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ABSTRACT

We present two searches for supersymmetric particles using proton-proton colli-
sion data collected by the CMS experiment at

√
s = 13 TeV. The searches use

razor kinematic variables for signal discrimination and target the pair production of
heavy gluinos and squarks in R-parity conserving supersymmetry. The first search
is performed on 2.3 fb−1 of data collected by CMS in 2015. Two complete, inde-
pendent background predictions are made: one based on fits using a parameterized
functional form, and the other based on Monte Carlo simulation corrected via con-
trol samples in data. The second search is an expanded version of the first search,
and is performed using the Monte Carlo-based background prediction method on
35.9 fb−1 of data collected in 2016. Both searches obtain results compatible with
standard model background expectations. The null results are interpreted as limits
on the masses and cross sections of gluinos, squarks, and higgsinos in the context
of simplified models of supersymmetry. We discuss the outlook for the fit-based
search strategy and explore how the technique of gaussian process regression may
be useful as a tool to combat the challenges of this analysis methodology.

We also describe a new paradigm for trigger-level collider data analysis, which
we refer to as data scouting. In this paradigm, searches for new physics are per-
formed using event information reconstructed within the experiment’s trigger soft-
ware. This circumvents traditional event rate constraints, such as disk space and
the latency of offline reconstruction. We provide details on the implementation
of a framework for data scouting in the CMS High-Level Trigger system and its
successful use in Run II of the LHC. We discuss the impact of scouting on the
physics program of CMS and demonstrate that it enables searches for new physics
that would not otherwise be possible due to trigger constraints, such as hadronic
resonance searches at low mass and searches for leptonic decays of dark photons.
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C h a p t e r 1

INTRODUCTION

The standard model (SM) of particle physics encodes much of humanity’s under-
standing of how the universe operates at the submicroscopic level. It is formulated
as a relativistic quantum field theory that specifies the set of fundamental particle
types in the universe, their properties such as mass and spin, and their interactions
via the electromagnetic, weak nuclear, and strong nuclear forces. From the SM
framework one can calculate predictions for particle decays and lifetimes, scatter-
ing cross sections, resonance masses, and other quantities observable in physics
experiments.

A major effort in the particle physics community for the past decades has been to
measure physical phenomena with high precision and compare the measurements
with the SM’s predictions to attempt to discover the limits of the theory’s appli-
cability. One component of this effort has been the construction of increasingly
powerful particle accelerators that can probe the interactions of particles at higher
and higher energies. The SM’s numerical predictions have stood up to scrutiny at
energies spanning many orders of magnitude [1]. The observation by the Compact
Muon Solenoid (CMS) [2] and ATLAS [3] collaborations of a resonance compati-
ble with the Higgs boson, postulated to be related to the mechanism that generates
the masses of the fermions and vector bosons, was a recent striking success for the
SM.

The searches described in this thesis are motivated by extensions of the SM that
incorporate supersymmetry (SUSY), a hypothetical symmetry of nature that would
manifest itself in the existence of new heavy particles not contained in the current
SM. The existence of SUSY would address theoretical concerns about the SM’s
plausibility as a model of reality. In particular, it may resolve what is known as the
hierarchy problem, which is the observation that quantum corrections to the Higgs
boson mass ought to push its value much higher than what we measure it to be.
SUSY also provides a particle candidate for the dark matter (DM) that appears to
exist throughout the universe and interact weakly or not at all with ordinary matter.
A SM with SUSY may also exhibit unification of the electromagnetic, strong, and
weak nuclear force coupling strengths at high energy.
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In its first run, the Large Hadron Collider (LHC) delivered proton-proton collisions
at center-of-mass energies of 7 and 8 TeV. Collisions recorded by the CMS and AT-
LAS detectors were analyzed and used to search for evidence of SUSY. No signif-
icant deviations from the SM predictions were found, and the searches statistically
excluded some regions of the SUSY parameter space [4].

In this thesis, we present searches for SUSY in CMS data collected in the second
run of the LHC, at the machine’s current maximum energy of 13 TeV. The searches
are carried out using kinematic quantities known as razor variables that are designed
to facilitate discovery and characterization of SUSY. The increase in energy from
8 to 13 TeV makes it possible to search for SUSY particles in a wider mass range
and in a larger kinematic phase space than in LHC Run I. Furthermore, the higher
luminosity achieved by the LHC in 2016 yielded a dataset roughly twice as large as
that collected in Run I. Thus, the searches presented here have significantly higher
sensitivity to a variety of SUSY processes than those carried out at 7 and 8 TeV.

The increased LHC energy and luminosity present challenges related to data pro-
cessing that constrain the types and sensitivities of searches that can be conducted.
The CMS trigger system is limited in the volume of event data that it can record,
and further constraints are imposed by the capacity of the prompt event reconstruc-
tion system. We present an alternative paradigm for collider data analysis, known
as data scouting, that can alleviate these issues by exploiting the reconstruction al-
gorithms available at the trigger level. Data scouting has become a mainstay of
the CMS data collection framework, and it is receiving increasing attention from
analysts as a way to perform searches that would otherwise be impossible due to
trigger constraints.

This thesis is organized into four parts. Part I provides background on theoretical
and experimental aspects of SUSY searches. In Chapter 2, we give a brief descrip-
tion of the LHC, the CMS detector, and the associated trigger and data processing
systems. In Chapter 3, we give an overview of supersymmetry and summarize the
previous searches carried out at the LHC.

Part II describes our implementation in CMS of data scouting, a framework for
trigger-based data analysis. In Chapter 4 we give details of the scouting trigger
algorithms deployed between 2015 and 2017. In Chapter 5 we discuss the past and
expected future physics impact of data scouting.

In Part III we present the results of the searches for SUSY conducted on 2015
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and 2016 CMS data using razor variables. We present two methods of SM back-
ground prediction, one based on fits to a smooth function shape, the other based on
Monte Carlo simulation (MC), and describe their evolution over two years of CMS
data collection. Chapters 6 and 7 describe respectively the fit-based and MC-based
searches carried out on the 2015 CMS dataset. These methods provide predictions
for the SM background under two completely different sets of statistical assump-
tions; this dual approach is unique among CMS SUSY searches. Chapter 8 de-
scribes the MC-based search conducted on the 2016 dataset, with modifications ap-
propriate to a dataset an order of magnitude larger than in 2015. Finally, Chapter 9
describes the shortcomings of the fit-based background prediction when applied to
the 2016 dataset and discusses in some detail how one might overcome them using
new statistical techniques.

In Part IV we conclude by summarizing the current state of SUSY in light of the
analyses that have been performed, and describe the outlook for SUSY searches
during the rest of LHC Run II and beyond. We also provide three appendices de-
scribing other work carried out concurrently with this research. Appendix A de-
scribes experimental studies of the timing properties of scintillating crystals and
photodetectors. This effort is motivated by the upcoming high-luminosity upgrade
of the LHC, where time-of-flight information may be used to mitigate the effects of
pileup in pp collisions. Appendix B describes the development of neural network-
based algorithms for particle tracking. These early-stage studies form part of a
research program aiming to use modern machine learning techniques to improve on
the tracking algorithms currently used at the LHC. Finally, Appendix C describes
a software framework written to facilitate distributed training of machine learning
models in a supercomputing cluster setting. We demonstrate the performance of the
framework and discuss its role in the research and development of new algorithms
for high energy physics.
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C h a p t e r 2

PHYSICS WITH THE CMS DETECTOR

When protons in the LHC collide within the CMS detector, high-energy particles
are produced that carry information about the underlying collision event. To convert
this information into a form suitable for analysis, the CMS Collaboration deploys
an ensemble of detector hardware, computing infrastructure, and data processing
software. In this chapter we describe the elements of this ensemble, beginning
with the LHC itself and ending with the reconstructed event data that serves as the
starting point for all CMS physics measurements and searches.

2.1 Proton-proton collisions at the LHC

The LHC is a circular proton-proton collider, operated by CERN and located near
Geneva, Switzerland. It delivers pp collisions at center-of-mass energies ranging up
to 13 TeV at an average rate as large as 32 MHz. The main purpose of the LHC is to
provide the data needed to probe the mechanism of electroweak symmetry breaking
and to search for evidence of particles and interactions not present in the SM.

The LHC occupies the 27-kilometer tunnel that previously housed the LEP col-
lider. A sequence of machines in the CERN accelerator complex, shown schemati-
cally in Figure 2.1, brings protons up to the full beam energy of 6.5 TeV in several
stages. The protons originate from hydrogen gas, which is ionized using an elec-
tric field. They then pass through the Linac 2 accelerator, the Proton Synchrotron
Booster (PSB), the Proton Synchrotron (PS), and the Super Proton Synchrotron
(SPS), which accelerate them to 50 MeV, 1.4 GeV, 25 GeV, and 450 GeV, respec-
tively. Finally, the protons enter the LHC itself, where their energies are increased
to 6.5 TeV before they are brought into collision. The two LHC beams circulate in
opposite directions and are made to collide at four locations in the LHC ring. The
CMS, ATLAS, LHCb, and ALICE particle detectors are located at these points. A
detailed description of the LHC design can be found in [5].

LHC operations from 2009 to 2012 are referred to as ‘Run I’ of the machine. Run
I was conducted at collision energies of up to 8 TeV and provided the data used by
CMS and ATLAS to establish the existence of a Higgs-like boson. In 2015, after
a planned two-year shutdown, the LHC began ‘Run II.’ The collision energy was
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Figure 2.1: The CERN accelerator complex [6].

increased to 13 TeV, the maximum achieved to date. The minimum time interval
between collision events was halved from 50ns to 25ns early in the 2015 data-taking
period.

Pileup collisions

An aspect of the LHC particularly relevant for CMS data analysis is that each beam
is divided into discrete bunches, each consisting of up to 1.15 × 1011 protons. The
beams may each contain up to 2808 bunches. In each LHC collision event, two
bunches pass through each other, producing some number of individual pp interac-
tions. The average number of collisions per bunch crossing is

Navg =
Lσinel

f
, (2.1)

where L is the instantaneous luminosity, σinel is the inelastic pp scattering cross
section, and f is the frequency of bunch crossings. The value of σinel at 13 TeV has
been measured by CMS [7] and ATLAS [8]; the nominal value obtained by CMS
is 71.3 mb. At L = 1034 cm−2s−1and f = 31.6 MHz, this yields a mean of 23
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collisions per bunch crossing. In practice, the number of colliding bunches and the
instantaneous luminosity vary from run to run.

Each collision event therefore consists of many superposed particle interactions,
which must be disentangled from one another during analysis. In general there will
be at most one interaction of interest per event. The others, referred to as pileup

interactions, contribute a diffuse background of low transverse momentum particles
to the event. The presence of pileup poses challenges for event reconstruction and
analysis because it adds additional spurious particles to every event, adding noise
and slowing down the event reconstruction process.

LHC performance in Run II

In 2015, the first year of Run II, the LHC delivered collisions to CMS at instanta-
neous luminosities ranging up to 5 × 1033 cm−2s−1 [9]. The total integrated lumi-
nosity, defined as

Lint =

∫
L(t)dt, (2.2)

was 4.2 fb−1, of which 2.3 fb−1 was recorded by CMS and certified good for physics
analysis. The average number of pileup collisions per event was 14.

In 2016, the LHC reached its design luminosity of 1034 cm−2s−1 and ran at that level
or higher for a large fraction of the year. The luminosity delivered to CMS that year
was 40.8 fb−1, an order of magnitude larger than that delivered in 2015. Of this, 35.9
fb−1 was certified good for physics analysis. The increase in luminosity brought an
increase in the number of pileup collisions, with an estimated 27 pp interactions
per bunch crossing.

As of this writing, CMS has recently ended its 2017 pp run. The LHC delivered
51.0 fb−1 to CMS, of which 41.8 fb−1 were certified good for physics. Analysis of
this dataset is still in progress by the collaboration.

A chart illustrating the increase of the integrated luminosity over each year’s run
period is shown in Figure 2.2. Values for both the Run I and Run II data-taking
periods are shown.

2.2 Description of the CMS detector

The CMS detector is one of two general-purpose particle detectors associated with
the LHC (the other is ATLAS). A detailed description of CMS can be found else-
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Figure 2.2: Integrated luminosity delivered to CMS in each year of LHC run-
ning [9].

where [10], but it will be useful to briefly describe each component of the detector
here.

CMS has a cylindrical structure, with the LHC beam pipe passing along its axis.
Its central feature is a 3.8T superconducting solenoid, inside which are subdetec-
tors dedicated to measuring specific types of particles. The magnetic field from the
solenoid causes the paths of charged particles to bend, allowing accurate estimation
of their momenta during reconstruction. Each major subdetector consists of a cylin-
drical ‘barrel’ component and two ‘endcaps’ that are transverse to the beam, giving
nearly hermetic enclosure of the collision region. A diagram of CMS is shown in
Figure 2.3. In Figure 2.4 is a schematic illustrating how each particle type interacts
with the detector.

CMS coordinate system

A cylindrical coordinate system is used to describe locations in the CMS detector.
The origin of the coordinates is at the center of the detector, with the z-axis pointing
along the beam and the x-axis pointing radially inward toward the center of the
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Figure 2.3: A diagram of the CMS detector [11].

Figure 2.4: A diagram showing a slice of the CMS detector, illustrating how various
particle types interact with the detector. Photons (dashed blue line) pass through the
tracker and deposit their energy in the ECAL. Electrons (red line) leave tracks in
the tracker before depositing their energy in the ECAL. Hadrons (green lines) create
showers in the HCAL, leaving tracks in the tracker if charged. Muons (solid blue
line) pass through all detector layers, leaving tracks in the inner tracker and the
muon system [12].

LHC. The three coordinates used for spatial locations are the radial distance ρ =



10√
x2 + y2, the azimuthal angle φ, and the pseudorapidity η, which is defined as

η = − log (tan(θ/2)) , (2.3)

where θ is the polar angle made with the z-axis. The choice of η as a coordi-
nate stems from the fact that the η interval between two points is roughly invariant
under Lorentz boosts along the beam direction. The compositeness of the proton
implies that the total z-momentum in any given pp collision is unknown (the collid-
ing partons carry an indeterminate fraction of the protons’ energies), which makes
it convenient to parameterize events in a z-boost-invariant way.

Particle four-momenta are usually specified by their component pT in the transverse
plane, their directional coordinates η and φ, and their energy E.

The inner tracker

The subdetector closest to the collision point is the silicon tracking system, which is
designed to record the passage of charged particles and provide precise information
about their directions and momenta. The tracker has an outer radius of nearly 110
cm and covers the range |η | < 2.5.

The inner part of the tracker is made of silicon pixels each measuring 100 × 150
µm2. There are three layers of pixels in the barrel and two in the endcaps; in total
the tracker contains 66 million pixels. The average occupancy per pixel in one LHC
bunch crossing is approximately 10−4, low enough to allow reconstruction of tracks
and vertices in the LHC’s high-pileup environment.

Outside the pixel tracker is the strip tracker, which consists of 9.6 million silicon
strip sensors. The strip tracker is organized into four regions (Inner Barrel, Outer
Barrel, Endcap, and Inner Disks) with sensors of varying sizes appropriate to the
particle flux at each location.

The spatial hit resolution of the pixel tracker is measured to be 10-20 µm, and that
of the strip tracker is measured to be 23-52 µm. The layout of the silicon tracker is
illustrated in Figure 2.5.

The electromagnetic calorimeter

Surrounding the tracker is the electromagnetic calorimeter (ECAL), which is made
of monolithic crystals of lead tungstate (PbWO4). The ECAL barrel contains 61200



11

Figure 2.5: Diagram of the CMS inner tracker. The collision point is shown in the
lower left. The pixel tracker is shown in green, and the strip tracker is shown in red
and blue [13].

crystals and covers |η | < 1.479; the two endcaps each contain 7324 crystals and
cover 1.479 < |η | < 3.0. The crystals in the barrel and in the endcap are cou-
pled respectively to silicon avalanche photodiodes (APDs) and vacuum phototri-
odes (VPTs) for readout. In front of each ECAL endcap is a preshower device,
consisting of two planes of silicon strip detectors placed behind lead absorbers. A
diagram of the ECAL is shown in Figure 2.6.

When electrons and photons pass through the ECAL, their energy is converted into
scintillation light. The PbWO4 crystals in the barrel and in the endcap have depths
corresponding to 25.8 and 24.7 radiation lengths (X0 = 0.89 cm) respectively. The
width of each crystal is comparable to the Moliere radius of PbWO4 (2.2 cm), so the
electromagnetic shower is contained within a relatively small number of crystals.
The scintillation light produces APD/VPT pulses that carry information about the
energy of the incident particles.

Large radiation doses cause the formation of color centers in the ECAL crystals
that reduce their transparency to scintillation light. This effect leads to a change in
each crystal’s response over time; the response decreases as radiation is absorbed,
and slowly increases when no collisions are occurring due to a natural annealing
process in the crystals [15]. A monitoring system is used to track the transparency
of each crystal throughout each run period. This is accomplished by firing laser
light into the crystals and measuring their response during gaps in the LHC bunch
train, which are spaced 90 µs apart. The response change over the course of a
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Figure 2.6: Cutaway view of the CMS ECAL [14].

year is dramatic (see Figure 2.7) and this continuous monitoring and calibration
is needed to guarantee robust measurements of photon and electron energies. The
laser monitoring system is designed to measure the transparency of every crystal
once every 30 minutes with a precision of 0.1%.

The hadron calorimeter

Between the ECAL and the CMS solenoid is the hadron calorimeter (HCAL), which
is made of alternating layers of brass absorber and plastic scintillator tiles. The pur-
poses of the HCAL are to measure the energies of incident hadrons and to provide
fully hermetic coverage for accurate measurement of the total transverse momen-
tum in each event. The volume devoted to the scintillator tiles is made as small
as possible in order to maximize the amount of absorber: the scintillator tiles are
3.7 mm thick and are sandwiched between 5 cm brass plates. The plastic tiles are
read out via wavelength-shifting (WLS) fibers, which are spliced to clear fibers that
channel the light to photodetectors.

The barrel of the HCAL consists of 2304 ‘towers’ covering the range |η | < 1.4.
In the region |η | < 1.26 the calorimetry is complemented by additional scintilla-
tor tiles located outside the CMS solenoid; this ‘hadron outer’ (HO) calorimetry
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Figure 2.7: Change in response of the CMS ECAL crystals over time. The trans-
parency is shown for crystals at different values of η [16].

increases the instrumented region in the barrel to cover more than 10 nuclear in-
teraction lengths. The HCAL endcaps, comprising 2304 detector towers, cover the
range 1.3 < |η | < 3.0. Finally, a forward hadron calorimeter (HF) extends the
coverage out to |η | = 5.0. The HF consists of an ensemble of grooved steel plates
into which quartz fibers are inserted. Cherenkov light emitted in the fibers is sent
to photomultipliers, which measure the energy in a total of 1800 readout channels.
The components of the HCAL are indicated in Figure 2.8.

The muon system

High-energy muons are generally not stopped by the CMS tracker or calorime-
ters, and dedicated detectors are placed outside the solenoid to identify them. The
muon system contains three different types of gaseous detectors: drift tube cham-
bers (DTs), cathode strip chambers (CSCs), and resistive plate chambers (RPCs).
DTs cover the barrel region out to |η | = 1.2; they are deployed in four layers, inter-
leaved with the iron return yoke of the magnet. CSCs form the endcap of the muon
system and cover the region 0.9 < |η | < 2.4. RPCs are coupled to each DT in the
barrel region, and additional RPCs are placed in the endcap out to |η | = 1.6. RPCs
have coarser position resolution but finer time resolution than DTs and CSCs; they
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Figure 2.8: Diagram of the CMS detector layout, with the barrel (HB), endcap
(HE), outer (HO), and forward (HF) components of the HCAL labeled. The pur-
ple stripes in the outer regions of the detector indicate the placement of the muon
chambers [17].

are useful in ensuring that muon hits are assigned to the correct bunch crossing.
The layout of the muon system is indicated in Figure 2.8.

For muons with pT lower than 200-300 GeV, scattering in the inner detector material
limits the momentum resolution of the muon system. Thus, measurement of muon
momentum is performed mainly by the inner tracker. For very high-pT muons,
however, the effect of scattering is small and the momentum measurement benefits
from the incorporation of muon chamber hit information.

2.3 The trigger system

The rate of collisions at the LHC is far too high for every collision event to be
saved and reconstructed. Instead, CMS uses a trigger system to select events of
interest [18]. The trigger system operates in real time during data-taking and must
satisfy strict constraints on event processing time.

The CMS trigger system is divided into two stages, the Level-1 (L1) Trigger and
the High-Level Trigger (HLT). Each trigger stage identifies events that are likely to
be useful for physics analysis. Selected events are passed to the next stage of pro-
cessing, while unselected events are discarded without being saved to disk. Starting
from the full LHC collision rate (~109 Hz) the L1 Trigger system selects approx-
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imately 100 kHz of events. The HLT further reduces this to ~1 kHz of physics
events, which are saved to disk for offline processing.

The L1 Trigger

The L1 Trigger is implemented in hardware using custom ASIC chips and FPGA
cards. Within a latency of 4 µs, it must receive the event data from the detector,
perform basic reconstruction of physics objects, and make a trigger decision. Due
to the limits of the CMS readout electronics, the L1 output event rate must be no
more than 100 kHz.

A diagram of the L1 event processing logic is shown in Figure 2.9. Physics object
reconstruction is performed using data from the calorimeters (ECAL and HCAL)
and from the muon chambers (DTs, CSCs, and RPCs). Calorimeter data is aggre-
gated by a two-stage system consisting of a Regional Calorimeter Trigger (RCT)
and a Global Calorimeter Trigger (GCT). The output of the GCT is a set of candi-
date electron, photon, and jet objects. Data from the muon chambers is processed
by the Global Muon Trigger (GMT), which outputs a set of muon candidates.

Figure 2.9: Diagram of the L1 trigger [19].

The final trigger decision is made by the L1 Global Trigger (GT), which receives as
input the physics objects reconstructed by the GCT and the GMT. The GT consists
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of a number of separate trigger paths, which compare the multiplicity and momenta
of reconstructed physics objects against a set of predefined selection cuts.

The L1 system was upgraded in 2016 to feature more modern FPGAs and high-
bandwidth optical links for communication between trigger cards [20]. Where
previously the calorimeter hit data was coarse-grained before being processed by
the RCT, the upgraded system allows the calorimeter triggers access to the full
ECAL and HCAL granularity. This improvement allows physics objects to be re-
constructed at the L1 with higher resolution, yielding more performant triggers that
have lower cut thresholds yet still respect the 100 kHz rate limit. The upgrade also
significantly increases the power and flexibility of the GT. It relaxes the hard limit
of 128 trigger paths that existed previously, and enables more complex trigger logic
involving, for example, the invariant masses of reconstructed particles.

The HLT

The HLT is implemented as software running on a processor farm at LHC Point 5.
It consists of a few hundred trigger paths, each selecting for a particular physics
signature. The paths execute in parallel for each physics event selected by the L1
Trigger, and an event is accepted if it meets the requirements of any path.

HLT paths are divided into modules, each of which is either a ‘producer’ (which
performs some reconstruction task) or a ‘filter’ (which applies a cut and rejects the
event if it does not pass). An HLT path can in principle execute arbitrary code
when making its trigger decision, using the raw CMS event data as input. The main
constraint is the total compute time needed to process an event. Modified versions
of the offline particle reconstruction algorithms described in Section 2.4, including
the particle flow algorithm, have been written for use at the HLT. These algorithms
yield physics objects similar to those built by the full reconstruction software, but
trade accuracy for speed where necessary.

Some HLT paths are prescaled, meaning that they are blind to a certain fraction of
events. A prescaled trigger is assigned a prescale factor that is an integer N > 1, and
the trigger only runs on one in every N events entering the HLT. Prescaled triggers
are used to perform measurements that do not require the full statistics of the data,
in cases where the unprescaled path would have prohibitively high rate.

To keep up with the rate of events selected by the L1 Trigger, the average time to
run the full suite of HLT paths should not exceed a certain threshold, which is on
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the order of hundreds of milliseconds. The exact CPU time budget varies from year
to year as the HLT farm is upgraded with new machines. The distribution of event
times is long-tailed: most events can be accepted or rejected very quickly, while a
few require more intensive processing before the decision can be made. This long-
tailed distribution is shown in Figure 2.10. Also shown is the mean execution time
of the menu as a function of the instantaneous luminosity. In case the luminosity
is too high for the full menu to run within the time constraint, the HLT can be
dynamically switched to a more restricted menu where some paths are prescaled or
disabled.

Figure 2.10: Left: distribution of simulated HLT event processing times for two
different instantaneous luminosity scenarios at 13 TeV [21]. Right: average HLT
event processing time as a function of instantaneous luminosity in 2016 [22]. The
red line represents the limit imposed by the HLT farm.

The most time-intensive task performed at the HLT is track and vertex reconstruc-
tion. The HLT particle flow algorithm makes use of an iterative track reconstruction
algorithm similar to that used offline. Some iterations of the tracking sequence are
omitted to save time; this limits the HLT’s ability to reconstruct displaced tracks,
such as those from hadrons that undergo a nuclear interaction within the tracker
material. The combinatorics of track seed extension are also alleviated by retaining
fewer track candidates at each layer (in the offline algorithm, up to five candidates
are considered at each layer).

A simpler track reconstruction procedure is also available that only considers hits in
the pixel tracker, ignoring the strip tracker. These ‘pixel tracks’ are used as seeds for
the full tracking algorithm, and as input to the HLT vertex identification algorithm.
Some applications make use of an even faster vertexing algorithm (‘fast primary
vertex finding’) that identifies vertices compatible with selected high-pT jets by
projecting pixel hits along the jet axis [23]. This algorithm reduces the running
time of some HLT paths by a factor of 4 to 6.
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Streams and primary datasets

HLT paths are organized into streams, which are groups of paths sharing a similar
purpose and having the same output event content. For example, ‘physics’ streams
contain HLT paths selecting events for offline physics analysis. Events entering
these streams are marked for prompt reconstruction, and their full raw data is sent
to the CMS Tier-0 computing center for storage and further processing.

Other data streams contain HLT paths used for specialized tasks, such as detector
calibration. These tasks may not require the full raw event data, and therefore some
parts of the raw data may be discarded for events in these streams in order to save
storage space. For example, a dedicated data stream is used for the calibration of
the ECAL using π0 decays to photons [24]. Only ECAL data from crystals near π0

candidates is needed for this calibration task, so the raw data from all other parts
of the detector is discarded for events in this stream. The raw CMS data is formed
from the output of ~600 Front-End Driver (FED) boards, each associated with a
particular subdetector. Each FED’s data is a modular unit that can be individually
saved or discarded, which facilitates the process of reducing the event size in these
streams.

Streams are further subdivided into primary datasets (PDs). All PDs in a stream
are processed in the same way and have the same event content; the subdivision is
mainly to avoid excessively large file sizes.

2.4 Physics object reconstruction

Events in the main physics streams are immediately sent offline for reconstruction.
This is referred to as prompt reconstruction and is performed centrally at the CMS
Tier-0 computing center located at CERN.

The particle flow algorithm

The central feature of the reconstruction software is the particle flow (PF) algo-
rithm [25], which takes as input the digital readout of all subdetectors within CMS
and produces a complete description of the event in terms of ‘PF candidates’, each
meant to correspond to a single particle produced in the collision. A PF candidate
is characterized by its 4-momentum, its particle type, and additional information
specific to its particle type. Seven types of particles are included in the event de-
scription, each described briefly in the following subsections.
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In the first stage of the PF algorithm, the data from each subdetector is preprocessed,
yielding PF clusters in the calorimeters, and tracks in the inner tracker and muon
system. These elements are used as building blocks in the particle reconstruction
procedure.

Charged particle tracks are reconstructed in the inner tracker via a combinatorial
Kalman filter (KF) algorithm [26]. Using as input a collection of seeds recon-
structed in the pixel tracker, the KF constructs tracks one detector layer at a time,
updating the measured track parameters according to the hit positions in each layer.
The entire KF algorithm is iterated several times with different settings. In each
iteration, the hits used to make tracks in the previous iterations are masked. Each
iteration is configured to target a particular type of track: the first iteration targets
high-pT tracks originating from the collision point, while subsequent iterations are
optimized for low-pT tracks, displaced tracks, and tracks inside high-pT jets.

In the ECAL and HCAL, cells with recorded energy larger than a seed threshold
are considered cluster seeds. Clusters are grown iteratively from seeds by adding
cells sharing at least a corner with an existing cluster and having energy greater
than twice the noise level. An expectation-maximization algorithm is then used
to fit a mixture of Gaussian distributions to each cluster, with the number of mix-
ture components equal to the number of cluster seeds. The location and height of
each component of the Gaussian mixture are taken to be the position and energy,
respectively, of a PF cluster. PF cluster energies are calibrated using simulation to
ensure that they faithfully reproduce the energies of the underlying electromagnetic
or hadronic showers.

In the ECAL, groups of clusters localized in η and extended in φ are combined to-
gether into superclusters. The superclustering procedure is meant to group together
energy deposits originating from bremsstrahlung from an incident particle. In the
reconstruction of electrons and photons, each particle candidate is associated with
a single supercluster.

After the clustering stage, a link algorithm is used to group together PF clusters and
tracks in different subdetectors that are consistent with being created by a single
particle. For example, an ECAL cluster may be linked to an HCAL cluster that is
in the same location in η and φ. After the link algorithm runs, a particle type is
assigned to each object according to what clusters and tracks are associated with it.
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Muons

Muon reconstruction is performed by matching tracks in the inner tracker with hits
in the muon chambers. This matching can be performed ‘inside out,’ i.e. by extrapo-
lating inner tracks to the muon chambers and looking for compatible tracks there; or
‘outside in’ (vice versa). Muons reconstructed in the former way are called tracker

muons and those reconstructed in the latter way are called global muons. Both types
of muon are used in CMS data analysis. Selecting tracker muons that are not also
global muons recovers efficiency for muons with pT < 10 GeV, which may not
have well-reconstructed tracks in the muon system due to multiple scattering in the
magnet yoke.

Hadrons that are not fully stopped in the HCAL may leave hits in the muon system.
These punch-through hadrons are prevented from being reconstructed as muons
by examination of the energies of ECAL and HCAL hits assigned to the muon
candidate.

Electrons and photons

Electrons are identified as energy deposits in the ECAL that are compatible with re-
constructed tracks in the tracker. Tracks pointing at an ECAL supercluster are refit
using a Gaussian sum filter (GSF) algorithm [27] optimized for identifying elec-
tron tracks. The algorithm is a nonlinear variant of the KF. Rather than assuming
a Gaussian distribution for the particle energy loss at each layer, it uses an approx-
imation to the Bethe-Heitler distribution, constructed using a mixture of Gaussian
distributions. Tracks reconstructed with the GSF recover hits due to bremsstrahlung
that may be missed by the KF algorithm.

The electron object produced by the PF algorithm consists of a GSF track and its
associated ECAL supercluster. Superclusters with no associated track are recon-
structed as photons.

Charged and neutral hadrons

Energy deposits in the HCAL generally originate from energetic hadrons. HCAL
deposits with associated tracks are reconstructed as charged hadrons (protons, charged
pions, and charged kaons), while those without tracks are reconstructed as neutral
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hadrons (neutrons and neutral kaons). If an HCAL deposit has an associated track
but the momentum of the track is significantly smaller than the energy of the HCAL
deposit, reconstruction proceeds under the hypothesis of a neutral particle overlap-
ping with a charged hadron. In the rare event that the track momentum is signifi-
cantly larger than the HCAL cluster energy, the particle may be reconstructed as a
muon or the track may be treated as misreconstructed and discarded.

HF photons and hadrons

Due to the limited η coverage of the tracker and the ECAL, particles with |η | > 3.0
must be reconstructed using the forward HCAL (HF) only. The HF contains quartz
fibers of two different lengths, placed such that the longer fibers span the entire HF
while the shorter ones only occupy the rear part. This layout allows each energy
deposit to be roughly decomposed into electromagnetic (EM) and hadronic com-
ponents, with the EM component registering mainly in the longer fibers. EM and
hadronic hits in the HF are classified by the PF algorithm as forward photons and
hadrons respectively, and are included in the list of PF candidates without further
calibration.

Primary and secondary vertices

The reconstructed tracks in each event are used to estimate the number and loca-
tions of the collision vertices. Vertexing is performed using a deterministic anneal-
ing (DA) algorithm [26]. Vertices located along the beamline (originating from
pp interactions) are referred to as primary vertices. The resolution of the z position
of the reconstructed primary vertices depends on the number of tracks in the event;
for events with more than 50 reconstructed tracks, it is better than 25 µm. The pri-
mary vertex having tracks summing to the largest total transverse momentum in the
event is considered to be the vertex of interest, and all others are considered pileup
vertices.

Secondary vertices are the decay locations of particles produced in the initial pp col-
lision that live long enough to move away from the beam before decaying. The
presence of secondary vertices is useful in identifying such particles and is used in
the b-tagging procedure described later.
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Jet identification

Collision events in CMS consist primarily of quantum chromodynamic (QCD) jets,
which are collimated sprays of hadrons produced when a high energy quark or gluon
is knocked free of a proton. Jets are reconstructed by way of the anti-kT clustering
algorithm [28], which takes as input the collection of PF candidates in an event.
The algorithm sequentially groups together PF candidates near one another in the
two-dimensional space of η and φ according to the metric

di j = min (k−2
ti , k

−2
t j )
∆R2

i j

R2 , (2.4)

where kti is the transverse momentum of the ith particle, R > 0 is a cone size
parameter, and

∆R2
i j = (ηi − η j )2 + ∆φ2

i j (2.5)

is the distance between the two particles in the plane of η and φ. The distance ∆φi j

is the distance in φ between the two particles, taking into account the periodicity in
φ. Particles with ∆Ri j > R are never clustered together, so each jet has a maximum
radius of R.

The output of the anti-kT algorithm is a collection of jet objects, each represented
by its 4-momentum. Figure 2.11 shows an example event with the jets identified by
the anti-kT algorithm highlighted. The standard jets used for CMS physics analysis
in Run II use anti-kT with R = 0.4. Larger jets with R = 0.8 are used in analyses
involving high-pT massive particles (such as W, Z, or Higgs bosons or top quarks)
decaying hadronically. The energies of the jets are corrected via a multi-stage pro-
cedure that compensates for any miscalibration of their raw values [29].

Pileup mitigation

Pileup interactions pollute every CMS physics event with additional particles not
originating from the pp interaction of interest. There may be entire jets from pileup
interactions as well as spurious particles within jets. Charged pileup particles can
be identified by associating their tracks to a primary vertex. To reduce their effect
on the jet reconstruction procedure, all charged PF candidates with tracks consistent
with pileup vertices are discarded before the jet clustering algorithm is run. This
procedure is known as charged hadron subtraction (CHS). The application of CHS
removes approximately 70% of the charged pileup contribution to jet transverse
momentum [29].
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Figure 2.11: A simple parton-level event clustered with the anti-kT algorithm. The
cell heights indicate particle momenta, and the colored areas indicate the jets re-
turned by the algorithm [28].

Neutral particles from pileup cannot be identified using track information. Their
effect is estimated with the jet areas method, which corrects each jet’s momentum
via the formula

pcorr
T = p jet

T − ρ ∗ A jet , (2.6)

where p jet
T is the nominal jet momentum, ρ is an estimate of the median pT density

in the η − φ plane, and A jet is an effective jet area. The jet areas are calibrated to
accurately subtract the pileup contribution to jet momenta.

Jet b-tagging

Many physics processes of interest are marked by the presence of b quarks in the
final state. Jets originating from b quarks (‘b-jets’) have composition different from
other jets, containing B-mesons that can live long enough to leave secondary decay
vertices a few millimeters from the beam axis.

The Combined Secondary Vertex (CSV) algorithm is a classifier that estimates the
likelihood that a jet is a b-jet. The classifier combines several input variables and
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outputs a discriminator value between 0 and 1, with higher values indicating higher
confidence that the jet is a b-jet. The input variables include the number of recon-
structed secondary vertices, secondary vertex position and mass, and the number
of tracks and their characteristics such as their distance of closest approach to the
beam axis.

CMS analyses on Run II data make use of an improved version of the original CSV
algorithm, dubbed CSVv2. Improvements from the previous version of the algo-
rithm include a new secondary vertex reconstruction algorithm, a larger number of
input variables, and the use of an artificial neural network for discrimination instead
of a simple likelihood ratio [23]. For jets with pT > 20 GeV, the ‘medium’ working
point for the CSVv2 algorithm has approximately a 63% chance of identifying a
b-jet. The mistag probability depends on the flavor of the quark that originated the
jet. The chance of tagging a c-quark jet as a b-jet is 12%, and that of tagging a u, d,
or s quark is 0.9%.

Missing transverse energy

The total (vector) momentum in the transverse plane of CMS in each pp collision
is typically approximately zero. We define the missing transverse momentum (in-
terchangeably called missing transverse energy) as the negative vector sum ~pmiss

T of
all reconstructed PF candidate momenta in an event:

~pmiss
T = −

NPF∑
i=0

~pTi . (2.7)

The magnitude of ~pmiss
T is indicated by Emiss

T . Deviations of Emiss
T from zero are

suggestive of either mismeasurement of particle or jet momenta or the presence
of particles that escaped the detector without being recorded. In the latter case,
the escaping particles might be neutrinos, or they might be exotic particles such as
those from SUSY. The Emiss

T is hence often used as a search variable in CMS SUSY
analyses.

As described above, the momentum of each jet in the event is corrected for pileup
contamination and other effects. These jet energy corrections are propagated to the
~pmiss

T :
~pmiss

T → ~pmiss
T −

∑
jets

(~pcorr
T,jet − ~pT,jet ). (2.8)

This correction (referred to in CMS as the Type-1 ~pmiss
T correction) allows the mea-

sured ~pmiss
T to benefit from the calibrations derived for jets.
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The resolution of the measured Emiss
T depends on the number of primary vertices in

the event. For low numbers of vertices the resolution is 10-15 GeV. Each additional
pileup vertex contributes 3.3-3.6 GeV of smearing in quadrature to the measured
Emiss

T [30].

2.5 MC simulation

Physics analyses in CMS usually make heavy use of MC simulation to predict the
amount of SM background and potential new physics signal present in the data.
This is accomplished via a three-stage procedure.

First, the matrix elements for the physics process of interest are estimated via direct
calculation of Feynman diagrams. Samples are then drawn from the resulting dif-
ferential distribution; each sample is an independent MC event. This procedure is
performed by software such as MadGraph [31].

Second, a program such as Pythia [32, 33] is used to perform QCD showering
and hadronization of free quarks and gluons. A matching procedure [34] is used
to avoid double-counting of jets from initial state radiation (ISR). The parameters
of the shower algorithm are tuned to achieve good empirical correspondence with
data.

Third, the interaction of each particle with a detailed model of the CMS detector is
simulated. CMS uses two different detector simulation frameworks. GEANT4 [35]
is used for full detector simulation, and is the choice for most MC samples. A sim-
plified ‘fastsim’ framework [36] has also been developed for situations in which
large numbers of events must be simulated quickly. It is used mainly in the sim-
ulation of SUSY simplified models, where hundreds of MC samples, each with a
different combination of SUSY particle masses, must be generated.
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C h a p t e r 3

SUPERSYMMETRY AND SEARCHES AT THE LHC

We begin this chapter by giving a short overview of the SM and the hierarchy prob-
lem. Next we describe supersymmetry and discuss its experimental signatures at
hadron colliders. We then describe the paradigm for SUSY searches at the LHC,
and motivate the searches described in Part III in the context of previous SUSY
searches performed on data from Run I.

3.1 Brief overview of the standard model

The standard model of particle physics contains three classes of particles:

• Force-carrying particles, which are bosons with spin one,

• Matter particles, which are fermions with spin one half,

• The Higgs particle, which is a boson with spin zero.

In the SM, the electromagnetic, weak nuclear, and strong nuclear (QCD) forces
arise as a consequence of the gauge symmetry that underlies the theory. The sym-
metry is governed by the group SU(3)C × SU(2)L × U(1)Y . Each particle is asso-
ciated with a relativistic quantum field and participates in some or all of the funda-
mental interactions. The particle content of the SM is illustrated in Figure 3.1.

Gauge bosons

The internal SU(3)C × SU(2)L × U(1)Y symmetry of the SM is a gauge symme-
try, meaning that the theory is invariant under arbitrary group transformations at
each point of spacetime (gauge transformations). To enforce this invariance, it is
necessary to include spin-one bosonic fields in the theory that transform under the
adjoint representation of the group [37]. The particles associated with these bosonic
fields are the force-carrying particles of the SM. In particular, each factor of the SM
symmetry group corresponds to a set of fields as follows:
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Figure 3.1: The particle content of the SM.

• The eight gluons Gα
µ are associated with the SU(3)C factor. They are the

carriers of the strong nuclear force.

• The three bosons Wa
µ are associated with SU(2)L.

• The boson Bµ is associated with U(1)Y .

None of these gauge bosons have explicit mass terms in the SM Lagrangian, as
these would not respect the gauge symmetry. Through the process of electroweak
symmetry breaking described below, the bosons Wa

µ and Bµ mix to form the W±

and Z bosons, the carriers of the weak nuclear force; and the photon γ, the carrier
of the electromagnetic force. This process also imbues the W± and Z bosons with
nonzero mass.

Matter fields

The fermions in the SM fall into two categories: quarks, which interact via the
strong nuclear force, and leptons, which do not. Both quarks and leptons come in
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three ‘generations.’ The first generation contains the particles that dominate the in-
teractions of ordinary matter: the up and down (u and d) quarks, the electron e, and
the electron neutrino νe. The second generation contains the charm and strange (c
and s) quarks, the muon µ, and the muon neutrino νµ. The third generation contains
the top and bottom (t and b) quarks, the τ lepton, and its associated neutrino ντ.

