory Planning: Single-Agent Policy
Our main research question is how to design a policy class that can capture the
salient properties of how expert agents execute trajectories. In particular, we present
a general policy class that utilizes a goal space G to guide its actions to create such
trajectory histories. We show in Section 2.4 how to instantiate this policy class as a
hierarchical network that uses an attention mechanism to combine macro-goals and
micro-actions. In our case study on modeling basketball behavior (Section 2.5), we
train such a policy to imitate expert demonstrations using a large dataset of tracked
basketball games.

Incorporating Macro-Goals
Our main modeling assumption is that a policy should simultaneously optimize
behavior hierarchically on multiple well-separated timescales. We consider two
distinct timescales (macro and micro-level), although our approach could in principle
be generalized to even more timescales. During an episode [t0, t1], an agent i executes
a sequence of micro-actions

(
ai

t
)

t≥0 that leads to a macro-goal gi
t ∈ G. We do not

assume that the start and end times of an episode are fixed. For instance, macro-goals
can change before they are reached. We finally assume that macro-goals are relatively
static on the timescale of the micro-actions, that is: dgi

t/dt � 1.

Figure 2.2 depicts an example of an agent with two unique macro-goals over a
50-frame trajectory. At every timestep t, the agent executes a micro-action ai

t , while
the macro-goals gi

t change more slowly.

We model the interaction between a micro-action ai
t and a macro-goal gi

t through a
raw micro-action ui

t ∈ A that is independent of the macro-goal. The micro-policy is
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raw action u

micro-action a

macro-goal g

state s

transfer ϕ

raw micro-policy πraw

macro-policy πmacro

micro-policy πmicro

Figure 2.3: The general structure of a 2-level hierarchical policy that consists of 1)
a raw micro-policy πraw 2) a macro-policy πmacro and 3) a transfer function φ. For
clarity, we suppressed the indices i, t in the image. The raw micro-policy learns
optimal short-term policies, while the macro-policy is optimized to achieve long-term
rewards. The macro-policy outputs a macro-goal gi

t = πmacro(si
t, h

i
t), which guides

the raw micro-policy ui
t = πraw(s

i
t, h

i
t) in order for the hierarchical policy πmicro to

achieve a long-term goal gi
t . The hierarchical policy πmicro = ψ(ui

t, φ(g
i
t)) uses a

transfer function φ and synthesis functon ψ, see (2.5) and Section 2.4.

then defined as:

ai
t = πmicro(st, τ) = argmaxaPmicro(a|st, τ) (2.3)

Pmicro(ai
t |st, τ) =

∫
dudgP(ai

t |u, g, st, τ)P(u, g |st, τ). (2.4)

Here, we model the conditional distribution P(ai
t |u, g, st, τ) as a non-linear function

of u, g:

P(ai
t |u

i
t, g

i
t, st, τ) = ψ(ui

t, φ(g
i
t)), (2.5)

where φ, ψ are transfer and synthesis functions respectively that we make explicit
in Section 2.4. Note that (2.5) does not explicitly depend on st, τ: although it
is straightforward to generalize, this did not make a significant difference in our
experiments. This decomposition is shown in Figure 2.3 and can be generalized to
multiple scales l using multiple macro-goals gl and transfer functions φl .

2.4 Hierarchical Policy Network
Figure 2.3 depicts a high-level overview of our hierarchical policy class for generating
long-term spatiotemporal trajectories. Both the raw micro-policy and macro-policy
are instantiated as recurrent convolutional neural networks, and the raw action and
macro-goals are combined via an attention mechanism, which we elaborate on below.

Discretization and deep neural architecture. In general, when using continuous
latent variables g, learning the model (2.3) is intractable, and one must resort to
approximation methods. We choose to discretize the state-action and latent spaces.
In the basketball setting, a state si

t ∈ S is naturally represented as a 1-hot occupancy
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vector of the basketball court. We then pose goal states gi
t as sub-regions of the court

that i wants to reach, defined at a coarser resolution than S. As such, we instantiate
the macro and micro-policies as convolutional recurrent neural networks, which can
capture both predictive spatial patterns and non-Markovian temporal dynamics.

Attentionmechanism for integratingmacro-goals andmicro-actions. Wemodel
(2.5) as an attention, i.e., φ computes a softmax density φ(gi

t), over the output action
space A and ψ is an element-wise (Hadamard) product. Suppressing indices i, t and
s, h for clarity, the distribution (2.5) becomes

φk(g) =
exp hφ(g)k∑
j exp hφ(g) j

, P(ak |u, g) ∝ Praw(uk |s, h) · φk(g), k = 1 . . . |A|, (2.6)

where hφ(g) is computed by a neural network that takes Pmacro(g) as an input.
Intuitively, this structure captures the trade-off between the macro- and raw micro-
policy. On the one hand, the raw micro-policy πraw aims for short-term optimality.
On the other hand, the macro-policy πmacro can attend via φ to sequences of actions
that lead to a macro-goal and bias the agent towards good long-term behavior. The
difference between u and φ(g) thus reflects the trade-off that the hierarchical policy
learns between actions that are good for either short-term or long-term goals.

Multi-stage learning. Given a set D of sequences of state-action tuples (st, ât),
where the ât are 1-hot labels (omitting the index i for clarity), the hierarchical policy
network can be trained via

θ∗ = argmin
θ

∑
D

T∑
t=1

Lt(st, τ, ât ; θ). (2.7)

Given the hierarchical structure of our model class, we decompose the loss Lt

(omitting the index t):

L(s, τ, â; θ) = Lmacro (s, τ, g; θ) + Lmicro (s, τ, â; θ) + R(θ), (2.8)

Lmicro(s, τ, â; θ) =
A∑

k=1
âk log [Praw(uk |s, τ; θ) · φk(g; θ)] , (2.9)

where Rt(θ) regularizes the model weights θ and k indexes A discrete action-values.
Although we have ground truths ât for the observable micro-actions, in general we
may not have labels for the macro-goals gt that induce optimal long-term planning.
As such, one would have to appeal to separate solution methods to compute the
posterior P(gt |st, τ) which minimizes Lt,macro (st, τ, gt ; θ).
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Figure 2.4: Network architecture and hyperparameters of the hierarchical policy
network. For clarity, we suppressed the indices i, t in the image. Max-pooling
layers (numbers indicate kernel size) with unit stride upsample the sparse tracking
data st . The policies πraw, πmacro use a convolutional (kernel size, stride) and GRU
memory (number of cells) stack to predict ui

t and gi
t . Batch-normalization "bn"

((Ioffe and Szegedy, 2015)) is applied to stabilize training. The output attention φ
is implemented by 2 fully-connected layers (number of output units). Finally, the
network predicts the final output πmicro(st, ht) = πraw(st, ht) � φ(g

i
t).

To reduce complexity and given the non-convexity of (2.9), we instead follow a
multi-stage learning approach with a set of weak labels ĝt, φ̂t for the macro-goals
gt and attention masks φt = φ(gt). We assume access to such weak labels and only
use them in the initial training phases. Here, we first train the raw micro-policy,
macro-policy, and attention individually, freezing the other parts of the network. The
policies πmicro, πmacro and attention φ can be trained using standard cross-entropy
minimization with the labels ât, ĝt , and φ̂t , respectively. In the final stage we fine-tune
the entire network on objective (2.7), using only Lt,micro and R. We found this
approach capable of finding a good initialization for fine-tuning and generating
high-quality long-term trajectories.1 Another advantage of this approach is that the
network can be trained using gradient descent during all stages.

2.5 Case Study on Modeling Basketball Behavior
We applied our approach to modeling basketball behavior data. In particular, we
focus on imitating the players’ movements, which is a challenging problem in the
spatiotemporal planning setting.

1As ut and φ(gt ) enter symmetrically into the objective (2.9), it is hypothetically possible that
the network converges to a symmetric phase where the predictions ut and φ(gt ) become identical
along the entire trajectory. However, our experiments suggest that our multi-stage learning approach
separates timescales well between the micro- and macro policy and prevents the network from settling
in such a redundant symmetric phase.
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Experimental Setup
We validated the hierarchical policy network (HPN) by learning a movement policy
of individual basketball players that predicts as the micro-action the instantaneous
velocity vi

t = πmicro(st, τ).

Training data. We trained the HPN on a large dataset of tracking data from profes-
sional basketball games ((Yue et al., 2014a)). The dataset consists of possessions of
variable length: each possession is a sequence of tracking coordinates si

t =
(
xi

t, y
i
t
)

for each player i, recorded at 25 Hz, where one team has continuous possession of
the ball. Since possessions last between 50 and 300 frames, we sub-sampled every
4 frames and used a fixed input sequence length of 50 to make training feasible.
Spatially, we discretized the left half court using 400 × 380 cells of size 0.25ft ×
0.25ft. For simplicity, we modeled every player identically using a single policy
network. The resulting input data for each possession is grouped into 4 channels:
the ball, the player’s location, his teammates, and the opposing team. After this
pre-processing, we extracted 130,000 tracks for training and 13,000 as a holdout set.

Labels. We extracted micro-action labels v̂i
t = si

t+1 − si
t as 1-hot vectors in a grid

of 17 × 17 unit cells. Additionally, we constructed a set of weak macro-labels ĝt, φ̂t

by heuristically segmenting each track using its stationary points. The labels ĝt were
defined as the next stationary point. For φ̂t , we used 1-hot velocity vectors vi

t,straight
along the straight path from the player’s location si

t to the macro-goal gi
t .

Model hyperparameters. To generate smooth rollouts while sub-sampling every
4 frames, we simultaneously predicted the next 4 micro-actions at, . . . , at+3. A more
general approach would model the dependency between look-ahead predictions as
well, e.g., P(πt+∆+1 |πt+∆). However, we found that this variation did not outperform
baseline models. We selected a network architecture to balance performance and
feasible training-time. The macro and micro-policy use GRU memory cells (Chung,
Gülçehre, et al., 2015) and a memory-less 2-layer fully-connected network as the
transfer function φ, as depicted in Figure 2.4.

Baselines. We compared the HPN against two natural baselines.

1. A policy with only a raw micro-policy and memory (gru-cnn) and without
memory (cnn).
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(a) HPN rollouts (b) HPN rollouts (c) HPN rollouts
(d) HPN (top) and
failure case (bot-
tom)

(e) HPN (top),
baseline (bottom)

Figure 2.5: Rollouts generated by the HPN (columns a, b, c, d) and baselines (column
e). Each frame shows an offensive player (dark green), a rollout (blue) track that
extrapolates after 20 frames, the offensive team (light green) and defenders (red).
Note we do not show the ball, as we did not use semantic basketball features (i.e
“currently has the ball”) during training. The HPN rollouts do not memorize training
tracks (column a) and display a variety of natural behavior, such as curving, moving
towards macro-goals and making sharp turns (c, bottom). We also show a failure
case (d, bottom), where the HPN behaves unnaturally by moving along a straight line
off the right side of the court – which may be fixable by adding semantic game state
information. For comparison, a hierarchical baseline without an attention model
produces a straight-line rollout (column e, bottom), whereas the HPN produces a
more natural movement curve (column e, top).

2. A hierarchical policy network h-gru-cnn-cc without an attention mechanism,
which instead learns the final output from a concatenation of the raw micro-
and macro-policy.

Rollout evaluation. To evaluate the quality of our model, we generated rollouts
(st ; τ) with burn-in period r0, These are generated by 1) feeding a ground truth
sequence of states τ =

(
s0, . . . , sr0

)
to the policy network and 2) for t > r0, predicting

at as the mode of the network output (2.3) and updating the game-state st → st+1,
using ground truth locations for the other agents.

How Realistic are the Generated Trajectories?
The most holistic way to evaluate the trajectory rollouts is via visual analysis. Simply
put, would a basketball expert find the rollouts by HPN more realistic than those by
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Model comparison Experts Non-Experts All

W/T/L Avg Gain W/T/L Avg Gain W/T/L Avg Gain
vs-cnn 21 / 0 / 4 0.68 15 / 9 / 1 0.56 21 / 0 / 4 0.68
vs-gru-cnn 21 / 0 / 4 0.68 18 / 2 / 5 0.52 21 / 0 / 4 0.68
vs-h-gru-cnn-cc 22 / 0 / 3 0.76 21 / 0 / 4 0.68 21 / 0 / 4 0.68
vs-ground truth 11 / 0 / 14 -0.12 10 / 4 / 11 -0.04 11 / 0 / 14 -0.12

Table 2.1: Preference study results. We asked basketball experts and knowledgeable
non-experts to judge the relative quality of policy rollouts. We compare HPN with
ground truth and 3 baselines: a memory-less (cnn ) and memory-full (gru-cnn )
micro-policy and a hierarchical policy without attention (gru-cnn -cc). For each of
25 test cases, HPN wins if more judges preferred the HPN rollout over a competitor.
Average gain is the average signed vote (1 for always preferring HPN , and -1 for
never preferring). We see that the HPN is preferred over all baselines (all results
against baselines are significant at the 95% confidence level). Moreover, HPN is
competitive with ground truth, indicating that HPN generates realistic trajectories
within our rollout setting.

the baselines? We begin by first visually analyzing some rollouts, and then present
our human preference study results.

Visualization. Figure 2.5 depicts example rollouts for our HPN approach and one
example rollout for a baseline. Every rollout consists of two parts: 1) an initial ground
truth phase from the holdout set and 2) a continuation by either the HPN or ground
truth. We note a few salient properties. First, the HPN does not memorize tracks,
as the rollouts differ from the tracks it has trained on. Second, the HPN generates
rollouts with a high dynamic range, e.g., they have realistic curves, sudden changes
of directions and move over long distances across the court towards macro-goals.
For instance, HPN tracks do not move towards macro-goals in unrealistic straight
lines, but often take a curved route, indicating that the policy balances moving
towards macro-goals with short-term responses to the current state (see also Figures
2.5a-2.5e). In contrast, the baseline model often generates more constrained behavior,
such as moving in straight lines or remaining stationary for long periods of time.

Human preference study. Our primary empirical result is a preference study
eliciting judgments on the relative quality of rollout trajectories between HPN and
baselines or ground truth. We recruited seven experts (professional sports analysts)
and eight knowledgeable non-experts (e.g., college basketball players) as judges.

Because all the learned policies perform better with a “burn-in” period, we first ani-
mated with the ground truth for 20 frames (after subsampling), and then extrapolated
with a policy for 30 frames. During extrapolation, the other nine players do not
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animate.2 For each test case, the judges were shown an animation of two rollout
extrapolations of a specific player’s movement: one generated by the HPN, the other
by a baseline or ground truth. The judges then chose which rollout looked more
realistic.

Table 2.1 shows the preference study results. We tested 25 scenarios (some cor-
responding to scenarios in Figures 2.5a-2.5e). HPN won the vast majority of
comparisons against the baselines using expert judges, with slightly weaker but
still very positive results using non-expert judgments. HPN was also competitive
with ground truth. These results suggest that HPN can generate high-quality player
trajectories that are significant improvements over baselines, and approach the ground
truth quality in this comparison setting.

Analyzing Macro- and Micro-policy Integration
Our model integrates the macro- and micro-policy by converting the macro-goal
into an attention mask on the micro-action output space, which intuitively guides
the micro-policy towards the macro-goal. We now inspect our macro-policy and
attention mechanism to verify this behavior.

Figure 2.6a depicts how the macro-policy πmacro guides the micro-policy πmicro

through the attention φ, by attending to the direction in which the agent can reach
the predicted macro-goal. The attention model and micro-policy differ in semantic
behavior: the attention favors a wider range of velocities and larger magnitudes,
while the micro-policy favors smaller velocities.

Figures 2.5a-2.5e depicts predicted macro-goals by HPN along with rollout tracks.
In general, we see that the rollouts are guided towards the predicted macro-goals.
However, we also observe that the HPN makes some inconsistent macro-goal
predictions, which suggests there is still room for improvement.

Benchmark Analysis
We finally evaluated using a number of benchmark experiments, with results shown
in Table 2.2. These experiments measure quantities that are related to overall quality,
albeit not holistically. We first evaluated the 4-step look-ahead accuracy of the HPN
for micro-actions ai

t+∆,∆ = 0, 1, 2, 3. On this benchmark, the HPN outperforms
all baseline policy networks when not using weak labels φ̂ to train the attention

2We chose this preference study design to focus the qualitative comparison on the plausibility of
individual movements (e.g., how players might practice alone), as opposed to strategically coordinated
team movements.
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(a) Predicted distributions for attention masks
φ(g) (left column), velocity (micro-action)
πmicro (middle) and weighted velocity φ(g) �
πmicro (right) for basketball players. The cen-
ter corresponds to 0 velocity.

(b) Rollout tracks and predicted macro-goals
gt (blue boxes). The HPN starts the rollout
after 20 frames. Macro-goal box intensity
corresponds to relative prediction frequency
during the trajectory.

Figure 2.6: Left: Visualizing how the attention mask generated from the macro-
policy interacts with the micro-policy πmicro. Row 1 and 2: the micro-policy πmicro
decides to stay stationary, but the attention φ goes to the left. The weighted result
φ � πmicro is to move to the left, with a magnitude that is the average. Row 3) πmicro
wants to go straight down, while φ boosts the velocity so the agent bends to the
bottom-left. Row 4) πmicro goes straight up, while φ goes left: the agent goes to the
top-left. Row 5) πmicro remains stationary, but φ prefers to move in any direction. As
a result, the agent moves down. Right: The HPN dynamically predicts macro-goals
and guides the micro-policy in order to reach them. The macro-goal predictions are
stable over a large number of timesteps. The HPN sometimes predicts inconsistent
macro-goals. For instance, in the bottom right frame, the agent moves to the top-left,
but still predicts the macro-goal to be in the bottom-left sometimes.

mechanism, which suggests that using a hierarchical model can noticeably improve
the short-term prediction accuracy over non-hierarchical baselines.

We also report the prediction accuracy on weak labels ĝ, φ̂, although they were only
used during pre-training, and we did not fine-tune for accuracy on them. Using weak
labels one can tune the network for both long-term and short-term planning, whereas
all non-hierarchical baselines are optimized for short-term planning only. Including
the weak labels φ̂ can lower the accuracy on short-term prediction, but increases the
quality of the on-policy rollouts. This trade-off can be empirically set by tuning the
number of weak labels used during pre-training.
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Model ∆ = 0 ∆ = 1 ∆ = 2 ∆ = 3 Macro-goals g Attention φ
cnn 21.8% 21.5% 21.7% 21.5% - -
gru-cnn 25.8% 25.0% 24.9% 24.4% - -
h-gru-cnn-cc 31.5% 29.9% 29.5% 29.1% 10.1% -
h-gru-cnn-stack 26.9% 25.7% 25.9% 24.9% 9.8% -
h-gru-cnn-att 33.7% 31.6% 31.0% 30.5% 10.5% -
h-gru-cnn-aux 31.6% 30.7% 29.4% 28.0% 10.8% 19.2%

Table 2.2: Benchmark Evaluations. ∆-step look-ahead prediction accuracy for
micro-actions ai

t+∆ = π(st) on a holdout set, with ∆ = 0, 1, 2, 3. h-gru-cnn-stack is
an HPN where predictions are organized in a feed-forward stack, with π(st)t feeding
into π(st)t+1. Using attention (h-gru-cnn-att) improves on all baselines in micro-
action prediction. All hierarchical models are pre-trained, but not fine-tuned, on
macro-goals ĝ. We report prediction accuracy on the weak labels ĝ, φ̂ for hierarchical
models.h-gru-cnn-aux is an HPN that was trained using φ̂. As φ̂ optimizes for
optimal long-term behavior, this lowers the micro-action accuracy.

2.6 Long-term Trajectory Planning: Multi-Agent Policy
We now generalize the single-agent approach to learning a multi-agent policy. In
particular, we are interested to capture the fact that expert multi-agent policies
are inherently non-deterministic in many domains. Consider Figure 2.7, which
depicts several scenarios of offensive player behavior in basketball. On offense,
players typically behave non-deterministically and the distribution over possible
trajectories is multi-modal (Figure 2.7a). Furthermore, all players display coherent
team coordination over long time horizons; in Figure 2.7b, we observe that knowing
each other’s macro-goals (boxes that represent long-term intent) allows the red and
blue players to avoid going to the same location. We aim to learn a policy that can
capture all these aspects. One challenge is that the space of multi-agent trajectories
is naively exponentially large. Beyond team sports, other domains include modeling
social interactions in laboratory animals Eyjolfsdottir et al., 2017, team-based video
games, and music generation (each instrument is an “agent”) Thickstun, Harchaoui,
and Kakade, 2017.

We now study the problem of generative multi-agent behavioral cloning, whereby
the desired policy must map input states to distributions over multi-agent action
spaces. We generalize the hierarchical policy class to be 1) stochastic and 2) model
coordination between multiple agents. This policy class is also compatible with
existing variational methods for training deep generative models, which we can adapt
to the behavioral cloning setting.

While there has been some work in multi-agent imitation learning Chernova and
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(a) Players have multi-modal behavior. For instance, in
the above examples the green player (H) moves to either
the top or bottom.

(b) Players are coordinated. Left: The red player (�)
moves to the top-left corner of the court. Right: The
blue player (N) moves to the top-left corner so the red
player goes elsewhere. Knowing each other’s macro-goals
(boxes) is crucial for team coordination.

Figure 2.7: Player behaviors for offense in basketball (ball not shown). Black
symbols indicate starting positions. An interactive demo can be found at: http:
//basketball-ai.com/.

Veloso, 2007; Le et al., 2017 and imitation learning with stochastic polices Ziebart
et al., 2008; Ho and Ermon, 2016; Li, Song, and Ermon, 2017, no previous work
has focused on learning generative polices as a core research direction, not to
mention simultaneously addressing generative and multi-agent imitation learning.
For instance, all the experiments in Ho and Ermon, 2016 lead to policies with
highly peaked distributions, and the stochastics are essentially used to help with
learning (i.e., not get stuck in local optima). In contrast, we are interested in settings
where the desired behavior is a complex multi-modal distribution that reflects the
non-determinism inherent in the true policy.

We showcase our approach on modeling team offense in basketball. We show that
our approach can learn to generate high-quality trajectories of multi-agent gameplay.
Our approach also allows for conditional inference such as grounding the macro-goal

http://basketball-ai.com/
http://basketball-ai.com/
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variables to manipulate agent behavior.

