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ABSTRACT

This thesis consists of four independent papers.

In the first paper, joint with Kechris, we study the global aspects of structurability
in the theory of countable Borel equivalence relations. For a class K of countable
relational structures, a countable Borel equivalence relation E is said to be K-
structurable if there is a Borel way to put a structure in K on each E-equivalence
class. We show that K -structurability interacts well with various preorders commonly
used in the classification of countable Borel equivalence relations. We consider
the poset of classes of K -structurable equivalence relations for various K, under
inclusion, and show that it is a distributive lattice. Finally, we consider the effect
on K -structurability of various model-theoretic properties of /; in particular, we

characterize the K such that every K -structurable equivalence relation is smooth.

In the second paper, we consider the classes of /K,-structurable equivalence relations,
where %K, is the class of n-dimensional contractible simplicial complexes. We show
that every %,-structurable equivalence relation Borel embeds into one structurable
by complexes in K, with the further property that each vertex belongs to at most
M, = 2""'(n? + 3n + 2) — 2 edges; this generalizes a result of Jackson-Kechris-

Louveau in the case n = 1.

In the third paper, we consider the amalgamation property from model theory in an
abstract categorical context. A category is said to have the amalgamation property
if every pushout diagram has a cocone. We characterize the finitely generated
categories I such that in every category with the amalgamation property, every

I-shaped diagram has a cocone.

In the fourth paper, we prove a strong conceptual completeness theorem (in the
sense of Makkai) for the infinitary logic £L,,,: every countable L, ,-theory can be
canonically recovered from its standard Borel groupoid of countable models, up to
a suitable syntactical notion of equivalence. This implies that given two theories
(L, 7) and (L, T), every Borel functor Mod(£L’, 7') — Mod(ZL, 7" ) between the
respective groupoids of countable models is Borel naturally isomorphic to the functor

induced by some L, -interpretation of 7~ in 7', which generalizes a recent result

’
ww

of Harrison-Trainor—Miller—Montalban in the case where 7, 7’ are Ny-categorical.
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Chapter 1

INTRODUCTION

This thesis consists of four independent research papers, loosely centered around the
theme of classifying naturally occurring objects in mathematical logic using tools

from descriptive set theory and category theory.

1.1 Structurable equivalence relations
In the paper [CK], joint with Alexander Kechris, we systematically study the frame-

work of structurability used for classifying countable Borel equivalence relations.

A standard Borel space is a measurable space X = (X, 8), consisting of an
underlying set X and a o-algebra 8 on X, such that 8 is the Borel o-algebra of a
separable completely metrizable topology on X. In descriptive set theory, a standard
Borel space X is thought of as a simple model of a “definable” set, where the Borel
subsets B C X are the “definable” subsets. Examples of standard Borel spaces
include N, R, C, any separable Banach space, and the space of all group structures

(or graphs, or linear orders, etc.) on N.

It is a basic result of classical descriptive set theory that up to Borel isomorphism,
the only standard Borel spaces are 0, 1,2,...,N,R (where we adopt the usual set-
theoretic convention that n € N is identified with the set {0, ...,n — 1}). Thus, the
classification problem for standard Borel spaces is rather trivial. Such is no longer
the case, however, once we pass to “definable” quotient spaces. A countable Borel
equivalence relation £ on a standard Borel space X is a Borel equivalence relation
E C X? whose equivalence classes are all countable. We may think of the pair (X, E)
as a “presentation” of the “definable” quotient space X /E. Many naturally occurring
classification problems in mathematics can be encoded in this way, allowing their
complexity to be quantified in precise terms. For example, there is a countable
Borel equivalence relation (X, E) whose quotient X /E is in canonical bijection with
isomorphism types of finitely generated groups; by a result of Thomas and Velickovic
[TV], this quotient is strictly more complicated than the space of isomorphism types

of finitely generated abelian groups (which is itself Borel isomorphic to N).

The most important means of comparing the complexities of two countable Borel



equivalence relations (X, E) and (Y, F) is that of a Borel reduction
f:E<pF,

which is a Borel map f : X — Y which descends to an injection X/E — Y/F
between the quotient spaces. We think of a Borel reduction f : £ <p F as “definably”
reducing the classification problem encoded by E to that encoded by F. If a Borel
reduction f : E <p F exists, we write E <p F and say that E Borel reduces to F.
Thus, for example, the aforementioned Thomas—Velickovic result implies that the
isomorphism relation between finitely generated groups does not Borel reduce to
that between finitely generated abelian groups. The Borel reducibility preordering
<p on the class of countable Borel equivalence relations is extremely complicated,
as shown by Adams—Kechris [AK]:

Theorem 1.1.1 (Adams—Kechris). There is an order-embedding from the poset of
Borel subsets of R under inclusion to the preorder <p on the class of countable Borel

equivalence relations.

There are various other, related, preorderings on the class of countable Borel
equivalence relations. Given two countable Borel equivalence relations (X, E), (Y, F),
a Borel embedding f : E Cp F is a Borel reduction which is moreover injective
(as a function X — Y); we write E Cp F if such f exists. Such f is an invariant
Borel embedding, denoted f : E ;g F, if furthermore the image f(X) C Y is
F-invariant; in that case, we write E I;’é F. A Borel homomorphism f : E —p F
is a Borel map f : X — Y which descends to a (not necessarily injective) map
X/E — Y/F,ie., forall x;,x; € X, we have x1 E x, = f(x1) F f(x2). A
Borel homomorphism f : E —p F is class-injective, respectively class-bijective,
if for each x € X, the restriction f|[x]g : [x]g — [f(x)]F is injective (respectively
bijective); these are denoted E —>g Fand E —>%b F respectively. The relationship
between these notions is depicted as follows, where a line means that the lower

preordering is stronger (finer) than the upper one:

—p
/N
<pB —>g
NN ,
C
Cg —%
AN %
i
Cp
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The framework of structurability (see [JKL, Section 2.5]) provides an a priori
different means of quantifying the complexity of countable Borel equivalence relations.
Given a class K of (first-order) structures, such as a class of graphs or linear orders,
a countable Borel equivalence relation (X, E) is said to be K -structurable if there
is a “Borel assignment” of a structure in K to each E-class; formally, this means that
there is a Borel structure on X whose restriction to each E-class is in K. For example,
the class of treeable equivalence relations (K = {connected acyclic graphs}) has

been well-studied in ergodic theory (see e.g., [Ada]). For each K, put
Ex = {K -structurable countable Borel equivalence relations}.

We restrict attention to classes of structures K which are Borel, meaning that
they can be axiomatized by a sentence in the countably infinitary logic £,,,., (see
Section 1.4 below). For Borel K, we call Ex an elementary class of countable
Borel equivalence relations. Intuitively, each Ex is a class of “sufficiently simple”

equivalence relations, where the meaning of “sufficiently simple” depends on K.

Our first goal in [CK] is to determine the precise relationship between structurability

and the aforementioned preorders:

Theorem 1.1.2 (C.-Kechris; see Theorems 2.1.2 to 2.1.5).

(i) Every countable Borel equivalence relation E is contained in a smallest
elementary class, a smallest elementary class downward-closed under Cp,

and a smallest elementary class downward-closed under <p.

(ii) A class C of countable Borel equivalence relations is elementary iff it is

downward-closed under —>‘éb and contains a E%—greatest element.

There are also analogous characterizations of elementary classes downward-

closed under Cg or <p.

We next study the poset of elementary classes under inclusion. We show that it is order-
theoretically well-behaved, yet quite rich (by adapting the proof of Theorem 1.1.1
[AK]):

Theorem 1.1.3 (C.-Kechris; see Theorems 2.1.7 to 2.1.9). The posets of elementary
classes and of elementary classes closed under <p (both under inclusion) form
countably complete distributive lattices, and admit order-embeddings from the poset

of Borel subsets of R under inclusion.
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Together with the preceding result, this implies a positive answer to a question of
Kechris—Macdonald, who had asked whether there exist <p-incomparable countable

Borel equivalence relations with a <p-greatest lower bound (see Section 2.6.2).

An important aspect of the theory of countable Borel equivalence relations lies in
connections with countable group actions and ergodic theory. In particular, one is
often interested in properties of orbit equivalence relations of free Borel actions
of a countable group I'. For each I', let &r denote the class of such equivalence
relations. Then &r = Eg for K the class of free transitive actions of I', whence Er

is an elementary class.

We consider the question of when &r is closed under <p. The answer is never, for the
trivial reason that every orbit of a free action of I' must have the same cardinality as
I". To sidestep this technicality, let & 2 Er denote the elementary class of countable
Borel equivalence relations which are induced by a free Borel action of I except on
the finite equivalence classes. Then we have the following characterization in terms
of the well-known notion of amenable group (a group that admits a left-invariant

finitely additive probability measure):

Theorem 1.1.4 (C.-Kechris; see Theorem 2.1.6). Let I" be a countably infinite group.

Then &;. is closed under <p iff I is amenable.

Finally in [CK], we begin the study of the relationship between structurability and
model theory. A countable Borel equivalence relation (X, E) is smooth if the quotient
space X /E is standard Borel. Intuitively, this means that the classification problem
represented by E admits “‘complete invariants”; an example is the (aforementioned)
classification of finitely generated abelian groups, with the invariant given by the
tuple of exponents of each Z, Z/p"Z. Thus, it is of interest to determine conditions
on equivalence relations which imply smoothness. The following completely
characterizes all such conditions which are instances of structurability, and answers

a question of Marks:

Theorem 1.1.5 (C.-Kechris; see Theorem 2.1.10). Let Ex be an elementary class.

The following are equivalent:

(i) Every equivalence relation in Eg is smooth.

(ii) There is an L, ,-formula ¢(x) which defines a finite nonempty subset in every

structure in ‘K.



