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Abstract

A theory of self-diffusivity in sheared suspensions valid for any particle volume
fraction ¢, Péclet number Pe, and lengthscale of disturbance in ¢ is developed. The
theory is applied to the determination of the full tensor self-diffusivity in a weakly-
sheared (Pe < 1) suspension of hydrodynamically-interacting hard spheres and a
strongly-sheared (Pe > 1) suspension of hard spheres without hydrodynamic inter-
actions, both at ¢ < 1.

The influence of weak Brownian motion alone and in conjunction with a repulsive
interparticle force of hard-sphere type upon the pair—(iistribution function, g(r) where
r is the separation vector of a pair of particles, is analyzed for a suspension of spheres
at Pe > 1 and ¢ < 1. At large Pe, the radial fluxes of pair probability due to
advection and Brownian diffusion balance in a thin O(a Pe™!) boundary layer at
contact, with a the sphere radius. The boundary-layer analyses demonstrate that
Brownian diffusion renders g finite at contact in the absence of interparticle forces,
and that within the boundary layer there is generally a large excess of pair probability
along the compressional axes. By calculation of the bulk normal stress differences in
the case with repulsive forces, it is shown how this asymmetry of the microstructure
yields nonNewtonian constitutive behavior in the limit Pe™! = 0.

Hydrodynamic resistance functions relating the particle and bulk motions to the
bulk isotropic stress are developed. Application of these functions is demonstrated by
calculations of the shear-induced correction to the osmotic pressure and the particle

contribution to the pressure in a sheared lattice.



vii
Pressure-driven flow in a channel at vanishing Reynolds number of a suspension of
particles denser than the suspending fluid has been dynamically simulated by Stoke-
sian Dynamics over ranges of the particle fraction, channel width, and a buoyancy
parameter characterizing the relative strength of the buoyancy to shearing forces.
The predictions of the flow by the suspension-balance model* are in good agreement

with simulation results.

*Nott, P. R. & J. F. Brady 1994 J. Fluid Mech. 275, 157.



viil

Contents

Acknowledgments . . . . .. ... Lo v
Abstract . . . . . . . L e e e e e vi
List of Figures . . e Xii
List of TAbles « « o o o o v e e e e Xix
1 Introductory discussion 1
2 Self diffusion in sheared suspensions 8
2.1 Imtroduction . . . . ... . ... L 11
2.2 Advection and diffusion of an isolated particle . . . . . ... ... .. 21
2.3 Theoretical development . . . . . . .. ... . oo 26
2.3.1 The self-intermediate scattering function . . . . ... ... .. 26
2.3.2 Probability distributions and the ensemble average . . .. .. 28

2.3.3 Initial value of (1n.Fs): short-time self-diffusivity and mean ve-

2.3.4 Perturbation function . . . . .. .. .. ... .. .. ... ... 34

2.3.5 Equation governing the perturbation function fx . .. .. .. 37



2.4

2.5

ix
2.3.6 Thepairproblem . . .. ... ... ... .. ... .. ..... 39
Diffusivity in a weakly-sheared suspension . . ... ... ... .... 42
2.4.1 Steady microstructure and the short-time self-diffusivity in a
dilute suspension . . . . ... ... L L oL 43
2.4.2 The long-time self-diffusivity in a dilute suspension: no hydro-
dynamics . . . .. ... e e e 48
2.4.3 The long-time self-diffusivity in a dilute suspension: hydrody-
DAIMICS + & v v v v v e e e e e e e e e e e e e e 57
2.4.4  Scaling prediction for the long-time self-diffusivity near maxi-
mum paciiing ........................... T4

Summary and concluding remarks . . . . . .. ... oL, 78

Microstructure, rheology, and self diffusion in a strongly-sheared

suspension 85
3.1 Imtroduction . . . . .. . . . .. .. 88
3.2 Governing equations . . . . .. .. ... ... 98

3.2.1 Smoluchowskiequation . . . . . .. ... ... ... ... 98
3.3 Pair-distribution function: weak Brownian motion, no interparticle forces103

3.4

3.5

Pair-distribution function: weak Brownian motion and interparticie

forces. . . . . e 115
3.4.1 No hydrodynamics . .. .. ... ... ... ......... 116
3.4.2 Pair hydrodynamics . . .. ... ... ... ... .. ..... 122

Shear-induced self-diffusivity of hard spheres . . . . . . ... ... .. 130



3.6

The

flow

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

Summary and concluding remarks . . . . . ... oL oL L 138

Appendix. Boundary-layer solution: influence of velocity divergence . 141

pressure moments for two rigid spheres in low-Reynolds-number
145
Introduction . . . . . . . ... 147
Expressions for the pressure moment of a sphere . . . . . . .. .. .. 149
Resistance functions . . . .« o v v vv et 151
The functions XJ; . ... ......... e e e 153
4.4.1 Method of reflections . . . ... .. ... ... 153
4.4.2 Twin multipoleexpansions . . . . . . . ... ... ... .. .. 154
4.4.3 Lubrication theory . . .. ... .. ... ... ......... 155
4.4.4 Arbitrary separations . . . . . . .. ..o 157
4.4.5 Results for Xfﬁ .......................... 158
The functions Xffﬁ ............................ 158
4.5.1 Method of reflections . . . . .. .. ... o Lo 158
4.5.2 Twin multipoleexpansions . . . . . .. ... ... ... .... 160
4.5.3 Lubricationtheory . .. ... ... .. ... .. ... .... 162
4.5.4 Arbitrary separations . . . . .. ..o L 163
4.5.5 Results for XS[, .......................... 163
Osmotic pressure in a dilute suspension . . . . . .. .. ... ... .. 163
Suspension pressure in a sheared lattice . . . . . .. .. ... .. ... 173
Concluding remarks . . . . . .. .. ... ... .. L .. 177



xi

5 Pressure-driven flow of a suspension: buoyancy effects 179
5.1 Introduction . . . .. . .. ... ... 181
5.2 Scalinganalysis . . . . .. ... o L 189
53 Simulation . . . . . ... e 192

5.3.1 Simulationmethod . .. ... ... .. ... ... .. ... 192
532 Results. ... ... ... ... ... 199
5.4 Suspension flow modeling . . . .. ... ... ..o 0oL 215
5.4.1 Balance equations and constitutivelaws . . . ... ... ... 218
5.4.2 Model predictions . . . . . . .. .. ..o 229
5.5 Summary and C(;ncluding remarks . . . ... ..o 239

Bibliography . . . . . . ... 242



xi

List of Figures

2.1

2.2

2.3

3.1

The function bo(r) specifying the radial dependence of by. . . . . . .
The functions (a) My(r), (b) My(r), and (c) Ma(r) specilying the radial
dependence of by; (b) and (c) are on the following page. . . . .. . .

The functions (a)-N,(r) and (b) Ny(r) specifying the radial dependence

Projections of the pair-distribution function ¢ onto the z-y and y-z
planes for a monodisperse suspension at ¢ = 0.45 in simple shear, u, =
y, simulated by Stokesian Dynamics. The reference spliere is centered
al Lhe center of the square and the scale at the top indicates the relative
density of sphere centers. Note the distortion in the nearest-neighbor

ring in the z-y plane and the narrowing of this ring in both the z-y

and y-z plancs for Pe = 10" relative to Pe = 0.01 From Phung (1993).

65

68

92



3.2

3.3

3.4

3.5

3.6

3.7

Xiii
Pair-distribution function g, in the plane of shear, for a suspension of
polystyrene spheres in silicone oil at particle volume fraction ¢ = 0.4
in simple shear at Pe = 3.0 x 10° and Re = 3.2 x 10~7. The shear
rate is opposite in the two plots. Note the fore-aft asymmetry of the
pair distribution and the reversal of the asymmetry for reversal of the
shear rate. From Parsi & Gadala-Maria (1987). . ... ... ... ..
The boundary-layer scaling function Y plotted as a function of ¢ for
6 = 37 /4. Note that Y divergesasp = 0andp > 7. . . . ... ...
The boundary-layer scaling function Y plotted as a function of 8 for
w=7/2, illustrat-ing that Y grows rapidly in the extensional quadrants
and diverges at § = 57/4 and = 7w/4 , the 6-coordinates of the
extensional axes. . . . .. ... e
The boundary-layer scaling function Y within the restricted domain
0 <y <n/2and 3n/4 < 6 < 57/4 . The function is plotted along the
boundary cur\;e specified by § = 37 /4 and along three characteristic
CUTVES. & v v v vt e et e e e e e e e e e e e e e e e e e e
The dimensionless integral I, specifying the hydrodynamic second nor-
mal stress difference, Nfi = (15/47)L,ny#%, as a function of Pe for
bla=1.025. . .. ..
The dimensionless integral I, specifying the hydrodynamic second nor-

mal stress difference, Nf = (15/4n)I,n/4?, as a function of b/a —1 for

93

112

113

114

131



4.1

4.2

4.3

4.4

Xiv
The functions X{| and X7, relating velocities to the trace of the first
moment of the surface force distribution for equal-sized spheres are
plotted against the separation distance scaled to the particle radius.

The functions X2 and X relating the rate of strain to the trace of the

first moment of the surface force distribution for equal-sized spheres

159

are plotted against the separation distance scaled to the particle radius. 164

The function B(s), solid line, and [} r?f(r)B(r)dr from equation
(4.30), dashed line labeled I, are plotted against dimensionless par-
ticle separation s. B(s) has value —1.33 at s = 2 and the limiting
valueof Iis =21 . . .. ... ... .. ... . ... ..
Values of the trace of the first moment of the force distribution upon
a sphere (of radius a) are plotted as a function of total strain for an
initially simple cubic lattice undergoing simple shear at shear rate 04
in fluid of viscosity p; the motion is along a lattice vector. Volume
fractions shown are ¢ = 0.10, 0.30, 0.41, and 0.45. The lattice is at
registry at zero strain and returns to registry first at a strain of unity.
The trace is identically zero at registry and the midpoint of the cycle.
The values are antisymmetric about the midpoint, and hence average to
zero for a cycle; note the change of sign with incipient strain occurring

near ¢ =041 . . ...

172



5.1

5.2

5.3

Xv

Reproduction from Altobelli, Givler & Fukushima (1991) of false-color
images from NMR imaging of pressure-driven tube flow of a suspension
of heavy particles at an average particle volume fraction of ¢ = 0.4.
The particle fraction is represented by the upper image and the velocity
by the lower image, with the scale at right used for both: particle
fraction increases and velocity decreases in the vertical. . .. .. ..
Schematic representation of the unit cell employed in the simulation of
a pressure-driven channel flow of nonneutrally buoyant particles. The
shaded wall particles are fixed while the unshaded interior particles are
free to move in tile z-y plane. Gravity acts in the negative y-direction.
Only the particles of one wall are within the unit cell: the second wall
is included for appearance. . . . . . ... ... ..
Comparison of profiles of the (a) particle areal fraction ¢4, (b) particle
velocity u, and (c) suspension temperature T for B = 11.75, H/a =
30.54 and bulk areal particle fraction ¢ = 0.4, for simulations with
short-ranged repulsive interparticle forces, solid curves, and without
these forces, dashed curves; (b) and (c) are on the following page. The
parabolic profile of a Newtonian fluid at the same volumetric flux is

shownin (b). . .. . ... .

187

195



5.4

3.5

5.6

5.7

xvi

Comparison of profiles of the (a and b) particle areal fraction da, (c)
particle velocity u, and (d) suspension temperature T, for ¢% = 0.4,
H/a =30.54, and B =0, 3.4, 11.7 and 16.8 (simulations A, B, C, and
D); (c) and (d) appear on the following page. . . . . . . .. .. ... .
Comparison of profiles of the (a) particle areal fraction ¢4, (b) particle
velocity u, and (c) suspension temperature 7', for B = 11.7, H/a =
30.54, and ¢ = 0.2, 0.4, and 0.6 (simulations E, C, and F); () and
(¢) are on the following page. . . ... ... ... ... . ... . ...
Comparison of profiles of the (a) particle areal fraction ¢4, (b) par-
ticle velocity u, ;I,Ild (c) the suspension temperature 7', for ¢ =04,
B =34, H/a = 18.32 and H/a = 30.54 (simulations G1 and B, re-

spectively); (b) and (c) are the previous page. The parabolic velocity

profile of a Newtonian fluid at the same volumetric flux is shown in (b). 210

Comparison of profiles of the (a) particle areal fraction ¢4, (b) particle
velocity u, and (c) suspension temperature T, for simulations G1 and
G2 at ¢% = 04, B = 3.4, and H/a = 18.32; (b) and (c) are on
the following page. The monolayers of G1 are directly adjacent, solid
curves, while those of G2 are separated by a layer of clear fluid of four

particle diameters, dashed curves. ... ... ... . . . . ..



5.8

5.9

5.10

5.11

Xvii

Comparison of profiles of the (a) particle areal fraction ¢ 4, (b) particle
velocity u, and (c) the suspension temperature T', for simulations G1
(N = 51, dashed curves) and H (N = 102, solid curves) at ¢4 = 0.4,
B = 3.4, and H/a = 18.32; () and (c) are the following page.

Model predictions and Stokesian Dynamics simulation results for the
fully-developed flow of a suspension at ¢ =04, B = 3.4, and
H/a = 30.54. Profiles of (a) the particle fraction b4, (b) the velocity
u (of the entire suspension in the case of the model, particles for the
simulation) and (c) suspension temperature T' are shown; (b) and (c)
are the followingr‘ page. The parabolic velocity profile of a Newtonian
fluid at the same volumetric flux is shown in (B).............
Model predictions and Stokesian Dynamics simulation results for the
fully-developed flow of a suspension at ¢% = 0.6, B=8.4, and H/a =
30.54. Profiles of the (a) particle fraction ¢y, (b) velocity u (of the
entire suspension in the case of the model, particles for the simulation),
and (c) suspension temperature T are shown; (b) and (¢) are on the
following page. The parabolic profile of a Newtonian fluid at the same
volumetric flux is shownin (8). . ... ... ... .. . . .. . .
Model predictions for the fully-developed flow of a suspension at ¢b =
0.6, H/a = 30.54, and a range of B. Profiles of (a) particle fraction
¢4, (b) suspension velocity u, and (c) suspension temperature T are

shown; (4) and (c) are on the following page. . . .. .. .. .. ....

216

231

233



xviii
5.12 Model predictions for the fully-developed flow of a suspension at ¢4 =
0.6, B =5, and H/a = 100: (a) particle fraction ¢y, (b) the suspension

velocity u, and (c) suspension temperature T.. The parabolic profile of

a Newtonian fluid at the same volumetric flux is shown in (b). .. .. 238



X1X

List of Tables

4.1 Values of the function P (X), with X the size ratio of the two spheres,
appearing in the asymptotic form of Xfﬂ for small separation. . ... 156
4.2 Values of the function QX5(X), with X the size ratio of the two spheres,

appearing in the asymptotic form of Xo?ﬁ for small separation. . ... 165

5.1 Summary of the simulations discussed. Columns 2-7 list input param-
eters, column 8 lists the times to achieve fully-developed flow, and
columns 9-10 provide qualitative measures of the resulting bulk flow.
Simulations G1 and G2 differ only in the separation between the mono-
layers: in G1 the layers are adjacent, while in G2 they are separated

by four particleradii. .. ... ... 202



Chapter 1

Introductory discussion



This volume describes several investigations of the properties and behavior of suspen-
sions. In this discussion, we describe the various studies with the goal of indicating
our motivations for the work, as well as to establish the relations between the inves-
tigations. Suspensions of spherical particles in Newtonian fluid under conditions of
small Reynolds number are studied. The significance of the analyses and conclusions
1s not necessarily limited to suspensions of spheres, but in all calculations spherical
particles are considered.

As the perspective in the final chapter is rather different from the others, we note
at the outset how the other studies have contributed to or are related to this work.
In Chapters 2, 3, and 4, we consider the particle dynamics to elucidate certain as-
pects of the microscopic basis for the bulk flow behavior in suspensions. In Chapter
9, bulk flow itself is the central subject, as we describe a study of pressure-driven
channel flow of a suspension in which the particles, heing denser than the fluid, tend
to settle. In this flow, shear~induced migration caused by the inhomogeneous shear
rate (Leighton & Acrivos 1987b) competes with gravitational settling, leading to the
phenomenon of heavy material flowing stably above light over a wide range of the
relevant parameters. Our study shows that this complicated flow behavior can be
described by the flow model of Nott & Brady (1994), which uses the notion of the
particle pressure in a noncolloidal suspension. The resistance functions necessary to
evaluate the particle pressure are described in Chapter 4. Important justification for
nonNewtonian constitutive relations employed in this model are provided by Chapter

3, in which the microstructure of a strongly-sheared suspension is analyzed. In addi-



tion, we have shown in Chapter 3, using the theory of Chapter 2, that the bulk stress
due to particle interactions, the driving force for the migration, and the self-diffusivity
are linearly related.

Determination of macroscopic properties from the microscopic dynamics is a sta-
tistical mechanical problem. Suspensions, like many other well-studied systems of
statistical mechanics, consist of assemblies of many particles whose precise locations
are not known, and equilibrium properties of suspensions, e.g. the osmotic pressure,
are described by familiar equilibrium statistical mechanical formulae (Russel, Sav-
ille & Schowalter 1989). We do not, however, remain upon the familiar ground of
equilibrium suspensions, ;t)ut rather devote ourselves to the study of nonequilibrium
suspensions. The work is primarily concerned with suspensions under shear, although
much of the formal theory of Chapters 2-4 may be applied to sedimentations.

There are two separate problems in the statistical description of material prop-
erties. The first is to determine the probability distribution of the phase variables,
and the second is to describe the property of interest in terms of the probability dis-
tribution and the relevant particle-scale and bulk parameters. In each of Chapters
2-4, the dual nature of the problem of property determination is reflected, with the
problem of primary emphasis differing in the various investigations. We are fortunate
in studying low-Reynolds-number flow because here the particle configuration, and
not the configuration plus momentum, is the complete set of phase variables, because
the velocities are strictly position-dependent. This is no longer true if the particles or

the fluid have momentum. Thus it is possible, at least at the pair level, to determine



the nonequilibrium particle microstructure (the average configuration) analytically.

Particle dynamics based upon the Smoluchowski equation (Russel 1993) is the
common theme of Chapters 2 and 3. The Smoluchowski equation describes the evo-
lution of the configurational probability of suspended particles on timescales long
relative to the time required for Brownian momentum impulses to decay, with Brow-
nian motion included as a diffusive flux. The relative strengths of the bulk flow,
Brownian diffusion, and interparticle forces determine the microstructure, and hence
the bulk behavior. The Péclet number, Pe, is a measure of the relative strength of
the shear flow to that of Brownian motion and plays an important role in our work.

We begin by studying;; self diffusion, the most basic transport mechanism in a
suspension. For self diffusion, the microstructu?al problem must be considered in full
generality, as not only the average microstructure at the conditions of interest, but
also the perturbation to this structure caused by the motion of a diffusing particle,
are necessary for evaluation of self-diffusivity. The theory is applied in Chapter 2 to a
weakly-sheared (Pe < 1) suspension to obtain the full tensor self-diffusivity of a dilute
suspension of spheres with and without hydrodynamic interactions. In Chapter 3, the
theory is applied to the determination of the self-diffusivity of a large- Pe suspension
of hard spheres without hydrodynamic interactions.

Before applying the theory of self-diffusion at Pe > 1, the steady microstruc-
ture in the strongly-sheared suspension is determined. We have considered sus-
pensions in which the particles interact hydrodynamically and through a repulsive

hard-sphere force at {r| = 26 > 2a, with a the particle radius and » the pair sep-



aration. (In a hydrodynamically-interacting suspension, b = a corresponds to no
interparticle forces.) The microstructure under these conditions is characterized by
large excesses—O(Pe®™) if b = ¢ and O(Pe) if b > a—of particles within a narrow
O(a Pe') boundary layer at r = 2b in the compressional quadrants, i.e. where a
pair of particles are approaching one another. Batchelor & Green (1972b) showed
that the pair-distribution function, ¢(r), of a suspension in pure straining flow at
Pe~! = 0 is spherically symmetric if nonhydrodynamic forces between particles are
absent, and that this symmetry results in Newtonian rheology, despite the fact that
g diverges at particle contact. Qur study shows how weak residual Brownian mo-
tion and short-ranged rei)ulsive interparticle forces lead to the asymmetry, and we
determine the dependence of g upon both Pe and b/a. This allows us to determine
the manner in which the rheological behavior tends toward Newtonian as Pe — oo
and b/a ~1 — 0. For b = a, we find that in hydrodynamically-interacting suspen-
sions, the normal stress differences as Pe — oo are O(Pe~°?%). For any b > a, the
normal stress differences are independent of Pe in the limit Pe™ = 0, and scale as
(b/a—1)"2% for b/a —1 — 0. We believe that the slow vanishing of the nonNewtonian
effects as Pe — oo provides at least a partial explanation (partial only because the
analysis is for dilute suspensions) for the sizeable normal stress differences found in
Stokesian Dynamics (Brady & Bossis 1988) simulations of suspensions at Pe = 10*
by Phung (1993), despite the absence of interparticle forces. For b > a, the slow decay
as b/a — 1 — 0 suggests that normal stress differences will be measurable even for

suspensions with extremely short-ranged forces. The work of Chapter 3 thus provides



theoretical justification for modeling the normal stresses of noncolloidal suspensions
as being dependent on the strain rate, as is done indirectly in the model of Nott &
Brady (1994).

The notion of a particle pressure was employed in the suspension community
(Batchelor 1988; Jenkins & McTigue 1990) without theoretical justification until the
work of Chapter 4 appeared as Jeffrey, Morris & Brady (1993). This work describes
the hydrodynamic resistance functions which relate the pressure moments on parti-
cle surfaces to the particle and bulk motions in a low-Reynolds-number suspension.
Examples of the application of the functions to the calculation of the shear-induced
correction to the osmotic- pressure and the suspension pressure in a sheared lattice
are presented.

Chapter 5 is a combined simulational and modeling study, in which the influence of
particle buoyancy upon the bulk flow in pressure-driven channel flow of a suspension
1s investigated. This resuspension-type flow involves a competition between gravita-
tional settling and shear-induced migration which leads to the interesting flow with
relatively dense material flowing above lighter. Stokesian Dynamics simulations were
used as numerical experiments to generate information about the bulk flow under a
variety of conditions. The suspension-balance model of Nott & Brady (1994) was used
to predict the flow and the model predictions were compared in order to determine
the success of the model and determine potential directions for improvement. The
agreement between model predictions and simulational results js very good.

We reiterate that a common theme throughout this volume is that the inter-



play of forces at the particle scale—these forces include Brownian or thermal forces,
electrostatic forces, hydrodynamic forces, and the forces of an external field such as
gravity—yields a nonequilibrium microstructure. The anisotropy in the microstruc-
ture influences the bulk behavior in a fundamental and often striking manner, with
a good example being shear-induced migration and the resulting macroscopically
nonuniform particle concentrations. From either an engineering or scientific persec-
tive, the success in modeling the bulk flow of a suspension over the range of conditions
described in Chapter 5 is encouraging, and it is hoped that further study devoted to

the flow of suspensions finds its impetus in this work.



Chapter 2

Self diffusion in sheared

suspensions



Abstract

Self diffusion in a suspension of spherical particles in steady linear shear flow is investi-
gated by following the time evolution of the correlation of number density fluctuations.
Expressions are presented for the evaluation of the self-diffusivity in a suspension
which is either macroscopically quiescent or in linear flow at arbitrary Péclet number
Pe = 4a®/2D, where ¥ is the shear rate, a is the particle radius, and D = kgT/6717a
is the diffusion coefficient of an isolated particle. Here, kg is Boltzmann’s constant,
T is the absolute temperature, and 7 is the viscosity of the suspending fluid. The
short-time self-diffusion tensor, Dj, is given by kgT times the microstructural aver-
age of the hydrodynamic mobility of a particle, and depends on the volume fraction
¢ = 47a’n and Pe only when hydrodynamic interactions are considered. As a tagged
particle moves through the suspension, it perturbs the average microstructure, and
the long-time self-diffusion tensor, Dfx;, is given by the sum of D] and the correlation
of the flux of a tagged particle with this perturbation. In a flowing suspension both
D{ and D7  are anisotropic, in general, with the anisotropy of D; due solely to that
of the steady microstructure. The influence of flow upon D is more involved, having
three parts: the first is due to the nonequilibrium microstructure, the second is due
to the perturbation to the microstructure caused by the motion of a tagged particle,
and the third is by providing a mechanism for diffusion that is absent in a quiescent
suspension through correlation of hydrodynamic velocity fluctuations.

The self-diffusivity in a simply-sheared suspension of identical hard spheres is

determined for Pe < 1 and ¢ < 1, both with and without hydrodynamic interactions



10

between the particles. The leading dependence upon flow of D2 is 0.22D¢PeE, where
E is the rate-of-strain tensor made dimensionless with 4. Regardless of whether
or not the particles interact hydrodynamically, low influences D?, at O(¢Pe) and
O(¢Pe®/?). In the absence of hydrodynamics, the leading correction is proportional
to ngeDE‘ . The correction of O(¢Pe%?), which results from a singular advection-
diffusion problem, is proportional, in the absence of hydrodynamic interactions, to
$Pe>*DI; when hydrodynamics are included, the O(¢Pe*/2D) correction is given by
two terms, one proportional to E, and the second a nonisotropic tensor.

At high ¢ a scaling theory based on the approach of Brady (1994) is used to
approximate D7 . For We;.lk flows the long-time self-diffusivity factors into the product
of the long-time self-diffusivity in the absence of flow and a nondimensional function

of Pe = 4a?/2D§(¢). At small Pe, the dependence on Pe is the same as at low ¢.
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2.1 Introduction

This work addresses the problem of calculating the self-diffusivity in a suspension
undergoing steady shear at small Reynolds number. Self diffusion is one of the most
basic transport processes occurring in a suspension, and self-diffusivity in a quiescent
system is among the most intensely studied properties in colloid and polymer sci-
ence. Determining the influence of shearing flow upon self diffusion poses intriguing
and challenging questions. In addition to the fundamental issues of formulation and
application of the theory of diffusivity under nonequilibrium conditions, interest is
motivated by the phenomena of shear-induced self diffusion and bulk migration of
particles in noncolloidal suspension flows. The limited theoretical study of the diffu-
sivity in a sheared suspension has followed a different course from that taken in the
study of quiescent suspensions. This difference proves unnecessary and aspects of the
problem that are common to both quiescent and flowing suspensions are emphasized
as we develop a methodology for determining the self-diffusivity in a linear flow.

In a suspension, the trajectory of a particle is typically tortuous and unpredictable
whether the particle moves as the result of Brownian motion, because of a bulk flow,
or through the influence of both factors. Brownian motion can, of course, only be
described statistically. However, even in a noncolloidal suspension the trajectory can-
not, for any practical purposes, be specified exactly. In general, if the location of a
given particle is known at some time, the best that one may hope at a later time is to
determine the positional probability distribution, and from this the expected position

of the particle. This indicates that to properly describe the temporal variation of
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the expected position requires accounting for dispersion about the average trajectory.
This is evident in a macroscopically quiescent suspension, but is equally true in a
flowing suspension. In a quiescent suspension, it has been established in numerous
studies (see the review by Pusey 1991) that the variance in position of a particle
subject to Brownian forces grows linearly on two separate time scales, and the Brow-
nian diffusivity of a quiescent suspension is thus characterized by both a short-time
and long-time diffusion coefficient. Successful theory, based upon the experimental
technique of dynamic light scattering (Berne & Pecora 1976), has been developed
to calculate these coefficients (Russel & Glendinning 1981; Jones & Burfield 1982;
Rallison & Hinch 1986; Bl."ady 1994). The technique is based upon observation of the
temporal decay of correlation in number density fluctuations, which may be related
to the diffusivity because decorrelation of the scattered light arises from the uncorre-
lated, and hence over appropriate time scales diffusive, motions of the particles. The
relationship between the rate at which number density fluctuations decay and the
self- and collective-diffusivities lies at the center of the analytical theory of diffusivity
in quiescent suspensions and is shown in this investigation to have the same role in
the theory of self diffusion in a sheared suspension.

