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ABSTRACT

Chapter II

The control of nonlinear lumped-parameter systems is considered
with unknown random inputs and measurement noise. A scheme is
developed whereby a nonlinear filter is included in the control loop to
improve system performance. Pure time delays in the control loop are
also examined. A computational example is presented for the propor-
tional control on temperature of a CSTR subject to random disturbances,

applying a nonlinear least square filter.

Chapter III

Least square filtering and interpolation algorithms are derived
for states and parameters in nonlinear distributed systems with unknown
additive volume, boundary and observation noises, and with volume and
boundary dynamical inputs governed by stochastic ordinary differential
equations. Observations are assumed to be made continuously in time at
continuous or discrete spatial locations. Two methods are presented
for derivation of the filter. One is the limiting procedure of the
finite dimensional description of partial differential equation systems
along the spatial axis, applying known filter equations in ordinary
differential equation systems. The other is to define a least square
estimation criterion and convert the estimation problem into an optimal
control problem, using extended invariant imbedding technique in
partial differential equations. As an example, the derived filter is
used to estimate the state and parameter in a nonlinear hyperbolic

system describing a tubular plug flow chemical reactor. Also a heat
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conduction problem is studied with the filtering and interpolation

algorithms.

Chapter IV

New necessary and sufficient conditions are presented for the
observability of systems described by nonlinear ordinary differential
equations with nonlinear observations. The conditions are based on
extension of the necessary and sufficient conditions for observability
of time-varying linear systems to the linearized trajectory of the
nonlinear system. The result is that the local observability of any
initial condition can be readily determined, and the observability of
the entire initial domain can be computed. The observability of con-
stant parameters appearing in the differential equations is also

considered.
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Chapter I

INTRODUCTION

All descriptions of physical systems contain some degree of
inherent uncertainties due to idealization of real processes in model-
ing and to whimsical environmental effects. Once the mathematical
model of a dynamic system and observation process is given, the uncer-
tainties are lumped as random interactions between the system and its
surroundings. The random interactions are usually denoted by dynamical
noise and observation errors. Therefore, the realization of the system
is given as the model and observed data. With this realization the
function of the given system is designed and controlled.

Conversely, fundamental questions can be posed whether the
state of the system can be determined uniquely from given measurements
and the process model, and whether the dynamic response of the given
system can be controlled to achieve the prescribed performance specifi-
cations. The former problem is called the inverse or observability
problem and the latter the controllability problem. With these obser-
vability and controllability assumptions the system can be analyzed and
controlled with or without consideration of the randomness, i.e.,
stochastic or deterministic approach. However, the stochastic approach
would be the only alternative if the process uncertainties become sig-
nificant.

Consequently, the two important classes of engineering problems
are: (1) how to estimate the state of the system, and (2) how to control

the system with given noisy observations. The given measurements may
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be smaller dimensional quantities than the desired state of the system.
The former is called stochastic estimation and the latter stochastic

control.

1. Stochastic Estimation

Stochastic estimation of the state and parameters of a dynamic

system has significant applications in modeling and adaptive control[sgl

For example, estimating concentration, temperature, reaction constants,

(18]

and catalyst activities in chemical reactors ; determining pressure

history of oil reservoirs; and guiding and tracking of satellites[4’8’27]
represent some applications of stochastic estimation. Also, stochastic
estimation techniques can be applied to control stochastic dynamic
systems.

Since Kalman initiated the filtering (sequential) estimation

[30’311, exhaustive studies have been pérformedﬁfor lumped param-

[26,48] .

theory

eter systems, applying either probabilistic approaches

[43]

optimization techniques . Yet, exact solutions of nonlinear filter-

ing problems have not been obtained, although many approximate

]

nonlinear filters have been sug'gested[57 . The research activities on

s ; ; . ’ - . 26
the topic can be summarized as the derivation of filtering equatlons[ ?

43’48],“error analysis of the filtering estimations[6’22’50’62], and

duality study of the filtering theory and the optimal control theory[24’

30’31’41’611. The excellent compilation for ordinary differential equa-

[48] [26]

tion (0.D.E.) systems can be referred to Meditch s Jazwinski

and Lee[43].
For distributed parameter systems the similar approaches to

lumped systems have been carried out only recently because of the
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mathematical difficulties involved. To make the literature survey
compact, the following classification of available methods for the
derivation of filtering equations is made:

1) Direct Method

(a) Statistical approach

(b) Optimal control approach

2) Indirect Method

In this classification "Direct Method" indicates the system equation
is handled directly, and "Indirect Method'" means that a finite differ-
ential difference approximation to the system equation is applied. The

statistical approach requires known noise characteristics like zero

[51]

mean Gaussian white noise assumption to evaluate probability den-

64]

sity functions for the system state. Thau[ solved a linear case

with one spatial measurement point, using minimum variance technique.

[39]

Kushner generalized Thau's case with continuous volume and bound-

ary measurements, extending the Ito stochastic differential calculus

[39]

to linear parabolic systems. Kushner also solved the case where
boundary conditions contain stochastic inputs described by linear
stochastic 0.D.E.'s. In both Thau and Kushner's cases boundary condi-
tions are linear and do not contain any additive boundary noise.

[68]

Tzafestas and Nighﬁingale solved the linear case with additive
boundary noise, applying the orthogonal projection lemma. The optimal
control approach is the extension of a technique suggested by
Detchmendy and Sridhar[ll] for lumped systems. This method does not

[5]

require noise spebification. Balakrishnan and Lions applied the

least square method to solve the initial state estimation for a linear

[26

]
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deterministic system with Gaussian white measurement noise. Medltch[ 7]

solved the filtering and smoothing problem for the similar case with a

[40]

special form of boundary conditions. Lamont and Kumar solved a
nonlinear case with deterministic boundary conditions, using the invar-
iant imbedding technique.

[52]

As an indirect method, Pell and Aris applied finite dis-

: ; ; A ; 1
cretization along the spatial axis to utilize the Kalmar-Bucy fJ.lter[3 ]
for a linear system with deterministic boundary conditions. Tzafestas

[67]

and Nightingale used discretization along the time axis to apply the

maximum likelihood method combined with differential dynamic program-—

[65]

ming to obtain the nonlinear filter equations. Also they solved
the smoothing and prediction estimation problems.

However, the above results cannot be applied to general cases
such as parameter estimation problems or nonlinear systems with addi-
tive boundary noise and stochastic inputs in the volume and/or boundary
which can be described by nonlinear stochastic 0.D.E.'s. Also the

fixed-point smoothing (interpolation) has not been solved for the above

general cases.

2. Stochastic Control

To improve the performance of noisy dynamic systems, stochastic
control theory has-become an important area of optimal control theory
after deterministic control theory was established. In a deterministic
system the true state and output of the system can be predicted exactly
if the initial condition and the control law are given. But in a
stochastic system-the state and the output are random variables, and so

only the expectation values of the system variables can be found.
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Hence probability density function of the system state updated with

noisy observations, should necessarily be introduced. It is denoted

by posteriori probability density function, which can be evaluated with

[3,51].

the assumption of the Markovian process With the evolution of

a posteriori probability density function represented by a set of

[17,38]

integro-differential equations , the optimal feedback control of

a lumped parameter system can be reduced to the solution of a func-

[37]

tional differential equation with Gaussian white noise assumption
Here the feedback control means that noisy observations have been used
to generate the control law, otherwise it is the open loop control. If
the system is linear, the structure of the optimal feedback control is

a Kalman filter followed by a deterministic optimal controller, which
[3,26]

is known as the certainty equivalence principle For a nonlinear

[69]

case the functional differential equations combined with probability
density evolution equations are almost impossible to solve. Therefore,
as a suboptimal feedback control of a nonlinear system, open loop con-
trol law which can be approximated by a finite dimensional 0.D.E. was
suggested[l’lB’lal. However, this open loop approximation eliminates
the advantages of using feedback schemes, especially when the noise
level is significantly high. For distributed parameter systems the
deterministic control theory is still in a developingﬁstage, even

though the corresponding maximum principle and the variational principle

[9,34,49]

have been obtained for some cases For a linear stochastic

partial differential equation (P.D.E.) system with a quadratic cost

[66]

functional, Tzafestas and Nightingale obtained optimal feedback

control law, the certainty equivalence princiﬁle, and the Kalman's
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duality principle. For general nonlinear P.D.E. systems, the corres-

ponding probability density evolution equation or extended stochastic

differential equation should be developed first for future study.

3. Observability

The fundamental assumption underlying the above discussion on
stochastic estimation is observability, i.e., the convergence of the

[32,33] intro-

filtering estimates and their uniqueness. Since Kalman
duced the notion, it has been studied in various fields such as system
theory, identification and estimation theory, and optimal control
theory. The observability study provides answers to the convergence
of the state and parameter estimation schemes and the possible choice
of observation processes for a given dynamic system.

The principal question is under what conditions we can have a
one-to-one correspondence between the state aﬁd observation spaces.
For lumped systems the problem can be stated as under what conditions
we can find a unique initial condition of the system equation on the
basis of given measurements. In deterministic linear O0.D.E. cases, the
explicit transition matrix representation of the solution enables us to
determine observability conditions completely in terms of observability
matrix which is independent of the initial condition. Also the duality
relationship in a linear control system relates the observability and

the controllability[28’6l]. For linear stochastic systems it is ex-

4

pressed as Kalman's duality principle between the optimal control
theory and the filtering theory. Furthermore, partial observability
conditions have been studied with the structural theory of linear 0.D.E.

[71]

systems .
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As for deterministic nonlinear O.D.E. and P.D.E. systems, the
research on observability is still in its initial stage although many

engineering problems heavily depend on the topic. Regarding nonlinear

[42]

O.D.E. cases, Lee and Markus studied local observability around

the equilibrium point for the first time, applying the results for

linear time invariant systems. Kostyukovskii[35’36], and Griffith and

(23]

and Kumar investigated the one-to-one mapping conditions between

the state and observation spaces, assuming necessary high order differ-

entiability of both the system equations and observations with regard

[55]

to their arguments and time. Roitenberg considered the construc-

[44]

for the linearized system to study

(70]

tion of a Lyapunov function
observability. For P.D.E. systems Wang extended Kalman's approach,
using semi-group operators (generalization of the Green's function) to
obtain the conditions under which the initial condition of the system
can be determined from measurements uniquely. Wang assumed the boundary

[21]

conditions are known. Goodson and Klein considered the observability
of the first order P.D.E. systems from the viewpoint of solution
uniqueness, given observation over a subset of the space-time domain.
Their definition of observability is whether or not measurement data

are sufficient to evaluate the unique solution to a P.D.E. in the
absence of initial conditions and possibly boundary conditions. Never-
theless, its applicability is quite limited to simple linear cases
because of mathematical difficulty of solution construction for given
observations.

[2]

For linear.stochastic O0.D.E. systems , Sorenson

[631]

showed

the connection between the nonsingularity of the covariance matrix of
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(10]

and the corresponding deterministic observ-

[48]

the discrete Cox filter
ability. For continuous systems Bryson and Ho[7] and Meditch
presented a similar result. The parallel approach can be used to show

the similar connection for distributed systems with Wang's result[7o].

(15]

Figueiredo and Dyer studied observability approximately for non-
linear stochastic 0.D.E. casesby means of the convergence of the

covariance equation.

4. Summary of Contents

The objectives of the present work are: to derive a most general
nonlinear filter for distributed parameter systems which can be applied
to nonlinear chemical reactor systems; to formulate a feedback scheme
by which a nonlinear stochastic system can be controlled; and to inves-—
tigate the nonlinear observability problem. In Chapter II the control
of nonlinear stochastic systems is considered. A control scheme which
includes a nonlinear filter to improve system performance is developed.
The proposed scheme is applied to the control of a continuous stirred
tank reactor (CSTR). Also various effects of noise on the dynamic
response of the CSTR system are investigated.  Two different derivations
of a nonlinear filter for P.D.E. systems are presented in Chapter III.
One is by the indirect method as an extension of Pell and Aris' result.
The other is by the direct method using the least square method with
invariant imbedding. Also nonlinear interpolation equations are
obtained. The derived equations are applied to the state and parameter
estimation of a heat conduction problem and of a plug flow tubular

reactor system. In Chapter IV nonlinear observability of lumped
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parameter systems is investigated. Necessary and sufficient condi-~
tions for local observability are obtained as an extension of the

results for time varying linear systems.
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Chapter II

CONTROL OF NONLINEAR STOCHASTIC SYSTEMS

1. Introduction

The stochastic optimal feedback control law for nonlinear 0.D.E.
systems with Gaussian white noise has been reduced to the solution of a
nonlinear functional differential equation with probability density

evolution equations[l7’38]

. The solution is almost impossible to obtain
either analytically or numerically. For the linear system with a quad-
ratic performance index, the optimal feedback control law can be
separated into a minimum variance filter followed by the corresponding
optimal controller for the deterministic system. For nonlinear cases,
usage of the optimal open loop control has been suggested with its
O.D.E. approximation. The important control problems in chemical pro-
cesses involve nonlinear stochastic systems with unknown noise charac-
teristics. Often there are delays in control loop such as transporta-
tion lags.

The purpose of this study is as follows: to formulate an
on-line feedback scheme by.which a nonlinear stochastic system can be
controlled; to extend the scheme to the case of time delays in the
control loop and possibly to distributed systems.

The proposed scheme is a closed control loop which contains a
nonlinear filter, i.e., a process control computer which integrates the
filter equations. Hence the equivalent dynamic system consists of the

actual system, observation process, and the filter. The control law is

generated on the basis of the output of the equivalent system, i.e.,
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the estimation of the system states. This scheme is applied to the
proportional control of a CSTR with and without time delays. In addi-
tion, various noise effects are examined with the example system
compared to the performance of the deterministic case.

Since this work has been published, this chapter presents only
the general formulation of the problem. The detailed results are given
in Appendix II-A. In Appendix II-B, the measurement noise effect on
the control gain, i.e., the proportional constant, is examined by

applying a describing function idea[zo].

2. General Formulation

Let us consider a noisy dynamic system governed by

x(t) = £(t,x(t),u(t)) + &(¢) (2.1)

Observations are related to the state of the system by

y(e) = h(e,x(E)) +n(t) , 0<Et<T (2.2)

where the state of the system is represented by the n-vector x(t), the
observations by the m-vector y(t), the random inputs to the process by
the n-vector E&(t), and the observation errors by the m-vector n(t).
The controller output is given by the r-vector wu(t) . The possible
delays in the control loop are the transport lag in the observation

process of magnitude d, and a pure time delay of magnitude o, in

2

the control action. The corresponding. u(t) and h(t,x) will be

1

u(t-az) and h(t,x(t-—ul)) respectively. In this section the time

delay case is not considered, but will be considered in Appendix II-A.
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The performance index becomes

JL
J = E{J F(t,x,u) dt} (2:3)
0

The control problem is to choose wu(t) to minimize J , where E{*}
represents the expectation operation. The open loop control depends
only on the initial state of the system, while the feedback control
depends on the state of the system at each moment. For a determinis-
tic process with a given initial condition, the optimal open loop and
the optimal feedback control solutions are equivalent. For stochastic
system, the open loop control cannot compensate noise effects and is
thus inapplicable.

To suppress dynamic and observation noises, the proposed
scheme requires the estimate of the system state on the basis of noisy

observations. For a system described by

x(t) w(t,x(t)) + &(t) (2.4)

y(t) h(t,x(t)) + n(t) (2.5)

the corresponding filter equations, i.e., the differential equations

which generate the estimate, minimizing the squared error functional,
9
are[ ]

Sty = wied) + th{ Aty = hite,2)) (2.6)
B(t) = 4P+ P{};I; + P[h;I{‘ Qy = h(e, 8] p+rT (2.7)

where x 1is the estimate of the noisy system state, P is an nXn
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symmetric matrix which is the covariance matrix of the estimate error
in the linear case. Q is an mXm symmetric matrix which, in a
linear case, is the inverse of the covariance matrix of n(t) .
R_l(t) is an nxn symmetric matrix which becomes the covariance of
E(t) for the linear case. hx and w, are the appropriate Jacobian
matrices. The initial conditionms Q(o) and P(o). are taken as the
expected initial state of the system and the covariance of its estimate
respectively.

If the control law is represented by u(t) = g(y(t)) without
the filter, it becomes u(t) = g(h(k(t))) with the filter. In other

words, the control problem is changed with the filter so as to choose

u(t) din order to minimize
T .
3 = J F(t,%X,u) dt (2.8)
0

subject to the constraints,

2 = Bleoma) @ Phi Qly - h(t,%)) (2.9)

. A AT , . T A -1
P= £P+PE +P[h Qy - h(t,x)]_P+R (2.10)

A

where fx indicates (8f/8x)§ . As shown in the above constraints,
application of the filter increases the dimension of the system equa-
tions from n to n(n+3)/2 . Owing to the increased dimension and the
complexity of the feedback law, the proposed scheme in general is not
feasible as an on-line scheme. This scheme 1s applicable only to the

case where a simply prescribed controller function such as-.
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u(t) = g(t,x(t)) can be chosen to achieve the performance specifica-
tion. More precisely, the present scheme can be applied either with
the choice of a simple control mode such as the proportional con-
troller or with the choice of a simple instantaneous performance index.
The latter case requires a linear structure of the control input to

[42,53]

result the bang-bang control In the present study the former

is considered, and the latter is examined by Seinfeld[58].

The proportional control mode combined with the proposed
scheme is applied to regulate the output of a CSTR with an exothermic
first-order reaction. The control action is to manipulate the heat

transfer coefficient by means of heat removal with a coil or jacket.

The detailed study is shown in Appendix II-A.
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Notation

E{'} =

=
—~
[V
o’
(2
]

GREEK SYMBOLS
Q0 ,0, =
n =

£ -

SUPERSCRIPTS
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expectation operator
n-dimensional vector function
r-dimensional vector function
m—-dimensional vector function
performance index

normal distribution with mean a and covariance
nxn covariance matrix

mxm weighting matrix

n xn weighting matrix

time

r~-dimensional control vector
n-dimensional vector function
n-dimensional state vector

m-dimensional measurement vector

time lags
m-dimensional noise vector

n-dimensional noise vector

estimated value

time derivative

b
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Appendix II-A

Reprinted from I&EC FUNDAMENTALS, Vol. B, Page 257, May 1969
Copyright 1969 by the American Chemical Society and reprinted by permission of the copyright owner

CONTROL OF NONLINEAR STOCHASTIC SYSTEMS

JOHN H. SEINFELD, GEORGE R. GAVALAS,
AND MYUNG HWANG

Chemieal Engineering Laboratory, California Institute of Technology, Pasadena, Calif, 91109

The control of nonlinear lumped-parameter dynamical systems subject to random inputs and measurement
errors is considered. A scheme is developed whereby a nonlinear filter is included in the control loop to im-
prove system performance. The case of pure time delays occurring in the control loop is also treated. Com-
putations are presented for the proportional control on temperature of a CSTR subject to random disturbances.

LL real systems which one desires to control are subject to

some degree of uncertainty. Even when the fundamental
physical phenomena are known, the mathematical model
may contain parameters whose values are unknown, or the
actual system may be subject to unknown random dis-
turbances.  Indesigning a control system the casiest approach
is to neglect the randomness associated with inputs, assign
certain nominal values to parameters, and base the design on
classical deterministic theory.  However, it is obvious that a
design based on deterministie control theory becomes inade-
quate when the process uncertainties become significant.
The alternative is to consider the problem as one of control of
a stochastic system.

The control of stochastie systems is of significant theoretical
and practical importance. A large and elegant theory exists
for the analysis of linear control systems subjeet to corrupting
noise  (Aris and Amundson, 1958b; Newton ef al., 1957;
Soladovnikov, 1960). Recently, solutions have been ob-
tained for the optimal control of lincar systems with white
noise forcing and quadratic performance criteria (Aoki, 1967;

Kusliner, 1965; Mediteh, 1968; Sworder, 1967).  The strue-
ture of the optimal feedback control in this case is a minimum
variance (Kalinan) filter followed by the optimal controller
for the deterministic system.  The optimal control of non-
lincar systems with white noise inputs can be reduced to the
solution of a set of nonlincar, integro-partial differential
equations, which, as one might suspeet, are almost impossible
to solve. The key problems in chemical process control
involve nonlinear systems with noisy inputs, the statistical
properties of which are usually unkuown. In addition, there
arce almost always delays in the control loop because of non-
instantancous control action and/or the time necessary for
the analysis of measurements. A feasible way of handling
such systems represents a challenging problem in chemical
process control.

The objectives of this paper are: to formulate a scheme
by which a noulinecar system with unknown random inputs
can be controlled; to extend this scheme to the case of time
delays in the control loop; and to apply the scheme to the
proportional control of a continuous stirred-tank reactor

VOL 8 NO. 2 MAY 1969 257
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(CSTR) and compare the performance of deterministic and
stochastic control when the reactor is subjected to random
disturbances.

The first alternative is to neglect the stochastic nature of
the process cutirely and rely upon the inherent property of
feedback control to decrease the sensitivity of the entire loop
to disturbances. It is expected that in the presence of
substantial disturbances the controlier would  experience
difficulty in regulating the system.  The next alternative is to
filter the system output in some manner before the output
signal is sent to the controller. A\ simple R-C filter could be
used to smooth the output signal; however, such a filter
incorporates no information on the nature of the system.
What is desired is not merely to smooth the output signal but
to use this signal to estimate the state of the system.  As
noted above, the optimal feedback control of a linear plant
with white noixe disturbances and a quadratic performance
index can be segmented into a Kalman filter followed by the
optimal deterministic controller.

Consider a nonlincar sy=tem with random inputs and meas-
urement errors for which we desire to estimate the actual state
of the system.  Optimal least square state estimates for such
a system can be obtained from the solution of a set of non-
lincar differential equations, termed the nonlinear filtering
or sequential estimation equations (Athans el al., 1968;
Detchmendy and Sridhar, 1066; Gavalas el al., 1969). The
estimation equations use the process observations as input,
their solution providing continuous estimiates of the actual
state of the process. When the process and output are linear,
these cquations are called the Kalman filter (Kalman and
Bucy, 1961).

In this paper the scheme in which a filter e, a process
control computer which integrates the estimation equations
is incorporated prior to the controller in the control loop is
examined.  The filter provides an estimate of the actual state
of the process at each instant, which, in terms of control, is
the quantity of most interest. Iirst, the proposed schemes,
including the case of pure time delays in the control loop, are
presented  with  the aid  of block  diagrams. The ap-
propriate equations for the filter are derived in each ease.
Then the proportional control of a CSTR subject to random
imput disturbanees and measwrement. ercors s considered,

_ The response of the CSTR with constant gain and no filter
s compared to that with a filter in the control loop.,

Goneral Problem
Figure 1 shows the customary feedback control of a

dynamical process.  The state of the system is represented by
the n-vector x (¢), the observations or output by the m-vector

&m 7

opservaion |—DikEtht) (G yib

SYSTEM

uit) CONTROLLER l

Figure 1. Feedback control of a system subject to dis-
turbances

258 I&EC FUNDAMENTALS

3 2t

h{x(t-a,),1)

SYSTEM OBSERVATION

' .
L conTROLLER fe—tt1"22) u

Figure 2. Feedback control of a system subject to dis-
turbances and pure time delays

&m 2t

xh
OBSERVATION S

SYSTEM

uit) lt:cm'nm.x_:n L

Figure 3. Feedback control of a system with filtering

No time delays

y (1), the random inputs to the process by the n-veetor E(¢),
and the measurement errors by the m-vector n(t). The
coutroller output is represented by the r-veetor u(t). If a
pure time delay - e, transportation Jag --of magnitude o
existsin the observation and a pure time delay of magnitude agy
exists in the control action, the situation is depicted in
Figure 2.

The control objective is to maintain the system at a desired
state in spite of changes in the input.  There are basically
two types of input disturbances which affeet. the system:
infrequent disturbances due to changes in the feed conditions
or flow rate, and high frequency disturbanees, the character-
istie time of which is mueh smualler than the characteristic time
of the system. Both types of disturbanees normally occur in
practice; however, il the amplitude of the high frequency
noise is small, the conventional control schemes in Figures 1
and 2 should be sueeessful in regulating the system. When
the amplitude of the high frequeney noise approaches the
same order of magnitude us the amplitude of the low fre-
queney upsets, the performance of the conventional system
may be poor. In addition to noisy inputs, the output meas-
urements invariably contain random crrors, which arise
typically as a result of inaccuracies in the measuring instru-
ments.  We will study the effect of both types of random dis-
turbances on the performance of the controlled system.
Figures 3 and 4 correspond to Figures 1and 2 but include a
filter after the measuring clement. It is the comparative
performance of Figures 1 and 3 and Figures 2 and 4 that we
wish to consider.

Let us now formulate mathematically the situations de-
picted in Figures 1 to 4. For the scheme in Figure 1 the
system is governed by

X)) =10, x®),u@®]+ &) 1
and the output is

¥y = hlL, x @ n(t) (2)
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A
x(t=a)
OBSERVATION r—cs

CONTROLLER [e—tito0120) ]a,

Figure 4. Feedback control of a system with filtering

Time delays in observation and control

It is assumed that E[E()] = E[a(t)]= 0. Equations 1
and 2 are valid if the noizy inputs are additive or of low
amplitude so that a lincarization about expeeted values can
be carried out. The state x(¢), the output y(¢), and the
control u(f) arc all random variables because &(t) and n(l)
are random variables.  The control is a preseribed funetion
of the output, u(t) = g{y(t)]. Tor the case depicted in
Figure 2 the system is governed by Iquation 1 with the
output

¥ = b[t x(t = a)]+ n () @)

while the control action is u (1) = g[y(t — o).
The schemes of Figures 3 and 4 have a filter aiter the ob-
servation clement.  For a systens deseribed by

X =wltx(OJ+ £ )
y(©) = h{t, x() ]+ n() )

the differential equations which ennstitute the least square
filter are (Detehmendy and Sridhar, 1966)

%= w(t,X) 4+ Ph/Q[y — h(1,%X)] (1)
P = w,P+ Pw,” + PIh/Q[y — h(f, 1)JL,P + R (7)

where X is the estimate of the actual system state x, P is an
# X o symmetrie matrix which in the linear ease is the
covarianee matrix of the estimate error, Q is an i X m syin-
metrie matrix which in the linear case is the covariance
matrix of n, and R is an n X n symmetrie matrix whieh in
the lincar case is the covarianee matvix of & he and wye are
the appropriate Jacobian matvices ez, (0h/da)z. The
initial econditions for Faguations 6 aud 7 are x(0) and P(0).
These quantities are taken as the expeeted initial state of the
system and the covarianee of this estimate, respeetively. It
no ¢ priort information is known, these values are chosen
arbitracily.

For the scheme of Figure 3 the systein and ohservations are
given by Equations 1 and 2. Since the filter has been in-
serted, u(ty = g[X(1)] i.c., the control now depends on the
filter output, the current state estimate X (¢}, Thus, Equation
1 becomes

() = f{t, x(t), gIX ()} + £ @8)

The filter eqnations are
k= f[t, %, g(%)]+ PhQ[y — h(, X)] )
P = f,P+ Pf,7 + P{h7Q[y — h(t, ) ]}P + R (10)

where fy indicates (9fi/0r,)z.

We consider the delays oy and az separately, as later we
wish to consider the individual clfect of cach.  When the sole
delay is that in the observation with magnitude o, the stateis
governed by Equation 1 with the output given by Equation 3.

1.8«

Since the output at time ¢ is related to the state at time
t — ay, the filter produces an estimate of the state of the
system at ¢ —ay, X({ —e;). The control action at time
¢, u(t), depends on the filter output at time ¢, or X (¢ — ay).
Thus, u(t) = g[x (¢ — a;)]. Then Equation 1 becomes in
this case

X(t) = £t x (1), glx (¢t — 1)1} + E() (i1)
The filter equations are, correspondingly,
x(r) = t{r,X(r), g[X(r — )]} +
Ph7Q{y(t) — hir, X ()]} (12)
P(r) = ;P + Pf,7 + P(L"Q{y — h[r, X(r)]} )P + R~
(13)

where 7 = ¢ — aj. Although Iquations 12 and 13 are inte-
grated in real time with input as the current observation
y (1), the result is the state estimate at ¢ — aq.

