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Abstract 

Brain-machine interfaces (BMIs) decode intention signals and other variables from the brain in 

order to control a computer, tablet, or prosthetic limb. In order to improve the technology, a 

better understanding of the representational mechanisms within the brain is necessary. Here we 

study how the anterior intraparietal area (AIP) of human posterior parietal cortex is able to 

represent many variables within a small patch of cortex. We record single unit activity using a 4 

x 4 mm microelectrode array implanted in AIP of a human tetraplegic volunteer. Testing 

movements of different cognitive strategies, body parts, and body sides, we find that the neural 

population represents information in a high-dimensional way, termed “mixed selectivity”, with 

individual units coding for idiosyncratic combinations of variables. Furthermore, we find that the 

variables are not randomly mixed but exhibited “partially mixed selectivity” with certain 

variables more randomly mixed than others. Representations were “functionally segregated”, 

with representations of the hand and shoulder largely orthogonal despite the high degree of 

anatomical overlap; representations of body side and strategy were organized by body part. We 

also examine how the representations changed between BMI training and online BMI control. 

We find that the structure of the movement representations was preserved, with the different 

representations found during calibration maintained during online control. Finally, we study the 

sensory mirror system, a system that processes observed sensations similarly to experienced 

sensations. We once again find partially mixed selectivity and functional segregation by body 

parts, showing that this method of encoding information exists not just in the action intention 

domain but also in the sensory domain. Our results propose partially mixed selectivity as a 

general mechanism for encoding high dimensional in formation in a small neural population, 

while also advancing the possibility of limited electrode-array BMIs decoding movements of a 

large extent of the body.   
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Nomenclature 
AIP: Anterior intraparietal area. 

Anatomical segregation: Division of the population based on physical neurons/units. 

Attempted movements: Movements where the participant actually tries to engage the muscles 
(regardless of physical success). 

Baseline: A rest/relaxation state used to differentiate neural activity at rest from neural activity. 

BA: Brodmann Area. 

BMI: Brain-machine interface. 

Closed-loop/Online-control: When there is feedback of control performance to the participant 
in real-time.  

Decode: Converting input representations (typically neural signals) into some output, e.g., using 
a linear classifier or a linear model. 

Effector: A body part or limb used to control an object (e.g., cursor) in a BMI environment. 

Firing rate: The rate at which a unit is releasing spikes/action potentials. Firing rate codes 
information. 

Functional segregation: Division of the population based on information they encode, rather 
than based on physical neurons. 

Imagined movements: Movements where the participant is only visualizing them, without 
trying to engage any muscles. 

IPL/IPS: Intraparietal region, around the intraparietal sulcus 

LFP: Local field potential. 

LIP: Lateral intraparietal area. 

Motor mirror neurons: Neurons that process the observation of someone performing an 
similarly to oneself performing the action. 

NHP: Non-human primate. 

N.S.: The human participant/volunteer taking part in the study and the participant being studied 
in all experiments in this dissertation. 

Open-loop: When there is no feedback of control performance to the participant. 

Online: When information is being processed live, under real-time conditions. 

Offline: When information is not being processed in real-time (e.g., post-hoc analysis). 

Population: A group of units; considering the units in aggregate as opposed to as single 
units/individually. 
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PFC: Prefrontal cortex. 

PPC: Posterior parietal cortex. 

PRR: Parietal reach region. 

SCI: Spinal cord injury. 

SEM: Standard error of the mean. 

Sensory mirror nrurons: Neurons that process the observation of someone feeling a sensation 
similarly to oneself feeling the sensation. 

Spikes: Action potentials from when a neuron/unit fires. 

Training: Initial data collection used to calibrate a decoder for BMI control. 

Tuned: Being differentially responsive to one condition compared to others and/or baseline. 

Unit: A neuron, a basic unit of computation within the brain. 
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1 Introduction 

An estimated 12,000 new cases of spinal cord injury (SCI) occur each year in the United States, 

with over 50% of them leading to partial or complete tetraplegia (Foundation for Spinal Cord 

Injury Prevention, 2009). Tetraplegia involves the paralysis of all four limbs and the loss of 

sensation below the level of injury. As a result, it is difficult for tetraplegics to perform many 

everyday actions on their own. Neuroprosthetics and brain-machine interfaces (BMIs) offer a 

way to restore some ability and independence. 

 

In recent years, there has been significant progress in the field of BMIs. BMI recordings from the 

brain have been able to successfully control robotic arms (Balasubramanian et al., 2017; 

Hochberg et al., 2012; Klaes et al., 2015; Meng et al., 2016), virtual computer cursors (Aflalo et 

al., 2015; Jarosiewicz et al., 2015), and even a patient’s own muscles (Ajiboye et al., 2017). These 

BMIs generally work by having the patients or non-human primates (NHPs) imagine or attempt 

making movements in order to control a device. 

 

Despite these engineering advances, however, there is a lack of understanding how the brain 

represents the many variables relevant to BMI cortical control and cognitive processes (e.g., 

different effectors, cognitive strategies, sequences of movements, attention, memory, 

sensations, etc.) as well as how these representations change after paralysis. In this dissertation, 

we are particularly interested in how the posterior parietal cortex (PPC) represents variables 

with respect to the different body parts being used for control, the relationships between the 

representations of the different movement types, and how the relationships change when used 



2 
 

for actual BMI control. Furthermore, we are interested in whether variables in other domains 

(e.g., the sensory domain) are represented in a similar framework. 

 

In Chapter 2, we assess the different types of BMIs and the current state of the field. We discuss 

the PPC, the main brain area studied in this dissertation, in terms of traditional and more 

modern views of its function and organization, as well as the potential benefits of designing 

BMIs that record from PPC compared to primary motor cortex (M1), another brain area often 

used for BMIs. We also explain ways in which the brain can encode information, and in 

particular “mixed selectivity”, an increasingly studied way of representing high-dimensional 

information in a relatively small network of neurons. Lastly, we review the literature on mirror 

neurons, which are neurons that appear to represent someone else’s movements/sensations 

similarly to when making the movements/feeling the sensations themselves, effectively 

“mirroring” them. 

 

In Chapter 3, we study how PPC encodes movements of different body parts on both the left 

and right side of the body when using different cognitive strategies. In particular, we find a high 

degree of anatomical overlap, with single units coding for idiosyncratic combinations of the 

tested variables, exhibiting the mixed selectivity discussed above. Furthermore, we find that the 

representations of body parts are largely orthogonal, “functionally segregating” the effector 

responses. Body side and strategy, however, were not coded in a mixed manner, as their 

representations were organized by body part. This type of “partially mixed coding” suggests that 

the way variables are encoded depends on the compared dimensions and is potentially 
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advantageous for neuroprosthetics, enabling a single array (recording from a small patch of 

cortex) to decode motor intentions from a large extent of the body.  

 

In Chapter 4, we study the diverse movements during closed-loop BMI control, specifically 

focusing on how well the structure of the representations observed in Chapter 3 (during 

“training”) are preserved during online control. Focusing on imagined/attempted left/right hand 

movements, we find that the representations of the different movement conditions are 

maintained equally well, with the structure consistent between training and online control. All 

the tested movement conditions were feasible for BMI control, with attempted movements of 

the right hand resulting in the best control performance. Furthermore, as a result of the 

maintained structure of the representations, we found that performance differences were 

predictable by data collected during training. In other words, the consistency of the structure 

made estimates of tuning and relative performance based on the training data meaningful 

during online control. 

 

In Chapter 5, we study sensory mirroring responses in AIP and how they are represented at both 

a single unit and population level. Sensory mirror neurons are neurons that process observed 

sensations similarly to experienced sensations when the sensations are alike. Although not 

directly relevant to BMIs, the results of this chapter shed light on the generalizability of the 

above representational framework to other contexts (i.e., sensory/social interaction). 

Comparing the neural representations of felt and observed touches of the cheek and shoulder, 

we find single unit sensory mirror neurons. Furthermore, we find a population sensory mirroring 

response, with neural representations of felt and observed sensations matched by body part 
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(e.g., felt and observed cheek touches) more similar than neural representations of body parts 

matched by person (e.g., felt cheek and shoulder touches). In the population response, we once 

again find partially mixed selectivity, with the representation of who was touched functionally 

segregated by body part. We also find that the mirroring responses are present regardless of 

whether sensations are presented in video or live action, and whether sensations are observed 

with free gaze or with required fixation. 

 

Finally, in Chapter 6, we summarize our findings and discuss potential future extensions of our 

work.  Specifically, we make predictions on how the results of our study might appear in other 

brain areas, how functional segregation might be a novel way of defining a high-level brain 

area’s primary function, and how our results might inspire novel methods in the field of BMIs. 
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2 Background 

2.1 Brain-Machine Interfaces 

A brain-machine interfaces (BMI), also often called a brain-computer interface, is a technology 

that allows for communication between the brain and an external device, such as a prosthetic 

limb or a computer. This communication can be unidirectional from brain to machine (as in the 

case of decoding motor intentions to control a robotic arm), unidirectional from machine to 

brain (as in the case of stimulation of the brain to evoke a sensation), or bidirectional (as in the 

case of a fully closed-loop prosthetic limb that responds to user intentions and also sends 

sensory feedback signals). BMIs measure brain activity either directly through neurons (the 

individual computational units of the brain) or indirectly through some proxy or aggregate 

measure (e.g., electroencephalography, local field potentials, functional magnetic resonance 

imaging, etc.).  

 

Traditionally, BMIs have been developed in clinical contexts, with applications to help paralyzed 

patients or amputees. For example, BMIs have helped patients with “locked-in” syndrome 

communicate again (Chaudhary et al., 2015). Similarly, BMIs have helped tetraplegics perform 

some independent movements, either through control of a robotic limb (Aflalo et al., 2015) or 

through direct stimulation of their muscles to perform the movement (Ajiboye et al., 2017). 

More recently, there has even been interest in BMIs within the industry and the tech 

community. Several venture capitalist-backed startup companies, such as Kernel and Neuralink, 

and even some existing tech giants like Facebook, have started to explore BMIs in the past few 

years. 

 



6 
 

Typically, BMIs are driven by the user’s motor intentions, often in the form of motor imagery 

(e.g., imagining arm reaches to different targets on a screen). In general, a BMI first learns the 

brain’s neural representations corresponding to the different movement intentions in the 

absence of any actual control. This data is collected in a calibration (“training”) phase either by 

having the user follow instructed movement cues or by having the user mimic the actions 

necessary to control the effector (e.g., following a mouse cursor’s movements with their arm, 

with the cursor following some computer-defined trajectory). A neural decoder (e.g., a linear 

decoder) is then trained on this data to map the neural activity to the movement intentions in a 

supervised learning fashion. This trained decoder can then be used for online BMI control 

(Hochberg et al., 2006; Kim et al., 2008; Simeral et al., 2011).  

 

There are several brain regions often used for BMI control. Primary motor cortex (M1) is one of 

those regions studied for BMI control. It is very involved in low-level motor output and as a 

result, many of the neural signals are strongly correlated with desirable motor control variables 

(e.g., degrees of freedom, trajectories, velocities, forces, etc.) (Georgopoulos et al., 1982; 

Hochberg et al., 2012; Holdefer and Miller, 2002; Morrow and Miller, 2003; Sergio et al., 2005). 

It is highly specialized, with specific, minimally overlapping networks for different parts of the 

body, as described in early studies detailing Penfield’s homunculus (Lotze et al., 2000; Penfield 

and Boldrey, 1937). In other words, a small area of M1 is likely to have dense representations of 

only one body part. 

 

In contrast to this specialized region, the posterior parietal cortex (PPC) has more overlapping 

networks and higher-level intention tuning, particularly in the regions around the intraparietal 
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sulcus (IPL), serving as a connection between sensory and motor areas of the brain (Andersen 

and Cui, 2009; Baldauf et al., 2008; Gail and Andersen, 2006; Ishida et al., 2010; Quiroga et al., 

2006). (More information on PPC below). This higher-level intention-coding property provides 

an opportunity to decode the subject’s intended set of actions and to act on them accordingly 

with intelligent assistive decoders, offloading a substantial portion of the burden of fine-grained 

control from the subject to the computer (Andersen et al., 2014; Musallam et al., 2004).  

 

Regardless of the brain area, the neural activity that BMIs use is encoded in the activity of 

neurons. Neurons fire electrical signals (action potentials, “spikes”) to signal information. The 

firing patterns of the neurons encode the information, either in the temporal (Singh and Levy, 

2017; Stein et al., 2005) or frequency domains (Adrian and Zotterman, 1926; Majaj et al., 2015). 

This firing activity can be observed in a variety of ways. In functional magnetic resonance 

imaging (fMRI), the prevailing method is to monitor blood oxygen levels in the brain as a proxy 

for brain activity. This allows for specific regions to be associated with certain brain functions, 

such as facial recognition (Liu et al., 2010), internal thought (Benedek et al., 2016), semantic 

memory (Sugarman et al., 2012), motor imagery (Filimon et al., 2015; Pilgramm et al., 2016), 

and more. Another technique is electroencephalography (EEG). This technique records the 

brain’s electrical activity from the scalp, using an array of electrodes to measure the gross 

activity of a region. EEG has been used to diagnose neurological disorders such as epilepsy 

(Noachtar and Remi, 2009) as well as to drive some BMIs (Bhagat et al., 2016; Höhne et al., 

2014). Both fMRI and EEG are non-invasive techniques and typically do not require any surgical 

intervention to use. 
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Electrocorticography (ECoG) and intracortical recording, on the other hand, are invasive 

techniques and record the brain from beneath the skull directly. Like EEG, ECoG also records 

aggregate voltage signals from the brain. However, because the neural signals do not need to be 

conducted through the skull in ECoG, the spatial resolution is much higher, up to 5 mm2 

compared to 10cm2 with EEG (Buzsáki et al., 2012). In intracortical recording, microelectrode 

arrays (MEAs) are implanted inside the gray matter of the brain. MEAs are not only able to 

record aggregate neural activity in the form of local field potentials (LFPs), but are also able to 

record the activity of single neurons in the forms of action potentials (spikes). Recent studies 

have also been able to develop BMIs using signals recorded from ECoG arrays (Leuthardt et al., 

2004; Schalk et al., 2007) and MEAs, in both non-human primates (Chestek et al., 2011; 

Nuyujukian et al., 2017) and humans (Aflalo et al., 2015; Collinger et al., 2013; Hochberg et al., 

2006; Jarosiewicz et al., 2015; Pandarinath et al., 2015; Taylor et al., 2002). 

 

One major limitation, in part due to the invasiveness of the ECoG and MEAs, is that they can 

only record from a relatively small patch of cortex at a time. Compared to EEG which can cover 

most of the scalp, for example, the Neuroport array (an MEA from Blackrock Microsystems), 

records from only a 4 x 4 mm patch of cortex. MEAs may have higher spatial resolution, but they 

are gated by the amount of cortex they can cover.  The limitation in the coverage may limit the 

variety of variables that can be decoded (e.g., the number of different body parts). Thus, there is 

potentially a tradeoff between the invasiveness of the arrays and the variety of information that 

can be recorded. 
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2.2 Posterior Parietal Cortex (PPC) 

The posterior parietal cortex is a region of the brain historically implicated in a variety of higher-

level brain functions. Having connections to both sensory and motor regions of cortex, PPC is 

considered an association area that processes sensory signals into more complex functions 

useful for motor functions and decision making, such as awareness, attention, and action 

planning (Balint, 1909; Holmes, 1918; Mountcastle, 1975; Ungerleider and Mishkin, 1982).  

 

More recent studies in non-human primates have found regions of specialization around the 

intraparietal sulcus (IPS) within PPC, with different anatomical regions specializing in different 

body parts and functions. For example, the lateral intraparietal area (LIP) has been linked to 

saccades while the medial intraparietal area (MIP) has been found to be a part of the parietal 

reach region (PRR) and responsible more for reach planning (Andersen et al., 1987; 

Christopoulos et al., 2015; Quiroga et al., 2006). In the ventral intraparietal area (VIP), studies 

have found evidence of visuotactile mirroring, with units representing both observed and 

experienced tactile sensations (Ishida et al., 2010). Studies have found the anterior intraparietal 

area (AIP) to be selective for hand shapes (i.e., grasp types), hand movement intentions, and 

visual features of objects relevant for grasping (Klaes et al., 2015; Murata et al., 2000; 

Schaffelhofer et al., 2015; Schaffelhofer and Scherberger, 2016).  

 

Inactivation studies in different regions on IPS also support the idea of anatomical specialization, 

with the inactivation of PRR leading to reach deficits (Christopoulos et al., 2015; Hwang et al., 
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2012), the inactivation of LIP leading to saccade deficits (Li and Andersen, 2001), and the 

inactivation of AIP leading to grasp deficits (Gallese et al., 1994). At the same time, however, 

these areas are also highly interconnected (Andersen et al., 1990) with some inactivation studies 

finding deficits with coordinated movements. For example, inactivation of PRR was found to 

cause deficits in coordinated simultaneous reaches and saccades but not saccades alone (Hwang 

et al., 2014). 

 

In light of the heavy interconnectivity, it is reasonable to expect significant crosstalk between 

the regions around IPS and thus a high degree of overlap between representations in IPS. 

Indeed, there have been some studies finding evidence of these functions being more 

anatomically overlapping, with the representations of different body parts mixing (Astafiev, 

2003; Connolly et al., 2003; Culham, 2003; Gallivan et al., 2011; Prado, 2005) and the 

representations of body parts on different sides of the body as well (Gallivan, 2013).  

 

Despite the mixed picture on the degree to which the regions around the IPS are specialized by 

movement intention type, it is clear that said regions encode a rich diversity of information. 

Among the neurons in PPC, some encode information about the visual scene (Ishida et al., 2010; 

Murata et al., 2000), while others encode information about movement intentions and overall 

goals (Andersen and Buneo, 2002). These movement intention signals are present during both 

execution and movement planning, even encoding an entire sequence of individual movements 

ahead of time (Baldauf et al., 2008). 
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Furthermore, past studies in PPC on gain fields have suggested that individual neurons in PPC 

can be tuned to multiple variables simultaneously. Specifically, the gain field studies focused on 

how different spatial reference frames encoded at the neural level. They found that neurons in 

and around LIP encode the spatial location of objects relative to head, eye, and body position, 

allowing for a stable representation of the outside world in body-centered coordinates (Brotchie 

et al., 1995; Zipser and Andersen, 1988). 

 

More recently, the idea of PPC neurons being tuned to multiple variables has been extended 

past references frames and representations of space towards other, more categorical, variables 

in a structure known as “mixed selectivity” (Raposo et al., 2014). In mixed selectivity, individual 

neurons can be simultaneously tuned to various idiosyncratic combinations of variables. Mixed 

selectivity allows for a relatively small network of neurons to encode more information and in 

higher dimensions than traditional “pure selectivity”, where individual units are tuned to only 

one variable at a time (Fusi et al., 2016). Mixed selectivity has also been found in other 

association cortices of the brain such as prefrontal cortex (Rigotti et al., 2013), and is seen as 

important for a brain area to perform high-level computations and functions (see Mixed Coding 

for more details). 

 

In the context of BMIs, the coding of many high-level variables in PPC offers an alternative brain 

area to M1 with unique benefits for BMI implementation and efficiency. The ability to decode 

the user’s high-level goal from PPC enables a BMI to use computer assistance (e.g., artificial 

intelligence) to automatically perform the necessary steps to successfully accomplish the goal, 

such as with smart robotics. In contrast, a BMI depending on only the trajectory or velocity 



12 
 

information encoded in a brain region (such as in M1) would require the user to carefully 

perform each of the necessary steps on their own. In Aflalo et al. (2015), for example, they 

found a unit in PPC activated specifically when the participant imagines moving his hand to his 

mouth, but not for any movement with a similar trajectory (e.g., hand to shoulder or hand to 

ear). In this case, one can imagine a BMI using the signal to trigger a robotic limb to move to the 

user’s mouth automatically, as opposed to requiring the user to carefully control each joint and 

degree of freedom simultaneously. 

 

Furthermore, the mixed selectivity coding structure suggests that it is possible for a BMI 

recording from a small patch of PPC to decode many different variables and body parts. This has 

an obvious advantage of allowing a single array to record from a large extent of the body, such 

as the hands and arms (Aflalo et al., 2015; Klaes et al., 2015) or bilaterally (Chang and Snyder, 

2012). M1, in comparison, usually only represents limbs on the contralateral side of the body 

and in a less overlapping way (Fritsch and Hitzig, 1960; Lotze et al., 2000). As imagined body part 

movements are often used to control BMIs, the ability to decode movements of multiple 

different body parts naturally increases the control possibilities and degrees of freedom. 

 

The ability to decode more variables and body parts from a small patch of PPC also provides a 

benefit from a patient safety perspective. In terms of recording hardware, it is desirable to 

record at a high spatial resolution (i.e., single units) while also minimizing the invasiveness of the 

recording technology. Currently, MEAs implanted invasively in the brain are the prevailing 

method for recording at a high enough spatial resolution in humans. By recording from a smaller 

patch of cortex, the craniotomy required to implant the MEA would also be smaller, resulting in 
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a relatively safer procedure with fewer risks (Cho et al., 2017; Regan et al., 2015). Thus, the 

potential to record a large amount of information from a small patch of PPC using an MEA is 

attractive from a clinical safety perspective, as well. 

 

2.3 Mixed Coding 

Mixed coding (or “mixed selectivity”) is a mechanism for how neural populations represent 

information in the brain. Traditionally, studies have either looked at neural representations from 

a “pure selectivity” perspective, where individual neurons are tuned only to single task 

variables, or a “sparse selectivity” perspective, where neurons are tuned to specific 

combinations of task variables. Mixed selectivity, on the other hand, is a framework where the 

neurons in a population are tuned, often nonlinearly, to idiosyncratic combinations of variables, 

i.e., neither completely pure nor sparse but rather with some units demonstrating examples of 

each.  

 

In 1988, Zipser and Andersen studied how neurons in PPC near LIP behave during a saccade, 

particularly focusing on how they encode both the position of the eye and the target of the 

saccade (Zipser and Andersen, 1988). They found that the neurons were multiplicatively tuned 

to both eye position and target location, an encoding structure termed “gain fields”. Despite the 

mixing of eye and target positions, however, the population as a whole could still be used to 

predict eye position and target locations. Other studies have also found examples of gain fields 

in various parts of the brain, such as the mixing of visual and tactile receptive fields in VIP 

(Avillac et al., 2005) or the mixing of hand, eye, and goal positions during reach planning in 

dorsal premotor cortex (PMd) . 
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These studies on gain fields can all be considered early work in the field of mixed selectivity in 

the context of spatial representations, with neurons in the population tuned to various 

combinations of receptive fields. More recently, however, the concept of mixed selectivity has 

been extended to a more diverse variety of contexts, such as in the context of categorical 

decision making (Raposo et al., 2014; Rigotti et al., 2013). 

 

In these studies, mixed selectivity has been found in associative areas of the brain such as PMd, 

PFC, and PPC and is seen as an important hallmark of higher level cognitive areas or areas 

related to associative learning (Pesaran et al., 2006, 2010; Raposo et al., 2014; Rigotti et al., 

2013). Studies on gain fields, for example, interpret the mixing of different receptive fields as 

necessary in the transformation of variables from one reference frame to another, a process 

important in transforming high level intentions into actions (Pesaran et al., 2006, 2010; Salinas 

and Sejnowski, 2001; Salinas and Thier, 2000). A recent modeling study found that the degree of 

mixed selectivity observed in NHP PFC was consistent with models of Hebbian learning (Lindsay 

et al., 2017), where the connection between two neurons strengthens when they have highly 

correlated outputs (Morris, 1999). This consistency suggests a relationship between mixed 

selectivity in association areas and training over time. 

 

The mixed selectivity framework offers several advantages over the more traditional pure or 

sparse selectivity frameworks. A sparse selective representation faces the problem of 

exponential blowup. In sparse selectivity, each neuron is tuned to a specific combination of task 

variables. As the number of variables increases, however, the number of neurons required to 
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encode that information increases exponentially. This is a broader phenomena from machine 

learning, computer science, and statistics known as the “curse of dimensionality”. In general, the 

curse of dimensionality describes how as the number of dimensions in the data increases, the 

amount of space/samples required to fully represent the possible permutations of the features 

increases exponentially (Bellman, 2015). 

