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Abstract 

The circadian rhythm phenotypes of eight chromosome aberrations with a break

point in the region of the per locus (3B1-2) of Drosophila melanogaster have been 

analyzed. Two duplications and five deficiencies with a 3B1-2 breakpoint produce 

either a wild-type (approx. 24-h period) or an arrhythmic clock phenotype while one 

translocation with a 3B1-2 breakpoint, T{1;4)JC43, produces locomotor-activity 

rhythms with either very-long periods (31- 39 hr), rhythms that grade into arrhyth

micity, or completely arrhythmic phenotypes. The clock phenotypes of 3B1-2 chro

mosome aberrations suggest that arrhythmicity results from the total lack of per 

function while long-period phenotypes result from a reduction, but not complete 

elimination, of per activity. An extensive complementation analysis of 3B1-2 chro

mosome aberrations and per mutant alleles provided no compelling evidence for 

genetic complexity at the per locus. This is in contrast to the report of Young and 

Judd ( 1978). Analysis of both the locomotor-activity and eclosion phenotypes of 

3B1-2 chromosome aberrations did not uncover differences in the genetic control of 

these two rhythms. 

The normal 24-h period of the circadian rhythms of locomotor activity and eclo

sion of .Drosophila is shown to be altered by changes in per gene dosage. Females 

with only one dose of per+ or pers (the 19-h short-period mutant allele) or perl (th~ 

29-h long-period mutant allele) have periods which are about 1-2 h longer than the 

corresponding females with- 2 doses. Females with 3 doses of per+ and males with 2 

doses of per+ or per5 have periods which are * to 1 h shorter than the correspond

ing individuals without the extra dose. Males with three per+ doses have periods 

which are about 1.5 h shorter than wild-type males; additional per+ doses do not 

shorten period further. The observation that decreased per dosage lengthens 

period while increased dosage shortens period suggests that the long- and short-
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period mutations alter period by respectively decreasing and increasing per gene or 

gene product activity. The per+ dosage results and the complementation behavior 

of per5 indicate that the hypermorphic phenotype of per5 results from increased 

activity of the per5 gene product rather than an overproduction of per+ product. 

This is the first report of such a mutant action in Drosophila. 

By screening mutagenized sex-linked and autosomal stocks for ones in which the 

normal period or phase of the circadian rhythm of eclosion (adult emergence) has 

been altered, a new X-linked clock mutant has been isolated which lengthens the 

normal 24-h period of both the the eclosion and adult locomotor-activity rhythms 

to about 25.5 h. This mutant, which we have named Andante (And), is not an allele 

of the per locus; recombination and deficiency mapping has placed the Andante 

locus at a separate site between polytene chromosome bands 10E2 and 10F1 (tenta

tively at 10E3, just proximal to the m-dy complex at 10E2-3). Andante, like all of 

the per mutant alleles, has a semi-dominant effect on period. The eclosion rhythm 

of Andante, like wild-type, has a low-amplitude (Type 1) phase-resetting response to 

light pulses, but compared to wild-type the Andante phase-resetting curve (PRC) is 

lengthened by 1-2 h per cycle. 
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Chapter 1 

General Introduction: 

The Molecular Basis of Circadian Time-keeping 
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1.1 Introduction. 

A wide variety of biological activities, ranging from subcellular processes (e.g. 

enzyme activities) to behavioral patterns (e.g. sleep/wake activity), are temporally 

regulated by endogenous time-keeping systems (see Aschoff 1981; Winfree 1980). 

Those biological clocks which generate rhythms of activity with a period of about 

one day in the absence of daily environmental cues are termed circadian. Cir-

cadian clocks are a ubiquitous feature of all major groups of eucaryotic organisms 

and have presumably evolved as an adaptive response to an environment which 

changes in a predictable fashion with each rotation of the earth. 

Circadian clocks share the following basic features (see Hastings et al 1976). In 

the presence of environmental cues (called zeitgebers) such as daily light and tern-

perature cycles, circadian clocks become synchronized to (entrained by) the exter-

nal cycle and maintain a distinct phase-angle relationship to the entraining zeit-

geber. In the absence of daily cues (i.e. under "free-running" conditions) circadian 

rhythmicity can be phase-shifted (advanced and/or delayed) by single zeitgeber sig-

nals. A plot of the phase .at which a signal is given vs. direction (advance/ delay) 

and magnitude of the phase shift is known as a phase response curve (PRC). Since 

the phase-shifting response elicited at a particular phase is constant from cycle to 

cycle, PRCs provide a measure of the internal state of a clock throughout the 

course of a cycle. 1 Circadian rhythms also share the basic feature that their free-

running period is temperat~re-compensated, i.e. they exhibit a Q
10 

very close to 1. 

This introduction will review the diverse body of literature that pertains to the 

molecular basis of circadian rhythmicity, with emphasis on the analysis of the cen-

tral mechanisms involved in circadian time-keeping. In most cases comparison 

between studies will be limited to those involving the same circadian system since 

1. The measurement of the phase-shifting response to various stimuli is currently the the only method 
of examining the temporal structure of a circadian cycle. 
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at this time it is not known whether there is a single common molecular basis for 

all circadian clocks. Other aspects of circadian biology addressed by these studies 

will not be presented. 

Four major approaches are currently being used to study circadian clock 

mechanisms. One approach involves analyzing the mechanisms by which the 

expression of a rhythm is temporally regulated in order to trace a pathway of regu

lation to its source, the clock mechanism. A second approach involves analyzing 

the molecular basis of entrainment in order to follow a pathway of entrainment 

into the clock mechanism. A third approach involves the administration of various 

drugs known to effect specific biochemical/biophysical processes to determine their 

effect on clock expression. The fourth approach is a genetic analysis of circadian 

systems. Mutations with known biochemical deficiencies are analyzed for their 

effects upon clock properties and mutations with altered clock properties are iso

lated and characterized to determine the nature of the clock defect. 
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1.2 Tracing Pathways of Circadian Regulation 

In order for any type of biological process to be temporally regulated, it must be 

linked to a pacemaking system via some pathway of control. Thus by identifying 

the mechanisms by which the expression of a rhythm is temporally controlled at 

progressively higher levels of regulation, it might be possible to trace a pathway of 

temporal regulation to its source, the clock mechanism. Control of the expression 

of rhythmic activity has been best characterized in two systems, the 

luciferase/luciferin rhythm in Gonyaulax and the N-acetyltransferase/melatonin 

rhythm in the rat and chick pineal. 

The circadian rhythm of bioluminescence in the marine dinoflagellate Gonyaulax 

polyedra is currently being used as a model system to study the circadian control 

of enzyme activity (see Dunlap et al 1981; Dunlap and Hastings 1981). Biolumines

cence is the product of the oxidation of the substrate lucif erin by molecular oxy

gen, catalyzed by the enzyme lucif erase. Luciferase activity in extracts made in the 

middle of the night phase is 7- 10 times greater than in extracts from day phase 

cells. The specific activity of the night- and day-extracted luciferase, however, is 

identical and there do not appear to be any physiochemical nor immunological 

differences between night and day species. Control of the enzyme rhythm via inhi

bitors or activators has also been ruled out. These results suggest the circadian 

rhythm in lucif erase activity is the result of a change in the concentration of 

enzyme molecules controlled by either a rhythm in the synthesis or degradation of 

this protein. Unfortunately, a direct measurement of timed synthesis and destruc

tion of luciferase is impossible because Gonyaulax fails to take up exogenously 

added amino acids. 

Another enzyme system in which the circadian control of activity has been exam

ined is the N-acetyltransf erase (NAT) rhythm in the pineals of mammals and birds. 
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(see .Zatz 1980; Jacklet 1981). The pineals of rats and chickens exhibit a circadian 

rhythm in the level of melatonin a 10-fold increase in concentration occurring dur

ing the night. This rhythm is regulated by a circadian rhythm in NAT activity which 

exhibits a 30-100 fold increase in enzymatic activity during the night (Klein and 

Weller 1970: Binkley et al 1973). The circadian rhythm in NAT activity is regulated 

by cyclic AMP, which both induces the synthesis of this enzyme (Axelrod and Zatz 

1977: Deguchi 1979a,b). In mammals, changes in cAMP levels in the pineal are regu

lated by a circadian rhythm in norepinephrine release (Axelrod and Zatz 1977; Nir 

et al 1978). Norepinephrine is released from nerve terminals in the pineal and 

binds to beta-adrenergic receptor, stimulating adenylate cyclase activity. The sym

pathetic neurons which innervate the pineal originate in the superior cervical gan

glia, and the regulation of norepinephrine release is apparently controlled by a cen

tral neural clock in the suprachiasmatic nucleus (SCN) of the hypothalamus (Moore 

and Klein 1974; Rusak and Zucker 1979). The identification of the next highest level 

of circadian control of NAT activity in mammals would involve an analysis of the cir

cadian control of neuronal activity in the SCN, obviously a formidable task. 

In chickens, circadian regulation of NAT activity is under endogenous control of 

the pineal itself: the NAT rhythm in chicken pineals is not affected when sym

pathetic input into the pineal is blocked surgically (Binkley 1976) or pharmacologi

cally (Deguchi 1979a) and organ cultures of pineal glands exhibit a circadian 

rhythm of melatonin release and NAT activity which persists (although damped) for 

2-4 cycles under constant .conditions (Kasal et al 1979; Takahashi et al 1980). 

Dispersed cell cultures of pineal glands have been shown to exhibit a rhythm of NAT 

activity for at least two days in constant conditions and the NAT rhythm in these 

cells can be entrained to a reverse photo cycle (Deguchi 1979c), suggesting that 

each cell has its own photoreceptor and clock.2 Circadian fluctuations in cAMP 

2. This conclusion is tentative, however, since a histogram of 'bell group size" is lacking in this study. 
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levels are also observed in organ-cultured chick pineal (Wainwright 1980) and phar-

macological studies indicate that cAMP is involved in the regulation of NAT activity 

in this system (Deguchi 1979a, b). Thus the identification of the next highest level of 

regulation of NAT in chicken pineals would involve an analysis of the circadian regu-

lation of intracellular cAMP levels .3 

3. As described below (§1.3 and 1.4.4), cAMP has also been implicated in having a role in both the 
entrainment and central time-keeping mechanisms of other circadian systems. 
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1.3 Tracing Entrainment Pathways 

Another approach that is being used to study clock mechanisms involves tracing 

entrainment pathways into the clock. The rationale behind this approach is thus 

similar to the approach described above: since circadian clocks can be entrained by 

certain types of daily environmental cycles (primarily light or temperature 

cycles/pulses), there must exist mechanisms which couple clocks with the environ

ment. If an entrainment pathway could be traced from a receptor activity into a 

clock it might be possible to identify processes involved in the primary clock 

mechanism. The first step in such an approach is the identification and localiza

tion of a zeitgeber receptor. Since entrainment and the phase-shifting action of the 

zeitgeber would be abolished by surgically, pharmacologically, or genetically delet

ing the receptor or any part of the entrainment pathway, the pathway of entrain

ment can be traced by blocking the pathway at increasingly higher levels as it 

enters the clock system. The clock could then be localized to that level at which a 

blocking treatment disrupts clock function rather than merely blocking entrain

ment. 

Such a tracing of an entrainment pathway has been successful on an anatomical 

level in some animal systems where circadian photoreceptors that mediate entrain

ment and the clock which controls rhythmicity are anatomically distinct (see 

Menaker et al 1978; Rusak and Zucker 1979). In cockroaches and rats, for example, 

the eye contains the photoreceptor that mediates light entrainment of the locomo

tor activity rhythm while the clock controlling rhythmicity resides in the brain. 

Blinding these animals or interrupting the visual pathway mediating entrainment 

via surgical lesions blocks light entrainment without abolishing rhythmicity. By 

tracing entrainment pathways it has been possible to identify specific regions of the 

brain (the lobula in cockroaches; the suprachiasmatic nucleus in rats) in which 
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lesions abolish or disrupt rhythm.icity. 

The tracing of an entrainment pathway on cellular and subcellular levels is 

currently being conducted using the eye of Aplysia (see Eskin 1979; Menaker et al 

1978). The Aplysia eye cultured in vitro shows a circadian rhythm in the frequency 

of compound action potentials (CAPs) recorded from the optic nerve. The eye con

sists of receptor cells, pigmented support cells surrounding the receptors, second

and higher-order neurons and glia cells, with gap junctions between receptor cells 

and between receptor and second-order cells. Spike activity is not observed in the 

receptor cells, indicating that CAP activity is produced by the nonreceptor cells. 

Treatments with either high Mg+2, low Ca +z or tetrodotoxin do not block phase 

shifting by light, suggesting that the entrainment pathway does not involve chemi

cal synaptic transmission or action potentials. However, treatment with low Na+, 

which reduces the photoreceptor potential, does block phase shifting by light. 

These results suggest that the clock resides in either the photoreceptor cells or in 

second-order neurons which are electrically coupled to the photoreceptor cells. 

Isolated photoreceptor cells cultured in vitro do not possess circadian light sensi

tivity (Strumwasser et al 1979b), suggesting that the clock does not reside in these 

cells, however this result does not rule out the possibility that the generation of the 

CAP rhythm requires cell-cell interactions between photoreceptor cells. 

Of special interest in regard to the intracellular mechanism of entrainment is 

the observation that serotonin, a putative neurotransmitter, and a cAMP analog, 8-

benzylthio-cAMP, produce similar PRCs when given as pulses to the eye (Eskin et al 

1982; see also §1.4.4). The similarity in the PRCs is a particularly intriguing correla

tion since it has been recently shown that serotonin (or 8-benzylthio-cAMP) induces 

hyperpolarization of the Rl 5 pacemaker neuron of Aplysia. This hyperpolarization 

is the result of an increase in K+ conductance mediated by an increase in intracel

lular cAMP (Drummond el al 1980). Since serotonin also increases cAMP levels (by 
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13-fold) in the Aplysia eye (Eskin et al 1982), the similarity between the PRCs for 

serotonin and 8-benzylthio-cAMP indicate that cAMP also mediates the phase-

shifting action of serotonin in the eye (Levitan and Benson 1981; Eskin et al 

1982).4 If the phase-shifting action of serotonin is directly mediated by cAMP, it 

might be possible to identify the next intracellular step involved in entrainment 

(e.g. protein phosporylation via a cAMP-activated kinase; see Greengard 1978) that 

would lead to the identification of time-keeping functions. It is also possible that 

the cAMP system is itself part of the central clock system (see §1.4.4). 

4. Strumwasser and Stephens (1981) have recently observed that the Aplysia. eye has increased levels of 
cAMP when measured at the phase of the peak in the amplitude of the CAP rhythm, at about ct 2.5 
(ct= circadian time, modulo 24 h; ct 0 corresponds to the time of light onset in a LD 12:12 cycle), 
compared to measurements taken at the phase of the rhythm trough (at about ct 14.5) under both 
LD and DD conditions. Since the peak in cAMP occurs during the day, it is possible that the phase
shifting action of light is also· mediated by an increase in cAMP levels in the eye. However, the PRC of 
light is 180° out of phase with the PRCs of serotonin and 8-benzylthio-cAivIP, suggesting that if the 
phase-shifting action of light and serotonin is mediated by cAMP, these agents should have an oppo
site effect on cAMP levels in the eye. 
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1.4 Drug Studies 

A large and growing number of drugs and other chemical agents have been shown 

to affect the period and/ or phase of various circadian rhythms. A major difficulty 

in interpreting the results of drug studies involves side effects. Even when a treat-

ment is shown to affect a given biochemical/biophysical activity in a manner in 

which it is thought to act (an analysis very rarely practiced in the studies described 

below) the clock disruption may be due to a side effect of the drug. One method for 

determining the action of putative side effects is through the analysis of the effects 

of several different treatments having the same primary target or by the use of 

active and inactive analogs. Another method, which has been recently applied for 

the first time (described below), is the use of mutant strains which are resistant to 

the primary effect of the treatment. 

Since the effect of the treatment may be to perturb a biochemical/biophysical 

activity which is not a component of the clock but which acts through a series of 

one or more intermediates to affect clock variables (see Tyson et al 1976), it is not 

currently possible to distinguish a direct from an indirect mode of action of a treat-

ment on clock function.5 One class of indirect effects could be those mediated by 

entrainment pathways. Since it is currently impossible to separate a clock from all 

portions of an entrainment pathway, the primary effect of a treatment could be on 

some portion of an entrainment pathway, producing a steady-state phase shift. 6 

Even period effects could conceivably be the result of an indirect action of a treat-

ment: dim light lengthens period for many circadian systems, thus a chemical 

treatment which produces a "dim light response" in any portion of the entrainment 

pathway for light could indirectly alter period. 

5. This caveat also applies to genetic perturbations of clock function (see §1.5). 

6. For example, the phase-shifting action of serotonin on the CAP rhythm of the Aplysia. eye may be the 
result of an effect on an entrainment pathway (see Corrent et al 1978; Eskin et al 1982). 
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Only those treatments observed to affect period and/ or steady-state phase are 

described below. Results of treatments which reduce or · abolish rhythmicity or 

which have no observed effect on rhythmicity will not be presented. Treatments 

which inhibit rhythmic expression without altering period (when applied continu

ously) or steady-state phase (when pulsed) could do so by merely blocking the out

put pathway from the clock rather than affecting the time-keeping processes. 

(Hastings 1960). Negative results are inconclusive; treatments with no observable 

effect on rhythmicity may or may not affect the presumed target. In most cases 

comparison between studies will be -limited to those involving the same circadian 

system since a particular treatment might have different effects on clocks of 

different species due to fundamental differences in clock mechanisms between 

organisms. 

1. 4.1 Treatments 'With unknov.m/nonspecific targets 

A number of chemical treatments with undetermined or nonspecific modes of 

action have been shown to alter phase or period in a variety of different circadian 

systems (Table 1). The effects of alcohols on circadian rhythms have been repeat

edly used to implicate membrane fluidity and/ or permeability in clock mechanisms 

(e.g. see Sweeney 1976, 1978; Njus et al 1976; Engelmann and Schrempf 1980) how

ever the effectiveness of alcohols of graded chain lengths on phase-shifting the 

bioluminsescence rhythm of Gonyaulax is not correlated or is inversely correlated 

with their lipid solubility (Sweeney 1978). Acetaldehyde, the immediate metabolite 

of ethanol, is more effective than ethanol in phase-shifting the bioluminescence 

rhythm of Gonyaulax and the effectiveness of aldehydes in phase shifting (like the 

alcohols) is also inversely correlated with chain length (Taylor and Hastings 1979). 

Aldehydes may have multiple cellular sites of action, for example blocking protein 

synthesis or mitochondrial respiration or acting as a sulfhydryl reagent (see Taylor 
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and Hastings 1979). D2 0 and Li+ lengthen period in all circadian systems analyzed 

to date. Both treatments may affect a number of different cellular and subcellular 

activities (see Sheard 1980; Pittendrigh et al 1973) and their specific effect on clock 

function is not known.7 Hormones and neurotransmitters may affect entrainment 

pathways as well as the clock itself .6 The specific clock targets of the other treat-

ments in Table 1 are also not known. In sum, the effects listed in Table 1 provide 

little insight into the molecular basis of circadian rhythmicity at this time although 

such effects may have significance once more is known about clock mechanisms. 

1. 4. 2 Treatments affecting membrane permeabuity /depolarization 

Treatments that appear to alter clock expression via changes in membrane per

meability to ions are shown in Table 2 (listed by organism). High K+ pulses and as 

well as pulses of strophanthidin (a Na-K pump inhibitor) and light produce similar 

PRCs for the the CAP rhythm of the optic nerve of Aplysia and these treatments 

may exert a common clock effect via depolarization (Eskin 1977b, Jacklet and 

Lotshaw 1981) .9 In Gonyaulax, valinomycin (a K+ ionophore) and vanillic acid 10 

produce dissimilar PRCs and both are different from the phase-shifting action of 

light (Sweeney 1974). In Neurospora, nystatin (which permeablizes fungal plasma 

membranes) and valinomycin produce · PRCs similar to that produced by light 

7. Li+ is known to inhibit adenylate cyclase in many systems (see Sheard 1980) and cyclic AMP has been 
implicated in clock function (see below). 

