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ABSTRACT

This dissertation comprises three essays addressing questions from Industrial Orga-
nization Economics concerning the oil and gas industry. The essays offer substantive
contributions to the study of joint decision-making (Chapter 2), extrapolative beliefs
(Chapter 3), and auctions (Chapter 4).

Chapter 2 investigates the quality of joint operations, where multiple oil and gas
companies explore a piece of land together. By developing a discrete-choice model
which can be matched to actual drilling data, I show that joint operators consisting of
only large companies have the least accurate signals. Further counterfactual analyses
show that the best policy governing joint operations depends on government priority:

to maximize revenue or to avoid damage to the environment.

Chapter 3, co-authored with Lawrence Jin and Matthew Shum, presents a model
of dynamic investment and production in which producers over-extrapolate recent
demand conditions into the future. We show theoretically and empirically that,
in a volatile industry, these biased beliefs can be beneficial in the long-run by
counteracting the general trend in the industry. Calibration of our model to Alaska
oil exploration shows that the cushioning effect can be large in reducing price decline

and accelerating price recovery.

Chapter 4 examines whether common value or private value auction model best
describes the bidding decisions made by oil and gas companies. The common
value model suggests that more competition can lead to lower equilibrium bids from
bidders and lower revenue. By analyzing tract auction data from Alaska, I find that
common value components play a slightly larger role when observable heterogeneity
is removed. However, expected revenue still increases with competition and plateaus

when competition becomes sufficiently high.
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Chapter 1

INTRODUCTION

This dissertation comprises three essays addressing questions from Industrial Orga-
nization Economics concerning the oil and gas industry. The essays offer substantive
contributions to the study of joint decision-making (Chapter 2), extrapolative beliefs
outside of finance (Chapter 3), and auctions (Chapter 4). All three chapters utilize
a novel dataset collected from Alaska government agencies, which offers compre-
hensive and detailed information on oil and gas companies’ bidding and drilling

decisions.

The dataset used by all chapters covers the leasing of government land and explo-
ration behaviors of oil and gas companies. Figure 1.1 shows a simplified timeline
of the exploration process, and data available to the public from each step of the
process. When a firm becomes interested in a piece of land, she first decides whether
she wants to collaborate with another firm. Then when the land is announced for
sale, we observe the land attributes, such as location, date of the sale, and reserve
price. The firm then participates in a competitive first-price sealed bid auction either
as a solo bidder or joint bidder. We observe the outcome of the auctions, such as
the participants, whether the participants are solo or joint entities, the bid amount
submitted by each participant, and who won the auction. After the winner starts on
her lease, she can conduct further seismic studies of the area and decide whether
she wants to drill a well here. We observe her ultimate decisions of whether and
how many wells to drill, monthly production of the wells, corresponding oil price

of the month, and the cost associated with well drilling.

Each chapter focuses on a different aspect of the exploration process, and examines
a different topic. Chapter 2 presents an empirical investigation on the quality of
joint operations, where multiple oil and gas companies explore a piece of land
together. Despite the prevalence of joint operations in oil and gas exploration, there
is little evidence for joint operations making better decisions than solo projects.
Additionally, joint operations are generally more likely to drill an initial well on
a piece of land than their solo counterparts. To address this lack knowledge and
to explain this phenomenon, I develop a discrete-choice model which incorporates

priors that companies form through the auction stage, and signals that firms receive
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Figure 1.1: Exploration Timeline and Dataset

prior to drilling. My structural estimates, based on land clusters operated jointly
or solo by at least one large producer, show that joint operators consisting of only
large companies have the least accurate signals, followed by solo operators, while
partnerships between large and smaller companies have the most accurate signals.
The inaccuracy of large-company-only joint operators’ signals leads to drilling
at places that other types of operators would consider too risky. Furthermore,
counterfactual analyses show that if the government forbids joint operations amongst
large companies, it can lose up to $5.1 billion in revenue, while saving up to 390
thousand acres of land from unnecessary drilling. Hence, the best policy for a
government to implement depends on what its priority is: whether to maximize its

revenue or to prevent pollution.

Chapter 3, co-authored with Lawrence Jin and Matthew Shum, presents a model
of dynamic investment and production in which producers may have biased beliefs
in which they over-extrapolate recent demand conditions into the future. This bias
leads producers’ beliefs to exhibit insufficient mean reversion, as these producers
underestimate the degree of mean reversion in the demand process. In a volatile
industry, while biased beliefs lead firms to make sub-optimal investment decisions
in the short-run, they can be beneficial in the long-run by counteracting the general
trend in the industry, “cushioning” the industry against prolonged downturns and
aiding faster recovery. As an empirical case study, we consider oil exploration in
Alaska. We present evidence that firms in this industry were subject to extrapolation

bias, leading to drilling of lower-profit wells after recent price increases. Calibration
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of our model to Alaska oil exploration shows that the cushioning effect can be
large: in a typical episode of oil price decline arising from a sequence of adverse
demand shocks, the cushioning effect reduces the decline of the oil price by 8.2%
and accelerates the price recovery by 27%. This showcases the potential positive

implications that biased beliefs can have on industry dynamics.

Chapter 4 examines which auction model best describes the bidding decisions made
by oil and gas companies in Alaska. While the Alaska government encourages
the bidding of small companies and individuals to spur competition and increase
the state revenue, depending on the actual motivation of the bidder, it may not
be the correct policy. A pure common value auction model suggests that more
competition can potentially lead to lower equilibrium bids from bidders and thus
lower revenue. By analyzing oil and gas tract auction data from Alaska, I find that
the private value component plays a much larger role when tracts are assumed to be
homogeneous. But common value component starts playing a larger role when we
remove all observable heterogeneity. Given a particular tract and signal, companies
are likely to bid lower when they face greater competition due to winner’s curse
effect. However, the winner’s curse effect is not enough to offset the greater chance
of higher signals. Expected revenue still increases when competition increases and
plateaus when competition becomes sufficiently high. I also find that the reserve
prices of $5 and $10 do not seem sufficient on the tracts that attracted large oil and

gas companies.



Chapter 2

ARE TWO HEADS BETTER THAN ONE?: JOINT VERSUS
SOLO OPERATION IN OIL AND GAS EXPLORATION

2.1 Introduction
Overview

Joint operation is a common practice in the oil and gas industry, both in onshore and
offshore explorations. They involve two or more companies or individuals entering
into alegally binding agreement to share the operational and financial responsibilities
in the exploration and development process. Joint bidding, a phenomenon where
two or more entities bid on a lease as one joint entity, is usually a result of such
operations. On federal land, policymakers are concerned that joint bidding serves
the purpose of collusion to stifle competition and lower lease sale prices. As a
result, in 1975, both the Department of Interior and Congress passed regulations
to prevent eight of the then-largest oil companies worldwide from joint bidding
with each other (Hendricks and Porter, 1992).! In Alaska, however, joint bidding
amongst its largest companies consistently accounted for a big share of winning bids
submitted in auctions: 40.6% before 1975, and 30.1% between 1975 and 2000.2
Joint operations formed by large companies also drilled the highest percentage of
their owned land, at around 25% as opposed to just above the 16% from solo large

firms or partnerships between large and fringe firms.

While previous industrial organization papers focused exclusively on collusion and
the bidding behaviors of joint operations, exploration and development after the
auction play a much bigger role for the government revenue and environmental
outcomes. Royalty payments from a successful venture can be thousands of times the
winning bid in an auction. Meanwhile, the ability to drill more accurately lowers the
impact on the environment, avoiding unnecessary alterations to land formation and
production of various drilling wastes (O’Rourke and Connolly, 2003). Hence, if joint
operations explore more because they are willing to take risks and find oil at places

that solo operations would not be able to, then it explains why some governments

IThe eight companies are Exxon, Gulf, Mobil, Shell, Standard Oil of California, Standard Oil
of Indiana, Texaco, and British Petroleum.

2The 17 largest companies are ARCO, BP, Unocal, Chevron, Conocophillips, Mobil, Amoco,
Exxon, Sinclair, Shell, Texaco, Amerada, Marathon, Anadarko, Union Texas, Sunoco, and Gulf.
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do not restrict them despite the collusion concern, and that policymakers focused
on maximizing government revenue should continue to sanction such operations.
On the other hand, if companies in a joint operation, by pooling their expertise and
information, have better signal accuracy and avoid unnecessary drilling, then their
operations can lower environmental damage. In this case, policymakers prioritizing

environmental protection should encourage such operations.

In this paper, I examine whether joint operations indeed have better information
than their solo counterparts. Past organization and finance literatures also raised
other hypotheses regarding why companies jointly operate: (1) entering into joint
operation (or investment syndication in the venture capital literature) assures partic-
ipants of the investment quality, when they feel pessimistic about their investment,
(2) joint operations allow companies to combine their management expertise and
improve project quality, (3) companies enter into joint exploration agreement to
collude and avoid competition with each other in the auction stage, and afterwards
they divide the land and explore by themselves, where the cost saved in the auction
allows them to drill more aggressively, and (4) companies partner with each other
for risk sharing purpose, allowing them to invest in more land, and the increased
land masses achieved by splitting the cost improve their chances of finding a well
location worth drilling. The model explores these potential hypotheses but cannot

untangle one from the other.

To tackle these questions, I consider a model in which an operator makes drilling
decisions according to a cut-off strategy that incorporates her prior belief on the land
value (in terms of oil deposit) formed after the auction, and additional signal received
before drilling. This operator, composed of one or multiple oil companies, forms a
prior belief of the land value after observing the land characteristics, participating
and winning in the auction that sells this land. With this prior in mind, the aforemen-
tioned operator, who has won the right to explore and gather additional geophysical
data, receives another signal of the true value after additional testing. Updating the
prior with the new signal, the operator chooses to drill an initial well on this land
if the expected oil production, conditional on her signal, exceeds the break-even
amount given her drilling cost. By finding parameters that best match the model
prediction with the observed drilling decision for each operation, I can test whether
joint operations manage to obtain more accurate signals, and whether companies

enter into joint operations due to their pessimism about the land productivity.

Estimation of the structural model uses a sample of land clusters composed of those
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operated by solo large companies, joint entities composed of only large companies,
or partnerships between large and smaller firms. Results of the estimation suggest
that solo operations have more accurate signals than joint operations formed only by
large companies, but have less accurate signals that joint operations between large
and smaller firms. This result suggests that large companies collaborate with one
another for reasons outside of expertise or information sharing. Other explanations,
such as collusion or risk diversifying may be more applicable. Counterfactual
analyses show that this inaccurate signal for large-only joint operators leads to more
drilling at places that the other two types of operators are less likely to drill. As
a result of their bolder efforts, joint operations between large companies may have
contributed additionally up to 140 million barrels of oil and 363 million thousand
cubic feet of natural gas in royalty payment to the Alaska government. These
quantities equate to approximately 5.1 billion dollars of revenue to the state. The
other side of the counterfactual analyses is that banning joint operations between
large companies can potentially reduce unsuccessful drilling in up to 18 clusters,
with a total of 390,190 acres.

As a whole, this paper sheds light on the benefits and potential harms of joint
operations that could be informative to policymakers. For policymakers concerned
with revenue generation, joint operation can be a lucrative channel to produce extra
royalty revenue for the government, as they tend to explore more boldly and may
find oil in unexpected places. However, policymakers concerned with long-term
conservation of the ecosystem may need to re-evaluate their policies regarding joint
operations, as the extra drilling may cause extra irreversible damage to the areas
of exploration, which could have been preserved by reducing partnerships between

large companies.

Literature Review

Joint operation is a widely studied subject in the industrial organization (I0) and
finance literature. In finance, joint operation takes on the form of investment syn-
dication amongst venture capitalists. Lerner raised three hypotheses on rationales
behind syndication and found evidence supporting all of them by looking at the
biotechnology industry. The three rationales are (1) assurance of peers on the qual-
ity of investment, (2) for later-round investors, avoidance of opportunistic behaviors
from the initial investor, and (3) performance boosting to potential investors (Lerner,

1994). Another study by Brander et al. introduced another motivation: (4) syndica-
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tion to share management expertise. They found evidence supporting the assurance
of peers hypothesis, but not the management expertise hypothesis (Brander, Amit,
and Antweiler, 2002). My study seems to partially support the management ex-
pertise hypothesis, as joint operators consisting purely of large companies have less
accurate signal, but partnerships between large and smaller companies have more

accurate signals than solo operators.

This paper differs from previous studies in the 1O literature substantially by focusing
on the drilling decisions after the auction stage, rather than the formation of a joint
entity before the auction and its behavior during the auction. An early observational
study by Hendricks and Porter examined what tract and company characteristics
facilitated joint bidding in federal outer continental shelf (OCS) lease sales (Hen-
dricks and Porter, 1992) . By focusing on three joint bidding types: large companies
bidding with each other (L&L), fringe companies bidding with each other (F&F),
and large companies joint with fringe companies (L&F), they found that large com-
panies tend to bid solo or jointly with each other on high-valued tracts. Meanwhile,
joint ventures between large and fringe companies did not bid substantially higher or
lower, which prompted the explanation that this partnership was purely for exchange
of knowledge and expertise. My results seem to support this claim. Compared to
L&L joint operators, an alliance between large and smaller companies have signifi-
cantly lower signal noise. Hendricks, Porter, and Tan followed up with a theoretical
paper that focused on the formation of two-party bidding rings in common value
auctions (Hendricks, Porter, and Tan, 2008). They found that bidding rings do
not form when the prior belief of the tract value is pessimistic, when the reserve
price is too high, and the competition is low. My results seem to disagree with
their prediction, as joint operations seem to be associated with lower expected land

values.

In addition to examining hypotheses proposed by previous studies, this paper also
introduces a new model and estimation strategy to analyze joint operations. While I
apply this model to the oil and gas industry, a key sector in the American economy,

this model may also be applicable to other industries as well.

Institutional Background

To better understand the rest of the paper, I provide some background on how joint
operation works. Joint operation happens when multiple companies are interested

in exploring a certain area together. Once companies set sights on an exploration
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Figure 2.1: Exhibit of operation cluster

area, the decision of whether to enter into a legal agreement to collaborate with
each other or to explore on their own depends on a variety of factors, such as how
familiar the company is with the area and their financial strengths for example. If
companies decide to jointly explore, they need to agree on a variety of terms in a
participation agreement (also referred to as “exploration agreements”, “‘development
agreements”, “joint development agreements,” etc.). These terms include: who will
be in charge of bidding in the auction, which leases in the area they would like to bid
on, amount to bid in an auction, how they want to collect and utilize seismic data
of the area, how to split financial responsibilities, and so on (Villarreal and Lavoy,
2010). If they win in the auction, they will have the right to explore on the tract (the
unit of land sold in government lease auctions) for 5, 7, or 10 years. The winner can
further collect geophysical data in the area before deciding whether to drill an initial
well, and, if they decide to drill, the exact specifications of the well. The difference in
information quality may arise in this process. One possibility is that joint operations
may have multiple inputs in collecting and interpreting the geological data, giving
them more accurate signals than their solo counterparts. Another possibility is
that participants may not interact with each other about technical details or even
actively withhold proprietary information from each other, which can lead to lower

information quality.

Because companies make their exploration decisions based on prospect areas, the
unit of observation in my study should reflect that. Rather than using tracts, which are
artificial divisions of land masses that the government utilizes for auction purposes,

I use geographically adjacent clusters of tracts sold in the same auction and operated
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by the same company as a unit of analysis. Figure 2.1 is an exhibition of how this
clustering works. Figure 2.1 shows 25 tracts that are adjacent to each other. These
25 tracts are won by 3 different bidders in the same auction, as shown by the three
different shades in Figure 1. Because of the geographic proximity of these tracts, it
is reasonable to believe that when firms make exploration decisions, they consider
them as one prospect area, and make drilling decisions based on the whole area
instead of each individual rectangle. However, for company 3, the two blocks of
tracts that she won are separated from each other. Because the information from
one block may no longer be as useful to the other block due to the separation,
company 3 has two clusters in this area. Hence, in this area overall, there are four
units of operation. For a particular company, since each cluster is either spatially
or temporally separated, I argue that the company’s decision to drill in each cluster
can be treated as independent. One may argue that for two adjacent clusters sold
at different times, finding oil in one cluster may lead to drilling in the other cluster.
It is a concern that the model has not been able to address. But to lower the
effect of such knowledge on the model estimation, I use an indicator for whether
the operator owns adjacent clusters as a control for the information leakage from

previously-owned land.

2.2 Model

Companies conduct oil and gas explorations and developments on K independent
clusters as defined in Section 1.3. In each operation k, where k = 1,2, ..., K, there is
a true value Vj associated with the piece of land. Vi can be thought of as the amount
of oil deposit, or the annual outflow of oil if a productive well were drilled, for this
cluster of land k. Companies who participate in the auction of this cluster have
collected their own information regarding the land, observed the auction outcome,
and thus formed prior beliefs on Vj. The winner from the competitive auction then
gathers further geophysical data of the land and as a result receives an additional
signal Sy of the value of Vi. Based on her prior belief and the additional signal, the
winner, and now operator of the cluster, decides whether she want to drill an initial

well in this land. Figure 2.2 exhibits the timeline of this process.

An important assumption of the model is that, regardless of whether the operation is
solo or joint, only one signal is considered for the drilling decision in each operation.
This is because we only truly care about the final outcome of the aggregated signal,

not the deliberation process to aggregate individual signals. As the deliberation
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Figure 2.2: Timeline of Drilling Decision-making in the Model

procedure and the number of decision-making parties could vary from one joint
operation to another, the only factor essential to the final drilling decision is the
eventual signal such decision is based upon. We want to compare this final signal

between joint and solo operations, and see if accuracy differs between the two.

The specifics of the drilling decision-making are as follows. Each operation is
associated with a cost of drilling Cj, which is highly substantial. For such a cost,
the well needs to produce a certain amount of oil, O}, in each period in order for the
operator to break even. Suppose the operator drills a well [ periods after her lease
contract starts and the well is productive for n periods, then Q; is the break-even per

period quantity of production that can be solved by the following equation:

l+n

Q; - > (1=6) Pz = Ci.
7=I[

Here P;.; is the price of 0il in period ¢ + 7 and ¢ is the discount factor.

Knowing the break-even quantity Q; , and after observing her private signal Sy = sy,
the operator would choose to drill if the expected per period production, conditional
on sy, exceeds QZ, i.e., B[Vi|sk] = Q- Under specific assumptions on S, which
will be discussed in detail in Section 2.4, E[Vj|sx] is a monotonic non-decreasing
function of sx. As a result, there exists s, such that E[Vi|s;] = Q) and for all
Sk > 57, E[Vilsy] = Oy

Thus, as long as the signal received by the operator exceeds s, , the company would
drill. So the probability of drilling for cluster k is Pr(Sx > s}). Let f(-) be the density
function for the prior distribution of Vi with support V, and let the distribution of
Sk follows a conditional density function of g(-|V), then the probability of drilling
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becomes

Pr(Ax =1) =Pr(Sy > S,t) = / Pr(S; > SZ|Vk)f(Vk)de
v (2.1)
- [v [1 - GVl F(Vi)dVi

In other words, this model is akin to a discrete choice model where the latent variable
is Sk, and we observe the drilling decision of 1 if Sy exceeds the threshold sz, and 0

otherwise.

2.3 Data

Data used in this study come from three main sources: the Alaska Department of
Natural Resources (DNR) who governs the sales and contracting of tracts, the Alaska
Oil and Gas Conservation Commission (AOGCC) who governs the well permitting
and monitoring, and U.S. Energy Information Administration (EIA), who tracks oil

prices and costs in major U.S. oil producing regions.

The DNR keeps a comprehensive records on all tracts sold in competitive auctions
since 1959. Such records include pre-auction information for the tracts: date of
the lease sale, the auction format, and key tract characteristics, such as acreage,
royalty requirements, and locations. Post-auction results are also well documented.
We can see the value of bid submitted by each bidder, the participant(s) in each
bidding party, and whether a winner relinquished her tract after winning. In this
study, I limit the scope of tracts to those sold between 1959 and 2000 through cash
bids only, and were not relinquished by the owner after they won. I limit the sales
year to before 2000 because three of the largest operators in Alaska merged with
each other in 2000 and 2001: ARCO first merged with Phillips in 2000, and then
Phillips merged with Conoco to form ConocoPhillips (WSJ, 2001; ConocoPhillips,
2017). These mergers substantially reduced the number of large operators in Alaska
and the sample of joint bidding between the companies. In addition, the merged
firm may behave very differently from the individual firms pre-merger, which could
skew results from the pre-merger period. This cutoff also allows for long enough
windows to observe the drilling decisions made on tracts sold in 2000. I also remove
tracts sold using non-cash payments, such as net profit sharing percentage, because
information revealed through these payments is not comparable to cash bids. Finally,
relinquished tracts will not have been explored and should not be included in the
data. After these eliminations, I retain 4,838 leases for analysis, which can be

combined into 1,516 clusters.
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The AOGCC, meanwhile, documents all drilling and production activities after the
sales and contracting. This data source contains a variety of information on all
wells that were permitted to drill in Alaska since 1901, including history for each
well such as permit date and drilling date, basic well attributes such as its geo-code,
depth and which production unit it belongs to, and monthly productions of oil, gas,

and water for each well.

What is special about the Alaskan data, besides the level of details available, is
the relatively even mix of joint and solo operations. Joint bidding, especially joint
bidding amongst large companies, remains a common phenomenon throughout our
observation period. Before 1975, the year joint bidding was outlawed amongst the
largest companies in the world on federal land, joint bidding accounted for 40.6%
of leases sold to the largest 17 companies in Alaska.? After 1975, the percentage
remains high, at 30.1%. This balanced mix of joint and solo operations makes the

comparison between them possible.