 

In the context of neural representations and sparse selectivity, it means that not only does the 

number of neurons exponentially increases with the number of variables, but the number of 

connections from these neurons to downstream areas processing the information explodes 

exponentially as well  (Anderson and Kreiman, 2011; Fusi et al., 2016). This is clearly not a 

feasible method of representation for all the variables encoded in the brain. However, this 

problem is largely reduced with mixed selectivity. The presence of neurons tuned to various 

combinations of variables allows for the neurons to represent more than a single variable, 

allowing them to be useful for a much larger variety of applications and downstream 

applications. This flexibility of use also allows for the readout of the variables to require much 

fewer connections downstream  (Fusi et al., 2016; Pouget and Sejnowski, 1997). 

 

Compared to pure selectivity, where units are tuned to individual variables, mixed selectivity 

allows for information to be encoded in higher dimensions (Rigotti et al., 2013). The higher 

dimensionality allows for linear readout of many variables that would be otherwise inseparable 

in lower dimensions (e.g., with pure selectivity), a concept well understood in machine learning 

(Fusi et al., 2016). Linear readout is easily implemented by neurons and has been found to be 

sufficient to solve many complex tasks, such as predicting chaotic systems and spatiotemporal 
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computations (Adibi et al., 2014; Buonomano and Maass, 2009; Jaeger and Haas, 2004; Shamir 

and Sompolinsky, 2006). Thus, the ability enabled by mixed selectivity to decode variables via 

simple linear readout is highly desirable. Note, however, that for the mixed selectivity to encode 

variables in higher dimensions the mixing must be nonlinear as opposed to linear. Purely linear 

mixing of variables would fail to create any additional separability in the neural representations 

(i.e., not increase the dimensionality of the representation) (Fusi et al., 2016; Rigotti et al., 

2013), potentially making the aforementioned simple linear readout of all variables impossible. 

 

So far, studies on mixed selectivity have looked at behaving rodents and NHPs, with results 

suggesting that all task variables are randomly mixed together (Pesaran et al., 2006, 2010; 

Raposo et al., 2014; Rigotti et al., 2013). However, it is unclear whether this is indeed the case. 

The random mixing of apparently all variables could be due to the limited number of task 

variables tested in an experiment, for example. The random mixing also raises questions about 

how different brain areas can have specialization of function while remaining randomly mixed. 

For example, studies in PPC have found areas of specialization to saccades, reaching 

movements, grasps, etc. (see Posterior Parietal Cortex above for more details), but it is unclear 

how these areas would be different in the framework of mixed selectivity. 

 

Past studies have failed to study a wide enough set of task variables to address these questions. 

Studies have primarily used laboratory animal models, and animals are typically difficult to train 

to perform many tasks with many variables. This limit on the number of simultaneously testable 

task variables makes it relatively problematic to study high dimensional mixed selectivity in 

animals. Humans, on the other hand, can be instructed to perform tasks involving multiple 
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variables easily, with little to no overhead when testing new task variables. However, there have 

so far been no studies recording from high-level associative areas in human cortex in the context 

of mixed selectivity. 

 

2.4 Mirror Neurons 

About 25 years ago, researchers at the University of Parma in Italy discovered neurons in the 

premotor cortex of macaque monkeys responsive when observing someone else perform an 

action as well as when the monkey was performing the same action itself (Di Pellegrino et al., 

1992; Gallese et al., 1996). The discovery of these “mirror neurons” created a field studying how 

mirror responses might relate to larger behaviors in social interaction. 

 

The majority of the work in this field has been in NHPs using both fMRI and electrophysiology 

(Caggiano et al., 2009; Filimon et al., 2007; Fogassi et al., 2005; Fujii et al., 2008; Grèzes et al., 

2003; Keysers et al., 2003; Rozzi et al., 2008). These studies have mostly found mirror neurons in 

brain regions involved in action planning such as premotor cortex and PPC.  

 

More recently, there have been some mirror neurons studies in humans, too. These studies 

have used fMRI, recording brain areas in response to observed actions and imagined/executed 

movements. Consistent with the NHP studies, they have found mirror responses in premotor 

cortex, inferior frontal gyrus, and the IPS of PPC (Chong et al., 2008; Kilner et al., 2009; Tai et al., 

2004). A recent electrophysiology study in humans also found single unit examples of motor 

mirror neurons in the supplementary motor area (SMA) (Mukamel et al., 2010). 
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The prevailing school of thought is that these mirror neurons are related to recognizing and 

understanding the actions and intentions of others, allowing people to imitate/mimic each 

other, and ultimately forming a basis for interactive social behaviors (Caggiano et al., 2011; 

Caramazza et al., 2014; Fogassi et al., 2005; Iacoboni, 2009; Keysers and Gazzola, 2006; Rizzolatti 

and Fabbri-Destro, 2008). Some even argue that mirror neurons are evidence of the biological 

hardwiring of empathy into animal/human behavior (Gazzola et al., 2006; Iacoboni, 2009); 

empathy that is critical for the formation of societies, altruistic behaviors, and morals (Adolphs, 

2009; Tangney et al., 2007; Waal, 2008). 

 

At the same time, however, some maintain that the motor mirror system is not the substrate for 

action understanding. They argue that there has not been any direct tests of the mirror neurons 

actually representing action understanding and that action understanding could be achieved 

through other higher level areas (Hickok, 2009). They also argue that mirror neurons could just 

be a natural emergent phenomena of associative learning over time, rather than a biologically-

directed feature (Heyes, 2010). 

 

The majority of the work on mirror neurons has focused on “motor mirror neurons”, neurons 

tuned to both the performance of an action and the observation of someone else performing 

the same action. There is in fact a second, less well-studied, class of mirror neurons, termed 

“sensory mirror neurons”. Analogous to motor mirror neurons, sensory mirror neurons are 

responsive when feeling a sensation as well as when observing someone else feel the same 

sensation. More precisely, sensory mirror neurons are neurons that process the observation of 
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someone else feeling a sensation similarly to how they process the actual experience of the 

sensation. 

 

Single unit studies in NHPs have found evidence of tactile sensory mirroring in areas around the 

IPL in PPC (Ishida et al., 2010). In humans, fMRI studies have also found the IPL and the 

secondary somatosensory cortices to respond similarly for observed and felt tactile sensations 

and even pain (Keysers et al., 2004; Osborn and Derbyshire, 2010).  

 

In several studies, there have been cases of people with mirror-touch synesthesia, people who 

report being able to actually feel a sensation just from observing it (Banissy et al., 2009). fMRI 

studies on these people revealed hyperactivity in brain regions where sensory mirror neurons 

have been found (Blakemore et al., 2005). Subsequent studies have found that people with 

mirror-touch synesthesia tend to have higher levels of empathy, with some people even arguing 

that mirror-touch synesthesia could be linked to the ability to distinguish the identity of self 

from others (Banissy and Ward, 2013; Banissy and Ward, 2007). These studies further together 

suggest that the mirror system, and in particular the sensory side of the mirror system, could be 

related to empathy. 

 

To the best of our knowledge, however, there have so far been no electrophysiology studies on 

the sensory mirror system in humans. Without single unit recordings, the structure of how these 

mirror systems manifest is unclear. Although able to cover a large extent of the brain, fMRI 

studies are generally limited in their spatial resolution (Glover, 2011). Recordings of single units, 
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on the other hand, would be able to answer questions about the structure of the sensory mirror 

responses (e.g., how much the subpopulations tuned to felt and observed sensations overlap, 

potential tuning differences between felt and observed sensations, etc.).  
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3 Partially Mixed Representations in Posterior Parietal Cortex 

The following chapter’s contents are taken and adapted from Zhang et al. 2017, with 

modifications done to fit the dissertation format.  

 

Zhang, C.Y. et. al. (2017). Partially Mixed Selectivity in Human Posterior Parietal Association 

Cortex. Neuron 95, 697-708. doi: 10.1016/j.neuron.2017.06.040. 

 

3.1 Introduction 

The posterior parietal cortex (PPC) of humans has historically been viewed as an association 

area that receives diverse inputs from sensory cortex, “associates” these inputs for processing 

more cognitive functions such as spatial awareness, attention and action planning, and delivers 

the outcomes of the associative process to more motor regions of the frontal cortex (Balint, 

1909; Holmes, 1918; Mountcastle, 1975; Ungerleider and Mishkin, 1982). However, subsequent 

single neuron recording experiments with behaving non-human primates (NHPs) point to a 

systematic organization of functions in PPC (Andersen and Buneo, 2002). Of particular interest 

to the current investigation, separate cortical areas around the intraparietal sulcus (IPS) have 

concentrations of neurons selective for saccades (lateral intraparietal area, LIP) (Andersen et al., 

1987), reach (parietal reach region, PRR) (Snyder et al., 1997) and grasping (anterior 

intraparietal area, AIP) (Murata, 2000). These data suggest that this part of the PPC, rather than 

being one large association region, is rather composed of a number of anatomically separated 

cortical fields that are specialized for intended movements that are effector-specific (eye, arm, 

hand).  
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More recent functional magnetic resonance imaging (fMRI) studies in humans have presented a 

mixed picture with some studies finding similar segregation for the types of intended movement 

in areas around the IPS (Astafiev, 2003; Connolly et al., 2003; Culham, 2003; Gallivan et al., 

2011; Prado, 2005) and other studies finding largely an intermixing of effectors (Beurze, 2009; 

Heed et al., 2011a; Hinkley, 2009; Levy, 2007) as well as bimanual representation (Gallivan, 

2013). These findings provide evidence for a degree of distributed and overlapping 

representation of effectors on both sides of the body within PPC. 

 

With the first chronic single neuron recordings of PPC in humans, we found similarities with the 

NHP studies. Neurons in human AIP are highly selective for different imagined grasp shapes 

while neurons in nearby Brodmann area (BA) 5 are not (Klaes, 2015). However, the human 

neural recordings also pointed to some degree of distributed representation, with AIP neurons 

also selective for reach direction and with AIP and BA5 neurons being selective for reaches with 

either the left or the right limb or both (Aflalo et al., 2015). While we have found evidence that 

multiple effectors are encoded in the same anatomical region of cortex, these studies were 

carried out in separate sessions and thus the functional organization of multiple effectors within 

the same population of neurons remains unclear. 

 

Pertinent to how different effectors are coded within PPC are recent results that address 

encoding strategies for multiple dimensions of representations and their computational 

advantages in association cortices more generally. Neurons in prefrontal cortex and PPC (Raposo 

et al., 2014; Rigotti et al., 2013) exhibit what has been termed mixed selectivity (Fusi et al., 



23 
 

2016), a neural encoding scheme in which different task variables and behavioral choices are 

combined indiscriminately in a non-linear fashion within the same population of neurons. This 

scheme generates a high-dimensional non-linear representational code that allows for a simple 

linear readout of multiple variables from the same network of neurons (Fusi et al., 2016). A basic 

question is whether such an organization of functional variables is universal or, rather, is in part 

due to the types of functional variables that were compared or the cortical subregions selected 

for study. 

 

In the current study, we examine the anatomical and functional organization of different types 

of motor variables within a 4 x 4 mm patch of human AIP. We varied movements along three 

dimensions: the body part used to perform the movement (hand versus shoulder), the body side 

(ipsilateral versus contralateral), and the cognitive strategy (attempted versus imagined 

movements). Each of these variables has been shown to modulate PPC activity (Andersen and 

Cui, 2009; Gallivan, 2013; Gerardin et al., 2000; Heed et al., 2011a). Thus we are able to look at 

how different dimensions of motor variables are encoded, and whether different variable types 

are treated in an equivalent manner (e.g., all variables exhibiting mixed-selectivity) or whether 

different functional organizations are found for different types of variables. Finally, we compare 

the hand and shoulder movements to speech movements, a very different type of motor 

behavior.  

 

We find that movements of the hand and shoulder are well represented in human AIP, whether 

they are imagined or attempted, or performed with the right or left side. Single units were 

heterogeneous and coded for diverse conjunctions of different variables: there was no evidence 
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for specialized subpopulations of cells that selectively coded one movement type. However, the 

different motor dimensions were not indiscriminately mixed, as body side and cognitive strategy 

were fundamentally different from body part at the level of neural coding. There was a high-

degree of correlation between movement representations of the right and left side, within, but 

not between body parts. The same was true for cognitive strategy. Thus, body part acted as a 

superordinate variable that determined the structure of how the other variables were encoded. 

Mixed-coding of some movement variables, but not others, argues in favor of PPC having a 

partially-mixed encoding strategy. Finally, while AIP lacks anatomical segregation of body parts, 

the mixed-coding between body parts leads to what we call functional segregation of body 

parts. Such segregation is hypothesized to enable multiple body parts to be coded in the same 

population with minimal interference. 

 

3.2 Methods 

3.2.1 Experimental Model and Subject Details 

Subject N.S. is a 59-year-old female tetraplegic 7 years post-injury and has a C3-C4 spinal lesion 

(motor complete), having lost control and sensation in her hands but retaining movements and 

sensations in her upper trapezius. In this paper we refer to contraction of the upper trapezius as 

“shoulder movements” as short-hand for the resulting shoulder shrugging movement. The 

studies were approved by the California Institute of Technology, University of California, Los 

Angeles, and Casa Colina Centers for Rehabilitation Internal Review Boards. Informed consent 

was obtained from the participant N.S. after the nature of the study and possible risks were 

explained. Study sessions occurred at Casa Colinas Centers for Rehabilitation. 
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3.2.2 Behavioral setup 

All tasks were performed with N.S. seated in her motorized wheel chair. Tasks were displayed on 

a 27-inch LCD monitor in a lit room. The monitor was positioned so that the screen occupied 

approximately 40 degrees of visual angle. Stimulus presentation was controlled using the 

Psychophysics Toolbox (Brainard, 1997) for MATLAB. No eye fixation was required or enforced. 

 

3.2.3 Physiological recordings 

Subject N.S. was implanted with two 96-channel Neuroport arrays (Blackrock Microsystems 

model numbers 4382 and 4383) in putative homologues of area AIP and Brodmann’s Area 5d. 

Array placement was determined based on preoperative fMRI (Aflalo et al., 2015) and the array 

was placed at Talairach coordinate [-36 lateral, 48 posterior, 53 superior]. Neural activity was 

amplified, digitized, and recorded with the Neuroport neural signal processor (NSP). The 

Neuroport System, comprising the arrays and NSP, has received FDA clearance for <30 days 

acute recordings. We received FDA IDE clearance (IDE #G120096, G120287) to extend the 

duration of the implant for the purposes of a brain-machine interface clinical study using signals 

from posterior parietal cortex.   

 

During recording, thresholds for action potential detection were set at -4.5 times the root-

mean-square after high pass filtering (250 Hz cut-off) the full-bandwidth signal sampled at 30 

kHz in the Central software suite (Blackrock Microsystems). Each waveform was composed of 48 

samples (1.6 ms) with 10 samples prior to triggering 38 samples after. Single and multiunit 

activity was sorted by k-mediods clustering using the gap criteria to estimate the total number 

of clusters (Tibshirani et al., 2001). Clustering was performed on the first n principal 
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components, where n was selected to account for 95% of waveform variance. Post-hoc review 

of sorted unit statistics showed that channels were sorted with between 2-4 principal 

components (see Figure S 2A). Results of offline sorting were reviewed and adjusted if deemed 

necessary following standard practice (Harris et al., 2016). Only neurons recorded from the array 

implanted in putative AIP were analyzed. Pooling across all versions of the task, on average 93 

sorted units were recorded from N.S. per session. Furthermore, to avoid bias, all spike sorting 

was performed prior to any analysis and blind to a unit or channel’s response during the task. 

We used several metrics to quantify sort quality (see Figure S 2B-F) including 1) the percentage 

of interspike intervals (ISIs) shorter than 3ms, 2) the signal-to-noise ratio (SNR) of the mean 

waveform, 3) the between spike projection distance (Pouzat et al., 2002), 4) the modified 

coefficient of variation of the ISI (CV2), and 5) the cluster isolation distance (Harris et al., 2000) 

of each sorted cluster. 

 

We recorded electromyogram (EMG) activity over the right trapezius muscle using B&L 

Engineering EMG electrodes. Raw analog EMG activity was fed into the NSP, aligned with neural 

signals, and sampled at 2 kHz. Signals were band-pass filtered (5th order Butterworth filter with 

cut-off frequencies of 10 and 250Hz), full-wave rectified, and smoothed (box-car, 50ms 

window).  

 

3.2.4 Task procedure 

Several versions of a delayed movement task were constructed to determine the extent of 

tuning to control strategy within the neural populations recorded from AIP.  In the primary task 

(Figure 1A), N.S. was cued for 2.5 seconds to what strategy (imagine or attempt), side (left or 
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right), and body part (hand or shoulder) to use, e.g., attempting to squeeze the right hand. In 

total there were eight possible actions which were pseudorandomly interleaved such that each 

condition was performed once before repetition. After a delay of 1.5 seconds, N.S. was cued to 

perform the cued action. Between each trial there was a 3 second inter-trial interval (ITI). Hand 

movements were hand squeezes while shoulder movements were shoulder shrugs (contraction 

of the trapezius). We ran 64 trials (8 trials per condition) on each session. This task was run over 

the course of 4 non-consecutive days. In total 357 units were recorded across the four recording 

sessions. Unless otherwise indicated, all figures were generated from data collected from this 

version of the task. 

 

In a separate set of sessions, we repeated the experiment with the modification that shoulder 

shrugging movements were replaced with shoulder abduction in the frontal plane.  Attempted 

shoulder abduction resulted in no overt movement and thus allowed us to compare body part 

representations exclusively below the level of injury. Six sessions run over the course of 6 non-

consecutive days were recorded resulting in 629 recorded units. Each session contained 64 trials 

(8 trials per condition). 

 

Movements of the shoulder and hand are frequently made together during natural behavior. 

We modified the delayed movement task by adding “speak left” and “speak right” as two 

actions unrelated to any hand or shoulder movements. To avoid overly long data collection 

sessions (as determined by patient feedback), we minimized the number of conditions by 

splitting sessions into either hand or shoulder movements exclusively, resulting in 6 conditions 

pseudorandomly interleaved (Imagine Left, Imagine Right, Attempt Left, Attempt Right, Speak 
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Left, Speak Right). Three sessions were recorded for the hand and the shoulder separately, with 

each session containing 72 trials (12 trials for each condition). In total 299 units were recorded 

for sessions using the hand while 228 units were recorded for sessions using the shoulder.  

 

3.2.5 Unit selection 

Analyses were performed on all units regardless of sort quality for statistical power and ease of 

presentation. To ensure that such pooling did not bias the conclusions of this paper, we 

performed the analyses separately on well isolated versus potentially multi-unit activity and 

found the results to be similar (see Figure S 1 for more details and also Unit quality classification 

below for how high-quality single units were identified). Units were pooled across days 

assuming independent populations across recording days. Analysis of separate days was also 

performed to demonstrate stability of results across sessions (Figure S 5). Units with mean firing 

rates less than 1.5 Hz were excluded from the analysis so that low firing rate effects would be 

minimized.  

 

3.2.6 Linear analysis 1 

We used a linear regression analyses to quantify tuning to each condition (e.g., for experiment 

1, 8 total conditions from the possible combinations of the 2 strategies, 2 body parts, and 2 

body sides). We created a design matrix consisting of indicator variables for each condition (e.g., 

the indicator for right attempted shoulder movements would consist of a vector where data 

points associated with right attempted shoulder movements would be assigned a 1, while all 

other conditions and the baseline samples would be assigned a 0). We then estimated firing rate 

as a linear combination of these indicator variables: 
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𝐹𝐹𝐹𝐹 = �𝛽𝛽𝑐𝑐𝑋𝑋𝑐𝑐
𝑐𝑐

+ 𝛽𝛽0 

where 𝐹𝐹𝐹𝐹 is the firing rate, 𝑋𝑋𝑐𝑐 is the vector indicator variable for condition c, 𝛽𝛽𝑐𝑐 is the estimated 

scalar weighting coefficient for condition c, and 𝛽𝛽0 is a constant offset term. In such a model, the 

estimated Beta coefficients represent the expected firing rate changes from baseline for each 

condition. Tuning to each condition (Fig. 2A) was based on the p-value of the t statistic for each 

associated beta coefficient. This definition of whether a unit is significantly tuned to a condition 

is used as an inclusion criterion for some analyses, with the significance level (e.g., p < 0.05, 

uncorrected or Bonferroni corrected) depending on the specific analysis. The significance level 

of the differences between the number of units tuned to each condition was calculated using a 

two-sided Wilcoxon rank sum test on the distribution of p-values for each pair of conditions 

(Figure S 3).  

 

3.2.7 AUC analysis 

We performed a ROC analysis to quantify tuning strength for each condition. For each unit, 

strength of tuning was summarized as the area under the curve (AUC) when comparing each 

condition’s Go or Delay neural response to baseline. The AUC values can range from about 0 to 

1, with 1 indicating that every go/delay measurement is greater than every baseline 

measurement (excitatory response) and 0 indicating that every go/delay measurement is less 

than every baseline measurement (inhibitory response). To summarize the population (Figure 

2B), we combined excitatory and inhibitory responses by reversing condition labels for AUC 

responses below 0.5. The separated responses are reported in Figure S 4. Only units with 

significant AUC (p < 0.05, permutation test) are included in the population average and thus we 

answer the question “what is the average strength of tuning for each condition for units with 



30 
 

significant tuning to the condition.” Thus, this measure is descriptive and not a statistical 

assessment of significant tuning in the population. Pair-wise differences between the AUC for 

each condition were calculated using a two-sided Wilcoxon rank sum test on the significant AUC 

values (Figure S 3). 

 

3.2.8 Linear analysis 2 

Above we performed a linear regression analyses where firing rate was modeled as a function of 

each condition response. Here we perform an additional linear analysis where firing rate is 

modeled as the linear combination indicator variables for each motor variable (strategy, body 

side, and body part) and their interaction. All temporal epochs were identical, however the 

design matrix was updated to reflect the new model: 

𝐹𝐹𝐹𝐹 = 𝛽𝛽1𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 + 𝛽𝛽2𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 + 𝛽𝛽3𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 + 𝛽𝛽4𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ∗ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 + 𝛽𝛽5𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

∗ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 + 𝛽𝛽6𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 ∗ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 + 𝛽𝛽0 

Each unit was classified as being tuned to a term if the p-value of the corresponding beta 

coefficient was significant (i.e., p < 0.05, uncorrected).  To examine the effect of the different 

motor variables on firing rate patterns across the population we performed a MANOVA test on 

the linear beta coefficients of the model. All units were used in the test (regardless of whether 

they showed tuning to a variable or not). 

 

3.2.9 Test of population bias in representing motor variables 

To examine whether there were systematic biases for the three different motor variables 

(strategy, body side, body part) across the population we performed a MANOVA test. The 

baseline firing rate of each neuron (taken during the intertrial interval) was subtracted from the 
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firing rate of the neuron during the Go phase, and this baseline-subtracted firing rate was used 

in the test. All units were used in the test (regardless of whether they showed tuning to a 

variable or not). 

 

In comparing between the 8 movement conditions and the speaking conditions, we performed a 

t-test on the baseline subtracted firing rates, with the 8 movement conditions pooled into one 

group and the 2 speaking conditions pooling into a second group. Once again, all units were 

used regardless of their tuning. 

 

3.2.10 Degree of specificity 

We used a degree of specificity analysis to begin to understand how the different movement 

attributes were encoded relative to each other in individual neurons. This allowed us to test for 

population level tendencies for e.g., exclusive activation for one effector versus the other or 

whether tuning tended to be overlapping. We computed the degree of specificity for each 

motor dimension (e.g., left vs right, imagine vs attempt, hand vs shoulder) as the normalized 

difference in beta values computed for each condition ((|𝛽𝛽1|− |𝛽𝛽2|)/(|𝛽𝛽1| + |𝛽𝛽2|). Beta value 

extraction is described above (see Linear Model 1). The degree of specificity ranges from -1 to 1. 

A value of 1 indicates exclusive modulation for comparison variable 1, a value of -1 indicates 

exclusive modulation for comparison variable 2, while a value of 0 indicates comparable 

activation to both variables. Degree of specificity was only computed if at least one beta 

coefficient in the comparison was significant (p < 0.05, uncorrected). We used a Wilcoxson 

signed rank test to determine whether the median of the distribution of specificity values was 

significantly shifted from 0. 
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3.2.11 Correlation between representations 

We used a population correlation analysis to measure the similarity between the neural 

representations of each condition. For each neuron, the beta coefficient for each condition (see 

Linear Model 1) was normalized by the corresponding 95% confidence interval to ensure a 

common scale proportional to signal-to-noise. The normalized beta values for each unit and for 

each condition were used to create a vector summarizing the population response. We used the 

correlation between these vectors to measure the similarity in neural space between conditions. 