Simplifying assumptions. In our problem setting of human motion tracking, the
transitionM is deterministic:

st+1 = st + at . (2.10)

As such, we can simplify the problem by absorbingM into the policy πθ and predict
st + at directly:

• Since actions are now implicitly tied into the state, we can denote each
demonstration as s≤T = {st}1≤t≤T , and the history of states as τt = s≤t .

• Similarly, the stochastic policy πθ(st, τt−1) = πθ(τt) now samples the next state
directly from pθ(st+1 |τt). The policy is implicitly sampling an action.

For example, the initial state s1 of the green player in Figure 2.7a are marked by H.
The player’s action a1 is to move left, which results in the next state s2 = s1 + a1.

Our learning objective becomes:

θ∗ = argminθ
∑
D

T∑
t=1

`
(
st, πθ(τt−1)

)
. (2.11)

If the policy is deterministic, i.e., probability peaked around a single action, then we
can define ` to be an L2 reconstruction loss:

`
(
st, πθ(τt−1)

)
= ‖st − πθ(τt−1)‖

2
2 . (2.12)

For a stochastic policy that returns parameters of a distribution, ` can be the negative
log-likelihood and we can re-write the objective as a maximization problem:

`
(
st, πθ(τt−1)

)
= − log pθ

(
st |τt−1

)
, (2.13)

θ∗ = argmaxθ
∑
D

T∑
t=1

log pθ
(
st |τt−1

)
. (2.14)

Eq. (2.14) is exactly the objective for sequential generative models that maximize
the log-likelihood of data D = {s≤T } by factorizing the joint distribution of the
sequence:

θ∗ = argmaxθ
∑
D

log pθ(s≤T )

= argmaxθ
∑
D

T∑
t=1

log pθ(st |s<t). (2.15)
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As we empirically verify in Section 2.8, models trained with Eq. (2.15) have difficulty
learning representations of the data that generalize well over long time horizons. Our
solution is to introduce macro-goals (as seen in Figure 2.7) as an effective means in
learning low-dimensional representations of the data that extend in time and space
for multiple agents.

2.7 Generative Multi-Agent Policy Class
We now present our generative multi-agent policy class. Our policy class is
hierarchical and incorporates macro-goals within the higher layer of the hierarchy.

We first assume conditional independence between the agent states sk
t given history

τt−1 = s<t . This lets us decompose the loss ` and policy πθ in Eq. (2.11):

θ∗ = argminθ
∑
D

T∑
t=1

`
(
st, πθ(τt−1)

)
= argminθ

∑
D

T∑
t=1

K∑
k=1

`
(
sk

t , π
k
θ (τt−1)

)
= argmaxθ

∑
D

T∑
t=1

K∑
k=1

log pk
θ (s

k
t |s<t). (2.16)

For our experiments, we model our policies πk
θ with VRNNs using stochastic latent

variables zk
t for each agent:

πk
θ (τt−1) ∼ pk

θ (s
k
t |s<t) = ϕ

k(zk
t , hk

t−1), (2.17)

hk
t = f k(sk

t , zk
t , hk

t−1). (2.18)

Variational RNNs.
VRNNs combine VAEs and RNNs by conditioning the VAE on a hidden state ht

(see Figure 2.9a):

pθ(zt |s<t, z<t) = ϕprior(ht−1) (prior) (2.19)

qφ(zt |s≤T, z<t) = ϕenc(st, ht−1) (inference) (2.20)

pθ(st |z≤t, s<t) = ϕdec(zt, ht−1) (generation) (2.21)

ht ; = f (st, zt, ht−1). (recurrence) (2.22)
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Figure 2.8: Showing macro-goals (boxes) for two players.

VRNNs are also trained by maximizing the ELBO, which in this case can be
interpreted as the sum of the ELBOs over each timestep of the sequence:

Eqφ(z≤T |s≤T )

[ T∑
t=1

log pθ(st | z≤T, s<t)

− DKL

(
qφ(zt | s≤T, z<t)| |pθ(zt | s<t, z<t)

)]
(2.23)

Note that the prior distribution of latent variable zt depends on the history of states
and latent variables (Eq. (2.19)). This temporal dependency of the prior allows
VRNNs to model complex sequential data like speech and handwriting.

Hierarchical Policy with Macro-goals
Next, we introduce macro-goal variables gt for policies πk

θ :

πk
θ (τt−1) ∼ pθ(sk

t |s<t) = ϕ
k(zk

t , hk
t−1, gt). (2.24)

The motivations behind introducing a hierarchical structure with macro-goals are
1) to provide a tractable way to capture coordination between agents, and 2) to
encode long-term intents of agents and enable long-term planning at a higher-level
timescale. The space of all possible combinations of trajectories for multiple agents is
exponentially large. A hierarchical decomposition using macro-goals can compactly
represent some low-dimension structure in the trajectory space that is easier to learn
and represent.

Figure 2.8 illustrates the macro-goals for two players. The blue player moves from
the top-right to bottom-left of the court, while the green player moves from the
bottom-right to the middle-left. At each timestep t, the players move towards their
current macro-goals gk

t . The macro-goals change only once in 50 timesteps.

Our modeling assumptions for macro-goals are:
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• subsequences of agent states {sk
t } in an episode [t1, t2] lead to some macro-goal

gk
t ,

• the start and end times of an episode can vary,

• macro-goals change slowly over time relative to the agent states: dgk
t /dt � 1.

• due to their reduced dimensionality, we canmodel (near-)arbitrary dependencies
between macro-goals (e.g., coordination) via black box learning.

Capturing coordination. The last assumptionmotivates us to capture coordination
by learning a single black-box model to predict the macro-goals of all the players.
In contrast, the models in Eq. (2.17) have separate hidden states hk

t , so the agents
are uncoordinated because their policies are independent. We induce coordination
between agents by sharing the macro-goal variable gt among all agents in Eq. (2.24).
Intuitively, this means that all agents share a common macro-goal. In our case where
the macro-goal decomposes for individual agents, each agent knows the macro-goals
of all other agents. This can help the players move more cohesively (see Figure 2.7b).

Capturing long-term intent. The above assumptions also imply that macro-goals
can encode long-term intent. We aim to leverage these macro-goals to ensure more
consistent behavior over long horizons.

(a) VRNN

VRNN

agents

(b) Our model

Figure 2.9: Computation graph of VRNN Chung, Kastner, Dinh, Goel, Aaron C.
Courville, et al., 2015 and our model. Circles are stochastic variables whereas
diamonds are deterministic states. Macro-goal gt is shared among all agents.



29

Modeling Macro-goals
Ultimately, we want our model to generate macro-goals rather than depend on
conditional input, so we train a policy modeled by a RNN to sample macro-goals:

p(gt |g<t) = ϕg(hg,t−1, st−1), (2.25)

hg,t = fg(gt, hg,t−1). (2.26)

We also choose to condition the macro-goal policy on the previous states st−1 in
Eq. (2.25). Then we generate trajectories by first sampling a macro-goal gt , and
then sampling sk

t conditioned on gt (see Figure 2.9b for full graphical model). In
addition, macro-goals that are interpretable and can be manipulated to control an
agent’s behavior (see Section 2.8).

In this paper, we let gt be the concatenation of macro-goals gk
t for each agent k. We

further assume that macro-goals are available in the demonstration data, or can be
easily extracted. Interesting future directions include richer macro-goals spaces and
learning from less supervision.

Multi-stage Training.
Our agent and macro-goal policies can be trained independently. For our macro-goal
policy, we directly maximize the log-likelihood of macro-goals g≤T . For each of our
agent policies, we maximize the ELBO for VRNNs from Eq (2.23):

Eqk (zk
≤T |s

k
≤T ,g≤T )

[ T∑
t=1

log pk
θ (s

k
t |zk
≤T, s

k
<t, g≤T )

− DKL

(
qk
φ(z

k
t |sk
≤T, z

k
<t, g≤T )




pk
θ (z

k
t |sk

<t, zk
<t, g<t)

)]
. (2.27)

2.8 Experiments
We apply our approach to modeling team basketball gameplay on offense (team with
possession of the ball). We present both quantitative and qualitative experimental
results. Our quantitative results include a user study comparison with professional
sports analysts, who significantly preferred rollouts by our approach to standard
baselines. Our qualitative results demonstrate the ability of our approach to generate
high-quality rollouts under various conditions. An interactive demo is available at
http://basketball-ai.com/.

http://basketball-ai.com/
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Experimental Setup
Training data. Each demonstration in our data contains trajectories of K = 5
players on the left half-court, recorded for T = 50 timesteps at 6 Hz. The offensive
team has possession of the ball for the entire sequence. sk

t contains 2 dimensions:
the coordinates of player k at time t on the court (50 × 94 feet). We normalize and
mean-shift the data. Players are ordered based on their relative positions, similar to
the role assignment in Lucey et al., 2013. Overall, there are 107,146 training and
13,845 test examples.

For simplicity, we ignore the defensive players to focus on capturing the coordination
of the offensive team. In addition, the defense is usually reactionary whereas the
offense takes the initiative and will tend to have more multi-model behavior. In
principle, we can provide the defensive positions as conditional input for our model
and update the defensive positions using methods such as Le et al., 2017. We also
ignore the ball since the dynamics of the ball are difficult to learn (e.g., oscillations
indicate dribbling while straight lines indicate passing).

Weak macro-goal labels. We extract weak macro-goals labels ĝk
t for each player

k as done in Zheng, Yue, and Lucey, 2016. We segment the left half-court into
a 10 × 9 grid of 5ft ×5ft cells. The weak macro-goal ĝk

t at time t is a 1-hot
encoding of dimension 90 of the next cell in which player k is stationary (i.e., speed
‖v̂k

t ‖2 = ‖sk
t+1 − sk

t ‖2 below a threshold). Macro-goals change slowly over time
relative to player positions (see Figure 2.8). Figure 2.12 shows the distribution of
extracted weak macro-goal labels for each player.

Model details. We model each latent variable zk
t as a multivariate Gaussian

with diagonal covariance of dimension 16 (so the KL-term in Eq. (2.27) can be
computed analytically). All policies (and inference/prior functions for VRNNs,
where applicable) are implemented with memory-less 2-layer fully-connected neural
networks with a hidden layer of size 200. Our agent policies sample from a
multivariate Gaussian with diagonal covariance while our macro-goal policies
sample from a multinomial distribution over the macro-goals. All hidden states
(hg,t, h1

t , . . . hK
t ) are modeled with 200 2-layer GRUmemory cells each. Wemaximize

the log-likelihood/ELBO with stochastic gradient descent using the Adam optimizer
Kingma and Ba, 2014 and a learning rate of 0.0001.3

3Code for our experiments will be available at https://github.com/ezhan94/gen-MA-BC.

https://github.com/ezhan94/gen-MA-BC
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Model Log-Likelihood # Parameters
RNN-gauss 1931 7,620,820
VRNN-single ≥ 2302 8,523,140
VRNN-indep ≥ 2360 4,367,340
Ours ≥ 2362 4,372,190

Table 2.3: We report the average log-likelihood per sequence in the test set as well as
the number of trainable parameters for each model. ”≥” indicates a lower bound on
the log-likelihood.

Baselines. We compare our approach with 3 baselines that do not use a hierarchy
of macro-goals:

1. RNN-gauss: RNN model Eq. (1.3) with 900 2-layer GRU cells for the hidden
state.

2. VRNN-single: We concatenate all player positions together and use model
Eq. (2.17-2.18) for K = 1 with 900 2-layer GRU cells for the hidden state and
a 80-dimensional latent variable.

3. VRNN-indep: Model Eq. (2.17-2.18) with 250 2-layer GRU cells for the
hidden states and 16-dimensional latent variables. We also provide the previous
positions of all players as conditional input for each policy, so Eq. (2.17)
becomes pk

θ (s
k
t |s<t) = ϕ

k(zk
t , hk

t−1, st−1).

Quantitative Evaluation
Log Likelihood. Table 2.3 reports the ELBO (log-likehood for RNN-gauss) on
the test data. Our approach outperforms RNN-gauss and VRNN-single using fewer
parameters and is comparable with VRNN-indep. However, higher log-likelihoods
do not necessarily indicate higher quality of generated samples Theis, van den Oord,
and Bethge, 2015. As such, we also conduct a human preference study to assess the
relative quality of generated rollouts.

Human preference study. We recruited 14 professional sports analysts as judges
to compare the quality of rollouts. Each comparison animates two rollouts, one from
our model and another from a baseline. Both rollouts are burned-in for 10 timesteps
with the same ground-truth states from the test set, and then generated for the next
40 timesteps. Judges decide which of the two rollouts looks more realistic.

Table 2.4 shows the results from the preference study. We tested our model against
two baselines, VRNN-single and VRNN-indep, with 25 comparisons for each. All
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Model Comparison Win/Tie/Loss Avg Gain
vs. VRNN-single 25/0/0 0.57
vs. VRNN-indep 15/4/6 0.23

Table 2.4: Preference study results. We asked 14 professional sports analysts to
judge the relative quality of the generated rollouts. Judges are shown 50 comparisons
that animate one rollout from our model and another from a baseline. Win/Tie/Loss
indicates how often our model is preferred over baselines. Gain scores are computed
by scoring +1 when our model is preferred and -1 otherwise. The average gain is
computed over the total number of comparisons (25 per baseline) and judges. Our
results are 98% significant using a one-sample t-test.

judges preferred our model over the baselines with 98% statistical significance. These
results suggest that our model generates rollouts of significantly higher quality than
the baselines.

Qualitative Evaluation of Generated Rollouts
We next conduct a qualitative visual inspection of rollouts. Figure 2.10 shows rollouts
generated by VRNN-single, VRNN-indep, and our model. Rollouts are generated by
sampling states for 40 timesteps after an initial burn-in period of 10 timesteps with
ground truth states from the test set. An interactive demo to generate more rollouts
from our model can be found at: http://basketball-ai.com/.

Common problems in baseline rollouts (Figure 2.10a) include players moving out
of bounds or in the wrong direction. These issues tend to occur at later timesteps,
suggesting that the baselines do not perform well over long horizons. One possible
explanation is due to compounding errors Ross, Gordon, and Bagnell, 2011: if the
policy makes a mistake and deviates from the states seen during training, it will make
more mistakes in the future thus leading to poor generalization.

On the other hand, generated rollouts from our model (Figure 2.10b) are more robust
to the types of errors made by the baselines. Generated macro-goals also allow
us to intepret the intent of each individual player as well as a global team strategy
(e.g., setting up a specific formation on the court). We highlight that our model
learns a multi-modal generating distribution, as repeated rollouts with the same
burn-in result in a dynamic range of generated trajectories, as seen in Figure 2.11
Left. Furthermore, Figure 2.11 Right demonstrates that we can ground macro-goals
manually instead of sampling them to control agent behavior.

http://basketball-ai.com/
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(a) Baseline rollouts of representative quality. Left:
VRNN-single. Right: VRNN-indep. Common problems
in baseline rollouts include players moving out of bounds
or in the wrong direction. Players do not appear to behave
cohesively as a team.

(b) Left: Rollout from our model. All players remain
in bounds. Right: Corresponding macro-goals for left
rollout. Macro-goal generation is stable and suggests
that the team is creating more space for the blue player
(perhaps setting up an isolation play).

Figure 2.10: Rollouts frombaselines and ourmodel starting fromblack dots, generated
for 40 timesteps after an initial burn-in period of 10 timesteps (marked by dark
shading). An interactive demo of our model is available at: http://basketball-
ai.com/.

Analysis of Models
Output distribution for states. The agent policies in all our models (including
baselines) sample from a multivariate Gaussian with diagonal covariance. We also
experimented with sampling from a mixture of 2, 3, 4, and 8 Gaussian components,
but discovered that the models would always learn to assign all the weight on a single
component and ignore the others. The variance of the active component is also very
small. This is intuitive because sampling with a large variance at every timestep
would result in noisy trajectories and not the smooth ones that we see in Figure 2.10.

Consequently, each agent’s inidividual policy is effectively deterministic when

http://basketball-ai.com/
http://basketball-ai.com/
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Figure 2.11: 10 rollouts of the green player (H) overlayed on top of each other. A
burn-in period of 20 timesteps is applied. Blue trajectories (•) are ground truth and
black symbols indicate starting positions. Left: The model generates macro-goals.
Right: We ground the macro-goals at the bottom-left. In both cases, we observe a
multi-modal generating distribution of trajectories.

Figure 2.12: Distribution of weak macro-goal labels extracted for each player from
the training data. Color intensity corresponds to frequency of macro-goal label.
Players are ordered by their relative positions on the court, which can be seen from
the macro-goals.

conditioned on its two inputs, one of which is deterministic (hidden state hk
t ), while

the other is stochastic (latent variable zk
t ). So the variability of generated trajectories

that we observe in Figure 2.11 must come from the only remaining source of
randomness: the latent variable zk

t . We conclude that our model does not suffer
from the Dying Units problem C. Zhang et al., 2017; Xi Chen et al., 2016, where the
output policy model is sometimes sufficiently expressive on its own that the latent
variables fail to encode anything meaningful.

Model for macro-goal policy. We chose to model our macro-goal policy in Eq.
(2.25-2.26) with an RNN. In principle, we can also use more expressive models, like
VRNNs, to model macro-goal policies over richer macro-goal spaces. In our case,
we found that an RNN was sufficient in capturing the distribution of macro-goals
shown in Figure 2.12. The RNN learns multinomial distributions over macro-goals
that are peaked at a single macro-goal and relatively static through time, which is
consistent with the behavior of macro-goals that we extracted from the data. Latent
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variables in a VRNN had little effect on the multinomial distribution.

Hidden state for macro-goal policy model. In our work, we defined a macro-goal
gt that consists of individual macro-goals gk

t for each player. For our macro-goal
policy, we compared a RNN model with a shared hidden state in Eq. (2.26), with a
RNN model with independent hidden states, similar to Eq. (2.18). Intuitively, we
expect the shared hidden state model to be better at capturing coordination.

To provide a more quantitative comparison, we computed the frequency that two
or more players had the same individual macro-goal gk

t at a given time, with the
assumption that coordinated players do not have coinciding macro-goals very often.
In the training data, 5.7% of all timesteps had coinciding macro-goals. In 10,000
rollouts from our macro-goal policy, 8.5% and 15.2% of all timesteps had coinciding
macro-goals for the shared and independent hidden state models respectively. As a
result, we used a RNN with a shared hidden state to model the macro-goal policy.

2.9 Related Work
Imitation Learning & Behavioral Cloning. Broadly speaking, one can decom-
pose imitation learning along two dimensions. The first dimension spans learning
to mimic batched pre-collected demonstrations, also known as behavioral cloning
(Abbeel and Ng, 2004; Ziebart et al., 2008; Ho and Ermon, 2016), versus actively
querying an oracle for feedback during the learning process (Daumé, Langford, and
Marcu, 2009; Ross, Gordon, and Bagnell, 2011). Along this dimension, behavioral
cloning is often regarded as the simplest form of imitation learning.

The second dimension spans learning value functions, also known as inverse
reinforcement learning (Abbeel and Ng, 2004; Ziebart et al., 2008), versus direct
policy learning (Daumé, Langford, and Marcu, 2009; Ross, Gordon, and Bagnell,
2011; Ho and Ermon, 2016). In value function learning, one assumes that there
exists an unknown value function, and demonstrations are rational with respect to
that value function (i.e., the demonstrated actions maximize the value). In a sense,
the value function approach imposes a certain model structure, whereas direct policy
learning is essentially model-free.

Our single-agent approach shares affinity with behavioral cloning. One difference
with previous work is that we do not learn a reward function that induces such
behavior (cf. (Muelling et al., 2014). Another related line of research aims to develop
efficient policies for factored MDPs (Guestrin et al., 2003), e.g., by learning value
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functions over factorized state spaces for multi-agent systems. It may be possible
that such approaches are also applicable for learning our hierarchical policy.

Our multi-agent work can be viewed as learning via behavioral cloning while
imposing new forms of model structure. By learning via behavioral cloning, we
simplify the complexity along the first dimension to focus our research on the
modeling challenges that arise from learning generative multi-agent policies.

As mentioned in the introduction, there have been some prior work in multi-agent
imitation learning (Chernova and Veloso, 2007; Le et al., 2017) as well as learning
stochastic policies (Ziebart et al., 2008; Ho and Ermon, 2016; Li, Song, and Ermon,
2017). As also discussed before, no previous work has focused on learning generative
polices as a core research direction, not to mention simultaneously addressing
generative and multi-agent imitation learning. For instance all the experiments in (Ho
and Ermon, 2016) led to highly peaked distributions, while (Li, Song, and Ermon,
2017) captures multi-modal distributions by assigning each demonstration to one of
a fixed number of experts and learning policies for each expert that turn out to be
unimodal. In contrast, we are interested in learning mappings between input states
and complex multi-modal distributions over multi-agent action spaces.

Hierarchical Models. The reinforcement learning community has largely focused
on non-hierarchical policies such as those based on Markovian or linear dynamics
(cf. (Ziebart et al., 2008; Mnih et al., 2015; Hausknecht and Stone, 2016). By and
large, such policy classes are shown to be effective only when the optimal action can
be found via short-term planning. Previous research has instead focused on issues
such as how to perform effective exploration, plan over parameterized action spaces,
or deal with non-convexity issues from using deep neural networks. In contrast,
we focus on developing hierarchical policies that can effectively generate realistic
long-term plans in complex settings such as basketball gameplay.

The use of hierarchical models to decompose macro-goals from micro-actions is
relatively common in the planning community (cf. (Richard S. Sutton, Precup, and
Singh, 1999; He, Brunskill, and Roy, 2010; Bai, Wu, and Xiaoping Chen, 2015). For
instance, the winning team in 2015 RoboCup Simulation Challenge (Bai, Wu, and
Xiaoping Chen, 2015) used a manually constructed hierarchical policy to solve MDPs
with a set of fixed sub-tasks, while (Konidaris et al., 2012) segmented demonstrations
to construct a hierarchy of static macro-goals. In contrast, we study how one can
learn a hierarchical policy from a large amount of expert demonstrations that can
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adapt its policy in non-Markovian environments with dynamic macro-goals.

Our model shares conceptual similarities to the Dual Process framework (Evans
and Stanovich, 2013), which decomposes cognitive processes into fast, unconscious
behavior (System 1) and slow, conscious behavior (System 2). This separation
reflects our policy decomposition into a macro and micro part. Other related work
in neuroscience and cognitive science include hierarchical models of learning by
imitation (Byrne and Russon, 1998).