In a suspension subjected to a bulk linear flow, a spherical particle centered at @

has expected velocity

(w)(e) = Iz,

where ( }(2) denotes a position-dependent ensemble average, and I' is the velocity-

gradient tensor of the bulk flow. The flow is chosen to vanish at the origin. In a
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given realization, a particle may have a velocity quite different from (u), as Brownian
motion, interparticle forces, and hydrodynamic interactions cause deviation from the
streamline specified by integrating I"-:c(t) in time. Finite correlation of fluctuations
about the mean velocity generates diffusive motion, and the techniques of light scat-
tering provide a convenient analytical basis to describe the diffusion, regardless of the
relative strength of the bulk flow to that of Brownjan motion, which is characterized
by the Péclet number Pe = Ya?/2D, where 4 is the magnitude of the shear rate, a
the particle size, and D the diffusion coefficient of an isolated particle.

Analysis of diffusion within the light-scattering formalism amounts to a study of
the temporal dependence -of the Fourier transform of the number density autocorrela-
tion, denoted F(k,t), where k is the wavevector and ? is time:. For self-diffusivity, we
are interested only in the portion of F due to correlation of the position of a particle
with its own prior values, given in Fourier representation by the self-intermediate
scattering function F,(k,t) (Berne & Pecora 1977; Rallison & Hinch 1986), which is
simply the Fourier transform of the conditional positional probability of a given parti-
cle. For an isolated Brownian particle in a linear flow, the problem for this distribution
has been solved (Novikov 19538; Elrick 1962; Batchelor 1979). In §2.2 we introduce
the governing equation for F, for an isolated particle, allowing us to demonstrate
the simplicity with which the diffusivity may be identified by the Fourier-transform
method.

Coupling of diffusive spreading with a nonuniform flow leads to advectively-

enhanced, or Taylor, dispersion (Taylor 1953). At sufficiently long time in a qui-
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escent suspension, the root-mean-square position of a particle (or the positional vari-
ance) grows linearly with time at a rate which is proportional to the long-time self-
diffusivity. By contrast, the temporal growth of the positional variance in a suspension
in simple shear is cubic in the flow direction, while the temporal growth of the vari-
ance along a principal axis in a straining flow is exponential. Although the dispersive
motion in a linear flow does not in general grow linearly in time, an underlying dif-
fusive motion (e.g. molecular diffusivity) is, nevertheless, present and necessary to
give the observed variance. Thus, to determine the dispersivity in a suspension, one
needs to first determine the self-diffusivity. The Fourier-transform method allows one
to do this very simply b}; identifying the self—diffusivity as the (tensor) coefficient of
the O(k?) term in d1n F,/dt. The initial O(k?) decay of F; may be identified with the
short-time self-diffusivity, which is simply the thermal energy kg7 times the average
of the mobility of a particle within the microstructure, whereas the O(k?) decay at
long times is identified with the long-time self-diffusivity.

A different method was applied to investigate dispersion in flowing suspensions by
Frankel & Brenner (1991). In their development for an isolated particle with internal
degrees of freedom in unbounded linear flows, a transformation of the time coordinate
was used to remove the bulk linear motion. It may be possible to extend this analysis
to multi-particle systems, but the complexity of the analysis for an isolated particle
indicates that this would be an extremely difficult task. While the problems we must
consider within the light-scattering formalism are analyticallyvcomplex, their physical

content is readily understood and the method, formally, is quite simple.
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To evaluate the self-diffusivity, we must determine the microstructure at some
initial time, which we choose as the steady microstructure at the conditions of in-
terest, and the microstructural perturbation caused by a given particle as it moves
through a suspension, which we denote by the function fy (whose definition given
by (2.28) is a generalization of that of Brady (1994) for linear flows). As it moves, a
particle forces the neighboring particles to adopt new configurations, and this pertur-
bation to the microstructure in turn influences the motion of the particle of interest.
We show that for all conditions of bulk flow and concentration, evaluation of the
long-time self-diffusivity requires determination of the average microstructure and
the microstructural pertﬁ.rbation fn, with subsequent evaluation of the correlation
between fy and the flux of the tagged particle. We note that because the short-time
self-diffusivity requires only the microstructural average of the hydrodynamic mobil-
ity of a particle, it is the correlation of fiy with the flux of the particle that leads to
the difference between the short- and long-time self-diffusivities.

The equation governing the microstructure in a suspension at low particle
Reynolds number is the Smoluchowski equation. Reduced to its pair form, this equa-
tion was first studied for weak straining flow by Batchelor (1977). The bulk of the
analytical effort of this study is thus devoted to development of the governing equation
for the perturbation function fy and determination of the steady small-k solution of
the pair-perturbation function, f, obtained by reduction of fx. Derivation of the gov-
erning equations is presented in §2.3, where a nonlinear integro-differential equation

governing fy valid for all times and all wavelengths (i.e all k) at any particle volume
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fraction or Péclet number is obtained. The integro-differential equation governing fn
is indicative of the complexity of the physical process of self-diffusion in general, and
especially in a sheared suspension. Simplification is possible, however, for the study
of the long-time self-diffusivity, as only its small-k form, given in §2.3.5, is needed.
The equation and boundary conditions governing the pair perturbation are given in
§2.3.6, completing the theoretical development of the problem for the self-diffusivity
in a linearly-flowing suspension.

The general theory is applied to a dilute suspension in simple shear for Pe <
1, considering the cases of particles with and without hydrodynamic interactions
separately. The steady pz‘xir—distribution function g(r) is analyzed in §2.4.1, followed
by the study of the pair perturbation, f(r). Exact analytical results are available for
the case in which hydrodynamics are neglected, and we find that most conclusions
gleaned from this analysis apply to the full problem as well. The only qualitative
influence of hydrodynamic interactions is the introduction of velocity fluctuations
whose correlation provides a mechanism of self diffusion absent if hydrodynamics are
neglected; otherwise, the effects of hydrodynamics are only quantitative. In contrast
to what one might expect from prior work on generalized Taylor dispersion (Frankel
& Brenner 1991), which gives a first correction of O(Pe?), the first effects of weak
shear on the self-diffusivity are O(Pe). The O(Pe) distortion of the pair-distribution
function g (Batchelor 1977) leads to a correction to D¢ proportional to ¢ Pe DE, where

F is the dimensionless rate-of-strain tensor. (The next correction to g, and hence to

D;, is O(¢Pe?), as shown by Brady & Vicic (1995a), but we do not consider this
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contribution.) The O(¢Pe) correction to D7, from its value of D§(¢$)I in the quiescent
suspension is also proportional to F, regardless of whether or not hydrodynamics are
included. It is important to note that the O(¢Pe) corrections to Dj and D?, are
valid for general linear flows.

In simple shear, the O(Pe) correction does not contribute to the diffusivity in the
velocity-gradient direction, and to capture the leading correction in all directions, we
must go to the next order in the perturbation. As is familiar in analogous problems
in heat and mass transfer, the effect of weak advection is singular, with a balance
of advection and diffusion at large separations r/a ~ O(Pe~1/?), and the next cor-
rection is O(Pe/?), foumi by matched asymptotic expansions (Proudman & Pearson
1957; Acrivos & Taylor 1962; Leal 1992). Specifically, the next correction to D¢,
is O(QSPeS/ ?) and its tensor form depends upon whether or not hydrodynamics are
included. In the absence of hydrodynamics the O(¢>Pe3/ %) correction is isotropic,
whereas with hydrodynamics it is given by the sum of a nonisotropic tensor and a
tensor proportional to E.

Leal (1973) studied the effective thermal conductivity in a dilute suspension of
spherical drops or rigid particles in weak simple shear. By considering the influence
of a single particle or drop upon the temperature field, the conductivity in the di-
rection of the velocity gradient was determined, with the first dependence upon Pe
being O(#Pe*?), which is the same as the first Pe-dependence of the corresponding
component of D . Considering the case of hydrodynamically-interacting particles,

the detailed problem for the temperature disturbance due to a particle and f of the
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present study are the same in most of their salient features, except for the fact that the
relative diffusivity of suspended particles depends upon their separation. Had Leal’s
(1973) study considered the full tensor conductivity, an O(¢Pe) contribution propor-
tional to B would have been found. This contribution is due to the coupling of the
velocity disturbance caused by a particle with the dipolar temperature disturbance
in the absence of flow.

Experimental data on the diffusivity in suspensions at conditions corresponding to
those of the present study are not presently available. Qiu et al. (1988) have measured
the long-time self-diffusivity in a simple-shear flow for a suspension of polystyrene par-
ticles at ¢ = 0.003. Their‘particles were electrostatically repulsive, and their effective
radii could be varied by changing the ionic strength of the suspending fluid. The
self-diffusivity was shown to have an expected strong dependence upon the effective
radius. Unfortunately, the Péclet number based upon the effective radius of these
particles was of O(10), and our results are not directly applicable. We are not aware
of any other experimental study at small Péclet number.

At the other extreme of large Péclet number, there have been a number of studies
of shear-induced self diffusion, for example by Eckstein, Bailey & Shapiro (1977) and
Leighton & Acrivos (1987). These studies showed that hydrodynamic dispersion oc-
curs with the self-diffusivity scaling as 4a® (or as Pe in dimensionless form). Recently
Acrivos et al. (1992) studied the self-diffusivity of hydrodynamically-interacting hard
spheres in simple-shear flow and determined the O(¢) coefficient of 4¥a? in the flow

direction by a trajectory calculation. A similar trajectory calculation (Mauri et al.
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1995) has determined the O(¢?) coefficient in the velocity-gradient direction. (The
symmetry of the relative motion of two identical particles in Stokes flow necessitates
that three particle interactions be included to determine the self-diffusivity in the
velocity-gradient direction.) Although the results we have obtained for weak shear
flow do not apply at high Péclet number, the Fourier-transform method remains appli-
cable. In the following chapter, the effects of strong shear upon the microstructure of
a suspension and the implications for the rheology and self-diffusivity are addressed.
In particular, we show that the methodology developed here can be applied at high
Péclet numbers and use it to predict the O(7a?) long-time self-diffusivity in a general
linear flow as Pe — oo.

Simulations by Stokesian Dynamics of hydrodynamically-interacting suspensions
in shear flow by Phung (1993) have shown that D  is generally nonisotropic in the
plane perpendicular to the mean flow; as in an experiment, the diagonal component
~of D, in the direction of the mean flow and the off-diagonal terms are not readily
determined owing to the nonlinear temporal growth of the variance dominating the
dispersion. The complete particle mobility tensor, and thus the complete short-time
self-diffusivity for the simulated conditions, is also available from these simulations
(Phung 1993). Simulations of the shear flow of a monolayer suspension of identical
particles by Bossis & Brady (1987) demonstrated that residual Brownian motion may
have a profound influence upon the correlation time and the self-diffusivity at large
Péclet number. Simulations at small particle fraction and small Péclet number would

provide a desirable check on the results of this analysis. Unfortunately, they require a
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large computational expenditure in order to gather sufficient data to give confidence
in the results.

In the study of the long-time self-diffusivity of concentrated quiescent suspensions
by Brady (1994), a method for determining the scaling of D°(¢) in good agreement
with experiment for all ¢ was obtained by factoring the diffusivity into a hydrody-
namic term and a microstructural term. The approach is applied in §2.4.4 to a sheared
suspension at small Pe to determine the scaling of the advectively-influenced diffu-
sivity as ¢ — ¢.,, where ¢, is the particle volume fraction at maximum packing. It is
shown for weak flows that the long-time self-diffusivity can be written as the product
of the long-time self—diffus-ivity in the absence of flow and a nondimensional function
of the Péclet number scaled by the short-time self-diffusivity, Pe = Ya?/2D3(¢). At
small Pe the scaling with Pe is the same as at low ¢.

In the next section, the Fourier-transform method in terms of the isolated particle
problem is presented. This is followed, in §2.3, by development of a framework for
the description of self-diffusivity valid for a quiescent or linearly-flowing suspension
at arbitrary Péclet number. Application of the theory to a weakly-sheared and dilute
suspension of hard spheres is presented in §2.4, along with the scaling theory near

maximum packing. We conclude with a summary and discussion.
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2.2 Advection and diffusion of an isolated

particle

Self-diffusivity in a macroscopically quiescent suspension is directly related to the rate

at which the variance in a particle’s position grows with time:

(xax) ~ 2DIt,

where D is the magnitude of the isotropic diffusion tensor, and we have presumed that
sufficient time has elapsed to achieve the long-time asymptotic limit. A suspension in
linear flow presents a different and richer situation, as the variance in position does
not necessarily grow linearly in time owing to the position-dependent velocity field,
and therefore the variance in the particle position is not so readily related to the
diffusivity. An extreme example occurs in pure straining motion where the variance
grows exponentially in time (Foister & van de Ven 1980). In simple shear there is a
balance of straining and rotation, and the coupled effects of advection and diffusion
lead to a variance in particle position proportional to #* in the flow direction. The
pioneering work of Taylor (1953) and its generalizations by Brenner and coworkers
(e.g., Brenner 1980, Frankel & Brenner 1991) based upon this coupling have led to
the well-developed theory of generalized Taylor dispersion.

To understand how the coupling between advection and diffusion leads to disper-

sion and then how to define the diffusivity in shearing flows, consider the equation



22

flow, which is mathematically identical to the equation describing the evolution of an

impulse of dye or heat released into the same flow:

%%’1 + P2 VG +U-VG - DV?G = 0, (2.1)

where I is the constant velocity-gradient tensor, U is a uniform velocity, and D is the
diffusion coefficient. For a spherical Brownian particle of radius a, D = kgT'/677a,
where 7 is the viscosity of the suspending fluid and kgT is the thermal energy. We
assume that the particle (or dye) is released at the origin so that G(z,t) satisfies the
initial condition

G(x,0) = é(x).
The spatial Fourier transform of (2.1) is

JF;

T k-IV,F, - ik-UF, + k*DF, = 0, (2.2)

while the initial condition transforms to
F(k,0) =1,

where k is the Fourier-space position vector (wavevector), and the Fourier transform
of G is given by

Fy(k,t) = /G(w,t)eik-‘”dm.

We use this notation for the transform of G because it is equivalent to the self-
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intermediate scattering function of dynamic light scattering (Berne & Pecora 1976).
In the absence of flow, it is well-known that the self-diffusivity is related to the

scattering function by

~ k2E)

S

(2.3)

for time scales over which the right-hand side is a constant. Here, the overdot denotes
differentiation with respect to time. While not an issue for an isolated particle, the
motion of a particle in a quiescent suspension is, in general, diffusive only on time
scales that are alternately much shorter and much longer than the time required for
a particle to wander a distance comparable to its own size, t < a?/D and ¢ > a?/D,
respectively. At intermediate times, correlated interaction of a particle with neigh-
boring particles renders its motion nondiffusive (for a lucid discussion of the physical
significance of the short- and long-time self-diffusivities in quiescent suspensions, see
Rallison & Hinch 1986). The same time scales apply to a weakly-sheared suspension,
while at large Péclet number long-time diffusion in a shear flow may be expected to
occur on time scales ¢ > 47!, although some caution should be exercised in mak-
ing a definitive statement about this time scale. For diffusion to occur, a particle
must make a large number of essentially uncorrelated motions, and for large Péclet
number motions are generated predominantly by configuration-dependent hydrody-
namic interactions (perhaps also by nonhydrodynamic interparticle forces). Hence,
to move diffusively, a particle must experience a large number of configurations, with
the rate at which new configurations are encountered proportional to the shear rate.

While the estimate of ¢ > 471 is therefore reasonable, the correlation time can be ex-
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tremely large in shear flow of a suspension at low Reynolds number (Bossis & Brady
1987), and the time scale at which diffusion will be observed for general conditions
remains unknown, but will depend upon concentration, residual Brownian motion,
and nonhydrodynamic interparticle forces.

Despite these issues, (2.3) suggests that one may define the self-diffusivity as
the coefficient of k2 in Oln F,;/dt under any flow conditions. That this definition
is correct may be appreciated by observing that in (2.2) diffusive variation of F, is
O(k?), while linear and uniform flow cause rates of variation which are independent
of k£ and O(k), respectively. The governing equation for the probability distribution
of a tagged particle in a ;uspension is the many-particle generalization of (2.1), and
the equation for F, for a suspension retains the essential structure exhibited by (2.2).
It is thus conceptually simple to identify the self-diffusivity of a suspension in linear
flow. Although the diffusion coefficient is simply identifiable in (2.2), this does not
imply that the variance in particle position necessarily grows linearly in time in a
flowing suspension.

For U = 0, Novikov (1958) and Elrick (1962) solved (2.1) for the case of simple-
shear flow, and these solutions were generalized by Batchelor (1979), who demon-

strated that the solution to (2.2) could be written for any linear flow as

Fs(k,t) = exp (—Dk,‘k‘jBij), (24)
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where B(t) is a symmetric tensor satisfying

8B, . .
—at—J =b;; + T'uBj + ' By,

with the initial condition

Bij ~ 6;it, as t— 0.

The physical space solution obtained by transforming (2.4) is

1 —xz-:zr-bi-
G(z,t) = —\(47TD)3/2A1/2 exp (—————4DJA J) , (2.5)

where A(t) is the determinant of the matrix B, and b;;(t) is the cofactor of the ij
element of B. (Note that the solution (2.5) can be straightforwardly generalized for
a tensorial diffusion coefficient.)

In the case of the simple-shear flow ur = 7y, denoting & = (z,, z,, z3) as (z,y, z),

the components of B are
By =t(1+ %"72752)7 By =t, Bs= t, By, = %f'yt2,

and

Byz = By3 = 0,

the determinant A is

A=1(1+ E4%%),
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and the solution is

1 (z —9yt/2)> (¥ + 22)]. (2.6)

t) = —
Gle,t) (47 D132 (1 + 4242/ 12)1/2 exp| ADi(1 + 42t2/12) 4Dt

For reference, note that when 4 = 0 the diffusive solution with B = It is obtained.
The ¢* dependence of Bj; in simple shear indicates the coupling between advection
and diffusion discussed earlier. In §2.4, (2.6) will be used to construct solutions to
problems encountered in the study of self-diffusivity in shear flow.

Other treatments of diffusion in sheared systems (Duffy 1984; san Miguel & San-
cho 1979; Frankel & Brenner 1991) have not used the Fourier transform approach,
but rather have transformed to a coordinate system moving with the shearing motion
to remove the linear shear flow from the governing equation (2.1). While such an
approach is possible, it unnecessarily complicates the analysis. Seeking a solution in
the form of a Fourier transform places the analysis of quiescent and flowing suspen-
sions on the same footing with an easy identification of the diffusivity. Advectively
enhanced, or Taylor, dispersion with nonlinear temporal growth in the variance is

then contained in (2.5).

2.3 Theoretical development

2.3.1 The self-intermediate scattering function

The self-intermediate scattering function was introduced in a purely mathematical

fashion in the previous section. Here, its connection to the motion of a particle
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in a suspension is established. We consider N spherical particles, each of radius
a, immersed in a Newtonian fluid at small Reynolds number. The full N-particle
configuration is denoted &V, while the center of particle « is located at #,. The

number density at any point z is

n(z,t) = > 6z — z,),

a=1

with Fourier transform given by

N N
n(k,t) = /eik'm D bz~ )de = b SLES
a=1

a=1

In dynamic light scattering, the intermediate scattering function F'(k,t) (also known
as the dynamic structure factor) is a quantity of interest for its relation to the auto-

correlation in number density (Berne & Pecora 1976):

F(k,t):%(ﬁ(k,t)ﬁ*(k,O)) = (f(k,t)i(—k,0))

N N
=Y <eik~(a:a(t)—w,s(0))>

=1 f=1

3

where * indicates a complex conjugate and the second equality follows from the fact

that n(e,) is real. The indistinguishability of particles allows F' to be expressed as

F(k,t) = <6ik-(icl(t)—231(0))) + (N - 1)<eik-(mz(t)—fcl(0))>_ (2.7)
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The first term on the right-hand side of (2.7) is the self-intermediate scattering func-
tion,

Fy(k,t) = (@ 0-z:0), (2.8)

in this investigation of the self-diffusivity we are concerned only with F, and hereafter
the remainder of F' will not be considered. The temporal behavior of the complete

scattering function can be related to the collective diffusivity (Pusey 1991).

2.3.2 Probability distributions and the ensemble average

In (2.7-2.8), the angle brackets () denote an ensemble average taken with respect
to both the initial, "(0), and present, (), configurations of the particles. We
denote as Py the joint probability distribution of finding the two configurations, and

write this probability as
Pr(x™(1),27(0)) = Pu(2™(1)[2" (0)) PR (=" (0)), (2.9)

where P (2V(0)) is the distribution function for the initial configuration =V (0), and
Pn(2"(t)|2"(0)) is the conditional (or transition) probability of the configuration

being ™ (t), given that the configuration was initially «™(0). Thus, F, can be written

Fi(k,t) = //eik'(wl(t)'ml(o))PN(:vN(t),a:N(O))d:cN(t)da:N(O)
= [ R @O py @ (1) (0) P (e (0))dz" (1)dz" (0).

(2.10)
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In this work, Py denotes the steady initial distribution for the conditions of interest

(¢f. Eq. (2.35)). The transition probability is governed by the conservation equation

N
"—aPN‘ + Z va'ja =0, (21]‘)
ot =

and satisfies the initial condition
Py(t =0) = §(z™ — 2™ (0)). (2.12)
In (2.11), j, is the probability flux associated with particle ¢, given by

N
Jo=UaPy~ 3 DugPy-Vs(ln Py + V), (2.13)
p=1

where D g = kgT M .5, with M .5 the hydrodynamic mobility of particle o due to a
force on particle 8, and V is the interparticle potential energy made dimensionless by
kpT. In the absence of Brownian motion and interparticle forces, particle & moves
with the hydrodynamic velocity U, which may include the influence of a buoyancy
or external force acting upon the particles.

We write U, as

U, = U™(zo) + (0 —x0) + Ul (zn)

= U*(xo) + 2o + Ul (zy), (2.14)

where U™ (o) is the bulk average velocity measured at an arbitrary field point, xq,
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from which the bulk shear velocity is referenced, and U *(@o) is
U*(zo) = U®(x¢) — Iy,
The fluctuation velocity U’ is simply
U, =U, — (U*(x) + I'z,,). (2.15)

The bulk flow is divergence-free, thus satisfying I'; = 0.

Inserting (2.13) to (2.11), yields the Smoluchowski equation governing Py,

N
UoPnv =Y Vo {DogPy-Vy(in Py + V)}| = 0. (2.16)

0Py X
B=1

—at—-}-az::lva'

Following Rallison & Hinch (1986), we integrate over the initial coordinates z™(0),

defining
By(zV,t: k) = / Pr(2" 2" (0) PR (2" (0))e~F 104V 0).  (2.17)

The operator in (2.16) depends only on present variables, and thus replacing Py with

Py in (2.16) yields the governing equation for Py, which satisfies the initial condition

Pu(aV,0,k) = PY(aV )ik -2 (2.18)
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In terms of PN, the scattering function is
Fy(k,t) = / Byek @ ggN (2.19)

Reduced forms of Py are given by

A

N )
Pr(y, ... ear i k) = W_—M)'/PNda:MH---dmN, for M < N.

In particular, we have

B = N/PNd:c2 - dy, (2.20)
so that
Ll rs ke
Fs(k,t) = N Ple d:cl. (221)

As discussed in §2.2, the self-diffusivity is the coefficient—in general, a non-

isotropic tensor—of the O(k?) term in §1n F,/8t. The time derivative of F, is

OF, — ik-zIQP_N N
gt Bt) = /e ot 9@

N A k ~ .
= = [ ¥ Valiae )t + ik [ 5,68 2N
a=1

- ik-/}le‘k'mld:cN, (2.22)

where use has been made of the divergence theorem and the requirement that the

probability flux from the system is zero. Upon inserting the constitutive law for the
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flux (i.e., (2.13) with Py replacing Py) into (2.22), we obtain

(InF)(k,t) = k-I'ViInF,+ik-U*
ik

N
+= [[U1Py = 3 DiuPy-Vo(In By + V)]e® @140V,
s a=1

(2.23)

where the notation

JOlnF,
ot

= (InF,)

is employed. It was possible to evaluate the first two terms on the right of (2.23)

directly because neither U* nor I is configuration-dependent.

2.3.3 Initial value of (ln-FS): short-time self-diffusivity and
mean velocity

Using the known initial value of Py given by (2.18), we find
(In F,)(k,0) = k-F-V 0 F, + ik-(U,)° — k-(Dy;)%-, (2.24)

where ( ) denotes the unconditional average with respect to the initial distribution
Py, Recalling that Dy = kgT My, where M, is the mobility of particle 1 due
to a force exerted upon it, (2.24) shows that the initial diffusive, i.e. O(k?), vari-
ation of (ln'Fs) is determined by the average mobility of the tagged particle within

the microstructure. The short-time self-diffusion tensor, in a quiescent or a flowing
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suspension, 1s

D} = (Dy)° = kgT(M1)°. (2.25)

The short-time self-diffusivity will generally be nonisotropic in a nonequilibrium sus-
pension, and the full tensor Dy; must be retained in (2.24).

The O(k) term in (2.24), (U,)°, is the average velocity of the tagged particle:
N
(U = U* + (U)° — / S D1 Va(in PY + V)PYdzy. (2.26)
a=1

In (2.26), (U1)° is the average velocity of a particle due to hydrodynamic interactions
or due to an external forc;e acting on the particle. For the linear flow considered here,
(U1)° = 0. The last term on the right-hand side of (2.26) is the mean velocity of
particle 1 arising from the initial distribution. Had the initial distribution been chosen
to be the equilibrium Boltzmann distribution, i.e. Py = P§f ~ exp(—V), this last
term would vanish identically. However, there is no need in general, and particularly
at high Péclet number, to choose the initial distribution to be the equilibrium one,
and the final term in (2.26) may contribute to the mean velocity of a tagged particle,
although in the linear flow considered here the last term in (2.26) is zero, as may be
seen from symmetry arguments. The mean velocity of a particle must be proportional
to I" which drives the flow. However, there is no vector with which to multiply I” to

form a vector, and thus the term is zero.
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2.3.4 Perturbation function

To evaluate the rate of decay of number density correlation at arbitrary times requires
a solution for Py. Noting that @, is a coordinate that plays a special role due to the
initial condition (2.18), we write Py as*

. 1 4
thus defining a perturbation function fy. The function P(%V—l)ll is the conditional

probability for N—1 particles given particle 1 fixed, at the initial time. The coordinate

dependences are given explicitly by

pN(wla TN7t)7 Pl(wlat)a P(%V—1)|1(TN)7 and fN(’I’N, t),

indicating a change of coordinates to

N

z; and 7" =(r,,...,7N),

*The form of Py given by (2.28) is in the same spirit as
Py = Pye~k Tip 14 0, (2.27)

which was used by Brady (1994). Employing (2.28) in place of (2.27) for a quiescent suspension, fy
and its reduced forms satisfy the governing equations found by Brady (1994). However, application
of fi as defined by (2.27) for a suspension in linear flow fails to generate the linear-velocity convective
derivative of F, in Fourier space, i.e. —k-I"VF,, which is known from (2.2) should appear, and
thus results in more complicated analysis for fy.
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related to the original coordinates, which we denote using a superscript prime, by’
zi =2, and 7, =z, —a!,
with the gradient operators in the original coordinates replaced by

N
Vi=Vi-Y'V,, and V.=V,

a=2

with 2 < a < N.