Fermions are represented in the theory by left- and right-handed Weyl spinors [38].
The SU(2)L interaction in the SM is chiral: the left-handed fermions fall into
SU(2)L doublets while the right-handed ones are singlets. Each fermion has both
a left- and a right-handed component, except for the neutrinos, which in the SM
are left-handed only. Experimental observation of neutrino flavor oscillations im-
plies that neutrinos have nonzero mass, and therefore that right-handed neutrinos
must exist [39]. However, the form that right-handed neutrinos should take in the
SM is not yet known, and we currently speak of the SM as a theory with massless
neutrinos.

The Higgs field

The SM contains a fundamental scalar, the Higgs field Φ, which governs the mech-
anism of electroweak symmetry breaking. It is a complex SU(2)L doublet,

Φ =



φ+

φ0


 , (3.1)

with a quartic potential,

V (Φ) = −µ2
Φ
†
Φ + λ

(
Φ
†
Φ
)2
, (3.2)

governed by two parameters, µ and λ. The Higgs field is charged under the U(1)Y

gauge group.

The SM Lagrangian

The full Lagrangian of the SM can be broken into the following terms:

LSM = Lgauge + L f ermion + LHiggs + LYukawa . (3.3)

The terms Lgauge and L f ermion contain the kinetic energy terms for the gauge fields
and for the quarks and leptons. For brevity we will not write them out here. The
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term LHiggs contains the kinetic and potential terms for the Higgs field:

LHiggs = (DµΦ)†(Dµ
Φ) − V (Φ), (3.4)

where Dµ is the gauge covariant derivative:

DµΦ =

(
∂µ − ig2

σa

2
W a
µ − ig1

1
2

Bµ

)
Φ, (3.5)

with g1 and g2 the coupling constants of the U(1)Y and SU(2)L interactions, respec-
tively.

The last term inLSM contains the couplings between the Higgs field and the fermion
fields [40]:

LYukawa = − ŷdi j q̄LiΦdRj − ŷui j q̄Li Φ̃uRj − ŷli j l̄LiΦeRj + h.c. (3.6)

Here qLi and lLi denote the left-handed quark and lepton doublets; dRj , uRj , and
eRj denote the right-handed down-type quarks, up-type quarks, and leptons, re-
spectively; and Φ̃ = iσ2Φ

∗. The Yukawa couplings ŷdi j , ŷui j , and ŷli j describe
the interaction strength between the Higgs field and the down-type quarks, up-type
quarks, and leptons, respectively. The indices i and j index the three generations of
fermions.

Electroweak symmetry breaking

As formulated, the SM is a theory of massless particles (besides the Higgs, which
has an explicit mass term), and it is expressed in terms of bosons Wa

µ and Bµ that
are not observed in nature. The observed bosons, and the masses of the fermions,
arise via the process of electroweak symmetry breaking (EWSB) [41, 42], which is
governed by the dynamics of the Higgs field.

EWSB occurs if the quadratic term in the Higgs potential (Eq. 3.2) is negative. In
this case the minimum of the potential is not at zero: the field will have a nonzero
vacuum expectation value (VEV), which we may express up to an arbitrary field
redefinition as

〈0|Φ |0〉 =
1
√

2



0
v


 , (3.7)

with v =
√
µ2/λ. This vacuum state breaks the SU(2)L symmetry that previously

allowed arbitrary rotations in the space of φ+ and φ0. The field Φ still has an
arbitrary phase, so a U(1) symmetry (called U(1)EM) remains.
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This ‘spontaneous breaking’ of SU(2)L to U(1)EM gives rise to the electroweak W±

and Z bosons as follows. The squared covariant derivative in Eq. 3.4 yields terms
of the form

(DµΦ)†(Dµ
Φ) =



g2

2v
2

4


 W+

µW µ− +
1
2



(
g2

2 + g2
1

)
v2

4


 ZµZ µ + . . . (3.8)

where the W± and Z fields are defined as linear combinations of the SU(2)L and
U(1)Y gauge bosons:

W±µ =
W 1
µ ∓ iW 2

µ
√

2
, Zµ =

g2W 3
µ − g1Bµ√
g2

1 + g2
2

. (3.9)

The terms shown in Eq. 3.8 act as mass terms for these bosons. The physical W and
Z bosons therefore have masses:

m2
W =

g2
2v

2

4
, m2

Z =

(
g2

2 + g2
1

)
v2

4
≡

m2
W

cos2 θW
, (3.10)

where θW is called the weak mixing angle. We also define the photon field,

Aµ =
g1W 3

µ + g2Bµ√
g2

1 + g2
2

. (3.11)

No mass term for this field appears in Eq. 3.8, and the photon remains massless.

After EWSB, excitations of the Higgs field around its vacuum value can be ex-
pressed as

Φ(x) =
1
√

2




0
v + H (x)


 . (3.12)

The excitation H (x) is a physical particle, the Higgs boson, with mass mH =
√

2λv.

The fermion masses arise from the Yukawa interactions (Eq. 3.6). To see this, we
replace Φ by v in each of the Yukawa terms. After making a field redefinition to
rotate the fermions into the mass eigenstate basis (such that ŷ f i j → y f i δi j for the
up/down type quarks and the leptons), Eq. 3.6 becomes

−LYukawa = mdi d̄Li dRi + mui ūLiuRi + mli l̄Li lRi + h.c., (3.13)

summed over i = 1,2,3, where the fermion masses are m f i = y f iv/
√

2. Since there
are no right-handed neutrinos in the theory, no neutrino mass term appears and the
neutrinos remain massless.
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The Yukawa terms also give rise to interactions between the fermions and the phys-
ical Higgs boson. These interactions have the same form as Eq. 3.13 except that
they feature the Higgs boson H in place of the VEV v. The form of these interac-
tions implies that the strength of the Higgs boson’s interaction with each fermion is
proportional to the fermion’s mass.

The hierarchy problem

The Yukawa interaction between the Higgs particle and the SM fermions leads to
quantum corrections to the Higgs mass mH . The leading correction is from the one-
loop Feynman diagram shown on the left side of Figure 3.2, which contributes [43]

∆m2
H = −

���y f
���
2

8π2 Λ
2
UV + . . . (3.14)

for each fermion f in the theory. Here ΛUV is an ultraviolet cutoff regulating the
loop integral calculation; it represents a hypothetical scale at which new physics
beyond the SM becomes relevant. If the SM holds at energies all the way up to
the Planck mass MP ~ 1018 GeV, then ΛUV ~ MP and the correction ∆mH is many
orders of magnitude larger than the observed Higgs mass.

Figure 3.2: Left: one of the Feynman diagrams that generate large corrections to
the Higgs boson mass in the SM. Right: the diagram in the MSSM that cancels the
quadratic part of the Higgs mass correction from the left diagram.

It is possible that the ‘bare’ Higgs mass mH and the correction ∆mH delicately
cancel so as to yield the observed Higgs mass of 125 GeV. This cancellation requires
these two quantities to be ‘fine-tuned’ such that their values, each of order 1018, only
differ by ~ 100 GeV. This situation conflicts with the idea of naturalness, which is
the suggestion that physics at low energy scales (here the electroweak scale) should
not be finely sensitive to the details of physics at much higher energy scales (here
the Planck scale) [44].
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This hierarchy problem for the Higgs mass is alleviated if there are additional scalar
fields S that couple to the Higgs through Lagrangian terms of the form −λS |H |2 |S |2.
In this situation, the Higgs mass receives an additional correction from the diagram
shown on the right side of Fig. 3.2:

∆m2
H =

λS

16π2Λ
2
UV + . . . (3.15)

This correction has opposite sign from the one in Eq. 3.14. If the couplings λS are
related in an appropriate way to the Higgs couplings to fermions, the quadratic part
of the correction to the Higgs mass cancels. Supersymmetry, to which we turn now,
provides a set of fields that alleviate the hierarchy problem in this way.

3.2 Theory of supersymmetry

Supersymmetry is a hypothetical symmetry of nature that relates bosonic and fermionic
fields to one another. A supersymmetry transformation is generated by an operator
Q that converts a fermionic state into a bosonic one, and vice versa. Schematically,

Q |boson〉 = |fermion〉 , Q |fermion〉 = |boson〉 . (3.16)

The operator Q is a Lorentz spinor. It is restricted to satisfy (anti-)commutation
relations of the (very schematic) form [43, 45]:

{Q,Q†} = Pµ, (3.17)

{Q,Q} = {Q†,Q†} = 0, (3.18)

[Pµ,Q] = [Pµ,Q†] = 0, (3.19)

where Pµ is the momentum operator.

We see from Eq. 3.17 that Q mixes spacetime symmetries and internal symmetries
in a nontrivial way: applying a combination of Q and Q† to a state results in a
spacetime translation (which are generated by Pµ). This distinguishes Q from the
generators of the SU(3)C × SU(2)L × U(1)Y symmetry group of the SM, which
commute with all elements of the Poincaré group (as required by the Coleman-
Mandula theorem [46] for symmetries generated by scalar operators). A theory
with a symmetry generated by a fermionic operator with the form of Q is said to be
supersymmetric.

In a supersymmetric theory, particles fall into supermultiplets that contain bosons
and fermions related to one another by supersymmetry transformations. We con-
sider two types of supermultiplets:
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• Chiral supermultiplets contain one Weyl fermion and one complex scalar.

• Vector supermultiplets contain one Weyl fermion and one spin-1 vector bo-
son.

Chiral and vector supermultiplets each have two fermionic and two bosonic degrees
of freedom – Weyl fermions and (massless) vector bosons each have two helicity
states, and complex scalars have real and imaginary components. The particles in a
supermultiplet have the same mass and transform in the same representation of the
SM gauge group.

3.3 SUSY in the SM

To extend the SM to be a supersymmetric theory, it is first necessary to place all of
the known SM particles into supermultiplets. It is not possible for any of the known
particles to be superpartners of one another [47], so this involves doubling the parti-
cle content of the SM, introducing a new superpartner for each SM particle. The SM
gauge bosons, having spin one, fall into vector supermultiplets and have spin-1/2
superpartners, called gauginos. The SM fermions fall into chiral supermultiplets
and have scalar superpartners, called sfermions.

The SM Higgs boson is a scalar and hence must be part of a chiral supermultiplet.
In fact, the structure of the SUSY Lagrangian requires that the theory contain at
least two Higgs chiral supermultiplets. One, denoted Hu, gives masses to the up-
type quarks, and the other, denoted Hd , gives masses to the down-type quarks and
to the charged leptons [43]. After EWSB, there are a total of five scalar Higgs par-
ticles: three neutral (two CP-even and one CP-odd) and two charged (one positive
and one negative). One of the CP-even neutral scalars, denoted h0, has very sim-
ilar interactions to those of the SM Higgs boson. While the masses of the other
four Higgs scalars can be arbitrarily large, there is an upper bound on the mass of
h0. At tree level it cannot exceed the mass of the Z boson, but higher-order loop
corrections push the bound up to ~140 GeV, depending on the masses of the top
superpartners [48]. The Higgs-like particle discovered by CMS and ATLAS in Run
I of the LHC is therefore consistent with h0.

Placing the known SM particles into supermultiplets and adding one additional
Higgs supermultiplet are the minimal changes required to formulate the SM in a
SUSY framework. This Minimal Supersymmetric Standard Model (MSSM) forms
the basis of much of the LHC SUSY search program.
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SUSY breaking

Adding SUSY to the SM solves the hierarchy problem for the Higgs boson mass via
the addition of two scalar degrees of freedom for every SM fermion. The couplings
have the appropriate values such that the quadratic contribution from Eq. 3.14 is
exactly cancelled by that from Eq. 3.15. Moreover, no MSSM scalar’s mass suffers
from a quadratic divergence at any order in perturbation theory [43].

However, if nature were fully supersymmetric, all of the superpartners would have
the same masses and couplings as their SM counterparts, and many of them would
have been discovered already. We know therefore that if SUSY exists, it is inexact
or spontaneously broken. Terms that break SUSY (i.e. that introduce differences
between particles and their superpartners) can be introduced into the MSSM La-
grangian without reintroducing the hierarchy problem into the theory. Such terms
are called soft SUSY-breaking terms and are characterized by positive mass dimen-
sion. They can take the following general forms [49, 50]:

• Bilinear and trilinear couplings for the scalar superpartners

• Masses for the scalar superpartners

• Masses for the gauginos

This set of soft SUSY-breaking terms is sufficient for all of the MSSM superpart-
ners to have masses different from their SM counterparts. Introducing these terms
adds a large number of parameters to the MSSM; the full Lagrangian with soft
SUSY-breaking terms included has over 100 free parameters that are not present
in the SM [43]. Simplifying assumptions are often made to reduce the number of
parameters to a manageable level for interpretation of collider searches [51].

Electroweak symmetry breaking and the µ parameter

Before SUSY is broken, the minimum of the Higgs potential is at 0 and there is no
EWSB. The nature of EWSB in the MSSM depends on the SUSY-breaking param-
eters in the theory. If electroweak symmetry is broken, the neutral components of
Hu and Hd obtain VEVs, denoted vu and vd respectively. We parameterize the ratio
of the VEVs as

tan β = vu/vd . (3.20)
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The minimization condition for the Higgs potential in the MSSM is [52]:

1
2

m2
Z =

m2
Hd
− m2

Hu
tan2 β

tan2 β − 1
− µ2, (3.21)

where mHD and mHu are soft SUSY-breaking parameters. The parameter µ is part
of the MSSM Lagrangian and is unrelated to the breaking of SUSY. To avoid large
fine-tuning between the two terms of Eq. 3.21, µ should have a value near the
SUSY-breaking scale. Variants of the MSSM, such as the NMSSM [53], dynam-
ically generate µ from a mechanism related to SUSY breaking, thus ensuring that
these scales are close to one another.

R-parity

Unlike in the SM, the Lagrangian of the MSSM contains terms that explicitly vio-
late the conservation of lepton and baryon number. Unless there is a mechanism to
suppress these terms, the interactions allowed by the MSSM would not respect the
observed limits on, e.g., the lifetime of the proton. One way to prevent this from
happening is to introduce a quantity called R-parity:

PR = (−1)3(B−L)+2s, (3.22)

and postulate that it is conserved in the MSSM. Here B and L are the baryon and
lepton number of a particle and s is its spin. All of the particles in the SM have even
R-parity, while all of their superpartners have odd R-parity.

The effect of enforcing R-parity conservation in the MSSM is to remove the L-
and B-violating terms from the Lagrangian. It also has a striking implication for
collider phenomenology. If R-parity is conserved, then every interaction vertex in
the theory contains an even number of particles with PR = −1. This implies that:

• Supersymmetric particles must be produced in pairs in collider events, and

• The lightest supersymmetric particle (abbreviated LSP) is absolutely stable,
and every SUSY particle will eventually decay to a final state consisting of
SM particles and LSPs.

The LSP also provides a particle candidate for the dark matter whose existence in
the universe is suggested by astrophysical observations [54].

Theories that violate R-parity are sometimes considered in collider searches for
SUSY, but in general R-parity conservation is assumed to hold.
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Summary of the MSSM superpartners

Here we briefly describe each of the classes of superpartner particles that exist in
the MSSM, and discuss the interactions of each.

Neutralinos and charginos

The superpartners of the SM electroweak bosons (‘binos’ and ‘winos’), and those
of the Higgs scalars (‘higgsinos’), mix with one another to form four neutral and
two charged mass eigenstates. The neutral states (‘neutralinos’), denoted χ̃0

1, χ̃0
2,

χ̃0
3, and χ̃0

4, are mixtures of the superpartners of the SM Bµ and W 0
µ and the neutral

Higgs scalars. The charged states (‘charginos’), denoted χ̃±1 and χ̃±2 , are mixtures
of the superpartners of the W 1

µ, the W 2
µ, and the charged Higgs scalars. The physical

neutralino masses are obtained by diagonalizing the matrix [43]

MÑ =




M1 0 −cβsW mZ s βsW mZ

0 M2 cβcW mZ −s βcW mZ

−cβsW mZ cβcW mZ 0 −µ

s βsW mZ −s βcW mZ −µ 0



, (3.23)

where M1 and M2 are SUSY breaking mass parameters, cW and sW denote cos θW

and sin θW , and cβ and s β denote cos β and sin β. The chargino masses are obtained
by diagonalizing the block matrix

MC̃ =




0 XT

X 0


 , X =




M2
√

2s βmW
√

2cβmW µ


 . (3.24)

The decays of neutralinos and charginos most relevant for searches for hadronically
produced SUSY at the LHC are illustrated in Figure 3.3. A neutralino can undergo
a decay to a lighter neutralino and a neutral gauge or Higgs boson. A chargino can
decay to a neutralino and a charged W or Higgs boson. Neutralinos and charginos
can both decay to a fermion-sfermion pair.

Gluinos

The gluino is the color-octet superpartner of the SM gluon. Being charged under
SU(3)c, it cannot mix with the other superpartners.

Gluinos decay via the squark-quark-gluino interaction vertex illustrated on the left
side of Figure 3.4. If the gluino is heavier than at least one squark, it will undergo
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the decay g̃ → q̃q. If it is lighter than the squarks, it will decay through off-shell
squarks, e.g. g̃ → qq̄ χ̃0

1.

Being strongly interacting, gluinos may be produced with significant cross section
at the LHC. Example diagrams illustrating gluino pair production are shown in the
top row of Figure 3.5.

Figure 3.3: Two-body decays of MSSM neutralinos and charginos to gauge or
Higgs bosons. Decays to a fermion-sfermion pair (not shown) are also possi-
ble [43].

Figure 3.4: Feynman diagrams for MSSM three-point gluino (left), wino (center),
and bino (right) couplings to fermions [43].

Figure 3.5: Diagrams illustrating gluino (top row) and squark (bottom row) produc-
tion from two colliding gluons [43].

Squarks and sleptons

The scalar superpartners of the SM quarks are called squarks, and those of the SM
leptons and neutrinos are called sleptons and sneutrinos. Their names are formed
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by appending ‘s’ to the SM particle name: stop, sbottom, and so on. There are two
squarks or sleptons for each SM quark and charged lepton, which correspond to the
left- and right-handed field components; and one sneutrino for each SM neutrino.

In principle there can be arbitrary mixing of the fields in each sfermion family: the
down-type squarks, the up-type squarks, the sleptons, and the sneutrinos. It is often
assumed that the SUSY-breaking MSSM parameters that mediate this mixing are
small or zero [43]. Mixing within the third generation of squarks and sleptons does
arise, however, as a result of the large Yukawa couplings for the third generation.
Thus, e.g., the physical stops t̃1 and t̃2 may be mixtures of the left- and right-handed
stop states t̃L and t̃R. The Yukawa couplings also affect the running of the sfermion
masses under the renormalization group (RG) equations, tending to give the third-
generation sfermions different (usually lower) masses than those of the first and
second generation.

Strong production of squarks from colliding gluons is illustrated in the bottom row
of Figure 3.5. The squarks interact with the gluino as shown in Figure 3.4; they can
therefore decay to a quark and a gluino if this is kinematically allowed. A squark
can also decay to a quark and a neutralino or chargino; this is the primary decay
mode if the squark is lighter than the gluino.

3.4 Natural SUSY and simplified signal models

The vastness of the MSSM parameter space requires that we make simplifying as-
sumptions to tractably interpret LHC data in the context of SUSY. Some of the
typical assumptions underlying LHC SUSY searches are:

• R-parity is conserved, and the neutralino χ̃0
1 is the LSP.

• The lightest chargino χ̃±1 is close in mass to the LSP (it is usually taken
to be 5 GeV heavier). Another neutralino, χ̃0

2, may also be close in mass.
(Small neutralino and chargino mass splittings arise when µ is small, µ �
M1,M2 [55].)

• The gluino is much heavier than the neutralinos and charginos (this is moti-
vated by its behavior under the RG, which is driven by the strong coupling
constant [43]).

Certain SUSY parameter regions are also favored by naturalness considerations: the
breaking of SUSY should not reintroduce an unacceptable level of fine-tuning into
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the calculation of the h0 mass. The ‘acceptable’ amount of fine-tuning is somewhat
subjective, but some general considerations apply [56]:

• The Higgs mass increases with µ, which also controls the masses of the hig-
gsinos. Thus, the higgsinos should not be too heavy.

• The dominant radiative correction to the Higgs potential is logarithmic in the
stop masses [55]. Thus, both stops should be relatively light (as should the
left-handed sbottoms).

• The stop mass is subject to loop corrections whose value involves the gluino
mass, which thus influences the Higgs mass at two-loop level. Therefore the
gluino should not be too heavy.

These constraints can also be understood in the context of Eq. 3.21: naturalness
suggests that each term on the right-hand side should be roughly of order m2

Z , and
the soft breaking parameters mHd

and mHu receive corrections from the stop and
gluino masses at one and two loops, respectively. The authors of [52] suggest that
higgsino masses below 500 GeV, third-generation squark masses below 1.5 TeV,
and a gluino mass below 3 TeV, are appropriate expectations for a natural SUSY
scenario.

Typical signatures of natural SUSY scenarios of the above type at the LHC include
large Emiss

T from stable LSPs that escape the detector, high jet multiplicity due to
gluino and/or squark decays, and b-tagged jets from SUSY particles decaying to
third-generation quarks. In the case of decays to top quarks, the final state may
also contain high-pT leptons. Cascade decays of neutralinos and charginos to the
LSP may yield additional energetic jets, leptons, or electroweak bosons if the mass
splitting between SUSY states is large enough.

In many cases, interpretation of an LHC SUSY search is carried out using simpli-

fied SUSY models, in which two or three SUSY states are accessible and the rest are
treated as decoupled. The masses of the SUSY particles in the model are treated as
free parameters, and cross-section limits or discovery significances are derived as
functions of the masses. The simplified models are not intended to represent realis-
tic SUSY spectra; rather they provide a convenient low-dimensional framework for
understanding the consequences of a search.

The searches in this thesis are primarily oriented toward studying strongly produced
SUSY particles (gluinos and squarks). When interpreting these searches in terms of
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specific simplified models, we consider the following scenarios (with standardized
names explained in [57]):

• T1tttt, T1bbbb, T1qqqq: pair production of gluinos, with each gluino un-
dergoing a three-body decay to tt̄ χ̃0

1 (for T1tttt), bb̄ χ̃0
1 (for T1bbbb), or qq̄ χ̃0

1

(for T1qqqq), with q a first- or second-generation quark.

• T1ttbb: pair production of gluinos with specific branching ratios to any com-
bination of tt̄ χ̃0

1, bb̄ χ̃0
1, and t b̄ χ̃−1 / bt̄ χ̃+

1 . Interpretation in this model can be
performed for different values of the decay branching ratios.

• T5ttcc: pair production of gluinos, with each gluino decaying to a top squark
and a top quark. The stop mass is taken to be very close to the LSP mass,
so that its dominant decay is to c χ̃0

1 instead of t χ̃0
1. This model is of interest

in searches that target boosted event topologies because the top quarks can
receive a significant fraction of the energy from the gluino decay.

• T2tt, T2bb, T2qq: pair production of stops, sbottoms, or light squarks, re-
spectively, each decaying to an LSP and a top, bottom, or light quark as
appropriate.

In simulation of SUSY simplified models, a particular production and decay chain is
specified for the simulated events. Thus, e.g., in the T1tttt model, all MC simulated
events have pp → g̃g̃ even though direct electroweak production of LSPs is also
possible under the model spectrum. Feynman diagrams for the decays considered
in the listed models are shown in Figure 3.6.

3.5 SUSY searches in LHC Run I

Searches for SUSY in a variety of final states were carried out on the Run I CMS [58–
72] and ATLAS [73–83] datasets. No conclusive evidence of the supersymmetric
partner of any SM particle was observed. Limits on squark and gluino production
cross sections were computed in a number of simplified model scenarios. The most
stringent constraints come from the 2012 run, in which CMS and ATLAS each col-
lected and analyzed 20 fb−1 of data at 8 TeV. Figures 3.7 and 3.8 summarize the
sparticle mass regions excluded by CMS at the 95% confidence level in the simpli-
fied models considered.
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Figure 3.6: Diagrams illustrating the decay topologies for the simplified SUSY
models T1tttt (upper left), T1ttbb (upper right), T5ttcc (lower left), and T2tt (lower
right). The models T1bbbb and T1qqqq can be obtained from the T1tttt diagram by
replacing all top quarks with bottom or light quarks, respectively. The models T2bb
and T2qq can be obtained from the T2tt diagram in the same way (the stops should
also be replaced with sbottoms or light squarks). The T1ttbb model also includes
all other combinations of gluino decays to tt̄ χ̃0

1, bb̄ χ̃0
1, t b̄ χ̃−1 , and bt̄ χ̃+

1 , in addition
to the decay shown in the diagram.

In the aftermath of LHC Run I, work was done to summarize the impact of the
searches on the natural SUSY parameter space. In [52], the authors randomly sam-
ple SUSY parameter points from a six-dimensional subspace under the constraints
that the mass of h0 is 125 GeV and the LSP is the lightest neutralino. Assum-
ing that the higgsinos, third-generation squarks, and gluino are the only accessible
states, they conclude that scenarios with mstop1 < 230 GeV or mgluino < 440 GeV
are clearly excluded, with mstop1 < 300 GeV or mgluino < 1040 GeV excluded if the
LSP is lighter than 200 GeV. In [51], CMS SUSY search results were analyzed in a
Bayesian framework in the context of the ‘phenomenological MSSM’, or pMSSM.
A similar bound (500 GeV) on the gluino mass was found, and a bound of 300 GeV
was placed on the lightest colored SUSY particle. LSP masses below 300 GeV
were also found to be strongly disfavored, though not ruled out. In [84], a meta-
analysis of the 8 TeV CMS and ATLAS searches was performed. The distribution
of p-values obtained across all searches was found to be consistent with a lack of
new physics, though a deficit of search regions having observed counts below the
SM expectation was noted.
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The null result from the 8 TeV SUSY searches has led some to revisit the assump-
tions of the naturalness paradigm. The authors of [85] formalize the fine-tuning
argument in a probabilistic framework, and use it to argue that the stop mass may
easily be above the LHC reach without compromising naturalness. Other theoreti-
cal proposals such as split SUSY [86, 87], stealth SUSY [88], and R-parity violating
SUSY have also received increased attention. These have been the focus of searches
in CMS that target distinctive signatures such as long-lived particles or large lepton
multiplicities [89–91]. Other efforts have centered on ‘compressed’ SUSY scenar-
ios in which the mass splitting between SUSY states is small. Limits on compressed
models are generally much weaker than on those with large mass splittings [92].
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3.6 SUSY at 13 TeV

The increase of the LHC energy from 8 to 13 TeV makes it possible to produce
SUSY states of higher mass than before, and it grants a larger phase space to pro-
duction of states that were already accessible at 8 TeV. The ratio of LHC parton
luminosities at 13 and 8 TeV are shown in Figure 3.9 as a function of center-of-
mass energy. This ratio increases rapidly at high energies. For gluinos produced
via gluon-gluon interactions at 1.5-2 TeV, the cross section at 13 TeV is an order
of magnitude higher than at 8 TeV. This indicates that searches for heavy gluinos
with 13 TeV data should be able to improve existing limits even with a very small
dataset. We thus tailor our 2015 razor SUSY search (Chapters 6 and 7) to empha-
size gluino signals, before expanding to also focus on squark signals in the larger
2016 dataset (Chapter 8).
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Figure 3.9: Ratio of LHC parton luminosities at 13 and 8 TeV for gg, qg, and qq
interactions [93].

3.7 Razor kinematic variables

In this thesis we search for supersymmetric particles using razor variables, which
are kinematic quantities developed specifically to identify SUSY-like signals of new
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physics [94]. We describe here the derivation of the razor variables and discuss their
utility in SUSY searches.

To begin, we consider pair production of heavy squarks at the LHC. Each squark
decays to a quark, which is observed as a jet; and the LSP, which escapes without
being detected. This is the situation in, e.g., the T2bb model shown in Figure 3.6.
Let the squark and LSP masses be mQ and mχ, and assume the quarks to be mass-
less. We have access to measurements of the lab-frame momenta of the jets, denoted
p1 and p2, and to ~pmiss

T , but not to the LSP momenta. We consider the problem of
how to estimate the SUSY particle masses in this situation of imperfect information.

In the center-of-mass reference frame of each produced squark, the visible quark
has momentum

qi =
M∆
2
{1, ûi}, (3.25)

where i = 1,2, ûi are unit 3-vectors, and

M∆ =
m2

Q − m2
χ

mQ
(3.26)

carries information about the masses of the SUSY particles. If we knew what
Lorentz boosts to perform to go from the lab frame to the squark rest frames, we
could apply those boosts to p1,2, recover q1,2, and thus measure M∆.

Due to the missing kinematic information (the LSP momenta), the true boosts can-
not be recovered exactly. We instead find approximations to the correct boosts by
relying on the fact that the rest-frame energy of quark 1 equals that of quark 2 (both
have value M∆/2). Consider a boost in the z-direction, ~βL, which is applied to
both p1 and p2; and a transverse boost, ± ~βR, which is applied in opposite directions
to the two particles. This is illustrated in Figure 3.10. The longitudinal boost ~βL

takes us from the lab frame into an approximation of the center-of-mass frame of
the pp collision. The subsequent transverse boosts ± ~βR take us from the collision
frame to the approximate rest frames of the produced squarks. Let γL and γR be the
Lorentz factors associated with ~βL and ~βR.

We obtain the values of the boosts ~βL and ~βR as follows. Let unprimed, primed,
and double-primed variables indicate quantities measured in the lab frame, the ap-
proximate collision frame, and the approximate squark rest frames, respectively,
and let Ei, piz, and ~piT represent the observed energies, longitudinal momenta, and
transverse momenta of the jets. We have

E′′1,2 = γR(E′1,2 ∓ ~βR · ~p′1,2) (3.27)
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Figure 3.10: Diagram illustrating the reference frames considered in the derivation
of MR. Left: the lab frame, with observed jet momenta p1 and p2, and unobserved
LSP momenta pχ1 and pχ2 . Center: the collision center-of-mass frame, which can
be reached by a longitudinal boost that we approximate by ~βL. Right: the individual
squark decay frames, where true quark momenta q1 and q2 are each proportional to
M∆/2. The boosts ± ~βR approximate the true boosts from the collision frame to the
squark decay frames.

and
E′1,2 = γL (E1,2 − ~βL · ~p1,2). (3.28)

The equal energy condition, E′′1 = E′′2 , can be expressed in terms of the collision-
frame quantities as

E′1 − E′2 = ~βR ·
(
~p′1T + ~p′2T

)
. (3.29)

Noting that the boost ~βL is along z, we have ~p′iT = ~piT . We write Eq. 3.29 in terms
of lab-frame quantities and find an expression for the magnitude of the transverse
boost:

��� ~βR
��� =

γL
(
(E1 − E2) − | ~βL |(p1z − p2z)

)
��~p1T + ~p2T �� cos φR

, (3.30)

where φR is the azimuthal angle between ~p1T + ~p2T and the boost ~βR.

We define the razor variable MR by

MR = γR(E′′1 + E′′2 ). (3.31)

MR is an estimator for the SUSY-sensitive quantity M∆. Because we have im-
perfect information about the event kinematics, two additional constraints must be
imposed in order to uniquely specify the boosts ~βL,R and hence the value of MR.
Having in mind the context of massive SUSY particles produced near threshold,



47

we first choose to make the transverse boost ~βR as small as possible. This choice
corresponds to cos φR = 1, i.e., a boost along the direction of ~p1T + ~p2T .

For the second constraint, we choose ~βL so that MR is extremized. This is satisfied
by

~βL =
p1z + p2z

E1 + E2
ẑ. (3.32)

After expressing MR in terms of lab-frame quantities and using Eqs. 3.30 and 3.32
for the boosts, we obtain the simple formula

MR =

√
(E1 + E2)2 − (pz1 + pz2)2, (3.33)

which is equal to the transverse energy in the event.

The second razor variable, R2, is obtained by considering a different estimator for
M∆ as follows:

M∆ ≈
√

m2
Q − m2

χ

=

√
(E1,2 + Eχ1,2 )2 − (~p1,2 + ~pχ1,2 )2 − m2

χ

=

√
2Eχ1,2 E1,2 − 2~pχ1,2 · ~p1,2

=

√
(Eχ1 E1 − ~pχ1 · ~p1) + (Eχ2 E2 − ~pχ2 · ~p2),

(3.34)

where Eχi and ~pχi are the energies and momenta of the LSPs. The second and third
lines are true for the decay products of either squark; in the fourth line we average
over the two squarks. The approximation in the first line assumes that the LSP is
light compared with the squark.

To evaluate this expression, we must estimate the (unknown) LSP momenta. We do
this via the rough approximation that the LSPs are transverse and each carry half
of the missing energy: Eχ1 = Eχ2 = Emiss

T /2 and ~pχ1 = ~pχ2 = ~pmiss
T /2. The above

expression then becomes

M R
T ≡

√
Emiss

T

2
(E1 + E2) −

~pmiss
T

2
· (~pT1 + ~pT2). (3.35)

We have neglected the longitudinal LSP momenta, so the variable M R
T is less than

M∆, with a kinematic endpoint at that value.

We define R2 as the dimensionless ratio

R2 ≡




M R
T

MR




2

. (3.36)
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For signal events, MR and M R
T both approximate M∆ (each using different kinematic

information from the event) and R2 will be approximately 1/4. Events with little
Emiss

T or fake Emiss
T from mismeasured jets have smaller values of R2.

To search for SUSY using the razor variables, we select events with MR near the
mass scale of the signal under consideration, and apply a cut on R2 to reduce the
background from events whose kinematics are not consistent with the signal. Fig-
ure 3.11 shows typical MR and R2 distributions for SUSY signal events.

Figure 3.11: Left: MR distributions for several squark production scenarios. Right:
two-dimensional distributions of MR and R2 for the same signal models [95].

The above derivations assume that there are only two visible jets in the event. If
there are more than two jets (or leptons), we enforce a two-jet event topology by
clustering the observed physics objects (jets and leptons) into two ‘megajets’ (see
Figure 3.12). Each object is assigned to one megajet or the other, and the four-
momentum of the megajet is taken to be the sum of the four-momenta of the objects
assigned to it. Assignment of objects to megajets is performed in such a way as to
minimize the sum of the squared megajet masses,

m2
j1 + m2

j2. (3.37)

This condition encourages objects near one another in η and φ to be assigned to the
same megajet.

An inclusive SUSY search using razor variables was carried out on the full 8 TeV
CMS dataset [71, 72]. It yielded limits on the masses of third-generation squarks
and gluinos that are among the best obtained with the Run I data (see Figures 3.7
and 3.8).
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Figure 3: Distribution of MR (left) and R2 (right) for different TCHE b-tag multiplicities, for
events from the BJet and BVeto boxes. The normalised ratio of these distributions to the inclu-
sive distribution are shown in the bottom part of each plot.
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C h a p t e r 4

DATA SCOUTING TRIGGER DEVELOPMENT

In this chapter we describe data scouting, a paradigm for collider data analysis
based on trigger-level event reconstruction. Data scouting complements the tradi-
tional analysis paradigm in which events are selected by the trigger and are sent
offline to undergo an expensive reconstruction procedure. By taking advantage of
the reconstruction that already takes place at the HLT level, we were able to use
scouting to dramatically increase the number of CMS physics events stored for
analysis while having negligible impact on available computing resources.

After motivating data scouting and describing the history of its use in CMS, we
provide details on a framework for scouting that was designed and deployed for data
taking during CMS Run II, and give information on the datasets collected using the
framework. In the next chapter, we describe the impact of the scouting framework
on the CMS physics program.

4.1 Motivation: limits to CMS event processing

The standard CMS framework for triggering on events and reconstructing them of-
fline was described in Chapter 2. There are four primary constraints on the number
of events that can be recorded using this procedure:

1. The data acquisition system (DAQ) of CMS has finite bandwidth. Restric-
tions on the data volume are imposed by the size of the temporary raw data
storage at LHC Point 5, and by the bandwidth of the link between Point 5 and
the CMS computing center at the main CERN site [96].

2. The prompt reconstruction system must be able to reconstruct all selected
events in pseudo-real time without significant backlog [97]. It is desired that
all physics data be reconstructed and available within 48 hours of being col-
lected [98]. This constraint can be partially avoided using data parking, dis-
cussed in Section 4.5, but this requires a significant investment of computing
resources to reconstruct the data later and also puts stress on the DAQ band-
width.
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3. The total amount of storage space for data is limited. As more data is taken,
datasets must increasingly be kept in long-term storage on magnetic tape in-
stead of on disk, which slows data access significantly. The cost of purchasing
tape and disk storage must be considered when deciding how much data to
record.

4. The average trigger decision at the HLT must be made within a few hundred
milliseconds, as described in Section 2.3.

As a consequence of these constraints, CMS records events for physics analysis at
a maximum rate of approximately 1 kHz, orders of magnitude more slowly than
the rate (~30 MHz) at which pp collisions occur in the detector. It would be coun-
terproductive to record every single collision event, because most do not contain
‘interesting’ physics and would not be used by any analysis. Nevertheless, the re-
quirements of the trigger impose significant constraints on current searches and SM
measurements. These constraints become more onerous over time as LHC lumi-
nosity rises.

For example, many searches for new physics in hadronic final states rely on HT trig-
gers, which select events based on the value of

HT ≡

Njets∑
i=0

��~piT �� , (4.1)

where ~piT is the transverse momentum of the ith reconstructed jet. The HT variable
is a proxy for the amount of hadronic activity in the event and is often used as a
SUSY search variable. In Run II, the loosest HT triggers in the HLT menu select
events having HT > 800 or 900 GeV. Events with HT below the threshold cannot be
recorded unless they present some other feature of interest. Many SUSY searches,
for example, rely on triggers that select events with large values of both HT and
Emiss

T . The additional requirement of Emiss
T allows the HT threshold to be lowered

while keeping the rate under control.

The razor SUSY searches discussed in Part III are also constrained by trigger con-
siderations: the thresholds of the hadronic razor triggers described in Section 6.4
are driven by HLT rate and timing restrictions.
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4.2 The data scouting paradigm

As mentioned in Section 2.3, the HLT performs reconstruction algorithms similar
to those used offline. This includes a version of the full PF algorithm and its com-
ponents: track finding, clustering of calorimeter hits, and muon, electron, photon,
and hadron identification. The good performance of the physics objects produced
by these algorithms suggests a new strategy for analyzing CMS data:

1. Reconstruct events at the HLT level during data taking by running the PF
algorithm or other reconstruction routine.

2. Apply a loose selection on the reconstructed physics objects. For each event
passing the loose selection, save the trigger-reconstructed physics objects to
disk.

3. (Optionally) discard the raw detector data.

4. Perform searches for new physics, or SM measurements, using the saved
HLT-level events.

We refer to this strategy as data scouting.

In the data scouting paradigm, trigger-based algorithms are used as the basis for
event interpretation. This approach neatly avoids three out of the four constraints
listed above that restrict the number of events that can be recorded:

1. While the full raw data for a CMS event is of order 1 MB in size [97], the
physics objects reconstructed by the HLT can be represented using only a
few kB of memory. Trigger-reconstructed events can therefore be recorded at
rates of several kHz and still not occupy more DAQ bandwidth than a single
ordinary HLT path (of which there are hundreds in the menu).

2. The reconstruction is carried out at trigger level, which entirely removes the
need for prompt reconstruction for the selected events. This means that the
limit on event processing time from the offline reconstruction system is not
relevant.

3. If the raw data is discarded, storage space is only needed for the reduced
dataset consisting of the reconstructed trigger objects. This requires a negli-
gible amount of disk resources compared to storing full events.



54

Data scouting is implemented via HLT paths that place events into dedicated scout-
ing data streams (see Section 4.4). The output of these streams bypasses the prompt
reconstruction system, instead packing the reconstructed trigger objects into a spe-
cial scouting format, which is saved to disk.

The HLT CPU resource constraint

The fourth constraint listed above, from the limited processing power of the HLT
farm, is not eliminated in the data scouting picture. Naively this constraint is even
more severe for scouting because we rely on the HLT to perform the event recon-
struction. However, the design of the HLT makes it possible to save a very large
number of data scouting events without any further investment of CPU resources at
all.

The key to this is the way HLT paths are structured. A typical path will perform
several stages of reconstruction in sequence, with each stage more detailed than the
last (see Figure 4.1). After each stage of the reconstruction, a cut is applied, and
failing events are rejected with no further processing. After the last reconstruction
sequence has been run, a final selection is made to determine if the event passes
the trigger. Thus, even events that do not pass the trigger may pass through several
stages of reconstruction before being rejected. The purpose of this design is to
remove unwanted events as early as possible, to avoid wasting resources.

Figure 4.1: Typical HLT path structure. Producers perform physics object recon-
struction using the raw event data as input. Filters reject the event if it does not
meet specified requirements. A real HLT path may proceed through many stages
of production and filtering operations before its final trigger decision is made (only
two such stages are depicted here).

The HLT software ensures that physics objects reconstructed by one trigger path
are made available for use by all other paths. For example, if one path runs the HLT
version of the PF algorithm (which is very expensive, taking on the order of 1s to
run), other paths may use the reconstructed PF objects in their trigger decision for
that event without running the algorithm again.

These facts make it possible for data scouting to be conducted ‘in the shadow’
of existing trigger algorithms. A data scouting trigger can take physics objects
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reconstructed in intermediate or final steps of a different trigger path and write them
directly to disk. Because most HLT paths have a tight cut at the end to keep the rate
low, large numbers of events are reconstructed at the HLT but not selected for offline
analysis. It is possible to save scouting events at a rate of several kHz using only
existing physics objects from events that are rejected by other paths.

4.3 History of data scouting in CMS

The idea of data scouting was conceived in Run I of CMS, and the technique was
used to perform searches for exotic resonances decaying to dijets. Dijet resonance
searches tend to be severely constrained by trigger requirements: events with two
back-to-back jets are ubiquitous at hadron colliders and a trigger that recorded all
of them would have prohibitively high rate.

In CMS, dijet searches traditionally use HT triggers, which were discussed in Sec-
tion 4.1. The HT trigger threshold rises with increasing LHC energy and luminos-
ity, and this implies that the lowest resonance mass the search can probe is pushed
higher and higher over time.