Attention. Attention models for deep networks have mainly been applied to natural
language processing, image recognition and combinations thereof (Xu et al., 2015). In
contrast to previous work which focuses on attention models of the input, our attention
model is applied to the output by integrating control from both the macro-policy and
the micro-policy.

Long-term planning. Another issue that our work addresses is long-term planning.
In this regard, the closest prior work is Zheng, Yue, and Lucey, 2016, which also
reasoned over long sequences using macro-goals. However, their approach was only
for a single agent and used relatively simple stochastics. Beyond imitation learning,
designing hierarchical policies is a topic of both historical and contemporary interest
in reinforcement learning (Dayan and Hinton, 1993; Richard S Sutton, Precup, and
Singh, 1999; Kulkarni et al., 2016). From that perspective, one can view our work as
developing generative policies to capture complex non-deterministic behaviors.

Deep generative models. The study of deep generative models is an increasingly
popular research area, due to their ability to inherit both the flexibility of deep learning
and the probabilistic semantics of generative models. Broadly speaking, there are
two ways that one can incorporate stochastics into deep models. The first approach
is to model an explicit distribution over actions in the output layer, e.g., via logistic
regression (L.-C. Chen et al., 2015; Oord, Dieleman, et al., 2016; Oord, Kalchbrenner,
and Kavukcuoglu, 2016; Zheng, Yue, and Lucey, 2016; Eyjolfsdottir et al., 2017).
The second approach is to use deep neural nets to define a transformation from a
simpler distribution (e.g., unit Gaussian) to the distribution of interest (Goodfellow
et al., 2014; Kingma and Welling, 2014; Rezende, Mohamed, and Wierstra, 2014).
This second approach cannot explicitly specify the output distribution (i.e., one
can typically only sample from the implicitly defined distribution), but can more
readily be extended to incorporate additional structure, such as a hierarchy of random
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variables (Ranganath, Tran, and Blei, 2016) or dynamics (Johnson et al., 2016;
Chung, Kastner, Dinh, Goel, Aaron C. Courville, et al., 2015; Krishnan, Shalit, and
Sontag, 2017; Fraccaro et al., 2016). Our framework can incorporate both variants
as appropriate.

Recent work on generative models for sequential data (Chung, Kastner, Dinh, Goel,
Aaron C Courville, et al., 2015), such as handwriting generation, have combined
latent variables with an RNN’s hidden state to capture temporal variability in the
input. In our work, we instead aim to learn semantically meaningful latent variables
that are external to the RNN and reason about long-term behavior and goals.

2.10 Discussion
We have presented a hierarchical memory network for generating long-term spa-
tiotemporal trajectories. Our approach simultaneously models macro-goals and
micro-actions and integrates them using a novel attention mechanism. We demon-
strated significant improvement over non-hierarchical baselines in a case study on
modeling basketball player behavior.

There are several notable limitations to our HPN model. First, we did not consider all
aspects of basketball gameplay, such as passing and shooting. We also modeled all
players using a single policy whereas in reality player behaviors vary (although the
variability can be low-dimensional (Yue et al., 2014a)). We only modeled offensive
players: an interesting direction is modeling defensive players and integrating
adversarial reinforcement learning (Panait and Luke, 2005) into our approach. These
issues limited the scope of our preference study, and it would be interesting to
consider extended settings.

In order to focus on the HPN model class, we only used the imitation learning
setting. More broadly, many planning problems require collecting training data via
exploration (Mnih et al., 2015), which can be more challenging. One interesting
scenario is having two adversarial policies learn to be strategic against each other
through repeatedly game-play in a basketball simulator. Furthermore, in general it
can be difficult to acquire the appropriate weak labels to initialize the macro-policy
training.

From a technical perspective, using attention in the output space may be applicable
to other architectures. More sophisticated applications may require multiple levels
of output attention masking.

Furthermore, we studied the problem of generative multi-agent behavioral cloning,
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where the goal is to learn a multi-agent policy that can tractably map input states
to distributions over multi-agent action spaces. We proposed a hierarchical policy
class that incorporates macro-goals to effectively reason over agent-coordination and
ensure consistent behavior over long time horizons. We showcased our approach on
modeling team offense in basketball, and demonstrated that our approach generates
significantly higher-quality rollouts than non-hierarchical baselines.

The macro-goals used in our experiments are relatively simple. For instance, rather
than simply using location-based macro-goals, we could also incorporate interactions
such as “pick and roll”. Another direction for future work is to explore how to adapt
our approach to different domains. For example, instead of defining macro-goals
for each agent, one can imagine learning a macro-goal representing “argument” for
a dialogue between two agents, or a macro-goal representing “refrain” for music
generation.

Another limitation is the need for macro-goal annotations or heuristics to extract
weak macro-goal labels. Although high-level annotations in many datasets is feasible,
such as in music (Thickstun, Harchaoui, and Kakade, 2017), an interesting future
direction is to develop algorithms to learn macro-goals in a semi-supervised or
unsupervised setting, which has emerged in prior work. For example in STRAW, the
agent learns to commit to a plan of future actions and is penalized for changing its
plan (Vezhnevets et al., 2016). Incorporating such concepts is an interesting direction
for future work.
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C h a p t e r 3

LONG-TERM FORECASTING USING TENSOR-TRAIN RNNS

Yu, Rose et al. (2017). “Long-term forecasting using tensor-train RNNs”. In: arXiv
preprint arXiv:1711.00073. S.T.Z. participated in the formulation of the project,
analyzed the method and all experiments, and participated in the writing of the
manuscript.

Summary We present Tensor-Train RNN (TT-RNN), a novel family of neural
sequence architectures for multivariate forecasting in environments with nonlinear
dynamics. Long-term forecasting in such systems is highly challenging, since there
exist long-term temporal dependencies, higher-order correlations, and sensitivity
to error propagation. Our proposed tensor recurrent architecture addresses these
issues by learning the nonlinear dynamics directly using higher order moments
and high-order state transition functions. Furthermore, we decompose the higher-
order structure using the tensor-train (TT) decomposition to reduce the number of
parameters while preserving the model performance. We theoretically establish the
approximation properties of Tensor-Train RNNs for general sequence inputs, and
such guarantees are not available for usual RNNs. We also demonstrate significant
long-term prediction improvements over general RNN and LSTM architectures on
a range of simulated environments with nonlinear dynamics, as well on real-world
climate and traffic data.

3.1 Introduction
One of the central questions in science is forecasting: given the past history, how well
can we predict the future? In many domains with complex multivariate correlation
structures and nonlinear dynamics, forecasting is highly challenging since the system
has long-term temporal dependencies and higher-order dynamics. Examples of
such systems abound in science and engineering, from biological neural network
activity, fluid turbulence, to climate and traffic systems (see Figure 3.1). Since current
forecasting systems are unable to faithfully represent the higher-order dynamics, they
have limited ability for accurate long-term forecasting.

Therefore, a key challenge is accurately modeling nonlinear dynamics and obtaining
stable long-term predictions, given a dataset of realizations of the dynamics. Here,
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Figure 3.1: Left: climate and traffic time series per location. The time-series
exhibits long-term temporal correlations, and can be viewed as a realization of highly
nonlinear dynamics. Right: tensor-train RNN unit encodes high-order dynamics and
factorizes hidden states with tensor train decomposition.

the forecasting problem can be stated as follows: how can we efficiently learn a
model that, given only few initial states, can reliably predict a sequence of future
states over a long horizon of T time-steps?

Common approaches to forecasting involve linear time series models such as auto-
regressive moving average (ARMA), state space models such as hidden Markov
model (HMM), and deep neural networks. We refer readers to a survey on time
series forecasting by (Box et al., 2015) and the references therein. A recurrent neural
network (RNN), as well as its memory-based extensions such as the LSTM, is a class
of models that have achieved good performance on sequence prediction tasks from
demand forecasting (Flunkert, Salinas, and Gasthaus, 2017) to speech recognition
(Soltau, Liao, and Sak, 2016) and video analysis (LeCun, Bengio, and G. Hinton,
2015). Although these methods can be effective for short-term, smooth dynamics,
neither analytic nor data-driven learning methods tend to generalize well to capturing
long-term nonlinear dynamics and predicting them over longer time horizons.

To address this issue, we propose a novel family of tensor-train recurrent neural
networks that can learn stable long-term forecasting. These models have two key
features: they 1) explicitly model the higher-order dynamics, by using a longer
history of previous hidden states and high-order state interactions with multiplicative
memory units; and 2) they are scalable by using tensor trains, a structured low-rank
tensor decomposition that greatly reduces the number of model parameters, while
mostly preserving the correlation structure of the full-rank model.
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In this work, we analyze Tensor-Train RNNs theoretically, and also experimentally
validate them over a wide range of forecasting domains. Our contributions can be
summarized as follows:

• We describe how TT-RNNs encode higher-order non-Markovian dynamics and
high-order state interactions. To address the memory issue, we propose a
tensor-train (TT) decomposition that makes learning tractable and fast.

• We provide theoretical guarantees for the representation power of TT-RNNs for
nonlinear dynamics, and obtain the connection between the target dynamics
and TT-RNN approximation. In contrast, no such theoretical results are known
for standard recurrent networks.

• We validate TT-RNNs on simulated data and two real-world environments with
nonlinear dynamics (climate and traffic). Here, we show that TT-RNNs can
forecast more accurately for significantly longer time horizons compared to
standard RNNs and LSTMs.

3.2 Forecasting using Tensor-Train RNNs
Forecasting Nonlinear Dynamics Our goal is to learn an efficient model f for
sequential multivariate forecasting in environments with nonlinear dynamics. Such
systems are governed by dynamics that describe how a system state st ∈ R

d evolves
using a set of nonlinear differential equations:{

ξi
(
st,

ds
dt
,

d2s
dt2 , . . . ; φ

)
= 0

}
i
, (3.1)

where ξi can be an arbitrary (smooth) function of the state st and its derivatives.
Continous time dynamics are usually described by differential equations while
difference equations are employed for discrete time. In continuous time, a classic
example is the first-order Lorenz attractor, whose realizations showcase the “butterfly-
effect”, a characteristic set of double-spiral orbits. In discrete-time, a non-trivial
example is the 1-dimensional Genz dynamics, whose difference equation is:

st+1 =
(
c−2 + (st + w)

2
)−1

, c,w ∈ [0, 1], (3.2)

where st denotes the system state at time t and c,w are the parameters. Due to the
nonlinear nature of the dynamics, such systems exhibit higher-order correlations, long-
term dependencies and sensitivity to error propagation, and thus form a challenging
setting for learning.
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Figure 3.2: Tensor-train recurrent cells within a
seq2seq model. Both encoder and decoder contain
tensor-train recurrent cells. The augmented state
(grey) takes in past L hidden states (blue) and forms
a high-order tensor. Tensor-train cell (red) factorizes
the tensor and outputs the next hidden state.

Figure 3.3: A tensor-train
cell. The augmented state
(grey) forms a high-order
tensor. Tensor-train cell
factorizes the tensor and
outputs the next hidden
state.

Given a sequence of initial states s0 . . . st , the forecasting problem aims to learn a
model f

f : (s0 . . . st) 7→ (yt . . . yT ) , yt = st+1, (3.3)

that outputs a sequence of future states st+1 . . . sT . Hence, accurately approximating
the dynamics ξ is critical to learning a good forecasting model f and accurately
predicting for long time horizons.

First-order Markov Models In deep learning, common approaches for modeling
dynamics usually employ first-order hidden-state models, such as recurrent neural
networks (RNNs). An RNN with a single cell recursively computes a hidden state
ht using the most recent hidden state ht−1, generating the output yt from the hidden
state ht :

ht = f (st, ht−1; θ), yt = g(ht ; θ), (3.4)

where f is the state transition function, g is the output function and θ are model
parameters. A common parametrization scheme for (3.4) is a nonlinear activation
function applied to a linear map of st and ht−1 as:

ht = f (W hxst +W hhht−1 + bh), (3.5)

st+1 = W xhht + bx, (3.6)
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where the state transition f can be sigmoid, tanh, etc., W hx,W xh and W hh are
transition weight matrices and bh, bx are biases.

RNNs havemany different variations, includingLSTMs (Hochreiter and Schmidhuber,
1997) and GRUs (Chung, Gulcehre, et al., 2014). For instance, LSTM cells use a
memory-state, which mitigate the “exploding gradient” problem and allow RNNs
to propagate information over longer time horizons. Although RNNs are very
expressive, they compute the hidden state ht using only the previous state ht−1

and input st . Such models do not explicitly model higher-order dynamics and only
implicitly model long-term dependencies between all historical states h0 . . . ht , which
limits their forecasting effectiveness in environments with nonlinear dynamics.

Tensorized Recurrent Neural Networks
To effectively learn nonlinear dynamics, we propose Tensor-Train RNNs, or TT-RNNs,
a class of higher-order models that can be viewed as a higher-order generalization
of RNNs. We developed TT-RNNs with two goals in mind: explicitly modeling 1)
L-order Markov processes with L steps of temporal memory and 2) polynomial
interactions between the hidden states h· and st .

First, we consider longer “history”: we keep length L historic states: ht, · · · , ht−L:

ht = f (st, ht−1, · · · , ht−L; θ), (3.7)

where f is an activation function. In principle, early work (Giles et al., 1989) has
shown that with a large enough hidden state size, such recurrent structures are capable
of approximating any dynamics.

Second, to learn the nonlinear dynamics ξ efficiently, we also use higher-order
moments to approximate the state transition function. Concatenate the L-lag hidden
state as an augmented state Ht−1:

HT
t−1 = [1 h>t−1 . . . h>t−L].

For every hidden dimension, we construct a P-dimensional transition weight tensor
by modeling a degree P polynomial interaction between hidden states:

[ht]α = f (W hx
α st +

∑
i1,··· ,ip

Wαi1···iP Ht−1;i1 ⊗ · · · ⊗ Ht−1;ip︸                      ︷︷                      ︸
P

),

where α indices the hidden dimension, i· indices the high-order terms and P is the
polynomial order. We included the bias unit 1 in Ht−1 to account for the first order
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term, so that Ht−1;i1 ⊗ · · · ⊗Ht−1;ip can model all possible polynomial expansions up
to order P.

The TT-RNN with LSTM cell, or “TLSTM”, is defined analogously as:

[it, gt, ft, ot]α = σ(W hx
α st +

∑
i1,··· ,ip

Wαi1···iP Ht−1;i1 ⊗ · · · ⊗ Ht−1;iP︸                      ︷︷                      ︸
P

), (3.8)

ct = ct−1 ◦ ft + it ◦ gt, ht = ct ◦ ot,

where ◦ denotes the Hadamard product. Note that the bias units are again included.

TT-RNN is a basic unit that can be incorporated in most of the existing recurrent neural
architectures such as convolutional RNN (Xingjian et al., 2015) and hierarchical
RNN (Chung, Ahn, and Bengio, 2016). In this work, we use TT-RNN as a module
for sequence-to-sequence (Seq2Seq) framework (Sutskever, Vinyals, and Le, 2014)
in order to perform long-term forecasting.

As shown in Figure 3.2, sequence-to-sequence consists of an encoder-decoder pair.
Encoder takes an input sequence and learns a hidden representation. Decoder
initializes with this hidden representation and generates a output sequence. Both
contains multiple layers of tensor-train recurrent cells (color coded in red). The
augmented state Ht−1 (color coded in grey) concatenates the past L hidden states.
And the tensor-train cell takes Ht−1 and outputs the next hidden state. The encoder
encodes the initial states s0, . . . , st and the decoder predicts st+1, . . . , sT . For each
timestep t, the decoder uses its own previous prediction yt as an input.

Tensor-train Networks
Unfortunately, due to the “curse of dimensionality”, the number of parameters inWα

with hidden size H grows exponentially as O(HLP), which makes the high-order
model prohibitively large to train. To overcome this difficulty, we utilize tensor
networks to approximate the weight tensor. Such networks encode a structural
decomposition of tensors into low-dimensional components and have been shown
to provide the most general approximation to smooth tensors (Orús, 2014). The
most commonly used tensor networks are linear tensor networks (LTN), also known
as tensor-trains in numerical analysis or matrix-product states in quantum physics
(I. V. Oseledets, 2011).

A tensor train model decomposes a P-dimensional tensorW into a network of
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sparsely connected low-dimensional tensors {Ap ∈ Rrp−1×np×rp } as:

Wi1···iP =
∑

α1···αP−1

A1
α0i1α1
A2
α1i2α2

· · · AP
αP−1iPαP

with α0 = αP = 1, as depicted in Figure (3.3). When r0 = rP = 1 the {rp} are called
the tensor-train rank. With tensor-train, we can reduce the number of parameters of
TT-RNN from (HL + 1)P to (HL + 1)R2P, with R = maxp rp as the upper bound on
the tensor-train rank. Thus, a major benefit of tensor-train is that they do not suffer
from the curse of dimensionality, which is in sharp contrast to many classical tensor
decomposition models, such as the Tucker decomposition.

3.3 Approximation Results for Tensor-Train RNNs
A significant benefit of using TT-RNN is that we can theoretically characterize its
expressiveness for approximating the underlying dynamics. The main idea is to
analyze a class of functions that satisfies certain regularity conditions. For such
functions, tensor-train representations preserve the weak differentiability and yield a
compact representation.

The following theorem characterizes the representation power of TT-RNN, viewed as
a one-layer hidden neural network, in terms of 1) the regularity of the target function
f , 2) the dimension of the input space, 3) the tensor train rank and 4) the order of the
tensor:

Theorem 1. Let the state transition function f ∈ H k
µ be a Hölder continuous function

defined on a input domain I = I1 × · · · × Id , with bounded derivatives up to order k

and finite Fourier magnitude distribution C f . A single layer TT-RNN with h hidden
units can approximate f with approximation error ε at most:

ε ≤
1
h

(
C2

f
d − 1

(k − 1)(r + 1)k−1 + C(k)p−k
)
, (3.9)

where C f =
∫
|ω|1 | f̂ (ω)dω |, d is the dimension of the function, i.e., the size of the

state space, r is the tensor-train rank, p is the degree of the higher-order polynomials
i.e., the order of the tensor, and C(k) is the coefficient of the spectral expansion of f .

Remarks: The result above shows that the number of weights required to approximate
the target function f is dictated by its regularity (i.e., its Hölder-continuity order
k). The expressiveness of TT-RNN is driven by the selection of the rank r and the
polynomial degree p; moreover, it improves for functions with increasing regularity.
Comparedwith “first-order” regular RNNs, TT-RNNs are exponentiallymore powerful
for large rank: if the order p increases, we require fewer hidden units h.
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Proof. We provide theoretical guarantees for the proposed TT-RNN model by
analyzing a class of functions that satisfy some regularity condition. For such
functions, tensor-train decompositions preserve weak differentiability and yield a
compact representation. We combine this property with neural network estimation
theory to bound the approximation error for TT-RNN with one hidden layer, in terms
of: 1) the regularity of the target function f , 2) the dimension of the input space, and
3) the tensor train rank.

In the context of TT-RNN, the target function f (s) with s = H⊗ . . . ⊗H, is the system
dynamics that describes state transitions, as in (3.8). Let us assume that f (s) is a
Sobolev function: f ∈ H k

µ , defined on the input space I = I1 × I2 × · · · Id , where
each Ii is a set of vectors. The spaceH k

µ is defined as the set of functions that have
bounded derivatives up to some order k and are Lµ-integrable:

H k
µ =

{
f ∈ L2

µ(I) :
∑
i≤k

‖D(i) f ‖2 < +∞

}
, (3.10)

where D(i) f is the i-th weak derivative of f and µ ≥ 0.1

Any Sobolev function admits a Schmidt decomposition: f (·) =
∑∞

i=0
√
λ(i)γ(·; i) ⊗

φ(i; ·), where {λ} are the eigenvalues and {γ}, {φ} are the associated eigenfunctions.
Hence, we can decompose the target function f ∈ H k

µ as:

f (s) =
∞∑

α0,··· ,αd=1
A1(α0, s1, α1) · · · A

d(αd−1, sd, αd), (3.11)

where {Ad(αd−1, ·, αd)} are basis functions

{Ad(αd−1, sd, αd)} =
√
λd−1(αd−1)φ(αd−1; sd)}, (3.12)

satisfying 〈Ad(i, ·,m),Ad(i, ·,m)〉 = δmn. We can truncate Eqn 3.13 to a low dimen-
sional subspace (r < ∞), and obtain the functional tensor-train (FTT) approximation
of the target function f :

fTT (x) =
r∑

α0,··· ,αd=1
A1(α0, s1, α1) · · · A

d(αd−1, sd, αd) (3.13)

.

FTT approximation in Eqn 3.13 projects the target function to a subspace with finite
basis. And the approximation error can be bounded using the following Lemma:

1A weak derivative generalizes the derivative concept for (non)-differentiable functions and is
implicitly defined as: e.g., v ∈ L1([a, b]) is a weak derivative of u ∈ L1([a, b]) if for all smooth ϕ
with ϕ(a) = ϕ(b) = 0:

∫ b

a
u(t)ϕ′(t) = −

∫ b

a
v(t)ϕ(t).
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Lemma 2 (FTT Approximation Bigoni, Engsig-Karup, and Marzouk, 2016). Let
f ∈ H k

µ be a Hölder continuous function, defined on a bounded domain I =
I1 × · · · × Id ⊂ R

d with exponent α > 1/2, the FTT approximation error can be
upper bounded as

‖ f − fTT ‖
2 ≤ ‖ f ‖2(d − 1)

(r + 1)−(k−1)

(k − 1)
(3.14)

for r ≥ 1 and

lim
r→∞
‖ fTT − f ‖2 = 0 (3.15)

for k > 1

Lemma 2 relates the approximation error to the dimension d, tensor-train rank r ,and
the regularity of the target function k. In practice, TT-RNN implements a polynomial
expansion of the input states H, using powers [H,H⊗2, · · · ,H⊗p] to approximate
fTT , where p is the degree of the polynomial. We can further use the classic
spectral approximation theory to connect the TT-RNN structure with the degree of
the polynomial, i.e., the order of the tensor. Let I1 × · · · × Id = I ⊂ Rd . Given a
function f and its polynomial expansion PTT , the approximation error is therefore
bounded by:

Lemma 3 (Polynomial Approximation). Let f ∈ H k
µ for k > 0. Let P be the

approximating polynomial with degree p, Then

‖ f − PN f ‖ ≤ C(k)p−k | f |k,µ

Here | f |2k,µ =
∑
|i |=k ‖D(i) f ‖2 is the semi-norm of the space H k

µ . C(k) is the
coefficient of the spectral expansion. By definition, H k

µ is equipped with a norm
‖ f ‖2k,µ =

∑
|i |≤k ‖D(i) f ‖2 and a semi-norm | f |2k,µ =

∑
|i |=k ‖D(i) f ‖2. For notation

simplicity, we muted the subscript µ and used ‖ · ‖ for ‖ · ‖Lµ .