Finally, the EIA provides the U.S. annual crude oil first purchase prices from 1900
to 2015, and the cost of drilling an oil well from 1960 to 2007. Ideally I would like
to use the Alaska prices. However, Alaska North Slope prices are not available prior
to 1977, which would prevent the use of the large number of joint operations prior
to that. By comparing the monthly level data between the U.S. prices and Alaska
prices, I find a 99.7% correlation between the prices. Hence, for the oil prices
shown in the model (Py;.), I use the annual U.S. first purchase price per barrel. The
crude oil well cost is also an average amount based on key oil producing regions in
the U.S. Ideally I would like to have production cost varied by each well in Alaska,
since different distances to existing infrastructure, crew relationships and access to
pipeline could lead to different production cost. However, these metrics are not
available in this dataset. I hence use a constant drilling cost for all wells drilled in

the same year.

Summary Statistics

In this section and onward, it is helpful to divide joint operations into three types,
similar to those in the 1992 Hendricks and Porter paper: large companies joint
operating with each other (L&L), large companies joint with fringe companies
(L&F), and fringe companies partnering with each other (F&F) (Hendricks and

3These large companies are: ARCO, BP, Unocal, Chevron, Conocophillips, Mobil, Amoco,
Exxon, Sinclair, Shell, Texaco, Amerada, Marathon, Anadarko, Union Texas, Sunoco, and Gulf.
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Figure 2.3: Counts and Exploration by Joint Status and Type

(a) Count of joint and solo ops by type
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Porter, 1992). This is because each type may have different motivations for obtaining
leases. The L&L type is formed by large international companies exclusively,
defined as the 17 companies with international presence who bid on at least 150
tracts and won over 90 of them between 1959 and 2000.4 These companies have the
resources and technology to explore and develop oil fields themselves. The L&F
type is formed by large companies, as defined above, partnering with smaller local
firms. In this case, the large company may be seeking the knowledge of smaller firms
in the local formation of the area, as they already have the financial resources and
technology. The F&F type is formed solely by smaller firms. These operators may
be single investors or smaller local investors. The two solo types are individual large
and fringe companies, and I will denote them as L and F, respectively. Figure 2.3a

exhibits the total number of clusters for each type under solo and joint operation.

However, the likelihood of exploration varies significantly for different types, as
shown in Figure 2.3b. For clusters owned by large companies, joint operators are
much more likely to drill than a solo large company. Clusters owned by a joint entity
between large and smaller firms, on the other hand, have similar drilling likelihood
as clusters owned by solo large operators. Finally, clusters owned by smaller firms,
whether solo or joint, are drilled much less often than those owned by their large
counterparts. A possible explanation for this is that many of the smaller winning
bidders are individual investors. Some of them purchase land not to explore for
themselves, but to farm it out to others, or in the hope that their large neighbors find
oil and they can be compensated for it. Because of the varying purposes of land
ownership for this group, this study will focus on the clusters owned by at least one

large company, hence the L, L&L, and L&F types.

Restricting the sample to types consisting of at least one large company, I look at
how the clusters vary in attributes for each type. Table 2.1 summarizes how clusters
operated by each category of operators differ in some key measures. The clusters
won by joint operators are on average larger in area than their solo counterparts. They
pay substantially more for these tracts, and are faced with more competition in the
auctions. Joint bidders also tend to be less experienced, as they have operated fewer
leases in the same region previously. This may suggest that joint operations tend to
happen when companies are less familiar with the area. And when companies do
jointly bid, they like to bid on tracts adjacent to the ones that they already own, further

reducing the risk from a lack of knowledge in the exploration area. Large companies

4The exception here is Gulf Oil, who only won 82 tracts in this period. But it is listed as one of
the eight largest companies forbidden from joint bidding by the Congress and Department of Interior.
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Table 2.1: Attributes of Clusters by Category

Solo-Large Large w Large Large w fringe

(L) (L&L) (L&F)
Continuous Variables | Median Mean | Median = Mean | Median  Mean
Acreage 5,120 9,964 5,243 13,923 5,112 10,626
Win bid ($ per acre) 254 255.7 52.8 858.6 473 3,313
Number of bids 2 2.4 2 2.8 2.4 3.0
Experience 19.00 27.11 17.50  27.05 11.00  23.34
Discrete Variables ‘ Mean ‘ Mean ‘ Mean
Knowledge 10.4% 23.3% 20.9%
(% owning neighbor)
Region 57.0% 56.2% 49.1%
(% in Cook Inlet)
Year (% after 1975) 54.2% 39.5% 52.7%

are also more likely to jointly bid with smaller companies in the North Slope region,
than the Cook Inlet region. Finally, joint operations composed solely of large
companies happened more before 1975. Because of the underlying heterogeneity
across the clusters operated by solo and joint operators, I will incorporate these core

measures into the controls for the model.

2.4 Estimation

In this section, I describe the estimation strategy of the model. The goal of estimation
is to identify Pr(Ay = 1) for each cluster in the sample. In order to do that, we need
to separately identify the conditional distribution of Sy and the distribution of V4.
That is, we need to find the g(s;|Vi) and f(Vy) in Equation 2.1.

However, identifying the signal quality and prior belief distribution is challenging
without imposing structural assumptions on these quantities. The difficulty of
identifying the continuous distributions of signal accuracy directly from the data
arises because signals, private to operators, are not observable to econometricians.
Determining the prior belief distribution is also challenging, as we do not directly
observe companies’ ex-ante estimate of the land productivity. One potential idea is
to examine the ex-post production of the land after it is drilled. But this approach is
highly biased since companies only choose to drill in areas that they believe to have
a good chance of success. The distribution recovered from the ex-post production

may look very different from the ex-ante expectation. However, to take advantage
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of this information, I use the ex-post production amount as guidance the distribution

assumption imposed on V.

To resolve these aforementioned challenges, I place parametric restrictions on the
prior belief distribution of V; and the distribution of signal S;. Then I show that by
relating the structural setup to the observed drilling data, we can recover the values

of these parameters.

Parametric Assumptions and Identification

The formal estimation requires two key assumptions on the true land value Vj
and signal Sx. For simplicity, I assume all operations are homogeneous with the
exception of whether it is joint or solo. Ji is an indicator here which equals 1 if the
operation is joint, and 0 otherwise. In the next section I show that these arguments

hold when we allow operations to be heterogeneous.

The first key assumption is that the prior belief on the distribution of Vi follows a

log-normal distribution. That is,
Vi =log Vi ~ N(v, 0'v2). (2.2)

Here o, is the uncertainty that operators have around the tract quality after the
auction. This assumption is supported by the production amount from all wells
drilled. A plot of the production amount can be found in Appendix A.1. In Figure
A.la, productions from all wells is highly skewed to the right, with a mass at
zero, where wells produce nothing. Since production is only carried out above a
certain threshold, we do not care about the distribution to the left of the threshold.
Hence, we can approximate this distribution with a highly right-skewed log-normal
distribution. Figure A.lb restricts the wells to productive ones only, whose oil

production amounts approximate a log-normal distribution.

The second key assumption is that Sy is a noisy signal of V} also in the log-normal
form, i.e.,
Si =log S; = Vi + oke, (2.3)

where o is the level of uncertainty for this signal, and € is distributed standard
normal and independent of V. Thus, we have S;|Vi ~ N(Vi, (c%)?) and §; ~
N, (O'Sk)2 + 0'3). Let oy(Ji; 05) = ag + ay - Jx, where 65 = (ap, ay). Then if

ay < 0, there is evidence supporting joint operations having more accurate signals.
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By the log-normal assumption (2.2) and (2.3), we have the conditional mean and

variance of Vj given §,

ol 5+ (k)

E[Vi|5e] =
ol + (oF)? 2.4
K2, 2 :
var[Vi|5i] = —(O-S) Oy .
o + (o)
Then,
. 1 o
E[Vi|sk] = exp(E[ Vi |3k ] + Eva’"[vk|sk])
07 5+ (@) v + §od(0f)? (2)
=exp( ),

oy +(of)?
which is a monotonically increasing function of §;. Hence, by setting exp(E[Vy |5¢]+
%var[Vklik]) = Q}, we can solve for §7(6) such that for all S > 50> E[Vklsk] = 05
Here Q; is calculated by

1+9
Q; - Y (1-0.05) Py = Cy, (2.6)
7=[

since on average wells produce for 10 years, and the discount rate is at 5%, as
suggested by Hendricks, Pinkse, and Porter (2003). Then §;(6) is

(02 + (1)) - log Q% — (o Xy — Lo2(ok)?

oy

§:0) = 5 (Ji; 0) = 2.7)

By applying (2.2), (2.3), and (2.7) to (2.1), we obtain conditional probability of
drilling
Pr(Ay = 1|Jx, 0) =Pr(Sk > s;|Jk, 0) = Pr(exp(Sx) > exp(5;)|Jk, 0)
=Pr(Sk = 5;1Jx. )
§*(Jk; 6) =
o)+ oy

Define the log-likelihood for observation k as

1(0) = [(Ag, Ji, 6)

(2.8)
= A log Pr(Ak = 1|]k, 9) + (1 - Ak) log(l - Pr(Ak = 1|Jk, 9))
Then the likelihood function for all observations is
K
1
2(0) = - ; 1:(6). (2.9)

Our goal is to find the 8 that maximizes (2.9).
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Incorporating Operation Heterogeneity

For simplicity of discussion, the only covariate being considered in the previous
subsection is whether the operation is solo or joint. However, this model allows me

to incorporate cluster and operator heterogeneities as reduced-form parameters.

Specifically, the prior belief distribution can vary widely based on tract level char-
acteristics, such as cluster acreage, region, and the competitiveness of its auction, as
well as operator characteristics, such as their knowledge of the tract, and experience
operating in the same region. Let these variables be denoted by W;. To test the
hypothesis whether joint operation is associated with a pessimistic belief of the land
value, I also include the joint indicator as a parameter associated with prior belief

distribution. Hence,

vE =v(J, Wi 0,) = Bo + By - Ji + Wif, 210
(05 =a2(Jr, Wi 6,) = exp(yo +v7 - Jx + Wiy),

where 6, = (Bo, 87, B) and 0, = (vo,Y1,7).

In addition, the noise of a signal can also be affected by the operator’s experience
and knowledge of the land. Familiarity with the area can potentially increase an

operator’s ability to interpret the signal. Let these variables be denoted by Wj, then
(05 =02k, Wis 05) = explao + ay - Ji + Wea),
where 65 becomes (ag, @y, @).

Furthermore, to study how signal qualities vary across different types of operators, I
analyze a sample containing clusters that are jointly owned by large and fringe firms,
jointly owned by only large firms, and those operated by solo firms. 1 differentiate

the types by having an additional parameter for the L&F type:
VK =v(Ji 0} Wi 6,) = Bo + By - Ji + Biy - I+ Wi,

(0P 202U I Wi 6,) = exp(yo + vy - Je + i - ) + Wey),  (2.1D)
(O‘Sk 2 EO‘sz(Jk, ‘]Iif’ Wk; 95) = exp(ao +ay-Jip+ af - J]l{f + Wka),

where J Iif is an indicator for L&F operators. Hence, the impact on (o-¥)? from the

L&F type is ay + @y, whereas for L&L operators, the influence is only a,.

Incorporating these heterogeneities, let X; denote the set of all covariates and

6 = (6,, 6,, 65), then the probability of drilling becomes
5 (X3 0) — v(Xi; 0y)
\/O-sz(Xk; es) + 0-\)2(Xk; 9\/)

Pr(Ax = 1|1X,0) = 1-0| | (2.12)



19

Now the log likelihood for observation k& becomes

1k(0) = 1(Ay, Xy, 0)
= Ay logPr(Ak =1|Xy,0)+ (1 - Ak)log(l — Pr(A; = 11Xy, 0))

(2.13)

and we again need to find § that maximizes Equation 2.9 derived from expression
2.13.

Endogeneity of Auction Results Information For prior-related measures, v* and o’f,
I use information revealed in the auction, including the winning bid and number
of bids submitted. However, the decision to enter into joint operation may be
endogenous in determining the winning bid price and number of bids. For example,
if the only two bidders interested in the lease decide to collude and submit only one
bid, it could lower the winning bid significantly and cut the number of bids by half.
Since this model does not account for the selection into joint bidding and auction
stage, we do not have a way to control for this possibility. Developing future models

which includes the selection process is necessary to eliminate this endogeneity.

2.5 Results

In this section, I first describe the results from estimations using a sample of land
clusters operated at least partially by a large company, and discuss the implications
of these results. I then conduct two counterfactual analyses where joint operation
is not allowed at all, or only allowed in the form of partnership with smaller local
firms. I look at the exploration outcomes from the clusters that were won by L&L
bidders, and discuss how the state income would be impacted if a solo operator or a

L&F joint operator instead were making drilling decisions on these clusters.

Estimates of Structural Parameters

The sample used in the estimation contains 792 clusters that are operated at least
partially by a large operator (L, L&L, and L&F types), which include 472 solo-
operated clusters, 210 owned by the L&L type, and 110 clusters owned by L&F
operators. For this estimation, I use the specifications from Equations 2.10. For
a robustness check, I estimate the parameters using specifications from Equations
2.11 and show that the parameters for joint operation in both specifications are not
statistically different from each other. The parameter values from using clusters

operated solely by large firms are shown in A.3
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Table 2.2: Estimation Results: Clusters At Least Partially Operated by Large
Operators

Description o oy v
\ Metrics Parameter Estimate | Parameter Estimate | Parameter Estimate
Constant a 3.197 Y0 5.630 Bo -51.699
(0.441) (1.328) (2.911)
Joint: L&L ay 0.413 vy -0.022 | By -0.384
(0.186) (0.296) (0.441)
Joint: L&F apr -0.602 Yif 0.001 Blf -0.138
(0.336) (0.561) (0.691)
Experience @, -0.501 | y. 0.038 Be 0.196
(0.148) (0.153) (0.368)
Knowledge ag -3.989 | w -0.160 | Bk 3.181
(18.294) (1.268) (1.247)
Acreage Ya -0.180 | B, 3.780
(0.139) (0.212)
Region Vr -0.780 | B» 3.649
(1=Cook Inlet) (0.356) (0.387)
After 1975 V75 -0.565 | B7s 1.867
(0.508) (0.413)
Log winning bid Yw 0.125 | Bw 1.405
(0.103) (0.167)
Log number bids Vb -0.052 | By 0.752
(0.26) (0.318)

Note: Parameters estimated in this table are based on 792 clusters operated by at least one
large company (L, L&L, and L&F types). Numbers in parentheses are standard errors.

In addition to the types of joint operations, I also control for operator and land-
specific characteristics in both estimations. For all three measures, o, 0, and v, |
control for operator attributes: experience, which sums up the number of clusters that
the operator had previously owned in the same region, and knowledge, an indicator
for the participants having owned a neighboring cluster prior to bidding. This is
because an operator’s familiarity with the geological formation in the area may
influence her belief about the land value and her ability to interpret the information
she gathers. For the parameters determining the prior distribution, o, and v, |
further control for cluster physical attributes, such as its size in acres and its region
(either the North Slope/Beaufort Sea region or Cook Inlet region), as well as its
auction characteristics. The auction characteristics I include are whether the auction
happened after 1975, the average per acre price from winning bid weighted by the
size of each lease in the cluster, and the weighted average of the number of bids

submitted for each lease in the cluster.
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Table 2.2 presents the results of estimation. The columns below o show how
being a joint operator, whether of the L&L or L&F type, having more previous
experience in the region, and having greater knowledge of nearby land affect signal
uncertainty, respectively. L&L operations have signal noise 0.413 higher than
solo operations, whereas L&F operations have signal noise 0.189 lower than solo
operations. The lower signal quality for L&L joint operators is possibly due to the
fact that large company participants in a joint operation do not pool their expertise
together. According to anecdotal evidence from an industry insider, meetings with
fellow participants in a joint exploration partnership often focus more on financial
planning and accounting, rather than to discuss technical details, such as what
each well log means and where to perforate in each well. In the case where one
company has a controlling interest in the partnership, drilling decisions are usually
left entirely to the controlling company and other participants can only request
information through the controlling company and may not have the right to interfere
(Derman, 2017). To put it in the words of a proverb: two heads are NOT better
than one. The issue here is this: just because there are two heads, it does not mean
that more than one head is thinking, or that the two heads interact with each other
at all. Estimation results based on the data seem to support this point. A robustness
check using the 682 clusters operated solely by large operators has the same sign
and similar magnitude for the joint operation indicator.> Estimation results using
large-only clusters are shown in Table A.1 in Appendix A.3. On the other hand,
signal quality is higher for L&F operators, which suggests that, by seeking the
expertise of the local fringe companies, joint operators are able to improve signal
accuracy, possibly through the local knowledge of the smaller company that large
companies do not possess, such as the expertise to better interpret the geological
readings of formations specific to Alaska. The parameters of the other variables are
intuitive: when companies are more experienced at operating in the same region, or

have knowledge of the neighboring land, the uncertainty of their signals decreases.

The columns under o, and v examine how different covariates affect the prior
distribution. Joint operations are associated with lower means, though neither asso-
ciation is statistically significant. There are three potential explanations for the lower
mean: (1) collusion makes bidding cheap, which gives them the financial resource
to explore less promising land, and (2) Other companies willing to go into joint

operations is a bad sign that the land is not worth as much. Unfortunately, current

3T fail to reject the null hypothesis that the parameters on L&L indicators from two samples are
different even at 10% level.
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model cannot untangle one explanation from another. Companies’ experience in the
area does not seem to significantly impact the prior distribution. However, having
access to adjacent land significantly increases the company’s prior mean. This could
be due to neighbor firms having better information about the value of this new piece
of land or are in a better position to explore (Hendricks and Porter, 1988). Land
attributes, such as more acreage and being in the Cook Inlet region, increase the
prior belief in the land value, while also decreasing the uncertainty of it. Having
a larger piece of land may increase the probability of finding oil and potentially
large oil deposits and hence increases the land value and decreases uncertainty. As
for the Cook Inlet region, since companies traditionally pay less for the land here,
conditional on being willing to pay the same bids as the North Slope region, the
companies must be highly optimistic and certain of the productivity of the land.
Finally, more competitive auctions, with higher winning bids and a larger number
of bids submitted, are associated with more optimism in the land value, as more
companies desiring this piece of land suggests that there could be more oil deposit
there. However, competitiveness of the auction does not seem to significantly affect

the uncertainty of the prior.

To see how well these parameters fit with the actual drilling outcomes, Figure 2.4
plots of the receiver operating characteristic (ROC) curve. The area under the curve
is 0.823, which translates to the probability of the model marking a randomly-chosen
"explored" cluster as more likely to be explored than not. An AUC value in the range
of 0.8 to 0.9 is generally considered good. So this model does a reasonably good

job explaining exploration outcomes in the sample.

Counterfactuals

We conduct two counterfactual analyses in this section to show how differences in
signal quality across operator types leads to different drilling behaviors. In the first
analysis, I look at how drilling decisions would have changed if no joint operation
were allowed at all, as the Department of Interior and the Congress outlawed joint
bidding in the 1970’s. In the model, I force J in the data to be O for all k, and use
parameter estimates from Table 2.2 to calculate the likelihood to drill. In the second
analysis, I look at the counterfactual outcome if large companies are only allowed to
partner with smaller local firms, an idea consistent with the credits given to smaller
explorers by the Alaska government (Department of Revenue, 2012). Here, I force

Jr and J ]l(f indicators to be 1 for all jointly operated clusters, and then use parameter
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Figure 2.4: Model ROC curve
Note: The Area Under Curve (AUC) is 0.823.

estimates from Table 2.2 to predict the drilling outcomes.

The first analysis shows no loss in oil royalty payment and a potential loss of
22.7 million thousand cubic feet (mcf) of natural gas in royalty payment, which
approximates to 30.8 million dollars of revenue to the state of Alaska, if no joint
operation were permitted. Of the 52 clusters owned by L&L joint operators, solo
operators are less likely to drill in 35 of them.® A list of these clusters with
actual (joint) and counterfactual (solo) probability to drill is presented in Table
A.2 in Appendix A.4. Out of these 35 clusters, 10 of them have a counterfactual
probability at least 10 percentage points below the actual probability of drilling, as
shown by the bolded rows in the table. Assuming that solo operations choose not
to drill in these 10 clusters, I sum up the oil and gas production from each lease in
these clusters, multiply the production by the royalty requirement from the lease, and
arrive at 22.7 million mcf of natural gas paid to the state as royalty. Multiplying the
annual production by yearly U.S. natural gas wellhead price (adjusted for inflation
to year 2000 dollars), this production would have amounted to around 30.8 million
dollars of revenue. To put this value in more perspective, the amount of revenue
generated for the state from selling 183 tracts in the year 2000 was around 11.1

million dollars. Thus, 30.8 million dollars in revenue is not insignificant. However,

°If the difference in drilling probability is less than 1 percentage point, I consider the two
probabilities as equal. There are also 90 clusters not explored by L&L operators, but which have
higher probability under solo operation. However, their differences never exceed 5 percentage point.
So I consider these clusters as still not explored under solo operation.
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considering this 30.8 million comes from a span of over 40 years, the contribution

from these clusters to annual state revenue over these 40 years is rather negligible.

The second analysis shows a larger potential loss of 140 million barrels of royalty
oil and 363 million mcf of royalty natural gas, which equates to $4.5 billion in oil
revenue and $649 million in gas revenue to the state of Alaska, if large companies
had been forced to partner with smaller local operators, instead of their large peers.
Similar to the analysis above, we look at the 52 clusters owned and explored by
L&L operators. 39 of these clusters have lower counterfactual probability to drill
for L&F operators, and 22 of them are more than 10 percentage points lower in
predicted drilling probability.” After summing up the production multiplied by the
royalty requirements, I arrive at 140 million barrels of oil and 363 million mcf of
natural gas in royalty payment. Multiplying the annual production by yearly U.S.
oil first purchase price and natural gas wellhead price (adjusted for inflation to year
2000 dollars) respectively, these quantities predict a royalty revenue of 4.5 billion
from oil production, and 649 million from natural gas production. The details of
production and revenue from each cluster can be found in Table A.3 in Appendix
A.4. While this may seem a rather large sum of revenue lost, the state cannot
realistically force large companies to partner with small firms when large firms seek
a partner. Rather, it is more practical for the government to outlaw joint operations,
forcing large companies either to explore solo or to not participate in the auction at
all. Given these considerations, results from the first counterfactual analysis may be

more realistic.