Only units with a significant beta coefficient for at least one condition (p < 0.05, Bonferroni 

corrected) were included in the analyses.  

 

We used hierarchical clustering (agglomerative hierarchical cluster tree; using the built-in 

MATLAB 2016a linkage and dendrogram functions with unweighted average correlation as the 

measure) to summarize the structure in the patterns of correlation between the different 

conditions (McKenzie et al., 2014). 

 

3.2.12 Decoder analysis 

Functional segregation of body parts should result in minimal shared representations of other 

motor variables across different body parts. Conversely, the lack of functional segregation 

between different body sides (or strategy) should lead to comparatively greater shared 

representation of the other motor variables across different body sides (or strategies). To test 

this, we trained a linear classifier (linear discriminant with equal diagonal covariance matrices) 

to differentiate between the two levels of one motor variable, restricting the training data to 
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one level of a second motor variable and then applying the classifier to the other level. Cross-

validated performance restricted to the first level was also computed as this provided an upper 

bound on classification accuracy given the signal to noise of our data. For instance, we trained a 

classifier to differentiate left from right movements on shoulder movement trials and tested it 

on hand movement trials, also computing cross-validated performance within shoulder trials 

(Figure 7C). For features, we used firing rates from the first 2 seconds of the “Go” phase for 

units with significant tuning to any of the eight movement conditions. Only units significantly 

tuned to at least one of the 8 movement conditions (p < 0.05, Bonferroni corrected) were 

included in the analysis. Classifier performance was determined to be above chance if its 

performance was greater than 95% of decoders trained on randomly shuffled data (1000 

shuffles). 

 

3.2.13 Condition classification 

We performed classification analyses using linear discriminant analysis with equal diagonal 

covariance matrices for each condition. Classification accuracy was estimated using stratified 

leave-one out cross-validation. Classification features were constructed using the first 2 seconds 

of the “Go” phase. Only units with significant tuning to any of the eight movement conditions 

were used (p < 0.05, Bonferroni corrected). Significant units were estimated from the training 

data and applied to the test data for each fold of the cross-validation routine to avoid peaking 

effects. Units were pooled across days for analyses. For each fold (1000 repetitions), one feature 

per condition was randomly sampled as the test data, with all other samples used for training. 
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3.2.14 Unit quality classification 

For the analysis in Figure S 1, we needed to separate spike sorted units into high-quality single 

units and multi-units. This classification was done based on the cluster isolation distance (Harris 

et al., 2000) with a threshold of 10^1.6 dividing high-quality single units and multi-units. This 

threshold was chosen based on visual inspection of the distribution of all cluster isolation 

distance values (see Figure S 2).  

 

3.3 Results 

Recording from AIP of a female, C3/C4 tetraplegic participant 7 years post-injury (N.S.), we 

compared neural responses of attempted and imagined actions of the hand or shoulder on the 

right and left side of the body. Hand movements involved squeezing the hand into a fist and 

shoulder movements involved shrugging the shoulder. Shoulder shrugs are a staple of the 

participant’s behavioral repertoire being a primary method to operate her motorized 

wheelchair. For imagined movements, we instructed N.S. to visualize her limb performing the 

instructed action, while for attempted movements, she was instructed to send the appropriate 

motor command to move the instructed limb. In the case of shoulder movements, attempted 

movement resulted in overt motor execution, while for the hand, there was no resulting 

movement because of paralysis. For the shoulder, we confirmed behavioral compliance by 

measuring the presence of trapezius EMG activity during attempted but not imagined 

movement.  

 

We used a delayed movement paradigm (Figure 3.1A). Following an inter-trial interval (ITI), N.S. 

was instructed to attempt or imagine movement of the left or right hand or shoulder. This 
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instruction was extinguished during a delay period. A generic “Go” cue, visually identical across 

trial conditions, prompted movement. From initial pilot data we knew that all hand and shoulder 

movements evoked activity in the population; however, we were unsure how the different 

conditions mapped onto individual neurons. Shoulder and hand movements are frequently 

performed together opening the possibility that hand and shoulder movements would 

frequently be localized to the same neural population. We therefore introduced speech as a 

fundamentally different action that could provide an additional movement for comparison. 

During the speech conditions, N.S. simply said “left” or “right” as instructed. Eight repetitions of 

each trial type were pseudorandomly inter-leaved such that one repetition of each condition 

was performed before repeating a condition. 

 

Figure 3.1B-E show several well-tuned example units that highlight how neurons commonly 

coded for a complex assortment of different condition types. For instance, Example B codes for 

movements of the right hand, whether or not the movement was imagined or attempted. 

Example C codes exclusively for attempted movements of the left hand. Example D responds 

similarly for imagined actions of the left or right hand, but not attempted actions. Example E 

codes for when N.S. spoke “left.”  
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Figure 3.1. Neurons in PPC Exhibit Mixed Selectivity to Movement Variables  

(A) Delayed movement paradigm. N.S. was cued as to what kind of movement to perform (e.g., imagine/attempt 
left/right hand/shoulder) and then cued to perform the movement after a brief delay. See Methods for more details. 
(B-E) Single unit example responses over time (mean ± SEM) demonstrating diverse coding to the different conditions. 

 

. 
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To better understand the strength of tuning in the population to each condition, we fit a linear 

model to each neuron that explained firing rate relative to baseline (taken as the firing rate 

during the ITI) as a function of each task condition for both the Go and Delay phases. All 8 

primary movement conditions as well as speaking were represented in the neural population 

(Figure 3.2A). We also examined the magnitude of information content for recorded units by 

computing the area under the receiver operating characteristic curve (AUC) generated when 

comparing the Go/Delay period activity to ITI activity for each condition separately (Figure 3.2B). 

While there were significant differences between specific pairwise comparisons (Figure S 3), 

results across these measures were comparable overall. 
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Figure 3.2. Significant Tuning to Each Movement Condition 

(A) The fraction of units in the population tuned for each condition in the Delay and Go phases, separated by body 
part and body side (95% confidence interval). A unit was considered tuned to a condition if the beta value of the 
linear fit for the condition (Linear Analyses 1 Methods) was statistically significant (p < 0.05, uncorrected). See 
also Figure S 3 for pairwise comparisons between conditions and Figure S 5 for results of individual sessions. (B) 
The magnitudes of the units’ tuning to each condition in the Delay and Go phases, as defined by the area under 
the receiver operating characteristic curve (AUC) between Delay/Go and ITI activity, separated by body parts (95% 
confidence interval). Only significant AUC values were included in analyses (shuffle test, p < 0.05 uncorrected). See 
also Figure S 4 for the AUC values of excitatory (positively tuned) and inhibitory (negatively tuned) units presented 
separately, as well as Figure S 3 for pairwise comparisons between conditions. (Att R = Attempt Right, Att L = 
Attempt Left, Imag R = Imagine Right, Imag L = Imagine Left, Spk R = Speak Right, Spk L = Speak Left). (C) Fraction 
of units with significant tuning to each motor variable and the interaction terms for both the Delay (blue) and Go 
(red) phases, as opposed to the 8 movement conditions in (A) (p < 0.05, uncorrected 95% confidence intervals, see 
also Linear analysis 2 in Methods). 
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We performed a second type of linear analysis, fitting a linear model that explained the firing 

rate relative to baseline as a function of the three motor variables of strategy, body side, and 

body part (Figure 3.2C). This analysis revealed an asymmetry in how body part is represented 

compared to body side or strategy. In particular, relatively larger non-linear interactions of 

strategy and body side with body part indicate that body part may in some way structure the 

functional responses to the other variables, a point we directly address below. 

 

We found significant differences in mean firing rates between hand and shoulder movements 

(hand greater than shoulder, MANOVA p = 5.614e-8) and attempted and imagined movements 

(attempt greater than imagine, p = 0.0020), and no significant differences in mean firing rates 

between left- and right-sided movements (p = 0.2951). Comparing the firing rates of all 8 

movement conditions (pooled together) with the firing rates of the speech conditions, we found 

a significant bias towards hand and shoulder movements over speaking (t-test p = 4.7048e-8). 

 

How are these different motor representations coded with respect to each other in the same 

region of cortex? Figure 3.3 shows five possibilities: (1) the 8 movement condition 

representations could be anatomically segregated from each other, with a highly specialized 

sub-population of neurons dedicated to each (sparse mixed selectivity, Figure 3.3A); (2) an 

organization similar to one, save that some variables are subordinate to others. For instance, 

imagined movements may be a subset or suppressed version of attempted movements (Figure 

3.3B); (3) highly specialized sub-populations are tuned to each motor variable class exclusively 

(body part, body side, strategy) (pure selectivity, Figure 3.3C); (4) each motor variable class 
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could be randomly mixed together (Churchland and Cunningham, 2015; Fusi et al., 2016) (all 

mixed, Figure 3.3D); (5) some variables may be randomly mixed while others are organized with 

more structure (partially mixed, Figure 3.3E).  

We first performed a degree of specificity analysis (Figure 3.4) to determine the following: (1), 

whether highly specialized sub-populations of neurons are dedicated to each movement type, 

and, (2), whether some variables exist as subsets or suppressed versions of other variables. A 

Figure 3.3. Possible Organizational Models of Neural Representations 

(A) The neurons coding for each condition are anatomically segregated, i.e., distinct, non-overlapping networks. (ALH 
= Attempt Left Hand, ILH = Imagine Left Hand, ARH = Attempt Right Hand, IRH = Imagine Right Hand, ALS = Attempt 
Left Shoulder, ILS = Imagine Left Shoulder, ARS = Attempt Right Shoulder, IRS = Imagine Right Shoulder). (B) 
Conditions can be overlapping such that the responses to some conditions are subsets or weak versions of others, 
e.g., imagined movements being subsets of attempted movements. (C) Neurons coding each of the motor variables 
(body part, body side, and strategy) are anatomically segregated. (D) The neural population exhibits mixed 
selectivity, with individual neurons showing tuning to various conjunctions of variables. (E) The neural population 
exhibits partially mixed selectivity, with the mixing of representations being dependent on the variables under 
investigation. Here, hand and shoulder are mixed leading to orthogonal coding of effectors (functional segregation), 
however, the other variables (body side and strategy) are mixed only within, but not between, effectors. This model is 
consistent with the results observed in this study. Note that solid lines in this diagram indicate anatomical boundaries 
of neural populations while dotted lines indicate functional boundaries/segregation. 
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specificity index was computed as the normalized difference in beta values between motor 

variables for each neuron (taken from the linear models described above). Values near zero 

indicate equivalent neural responses to the two conditions being compared while values near 1 

(or -1) indicate exclusive neural responses for one condition. By proposition one, we would 

expect values to be clustered near 1 (or -1) as, e.g., either a neuron is tuned to the right side or 

the left side. By proposition two, we would expect strong biases such that values would be 

clustered on one side of the range (between 0 and 1 or 0 and -1) as, e.g., a neuron tuned to 

imagine movement should be better (or equivalently) tuned to attempted movement. 

Inconsistent with these proposals, we found that specificity values were distributed over the full 

range (Figure 3.4A-F). For instance, despite a small population bias for attempted movements, a 

sizable proportion of neurons were exclusively, or more strongly activated for imagined 

movements (Figure 3.4AB; see Figure 3.1D). The neural representation of motor imagery is thus 

not a subset, or less strongly represented version, of motor execution. Likewise, many neurons 

showed preferential coding for the left hand (Figure 3.4CD) even with a population bias for the 

right hand. There was a strong specificity bias towards the movement conditions (imagined or 

attempted movements of the hand or shoulder) over the speech conditions (Figure 3.4GH). This 

is expected given that speech tuning is found in a smaller proportion of neurons in a weaker 

fashion (Figure 3.2). Of special note, the results here are very similar for both movements of the 

shoulder (above the level of injury) and movements of the hand (below the level of injury). Thus, 

movements below and above the level of injury are coded in a similar manner.  
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We failed to find complete specialization of function across the population for single units, and 

the distributed and overlapping nature of responses makes it difficult to find structure in the 

responses of individual neurons. We therefore turned to population-based analyses to more 

readily identify how the different conditions are encoded with respect to each other. We 

measured all pairwise correlations between population responses for each of the eight 

movement conditions and looked for systematic structure in how the different motor variables 

(body part, body side, cognitive strategy) were coded (Figure 3.5). Correlation was used as a 

measure of similarity over other distance measures such as Euclidean or Mahalanobis distance 

Figure 3.4. Specificity of Coding for Motor Variables 

Each panel (A-F) shows the degree to which neurons code one variable exclusively, its opposite, or respond similarly for 
both. Only units with significant modulation for at least one condition in the comparison are included in the analyses 
(p < 0.05, Bonferroni corrected). (A-B) Distribution of the degree of specificity to the imagine or attempt strategies in 
the population during trials using different sides, showing only units responsive to one or both strategies. (C-D) 
Distribution of the degree of specificity to the left or right side in the population for different strategies. (E-F) 
Distribution of the degree of specificity to the hand or shoulder in the population during trials using different sides. (G-
H) Distribution of the degree of specificity to attempted/imagined movements compared to speaking. 
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because the sign of the correlation is potentially informative of the underlying structure. For 

example, two conditions represented by distinct neural populations (e.g., sparse mixed 

selectivity) would manifest as a negative correlation between the two conditions, while a 

positive correlation would indicate a degree of overlap between the populations. Asymmetric 

relationships between the different variables were immediately apparent.  

Figure 3.5. Functional Relationships between Movement Conditions 

(A) Similarity between population level neural responses for each movement condition. Pairwise comparisons are 
separated by the number of motor dimensions that differ in the comparison (left to right) and task phase (movement 
or delay). Similarity measured as the pairwise correlation between movement conditions. (ALH = Attempt Left Hand, 
ILH = Imagine Left Hand, ARH = Attempt Right Hand, IRH = Imagine Right Hand, ALS = Attempt Left Shoulder, ILS = 
Imagine Left Shoulder, ARS = Attempt Right Shoulder, IRS = Imagine Right Shoulder). See also Figure S 5 for results of 
individual sessions. (B) Correlations between four movement types: left and right movements (averaged across both 
strategies), and speech. (SL = Speak Left, SR = Speak Right, ML = Movement Left, MR = Movement Right). (C) 
Dendrogram summarizing the structure apparent in A, namely strong segregation by effector. 
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Correlations between conditions that differed in body side or cognitive strategy were high if the 

comparisons were made within a body part. In stark contrast, correlations between conditions 

that differed in body part were low even if cognitive strategy and body side were held constant 

(Figure 3.5A and Figure 3.6A). Low correlation between body parts was also apparent when 

comparing speech with shoulder or hand (Figure 3.5B). Such low correlations despite activating 

overlapping neural populations are a signature of network responses that occupy distinct neural 

subspaces thus minimizing crosstalk during planning and execution epochs (Churchland and 

Cunningham, 2015; Kaufman et al., 2014). Here the same principal may be at play for cortical 

representations of different effectors in an overlapping neural population. We term this 

“functional segregation” of body parts. That the functional organization is based around effector 

is especially apparent when the distances between conditions were hierarchically clustered 

(Figure 3.5C), with body part being the primary differentiating variable. Further, for a given body 

part, movements with more shared traits are coded more similarly than movements with fewer 

shared traits (Figure 3.6B). For instance, a neuron tuned to imagined left hand movements was 

more likely tuned to imagined right hand movements (but not attempted right hand 

movements). Likewise, a neuron tuned to right hand imagined movements was likely to be 

tuned to right hand attempted movements (but not left hand attempted movements). This 

functional segregation likely accounts for the non-linear interaction terms of Figure 3.2C.  

 

Neural differences between hand and shoulder movements may be driven by the fact that the 

hand is below the level of injury while the shoulder is above the level of injury: in this case, 

proprioceptive feedback or long-term effects from the injury might be the primary difference. 
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To address this issue, we replaced shoulder shrugging movements with shoulder abduction 

movements (shoulder abduction resulted in no overt movement) and repeated the correlation 

analyses. The results are similar when both body parts are chosen to be below the level of injury 

(Figure 3.6CD). In particular, the largest degree of separation exists between body parts.  

 

Functional segregation of body parts should lead to minimal shared information about other 

motor variables when compared across body parts. The motor dimensions can be thought of as 

Figure 3.6. Segregation by Body Part 

 (A) Average correlation between movement conditions differing by exactly one task variable and grouped by the 
differing condition (e.g., for strategy, the average correlation of all movement condition pairs differing only by 
strategy). Intervals represent the 95% confidence intervals. (B) For movements above and below the level of injury, 
average correlation between movement conditions in the Delay and Go phases grouped by the number of differing 
traits (average of each cube in the movement phase). Intervals represent the 95% confidence intervals in the 
correlations. (C-D) Same as (A-B) but with shoulder shrug movements replaced with shoulder abduction movements (a 
movement below the level of injury). 
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categorical variables with two levels (e.g., body part has the levels of shoulder and hand). Given 

functional segregation, a classifier trained on one level (“Level A”) should fail to generalize to 

the other category (“Level B”) and vice versa (Figure 3.7A). Alternatively, for highly overlapping 

representations, a classifier trained on Level A should generalize to Level B and vice versa 

(Figure 3.7B). For example, given functional segregation between hand and shoulder, the neural 

signature that differentiates right from left sided movements for the hand should fail to 

generalize to the shoulder. We tested for this possibility by looking at patterns of generalization 

across trained classifiers. The results of such an analysis are shown in Figure 3.7C-H. For Figure 

3.7C, we trained a linear discriminant classifier on all shoulder movement trials to differentiate 

between left and right-sided movements, regardless of strategy. The decoder performed well 

within its own training data as expected (leave-one-out cross-validation, Figure 3.7C, left blue 

bar), but performed at chance differentiating left from right-sided movements for hand trials 

(Figure 3.7C, right blue bar). The reverse was true when applying a classifier trained on hand 

trials to shoulder trials (Figure 3.7C, orange bars). Likewise, Figure 3.7D shows that a decoder 

trained to differentiate strategy using shoulder trials failed to generalize to hand trials, and vice 

versa. In contrast, decoders trained to differentiate strategy or body part were able to 

generalize and perform well across different body sides (Figure 3.7EF) and different strategies 

(Figure 3.7GH). Body part differences exhibit functional segregation while cognitive strategy and 

body side do not. 
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Figure 3.7. Representations of Variables Generalize across Side and Strategy, not Body Part 

 Schematic illustrating expected classifier behavior if variables are functionally segregated (A) versus overlapping (B). 
(A) Functional segregation within a variable (e.g., body part) implies that a classifier trained to differentiate the levels 
of one dimension (e.g., right from left) will not generalize across the levels of the dimension of interest (e.g., from 
shoulder to hand) resulting in chance performance. (B) In contrast, functional overlap implies generalization resulting 
in above chance performance when comparing classifier performance across levels. (C) Performance of decoders 
trained on data split by body part for classifying the body side. Blue/orange bars represent the performance of the 
decoder trained on shoulder/hand movement data. Horizontal axis labels represent which body part’s data each 
decoder was tested on. Performance was measured as the fraction of trials accurately classified by the decoder, with 
in-sample performance determined by cross-validation. Asterisks represent performance significantly different from 
chance, as determined by a rank shuffle test. The red line represents chance performance level (0.5) while the green 
line represents perfect performance (1.0). (D) Similar to (C) but decoding strategy instead of body side. (E-F) Similar to 
(C) but with data split by body side and decoding for body part and strategy, respectively. (G-H) Similar to (C) but with 
data split by strategy and decoding for body side and body part, respectively. 
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Given that some motor variables are similar in their neural encoding, is it possible to decode the 

body part, body side, and cognitive motor strategy from the neural population? We constructed 

a neural classifier to differentiate all conditions (Figure 3.8). Cross-validated classification 

performance was high. However, as expected, misclassification tended to occur between 

conditions with more variables in common. This is especially true between attempted and 

imagined movements as predictable from the high degree of similarity in the neural responses 

(Figure 3.6A). 

 

3.4 Discussion 

We tested how a variety of motor variables were coded at the level of single neurons in human 

AIP. This allowed us to address several questions about how intent is coded in human AIP and to 

better understand how the motor variables are coded with respect to each other.  

 

Figure 3.8. All Movement Variables Decodable 
from the Population 

Confusion matrix for cross-validated classification 
of the eight movement conditions. (ALH = 
Attempt Left Hand, ILH = Imagine Left Hand, ARH 
= Attempt Right Hand, IRH = Imagine Right Hand, 
ALS = Attempt Left Shoulder, ILS = Imagine Left 
Shoulder, ARS = Attempt Right Shoulder, IRS = 
Imagine Right Shoulder). 
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3.4.1 Effector specificity in PPC. 

Classically, the regions around the IPS have been viewed as organizing around the control of 

different effectors such as the eye, hand, and arm. In a recent challenge to the centrality of an 

effector-based organization, Medendorp and colleagues have found that effector-specificity in 

the BOLD response of fMRI is much more pronounced between the hand and eye than the hand 

and other body parts arguing that effectors as such are not differentiated in the planning 

regions of PPC (Heed et al., 2011a). In line with these results, we found significant numbers of 

neurons tuned to movements of the hand and shoulder in a small patch of AIP. However, unlike 

the response at the level of voxels, the neural response to each effector was functionally 

segregated. Thus, while our results challenge the idea of strict anatomical segregation of 

effector representations across cortical areas, we do find local functional segregation of 

effectors within a cortical field. The current findings suggest that effector-specificity at the 

global anatomical scale could be thought of in terms of relative emphasis rather than strict 

specialization in humans.  

 

In non-human primates (NHPs), a global organization for eye and arm movements is supported 

by greater planning activity of single neurons for reaches in the parietal reach region (PRR) and 

saccades in the lateral intraparietal region (Cui and Andersen, 2007; Hwang et al., 2012; Quiroga 

et al., 2006; Snyder et al., 1997; Snyder et al., 1998). Reversible inactivation of PRR produces 

reach specific deficits and LIP a bias toward saccade deficits (Christopoulos et al., 2015; Kubanek 

and Snyder, 2015; Yttri et al., 2014). A grasp specific deficit has been reported for AIP (Gallese et 

al., 1994). These results indicate that, at a global level, there is functional specificity by effector 

in non-human primates, and fMRI studies suggest a similar global specialization. However, these 
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areas also communicate with one another. For instance, inactivation produces a reach deficit in 

PRR when reaches are made alone, but both reach and saccade deficits when combined hand-

eye movements are made (Hwang et al., 2014). Thus, the degree of effector overlap in AIP in 

human may reflect the coordination of movement and communication between effector specific 

areas.  

 

An advantage of our human study is that the participant can perform a large number of tasks by 

verbal instruction. In NHP studies, the animals must be trained for long periods and thus the 

number of tasks and task variables are generally limited per study. Interestingly, area LIP has 

been studied by a number of groups using a number of different tasks. As a result, LIP has been 

found to modulate activity for tasks examining movement planning, attention, categorization, 

and decision making resulting in a variety of proposals for its function (Andersen and Cui, 2009). 

It may be that the large number of variables to which human AIP is selective may be a reflection 

of the versatility of using different tasks and that both human and NHP PPC areas are modulated 

by a very large number of variables. Indeed, several NHP studies in AIP have reported 

overlapping populations of cells tuned to grasp type and reach target consistent with mixed 

selectivity between effectors as presented here (Asher et al., 2007; Fattori et al., 2009; Lehmann 

and Scherberger, 2013, 2015). 

 

Differences between effector segregation in human and NHP studies of PPC may be a result of 

possible lack of homologies between human AIP of the current study and AIP of NHPs. In fact, 

we do not know the extent or number of grasp related areas defined by single neuron 

recordings in human IPS and whether there are grasp regions in humans that do not exist in 
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NHPs. Finally, the lack of strict anatomical segregation of effectors may point towards a global 

topographic organization governed around more behaviorally meaningful aspects of behavior 

such as manipulation, reaching, climbing, and defense (Graziano and Aflalo, 2007; Jastorff et al., 

2010). Whichever possibilities outlined above account for the large number of variable 

encodings in human AIP, an exciting aspect of our results is that they open the possibility of 

decoding movements of many body parts from one small patch of cortex. 