We take the potential. to be an interparticle potential, which is independent of
absolute position and may be written as V(rV ). The effect of an external force
derivable from a potential can be included directly into U,. Thus, the flux of particle

« is given by

N
ja = UQPN—Dal-leN— Z(Daﬁ—Dal)P]\rVg(ln PN+V), 1 S « S N, (229)
B=2

and the Smoluchowski equation for PN(:EI, rN) is

opP R )
aTN + ViUiPy — DV Vi Py
N
ot Z Vl-(Dla et Dll)PN'VQ(h’l PN + V)
a=2
N A A
+ Z va'[U;PN — (D1 — Du)'vle]
o=2
N A ~
~ Y VaDlLyPy-Va(lnPy+V) =0, (2.30)

o,5=2



36

where we have defined

UL =U,-U, (2.31)

and

Dgﬁ = Daﬁ — Dal - D]ﬁ -+ Dn. (232)

The temporal variation of F; in terms of fy is found by substituting (2.28) into
(2.23). Making the necessary alterations for the change of coordinates and performing

the integration with respect to @1, we obtain

(InFy) = k-IVilnF, + ik-(Uy)° - k-(Dy;)%k
k. /(D11 —(D1)°)-k fy POdr™
+ik- / (U, = Peay — (U)°) f POdr™
“ik'/ i[(Dla — D1)-Vafn + (Dia — Du) fa-VVIP%dr?,

a=2

(2.33)
where we denote Piy_;); as P° and define
V=P +V

to simplify notation. Note that V results from the departure of the steady distribution

from the equilibrium Boltzmann distribution. In obtaining (2.33) we have made use
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of the fact that, since both Py and P are normalized,
[ i Popdr™ = [ uPoar® <o,

2.3.5 Equation governing the perturbation function fn

The equation governing fy is obtained by inserting (2.28) to (2.30), multiplying the
equation by e"k'xl, and integrating over z; to yield

6fN N N N N
PPor + P UL =Y DoVl Vafs = Y. VD, POV
a=2 . fB=2 o,f=2

= —QnF,) — k- IVl F, — ik-(U* - U}) + k-Dy, -k] (2.34)

N
ik (Y {V2l(Dos ~ D)) + (Dre - D)V, + V).

a=2

where we write @ = P°[1 + fx] to simplify notation. In writing (2.34) we have made

use of the fact that the initial distribution satisfies the steady equation

N N
> Ve [U;PO — Y DLzP°Vy[ln P° + V]J = 0. (2.35)
=2 B=2

In the absence of flow, the initial distribution reduces to the equilibrium Boltzmann
distribution, Py ~~V. Note that we could have used a time-dependent initial distri-

bution by including dP/dt in (2.35) with no change to the subsequent equations.
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Finally, we make use of (2.33) for (lnf's) to rewrite (2.34) as

ot

a=2

podiv % ZD VsV Vafn — ﬁzzv D, P° Vs fy
= —Qlik-(Uys — Fzy — (U)°) + k-(Dyy — (Dy;)°) k]
+ik- é{va-[(pal — D)@l + (Do — D1)Q-Vo(In Q 4+ V)}
-0 [ili:-/(Ul — Py — (U)°) fn Podr™
— k- [(D1y — (D0)°) R f Podr™
_ Z-k./;i[(pm — D11)-Vofn + (Do — Dyy) fy-Vo V] PdrV

(2.36)
The initial condition for fy is
In(rN t=0)=0. (2.37)

Equation (2.36) is a nonlinear integro-differential equation for fn, showing that
departures from the initial distribution are driven by fluctuations in velocity and
diffusivity. Equation (2.36) is valid for all times and for all linear flows, regardless of
the value of the Péclet number. Used in conjunction with (2.33) the diffusivity can
be determined at any time and for any lengthscale (i.e. any k) of perturbation.

To determine the long-time self-diffusivity, the small k, i.e. long wavelength,
form of (2.36) is sufficient. Because P° is the steady nonequilibrium probability

distribution, examination of (2.36) shows that fy is O(k). Thus, keeping terms to
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O(k) only on the right-hand side of (2.36) we have
oafN 0 o Al 0
P -t Py U ZD VeVIVafn— 3 VoD sP°Vsfn
a=2 o,B=2 )
= ik (PO(U1 ~ Iz, — (U;)°)

N
~ 2 AVa[(Daz = Dyu)P°) = (D, — D11)P°-VQV}) + o(k).

a=2
(2.38)
2.3.6 The pair problem
To make analytical progress we define the pair-perturbation function,
f(rs) = /P]?,_2|2(7'3, o) (PN ) drg - dr, (2.39)

whose governing equation is found by integrating (2.38) with respect to N — 2 of the
relative coordinates, thus reducing to an equation depending only upon the separation
between a pair of particles. Hereafter, we write r in place of 74 and the gradient with

respect to vy as simply V. Also, we write
U,=U;-U,;, and D, = D, —~ D, — Dy, + Dy;.
Quantities are scaled as

r~a, U~%a, k~a', D,~2D, and t~ D (2.40)
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and the Péclet number is defined as
Pe=12 (2.41)

where U indicates velocities in general, 4 = (F :f)l/ 2 and D is the diffusion coeflicient
of an isolated particle. In this nondimensionalization, D, ~ I as r — oo. As we do
not employ alternate symbols to denote dimensionless quantities, it should be borne
in mind that all quantities are dimensionless unless noted otherwise in the following.

Integrating (2.38) with respect to N — 2 of the relative coordinates, we find the

dimensionless governing equation for f in the limit of small k,

10 -
395+ PealU Vi — gD VYV
= Va(D, V) = Vg [ P (Di f)3drs

= Jik-{(-Peg(U)3+ V-g(D.)3 + gD, V7)) + ofk),  (2.42)

where the steady pair-distribution function g(r) is defined by Pp, = ng(r), and ()3
stands for the conditional average over the initial distribution with two particles fixed
as defined in (2.39). The boundary condition at the pair level is obtained by requiring

the relative flux 52 — ;; 1 to vanish at particle contact,

F(DeVIN = (DY — [(D3 Vs fw)SPydrs + Pe(U, 1))

= Li(D,)%ik at r=2 (2.43)
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where # = r/|r|. At large separation the perturbation vanishes,
f~0 as r— oo, (2.44)
and the initial condition is unchanged,
F=0 at t=0. (2.45)

A similar reduction of the expression for (In .Fs) is performed by integrating over
N — 2 of the relative coordinates in (2.33). Since (ln.Fs) pertains to a single particle,

we scale the diffusivities by D rather than 2D to obtain

(InF,) = 2Pe(k-I"ViInF, + ik-(U,)°) — k-D3-k
+¢4—37r—ik- / {{{=2PeU; + D,-VV]jy)3 + (D.-V fn)9}g(r)dr,

+O(k%), (2.46)

where U, = U} — I''r and we have introduced the volume fraction ¢ = iman,
with n the number density of particles. Note that D, = 2(Dy; — Dy) and U’ =
—2(U} — I'a; — (U,)°) for identical particles; the factor of 2 in front of Pe arises

because Pe has been defined relative to 2.D.
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2.4 Diffusivity in a weakly-sheared suspension -

The expressions derived in the preceding section, which are valid for all shear rates,
are applied to the determination of self-diffusivity in a sheared suspension at small
Péclet number. To obtain a rigorous solution we assume the particle fraction to be
dilute and consider the dual limit of Pe < 1 and ¢ < 1. Diluteness allows us to
neglect nonlinear averages of fluctuational quantities as well as third-particle effects
to obtain a closed equation for f. The diluteness assumption, however, limits the
results to small ¢, and to remedy this restriction, the method of Brady (1994) for
determining the scaling of D2 (¢) with respect to ¢ near maximum packing in a
quiescent suspension is applied.

Weak shear flow alters the diffusivity in a suspension relative to its value at equilib-
rium in three ways. The first is through its alteration of the steady microstructure, an
effect reflected most directly in an O(Pe) contribution to the short-time self-diffusion
tensor, but important also to the long-time self-diffusivity. The second effect is also
microstructural in nature, as fy now satisfies an advection/diffusion, rather than a
diffusion, equation. Third, the bulk flow generates velocity fluctuations in a sus-
pension of hydrodynamically-interacting particles, and correlation of these velocity
fluctuations provides a diffusive mechanism absent in a quiescent suspension. Of these
effects, only the last requires that the particles interact hydrodynamically, although
hydrodynamics influence each effect.

Expanding ¢(r) and f(r) as asymptotic series in Pe allows ready identification

of the first influence of flow upon the diffusion tensors. The initial pair-distribution
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function is expanded as

g(r) = g*(r)[1 + Pep(r) + O(Pe?)], (2.47)

where ¢*/(r) is the equilibrium radial-distribution function. The problem for p, first
solved for hydrodynamically-interacting particles by Batchelor (1977), is outlined
in §2.4.1. The next correction to the steady initial distribution is O(Pe?) and has
recently been determined by Brady & Vicic (1995a). This term will not be necessary
as we determine the self-diffusivities only to O(Pe3/ ?), which requires expanding f to
O(Pe®?). We shall first determine, in §2.4.2, the perturbation function and the self-
diffusivities in the absence of hydrodynamic interactions. In §2.4.3, we complete the
determination with hydrodynamic interactions included. F inally, in §2.4.4 we apply
the scaling ideas of Brady (1994) to estimate the effects of weak flow on the self-
diffusivity near maximum packing. Except where necessary to make a point about
correlations, the angle brackets will be orhitted, with all quantities implicitly assumed

to have their average value conditioned on the separation of a pair of particles.

2.4.1 Steady microstructure and the short-time self-
diffusivity in a dilute suspension

For small volume fraction, the equilibrium pair distribution is assumed to be uniform

for all separations, i.e. g(r) =1 for all r. Under this assumption, Batchelor (1977)
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showed that p satisfies (a reduction of (2.35))

V-(D,-Vp) = V.U,, (2.48)

with boundary conditions

#D,-Vp = 0 at r=2, (2.49)

and p — 0, as r— oo. (2.50)

The problem for p is forced by the straining motion and thus

p(r) = —i-E-# g(r),

where E’,-J- = (I + ;)

/27 is the rate-of-strain tensor made dimensionless with +.

The function g satisfies

where G(r) and H(r) are defined by

D, = G(r)i# + H(r)(I — i#),

and W(r) is defined by

VU, =#E+W(r).
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The functions G and H may be expressed in terms of mobility functions (Kim &

Karrila 1991) relating the velocity to applied force as
G(r) =ehi(r) —2iy(r), and H =yfi(r) — y2y(r),

while W is expressed in terms of the functions A(r) and B(r) (Batchelor & Green
1972) describing the radial and transverse components of the relative velocity due to

pair hydrodynamic interaction:

. W(r)=3[B(r) - A(r)] — chll—f,

where
U, — I'r = —r-E[A(r)## + B(r)(I - ##)).

For equal-sized spheres, A and B are given in terms of nondimensional mobility

functions as

4 4 . a
A(") = ;(:cfl - fo) = 3_7_(X1(i - Xl%)(:vll — 7,),

and
g g 81 a a G G a a G G
(.’911 - ?/12) == "(yn - 3/12)(Y11 - le) + (?/11 - ylz)(Yll - Yl2) ;
r \3

with 2%, and yJ, the functions relating the stresslet of particle a to the force on
particle § in the formulation of Kim & Mifflin (1985), while Xfﬁ and Ya% are resistance

functions relating force to rate of strain and so forth. Using the more precise values
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of hydrodynamic functions now available, the problem for p was solved here for use in
evaluation of the diffusivity with only minor variation of the solution from the values
reported originally.

The problem for p in the absence of hydrodynamic interactions is

V?p =0, (2.51)

with

-3>
oy
<
v
-+
=3

Il
vt\D

7-Vp=2p- (2.52)

and p — 0 for large r. Note that in the absence of hydrodynamic interactions neither
U, nor D, vanish at contact, and the boundary condition at contact is modified
accordingly. The solution of (2.51) is simply

Xy (2.53)

321
3 3

-3

The quadrupolar decay of p as 2 also holds for hydrodynamically-interacting par-
ticles when r is large.

In the absence of hydrodynamic interactions the short-time self-diffusivity is un-
affected by the microstructure and remains the constant D = kT /67na in dimen-
sional form. With hydrodynamics, however, M, depends upon r, and from (2.25)

the short-time self-diffusivity is kg7 times the average mobility of a particle in the
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steady microstructure, so that with the diffusivities nondimensionalized by D we have

3
D = I+¢E/D11g(r)dr

= I+ ¢1?’;/Dngeq(r)(1 + Pep(r))dr. (2.54)

The integral over ¢® produces an isotropic O(¢) correction to the diffusivity, first

determined by Batchelor ( 1983). We denote this equilibrium correction by D§(#):
Di(4) = (1 — 1.834): (2.55)

The O(Pe) disturbance to the structure gives

3 2 SN R a
¢E Pe/Du(r)p('r)dr = _gﬁbPeE/z (z9:(s) — ¥11(8))gq(s)s%ds
= 0.22¢PeDE.
Thus, we find
Dg = D3($)I + 0.229PeE + O(¢%, Pe?), (2.56)

with Dg given by (2.55), a result which has been available since the work of Batchelor

(1977) to evaluate the microstructural distortion by a weak straining flow.
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2.4.2 The long-time self-diffusivity in a dilute suspension:
no hydrodynamics

To determine the long-time self-diffusivity we need the limit as ¢ — oo, or only the
steady solution, for fx. The analysis is simplest if we consider separately the cases
with and without hydrodynamic interactions. In the absence of hydrodynamics the
analytical analysis is considerably simplified, although the general features are the
same in the two cases. In this section the case without hydrodynamic interactions
is studied; hydrodynamic interactions are treated in §2.4.3. A suspension without
hydrodynamic interactions can be realized with particles interacting through a long-
range repulsive force. If the repulsive force is hard-sphere-like, with characteristic
length & > a, then the following analysis will apply with all lengths scaled by &
instead of a, except in the isolated particle diffusivity; D remains kg7 /67na because

it is the true hydrodynamic radius a that sets the single particle diffusivity.

Closure for f

For small ¢, g° = 1 and the nonlinear averages appearing in (2.42) are approximated

as

(U,-VIn)) = IrVvf,

(D,-VV-Vin)y = V(ag+(V))V[=PeVpVF,

Q2

(D'rva>g Vfa
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with an error of O(¢) in each case; a similar small error is incurred by neglecting the

integral over r3. With averaging again implicit, the steady form of (2.42) is given by
V(1 + Pep)Vf — Pe(I'r — Vp)-Vf = —Peik-Vp+ O(Pe?). (2.57)

The boundary conditions become
#V[f=—ipik+ O(Pe?) at r=2, (2.58)

and

f—0 as r— oo (2.59)

Asymptotic expansion of f

The condition of Pe < 1 indicates advection is weak on the lengthscale of the particle.
However, as is usual in problems involving a balance of diffusion with weak advection,
it is not a uniformly valid approximation to neglect the flow in the entire domain.
In this case of a linear flow, advection balances diffusion for r ~ Pe~'/? and we
construct f by matched asymptotic expansions, which is now standard for problems

of this type (Proudman & Pearson 1957; Acrivos & Taylor 1962; Leal 1992).

The governing equation for f is forced by a term linear in ¢k, and thus we write

f =1k-b(r). (2.60)
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This defines the wavevector-independent field b, which is analogous to the so-called

‘B-field’ introduced by Brenner (1980). We now write b in two separate regions as

b = b(r), r=00),

and b = B(R), R = Pe'?r = 0(1), (2.61)

which are to be matched in the domain of mutual validity. In (2.61), we use the outer

variable R, defined as R = Pe!/2p. Both b and B are expressed as series in Pe, with

the inner expansion given by

b(r) = i hn(Pe)b,(r), (2.62)
and the outer expansion by
B(R) = i H,(Pe)B,(R). (2.63)

The first three A, and Hp will be seen to be

ho=1, hi=Pe, hy=Pe** and H,= Pe. (2.64)

The leading term of the inner expansion is governed by

V2, =0, and # Vb, = —3F at r=2 (2.65)
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With h; = Pe, the governing equation at O(Pe) is
V2 = (I'r — 2Vp)-Vb, — Vp, (2.66)

with the condition of

Vb =0 at r=2. (2.67)

The far-field conditions on b, and b, are those of matching with the outer solution.
Here, and at many later points, it is more convenient to maintain the analysis in terms
of a general I'; when necessary to be specific, the dimensionless velocity gradient will
be for simple shear, fij : 0i16,9.

The solution to (2.65) is
27

bo= 3, (2.68)

where a constant (in r) vector solution is set to zero to agree with the known solution

for Pe = 0. Inserting by and p into (2.66) yields

Vb, = 2027772 4 Ei2r? 4 63—47'_4 + —2—35—67""7)
+ FBii(—6r? — 13ﬁr_4 + 5;—21'“7),

which has the particular solution

O | 16 64
bl = =S + RESTTG + 5 + 35),
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where Qij = (Iy; — T';)/2% is the dimensionless vorticity tensor. The harmonic
homogeneous solution is determined by application of the boundary condition at

T = 2 to yield the complete b;,

A f a1 16 _4 64 _ AL, 36 _, T2 _ A
bl,k:"“iEijrjrk('2'+?r 2 _24r 4+—3—7‘ 5)—|—Ekj’l‘j(—?7‘ 2+?T‘ 4)—ij7'j. (269)

Proceeding to a consideration of the outer expansion, the choice of Hy = Pe is

now clear, because by and part of Peb; are O(Pe) for r = O(Pe1/%). The governing

equation for By is

0By
0X

V:By—-Y =0, (2.70)

where V denotes the gradient with respect to B = (X, Y, Z), and B, must also satisfy
By -0 as R— oo, (2.71)

and match the inner solution as B — 0. We construct By using the solution for an

instantaneous point source in the simple-shear flow, which satisfies

G <., LOG
T~ VIGHY o2 = ans(R)S(2), (2.72)

and was given by Elrick (1962) as

1 X =Yij2r (24 22
exp— _
2/ 011+ 2/12)72 P (1 1 12/12) 4

G(R,t) = . (2.73)
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The inner solution to be matched is a Y-directed dipole, requiring that

o _ 9
Bo(R) = —ad/o (V + ty 5)G(R, t)dt

2
e~ /4t €

Qy o
——= [ V(R,t
2/ Jo ( ’%W%1+ﬁ/myﬂ

dt, (2.74)

where a4 denotes the coefficient of the r~2 dependence of the inner solution (i.e. the

dipole strength) and £ is given by

(X2 —3Y2)t/12 + XY
4(1 + t2/12)

E(X,Y,t) = (2.75)

The components of V (R, t) are

v X Y4Xtf6 Y —X4Yi2
*= T T T it /12y

z
d Vz=-2. (276
2 " 4(1+t2/12) and Vz=—5 (2.76)

The solution (2.74) agrees with the dipole solution of Blawzdziewicz & Szamel (1993),
who have given the solution to the steady advection/diffusion equation for simple-

shear flow and general dipolar forcing. The operator
vV + t1yd/0X,

which is the gradient in the frame following the deformation of the material, commutes
with the operator on the left-hand side of (2.72).

We see from the inner solution that oy = 2, and thus the asymptotic form of B,
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as £ — 0 needed for matching to the inner solution is given by

Bo ~ R(2R™® + A1) — 2-R(R™ + A;) + LR*R-E-RR + O(R?), (2.77)

where

1 oo 1 —(1+412/12)1/2 0.192

/ A+ 8127, 0192 (2.78)
2/mJo t5/2(1 +12/12)1/2 2/
1 ol —(1412/12)1/? 1.37

A, = —_—— .
and Az = o=, #37(1 + 2/12)3/? NG (2.79)

A1 -

dt =

In inner variables, terms of (2.77) which are linear in R generate terms in HyB,
proportional to 7Pe%? which can not be matched by hobo + h1b;. Thus, hy = Pedl?,

and the governing equation and boundary condition for b, are homogeneous:

V%, =0, and #Vb,=0 at r=2. (2.80)

From the matching condition, we deduce that b, is a combination of harmonic solu-

tions linear in 7,
b2 = T(dl + 0,37"_3) + (AZ'T'((ZQ + CL4T‘~3),

and this condition also shows

a; = A;, and ay, = A,.
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The boundary condition in (2.80) yields
agz = 4A1, and ag = 4A2

This completes the solution of b to O(Pe*?) in the absence of hydrodynamic inter-

actions.

Evaluation of the long-time self-diffusivity

Consistent with the closure of the equation for f, for small ¢ we neglect correlations

in (2.46). Inserting f = ¢k-b and rearranging, we obtain

(InF,) = 2Pe(k-IViInF,+ik-(U,)°) — k-Dj-k

— ¢;13;kk:/(Vb + PebVp)g(r)dr + O(k3, Pe?). (2.81)

Thus, to O(Pe?) the long-time self-diffusivity in the dilute limit is given by

D, = D+ %3; / (Vb + PebVp)g(r)dr,

- D5+ qﬁf;/V[(l + Pep)bldr,

where we have made use of the perturbation to the steady microstructure. Finally,

integrating by parts and substituting in the expansion for b to O(Pe*?) we have

D: = Di— 43 b{ #bod) + Pef #(bop + b1 )dQ) + Pem}{ fabzdﬂ] . (2.82)
T =2 r=2 r=2
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where df} is the element of solid angle.

From the solutions for & we have

4 ibdn = I,
r=2 3
167 - 21 -
P(bop 4+ b,)d) = Tfpy 2T
f{:zr( op + b1)d02 Bot3E
f Fhod) = —127 41
=2 3

giving a long-time self-diffusivity in dimensional form of

o

D2, = D[(1—26)1 + %ﬁpeiv +0.656P 2] + O(¢7, Pe?),  (2.83)

using the numerical value A; &~ —0.054. The O(Pe® ?) term is valid only for simple-
shear flow, while the O(Pe) term is valid for a general linear flow.

In integrating by parts to obtain (2.82) we have neglected the surface integral at
infinity. Since the dipolar solution b, decays as r?, neglecting this surface integral
needs to be justified. That it is proper to discard this integral can be seen by noting
that the small k expansion of the governing equation for fx, (2.38), is not valid when
r ~ k™', There is an outer region where the O(k?) term, ik-V fy, from the right-
hand side of (2.36) cannot be neglected. Here ik acts like a uniform velocity and, as
is common in all problems of diffusion and weak uniform advection, this outer region
changes the decay from algebraic to exponential, thus Justifying the neglect of the

surface integral at large r.
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2.4.3 The long-time self-diffusivity in a dilute suspension:
hydrodynamics

We now turn to the problem for the long-time self-diffusivity with hydrodynamic
interactions. The analysis proceeds much as before. The only qualitatively new
feature is the presence of hydrodynamic velocity fluctuations as a source of diffusive

behavior.

Closure for f

With hydrodynamic interactions, the nonlinear averages appearing in (2.42) are ap-

proximated as

(UTVfN)(ZJ ~ (Ur>gvf)
(D,NVVN); =~ (D,)3V(lng+(V)3)-Vf = Pe(D,)0-Vp,

and (D.-Vfn); ~ (D,)5-V],
with O(¢) errors as before. The steady form of (2.42) becomes

V-(D,(14 Pep)-Vf] — Pe(U, — D,.-Vp)Vf
= ik [Pe(U. -2D,-Vp)— (1 + Pep)V-D,]

+O(Pe?), (2.84)
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with

#D,.Vf=0 at r=2, (2.85)

and

f—=0 as r— oo. (2.86)

Asymptotic expansion of f

The asymptotic expansion of f = ik-b with hydrodynamic interactions proceeds as
before with the same inner and outer regions and the same scale functions (2.64). In

the inner region, the leading-order governing equation is

VD, Vby) = ~1V-D,, (2.87)
with boundary condition
#D,Vby=0 at r=2. (2.88)
At O(Pe), by is governed by
V(D,-Vb,) = (U, - 2D,-Vp)-Vbs + LU. — D,-Vp, (2.89)

with boundary condition

7D.-Vb; =0 at r=2. (2.90)
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Because the relative diffusivity varies spatially and the relative velocity deviates
from I'-r, solutions are not available in closed form and in the inner region must
be determined numerically. However, the basic findings with regard to the influence
of shear upon the long-time self-diffusivity for hydrodynamically noninteracting par-
ticles are unchanged by hydrodynamics: the leading influence of the flow upon the
diffusion tensor is O(¢Pe) and mirrors the geometry of E, and the next dependence
is O(¢Pe%/?).

At large r, D, ~ I and V,-D, scales as 5, 50 that the particular solution to
(2.89) is proportional to r~3, while the homogeneous solution is dipolar and thus

proportional to r~2. Including the first variation of D at large r,
G=1-3%+0(%) and H=1-3"140(),

we find

(2.91)

which satisfies (2.87) to terms in r~°. The coefficient a4 denoting the strength of
the dipole created by the pair interaction must be chosen so that a logarithmically-
divergent term in the general solution at r = 2 vanishes; the appropriate value is
found by trial to be oy = 1.07, which differs from the value of 2 for the coefficient
of r=2 in the equivalent problem without hydrodynamics. The solution for by(r) is
presented in Figure 2.1. The combined asymptotic and numerical procedure used to

determine by, which was outlined by Batchelor (1977) for the determination of the
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Figure 2.1: The function bo(r) specifying the radial dependence of b, .
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microstructural distortion p satisfying equations (2.48-2.50) of the present work, is
used also for the solution of the other problems in the inner region.

The homogeneous outer solution B satisfies the same governing equation as in the
absence of hydrodynamics, and the solution differs only through the magnitude of the
induced dipole. The fluctuation velocity U caused by the force dipoles (stresslets)
of the particles is proportional to 72 and thus the leading-order outer problem is

inhomogeneous,

0By

-V? Y
B, + X

= —SUL(R); (292)

it is only the dominant portion of U, that enters the outer problem at leading order

in Pe, i.e (Batchelor & Green 1972)

c
Z

|

|
‘?)
>
-3>
>
ll

[~ =B ——R—2PeRERR (2.93)

The particular solution to (2.92) is constructed by weighting the Green’s function for

the problem, given by (2.73) integrated over ¢, by U /2 to yield
Bi(R) = —~— / U(S / " G(R - S,1)dtds, (2.94)

which is given in component form by

S:S; Sk w0 o~ R-SP/atexple(R — 8§ ,1))dt
BYR) = 167 3/2E1k/ dS/ 13/2 1+t2/12)1/2
5 [5.5, SdS/OO e~ WR-SPlat explo(R ~ 8 ,¢))dt
T 1679/2 3/2(1 4 12/12)1/2

(2.95)
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where S = (S;, Sy, S;) and the subscript of Bf is omitted for simplicity of notation.
To completely determine the solution in the inner region up to and including terms

of O(Pe%?), (2.95) is expanded for small R to give

5 5;5;8 © _1R-8S2
BY(R) ~ B [ EdS /0 1-302e~R-5P/a gy 4 O(R?)
~ 2p, 555 ds + O(R?). (2.96)

8r %) S5|R— S|

The integral of (2.96) may be evaluated by observing that it is of the form

;syl%%dy = C1(6i; @k + b + 655&;) + Crle ;4.

Contractions of the integral with I& and &&&, with # the angle between R and S,

yield

oo pm cosfsinf
2 / d6dS = 2r = 5C; + Cy,
7r/o o VR + S?2—2RS cosf g 142

and

o rm cos2@sin 8 4T
2/ d6ds = X = 30, + Oy,
" Jo /o VR + 82 —2RS cos 6 3 1+ 02

respectively, where the factor of 27 is due to integration of the angle about the axis
of symmetry, and thus C; = C; = 7/3.

The homogeneous Bg is obtained by multiplying B determined in the absence of
hydrodynamics, given in asymptotic form for small R by (2.77), by a4/2 to account for

the different dipole strength in the problem with hydrodynamic interactions. Thus,
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the complete outer solution asymptotes to

By ~ %R(QR* + A1) — %f?-R(R“ + Ay) (2.97)
ad 5 -3 ol 5 R e 2
+('4—+ EZ)R R-E-RR+1—2‘R E-R + O(R ),

where A; and A, are given by (2.78) and (2.79), respectively. Because the remainder
in (2.96) is O(R?), the O(Pe®?) inner solution A,b, will match only with terms
from the homogeneous outer solution, and is identical in functional form to, but
differs in magnitude from, the leading-order outer solution found when hydrodynamic
interactions are neglected.