B. The PRC for carbachol, a cholil)ergic agonist, is similar to that produced by light pulses for the NAT 
rhythm in the rat pineal (Zatz 1981). In Aplysia the serotonin and light PRCs are displaced by 180°, 
suggesting that serotonin affects a non-ocular entrainment pathway (Eskin 1979). Serotonin and a 
cAMP analog, 6-benzylthio-cAMP, produce similar PRCs in Aplysia (Eskin et al 1982) suggesting that 
hormones and neurotransmitters might exert indirect clock effects via changes in intracelluar cAMP 
levels (see below). 

9. High K+ and strophanthidin should have opposite effects on intracellular~ concentrations suggest
ing that the primary effect of these treatments is via a change in transmembrane potential rather 
than a change in intracellular ion concentrations (Eskin 1979). Changes in the external concentra
tion of other ions (Na+, Ca++; Mg++) are inefiective in phase-shifting (Eskin 1977a, Eskin and Corrent 
1977). 

10. A substituted benzoic acid, thought to affect membrane permeability to ions. Produces membrane 
depolarization in QQnya.ulax (Kiessig et al 1979). 
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pulses. However light hyperpolarizes Neurospora membranes (Sargent and Briggs 

1967) while the others are believed to be depolarizing agents in Neurospora (Koy

ama and Feldman 1981). In the bean plant, Phaseolus, light pulses and valinomycin 

produce similar PRCs, however the PRC for K+ pulses is very different. Digitonin, a 

detergent, shortens period and it is possible that this is the result of changes in 

membrane permeability. Another compound which is thought to affect ion permea

bility, abscisic acid (a plant hormone), produces only phase delays in both 

Phaseolus and Kalanchoe. Fusaric acid, another compound which appears to have 

general effects on membrane permeability to ions, phase-shifts the leaf movement 

rhythm of Gassypium. While the above results suggest that membrane 

permeability I depolarization plays a role in clock function, direct evidence is lack

ing for such a role. 

1. 4. 3 Inhibitors of oxidative phophorylation/Ca2+ uptake 

Treatments that appear to affect clock function via inhibition of oxidative phos

phorylation and/or Ca++ uptake by mitochondria are shown in Table 3. With the 

exception of one system, the leaf-movement rhythm of Phaseolus, these treatments 

produce phase delays when given as pulses. The energy of electron transport can 

be used in the accumulation of divalent cations or in the formation of ATP, thus 

uncoupling agents such as cyanide, CCmP, and dinitrophenol as well as anoxia inhi

bit both activities. The Ca++ /Mg++ ionophore, A23187, and Mn++ are also thought 

to inhibit both activities by causing the loss of Ca++ out of mitochondria while 

simultaneously inhibiting ATP formation by stimulating the energy-dependent 

uptake of this cation (see Eskin and Corrent 1977). The phase delays observed 

after pulsed treatment of 2-deoxy-D-glucose in Aplysia may also be the result of 

inhibition of ATP formation (Strumwasser et al 1979a). Lanthanum (La3+), which 

blocks Ca++ currents by binding to Ca++ channel binding sites and which displaces 
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ca++ from surface bound cellular sites (Weiss 1974; Hajiwara and Byerly 1981), 

lengthens period in Aplysia. In Phaseolus, cyanide and azide produce phase 

advances rather than delays but this appears to be the result of membrane depo-

larization rather than an inhibition of energy metabolism since the PRCs of these 

two compounds are out of phase with the time course of the energy requirement of 

this rhythm (Mayer 1981). While the role of ca++ uptake by mitochondria in clock 

function is unclear, these studies do suggest that clock function requires an energy 

source, as might be expected. They also suggest that treatments which only pro-

duce phase delays or period lengthening might do so by simply poisoning the clock. 

These studies do not suggest, however, the means by which energy is utilized in 

clock function. 

1.4.4 Treatments affecting cyclic AMP levels 

Treatments that appear to affect circadian clocks via changes in cAMP levels are 

shown in Table 4. In Neurospora, four phosphodiesterase inhibitors, caffeine, ami-

nophylline, theophylline and isobutylmethylxanthine, have been shown to lengthen 

period while an adenylate cyclase inhibitor, quinidine, shortens period. Since theo-

phylline (from which aminophylline is compounded) and caffeine have been shown 

to raise intracellular cAMP levels in Neurospora while quinidine has been shown to 

lower cMIP levels (Scott and Solomon 1975), the effect of these drugs on period is 

correlated with their effect on intracellular cAMP levels. The phase-shifting action 

of these drugs, however, is ri.ot correlated with their effects on cAMP levels: caffeine 

and aminophylline as well as quinidine have very similar PRCs. 11 One explanation 

for this discrepancy is that the phase-shifting action of pulses is the result of side 

11. Isobutylmethylxanthine has a much sma1ler effect on period and produces no significant effect on 
phase; theophylline was not tested for phase efi1;:cts . Period and phase effects were tested under 
different culture conditions in these experiments; under conditions similar to those in which the 
phase effects were tested, theophylline lowers rather than raises intracellular cAMP levels (the effects 
of caffeine and quinidine were not altered). It is therefore possible that aminophylline has the same 
effect as theophylline under these conditions. 
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effects of these drugs which are masked in longer exposures by the effect on cAMP 

levels. The known side effects of methyl xanthine phosphodiesterase inhibitors 

include affects on intracellular Ca++ levels (Cardinali 1980) and inhibition RNA and 

protein synthesis (Costantini et al 1978) and other treatments which are thought to 

affect these activities are observed to have clock effects (see §1.4.2, 1.4.5). 12 

Phosphodiesterase inhibitors also lengthen period in each of the other rhythms 

in which an effect on period is observed (Table 4). In Trifolium, continuous applica-

tion of cAMP also lengthens period but produces a PRC very diiTerent from that for 

pulsed applications of thcophyllinc . lmidazole, an activator of phosphodiesterase, 

produces a PRC similar to that for cAMP pulses, however imidazole would be 

expected to lower intracellular cAMP levels. Thus for this rhythm also the immedi-

ate clock effect of pulsed treatments of one or more of these treatments may be 

the result of a side effect rather than a direct effect on intracellular cAMP levels. 

In addition to the the period lengthening effect of phosphodiesterase inhibitors 

on the CAP rhythm of the Aplysia eye, pulses of papaverine and pulses of the cAMP 

analog, 8-benzylthio-cAMP, phase-shifts the CAP rhythm with a PRC similar to that 

for serotonin (Eskin et al ' 1982). While cAfvIP may have a central role in the time-

keeping system of the Aplysia eye, as described above in §1.3, cAMP may be part of 

an entrainment pathway in the eye such that the clock etiects of treaments that 

alter cAMP levels may have only an indirect effect on this particular clock system. 

In addition, a wide variety of different cellular activities are known to be regulo.tE::d 

by cAMP (see Greengard 1978) such that any disruption of the cAMP system could 

have numerous direct and indirect effects on clock function. 

12. Since the regulatory actions of cAMP und Ca++ arc linked in many cases (see Greengard 1979), treat
ments that affect either Ca++ (e.g. those in Table 3) or cAMP (Table 11) could have a common bnsi3 of 
action. 
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1. 4. 5 Inhibitors of RNA and protein synthesis 

Treatments that appear to affect circadian clocks via inhibition of RNA and/ or pro-

tein synthesis are shown in Table 5. The only reported case of an RNA synthesis 

inhibitor having an effect on period or steady-state phase phase-shifting or an 

alteration in period is the period-lengthening effect of actinomycin D in 

Nicotiana .13 Inhibitors of protein synthesis on 80 S ribosomes, on the other hand, 

have been shown to alt.er steady-state phase or period in a variety of organisms. 14 

In some of these studies the effects of treatments on protein synthesis have also 

been measured. In Euglena, the degree of lengthening of period is proportional to 

the degree of inhibition of protein synthesis by cycloheximide (Feldman 1967). In 

Neurospora, the amount of phase-shifting produced by increasing concentrations of 

cycloheximide is also proportional to the degree of inhibition, with maximum phase 

shifting resulting when protein synthesis is inhibited by greater than 80% (Nak-

ishima et al 1981 a). The phase-shifting effect of cycloheximide appears to be the 

direct result of the inhibition of protein synthesis rather than a side e!Iect of this 

drug since in Neurospora mutants whose ribosomes are resistant, the inhibitory 

effects of cycloheximide on protein synthesis are also resistant to the phase-

shifting action of this drug (Nakishima el al 1981 b ). 

In Aplysia, continuous application of anisomycin at a concentration which inhi-

bits protein synthesis by about 10% lengthens the period of the CAP rhythm of the 

eye by about 1 h while higher concentrations suppress rhythmicity without abolish-

ing CAP activity (Jacklet 1980a). 15 Puromycin and anisomycin pulses produce 

13. Studies in several other organisms (e.g. 11ceta.bularia, Gonyaula.x, NeuroS'fJOTa, Aplysia) report that 
RNA synthesis inhibitors have no consistent effects on period or phase or that rhythmicity is abol
ished (see Sargent el al 1976). The clock efiects of afiatoxin, an inhibitor of both ltNA and protein 
synthesis, is discussed below. 

14. With one exception, inhibitors of oreanclle protein synthesis (i.e. on 70 S ribosomes) have not been 
observed to affect phase or period (sec Sargent et o.l 1976). Both D mid L isomers of chloramphen
ieol shorten the period of the coni<liu lion rhythm of Nc ·urospora. However, since only the D isomer 
has c.n effect on organelle protein synthesis, the clock efiect appears to result from u side efiect of 
this drug (Frehlineer et al 1976). 
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similar PRCs at concentrations which reduce protein synthesis in the eye by ~ 50% 

(Rothman and Strumwasser 1976, 1977; J acklet 1977). The similarity in the PR Cs 

indicate that these two drugs have a common basis of action on the clock. One 

indication that this action is a direct result of the inhibition in protein synthesis 

rather than the result of a side effect is that derivatives of puromycin (pamino 

nucleoside) and anisomycin (deacetylanisomycin), which have no significant effect 

on protein synthesis in the eye, lack the ability to phase-shift the CAP rhythm 

(Rothman and Strumwasser 1976; J acklet 1980b ). 10 Actinomycin D abolished the 

CAP rhythm at a concentration which reduced RNA synthesis (as measured by uri

dine incorporation) by about 60%. 17 Aflatoxin, which was shown to inhibit both RNA 

and protein synthesis in the eye by about 50%, produced phase-delays when applied 

at one phase point and abolished rhythmicity at other phases (Rothman and 

Strumwasser 1976, 1977). Presumably the phase-shifting effect of this drug is the 

result of the inhibition of protein, rather than RNA, synthesis given the clock e!Iects 

of actinomycin D and the protein synthesis inhibitors in this system. 

The results from the Ne·urospora and Aplysia systems provide good evidence that 

the clock effects of protein synthesis inhibitors in these systems are not the result 

of non-specific side effects. The role of protein synthesis in clock function remains 

unknown, however. Since the phase-shifting produced by protein synthesis inhibi-

tors varies with the phase at which pulses are given, presumably the presence or 

activity of certain proteins are required during specific phases of the circadian 

cycle and that at least part ·of the phase-specific regulation of these activities is via 

15. X-irradiation of the eye also suppresses rhythmicity without abolishing CAP activity while at lower 
doses the nmplitudc of the rhythm is decreased without a significant efiect on period (Woolum c.nd 
Strumwas~er 1980). This treatment presumably causes a general inhibition oi gene expression us u 
result of its mu ta tionul effect. 

H3. Three other inactive derivatives of e.nisomycin (not specifically tested for their eiiccts on protein ~yn
thesis in the eye) o.lso failed fo produce phase shifti.r1s (Jacklet 1900b). 

17. Protein synthesis (as measured by leucine incorporation) was also reduced by about 110% but this 
effect was delayed until 49 h after the drug pulse. il1 comparison, close to maximum inhibition of HNA 
synthesis was observed 1 h after trcc.tment. · 
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the de nova synthesis of such proteins at specific phases. Unfortunately, the 

identification of clock components synthesized at particular phases might prove to 

be a difficult task if 1) lhe number of clock proteins synthesized at a particular 

phase is small compared to overall protein synthesis rates, and 2) a large number 

of non-clock proteins are synthesized at specific phases as a result of protein syn

thesis that is regulated by the clock. 
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1.5 Genetic Studies 

Two complementary approaches have been used in the genetic analysis of circadian 

clocks. In the first, mutants with known biochemical lesions have been examined 

for altered clock properties to determine the roles of specific biochemical activities 

in clock function. In the second approach, mutants with altered clock properties 

have been isolated and characterized genetically, physiologically, and biochemically 

to identify the affected clock functions . 

The genetic approach to the identification of clock components is subject to 

some of the same drawbacks as the drug studies. As with a drug treatment, a 

genetic lesion may affect an activity which acts through a series of one or more 

intermediate steps to indirectly perturb clock function. For example, if one or 

more clock functions require ATP as an energy source ( §1 .4.3), mutations that 

either directly or indirectly alter ATP production/utilization could indirectly dis-

rupt circadian time-keeping. The period alterations produced by the oligomycin-

resistant mutants of Neurospora, which effect ATP synthetase, may exert such an 

indirect effect on clock function ( §1.5.1). Since it is currently impossible to distin-

guish a direct from an indirect mode of mutant action, one must invoke an opera-

tional definition that clock components I activities are those that alter period or 

steady-state phase if perturbed.18 Whereas a drug treatment may have multiple 

primary sites of action (e.g. see §1.4.4), only the function(s) encoded by a single 

transcriptional unit are subject to the primary (i.e. initial) effect of a single muta-

tion. However, both drug and genetic lesions could have multiple secondary 

(pleiotropic) effects, with one or more of these effects contributing to a disruption 

of clock function. As an example of a pleiotropic mutational effect, the period 

alterations produced by the eel mutant of Neurospora may result from an altern-

16. As with the drug studies, the simple elimination of rhythmicity may be the result of a disruption of 
an output pathway rather than the result of an effect on a time-keeping function. 



- 20 -

tion in a subunit common to two different enzymes (see §1.5.1). In addition, muta

tions that affect regulatory systems (e.g. the cAMP system) could have numerous 

direct and indirect pleiotropic effects on clock function. The primary advantages of 

the genetic approach are that 1) it provides the only method that is currently avail

able for systematically identifying clock components, 2) genetic mosaics and 

chimeras can be used for identifying the anatomical location of circadian pacemak

ers and their entrainment and output pathways (e.g. see Konopka and Benzer 1971; 

Konopka 1972; Handler and Konopka 1979), and 3) it provides a method in which 

clock genes and gene products can be biochemically marked for isolation and char

acterization via molecular genetic and biochemical techniques. 

1. 5.1 Biochemical Mutants 

The identification of biochemical mutants that affect clock function has been con

ducted using the Neurospora system for which a large collection of previously 

characterized biochemical, morphological, and developmental mutants is available 

for the analysis of clock effects. Biochemical mutants of Neuraspara that have 

been shown to affect the circadian clock system are described in Table 6 (see Feld

man 1981). Two mutants have been shown to affect the clock photoreceptor sys

tem. The respiratory mutant pokey, which has reduced levels of both mitochondrial 

and non-mitochondrial cytochrome, and two riboflavin auxotrophs, which have 

reduced levels of FAD and FAM, exhibit very reduced light sensitivity when assayed 

for the threshold intensity required for inhibition of banding in constant light or 

the dose of light required to reach maximum phase-shifting. The genetic results 

corroborate other physiological evidence that indicates that a plasma membrane 

fiavin/b-type cytochrome complex similar to that found in 'blue light" photorecep

tors of other procaryotic and eucaryotic systems (Ninnemann 1979) is involved in 

clock photoreception in Neuraspora. 
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One class of biochemical mutations that have been observed to alter circadian 

period consist of mutants that confer resistance to the drug oligomycin (Dieck-

mann and Brody 1980). Oligomycin inhibits mitochondrial ATP synthetase. 

Oligomycin-resistant mutations (oli r), which all alter the primary structure of one 

particular subunit of this enzyme, have period lengths that are about 3 h shorter 

than wild-type. However it is not known how the oli r mutants affect the mechanism 

of circadian time-keeping. One possibility is that the clock effect is the result of an 

alteration in ATP production, which would support the evidence obtained from the 

drug studies described above that ATP synthesis either drives clock processes or is 

itself a part of the clock mechanism. 

Mutations that affect the cysteine biosynthetic pathway comprise another class 

of biochemical mutants that have been shown to affect circadian periodicity (Feld-

man et al 1979). When grown on limiting levels of cysteine, cysteine auxotrophic 

mutations at three separate loci exhibit periods which are shortened depending 

upon the extent of cysteine limitation. The mechanism of this clock efiect is unk-

nown. Methionine and arginine auxotrophs are not observed to affect period on 

limiting medium. 19 

One other auxotrophic mutation, eel, which has a defective fatty acid synthetase, 

has also been shown to have an effect on period that is dependent on nutritional 

supplement (Brody and Martins 1979: Mattern and Brody 1979). When supplemented 

with short-chain saturated fatty acids (e.g. 8:0, 9:0) or longer-chain unsaturated 

fatty acids (e.g. 18:2, 18:3), this mutant strain, but not wild-type, exhibited a strik-

ing increase in period, with period lengths as long as 40 h. Long-chain saturated 

fatty acids (e.g. 16:0, 18:0) did not affect period. The biochemical basis of the effect 

19. A number of auxotrophic mutations affecting other pathways of intermediary metabolism have also 
been e:xamined and have not been observed to produce clock defects (Brody and Martins 1973). 
These include auxotrophs for nicotinic acid, nicotinic-tryptophan, histidine, choline, inositol, tyro
sine, trytop:ian, and pyridoxine. Three mu';.ants that slow growth (spco-6, spco-9, and piLe) and three 
mutants with altered morphology of conidiation (fl:uffy, crisp-3, al-2) also had no observable clock 
effect. 
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of this mutant on periodicity is not known. Incorporation of fatty acids is not 

observed to be significantly different between wild-type and the eel strain. Interest

ingly enough, other results suggest that the eel and oli r mutants may have a com

mom basis of action on the clock system. The eel mutant is about three-fold more 

sensitive to oligomycin inhibition than wild-type (Dieckmann and Brody 1980) and a 

eel olir double mutant strain does not exhibit the sensitivity to the unsaturated 

fatty acid 18:2 that is observed for eel alone (Brody and Forman 1980). In addition, 

the eel mutant has been observed to affect the binding of the prosthetic group 4-

phosphopantetheine to a subunit of fatty acid synthetase and 4-

phosphopantetheine is also reported to be bound to a subunit of mitochondrial ATP 

synthetase in yeast (see Dieckmann and Brody 1980). If eel also affects the binding 

of 4-phosphopantetheine to mitochondrial ATP synthetase, then both this mutation 

and the olir mutations may have a common basis of action on circadian rhythmi

city via an effect on ATP synthetase. 

One class of biochemical mutants that is of interest as a result of the absence, 

rather than presence, of an observable clock effect include two derivatives of the 

crisp-1 mutant strain that have significantly reduced levels of adenylate cyclase 

(Feldman et al 1979). Both strains have < 1.% of the wild-type level of adenylate 

cyclase and 9-15% of the wild-type level of cAMP and exhibit wild-type periods. As 

noted above (Table 4), quinidine, an adenylate cyclase inhibitor, produced only a 

very slight change in period when applied continuously to Neurospora cultures. 