This challenge is illustrated by the green and light blue curves in Figure 4.2, which
indicate exclusion limits from the LHC experiments on production of a hypothetical
Z’ resonance decaying to quarks. The LHC sets state-of-the-art limits at high Z’
mass, but at lower masses the limits from standard offline dijet resonance searches
are nonexistent (for CMS) or worse than those from the Tevatron (for ATLAS,
who use prescaled trigger paths to extend their dijet search to lower masses). The
ATLAS limit (light blue curve) provides an explicit demonstration of the worsening
of the limits due to trigger restrictions. Their limits at lower masses rely on data
from triggers with increasingly high prescales, which are needed in order to keep
the rate low. The trigger with the lowest threshold (selecting jets with pT between
59 and 99 GeV) has a prescale factor of 460000 [99].

Data scouting provides dijet searches with relief from the rising HT trigger rates.
This was first demonstrated in 2011, when a data scouting trigger path was deployed
in CMS for a few hours of data taking at 7 TeV. The trigger had a L1 requirement of
HT > 100 GeV, and it selected all events having either HT > 350 GeV or dijet mass
greater than 400 GeV at the HLT level. The only data recorded for each event was
the collection of jets reconstructed with the HLT PF algorithm. These few hours’
worth of data, collected at the very end of the 2011 run period and corresponding
to 0.13 fb−1of integrated luminosity, were sufficient to improve existing limits on
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299 coupling gB of a hypothetical leptophobic resonance Z0
B →

300 qq̄ as a function of its mass. The Z0
B production cross

301 section scales with the square of the coupling gB. Figure 4
302 shows the upper limits obtained with the data scouting
303 technique in the mass region from 500 to 1200 GeV,
304 extending the coverage of previous CMS searches to below
305 1200 GeV. Previous exclusions obtained with similar
306 searches at various collider energies are also shown. As
307 a result of the large data set collected by the data scouting
308 stream, the bound on gB is improved by up to a factor of 3
309 for resonance masses between 500 and 800 GeV, compared
310 to previous searches. This corresponds to an order-of-
311 magnitude improvement in the cross section limit.
312 In summary, a search for narrow resonances decaying
313 into two jets was performed using data from proton-proton
314 collisions recorded by the CMS experiment at
315

ffiffiffi
s

p
¼ 8 TeV, corresponding to an integrated luminosity

316 of 18.8 fb−1. The novel technique of data scouting was
317 used; by reducing the information stored per event, multijet
318 events could be collected in sufficiently large samples that a
319 sensitive search for dijet resonances down to masses as low
320 as 500 GeV was possible. No evidence for a narrow
321 resonance is found. Model-independent upper limits on
322 production cross sections are derived for quark-quark,
323 quark-gluon, and gluon-gluon resonances. Based on these
324 results, new limits are set on an extensive selection of
325 narrow s-channel resonances over mass ranges not
326 excluded by previous searches at hadron colliders.
327 Bounds on the coupling of a hypothetical leptophobic
328 resonance decaying to quark-antiquark are also provided,
329 as a function of the resonance mass. The limits obtained
330 are the most stringent to date in the dijet final state for
331 narrow resonance masses between about 500 and 800 GeV.
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Figure 4.2: Limits on the coupling of a hypothetical leptophobic Z’ resonance as
a function of the resonance mass, with results from a variety of hadron collider
experiments. The green and light blue curves are the results from the CMS and
ATLAS 2012 dijet resonance searches, respectively. The black curve and the green
and yellow bands indicate the observed and expected limits from the CMS low-mass
resonance search using data scouting [100].

a number of resonance models in the range 0.6-0.9 TeV [101]. The dijet mass
spectrum observed in this search is displayed in the top part of Fig. 4.3.

After this success, a second scouting trigger was designed and deployed at the HLT
for most of the 2012 CMS data taking period. The trigger required HT > 250 GeV
and had a maximum rate of 1 kHz. This rate was too high for the PF algorithm to
be run for every event, so the trigger instead reconstructed and saved calorimeter
jets (‘calo jets’), which are clustered directly from energy deposits in the ECAL and
HCAL. Calo jets require negligible HLT resources to reconstruct, and at high mo-
mentum their mass resolution is adequate despite the lack of tracking information.
A dijet search was again conducted using the scouting dataset, and the resulting
limits on massive Z’ resonances were the best to date between 500 and 800 GeV.
These limits are indicated by the black line in Fig. 4.2. The dijet mass spectrum
from this search is shown in the bottom part of Fig. 4.3.
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4.4 Design of a multipurpose scouting framework for Run II

For Run II of CMS it was desired to build a more comprehensive software frame-
work for data scouting that would be enabling for a variety of physics analyses. The
main components of such a framework are:

• HLT data streams containing ‘scouting trigger paths’ that define the events to
be selected for data scouting

• A common data format for the scouting events that is lightweight yet holds
all necessary information reconstructed by the HLT

• A mechanism for monitoring the quality of scouting data and comparing with
offline reconstructed data.

In the following subsections we will give details on each of these aspects for the
framework that was implemented and deployed in CMS starting in 2015.

Scouting data formats

The experiments with data scouting in Run I suggest the following strategy for
collecting as much scouting data as possible:

1. Run the HLT PF algorithm and record PF jets and particle candidates at the
maximum attainable rate;

2. For events in excess of this rate, reconstruct and record calo jets instead.

This dual strategy was adopted for Run II. Because the event information provided
by the PF algorithm is different from (and much larger than) that provided by calo
jet reconstruction, two scouting data formats were designed, one for each flavor of
reconstruction. The data formats are denoted the calo-scouting and PF-scouting

event formats.

The data formats are designed to be as lightweight as possible. They consist of C++

built-in data types (floats, integers, bools, and vectors) wrapped in classes compat-
ible with the CMS event processing software. This ensures that future versions of
the CMS software and the ROOT library can read the event format, which is impor-
tant for the future use and preservation of these datasets. The event content is also
modular, so that object collections can be omitted if they were not reconstructed in
the event.
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Calo-scouting event format

The event format for scouting with calo jets is depicted on the left side of Figure 4.4.
It consists of the following components:

• Calo jets objects, which hold the momentum vectors of the reconstructed calo
jets as well as auxiliary information, such as the fraction of the jet energy
contained in the ECAL and in the HCAL.

• The magnitude and angle of ~pmiss
T , computed using calorimeter-level quanti-

ties.

• The value of ρ, the median pT density in the event, computed using calorimeter-
level information.

• Primary vertex objects, each holding the coordinates and associated uncer-
tainties of a reconstructed primary vertex.

Events with HT > 250 GeV saved in this format have an average size of approxi-
mately 1.5 kB.

In the Run I data scouting analysis using calo jets, there was no dedicated scouting
event format: the CMS software objects corresponding to the reconstructed calo
jets were saved with no reformatting. The average event size in that analysis was 10
kB [100]. The much smaller event size under the new Run II framework indicates
that repacking the jets into dedicated scouting jet objects significantly decreases the
storage overhead.

PF-scouting event format

The event format for scouting with PF objects is shown on the right side of Fig-
ure 4.4. It consists of the following components:

• The collection of PF candidates with pT > 0.6 GeV. Each PF candidate is
represented by its 4-momentum and an integer indicating its particle type.

• PF jet objects, which hold the momenta and identification variables of jets
clustered from the PF candidates.
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Figure 4.4: Schematics of the calo-scouting (left) and PF-scouting (right) event
formats. ‘MET’ refers to ~pmiss

T , ρ is a measure of the median pT density in the
event, and ‘AK4’ indicates the anti-kT algorithm with R = 0.4.

• Primary vertex objects, identical to those included in the calo-scouting event
content.

• The magnitude and angle of ~pmiss
T , and the value of ρ.

• Electron, muon, and photon objects, each associated with a 4-momentum
vector and a collection of identification variables.

The typical PF-scouting event size is 10 kB, most of which is occupied by the
PF candidate objects. The inclusion of the PF candidates allows for more complex
analysis strategies involving, for example, jet substructure variables computed using
the constituents of the jets.

HLT data streams for scouting

Two scouting data streams were implemented in the HLT software, referred to as
the PF-scouting and calo-scouting streams. Each stream has its own set of primary
datasets and trigger paths, and its own output data format as discussed above.

Scouting trigger paths have the same basic structure as standard HLT paths (see
Figure 4.1), except that after the last stage of event reconstruction there is no final
event selection filter. Instead, the reconstructed physics objects are passed to a
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software module that packs them into one of the special scouting formats. The
objects are then written to disk in files grouped by PD.

The hadronic scouting triggers designed and deployed in 2015 were inspired by the
scouting triggers used in Run I. They select events based on the value of calorimeter-
level HT , using HT thresholds significantly lower than those of the paths in the stan-
dard HLT menu. The triggers are seeded by L1 triggers that select events based on
the value of HT reconstructed at the L1. The thresholds of the HT scouting triggers
are illustrated in Figure 4.5, and more information about the choice of thresholds is
provided in the following subsections.

Figure 4.5: Diagram illustrating the HT thresholds of the hadronic scouting and
parking triggers deployed in Run II. Note that the thresholds indicated for the PF-
scouting and parking triggers correspond to the triggers used in 2016; in 2015 the
thresholds were set to 450 GeV. The HT trigger in the standard HLT menu (indicated
in purple for comparison with the scouting triggers) was tightened from 800 GeV
to 900 GeV in 2016.

An important idea in trigger design is that of a trigger turn-on curve, which quan-
tifies the fraction of desired events that the trigger successfully selects. Turn-on
curves will be shown later in the context of a dijet resonance search with data scout-
ing. Additional triggers are included in the scouting data streams to facilitate the
measurement of turn-on curves; these are paths with looser selection requirements
that provide a baseline for the efficiency measurement. The triggers used to measure
turn-on curves are prescaled by large factors to avoid excessive event rates.
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The PF-scouting stream

The list of trigger paths in the PF-scouting stream is provided in Table 4.1. The rate
at which these paths select events is low enough that the PF algorithm can be run
for each event. The reconstructed PF objects are used to produce output events in
the PF-scouting format described above. In addition to the standard PF sequence,
additional reconstruction sequences are run to compute isolation sums and other
needed identification variables for muons, electrons, and photons.

The triggers in the PF-scouting stream each come in two versions: one that per-
forms b-tag reconstruction and one that does not. The two triggers in each pair
have identical event selection requirements. The b-tagging version of each trigger
runs the CSVv2 algorithm (see Section 2.4) to predict whether each reconstructed
jet is a b-jet. This functionality is placed in a separate path for a technical rea-
son: the HLT b-tag reconstruction sequence contains filters that reject some events
(specifically those that have no jets or no reconstructed vertices). By putting the b-
tagging sequence outside the main trigger path, we avoid spuriously rejecting these
events. The rates in Table 4.1 refer to the version of each path that does not run
b-tagging; the rate of the b-tagging version is generally slightly lower due to the
filters associated with the b-tag sequence.

To facilitate the measurement of trigger turn-on curves for the scouting triggers,
additional paths are included that have the same L1 trigger requirements as the
main scouting paths, but no HLT requirement at all. These L1-only triggers provide
a baseline for measuring trigger efficiencies. That is, they allow the calculation of
the trigger efficiency as

εHLT =
# passing L1 and HLT

# passing L1
. (4.2)

This measurement is typically performed in bins of a kinematic variable of interest,
such as HT or the invariant mass of the two leading jets. Because of the extremely
high rate of the L1 seeds, the L1-only scouting triggers are prescaled. The prescale
factor is chosen to achieve a rate of order 10 Hz per path.

In fact, the triggers in this stream have event selection thresholds so low that the L1
trigger paths seeding them may not be fully efficient for the selected events. That
is, there are events that would be selected by the scouting HLT paths but which
are prematurely rejected at the L1 stage. To quantify this effect, an additional
minimum-bias trigger path is included that has a pass-through L1 seed (which is
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heavily prescaled but accepts every event it sees). For this trigger, an extremely
loose selection is applied at the HLT level that demands only the presence of a sin-
gle jet in the event. This trigger can be used in conjunction with the L1-only triggers
just described to obtain a measurement of the L1 seed efficiencies:

ε L1 =
# passing L1 and min-bias

# passing min-bias
. (4.3)

The PF-scouting stream also contains a trigger that selects events having two muons,
with no requirement on jet activity in the event. The muons are required to have
pT > 3 GeV and to have di-muon invariant mass mµµ > 10 GeV. A L1-only muon
trigger path, and a zero-bias path accepting every event it sees, are added to the
stream to assist with efficiency measurements for this trigger. The µµ scouting trig-
ger was implemented as a proof-of-concept of a non-hadronic scouting trigger. A
new di-muon scouting trigger was developed for the 2017 run, motivated by the use
case of a search for dark photons. This trigger is described in Section 4.7.

Trigger Rate in 2015 (Hz) Rate in 2016 (Hz) Rate in 2017 (Hz) Notes
HT> 410 GeV - 750 740 Deployed in 2016
HT> 450 GeV 160 500 - Removed in 2017
mµµ > 10 GeV 200 530 - Removed in 2017
L1 HT 7 8 40
L1 di-muon 23 4 10
Min-bias 3 5 30
Zero-bias 16 9 10

Table 4.1: List of paths in the PF-scouting stream, with typical rates in the 2015,
2016, and 2017 LHC runs. Rates are computed for instantaneous luminosities of
5 × 1033, 1 × 1034, and 1.5 × 1034 cm−2s−1 respectively for 2015, 2016, and 2017.
The rates for the L1-only and min/zero-bias paths are controlled by prescale factors
that change from year to year.

The calo-scouting stream

The list of trigger paths in the calo-scouting stream is provided in Table 4.2. Trig-
gers in this stream reconstruct calo jets, which are used to produce output events
in the calo-scouting format described above. Because it is virtually costless to re-
construct calo jets, the rates of these triggers can be much higher than those of the
PF-scouting triggers.

The calo-scouting triggers do not perform primary vertex reconstruction. However,
primary vertices can be saved as part of the calo-scouting event content if they are
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available in the event. When another HLT path runs primary vertex reconstruction
(usually as part of some other physics reconstruction sequence), the vertex objects
are saved in the output scouting event. Having vertex information available in a
fraction of the saved events can be useful in analysis. For example, it can be used
to monitor changes in physics object traits as a function of the number of primary
vertices.

Calo jets are reconstructed without using information from the CMS tracker, so b-
tag information cannot be obtained for them with the usual HLT CSV sequence.
Instead, a modified version of the b-tagging sequence is deployed. This method be-
gins by performing the fast primary vertex reconstruction described in Section 2.3.
Regional tracking is then performed using only hits consistent with the identified
primary vertex and with the locations of the 8 highest-pT jets in the event. This
collection of tracks is used as input to the CSVv2 algorithm for b-jet identifica-
tion [23]. As in the PF-scouting triggers, the b-tagging sequences in calo-scouting
need to be placed in separate paths in order to avoid unnecessarily rejecting events.

Regional tracking can also be used to reject calo jets originating from pileup or
noise. Pixel tracks are reconstructed inside of selected calo jets, and the variable

rtracks ≡

∑
tracks pT, track

pT, jet
, (4.4)

i.e., the ratio of the track momentum to the jet momentum, is computed. The dis-
tribution of this ratio is shown in Figure 4.6 for signal and pileup jets. Using rtracks

allows one to reject 75% of pileup jets while retaining 95% of signal jets [102].
This variable is saved in the calo-scouting events for use by analyzers.

Pixel track reconstruction and calo jet b-tagging were not included in the scouting
framework for the 2015 LHC run. They were added in 2016, after the successful
use of the 2015 calo-scouting data by the dijet resonance search team (described in
the next chapter).

As for the PF-scouting stream, the calo-scouting stream contains additional triggers
to assist in the measurement of trigger turn-on curves. These are exact copies of the
L1-only and minimum-bias trigger paths described in the previous section, except
that they reconstruct calo jets instead of running the full PF sequence. Because they
are the same as those listed in Table 4.1, they are omitted from Table 4.2.
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Figure 4.6: Distribution of the quantity rtracks for signal (blue) and pileup (red)
jets [102].

Trigger Rate in 2015 (Hz) Rate in 2016 (Hz) Rate in 2017 (Hz) Notes
HT> 250 GeV 1500 4000 3900
Di-muon trigger - - 1900 Deployed in 2017

Table 4.2: List of paths in the calo-scouting stream, with typical rates in the 2015,
2016, and 2017 LHC runs. Duplicates of triggers in the PF-scouting stream (Ta-
ble 4.1) are not shown. Rates are computed for instantaneous luminosities of
5 × 1033, 1 × 1034, and 1.5 × 1034 cm−2s−1 respectively for 2015, 2016, and 2017.

Scouting data monitoring

A third stream is implemented at the HLT with the purpose of monitoring the quality
of the scouting triggers and events. This monitoring stream is a hybrid of a stan-
dard physics stream and a data scouting stream. Selected events undergo standard
prompt reconstruction and are also saved in the scouting format. The dual output
allows for side-by-side comparison of the scouting physics objects with standard
reconstructed objects. It can be used to calibrate the energies and identification ef-
ficiencies of the trigger objects, and also to identify any problems with the stream
configurations or the event packing software.

The scouting monitor stream contains copies of all of the triggers in the PF-scouting
and calo-scouting streams. Because the output undergoes prompt reconstruction,
the rate of the stream must be kept low. Prescales on the triggers in the scouting
monitor stream are chosen in order to keep the total rate of the stream below about
30 Hz. The stream can then be used to study the scouting data without having a
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major impact on the HLT data volume.

4.5 Data parking and its relationship with scouting

The term data parking refers to the practice of selecting events at the HLT and
immediately moving them to tape storage, skipping prompt reconstruction. Events
selected in this way (‘parked data’) remain on tape until there are sufficient free
computing resources to reconstruct them.

Data parking allows more than the standard 1 kHz of physics events to be recorded,
because the rate is not constrained by the limited capacity of the prompt reconstruc-
tion system. The achievable rate of data parking is constrained by the bandwidth
of the CMS DAQ, by the amount of tape storage space, and by the practicality of
eventually bringing the data out for reconstruction.

Data parking was a central aspect of the CMS data taking strategy in 2012. A total
of 300-350 Hz of data was collected using parking triggers [98]. The downsides of
parking became apparent: the parked datasets were large and took many months to
reconstruct fully with the resources available. By the time the reconstructed data
was ready, most analyses of 2012 data had already been published and attention had
moved to preparation for Run II.

Despite its disadvantages, data parking fits naturally into the data scouting paradigm,
especially in the context of searches for new physics. A main drawback of data
scouting is the discarding of the raw data and the reliance entirely on HLT-reconstructed
physics objects, which may suffer more from detector noise and miscalibration than
the standard PF objects. If a search for new physics is performed on scouting data
and returns a positive result, it may be difficult to find out whether the supposed
new physics is real or the result of noise that affected the HLT reconstruction in
some way. Parking the raw events selected by the data scouting triggers removes
this handicap: if a physics result with the scouting data is called into question, the
parked data can be brought from tape to disk and reconstructed. The analysis can
then be performed again using the parked data to confirm or disconfirm the result.
In case the scouting analysis returns an unambiguous result, the parked data can
stay on tape forever, sparing the resources that would be needed to reconstruct it.

This strategy was deployed in CMS in 2015 and 2016 to complement the data scout-
ing triggers. It was estimated that the DAQ could handle 600 Hz of parked data
safely. A suite of parking triggers, described in Table 4.3, was created, along with a
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new data stream to hold them. These triggers select the same events as the triggers
in the PF-scouting stream, dividing them among a number of parked datasets. The
HT parking triggers each select a slice of the HT spectrum. Each of these slices is
sent to a separate parked dataset. The stream is designed in this segmented way for
three reasons:

1. To prevent any one parked dataset from being too large,

2. To allow individual slices in HT to be reconstructed if needed,

3. To allow some slices in HT to be disabled without shutting down the whole
stream if the rate of parking becomes too large.

Trigger Rate in 2015 (Hz) Rate in 2016 (Hz) Notes
410 < HT < 430 GeV - 130 Disabled in July 2016
430 < HT < 450 GeV - 100
450 < HT < 470 GeV 25 83
470 < HT < 500 GeV 30 95
500 < HT < 550 GeV 35 110
550 < HT < 650 GeV 35 110
HT > 650 GeV 30 92

Table 4.3: List of HT parking triggers, with typical rates in the 2015 and 2016 LHC
runs. Rates are computed for instantaneous luminosities of 5 × 1033 (2015) and
1 × 1034 cm−2s−1(2016). The triggers with 410 < HT < 450 GeV were not present
during the 2015 run. In 2015 the mµµ > 10 PF-scouting trigger was also used for
parking.

4.6 Scouting and parking evolution in 2015-2017

The scouting framework was deployed successfully in 2015. The HT PF- and calo-
scouting triggers each collected 1.8 fb−1 worth of data that year. The event sizes
were as expected, and data volumes placed no significant strain on the HLT re-
sources.

In 2016, the scouting framework was deployed again with various improvements.
The calo-scouting event content was enhanced with b-tagging and pixel track re-
construction, as discussed above. The threshold of the HT PF-scouting trigger was
decreased from 450 to 410 GeV, and analogous triggers were added to the park-
ing stream. In 2016 scouting data accounted for approximately 1 percent of the
total volume of data recorded by CMS. The rate of events recorded went as high as
6 kHz, many times that of the standard HLT physics streams.
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The rate of data parking had to be slowed during the second half of 2016 due to
the unexpectedly high luminosity provided by the LHC. This was accomplished by
disabling the parking trigger selecting events with HT between 410 and 430 GeV,
the lowest part of the segmented range.

The major changes for the scouting program in 2017 were the deployment of the
new di-muon trigger (described in Section 4.7), and the removal of the segmented
HT parking triggers that existed in previous years. The parking triggers were re-
placed by prescaled versions of the scouting triggers, which recorded 10% of events
to tape for monitoring purposes. Additionally, new L1 seeds were added to the
hadronic scouting paths in response to the rising threshold of the L1 HT seed. The
new L1 seeds include triggers on the pT of the leading jet in the event and on the
invariant mass of the two leading jets. The latter was made possible by the upgrade
of the L1 trigger infrastructure, which allowed paths with more complex logic to be
implemented in the L1 Global Trigger (see Section 2.3).

Estimated and actual trigger rates

MC-based rate measurements

The scouting framework was designed in late 2014 and early 2015, before CMS
had ever collected data at its maximum energy of 13 TeV. This made it necessary
to estimate the rates of the proposed scouting and parking triggers using MC sim-
ulation. A set of datasets of simulated QCD multijet events were created for this
purpose.

A difficulty of using MC for rate measurements is the enormous range of energies
obtained in LHC collisions. The lowest-energy events are overwhelmingly com-
mon but have very little chance of even passing the L1 trigger. Thus, simulating
pp events completely at random is unlikely to lead to adequate statistics for high-
energy collision events, which are the events of interest for the trigger study. This
is addressed by simulating several QCD samples, each with prescribed upper and
lower bounds on the amount of hadronic activity. Together, the samples cover the
entire range of event energies in a non-overlapping way. The number of events in
each sample is roughly the same, so samples with large hadronic activity have more
events relative to their cross section than those with low activity. This approach
leads to small statistical uncertainties on the estimated trigger rates.

The proposed triggers are emulated using the HLT software to obtain a trigger de-
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cision for each simulated event. The rate of each trigger is estimated as

rate =

Nsamples∑
i=0

L × σi ×
# selected events in sample i

# events in sample i
, (4.5)

where σi is the cross-section associated with the ith QCD MC sample. The statisti-
cal uncertainty on the rate measurement is simply given by the Poisson uncertainty
on the number of counts.

The actual hadronic scouting trigger rates recorded in 2015 (listed in Tables 4.1
and 4.2) were lower than anticipated based on the simulation by approximately a
factor of two. This indicates a possible miscalibration of the MC simulation for
QCD events. The effect was observed for standard HLT paths as well, such as those
used to select hadronic events for the inclusive razor analysis (see Part III).

Data-driven rate measurements

Preparation of the data scouting streams for the 2016 CMS run was made easier by
the availability of the 2015 data. In particular, CMS recorded a limited number of
high-pileup runs in 2015. By measuring trigger rates in runs with varying amounts
of pileup, one can predict the rates in 2016 data, which was predicted to (and did)
have significantly higher pileup than 2015 data.

Data-driven trigger rates can be obtained using unbiased samples of HLT events.
These are collected by a prescaled HLT path that automatically accepts every event
coming from the L1 trigger. After emulating the trigger decision for the scouting
triggers on each event in this sample, the rate for each path is computed as

rate =
# passing trigger

# in sample
× rate of unbiased trigger × prescale of unbiased trigger.

(4.6)
The rate must then be scaled to the number of colliding bunches anticipated during
data taking (the high-pileup runs in 2015 were taken with fewer bunches than were
expected in 2016).

Figure 4.7 shows the rates estimated for the 2015 HT > 450 GeV trigger and for
emulated versions of the trigger with lower thresholds, including the HT > 410 GeV
trigger that was eventually deployed in 2016. For the HT > 450 GeV path, rates
were taken directly from the CMS central monitoring system. For the emulated
triggers, they were computed using Eq. 4.6. The rates scale roughly linearly with the
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number of pileup collisions. To determine the average number of pileup collisions
in a given LHC run period, one can use the relation

Npileup =
Lσinel

Nbunches f
, (4.7)

where σinel is the inelastic pp cross section, Nbunches is the number of colliding
bunches per LHC beam, and f is the beam revolution frequency (11 kHz).

Figure 4.7: HT scouting trigger rates scaled to 2736 colliding bunches, for different
average numbers of pileup interactions. Rates for the HT > 450 GeV trigger are
taken directly from 2015 CMS data, while those for HT > 430 GeV and HT > 410
GeV triggers are obtained by emulating the triggers on data. Linear extrapolations
to higher numbers of pileup interactions are shown for each trigger.

The data-driven trigger rate measurements accurately predicted the observed 2016
rates listed in Table 4.1.

Trigger timing measurements

In Section 4.2 it was argued that data scouting could be used to collect significant
quantities of data without much impact on HLT CPU resources. This was checked
explicitly using computers at CERN dedicated to benchmarking the timing perfor-
mance of HLT paths [21].
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Trigger timing can be measured using the unbiased samples of HLT events dis-
cussed above. The HLT software can be outfitted with profiling modules that de-
termine the time taken by each producer and filter in the path of interest. To obtain
the average trigger time per event, one emulates the trigger on the unbiased HLT
data sample with these profiling modules enabled. The time can be measured for
the path running either by itself or in the context of the full HLT menu. In the latter
case, the measurement indicates the average amount of time added to the full menu.
To avoid placing strain on HLT resources, it is desirable for a new path to add no
more than a few milliseconds of processing time to the menu.

Table 4.4 shows the estimated CPU time for HT scouting triggers with different
thresholds, as measured on 2015 data. The values indicated that the trigger thresh-
old could safely be lowered from its 2015 value of 450 GeV to 410 GeV without
adding signficant time to the menu. It was suggested to lower the threshold even
further, but this was not done, for three reasons:

• The upgrade of the L1 trigger was in progress and the precise impact of the
new L1 on the HLT menu time was unknown,

• The HLT menu time depends significantly on the amount of pileup, and de-
tailed timing estimates were not obtained for high-pileup scenarios.

• It was desired to keep the trigger threshold for PF-scouting synchronized with
that for parking.

This choice turned out to be appropriate given the very high pileup levels attained
in 2016 and 2017. In 2017, at 1.5 × 1034 cm−2s−1, the PF-scouting HT path was
estimated to contribute around 3 ms to the running time of the HLT.

HT threshold (GeV) Total path time (ms) Estimated time added to menu (ms)
410 5.4 0.59
420 5.3 0.57
430 5.2 0.48
440 5.0 0.47
450 4.6 0.45

Table 4.4: Trigger timing measurements for HT PF-scouting paths using 2015 data.
Measurements are performed on events with an average of 21-24 pileup interac-
tions. The time added to the full menu is estimated using an early version of the
2016 trigger menu.
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The calo-scouting HT triggers, which cheaply reconstruct calorimeter jets, require a
negligible investment of CPU time. The addition of the regional pixel tracking and
b-tagging, which was done for the 2016 run, added 1-2 ms of processing time on
average per event. The impact of this change on the total HLT timing was negligible,
because many other HLT paths were already running the sequences in question.

4.7 Design of a new di-muon scouting trigger for 2017

The success of the data scouting framework in 2015 and 2016 prompted interest
from data analysts seeking to expand the range of new physics searches possible
with CMS data. One possibility that was pursued was to use data scouting to collect
events with two muon candidates and to perform a search for dark photons decaying
to muons. More information on the physics case for this is included in the next
chapter.

To build a scouting trigger for a dark photon search, the di-muon trigger used in
2016 had to be modified significantly. The changes were intended to loosen the
kinematic selection on the muons, enabling muon pairs with low pT , low invari-
ant mass, and possible displacement from the beamline to be selected. The major
changes were:

• The L1 requirement was loosened substantially. The 2016 muon scouting
trigger’s L1 seed imposed pT thresholds on both leading and subleading muons.
It was supplemented in 2017 with a large number of new L1 seeds, including
some with no pT requirements; these instead require the muons to be close
together in η and to lie within the CMS barrel. Some L1 seeds place an
opposite-charge requirement on the muon pair.

• The di-muon invariant mass cut was removed.

• Quality requirements on the di-muon vertex were removed, enabling the se-
lection of muon pairs from displaced decays. This required the standard HLT
muon reconstruction sequences to be modified to remove or loosen several
internal filters.

The muon objects used in the scouting data format were modified to include more
detailed information about the muon’s associated track (namely the values and un-
certainties of the five parameters defining the track). Additionally, scouting vertex
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objects were outfitted with a more complete set of uncertainty information. Sec-
ondary vertices from displaced muon decays were reconstructed by the trigger path
and saved in the scouting event content. These additional variables are needed in
the context of the dark photon search to select well-reconstructed muon pairs.

Finally, to handle the increased rate resulting from loosening the L1 requirement
and removing the di-muon mass cut, the modified trigger path was moved from the
PF-scouting stream into the calo-scouting stream. The PF reconstruction sequence
was removed from the trigger path, and the calo-scouting stream was reconfigured
to save HLT muon objects.

The di-muon invariant mass spectrum for events selected by the new trigger in 2017
is shown in Figure 4.8. Thanks to the removal of the mass cut and the L1 pT cuts,
the mass spectrum extends far below 1 GeV. The known resonances in the mµµ

spectrum can be seen clearly by eye.

Figure 4.8: Di-muon invariant mass spectrum from events selected by the muon
scouting trigger deployed in 2017, with many known resonances labeled.
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C h a p t e r 5

IMPACT OF DATA SCOUTING

In this chapter we discuss the analysis of the data collected with the scouting frame-
work in 2015 and 2016, look ahead to the analyses in progress on 2017 scouting
data, and discuss future directions for scouting.

5.1 Dijet resonance searches with Run II scouting data

The first search for new physics conducted with the Run II data scouting framework
was a low-mass dijet resonance search. The search was carried out on the first 12.9
fb−1 of data collected in 2016 [103]. A follow-up analysis extended the results
to include a total of 27 fb−1 [104]. The search was performed using the same
strategy as past CMS dijet searches, using a fit to a smooth parameterized functional
form. The latest iteration of the search, performed on the 2017 CMS dataset, is in
preparation as of this writing.

Trigger turn-on measurements

In the 2016 dataset, the available triggers for the dijet resonance search are the calo-
scouting trigger, which selects events with HT > 250 GeV; and the HT PF-scouting
trigger, which requires HT > 410 GeV.

The efficiency of the HT > 250 GeV path is measured as a function of the dijet
mass, yielding a turn-on curve for the trigger. It is computed using the dedicated
L1-only and minimum-bias trigger paths, as described in Section 4.4. The turn-on
curve is illustrated in Figure 5.1.

The PF-scouting trigger efficiency is measured in the same way. It is found that the
trigger becomes fully efficient for dijet masses between 600 and 700 GeV.

Based on the measured trigger efficiencies, it is decided to perform the 2016 dijet
search using the calo-scouting dataset collected using the HT > 250 GeV trigger
path. This choice yields sensitivity to signal masses in the range 0.6-1.6 TeV. Using
calo jets instead of PF jets is not found to have any significant negative impact on
the analysis sensitivity.
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Figure 5.1: Efficiency of the HT > 250 GeV calo-scouting trigger on 2016 data.
The efficiency is measured with respect to the dijet invariant mass and is calculated
using dedicated L1-only and minimum-bias scouting trigger paths [105].

For the 2017 search, the scouting trigger efficiency is measured using a different
technique. A trigger is added to the scouting monitor stream that selects events
having a muon with pT > 50 GeV. The set of events collected by this path is used
as an unbiased reference sample to measure the HT trigger efficiency. This method
is more convenient than measuring the efficiency using looser HT triggers, because
there is no confounding effect from the turn-on of the L1 trigger. The turn-on curve
from the 2017 measurement is shown in Figure 5.2 for the calo-scouting trigger.
The trigger reaches 99% efficiency at a dijet mass of 350 GeV.
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Figure 5.2: Efficiency of the HT > 250 GeV calo-scouting trigger on 2017 data.
The efficiency is measured with respect to the dijet invariant mass and is calculated
with reference to a sample of events collected with a muon trigger [106].

Comparison of HLT reconstructed objects with standard physics objects

The scouting monitor dataset described in Section 4.4 makes it convenient to di-
rectly compare the momenta of HLT calo jets in the scouting data with those of PF
jets reconstructed offline. The percent difference between the pT of an HLT calo jet
and that of the corresponding PF jet, measured in bins of HLT jet pT , is shown on
the left-hand side of Figure 5.3. The bias is no larger than 4% and decreases with
increasing jet pT .

The resolution of the dijet invariant mass is measured for HLT calo jets and com-
pared with that for offline reconstructed PF jets. The measured resolution values
are displayed on the right-hand side of Figure 5.3. It is seen that the resolution for
HLT calo jets is 1-2% worse than that of offline PF jets.

Results and impact

The dijet mass spectrum obtained using the full 2016 scouting dataset is shown
in Figure 5.4. The parametric functional form fits the background well, and no
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Figure 5.3: Left: average percent difference between HLT calo jet pT and offline
reconstructed PF jet pT , measured in bins of HLT calo jet pT . The bias is parame-
terized with the smooth functional form shown in red. Right: resolution of the dijet
mass in HLT (blue) and offline reconstructed (red) events [106].

excess over the smooth background shape is observed. Limits are set on a variety of
theoretical models for new physics using the results of the search. Among these are
new limits on the production of a Z’ resonance decaying to quarks, which improve
on those shown in Figure 4.2. The limit is shown as a function of the Z’ mass in
Figure 5.5.

Historical aside: dijet scouting and the 750 GeV diphoton excess

Interest in hadronic resonance searches below 1 TeV was spurred in late 2015 by
the joint announcement by ATLAS and CMS of excesses in the diphoton mass spec-
trum [107, 108]. ATLAS and CMS observed local excesses with significances of 3.9
and 2.6 standard deviations, respectively, at a diphoton mass of approximately 750
GeV. The global significances of the excesses were 2.1 and 1.2 standard deviations,
respectively. Despite the low significance of the CMS excess, the announcement
generated a large amount of attention from the theory community.

It was noted [109, 110] that the 8 TeV dijet search using data scouting [100] placed
important constraints on the production of a new state at 750 GeV (see Figure 5.6).
This is because a strongly-produced resonance should generically exhibit decays to
final states with jets. Data scouting therefore drew interest as a way to investigate
the possible new particle (see Figure 5.7). If the diphoton excess were confirmed on
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Figure 5.4: Dijet mass spectrum obtained using scouting data collected in 2016,
with the fit to a parameterized functional background shape overlaid in red. The
bottom panel shows the significance of the difference between the data and the fit
in each bin [104].

the 2016 dataset, the discovery could be corroborated in the hadronic decay channel
using the scouting dataset.

The CMS and ATLAS diphoton resonance searches were repeated with the data
collected in the first half of the 2016 LHC run [112, 113]. Both searches returned
null results, as did the dijet scouting search, which was made public at the same
time [103]. This indicates that the excesses in the 2015 data had merely been sta-
tistical fluctuations. However, the incident highlights the role that data scouting
can play in searching for signatures of new physics that are not accessible through
standard physics analyses.



79

Figure 5.5: Limits on the coupling of a leptophobic Z’ resonance decaying to
quarks, computed using the results of the 2016 CMS dijet resonance search. In
the region to the left of the dashed gray line, the limit is computed using the dataset
collected with the calo-scouting trigger [104].

Impact on dark matter limits

The 2016 dijet search yielded strong limits on simplified models of dark matter, as
illustrated in Figure 5.8. The simplified models contain a dark matter particle and a
heavy mediator that couples to quarks. Because the dijet search is sensitive to direct
production of the mediator in LHC collisions, the limits obtained are relatively
insensitive to the mass of the dark matter particle. At mediator masses below 1.6
TeV, the exclusion limits are driven by the data scouting part of the dijet analysis.

5.2 Planned hadronic scouting searches

A number of analyses on the 2016 and 2017 scouting datasets are currently in prepa-
ration. These are mainly searches using hadronic events that have no striking fea-
tures, such as the presence of leptons or photons, that can be easily selected with
low-rate HLT paths. In these searches a signal must be identified by building up
very large datasets and finding features that emerge in the high-statistics limit. We
look briefly at three hadronic searches with scouting data that are anticipated in the
near future.
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Figure 5.6: Constraints on the decays of a hypothetical resonance with mass 750
GeV based on the CMS and ATLAS data collected in 2015. The x- and y-axes
represent the decay widths to gluons and to two photons, respectively. The gray
region on the right is excluded by the 8 TeV CMS dijet scouting search [109].

Figure 5.7: Interest in the CMS 8 TeV dijet resonance search with data scouting, as
measured by the number of citations of the physics analysis summary (blue crosses)
and the published paper (red circles) over time. The black arrow marks the date of
the announcement by ATLAS and CMS of the 750 GeV diphoton excess [111].
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Figure 5.8: Top: 95% confidence level limits from the 2016 CMS dijet analysis
on simplified models of dark matter production, expressed as a function of the dark
matter and mediator masses for a particular choice of couplings. Bottom: simplified
model exclusion as a function of the mediator mass and coupling to quarks (red
line). Limits from other CMS searches are also shown. In each plot, the region
highlighted in pink represents the limits from the data scouting search [104].

Dijet + ISR search

A notable gap in the dark matter exclusion limits shown in the bottom panel of Fig-
ure 5.8 is the region with mediator mass between 300 and 500 GeV. There is hope
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to gain sensitivity in this region using events in which the dark matter mediator is
produced in association with an ISR jet (see left panel of Figure 5.9). The presence
of a third energetic jet in the event (besides the two jets from the resonance decay)
allows signal events to pass the trigger more readily. Searching for dijet resonances
in events with three or more jets should be feasible with the calo-scouting dataset.
There are challenges associated with determining which jet(s) in the event are the
ISR jet(s) and which come from the resonance; this must be carefully studied to
maximize the analysis sensitivity.

Figure 5.9: Signatures targeted in upcoming hadronic searches using data scout-
ing. Left: production of an exotic Z’ boson in association with an ISR jet, with
the Z’ decaying to two quarks. Center: a tri-jet event in which two jets are very
close together geometrically and become merged (image created by Francesco San-
tanastasio). Right: Pair production of gluinos with R-parity violating decay to an
all-quark final state.

PF-scouting search with jet substructure

In the case of a dijet resonance produced in association with an energetic ISR jet, the
two jets from the resonance may be close together and be clustered into one large jet.
Similarly, decays of a tri-jet resonance may result in merged jets (see middle panel
of Figure 5.9). These signatures can be investigated using jet substructure variables
that quantify the extent to which a jet appears to be the product of multiple merged
jets. The green limit curve in the bottom panel of Figure 5.8 is obtained using a
search for this boosted dijet signature using standard reconstructed data [114]. The
use of the PF-scouting dataset would enable this type of search to be carried out
with looser constraints on the jet momenta, thus increasing the range of accessible
resonance masses. Initial studies of jet substructure variables using the PF-scouting
data have been performed and are seen to produce distributions similar to those
obtained in fully reconstructed data.
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Search for pair-produced three-jet resonances

R-parity violating SUSY models may feature heavy gluinos that decay via a squark
into three quarks (see right panel of Figure 5.9). Pair production of gluinos in this
model results in six-jet final states in which the jets can be grouped into two three-
jet resonances. A search for this signature was performed in Run I [115]. Using
the PF-scouting dataset, the analysis can probe a wider range of gluino masses. An
interesting feature of the low-mass three-jet analysis is the clear appearance of the
mass peak of the hadronically decaying top quark. The top peak appears in the
three-jet mass spectrum even in non-b-tagged event categories, and is used in the
analysis as a candle to calibrate the jet energy scale and resolution.

5.3 Dark photon searches using scouting triggers

The di-muon scouting trigger described in Section 4.7 is being used to perform a
search for dark photons using trigger-level data. We briefly describe the motivation
and planned strategy for this search.

Motivation for a dark photon search with muon pairs

Some theories of dark matter feature a ‘dark electromagnetic’ force, governed by a
gauge symmetry U(1)D, that couples only to dark matter particles. The gauge boson
ZD of U(1)D is called a dark photon [116]. The U(1)D symmetry may be sponta-
neously broken as a result of the dark sector dynamics, leading to dark photons with
nonzero mass.

The dark photon mixes with the gauge boson of the SM U(1) interaction, and hence
with the SM photon and Z boson. The mixing of ZD with the SM bosons gives rise
to leptonic decays ZD → ``, if this is kinematically allowed. A free parameter ε
controls the degree of coupling of the dark photon to the photon and the Z. Searches
for di-lepton resonances at colliders can be used to constrain ε and the dark photon
mass mZD . A search by LHCb [117] in the di-muon channel recently yielded some
of the best limits in this two-dimensional space (Figure 5.10). CMS analyses, par-
ticularly Drell-Yan measurements, can be interpreted as limits on dark photons at
higher masses (tens or hundreds of GeV) [116]. Very small values of ε may yield
long-lived dark photons, which can be studied by searching for displaced di-muon
resonances.
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Data scouting provides a potential avenue to conduct searches for dark photons at
lower masses, where the high luminosity of CMS collisions may provide an advan-
tage over LHCb searches. Loosening or removing the standard trigger constraints
on the momenta, invariant masses, and vertex position of di-muon pairs may allow
CMS to be sensitive to dark photon production at masses as low as 200 MeV.