Consideration of the forcing of (2.89) indicates that b; may be written

by = My (r)i-E-## + My(r)E-# + My(r) 27,

with the M;(r) satisfying

d ( , dM, o,
E(TGdr)—].?HM] = T‘LI(T‘)

<7~2Gd$f2) —2HM; = r’Ly(r) —4H(r)M;,

d
dr
d

dr

d
(TZG 3:3) —2HM; = r2by(r),
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where
, (B=A)r
Li=-(1-B)b + (1+B— A+ -—F——
2Hb 2H
+2WW—2%+W——i
T T
and
L, = [1—B+2££q] b, — 20 4 289
r 2 r

At large r, the forcings are

’ —1
Ly ~ (=3ay3- —Z—)r'2 — —————(9ad2 5)7'—3,

9ay — 15
2 -3
g

Lz ~ bo ~adr"

from which we find the asymptotic solutions

M) ~ T3 3
5 3ad

Ma(r) ~ E+T€Tr_’
oy 15

Ms(r) ~ 5t (-9,

whose constant portions match with the small-R asymptote (2.97) of the outer solu-
tion By. Starting at r = 10 and integrating back to r = 2 yields a complete solution
for b;; small additive corrections to the asymptotic solutions determined by trial were
sufficient to determine the solution which satisfies the boundary condition at contact.

The solution curves for My, M,, and M; are presented in Figure 2.2 (a-c), respectively.
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Iigure 2.2: The functions (a) M(r), (b) Ma(r), and (¢) M3z(r) specifying the radial
dependence of by; (b) and (¢) are on the following page.
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The equation for b, is homogeneous,

V-(D,-Vb,) =0, (2.98)

with the boundary condition

#D, Vb, =0, at r=2. (2.99)

To find by, we note that it matches with terms which are linear in R of (2.97), and

may thus be written

by = Ni(r)# + Ny(r)§2-7, (2.100)

where, as r — oo,

(%) Qg
N1 ~ 7(117", and N2 ~ —2—a3r,

with the next terms constant in r to satisfy the equation including the first variation of
D, with r~'. These asymptotic solutions were used as estimates to start integration
of the equations governing N; and N, toward r = 2 from large r. Small additive
corrections found by trial were sufficient to satisfy the boundary condition at contact.

The solutions for N; and N, are presented in Figure 2.3 (a) and (b), respectively.
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Figure 2.3: The functions (a) Ni(r) and () Na(r) specifying the radial dependence
of ()2.
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Evaluation of the long-time self-diffusivity

With hydrodynamic interactions and ¢g°? = 1, the equation to determine the long-time

self-diffusivity, (2.46), becomes

(InF,) = 2Pe(k-I'ViInF,+ik-(U;)°) — k-Di-k
3 3
+¢»Ekk./D,-Vb dr + qSZ;Pekk./V-[Drpb]dr

~¢Z3;Pe kk:/[Q U, +pV-D,)bdr + O(k®, Pé?). (2.101)
Hence, the long-time self-diffusivity with hydrodynamic interactions is given by

DS

o0

- D+ Q%/DT-W dr + qs%Pe/v-[D,pb]dr

—¢23;Pe/[2 U' +pV-D,)bdr.

The first two integrals on the right-hand side can be integrated by the divergence
theorem, with the surface integrals at infinity discarded as discussed before, and
since with hydrodynamic interactions #- D, = 0 at contact, the contact contributions

are zero. Thus, the long-time self-diffusivity reduces to

3 3
5 = S — b— . [ S ! 9
D = Dg ¢47r /(1 + Pep)bV-D, dr ¢27r Pe/U,,b dr. (2.102)

We first consider the ¢-dependence of D} for Pe = 0, which requires knowledge
of bg only. Batchelor (1976, 1982) found D; = (1 — 2.10¢)I, for ¢ < 1. Rallison &

Hinch (1986) obtained D7, = (1 — 2.06¢)I using improved hydrodynamic functions
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(Jeffrey & Onishi 1984). Here, it is determined as the correlation of by, the b-field at

Pe = 0, with the divergence of D,,

V-D =+2Z(r), where Z(r)=G'(r)+ 2———-——G(T) ; H(T),

and is calculated as

¢4%/bo(r)f'Z(r)dr = —0.24¢1.

This result sums with D} given by (2.55) to yield in dimensional form

D:, = D(1 —2.074)I, (2.103)

(e}

a result sufficiently close to previous findings to provide confidence in the accuracy

of the hydrodynamic data employed.

The first advective effects on the diffusivity arise from the correlation of b with

V-D, in (2.102):

_¢4—377-P6/Z(r)p(r)i'bo(r)dr - §¢P6E/;o 2(5)q(s)bo(s)s2ds

= 0.09¢PecE; (2.104)

_¢£;P6/Z(T)f'bl(r)dr = —¢PeE/2w Z(3)[2My(s) + My(s)]s’ds

= —0.75¢Pek; (2.105)
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and

_¢%P63/2/Z(7‘)f'bz(r)dr = —¢P63/21/2°° Z(s)Ny(s)s?ds

= 0.13¢P%°I. (2.106)

At large s, by(s) and b,(s) are constant and linear in s, respectively, while Z(s) ~

15s7%; thus, the integrals converge.

Contributions to D?  from the correlation integral
3 '
> Pe / U'bdr
2r

are present only when hydrodynamic interactions are considered. We calculate these

contributions to O(Pe*?). The first is from the integral over the inner region, yielding

~q5'2§7;Pe/U,r(r)bo(r)dr = %qéPeDS /[2/1(5) + 3B(s)]bo(s)sds

= 0.96¢PcE. (2.107)

There is also an O(¢Pe*?) contribution from integration of U'b over the outer

region. In terms of outer variables, the correlation integral is
—Pe / U’ (7)b(r)dr ~ Pé? / U'(R)Bo(R)(Pe**dR) + o P/?);

recalling that the velocity fluctuation is proportional to r~2, which introduces one

factor of Pe, while Hy = Pe introduces another, the scaling of an O(Pea/g) eontribu-
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tion becomes clear. However, because the contribution to D?, from the correlation

of U’ with bg has already been determined in the inner region, we must integrate
JUi1Bo — bo(R)R,

where bo(R) indicates the dipolar b-field in the absence of flow expressed in outer
variables. To show explicitly the contributions associated with the homogeneous and
particular portions of By, we express the integrations yielding O(Pe*?) contributions

as
1 1
D' = syms / ULB} - bo(R)dR, and D" = syms / U B'dR,  (2.108)

where the forms of Bl and B} are given by (2.74) and (2.95), respectively. Al-
though neither integral in (2.108) is symmetric, it is only the symmetric portions
which contribute to the diffusivity. The 4-fold integration (dR and dt) for D" and
the 7-fold integration (dR, dS, and dt) for D” were reduced analytically to 2-fold
and 3-fold integrations, respectively, with the remaining integrations performed nu-
merically. Analytical reduction of the integrals follows from the observation that the
exponential in the solution has the form of a generalized Gaussian, and may, through
a time-dependent change of coordinates, be rewritten as a sum of quadratic terms,
allowing the spatial integrals to be evaluated. Each volumetric integration requires
integration over an introduced parameter because we replace R® in the denomina-

tor of the asymptotic form of the disturbance velocity (see Equation (2.93)) by the
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integral relation

1

=1

4 2
/aB/Qe_adea — ___/as/ze—aR do
3T k

) =

where I' denotes the gamma function and, in the second equality, we use T'(

(=) (@)

3y/m/4. With this replacement, the spatial integrations in the new coordinates re-
duce to familiar Gaussian integrals, albeit with coeflicients dependent on ¢ and the

introduced parameters. The remaining integrations were performed numerically. By

symmetry, DisP = DM =0 for ¢ # 3. We find

DM = —D! ~6x107°,

while the components D},, D%, and D, are all found to be smaller than 1071°; thus,

D" is essentially zero. The particular integral yields

3.83 093 O
DP=11093 1.74 0 . (2.109)
0 0 0.39

Bringing together all the contributions to D?_, we have

D?_ = (1—2.076)I + 0.30¢PeE + (0.131 + D" 4+ DP)¢Pe®? 4 O(4?, Pe?). (2.110)

Again, the O(Pe) term is valid for a general linear flow, while the O(Pe®/?) term is

restricted to simple shear.
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This completes the evaluation of the leading flow-dependent components of the
self-diffusivity for Pe < 1 and ¢ < 1. In the general case, a non-hard-sphere inter-
particle potential will generate an O(Pe) and an O(Pe®?) diffusivity contribution.
Proper evaluation of these contributions requires inclusion of the potential-driven flux

in the governing equations for g and b.

2.4.4 Scaling prediction for the long-time self-diffusivity
near maximum packing

For concentrated quiescent colloidal dispersions, Brady (1994) showed that a predic-
tion of the long-time self-diffusivity in very good agreement with experiment for all ¢
could be obtained by factoring the diffusivity into a hydrodynamic and a structural
(or thermodynamic) term. The idea behind this approach is the recognition that the
appropriate scale for the diffusivity, both in the equation for the perturbation func-
tion and the time derivative of the structure factor, is the short-time self-diffusivity,
D§(¢), at the volume fraction of interest, rather than the infinite dilution value D. In
this scaling, the diffusivity of a pair asymptotes to I for widely-separated particles re-
gardless of ¢, and it is clear that the appropriate Péclet number is Pe = §a?/2Dg(4).
With this scaling all of the above equations are unchanged, showing that the long-
time self-diffusivity factors into the product of the short-time self-diffusivity times
the nondimensional correlation integrals of the perturbation function.

The short-time self-diffusivity for equilibrium colloidal dispersions of hard spheres

has been determined theoretically for all ¢ (Beenakker & Mazur 1984), by Stokesian
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Dynamics simulations (Phillips, Brady & Bossis 1988; Ladd 1990), and experimentally
(Pusey & van Megen 1983; Ottewill & Williams 1987); all are in excellent agreement
with one another.

The second step in the approach is to derive a self-consistent formulation by

rewriting the long-time self-diffusivity, (2.46), as
—k-Dk = (InF,) — 2Pe(k-F-ViIn F, + ik-(U})°) = ik-J,, (2.111)
where the constant flux of particle 1 is
Jr=Diik+ g [{(-2PeUL + B,VVI i) + (D, Viu)lg(r)dr.  (2.112)

The overbars denote normalization with D§(¢). Equation (2.112) can be solved for ik
in terms of 3,, and the ik forcing on the right-hand side of (2.42) can be replaced by
7, to give a self-consistent equation for the perturbation function fy. This suggests

that we now write fy as

fN :.—7:1'5,

where the new b field satisfies the self-consistent version of (2.42). In terms of b, the

long-time self-diffusivity becomes

D, = D;- [I+¢%/{([—QP_6U;+DT-VV]5)3+(DT-VI;)g}g(r)dr}_l. (2.113)

o0
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Integrating by parts, (2.113) can be rewritten as

D = Dy|1-¢

3
Vi f D
%/ 2PeU’ + V-D, — D,-VV]5)? (r)dr]_l. (2.114)

For hard spheres in the absence of hydrodynamic interactions U ' and V-D, are

zero. Further, the contact integral becomes
}{ #D,bgdS = g% (2; qﬁ)éf'f'(l + Pep)bdQ,
r=2 I

with ¢g°?(2; ) the equilibrium pair distribution at contact. As maximum packing is
approached, ¢ — ¢, ~ 0.63, the equilibrium pair-distribution function diverges as
9°9(2;4) ~ 1.2(1 — ¢/¢m)™ (Woodcock 1981), and the contact integral dominates;
the volume integral is less singular as ¢ — @,,. This implies that only the contact
values of g®, p, and b are needed to estimate the long-time self-diffusivity. Brady
(1994) showed that in a quiescent suspension a good estimate for the contact value
could be obtained with the low-¢ limit of &. If we use this same approximation here,

then we have the estimate

] 23 _ . PR
D2, ~ D2,(¢; Pe = 0). [I - =Pk - 0.325P63/21]  as ¢,
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where the long-time self-diffusivity in the absence of flow is given by

_ D?
D (¢; Pe=0) =~ m. (2.115)

For small Pef, we can expand the denominator and Dg(¢; Pe) from (2.56) to

obtain

D’ ~ D? (¢;Pe=0) I + ?—g-P-eE‘ +0.325P%°T + 0(1562)} , as ¢ — Om.
(2.116)
The coefficients of the O(Pe) and O(P_es/ ?) terms are, of course, approximate, but
the general form displayed by (2.116) is not sensitive to the approximations made.
With hydrodynamic interactions, the contact integrals are identically zero as dis-
cussed before. However, Brady (1994) argued that at large ¢ a contact integral again
appears because V-D), is singular at contact. Physically, the variation in the relative
mobility of two particles at close packing is small at all separations not near contact,
because the relative motion is resisted by the effective viscosity of the suspension,
which diverges at close packing. Near contact, however, the relative motion is re-
sisted by the viscosity of the solvent, not that of the suspension, and this results in
V-D, having a delta function at contact. Thus, the long-time self-diffusivity is given
by the estimate (2.116) whether or not there are hydrodynamic interactions. The

only effect of hydrodynamic interactions is through Dg(4) and Pe.

tNote that the requirement for the perturbation analysis is now that ¥a?/2D§(¢) < 1, which
is a very severe restriction on the shear rate because D{(¢) vanishes near maximum packing for
hydrodynamically-interacting particles as D§(¢) ~ 0.85(1 — ¢/¢,) (Phung 1993).
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Unfortunately, there are no data with which to compare the above predictions.
Simulation data of Phung (1993), while at low Pe, are not at sufficiently low Pe to
extract the Pe dependence. The prediction that for weak flows the long-time self-
diffusivity normalized by the long-time self-diffusivity at Pe = 0 should be a function
of Pe may be used to collapse the data for all volume fractions onto a single universal
curve. The limited data of Phung (1993) do seem to conform to this scaling. It would
be interesting to see if this prediction is borne out by experiment and if the first
correction to the long-time self-diffusivity in the velopity-gradient direction in simple

shear behaves as Pes/ 2,

2.5 Summary and concluding remarks

We have investigated the self-diffusivity of a suspension of spherical particles in a
linear flow. Using the Fourier-transform method based upon dynamic light scattering
we have developed a theory for the identification and evaluation of the short- and
long-time self-diffusion tensors for suspensions at all particle fractions in linear flow at
arbitrary Péclet number, with any nonhydrodynamic interparticle and external forces
acting upon the particles. Although our application of the theory in the present work
is limited to small-wavevector variations corresponding to disturbances with large
spatial extent, the theory is applicable for all k.

The theory was applied to determine Dg and D7 in a dilute suspension in weak
simple-shear flow, i.e., in the dual limit ¢ < 1 and Pe <« 1. A general feature of

self diffusion in suspensions, which is brought clearly into focus by this study, is the
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dual nature of the role of microstructure in the process. To evaluate the diffusivities
the microstructure at a chosen “initial” instant (we have chosen this as the steady
microstructure at the conditions of interest as the most natural, but by no means the
only, choice) and the perturbation to this microstructure caused by the motion of a
tagged particle must be determined for the evaluation of D, , whereas D requires
knowledge only of the initial microstructure. This had been established for equilib-
rium conditions by Rallison & Hinch (1986) and Brady (1994), where the concept of a
perturbation function was developed. In this work we have generalized the definition
of the perturbation function given by Brady (1994) to apply to linear bulk flows and
shown that the deﬁnitior;s and formulae also hold for nonequilibrium conditions. One
consequence is that Dy is defined as kg7 times the average hydrodynamic mobility
of a particle within the microstructure for any bulk conditions. This definition is not
arbitrary, but follows directly from the identification of the self-diffusivity With the
tensor coefficient of the O(k?) term in @ln Fs/8¢, when this identification is made
at the initial instant. Under all conditions, it is the coupling of the perturbed mi-
crostructure with the flux of the tagged particle that leads to the difference between
Dj and D,. The coupling of a straining flow with a diffusive spreading leads to
Taylor dispersion (Taylor 1953), and the positional variance of a particle will never,
at least in certain directions, grow linearly with time. Thus, one can not identify
the self-diffusivity in terms of the growth rate of the variance as is possible for qui-
escent suspensions, and the simplicity of the identification of the self-diffusivity in

the Fourier-transform method is very useful for the investigation of this property in
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a flowing suspension.

We have considered the self-diffusivity in a weakly-sheared suspension both with
and without hydrodynamic interactions. When hydrodynamic interactions are ne-
glected, the governing equations are simplified but maintain their essential structure,
and this problem may be regarded as a model for suspensions of highly electrostati-
cally repulsive particles. Direct correspondence between terms in the self-diffusivity
for the cases with and without hydrodynamics demonstrates clearly the influence of
the microstructure upon D7 . We see from (2.82) that the self-diffusivity may be
written strictly in terms of microstructural functions when hydrodynamic interac-
tions are neglected. Hydrodynamic interactions have a quantitative effect upon the
microstructure and thus upon the diffusivity contributions determined in their ab-
sence, and a qualitative influence through the introduction of hydrodynamic velocity
fluctuations which provide another mechanism for diffusion. Dominant features of the
shear-induced diffusion process, even in the limit of Pe > 1, may thus be obtained
from the relatively simple study of noninteracting hard spheres as we demonstrate in
the following chapter.

The steady governing equations for the pair-distribution function, g(r), and pair-
perturbation function, f(r), were solved and their solutions used to evaluate the dif-
fusivities. The short-time seli-diffusivity is altered from the Stokes-Einstein value of
D = kgT/67na when hydrodynamic interaction are considered, with an O(¢Pe) cor-
rection proportional to F resulting from the distortion of the steady pair-distribution

from spherical symmetry by straining flow (Batchelor 1977). The long-time self-
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diffusivity has first corrections of O(¢Pe) and O(¢Pe® ?), regardless of whether hy-
drodynamic interactions are considered. The O(¢Pe) contribution is proportional E
and, like the correction to Dj of the same order, is valid for arbitrary linear flow,
whereas the O(¢Pe*?) we determine is specific to simple-shear flow. Although D?,

3/2) in other linear flows, not only the numerical value

will have a correction of O(¢Pe
but also the tensorial character of the contribution will differ: the O(éPe) corrections
are determined from the solution of the O(Pe) problem for f in the inner region only,
with no information from the outer solution (matching this inner solution does not
require use of a degree of freedom), whereas the O(¢Pe®?) correction requires the
detailed form of the first .term in the series solution in the outer region.

The O(¢Pe?) contribution to D?, is isotropic in the absence of hydrodynamic
interactions. When hydrodynamic interactions are included, this contribution is given
by the sum of a tensor proportional to E, with component form in simple shear of
Eij = (64652 + 6i2611)/2, and a nonisotropic tensor. The O(¢Pe*?) self-diffusivity
corrections are equivalent in their order with respect to ¢ and Pe to those found by
Leal (1973) for the influence of a weak simple-shear flow upon the cross-stream effec- -
tive conductivity of a passive scalar in a dilute suspension of spherical drops or rigid
particles. A direct analogy exists between the singular problem for the temperature
fluctuation in that study with that for f when hydrodynamics are considered in the
present work, and we can deduce form this analogy that the correlation of velocity
disturbance with temperature disturbance yields an O(¢Pe) correction proportional

to E to the effective conductivity.
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The isotropy of the self-diffusivity contribution determined at O(¢Pe® %) negléct—
ing hydrodynamics prompts an interesting comparison with the results of Qiu et al.
(1988). These authors used forced Rayleigh scattering to measure the self-diffusivity
in a charge-stabilized suspension of polystyrene spheres of average actual radius
a = 0.037um subjected to large-amplitude oscillating shear (y/w < 10 where ¥ is
the shear rate and w is the temporal rate of oscillation). For highly-repulsive spheres,
the particles have an effective radius ag with ag > a, and hydrodynamics may be
neglected in a first analysis. Qiu et al. (1988) measured the self-diffusivity in the
vorticity-direction of a simple-shear flow, denoted as D;,(%). The value of ag was
varied by changing the i<;nic strength of the suspending fluid, and Taylor dispersion

along the flow direction, denoted D), was well-correlated by the expression

which the authors show is precisely the result which one would expect if the diffusion
coeflicient in the velocity-gradient-direction were also given by Dy . Although further
experimental study is warranted, this is evidence for isotropic diffusivity perpendicu-
lar to the mean flow. The argument advanced by the authors to explain this isotropy
is that each encounter with another particle induces in a test particle a random dis-
placement which scales with the effective radius of the spheres. It must be noted that
these experiments were performed at a Péclet number a%y/D = O(10), with D the
bare diffusivity, and the results of the present study are not applicable at this condi-

tion. Nonetheless, we note these results because it is possible that the microstructural
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anisotropy necessary to obtain an advectively-driven diffusivity has similar characfer
(but different magnitude) over a wide range of Pe, and if so, fundamental geometric
similarity between the advective contribution to the diffusivity over a wide range of
conditions will exist.

Self-diffusivity in a monodisperse suspension of spherical particles in simple shear
including full hydrodynamic interactions has been investigated by Stokesian Dynamics
for monolayers by Brady & Bossis (1987) and for fully three-dimensional suspensions
by Phung (1993). Most of these results are for values of ¢ well outside the dilute
regime for which our analysis is valid. We may note, however, that these results do
not generally show the l;)ng-time self-diffusivity in the plane perpendicular to the
bulk flow to be isotropic, although the approximation of isotropy is not a poor one
for ¢ > 0.3.

Flow-dependent corrections to the self-diffusivity at ¢ — ¢,, have been shown to
follow the same scaling with respect to ¢ as in the case of Pe = 0, for sufﬁcienﬂy small
Pe; these scalings were obtained using the method developed by Brady (1994) for the
determination of the scaling with ¢ in a concentrated suspension which factorizes D7
into a hydrodynamically-influenced term, which is simply D}, and a microstructural
term which can be written as (g(2)f(2))™! in the general case as ¢ — ¢, (the
argument of 2 is shorthand for |r] = 2). The analysis shows that for weak flows
the appropriate Péclet number is that based on the short-time self-diffusivity at the
volume fraction of interest, Pe = v¥a?/2D$(4), and that D?, can be expressed as the

product of D?_ at Pe = 0 times the same function of Pe as at small ¢.
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The phenomenon of shear-induced diffusion of noncolloidal particles (Eckstein,
Bailey, & Shapiro 1977; Leighton & Acrivos 1987; Acrivos et al. 1992) may also be
treated by the Fourier-transform method. This problem requires the evaluation of
both ¢ and f (or the b-field as we have formulated the problem) for Pe > 1 and will
be treated in the following Chapter where the microstructure of a strongly-sheared

suspension is studied.
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Chapter 3

Microstructure, rheology, and self
diffusion in a strongly-sheared

suspension
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Abstract

The effects of Brownian motion alone and in combination with an interparticle force
of hard-sphere type upon the particle configuration in a strongly-sheared suspension
have been analyzed. In the limit Pe — oo under the influence of hydrodynamic
interactions alone, the pair-distribution function has symmetry properties that yield
a Newtonian constitutive behavior and a zero self-diffusivity. Here, Pe = Ya?/2D is
the Péclet number with 4 the shear rate, a the particle size, and D the diffusivity
of an isolated particle. Fore-aft symmetry, in which a second sphere is equally likely
to lie on an approaching .(fore) or receding (aft) trajectory relative to the reference
sphere, holds under these conditions, and although the steady pair-distribution func-
tion diverges at contact for pure straining motion, the rheology is Newtonian. At
small particle fraction ¢, where ¢ = 2xa®n with n the number density of particles,
Brownian diffusion at large Pe gives rise to an O(aPe™') thin boundary layer at
contact in which the effects of Brownian diffusion and advection balance, and the
pair-distribution function is asymmetric within the boundary layer with a contact
value of O(Pe®™); nonNewtonian effects, which scale as the product of the contact

22 as Pe — oo. If, how-

value and the O(a®Pe™!) layer volume, vanish as Pe™%
ever, particles are maintained at a minimum separation of 2b, with b > a, there is a
boundary layer of thickness aPe~! leading to an asymmetry of the pair-distribution
function which is O(Pe), with an excess of particles along the compressional axes.

The product of the asymmetric pair-distribution function and the thin boundary layer

is O(1) (dependent on &/a) as Pe — oo yielding nonNewtonian rheology, with normal
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stresses scaling as 7. For a dilute suspension without hydrodynamic interactions in
a general linear flow, the bulk stress resulting from pair interactions, denoted X,
and the associated normal stress differences are proportional to n7¢E(a/b), where
¢y = 2mbn is the thermodynamic volume fraction. Including hydrodynamic interac-
tions, the hydrodynamic normal stress difference is O(n¥¢?). The broken symmetry
and boundary-layer structure also yields a shear-induced self-diffusivity of O(ya?4)
as Pe — oco. For dilute suspensions of hard spheres without hydrodynamics, the
2

self-diffusivity is predicted to be D°® = —97—]-2—27%2'.
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3.1 Introduction

This paper addresses the microstructure of low-Reynolds-number suspensions of
spheres in strong shearing flow where the influence of Brownian motion is weak. We
have analyzed the pair-distribution function under the combined influence of weak
Brownian motion and an interparticle force of hard-sphere type. The study is mo-
tivated by a number of observations in nonequilibrium suspensions. When particles
are added to a Newtonian solvent, the suspension is often nonNewtonian, and thus
the particles cause a more striking alteration of rheolégical properties than the simple
and familiar increase in the effective viscosity. The effects in suspensions of spherical
particles include normal stress differences, which have been observed experimentally
(Gadala-Maria 1979) and in simulations (Phung 1993), and a contribution to the
isotropic stress (or particle pressure), which has been described and determined in
simulation by Jeffrey, Morris & Brady (1993). It is therefore generally inappropriate
to apply a Newtonian constitutive relation in modeling suspension flow, as this can
yield predictions of velocity and particle fraction fields in marked disagreement with
experiment and simulation for flows far from equilibrium. Far from equilibrium here
implies large values of the Péclet number, Pe, which is a measure of the relative
strength of shear and Brownian forces. Rational constitutive modeling of suspension
rheology for arbitrary flows requires understanding the microscopic basis for bulk
behavior at large Pe. It is the goal of this work to analytically determine the mi-
crostructure of a strongly-sheared suspension and demonstrate certain consequences

of the microstructure for the suspension rheology and self-diffusivity.
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The rheology of suspensions is related to the spatial distribution of particles,
termed the microstructure, and qualitative features of the rheology may be ascribed
to symmetry properties of the microstructure. For a suspension of spheres in the limits
of Pe = 0 and Pe™! = 0, the pair-distribution function, g(r), is spherically symmetric
(at least for pure straining flows), i.e., g(r) = g(r), and this microstructural isotropy
is associated with Newtonian constitutive behavior. Here, 7 is thé vector separation
between the centers of a pair of spheres. We focus upon whether the pair-distribution
tunction possesses “fore-aft,” rather than the more restrictive spherical symmetry.
Fore-aft symmetry is characterized by equal probability of a second particle lying on
a trajectory where it is approaching (fore) or receding (aft) relative to a reference
particle, and is relevant for flows in which the approaching and receding portions
of the pair trajectory are mirror images. This is true of simple-shear and planar
(two-dimensional) extensional flow. If fore-aft symmetry of g(r) holds, the rheology
is Newtonian in the sense that normal stresses are zero. This work will demonstrate
how the combined effects of Brownian motion and an interparticle force of hard-sphere
type give rise to the microstructural asymmetry necessary to yield nonNewtonian

V' = 0 is reflected also in a

behavior at large Pe. Broken fore-aft symmetry at Pe™
finite self-diffusivity of O(¢) in the dilute limit, which we calculate using the theory
of self-diffusivity in sheared suspensions developed in Chapter 2.

Analytical study of the pair-distribution function in flowing suspensions was ini-

tiated by Batchelor & Green (1972b) who showed that under the action of hydro-

dynamic interactions alone in pure straining flow, at Pe™' = 0, g(r) is spherically
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symmetric. This is a remarkable symmetry considering the angular dependence of
the relative velocity of two particles, whereas isotropic microstructure at equilibrium
Pe = 0 is, of course, expected. In simple-shear flow there is a region of closed tra-
jectories, and therefore one cannot conclude that g(r) is isotropic, although this is a
possible structure. At finite Pe, flow distorts ¢ from spherical symmetry as shown
by Batchelor (1977) in his study of a weakly-strained (Pe < 1) suspension, although
his determination of g to O(Pe) was insufficient for calculation of nonNewtonian
effects. To determine the normal stress requires the next correction to ¢, which is
O(Pe?) (Brady & Vicic 1995a). Numerous studies of the pair-distribution function at
small Pe have followed Batchelor’s (1977) work, most with the aim of incorporating
many-body effects present in suspensions at higher concentrations. Russel (1993) re-
views much of the statistical mechanical work which has been performed for colloidal
dispersions.