For a delay e in the controller, u(t) = glXx(t — au)].
The system is governed by

X(t) = £, x(0), g[x(t — o)} + EQ) (14)

with output given by Iquation 2. Since y () is related
to x(t), the filter output is X(1). The filter is described
by Equations 9 and 10 with f{¢, X, g(x)] replaced by
£0%, g[x(t—o)]}. Two papers have appeared on the
subjeet of filtering systems with time delays.  Kwakernank
(1967) extended the Kalman filter to linear systems with
multiple time delays, Koivo and Stoller (1968)  derived
filter equations for a filter placed outside a control loop in-
volving a pure time delay,

Sinee we have assumed that the conteol ontput is precisely
known —i.c.. g (x) -this function can he direetly vused in place
of u(t) in the filter equations,  In practice, if the controller
action canmot be represented precisely, the resulting u(f)
can be wensured and sent diveetly to the filter simply as o
known function of time.

Control of a CSTR Subject to Random Inputs

We wish to consider the performance of a CSTR with
proportional control on temperature in each of the schemes of
Figures 1 to <. Consider the dynamical equations of a CSTR
with an exothermie first-order reaction and heat removal by o
coil or jacket.

V (de/ds) == q(c, = ¢) — Vhe~EIRTe (15)
PV C,o(dT/ds) = qCp(T— T) +
(= A VheERTe — DT — T4)  (16)

Defining the dimensionless variables,
t=qs/V B =In (Vk/q)
¢ = c/c v = EpCy/ (—AH)cR (17)
¥ = pCpl'/ (—All)e, 0= D/pgC,
Squations 15 and 16 become
dp/dt=1—¢—exp[B— (v¥)1b (18)
dpfdt= o — Y+ oxp[B— (YN — 00 —¥e)  (19)

If feedback proportional control on temperature is used to
manipulate the flow rate of coolant, the dimensionless
heat transfer coefiicient, 8, can be expressed as (Aris and
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Amundson, 195Sa)

0, + Ker 2Vt e
0 \&S\l’a'—\l’cr

where & is the proportional gain, 6, the steady-state heat
transfer cocfficient, ¥, the desired reactor temperature, and
ke a constant corresponding to half range of the coolant flow
valve. The object of control is to maintain the outlet tem-
perature, ¥, at ..

As a low frequency inlet disturbance we will consider a step
change in the inlet temperature o at ¢ = 0. IHigh frequency
fluctuations in inlet concentration and temperature enter the
right-hand sides of Equations 18 and 19 additively. Thus,
we add the random variables & (£) and £(t),

dg/dt=1—¢—exp[B— (VA6 + & (21)
dfdt=do—y+exp[B— (VW) — 00 — ) + & (22)

The measured output from the reactor is the temperature, ¢,
which may, in general, have a noisy component g (¢),

y(O) =¥ ) +20) (23)

where 6 in Equation 20 now depends on y(t) rather than
v ({t). If there exists a pure time delay of magnitude o in the
observation, Equation 23 is replaced by

yO) =y {l—a) +n(0) (24)

For a pure time delay of magnitude a; in the controller,
Equation 20 is replaced by

0.+ Ker y(l—az)?.\(/-"r%'
6= 0.+k[y((——az)-—¢.:] lll(l_a2)"‘rl’ll<‘)(’rr (25)
0 Yt — ) S = er

The original steady state of the reactor corresponds to
¥ =y, and 0 = 0, (no control), The following parameters
are used: O,=2 1, Yo = L.75, hfe =1, B=25, v=5),
Vot < 0) = 175, For these parameters there are three
steady states for the CSTR with no control. The initial
steady state was chosen a< ¢, = 0.5 and, = 2.0, the unstable
steady state. The inlet temperature ¥, for £ > 0 is taken as
1.85. For a particular value of the gain & the new steady
state (=) can be computed.  “The difference of  ((— » ) from
V¥, is the offset. In this study A = 20 was used, for which
there are three steady states, the unstable one resulting in the
smallest offset.

We wish to compare the performance of the CSTR in the
schemes of Figures 1 to 4. Thus, it is necessary to simulate
each of the situations depicted by means of computer experi-
ments.  In particular, the dynamical and measurement noise
must be simulated by appropriate expressions.  The response
of the CSTR with no noise and no time delay can be obtained
from the solution of Equations 18 to 20 with ¢(0) = ¢,
Y (0) = .. The response of the CSTR with no noise and a
delay a: in the loop can be obtained from the solution of
Iquations 18, 19, and 25 with y({ — a») simiply replaced by
Y {t — a:). With no filter the location of the pure time delay
in the loop is immaterial.  These responses are veferred to as
the delerministic responses.

To simulate the noisy dynamies of Figure 1, Equations 20 to
22 are inteprated with ¢ (0) = ¢, ¥ (0) = ¥, and

L) = Ay coswyt
(26)
£(t) = Agcoswat
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'Figure 5. Transient response of CSTR and filter with

controller off

where the values Ay = 1.5, A2 = 1.0, w; = 207, andw, = 40x
areused.  To produce the noisy observation, ¢ (¢) from Eqna-
tion 22 is used in Equation 23 with n(¢) as a normally dis-
tributed random variable with zero mean and variance of 0:1.
To simulate the response when a pure time delay o exists,
Equations 21 and 22 are integrated with Bquations 24 and 26.
When the delay as exists, Fquations 21 and 22 are integrated
with Equations 23, 25, and 26.  These responses are referred
to as the unfillered responses.

Next we wish to simulate the response of the entire loop
when a filter is placed after the observation. If we let
T = (z1, 1) = (¢, ¥) and & = (&, &), Equations 21 and
22 can be written in the general forin of Equation 1, where
n= 2,m = 1l,andr = 1. The filter output is zy, 22, Py, Pyo,
and Py (P = Pp). @ is a scalar and R is taken us a
diagonal matrix with clements Ry and Roe. Since the state
equalions are nonlinear, no direct statistical interpretation
can be aseribed to Q and R, As mentioned previously, liow-
ever, in the lincar case Q and R are the covariances of p and &.
Saif we have some a priort knowledge as to these covariances,
these valies represent reasonable choices for Q@ and R even in
the nonlinear ecase. From the results of an carlier study
(Bellman et al., 1966) it is apparent that the performance of
the filtering equations depends significantly on the choices of
x(0), P(0), Q, and R. In order to exarine the convergence
of the filter equations, Equations 21 to 23 were considered
with 0 = 0, (no control)—i.e., the pure transient response of
the CSTR to a step change in g in the presence of dynamical
and measurement noise.  Since at £ = 0 we know that the
system is at (xy,,, 22,,) = (@5, ¥s), the most reasonable choice
for [21(0), 22(0) ] is (@s, ¥e). Several cases were examined in
which P(0), Q, and R were varied.  One example is shown in
Figure 5, where Q = 1, Ry = 5, Ry = 10, Py, = 1, Pp, = 1,
P, = 4. The true and estimated values are almost identical
over the entire time of integration.  Other cases not showu
converged more or less the same as in Figure 5; however, if Q
is too small convergence is not obtained. These values are
used in the remainder of the study. --

Computational Simulation

First we consider the control schemes of Figures 1 and 3
(no time delays). The simulation of the scheme in Figure 1
has been deseribed.  Ilor the filtered system (Ifigure 3) the
state, observation, and filter (IEquations 2, 8, 9, and 10) are
solved simultaneously from (= 0. The outlet temperature
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Figure 6. Comparison of filtered and unfiltered responses
with no time delays
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Figure 7. Comparison of filtered and unfiltered responses
with a; = 0.1

responses are shown in Figure 6. The deterministic z2(t) is
the response of the reactor temperature with no noise.  The
unfiltered x3(t) is the response of the reactor temperature
correspouding to Figure 1. The filtered za(t) is the response
corresponding to Figure 3. The comparizon of interest is
between the filtered and unfiltered x:(1). We see that
performance has been substantially improved in the filtered
case.

Next we consider the case of time delays (Figures 2 and 4).
As noted, we treat aq and as separately to compare the effect of
the time delay location.  The deterministic z () is the
response of the reactor with no noise.  The unfilteved
response foray = 0and az = 0 is obtained by the simultancous
integration of Ilquations 21 and 22 with Equations 20 and
24 from ¢ = 0. The filtered response is obtained by integra-
tion of Equations 3 and 11 to 13, "The responses for ey = 0.1
and az = 0 are shown in Figure 7. It appears that the un-
filtered response is exhibiting unstable or limit eyele behavior
while the filtered response is not.  We diseuss this matter
subsequently.  The estimation of ap = 0, aa = 0.1 is depicted
in Figure 8. The deterministic response for e == 0.1 and
az = 0 is obviously identical to that for g = 0, a2 = 0.1.

The location of the delay in the loop is scen to have some
effect on the filtered response. When a pure time delay
oceurs in the observation, the combined effeet of the delay
and the observation noise causes larger oscillations in the
response than when a delay of the same magnitude oceurs in
the controller.  In the former case the filter produces esti
mates delayed by aq, X({ — ). The responses for aq = 0,

i

DETERMINISTIC x, FILTERED x,
| | | | | !
| 2 3,04 5 [

Figure 8. Comparison of filtered and unfiltered responses
with az = 0.1

: |
{ 2 3 4 S 6

Figure 9. Comparison of filtered and unfiltered responses
with ag = 0.15

a; = 0.15 are presented in Figure 9. Whereas in Figure 8 the
deterministic x, experiences decaying oscillations, now with o
increased to 0.15, the deterministic 2z undergoes sustained
oscillations. It has been shown that limit cyele behavior is
obtained for certain combinations of & and « in the deter-
ministic system with proportional control (Seinfeld, 1969).
The unfiltered aa exhibits the same oscillatory hehavior as in
Tigure 8. A comparixon of the deterministic and unfiltered
zy in Figure 9 shows that that noise makes the oscillations
more severe. The filtered zy is kept more closely to the
deterministic 2,

Effect of Noise on Control of CSTR

In each of the above cases, both dynamical and measure-
nment noise has been considered.  Dynamical noise enters the
process as inputs and the differential equations as randoin
foreing terms.  The CSTR acts as a natural filter as long as
the principal frequeney band of the power spectrum of the
noise is much greater than the characteristic frequency of the
CSTR (the reciprocal of the time constant, ¢/ V). Thus, in
the absence of observational errors, the unfiltered reactor
response with high frequeney dynamical noise is not too
different from the response with no noise at all.  If the fre-
queney of the dynamical noise approaches the characteristic
frequency of the system, the dynamical noise affects the
system like an additional disturbance in the input. The
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Figure 10. Effect of dynamical and observation noise on

CSTR, ay = 0.]

effects of dynamical and measurement noise are depicted in
Figure 10 for the case of no filter and o = 0,2 = 0.1. The
deterministic 73 (£) is the same as in igure 8. The response
z; for dynamical error only is scen to be close to the deter-
ministic 72, confirming the natural filtering characteristie of
the CSTR.  The response 22 with observational error only is
scen to be much more violent. The z2 curve with both
dynamical and measurement noixe is the sume as the nnfiltered
22 in Figure 8. It is cbvious that the measurement noise is
the key factor in stochastic control.  In this example, the
Gaussianmeasurenient noise has eaused the entire loop to
enter a limit eyele, whereas in the absence of this noise the
svatem is driven to the desived state. For other combinations
of & and as, the noise could eause the system (o go to one of the
stable steady states. Tt is ina case of this type that filtering
15 of most usefulness.

Summary

The object of this work has been to present and examine
schemes for the control of noisy nonlinear dynamical systems.
The addition of a filter significantly improves perflorauce
when the amplitude of noise is large. The actual choice of
whether or not to include a filter depends on the trade-oft
between the improved performance of regulation and the cost
of computer use.

If pure time delays beeome large, one might try to com-
pensate by placing a predictor after the filter, For example,
if the filter output is X (0 — a;), the predictor would integrate
the deterministic system equations from (= { — o to [ == |
to produce x(¢) at cach instant.  This scheme was actually
tried in this study. The incrensed performanee wus not
commensurate with the additional computing requirements,
and for moderate time lags a predictor is probably unncees-

Nomenclature

Ay, A = ecrror amplitudes

concentration, 1b. moles/cu. ft.

specific heat of reaction mixture, B.tau./1b.~°T.
over-all heat transfer cocfficient, B.t.u./min.-°T.
activation energy, B.t.u./lb. mole

= p-dimensionai vector function

I

i

I

"‘t’:"d:)e’
il
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= r-dimensional vector function
= mi-dimensional vector function
performance index
proportional gain

n X n covariance matrix

flow rate, cu. ft./min.

m X m weighting matrix

= pas constant, B.t.au./Ib. mole-°R.
= n X n weighting matrix

= time variable, min.

= time variable

= temperature °R.

.= r=dimensional coutrol vector
= volume of reactor, cu. {t.

= p-dimensional vector function
= n-dimensional state vector

= m-~dimensional output vector

|

I

WO g E Ry R e i e i e
i

GREEK LETTERS

a, a, ap = time lags

B = constant defined in Equation 13
¥ = constant defined in Iquation 13
¢ = n~dimensional noise vector

n = m-dimensional noise vector

0 = dimensionless heat transfer coceflicient
p = fluid density

T =: time

¢ == dimensionless concentration

V4 = dimensionless temperature

wy, wp == noise frequencies

STBSCRIPTS

c < coolant fluid

cr == coolant rate

0 - initial or inlet.

& = steady state

SUPERSCRIPT

A = estimated value

Literature Cited

Aoki, M., “Optimization of Stochastic Systems,” Aeademic Press,
New York, 1967,

Aris, R, Amuandson, N R, Cheme g, Sei. 7, 121 (1958a).

Aris, R, Amundson, No R, Chem. Eng. Sed 9, 250 (1958b).

Athans, M., Wishner, R. P, Bertolini, A, Joint Automatie
Control Conference, Session 11, Ann Arbor, Mich., 1968,

Belhnan, B, B, Kagivada, L, Kadaba, R B Sridhar, R,
J. Astronaut, Sei., 1303y, 110 (1966).,

Detehmendy, D, M., Sridhar, R, J. Baste Kng. 88D, 362 (1966).

Gavalas, (LR, Seinfeld, J. IL, Stidhar, R, J. Basic Eny.,
submitted for publieation, 1969,

Kalman, R W, Buey, RoS., J. Basie Eng. 83D, 93 (1961).,

Koivo, A. J., Stoller, R L., Joint Antomatie Coutrol Con.
fevence, Ann Arbor, Mich,, p. 116, 1968,

Kushner, 11,0, J. Math, Anal. Appl. 11, 78 (1985),

Kwakernaak, H., LEEE. Trans. dutomatic Control AC-12,(2),
169 (1967).

Mediteh, J. S., Boeing Research Laboratories, Doe. D1-82-0693,
April 1068.

Newton, G. C., Gould, L. A., Kuiser, J. F., “Analytieal Design
of Linear Iecdback Controls,” Wiley, New York, 1957.

Scinfeld, J. 11., Intcrn. J. Control, in press, 1969,

Solodovnikoy, V. V., “Introduction to the Statistical Analysis
of Automatic Control Systems,” Dover, New York, 1960.

Sworder, D. D., Intern. J. Control 6(2), 179 (1967).

Receivep for review November 20, 1968
Acceprtep Jaruary 16, 1969

Work supported in part by National Science Foundation Grant

- GI-3342.



D

APPENDIX II-B

The effect of the measurement error on the proportional con-
stant of the CSTR system in Appendix II-A is illustrated by means of
the describing function approach. The dynamic equation of the CSTR
with measurement error only can be written, from equations (21) and

(22) in Appendix II-A, as

dxl Y
e - L9, - x - exp(B - m)((bs + %) (L
dx, Y
Tae T Vo TV Xt e (B - s ) (0 +xp)
=60, -V, +x) (2)
where
x; = ¢ -0 (3)
X, = V-, (4)
y = xzfn (5)
2 , y > 0.05
6 =( 1+ ky, -0.05 < y < 0.05 (6)
0 : y < -0.05

where 1 is the measurement error. The corresponding dynamic response
gives the similar results as those shown in Figure 6 in which case

gl = 52 # 0 , because the dynamic noise effect is negligible as shown
in Figure 10. For the evaluation of the effective gain, the following

assumptions are made:
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(1) n = N(0,0.01)

(2) The system can be separated into two parts; one is the
nonlinear controller, the other is the remaining linear

part as shown in Figure 11.

n
* y m(y) x
N G =
+
NONLINEAR LINEAR
ELEMENT ELEMENT

Fig. 11. Division of the system into linear and nonlinear portions

The assumption (2) implies that the present approach is applicable to
the system linearized around a steady state. = The input signal to the
controller is the noisy observation y , where the system output X,
can be considered as a deterministic quantity, since the linear part
behaves like a.low pass filter. For a random input y the controller

output m(y) 1s assumed
m(y) = 1+ keq y + £,() (7

The motivation of the above equation is that the expression ©6 = l+ky
is valid for =-0.05 <y < 0.05 . Thus around X, = 0 the above
approximation covers almost the whole range of mn without serious

error caused by the saturation points. Here keq is so determined as

to minimize E{fﬁ(y)} , where



-

E{fczl(y)} = E{(m(y) - 1 - keqy)z}

= E{mz(y)} -2 keq E{y m(y)} + qu E{yz}-+2keq E{y}

- 2E{m(y)} + 1 (8)
SE{£2(y)}
Hence e a4 0 gives
ok
eq
E{y m(y)} - E{y}
= (9)

ed E{yz}

Using the assumption (1) and y = x, + n , we obtain

2

keq = 0.384k (10)

For k = 20, we have k = 7.7 . In other words, if x

- 5 = 0 , the

effective proportional constant is only 38.47 of the original value
because of measurement noise. As mentioned by Aris and Amundson in
Appendix II-A, k should be greater than 9.1 to avoid the limit cycle
for the given system. Therefore, we can expect a sustained oscillation.
However, this calculation is not enough to justify the limit cycle
behavior of Figure 6 or Figure 10, since we do not know the overall
effective k for given operation period and for the whole range of the
value. The numerical results for the cases of Figure 6 and Figure 10

up to tf = 21 shows sustained oscillation for both cases.
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Chapter III
OPTIMAL LEAST SQUARE FILTERING AND INTERPOLATION

IN DISTRIBUTED PARAMETER SYSTEMS

1. Introduction

The estimation of states and parameters in noisy dynamical
systems has important applications in identification, optimal and
adaptive control. While this problem has been studied extensively for
systems described by 0.D.E.'s, relatively little has appeared for
distributed systems. To derive the filtering and smoothing equations,
two different approaches, namely 'Direct Method" and "Indirect Method"
described in Chapter I have been applied. Yet no previous studies have
considered the recursive estimation of constant parameters in the
system and boundary conditions and the estimation of states in P.D.E.'s
when the boundary conditiops contain dynamical noise.

In this study we derive least square filtering and interpola-
tion algorithms for states and parameters in nonlinear distributed
systems with unknown additive volume, boundary and observation noise,
including volume and boundary inputs governed by stochastic 0.D.E.'s.
The optimal control approach suggested by Detchmendy and Sridhar[ll]
for lumped systems is applied with the extended invariant imbedding
technique. The solution procedures can be summarized as follows:

(1) Formulate the stochastic minimization problem Qith

the least square error functional.

(2) Reformulate the stochastic minimization problem as

a deterministic optimal control problem.
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(3) Apply calculus of variation to obtain necessary
conditions for optimality (two point boundary value

problem).

(4) Apply the invariant imbedding technique to convert the

two point boundary value problem into the initial value

[53]>.

problem (Hamilton-Jacobi type
(5) Solve the resulting Hamilton-Jacobi type equations to

obtain the estimation equations.
In the present study the one-dimensional case is considered, but the
present approach can be directly extended to any dimensions. Also, the
recursive estimation of constant parameters appearing in the system and
boundary conditions can be handled readily.
In Appendix III-A the indirect approach used by Pell and Aris[sz]
for a linear system is extended to nonlinear cases without additive
boundary noises to derive the nonlinear filter. In the derivation
the finite differential difference approximation along the spatial axis
is used to convert P.D.E. systems into O.D.E. systems to utilize the
known results for lumped systems. Then a limiting operation is performed
to obtain the nonlinear filter in P.D.E. form. Also, simplification of

the covariance equation is shown in a numerical example.

2. Problem Statement

We consider the class of systems governed by the nonlinear

partial differential equation ,
xt(r,t) = f(r’t’X,Xr’er,a(t)) + gl(rst) (2.1)

defined for t > 0 on the normalized domain (0,1), where =x(r,t) is
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n-vector state and El(r,t) is an unknown n-vector volume disturbance.
Xps ¥o X denote 0x/9t, 9x/dr, and 32x/8r2 , respectively. The

Ql-vector input - a(t) is governed by

£ = A(r,a(e) + £yt (2.2)

and the boundary conditions of the system are given in the s-vector

(s £ n) functions,
g, (tsx,x ) + 63(t) = 0 , r=20 (2.3)
81(C,X,Xr,b(t)) o €4(t) = Oy E=]1 (2.4)

with the iz—vector input b(t) governed by

db

L= Beb() +E (D) (2.5)

where Ei(t), i=2,°+°,5, are independent zero-mean random processes
with unknown statistical characteristics. We assume that in the absence
of noise, Ei =0, i=1,°**,5 the problem (2.1) - (2.5) is well posed.
Observations of the system consist of the m-vector y(r,t), related to

the state by
y(x,t) = h(r,t,x(r,t)) + nz,t) (2.6)

where n(r,t) is an m-vector of unknown measurement noise.

Based on the observations y(r,t) in the interval 0 <t < T
and reg[0,1], it is required to estimate x(xr,t), a(t), and b(t) at
some time tl v if tl = T , this is the filtering estimate, and if

to S.tl X T , it is the interpolating estimate. For any admissible
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estimates x(r,t), a(t), and b(t) , 0 Lt £ T , which are continuous

with piecewise continuous derivatives, the criterion of estimation is

defined by the least square error functional

T
]
0
1
]
0

= f<s,t,x,xs,xss,a(t))‘ dr ds + (y(0,t) - h(O,t,X))T Q(0,0,t)(y(0,t)

1
[ (Y(r’t) = h(rstsx))T Q(r,S,t)(Y(S,t)"h(S,t,X))drdS
0

T
xt(r,t> = f(r,t,X,Xr,er,a(t)> Rl(r,s,t) Xt(Sst)

Ot—H O——H

- h(D,tx)) + 8o(t,X,Xr)T R3(t) go(t:X:Xr) + gl(t:x,xrab>T
R,(6) 8y (£,x,x,,0) + (B(0) = ACt,a)T By(0) (3(8) - A(t,2)

+ (e = Ble BY" R (£) (B(t) - B(t,b))) dt (2.7)

The weighting matrices Qlr,s,t), Rl(r,s,t), Ri(t)’ i==2,'--,5
are continuous with respect to their arguments and positive definite.
Also Q(r,s,t) and Rl(r,s,t) are assumed symmetric with respect to =«
and s . The necessary positive-definiteness of the above weighting
matrices in a quadratic error criterion of the form (2.7) has been shown
by Russell and Lukes[56] for the existence of an optimal control. In

addition, if
1
f R, (r,5,5) u(s,t) ds = v(z,t) (2.8)
0

with an inverse operation
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i
j il(r,s,t) v(s,t) ds = u(z,t) (2.9)
0

then[67]
1
j R, (x,5,t) R (s,p,t) ds = 8(z = p) (2.10)
0

In what follows we denote il(r,s,t) by RIl(r,s,t)

If we desire to estimate constant parameter vectors a and b
appearing in the volume and boundary conditioms, it is only necessary
to let A(t,a) = 0 and B(t,b) =0 in (2.2) and (2.5). It will be
seen this is the proper way of treating the recursive estimation of
constant parameters in partial differential equations, i.e., through
the definition of auxiliary ordinary differential equations of the form

(2.2) and (2.5).

3. Optimal Least Square Filtering

The filtering problem is to determine x(r,T), a(T), and b(T)
such that the functional (2.7) is minimized. We reformulate this
problem as an optimal control problem, an approach with the advantage
of not requiring statistical assumptions on the disturbances[lll. We

desire to minimize I with respect to x(x,t), ul(r,t), ui(t), i=2,°"°,5

-l

1
ol
0

(Y(r,t) - h(r,t,x))T Q(I’,S,t) (Y(S,t)—h(s,t,x))drds

o ———r
o ——

., fr )T R (r,8,£) u (s,t) drds + (y(0,t) - h(0,t,x)) T

i

OY——=K
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5
Q(0,0,t) (y(0,t) = h(0,t,x)) + } u"?(t) R, (t) u.(t)} dt (3.1)
i=2 b i 1

subject to the constraints

x, (£,t) = £(r,t,x,x_,x_,a) + u, (r,t) (3.2)
£ = Ata) + uy(e) (3.3)
g (t,x,x) +uy(t) = 0, r=0 (3.4)
g, (t,x,x_,b) + u,(t) =0, r =1 (3.5)
L= B(e,b) + u (D) (3.6)

Note that the initial and terminal states are free, since we will not
in general know the initial states x(r,0), a(0) and b(0). The
necessary conditions for optimality for (3.1) - (3.6) can be obtained

from the Euler equations and transversality conditions, and are

1.

xt(r,t) = f(r,t,x,xr,xrr,a) --% f R;l(r,s,t) A(s,t) ds (3.7)
0

go(t,x,xr) - % Rgl(t> uo(t) = 0 (3.8)

g, (£,%,%_,b) = = R;5(t) W, (L) = 0 (3.9)

i 274 L *
-3% = Al Al = % R;l(t) (t) (3.10)
-3% = Bileb) ~ % Rgl(t) o (t) (3.11)
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1
At(r’t) = 2 J hz(r,t,x) Q(rssst)(}'(s,t) = h(S,t,X)) ds
0
T T T
- £+ (£ Al - (£, Al (3.12)
T rr
1
dt  _ _ T - -
&£o- Jfak(r,t) dr - AT £9.43)
0
do _ _.T__ T
e Bbc glbul(t) (3.14)
A(z,0) = A(z,T) = O (3.15)
1) = T(T) = 0 (3.16)
g(0) = o(T) = O (3.17)
e U - £5 A+ [£5 Al - 2h% Q(0,0,t) (y(0,t) ~h(0,t,x)) = 0 ,
(o] X b of X
X T rr
r=20 (3.18)
e W -f. A=0 , r=0 (3.19)
OX er
T
gf ul+f;l;)\—[f;r{ N_= 0, r=1 (3.20)
X b p o1 3
gi pl+fT)\=O . Eowl ©(3.21)
X er

r
where A(xr,t), uo(t), ul(t), T(t), and 0o(t) are Lagrange multipliers,
or adjoint variables. uo(t) and ul(t) can be expressed in terms of

A(0,t) and A(l,t) . If g, # 0 and 8, #0,
X X

h =3 T
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uo(t) = & fX A, r=0 (3.22)
X rr
r
e o1 T -
ul(t) = =g fX A, r=1 (3.23)
- Ir

where ggl and gil can be interpreted as the left inverse when
b4

X
T 4 of
s # n
—1 _ T -1
& € & %o
X b4 X X
T r X r
(3.24)
] _ T -1
&1 &1 & &1
X X X X
T r 15 r
If g =g =0
X X
o b
bo(e) = gt {~1£5 A1 + 2n% Q(0,0,t) (¥(0,t) - h(0,t,x))},r = 0
o gox X, F X =2 2 ¥y ’
(3.25)
o wL T _
w(e) = g m [, AL, T=1 (3.26)
X ry

In the remainder of the study we assume & # 0 and g1 #0 .
X

Xy r

Thus the necessary-conditions are given by (3.7) - (3.17), (3.22),

(3.23) and
L -1 T T iy ' T
g g " fL A= £l A+ [£L Al - 2] Q(0,0,6)(y(0,) ~h(0,t,1)) = 0 ,
x x_ . rr ;3 L
r=20 (3.27)
S R T T _ _
8 &1 fX A - fX A+ [fx A]r =0 , r =1 (3.28)
X X rr T rr

r
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The necessary conditions constitute a two-point boundary value
problem, the solution of which is the optimal smoothing estimates
x(r,t), a(t), and b(t) . Initial and final conditions (t = 0 and
t = T) are given for all adjoint variables, whereas x(r,0), x(r,T),
a(0), a(T), b(0) and b(T) are free. For filtering the solution of
the nonlinear two-point boundary value problem (3.7)- (3.17), (3.22),
(3.23), (3.27) and (3.28) is desired for all T > O. Thus, it is
necessary to convert the two point boundary value problem into an
initial value problem with T as an independent variable.

If the original optimal control problem is well-posed, there -
exists a unique x(r,T), a(T) and b(T) when the final conditions
A(r,T) = T(T) = 0(T) = 0 are satisfied. Let us consider a more gen-
eral class of problems, namely those in which A(r,T) = c(k>(r) .