1.2 Borel structurability by locally finite simplicial complexes
The paper [C2] is concerned with the following elementary classes which generalize

the class of treeable equivalence relations to higher dimensions.

A(n abstract) simplicial complex S on a set X consists of a family of nonempty
finite subsets s € X, containing all singletons {x} and closed under nonempty subsets.
Each s € § of cardinality n + 1 is thought of as representing the n-simplex spanned
by its elements. Thus, we say that S is n-dimensional if |[s| <n+ 1forall s € S§. A
simplicial complex S has a geometric realization |S|, which is a topological space
formed by gluing together standard Euclidean simplices according to the data in S.
We say that S is contractible if |S| is. For example, a 1-dimensional contractible

simplicial complex is the same thing as a tree.

For each n > 1, let K, denote the class of n-dimensional contractible simplicial
complexes. It is straightforward to encode a simplicial complex as a countable
structure; thus we may view each K, as a class of countable structures. We are

interested in the elementary classes
Ex, = {K,-structurable countable Borel equivalence relations}.

Thus, &g, is the class of treeable equivalence relations. The study of K-
structurability for general n was initiated by Gaboriau [Gab], who showed using the

theory of ¢2-Betti numbers that we have a strictly increasing hierarchy

87(1 g8W2g8W3g”' .

The class of treeable equivalence relations is known to have many nice properties;
see [JKL, §3]. One property is the following [JKL, 3.10]:

Theorem 1.2.1 (Jackson—Kechris—Louveau). Let E be a treeable countable Borel
equivalence relation. Then E Borel embeds into some countable Borel equivalence

relation F which is treeable by trees of vertex degree < 3.

The main result of [C2] is the following generalization:

Theorem 1.2.2 (C.; see Theorem 3.1.1). Let n > 1, and let E be a K,,-structurable
countable Borel equivalence relation. Then E Borel embeds into some countable
Borel equivalence relation F which is structurable by simplicial complexes in K, with
the further property that each vertex belongs to at most My, := 2" \(n> +3n +2) -2
edges.



1.3 Amalgamable diagram shapes
The paper [C1] was inspired by some problems considered in [CK], but is not

otherwise related to the two previous papers.

A recurring idea in model theory is that of amalgamation, which can be phrased in

an abstract category-theoretic setting as follows: given a diagram

B C
’\ / (+)
A

in some category, extend it to a commutative diagram

B C. ()

In standard categorical terminology, this is the problem of finding a cocone over the

diagram (*).

We say that a category has the amalgamation property if amalgamation is always
possible, i.e., every diagram (x) has a cocone (). The amalgamation property implies
various ‘“‘generalized amalgamation properties”’, where (x) is replaced by a more

complicated diagram, e.g.,

—
-
—
-
-
-
- ~

BN

via two applications of the amalgamation property. However, the amalgamation

~
~
~
~

F
Y
|
|

S

property is not enough to imply that the following diagram has a cocone:

C D
T/’YT €3]
A B

This suggests the question of characterizing the diagrams over which a cocone may

always be found via repeated use of the amalgamation property. In other words,
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which “generalized amalgamation properties” are implied by the amalgamation

property?

A category C is simply-connected if the fundamental groupoid ;(C), obtained
from C by freely adjoining an inverse for every morphism, has at most one morphism
between any two objects. For example, the diagram shape (%) is not simply-connected,
because the “loop” around the diagram gives a morphism A — A in 71 (C) which is
not the identity. There is also a topological definition of simply-connectedness, via a
certain canonical simplicial complex (the nerve) associated to C; see Section 4.2.1.

The main result of [C1] is

Theorem 1.3.1 (C.; see Theorem 4.1.1). Let P be a finite connected poset. The

following are equivalent:

(i) Every P-shaped diagram in every category with the amalgamation property

has a cocone.

(ii) Every P-shaped diagram in the category of finite sets and injections has a

cocone.
(iii) Every upward-closed subset of P is simply-connected.

(iv) P can be constructed inductively according to some simple rules (see Defini-
tion 4.4.3).

Furthermore, it is decidable whether P satisfies these conditions.

These conditions can also be generalized to the case where P is replaced with an

arbitrary finitely generated category.

1.4 Borel functors, interpretations, and strong conceptual completeness for
-£w1w
In the paper [C3], I apply the framework of strong conceptual completeness in

categorical logic to the study of the countably infinitary logic £, -

In mathematical logic, “completeness” is the name given to various results relating
syntax with semantics. Usually, “the completeness theorem” for a logical system

refers to the following result:

“A statement ¢ is syntactically provable iff it is true under all possible semantics.”
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For example, consider the simple case of propositional logic, where atomic state-
ments (“formulas”) are combined using connectives such as A (“and”), v (‘“or”), and
= (“not”). The formula ¢ = AV ((B V =~B) A =A) is true regardless of the truth

values of A, B; thus by the completeness theorem, there is a syntactic proof of ¢.

A “strong conceptual completeness theorem” (a term due to Makkai [M88], who
proved such a theorem for finitary first-order logic £,,,,) includes the completeness

theorem in the above sense, but is much more general:

“There is a complete correspondence between syntax and semantics.”

In particular, the correspondence includes not only the truth value of statements, but
also the statements themselves. For example, again in propositional logic with two
atomic formulas A, B, we have a semantic property ® depending on the truth values

of A, B, given by the truth table (treating 1 = true, O = false)

A Blo
0 0|1
0 11
1 0|0
111

The strong conceptual completeness theorem would then imply that @ must be given

by evaluation of some syntactic formula ¢ (in this case, ¢ = =A vV B works).

First-order logic deals not just with “absolute” statements as in propositional
logic, but also with statements about elements of mathematical structures. A first-
order language £ is a set of function symbols and relation symbols of various
arities n € N. An L-structure M consists of an underlying set M, together with
interpretations of the symbols in £ as actual functions fM : M" — M or relations
RM C M" of the specified arities n. For example, a poset P is a structure over the

language £ = {<} where < is a binary relation symbol.

Given a first-order language £, the £, ,-formulas are built inductively starting
with atomic formulas (e.g., “R(f(x),y)” for a binary relation R € £ and unary
function f € £) and then applying —, countably infinite /\ and \/, and quantifiers
dx and Vx. An L, ,-formula ¢(xy, ..., x,) with free variables xi, ..., x, may be
evaluated at some tuple @ = (ay, ..., a,) in an L-structure M to yield a truth value
#™(); thus, ¢ defines an n-ary relation ™ € M”. An L,,w-theory 7 is a set
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of L, »-sentences (formulas without free variables). A model of a theory 7 is an

L-structure such that every ¢ € 7 evaluates to true in M.

The first component of the strong conceptual completeness theorem for £, ,, is the

completeness theorem in the usual sense, due to Lopez-Escobar [Lop]:

Theorem 1.4.1 (Lopez-Escobar). Let 7 be a countable L, ,-theory. An L, -

sentence ¢ is provable from T~ iff it is true in all countable models of T .

There is an intimate connection between L, and descriptive set theory (see
[Gao, Chapter 11]), which is manifested in the other two components of the strong
conceptual completeness theorem. Given a countable £, ,-theory 7, say with no
finite models for simplicity, there is a canonical standard Borel space of countable
models of 7~ with underlying set N, which we denote by Mod(L, 7"); see Section 5.5.
This space is the space of objects of the standard Borel groupoid of countable
models of 7, denoted Mod( L, 7 ), whose morphisms are isomorphisms between

models. For an L, ,-formula ¢(xy, ..., x,), we let

[61 := Umemoacs.r) ™

be the disjoint union of the interpretations ¢ C M” in all models M. Then []
is naturally a Borel subset of Mod(Z£, 7) X N" which is isomorphism-invariant,
i.e., invariant with respect to the action of the groupoid Mod(£, 7). The second
component of the strong conceptual completeness theorem for L, is the converse,
again due to Lopez-Escobar [Lop] and usually (when n = 0) known simply as “the

Lopez-Escobar theorem™:

Theorem 1.4.2 (Lopez-Escobar). Let 7 be a countable L, ,-theory. Then every
Borel Mod( L, T")-invariant subset of Mod(L, 7 ) X N" is equal to [¢] for some

Loy, w-formula ¢(xy, . .., xp).

In other words, analogously to the case of propositional logic, every Borel isomorphism-
invariant semantic property of tuples in models of 7 is defined by some syntactic

formula.

Unlike in propositional logic, there is a third component, dealing neither with proofs
of formulas nor with formulas themselves, but with imaginary sorts of the theory
7", which are certain syntactic expressions denoting sets canonically defined from

any model of 7. Roughly, an imaginary sort A is given by a formal quotient of a
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formal countable disjoint union of (sets defined by) L,,,,,-formulas; see Section 5.4
for details. An imaginary sort A may be interpreted in a model M of 7 to obtain
a countable set AM, which depends on M in an isomorphism-equivariant way.

Moreover, there is a canonical standard Borel structure on the disjoint union

[AD := Umpemodcz) AM,

and the action of the isomorphism groupoid Mod(ZL,7") on [A] (equipped with
the fiberwise countable projection map 7 : [A] — Mod(ZL, 7)) is Borel. The
core result of [C3] is the converse, which forms the third component of the strong

conceptual completeness theorem for L), ,:

Theorem 1.4.3 (C.; see Theorem 5.1.2). Let 7 be a countable L, ,-theory. Then
every standard Borel space X equipped with a fiberwise countable Borel map
p: X = Mod(L,7) and a Borel action of Mod(L, T") (in short, every fiberwise
countable Borel Mod( L, 7 )-space) is isomorphic to [ A] for some imaginary sort
A.

In other words, every Borel isomorphism-equivariant assignment of a countable
set to each model of 7 is named by some imaginary sort. (Note that in contrast to
Theorem 1.4.2, the countable set assigned to each model is not a priori related to the

model in any way.)