Figure 5.10: Limits on the dark photon mass and the ε parameter, computed using
the results of the LHCb di-muon search on 2016 data. The best limits to date from
other experiments are shown in gray [117].

Planned analysis strategy

The di-muon PF-scouting trigger used in 2016 imposes requirements on the µµ in-
variant mass (10 GeV) and on the individual muon transverse momenta (11 GeV
and 4 GeV, respectively, at the L1). It also requires the muon pair to originate from
a vertex along the beamline. Its usefulness in a dark photon search is therefore re-
stricted to the ZD mass region above about 20 GeV. The modified trigger deployed
in 2017 removes the invariant mass and L1 pT requirements, and is capable of se-
lecting muons from displaced vertices. A pT requirement of 3 GeV is still imposed
at the HLT level, the primary purpose of which is to control the data volume. This
requirement could be modified for data taking in 2018 if it is seen to restrict the
sensitivity of the analysis.

The main search can be performed as a bump-hunt in the µµ invariant mass spec-
trum. A displaced search, targeting dark photon masses below 1 GeV and ε~10−5,
is also planned.

Significant analysis tasks include:
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• Obtaining reliable estimates of the trigger efficiency in all search regions and
quantify any sculpting of the di-muon mass distribution by the L1 selection
cuts. This task is complicated due to the large number of L1 seeds feeding
into the trigger and the very heterogeneous set of requirements on the L1
muons.

• Quantifying the HLT muon object performance and tuning the muon identifi-
cation cuts to optimize each search region.

• Parameterizing the background shape, including the known resonances and
the nonresonant component from Drell-Yan events and fake muons. The con-
tribution from fake muons can be estimated using samples of like-sign muon
pairs; this is complicated by the L1 trigger selection, which includes seeds
with an opposite-sign requirement on the muons. A possible strategy for
2018 is to ensure that each opposite-sign L1 seed has a corresponding same-
sign seed (which may be prescaled) so that the same-sign contribution can be
estimated without bias [118].

• For the displaced search, characterizing secondary vertices reconstructed from
HLT muon objects. This includes understanding the influence of the CMS
tracker material on the distribution of secondary vertex positions, and identi-
fing exploitable kinematic features of signal and background events.

5.4 Outlook for the future

As the LHC continues to deliver more data, the marginal benefit of merely repeating
traditional searches for new physics will decrease (in the absence of a discovery).
Data scouting offers one route to expand the space of searches and measurements
that can be performed. By enabling the collection of datasets orders of magnitudes
larger than those obtained with the standard HLT menu, it allows analysts to fully
make use of the very high luminosity – not just the high energy – of the LHC.

The other LHC experiments have recently adopted strategies similar to data scout-
ing. ATLAS performed a dijet resonance search with 2015 data using a trigger-level
analysis, placing limits in the region 450-950 GeV [119]. LHCb’s ‘Turbo Stream,’
deployed at the beginning of Run II, performs detector calibration and analysis pre-
selection at the trigger stage [120], aiming to achieve offline-like reconstruction in
real time. These developments indicate a shift towards data scouting-like analysis
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paradigms more broadly in HEP. Trigger-based searches have the potential to be-
come a central component of many experiments’ trigger strategies as detector data
volumes continue to increase in the years to come.



What is this sample proving?
Anecdotes cannot say what Time may do.

Joanna Newsom, “Anecdotes”

Part III:

Supersymmetry Searches using Razor
Variables

87
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C h a p t e r 6

FIT-BASED RAZOR SEARCH ON 2015 DATA

Searches for SUSY using razor variables in Run I of CMS employed a background
prediction strategy based on fits to a parameterized functional form. This approach
capitalizes on the kinematic properties of the razor variables MR and R2 intro-
duced in Section 3.7. It does not rely on MC simulation except to validate the
search methodology, so it is unaffected by many sources of systematic uncertainty
that complicate MC-based searches. It provides a natural complement to existing
hadronic and leptonic SUSY searches in CMS.

On the 2015 CMS dataset a razor search for SUSY was carried out on 2.1 fb−1 of
13 TeV data with two background predictions: one fit-based and one MC-based.
A complete estimate of the SM background, including systematic uncertainties, is
performed for both fit and MC approaches. The two background predictions are
compared before unblinding the data in the search region, to ensure that they are
consistent with one another.

The reason for this dual approach, which we believe is unique in CMS, was a con-
cern that the assumptions of the fit-based background prediction are strong and
cannot be fully covered by systematic uncertainties. For more about this issue and
how it affected the 2016 inclusive razor search for SUSY, please see Chapter 9. By
performing a second background prediction using a completely different set of as-
sumptions (the assumptions that come with a MC-based search), we significantly
increase the robustness of the search.

In this chapter we discuss the fit-based background prediction for 2015 data. The
next chapter will cover the MC-based prediction and the interpretation of the search
in terms of SUSY simplified models.

6.1 Motivation for the fit-based razor analysis

In Section 3.7 we introduced the razor variables MR and R2. The MR variable tends
to peak at a particular scale, M∆, which is related to the characteristic mass scale
of the physics process. The distribution of MR for MR > M∆ is roughly a falling
exponential, as is the distribution of R2. MR and R2 are correlated variables: the
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slope of the exponential tail of MR varies with the value of R2, and vice-versa. This
is illustrated in 7 TeV CMS data in Figure 6.1, where it is seen that the slope of
the MR (R2) distribution changes roughly linearly with the baseline R2 (MR) cut
imposed.

Figure 6.1: Left: distribution of MR after selecting events with R2 above various
thresholds. Right: distribution of R2 after selecting events with MR above various
thresholds. All MR and R2 distributions are fit with exponential functions. The
best-fit exponential slope is shown in the bottom plots as a function of the cut on
R2 (left) or MR (right) [95].

The fact that the razor variables exhibit this exponential behavior can be exploited
to obtain an estimate of the background without resorting to MC simulation. We
first identify a parametric family of functions that model the behavior of the falling
background accurately; this is detailed in Section 6.2. We then define a signal-
sensitive region of the MR-R2 plane, and a sideband region in which any SUSY
signal is expected to be small compared with the background. We use a fit to data to
optimize the background function within the constraints of the specified parametric
family. The best-fit function and its uncertainty are used to characterize the SM
background in the signal-sensitive region. Excesses in data above the predicted
background are a possible sign of new physics.

6.2 Razor fit function

The relationship between MR and R2 indicated by Figure 6.1 suggests that we model
the SM background with a function of the form

f (MR,R2) ∝ e−b(MR−M0
R )(R2−R2

0 ), (6.1)
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where b, M0
R, and R2

0 are real-valued parameters.

This describes somewhat adequately the razor variable distributions in data, but
does not completely capture the tail behavior for all backgrounds. We add a param-
eter n to give the function additional freedom to capture the tail shape. The function
we use, which more reliably captures the full range of observed background shapes,
is

f (MR,R2) =

(
b
[
(MR − M0

R)(R2 − R2
0)

]1/n
− 1

)
e−bn

[
(MR−M0

R )(R2−R2
0 )

]1/n

. (6.2)

The prefactor in front of the exponential term is included to make this distribution
analytically integrable on rectangles
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with
G(x, y) = Γ

(
n,bn

[
(x − M0

R)(y − R2
0)

]1/n
)
, (6.4)

where Γ is the upper incomplete gamma function.

Binned fits and uncertainty

The functional form Eq. 6.2 is the one used for background modeling in the 2015
razor SUSY search. To ease the numerical computation of the fit result, we bin the
data using a predefined grid of nb rectangles in the MR-R2 plane and perform the fit
by maximizing the binned Poisson likelihood:

L({xi}|b,n,M0
R,R

2
0,N ) =

nb∏
i=0

Poisson(xi | λi (b,n,M0
R,R

2
0,N )), (6.5)

where xi is the number of observed data counts in bin i. Here we have introduced
a new random variable N that represents the mean total number of events in the
dataset, summed over all bins. The observed size of the dataset is assumed to be
Poisson distributed with mean N . The mean background λi in each bin is obtained
by normalizing the razor function f (MR,R2) to have a total integral of N , and then
integrating the normalized function over the bin area using Eq. 6.3. The analytic
form of Eq. 6.3 allows the likelihood to be evaluated without the need for numerical
integration. Likelihood maximization is performed using the RooFit package [121].



91

Uncertainty on the fitted function is quantified using the covariance matrix of the
fit parameters b,n,M0

R,R
2
0, and N , which captures the uncertainties on the param-

eters and the correlations between them. The covariance matrix is computed by
RooFit using the curvature of the likelihood function (Eq. 6.5) at its maximum.
We use a toy Monte Carlo procedure to convert the uncertainties on the fit pa-
rameters into uncertainties on the bin yields λi. The following is performed for
j = 0,1, . . . ,Ntrials:

1. Draw a sample b j ,n j ,M0
R,j ,R

2
0,j ,N j from a multivariate normal distribution,

with mean and covariance matrix taken from the output of the RooFit opti-
mization routine;

2. Evaluate λi j ≡ λi (b j ,n j ,M0
R,j ,R

2
0,j ,N j ) for each analysis bin using the sam-

pled parameters.

This procedure corresponds to repeatedly perturbing the fit function parameters ac-
cording to their uncertainties, and computing the effect on the predicted bin yields.
It returns a set

{
λi j

}
of simulated yields in each analysis bin (an example for one

bin is shown in Figure 6.2). To assign an uncertainty on the best-fit bin yield λk ,
we compute the width of the smallest interval containing 68% of the simulated val-
ues λk j . This width (symmetrized around the best-fit values λk , for simplicity) is
illustrated as an uncertainty band on the fit prediction plots shown in the following
sections.

A second set of simulated yields,
{
xi j

}
, is computed by throwing Poisson random

variables with means
{
λi j

}
. This set of yields represents the expected spread of

observed event counts in each bin, accouting for both uncertainty on the fit function
and the Poisson uncertainty on the number of counts. This set of yields is used
to compute the significance of deviations between the observed data and the fit
prediction. The deviation is reported as a ‘number of sigma,’ stylized as nσ. It
is obtained as the gaussian quantile function Φ−1 (the inverse of the cumulative
distribution function of the normal distribution) applied to the one-sided p-value of
the observed data:

nσ ≡ Φ−1
(∑

j 1xi j<xi

Ntrials

)
, (6.6)

where 1xi j<xi is an indicator function that is 1 when xi j < xi and 0 otherwise.

In plots displaying the nσ significance in each bin, values are reported in both the
sideband region and in the signal-sensitive extrapolation region. It should be kept
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Figure 6.2: Example histogram of simulated yields in one analysis bin, generated
from the razor fit result using the toy MC procedure described in the text. The x-
axis indicates the bin yield λi j . The value corresponding to the best-fit bin yield is
indicated by the vertical blue line, and the smallest interval containing 68% of the
probability mass is highlighted in lighter blue. The vertical black line indicates the
number of counts observed in data.

in mind that, for fits performed in the sideband region, the nσ values reported for
sideband bins are not corrected to account for the dependence of the fit function
on the data. They will therefore tend to be smaller in magnitude than those in the
extrapolation region.

6.3 Sideband fits and full fits

We perform the razor fit in two different ways. The first method (the ‘sideband fit’)
is used to perform a signal-agnostic search for excesses at high MR and R2. The
second method (the ‘full fit’) is used for interpretation of the search in terms of
specific signal models.

Sideband fits

To accommodate the possibility of arbitrary signal-like excesses at high MR and R2,
we perform the sideband fit in an L-shaped region in the MR-R2 plane, keeping the
rest of the selected region (the extrapolation region) blinded. The sideband region is
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defined by the union of two rectangles, one at low MR and the other at low R2 (see
Figure 6.5). After fitting to the data in the sideband region, the best-fit function and
its covariance matrix are used to describe the predicted background shape in the
high-MR, high-R2 extrapolation region.

The sideband fit is a background-only fit, and does not assume anything about a
particular signal except that any signal contamination in the sideband is small com-
pared with the SM background. This makes the search sensitive to a variety of
new physics signals, not just the specific simplified SUSY models for which MC
is available. After performing the fit in the sideband, we unblind the extrapolation
region and look for excesses of any kind above the fitted background.

When comparing the fit-based razor background prediction with the MC-based pre-
diction described in the next chapter, we use the predictions obtained using the
sideband fits.

Full fits

To interpret the search in terms of a specific signal model, we remove the dis-
tinction between sideband and extrapolation region, and perform a binned sig-
nal+background fit in the full MR-R2 region under consideration. In this full-region
fit the signal shape is determined using a MC template, and the signal strength is
treated as a freely floating parameter.

The full fit method is used to perform hypothesis tests to discover or set limits on
the production of SUSY signals; it will be discussed further in Chapter 7.

6.4 Razor triggers

The razor variable R2 is not strongly correlated with Emiss
T for most physics pro-

cesses. Standard SUSY HLT paths select events based on HT and Emiss
T , and are

therefore unsuitable for use in this search. Instead, we designed and deployed ded-
icated razor trigger paths that compute the values of MR and R2 at the HLT. These
triggers select events if they satisfy the following requirement on MR and R2:

(MR + 300) × (R2 + 0.25) > threshold, (6.7)

where the selection threshold in 2015 is 240 GeV. The selected region is illustrated
in Figure 6.3. The motivation for this hyperbolic selection cut is based on the shape
of the MR-R2 distribution (see Figure 3.11), and the dependence of the fit function
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(Eq. 6.2) on the quantity (MR −M0
R)(R2 − R2

0). The values of the MR and R2 offsets
(300 GeV and 0.25) were optimized using a fit to Run I data. In addition to the
hyperbolic cut, loose baseline cuts on MR and R2 are applied. These cuts have a
subdominant effect on the trigger rates and efficiency compared with the hyperbolic
cut.

Figure 6.3: Diagram indicating the selection cuts of the hadronic razor dijet and
quad-jet triggers used in 2015. Events lying in the upper right of the diagram,
with MR and R2 satisfying the hyperbolic cut as well as loose rectangular cuts, are
selected. Two hyperbolic cuts are shown; the looser cut, (MR+ 300)(R2+ 0.25) >

240 GeV, is the one used by the main razor triggers. Backup versions of the paths
apply the tighter 270 GeV cut.

For the 2015 razor search, we deployed two flavors of hadronic razor triggers
with cuts based on Eq. 6.7. Razor ‘dijet’ triggers require at least two jets with
pT > 80 GeV (in addition to the cuts mentioned above), and razor ‘quad-jet’ trig-
gers require at least four jets with pT > 40 GeV. An additional ‘R2-only’ trigger
accepts events with R2 > 0.25, omitting the hyperbolic cut. This trigger is primar-
ily designed to search for signals of dark matter production, which in many models
yields a peak around R2~0.8. We include it in this search to improve upon the effi-
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ciencies of the dijet and quad-jet triggers in the high-R2 region. The R2-only trigger
also requires two jets having pT > 80 GeV.

The calculation of MR and R2 at the HLT is performed using PF reconstruction. To
prevent the average event processing time (which is dominated by the time taken to
run the PF algorithm) from growing too large, a loose preselection is applied before
running PF to reject a significant fraction of events. The preselection is based on
the values of MR and R2 computed using calorimetric jets and Emiss

T . It consists of
a looser version of the hyperbolic cut. For the trigger with a hyperbolic cut value
of 240 GeV, for example, the calorimetric preselection imposes a hyperbolic cut of
200 GeV.

The list of razor triggers is given in Table 6.1. It includes the triggers used for the
search as well as ‘backup’ paths with tighter thresholds, which serve as fallbacks in
case the rates of the main triggers become too high.

Trigger cuts Rate in 2015 (Hz) Notes
(MR+ 300)(R2+ 0.25) > 240 GeV; two 80-GeV jets 7.7
(MR+ 300)(R2+ 0.25) > 240 GeV; four 40-GeV jets 1.2
R2> 0.25; two 80-GeV jets 0.7
(MR+ 300)(R2+ 0.25) > 270 GeV; two 80-GeV jets 2.3 Backup path
(MR+ 300)(R2+ 0.25) > 270 GeV; four 40-GeV jets 0.5 Backup path
R2> 0.30; two 80-GeV jets 0.4 Backup path

Table 6.1: Razor triggers deployed in 2015, with rates estimated from data at 5 ×
1033 cm−2s−1.

Our search is performed in the region of high MR and high R2, where a variety
of SUSY signals may be expected to appear. We measure the efficiency of the
razor triggers as a function of MR and R2 to identify an appropriate search region.
The efficiency measurement is performed using a dataset of single electron events,
selected using triggers that have no razor variable requirement. The electron dataset
provides an unbiased baseline for the efficiency computation. The efficiency in each
bin is estimated as

ε =
# events in electron dataset, passing razor path(s)

# events in electron dataset
. (6.8)

The measured efficiencies are shown in Figure 6.4. We choose to perform the search
in the region with MR > 500 GeV and R2 > 0.25, where the triggers are close to
100% efficient.
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Figure 6.4: Combined efficiency of the 2015 razor trigger suite, measured in data
on a sample of events passing inclusive electron trigger paths. The efficiency is
computed in bins of MR and R2.

6.5 Event selection and categorization

Events for the search are selected based on the number of jets, b-tagged jets, and
leptons identified, and on the values of MR and R2. The events are sorted into
categories in order to enhance the sensitivity to specific types of SUSY signals,
and each category is divided into two-dimensional bins in MR and R2. The goal of
the search is to predict the number of events in each MR-R2 bin and compare the
prediction with the data.

The razor approach is applicable to events both with and without leptons. We per-
form the search in a zero-lepton category (denoted ‘Multijet’), a one-muon cate-
gory (‘Muon Multijet’), and a one-electron category (‘Electron Multijet’). Events
with two or more identified leptons are not considered in this search. Leptons are
included in the razor megajet clustering procedure in the same way as jets (see
Section 3.7). The same parametric family of fit functions (Eq. 6.2) is used for
background modeling in the zero- and one-lepton categories. One-lepton and zero-
lepton categories have no overlap, so they can easily be statistically combined with
each other for analysis interpretation.
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Zero-lepton events are required to pass at least one of the razor triggers described
in Section 6.4. One-lepton events are required to pass one of a set of inclusive
electron or muon triggers, which place no cuts on the razor variables or other jet-
based quantities. Noise rejection algorithms are used to reject events consistent
with known beam- and detector-related issues [30].

Lepton identification

The analysis makes use of two different sets of selection criteria for identifying
leptons. ‘Tight’ criteria are stringent, with selection efficiencies around 70-75%.
‘Veto’ criteria are more relaxed, selecting 90-95% of genuine prompt leptons but
having higher fake rates. The tight selection criteria are used to select a pure sample
of leptons from the decays of W and Z bosons for the one-lepton search categories.
The veto criteria are employed to identify and reject leptonic events from the zero-
lepton search categories.

Electrons

The tight electron selection criteria consist of cuts on ECAL cluster shape variables,
the HCAL/ECAL energy ratio, and the quality of the electron’s GSF track [122].
A conversion veto is employed to reject electrons from photons that convert in the
tracker. Different cut thresholds are used for electrons in the barrel region and in
the endcaps, in order to achieve a similar efficiency in each region. Electron PF
candidates with pT > 25 GeV are eligible for the tight selection.

Electrons are also required to be isolated from other electromagnetic and hadronic
activity in the event. This is accomplished via a variable called mini-isolation.
Particle isolation is traditionally computed by defining a cone with a fixed radius,
∆R < Rcone (with ∆R defined as in Eq. 2.5) around the particle, and summing the
transverse momenta of the other particles falling within the cone. The isolation is
then corrected for the presence of pileup using an effective-area method similar to
that described for jets in Section 2.4. The mini-isolation variable is computed in the
same way as traditional isolation, except that the cone size changes with the pT of
the electron:

Rcone =


0.2, pT < 50 GeV

10 GeV/pT , 50 GeV < pT < 200 GeV

0.05, pT > 200 GeV.

(6.9)
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The main purpose of the changing cone size is to accommodate leptons from decays
of high-pT top quarks, which may lie very close to the b-jet from the top decay. It
also tends to give a looser isolation requirement in events with large amounts of
hadronic activity. For the tight selection, the value of the mini-isolation is required
to be less than 10% of the electron’s pT .

The loose ‘veto’ selection for electrons is based on a multivariate discriminator
(MVA) computed using a number of ECAL shower shape and GSF track variables.
Compared with a cut-based selection, the MVA has a lower fake rate for a given sig-
nal efficiency; this results in fewer hadronic signal events being spuriously rejected.
The veto selection is applied to all reconstructed PF electrons with pT > 5 GeV. In
addition to the MVA selection, a requirement is imposed on the electron isolation.
For electrons with pT > 20 GeV, we require the mini-isolation variable to be no
larger than 20% of the electron pT . For electrons below 20 GeV, we require that
the value of the mini-isolation is no more than 5 GeV. The switch to an absolute
isolation cut below 20 GeV is seen to significantly increase the efficiency of the
isolation requirement.

Muons

Muons are identified based on quality requirements on the reconstructed muon
tracks in the inner tracker and muon chambers [123]. We use the ‘tight’ and ‘loose’
selections recommended by the muon working group within CMS, and addition-
ally require that the muon track impact parameter (the distance of closest approach
to the beamline) be small. The tight selection is applied to all PF muon candidates
with pT > 20 GeV, and the loose selection is applied to candidates with pT > 5 GeV.

We assess isolation of muons using the mini-isolation variable. For muons with
pT > 20 GeV, we require that the mini-isolation be no greater than 20% of the
muon’s pT . For muons with pT < 20 GeV, we switch from a relative cut on isolation
to an absolute one, requiring that the absolute isolation sum be no more than 10
GeV.

Tau leptons

Hadronically decaying τ leptons are selected using the loose working point of the
hadron-plus-strips algorithm [124], which identifies τ decays to final states with up
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to three hadrons. A PF-based isolation cut is also imposed. Events with identified
hadronic τ leptons having pT > 20 GeV are rejected from the zero-lepton search
category. The hadronic τ veto has an efficiency of about 50%.

Jet and b-jet identification

Jets and b-tagged jets are identified as described in Section 2.4. We use anti-kT jets
with R = 0.4, and apply the CHS procedure to reduce pileup. Each jet is required
to pass tight selection criteria designed to reject detector noise. Jets passing these
criteria and having pT > 40 GeV and |η | < 3.0 are selected for the analysis. The jet
pT is corrected using JEC factors defined by the CMS jet working group. In MC, jets
receive an additional ‘residual’ correction to compensate for observed differences
in jet performance between data and MC simulation. Selected jets are tagged as
b-jets based on the ‘medium’ working point of the CSVv2 discriminator.

Search categories

The analysis search categories are summarized in Table 6.2. The Multijet, Muon
Multijet, and Electron Multijet categories are each divided into subcategories with
events having 0, 1, 2, and 3 or more b-tagged jets in order to isolate SUSY events
with bottom or top quarks in the final state.

Selected jets, electrons, and muons in each event are clustered into two megajets
as described in Section 3.7 and used to compute the razor variables MR and R2.
Baseline cuts on MR and R2 are applied. These cuts are tighter for zero-lepton
events due to the restrictions imposed by the razor triggers. In the Multijet search
region we require MR > 500 GeV and R2 > 0.25, and in the Muon and Electron
Multijet search regions we require MR > 400 GeV and R2 > 0.15. We define the
L-shaped sideband regions to have widths of 100 GeV in MR and 0.05 in R2. The
sideband and signal-sensitive regions for hadronic and leptonic analysis categories
are depicted in Figure 6.5.

As discussed in Section 3.6, this search is primarily geared toward detection of
heavy gluinos, for which the cross section at 13 TeV may be an order of magnitude
larger than that at 8 TeV. To improve sensitivity to gluino signals having many jets
in the final state, we require Njets ≥ 4 in all analysis search regions, where Njets is
the number of jets passing the selection requirements.

We require events in the Multijet category to satisfy ∆φR < 2.8, where ∆φR is the
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Figure 6.5: Diagram indicating the sideband and extrapolation regions for the
hadronic (top) and leptonic (bottom) search categories. The sideband region is the
union of the low-MR and low-R2 regions indicated. The extrapolation region is the
upper-right rectangle in each diagram.

absolute value of the azimuthal angle between the two razor megajets. This require-
ment reduces the amount of QCD multijet background in the search region. QCD
events, which have no intrinsic Emiss

T , enter the analysis primarily when the momen-
tum of a jet is badly mismeasured. In such events, the reconstructed ~pmiss

T vector is
aligned with one of the razor hemispheres, and thus, by momentum conservation,
the razor hemispheres are back to back in the transverse plane and the value of
∆φR is close to π.

In the Muon and Electron Multijet categories we require mT > 120 GeV, where
mT is the transverse mass, defined as

mT =

√���~pT, lep
��� Emiss

T − ~pT, lep · ~pmiss
T , (6.10)

where ~pT, lep is the lepton transverse momentum vector. This cut eliminates a sig-
nificant fraction of W(→ `ν)+jets and single-lepton tt̄+jets events, which have a
small angle between the lepton and the ~pmiss

T .

The 0, 1, and 2 b-tag subcategories in each search region are fit with independent
copies of the razor fit function (Eq. 6.2). The ≥3 b-tag subcategory has limited event
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Category Baseline Cut Sideband Other Cuts
Multijet MR > 500 GeV and R2 > 0.25 MR < 600 or R2 < 0.3 Njets ≥ 4,∆φR < 2.8
Muon Multijet MR > 400 GeV and R2 > 0.15 MR < 500 or R2 < 0.2 Njets ≥ 4, mT > 120 GeV
Electron Multijet MR > 400 GeV and R2 > 0.15 MR < 500 or R2 < 0.2 Njets ≥ 4, mT > 120 GeV

Table 6.2: Search categories used in the 2015 razor analysis. Each search category
is divided into 0, 1, 2, and ≥3 b-tag subcategories.

statistics, so it is fit simultaneously with the 2 b-tag category, and shares the values
of the parameters b,n,M0

R, and R2
0 with it. The consistency of the 2 and ≥ 3 b-tag

shapes is compared using a MC simulated event sample. It is seen that the R2 shape
is consistent across the two samples, but that the MR shape deviates slightly in
a manner consistent with linear (see Figure 6.6). We therefore parameterize the
background shape in the ≥3 b-tag category as

f ≥3b(MR,R2) =
(
1 + mMR (MR − Moffset

R )
)

f 2b(MR,R2), (6.11)

where the slope and intercept parameters mMR and Moffset
R are allowed to float freely

in the fit.
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Figure 6.6: Comparison in MC of the fitted razor function shape in the Multijet
2b and ≥3b categories. The ratio of the 3b fit to the 2b fit is plotted in the bottom
panel.
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The background composition of each search category is illustrated in Figure 6.7.
Some notable features are:

• tt̄+jets production is the dominant background in the b-tagged leptonic and
hadronic event categories;

• Z(→ νν)+jets production is the dominant background in the Multijet 0 b-tag
category;

• W(→ `ν)+jets production contributes significantly in the 0 b-tag leptonic and
hadronic event categories;

• QCD multijet production is a small (10-20%) background in the Multijet cat-
egory for all b-tag multiplicities.

The individual SM backgrounds will be discussed in greater detail in the context of
the MC-based background prediction (Chapter 7).

Selection cut optimization

The value of the ∆φR cut in the Multijet search region, and that of the mT cut in the
Muon and Electron regions, are optimized by considering the expected exclusion
limit on a number of SUSY simplified models. Example results are shown in Fig-
ure 6.8. We find that the expected limit in the Multijet category is optimized when
the ∆φR cut is 2.8. On the other hand, applying any ∆φR cut in the Electron and
Muon categories is seen to hurt the limit. The signal sensitivity of the one-lepton
categories is optimized when the mT cut is 120 GeV. These conclusions are seen
to hold for gluino simplified models having both small and large mass splittings
between the gluino and the LSP.

6.6 Validation of the fit

The fit function is validated using a mock dataset consisting of MC events sampled
from the major SM background processes (details on the background MC samples
are provided in the next chapter). Each physics process is represented in the dataset
proportionally to its cross section. The size of the mock dataset corresponds to 17
fb−1, the smallest effective integrated luminosity among the available MC samples.

The MC events are selected and placed into the appropriate search regions, and both
sideband and full fits are performed in each region to confirm that the fit function
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Figure 6.7: Fractional composition of the background in the sideband and extrapo-
lation region of the 0 b-tag (left column) and 1 b-tag (right column) subcategories
of the Multijet (top) and Muon Multijet (bottom) search categories. The single top
quark, Z(→ ``)+jets, and rare process backgrounds (multiboson and tt̄+V) are indi-
cated in addition to the main backgrounds discussed in the text. The categories with
2 and ≥ 3 b-tags contain mainly tt̄+jets background and are not displayed here.

Figure 6.8: Left: expected limit on the T1bbbb model, with gluino and LSP masses
set to 1500 GeV and 100 GeV, respectively, as a function of the ∆φR cut. The y-axis
values indicate the excluded cross section divided by the theoretical cross section.
Right: expected limit on the T1tttt model, with gluino and LSP masses set to 1200
GeV and 800 GeV, respectively, as a function of the mT cut.

and its uncertainty adequately describe the background shape. The goodness of
the fit is evaluated by comparing the fitted function with the background MC. The
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fitted shapes are seen to describe the background within uncertainty in all analysis
regions. Example fits to MC are illustrated in Figure 6.9.
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Figure 6.9: Sideband fits to the MC mock dataset in the Muon Multijet (left), Elec-
tron Multijet (right), and Multijet (bottom) event categories, projected onto MR.
The yellow, magenta, red, and green lines show the contributions from the 0, 1, 2,
and ≥3 b-tag fit functions, and the blue line indicates the sum of the four contribu-
tions.

To test the robustness of the fit method to variations in the background composition,
we vary the fraction of each background physics process up and down by specified
amounts and repeat the fit. We test the following variations:

• 30% upward and downward variations of the tt̄+jets, W(→ `ν)+jets, and
Z(→ νν)+jets backgrounds;

• 50% and 100% upward variations of the QCD multijet background;

• 100% upward and 50% downward variations of the rare process backgrounds
(multiboson and tt̄+V production).

The fit function describes the background well under all of the variations tested,
and the fit predictions do not change significantly with the composition of the back-
ground.
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Signal injection test

We perform a signal injection test to check that the full signal-plus-background
fit can detect a signal and accurately extract its strength. To do this, we use the
background model obtained from the best fit to the MC simulation to generate a
dataset corresponding to 4 fb−1 of integrated luminosity, and inject simulated SUSY
events with a specified cross section into it. We fit this simulated dataset to estimate
the injected signal strength. This procedure is repeated several times to build up a
distribution of estimated signal strength values.

The test is performed for several different SUSY models and for a range of different
signal cross sections. In Figure 6.10 we show plots of extracted versus injected
signal strength, normalized to the theoretical cross section, for two models of gluino
production. The fitted cross sections match the injected cross sections closely and
do not exhibit bias.
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Figure 6.10: Fitted vs. extracted signal strengths for the T1bbbb simplified model
with gluino and LSP masses set to 1500 and 100 GeV (left plot), or 1000 and 900
GeV (right plot). The error bars show the standard deviations of the extracted signal
strengths over the ensemble of toy experiments.

Sideband fit bias study

We test for bias in the predictions of the sideband fit, which does not have access
to the data information in the high MR and R2 region. To do this, we conduct many
pseudo-experiments using the following procedure:

1. Generate a mock dataset of size 2.1 fb−1 by sampling (MR, R2) pairs from
the best fit function obtained with the full-region fit.



106

2. Perform both sideband and full fits to the mock dataset, and compute the
percent difference between the sideband fit and full fit predicted yields in a
large aggregate region: MR > 700 GeV and R2 > 0.41 for the zero-lepton
category, and MR > 600 GeV and R2 > 0.25 for the one-lepton categories.

We find that the yields predicted by the sideband fit are on average 5-20% smaller
than those from the full fit in all analysis categories. We enlarge the systematic
uncertainty on the sideband fit yields to account for this small bias. This has a
minimal effect on the search sensitivity; the bias is small compared with the size of
the systematic uncertainty on the yield, which varies from 40% to 200% depending
on the category.

6.7 Signal region predictions and uncertainties

The sideband fit prediction and the number of observed event counts in each anal-
ysis bin are shown in Figures 6.11-6.16. For each analysis category, the results
are presented in each b-tag subcategory in an unrolled format that displays the MR-
R2 plane in a series of one-dimensional slices. The significance nσ in each analysis
bin is shown in the lower panel of each plot. The data are consistent with the pre-
dicted background and no signal-like excess is observed.

While the unblinded data are shown in Figures 6.11-6.16, it should be noted that
we did not look at the data in the extrapolation region until we had performed the
MC-based background prediction and established that the two methods (fit-based
and MC-based) gave results consistent with each other.

We turn to the description of the MC-based background prediction and the final
interpretation of the search results in Chapter 7.
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Figure 6.11: Predicted and observed event counts in the Multijet category for the
0 (top) and 1 (bottom) b-tag subcategories. The MR-R2 plane is shown in unrolled
format; vertical dashed lines denote the boundaries of bins in MR. In the upper
panels, colored bands represent the uncertainty on the fitted function shape. The
band is colored green to indicate sideband bins and blue to indicate the extrapolation
region. In the lower panels is shown the nσ significance of the deviation of the data
from the fit. The yellow and green bands indicate the 1- and 2-sigma significance
levels.
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Figure 6.12: Predicted and observed event counts in the Multijet category for the
2 (top) and ≥3 (bottom) b-tag subcategories. The layout of the plot is explained in
Figure 6.11.
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Figure 6.13: Predicted and observed event counts in the Muon Multijet category for
the 0 (top) and 1 (bottom) b-tag subcategories. The layout of the plot is explained
in Figure 6.11.
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Figure 6.14: Predicted and observed event counts in the Muon Multijet category for
the 2 (top) and ≥3 (bottom) b-tag subcategories. The layout of the plot is explained
in Figure 6.11.
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Figure 6.15: Predicted and observed event counts in the Electron Multijet cate-
gory for the 0 (top) and 1 (bottom) b-tag subcategories. The layout of the plot is
explained in Figure 6.11.
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Figure 6.16: Predicted and observed event counts in the Electron Multijet category
for the 2 (top) and ≥3 (bottom) b-tag subcategories. The layout of the plot is ex-
plained in Figure 6.11.
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C h a p t e r 7

MONTE CARLO-BASED RAZOR SEARCH ON 2015 DATA

In this chapter we describe the MC-based background prediction strategy used in
the 2015 razor search for SUSY. The starting point of this strategy is a collection of
MC samples that simulate the relevant SM background processes. The MC simu-
lation can suffer from various deficiencies, which must be identified and corrected
using control samples in data. Uncertainties on the method are quantified via clo-
sure tests that check various aspects of the background modeling.

The MC-based search uses the same trigger and event selection criteria, analysis
search categories, and binning as the fit-based search. Please refer to Chapter 6 for
the details on these.

For the 2015 search, the MC-based background prediction is regarded as the pri-
mary one, with the fit method serving as a cross-check. The MC-based search has
slightly better expected signal sensitivity, especially for ‘compressed’ SUSY mod-
els, which do not exhibit strong peaking behavior in MR.

7.1 Paradigm for MC-assisted, data-driven search

MC simulations of pp collision events may not perfectly mimic real data. They can
suffer from a variety of defects, such as

• Mismodeling of the hadronic recoil in events with radiated jets, due to imper-
fect parton shower modeling or higher-order QCD effects;

• Mismodeling of the identification probabilities for b-jets, leptons, and other
physics objects;

• Absence of detector noise and other data quality issues.

Some MC deficiencies are studied in detail by specialized groups in CMS, who pro-
vide recommended procedures to remedy the mismodeling. Usually this consists of
reweighting the MC events according to a set of correction factors. Other types of
MC deficiencies are analysis specific, showing up in particular phase space regions
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or in the distributions of particular kinematic variables. In these cases we must de-
rive our own corrections in a way that does not bias the measurement of a potential
SUSY signal.

MC-driven searches in CMS commonly address the challenge of MC mismodeling
by defining a control region thought to be nearly empty of potential new physics
signals while being kinematically similar to the search region. The number of back-
ground events in the search region can be predicted as

NS,Data =

(
NS,MC

NC,MC

)
× NC,Data, (7.1)

where NS,Data and NC,Data are the number of data events in the search region and
control region, and NS,MC and NC,MC are the corresponding quantities in MC. The
quantity in parentheses is a transfer factor that relates the yield in the search region
to that in the control region. The basic assumption of this method is that the MC
accurately models the transfer factors (i.e., NS,MC/NC,MC = NS,Data/NC,Data).

Rearranging Eq. 7.1 suggests an equivalent method that we find more interpretable:

NS,Data =

(
NC,Data

NC,MC

)
× NS,MC. (7.2)

The quantity in parentheses is now a correction factor NData/NMC that directly pa-
rameterizes the degree of MC mismodeling. Instead of working with the transfer
factors NS/NC , we use the control region to compute these NData/NMC correction
factors. The correction factors are applied to the MC prediction in the search region
to arrive at the final background prediction. The assumption of the method (equiv-
alent to the one stated above) is that the mismodeling represented by NData/NMC is
the same in the control region and the search region.

We perform the MC-driven background prediction for the razor search using the
method suggested by Eq. 7.2 to predict the contributions from the main SM back-
ground processes. An exception is the QCD multijet background, for which we
develop an entirely data-driven prediction method; this is needed because the avail-
able MC samples for this process do not have adequate statistics in the phase space
region of interest.

7.2 Primary background processes

The search regions under consideration are dominated by four main SM background
processes (see Figure 6.7):
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• tt̄+jets production, when the W boson from at least one of the top quarks de-
cays leptonically. The escaping neutrino from the W boson decay causes the
Emiss

T and therefore R2 to be nonzero. These events enter the one-lepton anal-
ysis categories when the lepton is identified, and the zero-lepton categories
when it is misidentified or out of acceptance. The events predominantly enter
the b-tagged search categories, due to the presence of two b quarks from the
top quark decays.

• W+jets production, where the W boson decays leptonically (denoted W(→
`ν)+jets). These events mainly populate the search categories with no b-
tagged jets.

• Production of Z bosons decaying to neutrinos, denoted Z(→ νν)+jets. The
neutrinos from the Z decay create Emiss

T when the Z recoils off of ISR jets.
These events populate the zero-lepton search categories, especially those with
no b-tagged jets.

• QCD multijet production, when mismeasurement of one or more jet momenta
creates spurious Emiss

T .

Control regions are used to derive predictions for each of these main background
processes. The search regions additionally have events from single top production,
and from DY(→ ``)+jets production where one lepton is misidentified. Other rare
background processes include production of two or three W or Z bosons, and pro-
duction of two top quarks in association with a W or Z boson. The small contribu-
tions from these processes to the search regions is predicted using MC simulation.

7.3 MC simulation and reweighting

Simulation of the main SM backgrounds, and of γ+jets and Z(→ ``)+jets pro-
duction, is performed using the MadGraph 5 package [31]. Multiboson, tt̄+V, and
s-channel single top quark production are simulated using aMC@NLO, and sin-
gle top production in the t-channel and in association with a W boson are simu-
lated using Powheg [125]. Simulation using MadGraph is performed at leading
order (LO) in QCD; Powheg and aMC@NLO simulation are performed at next-to-
leading order (NLO). All MC generators are interfaced with Pythia for fragmen-
tation and parton showering [33]. Events are passed through a GEANT4-based
model of CMS [35] for simulation of the detector response. The NNPDF3.0LO and
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NNPDF3.0NLO parton distribution functions are used with the LO and NLO event
generators, respectively [126].

Event reweighting

MC events are reweighted in order to correct for known differences between the
simulation and data. These include:

• Different distributions of the number of pileup vertices;

• Mismodeling of the lepton identification efficiency;

• Mismodeling of the trigger efficiency;

• Mismodeling of the b-tag efficiency and mistag rate.

We estimate the lepton identification and trigger efficiencies on samples of Z→ ee

and Z→ µµ candidate events using the tag and probe method [127]. An outline of
the method is as follows (where ` = e or µ):

1. Consider each event having an `` pair with invariant mass consistent with a Z
boson decay. At least one of the leptons must pass the desired identification
cuts (or trigger requirements, in the case of the trigger efficiency calculation).
The passing lepton is called the ‘tag’ and the other lepton is the ‘probe’.

2. Divide the events into ‘passing’ and ‘failing’ samples according to whether
the probe lepton passes the desired identification cuts. Perform a likelihood
fit to the `` invariant mass distribution in both passing and failing samples to
estimate the number of true Z events, Npass and N f ail , in each sample.

3. Compute the lepton selection efficiency as Npass/(Npass + N f ail ).

The procedure is carried out on data and the measured efficiencies are compared
with those obtained in the MC simulation. The data/MC efficiency ratio is com-
puted in bins of the lepton pT and η. MC events with leptons are reweighted ac-
cording to these efficiency factors to correct for the data-MC discrepancy. These
corrections are at the level of a few percent or less in all pT and η regions. Ex-
amples of efficiencies measured using the tag and probe procedure are shown in
Figure 7.1.
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Figure 7.1: Comparisons of the lepton selection efficiency measured in data using
Tag and Probe (red points) with that obtained in MC (black points). Left: tight
electron identification efficiency in the range 0 < |η | < 0.8, as a function of pT .
The data/MC ratio is shown in the bottom panel. Right: the same, for muons. The
data/MC ratio is shown in the bottom panel of each plot.

7.4 Estimation of tt̄+jets and W(→ `ν)+jets backgrounds

We now follow the strategy outlined in Section 7.1 to estimate the SM background
in the search region. We consider the tt̄+jets and W(→ `ν)+jets backgrounds first.
The distributions of MR, R2, and Njets, which form the basis of event selection
and categorization in the search, may be affected by possible mismodeling of the
hadronic recoil by the MC. We would like to obtain MC predictions that faithfully
model these distributions.

Following the strategy outlined in Section 7.1, we correct these distributions using
data control samples that are pure in tt̄+jets and W(→ `ν)+jets events. For this
we select events having one lepton and a low value of mT . The mT cut excludes
most potential SUSY signal events from selection and removes any overlap with
the one-lepton search regions.

