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ABSTRACT

The canonical problem of a nearly stationary, nearly planar shockwave passing
through isotropic turbulence is investigated within high Reynolds number regimes.
The subject flow contains a wide range of turbulent scales and is addressed in
Large Eddy Simulation (LES) to relax the otherwise prohibitive computational cost
of simulating these flows. Aliasing errors in the LES of the upstream isotropic
turbulence are shown to interact with the mean compression of the shock in a prob-
lematic matter, and may result in nonphysical behavior such as a reduction in the
dissipation rate as the flow crosses the shock. A method for the regularization of
LES of shock-turbulence interactions is presented which is constructed to enforce
that the energy content in the highest resolved wavenumbers decays as k−5/3, and
is computed locally in physical space at low computational cost. The application
of the regularization to an existing subgrid scale model is shown to remove high
wavenumber errors while maintaining agreement with DNS of forced and decaying
isotropic turbulence. Comparisons to analytical models suggest that the regulariza-
tion significantly improves the ability of the LES to predict amplifications in subgrid
terms over the modeled shockwave.

The regularizationmethod is then employed in high resolution LES intended to illus-
trate the physical behavior of the shocked, turbulent flow. Turbulent statistics down-
stream of the interaction are provided for a range of weakly compressible upstream
turbulent Mach numbers Mt = 0.03 − 0.18, shock Mach numbers Ms = 1.2 − 3.0,
and Taylor-based Reynolds numbers Reλ = 20 − 2500. The LES displays minimal
Reynolds number effects once an inertial range has developed for Reλ > 100. The
inertial range scales of the turbulence are shown to quickly return to isotropy, and
downstream of sufficiently strong shocks this process generates a net transfer of
energy from transverse into streamwise velocity fluctuations. The streamwise shock
displacements are shown to approximately follow a k−11/3 decay with wavenumber
as predicted by linear analysis. In conjunction with other statistics this suggests that
the instantaneous interaction of the shock with the upstream turbulence proceeds
in an approximately linear manner, but nonlinear effects immediately downstream
of the shock significantly modify the flow even at the lowest considered turbulent
Mach numbers.

LES allows consideration of high Reλ flows, but remains expensive to compute
relative to lower costmodeling approaches such asReynolds-AveragedNavier Stokes
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(RANS). Conventional RANS models are often not well suited for simulations
containing discontinuous features such as shocks and, in an effort to improve the
performance of RANS,models for averaged shock corrugation effects and the impact
of turbulent entropy or acoustic modes on the energy equation are presented. Unlike
previous RANS work that has focused on the modification of turbulent statistics by
the shock, the proposedmodels are introduced to capture the effects of the turbulence
on the profiles of primitive variables — mean density, velocity, and pressure. By
producing accurate profiles for the primitive variables, it is shown that the proposed
models improve numerical convergence behavior with mesh refinement about a
shock, and introduce the physical effects of shock asphericity in a converging shock
geometry. These effects are achieved by local closures to turbulent statistics in the
averaged Navier-Stokes equations, and can be applied in conjunction with existing
Reynolds stress closures that have been constructed for broader applications beyond
shock-turbulence interactions.
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C h a p t e r 1

INTRODUCTION

The interaction of a shockwave with a turbulent upstream flow results in a rapid
compression and amplification of the turbulence along with distortion of the shock
front. The behavior of this phenomenon is of importance to a wide range of prob-
lems involving compressible turbulence, particularly those concerned with shock
driven mixing in areas such as inertial confinement fusion or supersonic combustion
engines. Practical engineering applications leading to these flows display a wide
range of complex physics, but the fundamental hydrodynamics of the interaction are
accessible in the comparably simple canonical problem of a normal shock with a sta-
tionary mean position interacting with homogeneous isotropic upstream turbulence
in a single component gas.

The canonical shock-turbulence problem is illustrated in Figure 1.1. An advantage
of addressing this flow over more complex problems is that the simple geometry in-
volved makes it well suited for application of computationally inexpensive analytical
models. Under the assumption that the timescales associated with the turbulence are
slow relative to those of the shock compression, Lele [51] applied Rapid Distortion
Theory (RDT) to investigate the modified mean flow Rankine-Hugoniot jump con-
ditions and shock velocity of a shock in turbulent flow. Zank et al. [91] performed a
similar analysis, but incorporated non-linear effects in the interaction. RDT has also
been applied to investigate the turbulent kinetic energy amplification over a shock,
but for this use RDT shows limited agreement with other methods [39].

Linear Interaction Theory (LIA) is conceptually similar to RDT but builds in a wider
range of physics, including perturbations to the shock front and the downstream
evolution of pressure modes. In LIA, the upstream turbulence is decomposed into its
component planar modes [44], and a solution to the linearized Euler equations for an
incident wave passing through a shock is determined for each wave type— vorticity
[71], acoustic [66], and entropy [12, 64]. Integrating the downstream solutions
over the energy spectrum of the upstream turbulence provides the amplifications
and near-shock fluctuations of turbulent statistics such as the Reynolds stresses and
vorticity [72]. Ryu and Livescu [76] showed that the LIA-predicted amplifications
agree with DNS at low turbulent Mach numbers, and proposed that the assumptions
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Figure 1.1: Large eddy simulation of the canonical shock-turbulence problem. Flow
is from left to right. Isotropic turbulence is introduced at the left boundary and passes
through a Mach 1.5 shock with a stationary mean position located at the red line.
The contours show turbulent kinetic energy, with lighter colors corresponding to
greater turbulence intensity.

underlying LIA are valid if the shock thickness is small relative to the viscous scales
of the upstream turbulence. Wouchuk et al. [90] derived exact analytical expressions
for the linearized amplifications of key turbulent statistics, and applied the analysis
to the passage of a shock from quiescent fluid into a turbulent half-space. A more
detailed description of LIA, as used in this study, is provided in Appendix A.

A number of Direct Numerical Simulations (DNS) have considered the canonical
shock-turbulence problem. Early works investigated the impact of numerical shock-
capturing schemes and varying turbulent and shock Mach numbers [48, 49], but
were limited to low Reynolds numbers. Mahesh et al. [64] investigated the effects
of an upstream turbulent flow containing entropy fluctuations and anisotropy arising
from correlations in the entropy and vorticity fields, and this was further expanded
on by Jamme et al. [40]. More recent simulations [45, 46, 76] have considered a
wider range of Reynolds numbers, Reλ ≈ 10−75, but even these moderate Reynolds
number flows require meshes as fine as 2366×10242 [46]. Inertial range turbulence
(Reλ > 100) remains difficult to address in DNS because the computational cost of
simulations that resolve the wide range of lengthscales in turbulence scales as Re6

λ

[69]. The cost to implement shock-capturing methods in an accurate manner is also
expected to increase in simulations of higher Reλ flows because the numerical shock
should remain smaller than the smallest turbulent scales of the flow [85].

Experiments allow for substantially larger Reynolds numbers, Reλ ≈ 100−1000 [2],
but face other difficulties. Barre et al. [4] investigated the turbulent flow downstream
of a grid of nozzles as it passed through a stationary normal shock held in place
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by a pair of wedges. This yielded an accelerating mean velocity field downstream
of the shock, but the longitudinal velocity fluctuations still showed agreement with
LIA in the far field downstream of the shock. Agui et al. [2] considered the subject
problem in a shock tube by passing a shock through a grid. The shock reflects off
of a semi-porous wall at the end of the tube and travels back into the turbulence
produced downstream of the grid. Tailoring the grid, shock strength, and end wall
porosity allowed Agui et al. [2] to consider a range of flow parameters, but the
resulting amplifications in the turbulent Reynolds stresses had limited agreement
with LIA, particularly at larger shock Mach numbers. Kitamura et al. [42] studied a
weak spherical expanding blast wave in incompressible turbulence, and showed Reλ
had a limited effect on the interaction for Reλ > 100. The Reynolds number and
turbulent intensity in front of the shock were coupled in this study, but the turbulent
Mach number, Mt < 0.003, was small for all test cases.

Large Eddy Simulation (LES) resolves the dynamics of the large scale motions
that contain most of the kinetic energy, but employs a Subgrid-Scale (SGS) model
to approximate the action of small scale eddies that drive viscous dissipation and
mixing. This approach greatly reduces the computational cost of a simulation
relative to DNS, and allows for high Reynolds number conditions to be addressed
even on very coarse meshes. As the shock Mach number is increased the cost
to resolve the shockwave thickness becomes prohibitive, and so in practice these
advantages in the computational cost of LES become achievable only if the shock
is captured numerically. Early work addressing the canonical shock-turbulence
problemwith LES found that shock capturing schemes produce excessive dissipation
in the turbulence, suggesting that these schemes should be applied only in the direct
vicinity of the shock and only in the direction of the shock normal [47]. Ducros et al.
[22] introduced a shock sensor that allows localized shock capturing to be applied
to problems where a priori knowledge of the shock location and orientation is not
available. Comparisons of explicit [6, 26] and implicit [35] LES approaches have
further explored the relative effectiveness of different SGS models downstream of a
shock.

LES reduces computational cost relative to DNS, but remains expensive and is
often difficult to implement. Reynolds-Averaged Navier-Stokes (RANS) methods
thus remain in widespread use, particularly in practical engineering applications.
Thesemodels average the governing equations, relaxing resolution requirements and
often reducing the dimensionality of problems, but introduce unclosed correlations
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that must be modeled, typically by empirical calibration to experiments or high
fidelity simulations. Recent efforts have been made to develop RANS models
for compressible and variable density flows [7, 32, 80], applicable to fundamental
flows such as Richtmyer-Meshkov instabilities in which a shock perturbs a material
interface, which then develops into a turbulent layer upon reshock.

The work contained in this thesis aims to improve the ability of LES and RANS
to address the canonical shock-turbulence problem, and leverage LES to investigate
the behavior of this flow within regimes that preclude the use of DNS. Previous
LES studies of the canonical shock-turbulence problem have generally focused on
methodology and ability to reproduce DNS [e.g. 6], whereas the LES in this study
aims to resolve a larger range of flow scales in order investigate the physical behavior
of the interaction within high Reλ regimes.

1.1 Governing equations
The subject canonical shock-turbulence problem satisfies the equations of motion
for a single species fluid,

∂ρ

∂t
+
∂ρu j

∂x j
=0, (1.1a)

∂ρui

∂t
+
∂ρuiu j + pδi j

∂x j
=
∂σi j

∂x j
, (1.1b)

∂E
∂t
+
∂(E + p)u j

∂x j
=
∂

∂x j

(
κ
∂T
∂x j

)
+
∂σi jui

∂x j
, (1.1c)

where ρ is the density, ui is the velocity, p is the pressure, and E is the total energy.
Repetition of indices implies summation and δi j is the Kronecker delta function.
The fluid is taken to be a calorically perfect gas with a ratio of specific heats
γ = cp/cv = 1.4 and sound speed c =

√
γp/ρ. The viscous stress is Newtonian,

σi j = µ

(
∂ui

∂x j
+
∂u j

∂xi
−

2
3
∂uk

∂xk
δi j

)
, (1.2)

with temperature dependent dynamic viscosity µ = µ0(T/T0)
0.76. The heat conduc-

tivity κ = µcp/Pr follows the same relation as the viscosity, with Prandtl number
Pr = 0.7. The total energy is

E =
p

γ − 1
+

1
2
ρuiui . (1.3)

Solving system (1.1) directly is referred to as DNS, but DNS is impractical in many
scenarios where the separation between the energetic and viscous scales of the
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turbulence is large. The subsequent LES and RANS approaches solve simplified
systems representing the dynamics of (1.1), without directly resolving all motions
of the flow.

1.2 Flow characterization
The turbulent flow upstream of the shock is isotropic and homogeneous, with statis-
tics that are the same in all directions and uniform in space. The turbulence is
decomposed as f = 〈 f 〉 + f ′, where 〈 f 〉 is the average of f over the homogeneous
directions in the flow and f ′ is the remaining fluctuation about that mean. In variable
density flow, it is also convenient to define Favre-averaged fluctuations,

f ′′ = f −
〈ρ f 〉
〈ρ〉

= f ′ −
〈ρ′ f ′〉
〈ρ〉

. (1.4)

The strength of turbulent velocity fluctuations in the flow are described by the
Reynolds stress tensor,

Ri j =
〈ρu′′i u′′j 〉

〈ρ〉
, (1.5)

and density fluctuations are measured by the density-specific volume correlation
b = −〈ρ′v′〉 where v = 1/ρ is the specific volume. The density-specific volume
correlation b is favored over 〈ρ′ρ′〉 because of its applications in incompressible
mixing of variable density fluids [54, 79], but for small density fluctuations, b ≈

〈ρ′ρ′〉/〈ρ〉2. The velocity-density correlation ai = 〈ρ
′u′〉/〈ρ〉, which represents the

turbulent mass flux, is also of interest and is an important variable tracked in some
RANS models [80].

The shock Mach number is Ms = Vs/c, where Vs is the mean shock velocity rela-
tive to the upstream flow. The non-dimensional parameters characterizing isotropic
turbulent flow are a turbulent Mach number Mt and Taylor Reynolds number Reλ.
These are defined as functions of the root-mean-square velocity, urms, and stream-
wise Taylor microscale, λ1, by
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Mt
=

√
〈Rii〉

〈c〉
, (1.6a)

urms =

√
〈Rii〉

3
, (1.6b)

Reλ =
〈ρ〉λ1urms

〈µ〉
, (1.6c)

λ1 =

√
u2

rms

〈(∂u1/∂x1)
2〉
. (1.6d)

The flow downstream of the shock is anisotropic, but (1.6) is sufficient for describing
the isotropic flow upstream of the shock. The large eddy turnover time of isotropic
turbulence is τ = LI/urms, with integral length scale LI ,

LI =
3π
4

∫ ∞
0 E(k)/kdk∫ ∞

0 E(k)dk
. (1.7)

The shell-summed energy spectrum E(k), as a function of wavenumber magnitude
k, is defined as the integral of (1/2)ûiû∗i over a surface of a sphere of radius k, where
f̂ denotes the Fourier transform of f and f ∗ denotes the complex conjugate. The
dissipation rate, ε, and Kolmogorov microscale, η, are

ε =
∂〈uiui/2〉

∂t
, (1.8)

η =

(
〈ν〉3

ε

)1/4

, (1.9)

where ν = µ/ρ is the kinematic viscosity.

Previous simulations of the canonical shock-turbulence interaction have considered
a parameter space of Mt , Reλ, and Ms [e.g. 45, 46, 76], but experimental studies
have observed that turbulence amplification across a shock depends also on the
lengthscales of the upstream turbulence [3]. If turbulent lengthscales affect the
shock-turbulence interaction directly, rather than through another non-dimensional
parameter such as Reλ, a relevant non-dimensional ratio of that turbulent lengthscale
with some other lengthscale of the problem must exist. The only other lengthscales
available in the canonical shock-turbulence problem are the instantaneous shock
thickness and a reference lengthscale associated with unsteady shock motion, such
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as the root-mean-square of the perturbation in the shock position relative to its mean
streamwise location, denoted ξrms.

The shock thickness, which will be on the order of the mean free path for strong
shocks, is often assumed to be much smaller than all other lengthscales in the
flow. Increasing the Reynolds number of the flow would be expected to reduce the
smallest scales of the turbulence and for high-Reλ flows one might be concerned that
an overlap of turbulent and shock-thickness scales could be possible even for strong
shocks. Scaling arguments suggest that the thickness of the shock decreases faster
than the smallest turbulent scales as the Reynolds number is increased, leading to a
ratio of the Kolmogorov lengthscale, η, to mean-free-path, λm, that scales with [67]

η

λm
= C

Re1/4
q

Mt
, (1.10)

where Req = R2
ii/(εν) is the turbulence Reynolds number and C is an order one

constant that depends on γ and the model used for molecular collisions in the
gas. Reλ scales with

√
Req [69] and, in high Reλ flows, (1.10) suggests that the

shock thickness is much smaller than the smallest turbulent scales except under
exceptionally large Mt conditions that are not addressed in this study. Likewise,
because the shock thickness is much smaller than other lengthscales in the flow it is
reasonable to treat the shock as a discontinuity, which justifies the use of a numerical
shock capturing scheme, and (1.10) suggests that the ratio of shock thickness and
turbulent lengthscales is not an independent quantity that could affect the subject
canonical shock-turbulence problem.

An alternative measure that might affect the subject problem is the non-dimensional
ratio of the amplitude of perturbations in the shock position, ξrms, with some up-
stream turbulent lengthscale. For the statistically steady canonical shock-turbulence
problem, ξrms must be a function of quantities describing the state of the upstream
turbulence and the shock. Given the previous argument that the shockmay be treated
as a discontinuity with no finite lengthscale describing its thickness, dimensional
analysis would suggest that ξrms, which as units of length, must be proportional
to some upstream turbulent lengthscale. LIA has predicts that perturbations in the
shock position as a shock passes through a plane wave vorticity mode are pro-
portional to the wavelength of that mode, which would suggest that ξrms is driven
predominately by the larger energetic scales of the turbulence. Regardless, the
proportionality of ξrms to upstream turbulent lengthscales implies that the ratio of
turbulent lengthscales to ξrms is not an independent parameter that could be changed
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to influence the behavior of shock-turbulence interactions, at least within simple
problem geometry considered here.

1.3 Dissertation outline
Directly solving (1.1) at high Reλ is impractical, and application of modeling ap-
proaches capable of reaching large Reλ regimes to the canonical shock-turbulence
problem remains difficult. The work contained in this dissertation aims to offer
improvements to RANS and LES modeling of shock-turbulence interactions, and
leverage these improvements in LES to investigate the dynamics of inertial range
turbulent flows interacting with shocks, within regimes that are inaccessible by
contemporary DNS.

The layout of the subsequent work is as follows. Chapter 2 introduces the funda-
mental LES approach to the canonical shock-turbulence problem used in this study.
Preliminary simulations found that aliasing errors in the upstream turbulence had a
substantial influence on the interaction of the turbulence with the shock, and Chapter
3 proposes a method for alleviating these errors in a low cost, localized manner.
Chapter 4 utilizes the developments of the previous chapter and considers the results
of high resolution LES of the canonical shock-turbulence problem, focusing on the
dynamics of the inertial range scales which have not been investigated in previous,
lower Reynolds number DNS. Chapter 5 approaches the canonical-shock turbulence
problem in RANS, and a model for the corrugations in the shock is developed that
improves the numerical behavior of the underlying RANS model.
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C h a p t e r 2

LES OF THE CANONICAL SHOCK-TURBULENCE PROBLEM:
BACKGROUND

2.1 Introduction
LES only resolves the large energetic scales of the flow, while relying on modeling
to represent the effects of small scale eddies, but it is otherwise fundamentally
similar to performing DNS. As a result, there is a breadth of literature regarding
the basic problem construction, such as methods for producing isotropic turbulence
upstream of the shock [68] and boundary conditions that will avoid a mean drift
in the shock as it passes through the turbulent flow [45]. Some numerical results
from DNS, such as scale separation requirements for effective shock capturing [85],
also have useful analogues in LES. Furthermore, DNS provides insights into what
physics the Subgrid Scale (SGS) model used in the LES will need capture, and the
choice of SGS model is also supported by previous studies comparing the relative
effectiveness of different models in LES of shock-turbulence interactions [6, 35].

Despite some similarities with DNS, LES faces a number of difficulties when sim-
ulating the interaction of turbulence with a shock. Previous studies have addressed
the numerical application of LES to the canonical shock-turbulence problem, and
have often focused on the effective discontinuity in the flow field at the shockwave.
In LES, shockwaves that are unresolved at the mean free path scale are often nu-
merically stabilized by application of additional dissipation, and care must be taken
to avoid associated excessive dissipation being applied to the turbulence. The unre-
solved flows accompanying shocks and turbulence are fundamentally different, and
one solution has been to combine an explicit SGS model for the turbulence with a
numerical shock capturing scheme applied only in the direct vicinity of the shock
[6, 21, 22, 47]. Deconvolution methods [1, 35] provide a more unified approach
to shock capturing and turbulence modeling, although a sensor to modify model
parameters near the shock may be still required [35].

This chapter provides a brief overview of the modeling approaches used in LES of
the canonical shock-turbulence interaction. Section 2.2 describes the computational
domain of the LES and the method for producing pre-shock turbulence. Section 2.3
develops the equations governing the LES, which contain unclosed terms that are
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modeled in section 2.4. Methods used for computing turbulent statistics in the LES
are addressed in section 2.4.1. Subsequent chapters, 3 and 4, discuss modifications
to the existing modeling techniques and the results of the LES, respectively.

2.2 Flow description
The canonical shock-turbulence LES considers a transversely periodic Lx × 2π × 2π
channel, as shown in Figure 2.1, containing a nearly stationary normal shock located
shortly downstreamof the inflowboundary at xs. Isotropic, homogeneous turbulence
is introduced at the inlet upstream of the shock, and passes through the shock as
it travels down the channel. A sponge zone is located at the outflow boundary to
prevent acoustic reflections [24]. The flow is initialized with the laminar Rankine-
Hugoniot jump conditions, and because of the perturbations on the shock from the
upstream turbulence this yields a small drift in the mean shock position [45]. This
drift velocity was found to be negligibly small in the LES, which is consistent with
DNS at similar shock Mach numbers and turbulence intensities [76].

The inlet turbulence is produced from a separate simulation of forced isotropic
turbulence in a periodic box with a mean background velocity equal to the shock
speed. These simulations are henceforth referred to as box-turbulence simulations.
The solenoidal part of the filtered velocity field is forced at wavenumbers k0 −

1/2 < k < k0 + 1/2 [68] until it becomes statistically steady with peak energetic
wavenumber k0, and then planar samples from a fixed location in the domain are
introduced as ghost cells in the shock-turbulence LES.

sponge zoneshock

box-turbulence simulation shock-turbulence simulation
x

y

z

Figure 2.1: Layout of the LES. Isotropic turbulence with the same mean velocity as
the flow upstream of the shock is forced at a statistical steady state in a periodic box
LES (left). A plane of the flow in the periodic box (red) is copied into the inlet of a
transversely periodic channel (right) containing a nearly stationary shock.
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2.3 LES Governing Equations
LES is motivated as a solution to the formally filtered Navier-Stokes equations,
which are found by applying a convolution filter of the form

f̄ (x
¯
) =

∫
G (x

¯
− x
¯
′) f (x

¯
′)dx

¯
′ (2.1)

to the governing equations. The kernel of the filter is not explicitly defined but is
assumed to be implicitly related to the mesh spacing, and fulfills the normalization
condition [69] ∫ ∞

−∞

G (r
¯
) dr

¯
= 1. (2.2)

Details on this filtering procedure are discussed in Rogallo and Moin [75]. The
cutoff wavenumber is defined to be the largest wavenumber resolved in the filtered
solution, and here it is taken to be solely a function of the mesh. Generally, the mesh
spacing upstream and downstream of the shock are the same, with any refinement
localized to only the direct vicinity of the shock, and so it is further assumed that
the cutoff wavenumber is left unchanged by a shock.

Given a conceptual convolution filter of the form of (2.2), and applying a Favre-filter
defined as

φ̃ =
ρφ

ρ̄
, (2.3)

to the governing equations, (1.1), the Favre-filtered Navier-Stokes equations for a
single component fluid are [37]

∂ρ

∂t
+
∂ρũ j

∂x j
= 0, (2.4a)

∂ρũi

∂t
+
∂ρũiũ j + pδi j

∂x j
=
∂σ̃i j

∂x j
−
∂τi j

∂x j
, (2.4b)

∂E
∂t
+
∂(E + p)ũ j

∂x j
=

∂

∂x j

(
κ
∂T
∂x j

)
+
∂σ̃i j ũi

∂x j
−
∂qT

j

∂x j
. (2.4c)

Equation (2.4) represents the governing equations for LES, where the filtering is as-
sumed to be implicitly related to the computational mesh, and closely resembles the
original governing equations for DNS (1.1) with the addition of terms representing
the interaction with the subgrid flow. The subgrid stress tensor, τi j , and subgrid heat
flux, qT

j , must generally be modeled in LES but are given formally as

τi j = ρ
(
ũiu j − ũiũ j

)
, (2.5a)

qT
j = cpρ

(
T̃u j − T̃ ũ j

)
. (2.5b)
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The subgrid kinetic energy is included in the total energy by

E =
p

γ − 1
+

1
2
ρũiũi +

1
2
τii . (2.6)

2.4 Stretched-Vortex Model (SVM)
The subgrid-scale (SGS) terms, (2.5), cannot be computed directly in LES and must
be modeled. A large number of models exist for approximating these SGS terms,
and the choice of SGS model may have a significant impact on the results of the
LES, as can be observed in comparisons of LES of the canonical shock-turbulence
problem using different SGS models [6].