Although the present study is devoted to microstructure in linear flows, it is worth
noting the microstructural studies of sedimenting particles. Batchelor (1982) studied
the pair-distribution function in sedimentation, showing that for Pe~' = 0, g(r)
is, as in linear flow, spherically symmetric. Using theory developed by Batchelor
(1982), Batchelor & Wen (1982) evaluated g numerically for dilute sedimentation
at large Pe, but did not resolve the solution up to particle contact, and thus were
unable to determine the manner in which the singular contact value of ¢ is made
finite by Brownian motion. The influence of surface roughness on the trajectories of

sedimenting spherical particles has been investigated by Tabatabaian & Cox (1991)
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followed either by rigid-body (both studies) or frictional-sliding (Davis) motion while
particle surfaces were in contact. The microstructure was not determined by either
study, but Tabatabaian & Cox demonstrated the loss of fore-aft symmetry of the
trajectory when surfaces made contact, while Davis calculated the self-diffusivity
caused by the loss of symmetry.

At equilibrium, the probability of a configuration is proportional to the Boltzmann
factor exp[—V], where V is the potential energy for the configuration made dimen-
sionless by the thermal energy £T. In a flowing suspension, however, the interplay
of Brownian motion, interparticle forces, and hydrodynamic interactions leads to a
nonequilibrium microstru-cture that can only be determined analytically by solution
of the Smoluchowski equation governing the configurational probability. The primary
factor determining the microstructure in a flowing suspension is the relative strength
of the shear-driven flux to the diffusive Brownian flux, i.e., Pe. Often, suspended
particles are of micron size or larger, which for typical shear rates yields Pe > O(1),
and the microstructure is determined predominantly by hydrodynamic effects.

The effect of flow at large Péclet number upon the pair-distribution function has
been demonstrated by experiment and simulation. In Figure 3.1, adapted from Phung
(1993), and Figure 3.2, reproduced from Parsi & Gadala-Maria (1987), are plots of
the steady g(r) found at large values of Pe. Phung determined g from Stokesian
Dynamics (Brady & Bossis 1988) simulation of a suspension in shear flow u, = Yyy;
the projections of ¢ onto the plane of shear, z-y, and the plane perpendicular to

the bulk flow, y-z, are shown. These were fully three-dimensional simulations at



o = 0.45 ’

g(x,y)

g(z,y)

i}

Pe =0.01

Figure 3.1: Projections of the pair-distribution function g onto the z-y and y-z planes
for a monodisperse suspension at ¢ = 0.45 in simple shear, u, = y, simulated by
Stokesian Dynamics. The reference sphere is centered at the center of the square
and the scale at the top indicates the relative density of sphere centers. Note the
distortion in the nearest-neighbor ring in the z-y plane and the narrowing of this ring
in both the z-y and y-z planes for Pe = 10* relative to Pe = 0.01 From Phung (1993).
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Figure 3.2: Pair-distribution function g, in the plane of shear, for a suspension of
polystyrenc spheres in silicone oil at particle volume fraction ¢ = 0.4 in simple shear
at Pe = 3.0 x 10° and Re = 3.2 x 1077. The shear rate is opposite in the two
plots. Note the fore-aft asymmetry of the pair distribution and the reversal of the
asymmetry for reversal of the shear rate. From Parsi & Gadala-Maria (1987).



94

zero Reynolds number of a monodisperse suspension of spheres at a particle volufne
fraction of ¢ = 0.45; there are no interparticle forces. The pair-distribution function
from Pe = 0.01 is presented for purposes of comparison with that for Pe = 104, with
the Péclet number defined as Pe = 6xnya3/kT with a denoting the sphere radius. At
Pe = 10%, there is narrowing of the nearest-neighbor ring in both projections relative
to the near-equilibrium condition of Pe = 0.01. Distortion of this ring from circular 1s
scarcely discernible in the plane perpendicular to the flow, but is obvious in the plane
of shear. Parsi & Gadala-Maria (1987) performed simple-shear flow experiments with
a suspension of spherical polystyrene particles in silicone oil at ¢ = 0.4, Pe = 3.0 x10°
and Re = 3.2x107". The particle radii were in the range of 20—25um, a size for which
colloidal forces are typically considered negligible. The pair-distribution function,
determined by analysis of video images of the particle position, is illustrated by the
projection of ¢ in the plane of shear in Figure 3.2. The pair-distribution functions
determined by Parsi & Gadala-Maria (1987) and Phung (1993) have the common
feature of an excess of particle pairs along the compressional axes, as g takes on large
values adjacent to the reference particle in the compressional quadrants of the plane
of shear, and relatively small values in the extensional quadrants. With flow reversal,
the compressional and extensional quadrants are interchanged and, as demonstrated
by the results of Parsi & Gadala-Maria (1987), the fore-aft asymmetry is reversed
after a period of microstructural rearrangement.

Normal stress differences resulting from the asymmetry of g(7) have been observed

in strongly-sheared suspensions both experimentally by Gadala-Maria (1979) and in
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Stokesian Dynamics simulation by Phung (1993). In a parallel-plate geometry using
suspensions identical to those of Parsi & Gadala-Maria (1987), Gadala-Maria found
normal stress differences that scaled roughly as 57y for ¢ = 0.3 — 0.5. In suspensions
of Brownian particles interacting only through hydrodynamics, Phung found normal
stress differences for values of Pe as large as 10* for ¢ = 0.31 —0.51.* As an example,
for ¢ = 0.45 and Pe in the range 2 x 10? < Pe < 10%, Phung found N;/4n = 2 while
N, /777 increased from roughly 2 to 2.5 in this range, where N; and N, are normal
stress differences defined Ny = (£25 — £11) and N, = (E33 — Xy2), with X the bulk
stress of the suspension. Interparticle forces are absent in Phung’s simulations, and
these results demonstraté that residual Brownian diffusion creates microstructural
asymmetry sufficient to yield measurable nonNewtonian effects for Pe > 1. Further
experimental evidence of the asymmetry of ¢g(r) at large Pe is given by the work of
Gadala-Maria & Acrivos (1980), where for suspensions of ¢ > 0.3, the torque required
to generate an oscillatory torsional flow in a parallel-plate viscometer went through a
marked transient before reaching steady state at each reversal of the flow direction.
These examples are ample evidence of nonNewtonian behavior in suspensions at
large Péclet number, and yet when Brownian motion and interparticle forces van-
ish, it has been shown analytically for dilute suspensions that the microstructure
is symmetric and the rheology Newtonian. Considering only Stokes flows, we shall
term the condition where Brownian motion and interparticle forces are absent the

hydrodynamic limit. A simple argument based upon the reversibility of Stokes flow

*Phung (1993) reported normal stress differences for Pe as large as 10°, but the data show too
much scatter for confidence in the values at Pe > 10%.
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shows that fore-aft symmetry should hold also for nondilute suspensions in the hy-
drodynamic limit: supposing an initially isotropic microstructure, development of an
asymmetric structure due to shearing is incompatible with the fact that upon reversal
of the shear rate all trajectories are reversed and the structure vanishes to reproduce
the original isotropic stucture. Thus, the experimental and simulational results seem
to contradict the analytical reasoning. To clarify this situation and to predict the
rheology of noncolloidal suspensions, we have analyzed the pair-distribution function
of a monodisperse suspension of spheres under conditions of weak Brownian mo-
tion (Pe > 1). Under these conditions, there is a balance between advection and
Brownian diffusion in a nz‘xrrow boundary layer of O(a Pe™!) at minimum separation,
analogous to boundary layers encountered in heat or mass transfer from surfaces, and
it is within the boundary layer that the symmetry properties of g are determined.
Two cases, distinguished by the minimum separation of a pair of particles, denoted
2b so that b is the effective radius of the particles, have been studied. In the first
case, the particles interact only hydrodynamically, and the minimum separation is at
actual contact, i.e., b = a. In the second case, a repulsive force of hard-sphere type
maintains a minimum separation of 26 > 2a.

We study the steady pair equation at ¢ < 1 considering only pair interactions.
Investigation of the problem with hydrodynamics and weak Brownian motion, but
no nonhydrodynamic forces (b = a), is presented in §3.3. Under these conditions,
the boundary-layer equation for g for pure straining motion is solved by similarity

reduction to find g(2) = O(Pe%™), where g(2) is the contact value of g(r). Although
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the solution is not fore-aft symmetric, the product of the O(a®Pe?) volume of the
boundary layer and the O(Pe®"®) magnitude of ¢ scales as Pe=%22 a5 Pe — 00, and
thus nonNewtonian effects vanish in the hydrodynamic limit. In §3.4, the influence of
a repulsive interparticle force of hard-sphere type is analyzed by considering the pair
equation for particles maintained at a minimum separation 2b > 2a. The problem is
first studied without hydrodynamic interactions to simplify the boundary-layer anal-
ysis, then with full pair hydrodynamics. Fundamenta) features of the microstructure
are the same regardless of whether or not particles interact hydrodynamically: the
radial balance between advection and Brownian diffusion yields an asymmetric g(r)
of O(Pe) within the bouI;dary layer. In the limit Pe — oo, the product of the O(Pe)
asymmetry and the O(a® Pe~!) boundary-layer volume is finite, yielding nonNewto-
nian rheology that is independent of Pe, as illustrated by dilute-limit calculation of
the average normal stress differences which, for b — small, scale as ny¢?. It should
be noted that with hydrodynamics, nonNewtonian effects scale as (b/a — 1)%?2 as
b—a — 0. The exponent of 0.22 arises from a grouping of the contact values of the
hydrodynamic functions which also yields the Pe=0-22 scaling of nonNewtonian effects
under the influence of hydrodynamics alone. The asymmetry in the boundary-layer
solution for b > a is also reflected in an O(¢) cross-stream self-diffusivity in simple
shear, which we calculate in §3.5 for the case of hard spheres without hydrodynamics
using the theory developed in Chapter 2. Finally, we discuss the work and possible

extensions.
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3.2 Governing equations

3.2.1 Smoluchowski equation

We consider a suspension of N identical spheres homogeneously dispersed in a New-
tonian fluid. The suspension is subjected to a linear incompressible flow with the
constant velocity-gradient tensor I". The probability distribution function for the

N-particle configuration, &V, is denoted Pn(2N,t) and satisfies the Smoluchowski

equation
0Py X .
N -}—Zva‘.?a =0, (3.1)
ot =
with the flux of particle a
N
ja =U,Py — Z DQQPN-Vﬁ(In Py + V), (32)
B=1

where U, is the hydrodynamic velocity, V is the particle potential energy made
dimensionless with &7, and the Brownian diffusivity is given by D.s = kTM 4,
where M .4 is the hydrodynamic mobility of particle « to a force exerted on particle
B. We take V to be an interparticle potential depending only upon the relative
configuration of the particles. A potential dependent upon absolute position, and
hence the influence of particle buoyancy for example, may be included without altering
the basic formulation; the flux from such a potential is appropriately grouped with
the hydrodynamic velocity because both generate a nonequilibrium microstructure.

Fixing the separation vector between a pair of particles, (3.1) is integrated with
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respect to the center-of-mass coordinate of the pair and the positions of the remaining
N — 2 particles to arrive at the equation for P(7), the probability distribution for
finding a particle at r given that a particle lies at the origin:

9P

5 T Vr({U)2P) = Vi [P (D-V,(Iln Py + V)] (3.3)

~9, Py [ Pupl@slr){(Dss = Dys)-Vs(ln Py + V))sdas =0,

where V., = V, = —Vy, and Py is the probability of finding a third particle at @3
given the positions of a pair of particles at the origin and at r. In (3.3), the relative

velocity and relative diffusivity are given by
U=U,-U,;, and D = Dy, — Dy — Dy + Dy,

respectively. The notation ( ), indicates a conditional average with two particles

fixed.

To make analytical progress, we consider dilute particle volume fraction, ¢ =
4mna®/3 < 1 with n the average number density of particles. Thus, with an O(¢)
error the nonlinear averages and integral over the position of a third particle in (3.3)

are neglected. Quantities are made dimensionless by scaling as
r~a, U~+a, D~2D, and t~77}, (3.4)

where 4 is a characteristic magnitude of I', and the scaling of the relative diffusivity is
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with its far-field asymptotic value, 2D, with D the diffusivity of an isolated particle.

The Péclet number is defined by
Pe=12. (3.5)

In order to investigate the behavior under the action of interparticle forces, we
consider a simple hard-sphere interparticle force at a variable distance r = 2b. This
force may be incorporated through a no-flux condition rather than in the flux itself.

Thus, the dimensionless equation for the pair-distribution function g(r), defined by

Pra(r) =ng(r),is

% +V-{(Ug) — pe—lv.(D.Vg) =0, (3.6)

with boundary conditions of

(J,—3,) = 0 at r=2b/a, (3.7)

-3>

g ~ 1 as r— oo, (3.8)

where # = r/r is the unit vector projecting from particle 1 to particle 2. To simplify
notation in (3.6) and hereafter, we write V for V, and the angle brackets indicating
averaging are omitted. Setting b = a corresponds to no interparticle forces.

We are interested in the condition Pe 3> 1, for which the steady solution of (3.6)

over most of the domain is well-approximated by the solution to

V-(Ug) =0, (3.9)
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with the far-field condition of

g~1 as r— co. (3.10)

Batchelor & Green (1972b) solved (3.9) and (3.10), demonstrating that when the
trajectory of the second sphere relative to the reference sphere comes from infinitely
far away, where it is assumed that all positions of the second sphere are equally likely,
g is a function of scalar separation only. The solution under these assumptions,

denoted g(r) = p(r), is

p(r) = 1 _1Aexp [/;00 —i((?*_—:—))er . (3.11)

The scalar functions A(r) and B(r) specify the radial dependence of the disturbance
of the relative velocity from I'-r due to the pair hydrodynamic interaction (Batchelor

& Green 1972a),

U—TIr=—rB[A(r)#t + B(r)(I - ##)],
where F is the dimensionless rate-of-strain tensor. In terms of the standard mobility

and resistance functions (Kim & Karrila 1991), A and B are given by

4 4
Alr) = ;(55“;]1 - 13{2) = 37(X1G1 - Xle)(x(ﬁ - $?2)>
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and

3 oo

8 1
B(r) = ~(vt — v}) = [g(yi‘l —yL)(Y ~ Y9 — (v8, — o5) (Y + Ylé’)] :

where 275 and yJ 5 are the functions relating the stresslet on particle a to the force on
particle 8 in the formulation of Kim & Mifflin (1985), X, S and Y.G are the resistance
functions relating force to rate of strain, and so forth. Both A(r) and B(r) tend to
zero with large r so that p(r) tends to unity. Beyond its purely radial dependence, the
main feature of note regarding p is that it diverges at particle contact, as (r/a—2)~078
with a logarithmic correction (Batchelor & Green 1972b; see (3.28) below). While p
is not forced to satisfy the condition of no flux through the inner boundary (b = a),
it nevertheless does so because the radial velocity is linear in r/a — 2, and thus Up
vanishes at contact.

The spherically symmetric solution for the pair-distribution function is only
strictly valid when all particle trajectories come from infinity, as is the case in pure
straining flow. In simple-shear flow, however, there are regions of closed streamlines,
and there is no guarantee that g(r) = p(r) in the region of closed streamline. Thus,
the familiar problem of simple-shear flow requires special treatment. With repulsive
interparticle forces of sufficient range (8/a — 1 &~ 10~*), however the closed streamline

region is destroyed and the analysis we present below is valid.



103

3.3 Pair-distribution function: weak Brownian

motion, no interparticle forces

We first investigate the behavior in the absence of interparticle forces (b = a). The
result that the pair-distribution function of spheres in pure straining is a function
of scalar separation only, (3.11), is a strong statement. However, the divergence of
p at contact is incompatible with any level of Brownian motion because this would
result in a finite relative flux at contact. Brownian diffusion, no matter how weak,
displaces particle pairs and leads to a finite value of ¢ at contact. Weak diffusion is
important only in a bour‘ldary layer over which a steep gradient in pair probability
exists, a concept familiar in transport of heat or mass (Leal 1992). The spherically
symmetric p is valid to O(Pe™!) except at small separations. Asymmetry in the pair
configuration of magnitude greater than O(Pe~!) thus lies solely within the boundary
layer, and we focus attention upon this region.

We restrict the investigation to pure straining flows, because for an isolated pair
of spheres in simple shear there is a region of closed trajectories (Batchelor & Green
1972a), as noted above. The analysis for the region of closed trajectories is not
straightforward, in part because the pair-distribution function in the limit Pe™' =0
is indeterminate (Batchelor & Green 1972b). Analysis is further restricted to the
specific flow of planar extension because of the obvious symmetry properties of this

flow. For concreteness, we take the dimensional rate of strain of the undisturbed flow
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to have the components

Ei; = %(@'1@'2 + 6:2651),

corresponding to the rate of strain in the simple-shear flow u; = Jz,.

The relative diffusivity may be written as (Batchelor 1976)
D = G(r)rt + H(r)(I — 77), (3.12)
where G(r) and H(r) are known functions given for equal-sized spheres by
G(r) = 2faty(r) — o)) and H(r) = 2ti(r) = v

with the hydrodynamic mobility functions z%; and yg; describing the velocity of
sphere a due to a force on particle § along and transverse to the line of centers of
the pair, respectively (Kim & Karrila 1991). Introducing (3.12) for D to (3.6), the

steady pair equation in spherical coordinates is

1af{, dg H d . Og 1 0% ‘
r2 Or [r G(T)ar] + rlsing {890 Sm(pﬁgo t sin ¢ 062 (3.13)
dg U, dyg Us Jg _
—Pe [Ur or + r Op rsing 00 +t9V:U| =0,

where ¢ is the azimuthal angle measured from the z3 axis, and ¢ is the polar angle

measured from the z; axis. The components of the relative velocity are

U =r[1l— A"y, U,=7r[1—=B(r)]v, and Us=r[l- B(r)],
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(3.14)
and the divergence of U is
V-U = W(r)y,, (3.15)
with
W=3B-A)- r%é. (3.16)

In equations (3.14) and (3.15), the angular dependences given by 7,, 7,, and 7 are

defined as

A

v = Er = -;—sinzgosin 20, A, = QAOEA“A' = %Sin299 sin 26,

and vy = 0-B-# = 1 sin ¢ cos 26, (3.17)

where ¢ and 6 are the unit vectors in the ¢ and 6 directions, respectively.
At large Péclet number, the influence of Brownian diffusion is comparable to that
of advection only for particles near contact. Thus, for r —2 « 1, the radial coordinate

is stretched according to

y:Pe(r—Q),

with y = O(1) resulting in a balance between advection and diffusion. The radial
diffusivity and radial velocity are approximated by Taylor expansions to linear terms

about their values at » = 2. At leading order in Pe the governing equation for g
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within the boundary layer is

0%g

y‘a—yg (3.18)

/ dg
+ 1 +%A'(2)y] 9y
L 99 , 7 99)] 1 _
B [2(1 - B(2)) <7¢34p t sin ¢ 80)} + 2W(2)7,g =0,

where a prime denotes differentiation of a hydrodynamic function with respect to r,

and we have used A(2) = 1, G(2) = 0, and G'(2) = 2. Values of other quantities

appearing in (3.18) are

A'(2) = —4.08, B(2)=0.406, and W(2)=6.38.

The boundary conditions on g are

dg
— =0 at y=0 19
Y3y at y =0, (3.19)
g ~ p as y — oo. (3.20)

The system of equations (3.18-3.20) admits the similarity transformation

g(y,0,¢) = u(n)h(0,p), where 5 =y/Y(4, ). (3.21)

The equation governing u is

nu” + (1 + a1n)u’ — agu = 0, (3.22)
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with the boundary conditions

n' = 0 at =0, (3.23)

uh ~ p(r) as n— oo. (3.24)

The equations governing Y and h are

oY v OY 4A'(2) ., 4ay
Te Dy + sin p 96 T B(2)Y T 1-B(2) (3:25)

and

oh Yo Oh 2W(2) , 4a,h
7“’&,9 + sin @ 00 + L B(2)h ~ Y(1-B(2) (3.26)

Without loss of generality! we set a; = 1, while ay is determined by matching uh
to p, a condition which requires the angular dependence of uh to vanish at large 7.

With a; = 1, the asymptotic form of (3.22) at large  shows that
u ~ constant X n%. (3.27)
Near particle contact, Batchelor & Green (1972b) determined

p~ 0.234(r —2)""®log(r — 2)7']7%*® as r—2, (3.28)

tA study of (3.25) shows that a; must be positive, but is otherwise arbitrary, in order that Y,
and hence the boundary-layer thickness, be positive. At the stagnation points in the compressional
quadrants, e.g., ¢ = 7/2 and 6 = 37/4, both 7, and 7 vanish, while the radial velocity is negative,
~r < 0. Thus, at this point Y = a; /A’(2)v,, and because A’ < 0 we must have a; > 0.
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and up to a weak logarithmic error, matching of the radial dependence of u and p is
accomplished by taking a; = —0.78. This value of a; also satisfies the requirement of
vanishing angular dependence of the product uh, as is verified by inserting A = Y2

to (3.26), which yields an equation identical to (3.25) when we choose

—= = .78, (3.29)

Note that (3.29) shows the genesis of the divergence in p in terms of hydrodynamic

functions.

A change of variables to ( = —n yields the standard form known as Kummer’s

equation for u((),

(u’ + (1= v’ + agu =0,

which has the general solution (Abramowitz & Stegun 1972)

U(C) = AlM(_G'?) 1’<) + )‘2U(_a27 17 C)7

where M and U are confluent hypergeometric functions, and A; and A, are arbitrary
constants. For second argument of unity, U is logarithmically singular at { = 0 and

is therefore discarded. The argument ( is negative, and

M(—ay,1,{) ~ K(=()" = Kn; as n— oo,

with K a constant. This far-field form of M agrees with the asymptotic form of u
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given by (3.27) which was shown to satisfy the boundary condition (3.24) of matching
the radial dependence of p. The condition (3.23) at contact is satisfied because
M'(—a3,1,0) = —a, and thus the product (M’(—ay, 1,() vanishes at { = 0.

To complete the solution for g within the boundary layer, we determine the scal-
ing function Y (g, 0), which has the physical meaning of a variable boundary-layer
thickness. It is sufficient, due to symmetry of the pair configuration and bulk flow,
to determine Y in the restricted domain 0 < ¢ < 7/2 and 37/4 < 6 < 5= /4. The

solution elsewhere may be obtained from the symmetry relations

37

Y(ﬂ- - 3070) = Y(SO’O); Y(99’ 6) = Y(@’ 0+ 7r)v and Y(S‘Oa 0) = Y(Lp, _2_ - 0)'

Two conditions on Y are required, which we choose to be finiteness of Y at § = 3x /4
and 9Y/0p =0 at ¢ = 7/2.
The solution to (3.25) is found by the method of characteristics (Carrier & Pearson

1988). Rewriting (3.25) as

oYy )4
-87 + U(‘P) 0)5;; - w(Ya ? 9)7 (330)
where
v(p,0) = 12 sing, and w(Y,p,0)= 4M1—:Z’i/— (3.31)
9 70 9 ? b 79 1 _ B(Q)’

we may interpret w as the complete derivative w = dY/ds with df8/ds = 1 and
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dp/ds = v. For § = 37 /4, (3.25) reduces to

dY (p,3"
——%—Ql—‘-’—l + (kytan @)Y = —k;ysecpcscp,
¥
with solution
Y (e, 327{) = ky(cos ) /i(cos z)”0+k) cse z di, (3.32)
@
where
kl = iTB——(Q—)' ~ 137, and kz = 1 — B(?) ~ 67
Similarly, for p = 7/2, (3:25) reduces to
dY(Z, 6
——(g—é’——)- + (k1 tan 20)Y = ky csc 26,
with solution
9
Y(g,e) — ky(cos 20)/? / (eos 92)~(+h1/2) gy (3.33)
3r/4

To illustrate the asymmetry of the boundary-layer solution, we present plots of
(3.32) and (3.33) in Figure 3.3 and Figure 3.4, respectively. Figure 3.3 illustrates that
Y grows from a minimum at the stagnation point and diverges as ¢ — 0 and ¢ — 7,
where the relative velocity vanishes. The plot of (3.33) in Figure 3.4 illustrates that
the boundary-layer thickness grows rapidly in the extensional quadrants (6 < = /2 and
6 > m) and diverges along the extensional axes. In Figure 3.5, Y'(¢, 8) is plotted along
the curve 6 = 37/4 and three characteristic curves (here only within the restricted

domain). The curves indicate the three-dimensional structure of the boundary layer.
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Note that while it diverges at ¢ = 0 and ¢ = 7 and grows rapidly as we enter the
extensional quadrant, Y is small over most of the compressional quadrant.
The functional form and Pe-dependence of the pair-distribution function in the

boundary layer are given by

Pe
Y{p, )

g = k(e,0) [ ] M(0.718,1,—y/Y (¢, ). (3.34)

The weak logarithmic dependence of the outer solution p is neglected in writing
(3.34), but may be included in the angularly-dependent coefficient (¢, 6) if matching
is performed. Matching to p occurs at different r for varying ¢ and 6, and thus the
magnitude of £ will vary with angular position so that the logarithm may be absorbed.

The physical implications of this analysis are readily understood. Competition be-
tween the oppositely-directed advective and diffusive fluxes causes an accumulation of
pair probability adjacent to r = 2 in the compressional quadrants, while in the exten-
sional quadrants, both advection and diffusion displace pairs from contact. Because
there is no competition in the extensional quadrants, the boundary layer grows and
eventually diverges along the extensional axes. Though detailed matching to p is not
performed, (3.34) demonstrates that weak Brownian diffusion removes the singularity

0-78) but finite magnitude. The

at contact to yield an asymmetric g(r) of large O(Pe
normal stress differences for hydrodynamically-interacting hard spheres scale as the
boundary-layer volume O(a® Pe™!) times g(2), and thus nonNewtonian effects scale

as Pe™%%2 as Pe — oo. This slow decay suggests measurable normal stress differences

may be expected even at large Pe. Ultimately, however, as Pe — oo the structure
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Figure 3.3: The boundary-layer scaling function Y plotted as a function of ¢ for
6 = 3n/4. Note that Y diverges as ¢ — 0 and ¢ — 7.
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Figure 3.4: The boundary-layer scaling function Y plotted as a function of § for
¢ = w /2, illustrating that ¥ grows rapidly in the extensional quadrants and diverges
at § = 57/4 and 0 = 7 /4, the f-coordinates of the extensional axes.
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Figure 3.5: The boundary-layer scaling function Y within the restricted domain 0 <
@ < m/2and 3r/4 < 0 < 57/4. The function is plotted along the boundary curve
specified by § = 37 /4 and along three characteristic curves.
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becomes symmetric and the rheology Newtonian. Although we have only carried out
a detailed analysis for planar extensional flow, we expect the same conclusion to hold

for general linear flows.

3.4 Pair-distribution function: weak Brownian

motion and interparticle forces

The vanishing of nonNewtonian effects in the hydrodynamic limit was expected based
upon general symmetry considerations and prior work. In this section, we investigate
the large-Péclet-number problem for g(r) in a suspension of spheres that interact
through a hard-sphere force which maintains a minimum separation of 26 > 2a.
Unlike the problem for g of weakly Brownian particles interacting only through hy-
drodynamics, there is no similarity solution of the boundary-layer equation & > a.
To obtain a tractable equation which contains the essential physical elements giv-
ing rise to a boundary-layer structure, we consider only the radial terms in the pair
equation. Our justification is that it is the competition between radial advection and
radial diffusion that sets the magnitude of g near contact. Results of this analysis
therefore have the correct qualitative features of magnitude and asymmetry of the
pair-distribution function, but may not give accurate numerical values. We first study
the problem neglecting hydrodynamics to simplify and clarify the analysis, without
altering most of the basic conclusions, and then include pair hydrodynamic inter-

actions. Calculation of nonNewtonian particle stress contributions are presented in
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each case.