The rough estimations above demonstrate potential revenue losses for the state if
joint operations between large companies were not permitted. However, banning
joint operations could also come with benefits. Following the argument above, solo
operation, if replacing joint operations, could have avoided unsuccessful efforts in
7 clusters, a total of 127,467 acres across them. Similarly, had L&F operators not
drilled in such clusters, they could have avoided drilling in 18 unsuccessful ventures,
a total of 390,190 acres across all. This would have reduced the deforestation and
erosion from building roads, platforms and transportation of heavy equipment,
decreased the amount of salty and potentially toxic produced water generated in the
drilling process, and prevented chemical contamination of land and water from the
drilling waste (O’Rourke and Connolly, 2003). Unfortunately, the exact benefit to

the state of Alaska from avoiding these consequences is difficult to quantify. As a

"No clusters unexplored by L&L companies have higher probability to drill under L&F joint
operation.



25

result, the upside of allowing joint operations amongst large companies may seem
too attractive for the government to pass on, especially if revenue generation is a key
consideration for the policymakers. On the other hand, for a government concerned
with preserving the environment, 30.8 million dollars of potential revenue loss may
be a meager amount in comparison to the long-term benefit from reducing the
damage to the ecosystem. For these policymakers, banning joint operation may be

the policy to implement.

2.6 Conclusion

This paper is an empirical analysis of oil and gas drilling decisions across three types
of operators: solo large companies, partnerships between only large companies
(L&L), and collaborations between large and fringe companies (L&F). It seeks to
explain why L&L operators drill more often in the land they own than the other two
types. In the model, operators decide whether to drill in a piece of land based on
the priors held following the auction, and signals received after winning the right to
explore the land.

The empirical results by matching the model prediction with the observed drilling
outcomes show that L&L joint operators have the least accurate signals, while L&F
operators have the most accurate signals, with solo large firms in the middle. This
result suggests that large company participants in a joint operation may not receive
independent signals, and even if they do, they may not exchange their information
and expertise in the exploration process. On the other hand, when large companies
collaborate with smaller firms, they may be seeking the local expertise of these firms

and thus gain better signals from these partnerships.

Counterfactual analyses based on the empirical results show that, had joint operations
between large companies been forbidden, the state of Alaska could have faced a
potential loss of $5.1 billion in oil and natural gas royalty revenue, but have avoided
exploration on 18 clusters and avoided potential damage to the environment in areas
of 390 thousand acres. The implications of this study for policymakers depend on
their priorities. If their ultimate goal is to maximize the state revenue, then allowing
large companies to jointly operate seems to serve this purpose. However, if the goal
is to conserve the environment and minimize damages from excessive drilling, then

banning joint operations between large companies can be a policy to consider.
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Chapter 3

THE CUSHIONING BENEFITS OF BIASED BELIEFS

3.1 Introduction

Biased belief formation is a bedrock underlying many models in behavioral finance
and behavioral economics. In financial settings, many real-world investors, both
individual and institutional investors, exhibit extrapolative expectations: they be-
lieve that prices will remain high in the future when recent prices have been high.
Accordingly, these beliefs can be conducive to price bubbles, and sometimes tend
to lengthen the duration of bubbles (Bagehot, 1873, Kindleberger, 1978, Barberis
et al., 2017). Conversely, extrapolative expectations can amplify downward price
movements and sometimes lead to slow recovery in an industry or economy (Green-
wood, Sam Hanson, and L. Jin, 2016, L. J. Jin, 2015). By and large, biased beliefs
have negative implications for market dynamics in these settings.

A large literature has focused on consumers having biased beliefs and how their
beliefs affect trading in asset markets, In reality, however, biased beliefs arguably
also play a role in many “real” investment decisions. Indeed, some recent research
explores how biased expectations can impact such decisions. For instance, Gen-
naioli, Ma, and Shleifer (2015) document that corporate investment plans and actual
investments are explained by CFOs’ incorrect expectations; Greenwood and Samuel
Hanson (2015) study how biased beliefs generate return predictability in the global
ship building industry.

In this paper, we study a model of biased beliefs populated by producers who
make real investment decisions based on these beliefs. Specifically, the biased
beliefs take the form of backward-looking extrapolation: producers’ expectations of
future consumer demand is formed as a weighted average of these consumers’ past
demands.! These beliefs exhibit insufficient mean reversion: producers mistakenly
assume that the long-run mean of the demand process is changing and estimate
it using recent realizations of demand, thus underestimating the degree of mean
reversion in the process. These biased beliefs affect producers’ investment behavior,

leading to sub-optimal decisions. Obviously, sub-optimal decisions impose welfare

IEarlier works of Barberis and Shleifer (2003), Barberis et al. (2015), and Hirshleifer, J. Li, and
Yu (2015) propose extrapolative beliefs about stock market returns and GDP growth.
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losses on the economy, and much of the existing behavioral literature focuses on

these negative effects arising from agents’ behavioral biases.

In this paper, however, we go one step further. When firms’ investment decisions
occur within a dynamic market equilibrium, these “mistakes” can actually translate
into long-run gains in the market. Specifically, we show that over time, biased beliefs
generate some unexpected effects that counteract the general trend of an industry
or economy, “cushioning” the industry or economy against prolonged downturns
and therefore leading to faster recovery. During industry upturns, these cushioning
effects can shorten the duration of bubbles. Unlike many papers in the existing
literature, our focus is on the positive implications that biased beliefs may play in

market dynamics.

To illustrate these cushioning benefits, consider the oil exploration industry, an
industry with pronounced boom-and-bust cycles and volatile prices in which extrap-
olation can have big effects. In this market, the producers are large oil companies
who make important decisions with long-run impact on oil exploration and produc-
tion. When oil prices spiral downward (as occurred recently in the world oil market),
oil companies extrapolate low prices continuing into the future, and therefore cut
back on new exploration. Indeed, extrapolative beliefs cause firms to cut explo-
ration more than they would in the non-extrapolative benchmark, resulting in large
welfare losses in the interim. However, over time, this excessive reduction in oil
production will put upward pressure on prices, thus reversing the downward trend in
prices and aiding the oil industry out of its doldrums. Moreover, this recovery will
happen faster when firms have extrapolative beliefs. Conversely, in periods of rising
prices, extrapolative producers overinvest in oil exploration, which puts downward
pressure on the rising prices. We show that these cushioning effects constitute a
generic feature of real investment models with producers having backward-looking

extrapolative beliefs.

Our model builds on standard aggregate investment models of Abel (1981) and
Abel and Eberly (1994). The price of industry output is positively related to con-
sumer demand and negatively related to total investment from producers. Over
time, consumer demand follows a mean-reverting process with a constant long-run
mean. Without knowing this long-run mean, however, producers extrapolate past
realizations of consumer demands in forming expectations of future demand. Based
on these beliefs, producers make investment decisions. For comparison, we also

examine a benchmark model in which producers know the long-run mean of con-
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sumer demand. To analyze the cushioning effects, we analyze the impulse response
of investment, total supply, and product prices with respect to shocks to consumer
demands. Our analysis leads to two observations. First, with extrapolative beliefs
from producers, a negative demand shock gives rise to persistent underinvestment
in subsequent periods, causing total supply to decrease at a faster rate relative to the
benchmark model. This rundown in supply lends support to prices, thus “cushion-
ing” the negative impact of the demand shock on the product price. Second, due to
the persistence of the cushioning effects, the product price can sometimes even start

rising in the midst of a sequence of negative demand shocks.

As an empirical case study, we consider the behavior and experience of oil producers
operating in the North Slope of Alaska, one of the most active oil exploration sites
in North America. Since oil exploration is not a liquid asset market with ample
trading and resale opportunities, the return regressions or survey evidence used in
the existing literature to detect extrapolation are not available in this context. Given
these challenges, we present several pieces of evidence from Alaska exploration
which are consistent with the presence of biased beliefs on the part of producers.
First, we find that the number of new wells drilled are positively correlated with past
levels of oil prices, with more significant correlation with prices from six to twelve
months prior. Second, we find that the five-year production and five-year revenue
from oil production for newly drilled wells are both negatively correlated with past
levels of oil prices. This finding that drilling projects initiated following high prices
yield systematically inferior outcomes support our interpretation of these projects

as resulting from biased beliefs.

As a further test for firms’ biased beliefs, we exploit the availability of data on
both oil companies’ planned and actual investments to establish that the number of
“scrapped” wells — that is, the difference between the number of wells actually
drilled and the number of wells planned — is negatively correlated with both past
levels of oil prices and the average changes in prices during the subsequent two-
year period within which oil companies are approved to carry out the planned
drilling. This finding suggests that oil companies over-extrapolate past oil prices
when planning for well drilling but subsequently change their mind and forgo these
opportunities if oil prices decline during the time after the well was approved but

before drilling has commenced.?

2Similarly, Conlin, O’Donoghue, and Vogelsang (2007) used data on purchased and subsequently
returned clothing to identify projection bias.
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In addition, we document some path-dependent features of belief formation. When
recent oil prices have risen at an increasing rate, oil companies extrapolate to a lesser
extent; if the oil price six months ago is 50 dollars per barrel, then all else being
equal, an increasing rise of the oil price between six months ago and the time of

drilling will result in a 12% reduction of the number of new wells drilled.

Motivated by this empirical evidence of oil companies’ suboptimal exploration
decisions in response to recent prices, we quantify the magnitude of the cushioning
benefit by calibrating our model using parameters appropriate to this industry. In
one example, a sequence of adverse demand shocks leads to a price decline which
is 8.2% smaller in the extrapolative compared to the benchmark scenario, which
quickens the recovery by four months. Another calibration example suggests that
the industry downturn during the 2008 financial crisis would have been lengthened
by four months if oil industry firms did not have biased extrapolative beliefs. These
examples show how extrapolative beliefs cushion, or soften, the extremes during the
periodic big downturns which punctuate the oil exploration industry. At the same
time, the overall welfare calculus is ambiguous; while this cushioning effect shortens
the downturn, the biased beliefs lead firms to severely underinvest in drilling activity
during the downturn relative to the non-extrapolative benchmark, which involves
large costs in lost jobs, underutilized equipment, and so on. Biased beliefs lead to
shorter, albeit direr, downturns, and the overall welfare effect involves a tradeoff

between the short-run costs and the long-run gains.

Our paper adds to both theoretical and empirical research that aims to understand the
implications of biased beliefs on asset price movements, consumption and portfolio
choices, investment decisions, and individual behavior. On the empirical side, recent
papers by Vissing-Jorgensen (2004), Bacchetta, E. Mertens, and Wincoop (2009),
Amromin and Sharpe (2013), Greenwood and Shleifer (2014), Koijen, Schmeling,
and Vrugt (2015), and Kuchler and Zafar (2016) present survey evidence that real-
world investors exhibit extrapolative expectations and they behave according to
these beliefs. Cassella and Gulen (2015) show that the extent to which investors
extrapolate past returns of the stock market is highly correlated with the degree of
predictability of future market returns. And Gennaioli, Ma, and Shleifer (2015) find
that CFO expectations about future earnings growth are extrapolative and predictive
of planned and actual investments. On the theoretical side, Fuster, Hebert, and
Laibson (2011), Choi and T. Mertens (2013), Hirshleifer, J. Li, and Yu (2015),
Barberis et al. (2015), L. J. Jin and Sui (2017) show that extrapolative expectations



30

can generate stock market movements that are consistent with the data. Alti and
Tetlock (2014) show that over-extrapolation and overconfidence affect investment
decisions. Barberis et al. (2017) use extrapolation to explain asset bubbles and
trading volume. Gennaioli, Shleifer, and Vishny (2012) and L. J. Jin (2015) connect
biased beliefs that arise from risk neglect and availability heuristic with market
leverage and financial crashes. Glaeser and Nathanson (2015) tie extrapolation to
housing dynamics. And Bordalo, Gennaioli, and Shleifer (2017) and Greenwood,
Sam Hanson, and L. Jin (2016) use extrapolative expectations to make sense of facts

about credit cycles.

Our paper makes three contributions to this line of research. First, the paper embeds
extrapolative expectations into the supply side of a model with real investments and
unearths the potential cushioning benefits from these biased beliefs. It is worth
pointing out that most research so far has focused on the negative effects and costs
associated with biased beliefs; only Dong, Hirshleifer, and Teoh (2017) discuss
the potential benefits. Our study adds to the latter strand of literature and coun-
sels greater caution when accessing the overall effect of biased beliefs. Second,
we present empirical evidence from the oil exploration industry that supports our
model assumptions and predictions. Thus our paper joins a small but growing liter-
ature exploring and quantifying the impact of biased beliefs in a specific industrial
(i.e., non-financial) setting.> Our data allow us to look at the planned and actual
investments separately, and studying the difference between the two supports the
hypothesis that producers on the supply side exhibit biased beliefs. Finally, we
use our data to calibrate model parameters; this allows us to further quantify the

cushioning effects highlighted in the paper.

Our paper is related to the works of Greenwood and Samuel Hanson (2015) and
Bordalo, Gennaioli, and Shleifer (2017); these works also connect biased beliefs
with investment decisions. Different from their studies which analyze the asset
price implications of biased beliefs, we focus on the cushioning benefits of these
beliefs. Our paper is also related to the work of Glaeser, Gyourko, and Saiz (2008).
Their work shows that the elasticity of housing supply can affect the magnitude and
duration of housing bubbles, and biased beliefs in their framework come from the
demand side. Instead, our study highlights the importance of biased beliefs from

the supply side.

3The other paper is Greenwood and Samuel Hanson (2015). Kellogg (2014) estimates a structural
model of individual oil companies’ oil drilling decisions in Texas and also estimates producers’ belief
process for future oil prices.



31

The paper proceeds as follows. In Section 3.2, we lay out the model and characterize
its solution. We then use impulse responses of the model to illustrate the cushioning
benefits. Section 3.3 uses the Alaska exploration data to provide evidence that
supports the extrapolative bias amongst oil and gas companies. In Section 3.4,
we calibrate model parameters in accordance with the data and further analyze the
implications of the model using these parameter values. Section 3.5 concludes. All

technical details are in the Appendix.

3.2 The Model

In this section, we first develop a simple aggregate investment model with incorrect
beliefs from producers. Then we examine the model implications through impulse
response analysis. For congruence with the empirical case study which follows, we
will describe the model using terminology from the oil industry. The firms are oil
producers who make decisions about the number of wells to drill each period, and

obtain revenue from selling the oil extracted from the wells.

Assume that the demand relationship between crude oil prices per barrel H; and the

total number of active wells Q; is
Ht :At—BQ[. (3.1)

Here A; represents a demand factor; this captures outside influences on prices
which are exogenous to the firms. Since the oil market is global, these influences
can include supply disturbances in other oil-producing areas of the world (such as
Texas, Canada, the Middle East, etc.) which will also impact the price that Alaskan
producers receive for their oil. Such disturbances evolve randomly and with some

serial dependence, so we model the law of motion for A; as
A1 = A+ po(A; — Z) + &+, (3.2)

with pg € [0,1) and Var[g;41] = o2. Q;, the aggregate number of wells, is an
investment decision made by a continuum of risk-neutral firms. At each point in
time, each firm chooses its level of investment itG. The relation between the firm’s

well count g, and its time-f investment is

g1 =(1=8)q+p-i¥=q+p-i, (3.3)
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where 0 < 6 < 1 is the depreciation rate, p is the probability of success when
producing the industry output, and i, = itG — 8q;/p.* Effectively, i, is the choice
variable. At the aggregate level, the total number of wells evolves as

Qi1 =(1-80)Qi+p- 18 =Q;+p- 1. (3.4)

This law of motion for Q, implies that there is a one period time-lag in investment
I; before it affects the number of wells Q;,1, and generates cash flow for the firms.
In mapping this model to the oil exploration industry, we use a period of a month,
which is reasonable given the lag between drilling and well production falls between

a few days and a couple of months for most wells in our data.s

Similar to Greenwood and Samuel Hanson (2015), we assume that the representative

firm earns a net profit of
H[:M‘(A[—BQt)—C—(SPr (3.5)

on each active well, where M is the average number of barrels obtained from each
well, C is the operating cost of a well, and P, is the replacement cost of a well. For
an individual firm, given its current well count ¢, and its current investment i, (new
drilling), the firm’s time-¢ total profit is
2
Vi = gl = Pris = k- 5, (3.6)

-2
where £ - % represents the adjustment costs.

Firms’ biased beliefs and insufficient mean reversion. A crucial component of
our model lies in the specification of firms’ expectational errors. Specifically, we

assume that, from firms’ perspective, the evolution of the demand factor A; is

A1 = Z? +pr (At - A, ) + Efr+1s 3.7

where
A = A+ (1-a)A, A =(1-pa)A i +paAs, (3.8)

4Under risk neutrality and the assumption that success or failure of production is independent
across firms, (3.3) is equivalent to leaving the incremental investment stochastic and then taking
expectations when deriving the Bellman value function.

> In other industries, such as the housing market, it may take much longer (perhaps years rather
than months) for new planned housing to be completed, and we conjecture that with such long delays,
biased beliefs may actually exacerbate rather than cushion the economy against downturns.
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the subscript “f" stands for “firm", and 1 > ps > pg > 0.6

Comparing Equation (3.2) to Equations (3.7) and (3.8) shows that such a model
of beliefs exhibits insufficient mean reversion; A is the true long-run mean of the
demand process, which is constant over time, but firms mistakenly assume it to be
time-varying (denoted Z? in Equation (3.8)), and estimate it using recent realizations
of the process. Thus, in each period, firms’ beliefs about the long-run mean of the
process adjust in the direction of recent realizations: when demand has been slack—
that is, when A; has been low—firms tend to believe that the long-run mean Z? has
also fallen, leading to a smaller perceived degree of mean reversion measured by
the difference between Z;Z and A;; the opposite occurs after periods when demand

has been high.

Figure 3.1: Biased Belief Process and Insufficient Mean Reversion

This figure contrasts the true process for the demand shocks (Equation (3.2)) from producers’
beliefs (Equations (3.7) and (3.8)). The process of demand shocks A, is plotted using squares.
The true long-run mean, A, is invariant over time and equal to zero, as plotted in triangles.
However, producers’ beliefs about the long-run mean, Z;l, change over time, and are plotted
in circles. The difference between A; and Z? measures the degree of mean reversion in A;
perceived by producers. The parameter values used in this example are: A = 0, py = 0.68,
pr=0.68,anda = 0.9

Figure 3.1 contains an illustration of these beliefs. The demand factor process, A;,

5Note that when @ = 0, Z? equals ‘A. In this case, the model reduces to the model of Greenwood
and Samuel Hanson (2015). In comparison to Greenwood and Samuel Hanson (2015), our way of
modeling extrapolative expectations allows us to further make sense of some path-dependent features
of belief formation; we discuss this both later in this section and in Section 3.3.
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is plotted in squares and there is first an upturn followed by a downturn. However,
the true long-run mean, Z, is constant over time and equal to zero, as plotted
in triangles. In contrast, firms’ beliefs, following Equations (3.7) and (3.8), are
characterized by a time-varying long-run mean, Z?, which is plotted in circles.
Clearly, firms’ beliefs about the long-run tendency of the process exhibit insufficient
mean reversion: following an upturn in A;, firms’ perceived long-run means also
track higher, and as a result, the perceived degree of mean reversion in A;, measured
by A, —Z?, becomes smaller, suggesting “irrational exuberance”, while the opposite

occurs following the downturn in A;, suggesting “irrational pessimism”.

o o . . —a
In addition, conditional on their estimated long-run mean A, , we can also allow
firms to perceive less mean reversion of A; relative to the true process by having

pr = po. Rearranging (3.7)
At = A= (L= pp) (B = A) + 2101 (3.9)

illustrates the path-dependent feature of firms’ belief formation. With a sequence
of steady increase in the demand factor, Z? rises above the true long-run mean of
A. In this case, a high Z? and a high p both make the perceived evolution of A4
less mean-reverting than the true data generating process. If, on the other hand, A;
rises at an increasing rate, then Zf increases to a smaller degree compared to Ay,
making firms perceive that A; will mean-revert back to a low level more quickly in

the future.

Equations (3.7) and (3.8) are also related to the work of Barsky and De Long
(1993). That paper shows how investors learning about the time-varying mean
of a dividend process can lead to excess stock market movements; thus investors
learning and updating about the time-varying mean of a dividend process can
appear to “extrapolate” recent innovations in the dividend process. In contrast to
the Barsky-DeLong framework, however, the mean of the demand factor in our
framework is not time-varying (Equation (3.2)), but firms mistakenly perceive it to
be (Equation (3.7)). In comparison to Barsky and De Long (1993), then, agents
in our model end up “learning too much” from past demand shocks, leading to an
excessive degree of extrapolation, and insufficient mean reversion, relative to the

full-information benchmark, as pointed out above.

Dynamic investment decision. The model has three state variables at each point in
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time: A,, A,, and Q;. For an individual firm, its Bellman equation is

J(Clt§ Ay, Zt, Qt) =

< Ef[J(qr + P - ir; Are1, Ares A, A, (3.10)
miax{V(Qr,it;Az,Az,Qr)+ f[ (Qt Pl Aot Frel Qr1lAs tQt)]}

1+r

Here “E " means that the expectation is taken under firms’ subjective beliefs. The

first-order condition gives

o = E [H |A’Z’Q] —_
Potkeii=p-y L Gnr o Ep PAA0L G
J

Here P(A;, A;, Q) is a hypothetical price of discounting future expected per-unit net

profit at the required rate of return r under firms’ subjective expectations.

We now characterize the optimal level of investment in the proposition below.