The SGS model used in the LES in this study is the Stretched-Vortex Model (SVM),
with minor modifications to address aliasing errors as discussed in Chapter 3. The
SVM models (2.5) by representing the flow within each computational cell as a
single, nearly axisymmetric vortex aligned with the principal extensional axis of the
local resolved strain rate [89]. The SVM has been shown to give reasonable results
in comparisons to DNS in this problem [6], and is capable of modeling many of the
physical phenomena that are expected to be important in this problem. The shock
induces anisotropy in all scales of the flow, and the stretched-vortex model is capable
of modeling anisotropy in SGS flows, unlike many models. The effectiveness of
the SVM to capture this SGS anisotropy downstream of the shock is considered
in Chapter 3. Furthermore, the SVM can model the contribution of SGS flows to
turbulent statistics of interest, which is particularly useful in this problem because
of the change in turbulent lengthscales across the shock. The formulation of the
SVM used here does not admit a transfer of energy from the SGS flows to the
resolved flows [43], called backscatter, which may be substantial downstream of a
shock [57], but variants of the SVM that allow backscatter have not performed well
in this problem [6]. The SVM has been previously applied successfully to similar
flows such as compressible homogeneous turbulence, [43], re-shocked Richtmyer-
Meshkov instabilities [37, 59], and buoyancy-driven turbulence [13].

The SGS contributions (2.5) computed from the stretched-vortex model are [43, 65]

τi j = ρ̄k̃′
(
δi j − evi evj

)
, (2.7a)

qT
i = −cpρ

∆x
2

√
k̃′

(
δi j − evi evj

) (
∂T̃
∂x j

)
, (2.7b)
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where e
¯
v is the unit vector alignedwith the subgrid vortex axis. The energy spectrum

associated with the stretched-vortex in each cell is [62]

E(k) = K0ε
2/3k−5/3e(−2k2ν/(3|ã|)), (2.8)

where K0 is the Kolmogorov prefactor, ε is the dissipation rate, ã = S̃i jevi evj is the
strain rate along the vortex axis, and S̃i j is the resolved rate of strain tensor

S̃i j =
1
2

(
∂ũi

∂x j
+
∂ũ j

∂xi

)
. (2.9)

Integrating (2.8) above the cutoff wavenumber, kc = π/∆x, yields [13]

k̃′ =
1
2
ρK0ε

2/3
(

2ν
3|ã|

)1/3
Γ

[
−1/3,

2νk2
c

3|ã|

]
, (2.10)

where Γ is the incomplete gamma function. The factor of K0ε
2/3 is approximated

by matching the second order velocity structure function of the local resolved flow,
〈F 2(x¯

, r
¯
)〉 =

〈
(ũ
¯
(x
¯
+ r
¯
) − ũ

¯
(x
¯
))2

〉
, to the subgrid energy spectrum (2.8). Performing

the averaging in F 2 over a sphere of radius ∆x about the center of the computational
cell, the matching process returns [36, 89]

K0ε
2/3 =

〈F 2(x¯
,∆x)〉

A∆x2/3 , (2.11a)

〈F 2(x¯0,∆)〉 =
1
6

3∑
j=1

(
δũ+1

2
+ δũ+2

2
+ δũ+3

2
+ δũ−1

2
+ δũ−2

2
+ δũ−3

2
)

j
, (2.11b)

A = 4
∫ π

0
s−5/3(1 − sin(s)/s)ds ≈ 1.90695, (2.11c)

where (δũ±i
2
) j = (ũi(x¯0 ± e¯ j∆) − ũi(x¯0))

2 is the squared velocity difference in com-
ponent i over a distance ∆ in Cartesian direction ± j, relative to the cell center x

¯0. It
is noted that (2.11) assumes the subgrid flows are approximately incompressible and
performing the structure function averaging over a shock is not recommended. In the
presence of a shock, averaging should be performed in a manner that avoids cross-
ing the shock [59] or the subgrid model should be disabled and the shock capturing
scheme relied on for dissipation directly near the shock [6]. Preliminary simulations
found that aliasing errors in the LES using the stretched-vortex model resulted in
an overestimation of high-wavenumber turbulent kinetic energy in the forced turbu-
lence upstream of the shock, and the interaction of these high-wavenumber modes
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with the shock resulted in spurious behavior such as a drop in the dissipation rate
across the shock. A hyperviscous filtering procedure will be developed for the LES
in Chapter 3 to address this issue.

2.4.1 Turbulent statistics in LES
Turbulent statistics in LES are the same as discussed in section 1.2, except that, in
LES, statistical quantities can only be directly calculated at the resolved scale. It is
assumed here that the unresolved scales are incompressible and so ρ = ρ̄ and µ = µ̄.
The dissipation rate is assumed to be constant with wavenumber and is taken to be
equal to the dissipation of the resolved kinetic energy that arises from the sum of
the stresses in (1.2) and (2.5).

An advantage of the stretched-vortex SGS model is that the subgrid flow used
to construct the SGS stresses can be accounted for during post-processing of the
LES. Inclusion of the SGS flows alleviates the need to artificially filter DNS or
experimental results when validating the LES, and allows the LES to capture effects
that may be obscured at the resolved scale. For instance, the SGS statistics are useful
when addressing energy amplifications because turbulent fluctuations transferred to
small scales by the shock compression may appear to be dissipated if they are
mapped to wavenumbers that are not resolved on the computational mesh of the
LES.

The SGS Reynolds stresses follow directly from τi j (2.7), and (2.10) allows recon-
struction of the SGS kinetic energy in (2.6). A correction is added to urms and Mt

using
uiui ≈ ũiũi + 2k̃′, (2.12)

to account for the SGS kinetic energy, k̃′. An approximation for the Taylor mi-
croscale is obtained using the result for isotropic, incompressible turbulence,

λ ≈

√
15〈ν̄〉
ε

urms . (2.13)

Hill and Pullin [36] derived expressions for radial energy spectra of the SGS flows
in transverse planes. The vorticity of the subgrid flow is oriented along the spiral
vortex axis, and so the SGS enstrophy may be written

Ω
SGS
i j = ΩSGS

kk evi evj, (2.14a)

Ω
SGS
ii = 2

∫ ∞

kc
k2E(k)dk, (2.14b)
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where Ωi j = ωiω j . Inserting the subgrid spectrum (2.8) into (2.14) and integrating
provides an approximation to the enstrophy associated with the local subgrid flow

Ω
SGS
i j = K0ε

2/3
(

2ν
3|ã|

)−2/3
Γ

(
2
3
,

2ν
3|ã|

k2
c

)
evi evj . (2.15)



16

C h a p t e r 3

LES OF THE CANONICAL SHOCK-TURBULENCE PROBLEM:
REGULARIZATION METHOD

3.1 Introduction
Preliminary LES of the canonical shock-turbulence problem performed for this
study using the stretched-vortex model yielded unusual results, such as observing
a spurious decrease in the dissipation rate of turbulent kinetic energy across the
shock in some cases. This behavior was found to be largely independent of the mesh
refinement and the base mesh resolution so long as the Reλ of the flow was large,
suggesting that some modification to the LES approach discussed in Chapter 2 was
required.

The purpose of the work in this chapter is to address the challenges presented by the
mean compression ratio over the shock in LES, and the resulting expectation that
the turbulent flow scales would decrease in size as the flow passes through a shock.
Experiments have confirmed that a decrease in the integral length scale occurs [2, 4],
and the DNS of Larsson and Lele [45] found a decrease in both the streamwise and
transverse Taylor microscales, although Agui et al. [2] did not observe a change
in this scale in the transverse directions. The length scales grow downstream of
the shock, but it can be seen from DNS [45, 46] that even the small scales take a
substantial amount of time relative to the dissipation time scales to return to their
upstream size.

The decrease in flow scales over a shockwave at a constant cutoffwavenumber results
in an abrupt transfer of energy towards smaller scale turbulent modes, passing from
the scales that are resolved on the computation grid of the LES into the unresolved
scales. This effect is dissipative at the resolved scales, and obfuscates some of the
results that can be drawn from the resolved scale amplifications over a shockwave
in LES. Thus, SGS models that utilize an approximation for the subgrid flow, such
as the Stretched-Vortex Model (SVM) [43, 65], may be well suited for addressing
shock-turbulence interaction problems.

In practice, the rapid transfer of modes into the subgrid scales has potential to cause
broader difficulties for LES. The energy spectrum of fully developed turbulence
in a physical space compressible LES rarely follows a perfectly scale-similar k−n
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spectrum, and may exhibit a pile up of kinetic energy near the cutoff wavenumber
that is often interpreted as effective aliasing errors that are not easily corrected
in physical space codes. Models that produce this pileup may perform well in
validation tests of smoothly decaying turbulence, but these deviations result in a
strong shock impulsively changing the shape of the spectrum at high wavenumbers.

It will be shown that this phenomenon has the potential to induce undesirable
behavior in the stretched-vortexmodel, and othermodelsmay face the same problem.
Bermejo-Moreno et al. [6] compared the performance of a number of SGS models,
including the stretched-vortex model, applied to the canonical shock-turbulence
problem. The spectra that developed as the turbulence decayed downstream of
the shock in the LES show that many of the tested SGS models produce similar
high wavenumber deviations comparable to that seen in the stretched-vortex model
case. These deviations did not exist upstream of the shock in [6] because the
inlet turbulence was produced from DNS, but it is reasonable to conclude high
wavenumber errors and the resulting rapid change in the structure of the resolved
spectrum over a shock are not phenomena limited to LES with the stretched-vortex
model.

A simple correction to this issue would be to apply an explicit filtering operation
that dissipates the kinetic energy pileup upstream of the shockwave, but spectral
filtering is impractical in the inhomogeneous directions that are present in shock
turbulence problems. Cook and Cabot [17] apply a spectral filter to the periodic
directions and a high order compact finite difference filter to the inhomogeneous
directions of several simplified test problems representative of shock-turbulence
interactions. Likewise, Tritschler et al. [87] employ a high order compact finite
difference filter to remove aliasing errors in LES of Richtmyer-Meshkov instabilities.
This explicit filtering approach is problematic because it effectively decreases the
highest resolved wavenumber at a given mesh resolution, and the filtering operation
contributes additional dissipation that complicates the application of a dynamic LES
model.

In this chapter we propose a physical space dynamic regularization method capable
of applying additional dissipation in a manner that forces the spectrum towards
k−5/3 behavior in the vicinity of the cutoff wavenumber. In conjunction with a
primary LES model, the regularization adds a relatively small amount of additional
dissipation that is intended to remove any pileup of kinetic energy in the high
wavenumbers. Validation tests are performed on forced and decaying isotropic
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turbulence, and linearized models of post shock turbulence are employed to evaluate
the performance of the model across a shockwave and in the anisotropic downstream
flow. Tests are also conducted to show the influence of the regularization on LES
with an explicitly simulated shock.

3.2 Numerical Method
The governing LES equations (2.4) are solved using the parallel Adaptive Mesh Re-
finement in Object Oriented C++ (AMROC) framework [19], but mesh refinement
is not implemented in this chapter except for the simulations discussed in section 3.7,
where shocks are explicitly simulated. Previous LES of shock-turbulence interac-
tions have shown that local mesh refinement is necessary to resolve corrugations in
the shock [26], and adaptive refinement also serves to reduce the dissipation applied
to the turbulence by a localized shock capturing scheme.

The conservative, skew-symmetric formulation of the nonlinear convective terms
[9, 38] are integrated spatially with a 4th order tuned centered difference scheme [36]
that minimizes the truncation errors proposed by Ghosal [28]. A 3rd order strong
stability preserving Runge-Kutta scheme is used for time integration [31]. The
numerical approach used here has previously been applied successfully in studies
of Richtmyer-Meshkov instabilities [60]. The subsequent sections consider both
DNS and LES. Here, DNS is considered to be the limit of the LES equations as the
viscous scales become well resolved. The same numerical approach is applied to
both DNS and LES, but in the DNS cases the SGS terms (2.5) are set to zero.

The computational domain for all simulations in this chapter, except those discussed
in section 3.7, is a periodic 2π × 2π × 2π cube, and flow is initialized as a solenoidal
velocity field with constant density and pressure as per Samtaney et al. [77]. Forced
turbulence is generated using a linear forcing term on the solenoidal part of the
√
ρ̄ũ field, band-pass filtered to (k0 − 0.5) < k < (k0 + 0.5) [68], and this produces

turbulent fields with a prescribed dissipation rate and peak energetic wavenumber
k0 = 4.

3.3 Dynamic Regularization Technique
3.3.1 Background
One approximation for the SGS kinetic energy dissipation in (2.5) is to use a n ≥ 2
order Laplacian of the form
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∂τi j

∂x j
= Cµρ(−1)n(∇2)nũi . (3.1)

This form is referred to as a hyperviscosity model, and is motivated by the asser-
tion that interactions with the subgrid scales should take place predominantly at
the highest resolved wavenumbers. The Fourier representation of a hyperviscous
operator grows rapidly with wavenumber, allowing Cµ to be selected in such a way
that the operator is only substantially dissipative near and above the highest resolved
wavenumber. Hyperviscous approximations have seen a broad set of uses ranging
from numerical shock capturing [16] to decaying turbulent flows (e.g., [10, 18]).
The high order derivatives used in a hyperviscosity model often result in the numer-
ical implementation of these models being quite similar to an explicit filter such as
that of Lele [50], but the hypervisocity formulation allows for greater control over
how the dissipation is applied.

Localization to high wavenumbers makes hyperviscous operators appealing as a
regularization, but Cµ must be determined, with the possibility that an empirically
derived constant value for the turbulence upstream of a shock may not be valid
downstream of the shock. Dantinne et al. [18] calculates Cµ dynamically from
the Germano identity [27], but this represents a different use case than the desired
purpose of damping out aliasing errors in a separate SGS model.

3.3.2 Dynamic Hyperviscosity
The present proposed approximation for Cµ is based on the scaling of the velocity
structure function in inertial range turbulence [5]

F2(x¯
,∆) ∝ (ε∆)2/3. (3.2)

The ratio of F2(x¯
,∆) calculated at separation scales ∆1 and ∆2, under the assumption

that ε is constant in the inertial range, motivates the definition of a local smoothness
parameter

α(x
¯
) =
〈F 2(x¯

,∆1)〉

〈F 2(x¯
,∆2)〉

(
∆2
∆1

)2/3
− 1, (3.3)

which one expects to approach zero in inertial range turbulence in an average sense.
This has similarities with the automatic flagging criteria proposed by Tantikul and
Domaradzki [84]. The averaging on the structure functions is again computed over
the surface of a sphere of the same radius as the separation scale, as in (2.11). In the
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presence of anisotropic computational meshes or significant mean flow gradients,
such as shocks, it may be preferable to replace spherical averaging with averaging
along a circle or a line of points oriented in a homogeneous direction [59].

Motivated by previous hyperviscosity approaches, we propose a regularization
scheme based on the diagonal part of the nth Laplacian of u weighted by α. The
proposed model is given by

∂τi j

∂x j
= Cµ max (α, 0) ρ̄Ln[ũi], (3.4)

Ln[ũi] = (−1)n
3∑

j=1

∂2nũi

∂x2n
j

, (3.5)

where the off diagonal terms in the Laplacian have been dropped in order to produce
a operator whose Fourier representation grows with k2n

x + k2n
y + k2n

z . This is ap-
proximately a cube when n is large, and so produces a better match to the boundary
of the subject simulations in Fourier space. As n is increased, the dissipation from
the operator becomes more focused at the boundary of the resolved wavenumbers in
Fourier space, but the operator also becomes more expensive to compute. Negative
values of α cause the model to become anti-dissipative, implying a local transfer of
energy from the subgrid scales back into the resolved scales. This can be physical,
but the ad hoc nature of the proposed model suggests that it cannot be expected
to reliably predict the occurrence this phenomena. Thus, α is truncated at zero to
reduce the influence of the regularization.

The factor Cµ is selected based on the numerical stability of the operator, noting
that as Cµ becomes large one expects α to be driven to zero, enforcing a ceiling on
the maximum amount of dissipation that may be applied by the model. Selecting
n = 3, von Neumann stability analysis [52] is applied to a test problem

∂φ

∂t
= −Cµ,n=3αmax L3[φ], (3.6)

with 2nd order centered finite differences in space and 1st order forward time-
stepping. The numerical discretization of (3.6) applied to a mode of the form
φ = exp (ik

¯
· x
¯
+ βt) should enforce |exp (β∆t)| ≤ 1 for all wavenumbers to avoid

exponential growth in the solution, and this suggests a choice of

Cµ,n=3 =
∆x5c̄

96αmax
, (3.7)
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where c̄ is the local sound speed, αmax is a constant upper bound on α, and c̄∆t/∆x =

1 is assumed. The resulting model used in this study is then given by

∂τi j

∂x j
=
∆x5c̄

96αmax
min (max (α, 0) , αmax) ρ̄L3[ũi], (3.8a)

qT
i = 0. (3.8b)

The bound on α is artificially enforced, but in practice αmax is taken to be larger than
the values that α achieves in flows started with smooth initial conditions. Unless
otherwise noted, αmax = 10 is selected in this work, and the separation scales in
(3.3) are taken to be factors of the mesh resolution ∆1 = ∆x and ∆2 = 2∆x.

It should be noted that care must be taken to calculate the structure functions in
(3.3) in a consistent manner, as they are physically local but global with respect
to wavenumber. This results in an inconsistency where the structure functions
calculated at separation scales wider than the mesh cutoff, e.g., 〈F 2(x¯

, 2∆x)〉, are
influenced by wavenumbers above those associated with the separation scale, while
〈F 2(x¯

,∆x)〉 contains limited higher wavenumber information. To reduce this effect,
〈F 2(x¯

, 2∆x)〉 is calculated on a mesh restricted to a cell size of 2∆x, and then the
resulting values are prolonged back onto the cell size ∆x mesh.

3.3.3 Hybrid Stretched-Vortex Model (HSVM)
A regularized version of the stretched-vortex model is introduced by combining the
terms from (2.7) and (3.8). The resulting subgrid model is given by

∂τi j

∂x j
=

∂

∂x j

(
ρ̄k̃′

(
δi j − evi evj

))
+
∆x5c̄

96αmax
min (max (α, 0) , αmax) ρ̄L3[ui], (3.9a)

qT
i = −cpρ

∆x
2

√
k̃′

(
δi j − evi evj

) (
∂T̃
∂x j

)
. (3.9b)

This Hybrid Stretched-Vortex Model (HSVM) will be shown to attenuate the high
wavenumber deviation produced by the stretched-vortex model through the applica-
tion of a comparably small amount of additional dissipation from the hyperviscous
regularization.

3.4 Forced Isotropic Turbulence
The hyperviscous regularization (3.8) contains no tuned parameters except for some
selected bound on α, suggesting that it should be applicable to a broad range of flow
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conditions. Simulations of forced isotropic turbulence are conducted to evaluate the
effectiveness of the dynamic hyperviscous model without tailored empirical tuning
on the constant αmax . In order to isolate the effect of the regularization, the resolved
viscosity is set to zero and there is no other SGS model used in these simulations.
Compensated spectra after the turbulence has relaxed to a statistical steady state
are shown in Figure 3.1 for simulations at different resolutions, turbulent Mach
numbers, and values of αmax . Halving the value of αmax from 10 to 5 in the 323,
Mt = 0.18 test is shown to have a discernible, but small effect on the shape of the
spectrum. The hyperviscous regularization consistently produces an approximate
k−5/3 spectrum without requiring tuning αmax or global averaging on α.
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Figure 3.1: Compensated energy spectra from forced periodic isotropic turbulence
with the dynamic hyperviscous model and no resolved viscosity. Solid line: 2563

resolution, Mt = 0.18, αmax = 10. Dashed line: 2563 resolution, Mt = 0.06,
αmax = 10. Circles: 323 resolution, Mt = 0.18, αmax = 10. Triangles: 323

resolution, Mt = 0.18, αmax = 5.

The behavior of forced turbulence in LES using the stretched-vortex model, hyper-
viscous regularization, or hybrid stretched-vortex model is considered in Figure 3.2.
The spectra shown are generated from statistically steady, forced isotropic turbu-
lence simulations in a 643 periodic box. A 5123 DNS with kmaxη > 1.5 is provided
for comparison. The forcing is tailored to produce Mt = 0.18 and Reλ = 100 in the
DNS, and the energy injection rate from the forcing and the resolved viscosity are
the same in the LES and DNS simulations.
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All three LES equilibrate to spectra that agree well with the DNS at low wavenum-
bers. The forced DNS appears to be slightly shallower than a k−5/3 spectrum,
which can also be observed in comparable DNS considered by Petersen and Livescu
[68]. The SGS models assume a k−5/3 inertial range exists, and as a result the LES
spectra are steeper than the DNS at high wavenumbers for all of the tested models.
The HSVM-LES produces an improved approximation to a k−5/3 spectrum relative
to the SVM-LES even at wavenumbers that are not immediately near the cutoff
wavenumber.
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Figure 3.2: Energy spectra from forced, periodic, isotropic turbulence. DNS results
are for Mt = 0.18 and Reλ = 100, and the wavenumbers are normalized by the value
of η calculated from DNS. The viscosity and the energy injection rate of the forcing
are the same for all simulations. The inset shows the behavior of the spectra in the
vicinity of the LES cutoff wavenumber. Solid line: DNS. Pluses: hyperviscosity-
LES. Circles: SVM-LES. Triangles: HSVM-LES. Dotted line: SVM-LES subgrid
spectrum. Dash-dot line: HSVM-LES subgrid spectrum

Figure 3.3 shows the relative magnitude of each dissipative term in HSVM-LES
of statistically steady forced turbulence at a number of different flow conditions.
The high resolution of the runs ensures that the dissipation associated with each
term is effectively constant in time. These LES demonstrate that the hyperviscous
regularization represents a secondary contribution to the dissipation rate in HSVM-



24

LES of inertial range isotropic turbulence. It is considered ideal to minimize
the influence of the hyperviscosity because the stretched-vortex model accounts
for a broader range of physics, such as Reynolds number effects and SGS heat
conduction, and it has been suggested that high order hyperviscous operators may
generate spurious behavior in LES [41].
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Figure 3.3: Fraction of the dissipation that arises from each dissipative term in
HSVM-LES of forced, isotropic turbulence at a resolution of 2563. Each bar
represents a different simulation with parameters given in the table on the bottom
of the plot.

3.5 Decaying Isotropic Turbulence
Once the DNS and HSVM-LES shown in Figure 3.2 reach a steady state, the forcing
is turned off and the turbulence is allowed to decay. Figure 3.4 shows the decay of
the turbulent kinetic energy, normalized by its value in the DNS at the time, t = 0,
at which the forcing is disabled. The time is nondimensionalized by the large eddy
turnover time calculated from the DNS at t = 0. The symbols show the DNS results
restricted to a 643 box in physical space, which is analogous to the resolved scale
LES. The total kinetic energy in the LES is found by adding the subgrid kinetic
energy (2.10) to the resolved kinetic energy, and this provides a comparison to the
unfiltered DNS. The HSVM-LES agrees well with DNS with regards to both the
initial kinetic energy produced by the forcing and its subsequent decay after the
forcing has been disabled. The agreement is particularly good at early times when
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the Reynolds number remains large.
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Figure 3.4: Turbulent kinetic energy decay. At t = 0 the DNS has Mt = 0.18 and
Reλ = 100. Solid line: DNS. Circles: DNS restricted to 643 in physical space.
Dash-dotted line: resolved scale HSVM-LES. Dashed line: combined resolved and
subgrid scale HSVM-LES.

Figure 3.5 compares the LES with and without the hyperviscosity to existing DNS
[77]. The flow is initialized with Mt = 0.5 and Reλ = 72 on a 643 mesh and
immediately allowed to decay. The stretched-vortex model has been shown to agree
well with DNS in this test problem [36, 43], and the inclusion of the hyperviscosity
only slightly increases the overall dissipation.

3.6 Modeled Post Shock Turbulence
3.6.1 SGS Model Response to LIA
The abrupt compression of turbulence as it passes through a shockwave and the
resulting downstream anisotropy present a complex flow that is of interest in LES.
Effective numerical stabilization of a shock in turbulent flow remains a difficult
problem, and thismotivates the use of test problems that capture the general character
of the flow downstream of a shock without the risk of introducing errors from the
explicit simulation of a shockwave.

One such test problem is to use Linear Interaction Analysis (LIA) to model the
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Figure 3.5: Turbulent kinetic energy decay in flow initialized with Mt = 0.50 and
Reλ = 72. Solid line: DNS of Samtaney et al. [77]. Circles: combined resolved
and subgrid scale HSVM-LES. Triangles: combined resolved and subgrid scale
SVM-LES. Dotted line: subgrid scale HSVM-LES. Dashed line: subgrid scale
SVM-LES.

flow downstream of a shock. LIA models the interaction of a turbulent flow with a
shock as described in detail in Appendix A, and the application of LIA to statistically
steady SVM-LES highlights the problems that may be caused by a buildup of kinetic
energy near the cutoffwavenumber. Figure 3.6 shows the energy spectrum for forced
isotropic turbulence in SVM-LES and the spectrum that results from application of
LIA to that flow field for a Ms = 1.2 shock. The solid and dashed lines shows
spatially averaged SGS spectra for the pre-LIA and post-LIA fields, respectively,
and these are extended into the resolved wavenumbers to show how the SGS model
matches with the resolved spectra.