In order to place Theorems 1.4.1 to 1.4.3 in their proper context, and to justify the
claim that they give a “complete correspondence between syntax and semantics”, we

collect the imaginary sorts of 7~ into a category (L | T)B

«»,» the syntactic Boolean

w1-pretopos of 7. The morphisms f : A — B between two imaginary sorts A, B are
definable functions, which are certain syntactic expressions denoting canonically
defined functions fM : AM — BM for models M; again see Section 5.4. Every
such f : A — B induces a Borel Mod( £, 7 )-equivariant map [ f] : [A] — [B],
so that we get a functor

[-1:<¢L| 7')51 — {fiberwise countable Borel Mod(L, 7" )-spaces}.

Now by standard category theory, Theorems 1.4.1 to 1.4.3 are together equivalent to

the following, which is the main result of [C3]:

Theorem 1.4.4 (C.; see Theorem 5.1.3). Let 7 be a countable L, ,-theory. Then

the above functor [—] is an equivalence of categories.
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The syntactic Boolean w-pretopos Wil belongs to a large class of similar
constructions in categorical logic; see [MR]. It is the analog for £,, ,, of the classical
Lindenbaum-Tarski algebra (of formulas modulo provable equivalence) of a
propositional theory, and like the latter, captures the “logical essence” of a theory
7 while forgetting irrelevant syntactic details. Thus, Theorem 1.4.4 can be read as
saying that the “logical essence” of a countable L, ,-theory 7 can be canonically

recovered from its groupoid of models.

The proof of Theorem 1.4.3 (and hence Theorem 1.4.4) combines methods from
invariant descriptive set theory, such as the Becker—Kechris theorem on topological
realization of Borel actions of a Polish group, with ideas from topos theory, namely

the Joyal-Tierney representation theorem for toposes in terms of localic groupoids.

Let us mention an application of Theorem 1.4.4. Given two countable L, ,-theories
(L, 7) and (L,7’) (in possibly different languages £, £’), an interpretation
F:(L,T7)— (LT’ isacertain kind of uniform syntactic rule for turning models
of 7" into models of 7 ; see Section 5.1. (This is a variation of the usual model-
theoretic notion of interpretation which is suitable for £, ,.) An interpretation
F:(L,T7)—> (L,7’) induces a Borel functor F* : Mod(L',7’) — Mod(L,7T")
which implements the rule specified by F. Conversely, it is a consequence of
Theorem 1.4.4 and standard category theory that

Corollary 1.4.5 (C.; see Theorem 5.1.1). Every Borel functor Mod(L',7T") —
Mod(L, T") is Borel naturally equivalent to F* for some interpretation F : (L, 7 ) —
(L, T).

This generalizes a recent result of Harrison-Trainor—Miller—Montalbdn [HMM], who
proved the special case where 7, 7’ are Np-categorical, i.e., they each have a single

countable model up to isomorphism.
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Chapter 2

STRUCTURABLE EQUIVALENCE RELATIONS

RuryuaN CHEN AND ALEXANDER S. KECHRIS

2.1 Introduction

(A) A countable Borel equivalence relation on a standard Borel space X is a Borel
equivalence relation E C X2 with the property that every equivalence class [x]g,
x € X, is countable. We denote by & the class of countable Borel equivalence
relations. Over the last 25 years there has been an extensive study of countable
Borel equivalence relations and their connection with group actions and ergodic
theory. An important aspect of this work is an understanding of the kind of countable
(first-order) structures that can be assigned in a uniform Borel way to each class of a
given equivalence relation. This is made precise in the following definitions; see
[JKL], Section 2.5.

Let L = {R; | i € I} be a countable relational language, where R; has arity n;, and K
a class of countable structures in L closed under isomorphism. Let E be a countable
Borel equivalence relation on a standard Borel space X. An L-structure on E is a
Borel structure A = (X, RZA),-eI of L with universe X (i.e., each R;A C X" is Borel)
such that fori € I and xy,...,x, € X, R;A(xl,...,xnl.) = x1Ex2 E--- E xy,.
Then each E-class C is the universe of the countable L-structure A|C. If for all such
C, A|C € K, we say that A is a K -structure on E. Finally if £ admits a K -structure,
we say that E is K -structurable.

Many important classes of countable Borel equivalence relations can be described
as the K -structurable relations for appropriate K. For example, the hyperfinite
equivalence relations are exactly the % -structurable relations, where K is the
class of linear orderings embeddable in Z. The treeable equivalence relations are
the K -structurable relations, where K is the class of countable trees (connected
acyclic graphs). The equivalence relations generated by a free Borel action of a
countable group I" are the K -structurable relations, where K is the class of structures
corresponding to free transitive I'-actions. The equivalence relations admitting
no invariant probability Borel measure are the % -structurable relations, where

L = {R, S}, Runary and § binary, and K consists of all countably infinite structures
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A= (A, R4, SA), with R® an infinite, co-infinite subset of A and S* the graph of a

bijection between A and R*.

For L = {R; | i € I} as before and countable set X, we denote by Modx (L) the
standard Borel space of countable L-structures with universe X. Clearly every
countable L-structure is isomorphic to some A € Modyx (L), for X € {1,2,...,N}.
Given a class K of countable L-structures, closed under isomorphism, we say that
XK is Borel if K N Mody (L) is Borel in Mody (L), for each countable set X. We
are interested in Borel classes K in this paper. For any L,,,,-sentence o, the class
of countable models of o is Borel. By a classical theorem of Lopez-Escobar [LE],
every Borel class K of L-structures is of this form, for some L, ,-sentence . We

will also refer to such o as a theory.

Adopting this model-theoretic point of view, given a theory o and a countable Borel
equivalence relation E, we put
El=0

if E is K -structurable, where K is the class of countable models of o, and we say
that E is o-structurable if £ |= 0. We denote by &, C & the class of o--structurable
countable Borel equivalence relations. Finally we say that a class C of countable
Borel equivalence relations is elementary if it is of the form &, for some o (which
axiomatizes C). In some sense the main goal of this paper is to study the global

structure of elementary classes.

First we characterize which classes of countable Borel equivalence relations are
elementary. We need to review some standard concepts from the theory of Borel
equivalence relations. Given equivalence relations E, F on standard Borel spaces
X,Y, resp., a Borel homomorphism of E to F is a Borel map f: X — Y with
xEy = f(x) F f(y). We denote this by f: E —p F. If moreover f is
such that all restrictions f|[x]g: [x]g — [f(x)]F are bijective, we say that f is a
class-bijective homomorphism, in symbols f: E —>%,b F. If such f exists we also
write £ —>%,b F. We similarly define the notion of class-injective homomorphism,
in symbols —>g . A Borel reduction of E to F is a Borel map f: X — Y with
xEy & f(x)F f(y). Wedenote this by f: E <p F. If f is also injective, it
is called a Borel embedding, in symbols f: E Cp F. If there is a Borel reduction
of E to F we write E <p F and if there is a Borel embedding we write E Cp F.
An invariant Borel embedding is a Borel embedding f as above with f(X) F-

invariant. We use the notation f: E C%; F and E C} F for these notions. By the
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usual Schroeder-Bernstein argument, £ I;’é F & F E% E < E =p F, where =p

is Borel isomorphism.

Kechris-Solecki-Todorcevic [KST, 7.1] proved a universality result for theories of

graphs, which was then extended to arbitrary theories by Miller; see Corollary 2.4.4.

Theorem 2.1.1 (Kechris-Solecki-Todorcevic, Miller). For every theory o, there is
an invariantly universal o-structurable countable Borel equivalence relation Es.,

ie, Eeo |= 0, and F ;2 E. for any other F |= o.

Clearly E is uniquely determined up to Borel isomorphism. In fact in Theorem
2.4.1 we formulate a “relative” version of this result and its proof that allows us to

capture more information.

Next we note that clearly every elementary class is closed downwards under class-
bijective Borel homomorphisms. We now have the following characterization of

elementary classes (see Corollary 2.4.12).

Theorem 2.1.2. A class C C & of countable Borel equivalence relations is elementary
iff it is (downwards- )closed under class-bijective Borel homomorphisms and contains

an invariantly universal element E € C.

Examples of non-elementary classes include the class of non-smooth countable Borel
equivalence relations (a countable Borel equivalence relation is smooth if it admits
a Borel transversal), the class of equivalence relations admitting an invariant Borel
probability measure, and the class of equivalence relations generated by a free action
of some countable group. More generally, nontrivial unions of elementary classes

are never elementary (see Corollary 2.4.5).

Next we show that every E € & is contained in a (unique) smallest (under inclusion)

elementary class (see Corollary 2.4.10).

Theorem 2.1.3. For every E € &, there is a smallest elementary class containing E,
namely Eg :={F € E | F —>g’ E}.

Many classes of countable Borel equivalence relations that have been extensively
studied, like hyperfinite or treeable ones, are closed (downwards) under Borel
reduction. It turns out that every elementary class is contained in a (unique) smallest

(under inclusion) elementary class closed under Borel reduction (see Theorem 2.5.2).
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Theorem 2.1.4. For every elementary class C, there is a smallest elementary class
containing C and closed under Borel reducibility, namely C" := {F € & | AE €
C(F <p E)}.

We call an elementary class closed under reduction an elementary reducibility
class. In analogy with Theorem 2.1.2, we have the following characterization of
elementary reducibility classes (see Corollary 2.5.18). Below by a smooth Borel
homomorphism of £ € & into F' € & we mean a Borel homomorphism for which

the preimage of any point is smooth for E.

Theorem 2.1.5. A class C C & is an elementary reducibility class iff it is closed
(downward) under smooth Borel homomorphisms and contains an invariantly

universal element E € C.