So far, we have obtained the tensor-train approximation error with the regularity
of the target function f . Next we will connect the tensor-train approximation and
the estimation error of neural networks with one layer hidden units. Given a neural
network with one hidden layer and sigmoid activation function, following Lemma
describes the classic result of describes the error between a target function f and the
single hidden-layer neural network that approximates it best:
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Lemma 4 (NN Approximation Barron, 1993). Given a function f with finite Fourier
magnitude distribution C f , there exists a neural network of n hidden units fn, such
that

‖ f − fn‖ ≤
C f
√

n
(3.16)

where C f =
∫
|ω |1 | f̂ (ω)|dω with Fourier representation f (x) =

∫
eiωx f̂ (ω)dω.

We can now generalize Barron’s approximation lemma 4 to TT-RNN. The target
function we are approximating is the state transition function f () = f (H ⊗ · · · ⊗ H).
We can express the function using FTT, followed by the polynomial expansion of
the states concatenation PTT . The approximation error of TT-RNN, viewed as one
hidden layer, is:

‖ f − PTT ‖ ≤ ‖ f − fTT ‖ + ‖ fTT − PTT ‖

≤ ‖ f ‖

√
(d − 1)

(r + 1)−(k−1)

(k − 1)
+ C(k)p−k | fTT |k

≤ ‖ f − fn‖

√
(d − 1)

(r + 1)−(k−1)

(k − 1)

+C(k)p−k
∑
i=k

‖D(i)( fTT − fn)‖ + o(‖ fn‖)

≤
C2

f
√

n
(

√
(d − 1)

(r + 1)−(k−1)

(k − 1)
+ C(k)p−k

∑
i=k

‖D(i) fTT ‖) + o(‖ fn‖),

where p is the order of tensor and r is the tensor-train rank. As the rank of the
tensor-train and the polynomial order increase, the required size of the hidden units
become smaller, up to a constant that depends on the regularity of the underlying
dynamics f .

3.4 Experiments
We validated the accuracy and efficiency of TT-RNN on one synthetic and two
real-world datasets, as described below; we performed missing data imputation and
used rolling window to extract input-output subsequences.

Genz dynamics The Genz “product peak” (see Figure 3.4 a) is one of the Genz
functions (Genz, 1984), which are often used as a basis for high-dimensional function
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(a) Genz dynamics (b) Traffic daily : 3 sensors (c) Climate yearly: 3 stations

Figure 3.4: Data visualizations: (3.4a) Genz dynamics, (3.4b) traffic data, (3.4c)
climate data.

(a) Genz dynamics (b) Traffic (c) Climate

Figure 3.5: Forecasting RMSE for Genz dynamics and real world traffic, climate
time series for varying forecasting horizon for LSTM, MLSTM, and TLSTM.

approximation. In particular, (Bigoni, Engsig-Karup, and Marzouk, 2016) used them
to analyze tensor-train decompositions. We generated 10, 000 samples of length 100
using (3.2) with w = 0.5, c = 1.0 and random initial points.

Traffic The traffic data (see Figure 3.4 b) of Los Angeles County highway network
is collected from California department of transportation http://pems.dot.ca.
gov/. The prediction task is to predict the speed readings for 15 locations across LA,
aggregated every 5 minutes. After upsampling and processing the data for missing
values, we obtained 8, 784 sequences of length 288.

Climate The climate data (see Figure 3.4 c) is collected from the U.S. Historical Cli-
matology Network (USHCN) (http://cdiac.ornl.gov/ftp/ushcn_daily/).
The prediction task is to predict the daily maximum temperature for 15 stations.
The data spans approximately 124 years. After preprocessing, we obtained 6, 954
sequences of length 366.

http://pems.dot.ca.gov/
http://pems.dot.ca.gov/
http://cdiac.ornl.gov/ftp/ushcn_daily/
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Figure 3.6: Model prediction for three realizations with different intiial conditions
for Genz dynamics “product peak”. Top (blue): ground truth. Bottom: model
predictions for LSTM (green) and TLSTM (red). TLSTM perfectly captures the
Genz oscillations, whereas the LSTM fails to do so (left) or only approaches the
ground truth towards the end (middle and right).

Figure 3.7: Top: 18 hour ahead predictions for hourly traffic time series given 5 hour
as input for LSTM, MLSTM, and TLSTM. Bottom: 300 days ahead predictions for
daily climate time series given 2 month observations as input for LSTM, MLSTM,
and TLSTM.

Long-term Forecasting Evaluation
Experimental Setup To validate that TT-RNNs effectively perform long-term
forecasting task in (3.3), we experiment with a seq2seq architecture with TT-RNN
using LSTM as recurrent cells (TLSTM). For all experiments, we used an initial
sequence of length t0 as input and varied the forecasting horizon T . We trained
all models using stochastic gradient descent on the length-T sequence regression
loss L(y, ŷ) =

∑T
t=1 | | ŷt − yt | |

2
2, where yt = st+1, ŷt are the ground truth and model

prediction respectively.

We compared TT-RNN against 2 set of natural baselines: 1st-order RNN (vanilla
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RNN, LSTM), and matrix RNNs (vanilla MRNN, MLSTM), which use matrix
products of multiple hidden states without factorization (Soltani and Jiang, 2016)).
We observed that TT-RNN with RNN cells outperforms vanilla RNN and MRNN, but
using LSTM cells performs best in all experiments. We also evaluated the classic
ARIMA time series model with AR lags of 1 ∼ 5, and MA lags of 1 ∼ 3. We
observed that it consistently performs ∼ 5% worse than LSTM.

Training and Hyperparameter Search We trained all models using the RMS-
prop optimizer and employed a learning rate decay of 0.8 schedule. We performed
an exhaustive search over the hyper-parameters for validation. Table 3.1 reports the
hyper-parameter search range used in this work.

Table 3.1: Hyper-parameter search range statistics for TT-RNN experiments and the
best performing model size for all models.

Hyper-parameter Range

learning rate tensor rank hidden size
10−1 ∼ 10−5 1 ∼ 16 8 ∼ 128
# of lags # of orders # of layers

1 ∼ 6 1 ∼ 3 1 ∼ 3

Best Performing Model Size

TLSTM MLSTM LSTM
7.2 k 9.7k 8.7 k

For all datasets, we used a 80% − 10% − 10% train-validation-test split and train for
a maximum of 1e4 steps. We compute the moving average of the validation loss and
use it as an early stopping criteria. We also did not employ scheduled sampling, as
we found training became highly unstable under a range of annealing schedules.

The number of parameters of best performing models are listed in Table 3.1. The
TLSTM model is comparable with that of MLSTM and LSTM. More parameters
would cause overfitting. TLSTM is more flexible than other methods, which gives us
better control of the model complexity.

Long-term Accuracy For traffic, we forecast up to 18 hours ahead with 5 hours as
initial inputs. For climate, we forecast up to 300 days ahead given 60 days of initial
observations. For Genz dynamics, we forecast for 80 steps given 5 initial steps. All
results are averages over 3 runs.
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We now present the long-term forecasting accuracy of TLSTM in nonlinear systems.
Figure 3.5 shows the test prediction error (in RMSE) for varying forecasting horizons
for different datasets. We can see that TLSTM notably outperforms all baselines on
all datasets in this setting. In particular, TLSTM is more robust to long-term error
propagation. We observe two salient benefits of using TT-RNNs over the unfactorized
models. First, MRNN and MLSTM can suffer from overfitting as the number of
weights increases. Second, on traffic, unfactorized models also show considerable
instability in their long-term predictions. These results suggest that tensor-train
neural networks learn more stable representations that generalize better for long-term
horizons.

Visualization of Predictions To get intuition for the learned models, we visualize
the best performing TLSTM and baselines in Figure 3.6 for the Genz function
“corner-peak” and the state-transition function. We can see that TLSTM can almost
perfectly recover the original function, while LSTM and MLSTM only correctly
predict the mean. These baselines cannot capture the dynamics fully, often predicting
an incorrect range and phase for the dynamics.

In Figure 3.7 we show predictions for the real world traffic and climate dataset.
We can see that the TLSTM corresponds significantly better with ground truth in
long-term forecasting. As the ground truth time series is highly chaotic and noisy,
LSTM often deviates from the general trend. While both MLSTM and TLSTM
can correctly learn the trend, TLSTM captures more detailed curvatures due to the
inherent high-order structure.

Speed Performance Trade-off We now investigate potential trade-offs between
accuracy and computation. Figure 3.5b displays the validation loss with respect to the
number of steps, for the best performing models on long-term forecasting. We see that
TT-RNNs converge faster than other models, and achieve lower validation-loss. This
suggests that TT-RNN has a more efficient representation of the nonlinear dynamics,
and can learn much faster as a result.

Hyper-parameter Analysis The TLSTM model is equipped with a set of hyper-
parameters, such as tensor-train rank and the number of lags. We perform a random
grid search over these hyper-parameters and showcase the results in Table 3.2. In
the top row, we report the prediction RMSE for the largest forecasting horizon w.r.t
tensor ranks for all the datasets with lag 3. When the rank is too low, the model does
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TLSTM Prediction Error (RMSE ×10−2)

Tensor rank r 2 4 8 16

Genz (T = 95) 0.82 0.93 1.01 1.01
Traffic (T = 67) 9.17 9.11 9.32 9.31
Climate (T = 360) 10.55 10.25 10.51 10.63

TLSTM Traffic Prediction Error (RMSE ×10−2)

Number of lags L 2 4 5 6

T = 12 7.38 7.41 7.43 7.41
T = 84 8.97 9.31 9.38 9.01
T = 156 9.49 9.32 9.48 9.31
T = 228 10.19 9.63 9.58 9.94

Table 3.2: TLSTM performance for various tensor-train hyperparameters. Top:
varying tensor rank r with L = 3. Bottom: varying number of lags L and prediction
horizon T .

Figure 3.8: Training speed evaluation: validation loss versus steps for the models
with the best long-term forecasting accuracy.

not have enough capacity to capture non-linear dynamics. When the rank is too high,
the model starts to overfit. In the bottom row, we report the effect of changing lags
(degree of orders in Markovian dynamics). For each setting, the best r is determined
by cross-validation. For different forecasting horizon, the best lag value also varies.

Chaotic Nonlinear Dynamics We have also evaluated TT-RNN on long-term
forecasting for chaotic dynamics, such as the Lorenz dynamics (see Figure 3.93.9a).
Such dynamics are highly sensitive to input perturbations: two close points can
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(a) T = 0 (b) T = 20 (c) T = 40 (d) T = 60 (e) T = 80 6

Figure 3.9: 3.9a Lorenz attractor with dynamics (blue) and sampled data (red). 3.9b,
3.9c, 3.9d ,3.9e TLSTM long-term predictions for different forecasting horizons T
versus the ground truth (blue). TLSTM shows consistent predictions over increasing
horizons T .

move exponentially far apart under the dynamics. This makes long-term forecasting
highly challenging, as small errors can lead to catastrophic long-term errors. Figure
3.9 shows that TT-RNN can predict up to T = 40 steps into the future, but diverges
quickly beyond that. We have found no state-of-the-art prediction model is stable
beyong 40 time stamps in this setting.

3.5 Related Work
Classic work in time series forecasting has studied auto-regressive models, such
as the ARMA or ARIMA model (Box et al., 2015), which model a process x(t)

linearly, and so do not capture nonlinear dynamics. Recent development in RNNs
has led to forecasting models such as deep AutoRegressive (Flunkert, Salinas, and
Gasthaus, 2017) and Predictive State Representation (Downey, Hefny, and Gordon,
2017). However, RNNs only use the most recent hidden state and can be restrictive
in modeling higher-order dynamics. Our method contrasts with this by explicitly
modeling higher-order dependencies. Using neural networks to model time series
has a long history. More recently, they have been applied to room temperature
prediction, weather forecasting, traffic prediction and other domains. We refer to
(Schmidhuber, 2015) for a detailed overview of the relevant literature.

From a modeling perspective, (Giles et al., 1989) considers a high-order RNN to
simulate a deterministic finite state machine and recognize regular grammars. This
work considers a second order mapping from inputs x(t) and hidden states h(t) to the
next state. However, this model only considers the most recent state and is limited
to two-way interactions. (Sutskever, Martens, and G. E. Hinton, 2011) proposes
multiplicative RNN that allow each hidden state to specify a different factorized
hidden-to-hidden weight matrix. A similar approach also appears in (Soltani and
Jiang, 2016), but without the factorization. Moreover, hierarchical RNNs have been
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used to model sequential data at multiple resolutions, e.g., to learn both short-term
and long-term human behavior (Zheng, Yue, and Lucey, 2016). Our method can be
seen as an efficient generalization of these works where we model the high-order
interactions using a hidden-to-hidden tensor.

Tensor methods have tight connections with neural networks. For example, (Novikov
et al., 2015; Stoudenmire and Schwab, 2016) employs tensor-train as model com-
pression tool to reduce the number of weights in neural networks. (Yang, Krompass,
and Tresp, 2017) further extends this idea to RNNs by reshaping the inputs into a
tensor. The focus of these work is model compression whereas TT-RNN aims to learn
a high-order hidden states transition function. Theoretically, (Cohen, Sharir, and
Shashua, 2016) shows convolutional neural networks have equivalence to hierarchical
tensor factorizations. Mostly recently, (Khrulkov, Novikov, and I. Oseledets, 2017)
provides expressiveness analysis for shallow network with tensor train models. This
work however, to the best of our knowledge, is the first work to consider tensor
networks in RNNs for sequential prediction tasks for learning in environments with
nonlinear dynamics.

3.6 Discussion
In this work, we considered long-term forecasting under nonlinear dynamics. We
propose a novel class of RNNs – TT-RNN that directly learns the nonlinear dynamics.
We provide the first approximation guarantees for it representation power. We
demonstrate the benefits of TT-RNN to forecast accurately for significantly longer
time horizon in both synthetic and real-world multivariate time series data.

Aswe observed, chaotic dynamics still present a significant challenge to any sequential
prediction model. Hence, it would be interesting to study how to learn robust models
for chaotic dynamics.

In other sequential prediction settings, such as natural language processing, there does
not (or is not known to) exist a succinct analytical description of the data-generating
process. It would be interesting to go beyond forecasting and further investigate the
effectiveness of TT-RNNs in such domains as well.
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C h a p t e r 4

STRUCTURED EXPLORATION VIA HIERARCHICAL
VARIATIONAL POLICY NETWORKS

Summary Reinforcement learning is challenging in environments with large state-
action spaces, as exploration can be highly inefficient. Even if the dynamics are
simple, the optimal policy can be combinatorially hard to discover. In this work,
we propose a hierarchical approach to structured exploration to improve the sample
efficiency of on-policy exploration in large state-action spaces. The key idea is
to model a stochastic policy as a hierarchical latent variable model, which can
learn low-dimensional structure in the state-action space, and to define exploration
by sampling from the low-dimensional latent space. This approach enables lower
sample complexity, while preserving the expressiveness of the policy class. To
make learning tractable, we derive a joint learning and exploration strategy by
combining hierarchical variational inference with actor-critic learning. The benefits
of our learning approach are that it is principled, simple to implement, scalable to
settings with many actions, and composable with existing deep learning approaches.
We evaluate our approach on learning a deep centralized multi-agent policy, as
multi-agent environments naturally have an exponentially large state-action space.
We demonstrate that our approach can more efficiently learn optimal policies in
challenging multi-agent games with a large number (∼ 20) of agents, compared to
conventional baselines.

4.1 Introduction
Reinforcement learning in environments with large state-action spaces is challenging,
as exploration can be highly inefficient in high-dimensional spaces. Hence, even if
the environment dynamics are simple, the optimal policy can be combinatorially
hard to discover. However, for many large-scale environments, the high-dimensional
state-action space has (often hidden or implicit) low-dimensional structure which
can be exploited.

Many natural examples are in collaborative multi-agent problems, whose state-action
space is exponentially large in the number of agents, but have a low-dimensional
coordination structure. For instance, consider a simple variant of the Hare-Hunters
problem (see Figure 4.1). In this game, N = 2 identical hunters need to capture
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Figure 4.1: Equivalent solutions in a 2-hunter 2-prey game.

M = 2 identical static prey within T time-steps, and exactly H = 1 hunter is needed
to capture each prey. T is set such that no hunter can capture both preys. There are
two equivalent solutions: hunter 1 captures prey 1 and hunter 2 captures prey 2, or
vice versa. There are also two suboptimal choices: both hunters choose the same prey.
Hence, the hunters must coordinate over a (large) number of time-steps to maximize
their reward. This implies the solution space has low-dimensional structure that can
be used to accelerate exploration and training.

In this work, we propose a principled approach to structured exploration to improve
sample complexity in large state-action spaces, by learning deep probabilistic
hierarchical policies with a latent structure. As a high-level intuition, consider a
tabular multi-agent policy, which maps discrete (joint) states to action probabilities.
For N agents with S states and A actions each, this policy has O((S · A)N ) weights.
However, the low-dimensional coordination structure can be captured by a factorized,
low-rank matrix, where the factorization can be learned and, for instance, only has
O(NK(S + A)) weights. Similarly, our approach both 1) learns a low-dimensional
“factorization” of the policy distribution and 2) defines exploration by also sampling
from the low-dimensional latent space. For instance, in the multi-agent setting, we
can learn a centralized multi-agent policy with a latent structure that encodes (a
distribution of possible) coordination between agents and biases exploration towards
policies that (likely) encode “good” coordination.

The key ideas of our approach are: 1) to utilize a shared stochastic latent variable
model that defines the structured exploration policy, and 2) to employ a principled
variational method to learn the posterior distribution over the latents jointly with
the optimal policy. Our approach has several desirable properties. First we do not
incorporate any form of prior domain knowledge, but rather discover the coordination
structure purely from empirical experience during learning. Second, our variational
learning method enables fully differentiable end-to-end training of the entire policy
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class. Finally, by utilizing a hierarchical policy class, our approach can easily scale
to large action spaces (e.g., a large number of coordinating agents). Our approach
can also be seen as a deep hierarchical generalization of Thompson sampling, which
is a historically popular way to capture correlations between actions (e.g., in the
bandit setting (Agrawal and Goyal, 2012)).

To summarize, our contributions in this work are as follows:

• We introduce a structured probabilistic policy class that uses a hierarchy of
stochastic latent variables.

• We propose an efficient and principled algorithm using variational methods to
train the policy end-to-end.

• To validate our learning framework, we introduce several challenging synthetic
multi-agent environments that explicitly require team coordination, and feature
competitive pressures that are characteristic of many coordinated decision
problems.

• We empirically verify that our approach improves sample complexity on
coordination games with a large number (N ∼ 20) of agents.

• We show that learned latent structures correlate with meaningful coordination
patterns, which implies that our latent structure can recover meaningful
low-dimensional structure in the state-action space.

4.2 Problem Setup & Approach
In this paper, we use centralized multi-agent environments to showcase the efficacy of
our approach to structured exploration, as they naturally exhibit exponentially large
state-action spaces. More generally, our approach can be applied to any reinforcement
learning setting where one can posit the existence of a low-dimensional structure
within a high dimensional state-action space.

In centralized multi-agent RL, agents sequentially interact within an environment
defined by the tuple: E ≡ (S,A, r, fP). Each agent i starts in an initial state si

0,
and at each time t observes a state st ∈ S and executes an action ai

t chosen by a
(stochastic) policy ai

t ∼ P
(
ai

t |st
)
. Each agent then receives a reward r i (st, at), and

the environment transitions to a new state st+1 with probability fP (st+1 |st, at). We
define the joint state and actions as st = {si

t ∈ S} and at = {ai
t ∈ A}, where i ∈ I
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indexes the agents. Note that the rewards for each agent r i can depend on the full
joint state and actions.

In this work, we restrict to fully cooperative MDPs that are fully observable,
deterministic and episodic.1 Each agent can see the full state s, fP is deterministic
and each episode τ = (st, at)0≤t≤T ends when the agent encounters a terminal state
and the MDP resets.

In the fully cooperative case, the goal for each agent is to learn its optimal policy
P∗

(
ai

t |st, θ
)
that maximizes the total reward R(τ) =

∑
i Ri(τ) =

∑
i
∑

t r i(st, at):

max
θ

J(θ) = max
θ

∑
i∈I

Ji(θ), (4.1)

Ji(θ) = E
[
Ri (τ)

�� at ∼ P(at |st ; θ)
]

(4.2)

To optimize, we can apply gradient descent with policy gradient estimators ĝθ

Williams, 1992

gθ = ∇θ J (θ) = E
[
∇θ log P(at |st ; θ)R(τ)|at, st

]
≈

1
M

M∑
k=1

∑
t

∇θ log P(ak
t |s

k
t ; θ)R(τk), (4.3)

where we sample M rollouts τk by sampling actions from the policy that is being
learned.

Challenges in Exploration. A central issue in reinforcement learning is the
exploration-exploitation trade-off: how can the policy sample rollouts and learn
efficiently? In particular, when the state-action space is exponentially large (as in
multi-agent RL), discovering a good policy becomes intractable as the number of
agents N grows. Hence, exploration in large state-action spaces poses a significant
challenge. We consider the general policy gradient setting where exploration is
driven by the stochastics of the policy (similar to Thompson Sampling Agrawal and
Goyal, 2012 in the bandit setting). Thus, it is important for the policy to maintain
expressive low-dimensional distributions that can make exploration more efficient.

1More generally, multi-agent problems can be generalized along many dimensions, e.g., one can
learn decentralized policies in partial-information settings. For an overview, see Busoniu, Babuska,
and De Schutter, 2008.
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Figure 4.2: Structured latent variable model of a centralized multi-agent policy
(actor, left) and instance of the actor-critic interacting in the environment E (right).
The policy contains two stacked layers of stochastic latent variables (red), and
deterministically receives states and computes actions (green). The actions for
individual agents are independent conditional on latent variables λ, which implies a
“factorization” of the state-action space. On the right, a neural network instance of
the actor-critic uses the reparametrization trick and receives the environment state,
samples actions from the policy (for all agents) and computes the value function V•.