LIA acts to compress and amplify the turbulence, shifting the spectrum to higher
wavenumbers and truncating off energy in the highestwavenumbers if those turbulent
modes are mapped to wavenumbers above the cutoff wavenumber. A pileup of
kinetic energy existing in the pre-LIA turbulence at kc is thus partially dissipated
by the shock and replaced by the energy contents of the lower wavenumbers. The
modeled SGS spectra are strongly influenced by the high wavenumber behavior
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of the turbulence and, as a result of the loss in high wavenumber energy, the
amplification of the SGS spectra is effectively negligible. This is in conflict with
the LIA prediction that the amplification should be independent of wavenumber,
suggesting that the stretched-vortex SGS model would under predict dissipation in
the post-LIA flow.
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Figure 3.6: LIA predicted amplification of the energy spectrum over a Ms = 1.2
shock applied to turbulence produced with the stretched-vortex model. The pre-LIA
flow field is statistically steady turbulence from a 643 SVM-LES with Reλ ≈ 500
and Mt ≈ 0.18. The inset shows the behavior of the spectra in the vicinity of the
LES cutoff wavenumber. Circles: pre-LIA resolved spectrum. Triangles: post-LIA
resolved spectrum. Solid line: pre-LIA averaged SGS spectrum. Dashed line:
post-LIA averaged SGS spectrum.

To further motivate the usefulness of regularizing the upstream turbulence, Figure
3.7 shows the amplification in the SGSkinetic energy that results from the application
of LIA to isotropic turbulence in SVM-LES and HSVM-LES. Isotropic, forced
turbulence from each LES is subjected to LIA at various shock Mach numbers, and
the SGS kinetic energy is computed on the post-LIA flow field using (2.10). The
results are normalized with respect to the values in the pre-LIA LES. A reference
analytical result for the SGS kinetic energy amplification is found by performing
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LIA with the model shell-summed energy spectrum,

E(k) =


k2 0 ≤ k < k0

k2
0(k/k0)

−5/3 k0 ≤ k ≤ 256

0 k > 256

(3.10)

under the assumption of isotropy, and computing the amplification in the kinetic
energy at wavenumbers above the cutoff wavenumber from the LES, kc = 32. All
LIA results discussed in this chapter are taken at a distance k0x = 400 from the
shock, at which exponentially decaying pressure modes have fully decayed and the
solution has sufficiently approached its far-field asymptote. The amplification in
the SGS kinetic energy is substantially larger than the amplification in the total
kinetic energy because of the transfer of energy towards higher wavenumbers. The
HSVM-LES captures the LIA amplification in the SGS kinetic energy reasonably
well while the SVM-LES tends to predict lower amplifications, in some cases even
seeing a decrease in SGS kinetic energy.

The post-LIA SGS streamwise and transverse Reynolds stresses from the HSVM-
LES are plotted in Figure 3.8, and compared with the results from LIA applied to
the isotropic shell-summed energy spectrum in (3.10). The hybrid stretched-vortex
model captures the amplification of the transverse Reynolds stress but predicts a
SGS flow that is considerably closer to isotropy than that produced by LIA of the
shell-summed spectrum. However, DNS have not consistently observed the strong
Reynolds stress anisotropy predicted by LIA at high shock Mach numbers [46],
and so it may not be critical for the SGS model to be capable of reproducing this
phenomena.

Even using upstream turbulence from DNS, certain models tested by Bermejo-
Moreno et al. [6] in shock-turbulence LES appear to exhibit behavior consistent
with the result that shock compression may artificially reduce the dissipation of the
SGS model. In these cases, the SGS dissipation is initially weakly amplified, but
grows significantly in the region immediately downstream of the shock rather than
decreasing monotonically as has been observed in DNS [46]. The referenced LES
used a dissipative shock capturing scheme that could introduce similar effects, but
the LIA analysis presented here suggests that the shock capturing scheme may not
be solely responsible for this behavior.
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Figure 3.7: Amplification of the SGS kinetic energy under application of LIA. The
LES are on a 643 gridwith pre-LIA conditions of Reλ ≈ 500 and Mt ≈ 0.18. Circles:
HSVM-LES. Triangles: SVM-LES. Solid line: LIA kinetic energy amplification
above k = 32 for isotropic turbulence with a model shell-summed energy spectrum.
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Figure 3.8: Amplification of the SGS components of the streamwise and transverse
Reynolds stresses under application of LIA. The LES are on a 643 grid with pre-LIA
conditions of Reλ ≈ 500 and Mt ≈ 0.18. The streamwise direction is defined as the
direction parallel to the mean shock normal direction in LIA. Circles: HSVM-LES
streamwise Reynolds stress. Triangles: HSVM-LES transverse Reynolds stress.
Solid and dashed line: streamwise and transverse Reynolds stress amplification,
respectively, above k = 32 from LIA applied to a model shell-summed energy
spectrum.
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3.6.2 Decay of LIA Turbulence
Post-LIA fields are used as initial conditions in decaying turbulence simulations to
evaluate the performance of the SGSmodels in the compressed flow. DNS of forced
turbulence is conducted at a resolution of 2563, with Reλ = 60 and Mt = 0.18,
and forced HSVM-LES with the same energy input and viscosity is performed at a
resolution of 643. Once statistically steady, the domain of the DNS is extended to
5123 in Fourier space and LIA is applied to the LES and DNS to generate post shock
fields. The estimated change in the Kolmogorov length scale over a shockwave [45]

η2
η1
≈

(
T2
T1

)3/8 (
ρ2
ρ1

)−1
(3.11)

suggests that kmaxη > 1.5 remains satisfied in the DNS after LIA has been applied
for a Ms = 1.5 shock.

The decay of the streamwise and transverse Reynolds stress, normalized by their un-
filtered pre-LIA values, is shown in Figure 3.9 for DNS and HSVM-LES initialized
with the post-LIA fields. Time is nondimensionalized by the large eddy turnover
time from the pre-LIA DNS. The resolved Reynolds stress amplification and decay
predicted by the HSVM-LES agrees well with the filtered DNS, although the dis-
sipation of the transverse Reynolds stress appears to be slightly over predicted in
the HSVM-LES. The post-LIA total Reynolds stresses, which include contributions
from the SGS flows, initially agree with the unfiltered DNS, but the SGS compo-
nents of the LES appears to quickly decay. The subgrid continuation (2.8) that is
used to compute the SGS Reynolds stresses assumes an inertial range, and so the
SGS statistics are less reliable at the subject Reynolds numbers.

The Reynolds stress anisotropy in the decaying post-LIA fields is provided in Figure
3.10. LIA does not impart the same anisotropy to both simulations at the initial
time, but one would not necessarily expect the anisotropy to be instantaneously equal
because the pre-LIA DNS and HSVM-LES are only related by their mean statistics.
Regardless, both the DNS and HSVM-LES decay to similar levels of anisotropy,
and neither returns to isotropy within the duration of the simulations. The post-LIA
fields decay to an anisotropy that lies close to the far field value from LIA applied
to the isotropic shell-summed spectrum (3.10).

The decay of the post-LIA turbulence faces different boundary conditions than
spatially decaying turbulence downstream of a shock, and so it is not guaranteed
that these tests are directly representative of physically occurring flow fields even if
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Figure 3.9: Decay of the streamwise and transverse Reynolds stresses in post-LIA
periodic, anisotropic turbulence. The flow upstream of the Ms = 1.5 shock has
Reλ = 60 and Mt = 0.18. Solid line: DNS. Circles: DNS restricted to 643 in
physical space. Dashed line: resolved scale HSVM-LES. Dotted line: combined
resolved and subgrid scale HSVM-LES.
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Figure 3.10: Reynolds stress anisotropy in post-LIA decaying turbulence. The flow
upstream of the modeled Ms = 1.5 shock has Reλ = 60 and Mt = 0.18. Solid Line:
DNS. Dotted Line: combined resolved and SGS HSVM-LES. Dashed lined: LIA
far field result for shell-summed isotropic spectrum.

LIA accurately captures the behavior near the shock. Despite this, there is reasonable
qualitative agreement between the post-LIA simulations and the Reλ = 20 shock
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turbulence DNS of Ryu and Livescu [76], as shown in Figure 3.11. The upstream,
pre-LIA fields have a peak wavenumber of k0 = 8 to improve the statistical sample
and avoid box-size effects from the boundary conditions in the downstreamflow. The
homogeneous post-LIA results are converted to spatial coordinates by multiplying
the time by the downstream convection velocity in the shock-stationary frame. The
post shock Reynolds stress decay in the post-LIA simulations is slower than that
seen in Ryu and Livescu [76], but appears to converge towards the full DNS as the
turbulent Mach number is reduced. The post-LIA decaying turbulence is initialized
with the far field LIA results which do not include the exponentially decaying
pressure modes produced by the shock, and these modes are responsible for the
rapid fluctuations in the streamwise Reynolds stress immediately downstream of the
shock seen in the DNS.
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Figure 3.11: Decay of the streamwise Reynolds stress and transverse vorticity in
spatial coordinates over a Ms = 1.2 shock, with a Reλ = 20 upstream. The
lines show the DNS of Ryu and Livescu [76] at various upstream turbulent Mach
numbers: solid (Mt = 0.04), dashed (Mt = 0.08), dotted (Mt = 0.15). The post-LIA
DNS is given by the symbols: pluses (Mt = 0.04), triangles (Mt = 0.08), circles
(Mt = 0.15).

3.7 Shock-Turbulence Interaction
3.7.1 Flow Description
The impact of the hyperviscous regularization in full shock turbulence LES is
illustrated by conducting LES of a nearly stationary shock in a transversely periodic
4π × 2π × 2π channel. The shock is located at approximately xs = π/2 downstream
of the inflow boundary. The shock exhibits a slow drift in its mean position [45],
but the drift speed is considered negligibly small at the Ms and Mt considered
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here, consistent with DNS at similar conditions [76]. A sponge zone, starting at a
distance π upstream of the outflow boundary, is used to prevent acoustic reflections
[24]. The inflow turbulence is produced from a separate LES of periodic turbulence
forced at a statistical steady state using the same SGS model, per section 3.4. High
resolution LES of the canonical shock-turbulence problem using the HSVMmethod
are discussed in detail in Chapter 4, but this section focuses specifically on the
influence of the hyperviscosity on this problem.

3.7.2 Numerical Approach
The numerical method used in the shock-turbulence simulations is the same as
discussed in section 3.2, except a 5th order, shock capturing WENO scheme [36] is
used in a thin band of cells near the shock. The shock location is flagged using the
approximate Riemann-solver method of Lombardini [58]. Shock-capturing schemes
introduce additional numerical dissipation, and so to avoid excessive dissipation the
SGS terms are set to zero in regions where WENO is active, as suggested by
Bermejo-Moreno et al. [6].

All LES considered in this section are performed on a 256 × 128 × 128 base mesh,
with a factor of 4× adaptive mesh refinement (AMR) near the shock. The AMR is
isotropic, so ∆x = ∆y = ∆z on all levels of the mesh, and AMR only refines the
mesh in the immediate vicinity of the shock.

3.7.3 Results and Discussion
The behavior of the SGS model when modeling the shock with LIA, shown in
Figure 3.7, would suggest that the impact of the hyperviscosity would be most
noticeable in simulations with moderately low shock Mach numbers. Figure 3.12
shows turbulence statistics averaged over the homogeneous directions and time in
LES with Mt = 0.22 and Reλ = 300 immediately upstream of a Ms = 1.28 shock.
The Reynolds stresses and dissipation rate include the contributions from the SGS
model. A Reλ = 39 DNS of Larsson and Lele [45] is plotted for comparison, but the
DNS is only shown over a short region k0x < 5 downstream of the shock because
Reynolds number effects in the downstream dissipation rate are expected to be sig-
nificant at that Reynolds number. DNS considering Reλ = 40 − 75 has observed
no significant Reynolds number effects in the downstream behavior close to the
shock, such as in the peak downstream streamwise Reynolds stress [46], and so it
is considered comparable to the LES to the Reλ = 39 DNS at streamwise locations
close to the shock. LIA does not directly consider viscosity, but the amplification
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in 〈T0.76〉〈ωiωi〉/〈ρ〉 predicted by LIA is plotted as an approximation to the ampli-
fication in dissipation rate. The statistics are normalized by linearly extrapolating
their upstream values to the position of the shock, except in the case of the density-
specific volume correlation, b = −〈ρ′v′〉 where v = 1/ρ, because production of
b by the shock at low Mt is driven by upstream velocity fluctuations rather than
upstream density fluctuations. For small density fluctuations b ≈ 〈ρ′ρ′〉/〈ρ〉2, and
b is normalized by M2

t as suggested by the scaling in LIA.

The HSVM-LES shows larger amplifications in the Reynolds stresses across the
shock, and predicts amplifications that agree with those observed in the DNS. DNS
has found the vorticity amplification predicted by LIA is reasonably accurate under
flow conditions comparable to those considered here [76], and the amplification in
the dissipation rate, which is closely related to the vorticity, in theHSVM-LES agrees
with that approximated from LIA. The density-specific volume correlation behaves
similarly in the SVM-LES and HSVM-LES, which is expected since SGS heat
transfer is addressed in the same manner in both models. The SVM-LES predicts
lower amplifications in both the Reynolds stress components and, as predicted by
the analysis in section 3.6.1, for this Ms the SVM-LES sees no amplification in the
dissipation rate. In this case, the lower dissipation rate appears to roughly cancel the
effect of the lower Reynolds stress amplifications, and the Reynolds stresses further
downstream of the shock are similar to those seen in the HSVM-LES.

Figure 3.13 compares Reλ = 300, Mt = 0.15 LES with Reλ = 73 , Mt = 0.14 DNS
[46] across a Ms = 1.5 shock. The Reynolds numbers of these simulations remain
different because the subject SGS models make assumptions that are only valid in
inertial range turbulence, but it is possible that Reλ = 73 is sufficiently large to
approach the mixing transition to fully developed turbulence, after which Reynolds
number effects are insignificant in many turbulent flows [20]. The HSVM-LES
again sees a larger downstream dissipation rate than the SVM-LES, and shows better
agreement with the DNS. The SVM-LES observes Reynolds stress amplifications
over the shock that are similar to those seen in the HSVM-LES, and differences from
the DNS in the downstream dissipation rate could be explained by the different Reλ.

This study has focused on the behavior of the velocity field, but full LES of shock-
turbulence interactions requires other fields, such as the density field, to also be
captured accurately. Figure 3.14 plots the radial power spectrum of the density
field upstream and downstream of the shock in the SVM-LES and HSVM-LES. The
radial spectrum of a variable f (y, z) with Fourier transform f̂ (kr, θk) is given in
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Figure 3.12: Plane-averaged statistics in flow over a Ms = 1.28 shock, with upstream
Mt = 0.22. The figures show streamwise Reynolds stress (a), transverse Reynolds
stress (b), dissipation rate (c), and density-specific volume correlation (d). The dis-
sipation rate amplification from LIA is approximated by the predicted amplification
in 〈T〉0.76〈ωiωi〉/〈ρ〉. The LES has Reλ = 300 upstream of the shock, and the
near-shock behavior of DNS with Reλ = 39 [45] is plotted for comparison. Solid
line: LIA. Dashed line: SVM-LES. Circles: HSVM-LES. Crosses: DNS [45].

terms of the radial wavenumber, kr , and azimuthal wavenumber, θk , by

E2D
f (kr) =

1
2

kr

∫ 2π

0

�� f̂ (kr, θk)
��2 dθk . (3.12)

The density spectra from theHSVM-LES and SVM-LES behave in a similarmanner,
illustrating that the hyperviscosity model does not significantly affect the behavior
of the density field.
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Figure 3.13: Plane-averaged Reynolds stresses in flow over a Ms = 1.5 shock. The
LES has upstream conditions of Reλ = 300, Mt = 0.15, and the DNS [46] has
Reλ = 73, Mt = 0.14. Solid line: DNS [46]. Dashed line: SVM-LES. Circles:
HSVM-LES.
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Figure 3.14: Radial spectra of density fluctuations in planes upstream and down-
stream of a Ms = 1.5 shock. The LES has Mt = 0.15 and Reλ = 300 upstream
of the shock. The upstream and downstream results are taken in planes located
at k0x = −2 and k0x = 7, respectively. Circles: pre-shock SVM-LES. Triangles:
post-shock SVM-LES.Dashed line: pre-shockHSVM-LES.Dotted line: post-shock
HSVM-LES.

3.8 Discussion
We proposed a method for enforcing regularized LES solutions that fall off as k−5/3

near the highest resolved wavenumbers, based on dynamic tuning of a modified
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hyperviscous operator. The regularization is not directly physically motivated, but
it is computationally inexpensive to perform and localized in both time and space.
A constant is required for numerical stability, but the construction of the method
suggests it should be insensitive to its selection. LES of forced isotropic turbulence
at varying turbulent Mach number, mesh resolution, and values of the constant
further indicate that refined empirical tuning of this constant is not necessary.

The regularization can function by itself, or as a correction to more complex SGS
models. The stretched-vortex model has been applied successfully to previous LES
of compressible turbulence and produces useful SGS statistics, but physical space
implementations of this model often suffer from an erroneous high wavenumber
pileup of kinetic energy. The compression of a shockwave results in this pileup being
impulsively shifted out of the resolved wavenumbers, reducing the amplification in
the subgrid kinetic energy predicted by the SGS model.

A Hybrid Stretched-Vortex Model (HSVM) is introduced that applies the dynamic
regularization as an additional dissipative term to the stretched-vortex model. It
is shown that the addition of the regularization substantially reduces the deviation
from k−5/3 scaling at high wavenumbers in forced turbulence, despite being a minor
contribution to the total dissipation. The prediction of a k−5/3 spectrum is specific
to high-Reλ homogeneous isotropic turbulence, but the hybrid model still shows
reasonable agreement in comparisons with DNS of isotropic decaying turbulence
even under lower Reλ conditions where an inertial range is not expected.

Linear Interaction Analysis (LIA) is employed to provide a simplified representation
of the flow downstream of a shockwave as it passes through an isotropic, turbulent
upstream field. Application of LIA to 3D flow fields from HSVM-LES results
in the SGS model predicting an increase in the kinetic energy at the unresolved
scales that agrees well with the amplifications seen by simplified LIA of isotropic
shell-summed spectra.

The periodic, anisotropic fields produced by application of LIA to DNS and LES
of isotropic turbulence are allowed to decay in order to evaluate the performance
of the hybrid stretched-vortex model in post shock fields. The HSVM-LES shows
reasonable agreement withDNSwith respect to both the initial post shock conditions
and in the subsequent decay of theReynolds stresses. Qualitative agreement is shown
between these simulations and the DNS of isotropic turbulence passing through a
shockwave performed by Larsson and Lele [45].
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A limited number of LES with the shock explicitly simulated are presented to
illustrate the effects of the regularization in a practical simulation. Even at a fine
mesh resolution and using AMR, the standard stretched-vortex model observes
no increase in the dissipation rate across the shock at low shock Mach numbers.
The inclusion of the regularization improves the agreement of Reynolds stress
amplifications when compared with DNS, and produces dissipation rates that more
closely agree with the predictions of linear theory. Chapter 4 considers a more
thorough analysis of the flow downstream of a shock in HSVM-LES, including a
wider range of flow parameters.
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C h a p t e r 4

LES OF THE CANONICAL SHOCK-TURBULENCE PROBLEM:
RESULTS

4.1 Introduction
The previous chapter, Chapter 3, builds off of the basic LES framework described
in Chapter 2 and develops a procedure for HSVM-LES that is shown to improve
the ability of the LES to capture the behavior of the flow in several test problems
representing shock-turbulence interaction. This chapter considers the results of
HSVM-LES of the canonical shock-turbulence problem, with a focus on analysis
of the hydrodynamics of this problem at large Reynolds numbers which are beyond
the reach of contemporary DNS. The LES leverages high mesh resolutions and
extensive comparisons to DNS and LIA to ensure that the hydrodynamic behavior
of these simulations is representative of physical flows.

Chapter 2 provides an overview of the filtered Navier-Stokes equations and the SGS
model used in this study, and in this chapter these equations are solved numerically
using the methodology discussed in sections 4.2 and 4.3. Section 4.5 summarizes
the conducted LES, and evaluates the mesh sensitivity of the LES with comparisons
to relevant DNS and LIA. Finally, section 4.6 discusses the physical results of the
LES.

4.2 Governing equations and subgrid model
The governing equations of the LES are same as discussed in section 2.3. Likewise,
in regions of the flow sufficiently far from the shock where the mesh is not refined
the subgrid terms of the LES governing equations, (2.4), are modeled by the HSVM
model (3.9).

4.2.1 SGS model near the shock
Subgrid-scale flow in a computational cell containing a shock is significantly differ-
ent from the type of smooth turbulence that SGS models are typically constructed
to represent. The SGS turbulence model becomes excessively dissipative near a
shock, and so the SGS interaction model (3.9) is set to zero where WENO is active.
Previous studies have foundWENO alone to be sufficiently dissipative in this region
[6].
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The application of the SGS model in meshes refined by adaptive mesh refinement
(AMR) near to but not directly on the shock remains a problem, because the cutoff
wavenumber kc in (2.10) is not clearly defined in regions of AMR. A convection
model is introduced that assumes the unresolved kinetic energy is unchanged by
the prolongation of the flow from the coarse mesh to the fine mesh in front of the
shock, and tracks the motion of the SGS kinetic energy as the flow passes through
the narrow band of AMR cells. The model is detailed in Appendix B, as the
methodology is specific to this SGS model and flow geometry.

4.3 Numerical method
The box-turbulence simulations and shock-turbulence channel simulations are both
run using the same fundamental numerical approach. The governing equations are
implemented in the Adaptive Mesh Refinement in Object Oriented C++ (AMROC)
framework [19] to provide mesh refinement and parallelization. Mesh refinement
is flagged based on density contours, and is only active in the direct vicinity of the
shock. The computational mesh spacing is uniform in all directions at all refinement
levels, with equal refinement applied at the shock in the streamwise and transverse
directions.

The non-linear convection terms of (2.4) are computed according to a conservative
skew-symmetric formulation [9, 38] that provides implicit dealiasing. The flux
solver is based on the scheme of Hill and Pullin [36], and switches between a 5th
order, shock capturing,Weighted Essentially Non-Oscillatory (WENO) [53] method
near the shock and a standard low cost, low dissipation 6th order accurate centered
difference scheme away from the shock. The shock location is flagged using the
approximate Riemann solver method of Lombardini [58]. The flagging threshold
is set as the simulation runs by calculating the threshold that would flag 40% of
the turbulent domain, and then that threshold is divided by a factor of 5 to capture
only the sharpest features such as shocks. This approach limits the application of
WENO to only a few cells in either direction of the shock without requiring case
by case tuning, but at the shock WENO is typically applied in all three directions,
rather than only the shock normal direction. WENO is also applied at the boundary
between meshes at different AMR levels.

Despite employing a skew-symmetric formulation of the non-linear terms that re-
duces spurious contributions to the entropy field [38], it was found that over time the
forced box-turbulence LES used for inlet conditions developed small but significant
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entropic modes. The interaction of a shock is dependent not only on the amplitude
of these modes but also on their orientation with respect to the vortical modes in the
turbulence [64], and this complicates comparison to DNS and linear theory. Thus,
a weak linear forcing on (2.4c) of the form f = Ce(T − T0) is introduced in the
box-turbulence simulations , where Ce is tuned to control the entropic modes. This
forcing is not included in the shock-turbulence simulations.

As a validation of the underlying forcing and numerical method, DNS simulations
of Ryu and Livescu [76] are repeated in the numerical framework employed here.
Figure 4.1 comparesDNS to an equivalent simulation performed byRyu and Livescu
[76]. Both theDNSperformed here and that performed byRyu andLivescu [76] fully
resolve turbulent scales in the upstream and downstream flow, with kmaxη > 1.5,
but the DNS of Ryu and Livescu [76] was shock-resolving, whereas the method
used in this study uses a shock-capturing WENO scheme to stabilize the shock at
a thickness on the order of the local mesh resolution. The shock-captured DNS
closes agrees with the shock-resolved DNS regarding both the initial amplification
of the Reynolds stress and the evolution of the Reynolds stress in the downstream
flow, suggesting that the AMR employed is sufficient to separate the scales of the
turbulence from the shock scales. The drop in the streamwise Reynolds stress in
the shock-resolved DNS of Ryu and Livescu [76] near k0x ≈ 30 is likely a result of
boundary conditions associated with the outflow sponge zone, and the simulations
in this study are performed in a longer domain to place this sponge zone further
away from the region of interest downstream of the shock. The fluctuations in the
streamwise Reynolds stress downstream of the shock are not from a lack of statistical
convergence, and are observed in long-time averages of the flow.