 

3.4.2 Asymmetric coding of motor variables and functional segregation of body parts  

Recently there has been increased interest in not only the types of variables that are coded in a 

cortical region, but also how these variables are coded with respect to each other in an effort to 

understand the underlying logic of the computations performed within a cortical field (Fusi et 

al., 2016; Raposo et al., 2014). For instance, several papers have shown that higher cortical areas 

like PPC and prefrontal cortex may employ a computational strategy by which response 

variables are randomly mixed (Raposo et al., 2014; Rigotti et al., 2013). While such a coding 

scheme can give rise to complex and difficult to interpret representations at the level of single 

neurons, the population code is information rich and enables simple linear classifiers to decode 

any variable of interest. In these papers, it was shown that response variables were randomly 

distributed across neurons, as illustrated in Figure 3.3D. Our data provides insights into 

understanding population coding by demonstrating that in human AIP certain response features 

can be seemingly randomly distributed across the population while others are not. In particular, 

we find that coding for body part is uncorrelated in the sense that across the population, 

knowing that a neuron is tuned to shoulder movements provides little to no information about 

whether the neuron is tuned to hand movements (or speech; Figure 3.4). This is true even if you 

know other attributes of the movement, such as whether the movement was imagined or 
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attempted or performed with the right or left side of the body. In contrast, when comparing 

within the same body part, knowing a neuron is tuned to movements of the right side makes it 

highly likely that the neuron will be tuned to the left side as well. The same is true for imagined 

and attempted movements. Thus while some variables seem to be randomly distributed across 

the population (e.g., body part) the relationship between other variables (e.g., body side, mental 

strategy) is organized in relationship to a third variable (body part). This effectively leads to 

functional segregation of body part at a population level. Such functional segregation between 

body parts is very similar in principal to the relationship between planning and execution related 

activity that has recently been described in frontal motor areas (Churchland et al., 2010; 

Kaufman et al., 2014) where planning activity fails to excite subspaces that are hypothesized to 

produce muscle output.  

 

But why are some variables functionally overlapping while others are functionally segregated? 

One possible answer is computational savings. Overlapping activity at the level of the population 

may be rooted in shared computational resources. For example, many computations related to 

planning and executing grasps including object affordance processing as well as basic kinematic 

processing would be similar for the right and left hand. Motor imagery has also been 

hypothesized to engage internal models used for sensory estimation during overt execution (see 

below) and thus imagery and execution should rely on largely overlapping computations. Thus 

despite the potential computational benefits to random mixing of variables (Fusi et al., 2016), 

the computational savings of overlapping resources for certain classes of computations may 

outweigh losses in the total information the population encodes.  
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Another possibility is that the highly overlapping representations provides part of the neural 

substrate through which transfer of learning occurs. Motor skills learned with one hand 

frequently result in improvements in performance with the other hand (Amemiya et al., 2010). 

Likewise, use of motor imagery is found to improve performance during motor execution 

(Dickstein, 2007). One possibility is that overlapping networks would be able to facilitate this 

sort of transfer of learning. For example, repeatedly imagining a movement with the right hand 

would recruit a similar network as executing a movement with the right hand, making any 

neural adaptation from learning the movement more likely to transfer between the strategies. 

 

Despite the greater functional overlap between body side and strategy, it is important to note 

that all the tested movement conditions are still differentiable from each other (Figure 8). 

Interestingly, this greater overlap for body side may explain why patients with motor deficits 

often “mirror” movements in a contralateral limb. In cerebral palsy, for example, patients 

making a grasp with their left hand often mirror the movements with their right hand (Kuhtz-

Buschbeck et al., 2000). 

 

A point of note is that the movements selected in this study (hand squeezes and shoulder 

shrugs) are not necessarily the best exemplars of movements of the respective body parts. 

Different combinations of hand or shoulder movements may have slightly more or less overlap. 

Bilateral symmetric hand squeezes and shoulder shrugs occur more naturally than “squeeze-

and-shrug” actions, action not part of the natural movement repertoire. The statistical 

frequency with which different body parts are moved together could also affect the degree of 

functional overlap between the body parts. A better understanding of how different exemplars 
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of movements across different effectors relate will be important in understanding the functional 

organization of motor actions in AIP.  

 

3.4.3 Attempted and imagined movements in human AIP after long-term injury 

In this study, we looked at neural coding of imagined and attempted actions above and below 

the level of injury in a paralyzed individual. By current theory, imagined movements may 

represent the simulation of an internal model of the arm, a model that also forms the basis for 

sensory estimation during overt forms of behavior (Gail and Andersen, 2006; Jeannerod, 1995; 

Mulliken et al., 2008b). In broad strokes, this theory predicts that neural representations of 

imagined and overt movements should have a high degree of similarity given the shared neural 

substrate, but also be different given the absence of movement during imagery (Jeannerod, 

1995; Munzert et al., 2009). Our results support this view insofar as we demonstrate the high 

degree of functional overlap between imagined and attempted movements. However, we also 

show neural differences between imagined and executed movements persist and are highly 

similar even after long-term injury and disuse (see Figure 3.4 and Figure 3.5). Such a preserved 

distinction does not immediately follow from the proposal that the primary difference between 

imagined and executed movements is the actual movement itself. However, the observation 

that neural coding differences persist even when injury results in a lack of overt movement 

during attempted actions is inconsistent with the proposal that the primary difference between 

imagined and executed movements is the actual movement itself (Jeannerod, 1995). Further, 

the patterns of similarities and differences in how the population codes mental strategy and 

body side—for instance, the preference for attempted over imagined movements for the right 

but not left side of the body (Figure 3.4A versus Figure 3.4B) —demonstrate that higher-order 

population structure is conserved following injury. This suggests that preservation of motor 
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intention signals enables successful BMI functionality many years post-injury (Aflalo et al., 

2015). A better understanding of how different cortical subregions maintain representations of 

motor intent post-injury may help inform choice of implant sites as a function of time post 

injury. 

 

These results demonstrate for the first time that networks activated during attempted actions 

are highly overlapping with networks activated during imagined actions at the level of 

populations of individual neurons, and that the correspondence between actions is body part 

specific (hand and shoulder). However, there is a symmetry in our results such that networks 

activated during right hand actions are highly overlapping with networks activated for left hand 

actions, and the correspondence between right and left actions are strategy specific (e.g., right-

side actions look more like left-side actions using the same strategy). In other words, the 

relationship between imagined and attempted actions is similar in basic form to the relationship 

between left and right sided actions although the degree of overlap is greater for strategy.  

 

The current experiment was performed in the larger context of a brain-machine interface 

clinical (BMI) trial. We have previously shown that a paralyzed patient can use motor imagery to 

control a robotic limb (Aflalo et al., 2015). Is the use of motor imagery the best method for the 

user of a BMI to modulate their own neural activity? Alternatively, it is possible that attempted 

movements somehow better engage or otherwise enable the user to control an external device. 

Here we show that the distinction between imagined and attempted actions is preserved, even 

in limbs for which no movement is possible. Future work is needed to determine whether these 

differences translate into performance differences during closed-loop neural control.  
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3.4.4 Orofacial coding in human AIP 

We included speech conditions in which N.S. spoke “left” and “right” as a third fundamentally 

different movement. A smaller proportion of neurons were tuned more weakly to speech acts, 

demonstrating that not all actions are coded in an equivalent manner in AIP (Figure 3.2 and 

Figure 3.4). This task was not designed to understand the functional significance of “speech” 

tuned units, but one possibility is that these neurons code for orofacial movements and may 

form the building blocks for more complex coordinated movements of behavioral relevance 

such as coordinated movement of the hand to the mouth for feeding or tearing open a bag of 

chips with your mouth. It is also possible that such orofacial tuning coordinates “grasping” 

actions performed with the mouth (Jastorff et al., 2010).  
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4 Mixed representations in closed-loop cortical control 

4.1 Introduction 

An important finding in systems neuroscience is that cortical neurons  exhibit mixed selectivity, 

i.e., where individual neurons are tuned to multiple variables in idiosyncratic ways. Early studies 

examining the representation of extrapersonal visual space in the posterior parietal cortex (PPC) 

of non-human primates (NHPs) showed that individual neurons, instead of having eye position 

invariant receptive fields, combined retinotopic receptive fields with eye position signals 

(Andersen and Mountcastle, 1983).  These two signals often interacted multiplicatively and were 

referred to as “gain fields” (Andersen et al., 1985). Neural networks trained to transform 

retinotopic receptive fields to craniotopic receptive fields also formed gain fields similar to the 

neural data (Zipser and Andersen, 1988). Moreover, PPC neurons also mixed head position 

signals (Brotchie et al., 1995) and vestibular signals (Snyder et al., 1998) for potential 

transformations to body and world coordinates. Recent studies have found random mixing of 

auditory and visual signals in rat PPC from retinotopic receptive field and eye position signals 

(Raposo et al., 2014) as well as random mixing of sensory and task related signals in NHP 

prefrontal cortex (PFC) (Rigotti et al., 2013). Mixed selectivity allows a relatively small 

population of neurons to encode a large variety of variables (Fusi et al., 2016). Consistent with 

those results, our lab has also recently found mixed selectivity, with multiple body parts 

(effectors) and cognitive strategies represented within a small patch of human PPC (Zhang et al., 

2017). In particular, imagined and attempted movements of the left and right hands and 

shoulders were all decodable and differentiable from each other in the human anterior 

intraparietal area (AIP). 
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The ability to decode these mixed variables is particularly promising for brain-machine 

interfaces (BMIs) and suggests the possibility of decoding many variables using a single array. 

BMIs allow a user to control external prosthetic devices by directly decoding motor intentions 

from patterns of neural activity learned during an initial “training” dataset. Previous studies on 

mixed selectivity, however, have studied neurons in the absence of any BMI online control, only 

examining the data that would be used to train a BMI decoder. Thus, there remains an open 

question: how do the mixed representations of different variables in AIP compare between 

training and online control? More specifically, is the structure of the representations 

maintained? 

 

The answer is not immediately obvious. Despite studies showing that the tuning of specific 

neurons can change from training to online control (Chase et al., 2009; Cunningham et al., 

2011), BMI control based on representations learned in open-loop/training is still possible. In a 

recent study we found that motor imagery of arm movements decoded from PPC can be used 

by a subject to perform closed-loop cortical control of a computer cursor or robotic limb (Aflalo 

et al., 2015). Other studies in non-human primates (NHP) have demonstrated BMI control via 

effectors in other parts of PPC as well (Graf and Andersen, 2014; Revechkis et al., 2014). These 

studies, however, focused on BMI control with respect to a single effector or with different 

effectors in different sessions, and did not directly compare the representations of different 

effectors between training and online control. It is possible that the structure of the 

representations is maintained between training and online control. Alternatively, it is also 

possible that during online control the different representations collapse into an effector-

independent intention, attention, or goal signals. 



59 
 

 

In this study, we focus on two questions: (1) how is the structure of the movement 

representations maintained between training and online control, and (2) how does the degree 

of maintenance influence the control performance of the different types of movements? 

 

To answer these questions, we test the BMI control performance of a C3/C4 tetraplegic 

participant in a 1D cursor control task, decoding from single unit activity recorded from a small 

4x4 mm patch of AIP. The participant controlled the cursor using imagined or attempted 

movements of the left (ipsilateral) or right (contralateral) hand. We find that all four of the 

tested movement conditions remain differentially represented during online control, with the 

structure of the representations largely maintained. While attempted right (contralateral to the 

implanted hemisphere) hand movements performed significantly better than the other 

movements, the effect was primarily driven by more units being tuned to the condition rather 

than differences in how well the representations were maintained. 

 

4.2 Methods 

4.2.1 Subject Details 

Subject NS is a 59 year-old female tetraplegic 7 years post-injury, with a motor complete C3-C4 

spinal lesion. She has no control or sensation of her hands, so attempted hand movements refer 

to trying to activate the muscles of the hand while imagined hand movements refer to 

visualizing the movement (without any muscle activity). The study was approved by the 

California Institute of Technology, Casa Colina Centers for Rehabilitation, and University of 
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California, Los Angeles Institutional Review Boards. We obtained informed consent after 

explaining the objectives of the study and the possible risks involved. 

 

4.2.2 Experimental Setup 

Experimental sessions were performed at the Casa Colina Centers for Rehabilitation. Tasks were 

performed in a similar setup as in (Zhang et al., 2017), with NS seated in her motorized wheel 

chair in a dim room. Tasks were presented on a 27-inch LCD monitor occupying approximately 

40 degrees of visual angle, with stimulus presentation controlled using Psychophysics Toolbox 

(Brainard 1997) and MATLAB. No fixation was required or enforced. 

 

4.2.3 Experimental Design 

We used a one-dimensional point-to-point control paradigm as the BMI control task. The 

participant was instructed to control a cursor to move to the instructed target. To control the 

cursor, neural signals from imagined or attempted hand squeezes of the left or right hand were 

decoded into an upward velocity signal, such that squeezing the hand would create a force that 

“pushed” the cursor upwards, and relaxing the hand would remove the force and allow the 

cursor to “fall” downwards (see Neural Decoder for more details on the decoder specifications). 

Thus, NS could control the vertical position of a cursor by keeping her hand squeezed to push 

the cursor up and keeping her hand relaxed to move the cursor down. The cursor was bounded 

by the edges of the screen. We used this relatively simple task to allow enough time for data 

collection for all four conditions within a single session. 
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The task was split into a training step (collecting data for the decoder to train on), and a testing 

step (evaluating the decoder’s performance during online control). Separate training and testing 

steps were run for each of the four movement conditions (imagined/attempted left/right hand 

squeezes). We instructed NS which movement condition to use prior to each training/online 

control run. For the training step, the cursor moved up and down automatically between two 

points, while NS was instructed to squeeze (as per the movement condition) in accordance with 

the direction of the cursor’s movement (i.e., squeezing when it was moving up, and relaxing 

when it was moving down). Targets alternated between the two points, resulting in NS having to 

alternate between squeezes and releases consecutively. The computer-controlled trajectory of 

the cursor was determined by a linear quadratic regulator that was calibrated to perform point-

to-point movements to the target in a naturalistic manner, reaching the target in ~750ms (Aflalo 

et al. 2015). Following movement, the cursor would rest on the target for the remaining trial 

duration (3.3 seconds total). We ran 32 trials per movement condition, with each trial composed 

of a squeeze and release phase. 

 

For the testing step, the patient was cued to move the cursor between 3 points oriented 

vertically in a center-out paradigm. In each trial, NS was given 6 seconds to move to the target. 

For each point-to-point movement, if the allotted 6 seconds elapsed, then a secondary assist 

was activated, bringing the cursor to the target along the ideal trajectory computed above. This 

was done so that the initial distance between the cursor’s starting position and the target 

position was constant for each point-to-point movement and independent of the success/failure 

of the previous point-to-point movement. Between trials, the cursor was held constant at the 

center for 2 seconds without any target being presented (the intertrial-interval, ITI). Note that 

NS’s motor intentions could only affect the cursor position when a target was presented. They 
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could not affect the cursor position during the ITI, allowing her to relax during the ITI without it 

affecting the cursor position. Following the ITI, NS could then continue relaxing to allow the 

cursor to move downwards, or squeeze her hand to make the cursor move upwards. We ran 20 

trials total for a single movement condition at a time. This equated to 40 point-to-point cursor 

movements (each trial split into a center-to-target and a target-to-center movement)—20 

where the cursor was moving upwards and 20 where the cursor was moving downwards. The 

experiment was run on 8 separate days, with 593 units recorded total (assuming independent 

populations between days, 74.13±2.9 units per day). We tested all four movement conditions 

each day, with the order of the movement conditions changed each day to avoid potential order 

effects that could cause performance differences (e.g., performance being better for early runs 

than late runs). 

 

In the primary task design, each training run for a condition was immediately followed by online 

control for the same condition (see Figure 5E). This prevented us from disambiguating whether 

some results were driven by the conditions being closer in time or by the conditions being more 

similar/matched. For example, a consistent temporal component in the neural data (e.g., a 

baseline firing rate drift) could cause consecutive pairs of runs to have more similar neural 

representations than pairs further apart in time. This would make our result that the 

representations are preserved from training to online control (Figure 5AB) ambiguous. The 

analysis for that result compares different runs of the same condition but differing by run type 

(e.g., ARH training and ARH online control). In the primary task design, however, those pairs of 

runs are also always consecutive in time and are therefore confounded. In other words, the 

result could be a consequence of the training and online control runs always being adjacent in 

time, independent of whether or not the runs were the same condition. 
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To address this concern, we also collected data using a secondary task as a control experiment 

for the above confound. This version was identical to the primary task but with the order of the 

runs changed such that training and online control runs of the same condition were no longer 

always temporally adjacent (see example blocks in Figure 5F). For example, in each block of four 

runs, we interleaved two movement conditions A and B in the order: training for Condition A, 

training for Condition B, online control for Condition B, online control for Condition A. A direct 

comparison of the relationship between the first and third runs (pairs marked in red in Figure 

5F, mismatched conditions but closer together in time) against the relationship between the 

first and last runs (pairs marked in blue, matched conditions but farther apart in time) would 

thus allow us to disambiguate the confound. This experiment was run on 4 separate days, with 2 

blocks of four runs per day (8 runs total), and 220 units recorded in total (assuming independent 

populations between days).  

 

4.2.4 Signal Recording Procedures 

Two 96-channel Neuroport arrays (Blackrock Microsystems model numbers 4382 and 4383) 

were implanted in the putative homologues of area AIP and Brodmann’s Area 5d. Preoperative 

fMRI was used to identify array implant location (Aflalo et al., 2015). Only data recorded from 

the array implanted in AIP (at Talairach coordinate [-36 lateral, 48 posterior, 53 superior]) were 

analyzed and presented here. A Neuroport neural signal processor (NSP) amplified, digitized, 

and recorded the neural activity. The Neuroport System (composed of both the NSP and the 

arrays) has FDA clearance for acute recordings over a duration < 30 days. For this brain-machine 
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interface clinical trial, we have received FDA IDE clearance (IDE #G120096, G120287) to implant 

and record from PPC past that 30 day limit. 

 

During recording full-bandwidth signals were sampled at 30 kHz in the Central software suite 

(Blackrock Microsystems) and high pass filtered (250 Hz cutoff). We used -3.5 times the root-

mean-square as the threshold for action potential detection. Each waveform was composed of 

10 samples prior to triggering and 38 samples after, with a total duration of 1.6 ms. Units were 

sorted by hand at the session prior to any data collection using the Central software suite 

(Blackrock Microsystems), with only high quality, easily isolable, single units being identified and 

sorted (26.6 ± 2.58 units specially sorted per day). We wanted to analyze the neural data 

recorded during a real-time online session as opposed to an offline analysis with intensive spike 

sorting, better emulating the conditions of a real-time BMI, so we purposefully did not perform 

any additional offline sorting. 

 

4.2.5 Decoding Procedures 

We used a decoder fit on the vertical velocity of the cursor as a linear function of the neural 

population as a whole. Both sorted units and channels  without explicitly sorted units (hereafter 

referred to altogether as “units”) were recorded and analyzed. Note that the decoder used for 

control was trained on only one strategy-effector combination at a time, differentiating 

between the squeeze state and release state for that particular condition. 

 

For features, the velocity decoder used the z-scored firing rates of the units. Only units with a 

minimum raw firing rate of at least 1 Hz were included (on average 96.3 ± 0.2% of all units 
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across all sessions). Firing rates were sampled with a 50 ms sampling period and then smoothed 

by a causal exponential filter with a 1.5 second duration (length of 30 samples) and a smoothing 

factor of 0.75 to filter out high frequency noise. 

 

For the regression, we used MATLAB’s lasso function, which implements elastic net 

regularization. This method tries to minimize the number of terms in the model based on an 

elastic net mixing value that trades off between lasso and ridge regression (a mixing value of 1 is 

lasso regression, while a mixing value of 0 is ridge regression). We used an elastic net mixing 

value of 0.05 for the model, with the exact lambda (regularization coefficient) determined 

through cross-validation (across 15 values of lambda).  

 

4.2.6 Statistical Analysis 

Comparisons between pairs or multiple distributions were performed using non-parametric one-

way ANOVA (Kruskal-Wallis), grouping by the different movement conditions being compared 

(either all four or in the pairwise case two at a time). Samples were the values computed on a 

per day basis (Figure 3, Figure 5A), per trial basis (Figure 7AB), per run basis (Figure 5CD, Figure 

7C), or per unit basis (Figure 2, Figure 6, Figure 7D). 

 

Values shown in figures were computed from data sets after pooling across all days. Error bars 

indicate bootstrapped confidence intervals on the pooled data. All such confidence intervals 

were computed with 2000 bootstrap data samples. 

All analyses were performed using MATLAB 2017a. 
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4.2.7 Unit Selection 

Units were pooled across days assuming independent populations. Only units with mean firing 

rates above 0.5 Hz and with a signal-to-noise ratio above 0.5 were included in the analyses to 

limit low firing rate and noise effects. 

 

4.2.8 Linear Model Analysis for Single-Unit Characterization 

For each individual unit, we fit a linear model on the unit’s firing rate for when the hand was 

released and squeezed. This was done for each movement condition separately (one model fit 

per condition, 8 models total). The hand was considered to be in a squeeze or release state 

based on the position of the target relative to the cursor, and which action NS would need to 

perform to successfully complete the trial. For the time window of neural activity, we wanted to 

minimize potential feedback corrections and isolate the movement intention signals. Based on 

single unit event related averages from this and past studies (Zhang et al., 2017), we chose a 

window of 500 ms to 1500 ms after cue onset to isolate the majority of the neural modulatory 

activity. The significance value of the fit (p-value of the t statistic for the beta coefficients) was 

used to determine tuning to the corresponding condition (significant if p < 0.05, FDR corrected). 

We also analyzed the R2 of the fit as a measure of strength of tuning. Additionally, we analyzed 

the beta coefficient of the model and its cross-validated standard error as another measure of 

strength of tuning and reliability of tuning. 

 

4.2.9 Degree of Specificity 

Prior to assessing any possible performance differences between the movement conditions, we 

needed to verify that the conditions were differentially represented in our neural population. To 
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do this, we performed a degree of specificity analysis, characterizing the degree to which units 

were specific to different levels of a variable in training and online control. We first looked at 

one level of a variable (e.g., the right hand), and computed the degree of specificity to the levels 

of the other variable (e.g., specificity to imagine and attempt). The degree of specificity was 

computed by taking the difference of the absolute values of the relevant beta coefficients (those 

associated with the two levels being compared) normalized by the sum of the absolute values of 

the beta coefficients. For example, to compute the degree of specificity to imagine and attempt 

with the right hand, the equation would be: 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑜𝑜𝑜𝑜 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  
|𝛽𝛽𝐴𝐴𝐴𝐴𝐴𝐴| − |𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼|
|𝛽𝛽𝐴𝐴𝐴𝐴𝐴𝐴| + |𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼| 

where 𝛽𝛽 is the beta coefficients from the linear model fit above for the associated movement 

condition. This degree of specificity analysis was done separately for the training data and the 

online control data. We only included units tuned to at least one of the conditions being 

compared (p < 0.05, FDR corrected). For each distribution, we performed a two-sided sign test 

to determine whether the medians of the distributions were significantly different from 0 (i.e., if 

they were biased to one variable over another). 

 

4.2.10 Maintenance of Single-unit Tuning from Training to Online Control 

Performance differences could be caused by differences in how well each movement condition 

was maintained from training to online control. As a preliminary measure, we first wanted to 

assess any such differences at the single unit level. We identified the units tuned to each 

condition during training and online control (as defined from the linear model analysis above). 

For each condition, we then computed the fraction of units that kept their tuning to the 

condition. For example, for the attempt right hand (ARH) condition, the fraction was computed 
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as the number of units tuned to ARH during both training and online control divided by the 

number of units tuned to ARH during training. 

 

4.2.11 Correlation between Neural Representations 

Besides the single-unit measures of how well representations were maintained, we also wanted 

a population measure of the similarity between representations during training and online 

control. Using correlation as a measure of similarity, we directly looked at the similarity of the 

neural representations for each condition separately. We used correlation over other distance 

measures (such as Euclidean or Mahalanobis distance) because correlation gives a normalized 

value of the similarity between the representations and is invariant to gross baseline changes 

across the entire population. 

 

The neural representations were the vector of normalized beta coefficients (one element for 

each unit). The normalized beta coefficients are the beta coefficients (from the linear models 

above) normalized by their 95% confidence intervals and thus are a trial average measure of 

each unit’s activity weighted by its trial-to-trial variability.  