Proposition 1 In the investment model described above, firms’ optimal level of

investment is

if:x+y1-A,+y2-Z,+z~Q,, (3.12)
where
BMp® +k BMp? + kr\* BM
g= TR prrir) 28 (3.13)
2kp 2kp k
Y| _
y2
-1
(1+r)k+BMp2—kpf—kzp — paprk
-1 - pp)ak (1+7r)k+BMp>—(1 - prlapak — k(1 —pa)—kzp
M
x| PEPE (3.14)
pM(1 - py)a
(ky1 + pakys + pM) - (1 — pp)(1 = @)A = rP, - p(C + 6P;)
X = . (3.15)

k(r — zp) + BMp?
Proof: See Appendix. [

Impulse Response Analysis: the Cushioning Benefits

We now examine the model implications through some impulse response analyses.

Figure 3.2 plots the net investment (new drilling) /;, total wells Q;, and the oil price
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H; from t = 1 to ¢t = 15 for both the benchmark model (@ = 0) and the model with
biased beliefs (@ = 0.9 and p4 = 0.25); from the steady-state, a sequence of half
standard deviation negative shocks on A, are imposed at r =2, 3,4, 5, and 6.

The impulse responses presented in Figure 3.2 are computed using model parameters
calibrated for the Alaskan oil exploration sector. (These parameter values are
presented and discussed in Section 3.4 below.) These impulse responses highlight
the cushioning benefits of biased beliefs. Compared to the benchmark case, biased
beliefs lead to lower investments (new drilling) in the face of negative demand
shocks, which lowers the number of active wells, and persists over many periods
after the negative demand shocks are realized. This lower well count “cushions"
the negative impact of the adverse demand shocks on the output price, resulting in
a smaller price decline and a faster price recovery. To see the mechanism in more
details, notice that after a sequence of negative shocks on A;, over-extrapolation
leads firms to lower their estimation of the long-run mean of the demand factor
Z?, hence becoming pessimistic about future prices and therefore reducing their
investment. Relative to the benchmark case, the number of wells and hence total
oil production in subsequent periods drops to a larger degree and stays persistently
low in the behavioral model. This comes from two reasons: first, firms’ pessimistic
beliefs about the future output price are persistent; second, lower past investments
cumulatively result in lower total drilling in subsequent periods. This supply effect
of biased beliefs partially offsets the negative effect of adverse demand shocks on
the output price. In this example, extrapolation reduces the decline of the output
price by 8.2% and results in a faster price recovery at month 11 compared to month

15 for the benchmark case, a difference of 27%.

While this example has considered a sequence of negative demand shocks leading
to a downturn, the cushioning effects also arise when the market is in an upturn.
Indeed, an example with a sequence of positive demand shocks would produce
exactly symmetric results: in the upturn, extrapolative firms would overinvest in
new drilling projects, leading to excessive production accompanied by downward
pressure prices. The cushioning effects here would be of the same magnitude, albeit
of the opposite sign: extrapolation would reduce the magnitude of the price by 8.2%
and prices would fall back to their pre-shock levels by month 11, four months earlier

compared to the non-extrapolative benchmark case.

Some additional observations are worth making. First, the cushioning benefits come

at some cost, as large cutbacks in investment (a 27% reduction from 194 to 142 by
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Figure 3.2: Impulse Responses for the Benchmark Model and the Behavioral
Model

From the steady-state, a sequence of half standard deviation negative shocks on A, are
imposed at t = 2,3,4,5, and 6. We plot the net investment /;, total production Q;, and
the output price H; from ¢ = 1 to t = 15 for both the benchmark model (¢ = 0) and the
behavioral model (¢ = 0.9 and p4 = 0.25). The other parameter values are: B = 0.02,
A=12,6=0.6%,r =0.5%, k =22.8,C = 100, P, = 463, 0, = 4.25,p = 0.8, py = 0.68,
pr =0.68,and M = 13.

period 8 in the middle panel of Figure 3.2) can imply a high level of industrial
turmoil; this “shakeout” is more sizable under extrapolative beliefs than in the non-
extrapolative benchmark. As such, the overall welfare calculus of the cushioning
effects is ambiguous, involving an intertemporal tradeoff between investment and

output in the short run vs. faster recovery and higher output in the long run.

Second, the smaller decline of the output price in the behavioral model comes

together with a faster recovery. As negative demand shocks continue to arrive at
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t =4 and 5, they are basically offset by the lower drilling activity in the behavioral
model. As aresult, the output price stays relatively flat during these periods. Finally,
combining a sequence of small negative demand shocks into a big shock tends to
limit the cushioning effect. Figure 3.3 shows that if we clump all the half standard
deviation negative demand shocks from Figure 3.2 into a large negative shock at
t = 2, the decline of the output price is of the same magnitude in both the benchmark
model and the behavioral model, although over-extrapolation still leads to a faster

recovery.
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Figure 3.3: Impulse Responses for the Benchmark Model and the Behavioral
Model

From the steady-state, a two and a half standard deviation negative shock on A; is imposed
at t = 2. We plot the net investment /;, total production Q;, and the output price H; from
t = 1tot = 15 for both the benchmark model (¢ = 0) and the behavioral model (& = 0.9
and p4 = 0.25). The other parameter values are: B = 0.02, A = 12, 6 = 0.6%, r = 0.5%,
k=228,C =100, P, =463,0, =4.25,p=0.8, po = 0.68, py =0.68, and M = 13.
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Empirical Implications of Extrapolative Producers

In what follows, we study oil exploration in Alaska as an empirical application of
the model. Since oil exploration is not a liquid asset market with ample trading
and resale opportunities, the return regressions or survey evidence used in the
existing literature to detect extrapolation are not available in this context. For that
reason, before moving on to the empirical section of the paper, we derive some
theoretical results to guide our empirical strategy of detecting extrapolative beliefs.
The following corollary shows how Proposition 1 pins down the coefficients of

regressing current and future investments on the current output price.

Corollary 1 The regression coefficient for regressing I, on H,, both conditional and
unconditional on A,_y, A,_y, and Q:-1, is Bo = y1 + pay2. The regression coefficient

for regressing I,+1 on H,, both conditional and unconditional on A,-1, A,_1, and

Qr-1, is B1 = (y1 + pay2)po + y2(1 = pa)pa + zp(y1 + pay2).
Proof: See Appendix. [

We plot in Figure 3.4 the coefficients Sy and §; as functions of @ and p4. Compared
to the benchmark case of @ = 0 or p4 = 0, higher values of @ and p4 make firms
tend to overestimate the long-run mean of the demand factor after a sequence of
positive demand shocks, hence reducing firms’ perceived degree of mean reversion
about future prices and causing them to overinvest; overinvestment after a sequence
of high prices — high prices are caused by positive demand shocks — therefore
leads to higher values of 5y and ;. Note that §; tends to be lower than Sy as firms
still anticipate some degree of mean reversion about future prices so they tend to
scale back future investment. Also note that as p4 further increases, () increases
at a lower rate or decreases in some other cases: a higher p4 makes the estimated
long-run mean of the demand factor Z? less persistent, so adverse demand shocks

in the future tend to affect investment decisions to a larger extent.

Finally, we consider some implications of our model for firms’ investment after
different price pattern scenarios. In Figure 3.5 we plot the impulse responses for
our model under two different price pattern scenarios. From the steady-state, two
different sequences of shocks on A; are imposed from # = 2 to ¢ = 6, resulting in
one case a steady rise in oil price and in another case an increasing (or accelerating)
rise in price. The top panel of the figure then suggests that firms overinvest less

(by 8.9%) in the accelerating price scenario compared to the steady price increase
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Figure 3.4: Coefficients of Regressing Current and Future Investments on Cur-
rent Price Level

The figure plots the coefficients of regressing current and future investments on the current
price level, By and 1, as functions of the belief-based parameters @ and p4. The default
values for @ and p 4 are 0.9 and 0.25, respectively. The other parameter values are: B = 0.02,
A=12,6=0.6%,r =0.5%, k =22.8,C = 100, P, = 463, 0z = 4.25, p = 0.8, py = 0.68,
pr =0.68,and M = 13.

scenario. Indeed, our model suggests that, in comparison with a steady increase in

price, an accelerating price increase leads to smaller revisions in the firms’ estimated
—a . . . . . . .

long-run mean A, , giving rise to stronger perceived mean reversion in future prices

and less overinvestment.

It is worth noting that leading asset pricing models of extrapolation such as Barberis,
Shleifer, and Vishny (1998) and Barberis et al. (2015) cannot explain this finding:
in these models, an increasing rise will result in stronger extrapolative beliefs and
therefore more investment. On the other hand, our finding is consistent with the
empirical results of Barber, Odean, and Zhu (2009) and Greenwood, Shleifer,
and You (2017) in the context of the stock market. These findings suggest some
reasonable caution on the part of extrapolators in the face of accelerating price
increase, and hence a belief formation process that is more sophisticated than simple
extrapolation studied in the literature. To the best of our knowledge, the belief
dynamic we proposed in equations (3.7) and (3.8) is among the first that can, at least

in part, capture this path-dependent feature of belief formation.”

7 Additional computations also showed that the biased belief specification for ship producers in
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Figure 3.5: Impulse Responses for the Behavioral Model with Different Price
Patterns

From the steady-state, two different sequences of shocks on A, are imposed from ¢ = 2 to
t = 6, resulting in a steady rise in price (solid) and an increasing rise in price (dashed),
respectively. We then plot, for these two cases, the net investment /; and the output price
H; from ¢t = 1 to t = 15 for both the benchmark model (@ = 0) and the behavioral model
(@ = 0.95 and p4 = 0.05). The other parameter values are: B = 0.02, A=12,6 = 0.6%,
r =0.5%, k =22.8, C = 100, P, = 463, 0, = 4.25, p = 0.8, py = 0.68, py = 0.68, and
M =13.

3.3 Oil Exploration: An Empirical Application

Having established the existence of cushioning benefits from extrapolative beliefs
in a theoretical model, we now proceed to quantify them in a real world setting. In
choosing a suitable industry for a case study, we seek an industry with pronounced
boom and bust periods, where cushioning can play a more important role. For
that reason, we focus on oil exploration and production in Alaska. There are

several reasons which make Alaska a suitable stage for our analysis: the size of its

Greenwood and Samuel Hanson (2015) cannot generate this pattern of decreasing overinvestment
with an accelerating price pattern.
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market, the purity of the North Slope oil price index, and the ability for Alaskan
operators to respond to price changes. Alaska has long been one of the biggest
oil producing states in the U.S, consistently ranked amongst the top five across
oil producing regions in the country since the 1970s. Its production peaked at
around two million barrels a day in 1988, behind only Texas. In addition to the
sheer size of the production in Alaska, petroleum activities in Alaska are centered
in the remote North Slope region (along the northern Arctic coast of Alaska).
North Slope field production has accounted for over 95% of all field production
in Alaska each year since the latter half of 1970s (EIA, 2017). As a result, the
Alaska North Slope crude oil price is a pure indicator of the supply and demand
for Alaska-produced oil, as almost no supply from regions outside of Alaska is in
the mix. Furthermore, due to its Arctic location, the Alaska North Slope region
has a topography and geology which differ from other main oil-producing regions
in the continental United States, such as California and Texas, and which pose
unique challenges for oil drilling and production. Successful drilling in this region
requires a fair amount of local know-how and specialization. Due to such reasons
and also different state regulations, international large operators, such as British
Petroleum and ConocoPhillips, all have independent operations in Alaska that are
separate from their other U.S. operations. BP, for instance, has an independently
incorporated subsidiary in Alaska, BP Exploration (Alaska) Inc (BP, 2016). This
independence allows these subsidiaries to make drilling decisions themselves, and
it is thus reasonable to model their decisions in Alaska as independent from the
decisions in other regions. These independent operations are also arguably more
responsive to the boom and bust cycle in the Alaska oil industry. For that reason,
the cushioning effects that we pointed out in the previous section, which soften out
the boom and the busts, may be especially important in Alaska compared to other

oil-producing regions.

Before proceeding to the calibration exercises which quantify the magnitude of
the cushioning benefits for several historical episodes in Alaskan oil exploration, we
present some suggestive evidence from regressions which indicate that oil producers
are affected by extrapolative beliefs in their oil production decisions. In these

regressions, we are guided by the empirical implications from Corollary 1 above.
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Figure 3.6: Alaska North Slope Oil Price and U.S. Well Cost Trend

The left panel of the figure plots monthly Alaska North Slope first purchase price; the
middle panel plots the interpolated monthly U.S. well drilling cost (actual data is on an
annual basis); the right panel plots the monthly price normalized by drilling cost (with the
drilling cost of June 2000 as the basis). The sample period for all three plots is August,
1977 to June, 2007.

Data Description

The data used in our case study is drawn from multiple sources. For oil prices,
we use the monthly Alaska North Slope (ANS) first purchase price per barrel from
the U.S. Energy Information Administration (EIA) from 1977 to 2016. As depicted
by the first panel of Figure 3.6, the ANS price remained relatively low prior to
2000, but increased drastically after 2000. In the meantime, cost to drill an oil
well, using the nominal average cost per crude oil well drilled each year in the US
provided by the EIA, followed a similar trend. The drilling cost remained relatively
stable but skyrocketed after 2000, as shown in the middle panel of Figure 3.6.8
To more accurately capture firms’ revenue and cost considerations, we introduce a
normalized oil price, defined by ANS oil price divided by the oil well cost for the
corresponding month, and then multiplied by the drilling cost of June, 2000. Hence
the normalized price in June 2000 is the same as the nominal ANS price, but the
normalized oil price is higher in the 1980s and much lower in the 2000s, as shown

in the right panel in Figure 3.6.

To examine how firm investments respond to past levels of oil prices, we focus on the

8The cost data is only available on an annual basis from 1960 to 2007. We use linear interpolation
to obtain monthly drilling cost data.
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Figure 3.7: Well Investment Trend

The solid line shows the trend for the number of oil-related wells drilled by operators in
Alaska in each month. The dashed line plots the time series of normalized oil price. The
sample period is August, 1977 to June, 2007.

number of wells drilled for oil producing or servicing purposes, using historical well
activity data from the Alaska Oil and Gas Conservation Commission (AOGCC).
The drilled wells are those with records showing the dates of actual construction
activities, such as well spudding or well completion, or those with positive well
depth. A firm with extrapolative beliefs is more likely to drill a well when it
observes high oil prices in the recent past because the firm perceives high prices
and hence high revenue moving forward. In Figure 3.7, we plot the time series of
the number of wells drilled in each month, together with the normalized oil price.
It suggests that indeed a larger number of wells are drilled following high price

periods.

While Figure 3.7 suggests that recent price levels seem to be associated with firms’
well drilling decisions, these decisions may be fully rational. Rather than over-
extrapolating, the firm may correctly foresee high oil prices in the future after
observing high oil prices in the recent past, and therefore wells drilled at these high
price level times create more profit due to the rising price. Additional evidence
is needed before concluding that firms over-responded to the recent high prices, in

line with the over-extrapolation hypothesis. In Figure 3.8, we plot, on a monthly
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basis, the time series of the average per-well profit and production in the first 60
months of production for wells that are drilled, along with the normalized oil prices.®
Both plots do not seem to support that the firms are rationally foreseeing future oil
prices. On the contrary, both plots in Figure 3.8 suggest that lower-revenue and less
productive wells are drilled following periods of high oil prices, more consistent
with the interpretation of these wells as mistakes arising from over-extrapolative
beliefs.

To further examine firms’ extrapolation bias, we utilize the availability of well
approval data to study the percentage of scrapped wells in each month. Within the
well history data, we observe all wells that received permits to drill. However, not
all permitted wells ended up being drilled. Scrapped wells are those that received
permits but the constructions of which never took place within 24 months of the
permit approval.'® As stipulated by the Alaska State Legislature (Title 20 Chapter
25), if a well is not drilled within this period, a new permit needs to be applied for.
If a firm has extrapolative beliefs, then it might become overly exuberant and apply
for more well permits after observing high oil prices, but subsequently reverse its
investment decision when price drops after the permits are issued. To capture this
reversal of investment decisions, we look at the proportion of wells scrapped each
month, calculated as the number of wells ending up scrapped over the total number
of wells approved in each month. Figure 3.9 plots the time series of wells scrapped
percentage, as well as the normalized oil price. It suggests that the percentage of

wells scrapped increases following periods of recent low prices.

Regression Results

Based on what we observe in Figures 3.7, 3.8, and 3.9, we now run a series of
regressions to formally test whether firms extrapolate recent oil prices when making
investment decisions, whether this extrapolative belief is unbiased in terms of well
profit and production, and whether firms take actions to correct their investment

decisions after receiving drilling permits.

First we look at the relationship between the number of wells drilled each month

Profit is calculated using normalized price multiplied by the production. As the normalized
price is a measure of how profitable oil production is, we multiply it by production volume for total
profit.

19However, if a different well was drilled at the exact same longitude and latitude within two years
of the initial approval, the initial well does not count as a scrapped well, since a better well may be
planned to replace the current one.
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Figure 3.8: Well Production and Profit Trend

Figure 3.8a plots on a monthly basis the average profit (in million dollars) in the first 60
months of production (hence the initial 5 years) for wells that are drilled. Figure 3.8b plots
on a monthly basis the average production (in million barrels) in the first 60 months of
production for wells that are drilled. The dashed lines in both figures plot the time series of
normalized oil price. The sample period for both plots is August, 1977 to June, 2002.
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Figure 3.9: Well Scrappage Trend

The solid line plots the percentage of wells scrapped in each month among the wells that
are given permits to drill. The dashed line plots the time series of normalized oil price. The
sample period is August, 1977 to June, 2007.

and normalized oil prices lagged by various time periods: one, three, six, nine, and

twelve months,

Yy=a+pBP_++yS +&, wheret =1,3,6,9 or 12 months. (3.16)

Here, Y; is the number of wells drilled in month ¢#; P;_; is the normalized oil price
from 7 periods before; and &; is the error term for each period. In this equation, we
also include price pattern variable S;, an indicator variable for whether prices have
been changing at an increasing or decreasing rate in the previous months leading
up to month ¢. We categorize price paths into five patterns: no clear pattern in the
rate of change as the reference level; decreasing rate of decline; increasing rate of
decline; decreasing rate of rise; and increasing rate of rise. These categories are
calculated as follows. Let n be the maximum number of consecutive months prior
to ¢ that prices have gone up or down. For n that is greater than or equal to three, we
calculate the rate of change as the difference of price changes between the second

and first half of these periods.!! If the rate of change has a different sign from

"If n is even, the difference is (P; — Py_n/2) — (Pi—nj2 — Pi—n). 1f n is odd, the difference is
[Pt — (Pt—(n—l)/2 + Pr—(n+])/2)/2] - [(Pt—(n—l)/Z + Pt—(n+1)/2)/2 - Pt—n]a which can be simpliﬁed to
(P = Pr—(n-1)/2) = (Pr—n+1)/2 = Pi-n).
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the price trend, then this period experiences decreasing rate of change; otherwise it
experiences increasing rate of change. For instance, if the rate of change is less than
zero but the price has been going up, then this period is going through a decreasing

rise in price.

With extrapolative beliefs, firms perceive high oil prices moving forward after
observing high recent prices, resulting in high investments in the current period. In
other words, extrapolation implies a positive relation between the number of wells
drilled and past oil prices; coefficient S in (3.16) is expected to be positive. As
for the price patterns, some empirical results from previous papers for financial
markets suggest that y should be negative when S; corresponds to an increasing rate
of rise; that is, accelerations in the rate of price increase tend to reduce extrapolative
effect of past prices on current behavior (see Barber, Odean, and Zhu (2009) and
Greenwood, Shleifer, and You (2017)). Itis an empirical question, however, whether
such a result will obtain outside financial markets. Also note that, as we described
earlier, traditional extrapolation models cannot capture this fact, whereas the belief

dynamic proposed in equations (3.7) and (3.8) tends to generate it.

Table 3.1 summarizes the regression results based on equation (3.16). In this table,
we see a significant positive relation between the monthly number of wells drilled
and the lagged normalized oil prices from six months or more prior to drilling; the
relation becomes insignificant when the lag of past oil price is less than six months.
This reduced significance for the more recent months’ coefficients is perhaps due to
two reasons. First, it takes time to move equipment and set up rigs before drilling
can actually start. Second, it takes time for firms to attend to past oil prices; this
interpretation with limited attention is consistent with models of extrapolation in the
behavioral finance literature (see, for instance, Barberis et al. (2017), Barberis and
Shleifer (2003), and Harrison Hong and Stein (1999)). Overall, Table 3.1 suggests
that oil companies in Alaska increase their investment in well drilling when the oil

price levels are high in recent months.