Thus both the genetic and pharmacological results suggest that a reduction in 

intracellular cAMP does not affect the expression of normal periodicity in Neuros

pora. The phase-shifting effect of quinidine and the phase-shifting and period

lengthening effects of phosphodiesterase inhibitors in Neurospora remain unex

plained, however. 
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1. 5. 2 Clock Mutants 

By screening mutagenized strains for those that exhibit altered period or phase, a 

number of clock mutants have been isolated in Chlamydomonas, Neurospora, Dro

sophila pseudoobscura and D. melanogaster (Table 7). 

In Chlamydomonas reinhardi, a photosynthetic flagellate which expresses a cir

cadian rhythm of phototaxis, four long-period mutants have been isolated by 

screening mutagenized strains for those exhibiting altered period lengths (see 

Bruce 1976; Feldman 1981). Recombination experiments between the four long

period mutants have demonstrated 1) that all four mutants are unlinked, and 2) 

that the period lengthening effect of combinations of these mutants is additive, i.e., 

the periods of double, triple, and quadruple mutant combinations are lengthened 

by the sum of the lengthening of the single mutants. The additive effects of these 

mutants on period suggest that these genes act independently of each other. When 

heterozygous with a wild-type allele in diploids, per-1 has a dominant phenotype, 

per-2 is recessive, while per-3 is incompletely dominant. One wild-type strain that 

expresses a short-period phenotype and a spontaneous short-period mutant have 

also been identified but have not been characterized. 

In Neurospora crassa, twelve mutants have been isolated which alter the period 

of the conidiation rhythm (see Feldman et al 1979; Feldman 1981). Seven of these 

mutants, with periods ranging from 16.5 to 29 h, map to a single locus (frq). Five 

other mutants (four with. long-period phenotypes and one with a short-period 

phenotype) each map to a unique locus. 

The effects of altered gene dosage of the Neurospora mutants have been exam

ined using heterocaryons which contain both mutant and wild-type nuclei. All of 

the frq alleles expressed intermediate periods when tested in heterocaryons con

taining equal numbers of mutant and wild-type nuclei. These alleles can therefore 
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be described as incomplete dominants. When the ratio of mutant/wild-type nuclei 

was varied, the period length of the three frq alleles tested (frq-1, 7, 8) was altered in 

proportion to the fraction of mutant nuclei present. Two of the mutants at other 

loci ( chr, prd-4) are also incomplete dominants in 1: 1 mutant:wild-type hetero

caryons while three other mutants (prd-1, 2, 3) have recessive phenotypes. 

Interaction between the Neurospora mutants was examined by combining 

mutants at two different loci. Such double mutant combinations had periods rang

ing from 13.7 to 34h and displayed a totally additive effect on period in nearly all of 

the cases. Some of the combinations of long-period mutants had periods longer 

than the sum of the single mutant lengthening effects, but this did not appear to be 

the result of the effect of any one particular mutant. Triple and quadruple mutant 

combinations also expressed an additive effect. One quadruple mutant combination 

has the longest period of any mutant circadian clock: 58 h. 

As described above (§1.1), phase-response curves (PRCs) provide a measure of 

the internal state of a clock throughout the course of a cycle. In order to deter

mine the effects of mutant action on the temporal structure of the Neurospora cir

cadian clock, the phase-shifting response to short-duration light pulses was meas

ured in the frq mutants. Compared to the light PRC of wild-type, the duration of 

one specific portion of the cycle is altered in the PRCs of all of the frq mutants. 

This portion, which corresponds to a 7-h part of the wild-type cycle in the early sub

jective night, is shortened by 2 h in frq-1 and by 4.5 h in frq-2,4, 61 and is 

lengthened by 9.5 h in frq-3 and 14.5 h in frq-7, 8. From these results it would 

appear that the frq gene functions in only one part of the circadian cycle. 

In Drosophila pseudaobscura, five X-linked mutants with arrhythmic eclosion 

phenotypes have been isolated (see Bruce 1976; Konopka 1979, 1981). Recombina

tion and complementation results have shown that these mutants comprise two 
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groups. The three mutants of group 1 are totally arrhythmic in constant darkness 

(DD) and weakly rhythmic in a light-dark (LD) cycle while the two mutants of group 

2 are arrhythmic in both LD and DD conditions. Mutants of either group 1 or 2 fail 

to complement each other but incomplete complementation occurs when group 1 

mutants are combined with group 2 mutants as trans-heterozygotes. These later 

combinations have a long-period phenotype in DD. All of the mutants are incom

plete dominants; in mutant/wild-type heterozygotes, period is normal in DD but the 

phase of the peak of eclosion is altered in LD. 

In Drosophila melanogaster, eleven mutants have been isolated which alter the 

period and/ or phase of the the circadian rhythms of locomotor activity and eclo

sion. Six of these mutants have been mapped to a single locus, called per in the 

3Bl-2 region of the distal X-chromosome (see Konopka 1979, 1981). Two mutant 

alleles, per0 and per02
, completely abolish rhythmicity of both the eclosion and 

locomotor-activity rhythms, perl lengthens the period of both rhythms to about 29 

h, while pers shortens period to about 19 h. The locomotor-activity phenotype of a 

new long-period mutant (perl2
) is very dependent on temperature (see below). 

In addition to the EMS-induced mutations at the per locus, several different 

chromosome aberrations that affect the 3Bl-2 region have mutant per phenotypes 

(described in Chapter 2). Deficiencies of the entire per region and four deficiencies 

and one duplication with 3Bl-2 breakpoints have arrhythmic clock phenotypes. The 

only available translocation with a 3Bl-2 breakpoint, T{1;4)JC43, produces activity

rhythm records that are totally arrhythmic, very long-period (31-39 h), or tran

siently long-period before becoming arrhythmic. 

Five other clock mutants of D. melanogaster have also been isolated. Two X

linked mutants, And (described in Chapter 4) and ClkKos. respectively lengthen and 

shorten period by about 1.5 h. Two autosomal mutants, psi-Z and psi-3, advance 
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the phase of eclosion in an LD cycle and lengthen period in DD, while a third auto-

somal mutant, gat, causes the eclosion rhythm to become arrhythmic within three 

days after a transition from LD to DD. 

All eleven of the clock mutants of D. melanagaster can be characterized as 

incomplete dominants since each of these strains has a partial effect on period 

length or phase of entrainment when heterozygous with their respective wild-type 

allele. While the genetic and functional significance of dominance/recessiveness of 

the Chlamydomonas and Neuraspora clock mutants decribed above is unclear, in 

Drosophila melanogaster, the availability of chromosomal deficiencies and duplica-

tions allows the analysis of gene dosage effects which does allow the characteriza-

tion of mutant gene action. As described in detail in Chapter 3, dosage and comple-

mentation analysis of wild-type and mutant alleles of the per locus suggests that 

the short- and long-period mutants alter period by respectively increasing and 

decreasing per gene or gene-product activity and that arrhythmic mutant pheno-

types result from very large reductions or the total loss of per activity. 

As described above ( §1.1 ), temperature compensation of period is a basic feature 

of all circadian clock systems. Several of the D. melanogaster clock mutants have 

been examined for their effects on the temperature compensation mechanism (Orr 

1982). Between 17° and 25° C the period of wild-type is shortened by 0.3h (from 

24.1 to 23.Bh), the period of pers is shortened by about 1 h (from 19.5 to 18.7h), 
.; 

while the period of perl is lengthened by about 3h (from 27.Bh to 30.5 _h). The 

period phenotype of perl2 has even a greater dependence on temperature. At 17° C 

period is lengthened to about 28 h; at 22° C the period of most individuals is 

lengthened to about 29 h while other individuals are arrhythmic; at 25° C rhythmi-

city is abolished in all but a few individuals (the average period of the rhythmic 

individuals is about 30 h). The long- and short-period mutations apparently have an 

inverse effect on the temperature compensation mechanism of the Drosophila clock 
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but it is unclear whether this is a direct or an indirect effect of the clock defects 

producing period alterations in these mutants. In contrast to the large effects of 

temperature on the periods of the per mutant alleles, between 1 7° and 25° C, the 

period of ClkKOB is shortened by about the same amount as wild-type (0.3 h) while 

the period of And is shortened by less than 0.01 h. Apparently the ClkKOB and And 

mutations do not afiect the temperature compensation mechanism. 

The phase-resetting response of the locomotor-activity rhythm to short-duration 

light pulses has also been determined for several of the D. melanogaster clock 

mutants (Orr 1982). A comparison of the PRCs wild-type, per5 and perl suggests 

that the short- and long-period mutations alter the period of the circadian clock by 

differentially shortening and lengthening one portion of the circadian cycle, that 

corresponding to the light insensitive phase (the subjective day). 20 While the period 

alterations produced by And and ClkKOB could not be localized to one portion of the 

cycle, the 6 h phase delay portion of the circadian cycle does not appear to be 

affected by these mutations or by the per5 and pert mutations. 

In addition to their effects on circadian periodicity, the per mutants have been 

shown to alter the period of a very short-term rhythm in the male courtship song of 

Drosophila in a fashion parallel to that observed for circadian rhythmicity: the per5 

allele shortens the normal 54 s period of the song oscillation to 42 s, pert lengthens 

period to 82 s, and per0 abolishes rhythmicity (Kyriacou and Hall 1980). While not 

all aspects of the genetic behavior of the per mutants are identical for both 

rhythms (see § 3.5), the observation that the per mutants alter both circadian and 

ultradian periodicities suggest that the per gene may encode a fundamental clock 

function that is commmon to all time-keeping activities in this organism. 

20. The frq mutants of Neurospo.ra, which also ha-.,re both long- and short-period phenotypes, alter a 
different portion of the circadian cycle (the early subjective night; see above) compared to the per 
mutants, but direct comparison of clock functions coded by these two loci would be premature 
without knowing the degree of homology between the clock mechunisms of these two circadian sys
tems. 
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Recombinant DNA techniques are currently be used in an attempt to identify and 

characterize the sequence organization of the wild-type and mutant per alleles (J. 

Perlman, personal communication). The molecular localization of the DNA 

sequence comprising the per locus will be very much aided by the availability and 

phenotypic characterization of several chromosome aberrations with a breakpoint 

in the region of the per locus (described in Chapter 2). 
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1.7 Tables 

Table 1. Chemica1 treatments that affect circadian clocks: 
unknown/nonspecific clock targets 

Treatment 

ethanol 

Aldehydes7 

D20 

Li+ 

hormones: 
estradiol 
testosterone 
melatonin 

neurotransmtrs : 
serotonin 
carbachol 17 

pentobarbita1 

sulfhydral reagents: 
PCMB 13 

arsenite 

acetoazolamide14 

Rhythms: 

Organism1 

protists.f lants, 
animals 

Gonya.ula.z 

protists gP1ants, 
animals 

plants, 
anima1s11 

Mesocricetus 
Mus 
Passer 

Aplysia. 
rat pineal20 

Ra.ttus 

Gonya.ula.z 

Gonya.ula.x 

E:ffect 

phase2 period3 

A+D5 s611 

none De 

DlO L 

D12 L 

8 15 

8 1s 

8 16 

A+D19 
A+DZO 

D 

A 
A+D 

A+D 

Reference 

see Engelmann and 
Schremph 1980 

Taylor and Hastings 1979 

see Engelmann and 
Schremph 1980 

see Engelmann and 
Schremph 1980 

Takahashi&Menaker'BO 
Daan et al 1975 
Turek et al 1976 

Corrent et al 1978 
Zatz 1981 

Ehret et al 1975 

Hastings 1960 
" 

Sweeney 1976 

protists: Conyaula:z: =photosynthesis or stimulated bioluminescence; Eugtena. = phototaxis 
plants: Pkaseolus. Kalanchoe, Desmonium=leaf or petal movement 
animals: Drosophila, Passer (sparrow). Mus (mouse). Mesocricetus (hamster), Perorn.ycus (deer mouse) 

= locomotor activity 
Rattus =body T0 

Aplysia = compound action potential (CAP) activity of optic nerve 
2 pulsed treatment: A= advances. D =delays 
3 continuous application; S =shortening. L=lengthening 
4 e .g. Gonya.ulcr.z. Euglena. Phaseolus, Kalanchoe, Desmonium, Peromyscus 
5 in Gonya:ula:z:; no phase shifts observed in Eu.glena. 
6 in Gonyaula:z: and Kalanchoe 
7 formaldehyde. acetaldehydc, butraladehyde and propionaldehyde 
B possibly advances as well 
9 e.g. Gonya:ulax, Pha.seolus, Kala.nch.oa, Aplysi.a.. Excirolana., Drosophila., Peromyscus 

10 in Phaseolus, Kalanchoe 
11 e .g. Phaseolus. Kalanchoe, (Aplysia: Strumwasscr and Viele 1980), Luucophea. 
12 in Aplysia (Eskin 1977,1979) 
13 p-chlcromercuribenzoatc 
14 inMbits cabcnic anhydrase (changes COz availability?) 
15 only by 0.1-0.3 h 
16 by? 
17 chlolinergic agonist 
18 pineal serotonin N-acetyltransferase activity 
19 PRC is simibr to that for B-benzylthio-cAMP (Eskin et al 1982; see Table 4) 
20 PRC is similar to PRC for light pulses 
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Table 2. Chemical treatments that affect circadian clocks: 
Membrane permeability /depolarization effects 

Organism1 Treatment Effect 

Gonyaula.x 

Neurospora 

Gossypium 

Kalanchoe 

Phaseolus 

Aplysia. 

valinomycin 
vanillic acid 

valh1omycin 
nystatin 

fusaric acid 

abscisic acid 

K+ 
valinomycin 
digitonin 
abscisic acid 

rtigh K+ 
strophanthidin 7 

phase2 

A+D 
D 

A+D5 

A+D5 

A+D 

D 

A 
A+D 

D 

A+D4 

A+D4,6 

Neurospora (fungus)= conidiation; 
Gossyp"i:um (cotten) =leaf movement 

(see footnote 1 of Table 1 !or others) 
2 pulsed treatment; A= advances. D =delays 
3 continuous application; S = shortenir.g 

period3 

none 

s 
none 

4 similar PRC's (also similar to PRC for light pulses) 
5 similar PHC's (also similar to PRC for light pulses) 
6 phase-shiiting abolished in low· Na+ 
7 Na-K pump inhibitor 

Reference 

Sweeney 1 976 
Kiessig et al 1979 

Koyama and Feldman 1981 
Koyama and Feldman 1981 

Sundararajan et al 1978 

Schremph 1980 

Bunning and Moser 1973 
Bunning and Moser 1972 
Keller 1960 
Schremph 1980 

Eskin '72, Jacklett & Lotshaw '81 
Eskin 1977b 
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Table 3. Chemical treatments that affect circadian clocks: 
Inhibitors of oxidative phosphorylation and/or 

Ca++ !Mg++ uptake by mitochondria. 

Organism1 Treatment Effect Reference 

phase2 period3 

Gonyaulax CCmP4 D Sweeney 1976 

Kalanchoe cyanide D Steinheil 1970 

Phaseolus cyanide A5 Mayer 1981 
azide A5 

cyanide D7 Eskin and Corrent 1977 
dinitroP,he:'J.ol D7 

Aplysia 
A23187(6) D7 
Mn++ D 
2-deoxy-D-glucose n·· Strumwasser et al 1979a 
La3+ L Woolum and Strumwasser 1981 

Drosophila anoxia (N2) DB Pittendrigh 1974 

sec footnote 1 of Table 1 
2 pulsed treatment; D =delays 
3 continuous application; L= lengthening 
4 carabonyl cyanide m-chloro phenylhydrazone 
5 similar PRCs; membrane depolarization effect? (see text) 
6 Ca++ /MG++ ionuphore 
7 similar PRCs 
8 possibly advances as well 

•• only 2 phase-points tested 



- 39 -

Table4. Chemical treatments that affect circadian clocks: 
Putative effects on cAMP levels 

Organism1 Treatment2 Effect Reference 

phase3 period4 

Chlamydomona.s caffeine L Goodenough & Bruce '81 
theophylline L 

caffeine A+D5 L Feldman '75; Perlman 'Bl 
theophylline L Feldman '75 

Neurospora aminophylline A+D5 L Feldman '75; Perlman '81 
iso butylmethylxanthine none L Perlman '81 

quinidine A+D5 56 Perlma:.:i '81 

caffeine A+D9 Mayer and Scherer 1975 
Ph.a.seolus theophylline A+D9 L Keller '60; Mayer et al '75 

papaverin L Keller 1960 

cAMP D1 L Bollig et al 1978 

'l'rifolium theophylline A+D L " 
imidazole D1 none 

8-benzylthio-cAMP A+D8 Eskin et al 1982 

caffeine L Woolum & Strumwasser 'Bl 

theophylline L 
Eskin et al '82 

Aplysia. none Woolum & Strumwasser 'Bl 

iso butylmethylxanthlne L 
Eskin et al 1982 

none Woolum & Strumwasser '81 
papaverine A+D8 Eskin et al 1982 
Ro-20-1724 A 

Ra.ttus theophylline A+D Ehret et al 1975 

Tri.Jolium = lea! movement rhythm 
(see footnote 1 of Tables 1.2 for others) 

2 caffeine. theophylline, aminophylline, isobutylmethylxanthine, papavarin, 
and Ro-20-1724 (an im.idazolidinone) are phophodiestcrase inhibitors; 

quinidine is an adenylate cyclase inhibitor: 
im.idazole is an activator of phosphodiesterase 

S pulsed treatment: A= advances, D =delays 
4 continuous application: S =shortening, L =lengthening 
5 similar P RCs 
6 by< 1 h 
7 w:ry similar PRC's 
8 simHar to the PRC for serotonin (Table 1) 
9 similar PRCs ??? 
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Table 5. Chemical treatments that affect circadian clocks: 
Inhibitors of RNA and protein synthesis 

Organism1 Treatment2 Effect 

phase3 period4 

cycloheximide A+D 

Gonyaula.x streptimidone A+D 

puromycin D 

anisomycin n· 

Acetabu.laria cycloheximide D 
puromycin n·· 

Fluglena cycloheximide L 

Neurospora cycloheximide As 

Phaseolus cycloheximide A+D 

Nicotiana actinomycin D L 

a:flatoxin 05,10 

Aplysia cycloheximide n•.1 
puromycin A+D7,6 
anisomycin A+DB,9 L 

Ni.cctiana =sap exudation rhythm in roots 
Acetabutaria. (protist) = photosynthesis rhythm 

(see footnote 1 of Tables 1.2 for others) 

Reference 

Walz and Sweeney 1979 
Dunlap et al 1980 
Hastings et al 1 981 
Karakashian & Hastings '63 
Hastings et al 1981 
Hastings et al 1 981 

Karakashian & Schweiger '76a,b 
Karakashian & Schwieger '76a 

Feldman 1967 

Nakashima et al 1981a,b 

Mayer and Knoll 1981 

MacDowell 1964 

Rothman & Strumwasser '76,'77 

Rothman & Strumwasser '76, '77 
Rothman & Strumwasser '76,'77 
Jacklet 1977, 1980a,b 

2 cycloheximide, stepaimidone, puromycin, and anisomycin are 

3 
4 
5 
6 
7 
8 
9 

10 
• 

•• 

inhibitors of protein synthesis on 80 S ribosomes; 
actinomyci'l Dis an inhibitor of RNA synthesis; 
afiatoxin is an inhibitor of both protein (on BOS ribiosomes) and RNA synthesis 
pulsed treatment: A= advances. D =delays 
continuous application; L =lengthening 
uridine incorp. inhibited by 50-75%; leucine incorp. inhib. by 40-70% 
maximum phase-shifting when leucine incorp. inhibited by> 80% 
leucine incorp . inhibited by about 50% 
similar PRC's 
leucine incorp. inhibited by 80-90% 
at only 1 phase-point; rhythmicity abolished at other phases 
only 1 phase-point tested 
only 2 phase-points tested 
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Table 6. Biochemical mutants of Neurospora, that affect clock or clock-related functions 

allele 

pokey 

rib-1 
rib-2 

wild-type 

oli·r (16-1) 
olir (16-3) 
olir (16-14) 
olir (16-16) 

Biochemical e:ff ect 

respiratory 
mutant1 

riboftavi..n auxotroph3 

oligomycin resistant 8 

oli5 (16-16R45) oli-sensit. revertant 

cys-x 

eel 

cysteine auxotroph 7 

fatty acid 
auxotroph8 

double mutant · 

Clock Phenotype 

decrease in 
light sensitivity2 

,,4 

,,5 

period (h) 

21.5 

18.5 
18.5 
18.5 
19.1 

22.2 

medium 

low meth. 
high meth. 

fatty acid 
supplement 

none 
8;0 
9:0 

16:0 
18:0 
18; 1 
18:2 
18;3 

18:2 

period 

18.8 
22.0 

period 

21.5 
29.1 
35.5 
21.6 
21.7 
26.0 
40.5 
33.0 

!:!!W,t, 

1 also non-mitochondrial cytochrome reduced by 0.84 

Reference 

Brain et al 1977 

Paietta & Sargent 'Bl 

Dieckmann & Brody '80 

Feldman et al 1979 

Brody & Martins '79 ; 
Mattern & Brody '79 

Brody & Forman '80 

2 1 /50th as sensitive (assayed as threshold intensity for inhibition of banding in constant light) 
3 on ribol1avir:.-limiting medium 
4 1!80th as sensitve in damping response (see# 2 above): l /16th as sensitive in phase-shifting response -

(assayed ac dose requfred to reach maximum phase-delays) 
5 I 14th as sensitive in phase-shifting response (see f/4 above) 
6 all alle1es affect one of the subunits of mitochondrial ATP synthetase 
7 cyc-4 and cys-12 muto.nts show similar effects 
B defective fatty acid synthetase 
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Table 7. Circadian clock mutants 

Organism allele1 mutagen2 map loc. period3 dominance Reference 

Chlamydo mona.s w.t. 23.5-254 

(phototaxis) 
5 BO- - ? 21 ? Bruce 1972 

w c1 
spont. ? 21.5 ? 

per-1 NG ?17 27 do min. Bruce 1974; 
per-2 NG ? 26.5 recess. Bruce & Bruce '78 
per-3 NG ? 26.5 ? 
per-4 NG ? 28 incompl. 