Hierarchical Variational Policy
We now formulate (4.1) using a stochastic hierarchical policy class that enables
structured exploration. Our approach builds upon two complementary approaches:

• Encode structured exploration using a latent variable that “factorizes” the
state-action space. In the multi-agent setting, the factorization is per-agent and
the latent variable encode coordination encodes coordination between agents.

• Use a variational approach to derive and optimize a lower bound on the
objective (4.1).

Hierarchical Latent Model. For simplicity, we assume a factorization of the
state-action space into state-action spaces for individual agents in the multi-agent RL
setting. More generally, one could consider other factorization structures as well. To
encode coordination between agents, we assume the individual per-agent sub-policies
have shared structure, encoded by a latent variable λt ∈ R

n for all t, where n is the
dimension of the latent space. This leads to a hierarchical policy model P(at, λt |st),
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as shown in Figure 4.2. We first write the joint policy for a single time-step as:

P(at |st) =

∫
dλt P(at, λt |st) =

∫
dλt

N∏
i=1

P(ai
t, λt |st)

=

∫
dλt

N∏
i=1

P(ai
t |λt, st)P(λt |st), (4.4)

where we introduced the conditional priors P(λt |st). The latent variables λt introduce
dependencies among the at , hence this policy is more flexible compared to standard
fully factorized policies Ranganath, Tran, and Blei, 2015. Note that this approach
supports centralized learning and decentralized execution, by sharing a random seed
amongst agents to sample λt and actions at during execution.

Computing the integral in the optimal policy (4.4) is hard, because the unknown
distribution P(ai

t |λt, st) can be highly complex. Hence, to make learning (4.4)
tractable, we will use a variational approach.

Hierarchical Variational Lower Bound. We next derive a tractable learning
algorithm using variational methods. Instead of directly optimizing (4.1), we cast it
as a probabilistic inference problem, as in Levine and Koltun, 2013; Vlassis et al.,
2009, and instead optimize a lower bound.

To do so, we model Ri as a random variable, whose distribution P(Ri |τ) ∝ exp Ri (τ).
For clarify, we will suppress the index i hereafter. Maximizing expected reward (4.1)
can then be seen as probabilistic inference:

max
θ
E

[
R (τ) |τ ∼ π (st ; θ)

]
= max

θ
P(R |θ) = max

θ
log P(R |θ), (4.5)

where the distribution P(R|θ) can be written as:

P(R|θ) =
∫

dτP(R |τ)P(τ; θ), (4.6)

P(τ; θ) = P(s0)

T∏
t=0

P(st+1 |st, at)P(at |st ; θ). (4.7)

We first introduce latent variables λt by applying (4.4) at each timestep t:

P(τ; θ) ≡
∫

dλ0:T P(τ, λ0:T ; θ) ∝
T∏

t=0

∫
dλt P(at, λt |st ; θ), (4.8)

where we summarized the terms in (4.8) using shorthands λ0:T ≡
∏T

t=0 λt and∫
dλ0:T ≡

∏T
t=0

∫
dλt .
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We now apply the variational approach to the inference problem (4.5), by maximizing
a lower bound on its log-likelihood. This lower bound is derived using Jensen’s
inequality:

log P(R |θ) = log
∫

dτdλ0:T P(R |τ)P(τ, λ0:T ; θ)

≥

∫
dτdλ0:TQ(τ, λ0:T ;φ) log

(
P(R |τ)P(τ, λ0:T ; θ)

Q(τ, λ0:T ;φ)

)
≡ ELBO (θ, φ) (4.9)

where Q (τ, λ0:T ;φ) is a variational distribution with parameters φ, and we used (4.6)
and (4.8). This lower bound is commonly called the Evidence Lower Bound (ELBO).
To simplify (4.9), we can separate out reward and transition probabilities in Q:

Q(τ, λ0:T ;φ) = P(R |τ)P(s0)

T∏
t=0

P(st+1 |st, at)Q̂(λt |st ;φ), (4.10)

which simplifies the ELBO:

ELBO (θ, φ) =

∫
dτdλ0:TQ(τ, λ0:T ;φ)

T∑
t=0

(
log P(at |λt, st ; θ) + log

P(λt |st)

Q̂(λt |st, φ)

)
.

(4.11)

Here, we assumed the policy prior P(λt |st) is fixed and does not depend on θ.

The standard choice for the prior P(λt |st) is to usemaximum-entropy standard-normal
priors: P(λt |st) = N(0, 1). We can then maximize (4.11) using e.g., stochastic
gradient ascent. Formally, the policy gradient is:

gθ ≈ gθ,Q = ∇θELBO(θ, φ)

=

∫
dτdλ0:TQ(τ, λ0:T ;φ)

T∑
t ′=0
∇θ log P(at ′ |λt ′, st ′; θ), (4.12)

which is an approximation of the true policy gradient (4.3), and can be estimated
using roll-outs τk of the policy Pπ :

gθ,Q ≈ ĝθ,Q =
1
M

M∑
k=1

T∑
t=0
∇θ log P

(
ak

t |λ
k
t , s

k
t ; θ

)
R(τk). (4.13)

During a rollout τk , we sample λ ∼ Q, observe rewards R ∼ P(R |τ) and transitions
st+1 ∼ P(st+1 |.), and use these to compute (4.13). We can similarly compute
gφ,Q = ∇φELBO(Q, θ, φ), the gradient for the variational posterior Q.
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Preys are Frozen Moving Frozen Moving

Samples (x100k) 5 10 5 10 5 10 5 10

Hare-Hunters 10-vs-10 20-vs-20
Cloned 85.0 178.3 465.0 912.5 20.0 70.0 706.7 1401.7
Shared 65.0 155.0 457.5 923.8 65.0 105.0 491.4 962.9
HLPN 240.0 580.0 662.7 1381.8 200.0 393.3 1260.0 2344.0

Stag-Hunters 10-vs-10 20-vs-20
Cloned 1229.2 2482.9 2079.4 4171.2 3224.5 6219.9 5934.5 11429.2
Shared 1214.5 2423.7 2005.7 4144.3 3150.7 6379.8 6344.4 12196.8
HLPN 1515.2 3047.3 2275.7 4610.7 3799.3 7158.1 6880.7 13358.6

Table 4.1: Total terminal reward (averaged over 5 best runs) for N agents for set # of
training samples. Our HLPN approach outperforms baselines by up to 10x.

Actor-Critic and Bias-Variance. Estimating policy gradients gθ using empirical
rewards can suffer from high variance. It is useful to consider more general objectives
Fi:

Ji(θ) = E
[
Fi (τ)

�� at ∼ Pπt (at |st ; θ)
]
, (4.14)

such that the variance in ĝ is reduced.2 In practice, we find that using (4.13) with
more general F, such as generalized advantages Schulman et al., 2015, performs
quite well.

4.3 Model and Experimental Setup
Multi-agent Environments
To validate our approach, we created two grid-world games, depicted in Figure 4.2,
inspired by the classic Predator-Prey and Stag-Hunt games Shoham and Leyton-
Brown, 2008. In both, the world is periodic and the initial positions of the hunters
and prey are randomized. We consider two instances for both games: either the prey
are moving or fixed.

Hare-Hunters. Predator-Prey is a classic test environment for multi-agent learning,
where 4 predators try to capture a prey by boxing it in. We consider a variation
defined by the settings (N, M,H,T): N hunters and M prey. Each prey can be
captured by exactly H hunters: to capture the prey, a hunter gets next to it, after
which the hunter is frozen. Once a prey has had H hunters next to it, it is frozen and

2Note that if the total reward R is bounded, we can define R-weighted probabilities by shifting
and normalizing R. In general, the derivation applies if F is similarly bounded.
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cannot be captured by another hunter. The terminal rewards are:

Ri =


1, if all prey are captured H times before the

time limit T

0, otherwise.

(4.15)

The challenge of the game is for the agents to inactivate all prey within a finite time
T . Due to the time limit, the optimal strategy is for the agents to distribute targets
efficiently, which can be challenging due to the combinatorially large number of
possible hunter-to-prey assignments.

Stag-Hunters. The Stag-Hunt is another classic multi-agent game designed to study
coordination. In this game, hunters have a choice: either they capture a hare for
low reward, or, together with another hunter, capture a stag for a high reward. We
extend this to the multi-agent (N, M,H,T)-setting: N hunters hunt M prey (M/2
stags and M/2 hares). Each stag has H hit-points, while hares and hunters have 1
hit-point. Capturing is as in Hare-Hunters. The spatial domain is similar to the
Hare-Hunters game and we also use a time limit T . The terminal reward is now
defined as:

Ri =



1, if i captured a live stag that became inactive

before the time limit T

0.1, if i captured a live hare

before the time limit T

0, otherwise

(4.16)

The challenge for the agents here is to discover that choosing to capture the same prey
can yield substantially higher reward, but this requires coordinating with another
hunter.

Neural Coordination Model
For experiments, we instantiated our policy class (as in Figure 4.2) with deep neural
networks. For simplicity, we only used reactive policies without memory, although it
is straightforward to apply our approach using policies with memory (e.g., LSTMs).
The model takes a joint state st as input and computes features φ(s) using a 2-layer
convolutional neural network. To compute the latent variable λ ∈ Rd , we use
the reparametrization trick (Kingma and Welling, 2013) to learn the variational
distribution (e.g., Q(λ | s)), sampling λ via ε ∼ N(0, 1) and distribution parameters
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µ, σ (omitting t):

µ(s) = Wµφ(s) + bµ, logσ(s)2 = Wσφ(s) + bσ,

λ = µ(s) + σ(s) � ε . (4.17)

Given λ, the model then computes the policies P(ai |, s) and value functions V i(s)

as (omitting t):

P(ai |, s) = softmax
(
W i
π[λ φ(s)] + bi

π

)
,

V i(s) = W i
Vφ(s) + bi

V, (4.18)

where softmax(x) = exp x/
∑

j exp x j . In this way, the model can be trained
end-to-end.

Training. We used A3CMnih et al., 2016 with KL-controlled policy gradients (4.13),
generalized advantage as F Schulman et al., 2015. and policy-entropy regularization.
The loss for the value function at each state st is the standard L2-loss between the
observed total rewards for each agent i and its value estimate:

α
∑

t

∑
i

(
V i(st) − Ri(st, at)

)2
. (4.19)

In addition, in line with other work using actor-critic methods, we found that adding
a small entropy regularization on the policy can sometimes positively influence
performance, but this does not seem to be always required for our testbeds. The
entropy regularization is:

H(P) = −β
∑

t

∑
at

P(at | st ; θ) log P(at | st ; θ). (4.20)

A3C additionally defines training minibatches in terms of a fixed number of envi-
ronment steps L: a smaller L gives faster training with higher variance and vice
versa.

For all experiments, we performed a hyper-parameter search and report the best 5
runs seen.

Baselines. We compared against two natural baselines:

• Shared (shared actor-critic): agents share a deterministic hidden layer, but
maintain individual weights θi for their (stochastic) policy P(a |, s; θi) and
value function V i(s; θ). The key difference is that this model does not sample
from the shared hidden layer.
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HLPN

HLPN

Figure 4.3: Train-time cumulative terminal reward for N agents in (N, M, 1,T)
Hare-Hunters (upper, T = 2000) and Stag-Hunters (lower, T = 1000) on a
50 × 50 gridworld, for 10-vs-10 or 20-vs-20 agents; randomly moving or fixed preys.
Average, minimal and maximal rewards for the best 5 runs for each model are
shown. Our HLPN approach accumulates increasingly higher rewards compared to
the baselines, by 1) achieving higher terminal reward per episode and 2) finishing
episodes faster (see Figure 4.4). For 10-10 Stag-Hunters with frozen prey, average
reward per-episode is 4.64 (Cloned), 6.22 (Shared), 6.61 (HLPN) after 1 million
samples.

Figure 4.4: Train-time episode lengths during 1 million steps for 10-vs-10
Hare-Hunters (left) and Stag-Hunters (right), with fixed preys. Our HLPN
approach (orange) finishes an episode successfully before the time limit more often
than the baselines (Cloned (blue) and Shared (yellow)).

• Cloned (actor-critic): each agent uses an identical policy and value function
with shared weights. There is shared information between the agents, and
actions are sampled according to the agents’ own policies.

4.4 Quantitative Analysis
We now validate the efficacy of our approach by showing our method scales
to environments with a large number of agents. We ran experiments for both
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Figure 4.5: Predators (red) and prey (green) during training for 2v2 Hare-Hunters
for 100 episodes. Arrows show where agents move to in the next frame. Top: at the
start, predators explore via λ, but do not succeed before the time limit T (red dot).
Bottom: after convergence agents succeed consistently (green dot) before the time
limit (purple dot) and λ encodes the two strategies from Figure 4.1. Highlighted
λ-components correlate with rollout under a 2-sided t-test at α = 0.1 significance.

episode steps

re
le

va
n

t 
λ
-c

o
m

p
o
n

e
n

ts

Figure 4.6: Visualization of our HLPN approach for a (10, 10, 1, 1000) Hare-Hunters
game in a 30 × 30 world. Left: components of the latent code λ that significantly
correlate with sampled actions (computed as in Figure 4.5). Right: Three episode
snapshots: at the start, middle, and end. Red: predators; green: prey. Arrows
indicate where agents move to in the next snapshot. The hunters solve the game
(green dot) before the time limit T = 1000 (purple dot), by distributing targets
amongst themselves.

Hare-Hunters and Stag-Hunters for N = M = 10, 20 in a spatial domain of
50 × 50 grid cells. We refer to our approach as HLPN (Hierarchical Latent Policy
Network).

Sample complexity. In Table 4.1 we show the achieved rewards after a fixed number
of training samples, and Figure 4.3 shows the corresponding learning curves. We
see that HLPN achieves up to 10× reward compared to the baselines. Figure 4.4
shows the corresponding distribution of training episode lengths. We see that
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HLPN solves game instances more than 20% faster than baselines in 50% (10%) of
Hare-Hunters (Stag-Hunters) episodes. In particular, HLPN learns to coordinate
for higher reward more often: it achieves the highest average reward per-episode
(e.g., for 10-10 Stag-Hunters with frozen prey, average rewards are 4.64 (Cloned),
6.22 (Shared), 6.61 (HLPN)). Hence, HLPN coordinates successfully more often to
capture the stags. Together, these results show HLPN enables more efficient learning.

Using theELBO.Asalient difference between (4.13) and (4.3) is theKL-regularization,
which stems from the derivation of the ELBO. Since we use a more general objective
F, c.f. (4.14), we also investigated the impact of using the KL-regularized policy
gradient (4.13) versus the standard (4.3). We ran several instances of the above
experiments both with and without KL-regularization. We found that without
KL-regularization, training is unstable and prone to mode collapse: the variance σ
of the variational distribution can go to 0, leading to essentially 0 achieved reward
for any reasonable hyperparameter settings.

Impact of dynamics and T . Inspecting training performance, we see the relative
difficulty of capturing moving or randomly moving prey. Capturing moving prey is
easier to learn than capturing fixed preys, as comparing rewards in Table 4.1 shows.
This shows a feature of the game dynamics: the expected distance between a hunter
and an uncaptured prey are lower when the preys are randomly moving, resulting
in an easier game. Comparing Hare-Hunters and Stag-Hunters, we also see the
impact of the time limit T . Since we use terminal rewards only, as T gets larger,
the reward becomes very sparse and models need more samples to discover good
policies.

4.5 Model Inspection
Beyond training benefits, we now demonstrate empirical evidence that suggest efficacy
and meaningfulness of our approach to structured exploration. We start by inspecting
the behavior of the latent variable λ for a simple N = M = 2 Hare-Hunters game,
which enables semantic inspection of the learned policies, as in Figure 4.5. We make
a number of observations. First, λ is relevant: many components are statistically
significantly correlated with the agents’ actions. This suggests the model does indeed
use the latent λ: it (partly) controls the coordination between agents.3 Second, the
latent λ shows strong correlation during all phases of training. This suggests that the
model indeed is performing a form of structured exploration. Third, the components

3This is parallel to the discussion in Chen et al., 2016, which investigates the effectiveness of
latent codes λ.
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of λ are correlated with semantic meaningful behavior. We show a salient example
in the bottom 2 rows in Figure 4.5: the correlated components of λ are disjoint and
each component correlates with both agents. The executed policies are exactly the
two equivalent ways to assign 2 hunters to 2 preys, as illustrated in Figure 4.1.

Coordination with a large N . In the large N = M = 10 case, the collective
dynamics are generalize the N = M = 2 case. There are now redundancies in
multi-agent hunter-prey assignments that are analogous to the N = M = 2 case that
are prohibitively complex to analyze due to combinatorial complexity. However our
experiments strongly suggest (see e.g., Figure 4.6) the latent code is again correlated
with agents’ behavior during all phases of training, hence λ induces meaningful
multi-agent coordination.

4.6 Related Work
Deep Structured Inference. Recent works have focused on learning structured
representations using expressive distributions, which enable more powerful proba-
bilistic inference. For instance, Johnson et al., 2016 has proposed combining neural
networks with graphical models, while Ranganath, Tran, and Blei, 2015 learn hierar-
chical latent distributions. Our work builds upon these approaches to learn structured
policies in the reinforcement learning setting. In the multi-agent setting, the RL
problem has also been considered as an inference problem in e.g., (Liu, Amato, Liao,
et al., 2015; Wu, Zilberstein, and Jennings, 2013; Liu, Amato, Anesta, et al., 2016).

Variational methods in RL. Neumann, 2011; Furmston and Barber, 2010 discuss
variational approaches for RL problems, but did not consider end-to-end trainable
models. Levine and Koltun, 2013 used variational methods for guided policy
search. Houthooft et al., 2016 learned exploration policies via information gain using
variational methods. However, these only consider 1 agent.

Coordination inRL.Multi-agent coordination has been studied in theRL community
(e.g., Guestrin, Lagoudakis, and Parr, 2002; Kapetanakis and Kudenko, 2002;
Chalkiadakis and Boutilier, 2003, for instance, as a method to reduce the instability
of multiple agents learning simultaneously using RL. The benefit of coordination
was already demonstrated in simple multi-agent settings in e.g., Tan, 1993. The
shared latent variable λ of our structured policy can also be interpreted as a learned
correlation device (see Bernstein, 2005 for an example in the decentralized setting),
which can be used to e.g., break ties between alternatives or induce coordination
between agents. More generally, they can be used to achieve correlated equilibria
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(Greenwald and Hall, 2003), a more general solution concept than Nash equilibria.
However, previous methods learned hand-crafted models and do not scale well to
complex state spaces and many agents. In contrast, our method learns coordination
end-to-end via on-policy methods, learns the multi-agent exploration policy and
scales well to many agents via its simple hierarchical structure.

Communication Models. Recently, end-to-end learning of communication models
has been studied for shared broadcast channels Sukhbaatar, Szlam, and Fergus,
2016, sequential communication Peng et al., 2017, heuristic multi-agent exploration
Usunier et al., 2016 and bit-channels Foerster et al., 2016. These works show
that communication protocols can be learned through back-propagation or heuristic
stabilization methods, but often do not scale well to a large number of agents. Our
hierarchical approach is complementary, learns via variational methods, and can
scale to large N .

Multi-task learning. Hierarchical models have been studied for multi-task learning,
e.g., Daume III, 2014 learns latent hierarchies via EM in a supervised learning setting.
Instead, we study flexible end-to-end trainable latent hierarchies in the reinforcement
learning setting.

4.7 Discussion
We proposed a hierarchical deep policy network for conducting structured exploration
in complex state-action spaces. We further derive a variational learning approach
to train our policy in the actor-critic framework. We validate our approach on a
collection of challenging multi-agent predator-prey style games, and demonstrate
significant improvements over conventional baselines. We finally show that the latent
variables in our hierarchical policy capture meaningful coordination between the
agents, which suggests that the low-dimensional latent variable bottleneck in the
hierarchical structure does indeed enable more efficient exploration.

In a sense, we studied the simplest setting that can benefit from structured exploration,
in order to isolate the contribution of our work. Our hierarchical model and variational
approach are a simple way to implement multi-agent coordination, and easily combine
with existing actor-critic methods. Moving forward, there are many ways to expand
on our work. Firstly, for complex (partial-information) environments, instead of
using reactive policies with simple priors P ∼ N(0, 1), memoryfull policies with
flexible priors (Chen et al., 2016) may be needed. Secondly, within the multi-agent
setting, our approach is complementary to richer forms of communication between
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agents. Our hierarchical structure can be interpreted as a broadcast channel, where
agents are passive receivers of the message λ. Richer communication protocols could
be encoded by policies with more complex inter-agent structure. Finally, there are
other interesting combinatorial structures beyond multi-agent settings, and it would
be interesting to investigate how to learn in those situations as well.
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C h a p t e r 5

IMPROVING THE ROBUSTNESS OF DEEP NEURAL
NETWORKS

Zheng, Stephan et al. (2016). “Improving the robustness of deep neural networks
via stability training”. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. S.T.Z. participated in the conception of the project,
formulated, implemented and analyzed themethod, prepared the data, conducted all
experiments and participated in the writing of the manuscript., pp. 4480–4488. url:
https://www.cv-foundation.org/openaccess/content_cvpr_2016/
papers/Zheng_Improving_the_Robustness_CVPR_2016_paper.pdf.

Dathathri, Sumanth et al. (2018). “Detecting Adversarial Examples via Neural
Fingerprinting”. In: arXiv preprint arXiv:1803.03870. S.T.Z. participated in the
conception of the project, analyzed the method and experimental results, provided
theoretical analyses and participated in the writing of the manuscript.

5.1 Introduction
Deep neural networks learn feature embeddings of the input data that enable state-
of-the-art performance in a wide range of computer vision tasks, such as visual
recognition Krizhevsky, Sutskever, and Hinton, 2012; Christian Szegedy, Liu, et al.,
2015 and similar-image ranking Wang et al., 2014. Due to this success, neural
networks are now routinely applied to vision tasks on large-scale un-curated visual
datasets that, for instance, can be obtained from the Internet. Such un-curated visual
datasets often contain small distortions that are undetectable to the human eye, due
to the large diversity in formats, compression, and manual post-processing that
are commonly applied to visual data in the wild. These lossy image processes do
not change the correct ground truth labels and semantic content of the visual data,
but can significantly confuse feature extractors, including deep neural networks.
Namely, when presented with a pair of indistinguishable images, state-of-the-art
feature extractors can produce two significantly different outputs.