In addition, we also find that the extrapolation is tempered by the pattern of increasing
rise in price, as the coeflicient on the “increasing rise” price patten is negative and
statistically significant. That is, when price has been going up at an increasing rate,
all else equal firms become less extrapolative and therefore reduce investments.
This confirms the predictions of the extrapolation models illustrated in Figure 3.5.
For instance, if the normalized oil price is $50 six months ago with no observable

price pattern, then a company with extrapolative beliefs would drill 18.1 wells in the
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Dependent variable:
Number of wells drilled

(1) (2) 3) 4 &)
Normalized oil price

1-month lag 0.070

(0.054)
3-month lag 0.083

(0.055)
6-month lag 0.109*
(0.054)
9-month lag 0.121*
(0.052)
12-month lag 0.127*
(0.051)
Rate of change

decreasing decline —-0.867 -1.241 -1.602 -1.384 -1.661

(1.022) (1.034) (1.108) (1.082) (1.065)
increasing decline -1.094 —-1.240 -0.434 —-0.428 -0.927

(1.108) (1.110) (1.002) (0.965) (0.938)
decreasing rise -1.914" -1.741 -1.675 —1.903* -2.174*

(1.102) (1.149) (1.107) (1.056) (1.044)
increasing rise -2.630"* -2.398** —2.174* -2.205"* 2477

(0.952) (0.943) (0.903) (0.854) (0.844)

Constant 13.528*  13.302°*  12.690** 12477  12.573***
(1.290) (1.311) (1.303) (1.210) (1.121)

Observations 358 356 353 350 347
R-squared 0.063 0.073 0.093 0.108 0.123
Adjusted R-squared 0.050 0.059 0.079 0.095 0.110

Table 3.1: Total Wells Permitted on Normalized Oil Prices and Price Trends

The table is based on a sample of 5,121 oil-related wells drilled in Alaska between August
1, 1977 and July 1, 2007. The lagged prices are the normalized oil prices 1, 3, 6, 9, and 12
months prior to the month of drilling. The rate of change categories are defined as periods
with continuous increase or decrease for at least 3 periods and the rate of change follows
a convex or concave shape. Numbers in the parentheses are Newey-West standard errors
allowing for 6-month maximum lag in autocorrelation. *p < 0.1; **p < 0.05; **p < 0.01.

current month, 1.1 more than if the price was $40 six months ago. Furthermore, if
the price has been rising at an increasing rate in the months leading up to the current
month, then the number of wells drilled would become 16, which is 12% lower
than the original level of 18.1. In other words, the impact of observing increasingly

rising oil prices leading up to the month of drilling is similar to a decrease of $20 in
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Dependent variable:
Initial five-year profit

(1) (2) 3) “4) (5
Normalized oil price
1-month lag -0.106**
(0.050)
3-month lag —-0.108*
(0.053)
6-month lag —0.258"*
(0.083)
9-month lag —-0.095
(0.110)
12-month lag -0.425*
(0.192)
Rate of change
decreasing decline 1.806 2.483** 3.432%* 1.857* 2.240™
(1.164) (1.019) (1.044) (1.057) (0.916)
increasing decline 1.350 2910 2.399* 1.965* 3.004**
(1.009) (1.033) (0.916) (0.863) (0.993)
decreasing rise 3.151 2.900 2.494 3.116 3.209
(2.775) (2.885) (2.757) (2.869) (2.801)
increasing rise 1.995%** 1.764** 1.527% 2.075" 2.142"
(0.572) (0.683) (0.560) (0.723) (0.682)
Constant 74.669**  60.102"**  104.908™*  116.458"*  130.062***
(19.740)  (14.882) (28.849) (27.434) (32.291)
Unit FE Y Y Y Y Y
Drilling Year FE Y Y Y Y Y
Observations 4,055 4,044 4,027 4,005 3,991
R-squared 0.368 0.368 0.361 0.364 0.357
Adjusted R-squared 0.345 0.345 0.338 0.342 0.335

Table 3.2: Five-year Well Profit on Normalized Prices

This table is based on a sample of 4,055 oil-related wells with tract number drilled in Alaska
between August 1, 1977 and July 1, 2002. Well profit is calculated by summing up the
monthly production times monthly normalized price for each well in the first 60 months
of production. The lagged prices are the normalized oil prices 1, 3, 6, 9, and 12 months
prior to the month of drilling. The rate of change categories are defined as periods with
continuous increase or decrease for at least 3 periods and the rate of change follows a convex
or concave shape. Numbers in the parentheses are cluster-robust standard errors clustered
by units. *p < 0.1; *p < 0.05; **p < 0.01.

oil prices from six months prior.

The previous regression provides some evidence on firms extrapolating high levels

of past prices that they observe. However, firms’ extrapolative beliefs can be fully
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Dependent variable:
Initial five-year production

) (2) 3) “) )
Normalized oil price
1-month lag —-0.004
(0.002)
3-month lag —0.004**
(0.002)
6-month lag —-0.009*
(0.005)
9-month lag -0.002
(0.007)
12-month lag -0.010
(0.008)
Rate of change
decreasing decline 0.096 0.119* 0.153* 0.100" 0.109™
(0.065) (0.060) (0.069) (0.057) (0.055)
increasing decline 0.079 0.129* 0.104" 0.092" 0.116™
(0.060) (0.058) (0.059) (0.051) (0.055)
decreasing rise 0.125 0.113 0.099 0.125 0.126
(0.138) (0.142) (0.140) (0.142) (0.139)
increasing rise 0.070* 0.058 0.052 0.074* 0.075**
(0.034) (0.039) (0.036) 0.041) (0.037)
Constant 2.363** 1.900** 3.071* 3.320 3.651*
(0.665) (0.491) (0.809) 0.737) (0.988)
Unit FE Y Y Y Y Y
Drilling Year FE Y Y Y Y Y
Observations 4,055 4,044 4,027 4,005 3,991
R-squared 0.258 0.257 0.251 0.250 0.244
Adjusted R-squared 0.231 0.229 0.224 0.224 0.218

Table 3.3: Five-year Well Production on Normalized Prices

This table is based on a sample of 4,055 oil-related wells with tract number drilled in Alaska
between August 1, 1977 and July 1, 2002. Well production is calculated by summing up the
monthly production for each well in the first 60 months of production. The lagged prices
are the normalized oil prices 1, 3, 6, 9, and 12 months prior to the month of drilling. The
rate of change categories are defined as periods with continuous increase or decrease for
at least 3 periods and the rate of change follows a convex or concave shape. Numbers in
the parentheses are cluster-robust standard errors clustered by units. *p < 0.1; **p < 0.05;
“**p < 0.01.

rational; empirically, this regression is not able to disentangle over-extrapolative
drilling behavior from “rational exuberance” when recent oil prices have been high.

To address this issue, we run regressions of initial five-year profit and production
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of wells on lagged normalized prices one, three, six, nine, and twelve months
prior to the drilling date, controlling for price trend patterns. The initial five-year
production is calculated as the amount of oil produced in the first 60 months of the
well production. The initial five-year profit is the monthly production multiplied by
monthly normalized oil price in the first 60 months of well production. Tables 3.2
and 3.3 summarize the results for these two regressions, which confirms the graphical
evidence presented in Figure 3.8 which we discussed earlier. Table 3.2 shows that
well profits are actually lower for wells drilled following high price levels, suggesting
that firms over-extrapolate and fail to foresee the price reversal when they observe
periods of high prices. Similarly, Table 3.3 shows that wells drilled following high
price levels are not more productive, hence ruling out the possibility that firms
save the most productive wells for high price periods. Taken together, these results
support the interpretation that firms drill excessively after a period of high prices,

leading to lower profit and production, and symptomatic of biased beliefs.

Just as how firms can over-extrapolate when they drill a well, firms can also over-
extrapolate when they apply for the permit to drill. When they observe oil price
drops after the approval, they can retract their initial plan and decide not to drill.
Hence, observing an increased likelihood of scrapped wells when prices drop after
initial approval can be evidence of firms being overly exuberant when they make
drilling plans in the first place. To test this hypothesis, we regress the indicator of
whether a well is scrapped on the change in oil prices 24 months after the permit
issuance, controlling for the current normalized price in the approval month. Table
3.4 summarizes the results. The changes in oil prices in both columns are calculated
as the percentage difference between average oil prices in the next 24 months and
the price in the approval month. In Column 2, we also control for additional well
heterogeneity, such as the region of the wells, the operator and the unit that the wells

belong to.

Qualitatively, the results in both columns agree, and we will focus on the results
in Column 2. Starting from the top, the negative and significant coefficient on the
normalized oil price (—0.001) shows that when the oil price levels are high at the
time of approval, firms are less likely to scrap these wells. This observation confirms
the earlier results from Table 3.1 that when oil prices are high, firms are more likely

to actually drill the wells, and are less likely to scrap these wells.

The negative and significant coefficient (—0.009) on the 2-year post-approval price

change shows that an increase in the price after a well has been approved lowers the
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Dependent variable:

Whether a well is scrapped

1) (2)
Normalized oil price —-0.0004* -0.001"*
(0.0002) (0.0001)
2-yr avg perc. change in price —-0.009*** —-0.009"*
(0.002) (0.001)
Region = Other 0.0004
(0.020)
Region = Cook Inlet 0.988™*
(0.019)
Constant 0.018** 0.022™*
(0.003) (0.004)
Operator FE N Y
Unit FE N Y
Observations 4,757 4,757
R-squared 0.002 0.272
Adjusted R-squared 0.001 0.248

Table 3.4: Likelihood to Scrap on Normalized Oil Price and Price Change after
Approval

This table is based on a sample of 4,757 oil-related wells with tract number that are approved
between August 1, 1977 and July 1, 2007. The two-year average percent change in price is
calculated as the 2-year average normalized oil price after approval minus the normalized
oil price at the time of approval, and then divided by the price at the time of approval. For
region, the reference level is the North Slope and Beaufort Searegion. *p < 0.1; *p < 0.05;
**p < 0.01.
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Parameter Value Justification

A 12 + Year fixed effect Coeflicients from regressing monthly price over

B 0.02 productive well count

£0 0.68 Coeflicient from regressing residual prices on its lag

fo R 4.25 Standard deviation of residual from the price residual
regression

0 0.6% Inverse of median length of life of development wells

p 0.8 Proportion of wells producing > 1000 barrels of oil

fr ;2638 Coefficients from regressing well cost over # new wells

C 100 Umbrella term for all operating costs

M 13 Average of the median well production for each month

Table 3.5: Calibrated Parameter Values

This is a list of parameters in the model that can be directly or indirectly inferred from the
Alaska data. When point estimate of the parameters is available, we use the point estimate.
When the estimated values fall within a range, we round to a reasonable number within the
range. The operating costs here include lease operating expense, gathering, processing and
transport expense, water disposal costs, and any general and administrative (G&A) costs.

probability of scrapping a well. This resultis consistent with extrapolative producers,
as extrapolative firms, which may be eager to initiate new drilling projects when
prices have been high (as demonstrated in earlier results) end up scrapping these
projects if oil prices decline after obtaining drilling permits (but before drilling has

begun).

3.4 Model Calibration

Having presented empirical evidence consistent with the hypothesis of extrapolation
in the oil exploration sector, we now turn to the calibration of the theoretical model

presented in Section 3.2 using data from Alaska to set model parameters.

To more realistically measure the effect of firms’ extrapolation bias, we calibrate the
key parameters in the model using the available Alaska data. Table 3.5 summarizes

the list of parameters, their values and our justification for choosing each value.

Demand-related parameters are associated with equations (3.1) and (3.2). A; in
equation (3.1) can be viewed as the long-term mean A plus a stochastic term specific
to period . Hence, to obtain A and B, we regress the monthly per-barrel North Slope

price, H;, on the number of productive wells in Alaska in each month, Q;.12 We

12Being “productive” here is defined as a monthly production of at least 2000 barrels, around the
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Dependent variable:

Alaska North Slope crude oil first purchase price

(1) OLS )1V
Number of productive wells ~ —0.021*** -0.017**

(0.007) (0.007)
Constant 12.200*** 11.400"*

(3.270) (3.620)
Year FE Y Y
Observations 465 464
R-squared 0.963 0.963
Adjusted R-squared 0.959 0.959

Table 3.6: Demand Regression

These regressions can be expressed as Hy = A-B- 0O, + €, where H; is the per-barrel Alaska
North Slope First Purchase price, and Q; is the number of wells producing at least 2000
barrels in that month. The first column uses OLS regression. The second column uses IV
regression where the instrument is the number of productive wells in the previous month.

will refer to this regression as the demand regression. The resulting intercept from
the demand regression is then A and the coefficient associated with well count is
then —B. The result of the demand regression can be found in Table 3.6.13 Next, in
equation (3.2), notice that A, —Ais simply the residual from the demand regression
for period # + 1. Thus, to obtain pg, we regress the residual on its one-month lag,
and to obtain o, we calculate the standard deviation of the residuals from this lag

regression. The results of these regressions can be found in Table 3.7.14

median of what the bottom 10% of wells produce monthly in our sample.

3For robustness, we ran simple linear regression as well as IV regressions using lagged well
counts as the instruments. All regressions give us comparable range of parameter values.

14 The estimate of py = 0.68 indicate a substantial degree of mean reversion in the process of A,,
the demand factor. Note that this does not rule out the possibility that oil prices may not be mean
reverting.
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Dependent variable:

Residual from OLS Residual from IV
(1) (2)
Lagged residual (from OLS or IV) 0.673*** 0.684***
(0.034) (0.034)
Constant 0.004 0.004
(0.198) (0.196)
Observations 464 463
R-squared 0.452 0.467
Adjusted R-squared 0.451 0.466
Oe 4.25 4.22

Table 3.7: Residual Demand Regression

The residuals are calculated as H; — A, - I§Qt where A, + EQ, comes from predictions from
regressions in Table 3.6. Column 1 uses residuals from the OLS regression and column
2 uses residuals from the IV regression. In both columns, we regress the current period
residual on the previous period’s residual. o is the standard deviation of the residuals of
each lagged residual regression.

To determine the representative firm’s investment level, as shown in equation (3.3),
we need to estimate the depreciation rate ¢ and the probability of successful drilling
p. For the depreciation rate, we look at all the development wells that were drilled
within our time frame, and see for how long they produce. The median length
of production life for our wells is around 180 months, and hence the depreciation
rate is on average 1/180. The success rate amongst wells for production purposes,
exploratory and development wells, varies by the definition of success. If the
definition of success is producing over 1000 barrels, then the success rate is around
80%.13

To calculate a representative firm’s profit, we need well production in a month for
an representative well, M, and operating cost C, as well as drilling-related cost
parameters P, and k. We look at the median well for each month since July,
1978, and find that the average of all the months come to around 13,000 barrels.
The operating costs include lease operating expenses, gathering, processing and

I5Tf we make a more stringent requirement that the development well production needs to be at
least 1 million barrels, then p = 0.55. For a threshold of 0.5 million, p = 0.65; for a threshold of
100,000 barrels, p = 0.75.
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Dependent variable:

Oil well drilling cost

Number of newly-drilled wells 11.399*
(6.912)
Constant 462.581"
(104.387)
Observations 360
R-squared 0.008
Adjusted R-squared 0.005

Table 3.8: Demand Regression Calibration

We regress the per-well drilling cost associated with oil wells on the number of newly-drilled
wells in the current month. The intercept is the P, and the coefficient associated with the
number of wells is k/2. p < 0.1; **p < 0.05; **p < 0.01.

transporting costs, as well as water disposal and General and Administrative costs.
These costs vary widely across well locations, performances or the amount of
production (EIA, 2016). We use C as an umbrella term for all of these costs, and
set C to be around 100,000 a month as an estimate for the monthly level of all costs
mentioned above. Finally, drilling cost-related parameters can be extracted from
the well cost data. In equation (3.6), the cost per well is modeled as P, + k - i;/2,
which increases as the number of wells drilled increases. Knowing the total cost of
drilling per well and the number of newly-drilled well in each month, i;, we regress
the monthly well drilling cost on the number of wells drilled each month, and the
intercept from the regression is P, and the coefficient for the number of wells is k /2.

The results of the cost regression can be found in Table 3.8.

The impulse responses emerging from the model simulations utilizing these param-

eters are in Figures 3.2 and 3.3, and we already discussed them earlier.

Two Historical Episodes: 2008-2011 and 1986-1987

Taking the calibration exercise one step further, we next present two additional
model-fitting exercise to quantify the cushioning benefits for specific historical
episodes of price downturns for Alaskan crude oil. Since oil produced in Alaska

is mostly supplied to other parts of the U.S. and can be easily substituted with oil
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produced from other regions in the U.S. and areas outside of the U.S., Alaska oil
prices are sensitive to domestic and international events that affect oil demand and
supply. We focus on episodes following two such events, the U.S. financial crisis in
2008 (the Great Recession) and Saudi Arabia’s dramatic increase in production in
1986. These are illustrated in Figures 3.10 and 3.11.

20 T T T T T T T
I; (benchmark) P
—-—- I, (behavioral) '/—/‘
omNme o — .
N S ————
N I
~. -
20 o | | | | | |
5 10 15 20 25 30 35 40
time (¢)
200 — T T T T T T
100 |- T i
Q@ (benchmark) T N -
0r —-—- @ (behavioral) T - n
100 I I I I I I I
5 10 15 20 25 30 35 40
time (¢)
15 T T T T T T T 150
H, (benchmark) 8
10 2\@ H; (behavioral) g@ @@99@{}0@100 5
\ (S8 =
B 0006000000 6000209° o
SIERNG Q@@W 150 S
S -ta
©
0 I I I I I I I 0
5 10 15 20 25 30 35 40
time (¢)

Figure 3.10: Calibrated Impulse Responses for Historical Episode 1: the 2008
Great Recession

We plot the net investment /;, total production Q;, and the output price H; from ¢t = 1 to
t = 15 for both the benchmark model (¢« = 0) and the behavioral model (¢ = 0.9 and
p4 = 0.25). In the bottom panel, we also plot (on the right) the actual oil price from August
2008 to November 2011. From the steady-state, we choose a sequence of demand shocks on
A; so that the price pattern implied by the behavioral model roughly matches the actual oil
price movements. The other parameter values are: B = 0.02, A=12,6=0.6%, r =0.5%,
k=228,C =100, P, =463,0, =4.25,p=0.8, po = 0.68, py = 0.68, and M = 13.

In Figure 3.10, we consider a forty-month period from August 2008 to November

2011, coinciding with the most recent financial crisis in the US. As illustrated in
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the bottom panel of this figure (in the bubble-dashed line), oil prices fell sharply
during the first six months (08/2008-01/2009) by over 60% from peak to trough, and
then recovered very slowly and gradually, regaining the initial price level at month
33 (04/2011). Based on this, we calibrated a shock process for the extrapolative
model (dashed green line) to match the relative magnitudes and shape of the actual
price process. The recovery for this calibrated extrapolative price process takes
33 months, as in the actual price process. Using this calibrated shock process, we
also simulated prices in the benchmark non-extrapolative industry (graphed in solid
blue). For this benchmark economy, we see that the recovery takes longer; only
at month 37 (08/2011) do prices reach the initial level. Thus, in this way, we find
that the cushioning benefits shortened the recovery process by roughly 4 months, or
11%.

The two top panels in the figure show striking differences in the extrapolative and
benchmark industry during the price drop and recovery process, which illustrates
the complex welfare effects of biased beliefs. With extrapolation, investment falls
sharply as prices drop, leading to large differences in the well-count. Since the oil
exploration sector is composed of many small firms, such a large drop in drilling
activity will entail a sizable “shakeout” as firms become inactive and are forced to
leave the market. We can get a sense of the size of this “shakeout" by looking at
a period with similar drastic decline of oil prices, though to a smaller extent and
without the woes of the global financial crisis. Following the oil price collapsing
by 40% in the second half of 2014, 128 oil and gas companies filed for bankruptcy
between 2015 and 2016, up from around 30 between 2013 and 2014 (Haynes and
Boone, 2016, Egan, 2016). At 30 months, indeed, the number of active wells in the
extrapolative industry is only a fraction of the well-count in the benchmark industry.
Clearly, the accompanying decrease in output allows prices to recover more quickly.
Extrapolative beliefs lead to a direr but shorter duration, and results in ambiguous

welfare effects.

Figure 3.11 illustrates a similar exercise for an earlier and less pronounced price
drop episode, in the mid-1980’s. Between 1981 and 1985, Saudi Arabia reduced
its oil production by three quarters in order to combat the price collapse caused
by the world consumption decline. However, beginning in 1986, Saudi Arabia
decided to abandon its effort and ramp up its production, causing oil prices to fall
further in 1986 (Hamilton, 2011). We again compare the lengths of recovery period

following this event under the behavioral and benchmark models. By design, the
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Figure 3.11: Calibrated Impulse Responses for Historical Episode 2: the 1986
Saudi Oil Glut

We plot the net investment /;, total production Q,, and the output price H; from r = 1 to
t = 15 for both the benchmark model (¢« = 0) and the behavioral model (¢ = 0.9 and
pa = 0.25). In the bottom panel, we also plot (on the right) the actual oil price from
February 1986 to September 1987. From the steady-state, we choose a sequence of demand
shocks on A; so that the price pattern implied by the behavioral model roughly matches the
actual oil price movements. The other parameter values are: B = 0.02, A= 12,6 = 0.6%,
r =0.5%, k =228, C =100, P, = 463, 0o = 4.25,p = 0.8, po = 0.68, pr = 0.68, and
M =13.

recovery occurred in the fifteenth month (April 1987) in the actual data, and also
for the behavioral model. For the benchmark non-extrapolative model, however, the
recovery did not occur until September 1987; in this example, then, the cushioning

effects shorten the recovery process by five months.

Naturally, these are stylized examples, but they illustrate the real benefits that “cush-

ioning” can have in a real-world setting, in an industry notorious for its boom and
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busts sequences. Indeed, a lesson from these examples is that the cushioning benefits

of extrapolation can soften the extremes of the cycles.

3.5 Conclusion

Much of the existing literature in behavioral economics and finance has focused
on the negative and undesirable effects of behavioral biases and biased beliefs. In
contrast, we point out in this paper that in certain settings, such as industries prone to
periodic boom and bust cycles, biased beliefs can have benefits in terms of softening
the up and downs of the economic cycle. In these industries, biased beliefs cause
firms making investment decisions to respond more quickly to recent information in
market prices. Thus, for instance, a price downturn will trigger a more immediate
decrease in investment; in turn, this leads to lower supply which “cushions” and
prevents prices from falling too quickly and leads to a quicker recovery. Modeling
and quantifying these positive implications of biased beliefs on industry dynamics

are important contributions of this paper.

