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ABSTRACT 

The prediction of lung diseas e development in man i'rom 

aerosol particles and the medical justii'ication i'or subse~uent 

control of particulate atmospheric pollutants r equires specific 

knowledge of the rate and locati on 'Jf the aerosol deposition 

in t h e lun~s. A t heoret i cal development is presented to 

nvfterically predict the rate and location of aerosol deposition 

by impaction at the wedge walls in a model of a lung bifurcatior: 

IJ."wo limiting flow cases, steady p ot ential flow and steady 

laminar boundary layer flow, a re analyzed and found to repre­

sent upper and lower bou.,."lds oi' limited experimental deposition 

data for one-micron particles obtained i'rom a lung appar.s.tus 

simul a ting normal inhalations. 

Numeri cal dep osition results f or 20, 10, 5, 4, 3, 2, 

and 1 micron particles in steady potential flow show 

denosition fluzes to be i'•.mc t ions of Stokes number and also 

t he l oCa1 air velocity dis t ribution along the wedge. Boundary 

layer deposition results for the same particl es are i'ound to 

cor r e spond to the fi r st few data points or the steady potential 

case, however no boundary layer deposition oecur>s beyond a 

fe1.-.i- particle diamete:C'S along t he wedge . 
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INTRODUCTION 

Findeisen1 in 1935 was the first to develop a theory 

to quantitatively predict the total deposition of particles 

in the lungs. In the 1950's Landahl2 and Beec1anans3 have 

followed Findeisen•s lead with refinements in the equations 

f'or predicting deposition of' aerosols by i npaction, gr~vity 

settlement, and Brownian dif'fusion in difrerent regions of' 

the respiratory tract. 

Their deposition equations are mainly empirical correl­

ations which include the basic theoretical relations for 

settling velocity, Brownian diffusion, relaxation ti~e, and 

stopping distance (See Table BJ in the ApDendix). The relax-

ation time and stopping distance are two of' the parai.~eters 

used to characterize the inertial deuosition of particles. 

The stonping distance is the distance a ~article travels 

before coming to rest when it is projected with a given velocity 

into still air. The relaxation time is the time period required 

for a particle to adapt its motion to the accelerating or 

decelerating effect of an externally applied force. 

The total deposition in any region of the lung is obtained 

by S1.1..rmning the separate probabilities f'or deposition by 

impaction, settling, and diffusion. As an exa~::' :;::ile of the 

er1pirical nab.;.re of these depoei tion equatio:os, La..11dahl ts 

for~ula for the probability of inertial deposition is I=P/P+l 
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where P, the deposition paramete~.e, equals the r at io of the 

stopping distance to the radius of t he bronchial tube. This 

formula ~,ias chos 2n becaus e it matched the resui ts of an 

. ' . , . h 50 -,f ' i ' . exnerimen"G in wrnc '"'' aepos -cion occurred at 0 a 90 bend in 

a p i p e when P equaled one! In all cases, plu.g flow is asstuned, 

or average stream velocities are used. In spite of the obvious 

sinro lif'icati,.:ms of these equ.ations, the:v have ':Jeen useful in 

predicting gross regional d eposition rates in the bronchial 

tre 3 and the lower r e s n iratory tract. 

Specific areas of t h e lung are initially affected by 

some 111ng diseases caused by particle deposition. At these 

areas the particle de;::iosition rates r.iay tend to be higher, 

or possibly the natural clearing acti on of the c ili a or 

phagocytic cells may be le.ss effective. Once the natural 

form and func ~ion s of these susceptible areas are impaired, 

the diseas e rnay spread into surround1ng tis c' .. 1e. An exa:riple 

is the case of lung cancer in humans. Pri::..-12.ry pulmonary 

carc ino~n a in man is considered to b '2 brcmchio:;en ic in origin 

and us1Jally aris .sd in a urinci~al br G..n ch of the main bronchus 

near thB hilus of the lun g . It is c aused b~ d irect primary 

contac t of c 2r cinogen ic vapors or particles (asbe stos, arsenic, 

chromates, nickel c arbonyls, tars, and r~di oactive minerals) 

on the e9ithelial lining of the bronchus. The ganeral mechanism 

for tumor develoo~ent is be l ieved to be t he following: in 

the bronchial lining a defect c aused by the carcinogenic substance 

is repaired b y a tra..risi tional typ e cell uhich -,,rill dif.ferentiate 

normally; however, when pers istent injury occurs, they rorrn 



u cancer ou s c e l ls. · 

Wi th t oda:- t s in t e r e s t in C:Jmoating l'. i r u ol l '-3.tion and 

i n mod e l i ng t h e e nvironmen t in a mann er t o opt i miz e the qu al i ty 

of l i fe, man de sires t ~ b e ab l e t o 9 r edic t stati st i c a lly t he 

ch anc e s of his obtaining l ung cancer or so~s other r e s pira t ory 

dis ease from breathing p ol l uted a ir c ontaining various g ases 

and p articles. Therefor e , h e must b e abl e to predic t the rates 

of deposition of sp ecific s i ze ~articles at sp eci f ic locat i ons 

in t h e lun gs. The p r evious ly de scrib ed emp i r ica l cor relation s 

for re gional dep o s ition are inadequate b ecause t~ey ne gl e ct 

local variation in stream veloci t i e s and fa i l to account for the 

transien t momentum and conc entra ti on gradi ents .. 

Inasmuch as l ung c an cer develops in the ma i n bronchi 

and its branches, it is probab le tha t some of t h e p articles 

contributing t o t he disea s 0 a re denosi t ed by ine ~ ti al forces 

sin ce t h e f l ow r a t e s ar c! h i gh and t h s stre amline s b en d sig -

nifi cantly a t t h e b ifurc at i::>~ . The b i..Cur c a t i on r egi on is, 

c ons equ ently , the f i r10t l og ic a l 11 hot spot 11 to i nv e stigat e 

in the lung . 

The goal of this mast er Ts renort i s to theore tically 

pre d ict t h e rate an d location of t h e part i cle deposition at 

t h e bifurcation of a lun g model anc to co~par e the t h eoretical 

r e sults ·with exper imental data taken f'or a fl ow sys t em analogous 

to t h e first bi furc a t ion i n the u p p er a ir1-rnys. 



THE02STICAL ANALYSIS 

Lung Hodel 

In nearly all theoretical deposition studies, Weibel's5 

regular symmetric dichotomy rr.-Odel of the l u.ng is used. For 

the author's theoretical study a two dimensional r1odel of the 

trac~1ea and its two bronchi with a 90° _int erbronchial angle 

and an overall shape identical to ~'1eibel rs model is proposed. 

A s >:e tch of a real lung branching net i:-mrk is show-.n in Figu.re l; 

the model is shown in Figure 2. The two dimensional model 

was chos en for s tudy because it s implifies the analytic solution 

of the stre&-nlines {vorticity effects arise in t hre e dimensions). 

This simplification · should remain accurate ·:ror the stre&"11lines 

c l ')se to and on either side 01~ t h e stagnat ion streamline. 

Since gr avi tational effects are neglec-cea in horizontal flow, 

only inertial forc e s are c onsidered. The 0 90 wedg e Has chosen 

b e-« c ause it shnnlifies the not en ti al and boundary layer soluti·Jns. 

The model is also geomet :t'icall~:t similiar to all branching sections 

i n the UD~er r e s piratory t ract of the lungs; therefore , 

denosi ti'Jn p r edi cti ::ms for t h is sect ~. on can be .flow r2.te corrected 

and applied to any other section. 

The :main disadvantage is tha t such a two dimensional 

sy:rm'":ltr ic model is n :::it s. co::nplete simulation of the three 

dL-. en ~ i Jnal :flows in the real l m:1 g .. The re al lu...11 r~ is uns:a::.-

r.'et:d. c with an interbr :)nchial an gle whic '.:-:. v arie s fr'.::rr: 50 to 

100 d egrees. The angl e s eldom i s bisec ted b y the ~racnea , 



FIG. 1 

REAL LUNG BRANCHING NETWORK 

U=FREE STREAM 

u 
> 
> 

.... ~~~~~12~~~~--l~ 

FIG. 2 BIFURCATION MODEL 

WITH POTENTIAL FLOW 

> 
u 

FIG~ 3 BIFURCATION MODEL 

WITH POTENTIAL FLOW AND STEADY 

VISCOUS BOUNDARY LAYERS 

L3 
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d i mensions. Finally, the outside walls .of the real l ung 

trachea join sr.!oothl~: with i t s branch es in many possible 

angles, whereas t he model has a s harp 135° angle. 

An air flow analysis of "ileibs l ts s.; iCTne t ric · l u..:."'! g model 

is 3 i ven in To.bl e Bl in the A:puendix. The :8. e ~/nolds nlli?1bers 

an o the entrance len g ths sugge2t t hat lam:Lnar plug :flow exists 

i n the first through fourt~ g~ner ati ~ris, partially developed 

la.7ninar parabolic flow is pres ent in th :; fifth thro•.J.gh eighth, 

and well-develop ed Poiseuille flow takes place in the ninth 

through fifteenth gen ~rations. 

For the model studied two flow cases are assumed~ (1) 

st s ady potential flow shm·m in Fi gur8 2 and (2) steady noten-

tia1 flow with steady laminar boundary layers in the bifur-

cation region of Figure J. In the notential flm-;r solution 
·'· 

the infinite velocities at 135° angle are neg lected because 

t'.0.e :main c onc ern is w·ith the st t'ea'1lines ab:Jut the wedge. 

These cases are simplificati :ms of t h e real lung flow which 

is nearly sinusoidal in time and 1"-hich c 2"us e s an unsteady 

b c:nm da:~y layer to develop along the tube ·walls. Eoweve-e>, 

the s s cas e s a r e valid starting points for a theoretical analysis. 
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General St:rea"'i1lines for the Lu:'.ig T:Iodel 

Having assw.--ned the t wo air floH cases, t he analy tical 

equations for the steady pot ential fl ow will b e derived first. 

~ . • 1 mi 6 • 1 t • , ~1 n e -1 norn son g ives a so u ion proceaure for the genera.l 

pr ')bl em of determi ning the stre amlines in a ca.:.1 a l with a side 

bra...11 ch. Since the i'low :model pro-p os ed a bove is sy.1.i.mat:ric, 

the strefl.!.-nlines c an be derive d by modifying Nilne-Tho:mson' s 

pro cedure for either the top or bottom half of the model- -

the center being determine d b y the 8. tagnation stre !:.:mline which 

t e r minat e s at the wed~e tip. The top half or the madel is 

shown in the z-plane in The fr e e s tre&~ velocity 

upstrea..111 from the branch at A00 is U, and the dm·Jn s tre am velocity 

is u2 , unknmm. ACDC is the stagnation strea'Yl line~ t,.rhile the 

strea'7l line -~ED00 undergoes an abrupt change of dir e ct ion at 

E, causing 2n infinite vel ocity . 