In fact, current feature embeddings and class labels are not robust to a large class of
small perturbations. Recently, it has become known that intentionally engineered
imperceptible perturbations of the input can change the class label output by themodel

https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Zheng_Improving_the_Robustness_CVPR_2016_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Zheng_Improving_the_Robustness_CVPR_2016_paper.pdf
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Figure 5.1: Near-duplicate images can confuse state-of-the-art neural networks due
to feature embedding instability. Left and middle columns: near-duplicates with
small (left) and large (middle) feature distance. Image A is the original, image B is a
JPEG version at quality factor 50. Right column: a pair of dissimilar images. In
each column we display the pixel-wise difference of image A and image B, and the
feature distance D Wang et al., 2014. Because the feature distances of the middle
near-duplicate pair and the dissimilar image pair are comparable, near-duplicate
detection using a threshold on the feature distance will confuse the two pairs.

I. J. Goodfellow, J. Shlens, and C. Szegedy, 2014; Christian Szegedy, Zaremba,
et al., 2013a (“strong adversarial perturbations”). A scientific contribution in this
chapter is the demonstration that these imperceptible perturbations can also occur
without being contrived and widely occur due to compression, resizing, and cropping
corruptions in visual input (“weak adversarial perturbations”).

As such, output instability poses a significant challenge for the large-scale appli-
cation of neural networks because high performance at large scale requires robust
performance on noisy visual inputs. Feature instability complicates tasks such as
near-duplicate detection, which is essential for large-scale image retrieval and other
applications. In near-duplicate detection, the goal is to detect whether two given
images are visually similar or not. When neural networks are applied to this task,
there are many failure cases due to output instability. For instance, Figure 5.1 shows a
case where a state-of-the-art deep network cannot distinguish a pair of near-duplicates
Wang et al., 2014 and a pair of dissimilar images.

Analogously, class label instability introduces many failure cases in large-scale clas-
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Figure 5.2: Visually similar video frames can confuse state-of-the-art classifiers:
two neighboring frames are visually indistinguishable, but can lead to very different
class predictions. The class score for ‘fox’ is significantly different for the left frame
(27%) and right frame (63%), which causes only the fox in the right image to be
correctly recognized, using any reasonable confidence threshold (e.g., > 50%).

sification and annotation. For example, unstable classifiers can classify neighboring
video-frames inconsistently, as shown in Figure 5.2. In this setting, output instability
can cause large changes in label scores of a state-of-the-art convolutional neural
network on consecutive video-frames that are indistinguishable.

In this chapter we present two methods to make neural networks more robust.

Stability Training: defending against weak adversarial perturbations
First, we showcase Stability Training: a general approach to stabilize machine
learning models, in particular deep neural networks, and make them more robust
to visual perturbations. These perturbations can be viewed as weak adversarial
perturbations.

To this end, we introduce a fast and effective technique that makes the output of neural
networks significantly more robust, while maintaining or improving state-of-the-art
performance on the original task. Our method is fast in practice and can be used at a
minimal additional computational cost.

To do so, Stability Training operates through two mechanisms: 1) introducing an
additional Stability Training objective and 2) training on a large class of distorted
copies of the input. The goal of this approach is to force the prediction function of
the model to be more constant around the input data, while preventing underfitting
on the original learning objective.

We validate our method by stabilizing state-of-the-art classification and ranking
networks based on the Inception architecture Christian Szegedy, Liu, et al., 2015;
Wang et al., 2014. We evaluate on three tasks: near-duplicate image detection,
similar-image ranking, and image classification.
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Figure 5.3: Detecting adversarial examples using NeuralFP with N = 2 fingerprints,
for K-class classification. NeuralFP separates real data x (top) from adversarial
examples x′ = x + η (bottom) by 1) adding N perturbations ∆xi, (i = 1, . . . , N)
to each input, and 2) comparing model features ϕ(x + ∆xi) with K sets of valid
fingerprints ϕ(x) + ∆yi, j , ( j = 1 . . .K). If a match is found, it classifies the input as
“real” (x), and if not, flags it “fake” (x′).

Furthermore, we show the impact of Stability Training by visualizing what pertur-
bations the model has become robust to. Finally, we show that stabilized networks
offer robust performance and significantly outperform unstabilized models on noisy
and corrupted data.

NeuralFingerprinting: detecting strong adversarial perturbations
Second, we discuss NeuralFingerprinting (NeuralFP), a fast, secure and effective
method to detect strong adversarial perturbations.

DNNs are also vulnerable to contrived adversarial examples: an attacker can add
small perturbations to real input data, that maximally change the model’s output
(Christian Szegedy, Zaremba, et al., 2013b; Ian J. Goodfellow, Jonathon Shlens, and
Christian Szegedy, 2014). To make DNNs robust against such adversarial examples,
we propose NeuralFingerprinting (NeuralFP): a fast, secure and effective method to
detect adversarial examples.

The key intuition for NeuralFP is that we can encode fingerprint patterns into the
behavior of a neural network around the input data. This pattern characterizes the
network’s expected behavior around real data and can thus be used to reject fake data,
where the model outputs are not consistent with the expected fingerprint outputs. This
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process is shown in Figure 5.3. This approach is attractive as encoding fingerprints
is feasible and simple to implement during training, and evaluating fingerprints is
computationally cheap. Furthermore, NeuralFP does not require knowledge of the
adversary’s attack method, and differs from state-of-the-art methods (Meng and
Chen, 2017; Ma et al., 2018) that use auxiliary classifiers.

We theoretically characterize the feasibility and effectiveness of NeuralFP, and
experimentally validate that 1) NeuralFP achieves almost perfect detection AUC
scores against state-of-the-art adversarial attacks on various datasets and 2) adaptive
attackers with knowledge of the fingerprints fail to craft successful attacks. To
summarize, our key contributions are:

• We present NeuralFP: a simple and secure method to detect adversarial
examples that does not rely on knowledge of the attack mechanism.

• We formally characterize the effectiveness of NeuralFP for linear classification.

• We empirically show that NeuralFP achieves state-of-the-art near-perfect
AUC-scores on detecting and separating unseen test data and the strongest
known adversarial attacks.

• We empirically show that the performance of NeuralFP is robust to the choice
of fingerprints and is effective for a wide range of choices of hyperparameters.

• We also show thatNeuralFP can be robust even in the adaptive-whitebox-attack
setting, where an adaptive attacker has knowledge of the fingerprint data.

5.2 Stability training
We now present our Stability Training approach, and how it can be applied to learn
robust feature embeddings and class label predictions.

Stability objective
Our goal is to stabilize the output f (x) ∈ Rm of a neural network N against small
natural perturbations to a natural image x ∈ [0, 1]w×h of size w × h, where we
normalize all pixel values. Intuitively, this means that we want to formulate a
training objective that flattens f in a small neighborhood of any natural image x: if a
perturbed copy x′ is close to x, we want f (x) to be close to f (x′), that is

∀x′ : d(x, x′) small⇔ D ( f (x), f (x′)) small. (5.1)
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Here d is the distance on [0, 1]w×h and D is an appropriate distance measure in
feature space.

Given a training objective L0 for the original task (e.g., classification, ranking), a
reference input x and a perturbed copy x′, we can implement the stability objective
(5.1) as:

L(x, x′; θ) = L0(x; θ) + αLstability(x, x′; θ), (5.2)

Lstability(x, x′; θ) = D ( f (x), f (x′)) , (5.3)

where α controls the strength of the stability term and θ denotes the weights of the
model N . The stability objective Lstability forces the output f (x) of the model to be
similar between the original x and the distorted copy x′. Note that our approach
differs from data augmentation: we do not evaluate the original loss L on the distorted
inputs x′. This is required to achieve both output stability and performance on the
original task, as we explain in 5.2.

Given a training dataset D, Stability Training now proceeds by finding the optimal
weights θ∗ for the training objective (5.2), that is, we solve

θ∗ = argmin
θ

∑
xi∈D,d(xi,x′i )<ε

L(xi, x′i ; θ). (5.4)

To fully specify the optimization problem, we firstly need a mechanism to generate,
for each training step, for each training sample xi, a random perturbed copy x′i .
Secondly, we need to define the distance D, which is task-specific.

Sampling perturbed images x′

Sampling using Gaussian noise. During training, at every training step we need to
generate perturbed versions x′ of a clean image x to evaluate the stability objective
(5.3).

A natural approach would be to augment the training data with examples with
explicitly chosen classes of perturbation that the model should be robust against.
However, it is hard to obtain general robustness in this way, as there are many classes
of perturbations that cause output instability, and model robustness to one class of
perturbations does not confer robustness to other classes of perturbations.

Therefore, we take a general approach and use a sampling mechanism that adds
pixel-wise uncorrelated Gaussian noise ε to the visual input x. If k indexes the raw
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Figure 5.4: Examples of reference and distorted training images used for Stability
Training. Left: an original image x. Right: a copy x′ perturbed with pixel-wise
uncorrelated Gaussian noise with σ = 0.06, in normalized pixel values. During
Stability Training, we use dynamically sampled copies x′ together with the stability
loss (5.3) to flatten the prediction function f around the original image x.

Gaussian noise strength σ 0.0 0.1 0.2
Triplet ranking score @ top-30 7,312 6,300 5,065

Table 5.1: Underfitting by data augmentation with Gaussian noise on an image
ranking task (higher score is better), see section 5.4 for details. The entry with
σ = 0.0 is the model without data augmentation.

pixels, a new sample is given by:

x′k = xk + εk, εk ∼ N

(
0, σ2

k

)
, σk > 0, (5.5)

where σ2
k is the variance of the Gaussian noise at pixel k. In this work, we use

uniform sampling σk = σ to produce unbiased samples of the neighborhood of x,
using the variance σ2 as a hyper-parameter to be optimized.

Preventing underfitting. Augmenting the training data by adding uncorrelated
Gaussian noise can potentially simulate many types of perturbations. Training on
these extra samples could in principle lead to output robustness to many classes of
perturbations. However, we found that training on a dataset augmented by Gaussian
perturbation leads to underfitting, as shown in Table 5.1. To prevent such underfitting,
we do not evaluate the original loss L0 on the perturbed images x′ in the full training
objective (5.2), but only evaluate the stability loss (5.3) on both x and x′. This
approach differs from data augmentation, where one would evaluate L0 on the extra
training samples as well. It enables achieving both output stability and maintaining
high performance on the original task, as we validate empirically.
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Stability for feature embeddings
We now show how Stability Training can be used to obtain stable feature embeddings.
In this work, we aim to learn feature embeddings for robust similar-image detection.
To this end, we apply Stability Training in a ranking setting. The objective for
similar-image ranking is to learn a feature representation f (x) that detects visual
image similarity Wang et al., 2014. This learning problem is modeled by considering
a ranking triplet of images (q, p, n): a query image q, a positive image p that is
visually similar to q, and a negative image n that is less similar to q than p is.

The objective is to learn a feature representation f that respects the triplet ranking
relationship in feature space, that is,

D( f (q), f (p)) + g < D( f (q), f (n)), g > 0, (5.6)

where g is a margin and D is the distance. We can learn a model for this objective by
using a hinge loss:

L0(q, p, n) = max (0, g + D( f (q), f (p)) − D( f (q), f (n))) . (5.7)

In this setting, a natural choice for the similarity metric D is the L2-distance. The
stability loss is,

Lstability (x, x′) = | | f (x) − f (x′)| |2. (5.8)

To make the feature representation f stable using our approach, we sample triplet
images (q′, p′, n′) close to the reference (q, p, n), by applying (5.5) to each image in
the triplet.

Stability for classification
We also apply Stability Training in the classification setting to learn stable prediction
labels for visual recognition. For this task, we model the likelihood P (y|x; θ) for
a labeled dataset

{
(xi, ŷi)

}
i∈I , where ŷ represents a vector of ground truth binary

class labels and i indexes the dataset. The training objective is then to minimize the
standard cross-entropy loss

L0(x; θ) = −
∑

j

ŷ j log P
(
y j |x; θ

)
, (5.9)

where the index j runs over classes. To apply Stability Training, we use the
KL-divergence as the distance function D:

Lstability(x, x′; θ) = −
∑

j

P
(
y j |x; θ

)
log P

(
y j |x′; θ

)
, (5.10)
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Figure 5.5: The architecture used to apply Stability Training to any given deep
neural network. The arrows display the flow of information during the forward
pass. For each input image I, a copy I′ is perturbed with pixel-wise independent
Gaussian noise ε . Both the original and perturbed version are then processed by
the neural network. The task objective L0 is only evaluated on the output f (I) of
the original image, while the stability loss Lstability uses the outputs of both versions.
The gradients from both L0 and Lstability are then combined into the final loss L and
propagated back through the network. For triplet ranking training, three images are
processed to compute the triplet ranking objective.

which measures the correspondence between the likelihood on the natural and
perturbed inputs.

5.3 Implementation
Network
Base network. In our experiments, we use a state-of-the-art convolutional neural
network architecture, the Inception network Christian Szegedy, Liu, et al., 2015
as our base architecture. Inception is formed by a deep stack of composite layers,
where each composite layer output is a concatenation of outputs of convolutional
and pooling layers. This network is used for the classification task and as a main
component in the triplet ranking network.

Triplet ranking network. Triplet ranking loss (5.7) is used train feature embeddings
for image similarity and for near duplicate image detection, similar to Wang et al.,
2014. This network architecture uses an Inception module (while in Wang et al.,
2014, a network like Krizhevsky, Sutskever, and Hinton, 2012 is used) to process
every input image x at full resolution and uses 2 additional low-resolution towers.
The outputs of these towers map into a 64-dimensional L2-normalized embedding
feature f (x). These features are used for the ranking task: for each triplet of images
(q, p, n), we use the features ( f (q), f (p), f (n)) to compute the ranking loss and train
the entire architecture.
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Stability training. It is straightforward to implement Stability Training for any given
neural network by adding a Gaussian perturbation sampler to generate perturbed
copies of the input image x and an additional stability objective layer. This setup is
depicted in Figure 5.5.

Distortion types

Figure 5.6: Examples of natural distortions that are introduced by common types of
image processing. From left to right: original image (column 1 and 5), pixel-wise
differences from the original after different forms of transformation: thumbnail
downscaling to 225 × 225 (column 2 and 6), jpeg compression at quality level 50%
(column 3 and 7) and random cropping with offset 10 (column 4 and 8). For clarity,
the jpeg distortions have been up-scaled by 5×. Random cropping and thumbnail
resizing introduce distortions that are structured and resemble the edge structure
of the original image. In contrast, jpeg compression introduces more unstructured
noise.

To demonstrate the robustness of our models after Stability Training is deployed,
we evaluate the ranking, near-duplicate detection and classification performance of
our stabilized models on both the original and transformed copies of the evaluation
datasets. To generate the transformed copies, we apply visual perturbations that
widely occur in real-world visual data and that are a result of lossy image processes.

jpeg compression. jpeg compression is a commonly used lossy compressionmethod
that introduces small artifacts in the image. The extent and intensity of these artifacts
can be controlled by specifying a quality level q. In this work, we refer to this as
jpeg-q.

Thumbnail resizing. Thumbnails are smaller versions of a reference image and
obtained by downscaling the original image. Because convolutional neural networks
use a fixed input size, both the original image and its thumbnail have to be rescaled
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to fit the input window. Downscaling and rescaling introduces small differences
between the original and thumbnail versions of the network input. In this work we
refer to this process as thumb-A, where we downscale to a thumbnail with A pixels,
preserving the aspect ratio.

Random cropping. We also evaluated the performance on perturbations coming
from random crops of the original image. This means that we take large crops with
window size w′ × h′ of the original image of size w × h, using an offset o > 0 to
define w′ = w − o, h′ = h − o. The crops are centered at random positions, with the
constraint that the cropping window does not exceed the image boundaries. Due to
the fixed network input size, resizing the cropped image and the original image to
the input window introduces small perturbations in the visual input, analogous to
thumbnail noise. We refer to this process as crop-o, for crops with a window defined
by offset o.

Optimization
To perform Stability Training, we solved the optimization problem (5.2) by training
the network using mini-batch stochastic gradient descent with momentum, dropout
Srivastava et al., 2014, RMSprop and batch normalization Ioffe andChristian Szegedy,
2015. To tune the hyper-parameters, we used a grid search, where the search ranges
are displayed in Table 5.2.

Hyper-parameter Start range End range
Noise standard deviation σ 0.01 0.4
Regularization coefficient α 0.001 1.0
Learning rate λ 0.001 0.1

Table 5.2: Hyper-parameter search range for the Stability Training experiments.

As Stability Training requires a distorted version of the original training example, it
effectively doubles the training batch-size during the forward-pass, which introduces
a significant extra computational cost. To avoid this overhead, in our experiments we
first trained the network on the original objective L0(x; θ) only and started Stability
Training with L(x, x′; θ) only in the fine-tuning phase. Additionally, when applying
Stability Training, we only fine-tuned the final fully-connected layers of the network.
Experiments indicate that this approach leads to the same model performance as
applying Stability Training right from the beginning and training the whole network
during Stability Training.
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5.4 Evaluation of Stability Training
Here we present experimental results to validate our Stability Training method and
characterize stabilized models.

• Firstly, we evaluate stabilized features on near-duplicate detection and similar-
image ranking tasks.

• Secondly, we validate our approach of stabilizing classifiers on the ImageNet
classification task.

We use training data as in Wang et al., 2014 to train the feature embeddings for
near-duplicate detection and similar-image ranking. For the classification task,
training data from ImageNet are used.

Near-duplicate detection
Detection criterion. Weused our stabilized ranking feature to perform near-duplicate
detection. To do so, we define the detection criterion as follows: given an image pair
(a, b), we say that

a, b are near-duplicates ⇐⇒ || f (a) − f (b)| |2 < T, (5.11)

where T is the near-duplicate detection threshold.

Near-duplicate evaluation dataset. For our experiments, we generated an image-
pair dataset with two parts: one set of pairs of near-duplicate images (true positives)
and a set of dissimilar images (true negatives).

We constructed the near-duplicate dataset by collecting 650,000 images from randomly
chosen queries on Google Image Search. In this way, we obtained a representative
sample of un-curated images. We then combined every image with a copy perturbed
with the distortion(s) from section 5.3 to construct near-duplicate pairs. For the set of
dissimilar images, we collected 900,000 random image pairs from the top 30 Image
Search results for 900,000 random search queries, where the images in each pair
come from the same search query.

Experimental results

Precision-recall performance. To analyze the detection performance of the sta-
bilized features, we report the near-duplicate precision-recall values by varying
the detection threshold in (5.11). Our results are summarized in Figure 5.7. The
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Figure 5.7: Precision-recall performance for near-duplicate detection using feature
distance thresholding on deep ranking features. We compare Inception-based deep
ranking features (blue), and the same features with Stability Training applied (red).
Every graph shows the performance using near-duplicates generated through different
distortions. Left: thumb-50k. Middle: jpeg-50. Right: crop-10. Across the three
near-duplicate tasks, the stabilized model significantly improves the near-duplicate
detection precision over the baseline model.

stabilized deep ranking features outperform the baseline features for all three types
of distortions, for all levels of fixed recall or fixed precision. Although the baseline
features already offer very high performance in both precision and recall on the
near-duplicate detection task, the stabilized features significantly improve precision
across the board. For instance, recall increases by 1.0% at 99.5% precision for
thumbnail near-duplicates, and increases by 3.0% at 98% precision for jpeg near-
duplicates. This improved performance is due to the improved robustness of the
stabilized features, which enables them to correctly detect near-duplicate pairs that
were confused with dissimilar image pairs by the baseline features, as illustrated in
Figure 5.1.

Feature distance distribution. To analyze the robustness of the stabilized features,
we show the distribution of the feature distance D( f (x), f (x′)) for the near-duplicate
evaluation dataset in Figure 5.8, for both the baseline and stabilized deep ranking
feature. Stability training significantly increases the feature robustness, as the
distribution of feature distances becomes more concentrated towards 0. For instance,
for the original feature 76% of near-duplicate image pairs has feature distance smaller
than 0.1, whereas this is 86% for the stabilized feature, i.e., the stabilized feature is
significantly more similar for near-duplicate images.

Stabilized feature distance. We also present our qualitative results to visualize
the improvements of the stabilized features over the original features. In Figure
5.9 we show pairs of images and their jpeg versions that were confusing for the
un-stabilized features, i.e., that lay far apart in feature space, but whose stabilized
features are significantly more close. This means that they are correctly detected as
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Figure 5.8: Cumulative distribution of the deep ranking feature distance
D( f (xi), f (x′i )) = | | f (xi) − f (x′i )| |2 for near-duplicate pairs (xi, x′i ). Red: base-
line features, 76% of distribution < 0.1. Green: stabilized features using Stability
Training with α = 0.1, σ = 0.2, 86% of distribution < 0.1. The feature distances are
computed over a dataset of 650,000 near-duplicate image pairs (reference image and a
jpeg-50 version). Applying Stability Trainingmakes the distribution of D( f (x), f (x′))
more concentrated towards 0 and hence makes the feature f significantly more stable.

near-duplicates for much more aggressive, that is, lower detection thresholds by the
stabilized feature, whereas the original feature easily confuses these as dissimilar
images. Consistent with the intuition that Gaussian noise applies a wide range of
types of perturbations, we see improved performance for a wide range of perturbation
types. Importantly, this includes even localized, structured perturbations that do not
resemble a typical Gaussian noise sample.

Similar image ranking
The stabilized deep ranking features (see section 5.2) are evaluated on the similar
image ranking task. Hand-labeled triplets from Wang et al., 20141 are used as
evaluation data. There are 14,000 such triplets. The ranking score-at-top-K (K = 30)
is used as evaluation metric. The ranking score-at-top-K is defined as

ranking score @top-K =

# correctly ranked triplets − # incorrectly ranked triplets, (5.12)

where only triplets whose positive or negative image occurs among the closest K

results from the query image are considered. This metric measures the ranking
performance on the K most relevant results of the query image. We use this evaluation
metric because it reflects better the performance of similarity models in practical
image retrieval systems as users pay most of their attentions to the results on the first
few pages.