We develop a theoretical framework, based on a standard aggregate investment
model to illustrate these cushioning benefits. We then apply this model to the oil
exploration industry in Alaska, a highly volatile industry characterized by sharp price
fluctuations. One striking calibration example shows that the industry downturn
during the 2008 financial crisis would have been lengthened by four months if oil
industry firms did not have biased extrapolative beliefs. This suggests that the
cushioning benefits can be sizable in a real-world setting. In ongoing work, we are
exploring other sectors in which extrapolative beliefs may be important and hence

in which the cushioning benefits can play an important role.
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Chapter 4

OIL AND GAS TRACT AUCTION IN ALASKA: PRIVATE
VERSUS COMMON VALUE

4.1 Introduction

Traditionally, state and federal governments in the U.S. lease out their land through
competitive auctions for oil and gas explorations. Qil and gas companies submit
their bids in a sealed-bid first-price auction, and the highest bidder wins the lease if
his/her bid exceeds the reserve price. The bid submitted by each company reflects
how much they value this piece of land based on a variety a factors: (1) common
value factors shared by all companies, such as how much oil deposit is in this land,
and (2) private value factors such as company’s experience, strategies and financial
constraints. But which of these two types of components play a more substantial
role? Can the variations in bidding prices be explained mainly by one of them? By
looking at competitive lease auctions in Alaska between 1993 and 2003, this paper
seeks to identify which component plays a bigger role in determining bid prices in
Alaska.

Previous studies have come to different conclusions regarding which component
matters more. Li, Perrigne, and Vuong, modeling bidders’ private information
as the product of common and private value components and using a two-step
nonparametric estimation procedure, found that private components explain bids
variation better than common components (T. Li, Perrigne, and Vuong, 2000). On
the other hand, Hendricks, Pinkse, and Porter analyzed bid markups and rents using
ex post production amount and found that these values are more consistent with a
common value model (Hendricks, Pinkse, and Porter, 2003). Outside of the oil
and gas industry, studies also look into the role of common versus private model in
procurement auctions. Hong and Shum found that the average procurement cost in
some auctions strictly increases with the number of bidders, evidence for a larger
role played by the common value. Their results suggest that more competition leads
to a worse outcome for the auctioneer (Han Hong and Shum, 2002). Another study
focusing on Michigan highway procurement auctions by Paulo Somaini allows for
asymmetric bidders with nonindependent private information and common values.

Using a semi-parametric approach and distance to bidders’ plants as a cost shifter, he
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also finds evidence against a private value model for 6 of the 10 large firms, which,
however, can be rationalized by an affiliated private value model with common cost
component (Somaini, 2011). In this paper, I adopt Li, Perrigne, and Vuong’s and
Hong and Shum’s model of decomposing private information into two components
and use the parametric approach used by Hong and Shum to determine which

component plays a key role.

A better understanding of the auction model has two implications. The first is that
the correct model allows us to better evaluate the rationality of corporate bidders.
If the winning bidder has a private signal that prompts them to bid higher, then
using the conditional expected common valuation could overstate the valuations of
other bidders. This would thus make them look more rational than they truly are.
The second implication is to see whether policies implemented by the government
make economic sense. For example, Alaska shifted from Area-specific sale to
Areawide sale in 1998 (specific differences will be discussed in Section 2), partially
to encourage bidding from smaller companies and individuals (Alaska DOR, 2012).
However, if the appropriate model is pure common value and the firms foresee the
winner’s curse, then increased competition could potentially lead to lower revenue
for the State.

In this study, I use the competitive lease auction data in Alaska to look at how
an increase in the number of potential bidders impacts bidding prices submitted
by companies. Given a participant’s private signal, a pure common value model
predicts that he would bid lower as the number of fellow bidders increases, whereas
an independent private value (IPV) model would show no difference. To determine
which model is more suitable for the Alaska oil and gas lease auctions, I first
conduct a correlational analysis to look for preliminary evidence supporting one
model over another. Then I use a parametric structural model developed by Hong
and Shum to draw further inference on which component, common or private, plays
a more important role in the bidding strategy. The paper is organized as follows. In
Section 2, I briefly describe the background for Alaska oil and gas tract auctions. In
Section 3, I present the equilibrium bidding strategy for first-price sealed-bid auction
with a reserve price. This will serve as the theoretical prediction of how bidding
strategies shift with more competition. Section 4 introduces the data and different
variables, and summarizes the results of correlational analyses. Section 5 discusses
the specifics of the structural model, its results, and counterfactual analyses. Section

6 concludes this paper.
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4.2 Alaska Oil and Gas Tract Auction

To help readers better understand the study, I describe how the Alaska oil and gas
tract auctions work. The State of Alaska oil and gas tract auctions involve the sale of
leases on state-owned land. Starting on December 10, 1959, the Alaska Department
of Natural Resources (DNR) has conducted lease sales through competitive bidding.
A parcel of land is identified for leasing, and is divided into mostly rectangular pieces
of land known as tracts, and companies can bid on one or more such tracts. The way
the DNR identifies a parcel of land for lease changed in 1998. Prior to 1998, the
DNR used a format called Area-Specific sale, which involves requesting industry
input on preferred locations for the next sale. The DNR would then conduct the
title review to determine the ownership of the land and establish legal descriptions
prior to the bidding. However, this process took a long time and sometimes no bids
were received. In 1998, the DNR transitioned into Areawide Sale, which announces
tracts for sale in advance each year in the five known oil producing regions. Title and
legal reviews are only conducted after the sale is final. This change in identifying
land for sale needs to be considered when looking at factors affecting companies’

valuations.

During the auction, there are different types of offers that the government seeks. A
large majority of tracts fall under this category called “fixed royalty, cash offering,”
meaning that the government specifies the royalty percentage paid to the government
and the percentage stays fixed for the duration of the lease, while companies compete
with each other based on the cash bids submitted during the auction. Many auctions
also have reserve prices set by the DNR which govern the minimum bids that the
government finds acceptable. The reserve prices are mostly $5 and $10, but a
few tracts have a reserve price of $100. The company with the highest bid that
exceeds the reserve price wins the lease. The State of Alaska generally allows for a
variety of bidders in the auction, including large international firms, smaller or local
companies, and individuals. These bidders can either bid solo or jointly with each

other.

The terms of a tract relevant to this study are the location, size and fixed royalty
amount. The location of the tract is important as it gives us information on the
tract’s region and proximity to previously explored land. For example, North Slope
tracts were highly valuable in the 1980s after the discovery of Prudhoe Bay field.
Depending on the region, the size of the tract can vary widely, ranging from below

1,000 acres to 5,760 acres. The fixed royalty requirement is 12.5% for a large
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majority of the tracts, with the rest being 16.67% and a few at 20%.

4.3 Equilibrium Bidding with Reserve Price

With the auction format in mind, I describe the equilibrium bidding strategy using
notations of this paper. For a given tract ¢, denote the number of potential bidders
as N = n, and each bidder is indexed by i = 1,...,n. Assuming that each bidder
is risk neutral, symmetric, and affiliated, we can derive the equilibrium bidding
function for an arbitrary bidder i. Let the valuation of each bidder be denoted by
U;, which can be described as a function of the private signal, denoted by X;, and
the unknown common value, denoted by V, i.e., U; = u(V, X;). The private signal
X; is assumed to be one-dimensional and distributed on the interval [x, X]. In an
independent private value model, we have U; = X;, whereas in a pure common value
model, U; = V. Let Y; denote the highest bid submitted by the rivals of bidder i, and
let the individual with the highest bid be indexed by j and his bidding strategy be
b;. So in an first-price sealed-bid auction, after observing its signal X;, company i

chooses a bid b; to maximize its expected payoff U;. Hence,

b; = arg mglx EUth [(Ul - b)l(bJ(K) < b)|Xl =x,N = n] 4.1)

Here I make two assumptions also made by the previous literature. First I assume
the oil and gas companies are symmetric, in the sense that the joint distribution of
U;’s and X;’s is exchangeable when you interchange index i and j. I also assume that
the random variables (Uy, ..., U,, X1, X», ..., X;,) are affiliated, where large values for
some variables makes other variables more likely to have large values (Milgrom and
Weber, 1982). These assumptions give us a unique pure-strategy Bayesian-Nash
Equilibrium where each company bids according to a monotonically increasing
strategy identical across all firms, i.e., b;(-) = b*(-) fori = 1, ..., n. Equation 4.1 thus

becomes
b; = arg mng EU,-,Y,- [(U,' - b)l(b*(Y,) < b)le =x,N = n] 4.2)

Solving for the first-order condition of (4.2) gives us

Fyx.n(xlx,n)

b*(x) = vu(x, x) — [T b (x), 4.3)

where fyx, n(-) denotes the density of ¥; conditional on bidder i’s signal X; and the

number of potential bidders N.
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Equation 4.3 gives a good summary of the conflicting effects that increased com-
petition has on the equilibrium bid. The first term v,(x, x) is the expected utility
for bidder i conditional on his signal being x and that no one else observes a higher
signal. For a fixed x, as n increases, the fact that his bid is still the highest becomes
“bad news" for bidder i, since it increasingly suggests that his observed signal is too
high. As a result, bidder i would lower his bid. This effect is called the “winner’s
curse effect" (Han Hong and Shum, 2002). On the other hand, as n goes to infinity,
the probability of all signals being less than x; goes to 0. The second term then
decreases to 0. Hence, if the oil and gas auction follows a common value model,
then the effect of the first term dominates, and we see a decrease in bid prices when
n increases. However, if the private value component dominates, then the effect is

more ambiguous when 7 is finite.

In the case that a binding reserve price r exists, then given the monotonicity of the
bidding strategy, bidder i must observe an x; above a certain threshold, denoted by
x*(r), to be willing to submit a bid of at least r, i.e., b*(x*(r)) = r. x*(r) can be

formally expressed as
x*(r) =inf{x:E[Ui|X; = x,Y; < x, N =n] > r}.

Note that in the private value case, x*(r) = r since inf{x : x > r} = r. In
the common value case, x*(r) is less straightforward and requires numerical ap-
proximation. The equilibrium bidding strategy, given a reserve price r, can then
be obtained by solving the differential equation in Equation 4.3 using the initial

condition b*(x*(r)) = r. Therefore,

L(x*(r)|x, n)[r — vu(x*(r), x*(r))] + va(x, x) — f;:(r) L(a|x, n)%vn(a, a)da
b*(x) = for x > x*(r)
<r for x < x*(r),

4.4)

where

Trix.n(sls, n)
Fy,x,.n(s]s, n)

L(a|x,n) = exp(— /'x ds).

Equation 4.4 will serve as the equilibrium bidding strategy that I estimate in the
structural model. The goal of the analysis is to match the predicted bids using (4.4)
with the observed bids as closely as possible.
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4.4 Data and Descriptive Analysis

Before moving to the structural estimation, I first describe the datasets and variables,
and then conduct correlational analyses to see the relationship between bid prices
and competition. The three datasets relevant to this study are lease sales and status,
drilled wells and their productions, and oil price and volatility. The main dataset for
this study is the lease sales and status data from the Alaska Department of Natural
Resources (DNR). This data includes all tracts offered for competitive bidding
starting December 10th, 1959. It provides information on the acreage, location,
fixed royalty requirement, and reserve price of each tract. We also observe bids
submitted by all bidders in each auction, including the losing bids. In the case of
joint bidding, we observe who the participants are, but we only observe the split of

interests only amongst winning bidders.

Lease data can be linked to well drilling and production data from the Alaska Oil
and Gas Conservation Committee (AOGCC). The AOGCC data shows which wells
are drilled in what leases, well locations, well operators, and oil, gas, and water
production for each well on a monthly level. This dataset allows me to determine
which nearby wells are drilled before the sale of a tract and how productive these

wells are.

In addition to tract sales data, I also obtained data on expected oil prices and
price volatility from the replication materials of Kellogg (2014). The expected oil
prices are from futures contracts 18 months to maturity. 18 months is the farthest-
out horizon for regularly-traded NYMEX futures contracts. Since oil and gas gas
exploration is a lengthy process, companies may focus more on the expected prices
in the more distant future, when they would actually be producing oil. Hence,
we use the 18-month futures price as oil price instead of current oil price at the
time of bidding. The expected oil volatility is the implied volatility according to
NYMEX futures options prices, and is calculated by Kellogg for his paper. Due to
the limitation of the price and volatility data, I focus on tracts sold between 1993
and 2003.

Variables and descriptive statistics

Between 1993 and 2003, the Alaska Department of Natural Resources conducted 21

sales involving more than 2,600 tracts, which attracted over 1,900 bids. In this study,
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Table 4.1: Tract characteristics by number of bids received

‘ After 1998 ‘ Size ‘ Reserve

# bids 0 1 | Total Acreage 5 10 100
0] 1,056 98 4,958 964 182 8

1 235 1,000 4,042 983 246 6

2 105 100 2,985 130 75 0

3 40 19 2,200 18 41 0

4 11 1 1,934 1 11 0

5 7 1 1,481 2 6 0
Total \ 1,454 1,219 \ 4,298 \ 2,098 561 14

I focus solely on tracts with “Fixed Royalty, Cash Offer" terms.! A summary of these
tracts is shown in Table 4.1. Though the total number of tracts offered is similar
before and after 1998, areawide sales implemented in 1998 seem to substantially
increase the number of tracts auctioned off. The size of the tract seems to decrease
with the number of bidders. This could be due to the sizes of tracts near known
pools of oil deposit being smaller but attracting more bidders. Furthermore, all

tracts sold in this period have a reserve price of at least $5.

In this dataset, 72 bidders participated in at least 1 auction. Of the 72 bidders, exactly
half are companies and the other half are individuals. However, company bidders
account for the majority of the bids received, more than three times the number of
bids submitted by individuals. Table 4.2 presents a summary of the number bids
submitted by top 9 company bidders, ranked by the total number of bids submitted
between 1993 and 2003. It also shows whether these bids were submitted before
1998, whether they are solo or joint with another firm, and how often these top firms

win in the auctions that they compete in.?

Next I describe the dependent and covariates to be included in the regression. For
the dependent variable, I define the bid price as the offer price submitted by each
bidder divided by the size of the tract. If, for instance, BP and Chevron submit a
joint bid of one million dollars, then this counts as one bid and the joint entity of BP

and Chevron counts as one participant. In the regression, I use log of bid per acre

I'This is because these tracts account for the vast majority of tracts, and also the “Cash Offer"
part in the term refers to the cash bid amount from the auction, whereas some other tracts offered for
sale may not involve a cash portion at all.

%In the case of mergers and acquisitions, if both companies existed individually before acquisition,
I count them as two different companies and pick one as the main company after the merger. If only
one company operated in Alaska before the merger, then the post-merger company is considered the
same as the pre-merger company.
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Table 4.2: Bids submitted by top bidders on leases sold between 1993 and 2003

Name Total Before 1998 Joint bid Win percentage
ARCO 322 297 168 72%
Anadarko Production 259 82 163 85%
BP Exploration 212 167 94 88%
Chevron 165 63 120 84%
Encana Oil and Gas 139 0 130 95%
Phillips Petroleum 105 34 105 94%
Unocal 95 39 29 84%
Union Texas 92 92 46 77%
Conoco/ConocoPhillips Alaska 44 7 15 91%

as the dependent variable to eliminate the wide range of per acre bid prices. The
first row of Table 4.4 contains the summary statistic of the raw bid per acre for the
1,519 tracts that received bids between 1993 and 2003.

The variable of interest for the regression analysis is the number of potential bidders.
I define a potential bidder as one who has shown interest in nearby tracts and who is
still active at the time of auction. A previous study by Hendricks and Porter showed
that companies in adjacent tracts tend to have better information regarding the value
of the target tract (Hendricks and Porter, 1988). Based on this finding, Hendricks,
Pinkse, and Porter (2003) then proposed that the number of potential bidders can be
calculated as the sum of all bidders who submitted bids for this tract and bidders who
competed for adjacent contracts in the past. Adapting this methodology, I identify
adjacent tracts using latitude and longitude information of each tract, and identify
bidders who have submitted bids for adjacent tracts previously. The summary

statistic for the number of potential bidders is presented in Table 4.4 as well.

Given the aforementioned definitions of bid prices and potential bidder count, a
simple tabulation, shown in Table 4.3, suggests that the median bid per acre increases
with the number of potential bidders. This seems to be evidence against a common
value model. However, in order to better discern the relationship between bid prices

and competition, we need to control for tract and firm-specific characteristics.

To address tract and firm heterogeneity, I run an ordinary least squares regression of
log bid price over the log of the number of potential bidders, tract/auction attributes,
and firm fixed effects. The reduced form of this regression can be summarized by

the following equation

bir = Bo + pins + P12 + p; + s, 4.5)
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Table 4.3: Median bids submitted for different numbers of potential bidders

Count Median Bid

1 857 8.58
2 331 11.14
3 197 15.65
4 77 18.31
5+ 57 18.71

Bid prices are in 2000 dollars

where i indexes the firm and ¢ indexes the tract. Here, n, is the number of potential
bidders competing for tract ¢, Z, is the set of variables corresponding to tract/auction

attributes and y; denotes firm fixed effects.

Heterogeneity in tract sales, such as timing, contract terms and location, can impact
tract value and should be controlled for. Timing-related variables that I include are:
whether the sale happened before or after 1998, 18-month oil futures price, and
oil price volatility implied by the 18-month futures contract. Recall that Table 4.1
suggests that the policy change in 1998 may be associated with higher percentage of
tracts being sold. We could also expect this policy change to impact bid prices. At
the time of auction, higher expected oil prices in the future may signal higher revenue
and higher profit at the time of production, which may consequently encourage oil
companies to bid more aggressively. In addition, Kellogg found that oil companies
are less willing to invest in well drilling when price volatility is high (Kellogg,
2014). Inferring from Kellogg’s finding, higher volatility may also lower companies’
willingness to bid on tracts. Based on these considerations, I control for expected oil
prices and volatility 18 months from the time of sale. A summary of these variables
can be found in Table 4.4.

Terms specified in each tract sale may also impact bids submitted by firms. Some of
the key terms are the reserve price and the fixed royalty amount. The reserve price
determines the lowest bid allowed to be submitted in an auction. Royalty amount
specifies the percentage of oil production belonging to the government. Usually a
higher reserve price and a greater royalty amount are associated with more valuable
land, and they are often highly correlated with each other. Of the 1,519 tracts which
received bids in the data, 1,056 tracts have a reserve price of $5 and a fixed royalty
rate of 12.5%. Another 318 have a $10 reserve price and a 16.67% fixed royalty rate.
In other words, more than 90% of tracts have perfectly correlated reserve price and

royalty amount. Hence I focus solely on reserve price in my analysis. In addition,
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Table 4.4: Summary statistics for numeric variables

Variable Type Min. Median Mean Max. Std. dev
Bid per acre dependent  0.65 11.80 41.07 646422  206.86
variable
# potential bidder variable 1.00 2.00 2.32 10.00 1.74
of interest
Distance to location
-productive well 0.00 0.39 0.63 3.40 0.66
-unproductive well 0.00 0.12 0.28 2.68 0.43
Nearby well count location
-# productive wells 0.00 0.00 8.16  195.00 23.78
-# unproductive wells 0.00 0.00 2.80 41.00 5.69
-avg production 0.00 0.00 302 9,278 1,100

of productive wells
(000 barrels)

Oil price timing 15.65 22774 2324 26.84 2.56
Oil price volatility timing 2.31 3.04 2.99 3.37 0.24
Experience in area firm 0.00 36.00 11292  857.00 176.48
Whether joint bid firm 0.00 0.00 0.36 1.00 0.48

Revenue and price in 2000 dollars

since only two tracts in my sample have a reserve price of $100, I exclude these

tracts from the analysis.

Tract location factors I consider include: the area that the tract is located in, produc-
tivity of nearby wells, and the tract’s distance to nearby productive and unproductive
wells. Alaska’s North Slope and Beaufort Sea areas historically produced more oil
than the other areas, and one can expect companies to value the tracts in these areas
more. The productivity of nearby wells that were drilled before a tract goes on
sale could also impact a company’s valuation of the tract. Here I include a number
of variables to control for the effect of learning from nearby wells. I first look at
the distance to the closest productive and unproductive well. Close distance to a
productive well could mean that the tract is located in a oil producing pool, whereas
being close to unproductive wells may signal low-productivity for the target tract.
I also include the number of productive wells within 0.1 degree in longitude or
latitude distance, or approximately 11 kilometers, of the target tract. The rationale
is that when a large number of productive wells have been drilled in the area already,
it may signal that the area has been fully explored and the company is unlikely to
discover more oil. However, if a large number of unproductive wells have been
drilled, it could mean that these other firms are still optimistic about this area, and

that it is “due” for oil discovery. Finally, I include the average production of the
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nearby wells: nearby wells being highly productive could raise the value of the land

around these wells.

In addition to tract heterogeneity, firm behavior can also influence bid prices. In
this category, I control for firm experience, whether a bid is submitted jointly or
solo, and firm fixed effects. Firm experience is determined by the number of tracts
that this firm has previously won in the region. If a firm has operated in a region
for a long time, like BP in North Slope, it might have better local relationships
and easier access to equipment. These advantages in the exploration or production
process allow the firm to bid higher in the auction stage on tracts that it is interested
in. Whether a bid is submitted jointly may influence the bid price but the direction
of the relationship is not clear. While joint bidding may increase competition
by allowing smaller companies to participate through partnerships, joint bidding
amongst large companies may be a sign of collusion to reduce the price that they
have to pay on the leases (Hendricks and Porter, 1992). Additionally, controlling
for firm fixed effects eliminates how factors, such as firms’ financial strength, could
impact their bidding behaviors. One would expect that a powerful company like BP
should be able to afford higher bids for valuable tracts than its individual investor
competitors. If a bid is submitted by one firm, then the fixed effect is just the mean
bid price from bids submitted by this firm. However, if a bid is submitted jointly by
multiple firms, the fixed effect is a weighted average of these companies. Summary

statistics for firm experience and joint bid indicator can be found in Table 4.4.

Regression Results

The results of the OLS regressions are presented in Table 4.5. In the first column,
I run a simple univariate regression between the log of bid price per acre and the
log of number of potential bidders. Similar to Table 4.3, Column 1 shows that bid

prices and the number of potential bidders are positively correlated.