First, the bran ch for~ in the z-plane i 2 el imina t ed by 

transfor mir; g into the Q-plane ('Fi gure 4} b y t h e trans f'orr:;2 tion 

equ ation 

where 
-1.G 

~ = '7 e = u.- i v • Here q = 1J u.;i. + y.2 , the stream speed. 

Along the sides of the main c anal 9 = O; while along t he 

branch 9 =~. At C, q = O; hence, Q is infini t e . The infinite 

strip in the Q-plane can now be mapped into t h8 p l ane {Fi gure 4) 

b y means of' the Schwarz-Christoffel transforr,oa ti on, which 

(1) 
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The following values of -5 and 0 correspon d by the above 

transfor~ ation equation: 

S =-a 

-5 = d 

~ = u 

"'. " -<> (J) ~ c."na· a.· -- (r. ~1· _....,;-ur)1~ 1·nere1ore, J_rom _ a= J.., - ,..-

The next step is to construct the com~le t e 

1 ; T 1 , T. p ... ane or v'i-p ane i·.rnere N = ~ + i¥. <f> represents 

n .t.. • , • ~ 11r ·, ' ' h ' .c>- • • 1uncvion, wai.Le 7 represen-cs 'C _e S'Crea."'11 1.Unc-cion. 

(2) 

note11tial 

the notential 

boundary conditions are as 

follows: 

on P.J.00 EDb? 

on AwC 

on GDco 

Therefore, 

lf = 

1V = 

Uh - U h - 2 2 

1JI = 

0 

Uh 

u_2h2 

which also follov-i2 fron the e quation of Cr)ntinu i ty .. 

( 3) 

cµ1d ~ = -()0 at Doo, the result is the 

H-plane diagram sh::nm in Figure ~-· To map the ".I-pl2ne into 

the ..5 -plane, the Schwarz-Christoffel transforl1-:ation is used 

2.gain, and the result is t irn following: 

Integrating: 
- I) 

I 
K ,. · { P -o 

\A (CJQ d'l---
V\ --:: (;;:+d) J (S +-u) (4) 

The auth·:>rts origins.l potential flo",,i deriva ti0n :: ras 
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critically a.n2..lyzed by D-t' .. lforman ~1~ a 1-nPth a~'! :i Dr. -.Iil l iam 

Eal1. 7 They found that :Milne Thomson rs de ~' i vatic>n and sub-

s c; qusntly ny ?)revi ·:>us de'.'i vat ion uas in error!' because K
1 

and L
1 

1:rn~c-e a ::: su:med to be either real or irr::aginary 1-rhen 

applying tha boundary conditions to evaluate K
1 

arid L
1 

.. 

As indicated above~ K
1 

and L
1 

must both be assumed to be 

comnlex constants in order to be evaluated correctly. 

Using the boundary C·')ndi tion that If= 0 on DcoE, Cb+ a) 

and (5 - d) have the same sign.. Thus· on D°"E the log arith.'":1s 

are all real- Therefore on D E 
"()Q 

Cp -

Ther·efore, 
.lm L1 :: -Im I{, 105 ,~ { 

la. +- d ) t +a. 

Evaluating ' p 
the log in the limit as Re ...!J approaches()O , 

Therefore, Im L1 = Og Thus 

0 = -Im I<, /oCt 1· ~ -J 1· 

log (l)= O. 

(CL +. d ) J t +-a. 
.,_., al atin '-'ne lo i·n +-h l ·m· · a f...:...o _~, o:z..· J-}J= C·v",.,_sran.t,· .~v· u· ,_ g 0. g • '"'· e _li,l'C S.J·,, , .:, ..,,. .. , ..... 

therefore Im K1 = o. Applying the other boundary condition 

that¥= u2h2 at c, set ¢ = 0 since C is a stagnation point. 

ThusJ= Oat C.ar.d substituting into (4) 

F~_om ~v•h_e 1' Of ~h ~· '- ' b ~n C'~~a' ~r·on~ .- _ resu_i:;s u e 1.lI'Su -cwo oun.._._c..ry 0""' J.vl -· ·-· 

the last two terms equal zero. Rearranging 

UJl\1 ( a+d) _ 
T/ 

above 1 
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Using cf;= O, 

O= - .~,/ J/k, 
0 

There.fore 

Substituting these values of L1 and K1 into l4) and setting 

a = 1 from (2) the general solution for the complex potential 

in the symmetric model is the following: 

-w:; ~ /OJ IJ'/J -~ 
11 ! + I 

From (1) 

Theref'ore 

{
_i ) 'Yo< _ { -vljei.,,<) 3 

$ -= - u - \ 

-~ - ~ ::: u e- Loi. s1'rr 
dz -

Differentiating (4') and dividing by (5) the result is 

d z :: - ~ [ I - _J_ J e i o< Ji - -</11 
J .S 7T (~ - cl) (J + I) 

( 5) 

Integrating 1:1i th respect to J with o< =J!j for the 90° riodel 

7 
= -~ J.%[ f J-Yt; JS - c_r J5j1 

L n S-d J t+1 

Transforming variables by S = x4, evaluating . integrals from 

tables8 and substituting d = (h/h2 )4 from (2) and (3) above, 

the 

z= 
(6) 
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Since z = 0 corresnonds to .S = 0 from the transfor:nations in 

Figure 4, the integrati on coDstant C = o. 

Because (6) is not invertible to give J = r(z), one 

must us e both (4') and (6) as t he solu tions f'or the c omplex 

notential at location z i.n the z-plane in terms of' the implicit 

variable .5.. The stream fUt.-iction ~ is the complex part of Td 

in terms of .J at location z in terms of J . Likewise, the 

c omplex velocity 0 = u - iv is given by (5) in terms of~ 

at location z in terms of Sin (6). Therefore, derivation 

of an analytical expression giving the stream f'unction or 

the complex velocity as a direct function of a z-coordinate 

position is not feasible . 

. Such a pro b l .em should be solvable numerically on a 

computer. The procedure to determin e the stream function, 

for instance, would be to feed the cor.rputer dif'f'erent values 

of the com~lex v ariable J' and to h ave it calculate the z 

coordi nates and the value of the strea.."'n function 1( corres-

ponding t'J each value of.£. Then the co:nputer would sort 

thro '.;gh this data for all the stream functions of one value 

and store the (x,y) coordi nat e s of .that stream function. In 

orde~ to plot the strea~lines in the z-pla.~e for each value 

of ?f, the coordinates would be arranged f'ron n inimur:'l to 

maxir.m::n based on the x coordinate. 

To . .... . aeverm1ne the strearn velocity co::nponents at any co-

·'Jrdinate locat i on in the z-n lane, the cozr:put er wou.ld like-

wise use different value ~ of~ to calculate corresp onding 

values of u + iv and x -:- iy, <:·1hich w:::iv.ld. b s stored in arrays. 
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T~e nTu~ber of different points in any are.a of t he z-ul ane is 

i n:fi n ite; there:Co :'.' ·?, , one sh ·J'J.l d t r y to choos e valu es of J to 

obt ain values of (x,y) ~hich ar e equally di stributed to the 

ac c·'..J_rc:.cy desir s d over the range of the z-plane in which one 

is conc ern ed. Thsn at any possible point in the range of 

use on the z-plane , a value of u and v ce.n be fou.."rJ.d in t~l.e 

stor-ed arrays. 

Value s of ljf have been comnuted at various (x,y) coor-

dinates by using the proc edure described above. However, 

preliminary results indicate that the ~11ount of computer 

time necessary to do an adequate job is presently prohibitive. 

In the case of aerosol de:oosi tion, the streamlines ·which 

lie close to the stagnation streamline are of princii;ile interest 

because small particles on s t rea~lines i'ar .f'l .?.. "I • • • -'-rom i,ne s-cagna-cion 

streamline in the direction of the channel walls will neyer 

impact on t h e wed r;::e. This is clearly demonstrated by the fact 

that the Etopping distanc e of 20 micron particles in a stream 

having a velocity of 100 cm/sec is only about .087 centimeters 

in the direction perpendicular to the wedge . Since 20 micron 

particles are approximately the largest particles to penetrate 

beyond the nasalpharyngeal chamber, all smaller particles 

that imyact on th-::: wedge will have to travel on streamlines 

lying within .087 centimeters of the stagnation streamline. 

Therefore, an approximate solution is desired for the strefu~-

lines about the wed~ e b;y expanding the gene-cal solution about 

J = o. 



13 

Streamlines about the Wed.R:e of the Lun.~ Model 

3xpanding the comulex potential (4'} in an infinite 

Mac l a urin Series for small~ and neglecting the second and 

hi gher order terms, the result is as follows: 

Therefore , . 

~ ~ U~ [- (J_ + I \ ] 
d :$ . _TT d ) 

dZ = d W/JS::: }:_ e..io<. .:5-~?r(f +-/) 
d ~ J W/JZ Tf · 

Integrating with respect to 1 and setting the integration 

constant equal to zero since z = 0 when J = O, the result is 

z = 

Choosing<>< = -fj, solving forJ, and substituting .for the constants, 

t he 

Th ere f or-e 

.,... 
I W _ -(.' IT 
~-Ue-;:; 
d z 

The constant, 
U YA 

;;, [(~i)i+ if~ 

u_-i\J 

represents the value of u at z = -1 and is designated by u_1 • 

By use of the approximat e equation and substituting forj 

W ;: -~ [ ~Tl - ( d +/) S] 

W -
- 7-. I -~ o/3 if/3 u I - -Ji u_, e z .f-l ri 

(7) 
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Using (7) in polar coordinates for flow around a 90° wedge 

with the orL2'.in at the wedge th) and ·with r = V x:~ -1- 'IJ. 7 , 

9 = arctan y/x, 

:i I) % cTi-fe) ~ -:: - lq ··I r cos 3 

y-::: + ~ U_, /f3 5111 ( rr;'IP) -1- uA (8) 

(9) 

·· · L) ' Y: ( TT-9) v = _1 r 3 sin. 3 (10) 

(9) shows that the u velocity component decelerates toward 

the stagnation point and accelerates along the wedge. The 

v velocity component in (10) is noted to continually increase 

over the saue ran ge. These results are directly applicable 

to the z-plane since theJ dependence has been eliminated. 

Tne California Institute of Technology IBM 360 computer 

was used to plot the stre8..:."11lin2s given by (8) about the top 

half of a 90° wedge shown in Figure El in the Appendix. The 

free stream velocity was taken as 100 cm./sec., which represents 

the average flow rate of a one second JOO cubic centimeter 

inhalation through the lu.i"'lg model. u_1 is, therefore, equal 

to 81.97 cm./sec. 1jf = 95 represents the stagnation stream-

line or negative x-axis, while lf= 93, 'lf = 91, ...... , 1V = 75 

represent values of the stream functions on the successive 

streamlines above the negative x-axis. As pointed out earlier 

the 20 micron particle, the large st particle studied in the 

subsequent impaction an2lysis, has a maximur.i stopping distance; 

8 
_;:; 

.?XlO - centimeters, perpendicular to the -:·;edge. Tb.ere fore, 

the only streamlines needed for the theoretical impaction 
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analysis will lie under 1f = 90. · o Because the abrupt 135 bend 

in the cha..Dnel lies at a distance of l.J centimeters perpen-

dicular to the wedge, one can readily as sume that the ini'inite 

velocities developed there will have no effect on the streamlines 

clo s e to the wedge. Since the general solution s treamlines, 

if they were obtainable, wo;Jld have the sane shape in the 

re gion close to the stagnation streamline and w:3 dge surface, 

it can be ass um ed that the anuroxima te solution s trea.-r:lines 

are sufficiently accurate for this calculation. 