NeuT"Jspora w.t. 21.6 
( conidia ti on) 

frq-1 NG VII R 16.5 incompl. Feldman & Hoyle '73 
frq-2 19.3 incompl. 
frq-3 24.0 incompl. 
frq-4 19.3 incompl. 
frq-6 19.2 inc om pl. Gardner & Feldman '80 
frq-7 29.0 inc om pl. 
frq-8 29.0 incompl. 

chr NG VIL 23.5 incompl. Feldman et al 1979 

prd-1 NG III C 25.8 recess. . Feldman & Atkinson '78 

prd-2 UV VR 25.5 recess. Feldman et al 1979 

prd-3 UV IC 25.1 recess. 

prd-4 UV ? 18.0 incompl. 

Drosophila w.t. 24 
pseudoo bsura. 
(eclosion) group 1 EMS x arrhy. incompl. Pi ttendrigh 1 97 4 6 

group 2 EMS x arrhy. incompl. 

Drosophila w.t. 24 
mela.nogaster 

(eclosion & per0 EMS X:3Bl-2 arrhy. incompl.7 Konopka & Benzer '71 
locom. act.) pera2 arrhy. incompl.7 Smith & Konopka '8211 

per5 19 incompl. Konopka & Benzer '71 
pert 296 incompl. 
pert2 30/arr.6•16 incompl. Orr 1982 
perJC43 X-ray9 see# 10 incompl.7 Smith & Konopka '81 12 

And EMS X:10E2-Fl 25.5 incompl. see Chapt. 4 

ClkKOa EMS X:distal 22.56 incompl. Orr 1982 

psi-2 EMS II see# 13 incompl. Jack son 1981 

psi-3 EMS III see# 14 incompl. 

gat EMS II see# 15 incornpl. 

1 ,.,.t.= wild-type 
2 NG= nilrosot{uanidine: EMS= ethyl methane sulionate 
3 inh 
4 for 5 difierent ,.,.t. strains 
5 wild-type strain (one of 6 tested) 
6 sec also Bruce 1976, Konopka 1979 
7 see Smith and Konopka 1982 = chapter 3 
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8 eclosion rhythm not tested 
9 from T(1:4)JC43. however this per mutant may have an orgin independent of the X-ray induced 3Bl-2 breakpoint 

10 31-39 hand/or arrhythmic activity records (as 1 dose in a female); eclosion is completely arrhythmic 
11 Chapter 3 
12 Chapter 2 
1~ cclosion peak is phase advanced by 2-3 h in LD 12:12; 25-20 h eclosion rhythm period 
14 eclosion peak is phase advanced by 3-4 h in LD 12: 12: 24-25 h eclosion rhythm period 
15 '!.\Closion is arrhythmic in DD after 2 d of transient rhythmicity 
16 period is T° dependent: at 25° C. period= 30.3 ± 2.3 (n=8) + n=l 9 are arrhythmic 
1 7 per 1-4 arc unlinked 
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Chapter 2 

Circadian Clock Phenotypes of Chromosome Aberrations 

with a Breakpoint at the per Locus* 

• Smith RF, Konopka RJ (1981) Mol Gen Genet 183:243-251 
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2.1 Summary 

The circadian rhythm phenotypes of eight chromosome aberrations with a break

point in the region of the per locus (3B1-2) were analyzed. Two duplications and 

five deficiencies with a 3B1-2 breakpoint produce either a wild-type or an 

arrhythmic clock phenotype while one translocation with a 3B1-2 breakpoint, 

T(1;4)JC43, produces locomotor-activity rhythms with either very-long periods (31-

39 hr), rhythms that grade into arrhythmicity, or completely arrhythmic pheno-

types. This is a unique phenotype that had not previously been observed for 

mutants at the per locus. An extensive complementation analysis of 3Bl-2 chromo

some aberrations and per mutant alleles provided no compelling evidence for 

genetic complexity at the per locus. This is in contrast to the report of Young and 

Judd ( 1978). Analysis of both the locomotor-activity and eclosion phenotypes of 

3B1-2 chromosome aberrations did not uncover differences in the genetic control of 

these two rhythms. The clock phenotypes of 3Bl-2 chromosome aberrations, the 

three per mutant alleles, and per+ duplications suggest that mutations at the per 

locus shorten, lengthen, or eliminate periodicity by respectively increasing, decreas

ing, or eliminating per activity. 
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2.2 Introduction 

Daily rhythmicity in behavioral and physiological activity has evolved as an adaptive 

response to the 24-hour fluctuations in the environment. When these rhythms per

sist in the absence of environmental cues and have a period of around one day, 

they are termed circadian. Genetic analysis of the circadian "clock" mechanism can 

be performed by the isolation and characterization of mutations that alter period 

or phase. Circadian clock mutants have been isolated in Drosophila melanogaster 

(Konopka, 1979), Drosophila pseudoobscura (Pittendrigh, 1974), Neurospora (Feld

man et al., 1979) and Chlamydomonas (Bruce,1976) . Of these, only in Drosophila is 

it possible to conduct a genetic analysis of the neural mechanisms underlying cir

cadian behavior. 

In Drosophila melanogaster, three mutant alleles of the per locus have been iso

lated that drastically alter the period of the adult emergence ( eclosion) rhythm and 

the adult locomotor activity rhythm (Konopka and Benzer, 1971). The pers allele 

shortens the normal 24-hr period of both rhythms to about 19 hr, the perl allele 

lengthens the period to about 29 hr, while the per0 allele completely abolishes 

rhythmicity. The per locus maps within one of the most extensively investigated 

regions of the Drosophila genome, between zeste and white on the distal X

chromosome (Konopka, 1972, 1979). Its location, between a lethal complementa

tion group assigned to band 3B1 and another lethal group assigned to band 3B2 

(Young and Judd, 1978) is within one of the few known regions of the Drosophila 

genome that contains more than one gene per polytene chromosome band (see 

Lefevre, 1974: Judd, 1977). 

The existence of several chromosomal aberrations with a breakpoint in the 3B1 -2 

region (see Young and Judd, 1978) provided u:3 with an opportunity to study the 

locomotor activity and eclosion rhythm phenotypes of additional mutational events 
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at the per locus and to compare these phenotypes to those of the 3 previously iso

lated per mutants. An analysis of the clock phenotypes of 3B1-2 chromosome aber

rations seemed particularly intriguing since these chromosomes have been 

observed to exhibit complexity in their complemenation behavior (Young and Judd, 

1978). We report here that an extensive complementation analysis of 3B1-2 chro

mosome aberrations provided no compelling evidence for genetic complexity at the 

per locus. 
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2.3 Materials and Methods 

The cytogenetic extent of the chromosome aberrations used in this study are shown 

in Fig. 1. A description of these chromosome aberrations and other mutants of D. 

melanogaster used in this study can be found in Lindsley and Grell ( 1968), Judd et 

al. (1972), Young (1975), Young .and Judd (1978) and Liu and Lim (1975). 

T(l ;4)JC43 also carries an inversion, In( 1 )3B1-2; 3E3-4 (G. Lefevre, personal com

munication). Df{l)TEM-ZOZ was kindly provided by Dr. J.K. Lim .. All other chromo

some aberration stocks and the two zw lethals were kindly supplied by Dr. Burke 

Judd. The per0 chromosomes were marked with y or w spl or sn3 m. The pers chro

mosomes carried w spl or y sn3 m. The perl chromosomes were unmarked or 

marked with y sn3 m. The w+Y chromosome was obtained from a 

Df{1)64j4/ w+ Y/ C{l)DX stock. In the activity-rhythm studies, per+ X

chromosomes were obtained from a Canton-S ( C-S) wild-type strain. In the eclosion 

studies, per+ chromosomes were either C-S or FM?. 

Locomotor activity of individual adults was monitored at constant tempera

ture (± 0.5°C) in the range 23-25°C and in infrared light using a device similar to 

that described previously (Konopka and Benzer, 1971). The wing-tips of most flies 

used in locomotor-activity studies were clipped to facilitate movement in the 

activity monitor chamber. This operation had no effect upon rhythm phenotype. 

The number of activity events per hour was electronically counted and computer

plotted. The periods were determined as the average interval between successive 

offsets for each cycle. The activity offset was defined as the time at which the fal

ling edge of the activity peak drops to a point halfway between its maximum and 

minimum amplitude, estimated to the nearest half-hour. For all except the very 

long-period rhythms, period estimates were obtained from those records showing at 

least 6 cycles of rhythmicity. Since the phase of activity offsets of the very long-
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period rhythms were often difficult to assess, the periods of these rhythms were 

obtained by periodogram analysis (Enright, 1965) for those records showing at least 

4 cycles of rhythmicity. 

For the determination of activity and rest durations, periodogram analysis 

was used to determine period and form estimates were used to determine the phase 

of the activity peaks. The activity onset and offset of each cycle were defined as 

that time at which 20% and 95% of the total summed counts of each cycle had 

occurred, measured to the nearest hour (Konopka and Orr, 1980). This yields a 

measure of alpha (the duration of the active portion of each cycle) which is similar 

to that obtained from visual analysis of activity profiles recorded using an 

Esterline-Angus event recorder. Some single hourly data points of the raw activity 

records were found to have a very large amplitude (larger than twice the maximum 

amplitude of the other data points) apparently as the result of continuous blocking 

of the light beam by the fly. Since the periodogram and activity-rest duration ana

lyses are very sensitive to such large amplitude spikes in the data, such points were 

replaced by the average amplitude of the two data points immediately preceding 

and following this point. No more than 4 such points were averaged in any record. 

Eclosion rhythms were monitored in constant darkness and constant tem

perature using 'bang-boxes", as described previously (Konopka and Benzer, 1971). 

Some of the bang-boxes were generously provided by Dr. Colin Pittendrigh. The 

bang-boxes automatically collected flies that emerged each hour; these flies were 

subsequently scored and counted. Crosses were reared at the same temperature at 

which the eclosion rhythms were monitored ( 18, 22 or 25°C). Between 18 and 25°C 

the variability in the period of the eclosion rhythm of wild-type and the per 

mutants is on the order of an hour (Konopka and Benzer., 1971). Most eclosion runs 

were conducted at 18°C since this temperature maximized run duration. This 

allowed a more accurate estimate of period than at higher temperatures without 
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seriously decreasing the amplitude of the eclosion peaks. The period of the eclosion 

rhythm was determined as the average interval between medians of each eclosion 

peak, wilh each median estimated to the nearest half-hour. 
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2.4 Results 

2.4.1 Activity Rhythm Phenotypes of 3B1-2 Chromosome Aberrations 

Since the chromosome aberrations studied are lethal when homozygous, the clock 

phenotypes of 3B1-2 chromosome aberrations were first monitored in combination 

with per0
. Since per0 acts as a recessive null allele of the per locus (Konopka and 

Benzer, 1971), the period phenotype of each of the 3B1-2 chromosome aberrations 

should be fully expressed when combined with per0
. 

A wild-type phenotype (i.e. 24- 25 hr period) was displayed by Dj{l)K95, Df(l)w-

64d (Table 1) and Dp(l ;4)wm55g (Table 3). Figs. 2a and 2b show the locomotor 

activity records of individuals of the genotype per0 /per+ and per0 /Df{l)K95. To 

the right of each record is a periodogram, which is a statistical analysis of the 

strength of a record's periodicity. Peaks in the periodogram indicate periodicity in 

the data at the designated trial period. The periodograms of both records show a 

large peak centered at 24-25 hr and at 48 hr. A large peak at 48 hr and smaller 

peaks at 12 and 36 hr which appear in many wild-type periodograms (e.g. Fig. 4a) 

represent harmonics of the 24-hr rhythm (Enright, 1965). 

·Arrhythmic activity phenotypes were produced by deficiencies for the entire 3B1-

2 region, Df{l}wrJl and Dj{1)64f 1, and by the 3B1-2 chromosome aberrations 

Df{1)64j4, Df{1)62d18, Df{l)TEM-202 (Table 2) and Dp{J,·3)wm49a (Table 3). Figs. 

2c and 2d show activity records of individuals of the genotype per0 IDf{l)wrJ1 and 

per0 I Df(1)62d18. The periodograms of these records show no prominent peaks. In 

the case of Dp(l ;3)wm49a, arrhythmicity could be the result of a wild-type per gene 

that is inactivated by position-effect variegation rather than of a break within the 

per locus since the white, roughest, and Notch loci within the duplicated segment 

are variegated (Lefevre, 1951). 
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A unique phenotypic class is produced by a translocation with a 3Bl-2 break

point, T(l ;4)JC43 (Table 2). Six of the fourteen T(l ;4)JC43/per0 individuals moni

tored displayed 4-6 cycles of very long-period rhythmicity (average period 35 hr) . 

The variation in cycle length of these individuals was greater than that observed for 

other rhythmic phenotypes . The other T(l ;4)JC43/per0 individuals showed either 

transient long-period rhythmicity that graded into arrhythmicity (designated "long

arr" in Table 2) or were arrhythmic from the onset of the run. 

Very long-period and arrhythmic phenotypes were also observed when 

T(l ;4)JC43 was combined with any of the deficiencies with an arrhythmic pheno

type (Table 2). Fig. 3 shows examples of an arrhythmic, a long-arrhythmic and a 

very long-period activity record obtained from Df{1)64j4/T(l ;4)JC43 siblings that 

were monitored simultaneously. Fig. 3a is a completely arrhythmic record with a 

virtually fiat periodogram. Fig. 3b shows a record which is weakly rhythmic for 1-2 

cycles before becoming arrhythmic. The periodogram shows a broad hump between 

28-37 hr . Fig. 3c shows a very long-period record which is rhythmic up to the end 

of the activity run. The periodogram shows a higher and narrower peak centered at 

36 hr. 

The X-distal, 4-proximal element of T(l ;4)JC43 can be combined with the X

proximal, 2-distal element of T(1;2)RC45 to form a synthetic X-chromosome 

deficiency extending proximally from the 3Bl-2 breakpoint of T(l ;4)JC43 to the 3C2 

breakpoint of T(l ;2)RC45 (Fig. 1; Table 2) . Since this synthetic deficiency also 

exhibits the very long-period and long-arrhythmic phenotypes when combined with 

per0 (Table 2), that portion of the per locus which is distal to the 3B1-2 breakpoint 

of T(l ;4)JC43 is sufficient for the production of the very long n.nd long-arrhythmic 

phenotypes. Although T(1;4)JC43 is inviable when homozygous as a result of at 

least one lethal mutation proximal to white, the combination xD 4P JC43; 
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JC~RC45/ T(1;4)JC43 is viable and exhibits much stronger rhythmicity than 

per0 /T(1 ;4)JC43 (Table 2; Fig. 3d). Almost all the individuals of this genotype 

displayed very long-period rhythms and none were completely arrhythmic. We have 

not been able to construct a synthetic deficiency using the X-distal element of 

T( 1 ;4)JC43 that would extend distally from the 3Bl-2 breakpoint of T( 1 ;4)JC43. 

Of all of the T(l ;4)JC43 and XD4P JC43 ,· Xp~RC45 genotypes that produced very 

long-period and long-arrhythmic phenotypes, only one individual of each of the 

genotypes Df{l)TEM-202/T{1;4)JC43 and Df(1}64j4/XD4PJC43; XP2DRC45 was 

observed to have a near wild-type phenotype. However, rhythmicity was weak for 

both individuals. The periodograms displayed only a small peak at 25 hr and 23 hr, 

respectively (Table 2 and 5a). 

Since Young and Judd (1978) observed several examples of complex complemen

tation behavior for 3Bl-2 chromosome aberrations, these chromosomes might show 

a different pattern of complementation when combined with the other per alleles. 

Complementation tests were therefore performed using the pers and perl mutants. 

With the exception of T(1;4)JC43, 3Bl-2 chromosome aberrations were found to 

exhibit the same pattern of complementation with respect to all three mutant per 

alleles. Those 3B 1-2 chromosome aberrations that behave as per+ when combined 

with per0 (Df (1)K95 and Df (l)w- 64d) also behave as per+ when combined with per 

or perl (Table 1). Likewise, those 3Bl-2 chromosome aberrations that behave as 

per0 when combined with per0 (D/(1)64j4, Df{1)62d18 and Df{l)TEM-202) also 

behave as per0 when combined with pers or perl (Table 2). The alleles of the 2 lethal 

complementation groups flanking the per locus, l(l)zw3 and l(1)zw6, also behaved 

as per+ in all of the combinations tested (Table 1). 

T(1 ;4)JC43, however, does exhibit a difference in complementation pattern when 

combined with the different per alleles (Table 2). When combined with per0
, 
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T(l ;4)JC43 exhibits weak rhythmicity in its expression of very long-period pheno

types and thus acts as a hypomorph. When combined with either per5 or perl, on 

the other hand, T(l ;4)JC43 behaves as a deficiency for the entire 3B1-2 region, and 

thus acts as an amorph. 

3B1-2 chromosome aberrations were also combined with per+ to test for dom

inant mutant effects. All such combinations exhibit a wild-type (24-25 hr period) 

phenotype (Tables 1 and 2). 