Column 2 and 3 incorporate controls for tract heterogeneity and firm characteristics
with Column 3 also controlling for firm fixed effects. Compared to Column 1, tract
value still increases with the number of potential bidders and this correlation is still
significant at 10% and 1% level, respectively, though on a much smaller magnitude.
Without controlling for any heterogeneity, a 10% increase in the number of potential
bidders is associated with a 4.4% increase in bid per acre. After including tract and
firm heterogeneity into the regression, a 10% increase is now associated with around

2% increase in tract value. Based on results from the three regressions, private value
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Dependent variable:

Log bid per acre
) (2) 3)
Log # of potential bidder 0.444* 0.167* 0.220™*
(0.155) (0.096) (0.084)
Reserve = $10 0.046 0.256
(0.276) (0.279)
Area®
Cook Inlet —1.154* -0.616"*
(0.360) (0.298)
North Slope Foothills -0.687** -0.545
(0.310) (0.355)
North Slope -0.568"** -0.361"
(0.193) (0.195)
After 1998 0.096 0.187
(0.350) (0.332)
Oil price —-0.031 -0.042
(0.042) (0.037)
Oil price volatility -0.982 -0.672
(0.769) (0.663)
Log distance to productive wells —-0.085 -0.029
(0.065) (0.065)
Log distance to unproductive wells —-0.035 -0.051
(0.039) (0.039)
Log # productive wells nearby -0.118* -0.071
(0.064) (0.047)
Log # unproductive wells nearby 0.082 0.007
(0.097) (0.068)
Log average production of wells nearby —-0.007 —-0.008
(0.011) (0.012)
Log experience 0.078*** —-0.048*
(0.020) (0.029)
Joint bidding -0.261* —0.388"**
(0.135) (0.083)
Constant 2.429* 6.465™ 5.621*
(0.170) (3.028) (2.531)
Observations 1,904 1,904 1,904
R? 0.077 0.300 0.415
Adjusted R? 0.076 0.294 0.407

Note: *p<0.1; **p<0.05; ***p<0.01

®: reference region is "Beaufort Sea"
®®: "nearby" is defined as 0.1 degree in longitude/latitude, approximately 11 km

Bid prices are in 2000 dollars

Numbers in parentheses are clustered standard errors clustered on sale date
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model seems to explain Alaska oil and gas tract auctions better.

Column 2 and 3 regressions also show what other factors do or do not impact tract
value. First, timing related variables seem to matter little. Switching to Areawide
sales in 1998 do not seem to generate significantly higher bids. Meanwhile, similar
to Kellogg (2014)’s finding that companies are less likely to invest in well drilling
when oil price volatility is high, I also find that an increase in volatility lowers the
bid amount. However, neither the impact of oil price nor price volatility is at all
significant. When it comes to contract terms, both Column 2 and 3 show that a
reserve price of $10 increases bids, but not significantly. This could potentially
be due to the reserve prices set by the Alaska government being too low to be
binding in these auctions (McAfee and Vincent, 1992). Location, however, seems
to matter for tract value. As expected, tracts in the North Slope and Beaufort Sea
regions are worth more than those in the Cook Inlet or the North Slope Foothills
region. Both regressions also show that the productivity of wells nearby seems to
influence tract value, especially the number of productive wells. Both regressions
show that having a large number of productive wells nearby is associated with a drop
in tract values. But we fail to find a consistent significant relationship between tract
value and the number of unproductive wells. In terms of firm characteristics, I find
that after controlling for firm fixed effects, owning more tracts in an area actually
decreases the firm’s evaluation of the target tract. This could be explained by firms
owning enough tracts to know that the target tract is no longer valuable. Finally,
both regressions consistently show that joint bidding is associated with lower bid
prices. In summary, evidence from these correlational analyses seems to suggest

that private value components play a larger role in companies’ bidding strategy.

4.5 Structural Model

While the OLS regressions offer some insights into what factors correspond to higher
tract prices, they do not account for the strategic interactions between firms in the
auction process. In an auction equilibrium, firms not only look at tract terms or their
own attributes, but also potential bids submitted by other firms. This section uses
a parametric structural model to incorporate such strategic behaviors accounted
for in auction theory. This model, developed by Hong and Shum, includes both
common and private values, and allows for the differentiation of roles played by
each factor (Han Hong and Shum, 2002). The parametric assumptions are essential

to such identification, as Laffont and Vuong have famously shown that nonparametric
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distinction between common and private models is not possible without parametric
assumptions on the common value component and bidder signals (Laffont and
Vuong, 1996).

Model Setup

Let the joint distribution of the valuations and signals be parameterized by 6,
ie.,, F(Uj,..,Uy, X1, ..., Xn;0). The valuation of bidder i is assumed to take a

multiplicative form of common value V and private value A;:
U =V XA;.

Further assume that V and A;’s are independently log-normally distributed. The
independence assumption is reasonable since private value components, such as
the strategic planning, the crew coordination or the equipment movement specific
to a firm, are unlikely to be correlated with the oil and gas deposit. Then by the

log-normality, we have
V=logV=v+eg, ~ N(V,O'vz)
A =1logA; = a+ s, ~ N(@ o).
Define that U; = log U;, then

U =V+A ~Ny+ao?+0?).

Each bidder observes a noisy signal X; of their true valuation U;, which can be

modeled as
X; = U; X ¢;, where ¢; = ¢”% and & ~ N(0, 1).

Further define that X; = log X;, then conditional on U,

ST — T 72
XilUi = Ui + 0i ~ N(U;, o).

Since we cannot effectively differentiate common value from private value compo-

nents in the data, we cannot separately identify parameters v and a. Hence define

i = v+ a. The set of parameters to estimate is then 6 = (y, oy, 0, ).

Using this model, we can infer the importance of the common and private value

components through the magnitude of their corresponding parameters. As o, goes
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Figure 4.1: Simulated Equilibrium Bids

Without reserve price With reserve price
30- 30-
kel kel
£ 20- £ 20-
°© °©
o o
Q Q
© ©
o o
o o
10- 10-
0 ) ) ) ) o . . . . .
0 20 40 60 80 0 20 40 60 80
signal strength signal strength

@:u=2o0,=lo,=lo,=L;A:u=2,0,=050,=10.=1;
B:.u=2o0,=1L0,=050.=1;+:u=2,0,=10,=1,0, =0.5.

to zero, there is no uncertainty in the individual’s private signal and information
asymmetry disappears. This model then resembles a pure affiliated private value
model. Meanwhile, uncertainty about the common value disappears as o, goes
to zero, and in this case we have an independent private value model with noisy
signals. If o, goes to zero, then private value variation goes away and we have a

pure common value model.

Figure 4.1 shows simulated equilibrium bids given different signal values with no
reserve price and with a reserve price of $5. Here the number of potential bidders is
set arbitrarily to 6. Simulation 1 involves parameter values of u = 2,0, = 1,0, =1
and o, = 1. Simulation 2 differs from Simulation 1 by having o, = 0.5. Simulation
3 differs from Simulation 1 in o7, such that o, = 0.5. And finally, in Simulation 4,
0. = 0.5 but all other parameters remain identical to Simulation 1. A comparison
of Simulation 1 and 2 shows that when the variance of common value goes down,
bidders bid more aggressively at lower signals but less so at higher signals. Holding
common value variance constant, comparing Simulation 1 and Simulation 3 shows
that when private value components become less important, the equilibrium bidding
price decreases. Finally, when uncertainty of one’s signal decreases, the equilibrium
bid price goes up, as shown by Simulation 4. Comparing the left and right figures
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also demonstrates that when there is a reserve price, bidders bid more aggressively
at signals closer to x*(r). But this aggressiveness slowly disappears as signal value
increases and bids with or without reserve price become identical when the signals
become sufficiently high.

Estimation and Results

Under the parametric setup described in the previous sub-section, for each parameter
value 6, I estimate individual parts of Equation 4.4 to determine the equilibrium
bids at different values of individual signal x. I then identify parameter values
that best match the predicted bids with the observed bids. This process can be
achieved using the quantile estimator. As Hong and Shum pointed out, given
the monotonicity assumption of the bidding function »b*(-), the quantiles of the
signal x are equivalent to the quantiles of »*(x) (Han Hong and Shum, 2002). Let
X, T = 1,...,7 denote the /" quantile of the marginal distribution of signal X;.
Then we can obtain the parameters by minimizing the sum of difference between
equilibrium bidding function evaluated at each quantile, b*(x;), and the actual bid
b;; for bidder i = 1,...,n" and auction ¢t = 1,...,7. Note here that n’ denotes the
number of observed bids, instead of the number of potential bidders. Due to the
reserve price requirement in each auction, not all potential bidders end up submitting
a bid. Furthermore, given different values of 6 and the reserve prices from different
auctions, the x;’s need to be drawn from the truncated distribution above x*(r).
Hence, the estimated parameter § minimizes the quantile objective function defined
as:
T n T
JOEDY pilbic = b} (x2:6,7,)],

t=1 i=1 7=1

where r; is the reserve price for auction #, and pg(-) is defined as
pr(x) = [t = 1(x < 0)]x.

The details of the estimation procedure for 5*(-) are discussed in Appendix C.1.

I estimate two sets of parameters under the assumptions of homogeneous and het-
erogeneous tracts. Under the homogeneity assumption, the tracts are all similar to
each other in tract-related attributes mentioned in section 4.2, i.e., contract terms,
location and timing of the sale. Under this assumption, we directly estimate the

parameter of 6 using quantile estimator. However, this assumption is unrealistic: we



78

can see from Table 4.4 that tracts differ widely from one another in various attributes.
Hence, under the heterogeneity assumption, I incorporate tract and firm attributes
when estimating the parameters. One alternative is to include these attributes into g,
such that u = X¢ where X are the covariates, and estimate ¢ separately. However,
this approach requires a large dataset when the covariate list becomes large. Con-
sidering the limited size of my dataset, this approach would introduce large errors
in the estimation process. Another alternative, proposed by Haile, Han Hong, and

Shum (2003) is more suitable, if we are willing to assume
v(x, x,n,y) = v(x, x,n) + I(y)

with covariates Y independent of signals X1, ..., X;,. Under this assumption, the
equilibrium bid also has a separable form s(x;n,y) = s(x,n) + I'(y) by Lemma 4
in the paper. Hence, we only need to regress the observed bids on the covariates
and a set of dummy variables for each value of potential bidder count n. Then new
observed bids are derived by summing up the residual and the intercept estimate
corresponding to the value of potential bidder count n. The derived bids are also
equivalent to subtracting variations associated with tract and firm attributes from
initial observed bids, while only keeping the variation due to different number
of potential bidders. Using this approach, we can incorporate a large number of
covariates even when the data set size is moderate. For this estimation, I use the set
of covariates listed in Table 4.5, and use the derived bids after removing the tract
and firm heterogeneity as the target for predicted bids to match using the quantile

estimator.

Table 4.6 shows the estimated parameter values under both specifications. Without
removing observable tract and firm heterogeneity, private value plays a much larger
role in a firm’s valuation. However, the role of private value components reversed
when observable heterogeneity is removed. Common value now accounts for more
variation in submitted bids and is much more significant than private value. However,
both common value and private value variance becomes statistically insignificant
even at the 10% level.? Overall, under the homogeneity assumption, my results agree
with Li, Perrigne, and Vuong’s results, while under the heterogeneity assumption,
my results agree more with Hendricks, Pinkse, and Porter’s arguments. Since Li,
Perrigne, and Vuong did not remove tract heterogeneity in their study, their finding

of private value dominating could potentially be due to tract or firm heterogeneity.

3The lack of significance could be due to the lack of variation in the number of potential bidders
in the data. Further examination using more dynamic range of potential bidders can potentially
improve the accuracy of the parameter estimates.
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Parameter Homogeneous Heterogeneous

u 1.599 5.741
[1.332, 1.862] [5.415, 6.063]

oy 0.226 0.300
[0.209, 0.242] [0.063, 1.394]

Oy 2.902 0.209
[2.206, 3.808] [0.017, 2.470]

O 1.863 0.906

Simulation draws

Quantiles

[1.355, 2.550]

[0.618, 1.319]

0.25,0.4,0.5,0.6 & 0.75

Note: The numbers in brackets are 95% confidence intervals.

Simulation draws are the number of simulations used to calculate v, (x, x) and to determine signal
values in each quantile given each 6.

Quantiles are the set of quantile values used to fit the predicted bids with the observed bids.

As a robustness check, Figure 4.2 plots a comparison between the observed median
bids for each tract and the predicted bids at median signal level above x*(r) at
each competition level. The predicted bids trace the observed values relatively
well, except when the number of potential bidders become large and the number of

observations becomes small.

Knowing the relative roles of common and private value to each bidder, we can
see how equilibrium bids differ at different competition levels and signal values.
Figure 4.3 plots the relationship between equilibrium bids and competition under
the homogeneity and heterogeneity assumptions. Figure 4.3a shows that equilibrium
bids, for any given signal value, increase as the number of potential bidders increases,
since private value dominates under the homogeneity assumption. This trend exists
whether we have a reserve price of $5 or not. Figure 4.3b shows the opposite, where
equilibrium bids decrease as the number of potential bidders increases, because
common value is more prevalent under the heterogeneity assumption. Here we
use a reserve price of $100, since when removing the heterogeneity all bids are
artificially inflated. $100 corresponds to the lowest reserve price across tracts after

removing tract heterogeneity.

While Figure 4.1 shows how bidders react to changes in competition, it does not
address how increased competition impacts the revenue for the State. To offset the
effect that each bidder bids lower with greater competition, i.e. the winner’s curse

effect, the increased number of participants also makes it more likely that a high
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Figure 4.2: Comparing Observed and Predicted Bids
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signal occurs, which I will refer to as the “likelihood effect.” When the “likelihood
effect” is sufficiently large, the revenue could in fact increase with more competition,
even when common value components play a larger role. To determine which effect
prevails, I simulate the State’s expected revenue with the estimated parameters.4
Figure 4.4 exhibits the shift in expected revenue as competition increases.> Under
the homogeneity assumption where private value dominates, the expected revenue
increases sharply as the number of potential bidder increases. However, under the
heterogeneity assumption where common value plays a larger role, the expected
revenue remains relatively flat as competition increases. This simulation shows

that while the revenue may still increase when common value plays a larger role,

“The simulation process is as follows: (1) Simulate signal values for each potential bidder using
the estimated parameters 500 times (2) Calculate the bid price for the highest signal amongst the
n potential bidders in each iteration (3) Take the average of all the iterations. This serves as the
expected revenue.

>Due to computational constraints, confidence intervals for expected revenues are being calcu-
lated but are not included in this thesis.
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Figure 4.4: Expected Revenue By Number of Potential Bidders
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encouraging greater competition may not be nearly as effective as the government
would hope for.¢ In other words, the government should evaluate the revenue impact

carefully before blindingly giving out tax credit to encourage greater competition.

Another question that Figure 4.1 does not address is whether the $5 reserve price is
ideal. Could the government generate higher revenues had they chosen a different
reserve price? Figure 4.5 shows that ex ante, at various level of competition,
the Alaska government is setting their reserve price too low, at least for the land
that generated interests from large international firms. In this graph, I evaluate
the expected revenue with different numbers of potential bidders at reserve prices
ranging from 5 to 1000 dollars. Here I use the parameters from homogeneity
assumption, since a $5 reserve price can vary widely from $110 to $275 after
removing heterogeneity.” Figure 4.5 shows that as the number of potential bidders
increases, the ideal reserve amount increases. However, while the reserve price for
each lease is either $5 or $10, the optimal reserve price for the tracts in scope is
much higher. The best reserve price appears to be around $250 when there are only
two potential bidders. For three potential bidder, the ideal reserve price rises to
$500, and it further rises to $800 with four or more potential bidders. This result

is consistent with findings from previous literature that a $15 reserve price is too

A dataset with greater variation in the number of potential bidders is needed in order to better
pin down the parameters in the heterogeneity case in order to have tighter confidence interval around
the expected revenue to draw better conclusion on the revenue impact.

"This means that for different tracts, the same reserve price could mean very differently for
each bidder. This makes setting the ideal optimal reserve price uniformly for all bidders highly
challenging.
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Figure 4.5: Expected Revenue By Different Reserve Price
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low for the Federal OCS auctions (McAfee and Vincent, 1992). Nevertheless, this
exercise has its drawbacks, as the leases in the estimation received bids from one of
the top bidders, who have much stronger financial strength than an average bidder.
Ex ante, we may not know if these firms were interested. However, this exercise has
some implications for the state: if large international firms are interested or if many
firms have shown interests in an area, it could increase the state revenue by raising
the reserve prices. In popular areas with lots of interest, $5 or $10 reserve prices

may be too conservative.

4.6 Conclusion

In this study, I set out to identify the roles that common and private values play in
the Alaska oil and gas tract auctions. By analyzing the auction data from 1993 to
2003, the results suggest that private value dominates in the equilibrium bidding
strategy when we treat each tract as homogeneous. However, common value plays a
larger role when we remove tract heterogeneity. My results under the more realistic
heterogeneity assumption are more consistent with Hendricks, Pinkse, and Porter’s

results. Foreseeing winner’s curse, the predicted equilibrium bid decreases as the



84

number of potential bidders increases. While the expected revenue may still increase
when the common value plays a larger role, encouraging greater competition may
not have the level of positive impact on revenue as the government would hope for.
Furthermore, I find that the existing reserve price of $5 or $10 is too low for the
areas that receive interests from large international firms, a potential avenue for the

state to explore to increase state revenue in the auction process.

However, the results from the current study are by no means conclusive. Further
analyses need to be conducted to better understand auction strategies in Alaska.
Joint bidding has long been causing difficulties in the study of auctions, as collusions
amongst companies could lower the State revenue, but reduced uncertainty thanks
to information sharing could increase the bids. Empirical studies accounting for
joint bidding have not been possible due to theoretical complications. But to better
understand firms’ bidding behaviors and their effects on the State revenue, these
factors need to be accounted for. Another extension involves removing the symmetry
assumption. Firms that participate in Alaska auctions come in a variety of sizes
and capital capacity: individuals, medium-sized private firms, and international
conglomerates. Focusing the analysis only on tracts that received bids from top
bidders prevents us from extending the analysis to more general issues. For instance,
are the $5 and $10 reserve prices still too low if we take all potential bidders, large
and small, into consideration? However, asymmetry no longer allows for the the
existing estimation procedures. Hong and Shum proposed a two-step structural
estimation method, using a non-parametric first step to determine the joint signal
distribution of bidders, and then a parametric second step to identify equilibrium
bidding strategy (Han Hong and Shum, 1999). This proposed methodology needs
more observations than the current dataset provides. Other states, such as Texas,
with more frequent and larger number of tracts could be a good candidate for this

exercise.
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Chapter 5

EPILOGUE

Chapters 2 through 4 study the behaviors of 0il and gas companies while focusing on
different aspects of the exploration process. Their findings have various implications
for the understanding and governance of oil and gas exploration. Overall, we found
that large companies jointly operating with each other, and higher past oil prices
tend to increase the drilling activities. Such increase in drilling activities benefits
the government by increasing the government income and benefits consumers by
combating rising oil prices through a faster recovery of the previous lower oil prices.
On the other hand, large companies jointly operating with smaller, local firms and
declining oil prices lead to less drilling. As a result, the government prevents
the environment on this land from being damaged in the exploration process by
sacrificing its revenue potential, and the oil industry shortens its period of “suffering”
through a quicker recovery from the oil price downturns. These findings provide
the government an incentive to evaluate its policies regarding joint operations,
and contribute to the knowledge that seemingly irrational behaviors could actually

benefit the overall industry and the economy.

We also add to the existing understanding of companies’ evaluations of land
prospects. While private value components, such as exploration strategy, local
relationships, and financial constraints, still play a role in a company’s evaluation,
common value plays a larger role. As aresult, increased competition may not lead to
nearly as much increase in revenue as the government would expect. Furthermore,
joint operation seems to be associated with lower evaluation of the land, evidenced
by lower mean in their prior for land productivity (Table 2.2), and the lower bids
submitted by joint bidders (Table 4.5). There are multiple possible explanations for
this observation, such as collusion in the auction process, or the distributed risk from

joint operating, but existing data would not be able to disentangle these hypotheses.

Despite the best effort of this dissertation, many questions still remain unanswered.
These questions include (1) to what extent do large companies jointly operate to
collude with each other, (2) if we take selection into joint operation into account,
how does banning joint operation influence government revenue, (3) what is the

cushioning benefit of biased beliefs in other cyclical industries outside of oil and
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gas, and (4) how much common value matters in the case of asymmetric auctions
instead of symmetric auctions. These questions and many more others will need to

be answered by future studies on these topics.
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Appendix A

CHAPTER 2 APPENDIX

A.1 Ex-Post Well Production Distribution

(a) Production distribution of all wells
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A.2 Standard Error Estimation

The finite sample variance of 6 can be estimated using

K

A~ oA 1 _
Var(f) = E[Z s@)st ()]
k=1
where s;(6) is the score of the likelihood function, /;(6) (Wooldridge, 2010).
Since
1k(0) = (Ak, Xk, 0)
= Ak IOg Pr(Ak = 1|Xk, 9) + (l - Ak)log(l - Pr(Ak = 1|Xk, 9))
= Arlog pi(0) + (1 — Ap) log(1 - p{(6)),
where pl(H) = Pr(Ax = 1|1Xy, 0).

To get the score, we calculate

01(0) _ [ Ag 1 - Ay ]6p1(9)
09; ~ 'pke) 1-pke) a9

§(9)—vF
_ [ Ay 3 1 - A ](_¢( 5*(9)—Vk ))a\/(a' )2+((rs)2.
PO 1-p}0) (@ P+’ %

(3)
§ (9) vk

Let m be represented by @(0 )

Since 5;2(9) contains all parameters, The first step is to derive 95}(0)/06;.

Deriving 95,(0)/06; for all 6;
* For 0¥ related variables

— Constant

65*(0) (o_k)2 . o
il L f- S7)

— Non-Constant (i.e. J; and W)
Here I use J; as an example. But the same goes for Wy.