Trajectory Equations 

Havi!lg obtained equations i'or the fluid velocity in the 

model, one must develop a method to apply particles to these 

streamlines and to determine the rates and locations of their 

· deposition on the wedge wall. 

For particles ranging from one micron to 20 microns in 

diameter in a 100 cm./sec. stream, the particle Reynolds 

numbers rans e from .06 to 1.2. Stokes Lm·r, Fk = 6yRu is 

valid for Re up to .1; while at Re = 1, it predicts a drag 

force which is 10 percent too low. Here Fk is the force 

associated with the fluid stream movement,/ is the viscosity 

of the fluid streai.:i, R the particle radiu s, and U the free 

stream velocity(lOO cm./sec.). In spite of this error with 

the largest particles, the author will use the following 

differential equations of motion for particles within the 

Stokes flow regime: 

J Ur= .1.(U-Llp) 
J t 1: 
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u and v are the stream velocity components in the x and y 
directions, and liD and VP are the particle velocity components. 

1:', the relaxation time of the -o article, is ec:u ivalent to 

Fk/mass of narticle. The technique for determining the aerosol 

particle trajectories in curvilinear .flow is outlined by 

Fuchs9 and consists of dividing the trajectory of the particle 

into corres-ponding segments using the approximation for the 

i-th interval: 
d ur __ 
-rt 

where ti. is the value of ti at the beginning of the interval. 
1 

Integrating and assu."ning t = 0 and u .. = U: • gives 
n pi 

. . -t/'"C"\ 
llp =-Up" + (u.~ -llpi. )L / - e J (11) 

at the end of the interval and integrating again gives the 

x coordinate of the particle at the end of the interval 

I ( )( --1::/i:) X "" X ~ + ll;_, ""C -+ '(: tip: - f.Ll, . I - e 
(12) 

Calculation of a trajectory in the model will begin at one 

centimeter before the wed.:ze where the stream velocity is 

essentially rectilinear and equivalent to the free strea.~ 

velocity. Therefore, the particle velocity ca...Yl be assu."'iled 

equivalent to the stream velocity Ht this point. Our stream 

velocities u and v are given by equation (9) and (10) for 

all points through which the particle can pass. Beginning 

at x = -1 cm. where U = 
p 

tt, the trajectory is calculated 

step by step by -use of equations ·(11) a.."'1d (12). Obviously, 

the accuracy will be improved with shorter time intervals 

for each step in re gions c16se to the wed~e where the stream-
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lines curve significantly. 

Deuosition Para~eter 

How that the equations for determining the trajectory 

of the particle have be en derived, calculation of the posi-

ti ::m of the particle will continue . until the particle con-

tacts the wedge surface or until it travels beyond 2.5 centi-

meters along the wedge, in which case it will be considered 

to follow the f'luid streamlines. The general deposition 

uara~eter to be ~easured, F
3
/C, is the flux of particles to 

the ·wedge surface diirided by the concentration of particles 

in the stre&"'11; it has dimensions of crn./sec. This is related 

to the flux of particles in the main stream, F
0

, by the 

principle of continuity, F
0
dy = F

8
dL, where dL is a small 

segment of' the ·wedr; e surface at a point L fro::n the wedge tip. 

In order to apply this to a finite nu.i.~ber of particles 

colliding with the surface at a finite nu..mber of positions, 

the equation, dy =by = y 2 - y
1

, where y 2 and y 1 are the 

vertical starting coordinates of two identical particles at 

x = -1 centimeters, is used. These .I- • .., p ar1..oic_r. es i r:uact at 12 

and Ll on the \.,red ,-:e sur~f a. ce with an ave::."' age deposition 

location of (L2 + L1 )/2 and dL =D.L = L2 - L
1

• Therefore, 

Fs/c :: (Po Ii Y)/[c LlL) = er. cosG {/1,Y)/(11 L) 
whe-C" e q is the average speed of' the two streamlines at the 

two starting positions y2 and y1 and 8 represents the angle 

bet;-reen the average veloci t y vector and the h orizontal coor-

di ::l ate. This deposition for:nula ca.."! be -c:_ sed acc t~rately if 

all -:> articl e s are start e d T,-fi t h in the same small y distance 
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of each other. To dete~mine the nu::~ber of p article~ depositing 

in a neriod of time, multiulv F /C bv t he u article concentration 
~ , s v " 

in the stream and the period o~ time of deposition. 

Having derived all the necessary theore '.:- ical equations, 

a program was wr itten for use in the IBH 360 computer to 

determine the deposition rates · and loc2.tions for aerosol 

particles in s t eady potential flow. The Fortran IV progra.11 

listing is given in Appendix E. The variable inputs are the 

free streari velocity, particle radius and relaxation time, 

the y increments betwe en starting positions, and a time inter-

val. 20, 10, 5, 4, 3, 2, a.nd 1 micron diameter particles 

were run because the 20 micron particle represents approxi-

mateiy the largest particle size wh ich penetrates beyond the 

nasal pharyngeal passages' wh -:reas the o.ne micron particle is 

essential l y the smallest particle having a. relaxation tir.ie 

long enough to imoact on the lung walls. 

In order to approximate the deposition that occurs in 

the unsteady flow of a real lung inhalation by using the steady 

flow computer program, the quasi-steady flow approximation 

is applied. This approximation holds when the dimensionless 

parameter R1W/~: is less than 1.010 • R represents the radius 

of the main tube before a bifurcation,W represents the angular 

breathing .frequency, and ...J1 the kir.ematic viscosity of air. 

In other words, the unsteady periodic velocity profile r,.;hich 

occurs in the resuiratory tract upon inspiration and expiration 

can be treated as a time succession of steady state velocity 

profiles when the dimensionless frequency parameter has a value 
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less than 1.0. 

Table B2 in the Appendix shows t he -v-ariation of the 

fre c_uen cy para.r.11eter in the upper airways for breathing rates 

of 12, 16.7, and 30 breaths per minute. The values of the 

parameter are less than one for the three frequencies used 

in the 4th generation and proceed to decrease to values of 

.08- . 13 in the 16th generation . In the trachea and the first 

three generations the value decreases from 4.14 to 1.22 at 

the 30 BPM rate and from 2.61 to • 77 at the 12 BP1'1I rate. 

The author's bifurcation model has dimensions of the first 

bifurcation bet·ween the trachea and primary bronchi. Since 

the frequency parameter for the three breathing rates varies 

from 2.61 to 4.14 in t his re gion, the quasi-steady flow assi..unp-

tion can not be rigorously assumed. However in order to 

sinmlify the task of predicting the deposit i on, quasi- steady 

flow will be assumed as a first approximation. 

The following technique was derived to apply the quasi-

' d "'l t . . . 1 • l ' • s0ea y I ow assump ion i:;o -c.-ie a ul:nor s cor::,pu--cer program. The 

cam d esign curve, shm-m in Figure C3, approximates the f'low 

rates for a one second JOO cubic centimeter breath. This 

has been divid ed into 16 time interval s , and the average 

flo~·i rate has been calculated from each interval by sta..ndard 

tech..11iques. Table Cl lists the averag e flow rates and average 

stream v elocities calculat ed. Then t h e above computer program 

is r un for a singl e par ti cle size rep eti tivel y at these d iffer-

ent average flo-,, rates. Eean values of the d eposition fl ux 

a r e calculated at · a _ fixed -.loc.ation along the ·wedge by ·weighting 
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the deposition flu..."'t at that location for each steady f'low 

rate run by the aDpropriate time interval; all the time 

t-reighted values of flux are then sw'iimed to :::--i ve the mean value. 

Theoretical Results for Steady Potential Flow 

A plot of the trajectories of 20 micron particles in 

100 cm./sec. potential flow is sho·w-i:-1 in Appendix E2. In 

order for these particles to impact as shm·m, they are started 

at x = -1 centimeters, senarated ~ertically by 40 microns, 

and a time interval of .0001 seconds is used with a relaxation 

time of .00123 seconds. At the more accurate time interval 

of .00001 seconds, used in all subsequent results, the maximum 

extent of impaction for 20 micron particles is 1.5 centimeters 

downstr·ea.l71 of the stagnation point,. This result is obtained 

from a vertical sta"!.'"'ting position of .02L~ centimeters~ which 

is slightly more than one-fourth of the stopping distance 

calculated with 100 cm./sec. flow. These results clearly show 

that all particles rmst lie within a fe',.J diameters of: the 

stagnation strea:.-:1line in order to inmact on the wedge. 

Table Bl lists the relaxation times, stopping distances 

at 100 cm./sec., and the y starting interval between particles 

for all the particle diameters r~m in the results belmr. 

Figure Bl is a plot of log F /G vs. log L. The 1, 2, s 
J, 4, and 5 micron plots are observed to be fairly linear; 

their nearlv constant seuaration is annroximatelv related to 
"-' ""- ... ' v 

the log of the ratio of their relaxation times or diameters 

squared. Hmrnver, one notes incre2singly nonlinear regions 

from the L~ micron to 20 micron particles at loc.s.tions increasing 
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-3 -1 respectively fro2 10 to 10 cen t imete~s. One al s o notes 

a hi~her dBnsity of deposit ion points in ~hese regions for 

the 20 micron and 10 1nicron parti c les. On e naturally expects 

the decelerating and accelerating effe c ~ s of the potential 

velocities to have the least eff ect on the 20 ~icron particle's 

motion and increasingly greater effect on the smaller particles. 

Therefore, the 20 micron particles easily traverse the slow 

velocity, curved strea'l'lline region near the tip of' the wedge 

with little deflection to impact directly on the wall. Th.e 

same can occur for the 10 micron particle, but at a distance 

!""'our times closer to the tip to insure negligible def'lection 

from its original path before the wed~e. This reasoning is 

carried on closer and closer to the tip for the smaller 

uarticle s with sh'.Jrter r elaxati::n1 times, thus explaining the 

shift and decrease in size of the nonlinear segments of the 

plots. 

Since the computer pro:'!r am is designed to terminate the 

trajectories when the center of the particl e is less than or 

equal to the particle radius, th8 size of the radius causes 

a small part of the effect des cribed above. If t he particle 

falls b eneath the imaginary boundary, the calculation of the 

exact deposition location is ba~ed on the radius. 