 

4.2.12 Comparison of Representations Between Training and Online Control 

The above analyses treat each condition separately, looking at how well representations were 

maintained from training to online control. We also wanted to test how well the structure of the  

representations of the movement conditions as a whole were preserved going from training to 

online control (i.e., the relationships between the representations). To do this we performed a 

cross-decoder analysis, training a linear classifier (linear discriminant analysis, equal diagonal 
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covariance matrices for each condition) on just the training data to classify the four movement 

conditions, and then tested the ability of the classifier to generalize to the online control data. 

The classifier used the modulation of the units’ firing rates from the release state to the squeeze 

state as features. The classifier’s cross-validated performance on training data was also 

computed for comparison. Also, a second classifier was trained on the online control data and 

tested on the training data (testing generalization from online control representations to 

training representations). We performed this cross decoding analysis independently for each of 

the experimental sessions, resulting in a distribution of scores for the cross-

validation/generalization scores of each classifier. For each score distribution, we used a one-

sided Wilcoxon signed rank test to determine if the scores were significantly above a chance 

prediction score of 1 out of 4 (0.25, p < 0.05). 

 

In order to look at how well the classifiers performed with each condition during generalization, 

we also computed the confusion matrices for each of the generalization scores. For each trial, 

we recorded the true condition type as well as the condition type predicted by the classifier. 

These true- and predicted- condition pairs were counted up and tabulated into a matrix form 

and then normalized by the number of trials per condition, resulting in the confusion matrix 

values shown in Figure 5B. 

 

4.2.13 Analysis to Control for Order Effect Confound 

In order to determine whether the results of the above analysis were driven by the conditions 

being matched or the runs of matching conditions also being temporally adjacent, we 

performed two additional control analyses. 
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The first analysis was done on the primary task data set. We compared the similarity between 

neural responses from training to online control when the conditions were matched (and 

therefore adjacent due to the primary task’s design) against the similarity when the conditions 

were mismatched but still adjacent in time. For example, consider the set of runs in the 

sequence depicted in Figure 5E. We compared the similarity in the responses of consecutive 

pairs with matched conditions (pairs marked in blue) against the consecutive pairs with 

mismatched conditions (pairs marked in red). We measured similarity as the correlation 

between the beta coefficients of the conditions. The distributions of the correlation values was 

then compared between the two groups (matched vs mismatched) using a nonparametric one-

way ANOVA (Kruskal-Wallis). 

 

The second analysis was done on the secondary task data set. For each block of four runs (see 

Experimental Paradigm, Figure 5F) we directly compared the correlations between the first and 

third runs (pairs marked in red, mismatched by condition but closer together in time) against the 

correlations between the first and last runs (pairs marked in blue, matched by condition but 

farther apart in time). The distributions of the correlation values were again compared with a 

nonparametric one-way ANOVA (Kruskal-Wallis). 

 

4.2.14 Neural Performance 

In the above analysis, we used tuning as a simple single-unit measure of how well a 

representation was maintained. However, one drawback of this method is that it makes a binary 

determination of whether or not a unit is tuned. It is possible for a unit to be classified as tuned 
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during both training and online control but with different levels of significance. For example, a 

unit could be significantly modulated by a condition during both training and online control but 

with significantly different amplitudes. 

 

To account for this possibility, we used the performance of individual units during online control 

as a continuous measure of how well units maintained their tuning. For each unit, we looked at 

the direction of the unit’s “force” on the cursor within a time window (e.g., the above 500 ms to 

1500 ms used in the above linear analysis). For the given time window, the neural activity was 

projected through the corresponding decoder weight (from a decoder trained on the training 

data) into a “force” acting on the cursor. The sign (direction) of the average force across the 

time window indicated whether the unit was pushing the cursor up or down on average during 

that interval. We then compared the direction of this force to the direction the cursor would 

need to move in to reach the target. In other words, we looked at whether the unit was pushing 

the cursor in the correct direction on average. This was computed on a trial-by-trial basis for the 

selected time window. The neural performance of an individual unit was then defined as the 

fraction of trials where the unit was pushing the cursor in the correct direction. 

 

When aggregating these single unit measures, we used a weighted average of neural 

performance values, with weights taken from the corresponding population decoder used for 

online control. This allows us to directly measure the generalization performance of each unit in 

the context of its effect on online control performance. In other words, the weighted average is 

reflective of the performance of a decoder using just that subset of units. While comparing firing 

rates between training and online control would also be informative of how well units 
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maintained their tuning, it would not account for the units’ actual effects on online control. 

Note that for the decoder weights we used the weights from the population decoder as 

opposed to the single-unit beta coefficients. 

 

4.2.15 Behavioral Performance Metrics 

We used two metrics to assess behavioral control performance. The first metric was simply the 

number of successful trials divided by the total number of trials (success rate). A trial was 

considered successful if the cursor reached the designated target and was held there for 1 

second within the allotted 6 seconds (under NS’s own control). The second metric was the time 

required to reach success (not including the 1 second hold time), looking only at successful 

trials. 

 

 To get a sense of what constituted a “good” success rate, we used real neural data to 

simulate the chance of the cursor reaching the “wrong”target. For each online control trial, we 

defined the “wrong” target of the simulated trial as the target in the opposite direction from the 

true target. Using the neural data and decoder from that trial, we simulated the trajectory of the 

target. We then marked the simulated trial as a “success” if the simulated trajectory reached the 

simulated target and was held there for 1 second (the same criteria as was used on the real 

online control trials). The cursor bounds keeping the cursor on screen were also translated so 

that the simulated trials had bounds symmetrical to the real trial. For example, consider a true 

trial where the cursor moved from the top target down to the center and with a boundary 

directly above the starting position, preventing it from moving upward too much. The 

corresponding simulated trial would require the cursor to move from the top target to a mock 
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target above the top target and with a boundary directly below the starting position, preventing 

it from moving downward too much. The mock target would be placed such that the starting top 

target would be equidistant from the mock target and the true center target, requiring it to 

travel the same distance in the simulated trial as in the true trial. This was done so that the 

effects of the boundaries on performance would be replicated in the simulation as well. This 

simulation method allows us to determine whether our observed control performance was 

significant, i.e., whether NS had control. 

 

4.3 Results 

4.3.1 Representations during Training and Online Control 

In the first part of this study, we investigate how similarly individual movement conditions 

involving various effectors and cognitive strategies are represented between training and online 

control, as well as how the structure of these representations (i.e., relationship between the 

representations) is maintained. 

 

Recording from AIP of a female, C3/C4 tetraplegic participant (NS), we compared neural 

responses of four movement conditions during the calibration (“training”) and online control 

steps of the 1D BMI control task (Figure 1AB). The four movement conditions tested were: 

attempted right hand movements (ARH), imagined right hand movements (IRH), attempted left 

hand movements (ALH), and imagined left hand movements (ILH). NS controlled the cursor by 

squeezing her hand to “push” the cursor up, and relaxing her hand to let the cursor “fall”. 

During each block of training and control we instructed NS to use a particular movement 

condition (e.g., to attempt right hand squeezes). We trained the decoder using a point-to-point 
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paradigm (Figure 1A), with the cursor alternating between two points under computer 

assistance. During online control, the task was changed to a one-dimensional center-out task 

(Figure 1B) while the decoder (trained on the corresponding strategy and effector) decoded NS’s 

intentions. Each trial started with the cursor fixed at the center position for 2 seconds while the 

cued target was highlighted. Without any computer assistance, NS had 6 seconds to control the 

cursor to the cued target and hold it there before computer assistance was enabled to help 

complete the trial. See Methods for more details about the decoder and experimental design. 

 

We first wanted to verify that the four movement conditions were represented in the recorded 

population, during both training and online control, by looking at the percent of the population 

tuned to each condition. For each unit, movement condition, and run type separately, we fit a 

linear model to the unit’s firing rate modulation between the “release” to “squeeze” hand states 

(see Methods for more details). A unit was considered tuned if the slope of the beta coefficient 

Figure 4.1. Experimental Paradigm 

(A) Training task. The small red circle is the cursor, the gray circles are the possible targets, and the yellow circle is the 
target for the specific trial. (B) Online control task. 
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of the model was significantly different from zero (p < 0.05, FDR corrected). A significant fraction 

of the population was tuned to each of the conditions (Figure 2A), indicating that they were 

indeed represented.  

 

We used a specificity analysis to examine the degree of overlap between the populations 

representing each condition (similar to the one performed in (Zhang et al., 2017)). If populations 

were non-overlapping, we would expect to see most units having high specificity values. On the 

other hand, if populations were overlapping, the distributions would be more uniformly 

distributed. Figures 2B-E show the distribution of the specificity values focusing within one level 

of a variable at a time. For example, Figure 2C looks at the degree of specificity of the units to 

attempt and imagine only for conditions involving the right hand. The degree of specificity was 

computed as the difference in the absolute values of the beta coefficients (from the linear 

model), normalized by the sum of the absolute values of the beta coefficients. In Figure 2C, a 

value of 1 would correspond to a unit activated only by attempt and not at all for imagine, a 

value of -1 would correspond to a unit activated only by imagine and not attempt, and a value of 

0 would correspond to a unit activated similarly by both. Units not significantly tuned to either 

were excluded from the analysis. We computed the distributions separately for the training data 

(in blue) and the online control data (in orange). All computed distributions indicated partially 

overlapping populations, with some units highly specific to a condition and other units equally 

responsive to both. 
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Figure 4.2. Population Tuning to the Movement Conditions 

(A) Percent of units tuned to each movement condition (bootstrap 95% CI, p < 0.05, FDR corrected). See Table 1 for an 
ANOVA of the values. (B) Degree of specificity showing distribution of how much units exclusively code ILH or ALH. 
Distribution during training shown in blue and distribution during online control shown in orange. For each 
distribution, the median and the probability the median is different from 0 (two-sided sign test) are shown in their 
corresponding colors. (C) Similar to (B) but for IRH and ARH. (D) Similar to (B) but for IRH and ARH. (E) Similar to (B) 
but for IRH and ARH. 
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Given that all four tested movement conditions were represented in different but partially 

overlapping populations, we first wanted to see whether there were differences in how well the 

subpopulations of units tuned to each of the movement conditions kept their tuning between 

training and online control. We looked at the units tuned to each condition during training and 

asked what fraction of these tuned units were also tuned to the condition during online control. 

The results are shown in Figure 3A. There was no significant difference between conditions in 

the fraction of units that kept their tuning (χ2(3, N = 32) = 5.80, p = 0.12, Kruskal-Wallis).  

 

We also examined how well the representations were maintained at a population level. Using 

correlation as a measure of similarity, we correlated the neural representations of each 

condition during training to its corresponding representation during online control (see Methods 

for more details). There were no significant differences in the similarity between neural 

representations going from training to online control (Figure 3B, χ2(3, N = 32) = 6.59, p = 0.087, 

Kruskal-Wallis).  

 

Figure 4.3. Consistency of Representations between Training and Online Control 

(A) Percent of units (out of those tuned during training) that were tuned during both training and online control 
(bootstrap 95% CI). See Table 3 for an ANOVA of the values. (B) Correlation between movement representations 
during training and online control (bootstrap 95% CI). 
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The above analyses in Figure 3 suggest that the representations of all four conditions are largely 

preserved between training and online control. The comparable level of maintenance between 

each of the conditions also suggests that the structure of the representations itself is 

maintained. However, this is not an obvious result.  The above analyses treat each condition 

separately and do not look at the how the relationship between the conditions changes 

between training and online control. In Figure 4A-C we show three main possible configurations 

of the structure of the representations going from training to online control. (1) The structure of 

the representations is maintained and consistent between training and online control, as the 

above results seem to suggest (structure maintained, Figure 4A); (2) all four conditions are 

differently represented during online control but in a different structure than during training 

(structure different, Figure 4B); and (3) the representations of the four conditions collapse into a 

single representation that is invariant to which of the four conditions is being used, such as in a 

pure intention or goal signal (structure collapsed, Figure 4C).  

 

To more directly adjudicate between the three configurations, we performed a cross decoding 

analysis to test how well the representations of the four conditions generalize across the run 

types (i.e., across training and online control). We trained a linear classifier on the training data 

to classify between the four movement conditions and tested it on the training data (cross-

validated performance) and the online control data. Conversely, we also trained a classifier on 

the online control data and tested it on the online control data (cross-validated performance) 

and the training data (see Methods for more details). 
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The results of such an analysis can directly clarify which of the above three configurations fits 

our data better. Significant cross-validated classifier performance within the trained-on run type 

would mean that the four movement conditions are differently represented during that run 

Figure 4.4. Possible Configurations and Corresponding Expected Analysis Results 

(A-C) Schematics for different possibilities in how the structure of the representations compares between training and 
online control. (A) Schematic for the “structure maintained” case where the structure is consistent between training 
(left) and online control (right). Representations of the four movement conditions are separable during both training 
and online control, and in the same structure (i.e., the same configuration, as represented by the consistent placement 
of the conditions). (B) Schematic for the “structure different” case where the movement conditions are separable 
during both training (left) and online control (right) but with different structures (i.e., different configurations). (C) 
Schematic for the “structure collapsed” case where the movement conditions are separable during training only (left) 
and collapse into a single representation (as represented by the conditions being no longer separable in the online 
control case, right). (D-F) Ideal expected result from cross-decoding analyses if the data follows the different 
schematics in Figure 4A-C. See Results for detailed explanation of colors and bars. Red lines represent chance 
performance (0.25). Performances significantly above chance are marked. (D) Ideal expected result in the “structure 
maintained” case of Figure 4A. (E) Ideal expected result in the “structure different” case. (F) Ideal expected result in 
the “structure collapsed” case. 
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type, while chance-level performance would mean that they are not easily distinguishable from 

each other. Significant performance of the classifier on the not-trained-on run type (i.e., 

generalization performance) would mean that the representations are preserved between the 

run types, while chance-level performance would mean they are different. 

 

Idealized example results corresponding to each of the three configurations are shown in 

Figures 4D-F. If the structure is maintained (Figure 4A), we would expect results similar to those 

in Figure 4D. The training classifier in this case not only performs well within the trained-on 

training data (right blue bar, cross-validated performance), but also performs well with the not-

trained-on online control data (left blue bar). Similarly, the online control classifier performs 

well both with the trained-on online control data (right red bar, cross-validated performance) 

and with the not-trained-on training data set (left red bar). This bidirectional generalization 

indicates that the four conditions are differently represented in both training and online control 

and that these representations are similar between the two run types. On the other hand, if the 

structure is different (Figure 4B), then we would expect results similar to those in Figure 4E, 

where both cross-validated performances are significant, but generalization performance is only 

chance-level. Finally, if the structure collapsed during online control (Figure 4C), we would 

expect cross-validated performance for the training classifier to be significant, but cross-

validated performance for the online control classifier to be chance-level (representations not 

different during online control) along with the generalization performance (Figure 4F). 

 

With our data, we found that the classifiers generalized well from training to online control (and 

vice versa), performing significantly above chance (Figure 5A). This suggests that the structure of 
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the representations of the four movement conditions is maintained and meaningful across the 

two run types (structure maintained, Figure 4A). Looking further at the confusion matrices 

shows how well the classifiers generalized for each condition.  We found that the 

representations of all four conditions tended to generalize equally well (Figure 5B).  

 

In our experimental procedure, online control runs always occurred directly after the training 

run of the corresponding condition. As a result, the above cross-decoding analysis has a 

potential order effect confound. The cross-decoding generalization could simply be due to run 

types of the same condition type (e.g., ARH training and ARH online control) always being 

temporally adjacent to each other. For example, if the neural data had a temporal component 

that changed consistently independent of the movement conditions (e.g., a baseline mean firing 

rate drift causing representations to change), then we would also expect to find the maintained 

structure found above. The maintained structure would be a consequence of the neural 

representations being recorded closer together in time (temporally adjacent), independent of 

whether or not they were matched by condition.  

 

To control for this possibility, we compared the correlations of the neural representations 

between training and online control (pairs marked in blue in Figure 5E, temporally adjacent, 

“matched” by condition), against the correlations between the other temporally adjacent 

condition combinations (pairs marked in red, temporally adjacent, but “mismatched” by 

condition). In other words, we compared the similarity of the neural representations between 

each training run and its following online control run (matched and adjacent) against the 

similarity of each training run and its preceding online control run (mismatched and adjacent). 
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Despite all examined pairs of data sets being temporally adjacent, the correlations between 

pairs matched by condition were significantly higher than those not matched by condition 

(Figure 5C, χ2(1, N = 56) = 20.88, p = 4.89e-6, Kruskal-Wallis). 

 

Figure 4.5. Maintenance of the Structure of the Representations 

(A) Results of the cross decode analysis performed on our data, presented as in Figure 4D-F. Performances significantly 
above chance are marked (one-sided Wilcoxon signed rank test, p < 0.05, see Methods for more details). (B) Confusion 
matrices showing classifier predictions when generalizing from one run type to the other, shown as the percent of 
trials per condition. Columns are the true condition labels and rows are the predicted labels. Left matrix corresponds to 
the classifier trained on the online control data and tested on the training data (Figure 5A, left red bar). Right matrix 
corresponds to the classifier trained on the training data and tested on the online control data (Figure 5A, right blue 
bar). (C) Correlation between neural representations of pairs of runs where the runs were adjacent in time and 
matched in condition (blue), compared to the correlation between pairs adjacent in time mismatched in condition 
(red). Error bars are 95% bootstrapped confidence intervals. See Methods for more details. (D) Correlation between 
neural representations of pairs of runs matched by condition but farther apart in time (blue) compared to pairs 
mismatched by condition but closer together in time (red). Error bars are 95% bootstrapped confidence intervals. See 
Methods for more details. (E) Example set of runs from a single session for the primary task paradigm (see Methods). 
Pairs marked in blue are matched by condition and adjacent in time while pairs marked in red are mismatched in 
condition but still adjacent in time. (F) Example of two blocks of runs (4 runs per block) for the secondary task 
paradigm used to control for an order effect (see Methods). Pairs marked in blue are matched by condition but farther 
apart in time while pairs in red are mismatched by condition but closer in time. 
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We also controlled for this confound by collecting several secondary data sets where not all 

training and online control runs of matching conditions were temporally adjacent. Instead of 

each training run being immediately followed by an online control run of the same condition, we 

used the following order in each “block” of runs: training for Condition A, training for Condition 

B, online control for Condition B, online control for Condition A—where the Conditions A and B 

were each selected from the four movement conditions (see Figure 5F for example blocks of 

runs). This ordering allowed us to directly test whether the correlations were driven more by the 

matching of conditions or by the temporal closeness of the conditions. We compared the 

correlations between the neural representations (beta values) of the first and last runs of each 

block (pairs marked in blue in Figure 5F, same conditions, but farther apart in time) against the 

correlations between the neural representations of the first and third runs (pairs marked in red, 

different conditions, but closer together in time). The neural representations were more similar 

when the conditions were matching, rather than when the conditions were closer together in 

time (Figure 5D, χ2(1, N = 16) = 9.28, p = 0.0023, Kruskal-Wallis). Altogether, the results of Figure 

5CD suggest that the “structure maintained” configuration found in Figure 5A is not a result of 

the fact that the conditions were temporally adjacent. Rather, the result was driven by the 

actual matching of the conditions. 

 

The above results show that the structure of the representations of the different movements is 

relatively consistent between training and online control, with significant generalization in the 

organization from one run type to the other. However, the generalization is not perfect, with 

the generalization performance still lower than the cross-validated performance. Figure 5B 

already shows that the representations generalize equally well for each of the movement 
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conditions, albeit imperfectly, meaning there is no single movement condition that causes the 

generalization performance to drop. 

 

The drop in generalization performance could also be due to a specific subset of units 

generalizing poorly, rather than all units (regardless of tuning preference) generalizing 

imperfectly. Thus, we next asked if there was a systematic difference in how well specific units 

generalized based on their tuning preference. For example, do imagine-specific and attempt-

specific units both maintain their specificity equally well or does one type generalize to online 

control better?  

 

To answer this question, we focused within one level of a variable at a time (e.g., the right 

hand), categorized units by their specificity to the levels of the other variable during training 

(e.g., only tuned to attempt, only tuned to imagine, or tuned to both), and then assessed their 

performance during online control (Figure 6). For example, Figure 6B looks only at units for 

conditions involving the right hand. Units were identified as attempt-specific, imagine-specific, 

or non-specific based on their tuning during training (i.e., tuned to attempt only, tuned to 

imagine only, or tuned to both). We then evaluated the average performance of these groups of 

units during online control. Individual unit performance was determined by whether the 

contribution of that unit’s activity to the decoder positively or negatively affected the cursor 

velocity (i.e., whether the activity was pushing the cursor towards the target correctly). This 
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measure of performance is more continuous than the tuning measure used in Figure 3A that 

only looked at the percentage of units that kept their tuning, allowing us to take into account 

the behavior of units that keep their tuning but not as strongly (see Neural Performance in 

Methods for more details). Furthermore, the aggregate neural performance of the individual 

units in Figure 6 is a weighted average, with the weights from the corresponding decoder used 

for online control. This allows us to account for each unit’s effect on online control performance, 

granting units with a greater contribution more influence. Thus, the weighted average is 

reflective of the performance of a decoder using only that subset of units. In general, units that 

were specific to one condition maintained their specificity in terms of performance during 

Figure 4.6. Maintenance of Representations split by Tuning Preference 

(A) Average single unit performance (weighted by the corresponding decoder weights) for imagined/attempted left 
handed movements (bootstrap 95% CI). Units are grouped by tuning only to attempted movements, tuning only to 
imagined movements, and tuning to both. Performance was evaluated for imagined left handed movements (blue 
bars) and attempted left hand movements (red bars). Performances significantly above chance (one-sided sign test, p 
< 0.05, FDR corrected) are marked and chance performance is marked by the solid line. (B) Similar to (A) but for right 
handed movements. (C) Average single unit performance (weighted by the corresponding decoder weights) for 
left/right handed movements using the attempt strategy. Units are grouped by specificity of tuning to the left or right 
hand, with performance evaluated during left- and right-handed movements (blue and red bars, respectively). 
Significant performances are marked. (D) Similar to (C) but for movements using the imagine strategy. 
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online control. This was true for each of the four conditions. Likewise, units that were non-

specific between the compared conditions (“Both”) performed equally well with either 

condition, maintaining that non-specificity. For example, units that were tuned to ARH and not 

IRH during training performed above chance with ARH and not with IRH and vice-versa (Figure 

6B). Similarly, units that were responsive to both ARH and IRH performed comparably well with 

both ARH and IRH during online control (Figure 6B). These results indicate that the tuning 

preference of a specific unit does not affect how well it will generalize from training to online 

control and that there is no specific functional variable that generalizes better than another. 

These results also further emphasize that the single unit tuning preferences observed during 

training are largely maintained and meaningful during online control, consistent with our 

population results above. 

 

4.3.2 Comparison of movement conditions and online control performance 

In the second part of this study, we focus on whether all the tested movement conditions are 

feasible for online BMI control, the degree to which performance differs between the 

movement conditions, and the possible causes of the performance differences. 

 

 We compared the performance of the movement conditions individually, looking at 

both trial success rate (fraction of trials where NS successfully moved the cursor to the target 

within the allotted 6 seconds) and the time to successful trial completion. We found that all four 

combinations of strategy and effector resulted in significant control performance (Figure 7A). 

Interestingly, the ARH condition performed significantly better than the other three (IRH, ALH, 

ILH). This was true when using both trial success rate as a measure of performance (Figure 7A, 



87 
 

χ2(3, N = 1280) = 19.06, p = 2.66e-4, Kruskal-Wallis) and time to trial completion of the 

successful trials (Figure 7B, χ2(3, N = 994) = 16.43, p = 9.24e-4, Kruskal-Wallis). 

 

 Hypothetically, there are several possible explanations for why ARH performed better 

than the other conditions did. First, the representation of ARH during training might be more 

similar to its corresponding representation during online control, either at a single unit level or a 

population level. This would lead to the decoder trained on the ARH training data performing 

better during online control. Second, more units could be tuned to ARH, resulting in a larger 

signal and thus better control performance. Finally, the ARH tuned units might be more strongly 

tuned than the other conditions, having more information content on a unit-by-unit basis, also 

leading to a larger signal. 

 

 In regards to the first possibility, our above results already show that there are no 

differences in how well the different movement representations are maintained. Not only are 

each of the representations equally well maintained, but their structure is maintained, too 

(Figures 3, 5).  