(1) (0)

T(T) = ¢ and oO(T) = ¢ The solution to the-general class of

problems can be denoted

x(2,T) = (e, T,cM (), P, (9 (3.29)
am = v, My, P, 9 (3.30)
) = PP, My, P, @ (3.31)

The solution we desire is Y(r,T,0,0,0), w(a>(T,0,0,0) and
b
v®(1,0,0,0) .
Our objective is to determine the initial value problem govern-
. (a) (b) . :
ing Y, Y and Y « The technique for converting a boundary

value problem into an initial value problem by dimbedding the desired
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problem in a more general class of problems is termed invariant imbed-
ding and has received considerable attention for ordinary differential
equations. We will employ this technique on the present problem.

Let us represent (3.7), (3.10), (3.11), (3.12), (3.13) and

(3.14) by

x, = 0L, £, AsXsa) (3.32)
48 o pte,a, ) (3.33)
dt p ’a’ -
db

™ n(t,b,0) (3.34)
At = B(r,t,A,x,a) (3.35)
Lo y(e,x,0,8,1) (3.36)
dt L ] ] H L
80 o BlE ek b0 (3,37)
dt sXsAsD s °

For a final time T + A we can write

Y(x,T + A, c(k)(r) + Ac<x)(r), c(T)+ Ac(T), c(c)+ Ac(o))

1

o Ple T, ey, o8, 9y 4 Ugh + f ——?g%——— 2™ () ar
. 0 8¢ ()

+ (1) AcC™ 4 V() 2’9 4 0% (3.38)

Sy

[70]
s (1)

where is a functional derivative . We also can write
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Y(xr,T + 4, M) @ + 8P @y, (P4 Ac<T>, 5 (@

+ Ac
= x(r,T) + a,T,eM @), v r,eM @), P, 9y,
v, M @y, P, Dy + 002 (3.39)
In addition, we let
8e M (x) = 8, 1,e M @), ve,1,c®, P, ) Y@ Ny,
0 o @yyn (3.40)

Ac(T)

v, v&,T,eM @, P, Y, Py, v, M),
(T @y (D, (3.41)

2@ - o(T, W(r,T,cO‘), c(g)), co‘)(r), w(b)(T,co‘) (), ccT),

c(y Dy, (3.42)

Combining (3.38) and (3.39) and taking the limit A + 0 , we obtain

the Hamilton-Jacobi type equation

1
b+ | —He— @ ne V@ an®) ar vy g vanePm,
0 Sc () .
| (3.43)
w(a), c(T)) + ©) G(T,w,c<k)(r), W<b), c(g))
c
= a(rsT,C(k)(r),w,w(a)>

Similarly, we can obtain
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1

(a)

o@D+ [ e 8 e P @@ o+ 90 vawe P,

0 Sc (r) c

¥, )y 1 4@ ey, e M@y, v®, o = o, p)

C
(3.44)
and
o, [ _a® ) (a) ®) )

W + [ 8w r, e P @ @rar + v® v P,

5 8¢ (1) e\t

1@, ® oy, M), v®, Dy 2n@p®, Q)
S (3.45)

The desired initial value problems for VY, w(a) and w(b) are

given by (3.43) - (3.45). Let us assume solutions of the form

.
b e @00, ) = i@ -3 [ 2 e P e
0
- lpG e,y DL pOD) iy O (3.46)

2
¥ 2, My, O

9

_ _Ié_ p(aa) (T) LT % P(ab)(T> R (3.47)
i
¥ @M@, @, @ - tm -1 [ 6m Poras
0
- 200 () (D L 100 (g (@ (3.48)

When C(A)(r) =’C(T) = c<0) = 0 , the assumed solutions reduce to the-

optimal estimates, %(x,T), Q(T), and g(T) . Thus (3.46) - (3.48) can
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be viewed as first order linearizations about the optimal estimates in

My, oD ©)

the deviations , and ¢ . This type of assumed solu-

tion to the Hamilton-Jacobi type equations was used in the lumped

[11]

parameter case In the linear white noise case (3.46) - (3.48)

yield the exact solutions of (3.43) - (3.45) and

o)
g
~

~

H

1]

)

~
]

E {(x(x,T) - £(x,1) (x(s,T) - &(s,T) '}

E {(x(x,T) - &(z,T))(a(T) - (1))}

g
~
i

E {(x(z,T) - %(z,T)) (b(T) - ()T}

Lge)
~
<
o’
~
~
2]
3
~
1]

p(22) (qy = E {(a(m) - A(M)(a(m) - a7}

p(ab) (1) = £ {(a(m) - &) (@ - BTN}

(PP (7 = E {(b(T) - B(T)) (B(T) - B(T))T}
Thus

pva) _ pan® L) onT  @b) | ka)”

3 3

P r6.m) = PV (s,0,m)T (3.50)

In the nonlinear case these functions do not have a direct statistical
interpretation. Thé equations governing these functions are determined
by substituting (3.46) - (3.48) into (3.43) - (3.45) , linearizing each
of the nonlinear terms about g(r,T), g(T), and g(T) up to first

A (D (9)

order in ¢ y & , and c¢ , and equating coefficients of terms of

A (D (o)

like order in c¢ 5y € and c¢ . It is this linearization that

enables the explicit determination of the governing differential
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equations for X(x,T) , a(T) , b(T) and all the P functions. Sub-
stituting (3.46) - (3.48) into (3.43) and linearizing to first order

we obtain
1 1

R.(r,T) - f(r,'r,ﬁ,ﬁr,fzrr,a) - f JP(W)(r,s,T)hi(s,T,ﬁ) Q(s,Z,%)
0 0

1

0

-1096nD L M aem £ P

2
S
s=1
2 e, ieE My + 2 (6, £ N (e}
X S S X
ss ss s=0
2 2 2
+ oM, (D7 @) (3.51)
where
11
P e =2 em - [ [ 2™ eem s@v
‘ 0 0

P(vv>(v,s,T)dC av - P(VV)(r’s,T) Ez(s) = P§VV)(r,s,T) Ez (s)
s

- Pé:v) (r’S,T) E;I'{SS<S) - ,f\x(r) P<W) (r,S,T) -,f\xr(r) Pf.vv) (r’S’T)

% (w), - plva) s _ 3 (av)
fxrr(r) Prr (r,s,T) P (r,T) fa(s) fa(r) P (s,T)

s+ ey o o7l BT sraty - R (z,8,T) (3.52)

lb lxs XSS
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1 1
(W (¢, 1) = Péva)(r,'l') - f J p YY) (4 1y s(z,v,T) p(va) (v,T)dZ dv
0 0

- & @ p{va) i oy - %Xr(r> Péva)(r,T) . Exrr(r> Péza)(r,T)

- p(Va) (¢ 7y A -2 p(a@) 1y (3.53)

1 1 ‘

29 @1 = 2" ) - f J P (2,0,m) s(z,v,m 2 v, mar av
0 O
A (vb) % (vb) p (vb)
- £ 0 BV ) = £, G B Guly~£, (T B VT
o xr

-2 B - E o 2 (3.54)
S(2,V,T) = [0 (5,T,%) QZ,v,D) (y(v,7) = h(v,T,3)]_ (3.55)

and %(r) denotes f(r,T,§,§r,§rr,g) in the above equations. In
order to evaluate the last three terms of (3.51), we need the boundary
conditions on P(vv)(r,s,T) o From (3:8); (3:9),; (3:15), (3:22) and

(3.23) we have the‘following relationships when T is the final time:

go(T’X’Xr) = 0 , T =10 (3.56)
gl(T’)’E’;‘Er’b) = 03 =1 (3.57)

If we consider the imbedded final time case, i.e., c<k)(r) #£0,
c<T) # 0 , and c(d) # 0 , we can obtain the following after substitut-

ing (3.22), (3.23), (3.29) - (3.31) and (3.46) - (3.48) into (3.8) and

A A

(3.9) and expanding about x , a , and b :
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1
A A A i ~ vV A vV
gl(T’x’erb) = E’j [gl P( )(I,S,T> e gl P§ >(r,s,T)
0 ot *r

+ 5 PO,y - RN gt 6(emD)] ¢ ayas -
X

S8

L

s

-7 (g

p(Va) 1y 4 g Piva)(r,T) + 8 p(Pa) 1y (D
bid X b

r

-2, 2@ + g 2P g 21 O

X X b
pe

2 2 2
+ 0™ L T Oy g, rel (3.58)

In order to use (3.56) and (3.57) as the boundary conditions for

§(r,T) for the imbedded final time T + A and to satisfy (3.46) -
A
My | O (@)

(3.48), we need each coefficient of ¢ s @ and ¢ in

(3.58) to become identically zero. The same applies to the r = 0
case. Thus we have all the necessary boundary conditions,

...l A—l AT
i Pivv)(r,s,T) R g sy =0,

r X 88
S

vV N
n P (r,5,m) +

r=20 (3.59)

A

5 T
P(W) (r,8,T) + gl P]EW) (z,8,T) + gl P(Vb) (s,T)
X b

1
X
T
- Wy 2L B Efel) =0 , =0 (3.60)
B lx Xss
S
. p(V@) (p 1) 4 go P§V3>(r,T) =0 , =0 (3.61)
X X

r
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gt
g, 2"+ glx e e + 5, 2% @ = 0, r=1 3.62)

X " b

pV0) (1 1y 4 2, PiVb)(r,T) « % ., med
X Xr

(3.63)

g, 2", + B P+ gy PP m =0, x =1 ()

bie b
T

Using (3.27), (3.28), (3.50), (3.59), and (3.60) the last three terms

of (3.51) can be evaluated

PO (r,s,1) £ eM gy = 2 (6,1 [£] cm(s)]S

S S8

+ Pévv)(r,s,T) fz c(k)(s)
S8
- -2 gl gt

T (i®
g £ cMe+roe™ ), s =1 (3.65)

b X
s S8

26,1 £ Moy + 2 emiel Mo,

S 88

22,6, 18 cWie) = 20 (6,1 1,1, 00,01 (¥(0,T)

SSs
1
- 1(0,T,%) - PV (2,5,T) 5(0,0,8)] f P (6 v,me™ vy av
0

2
# 20 (6,10 12 (5 19D} 4 0Py, s =0 (3.66)

Combining (3.51) with (3.65) and (3.66) we obtain the differential equa-

tions governing ;(r,T), P(vv)(r,s,T), P(va)(r,T) and P(Vb)(r,T) .
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I 1
2D = (LS + [ [ P @D oy
0 O
(y(V,T) = h(V,T,%)) dg dv
+ 2 (2,0,1) 15(0,1,8) Q(0,0,D(7(0,) = h(0,T,X)  (3.67)

Pévv)(r,s,T) = £ (0 p(v) 4 p(vv) sy + Exr(r) PEVV)+ péVV)Ezs(s)

T
+E (o P§¥V)+ Pé:v) T (e + () p(Va) (s

Irr S8

o
+ 2D @,y ey f J Y (2,2, s(z,v,m) 2 (v,8,T)dz dv
0 0

+ 2 (£,0,T) 5(0,0,T) P(vv)(O,s,T)i-Rll(r,s,T) (3.68)

p(Va) (r 1y = 2 (o) p(va) £ @ Piva) +i @ Pﬁza) +£ @ p(aa)

T
s of Y
‘ 11
+ pva) Kg + f J PV ooy sy, PV (v,T) dz dv
0 0
+ 2 (¢.0,1) 5¢0,0,7) V¥ (0,T) (3.69)

2 (r,m) = £ () 2O 4 fxr<r) PP 4 %er<r) PP 42 () 2D
2 &
+ plvb) ﬁg + f f PO (2 0,1y s(z,v,T) PPy, 1y dr av
' 0 0
+ 2 (r,0,1) 500,0,7) 2P (0,1) (3.70)

Similarly, we can substitute (3.46) - (3.48) into (3.44) and (3.45),
\) (1)

linearize and collect coefficients of like powers of ¢ s © and
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(9)

c to obtain the differential equations governing a(T), g(T),

P(ab)(T), P(aa)(T), and P(bb)(T) . The resulting equations are

A |

gﬁ%‘l = AT,a) + f f 8% g0 h:(C,T,x) Q(Z,V,T) (y(v,T)
0 O

- h(v,T,%)) dg dv + 280 (0,1) h}T{(O,T,;E) Q(0,0,T) (y(0,T)

- h(0,T,x)) (3.71)

R 11

dZTI- = B(T,B) J J 2™ (1) h§<c,T,§> Q(Z,v,T) (y(v,T)
0 0

- hv,,0)dz av + 2PV (0,101 (0,1,%) (0,0, (¥(0,T) - h(0,T,8))

(3.72)
@y & ¢ (a2 7 . [ T (aw)
"‘—dr—u' =Ap aa) , p(aa A +f f P8V (r, 1) S(z,v,T)
0 0
p(Va) (v myaz dv + 23V (0,1) 5(0,0,7) PV (0,T) + le (3.73)
@ o @) @) st [ (vb
e abr & p*e B, + f fp(a")(c,T) S(C,V,T)E ) (v,T)drdv
0 0

+ 28 5.1y 5¢0,0,7) 2V (0,1) (3.74)
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11
(bb) /., " R T
éﬁ_afaill - 5, p(bb) ., (bb) BE - f [ O i oy ey
0 0
e v,y dg av + R;l(T) (3.75)

Equations (3.67) = (3.85) constitute the distributed nonlinear

(bv) _ Hvb)T
filter for (2.1) - (2.6). It is easy to check that P = P s

p(av) . P<Va>T, and (%) - P(ba)T.

The filter obtained can now be summarized:

Initial
Equation Conditions Boundary Conditions

Estimates

2(x,T) (3.67) %(x,0) (3.56) (3.57)

a(T) (3.71) a(0) none

b(T) (3.72) 5(0) | none
Covariances

PV (r,5,1)  (3.68) p) (2,6,0)  (3.59) (3.60) with

Py (3.69) P (2,00 (3.61) (3.62) -39

PPy (3.70) PP r,0)  (3.63) (3.64)

p(33) (y (3.73) {23 (0) s

p(ab) (7 (3.74) p &) () none

p(PP) (7 | (3.75) PP (o) none

4. Optimal Least Square Interpolation

The sequential interpolation (fixed-time smoothing) problem is

interpreted as choosing x(r,tl), a(t and b(tl) , Where tle[O,T]

1)

and T 2 tg, which minimize the error criterion (2.7). This
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statistical minimization problem can be reformulated as an optimal con-
trol problem as shown in the previous section. In this section the

[29]

approach of Kagiwada et al for sequential interpolation in non-

linear lumped systems is extended to nonlinear distributed systems.

Reformulating the original problem as an optimal control

problem, we want to determine x(r,tl), a(tl) and b(t to mini-

D
mize (3.1) subject to constraints (3.2) - (3.6). If we have the optimal
solution x*(r,t), a*(t) and b*(t), te [0,T] which minimizes (3.1)
with (3.2) - (3.6), then the optimal solution will satisfy the necessary
conditions for optimality, (3.7) - (3.21). In addition, the optimal
least square interpolation solution which minimizes (3.1) coincides
4with x*(r,t)ltl, a*(t)]tl and b*(t)]tl from the assumed uniqueness
of the optimal solution. Hence we have the same necessary conditions
for optimality for the interpolation problem as for the filtering
problem.

It is ﬁecessary to determine the Cauéhy type representation of
the interpolation solution on the basis of the two point Boundary value
problem. If we consider the imbedded final time case where A(x,T) =
c(k)(r), T(T) = c(T) and 0o(T) = c(d) , the interpolation solution

can be written as

x(r,ty) = ¢(t,TLr,eM @, P, ) (4.1)
sty = 3¢, M e, 7, ) (4.2)
ey = 9%, meM @, 7, ) (4.3)

Therefore the desired solution becomes ¢(tl,T,r,0,0,0) "
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qﬁ(a>(tl,T,0,0,0) 523 ¢<b)(tl,T.0,0,0) . Using (3.32) - (3.37), we

can write the following relationship for the final time T + A

AT+ 8) = AMz,D) + A (r,T) A+ 0(42)

= M@ 48,1, M@, 011,r, M@, 7, @),

0@ 1,1,cM (2, (P, Dy + 00a2) (4.4)
Also we have

¢(tl,T + A; vy Mz, T+4); T(T+4), c(T+4))

= 4, 1,7, e M (), D, ) (4.5)
Similarly, we have
(T + 4) = c(T)+Y(T,¢(T,T,cO‘) (), c(T), c(d)), c()‘)(r),

2@ 1,1,eM @), P, @y, Dya+ 002 (4.6)

ot + 8) = ¢ +oc,0r,T,r,cM @), {7, Oy, My,

6P (1,7,c M (@), T, @y, Oy 4 g2 (4.7)

62 (¢, T+ 4, Az, T+8), TT+D), 0(T+ 1))

= 9@ e 1,e M, 0, ) (4.8)



kT

$®) (£, +8), A(x,T + 8), T(T + 8), O(T + )

o)

= ¢(b)(tl,T,c(>‘)(r), c(T), c( (4.9)

Substituting (4.4), (4.6) and (4.7) into (4.5), and taking the Taylor

expansion with limiting operation A = 0 , we have

1
br J _(_%L_ 8ér,1,eM @, vy ar+e <T)Y<T,w,c0‘)(r>,
§e (x) .
0

@@y v e, M@, v, a0 v
Cc

Similarly we obtain

i
f (a) '
0 + | =t 8,1, M @ 91 ®ar + o) v, P,
0 Sc (r) c
@, w68 e, e My, v®, 9y - o (4.11)
C
w . 5P ) (a) (b) )
¢T +J N B(x,T,c " (x),yP,y )dr+¢(T) Y(T,P,c" 7 (x),
0 c (r) c
@), _
RO NN 6@ oMo, NOBERLIE: (4.12)
(o4
where

v (r,eM @, @, 9y 2 ger,mr, My, (T, O

V@ @M, P, ) 2 @D a1, N, D, )

lp(b>(T,C(>\)(r), C(T), c(U)) = ¢<b)(T,T,cO\)(r), C(T), C(O)) (4.13)
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Equations (4.10) = (4.12) are the desired initial value problem together

with (3.43) - (3.45) and (4.13). Consequently we can consider only ¢ ,

¢(a) (b)

, and ¢ , since (3.43) - (3.45) generate the previous filter

results. Let us assume the solutions of the form, as a first order

approximation
i
s(epmr e @, ¢, @) = S m -3 [ WO (0,0,
)
Moy as - 20 e ,m P - 2wz, 1) O (.10
i
6@ (e1,cM @), o, @) 2 iem -3 [¥E® 6,0 me® (140
0
2wl e me(P - Il 1y 9  (4.15)
i
o® (e, 1M @, o, D) = dee,m -3 [ WO 6,0, meP (@108
0
2wl me(® - 2Py (@ (4.16)
From (4.13) we have
g(r,T,T) = Q(r,T)
e(T,T) = a(T)
dr,;) = b(m
(4.17)
W (2,6,7,1) = 2 (2,5,T) w(aa) (p 1y = p(ad) (qy
WD e,y = 2V (e w(@) (pry = 2(&0) (7

WP ey = 2P (1 w1y = 2P (qy
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W e - p () (2,1 W(bb)(T,T) = ) (qy

WO porry = POV 7y

In the interpolation case we do not have the similar relationship to
(3.50), since we are dealing with the quantities at tl and at T .
If the system is linear and with Gaussian white noise, then (4.14) -

(4.16) yield the exact solution of (4.10) = (4.12) with the following

statistical interpretations:
W (2,0,6,,) = B{ (a(r,8p) = £(r,t,D) (x(s,D) - 2(s,T)7]
W e 1) = B {(e(r,ty) - A(,t,T) a(@ - A7)

W& e 1) = E {(ale)) - &t B - BENT], et (4.18)

To obtain the governing differential equations for the W's we can
follow the same procedure as in the filtering case. Substituting

(4.14) - (4.16) into (4.10) and applying Taylor expansion, we can obtain

1 1
Gty - [ [0 @ge,n e e e o,
0 O 1
- h(v,T,%) dg dv - %-f r® (z,5,m) M (o) as
0

-1

LW, o0 -1 1@@ Ly e meM ez (o)

S

-0 ,e,e, 0 M 0)E, (1 +0 T (r,8,0,,D)
SS
s=1 2

2 Z
+ O(c(k) 5 c<T) " c(c) ) =0 (4.19)

c(K)(s)fx }

ss 's=0

where
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1 1

P ,e,m = WV s,e,m - [ [ 8 g0, sGD
0 0

e (v,5,1) dg av - W (x,5,6,,1) Erte) -0 (r0,t,T) EL (o)
s

-0 (0,0 ,m B (e) - WD (e, £L(e)

SS
+ W(Vb)(r,tl,T) 8] E75 £ (s) 8(sD) (4.20)
b X ss
S
1 1
e, =0 en - [ [ WV e s
0 0
p(V@) (y 1y dr dv - W(va)(r,tl,T) Kz (4.21)
i 1L
D em =i e - [ 65 sEv
0 0
p(VP) (y 1y dr av - W(Vb)(r,tl,T) B (4.22)

To evaluate the last three terms of (4.19) we need the boundary
condition on WCVV) at s =0 and s =1 . But we cannot handle the
boundary conditions as (3.58) because of (4.18). From the analogy to
the linear system with Gaussian white noise, i.e.., (4.18), we can

assume the boundary conditions for W(vv)(r,s,tl,T) at s =0 and

s =1 din the form

W(vv)(r,s,tl,T) e+ Wévv)(r,s,tl,T) gg wi, sl (i)
X X

S

Vv o W AT b AT
W( )(r,s,tl,T) g1x+ Wévv)(r,s,tl,T) g] * wlv )(r,tl,T) g, =0

X b
s

1 (4.24)

s
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and

go(tl,g,ér) =0, r=0 (4.25)

gl(tl,;,;r,a> =0, r=1 (4.26)

Combining (3.27), (3.28), (4.23) and (4.24) with (4.19) we can obtain
the following differential equations for Q(r,tl,T), W(Vv)(r,s,tl,T),
W(Va)(r,tl,T) and W (z,e,,m) ,

i

y
ET(r,tl,T) = f j W(VV)(r,c,tl,T) hi(c,T,Q) Q(z,v,T) (y(v,T)
0 O

- AT, 0) dg av + 1V (2,0,£,,T) Bi(0,6,8) Q(0,0,1) (y(0,)

- h(0,T,%)) (4.27)

Wévv>(r,s,tl,T) . W(VV)(r,s,tl,T) £l(s) + Wivv)(r,s,tl,T) %zs(s)

" w§:V>(r,s,cl,T) T (o) + w(V3)<r,tl,T> £1(e)

8SS
I X
# [ ¥ 00em s@en X 00 ar v
0 0
% w<VV>(r,o,cl,T) 5¢0,0,7) 2" (0,5,T) (4.28)

11
wéva)(r,tl»T> = W<va)(r’t1’T) iy f f w(vv><r’c’t1’T) S(Es951)
0 0

pV@) (y 1y dr dv + W(Vv)(r,O,tl,T) $(0,0,7) 2V® (o, (4.29)
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L W (2,2,0,,1) S(2,0,T)

Oo—H

X
W(Vb)(r,tl,T) = y(vb) (r,t;,T) ﬁg s f
0
P v, dg av + W (2,0,00,m) 500,01 BP0, (4.30)

Similarly, we can obtain the differential equations governing g(tl,T),

W(av)(s,tl,T), W(aa>(tl,T) and W(ab)(tl,T) from (4.11), (4,14 -

(4.16)
1 J
Gepm = [ [ e m wlend agn o,
0 O

- hW,T,8) 4z av + W% (0,e,,1) B1(0,T,%) Q0,0,1) (¥(0,T)

- 1(0,T,%)) (4.31)

Wéav)(s,tl,T) - W(aa)(tl,T) £l (s) + W(av)(s,tl,T) £l (s)

. Wéav)(s,tl,T) %‘i (s) + w_i:") CRA ‘f‘}T{ (s)

S ; S8
1 1 .
o[ ¥ @em s@vn 208 @ av
00 (av) (vv)
+ W3 (0,£,,T) §(0,0,7) P77 (0,8,T)  (4.32)
1 1
W e = we D e K [ [ W gem sev,

0 O

(V) (y 1y dr av + W(av)(O,tl,T) 5¢0,0,7) (V@) (0,m) (4.33)
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11
(ab) _ .(ab) A (av)
W epm =0 e T+ [ W e sv
0 0
pOVP) (y 1y dz dv + w(av)(o,cl,r) $(0,0,7) 2?) (0,1 (4.34)

where the following boundary conditions on W(av)(s,tl,T) at s =20

and s = 1 are assumed for (4.32)

T T
w(av)(s,tl,T) g, T Wéav)(s,tl,T) gox =0, s=0
x s (4.35)
T T b T
W (6,0, 8] + W (s, g1 W, 8] =0,
X xs b
s =1 (4.36)

Combining (4.14) - (4.16) with (4.12) and following the same procedure

as before,

1 1
Gty = [ [ 5@ BT e G
0 O

- hw,T,8) ag av + WPV (0,e,,T) B1(0,T,%) Q(0,0,T) (¥(0,T)

= h<0,T’§)) (4-37)

w(bV)

%) (6,t,,1) = W(ba)(tl,T) £ W(bv)(s,tl,T) £ (s)

(bv) T (bv) A
+ WS (s,tl,T) fx (s) + Wss (s,tl,T) fX (s)
S SS
1

J W(bV)(c,tl,T) s(z,v.1) 2 (v,5,1) 4z av
0

+

O

+ W(bv)(O,tl,T) 5(0,0,7) 2"V (0,s,T) (4.38)
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1 1
(ba) _ ..(ba) oy (bv)
WT (tlsT) =W (tl’T) Aa + f f %) (C:tlﬁT) S(C,V,T)
0 0
p(V@) (y 1y dr dv + w(b")co,tl,tr) $¢0,0,7) V¥ (0,T) (4.39)
1 1
(bb) (bb) AT (bv)
0 0
pOVP) (v, 1y dr dv +wPV) (0,,,T) §(0,0,T) p(VP) 0,1y (4.40)
where the boundary condition of W(bv)(s,tl,T) is taken as
W (e,t,,1) e wéb") (s,t,T) . = 0, s=0 (4.41)
X X :

s

(bv) AT (bV) AT, (bb) T
W (S,tl!T) glx+ WS (Sstl:T) 8lx + W | (tl’T) glb o,

s
s =1 (4.42)

This completes the derivation of the interpolation equations
for the nonlinear distributed system. The initial conditions for

(4.27) - (4.42) can be obtained from (4.17) if we take T =t Thus

l °
to solve the interpolation problem at tl we have to integrate the

filter equations first up to tl . Then we have to solve the filter

and the interpolafion equations simultaneOuély for T > tl .

The interpolation equations can be summarized:



Estimates

z2(x,ty,T)
S(tl,T)

8(tl,T)

Covariance

WO (z,6,,,1)
W(va)(r,tl,T)
W(Vb)(r,tl,T)
w<av)(s,tl,T)
w(bv)(s,tl,T)

w3 (e 1)

5.1 Example 1.

-55=

2
xt(r,t) = 0.1 X f 0.1 x~ + El(r,t)

Initial
Equation  Condition
4.27) Rzt
(4.31)  &Cty)
(4.37) beep)
4.28) 2" (r,6,t))
4.2 2 (z,e))
(4.30) P(Vb)(r,tl)
.32 P (,e)
4.38) 2V (r,c))
4.33) 2z,
.36 e
.39 P
440y PP (e

x(0,t) - 0.05 X

r

x, = E,(t) ,

It is required to perform filtering

tial interpolation for the heat conduction system

Ey(t) , T =0

r=1

Boundary Condition

(4.25) (4.

none

none

(4.23) (4.

none

none

(4.35) (4.

(4.41) (4
none
none
none

none

26)

24)

36)

42)

and sequen-

(5.1)

(5.2)

(5.3)
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with unknown initial condition

x(r,0) = 2sinTrx (5.4)

and noisy observations generated by
y(rg,t) = x(r;,t) [L+n(e)], i=1,2,3 (5.5)

where r, = 0.25, r, = 0.50, ry = 0.75 . The dynamical disturbances

are generated by

g, (xr,t) = 0.1 6(0,0.5) .
E4(t) = §,(t) = 0.15 6(0,1) (5.6)
n(t) = 0.1 G6(0,1)

where G(0,0) 1is a normally distributed random variable with mean zero
and standard deviation ¢ .