Figure B2 shows the effect of various potential flow 

rates on the deposition of one mi cron particles. The velocity 

averaaed deu osition curve marked wi ~h crosses is determined b 

b y the tecJ:i..nique describ e d abJve to approzimate the unsteady 

flow rate dspositi ~n of a 300 cc, one second inhal a tion. Since 

it nea!'ly coL1cides with the 100 cm. /sec denosi ti on curve , the 
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100 c~. Is ec. steady potential deposition r '"' s ul ts ~-ri ll be 

u sed to approximate 1.:nst eady flG 1--r re s u_l ts. All t >e c:~:rves 

have t(le sar:!e shaps, indicatin r that the main efl~e ct of vary-

ing the velocity for the one rnicron ~articles is to change 

the value of t h e coeffici ent of the deposition flux term. 

Becaus e of the small particle mass and relaxation time, the 

inertial effects are very small causing the uarticle to 

deviate only slightly from the streac""'ll ines. The:r>efore, the 

nonlinear regions fo~nd for t h e l a rger uarticl es do no t occur 

for particles smaller than 4 microns. Sum ... ~arizing, inertial 

effects cause negligibl e change in the deposition flux for 

one micron particles T,-;hen various stream v elocities are used. 

Fig-u.re BJ fol"' 10 micron particles is analogous to Figure 

B2. The higher velocity plots clearly show the nonlinear 

portion explained in the first gr a9h. Higher velocities are 

naturally expected to emphasize the nonlinear portion while 

minimal effects occur for the slowest flow rates. This is 

because tha degree of deceleration and acceleration is much 

smaller than at higher velocities, causing the particles to 

follow the streamlines more closely. The ma a.."11 de nosition 

curve to be used for the unsteady flow auproximation corres-
~ .:.. ... 

ponds ap9roximately with the 114 cm./sec. data instead of the 

100 cm./sec. d ata. This shift in the mean deuosition curve 

is due to the increased inertial eff ects for the higher flow 

,.., a ..... 0 r iuns T.Tbi cl"' o•· tt·re1 ah - .. v v .... ~ .... _ .!..L .... J.. , - o the effects of the slower runs. 
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Steady Laminar Boundary Layer 

Having s ·Jlved the inviscid flow c ase, a steady l&'Tiinar 

boundary layer is now added along the wed~e to determine its 

effect on deposition. The potential solution for the flow 

along the wedae from (9) and (10) is 

ub ::: u_I ( ;J :::: u_ ( XbYJ 

The boundary layer coordinates are xb and yb, respectively 

parallel and perpendicular to the wed:;::e sur ·~ ace . This is 

used as the limiting velocity above the bovndary layer along 

the ·wedge. 

""' S hl ' ' t. I ll d • • - 1 . n 'h 1 . t ~rom c~_icn ing s imensioniess p_o~s OL ~ e ve oci y 
. 0 

distribution in the laminar boundary layer along the 90 wedge, 

one determines the boundary layer 

b'lX) = 3. L/3 Hr/u_, 1 

X {
3 

thickness at u,/U = .99 to be 
0 . 

Another approach is to use the displacement thickness12 

t .I ' · ~ ~ C«) :::- I 95"S v-->(u_, Xb 

as the b·'.)undary layer thickness. 

A cubic eauation was f ound to be a poor approximation 

for the bou,.~dary layer velocity profile by the Von Karman 

Integral r,lomentun1 Equation. Thererore after applying 

Schlichting's dimensionless parameters a series expansion of 

the velocity profile for the 90° wedge was obtained f'rom the 

· · 1 +-·cl -" Fal' ,:> , 31 13 or1 g1na arvl e Ol KD~r ana Kan • The comuonents of 

the velocity in the boundary layer are therefore: 

[ 

fl~ 
(U-1) .. ( U-')· i -~ Ub ::: u_, :s Ti fb - • 100 Ti Yb xb 
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In order to deter~ine the denosition rates with the 

steady 12.lllinar boundary layer, the s&--ne b a sic co:r.:iputer ::crogra:m 

is used as in the steady potential flow case. Eowever, the 

boundary layer thicloess is applied as a boundary condition 

for switching the particles from t he potential :flo~._. equations 

of motion to the equations of motion based on the b01.L'1dary 

layer velocity components. The sa.~e denosition par8.I:1eters .. . 
are used. ·The Fortran IV program listing is given in Appendix l 

T'ae displacement thickness was used to obtain the reported 

data below because the other boundary layer thickness equation 

gave essentially identical results for all particle sizes. 

The dii'ference between results was negligible because all 

sizes of particles which deposited on the wedge entered . the 

boundary layer well within the maxi:mu..ll thickness predicted 

by the displacement thickness equation. 

Boundary Layer Results 

Figure B4 is a plot of the deposition results for all 

particles in a 100 cm./sec. potential velocity stream with 

a steady viscous boundary layer on the wedge. As one would 

expect, the slow viscous boundary layer tends to quicxly 

dissipate the momentum of' all particles entering it. Only 

the large 20 micron particle is ca~able or penetrating and 

deDositing at a maxirmxm distance of .1 centimeters from the 

wedge tip. The 10 micron particles almost reach .01 centimeter 

and the remainder of t h e particles are all deposited -..Ti thin 

a distance equivalent to their di&'!!eter from the wedge tip. 

The curved tails connect the f'irst denosition Vf:.lue along 
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the wed~e with a theoretical denosition value at the wedge 

tip, eva J. uated • -1-l 
wi ... n L = 10-6 centimeters . Deposition plots 

within 10-4 centineters of the tip are theoretically possible 

but realistically meanin.cdess '.-rhen dealing with particles 

lar rrer than 10-4 centimeters. The plots f'or 2, 3~ and 4 microns 

dip before taining off because the average de~osition location 

is bases on a deposition at L = O and L == twice the average 

location. 

Comparisons of' this graph ·with the steady flow case of 

Fi gure Bl show that the b ·'.)undary layer plots roughly approximate 

the first deposition points of the steady flo·w case f'or the 

4 micron and larger particles. 

Figu2"e B5 represents the steady bou...n.dary layer thich."Tiess 

for different steady potential velocities; The thinner boundary 

layer at 167.5 cm./sec. indicates that more deposition will 

b e possible tha n at 100 cm.;sec. but that the thicker 22.9 

I . 1 ~ +' th h. , ' ...... cm. sec. case wi_.l .Lur __ er _ ino.er a e :::i osi1,,ion. 

F'igure B6 sh:JWS the effect of high .flow rates on the 

denosi tion of one micron particles when a steady l&"Uinar 

boundary layer is inrposed al'Jng t h e wedere. 128.5 crn./sec. 

was the lowest velocity used in which at lea st 3 deposition 

noints occurred at the wed~e. However, all the deposition 

points for all the curves are still within one Dicron of the 

tip. The in accuracy of the technique for computing the tra-

j ec tori es an d the invalidity of' the boundary layer eq"t;_ation 

at L = 0 mak e analysis of these se-aara te cu.rve s :meaningless. 

However, the general olateau with sharp tail is similar to 



the boU..Yl '; .e.ry layer r e sul ts for l arger pc:.rticles. The dotted 

lines indicate a ~i g~er ths~rstical deposition valus a t L = 0 

an d then a sharn dip for the :::>eason eDJlai~ed in the last 

paragr2.ph. 

Figure B7 shows the e f fect of various steady flow rates 

on the boundary layer denosition of 10 micron ~J articles. The 

general trends of higher deposition f'lu_."C with greater ma7-.imum 

deposition loc a tion s at high V9locities clearly holds. Com-

parison of Figure B7 with Figure B3 clearly shm·rn that the 

shac e and locc:.tion of t~e boundary layer depositi0n curve 

coinc ides closely with the sections of the 10 ~i cron pot~ntial 

• . -? . "' .._, d deposition curve to the left of 10 - centimeters :rom ~ne we ge 

tip. This sho";>TS that as the strea.-nJ velocity in ere as es, the 

boundary layer thiclmess d e creases and the inertial forces 

on the particle i ncrease; therefore, this causes penetration 

of the b Jundary layer and impaction at increasingly greater 

distances along the wed :·e. The 22. 9 cm./sec. curve has an 

erratic shape because financial limitations prohibit the excess 

of C'.):mputer time needed to use a very small time interval in 

the calculations. The l onger time interval r e sults in a less 

smooth tra j ectory and subsequently an erratic deposition pattern. 

Friedlander•s Bou.ndary Lay er Solution 

iu. Friedlander · has sugg ested an analytical solu tion to 

deposition by impaction at a 90° wedge ;_,rj_ th steady viscous 

boundary layer. His corrected derivation wi th some o"I' the 

author's modirications to account for the uarticle radius is 
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given in Appendix D. 

Friedlander';:; solution assumes that the flow in the 

boundary layer is rectilin ear along the wed§;e -- which is a 

valid assumption because the valu e of the perpendicular 

velocity component from the author's equation is only 10-5 

cm./sec. Thus, Friedlander ma_~es the approximation of a 

steady laminar_ bou..11dary layer .. 

However, he then assumes that a p ·article entering the 

b ·::nmdary layer will follow the streamlines along the wedg e 

and only have an inertial effect perpendicular to the wall. 

This will cause the particles to de-oosit on the wall only if 

they entered the bou~dary layer at a distance within the 

stopping dist~nce plus the radi~s o~ the particle. The 

dista.11ce would b e evaluated from the potential velocity at 

t h e last nosition before entering the boundary layer. The 

displacement along the wedg e WO '.' ld then be dependent on the 

v elocity of the b0Ut.1dary layer an d a fraction of the relax-

ation time. 

Obviously, this solution will predict deposition locations 

even closer to the wedge tip than the author's results. Since 

the same relaxation time princinles operate as in the perpen-

dicular direction to dailp the particle velocity, one cannot 

i~ stantly neglect the iner t ial forces in the ~ direction of 

a particl e enteri n g a boun dary lay erp 

Th e boundary layer con:rputer 9 rogram in this study was 

n odified to calculate the F /C and deposition location by 
s 

Fr:Ledl2n der 's solution f or a ll uart icles brea :.·::: ing tb.e ~ = 0 
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ulane which were within . ' i:;ne the radius 

'.)f t he nartic l e from t he '.-7edge surface. 

Figure B8 is a comnarison plot of Friedlander's anc..lytic 

boundary layer solution fJ:' ons micron 9articles at 167.5 

and 100 ci11. /sec. r-Ji th the author's numerical bou_ridary layer 

1 . . . 1 / 7 5 <:>.,..., ' 12A r" I S·:)_ui:;ion a-c _o • w la u . ::; cm. sec. Comparison o.f plots 

shows clearly that the previous argTu.~ents ar e correct. The 

analytic plots have all deuosition within 10-7 to io-6 centi­

~ eters compared to 10-5 to 10-h centimeters for the author's 

data. As exuec t ed the analytic deposition fl uxes uere r:uch 

h igher close~ to the tipo 

Figure B9 compares ?riedlander's analy tic boundary le.yer 

solution results for 10 nicron particles at l GO cm. /sec. with 

the author's · _'J.:."Tleri cal boundary l ayer results. In this case 

the !"e r: ions of de9osi ti on over l ap significa.'tltly, however the 

a•_lthor' s results still shoH deposition further along the wedge. 
'-· 

The deposition fluxes differ by one to two orders of mag::iitude,. 

r-ie apparent increa s e of fl c.cr with distance along the wed !2e 

for the analytic case is p~zzling at the present time. It 

is apnarent ly due to the assw:iption of no inertial ef.fects 

in the direction ·para1leJ; ·to·:·tha wedge ::w.a:ll•: 
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~x-perimental Procedure 

Richard Vincent, an undergraduate strnbnt working for 

Professor Friedlander at the California Institute of Technology 

has collected experimental data for the deposition of 1.099 

micron hydrosol particl8s made of Dow Polystyrene Latex in 

the lung biflircation model sh:lwn in Figure Cl. A schematic 

of the exuerimental apparatus is shown in Figure C2. The 

ca..'71 11.ras desi,c;::ned to simulate a. one second 300 cc breath shown 

in FigLtre CJ. 