3.4.1 No hydrodynamics

In the absence of hydrodynamic interactions, U = I'r and the pair-distribution

function is governed by

V2g — Pelr-Vg =0, (3.35)
with the boundary conditions
a

5% — 2Pev,g at r=2, (3.36)

g ~ 1 as r— oo (3.37)

Except near contact, (3.35) reduces to I'rVg = 0, i.c., on a streamline g is a
constant, which the far-field condition dictates to be unity. Near contact, we stretch

r according to

y = Pe(r —2).

The equation for ¢ in the stretched coordinates is

0%g 1 1 dg dg v Og
7 a _ P-—l _P—l __:P—l -l -4 P—2
dy? 27 |1 29, ¢ +2 ¢ y]ay ¢ %Bcp_}_sincpaa +O(Pe™),
(3.38)
with the boundary conditions
0
-—g = 2779 at y = 07 (339)

dy



The leading-order balance,

has the general solution

g9(y) =1+ constant x/
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g~1 as y— oo.

Yy

o0

(3.40)

which asymptotes to unity as y — oo, but fails to satisfy the boundary condition at

y = 0, and thus terms of O(Pe‘l) must be maintained. This failure may be explained

by noting that the leading-order governing equation is the radial derivative of the

boundary condition at y = 0, so that either the governing equation or the boundary

condition is redundant. Radial advection and diffusion compete to generate the large

gradients in g characteristic of the boundary layer, which prompts us to maintain

only those terms of O(Pe™!) which appear in the divergence of the radial flux. That

is, we solve the equation obtained by discarding the right-hand side of (3.38). The

solution,

where s(z) is given by

s(z) = 2, {(1 - 21

9(v)

142y ff es(?dz

r

142y, [Pesde’

1
Pe'1> z + ZPe_lz2J ,

(3.41)

(3.42)
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is valid only for 7, < 0. In the extensional quadrants, where +, > 0, g remains
O(1); there is no boundary layer. Note also that since there are no regions of closed

streamlines, the analysis applies to any linear flow. Rewriting ¢ as

9(6) = 9(O) [1+ 23, [ eaz] (3.43)

with

g(0) = —%Pe'yr +O(1) as Pe — oo, (3.44)

shows that there is an O{Pe) excess of particles in the compressional quadrants.

The solution (3.41) for g is readily extended to validity for all b. (We have assumed
now that b = a, but there were no hydrodynamic interactions.) Scaling lengths by b
rather than a, and replacing Pe by

_ :y_(f _ 3mnyab’?

Pe = 5D = rT (3.45)

the problem and solution for g for arbitrary b are identical to those given above. We
have noted in the second equality of (3.45) that D = kT /67na and thus there is

residual dependence upon the hydrodynamic radius.

Macroscopic stress without hydrodynamics

The particle stress is given by (Brady 1993. )

(X,) = —nkTT + n((SB) + (8F) + (§H)), (3.46)
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where nkTI is the familiar kinetic contribution which yields the dilute osmotic pres-

sure, and

(%) = —kT(V-(Rsu-Rpyp)), (3.47a)
(S”) = —((=I + Rsy-Rz},)-FT), (3.47b)
and (S") = —(Rsy-Rp} Rpp — Rsg):(E), (3.47¢)

are, respectively, the expressions for the Brownian, interparticle force, and hydrody-

namic stresslets. The particle stress may be recast as

(2p) = —nkTI — nkTa 74 ## Py (r)dS — n(eFT) (3.48)
r=2qa

—TZ(RSU'RI;IIJ'RFE — RSE><E> + TL]CT(RSURI;[IJV[V + In PN]>,

by decomposing (S?) into the contact integral and t‘he final term involving V1n Py.
In (3.48), the subscripts on the resistance tensors Rpry and Rsg denote the relation
of force to velocity and stress to rate of strain, respectively, and the others are clear
from these. Recall that V has been made dimensionless with £T. The influence of a
hard-sphere force for arbitrary b > a is given by a ‘contact’ integral identical in form
to that in (3.48) with b replacing a. For b > « or for b = a without hydrodynam-
ics, this integral represents the nonhydrodynamic hard-sphere stress, rather than a

hydrodynamic Brownian stress.
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In the absence of hydrodynamics, (¥p) reduces to
3 /.. .
(5p) = —nkT [1 +a | rrg(Zbr)dQ} + 50 (E), (3.49)

where 5n¢(F) = 2ng(FE) is the shear stress due to the Einstein viscosity correction,

nE = gnqﬁ» The particle pressure is defined mechanically as
1
M= —§I:(Ep), (3.50)

so that in equilibrium (3.49) yields the familiar hard-sphere fluid equation of state
(see, e.g., Hansen & McDonald 1986),

II

We shall denote the stress due to particle interactions X’. Specifically, X' is the
particle stress less (—nkT')I and the Einstein viscosity contribution. Inserting the

contact value of g(r) given by ¢(0) of (3.44) to (3.49) yields
(X)) = 777%2—/ Py, dQ + O (n‘ygbfgpe_l) , (3.51)
b <0 b

for a dilute suspension.
With our choice of coordinates, the first normal stress difference, N, = (£}, —%%,),
vanishes because of symmetry about the compressional axis. This conclusion is true

for general linear flow. For planar extensional flow, the second normal stress difference
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is nonzero:

, 12 L 0@ =
Ny = (B, — Tg) = n7¢b—-— +0 (7779252-5136 1) : (3.52)
The pressure due to particle interactions is given by

= miis s +0 (rigPes). (353)

In simple-shear flow, u; = 42, the first normal stress difference is again zero due

to symmetry about the compressional axis. The second normal stress difference is

Ny = 65 o=,
The particle pressure
I = 365,
and the shear viscosity
m=1t gt e

In obtaining (3.41) we have neglected the O(Pe~!) terms on the right-hand side of
(3.38) while retaining terms of the same size in the radial balance on the left-hand side.
This is generally not valid, and the RHS does affect the angular structure of ¢(2). The
magnitude of g(2) of O(Pe) is not affected, however. Recent work solving (3.35) for
all Pe shows the boundary-layer structure exhibited by (3.41) (Brady & Vicic 1995b).
The stress predictions from the radial balance for simple-shear flow are within 10%

for all quantities except the first normal stress differences. The precise symmetry
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about the compressional axis is broken and finite first normal stress differences occur

as Pe — 0.

3.4.2 Pair hydrodynamics

The relatively simple analysis without hydrodynamics showed that there is a large
O(Pe) excess of particle pairs along the compressional axes, leading to nonNewtonian
rheology in the limit Pe — co. We now include hydrodynamic interactions and show
that a similar microstructure is found for all nonzero b—a. The more complete solution
presented here shows the dependence of g—and consequently of the rheology—upon
b which results from evalu‘ation of the hydrodynamic functions at r = 2b for use in the
boundary-layer equation. Thus, we are able to determine the manner in which the
rheology approaches Newtonian behavior as /a — 1 — 0. The effective radius b > a
introduces a second lengthscale in the problem, and for hydrodynamically-interacting
particles both b and a are relevant. We continue to scale lengths with a, applying
this scaling also to b and denoting the dimensionless radius b = b/a.

When hydrodynamics are included, the outer solution for dilute ¢ is p(r), and it
is convenient to consider f(r) = g(r) — p(r), because f vanishes to O(Pe™!) outside

the boundary layer?. As in §3.3, we stretch the radial coordinate near contact as

y = Pe(r — 2b).

i1t is of no benefit to consider the deviation f = g — p for hydrodynamically-interacting particles
without interparticle forces as addressed in §3.3, because f would diverge at r = 2a in that problem.
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Expanding the hydrodynamic functions to linear terms about their values at r = 2b,

we find the equation for f in the stretched coordinates,

2

0 0
(1+ alPe_ly)-a—y—]; — a2 (1 — %E.Pe’1 + a4Pe_1y)—5§ —asPe ™y, f =

1-B)[ 9 9
Pe“l( 55 ) [’y‘pé + siZle(p gg} + O(Pe™?), (3.54)

with the boundary conditions

0 ) .
[5;: - aﬂrf] = [—Pe_lp'(r) + aﬂrp(r)]m?g = R(b, Pe) (3.55)
y=0
f ~ 0 as y— oo (3.56)
In (3.54) and (3.55), oy-as are given by
UG 21— A) _ G +Gfb
1 G ’ 2 G ’ 3 22)(1 _ A)
1— A—2bA W
=227 nd ag = o, 3.57

T4 0 7Y TG (330

where overbars are used to denote the hydrodynamic functions evaluated at r = 26,
e.q., G = G(QI;). Note that the a; are positive and independent of both Pe and

4. We divide (3.54) by (1 + a3 Pe ly), discarding terms of O(Pe~?) and the entire
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right-hand side to yield the radial balance

82

6:’]2 Ir ay

The boundary conditions are unchanged, but it is worth noting that

R(b, Pe) ~ cyy,p(2b) as Pe — oo,

—Ji —axy, {1 — 2 pe-1 + (g — o) Pey —a—i — a5y, Pe”'f=0.

(3.58)

indicating that the flux associated with p tends to become purely convective at large

Pe.

As in the problem without hydrodynamics, a solution satisfying the leading-order

balance, i.e.,

*f of
EL TR

and the boundary conditions does not exist, making it necessary to maintain O(Pe™?)

terms in (3.58) to obtain a solution. The equation obtained by discarding the term

—asvy, Pe™! f, associated with the divergence of the relative velocity,

2
g—/; —~ayy, |1 — 23 pe-t + (ag — ay)Pe™? ﬁ =0,
Y

y fnssd
Yr dy

has the solution

5 eS¢ dz

f=f(0)m, 7 < 0,

(3.59)

(3.60)
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where
S(2) = e [(1 - %Pe_l) z+ @%%)Pe_lf , (3.61)
Yr
and
. o oS5(2) 4
J(0) = —R(b,pe)—Jo ¢ "4z (3.62)

“1 + agy, 57 eSG)dz

~ —ayyPe p(2b) ( :

04 + a0z — oy

> , as Pe— oco. (3.63)

There is no solution to (3.59) for 4, > 0. The integral in the numerator of (3.60)
is easily seen to be O(1) with respect to Pe, and thus the deviation of the pair-
distribution function from the spheriéally symmetric p is O(Pe) in the compressional
quadrants.

The O(Pe™") coefficients of df/dy in (3.54) were retained while discarding other
terms of O(Pe™"). We now consider (3.58) which includes also the term representing
the velocity divergence, i.e., —as f, with angular derivatives agaln neglected. Analysis

presented in the Appendix shows that the solution to (3.58) is given by
fy) = f(0)e™™¥[L + oy Pe™'y]™, 4, <0, (3.64)

with f(0) given in this case by

Q15

£0) = —PeR(Z;,Pe)[ +a2a3}_1 (3.65)

(85187}
105

. -1
~ —ayy,Pe p(2b) [ + agag] as Pe — oo, (3.66)

(851871
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and 77, and 7, are given by

a o
-1 —1 &1¢s
m = —agY, + azasPe™, and Ny = —Pe ™ —=.

Qo4

The requirement on (3.64) of 4, < 0 shows that inclusion of the O(Pe™!) veloc-
ity divergence term does not alter the primary conclusion that under the combined
influence of a hard-sphere force and Brownian motion there is an O(Pe) excess of par-
ticles along the compressional axes. Presumably, the small angular derivative terms
also have only a quantitative influence upon the solution for f. As discussed in the
Appendix, (3.64) is obtained by a change of variable which is invalid without hydro-
dynamic interactions. Thus, it is not appropriate to simply set the influence of hy-
drodynamics to zero in this solution, while (3.60) does tend to the no-hydrodynamics
solution at b >> 1.

That a solution for the pair-distribution functior; at leading order in Pe may be
obtained only in the compressional quadrants agrees with the expectation that com-
petition between radial advection and diffusion occurs in the compressional but not
in the extensional quadrants. The important distinguishing feature from the case of
b = a is that the radial velocity of the pair does not vanish at the minimum separa-
tion. The positive radial velocity may be said heuristically to sweep the extensional
quadrants of second particles, and thus a large accumulation of pair probability does

not occur there, and Brownian diffusion remains only perturbative.
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Macroscopic stress with hydrodynamics

The particle stress is again evaluated using (3.46) - (3.48). With hydrodynamics
included, there are several contributions of O(n7y) as Pe — oco. First, we note that
since V-(Rsy-Ryy;) is O(1) everywhere and the product of g(r) and the boundary-
layer volume is also O(1), the Brownian stress (3.47a) remains O(kT'), in agreement
with the simulations of Phung (1993). Both the hydrodynamic and interparticle force
stress contributions are O(n7). For the hydrodynamic stress this is obvious, while for
the interparticle-force contribution we note that the hard-sphere force is

F? = %IcTM(r — 2b),

with the 1" amplitude necessary to give the correct equilibrium structure. Hence,
n(STY = —n?kT f (b## + Rey- Ryl -#)g(r)dS. (3.67)
r=2b

Since g(2b) is O(Pe) this “contact” integral will give an O(7¥) contribution to the

stress. Making use of the known hydrodynamic functions, (3.67) can be rewritten as

n(SP) = —n2kT b(1 - A) j{ #ig(r)ds, (3.68)

r=2b

Using (3.66) for f(0) the interparticle force contribution to the stress becomes

3
n(S7) = yig (2 (1-A)ap 2 / #,d9, (3.69)
a 47 Jy, <0
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when p = p(2b/a) and

(83487

o*(bfa) = ay [ + a2a3] o (3.70)

(85187

Note that the dependence on flow type is the same as in absence of hydrodynamics,
with only the coefficient modified by hydrodynamics.

In the limit of large b/a, the interparticle force stress reduces to (3.51), the re-
sult found in the absence of hydrodynamics, but it is not appropriate to simply set
hydrodynamic effects identically zero in f given by (3.64) as we noted above. We
have applied the solution for f including the influence of V-U because this solution
should be more accurate for b/a — 1 < 1, and we wished to investigate the impact
of short-ranged symmetry-breaking effects. If one wishes to see the residual influence
of hydrodynamics when b > a, the simpler solution (3.60) for f should be used, in
which replacement of the coefficients with their no-hydrodynamics values is valid. For

b/a near unity we can estimate the behavior by noting that
(1—A)~(bla—1), 0" ~ (bfa—1) and p~ (bla—1)"0" as b/a — 1, (3.71)

so that

n(S?) ~ 77"y¢2(b/a - 1)1'22/ rPy,dl as bj/a — 1. (3.72)

Yr

Unlike (XF), where the integration is restricted to the boundary layer on the com-
pressive axes, the hydrodynamic stresslet, (X#) = n(S™) the hydrodynamic stress

is always O(ny) and thus contributions arise from the whole domain r > 2b. Thus,
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we cannot make general statements about the form of the hydrodynamic stress with
regard to the asymmetry caused by the boundary layer because there is presumably
an O(1) angular variation on the extensional axes that we have not determined.
Nevertheless, we can illustrate the consequences of the interparticle forces in cre-
ating an asymmetric structure by computing the second normal stress difference for
planar extensional flow from the compressional quadrant only. Batchelor & Green
(1972b) showed that for b = a, the hydrodynamic stress associated with the spheri-
cally symmetric p(r) is Newtonian; despite the divergence of p at r = 2a, the viscosity
is finite and the symmetry of the microstructure leads to zero normal stress differ-

ences. Scaling the stresslet as

SH = 23—07r77"ya3$'H,

the second normal stress difference for the hydrodynamic stresslet, N2H , 1s given by
H H H . 219
Ny = (%5 — I53) = n¥¢ 21';]2(1’/‘1,})6)- (3.73)
The dimensionless integral I, given by
Io(b/a, Pe) = [ (S5~ 35)f(p)dp

with p = 7 /a used to emphasize the nondimensionality, was evaluated by Stokesian

Dynamics. In Figure 3.6, 15(1.025, Pe) is plotted, showing that I, becomes indepen-
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dent of Pe as Pe — oo, with an asymptotic value of of the stress difference reached
when Pe = 10%. Variation of N with b/a is demonstrated in Figure 3.7 by plotting
I>(b/a,10°) against b/a — 1. For b/a —1 — 0, N¥ vanishes as (b/a — 1)%22 because f
is proportional to (b/a —1)%%2. This slow decay as b — a suggests that even for very
short-ranged forces, the normal stress differences of a noncolloidal suspension should
be measurable.

At large b/a, the hydrodynamic particle stress reduces to the Einstein viscosity
correction (5¢/2)E. Interestingly, the two stress differences N and N both scale
as 7¢? as b/a — oo. The independence of the result from b/a is surprising, but re-
sults simply from the fact‘ that the boundary-layer volume is proportional to 4* while
the stress experienced by one particle due the straining field of a second scales as
(b/a)~>. Recall, however, that as b/a increases, the maximum true particle fraction
$m decreases rapidly, as ¢m = (a/b)*¢s,n Where ¢y, denotes the maximum pack-
ing fraction based on the effective radius. Hence, the hydrodynamic normal stress

differences decay in importance relative to NI as (a/b)%.

3.5 Shear-induced self-diffusivity of hard spheres

A theory to describe the self-diffusivity of a sheared suspension at arbitrary ¢, Pe,
and lengthscale of the particle-fraction disturbance has been developed in Chapter
2. The theory is based upon the experimental technique of light-scattering (Berne &
Pecora 1976) and amounts to a study of the Fourier-transformed equation governing

the configurational transition probability. This method has been extensively used in
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Figure 3.6: The dimensionless integral [, specifying the hydrodynamic second normal
stress difference, N = (15/4r)[,n%¢?, as a function of Pe for b/a = 1.025.
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the evaluation of diffusion in quiescent colloidal dispersions (Jones & Burfield 1982;
Rallison & Hinch 1986; Pusey 1991). We apply the theory to the determination of
the self-diffusivity of a sheared suspension of hard spheres with no hydrodynamic
interactions at Pe >> 1.

We first outline those aspects of the theory necessary for the present calculation.
The self-diffusivity is determined from the temporal evolution of spatial correlation.
The self-intermediate scattering function, Fs, which represents the Fourier transform

of the spatial autocorrelation function, is given by

F, = (kmo-20)

= [ [ek@o-20lp @)z (0)) P (2" (0)da" (t)2"(0),

where k is the wavelength of the scattered light and Py here denotes the probability
for the configuration to undergo the transition from «™(0) to ™ (¢), and PY is the
probability distribution for the configuration at the initial time, which we take to be
the steady distribution at the conditions of interest. For arbitrary flow conditions,

the self-diffusivity may be defined as the coefficient of —k? in the derivative

Oln F;

= (In Fy).

In the general case, (ln.Fs) is given by

(InF,) = k-I"ViIn F, + tk-U*k-(Dy;)%k (3.74)
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_k./(D11 — <D11>O)'kaP0drN+ik-/[U'1fNP0drN

N
=ik [ 3" [(Dro = Dis)Vafy + (Do = Duy) - Va(InP° + V)] Pedr”,
a=2

where 7V is the relative configuration vector giving the positions of the other particles
relative to particle 1, which lies at the origin, and P° = P](\)/~1|1 is the probability for
the configuration. Also, U* is the velocity at an arbitrary field point from which the

shear velocity with constant gradient I' is measured, and
Uy =U, ~ Iz, — (U)°

is the hydrodynamic disturbance velocity relative to the bulk flow (uniform plus shear)
of the tagged particle. The scalar function fn, which describes the perturbation to
the microstructure caused by the motion of a tagged particle, is central to the theory
of the long-time self-diffusivity, because the difference between the short-time self-
diffusivity, kT(M11), and the long-time self-diffusivity is due to the correlation of the
flux of the tagged particle with fy.

In the general case, fy is governed by a complex integro-differential equation (see
Eqn (2.36) of Chapter 2) which we do not reproduce. For self-diffusion, the steady fy
is sufficient, and the conditions we consider, i.e., a dilute suspension of hard spheres
with no hydrodynamics for k < 1 (k is made dimensionless with a™1), allow several

simplications. We reduce the general equation for In to that governing the steady
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pair perturbation f;. Recognizing the linearity of the problem in ik, we write f, as
fa(r) = 1k-b, (3.75)

thus defining a wavevector-independent field b analogous to the B-field of Brenner
(1980). The steady equation for b for a dilute suspension of hard spheres without

hydrodynamic interactions is
V2 — (Pel'r —2VIng)-Vb = —Ving, (3.76)
and the boundary conditions are

?Vb = 2Pey,b at r=2 (3.77)

b ~ 0 as r— co. (3.78)

Here, all lengths have been made dimensionless with b. The expression for the long-

time self-diffusivity of hard spheres can be expressed using b as simply
s 3 ~
Dw:I—¢—/ #bgd(. (3.79)
T Jr=2

Thus, only the contact value of b is needed for the evaluation of hard-sphere diffusivity.
The steady g(r) for hard spheres at Pe >> 1 was determined in §3.4 by a boundary-

layer analysis, and there is a similar boundary-layer problem for b. Only the radial
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portion of b is required and we write

b= q(r)#, (3.80)

Substituting (3.80) to (3.76), we obtain the governing equation for q(y), where y =

Pe(r —2),
d%q 1 1 - 4 Olng| g - —10lng
99 _ oy (1- _p _9 A__p , 3.81
dy? [7< 2 T2 Y dy | 9y © oy (381
with the conditions
aq 1 -1
3y 5 at y=0 (3.82)
g ~ 0 as y— oo. (3.83)
The solution to this system is
5 -1 [ |1g%0) e rz ding
_ P! / 1 5(z) / (=) 2(2) 229 g | d 84
)= P [2 e+ S [eopmTiply gy

where we recall that s was defined previously by (3.42). For the determination of

D¢, , we need only the contact value of ¢,

51 [ 192(0) o) e5(2) /z () .2 dlng
q(0) = Pe /0 {2 pE e +g2(z) | e g°(z) T dz| dz,
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which upon evaluation of the integrals yields
1 5 -1
q(0) = -3 + O(Pe ™). (3.85)
Hence, the long-time self-diffusivity is given in dimensional form for general b/a by

D’ = DI — 4824,% / i #y,d0. (3.86)

[oe]
In simple shear flow U; = 4z,, we have

' 4
= = = — . b2 . .
Dll D22 2D33 15’”’)’ ¢b (3 87)

A comparison of (3.86) and (3.51) shows that D? may be expressed in terms of
X' as

.19
D, = —7775;2', (3.88)

or alternatively in a form which is of interest because it agrees with the idea of self-

diffusion being driven by a partial or osmotic pressure,

D == "5 (3.89)
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3.6 Summary and concluding remarks

We have analyzed the influence of weak Brownian motion and repulsive interparticle
forces of hard-sphere type on the pair-distribution function of a suspension. In strong
flow, i.e., at Pe > 1, g varies rapidly in a narrow O(aPe™ ") boundary layer near
particle contact.

In the case of hard spheres subject only to hydrodynamic interactions, we have
solved the boundary-layer problem for g by a similarity transformation. This anal-
ysis, which includes the influence of the spatial variation of the hydrodynamic in-
teractions, shows that Brownian motion renders the contact value of ¢ finite, with
9(2) = O(Pe®™). Despite the fact that this large g lacks fore-aft symmetry, its mag-
nitude is not quite large enough to generate normal stress differences in the hydro-
dynamic limit because the product of g(2) and the O(Pe™!) boundary-layer volume
is O(Pe™"??) and thus vanishes as Pe — oo. However, when the effective radius of a
particle is b > a, as when particles interact by a strong repulsive force, we have shown
through a boundary-layer analysis of the radial terms in the pair equation (there is
no similarity solution in this case) that g(r) is O(Pe) in the compressional quadrants
and O(1) in the extensional quadrants. Thus, the product of the asymmetry and
the boundary-layer volume, again O(a®Pe), is finite as Pe — oo, and normal stress
differences scaling as n94* and a shear-induced self-diffusivity scaling as pa2¢ are
predicted in this limit. We find that as /a — 1 — 0, the asymmetric portion of ¢
depends on the separation as (b/a — 1)®%2, and hence the normal stress differences

vanish as expected when b = a. The exponents of (b/a — 1)°?? and Pe=%2% are given
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by a combination of the contact values of hydrodynamic functions,

W (2a)
+W—1+a2——0.22,

where a; arose in the solution of the similarity problem for g in the case of b = q.

These results go far toward explaining the observation of nonNewtonian behavior
in noncolloidal suspensions. The abundant evidence, some of which we have detailed
in the introduction, that the pair interaction at large Pe is markedly asymmetric in
sheared suspensions may now be understood in qualitative and quantitative terms.
Both cases studied show ‘a large asymmetry, and the slow decay of the influence of
this asymmetry upon the rheology either as Pe — oo for b = a or as b/a—1— 0
for Pe™' = 0 indicates that, due to the always-present weak Brownian motion and
irreversible surface interactions caused by roughness or a finite-ranged force, we may
expect to find measurable nonNewtonian effects.

We have considered primarily pure straining flow when hydrodynamic interactions
are important (b = a), because of the uncertainty about how to deal rigorously
with the region of closed trajectories in the two-body analysis for simple shear. For
sufficiently long-ranged interparticle forces, there are no longer closed trajectories, and
our analysis applies to any linear flow. At moderate to high concentrations, closed
streamlines cease to be an issue because multi-particle interactions are common, and
these will result in displacement of particles from the region where closed streamlines
occur in the dilute system. As the balance between the radial advection and radial

Brownian diffusion gives rise to the boundary-layer structure in g regardless of ¢,
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the present analyses have significance at conditions beyond ‘those for which they are
rigorously valid.

A potential extension of the work presented here is the equivalent analyses using
average two-particle hydrodynamic functions in a nondilute suspension, available from
Stokesian Dynamics simulations. The work of Brady & Bossis (1985) showed the
average relative velocity (with the average over both approach and recession) of a pair
in a concentrated suspension of hydrodynamically-interacting spheres to be larger in
magnitude than for an isolated pair, by a factor which scaled as [1 — (¢A/¢A,m)1v/2]‘l
(monolayer suspensions were studied, thus the areal fraction of particles, ¢4, and
maximum areal fraction, -¢ A,m, appear). From this result, it is clear that the function
(A(r)) in the description of the average radial relative velocity (see Eqn. (3.14))
is a strong function of ¢, and we may expect (a2) ~ (W(2))/2(A'(2)) to also be
¢-dependent. The decay of nonNewtonian behavior, if the scaling Pe~(1+(22)) for
Pe — oo holds at nondilute ¢, will thus depend on ¢.

Evaluation of the pair-distribution function in a large-Péclet-number sedimenta-
tion of spheres may be performed by a boundary-layer analysis similar to that for
linear flow. If there is nonzero dispersity in particle size or density so that relative
velocity exists and the analysis can be performed at the two-particle level (under the
influence of hydrodynamics alone, two identical particles settle at the same veloc-
ity for all separations and a third particle is necessary to cause a relative velocity),
the boundary-layer problem for sedimentation can be seen to be much like that for

linear flow: in both cases, the relative velocity and diffusivity vary with separation
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and the pair-distribution function in the hydrodynamic limit is spherically symmetric.
Spherical symmetry of the microstructure for sedimentation of nonBrownian particles
was demonstrated by Batchelor (1982), in work where the boundary-layer problem is

suggested.

Appendix. Boundary-layer solution: influence of

velocity divergence.

In §3.4.2, we reported two approximate boundary-layer solutions for f(r) = g(v)—p(r)
neglecting angular derivaf;ives, but maintaining other terms of similar order. The first
analysis, detailed in the text, neglected the term representing the velocity divergence
from the equation governing f. Here, we present the analysis leading to the solution
for f including the influence of V-U, reported in the text by (3.64). We have not
obtained a boundary-layer solution including angular derivatives as this problem is
no simpler than solving the complete equation for all Pe.