We note that as a corollary of the proof of Theorem 2.1.4 every elementary reducibility
class is also closed downward under class-injective Borel homomorphisms. Hjorth-
Kechris [HK, D.3] proved (in our terminology and notation) that every C" (C
elementary) is closed under C, i.e., containment of equivalence relations on the same
space. Since containment is a class-injective homomorphism (namely the identity),
Theorem 2.1.4 generalizes this.

We also prove analogous results for Borel embeddability instead of Borel reducibility
(see Theorem 2.5.1).

For each countably infinite group I" denote by &r the elementary class of equivalence
relations induced by free Borel actions of I'. Its invariantly universal element is the
equivalence relation induced by the free part of the shift action of I' on R'. For
trivial reasons this is not closed under Borel reducibility, so let & be the elementary
class of all equivalence relations whose aperiodic part is in &r. Then we have the

following characterization (see Theorem 2.7.1).

Theorem 2.1.6. Let I be a countably infinite group. Then the following are

equivalent:

(i) &; is an elementary reducibility class.

(ii) T is amenable.

We call equivalence relations of the form E., universally structurable. Denote

by Ew C & the class of universally structurable equivalence relations. In view of
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Theorem 2.1.1, an elementary class is uniquely determined by its invariantly universal
such equivalence relation, and the poset of elementary classes under inclusion is
isomorphic to the poset (Ec /=5, Ejé
structurable equivalence relations under invariant Borel embeddability. It turns out

) of Borel isomorphism classes of universally

that this poset has desirable algebraic properties (see Theorem 2.6.2).

Theorem 2.1.7. The poset (E/=p, EZ) is an wi-complete, distributive lattice.
Moreover, the inclusion (Ex /=B, l;’é) C (&/=p, E%) preserves (countable) meets

and joins.

This has implications concerning the structure of the class of universally structurable
equivalence relations under Borel reducibility. The order-theoretic structure of the
poset (E/~p, <p) of all bireducibility classes under <p is not well-understood, apart
from that it is very complicated (by [AK]). The first general study of this structure was
made only recently by Kechris-Macdonald in [KMd]. In particular, they pointed out
that it was even unknown whether there exists any pair of <g-incomparable E, F' € &
for which a <g-meet exists. However it turns out that the subposet (Ec/~p, <p)

behaves quite well (see Corollary 2.6.9).

Theorem 2.1.8. The poset of universally structurable bireducibility classes, under
<B, (Ew/~B, <p) is an wi-complete, distributive lattice. Moreover, the inclusion into
the poset (E/~p, <p) of all bireducibility classes, under <p, preserves (countable)

meets and joins.

Adapting the method of Adams-Kechris [AK], we also show that this poset is quite
rich (see Theorem 2.6.20).

Theorem 2.1.9. There is an order-embedding from the poset of Borel subsets of R

under inclusion into the poset (Eo/~p, <B).

The combination of Theorem 2.1.8 and Theorem 2.1.9 answers the question men-
tioned in the paragraph following Theorem 2.1.7 by providing a large class of

<p-incomparable countable Borel equivalence relations for which <p-meets exist.

An important question concerning structurability is which properties of a theory
o yield properties of the corresponding elementary class &,. The next theorem
provides the first instance of such a result. Marks [M, end of Section 4.3] asked (in
our terminology) for a characterization of when the elementary class &, , where o »

is a Scott sentence of a countable structure, consists of smooth equivalence relations,
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or equivalently, when E.-, is smooth. We answer this question in full generality,
i.e., for an arbitrary theory o. Although this result belongs purely in the category
of Borel equivalence relations, our proof uses ideas and results from topological

dynamics and ergodic theory (see Theorem 2.8.1).

Theorem 2.1.10. Let o be a theory. The following are equivalent:

(i) Es contains only smooth equivalence relations, i.e., Eco is smooth.

(ii) There is an L, -formula ¢(x) which defines a finite nonempty subset in any

countable model of o.

Along these lines an interesting question is to find out what theories o have the
property that every aperiodic countable Borel equivalence relation is o-structurable.
A result that some particular o axiomatizes all aperiodic E shows that every such
E € & carries a certain type of structure, which can be useful in applications.
A typical example is the very useful Marker Lemma (see [BK, 4.5.3]), which
shows that every aperiodic £ admits a decreasing sequence of Borel complete
sections Ag 2 A} 2 --- with empty intersection. This can be phrased as: every
aperiodic countable Borel equivalence relation E is o-structurable, where o in the
language L = {Py, Pj, . . . } asserts that each (unary) P; defines a nonempty subset,
P2 P 2---,and); P; = 2.

A particular case is when o = 0 is a Scott sentence of a countable structure. For
convenience we say that E is A-structurable if E is o 4 -structurable. Marks recently
pointed out that the work of [AFP] implies a very general condition under which this

happens (see Theorem 2.8.2).

Theorem 2.1.11 (Marks). Let A be a countable structure with trivial definable

closure. Then every aperiodic countable Borel equivalence relation is A-structurable.

In particular (see Corollary 2.8.17) the following Fraissé structures can structure
every aperiodic countable Borel equivalence relation: (Q, <), the random graph, the
random K,,-free graph (where K, is the complete graph on n vertices), the random

poset, and the rational Urysohn space.

Finally we mention two applications of the above results and ideas. The first (see

Corollary 2.8.13) is a corollary of the proof of Theorem 2.1.10.
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Theorem 2.1.12. Let o be a consistent theory in a language L such that the models
of o form a closed subspace of Mody(L). Then for any countably infinite group T,
there is a free Borel action of I which admits an invariant probability measure and

is o-structurable.

The second application is to a model-theoretic question that has nothing to do with
equivalence relations. The concept of amenability of a structure in the next result
(see Corollary 2.8.18) can be either the one in [JKL, 2.16(iii)] or the one in [K91, 3.4].
This result was earlier proved by the authors by a different method (still using results

of [AFP]) but it can also be seen as a corollary of Theorem 2.1.11.

Theorem 2.1.13. Let A be a countably infinite amenable structure. Then A has

non-trivial definable closure.

(B) This paper is organized as follows: In Section 2.2 we review some basic back-
ground in the theory of Borel equivalence relations and model theory. In Section 2.3
we introduce the concept of structurability of equivalence relations and discuss
various examples. In Section 2.4 we study the relationship between structurability
and class-bijective homomorphisms, obtaining the tight correspondence given by The-
orems 2.1.1 to 2.1.3; we also apply structurability to describe a product construction
(class-bijective or “tensor” product) between countable Borel equivalence relations.
In Section 2.5 we study the relationship between structurability and other kinds of
homomorphisms, such as reductions; we also consider the relationship between
reductions and compressible equivalence relations. In Section 2.6 we introduce
some concepts from order theory convenient for describing the various posets of
equivalence relations we are considering, and then study the poset (Eo /=5, Eg) of
universally structurable equivalence relations (equivalently of elementary classes). In
Section 2.7 we consider the elementary class Er of equivalence relations induced by
free actions of a countable group I'. In Section 2.8 we consider relationships between
model-theoretic properties of a theory o and the corresponding elementary class &, .

Finally, in Section 2.9 we list several open problems related to structurability.

In the appendix, we introduce fiber spaces (previously considered in [G] and [HK]),
which provide a slightly more general context for several concepts appearing in the
body of this paper. We discuss the relationship between fiber spaces and equivalence
relations, as well as the appropriate generalizations of structurability and the various

kinds of homomorphisms.
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Remark 2.1.14. In a preprint of this paper uploaded to the arXiv, we included two
further appendices, with some miscellaneous concepts/results which are tangential
to the main subject of this paper. The first of these concerns a categorical structure
on the class of all theories which interacts well with structurability. The second
contains a lattice-theoretic result which can be applied to the lattice (Es/=p, E%)

considered in Section 2.6.2.

Acknowledgments. We would like to thank Andrew Marks for many valuable
suggestions and for allowing us to include Theorem 2.1.11 in this paper. We are
also grateful to Anush Tserunyan for extensive comments and suggestions, including

spotting and correcting an error in the original version of Lemma 2.8.3.

2.2 Preliminaries

For general model theory, see [Hod]. For general classical descriptive set theory, see
[K95].

2.2.1 Theories and structures

By a language, we will always mean a countable first-order relational language, i.e.,
a countable set L = {R; | i € I} of relation symbols, where each R; has an associated
arity n; > 1. The only logic we will consider is the infinitary logic L,,,. We use
letters like ¢, ¥ for formulas, and o, T for sentences. By a theory, we mean a pair
(L,o) where L is a language and o is an L, ,-sentence. When L is clear from

context, we will often write o instead of (L, o).

Let L be a language. By an L-structure, we mean in the usual sense of first-order
logic, i.e., a tuple A = (X, RA)ReL where X is a set and for each n-ary relation
symbol R € L, R® C X" is an n-ary relation on X. Then as usual, for each formula
o(x1,...,x,) € Ly, with n free variables, we have an interpretation qu C X" as

an n-ary relation on X.

We write Mody (L) for the set of L-structures with universe X. More generally, for a
theory (L, o), we write Mody (o) for the set of models of o with universe X. When
X is countable, we equip Mody (o) with its usual standard Borel structure (see e.g.,
[K95, 16.C]).

If A = (X, R®)ger is an L-structure and f + X — Y is a bijection, then we write

f(A) for the pushforward structure, with universe ¥ and

RIMG) = RAF))
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for n-ary Rand 'y € Y. When X =Y, this defines the logic action of Sx (the group
of bijections of X) on Modyx (L, o).

If f:Y — X is any function, then f~!(A) is the pullback structure, with universe
Y and

RITMG) = RASG)).

When f is the inclusion of a subset Y C X, we also write A|Y for f “1(A).