The filter equations for Q = 1 are

3
xp (2,T) = o.1§crr b D185 & igl P(VV)(r,ri,T) [y(ri,T)-X(ri,T)]
(5.7)
2¢0,T) - o.os§r' =0, r=0 (5.8)
§r = 0 , r=1 (5.9)
Pévv)(r,s,T) = 0.2x(e,T) PV (2,8,T) + 0.2V (x,5,T) x(s,T)

' 3
% 0.1Pr§vv)(r;s,T)-+o.1P§:V)(r,s,T)-izlp(vv)(r,ri,T)P(vv)(ri,s,T)
i

+ Ry (5.10)
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=1

P (0,5,T) - 0.05 P§VV>(0,S,T) - 20 By

§(s) = 0O

P(vv)(l,s,T) - R.-1 §(s-1) = 0
T 4
Initial conditions for (5.7) and (5.10) were chosen as
Q(r,O) = 0

o\ g 0 0) = 25 expl=0.5]E=a])

The additional interpolation equations are

3 A
I v, e, - 2,0

zT(r,tl,T)
i=1

Wévv)(r,s,tl,T)

3
- izl W(vv)(r,ri,tl,T) P(vv)(ri,s,T)

W(vv)(r,o,tl,T) = 0.0SWévv)(r,O,tl,T) = 0

(vv)
Ws (r,l,tl,T) = 0

W<W) {ty8,t = P(W)(r9sstl)

goti)

z2(r,ty,ty) = x(r,tl)

Numerical solution of (5.7) - (5.19) was carried out using

quasilinearization and the Crank-Nicholson method[43’54]

and the

(5.11)

(5.12)

(5.13)

(5.14)

0.2W(Vv)(r,s,tl,T) £(s,T) + O.lWéZv)(r,s,tl,T)

(5.15)

(5.16)

(5.17)

(5.18)

(5.19)

alternating direction method[54] for (5.10). The Dirac delta function
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was approximated by 1/Ar , the mesh spacing. The results are shown

in Figures 1 and 2 for Q=1 , Rzl = 0.5 , R;l = Rzl

filter estimates shown in Figure 1 converge rapidly to the true

= 1.0 . The

(undisturbed) trajectories. Figure 2 presents a comparison of the true
profile at t = 0.4, the filter estimate at T = 0.4 , Q(r,0.4) , and
the interpolating filter estimate of §(r,0.4) at T = 2.0,
;(r,0.4,2.0) . The additional observations collected from t = 0.4 to
t = 2.0 are useful in improving the estimate at t = 0.4 through the

use of the interpolating filter.

5.2 Example 2. We desire to estimate the state and the con-

stant parameter a in the hyperbolic system, representing a plug flow

tubular chemical reactor

x, (r,t) + x_(r,t) = - ax (5.20)
da
. 0 (5.21)
x(0,t) = 1 (5.22)
with unknown steady state solution
-1
x(r,0) = (1 + ar) (5.23)
and unknown true value of a = 2 . The observations are
y(ri,t) = x(ri,t) (1+0.1 G(0,1)), 1i=1,2,3 (5.24)

with ;= 0.25 , r, = 0.5 , and ry = 0.75.
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The corresponding filter equations for Q = 1 are

. R .~ 3 ~

otR =-aie L P, D - RGr,D) (5025
da _ g p(av) (r.,T) (y(r.,T) - x(r,,T)) (5.26)
ar o g RIRSgS 1 :

p) (1 o7y = - 23 %(x,T) PV (r,5,T) - 28 2V (2,5,T) 2(s,T)

T

- 22, 26, - 2,1 P6m - 2V (8,1

3
-2 e,y - T e e, 2 (2, 8, (5.27)
8 g i o

p{aV) (2 1) = -2a x(r,T) P(EV) (r,T) - Pfrav)'(r,'r)

T
~2 (aa) g (vv) (av)
- x(r,T) BT - ] R (r,ry,T) P (2, T) (5.28)
i=1
(aa) 3
de'r =- 7 P("’“’)(ri,r)2 (5.29)
1=1
with
P (0,6,7) = 0
@ = o (5.30)
and
X(x,0) = 0
a(0) = 1

P(vv>(r,s,0) = 20 sin(0.8 mr) sin(0.8 ms)
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p(@) (£,0) = 15 sin(0.8 7r)
p(83) 0y = 20 (5.31)
The numerical results for §(0.5,T) and Q(T) are shown in
Figure 3. Although convergence is slower than in Example 1, the

results obtained confirm the applicability of the filter for estimating

parameters in distributed systems.

6. Remarks

For discrete spatial measurements we define a new Qd(C,V,T) as

shown by Meditch[46] as
M M
Qq(Ev,T) = ] ] Qi(ry,r),T) §(-1x) 8(v-r)) (6.1)
k=1 2=1 '
where
' - L
Qd(rk’rﬁ,’T) = Mz Q(rk’rQ,’T) (6'2)

Thus the integrations become discrete summations and Qd becomes an

(nM) X (nM) matrix.

In the case of no boundary noise, we put R;l = R;l =0 . When

g, = 0 or g8, = 0 with boundary noise, (3.25) and (3.26) give

X X
r

r
§'(s) or ¢§'(s-1) in (3.59) and (3.60). However, in the linear case,
Green's functions or eigenfunctions can be used to avoid the delta func-

tions in the boundary conditions of P(Vv)(r,s,T) . Then the present

[39,40].

results coincide with previous results Also, if we assume

(2.1) is valid for the closed interval [0,1] and at r = 1,§1 P(bv)(r,T)

b .
N
= P(vv)(l,r,T), then the present results reduce to those of Appendix III-A.
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7. Figures

Figure 1. True and Filtered Values of x(r,T) at Three Selected

Locations for Example 1.

Figure 2. Comparison of True Profile at t = 0.4 with the Filter
Estimate, Q(r,0.4), and the Interpolating Filter Estimate

at T = 2.0, z(r,0.4,2.0), for Example 1.

Figure 3. True and Filtered Values of x(0.5,T) and a for

Example 2.
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FIGURE 3
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Appendix III-A

SESSION PAPER 22-C
*

NONLINEAR FILTERING IN DISTRIBUTED PARAMETER SYSTEMS

Je. H. Seinfeld, G. R, Gavalas, and M. Hwang

Chemical Engineering Laboratory

California Institute of Technology

Pasadena, California

ABSTRACT

A general nonlinear filter is derived for systems
described by partial differential equations which con-
tain random disturbances in initial and boundary condi-
tions, as dynamical inputs and measurement errors.
Observations are assuwmed to be made continuously in
time at sn arbitrary number of discrete spatial loca-
tions. As an example, the filter is used to estimate
the state in a nonlinear hyperbolic system describing
a tubular flow chemical reactor.

INTRODUCTION

Estimation of the state of a nonlinear dynamic
system has important engineering applications in model-
ing and adaptive control. With few exceptions, work on
the estimation of the state of dynamic systems has been
concentrated on systems described by ordinary differen-
tial equations. A large number of practical processes
are described by partial differential equations, for
which the problem of state estimation in the presence
of noisy inputs and measurement errors is important.
For example, estimating the effect of random disturb-
ances on a transmission line, estimating the composi-
tion, temperature profiles, and catalyst activity in a
packed bed catalytic reactor, and determining reservoir
pressures from data at selected well locations repre-
sent applications involving the estimation of the state
and parameters of a distributed system.

Exact solutions to the filtering problem for non-
linear lumped parameter systems have not been obtained,
although a number of approximate nonlinear filters have
been proposed (7). The purpose of this paper is to
propose a nonlinear filter applicable to systems des-
cribed by partial differential equations. Several
studies have appeared recently on filtering for linear
partial differential equations: Balakrishnan (1),
Meditch (4), Thau (9), Tzafestas and Nightingale (10,
11), and Pell and Aris (5,6). A problem of similar
nature, filtering for lincar systems with time delays,
was considered by Kwakernaak (3).

Nonlinear filters for distributed systems have
been presented by Seinfeld (8) and Tzafestas and
Nightingale (12). The former study (8) presented a
filter applicable to nonlinear hyperbolic and parabolic
systems with spatially continuous measurements. On the
basis of a least square estimation criterion, a
Hamilton-Jacobi equation was derived and solved approx-
imately by a linearization in the region of the optimal
estimate. The filter obtained is only an approximation
to the more exact filter for spatially continuous mea-
surements obtained in the latter study (12) by the same
technique. Both of these filters assume deterministic
boundary conditions.

In the present study a general filter is derived
for systems described by nonlinear partial differential
equations with unknown stochastic inputs in the system

91109

and the boundary conditions and noisy measurements car=
ried out at an arbitrary number of discrete spatial
locations., The approach of Pell and Aris (5,6) is used
namely conversion of the distributed system to a lumped
system by finite difference approximations, application
of a lumped parameter filter, and then performing a
limiting operation on the spatial increment. Each of
the linear and nonlinear filters cited above are
special cases of the general nonlinear distributed fil-
ter presented here. The nonlinear filter is applied to
estimate the state in a nonlinear hyperbolic system
which describes the time-dependent behavior of a tubu-
lar chemical reactor.

DERIVATION OF THE FILTER

The problem is to estimate continuously the state
of a distributed system, based on continuous nofsy mea-
surements carried out at a discrete number of spatial
locations. We will consider the general class of sys-
tems on the reduced spatial domain, re[0,1], described
by the vector

X, = f(t,r,x,xr,xrr) + £l(r,t) 1)

where x(r,t) is the n~dimensional state vector, El(r,c)
is an n-dimensional vector of unknown random inputs,
assumed to have zero meam, and x¢, X,, &nd Xpy are par-
tial derivatives.

The initial condition for (1) is
x(r,0) = x,(r) (2)

which, in general, will not be known exactly. The gen~
eral boundary conditions at r = 0 and r = 1 can be
expressed as follows: '

3°(t,aa(t), x(r,t), x,(t,t))'r_o =0 3)
da, (t)

:C @ wofe,ag(e)) + €,(e) %)

8,(0) = ay, (5)

sl(t'nl(t)' x(r,t), xt(r’t))ir-l =0 (6)
dal :

Tk vl(t,al(t)) + g4(t) Y]

a,(0) = a,, (8)

Conditions (3) and (6) are completely general and
include &, and £,-dimensional inputs, ao(t) and a(t),
each of wgich i{s governed by an ordinary differential
equation containing random excitations, £,(t) and
£4(t). ao(t) and ax(t) account for the existence of
controlled or uncontrolled inputs at the boundary of

*

Presented at the Joint Automatic Control Conference, Georgia
Institute of Technology, Atlanta, Georgia, 1970.



the process.

In the following derivations {t is convenient to
revrite the boundary conditions (3), (6) in the form,

x(0,0) [ g = v(Eaag(0), x(r,0)s xe(r,0) | g (D

x(r.t)lt_1 - k(:,nl(t), x(r,t), x.(r,t) (10)

)’r-l
Observations of the system are carried out at m

discrete points in the spatial domain, LERL PERAAES T

At each point a q-dimensional vector of observations is

made, y(rg,t), £ = 1,2,-°+,m. Let us define the mn-

dimensional vector, xob(t), consisting of the states at

each measurement point,

T
xop(t) & [x(r,.c)’. x(r,80) Ty ee, x(rm.:)"J an

Then the observations can be included in a p-dimension-
al vector y(t) and related to the state by
y(t) = h(t,xep(t)) + n(e) (12)

where n is a p-dimensional vector of unknown measure-
ment errors. The significance of y(t) can be seen from
the following example., For a process with two states,
each of which {s measured directly at two points, n = 2,
m =2 and q = 2, the observations are described by

yi(ry,t) = x4(r,t) + (errors) 1= 1,2

y1(r,,t) = xi(ry,t) + (errors) 1= 1,2
From (11), xob(t) = [x)(1;,8), x,(r;,t), x,(r,,t),
xz(rz.t)lr. 1f we let hE,xop(t)) = xop(t), then y(t)=
[y, (rpt), ¥o(r3,8), ¥1(5,,t), y,(r,y,t) 1T, and p = 4.

In general, however, p is not necessarily equal to mq
because a combination of values at different points may
be the observed quantity rather than individual state
measurements at each point. Thus, (12) represents a
completely general representation of the measurements
on the distributed system.

Approximation of the Distributed System

The filtering problem is the following: Given the
observations y(t) from ¢t = 0 to t = T, what is the best
estimate of the state of the system, x(r,t), at t = T?
The first step in golving the filtering problem is to
‘approximate (1) by a set of ordinary differential equa-
tions using finite differences. The r-interval, [0,1],
is divided into N parts and (1) is rewritten as

&) o g(1a,e,x0p), 2AXED) | () 2x(Dx(3-1))

+ §,(18,8) (13)

=f(1) + CI(iA.t)
where 4 = 1/N
x(1) = x(4a,t) ; 1’ = 0,1,°°*, N (16)

Let us now define X(t) as the (N+1) n-dimensional
vector, T
x(e) & (x00,07, x@,0%, 00, x1,0T7 a9

Then (13) can be written

& e Flexco) + €® ae)
where
P(e,x(0) 2 1£7¢0), £7¢1),oor, £7 01T an
and

&) = 16,70,0), 8%a,0,0, 57,017 a8

i

where £,(0,6) = v4o(t) £,(c) and £,(1,6) = kg ()€, (),
and Vg = (I1-v,)7'v,  and kg = (I-i) Mg,

The observations take the form,
y(e) = H(e,X(c)) + n(e) 19)

where H(t.X(t)) is obtained from h[t,xob(t)] by relat-
ing xob(t) to X(t). For this purpose it can be assumed
that the m points of measurement coincide with mesh
points since the mesh spacing 4 will be much finer thanm
the measurement spacing. This assumption will not be
required once the distributed filter has been recovered

Derivation of the Estimator Equation

With the use of finite difference approximations
for the spatial derivatives, the distributed system has
been transformed into a lumped system, for which the
filtering problem i8: Given the observations y(t) from
t=0¢tot=T, what is the best estimate of the state
of the system X(t), at t = T? One of the several non~
linear filters proposed for lumped parameter systems
can now be applied to (16) and (19). Using the least
square filter of Detchmendy and Sridhar, we obtain the
nonlinear filter applicable to (16) and (19),

g% = F(c, () + P'(:)ﬂ§ Q[y-ﬂ(t,X<t>)] (20)
dp’ . sl
E.FXP +PFX
where X is the least square estimate of X and Q and R
,are p x p and (M1)n x (N+1) n-dimensional weighting
matrices which must be specified a priori and P’ is a
(NM+1)n x (N+1) n-dimensional matrix, corresponding to
the covariance matrix of the estimate error in the
Kalman filter. If the system is linear and £(t) and
n(t) are zero-mean Gaussian white noise, then
E(g(ry,t) z(oj,T)T) = R\ (rq,04,t) 6(t-1) and

Eln(rg,O)n(o,, 1)) = Q-l(ri,oj,t) 8(t-v) where R and Q
are positive definite. As 4r '+ O, R = R(r,p,t) ag%

Q = Qr,0,t), R71(0,0,8) = V5 (£) E{§,(e)E, ()T} va (e)
and R (1,1,0) = ka (v) E(£3(t)53(t)r) kI, (2). Ve

assume that E{£7r,t) n(r,t)T)} = 0, 1.e. the dynamic and
observation errors are uncorrelated.

+ p'(n§ q[y-n[:,i(:))]]xp'+x“ 1)

Let us now partition P' into submatrices, each of
dimension p x R. We denote each submatrix by P',,(t),
where 4 = o,1,+++, N and j§ = 0,1,°°°, N, and defiAe the
following n x n matrices,

Pr,e,0) S P () i T = 48,0 = g (22)
Poo(t) 2 P(0,0,) 1f 1= 5= 0 (23)
P (c,t) 2 P(r,0,0) 1£3 20,140 @28

In the linear case these matrices are defined as the
covariances of the estimate error,

P(r.0,t) = E{(x(r,t) - %(r,0)) (x(0,t) = x(p,))T}(25)
Po(r,t) = E{(x(r,t) = x(r,t)) (x(0,t) = x(0,8))T} (26)

Poo(t) = E((x(0,8) - %(0,0)) (x(0,8) - x(0,0))T) (2D

The following symmetry property, evident from (25), canm
also be expected to be valid in the noalinear case,

P(r,0,t) = P (o, T,t) (28)
We now take the limit as N + =, 4 = 0, with 4N =1
and obtain from. (20)

ax - % 3% T =
e Erarxgn, 5 Pobh‘ObQ(y-h(t.xob)) 29
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where 3
Pop(t) = [P(r,ry,t) , P(r,rp,t),"**,P(r,or,,t)]" (30)

The estimator equation (29) is subject to the following
boundary conditions, which are obtained directly from
(9) and (10),

x(0,8) = v(e,a (e), (0,0), i,(r.t)lr_o) 31

and

1,0 = k(6d 0, 200, @) ,) 6D

Estimator equations for a; and a; can be obtained
by performing the limiting operation on the 1 = 0 com
ponent of (20). Differentiating both sides of (9) with
respect to time we obtain

v

o (33

%(0,¢8) = [vt+v.0v i(r.t)+vxrir]r_o *+ 6,

-l ° ~
Lt [Y‘ * Vag¥y * Ve et Vag £y

The estimate equation for x(0,t), analogous to (20),
can be obtained by combining (20) and (33),

dax(0,¢ & : 2
_Eé_;_l ° [vt+ v.ovo(t.no(t)) + vxx(r-t)+ vxtxr]
=0
(34)
'r -
?) obPxop Q[y - h(t.xob)]
where
Py op & [BO.x 08, POLT 000,000, BCO,r 00
. T T T 35
N RO LA AR LTINS RO L B
Differentiating (31) with respect to t, we obtain
- da
#(0,8) el syt
dt =V ¥ v.o dt s Vo™ | =0 thxr =0 (36)

Combining (34) and (36) we obtain the desired equation
for 50.

- (coa, (0))+(vT )—l Tp nr Qly-h(e,x )
dt Mo ".0 vno"ao vao o,ob xon ¥ ’xob
(37)

The same procedure can be used with the boundary condi-
tion at ¢t = 1, (10). In this case we obtain

5 1
5 T T T =
== vl(:,al(t))+(k.lk.l) kay Py oy hxon(y-h(t,xob))
vhere (38)
Py op & PCLr0)) PCLIZE) 000, BT ,t)] (39)

The estimator equations for x(r,t), a,(t), and
a. (t), (29), (37) and (38), require initial conditions.
T%e initial conditions are generally our best guesses
of the initial values of x(r,t), a,(t) and a (t) at
t = 0. These initial conditions will be denoted
io(r), a,(0) and 5l(0), since in general the actual
initfal conditions xo(r). ay» and a4 are unknown,

Derivation of the Covariance Equations

Now the equation governing P(r,p,t) will be deter-
mined. For convenience these are termed the covariance
equations even though this .association is only exact
for the linear case. Consider (21) for the i,jth sub=

o

575

matrix of P', P'i,j'

ap!
---—IJ-1 - . ' " T
a4, 1-171-1, 57, 1P g 1 Paen, 97T g1y g
T T
+ P f + P!
1,953,9 * Pegnfym
m m T -
] -~ ]
+£§n*n5qb H(e,0) Ik, 5 P
-1
+ Rij (40)
where
11"
2£ (18, 8,x(1), x(i)—:g;:l). x(1+1)-2x§i) + x(i-l)} (41)
a
ax(1-1)
which becomes
3f (-ly, 3 £ (1
£ 0 [l ————
1,4-1 " ax_ B axrr(Az)
- - + 2
£ (DN + £, (DN (42)
In a similar manner we obtain,
- - 2
£,0 " 500 + £ (N Zf‘rr(i)N (43)
. 2
f,0m " Ex N (44)
Then (40) becomes
dPl P' - P'
B 7Y 4P T i i-1
o £.07] Pi'jfx(j)+ fx, (D) =g ) +
P' - PI PI . ZP' + Pl
1,17 "4,4-1 T i+1 i i-1,
( 7 )fxr(j) + fxrr(i){ %) Az'i J)
P! - 2P! , + P! mm
1,4+1 - 1.9 $;3-14..T '
+ (= £ + P
¥ a2 Ve () E E i,k
T -1
{ tuy Q[y - u(c,x(c))]]x}k_L Pyt Ry (45)
We now let N+ =, A » 0, noting that
dPi 3P(r,p,t)
1im 3,3 o 3P(rp,t
at (46)

Noe

4-0

Performing the limiting operation on (45), we obtain
3P(r,p,t)

at

= £(r) P(r,o,t) + P(t.n.t)f:(o) + f,r(r) 22553f‘51

T
$ 3R(rpt) (g
3p Xy

2 2 T
+e (Bl P(r,p,t) , 3%P(r,p,t) f,rr(o)
L 2 2
k)4 p %
(Eq. con't)



-68-

®eg

L aet-]

P(r, T A, P(r,00,8) + R (r,0)
“n

vhere

Ak L ie the n x n-dimensional submatrix defined
by v

xJ-(“abQY‘““%ﬁ”)&%kg (48)

Now we consider the boundary conditions for (47).
In order to derive these conditions we will consider
two cases: (1) No noise in the boundary conditionms,
i.e. £,(t) = 53(:) = 0 ; (2) Noisy boundary conditions
as represented in (4) and (7). We treat first the case
of deterministic boundary conditions.

Let us use the following identities,

x(0,8) = £(E,TuX,xpoXpe) | g * 8o(tsagsxixp) | g (49)

;(opt) » f(t.t’*pxr'xtt)l (50)
=0
and
x(1,t) = (e, 1, x,xpy%0 ) o1 8 (t,a;,%,%y) =i (51)
x(1,8) = £(t,1,%,xr,% ) (52)

Combining (49) and (47) evaluated at r = 0 and then
combining (50) and (47) at r = 0 yields two equations

£6¢ 3P(0,p,t)
3t :

r = 0 boundary condition for (47),

When these are equated we obtain the

gy (B8 0kiXg) P(040,1)

g (igiiig EELE | wo (s
Xp =0
pe(0,1]
The corresponding boundary condition at r = 1 4
8, (t';l"""r) P(l,0,t)
x
+g, (LaLx) BEeD | Lo (54)
X, rel
pe(0,1]
In the linear case these conditions can be shown to
reduce to those of the linear filters (11). For the

special case in which g
per boundary condition

is independent of x., the pro=
got (47) is obtained from (53)

as

P(0,0,t) = O (55)
Similarly, if 8, is independent of xg,

P(l,0,t) = 0 (56)
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Also, if -39 and g, are independent of x, i.e. depend
only on a;, a; , and x,, the boundary conditions from
(53) and 254) are

aP(r,0,t)

or =0

57

r=0
=l

Now let us consider the case in which the bound-
ary conditions of the system contain noisy inputs a,(t)
and a,(t), f.e. £,(t) + 0, €,(t) 4 0. In this case we
will distinguish two subcases: (a) g, and g, do not
depend on x_, i.e. gy(t,a5,x) = 0 at r = 0 and
gl(t,al,x) =0 at r=1; (b) g, and g, depend on x, as
in (3) and (6). Since P is a function of r and o,
where re(0,1] and pe[0,1], and since the system (1) may
in general be second order in r, we require two bound-
ary conditions on r and two boundary conditions on p

for (47). These conditions can be written as follows:
A

p=0 P(r,0,t) = Po(t,t) (58)

p=1 P(r,1,t) = P,(r,t) (59)

From (28) we see that P(r,0,t) P(O,r.t)T and

P(r,1,t) = P(1,r,t)! so that r = 0 and r = 1 boundary
conditions can be obtained directly from (58) and (59).
Let us now derive the equations satisfied by Po(r,t)
and Pl(r,t).

We consider subcase (a) first and rewrite (3) in
the form

ag(t) = E;(:.ao(:),x) (60)

Differentiating (60) with respect to t we obtain
Amo-ii%:-é%sﬁgaumm»h:ﬁu}&jmn
Thus, 1f x(0,¢) = £(0) + €,(0,¢), ve obtain
£(0) = Eo-l{(x = &o ) w (éo(th-loyl))“éo } (62)
x a 9 t

s bo(t.no,x)

Similarly, letting a,(t) = ﬁl(:.nl(t),x). the relation
at r = 1 analogous to (62) is

- —l - "N
£ =5y o - B, ) e0) g} @
4 b, (t,a;,x)

Evaluating (47) at r = 0 and r = 1 and using (62)
and (63), the following equations are obtained for
Ho(r,t) and Pl(t,c),

3P, (r,t)
at

= £ (DB (r,e) + ?o(r,t)bzx

(Eq. con't),



a?o(r,t)

3% (x,t)
+ lx‘(l‘) g + f;tr(r)

ar?

(64)

mna
+] I Rrr,0) A Polr,,0) + R (r,0)
ki ’

P, (r,t)
at

- fx(r) P (r,t)

P, (r,t)

3%p, (r,t)
R — o

+ B(r, 0] + £ ()
x * a2

) (63)
+ E L B(rr, 0 A, Pi(r,,0) 4 R (1)
‘ ’

We nov need boundary conditions for (64) and (65) at
r =0 and r = 1. These are obtained by evaluating (64)
and (65) at ¥ = 0 and r = 1 and are denoted by

=0 P0,0) S py0(e)  P,00,8) & By (e) (66
rel 21,0 2207 ria0 fe 0 67
Pooftd, Py, (t) and P, (t) are governed by
ap, . (t)
- by, Rog(E) + Rog(0) bfx
m T Y
+ E D2l o)" &, Polr,,t) +# B (0,0 (68)
L »
dp,, ()
S = bo, Foy(0) + B (0) bl:
nmm T i
1)t 0t A B0 + 1T O (69)
Kt J
dP,, (¢) T
T3 - b’x Py, (e) + Py (e) b‘x
na T -1
+ 1D A Bi(rg,e) + R (1,1 (70)
kL ’

Now we consider subcase (b) in which g8, and g, may
contain x . Using (9) and (10) we can write

;(O.t) o f(t"(t’.o'x'xr)'xr'xrrJ

+ 51(0.:) (71)

r=0

+g0 (a2

x(1,t) ‘(""("'l”‘"‘r)"‘r"‘n -

-69-
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Combining (71) and (72) with (47) we obtain the bound-
ary conditions for (47) as

aPO(r.:)

—r— = £,(r) Py(r,t)

P, (x,¢t) a%p(x,t)
* i (r) oty (x e

+ [Po(r.t)v:(a)f:(o) + ﬂ’—(%'3-9-&)(f:t(p) + vfr(o)t:(o))

32P(r,0,t) T

m m
+ - ‘rt(pi]°_°+ E E P(r,m 0o, (Po(r,,t) (73)

%
+ R} (z,0)

aPl(r,:)
—— ® fx(l')Pl (r,t)
apl(r.:)

+ fxr(r) ~—sg ¥ f"n-

a%p (x,t)
(X)) ——r—
ar?

+ [P(r.o.t)k:(o)t':(o) + i”—g‘;hi’ (f:r(p) + k:r(o)f:(a))

32P(r,0,t) T

m m
+ b xﬂ_(o)L_f E E B(r,r 0, Py (r,,0) (74)
+ R (g,1)
dP ()
3t - [fx(r)v‘(t)Po(r.C)
(P(r,) a2 (x,t)
+(£xr(r) + f‘(t‘)vxr(l')) 3t Epp 3!‘2 r-Ov
T
P, (r,t)
* [p'g(r.:)v:(r)fz(r) + —— (5 (0 + v:r(r)f:(r))
2% (x,t)
+ -——iL————-f: (!i]
ar? 144 r=0

m
#] (75)
k

L)l

Folr A Po(ry t) + RO,07

v dPg(e)
de

- [%‘(r)vx(r)Pl(r,t)

BPl(r,t)

+ (6 () + fx(r)vxx(r)) T

(Eq. con't)
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0.8 4 4 - m=3, t=1.5 —
/- 5 — m =5, t=0.2
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Fig. 1 ::(r,t) for various values of m for the steady state profile. Observation error only.
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2P (r,t)
) g4 T T T
+ £x () o Jr_o + [%o(t.t)kx(r)f‘(r)

T
iPo(r.t)

AT

T P
(f,r(:) + er(r)fx(r))

P (r,0) o
BRI
ar? *re sl

o m
+ E E P:(rk.t) A P (0 4RI, (76)

t)
—_—— [fx(r) kx(r)Pl(r,t)

BP‘(r,t)
+ (f‘t(r) + fx(r)h‘r(r)) e

%P (r,¢t)
2 f‘rx(t) 2
3r

Jr_l + [%,(r.:) HORAO)
2, N(r,0)

i ar

T T T
(f*r(') + i (0) £,(0)

alpf(r.:) m
—_— (r)J .
ar? T L

+

wog

m
[ Pl(rat) A, Pi(r,,0) + KL an
s ’

For a system with n state variables the distribu-
ted filter consists of the following number of equa-
tione:

x(x,t) n “P.D.E.
ag(c) L, 0.D.E.
a,(t) L, 0.D.E.
P(r,0,t) n? P.D.E.
Po(r,t) a? P.D.E,
P, (r,t) n2 P.D.E.
Poo(t) n(n+1)/2 0.D.E.
2
POl(t) n 0.D.E.
Pll(t) n(n+l)/2 0.D.E.