The main assumptions in what follows are that the MC mismodeling of the hadronic
recoil is similar at low and high mT , and that it is uncorrelated with the (mis)identification
of a lepton. These assumptions are reasonable because mT and other variables re-
lated to the lepton are properties of the top quark or W boson decay, not the hadronic
shower.

One-lepton control region selection

We select events for the one-lepton control region if they pass at least one inclusive
single lepton trigger and have the following characteristics:
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• At least one electron or muon passing tight identification criteria;

• 30 < mT < 100 GeV;

• Emiss
T > 30 GeV;

• MR > 300 GeV and R2 > 0.15.

The lower cuts on Emiss
T and mT reduce contamination from the QCD multijet back-

ground. Note that no explicit cut on the number of jets is applied.

We split this control sample into two subsamples, to isolate the tt̄+jets process and
the W(→ `ν)+jets process separately. The events with no b-tagged jets form the
W+jets one-lepton control sample. This sample is 80% pure in W(→ `ν)+jets events,
with the dominant background being tt̄+jets. The events with b-tagged jets form
the tt̄ one-lepton control sample. It is 80% pure in tt̄+jets events, with W(→
`ν)+jets and single top events forming most of the background.

Razor variable correction

The selected one-lepton events are divided into bins of MR and R2. The data and
MC yields are shown in one dimension in Figure 7.2, and in two dimensions in
unrolled format in Figure 7.3. The plots indicate that the MR and R2 distributions
in MC have longer tails in MC than in data – this is the MC deficiency that we wish
to correct.

To derive corrections to the tt̄+jets MC, we first subtract the estimated number of
non-tt̄+jets events from the data yield in each bin of the tt̄ one-lepton control region.
Then we take the ratio of the remaining data counts to the tt̄+jets MC predicted
yield. Thus, the MC correction factor for bin i is

κi, tt̄ ≡
Ni,Data − Ni,non-tt̄ MC

Ni, tt̄ MC
. (7.3)

The computed scale factors and their statistical uncertainties are displayed in the up-
per part of Figure 7.4. A systematic uncertainty is also assigned on the corrections
based on the modeling of the subtracted background processes. This is subdomi-
nant compared with the statistical uncertainty; we approximate it as a 20% error on
the subtracted contributions Ni,non-tt̄ MC

After deriving the corrections to the tt̄+jets MC, we turn to the W+jets one-lepton
control region. We perform the same procedure as above, except that we first correct
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Figure 7.2: Distributions of MR (left column) and R2 (right column) in the tt̄ (top
row) and W+jets (bottom row) one-lepton control samples. The bottom panel
in each plot shows the ratio of data to MC. In the W+jets control region, the
tt̄+jets MC prediction has been corrected using scale factors derived in the tt̄ control
region.

the estimated amount of tt̄+jets contamination using the factors κi, tt̄ that were just
derived. The scale factors obtained in this way are shown in the bottom part of
Figure 7.4.

Jet multiplicity correction

The one-lepton control region is defined with no reference to the number of selected
jets in the event. This provides the control region with higher statistics (an order
of magnitude more events) than if we imposed the Njets ≥ 4 cut used in the search
region. However, the corrections to the MR and R2 distributions needed for events
with four or more jets may be different from those we derive here.

We check explicitly for this possibility by restricting our attention to events with
four or more jets and applying the MR-R2 corrections derived for the tt̄+jets and
W(→ `ν)+jets MC. It is seen that an additional flat scale factor of 0.90 ± 0.03
is needed to normalize the MC prediction to the data in this restricted control
sample. We take this scale factor as a further correction to the tt̄+jets and W(→
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Figure 7.4: MC correction factors derived in bins of MR and R2 for the tt̄+jets (top)
and W(→ `ν)+jets (bottom) simulated samples. Uncertainties displayed are statis-
tical.

`ν)+jets MC. The MR-R2 distribution in the ≥ 4 jet region after applying this cor-
rection is shown in Figure 7.5. We see no significant mismodeling by the corrected
MC, which suggests that factorizing the MR-R2 and Njets corrections in this way is
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appropriate.
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Figure 7.5: Unrolled MR-R2 distribution in the one-lepton control region, for events
having four or more selected jets, after applying corrections derived in bins of MR,
R2, and the number of selected jets.

Closure test in one-lepton control region

We perform a more detailed check of the data-MC agreement in the one-lepton
control region by examining the one-dimensional MR and R2 distributions for each
b-tag multiplicity. The MR distributions are shown in Figure 7.6 for the data and the
corrected MC. Discrepancies between data and MC are taken to represent possible
MC mismodeling, and systematic uncertainties are assigned to the tt̄ and W+jets
background predictions according to the level of agreement.

Check of dilepton tt̄+jets modeling

The corrections derived in the one-lepton control region for the tt̄+jets and W(→
`ν)+jets MC are applied to the MC background prediction in both the zero- and
one-lepton analysis search regions. One situation in which this approach could lead
to inaccuracies is if the MC mismodeling of dilepton tt̄+jets events is significantly
different from that of single-lepton tt̄+jets events.
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Figure 7.6: MR distributions for events in the one-lepton control sample with at
least four selected jets and 0 (upper left), 1 (upper right), 2 (lower left), and ≥3
(lower right) b-tagged jets. The tt̄+jets and W(→ `ν)+jets MC events have been
reweighted using the corrections derived for the MR-R2 and Njets distributions.

In single-lepton tt̄ decays, the ~pmiss
T and the lepton transverse momentum vector

tend to point in the same direction, which results in a small value of mT (see the
definition of mT in Eq. 6.10). Dilepton tt̄ decays tend to have higher values of mT ,
because the ~pmiss

T is the sum of the momentum vectors of two neutrinos and may
not align with either lepton. The one-lepton control region requires mT < 100 GeV,
while the one-lepton signal regions require mT > 120 GeV. Thus the control region
is dominated by single-lepton tt̄+jets events, while the one-lepton signal regions
have significant contributions from dilepton tt̄+jets.

To confirm that the corrections derived for the tt̄+jets MC simulation adequately
describe dilepton tt̄+jets, we select another control sample, this one enriched in
dilepton tt̄+jets events. This sample contains events passing at least one inclusive
single lepton trigger and passing the following selection criteria:

• Two leptons passing tight identification and having pT > 30 GeV;

• Dilepton mass m`` > 20 GeV, and 76 < m`` < 106 GeV if the leptons have
the same flavor (this suppresses Z decays);
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• At least one b-tagged jet;

• Emiss
T > 40 GeV;

• MR > 300 GeV and R2 > 0.15.

Because our search is restricted to events with zero or one identified lepton, dilepton
tt̄+jets events entering the analysis are those in which one lepton is misidentified
or outside the detector acceptance. We emulate this here by choosing one selected
lepton to be ‘misidentified’ and treated as a jet. We then compute mT using the
other lepton, and apply the search region cut mT > 120 GeV. This procedure is
repeated for both leptons, so it is possible for events to enter the control region
twice if both leptons pass the mT cut. Selected tt̄+jets MC events are reweighted
using the correction factors discussed above.

The agreement between data and MC in this tt̄ dilepton control region is assessed
both with and without an explicit selection on the number of jets in the event. These
results are shown in Figure 7.7 and indicate good agreement between data and the
MC prediction. Differences between the data and the MC are treated as systematic
uncertainties on the dilepton tt̄+jets background in the one-lepton search regions.

Check of lepton veto efficiency modeling

As described in Section 6.5, the lepton veto in the zero-lepton search region iden-
tifies electrons and muons with pT as low as 5 GeV, and taus with pT as low as 20
GeV. Electron and muon identification efficiencies in MC simulation are corrected
using the pT -dependent scale factors derived using the tag and probe method (see
Section 7.3), but these scale factors are not measured below 10 GeV due to the dif-
ficulty of selecting a pure sample of Z events at lower lepton momenta. Tag and
probe scale factors are not derived at all for tau lepton identification. Mismodeling
of the electron or muon veto efficiency below 10 GeV, or of the tau veto efficiency,
is therefore a potential risk.

We check for potential mismodeling of this type by selecting a sample of events
containing electrons, muons, and taus identified by the veto selection. This sample
is defined by the selection requirements of the Multijet search category, except that
the lepton veto is inverted so that only events with identified leptons are included.
The cut 30 < mT < 100 GeV is applied, to remove the overlap with the leptonic
search regions. We split the sample into a veto lepton control sample (containing
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Figure 7.7: Top row: unrolled MR-R2 distributions for events in the tt̄ dilepton
control region having any number of jets (left) or four or more jets (right). The
tt̄+jets MC has been corrected using the factors derived in the one-lepton control
region. Bottom row: bin mapping for the plots in the top row.

events with an identified electron or muon) and a veto tau control sample (contain-
ing events with an identified tau).

The agreement between data and MC in these control samples is checked in bins
of the lepton (or tau) pT and η after applying the MR-R2 and Njets reweighting to
the tt̄+jets and W(→ `ν)+jets MC predictions. This comparison is illustrated in
Figure 7.8.

We convert discrepancies between data and MC in the control region into appropri-
ate systematic uncertainties on the signal region predictions. To do this, we estimate
the number of MC events that would migrate into, or out of, the signal region if the
mismodeling were corrected. The estimate is scaled to account for the efficiency of
the mT cut (which is applied in the control region but not the signal region) and the
∆φR cut (which is applied in the signal region but not the control region):

∆NS,MC = ∆NC,MC ×
ε∆φR
εmT

, (7.4)

where ε∆φR and εmT are the efficiencies of the ∆φR and mT cuts, measured in bins
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Figure 7.8: Distributions of the lepton pT (left column) and |η | (right column) in
the veto lepton (top row) and veto tau (bottom row) control regions. The tt̄+jets and
W(→ `ν)+jets MC have been corrected using the factors derived in the one-lepton
control region.

of lepton pT .

7.5 Estimation of Z(→ νν)+jets background

The Z(→ νν)+jets background cannot easily be isolated in a dedicated control
region, as is done for the tt̄+jets and W(→ `ν)+jets processes. The Z decay to
neutrinos creates a Emiss

T signature in the event, but does not have other features
such as leptons that allow it to be conveniently identified. To produce a robust
Z(→ νν)+jets background prediction, we exploit this process’s kinematic similar-
ity with other physics processes.

Events with dileptonic (ee or µµ) Z boson decays are straightforward to select in
CMS data, and their kinematics are very similar to those of Z(→ νν)+jets events.
We can transform a Z(→ ``)+jets event into a surrogate Z(→ νν)+jets event by
pretending that the two leptons from the Z are neutrinos – removing them from the
event description, and adding their transverse momentum vectors to the ~pmiss

T . The
main drawback to this approach is that Z(→ ``)+jets events are less common than
Z(→ νν)+jets events, with a production cross section three times smaller.
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One physics process with a larger cross section that can also act as a surrogate
for Z(→ νν)+jets is W(→ `ν)+jets. In W(→ `ν)+jets events we can add the
transverse momentum of the selected lepton to the ~pmiss

T and remove it from the
event description, simulating an escaping neutrino. Despite the fact that the W
boson is charged, the kinematics of W+jets events are similar to those of Z+jets,
and the MC simulations of W(→ `ν)+jets and Z(→ νν)+jets may be expected to
suffer from similar mismodeling of the hadronic recoil.

Finally, the γ+jets process also exhibits kinematic similarity to Z(→ νν)+jets, es-
pecially at high boson pT where the masslessness of the photon is less relevant.

We derive corrections to the Z(→ νν)+jets MC, and assign uncertainties on the cor-
rected prediction, using all three of these processes as surrogates. The γ+jets pro-
cess is used to obtain a primary set of corrections to the Z(→ νν)+jets MC. The
W(→ `ν)+jets process provides a second set of corrections, which we use to cross-
check the first. The Z(→ ``)+jets process, having the highest kinematic similarity
with Z(→ νν)+jets, is used for a final closure test to check the goodness of the
modeling.

Z(→ νν)+jets strategy summary

We select three control regions, respectively enriched in γ+jets, W(→ `ν)+jets, and
Z(→ ``)+jets events:

1. A sample of events with an identified photon. This is used to derive correc-
tions to the MC in bins of MR and R2, and subsequently in Njets.

2. A sample of events with an identified lepton, identical to the W(→ `ν)+jets-
enriched control region studied in Section 7.4 except that the lepton’s trans-
verse momentum is added to ~pmiss

T . This is used to derive a second set of MC
corrections. The difference between these and the corrections from γ+jets is
taken as a systematic uncertainty on the Z(→ νν)+jets prediction.

3. A sample of events with two identified muons or electrons consistent with a Z
boson decay. This is used to perform a closure test to confirm that the correc-
tions derived in the other two control regions are appropriate for describing Z
events.
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γ+jets control region selection

Photons are identified using cuts on ECAL shower-shape variables as well as the
HCAL/ECAL energy ratio [128]. Photon candidates that share an energy cluster
with a reconstructed electron are vetoed. Additionally, we require the charged-
particle isolation sum to be less than 2.5 GeV. For the γ+jets control region we
select events having at least one photon satisfying these requirements. The photon’s
transverse momentum vector is added to the ~pmiss

T to emulate a Z boson decaying to
neutrinos.

We select events using inclusive single photon triggers, which accept events with
a photon having pT above some threshold. The loosest unprescaled photon trig-
ger has a pT threshold of 165 GeV; triggers with lower thresholds are prescaled.
To obtain a sample that includes photons with lower values of pT , we divide the
range [50 GeV,∞] in photon pT into subintervals, and assign one trigger path to
select events in each subinterval. In Table 7.1 we list the correspondence between
pT subintervals and photon trigger paths. Each selected event is upsampled by the
prescale factor of the trigger used to select it. This yields a smooth pT spectrum
that does not feature kinks from the different trigger prescales. The inclusive pho-
ton pT spectrum is shown in the left panel of Figure 7.9. Here the γ+jets cross
section used to normalize the MC has been corrected by the k-factor accounting for
higher-order QCD corrections.

Trigger pT threshold (GeV) Photon pT range (GeV)
36 [40, 58]
50 [58, 85]
75 [85, 105]
90 [105, 135]

120 [135, 185]
165 [185,∞]

Table 7.1: Thresholds of triggers used to select events in different ranges of photon
pT for the γ+jets control sample.

Baseline cuts of MR > 400 GeV and R2 > 0.25 are placed on the selected photon
events. The photon pT spectrum for events passing these cuts is shown in the right
panel of Figure 7.9; it is seen that the control sample is dominated by photons with
pT � mZ , which are expected to be kinematically similar to Z(→ νν)+jets events.

The physics processes that populate the photon control region are γ+jets, QCD
multijet (where a jet is misidentified as a photon), and rare processes including Wγ,
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Figure 7.9: Photon pT distribution obtained in the γ+jets control region before
(left) and after (right) applying the baseline cuts MR > 400 GeV and R2 > 0.25.
Events in data passing prescaled photon triggers are upsampled to obtain a smooth
pT spectrum.

Zγ, and tt̄γ. We model γ+jets and the rare backgrounds using MC simulation.
γ+jets events in which the simulated photon has ∆R < 0.4 with respect to any jet
are classified as fragmentation photon events; these are considered background and
are subtracted from the data yields when computing MC correction factors.

γ+jets purity measurement

We estimate the contribution from QCD jets faking photons using a data-driven
fit method. First, we obtain template shapes for the σiηiη distributions of prompt
(i.e., real) photons and of fake photons. The template shape tγ (σiηiη ) for prompt
photons is obtained from γ+jets MC, and the template shape tQCD (σiηiη ) for fake
photons is obtained from data by inverting the charged isolation selection cut in the
γ+jets control region. We then fit the σiηiη distribution in data by optimizing the
coefficient Pγ in the sum

Nγ

[
Pγ × tγ (σiηiη ) + (1 − Pγ) × tQCD (σiηiη )

]
, (7.5)

where Nγ is the number of events in the distribution. The fitted value of Pγ is the
estimated photon purity; the fraction of QCD fakes is (1 − Pγ).

The purity fits are performed in bins of MR and R2, separately for photons in the
barrel region and in the endcaps. Visualizations of the σiηiη distributions and the
best-fit templates are provided in Figure 7.10. The measured purity values are sum-
marized in Figure 7.11. For simplicity, we choose to use Pγ = 0.95± 0.05 through-
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out the whole control region, as all fitted purity values are seen to fall into this
range.
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Figure 7.10: Example fits to the σiηiη distribution in the barrel (left) and endcap
(right) to estimate the fraction of prompt photon events. The red and green dashed
lines indicate the prompt and fake photon template shapes, and the blue line repre-
sents the total fit.

Razor variable and jet multiplicity corrections

The predicted background and observed data in the photon control region are shown
in one dimension in Figure 7.12 and in unrolled format in Figure 7.13. Following
the procedure of Section 7.4, we subtract the estimated non-γ+jets contributions
from the data and compute correction factors by dividing the remaining data yield
by the γ+jets prediction. The resulting correction factors are shown in Figure 7.14.

As in the one-lepton control region, we next restrict our attention to the subset
of events with Njets ≥ 4. We derive an additional flat scale factor to normalize
the corrected MC to the data in this restricted control region. The scale factor we
extract is 0.87 ± 0.05.

After applying this additional scale factor to the MC, we compare the MC prediction
with the data in bins of MR and R2and observe that the corrected MC models the
MR-R2 distribution in data well (see Figure 7.15). We then plot the distribution of
Nb−tags (Figure 7.16). We observe a tendency for the MC to underpredict the yields
for high Nb−tags, and assign a systematic uncertainty on the Z(→ νν)+jets modeling
equal to the magnitude of this discrepancy.
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Figure 7.11: Fitted photon purity values in the ECAL barrel (top row) and endcaps
(bottom row) as a function of MR (left column) and R2 (right column).
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Figure 7.12: Distributions of MR (left) and R2 (right) in the γ+jets control region.
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Figure 7.13: Top: MR-R2 distribution in the γ+jets control region displayed in
unrolled form. Bottom: bin mapping for the unrolled plot.

Cross-check in one-lepton control region

To derive corrections to the Z(→ νν)+jets MC using W(→ `ν)+jets events, we
use the same one-lepton control region selection as in Section 7.4, except that the
lepton’s transverse momentum vector is added to ~pmiss

T for the calculation of R2.
We measure correction factors in bins of MR and R2 in the usual way, obtaining the
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Figure 7.14: Correction factors derived in the γ+jets control region in bins of
MR and R2, inclusive in the number of selected jets.

values shown in Figure 7.17.

We take the full size of the difference between these scale factors and those obtained
from the γ+jets region as a systematic uncertainty on the Z(→ νν)+jets modeling.
This uncertainty quantifies how much the MC correction factors depend on which
physics process we use to emulate Z(→ νν)+jets. The fractional differences be-
tween the scale factors from the two control regions are shown in Figure 7.18.
These differences are small, with the largest discrepancy being at the 30% level.

Closure test in two-lepton control region

The two-lepton Z(→ ``)+jets-enriched control region is selected using the follow-
ing cuts:

• Two electrons or muons passing the tight selection, with the leading lepton
satisfying pT > 30 GeV and the subleading lepton satisfying pT > 20 GeV

• 80 < m`` < 110 GeV

• No b-tagged jets
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Figure 7.15: Unrolled MR-R2 distribution in the γ+jets control region after select-
ing events with four or more jets and appying the corrections derived in bins of MR,
R2, and the number of jets.

• At least two jets with pT > 80 GeV

• MR > 400 GeV and R2 > 0.25.

The Z(→ ``)+jets MC is corrected using the MR-R2 scale factors derived in the
γ+jets control region. The comparison between data and MC is performed both
inclusively in Njets and in the region Njets ≥ 4. Good agreement is observed in both
regions; see Figure 7.19.

7.6 Estimation of QCD multijet background

The term ‘QCD event’ is a catch-all that refers to events not containing top quarks,
W/Z/Higgs bosons, or other particles of interest. QCD events constitute the over-
whelming majority of pp collision events at CMS. They typically have little to no
true Emiss

T ; they enter our search when they contain at least one jet whose momen-
tum is badly mismeasured, causing the measured Emiss

T to be spuriously high.

An accurate prediction of the QCD multijet background using MC is difficult be-
cause of the enormous production cross section for QCD events. The number of
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Figure 7.16: Distribution of the number of b-tagged jets in the γ+jets control region
after selecting events with four or more jets and appying the corrections derived in
bins of MR, R2, and the number of jets.

MC events that can be simulated is much smaller than the number of QCD events
in data, so MC event weights are high. We instead take a data-driven approach to
QCD estimation.

QCD control region selection

In a QCD event in which all of the measured Emiss
T is due to the mismeasurement of

a jet’s momentum, the vector ~pmiss
T points directly along or opposite the direction

of that jet. This usually means that the ~pmiss
T aligns in the transverse plane with one

of the razor megajets. If this happens, then (by momentum conservation) the two
razor megajets must be back to back in the transverse plane. That is, the value of
∆φR is close to π.

We see in simulation that the region ∆φR > 2.8 is 70-80% pure in QCD events, for
MR-R2 bins that have a non-negligible amount of QCD in the search region. We use
this high ∆φR region as a control region for the QCD background. The selection for
this control region is identical to that of the zero-lepton search region, except that
the ∆φR cut is inverted.
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Figure 7.17: Correction factors derived for Z(→ νν)+jets in the W(→ `ν)+jets con-
trol region in bins of MR and R2, inclusive in the number of selected jets.
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Figure 7.18: Fractional difference between the correction factors derived for Z(→
νν)+jets in the γ+jets and W(→ `ν)+jets control samples in each bin of MR and
R2.
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Figure 7.19: Unrolled MR-R2 distributions in the Z→ `` two-lepton control region,
before (top) and after (bottom) requiring Njets ≥ 4.

To predict the number of QCD events in the search region, we obtain the number of
QCD events in the high ∆φR region and multiply it by the transfer factor ζ defined
by

ζ =
N (∆φR < 2.8)
N (∆φR > 2.8)

. (7.6)
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Modeling of QCD transfer factors

The values of ζ are measured in a low-R2region in data defined by 0.2 < R2 <

0.25. The transfer factors exhibit a falling behavior as a function of MR that is well
described by a power law. We fit the distribution to obtain:

ζ (MR) = 3.1 × 107(MR/GeV)−3.1 + 0.062. (7.7)

The transfer factors and the fitted function are shown in Figure 7.20.
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Figure 7.20: QCD transfer factors ζ measured in data (filled circles) and MC (open
circles) along with the fitted power law function. The hashed blue band represents
the systematic uncertainty on the fit function.

We observe that the value of ζ does not depend significantly on R2 within the avail-
able statistics; see Figure 7.21. We therefore treat it as independent of R2 and assign
a systematic uncertainty of 87% on ζ to cover the spread of the observed values.

7.7 Systematic uncertainties

Systematic uncertainties on the background prediction can be separated into two
broad classes. The first class contains uncertainties on our knowledge of specific
instrumental and theoretical quantities. For example, the measurement of the lepton
identification efficiency is performed on a data sample with limited event statistics,
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Figure 7.21: QCD transfer factor ζ computed in bins of R2 in data (black) and
MC (pink). The yellow band represents the systematic uncertainty on the transfer
factors.

so it has an associated uncertainty. The second class contains uncertainties on other
aspects of the background modeling not specifically enumerated. The closure tests
performed in each analysis control region are designed to probe for deficiencies in
the simulation modeling of the SM background. The results of the closure tests
indicate the level of accuracy at which we can control for potential mismodeling
and are used to assign systematic uncertainties on each background process. Each
uncertainty is described briefly in the following subsections.

Instrumental and theoretical systematics

The uncertainties due to known instrumental and theoretical effects are summarized
in Table 7.2. These include uncertainties on the jet energy scale, the lepton and b-
jet identification efficiencies, the total integrated luminosity, and the change in the
observed yields under variations of the factorization and renormalization scales in
the MC simulation.

Uncertainties estimated in analysis control regions

The MC correction factors derived in the one-lepton and photon control regions
have associated statistical uncertainties from the limited event sample. These un-
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Uncertainty source Typical uncertainty size
Jet energy scale 2-15%
Lepton momentum scale 7-9%
Lepton selection efficiency 7-8%
b-tagging efficiency 6-15%
b mistag 4-7%
Fac. and renorm. scales 10-25%
Integrated luminosity 2.7%
Monte Carlo statistics 1/

√
NMC

Table 7.2: Summary of instrumental and theoretical sources of uncertainty on the
MC-based background prediction.

certainties are displayed as percentages in Figure 7.22. Additionally, the correction
factors have associated systematic uncertainties originating from the scale factor
calculation procedure, as discussed in Section 7.4. These are small compared with
the statistical uncertainty in most bins.
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Figure 7.22: Statistical uncertainties on the tt̄+jets (left), W(→ `ν)+jets (right), and
Z(→ νν)+jets (bottom) correction factors, expressed as a percentage.

Each closure test performed in the analysis control regions is used to assess un-
certainty on some aspect of the background modeling. The closure tests and the
approximate sizes of the resulting uncertainties are listed in Table 7.3. Uncertain-
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ties can either be correlated among bins (in which case they are governed by a single
nuisance parameter in the likelihood) or uncorrelated (in which case an independent
nuisance parameter is assigned for each search bin); we indicate this in the table.

Uncertainty source Background process(es) Typical uncertainty size Correlated?
One-lepton closure test (MR) tt̄+jets, W(→ `ν)+jets 5-100% N
One-lepton closure test (R2) tt̄+jets, W(→ `ν)+jets 5-50% N
tt̄ dilepton closure test 2` tt̄+jets 0-30% N
Veto lepton / tau closure tests tt̄+jets, W(→ `ν)+jets 0-30% N
γ+jets vs. W+jets scale factors Z(→ νν)+jets 0-30% Y
QCD systematic QCD 87% Y

Table 7.3: Summary of systematic uncertainties estimated in analysis control re-
gions. The rightmost column indicates whether the uncertainty is correlated or
uncorrelated from bin to bin.

7.8 Comparison with the fit-based method

This completes the description of the MC-based background prediction for the 2015
razor search. We now compare the MC-based prediction to that obtained using the
fit method described in Chapter 6. A bin-by-bin comparison of the two predictions
is provided in Figures 7.23-7.25.

In most analysis categories the fit-based and MC-based predictions agree within
uncertainty. The most significant discrepancies are observed in the last MR bin in
the Muon Multijet 0 b-tag category, and in the Electron Multijet 2 and ≥3 b-tag
categories (which are fit simultaneously, as described in Section 6.5). In both cases,
the difference is traced to a fluctuation in data in the MR sideband, which pulls
the tail of the fit too high or too low. These deviations reflect the fact that the fit
function ansatz for the razor background induces strong correlations among search
bin predictions.

We take the good agreement between the fit-based and MC-based predictions as
evidence of the robustness of the background modeling. We choose to proceed with
the MC-based prediction method for interpretation of the analysis.

7.9 Search region results

The unblinded data and MC-based background prediction in the search region are
shown together in unrolled format in Figures 7.26-7.31. No significant excess over
the predicted SM background is seen.



142

[0
.2

5,
 0

.3
0]

[0
.3

0,
 0

.4
1]

[0
.4

1,
 0

.5
2]

[0
.5

2,
 0

.6
4]

[0
.6

4,
 1

.5
0]

[0
.2

5,
 0

.3
0]

[0
.3

0,
 0

.4
1]

[0
.4

1,
 0

.5
2]

[0
.5

2,
 0

.6
4]

[0
.6

4,
 1

.5
0]

[0
.2

5,
 0

.3
0]

[0
.3

0,
 0

.4
1]

[0
.4

1,
 0

.5
2]

[0
.5

2,
 0

.6
4]

[0
.6

4,
 1

.5
0]

[0
.2

5,
 0

.3
0]

[0
.3

0,
 0

.4
1]

[0
.4

1,
 0

.5
2]

[0
.5

2,
 0

.6
4]

[0
.6

4,
 1

.5
0]

[0
.2

5,
 0

.3
0]

[0
.3

0,
 0

.4
1]

[0
.4

1,
 0

.5
2]

[0
.5

2,
 0

.6
4]

[0
.6

4,
 1

.5
0]

[0
.2

5,
 0

.3
0]

[0
.3

0,
 0

.4
1]

[0
.4

1,
 0

.5
2]

[0
.5

2,
 0

.6
4]

[0
.6

4,
 1

.5
0]

E
ve

nt
s

2−10

1−10

1

10

210

310

 (13 TeV)-12.3 fbCMS
 [GeV]RM

2R

[500, 600] [600, 700] [700, 900] [900, 1200] [1200, 1600] [1600, 4000]

Method A pred. Method B pred.

Multijet 0 b-tag

M
et

ho
d 

B
 / 

M
et

ho
d 

A

0

1

2

3

4

5

[0
.2

5,
 0

.3
0]

[0
.3

0,
 0

.4
1]

[0
.4

1,
 0

.5
2]

[0
.5

2,
 0

.6
4]

[0
.6

4,
 1

.5
0]

[0
.2

5,
 0

.3
0]

[0
.3

0,
 0

.4
1]

[0
.4

1,
 0

.5
2]

[0
.5

2,
 0

.6
4]

[0
.6

4,
 1

.5
0]

[0
.2

5,
 0

.3
0]

[0
.3

0,
 0

.4
1]

[0
.4

1,
 0

.5
2]

[0
.5

2,
 0

.6
4]

[0
.6

4,
 1

.5
0]

[0
.2

5,
 0

.3
0]

[0
.3

0,
 0

.4
1]

[0
.4

1,
 0

.5
2]

[0
.5

2,
 0

.6
4]

[0
.6

4,
 1

.5
0]

[0
.2

5,
 0

.3
0]

[0
.3

0,
 0

.4
1]

[0
.4

1,
 0

.5
2]

[0
.5

2,
 0

.6
4]

[0
.6

4,
 1

.5
0]

[0
.2

5,
 0

.3
0]

[0
.3

0,
 0

.4
1]

[0
.4

1,
 0

.5
2]

[0
.5

2,
 0

.6
4]

[0
.6

4,
 1

.5
0]

E
ve

nt
s

-210

-110

1

10

210

 (13 TeV)-12.3 fbCMS
 [GeV]RM

2R

[500, 600] [600, 700] [700, 900] [900, 1200] [1200, 1600] [1600, 4000]

Method A Pred. Method B Pred.

Multi-Jet 1 b-tag

M
et

ho
d 

B
 / 

M
et

ho
d 

A

0

1

2

3

4

5

[0
.2

5,
 0

.3
0]

[0
.3

0,
 0

.4
1]

[0
.4

1,
 0

.5
2]

[0
.5

2,
 0

.6
4]

[0
.6

4,
 1

.5
0]

[0
.2

5,
 0

.3
0]

[0
.3

0,
 0

.4
1]

[0
.4

1,
 0

.5
2]

[0
.5

2,
 0

.6
4]

[0
.6

4,
 1

.5
0]

[0
.2

5,
 0

.3
0]

[0
.3

0,
 0

.4
1]

[0
.4

1,
 0

.5
2]

[0
.5

2,
 0

.6
4]

[0
.6

4,
 1

.5
0]

[0
.2

5,
 0

.3
0]

[0
.3

0,
 0

.4
1]

[0
.4

1,
 0

.5
2]

[0
.5

2,
 0

.6
4]

[0
.6

4,
 1

.5
0]

[0
.2

5,
 0

.3
0]

[0
.3

0,
 0

.4
1]

[0
.4

1,
 0

.5
2]

[0
.5

2,
 1

.5
0]

[0
.2

5,
 0

.3
0]

[0
.3

0,
 0

.4
1]

[0
.4

1,
 0

.5
2]

[0
.5

2,
 1

.5
0]

E
ve

nt
s

-210

-110

1

10

210

 (13 TeV)-12.3 fbCMS
 [GeV]RM

2R

[500, 600] [600, 700] [700, 900] [900, 1200] [1200, 1600] [1600, 4000]

Method A Pred. Method B Pred.

Multi-Jet 2 b-tag

M
et

ho
d 

B
 / 

M
et

ho
d 

A

0

1

2

3

4

5

[0
.2

5,
 0

.3
0]

[0
.3

0,
 0

.4
1]

[0
.4

1,
 0

.5
2]

[0
.5

2,
 0

.6
4]

[0
.6

4,
 1

.5
0]

[0
.2

5,
 0

.3
0]

[0
.3

0,
 0

.4
1]

[0
.4

1,
 0

.5
2]

[0
.5

2,
 0

.6
4]

[0
.6

4,
 1

.5
0]

[0
.2

5,
 0

.3
0]

[0
.3

0,
 0

.4
1]

[0
.4

1,
 0

.5
2]

[0
.5

2,
 0

.6
4]

[0
.6

4,
 1

.5
0]

[0
.2

5,
 0

.3
0]

[0
.3

0,
 0

.4
1]

[0
.4

1,
 1

.5
0]

[0
.2

5,
 0

.3
0]

[0
.3

0,
 0

.4
1]

[0
.4

1,
 1

.5
0]

[0
.2

5,
 0

.3
0]

[0
.3

0,
 0

.4
1]

[0
.4

1,
 1

.5
0]

E
ve

nt
s

-210

-110

1

10

 (13 TeV)-12.3 fbCMS
 [GeV]RM

2R

[500, 600] [600, 700] [700, 900] [900, 1200] [1200, 1600] [1600, 4000]

Method A Pred. Method B Pred.

Multi-Jet 3 b-tag

M
et

ho
d 

B
 / 

M
et

ho
d 

A

0

1

2

3

4

5

Figure 7.23: Comparison between the MC-based prediction (marked ‘Method A’)
and the fit-based prediction (marked ‘Method B’) in each b-tag category of the
Multijet region. The predictions are shown in unrolled format with dashed vertical
lines delineating bins in MR. The bottom panel of each plot shows the ratio of the
two predictions.

7.10 Signal modeling

The search is interpreted in terms of simplified SUSY models as described in Sec-
tion 3.4. Signal MC samples are generated using MadGraph 5 interfaced with
Pythia 8, with detector simulation performed by the CMS Fastsim framework [36].
The Fastsim MC events are reweighted to correct the efficiencies for identifying lep-
tons and b-jets, and to obtain a distribution of the number of pileup vertices similar
to that in data. An additional correction is applied to compensate for an observed
mismodeling of the ISR jet multiplicity distribution.

Simplified SUSY models

We interpret the null search result as 95% confidence level limits on the pair produc-
tion of heavy gluinos with decays to quarks and the LSP. We consider two scenarios:

• The gluino decays to the neutralino and two third-generation quarks. This
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Figure 7.24: Comparison between the MC-based prediction (marked ‘Method A’)
and the fit-based prediction (marked ‘Method B’) in each b-tag category of the
Muon Multijet region. The predictions are shown in unrolled format with dashed
vertical lines delineating bins in MR. The bottom panel of each plot shows the ratio
of the two predictions.

scenario encompasses the T1tttt and T1bbbb models, as well as T1ttbb with
arbitrary gluino branching ratios to tt̄ χ̃0

1, bb̄ χ̃0
1, and bt̄ χ̃+

1 /t b̄ χ̃
−
1 . We compute

limits for several choices of branching ratios; the considered values are indi-
cated in the diagram in Figure 7.32. In addition to displaying limits for each
of these decay scenarios, we also show a conservative limit that corresponds
to the worst-case limit among the considered branching ratios.

• The gluino decays to the neutralino and two first- or second-generation quarks.
This corresponds to the T1qqqq simplified model.

The masses of the gluino and the LSP in the simplified models can be specified
arbitrarily. Limits on each model are computed for a two-dimensional grid of
(mgluino,mLSP) values, and interpolation is performed to obtain the smooth exclu-
sion contours shown in the exclusion plots. Where relevant, the lightest chargino
is taken to be 5 GeV heavier than the LSP. Theoretical cross sections for pair pro-
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Figure 7.25: Comparison between the MC-based prediction (marked ‘Method A’)
and the fit-based prediction (marked ‘Method B’) in each b-tag category of the
Electron Multijet region. The predictions are shown in unrolled format with dashed
vertical lines delineating bins in MR. The bottom panel of each plot shows the ratio
of the two predictions.

duction of gluinos are obtained at NLO and next-to-leading logarithmic accuracy
from [129].

Signal systematics

The signal MC is subject to the same instrumental and theoretical uncertainties
as the background MC (see Table 7.2). In addition, there are uncertainties from
the corrections to the Fastsim lepton and b-jet identification efficiencies and to the
distribution of ISR jet multiplicity. The lepton and b-jet uncertainties are typically
less than 10%. The ISR jet uncertainty is 15-30% and affects events with hadronic
recoil of 400 GeV or higher.

Signal contamination

The control samples used in the MC-based background prediction method are de-
signed to be relatively free of SUSY signal events. This is achieved via the mT cut
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Figure 7.26: Observed data counts in each bin of the Multijet 0 (top) and 1 (bottom)
b-tag categories, compared with the MC-based background prediction.
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Figure 7.27: Observed data counts in each bin of the Multijet 2 (top) and ≥3 (bot-
tom) b-tag categories, compared with the MC-based background prediction.
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Figure 7.28: Observed data counts in each bin of the Muon Multijet 0 (top) and 1
(bottom) b-tag categories, compared with the MC-based background prediction.
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Figure 7.29: Observed data counts in each bin of the Muon Multijet 2 (top) and ≥3
(bottom) b-tag categories, compared with the MC-based background prediction.
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Figure 7.30: Observed data counts in each bin of the Electron Multijet 0 (top) and
1 (bottom) b-tag categories, compared with the MC-based background prediction.
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Figure 7.31: Observed data counts in each bin of the Electron Multijet 2 (top) and
≥3 (bottom) b-tag categories, compared with the MC-based background prediction.
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Figure 7.32: Branching ratios of gluinos decaying to third-generation quarks con-
sidered in the interpretation of the analysis. The branching ratios x = BR(g̃ →
bb̄ χ̃0

1) and y = BR(g̃ → tt̄ χ̃0
1) can be freely varied between zero and one; the

branching ratio for mixed decays to two quarks and a chargino is 1 − x − y.

that is applied in all leptonic control regions. Despite this, some SUSY signal events
could populate the control regions in non-negligible quantities. Signal contamina-
tion in the one-lepton tt̄+jets and W(→ `ν)+jets control regions would increase
the number of data events in those samples, which would increase the magnitudes
of the MC correction factors derived in these control regions. This in turn would
increase the number of predicted tt̄+jets and W(→ `ν)+jets events in the search
regions, thus biasing the background estimate.

We account for signal contamination using the reduced efficiency method, which
works as follows. For each SUSY signal considered, we estimate the effect on the
measured MC correction factors due to the presence of signal in the control regions.
The impact on the signal region background prediction is, on average,

∆B = NS,MC ×
∆NC,Data

NC,MC
(7.8)

= NS,MC ×
NC,SUSY

NC,MC
, (7.9)

where NC,SUSY is the expected number of SUSY events in control region. We cor-
rect the background prediction explicitly by subtracting ∆B from it.

If the SUSY signal cross section is µ times the nominal theoretical cross section, the
amount of signal contamination is µ∆B. The predicted yield in the search region is
then

(NS,SM − µ∆B) + µ NS,SUSY (7.10)

= NS,SM − µ(NS,SUSY − ∆B). (7.11)

In the second line, we have rearranged the terms to show that subtracting µ∆B

from the background prediction is equivalent to subtracting ∆B from the nominal
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SUSY signal yield. This demonstrates that the ∆B correction reduces the effective
efficiency of the signal region for SUSY events. In this way, the possibility of signal
contamination leads to worsened limits.

7.11 Limit-setting procedure

Limits are computed using the LHC CLs modified frequentist procedure [130]. The
likelihood function takes the form of a product of Poisson distributions, one for each
search bin. Systematic uncertainties are quantified using nuisance parameters θ
having default values θ̃. Varying a nuisance parameter from its default value causes
the background prediction in one or more bins to change in a manner consistent
with the uncertainty. Constraint terms encoding the probability distributions of
the nuisances parameters, represented schematically by p(θ̃ | θ), are added to the
likelihood. The full likelihood function is

L({xi}|µ,θ) =

nb∏
i=0

Poisson(xi | µ,θ) × p(θ̃ | θ). (7.12)

Here µ measures the SUSY production cross section σ relative to the theoretical
cross section, µ = σ/σtheory.

The likelihood ratio test statistic,

qµ ≡ −2 log
L({xi} | µ, θ̂µ)

L({xi} | µ̂, θ̂)
, (7.13)

is used to assess the compatibility of the data with the background-only and signal-
plus-background hypotheses for a given signal strength [131]. Nuisance parameters
associated with systematic uncertainties in the analysis are dealt with by profiling;
that is, maximizing the likelihood over all possible nuisance parameter values. The
likelihood L({xi} | µ, θ̂µ) is computed by fixing µ and finding the nuisances param-
eter values θ̂µ that maximize the likelihood. L({xi} | µ̂, θ̂) is computed by maxi-
mizing the likelihood over both µ and θ to obtain best-fit values µ̂ and θ̂, under the
constraint 0 ≤ µ̂ ≤ µ. The constraint on µ requires the signal strength to be non-
negative and enforces that the limit resulting from the test is one-sided. Profiling
the nuisance parameters in the test statistic calculation broadens the distribution of
qµ as a function of µ; thus, larger systematic uncertainties decrease the sensitivity
of the search by making it more difficult to discriminate between different values of
µ.



153

To perform the hypothesis test for a particular signal strength µ, we obtain the distri-
butions f (qµ | µ) and f (qµ | 0) of the test statistic under the signal-plus-background
and background-only hypotheses, respectively. These distributions can be approx-
imated by generating many toy MC datasets, or via the asymptotic formulae given
later in this section. We use the asymptotic approach in order to significantly re-
duce the computing time needed to obtain the limits. A comparison with the toy
MC approach is performed for a few signal masses, and the two methods are seen
to give similar results.

In a traditional hypothesis test, we would compute the p-value associated with the
observed data for the signal-plus-background hypothesis,

pµ =

∫ ∞

qobs
µ

f (qµ | µ) dqµ, (7.14)

where qobs
µ is the value of the test statistic on the observed dataset. In the CLs method

we additionally need the p-value under the background-only hypothesis,

p0 =

∫ ∞

qobs
µ

f (qµ | 0) dq0. (7.15)

The quantity CLs is then computed as

CLs ≡
pµ

1 − p0
. (7.16)

The value of µ is adjusted iteratively until the value where CLs = 0.05 is found.
This value of µ is returned by the algorithm as the upper limit on the SUSY signal
strength. Note that, while it is customary to refer to the result of the CLs procedure
as a 95% confidence level limit, the true confidence level is actually higher than
this, due to the division by 1 − p0 in the calculation of CLs [130].