Every countable L-structure A has a Scott sentence o », which is an L, ,,-sentence

whose countable models are exactly the isomorphic copies of A; e.g., see [Bar, §VIL.6].

A Borel class of L-structures is a class K of countable L-structures which is closed
under isomorphism and such that K N Mody (L) is a Borel subset of Mody (L) for
every countable set X (equivalently, for X € {1,2,...,N}). For example, for any
L, »-sentence o, the class of countable models of o is Borel. By a classical theorem
of Lopez-Escobar [LE], every Borel class K of L-structures is of this form, for some
o. (While Lopez-Escobar’s theorem is usually stated only for Mody (L), it is easily
seen to hold also for Modx (L) with X finite.)

2.2.2 Countable Borel equivalence relations
A Borel equivalence relation £ on a standard Borel space X is an equivalence
relation which is Borel as a subset of X2; the equivalence relation E is countable if

each of its classes is. We will also refer to the pair (X, E) as an equivalence relation.

Throughout this paper, we use & to denote the class of countable Borel equiva-

lence relations (X, E).

If I' is a group acting on a set X, then we let El’f C X? be the orbit equivalence

relation:
xEXy & Iyel(y-x=y).

If I is countable, X is standard Borel, and the action is Borel, then Ef_( is a countable
Borel equivalence relation. Conversely, by the Feldman-Moore Theorem [FM], every
countable Borel equivalence relation on a standard Borel space X is E? for some

countable group I" with some Borel action on X.

If T is a group and X is a set, the (right) shift action of I" on X! is given by

(y - X)(6) := x(6y)
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foryel,x e X', ands e I. Welet E(T, X) := Effr C (X")? denote the orbit

equivalence of the shift action. If ' is countable and X is standard Borel, then
E(T, X) is a countable Borel equivalence relation. If I" already acts on X, then that

action embeds into the shift action, via

X — XU

X+ (y P y-x).

In particular, any action of I" on a standard Borel space embeds into the shift action
of TonR'.

The free part of a group action of I on X is
xeX|Viyel(y-x#x)}

the action is free if the free part is all of X. We let F(I', X) denote the orbit

equivalence of the free part of the shift action of I' on X"

An invariant measure for a Borel group action of I" on X is a nonzero o -finite Borel
measure ¢ on X such that y.u = pu for all y € I' (where vy, u is the pushforward). An
invariant measure on a countable Borel equivalence relation (X, E) is an invariant
measure for some Borel action of a countable group I on X which generates E, or
equivalently for any such action (see [KM, 2.1]). An invariant measure u on (X, E)
is ergodic if for any E-invariant Borel set A C X, either u(A) = 0or u(X \ A) = 0.

2.2.3 Homomorphisms
Let (X, E), (Y, F) € & be countable Borel equivalence relations, and let f : X —» Y
be a Borel map (we write f : X —p Y to denote that f is Borel). We say that f is:

* a homomorphism, written f : (X, E) —p (Y, F), if

Vx,yeX(x Ey = f(x) F f(y)

i.e., f induces a map on the quotient spaces X/E — Y/F;

* areduction, written f : (X, E) <p (Y, F), if f is a homomorphism and

Vx,y € X (f(x) F f(y) = x Ey),

i.e., f induces an injection on the quotient spaces;
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* aclass-injective homomorphism (respectively, class-surjective, class-bijective),

written f : (X, E) —>g (Y, F) (respectively f : (X,E) -% (Y,F), [ :
(X,E) —>%” (Y, F)), if f is a homomorphism such that for each x € X, the
restriction f|[x]g : [x]g — [f(x)]F to the equivalence class of x is injective

(respectively, surjective, bijective);

* an embedding, written f : (X, E) Cg (Y, F), if f is an injective (or equiva-
lently, class-injective) reduction;

* an invariant embedding, written f : (X, E) E’é (Y, F),if fisaclass-bijective
reduction, or equivalently an embedding such that the image f(X) C Y is

F-invariant.

Among these various kinds of homomorphisms, the reductions have received the
most attention in the literature, while the class-bijective ones are most closely related
to the notion of structurability. Here is a picture of the containments between these

classes of homomorphisms, with the more restrictive classes at the bottom:

—B
<B —>%’ —%
\ AN /
C Cb
[y 3 —>B
/
i
EB

We say that (X, E) (Borel) reduces to (Y, F), written (X, E) <g (Y, F) (or simply
E <p F), if there is a Borel reduction f : (X, E) <p (¥, F). Similarly for the other
kinds of homomorphisms, e.g., E embeds into F, written E Cp F, if there is some
f: ECp F,etc. We also write:

E ~p F (E is bireducible to F) if E <g F and F <p E;

E <p Fif E <p F and F £p E, and similarly for Cg and EZ;

E &4 F (E is class-bijectively equivalent to F) if E -5’ F and F —>¢ E;

E =p F if E is Borel isomorphic to F, or equivalently (by the Borel Schroder-
Bernstein theorem) E E% F and F E% E.
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cb
B b

equivalence relations on &. The ~pg-equivalence classes are called bireducibility

ch

Clearly <p, Cp, —Y%’, etc., are preorders on the class &, and ~p, &%, =p are

classes, etc.

2.2.4 Basic operations
We have the following basic operations on Borel equivalence relations. Let

(X, E), (Y, F) be Borel equivalence relations.

Their disjoint sum is (X,E)® (Y, F) = (X ® Y, E ® F) where X @Y is the disjoint
union of X, Y, and E & F relates elements of X according to E and elements of Y
according to F and does not relate elements of X with elements of Y. The canonical
injections t; : X »p X @Y and » : Y —p X @Y are then invariant embeddings
E. F Eg E & F. Clearly the disjoint sum of countable equivalence relations is
countable. We have obvious generalizations to disjoint sums of any countable family

of equivalence relations.

Their cross product is (X, E) X (Y, F) = (X XY, E X F), where
(x,y) (EXF)(x,y) & xEx & yF Y.

(The “cross” adjective is to disambiguate from the tensor products to be introduced
in Section 2.4.4.) The projections r; : X XY — X and m : X XY — Y are
class-surjective homomorphisms E X F' =% E, F. Cross products also generalize
to countably many factors; but note that only finite cross products of countable

equivalence relations are countable.

2.2.5 Special equivalence relations

Recall that an equivalence relation (X, E) is countable if each E-class is countable;
similarly, it is finite if each E-class is finite, and aperiodic countable if each
E-class is countably infinite. A countable Borel equivalence relation is always the
disjoint sum of a finite Borel equivalence relation and an aperiodic countable Borel
equivalence relation. Since many of our results become trivial when all classes are

finite, we will often assume that our equivalence relations are aperiodic.
For any set X, the indiscrete equivalence relation on X is Iy := X X X.

A Borel equivalence relation (X, E) is smooth if £ <p Ay where Ay is the equality
relation on some standard Borel space Y. When E is countable, this is equivalent to
E having a Borel transversal, i.e., a Borel set A C X meeting each E-class exactly

once, or a Borel selector, i.e., a Borel map f : X —p X such that x £ f(x) and
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xEy = f(x)= f(y) forall x,y € X. Any finite Borel equivalence relation is
smooth. Up to bireducibility, the smooth Borel equivalence relations consist exactly
of

Ao <p A1 <p Ay <p -+ <p Ay <p Ag;

and these form an initial segment of the preorder (&, <g) (Silver’s dichotomy; see
[MK, 9.1.1]).

We will sometimes use the standard fact that a countable Borel equivalence relation
(X, E) is smooth iff every ergodic invariant (o -finite Borel) measure on E is atomic.
(For the converse direction, use e.g., that if E is not smooth, then E; EZ E (see
Theorem 2.2.1 below), and E; is isomorphic to the orbit equivalence of the translation
action of Q on R, which admits Lebesgue measure as an ergodic invariant nonatomic

o -finite measure.)

If f: X — Y is any function between sets, the kernel of f is the equivalence relation
ker f on X givenby x (ker f) y &< f(x) = f(y). So a Borel equivalence relation
is smooth iff it is the kernel of some Borel map.

A countable Borel equivalence relation E is universal if E is <g-greatest in &, i.e.,
for any other countable Borel equivalence relation F, we have F <p E. An example
is E(F,,2) (where [, is the free group on 2 generators) [DJK, 1.8]. Note that by
[MSS, 3.6], E is universal iff it is Ep-greatest in &, i.e., for any other F' € &, we have
FCpE.

A countable Borel equivalence relation E is invariantly universal if E is E%— greatest
in &, i.e., for any other countable Borel equivalence relation F, we have F Eg E. We
denote by E, any such E; in light of the Borel Schroder-Bernstein theorem, E, is
unique up to isomorphism. Clearly E is also <g-universal. (Note: in the literature,
E is commonly used to denote any <g-universal countable Borel equivalence
relation (which is determined only up to bireducibility).) One realization of E is
E(F,,R). (This follows from the Feldman-Moore Theorem.)

A (countable) Borel equivalence relation (X, E) is hyperfinite if £ is the increasing
union of a sequence of finite Borel equivalence relations on X. We will use the
following facts (see [DJK, 5.1, 7.2, 9.3]):

Theorem 2.2.1. Let (X, E), (Y, F) € & be countable Borel equivalence relations.

(a) E is hyperfinite iff E = Eg for some action of Z on X.
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(b) E is hyperfinite iff there is a Borel binary relation < on X such that on each

E-class, < is a linear order embeddable in (Z, <).

(c) If E, F are both hyperfinite and non-smooth, then E Cg F. Thus there is a
unique bireducibility (in fact biembeddability) class of non-smooth hyperfinite

Borel equivalence relations.

(d) Let Eo, E; be the equivalence relations on 2~ given b
q 8 Y

xEyy & FieNVjeNux(i+j) =y@i+))),
xEy & i,je NVke N(x(i + k) =y( +k)).