4.4 Turbulence statistics
The supersonic background convection velocity in the box-turbulence simulations
results in a small amount of spurious high wavenumber anisotropy in the upstream
turbulence, produced from differing numerical errors in the streamwise and trans-
verse directions. For analysis purposes, during post-processing we instead opt to
calculate mean statistics, such as the Reynolds stresses, on a mesh restricted to half
of the resolution of the coarsest mesh in the LES, and the SGS statistics discussed in
section 2.4.1 are recomputed for this new coarser mesh. Reported dissipation rates
are the exception to this, and are calculated on the computational mesh because they
are considered representative of the numerical behavior of the LES.
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Figure 4.1: Evolution of the streamwise Reynolds stress downstream of a Ms = 1.2
shock, for upstream conditions of Mt = 0.02 and Reλ = 20. Solid line: LIA. Dashed
line: shock-captured DNS. Dotted line: shock-resolved DNS of Ryu and Livescu
[76].

4.5 LES performed
4.5.1 Summary of simulations
Table 4.1 summarizes the LES simulations discussed in this study. Upstream quan-
tities such as Mt and Reλ contain contributions from the SGS model and thus are
approximations. The computational grids are isotropic such that ∆x = ∆y = ∆z,
including within regions of AMR. The given meshes are on the coarsest level, such
that the simulations with Nx = 1024, Ny = 256 and an AMR factor of 4× have
an equivalent resolution of 4096 × 10242 in the direct vicinity of the shock where
AMR is active. All simulations are run for a particle passage time across the length
of the computational domain, and then statistics are recorded over a subsequent
particle passage time or three large eddy turnover times in the upstream turbulence,
whichever is longer. This is not sufficient to achieve full temporal convergence of
large scale quantities, and some statistics such as the ratio of the streamwise to the
transverse Reynolds stress, R11/Rtr , are slightly perturbed from the value upstream
of the shock that would occur with an infinite time average. Given finite computa-
tional resources, fine mesh resolutions and a broad parametric study are considered
here to be more useful than long simulation times.
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Resources are focused on simulations ranging between Ms = 1.5 and Ms = 2.2
because previous DNS observes interesting behavior in the post-shock Reynolds
stress anisotropy within this regime. DNS has found that, for shocks weaker than
Ms ≈ 1.5, LIA predicts the post-shock Reynolds stress anisotropy reasonably well
even at modest Mt , but for Ms > 1.5 DNS finds R11/Rtr > 1 in the far-field
post-shock flow and this ratio is approximately constant as Ms is further increased
[46]. Conversely, for Ms > 1.5 LIA predicts that an increasingly large fraction of the
turbulent kinetic energy is in the transverse Reynolds stress and by Ms = 2.2 predicts
R11/Rtr < 1 in the far-field of the post-shock flow. The discrepancy between LIA
and DNS grows at larger Ms, but it is this transition that is of particular interest.

4.5.2 Mesh sensitivity
The two primary mesh parameters in the subject LES are the coarse mesh spacing
and the local refinement level at the shock. Global refinement of the coarse mesh
increases the fraction of the turbulent kinetic energy that is captured at the resolved
scale and is expected to improve the LES results in smooth turbulent regions away
from the shock. The local mesh refinement at the shock acts to reduce artificial
dissipation from the shock capturing scheme, reduces spurious behavior in the
entropy field generated by the shock-capturing scheme [49], and allows the shock
curvature to be resolved [26, 49].

Test cases are performed to investigate the level of local refinement needed about the
shock. The low-Mt case considered here is conservative with respect to mesh refine-
ment requirements because as Mt is reduced for a given Ms, the shock corrugations
become smaller and more difficult to resolve. Figure 4.2 shows the amplification
of various statistics of interest through a Ms = 1.5 shock, plotted in the shock
normal direction. The statistics are time averaged and spatially averaged in the
transverse directions, and contain the contribution from the SGS stretched-vortex
flow. The Reynolds stress and vorticity are normalized by linearly interpolating their
upstream values to themean shock position. The density-specific volume correlation
b = −〈ρ′v′〉, where v = 1/ρ, is normalized by the upstream turbulent Mach number
as suggested by scaling in LIA. The density-specific volume correlation b is favored
over 〈ρ′ρ′〉 because of its applications in incompressible mixing of variable density
fluids [54, 79], but for the subject low Mt , single component flows b ≈ 〈ρ′ρ′〉/〈ρ〉2.
The SGS model does not provide an estimate for b at the subgrid scales, and this
explains why b tends to be smaller in the LES than predicted by linear analysis. The
contribution of the resolved scale flows to the vorticity is negligible at this mesh
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Ms Mt Reλ Lx xs k0 Nx Ny × Nz AMR
1.2 0.06 500 8π π/2 4 512 1282 4×
1.4 0.06 500 8π π/2 4 512 1282 4×
1.5 0.18 100 8π π/2 4 1024 2562 4×
1.5 0.18 500 8π π/2 4 1024 2562 4×
1.5 0.18 2500 8π π/2 4 1024 2562 4×
1.5 0.06 500 8π π/2 4 1024 2562 4×
1.5 0.06 20 8π π/2 4 512 1282 4×
1.5 0.06 70 8π π/2 4 512 1282 4×
1.5 0.06 95 8π π/2 4 512 1282 4×
1.5 0.06 130 8π π/2 4 512 1282 4×
1.5 0.06 180 8π π/2 4 512 1282 4×
1.5 0.06 500 8π π/2 4 512 1282 4×
1.5 0.14 75 3π 1.28 6 192 1282 4×
1.5 0.06 500 3π π/2 4 96 642 1×
1.5 0.06 500 3π π/2 4 96 642 2×
1.5 0.06 500 3π π/2 4 96 642 4×
1.5 0.06 500 3π π/2 4 96 642 8×
1.5 0.14 75 3π 1.28 6 96 642 4×
1.6 0.06 500 8π π/2 4 512 1282 4×
1.8 0.06 500 8π π/2 4 512 1282 4×
2.0 0.12 500 8π π/2 4 512 1282 4×
2.0 0.06 500 8π π/2 4 512 1282 4×
2.0 0.03 500 8π π/2 4 512 1282 4×
2.0 0.03 500 8π π/2 4 512 1282 8×
2.2 0.18 100 8π π/2 4 1024 2562 4×
2.2 0.18 500 8π π/2 4 1024 2562 4×
2.2 0.06 500 8π π/2 4 512 1282 4×
2.2 0.06 500 3π π/2 4 96 642 1×
2.2 0.06 500 3π π/2 4 96 642 2×
2.2 0.06 500 3π π/2 4 96 642 4×
2.2 0.06 500 3π π/2 4 96 642 8×
2.6 0.06 500 8π π/2 4 512 1282 4×
3.0 0.06 500 8π π/2 4 512 1282 4×

Table 4.1: Summary of simulations. The conditions of the upstream turbulence,
Mt and Reλ, contain contributions from the model of the subgrid flows and are thus
approximations. Lx is the length of the domain in the streamwise direction, xs is
the shock position, and k0 is the wavenumber corresponding to the maximum in the
energy spectrum of the upstream turbulence. Nx and Ny are the resolution of the
coarsest mesh level in the streamwise and transverse directions, respectively. AMR
gives the factor of refinement applied to the mesh near the shock.
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Figure 4.2: LES behavior for Ms = 1.5, Mt = 0.06, Reλ = 500 on a 96 × 64 ×
64 base mesh with increasing local mesh refinement at the shock. Lines with
symbols show the total statistics, including the contribution from the SGS model.
(a) Streamwise Reynolds stress, (b) transverse Reynolds stress, (c) density-specific
volume correlation b = −〈ρ′ν′〉, and (d) squared vorticity trace,Ωii = ωiωi. Dashed
line (4): uniform grid. Dot-dashed line (◦): 2× refinement. Dotted line (�): 4×
refinement. Solid line (+): 8× refinement. Thick solid line: LIA of (3.10).

resolution and Reλ. The downstream oscillations in b, and to a lesser extent in the
Reynolds stresses, are not an artifact of poor statistical convergence, and previous
DNS have seen similar oscillatory behavior downstream of shocks at low Mt [76].
The SGS statistics behave in a nonphysical manner when calculated at the shock,
resulting in the large spikes near the shock in Figure 4.2, but as discussed in section
4.2.1 these statistics are not used to calculated SGS terms in the governing equations
in the direct vicinity of the shock. These LES are also performed for a Ms = 2.2
shock with similar results.

The streamwise Reynolds stress converges quickly, but the LES requires a factor of
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4×AMR at the shock for the rest of the quantities to converge to an acceptable level.
Garnier et al. [26] assert that numerical convergence requires the shock corrugation
to be resolved, and this is evaluated in the LES by extracting a triangular mesh of
the shock surface from the LES using the shock detection algorithm of Samtaney
et al. [77]. The shock does not develop holes at the subject Mt and Ms, and thus
the displacement of the triangularized shock mesh from its mean location can be
converted into a continuous, periodic function on a rectangular 64 × 64 grid. The
radial power spectrum of a 2D function ψ(y, z) with Fourier transform ψ̂ is defined
as

E2D
ψ (kr) =

1
2

kr

∫ 2π

0

��ψ̂(kr, θk)
��2 dθk, (4.1)

where kr and θk are the radial and azimuthal wavenumbers. The time averaged,
radial power spectra of the shock displacement is given in Figure 4.3, plotted against
the prediction of LIA applied to (3.10) with kc,LI A = 1024. LIA predicts that the
shock displacements scale as a function of the energy spectrum as E(k)/k2 [63],
yielding an initially flat spectrum that transitions into a k−11/3 slope. It may be of
interest that E(k)/k2 scaling behavior also appears in the spectrum of the velocity
vector potential used in incompressible flows, but to the author’s knowledge this is
coincidental. The factor of 1/k2 that appears in the spectrum of shock corrugations
is a result of scaling with the lengthscale of the upstream turbulence, as briefly
discussed in section 1.2. The uniform-grid simulation significantly underestimates
the curvature of the shock, but the LES exhibits a trend towards k−11/3 behavior
as AMR refines the mesh at the shock. The shock displacement and evolution of
streamwise statistics both exhibit an acceptable degree of invariance with AMR level
for refinement factors of at least 4×.

The LES approaches the results of LIA as the upstream Mt is reduced, as shown
in Figure 4.4 for an Ms = 2 shock. The degree of agreement with LIA at Mt =

0.03 is comparable to that observed in shock-captured DNS under the similar flow
conditions at Reλ ≈ 30 [85] , although the ability of the DNS to match LIA was
limited by the low Reλ simulated. Comparison to LIA requires low Mt and shock
corrugations become smaller and harder to resolve as Mt is reduced. This would
suggest that additional AMR should be required as Mt is reduced to a small value
such as Mt = 0.03, but as shown in Figure 4.4 there is no substantial change in
the LES when AMR refinement about the shock is increased in that case. Tian
et al. [85] show that shock capturing in DNS is accurate when the ratio of the
Kolmogorov scale to the numerical shock thickness is large, and the corresponding
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Figure 4.3: Time-averaged radial spectrum of shock displacement, for Ms = 1.5,
Reλ ≈ 500, and Mt ≈ 0.06 on a 96 × 64 × 64 base mesh. The symbols show the
results from LES with varying levels of AMR at the shock. (4): uniform grid. (◦):
2× refinement. (�): 4× refinement. (+): 8× refinement. Dashed line: LIA of
(3.10), which follows a k−11/3 slope in the inertial range.

measure in LES would be a ratio of the lengthscale associated with the smallest
resolved upstream eddies to the numerical shock thickness, δs. Assuming that the
smallest upstream eddies are on the scale of the coarse mesh resolution, ∆xc, and
the numerical shock is a few cells wide on the refined mesh, this will be a fixed
ratio that is only dependent on the shock capturing scheme and the mesh. This ratio
is approximately ∆xc/δs ≈ 1.8 in the LES with 4× AMR, where δs is taken as the
mean velocity difference across the shock divided by the maximum of |∂ũ1/∂x |, and
is similar to the requirement η/δs > 1.4 found by Tian et al. [85] . The tendency of
low Mt cases to not depend heavily on AMR suggests that the ratio of ∆xc/δs may
be a more practical requirement on mesh refinement but, except at extremely low
Mt , this requirement appears to be met under conditions similar to those required to
resolve shock corrugations.

4.5.3 Comparison to DNS
DNS is available for validation of the LES at moderate Reλ. Figure 4.5 shows
the subject LES compared against the Ms = 1.5 shock-captured DNS of Larsson
et al. [46] for upstream inlet conditions of Mt = 0.16, Reλ = 75, and k0 = 6. The
method used to construct turbulence at the inflow boundary upstream of the shock
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Figure 4.4: Streamwise (a) and transverse (b) Reynolds stresses averaged over time
and cross sectional planes for a Ms = 2.0 shock and upstream Reλ ≈ 500 on a
512× 128× 128 base mesh. Solid line: LIA. Dotted line: Mt = 0.12 and ×4 AMR.
Dashed line: Mt = 0.06 and ×4 AMR. Dot-dashed line: Mt = 0.03 and ×4 AMR.
Pluses: Mt = 0.03 and ×8 AMR.

was different in the DNS and the peak wavenumber is not as well defined as it is
in the LES, yielding some difference in the spatial nondimensionalization of the
simulations. The LES of primary interest in this study are performed at higher
Reλ ≥ 100, but those LES still resolve a comparable fraction of the turbulent kinetic
energy relative to this case. The higher resolution LES appears to underestimate
kinetic energy dissipation upstream of the shock relative to the DNS when including
the contribution from the subgrid continuation, but the behavior of the resolved
scales in the LES at both mesh resolutions are consistent. The subgrid continuation
assumes an inertial range, and thus becomes less reliable when the mesh cutoff
in the LES is in the viscous scales of the turbulence, particularly at low Reynolds
numbers. The agreement of the LES with the DNS is considered reasonable at both
mesh resolutions and changes with mesh resolution at the coarsest level are found
to be minimal under the resolutions and flow conditions of primary interest in this
study, as shown in Figure 4.6.

A number of additional comparisons of the HSVM-LES to DNS in the canonical
shock-turbulence problem and several simplified test problems may also be found
in Braun et al. [11].
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Figure 4.5: Streamwise (a) and transverse (b) Reynolds stresses averaged over time
and cross sectional planes for a Ms = 1.5 shock. Inlet conditions are Mt = 0.16,
Reλ = 75, and k0 = 6. The lines show the resolved scale statistics and the symbols
show the total statistics, including the contribution from the SGS model. The
LES have a factor of 4× AMR at the shock, and are normalized by their total
upstream value interpolated to the mean shock position. Dotted line (�): LES with
a 192 × 128 × 128 base grid. Dash-dotted line (◦): LES with a 96 × 64 × 64 base
grid. Thick solid line: shock-captured DNS of Larsson et al. [46] [data from 35].
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Figure 4.6: Streamwise (a) and transverse (b) Reynolds stresses averaged over
time and cross sectional planes for a Ms = 1.5 shock, with upstream conditions of
Mt = 0.06 and Reλ = 500. LES are conducted with a factor of 4× AMR at the
shock, and results include the contribution from the SGS model. Solid line: LES
with 1024 × 256 × 256 coarse mesh. Circles: LES with 512 × 128 × 128 coarse
mesh. Dashed line: LIA of (3.10).
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4.6 Results and discussion
4.6.1 Shock Mach number effects
The shock’s effect on the turbulent statistics is strongly Mach number dependent.
Previous DNS has seen only limited Reynolds number dependency on the Reynolds
stress amplification over the shock [46], suggesting that the LES should still agree
reasonably well with low Reynolds number DNS regarding this phenomena. Figure
4.7 compares the Reynolds stress amplifications from the LES with those seen in
Reλ = 20DNS [76] and LIA. The LIA results show the ratio of the Reynolds stresses
far downstream of the shock to their pre-shock state. The post-shock values from
the DNS and LES are taken at the position of the maximum streamwise Reynolds
stress which occurs in the LES at k0x ≈ 3. The upstream turbulent Mach number
in the DNS varies between 0.05 and 0.12, and this variation is likely responsible
for the lower transverse Reynolds stress amplification in the Ms = 2.2 DNS. Ryu
and Livescu [76] observed that DNS trended towards the results of LIA as Mt

was reduced, but the lowest Mt DNS run still does not identically reproduce the
predictions of LIA. The scatter in the Reynolds stress amplifications results from
a lack of complete statistical convergence due to the limited number of large eddy
turnover times completed over the duration of the LES. The LES agrees well with
the streamwise Reynolds stress amplifications predicted by LIA. The transverse
Reynolds stress amplifications are lower in LES than in LIA, but the LES still agree
reasonably well with the DNS, with Reynolds stress amplifications within 8% of
those from the DNS despite differences in flow conditions.

The LES dissipation rate and the vorticity are compared to LIA in Figure 4.8. The
dissipation rate amplification in LIA is approximated by the predicted amplification
in 〈T〉0.76〈Ωii〉/〈ρ〉, as the LIA analysis does not explicitly consider viscosity. The
LES results are sampled immediately downstreamof the shock, and small differences
in the position where data are taken, as well as minor differences in the application
of AMR and WENO between runs, introduce a small amount of scattering in the
LES results. LIA predicts that only the transverse components of the vorticity are
amplified, whereas the vorticity in the SGSflows in the LES remains nearly isotropic.
At the subject Reynolds numbers the downstream vorticity field is expected to return
to isotropy very quickly [46], and so this is not considered an important discrepancy.

DNS has observed vorticity amplifications that converge towards LIA more quickly
than the Reynolds stresses as Mt is reduced [76]. The LES and LIA amplifications
in the vorticity and dissipation agree reasonably well for Ms ≤ 2.2, with differences
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Figure 4.7: Streamwise and transverse Reynolds stress amplifications over a shock.
LES has upstream flow conditions of Mt ≈ 0.06 and Reλ ≈ 500, and is on a
512 × 128 × 128 coarse mesh with 4× AMR. The DNS was performed by Ryu
and Livescu [76] at Reλ = 20 with Mt ranging between 0.05 − 0.12 immediately
upstream of the shock. Post shock values are taken at the position of the maximum
post-shock streamwise Reynolds stress and include contributions from the SGS
model. Streamwise Reynolds stress amplifications are given by the squares (LES),
triangles (DNS), and solid line (LIA). Transverse Reynolds stress amplifications are
the circles (LES), pluses (DNS), and dashed line (LIA).

between themethods being less than 15%, but at higher shockMach numbers the post
shock dissipation rate appears to be consistently lower than LIA. The amplification
in these quantities is expected to be difficult to capture in LES, because they are
inherently high-wavenumber phenomena which are almost entirely modeled by the
SGS model for the subject flow conditions. The rapid change in lengthscales across
the shock, subject to a fixed cutoff wavenumber in the LES, suggests that LES may
have difficulty modeling these small scale phenomena at large Ms. Comparisons
between LES and LIA are comparisons of two different models, neither of which
represents an exact solution, but subsequent LES are primarily focused on conditions
with Ms ≤ 2.2 where the LES shows better agreement with LIA.

4.6.2 Reynolds number effects
The peak streamwise Reynolds stress downstream of the shock has been observed to
decrease when computed in DNS with Reynolds number increasing from Reλ = 40
to Reλ = 70, although the change was very small [46]. Higher peak Reynolds
stresses are observed at higher Reynolds numbers over the range of Reλ = 10 − 45
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Figure 4.8: Squared vorticity trace Ωii = ωiωi and kinetic energy dissipation rate
immediately downstream of the shock, normalized by their upstream value. The
LES conditions are the same as in figure 4.7. The LIA amplification in dissipation
rate is approximated by the amplification in 〈µ〉〈Ωii〉/〈ρ〉. Vorticity amplifications
〈Ωii〉/〈Ωii〉0 are the circles (LES) and dashed line (LIA). Dissipation rate amplifi-
cations are given by the triangles (LES) and solid line (LIA).

[76], but, likewise, the magnitude of the Reynolds number effects was limited.

The streamwise Reynolds stress amplifications from the LES at Ms = 1.5 are plotted
in Figure 4.9a over the range of Reλ = 20−2500. The results agree with the DNS in
that there is initially a small increase in the amplification of R11 with increasing Reλ
over the range Reλ = 20 − 40, and there is a minor decrease between the Reλ = 40
and Reλ = 70 cases. At Reλ > 100 there is no discernible effect of Reynolds number,
consistent with the transition to fully developed turbulence observed in many flow
geometries near that Reynolds number [20]. The decrease in the amplification of
R11 over the range of Reλ = 40 − 100, followed by a leveling off with no further
Reynolds number effects, agrees qualitatively with the Ms = 1.05 experiments of
Kitamura et al. [42], although the amplitude of the observed changes was much
larger in that study.

The simulations in Figure 4.9a are conducted under conditions that range fromDNS,
at Reλ = 20, to LES with almost no resolved viscosity at Reλ = 2500. Figure 4.9b
shows the fraction of the streamwise Reynolds stress that is contained at the subgrid
level in the simulations, measured at the location of the peak in the downstream
R11. The downstream values are used instead of the upstream conditions because a
greater fraction of the kinetic energy is held in the subgrid scales downstream of the
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Figure 4.9: Amplification in the streamwise Reynolds stress over a Ms = 1.5 shock,
and the fraction of that Reynolds stress held in the subgrid scales downstream of the
shock. Downstream quantities are sampled at the position of the peak streamwise
Reynolds stress. The dashed line has an upstream Mt ≈ 0.06 and the dotted line has
Mt ≈ 0.18. The squares are LES done on a 512 × 128 × 128 coarse mesh and the
circles are done on a 1024 × 256 × 256 coarse mesh. Both meshes use 4× AMR.

shock. The changes in the LES at various Reλ do not appear to be directly correlated
with the fraction of the kinetic energy that is resolved on the computational mesh,
suggesting that these trends are not merely a result of numerical resolution.

4.6.3 Density fluctuations
Figure 4.10 shows radial spectra of density fluctuations and co-spectra of velocity-
density fluctuations in the LES. Density fluctuations upstream of the shock are
driven by the low turbulent Mach number and are considerably smaller than the
fluctuations generated by the shock. There is an increase in the spectra near the
mesh cutoff wavenumber resulting from aliasing errors, but both spectra display a
k−5/3 slope in the inertial range.

The downstream density fluctuations arise from amix of acoustic and entropymodes
generated by the shock. LIA predicts that at low Ms acoustic modes account for most
density fluctuations, but for Ms > 1.65 the entropy modes become dominant [49], at
which time the entropymodes grow rapidly with Ms. This behavior may be observed
in the LES, as shown in Figure 4.11. The density fluctuations initially remain
approximately constant with Ms and contain a region of rapid, smooth decay near
the shock resulting from the relaxation of exponentially decaying pressure modes.
At higher Ms ≥ 2.2, the density amplification begins to grow significantly and the
LES reproduces the transition from a smoothly decaying profile to a sharp jump,
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Figure 4.10: Radial power spectra of density fluctuations (a) and co-spectra of
density-velocity fluctuations (b) for a Ms = 1.5 shock, with upstream conditions of
Mt ≈ 0.18 and Reλ ≈ 500 on a 1024 × 256 × 256 base grid with 4× AMR. In (b),
the lines show the co-spectrum of ρũ1, and the symbols show the co-spectrum of
ρũ2. Solid line (◦): k0x = −1.34. Dotted line (+): k0x = 5.57. Dashed line (4):
k0x = 28.3.

consistent with the transition to a regime where exponentially decaying pressure
modes are comparatively small relative to entropy fluctuations. Velocity dilatation
appears in the transport equations for ai and b [56], and drives behavior such as
the dissipation of b, εb = v′∂u′k/∂xk , [79]. In incompressible variable-density
turbulence these correlations are the result of dilatation produced by molecular
mixing of different densities of fluid and, despite weak compressibility effects at the
subject Mt , this appears to still be the case in the LES. The correlation v′∂u′k/∂xk

calculated at scales that are well resolved in the LES is small compared to the
observed εb, which is the result of subgrid mixing modeled by (3.9).