1https://sites.google.com/site/imagesimilaritydata/.

https://sites.google.com/site/imagesimilaritydata/
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0.102 → 0.030 0.107 → 0.048

0.105 → 0.039 0.100 → 0.054

0.106 → 0.013 0.104 → 0.055

0.128 → 0.041 0.131 → 0.072

0.122 → 0.068 0.120 → 0.062

0.150 → 0.079 0.125 → 0.077

Figure 5.9: Examples of near-duplicate image pairs that are robustly recognized as
near-duplicates by stabilized features (small feature distance), but easily confuse
un-stabilized features (large feature distance). Left group: using jpeg-50 compression
corruptions. Right group: random cropping crop-10 corruptions. For each image
pair, we display the reference image x, the difference with its corrupted copy x − x′,
and the distance in feature space D ( f (x), f (x′)) for the un-stabilized (red) and
stabilized features (green).

Experimental results.

Our results for triplet ranking are displayed in Table 5.3. The results show that
applying Stability Training improves the ranking score on both the original and
transformed versions of the evaluation dataset. The ranking performance of the
baseline model degrades on all distorted versions of the original dataset, showing that
it is not robust to the input distortions. In contrast, the stabilized network achieves
ranking scores that are higher than the ranking score of the baseline model on the
original dataset.

Image classification
In the classification setting, we validated Stability Training on the ImageNet classifi-
cation task Russakovsky et al., 2015, using the Inception network Christian Szegedy,
Liu, et al., 2015. We used the full classification dataset, which covers 1,000 classes
and contains 1.2 million images, where 50,000 are used for validation. We evaluated
the classification precision on both the original and a jpeg-50 version of the validation
set. Our benchmark results are in Table 5.4.

Applying Stability Training to the Inception network makes the class predictions
of the network more robust to input distortions. On the original dataset, both the
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Distortion Deep ranking Deep ranking + ST
Original 7,312 7,368
jpeg-50 7,286 7,360
thumb-
30k

7,160 7,172

crop-10 7,298 7,322

Table 5.3: Ranking score @top-30 for the deep ranking network with and without
Stability Training (higher is better) on distorted image data. Stability training
increases ranking performance over the baseline on all versions of the evaluation
dataset. We do not report precision scores, as inWang et al., 2014, as the ranking score
@top-30 agrees more with human perception of practical similar image retrieval.

Precision @top-5 Original jpeg-50 jpeg-10
Szegedy et al Christian Szegedy, Liu, et al., 2015 93.3%
Inception 93.9% 92.4% 83.0%
Stability training 93.6% 92.7% 88.3%

Precision @top-1
Inception 77.8% 75.1% 61.1%
Stability training 77.9% 75.7% 67.9%

Table 5.4: Classification evaluation performance of Inception with Stability Training,
evaluated on the original and jpeg versions of ImageNet. Both networks give
similar state-of-the-art performance on the original evaluation dataset (note that the
performance difference on the original dataset is within the statistical error of 0.3%
Russakovsky et al., 2015). However, the stabilized network is significantly more
robust and outperforms the baseline on the distorted data.

baseline and stabilized network achieve state-of-the-art performance. However, the
stabilized model achieves higher precision on the distorted evaluation datasets, as
the performance degrades more significantly for the baseline model than for the
stabilized model. For high distortion levels, this gap grows to 5% to 6% in top-1 and
top-5 precision.

Robust classification on noisy data. We also evaluated the effectiveness of Stability
Training on the classification performance of Inception on the ImageNet evaluation
dataset with increasing jpeg corruption. In this experiment, we collected the
precision @top-1 scores at convergence for a range of the training hyper-parameters:
the regularization coefficient α and noise standard deviation σ. A summary of these
results is displayed in Figure 5.10.
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Figure 5.10: A comparison of the precision @ top-1 performance on the ImageNet
classification task for different Stability Training hyper-parameters α, using jpeg
compressed versions of the evaluation dataset at decreasing quality levels, using a
fixed σ = 0.04. At the highest jpeg quality level, the baseline and stabilized models
perform comparably. However, as the quality level decreases, the stabilized model
starts to significantly outperform the baseline model.

At the highest jpeg quality level, the performance of the baseline and stabilizedmodels
are comparable, as the visual distortions are small. However, as the jpeg distortions
become stronger, the stabilized model starts to significantly outperform the baseline
model. This qualitative behavior is visible for a wide range of hyper-parameters, for
instance, using α = 0.01 and σ = 0.04 results in better performance already below
the 80% quality level.

5.5 Fingerprinting for Detection of Adversarial Examples
We now consider how to defend against strong adversarial examples by detecting
such attacks with neural fingerprinting.

We consider supervised classification, where we aim to learn a model f (x; θ) from
labeled data

{
(xi, y∗i)

}
i∈I , where x ∈ Rl and y is a 1-hot label vector y ∈ {0, 1}K (K

classes) corresponding to y∗. The model f predicts class probabilities P(y |x; θ):

f (x; θ) j =
exp h(x; θ) j∑
l exp h(x; θ)l

, (5.13)

with logits h(x; θ) ∈ RK and can be learned via a loss function L(x, y; θ), e.g.
cross-entropy loss. This data is generated by sampling from a data-generating
distribution Pdata(x, y). This distribution characterizes “real” data (x, y), for which
Pdata(x, y) > 0. In this spirit, we define fake data to be inputs that are not from the
underlying data-distribution from which the training data was sampled from, i.e.
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Algorithm 1 NeuralFP
1: Input: example x, comparison function D (see Eqn 5.17), threshold τ > 0, ξi, j

(see Eqn 5.16), model f .
2: Output: accept / reject.
3: if ∃ j : D(x, f , ξi, j) ≤ τ then
4: Return: accept # x is real
5: else
6: Return: reject # x is fake
7: end if

inputs where the model prediction cannot be relied on. This includes outliers and
adversarially crafted inputs. Formally, for a distribution Pdata(x, y), we define fake
data as input-label pairs (x′, y′) for which Pdata(x′, y′) = 0.

Recently, there has been increased focus on adversarial attacks that produce small
perturbations, exploiting the behavior of a neural network at an input point x. A
(carefully) crafted adversarial perturbation η causes a large change in model output,
i.e. for δ, ρ > 0:

| |η | | ≤ δ, | | f (x + η) − f (x)| | > ρ, (5.14)

such that the class predicted by the model changes:

k′ = argmax
j

f (x + η) j , argmax
j

f (x) j = k . (5.15)

For instance, the Fast-Gradient Sign Method (Ian J. Goodfellow, Jonathon Shlens,
and Christian Szegedy, 2014) perturbs along the gradient: η ∝

(
sign ∂L(x,y;θ)

∂x

)
.

Neural Fingerprinting. We propose NeuralFP as a defense against adversarial
examples: a method that detects whether an input-output pair (x, ŷ) is consistent with
the data distribution (“real”), or is adversarial (“fake”). This algorithm is summarized
in Algorithm 1 and Figure 5.3. The key idea of NeuralFP is to detect adversarial
inputs by checking if the network’s sensitivity in specific directions (∆x) around x

matches a set of output-perturbations (∆y) that can be chosen by the defender. These
chosen output-changes are encoded into the network during training, and can then be
used to detect fake (outlier) inputs.

We will discuss strategies to choose the fingerprints (∆x,∆y) in Section 5.5.
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Notation. Formally, we define a fingerprint ξ as the tuple ξ , (∆x,∆y). For
K-class classifcation, we define a set of fingerprints:

ξi, j = (∆xi,∆yi, j), i = 1, . . . , N, j = 1, . . . ,K, (5.16)

where ξi, j is the ith fingerprint for class j. Here, the ∆xi (∆yi, j) are input (output)
perturbations that are chosen by the defender. Note that across classes j = 1, 2 . . . ,K ,
we use the same directions ∆xi, and that ∆yi, j can be either discrete or continuous
depending on the signature of f (x; θ). To characterize sensitivity, we define
F(x,∆xi) to measure the change in model output. A simple choice could be
F(x,∆xi) = f (x + ∆xi) − f (x) (although we will use variations hereafter). To
compare F(x,∆xi)with the reference output-perturbation∆yi, we use the comparison
function D:

D(x, f , ξi, j) ,
1
N

N∑
i=1
| |F(x,∆xi) − ∆yi, j | |2. (5.17)

Encoding Fingerprints. Once a defender has constructed a set of desired finger-
prints (5.16), the chosen fingerprints can be embedded into the network’s response
by adding a fingerprint regression loss during training. Given a classification model
(5.13) with logits h(x; θ) ∈ RK , the fingerprint loss is:

Lfp(x, y, ξ; θ) =
1
N

N∑
i=1
| |F(x,∆xi) − ∆yi,k | |22, (5.18)

where k is the ground truth class for example x and ∆yi,k are the fingerprint outputs.
Note that we only train on the fingerprints for the ground truth class. The total
training objective then is:

min
θ

∑
(x,y)

L0(x, y; θ) + αLfp(x, y, ξ; θ), (5.19)

where L0 is a loss function for the task (e.g. cross-entropy loss for classification) and
α a positive scalar. In the hereafter we will use α = 1, but in practice, we choose α
such that it balances the task and fingerprint losses. The procedure trains the model
so that the function D has low values around the data-distribution. We then exploit
this characterization to detect for outliers using D.

Testing for Outliers NeuralFP classifies a new input x′ as real if the change in
model output is close to the∆yi, j for some class j, for all i. Here, we use a comparison
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θ NFP

× × blackbox-attack
X × partial-whitebox-attack
X X adaptive-whitebox-attack

Table 5.5: Threat models: attacker knows θ and / or NFP.

function D and threshold τ > 0 to define the level of agreement required, i.e. we
declare x′ real when D is below a threshold τ.

x′ is real⇔ ∃ j : D(x, f , ξ ·, j) ≤ τ. (5.20)

Hence, the NeuralFP test is defined by the data: NFP = (ξ,D, τ).

Complexity. Extra computation comes from Algorithm 1 which requires O(NK)

forward passes to compute the differences F(x,∆xi). A straightforward implementa-
tion is to check (5.20) iteratively for all classes, and stop whenever an agreement
is seen or all classes have been exhausted. However, this can be parallelized and
performed in minibatches for real-time applications.

Threat Model Analysis
We study NeuralFP under various threat models (Table 5.5), where the attacker has
varying levels of knowledge of NFP and model f (x; θ).

In the partial-whitebox-attack (PWA) setting, the attacker has access to θ, can
query f (x; θ) and its derivatives, but does not know NFP. We evaluate under this
setting in Section 5.6. Most defenses reported in Section 5.6 study attacks under this
threat model.

If the attacker can either reverse engineer or has access to the fingerprints, he can
mount a adapative-whitebox-attack (discussed below) that adapts to the fingerprints
and tries to fool the detector. Reverse engineering the NFP by brute-force search can
be combinatorially hard. To see this, consider a simple setting where only the ∆yi. j

are unknown, and that the attacker knows that each fingerprint is discrete, i.e. each
component ∆yi. j

k = ±1. Then the attacker would have to search over combinatorially
(O(2NK)) many ∆y to find the subset of ∆y that satisfy the detection criterion in
equation (5.20). Further, smaller τs reduce the volume of inputs accepted as real.

In the adaptive-whitebox-attack (AWA) setting, the adversary has perfect knowledge
of NFP in addition to the information available under PWA. While a key part of the



100

Figure 5.11: Geometry of fingerprints for SVMs with linearly separable data. Let
d(x) be the distance of x to the decision boundary (see Thm 1). δmax

± (δmin
± ) denote

the maximal (minimal) distances of the positive (x+) and negative (x−) examples to
the separating hyperplane 〈w, x〉 + b = 0. The fingerprint ∆x1 with 〈∆x1, e〉 = δmin

−

will have f (x− + ∆x) < 0 and f (x−) < 0 for all x− in the data distribution (red
region). Hence, ∆x1 will flag all x′ in the regions −δmin

− < d(x′) < 0 as “fake” (d(x′)
is the signed distance of x′ from the boundary), since for those x′ it will always see a
change in predicted class. Similarly, ∆x2 with 〈∆x2, e〉 = δmax

− always sees a class
change for real x−, thus flagging all x′ with d(x′) < −δmax

− as “fake”.

defense relies on the fingerprints being hidden from the attacker, we also study the
vulnerability of the defense when the attacker has access to NFP. For this setting, first,
we characterize the region of inputs that will be classified as “real” for a given set
of fingerprints ξi. j and the correspondence with the support of the data distribution
Pdata(x, y) (see Theorem 1) for binary classification with linear models. Second,
we empirically show the robustness of NeuralFP (for DNNs) to adaptive attacks in
Section 5.6. Ma et al., 2018; Xu, Evans, and Qi, 2018 are other recent defenses that
investigate the robustness to such adaptive attacks.

The blackbox-attack setting is the weakest setting, where the adversary has no
knowledge of the model parameters or NFP. We evaluate NeuralFP under this setting
in Appedix 5.6. Additionally, we define the notion of whitebox-defense (the defender
is aware of the attack mechanism) and blackbox-defense (defender has no knowledge
about attacker).
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Choosing Fingerprints and Characterizing Model Response – Linear Models
We first analyze NeuralFP for SVMs – binary classification with a linear model

f (x) = 〈w, x〉 + b, ŷ = sign f (x) ∈ {−1, 1} , (5.21)

on inputs x ∈ Rn, where n � 1 (e.g. n = 900 for MNIST). The SVM defines a
hyperplane f (x) = 0 to separate positive (ŷ = +1) from negative examples (ŷ = −1).
We will assume that the positive and negative examples are linearly separable by
a hyperplane defined by a normal e = w

| |w | |, | |e| | = 1. We define the minimal and
maximal distance from the examples to the hyperplane along e as:

δmin
± = min

a:ya=±1
|〈xa, e〉| , δmax

± = max
a:ya=±1

|〈xa, e〉| . (5.22)

In this setting, the set of x classified as “real” by fingerprints is determined by the
geometry of f (x). Here, for detection we measure the exact change in predicted
class using

F(x,∆xi) = sign
(
〈w, x + ∆xi〉 + b

)
− sign (〈w, x〉 + b) ∈ {−2, 0, 2} , (5.23)

use τ = 0 and D(x,∆x) as in (5.17). The following Theorem characterizes fingerprints
for SVMs:

Theorem 1 (Fingerprint Detection for SVM). For an SVM with e = w
| |w | | and

separable data,

(∆x1 = δmin
− e,∆y1,− = 0), (5.24)

(∆x2 = δmax
− e,∆y2,− = +2), (5.25)

(∆x3 = −δmax
+ e,∆y3,+ = −2), (5.26)

(∆x4 = −δmin
+ e,∆y4,+ = 0). (5.27)

will detect adversarial inputs x′ = x± + η as “fake” for which one the following hold:

d(x′) > δmax
+ , 0 < d(x′) < δmin

+ , d(x′) < −δmax
− , −δmin

− < d(x′) < 0, (5.28)

where d(x′) = 〈x′,w〉+b
| |w | | represents the signed distance of x′ from the separating

hyperplane. This choice of fingerprints is optimal, i.e., excludes the largest area of
“fake” data.

The proof for two fingerprints is shown in Figure 5.11. The full proof now follows.

Proof. Consider any perturbation η = λe that is positively aligned with w, and has
〈η, e〉 = δmin

− . Then for any negative example (x−,−1) (except for the support vectors
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that lie exactly δmin
− from the hyperplane), adding the perturbation η does not change

the class prediction:

sign f (x−) = −1, sign f (x− − η) = −1. (5.29)

The fingerprint in (5.24) is an example of such an η. However, if λ is large enough,
that is:

〈η, e〉 = δmax
− , (5.30)

(e.g. the fingerprint in (5.25)), for all negative examples (x−,−1) the class prediction
will always change (except for the x− that lie exactly δmax

− from the hyperplane):

sign f (x−) = −1, sign f (x− + η) = +1, (5.31)

Note that if η has a component smaller (or larger) than δmin
± , it will exclude fewer

(more) examples, e.g. those that lie closer to (farther from) the hyperplane. Similar
observations hold for fingerprints (5.26) and (5.27) and the positive examples x+.
Hence, it follows that for any x that lies too close to the hyperplane (closer than δmin

± ),
or too far (farther than δmax

± ), the model output after adding the four fingerprints will
never perfectly correspond to their behavior on examples x from the data distribution.
For instance, for any x that is closer than δmin

+ to the hyperplane, (5.27) will always
cause a change in class, while none was expected. Similar observations hold for
the other regions in (5.28). Since the SVM is translation invariant parallel to the
hyperplane, the fingerprints can only distinguish examples based on their distance
perpendicular to the hyperplane. Hence, this choice of λs is optimal.

Theorem 1 by itself does not prevent attacks parallel to the decision boundary; an
adversary could in principle add a (large) perturbation η that pushes a negative
example x− across the decision boundary to a region where the data distribution
Pdata(x− + η, y) = 0, but is classified as positive. However, this can be prevented by
checking the distance to the nearest example in the dataset.

Choosing Fingerprints and Characterizing Model Response – Nonlinear Mod-
els
In contrast to the linear setting, NeuralFP utilizes a softer notion of fingerprint
matching by checking whether the model outputs match (a pattern of) changes in
normalized-logits. Specifically, for K-class classification f (x; θ) is a distribution
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P(y |x; θ) (y ∈ RK) with logits h(x; θ), F is defined as:

F(x,∆xi) , ϕ(x + ∆xi) − ϕ(x), ϕ(x) ,
h(x; θ)
| |h(x; θ)| |

, (5.32)

where ϕ are the normalized logits. The logits are normalized so the DNN does not fit
the ∆y by making the weights arbitrarily large. Here, we use D(x,∆xi) as in (5.17).
Note that here ∆yi, j ∈ RK .

However, for nonlinear models (e.g., DNNs), the best fingerprint choice is not obvious,
as it is hard to prove optimality. To overcome this, we propose a straightforward
extension from the linear case, using randomly sampled fingerprints. Randomization
minimizes structural assumptions that might make NeuralFP exploitable. We
empirically found that this still provides effective detection.

Choosing ∆x For all experiments, we sampled the fingerprint directions ∆xi from
a uniform distribution (∆xi ∼ U(−ε, ε)l), where l is the input dimension, and each
pixel is uniformly randomly sampled in the range [−ε, ε]. Our experiments (see
Figure 5.15) suggest thatNeuralFP is not sensitive to the random values sampled. This
also suggests that the ∆xi could be chosen based on a different distribution/alternative
approaches.

Choosing ∆y For our experiments, we choose the ∆y so that the normalized-logit
of the true class either increases or decreases along the ∆xi (analogous to the linear
case). For e.g., for a 10-class classification task, if x is in class k we set

∆yk
l,k = −0.235, ∆yk

l=k = 0.73, k = 1, . . . , 10, (5.33)

, with | |∆y | | = 1. More generally, we evaluated using random ∆yi, j : for each ∆xi:

∆yi,k
l,k = −0.235(2p − 1), ∆yi,k

l=k = 0.7(2p − 1), p ∼ Bern
(
1
2

)
. (5.34)

Here p ∈ {0, 1} is a Bernoulli random variable, that is resampled for each ∆xi, For
this NFP, we achieved AUC-ROCs of > 95% across attacks with N = 30, ε = 0.05,
without extensive tuning. This suggests that NeuralFP is effective with (randomly
sampled) fingerprints as well.

Visualizing Fingerprints. To understand the behavior of fingerprinted non-linear
models we trained a neural network (2 hidden layers with 200 ReLU nodes each) to
distinguish between two Gaussian balls in a 2D space (Figure 5.12, left). Without
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Figure 5.12: Left: decision boundary without fingerprints. Center: with fingerprints,
red arrows indicate fingerprint-directions. The decision boundary is significantly
more non-linear. Right: contour plot of fingerprint loss. NeuralFP detects dark
regions as “real”, while lighter regions are “fake” (tunable through τ). Fingerprinting
create valleys of low-loss delineating the data-distribution from outliers.

fingerprints, the model learns an almost linear boundary separating the two balls
(compare with Figure 5.11). When we train to encode the fingerprints (5.33), we
observe that NeuralFP causes the model to learn a highly non-linear boundary
(Figure 5.12, center) forming pockets of low fingerprint-loss characterizing the
data-distribution (Figure 5.12,right). In this simple setting, NeuralFP learns to
delineate the data-distribution, where the darker regions are accepted as “real” and
the rest is rejected as “fake”. Figure 5.13 further confirms this intuition where
adversarial images (“fake”, outliers) have high fingerprint-loss.

5.6 Evaluating the Detection of Adversarial Attacks
We now empirically validate the effectiveness of NeuralFP, as well as analyze the
behavior and robustness of NeuralFP. First, we evaluate NeuralFP on distinguishing
between unseen real images and adversarial images, for data and models of varying
scales. We also study its sensitivity to varying hyperparameters. Lastly, we study the
robustness of NeuralFP under an adaptive-whitebox-attack.

DetectionPerformance. We report theAUC-ROCofNeuralFP onMNIST,CIFAR-
10 and MiniImagenet-20 against four state-of-the art untargeted2 partial-whitebox
attacks (Table 5.6):

• Fast Gradient Method (FGSM) (Ian J. Goodfellow, Jonathon Shlens, and
Christian Szegedy, 2014) and Basic Iterative Method (BIM) (Kurakin, Ian J.
Goodfellow, and Bengio, 2016) are both gradient based attacks with BIM

2Untargeted attacks can cause misclassification to any class; harder to defend against than a
targeted attack.
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Data Attack Success Bound on Adversarial
Rate Perturbation η

MNIST FGSM 88.13% | |η | |∞ ≤ 0.4
BIM-a 100% | |η | |∞ ≤ 0.4
BIM-b 100% | |η | |∞ ≤ 0.4

CIFAR FGSM 89.61 % | |η | |∞ ≤ 0.05
BIM-a 100% | |η | |∞ ≤ 0.05
BIM-b 100% | |η | |∞ ≤ 0.05

MiniImagenet FGSM 100% | |η | |∞ ≤ 16/255
BIM-b 100% | |η | |∞ ≤ 16/255

Table 5.6: Parameters and success rates
of evaluated attacks for different datasets.
CW-L2 and JSMAattacks are unbounded.
The bounds are relative to images with
pixel intensities in [0, 1].
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Figure 5.13: Fingerprint losses on 100
random test (blue) and adversarial (red)
CIFAR-10 images. We see a clear sepa-
ration in loss, illustrating that NeuralFP
is effective across many thresholds τ.

being an iterative variant of FGSM. We consider both BIM-a (iterates until
misclassification has been achieved) and BIM-b (iterates 50 times).