In order to test for complex complementation behavior between two different 

3B1-2 chromosome aberrations, complementation tests were performed 1) between 

T(l ;4)JC43 and all of the deficiencies with a 3B1-2 breakpoint, and 2) for most of 

the viable combinations of two deficiencies with a 3B1-2 breakpoint. No examples 

of complex complementation behavior were observed for any of these combina

tions. Those chromosomes that behaved as per+ when combined with the per 

mutant alleles also behaved as per+ when combined with T(1;4)JC43 (Table 1) while 

those chromosomes that behaved as per0 also behaved as per0 when combined with 

T(J ;4)JC43 (Table 2). Similarly, those combinations which included at least one of 

the two deficiencies with a wild-type activity phenotype, Df(1)w- 64d and Df(1)K95, 

also exhibited a wild-type phenotype (Table 4a; Fig.4a) while those combinations 

which included only deficiencies with an arrhythmic phenotype, Df(1)64j4, 

Df (1)62di 8, and Df (l)TEM-202, also produced arrhythmic phenotypes (Table 4a; 

Fig . 4b). 

2.4.2 Eclosion Rhythm Phenotypes of 3B1-2 Chromosome Aberrations 

The eclosion phenotypes of various 3B1-2 chromosome aberration genotypes were 

monitored tc detect differences in the genetic control of the eclosion and activity 

rhythms. Tables 4b and 5 show that with the exception of those T(1;4)JC43 geno-



- 55 -

types that showed the long-arrhythmic phenotypes, all of the genotypes monitored 

displayed an eclosion phenotype which corresponds to its activity rhythm pheno

type . Figs. 5a-d show examples of wild-type and arrhythmic eclosion profiles pro

duced by the 3B1-2 chromosome aberrations, Df{l)w- 64d and Df{1)64j4 and by the 

combinations Df{1)64j4/Df(l)w- B4d and Df{1)64j4/Df(l)TE.M-202. Young and 

Judd (1978) reported that the combination Df(l)w- 64d /Df(1)64j4 produced a long

period (28-hr) eclosion profile. We found that this genotype produces a wild-type 

phenotype for both the activity and the eclosion rhythm (Table 4b; Figs. 4a and 5c). 

T(l ;4)JC43 was the only chromosome that did not produce similar eclosion and 

activity rhythm phenotypes. Those T{1;4)JC43 genotypes that exhibited very long

period and long-arrhythmic activity phenotypes exhibited completely arrhythmic 

eclosion profiles (Table 5). For example, the genotype Df(1)64j4/T(1;4)JC43 

showed no evidence of long periodicity in its eclosion profile (Fig. 6a), while the 

internal control population which eclosed simultaneously in the same bang-box 

(Df{1)64j4/per+ siblings) showed 4 cycles of wild-type rhythmicity (Fig. 6b). 

The eclosion rhythms of most of the genotypes shown in Tables 4b and 5 were 

also monitored at 25°C in order to determine if there were any significant 

differences between the eclosion and activity phenotypes as a result of differences 

in temperature at which the rhythms were monitored (activity at 24°C; eclosion at 

18° or 22°C). Since only 2-3 cycles per eclosion run can be monitored at this tem

perature, period could not be accurately assessed and thus the eclosion rhythms at 

25°C were only characterized as rhythmic or arrhythmic. No difference in the eclo

sion rhythm phenotypes at the different temperatures were detected on this basis. 
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2. 4. 3 Dosage Senitivity of the per Locus 

Young and Judd ( 1978) reported that per+ males carrying one of several different 

duplications of the entire 3Bl-2 region showed an altered locomotor activity pheno

type in which the duration of the active portion of each 24-hr cycle (called alpha) 

was lengthened from the normal 12 hr to 19-20 hr of activity. These per+ duplica

tions were not reported to have any effect on period length. We have re-examined 

this dosage-sensitive phenotype and found no consistent effect of per+ duplications 

on alpha. In order to control for the effects of differences in genetic backgrounds 

we have studied two different per+ stocks, C-S and w sn3 m, and two different per+ 

duplications, w+Y and Dp(1;3)w67k 27 (Table 6). Both of the per+ duplications pro

duced a wild-type phenotype when combiD:ed with per0 (Table 3). When w+ Y was 

combined with a C-S per+ chromosome, we observed that alpha was shortened (p 

< .001) rather than lengthened. However, when w+Ywas combined with a per+ w 

sn3 m chromosome, we observed no significant effect on alpha. There was also no 

sig~ificant effect of the per+ duplication Dp(1;3)w67k27 on alpha. Young and Judd 

(1978) also reported that w+Yproduces an arrhythmic phenotype when combined 

with Df{1)64f1 or Df{1)KB5. However, we find that both of these genotypes have a 

wild-type phenotype for both the locomotor-activity and eclosion rhythms (Table 7 

and Figs. 4c,d). 

Although we found no consistent eCTects of per+ duplications on alpha, we found 

that both per+ duplications tested shortened period by approximately 1-hr in all 

combinations tested (Table 6). 
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2.5 Discussion 

We have shown that two duplications and five deficiencies with a 3B1-2 breakpoint 

produced either a wild-type or an arrhythmic clock phenotype while one transloca

tion with a 3Bl-2 breakpoint, T(1;4)JC43, exhibited very long-period and 

arrhythmic activity phenotypes. The wild-type clock phenotypes of Df{1)K95, 

Df{l)w- 64d and Dp{l ;4)wma5g appear to result from a breakpoint within the 3B1-2 

interval but outside of the per locus. Since arrhythmic phenotypes are produced by 

deficiencies for the entire 3B1-2 region, the arrhythmic phenotypes of per0
, 

Df{1)64j4, Df{1)62d18, Df{l)TEM-202 and Dp{1;3)wm49a would appear to be the 

result of genetic alterations that completely block per function. 

If arrhythmicity results from the total lack of per function, the weakly rhythmic 

and arrhythmic phenotypes produced by T(l ;4)JC43 would appear to be the result 

of drastic reduction of per activity. Such an effect of T(l ;4)JC43 on per activity is 

consistent with the observation that two doses of xD 4P JC43 (in the combination 

xD4P JC43; xPzDRC45/ T{1;4)JC43) produced stronger rhythmicity than one dose 

of xD 4P JC43 or T(l ;4)JC43. If the reduction in per activity of T(l ;4)JC43 is the 

result of the 3B1-2 breakpoint rather than a separate (e.g. co-induced) point muta

tion within the per locus, it would be one of the very few known cases in Drosophila 

of a chromosome aberration producing a reduction, rather than complete elimina

tion, of gene activity (see Lefevre, 1973, 1974; Spradling, 1980). 

Greatly reduced levels of per activity for T(l ;4)JC43 could account for the 

differences in patterns of complementation when this chromosome was combined 

with the 3 mutant per alleles. T(l ;4)JC43 behaved as a extreme long-period allele 

when combined with per0 or the arrhythmic deficiencies, but behaved as a null 

allele when combined with either pers or perl. It is possible that a greatly reduced 

level of per activity is sufficient to produce weak rhythmicity when T(l ;4)JC43 is 
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combined with a null per allele but is not sufficient to influence the activity levels of 

the other per alleles. 

In their mapping study of the per locus, Young and Judd ( 1978) examined the 

eclosion rhythm phenotypes of five 3Bl-2 chromosome aberrations (T{1;4)JC43 , 

Df{1)K95, Df{l)w- 64d, Df(1)64j4, and Df{1)62d18) when in combination with one 

another and with per0
. Since we found lhat the period phenotypes of several of the 

genotypes observed in our locomotor activity study did not correspond to the eclo

sion phenotype reported by Young and Judd, we re-examined the eclosion pheno

types of 3B1-2 chromosome aberrations using methods that would more accurately 

estimate period (see Methods section). Of those genotypes in common, our eclosion 

results are comparable to those of Young and Judd except for the one case in which 

they observed unusual complementation behavior. Young and Judd report that the 

combination Df(l)w- 64d /Df(1)64j4 displayed a long-period (28 hr) eclosion rhythm 

while we observed that this genotype displayed a wild-type phenotype for both the 

eclosion and activity rhythms (Table 2B). In fact we found no significant differences 

between activity and eclosion rhythms for any of the genotypes in which both 

rhythms were monitored,. except for T(l ;4)JC43. In the case of T(l ;4)JC43, the 

apparent difference in phenotype between rhythms (very long-period and 

arrhythmic activity phenotypes vs. completely arrhythmic eclosion phenotypes) is 

most likely the result of two properties of the very long-period and long-arrhythmic 

phenotypes which could mask its expression in the eclosion rhythm. First, most of 

the individuals of this phenotypic class are either arrhythmic from the onset of the 

run or become arrhythmic shortly thereafter . Since an eclosion profile is obtained 

from a population, an arrhythmic majority could mask the expression of a 

rhythmic minority. Second, in order to show a rhythmic eclosion pattern, the indi

viduals of the populo.tion inust not only be rhythmic, but the individuals must have 

similar period and phase. Since those individuals which exhibit the very long period 
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phenotype are variable in both period and phase, the rhythm of a population of 

such individuals would be less rhythmic than each individual rhythm. 

We could not confirm Young and Judd's (1978) report that the addition of a per+ 

duplication to a wild-type male significantly increased the duration of the active 

portion of each cycle. Since we found no consistent effects of per+ duplications on 

the alpha of wild-type strains using our method of analysis , the complex comple

mentation pattern for dosage sensitivity observed by Young and Judd for 3B1-2 

chromosome aberrations may not be a reflection of genetic complexity at the per 

locus. In contrast to Young and Judd (see also Young, 1975; Judd, 1977), we 

observed no cases of inconsistent complementation behavior in any of our studies 

and thus found no compelling evidence for genetic complexity at the per locus. 

Although we found no consistent effects of per+ duplications on alpha, we did 

find that an additional per+ dose in wild-type males did shorten period length by 

about 1 hr. This result, along with the observation that arrhythmicity is the null 

phenotype and our suggestion lhat weak rhythmicity of T(l ;4}JC43 is the result of 

a drastic reduction in per activity, suggests that the per alleles per5
, perl and per0 

alter period by respectively increasing, decreasing, or totally eliminating the quan

tity or activity of the per gene product. A detailed dosage analysis of the per locus 

supports this hypothesis (manuscript in preparation). 

In summary, we find that T(1;4}JC43 produces a unique activity rhythm pheno

type that had not previously been observed for mutants at the per locus. An exten

sive complementation analysis of 3B1-2 chromosome aberrations provides no com

pelling evidence for genetic complexity at the per locus. Analysis of both the 

activity and eclosion phenotypes of 3B1-2 chromosome aberrations did not uncovc;r 

differences in the genetic control of these two rhythms. Thus either a single clock 

system controls both rhythms or lhe action of the per gene is similar for both clock 
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systems. The clock phenotypes of 3B1-2 chromosome aberrations, the three per 

mutant alleles, and per+ duplications suggest that mutations at the per may alter 

period by increasing as well as decreasing per gene or product activity. 



- 61 -

Acknowledgements 

We wish to thank Madeline Crosby, Steven Green, Dominic Orr, and Janine Perlman 

for their comments on the manuscript. We also thank Dominic Orr and Edith 

Huang for providing the computer programs used for this study. This work ·was 

supported in part by an Earle C. Anthony predoctoral fellowship and a NIH training 

grant (5 T32 GM07737) (R.F.S.) and USPHS grants GM 22227 and AG 01844 to R.J.K. 

and a Pew Foundation grant to Caltech. 



- 62 -

2.6 References 

Bruce V (1976) Clock mutants. In: Hastings J, Schweiger H (eds) The Molecular basis 

of circadian rhythms, Dahlem Konferenzen, Berlin, pp 339-352 

Enright J ( 1965) The seach for rhythmicity in biological time-series. J Theoret Biol 

8:426-468 

Feldman J, Gardner G, Denison R ( 1979) Genetic analysis of the circadian clock of 

Neurospora. In: Suda M, Hayaishi 0, Nakagawa H (eds) Biological rhythms and 

their central mechanism, Elsevier, North-Holland Biomedical Press, pp 57-66 

Judd B ( 1977) In: Bradbury E, Javaherian K (eds) The nature of the module of 

genetic function in Drosophila. London, Academic Press, pp 469-483 

Judd B, Shen M, Kaufman T ( 1972) The anatomy and function of a segment of the X

chromosome of Drosophila melanogaster. Genetics 71:139-156 

Konopka R ( 1972) Circadian clock mutants of Drosophila melanogaster. Ph.D. 

thesis, California Institute of Technology, Pasadena 

Konopka R ( 1979) Genetic dissection of the Drosophila circadian system. Federa

tion Proc 38:2602-2605 

Konopka R, Benzer S ( 1971) Clock mutants of Drosophila melanogaster. Proc Natl 

Acad Sci USA 60:2112-2116 

Konopka R, Orr D ( 1980) Effects of a clock mutation on the subjective day: Implica

tions for a membrane model of the Drosophila circadian clock. In: Hall J, Hall L 

(eds) Development and neurobiology of Drosophila, New York, Plenum Press, pp 

409-4i6 

Lefevre G, Jr ( 1951) Drosophila melanogaster - new mutants. Drosophila Informa

tion Service 25:71 



- 63 -

Lefevre G, Jr (1973) The one band-one gene hypothesis: evidence from a cytogenetic 

analysis of mutant and nonmutant rearrangement breakpoints in Drosophila 

melanogaster. Cold Spring Harb Symp Quant Biol 38:591-599 

Lefevre G, Jr ( 1974) The relationship between genes and polytene chromosome 

bands . Ann Rev Genet 8:51-62 

Lefevre G, Jr (1976) A photographic representation and interpretation of the 

polytene chromosomes of Drosophila melanogaster salivary glands. In: Ash

burner M, Novitsky E (eds) The Genetics and biology of Drosophila, London, 

Academic Press, vol 1 a, pp 1-66 

Lindsley D, Grell E ( 1968) Genetic variations of Drosophila melanogaster, Carnegie 

Inst Washington Publ 627 

Liu C, Lim J ( 1975) Complementation analysis of methyl methane sulfonate-induced 

recessive lethal mutations in the zeste-white region of the X-chromosome of 

Drosophila melanogaster. Genetics 79:601-611 

Pittendrigh C ( 1974) Circadian oscillations in cells and the circadian organization of 

multicellular systems .. In: Schmitt F, Worden F (eds) The Neurosciences: Third 

study program, Cambridge, Ma, MIT Press pp 43'7-458 

Spradling A ( 1980) The structure and expression of Drosophila chorion genes . Car

negie Inst Washington Year Book 79:73-78 

Young M (1975) Nonessential sequences, genes, and the polytene chromosome 

bands of Drosophila melanogastcr, PhD thesis, Univ of Texas, Austin 

Young M, Judd B ( 1978) Nonessential sequences, genes, and the polytene chromo

some bands of Drosophila melanogaster. Genetics 88:723-742 



- 64 -

2.7 Figures 

Fig. 1. Schematic representation of the zeste-white region of the distal X

chromosome (based on Lefevre 1976) shoVving the cytological extents of the chro

mosome aberrations used in this study. 
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Fig. 2. Locomotor activity phenotypes of the following X-chromosomes (assayed 

when heterozygous with per0
): a) per+, b) Df{l)K95, c) Df(l)wrJl, d) Df(1)62dl 8. 
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Fig. 3. Activity rhythm phenotypes of T(1 ;4)JC43: a-c) activity phenotypes of 

siblings of the genotype Df(1)64j4/ T(1;4)JC43 ranging from totally arrhythmic (a) 

to ~ 6 very long-period cycles (c); d) very-long period phenotype of a xD 4P JC43; 

xPzilRC45/ T(1;4)JC43 individual. 
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Fig. 4. Activity rhythm phenotypes: a,b) deficiency combinations 

Df{1)64j4/ D/(1)11/ 64d and Df(1)64j4/ Df(1)62d18; c,d) D/(1)64/1 /w+Y and 

Df(1)K95/w+Y. 
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Fig. 5. Eclosion rhythm phenotypes: a,b) Df(l)w- 64d and Df(1)64j4 (assayed when 

heterozygous with per0
); c,d) deficiency combinations Df{1)64j4/ Df{l)w- 64d and 

Df (1)64j4/ Df(l)TEM-202. 
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Fig. 6. Eclosion phenotype of T(l ;4)JC43: a) arrhythmic profile of 

Df(1)64j4/T(1;4}JC43 (cf. Fig. 3); b) rhythmic eclosion profile of the internal con

trol, siblings of the genotype Df{1)64j4/per+. 
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2.8 Tables 

Table 1. Activity rhythm phenotypes: complementation behavior of X- chromosomes that behave as per+ 
when combined with per0

• (Period in hr) 

! 
per0 per5 pert per+ T(1;4)JC43 

period ± s.d. n period n period n period n period n 

per+ 24.6 ± 0.2 9 25.0 ± 0.3 9 21.5 ± 0.2 10 24.6 ± 0.8 6 24.2 ± 0.2 13 

Df(l}K95 25.2 ± 0.3 6 25.1 ± 0 .2 6 21.7 ± 0.4 7 25.7 ± 0.5 5 24.5 ± 0.2 6 

Df(l}w- 64
d 1124.9 ± 0.4 16 24.4 ± 0.3 5 21.4 ± 0.4 12 25.2 ± 0 .3 9 23 .9 ± 0.2 6 

} :f1-2 11 6 25.7 ± 0.3 8 22.1 ± 0.4 6 -- 24.8 ± 0.4 7 I l(l zw I 25.5 ± 0.2 

t(!)zwfl'15 I 25.6 ± 0.4 8 25.5 ± 0.2 4 21.9 ± 0.5 5 -- 24.9 ± 0 .2 6 
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Table 2. Activity rhythm phenotypes: complementation behavior of X- chromosomes that exhibit a mutant 
phenotype when combined withper0 

per0 T(1;4)JC43 pers pert 

period ± s.d. n period n period n period 

35.2 ± 3.2 6 
per0 arrhythmic 18 long- arr6 5 19.2± 0.4 4 30.6 ± 1.3 

arrhythmic 3 

Df{l}wrJJ arrhythmic 16 long- arr 6 20.2 ± 0.2 8 30.3 ± 0.6 
arrhythmic 11 

36.0 1 
D/{1}64/l arrhythmic 13 long- arr 6 20.3 ± 0.2 6 30.4 ± 0.4 

arrhythmic 12 

34.1 ± 2.8 6 
DJ{1}64j4 arrhythmic 19 long- arr 7 19.8 ± 0.3 6 30.1 ± 1.2 

arrhythmic 4 

32.5 ± 2 .1 2 
DJ(1}62d18 arrhythmic 10 long- arr 7 19.5 ± 0.3 10 --

arrhythmic 3 

25 .0 1 

DJ(l)TEM-202 arrhythmic 10 33.9 ± 2.3 4 19.7±0.2 7 --long- arr 5 
arrhythmic 6 

35.2 ± 3.2 6 
T(1;4}JC43 long- arr6 5 (lethal) 20 .3 ± 0.2 7 29.5 ± 0.9 

l / arrhythmic 3 

I XD4PJC43· II I 33.5 2 
I ' II long- arr ~ I 

32.5 ± 0.9 10 -- --
I xPrRC45 arrhythmic long- arr 3 

a Transient long-period rhythmicity (1- 3 cycles) that graded into arrhythmicity 
b From Konopka and Benzer (1971) 

per+ 

n period n 

5b 24.6 ± 0.2 9 

7 25.1 ± 0.1 5 

4 25.4 ± 0.3 10 

6 25.1 ± 0.3 7 

24.5 ± 0.2 7 

124.6 ± 0.3 6 

I 

7 25.0 ± 0.3 9 

I 

24.4 ± 0.4 el 
I 
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Table 3. Activity rhythm phenotypes of 
X-chromosome duplications when present 
in per0 males 

Genotype period ± s.d. n 

per0 /Y arrhythmic 25 

per0 /w+Y 23.7 ± 0.3 12 

pero / y; Dp ( 1 ;3)w67lc27 23.4 ± 0.2 11 

pe1° / Y; Dp(1;4)wmB5g 23.5 ± 0.2 8 

per0 /Y; Dp(1;3)wm4 ria. arrhythmic 10 
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Table4. Complementation behavior o:f combinations of deficiencies with a 3B1-2 breakpoint 

Df (l )w- 64<l 

Df(l}62d18 

I I Df(l)TEU-202 

I I xD4PJC43; 

I xP:fJRC45 
I 

n 18°C 
b 22°C 

I 

Activity Rhythm 

D/(1}64i4 D/(l)K95 

period± s.d. n period 

24.8 ± 0.4 11 24.1 ± 0.4 

arrhythmic 19 25.2 ± 0.3 

arrhythmic 15 --

23.0 1 
lone- arr 1 --
arrhythmic 8 

Eclosion Rhythm a 

Df(1)64i4 Df(l)K95 

n period ± s.d. 
cy:cles/ 

run perio.d 
cy:cles/ 

run 

7 24.4 ± 0.5 6 24.1 ± 1.0 4 

11 arrhythmic 5 24.8 ± 0.3 4 
i arrhythmic 3b 

I 
I 

arr hythrnic 7 --
I 

-- --
I 

I 
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Table 5. Eclosion rhythm phenotypes: complementation behavior o:f 3Bl-2 chromosome 
aberrations. (18°C) 

per0 T(1;4)JC43 per+ (FM7) 

period ± s.d. 
cycles/ 

run period 
cycles/ 

run period 
cycles/ 

run 

per+ (C- S) 24.6 ± 0.8 7 24.9 ± 0.5 6 24.7 ± 0.7 6 
24.1 :!:: 1.0 7b 

I 0.6 7 DJ(l}KB5 24.7 ± 24.6 ± 0.4 6 24.5 ± 0.0 4 
25.3 ± 1.0 6 

DJ(l}w- 64d 24.2 ± 0.5 7 24.0 ± 0.7 6 23.8 ± 0.7 6 
24.2 ± 0.5 7 

l(l)zw:Ji2 25.8 ± 1.2 3a 25.3 ± 0.8 3a 25.3 ± 0.6 3a 

l(l)zwr/1-15 25.5 ± 1.5 36 25.7 ± 0.6 36 24.3 ± 1.9 3a 

I arrhythmic 6 arrhythmic 6 24.9 ± 1.7 4 
per0 arrhythmic 5 arrhythmic 36 24.5 ± 1.4 26 

arrhythmic 4 

Df(l)wrJl arrhyth.mic 6 arrhythmic 36 24.8 ± 3.9 2 

DJ(1}64f 1 arrhythmic 6 -- --

DJ(1)64j4 I arrhythmic 6 arrhythmic 4 25.0 ± 1.0 3 
arrhythmic 4 arrhythmic 46 24.7 ± 0.8 36 

I DJ(1)62d18 
ar!' hyth ill.i c 6 arrhythmic 46 24.7 + 1.3 36 
arrhythmic 5 I I ! 