Vincent collected, data for 1.0, 1.8, and 2.5 second JOO cc 

tidal vol1..ll":e breaths by the following procedure. The holding 

chamber and piston assembly were flushed with aerosols until 

ths concentration registered about l.5Xl04 particles/cm.3 

on a Sinclair-Phoenix Aerosol, Smolce, fu"'1d Dust Photometer. 

The ch~~ber was then isolated, the gate lifted, and the cam-

driven uiston set in motion. At the end of the stroke the 

gate 1·rns lowered, and the test section was .flushed gently 

with a,,-inbient air. This procedure was repeated 30 times to 

allow sufficient deposition on the glass slides for statis-

tically meaningful counts. All singlet particles were counted 

in an area .Ol.54 inches wide and one inch long under a micro-

scope at 675 magnification. 
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Analysis of Data 

Figures BlO, Bll, and B12 are comuarison nlots of the 

aut~or's steady uotential flow data for one micron particles 

at flow rates of 100, 53.7, and 41 cm./sec. respectively with 

Vincent's average exnerimental data for 1.0, 1.8, and 2.5 

second 300 cc breaths. These flow rates correspond to the 

average flow rate in the lung model for the respective breaths. 

The author's data predict higher deposition rates at all 

locations. On each graph the initial experimental data point 

at .024 centimeters has a deposition flu..ic/concentration value 

5 to 8.5 times smaller than the authors predicted potential 

results. The remaining points are 1 to 5 times smaller than 

the author's predictions. The two longer breath simulations 

give better agreement between theoretical and experimental 

data than the one second breath. Since all boundary layer 

deposition terminates beyond 10-4 centimete~s, comparison of 

experimental data with the one micron steady bou.."'1dary layer 

reEults of Figure B4 and B6 is impossible. 

The steady potential theory tends to predict deposition 

values slightly above the experimental results, however the 

viscous boundary layer theory predicts deposition values far 

below the experimental results. These relative results for 

inertial impaction on a wedge generally agree with the results 

of inertial impaction studies on cylinde.::'s and spheres nre­

sented by l"uchs. 15 In the cylinder and sphere ,cases the 

experimental data is scattered around the steady potential 

flow cur'ves, while the viscous flow c1J.rve predicts much lower 
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. t . T' . d +> - ... , - - 1 1 lb denosi ion. :;. e ex-oerimental ata O.L l:ial 0on 2ncL ::ioo coc_c 

for the collection efficiency for aerosols on spherical water 

dron s is shown to be parallel to and s::!.i ghtly belm.r the theor-

etical potential flow c urve and well above the theoretical 

viscou s flow curve. 

The main Heakness of the theoretical sirmlation of' depo-

si ti on with inhalation has been the ste2dy state assw';lptions • 
. -

In the real lung the sinusoidal breathing pattern sets up a 

thin unsteady bo'Lmdary layer which never attains the steady 

state thickness assu..rned close to the wedge tip. However, even 

a thin unsteady boundary layer will re:ore2ent sane resistance 

to narticle de -o osition from the potential flow streamlines .. 

is logical that the unsteady boundary layer case will 

theoretically predict deposition values ·which are slightly 

lm.rer than the :ootential flow case, resulting in better agree-

:ment with the experimental data. 

Data _Fi ttinr: Hi th Stokes N~Jli'.lber 

The use of dimensionless parameters to correlate deposition 

data is a standard practice. Both the expe::.1 imental and the 

nw""Tle~ical calct1lations can be represented by a.n equation of t11e 

fo-_:_~,, l _D," s/C -- -·--L-B. - 1 .L.h 0 -~· "a' . 'h b.f .. _ ' '-' lD genera_ 0 e aepOSl vlOil a -ca lil i:;, e l ·u..r -

cation r.-!odel would be expected to be a function of Stokes 

nu.~ber, Reynolds number, and a para.~eter desc7ibing the periodic 

·;;?_ /, 
natu re of the flow ( RfuJ/-0). Stokes n'Ll.i'lber = Stkx = U 

1
0pdP;i§u X 

It is instructive to study the possibility of using only 

ths Stokes nt.J.mber to correlate the data. Figu.res Bl3 2.nd Bl4 

are Dl ·'.)ts of the Stokes number at x dist221ces a.lone; the -:-redge 
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for one and 10 micron particles and 100 c~./sec. steady 

uotential .flow. Plots of . , r,ne theoretical potential data 

and experimental data for one :micron particles are shOim i'or 

conparison.. Fitting Stokes m .. lIY.!ber to the theoretical data 

for one Idcron particles r::hres the following: 

fs /cu ;: .5. ).7Sx 10-
3 ( Sfl<x: )' 

7 

Fitting Stokes nTu'Tlber to the straight line drai;-m through the 

experimental data gives the following: 

F -'-/ . .'fLf 
s / c u = J. & g x. 10 ( s f Kx ) 

Following the same procedure in Bl4 for the 10 micron particles 

at 100 cm./sec. ~ives the following: 

This is a straight line approximation of the 10 micron data 

on log log coordinates. Beca1J.se of the actual nonlinear form 

of the 10 micron data, it is impossible to fit the one and 

10 micron data with the s&."Ue function oJ' the Stokes nu,;,--nber. 

This is understandable since the Stokes nwnber has no mechanism 

to accou...,t for variati8ns in the potential velocity around 

the wedge.. As described e2,rlier these accelerating and deCel-

era.ting fluid motions cause great differences in the deposition 

behavior of 1 and 10 micron narticles. A local particle 

Reynolds number may handle this situation( Rep= Ulocfpdp{lL). 
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SU.MN.ARY Alm CONCLUSIOl"TS 

Since many lung dise s.ses ar~ known to ari~e fro::n p article 

deposition in the bronchial tubes, the first l :.mg bifurcation 

betwe0n the trachea and its two bronchial tubes is a logical 

11 hot snot" to analvze to determine SDecific tissue doses • 
.:.. u ~ 

A two dimensional bifurcation model with a 90° wedge 

was chosen for analysis. The unsteady flow behavior of a 

real lun;z was apnroximated by two steady state flow cases: 

(1) steady potential flow 

,( 2) steady potential flow with a steady laminar boundary 

layer along the bifurcation wedge .. 

Using the principles of theoretical hydrodynamics, a 

potential flow solution was obtained for the model. To 

faci 1i tate nu..rnerical calculations of particle trajectories, 

an approximate analytic potential solution was obtained about 

the wedge. A solution for t he thickness and velocity distri-

butio::i of the steady laminar boundary layer along the wedge 

was also obtained . Applying the flow solutions to the dif-

fersntial equation of motion for particles in the Stok es 

re gime, computer ru..'1s were made to nurneri cally predict the 

rates and location of particle deposition along the wedge of 

the bifurcation. 

The nu .. "'1Jerical deposition rasul ts for 20, 10, 5, 4, 3, 2, 

and 1 micron n articl e s in stead-v notential flow nredict the 
..:... •,I ~· ,;.. 

denositi<m at a ma::dmmn distance of 2 . 0 centi:rneters, predict 

the deposition flux/concentr a t i on decreasing as a function 
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of a ner:a ti ve power of the distance along the ·wed~~e, and show 

that t~1e exact functional form of the data varies for each 

narticle size. Denosition results for large narticles are 

obse~ved to always be higher than for small particles due to 

their larger relaxation times. Steady boundary layer depo-

si ti on is only observed to be significant f'or 10 and. 20 !dcron 

-'? -1 particles out . to a maximum distance of 10 - and 10 - centimeters 

from the wedge respectively. Tae smaller particles all deposit 

within a distance equivalent to their narticle diameter from 

the tip. Inc~easingly nonlinear convex regions for increasing 

particle size in the potential flow case is explained by the 

combination effects of particle relaxation time and the degree 

of deceleration and acceleration of the stream velocities in 

the region of narticle travel. The nonlinearity also explains 

the failure of the Stokes n'-1..mber correlation to fit all particle 

size and flow rate cases. 

When co:mvared with exnerimental data~ rn..Linerical deposition 

results for one micron particles in 1.0, 1.8, and 2.5 second 

s:}_m:J.lated inhalations of JOO cc showed that the steady potential 

case over-estimates the dep:ree of' experimental deposition by 

5 to 8.5 times at the wedge tip and from 1 to 5 times beyond 

the tip. However, the one micron steady boundary layer results 

predict no deposition for potential velocities below 128.5 

cm./sec. ax1d no deposition beyond 10-4 centimeters for potential 

velocities at and above 128.S cm./sec. Our theoretical results 

repre;:-ent uc:::·per and lower bounds to the unsteady experimental 

data, therefo~e a theor0ticai analysis based on unsteady main 

stream f'low with unsteady bcnmdary la'.'" er.s should give deposition 
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p"!"'3dictions closer in agree:nent with exp "'l rlmental data .for 

the model used. 

The author plans to continue . , . 
i:;nis research by ~nalyzing 

unsteady flow problem, and b~r collecting :m8re exoerimental 

data on variou~ particles sizes. The erfect or radial and 

convec t ive diffusion in the deposition of particles or .1 

to .5 micron diameter {size of cigarette smoke particles) at 

the bifurcation will be studied theor~tically, and experimental 

data collection will be attempted. 
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NOMENCI.ATURE 

Arabic Symbols 

c concentration of particJ.es in strearr, narti.cles/cm~ 

d particle dia.~eter, cm. 
p 

F particle flux in main stream, uarticles/ crn2 sec 
0 

Fs particle deposition flux on wedge, particles/cm2sec 

h breadth of r.ain channel in model, cm 

h 2 breadth of branch in nodel, cm 

h
8 

stopping distance, cm 

L 

q 

Q 

t 

u,v 

1...1.b' v, 
0 

u 

distance along wedge, cm 

stream sneed, cm/sec 

transformation variable 

length_of time interval, sec 

x, y directional- components o::>f stream. velocity in z-nlane 

boundary · layer yelocities parallel and .perpendicular to 
the wedge 

main stream velocity at infinite distance before wedt-:e 

branch str r· am velocity infinite distance beyond 'iredge 

. potential velocity at x= -1 cm before wedge tip 

complex potential 



Greek Symbols 

~ bi~ected wedge angle 

b~l boundarj layer thickness, cm 

9 arctan(v/u) 

f density of air, ~m/cc 

fp density of particle, ~m/cc 

¢ potential function 

(fl strea::'• !°"''J.nction 

~ relaxation time of particle, sec 

jl viscosity of air, gm/cmsec 

~ complex velocity cm/sec 

~1 kinematic viscosity of air, cm2/sec 

~ transformation variable 

* ~CX) displacement thickness, cm 

w angular frequency of breathing = 2rrr'"', 
-1 sec -



TABLE Bl 

Values of the Reynolds number and the rntio of entrance length 

to th0 len~th of tho ~eneration f0r thA upper respiratory tract based 

on the dimensions of LiJng Model A proposed by Weibel5. Time of 

re s r)iration = 4 sec., tidal volume= 450 c.c. The airflow c urve is 

a f: s · 1r.ied to be sinusoidal. 