In addition to the observed limit obtained using the data, we also report the ex-
pected limit, defined as the median signal strength that would be excluded under
the assumption that the background-only hypothesis is true. Deviations of the ob-
served limit from the expected limit indicate excesses or deficits in the observed
data compared with the predicted background.

Asymptotic test statistic distributions

In the limit of large dataset size, the distribution of the test statistic qµ for 0 ≤ µ̂ ≤ µ

is [132]

qµ ≈
(µ − µ̂)2

σ2 , (7.17)
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and the best-fit signal strength µ̂ is normally distributed with standard deviation σ
and mean equal to the true strength µ′ of the signal. The approximation in Eq. 7.17,
referred to as the asymptotic approximation for the test statistic, is obtained by
neglecting terms of order 1/

√
N , where N is the dataset size.

The width σ can be approximated with the aid of the Asimov dataset – a hypotheti-
cal dataset in which the contents of each bin are equal to their expected values, and
all nuisance parameters have their nominal values. Letting qµ, A be the value of the
test statistic evaluated on the Asimov dataset, and making the same approximation
as above, we obtain

σ2 ≈
(µ − µ′)2

qµ, A
. (7.18)

Under the asymptotic approximation, the value of CLs can be expressed analytically
as

CLs =
1 − Φ(√qµ)
Φ(√qµ, A −

√qµ)
, (7.19)

where Φ is the standard gaussian cumulative distribution. This can be used to find
the value of µ where CLs = 0.05 without resorting to (often expensive) toy MC
simulation. The expected exclusion limit at confidence level α, and its Nσ error
bands, can be computed as

µup +N = σ(Φ−1(1 − αΦ(N )) + N ). (7.20)

Here the median expected limit is obtained by choosing N = 0.

For small dataset size, the asymptotic approximation does not hold, and it is found
to yield overly optimistic limits [130].

7.12 Limits on simplified gluino model cross sections

In Figure 7.33 we show the expected and observed limits on simplified models of
gluinos decaying to third-generation quarks. The left panel shows exclusion curves
obtained for the branching ratio values indicated in Figure 7.32. The right panel
shows the worst-case limits, which are obtained using the following procedure:

1. For each (mgluino,mLSP) mass point, find the choice of gluino branching ratios
to tt̄ χ̃0

1 and bb̄ χ̃0
1 that gives the worst (highest) expected limit on the signal

strength;
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2. For each mass point, report the observed limit for the choice of branching
ratio determined in step 1.

The limits are generally strongest for gluino decays to b quarks, and weakest for
decays to top quarks. The decay to bt̄ χ̃+

1 /t b̄ χ̃
−
1 leads to poor limits at low χ̃0

1 mass,
where the χ̃0

1 has little momentum either in the χ̃±1 decay frame or in the lab frame,
resulting in low values of Emiss

T and R2. For LSPs with masses of a few hun-
dred GeV, we exclude gluino masses below 1650 GeV assuming decays to bottom
quarks, and below 1600 GeV assuming decays to top quarks.

In Figure 7.34 we show the limits on the T1qqqq model. At low LSP mass, we
exclude gluino masses below about 1400 GeV.

Limits from the fit-based search

To compute limits using the fit-based background prediction, we perform the full-
region fit described in Section 6.3. The fit function parameters b,n,M0

R,R
2
0, and N

are treated as nuisance parameters and allowed to float freely during the calcula-
tion of the test statistic. Systematic uncertainties on the signal template shape are
included in the same way as in the MC-based procedure.

The fit-based method provides expected limits that are nearly the same as those from
the MC-based method. Observed limits from the fit-based method are consistent
with the expected limits within statistical uncertainty.

7.13 T2tt and the ‘top corridor’ region

In addition to considering gluino production, we also use the results of the search to
place limits on the T2tt model of stop production, in which the stop decays into a top
quark and the LSP. This model requires special care when setting limits, particularly
in the region mstop ≈ m χ̃0

1
+ mt . In this ‘top corridor’ region, most of the stop’s rest

energy is converted into the masses of its decay products. Unless the squark is
highly boosted, therefore, the LSP will be produced with very little momentum,
and consequently it will contribute little to the Emiss

T . The signal in this case looks
very similar to a tt̄ event. In particular, it will have a large presence in the one-lepton
tt̄ control region. For this type of signal, correct treatment of signal contamination
is paramount.
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Other issues further complicate the search interpretation for signals in the top cor-
ridor. In particular, because the signal is very similar to the tt̄+jets background, the
limits (or discovery significance) obtained from the search are finely sensitive to
mismodeling by the Fastsim simulation framework. Small differences in, for exam-
ple, the Emiss

T spectrum in Fastsim and full simulation events will be seized upon by
the limit-setting algorithm and used to discriminate signal from background, even
if the difference is an artifact of the simulation. This kind of effect can be corrected
by detailed study of the simulation, but it may not go away entirely and may still
influence the limit results for signals that look very background-like.

We simulated a T2tt signal in the top corridor with the full CMS simulation and
compared it with the corresponding Fastsim sample. In the comparison it was found
that the fast simulation sometimes produces spurious high-pT jets. The presence of
these jets cause Emiss

T to be severely overmeasured; this creates a long tail in the
R2 distribution. For a signal with little true Emiss

T , these mismodeled events drive
the search sensitivity and must be carefully removed.

Another issue is that of MC sample statistics. The analysis has low selection effi-
ciency for signal models with little Emiss

T , so the signal templates used in limit set-
ting may have spikes due to Poisson fluctuations in the MC. Statistical uncertainty
on the MC template is taken into account during limit setting, but nevertheless this
kind of fluctuation can artificially improve the limit. Reweighting the signal MC
events to have the correct distribution of the number of pileup vertices can accentu-
ate this problem by producing events with large weights.

Additionally, the search sensitivity changes strongly with the value of mstop−m χ̃0
1
−

mt , so it is necessary to simulate a large number of signal mass points in the corridor
region in order to faithfully portray the exclusion limits there.

Based on these considerations, it is decided that the interpretation of the search for
T2tt signals in the top corridor region, especially at low squark mass, is too easily
confounded and is not performed for this version of the search. The exclusion limits
for T2tt are displayed in Figure 7.34 with the top corridor region blanked out.
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Figure 7.33: Top: expected and observed 95% CL upper limits on the gluino pair
production cross section under various assumptions on the branching ratios to third-
generation quarks. The two dashed gray lines indicate the locations where mg̃ −

m χ̃0
1

= 25 GeV and 225 GeV, respectively. For mg̃ − m χ̃0
1
< 225 we consider

only the bb̄ χ̃0
1 decay mode of the gluino. Bottom: the worst-case limit among all

considered branching ratios for each choice of gluino and LSP mass.



158

 [GeV]g~m
600 800 1000 1200 1400 1600 1800

 [G
eV

]
10 χ∼

m

0

200

400

600

800

1000

1200

1400

1600

-310

-210

-110

1

CMS  (13 TeV)-12.3 fb

1

0χ∼q q→ g~, g~g~ →pp 

NLO+NLL exclusion

theoryσ 1 ±Observed 

experimentσ 1 ±Expected 

95
%

 C
L 

up
pe

r 
lim

it 
on

 c
ro

ss
 s

ec
tio

n 
[p

b]

 [GeV]
t~

m
100 200 300 400 500 600 700 800 900

 [G
eV

]
10 χ∼

m

0

100

200

300

400

500

-310

-210

-110

1

10

210

CMS  (13 TeV)-12.3 fb

1

0χ∼ t→ t~, t
~
t
~
 →pp 

NLO+NLL exclusion

theoryσ 1 ±Observed 

experimentσ 1 ±Expected 
95

%
 C

L 
up

pe
r 

lim
it 

on
 c

ro
ss

 s
ec

tio
n 

[p
b]

Figure 7.34: Top: expected and observed 95% CL upper limits on the T1qqqq
simplified model of gluino production. Bottom: expected and observed limits on the
T2tt simplified model of squark production, with the ‘top corridor’ region blanked
out as discussed in Section 7.13.
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C h a p t e r 8

MONTE CARLO-BASED RAZOR SEARCH ON 2016 DATA

The MC-based razor search was repeated on the full dataset collected by CMS in
2016. A total of 35.9 fb−1 of data was certified good for physics, more than ten
times the amount certified in 2015. Certain aspects of the analysis were modified to
accommodate this larger dataset and to improve sensitivity to certain SUSY signals.
The primary changes are:

• Analysis categories with fewer than four jets are added in order to increase
sensitivity to squark production

• Events with seven or more jets are placed in separate search categories, in-
creasing sensitivity to signals with multiple top quarks

• The analysis closure tests are performed in low, medium, and high jet multi-
plicity categories to accommodate the new search regions

• Additional corrections are performed in the tt̄+jets, W(→ `ν)+jets, and Z(→
νν)+jets control regions to ensure correct modeling in each b-tag category

• A new QCD background prediction method is introduced

These and other changes are discussed in the following sections. The fit-based
background prediction was not used in this version of the analysis; see Chapter 9
for more details.

A second search for SUSY using razor variables, also on 2016 CMS data, was per-
formed concurrently by another group. This analysis considers only events with jets
tagged as originating from the hadronic decay of a boosted W boson or top quark.
It is an updated version of a similar search performed on Run I data [133]. We
statistically combine our results with those of the other group in order to increase
the sensitivity to certain SUSY signals. The boosted razor analysis is particularly
sensitive to SUSY models with large mass splitting between a heavy particle and
its decay products.
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8.1 Razor and lepton triggers in 2016

The LHC delivered instantaneous luminosities of 1.34 × 1034 cm−2s−1 or higher
throughout much of 2016, exceeding its original design luminosity. At this lumi-
nosity, the rates of the primary razor triggers used in 2015 were unsustainably high.
They were therefore removed from the HLT menu and replaced with the ‘backup’
paths discussed in Section 6.4 and indicated in Figure 6.3. The backup triggers
impose a tighter hyperbolic cut on the razor variables:

(MR + 300) × (R2 + 0.25) > 270 GeV. (8.1)

The efficiency of the tighter razor triggers is measured using the method described
in Section 6.4. The measured efficiencies are displayed in Figure 8.1. To achieve
close to 100% efficiency in the search region and QCD control region, we tighten
the baseline MR cut in the zero-lepton search regions to 650 GeV.

RM
310

2
R

0.15

0.2

0.25

0.3

0.35

0.4

E
ffi

ci
en

cy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 8.1: Efficiency of the 2016 hadronic razor triggers, displayed in bins of
MR and R2.

The inclusive single lepton triggers in the 2016 HLT menu have tighter cuts than
in 2015 as well. We account for this by increasing the selection thresholds for
electrons and muons. In the 2016 search we require tight muons to have pT > 25
GeV and tight electrons to have pT > 30 GeV.
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8.2 MC simulation

A new collection of MC samples is used to model the background for the 2016
search. The samples are generated with a pileup distribution more closely matching
that measured in 2016 CMS data, and are large enough to provide adequate statistics
for a 36 fb−1 analysis.

MC samples simulated at NLO are available for some of the leading background
processes. These yield better ‘out-of-the-box’ agreement with data in some cases,
which makes the needed corrections smaller. We use tt̄+jets samples generated at
NLO with Powheg, and W(→ `ν)+jets samples generated with aMC@NLO. The
NLO tt̄+jets MC is reweighted in order to correct for a known mismodeling of the
top quark pT spectrum.

8.3 Study of T1tttt signal sensitivity

The T1tttt simplified SUSY model features pair-produced gluinos that each undergo
the decay g̃ → tt̄ χ̃0

1. In the 2015 search, most of the sensitivity to this model comes
from the one-lepton search categories, with the zero-lepton categories contributing
relatively little to the limit. We investigate in detail the source of sensitivity to this
SUSY model and modify the search to achieve increased sensitivity to this type of
signal in the hadronic search categories.

Binning in jet multiplicity

The CMS hadronic SUSY analyses with the best sensitivity to T1tttt in 2015 specifi-
cally target this model by including search categories with high jet multiplicity [134,
135]. In contrast, the 2015 razor search does not categorize events according to jet
multiplicity, except to reject events having fewer than 4 jets.

The jet multiplicity distribution for a T1tttt signal is shown in Figure 8.2 for events
passing the baseline razor analysis selection. We find that placing events with
Njets ≥ 7 into dedicated search categories isolates this signal in a region that has
dramatically lower background contamination.

Baseline selection cuts

In Figure 8.3 we show the MR-R2 and HT -Emiss
T distributions for the T1tttt signal

examined above. We see that the baseline cut in the zero-lepton search categories
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(R2 > 0.3) rejects a significant fraction of the signal events. The cut in the one-
lepton categories (R2 > 0.2) accepts substantially more signal events. Meanwhile,
an analysis based on HT and Emiss

T can cut very tightly without rejecting any signal.

Figure 8.2: Distribution of the number of selected jets for a T1tttt signal with
mgluino = 1900 GeV and m χ̃0

1
= 100 GeV. The orange arrow indicates the cho-

sen cut value of Njets ≥ 7.

Figure 8.3: Left: distribution of R2 and MR for the T1tttt model with mgluino = 2000
GeV and m χ̃0

1
= 100 GeV. The baseline R2 cuts for the zero- and one-lepton razor

search regions are indicated by horizontal lines. Right: the distribution of HT and
Emiss

T for the same model.

Figure 8.4 shows the mean values of R2 and Emiss
T for T1tttt events as a function

of the gluino mass, for fixed LSP mass. We see that Emiss
T increases roughly lin-

early with gluino mass, while R2 increases more slowly at higher masses. This
suggests that the R2 threshold in razor variable searches should be kept low even
when considering very high-mass signals.
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Figure 8.4: Left: mean value of Emiss
T for T1tttt events with m χ̃0

1
= 100 GeV, plotted

versus mgluino. Right: mean value of R2 for the same models.

This examination considers signal events only and does not examine the ratio of
signal to background in the search regions. It does not imply anything about the
sensitivity of an analysis based on R2 versus one based on Emiss

T ; it merely suggests
that loosening the baseline R2 cut in the analysis will increase the number of signal
events selected.

8.4 Changes to event categorization

We make two significant changes to the event categorization procedure in light of
the results in Section 8.3. First, we place events with seven or more selected jets
into dedicated search categories, denoted ‘Seven-jet’ and ‘Lepton Seven-jet.’ This
adds additional complexity to the background prediction but significantly improves
the sensitivity to SUSY decay chains with multiple top quarks. Second, we decrease
the baseline R2 cut in the zero-lepton categories from 0.3 to 0.2 at high MR. The
razor triggers, which cut on the product of MR and R2, are fully efficient at R2 = 0.2
for events with MR > 1600 GeV. This is indicated by the turn-on curve shown in
Figure 8.5.

In addition to these changes, we also add a zero-lepton search category, the ‘Dijet’
category, containing events with 2 ≤ Njets ≤ 3. This category is sensitive to produc-
tion of squarks decaying to bottom quarks or light quarks. To keep the number of
search regions to a manageable level, we combine the Muon and Electron Multijet
categories into a single ‘Lepton Multijet’ category.

The full list of search regions considered in the 2016 version of the analysis is given
in Table 8.1.



164

Figure 8.5: Razor trigger efficiency as a function of R2 for events passing inclusive
single electron triggers and having MR > 1600 GeV.

Analysis Category Nleptons Njets b-tag Bins
Dijet 0 2-3 0, 1, ≥ 2
Multijet 0 4-6 0, 1, 2, ≥ 3
Seven-jet 0 ≥7 0, 1, 2, ≥ 3
Lepton Multijet 1 4-6 0, 1, 2, ≥ 3
Lepton Seven-jet 1 ≥7 0, 1, 2, ≥ 3

Table 8.1: List of search categories in the 2016 razor search.

8.5 Combination with boosted razor search

The results of this search are statistically combined with those of a second razor
search that targets SUSY events with hadronically decaying boosted W bosons or
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top quarks. This ‘boosted razor search’ has a favorable signal-to-background ratio
for certain SUSY signals. We make two changes to our search to ensure that the
two analyses can be combined:

• Reject events with W- or top-tagged events from the zero-lepton search cate-
gories, ensuring that the two analyses use non-overlapping event samples

• Change the baseline jet selection cuts to pT > 30 GeV and |η | < 2.4, the
values used in the boosted razor search. (In the 2015 search the cuts are
pT > 40 GeV, |η | < 3.0.)

The searches share nuisance parameters for some systematic uncertainties, such as
the jet energy scale, but can otherwise be treated as independent.

W- and top-tagging is performed on wide jets clustered using anti-kT with R = 0.8.
Jets are tagged if they pass selection criteria on the n-subjettiness variables [136],
the soft drop mass [137], and, in the case of top-tagging, the subjet CSV b-tag
scores. These criteria assess whether a jet contains subjets consistent with the decay
products of a hadronically decaying W or top. Jets with pT > 200 GeV and pT >

400 GeV are considered for W- and top-tagging, respectively.

Rejecting events with W- or top-tagged jets reduces the sensitivity of the search
slightly. This sensitivity is recovered in the combination with the boosted razor
analysis. In some cases the combined analysis yields stronger limits than what is
obtained with our search alone.

8.6 tt̄+jets and W(→ `ν)+jets background predictions

The procedure for correcting the tt̄+jets and W(→ `ν)+jets MC samples is simi-
lar to that described in Section 7.4. The one-lepton control sample is selected in
the same way as before, and is divided into tt̄+jets and W(→ `ν)+jets-enriched
samples. Background contamination is subtracted using the MC estimates, and
correction factors are derived in bins of MR and R2. The NLO tt̄+jets and W(→
`ν)+jets MC samples feature better modeling of the hadronic recoil than the LO
samples, so the needed corrections are generally smaller than they were in the 2015
search. In Figure 8.6 we show the unrolled MR-R2 distributions in the tt̄ and W+jets
one-lepton control samples. In Figure 8.7 we show the correction factors and their
statistical uncertainties.
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Figure 8.6: Unrolled MR-R2 distributions in the tt̄ (top) and W+jets (bottom) one-
lepton control samples. The tt̄+jets simulation prediction in the W+jets control
sample has been corrected using the scale factors derived in the tt̄ one-lepton sam-
ple.
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Figure 8.7: Correction factors derived in bins of MR and R2 for tt̄+jets (top) and
W(→ `ν)+jets (bottom) MC.

An additional correction is then derived for the Njets spectrum. This is performed in
three bins corresponding to the three Njets ranges considered in the search: 2-3 jets,
4-6 jets, and 7 or more jets. The correction is derived separately for the tt̄+jets and
W(→ `ν)+jets MC. The correction factors are listed in Table 8.2.
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Process Njets Correction factor
tt̄+jets 2-3 1.02 ± 0.01
tt̄+jets 4-6 1.02 ± 0.005
tt̄+jets ≥7 1.03 ± 0.03
W(→ `ν)+jets 2-3 0.96 ± 0.004
W(→ `ν)+jets 4-6 0.99 ± 0.01
W(→ `ν)+jets ≥7 1.18 ± 0.25
Z(→ νν)+jets 2-3 1.04 ± 0.01
Z(→ νν)+jets 4-6 0.90 ± 0.01
Z(→ νν)+jets ≥7 0.98 ± 0.06

Table 8.2: Corrections binned in Njets for the tt̄+jets, W(→ `ν)+jets, and Z(→
νν)+jets MC samples. These corrections are applied in addition to the corrections
binned in MR-R2.

Further MR corrections and closure test

After applying the above scale factors to the MC, we observe that the MR distri-
butions in the one-lepton control region for some Njets and Nb−tags categories need
further correction (see Figure 8.8). Instead of assigning a systematic uncertainty
based on observed data-MC discrepancies, as in 2015, we correct these MR spectra
to match the data.

After performing this final set of corrections, we examine the R2 spectra in each
Njets and Nb−tags category and observe no further systematic mismodeling. We
assign a systematic uncertainty on the tt̄+jets and W(→ `ν)+jets backgrounds equal
to the uncertainty on the data/MC ratio in each bin of R2. This uncertainty reflects
how accurately we can measure the level of agreement between data and MC in this
control region.

Dilepton tt̄+jets and lepton veto modeling

The selection of the two-lepton tt̄+jets-enriched control sample is the same as de-
scribed in Section 7.4. The control sample is divided into 2-3, 4-6, and ≥ 7 jet
categories. Instead of checking the data-MC agreement in the MR-R2 plane as in
2015, we perform this check in the one-dimensional MR spectrum, where a small
trend is seen in the ratio of data to MC (see Figure 8.9). We assign a systematic
uncertainty on the dilepton tt̄+jets prediction equal to the size of this trend. The
uncertainty is represented in the likelihood by a single nuisance parameter that in-
terpolates between the MR shape in MC and that measured in data.
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Figure 8.8: MR distributions for events in the one-lepton control region with differ-
ent numbers of selected jets and b-tagged jets. The tt̄+jets and W(→ `ν)+jets MC
predictions are reweighted using MR-R2 and Njets correction factors. Top row:
events with 2-3 jets and 1 (left) or 2 (right) b-tags. Second row: events with 4-
6 jets and 1 (left) or 2 (right) b-tags. Third row: (left) events with 4-6 jets and 3
b-tags, (right) events with ≥ 7 jets and 1 b-tag. Bottom row: events with ≥7 jets
and 2 (left) or ≥ 3 (right) b-tags.
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Figure 8.9: Unrolled MR-R2 distributions in the tt̄ dilepton control sample for
events with 2-3 (top), 4-6 (middle), and ≥7 (bottom) selected jets. The tt̄+jets MC
prediction is reweighted using the correction factors derived in the one-lepton con-
trol sample.
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The region with 7 or more jets suffers from very low statistics, so the check in this
region is performed in a single large bin, in which the overall numbers of data and
MC events are compared.

The modeling of the lepton and tau vetos is checked in a control region defined
the same way as in Section 7.4. As there, we compare the MC prediction with the
data in bins of the lepton pT and η, and correct for the efficiencies of the ∆φR and
mT cuts to estimate the effect of any discrepancies on the zero-lepton search region.
The check is performed separately for events with 2-3, 4-6, and 7 or more jets. We
show the lepton and tau pT distributions in Figure 8.10. A systematic uncertainty
is assigned to cover a small trend in the data/MC ratio in the lepton pT distribution.
Given no significant mismodeling observed in the lepton η distributions, we take
the size of the uncertainty on the data/MC ratio as a further systematic representing
how accurately we can measure the data-MC agreement.

8.7 Z(→ νν)+jets background prediction

The strategy for the Z(→ νν)+jets background prediction is similar to that described
in Section 7.5, with minor changes introduced mainly to support the 2016 analysis
strategy. In the following subsections we discuss the changes and show the results
of each part of the procedure.

γ+jets control region

In the 2016 analysis we do not use prescaled photon triggers to select events for
the γ+jets control region. Instead, we select events passing the loosest unprescaled
photon trigger and require the presence of a photon with pT > 185 GeV. This avoids
the complication of dealing with trigger prescales and does not have a significant
impact on the measured MC correction factors.

As in 2015, the photon purity is estimated using a template fit approach. We change
the fit variable from σiηiη to the charged isolation sum, as this is seen to yield
more robust fits. The purity fits are performed in two-dimensional bins of MR and
R2 for both barrel and endcap photons. Example fits are shown in Figure 8.11. The
measured purity values change smoothly with MR and R2 (see Figure 8.12); they
are observed to vary from 76% to 100% in the barrel and from 63% to 100% in the
endcaps.

The unrolled MR-R2 distributions in data and MC in the γ+jets control region are
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Figure 8.10: Lepton pT distributions in the veto lepton and tau control samples after
the application of all MC correction factors. Top row: veto lepton events with 2-3
(left) and 4-6 (right) jets. Middle row: (left) veto lepton events with ≥7 jets, (right)
veto tau events with 2-3 jets. Bottom row: veto tau events with 4-6 (left) and ≥7
(right) jets.

shown in Figure 8.13, and the MC correction factors are shown in Figure 8.14. As
in the one-lepton control sample, we derive an additional correction binned in Njets.
The needed correction factors are listed in Table 8.2.

We observe that further corrections to the MR distribution in some Njets and Nb−tags cat-
egories are needed (see Figure 8.15). As in the one-lepton control sample, we
correct the MR distributions to match the data in each region. After performing
these corrections, we examine the R2 spectra in each Njets and Nb−tags category.
Observing no further systematic mismodeling by the MC, we take the size of the
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Figure 8.11: Example charged isolation fits used to estimate the purity of
γ+jets events in the photon control region, for photons in the barrel (left) and end-
cap (right) regions.
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Figure 8.12: Fitted γ+jets purity values in each bin of MR and R2 for events with
photons in the barrel (left) and endcap (right) regions.

uncertainty on the data/MC ratio in each R2 bin as a systematic expressing how
accurately we can measure the data-MC agreement.

Closure test in two-lepton control region

The cross sections used to normalize the γ+jets MC prediction in this version of
the analysis are measured at leading order in QCD. We use the two-lepton DY(→
``)+jets enriched control sample to obtain the correct normalization for the Z(→
νν)+jets correction factors derived in the γ+jets sample. This is done by applying
the MR-R2 and Njets correction factors to the DY(→ ``)+jets MC, and determining
the additional scale factor needed to normalize the MC to the data. To account for
possible variation of the ratio between the Z and γ processes with the number of
b-tagged jets, we perform this procedure separately for events with zero, one, and
two b-tags. The measured values of the ratio are listed in Table 8.3.
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Figure 8.13: Unrolled MR-R2 distribution for events in the γ+jets control sample.
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Figure 8.14: Correction factors for Z(→ νν)+jets MC derived in bins of MR and
R2 in the photon control region.
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Figure 8.15: MR distributions for events in the photon control region with different
numbers of selected jets and b-tagged jets. The top, middle, and bottom rows corre-
spond to events with 2-3, 4-6, and ≥7 jets, respectively. The left and right columns
correspond to events with 1 and 2 b-tagged jets, respectively. The γ+jets MC sim-
ulation has been corrected in bins of MR-R2 and Njets.

Nb−tags Correction factor
1 0.88 ± 0.03
2 0.74 ± 0.1
≥3 1.35 ± 0.63

Table 8.3: Corrections of the Z(→ νν)+jets scale factors to account for the variation
of the Z/γ ratio with b-tag multiplicity. The corrections are measured with respect
to events with 0 b-tagged jets.

After normalizing the DY(→ ``)+jets MC to the data, we perform a closure test



176

to check the modeling of the MR and R2 shapes in each Njets category. The one-
dimensional MR distributions are shown in Figure 8.16. We observe small trends
in the data/MC ratio in both MR and R2; the sizes of these trends are taken as
systematic uncertainties on the Z(→ νν)+jets modeling. The 7-jet category suffers
from very limited statistics, so the closure test there is performed in one large bin
to check the overall normalization.
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Figure 8.16: MR distributions in the DY(→ ``)+jets dilepton control region, after
applying all Z(→ νν)+jets MC correction factors to the DY(→ ``)+jets MC, for
events with 2-3 (left), 4-6 (right), and ≥7 (bottom) selected jets.

Cross-check in one-lepton control region

As in 2015, we compare the MR-R2 correction factors derived in the γ+jets control
region (after normalizing them using the data in the DY(→ ``)+jets control region)
with an independent set of correction factors derived in the one-lepton control re-
gion. Because the Z(→ νν)+jets MC sample used in the search region is generated
at LO, we use a LO W(→ `ν)+jets MC sample generated using MadGraph for this
cross-check instead of the NLO sample used in the other analysis regions.

The measured correction factors, and the percentage differences between the cor-
rection factors derived using γ+jets and W(→ `ν)+jets, are shown in Figure 8.17.
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Figure 8.17: : Top: MC correction factors for Z(→ νν)+jets derived in bins of
MR and R2 using the W+jets one-lepton control sample. Bottom: percentage dif-
ference between the scale factors in the top plot and those derived in the photon
control sample.

8.8 QCD background prediction

As in the 2015 search, the QCD multijet background is predicted using transfer
factors ζ that relate the yields in high and low ∆φR regions. However, in the much
larger 2016 dataset it is necessary to model the R2 dependence of the transfer fac-
tors, which was previously neglected. A roughly linear R2 dependence is observed
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in the low-R2 control region and in QCD MC simulation. We model the transfer
factors with a linear function of MR and R2:

ζ̂ (MR,R2) = Q0 + Q1 MR + Q2 R2 + Q3 MR R2, (8.2)

where the parameters Qi are optimized using the data in the low-R2 region. The lin-
ear fit is performed simultaneously in the rectangular regions [650 GeV,1600 GeV]×
[0.2,0.3] and [1600 GeV,4000 GeV] × [0.1,0.2] in the space of MR and R2. We
then use the linear fit to model the QCD transfer factors in the search region by
extending the fitted function to higher R2.

The transfer factor fit is performed separately for the 2-3, 4-6, and ≥7 jet analysis
regions. Due to the limited statistics of the ≥7 jet category, we neglect the MR-
dependence of ζ there and fit only for the R2-dependence. Measured and fitted
transfer factors in the low-R2 region are illustrated in Figure 8.18.

We observe that the transfer factors are nearly independent of the number of b-
tagged jets (see Figure 8.19). To quantify this, we perform the following test. For
N = 0,1,2 and each MR-R2 bin in the low-R2region, we compute the transfer factor
ζ twice, once using events with Nb−tags = N and once events with Nb−tags , N .
We then compute the significance of the difference as

ζN − ζ,N

σ
, (8.3)

where σ is the uncertainty on the numerator. The distribution of significances is
shown for each value of N in Figure 8.20. The pull distributions are approximately
standard normal, with a bias of approximately 0.3σ for N = 0. We increase the
uncertainty on the measured transfer factors by 30 percent in order to cover the
systematic uncertainty on the b-tag independence assumption.

We also observe that the fraction of QCD multijet events at each b-tag multiplicity is
independent (within the available statistics) of ∆φR, MR, and R2. We take advantage
of this fact to increase the statistical precision of the QCD estimate. The number of
QCD multijet events in the signal region can be obtained as

NQCD(low∆φR) = αb × ζ̂ (MR,R2) × NQCD(high∆φR), (8.4)

The proportions αb for b = 0,1,2,≥ 3 and their uncertainties are computed in the
low-R2 QCD sideband region for each jet multiplicity category.
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Figure 8.18: One-dimensional slices showing the QCD transfer factors ζ and the
fitted ζ values in the low-R2 sideband region. The top, middle, and bottom rows
show the transfer factors for events with 2-3, 4-6, and ≥7 jets, respectively. The
left column shows the lowest MR bin, which extends from 650 to 900 GeV for the
seven-jet category and from 650 to 800 GeV for the other categories.

Cross-checks of QCD modeling

We perform two checks to ensure that the QCD prediction method describes the
transfer factors adequately in the search region. First, we perform the transfer fac-
tor fit in QCD MC and compare the fitted transfer factors with those obtained in
simulation at high R2. Because of limited sample statistics in the QCD MC simu-
lation, this test is performed inclusively in the number of selected jets. The results
are illustrated in Figure 8.21; they show good agreement between the fit and the
measured transfer factors.
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Figure 8.19: Bar plot showing the QCD transfer factors computed in each bin of
MR and R2 in the 2-3 jet category for events with zero (red), one (green), two (blue),
or any number (black) of b-tagged jets. The four colored bars in each group are
generally consistent in height with one another, which indicates the independence
of the QCD transfer factors of the number of b-tags.

Figure 8.20: Pull distributions indicating the significance of the difference between
QCD transfer factors computed using events with different numbers of b-tagged
jets.

The region 550 < MR < 650 GeV is not part of the analysis search region, but
the razor triggers are fully efficient there for R2 > 0.3. For the second cross-check
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Figure 8.21: Observed and predicted QCD transfer factors plotted in slices of
MR for QCD MC in the high R2 region. The example slices correspond to the
MR bins 650-800 GeV (upper left), 800-1000 GeV (upper right), 1400-1600 GeV
(lower left), and 1600-4000 GeV (lower right).

of the QCD method, we use this region to check the predicted QCD transfer fac-
tors. The comparison between the measured and predicted transfer factors is shown
in Figure 8.22 for each jet multiplicity category. We observe that the linearity as-
sumption holds in the high-R2 region and that the fit function describes the transfer
factors accurately there.

8.9 Systematic uncertainties on the background prediction

The set of instrumental and theoretical uncertainties considered is similar to that
in the 2015 search. These uncertainties are summarized in Table 8.4. The un-
certainties on the MR-R2 MC correction factors for tt̄+jets, W(→ `ν)+jets, and
Z(→ νν)+jets are shown as percentages in Figure 8.23. Uncertainties estimated
based on closure tests in the analysis control regions are listed in Table 8.5.
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Figure 8.22: Comparison of the QCD transfer factors with the fit-based predictions
in the region 550 < MR < 650 GeV for the 2-3 (left), 4-6 (right), and ≥7 (bottom)
jet categories.

Uncertainty source Typical uncertainty size
Jet energy scale 6-16%
Lepton selection efficiency 1-2%
b-tagging efficiency 1-7%
b mistag 2-20%
Fac. and renorm. scales 10-25%
Pileup 1-3%
Integrated luminosity 2.6%
Monte Carlo statistics 1/

√
NMC

Table 8.4: Summary of instrumental and theoretical sources of uncertainty on the
background prediction.

8.10 Search region results

The unblinded data in the Dijet, Multijet, Lepton Multijet, Seven-jet, and Lepton
Seven-jet categories are shown for each b-tag subcategory in Figures 8.24-8.33
along with the MC-based background prediction. The data are consistent with the
standard model predictions. We observe small local excesses in the Multijet 1 and
≥3 b-tag regions, and a notable deficit of events in one bin of the Seven-jet 1 b-tag
region. These are large enough to have non-negligible impacts on some of the limit
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Figure 8.23: Statistical uncertainties on the tt̄+jets (left), W(→ `ν)+jets (right), and
Z(→ νν)+jets (bottom) correction factors, expressed as a percentage.

Uncertainty source Background process(es) Typical uncertainty size Correlated?
One-lepton closure test (R2) tt̄+jets, W(→ `ν)+jets 1-95% N
tt̄ dilepton closure test 2` tt̄+jets 1-12% Y
Veto lepton / tau pT closure tests tt̄+jets, W(→ `ν)+jets 2-50% Y
Veto lepton / tau |η | closure tests tt̄+jets, W(→ `ν)+jets 2-40% N
γ+jets closure test (R2) Z(→ νν)+jets 1-40% N
γ+jets vs. W+jets scale factors Z(→ νν)+jets 0-23% Y
DY(→ ``)+jets dilepton closure test Z(→ νν)+jets 1-25% Y

Table 8.5: Summary of systematic uncertainties estimated in analysis control re-
gions. The rightmost column indicates whether the uncertainty is correlated or
uncorrelated from bin to bin.

plots shown at the end of the chapter, but they are most likely statistical fluctuations
and are expected based on the large number of search bins considered.

8.11 SUSY signal treatment

The limit-setting procedure is the same as in the 2015 search. MC simulation of
SUSY simplified models is again performed using the CMS Fastsim framework.
Some features of the signal simulation require correction or reweighting:

• As in the 2015 search, the Fastsim lepton and b-jet identification efficiencies
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Figure 8.24: Observed data counts in each bin of the Dijet 0 (top) and 1 (bottom)
b-tag categories, compared with the SM background prediction.
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Figure 8.25: Observed data counts in each bin of the Dijet ≥2 b-tag category, com-
pared with the SM background prediction.

are corrected by reweighting the MC events with appropriate scale factors.

• The distribution of the number of pileup vertices in the samples is very dif-
ferent from that in data. The standard pileup reweighting procedure would
produce a highly nonuniform distribution of event weights, and it is not used
for these samples. Instead, we estimate the change in signal acceptance as
a function of pileup using a linear fit to the MC. The fit is used to estimate
the number of signal events expected given the data pileup distribution. Un-
certainty on the event yields from this procedure are propagated to the signal
prediction.

• The fast simulation is observed to occasionally produce spurious jets, as dis-
cussed in Section 7.13. This causes Emiss

T to be mismeasured in a small popu-
lation of events. Simulated events with jets that do not match generator-level
objects, and that have less than 10% of their energy in charged hadrons, are
rejected. This veto eliminates a long Emiss

T tail that is not present in samples
produced with the full CMS simulation.

• We further protect against Emiss
T mismodeling by assigning a systematic un-
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Figure 8.26: Observed data counts in each bin of the Multijet 0 (top) and 1 (bottom)
b-tag categories, compared with the SM background prediction.
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Figure 8.27: Observed data counts in each bin of the Multijet 2 (top) and ≥3 (bot-
tom) b-tag categories, compared with the SM background prediction.
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Figure 8.28: Observed data counts in each bin of the Seven-jet 0 (top) and 1 (bot-
tom) b-tag categories, compared with the SM background prediction.
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Figure 8.29: Observed data counts in each bin of the Seven-jet 2 (top) and ≥3
(bottom) b-tag categories, compared with the SM background prediction.
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Figure 8.30: Observed data counts in each bin of the Lepton Multijet 0 (top) and 1
(bottom) b-tag categories, compared with the SM background prediction.
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Figure 8.31: Observed data counts in each bin of the Lepton Multijet 2 (top) and
≥3 (bottom) b-tag categories, compared with the SM background prediction.
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Figure 8.32: Observed data counts in each bin of the Lepton Seven-jet 0 (top) and
1 (bottom) b-tag categories, compared with the SM background prediction.
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Figure 8.33: Observed data counts in each bin of the Lepton Seven-jet 2 (top) and
≥3 (bottom) b-tag categories, compared with the SM background prediction.
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certainty on the signal prediction equal to the difference in event yields ob-
tained using the generator-level ~pmiss

T vector instead of the reconstructed ~pmiss
T in

the calculation of R2.

8.12 Limits on SUSY simplified models

In Figures 8.34-8.37 we show the 95% CL exclusion limits on the simplified models
T1tttt, T1bbbb, T1qqqq, T5ttcc, T2tt, T2bb, and T2qq. For the T2tt model, we
blank out part of the ‘top corridor’ region due to the considerations discussed in the
previous chapter. For the T2qq model, which features first- or second-generation
squarks that decay to a quark and the LSP, we compute the limit both for the case of
a single accessible squark state and for the case of eight mass-degenerate squarks
(i.e., the SUSY partners of the right- and left-handed up, down, charm, and strange
quarks).

Figure 8.38 shows the limits placed by other CMS SUSY searches on the simplified
models we consider. We see that the limits placed by the combined razor search are
competitive with or slightly better than the other searches for a number of SUSY
simplified models.
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Figure 8.34: Expected and observed 95% CL upper limits on the T1tttt (top) and
T5ttcc (bottom) simplified models of gluino production. The limits are obtained by
combining the results of our search with those of the boosted razor search.



196

 [GeV]g~m
600 800 1000120014001600180020002200

 [G
eV

]
10 χ∼

m

0

500

1000

1500

2000

4−10

3−10

2−10

1−10

1

CMS preliminary  (13 TeV)-135.9 fb

1

0χ∼b b→ g~, g~g~ →pp 

NLO+NLL exclusion

theoryσ 1 ±Observed 

experimentσ 1 ±Expected 

95
%

 C
.L

. u
pp

er
 li

m
it 

on
 c

ro
ss

 s
ec

tio
n 

[p
b]

 [GeV]g~m
600 800 1000 1200 1400 1600 1800

 [G
eV

]
10 χ∼

m

0

200

400

600

800

1000

1200

1400

1600

3−10

2−10

1−10

1

CMS preliminary  (13 TeV)-135.9 fb

1

0χ∼q q→ g~, g~g~ →pp 

NLO+NLL exclusion

theoryσ 1 ±Observed 

experimentσ 1 ±Expected 
95

%
 C

.L
. u

pp
er

 li
m

it 
on

 c
ro

ss
 s

ec
tio

n 
[p

b]

Figure 8.35: Expected and observed 95% CL upper limits on the T1bbbb (top) and
T1qqqq (bottom) simplified models of gluino production.
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Figure 8.36: Expected and observed 95% CL upper limits on the T2tt simplified
models of stop production, with part of the ‘top corridor’ region blanked out as
discussed in Section 7.13. The limits are obtained by combining the results of our
search with those of the boosted razor search.
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Figure 8.37: Expected and observed 95% CL upper limits on the T2bb (top) and
T2qq (bottom) simplified models of squark production. The T2qq plot shows limits
for the hypothesis of a single accessible squark state, and for that of eight mass-
degenerate squarks.
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Figure 8.38: Summary of CMS SUSY exclusion limits on simplified models using
the 2016 dataset. Top row: T1tttt and T1bbbb. Middle row: T1qqqq and T2tt.
Bottom row: T2bb and T2qq [138].
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C h a p t e r 9

TOWARDS FUTURE FIT-BASED SEARCHES

The fit-based approach to background prediction for the razor SUSY search is of in-
terest because its modeling assumptions are complementary to those of MC-based
searches. However, using a fixed functional form for background estimation im-
poses a strong hypothesis on the shape of the background that is difficult to quantify
using systematic uncertainties. In this chapter we explore the challenges of the fit-
based approach in the context of the 2016 CMS dataset. After concluding that the
existing analysis strategy is not viable on a dataset of this size, we present an alter-
native approach to the fit based on gaussian process regression that shows promise
as a future direction for this type of search.

9.1 Reparameterizing the razor fit function

The functional form (Eq. 6.2) chosen to represent the background shape in the razor
search suffers from nonlinear constraints on the four free parameters b,n,M0

R, and
R2

0. We repeat the razor function expression here for convenience:

f (MR,R2) =

(
b
[
(MR − M0

R)(R2 − R2
0)

]1/n
− 1

)
e−bn

[
(MR−M0

R )(R2−R2
0 )

]1/n

. (9.1)

The requirements on the four parameters are:

• b > 0

• n > 0

• M0
R < MR,min

• R2
0 < R2

min

• b[(MR,min − M0
R)(R2

min − R2
0)]1/n > 1

Here MR,min and R2
min are the lower bounds of the fit range in the MR and R2 di-

rections. If the above constraints are not satisfied, the function cannot be used as a
probability density because it is negative or undefined for some values of MR and
R2. Convergence issues when performing the fits on 2016 data are found to stem
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from this problem. During minimization, the point (b,n,M0
R,R

2
0) may enter a for-

bidden region of the parameter space. The minimization routine is unable to escape
these regions, because the gradient and hessian of the likelihood cannot be com-
puted properly there.