I . 
I I DJ(l}TEM-202 II arrhythmic 7 -- --

I T{1;4}JC43 
ii arrhythmic 6 (lethal) 24.0 ± 0 .7 6 
!I arrhyt!imic 3a 

6 22°C 
b (C-S/C-S) 
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Table 6. Activity periods and alphas (in hr) of wild-type males with or 
without an additional per+ dose 

Genotype #d~er+ ses perioda ± s.d. 

per+ (C- S) / Y 24.0 ± 0.4 

per+ (C- S) /'l .. :./Y 2 23.2 ± 0.4 •• 

per+ (wsn3 m) / Y 23.7 ± 0.3 

per+ (w sn3 m) / w+Y 2 22.9 ± 0.4 •• 

per+ {w sn3 m) / Y,· 2 22.6 ± 0.2 .. 
Dp(J,.3)wG7kZ7 

•• 
Determined from nctivi:y ofisets 
p < .001 

NS Not significant 

alpha± s.d. n 

14.8 ± 0.9 12 

•• 11.7 ± 2.2 21 

13.2 ± 1.8 8 

13.7 ± 2.lNS 10 

13.0 ± 0.3NS 6 
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Table 7. Activity and eclosion rhythm periods 

Activity Rhythm Eclo:Iion Rhythm 

Genotype !I period ± s.d. 
I 

Df{1}64fl /w+ Y 124.1 ± 0.4 

Df(l}K95 /w+ Y II 23.7 ± 0.6 

n period ± s.d. 

16 24.2 ± 0 .6 

14 23.7 ± 0.8 

cycles/ 
run 

6 

5 
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Chapter 3 

Effects of Dosage Alterations at the per Locus 

on the Period of the Circadian Clock of Drosophila• 

• Smith RF, Konopka RJ (1982) Mal Gen Genet 185:30-36 
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3.1 Summary 

The normal 24-h period of the circadian rhythms of locomotor activity and eclosion 

of Drosophila melanogaster is altered by changes in per gene dosage. Females with 

only one dose of per+ or pers (the 19-h shorl-period mutant allele) or perl (the 29-h 

long-period mutant allele) have periods which are about 1-2 h longer than the 

corresponding fem ales with 2 doses. Females with 3 doses of per+ and males with 2 

doses of per+ or per5 have periods which are * to 1 h shorter than the correspond

ing individuals without the extra dose. Males with three per+ doses have periods 

which are about 1.5 h shorter than wild-type males: additional per+ doses do not 

shorten period further. The observation that decreased per dosage lengthens 

period while increased dosage shortens period suggests that the long- and short

period mutations alter period by respectively decreasing and increasing per gene or 

gene product activity. The per+ dosage results and the complementation behavior 

of per5 indicate that the hypermorphic phenotype of pcrs results from increased 

activity of the pers gene product rctther than an overproduction of per+ product. 

This is the first report of such a mutant action in Drosophila. 
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3.2 Introduction 

In Drosophila melanogaster, several EMS-induced mutations that alter the normal 

24-h period of the circadian rhythms of locomotor activity and eclosion have been 

mapped to a single locus in the 3B1-2 region of the distal X-chromosome. Two 

mutant alleles, per0 and per02, completely abolish rhythmicity, perl and perl2 both 

lengthen period to about 29 h, while per5 shortens period to about 19 h (Konopka 

and Benzer 1971; Konopka 1972, 1979 and unpublished results). In addition, 

several chromosome aberrations with a breakpoint in the 3Bl-2 region have mutant 

per phenotypes (Young and Judd 197 8, Smith and Konopka 1981). Deficiencies of 

the entire per region and four deficiencies and one duplication with 3Bl-2 break

points have arrhythmic clock phenotypes. The only available translocation with a 

3Bl-2 breakpoint, T{1;4)JC43, produces activity-rhythm records that are totally 

arrhythmic, very long-period (31-39 h), or transiently long-period before becoming 

arrhythmic (Smith and Konopka 1981). The per mutations are particularly 

interesting in that they can cause period changes in both directions away from the 

wild-type period as well as the elimination of periodicity. Arrhythmic alleles appear 

to be null mutants since they behaviorally and genetically act as a deficiency of the 

per locus. In this paper we present the results of a dosage and complementation 

analysis of wild-type and mutant per alleles which indicate that long- and short

period mutations alter period by respectively decreasing and increasing per 

activity. In addition our results suggest that the hypermorphic phenotype of pers 

results from increased activity of the per gene product rather than an overproduc

tion of per+ product. 
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3.3 Materials and Methods 

The per mutants used in this study are described in Konopka and Benzer ( 1971) 

except for per02 which has not been previously described. The per02 mutation was 

isolated from a screen for X-linked locomotor-activity mutants. Mutagenesis was 

conducted as described previously (Konopka and Benzer 1971) and stocks were 

examined for ones with abnormal activity phenotypes. An arrhythmic strain was 

isolated and complementation and mapping tests identified this mutant as a second 

arrhythmic per allele. 

The per+ per5 and per5 per5 tandem duplications were derived from Dp{l ;l)w, 108 

as described in the footnote to Table 4. The tandem duplications Dp(l;l)w,108 and 

Dp(l;l)w,129 and the tandem quintuplications Qn(l;l)w,126 and Qn(l;l)w,144 (all 

derivatives of Dp{l;l)w) were generously provided by Dr. E.B. Lewis. All other dupli

cation and deficiency strains were generously provided by Dr. Burke Judd. A 

description of the chromosome aberrations and other mutants used in this study 

can be found in Lindsley and Grell (1968) and Young and Judd (1978). 

Locomotor-activity rhythms of individual Drosophila melanogaster adults and 

the eclosion rhythms of populations of individuals were monitored and periods cal

culated as described previously (Smith and Konopka 1981). Locomotor-activity 

rhythms were monitored at constant temperature ( ± 0.5° C) in the range 23- 25° C. 

Eclosion rhythms were monitored at 18° C in order to maximize run duration (see 

Smith and Konopka 1981). In this study the locomotor-activity periods of some 

genotypes were obtained from records showing a minimum of 5, rather than 6, 

cycles of rhythmicity. 
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3.4 Results 

3. 4.1 Effects of Genetic Background on Period 

Wild-type doses of the per locus can be added to and subtracted from genotypes 

using X-chromosome duplications and deficiencies of the 3Bl-2 region. Several 

different deficiencies, duplications, and wild-type chromosomes were used in the 

dosage studies in order to determine and control for the effects of genetic back

ground on period. The activity-rhythm periods of these chromosomes are shown in 

Table 1. The periods of two per+ strains are not significantly different (Table 1, a vs. 

b). When two deficiencies of the per locus, Df{l)wrJJ and D/(1)64/ 1, and the two 

arrhythmic alleles, per0 and per02
, are combined with the w+Y duplication of the 

per locus, the resulting periods are also not significantly different from the C-S 

wild-type strain (Table 1. a vs c-f). The period phenotypes of three duplications 

used in this study were assayed when combined with per0
, which acts as a recessive 

null mutation of the per locus (Konopka 1972, Smith and Konopka 1981). One of 

these duplications, Dp{1;3)w67
k

27
, did produce a significantly shorter period than 

wild-type (Table lh). Part of this difference appears to be the result of a shortening 

of period produced by the genetic background of the per0 strain since all three 

combinations of per0 and a duplication displayed periods slightly shorter than the 

C-S wild-type s_train (Table lf-h) and shorter than both deficiency I w + Y combina

tions ( Table lc,d). Thus there appears to be 1) a 0.3 h period difierence between 

the genetic backgrounds of Dp(l ;3)w67
k
27 and the other two duplications, and 2) a 

0.4-0 .5 h difference between the genetic backgrounds of per0 and the deficiencies 

(Table 1, f vs. c,d). 
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3.4.2 A Reduction in per+ Dosage Lengthens Period 

The period of one per+ dose in a female was determined in four different genetic 

backgrounds by combining the two deficiencies, Df{l)wrJJ and D/(1)64/ 1, with two 

different per+ chromosomes, a Canton-S X-chromosome and w sn3 m. In each case 

females with only one dose _of per+ had periods which were about 1 h longer than 

females with two doses (Table 2a,b,f,g). A per+ dose was also deleted using the per0 

allele, which behaves as a null mutant in all of the genetic studies we have con

ducted (see Smith and Konopka, 19G1). This mutant also behaved as a deficiency in 

our dosage studies . One dose of per+ when present in per+ I per0 females produced 

a period lengthening of 0.4 and 1.0 h in two different genetic backgrounds (Table 

2c ,i). The shortening effect of the genetic background of per0 (described above) is 

best controlled in the genotypes shown in Table 2j, where individuals of both geno

types were siblings generated from the same cross (see footnote to Table 2). In this 

comparison, females with one dose of per+ in a per0 background had a period which 

was 1.3 h longer than females with 2 per+ doses in a per0 background. The second 

arrhythmic allele, per02, also significantly lengthened period when heterozygous 

with per+ (Table 2d). When differences in genetic background are taken into 

account the dosage effects of both of the null per alleles are as great as those of the 

per deficiencies, thus the dosage effects of the deficiencies appear to be the result 

of the per locus rather than a separate closely-linked locus. 

3. 4 . 3 The per Locus is Dosage Compensated in Males 

Males with the normal one dose of per+ have periods similar to females with two 

doses of per+ (Table 2e,h) rather than females with one dose of per+. Thus the per 

locus is dosage compensated in males. Dosage compensation is a general property 

of X-linked gene activity in Drosophila males (Stewart and Merriam 1980). 
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3.4.4 Extra per+ Doses Shorten Period 

When present as an extra per+ dose in males, the duplications Dp{1;2)w70h 31 , 

Dp{1;3)w67k27, and w+Yshorten period by about 1 h (Table 3a-d). When present as 

an extra (third) per+ dose in female siblings, however, Dp{1;3)w67k27 only shortens 

period by 0.5 h (Table 2k vs. 3b). This difference between sexes can be explained by 

dosage compensation: 2 per+ doses in a male when dosage compensated would be 

equivalent to 4 doses in a fem.ale. Two tandem duplications of the per locus, deriva

tives of Dp{l ;l)w, were also studied (Table 3e,f). Dp{l ;l)w is cytologically dupli

cated for the per locus (see footnote to Table 3) and we have shown genetically that 

it is duplicated for per since we have been able to exchange both of the original per 

alleles with mutant per5 alleles (see below). Dp{l;l)w, 129 produces a 1-h shorten

ing of period similar to the other examples of 2 per+ doses in a male. Dp{l ;l)w, 1 OD 

shortens period by almost 2 h: the extra 1-h shortening observed for this duplica

tion is most likely the result of genetic background since all of the 5 other exam

ples of 2 per+ doses in a male shorten period by about 1 h. 

The period phenotypes of males with 3 doses of per+ are shown in Table 3g,h. In 

the first example, individuals with 3 per+ doses exhibited periods which were 0.8 h 

shorter than siblings with 2 doses. In the second example, an extra per+ dose in 

addition to a tandem duplication did not produce a significant difference in period 

compared to the tandem duplication alone. The periods of two tandem per+ quintu

plications, also derivatives of Dp(l ;l)w, were also examined (Table 3i,j). Both quin

tuplications exhibited periods which were only about 0.5 h shorter than wild-type 

and thus have periods which are longer rather than shorter than either of the tan

dem duplications. 
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3.4.5 Dosage and Complementation Analysis of the per5 and perl Mutant Alleles 

Females with one dose of per5 have periods which are approximately 1.5 h longer 

than females with two doses (Table 4a,b). One dose of per5 in the combination 

pers lper0
, however, produces a period which is only about 0.5 h longer than 2 doses 

of per5 (Table 4c) . This difference is apparently the result of the shortening effect 

of the genetic background of per0 described above and not the result of residual 

activity of the per0 allele since the combination per5 lper0 has a period which is 

shorter than the two per5 I deficiency combinations (Table 4, c vs. a,b) while the 

per5 /per+ combination has a longer period (Table 4, e vs. a,b). 

One per5 dose in a male produces periods similar to 2 doses of per5 in a fem ale 

(Table 4d,f) rather than one dose in a female, thus the per5 mutant phenotype is 

dosage compensated in males. A tandem duplication was constructed by crossing a 

per5 allele into both of the 3A-C segments of the Dp{1;1)w,108 tandem duplication 

(see footnote to Table 4) . Males with this tandem per5 duplication have periods 

which are 1 h shorter than males with one per5 dose (Table 4j). 

The complementation behavior of per5 when combined with per+ is also shown in 

Table 4. A per+ allele when combined with per5 in a female lengthens period by 2. 8 h 

relative to homozygous per5 females (Table 4e). In contrast, a per+ allele when com

bined with per5 in a male (as a duplication) lengthens period by only 1 - 1.5 h rela

tive to per5 males (Table 4g-i). This difference in complementation behavior 

between sexes can also be explained by dosage compensation: one dose of both per5 

and per+ in a male would be equivalent to two doses of each of these alleles in a 

female and we have shown above that increased dosage of per5 and per+ shortens 

period . 

The dosage and complementation behavior of perl is shown in Table 5. Females 

with one dose of perl have periods which are approximately 1 h longer than females 
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with two doses (Table 5a,d). The direction and magnitude of change in period pro

duced by a deficiency is thus similar for perl, per5 and per+. The per0 allele has the 

same dosage phenotype as a deficiency when combined with perl (Table 5b) . As with 

per+ and per5
, the perl allele is dosage compensated in males (Table 5, e vs. a,d). 

Thus neither the per5 nor the perl mutation afiects this regulatory process. A per+ 

allele when combined with perl in a fem ale shortens period by 4 h relative to 

homozygous perl females (Table 5c). 

3.4.6 Activity and Eclosion Rhythms Have Similar per Dosage Phenotypes 

The effects of altered per dosage on eclosion-rhythm periods are nearly identical to 

those observed for the activity rhythm. When heterozygous with per+, deficiencies 

produce a lengthening of period of about 1 h (Table 6a,c) while per0 lengthens 

period by 0.5 h (Table 6b,d) . Duplications, which shorten the period of males by 

about 1 h (Table 6f-h), have a slightly smaller effect in female siblings (Table 6e). 

The quintuplication Qn(l;l)w,126 has an eclosion-rhythm period similar to 2 doses 

of per+ (Table 6i), thus showing a slightly shorter period than that observed for the 

activity rhythm. 

Dosage and complementation analysis of the per5 mutant allele was also per

formed for the eclosion rhythm (Table 7) . The eclosion and activity-rhythm periods 

of pers genotypes differ slightly as a result of the lower temperature at which the 

eclosion rhythms were monitored. This is because the short-period phenotype of 

pe'-r5 is lengthened at temperatures less than 25°C while the period of wild-type 

remains constant (Konopka et al 1982). Since the direction of change in period as a 

result of altered dosage and of complementation with per+ is similar for both 

rhythms, there does not appear to be a significant ditierence between rhythms in 

the dosage and complementation behavior of per5 other than that produced by the 
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difference in temperature. 
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3.5 Discussion 

We have observed that decreased dosage of per+, per5
, or pert lengthens period 

while increased per dosage shortens period. It is not surprising that period is sensi

tive to changes in per dosage since in .Drosophila gene activity (as measured by 

enzyme activity) is dosage dependent (see O'Brien and Macintyre 1978). For those 

gene-enzyme systems which have been mapped, an extra dose is observed to 

increase enzyme activity by about one-half (or more for dosage compensated X

linked genes in males; see Stewart and Merriam 1980) while the deletion of a dose is 

observed to reduce activity by about one-half. Since an extra per+ dose shortens 

period while the deletion of a dose lengthens period, the short- and long-period 

mutations apparently alter period by respectively increasing and decreasing per 

gene or gene-product activity. 

The dose-response phenotypes of the pers and pert alleles also demonstrate that 

these mutations respectively increase and decrease the level of per expression. The 

dependence of gene activity on gene dosage in .Drosophila allows mutations that 

decrease, increase, or eliminate gene expression to be distinguished by the following 

dose-response phenotypes ·(cf. Muller 1932; Lifschytz and Green 1979): (i) mutations 

that when combined with a deficiency express a mutant phenotype that is more 

extreme than the phenotype of the mutation when homozygous are classified as 

hypomorphic (having reduced activity): (ii) mutations that when combined with a 

deficiency express a phenotype that is less extreme than the phenotype of the 

mutation when homozygous are classified as hypermorphic (having increased 

activity); (iii) mutations that when combined with a deficiency of the locus express 

a mutant phenotype that is as extreme as the phenotype of the mutation when 

homozygous are assumed to be amorphic (i.e. null). Based on these criteria, perl, 

per5
, and per0 can be classified as a hypomorph, hypermorph, and amorph, respec-
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tively: the perl phenotype is enhanced when combined with a deficiency, the per5 

phenotype is partia.lly suppressed by a deficiency, while per0 behaves as a deficiency 

of the locus. The translocation T(1 ;4)JC43, which produces mutant per activity 

phenotypes that are both very long-period and/ or arrhythmic, displays a dose

response phenotype which is consistent with an extreme hypomorphic mutant 

action: the degree of arrhythmicity (both penetrance and expressivity) is enhanced 

when T(1;4)JC43is combined with a deficiency (Smith and Konopka 1981). While the 

classification scheme described above is based on the phenotypes produced by a 

reduction in dosage, our observation that increased dosage of per+ or pers shortens 

period provides additional support for the proposal that short-period mutant 

action results from increased per activity. 