Gen 
z 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

1 

2 

4 
8 

16 

32 

64 

128 

256 

512 

1024 

204B 

4096 

8192 

16384 

32768 

65536 

Diam 
(cm) 
dz 

1.8 

1.22 

o.83 

o.56 

0.,45 

0.35 

0 .. 2~ 

0 .. 23 

Length 
(cm) 
lz 

1.90 

0.76 

1.27 

1.07 

o. 90;.~· 

0.76 

0.186 . o. 64 

Ool54 Oo54 

04130 01146 

0.109 0 .. 39 . 

0.095 0.,33 

Oo082 0.27 

0.074 0 .. 23 

0.066 0.20 

0.060 0.,165 

-:~-:~ main bronchus 

Maximum 
velocity 
(cm/sec) 

• Vz 

139 

151 

166 

176 

142.3 

113 .. 4 

89.1 

69.2 

50.,9 

36.9 

26.4 

18.0 . 

12.2 

7.,94 

s .. 10 

3 .. 12 

1.96 

Reynolds 
number 

NRe ~dz: v; 
~ 

.1670 

1220 

913 

656 

427 

265 

166 

106 

',63 

37 .s· 
22.9 

13.1 

7.,72 

4.33 

2 .. 51 

1037 

0 .. 78 

Entrance Length 
Total Length 
o.~5' + 0 . 05~ Re 

Jr.Id~ 

17.37 

22.40 

27.44 

8.80 

s.os 
3.06 

1.95 

1.20 

0.76 

0.52 

0.36 ' 

0 .. 30 

0 .. 25 

0 .. 23 

0.,23 

0 .. 22 



TABLE B2 

This table ~how~ thn variation of th~ dimen~i 0nless 

frcquonc;r parameter, RVUf),
1 
f'or various br 011th5_nr, rates in 

the uoDer resniratory tract. R = ~cn orotion radiu8, cm., 

\J,.J = 2rrf, f =breathing rate, sec;1 , ~,=kinematic viscosity 

of air = l.66Xl0~1 cm~/soc. at 98.6°F. 

l, 

R(t.0/~ 1 ) ? 
Gen Radius 12 BPM 16.7 BPH 

~=·o 0.95 2.61 3. 08 
~:--: =-1 0.61 1.68 1.98 

2 0 .. 415 1 .. 14 1.348 

3 0.28 0,.77 0,.91 

L~ ·0.225 0.62 0.733 

5 0 .. 175 0 .. 4815 0.57 

6 0.14 o.3e6 0.50 

7 0.115 0.316 0.374 

8 0.093 0.256 0.302 

9 0.077 0.212 0.236 

10 0.065 0.179 0.21 

11 0.0545 Ool5 0.177 

12 0.0475 0.13 Ool54 

13 0.041 0.113 0.133 

l~. 0 •. 037 0.102 0.120 

15 0 .. 033 0 .. 0907 0.107 

16 0 .. 030 0 .. 0825 0.0974 

~=· trachea 
-:~-e.;: .. main bronchus 

12 BPM = 2.5 sec. inhalation, f = .2/sec. 
16.7 BPM = 1.8 sec. inhalation, f = .278/sec. 

30 BPM = 1.0 sec. inhalation, f = .5/sec. 

JO BPH 

4.14 
2.66 

1.80 

1 .. 22 

0 .. 979 

0.763 

0 . 61 

0.501 

0.404 

0.,335 

0.282 

0 . 237 

0.206 

0.1785 

0.161 

0 .. 1435 

0 .. 131 



TABLE BJ 

PARTICLZ PARAHETER S 

. Dia:.rneter-dp 
micr0ns cm 

Relaxation Time 
~ sec 

Stoppin~ Distance 
h sec 

D,.y 
cm 

20 

10 

5 

4 

3 

2 

'l 

2Xl0-J 

lXlO-J 

sxio-4 

4x10-4 

JXl0-4 

2x10-4 

l.Xl0-4 

1: = f pd~/ lo/L 

h
8 

= V sine?: 

l . 23Xl0- J 

3.08x10-4 

7., 7ox10-5 

5.0JXl0-5 

-5 2.70Xl0 

l . JlXl0-5 

-6 3p54Xl0 

-s 

8. 70Xl0-2 

2.18x10-2 

., 
5.45Xl0-_) 

J.56Xl0-J 

1 9"' XlO-J 
- ·- ..LJ 

-It 9. 25XlO H-

-1 · 2.54XlO ~ 

V = 100 cm/sec 

2Xl0-3 

2Xl0-4 

5Xl0-5 

4.i"'<:l0-5 

3Xl0-5 

lXl0-5 
, 

-o 4Xl0 

e= 45° 

~y = vertical s eparation between particles at starting 
position for each trajectory ru...~ 

Note: A time interial of ~00001 seconds was u s ea i n all 
st sady potential run s; - a s s cond time interval of 
.00001 or .00002 seconds was u s ed inside of t h e 
boundary layer. 

A particle at rest acauires l/e of the velocity of 
a suddenly a.pplied air stream in 1: seconds. 
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TABLE Cl 

Avera~e flow rates and velocities calculated from earn curve 

of Figure CJ 

Time Time Average Average 
Se p:ment Segment Flow Rate Velocity 
Number Width-sec cc/sec cm/sec 

1 1/16 787 22 . 9 

2 1/16 3537 102 . 5 

3 1/16 4912 142. 5 

4 1/16 5512 160 . 5 

5 1/16 5762 167 .. 5 

6 1/16 5662 164. 5 

7 1/16 5381 156 . 5 

8 1/16 4912 142.5 

9 1/16 4412 128.5 

10 1/16 3943 114. 5 

11 1/16 3412 99 . 0 

12 1/16 2b82 e3 . 9 

13 1/16 2381 69 . 5 

14 1/16 1849 53 . 7 

15 1/ 32' 1412 41 . 1 
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COMMON tJX ( 40) ,UY ( 40), XL ( 40), IJELZ ,N 

0 Olll l R LE PRE CI S I UN DE U'. , X 0, YO , TH F. TA , D I ST 6 , rJ I Si , Z Al\I b LE , v X 1 9 v Y I , X I , y I , 
lU X 1 , llY 1 , RF. L X, T, X 2, Y 2, V X 2, VY 2, Z, XL, UX, UY, SL 0EP,lJ1 

.l!ST0-1 II , ~ ) - U l ... ( A -:- A+ R •·· ~ ) -....... 16 6 6 6 6 6 6 o 6 6 6 6 6 6 6 
5 READ(5,10) LJM,DELZ,XO,TAU,R,C,OT,DTl 

10 FOKH/ll( IlO,::'.!l)l0.5,5cl0.5) 
I F ( L I tli • L T • 1 ) S T 0 P 

11 FORMAT(El0.5) 
----i(t+Jl ll/ l .22-· --------------------------------

WR I Tf ( 6, 12) LIM,DELz,xo~TAU,R,C,OT,Ul 

120Ft1RMAT(6!=11LIH -,I5,5X,6HDtll ,01Ci.3,10X,4F1XO ,n10.3dOX,5HTt1U , 
1El0.3//4H R =,El0.3,lOX,3HC =,El0.3,lOX,4HDT =,El0.3,IOX,4HUl =,El 

OT 2=DT 

C START OF MAIN DO LOOP FOR EACH NEW STARTING POSITION 

DD 69 I=l,tIM 

RF.:LX=l.O-OEXP(T) 

c 
c CALC nr IMITI~L PAKTICLE VELOCITIE3 
c 

11=frf:"'LZ-::'""t1ttt1'1-- l • O ) + • ~ 1 
THETA=OATAN2(YO,XO) 
z·tr.1<.rt;tE~5~-a97932"=Trt1:'Hrif3,_.~1.~i-----------------

DI ST=nIST6f xo,vo> 
tJX ( I ) fl I ST-.-f)1,11~ { l. Alllt,LE) 
I J Y ( I ) = 11 I S T ':' [) S I f\1 ( Z I\ N G I_ E ) 

--------w1{·1·r ·r:-rn,-r-i:i1r-;-x-rr;v-ott1·x-tt1,1·rvi-n-
l '.i 0 F 0 R MAT ( 1 2 H 0 RUN f\J lJ M 8 ER= , I 4 , 3 X , 3 H X 0 = , D 1 3 • 5 , 4 X , 3 HY 0 = , 0 1 3 • 5 , 5 X , 7 H l IX ( I ) 



c 

::: • f) 1 -:i, • '1 • 5 X , 7 H l J Y ( I ) = • f l l 3 • ') I I l 
\IX l = I IX ( r r-- -- · ·--- -·--·-··--· ·----·--- -·----- ··--- -·--------·------·---·---·--- .. .. 
\!Yl =llY I I) 

·-···xT=-=-x 
Yl=YO 

···---- -s=i 

.. .. r . - p {\RT T r:rr=-vF. l -nC TTT r:s-- Mrn-Pn"S"TT TTii\rs--r:11 '- (, f l'\I p I) I EWTil\C- F[ITw - ·R FGTf.f -
c. 

- ··7n1nFT/'\'- ll1\ I /\i\J(? (y ' 
7. J\ f\I( ; I_ r: = ( ~ • l 4 l ~ 9?. I)':) 3 5 H 9 7 9 3 ?. - T Ht: T A ) I 3 • 0 
IJ T ST :::nTSTnTXT;TI 
11x l =fl 1sT::,ocns1 ZM1<;u: > 

· 1 JY l = ll l s T"*ns-rN (If.\"N\,Cf 1 
VX ?.=\IX 1 + ( lJX l-VX 1) ':'RELX 
VY2-l/Vl+IOVI VYf)>.<RtLX 
X 2= X 1+IJX1 ':'0 T +TA tP:< ( V X 1-1 J X l ) :::RF. L X 

-----..v..--2..,..,-"""'Y J. + t 1 v r:.•o 1 + 1 l\ u "'°' vrT.vrir--rc..,..,i vcr-r-r ..-i .,'""T'TR"'"'F. ..... L""""X--------------------~ 
Z = 0 SP R T ( X 2 * X 2 + Y ?. >:: Y 2 ) 

-c-
c CHECK IF PARTICLES HAVE IMPACTED ON THE WEOGE WALL 

IF(X2 .LT. -.Ol) GO TO 23 
~----t-E:-'\"z--;-tf:. 