We note that the initial condition required for
(47) , namely

P(r,0,0) = P%(r,0)  r,p €[0,1] (78)

vhen specified provides values for P (r,0), P{r,o),
Poo(0), P (0) and Py (0). The choice of PO(r,p) is
arbitrary, however in the linear case PO(r,0) =

E{ (x(r,0) - xo(r))(x(o.o) - &,(2)T} vhich might be

7] -

chosen from the degree of knowledge of the initial
state x,(r).

The present results are related to systems des-
cribed by (1). However, a much wider class of dis-
tributed systems can be treated by a simple change of
variable. Congider the distributed system defined by

#(xt,xtt.xt: = t(:.r,x.xr.xrt] (79)
If ve let z(r,t) = xt(r.t) then (79) becomes
¥(zoz ,2.) = £(E,T,x,x % ) (80)

If z, appears non-transcendentally in (80), (80) is now
in the form (1). We note, however, that this procedure
cannot be used for systems of the form (79)ifthe left
side of which is w(xt,xtr) only.

EXAMPLE

We consider the problem of estimating the time-
dependent concentration distribution in an isothermal,
plug-flow chemical reactor with a second order irrever~
sible reaction, based on noisy measurements at finite
locations along the reactor. Let x(r,t) be the dimen=-
sionless concentration of component A at time t and
position r in the reactor in which A decomposes accord~
ing to the second order reaction, 2A + B + C.

The dynamic behavior of the reactor in the pre-
gence of random excitations in the system and the
initial conditions is described by

x, (r,8) + x_(r,0) = -Bx(r,c)2 (81)
x(r,0) = x__(r) (82)
x(0,t) = no(t) (83)
a,(t) = £,(¢) ; agy = 1 (86)

The inlet concentration will often not be exactly a 0
but will fluctuate because of variations upstream og
the reactor. These inlet condition fluctuations are
included by the error cz(t) in (84) which produces a
noisy a,(t).

Finally, the observations which consist of direct
measurements of x at various locations ry, 1 = 1,2,00¢,
m are corrupted with additive experimental errors,
n(:,ri).

The filtering problem can be posed as follows:
Estimate the concentration distribution, x(r,t), based
on noisy measurements of x(r,t) carried out a m loca-
tions along the reactor for the system governed by
(81)-(84) and

y(rg,t) = x(rg,t) + ng(e), 4 = 1,2,000, m  (85)

The filter is obtained from (29), (37), (38),
(67), (64), and (68),
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| = APPROX. m=35
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4 — TRUE
1 | ] 1 L
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Fig. 2 Comparison of convergence of the full filter with the approximate filter
at various spatial locations for the steady state profile. Observation
error only,
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] G

X (r,0) + X (£,8) = -BX(r,c)?

m
+ 121 P(r,r o) [y(r,0) = x(r ,0)) (86)
x(0,8) = & (¢) (87
dio m .
7‘_.121 Polry,e) [y(r,,0) = x(r;,t)] (88)
P (rop,t) + P (r,0,t) + Pp(r.o.t)
® <28(x(r,t) P(r,p,t) + x(p,t) P(r,p,t)]
m
- ZlP(r.ri.t) P(r,,0,t) (89)
i=
By (re8) + By (r,t) = -28x(r,t) P (r,0)
m
- ZP“nJ)Phﬁvﬂ (90)
=1
dPyq o 3
e 121 Pg(ri.t) + R 91)

where Q has been taken as one. The initial conditions
for (86), (88) and (89)-(91), io(r), 55(0), and Po(r.oL
are arbitrary and must be specified a priori. The
errors §,(t) and ny(t) were simulated by 10 G(0,1) and
0.1 6(0,1), respectively, where G(0,1) is a normally
distributed random variable with zero mean and unit
standard deviation. It was assumed that the actual
1nit11} state, xgg(r), was unknown. The initial condi-
tion, xo(r), was taken as a constant x3. We expect the
waximum value of P%(r,0) to occur at r @ p with mono-

tonically decreasing values as |r - oI increases. Thus,
the following condition was used,
P(r,0) = 10 exp( - |r - o]) (92)

Numerical computations were carried out for the steady
state input end a ramp input given by

8,(t) = 3+ g,(¢)
= g,(t)

0<tg0.

t50.1 (93)

In the study, 8 = 3, xo(r) = 0, aj(0) = 0 and R = 10.

The filtering results are shown in Figs. 1 and 2
for the steady state input (83) and (84) and m = 1,3,5,
Thus, the problem is to estimate the steady state con-
centration profile in the reactor from noisy measure-
ments at various locationc along the reactor when the
steady state input contains time-dependent fluctuations
The inlet fluctuations cause the reactor concentration
to be continuously time-varying. In each case ry =
and v, ® 1, vith intermediate measurements equaliy

spaced. Fig. 1 shows the rate of convergence of x(r,t)
from the initial guess of io = 0 to the actual steady
etate profile, shown by curve 7, for m = 1 and m = 3,
The initial guess of io = 0 was chosen as representing
one that reflects no knowledge of the actual state of
the system. The rate of convergence for m = 1 is slow,
as evidenced by curves 1 and 2. The rate of conver-
gence {s increased significantly with the addition of
more measurement locations, as seen by curves 3 - 6.

It {8 interesting to note that while the filter con-
verges much more rapidly for m = 3 than for m = 1, add#
tional measurements to m = 5 do not significantly
improve convergence over m = 3, When m = 1 better con=
vergence is obtained for r;, = 0.5 than for r; = 1.0.
This is simply a result of the fact that information
reaches r = 0.5 twice as soon as r = 1.0 because of the
hyperbolic nature of the system.

Fig. 2 shows the rate of convergence of x(r,t) at
four locations for m = 3 and 5. For both values of m,
x(0,t) converges most slowly because of the combined
effect of the inlet distrubances and the measurement
errors at r ® 0. Filtering results for the ramp input
are shown in Fig. 3 for m = 3 and 5 at the same four
locations as in Fig. 2. In this case, the inlet con-
centration undergoes a definite change, as shown by the
r = 0 curve. Because of the second order reaction the

. ramp change is attenuated at increasing values of r.
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Again, due to the large change at r = 0, x(0,t) con-
verges slowest.,

Obviously, the dimensionality of the filter becomes
a severe problem as n increases. For real time appli-
cation to large systems it is thus desirable to elimi-
nate some of the equations by appropriate approxima-
tions. One possible approximation is to assume the
form of the solution of the equation for P(r,p,t). In
constructing the approximation we expect that P(r,p,t)
should be a maximum at r = p, In addition, P(r,p,t)
will decay from its initial distribution, approximately
in an exponential manner. Thus it was assumed that

P(r,0,t) = C exp(- At) exp(~ ulr - p|) (94)

where C, A and u are constants chosen such that the
filter converges.

In the present example, the following values were
chosen: C = 10, A = 2, u = 1, The results of filter-
ing using (94) are shown in Fig. 2. As shown in Fig. 2
by curve 1 we see that convergence actually improved
with (94) instead of (89). This can only be attributed
to the particular numerical values used for the para-
meters in (94). The computing time required for the
approximate filter was reduced to 1/3 of the time
required for the full filter. Although specification
of the parameters in an approximation for P(r,p,t) may
be difficult, such approximations have promise for
applications to higher dimension systems. The comput=
ing time for the m = 3 case using the full filter to
T = 1.6 wvas 3 minutes on an IBM 360/75.

SUMMARY

A general nonlinear filter has been derived for
distributed parameter systems that contain noisy dynam=
ical inputs in the system and boundary conditions and
measurement errors. The filter was applied to esti-
mate the state in a nonlinear hyperbolic system. An
approximation to the solution of the covariance equa-
tions was found to be highly effective in reducing the
amount of computing required for the filter. The ques-
tion of convergence of the filter was not studied, a
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question which 4s related to the observability of the

state based on the noise-free observations.

This point

is currently under investigation.

(1]

€2]
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8. Notation

a = constant parameter

a(t) = Ql—dimensional vector

A(t,a) = Rl—dimensional vector function

b(t) = lz—dimensional vector

B(t,b) = 22—dimensional vector function

c = constant

d = lz—dimensional vector

e = Ql-dimensional vector

E{-} = expectation operation

£ "= n~-dimensional vector function

g = g—dimensional vector function

G(a,b) = Gaussian distribution with mean a and standard
deviation b

h = m—-dimensional vector function

I - = performance index

J = performance index

P = covariance matrix of filtering estimation error

Q = weighting matrix

r = independent variable

R = weighting matrix

s = independent variable

t,tl,T = time variable

u = control vector

W = covariance matrix of the interpolation estimation error



Greek Symbols

8(°)
A(r,t)
u(t)

A%

g

p(*)
o(t)

T

¢ ()

P(e)

Superscripts

A
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n~dimensional state vector
m—-dimensional observation vector

n-dimensional vector

n-dimensional vector function
n~dimensional vector function
Zl—dimensional vector function
Dirac delta function

dummy variable

m—-dimensional observation error
lz-dimensional vector function
n—-dimensional adjoint variable
s—dimensional adjoint variable
dummy variable

dynamical noise vector
Zl—dimensional vector function

Qz—dimensional adjoint variable
dummy variable

final state vector for the generalized case defined
in Equation (3.29)

state vector at t = t, for the generalized case
defined in Equation (4.1)

estimated value

6ptimal value
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Subscripts
o = initial or at r = 0

1 = end or at r =1
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Chapter IV

OBSERVABILITY OF NONLINEAR SYSTEMS

1. Introduction

A question fundamental to the analysis of physical systems is
whether the state of the system can be uniquely determined from its
output data. Specifically, given the dynamic description of the system
and the observation process, we can ask under what conditions can the
initial state of the system be determined uniquely on the basis of the
observed output on a given time interval. This problem is called the

inverse or observability problem. The test of a system's observability

is a necessary prerequisite to the estimation of states and parameters
from the output of the system.

In this study we consider the problem of determining conditions
for the observability of the initial state and a vector of constant
parameters in systems governed by nonlinear ordinary differential equa-
tions. New necessary and sufficient conditions are obtained for locél
observability in the neighborhood of a given value of the initial state
and a given value of the parameter vector. In addition, a technique
is presented whereby the local observability fesults can be used to
study the entire domain of initial conditioms and parameter values.

The local approach is based on the extension of the necessary and suf-
ficient conditions for observability of time-varying linear systems to

nonlinear systems.
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2. Review of Linear Observability Theory

Definition 2.1. A state X is observable at to if, given

any control u(t) and the output y(t), to Xt<LT, X, can be
determined uniquely. If every state X, is observable at tO , then

we say the system is observable at to .

Theorem 2.1 [71] The process
x(t) = A(t) x(t) + B(t) u(t) (2.1)
y(t) = H(t) x(t) (2.2)

with xeRn, ueR , and yeRm , 1s observable at to if and omnly if

the symmetric matrix

|

M(to,tl) = j @T(t,co) HT(t) H(t) @(t,to)dt (2.3)
t
o]

is positive definite for some ts t L£t, £T , where

o 1

—§9§%L91 = A(t) 9(t,D) (2.4)
o(t,t) = I (2.5)

Theorem 2.2‘[33] The system of (2.1) and (2.2) is

completely controllable if and only if the symmetric matrix

oy

W(e,t) = f o(e,t) B(e) BT(e) o7 (e_,e)at (2.6)

t
0

is positive definite for some tl’ tl > to :
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Theorem 2.3 [71]

The range of both M(to,t) and W(to,t) §
t > to is monotone nondecreasing with increasing t .
Now let us extend the problem slightly by considering the

conditions for observability of both X, and a vector of constant

parameters P, P ERR , in the modified form of (2.1) and (2.2)

x(t) = A(t) x(t) + B(t) p (2.7)

y(t) = H(t) x(t)

We want to determine the necessary and sufficient conditions for the
observability of both X and p . These conditions are stated in

Theorem 2.4 .

Theorem 2.4 The initial state X, and the parameter vector
p in (2.7) and (2.8) are observable if and only if the symmetric

; . ; ; - <
matrix K(to,tl) is positive definite for some tl 5 to.s tl £ T 5

where
Kll<to’tl> KlZ(to’tl)
K(to,tl) =
K21(to,tl) K22(to’t1) (2.9)
and
ty ‘
Ky (e st) = J o' (t,e) HT(t) H(t) #(t,t) dt (2.10)
t
(o]
5
Klz(;o,ti) = f @T(t,to) HT(t) H(t) @(t,to) q(t) dt {2:11)
t
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Ky (tyaty)
Kyp(tysty) =

}1
t
(o]
t
J0
t

q(t) 8(t,,0) B(D) At

]

(o}

qT(t) @T(t,to) HT(t) H(t) @(t,to) dt

(2.12)

g7 (&) o7 (e,t) KT (8) H() 8(c,c)) a(e)de (2.13)

(2.14)

The proof of the necessary part of Theorem 2.4 proceeds as

follows. The solution of (2.7) is

E
x(t) = ®(t,t ) x_ + j o(t,z) B(Z) p dg
t

(o}

Substituting into (2.8)

t

y(e) = H(t) o(t,t )x  + J H(t) ®(t,Z) B() p dg
t
o

which can be rewritten as

y(e) = [H(t) o(t,t ), H(t) o(t,t ) q(t)]
Solving for X and p we obtain

‘X t
o

P £,

Hence, the positive definiteness of K(to,tl) for some

- Ryt ™ [ M) oCe,e ), B, ate))” yieyae
(2.18)

(2.15)

(2.16)

(2.17)

t, < tl.S T 1is a necessary condition for the existence of a unique



.

(xo,p) . The proof éf sufficiency proceeds exactly as for Theorem 2.1
and is presented in references [33,71].

The observability of X at to only requires the existence
of Kll(to,tl)—l which is identical to M(to,t:l)ml as expected. The
observability of p only requires the existence of Kzz(to,tl)—l.
Note, however, that because p dis time invariant, K22(t0,tl) is dif-
ferent from W(to,tl), although the concepts of controllability of (2.1)
and observability of p in (2.7)and (2.8) are closely related . The
range of K(to,t), t > to is monotone nondecreasing with increasing ¢t.

For completeness we state the following theorem.

[60]

Theorem 2.5. The system of (2.1) and (2.2) is observable

on [to,T] if and only if Q(t) does not have rank less than n on

any subinterval of [to,T] where

Q(e) = [S,(t), 5,(8), =+, §__ (8] (2.19)
s . (&)= [A(e) + T S-18 (1) (2.20)
k+1 dt k
T
So(t) = H (t) (2.:21)

If any state X in (2.1) or any state X and any parameter
vector p in (2.7) are observable at to s the systems are observable
at t_ .

0

If y(t) is available in addition to y(t) , t, <t <T, we

can modify (2.2) as



Bl

- y(t) H(t) 0 x(t)
y(t) = = (2.22)

y(t) H(t) +H(t)A(t) H(t)B(t)]L p

The modified form of (2.17) is

y(t) = H(t) (2.23)

where

i H(t) o(t,t ) H(E)e(t,t )q(t)
H(t) =
(ﬁ(t)+H(t)A(t>)¢(t,to) (H(t) + H(t)A(E))o(t,t )q(t)
L + H(t)B(t) o 2 85

The necessary and sufficient conditions for.observability of X and
p at t when both y(t) and y(t) are known are given by Theorem

2.4 with K(to,tl) replaced by

|

fc(to,tl) = f AT () H(t) de (2.25)

t
(o)

3. Local Observability of Nonlinear Systems

We now consider the class of systems governed by

x(t) = £(t,x(t),p) (3.1)

y(t) = h(t,x(t)) (3.2)

where (t,x) €S_C'Rl an, pstCR'Q', yeRyCRm and te [to,T] . We

assume that S is compact, Rp is a linear space, and f and h € Cl.
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In addition, £ and h are assumed to have continuous first order partial
tial derivatives with respect to their arguments. The observability
question, namely, under what conditions can X and p be uniquely
determined from y(t), te€ [to,T], can also be stated as under what
conditions there exists a one-to-one correspondence between (xo,p)s W

and y(t) , t, <t <T, where W is the domain of initial states X

and parameter vectors p .

[42]

Lee and Markus obtained necessary and sufficient conditions

for observability of nonlinear systems in the neighborhood of the

origin by applying the results for linear, time invariant systems.

[55]

Roitenberg considered the construction of a Lyapunov function for

the linearized system to study the observability of nonlinear systems.

. [35,36] [

Kostyukovskii and Griffith and Kumar = determined conditions

for observability of nonlinear systems from the one-to-one mapping con-

ditions from x(t) = [x(£),++,x (0] to 3(&) = [y(v), yP (o),

-~,y(n+£-l)(t)] where y(i)(t) is the ith order time derivative of
y(t) . Therefore ;(t) is considered as another variable in R°T and
it is required that £ t~:Cn+'Q"-l and yi;Cn+z . The Jacobian matrix
3;/8x is required, however its nonsingularity is not sufficient, in
general, for a unique mapping from R® to R™. The approach is some-
what analogous to Théorem 2.5, in that repeated time differentiations
of the output are required.

In this study we obtain necessary and sufficient conditioms for
observability of both X and p in the system 3.1 and 3.2. The con-

ditions are obtained for the observability in the neighborhood of

(xo,po), N(xo,po), by application of Theorem 2.4 to the linearized
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trajectory of (3.26) and (3.27) from x(to) = x
[42]

5 and p = P, - Thus,

we extend the work of Lee and Markus from local observability about
the origin (equilibrium point of the system) to any point in the entire
initial condition and parameter domain of (xo,p) . The approach
enables the examination of the observability of any (xo,p) and avoids
the stringent differentiability requirements of references [23,35,36].
In order to justify linearization of (3.1) we will first require
an embedding theorem for differential equations presented by Hestenes

[25]

and Guinn The theorem is quoted without proof.

Theorem 3.1. [25,45]

Let x(t), t0 Xt £T be a solution of
(3.1) with initial condition X and parameter value P, For each

set of (&,p) satisfying the relationships

g - %l < o e - ol < o (3.3)
there is a unique solution v(t,§,p), t, L t<T of

v(t) = £(t,v(t),p) (3.4)

v(t) = §& (3.5)
satisfying the inequality

l[v(t,&,p) - x(£)]| < ¢ t R ELT (3.6)

where o' >0 , and G> O

(3.7)

t
- “ f [£(s,x(s),p) - £(s,x(s) )} ds
0<t<T
o

and



o

i
g = %-exp - f L(s) ds (3.8)
t
o
|| £Ct,x,p) - £(t,v,p)|| < L(t) ||x=v]|| (3.9)

for all (t,x), (t,v) €S and all admissible p eR.p

Theorem 3.1 is crucial to our analysis since it establishes
precisely the conditions under which the perturbed trajectory
v(t,&,p) remains close to x(t), t, <t <T . Our notion of obser-
vability in a neighborhood about (xo,po) will derive its validity from
Theorem 3.1.

Let us consider a reference trajectory x(t) with initial con-

dition x(to) = x_ and p= P, - Perturbation of X and P, >

o)
g = x  + Gxo and p = p_ + 6po , produces a trajectory v(t,&,p)

= x(t) + Ox(t) « Then &x(t) and Jy(t) are governed by

Sx(t) = A(t) 6x(t) + B(t) 6po + 0(g,q") (3.10)

6x(to) = Gxo (3.41)
Sy(t) = H(t) &x(t) + 0(e) {3.12)
where
A(t) = fx(t,x(t),po) (3.13)
B(t) = fp(t,x(t),po) (3.14)
H(t) = h_(t,x(t)) (3.15)

From Theorem 3.1, (3.10) and (3.1l1) are unique expressions for

8x(t) and d8y(t) . For 0 <0, 0', € << 1 , we obtain
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]

Sx(t) = A(t) 8x(t) + B(t) Gpo » 0x(0) = Gxo (3.16)

Sy(t) = H(t) &x(t) (3.17)

If we can determine the necessary and sufficient conditions under
which 6xo and Gpo can be determined uniquely in the neighborhood of
(xo,po), N(xo,po), from dy(t), t, <t £ T, then we have the desired
result. However, Theorem 2.4 can be applied directly to (3.16) and
(3.17). Let us denote K(to,tl) by K(to,tl;xo,po) , since its value
clearly depends on the reference trajectory of (3.1). The positive
definiteness of K(to,tl;xo,po) is then necessary and sufficient for
the observability of (3.1) and (3.2) at t, in the neighborhood of
(xo,po). If X is known, the positive definiteness of

Kzz(to,tl;xo,po) is necessary and sufficient for the obsetvability of

Ry ®

We can, in principle, examine the observability of the entire
domain W by computing K(to,tl;xo,po) at a number of grid points
separated by a distance k , k < min(0,0') . However, we must consi-
der the possibility that two or more isolated points or sets of points
in W , each of which generates a positive definite K(to,tl;xo,po)
might yield identical observations y(t), t, Lt<T. By "isolated"
we mean that the distance between the two neighborhoods is greater than
€ . In such a case, even though the system is locally observable at

each point, the system is unobservable at t, - We will now state the

following theorem:
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Theorem 3.2. If K(to,tl;xo,po) is positive definite for
all (xo,po) €W , then there cannot exist two or more isolated pointsv
or sets of points in W which yield identical observations for
t, <t <T . Thus, if the system of (3.1) and (3.2) is locally
observable on the entire domain of W , it is observable at to :

The proof of Theorem 3.2 proceeds as follows. For convenience,
let us consider the case in which 2m >n+ % . The set of =x(t) that
satisfy the observation relation y(t) = h(t,x(t)) can be denoted by
the (nt+2-m) dimensional manifold Q(t) . From the assumption that

}1€Cl, y(t) can be considered as an additional observation, related

to x(t) and p by
y(t) = h (t,x) + h (t,x) £(t,x,p) (3.18)

Let ﬁ(t) represent the (n+2-m) dimensional manifold of the solutions
x(t) and p of (3.18). Hence, both y(t) and y(t) assume the
role of observations for ty t<LT.
Let us assume that each point (xo,p) in Q(to) generates a

positive definite K(to,T;xo,p) . Since 2m>ntl , A(to) = Q(to) N

ﬁ(to) may contain a number of isolated points, that is, there may
exist more than one value of (xo,p) satisfying (3.2) and (3.18).
Suppose A(t,) contains two points (xo,p) and (xép') at each of
which K is positive definite. Thus, these two points generate
identical values for y(to) and 9(to) . If we fix y(to) and thus
fix Q(to) » there exist bounds on the value of &(to) .
a, 5,9(t°) < a¥*, such that allowing 9(t°) to vary within this range

*
and a can

of values will cause A(to) to cover all of Q(to).. a,
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be determined from the requirement that A(to) must be non-empty. Then
we certainly can choose 9(to) such that l](xo,p) - (Xé’P')II < gf2
namely, so that the two points satisfying both (3.2) and (3.18) lie
within their common neighborhoods. Note that all elements of A(t)
satisfy (3.1). However, from Theorems 2.4 and 3.1, if two points
within a common neighborhood yield identical.values of y(t), K must
be singular. Thus, by contradiction, it is not possible for A(to) to
contain two isolated points or sets of points if all points on Q(to)
are locally observable. The proof is easily generalized to the case in
which 2m<n+ 2.

From y(to) = h(to,xo) we can determine the possible manifold
of x_ = values Q(to) . From (3.18) evaluated at t, we can determine
another possible manifold of X and p values, ﬁ(to) . We can then
test the local observability of the system by simply calculating K at
every point in A(to) . A criterion determining when, for all practi-
cal purposes, ﬁhe system is unobservable may be set. For example, if

det K < § [16]

then the system may be considered unobservable.

If these procedures indicate that the system is observable for
the given value of T , we can then examine the effect of reducing T
on observability. ‘Each neighborhood in A(to) has its own character-

istic time T* such that K(to,T;xo,po),T > T* 4is nonsingular. The

overall characteristic observation time for the system would be

* *
Tob = sup T (xo,po) v (3.19)
X sP € A
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4. Examples

Example 1. Let us consider the consecutive chemical reactions

I1f we let Xq and X, denote the concentrations of A and B ,

respectively, the dynamic description of the system is

]

x (€)= -pyx; () (4.1)

%,(2) = pyx () - pyx,(t) (4.2)

where Py and p, are the rate constants for the steps shown. We
assume p, is known, and the observability of the system will be

defined for the determination of X 5 X, and P, from given
o o ~

observations.
Consider first the observation of the concentration of species

A only

y(t) = x,(£) (4.3)

At t =0 , if we have observations y(0) and y(0) = “Py Xy
o o

we can determine both X and P, - Thus, the locus of intersec-—
o o

tion of the set of solutions of (4.3) and ¥(0) = in the

B ¥y
oo
X,sX,,pP; space is the line which at all points has X, = lo
) at every point on this

X and

P;=P; - We can test K(O,t;xl s X
o )

2 P
o "o
line and we will find that K is singular. Thus, the system of
(4.1) - (4.3) is unobservable. Physically, this result is easily

explained, since from observations of the concentration of species A



B

only, we can never determine the initial concentration of B .
Now consider the case in which we observe only the concentration

of species B ,

At t =0, y(0) = Xy s and y(0) The locus of

(o]
intersection of the solutions of these two relations is the curve

= Py¥y T Py¥y o
(o] (0]

P, ¥, = y(0) + p,y(0) in the plane of x, = x, in the space of

lo lo 2 2 20
X{5X,ysPq K(O,t;xlo,xzo,plo) is positive definite along this curve,
so the system of (4.1), (4.2) and (4.4) is observable. Thus by meas-

uring the intermediate component in simple consecutive reaction schemes

rather than the primary component, the system can be made observable.

Example 2. We consider the following system

kl(t) = xz(t) (4.5)

x,(t) = xl(t) (4.6)

y(t) = x,(t) x,(t) (4.7)
Thus,

§(£) = x5 (6) + x2(t) (4.8)

Let us assume that. y(0) = 3 and y(0) = 10 . Thus we can have

(xl s%, ) equal to (3,1) or (1,3). The solutions corresponding to
o ‘o
these two possible initial conditions are

2et + e—t

]

xl(t) (4.9)

9a* = g b (4.10)

x2(t)



) s

and

I
N
(0]

I
o

x, () = ¥ e (4.11)

t

x, (£) 236 45 (4.12)

Each set of solutions generates the same y(t) and y(t) , t >0 .

It is easy to show that K(O,t;xl ,x2 ) is nonsingular in the neigh-
o) o
borhood of both (3,1) and (1,3) . However, from Theorem 3.2 we know

that if there exist two or more initial conditions which satisfy both
(4.7) and (4.8) then the system cannot be observable on the entire

domain of Xy and Xy o In fact, in this example, any initial con-
o o

dition on the line X =X,

o o

the system of (4.5) - (4.7) is unobservable at t =0 .

yields a singular value of K . Thus



5. Notation

A(t)
B(t)
G
H(t)
h
I

K(to,tl)
L(s)
M(tl,tl)

N(Xoapo)

Q(t)

S(t)

u(t)

W(to,tl)
X

Y

Greek Symbols

$

€

sl

nXxn time dependent matrix

nX 2 time dependent matrix
constant defined by equation (3.7)-
m xn time dependent matrix
m-dimensional vector function
identity matrix

symmetric matrix (proposed observability matrix)
given by equation (2.9)

Lipschitz constant

controllability matrix defined by equation (2.3)
neighborhood of the point (xo,po)

constant parameter

vector function defined by equation (2.14)
observability matrix defined by equation (2.19)
dummy wvariable

matrix function defined by equation (2.20)

fime variable

f~dimensional control vector

n-dimensional vector

ébservability matrix defined by equation (2.6)
n-dimensional state vector

m~dimensional observation vector

variation

constant
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z = dummy variable

£ = constant

o] = constant

o(t,T) = transition matrix

Q(to) = initial manifold determined by y(to)
Superscripts

. = time derivative

N = new quantity

* = characteristic, or upper bound

Subscripts

*® = Jlower bound



=0 G

Chapter V

CONCLUSIONS AND REMARKS

Chapter II

The objective of this chapter has been to present and study
schemes for the control of noisy dynamic systems. When dynamical
noise enters a process in the form of additive inputs, the system acts
as a natural filter as long as the principal frequency band of the noise
is much greater than the characteristic frequency of the system. The
key factor in stochastic feedback control, however, is noise due to
measurement error. Addition of a filter significantly improves the
controller performance when the noise level is high. The proposed
scheme can, in principle, be applied to distributed parameter systems
with simple controller function. In practice, the scheme can be
profitably employed when the improvement of system performance justi-

fies the cost of additional computation.