As the only derivatives maintained are in the stretched radial coordinate, we

denote differentiation by a prime, and write (3.54) as
L+ aylf’ + [ca+ caylf + caf = 0, (3.90)
with

-1 ~1
¢t =a1Pe™, ¢ = —ayy, + asazPe™,
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€3 = —apagy, Pe™!, and ¢4 = asPe™y,, (3.91)

where a; — a5 are given by (3.57). Note that c4f represents the influence of the
velocity divergence.

We apply the transformation
¢ (1 1—A—2bA G

This transformation is valid only if ¢; # 0 (i.e., G’ # 0), and thus we should not

neglect hydrodynamics in the resulting solution. The equation for f(£) is
'+ (B-6f —af =0, (3.93)

where

1
a=2-- , and ,3=——<1——c—2-).

C3 Qa4 (5] Cy

Thus, f(£) satisfies Kummer’s equation and has the general solution

J(€) = pM (e, B,£) + AU («, 8,€),

where M and U are confluent hypergeometric functions and g and A are arbitrary
constants (Abramowitz & Stegun 1972; section 13.1). We must set g = 0 because M
grows without bound whether £ is positive or negative for a and 3 of this study. Note

that € has the sign of 7,, and for ¢ > 0, U ~ £7* and is unbounded. Thus we find
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a solution only for v, < 0, which is consistent with the analysis when the influence
of the velocity divergence was neglected. We use the fact that efU/ (B—a,B,—£) is
also a solution to (3.93) and apply U(8 ~ q, 5, =€) ~ (=£)*” for large [¢| (we may
use this relation over the entire range as ¢(y = 0) = O(Pe) > 1). to write f in the
original boundary-layer variable y as

f(y) = Clp,0) exp [—cj—yJ (14 e Pety)™’™, (3.94)

1

where we have noted that the leading coefficient is in general dependent on ¢ and .
Enforcing the boundary condition at y = 0 and consideration of the asymptotic form

of the final factor in (3.94) yields
1) ~ F0)e 14+ aPey] ™™ | a5 Pe — oo, (3.95)

where in this case

Q.05

£(0) = —PeR [ - a2a3}_1. (3.96)

Q04

We see that the primary finding of the simpler study neglecting the velocity diver-
gence, i.e., that there is an O(Pe) excess of particles along the compressional axes,
is unchanged. We conclude that the influence of the velocity divergence upon f is
primarily quantitative, increasing the contact value of f from that given by (3.60) by
a factor which tendsto 1 —a, ~ 1.78 as b — q — 0.

As noted above, the transformation of variables we have used here is not valid

when hydrodynamics is neglected. It may be of interest for some purposes to know
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the residual influence of hydrodynamics when b/a > 1. A study of (3.58) for large
b/a shows that the appropriate balance to consider is (3.59), because V-U decays as
r~6 for large r, and thus scales as r~* relative to the derivative of the radial diffusivity

G.
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Chapter 4

The pressure moments for two
rigid spheres in

low-Reynolds-number flow

This chapter is taken from the reference Jeffrey, Morris & Brady (1993)
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Abstract

The trace of the first moment of the stress for a rigid sphere—the pressure moment—is
determined for a sphere in the presence of a second sphere when both are immersed in
a linear ambient flow. The spheres may be of different radii and the Reynolds number
is low. The pressure moment of either sphere is expressed using resistance functions,
as in other studies, and these functions are determined for all separations. The
pressure moment is essential for determining the bulk or macroscopic stress of a sus-
pension of hydrodynamically-interacting particles. The osmotic pressure of colloidal
dispersions is related to the pressure moment and the application of the resistance
functions determined here to this system is given as an illustration. The suspension
or particle-phase pressure needed in two-phase flow modeling is also determined by

the pressure moment and the results for a sheared cubic lattice are reported.
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4.1 Introduction

A mechanical definition of the osmotic pressure in a colloidal dispersion has been given
by Brady (1993) in terms of the hydrodynamic interactions among the suspended
particles. In addition to the interactions already familiar in low-Reynolds-number
hydrodynamics, a new ‘pressure interaction’ must be defined. This new interaction is
also needed in models of particulate two-phase systems, where particle-phase momen-
tum balances necessitate the concept of a solid-phase pressure (Wallis 1969, Batchelor
1988, Koch 1990, Nott & Brady 1994) in order to complete the specification of the bulk
stress. The ‘suspension pressure’ thus introduced requires for its determination—by
Stokesian Dynamics simulations (Brady & Bossis 1988) for example—the hydrody-
namic pressure interactions between particles. Example calculations of the osmotic
pressure and suspension pressure are given at the end of this chapter, after we have
defined the pressure interaction precisely and established how it can be calculated.
In low-Reynolds-number hydrodynamics, interactions between particles are fre-
quently specified by using the moments of the surface stress acting on each particle.
The first moment of the stress has been decomposed in the past into an antisymmetric
part, which equals the couple acting on the particle, and a traceless symmetric part
called the stresslet. These two quantities have been tabulated for two rigid spheres
in a series of papers summarized in Jeffrey & Onishi (1984), Jeffrey (1992) and Kim
& Karrila (1991). It is the trace of the first moment, however, that is needed for the

pressure interactions, and this has not been studied before. We denote it by S and
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define it for a specified particle as
S:—/:c’-a-ndA,

where &’ is the position vector measured relative to the particle center, and the
integration is over the surface of the particle. The minus sign is included because the
previous studies used it in their definitions; the integral can then be interpreted as
the moment exerted by the sphere on the fluid. Such an interpretation and sign will
be used in this work in order to keep the equations similar to those already developed.
Before we proceed with the calculations, it is important to pause for a moment and
consider terminology. We should decide whether the term stresslet, which until now
has referred to a traceless quantity, is to be expanded to include the trace of the first
moment, or whether it should be left as the traceless quantity. After considering the
equations that arise in the applications described later in this study, we think that
it is most convenient to make an analogy with the terminology used for the stress
tensor. Thus the stress tensor has a non-zero trace, and when the traceless part of
the stress tensor is referred to separately it is called the deviatoric stress. In the same
way, a stresslet should have a non-zero trace, and if a traceless quantity is needed, it

can be called either the traceless part of the stresslet, or the deviatoric stresslet.
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4.2 Expressions for the pressure moment of a

sphere

We first derive a Faxén law for the pressure moment by using the reciprocal theorem.
We start by recalling (Kim & Karrila 1991, Ladyzhenskaya 1963) that the pressure
field p(x) produced by a point force F* acting at a point ¥ is p(z) = F-P(z — y),
where

Plz)=——.

Next we note that the velocity field v(@) around a point source of fluid of strength

Q located at the origin is
_Q=

47 3

=QP(z) .

v

The reciprocal theorem is used in the form (Kim & Karrila 1991)
/’vl-(crg-n)dA—l»/'vl-(V-crz)dV=/'vz~(0'1-n)dA—}—/vg-(V-al)dV,

where n is directed outward from the particle surface into the fluid. We take v; to
be the flow outside an expanding sphere whose radius is a and whose rate of volume
increase is (J; the sphere center is at the origin. For v,, we take the flow generated by
a point force F' at y when there is a sphere of constant size stationary at the origin.

The reciprocal theorem becomes

J 22 (e, m)ad+ [ QP(@)-(~F)b( ~y)aV(z) = 0.
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Simplifying further, we obtain

Q
4rad

(=52)—QF - P(y)=0,
and this gives an expression for the pressure moment as
Sy = —4md®F - P(y) .

Now we observe that —F' - P(y) = F - P(—y) is the pressure that would exist at the
origin if the point force were acting in the absence of the sphere. This is the ‘ambient’
pressure as seen by the sphere, usually denoted p™(& = 0). Thus we obtain a Faxén

law in the form

S =4na’p™(z = 0) . (4.1)

The extension of this result to an arbitrary ambient flow follows by echoing Hinch’s
argument cited in Kim & Karrila (1991) that any ambient flow can be modeled by a
suitable superposition of point forces.

We next obtain an exact expression for the pressure moment of one sphere in
the presence of another in terms of multipole expansions. We follow the notation of
Jeffrey & Onishi (1984) throughout; equations taken from their paper will be labeled

by JO. In terms of spherical coordinates (py, 84, ¢) centered on sphere a, the quantity
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we wish to calculate is

ou . , .
S = —aa//(—p+ ,u-az)aa sin §,df,d¢,

where v =« - p,. Using (JO 2.3) and (JO 2.1), we obtain

a /psin 0od0od¢ = dmalp pgi—a)tatg_a . (4.2)

n=0

A similar calculation based on (JO 2.4, 2.7, 2.1) shows that the Ou/Jp term in the
integrand integrates to 0. ‘We should remember when comparing (4.2) with (4.1) that
the coeflicients p,,, have the dimensions of velocity. Also, it is worth noting that the
integration leads to a contribution pgg from the sphere to its own pressure moment;
however, this coeficient must always be zero, because it implies logarithmic velocities
far from the sphere. The only contribution, then, is the pressure environment created
by the second sphere. Since only m = 0 terms appear in the expression, we can see
that only axisymmetric motions will lead to non-zero pressure moments. This fact

can also be deduced from general vector considerations.

4.3 Resistance functions

As with the other interactions between spheres, the pressure moment can be expressed

as a function of the velocities of the spheres and the ambient velocity field, given by

U(a:):Uoo—{-Qoox:c—{-Eoo-m,
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with constant U, 2, and E, in which case we are led to functions analogous to

the resistance functions defined in earlier papers. We write

U, -U(x)
S . Py Py, Qp Qp ] U, - U(z,) (4.3)
Sa Py Pyn Qy Qo E, - Es

E,-FE,

The rotations of the spheres do not appear in the equation because it can be shown
that they do not contribute to the trace. Since the only vector in the problem is d,

where

d=(z;—2)/|es — 4]

is the unit vector along the line of centers directed from particle 1 to particle 2, clearly

we have (including non-dimensionalizing factors)

Pos = 7m(aa +ap)?Xled, (4.4)

Qup = T(aa + ag)’XZy(dd — 31, (4.5)

and X1, Xfﬁ are functions only of s = 2r/(a, + ag), where r = |@3 — ®;|. The other
resistance functions which are contracted with the rate of strain have been made
traceless, so it seems reasonable to follow this practice here. The only symmetries

obeyed by the functions are labeling ones:

XF5(s,2) = =X aya-p (A7) and  XZ(s,A) = X3_ayap (8271
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4.4 The functions X;Dﬂ

4.4.1 Method of reflections

We start by deriving the first few terms by the method of reflections. Suppose sphere
1 is moving with velocity U; = Ud toward sphere 2. The pressure field at the center
of sphere 2 is

p= %alyUl/TQ;

hence,

Sy =7(ay + a2)2,uX21;U1 = 4rad %al,uUl/rz ,

and therefore

p_ 4 6)°
A4+ N)2s?

From the above relations, we have

P 4 6

X2 = (T4 XN)2(1+2)2s2"

Sphere 2 responds to the ambient velocity induced near it by sphere 1 by exerting a

force on the fluid; hence,

S1 =4dnaluXfU, = 47a3(3/2)(az/r?)u(3a, /27U
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and
p 18X

X —_—
n (14 X2)3s3

4.4.2 Twin multipole expansions

These functions can be calculated using the results obtained in JO section 3. In terms

of P,y defined in (JO 3.4—3.9) we have

[c eI o e o]

XFE M+ XL =YY D 3P th It

n=1 p=0¢=0
For the complementary problem defined in (JO 3.11) we have

[ < o BNe o}

XH+i0+ 0 XL, =Y do(—1)rrrtet2ip gptrgtt

n=1 p=0 ¢=0

From these equations, we see that the pattern observed with the earlier functions
continues to hold, namely that the even and odd powers of s divide between the

functions. Thus

P oo m—1(g+1)/2 9m
X A = §'-Pn —n)(m—q— M
1(8,2) mZ:1 = n; 24 n(g—n)(m—q-1) (14 A)ymsm
m odd
&0 A
_ Z Jm(A) 7 (4.6)
m=1 (1+/\)m5m
m odd
and
—4

d fm(X)
TF 0 2 [ (4.7)

M even

lez(s,)\) =
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where
Jfo=fi=0,f,=6), f5 = 18),
fa=540% fy = —24) 4 162X + 216)°,
Jo = 216X% + 486X% + 57674,

fr=432)% + 498)% 4 2592\ 4 1440)°,

fs = 86427 + 3888 4 74467* + T128)° + 345616,

4.4.3 Lubrication theory

The flow between nearly-touching spheres has been studied in J effrey & Corless (1988)
and Jeffrey (1989). Solutions based on an expansion in the small parameter ¢ were
given there. In the latter paper it was shown that, when higher orders are included,
not all quantities can be approximated successfully by considering only the flow in
the gap. We follow the method given there to circumvent that difficulty by writing

the pressure moment as
Sl:-—/:c’-cr'ndA:alF-d—al/(n—}-d)-a-ndA.

Using the known result for F' and integrating the previously obtained solution (which
had been found using the algebra system Maple, and was therefore easy to reprogram )

we obtain

X =06 + @€ + PE(O) +g5¢lne™ 4 0(¢), (4.8)
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PY P Py P
-0.0118 -0.1435 0.1435 0.0118
0.0930 -0.1279 0.2581 -0.0634
0.3236 -0.1283 0.3199 -0.0963
0.5662 -0.1186 0.3337 -0.1024
0.7925 -0.1059 0.3249 -0.0988
10 1.6347 -0.0576 0.2286 -0.0653
20 2.5543 -0.0237 0.1193 -0.0322
100 4.0499 -0.0016 0.0114 -0.0029

&) S R JUE N | S

Table 4.1: Values of the function PJ5()), with A the size ratio of the two spheres,
appearing in the asymptotic form of X 5/@ for small separation.

and
LA+ X, = =0l — e In €7 + 2+ APPL(A) — galné + 0(€),  (4.9)
where
g1=33/(1+ X,

g2 = 35(A —43?)/(1+ A)?,

5 —9TA 46407 — 4403 4+ )\
9= 140(1 + )2 ’

(4.10)

and the PJY; are functions which we shall tabulate here (¢f. Table 4.1). We can notice
that, as with the X4 functions, the singular terms cancel if the two spheres have the

same velocity.
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4.4.4 Arbitrary separations

The singularities cause slow convergence of the series (4.6)-(4.7) when s is near 2.
We remove them from the series by giving the g; appearing in (4.8)—(4.9) the values
defined by (4.10) and then adding the left-hand side of (4.8) to (4.6) while at the

same time subtracting the right-hand side of (4.8) from (4.6). If f(A) = 2™ f()), we

write

2 s+ 2
XIPI = "y [92+93( )]lns——2 — g3$
+ 21 YA m+m(m+2) =) - @)
m odd

Mathematically this is equivalent to (4.6), but numerically the rate of convergence
has improved because the coefficients of s™™ now decay faster by a factor m~2 owing

to cancellation. Similarly,

)2 4
X, = ~9aTy —l92 + 93(35° = D]In 82_4‘1—93

- S e e () e

m even

Numerical tabulations of X7, »p are not given because the expressions and data given
above are accurate to at least two significant digits for all s. We do tabulate the
nga(/\), however, because they provide a good test of the convergence of the series,

as well as being useful in studies of nearly-touching spheres. Expanding the leading
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terms in (4.11) and comparing with (4.8), we obtain

{ = m(A) 29,
PE=1g+gnd—2g6+ ) [_LL—__ -2

117 491792 93 = 0+ 5! -

m odd
and similarly

(1+ /\)2 X _ 1 = [ fm(’\) 292

L PA == -+ —_ — — —_——

12 = 391 T 43 m§=2 1+ n)m g1 ™

m even

4.4.5 Results for X/;

4g3 .
m(m + 2)} ’ (4.13)

m(m + 2)

29 ] (4.14)

To illustrate the behavior of the pressure moment, in Figure 4.1 we plot X}, and X},

as functions of s for the case of identical spheres (A = 1). Note that the singular

behavior of XL, (and X[,) is proportional to the corresponding resistance functions

X}, etc., relating forces to translational velocities. In Table 4.1 we give the results

of summing the series (4.13)~(4.14) for P to 300 terms. We can estimate the rate

of convergence by making a comparison with sums to 200 terms, and that shows that

the results are generally accurate to 4 significant figures.

4.5 The functions Xgﬂ

4.5.1 Method of reflections

If sphere 1 deforms at a rate Ey = E;(kk — £I) the pressure at the center of sphere

2 is

p= 13—0a?,u/El/r3 .
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Figure 4.1: The functions X/, and XT, relating velocities to the trace of the first

moment of the surface force distribution for equal-sized spheres are plotted against
the separation distance scaled to the particle radius.
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Hence,

52 = 47ra§13—0a§’uE1/r3 = W(al + a2)3/zX2Q1§E1 ,

and therefore

8 2073

Q _
Xa = (1+ A3 (1 +2)3s3

There will be an ambient flow (5/3)a; By (a?/7%)d created by sphere 1 which will lead

to an induced S; of
S = 8raluX (2B = —7(a + a)’ X5 ¥(a3 /) E;

implying
0 30X

X1 (14 X)4st”

4.5.2 Twin multipole expansions

The calculation in Jeffrey (1992) used the problem
E. = E,(kk —1I),

together with the condition

alEl = agEz .

This means that

St = 8rpai XA 5B + mp(ar + a2 X2,
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and therefore

(1+X)3

8A X

Sy =LruddE (X3 +
From this we find

o0

142 SRS .
X3+ Xf"2 DIDIDIE T I asstary
n=1 p=0¢=0

0

The complementary problem adds a factor (=1)"+P+9+3 {5 the summation, so we

conclude
= Jm(A)
X2(s. ) = — 1
ECRE WL (4.15)
and
8 had fm(A)
X9(s, ) = —_— 4.1
12(8’ ) (1+A)3 Tnz=:1 (1+/\)m3m? ( 6)
m odd
where

Jo=fi=fa=0,f3=20)3,

fa=30), f5 = 904,

fo = —T2) +270)% + 68013,

Jr = T200* 4 810X° + 864)°,

fa = 86427 + 3888X3 + 7446)* + 712815 + 3456S.
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4.5.3 Lubrication theory

We expect

8raluX3LE, = alF-d—al/(n-f—d)-a-ndA,

= 47a®XCE,, — a, /(n +d)-o-ndA,

and we obtain

Xﬁ =g ¢! +goIné™ + Q{(l + g3€In¢t,
X% =g "+ gsln€t 4 Q{\; +gs€Inét,

where
g1 =32\ /(1 4 X3,
92 = 55(A+ 222 - 9X%)/(1 + A3,

5= A — 20122 4 25103 — 184)4
9= 280(1 + \)? ’

g4 = 12/\3/(1 + )‘)67

gs = B(=20 + X - 209 /(1 + M,

65X + 3402 — 41103 4 T6AY — 445
9= 35(1 + 1) '

As a check on our working we have the identity

AXTA+A)(1+16) - 8X2 — (1+2)°X2 = O(1).

(4.17)

(4.18)



163

4.5.4 Arbitrary separations

As before, we have the following expressions for Q7 and Qf defined in equations

(4.17)-(4.18):

X 1 ) 29, 4gs
_ 1 g - 92, %93 1
A=ta-ot ¥ [EG a2 de ]
and
(1+/\) f

fm (/\) ) zg_g 493
Qm 4gl+921n4 293+ mZ:1 ['("IT)‘)—"‘QI - +ﬁm(m+2)} . (4.20)

m odd

4.5.5 Results for Xfﬁ

To illustrate the behavior of the pressure moment, in Figure 4. 2 we plot XQ and XQ
as functions of s for the case of identical spheres (\ = 1). Again, the singular behavior
as s — 2 is proportional to the corresponding force-rate of strain coupling X&, etc.
In Table 4.2 we give the results of summing the series (4.19)-(4.20) for Q%; to 300
terms. We can estimate the rate of convergence by making a comparison with sums
to 200 terms, and that shows that the results are generally accurate to 4 significant

figures.

4.6 Osmotic pressure in a dilute suspension

We determine the correction to the osmotic pressure of a dilute suspension of Brow-

nian hard spheres. Batchelor (1977) determined the Brownian contribution to the
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Figure 4.2: The functions X?l and X?z relating the rate of strain to the trace of
the first moment of the surface force distribution for equal-sized spheres are plotted
against the separation distance scaled to the particle radius.
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A Qf L @5  9h
1 -0.0799 0.1329 0.1329 -0.0799
2 0.581 01314 0.1332 -0.0413
3
4

0.5166 0.1219 0.1263 -0.0000
0.8686 0.1088 0.1146 0.0186

5 1.1875 0.0959 0.1020 0.0262
10 23350 0.0528 0.0571  0.0254
20 3.5543 0.0226 0.0244 0.0138
100 6.2409 0.0018 0.0020 0.0013

Table 4.2: Values of the function Q%5()), with X the size ratio of the two spheres,
appearing in the asymptotic form of ij’ﬂ for small separation.

bulk deviatoric stress, and here we complete that calculation for the isotropic stress.
In the presence of Brownian motion there are two contributions to the bulk stress

which can be written as (Brady 1993, Brady & Bossis 1988)

(X)) = —nkTTI + 2u(E) + n[(SF) + (§7)], (4.21)

where (E) is the bulk rate of strain in the material and the rate-of-strain and Brownian

stresslets are given by

(§%) = —(Rsu- Rz} Rrp — Rsg)(E), (4.22)

(SP) = —kT(V-(Rsu-Rzp)) - (4.23)

In (4.22)-(4.23) Rru, Rsu, etc. are the hydrodynamic resistance tensors that couple
the hydrodynamic force/torque to the particle velocities (Rry), the stresslets to the

velocities (Rgy), etc. (see Brady & Bossis 1988). Here we have assumed that the
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stresslets are not traceless, in contrast to the convention in the past, because we wish
to determine the trace or pressure. In (4.21)~(4.23) k is Boltzmann’s constant, T is
the absolute temperature and n is the number density of suspended particles.

The osmotic or suspension pressure, II, is defined mechanically as minus one third

the trace of the bulk stress:
I =nkT +nkT(V-A) +n(B): (E), (4.24)
where the hydrodynamic functions A and B are defined by

A=1P Ry, (4.25)

-3

(P-Rpy-Rrg — Q), (4.26)

and P and @ are the pressure functions defined in (4.3). The procedure of obtaining
(4.26) from (4.22) shows that P = T: Rsy and Q = I : Rsg, where the resistance
functions Rgy and Rgpg are regarded as the complete relations between particle kine-
matics and the stresslets, as we are not restricting the hydrodynamic stress to be
traceless.

Under equilibrium conditions (when (E) = 0) the osmotic pressure is given by
the first two terms on the right-hand side of (4.24) which may be shown to give pre-
cisely the osmotic pressure defined thermodynamically in terms of the free energy or
interparticle potential (Brady 1993). When a shear flow is applied, the suspension

microstructure is distorted from its equilibrium isotropic form, and both the Brown-
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ian, nkT(V-A), and rate-of-strain, n(B) : (E), contributions to the osmotic pressure
are nonzero. When the amplitude of the shearing motion is small, the distortion of
the structure is linear and proportional to (E), which occurs to leading order in the
Péclet number, Pe = 6rua®y/kT, where 4 = |(E)|, some measure of the rate of
strain, for example the largest principal strain rate.

Although one might expect an O(Pe) correction to the osmotic pressure, general
considerations show that at equilibrium (B) must be proportional to the isotropic
tensor, which contracts with (E) to give zero. (The trace of E is zero from the
incompressibility of the material.) Thus, a nonzero, non-isotropic (B) must be pro-
portional to (E), and hen‘ce proportional to Pe. Since the rate-of-strain contribution
to the osmotic pressure is already proportional to (E) (cf. (4.24)), it is O(Pe?). This
O(Pe€?) rate-of-strain contribution can be determined from the O(Pe) deformation to
the structure, which we now do for a dilute suspension of Brownian hard spheres.

In a similar way, the O(Pe) deformation to the structure results in a contribution
to (V-A) that averages to the isotropic tensor times (E), and this again gives zero.
Presumably, the next term in the development of the deformation of the microstruc-
ture is O(Pe?) and this would then give a nonzero, O(Pe?), Brownian contribution
to the osmotic pressure. Here we shall only calculate the O(Pe) deformation to the
microstructure and thus only the O(Pe?) rate-of-strain contribution to the osmotic
pressure.

For a dilute suspension of Brownian hard spheres, Batchelor (1977) showed that it

is sufficient to consider the interactions between only two particles alone in the fluid.
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The relevant microstructural quantity is the pair-distribution function g(r), which

satisfies the following Smoluchowski equation:
V.-D.-Vg—PeV-Ug=0, (4.27)

with

g~1l a r—oo,
d-[D-Vg—Pe-Ugl=0 at r=2.

Here, D = kT Rz is the relative diffusivity of two particles and U is the relative
velocity due to the imposed shear flow, U = Ry, - Rpp : (E). (Care must be
taken to insure that the appropriate combinations of Rz etc. for two particles are
taken to form the relative diffusivity and velocity in (4.27).) All lengths have been
made dimensionless by the particle radius a, the velocity by 4a, and the time by
the diffusive time scale a®/ Dy, where Dy = kT /67 pa is the diffusivity of an isolated
particle. The Péclet number in (4.27) measures the relative importance of shear and
Brownian forces.

The equilibrium solution of (4.27) is the Boltzmann distribution

Il

do

to O(¢). The perturbation to the equilibrium structure will be linear in (E) and
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A

therefore we define, writing (E) = 4(E),
9=g0 (1~ Pef(s)d-(E)- d) , (4.28)

where, to leading order in Pe, f satisfies

d ( 2-df _ 2
with
GZ—f:O at s=2, and f—0 as s— co.
S .

Here, G and H are the radial and tangential components of the relative diffusivity
D, and may be written in terms of the mobility functions relating velocity to force

as

G(s) = z11(s) — 27,(s),
H(s) = yi1(s) — yia(s),

and W is defined by

VU =W(s) (d-(E)- d) .

Batchelor (1977) wrote W in terms of two functions .4 and B (Batchelor & Green
1972) which relate the rate of strain to the axisymmetric and nonaxisymmetric mo-

tions, respectively, for a pair of particles (note that A and B are to be distinguished
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from A and B of (4.25) and (4.26)):

W(s) =3(B(s) — A(s)) — S(_(ljé'

For equal-sized spheres, the functions .4 and B may be expressed in terms of nondi-

mensionalized (see Kim & Karrila 1991) resistance and mobility functions as
4 g g 4 G G a a
Als) = ‘5‘($11 — 1) = 3_5(X11 — Xp3)(zh; — 25,),
and
8 8 . .
B(s) = ;(yfl —yiz) = g{i(yu - ylz)(Yg - chz;) - (yfl - yf2)(Y1ﬁI + Yg)h

with 275 and yJ; the functions relating the stresslet on particle a to the force on
particle 8 in the formulation of Kim & Mifflin (1985), XG; and Y5 the resistance
functions relating force to rate of strain and so forth. Equation (4.29) was solved by
Batchelor (1977) (a factor of 1/2 in (4.28) is included so the form agrees with that
work) and we have repeated the calculation here in order to have numerical values of
[ for integration in (4.30) below. Note that f decays as s=2 for large s.

In the hydrodynamic contribution to the osmotic pressure for two spheres, B can

be expressed as

B = B(s)(dd - 1TI),
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where

sA(s)
4

8ray

. — (X + X3)]

B(s) = [(Xf; — X12)

Since the perturbation to g is proportional to dd: (E), the angular integration implied
in the ensemble average of B will result in a term proportional to (E):(FE). When
B(s) is normalized with 87a®u/3 and the averaging is expressed as a probability
integral over the pair-distribution function, we have

L kT

n(B):(E) = " 157 a3

Pe?g? /2 " B(s)f(s)s%ds(E): (E). (4.30)

Note that the integral in (4.30) is absolutely convergent as f ~ s™2 and B(s) ~ s

for large s; also, note that the integrand is finite at contact as the singularities in the

P and @ functions cancel. Calculation of the integral gives

n(B):(E) = 21k

= ;;Pe%%i@) (E).