 

 Thus, we first sought to explain the performance differences simply as a function of the 

number of units used for each decoder. Although the number of units recorded by each of the 

four conditions’ decoders was not significantly different, there were differences in how many of 

those units were actually tuned. Focusing on the training data, a test of equal tuning 

percentages for all four units only trended towards significance (Figure 2A, χ2(3, N = 2372) = 
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5.86, p = 0.12, Kruskal-Wallis on the significance values of the linear model fits). However, a test 

of ARH compared to all other conditions showed a significant difference (χ2(1, N = 2372) = 4.35, 

p = 0.037, Kruskal-Wallis), consistent with the observed performance differences. 

 

We next asked whether there were any differences in the strength of tuning of the units tuned 

to each condition. The performance differences could be driven not only by the greater number 

Figure 4.7. Online Control Performance 

(A) Performance of each movement condition, measured as the fraction of successful trials (bootstrap 95% CI). Dashed 
line indicates simulated chance performance (see Methods). (B) Performance of each movement condition, measured 
as the mean duration of successful trials (bootstrap 95% CI). (C) Mean R2 of units tuned to each movement condition 
from Figure 2A (bootstrap 95% CI). See Table 2 for an ANOVA of the values. (D) Cross-validated R2 of the decoder used 
for online control, trained on the training data for each condition (bootstrap 95% CI). Cross-validated R2 was 
computed for each condition and session separately. 
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of ARH tuned units, but also the ARH tuned units being more strongly tuned, having greater 

information content and being more reliable. We used the R2 of the linear model fits computed 

previously as a measure of the strength of tuning. Once again focusing on only the training data, 

while ARH tended to have more tuned units, on average, ARH tuned units were not any more 

strongly tuned than units tuned to other conditions (Figure 7C, χ2(3, N = 333) = 1.99, p = 0.58, 

Kruskal-Wallis). These results suggest that on a unit-by-unit basis, there is nothing qualitatively 

special about the units tuned to ARH compared to the units tuned to other conditions.  

 

Previously, we found that the correlations of the movement conditions between training and 

online control were also all comparable (Figure 3B) and that the structure of the representations 

is largely maintained between training and online control (Figure 5). In light of these results, it 

makes sense that any performance differences between the conditions existing during training 

might carry over to online control. In other words, it should be possible to predict the online 

control performance trends based on solely looking at the training data. To test this, we 

examined the cross-validated R2 of each movement condition’s decoder (decoders trained on 

data from the training runs, Figure 7D). ARH had a significantly higher cross-validated R2 than 

the other conditions (χ2(3, N = 32) = 10.69, p = 0.014, Kruskal-Wallis). This is the same trend as 

found in our performance measures (Figure 7AB). Because of the “structure maintained” result, 

the properties of the movement conditions during training were indeed preserved in online 

control.  
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4.4 Discussion 

In this study, we recorded from human AIP of a tetraplegic participant and investigated the 

degree to which mixed representations of attempted or imagined movements of the left or right 

hand decoded maintained their representations from training to closed-loop cortical control. 

Our results show that the structure of the representations were all maintained between training 

and online control. Furthermore, the different tested effectors and cognitive strategies could all 

be used for control, with performance differences primarily due to differences in the number of 

units tuned to each movement condition during training. 

 

4.4.1 Consistency of representations from training to online control 

A recent study out of our lab has found partially mixed representations in human AIP, with 

strategy and body part variables mixed and functionally segregated by body part (Zhang et al., 

2017). This recent study focused only on the coding of variables in the absence of any closed-

loop BMI control (i.e., representations during “training” only). The current study, however, 

examines these representations not just during training but also during online control, 

investigating the degree to which the representations change from one to the other. 

 

 Unlike our recent study, in this study we focused only on movements below the level of 

injury, looking at how hand movements are represented and not shoulder movements. This 

study was conducted as part of a BMI clinical trial with a focus on using body parts below the 

level of injury for online control. Furthermore, this was done in consideration of experimental 

time constraints, as a full set of 8 movement conditions (attempt/imagine left/right 

hand/shoulder movements) with both training and online control would have been too taxing 
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on NS, resulting in overall decreased task performance. Considering that we are recording from 

the same brain area as in (Zhang et al., 2017), we would expect results to be largely consistent 

between the two studies had we also included shoulder movement conditions (e.g., finding 

functional segregation by body part).  

 

Consistent with (Zhang et al., 2017), we found that a significant fraction of our recorded neural 

population encoded the tested movement conditions during training (Figure 2A). Furthermore, 

populations tuned to each of the variables were partially overlapping, with units having varying 

degrees of specificity to one variable over another (e.g., attempt over imagine, Figures 2B-E), 

also consistent with the past study. 

 

In addition to reproducing our previous study’s results, we found that these representations are 

largely maintained between training and online control. Not only did individual units tend to 

keep their tuning and specificity between training and online control (Figure 3A, Figure 6), but 

the population representations as a whole also stayed relatively similar between the two run 

types (Figure 3B). Remarkably, despite the strategy and body side variables having significantly 

correlated neural representations and thus being more difficult to decode (Zhang et al., 2017), 

the representations of each were relatively well preserved between training and online control 

and were still distinguishable by our decoders. 

 

The relative maintenance of representations from training to online control is consistent with 

the ability to use recordings from AIP for brain control (Aflalo et al., 2015; Revechkis et al., 
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2014). While there can certainly be tuning changes in some of the units when moving to online 

control (Chase et al., 2009; Cunningham et al., 2011), a percent of the population must be 

relatively consistent in its behavior for a decoder trained on the training data to generalize and 

perform online.  

 

Furthermore, we find that not only are the representations of the tested movement conditions 

largely maintained, but the structure of their representations (i.e., the relationship between the 

representations) is maintained (Figure 5AB). Past studies involving BMI control have focused on 

one effector at a time or have not compared the representations of different effectors between 

training and online control, and thus have failed to shed light on this question. It is not obvious a 

priori that the representations of all the different movement conditions would be preserved 

between the run types. In particular, an alternative possibility is that the representations are no 

longer distinct during online control and instead collapse into an effector-independent 

representation used for BMI control. Some studies have found goal or intention signals in PPC 

but these signals are generally tied to the effector.  For instance, that the parietal reach region is 

activated by reaching to goals but not saccading to them, and that the reverse is true for the 

lateral intraparietal area (LIP) (Batista et al., 1999; Cui and Andersen, 2007; Snyder et al., 1997). 

The results of Figure 5AB further support the idea of effector-dependent intention signals. The 

type of movement condition is still meaningful during online control, with their representations 

not only still distinct during online control, but also in a way that the relationships between the 

representations are consistent between training and online control. On the other hand, it has 

been proposed that LIP is related to saliency of stimuli independent of effectors (Bisley and 

Goldberg, 2010). The finding that there is strong effector specificity, under two very different 
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behavioral conditions of training and online control, indicates that in humans as in monkeys, the 

intended movement of specific effectors is a guiding feature of the population structure in PPC.  

   

The maintenance of the distinctions between the movement conditions and structure of their 

representations also suggests that it is possible to control multiple effectors recording from a 

single brain area. In this study, we were able to successfully decode not just the onset of the 

movements (i.e., squeeze and release), but also the body side and cognitive strategy employed 

in the movement. To the best of our knowledge, past studies have only looked at BMI control 

using multiple effectors (e.g., bimanual control) in the context of multiple brain areas (Ifft et al., 

2013). 

 

Some studies propose that the only difference between imagining and attempting/executing a 

movement is the overt motor movement itself (Jeannerod, 1995). This would suggest that the 

representations of an imagined or attempted movement would be indistinguishable at a neural 

level in the absence of overt movement. Similar to our results from (Zhang et al., 2017), we find 

that imagined and attempted movements are in fact distinguishable from each other at a neural 

level even when there are no overt movements. Furthermore, in this current study, we find that 

these differences persist and are consistent even when the movements are “overt” and directly 

control an effector (i.e., in BMI online control). Thus, we find that our results are inconsistent 

with this theory and that imagined movements are not just a subset of attempted movements 

at a neural level. 
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4.4.2 Performance differences of different effectors during online control 

In this study we assessed the online control performance of four movement conditions 

(attempted/imagined movements of the left/right hand) and found that all performed 

significantly above chance (Figure 7AB). Despite the representations of each of the conditions 

being similarly well maintained between training and online control (Figure 3), attempted 

movements of the right hand (ARH) performed significantly better than the other movement 

conditions. The information content of individual units did not significantly differ based on the 

movement condition, either (Figure 7C). 

 

The primary difference in the representations of ARH compared to the others was the greater 

proportion of tuned units (Figure 2A) found in the training data. In this context, the 

maintenance of the structure of the representations makes these differences carry over to 

online control. Since the relationship between the representations does not change, the 

performance differences observed during training would not significantly change during online 

control either. In other words, the maintenance of the structure makes it possible to predict 

relative online control performance based on offline training data, as demonstrated by the 

similarity in the trends between the decoder cross-validated R2 (Figure 7D) and the online 

control performance (Figure 7AB). 

 

The greater proportion of units tuned to ARH is also consistent with our array recording 

location. The array is located in left AIP, a region traditionally thought to encode grasp 

information of the contralateral limb more specifically (Chang et al., 2008; Murata et al., 2000). 

A preference for the right hand would be plausible in this context. 
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Furthermore, some studies on BMI control using EEG and other recording technologies found 

attempted movements to perform better than imagined movements (Blokland et al., 2014; 

López-Larraz et al., 2012). This is consistent with our finding that the attempt strategy 

performed better than the imagine strategy in the right hand (Figure 7AB) as well as the bias 

towards attempted over imagined right hand movements in the degree of specificity of the 

individual units during online control (Figure 2C). 

 

 This study was part of a clinical trial composed of a variety of experimental tasks 

involving BMI control beyond those presented here. Most of those studies involved attempted 

movements of the right hand. Thus, NS has had significantly more practice using attempted right 

hand movements for control than imagined right hand movements or movements of the left 

hand. Some studies have shown that neurons can change their tuning behavior and even 

reorganize with extensive practice (Ganguly and Carmena, 2010; Matsuzaka et al., 2007). As a 

result, the greater amount of practice with the right hand might also be related to our observed 

control performance results. Unfortunately, this study was not designed to evaluate the long-

term effect of practice on control performance. 
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5 Sensory mirroring responses and mixed representations 

5.1 Introduction 

One of the goals of neuroscience is to understand how brain networks influence social processes 

and behaviors. For this reason, there has been a particular interest in the field of mirror 

neurons, with the majority of this field focusing on motor mirroring. Motor mirror neurons are 

neurons that process the performance of a motor action and the observation of someone else 

performing the same action similarly. These neurons have been found in both non-human 

primates (NHPs) as well as humans, using both electrophysiology and functional magnetic 

resonance imaging (fMRI) (Caggiano et al., 2009; Filimon et al., 2007; Fogassi et al., 2005; Fujii et 

al., 2008; Grèzes et al., 2003; Keysers et al., 2003; Mukamel et al., 2010; Rozzi et al., 2008). 

These studies have primarily found motor mirror neurons in brain regions involved in action 

planning such as the supplementary motor area (SMA), premotor cortex, and posterior parietal 

cortex (PPC). The prevailing theory is that the motor mirror system plays a role in simulating the 

inner states and intentions of other people (Caramazza et al., 2014; Keysers and Gazzola, 2006; 

Rizzolatti and Fabbri-Destro, 2008). 

 

Although less well studied, sensory mirror neurons have been of increasing interest in recent 

years. Sensory mirror neurons are the sensory analog to motor mirror neurons, responding to 

the feeling of a sensation and the observation of someone else feeling the same sensation. 

More specifically, the sensory mirror system processes the observation of someone else feeling 

a sensation in the same way as it processes the actual experience of the sensation. These 

studies have been either electrophysiological in NHPs (Ishida et al., 2010), or using fMRI in 

humans (Keysers et al., 2004; Osborn and Derbyshire, 2010). Sensory mirror neurons tuned to 
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tactile sensations or pain have been predominantly found in the primary and secondary 

somatosensory cortices as well as regions around the intraparietal sulcus (IPS) in PPC. 

 

We recorded single unit responses from the anterior intraparietal area (AIP) of a human 

tetraplegic volunteer (NS) participating in a brain-machine interface clinical trial, and asked how 

sensory mirroring responses were represented at a single neuron and population level. AIP is 

located within the IPS and is known to integrate visual and tactile information in the planning of 

grasp actions (Gentile et al., 2011; Grefkes and Fink, 2005; Klaes et al., 2015; Schaffelhofer and 

Scherberger, 2016) as well as in action observation (Maeda et al., 2015; Nelissen et al., 2011; 

Pani et al., 2014). These multisensory association properties thus make it a good candidate area 

for studying the sensory mirror system. 

 

We tested neural response to “felt” sensations (when NS experienced a touch) and to 

“observed” sensations (when NS observed someone else getting touched). Touches (rubs) were 

performed on the cheek or shoulder of NS or an actor, both body parts above NS’s level of 

injury. We found a significant proportion of the population tuned to each of the four conditions, 

with populations partially overlapping, suggestive of mixed selective coding. Furthermore, the 

sensory mirroring component was generally confined to the same body part. Neural 

representations generalized better across people than body parts, suggesting a degree of 

functional segregation by body part. Finally, additional analyses found that the mirror responses 

were present regardless of whether observed sensations were presented in video compared to 

live action, as well as to whether NS observed the sensations with fixation or with free gaze. 
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5.2 Methods 

5.2.1 Subject Details 

Subject NS is a 59 year-old female tetraplegic 10 years post-injury, with a motor complete C3-C4 

spinal lesion. She has no control or sensation below her upper arm but still retains motor control 

and sensations above that level. The study was approved by the California Institute of 

Technology, Casa Colina Centers for Rehabilitation, and the University of California, Los Angeles 

Internal Review Boards. We obtained informed consent after explaining the objectives of the 

study and the possible risks involved. 

 

5.2.2 Experimental Setup 

Experimental sessions were conducted at Casa Colina Centers for Rehabilitation. Tasks were run 

in a similar setup as in (Zhang et al., 2017). NS was seated in a motorized wheel chair in a lit 

room. For the live action tasks, an actor sat on a chair 140 centimeters in front of NS. One 

experimenter stood directly behind the actor while a second experimenter stood directly behind 

NS. The experimenters were responsible for touching NS and the actor. A 27-inch LCD monitor 

was positioned to the side (outside of NS’s line of sight) to cue the experimenters as to what 

action to perform and when.  

 

For video tasks, the videos were presented on the 27-inch LCD monitor repositioned in front of 

NS, occupying approximately 40 degrees of visual angle. 
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All stimulus presentation was controlled using the Psychophysics Toolbox (Brainard, 1997) and 

MATLAB. No fixation was required or enforced except in the case of the fixation vs free gaze task 

(below). 

 

5.2.3 Video Recordings 

The videos for the video vs live action and the fixation vs free gaze tasks were captured using a 

GoPro Hero 4 Silver camera mounted on a tripod. The camera was positioned such that it was at 

NS’s normal eye position (matched in height and orientation). This positioning was done so that 

the recorded videos were as similar as possible to NS’s perspective when viewing the actions 

live (in terms of distance from the scene, angle, etc.). 

 

5.2.4 Signal Recordings 

We recorded neural signals from participant NS using two 96-channel Neuroport arrays 

(Blackrock Microsystems model numbers 4382 and 4383) implanted in putative homologs of 

area AIP and Brodmann’s Area 5d. Only signals from the array implanted in putative AIP were 

analyzed. Array placement was determined based on preoperative fMRI (Aflalo et al., 2015), 

with the AIP array implanted at Talairach coordinate [-36 lateral, 48 posterior, 53 superior]. 

Neural activity was amplified, digitized, and recorded using the Neuroport neural signal 

processor (NSP). The system has received FDA clearance for < 30 days acute recordings. We 

received FDA IDE clearance (IDE #G120096, G120287) to extend the implant duration for the 

purposes of the BMI clinical study. 

 



100 
 

The detection threshold for the action potentials was set at -3.5 times the root-mean-square 

after high pass filtering the full bandwidth signal (250 Hz cutoff). The full-bandwidth signal was 

sampled at 30 kHz in the Central software suite (Blackrock Microsystem). Each individual 

waveform was made of 48 samples (1.6 ms) with 10 samples prior to triggering and 38 samples 

after. Single and multiunit activity was sorted offline as in (Zhang et al., 2017).  

 

5.2.5 Experimental Design 

We used several different tasks throughout the study in order to answer specific questions 

about sensory mirroring responses. All tasks were similar in design and timing, differing 

primarily by the specific conditions involved. Unless otherwise noted, NS had her eyes open 

throughout the task and was asked to observe sensations “naturally”, with no fixation required. 

Within a run, conditions were pseudorandomly interleaved, with all conditions required to be 

performed at least once before repeating. 

 

In each trial, an action was cued (e.g., to touch NS’s cheek) for 2.5 seconds, after which the cue 

disappeared. After a 3 second delay, a “Go” cue then appeared and stayed on for 4.5 seconds, 

signaling the experimenter to perform the previously cued action. Actions were rubs performed 

on the cheek/shoulder with a frequency of approximately 1 Hz (except in the case of the action 

tuning task, where the specific action to perform was cued). This trial structure applied to all of 

the tasks below. 
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5.2.5.1 Body part specific sensory mirroring 

This task was the main data set for this study and used to study body part specific sensory 

mirroring responses. There were four conditions used in this task: touching NS’s cheeks (felt 

cheek touches), touching NS’s shoulders (felt shoulder touches), touching the actor’s cheeks 

(observed cheek touches), and touching the actor’s shoulders (observed shoulder touches). 

Touches were rubs performed bilaterally simultaneously. Cheek touches were rubs parallel to 

the jawline (i.e., from the cheek bone towards the chin and back again). Shoulder touches were 

rubs along the top of the shoulder, from near the neck to the outside of the shoulder and back 

again. This task was run on 6 different days, with 10 trials per condition. Eight hundred and five  

units were recorded in total (assuming independent recordings across days), and 756 units met 

unit selection criteria (see below). 

 

5.2.5.2 Tactile receptive fields 

This task was used to map out which tactile receptive fields were represented in our neural 

population and to identify a set of receptive fields that were relatively different from each 

other. Sensory mirror neurons are defined as units sharing representations across self vs other 

while still maintaining specificity for particular body parts. Thus, we required the body parts 

tested to be represented differently in order to study the sensory mirror system. For this task, 

there was no actor in front of NS and all actions were rubbing actions performed on NS only 

(i.e., only felt sensations, no observed sensations). NS had her eyes closed and wore earplugs 

throughout the task in order to remove any responses potentially caused by other sensory 

modalities (e.g., visual or audio effects), isolating the tactile sensation responses. The actions 

were performed on the following body parts: forehead, top of the head, back left/right of the 

head, left/right cheek, left/right shoulder, and the left/right side of the neck. We also included a 
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null condition (no sensation) as a control. Data was recorded across 2 separate days with 10 

trials per condition. Two hundred and forty six units were recorded in total (assuming 

independent recordings across days), and 239 units met unit selection criteria (see below). 

 

5.2.5.3 Tuning to different actions 

This task was used to identify the degree to which different action types/concepts were 

represented compared to the strength of the mirroring responses. We did this to verify that our 

body part specific mirroring results were driven primarily by tuning to tactile sensations rather 

than action-concept tuning. We tested 16 conditions composed of the possible combinations of 

rubbing/tapping/pinching/pressing the cheek/shoulder on NS and the actor. Rubbing was the 

same action as in the body part specific mirroring task, performed at a frequency of about 1 Hz. 

Tapping was performed with the tips of the index and middle fingers (1 Hz). Pinching was 

performed with the thumb, index, and middle fingers (0.5 Hz). Pressing was performed with the 

index and middle fingers (0.5 Hz). This task was run on 7 different days, with 10 trials per 

condition. Seven hundred and seven units were recorded in total (assuming independent 

recordings across days), and 699 units met unit selection criteria (see below). 

 

5.2.5.4 Video vs live action 

We wanted to see the effect of having our observed sensations presented on video rather than 

live. To do this, we collected data with observed sensations on video on some of the same days 

as the main task (see body part specific sensory mirroring, above). By collecting this secondary 

data set on the same days as the primary data set (which had observed sensations in live 

action), we were able to directly compare the behavior of specific units under each of the 
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different presentation formats. For the video task, the timing and sequence of phases was the 

same as those in the main task (i.e., cue, delay, go), except instead of NS seeing a cue of what 

the sensation would be, she saw a still image of the first frame of the video. The video only 

began playing in the Go phase. The first frames of the videos were identical so that NS would 

not be able to learn to anticipate what action was next. For felt sensations, no video stimuli was 

presented. Instead, an experimenter produced them on NS live (identical to felt sensations in 

the main task). Videos were recorded using a GoPro camera (see Video Recordings above). This 

task was run on 2 different days, with 10 trials per condition. Three hundred and nine units were 

recorded  (assuming independent recordings across days), and 252 units met unit selection 

criteria (see below). 

 

5.2.5.5 Fixation vs free gaze 

We wanted to assess the effect of having NS observe sensations “naturally” (i.e., with free gaze) 

compared to having her observe with required fixation. To do this, we added two additional sets 

of observed cheek/shoulder sensation conditions where NS had to fixate on one of two points, 

above and below the point of action contact (approximately 1.5 degrees of visual angle in either 

direction). All observed sensations were presented in a video format for ease of fixation point 

cueing (similar to the video vs live action task above). Fixation points were marked by a yellow 

dot on the screen, with the lack of any explicit fixation point indicating free gaze. Felt sensations 

were identical to those in the main task. This task was run on 2 different days, with 10 trials per 

condition. Two hundred and sixty four units were recorded in total (assuming independent 

recordings across days), and 259 units met unit selection criteria (see below). 
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5.2.6 Unit Selection 

Within the same task, units were pooled across recording days assuming independent 

populations each day. To minimize low firing rate and noise effects, only units with mean firing 

rates greater than 0.5 Hz and an SNR > 0.5 were included in the analysis. Assessment of mean 

firing rates and SNR were conducted blind to the specific conditions of a trial or any analysis 

results.  

 

5.2.7 Linear Analysis and Single Unit Tuning 

In order to determine the tuning of individual units, we fit a linear model to each unit’s firing 

rates during a “Go” and baseline time window. The Go time window was 1 to 4 seconds after 

sensation onset to isolate the stimulus response, mitigating possible cases where the 

experimenters may have started the touch late or ended the touch early. The baseline time 

window was 1.5 to 2.5 seconds after delay phase onset in order to capture the neural response 

in the absence of any stimulus (including visual differences from the experimenters reading the 

onscreen cue and possible early touches by the experimenters). We fit the unit’s firing rate as a 

function of condition indicator variables as in (Zhang et al., 2017): 

𝐹𝐹𝐹𝐹 = �𝛽𝛽𝑐𝑐𝑋𝑋𝑐𝑐 + 𝛽𝛽0
𝑐𝑐

 

where 𝐹𝐹𝐹𝐹 is the firing rate, 𝑋𝑋𝑐𝑐 is the vector indicator variable for condition 𝑐𝑐, 𝛽𝛽𝑐𝑐 is the estimated 

scalar weighting coefficient for condition 𝑐𝑐, and 𝛽𝛽0 is a constant offset term. In this model, the 

beta coefficients represent the expected firing rate changes from baseline for each condition. 

For each condition, the indicator variable is a vector of binary values where each element is 1 if 

the corresponding data point at that index is of the same condition type, and 0 if the data point 
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is of a different condition type. All baseline samples were also assigned a 0, effectively pooling 

together baseline data independent of condition. A unit was considered tuned to a condition if 

the t-statistic for the beta coefficient associated with the condition was significant (p < 0.05, FDR 

corrected). 

 

We tested whether the fraction of units tuned to each condition was significantly different using 

a non-parametric ANOVA (Kruskal-Wallis) on the significance values of the units for each 

condition (as described above). Comparisons were performed for each pair of conditions. 

 

5.2.8 Degree of Specificity 

We wanted to assess the degree to which the populations tuned to each of the conditions were 

overlapping/specific. We did this by computing how specific each unit was to each of the 

conditions, comparing conditions in a pairwise fashion (e.g., how specific a unit was to felt cheek 

sensations vs observed cheek sensations, felt cheek sensations vs felt shoulder sensations, etc.). 