Hypermorphic mutant alleles are extremely rare for loci of any genetic system. 

The frq locus of Neurospora, which has mutant alleles that both increase and 

decrease circadian period (Feldman et al. 1979) may be another (perhaps homolo

gous) example of a locus having both hyper- and hypomorphic mutations. The only 

Drosophifa locus having both hypermorphic and hypomorphic ''point" mutations 

besides per is Beadex (1: 59.4). At the Beadex locus, hypermorphic alleles (Bx) have 

a dominant mutant phenotype that affects wing scalloping while hypomorphic or 

amorphic alleles (hdp) have a recessive mutant phenotype that affects wing posi

tioning (Lifschytz and Green 1979). As with per5
, the hypermorphic phenotype of Bx 

is suppressed by a deficiency and is mimicked by extra wild-type doses. 

While both per5 and Bx behave as hypermorphs, the type of mutant effect by 

which the hypermorphic phenotype is produced appears to be different for these 

two mutations. Gene activity could be decreased or increased by either a change in 

the activity of each molecule (e.g. by an alteration in the structural gene) or by a 

change in the rate at which wild-type molecules are produced (e.g. by an alteration 

in a regulatory element). If per5 were an overproducer of wild-type product, then 
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(1) per5 males with a per+ duplication should produce more product and thus have 

a shorter period than per5 /Ymales, and (2) in a similar manner per5 /per+ females 

should have a shorter period than per5 /deficiency females. However, such results 

are not observed (Table 4). Instead it appears that the shortening effect of per5 is 

averaged rather than summed when combined with per+, as though half of the total 

per product has increased activity and half has wild-type activity. In contrast, wild

type duplications enhance the mutant phenotype of Bx (Lifschytz and Green 1979). 

Furthermore, multiple per+ doses cannot mimic the full extent of the short-period 

phenotype. The shortening effect on period of more than one per+ dose in a male 

appears to saturate at a level of about -1.5 h (Table 3). In the case of the Bx locus, 

however, each increase in wild-type dose produces an even more extreme mutant 

phenotype (Lifschytz and Green 1979). These observations suggest that the hyper

morphic phenotype of per5 results from an increase in the functional activity of 

each molecule of product while the hypermorphic phenotype of Bx results from an 

overproduction of wild-type product (see Lifschytz and Green 1979 for additional 

genetic evidence that suggests that the hypermorphic phenotype of Bx results from 

an overproduction of wild-type product). 

Unfortunately, it is not possible to distinguish between the possibilities of 

decreased product activity vs. decreased amount of wild-type product for hypo

morphic mutants using the type of analysis described above for hypermorphic 

mutants. This is because, when combined with a hypomorphic mutation, 

deficiencies should enhance and wild-type alleles should suppress the phenotype of 

mutations having either type of hypomorphic mutant effect. This is indeed 

observed for both perl and T(1;4)JC43 (see Smith and Konopka 1981). 

Mutational and dosage alterations at the per locus also affect a very short-term 

rhythm in the Drosophila courtship song. The courtship song of Drosophila males 

(and females phenotypically transformed into males by the mutation tra) has a 
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rhythm in the duration of inter-pulse intervals with a period of about 54 s 

(Kyriacou and Hall 1980). Kyriacou and Hall also found that each of the per 

mutants affects the period of this song rhythm in a fashion parallel to that 

observed for circadian rhythmicity: pers shortens the period of the song oscillation 

to 42 s, perl lengthens period to 82 s, and per0 abolishes rhythmicity. In contrast 

with circadian periodicity, however, both per0 and deficiencies of the per locus shor

ten song period when combined with per+, pers, or pert (to about 40, 34, and 52 s, 

respectively). If the level of per activity had an opposite effect on the period of 

these rhythms, then the per mutants should also have an opposite effect on period. 

However, the mutants produce the same direction of change in period for both 

rhythms; only the dose response is reversed. We have no explanation for the 

difference in the direction of the dosage response between these two rhythmic sys

tems. 

Another difference in the effects of the per locus on these two rhythms is that 

the period of the song rhythm is much more dosage sensitive than circadian period

icity. The change in song period from 54 to 40 s described above for 1 vs. 2 per+ 

doses in a (transformed) female is a 263 reduction in period, while for circadian 

rhythmicity this dosage difference produces less than a 53 lengthening of period. 

Although the effects of duplications were not reported for the song rhythm, we have 

shown that an extra per+ dose in males or fem ales produces less than a 53 shorten

ing of circadian period. The relative insensitivity of circadian periodicity to changes 

in per dosage suggests that there might exist for the circadian system, but not the 

song rhythmic system, a mechanism which regulates the amount of per product 

and thus partially compensates for the effects of both increased and decreased per 

dosage in both sexes. Although this type of genetic regulation has not been previ

ously observed for any other Drosophila locus, the per locus may be unique: we have 

shown that the proper level of per activity is critical for the maintenance of a 
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precise 24-h period and such a mechanism may act under wild-type dosage condi

tions to precisely regulate per product levels. 

This model of per regulation also provides an explanation for the unusual dosage 

and complementation behavior of per5 (see Addendum = § 3.8, p. 108). If per pro

duct levels were strictly dosage dependent then pe~ /deficiency individuals would be 

expected to produce less per product and have a longer period than per5 !per+ 

heterozygotes. However per5 I deficiency individuals are observed to have shorter 

periods than per5 /per+ heterozygotes (Table 4). If, according to our model. the 

amount of per product produced by one per dose in a female is partially compen

sated, per5 I deficiency individuals could produce nearly as much per5 product as 

pers lper5 homozygotes. This could then account for the observation that 

per5 I deficiency individuals have periods nearly as short as per5 homo zygotes and 

shorter than per5 /per+ heterozygotes. Partial compensation of increased per 

dosage could in a similar fashion account for the observation that per+ duplica

tions lengthen rather than shorten period when present in pers males. 
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3.7 Tables 

Table 1. Activity rhythm periods of males with one per+ dose. (Period in h) 

a 

b 

c 

d 

e 

f 

g 

hb 

a 

b 

... 

per+ 
Genotypeo. doses Period± SD 

I per~ /Y 24.0 ± 0.4 

pert, /Y 23.7 ± 0.3 

. DJ(l)wrJl /w+Y 24.2 ± 0 .4 

I Df(1)64f J/w+Y 24.1 ± 0.4 

per0 z/w+Y 23.9 ± 0.3 
I 
I 

per0 /w+Y 23.7 ± 0.3 

per0 /Y; 
Dp(l;Z)w70h31 

23.7 ± 0.4 

I per0 /Y; 
I Dp{l,·3)w67kZ7 

23.4 ± 0.2 

Genotypes are abbreviated as follows: 

per~ = Canton-S ( C-S) 

+ - wsn3 m per 0 -

pcr0 = per0 w spl 

per0z = per0z (unmarked) 

/J. 
n Periodc 

1211 
7 -0.3 NS 

15 +0.2 NS 

1

: II 

+0.1 NS 

-0.1 NS 

ii 
12 -0.3 NS 

6 -0.3 NS 

11 -0.6 ••• 

( u/Y(2Dl-2; 3D3-.4), Dp(l,·Z)w70h 3 l (3A6-G; 3C2-3), and Dp(l,·3)w67k27 (3A4-5; 3E8-F2) are per+ dupli

cations ; DJ( l)wrJl (3Al-2; 3C2-3) and DJ( 1}6'1f 1 (3A10-B 1; 3B3-4) are deficiencies of the per locus) 

Sfolings of the genotypes shovm in Table 2j 

Compared to per~ /Y (a) 

p :5 .001 

NS Not sieni:ficc.nt 
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Table 2. Activity rhythm periods of females with 2 per+ doses (on left) vs. females with 1 or 3 doses or males 
with 1 dose (on right). Period differences between matched genotypes are shown in the last column. 

per+ per+ 
Genotype~ doses Period± SD n Genotype doses 

a + / Df(l}wrJ1 per a 1 

b per~/ DJ{1}64f 1 1 

c + / + pera. pera 2 24.2 ± 0.2 13 per~ /pero 1 

d per~ /per0z 1 

per~ / Y (males) 1 
e 

f per"b / DJ(l)wrJl 1 

+ / + 2 24.1 ± 0.4 5 per"b / Df{l}64f 1 1 
g perb perb 

h pert, / Y (males) 1 

i + / + perc perb 2 23.8 ± 0.3 7 per~ /per0 1 

I 

jb per~ /pcro; 
Dp ( J ,· 3 )ui6'1.rcz7 

2 23.5 ± 0.4 7 per~ /pcr0 1 

+ / + . 
kc + / + 2 23.8 ± 0.3 7 perc per 0 • 3 

perc perb 
Dp( 1,.3)w67kZ7 

e. + = y ln(l)wm4Lrst3R perc 

See Table 1 for other genotype abbreviations 
b 

d 

F 
1 

slblincs of the cross per0 
/ per0 

F 
1 

siblings of the cross per b /pert 

p .:::; .01 except v;here noted 

NS Not significant 

X per~ / Y; Dp(l,'3)w67kZ? 
X per~ / Y,· Dp(J,·3)w67k27 

l.l 
Period± SD n Periodd 

25.1 ± 0.1 5 +0.9 

25.4 ± 0.3 10 +1.2 

24.6 ± 0.2 9 +0.4 

24.6 ± 0.2 7 +0.6 

24.0 ± 0.4 12 -0.2NS 

25.1 ± 0.4 9 +1.0 
25.1 ± 0.2 5 +1.0 

23.7 ± 0.3 7 -0.4NS 

24.8 ± 0.4 7 
I 

+1.0 

24.8 ± 0.4 7 

I 
+1.3 

23.3 ± 0.2 7 -0.5 
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Table 3. Activity rhythm periods of males with 1-5 doses of per+. 

per+ per+ 
Genotype a doses Period± SD n Genotype doses Period± SD n 

ab per·t, / Y 1 23.6 ± 0.2 5 pert / Y; 2 22.5 :!: 0.3 6 
/)p (1 ;Z)w70h31 

be pert/ Y 1 23.7 ± 0.2 8 pert / Y; 2 22.7 :!: 0.2 9 
Dp ( l ;3)w67kZ7 

c per1, / Y 1 23.7 ± 0.3 7 pert /w+Y 2 23.0 ± 0.4 15 

d perii /w+Y 2 23.2 ± 0.4 21 

e per~/ Y 1 24.0 ± 0.4 12 Dp(l;l)w,129 / Y 2 23.1 ± 0.2 7 

I Dp(l;l)w,108 / Y 2 22.2 :!: 0.4 7 

+ / +Y.· 
gd per~ /w+Y 2 23.2 ± 0.6 14 perc w , 3 22.4 ± 0.2 11 

/)p ( l ,.3)w67kZ7 

~1. I /)p(l,·1Jw, 1oa / Y 2 22.2 ± 0.4 7 I /)p(l,·l)w,108 /w+Y 3 22.5 ± 0.4 11 

i 
per~. / Y 1 24.0 ± 0.4 12 

Qn(l,·l)w,126 / Y 5 23.4 ± 0.2 7 
Qn(l,·l)w,144 / Y j 5 23.6 ± 0.3 5 

Dp(J,-l)w,108 = Dp{l;l)w, yac (wr;;hrst+}(w+rstz) =X-JOBofE.B.Lewisstockcollection 

d 

Dp(l,·J)w,120 = Dp(l,·l)w, yzsc (wtrsi+) (w~rst+) =X-129 

Qn(l,·J)w,126 = Dp(l,·J)w, y 2 sc (wrst+)
4 

(w+ rst+) fa =X-126 

Qn(l,·J)w,144 = Dp(l,·l)w, y (wirsl+)
5 

ec =X-144 

(all of the above arc derivatives of JJp(l,·J)w which is a tandem duplication 
of the reeion 3A-C ; see Lindsley and Grell, 1968) 

See Tables 1 and 2 for other genotype ab breviutions 
_ + + v . + / y . Dp ( 1 .2 )w 70h31 

F
1

siblingr;ofthecrossperb/perb i\.. perc • •. 
+ X + / Y. Dn(J ·3)w67kZ7 

F 
1 

sibEnes of the cross per b /per b per c • r • 

F
1 

siblinc;s oft.he cross C(l)DX, y f /w+Y X per6 / Y ,· Dp(l,·3)w6
'lkZ? 

p::;; .01 except where noted 

p::;; .05 

NS Not significant 

!J. 
Peri ode 

-1.1 

-1.0 

-0.7 

-0.8 

-0.9 
-1.8 

-0.8 

+0.3 NS 

-0.0 
-0.4 

. 
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Table 4. Activity rhtyhm periods: dosage and complementation behavior of per3
• 

Genotype a Period± SD n Genotype Period± SD 

a pers / DJ(l)wrJl 20.2 ± 0.2 

b per3 
/ DJ ( 1}64f1 20.3 ± 0.2 

c pe.,.S /pers 18.7 ± 0.3 7 pers /'per" 19.2 ± 0.4 

d pers / Y 19.2 ± 0.4 

e pers /per~ 21.5 ± 0.2 

f p ersb / p ersb 19.4 ± 0.1 5 persb / y 19.1 ± 0.3 

Bb pers / Y 18.6 ± 0.3 7 pers / Y; 
20.1 ± 0.2 Dp ( 1,.3 )w671:27 

h pers /w+Y 20.4 ± 0.5 

i pers / Y 19.2 ± 0.4 6 Dp(l;l)w, per+ pers / Y 20.2 ± 0.2 

j Dp(l,·J)w, pers pers / Y 18.2 ± 0.2 

a pers = pers w spl 

persb = y pers sn3 m 

b 

[)p(l,·J)w, per+ pers = Dp(l,·J)w, y a.c (per+ wch rst+) (per" w rst+) spl 
(recombinant of Dp(l,·J)w,108 / pe/> wspl) 

Dp(l,·J)w, pe-?pers = Dp(l,·J)w, {pcrsw+rst+) {perswrst+)spl 
(recombinant of Dp(l,·J)w, per+ pers / pers) 

See Tabic 1 for other genotype abbreviations. 

F
1 

siblings from the crosspers /pers X per~ / Y ,· Dp(1;3)w6
7k

27 

p ~ .01 except where noted 

p ~ .05 

NS Not significant 

n 

8 

6 

4 

6 

10 

6 

8 

4 

9 

20 

fl 
Periodc 

+1.5 

+1.6 

+0.5. 

+0.5 

+2.8 

-0.3NS 

+1.5 

+1.2 

+1.0 

-1.0 
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Table 5. Activity rhythm periods: dosage and complementation behavior of per'. 

Genotype!l Period± SD n Genotype 

a l / DJ(l)wrJJ per a 

b l / l 29.1 ± 0.5 7 per~ /per0 
per a per a 

l + 
c per a /per a 

d l l 20.1 = 0.7 9 
perlb / DJ(1}04f 1 

perb /per b perlb / y e 

a perh = perl (unmarked) 
l l 3 per b = y per sn m 

per0 = per 0 (unmarked) 

b 

See Table 1 for other genotype abbreviations 

p :-:; .01 except where noted 

N"S Not significant 

fl 
Period± SD n Periodb 

30.3 ± 0.6 7 +1.2 

30.1 ± 0.3 12 +1.0 
25.1 ± 0.2 10 -4.0 

30.4 ± 0.4 4 +1.3 
20.6 ± 0.3 11 -0.5NS 
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Table 6. Eclosion rhythm periods of females with 1-3 per+ doses (above) and males with 1-5 per+ doses (below). 

Genotype8 

ab 
I per~ /per~ 

b 

cc + / + perb perb 

dd per'6 /pero; 
Dp(J,·3)w67kZ7 

ee I per1/P•r~ 

fe I + y I perb / 
l 

gc pert/Y 
I 

hb 
per~/Y 

i 

o. per0 = per0 w spl 

perg = Y per0 

per+ 
doses 

2 

2 

2 

2 

1 

1 

1 

cycles/ 
Period± SD run Genotype 

+ /DJ ( l)wrJl 
24.1 ± 1.0 7 per a 

per ii /per
0 

24.4 ± 0.5 7 pert/ DJ(l)wrJl 

23.9 ± 0.7 5 per~ /per0 

24.3 :!: 0.7 6 
+ / +. perb perc• 

Dp(l,·3)w67kZ7 

24.1 ± 0.6 7 pert /Y; 
Dp ( 1 :·3)w67!c27 

24.3 ± 0.7 7 pert /w+Y 

I per-:;./w+Y 
24.1 ± 0.9 7 

1 

0i{l;l)w,126 /Y 

See Tables 1, 2 and 3 for other genotype abbreviations 

per+ cycles/ 
doses Period± SD run 

1 24.9 :!: 1.1 10 

1 24.6 ± 0.8 7 

1 25.4 ± 0.7 6 

1 24.4 :!: 0.8 5 

3 23.G ± 0.5 7 

2 23.1 ± 0.8 7 

2 23.2 ± 1.0 7 

2 23.1 ± 0.8 7 

5 23.1 ± 0.7 7 

+ + + X Dl'(J)wrll /w+Y 
b per~/Df(l)wrJl and per~/w YareF1 siblingsofthecross pera/pera, J 

+ + + X Dl'(J}wrJl /w+Y 
c pcrt/Df(l)wrJJ and pert/w Y nreF

1 
siblings of the cross perb/perb J 

d ,..., a o X P"'T+c / y ,· Dp (J,·3)w67k27 l' 
1 

sibliI1gs of the cross p6r /per ... 
+ y D ( 3} (J7{.;Z7 

e F 
1 

siblings of the cross pE:Tb /perl; X per c / " 'P l; w 

f p values are not given since periods were obtained from single eclosion runs. 

ll 
Periodf 

+0.8 

+0.5 

+1.0 

+0.5 

-0.7 

-1.0 

-1.1 

-0.9 

-0.9 
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Table 7. Eclosion rhythm periods: dosage and complementation behavior o:f pers. 

Genotype~ Period± SD 

ab 

b 

c pers /pers 19.9 ± 1.5 

d 

e 

fc pe~ /per6 21.9 ± 0.6 

gc per5 
/ Y 20.3 ± 0 .8 

hb per5 
/ Y 19.9 ± 1.4 

a per5 = per5 w spl 

persb = y pers sn3 m 

cycles/ 
run Genotype 

pers / D/(1)64/ 1 

per\/ D/(1)64/1 

8 perso / Df(lju.lJ1 

pers / Y 

per9 /per~ 

7 per9 /per~; 

Dp(J,-3)w fJ7kZ7 

8 per5 
/ Y; 

Dp( J ,-3}w67kz7 

8 per9 /w+Y 

See Table 1 for other genotype abbreviations 

cycles/ 
Period± SD run 

21.8 ± 1.0 7 

22.0 ± 0.7 7 

22.1 ± 1.0 8 

19.9 ± 1.4 8 

22.1 ± 0 .9 7 

22.0 ± 0.6 7 

20.0 ± 1.3 7 

20.7 ± 1.3 7 

A 
Periodd 

+1.9 

+2.1 

+2.2 

0 . 