I F ( X 2 • GE • 0. 0 • AN 0 • Y 2 • LE • R ) GO T 0 3 0 
------1-p(Y2 .l_E. (X2+1.414214-:.R)) GO TO 40 

IF!X2 .GE. O.O .AND. Z .GT. C) GO TO 50 

Y 1 =Y 2 

VYl=VY2 

c 
c CALClJLi'liJOl\1 OF EXLICT DEPOSITlu ·\I UJCATior\JS 
c 

3!1 XL(I)-U.O 
GO Tn 69 

----tt0--S-t-rtc~P--~1~v~2~-~V'-'t-\-++-~-=-"'-+-1.----------------------------

x L{ I l = 1 • 4 14 2 l 4 * ( ( ( Y 1 - SL 0 E P ::: X 1-1 • 4 14 2 14 ,,~ R ) I ( 1 - SL 0 E P ) ) + • 7 0 7 1 1 * R ) 
!f!(XL(I) .ti. 0.0) XL(!)=1.J.O 

69 CONTil\!UE 
Ill IF IX OI: U1\i • 9) 
M=N 
,o-Tfl-5 

50 N=IFIX!RUN-1.9) 

54 WRITE(h,51) 
----1JrFi.JRf.DIT\1M~HIJX, l 8X, 2HlJ V, 1 HX, 2HXL//) 

\.IRITF.Ch,52) (lJX(J),lJY(l),XL(l), I=l,M) 
5?-r:-oR-r-rn-r-i~. 

\..JRITF.(h,53) 

CA LL DEPOST 

E "' ') 
C StJF31<lllJl11,!F 111 CO:l_LtJLAIE IRE OEPOSilllll\I RAIES l\NLJ LOCAillJNS 

SllRRnllTINE nEPOST 
() . Jf'/1 Pl I I 1\.! I J x ( 4 ti ) ' I J y I 1+ 0 ) ' x L I 4 () ) ' IJ i: L l ' Kl 
Olll!RLF. PRECISION AVlJX,AVIJY,J\VEL,Al\IGL,ZL,FSC,OrLZ,IJX,tlY,XL 

- --- ... . ----VTRTTF!r>, . 

5 F 0 RM L\ T ( 1H0 , 2 0 X ,1 7 HAVER 0 E P Ul CAT I 01\1 , ? 6 X .13 HD E P F LI J X I Ul NC I I ) 



I )f I 1 1) K = 1 • f\I 

,'\ \/ 11 X-= ( l IX (I< ) +l IX ( K fl ) J I?... 0 -
fl\/llY=(llY(K)+llY(K+l) )/7.0 

- -- ----- -- -- -- - 1\ v r c-=TTWRTT7117!TX':'J\-Vrrx+-~ 
J\1\11-:. I_= I 1 /\ T 1\ N?. ( f\ V lJ Y • I\\/ I J X ) 
7 L = I X LTI< TFXITK+TTT/7 -~- ff---- - - --- - ----

T i--: U. L • I_ F • 0 • O ) (;I l T fl 7 
F Sr.::-:/\ V FT~ }:'fTF.CT'~llT.HST7\l\fGCT/TXTTK ~-, - )-::..-XCTK°) ) 
r;r1 Tr 1 9 

- ---------T -r·s c= 11 ~v~F.~L~,.~:i~i E~_ ,~_ ~z =,:,~, i~c~1~1 s~1 ~11.~K,~t ,.,---c-.i-;~,~. ~n-o~~n~o~1~1.-----------

Y WRJT~!A,25) ZL,FSC 
- - - - - ddU - - ?. 5-u F n R r-rn I ( I A() ' 2 rrx-,""T('T") 2.,.._ 1rri·.---.--.R-,-2rr1Tl' x,,.---,, , .... J .... 2-,-,o~.-rH,.__,),------------------

1 5 Cll f\I T l 1\1 ll E 
- -------RFTD 

E f\JI) 

_/ 



c ~il-1\l)Y Plllf-t\'fT/\I_ f-'.l_fl~ \·!TTH 1.1\Mil\1/\k hf)llf\l(llli{Y l_llYf- 1{ fJfdJr;~n-1 Tfi Cf11_(11!_AT~ 

r. THF /\f:RllSnL ·· nFPnSTTTni'r--RAT>:s -· /\1·rn --TTIC/\TTnr\1s- /\I_nr.1r. - rHF HFflGF T'd fl ·-·-----

(. B I f- I 11< c I\ T I rn.1 '- II "' (; f.1 r ] I ) i-: '-
-- c - .. ·····-·- --· -

r. 11 f· i-: T 1\J T T T ( 11\I r l t-= \I I\ 1{ I I\ H '- i-: s 
.. r. ... - ·-------·- -·--------------·--- ·--·-- ··--·-- ·-···-- ·· ·-··· ·-· ···---·- ··---·· -·····- -·----- -·-·-·-- - --·· ·--···-

c. x n • y () = 1-11\ 1n I cu= c fl( ll{ I) I f\1 /\ T ~ s I\ T <:.,TI\ RT I Mr; µfl<; T T In I\! 
c x l • y 1 • X?; y 7:::---pJ\R TTr:i_:i:- -·cnnr{np\iiiTF: s -··-in--RFG fl\fi\I TN\, · 11 j,rri ···- i::Nn- nF . FACR 

C ·11-~ /\.I F CT( II< Y S F: <;ME l'H 
-- r. ·· -- - --px-.-1 ry·_ p 71 RI I(, I_ t 7\1\l Ir s IR F MTITCTTIL I I y () 11-ipnr;rn:rrs--nT--STllRTT j\fr;-pn s I I J 1 ]f\I 

C IJXJ ,l!Yl= STRf:M1 \/f:'.LllCITY CIJMl-'flf\IENT /IT RF::GJf\11\IJf\1(; nF r:l\CH SH;Mf:f\IT 
--- (. vx J ; ·vv1 ·;vxz-;-vvz=--PtrnTTCl.F-VFt:nC!TYWMPrTl\TFNr -1n- Rr::"GTl\ff\T}i'iff;"-7\hJTTt:1~,11..-J---

c flt-= ti\ CH sH;rv1r:NT 
--- c -- u M-= " jvJf\XTMnM-l'rlll"tRERIJf-~-S-r-tlR-TTNc;--PrrsTTTTif\T . ---- -- -------

c f) E L Z = \I I: RT I C l\ I_ f) I S T f.d\1 CF. BE T W F. F. f\l S T A RT I N (; P fl S I T Hl f\J S 
C lfi.ll- P1lRI ILLE REC/!.XAI !Uhl 1 lMt 
C R= PJ\RTICLE R1\DillS 

---c--- --c-::tvl/.IXIMIJM fJISlt\1\1(,E OF TRAVEL tlLLIJWl\Kl_t Al_lll\lh wEIJGF: 
C OT= TIME INTERVAL FOR EACH SEGMENT 

-c.---.. -rn-r=--r-~mr-i::RVL\t f=OR I\ TRIXJF:-C-TtJRV SEbMf:f\JT Jhi THI': K(l(Jl\llJARY LAYER 
C ll= STREl\M VEU1CITY AT Jl\IFIJ\IITY 
L tll.- srRF:AM vF:LllLITV nr If\JFil\IIT? 
C STAGNATION SfREAMLINE 

--c tt=--~Titl: M·l V ttf.JC..1T v /1 T 111\1 E C c Ill T I M E T f. R BE F (Jl:Z E THE 1r./ f:: D G F O F\I T Ht 
c x L = p I\ R T I c L E DE p ll s I T I 0 f\J L n C/.1 T I n 1\1 A L ()NG w F: 11 GE F 0 R 0 f\1 t R lJ N 

-f: ZL AVF.:RffiE OEPOSITior~ LOC1'1TIOrt! FOR TWO XL LOCATIAlllS 
C FSC= OEPOSITION FLUX/PARTICLE CONCENTRATION IN STREAM 
C XMllP ,'·l(lhlE/HtJM DIPFU3IVJT'y OF AIR 
C BLT= 1-\0lJNO/\RY LAYER THICKl\IESS AT XR 

-F------'X B- CflflR DIN ATE A UH1I G WE 0 c; [ 
G YB= CDOROINATE PERPENDICULAR Tn \.IEDGE 

/ 

~ tJXR,tJYA, BOUNOARY LAYER VF:LOCITIES IN XR,YR DIRECTIONS · 
c 
C M AI fll PRU GR Ml T 0 D t~ TE !{ M !Ill E PART I Ct E TR A J EC T 0 R I E 3 

COMMOJ\I UX(40) ,UY(40) ,XL(40) ,DELZ,N 
----+>-OOlJRLE tJRECISIOM OEl_Z,XO,YO,THETt1,DIST6,0IST,Zl1NGtE,VXl,'i/Yl,XJ.,Yl, 

lUXl,UYl,RELX,T,x2,v2,vx2,vv2,z,xL,lJX,lJY,SLOEP,Fl,Fl2,Fl3,F32,F52,F 
----2-3-e--,-6 , AC r , Z I NG LE , YA , X A , R l T , X R 1 3 , X A4 3 , X 8 7 3 , YB 2 0 , YR 3 0 , YB 5 0 , 'tf"> 6 0 , l f X 8 , U 

3Yf-I 
D I S T ('; ( A , f') ) - U 1 -:- ( A -:- ti + ~ -:- ~ ) ... .,. • l 6 6 b 6 6 6 6 6 6 6 6 6 6 6 t'5 

5 REA0(5,10) LIM,DELZ,XO,TAU,R,C,DT,OTl 
---lo--Ff:JR M.ll T ( I 10, 2D i 0. 5, 5 t 10. 5) 

JF{LIM .LT. 1) STOP 
R-E-6-D I 5 , 1 

11 FORMAT!El0.5) 
tJ 1-lJ/ l .2z----------------------------------~ 
\...JRITE(6,12) LIM,OELZ,XO,T/\lJ,R,c,nT,DTl,Ul 

--· ---~t-z-o-F-ORM-/\T(6HlLIM -, 15,5X,6HDF.LZ ,Dl0.3,10-X,4HXO ,Al0.3,IOX,5HTAU , 
1El0.3//4H R =,El0.3,lOX,3HC =9El0.3,lOX,4HOT = 9 El0.3 9 lOX,6HDTl = , 

-----?. E-l:fr;.-3Ti:·fl X , 411 U 1 , E 1 0 ., 3 I I / I I ) 
DT?.=nT 

F=lll /XMUP 
------F-1-z=·F·>:' *···-.-----------------------------------

F l 3= F** • 3333333333333333 
-. -----F-:'3-e=·p ... .,.r---0...-----------------------------------

F 5 ?= F ':":' 2. 5 
~~--!~~.ft_--------------------------------~ 

G = ( I r 1 ':: X MI J P ) ':' ':' • 5 
- --- ------·---t.>C-F=-~~tf 

(. 