Chapter III

General noniinear filtering and fixed-point smoothing (interpola-
tion) equations have been derived for distributed parameter systems.
The system and the boundary conditions contain noisy inputs which are
described by stochastic 0.D.E.'s. Additive dynamical and observation
noise can also be present both in the interior and the boundary. The
observation process can be either discrete or continuous along the
spatial axis, but is continuous with regard to time. The results
obtained have been applied to estimate the state and the parameter of

a nonlinear hyperbolic system and the state of a parabolic system. An
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approximation to the solution of the covariance equations was found
to be highly effective in reducing the computation required for the
filter.

Future work might be to develop corresponding statistical
approaches to derive a nonlinear filter with the present results as a
guideline. A systematic approximation of the solution of the
covariance equations can be investigated for on-line appliéations.
Filter convergence which is related to observability should also be
studied. The optimal choice of measurement devices for accuracy and

good convergence of the filter can then be investigated.

Chapter IV

New necessary and sufficient conditions for the local observa-
bility of nonlinear lumped parameter systems have been obtained. The
local observability for any initial condition can be determined by
computing the proposed observability matrix, and global observability
can be examined by extending the local result. Although the present
result provides a computational method for determining the observa-
bility condition, it requires excessive computation for general prob-
lems. The approach can be extended to some limited classes of
nonlinear P.D.E. systems if there exists an effective and general
numerical technique for evaluation of the Green's function for the
linearized system. This extension requires consideration of questions
of well-posedness and of the perturbation theory of nonlinear P.D.E.

systems, for which existing theory is inadequate.
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Review of Numerical Integration Techniques for

Stiff Ordinary Differential Equations

John H. Seinfeld, Leon Lapidus,' and Myungkyu Hwang
Chemical Engincering Laboratory, California Institute of Technology, Pasadena, Calif. 91109

Ordinary differential equations with widely separated eigenvalues {stiff O.D.E.) occur often in practice ond
present severe numerical integration problems. The stability and accuracy problems associated with the
numerical solution of such equations are outlined. Several methods, including @ modified Runge-Kutta method
due to Treanor, a class of implicit Runge-Kutta methods, extrapolation methods, and methods based on the
inclusion of second derivatives and exponential fitting, are considered, Numerical resuits are given on three
stiff systems for stiff and conventionol methods and recommendations are made on what methods to use for

particular systems.

M\.\'v PHYSICAL 8YSTEMS give rise to ordinary differential
equations (0.D.E.), the magnitudes of the eigenvalues
of which vary greatly. Such situations arise in the study of
the flow of a chemically reacting gas (Emanuel, 1963; Eschen-
rocder el al., 1962), exothermic chemical reaction in a tubular
reactor (Amundson, 1965; Amundson and Luss, 1968),
cireuit theory (Brayton et al., 1966; Caluhan and Abbott,
1967), and process dynamics and control (Davison, 1968;
Kalman, 1966; Mah et al., 1962). It is common to refer to
such systems as “stiff.”

Let us examine the particular problems associated with the
numerical integration of stiff equations. To do this consider
the lincar 0.D.E.

y' = Ay 1))
wherey = [y,,12]7,y(0) = [2,1]7, and
% 5 [—500.5 499.5] @
499.5 —500.5
The solution of Equation 1 is
n(z) = 1.5¢~* 4 0.5¢—1000* 3
yaz) = 1.5¢=% — 0.5e1000z )
where the eigenvalues of A arc )\; = —1000 and A\, = ~1.

Both y; and y. have a rapidly deeaying component, corre-
sponding to A;, which very quickly becomes insignificant.
After a bricf initial phase of the solution in which the A,
component is not negligible, we would like to proceed, if
we were integrating Equation 1 numerically, with a step
length & which is determined only by the component of the
solution corresponding to A,. However, for a stable numecrical
solution most methods require that |[An] and [Aho] be
bounded by a single small number, the order of 1 to 10.
The stability of numerical integration of Equation 1 will be
governed by | —10004] —for example, for Euler's method it
is necessary that | —10004| < 2, giving the maximum stable
h = 0.002. Thus, 500 integration steps would be required to
reachr = 1.

Although the component of the solution corresponding to
A is of no practical interest, the criterion of absolute stability

2 Departmont of Chemical Engineering, Princeton University,
Princeton, N. J. 08540

(defined precisely below) forces us to use an extremely small
value of & over the entire range of integration. As a result, the
computation time necessary to integrate a highly stiff system
can become excessive.

The purpose of this paper is twofold. First, we outline
the problems of numerical stability and aceuracy in the inte-
gration of stiff O.D.E. Second, we present several numerical
integration algorithms for stiff 0.D.E. together with detailed
numerical results on the use of these algorithms on example
systems.

Stability and Accuracy in Integration of Stiff O.D.E.

Numerical Stability of Linear Multistep Methods. An
important and extensive class of numerical integration
formulas is represented by the general lincar multistep
method

Yarr = ai¥n + oo T ¥npr-p +
By st + ... + BY ner-x] (B)

where'y,, ¥a41, .. ., are the numerically computed approxima-
tion to the exact solutions, y(z,), y(Zn41), ..., of the 0.D.E.

y = f(zy) (6)

at cquidistant points, z, = 2o + 7k, Tpp = o + (0 + 1k,
ete. If Bo = 0, Equation 5 is explicit, and if 8, == 0, it is im-
plicit. It is convenient to develop the concepts of numerical
stability with refercnce to this class of methods, although the
ideas are completely general and are applicable to all classes
of numerical integration methods.

In the numerical solution of an 0.D.E., a sequence of ap-
proximations y, to the truc solution y(z,) is generated. The
stability of a numerical method refers to the behavior of the
difference or accumulated error y(z,) — y, as n becomes large.
Extensive treatments of numcrical stability are given by
Dahlquist (1956, 1963a,b) and Henriei (1962). In this section
we outline only those aspects bearing on the stiff problem.

Consider for the moment the numerical integration of the
scalar form of Equation 1

¥ o= Ay y(x) = 1 )]

by Equation §. The characteristic equation of Equation 5 is

) Reprinted from IREC FUNDAMENTALS, Vol. 9, No. 2, p. 266, May 1970
Copyright 1970 by the American Chemical Society and reprinted by permission of the copyright owner



k k
“l - Zl aml—( - hX Zo B‘“l—l -0 (8)
= i

which is a kth-order polynomial in u. The & solutions of Equa-
tion 8 are the characteristic roots uy, ¢ = 1,2, ..., k. The
numerical solution is thus

Yo = dun® + duis® + ... + dun” ©)

‘One of the characteristic roots approximates the Taylor
scrics expansion of the true solution, ¥y = exp (Ar), with a
truncation error corresponding to the order p of the method.
If we let this root be uy, then uy = exp (A\) + 0(A?*Y) as
A = 0. This root, called the principal root, is the root which
we wish to be represented in the numerical solution, since
" approximates exp (nh\). The other & — 1 roots arc called
spurious or extrancous roots and are a result of the usc of a
difference cquation of degree & to represent a first-order
differential equation. The extrancous roots have no relation
to the exact =olution but, nevertheless, are unavoidable,

The characteristic roots of Ilquation 8 are the same as those
of the difference equation for the error, e, = y, — y(z4)—i.c.,

= o™+ cun™ + ... A ca” (10)

For a valid numerical =olution we require that e, not grow
with n. A lincar multistep method is ealled

Absolutely stable, if |u]<1 $=12, ...,k
Relatively stable, if |p,| Slp.[ 1=23 .ok

The single 0.D.E. y’ = Ay will be called inherently stable if
Re(d) < 0. In this case the exact solution is decreasing with
z,, and the important condition is absolute stability, since the
numecrical solution must also deercase with x,. If, however,
Re(d) > 0, the exact solution is growing with x,, and we do
not want lp‘l < 1; rather it is relative stability that is the
important consideration. In other words, we will have a valid
solution as long as no component of the numerical solution,
u", increases faster than the one corresponding to the prin-
cipal root. The ecritical problems of numerical stubility in
stifft O.D.E. are associated with inherently stable 0.D.E.,
Re(d) < 0,1 = 1,2,..., m, in which absolute stability is the
important factor. Thus, in this paper we confine our attention
to stiff 0.D.E. of this type.

The value of A\ for which [p,] = 1 and for which a small
increase in | Ax] makes [ > 1is ealled the general stability
boundary. Since in general A is complex, we can let A = X
exp (#0), where X and ¢ are real. Then we can make similar
definitions of the real and imaginary stability boundaries,
corresponding to the values of M and #(Ah), where the root
condition is obeyed. Any method with a finite general stability
boundary can be called conditionally stable, whereas any
method with an infinite general stability boundary can be
called unconditionally stable, or A-stable. Thus, a linear multi-
step method is A-stable if all solutions of Equation 9 tend to
zero, as n — <, when the method is applied with fixed 2 > 0
to y* = Ay, where A is a complex constant with Re(A) < 0.
An clegant theory exists for stability of lincar multistep
methods as & — 0 (Dahlquist, 1956, 1963b; Henrici, 1962).
While many interesting results have been obtained in this
asymptotic case, it is not of prime concern in the stiff problem.

Dahlquist (1956, 1963a,b) has proved two important theo-
rems relating p and & for A-stable multistep methods.

Turorenm 1. An explicit k-step method cannot be A-stable.

TueoreM 2. The order p of an A-stable lincar multistep
method cannot exceed 2. The smallest truncation crror in such
case is obtained for the trapezoidal rule for which p = 2,
k=1, 2
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The concept of A-stability can be modified somewhat to
allow for methods of higher accuracy. Widlund (1967) has
proved that A-stable methods for whichk = p = 3and k =
P = 4 exist if X is a complex constant which lies in the wedge-
shaped region, Sy = {2; ]urg (-—z)l <4,z 0}, 0¢(0, x/2).

In general, it is impossible to construct arbitrarily accurate
A-stable linear multistep methods. An important point,
however, is that Theorems 1 and 2 in no way restrict the con-
struction of more accurate A-stable methods which are not
of the linear multistep type. Such methods can be constructed.

Stability of Multistep Methods in Integrating Coupled
O.D.E. In this scction we consider the reclationship
between the characteristic roots of a linear multistep

“method and the cigenvalues of the O.D.E. Let us still

confine our attention to the linear O.D.E. Equation 1.
First let us consider the numerical integration of Equation
1 by Euler’s method,

Yart = ¥u + hYnl (11)
and the trapezoidal rule (modified Euler method),

h
Ynit ™ Yn + '5‘ (y'vH-l + Yu') (12)

The exact solution of Equation 1 will change over a step &
by the factor exp (Ah)—i.e., y(xa) = exp (Ah)y(z,). A single-
step method when applied to Equation 1 can be expressed as

Yan = M(hA)y. a3

the propertics of which are determined by how well M(2A)
approximates exp (hA). For Euler's method, M(hA) = I +
LA, the first 2 terms in an infinite series expansion of exp
(hA). For the trapezoidal rule, M(hA) = (I —~ 1/2hA)1
(I 4 1/2hA), the first diagonal Padé approximant to exp
(hA) (Caluhan, 1967; Kelly, 1967).

For an m-dimensional linear O.D.E. and any single-step
method, the stability of the algorithm depends only on the
cigenvalues of the O.D.E. This can be shown as follows.
Let us carry out the similarity transformation

y=Pz (14)
s0 that Equation 1 becomes
7z’ = P~IAPz (15)
z(0) = P~'yo
If the eigenvalues A¢ of A are distinct, Equation 15 reduces to
z' = Az (16)

where A is the diagonal matrix of eigenvalues A4, The solution
of Equation 1 is

y(z) = P exp (Az)P 'y, (17
or, in a recursive notation,
¥(zau1) = P exp (AR)P'y(z,) (18)

A single-step method can be expressed as Equation 13, so
that we want

M(PAP*h) = P exp (AR)P™? § (19)

If we consider the general rational form of a Padé approxi-
mation, which includes all forms of characteristic roots,

M@®) = (g be')"(f: a.B') 0)

fml
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and let
B = PAP-! (21)
then -
M(PAP-Y) = (2 b.(‘PAP"‘)‘) - (}E a‘(PAP"‘)‘)
$ =] te=]

- p(:\j M‘)_l (}mj a,A‘)p—: @) -

fel fe ]

= PM(A)P!
Referring to Equation 19, we see that
M(Ah) =2 exp (Ah) (23)

Since each matrix is diagonal, the corresponding diagonal
elements of M(Ak) approximate those of exp (Ah). Each
diagonal clement of M is simply the characteristic root u
of the single-step method, so that Equation 23 can be written

wmlhh) Zexp ()i =12, ...,m (24)
Absolute stability requires that
lmrg| <14 =1,2,...,m (25)
for example, for m = 2 and Euler's method, Equation 25 is
[T+ ]+ gt (26)
and for the trapezoidal rule,
1 1
o= = B%
1+ > hx 1+ 5 hXg
1 < 1 <1 )
1 — — hn 1= — AN
2 2

Equation 26 is satisfied if lh)\ll < 2, where N is the largest
eigenvalue in absolute value. From Theorem 2 we know that
Equation 27 is satisfied for all Re(A) < 0. The important
point is that in numerically integrating a coupled set of lincar
0.D.E. it is sufficient to consider the method as applied to the
scalar equation ¥’ = Ay, where A\ takes on the values of the
eigenvalues of the 0.D.E.

The analysis can casily be extended to k-step mcthods.
The kth-degree characteristic polynomial in p yiclds & roots
for cach of the m cigenvalues Ay, j = 1,2, ..., m.

So far we have considered linear 0.D.E. Our real aim in
discussing stability of numerical integration methods of
0.D.E. is to treat nonlincar O.D.I. However, there does not
exist at this time a general theory of absolute stability of
linear multistep methods, such that the stability behavior of
different multistep methods when applied to nonlinear 0.D.15.
can be determined in a systematic manner. What is normally
done in the nonlinear case is to let the eigenvalues of the
0.D.E. be the eigenvalues of the Jacobian fy, a procedure
valid for small 4 (Ilildebrand, 1956). We can expect that
stability limits derived on the basis of the eigenvalues of the
local Jacobian matrix will not be exact. Nevertheless, we
will rely on such limits as representing a good approximation
to the truc stability limits, which, of course, are unknown.

The problem associated with stiff systems is twofold:
stability and accuracy. If a method with a finite absolute
stability boundary is used, large negative real parts of some
A¢ will foree the step length used to be excessively small.

On the other hand, if an A-stable method is used—e.g., the

trapezoidal rule—the stability problem is avoided but for a
reasonable step length A the solution component correspond-
ing to the largest cigenvalue will be approximated very
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inaccurately. For example, in the case of Euler’s method the
accuracy is determined by the approximations

1+ MR) 22 M
(1 + Nh) =M

Since these approximations improve as Ah — 0, the poorer
approximation will be associated with the larger eigenvalue,
A1 Similarly, for the trapezoidal rule, the characteristic root
in Equation 27 improves in approximation to exp (A\,) as
hx¢—= 0. For a multistep method only the principal root uyg
is an approximation to exp (A\,), the others being extrancous.

It is natural to require close approximations to exp (A\)
in the neighborhood of the origin, and this is normally the
consideration in determining the principal root. At points
where the A¢ have large negative real parts, the exact solution
components corresponding to these eigenvalues are negligible
when compared to the other solution components. It is
only necessary then that the prineipal root also be negligible
for the stiff eigenvalues.

Numerical Integration Routines for Stiff O.D.E.

We now outline several methods that have been proposed
for the numerical integration of stiff O.D.E. Our treatment
is limited to explicit and implicit single-step methods which
have been found most efficient in actual applications. Addi-
tional methods not outlined in detail are cited.

Treanor’s Method. A modified explicit Runge-Kutta
method has been proposed by Treanor (1966). It assumes
that Iiquation 6 can be approximated in an interval by the
linear form

yd = =Py + (Didn + (D2dnx + (D3)az®  (28)

where Py, Dy, Dy, and Dsq are parameters to be determined.
If one applies the fourth-order Runge-Kutta method to
Equation 28, the following algorithm is obtained for each
component of vector y,

h

Ynrs® = yo + 'E'fn

h
Yarrs® = yo + » Sayrnnt®

Ynt® = yu + h [2fu110® Fs + frp1n™® PhF; +
Sl — 2F3))  (29)
Ynst = Un + hfuF1 + hvi(Pyn + fa) +
hva(Pyns1n® + fapnt®) +
hoa(Pyp1n® + furtn®) + Ay(Pynn® + fuu®)

where

e—Ph - 1 e—Pll i 7] + Ph
AR e o T
! —Ph e (Ph)?

(30)
e — 1+ Ph — —%— (Ph)?

By —Fhye

and
Y = —F:+4F: UzF'2(Fz"‘2F;) D;=4I”;"3Fa (31)

The only undetermined parameter is P. In Equation 28
we have used Py, whereas in Equations 29 and 30 a scalar P
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Table I. Parameters for Semiimplicit Runge-Kutta Methods

Reference P o o
Rosenbrock, 2 . 2 q V2

1963 2 2

3 1.40824829 0.59175171

Calahan,

1968 3 0.788675134  0.788675134
Trapezoidal

rule 2 1/2 1/2

by @ wi ws
V2 -1)2 0 0 1
0.17378667 0.17378667 -0.41315432 1.41315432
—=1.15470054 0 0.75 0.25
0 0 I 0

has been used. The relation is as follows. The values Py are
determined as the ratio of the terms in the first two steps of
Equation 29

Pi= — Jurin® = fann® 32)

Yarin® = Yann®

where the division is defined to mean that an element in the
vector in the numerator is divided by the corresponding
element in the vector in the denominator. The value of P
used in Equations 29 and 30 is taken to be the largest value
of P, computed from Equation 32. If this value is negative,
P is sct equal to zero. Using a scalar P ensures that each of the
m O.D.E.s is differenced with the same step length.

If the O.D.E. were uncoupled, the P would represent the
local eigenvalues of the individual cquations. Taking the
single value of P equal to the largest P¢ makes the algorithm
approximate the corresponding solution component.

The algorithm is used as follows:

1. Sclect an initial step length A,

2. Compute yann™and ya i@ from the first two equations
of Equation 29. .

3. Compute P as the largest P; from Equation 32. If all
Pi<0,set P =0.

4. Compute ya,1 from the last equation of Equation 29.

5. If |yas1 — Ynl/|Vns1]l > €max, set h = h/2 and return to 2.

6. If |yns1 — Yal/ | Unstl < €min, sct A = 2k and return to 2.

A complete stability analysis of Treanor’s method has been
carried out by Lomax and Bailey (1967). As & — 0 the method
is identical to the fourth-order Runge-Kutta method. For
—2 < kX < 0, the method is stable for any value of P. If
A < =2, the method is conditionally stable. If Ph = 8,
the real stability boundary is —10, compared to the fourth-
order Runge-Kutta value of —2.785.

The method has the advantage of improving on the stability
characteristics of the fourth-order Runge-Kutta method
while maintaining the same accuracy. Its major disadvantages
are that it is still only conditionally stable and that because
of the form of the approximation Equation 28 the method
can only be used when the Jacoblan matrix of the original
0.D.E. has large diagonal eleinents, not large off-diagonal
elements.

Semiimplicit Runge-Kutta Methods. Implicit Runge-
Kutta methods (Butcher, 1964) are attractive for stiff
systems because of being highly stable. A particularly
important class of implicit Runge-Kutta methods has been
developed by Rosenbrock (1963), Calahan (1968), and
Allen (1969). Thesc methods possess the dual advantages
of explicit form and high stability, and are referred to as
semiimplicit Runge-Kutta methods.

If we consider the autonomous form of Equation 6, y’ =
1(y), and define the Jacobian matrix A(y) = fy, the third-
order method can be written as

k1 - h{I - halA(Yn)]-lf(yvl)
Ik = A[l — ha:A(y, + ki) ] 7' (y, + biky) (33)
Yar = ¥n + wiki + wok,

Parameter values for Equation 33 determined by Rosen-
brock (1963) and Calahan (1968) for diffcrent orders p are
shown in Table I. Each of the methods is A-stable. The

. characteristic root of Calahan’s method is

- 1 — 0.578 AX — 0.456 A2

1 — 1.578 hN + 0.622 A\? @4)

Hi
Even though the method is A-stable, uy = —0.735 as AN —
— o, 50 that we might expect accuracy problems to arise in
simulating the stiff eigenvalues.

Extrapolation Methods. The concept of Richardson
extrapolation, traditionally used in Romberg’s method of
numerically evaluating integrals (Davis and Rabinowitz,
1967), has recently been proposed as a technique to be
used in conjunction with certain single-step methods in the
numerical integration of O.D.E. (Bauer et al., 1963; Gragg,
1965). By forming a lincar combination of the numerical
results evaluated using two values of &, the lcading error
term in the asymptotic error, expansion of the numerical
method can be eliminated (Ilenrici, 1964). This procedure,
which can be repeated indefinitely with decreasing values of
h, each time removing the leading error term, is called “ex-
trapolation to the limit.”

If we consider Euler’s method, Equation 11, in whichp = 1,
the asymptotic error expansion is

Un = Y(xa) + a(@)h + alz)h? + a(z)h* + ... (35)

Values of y, can be generated using Euler’s method based on
a sequence of hy, & = 0,1,2, ..., and the y,(hs) obtained
can be denoted as Yo™®. In this case the total interval length
Zn — To s ho. Extrapolation to the limit can be applied to

.Equation 35. If successive interval halving is used—i.e.,

hy = ho/2¥—the recursion relation for generating the ever-

improving approximation to y, is ’

QMY EHD — Y, B
2" -1

Yo® = (36)
Convergence of Y, to y(z,) is guaranteed if f(z,y) satisfies a
Lipschitz condition (Bauer ¢t al., 1963).

In the discussion so far we have considered the extrapola-
tion procedure as applicd over the interval zo to x,. What is
done in practice is use extrapolation locally at each step in
the integration, zi, 2. . ., where £y — ¢ = ho. The procedure
is self-starting and the choice of Ao is fairly arbitrary, since A
is automatically reduced until the required accuracy is achicved
at each step of the solution—e.g., [(Ym® — Yn,¢=9)/
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Y| < ¢. A complete description of Euler’s method
coupled with local extrapolation is given by McCalla (1967).

Gragg (1965) and DBulirsch and Stoer (1966) have pro-
posed using the midpoint rule coupled with local extrapolation.
This algorithm converges more quickly than one based on
Euler’s method because the midpoint rule, ypa41 = yam +
2hy’., has an error expansion in powers of 4* rather than A.
The theory behind the algorithm is basically the same as
described for Euler's method. Both of these algorithms are
based on local extrapolation, where the extrapolation is car-
ried out at ecach step in the integration. The other alternative
is global extrapolation, wherein the particular numerical
method is first applied over the entire range of integration
from 1, to r, for a decreasing sequence of step lengths, and
then extrapolation is applied to the values obtained at each
original mesh point, r, = z, + nho. )

The algorithm commonly used with global extrapolation
is the trapezoidal rule. Global extrapolation with the trape-
zoidal rule is necessary to preserve A-stability, as we show
shortly.

A single-step method is usunally expressed in the form,
Yasr = m{hor)ya. An extrapolation algorithm applied locally
over the interval (z,, z,+1) can be expressed as

Ynsr = Bh\ M, K)y, 37)

where K is the number of step lengths for which the core
algorithm is used over the over-all step length he, and M
is the number of times that extrapolation is carried out.
Assuming M and K do not vary from step to step, absolute
stability requires that

Bk, MK)| < 1 @)

In order to determine the stability bounds of the algorithm
it is necessary to determine for fixed M and K the values of
ho for which Equation 38 is just sutisfied. For Iouler’s method,
Equation 36 can be expressed as

m
Y,.(k) - Z Cm.m-1 YO(. 4 (39)
$=0 ’

where the coefficicnts obey the recursion relation (Bauer et
al., 1963)

Crmnt = 27Cm—t =t = Cm—t.m-1~¢ ‘ (40)

2»!-!
Cr—tym = Crptymt = 0

If Y ® is taken s y, 41, Equations 37 and 39 yicld
; M ok 12K +1
BUMM LK) = 3 cuuims [1 + 2—+] (a1)
i=0

In order to determine the stability region corresponding to
various values of A and M, it is necessary to determine the
valucs of hoh corresponding to K and M that Equation 38 is
just satisfied. This has been earried out for K = 0 (the
diagonal clements) and various values of A for real, negative
k. The bounds are:

AL 1 2 3 4 5 6
(BN anx —2 —2.785 —4.23 —9.06 —10.88 =—13.5

As the number of extrapolations M is increased, the over-all
algorithm becomes more stable. In the limit of an infinite
number of extrapolations the method approaches A-stability.
Because the midpoint rule is -only weakly stable (Henrici,
1964), the extrapolation with the midpoint rule will be less
stable than with Euler's method and thus not well suited for
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stiff systems. If the trapezoidal rule were applied locally, the
modified characteristic root is

i hon | 2r+
M 1+ Qk+144
BUNMK) = 3 ¢/ un—g | (42)
i=0 1= hok
2k+l+(

It is casy to show that for f = 1, K = 0, for example,
lim B(hoA,1,0) = 5/3 and the method loses A-stability.

oA —s @

Single-Step Methods Employing Second Derivatives.
Let us now consider the gencral class of single-step meth-
ods employing sccond derivatives,

Ynrt = Yn + hBo¥ st + A2Ye¥ i + ABY'n + BPviy'n  (43)
for which the characteristic root is

L+ BN + mhth?
BT 1= pon = yohn

Theorem 2 limits the order of accuracy of A-stable linear
multistep methods of the class of Equation 5 to p < 2.
The inclusion of second derivatives in Equation 43 enables
us to devise A-stable methods of this class. The same general
characteristic root is obtained for the semiimplicit Runge-
Kutta methods—e.g., Equation 34. In fact, the characteristic
root of Equation. 44 is simply a genceral Padé approximant to
exp (AN), the diagonal approximants of which are A-stable
(Birkoff and Varga, 1965).

A problem with such A-stable methods is that Equation 44
may still be a poor approximation to exp (AX)), where A is the
largest eigenvalue. In particular, we not only require A-
stability but also want the principal roots ui,(hXj) to approach
exp (hN;) as Ax; — 0 and g;(hX)) to approach zero as hr; —
— o, If possible, we want u(hX;) = oxp (hX)) as hk; — — o,
If this were the case, we could say u(hh;) were exponentially
fitted to exp (A\;). This idea was presented by Liniger and
Willoughby (1967), who considered two special forms of
Equation 43.

Yust = Yo + A[(L = )Y 'ns1 + BiY'a) (45)

49)

h
Ynt1 = ¥a + '5" ((a+ &)y nes + (1 — a)y’n] -

210+ 30y + (1 = Byl (10

The order of accuracy of Fquations 45 and 46 is p = 1 and
p = 3, respectively. A-stability requires that g < 1/2 for
method 1 and a > 0 for method 2. Ilaving obtained conditions
for A-stability, the next consideration is the accuracy with
which the characteristic roots approximate exp (Ahy), ¢ =
1,2, ..., m, consistent with these conditious. The con-
ventional procedure is to equate Equation 44 to the Taylor
serics expansion of exp (AA) about AN = 0 and match powers
of X up to the desired order. For the nonstifl eigenvalues this
procedure is highly cffective. However, for the stiff cigen-
values a Taylor scrics expansion of exp (h\,) about AA; = 0
converges very poorly. Thus, as we have noted, conventional
methods are inaccurate for stiff systems because they are
unable to simulate the stiff components. For stiff systems it is
necessary to require accuracy and stability for both large
lh)\(l and AN¢— 0.

In Equations 45 and 46 the frce parameters 8, and a can be
adjusted to provide accurate representation of the stiff
components within the constraint of maintaining A-stability.



In particular, we desire for a certain value of AN = ¢, that
m (ga) = exp (qo). We say that the method is exponentially
fitted at ¢o if the frec parameter is chosen to satisfy this relu-
tionship. Requiring that IEquations 45 and 46 be exponentially
fitted yiclds

Bilg) = —q™t = (e — D! (47)
a(ge) = %‘ {g® + 670 + 12 — €¥(g* — 60 + 12)] X

[e™(ge® = 200) + go* + 2007} (48)

Note from Equation 47 that the trapezoidal rule (8, = 1/2)
and the backward Euler method (8, = 0) correspond to
exponential fitting at go = O and go = — o, respectively. The
authors prove that the procedure of exponential fitting is
compatible with both A-stability and accuracy in the limit
M—=0for0> g > — . :

Other Methods. Scveral other methods have been
proposed for stiff O.D.E. (Certaine, 1960; Emunucl,
1964; Lomax, 1968a,b; Pope, 1963). Gear (1968) has
considered the problem of devising predictor-corrector
mcthods for stiff systems. As in Widlund’s case, by
requiring less than full left half-plane stability, Gear has
devised methods of order as high as 6. Numerical results
using Gear’s algorithm, reported by Gear (1968) and
Ratliff (1968), indicate superiority of the algorithm when
compared to classical predictor-corrector methods of
comparable order.