Up to isomorphism, the non-smooth, aperiodic, hyperfinite Borel equivalence

relations are
E; I:i9 Ey I:%z-E() I:%?)-E() I:% E}g N()-E() I:% 2x°-E(),

where n- Ey := Ay, X Eo. Each n- Ey has exactly n ergodic invariant probability

measures.

(e) (Glimm-Effros dichotomy) E is not smooth iff E; Eg E.
A countable Borel equivalence relation (X, E) is compressible if thereisa f : E Cp
E such that f(C) ¢ C for every E-class C € X/E. The basic example is /iy; another
example is E;. A fundamental theorem of Nadkarni [N] asserts that E is compressible
iff it does not admit an invariant probability measure. For more on compressibility,

see [DJK, Section 2]; we will use the results therein extensively in Section 2.5.4.

A countable Borel equivalence relation (X, E) is treeable if E is generated by an
acyclic Borel graph on X. For properties of treeability which we use later on, see
[JKL, Section 3].

2.2.6 Fiber products

Let (X, E), (Y, F),(Z,G) be Borel equivalence relations, and let f : (Y,F) —p
(X,E)and g : (Z,G) —p (X, E) be homomorphisms. The fiber product of F' and
G (with respect to f and g) is (Y, F) X(x,k) (Z,G) = (Y Xx Z, F Xg G), where

YXx Z:={(y,2) eYXZ| f(y) =g(2)}, FXpG:=FXG)|Y Xx Z).

(Note that the notations Y Xx Z, F Xg G are slight abuses of notation in that they
hide the dependence on the maps f,g.) The projections 7y : F Xg G — F and
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m . F Xg G — G fit into a commutative diagram:

FxpG 23 G
S
F——E

It is easily verified that if g is class-injective, class-surjective, or a reduction, then so

is .

2.2.7 Some categorical remarks

For each of the several kinds of homomorphisms mentioned in Section 2.2.3,
we have a corresponding category of countable Borel equivalence relations and
homomorphisms of that kind. We use, e.g., (&, —>‘éb) to denote the category of

countable Borel equivalence relations and class-bijective homomorphisms, etc.

cb
B

the preorder gotten by collapsing all morphisms in the category (&, —>%b) between

(Depending on context, we also use (&, —>%b ) to denote the preorder —¢’ on &, i.e.,

the same two objects.)

From a categorical standpoint, among these categories, the two most well-behaved
ones seem to be (&, —p) and (&, —>g’ ). The latter will be treated in Sections 2.4.4
and 2.4.5. As for (&, —p), we note that (countable) disjoint sums, (finite) cross
products, and fiber products give respectively coproducts, products, and pullbacks
in that category. It follows that (&, —p) is finitely complete, i.e., has all finite
categorical limits (see e.g., [ML, V.2, Exercise 111.4.10]).

Remark 2.2.2. However, (&, —p) does not have coequalizers. Let Ey on 2N be
generated by a Borel automorphism 7 : 2 — 2N Then it is easy to see that
T : (2, Ayw) =5 (2%, Ayv) and the identity map do not have a coequalizer.

For later reference, let us note that the category of (not necessarily countable) Borel
equivalence relations and Borel homomorphisms has inverse limits of countable
chains. That is, for each n € N, let (X,,, E,;) be a Borel equivalence relation, and
fn: Eny1 —p E, be a Borel homomorphism. Then the inverse limit of the system

islim (Xy, E,) = (lim X, lim Ej), where

lim X, 1= {x = (x0, X1, --) € [1n X | Y11 (X = fu(xnr1))},

lim E, := ], Exllim X,
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It is easily seen that linn E, together with the projections 7, : lﬂln E, —»p E,
has the universal property of an inverse limit, i.e., for any other Borel equivalence
relation (Y, F) and homomorphisms g,, : F —p E,, such that g,, = f,, © gm+1 for
each m, there is a unique homomorphism g : F —p gnn E, such that 1, 0 g = g,

for each m. This is depicted in the following commutative diagram:

F ————> hm E,

NS

It follows that the category of Borel equivalence relations and Borel homomorphisms

is countably complete, i.e., has all limits of countable diagrams (again see [ML, V.2,
Exercise I11.4.10]).

2.3 Structures on equivalence relations
We now define the central notion of this paper.

Let L be a language and X be a standard Borel space. We say that an L-structure
= (X, R®)ger with universe X is Borel if R* C X" is Borel for each n-ary R € L.

Now let (X, E) be a countable Borel equivalence relation. We say that a Borel
L-structure A = (X, R*)ger is a Borel L-structure on E if for each n-ary R € L,

RA only relates elements within the same E-class, i.e.,
RA(xl,...,xn) = x1Exy E---E x,.
For an L, ,-sentence o, we say that A is a Borel o-structure on E, written
A E|=Fo

if for each E-class C € X/E, the structure A|C satisfies . We say that E is

o -structurable, written
EEo

if there is some Borel o-structure on E. Similarly, if K is a Borel class of L-structures,
we say that A is a Borel K -structure on E if A|C € K for each C € X/E, and
that £ is K -structurable if there is some Borel K -structure on E. Note that E is

‘K -structurable iff it is o-structurable, for any L, ,-sentence o~ axiomatizing K.
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We let

denote respectively the classes of o-structurable and K -structurable countable Borel
equivalence relations. For any class C € & of countable Borel equivalence relations,
we say that C is elementary if C = &, for some theory (L, o), in which case we say

that (L, o) axiomatizes C.

2.3.1 Examples of elementary classes
Several notions of “sufficiently simple” countable Borel equivalence relations which

have been considered in the literature are given by an elementary class.

For example, a countable Borel equivalence relation E is smooth iff E is structurable
by pointed sets (i.e., sets with a distinguished element). By Theorem 2.2.1, E is
hyperfinite iff E is structurable by linear orders that embed in Z. Hyperfiniteness
can also be axiomatized by the sentence in the language L = {Ry, Ry, R», . . . } which
asserts that each R; is a finite equivalence relation and Ry € R; C - - - with union the
indiscrete equivalence relation. Similarly, it is straightforward to verify that for each
a < wi, a-Fréchet-amenability (see [JKL, 2.11-12]) is axiomatizable. Also, E is
compressible iff it is structurable via structures in the language L = {R} where R is

the graph of a non-surjective injection.

For some trivial examples: every E is o-structurable for logically valid o, or for the
(non-valid) sentence o in the language L = {Ry, R, . . . } asserting that the R;’s form
a separating family of unary predicates (i.e., Vx, y (A\;(Ri(x) & Ri(y)) & x =y));
thus & is elementary. The class of aperiodic countable Borel equivalence is

axiomatized by the theory of infinite sets, etc.

Let 77 denote the class of trees (i.e., acyclic connected graphs), and more generally, 7,
denote the class of contractible n-dimensional (abstract) simplicial complexes. Then
E is 7i-structurable iff E is treeable. Gaboriau [G] has shown that Eq; € &3 & - -

For any language L and countable L-structure A, if o4 denotes the Scott sentence of
A, then E is o a-structurable iff it is structurable via isomorphic copies of A. For
example, if L = {<} and (X, A) = (Z, <), then E is o 4-structurable iff it is aperiodic
hyperfinite. We write

SA = SO-A

for the class of A-structurable countable Borel equivalence relations.
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Let I' be a countable group, and regard I' as a structure in the language Lr = {R, |
v € T'}, where Rg is the graph of the map § — vy - 6. Then a model of o is a
["-action isomorphic to T, i.e., a free transitive ['-action. Thus a countable Borel
equivalence relation E is I'-structurable (i.e., or-structurable) iff it is generated by a

free Borel action of .

Finally, we note that several important classes of countable Borel equivalence
relations are not elementary. This includes all classes of “sufficiently complex”
equivalence relations, such as (invariantly) universal equivalence relations, non-
smooth equivalence relations, and equivalence relations admitting an invariant
probability measure; these classes are not elementary by Proposition 2.3.1. Another
example of a different flavor is the class of equivalence relations generated by a free
action of some countable group; more generally, nontrivial unions of elementary

classes are never elementary (see Corollary 2.4.5).

2.3.2 Classwise pullback structures
Let (X, E), (Y, F) be countable Borel equivalence relations and f : E —>%b F be a
class-bijective homomorphism. For an L-structure A on F|, recall that the pullback

structure of A along f, denoted f~!(A), is the L-structure with universe X given by
RITM®) e RA(f(3)

for each n-ary R € L and x € X". Let fEI(A) denote the classwise pullback
structure, given by

RIE® (X)) = RA(F(X) & x1 E -+ E xp.

Then f El (A) is a Borel L-structure on E, such that for each E-class C € X/E, the
restriction f|C : C — f(C) is an isomorphism between fEl(A)lC and A|f(C). In
particular, if A is a o-structure for some L, -sentence o, then so is f z l(A). We

record the consequence of this simple observation for structurability:

Proposition 2.3.1. Every elementary class E, C & is (downwards-)closed under

class-bijective homomorphisms, i.e., if E —>%b Fand F € E4, then E € &,

This connection between structurability and class-bijective homomorphisms will be

significantly strengthened in the next section.
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2.4 Basic universal constructions

In this section we present the two main constructions relating structures on equivalence
relations to class-bijective homomorphisms. Both are “universal” constructions: the
first turns any theory (L, 0-) into a universal equivalence relation with a o--structure,

while the second turns any equivalence relation into a universal theory.

2.4.1 The universal o-structured equivalence relation

Kechris-Solecki-Todorcevic [KST, 7.1] proved a universality result for graphs, which
was then extended to arbitrary Borel classes of structures by Miller. Here, we
formulate a version of this result and its proof that allows us to capture more

information.