- - - · ·- ----------~--------------------------------



(, S l 1\ 1~ T ClF i"l I\ I I\! I )IJ ti I( I!-.> Ff l R t: /\CH f\11: \tJ ST/\ D., T I i\I (~ I> il S f T ff F'! 
r 

I lf l h 0 I = l • I_ T M 
- ---- -·-· · -- ------T=T=nTT·...-r....-,,--rr--------

c 
r. 
r. 

1<_ !~ I_ X = 1. • n - D f X !-.> I T l 
RI 11\1 = F Ln fl TfT r------- ------------- -----·--··--·------------------- --------··· ----·. 

\.{\ L\. nF - I l'HTI l\"L ·- p-~-1-HTCtF--vn:ncTTlF,...... ------------------------·--- ·---

----- --- -- - ---y n=nFcr:' ! 1<: r J1\! ..:.- L • t 1 J + • oo o o o trn m 1rnlt10 o or 
THFTA=OllTflN7.(YO,XO) 

-- -- . -- ·-·· - -z-Al\r(;i.:r:= (~--:T4T5--c;-7t;-S 3 5 fl9 7 93 2 TITT. T ts) 7 3. O 

DI ST=f)IST61 XO.YO) 
·· · · -· · tt x ( I ·)-=: 1) I sT-:::-rrc-os--( -1-/\N(;1:-~-,--- ---·--· 

t J Y ( I ) = IJ I ST ::' f) S I f\1 { 7- l\f\J GI_ f: ) 
----- HR I I t t I). I 5 J I • X !J, Y !J, lJ XI I ) , Cl YI I J 

l'JOFURMl\T{l2HOR1Jf\1 NllMRER=,I4,3X,3HXO=,Dl3.5,4X,3HYO=,rn3.5,5X,7HllX(J) 
---------r=-;TTI 3. 5, 5 X, I HUY ( J J - , IJ 13. 5 7 7 ) 

VXl=llX(l) 
---------yy-r::::T 

Xl=XO 

J=l 

C PARTICLE VELOCITIES AND POSITIONS CALC IN POTENTIAL FLOW REGIME 

20 THFTA=OATAN2(Yl,Xl) 
U\J\I(, u.::: ( 3. l 7+ l 59 2 6 5 3 5 R 9 7 9 3 2 -i HE TA) I 3 • U 
OIST=UIST6(Xl,Yl) 
u X--1----"f'TI ~ T ··- n c n s ( l Ar\! h L t ) 
LI Y l = n I S T ::< 0 S I f\J( Z ANG L E ) 

---c.-'--"'---\-1-x-r--v--x-1 + ( ti X 1 'V X 1 ) -:- R E L X 

c 

VY2=VYl+(UYl-VYll*RELX 
x 2- x l + lJ x r -:-n T +TL\ tF { v x 1-l J x 1 } .:. RE t x 
Y Z=Y 1 +UY I >:<OT+ TAU>:< (VY 1-lJY 1) >:'RE LX 
~flRT t x2-:-x2+ v·2..;-·y 2) 

-e Cl"tE-~ART I CLE s HAVE I MPAcn:o Or<:! THE WEDGE IAALL 

c 
H=--r-x-2 .LT •• Ol) GO TO 23 
IF ( Z • LE. R ) GO T 0 3 0 
:r--F--t-~\J~~~·P--7-Ft-----T-F~rn--~---------------

I HY? .LEo (X2+1.414214>:<R)) GO TO 40 
--r-F-t-x~E .. 0. 0 • A f\JD • l • t; r---;-c ) GO T 0 5 o 
THETA=DATAN2(Y7.,X2J 
Z--I~~-nr=-13 .1415926~35897'73274.) 

YK=Z*DSIN(ZINGLE) 
X--B=-z--,~llii\r , 
IFIXR .LT. 0.0) GU TO 23 

CA c-c--rn=t'intJf\J[)ARY L /..\ y ER TH I CKl\lES s 
BLT=RCF*XB**.3333333333333333 
I F ( Y K • I_ t • K I_ I ) (, 0 I lJ 8 0 

23 x l = x 2 
------y-r=-

v x 1=vx2 
------vYT=ITY _ 

Gfl Tfl ?O 
HO VXl-VX 

\/Yl=VY2 
--- ---------n = x-- .. 

Y l =Y 2 



p fli' T r c L F " F '- fl c r T r ,_: s I\ i\J I) p (I s J T J fl 1\1 s· . ou_: r, . . J M . R rn Ji'ln I\ R y '- ti y F R 

· ;1 l .. rrrrT1r-::rT11rr.ii,•Tn'r.x-rr 
7 I '.\I l~ I.!-;= Hff T 1\ - ( 3 • l 4 l ') 9 7 6 "i 3 ') H 9 7 9 3? I lt • ) 

Y M== I ::·ns I f\r (TI r,1 Gr~F"J·-·· ----·-·-·-······· · · · · ·- · ·· .. ---------·-·--···-···---·-· -··-·-·-----······---- ··· · ······--·· 

X R= 7_ :;: 1)( f\S ( 7. I l\Jf;1_ r:) 
x p 13=] -~n-;-x1~·!:'"~':-3T33T:l333"3"T:-l3333·-­

X R43= l. n/ X R** l. 3333333333333333 
·---·- - ------x l~T3=:· 1. • '·>IX H :.- ··' 2. 3 3 3 3 3 3 3 3 3 3 3 3 3 3 

Y f:\ 20 =YR :;:yf~ 
.... -- Yf\30=YR?"O~Y-fr 

y k'10=YR3()>::vR?.n 
·--··Y P·60=YR3ff:!<YH30 ·----·-----····-- ·- ·--------··----------···-

lJ X p, = l 11 ,;, ( • 8 ::: F l 7. ::;: YR - • 16 6 * F ::: YR 2 0 ,;, X R 1 3 + • 0 0 14 ii::: F '3 2 ::: YR 5 () ::: X Fl 4 3 ) 
fYR-=1~~3""2-.-V R31J-.·XR'+3+. OU!J328t.tF311··-Y Rol>···XR 

ll X l = • 7 0 7 1 1 ,;, ( U X R-l J YB ) 
----t1Y-1~ro--11 -.- . . 

V X 2= \f X l + ( I J X 1-V X 1 ) ::;: RE I_ X 
--- 'tY-2=-VY-r+ ( lJ Y 1 VY l ) .:- Rt:: t X . 

X 2= X 1+lJX1 :::I) T +TAU;': ( V X 1-IJ X 1 ) ::: REL X 
y 2- 'l' l + l l '( 1 -.- rn +TA u ··- ( v '( 1 tJ y 1 ) -.- RE L x 
Z=OSORT(X2*X2+Y2*Y2) 

C CHECK IF PARTICLES HAVE IMPACTF.D ON WALLS RENEATH ROUNDARY I.AYER 
-e 

JF(Z .LE. R) GO TO 30 
I F ( v 2 • I, E • 0 • o • A 1<J D • · v 2 ., L t • ~ ) G 0 T 0 3 0 
IF(Y2 .LE .. (X2+1.414214*R)) GO TO 40 
IF(X2 .. GE .. O.O .111\JD. l .Gi. C) GO TO 50 
X 1=X2 
Y" -
VXl=VX2 

IF(X2 .GT. 0.0) GO TO ~O 
~i!t) 

C LOOP TO CHANGE DELTA TIME INTERVAL 
--9f)-rF+-J-e-N-.,_.._.--t-___ ~---........... ~~-------------------------

rn=oT 1 

RELX=l.O-OEXP(T) 
,J'=i 
GO TO 81 

-c------~·---------------------------------------

C CALClJLAT!flN OF EXACT OEPflSITiflN LOCATiOl\IS 

30 X LI I } =O. O 
------c;n-rrr--oo------------------------------------

40 SU1EP=fY2-Yl)/{X2-Xl) 
----x-t1-1-~~t"tt21:4·!- ( ( ( '( 1-SLOC-P-.-X 1-1 e4 l4~P)) ...-. 7U7 l l ·.-R) 

IF(XL(Il .l_T .. 0.0) XL(l)=O.O 

l\J = I FI X ( R llN-. 9) 
·--·-----;vi-:::-1\ 

GO Tfl 54 
--5DJ1.r=-1-F·1·-v-iro-iH-ttt=--r----..-,.;---------------------------------

M=N+ l 

51 FORMAT ( lHl, 15X, 2HIJX, l8X ,2HlJY, lHX ,?.HXL//) 
----wRTTFit> , 5 7 ) ( l l X ( I > , lJ Y ( I ) , XL ( I ) , I - l , !'JI ) 

ryz FORMAT(lH0,30?0.8) 



1· 1 !\ f TI' ( (1 • '<'I ) 
s·"' rrrn~il\TI lHlr- ··-· ---

CALL llFPnST 
·1,ri · Tn) 

f 1\11) 

[ Sl I Gi~(ll JT I 1\1 r::· ·Tn-CACCUl..:"l\TF:- THeFF.PffSTTIOl'\lf<lfTF:--S-._/\NIJLDC71 T HT/\JS _ ___ _ 

St J ~I~ 1 ll 1 T r l'-IF: [) F. jJ n s T 
cni,;f•iflf\I TJXT4TlT;tJYT4ffJ•XTT~-nF:cr;1 -- ·--- ·· ·· ... 
f) 1 ll 1 P. L f P R F C I S { 0 f\I l\ V lJ X , l\ V l J Y , AV E l_ , fl NG L , l I_ , F SC , n f L Z , I J X , I J Y , X L • l L L , F L S C 

-----i:rn·r 1 t~ 1 h • 5 
S Hl~MllT(lH0,20X,J.7HAVE~ DEP lrlCflTION,26X,J.3HDEP Fl_!lX/CnNC//) 

----- . - - . fl ff ·rs--K=T•f\r-
ll \I l t X = ·( l t X ( K) + l l X ( K + l) )/2.0 
l\ V l I Y = ( ti Y (·K t'Ft iY (·KT1n-;-2-;i J 

ti lff L = D Sn RT ( I\ V l t X ::: 1\\1 LJ X +fl V lJ Y ':'I\ V l J Y ) 
--·- ----m\TGT - ll I\ I l\ f\11". I A V lJY , ZXV I J X J 

ZL=IXL(K)+XL(K+l))/2.0 
-----·--·-r-FTIT ·• 

F SC= ti \IE L ::qi EL Z ::: 0 C 0 S ( /\NG L ) I ( X L ( K + 1 ) - XL ( K ) ) 
--- ·-F· t·s C=- DtftGto\F--sc-1 

Z L L = fl L QC; 1 0 ( Z I_ ) 

7 FSC=AVF.L*DELZ*DCOSCANGL)/(.00001) 
----F-t-S-C- . 

ZLL=O.O 
---91<tRTTc-H5, 2 5) ll_ ,ZL t, F SC, Ft SC 

?5 FORMAT(lH0,020.8,J.OX,Fl0.5,ZOX,020.R,lOX,Fl0.5) 
15 

RETURN 
----c-1'irr 

-------------------------~-------------------
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