+2.1 

I +0.1 

I +0.5 
I 

+0.8 

b per5 / DJ(1}64/1 andper5 /w+Yare F
1 

siblings of the crossper5 /per9 X Df{1)64fl /w+Y 

c F 
1 

siblings of the cross per5 /pars X par~ / Y ,' Dp ( l ,·3 )w6 7kZ? 

d p vulues are not given since periods were obtained from single eclosion runs. 
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3.8 Addendum - Discussion of the unusual dosage and complementation 

behavior of the per s allele 

A summary of the complementation and dosage behavior of the per alleles is shown 

in Table 3. 8. When the per alleles are arranged in order of effecting an increase in 

period length (with the arrhythmic phenotype = oo period), they seriate in a con

sistent order when tested opposite per+, per i, or per 0 
( = Df) but in a different 

order when seriated opposite pers. While there are differences in genetic back

ground in these comparisons, these differences cannot account for unusual order

ing of the per 8 combinations. As described above in §3.5, our model of per dosage 

regulation provides one possible explanation of the unusual dosage and comple

mentation behavior of pers. Another interpretation is that the the per 5 mutant 

affects more than one attribute of per gene activity I function. For example, one 

mutant site(s) could account for the hypomorphic and amorphic mutant action of 

perl and per 0 and another separate mutant site could account for the non-additive 

effect on period displayed by some per 5 combinations. The presence of at least two 

sites within the per locus with qualitatively different actions implies some type of 

genetic complexity at the per locus. 
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Table 3.8. Complementation and dosage behavior of the per alleles. 
Activity rhythm periods (in h) 
Females above (a-e); males below (f,g) 

1 

per 8 

period 

2 

per+ 

period 

3 

per' 

period 

a I per: 18.7 ± 0.3 21.5 ± 0.2 22 .9 ± 0.4a 

b per 21.5 ± 0.2 24.2 ± 0.2 25.1 ± 0.2 

c pert 22.9 ± 0.4 a 25.1 ± 0.2 29.1 ± 0.5 

4 

per0 

period 

19.2 ± 0.4 

24.6 ± 0.2 

30. 1 ± 0.3 

5 

Df{l)wrJl 

period 

20.2 ± 0.2 

25.1 ± 0.1 

30 .3 ± 0.6 

d per 0 1 19.2 ± 0.4 24.6 ± 0.2 30.1 ± 0.3 arrhy. arrhy. 

e I Df (1) w_r_J 
1
-++1_2_0_._2_±_0_.2 __ 2_5_._1_±_0_.1 __ s_o_._3_±_o_.6 __ a_r_r_h_Y_· ___ a_rr_l_iy_. __ 

f I w+ y 

glY 
20.4 ± 0.5 

19.2 ± 0.4 

23.2 ± 0.4 

24.0 ± 0.4 

a from Konopka and Benzer 1971 

23.7 ± 0.3 24 .2 ± 0.4 

28 .6 ± 0.3 arrhy. arrhy. 



- 110 -

Chapter 4 

Andante 

-A New Circadian Clock Mutant of Drosophila melanogaster • 

• Dominic P-Y OIT and Ronald J Konopka have amtributed to portions of the sb.ldies described in this 
chapter. 
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4.1 Summary 

By screening mutagenized sex-linked and autosomal stocks for ones in which the 

normal period or phase of the circadian rhythm of eclosion (adult emergence) has 

been altered, a new X-linked clock mutant has been isolated which lengthens the 

normal 24-h period of both the the eclosion and adult locomotor-activity rhythms 

to about 25.5 h. This mutant, which we have named Andante (And}, is not an allele 

of the other previously identified clock mutant locus (per, at 3Bl-2): recombination 

and deficiency mapping has placed the Andante locus at a separate site between 

polytene chromosome bands 10E2 and 10Fl (tentatively at 10E3, just proximal to 

the m-dy complex at 10E2-3). Andante, like all of the per mutant alleles, has a 

semi-dominant effect on period. The eclosion rhythm of Andante, like wild-type, has 

a low-amplitude (Type 1) phase-resetting response to light pulses, but compared to 

wild-type the Andante phase-resetting curve (PRC) is lengthened by 1-2 h per cycle. 
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4.2 Introduction 

In the first attempt to isolate clock mutants in any organism, approximately 2000 

mutagenized X-chromosomes of Drosophila melanogaster were screened for muta

tions altering the phase of entrainment of the eclosion rhythm in a LD 12:12 cycle 

(Konopka and Benzer 1971). Under LD 12:12 entrainment wild-type flies eclose dur

ing the light phase while very few flies eclose during the dark phase. By examining 

mutagenized strains for those with an abnormally high rate of eclosion during the 

night, three mutants were isolated that drastically altered circadian periodicity of 

both the eclosion and the locomotor-activity rhythm when examined under con

stant ("free-running") conditions. One mutant was arrhythmic, another had a 

period of about 19 h, while the third had a period of about 29 h. All three mutants 

were mapped to a single locus (called per) on the distal X-chromosome and were 

designated per0
, pers, and perl, respectively. 

In an attempt to isolate additional clock mutants, 3219 mutagenized chromo

somes have been screened for altered clock phenotypes by one of three different 

protocols. As a result, one new X-linked clock mutant has been isolated which 

lengthens the period of both the eclosion and locomotor-activity rhythms by about 

1.5h. 
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4.3 Mutant Screening Procedures 

Mutagenized sex-linked and autosomal chromosomes were screened for clock 

mutants by one of three methods. The first screen is similar to that used by 

Konopka and Benzer ( 1971): eclosion patterns were monitored in stock bottles 

maintained in a LD 12:12 (12h light, 12h dark each day) cycle at room temperature. 

Stock bottles were cleared of adults at the end of each light period then the bottles 

examined at the end of the dark phase to estimate the number of flies which 

eclosed during the dark phase. As described above, very few wild-type flies eclose 

during the dark phase. Attached-X females served as an internal control for the 

eclosion pattern of males bearing identical mutagenized X-chromosomes. Examin

ing mutagenized strains for those with an abnormally high rate of eclosion during 

the dark phase would allow the detection of arrhythmic clock mutants, such as 

per0
, or mutants with an altered phase of eclosion with respect to the entraining 

cycle. 

Although the advantage of screening under LD 12:12 is that is technically very 

easy to perform, period mutants that do not push the phase of eclosion into the 

night would not be detected by such a screen. For this reason we also performed a 

second screen under the conditions of constant darkness (DD) after previous LD 

12:12 entrainment, which allows the free-running period of the clock to be 

expressed. Under these conditions mutant strains with an altered period would 

show an altered phase of eclosion with respect to wild-type after a few cycles of 

free-run. 

For the third screen mutagenized stocks were raised in LD 12:12 at 22° C, 

tr an sf erred to DD at the end of a light phase, given a 12 h, 29° C temperature pulse 

starting 12 h after the · last seen light-dark transition (i.e. during the phase 

corresponding to the light phase of the previous LD 12: 12 cycle), then returned to 
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22° C to monitor eclosion. Wild-type strains return to the phase of entrainment 

within two cycles after the temperature pulse allowing the detection of conditional 

mutants for which period or steady-state phase is altered while at a restrictive 

(high) temperature. With such conditional mutants it might be possible to deter

mine the time of gene action during development and during course of each cycle. 

Since this screen was conducted under constant darkness. non-temperature

sensitive period mutants could also be detected. 
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4.4 Results and Discussion 

The number of mutagenized chromosomes screened under the 3 conditions were 

1 795 hemizygous X-chromosomes for the first screen, 769 hemizygous X

chromosomes for the second screen and 439 hemizygous X-chromosomes and 555 

homozygous second and third-chromosomes for the third screen. The clock pheno

types of putative mutants obtained from the first two screens were monitored in 

locomotor-activity tests. However no confirmed mutants were recovered. 

The eelosion rhythm phenotypes of putative conditional mutants obtained from 

the third screen were monitored in bang-boxes under conditions similar to the 

screening conditions. One confirmed mutant, which we have named Andante (And) 

did show an eclosion pattern significantly different than wild-type (Fig. 1). On the 

third day after a 12 h, 31 ° C temperature pulse, the median of the eclosion peak of 

male siblings bearing an identical mutagenized X-chromosome showed a distinct 4 h 

phase delay compared to the wild-type internal control. females bearing a y f 

attached-X chromosome. This phase delay observed in the mutant strain under 

these conditions appears to be secondary result of a primary mutant effect on 

period. Under conditions of constant darkness and temperature, And lengthens the 

free-running period of both the eclosion and locomotor-activity rhythms by 1.2 -

1.5 h. The eclosion pattern of this mutant strain under conditions of constant tem

perature and darkness is shown in Fig. 2. Mutant females have periods which are 

about 1.5 h longer than the wild-type females. · The eclosion rhythm periods of And 

males and females are shown in Table 4 a-d. The period of the locomotor-activity 

rhythm of this strain is also about 1.5 h longer than wild-type under constant con

ditions (Fig. 3; Table 1 a,i). When combined with a wild-type allele in trans

heterozygotes, And has a semi-dominant effect, lengthening period by 0.6 h com

pared to wild-type (Table 1 b). 
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The mutant strain also has a morphological mutant phenotype (short, dark 

wings) which was mapped by recombination analysis to the miniature-dusky region 

(1-36.1). Complementation tests showed that the morphological phenotype is the 

result of a dusky (dy) mutation. The clock phenotype, however, does not appear to 

result from the dusky mutation. In locomotor-activity tests, two different dusky 

alleles, dy and mD (see Lindsley and Grell 1968: Dorn and Burdick 1962) have 

periods which are similar to wild-type (Table 3a,b vs. 1 b). In addition, And/dy and 

And/mD heterozygotes (Table 11.m) have periods which are not significantly longer 

than the And/ And+ heterozygotes (Table 1 b: And/ And+ heterozygotes have a 

period which is 0.6 h longer than wild-type). In the eclosion tests, And does not 

lengthen period when combined with dy or mD (Table 4h-k). Unfortunately, tests of 

allelism, which depend upon the uncovering of a recessive mutant phenotype when 

two mutants are combined in a trans configuration, are hampered by the semi

dominant phenotype of And. 

Although the mutant clock phenotype of And does not appear to result from the 

dusky mutation, our mapping studies demonstrate that And is located just proxi

mal to the dusky locus on the X-chromosome. Recombination experiments were 

first conducted in order to obtain a gross localization of clock mutation on the X

chromosome. F 
1 

recombinant males recovered from y cha cv v f /And fem ales were 

pair-mated to virgin attached-X females in order to produce stocks of identical 

recombinant chromosomes. The periods of various recombinant types are shown in 

Table 2. Table 2a-d shows that the clock mutant maps to the right (proximally) of v 

and to the left of f. In addition only the double recombinant types that include 

dusky exhibit the mutant clock phenotype (Tables 2e-h and 4e). 

Cytogenetic mapping was then conducted using deficiencies and duplications 

that cover the m-dy region (see Fig. 4) . The results are shown in Table 1. The 

deficiency and duplication chromosomes were combined with And and And+, the 
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latter to control for the non-specific effects of genetic background on period length. 

Unfortunately the cytogenetic mapping, which involves the uncovering of a reces

sive mutant phenotype in mutant/deficiency or mutant/duplication heterozygotes, 

is hampered by the semi-dominant phenotype of And. In addition, the effects on 

genetic background are relatively large compared to the 0.6 h difference in period 

between And homozygotes and And/ And+ heterozygotes. The results of Table 1 do 

allow a tentative mapping, however. Since Df(l)KA 7, Df(l)KA6 and Df(l)HA85 when 

combined with And have periods ~ that of And/ And, these deficiencies would 

appear to uncover And. Df{l)KA6 and Df{1)HA85 show similar behavior for the 

eclosion rhythm (Table 4f ,g). When combined with And+, however, only Df{l)HA85 

shows a dominant mutant phenotype similar to that produced by And (Table le). 

Since the cytological extent of Df(1)HA85 is entirely included within that of 

Df{l)KA7 (Fig. 4), this difference in period between these two deficiencies would 

appear to be the result of differences in genetic background. Since Df{l)m25
9-

4 , 

Df(1)RA47, and Df{l)Nl 05 have periods ~ that of And/ And+, these deficiencies 

would not appear to include the And locus. This then limits the And locus to that 

region between polytene chromosome bands 1 OE2-3 (the right breakpoint of 

Df{1)m259-4 ) and lOFl (the left breakpoint of Df{1)RA47). Given this localization, 

the duplication Dp{1;3)v+ 74c (Fig. 4) must cover the And locus. Since the Y-borne 

duplication, v+ 3 Y y+ has approximately the same period when combined with And 

as .Dp{1;3)v+74c, especially if the background effects on period observed for both of 

the And+ /duplication combinations are subtracted from the respective periods of 

the And/duplication combinations, both duplications would also appear to cover 

the And locus. These results would thus tentatively limit And to 10E3, just proximal 

to the m-dy complex at 10E2-3. 

The results of a complementation tests between And and two mutant per alleles 

are shown in Table 1 n,o. When And is combined with per0 or per5 in trans-
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heterozygotes, period is lengthened by 1.1-1.3 h compared to the And+ /per0 or per5 

heterozygotes. Since And lengthens period by only about 0.6 h when combined with 

a wild-type chromosome (Table lb), the two trans-heterozygous combinations of 

And and the per mutants exhibit a longer period than would be expected from a 

simple additive effect on period. 

In order to characterize the manner in which And affects the underlying 

pacemaker system, we have conducted a phase-resetting study of the eclosion 

rhythm of And individuals (Fig. 5). Light pulses of 40' duration were administered 

to pupae of an And/y f XX/ Y stock at various times after a transition from DL 

12:12 to DD. The eclosion pattern of wild-type siblings (y f XX/ Y females) serve as 

an internal control for phase-resetting response of And/ Ymales. As described pre

viously (Konopka 1979), the wild-type phase-resetting curve (PRC) for saturating 40' 

light pulses is of the low-amplitude type (Type 1 or 11weak"; Winfree 1980) with one 

24-h cycle consisting of a 12 h a light-sensitive phase with a delay and an advance 

portion followed by a 12 h phase which is relatively insensitive to light. Since the 

magnitude of the phase shifts produced by 40' and 80' light pulses are similar in 

the And PRC, pulses of .40' duration produce maximum phase-shifting, as is 

observed for ·wild-type. The Andante PRC is similar to that of wild-type; the max

imum amplitude of the advances and delays, the time of the shift from the delay 

portion of the cycle to the advance portion (at about 6-7 h), and the end of the 

advance phase (at about 15 h) are similar for both strains. While the 1.5 h 

lengthening of period produced by the mutant is not evident during the first cycle 

(the beginning of the delay portion of the second cycle, at about 24-26 h, is not very 

distinct for either strain), the time of maximum delay during the second cycle does 

occur later in the mutant (at about 30 h .vs. 27-29 h for wild-type) and the time of 

crossover from delays to advances in the second cycle is about 2 h later for the 

mutant (at about 32-33 h vs. 30-31 h). 
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The similarity in the eclosion PRCs of Andante and wild.;.type is in contrast to the 

resetting curve of the per5 clock mutant which shows both a significant shortening 

of only one portion of the cycle, the light-insensitive phase, and a significant 

increase in the amplitude of the resetting response (Konopka, 1979). 
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4.6 Figures 

Fig. 1 Eclosion rhythm record of an And/y f .XX/Ystock given a 12h, 18-31-18°C 

temperature pulse 12 h after a DL-DD transition. The stock was reared previously in 

a LD 12:12 cycle at 18° C and the phase of the 12h, 31° c temperature pulse 

corresponds to the light phase of the previous LD 12: 12 cycle. 
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Fig. 2 Superimposed eclosion rhythm records of Canton-S (C-S) wild-type females 

and And/ And females monitored at 18° C and in DD after previous entrainment in a 

LD 12:12 cycle at 18° C. Time 0 corresponds to the time of the DL-DD transition. 
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Fig. 3 Superimposed locomotor-activity rhythm records of Canton-S (C-S) wild

type females and And/ And females monitored at 24° C and in DD after previous 

entrainment in a LD 12:12 cycle at 24° C. Time 0 corresponds to the time of the DL

DD transition. 
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Fig. 4 Cytological extents of the X-chromosome deficiencies and duplications used 

in the cytogenetic mapping of the And locus. 
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Fig. 5 The phase-resetting response of And/ Y males (dark symbols) and the wild

type internal control, y f XX females (open symbols), to 40' (triangles) or 80' 

(squares) light pulses administered at various times after a transition from DL 

12:12 to DD (18° C). The points are plotted at the pulse endpoints. 
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4.7 Tables 

Table 1. Activity rhythm phenotypes: deficiency mapping results 
and complementation behavior of And. (Period in h) 

And And+ 
fl 

period ± s.d. n period ± s.d. n period 

And 25.7 ± 0.3 10 24.6 ± 0.2 9 +0.9 

And+ 24.8 ± 0.2 9 24.2 ± 0.3 7 +0.6 

Df(l)KA7 26.6 ± 0.3 6 24.4 ± 0.4 10 +1.2 

DJ(l)KA6 25.6 ± 0.2 7 24.0 ± 0.2 6 + 1.6 

DJ(l)HA85 25.9 ± 0.2 6 25.2 ± 0.4 6 +0.6 
-

DJ(l)m259-4 25.1 ± 0.2 6 24.5 ± 0.2 7 +0.6 

DJ(l)RA47 24.6 ± 0.2 7 24.3 ± 0.3 8 +0.3 

DJ(l)N105 24.3 ± 0.3 5 23.8 ± 0.6 9 +0.6 

Y(males) 25.5 ± 0.4 4 24.0 ± 0.4 12 +1.5 

Y,· Dp(J,·3)u+74c 24.6 ± 0.2 7 23.7 ± 0.3 7 +0.9 

v+3 Yy+ 24.9 ± 0.4 6 24.6 ± 0.2 7 +0.3 

dy 25.0 ± 0.3 7 24.5 ± 0.4 9 +0.5 

mD 24.8 ± 0.5 5 23.9 ± 0.3 6 +0.9 

per 0 25.9 ± 0.7 8 24.6 ± 0.2 9 +1.3 

perl 26.2 ± 0.3 17 25.1 :!: 0.2 10 + 1.1 
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Table 2. Activity rhythm phenotypes: 
Recombination mapping of And. 

parental types 

y cha CV v dy+ J 
+ + + + dy + 

recombinant types period ± s.d. n 

a y cha CV v dy + 25.6 ± 0.6 6 
x 

dy+-b + + + + J 23.9 ± 0.3 6 

c y cho CV v dy+ + 23.8 ± 0.2 6 
x 

d + + + + dy J 25.4 ± 0.3 7 

e y cho CV + dy J 25.4 ± 0.3 7 
x x 

f + + + v dy+ + 24.0 ± 0.2 5 

g y cho CV + dy+ J 24.4 ± 0.4 7 
x x 

h + + + v dy + 25.2 ± 0.3 5 



Table 3. Activity rhythm periods of 
dy and mD homozygotes. 

Genotype period ± s.d. n 

24.6 ± 0.4 

23.7 ± 0.4 

9 

9 
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Table 4. Eclosion Rhythm Periods. 

cycles/ 
Genotypea Period ± s.d. Genotype Period ± s.d. run 

:I And/Y 25.1 ± 0.6 And+/ And+ (y J XX) 23.9 ± 1.1 4 

And/Y 25.6 ± 0.5 And+/ And+ (y J XX) 24.3 ± 0.6 4 

c And/Y 25.3 ± 0.8 And/And 25.2 ± 1.0 5 

d And/Y 25.3 ± 0.8 And/And 25.1 ± 0.2 5 

e y ch.o cv v+ dy (And) f / Y 24.9 ± 0.6 And+/ And+ (y f XX) 23.8 ± 0.9 6 

f And/ Df( l)KA6 25.0 ± 0.4 And/And+ 24.3 ± 0.5 6 

g And/ Df( l)HA85 25.0 ± 0.5 And/And+ 24.4 ± 0.4 5 

h I And/dy 24.6 ± 0.5 dy/Y 24.1 ± 0.5 6 

1 ii And/m.D 
m.D/Y 24.4 ± 0.2 

24.9 ± 0.5 
And/And+ 

6 
24.8 ± 0.5 

k dy/Y 24.6 ± ?.? dy/dy 24.6 ± ?.? 5 

mD/y 24.8 ± ?.? mD/m.D 24.8 ± ?.? 5 

11 And+/ And+ of c,d,e = C(l)DX, y I(= y f XX) 

And+ of f,g = FJJ7 

And+ ofj = FM3 