• Jacobian-based Saliency Map Attack (JSMA) (Papernot et al., 2015) perturbs
pixels using a saliency map.

• Carlini-Wagner Attack (CW-L2): an optimization-based attack, is one of the
strongest known attacks (N. Carlini and D. Wagner, 2016; Nicholas Carlini
and D. A. Wagner, 2017a), and optimizes to minimize the perturbation needed
for misclassification.

Following Ma et al., 2018, for each dataset we consider a randomly sampled pre-test-
set of 1328 test-set images, and discard misclassified pre-test images. For the test-set
of remaining images, we generate adversarial perturbations by applying each of the
above mentioned attacks. We report AUC-ROC on sets composed in equal measures
of the test-set and test-set adversarial examples. The AUC-ROC is computed by
varying the threshold τ.

Experimental Setup
For the CW-adaptive attack, we used the published code from https://github.
com/carlini/nn_robust_attacks. Code for the other attacks was obtained from
the paper (Ma et al., 2018).

Baselines. The baselines are LID Ma et al., 2018, a recent detection based defense;
KD; BU Feinman et al., 2017; all trained on FGSM, as in Ma et al., 2018. We use
published code for the attacks and code from Ma et al., 2018 for the baselines.

https://github.com/carlini/nn_robust_attacks
https://github.com/carlini/nn_robust_attacks


106

Data Method FGSM JSMA BIM-a BIM-b CW-L2

MNIST LID 99.68 96.36 99.05 99.72 98.66
KD 81.84 66.69 99.39 99.84 96.94
BU 27.21 12.27 6.55 23.30 19.09
KD+BU 82.93 47.33 95.98 99.82 85.68
NeuralFP 100.0 99.97 99.94 99.98 99.74

CIFAR-10 LID 82.38 89.93 82.51 91.61 93.32
KD 62.76 84.54 69.08 89.66 90.77
BU 71.73 84.95 82.23 3.26 89.89
KD+BU 71.40 84.49 82.07 1.1 89.30
NeuralFP 99.96 99.91 99.91 99.95 98.87

Table 5.8: DetectionAUC-ROCof blackbox-defenders (defender does not know attack
strategy) against partial-whitebox-attackers (knowmodel f (x; θ), but not fingerprints;
see Section 5.5), on MNIST, CIFAR-10 on test-set (“real”) and corresponding
adversarial (“fake”) samples (1328 pre-test samples each). NeuralFP outperforms
the baselines (LID, KD, BU) on MNIST and CIFAR-10 across attacks.

Layer Parameters
Convolution + ReLU + BatchNorm 5 × 5 × 32
MaxPool 2 × 2
Convolution + ReLU + BatchNorm 5 × 5 × 64
MaxPool 2 × 2
Fully Connected + ReLU + BatchNorm 200
Fully Connected + ReLU + BatchNorm 200
Softmax 10

Table 5.9: MNIST Model Used
Layer Parameters
Convolution + ReLU + BatchNorm 3 × 3 × 32
Convolution + ReLU + BatchNorm 3 × 3 × 64
MaxPool 2 × 2
Convolution + ReLU + BatchNorm 3 × 3 × 128
Convolution + ReLU + BatchNorm 3 × 3 × 128
MaxPool 2 × 2
Fully Connected + ReLU + BatchNorm 256
Fully Connected + ReLU + BatchNorm 256
Softmax 10

Table 5.10: CIFAR Model Used

Layer Parameters
Convolution + ReLU + BatchNorm 11 × 11 × 64
MaxPool 3 × 3
Convolution + ReLU + BatchNorm 5 × 5 × 192
MaxPool 3 × 3
Convolution + ReLU + BatchNorm 3 × 3 × 384
MaxPool 3 × 3
Convolution + ReLU + BatchNorm 3 × 3 × 256
MaxPool 3 × 3
Convolution + ReLU + BatchNorm 3 × 3 × 156
MaxPool 3 × 3
Fully Connected + ReLU + BatchNorm 3072
Dropout -
Fully Connected + ReLU + BatchNorm 1024
Dropout -
Softmax 20

Table 5.11: MiniImagenet-20 Model
Used

Experimental Results
MNIST. We trained a 5-layer ConvNet to 99.2 ± 0.1% test-accuracy, see Table 5.9.
The set of ∆xi ∈ R28×28 are chosen at random, with each pixel perturbation chosen
uniformly in [−ε, ε]. For each ∆xi, if x is of label-class k, ∆yi,k ∈ R10 is chosen to be
such that ∆yi,k

l,k = −0.235 and ∆yi,k
l=k = 0.73, with ‖∆y‖2 = 1. The AUC-ROCs for

the best N and ε using grid-search are reported in Table 5.8. We see that NeuralFP
achieves near-perfect detection with AUC-ROC of 99 − 100% across all attacks.
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Figure 5.14: AUC-ROC for different hyperparameters (left, middle) and ROC
curves (right) on MNIST (top) and CIFAR-10 (bottom). NeuralFP is robust across
attacks & hyperparameters with an AUC-ROC between 95 − 100%. Increasing N
improves performance, indicating more fingerprints are harder to fool. Increasing
the magnitude ε decreases AUC on CW-L2 only, suggesting that as adversarial
perturbations become of smaller magnitude, NeuralFP requires smaller detection
ranges.
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Figure 5.15: AUC-ROC mean µ and
standard-deviationσ for 32 randomly sam-
pled fingerprints (including randomizing
N) for CIFAR-10. The AUC-ROC across
all attacks varies little (σ < 1%), with σ
highest for CW-L2.

CIFAR-10. For CIFAR-10, we trained a 7-layer ConvNet (see Table 5.10, similar
to (N. Carlini and D. Wagner, 2016)) to 85 ± 1% accuracy. The ∆xi and ∆yi, j

are chosen similarly as for MNIST. Across attacks NeuralFP outperforms LID on
average by 11.77% and KD+BU, KD, BU even more substantially (Table 5.8). Even
compared to LID-whitebox, NeuralFP outperforms LID-whitebox on average by
8.0% (see Table 5.13).
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Data FGSM BIM-b
MiniImagenet-20 99.96 99.68

Table 5.12: Detection AUC-ROC of NeuralFP vs partial-whitebox-attacks on
MiniImagenet-20, N = 20, ε = 0.05.

MiniImagenet-20. We also evaluate on MiniImagenet-20 with 20 classes3 ran-
domly chosen from the 100 MiniImagenet classes (Vinyals et al., 2016). For this, we
trained an AlexNet network (see Table 5.11) on 10,600 images (not downsampled)
with 91.1% top-1 accuracy. We generated test-set adversarial examples using BIM-b
with 50 steps (NIPS 2017: Non-targeted Adversarial Attack n.d.) and FGSM. Here,
NeuralFP achieves AUC-ROCs of > 99.5% (Table 5.12)4.

Remarks. Surprisingly, FGSM is more successful against LID (Tables 5.8, 5.13),
compared to the stronger, iterative attacks. Athalye, Nicholas Carlini, and David
Wagner, 2018 suggests that such behavior is indicative of an obfuscated gradient
and potentially explains why it is harder for LID to defend against FGSM. Athalye,
Nicholas Carlini, and David Wagner, 2018 goes on to reduce the accuracy for the
LID defense to 0% using a high-confidence attack, oblivious to the defense. In
contrast to LID and other defenses that were brokenBuckman et al., 2018; Song
et al., 2018, NeuralFP does marginally worse against iterative attacks compared to
the non-iterative attacks, and does well against blackbox-attacks (5.6), indicating that
the defense’s functioning is not based on obfuscated gradients.

Visualization. Figure 5.13 shows that fingerprint-loss differs significantly for most
test and adversarial samples (across the 5 attacks in Table 5.6), enabling NeuralFP to
achieve close to 100% AUC-ROC.

Sensitivity and Efficiency Analysis. Next, we study the effect of changing N

(number of fingerprint directions) and ε on the AUC-ROC for MNIST and CIFAR-
10, see Figure 5.14 shows that NeuralFP performs well across a wide range of
hyperparameters and is robust to variation in the hyperparameters. With increasing ε,

3We use images from the following 20 ImageNet classes for our experiments:
n01558993, n02795169, n03062245, n03272010, n03980874, n04515003 n02110063,
n02950826, n03146219, n03400231, n04146614, n04612504, n02443484, n02981792,
n03207743, n03476684, n04443257, n07697537.

4 We could not obtain results for JSMA and CW-L2, which are computationally very expensive
for tasks of this size. Baselines numbers are not reported because of time constraints & unavailable
baseline implementations.
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the AUC-ROC for CW-L2 decreases. A possible explanation is that CW-L2 produces
smaller adversarial perturbations than other attacks, and for larger ε, fingerprints are
less sensitive to those small adversarial perturbations. However, the degradation
in performance is not substantial (∼ 4 − 8%) as we increase ε over an order of
magnitude. With increasing N , the AUC-ROC generally increases across attacks. We
conjecture that a larger set of fingerprints can detect perturbations in more directions
and hence result in better detection.

Figure 5.15 shows that NeuralFP achieves mean AUC-ROC of 98% − 100% against
all attacks, with standard deviation < 1%. This suggests that NeuralFP is not very
sensitive to the chosen fingerprints. Furthermore, the test accuracy with NeuralFP is
85 ± 1% on CIFAR-10 and 99.2 ± 0.1% on MNIST. This matches the accuracy for
the same models when trained without fingerprints.

Robustness to Adaptive Whitebox-Attackers. We consider an adaptive attack
that has full knowledge of the defense, similar to (Nicholas Carlini and D. A. Wagner,
2017a). The attacker (Adaptive-CW-L2) tries to find an adversarial sample x′ for input
x that also minimizes the fingerprint-loss, attacking model trained with NeuralFP. In
effect, the CW-L2 objective is modified as:

min
x′
‖x − x′‖2 + γ

(
LCW (x′) + Lfp (x′, y∗, ξ; θ)

)
(5.35)

Here, y∗ is the label-vector, γ ∈ [10−3, 106] is a scalar found through a bisection
search, Lfp is the fingerprint-loss we trained on and LCW is an objective encouraging
misclassification. Under this threat model, NeuralFP achieves an AUC-ROC of
98.79% for the CIFAR-10 task against Adaptive-CW-L2, with N = 30 and ε = 0.006
for a set of unseen test-samples (1024 pre-test) and the corresponding adversarial
examples. In contrast to other defenses that are vulnerable to Adaptive-CW-L2

(Nicholas Carlini and D. A. Wagner, 2017a), we find that NeuralFP is robust even
under this adaptive whitebox-attack threat model.

NeuralFP vs Whitebox-LID. We also compare LID against NeuralFP in the
setting where LID is aware of the attack mechanism and trains against the specific
attack mechanism (whitebox-LID, while NeuralFP still does not use any attacker
information.

In this unfair setting, we see whitebox-LID performs comparably on CW-L2, and
NeuralFP outperforms whitebox-LID against all other attacks, see Table 5.13.
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Data Method FGM JSMA BIM-a BIM-b CW-L2

MNIST Whitebox-LID 99.68 98.67 99.61 99.90 99.55
NeuralFP 100.0 99.97 99.94 99.98 99.74

CIFAR-10 Whitebox-LID 82.38 95.87 82.30 99.78 98.94
NeuralFP 99.96 99.91 99.91 99.95 98.87

Table 5.13: Detection AUC-ROC for NeuralFP, whitebox-LID against whitebox-
attackers (know model f (x; θ), but not fingerprints; see Section 5.5), on MNIST,
CIFAR-10 tasks on test-set (“real”) and corresponding adversarial (“fake”) samples
(1328 pre-test samples each). NeuralFP outperforms the baselines (LID, KD,
BU) on MNIST and CIFAR-10 across all attacks, except CW-L2 where it performs
comparably. A possibly explanation for LID’s improved performance against stronger,
iterative attacks is gradient masking (Athalye, Nicholas Carlini, and David Wagner,
2018).

Data Method FGM
MNIST NeuralFP 99.96
CIFAR-10 NeuralFP 99.92

Table 5.14: Detection AUC-ROC for NeuralFP against blackbox-attackers (know
dataset but not model or fingerprints), on MNIST, CIFAR-10 tasks on test-set (“real”)
and corresponding blackbox adversarial (“fake”) samples (1328 pre-test samples
each). NeuralFP achieves near perfect AUC-ROC scores in this setting against FGM.
Iterative attacks are known to not transfer well in the blackbox setting. For CIFAR-10,
the hyperparameters are N = 30, ε = 0.003 and for MNIST, the hyperparameters
are N = 10, ε = 0.03. We did not tune the parameters because this setting in itself
achieved near perfect detection rates.

Athalye, Nicholas Carlini, and David Wagner, 2018 provides a possible explanation
for this behavior for whitebox-LID, where defenses relying on obfuscated gradients
perform better against stronger attacks (CW-L2) compared to one-step weaker attacks.

Robustness to Blackbox Attackers. In Athalye, Nicholas Carlini, and David
Wagner, 2018, the authors indicate that testing against blackbox attacks is useful to
gauge if the defense is relying on gradient masking. To explore this aspect of our
defense, we construct adversarial examples for models trained without fingerprinting
and then test the ability of fingerprinted models to distinguish these from unseen
test-data. We find that the performance does not degrade from the whitebox-attack
setting, in contrast to other defenses evaluated in Athalye, Nicholas Carlini, and
David Wagner, 2018, where the performance degrades against blackbox-attacks.
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5.7 Related work
Adversarial examples. Recently, several machine learning algorithms were found
to have extreme instability against contrived input perturbations (Christian Szegedy,
Zaremba, et al., 2013a) called adversarial examples. An open question remained as
to whether such small perturbations that change the class label could occur without
intentional human intervention. In this work, we document that they do in fact occur.
Previous work has shown that training a classifier to resist adversarial perturbation
can improve its performance on both the original data and on perturbed data (I. J.
Goodfellow, J. Shlens, and C. Szegedy, 2014; Miyato et al., 2015). We extend
this approach by training our feature embeddings to resist the naturally occurring
perturbations that are far more common in practice.

Furthermore, our work differs drastically from Nguyen, Yosinski, and Clune, 2015,
which is about how a model responds to intentionally contrived inputs that don’t
resemble the original data at all. In contrast, in this paper we consider the stability to
practically widely occurring perturbations.

Defense via Data augmentation. A natural strategy to improve label stability is to
augment the training data with hard positives, which are examples that the prediction
model does not classify correctly with high confidence, but that are visually similar
to easy positives. Finding such hard positives in video data for data augmentation
has been used in Misra, Shrivastava, and Hebert, 2015; Kuznetsova et al., 2015; Prest
et al., 2012 and has been found to improve predictive performance and consistency.
As such, data augmentation with hard positives can confer output stability on the
classes of perturbations that the hard positives represent. However, Stability Training
differs from data augmentation in two ways. Firstly, we take a general approach by
proposing a method that intends to make model performance more robust to various
types of natural perturbations. Secondly, our proposed method does not use the extra
generated samples as training examples for the original prediction task, but only for
the stability objective.

Related Work. Several forms of defense to adversarial examples have been pro-
posed, including adversarial training, detection and reconstructing images using
adversarial networks (Meng and Chen, 2017). However, Nicholas Carlini and D. A.
Wagner, 2017a; Nicholas Carlini and D. A. Wagner, 2017b showed many defenses
are still vulnerable. Madry et al., 2017 employs robust-optimization techniques to
minimize the maximal loss the adversary can achieve through first-order attacks.
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Raghunathan, Steinhardt, and Liang, 2018; Kolter and Wong, 2017 train on convex
relaxations of the network to maximize robustness. Although these works are
complementary to NeuralFP, they do not scale very well to large neural networks
or high-resolution inputs. Several other recent defenses attempt to make robust
predictions by relying on randomization (Xie et al., 2018), introducing non-linearity
that is not differentiable (Buckman et al., 2018) and by relying on Generative
Adversarial Networks (Song et al., 2018; Pouya Samangouei, 2018) for denoising
images. Instead, we focus on detecting adversarial attacks.

Amongst defenses that study the detection of adversarial examples, Ma et al., 2018
detect adversarial samples using an auxiliary classifier trained to use an expansion-
based measure, local intrinsic dimensionality (LID). A similar approach to detection
is based on Kernel Density (KD) and Bayesian-Uncertainty (BU) using artifacts
from pre-trained networks Feinman et al., 2017. In contrast with these methods,
NeuralFP encodes information into the network response during training, and does
not depend on auxiliary detectors.

5.8 Discussion
Our experiments suggest that NeuralFP is an effective method for safe-guarding
against the strongest known state-of-the-art attacks, and the high AUC-ROC indicates
that the fingerprints generalizes well to the test-set, but not to adversarials. Open
questions are if there are attacks that can fool NeuralFP or if it is provably robust to
certain attacks. Learning the fingerprints during training, and studying NeuralFP
within a robust optimization framework are other interesting directions.
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C h a p t e r 6

CONCLUSION: TOWARDS ROBUST AND GENERAL
INTELLIGENCE

In this thesis we demonstrated new methods for exploiting structure for more
expressive and efficient model learning. Spatiotemporal hierarchical reasoning and
coordination are examples of complex low-dimensional structure in the state-action
space that can lead to highly expressive and efficient learning. Furthermore, we
demonstrated methods to improve the robustness of neural networks and how to
detect adversarial examples.

However, this work inspires a significant number of follow-up questions; we outline
a number of exciting future research directions and goals below.

Safety, Communication and Multi-agent Dynamics
A fruitful research direction is to generalize structured machine learning methods to
richer forms of structure, such as safety and multi-agent communication that could
be learned or implemented as structural constraints. Here, structure not only could
improve the sample efficiency of learning, but also prevent unwanted behavior or
inject domain knowledge into models.

Consider the future application of a multi-armed surgery robot that can operate
autonomously on humans. Here, each arm can be thought of as an agent. It is clear
that training such a system to operate safely on humans requires the system to have
an understanding of proper coordination between arms and understanding of which
coordinated actions are safe (e.g., do not harm the human patients).

However, there are significant challenges towards such applications.

First, it is unclear how to learn or impose safety constraints in the policy space or
shape rewards, such that the effectiveness and consistency of the learned optimal
policy is not adversely affected.

Second, multi-agent learning is most natural in the decentralized learning setting,
where agents cannot access the full state of the environment and other agents. For
instance, communicating the state of each robot arm to other parts of the system could
be computationally costly and introduce too much lag and overhead, especially when
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power efficiency and robustness constraints are considered. However, decentralized
multi-agent learning with partial information in cooperative and adversarial settings
is an unsolved challenge.

Here, it would be interesting to generalize our structured learning approach to include
more expressive spatiotemporal priors that can efficiently model safety and richer
forms of structural constraints.

Unsupervised Structure Learning
In Chapter 2 we demonstrated that a meaningful hierarchical structure (e.g., long-term
goals) can be learned from weak labels, extracted from the data using a heuristic.
However, the drawback of this approach is that it is not always a-priori clear what
the right hierarchical structure is to predict (e.g., for basketball other heuristic
definitions than stationary points could be effective). In lieu of structure labels, our
results suggest that simple “flat” models do not suffice, and that naive model class
generalizations (e.g., hierarchical models) fail to capture structural concepts such as
long-term goals.

Therefore, it is an open challenge to learn complex low-level structures, such as
spatiotemporal hierarchies, in an unsupervised fashion, i.e., without labels. Some
approaches could be to study more flexible, temporally extended priors on the latent
distributions, that preserve tractability of learning and inference.

Model-Based Learning
Our overall goal of improving the sample efficiency and generalization of learning
points to a general learning challenge towards broadly applicable smart systems.

Consider the following problem: how can a bipedal robot autonomously learn to
run on solid surfaces?

There are several exciting research directions that have great potential towards
efficient and robust learning for this problem.

First, the recent success in reinforcement learning methods largely have come from
model-free methods, where the environment dynamics are implicitly modeled through
rollout samples. However, this is highly inefficient, especially when the state and
action space are continuous and / or high-dimensional. For example, the dynamics
for a bipedal robot running on solid surfaces include hard contact dynamics between
feet and surface, and nonlinear reaction forces due to friction and tension throughout
the robot body.
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A promising long-term approach is model-based learning, that also leverages
a (parametric) model of the environment dynamics (also referred to as just the
“model”).1 Such methods could employ planning methods, that use forms of forward
search to accurately estimate value function estimates and infer optimal actions.
However, when only an imperfect model is known, e.g., when learning has not
converged yet, combining imperfect models with suboptimal policies leads to highly
unstable learning. An open challenge therefore is to formulate stable model-based
learning approaches. Here, a fruitful approach is to use more powerful model classes,
such as the TT-RNN introduced in Chapter 3, as environment models, and/or to use
blackbox environment models indirectly by using fictitious rollouts as features for
the policy and value functions.

Transfer Learning, Meta-Learning
A follow-up problem is: given a robot that can stably run on solid surfaces, how can
it quickly learn to run on sand?

This is an instance of transfer learning, where we aim to develop learning algorithms
that can quickly generalize models to new problem settings (“tasks”). Exploiting
structure between tasks is key to effective transfer learning. For instance, the
dynamics of solid and flexible surfaces are related by deforming the material “stress
tensor”, and modeling such structure in the dynamics could aid policies to efficiently
adapt to smooth transformations in the dynamics.

Detecting Strong Adversarial Examples
In Chapter 5 we showed two methods to stabilize neural networks and detect
adversarial examples. In these works, we focused on the image domain. However,
an open question is how effective these methods are against adversarial attacks in
different data domains, such as sequential data, such as natural language, audio and
video.

More generally, a central issue in the security domain, is whether one can guarantee
certain levels of safety or robustness of the learned models. For instance, can we
certify that a neural network is provably robust against adversarial examples with a
given magnitude?

Until now, a strong theoretical understanding of the effectiveness of these methods is
still lacking for complex models such as neural networks.

1Perfect knowledge of the dynamics reduces reinforcement learning to dynamic programming for
finite state-action spaces.
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For instance, for binary classification with linear models, we can characterize the
vulnerable regigon exactly. However, for nonlinear models, we do not have an
explicit description of the input regions that are vulnerable to an attacker with
knowledge of our chosen fingerprints. Theoretical understanding of this issue
requires understanding and developing tools to control the geometry of neural
networks.
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