Figure 4.12 shows the mass-weighted velocity fluctuations ai = 〈ρ
′u′i〉/〈ρ〉 down-

stream of the shock. This term represents the turbulent mass flux and, along with
b = −〈ρ′v′〉, is a correlation that is tracked in some Reynolds-Averaged Navier
Stokes (RANS) models [e.g. 80]. Unlike the Reynolds stresses, which have not
consistently displayed a return to isotropy within the limited domains possible in
numerical studies [45, 46], ai appears to return to the isotropic state ai = 0 down-
stream of the shock, although it does so slowly in the low Mt cases. Capturing
the behavior of measures such as a1 and b is important in simulations of shock-
turbulence interactions, and the production of these statistics by the shock in the
LES agrees reasonably well with the predictions of LIA.
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Solid line: Ms = 1.2. Dashed line: Ms = 1.5. Dotted line: Ms = 2. Dash-dotted
line: Ms = 2.2. Long-dashed line: Ms = 2.6. The circle and triangle symbols show
LIA of (3.10) at Ms = 1.5 and Ms = 2.6, respectively

-0.02

-0.01

0.00

0.01

0.02

0 10 20 30 40

k0x

a
1
(M

t 0
R
ii
0
)

Figure 4.12: Averaged mass-weighted velocity fluctuations ai = 〈ρ
′u′i〉/〈ρ〉. The

LES is shown by the symbols and has upstream Reλ ≈ 500 on a 1024 × 256 × 256
base grid with 4× AMR. Solid line: Ms = 1.5 LIA of (3.10). Circles : Ms = 1.5,
Mt = 0.06. Pluses: Ms = 1.5, Mt = 0.18. Triangles: Ms = 2.2, Mt = 0.18.
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4.6.4 Post shock anisotropy
DNS have found that the Reynolds stresses do not quickly return to isotropy, whereas
the vorticity field rapidly relaxes to an isotropic state [45, 46]. The LES agrees with
this, and even at high Reynolds number there is no apparent trend in the Reynolds
stresses in the LES that would indicate a return to isotropy. All components of the
SGS vorticity in the LES are amplified by the shock, whereas LIA predicts that only
the transverse components of vorticity are amplified, but this not considered to be
a significant shortcoming of the model because of the quick post-shock return to
isotropy of vorticity in DNS. The SGS Reynolds stresses, which numerically govern
the interaction of the SGS and resolved scales of the flow in (3.9), take longer to
return to isotropy, and the HSVM-LES is capable of capturing the initial post-shock
anisotropy of the Reynolds stresses at the SGS scales relatively well relative to the
predictions of LIA [11].

An alternative method for considering the anisotropy of the Reynolds stress is to
consider the invariants of the Reynolds stress anisotropy tensor,

bi j =
Ri j

Rii
−
δi j

3
, (4.2)

which are defined here as [69]

η2
l =

bi j b ji

6
, (4.3a)

ξ3
l =

bi j b j k bki

6
. (4.3b)

Any anisotropy in the Reynolds stresses can be represented as a single point on the
ηl − ξl plane. This approach is often used to simplify the description of Reynolds
stress anisotropy in problems where Ri j has six independent components, although
in the present case only the diagonal components of Ri j are non-zero. The realizable
limits of ηl and ξl that correspond to real-valued velocities are roughly triangular,
and this boundary is referred to as the Lumley triangle [61]. Figures 4.13 and 4.14
show the evolution of the Reynolds stress anisotropy downstream of a shock in the
ξl − ηl space for representative cases. At higher Ms, the flow initially has R11 < Rtr

shortly downstream of the shock, leading to ξl < 0, but quickly relaxes to ξl > 0
with R11 > Rtr as the flow progresses downstream. The growth and decay of the
downstream anisotropy occurs mostly near the ξl > 0 limit of the Lumley triangle,
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Figure 4.13: Evolution of post-shock Reynolds stress anisotropy in the plane of the
bi j tensor invariants ξl and ηl . The upstream flow has Mt = 0.06 and Reλ ≈ 500,
and are performed in LES on a 512 × 128 × 128 mesh with 4× AMR. The symbols
show the LES results, and are colored by their streamwise position downstream of
the shock. The lines show the boundaries of the Lumley triangle, corresponding to
the domain of realizable flow conditions.

particularly at higher Mt , which is expected because the left and right boundaries
of the Lumley triangle correspond to axisymmetric flow. The tendency of the flow
to relax towards isotropy along the ξl > 0 boundary of the Lumley triangle is
also observed in return-to-isotropy models and experimental data for homogeneous
turbulence [15, 78]. The flow progresses towards the ξl = ηl = 0 isotropic state for
a limited duration downstream of the shock, but it does not relax to isotropy within
the domains available in the computations.

Transverse spectra

The averaged Reynolds stresses and vorticity are aggregate quantities that only pro-
vide information on the largest and smallest scales in the flow, and say little about the
behavior of the intermediate scales within the inertial range of the turbulence. The
radial spectra of the streamwise and transverse velocities upstream and downstream
of a Ms = 2.2 shock are shown in Figure 4.15, and these spectra provide insight into
how kinetic energy is distributed at all scales in the flow. The modest drop-off in
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Figure 4.14: Evolution of post-shock Reynolds stress anisotropy in the plane of the
bi j tensor invariants ξl and ηl . The upstream flow has Mt = 0.18 and Reλ ≈ 500,
and are performed in LES on a 1024× 256× 256 mesh with 4× AMR. The symbols
show the LES results, and are colored by their streamwise position downstream of
the shock. The lines show the boundaries of the Lumley triangle, corresponding to
the domain of realizable flow conditions.

the spectra near the coarse mesh cutoff wavenumber is, in part, a physical artifact of
using 2D spectra, as will be subsequently discussed.

Taking ratios of these radial spectra, one can define an anisotropy parameter as a
function of wavenumber [14, 56],

χ2D =
E2D

11

E2D
11 + E2D

22 + E2D
33
−

1
3
. (4.4)

If the spectra in (4.4) were taken in 3D, then clearly χ = 0 for all wavenum-
bers in an isotropic field. Computing χ with radial spectra, as done here, will
generally return χ2D , 0 even if the flow is isotropic. A given wavenumber in
a one-dimensional spectrum contains contributions from larger magnitude three-
dimensional wavenumbers [69], and the same phenomena occurs in radial spectra.
Taking the definition of the radial power spectrum tensor, with k2 = kr cos(θ) and
k3 = kr sin(θ),

E2D
i j (kr) =

kr

2

∫ ∞

0

∫ 2π

0
φi j dθdk1, (4.5)
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Figure 4.15: Time averaged radial velocity spectra about a Ms = 2.2 shock, for
upstream conditions of Mt ≈ 0.18 and Reλ ≈ 500 on a 1024 × 256 × 256 base
grid with 4× AMR. The symbols show the resolved spectra in planes located at
k0x = −1.47(◦), k0x = 5.52(+), k0x = 28.1(4). The averaged spectra of the
modeled subgrid flows at each plane are given by the solid, dotted, and dashed lines,
respectively, and these are extended into the resolved scales to show agreement with
the resolved spectra.

and the isotropic velocity spectrum tensor for k =
√

k2
1 + k2

2 + k2
3 ,

φi j(k) =
E(k)
4πk2

(
δi j −

ki k j

k2

)
, (4.6)

one obtains expressions for the radial spectra of streamwise and transverse velocities
components,

E2D
11 (kr) =

kr

4

∫ ∞

0

E(k)(
k2

1 + k2
r

) (
1 −

k2
1

k2
1 + k2

r

)
dk1, (4.7a)

E2D
22 (kr) + E2D

33 (kr)

2
=

kr

8

∫ ∞

0

E(k)(
k2

1 + k2
r

) (
2 −

k2
r

k2
1 + k2

r

)
dk1. (4.7b)

Evaluating (4.7) with E(k) = k−5/3 yields a constant value of χ2D = 1/33, illustrat-
ing that the 2D anisotropy parameter will be slightly perturbed from zero in isotropic
turbulence. In the case of a finite spectrum, such as (3.10), the effects are more
pronounced. Figure 4.16 shows the anisotropy parameter calculated in the isotropic
turbulence in front of the shock. An analytical result for the model isotropic spectra
(3.10) with kc,LI A = 128 is constructed by performing the same decomposition into
vorticity modes used in LIA, and binning the resulting modes by radial wavenumber.
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Figure 4.16: Time averaged anisotropy parameter in isotropic upstream turbulence
upstream of a Ms = 1.5 shock, with Mt ≈ 0.18 and Reλ ≈ 500 on a 1024×256×256
base grid. The solid line shows χ2D calculated under the assumption of isotropy
using the model spectrum (3.10), and the dashed line is the result for an infinite
k−5/3 spectrum. The circles are the LES, given at a plane located at k0x = −2, just
upstream of the mean shock position shock.

The cutoff in the model spectrum results in an abrupt rise in χ2D at high wavenum-
bers, which is an artifact of high 3D-wavenumber transverse modes being aliased
onto low 2D-wavenumbers in the radial spectra when the modes are sampled in a
2D plane. The LES results are thus truncated at k ≤ kmax/2 to focus on the inertial
range, as χ2D is not considered a useful analysis tool at the largest wavenumbers.

Figure 4.17 plots χ2D computed in cross sectional planes at various streamwise
locations downstream of a Ms = 1.5 and a Ms = 2.2 shock. After some transience
close to the shock, the LES shows nearly uniform value in the anisotropy parameter
with radial wavenumber over the inertial range. χ2D appears to return to isotropy
over the extent of the inertial range as the flow evolves downstream, with higher
radial wavenumber becoming isotropic more quickly. The exception to this is a
small number of modes near and below k0 which do not return to a profile similar to
the isotropic upstream flow, and the Ms = 2.2 case initially sees an increase in χ2D

at these low radial wavenumbers as the flow decays. The very largest scales, k ≈ 1,
show continuously increasing anisotropy because these motions are on the scale of
the domain size and may interact with themselves through the periodic boundary
conditions of the domain. This is physically unrealistic but these scales of the flow
contain only a small amount of energy. The contribution of 3D effects to the 2D
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Figure 4.17: Time averaged anisotropy parameter downstream of a shock, for up-
stream conditions of Mt ≈ 0.18 and Reλ ≈ 500 on a 1024×256×256 base grid with
4× AMR. The solid line shows χ2D calculated from the results of LIA applied to
the model spectrum (3.10), and the dashed line is the preshock result for (3.10). The
dotted line is the result for an infinite k−5/3 spectrum. The LES results are given by
the symbols, and are calculated in cross-sectional planes downstream of the shock
at streamwise locations given in the subcaptions.

spectra limits the direct usefulness of χ2D in determining when specific scales in
the flow relax to isotropy, but this parameter will also be used in subsequent sections
to connect the results of this LES to model problems that simplify analysis in 3D.

Figure 4.18 shows the behavior of the first few wavenumbers of the radial velocity
spectra immediately downstream of the Ms = 2.2 shock. These spectra are taken at
planes within the region where exponentially decaying pressure modes contribute
significantly to the Reynolds stresses, but the radial spectrum of the streamwise
Reynolds stresses predicted by LIA and LES still show remarkable agreement. The
transverse velocity spectrum predicted in LIA shows qualitative agreement with
the LES within the inertial range, but at low radial wavenumbers the transverse
fluctuations see no significant amplification in the LES, and even see damping in
the lowest radial wavenumbers as the flow progresses downstream from k0x = 0.7
to k0x = 2.3. It is notable that this damping at the lowest radial wavenumbers is
not necessarily a large scale phenomenon, and would also be consistent with a loss
of energy in fine scale transverse velocity modes with wavenumbers approximately
normal to the shock plane that have been aliased onto low radial wavenumbers.
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Figure 4.18: Time averaged radial power spectra of the streamwise and transverse
velocities downstream of a Ms = 2.2 shock, for upstream conditions of Mt ≈ 0.18
and Reλ ≈ 500 on a 1024 × 256 × 256 base grid with 4× AMR. The symbols show
the LES, and the lines show LIA applied to the model spectrum (3.10). Solid line
(◦): k0x = −1.5 upstream spectra. Dotted line (4): k0x = 0.7. Dashed line (�):
k0x = 2.3.

The effect of a return to isotropy at inertial range scales

Previous DNS [45, 46] and experiments [4] have tended to observe larger Reynolds
stress amplifications in the streamwise direction than in the transverse directions.
This agrees with LIA at low Ms but, contrary to recent DNS, LIA predicts that the
Reynolds stress anisotropy begins to strongly favor Rtr as Ms is increased. The
behavior of the radial spectra in Figure 4.18, combined with the return to isotropy
of most wavenumbers observed in Figure 4.17, offers insight into a mechanism
that could explain why the Reynolds stress anisotropy from LIA has not reliably
predicted the results of DNS at high Ms.

First, it is noted that low radial wavenumbers in the transverse velocity spectrum
contain significantly more energy than those in the streamwise velocity spectrum.
This is because vorticity modes with a 3D wavenumber vector normal to the shock
contribute energy to the transverse Reynolds stresses, but when the 3D wavenumber
is projected onto the plane of the shock the resulting radial wavenumber is small.
Furthermore, to zeroth order, the modes with a wavenumber normal to the shock
will see the greatest change in wavenumber across the shock as a result of the mean
compression. This results in the transverse modes being disproportionately moved
towards high wavenumbers as they pass over the shock, relative to streamwise ve-
locity modes. At the lowest wavenumbers there are no energetic lower wavenumber
modes available, and this transfer can result in the energy content in a fixed low
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wavenumber decreasing across the shock, even if every upstream mode crossing the
shock is amplified. LIA confirms that the shock damps the 1D transverse velocity
spectrum at low wavenumbers [49, 73]. This means that the amplification of trans-
verse modes is weighted towards high wavenumbers, which are shown in the LES to
begin to return to isotropy downstream of the shock. The low wavenumbers, where
the streamwise modes see greater amplifications, do not show the same return to
isotropy, at least according to the radial spectra considered in Figure 4.17. Thus,
the return to isotropy may drive energy from Rtr to R11 downstream of a shock even
in scenarios where R11 > Rtr , because transverse fluctuations are focused at scales
where the return to isotropy is faster.

LES with LIA modeling of the shock

It is noted that, while Figure 4.17 shows that the anisotropy parameter over the
extent of the inertial range relaxes to a profile similar to that seen in the isotropic
upstream turbulence, the relaxation to isotropy appears to be much slower than the
development of the Reynolds stress anisotropy, which takes an approximately steady
value for downstream positions k0x > 5. If the Reynolds stress anisotropy is strongly
influenced by the relaxation to isotropy in the inertial range, then the inertial range
must relax to isotropy more quickly than suggested by the 2D anisotropy parameter
(4.4).

Describing the scale dependency of anisotropy with respect to 3D wavenumber is
complicated by the shock and inhomogeneous direction in the full shock-turbulence
LES, but some estimation of this behavior may be extracted from homogeneous
LES initialized with a post-shock field from LIA. LIA is applied directly to the
Fourier transform of a Reλ = 500, Mt = 0.18, 2563 forced periodic box LES to
produce a 3D approximation to the far-field downstream of the shock [55, 76], that
is anisotropic but remains periodic and homogeneous. This is then used as an initial
condition for a decaying 2563 LES, which acts as a model for the decay of a periodic,
anisotropic element of turbulence downstream of a shock. This is referred to as LIA-
processed LES, as LIA is used to model the instantaneous interaction of a periodic
cube of turbulence with a shock. LES where the shock is explicitly simulated in
the computational domain, as done in the other sections of this study, is referred
to as shock-processed LES. DNS initialized with the far-field LIA result has been
shown to converge towards shock-processed DNS as Mt is reduced [11], but LIA can
alternatively produce a prediction for the near-field immediately downstream of a
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shock. The decay of turbulence initialized with this near-field might produce a better
agreement to shock-processed DNS, but the near-field from LIA is inhomogeneous
which complicates boundary conditions and prevents the calculation of 3D spectra
that are the primary motivation for this analysis.

Figure 4.19 shows the 3D spectra of the LIA-processed LES before LIA is applied,
immediately after the application of LIA, and then after a small amount of post-LIA
decay. The time at which these spectra are taken is converted to a spatial location us-
ing the mean streamwise velocity downstream of a stationary Ms = 2.2 shock, which
allows comparison with the shock-processed LES. The oscillations in the spectra of
the transverse velocity fluctuations are a result of the discretization of the upstream
field onto integer wavenumbers, as some wavenumbers may not have a significant
amount of energy mapped to them by LIA. The transfer of transverse fluctuations
towards smaller scales over the shock is clearly visible in the spectra, and the en-
ergy content of transverse fluctuations is considerably damped at low wavenumbers.
The downstream k0x is quite close to the shock, but the flow has already begun to
show a noticeable movement towards isotropy over most of the inertial range. The
initial anisotropy in the inertial range varies greatly with shock Mach number, but
these scales reliably return to isotropy over the range of Ms considered, as shown
in Figure 4.20. The flows are initialized using the far-field LIA result, and thus do
not contain the exponentially decaying pressure modes that are predicted near the
shock. LIA predicts that pressure fluctuations are weighted towards high streamwise
wavenumbers downstream of the shock [74], and pressure-velocity correlations are
often believed to drive the Reynolds stresses towards isotropy. Thus, the actual
flow which contains these fluctuations near the shock would be expected to return
to isotropy at small scales faster than observed in this test case. The relaxation of
these intermediate scale modes to isotropy may also be affected by the construction
of the subgrid model, but it is noted that, unlike many SGS models, the HSVM-LES
approach does not assume isotropy in the subgrid flows [70] , which has allowed
previous applications of the model to anisotropic flows such as buoyancy-driven
turbulence [14] . The SGS Reynolds stress anisotropy in HSVM-LES of modeled
post-shock flows shows qualitatively similar behavior to that predicted by LIA [11],
and the shock-processed LES conducted in this study also shows comparable results.

Figure 4.21 gives the Reynolds stress anisotropy from the same simulation as shown
in Figure 4.19. Even though the LIA-processed LES is initialized with the far-
field LIA result, which does not contain the exponentially decaying pressure modes
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Figure 4.19: Three dimensional spectra of streamwise and transverse velocity fluctu-
ations in LIA-processed LES, inwhich a periodic, anisotropic 2563 LES is initialized
by applying LIA to an isotropic LES with Reλ ≈ 500 and Mt ≈ 0.18. The LIA
models a Ms = 2.2 shock. An equivalent downstream position k0x is produced
by scaling the simulation time by the mean convection velocity downstream of a
stationary shock. Dotted line: E11(k) pre-LIA. Dot-dashed line: E22(k) pre-LIA.
Solid line: E11(k) at k0x = 0. Dashed line: E22(k) at k0x = 0. Circles: E11(k) at
k0x = 6.0. Triangles: E22(k) at k0x = 6.0.
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Figure 4.20: Three dimensional spectra of streamwise and transverse velocity fluc-
tuations in LIA-processed LES. Pre-LIA flow conditions are the same as in Figure
4.19. Dotted line: E11(k) pre-LIA. Dot-dashed line: E22(k) pre-LIA. Solid line:
E11(k) at k0x = 0. Dashed line: E22(k) at k0x = 0. Circles: E11(k) at k0x = 6.0.
Triangles: E22(k) at k0x = 6.0.
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Figure 4.21: Reynolds stress anisotropy. The symbols show the anisotropy from
shock-processed LES with Ms = 2.2, upstream Mt ≈ 0.18 and Reλ ≈ 500 on a
1024 × 256 × 256 base grid with 4× AMR. The line shows LIA-processed LES,
in which LES in a periodic 2563 box is initialized by applying LIA to an LES of
homogeneous isotropic turbulencewith the same upstream conditions. The temporal
decay in the LIA-processed LES is converted to a spatial coordinate using the mean
convection velocity downstream of the shock.

that contribute to the rapid rise in R11 downstream of a shock, there is still a
rapid correction towards R11 > Rtr within the span of time shown in Figure 4.19.
The Reynolds stress anisotropy in the LIA-processed LES agrees well with the
shock-processed LES, and both methods level off to an approximately constant
Reynolds stress anisotropy beyond k0x ≈ 5 downstreamof the shock. The anisotropy
parameter (4.4) calculated in 2D cross-sectional planes of the LIA-processed LES
also exhibits similar behavior to that seen in transverse planes of the shock-processed
LES, as shown in Figure 4.22. Despite difficulties in interpreting the 2D anisotropy
parameter directly, its strong similarity to the model problem of the LIA-processed
LES suggests that the scale-dependent relaxation to isotropy in the shock-processed
LES proceeds in a similar manner to the LIA-processed LES. The inertial range
of the LIA-processed LES relaxes to isotropy quickly, over timescales that would
imply that the shock-processed LES has returned to isotropy over much of the extent
of the inertial range by the time the Reynolds stress anisotropy has relaxed to its
far-field value.

Post-processed LIA

To further illustrate the effect of inertial range isotropy on the Reynolds stresses,
the far-field results of LIA applied to (3.10) with kc,LI A = 128 are post-processed to
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Figure 4.22: Anisotropy parameter calculated from 2D radial spectra in planes
parallel to the shock. The pre-shock flow has Reλ = 500 and Mt = 0.18. The
lines show shock-processed LES, in which the shock is explicitly simulated, and the
symbols show LIA-processed LES. The temporal decay in the LIA-processed LES is
converted to a spatial coordinate using the mean convection velocity downstream of
the shock. Solid lines and circles: k0x ≈ 2.3. Dashed line and triangles : k0x ≈ 7.7.
Dotted line: χ2D = 1/33 analytical result for an infinite isotropic k−5/3 spectrum.

enforce that the 3D spectra of E11(k) and E22(k) are equal for k ≥ kiso, where kiso =

2k0. The Reynolds stresses are then reconstructed by integrating the spectra, and the
resulting Reynolds stress anisotropy is shown in Figure 4.23. This post-processing
affects the distribution of energy in the Reynolds stresses, but aggregate quantities
such as the turbulent kinetic energy remain unchanged. With this modification,
LIA agrees more closely with the shock-processed LES at high Ms. The selection
of kiso = 2k0 is arbitrary because in practice the largest scales that are isotropic
will depend on the shock Mach number and how far downstream measurements are
taken, but this selection is approximately the beginning of the inertial range in the
post shock flow in Figure 4.19. LIA also predicts that the intersection of E11(k) and
E22(k) in the post shock field also corresponds to roughly k = 2k0 for Ms > 2.

DNS also exhibits behavior consistent with the assertion that Reynolds stress
anisotropy is significantly affected by a rapid return to isotropy at finer scales.
Good agreement between DNS and LIA has been observed regarding the kinetic en-
ergy amplification over a shock, but DNS has not shown a distinct trend towards the
LIA results for the individual Reynolds stresses as Reλ is increased up to Reλ ≈ 75
[46], despite the prediction of Ryu and Livescu [76] that LIA will become more
accurate at high Reλ based on the ratio of the viscous to shock lengthscales. The
scaling argument of Ryu and Livescu [76] is a predictor of nonlinear behavior in
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Figure 4.23: Reynolds stress anisotropy. The symbols show the anisotropy at the
location of the peak downstream value of R11 in LES with upstream Mt ≈ 0.06 and
Reλ ≈ 500 on a 512 × 128 × 128 base grid with 4× AMR. The solid line is the
far field result of LIA. The dashed line is produced by applying LIA to the model
spectrum (3.10) and post-processing the results to enforce that all wavenumbers
k/k0 > 2 have returned to isotropy downstream of the shock.

the instantaneous interaction of turbulence with a shock, whereas a scale-dependent
relaxation to isotropy as suggested here would result from rapid nonlinear effects in
the downstream turbulence. This is not the only non-linear phenomenon that could
restrict the range of flow conditions over which LIA is practically useful at larger
Ms, but Figure 4.23 suggests that this process may have substantial effect on the
Reynolds stress anisotropy, sufficient to explain much of the discrepancy between
LIA and DNS.

4.7 Discussion
LES of canonical shock-turbulence interactions are conducted to investigate the flow
at high Reynolds number. Adaptive mesh refinement is applied in the direct vicinity
of the shock. The results show reasonable agreement with previous DNS at low
Taylor-based Reynolds number, with an acceptably small amount of variation with
mesh resolution. With sufficient mesh refinement about the shock, the LES shows a
convergence towards the k−11/3 scaling in the shock surface corrugation predicted by
linear analysis, providing an additional validation that the mesh is fine enough that
the shock-capturing scheme is not interfering with the interaction of the turbulence
with the shock. The amplification in the kinetic energy dissipation rate predicted
by LES ceases to agree well with Linear Interaction Analysis (LIA) at larger shock
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Mach numbers, and thus results are focused on the parameter space of Ms ≤ 2.2.

No significant Reynolds number effects are observed in the LES for Reynolds
numbers larger than Reλ = 100. There is a discernible dependency on Reλ in the
Reynolds stress amplifications at Reλ < 100, but as seen in previous DNS the effects
of Reλ within this range remains quite small.

Studies of shock-turbulence interactions at high shockMach numbers have observed
that the downstreamReynolds stress anisotropy, defined as the ratio of the streamwise
to transverse Reynolds stresses, R11/Rtr , consistently favors R11. The transverse
Reynolds stresses are disproportionately weighted towards smaller scales at high Ms,
and as the flow relaxes towards isotropy at inertial range scales there is a transfer
of energy towards the streamwise Reynolds stress. The LES suggests that this
relaxation to isotropy occurs quickly over the extent of the inertial range, producing
larger R11 values than predicted by linear theory. An unusual phenomenon in which
the return to isotropy transfers energy from Rtr into R11 may occur even in the
situations where R11 > Rtr .