Theorem 2.4.1. Let (X,E) € & be a countable Borel equivalence relation and
(L, o) be a theory. Then there is a “universal o-structured equivalence relation

lying over E”, i.e., a triple (E < o, , E) where
Exoeb, 7r:E><0'—>%bE, E:Exo |=o,

such that for any other F € & with f : F —>%b E and A : F |= o, there is a unique
class-bijective homomorphism f: F —>%b Exo suchthat f = Ofand A= f;l (E).

This is illustrated by the following “commutative” diagram:

Proof. First we describe E »< o~ while ignoring all questions of Borelness, then we

verify that the construction can be made Borel.

Ignoring Borelness, E < o will live on a set Z and will have the following form:
for each E-class C € X/E, and each o-structure B on the universe C, there will be
one (E < o)-class lying over C (i.e., projecting to C via ), which will have the

o-structure given by pulling back B. Thus we put
Z:={(x,B) | x € X, B € Mod[y,(0)},

(x,B) (Ex0) (¥,B") < xEx' & B=B,
n(x,B) := x,
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with the o-structure E on E < o given by
RE((x1,B),..., (xs,B)) &= R*(x1,..., %)

forn-ary Re€ L, x1 E --- E x,, and B € Mod|yx,},(0). It is immediate that 7 is
class-bijective and that E satisfies o. The universal property is also straightforward:
given (Y, F), f, A as above, the map fis given by

FO) = (F), FAlIYIR)) € Z,

and this choice is easily seen to be unique by the requirements f = 7 o fand
A=f'(B).

Now we indicate how to make this construction Borel. The only obstruction is the
use of Modj,), (0-) which depends on x in the definition of Z above. We restrict
to the case where E is aperiodic; in general, we may split E into its finite part and
aperiodic part, and it will be clear that the finite case can be handled similarly. In
the aperiodic case, the idea is to replace Modj, (o) with Mody (o), where [x]g is

identified with N but in a manner which varies depending on x.

LetT : X — X" be a Borel map such that each 7'(x) is a bijection N — [x]g (the
existence of such 7 is easily seen from Lusin-Novikov uniformization), and replace
Mod,,, (o) with Mody (o) while inserting 7'(x) into the appropriate places in the

above definitions:

Z={(x,B) | x € X, BeModn(o)} =X X Mody(0),
(x,B) (Ex0) (x,B") & xEx’ & T(x)(B) =T(x")(B),
RE((x1,B1),...,(x,B,)) & RTGDED(x .. x,),
FO) = FOLTUEG) T AIYI)).

These are easily seen to be Borel and still satisfy the requirements of the theorem. O

Remark 2.4.2. It is clear that E = o satisfies a universal property in the formal sense
of category theory. This in particular means that (E » o, &, E) is unique up to unique

(Borel) isomorphism.

Remark 2.4.3. The construction of Exo for aperiodic E in the proof of Theorem 2.4.1

can be seen as an instance of the following general notion (see e.g., [K10, 10.E]):

Let (X, E) be a Borel equivalence relation, and let I" be a (Borel) group. Recall that
a Borel cocycle a : E — T is a Borel map satisfying a(y, z)a(x,y) = a(x, z) for
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all x,y,z € X, x E y E z. Given a cocycle @ and a Borel action of I" on a standard
Borel space Y, the skew product E <, Y is the Borel equivalence relation on X X Y

given by
(5, y) (Exe ¥) (X,)) &= xEx & a(x,x)-y=y"

Note that for such a skew product, the first projection 1 : X XY — X is always a

class-bijective homomorphism E =, Y —>f3b E.

Now given a family T : X — X of bijections N =g [x]g, as in the proof of
Theorem 2.4.1, we call a7 : E — S, given by ar(x,x") = T(x’)"! o T(x) the
cocycle induced by 7. Then the construction of E x o for aperiodic E can be seen
as the skew product E =,, Mody (o) (with the logic action of S, on Mody(0)).

(However, the structure E on E <., Mody(o) depends on T, not just on a7.)

Theorem 2.4.1 has the following consequence:

Corollary 2.4.4 (Kechris-Solecki-Todorcevic, Miller). For every theory (L, o), there
is an invariantly universal o -structurable countable Borel equivalence relation Ex,

ie, Ewo |= 0, and F E% Eoq for any other F |= 0.

Proof. Put Eoy := Eo < 0. For any F |= o, we have an invariant embedding
f 1 F Ciy Ew, whence there is f : F =" Ec < 0 = Ewy such that f = x o f; since

f is injective, so is f |

In other words, every elementary class &, of countable Borel equivalence relations
has an invariantly universal element E,, (Which is unique up to isomorphism). For
a Borel class of structures K, we denote the invariantly universal K -structurable
equivalence relation by E.%. For an L-structure A, we denote the invariantly

universal A-structurable equivalence relation by E.

As a basic application, we can now rule out the elementarity of a class of equivalence

relations mentioned in Section 2.3.1:

Corollary 2.4.5. If (C))es is a collection of elementary classes of countable Borel
equivalence relations, then | J; C; is not elementary, unless there is some j such that
Ui Cl' = Cj.

In particular, the class of equivalence relations generated by a free Borel action of

some countable group is not elementary.
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Proof. If | J; C; is elementary, then it has an invariantly universal element £, which
is in some Cj; then for every i and F € C;, we have F E% E € Cj, whence F € C;

since C; is elementary.

For the second statement, the class in question is | Jr & where I' ranges over
countable groups (and &r is the class of equivalence relations generated by a free
Borel action of I'); and there cannot be a single &r which contains all others, since if
I' is amenable then &r does not contain F (FFy, 2) (see [HK, A4.1]), while if I" is not
amenable then Er does not contain Ej (see [K91, 2.3]). |

We also have

Proposition 2.4.6. Let C denote the class of countable increasing unions of equiv-
alence relations generated by free Borel actions of (possibly different) countable

groups. Then C does not have a <p-universal element, hence is not elementary.

Proof. Let E = |, E, € C be the countable increasing union of countable Borel
equivalence relations Ey C E; C --- on X, where each E, is generated by a free
Borel action of a countable group I',. Since there are uncountably many finitely
generated groups, there is a finitely generated group L such that L does not embed in
any I,,. Put A := SL3(Z) X (L * Z), and let F(A,2) live on Y C 22 (the free part of
the shift action), with its usual product probability measure u. By [T2, 3.6] (see also
3.7-9 of that paper), F(A,2)|Z £p E, foreach n and Z C Y of u-measure 1.

If E were <p-universal in C, then we would have some f : F(A,2) <p E. Let
F, := f~Y(E,), so that F(A,2) = |J, F,. By [GT, 1.1] (using that SL3(Z) acts
strongly ergodically [HK, A4.1]), there is an n and a Borel A C Y with u(A) > 0
such that F'(A,2)|A = F,|A. By ergodicity of u, Z := [A]ra2) has yu-measure 1; but
F(A2)|Z ~p F(A2)|A = F,|A <p E,, a contradiction. ]

We conclude this section by explicitly describing the invariantly universal equivalence

relation in several elementary classes:

e The E%—universal finite Borel equivalence relation is EBl <nen(Ar X Iy).

* The ;g-universal aperiodic smooth countable Borel equivalence relation is
Ar X Iy.
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* The E%—universal aperiodic hyperfinite Borel equivalence relation is 280 - Eg =
Ar X Ep, and the E%—universal compressible hyperfinite Borel equivalence

relation is E; (see Theorem 2.2.1).

* The ;Z-universal countable Borel equivalence relation is E, and the Eg-

universal compressible Borel equivalence relation is Eq, X Iy (see Section 2.5.4).

* For a countable group I', the E’é—universal equivalence relation E.r generated
by a free Borel action of I' is F(I', R).

2.4.2 The “Scott sentence” of an equivalence relation

We now associate to every E € & a “Scott sentence” o g. Just as the Scott sentence
o 4 of an ordinary first-order structure A axiomatizes structures isomorphic to A, the
“Scott sentence” o g will axiomatize equivalence relations class-bijectively mapping
to E.

Theorem 2.4.7. Let (X, E) € & be a countable Borel equivalence relation. Then
there is a sentence o g (in some fixed language not depending on E) and a o g-
structure H : E |= og, such that for any F € & and A : F |= o, there is a
unique class-bijective homomorphism f : F —>f?b E such that A = f;l(H). This is

N

T JE

illustrated by the following diagram:

~

f

o<

Proof. We may assume that X is a Borel subspace of 2N Tet L = {Ry,Ry,...}
where each R; is unary. The idea is that a Borel L-structure will code a Borel map to
X < 2. Note that since L is unary, there is no distinction between Borel L-structures
on X and Borel L-structures on E, or between pullback L-structures and classwise

pullback L-structures.
Let H' be the Borel L-structure on 2" given by
R¥(x) & x(i)=1.
It is clear that for any standard Borel space Y, we have a bijection

{Borel maps Y —p 2"} «— {Borel L-structures on Y}
f— fTHH) ()
(v (i = RE(Y))) «— A,
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It will suffice to find an L, -sentence o g such that forall (Y, F) e Eand f : Y —p
2N

) Flrog & fY)CX & f:F -9 E. (%)
Indeed, we may then put H := H'|X, and (*) will restrict to a bijection between

class-bijective homomorphisms F —>%b E and o g-structures on F, as claimed in the

theorem.

Now we find o satisfying (+x). The conditions f(Y) € X and f : F —>%b E can be
rephrased as: for each F-class D € Y/F, the restriction f|D : D — 2" is a bijection
between D and some E-class. Using (x), this is equivalent to: for each F-class
D € Y /F, the structure B := f‘l(H’)lD on D is such that

yi (i R;B (y)) is a bijection from the universe of B to some E-class.  (sxx)

So it suffices to show that the class K of L-structures B satisfying (sxx) is Borel (so we
may let o g be any L, ,-sentence axiomatizing K), i.e., that forany / = 1,2, ..., N,
K NMod;(L) € Mod;(L) is Borel. Using (x) again, K N Mod;(L) is the image of

the Borel injection

{bijections I — (some E-class)} — Mod;(L)
[ ).