We address the issue by defining a new set of fit parameters:

• A = MR,min − M0
R

• B = R2
min − R2

0

• P = b(AB)1/n − 1

The fit function can then be expressed in terms of A,B,P, and n as

f (X,Y ) =


(P + 1)

[
(X + A)(Y + B)

AB

]1/n

− 1


 e−n(P+1)

[
(X+A)(Y+B)

AB

]1/n

, (9.2)

with X = MR − MR,min and Y = R2 − R2
min. The function (properly normalized) is

a valid probability density for any choices of A,B,P,n > 0.

Reparameterizing the function in this way yields much more robust fits, because the
minimization procedure is no longer able to push the parameters into the forbidden
regions. The positivity constraint on the fit parameters is easily enforced in RooFit.

9.2 The challenge of increasing dataset size

We perform sideband fits with the reparameterized fit function in all of the 2-3 and
4-6 jet search categories. In each region the fit converges and returns a positive-
definite covariance matrix for the fit parameters. However, the uncertainties on
the fit prediction, which are obtained from the covariance matrix as described in
Section 6.2, are too small to adequately describe the spread of the data. This can
be seen in the nσ distributions in Figure 9.1, which feature a large number of 2-
3σ deviations of the data from the fit, even in the sideband region where the fit is
performed. Example comparisons between fit-based and MC-based predictions on
the 2016 dataset are shown in Figure 9.2. It is seen that the uncertainties on the
fit-based prediction are much smaller than those from the MC-based prediction. A
similar effect is seen when fitting MC simulated samples with both the sideband
and the full fit procedures.
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Figure 9.1: Example plots showing the deviations of the data from the razor fit in
the sideband region. The Multijet 0 b-tag, Dijet 0 b-tag, and Lepton Multijet 2 b-
tag regions are shown in the left, right, and bottom panels, respectively. Each bin
is labeled with the nσ difference between the data and the sideband fit. The green
dotted line delineates the sideband region. Bins in the sideband with no indicated
nσ value have |nσ | < 0.1.

The large significance of the deviations reflects bias in the fit model with respect to
the ‘true’ shape that would be obtained in the limit of infinite data. The fit func-
tion is chosen based on empirical considerations; it is not expected that any choice
of function with a fixed number of parameters will continue to describe the data
well as the size of the dataset grows. The uncertainties shown in Figure 9.1 reflect
uncertainty on the values of the fit parameters within the model but do not express
anything about the validity of the model itself.

One could make the fit model more expressive by adding parameters to the func-
tional form. This would decrease the bias of the model, allowing it to capture a
wider variety of shapes and increasing the uncertainty on the predictions. However,
it is not clear which generalization(s) of the fit function would allow it to better
capture the shape in data. Experiments were performed with a number of different
functional forms, but no function was seen to adequately describe the data in all
analysis categories.
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Figure 9.2: Example plots comparing the fit-based and MC-based background pre-
dictions in the Multijet 0 b-tag (top), Dijet 0 b-tag (middle), and Lepton Multijet 2
b-tag (bottom) regions.
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An additional concern is that the existing fit shape does not describe the data well
in the new search regions that have events with 7 or more jets. The MR distribution
in these regions peaks at a higher value than that in other search categories. This
MR peak, and the very low statistics of these event samples, suggest that dedicated
fit strategies would have to be developed for these analysis regions.

9.3 Nonparameteric background modeling using gaussian processes

As a future direction for fit-based SUSY searches, we propose and test a back-
ground modeling strategy based on the technique of gaussian process (GP) regres-
sion [139]. A GP is a stochastic process that provides a prior distribution over all
possible background function shapes. It is an infinite dimensional prior: any back-
ground shape is theoretically allowed, but some shapes (usually smoothly varying
shapes) are preferred over others. The observed data constrain the set of viable fit
functions and yield a posterior distribution that quantifies the uncertainty in the fit
at each point. Advantages of the GP approach over using a fixed functional family
include:

• It is nonparametric and does not require or assume that the true background
shape is analytically tractable.

• It handles both small and large dataset sizes without overfitting and without
the need to tune the number of model parameters.

• Known information about the covariance structure of the data can be en-
coded into the model, leading to flexible yet ‘physics-aware’ background
models [140].

GP regression is advocated in [140] as an alternative to the use of ‘ad-hoc’ back-
ground functions like Eq. 9.1. The method is demonstrated using data from an
ATLAS dijet resonance search; we will see that fitting in a razor search context
requires some modifications to the procedure described there. A similar nonpara-
metric procedure for background modeling is described in [141] in the context of
the search for the Higgs particle. GPs have been used as a component of a top quark
mass measurement in CMS [142], but otherwise they have not seen much use at the
LHC.
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Problem setup and data

We consider a dataset X = (x1, . . . , xN )T of N events, where each event is repre-
sented by a vector x of high-level observables. We focus on the one-dimensional
case in which xi is the value of MR in the ith event. The two-dimensional case in
which xi is an (MR, R2) pair is not conceptually different. We take the data to be
binned in a fixed, regular grid of B non-overlapping regions. Let U = (u1, . . . , uB)T

be the locations of the bin centers and y = (y1, . . . , yB)T be the number of observed
data counts in each bin.

Our goal is to model the data with a smooth function f (x), treating each binned
observation yi as a noisy observation of the function value f (ui). We use a subscript
notation to denote function evaluation at a set of locations, so, e.g., fU is shorthand
for the vector ( f (u1), . . . f (uB)). The probability distribution p(y | fU) (referred
to as the likelihood or conditional likelihood), which expresses the random jitter of
the data around the background function, is assumed known.

For this study we take all object definitions and selection criteria from the 2016
inclusive razor SUSY search. We model the SM background using semileptonic
tt̄+jets MC generated with Powheg. The background MC events are taken as-is,
with no reweighting to correct the pileup distributions, object selection efficiencies,
etc. Events are partitioned into boxes according to the inclusive razor scheme.

Gaussian process regression

A GP is a probability distribution over functions f (x), with the property that for any
fixed collection of locations Z = (z1, . . . , zM )T , the marginal distribution p( fZ) of
the function values at those locations is Gaussian [139]:

p( fZ) = Normal( fZ ; µZ,KZZ). (9.3)

The functions µ and K , which give the mean and covariance of the Gaussian, are
called the mean function and covariance function, respectively. The mean function
expresses prior belief over the shape of f , and is typically taken to be zero. The
GP’s behavior is determined mainly by the choice of covariance function K , which
expresses the degree of correlation between function values f at different locations.
We write KZZ to denote the matrix whose i jth element is K (zi,z j ). The function K

can be freely chosen as long as it yields a positive semidefinite covariance matrix
for any set of input locations.
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The GP can be thought of as an infinite dimensional generalization of the Gaus-
sian distribution: it is an infinite collection of random variables f (indexed by the
continuous location variable x) such that any finite subset is distributed as a Gaus-
sian. ‘Nearness’ of two points x1 and x2 is defined by the covariance function. For
example, the commonly used squared exponential covariance function,

KSE(x1,x2) = αe−|x1−x2 |
2/2`2

, (9.4)

specifies that two function values f (x1) and f (x2) are highly correlated if x1 and x2

are close together. A GP with this covariance favors functions f that are spatially
smooth. The characteristic length ` and the base correlation strength α are hyper-
parameters that can take any positive value. The hyperparameters can be treated as
fixed or allowed to vary according to a specified prior distribution.

GP regression is usually formulated as a Bayesian inference procedure, with model
predictions made using the posterior distribution over background function shapes.
In this study we follow the Bayesian approach; however, GPs can be used equally
well in a frequentist setting, treating the GP prior p( fU) as a constraint term in the
likelihood.

In the Bayesian case, we need to obtain or approximate the posterior distribution
over the background function values given the data:

p( fU | y) =
p(y | fU)p( fU)

p(y)
. (9.5)

The numerator in Eq. 9.5 is the product of the likelihood and the prior distribution.
The denominator is the marginal likelihood of the observed data y, integrated over
all model parameters; it is constant with respect to f .

Gaussian likelihood case

We first consider the case of a Gaussian conditional likelihood,

p(y | fU) =

B∏
i=1

Normal(yi ; f (ui), σ2(ui)), (9.6)

where σ2(ui) is the variance of the Gaussian at each location ui. In this model, the
observed bin counts yi are considered to be random Gaussian smearings of the true
function values f (ui). We follow [140] and impose Poisson-like noise based on the
observed bin counts: σ2(ui) = yi.
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The Gaussian conditional likelihood is appropriate when the number of data events
in each bin is large, so that the Poisson distribution of bin counts can be well ap-
proximated by a Gaussian. The reason to make this approximation is that it allows
inference for f to be performed analytically. In particular, the product of the GP
prior and the Gaussian likelihood in Eq. 9.5 is again a Gaussian. The marginal
likelihood p(y) can be computed in closed form:

log p(y) = −
1
2

log det ΣUU −
1
2

(y − µU)T
Σ
−1
UU(y − µU) −

B
2

log 2π, (9.7)

where ΣUU = KUU +σ2
U is the covariance matrix with the Gaussian noise folded in.

The marginal likelihood p(y) quantifies the evidence for the GP model given the
observed data. Maximizing the evidence as a function of the covariance kernel hy-
perparameters (` and α in the case of the squared exponential covariance) yields an
estimate of the most appropriate choice of parameters. Thus, in the Gaussian likeli-
hood case the covariance hyperparameters can be obtained through straightforward
numerical optimization of Eq. 9.7.

Predictions and uncertainties for new data points are also available analytically. The
mean µV | y and variance ΣVV | y of the data at new locations V are given by

µV | y = µV + KVUΣ
−1
UU(y − µU), (9.8)

ΣVV | y = ΣVV − KVUΣ
−1
UUKUV. (9.9)

Because of the matrix inversion, the complexity of these calculations scales as the
cube of the number of observed bins, B.

Performance on MR data

We implement the Gaussian likelihood GP model using the PyTorch numerical
computation library, which provides efficient matrix operations and automated deriva-
tive calculations. To obtain stable performance for matrix inversion and determi-
nant computations, we make use of the Cholesky decomposition of the covariance
matrix:

Σ = AAT , (9.10)

with A a lower triangular matrix with positive diagonal entries. We compute the
log determinant of Σ as twice the sum of the logarithms of A’s diagonal elements.
The matrix products in Eqs. 9.7-9.9 are evaluated without directly evaluating Σ−1

UU;
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instead, we decompose Σ−1
UU as (AT )−1 A−1, and then evaluate the left and right

halves of the matrix product (e.g. KVU(AT )−1 and A−1KUV, for the second term in
Eq. 9.9) separately using a linear algebra solver before multiplying them together.
This improves numerical stability considerably compared with direct inversion of
the covariance matrix.

We first test the GP fit model on the Multijet 1 b-tag category, the analysis region
with the largest number of tt̄+jets MC events. We divide the range 650 < MR <

1200 GeV into 50 equal-size bins and fit the binned data with a GP with a squared
exponential covariance function. The covariance hyperparameters are optimized
using the L-BFGS minimization algorithm [143] provided with PyTorch. Eqs. 9.8
and 9.9 are used to compute and visualize the fitted function values at each location.
We also compute the nσ significance of the data-fit residual in each bin. To evaluate
the method on a region with low event counts, we perform the same procedure using
the Dijet 2 b-tag category, using 30 equal-size bins.

The results for the two analysis categories are shown in Figures 9.3 and 9.4. Ex-
cellent results are obtained with the GP fit in the Multijet 1 b-tag category; the
distribution of nσ values is roughly normal and the GP posterior describes the data
well. On the other hand, the GP results are very poor in the Dijet 2 b-tag category,
particularly in the lowest-count bins.

Figure 9.3: Simulated tt̄+jets data (black points) and GP fit (blue line) using a
Gaussian conditional likelihood in the Multijet 1 b-tag (left) and Dijet 2 b-tag (right)
categories. The light and dark bands around the fit function denote 1- and 2-sigma
uncertainties on the fitted function values. The failure of the fit in the Dijet 2 b-tag
category illustrates that the Gaussian conditional likelihood is not appropriate in the
case of low bin counts.

The failure of the GP fit in the low-statistics category is primarily due to the break-
down of the Gaussian approximation to the binned Poisson conditional likelihood.
In particular, bins with zero counts (which have σ2 = 0) cause the fit to be unstable.
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Figure 9.4: Distribution of nσ significances in the fitted bins in the Multijet 1 b-tag
fit shown in Figure 9.3. The red curve shows a Gaussian fit to the histogram.

Poisson likelihood case

Background modeling in low-count bins can be considerably improved using a GP
with a Poisson conditional likelihood:

p(y | fU) =

B∏
i=1

Poisson(yi ; e f (ui )). (9.11)

The GP prior p( fU) has the same form as above, but now the function f describes
the logarithm of the Poisson mean in each analysis bin. For the case of binned data,
the Poisson likelihood naturally describes the distribution of observed data counts.

Unfortunately, inference in the Poisson GP model is not analytically tractable, and
we must resort to approximate methods. Continuing with the Bayesian approach
used above, we focus on modeling the posterior distribution in Eq. 9.5. Two possi-
ble strategies for inference in this model are:

1. To use a Monte Carlo algorithm to obtain samples from the posterior, and use
the samples to compute quantities of interest (see e.g. [144]).

2. To approximate the posterior distribution as Gaussian, and fit the model by
minimizing the Kullback-Leibler divergence between the approximate and
true posteriors (this is known as the variational approach; see e.g. [145]),

In the following subsections we demonstrate each of these methods on the MR data
and describe their advantages and drawbacks in different use cases.
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Inference using Hamiltonian Monte Carlo

Sampling in Bayesian inference problems is often done using Markov Chain Monte
Carlo (MCMC) algorithms, which are biased random walks that asymptotically
follow the target probability distribution. For this problem we use an MCMC al-
gorithm called Hamiltonian Monte Carlo (HMC) [146] that is suitable for use with
highly correlated random variables. HMC is inspired by Hamiltonian particle dy-
namics: it simulates the evolution of particle trajectories in a system with potential
and kinetic energies defined by

U (θ) = − log p(θ | y), (9.12)

K (φ) = φT M−1φ, (9.13)

where θ is a vector of model parameters that we wish to sample, and φ is a vector
of auxiliary ‘momentum’ variables conjugate to θ. The mass matrix M is arbitrary,
and is taken here to be the identity matrix.

The HMC algorithm proceeds by repeatedly performing the following steps:

1. Sample a new momentum vector φ from its probability distribution, p(φ) =

Normal(φ ; 0,M).

2. Evolve the values of θ and φ forward in time using the following discrete
version of Hamilton’s equations:

φ→ φ −
ε

2
∂U
∂θ

, (9.14)

θ → θ + εM−1φ, (9.15)

φ→ φ −
ε

2
∂U
∂θ

, (9.16)

where ε is a small step size parameter. One iteration of Eqs. 9.14-9.16 is re-
ferred to as a leapfrog step. Several leapfrog steps are carried out in sequence;
the number of leapfrog steps per HMC iteration is given by a free parameter
L.

3. Compute the quantity

r = min
(
1,e[U (θi )+K (φi )]−[U (θ f )+K (φ f )]) , (9.17)

where the subscripts i and f denote the values of the variables before and
after the application of Step 2, respectively.
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4. Accept the HMC update with probability r . If the update is accepted, keep θ
at its final value θ f . Otherwise, reset θ to its old value θi. After doing this,
output the current value of θ as a sample from p(θ | y).

This procedure generates a sequence of values [θ1, . . . , θS], where S is the number
of steps for which the algorithm is run. The algorithm is governed by two free
parameters: the step size ε and the number of leapfrog steps L. We follow [147]
and choose the value of L at each HMC step by sampling an integer uniformly at
random between 1 and a maximum Lmax.

To fit the Poisson GP model, we must find the posterior distributions of the function
values fU and, optionally, the kernel hyperparameters ` and α. Inference is easier
if we change to the ‘whitened’ coordinates gU, defined by

fU = AgU, (9.18)

where A is defined as in Eq. 9.10. These coordinates gU are independent normal
variables under the GP prior.

The authors of [144] are able to successfully sample g and the kernel hyperparam-
eters jointly using HMC. We find that this does not work well for our problem,
because the posterior is a sharply peaked function of ` and α for fixed gU. This is-
sue is investigated in [148], and an alternative sampling algorithm is proposed there
to mitigate it. We choose to defer kernel parameter optimization to a later work,
and instead fix the parameters to values that work well in practice. We therefore
perform HMC using θ = gU only.

To choose the HMC parameters ε and Lmax, we employ a Bayesian optimization
algorithm that iteratively proposes and tests (ε,Lmax) pairs. The algorithm attempts
to identify the pair (ε∗,Lmax∗) that maximizes an objective function, which we
take to be the expected squared jump distance [147], penalized by the number of
leapfrog steps:

ESJD(ε,Lmax) =
E

[
|θk − θk−1 |

2
]

√
Lmax

. (9.19)

The Bayesian optimization algorithm we use is based on a GP fit of log ESJD vs.
(ε,Lmax) and is implemented using the Scikit-Optimize library [149]. We perform
this procedure for 30 iterations at the beginning of each HMC run to identify the
best parameters ε and Lmax for the run.
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Performance on MR data

We test the HMC procedure for the Poisson GP on the simulated data in the Multijet
1 b-tag category, using the same binning as above. We fix the squared exponential
kernel parameters to ` = 200 GeV and α = 200. HMC sampling is initialized
from best-fit gU values obtained using L-BFGS and then run for several thousand
iterations. The first half of the HMC samples are discarded as ‘warm-up’ samples,
and the second half are used to estimate the posterior means and variances of each
f (ui). We also perform the procedure on the Lepton Multijet 2 b-tag category,
which has much lower statistics. Here we use ` = 1000 GeV and α = 200.

The resulting fits are shown in Figure 9.5. We see that the Poisson GP yields fitted
functions that describe the data well in both categories; it works effectively even
when there are many low-count and/or empty bins in data. Note that the uncertainty
bands drawn in the plots capture the uncertainty on the function values fU only, and
do not include the Poisson uncertainty on the observed data. The distribution of nσ

values in the Multijet 1 b-tag category is shown in Figure 9.6; the Poisson GP yields
a similar nσ distribution to the Gaussian GP in this case.

Figure 9.5: Simulated tt̄+jets data (black points) and GP fit (blue line) using a
Poisson conditional likelihood in the Multijet 1 b-tag (left) and Lepton Multijet 2
b-tag (right) categories. The light and dark bands around the fit function denote 1-
and 2-sigma uncertainties on the fitted function values.

Interpolation

A straightforward application of GP regression is to interpolate the values of the fit
function in unobserved or blinded bins. Predictions for f at new locations V are
made in a doubly stochastic fashion. For each HMC sample of gU, we compute
fU = AgU and compute the mean and covariance of fV as

µV | y = µV + KVUK−1
UU( fU − µU), (9.20)
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Figure 9.6: Distribution of nσ significances in the fitted bins in the Multijet 1 b-tag
fit shown in Figure 9.5. The red curve shows a Gaussian fit to the histogram.

KVV | y = KVV − KVUK−1
UUKUV. (9.21)

We can then randomly draw from a Gaussian with this mean and covariance to
obtain a sample of fV. Repeating this for each HMC sample yields a collection of
values that constitute a predictive distribution for fV.

The result of this procedure is illustrated in Figure 9.7 for the Multijet 1 b-tag
category, using 50 bins in the range 650 < MR < 1800. Six bins in the interior
of the fit range are blinded and are not used to fit the GP. The predicted function
values in the blinded bins are displayed on the plot. We see that the GP smoothly
interpolates the missing function values. In the case where a localized signal is
expected to appear on top of a smooth background in a particular location, this
procedure could be used to predict the background in the search bins, using the
surrounding region as a sideband.

Signal extraction

We also investigate the ability of the GP fit to extract a signal of new physics from
data. For simplicity, we assume that the signal shape sU is known exactly. We intro-
duce a parameter ζ that controls the strength of the signal (where ζ = 1 corresponds
to the presence of a signal at its theoretical cross section and ζ = 0 corresponds to
no signal), and use the conditional likelihood

p(yi | f (ui), ζ ) = Poisson(yi ; e f (ui ) + ζ × s(ui)). (9.22)
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Figure 9.7: GP fit to the simulated data in the Multijet 1 b-tag category, with the six
bins between the dashed lines excluded from the fit. The fitted GP is used to predict
the fit function values and uncertainties inside the excluded region.

We then run the HMC algorithm with θ = {gU, ζ }, and use the sampled values of ζ
to estimate the distribution of the signal strength given the observed data.

To demonstrate this method, we inject a signal with a narrow Gaussian shape (width
50 GeV) into the data in the Multijet 2 b-tag category, and perform HMC sampling
to extract the signal strength. An example signal + background fit using this proce-
dure is illustrated in Figure 9.8. We perform this test many times using a variety of
injected signal strengths and observe that the fit is able to extract the true number
of signal events with no observable bias (see right side of Figure 9.8).

We then apply this method to a SUSY signal, using a simulated signal sample from
the T1tttt model with mg̃ = 1800 GeV and m χ̃0

1
= 100 GeV. The test is performed

several times, using new random Poisson draws from the signal template shape in
each trial. Results for two different trials are shown in Figure 9.9. We see that the
GP is able to extract the true signal in some trials, while in other trials the signal
peak is absorbed into the background shape.

To get insight into what is happening in the SUSY signal case, we define a grid of ζ
values and compute the best-fit posterior probability of the GP model at each value
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Figure 9.8: Left: example signal + background fit to the Multijet 2 b-tag simulated
data with a narrow Gaussian signal injected. The black points indicate the binned
data (including the injected signal events). The blue curve and shaded blue bands
indicate the fitted GP background function and its one- and two-sigma uncertainties,
and the green curve shows the sum of the fitted background and fitted signal. The
red shaded distribution shows the true shape of the signal. In the bottom plot is
shown the nσ significance of the data with respect to the fitted signal + background
shape in each bin. Right: scatterplot of the fitted number of signal events (with
uncertainties obtained from HMC samples) versus true number of signal events
across a number of trials with different injected signal strengths.

Figure 9.9: The left and right plots show signal + background fits to the simulated
data in the Seven-jet 2 b-tag category with a SUSY T1tttt signal injected. The plot
style is the same as described in Figure 9.8. In the left plot, the fit identifies the
signal and assigns it the correct strength. In the right plot (which is a different trial
using the same background data and true signal shape), the background function
incorrectly absorbs half of the signal events.
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of ζ . The posterior probability as a function of ζ is shown in Figure 9.10 for three
different realizations of the dataset. We see that, depending on the exact distribution
of signal events in the dataset, the likelihood may have a peak at the true value of
ζ = 1, or it may not.

Figure 9.10: The three plots show scans of the minimum negative log posterior
probability as a function of the hypothesized signal strength for a GP fit to the
Seven-jet 2 b-tag category with a SUSY T1tttt signal injected. Each plot is obtained
using a different random realization of the injected signal. In the left plot, the
minimum posterior value is obtained at a signal strength of 1. In the right plot,
there is a local minimum at 1 but the global minimum is elsewhere. In the bottom
plot, there is no global or local minimum at 1.

This behavior can be understood in the context of the nonparametric nature of the
GP. The GP can, in principle, fit any functional shape. Signals in the data that
match the ansatz of the GP covariance function (in this case, smooth shapes with
a characteristic covariance length scale `) will look background-like and can be
absorbed into the background shape. On the other hand, signals that do not resemble
the background (like the Gaussian signal considered above, which has a width much
smaller than `) cannot easily be fit by the GP and will be identified as signal in the
signal + background fit.

The message we take from this investigation is that when fitting a signal with a GP,
care must be taken to ensure that the signal shape is assigned low probability under
the GP prior. This may be accomplished via optimization of the kernel parameters
(possibly via Bayesian optimization or a similar procedure), or via a creative choice
of covariance function that captures the properties of the background but not the
signal.



217

The GP prior mean function, which we have taken to be zero in the present investi-
gation, could also play a role in improving the GP’s signal extraction capability. For
example, the current razor function (Eq. 9.1) could be used as the GP mean. This
would explicitly encode our knowledge that the background has a falling shape and
may reduce the tendency of the GP to swallow a peaking signal. To take this ap-
proach we would first require a method for fitting GP hyperparameters, which we
were so far unable to do in the Poisson likelihood case. Then the four parameters of
the razor fit function could be treated as GP hyperparameters and allowed to vary
in the HMC sampling procedure.

Inference using a variational approximation

The above MCMC approach to GP inference is appealing primarily because:

• It asymptotically provides samples from the true (intractable) posterior dis-
tribution without placing any assumptions on the posterior shape, and

• It naturally accommodates signal + background fitting as described above.

On the other hand, inference using MCMC is computationally expensive and re-
quires some tuning of the algorithm’s parameters (here ε and Lmax). The posterior
uncertainties can also be underestimated if the Markov chain does not fully con-
verge to the target distribution.

An alternative to MCMC is the so-called variational approach, in which the poste-
rior p( fU | y) is approximated using a tractable parametric distribution, q( fU). In
GP models this is conveniently carried out in an inducing point framework, in which
the fit function values are optimized at locations Z that may or may not coincide
with the bin centers U [145]. We describe this procedure in the next subsection.
The use of inducing points can improve the posterior approximation and makes the
computation more tractable in the case of very large numbers of observed bins. It
also assists in the construction of deep GP models, as described later.

Variational inference in the inducing point framework

We follow [145] in deriving the variational approximation to the GP posterior. We
consider the values of the fit function at the bin locations U, as well as at additional
locations Z that can be chosen arbitrarily. To obtain a tractable estimate of the
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posterior at U, p( fU |Y), we first approximate the distribution of inducing function
values, p( fZ |Y), as a multivariate Gaussian q( fZ):

q( fZ) = Normal( fZ ; m,S), (9.23)

where m is an arbitrary mean vector and S is an arbitrary covariance matrix, to be
optimized during the model fit. The approximate distribution of function values at
the observed locations, which we call q( fU), is then obtained by an integral over Z:

q( fU) =

∫
p( fU | fZ)q( fZ) dfZ, (9.24)

where p( fU | fZ) is Gaussian with mean and covariance given by Eqs. 9.20 and 9.21
respectively. The resulting distribution of f (ui) for a given i is Gaussian with mean
and variance equal to

λ(ui) = µ(ui) + α(ui)T (m − µZ) (9.25)

and
κ(ui) = K (ui,ui) − α(ui)T (KZZ − S)α(ui), (9.26)

respectively, where
α(ui) = K−1

ZZKZui . (9.27)

To fit the model to the data, we must optimize the values of m,S, and the locations
of the inducing points Z. We choose these parameters to minimize the Kullback-
Leibler divergence between the variational posterior q( fU, fZ) and the true poste-
rior,

KL[q | | p] = Eq( fU, fZ)

[
log

p( fU, fZ |Y)
q( fU, fZ)

]
. (9.28)

Minimizing Eq. 9.28 is equivalent to maximizing the following objective function:

L =

B∑
i=1

Eq( f (ui ))
[
log p(yi | f (ui))

]
− K L[q( fZ) | | p( fZ)], (9.29)

where p( fZ) is the GP prior for Z. The expectation value in Eq. 9.29 can in general
be evaluated using MC sampling. In the Poisson likelihood case, it can be evaluated
analytically:

Eq( f (ui ))
[
log p(yi | f (ui))

]
= yiλ(ui) − eλ(ui )+κ(ui )/2. (9.30)

The KL divergence term K L[q( fZ) | | p( fZ)] can also be computed in closed form.
Optimizing the bound Eq. 9.29 yields the best approximation to the true posterior
possible within the chosen parametric family.
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The objective L is a lower bound on the marginal likelihood, p(Y), of the GP
model. One could therefore try to optimize the covariance hyperparameters (e.g. `
and α) via maximization of L, analogously to what was done earlier for the GP
with Gaussian conditional likelihood. However, as noted in [145], L is not a uni-
formly tight bound on p(Y) for all hyperparameter values, so one should not do
this for hyperparameters (such as the SUSY signal strength) for which a rigorous
statistical interpretation is required. Because of this, the variational GP model is
not appropriate for direct signal + background fitting; it should be used only for
interpolation.

Inference for deep GPs

The variational GP framework can be extended in a straightforward way to deep

gaussian processes (DGP). Here we again follow the presentation in [145]. A DGP
consists of L GPs stacked on top of one another, such that the output f l of the lth GP
in the stack becomes the input ul+1 to the (l +1)st GP. The conditional likelihood of
the model is p(yi | f L

i ), where f L
i is obtained by passing the input point ui through

all L layers of the GP.

The DGP can be seen as mapping its inputs into a latent space (ui → uL
i ) and

applying a standard GP (the final DGP layer) on that space. The covariance between
two output function values f L

i and f L
j is given by K L (uL

i ,u
L
j ), where K L is the

last layer’s covariance function. Since the mapping ui → uL
i is nonparametric,

K L (uL
i ,u

L
j ) defines a nonparametric notion of closeness of each pair of input points,

governed by DGP layers 1, . . . , L − 1. By allowing the model to effectively learn
this mapping, the DGP alleviates a central challenge in GP modeling, namely the
need to manually specify the covariance function.

Inference in a DGP can be performed using a variational approximation similar to
that used in the previous section. We define a set of inducing points Zl at each layer
l, and posit a variational posterior for the function values f l

Zl at each layer:

q( f l
Zl ) = Normal( f l

Zl ; ml ,Sl ), (9.31)

where the mean vectors ml and covariance matrices Sl can be chosen freely. To train
the model, we find the values of ml , Sl , and Zl for each l such that the objective

L =

B∑
i=1

Eq( f Li )

[
log p(yi | f L

i )
]
−

L∑
l=1

K L
[
q( f l

Z) | | p( f l
Z)

]
(9.32)
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is maximized. The expectation in the first term is evaluated via Monte Carlo sam-
pling. This is done by generating a standard Gaussian noise variable ε l

i at each DGP
layer and recursively computing

f̂ l
i = λ( f̂ l−1

i ) + ε l
i

√
κ( f̂ l−1

i ), (9.33)

where λ( f̂ l−1
i ) and κ( f l−1

i ) are computed using Eqs. 9.25 and 9.26, respectively,
and the first-layer inputs f̂ 1

i are the locations ui. This procedure yields samples
of f L

i that can be used to approximate the expectation in Eq. 9.32. Because the
stochasticity in the sampling procedure is confined to the variables ε l

i , the computed
expectation can be differentiated with respect to λ( f̂ l−1

i ) and κ( f̂ l−1
i ), and thus, via

the chain rule, with respect to the parameters ml , Sl , and Zl (this is the so-called
reparameterization trick for differentiating stochastic loss functions [150]). This
allows the model to be trained using backpropagation in a similar fashion to an
artificial neural network.

Results

We implement the variational GP and the DGP using PyTorch and test them on the
MR data in various event categories. The best results are obtained by initializing
Z (Zl , for the DGP) to the input data locations U. We also initialize m (mL, for
the DGP) to the log of the number of observed data counts in each bin, and for the
DGP set ml = Zl for l < L so that each internal layer initially acts as the identity
function. Following [145], we set the GP prior mean to the identity function for the
internal DGP layers. Finally, we initialize S and all DGP layer covariances Sl to a
small multiple of the identity.

The techniques described in the previous sections are used to evaluate the neces-
sary matrix products and KL divergences. We use PyTorch’s autodifferentiation to
compute derivatives of Eqs. 9.29 and 9.32 with respect to the model parameters.
We use the Adam optimizer [151] to learn the variational parameters and inducing
point positions, as we find it yields much better performance than L-BFGS for this
task. Numerical stability is improved greatly by scaling all MR values down by a
factor of 1000 and using an appropriately smaller kernel covariance length `. For
the DGP, we use ` = 1,α = 100 for all event categories.

Example variational GP fit results are shown in Figure 9.11, and results using the
DGP are shown in Figures 9.12 and 9.13. For the DGP fits we also illustrate the
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mapping ui → uL
i from the input space into the final DGP layer, to show the ef-

fective covariance structure that is learned. We see that the DGP tends to ‘stretch
out’ some parts of the input space, decreasing the covariance in those regions, and
‘shrink’ other parts of the space, increasing the covariance in those regions. It
also selectively adds additional uncertainty in some regions, particularly at high
MR where bin counts are very low. The effect of this can be seen by comparing
the Multijet 1 b-tag fits in Figures 9.11 (variational GP) and 9.12 (DGP with five
layers). The uncertainties in the DGP case are higher, leading to fewer significant
deviations between the data and the fitted function.

Figure 9.11: Variational GP fits to the Multijet 1 b-tag (left) and Lepton Multijet 3
b-tag (right) razor event categories. The light blue vertical lines in the upper part of
each plot indicate the positions of the fitted inducing points.

Outlook

We have investigated the viability of modeling the background with a GP in searches
for new physics with low-count binned data. The results indicate that inference for
a GP with Poisson conditional likelihood is tractable in this case, and that it yields
background function models that adapt flexibly to different dataset sizes.

The signal extraction tests we performed show that a GP is capable of fitting a
SUSY signal in some cases, but that the procedure can fail if the signal does not
look different enough from the background. The GP therefore does not serve as a
drop-in replacement for the existing razor fit function (Eq. 9.1).

On the other hand, the ability of the GP to interpolate between fitted data points is
potentially a powerful tool for SUSY searches. For example, the CMS H → γγ
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Figure 9.12: Left: Five-layer DGP fit to the Multijet 1 b-tag event category. Right:
Visualization of the mapping from the input space to the output of the penultimate
DGP layer. The light blue vertical lines in each plot indicate the positions of the
fitted inducing points at the last and second-to-last layers, respectively.

Figure 9.13: Left: Three-layer DGP fit to the Dijet 0 b-tag event category. Right:
Visualization of the mapping from the input space to the output of the penultimate
DGP layer. The light blue vertical lines in each plot indicate the positions of the
fitted inducing points at the last and second-to-last layers, respectively.

tagged razor SUSY search [152] models the mγγ spectrum using a number of dif-
ferent ad-hoc functional forms, and must use a complex system of bias tests and in-
formation criteria to determine which function to use in each analysis category. The
region of mγγ around the Higgs mass is blinded and the background fit is performed
in the surrounding region. The GP interpolation method described above could pro-
vide a principled alternative to the current approach to background prediction and
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uncertainty estimation in the blinded bins. The variational GP approach is likely the
preferred technique for this use case, because it is more computationally convenient
than MCMC. Deep GPs also present a promising direction for background model-
ing; their flexible quantification of uncertainty may justify the additional complexity
they introduce. More broadly, we hope that these initial GP fit studies may inspire
or guide the development of other future searches for new physics.



All human wisdom is summed up in two words –
‘Wait and Hope.’

Edmond Dantes, in Alexandre Dumas,
The Count of Monte Cristo

Part IV:

Conclusion
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C h a p t e r 10

OUTLOOK FOR LHC 2018 AND BEYOND

Neither the searches for supersymmetry detailed in this thesis, nor the other CMS
searches summarized in Figure 8.38, provide conclusive evidence for physics be-
yond the standard model. Limits on the masses of gluinos, squarks, and higgsinos in
simplified natural SUSY scenarios are now substantially tighter than those obtained
with the Run I dataset. The consequences for naturalness in the broader context of
the MSSM and beyond are the subject of current study [153].

The situation will be further clarified by future LHC runs. It is expected that the full
CMS Run II dataset (2015-2018) will comprise more than 100 fb−1 of integrated
luminosity. LHC operations through 2022 are expected to yield a grand total of
300 fb−1. After that, the planned high-luminosity LHC (HL-LHC) will run from
approximately 2025 to 2030, yielding up to 3000 fb−1 [154]. One analysis of nat-
uralness in the context of the LHC estimates that 3000 fb−1 of LHC data will be
sufficient to conclusively discover or exclude most natural SUSY scenarios, assum-
ing that the degree of fine-tuning is less than 3%, i.e., if the terms in Eq. 3.21 do not
yield cancelations finer than one part in 30 [155]. This indicates that the next several
years of LHC running should yield a strong statement about whether naturalness is
a useful paradigm for predictions about SUSY.

In the meantime, null results in searches for squarks and gluinos at the LHC have
led to increased interest in other SUSY signatures. Searches for direct electroweak
production of higgsinos have received more attention. The implications of past
searches for scenarios such as RPV and stealth SUSY, which may manifest in lower-
Emiss

T , higher Njets signal events, have been studied in detail [153].

Other searches for exotic particles at the LHC could yet uncover new physics be-
yond the SM, possibly unrelated to SUSY. Strategies such as data scouting that
use the CMS dataset in novel ways can expand the range of searches that can be
performed, increasing the chance of finding a sign of new physics if one exists.
Optimal use of the CMS dataset may also necessitate moving beyond the tradi-
tional HEP analysis techniques. Recent research in pattern recognition and machine
learning has yielded a huge variety of new algorithms for statistical modeling and
identification of signals in data. Studying the applicability of these techniques to
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HEP problems has become a fruitful area of investigation and has the potential to
revolutionize the way we perform data analysis.

We include three appendices to this thesis in which we explore additional topics not
specific to CMS. Appendix A studies the potential of calorimetric devices to pro-
vide picosecond-level time-of-flight information for incident particles. We include
a description of the planned new MIP Timing Detector for the Phase II upgrade of
CMS. Appendix B studies new neural network based particle tracking algorithms,
which have the potential to modify current paradigms for track reconstruction. Ap-
pendix C studies distributed training of machine learning models using large com-
puting clusters. This work offers new tools for large-scale model building to assist
in future development of new statistical techniques for event reconstruction and
analysis.
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A p p e n d i x A

PRECISION TIMING CALORIMETRY FOR LHC RUN II

There has been significant recent interest in precision timing as a tool for event
reconstruction and analysis at particle colliders. It is particularly attractive as a tool
for pileup mitigation in high-occupancy collision events, such as those anticipated
at the planned high-luminosity LHC (HL-LHC).

I participated in beam test experiments in the spring of 2014 aimed at characterizing
the timing properties of LYSO crystal-based calorimeters for use in high-energy
physics applications. This appendix describes these experiments and places them
in their context in the development of precision timing detectors in CMS.

A.1 Motivation: the HL-LHC

After Run II (2015-2018) and Run III (2020-2022), the LHC will undergo a long
shutdown (‘LS3’), during which upgrades will be performed to allow the collider
to achieve a luminosity of 5-8 times its current design value. The upgrade is moti-
vated primarily by the diminishing marginal returns of continuing to run the LHC
at its current luminosity: after 2020, the running time needed to halve the statistical
uncertainty on measurements will be more than ten years [154].

Achieving the HL-LHC’s target luminosity entails increasing the number of pileup
collisions per bunch crossing to as many as 200 (corresponding to 7.5 × 1034

cm−2s−1). In such a collision environment, it becomes much more difficult to dis-
entangle the primary interaction event from the pileup background. The core CMS
reconstruction algorithms, such as PF, degrade signficantly in performance.

Precision timing is a powerful tool for pileup mitigation that has the potential to
recover the present-day performance of CMS PF reconstruction under HL-LHC
conditions. In a HL-LHC bunch crossing, pp interactions will be distributed in
time with an RMS spread of 180-200 ps. If every track and calorimeter deposit in
the event could be tagged with a timestamp with an uncertainty of ~30 ps, parti-
cles with times incompatible with the primary vertex could be flagged as pileup and
rejected. This would reduce the effective number of pileup collisions back to the
level obtained at the current LHC. Equipping CMS with precision timing capabili-
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ties during the Phase II upgrade of the detector during LS3, either by modification
of the current detector and readout electronics or by installation of a dedicated sub-
detector, would therefore have a strong positive impact on physics performance
during the HL-LHC period.

The beam experiments described in the following sections have the aim of bench-
marking the timing performance of photodetectors and scintillating crystals for
high-energy physics applications. Motivated by the discussion above, we use a
time resolution of ~30 ps as a target for particle time-of-flight measurements.

A.2 LYSO crystals and fast photodetectors

In our experiments we consider calorimeters consisting of cerium-doped lutetium
yttrium oxyorthosilicate (LYSO) scintillating crystals interfaced with photodetec-
tors. LYSO crystals are desirable for particle physics experiments due to their short
radiation length (X0 = 1.14 cm), large light yield (30,000 scintillation photons per
MeV), and high radiation tolerance [156]. They also have a very fast rise time (<
72 ps [157]), making them ideal for precision timing applications.

The photodetectors we use for measurement of the LYSO scintillation photons are
microchannel plate photomultiplier tubes (MCP-PMTs) [158]. An MCP-PMT con-
sists of a photocathode, a micro-channel plate (MCP) made up of a large number
of micron-scale glass capillaries, and an anode. Photoelectrons emitted by the pho-
tocathode impinge on the inner walls of the MCP, where they create a cascade of
electrons that strike the anode, yielding a signal. We use MCP-PMTs manufactured
by Hamamatsu and Photek [159] in our experiments.

Digital readout of MCP-PMT pulses is performed using a DRS4 waveform digitizer
evaluation board [160]. The DRS4 unit has a sampling rate of 5 GHz and provides
1024 samples per readout.

The time resolution of a crystal calorimeter like those we consider can be roughly
decomposed into five factors (see Figure A.1), corresponding to jitter from the fol-
lowing processes:

1. The shower development time (the time between the particle’s entry into the
crystal and its first interaction)

2. The conversion of the incident particle’s energy into scintillation light
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3. The propagation of the scintillation photons through the crystal to the pho-
todetector

4. Transit of the signal through the photodetector and its output electronics

5. Digitization of the signal by the DRS4 unit

Figure A.1: Cartoon showing the contributions to the timing resolution of a crystal
calorimeter for an incident photon or electron.