Lawson (1967) has devised a class of A-stable explicit
Runge-Kutta methods based on a Padé approximation of
exp (hA). The method is similar in many respects to the im-
plicit Runge-Kutta methods deseribed previously. Oshorne
(1968) has considered the problem of designing characteristic
roots with the property that gy — (1//2) as AN = — o,
Dabhlquist (1968) has devised an algorithm based on local
polynomial approximations. Davison (1968) has considered
the problem of the numerical integration of large systems of
constant-cocflicient linear O.D.E. The poles and zeros of the
solution are obtained and the solution constructed in terms
of a sum of exponentinls. The method is useful in the limited
number of cases for which it is applicable. Explicit methods
for large stiff systems have been presented by Richards el al.
(1965) and Fowler and Warten (1967).

Explicit vs. Implicit Methods. Idecally a numerical inte-
gration method for stiff O.D.I. would possess (1) A-
stability, (2) high aceuracy, (3) w — exp (h\) as AN — — o,
and computational efliciency. Classical explicit methods are
highly accurate and computationally cflicient, but are not
A-stable. Since A-stability is the most important of the above
requirements, classical explicit methods are not efficient for
stiff 0.D.E. because of the rigid conditions on A that must be
obeyed. Implicit methods, such as the trapezoidal rule, have
two problems associated with the iruse: failure to meet
requirement 3 and the necessity to solve a set of nonlinear
algebraic equations at cach step. If the characteristic root x4,
of an implicit method is not asymptotic to zero as hA — — o,
in the initial phase of the solution when the stiff components
are nonncgligible, these components will be approximated
inaccurately by ui. This inaceuracy is reflected as slowly de-
caying oscillations over the whole range of the solution.
For the trapezoidal rule, g = —1 as A\ —- — ® and for
Calahan’s method, Equation 34, u; = —0.735 as AA = — o,
Caleulations with these methods confirm the existence of
oscillations due not to an instability but to an inaccurate
simulation of the stiff eigenvalues, There are two ways to
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circumvent this difficulty. The first is a simple filtering pro-
cedure suggested by Dahlquist (1963a) for use with the
trapezoidal rule:

Use Equation 12 to compute y, and ya.
Replace yi by (o + 2y, + y2)/4.

Use Equation 12 to compute y» and ys.
Replace y2 by (g1 + 22 + y3)/4.

Use Equation 12 to compute ys, y4, Us, . - -

Analternative to the filtering procedure is to use a small 4 in
the initial phase when the stiff solutions are nonnegligible.
Then when these have become negligible, we start using a
large A adjusted to the rate of change of the nonstiff com-
ponents. Iiven though the stiff components will then be
inaccurately simulated, if the stiff components do not re-
appear, the over-all solution will be accurate.

The second -problem associated with implicit methods is
that a set of nonlincar algebraic equations must be solved
at each step. Even though the method may be A-stable,
convergence requirements for the iterative solution of the
nonlinear algebraic equations place restrictions on the largest
value of & that can be used. These restrictions vary consider-
ably, depending on the particular iterative technique used,
but should be far less severe than for conventional explicit
methods to retain the advantage of the implicit method. Let
us consider this point in more detail.

In particular, we want to solve the implicit form of Equa-
tion 5, which can be written

Yasr — }lﬂof(l’,”l, yn+l) — Up = 0 (49)

where u, includes all the terms independent of y,41. Let us
consider the convergence requirements of four common
ways to solve Equation 49: Jacobi iteration, accelerated itera-
tion, Newton-Raphson iteration, and backward iteration.

A solution of Equation 49 by repeated substitutions,

Vutr®*D = ABe Tty Yan®) — Uy = 0 (50)

is termed a Jacobi iteration. Let us call y,1* the exact solu-
tion of Equation 50,

Yast* = ABof(Znsty Yan*) — up = 0 (51)

Subtracting quation 51 from Equation 50 and using the
mean value theorem,

Y+ = yan* = hBolfyli(Fan'? — yan®) (52)

where ¥an* < ¥ < yauu™. If we now assume a Lipschitz
bound on fy, | |fy] | < L, Equation 52 becomes

HYn+l('+‘) - Yn+l'l , < hﬁoLl IYnH(‘) - Yu+l‘!| (53)
By induction it follows that
' ]}’nn('“) = Yn+l'[ I < (’150L>'+'l lYn+l(°) = Yn+l"l [ (54)

A nceessary and sufficient condition for convergence of the
iterations is then

[hol| < 1 (65)
or
BBo| x| < 1 (56)

This condition is roughly the same as for the classic explicit
methods, and thus Jacobi iteration cannot be used efficiently
when [ Ames] is large.

A modification of Jacobi iteration is

(1 + O)¥asr®Y = hef [tn41, Yaus®¥] —
Uy — apn® =0 (57)
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for which a is an acceleration parameter (« = 0 is Jacobi
iteration). The convergence condition for Equation 57 can be
shown to be

hBAmax + @
14+ a

The speed of convergence of Equation 57 can be increased
over Equation 50 by proper choice of a.

A well-known method for determining the roots of coupled
nonlinear algebraic equations is Newton-Raphson iteration.
This method is based on a linearization of f,,, about the
previous valuc of ¥,41 in the iteration, and is given by

Far*D = g™ 4 [I = ABA, "]t X
{hﬁof-um = Y-u(” + “n} (59)

where A,,,'" is the Jacobian matrix fy evaluated at y, .
The necessary condition for .convergence of Iquation 59 is

<1 (58)

HX = hsoAnn@1 ] ] e% {1 = hoshn | | X

[ [Fant®* — you®|] <1 (60)

In actual use of Equation 59 it is impractical to recompute
A, for each iteration, since the time required to invert a
large matrix decreases the utility of the method. It is often
acceptable to approximate A, by A, If too many
iterations are then required in a given step, & can be reduced
and the iteration restarted or A, 4y can be re-evaluated.

Finally, we can formulate a backward iteration of the
form

y-fl(') A }‘ﬁOf[InHv Yn+l('+l)] + u, (61)
the convergence conditions of which can be shown to be
(o[ hea|) 1 < 1 (62)

Thus, there is & lower bound on A rather than an upper
bound as in the other three methods.

The real question of interest is what technique should be
used in conjunction with implicit mnethods.

Jacobi iteration and accelerated iteration are computation-
ally easy to implement but have convergenee requirements
depending on the largest cigenvalue of the Jucobian matrix
of the O.D.E. Thus, if |Mma| is large, an extremely small A
is necessary for convergence in these methods. In general,
Newton-Raphson iteration has a larger region of convergence
than the previous two methods. Buckward iteration has a
very large region of convergence because of a lower bound on
A rather than an upper bound. However, implicit equations
still have to be solved in Equation 61.

Thus, we make the following recommendations for the solu-
tion of an implicit multistep cquation:

1. If the ratio of the largest to the smallest eigenvalue of A
is small, say the order of 10, Jacobi itcration or accelerated
iteration should be used.

2. If the ratio of the largest to the smallest cigenvalue of A
is large, say greater than the order of 10, Newton-Raphson
iteration or backward iteration should be used with £ sclected
on the basis of the number of iterations desired per step.

The semiimplicit methods combine the A-stability of im-
plicit methods and the computational efliciency of explicit
methods. Because one or more matrix inversions are necessary
per step, these methods can be shown to be equivalent to
corresponding implicit methods with several applications of
Newton-Raphson iteration.
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The choice of a method becomes critical for large stiff
systems (m > 20). Current methods described above usually
require evaluation of the Jacobian matrix or its eigenvalues.
A method suitable for large stiff systems must not require
eigenvalue determination—for example, computing times for
standard matrix inversion and eigenvalue determination of
anm X m matrix on an IBM 7094 are:

m 10 20 30 40 30

Inversion, sec. 0.083 0.533 1.684 3.917 7.56
Eigenvalues, sec. 1.5 11.2 60 %8s -

Implicit methods usually require at least one matrix
inversion per step, if the Jacobian matrix is re-evaluated at
each step. Only a few elements of the matrix are likely to
change significantly from step to step, so it may be possible
to update the matrix at each step using only a small number
of derivative evaluations.

Examples
The following three problems will be studied:
L y'@) = —-200ly — F(2)] + F'(z)
F(z) =10 — (10 + z)e~*
y(0) =10
Exact solution y(z) =.10 — (10 4 z)e~* 4 10e-2®*
2. Equation 1 with y(0) = [2, 1, 2]" and

-0.1 —-49.9 0
A= 0 -~ 50 0
0 70 -120

Exact solution yi(z) = ¢z 4 ¢~%s
) = e
yalx) = e~x - =122
3. yh = —0.04y, + 105
y'2s = 0.04y, — 10%.y; — 3 X 107y*
¥'s =3 X 107!
y(0) = 1;52(0) = 0; s(0) = 0

System 3 represents a system of reaction rate equations
(Robertson, 1967), yi, ¥z, and ys representing the mole frae-
tions of the three species. The Jacobian matrix of the system is

—-0.04 10‘1]; . 10‘1/:
A=| 004 —10% — 6 X107, —10%,
0 6 X 10"y, 0

which is singular. The three eigenvalues of A are given by
M=0

A+ (0.04 + 10%; + 6 X 10"\ +
(0.24 X 107y + 6 X 10'y,?) = 0

Atz = 0, the three cigenvaluesare \; = 0,7\ = 0, A3 = —0.04.
The asymptotic behavior of the system for large z is to
= 0and y, = 0, and y3 = 1, since Zy; = 1 always. For
large values of z the cigenvalues approach A\, = 0, A; = 0,
A; = —10% In fact, from z = 0 to z = 0.02, \; changes from
—0.04 to —2405. The system is thus highly stiff.

The methods used for the threc examples are presented in

" Table II.



Table Il. Methods Used for Stiff Systems

Method Designation Comments
1. 4th-order Runge- RK4
Kutta
2. Adams 4th-order P-C DEQ 1 corrector evaluation,

RK4 start

3. Treanor's method TM Automatic control of A
4. Modificd midpoint DIFSYS

rule
6. Trapezoidal rule TR Initial filtering pro-

cedure used
6. Trapezoidal rule with  TR-EX  Initial filtering. M =3

extrapolation

7. Calahan's method CAL  Adjustment of A
8. Equation 45 LW1
9. Equation 46 LW2

Table Ill. Computational Results for Example 1

Ra of

Time,

Method h x = 0.4 x = 1.0 Sec
RK4 0.01 1.0 X 10— 2.0 X 10~* 11
DEQ 0.005 3.0 X10™* 2.0 x10°° 18

TM 0.2 6.7 X 10~* 1.0 X 10—* 16.6
DIFSYS ’ o U .
TR 0.2 1.85 X 1072 4.3 X 10~ 2
TR-EX 0.2 1.4 X 107¢ 1.0 X 10°® 36
CAL 0.01/0.2¢1.7 X 107 4.0 X 107 1
LwW1 0.2 1.1 X 10°* 5.0 X 10~ 3
LW3 0.2 1.8 X 107* .9.0 X 10~® 4

* Automatic step size control.

® Initial step size 0.1, extrapolations performed until error
<10°%

« Unstable.

¢ h changed from 0.01 to 0.2 at z = 0.1.

Example 1 is a single O.D.E. with a solution containing a
rapidly decaying component and a slowly decaying com-
ponent. The eigenvalue is —200, and the solution is de-
sired from z = 0 to z = 15. Thus, the solution component,
exp (—200z) becomes negligible almost immediately com-
pared to the exp (—z) component. The results of the numerical
integration of E \.lmplc 1 are presented in Table ITI. The R,

= y(za)

y(xa)
The time column indicates the total computation time in
seconds on an 1BM 7094. The two points z = 0.4 and z = 10

columns show £ at two values of z, 0.4 and 10.
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were chosen as representative of the errors early and late in
the integration. For a stable method we expect that the
solution will be accurate at z = 10, where the extraneous
solutions have become negligible. All computations were
performed in a single precision and an entry of zero in the
error columns indicates eight-place accuracy.

RIK4 and DEQ are both highly accurate but time-consum-
ing. The automatic stepsize selection routine in TM in this
case determined an & comparable to RK4 and actually re-
quired more time. DIFSYS was unstable for A values com-
parable to RK4 and DEQ. TR, CAL, LWI1, and LW3 were
roughly comparable. TR-EX was more accurate, as expected,
but required an excessive amount of time.

Exaniple 2 has eigenvalues —120, —50, and —0.1. This
system is interesting because it contains two stiff eigenvalues,
so that three different characteristic times appear. Results
of the integration of Example 2 are shown in Table IV.
Again it was desired to integrate {rom z 0Otoz =15
and crrors are tabulated at z = 0.4 and z = 10. TM was
somewhat less accurate than RIK4, but required only one
second compared to 20 seconds for RK4. DIFSYS was
again unstable, as evidenced by R, at z = 10. CAL and
LW1 were roughly comparable and somewhat more accurate
than TR.

Example 3 is a very stiff set of nonlincar O.D.E. As noted,
the cigenvalues change from 0, 0, —0.04 to 0, 0, —104 over
the range z = 0 to z = 40, and most of this change occurs in
the first few instants. Thus, this example represents the
severest test of the methods of all the examples. The results
of the methods on Example 3 are shown in Table V. All of
the explicit methods cventually become unstable. With
h = 0.001 R4 became unstable afterz > 16, where I)\..... =
2.78 X 102 On the basis of the time to compute to z = 10,
RI4 would require 138 scconds to get to z = 40 (if it were
stuble). DEQ with A = 0.001 was unstable after z = 0.012.
DIFSYS with & 0.001 was unstable after z 0.358.
TM was strongly influenced by the off-diagonal elements and
was completely unstable.

The semiimplicit method CAL was stable with A = 0.005
uptoz = land A = 0.02for z > 1. However, slowly occurring
oscillations could not be avoided because of the asymptotic
root behavior of the method. For A = 0.05 for z > 1 the
numerical solution converged to the wrong values without
exhibiting oscillatory behavior.

The full implicit methods, TR, TR-EX, LWI, and LW3,
were most applicable. Even though these methods are all
A-stable, the necessity to solve nonlinear algebraic equations
presented limitations on the size of A (as well, of course, as

Table IV, Computational Results for Example 2

Rin at
Method h x = 04 x
RK4 0.01 2.0 X 1077 5.4
DEQ 0.01 2.0 X 10~ 8.1
TM 0.2 4.0 X 10~¢ 1.35
DIFSYS s 5.0 X 10~ 2.16
TR 0.2 1.0 X 10— 2.7
TR-EX 0.2 4.0 X 10~ 8.1
CAL 0.01/0.2¢ 2.0 X 10~* 2.7
Lw1 0.2 4.0 X 10-¢ 1.1

¢ Automatic step size control. -

% Initial step size 0.1, extrapolations performed until error <10-%,

¢ h changed from 0.01 to 0.2 at z = 0.1

XXXXXXXX 1

Rin at

Rz at Time,
10 x = 0.4 x = 0.4 Sec
107 3.0 X107 3.0 X 10—t 20
107 9.5 X 10~¢ 7.4 X 108 23
10~ 1.1 X 108 1.2 X 108 1
10— 9.4 X 10— 8.3 X 10? 22
10— 6.5 X 107 1.3 X 108 1.3
10~ 5.7 X 10! 8.0 X 10t 30
10-¢ 2.5 X 10° 1.6 X 10° 1
10— 5.0 X 10¢ 5.0 X 10° 3
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Table V. Computational Results for Example 3

Rin ot Rza at Rin of
Time,
Method h x = 0.4 x = 10 x = 04 x = 10 x = 0.4 x = 10 Sece
RK4 0.001 0 0 0 0 : 0 0o ]
DEQ 0001 1] 1] 1] ® 1 L) ®
™ 0.0l
® @ ® b o @ 1]
DIFSYS 0.0014
e ] b b ® b ® ®
TR 0.2 1.35 X 10=* 1.05 X 10~® 2.12 X 107 2.4 X 10~ 9.0 X 10~ 1.5 X 10~ 9.3
TR-EX 0.2 1.72 X 10~ 3.6 X 10~¢ 3.5 X 10~* 4.3 X 10~¢ 6.8 X 10~¢ 1.2 X 10~% 34
CAL  0005/0.02 54107 1.01X10 2.5X10° 6.0 X107 1.62X107 5.4X 10 10
LW1 0.02 1.6 X 10~ 4.9 X10-¢ 2.4 %X10=¢ 1.3 X 10~ 3.2X10-* 4.4 X 10~¢ 20
LW3 0.02 5.9 X 10~ 7.1 X107 2.9 X110~ 1.1 X10~® 4.0X 10~* 1.9 X'10~* 23.3

e IBM 360-75.
® Unstable.
e Automatic step size control.

¢ Initial step size 0.1, extrapolations performed until error <107%.

accuracy considerations)—for example, convergence of the Nomenclature
Newton-Raphson method used with TR required A < 0.25. . .
- lition f oo & . oo ag = constants in general root form Equation 20

The ncccfyxnry.con(‘mon‘ or convergence of the Newton- e = adjustable parameter in Equation 46
Raphson iteration, I3quation 60, predicts that A must be less A = Jacobian matrix of 0.D.E.
than 107807 |Fan®*Y = yan®]| |, which is highly con- by = constants in general root form Equation 20
servative. More improved convergence conditions for New- B = ma}[r}x_ dcﬁncd'm 1‘&‘;'«“‘;"“ 21 0
ton-Raphson iteration are apparently & topic of current study. ::_"’ : ‘c:glcls:?).lx?tn:?lf%}(;ilx-:tcion))l0‘q“anon 4
The initial filtering procedure was cffective in climinating di = GONELES 1 Equ;xtion 9
oscillations due to inaccuracy for & < 0.1. The total time Dyy = purameters in Equation 28
forz = 0tozr = 40 was 9.3 scconds. For the increased accu- f = m-dimensional vector function
racy of TR-EX, 34 scconds were required. Because ob the size 2" = L’{"Cr;”l':‘it?&" defined in Equation 30
of the stiff eigenvalues, the exponential filtering procedure 1 oz idcintitygm:xtrix
in LW1 and LW3 caused a computer overflow, since the largest k = degree of multistep method
exponential argument that can be handled is 174.673. Thus, k’( = parameters in Equation 33 .
the allowable maximum A is 0.02 in each method. Computing K = number of step length scquences used in extrapola-
times were 20 and 23.3 seconds, respectively. L - Li;t)lqoc?xitz coRSER

From the examples the following conclusions can be drawn: = = dim‘(‘.nsionnlity of O.D.E.

: . - M = number of extrapolations

1. RK4 and DEQ are both highly accurate, DIQ requiring 1 eXtrapold " ;
more computation time because of the small absolute stability - M(hA) - c?arqchcn.mc matrix of single-step method
bound. Because of the small finite stability bound, it is not x = BUCp k'" m; s ik 1 of integrati
recommended that either of these methods be used for stiff =4 TUMDEr Ol SLepsdil INTerval OLINEREALon
0.D.E. P = order of aceuracy of m'cthod

2. DIFSYS has even less desirable stability properties g"P = pzu:u‘nc@er%.m.l} T '.’ECL‘}‘Od. Equati
than RK4 and DEQ, confirming our knowledge of the poor = matrix in similarity transformation, Equation 14
stability properties of the midpoint rule. Of all the methods 240 Z iable in Equation 49
used, DIISYS is the least desirable for stiff O.D. L. Un S VDT < q%‘m?n. 31

3. TM with automatic control of A is generally not effective vi = pf‘?‘};“t'?mfs "‘m‘ql"‘tt'f‘?“ Eauation 33
as an all-purpose stiff routine. T'M usually decreases the time Wils = Cl”'" ”3"‘ c;)c c.‘lcl“ls ML EGQUALIOI
from that required by RIK4 for comparable accuracy; how- Z - H’( C‘pcln Ltn' V‘.”l"} NG
ever, in some cases, the automatic step size control may de- 3{, ® Cp‘;“( (in .\vnrml) ¢ "
crease A to values comparable to RICL In addition, its utility ot B oxiupombonyniuo oly

z = dependent variable from similarity transform

is limited to those O.D.E. with only large diagonal elements
in the Jacobian.

4. The four implicit methods studied, TR, CAL, LW, and
LW3, were roughly comparable in terms of accuracy and

GREEK LETTERS

computing time, and each resulted in significant savings of a = acccleration parameter

time over the explicit methods. TR-EX resulted in the high- ay = cocflicients in lincar multistep method, Equation 5
est accuracy in cach example but at the expense of consider- B = characteristic root in extrapolation

able computing time. For systems that are only moderately By = cocfficients in linear multistep method, Equation §
stiff, CAL is slightly more accurate than the other three. ¥o,71 = coctlicients in' Equation 43

However, for highly stiff systems, LW1, with proper scaling €n = gccumulated error at step n

to avoid computer overflows, appears to be the best even e(zy) = magnified error function at step n

though it is the least accurate.. If exponential fitting is not [/ = angle

used, either the initial filtering procedurc or the step length ¢ = eigenvalues of 0.D.E.

adjustment is necessary in TR and CAL to prevent oscilia- A = diagonal matrix of eigenvalues

tions from inaccurate simulation of the stiff eigenvalues. M = characteristic roots of multistep method

274 lnd. Eng. Chem. Fundam., Yol 9, No. 2, 1970
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Control of Plug-Flow Tubular Reactors by

Variation of Flow Rate

John H. Seinfeld,' George R. Gavalas, and Myungkyu Hwang
Department of Chemical Fingincering, California Institute of Technology, Pasadena, Calif. 91109

The control of isothermal and adiabatic plug-flow tubular reactors by variation of flow rate was
studied. Proportional feedback, feedforward, and optimal control responses were compared
for the regulation of reactor conversion in the presence of inlet disturbances. The optimal con-
trol, consisting of a singular solution in each case, produces a considerably improved response
over both feedforward and proportional feedback control.

Tho control of tubular reactors is a problem of considerable
importance in chemical processing. Based on the mode of
operation—e.g., isothermal, adiabatic, etc.—control can he
excrcised in a variety of ways—e.g., flow rate variation, inlet
condition variation, heating or cooling rate variation, ete.
From the standpoint of control, a convenient method of clas-
sification is by the form of the mathematical model used to
describe the reactor. Reactor models can generally be placed
in two categories: hyperbolic systems, in which axial and
radial diffusion effeets are neglected (plug-flow); and para-
bolic systems, in which diffusion effects are included.

In the present study we consider both isothermal and
adiabatic plug-flow reactors for which the control objective is
to maintain the outlet composition at a desired value in the
presence of inlet concentration and temperature fluctuations.
In the isothermal case, control ean be exercised by variation
of the flow rate and the temperature. In the adiabatic case,
control can be exercised by variation of the flow rate and the
inlet temperature, assuming that the inlet concentration is not
available for adjustment. Ogunye and Ray (1970) determined
the optimal temperature control policy in both the isothermal

1 To whom correspondence should be sent.

and adiabatic plug-flow cases in the presence of catalyst decay.
We consider the other alternative for plug-flow reactor con-
trol—namely, control of the flow rate. This mode of control iy
of practical importance, since flow rate is an casily manipu-
lated variable.

Manipulation of the flow rate of an isothermal plug-flow
reactor to control the exit composition was considered by
Koppel (1966a,b). Since Koppel based his feedback propor-
tional law on a transformed variable rather than directly on
the outlet concentration, his results are not generally applica-
ble. In fuct, as o result of using o transformed variable, the
control no longer has a lincar relationship to the ervor and is
not proportional as stated.

The objectives of this work are the following. We wish to
solve directly the nonlinear problem for the dynamic response
of the isothermal reactor with proportional control of the flow
rate. Then, we wish to determine the optimal flow rate con-
trol policy for both the isothermal and adiabatic cases that
minimizes the integral square ervor of the outlet concentration
for a given inlet disturbance. Finally, the optimal response is
compared to the proportional feedback and simple feedfor-
ward responses to determine the degree of improvement
achieved by optimal control.

ind. Eng. Chem. Fundam., Yol. 9, No. 4, 1970 651
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Figure 1. Dynamic response of outlet concentration for A = 0.3,8 = 2,

Proportional control

OPTIMAL RESPONSE
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Figure 2. Dynamic response of outlet concentration for A = 0.3, 8 = 2,

and n = 2

Proportional and optimal control

Isothermal Case

Proportional Control. The dynamics of an isothermal plug-
flow, tubular reactor with an nth-order irreversible reaction
and proportional control of flow rate is described in dimen-
sionless terms by

oz(68,1)

T 1=K01) - 2] = —pz(0)" (1)

0z(6,7)
]
where the concentration sensing takes place at the reactor
outlet, n = 1, and the desired outlet concentration, z (9, 1),
is % We assume that for 8 < 0 the reactor is in a steady state
for which z (1) = z9, so that the control is shut off. The inlet

652 Ind. Eng. Chem. Fundam., Vol. 9, No. 4, 1970

concentration is assumed to undergo a step change of magni-
tude A at § = 0 from its steady-state value of 1,

200)=14+A4 6>0 @

The object of this section is to determine the exact dy-
namical response of the reactor for fixed values of 8, 7, 4, and
z¢ and different values of the gain, K. The numerical tech-
nique based on the method of characteristics for obtaining the
solution of Equation 1 is described by Hwang (1968).

The exit response 2(0,1) is shown in Figure 1 forg = 2,4 =
0.3,n = 1,and K = 1, 5, 10, 20. Similar responscs are shown
in Figure 2 for g = 2,4 = 0.3,n = 2,and K = 1,5, 10, and



20. The magnitude of the offset, defined as the difference be-
tween the asymptotic outlet concentration z(»,1) and z¢, can
be dctermined from

5
{1 = K[z(1,=) — 2]} ‘"[1+,i]+

8=0 (=1 @O

3(‘9,1) - zl T— '_LEL:“.&I‘_;:M (" = 2) (4)
where

a=1+p1+4)—-K@@'—4-1) (5)

a = =K1 + 8+ 4) = (1 + A)] (6)

In each case, as K is increased the offsct is decreased. With
larger K, the system undergoes more rapid oscillations before
reaching the asymptotic value. Gain K cannot be chosen
arbitrarily large, because the total velocity must be greater
than zero. The maximum allowable value of K can be deter-
mined from this requirement as

b
K.unz(n-l) @

1 ds J 1
K“‘"[1+ﬂ(1+A)_1+a] =2 ©®

since the maximum deviation z(8,1) — z% occurs when § =
1—for example, forn = 2,8 = 2, and A = 0.3, Kmnax = 36.

If & pure time delay of magnitude r exists in the control
loop, z(0,1) in Equation 1 is replaced by z(0 — 7, 1). The
numerical technique used can be extended to include this case;
however, these results are not reported here.

Feedforward Control. An alternative to feedback pro-
portional control is simple feedforward control, in which as
soon as the step change in inlet concentration is sensed, the
flow rate is changed to the steady-state value corresponding
to the new inlet concentration which will produce the same
outlet concentration. The response of z(6,1) in this case is
shown in Figure 3 for n = 2. By comparison to Iigure 2, we
see that the speed of response has been improved considerably
over proportional control, mainly because the residence time
lag in the reactor has been avoided.

Optimal Control. It is of interest to determine the opti-
mal open-loop flow rate policy and responsc and compare
to the closed-loop proportional and the simple feedforward
responses. Let us rewrite Equation 1 as

51(0,0) 0z(6,n)
+ v(6) on

We formulate the optimal control problem as follows: It is de-
sired to determine v(0) over the given time interval (0,6,)
subject to v* > v(0) > ve, the maximum and minimum allow-
able flow rates, such that the integral square error

= —gz(0m)" O}

0f
= — 92
P j; [z(0,1) — 2°]* do (10)

i8 minimized. By application of the necessary conditions for
optimality for distributed paramecter systems (Katz, 1964;
Koppel et al., 1968 ; Seinfeld and anndus, 1968a), the optimal
policy is found to be

v*G(0) <0

1 Q.
o) = G@) = f i) o g )
ve G(6) >0 9 e
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Figure 3. Comparison of outlet concentration responses with
feedforward and optimal control

Isothermal reactor

where the adjoint variable p(6,3) is governed by

dp(8y op(8,
B 1o B~ 55y - D) - 21+
ngpOn)zO)" (12)
pO1) = 0
p(oftﬂ) = (13)

The two-point boundary value problem represented by
Equations 1, 2, 11, 12, and 13 cannot be solved analytically.
In cases when the optimal control is given by a bang-bang
law, the switching times can be determined most easily by
the method of direct scarch on the performance index
(Seinfeld and Lapidus, 19684).