We computed the degree of specificity by taking the difference of the absolute values of the 

beta coefficients (associated with the two conditions being compared) normalized by the sum of 

the absolute values of the beta coefficients. For example, to compute the degree of specificity 

to felt and observed cheek sensations, the equation would be: 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑜𝑜𝑜𝑜 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  
|𝛽𝛽𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹ℎ𝑒𝑒𝑒𝑒𝑒𝑒|− |𝛽𝛽𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂ℎ𝑒𝑒𝑒𝑒𝑒𝑒|
|𝛽𝛽𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹ℎ𝑒𝑒𝑒𝑒𝑒𝑒| + |𝛽𝛽𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂ℎ𝑒𝑒𝑒𝑒𝑒𝑒| 

where 𝛽𝛽 is the beta coefficients from the linear model fit above for the associated movement 

condition. This degree of specificity analysis was done separately for each pairwise combination 

of conditions. We only included units tuned to at least one of the conditions being compared (p 
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< 0.05, FDR corrected). For each distribution, we also performed a two-sided sign test to 

determine whether the medians of the distributions were significantly different from 0 (i.e., if 

they were biased to one variable over another). 

 

5.2.9 Confusion Matrix 

We wanted to verify that it was possible to decode each of the tested conditions from each 

other, despite the populations underlying the neural representations being highly overlapping. 

To do this, we used a confusion matrix analysis, computing the frequency (on a trial-by-trial 

basis) with which each condition was misclassified by a classifier. 

For the classifier, we used a linear classifier (linear discriminant analysis, all classes assumed to 

have the same diagonal covariance matrix). For features, the classifier used the mean firing 

rates during the Go phase subtracted by the corresponding mean baseline firing rates, 

computed on a trial-by-trial basis. The time windows were the same as the ones used for the 

linear models above. Performance was calculated using leave-one-out cross-validation. The 

confusion matrices were computed for each day separately, and then averaged together for 

Figure 5.1D. 

 

5.2.10 ANOVA Analysis 

Besides identifying units by their tuning to each individual condition, we also wanted to 

categorize units by their tuning to the body part, person, and the interaction between the two. 

On a per unit basis, we performed a 2-by-2 ANOVA on the unit’s firing rate modulation from 

baseline (Go phase activity subtracted by mean baseline activity, using the same windows as in 
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the linear analysis above). We grouped the data by the person variable (felt vs observed 

sensations) and the body part variable (cheek vs shoulder) associated with each condition, 

testing the effects of each as well as the interaction effects (i.e., 3 terms: person, body part, and 

the interaction of person and body part). A unit was considered to have a significant effect of a 

variable if the associated p-value was significant (p < 0.05, FDR corrected). Units were 

considered body part specific mirror neurons if they showed a significant main effect of body 

part and no significant interaction effect. 

 

5.2.11 Principal Component Analysis (PCA) 

We wanted to identify the most natural modes of our network to see what variables our neural 

population encoded the most strongly. We performed a principal component analysis (PCA) to 

reduce our high dimensional firing rate data into 10 principal components (only the first four are 

shown in Figure 5.2C-F). We performed the PCA on the trial-by-trial firing rate data. Thus, the 

PCA was applied to a matrix of (Time Samples Per Trial * Conditions * Trials Per Condition) x 

(Number of units), with the number of units being the variables. Data was pooled across days 

assuming independent populations across recording sessions. The entire trial time window was 

included, from 0.5 seconds before the trial started to the end of the trial (4.5 seconds after Go 

onset), resulting in a total time window of 10.5 seconds. Neural data was sampled with 50 ms 

time bins and smoothed using a minimum jerk smoothing kernel (500 ms smoothing window). 

Finally, in generating Figure 5.2C-F, we computed the projections of each trial’s neural data to 

each of the principal components and then grouped the trials by their condition type.  
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5.2.12 Correlation of Neural Responses 

We wanted to examine how the different conditions were represented relative to each other 

and specifically which conditions had more similar neural representations. Using correlation as a 

measure of similarity, we compared the conditions in a pairwise fashion. We used correlation 

over other distance measures (such as Euclidean or Mahalanobis distance) because correlation 

gives a normalized value of the similarity that is agnostic to gross baseline changes across the 

entire population. 

 

We quantified the neural representations as the vector of normalized beta coefficients (beta 

coefficients from the linear model fits above divided by their 95% confidence intervals, one 

element per unit). The normalized beta coefficients are thus a trial average measure of each 

unit’s firing rate modulation from baseline weighted by its trial-to-trial variability. Only units 

significantly tuned to at least one of the conditions (p < 0.05, FDR corrected) were included in 

the correlation analysis. 

 

5.2.13 Hierarchical Clustering or Neural Responses 

The correlation analyses above suggested a representational structure where some conditions 

were more similar to each other than to others. To summarize the structure of the 

representations and how representations were clustered together, we performed a hierarchical 

clustering analysis (agglomerative hierarchical cluster tree). We used the built-in MATLAB 2017a 

linkage and dendrogram functions with weighted average correlation as the measure (McKenzie 

et al., 2014; Zhang et al., 2017). 
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5.2.14 Cross Decoding 

We wanted to test the degree to which representations of one variable generalized across the 

different levels of the other variable. In Figure 5.3D, for example, we tested how well 

representations of person generalized across the different body parts. We used a cross-

decoding analysis similar to the one used in (Zhang et al., 2017). We trained a classifier on only 

one level of a variable to classify the levels of the other variable. We then computed both its 

cross-validated performance (on the training data) and its generalization performance when 

applied to the untrained data (from the other level of the variable). This was done in both 

directions (i.e., training on the other level of a variable). In the example of Figure 5.3D, we 

trained a classifier on cheek data to classify between felt and observed sensations (blue bars). 

We then computed the cross-validated performance (left blue bar), and the generalization 

performance (right blue bar). We then repeated this analysis in the opposite direction, training 

on shoulder data and testing on cheek data. 

 

For the classifier, we used a linear classifier (linear discriminant analysis, diagonal linear 

covariance matrix). For features, we used the average firing rates during the Go window 

subtracted by their corresponding baseline window activity (taken on a trial-by-trial basis, with 

time windows the same as in the linear analysis above). Neural data was pooled across days, 

assuming independent neural populations across recording days.  

 

Cross-validation performance was determined by leave-one-out cross-validation. Performance 

measures were simply classification error (i.e., fraction of trials for which the predicted label 

matched the true label). Significance was determined by a permutation test (shuffling the true 
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labels to create a null distribution, 1000 shuffles), and comparing the true value to the null 

distribution. A value was considered significant if it was greater than 95% of the values in the 

shuffle distribution values (i.e., p < 0.05). 

 

5.2.15 Number of Units Invariant Analysis 

We examined the likelihood of units being invariant to multiple body parts in our neural 

population, even beyond the cheek and shoulder tested in our main data set (e.g., neck, 

forehead, back of the head, etc.). We looked at the fraction of the population invariant to 

different numbers of body parts (N), using just the data from the tactile receptive field task. We 

computed the fractions for all of the possible combinations of the N body parts. For example, for 

N = 1, we looked at the percent of units tuned to each of the 10 tested body parts (i.e., 10 

values). For N = 2, we looked at the percent of units tuned to each of the possible pairs of body 

parts (10*9/2 = 45 values). A unit was considered tuned to all N body parts if the significance 

values from the linear model fits were significant for all of the body parts involved (p < 0.05, FDR 

corrected). N varied from 1 to 10 (10 total body parts). For each value of N, we averaged the 

percent of units tuned to generate the curve in Figure 5.4C.  

 

5.3 Results 

5.3.1 Sensory Mirroring 

To study sensory mirroring, we recorded from AIP of a female C3/C4 tetraplegic participant (NS). 

We compared the neural responses to felt/observed sensations of the cheek and shoulder. “Felt 

sensations” refers to touches felt by NS while “observed sensations” refers to NS observing 
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touch actions performed on another person. Sensory mirroring data was collected using a 

delayed action paradigm (Figure 5.1A). Two experimenters and one actor were also involved 

during data collection. The actor was seated across from NS while one experimenter stood 

behind NS and one experimenter stood behind the actor. At the start of each trial, 

experimenters were cued for 2.5 seconds on who to touch (NS vs the actor) and what to touch 

(the cheek or shoulder). After an additional delay of 3 seconds, a “Go” cue was displayed for 4.5 

seconds, cueing the experimenters to perform the action. NS’s eyes were open throughout the 

task, and was instructed to observe actions “naturally”. We were careful to ensure that NS could 

not see the cues and thus could not anticipate the actions. Actions were performed on the 

cheek/shoulder based on a preliminary receptive field test (see below), with both body parts 

above NS’s level of injury and thus still sensitive. In addition, we performed all actions live and 

with no fixation enforced (more on that below).  
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Figure 5.1. Overlapping Populations Tuned to Felt and Observed Sensations 

(A) General data collection paradigm showing an example action cue. The green dot is the “Go” cue.  (B) Percent of 
units tuned to each of the four tested conditions (bootstrap 95% CI, p < 0.05, FDR corrected). (C) Distribution of the 
degree of specificity for individual neurons to all the different possible pairwise combinations of conditions, plotted as 
the estimated probability density function. For each distribution, the median and the probability of the median being 
different from 0 (two-sided sign test) are shown. (D) Confusion matrix showing the percent of the time each condition 
was classified as each other condition. The matrix shown is the average of the confusion matrices computed on each 
day individually. (Feel = felt, Obs = observed; Ch = cheek, Sh = shoulder). 
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We first examined the tuning in the neural population to each of the four tested conditions: felt 

cheek touches, felt shoulder touches, observed cheek touches, and observed shoulder touches. 

A significant percent of the population was tuned to each, with a greater fraction tuned to felt 

cheek touches (Figure 5.1B, p < 0.001 for each pairwise comparison of felt check touch to the 

other conditions using a Kruskal-Wallis test on the significance values of each condition). 

 

We next asked to what degree the populations tuned to felt and observed sensations were 

overlapping using a degree of specificity analysis. The potential mirror neurons would exist at 

this overlap, being nonspecific for felt vs observed sensations. For each pair of conditions, we 

computed the degree of specificity of each unit as the difference in the absolute values of the 

beta coefficients normalized by the sum of their absolute values. This results in a value between 

-1 and 1, with 0 indicating nonspecific tuning and 1 and -1 indicating highly specific tuning. The 

distributions of these values for each pairwise comparison are shown in Figure 5.1C. The neural 

populations tuned to felt and observed sensations of the same body part were indeed 

overlapping, suggesting the presence of sensory mirror neurons in the population. However, 

neural populations tuned to other pairs of conditions were similarly overlapping.  

 

Despite this high degree of overlap, we were still able to separate all four conditions from each 

other. We assessed the cross-validated classification performance of a linear classifier trained to 

decode the four conditions from each other and computed the confusion matrix for each day. 

The average of these confusion matrices is shown in Figure 5.1D. 
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Figure 5.2. Sensory Mirroring Responses 

(A) Percent of the population showing a significant effect of each term in the 2-by-2 ANOVA (bootstrap 95% CI, p < 
0.05, FDR corrected). (B) Pie chart showing distribution of units by their tuning type as determined by a 2-by-2 ANOVA 
(e.g., main effect of person only, main effect of body part only, etc.). Only units with tuning to at least one of the terms 
in the ANOVA were included. The exploded sections (red and yellow) represent those that would fall into our definition 
of “body part specific mirror units”. (C) First four components from a principal component analysis of the neural data 
plotted against time. Trial-by-trial responses were projected onto each of the four conditions and their trial average 
and standard error plotted. The percent of the variance accounted for by each component is also displayed. 
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We next asked if the sensory mirroring responses in the population were significant relative to 

the other encoded variables. First looking at the single unit level, we performed a 2-by-2 ANOVA 

on each unit independently, testing the effects of the person variable (i.e., whether the 

sensation was felt or observed; who was touched), the body part variable (i.e., whether the 

cheek or the shoulder was touched), and their interaction. A neuron was considered body part 

specific if it showed a main effect of body part and no interaction effect, as this would mean it 

responded differently to different body parts (“body part specific”) and in a similar way 

regardless of who was touched (“mirroring”). Units with a main effect of both body part and 

person were still considered mirroring, as they would be coding the body parts similarly, albeit 

with a mean offset based on the person touched. Looking at the percent of the population 

showing a significant effect of each term, the proportion of units with a main effect of body part 

was comparable to the proportion of units with a main effect of person (p < 0.05, FDR corrected, 

Figure 5.2A). Furthermore, the fraction of units with a main effect of body part alone was 

comparable to the fraction of units with a main effect of person alone (Figure 5.2B). Based on 

our definition of sensory mirror units, a significant fraction of the population was sensory 

mirroring (Figure 5.2B, red and yellow sections). 

 

We also directly visualized this mirroring component at the population level, performing a 

principal component analysis (PCA) on the firing rate data of the population as a whole. The first 

four principal components are shown in Figure 5.2C-F. The largest component (37.26% of the 

variance, Figure 5.2C) was consistent with a general sensation/action onset component. The 

second component (20.65% of the variance, Figure 5.2D) modulated similarly for felt and 

observed cheek touches (blue and yellow traces), and another way for felt and observed 

shoulder touches (red and purple traces). This component behaved as a body part specific 
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mirroring component, treating sensations on the same body part essentially identically, 

regardless of who was touched. The fact that this mirroring component occupied so much of the 

variance in the population is consistent with a dominant mirroring component. 

 

Interestingly, none of the other principal components (neither the two shown in Figure 5.2EF 

nor any of the others) behaved as a “person-specific” counterpart to the mirror component, i.e., 

treating sensations on the same person identically regardless of what was touched. This 

suggests that the body part variable is coded specially at a population level compared to the 

person variable.  

 

To test this directly, we performed a correlation analysis on the neural responses to each of the 

four conditions. We found that the representations of felt and observed sensations of the same 

body part were the most similar to each other (Figure 5.3A). This was further illustrated by a 

hierarchical clustering analysis performed on the normalized beta coefficients, using correlation 

as a distance measure (Figure 5.3B). In other words, representations that differ by person are 

more similar to each other than representations that differ by body parts. The differences in the 

similarity suggests that the body part and person variables are not randomly mixed. Instead, the 

variables are partially mixed, with representations of person organized (i.e., functionally 

segregated) by body part. 
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Figure 5.3. Representations Organized by Body Part 

(A) Correlation matrix showing the similarity between the neural representations of the four conditions. (B) 
Dendrogram summarizing the hierarchical clustering of the neural representations of the four conditions, using 
correlation as a measure. The primary splitting variable of the major branches is shown. Representations were mainly 
split by body part. (C) Cross-decoding analysis showing the generalization performance of person representations 
across person. In blue is the performance of a classifier trained on “feel” data to classify between cheek/shoulder 
applied to feel data (cross-validated performance, left blue bar), and “observe” data (generalization performance, 
right blue bar). In red is the performance of a classifier trained on observe data applied to observe data (cross-
validated performance, right red bar) and feel data (generalization performance, left red bar). A red and green line 
marks chance and maximum performance, respectively. Performance significantly above chance is also marked 
(permutation test, p < 0.05, uncorrected). (D) Similar to (C) but with classifiers trained on only cheek/shoulder data to 
classify between felt/observed sensations (i.e., generalization of person representations across body parts). 
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The greater similarity between representations differing by people compared to representations 

differing by body part suggests that representations may generalize better across different 

people than different body parts. We directly tested for this possibility by performing two cross-

decoding analyses similar to the ones used in that study. For the first cross-decoding analysis 

(Figure 5.3C), we tested the degree to which representations of body part generalized between 

the person being touched (i.e., felt vs observed sensations). We trained a linear classifier to 

classify the body part touched based on only felt sensations and then evaluated the classifier’s 

performance on felt sensations (cross-validation performance, left blue bar) as well as observed 

sensations (generalization performance, right blue bar). We also trained a second classifier on 

the reverse direction, training on only observed sensations and testing on observed sensations 

(cross-validation performance, right red bar) and felt sensations data (generalization 

performance, left red bar). Both classifiers had cross-validation and generalization performance 

significantly above chance (p < 0.05, one-sided permutation test). This suggests that the 

representations of body parts do generalize across felt and observed touches. 

 

For the second cross-decoding analysis (Figure 5.3D), we tested how well the representations of 

the person being touched (i.e., whether the sensation was felt or observed) generalized across 

different body parts. In this case, we found that the representations generalized somewhat 

across different body parts (at least from shoulder to cheek), albeit imperfectly. Altogether, the 

cross-decoding analyses show that the representations in our neural population generalize 

better across different people than across different body parts, further showing that the 

representation of body part is special in our neural population.  
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These cross-decoding results are consistent with a population-level sensory mirroring response. 

Single unit sensory mirror neurons are defined as units that process observed sensations 

similarly to felt sensations when matched by body part. Analogously, a population-level sensory 

mirroring response can be defined by the encoding of observed sensations similarly to felt 

sensations when matched by body part. This similarity would make the structure of body part 

representations similar between felt sensations and observed sensations, allowing body 

representations to generalize from one to the other. In other words, the result in Figure 5.3C 

illustrates a defining property of sensory mirroring: that the representations of felt sensations 

generalize to observed sensations.  

 

5.3.2 Tactile Receptive Fields 

Before collecting any sensory mirroring data, we first wanted to identify tactile receptive fields 

in NS that were relatively orthogonally represented. Sensory mirroring requires similar 

responses between observed and felt sensations specific to body parts. Without this specificity, 

any shared responses between felt and observed sensations could just be responses to an action 

occurring, the concept of the action, or some other shared feature. To find specificity, we 

needed the body parts to be differently represented. Thus, we needed to find receptive fields as 

different as possible in representation in order to observe a body part specific mirroring effect. 
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To do this, we used a delayed action paradigm where the experimenter touched NS on different 

parts of the body above the level of injury while her eyes were closed. Touches were rubbing 

motions of approximately 4 Hz in frequency and for a duration of approximately 4 seconds. The 

different receptive fields tested were: forehead, top of the head, back left/right of the head, 

Figure 5.4. Tactile Receptive Fields 

(A) Percent of the population significantly tuned to each of the tactile receptive fields stimulated (bootstrap 95% CI, p < 
0.05, FDR corrected). (B) Correlation matrix showing similarity between the neural representations of each of the 
tactile receptive fields. (Fh = forehead, Tp = top of head, BL = back left of head, BR = back right of head, LC = left cheek, 
RC = right cheek, LS = left shoulder, RS = right shoulder, LN = left side of neck, RN = right side of neck, XX = no 
stimulation). (C) Plot showing the average percent of units tuned and invariant to N different body parts, as N 
increases from 1 to 10 (p < 0.05, FDR corrected).  
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left/right cheek, left/right shoulder, and the left/right side of the neck. We also included a null 

(no sensation) condition as a control (see Methods for more details). 

 

Looking at the percent of the population tuned to each of the receptive fields, we found that all 

tested receptive fields were represented in our neural population to varying degrees (Figure 

5.4A). As expected, there was no significant tuning to the null control condition (“XX”).  

 

Using correlation as a measure, we next looked at the similarity in the neural representations 

(Figure 5.4B). We computed the correlation by correlating the normalized beta coefficients from 

the linear model fits for each condition (beta coefficients normalized by their 95% confidence 

intervals) against each other (see Methods for details). We found that body parts were relatively 

similar in representation bilaterally (e.g., left and right shoulder were much more similar to each 

other than anything else). Furthermore, the representations of all the tested tactile sensations 

were most different from the null condition. Based on the similarity between the 

representations, we decided to use the cheek and shoulder as the main body parts in our study. 

These body parts were not only relatively different in representation but also easily 

distinguishable visually. It was important to choose sensations visually distinguishable so that 

the observe conditions could be well differentiated from each other as well. 

 

In Figure 5.2B, we found a significant fraction of units that were specific to who was being 

touched but were invariant to the body part touched, essentially “person-specific”. However, it 

is possible that these “person-specific” units just happen to be units that are invariant to the 
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tested body parts (cheek and shoulder), and not necessarily all body parts. We tested for this 

possibility by looking at the fraction of units in our neural population that were tuned and 

invariant to all the possible combinations of the body parts tested in the receptive field task (10 

body parts). As more body parts were introduced to the comparison, the number of units tuned 

to all of them decreased (Figure 5.4C). Only units invariant to all body parts could have the 

potential to be person-specific. This suggests that many of the “person-specific” units identified 

in Figure 5.2B, while invariant to cheek and shoulder, are not truly person-specific and would 

actually show body part-specific effects if more body parts were tested in the task. 

 

5.3.3 Tuning to Action Concepts 

Past studies have found the region we are recording from (AIP) to be associated with action 

observation and even action understanding, with neurons responding differentially when 

observing different grasps (Fogassi et al., 2005; Nelissen et al., 2011; Pani et al., 2014; Wurm 

and Lingnau, 2015). One might argue that the sensory mirroring responses are actually 

responses coding the concept of specific touch actions. In the above analyses, we found 

responses matched by body part that were consistent between different people, interpreting 

them as sensory mirroring results. However, tuning to different action concepts (e.g., the 

concepts “cheek touches” vs “shoulder touches”, independent of whose cheek/shoulder) would 

also explain these results.  

 

We differentiated between these two possibilities by running a task similar to the primary task 

but with additional actions interleaved. Besides rubbing the cheek/shoulder, the experimenters 

also pinched, pressed, and tapped the cheek and shoulder on both NS and the actor (4 actions, 
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16 conditions total). All 16 conditions were represented in the population (Figure 5.5A). 

Correlating the representations against each other, we found a significant block diagonal 

structure (Figure 5.5B). Most notably, conditions involving the same body part and person (i.e., 

differing only by action) were the most similar to each other; conditions differing only by body 

part or person were much less correlated in contrast  (Figure 5.5C). This suggests that, although 

the different actions are indeed represented in our neural population, the differences between 

representations are dominated by body part and person tuning. In other words, the effects of 

action concept tuning are relatively minor compared to the effects of body part and person. 

 

We also performed a hierarchical clustering analysis to visualize this. Using correlation as a 

measure, we clustered the neural responses to each of the 16 conditions (Figure 5.5D). 

Representations were primarily clustered by body part, followed by person, and lastly by the 

specific action.  
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Figure 5.5. Effect of Action Observation 

(A) Percent of the population significantly tuned to each of the specific action/person/body part combinations 
(bootstrap 95% CI, p < 0.05, FDR corrected). (B) Correlation matrix showing the degree of similarity between each of 
the 16 tested conditions. (C) Correlation between pairs of conditions (i.e., values from (B)) grouped by the differing 
variable. The average correlations within each group and the standard errors are displayed. For example, the blue bar 
represents the average correlation of all pairs of actions from (B) where both were performed on the same person and 
body part, but differed only by whether they were a pinch, press, rub, or tap. (D) Dendrogram summarizing the 
hierarchical clustering structure of the neural representations. The variable primarily splitting each major branch is 
labeled. Representations were first split by body part, and then by person. (Feel = felt, Obs = observed; Pi = pinch, Pr = 
press, Rb = rub, Tp = tap; C = cheek, S = shoulder). 
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5.3.4 Effects of Video vs Live Action 

In our task paradigm, NS observed actions performed live, rather than actions performed in 

video. To test for the effects of presentation format, we ran a secondary experimental task 

during several of the same recording sessions as the primary task. In this task, all observed 

sensations were presented in video on an LCD screen placed in front of NS. The videos were 

recorded using a GoPro camera placed near NS’s head at eye level, in order to most similarly 

capture NS’s perspective when viewing the actions live. Felt sensations were the same as in the 

primary task, with an experimenter producing them live.  

 

The main question we wanted to answer was whether our primary result (i.e., body part specific 

mirroring) would be robust to changes in the presentation format for observed actions. We first 

verified that the observed sensations were represented in both live action and video. Looking at 

the single unit tuning, we found that each of the six conditions (felt/observed-live/observed-

video cheek/shoulder sensations) were represented by a significant fraction of the population, 

with more for the live action than the video format (Figure 5.6A). 

 

The sensory mirroring result can be succinctly represented as the generalization of body part 

representations from felt sensations to observed sensations (Figure 5.3C), demonstrating that 

the neural population processes observed sensations similarly to experienced sensations. Thus, 

we directly tested for this mirroring result by performing a cross-decoding analysis to see how 

well representations of body part generalized across NS’s felt sensations, observed sensations in 

live action, and observed sensations in video. While the representations did not generalize as 

well from observed sensations to felt sensations (Figure 5.6B, left red and yellow bars), the felt 
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sensations did generalize well in the opposite direction (Figure 5.6B, blue bars). This suggests 

that, although representations across the population are somewhat affected by whether the 

observed sensations are in live action or video, the overall mirror response behavior (i.e., 

generalization of representations from felt sensations to observed sensations) still exists 

regardless of format. 