We characterize the time resolution of LYSO crystal calorimeters by studying the
contributions from the first three factors above. The combined time resolution of the
MCP-PMTs and the readout electronics is approximately 20 ps [161]. To determine
the time resolution of the DRS4 unit, light pulses from a picosecond laser are di-
rected at an MCP-PMT. The output of the MCP-PMT is split and sent to two DRS4
input channels. The difference between the two channel times is measured in many
trials. The RMS spread of the time difference, which we take as a measurement of
the DRS4’s intrinsic time resolution, is about 5 ps.

A.3 Beam test experiments in Spring 2014

Our experiments are performed at the Fermilab Test Beam Facility (FTBF) using
beams of electrons with energies ranging from 4 to 32 GeV. Event readout is trig-
gered by a 2 × 2 mm2 scintillator counter placed upstream of the experimental
setup. Electron identification is performed using a Cherenkov detector provided by
the FTBF. All detector elements are placed inside a copper-lined dark box, except
for the Cherenkov detector, which is located in another part of the detector hall.

We carry out measurements on two different LYSO calorimeter setups:

1. A 1.7 × 1.7 × 1.7 cm3 LYSO cube coupled to an MCP-PMT (Figure A.4)
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2. A shashlik-style sampling calorimeter cell (shown in Figure A.2) consisting
of alternating plates of LYSO and tungsten absorber1. Wavelength shifting
(WLS) fibers passing lengthwise through the cell transmit scintillation light
from the tiles to photodetectors on both ends (see Figure A.7). We addition-
ally investigate a setup in which we attach photodetectors directly to the sides
of two adjacent LYSO tiles inside the shashlik cell (Figure A.8), allowing us
to measure the time without the jitter from the WLS fibers (though at the cost
of lower photostatistics).

Figure A.2: Photo of the LYSO-tungsten shashlik calorimeter cell with WLS fiber
readout. The cell contains 28 LYSO crystal plates and 27 tungsten plates.

In each of these setups we use a standalone MCP-PMT, located upstream of the
LYSO calorimeter, to provide a reference for the time-of-flight (TOF) measurement.
This device exhibits a sharp signal pulse (shown on the left side of Figure A.3).
We fit the peak of the signal pulse with a Gaussian function to extract a reference
timestamp. The fit is performed using eight DRS4 samples around the maximum
of the pulse; the mean of the fitted Gaussian is assigned as the timestamp t0.

The LYSO scintillation light produces signal pulses that exhibit a fast rise and a
slower decay (see right side of Figure A.3). To extract a timestamp from a scintilla-

1A calorimeter with cells of this type was proposed for the Phase-II upgrade of the CMS ECAL
endcaps. Its performance was benchmarked here with this application in mind; however, the shashlik
design was ultimately not chosen for the ECAL upgrade.
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tion pulse, we use a linear constant-fraction fit to the rising edge of the pulse. The
fit is performed between 10% and 60% of the maximum pulse height, and the point
at which the fitted line reaches 20% of its maximum value is chosen as the pulse
time t1.

Figure A.3: Left: example Gaussian fit used to assign a timestamp to a pulse from
a standalone MCP-PMT. Right: example constant-fraction fit to the rising edge of
a LYSO scintillation pulse recorded by an MCP-PMT.

Quality cuts are applied on the reference and scintillation pulses to eliminate noise
events. Pulses with amplitude larger than 500 mV saturate the DRS4 input and
are not considered. Pulses smaller than 20 mV are rejected due to the difficulty of
distinguishing them from noise.

TOF measurements using 1.7 × 1.7 × 1.7 cm3 LYSO cube

The LYSO cube calorimeter setup is shown in Figure A.4. A Hamamatsu MCP-
PMT is optically coupled to the cube of LYSO, and a second MCP-PMT is placed
upstream to provide a reference time measurement. Large lead bricks are placed in
front of the MCP-PMT on the LYSO to avoid direct hits by stray electromagnetic
shower particles. A lead layer corresponding to 4.5 X0 is placed in front of the
LYSO cube to act as a radiator.

The small size of the cube results in incomplete containment of the electromagnetic
shower from the incident electron. We measure the energy resolution of the setup
by examining the distribution of the LYSO pulse integral, which is proportional to
the total collected charge. We obtain the energy peak shown on the left side of
Figure A.5 and fit it with a Gaussian function, extracting an energy resolution of
20%.

The TOF measurement is carried out using this setup by extracting the timestamps
t0 and t1 as described above and obtaining the width of the distribution of t1 − t0 in
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Figure A.4: Left: diagram of the experimental setup for the TOF measurement
using a LYSO crystal calorimeter. Right: photo of the setup.

Figure A.5: Histograms of the pulse integral recorded in selected events for the
MCP-PMT coupled to the LYSO crystal cube (left) or the LYSO-tungsten shash-
lik cell with DSB1 fiber readout (right). In the right plot, background events are
included due to misconfiguration of the Cherenkov detector for that run.

a large sample of events. Results for electron beams of different energies are shown
in Figure A.6. We find a best time resolution of 34 ps, for electrons with 32 GeV
beam energy. The results are plotted as a function of beam energy in the left panel
of Figure A.12.
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Figure A.6: Distributions of the measured TOF for the LYSO cube calorimeter,
with fits to a Gaussian function to estimate the time resolution. Results are shown
for electron beams with 4, 8, 16, and 32 GeV energies.

TOF measurements using LYSO-tungsten shashlik cell

The setup for measuring the time resolution of the LYSO-tungsten shashlik calorime-
ter cell with WLS fiber readout is shown in Figure A.7. Readout of the shashlik cell
is tested using both Y11 and DSB1 [162] fibers. The pulse shapes obtained with the
two fiber types are compared in Figure A.9. The DSB1 fibers yield a much faster
rise time (2.4 ns) than the Y11 fibers (7.1 ns); they therefore provide a better choice
for TOF measurements.

For the shashlik cell with DSB1 fiber readout, we obtain the distribution of pulse
integrals shown on the right-hand side of Figure A.5. The distribution shown in-
cludes background from non-electron particles in the beam, due to an issue with the
Cherenkov detector for this run. We obtain an energy resolution of approximately
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Figure A.7: Left: diagram of the experimental setup for the TOF measurement
using the LYSO-tungsten shashlik cell with WLS fiber readout. Right: photo of the
setup.

Figure A.8: Left: diagram of the experimental setup for the TOF measurement
using the LYSO-tungsten shashlik cell with direct side readout by MCP-PMTs.
Right: photo of the setup.

5%.

The TOF measurement is carried out using this setup in the same way as above; re-
sults are shown in Figure A.10 and summarized in the middle panel of Figure A.12.
The best time resolution we obtain is 104 ps. We see from the energy dependence
of the time resolution that the measurement is still in the photostatistics limited
regime, so the resolution could be improved if the light collection efficiency were
increased.
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Figure A.9: Left: average MCP-PMT pulse shapes from the LYSO-tungsten shash-
lik cell read out by Y11 (red) or DSB1 (blue) WLS fibers. Right: comparison of
average MCP-PMT pulses from the shashlik cell with DSB1 fiber readout (blue)
and with direct optical coupling of MCP-PMTs to two LYSO tiles (green).

We also consider direct readout of two adjacent LYSO tiles in the shashlik cell using
MCP-PMTs. This measurement circumvents the WLS fiber readout and the associ-
ated time jitter from photon transit through the fibers, at the cost of decreased photo-
statistics from only reading out two tiles. The setup is illustrated in Figure A.8. The
TOF resolutions measured at different beam energies are displayed in Figure A.11
and plotted as a function of energy in the right panel of Figure A.12. We obtain a
best time resolution of 55 ps. We see again that the measurement is photostatistics
limited; fitting the time resolution with a 1/

√
E term plus a constant, we obtain a

constant term of about 30 ps.

A.4 Proposed MIP timing detector for the CMS Phase II upgrade

The studies detailed in the previous section establish that LYSO-based particle de-
tectors can achieve time resolutions on the order of 30 ps, the desired target for
HL-LHC applications. Recently, LYSO has been chosen as the active medium for
the barrel region of a dedicated MIP timing detector (MTD) for CMS, which will
be installed during LS3 as part of the CMS Phase II upgrade. The MTD, which is
illustrated in Figure A.13, will consist of a thin layer between the inner tracker and
the calorimeters. It comprises a barrel, made of LYSO crystals coupled to silicon
photomultipliers (SiPMs) for readout; and two endcaps, made of low-gain silicon
avalanche diodes (LGADs). Its goal is to achieve hermetic coverage of the inter-
action region for |η | < 3.0 and to provide charged particle timing measurements
with ~30 ps resolution. The choice of LYSO and SiPMs for the barrel part of the
MTD is motivated by its low cost, the maturity of the technology, and its excellent
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Figure A.10: Distributions of the measured TOF for the LYSO-tungsten shashlik
cell with DSB1 fiber readout, with fits to a Gaussian function to estimate the time
resolution. Results are shown for electron beams with 4, 8, 16, and 32 GeV ener-
gies.

Figure A.11: Distributions of the measured TOF for the LYSO-tungsten shashlik
cell direct side readout by MCP-PMTs, with fits to a Gaussian function to estimate
the time resolution. From left to right, results are shown for electron beams with 8,
16, and 32 GeV energies.
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Figure A.12: Timing resolution as a function of electron beam energy for the LYSO
cube calorimeter (left), the LYSO-tungsten shashlik cell with DSB1 fiber readout
(middle), and the shashlik cell with direct side readout of two tiles (right). The data
points in each plot are fit with a 1/

√
E term plus a constant.

timing properties. The choice of LGADs for the endcap timing detector is primarily
motivated by their superior radiation hardness.

The Phase II upgrade of the CMS ECAL barrel [163], and the replacement of
the ECAL and HCAL endcaps with a new High-Granularity Calorimeter (HG-
CAL) [164], will increase the CMS detector’s ability to measure time information
for high-energy showers. However, these detectors alone cannot achieve global
event timing for minimum ionizing particles (MIPs) and reconstructed vertices. The
planned MTD will deliver this by associating high-precision timestamps to tracks
and calorimeter deposits.

The physics impact of a hermetic MIP timing layer has been studied in detail. Per-
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Figure A.13: Diagram of the planned MIP Timing Detector for the CMS Phase II
upgrade. The barrel (gray cylinder) is situated between the tracker and the ECAL,
and the endcaps (orange discs) are installed on the nose of the endcap calorimeters.

forming primary vertex reconstruction using timing information (via a generalized
version of the deterministic annealing algorithm used currently in CMS) reduces
the incidence of vertex merging at 200 pileup from 15% to 1%. Vertex timing
can be combined with individual particle timestamps to enable vertexing of neutral
particles, such as photons in H → γγ events. An illustration of this is given in Fig-
ure A.14, which shows the positions and times of the reconstructed vertices in an
event along with vertex hypotheses for the two photons. In muon identification, tim-
ing can prevent a significant degradation of the muon charged isolation efficiency,
as shown in Figure A.15. Improvements from timing are also seen in studies of
key HL-LHC physics analyses such as searches for H → ττ in vector boson fusion
events, di-Higgs production, and electroweak SUSY particle production.
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Figure A.14: Diagram illustrating a H → γγ event analyzed with the assistance
of time information. Simulated primary vertices are indicated by red dots. Black
markers indicate reconstructed tracks. Yellow dashed lines and blue circles denote
vertices reconstructed without and with timing information, respectively. The green
lines represent vertex positions and times consistent with the two photons from the
Higgs decay. The coincidence of the intersection point of the green lines and a
reconstructed 4-D vertex suggests that this is the vertex of the H → γγ event.
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Figure A.15: Efficiency of the charged isolation requirement on reconstructed muon
candidates in Z → µµ events (top) and in tt̄ events with non-prompt muons inside
jets (bottom). The line density (plotted on the x-axis) is a proxy for the amount
of pileup in the event. The red and blue points indicate the performance with and
without time information from the MTD, respectively.



241

A p p e n d i x B

DEVELOPMENT OF NEURAL NETWORK PARTICLE
TRACKING ALGORITHMS

In this appendix we discuss progress towards the design of a particle tracking algo-
rithm based on an artificial neural network (NNs). We briefly describe the existing
track reconstruction algorithm used in CMS, which is based on a combinatorial
Kalman filter, and discuss reasons to seek a new algorithm for use in the future. We
then introduce a toy track-finding problem and a NN-based algorithm that recon-
structs tracks in that problem using convolutional and recurrent NNs. We conclude
by describing possible future directions for this work.

This study was done in the context of the HEP.TrkX DOE pilot project, a one-
year project that aims to explore machine learning driven solutions to problems in
particle tracking [165].

B.1 Motivation: particle tracking at the HL-LHC

The CMS event reconstruction software identifies particle tracks in the detector us-
ing a two-stage process. In the first stage, track seeds are constructed from triplets
of hits in the pixel tracker. Track seeds are selected based on their geometry, mo-
mentum, and perigee. The number of triplets, and hence the number of candidate
seeds, scales as the cube of the number of tracker hits. Each selected seed is passed
on to the second stage of reconstruction, so the overall performance of the tracking
algorithm depends crucially on the ability to reject spurious triplets while maintain-
ing a low false negative rate. The existing seeding procedure reduces the number of
triplets by a factor of 105.

The second stage of tracking consists of a combinatorial Kalman filter (CKF) algo-
rithm that builds full tracks from seeds [166]. Each seed from the previous stage
becomes a track candidate whose track parameters are initialized using the seed hit
information. A 3-D track is parameterized by its momentum, two angular coordi-
nates, and two impact parameter coordinates – a total of five real numbers. Track
candidates are extended in a layerwise manner as follows:

1. The current track parameters and their covariance matrix are used to extend
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the track candidate to the next tracker layer. Hits in the next layer that are
compatible (within some tolerance) with the track candidate are identified.

2. For each hit identified in step 1, a new track candidate is formed using that hit
and all previous hits in the track. (Thus, the track candidate splits into NSP

candidates, where NSP is the number of compatible hits in the next layer.)

3. Each new track candidate is refit using a Kalman filter to update the track pa-
rameters with the information from the new hit. Low-quality track candidates
are identified and are eliminated from subsequent processing steps.

These steps are repeated for each detector layer. The complexity of the algorithm
is O(N2

SP) − O(N3
SP), depending on the details of the implementation.

Figure B.1 indicates the steps of the current CMS tracking algorithm and the order-
of-magnitude multiplicities expected at each stage at the HL-LHC. The number of
compatible space points NSP at each tracker layer increases linearly with LHC lumi-
nosity, so it is expected that the time needed to run the existing track reconstruction
software will increase quadratically or cubically with the luminosity. With antici-
pated HL-LHC luminosities of 5-10 times the current LHC design luminosity, the
computational requirements of tracking may become prohibitive. One possible way
to mitigate this is to rewrite the CKF algorithm to parallelize or vectorize some parts
of the procedure [167]. This may reduce the time needed to run the algorithm but
does not overcome the inherent quadratic/cubic scaling behavior. A complementary
approach is to explore entirely new algorithms for track reconstruction; this is what
we pursue here.

Figure B.1: Cartoon indicating the steps of the current LHC tracking algorithms
and the object multiplicities expected at each stage at the HL-LHC.
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B.2 A toy particle tracking problem

The full CMS tracker contains millions of channels in a three-dimensional, non-
uniform layout. The KF algorithm must contend with fake and missing track hits,
nuclear interactions between hadrons and the tracker material, and other effects.
When developing new candidate tracking algorithms we find it more convenient
to begin by working on a much simpler toy problem that does not contain the full
complexity of CMS. After identifying algorithms that perform well in the toy envi-
ronment, we move to progressively more realistic problems.

The most basic toy problem we consider is a two-dimensional grid of pixels, which
are each either ‘on’ or ’off.’ We assume no magnetic field, so that particle tracks are
simply straight lines. Tracks are generated by uniformly sampling a start point on
the left edge of the square and an end point on the right. There is no simulated noise;
it is a perfectly ideal system. An example event generated in this toy framework is
shown in Figure B.2.

Figure B.2: Example multi-track event generated within the toy tracking frame-
work.

B.3 Neural network architecture

We experiment with tracking algorithms based on neural networks, which have
shown impressive ability to extract information from images and sequences of
data [168]. NNs are flexible function approximators that consist of alternating
sequences of linear transformations (the parameters of which are learned during
training) and fixed nonlinear functions. A NN-based tracking algorithm could po-
tentially improve upon the current CMS algorithm’s performance in three main
ways:
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1. Speed up the seed-finding step or decrease the number of spurious track
seeds.

2. Improve upon the combinatorial KF, making it more precise and decreasing
the number of track candidates that need to be considered.

3. Change the paradigm entirely, for example by combining seed-finding and
track extension into a single algorithm.

We pursue the third option first, as it has the greatest potential to produce novel
ideas that may be of use later.

We implement an image-recognition NN algorithm that learns to identify tracks in
the toy tracker data and produce real numbers corresponding to the parameters of
each track. In the 2-D case, in the absence of a magnetic field, two parameters
(slope and intercept) are sufficient to define a track. A 3-D generalization of this
model could in principle do the same thing for the five track parameters described
in the previous section.

The NN is implemented in Keras, a lightweight machine learning library built on
the popular Theano and TensorFlow frameworks [169–171]. Keras provides a large
number of modular NN building blocks (called ‘layers’) that can be composed to
produce complex NN architectures. We provide brief descriptions of the types of
NN layers used in the implementation of the track identification model:

• Input layer: the input to the NN is a two-dimensional matrix of ones and zeros
corresponding to the values of the pixels in the toy tracking detector.

• Dense NN layer: takes a fixed-size input vector ~vin, multiplies it by a matrix
of weights W , and adds an optional bias term ~b:

~vout = W~vin + ~b, (B.1)

where ~vout is the output of the layer. The values of W and ~b are arbitrary and
are learned during network training.

• Convolutional layer: takes a two-dimensional matrix Ain as input. Entries in
the matrix are treated as pixel intensities in an image. The output matrix is
obtained by convolving the input with a fixed P × Q filter matrix F:

Aout, i j =

P∑
k=0

Q∑
l=0

Fkl Ain, i+k, j+l . (B.2)
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The convolution procedure is illustrated in Figure B.3. The input matrix can
be zero-padded with P − 1 extra rows and Q − 1 extra columns so that the
output matrix has the same shape as the input. The elements of F are arbitrary
and are learned during network training. The convolutional layer acts as a
feature extractor that detects the presence of particular patterns in the input
image.

• Activation layer: applies a nonlinear function elementwise to its input. Sev-
eral choices of activation function are possible; we make use of two different
ones in our model:

– Hyperbolic tangent: f (x) = tanh(x)

– Rectified linear unit (ReLU): f (x) = x for x > 0, f (x) = 0 otherwise.

Activations are typically applied after each dense or convolutional layer to
add nonlinearity to the network and restrict the range of the output values.

• Max-pooling layer: coarse-grains an input matrix by a specified factor K .
This is done by replacing each K × K patch of the matrix with a single value
equal to the maximum entry in the patch.

• LSTM (long-short-term memory) [172]: a recurrent layer that processes a
sequence ~v1, ~v2, . . . , ~vk of input data. The LSTM has an internal state vector
~h and a memory vector ~C that are initialized to zero (~h0 = ~C0 = ~0). The
memory vector ~C encodes long-term dependencies in the data, enabling the
network to ‘remember’ past inputs longer. For t = 1, 2, . . . , k, the LSTM
carries out the following computation:

~f t ≡ σ(W f [~ht−1,~vt] + ~b f ) (B.3)

~it ≡ σ(Wi [~ht−1,~vt] + ~bi) (B.4)

~ot ≡ σ(Wo [~ht−1,~vt] + ~bo) (B.5)

~Dt ≡ tanh
(
WC [~ht−1,~vt] + ~bC

)
(B.6)

~Ct = ~f t × ~Ct−1 + ~it × ~Dt (B.7)

~ht = ~ot × tanh
(
~Ct

)
. (B.8)

Here [·, ·] denotes vector concatenation and × denotes elementwise mul-
tiplication. The LSTM transformation is parameterized by four matrices
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W f , Wi, WC , Wo and four bias vectors ~b f , ~bi, ~bC , ~bo, which must be learned
during training. The sigmoid function σ is defined by

σ(x) =
1

1 + e−x . (B.9)

Sigmoid and tanh functions in the above equations are applied elementwise to
their inputs. The LSTM operation is illustrated schematically in Figure B.4.
It can be understood as updating the state ~h using information from the input
~vt , with additional context provided by the memory vector ~C. The output of
the LSTM can be either a fixed-length vector (equal to ~hk) or a sequence of
vectors (~h1,~h2, . . . ,~hk ), depending on the desired application.

An NN model is implemented as a set of layers that sequentially process the input
data. For dense and LSTM layers, the size of the output vector(s) must be cho-
sen. For convolutional layers, the number and shape of the filters must be specified.
Each dense, convolutional, or LSTM layer is parameterized by one or more matri-
ces of ‘weights,’ which are optimized during training in order to minimize a loss
function L. The entire network is trained end-to-end, using the backpropagation
procedure [173] to compute the gradient of L with respect to each network param-
eter. The ADAM optimization algorithm [151], an adaptive version of stochastic
gradient descent (SGD), is used to iteratively update the model weights until con-
vergence.

Figure B.3: Diagram illustrating the operations involved in a typical convolutional
NN architecture: convolutions, pooling, and application of a dense (fully con-
nected) NN layer [174].

Single-track model

Our NN model follows the common paradigm of alternating convolution and max-
pooling layers, which progressively filter and down-sample the input to extract
high-level features from it. After the final convolutional layer, the extracted fea-
tures are passed through a dense layer, which has two outputs representing track
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Figure B.4: Diagram of the LSTM operation, with addition, multiplication, and
activation functions indicated. The memory state ~C is represented by the black
horizontal line passing all the way through the cell [175].

parameters (slope and intercept). A diagram of the NN model is shown in Fig-
ure B.5.

Figure B.5: Diagram of the NN architecture used to identify track parameters in
single-track events.
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The loss function that we optimize during training is the squared error,

L( ~f (x),~y) =

2∑
i=1

(
yi − fi (x)

Li

)2

, (B.10)

where ~y and ~f (x) are the vectors of actual and predicted track parameters, respec-
tively, with first and second components corresponding to the intercept and slope
parameters. The input x is a matrix representing the readout of the toy detector, and
~L are length scales that determine the relative importance of each track parameter.
Here we take L1 = 1 and choose L2 so that the slope and intercept parameters con-
tribute equally to the loss. In each iteration of ADAM, a minibatch of B training
examples is generated, and the loss L and its gradient are computed and averaged
over all examples in the batch. The algorithm uses the gradient of L to update the
model weights.

The single-track model is trained on events with one simulated track each. After
training, the model is shown new, randomly generated test events to evaluate its
performance. The average squared loss on test events is 0.016. An example event
and the model’s prediction are shown in Figure B.6.

Figure B.6: Left: example single-track event generated in the toy tracker frame-
work. Right: visualization of the model prediction for the track.

To test the robustness of the model to random noise, we retrain it using generated
single-track events in which each ‘off’ pixel in the detector is turned on with prob-
ability p. An example event and model output are shown for p = 0.3 in Figure B.7.
Despite the high level of noise, the model is reliably able to identify the true track.
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Figure B.7: Left: example single-track event generated in the toy tracker frame-
work, with random noise added. Right: visualization of the model prediction for
the track.

Multi-track model

We extend the model to handle events with k tracks by adding a recurrent (LSTM)
unit after the final dense layer. The output of the final dense layer is a vector ~vfeatures

of high-level features extracted from the input image. This vector is replicated sev-
eral times and repeatedly fed into the LSTM: in the notation of Section B.3, we take
~v1 = ~v2 = · · · = ~vk = ~vfeatures. The LSTM produces a sequence ~f1, ~f2, . . . ~f k of
output vectors, where each ~fi is an (intercept, slope) pair. Intuitively, the changing
memory state ~C of the LSTM can be thought of as a simple attention-like mecha-
nism that focuses on different parts of the input image and remembers which tracks
have already been identified. A diagram of the multi-track NN model is shown in
Figure B.8. To achieve good performance, we increase the size of the dense layer
from 20 to 400 hidden units. The squared error loss function is modified to include
a sum over all k tracks in the event:

L({ ~f j (x)}, {~y j }) =

k∑
j=1

2∑
i=1

(
y ji − f ji (x)

Li

)2

, (B.11)

where y ji denotes the ith parameter of track j, and likewise for f ji (x).

We allow the number k of tracks to vary from event to event. The Keras framework
constrains the LSTM to produce a fixed-size output tensor, so it always produces
track parameters for some maximum number kmax of tracks. However, Keras pro-
vides a masking mechanism that we employ to exclude LSTM outputs past the kth
track from the loss function computation. The model is trained using a dataset in
which the number of tracks in each event is a Poisson random variable with mean
3, capped at a maximum of kmax = 6 tracks.
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Figure B.8: Diagram of the NN architecture used to identify track parameters in
multi-track events. The first few layers (not shown) are similar to those in the
single-track model (Figure B.5).

After training on approximately two million toy events, the model achieves an aver-
age test loss of 1.6. The output of the model on a few example input events is shown
in Figure B.9. We benchmark the model by computing the difference between the
generated and reconstructed slope and intercept parameters for a large number of
events. The distributions of these quantities are shown in Figure B.10.

Visualizing the convolutional filters

During model training, the image filters in each convolutional NN layer learn to
extract specific patterns from the input image. Visualizing these filters can give
insight into what the model has learned.

One way to do this for a given filter is to find an input image that activates the filter
as much as possible. To do this, we start with an input image consisting of random
pixels. We then compute the activation of the filter; in the notation of Section B.3
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Figure B.9: Left: example multi-track event generated in the toy tracker framework.
Right: visualization of the model prediction for the tracks.

Figure B.10: Difference between actual and predicted intercept (left) and slope
(right) parameters in events with up to six tracks for the model shown in Fig-
ure B.8 [165].

this is ∑
i,j

Aout, i j . (B.12)

We compute the gradient of this quantity with respect to the pixel values of the input
image, and perform gradient ascent in this space to find the image that maximizes
the activation. This image illustrates the pattern that most strongly triggers the
convolutional filter.

Example images generated in this way for some convolutional filters in the NN are
shown in Figure B.11. We see several filters that appear to be optimized for finding
track intersections, and others which appear to focus on the left edge of the image,
where track intercepts can be estimated.
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Figure B.11: Images optimized for activation of specific filters in the multi-track
NN model.

B.4 Uncertainty quantification

It is important to obtain well-calibrated estimates of the uncertainties on the track
parameters predicted by the model. After reviewing existing techniques for quan-
tifying the uncertainty on the outputs of machine learning algorithms, we choose
an approach inspired by the photon energy regression used in CMS [176]. In this
approach the model simply has an additional output or outputs that represent the
uncertainty on its predictions. For the multi-track NN discussed above, this means
that the model should have three additional outputs for each track that parameterize
the 2 × 2 covariance matrix Σ of the track parameters. The squared loss function
Eq. B.11 is replaced by a gaussian log likelihood:

L({ ~f j (x)}, {~y j }) =

k∑
j=1

log ���Σ j
��� + (~y j − ~f j (x))T

Σ
−1
j (~y j − ~f j (x)). (B.13)

A diagram of the modified model is shown in Figure B.12.

To achieve a low score on this loss function, the model must output track parameters
that match the true ones, and also output a covariance matrix that faithfully reflects
the accuracy of those track parameters.

Performance

The output of the model on a few sample input events is shown in Figure B.13. For
each track identified by the model, we sample from the track parameter covariance
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Figure B.12: Diagram of the NN architecture used to identify track parameters and
uncertainties in multi-track events.

matrix several times. We plot the samples for each track to demonstrate the model’s
level of certainty. Greater spread in the sampled track predictions corresponds to
larger uncertainty on the track.

To quantify how well-calibrated the uncertainties are, we calculate the distribution
of the Mahalanobis distance,

DM ( ~f (x),~y) =

√
(~y − ~f (x))TΣ−1(~y − ~f (x)). (B.14)

For an n-dimensional normal random variable, D2
M has a chi-square distribution

with n degrees of freedom. We compare the distribution of Mahalanobis distances
with a chi-square using a probability plot, which displays the quantiles of the chi-
square distribution on the x-axis and those of the empirical distribution of D2

M on
the y-axis.

The results are shown in Figure B.14 for single- and multi-track models. For the
single-track model we see that the probability plot is nearly linear, albeit with a
slope that is different from one. For the multi-track model the plot has a slight
curve. Both of these features can be easily fixed through a small deterministic
calibration to produce a probability plot with the correct shape (a line with slope 1).

B.5 Challenges and future work

We encounter two main challenges when attempting to scale the above model to
larger, more realistic tracking datasets:

• Most trackers used in HEP have non-uniform geometry. For example, the
CMS tracker barrel and endcaps have different geometrical layouts and differ-
ent numbers of pixels in each layer. The model considered above is restricted
to rectangular grid-shaped detectors or those on which a grid geometry can
be imposed.
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Figure B.13: Left column: example multi-track events generated in the toy tracker
framework. Right column: visualization of the model predictions and uncertainties
for the tracks.

• As the size of the detector increases, and as the dimensionality increases from
two to three, the required NN size and depth increase, which in turn demands
more computational resources and longer training times.

To deal with the first issue, it is necessary to build a NN that operates on non-
grid input layouts. Recent work on graph convolutional networks may be useful
here [177]. The second issue is one of practicality; the space of possible NN archi-
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Figure B.14: Probability plots comparing a chi-square distribution with two degrees
of freedom with the distribution of the Mahalanobis distance (Eq. B.14) between
the predicted and actual track parameters. The x-axis indexes the quantiles of the
chi-square distribution with two degrees of freedom. The y-axis shows the cor-
responding quantiles of the empirical D2

M distribution. Left: single-track events.
Right: multi-track events.

tectures is enormous and the time needed to find one that works for a problem of
given size is large. If the NN is too large, it may not fit in GPU memory, in which
case the model needs to be distributed across multiple GPUs. Convolutions in 3-D
are considerably more compute-intensive than those in 2-D, and a dedicated 3-D
convolution algorithm that takes advantage of the sparsity of the problem is needed.

Several other avenues of investigation are possible and have been studied by others
in the HEP.TrkX project [165]. Another approach that has been seen to work well
is to encode the tracker hit information as sequences of hit locations, rather than as
images. The event size in this case is proportional to the detector hit occupancy,
rather than the number of pixels in the detector. LSTMs are used to encode the
list of hits into fixed-size vector representations, which can then be used to perform
layerwise track extension or to assign hits to track candidates.
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A p p e n d i x C

DISTRIBUTED MACHINE LEARNING IN A
SUPERCOMPUTING CLUSTER SETTING

In this appendix we discuss the large-scale distributed training of neural network
models for high-energy physics applications, and provide details on a software
framework we implemented for this purpose. The framework, mpi_learn, is avail-
able online 1. Its purpose is to increase the speed and scope of NN training to enable
rapid prototyping of large models used for research.

C.1 Motivation: large-scale training of neural networks

Neural networks are commonly trained using stochastic gradient descent (SGD) or
one of its variants. These algorithms compute gradients of a loss function L on
batches of training data and iteratively update the model parameters ~w using the
gradient information. The backpropagation procedure [173] allows efficient com-
putation of the derivative of the loss function with respect to any given model pa-
rameter. In the basic SGD algorithm, the weights ~w are updated along the direction
of the gradient:

~w → ~w − η ∇~wL. (C.1)

The learning rate parameter η controls the size of the updates. The above procedure
is iterated until a minimum of the loss function is found.

The rate of training is limited by the time needed to compute the gradient of the loss
function. Most machine learning software libraries are capable of exploiting the
parallel computing capabilities of a graphics processing unit (GPU), which can per-
form the needed matrix multiplication and addition operations much more quickly
than an ordinary CPU. This can dramatically decrease the amount of time needed
for model training.

If one has access to several compute nodes with GPUs, or many GPUs on one node,
training can be further accelerated using distributed training algorithms. These al-
gorithms, discussed in Section C.3, require processes or nodes to share data with
one another. Often one node (the ‘master’) coordinates the actions of several ‘worker’

1https://github.com/duanders/mpi_learn
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nodes, which perform the gradient computations needed for SGD. Scientific re-
searchers may have access to supercomputing clusters with hundreds of compute
nodes, which may be equipped with GPUs. Such systems commonly feature job
submission queues built on systems such as SLURM [178]; a single job may re-
quest and receive access to many nodes on the supercomputer.

We designed a software framework suitable for submission at supercomputing sites
that coordinates distributed NN training across a potentially large number of com-
pute nodes. The framework is implemented using the Message Passing Interface
(MPI) [179], which is a commonly used high-level protocol for communication
between software processes. The code is written in Python using the mpi4py pack-
age [180]. It is built on the popular Keras [169] machine learning library, which
offers a modular interface for building and training NNs.

The MPI protocol is agnostic to the underlying hardware, so the same set of function
calls can be used for communication between processes on the same node and for
communication between nodes. Most supercomputing clusters support MPI and
use it as a primary protocol for running jobs.

As the use of NNs becomes more prevalent in the sciences, convenient access to
distributed training algorithms becomes increasingly important. We designed the
mpi_learn library to be easily usable by anyone who can implement a NN model in
Keras. It is ideal for the use of non-specialists who have access to high performance
computing resources and seek to use them efficiently to train NNs.

C.2 Related work

The mpi_learn package was written in the summer of 2016 to address a perceived
lack of user-friendly distributed training software for NNs. In particular, we sought
an implementation that would easily interface with the Keras library and be suitable
for use in a supercomputing cluster context. This package, written within the MPI
framework, was developed concurrently with similar work on running distributed
training of Keras models with Spark [181].

The Horovod package, released by Uber in late 2017, provides a convenient inter-
face for training Keras models using MPI and fulfills much the same purpose as
mpi_learn [182]. Very recently, features similar to those provided by our package
were added to the PyTorch machine learning framework [183].

We do not claim that the mpi_learn framework is better than any other framework.
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This package was written for practical reasons in the observed absence of other
tools fulfilling the same purpose.

C.3 Distributed training algorithms

The SGD algorithm finds a minimum of the loss function L by a two-step iterative
process. In step one, a ‘minibatch’ of B events is sampled from the available train-
ing dataset. The gradient of the loss function with respect to each model parameter,
∇~wL, is computed on the minibatch. In step two, the model parameters are updated
according to Eq. C.1. The algorithm terminates when a suitable stopping criteria is
met, for example when the loss function’s change is within some tolerance of zero.

Variants of SGD are designed to improve the convergence of the algorithm. Often
the learning rate is made to decrease according to a fixed schedule or in response
to the behavior of the loss. This avoids the situation where the learning rate is too
large and the model parameters oscillate around the minimum of the loss forever
without reaching the lowest point. Other methods assign a ‘momentum’ to gradient
updates, encouraging each weight update to be in the same direction as the previ-
ous one [184]. Adaptive gradient methods such as RMSProp and ADAM assign a
different, changing learning rate to each model parameter [151]. They are attractive
because they require little to no hyperparameter tuning; however, recent work has
pointed out that they sometimes produce models that do not generalize well to new
data [185].

SGD and its variants are inherently sequential algorithms: they require computing
the gradient on one minibatch of data and updating the model parameters before
proceeding to the next minibatch. However, a number of distributed training algo-
rithms have been designed that can efficiently minimize the loss function when data
is divided among several compute nodes running in parallel.

Downpour SGD

In the Downpour SGD algorithm [186], one node is designated the ‘master’ and the
others are ‘workers’ (see Figure C.1). The master node contains a central copy of
the NN model to be trained. The worker nodes each have their own copy of the
model and a fraction of the available training data.

Training proceeds in an asynchronous manner, with each worker performing the
following steps:
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Figure C.1: Training configuration for the distributed learning algorithms consid-
ered in this chapter, consisting of a ‘master’ node and several ‘worker’ nodes that
communicate with it.

1. Sample a minibatch of training data and compute the gradient of the loss
function, ∇~wL.

2. Send the gradient to the master node.

3. Wait for the master to apply the gradient update and reply with the updated
model parameters ~w.

4. Update the worker’s copy of the model with the new ~w, then go back to Step
1.

These steps are shown schematically in Figure C.2. The master node does not
perform any gradient computations; it simply receives the gradients computed by
the worker nodes and applies them in the order they are received. The master node
can perform standard SGD updates, adaptive gradient updates, or any other desired
update scheme, using the gradients that it receives.

The advantage of this asynchronous approach to master-worker communication is
that performance does not suffer if some nodes are slower than others. Faster nodes
will simply send gradients more frequently than slower ones; there is no need to
wait for the slow nodes to catch up. This contrasts with synchronous SGD algo-
rithms, in which the master receives gradient information from all worker nodes
simultaneously. In this situation, gradient updates occur at the speed of the slowest
node in the ensemble.

The Downpour SGD algorithm supports model parallelism, in which the NN model
itself is divided into pieces and stored across multiple nodes. The use of multiple
master nodes, each handling a different subset of the model parameters, can reduce
the communication bottleneck between workers and masters. Unfortunately, model
parallelism is not implemented in our current software framework.
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Figure C.2: Schematic representation of the Downpour SGD algorithm.

Elastic Averaging SGD

The Elastic Averaging SGD algorithm also features a master node that exchanges
information with many worker nodes. In this algorithm, worker nodes perform SGD
(or another sequential learning procedure) independently of one another. Every few
iterations, an ‘elastic force’ pulls the worker’s and master’s model weights towards
one another:

~wworker i → ~wworker i − α(~wworker i − ~wmaster) (C.2)

~wmaster → ~wmaster + α(~wworker i − ~wmaster). (C.3)

This elastic update is applied asynchronously to one worker node at a time.

A schematic depiction of Elastic Averaging SGD is shown in Figure C.3. The algo-
rithm allows worker nodes more individual freedom to explore the space of model
parameters. This way they may discover lower minima of the loss function, lead-
ing to better model performance. Elastic Averaging SGD is also communication
efficient compared with the Downpour algorithm, because workers do not need to
synchronize with the master after processing each minibatch [187].

C.4 An MPI-based training framework

The mpi_learn framework implements the Downpour and Elastic Averaging SGD
algorithms described in Section C.3. It is written in Python, and is designed for use
with Keras. Its features are:
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Figure C.3: Schematic representation of the Elastic Averaging SGD algorithm.

• Support for training arbitrary Keras models. The user supplies a Python class
containing instructions for building the Keras model, or a JSON file specify-
ing the model architecture.

• Support for several popular SGD weight update algorithms, including ADAM
and RMSProp.

• A flexible system for loading training data that supports arbitrary Python data
generators.

• Support for most Keras callback functions.

C.5 Benchmarking

We benchmark the performance of the mpi_learn library on two systems:

• A Supermicro server with 28 cores and eight NVidia GTX1080 GPUs. Com-
munication between processes is accomplished via shared memory, as all pro-
cesses are on the same node.
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• The ALCF Cooley GPU cluster, with 126 nodes, each having 16 cores and 1
NVidia K80 GPGPU. Nodes are interconnected with FDR Infiniband [188].

The mpi_learn framework is used to train a recurrent neural network to classify col-
lision events in CMS. The training dataset is created using the Delphes simulation
framework [189]. The model consists of an LSTM network [172] with 20 hid-
den units, followed by a softmax output over three different categories of collision
events. The input data consists of 100 files of 9500 samples each, totaling 50GB.
This model takes several hours to train on a node with a single GPU. We use the
Downpour SGD algorithm for all experiments described here. The purpose of this
study is not to evaluate the performance of the model [190], but rather to evaluate
how much faster this model can be trained when multiple GPUs are utilized.

The model is trained several times with various numbers of worker processes, using
a batch size of 100 samples. The data in the training set is divided evenly among
all workers. Training continues until each worker has processed its training data a
fixed number of times (ten, in this case).

Validation of the model’s accuracy is performed by the master process using a held-
out test set. Validation can be a bottleneck in the training process because it is
performed serially; the frequency of validation can be adjusted as needed to mini-
mize its impact on the total training time.

For each training run, the speedup is computed with respect to the time taken by
mpi_learn using a single worker process. Results are shown in figures C.4 and C.5.

The time needed to train the model with mpi_learn and a single worker process
is also compared to the training time obtained using Keras alone. The times are
similar, indicating that the training overhead from the mpi_learn framework itself
is small.

For up to 10 worker processes, the speedup is roughly linear with the number of
workers. This indicates that the training framework can fully exploit the resources
of a multi-GPU node such as the Supermicro server used here.

The speedup deviates from linearity with increasing number of workers. For 60
worker nodes, we observe a speedup of 30 with respect to the nominal training time
for this choice of batch size. The deviation from linearity is driven by the time
needed for the master process to update the weights of the network and transmit
them back to the workers. Because the frequency of weight updates is inversely
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Figure C.4: Training speedup on the Supermicro server with 8 GPUs, as a function
of the number of workers used for training, with a batch size of 100 samples. The
red diagonal indicates 1:1 speedup.

proportional to the batch size, increasing the batch size can alleviate this bottleneck
and speed up the training procedure, as shown in Table C.1 for the example of 20
worker processes. The larger the amount of validation data, the earlier the linear
speedup with the number of nodes will break, because of the constant amount of
time spent in validation per epoch.

Table C.1: Training speedup obtained with various batch sizes, with respect to a
batch size of 100, with 20 workers training the benchmark model.

Batch Size Speedup
10 0.1

100 1.0
500 3.0

1000 4.1

Model accuracy

As shown in figure C.6, the model accuracy degrades with increased number of
workers. This occurs because of the so-called stale gradient issue: in an asyn-
chronous training setting, workers may compute gradient updates using outdated
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Figure C.5: Training speedup for the benchmark model on the ALCF Cooley cluster
with 1 GPU per node, as a function of the number of workers used for training, using
a batch size of 100 samples. The red diagonal indicates 1:1 speedup.

model parameters, because the worker’s model parameters ~wworker may not be iden-
tical with those of the master. Training on outdated model parameters produces
suboptimal gradient updates, which reduces model performance. The issue can be
mitigated by a suitable choice of SGD momentum [191], or by moving to an algo-
rithm with synchronous gradient updates.
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Figure C.6: Model accuracy after 10 training epochs as a function of the number
of workers used. The model performance slowly decreases at high worker counts
because of workers training on outdated model information.
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