One complication can arise in optimal bang-bang control—
that is, if G(0) = 0 on a finite time interval, a singular arc
results and v() may be undefined. Previous work (Seinfeld
and Lapidus, 1968h) has shown that the dircet search method
is particularly effective for determining optimal singular con-
trols, especially when the value of the control on the singular
arc can be determined.

The direct search is simply a systematic search over a num-
ber M of presclected control values until the value of P can no
longer be decreased.

If the existence of a singular solution can be ruled out a
priors, then M = 2 with the two choices as v* and ve. In the
present case, however, the possibility of a singular solution
cannot be ruled out, since the two-point boundary value prob-
lem of Equations 1, 2, 11, 12, and 13 cannot be solved ana-
lytically. In fact, hyperbolic optimal control problems of this
type have been shown to involve terminal singular arcs
(Koppel, 1967; Scinfeld and Lapidus, 1968a). The terminal
singular control v(6) in these cases corresponds to the simple
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Figure 4. Velocity policies in suboptimal and optimal cases
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Figure 5. Comparison of outlet concentration responses with
feedforward and optimal control
Adiobatic case

feedforward value obtained by setting 2(0,1) = z% In the
present example, v(0) = 0.895 for n == 2,

The following computations were performed forn = 2,8 =
2, A = 0.3,v* = 1.0, ve = 0.1, and 20 time increments.

LM=2 v=0110
2. M =5 v=0.1,0.3, 0.6, 0895, 1.0

Case 1 was carried out without regard to the existence of a
gingular arc. Case 2 included several control values, one of
which was the feedforward flow rate value of 0.895. Figure 4
presents the results from cases 1 and 2. The minimwin value of
P was achieved for the policy labeled optimal, indicating the
existence of a terminal singular are for 8 > 0.45. The value of
the direct search in handling singular solutions is evident,

654 Ind. Eng. Chem. Fundam., Vol. 9, No. 4, 1970

since the singular control value can be used directly in the
search. The outlet response z(6,1) corresponding to the opti-
mal flow rate policy is shown in Figures 2 and 3 for comparison
to the two previous modes of control.

The value of the performance index, P, in the simple feed-
forward case with v(0) = 0.895, § > 0, is 2.187 X 107,
whereas the value of P for optimal control is 6.3090 X 105,
This provides a quantitative measure of the improvement
gained by optimal control over simple feedforward control,
cach of which is decidedly superior to proportional feedback
control.

Adiabatic Case

Feedforward and Optimal Control. The time-dependent
behavior of an adiabatic plug-flow reactor with an nth-order
irreversible reaction is described in dimensionless terms by

2z(8,1) ox(6,m) . n

I R "R [" T(o,rn] aall
oT (8, oT(,
MO 1 o 20 e [w - T*(Zg]x(o,n)" (1)

For 6 < 0 the reactor is in a steady state for which z(1) = z¢,
The inlet concentration is assumed to undergo a step change
of magnitude .1 at 0 = 0asin Equation 2, The inlet tempera-
ture is assumed to undergo a step change of magnitude B at
6=0,

TO0) =1+B 6>0 (16)

The following values of the parameters were chosen: ¢ = 3,
V=38 y = 40,0 = 0.35,n =2,.1 =03, and B = —0.03.
With these values, 2% = 0.02962.

Since it was shown in the isothermal case that proportional
control compares poorly with even simple feedforward control,
only feedforward and optimal control avere examined in the
adiabatic case, Feedforward control consists of =etting v equal
to the new steady-state value corresponding to % as soon as
the inlet disturbances are sensed. The value of v(8) corre-
sponding to the parameters used is 0.5556. The response to
feedforward control is shown in Figure 5. The value of £ in this

- case 8 5,372 X 1072,

The optimal ¢(0) policy was determined by the direet search
on the performance index (Figure 4). Again, there is a terminal
singular colution for 8 > 0.3 with v(8) cqual to the new steady-
state value. The response to the optimal flow rate policy is
shown in Figure 5, and the value of I in this case is 3.775 X
102 The advantage in using optimal rather than simple feed-
forward can be scen by comparing the responses in Figure §
as well as the values of 22 obtained. This improvement is not
as pronounced as in the previously examined isothermal case.

Summary

A direct comparison of feedback, feedforward, and optimal
flow rate control has been presented for isothermal and
adiabatic plug-flow reactors with a single reaction. Applica-
tions of this work would be important in the control of liquid*
and gas phase reactions carried out in flow reactors—e.g.,
nitration of aromatic compounds and pyrolysis of lower paraf-
fins.

In both isothermal and adiabatic operation, optimal control
produced a considerably better response than simple feedfor-
ward control, and both modes were f{ar superior to feedback
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control. The optimal flow rate policy in each case had a termi-
nal singular arc corresponding to the new steady value of

v(8).
Nomenclature

A = dimensionless inlet concentration change
B = dimensionless inlet temperature change
G(®) = switching function

K = proportional gain

M = number of control valucs in direct search
n = reaction order
P = performance index
p(0,7) = adjoint variable
T(6,m) = dimenxionless temperature
v(@) = dimensionless veloeity
-

dimensionless concentration

GREEK LeTTERS

apag = constants
= dimensiouless reaction group
¥ = dimensionless activation encrgy
§(-) = Dirac delta function
= dimensionless spatial variable
= dimensionless time
= dimensionless frequeney fuctor
= dimensionless constant
= dimensionless heat generation constant

e e =3

SUPERSCRIPTS

d = desired
L = maximum

SubscripT
” = minimum
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Some Results on Estimation of Parameters in

Ordinary Differential Equatiomns
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SOME RESULTS ON
ESTIMATION OF PARAMETERS IN ORDINARY

DIFFERENTIAL EQUATIONS

Abstract

A new computational algorithm for the estimation of
parameters in ordinary differential equations is presented.
The algorithm suggested does not require either the parti-
cular solution of the linearized system equation for
discrete measurements or the solution of the adjoint equa-
tion for continuous observations. Through consideration of
the properties of common methods such as,quasilinearization
at a local minimum of the objective function, manipulation
of the weighting matrix combined with the proposed scheme is
suggested for convergence to the global minimum. An addi-
tional modification of the scheme is presented to remove ill-
posedness. The new algorithm is demonstrated on a simple
example which exhibits a local minimum of the objective

function.
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1. INTRODUCTION

The estimation of parameters in a mathematical model from
actual observations is an important problem in process analysis and
control. We consider the case in which the model consists of a set of
ordinary differential equations (0.D.E.'s). The estimation of param-—

: " ; 1- ¥
eters in.0.D.E."'s has received much attentlon[ 3]. Various numerical

[3-5] and steepest descent[6],

techniques, such as quasilinearization
have been suggested and demonstrated in the literature for this prob-

lem.

All of the techniques are plagued with two common difficulties.
First, convergence to the global minimum of the objective function is
never guaranteed if local minima exist. Second, if the system is ill-
posed, that is, when large changes in parameter values cause only small
changes in the objective function, numerical convergence is extremely
unstable. In.addition, when the observation process is contiﬁuous in
time, we have to solve a two point boundary value problem as the
necessary condition for minimization of the objective function. The
numerical solution of the two point boundary value problem is often
unstable and sensitive to the initial guess of the unspecified boundary
condition of the adjoint variables.

The objective of the present study is to present a new com-—
putational algorithm for the estimation of parameters in 0.D.E.'s
which: (1) does not require the solution of the adjoint equations when
the observations are continuous in time, as a modification of quasi-

linearization, (2) converges to the global minimum of the objective
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function, and (3) removes the ill-posedness of a problem. The only
requirement that must be satisfied for the present study is that for
the given set of error-free measurements there exists a unique set
of parameters, i.e., observability with respect to the parameter

vector.
2. PROBLEM STATEMENT

We consider a dynamical system described by the 0.D.E.

x(t) = £(t,x,p) (1)

x(0) X (2)

[e]
where x 1is an n-vector and p is an #-vector of constant param-

eters. The observations of the system are related to the state by

y(t) = h(t,x) + (errors) , DL ELT (3)

where y is an m-vector of observations. The problem is to find
the value of p which minimizes the least square objective function.
If the observations are taken continuously in time ¢t , the objec-

tive function is

T
1(p) = f Iye) = hleaxCesd) (13, de %)
0
where the norm,
17€8) = hee,xCespd) || gy = () = hexCesp)1”

Q(t) [y(t) -h(t,x(t;p))] (5)
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and x(t;p) denotes the solution of equations (1) and (2). If the

observations are made only at discrete times, tl,t -',ts , then 1

98"

is given by

S

1) = ) |ly(ey) =t x(e 5ol

(6)
i=1 Q)

We assume that £ and h € Cl, and f and h have continuous first
order partial derivatives with regard to their arguments. Q(t) is a
symmetric, positive-definite weighting matrix. Equation (4) can be
reduced to equation (6) by the special choiée of Q(t) as

Q(t) s(t—ti), so that in the following part the system with discrete
observations is considered as a special case of the continuous meas-
urement system. Finally, we assume that the error free system of
equations (1) and (2) is observable with regard to p , i.e., there

exists a unique value of the parameter p* at which I(p*) =0 .

3. A NEW ALGORITHM

Assume we have an initial guess p(0) which generates a

(o)

trajectory of equations (1) - (3) denoted by x . To describe the

(o) + 6p(°) we can

trajectory of equations (1) - (3) generated by p
linearize equation (1) about x(o) i 6p(°> is chosen such that

for some n > 0 ,

=P ) - x| < n %)

Then we can write the following unique perturbation equations[7’8]
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6x(9) = §(0)g (@) f<°)5p(°) (8)
x p

52900y = © (9)

st . hi°)ax(°> (10)

where fio) denotes (8f/8x)x<o) p<°>‘

Substituting the solution of equations (8) and (9) into equa-

tion (10), we obtain

5%y = Btk y5p ) A
where
ate, 2" = hi°) D(t,x %) (12)
t
(t,x) = [ 6 (e, f1§°> (T)dr (13)
0

and the fundamental matrix satisfies

(0)
2D 0y, (14)

¢(o)(t,t) = I (identity matrix) (15)

It can be easily shown that D(t,x(o)) = (Sx/ap)(o) , the matrix of

sensitivity coefficients, which satisfies
ple) fi°)D(°) % f;°) (16)

p®@ w0y = o (17)
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03 6y(o)(t) = y<l)— y(o) does not contain measurement errors, and
G(C,x(o)) is not singular for all admissible p(o) and all t , then

5p(0)

from equation (11) we can determine uniquely with one measure-
ment 6y(°)(t) , t€[0,T]. Furthermore, we can obtain p* uniquely
by using equation (11) only. This point will be considered again.

In practice, observations are noisy, G(t,x(o)) is singular if 2 #m ,

and it will be necessary to consider all given measurements in order

to generate 8p(°). Then 6p(°) can be evaluated by using the pseudo-
inverse matrix,
T
6p(® = k)t f 6, =) T q(r) 6y at (18)
0
where T
x(,p'”) = f o(t,x?) ac (19)
0

(o)

If K(T,p(o))is nonsingular, there exists a unique perturbation &p
corresponding to the perturbation Sy(o)(t), 0L t<T. This implies

that the system of equations (1)-(3) is locally observable with regard

(o) (o) (0)y [8]

to p at (x In addition, equation (18) can be applied

6y(°)

for the case where contains measurement errors, i.e., equation

(10) is replaced by

6y ) = 1l 89 + (errors) (20)
because 6p<°) given by equation (18) minimizes
T .
, f!léy(o) - G(t,x(o)) Gp(°>f|2 dt
Q(t)

0
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(o)

Equation (18) can be used to update p . However, in order

Gy(o).

to use equation (18) we must give some special attention to

(o) (1) _ y(O) ey

Theoretically &y , but is unknown

p(l)

is given by vy

because is unknown. Thus, to use equation (18) we need to assume

Gy(i) . We therefore replace Gy(l) by

Gy(i) = e'[y(t) - h(t,x(i)>] (21)

for some €' > 0 such that equation (7) is satisfied. Combining
equations (18) and (21) we obtain for the general iteration i
T
s = errer,p)t f a(e,x“7T (o) (r(e) - n(e,xPyae (22)
0
Equation (22) provides the basic algorithm to update p(i).
To explore the meaning and numerical convergence of equation

(22) we consider another derivation of equation (22). At any step in

the iteration, equation (4) can be written as

T
) LW () )2
I(p) flly h (h - h )llq(t) dt (23)
0
Linearizing h about h(i) we obtain
h-n = (DpWe, () o6 ®% (24)

Substituting equation (24) into equation (23) and neglecting second

order terms, we obtain
: T
(1) =f @) @ (D) o (d)2
I(Sp ) | “y h hx D Sp ”Q(t)dt (25)
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Using the stationarity condition

__ilfzy_ 0 (26)
a(dp*77)
and solving for Gp(i) we obtain equation (22) with €' =1 .

In fact, we can show that the quasilinearization scheme com-—
monly applied will yield equation (22) with proper changes in the
boundary conditions for the homogeneous and the particular solutions
of the linearized state equation. This is demonstrated as follows.
If we adjoin to equation (1) the & relations p = 0 and define the

(n+f)-vector =z = (xT,pT)T , then z(t) satisfies

z(t) g(t,z) (27)

2(0) = (.o’ (28)

Linearizing equation (27) about the ith iterate of =z

S () L g ,00 @) @, -
The solution of this equation is

20 () = oWl 4 By (30)
where the (m#h) X (wHl) matriz ¢% satdsfies

Py = PP (31)

4470 = I (identity matrix) (32)

and the (n+)-vector w(l) satisfies



=1 3=
MO () = gy 4 g gD o

v 0y =

|
o

(34)

The objective function is
T

) (4 (D), () )2
I £Hy h(o'*a + U )Hq(t) de (35)

and is to be minimized with regard to o

il+l) s k=n+l,ece,n+l . If

the initial conditions of equations (31) and (33) are taken as

0 k<n
(1) -
i k>n+1
- Xko k<n
b = (37)
0 k>n+1l
Then equation (30) can be rewritten as
LD @) @) @) -
and the solution of equation (33) can be shown to be
NCO N C SN AR Cb )

Substituting equations (38) and (39) into equation (35), expanding h

. ‘4
about h(l), and minimizing with regard to p(1 l), we obtain equation
(22) for €' =1 . The important point is that the present algorithm
is computationally much faster than quasilinearization with the same

accuracy because integration of the particular solution governed by
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equation (33) is avoided for discrete measurements.

4. NUMERICAL CONVERGENCE OF THE PROPOSED SCHEME

Let us first examine the properties of the proposed scheme
based on equation (22) in the vicinity of a minimum of I . For this
purpose we rewrite equation (25) as

i 5
7
I(6p(i))= f Ily—h(i) Hé(t)dt -2 f G(t,x(i))Q(t) (Y—h(i))dt 6p(i)
0

(1) 12
+[[6p™" |
k(t,pL) (40)
or, equivalently,
T
6™ = 6P -x@p) ™ [T onyacll?
0 ’ K(T,P )
T T ’ P
IRNCORTY: _ fe (1) 61
+fl|y B |l gy lo e IR
(41)

Equations (40) and (41) represent an approximation to the I surface

(1) in the neighborhood of p(l). The
(1)

value of I corresponding to p is ‘the second term on the R.H.S.

(1) (i))

of equation (41) and can be denoted I . The minimum of I(Jp

by a quadratic function of &p

occurs at 6p(l) given by equation (22) with €' = 1 . Since the

third term on the R.H.S. of equation (41) is positive, the value of I

(1)

at the minimum of the quadratic approximation is decreased from I

by that amount. ‘Normally, p(l) will not be in the neighborhood of a

true minimum of I , so that equation (22) provides a small step in
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the direction of decreasing I by approximating the actual I surface
by the quadratic form of equation (25). If, however, the minimum of
I(ép(l)) occurs at an actual minimum of I , then equation (41) is

2
exact to O(Gp(i) ) and the condition which holds at the minimum is

T
fwméﬁfqaxy-ﬂﬁ>a = 0 (42)
0

The essential difficulty with convergence to a local minimum
is embodied in equation (42). Since equation (42) holds at a local
minimum, 6p(i) becomes zero from equation (22). Thus, in order to
avoid local minima we need another relationship by which Gp(i)
evaluated does not become zero at local minima.

Let us return to equation (11) to develop a scheme which can
only converge to the global minimum. We rewfite equation (1l1) in the

form

y(t) - h(t,x(e;p )Y = a¢e,xP)y 6 (43)

Since the L.H.S. of equation (43) is the difference between the given

: . i .
measurements and the predicted measurements with p( ), in the absence

of errors, the L.H.S. is equal to zero for all t only when
(1)

P = p*, the true value. Let us define an ms-vector Y by choosing

y(tj), j=l,°‘;,s from continuous observation y(t), 0 <t <X T, as

R (R I NN O P LA IO R NN I i I T

Similarly, an (smX ) matrix @(l) is given as

o® = W e))”, « + v, 0@ yT" (45)
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Therefore we have

sy o oD GP(i) (46)
We can choose, in principle, a nonsingular (2 X2) matrix 5(1) from
O(l) for which the corresponding f-vector measurements 6§(i) from

GY(i) are not identically zero. 6p(1> is, then, determined from

6;’<i) = é(i) ap(i) (47)

Computing Gp(l) in this way, we can avoid convergence to local

minima of I . However, Gp(l) generated by the above method may not

be in the direction of the global minimum of I . This can be illus-

trated easily. Let us consider a scalar p and y(t) = xl(t) . Then

from equation (47), 6p<1> is given by (with y = y(t*), t*e [0,T])

. (1)
NYCO N AS I a8

by, (e%,x D)

(1)

Suppose d&y(t) > 0 for p, < p
(1),

< p* and all time, but

changes its sign in some interval of time and in the

(1) (1)

Dll(t,x

range of p , then &p may have a wrong direction, depending

©)

on the choice of t* and »p . Furthermore, Dll(t*,x(l)) must be

zero at some value of p(l) in the range. For true convergence with

y = y(t*), therefore, it is necessary that Dll(t*,x(l)) does not

become zero for all admissible p(l). In general, it is required

that 6 is not singular for all admissible values of p(i) which is
the observability condition of the system with y for p . In
practice, y(t) contains measurement errors, and the observability

condition for the given system with the above discrete observation



-135-

raises another question in addition to the difficulty in choosing the
measurement locations in the time axis. On the basis of the above dis-
cussions, we can propose a modification of the computational scheme as
a trial and error procedure for the initial period of iterationm.
Instead of discretizing the continuous observation, we can manipulate
the weighting matrix Q(t) , knowing the fact that the sign of the

(i))

sensitivity matrix D(t,x is usually fixed near the given boundary

condition. Therefore, we can start the computation by using equation
(22) with Q(t) = I (identity matrix). When Gp(i) becomes zero or
less than a preset value, then we can change the weighting matrix
Q(t) such that a special weight is given to some time interval near
the boundary where the state variables are specified originally. Hence,
we can avoid convergence to local minima without changing the scheme.
When I(i)/I(o) < A , another preset value, then Q(t) can be so
changed again as to give even weight to all data for the faster con-
vergence. This idea is shown in the example. The algorithm éuggested
can be summarized_as follows:

1) Select €',e,,A and Q(t).
p(0) ]

2) Make an initial guess

3) Solve the system equations (1)-(3) with p(o)
generate x(o). Evaluate 9(o>, K(T,p(o)), and I(o).

to

4) Compute Gp(o) by equation (22), then determine
W) 0) g (o)
5) Repeat step 3, replacing Sp(o) by Gp(l), etc.

6) When Gp(l) and I(l)/I(o) > A change Q(t) such that
a special weight is given to the data near t = 0 . Then

- compute Gp(l).
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7) When I(l)/I(o) < A, change Q(t) again so that even
weight is given to all data. Or, without changing Q(t),

proceed until I<l) is less than the desired final con-

vergence accuracye.

5. TREATMENT OF ILL-POSED PARAMETER ESTIMATION PROBLEMS

Up to this point we have discussed the convergence problems
when local minima exist. In this section we consider briefly the case
when the problem is ill-posed, that is, when large changes in the
parameter values cause only small changes in the objective function.

To remove any ill-posedness we will employ the results of

(10] [11]

Klinger and Franklin . We quote the following theorem without

proof.

Theorem (10). If A is normal, i.e., AA* = A*A |, where A% 1is the

conjugate transpose of the matrix A , then for all ¢ > 0

[A+ o0 x = b (49)

is better conditioned than Ax = b in terms of the P-condition number,

unless P(A) = 1 , where

max]A,]
. . 1
_ i
B(A) = min Ai kvl
i
and Ai are the eigenvalues of A .

Applying this theorem to equation (22) we obtain

: T
oot = &k + o)t &7 j o(e,x T o) sy P (o) ae (51)
0
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When the problem is ill-posed K(T,p(l)) becomes nearly singular
(note that K cannot be singular because of the observability assump-

tion). The use of equation (51) instead of equation (22) will remove

the inaccuracy in computing dp(l) as a result of K being almost

singular. If we choose a large value for ¢ , compared to KTK X
(1) will be decreased. A more complete treatment
(11)

the magnitude of &p
of ill-posed linear problems is given by Franklin and it can be
shown that the theorem above, due to Klinger, is a special case of

the more general theory developed by Franklin.

6. EXAMPLE

We wish to estimate p for the system (true value is

T = 9.8696044)
£ %y
X, = -px;

xl(O) =0 ; x2(0) =T

sin Tt 0<tx1l (53)

y(t)

T
The curve of I = f (y(t) - xl(t))zdt vs. p is shown in Fig. 1.
There are a local’%inimum at about p = 117 and other local minima
not shown at larger values of p .
First, using only equation (22) which, as we have noted, is
equivalent to quasilinearization, the iterations converged to the
local minimum at” p = 116.1 from initial guesses of 58 and 100. This

confirms the inability of the quasilinearization~type algorithm to
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avoid a local minimum .

Next, the globally convergent scheme suggested is applied with

p(o) 220, €' = 0.2 for i <7 ,and €' =1 for i >7 and

Q(t) §(t-t*) . Thus, the numerical scheme is given by equation (48).
Consequently, its convergence becomes slow. With ¢t* = 0.1,
Dll(O.l,x(S)) < 0 was maintained for all iterations. But with

t* = 0.5, Dll(O.S,x(l)) changed its sign during iteration. The re-
sulting state variables oscillated widely, even though the correct
convergence was obtained eventually. The results of the iteration are

shown in Tables 1 and 2. For noisy observations simulated as
y(t) = (1 + 0.2 Gauss (0,1))sin Tt (54)

where Gauss (0,1) indicates the Gaussian distribution with zero
mean and the standard deviation of 1, the suggested scheme is applied
with p(o) = 220 and

10 t £0.3

Q(t) = (55)
0.1 t > 0.3
The results obtained are shown in Table 3. Because of high noise
level and the fixed Q(t), the final numerical value has a relative

error of about 17 from the true value ﬂz %

7. SUMMARY

We have considered three aspects of the estimation of param-
eters in ordinary differential equations. TFirst, we presented a

computational method, embodied in equation (22). Second, using the
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properties of equation (22) in the region of a minimum of I , we
suggested a new technique for computing an iteration 6p(i) which
would avoid a local minimum of I . Third, we employed a result of
Klinger and Franklin to remove ill-posedness in a particular prob-
lem. The present study can be directly extended to more general
cases where the i1nitial conditions and parameters are unknown. Also
it can be extended to nonlinear distributed parameter systems. The
algorithm suggested was illustrated on an example exhibiting a local

minimum of the objective function.



8. NOTATION

Greek

I(p)

K(T,p)

p(A)

Letters

o

> O o 3

]
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arbitrary matrix

sensitivity matrix

n-dimensional vector function
(nt+2)-dimensional vector function
m—-dimensional vector function

identity matrix, or performance index
performance index

observability matrix defined by equation (19)
f-dimensional constant parameter
condition-number defined by equation (50)
weighting matrix

constant

time variables

n-dimensional state vector

m-dimensional observation vector
ms—dimensional vector defined by equstion (44)

(n+)-dimensional vector

(n+2)-dimensional constant

constant

constant

(m X 2)-matrix defined by equation (12)
(ms X £)-matrix defined by equation (45)

eigenvalues
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(of = constant

¢(t,T) = transition matrix

1] = particular solution defined by equation (33) or (39)
Superscripts

i = at the ith iteration

* = particular value, or conjugate transpose of a matrix,

or upper bound

Subscripts
o = initial

* = low bound
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Table 1. Progress of Iterations with t¥* = 0.1
It;z;geiin p(i) y(i) (0.1) Dll(O.l,x(i))
1 220 9.8029 x 1072 -3.1323 x 10~
2 157.40900  7.1033 x 1072 -3.3053 x 10%
3 114.42744  5.1439 x 1072 -3.4279 x 107%
4 84.415085  3.7231 x 1072 ~3.5153 x 10~
5 63.233170  2.6936 X 1072 -3.5780 x 107
6 48.1765446  1.9482 X 1072 -3.6231 x 107
7 37.421631  1.4089 X 1072 36555 % 10
8 29.713409  1.0186 X 1072 -3.6788 x 107°
9 4.7934265 -2.6386 X 107> -3.7551 x 107%
10 11.181425  6.7967 x 10°% ~3.7355 x 1074
11 9.5135345 =-1.8471 x 10~ ' ~3.7406 x 107
12 10.007348  7.1347 x 107° -3.7391 x 10°%
13 9.8165331 -2.7478 X 107> ~3.7396 x 107%
14 9.8900099  1.0669 X 107> ~3.7394 x 107%
15 9.8614779 -4.4107 x 107° ~-3.7395 x 107%
16 9.8732719  1.788L X 107° ~3.7395 x 107
17 9.8684893 -5.9605 X 107 -3.7395 x 107
18 9.8700829 1.788L X 107/ -3.7395 x 107%
19 9.8696041 0 -3.7395 x 107
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Table 2. Progress of Iterations with t* = 0.5

Deefabion o0 sy 0.5) p,,(0.5,x1)
1 220 8.0823 x 107t 1.5325 x 107
2 325.47607 9.3133 x 107T -2.1042 x 1072
3 236.95714 7.9849 x 107t 5.8717 x 107%
4 508.93408 1.1336 2.1553 x 1074
5  1560.8730 9.4235 x 107t 4.0292 x 107
6 2028.6382 1.0273 -3.3674 x 1074
7. 1418.5103 1.0047 4.7748 x 1074
8 1839.3652 9.6004 x 107 ~2.0574 x 10°%

-2360.1895 ~1.0562 x 10° -3.2463 x 10°
10 -2064.3965 ~2.3899 x 10° ~-8.0455 x 10°
11 -1792.0991 -5.5254 x 10’ ~2.0441 x 10°
12 -1521.7881 1, 1887 % 18’ ~4.7491 x 10%
13 -1278.8391 ~2.5043 x 10° -1.1517 x 10%
14 -1061.3914 -5.6417 x 10° -2.9134 x 10°
15 -867.74243 ~1.3169 x 10° ~7.6834 x 10°
16 -696.33740 ~3.1799 x 10% ~2.1119 x 10°
17 -545.76123 ~7.9265 x 10° -6.0497 X 10T
18 -414.73682 - -2.0348 x 103 -1.8070 x 10t
19 -302.13477 -5.3619 x 102 ~5.6368
20 ~207.01096 ~1.4430 x 102 -1.8429
21 -128.70990 -3.9254 x 10% -6.3723 x 107t
22 -67.109558 ~1.0521 x 10t ~2.3865 x 107>
23 -23.025330 -2.5760 -1.0310 x 10°%
24 1.9609528 ~4 4556 % 10 -5.8723 x 1072
25 9.5483904 ~1.6343 % 1072 ~4.8562 x 102
26 9.8849701 7.7552 x 1072 ~4.8142 X 10-2
27 9.8688107 -3.9518 x 107° ~4.8162 x 1072
28 9.8696308 1.6093 x 107° ~4.8161 x 1072
it -2

29 9.8695974 -4.1723 x 10 -4.8161 x 10
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Table 3. Progress of Iterations with Noise Observations

Number i of (1)
Iteration P
] 220
2 111.52681
3 74.752411
4 55.308624
5 44.019943
6 36.247849
7 16.143158
8 8.4432821
9 9.6022644
10 9.7483568
i 4 9.7580004
12 9.7585392
13 - 9.7585135

N.B.
(1) Relative error at 13th iteration = 7.53 x 10-7
(2) . 0.3 ¢ L2058
-
! = i i s
Bl m K Lt BH 1210

1 -, 1>10