LIA, as applied here, neglects the interaction of dilatational modes in the upstream
turbulence with the shock and this assumption, along with other phenomena, could
also contribute to LIA requiring increasingly restrictive flow conditions at higher
Ms in order to capture the Reynolds stress anisotropy downstream of the shock.
LIA is shown to agree more closely with the LES when the LIA results are post-
processed to assume the downstream inertial range scales are isotropic, showing
that the effects of this relaxation of inertial range scales to isotropy are of a sufficient
magnitude that this process could explain much of the difference between LIA and
LES. The agreement between the LES and LIA regarding factors other than the
Reynolds stresses, such as the shock corrugation spectrum and the radial spectrum
of streamwise velocity fluctuations near the shock, suggests that at high Reynolds
numbers the instantaneous interaction of the shock with the turbulence at the subject
Mt ≤ 0.18 turbulent Mach numbers can be considered to be effectively linear, but
nonlinear small scale interactions are significant over the short distance downstream
of the shock as the flow is relaxing towards its far-field behavior, particularly at
large Ms. It is noted that some Reynolds-averaged models have either been tuned
[80] or explicitly constructed [e.g. 83] to agree with the Reynolds stress trends seen
in LIA, and this analysis would suggest that this may be a more robust approach
than previously recognized, so long as the scale dependent relaxation to isotropy is
accurately modeled.
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C h a p t e r 5

ENSEMBLE AVERAGING OF A CORRUGATED SHOCK

5.1 Introduction
Large Eddy Simulation (LES) relaxes the computational requirements to simulate
the canonical shock-turbulence problem relative to DNS, but LES may still become
prohibitively expensive in complex problems or when a large parameter space must
be explored. Performing LES of shocked flows is also non-trivial, because standard
methods to numerically stabilize a shock tend to be excessively dissipative when
applied to turbulence [25] and models for the effects of subgrid flows may not
perform well at discontinuities. Furthermore, LES should resolve corrugations that
develop in the shock [26], and this will usually require localized mesh refinement
which substantially increases computational cost.

Reynolds-Averaged Navier-Stokes (RANS) methods thus remain in widespread use,
particularly in practical engineering applications. These models average the govern-
ing equations, relaxing resolution requirements and often reducing the dimensional-
ity of problems, but introduce unclosed correlations that must be modeled, typically
by empirical calibration to experiments or high fidelity simulations. Recent efforts
have been made to develop RANS models for compressible and variable density
flows [7, 32, 80], applicable to fundamental flows such as Richtmyer-Meshkov in-
stabilities in which a shock perturbs a material interface, which then develops into
a turbulent layer upon reshock.

Capturing the behavior of shocks in RANS remains difficult, even in the simplified
case where density fluctuations in the turbulence arise only from compressibility
effects. Sinha et al. [83] showed common transport models for turbulent kinetic
energy and dissipation failed to converge upon mesh refinement in the presence
of shocks, and presented a model [81, 83] based on linear analysis that resolves
mesh convergence problems but requires explicit knowledge of the shock Mach
number. Reconstruction of the closure models into a conservative form is shown to
improve numerical convergence [82, 88], but it is not generally possible to convert
an existing model to this form. Schwarzkopf et al. [80] produced Reynolds stress
amplifications through a shockwave that agreed reasonably well with linear theory,
but did not consistently observe a monotonic decay in the effects of changing the
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computational mesh , even at meshes that would be impractical outside of one-
dimensional problems. The magnitude of the observed mesh resolution effects was
considered to be acceptably small, but the absence of a consistent scaling in mesh
effects, such as O(∆x), suggests that the numerical convergence behavior of this
model is difficult to predict and likely dependent on the specific numerical method
used at the shock. Griffond et al. [34] produce a model tuned to match Linear
Interaction Analysis (LIA) by coupling the closure model with a pseudopressure
numerical approach that constructs shock fronts as continuous features, andGriffond
and Soulard [33] expand on this approach to allow for the evaluation of other
turbulence models against LIA.

Models using traditional shock-capturing schemes that apply artificial viscous dis-
sipation to stabilize the shock at roughly the thickness of the local mesh often face
convergence issues in RANS arising from the shrinking shock width as the mesh is
refined. Direct Numerical Simulation (DNS, e.g. [45]) shows that the corrugation
the shock undergoes as it passes through turbulence produces mean profiles with
an ensemble-averaged shock width of a comparable order of magnitude to the en-
ergetic turbulent scales, which are often possible to resolve on the computational
mesh. This implies that if the correct profiles for primitive quantities-averaged den-
sity, velocity and pressure-were produced in RANS, convergence problems would
be reduced to, at worst, resolving a reasonably large shock lengthscale. This concept
has similarities with the pseudopressure formulation used by Griffond and Soulard
[33], but differs in that the proposed shock width is a physical quantity. Subsequent
references to shock thickness refer to the thickness of profiles of ensemble averaged
variables near a shock, and should not be confused with the instantaneous shock
thickness which remains on the order of the mean free path.

It is also apparent from DNS [45, 46, 48] that shock-turbulence interactions see
a small but significant deviation from the laminar Euler equation amplifications
in primitive mean flow variables, with the post-shock mean densities lower than
predicted by the laminar normal shock relations. This effect approximately scales
with the square of the ratio of the turbulent Mach number to the shockMach number
[46]. Lele [51] modeled the effect of turbulence on the mean flow jump relations
using rapid distortion theory, and showed that the velocity of the shock passing
through turbulent flow is also changed relative to the laminar case.

The purpose of this study is to address capturing the shock jump conditions and
averaged shock profile width in RANS. Section 5.2 describes the existing RANS
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model that this study uses as a starting point. A simple model for the large Reynolds
stress present in the vicinity of the shock is produced by analysis of two uniform flow
regions separated by an interface consistent with the shock corrugation predicted
by linear analysis, as discussed in section 5.3. Section 5.4 develops a model for
correlations in the energy equation that accounts for the generation and convection
of turbulent entropy or acoustic modes, and section 5.5 evaluates the effectiveness
of the proposed changes to the RANS model.

5.2 The BHR-3 RANS Model
The subject work uses the two-lengthscale BHR-3 RANS model of Schwarzkopf
et al. [80], but only single species fluids are considered here. The Navier-Stokes
equations are decomposed into ensemble-averaged and fluctuating components,
f = f + f ′. Favre, or density-weighted, averages are constructed as f̃ = ρ f /ρ and
f ′′ = f ′ − ρ′ f ′/ρ. Note that the definitions for f and f̃ are defined as averaged
quantities in RANS, whereas in the previous LES chapters they referred to filtered
fields. The Favre-averaged governing equations for the density ρ, velocity ui, and
total energy E are given as

∂ρ

∂t
+

∂

∂xi
(ρũi) = 0, (5.1a)

∂ρũi
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ρũ j R̃i j

)
−
∂

∂x j

(
P′u′j

)
−

∂

∂x j

(
ρI′′u′′j

)
−

1
2
∂

∂x j

(
ρu′′i u′′i u′′j

)
,

(5.1c)

where gi is a body force and R̃i j = ρu′′i u′′j /ρ is the Reynolds stress. Repeated indices
denote summation. The pressure P, temperature T , and internal energy I are related
by the ideal gas equation of state P = (γ − 1) ρĨ, and Ĩ = CvT for a constant specific
heat at constant volume, Cv. The ratio of specific heats, γ = 1.4, is constant. The
total energy is related to the internal energy by Ẽ = Ĩ + R̃ii/2 + ũiũi/2. The BHR-
3 model tracks transport equations for R̃i j , a turbulent transport lengthscale ST , a
turbulent dissipation lengthscale SD, the mass-weighted turbulent velocity ai = −u′′i ,
and the density-specific volume correlation b = ρ′ν′. For brevity these equations are
not reproduced here, as they are used without modification from previous work [80].
Schwarzkopf et al. [80] models the pressure-velocity and internal energy-velocity
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correlations on the right hand side of (5.1c) by gradient diffusion relations, but these
are treated differently in this work as discussed in section 5.4.

The model is implemented numerically in the adaptive mesh refinement AMROC
framework [19] with a 2nd order WENO scheme in space and a 3rd order strong
stability preserving Runge-Kutta scheme in time [31].

5.3 Ensemble Averaging of a Corrugated Shock
The surface of a shock passing through a turbulent upstream flow corrugates, and
over an ensemble of different turbulent initial conditions the instantaneous position
of a shock will occur over a distribution of possible locations. The width of
the ensemble-averaged shock profile is thus expected to be much wider than the
instantaneous shock front, and it has previously been observed that this corrugation
produces a large spike in the streamwise Reynolds stress, which reaches a value of
∆u2

1/4 at the center of the shock [46], where∆u1 is the change in themean streamwise
velocity across the shock. Reconstructing the correct shock profile width in RANS
is thus expected to be a matter of properly capturing this large, near-shock Reynolds
stress.

A simple model for the Reynolds stress within a shock is obtained by considering
a single mode perturbation on a shock which separates a region of unshocked flow
with constant average velocity u1,u from shocked flowwith constant average velocity
u1,d , such that

u1(x, y, z, t) = u1,u + ∆u1H(x + ξ(y, z, t)) + u′turb(x, y, z, t). (5.2)

The x direction corresponds to the mean shock normal direction, H(x) is the Heav-
iside step function, ξ is the instantaneous perturbation of the shock front from its
mean position, and u′turb represents turbulent fluctuations in the flow. The subscripts
‘u’ and ‘d’ refer to quantities in the upstream pre-shock and downstream post-shock
states, respectively. The reference frame is such that the mean location of the shock
is stationary and located at x = 0. The pre-shock turbulence is assumed to be vorti-

cal and satisfy Mt � (Ms−1) for turbulent Mach number Mt =

√
R̃ii,u/cu and shock

Mach number Ms = ũ1,u/cu, where c =
√
γP/ρ is the sound speed. Fluctuations

in the turbulence are small compared to the mean shock jump under this condition,
implying that ∆ũ1 ≈ ∆u1 = u1,d − u1,u. Likewise, fluctuations in (5.2) that arise
from the perturbed motion of the shock, ξ, are on the order of the mean shock jump
and are consequently much larger than turbulent fluctuations. Thus, the upstream
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turbulent fluctuations are considered when determining the behavior of the shock
perturbation, ξ, but the contribution of u′turb to mean profiles or correlations such
as R̃i j is small within the extent of the shock corrugations, allowing u′turb to be oth-
erwise neglected in this analysis. The pressure and density fields follow equivalent
relations as (5.2).

Linear Interaction Analysis (LIA) is used to connect the shock perturbation to tur-
bulent quantities in the upstream flow. LIA is discussed in more detail in Appendix
A. LIA is limited to the low turbulent Mach number regime considered here,
Mt � (Ms − 1), but under this condition it has shown reasonable agreement with
DNS [76]. The shock perturbation corresponding to a single upstream vorticity
mode oriented in the x − y plane is predicted in LIA as

ξ = −
1

mk
Leik(ly−u1,umt), (5.3)

where m = cos(ψ) and l = sin(ψ) for a mode of wavenumber k and incident angle
ψ with the shock. Expressions to determine the constant L are provided in Mahesh
et al. [64]. Neglecting the contribution of turbulent fluctuations about the upstream
and downstream mean flows, the field (5.2) can then be written as

u1(x, y) = u1,u + ∆u1H
(
x +

L
m k

cos(k l y)
)
, (5.4)

noting that the time dependency only introduces a phase shift and thus has been
dropped. Averaging (5.4) in the y-direction provides mean flow profiles consistent
with the single wave LIA solution,

u1(x) = u1,d −
∆u1
π

cos−1
(
mk x

L

)
. (5.5)

The field of velocity fluctuations is given by

u′1,u(x) = u1,u − u1(x) =
−∆u1
π

cos−1
(
−mk x

L

)
, (5.6a)

u′1,d(x) = u1,d − u1(x) =
∆u1
π

cos−1
(
mk x

L

)
, (5.6b)

u′1(x, y) = u′1,u(x) + (u
′
1,d(x) − u′1,u(x))H

(
x +

L
m k

cos(k l y)
)
. (5.6c)

The fields of pressure and density fluctuations again follow equivalent forms. Corre-
lations of interest, such as the Reynolds stresses, may be constructed by multiplying
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various combinations of the fluctuating fields and averaging in the transverse direc-
tion. The Reynolds-averaged and Favre-averaged Reynolds stresses,

u′1u′1 =
∆u2

1
π2 cos−1

(
k m x

L

)
cos−1

(
−k m x

L

)
, (5.7a)

R̃11 =
ρu′′1 u′′1
ρ
=
ρu ρd ∆u2

1 cos−1
(

k m x
L

)
cos−1

(
−k m x

L

)
(
ρu cos−1

(
k m x

L

)
+ ρd cos−1

(
−k m x

L

))2 , (5.7b)

are shown in Figure 5.1, normalized by the velocity jump. Both averaging methods
yield the same peak value, but the distribution of the Favre-averaged Reynolds stress
skews towards the upstream flow as the shock Mach number is increased. A more
detailed derivation of the Reynolds stress within this region is provided in Appendix
C, which also contains expressions for some other correlations of interest.
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Figure 5.1: Reynolds stress distribution within the region of interface corrugation.
The solid line corresponds to u′1u′1 at all Ms and R̃11 at Ms = 1. Dashed line : R̃11

at Ms = 1.5. Dotted line : R̃11 at Ms = 5.



76

5.3.1 Reynolds Stress Transport
The exact transport equation for the Favre-averaged Reynolds stress is [79]
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∂ũ j

∂xk
− ρR̃j k

∂ũi
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(5.8)

where σ is the viscous stress tensor. Modeling unclosed terms on the right hand
side of (5.8) represents the bulk of the assumptions in Reynolds-averaged methods,
and there is interest in observing how the transport equation behaves as it processes
the turbulence in a corrugated shock. The large Reynolds stress arising from shock
corrugations is transported with the shock, rather than with the fluid, which suggests
that (5.8) may not be a practical basis for modeling shock corrugation effects, but
integration of (5.8) using Favre-averaged profiles constructed from (5.5) and (5.6)
provides insight into how the large Reynolds stress at the shock is produced in
the governing equations. Assuming a statistically stationary state and neglecting
viscous stresses, (5.8) is integrated from the upstream flow to the peak position of
R̃11, denoted x0,

ρuũu∆x0 R̃11 =2
∫ x0

−∞
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(5.9)

x0 =
L

m k
cos

(
πρd

ρu + ρd

)
. (5.10)

The notation∆x0 f = f |x=x0− f |x=−∞ denotes the difference between the value of f at
x0 and in the upstream flow. The first two integrals on the right hand side of (5.9) are
traditionally considered to represent the production of turbulent kinetic energy from
the pressure gradient and velocity gradient, respectively, but the shock corrugations
are expected to behave significantly differently than traditional turbulent Reynolds
stresses. These first two integrals can be integrated in a straightforward manner
after the relevant correlations have been constructed from (5.6). The contribution
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from the triple correlation integrates to zero. The last integral contains a Heaviside
function multiplied by a Dirac delta function, which is not formally integrable,
but it may be shown, if the order of integration and differentiation are allowed be
interchanged, that

P′
∂u′′1
∂x1
=
∆u1

∆P
P′
∂P′

∂x1
=
∆u1

2∆P

∂

∂x1
P′P′ =

1
2
∂

∂x1
P′u′′1 . (5.11)

Figure 5.2 shows the relative contribution of each source term to the Reynolds stress
amplification between the upstream edge of the shock profile and x0. At low Mach
numbers, the combined pressure-dilatation and pressure-velocity correlations are
responsible for most of the Reynolds stress amplification, but as the Mach number
is increased the first two integrals of (5.9) quickly become significant. The inability
of conventional RANS models to reproduce the large Reynolds stresses within the
extent of the shock corrugations thus cannot be blamed on a single closure model
in the Reynolds stress equations failing inside of a shock.
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Figure 5.2: Reynolds stress source terms integrated from upstream to the peak-R̃11
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5.3.2 A Localized Shock Corrugation Model
It is desirable to develop a model that is capable of reproducing the large spike in
Reynolds stresses that results from averaging over corrugations in the shock, without
requiring a priori knowledge of the shock Mach number or location. The goal of
including the large Reynolds stress immediately near the shock is to reproduce the
physical width of the ensemble-averaged shock profile. An additional Reynolds
stress term representing shock corrugation effects, R̃i j,shock , is explicitly introduced
into the averaged momentum and energy equations where R̃i j now denotes the
convectivemodel for theReynolds stress that is tracked inBHR-3 [80]. TheReynolds
stress resulting from shock corrugation is not transported with the flow, nor is it
modeled in conventional Reynolds stress transport models such as BHR-3, and thus
a linear combination of the Reynolds stress arising from shock corrugation with
the Reynolds stress arising directly from turbulent fluctuations is considered. The
resulting momentum and energy equations are given by
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ρẼ

)
+

∂

∂x j

(
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Pũ j

)
−
∂

∂x j

(
P′u′j

)
−

∂
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ρI′′u′′j
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∂

∂x j

(
ρu′′i u′′i u′′j

)
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(5.12b)

A model is developed for R̃i j,shock by considering the behavior of u′1u′1 at the cen-
terpoint of the shock profile. The Reynolds-averaged Reynolds stress is used for its
simplicity, and as previously shown in Figure 5.1 the Favre-averaged Reynolds stress
behaves in a similar manner except for its more complex distribution. Evaluating
(5.7a) and the gradient of (5.5) at the centerline of the shock yields

u′1u′1(x = 0) = ∆u2
1/4, (5.13a)

∆u1 =
πL
mk

∂u1(x)
∂x

����
x=0

. (5.13b)

Inserting the second relation into the first provides an approximation for theReynolds
stress term inside the shock as a function of the local velocity divergence

u′1u′1 =
πL∆u1
4mk

∂u1
∂x

. (5.14)
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Alternative formulations in terms of the square of the velocity divergence are also
possible, but (5.14) is selected because it was found to simplify the subsequent
analysis. Equation (5.14) is only valid for only a single mode perturbation, and
L, m, and k must be related to general turbulent statistics in the upstream flow.
Following the procedure of Mahesh et al. [64], the solution is integrated over all
upstream Fourier modes in spherical coordinates. Assuming vortical, isotropic
upstream turbulence,

R̃11,shock = 4π
∫ ∞

k=0

πu1,u Av

k
k2 dk

∫ π/2

ψ=0

L̆
4m

sinψ dψ
(
u1,d

u1,u
− 1

)
∂u(x)
∂x

. (5.15)

L̆ = L/Av is the shock perturbation amplitude normalized by the non-dimensional
pre-shock vorticity wave amplitude, Av, which is related to the upstream energy
spectrumasu2

1,u A2
v = E(k)/

(
4πk2) . Thewavenumber integral thus has a dependence

on the specific shape of the energy spectrum, consistentwith the findings of LIA [64].
The upstream spectrum will typically not be known, but LIA suggests that the shock
perturbation amplitude decays like E(k)/k2. This means the shock corrugation
is primarily driven by the low wavenumbers, and so it is considered sufficient to
assume all turbulent energy exists in a single band of wavenumbers,

u1,u Av ≈

√
K

4πk2 δ(k − k0). (5.16)

k0 is the wavenumber corresponding to the maximum in the upstream energy spec-
trum, and δ(x) is the 1-DDirac delta function. The upstream turbulent kinetic energy
is approximated by the Favre-averaged K = R̃ii/2, noting that density fluctuations
are small in the vortical upstream turbulence and so there is minimal difference
between Reynolds and Favre averaging. The integral then reduces to

4π
∫ ∞

k=0

πu1,u Av

k
k2 dk ≈

π

k0

√
K ≈ ST

√
K . (5.17)

The transport lengthscale is approximated by ST = π/k0. The integral over wave
orientations in (5.15) is a function ofMach number, but for large Ms this dependency
largely cancels with the Ms-dependency of the velocity ratio. This term is used as
a shock detection flag, and as a means to turn off the model in regions of smooth
compressions. The integral is approximated by

φ1D(Ms) =

(
1 −

u1,d

u1,u

) ∫ π/2

ψ=0

L̆
m

sinψ dψ

≈ 1 − exp ©«− 1
2c̃

√
max

(
0, R̃11,shock

���
φ1D=1

)ª®¬ .
(5.18)
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A comparison of this fit to the integral from LIA is provided in Figure 5.3, noting
that R̃i j,shock ≈ ∆u2

1/4 in the shock. The final model then reduces to

R̃11,shock = −
1
4
φ1DST

√
K
∂ũ1
∂x

. (5.19)
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In (5.18), the R̃11,shock

���
φ1D=1

term denotes (5.19) evaluated with φ1D = 1. The
Reynolds averaged u1 is modeled by the Favre averaged ũ1 in (5.19). The original
model equations (5.5) and (5.6) suggest that u1 and ũ1 have different profiles within
the region of shock corrugation, but under the previous assumption of low Mt ,
vortical upstream turbulence both Reynolds and Favre averaged velocity fields see
the same shock jump and shock width, which implies that the amplitude of the
divergence of the averaged velocity field is expected to be similar in each method.

5.3.3 Extension to higher dimensions
The 1-D model (5.19) is extended to higher dimensions by computing the 1-D result
as a function of the velocity field divergence and rotating it to align with the shock.
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The unit vector normal to the shock, e, may be enforced artificially if it is known a
priori, or itmay be selected based on a local criteria such as the principal compressive
eigenvector of the rate of strain tensor. The cutoff 0 ≤ φ3D ≤ 1 represents some
function that goes to 0 away from the shock and takes a value of 1 at the shock. This
is introduced as a means to limit the influence of the shock corrugation model in
smooth compressions. In many flow configurations the velocity dilatation outside
of shocks is small enough that the model will disable itself, but an example of a case
where extremely strong smooth compressions arise, requiring careful selection of
φ3D, is provided in section 5.5.2. The three-dimensional model follows as

R̃i j,shock = R
©«

u′ku′k 0 0
0 0 0
0 0 0

ª®®®¬ RT, (5.20a)

u′ku′k = −
1
4
φ3DST

√
K
∂ũi

∂xi
, (5.20b)

R =
©«

1 − e3
2

(e1+1) −
e2

2

(e1+1) −e2 −e3

e2 1 − e2
2

(e1+1) −
e2 e3
(e1+1)

e3 −
e2 e3
(e1+1) 1 − e3

2

(e1+1)

ª®®®¬ . (5.20c)

5.4 Energy Equation Closure
DNS of the shock-turbulence interaction [45, 48] have observed that, under av-
eraging, there is a small but significant deviation away from the Euler equation
amplifications in primitive quantities as the flow passes through a shock, and this
coincides with a change in shock speed relative to the speed an equivalent shock
would have in laminar flow. Lele [51] constructed exact jump conditions for the
mean variables, but focuses on the effects of the Reynolds stresses when modeling
unclosed terms.

The correlations in the energy equation of (5.1) contain contributions from the
acoustic and entropy modes of the turbulence that are separate from the Reynolds
stresses, and Schwarzkopf et al. [80] models these correlations by the gradient
diffusion hypothesis, as gradients of the mean temperature field. These fluctuations
are expected to be related to the transported correlations in the model, ai and b, and
an alternative formulation in terms of these existing quantities is desired.

Decomposing the turbulent flow into a linear combination of acoustic and combined
vorticity/entropy modes [44], the fluctuating part of a weakly turbulent, single
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component fluid field can be split f ′ = Ûf ′+ Üf ′, where Ûf ′ is the fluctuation associated
with the acoustic field and Üf ′ is associated with the vorticity/entropy field. Acoustic
modes and entropy modes move at different velocities, and are assumed to be
uncorrelated, Ûf ′ Üg′ = 0. The thermodynamic fluctuations in acoustic and entropy
modes are related by

Üρ′

ρ
=
− ÜT ′

T
, (5.21a)

Üp′ = 0, (5.21b)
Ûp′

p
= γ
Ûρ′

ρ
, (5.21c)

Ûρ′

ρ
=

1
γ − 1

ÛT ′

T
. (5.21d)

Expanding the correlations in the energy equation in terms of the individual modes
yields

p′u′j + ρI′′u′′j = CvTγ2 Ûρ′ Ûu j
′ + ρ′I′u′j . (5.22)

It is noted that useful relations for converting between fluctuations in Favre and
Reynolds averaged quantities may be found in Besnard et al. [7]. In general flows, or
when addressingmultiple species, (5.22) requires knowledge of the relative influence
of the acoustic and entropic components of the turbulence, but in the cases when
one of the components can be assumed to dominate the other then (5.22) simplifies
to a form that can be written in terms of existing quantities in the model. If the
acoustic modes are dominant then

p′u′j + ρI′′u′′j ≈ CvT
(
γ2ρa j + (γ − 1) ρ

Cµ

σb
ST
√

K
∂b
∂x j

)
, (5.23)

and if the entropy modes are dominant then

p′u′j + ρI′′u′′j ≈ −CvT ρST
√

K
Cµ

σb

∂b
∂x j

. (5.24)

These relations use the small density fluctuation approximation that b ≈ ρ′ρ′/ρ2

and
u′j ρ
′ρ′

ρ2 ≈ −u′j ρ
′ν′ ≈

Cµ

σb
ST
√

K
∂b
∂x j

, (5.25)

follows from previous derivations in Schwarzkopf et al. [80], where Cµ and σb

are empirically tuned constants that are left unchanged from the existing model.
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The entropy closure (5.24) effectively reduces to a gradient diffusion form in terms
of the gradient of b rather than T , but is otherwise similar to the existing BHR-3
model. The acoustic form (5.23) has an additional contribution to the fluxes, which
allows it to directly modify the shock jump relations. Except at low shock Mach
numbers Ms < 1.65 [49], if the upstream turbulence is purely vortical then LIA
suggests that entropy modes are the dominant form of density fluctuations in the
far-field downstream of a shock, and so in this study (5.24) is favored over (5.23).
LIA predicts that large, exponentially decaying density and pressure fluctuations
exist in the region immediately downstream of the shock, but the dynamics of this
near-shock region are not captured in BHR-3.