 

As opposed to looking at the population as a whole, we also looked at the degree to which the 

specific sensory mirror neurons (i.e., body part specific units) were differentially tuned to video 

vs live action. We first performed a 2-by-2 ANOVA to identify the sensory mirror units (similar to 

the method in Figure 5.2B, testing the effects of person and body part) (Figure 5.6C, p < 0.05, 

FDR corrected). We performed this analysis with respect to only the felt and observed live 

conditions to be more consistent with Figure 5.2B in methodology and to identify a more similar 

population of sensory mirror units (i.e., units showing a main effect of body part but no 

interaction effect during the live action case). To test how well the representations of body part 

generalized across the formats and felt sensations for these mirror neurons specifically, we 

performed another cross-decoding analysis, similar to the one in Figure 5.6B. Using only the 

body part specific neurons (Figure 5.6C, red and yellow sections), we found that the 

representations were indeed preserved (Figure 5.6D). This suggests that the sensory mirroring 

responses exist in both live action and video formats, albeit with relatively poorer generalization 

between felt and observed touches in video. 
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5.3.5 Effects of Fixation vs Free Gaze 

In the main task, we instructed NS to observe actions “naturally”, using free gaze as opposed to 

requiring eye fixation. To test the effects of fixation condition, we ran an additional experiment 

Figure 5.6. Effect of Presentation Format (Live Action vs Video) 

(A) Percent of the population significantly tuned to each of the feel conditions and live action/video conditions 
(bootstrap 95% CI, p < 0.05, FDR corrected). (B) Cross-decode analysis performed on the entire neural population, 
similar to the one in Figure 5.3C, testing generalization of body part representations across felt sensations and live 
action/video. (C) Pie chart similar to the one in Figure 5.2B, showing the unit tuning types as determined by a 2-by-2 
ANOVA. Only felt and live action conditions were included in the analysis and only units with tuning to at least one of 
the terms in the ANOVA were included in the pie chart. (D) Cross-decode analysis, similar to (B), but performed on only 
the body part specific mirror units (i.e., the ones in the yellow/red sections in (C)). (Feel = felt, Obs = observed; Live = 
live action, Vid = video). 
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where NS was sometimes asked to fixate and other times allowed to free gaze while observing 

sensations. There were two fixation points for each body part, one above and one below the 

point of contact (about 1.5 degrees of visual angle above/below). All observed sensations were 

also presented in video, so that it was easier to cue fixation points and control the depth of field.  

 

We did a set of analyses similar to those used to assess the effects of video vs live action above 

(Figure 5.6). We first confirmed that our neural population was tuned to each of the fixation 

conditions, and indeed, a significant fraction of units were tuned to each of the fixation points, 

with a greater proportion tuned to free gaze than for either of the fixation conditions (Figure 

5.7A). To check that the sensory mirroring was present across the fixation conditions, we 

performed a cross-decoding analysis (using all the units in the population), assessing how well 

representations of body part generalized across NS’s felt sensations, observed sensations with 

free gaze, and observed sensations with each of the fixation points (Figure 5.7B). Similar to the 

result from Figure 6B, while the representations did not generalize well from observed 

sensations (both free gaze and fixation) to felt sensations (Figure 5.7B, left red, yellow, and 

purple bars), the felt sensations did generalize in the other direction (Figure 5.7B, blue bars). 

This suggests that, generally, the mirror responses in the population (i.e., generalization from 

felt to observed) are not significantly affected by fixation condition. 

 

Besides looking at how representations are affect by fixation across the entire population, we 

also focused specifically on the sensory mirror neurons. We once again used a 2-by-2 ANOVA to 

identify the body part specific neurons, i.e., those having a main effect of body part and no 

interaction between body part and person (Figure 5.7C, p < 0.05, FDR corrected). We performed 
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this analysis only on the felt and free gaze conditions so as to resemble more closely the original 

2-by-2 ANOVA results in Figure 2B (which used felt and free gaze live action conditions) and 

identify a more similar population of sensory mirror units. We then performed another cross-

decoding analysis, looking only at these sensory mirror units (Figure 5.7C, red and yellow 

sections), to assess how much fixation condition affects the mirror neurons’ body part 

representations. The body part representations (at least the representations learned from felt 

sensations) were largely preserved (Figure 5.7D, particularly the blue bars). Altogether, these 

results suggest that fixation condition does not have a significant effect at a representational 

level on the sensory mirroring responses. 
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Figure 5.7. Effect of Fixation Condition (Free Gaze vs Fixation) 

(A) Percent of the population significantly tuned to each of the feel conditions and fixation/free gaze conditions 
(bootstrap 95% CI, p < 0.05, FDR corrected). (B) Cross-decode analysis performed on the entire neural population, 
similar to the one in Figure 5.3C, testing generalization of body part representations across felt sensations and 
fixation/free gaze. (C) Pie chart similar to the one in Figure 5.2B, showing the unit tuning types as determined by a 2-
by-2 ANOVA. Only felt and free gaze conditions were included in the analysis and only units with tuning to at least one 
of the terms in the ANOVA were included in the pie chart. (D) Cross-decode analysis, similar to (B), but performed on 
only the body part specific mirror units (i.e., the ones in the yellow/red sections in (C)). (Feel = felt, Obs = observed; 
FixA = fixation point above action, FixB = fixation point below action, Free = free gaze). 
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5.4 Discussion 

5.4.1 Mixed Coding and Sensory Mirroring 

In this study, we tested for sensory mirroring responses in human putative AIP. Specifically, we 

compared neural responses to felt and observed sensations on the cheek and shoulder, and 

found a strong body part specific mirroring component at both the single unit and population 

level. 

 

A significant proportion of the population was tuned to each of the four conditions, with 

partially anatomically overlapping networks (Figure 5.1C). This is suggestive of a mixed coding 

structure and is consistent with our previous study that found mixed selectivity of variables in 

AIP (Zhang et al., 2017). Thus, the results of this current study further extend our findings on 

mixed selectivity in AIP, finding that besides the motor-related variables tested in our previous 

work (cognitive strategy, body part, and body side), the person variable, distinguishing between 

felt and observed sensations are also encoded in a mixed fashion. 

 

Also consistent with our previous study, we found that the person variable was functionally 

segregated by the body part variable (Figure 5.3). This finding provides additional evidence of 

partially mixed selectivity as a mechanism for how AIP encodes different variables. This result 

also suggests a potential implementation mechanism for the sensory mirror system. Sensory 

mirroring is defined as observed sensations being processed and represented similarly to 

experienced sensations of the same body part. Functional segregation of person by body part, 

on the other hand, means that representations of felt/observed sensations are more similar 

within the same body part than across different body parts. The greater similarity of 
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felt/observed sensation representations across matched body parts is the very definition of 

sensory mirroring. In other words, the functional segregation of person by body part directly 

hints at the presence of a sensory mirroring response. Note, however, that we could not assume 

beforehand that the person variable would be functionally segregated by body part. The 

functional segregation of some variables by body part (as found in Zhang et al. 2017) does not 

mean that all variables would also be similarly segregated. 

 

Furthermore, the presence of a mirror response does not require functional segregation by body 

parts. The similarity between representations of felt and observed sensations matched by body 

part could be high, independent of the similarity between the body part representations. Mirror 

responses could exist in other encoding schemes, as well. For example, if there were separate, 

non-overlapping populations tuned to each body part but invariant for felt vs observed 

sensations, we would still see a mirror response. Mirror neurons could also just exist 

independently in a randomly mixed encoding scheme. In that case, units tuned similarly to felt 

and observed sensations of the same body part would exist even by chance, without any need 

for functional segregation by body parts. 

 

Different from the results in Zhang et al. 2017, however, we found that the correlation between 

representations differing only by body part is significantly greater than zero (Figure 5.3B and 

Figure 5.5CD), rather than orthogonal (Figure 5.6A in Zhang et al. 2017). While representations 

of person did not generalize perfectly across different body parts, they did still somewhat 

generalize (Figure 5.3D), suggesting imperfect functional segregation. This is actually consistent 

with the theory (also presented in our previous study) that the degree of correlation between 
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different representations is related to the amount of shared computations or the amount of 

learning transfer reasonably desirable between the conditions. In that study, we looked at 

imagined/attempted movements of the left/right hand/shoulder (hand squeezes and shoulder 

shrugs). In that context, the shared computations in the movements would be relatively minimal 

and it would be undesirable for any learning adaptations made from one body part’s 

movements to transfer to the other, and thus the representations were uncorrelated with each 

other. In the context of this current study where we are comparing felt and observed sensations 

on the cheek and shoulder, however, it would be different. It would make sense for there to be 

some shared computations in the observation/feeling process and for some parts of the 

sensation representations (e.g., the rate of the touches, the force behind them, etc.) to 

generalize across different body parts (i.e., have a significant non-zero correlation). 

 

In this study, we primarily tested sensations performed on two body parts, the cheek and the 

shoulder. These two body parts were chosen because they were fairly differentiable in 

representation, based on a tactile receptive field test (Figure 5.4B). However, the significant 

fraction of units showing only a main effect of person (Figure 5.2B, blue section) indicate a 

population of units that represent different body parts similarly. The straightforward 

interpretation is that these units are person-specific, coding person independently of body part. 

However, it is also possible that these units only appear invariant because of the specific body 

parts tested. The inclusion of other body parts in the analysis might reveal some of them to 

actually have some body part specificity. The analysis on the number of units invariant for a 

comparison of N body part receptive fields suggests that this is indeed possible (Figure 5.4C). In 

that analysis, we found that as we introduced more body parts, the number of units tuned and 

invariant to all of the body parts decreased drastically. Although that analysis was only 
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performed for felt sensations, the main point is that units invariant to two body parts may 

actually be differentially tuned to a third body part instead. In other words, many of the units 

found to be “person-specific” are not truly person-specific. 

 

In terms of the mixing of other variables, we also compared the representations of different 

actions performed on the cheek and shoulder (Figure 5.5). Our recorded population was still 

tuned to the different observed actions (Figure 5.5AB, observe conditions), consistent with 

other studies on action observation in AIP (Nelissen et al., 2011; Pani et al., 2014). However, the 

differences in representation caused by different actions were minor relative to the larger 

representational differences caused by the actions being performed on different people or body 

parts (Figure 5.5CD). This suggests that, compared to the specific action being performed, our 

neural population encodes who or what is being touched more strongly. This is also consistent 

with past studies on AIP being selective for visual properties of an object to be grasped (Klaes et 

al., 2015; Murata et al., 2000). 

 

5.4.2 Differences between Live Action and Video 

For the main task used in this study, we presented all observed sensations in live action rather 

than in video, and with free gaze rather than with required eye fixation. Although we found a 

significant sensory mirroring response when using both presentation formats, we interestingly 

found more units tuned to the live action format than the video format (Figure 5.6A). This is 

despite the fact that we matched the video stimuli to be from the same perspective and 

distance as the live action stimuli.  
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This observation is consistent with a study in premotor cortex (area F5) of NHPs that found that 

naturalistic (i.e., live action) stimuli elicited stronger neural responses in terms of both percent 

tuned and larger firing rates (Caggiano et al., 2011). Furthermore, they found that the responses 

to live action and video were highly correlated and specific to action stimuli (as opposed to non-

action-related stimuli), suggesting that the neural responses to actions performed live are a 

stronger version of the responses to actions performed in video. Considering that F5 is a region 

receiving strong projections from AIP and the two have related functions (Luppino et al., 1999), 

it is not unreasonable for the tuning differences between formats found in F5 to also be found 

upstream in AIP. 

 

As for why AIP might prefer the live action format to video, there are several possibilities. First, 

there have been several studies in the IPS and F5 of NHPs finding that mirror neurons can be 

selective for actions performed near the observer (i.e., in the peripersonal space) vs actions 

performed far away (i.e., in the extrapersonal space) (Caggiano et al., 2009; Ishida et al., 2010). 

While these studies generally defined peripersonal and extrapersonal by distance from the 

observer, they also found similar effects when a transparent barrier was placed between the 

observer and the actor. In the context of some actions being performed on video, it is 

reasonable for the video actions to be “extrapersonal”, i.e., obstructed by a “barrier” (the LCD 

screen). 

 

When we tested generalization of body part representations across felt sensations, observed 

live sensations, and observed video sensations, we found significant generalization when 

focusing on only the mirroring units (Figure 5.6D). When we looked at the entire population, 
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however, body part representations generalized from felt sensations to observed 

live/sensations, but not in the reverse-direction (Figure 5.6B). This is in stark contrast to the 

bidirectional generalization we found across the entire population in the main sensory mirroring 

task (Figure 5.3C), and might call into question whether the responses are truly mirroring. For 

the purposes of sensory mirroring, however, the essential element is the generalization of body 

parts from felt sensations to observed sensations, i.e., that the way the neural population 

processes observed sensations is similar to the way it processes felt sensations. This is the 

crucial element in the interpretation of mirror responses as understanding another’s sensations 

in terms of the self. The representations of observed sensations are also relatively less well 

controlled as they are potentially subject to other visual factors (e.g., trial to trial differences 

due to the action being performed live/with free gaze), making it plausible for the 

generalizability of observed sensations to felt sensations to change. Thus, despite the change, 

the generalization of felt sensations to observed sensations still demonstrates sensory mirroring 

in our neural population. 

 

Note that in the task testing the effects of fixation, all of the observe conditions were also 

presented in video. Thus, the above considerations about the video format vs live action apply 

to the fixation effect results as well (Figure 5.7). 

 

Altogether, our tests on the effects of presentation format and fixation requirements show that, 

although the neural population is affected by these variables, the overall generalization of body 

part representations from felt sensations to observed sensations is not (Figure 6BD and Figure 
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7BD, blue bars). In other words, the sensory mirroring responses we examine in this study are 

present irrespective of the differences in visual presentation of the sensations. 
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6 Conclusion 

In this dissertation, we studied mixed selectivity in the anterior intraparietal area (AIP) of human 

posterior parietal cortex (PPC). We found a variety of variables represented within the neural 

population recorded by our array. The subpopulations representing the variables were highly 

anatomically overlapping, suggestive of “mixed selectivity”, a coding mechanism where 

individual units are tuned to idiosyncratic combinations of variables. Mixed selectivity enables a 

relatively small population of neurons to represent many variables in a high dimensional way 

and is a hallmark of high-level associative areas (Fusi et al., 2016; Raposo et al., 2014; Rigotti et 

al., 2013; Zipser and Andersen, 1988). Instead of the random mixed selectivity past studies have 

described, however, we found that some variables were randomly mixed while others were not. 

Representations of body side and cognitive strategy were organized by body part (i.e., 

“functionally segregated”), in a structure we termed “partially mixed selectivity” (Chapter 3). 

Furthermore, we found that the structure of the representations was largely preserved between 

training and online control (as opposed to the representations collapsing into an effector-

independent intention signal) and that the tested movement conditions could all be used for 

closed-loop cortical control in a brain-machine interface (Chapter 4). Finally, we studied sensory 

mirror neuron responses in human AIP, finding a population mirroring response. This population 

response could be explained within the framework of partially mixed selectivity, with the person 

variable (distinguishing between felt and observed sensations) functionally segregated by body 

part. This was analogous to how the body side and cognitive strategy variables were functionally 

segregated by body part in Chapter 3. These results further point to partially mixed selectivity as 

a way to encode many variables in a relatively small neural population. 
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The fact that we found such a large variety of variables coded within the small 4 x 4 mm patch of 

cortex covered by our recording array is exciting for future BMI technologies. We were able to 

decode the many variables and use them for BMI control. The ability to decode movements of a 

large extent of the body (e.g., the entire extent of the arm, on both the left and right sides) as 

well as other potentially relevant variables (e.g., imagine vs attempt) is highly desirable, as it 

would reduce the number of implants/arrays necessary in a full-body BMI. 

 

This ability is enabled by mixed selectivity, a property of high-level association brain areas such 

as PPC. Besides being a high-level area and mixed selective, the advantage of PPC is that it is a 

brain region involved in movement planning, intentions, goals, and decision-making (Aflalo et 

al., 2015; Andersen and Buneo, 2002; Andersen and Cui, 2009; Christopoulos et al., 2015; 

Mulliken et al., 2008a; Quiroga et al., 2006). These are all variables useful in developing a high-

level BMI. Primary motor cortex (M1) is another brain area often used for BMI control 

applications, due to its representation of relative motor variables such as velocity (Georgopoulos 

et al., 1982; Hochberg et al., 2012; Sergio et al., 2005). Compared to PPC, however, M1 is a 

much more anatomically specialized region and a relatively lower-level brain area closer to the 

output stages of the motor pathway (Holdefer and Miller, 2002; Morrow et al., 2007; Morrow 

and Miller, 2003; Rathelot and Strick, 2009). As a result, we would expect the networks 

representing different body parts to be much less overlapping in M1 compared to PPC (if 

overlapping at all). The limited overlap means fewer neurons are tuned to multiple variables 

simultaneously (i.e., less mixing of variables), which in turn, might make it difficult to decode the 

variety of variables we were able to decode here in AIP (see also Mixed Coding in Chapter 2). 
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Although we have focused on AIP in this dissertation, we would expect other high-level brain 

areas to exhibit partially mixed selectivity, too, with some variables randomly mixed and others 

functionally segregated. In Chapter 5, for example, we found observed and felt sensations to be 

functionally segregated by body part, with the body part variable being specially coded in our 

population. This makes sense in the context of AIP being related to motor intentions, and thus 

potentially needing to clearly distinguish between body parts. In contrast, consider 

inferotemporal cortex, a region that has been implicated in object and facial identity recognition 

and thought to be more concerned with identity or self vs other (Chang and Tsao, 2017; Hung et 

al., 2005; Sliwa et al., 2016; Tsao et al., 2006; Zhang et al., 2011). As a result, the brain region 

might have representations functionally segregated by person, coding who was touched more 

specially and distinguishing more between different objects and identities instead. 

 

The specialization of a brain area is traditionally defined by what variables it encodes. The 

encoding of many different variables in higher-level associative brain areas, however, 

complicates this definition. Our discovery of partially mixed selectivity in AIP suggests an 

alternative definition, where the specialization of associative brain areas can be defined by 

which variables are functionally segregating/most strongly represented. In the case of AIP, for 

example, we might think of it as caring more about body part representations, even though 

many other variables are also represented.  

 

The structure of partially mixed selectivity also has some potential applications from an 

engineering perspective. In AIP, for example, knowing that AIP has body parts functionally 

segregated, we could potentially regularize BMI decoders to comport with or take advantage of 
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the known structure (Lu et al., 2000; Maruyama and Shikita, 2014; Oktay et al., 2017). For 

example, instead of training a neural network by searching the space of all possible 

combinations of connections/weights, we can constrain the space to focus on those having 

partially overlapping networks and having weights exhibiting correlation patterns consistent 

with those found in Figure 3.5 and Figure 3.6. The partially mixed structure could also be used to 

initially seed a decoder and speed up the training process. For example, a decoder using 

imagined left hand movements could be initialized with weights based on those from an 

already-trained decoder that uses imagined right hand movements, since we know movement 

representations can generalize from one hand to the other (Figure 3.7F). Using these initial 

weights would start the decoder training process closer to an optimal solution than simply using 

random weights (Thrun and O’Sullivan, 1998; Yosinski et al., 2014). Decoders could also exploit 

the partially mixed selectivity structure using more structured methods (Bansal et al., 2004; Li et 

al., 2014; Salakhutdinov et al., 2013; Silla and Freitas, 2011; Zhou et al., 2011). For example, 

instead of trying to differentiate the motor intentions of the left/right hand/shoulder directly, a 

decoder might take a more hierarchical approach and first decode the body part (i.e., the 

organizing variable) before decoding specific aspects of the identified body part. These examples 

could extend to other brain areas and variables as well, depending on the specifics of the 

partially mixed structure. 

 

Altogether, the work presented in this dissertation has broad applications in furthering brain-

machine interfaces, decoding algorithms, and our understanding of the structure and 

mechanisms of the brain. 
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8  Appendix 

8.1 Supplementary Data 

 

Figure S 1. Using only high-quality single units or multi-units does not qualitatively change results 

(A) Top: Fraction of units significantly tuned to each movement condition when considering only high-quality single 
units (p < 0.05, uncorrected 95% confidence intervals). Middle: Pairwise correlation matrix between conditions for 
high-quality single units. Color scale normalized to span the 5th to 95th percentiles of the correlation values. Bottom: 
Dendrogram showing hierarchical organization of responses to the different conditions (using correlation as a distance 
measure), considering only high-quality single units. (B) Similar to (A) but considering more poorly isolated units. (C) 
Similar to (A) but considering all units (both single units and multi-units). (ALH = Attempt Left Hand, ILH = Imagine Left 
Hand, ARH = Attempt Right Hand, IRH = Imagine Right Hand, ALS = Attempt Left Shoulder, ILS = Imagine Left Shoulder, 
ARS = Attempt Right Shoulder, IRS = Imagine Right Shoulder).  
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Figure S 2. Metrics of single unit cluster isolation quality 

(A) Distribution of the number of principal components used in the clustering algorithm to isolate each unit (i.e., the 
number of principal components making up 95% of the variance for each unit). (B) Distribution of the percentage of 
ISIs less than 3ms for each unit. (C) Distribution of the peak signal-to-noise ratio for each unit. (D) Distribution of the 
modified coefficient of variation of the ISI for each unit. (E) Distribution of the average between-spike projection 
distance for each unit. (F) Distribution of the base-10 log of the cluster isolation distances for each unit. The isolation 
distance threshold used to identify high-quality single units (see Unit quality classification in STAR Methods) is 
indicated by the vertical line.  
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Figure S 3. P-values from two-sided Wilcoxon rank sum tests of whether the fraction of the population tuned to each 
condition or the AUC values for each condition are significantly different 

Figure: P-values from Wilcoxon rank sum tests of whether the conditions’ fraction tuned and AUC are significantly 
different. Left side: Tests done using fraction tuned to each condition. Right side: Tests done using AUC values for each 
condition. Top row: Tests done using data from the Delay phase. Bottom row: Tests done using data form the Go 
phase. Significance values are color coded with red being significant with p < 0.0001 and dark blue being insignificant 
(p > 0.05). (ALH = Attempt Left Hand, ILH = Imagine Left Hand, ARH = Attempt Right Hand, IRH = Imagine Right Hand, 
ALS = Attempt Left Shoulder, ILS = Imagine Left Shoulder, ARS = Attempt Right Shoulder, IRS = Imagine Right Shoulder, 
SR = Speak Right, SL = Speak Left).  
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Figure S 4. AUC of units for each condition is comparable between excitatory (positively tuned) and inhibitory 
(negatively tuned) units 

(A) AUC values for excitatory units, split by movement condition (strategy, body side, and body part). Error bars 
represent the 95% bootstrapped confidence intervals of the AUC values. Top: AUC for units during the Delay phase. 
Bottom: AUC for units during the Go phase. (B) Similar to (A) but for only inhibitory units. Condition labels were flipped 
for presentation of AUC values for the inhibitory units for ease of comparison (see STAR Methods). (Att R = Attempt 
Right, Att L = Attempt Left, Imag R = Imagine Right, Imag L = Imagine Left, Spk R = Speak Right, Spk L = Speak Left).  
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Figure S 5. Results are consistent across separate days of recording sessions 

(A) Top: Fraction of units significantly tuned to each movement condition for Day 1 (p < 0.05, uncorrected 95% 
confidence intervals). Middle: Pairwise correlation matrix between movement conditions for Day 1. Color scale 
normalized to span the 5th to 95th percentiles of the correlation values. Bottom: Dendrogram showing hierarchical 
organization of responses to the different conditions for Day 1. (B-D) Similar to (A) but for Days 2-4, respectively. (ALH 
= Attempt Left Hand, ILH = Imagine Left Hand, ARH = Attempt Right Hand, IRH = Imagine Right Hand, ALS = Attempt 
Left Shoulder, ILS = Imagine Left Shoulder, ARS = Attempt Right Shoulder, IRS = Imagine Right Shoulder).  

 

8.2 Supplementary Videos 
 

8.2.1 Sensory Mirroring Video 
Example of a sensory mirroring neuron, showing its response when feeling/observing touches 
on the inside/outside of the shoulder. The neuron prefers felt touches to the outside of the 
shoulder (has a higher firing rate) over felt touches to the inside of the shoulder, near the neck. 
Likewise, the neuron prefers observed touches to the outside of the shoulder over observed 
touches to the inside of the shoulder. In other words, the representation of the body parts 
(outside and inside of the shoulder) is consistent regardless of whether the sensation is 
observed or felt. The response of the neuron can be observed through the audio (with the 
crackles indicating the neuron firing/being active) as well as through the trace of the neural 
activity (the pink traces on the monitor in the video). 
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