The domain of this injection is clearly a Borel subset of X/, whence its image is
Borel. |

In the rest of this section, we give an alternative, more “explicit” construction of o g
(rather than obtaining it from Lopez-Escobar’s definability theorem as in the above

proof). Using the same notations as in the proof, we want to find o g satisfying (sx).

By Lusin-Novikov uniformization, write £ = (J; G; where Go, Gy, ... C X2 are
graphs of (total) Borel functions. For each i, let ¢;(x, y) be a quantifier-free L, -
formula whose interpretation in the structure H’ is gb]lH' = G; € 2M)2. (Such a
formula can be obtained from a Borel definition of G; C (2%)?2 in terms of the basic
rectangles R_]}{[’ X Rlﬂj/, by replacing each RE{/ X REY with R;j(x) A Ri(y).) Define the

L,,-sentences:
O-Z" =Vx vy \/i ¢i(-x’ }’),

oS = Yx Yy (Ai(Ri(x) & Ri(y)) = x =),
oS i=Vx A\ Ay gi(x, y).
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Lemma 2.4.8. In the notation of the proof of Theorem 2.4.7,

[MH):FEol < fY)CX & f:F—>3E,
W) :FEoy <« [fID:D - 2%isinjective D € Y/F,
W) :FEoy < f)CX & f(D)is E-invariant¥D € Y [F.

Proof. f~'(H') : F |= ol iff for all (y,)") € F, there is some i such that
-1 , —1 ’ ’ . ’
g/ 3.y 0] ) (3.y) s equivalent to ¢ (f (1), F()). ie. F() Gi (),
so we get that f~(H') : F |= ol iff for all (y,)") € F, we have f(y) E f()).

(Taking y = y" yields f(y) € X.)

fTY®) : F = o iff for all (y,)") € F with y # )/, there is some i such that

-1 ’ -1 ’ , , .
RGP = R ie RE(FO) o= RE(SON). e, f(3) #
;.

'MW : F Eofiffforall y € Y and all i € N, there is some y’ F y such that

¢/ @Gy, e, T (F(). F()). e, f(y) Gi f(); from the definition of the
G;, this is equivalent to: for all y € Y, we have f(y) € X, and for every x" E f(y)
there is some y” F' y such that f(y") = x’. O

So defining og := 0% A Ao, we have that f~'(H') : F = o g iff f : F > E,
as desired. Moreover, by modifying these sentences, we may obtain theories for
which structures on F correspond to other kinds of homomorphisms F — E. We

will take advantage of this later, in Sections 2.5.1 and 2.5.2.

2.4.3 Structurability and class-bijective homomorphisms
The combination of Theorems 2.4.1 and 2.4.7 gives the following (closely related)
corollaries, which imply a tight connection between structurability and class-bijective

homomorphisms.

Corollary 2.4.9. For E,F € § we have F |= o iff F > E.

Proof. By Theorem 2.4.7 and Proposition 2.3.1. O

Corollary 2.4.10. For every E € &, there is a smallest elementary class containing
E, namely E,, ={F €& | F —>"Bb E}.

Proof. By Proposition 2.3.1, &, is contained in every elementary class containing
E. O
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We define Eg =&, ={F €& | F —>%b E}, and call it the elementary class of E.

Remark 2.4.11. E is not necessarily E%—universal in Eg: for example, Ey is not

invariantly universal in Eg, = {aperiodic hyperfinite} (see Theorem 2.2.1).

Corollary 2.4.12. A class C C & of countable Borel equivalence relations is
elementary iff it is (downwards-)closed under class-bijective homomorphisms and

contains an invariantly universal element E € C, in which case C = Eg.

Proof. One implication is Proposition 2.3.1 and Corollary 2.4.4. Conversely, if C is
closed under —>%b and E € C is invariantly universal, then clearly C = {F | F —>%b
E } = &f. O

So every elementary class C is determined by a canonical isomorphism class
contained in C, namely the invariantly universal elements of C. We now characterize
the class of equivalence relations which are invariantly universal in some elementary

class.

Corollary 2.4.13. Let E € E. The following are equivalent:

(i) E = Exoy, i.e., E is invariantly universal in E.

(ii) E =p Ewy for some o, ie., E is invariantly universal in some elementary

class.

(iii) Forevery F € &, F —>f9b Eiff F E% E.

Proof. Clearly (i) = (ii) = (iii), and if (iii) holds, then &g = {F | F —>%b E} =
{F | F E’é E} so E is invariantly universal in E. O

Remark 2.4.14. The awkward notation Ew, Will be replaced in the next section
(with E,, ® E).

We say that E € & is universally structurable if the equivalent conditions in
Corollary 2.4.13 hold. We let E. € & denote the class of universally structurable
countable Borel equivalence relations. The following summarizes the relationship

between E and elementary classes:
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Corollary 2.4.15. We have an order-isomorphism of posets

({elementary classes}, C) «— (Ec/=p, E%) = (Ew/ Y, =)

Cr— {E%-universal elements of C}

8E<—1E.

We will study the purely order-theoretical aspects of the poset (Ec/=p, Eg) (equiva-

lently, the poset of elementary classes) in Section 2.6.

We conclude this section by pointing out the following consequence of universal

structurability:

Corollary 2.4.16. If E € & is universally structurable, then E =p Ar X E. In
particular, E has either none or continuum many ergodic invariant probability

measures.
Proof. Clearly E T Az X E, and Ag X E -5 E, so Ag X E C% E. O

2.4.4 Class-bijective products
In this section and the next, we use the theory of the preceding sections to obtain
some structural results about the category (&, —>‘éb ) of countable Borel equivalence

relations and class-bijective homomorphisms. For categorical background, see [ML].

This section concerns a certain product construction between countable Borel
equivalence relations, which, unlike the cross product E X F, is well-behaved with

respect to class-bijective homomorphisms.

Proposition 2.4.17. Let E, F € & be countable Borel equivalence relations. There
is a countable Borel equivalence relation, which we denote by E ® F and call the
class-bijective product (or tensor product) of E and F, which is the categorical
product of E and F in the category (&, —>%b ). In other words, there are canonical

class-bijective projections
m:E®F - E, m:E®F - F,

such that the triple (E @ F, w1, mp) is universal in the following sense: for any other
Geé&Ewithf:G —>%b Eand g : G —>%b F, there is a unique class-bijective
homomorphism (f,g) : G —>‘éb E® F suchthat f =m o(f,g)and g =mo(f,g).
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This is illustrated by the following commutative diagram:

G

f : g
\l,f,g)

E%E@F?F

1

I~

Proof. Put E® F := E w 0. The rest follows from chasing through the universal
properties in Theorem 2.4.1 and Theorem 2.4.7 (or equivalently, the Yoneda lemma).

For the sake of completeness, we give the details.

From Theorem 2.4.1, we have a canonical projection 1y : E® F —>%b E. We also
have a canonical o p-structure on £ ® F,namely E: E® F = Exof |= op. This
structure corresponds to a unique class-bijective map 7 : EQ F —>%b F such that

E= (ng)gg p(H), where H : F' |= oF is the canonical structure from Theorem 2.4.7.

Now given G, f, g as above, the map (f, g) is produced as follows. We have the
classwise pullback structure gél (H) : G |= oF, which, together with f : G —>%” E,
yields (by Theorem 2.4.1) a unique map (f,g) : G > Ex o = E® F such
that f = 7y o (f,g) and g;'(H) = (f,8)g (B). Since E = (m)z} (), we get
g6 (H) = (f, @) (r2)ph () = (m2 0 (£, 8))5! (HD; since (by Theorem 2.4.7) g
is the unique map h : G —4? F such that g' (H) = hg! (H), we get g = m o (f, g).
as desired. It remains to check uniqueness of (f, g). If h: G —>%” E ® F is such that
f =mohand g = m o h, then (reversing the above steps) we have gal (H) = h&l (B);

since ( f, g) was unique with these properties, we get h = (f, g), as desired. m|
Remark 2.4.18. It follows immediately from the definitions that Eggr = Ep N EF.

Remark 2.4.19. As with all categorical products, ® is unique up to unique (Borel)
isomorphism, as well as associative and commutative up to (Borel) isomorphism.
Note that the two latter properties are not immediately obvious from the definition
EQF :=Exop.

Remark 2.4.20. However, by unravelling the proofs of Theorems 2.4.1 and 2.4.7, we
may explicitly describe £ ® F in a way that makes associativity and commutativity
more obvious. Since this explicit description also sheds some light on the structure

of E ® F, we briefly give it here.

Let Eliveon X, F liveon Y, and E® F live on Z. We have one (E ® F)-class for each
E-class C, F-class D, and bijection b : C = D; the elements of the (E ® F)-class
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corresponding to (C, D, b) are the elements of C, or equivalently via the bijection b,

the elements of D. Thus, ignoring Borelness, we put

Z:={(x,y,D) | xe X, yeY, b:[x]g = [ylr, b(x) =y},
(X, b)) (EQF) (x',y,b) < xEx' & yFy & b="V
m(x,y,b) = x, m(x,y,b) = y.

Given G, f, g as in Proposition 2.4.17 (G living on W, say), the map (f,g) :

G —% E® F is given by (f, g)(w) = (f(w), g(w), (gllwlg) o (fllwle)™"), where
(glwle) o (fllwle)™") : Lf W)]e = [g(w)]F since f, g are class-bijective.

To make this construction Borel, we assume that E, F are aperiodic, and replace
Z in the above with a subspace of X X Y X S, where bijections b : [x]g = [y]F
are transported to