5.5 Model Evaluation
The evaluated modified BHR-3 (mBHR-3) model is summarized by

∂ρ

∂t
+

∂

∂xi
(ρũi) = 0, (5.26a)

∂

∂t
(ρũi) +

∂

∂x j

(
ρũiũ j + Pδi j + ρ

(
R̃i j,shock + R̃i j

))
= 0, (5.26b)
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)
−

∂
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(
ρũ j
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R̃i j,shock + R̃i j
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−

∂

∂x j

(
−CvT

Cµ

σb
ρST
√

K
∂b
∂x j
+

CµρST
√

K
σk

∂K
∂x j

)
,

(5.26c)

where the shock corrugation effect R̃i j,shock is given by (5.20). The constants σb,
σk , and Cµ, and the closure models for R̃i j , ai, b, ST , and SD are left unchanged from
Schwarzkopf et al. [80].

5.5.1 Canonical Shock-Turbulence Interaction
The first case considered is that of a stationary normal shock passing through
isotropic turbulence. This flow geometry reduces to one dimension under ensemble
averaging, and is a canonical problem that isolates the hydrodynamics associated
with a shock passing through turbulent flow, which may occur in more complex
problems such as in reshocked Richtmyer-Meshkov instabilities.

The mesh convergence behavior of this simulation is shown in Figure 5.4, which
plots the difference in the streamwise Reynolds stress amplification relative to the
finest resolution run. The Reynolds stress amplification is defined as the ratio
between the Reynolds stress immediately upstream and downstream of the shock,
noting that the Reynolds stress components decay monotonically downstream of the
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shock in the BHR-3 and mBHR-3 models. The degree of refinement is measured
by the non-dimensional parameter θ = (STuK1/2

u )/(∆xVs), which scales as a ratio of
turbulent to numerical viscosity for shock velocity Vs. The convergence behavior of
the BHR-3 model implemented in the xRAGE hydrocode [30] used in Schwarzkopf
et al. [80] is also plotted to show that the slow convergence of the BHR-3 model
in the presence of shocks is not limited to WENO solvers. As the mesh is refined,
the xRAGE implementation transitions from overestimating the fine mesh Reynolds
stress amplification to underestimating it, resulting in the abrupt drop in the error
near θ = 1. The xRAGE and AMROC implementations of the standard BHR-3
model behave differently on coarse meshes because the interaction is driven by the
numerical behavior of the shock, and the codes use different shock stabilization
schemes. Both the standard and modified BHR-3 model consistently show slow
convergence on coarse grids. Further refinement beyond θ > 1 results in an increas-
ing number of mesh points being present across the shock in the mBHR-3 model,
because the large near-shock Reynolds stress in the shock corrugation model begins
to fix a shock profile width larger than the mesh-defined shock width produced by
WENO. The standard BHR-3 model does appear to eventually converge, but re-
quires mesh resolutions an order of magnitude larger to reach a equivalent degree of
convergence at this Ms. It is noted that lower Ms simulations in the standard BHR-3
model show less variation with θ than the Ms = 5 case considered here.

Figure 5.5 shows the maximum streamwise Reynolds stress attained at different
shockMach numbers and for upstream conditions with Mt = 0.22, using the mBHR-
3 model. The shocks are well resolved, with profiles containing at least 10 cells.
The streamwise Reynolds stress should take a value of ∆u2

1/4 at the center of the
shock [46], and the shock corrugation model reproduces this at higher shock Mach
numbers. At very low shock Mach numbers the ∆u2

1/4 approximation becomes
inaccurate because the Reynolds stress associated with the turbulence become larger
than that associated with the shock corrugation.

Figure 5.6 compares the shock thickness produced in the mBHR-3 model to that
observed in DNS [46] and to the root-mean-square (RMS) shock perturbation am-
plitude predicted in LIA [63]. The shock width is defined in DNS and RANS by
the region where the divergence of the mean velocity is at least 5% of its maximum
value. The RMS shock perturbation amplitude used for the LIA results should
scale with the shock thickness, but will generally be smaller than the full width of
the shock profile, which is driven by the largest amplitude perturbations. A factor
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Figure 5.4: Absolute error in the streamwise Reynolds stress amplification in 1-D
shock turbulence simulations, with Ms = 5. Error is calculated relative to the
finest mesh resolution simulation available for the same code and model, which has
θmax = 21 in the AMROC simulations and θmax = 126 in the xRAGE simulations,
where θ = (STuK1/2

u )/(∆xVs). The mesh resolution becomes finer moving from left
to right. Circles : mBHR-3 with shock-corrugation and entropic mode transport
models. Triangles : standard BHR-3 model. Pluses : standard BHR-3 model,
implemented in the xRAGE hydrocode [80].

of 3 is applied to the LIA thickness to compare scaling behavior with the other
methods and, if the waves follow a normal distribution, 3 times the RMS amplitude
is an approximation of the shock width. The shock thickness is an energy spectrum
dependent quantity so the mBHR-3 model cannot be expected to reliably match the
quantitative values from LIA and DNS, but the scaling behavior with Ms appears to
be consistent between the three methods.

The amplification of the streamwise and transverse Reynolds stresses are shown in
Figure 5.7. Simulations are performed with different upstream Mt and one set of
simulations are conducted with the shock corrugation model (5.19) set to twice its
normal value. The instantaneous jump in Reynolds stress over the shock predicted
by the mBHR-3 model appears to be largely unaffected by these parameters. The
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Figure 5.5: Maximum streamwise Reynolds stress attained at the center of a shock,
normalized by the upstream sound speed. Circles: mBHR-3 model. Line: ∆u2

1/4
as calculated from the laminar Euler equations.

mBHR-3 model yields lower amplifications than both Schwarzkopf et al. [80] and
LIA, but the qualitative behavior of themodel remains comparable to LIA. Important
features such as the decreasing R̃11 amplification are still observed in the mBHR-3
model, and re-tuning of constants in the transport equations of the mBHR-3 model
would likely improve quantitative agreement with LIA. Precise tuning to match the
individual amplifications predicted by LIA may be not be productive, because these
predictions have shown only limited agreement with DNS [45, 46].

Figure 5.8 compares the mBHR-3 model against the Reλ = 40 DNS of Larsson et al.
[46]. The DNS sees a peak in the density immediately downstream of the shock,
followed by a rapid but small decrease, and then a gradual rise back towards the
Euler jumps. The decreasing mean density downstream of shock is most prominent
in the higher Ms cases, and is not captured in the RANS. The mBHR-3 model
agrees fairly well with the DNS regarding less complex features such as the shock
thickness, overall density amplification, and slowly increasing downstream density.

A difficulty with comparisons such as that shown in Figure 5.8 is that the peak
wavenumber k0 is not well defined in the BHR-3 model, requiring the ad hoc
normalization by the transport lengthscale of k0 = π/ST . Larsson et al. [46]
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Figure 5.6: Shock thickness from the mBHR-3 model compared to the LIA of
Mahesh [63] and Reλ = 40 DNS of Larsson et al. [46]. The DNS and RANS have
an upstream Mt = 0.22. The shock thickness in the DNS and RANS is defined
as the region where the divergence of the mean velocity is at least five percent of
its maximum value. The DNS is normalized by Mt/k0, and the mBHR-3 result
is normalized by ST Mt/π. The LIA result shows the RMS shock perturbation
amplitude, normalized by Mt/(3k0). The factor of 3 applied to the LIA results is
included to show the consistent scaling behavior of the methods. Solid line: LIA
[63]. Pluses: DNS [46]. Circles: mBHR-3.

propose a normalization by the dissipation lengthscale, defined in the DNS as
SD,DNS = (Rii/2)3/2/ε, where ε is the dissipation rate, which provides a direct
comparison with RANS models such as BHR-3 but is strongly Reynolds number
dependent in low Reynolds number flows. Thus, normalization by the dissipation
lengthscale requires the DNS to be conducted at high Reynolds number to be
consistent with the assumptions in the RANS models. The DNS with the highest
Reλ that is currently available is plotted in Figure 5.9, for Ms = 1.5 and an upstream
Reλ ≈ 75 [46]. The mBHR-3 model shows good agreement with the DNS in this
comparison, but it remains unclear if Reλ = 75 is sufficiently large for Reynolds
number effects in the spatial normalization to become negligible.

The influence of themodel for the transport of entropymodes, as discussed in section
5.4, is shown in Figure 5.10. The BHR-3 model is tested with the shock corrugation
model active, but with the energy equation correlations modeled by the diffusion
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Figure 5.7: Reynolds stress amplifications through a shock. Triangles and circles:
mBHR-3 streamwise Reynolds stress at Mt = 0.1 and Mt = 0.22, respectively.
Diamonds and crosses: mBHR-3 transverse Reynolds stress at Mt = 0.1 and Mt =

0.22. The pluses and squares show the streamwise and transverse Reynolds stresses
with Mt = 0.1, and R11,shock set to twice its normal value. Solid line: LIA streamwise
Reynolds stress. Dashed line: LIA transverse Reynolds stress.

relations used in Schwarzkopf et al. [80] instead of (5.24). The mBHR-3 model
using the entropy closure predicts a slightly smaller density jump, but otherwise
behaves similarly to the gradient diffusion closure used by Schwarzkopf et al. [80].
Both models capture most of the perturbation from the laminar jump.

At low shock Mach numbers, the closure assuming density fluctuations arise from
acoustic modes (5.23) may be more appropriate than the model used in the mBHR-3
model (5.24), which is derived from entropy modes. Figure 5.11 shows that the
acoustic closure does perform better at low shock Mach numbers, but begins to
overestimate the effect of the turbulence on the jump conditions as the shock Mach
number is increased.

5.5.2 Converging Shockwave
Methods such as DNS, where most energetic dynamics of the flow are resolved,
often view capturing the shock as only a matter of stably producing the correct
jump conditions. Shock capturing schemes may be scrutinized for effects such as
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Figure 5.8: Mean density and pressure profiles in shock-turbulence interactions, with
an upstream Mt = 0.22. The DNS was performed by Larsson and Lele [45] and has
an upstream Reλ = 40. The mBHR model uses the normalization k0 ≈ π/ST in the
streamwise coordinate. Results are shown for shock Mach numbers of Ms = 1.28,
Ms = 1.5, and Ms = 1.87, in order of increasing density and pressure amplification.
Solid black lines: laminar Euler equations. Solid blue lines: DNS[45]. Dashed
lines: mBHR-3 model.

artificial viscosity, but the failure to resolve the physical shock profile is not usually
a concern, as the shock is much thinner than physical scales of interest.
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Figure 5.9: Density profiles in shock-turbulence interactions, for a Ms = 1.5 shock.
The DNS was performed by Larsson et al. [46] and has an upstream Reλ ≈ 75.
Solid line: DNS, Mt = 0.22. Circles: mBHR-3 model, Mt = 0.22. Dash-dotted
line: DNS, Mt = 0.38. Pluses: mBHR-3 model, Mt = 0.38.

The ensemble-averaged shock width in RANS encodes information about the shape
of a shock that is not included elsewhere in the method, and as a result there is more
potential for the shock width to play an important role in the physics of a simulation.
A practical situation where averaged shock thickness effects may not be negligible
arises in Inertial Confinement Fusion (ICF), in which a converging spherical shock is
generated by rapidly heating the surface of a fluid pellet. The compression achieved
by the shock at the center of the pellet is reduced if the shock is aspherical, which
may be caused by fluid instabilities or non-uniformities in the material and heating.
A simple hydrodynamical model for this problem is of a converging spherical shock
passing through a turbulent flow, and DNS has shown that the corrugated aspherical
shock in the turbulent case produces significantly lower compression ratios relative
to the spherical shock case [8].

The DNS of Bhagatwala and Lele [8] is reproduced using the mBHR-3 model
to evaluate the ability of the RANS to capture the reduced compression resulting
from shock corrugation. The simulation is initialized as a spherical shock-tube
problem with zero initial velocity and a spherical discontinuity separating regions
of constant pressure and density. The states on either side of the discontinuity are
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Figure 5.10: Density profiles in shock-turbulence interactions, for a Ms = 1.5 shock.
The DNS was performed by Larsson et al. [46] and has an upstream Reλ ≈ 75. The
colours indicate the upstream turbulent Mach number. Blue: Mt = 0.22. Red:
Mt = 0.38. The solid black line is the laminar shock jump condition. Solid line:
DNS. Dashed line: mBHR-3model. Dotted line: BHR-3with the shock corrugation
model but not the entropy mode closure.

tuned to generate an inward moving shock with initial shock Mach number Ms0,
and no contact discontinuity [8]. Simulations are conducted with uniform initial
background turbulence intensities of Mt0 = 0.4 and Mt0 = 0.8 in addition to a
reference case where no turbulence is present.

The problem contains spherical symmetry in RANS, but is simulated in 3D in
order to make comparisons with the numerical procedure used by Bhagatwala and
Lele [8], because the DNS was not mesh converged with respect to the maximum
compression ratios achieved. The RANS simulations are periodic in all directions,
but are completed before the outward moving expansion fan produced by the initial
condition reaches the boundary. The mesh is 643 on the coarsest level, and with
AMR is equivalent to 5123 on the finest mesh level. The domain has been doubled
in size relative to the DNS in order to allow for a longer simulation time before the
expansion fan reaches the outer boundaries, and thus the resolution at the center of
the converging shock is comparable to the 2883 resolution used in the DNS.

In the mBHR-3 model of shock corrugation, (5.20), the shock normal, e, is taken to
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Figure 5.11: Density profiles in shock-turbulence interactions with Mt = 0.22. The
DNS was performed by Larsson and Lele [45] and has an upstream Reλ ≈ 40.
Results are shown for shock Mach numbers of Ms = 1.28 and Ms = 1.5, in order of
increasing density amplification. The solid black lines are the laminar shock jump
condition. Solid line: DNS. Dotted line: mBHR-3 model. Dashed line: mBHR-3
model, using the acoustic closure (5.23) instead of the entropy closure (5.24).

be the radial direction. As the shock converges it accelerates flow towards the center
of the domain, and this results in a strong velocity dilatation behind the shock which
would erroneously activate the shock corrugation model. The requirement to locally
apply a specific method only in the vicinity of a shock is a common occurrence in
fluid simulations, but most existing approaches to shock detection, such as slope
limiters, are not applicable to the subject model because the shock remains smooth
at the grid resolution. The shock corrugation model is disabled in the region of
smooth compression by the means of a smooth cutoff function φ3D,

φ3D =
φ1D

2

©«
1 + tanh

©«
40



√
max

(
0, u′ku′k

���
φ3D=1

)
c̃

−

√
R̃kk,Ms0

c0


ª®®®®®®¬
ª®®®®®®¬
, (5.27)

where φ1D is given by (5.18) and u′ku′k is as given in (5.20). The function φ3D

disables the shock corrugation model if the dilatation is below that expected in a
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shock with a given characteristic Mach number. The Reynolds stress associated
with this Mach number is taken here to be R̃kk,Ms0 = 0.80∆u2

0/4, where ∆u0 is the
velocity jump over a shock of strength Ms0, and c0 is the initial speed of sound at
the center of the sphere.

Density profiles frommBHR-3 are shown in Figure 5.12 at various times as the shock
converges towards the center of the domain. The times are normalized by ts, which
is given as the time when the shock from the Euler equation solution for laminar
flow reaches its maximum pressure. The mBHR-3 model predicts a similar solution
to the Euler equations away from the shock, but produces a smoother shock profile
as expected. The velocity of the shock is faster in the mBHR-3 simulations due
to the presence of turbulence, consistent with the predictions of analytical models
of normal shocks [51, 91], and this results in a slightly reduced time to reach peak
values in the density and pressure compressions.
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Figure 5.12: Density profiles in converging shock-turbulence interaction. The shock
has an initial Ms0 = 1.4 and the turbulence is initialized with a uniform Mt0. Density
profiles are shown at times t/ts = 0.3 (blue), t/ts = 0.6 (black), and t/ts = 0.9 (red).
Solid lines: numerical Euler equations. Dashed lines: mBHR-3, Mt0 = 0.4. Dotted
lines: mBHR-3, Mt0 = 0.8.

Table 5.1 shows the peak pressure and densities achieved at the center of the shock
for each simulation. These peak values are not numerically resolved, but the ratio of
the Euler solution to the turbulent solution has been shown to be approximatelymesh
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Table 5.1: Maximum amplifications in density and pressure achieved in converging
shock simulations. The simulations are initialized with a shock of strength Ms0 =
1.4. The DNS was conducted by Bhagatwala and Lele [8].

DNS mBHR-3

laminar Mt0 = 0.4 laminar Mt0 = 0.4 Mt0 = 0.8
ρmax/ρ0 20 14 34.2 33.3 27.9
pmax/p0 162 58 193.8 199.2 103.7

independent [8]. The mBHR-3 appears to begin to capture the reduced compression
at higher turbulent Mach numbers, but does not resolve a distinguishable effect of
the turbulence in the Mt0 = 0.4 case, despite using a comparable mesh to the DNS at
the shock center. This is mostly likely the result of dynamics not accounted for in the
derivation of the shock corrugation model, which was produced from a statistically
steady state analysis of a normal shock. The inherently unsteady converging shock
problem sees far larger density amplifications than those possible in the steady
normal shock case [8], and this means the dilatation model derived for a normal
shock is not guaranteed to be a good approximation for the profile of a spherical
shock. Furthermore, the model would not necessarily be expected to capture the
time required for a laminar shock to corrugate or a corrugated shock to relax back
to a laminar state.

5.6 Discussion
The ensemble-averaged width of a shock passing through turbulence is effectively
a measure of the uncertainty in the instantaneous shock position, and thus this
profile is much thicker than laminar shock profiles. A model to produce the thick
shock profile in RANS is developed from Linear Interaction Analysis (LIA), and
introduces an explicit, physically motivated Reynolds stress near the shock which is
independent of the computational mesh.

Separately, a simple approximation to connect existing models for the production
and transport of density fluctuations with the correlations in the energy equation is
proposed. Unlike diffusion closures, this approach allows correlations other than
the Reynolds stresses to alter the shock jump conditions, although in practice this
appears to only have a notable effect at low Ms, when acoustic modes are significant.
The models do not require empirical tuning, but assume a single component perfect
gas and require some knowledge of the relative amplitude of entropic and acoustic
turbulent modes.
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The proposed models are evaluated as a modification to the BHR-3 RANS model of
Schwarzkopf et al. [80] but, because the method only directly affects the averaged
momentum and energy equations, it is expected that the method could be used in the
presence of other closuremodels. ThemodifiedBHR-3model is shown to accurately
reproduce both the shock width and perturbed shock jump conditions observed by
DNS in canonical shock-turbulence interactions, and the turbulence amplification
over the shock converges on a far coarser mesh relative to the conventional BHR-3
model. Tracking the production and motion of acoustic modes in the turbulence is
found to improve the ability of the RANS to capture the modification of the laminar
shock jumps at low shock Mach numbers, but the conventional BHR-3 model that
only accounts for Reynolds stress effects also does this reasonably well.

The problem of a spherical, converging shock in the presence of turbulence is also
considered. Shock asphericity resulting from the turbulence reduces the compres-
sion achieved by the imploding shock, and the shock width is a measure of the
asphericity in RANS. Compared with DNS, the proposed model appears to un-
derestimate the deleterious effect of the turbulence on the maximum compression,
likely due to dynamic effects not accounted for in the derivation of the model.
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C h a p t e r 6

CONCLUSIONS

A study of the canonical shock-turbulence problem, in which an isotropic field of
turbulence passes through a nearly stationary shock, is conducted at large Taylor-
Reynolds numbers. This regime is out of reach of conventional Direct Numeri-
cal Simulation (DNS), requiring the Large Eddy Simulation (LES) and Reynolds-
Averaged Navier Stokes (RANS) model-based approaches considered here.

Chapter 3 shows that aliasing errors which result in an overestimation of high-
wavenumber turbulent energy may be problematic in LES containing a shockwave.
As these spurious, high wavenumber eddies cross a shockwave, they are compressed
onto even higher wavenumbers by the mean compression of the shock, and may be
compressed onto wavenumbers that are not resolved in the LES. This immediately
dissipates the eddies and may result in an abrupt change in the behavior of the
Subgrid-Scale (SGS) model, yielding non-physical results such as a decrease in the
dissipation rate as the flow crosses the shock. A localized dynamic hyperviscous
filter that damps out these aliasing errors, while still introducing only a secondary
contribution to the overall dissipation, is presented. The resulting Hybrid Stretched-
VortexModel (HSVM) is shown to improve the ability of LES to capture the behavior
of DNS in several test problems, such as decaying isotropic turbulence or a LIA-
based model for the turbulence downstream of a shock, and also shows improvement
to certain statistics in LES of the full canonical shock-turbulence problem.

Chapter 4 then utilizes the HSVM model to produce LES of the canonical shock-
turbulence problem. The LES shows good agreement with existing DNS and mesh
convergence behavior is evaluated, regarding both the base mesh and localized
mesh refinement about the shock. The previous hypothesis that the corrugation of
the shock in response to the upstream turbulence must be resolved for the LES to be
accurate [26] is explicitly evaluated by showing the LES progresses towards a k−11/3

spectrum in the shock corrugation amplitude, as predicted by LIA, as the mesh is
resolved. Various statistical correlations computed in the post-shock turbulence are
shown to be in close agreement with the predictions of LIA but, as previously seen in
lowerReynolds numberDNS [e.g. 45, 46], theLESdoes not agreewith the prediction
of LIA that the ratio of the Reynolds stresses favors transverse velocity fluctuations
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downstream of strong shocks. This is despite the fact that the LES is performed
at high Reynolds numbers and low to modest turbulent Mach numbers, conditions
under which scaling arguments suggest that LIA should be accurate [76]. Analysis
of the inertial range behavior of the turbulence downstream of the shock suggests
that the disagreement between LES and LIA arises from the distribution of energy
in the Reynolds stresses as a function of scale. LES initialized with a model post-
shock field from LIA is shown to rapidly relax to isotropy in the inertial range scales,
and because these scales contain a larger fraction of the transverse Reynolds stress
than the streamwise Reynolds stress this results in a net transfer of energy towards
streamwise velocity fluctuations and produces Reynolds stress anisotropy ratios that
favor the streamwise Reynolds stress. Two dimensional measures of anisotropy from
the LES of the canonical shock-turbulence problem are found to be inconclusive
on their own, but these two-dimensional measures show close agreement between
the full shock-turbulence LES and the LIA-initialized LES, suggesting that the
latter method, which is more easily analyzed, behaves in an equivalent manner. The
response of statistics to changes in various upstream parameters such as the turbulent
Mach number or Reynolds number is also evaluated. Reynolds number effects in
most statistics are found to be fairly small once an inertial range has developed.