05.(0)  (ob)?
day — (of)?

_ 05,(0)
B (9(1’0

. 1
(log @" = v* = Z(o')) Jk Ji
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* For o* related variables

— Constant
057(0) (oF)? .
C2 - 10T (1og 0 - )
90 (o)
— Non-Constant (i.e. Wis and J)
05,(0) (ok)? A5k (6)
k K * k k
=— lo —vIWi = W,
By, T o\ 0B Y YW= W
e For v related variables
— Constant
95;(6) (k)2
9Po (0)?
— Non-Constant (i.e. Wi and Jy)
050 | (03, _ 95O,

B (@R 9B

Deriving ® for all 6,

* For o related variables

— Constant
35 (0) a(k)?
520 ((0_5)2 (O_sk)z) S:lo)

@ =
() (b + ()

— Non-Constant (i.e. J; and W)
®(ay) = ®(ap) - Jk
* For 0¥ related variables

— Constant
95:(6)

d(ck)?
By (@) + @) - 7

dyo
(k)2 + (o))

®(yo0) =

— Non-Constant (i.e. Wis and J)

®(y;) = ®(y0) - Wi



e For v related variables

— Constant

®(Bo) =

5:(0) gk
aBo dBo

— Non-Constant (i.e. Wy)

(k2 + (b)) '?

®(B;) = ®(Bo) - Wi

Calculating s, (0)
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Suppose there are m variables in Wy and n variables in Wy for each k, then by the

results from previous sections,

sk(8) =Vl (0)"

Ag 1 - A

=

pk©)  1-p)

) .

api(6)/dag
(9p}(0)/da0)Ji
(0p}(0)/da0)W;

(0p}(0)/dan)W}"
api(6)/9yo
(0pX(6)/00)Jk
(0pF(0)/0yo)W,

(0p}(6)/0y0)W}
ap(6)/9Bo
(0pk(0)/0o)J
(0p}(0)/0Bo)W,

[ (0p%(0)/0Bo)W} |

In the case with both L&L and L&F operators, we just need three additional rows

for J ,is for the score.
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A.3 Parameters for Clusters Operated Solely by Large Operators

Table A.1: Estimation Results: Clusters Operated Solely by Large Operators

Description O oy v
\ Metrics Parameter Estimate | Parameter Estimate | Parameter Estimate
Constant @ 3.099 | v 5.512 | Bo -49.999
(0.264) (1.468) (2.361)
Indicator - L&L | ay 0.506 vy -0.125 | By -0.418
(0.198) (0.427) (0.323)
Experience @, -0.825 | y. 0.073 Be 0.174
(0.175) (0.294) (0.27)
Knowledge ag -4.998 | vk -0.261 | Bk 2.339
(2.146) (1.403) (0.973)
Acreage Ya -0.210 | B, 3.889
(0.157) (0.172)
Region Vr -0.557 | B, 2.889
(1=Cook Inlet) (0.454) (0.393)
After 1975 V75 -0.654 | B7s 1.473
(0.891) (0.479)
Log winning bid YVw 0.171 Bw 1.420
(0.151) (0.137)
Log number bids Vb -0.108 | Bp 0.182
(0.393) (0.342)

Note: Parameters estimated in this table is based on 682 clusters operated by large operators

exclusively (only the L and L&L types).
Details of the standard error calculation can be found in Appendix A.2.

Numbers in parentheses are standard errors.
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Table A.2: Clusters explored by joint operators but may not have by solo

operators
cluster sale date drilling royalty
probability production revenue
actual counter oil gas oil gas
(joint)  (solo) (MMbbl) (MM mcf) (MMS$) (MM $)
1 1965-07-14  0.95 0.87 140.3 3404 4,479.1 618.4
2 1965-07-14  0.13 0.09 87.6 3369 2,580.1 579.7
3 1961-12-19  0.66 0.56 0 17.3 0 25.1
4 1959-12-10  0.86 0.71 0 54 0 5.7
5 1959-12-10  0.69 0.53 0 0.002 0 0.003
6 1959-12-10  0.61 0.45 0 0 0 0
7 1959-12-10  0.85 0.69 0 0 0 0
8 1960-07-13 0.12 0.11 0 0 0 0
9 1961-12-19 0.82 0.73 0 0 0 0
10 1962-07-11 0.38 0.37 0 0 0 0
11 1962-07-11 0.39 0.38 0 0 0 0
12 1963-12-11 0.53 0.50 0 0 0 0
13 1965-07-14  0.83 0.68 0 0 0 0
14 1965-07-14  0.25 0.18 0 0 0 0
15 1965-07-14  0.73 0.61 0 0 0 0
16 1965-07-14  0.84 0.69 0 0 0 0
17 1967-01-24  0.52 0.46 0 0 0 0
18 1969-09-10  0.95 0.85 0 0 0 0
19 1969-09-10  0.74 0.58 0 0 0 0
20 1969-09-10  0.99 0.94 0 0 0 0
21 1982-09-28 0.86 0.82 0 0 0 0
22 1983-05-17 0.47 0.46 0 0 0 0
23 1984-05-22  0.67 0.60 0 0 0 0
24 1985-09-24  0.55 0.53 0 0 0 0
25  1986-02-25 0.48 0.46 0 0 0 0
Total Bold 0 22.7 0 30.8
Total All 2279 700.0 7,059.2 1,228.9

Note: This is a list of clusters where the counterfactual probability of drilling, solo instead
of joint with large companies only, is lower than the actual probability. The bolded rows
are where the counterfactual probability is 10 percentage points lower. The counterfactual
probability is calculated using parameters from Table 2.2. The revenues in this table are in
year 2000 dollars.
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Table A.3: Clusters explored by L&L operators but may not have by L&F
operators

cluster sale date drilling royalty
probability production revenue

actual counter oil gas oil gas

(joint)  (solo) (MMbbl) (MM mcf) (MMS$) (MM $)

1 1965-07-14 0.89 0.75 140.3 3404 4,479.1 618.4
2 1965-07-14 0.16 0.07 87.6 3369 2,580.1 579.7
3 1961-12-19 0.24 0.16 15.2 10.7 277.5 11.5
4 1962-07-11 0.50 0.49 6.1 89.2 97.4 1394
S 1961-12-19 0.71 0.53 0 17.3 0 25.1
6 1959-12-10 0.80 0.56 0 54 0 5.7
7 1959-12-10 0.60 0.36 0 24 0 2.5
8 1959-12-10 0.55 0.31 0 0 0 0
9 1959-12-10 0.79 0.56 0 0 0 0
10 1960-07-13 0.14 0.07 0 0 0 0
11 1961-12-19 0.85 0.69 0 0 0 0
12 1962-07-11 0.46 0.34 0 0 0 0
13 1962-07-11 0.68 0.67 0 0 0 0
14 1962-07-11 0.44 0.34 0 0 0 0
15 1963-05-08 0.27 0.21 0 0 0 0
16  1963-05-08 0.17 0.12 0 0 0 0
17 1963-05-08 0.12 0.08 0 0 0 0
18 1963-12-11 0.58 0.45 0 0 0 0
19  1964-12-09 0.99 0.93 0 0 0 0
20 1965-07-14 0.72 0.48 0 0 0 0
21 1965-07-14 0.26 0.12 0 0 0 0
22 1965-07-14 0.68 0.47 0 0 0 0
23 1965-07-14 0.74 0.50 0 0 0 0
24 1967-01-24 0.53 0.39 0 0 0 0
25  1969-09-10 0.91 0.78 0 0 0 0
26 1969-09-10 0.69 0.49 0 0 0 0
27  1969-09-10 0.96 0.87 0 0 0 0
28 1972-12-11 0.13 0.10 0 0 0 0
29 1982-05-26 0.40 0.31 0 0 0 0
30 1982-09-28 0.83 0.73 0 0 0 0
31 1983-05-17 0.51 0.41 0 0 0 0

(To continue on next page)
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Clusters explored by L&L operators but may not have by L&F operators
(Cont.)

cluster sale date drilling royalty
probability production revenue
actual counter oil gas oil gas

(joint)  (solo) (MMbbl) (MM mcf) (MM$) (MM $)

32 1983-05-17 0.32 0.23 0 0 0 0
33  1984-05-22 0.68 0.53 0 0 0 0
34 1985-09-24 0.52 0.41 0 0 0 0
35 1986-02-25 0.45 0.32 0 0 0 0
36 1988-01-26 0.45 0.35 0 0 0 0
37 1989-01-24 0.11 0.09 0 0 0 0
38 1991-01-29 0.61 0.53 0 0 0 0
39 1991-01-29 0.43 0.42 0 0 0 0
40 1992-01-22 0.37 0.36 0 0 0 0
41 1996-08-20 0.16 0.14 0 0 0 0
42 1996-12-18 0.09 0.07 0 0 0 0
43 1998-06-24 0.51 0.45 0 0 0 0
Total Bold 140.3 365.5 4,479.1 651.7

Total All 249.2 802.3 7,434.1 11,3823

Note: This is a list of clusters where the counterfactual probability, joint operation between
large and small instead of joint with large only company drilling, is lower than the actual
probability. The bolded rows are where the counterfactual probability is 10 percentage
points lower. The counterfactual probability is calculated using parameters from Table 2.2.
The revenues in this table are in year 2000 dollars.
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Appendix B

CHAPTER 3 APPENDIX

B.1 Analytical Results for the Model

Proof of Proposition 1. We conjecture and verify later that the optimal investment

is linear in state variables A;, Zt, and O,
ii=x+y1-A+y-A+z-0 (B.1)
Equation (3.11) then implies
P(A, AL Q) = (kx + ky - Ay + kys - A+ kz - Q, + P,)/p. (B.2)
By applying the law of iterated expectations on (3.11), firms derive

E/[[s1 + P(Ags1, Arer, AL A,
Pr+k'if:p' f[ 1+1 (z+11 +r+1 Qt+1)| t tQt]. (B.3)
r

Equations (3.4), (3.5), (3.7), and (3.8) allow us to write (B.3) out as

Pr+kx+ky - A +ky- A +kz-Q,
M{aA; + (1 —a)Z+pf[At —ad; — (1 - @)A]
p-

1+r
. TB(Qi+px+pyi- A+ pyr A+ pz-Q)} - C - 6P
1+r
. kx + (kyi + paky) - {@A; + (1 — a)A + prlA: = @A, — (1 — @)A]}
1+r
N kyz - (1= pa)A,;
1+r
N kZ'(Qt+px+pyl'A{:pyZ'Zt‘*'pZ'Qt)‘*'Pr‘ B4)
r

The fact that both sides of (B.4) are linear functions of A;, A,, and 0, verifies the
conjecture in (B.1). Matching terms in a sequential order then solves for x, yi, ys,

and z. First, matching terms for Q; gives the solution of z in (3.13). Then matching
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terms for A, and A,, we obtain

- B kyi + pak +kz
VL] py1+( Y1+ paky)pr pyl,

k =
I 1+7r 1+7r
1-pr)a—-B kyi + pakya)(1 = ppa
ky, = pM( pPy) P}’2+()’1 paky2)(1 = py)
I+r I+r
kys-(1—pa)+k
2 - (L= pa) + kzpyr B5)
1+r

Notice that y; and y, are interrelated because the evolution of A, is driven by past
realizations of A,. Solving these two simultaneous equations then leads to (3.14).

Finally, matching the constant term gives (3.15). |

Proof of Corollary 1. Conditional on knowing A;_p, A,_1, and O;-1, I;_; and
therefore Q; are both determined. In this case, the movements of H; and I; are only

caused by the realization of the random shock &;. That is

I; X+ (y1 + pay2) - Hy + y2(1 = pa) - A1 + (2 + y1B + pay2B) - Q;
X+ (1 +pay2) - Hy + y2(1 = pa) - Ay

+ (z+y1B+ pay2B) - f(Ar—1, Ar—1, Qr—1). (B.6)

So the coefficient for regressing I; on H;, both conditional and unconditional on

A1, A1, and Q;_1, is By = Y1 + pays.

We now consider the coefficient of regressing 7,1 on H,. Conditional on A;_1, Z,_l ,

and Q;_1, the realization of &; determines H, and I,, which further determine Q4.
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Then the realization of &,,; determines A+, A;+1, and I,

]t+1

+ 4+ + 4+

+

X+Y1 A+ Y2 A+ 2 Ot
x+(y1 +pay2) - [Z + po(A; — Z) +&1] + y2(1 = PA)Zt +2-[Qr + pli]
X+ (y1 + pay2)e + (1 + pay2)(1 — po)A
(1 + pay2)po + y2(1 = pa)palHy + y2(1 = pa)*Ary
{z+ B[(y1 + pay2)po + y2(1 = pa)pal} f(Ai1, A1, Qi-1)
z2p[x + (y1 + pay)H; + ya(1 = pa)A,
(z+ y1B + pay2B) f(A-1, A1, Qr-1)]
X+ (1 + pay)ent + (1 + pay2)(1 — po)A
(1 + pay2)po + y2(1 = pa)pa + 2p(y1 + pay2)Hy + y2(1 = pa)*Ary
{z+ B[(y1 + pay2)po + y2(1 = pa)pal} f(Ai1, A1, Qi-1)
zplx + y2(1 = pa)Ai—t + (2 + y1B + pay2B) f(Ar-1, Ai—1, Qr-1)].
(B.7)

So the coeflicient for regressing I;+; on Hj, both conditional and unconditional on

A1, Aror,and Q1. is Bi = (31 + pay2)po + y2(1 = pa)pa + zp(y1 + pay2). M
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Appendix C
CHAPTER 4 APPENDIX

C.1 Estimation Procedure for Equilibrium Bids

Let n denote the number of potential bidders and n’ denote the number of actual
bidders, who submitted bids above the reserve price and are observed in the data.

We have the following scenarios.

n=1

If there is only one potential bidder, then his equilibrium bidding strategy is:

rif x > x*(r)
b*(x) =
0if x < x*(r)

That is, the sum of differences between predicted and actual bids from this set of
auctions are fixed. Since no parameters need to be estimates for these auctions, I will

focus on estimating parameters using auctions with two or more potential bidders.

n>?2

Step 1: Estimate v,(x, x) without a reserve price

* Write v,(x, x) explicitly. Let i = 1 and the 2nd highest bidder be j = 2. Then
va(x, x) = E[U;| X1 = x, X0 = x,X; <xVj >3,N=n]

X X
= / / E[Ui| X1, X_1]dF (X3, ..., Xu| X1 = x, X2 = x, X < x;0)
X X

—
n—1

fork >3
1
= %k
Prob(X; < x,k > 3|X; = x, X, = x;6)

X X
/ / E[Ui|X1,X_1]dF(X3,...,X,,|X1 :x,X2 =X;9)
X X

Hence we want to get E[U;| Xy, ..., X,;] and F(-).
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Get an analytic form for E[U;| Xy, ..., X;;]. Given our assumptions, (Ul, Uy,

X1, ...X,) is distributed jointly normal with mean /i and variance covariance

Yo X
matrix X = ; "*|. Then given the log-normality assumption, we have
ux X

- .1 - L
E|U;i| X1, ..., Xn] = exp(E[U;| X1, ..., Xu] + EVar[Uile, WXy i=1, 00

After deriving the details of Z, we have:

o2+ 02 o’ o?
2 2, 2 2
O'v O-V + O'a O-V
Y =
2 2 2, 2
o o oy + 0oy
o2+ 02 o2 o’
2 2, .2 2
_ v o, t+ oy, gy
Tux =
2 2 2, 2
o o oy + 0y ]
g2+ o2+ ol o? o?
o? o2+ 02+ 02 o?
Xy =
a? o? .. O+ 02+07?

Note that (U;, X, ..., X,,)is distributed jointly normal as welli.e. U, X1, ... Xp)
oy + oy (Zy)'
i )

of Zyx. Then the joint normality assumption gives us

such that i _ is the i"" column

~ N(ﬁl’l-l—la Zi), where Zi =

E[U]|Xy, .0 Xy = p+ E)TE N E - i)
Uil X, o Xl = 03 + 07 = (S I ' i

e Ifn=2
va(x, x) = B[U;| X1 = x, X2 = x] = explp + (Zh) T (X — fin)+

1 i —lsi
S0+ 07 = () 25 2]

where X = (log x, log x).

« Ifn > 3: Simulate X satisfying the truncation restriction. Let X,» = (X1, X»)

and X3, = (X3, ..., X,). Since (X1, ..., X,,) is distributed jointly normal, then

X34 ~N( Hn2| | T3+ Z3ee2 )
X2 M2 ’23T+7+2 o |/
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where 23, o = |... ...|. And hence

2 2
O-V

N————
n—2 rows

X3+|X+2 ~TN(un—2 + Z3+,+2(2+2)_1()~(+2 — H12), X34 — Z3+,+2(2+2)_IZ§+’+2;

i < )’234. < %).
Based on this, let

ﬁ* = Up-2 + E3+,+2(Z+2)_1()~(+2 — U2),

2 = 5y - T3 00(Ea0) 2L L,

and let m = n — 2. Also let (£*)!/? denote the lower-triangular Cholesky

factorization of X*, with elements:

S11 0 0 0

S$21 S22 ... 0 0
Sii 0 0

Sml Sm2 - Smm—-1 Smm

We can rewrite

~ * =~ *
X =M X Hy
S <z1 < S—
11 11
X - uh - 82121 X — fy — $2121
— << —
522 522
~ m—1 ~ * m—1
X = My — 2000 Smili X = Wy — 250 Smili
<22 <
Smm Smm

We can use the truncnorm package from R to draw these z,,’s.
Step 2: Identify x*(r)
* Since x*(r) = inf{x : E[U;|X; = x,Y; < x, N = n] > r}, define v,(x,y) =

E[Ui|X; = x,Y; < x, N = n], where y < x. We can use similar methodology

to estimate v,(x, y) as v,(x, x), where instead of X, and X3, we have X; and
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X>.. We use the same methodology to simulate the signals of n — 1 (instead

of n — 2) bidders. In this case, we have:

X+ N[ [ 2o+ 2241
X 2T 242402 )
1 H 2+,1 gy 04 Oe
oy
where 25,1 = |...| And hence

oy

——

n—1 rows

Xor| X1 ~ TN (g + 2oy 1 (02 + 02 + 02 (X - ),
Yo — 22+,1(0'v2 + 0'3 + 0'62)_12501;

< Xy, < %)

[

* We can find the x such that v,(x, y) = r. Then this x is x*(r).
Step 3: Calculate L(x*(r)|x, n).

* Find the closed form for fyx, n(s|s, n)/ Fy,x, n(s]s, 7).
— Since X;|¥ is independent of X |7, then X;|v is also independent of X;|v.
Now we can show f(X», ..., X,|X| = x) in closed form.

f(Xa, .., Xy X1) = / f(Xa, ..., Xy, v|X1)dv

_ / " P Xy o Xl X0 F V1 X1 )

T f(X - Xay) f(XG V) f(0)
o  fXaly) f(X1)

0o . . 1
) /-oo i /I o S o

Then F(Y; < §|X; =5) = Prob(X; < §,X3 <§,....X,, <5§|X; =5). So

F(§|s):[:(/:.../jH;’zzf(Xl-|v)dX2dX3...an)-
x 1_

n—

O = s

[ fxav) f)dv
- _ f(X1 = s fO)
= / iV 00 d
Lo iz Pn(S) I K fmdv



106

Note that

Fx,,(3) = Prob(X; < §|v) = Prob(elX < s|v) = Prob(X; < log s|v)

= H(logs) ~ N(logv + a, 0'5 + 0'82)

And since V ~ N(v, o2), then

fv)= vmﬂe i
Assuming @ = 0 in the prior, then we can replace log v + a by log v and
v by u.
Hence,
°° 1
Flo) = [ oz s O = s
1

— * log § n—1 .
./—oo(H( og5) %f_ozo f(X; =logs|v)f(v)dv

f(v)f(Xl :Slogslv)dv
_ [ ) ! h(log s)d
/_ ORI e e PO Hog sy

and correspondingly,
1 1
S [ f&=logslv) f()dv

£Gls) =(n—1) / (H(log )" 2h(log 5)

f(v)h(log s)dv
Hence,

f(sls) (=1 [ (H(log $))""(h(log 5))* /s f (v)dv
F(sls) ~ [ (H(log s)y='h(log s) £ (v)dv

+ Then L(x"()lx.n) = exp(= [, Dot g

Fy, 1x;.n (s]s.n)

Step 4: Calculate /x f(r) L(a|x, n)%vn(a, a)da = g(x).

* Based on Step 3, L(a|x,n) = exp(— fx T Glsn )

a Fyx; n(sls,n)
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. %Vn (a, @) can be approximated numerically

vie+doxa,a+d6xa)—viaa)

———vn(ag(x) =

da 0+

where § = 107° after trying different values of 6 = 1074,107%,107%, and 10710

yielded no significant differences.

Step 5: Combine all elements for equilibrium bidding strategy for observed
bidders

Simulate a series of {x, ..., x5 } based on the log normal distribution. Keep only the
x’s such that x* > x*(r). Sort the remaining x’s and identify the x;’s that correspond

to each quantile in the truncated distribution.

Then for each x;, the equilibrium bidding strategy for bidder i in auction ¢ is hence:

by (xe) =L(x"(r)|xz, m)re = v/ (re), 27 (re))] + va(or, 2x)—

Xr d
/ L(a|x;, n)—v,(a, @)da
X () da

Since bidders are symmetric by assumption, then b;(x;) = b’ (x.) for all observed
biddersi =1, ...,7.
Step 6: Find the parameters that minimize the quantile objective function

For each auction ¢t = 1,...,T, and for each observed bidder i = 1,...,n’, we try to
match the shape of the predicted bid with the actual bid. Hence the estimator 8

minimizes the following objective function:

T
o) = )
t=1

where p(+) is defined as

n/

.
> pelbi = by (xe:6,1)]

i=1 =1

pe(x) = [1 = 1(x < 0)]x.