Given the substantial cost of running LES, there is interest in addressing problems
such as the canonical shock-turbulence problem in RANS. Chapter 5 addresses a
main difficulty of applying RANS to this problem, which is that most conventional
RANS models are not guaranteed to converge quickly upon mesh refinement in
the presence of a discontinuity such as a shock. Shocks are usually modeled
as discontinuities in numerical investigations of fluids because they are typically
extremely thin relative to other lengthscales in the flow, but it is argued that a
discontinuity may not be an appropriate representation of a shock in turbulent flow
in RANS. RANS aims to reproduce mean profiles in the flow, and it is noted
that averaged quantities from DNS, such as the mean density, vary in a smooth
manner near a shock even when the shock structure is not resolved in the DNS.
The corrugation of the shock results in means that are taken as an average over a
distribution of possible shock positions, and this results in mean profiles that are
smooth at scales much larger than the mean free path. A model to capture the
effect of averaging over these random shock corrugations is constructed from LIA,
and is used to investigate the behavior of various correlations of interest to RANS
near the shock. Furthermore, the large Reynolds stress that results from averaging
over shock corrugations is modeled in such a way that it could be implemented
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in a practical RANS simulation. RANS using a version of the BHR-3 model [80]
modified to include these shock corrugation effects is shown to accurately reproduce
the thickness of averaged profiles near a shock, and the convergence properties of
the model as the mesh is refined is greatly improved. A RANS simulation of a
converging spherical shock in the presence of background turbulence is presented to
illustrate a physical application where capturing mean variable profile widths is of
interest. DNS has shown the asphericity that results from the passage of the shock
through the turbulent flow reduces the compression achieved at the point where the
shock converges [8], and the RANS with the shock corrugation model qualitatively
captures this reduction in the compression.
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A p p e n d i x A

LINEAR INTERACTION ANALYSIS

A.1 Introduction
Linear Interaction Analysis (LIA) [63, 66, 72] models the interaction of a shockwave
with turbulence by decomposing the upstream field into its component plane waves.
The interaction of each wave with the shock is computed analytically under the
assumption of small perturbations in the flow field and shock, and the post shock
solutions are combined to reconstruct the downstream turbulence. Ryu and Livescu
[76] showed shock-resolved DNS converged to LIA-predicted amplifications over
the shock as the turbulent Mach number was reduced, and proposed that LIA is valid
if the ratio of the shock thickness to the Kolmogorov scale becomes small. Other
DNS (e.g. [40, 45, 46]) have found limited agreement to LIA, and the experiments
of Barre et al. [4] agree with the amplification of longitudinal velocity fluctuations
predicted by LIA. Despite being applicable to a limited regime of flows in very
simple geometries, LIA remains a useful tool for the validation of other techniques.

Under the assumption of isotropy or specific forms of anisotropy LIAmay be used to
calculate a variety of statistics from turbulence as it passes through a shockwave by
integrating over the upstream shell-summed energy spectrum [63]. Alternatively,
full 3D fields of shocked, turbulent flow may be approximated by applying LIA
to the solenoidal part of the Fourier transform of a turbulent field [55, 76]. The
resulting flow field is anisotropic, but remains periodic and homogeneous due to the
lack of viscous dissipation in the LIA procedure.

A.2 Interaction of a shock with a plane-wave vorticity/entropy disturbance
Ribner [71] showed that the interaction of a single vortical wave with a normal
shockwave can be computed analytically when flow variables upstream of the shock
and shock deformations are linearized about small perturbations, e.g. u′u/Vs << 1.
This was then extended to investigate the interaction of vorticial, isotropic turbulence
with a shock by interacting each mode of the turbulence with shock individually
[72], and Mahesh [63] further extended this to investigate upstream flow containing
both entropic and vorticial modes.

A summary of the method is as follows, but further details may be found in Mahesh
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[63]. Consider a single 2D wave in an ideal gas generating small perturbations from
the mean of the form

u′1,u
Vs
= lu Aveik(mu x+lu y−Vsmt), (A.1a)

u′2,u
Vs
= −mu Aveik(mu x+lu y−Vsmt), (A.1b)

ρ′u
ρ̄u
= Aeeik(mu x+lu y−Vsmut), (A.1c)

T ′u
T̄u
= −

ρ′u
ρ̄u
, (A.1d)

p′u = 0, (A.1e)

lu = sinψu, (A.1f)

mu = cosψu. (A.1g)

Subscript “u” and “d” indicate preshock and postshock values in the shock stationary
frame, and ψu is the incident angle of the wave with the shock. The amplitudes
of the vorticial and entropic modes are Av and Ae, respectively. The shock passes
through the wave as shown in Figure A.1.

Figure A.1: Domain of Vorticial/Entropic Wave - Shock Interaction

Linearizing the governing equations about the small perturbations, the resulting flow
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downstream of the shock can then be shown to be [63]

1
Av

u′1,d
Vs
= F̆ei k̆ xeik(lu y−Vsmut) + Ğeik(mur x+lu y−Vsmut), (A.2a)

1
Av

u′2,d
Vs
= H̆ei k̆ xeik(lu y−Vsmut) + Ĭeik(mur x+lu y−Vsmut), (A.2b)

1
Av

p′d
p̄d
= K̆ei k̆ xeik(lu y−Vsmut), (A.2c)

1
Av

ρ′d
ρ̄d
=

K̆
γ

ei k̆ xeik(lu y−Vsmut) + Q̆eik(mur x+lu y−Vsmut), (A.2d)

1
Av

T ′d
T̄d
= K̆

γ − 1
γ

ei k̆ xeik(lu y−Vsmut) − Q̆eik(mur x+lu y−Vsmut), (A.2e)

1
Av

1
Vs

∂ξ

∂t
= L̆eik(lu y−Vsmut), (A.2f)

1
Av

1
Vs

∂ξ

∂y
= −

l
mu

L̆eik(lu y−Vsmut). (A.2g)

The instantaneous displacement of the shock off of its mean position is given ξ, and
the density ratio is r = ρd/ρu. The downstream flow consists of an acoustic wave,
associated with constants F̆, H̆, and K̆ , and a vortical/entropic wave associated with
Ğ, Ĭ, and Q̆. The value of k̆ is imaginary for certain Mach numbers and incident
angles, and in these cases the acoustic wave takes the form of an exponentially
decaying evanescent wave.

Similarly, the interaction of a acoustic wave with a shock may be calculated [66],
although this case in not considered here.

A.3 Integration over a spectrum of upstream turbulence
Mean statistics such as the Reynolds stresses are constructed in LIA by integrating
the 2D single wave solutions in spherical coordinates over the spectrum of the
upstream turbulence. For comparison of LIA with the inertial range LES discussed
in the body of this document, the energy spectrum is selected to be of the form

E(k) =


k2 0 ≤ k < k0,

k2
0(k/k0)

−5/3 k0 ≤ k ≤ kc,LI A,

0 k > kc,LI A,

(A.3)

where kc is either an appropriate cutoff wavenumber for comparison with the re-
solved scales of an LES, or a very large number to represent a wide inertial range.
The integration is performed by computing the downstream field, (A.2), for every
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wavenumber in the energy spectrum of (A.3), with energy distributed between a
range of wave orientations ψu from the assumption that the upstream turbulence is
isotropic. The downstream solutions are then integrated to produce mean statistics
in the post-shock flow. The wavenumber associated with energy content in the
downstream modes (A.2) is also known, and so energy spectra associated with the
downstream flow may also be computed [73].

LIA predicts that far-field amplifications in statistics over the shock are independent
of the shape of the upstream energy spectrum, but the spatial variation of the
downstream flow depends on the spectrum of the upstream flow. The spectrum (A.3)
is qualitatively similar to the spectra developed in forced inertial range turbulence,
allowing for comparisons of spectrum dependent quantities such as the near-shock
fluctuations and shock corrugation. The implementation of LIA in this document
assumes the upstream turbulence consists purely of vorticity modes.

A.4 Application to 3D turbulence
Rather than assuming an isotropic energy spectrum, it is also possible to directly
apply LIA to a 3D field of turbulence generated from DNS or LES. A detailed
procedure for this is provided in Livescu and Ryu [55], but is summarized here.
First, the divergence-free part of the upstream turbulent field is computed in Fourier
space by [23]

ûi,solenoidal = ûi −
û j k j

kmkm
ki . (A.4)

This projection isolates the vorticity/entropy modes that are assumed to be upstream
of the shock in (A.1). The LIA procedure is simplified if the upstream turbulence
does not contain acoustic fluctuations, and so the dilatational part of the velocity
field is ignored in this analysis because the pressure fluctuations are small in the
upstream turbulence in the scenarios considered in this document. The resulting
solenoidal Fourier modes are then rotated to the 2D frame considered in (A.1), and
same process of computing the downstream modes given by (A.2) and integrating
over the results may be followed as before.

Application of LIA to flow fields from DNS or LES does have the shortcoming that
the downstream field may not have a uniform distribution of energy in Fourier space.
It is possible that, as LIA computes the interaction of each integer wavenumbermode
in the upstream field, it will map little or no energy to specific wavenumbers in the
post-shock field. For instance, if the shock corresponds to a factor of two compres-
sion, LIA would inject more energy into post-shock modes with even streamwise
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wavenumbers than odd streamwise wavenumbers, because odd wavenumbers would
correspond to fractional wavenumbers in the upstream flow. Despite this, this form
of LIA allows for detailed analysis of shocked flow fields that are out of reach of
conventional simulations due to computational cost [76], and avoids the numerical
dissipation associated with shock capturing in LES.
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A p p e n d i x B

MODEL FOR TURBULENT KINETIC ENERGY NEAR A
SHOCK

B.1 Convective SGS kinetic energy model
As the flow enters the refined mesh near the shock, all terms in the stretched-
vortex SGS model (2.7) remain well defined with the exception of the SGS kinetic
energy (2.10), which requires the definition of a cutoff wavenumber kc. Upstream
of the shock, but within the refined mesh, the cutoff wavenumber can be assumed
to be equal or close to the cutoff wavenumber of the coarse mesh, because the
turbulence does not have time to populate the new wavenumbers opened by mesh
refinement as it convects through the narrow band of cells refined in front of the
shock. The turbulence is compressed by the shock and mapped towards higher
wavenumbers, and thus depending on the shock strength it may fill any number
of the high wavenumber modes opened by mesh refinement downstream of the
shock. Moreover, the compression from the shock is anisotropic, and a isotropic
definition of the cutoff wavenumber may be insufficient. To avoid defining a cutoff
wavenumber on the region containing the refined mesh, it is instead assumed that
the unresolved kinetic energy remains unchanged through the prolongation process
onto the fine mesh. This suggests that a transport model for the SGS turbulent
kinetic energy may be useful near the shock.

A transport model for a convection-modeled SGS kinetic energy, k̃′cm, is introduced
to compute the unresolved kinetic energy prior to entering the refined region, and
then convect that energy through the region containing the shock using a model of
the form

∂ρk̃′cm

∂t
+

∂

∂x j

(
ρũ j k̃′cm − ν

∂ρk̃′cm

∂x j

)
= εin ject − εdiss + φrc. (B.1)

The left hand side constitutes a conservation law with a resolved shear stress, and
the right hand side consists of a source term from the injection of turbulent kinetic
energy into the unresolved scales, εin ject , a source term from the dissipation of kinetic
energy at the SGS scales, εdiss, and a source term from the rapid compression at the
shock, φrc. The injection term is assumed to be equal to the negative of the loss of
kinetic energy at the local resolved scales resulting from the stresses in (2.7), with k̃′
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calculated from the local resolved structure functions as in (2.10). The dissipation
term, εdiss, is taken to be of the same form as the injection but instead dependent on
the current amount of energy held in the unresolved scales, namely k̃′cm. It can be
shown that the resolved kinetic energy dissipation arising from (2.7) is

ε = S̃i j

(
δi j − evi evj

)
k̃′, (B.2)

and this suggests a model for the convected SGS kinetic energy,

∂ρk̃′cm

∂t
+

∂

∂x j

(
ρũ j k̃′cm − ν

∂ρk̃′cm

∂x j

)
=

−ρS̃i j

(
δi j − evi evj

) (
k̃′ − k̃′cm

)
H(∆x) + φrc.

(B.3)

The switch H(∆x) = 1 on the coarse mesh, and H(∆x) = 0 if on a refined mesh.
The dissipation and exchange with the resolved scale thus has the effect of forcing
k̃′cm ≈ k̃′ on the coarse mesh, because (B.2) is strictly dissipative with the vortex
alignment model for evi that is used in this study [65]. Upon entering the refined
region near the shock where k̃′ is not well defined, the source term turns off and the
model convects k̃′cm downstream through the shock.

B.2 Amplification of the SGS kinetic energy by the shock
The remaining rapid compression term, φrc, is included to ensure the shock amplifies
k̃′cm, as it should amplify all scales of the turbulent flow. The model for φrc selected
to enforce that k̃′cm is amplified by the far-field predictions of LIA. This is reasonable
because the turbulent Mach number associated with k̃′cm is small and the Reynolds
numbers of the simulations are large, and DNS has generally shown good agreement
with LIA regarding turbulent kinetic energy amplification [46]. Furthermore, the
SGS flows are small scale and will evolve to their far-field behavior very quickly
downstream of the shock.

The method to enforce the LIA predicted amplifications in k̃′cm is constructed by
decomposing each cell boundary into a one dimensional Riemann problem, as
conventionally done in some flux solvers. The evolution of the resulting flow about
the boundary between cells centered at xi and xi+1 is shown for one representative
case in Figure B.1. The solution of the Riemann problem, giving the types of waves
generated at the interface and the flow in the intermediate states (2) and (3), is
computed by direct iterative methods. This approach is computationally expensive
but this process must only be performed at the shock, corresponding to a small
fraction of the domain where WENO is flagged.
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Figure B.1: Two-shock Riemann problem at a cell boundary between cells located at
xi and xi+1. Regions (1) and (4) correspond to unshocked fluid. (2) is fluid initially
from cell xi that has been shocked by the left facing wave, and (3) is from cell xi+1
shocked by the right facing wave.

A two-shock solution on the interface between cells centered at xi and xi+1 will
be considered here, producing left and right facing shockwaves of Mach numbers
ML and MR, respectively, and a contact discontinuity moving at velocity ũ23. The
case in which one or both of the waves are expansion fans is addressed in the same
manner as the two-shock case, except that there is no amplification enforced over
the expansions.

The function L(Ms) is defined as

L(Ms) =
k̃′cm,post

k̃′cm,0
− 1, (B.4)

where k̃′cm,0 and k̃′cm,post are pre-shock and far-field post-shock kinetic energy from
LIA, respectively, such that the subgrid kinetic energy in regions in the intermediate
regions (2) and (3) are k̃′cm,(2) = k̃′cm,i(1+L(ML)) and k̃′cm,(3) = k̃′cm,i+1(1+L(MR)),
respectively. The selection of φrc is set to enforce that, over the duration of one
timestep, the subgrid kinetic energy is amplified by the LIA predicted amount,
weighted by the fraction of the cell covered by regions (2) and (3). The form of φrc

depends on if regions (2) and (3) lie in cell i or i + 1, and is given for the possible
configurations as

1. ũi − ML ãi > 0 and ũi+1 + MRãi+1 > 0
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φrc,i = 0 (B.5a)

φrc,i+1 =
1
∆x

(
(ũ23 − (ũi − ML ãi)) L(ML)k̃′cm,i+

((ũi+1 + MRãi+1) − ũ23)L(MR)k̃′cm,i+1
)

(B.5b)

2. ũi − ML ãi < 0 and ũi+1 + MRãi+1 > 0 and ũ23 > 0

φrc,i =
1
∆x

(
− (ũi − ML ãi) L(ML)k̃′cm,i

)
(B.6a)

φrc,i+1 =
1
∆x

(
ũ23L(ML)k̃′cm,i + ((ũi+1 + MRãi+1) − ũ23)L(MR)k̃′cm,i+1

)
(B.6b)

3. ũi − ML ãi < 0 and ũi+1 + MRãi+1 > 0 and ũ23 < 0

φrc,i =
1
∆x

(
(ũ23 − (ũi − ML ãi)) L(ML)k̃′cm,i − ũ23L(MR)k̃′cm,i+1

)
(B.7a)

φrc,i+1 =
1
∆x

(
(ũi+1 + MRãi+1)L(MR)k̃′cm,i+1

)
(B.7b)

4. ũi − ML ãi < 0 and ũi+1 + MRãi+1 < 0

φrc,i =
1
∆x

(
(ũ23 − (ũi − ML ãi)) L(ML)k̃′cm,i+

((ũi+1 + MRãi+1) − ũ23)L(MR)k̃′cm,i+1
)

(B.8a)

φrc,i+1 = 0 (B.8b)

Shocks are nonlinear, and low order numerical shock-capturing schemes that smear
a discontinuity across several cell boundaries cannot be expected to be compatible
with this approach. The 5th-order WENO solver used here, combined with the
moderate shockMach numbers considered in this report, is sufficiently sharp to give
a reasonable amplification in the SGS kinetic energy as it passes through the shock,
as shown for a representative case in Figure B.2.

Transportmodels for the SGSkinetic energy have been employed to control backscat-
ter [29], and this approach may also improve performance when the large scales are
temporarily out of equilibrium with the small scales. Unfortunately, for the subject
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problem the usefulness of k̃′cm is limited by the restriction process back onto the
coarse mesh downstream of the shock. As shown in Figure B.2, the selection of
φrc appears to be effective in enforcing that k̃′cm approximately agrees with the LIA
kinetic energy amplification over a shock. This is the desired result on the refined
mesh near the shock because the AMR increases the mesh cutoff wavenumber by
a factor greater than the mean compression ratio of the shock, suggesting that all
modes that are resolved upstream of the shock are also resolved downstream of the
shock within the region of mesh refinement.

The structure function calculation for k̃′ on the coarse mesh sees a noticeably larger
amplification, instead matching the kinetic energy amplification from LIA at the
unresolved wavenumbers. The LIA result is calculated by performing the full LIA
analysis on (3.10) with kc,LI A = 1024, and then taking the ratio of the kinetic en-
ergy in modes with wavenumbers k > 128 in the pre-shock and post-shock field.
The amplification in the high wavenumber modes is larger than the full-spectrum
result due to the mean flow compression in the shock mapping energy towards
larger wavenumbers. In LES on a fixed coarse mesh, the increased amplifica-
tion is expected, because the shock compresses high wavenumber turbulence onto
wavenumbers that the LES does not resolve. The restriction operator from the fine
to coarse grid is conservative, and k̃′cm under-predicts the SGS kinetic energy on the
coarse mesh immediately downstream of the shock. In the shown case, k̃′cm corrects
itself fairly quickly, but in low Mt simulations this is not guaranteed. Thus, k̃′cm

is only used in the SGS stresses (2.7) on the refined mesh, and (2.10) is used to
calculate the SGS kinetic energy on the coarse mesh. The convection equation for
k̃′cm, (B.3), is still computed everywhere in the domain, but is only coupled with the
resolved flow equations in within the region of AMR about the shock. Extending
k̃′cm for use in the whole domain would require development of a restriction operator
capable of capturing the turbulent kinetic energy lost during restriction from a fine
to a coarse mesh.
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Figure B.2: Amplification in the SGS kinetic energy through a shock. LES results
are averaged in time and in the periodic directions. The LES flow conditions are
Ms = 1.5, Mt = 0.18, and Reλ = 500 on a 1024 × 256 × 256 base grid, with a
factor of 4 refinement at the shock. The LIA results are calculated from (2.10) with
kc,LI A = 1024. Solid line: LIA kinetic energy amplification. Dashed line: LIA
kinetic energy amplification at wavenumbers k > 128. Dotted line: convective SGS
kinetic energy model k̃′cm. Dash-dotted line: SGS kinetic energy k̃′ calculated from
(2.10).
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A p p e n d i x C

STATISTICS WITHIN THE REGION OF A CORRUGATED
SHOCK

Consider the interface between two fluid regions of constant average properties,
such that

u1(x, y, z, t) = u1,u + ∆u1H(x + ξ(y, z, t)) + u′turb(x, y, z, t). (C.1)

Specializing the problem to the 2D case of a single vorticity mode passing through
the shock, LIA provides the shock surface as

ξ = −
1

mk
Leik(ly−u1,umt), (C.2)

where m = cos(ψ) and l = sin(ψ) for a mode of wavenumber k and incident angle
ψ with the shock. The field can then be written as

u1(x, y) = u1,u + ∆u1H
(
x +

L
m k

cos(k l y)
)
. (C.3)

Mean profiles and correlations are of interest, and so the time dependency, which
only introduces a phase shift, has been dropped. Likewise, the contribution of u′turb

to mean profiles and correlations of interest is small relative the contribution from
the shock motion, and so u′turb is subsequently neglected.

The interface is present along the zeros of the argument of H, namely 0 = x +
L

mk cos(kly). Solving this yields the y-positions, y0,n where the interface crosses a
fixed position in x. The three consecutive zeros used in this report are defined as

y0,1 =

(
− cos−1

(
mk x

L

)
+ π

)
1
kl
, (C.4a)

y0,2 =

(
cos−1

(
mk x

L

)
+ π

)
1
kl
, (C.4b)

y0,3 =

(
− cos−1

(
mk x

L

)
+ 3π

)
1
kl
. (C.4c)

The y-averaged profile of u1(x, y) follows as
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Figure C.1: Fluctuations in the velocity field as given by (C.9), which result from
the motion of the shock. The fluctuations are normalized by ∆u1.

u1(x) =
1

y0,3 − y0,1

∫ y0,3

y0,1

u1(x, y)dy, (C.5)

u1(x) =
1

y0,3 − y0,1

(
u1,u

(
y0,2 − y0,1

)
+ u1,d

(
y0,3 − y0,2

) )
, (C.6)

u1(x) =
1

2π

(
u1,u

(
2 cos−1

(
mk x

L

))
+ u1,d

(
−2 cos−1

(
mk x

L

)
+ 2π

))
, (C.7)

u1(x) = u1,d −
∆u1
π

cos−1
(
mk x

L

)
. (C.8)

Defining the fluctuating component of u1 as u′1(x, y) = u1(x, y) − u1(x), then the
fluctuations in the pre-shock and post-shock regions are

u′1,u(x) = u1,u − u1(x) =
−∆u1
π

cos−1
(
−mk x

L

)
, (C.9a)

u′1,d(x) = u1,d − u1(x) =
∆u1
π

cos−1
(
mk x

L

)
, (C.9b)

u′1(x, y) = u′1,u(x) + (u
′
1,d(x) − u′1,u(x))H

(
x +

L
m k

cos(k l y)
)
. (C.9c)

The spatial distribution of the fluctuations, (C.9), is plotted in Figure C.1.

The resulting streamwise Reynolds stress is u′1u′1(x), where
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u′1u′1(x) =
1

y0,3 − y0,1

∫ y0,3

y0,1

u′1(x, y)u
′
1(x, y)dy, (C.10)

u′1u′1(x) =
1

y0,3 − y0,1

(
u′1,uu′1,u

(
y0,2 − y0,1

)
+ u′1,du′1,d

(
y0,3 − y0,2

) )
, (C.11)

u′1u′1(x) =
1

2π

(
∆u1
π

)2
[
cos−1

(
−mk x

L

)2 (
2 cos−1

(
mk x

L

))
+

cos−1
(
mk x

L

)2 (
−2 cos−1

(
mk x

L

)
+ 2π

)]
,

(C.12)

u′1u′1(x) =
∆u2

1
π3 cos−1

(
−mk x

L

)
cos−1

(
mk x

L

)
×

(
cos−1

(
mk x

L

)
+ cos−1

(
−mk x

L

))
.

(C.13)

The Favre-averaged Reynolds stress is given by

ρu′′1 u′′1
ρ
=

1(
y0,3 − y0,1

)
ρ(x)

(
ρuu′′1,uu′′1,u

(
y0,2 − y0,1

)
+ρdu′′1,du′′1,d

(
y0,3 − y0,2

) )
.

(C.14)

ρu′′1 u′′1
ρ
=

1(
y0,3 − y0,1

)
ρ(x)

ρu

(
u′1,u −

ρ′u′1(x)

ρ(x)

)2 (
y0,2 − y0,1

)
+ρd

(
u′1,d −

ρ′u′1(x)

ρ(x)

)2 (
y0,3 − y0,2

) .
(C.15)

The streamwise density-velocity correlation, ρ′u′1(x), is computed in the same man-
ner as (C.13), yielding

ρ′u′1(x) =
∆ρ∆u1

π3 cos−1
(
−mk x

L

)
cos−1

(
mk x

L

)
×

(
cos−1

(
mk x

L

)
+ cos−1

(
−mk x

L

))
,

(C.16)

and ρ(x) follows the same form as (C.8). Evaluating (C.15) using (C.8), (C.9), and
(C.16) yields an equation for the Favre-averaged Reynolds stress,

ρu′′1 u′′1
ρ
=
ρu ρd ∆u2

1 cos−1
(

k m x
L

)
cos−1

(
−k m x

L

)
(
ρu cos−1

(
k m x

L

)
+ ρd cos−1

(
−k m x

L

))2 . (C.17)
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The derivations of Favre-averaged profiles such as (C.17) is tedious but straightfor-
ward to perform in symbolic manipulation software such as Maple or Mathematica.
In addition to the Reynold stresses, the fluctuating pressure dilatation ∇ · p′u′ also
become large near the shock. From the previous derivation of (C.13) it follows that

p′u′(x) =
∆u∆p
π3 cos−1

(
−mk x

L

)
cos−1

(
mk x

L

)
×(

cos−1
(
mk x

L

)
+ cos−1

(
−mk x

L

))
.

(C.18)

The velocity triple correlation ρu′1u′1u′1 also appears in some Reynolds averaged
models. Averaging the fluctuations computed from (C.9), it can be shown that

u′1u′1u′1(x) =
1

y0,3 − y0,1

∫ y0,3

y0,1

u′1(x, y)u
′
1(x, y)u

′
1(x, y)dy, (C.19)

u′1u′1u′1 =
∆u3

π3 cos−1
(
mk x

L

)
cos−1

(
−mk x

L

) (
2 cos−1

(
mk x

L

)
− π

)
. (C.20)
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