Alternatively, the result could be expressed as 0.84Pe¢2u&(ﬁ7) : (E), corresponding
to a hydrodynamic, rather than thermal, scaling of the stress. In Figure 4.3, the
nondimensional B(s) and the integral on the right hand side of (4.30) as a function
of the upper limit of integration are plotted; the latter, labeled I, illustrates that
the majority of the contribution is due to particles within two radii of the reference
particle.

A brief consideration shows why the (B) : (E) contribution is positive. Two

particles approaching one another along the compressional axis in a straining flow
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Figure 4.3: The function B(s), solid line, and [; r*f(r)B(r) dr from equation (4.30),
dashed line labeled [, are plotted against dimensionless particle separation s. B(s)
has value —1.33 at s = 2 and the limiting value of I is —2.1.



173

must force fluid out of the intervening region, and the pressure moment for this
interaction will be positive. For the case of two particles moving away from each other
along an extensional axis, the moment is therefore negative, based on the reversibility
of Stokes flow, and tangibly because fluid must be “sucked” into the region between
the particles. The equilibrium structure is distorted by the weak straining, however,
so that a second particle lies preferentially along the compressional axis relative to a
reference particle, as will be seen from a study of the pair distribution (4.28). As a

result, the average pressure from the interaction is positive.

4.7 Suspensidn pressure in a sheared lattice

In this second example, we show the behavior of the pressure as a function of particle
volume fraction for a sheared simple cubic lattice of spheres. The volume fractions il-
lustrated are: ¢ = 0.10, 0.30, 0.41, and 0.45. For a suspension of force- and torque-free
nonBrownian spheres, the suspension pressure is given by the rate-of-strain contribu-

tion in (4.24) only:
I = (B):(E) = }(P-Ril Rrs — Q):(E). (431)

Equation (4.31) is the general form for the rate-of-strain pressure in any suspension,
not just a periodic lattice. For a random suspension, for example that given by
2 hard-sphere microstructure, (B) = a(¢)I, with I the isotropic tensor, and this

contracts with (E) to give zero. For an undeformed simple cubic lattice, (B) is also
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proportional to I and there is no pressure. When the lattice is sheared along one of
the lattice vectors, however, the instantaneous lattice is not simple cubic, but rather
rhombohedral, and there is a nonzero pressure. As the lattice structure periodically
repeats itself, the pressure must return to zero in one period. For small ¢, this occurs
by the pressure taking positive values in the first half of the cycle and then negative
values for the second half, as shown in Figure 4.4 for ¢ = 0.10 and ¢ = 0.30. The
curves are antisymmetric about the midpoint of the cycle. At larger volume fractions,
the values are seen to begin negative as the lattice is sheared away from registry; the
curve is always antisymmetric about the midpoint of the cycle. This change of sign
in the trace of the first -moment as the particle fraction is increased may possibly
be related to the negative second order coefficient in the series expansion in ¢ of
the viscosity for a simple cubic lattice (Nunan & Keller 1984). We see the pressure
increases with volume fraction as expected (the pressure is O(¢?) at low ¢; we have
plotted the instantaneous value of the pressure moment for a chosen particle, so the
dependence on ¢ is linear), although the change in sign at incipient strain at around
¢ = 0.41 leads to small values of the pressure for volume fractions near ¢ = 0.41.
The procedure used to calculate the pressure interactions for the lattice structure
involves an accounting for near- and far-field interactions essentially equivalent to
that used in the Stokesian Dynamics method for evaluating the grand resistance
tensor (Brady & Bossis 1988). Expanding the force density as a series of moments
about the particle centers in the integral formulation for the pressure (Kim & Karrila

1991, Ladyzhenskaya 1963), a “far-field” estimate for the pressure at the particle
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Figure 4.4: Values of the trace of the first moment of the force distribution upon a
sphere (of radius a) are plotted as a function of total strain for an initially simple
cubic lattice undergoing simple shear at shear rate 4 in fluid of viscosity y; the motion
is along a lattice vector. Volume fractions shown are ¢ = 0.10, 0.30, 0.41, and 0.45.
The lattice is at registry at zero strain and returns to registry first at a strain of unity.
The trace is identically zero at registry and the midpoint of the cycle. The values are
antisymmetric about the midpoint, and hence average to zero for a cycle; note the
change of sign with incipient strain occurring near ¢ = 0.41 .
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of interest due to the moments on the other particles is calculated. We truncate
the moment expansion at the level of the stresslet, which is calculated by Stokesian
Dynamics. When the interparticle distance is small, there is significant error in this
approximatipn. For close pairs, the resistance functions P and @ reported here are
used to calculate the trace for the particles as prescribed by (4.3); in the flow of the
lattice, there is no deviation of particle velocities from the bulk flow, so only Q:F
contributes. The contributions to the pressure at a reference sphere by all neighbors
within a distance s = 4 are calculated in this manner (s = 4 being an arbitrary
choice), and are added to the far-field estimate. For close pairs, this double counts
that portion of the near-ﬁ'dd interaction which is captured by the truncated moment
expansion. The leading error in the moment expansion is due to neglect of the change
to the pressure environment of a reference sphere by the induced quadrupole upon
a neighboring sphere, which behaves as s78. Hence, we subtract from the sum the
terms in the resistance formulation of O(s~") and larger. It should be noted that
the pressure environment experienced by a particle due to the stresslet on a second
particle behaves as s~2, with s the separation distance; the interactions would be
nonconvergent if simply summed pairwise. Thus, the method of O'Brien (1979) for
renormalization of nonconvergent hydrodynamic interactions is applied, with Ewald
summation employed to speed convergence of the resulting expression (see Beenakker

1986).
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4.8 Concluding remarks

The functions presented here make it possible to calculate the isotropic stress associ-
ated with rigid particle interactions in low-Reynolds-number flow. As the examples
in the preceding sections illustrate, the functions may be applied in either analyti-
cal or computational contexts. These examples were restricted to systems where the
particle phase was under the influence of hydrodynamic and Brownian forces only. In
general, suspensions with interparticle forces (electrostatic, for example) will have a

stress contribution associated with these forces. Hence, (4.21) will be replaced by
(2) = —nkTI + 2u(E) + n[(SF) + (SB) + (87, (4.32)
with
(87) = ~((Rsv - Ryy + =) - F7),

where FF is the total nonhydrodynamic force exerted by the other particles upon the
reference particle. The suspension pressure, mechanically defined to be negative one
third of the trace of the bulk stress, for a system with hydrodynamic, Brownian, and

specific interparticle forces is
II = nkT 4+ nkT(V-A) + n(z - FF) + n(B) : (E) + n(A - FF), (4.33)

with (4.25) and (4.26) for A and B. The n(x - F¥) term is the familiar z ¥ pressure

just as found in molecular systems, and the last two terms are the contributions from
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hydrodynamics.

Efforts to model two-phase flow have made use of the concept of “particle phase
pressure.” This quantity has not, to date, been placed on firm footing for viscously
dominated suspensions; authors have given heuristic arguments for the scaling of the
pressure with respect to system parameters (Jenkins & McTigue 1990) or have stated
that the particle interactions give rise to a positive pressure (Batchelor 1988), without
apparent justification. With the functions presented here, the pressure interactions
of suspended particles in Stokes flow may be calculated. The roles of the strain
rate and particle velocities are made clear as is the fact that an induced pressure
requires at least two particles. This work will, it is hoped, provide a means for
rational investigation of the role of the particle phase pressure in macroscopic models

of two-phase flow.
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Chapter 5

Pressure-driven flow of a

suspension: buoyancy effects
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Abstract

Dynamic simulation of pressure-driven flow of a nonneutrally-buoyant suspension has
been performed by Stokesian Dynamics. Channel flow at zero Reynolds number of
a monodisperse nonBrownian suspension of spheres in a monolayer was studied for
a range of three parameters: bulk particle areal fraction, ¢%, dimensionless gravita-
tional parameter, B = (U%/(u))(H/a)?, and dimensionless channel width H/a. Here,
U° is the Stokes settling velocity of an isolated sphere, (u) is the mean velocity of
the suspension, H is the channel width, and a is the particle radius. From an ini-
tially uniform distribution, a range of behavior in the fully-developed flow is observed
depending upon the value of B. For small B, shear-induced migration dominates
buoyancy effects, and a layer at large ¢4 is formed in the center of the channel. For
sufficiently strong gravitation, particles settle rapidly to form a concentrated layer
which is transported along the bottom of the channel by shearing. At intermediate
values of B, shear-induced migration of particles to the center of the channel occurs
simultaneously with gravitational settling. In the lower portion of the channel, these
fluxes are opposed and lead to nonmonotonic variation of particle fraction, with ¢4
increasing away from the lower wall to a maximum near or even above the centerline
and then rapidly decreasing, typically vanishing to leave clear fluid adjacent to the
upper wall. These results are in qualitative agreement with the small amount of ex-
perimental data in the literature on such systems. The flow has been modeled using
macroscopic balance equations presented by Nott & Brady (1994) to determine ¢4,

(u), and T. The predictions of the model agree well with simulations of the flow.
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5.1 Introduction

Flowing suspensions are found in many natural and applied settings. In the design
of processes involving suspensions, the variety of rheological responses of suspensions
presents a number of challenges. Dependence of the viscosity and other rheological
coefficients upon the particle volume fraction ¢ is strong, and even suspensions with
weak interparticle forces and weak Brownian motion exhibit nonNewtonian behavior,
including normal stress differences (Gadala-Maria 1979) and time-dependent viscosity
(Gadala-Maria & Acrivos 1980). These rheological phenomena relevant in a suspen-
sion at homogeneous conditions are compounded in inhomogeneously-sheared suspen-
sions by shear-induced particle migration, first investigated in detail by Leighton &
Acrivos (1987b). This irreversible migration of noncolloidal particles from regions of
high shear rate to low can result in very nonuniform particle concentration fields, and
the pervasiveness of inhomogeneous flows in processes—pipe flow is the obvious and
most important example—makes it an issue of importance for process design. If par-
ticles and fluid are not of the same density, settling (or rising) occurs simultaneously
with shear-induced particle migration in an inhomogeneous flow, and the bulk flow
thus depends upon the relative strength of the buoyancy forces to shearing forces.
This work has a dual purpose. The first is to provide basic information about the
influence of particle buoyancy in inhomogeneous suspension flow, and the second is to
test the suspension-flow model presented by Nott & Brady (1994) (hereafter referred
to as NB) in a flow which includes buoyancy. The specific flow we have investigated

is the pressure-driven flow of a suspension of heavy particles in a channel (there
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is no loss of generality in assuming the particles more dense than the fluid). The
flow was simulated by Stokesian Dynamics over a range of the relevant dimensionless
parameters, which are the bulk particle areal fraction ¢% (¢% appears rather than
bulk volume fraction ¢° because we simulate flow in a monolayer), the ratio of channel
width to particle size H/a, and B = (U°/(u))(H/a)?, where U° is the Stokes settling
velocity of an isolated particle and (u) is the average velocity of the suspension; B
characterizes the relative strength of buoyancy to viscous shearing effects. The model
equations were solved to obtain predictions of the fully-developed flow for similar
ranges of the parameters. We will see that the agreement between the simulation
results and model prediétions is good over a range of B, thus validating the model
for a range of flow conditions which had previously not been considered. There is
little experimental work that is directly comparable with our simulations of channel
flow. While there is no replacement for physical experiments, confidence that the
simulation results represent realistic behavior is well-founded: Stokesian Dynamics
simulations by Phung (1993) yield excellent agreement for the suspension viscosity
determined experimentally by van der Werff (1990); simulations by Bossis & Brady
(1984) and Phung (1993) find particle microstructure in good qualitative agreement
with that determined in experiments by Parsi & Gadala-Maria (1987). For pressure-
driven flow, there is good qualitative agreement between the simulations of NB and
the experiments by Koh, Hookham & Leal (1994).

An interesting and rather unusual density stratification occurs as the result of

the competition between buoyancy forces and shear-induced migration in a pressure-
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driven flow. It is found that relatively heavy material flows stably above lighter,
despite constant fluctuations. A density stratification of this sort is illustrated by
Figure 5.1, reproduced in adapted form from Altobelli, Givler & Fukushima (1991), a
study in which nuclear magnetic resonance (NMR) imaging of the velocity and particle
fraction in pressure-driven tube flow was performed. Shear-induced migration results
in a maximum in ¢ near the center of the tube, similar to the results of the experiments
by Koh ef al. (1994). The results of this work are particularly interesting, however,
because of the difference between the particle density*, p, = 1.03 g cm™>, and the
fluid density, py = 0.88 g cm™3. Thus, the suspension of large ¢ near the center of
the tube is in fact dense;" than the more dilute material below. In work we discuss
below, Zhang & Acrivos (1994) have modeled the flow in the experiments of Altobelli
et al. (1991) showing that the volume-fraction profiles of Figure 5.1 can be explained
by the balance of shear-induced migration and gravitational settling, and their model
also predicts a nonaxial mean secondary flow. Our simulations demonstrate that a
density stratification similar to that found by Altobelli et al. (1991) occurs in channel
flow with heavy particles over a range of ¢% and B.

The flow in the present study may be described as one of a class of viscous resus-
pension phenomena, which have provided motivation for suspension-flow modeling.
In resuspension, a settled layer of heavy particles expands in height and flows due
to a shear flow over the layer. Resuspension phenomena at large Reynolds num-

bers, such as those which transport sand and silt in surf zones, are well-known. In

*Other experimental parameters included mean particle diameter, 0.762 mm; bulk particle volume
fraction 0.4; fluid viscosity, 3.84 Poise, average velocity, 7.05 cm s™1; and inner diameter of the tube,
2.54 cm.
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contrast to these inertially-dominated phenomena, viscous resuspension occurs at
small Reynolds number where inertia has negligible influence. Leighton & Acrivos
(1986) showed that the steady-state height of a viscously-suspended layer could be
estimated from a balance between the gravitational settling and a Fickian diffusive
flux of particles to regions of smaller ¢. The particles were assumed to be too large
for Brownian diffusion to play a significant role, hence the diffusivity of this model
is the shear-induced diffusivity driven by hydrodynamic interactions. This gradient-
or collective-diffusivity is to be distinguished from the closely related shear-induced
self-diffusivity first recognized and studied by Eckstein, Bailey & Shapiro (1977).
Leighton & Acrivos (i987a) improved the experimental technique of Eckstein et
al. (1977), and showed that cross-stream migration of particles could be phenomeno-
logically related to fluxes that were caused by gradients in both shear rate, ¥, and
¢ (Leighton & Acrivos 1987b). This “diffusive flux” phenomenology was used by
Schaflinger, Zhang & Acrivos (1990) in modeling a suspension of dense particles in
shear and pressure-driven channel flow, but these authors included only the particle
flux due to V¢. The model showed some success, but for pressure-driven flow the
model predicted that all particles would lie below the velocity maximum, a result
which is sharply contradicted by the simulations of the present study. Because the
the cross-stream flux at the maximum in velocity (i.e., where 4 = 0) is solely gravita-
tional settling, the particles must be predicted to lie below the velocity maximum in
the fully-developed channel flow. Phillips et al. (1992) used the diffusive-flux model,

including also the flux of particles due to V¥ to successfully predict both rates of
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variation and steady-state values for ¢ in inhomogeneous shear flows. However, there
was a notable discrepancy from experimental results for pressure-driven flow, as the
model predicted that, regardless of the bulk particle fraction, ¢ would take on a cus-
plike maximum with ¢ = ¢,, at the location of the velocity maximum, where ¢,, is
the maximum packing fraction.

More recent modeling of the pressure-driven tube flow with heavy particles by
Zhang & Acrivos (1994), including fluxes of particles due to V4 and V¢ as well as
gravitational settling, shows excellent agreement with the experiments of Altobelli et
al. (1991). One might argue, based on this agreement, that the model will predict the
profiles of ¢ we observe i‘n channel flow, with particles above the velocity maximum.
This argument is, however, difficult to justify because a study of the model for this
flow shows it would require a cross-stream flux proportional to V4 to balance the
gravity-driven flux where 4 = 0; the same mechanism that drives a flux toward the
velocity maximum to yield the aphysical cusp of Phillips et al. (1992) would now
have to drive particles away from this point. While resuspension in tube flow is more
complicated than in channel flow, ¥ = 0 in channel flow for all points at some height,
and it is therefore a more stringent test of basic aspects of a flow model. The flux
balance in the fully-developed channel flow is one-dimensional and the excess weight
of the relatively dense suspension at the center of the channél must be supported by
a stress variation directly related to the shear-induced migration. Thus the manner
in which migration is incorporated into the model is thus isolated for scrutiny. The

success of Zhang & Acrivos (1994) in modeling tube flow may be due to the three-
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dimensional nature of the flow as azimuthal circulation is induced by the density
stratification.

The failure of the diffusive-flux model at points where the shear rate vanishes, in
particular the aphysical prediction of a cusplike maximum in pressure-driven flow,
prompted NB to model the particle pressure, II, in terms of the suspension temper-
ature, T, rather than in terms of 4, where T' = (u/-u'), (defined pointwise) is the
mean square of the scalar particle velocity fluctuations’. Following Jenkins & Mc-
Tigue (1990), NB assert that II is proportional to \/T This modeling is based upon
the low-Reynolds-number hydrodynamic resistance functions relating the pressure
moments on spheres to fhe particle and bulk motions determined by Jeffrey, Morris
& Brady (1993). Although in principle a rigorous theory of the nonlocality could
perhaps be developed, NB showed that a balance equation for T including diffusive
transport may be deduced from the equation for the rate of dissipation of energy
in the suspension. Judging from the results of its application, this simple means of
capturing the nonlocal dependence of the normal stresses on % appears to be sound.
In brief, the model asserts that T is generated at points where ¥ is large and is trans-
ported diffusively if not spatially constant, and the constitutive relation of the pi to
VT renders the stress nonlocal in 4.

We have simulated the pressure-driven flow of a suspension over a range of B to
assess the dependence of the flow behavior upon the relative strength of settling to

shear-induced migration. With respect to B, a wide range of behavior is observed,

TThere is no potential for confusion of the meaning of the symbol T here, as the particles are
assumed nonBrownian and the absolute temperature is never considered.
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Figure 5.1: Reproduction from Altobelli, Givler & Fukushima (1991) of false-color
images from NMR imaging of pressure-driven tube flow of a suspension of heavy
particles at an average particle volume fraction of ¢ = 0.4. The particle fraction is
represented by the upper image and the velocity by the lower image, with the scale at
right used for both: particle fraction increases and velocity decreases in the vertical.
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from the neutrally-buoyant suspension (B = 0), in which a highly-concentrated layer
of particles forms at the center of the channel, to the formation of a settled layer
of particles which are transported along the bottom of the the channel by shear for
sufficiently large B, with the value at which a shear layer occurs for ¢% = 0.4 being
B ~ 20. At small and intermediate B, a stable flow of heavy material over light like
that illustrated by Figure 5.1 occurs; this is observed even for B > 15 at ¢4 = 0.4, and
for larger B at higher ¢%. The bulk flow depends strongly upon ¢ for small 4% at
a fixed B, the buoyancy is much more important relgtive to shear-induced migration
than at larger concentrations. At fixed B and ¢%, the velocity and particle fraction
profiles are essentially idé-ntical at H/a = 18.32 and H/a = 30.54. Therefore, fixing B
effectively yields dynamic similarity for flows of the same suspension (the same ¢%) at
different channel widths; the residual influence of H/a is weak, with the primary effect
being that T is larger in the center of the channel for narrower channels due to the
strong influence of the walls. Over a wide range of conditions, the suspension balance
model successfully predicts the behavior observed in simulations. providing confidence
that the modeling is sound, and the constitutive relations capture dependence on ¢
correctly.

We begin in §5.2 by presenting a basic scaling analysis of the flow of interest. In
§5.3, application of Stokesian Dynamics to this flow is discussed and the simulation
results are presented. Predictions of the flow behavior by the model are compared

with simulation results in §5.4, followed by a summary and discussion.
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5.2 Scaling analysis

We consider pressure-driven flow at vanishing Reynolds number of a nonBrownian
suspension of spheres in Newtonian fluid. The particles are of equal or greater density
than the fluid, and interact both hydrodynamically and through repulsive interparticle
forces, the latter vanishing at surface separations much smaller than the particle size.
The inhomogeneous shéar rate in pressure-driven flow causes particle migration to the
center of the channel, while the particles to settle. For an initially uniform particle
fraction flowing in an arbitrarily long tube, which is the situation in our simulations,
variations in the streamwise direction vanish on average, and the ¢ profile evolves in
time in a manner which depends on the relative strength of shear-driven to buoyancy-
driven fluxes.

An estimate of the timescale for bulk evolution of the particle fraction is useful
for experimental and applicational purposes. When buoyancy forces is negligible, the
fully-developed flow of an inertialess noncolloidal suspension is independent of the
flowrate, and it is lengths or strains, rather than times, which are relevant. Under
these conditions, NB showed (using an argument due to Leighton & Acrivos 1987b)
that fully-developed pressure-driven channel flow should be expected only after a dis-
tance of O[( H/a)?H]. The argument holds that particles migrate a distance of O(H)
by a random-walk process characterized by the shear-induced self-diffusivity (Eck-
stein et al. 1977) which scales, on dimensional grounds, as ¥a*D(¢), where D is a di-
mensionless function. Diffusive motion of lengthscale H occurs in a time H?/(¥a*D),

while 4 H is a representative velocity scale, and the product of these time and velocity
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scales yields the flowrate-independent (H/a)?H/D as an estimate of the development
length. For ¢ > 0.3, D = 0.1 from the experiments of Leighton & Acrivos 1987a and
Stokesian Dynamics simulations of Phung (1993). When particle buoyancy is relevant
to the flow behavior, the estimate of NB for a neutrally-buoyant suspension serves as
an upper limit on the lengthscale for evolution of ¢. The rate of development is un-
derstandably more rapid for very dense particles as settling dominates the migration
process.

We define a dimensionless parameter B characterizing the relative strength of
buoyancy to shearing forces as the ratio of the times for a particle to diffuse and
to settle a distance of OiH ). A shear-driven random walk of O(H) takes a time of
O(H?[va*) = O(H/(u)a?), with ¥ = (u)/H, while Stokes settling velocity yields an

estimate of H/U? for the settling time, and thus

(%) (&) (51)

The Stokes settling velocity is U® = 2(p, — py)ga®/9n with g = |g| the magnitude of

B

il

the gravitational acceleration, so that B may also be written

_ 2pp—pp)gH* [ (pp—ps)g
B= 9In(u) _O( Vp )

Note that B is inversely proportional to the Shields parameter x that was used by
Schaflinger et al. (1990).

The parameters B, bulk particle fraction ¢°, and dimensionless channel width
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H/a characterize the channel flow of a suspension. The bulk particle areal fraction
¢’ is often used in this work, because we simulate suspension flow in a monolayer,
and a simple rescaling discussed in §5.4 allows constitutive relations developed for the
three-dimensional description to be applied to a monolayer. Interparticle forces are
neglected in the dimensional analysis, because NB showed the range—the surface-
to-surface distance, €, at which the force becomes negligible—of the forces has no
discernible effect upon the suspension flow, provided 0 < ¢/a < 1. As discussed in
§5.3, repulsive interparticle forces do inhibit hydrodynamic clustering and influence
flow behavior.

We note that at the p;rticle fraction of ¢% = 0.4, gravity has a scarcely discernible
influence upon suspensions with B < 1, while at the other extreme, B = 20 represents
an upper limit of the range of interesting behavior, as the particles settle into an
ordered layer along the lower wall of the channel for B > 20. In general as ¢%
is reduced, a given value of B has a larger influence, because the resuspension of
particles depends on two-particle interactions which scale as ¢%.

Consideration of the influence of shear-induced particle migration shows that a
density stratification with heavy material over light is to be expected. In a neutrally-
buoyant suspension, particles migrate to the center of the channel where 4 is small.
If p, increases by a small fraction, the immediate and correct expectation is that the
¢ profile will be slightly perturbed and the concentrated suspension at the center of

the channel will therefore be denser than the dilute materiai below. Were this not

the case, the condition of neutral buoyancy would be unstable and therefore probably
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unobservable.

5.3 Simulation

Stokesian Dynamics simulations of pressure-driven channel flow were performed for
a range of ¢ and B, at two values of H/a. Complete descriptions of Stokesian
Dynamics are given by Brady, Phillips, Lester & Bossis (1988) and by Brady & Bossis
(1988), while the application of the method to pressure-driven flow was demonstrated
by NB, so we present only a brief treatment of the method before turning to the

simulation results.

5.3.1 Simulation method

The Stokesian Dynamics method for simulation of suspension flow is based upon the
solution of two-sphere problems at low Reynolds number, yet captures important as-
pects of the many-body nature of hydrodynamic interactions. This is possible because
hydrodynamic interactions may be decomposed into short-ranged lubrication inter-
actions and long-ranged mobility interactions. Mobility interactions are computed
as an expansion in moments about the particles’ centers of the hydrodynamic force
density exerted on their surfaces. In application, the expansion must be truncated.
We truncate after the first moment, where the zeroth moment is the net force on
a particle, and the first moment consists of the antisymmetric torque and the sym-
metric stresslet. Faxén’s laws (Kim & Karrila 1991) for the motion of a particle in

given velocity fields are used along with the moment expansion to construct the grand
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mobility tensor M*. To simulate a medium of infinite extent, a unit cell containing
a finite number of particles is periodically replicated throughout space. Interactions
between all particles are summed, with Ewald’s summation technique (Beenakker
1986) used to speed convergence. The grand mobility tensor is inverted to give a
far-field approximation, R® = (M>)~1 of the grand resistance tensor R. It is in
this inversion that many-body interactions are incorporated: while the construction
of M* was performed pairwise, the inversion sums the series of reflected interac-
tions between all particles. Near-field lubrication interactions are added to the grand
resistance tensor in pairwise fashion, with the portion of the near-field interaction
captured by the far—ﬁeld‘ approximation subtracted to avoid double-counting, thus
yielding the grand resistance tensor R. Note that R is a function only of the particle
configuration.

The hydrodynamic forces, torques, and stresslets on the N particles in the unit
cell are related through R to the particle velocity fluctuations and the average rate

of strain by

F _
N A (5.2)
S —{e)
where
R R
R=| 77 THE (5.3)
Rsy Rsg

In equation (5.2), u is the 6N vector of particle velocities (translational and rota-
tional); (u) and (e) are the average velocity and the average rate of strain, respec-
tively, of the bulk suspension; F' is the vector of hydrodynamic forces and torques

and S is the N-particle stresslet exerted by the fluid on the particles. Couplings in
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(5.3) are indicated by subscripts: Ry is the resistance tensor coupling force/torque
to velocity, Rsg is the tensor coupling the stresslet to rate of strain, and the others
are clear from these.

Simulation of pressure-driven flow requires simulating a boundary. This can be
done either through a numerical approximation of a flat wall as discretized flat patches
(Durlofsky & Brady 1987) or by allowing a group of the N particles, say N,,, to mimic
a wall by moving together at a fixed velocity. The latter method is simpler because
the hydrodynamic interaction between a “wall” particle and a suspended “interior”
particle is no different from that between two suspended particles, whereas in the
flat-wall approach the interaction of a sphere with the wall must be numerically
approximated. Despite the simplicity, this method was shown by NB to capture the
essential physical features of the flow and is used here. The N particles are divided
into the N, which make up the wall, and the remaining N; = N — N,, suspended
particles. The unit cell is schematically illustrated (along with the wall particles of
a neighboring image cell) in Figure 5.2. The wall particles are constrained to move
at a prescribed velocity, while the interior particles move freely in the z- and y-
directions in such a way that the net force (hydrodynamic plus nonhydrodynamic)
on each 1s zero in accordance with inertialess flow. The quantities to be determined
are thus the forces on the wall particles and the velocities of the interior particles.
The bulk strain rate (e) is set to zero, and the average suspension velocity (u) is
prescribed; a pressure gradient is established to drive the flow, and this pressure

gradient balances the force necessary to maintain the wall particle velocities, thus
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satisfying the requirement of the overall momentum balance that the net force upon
the unit cell vanish. Buoyancy is incorporated by exerting a constant force F', upon
each particle. Pairwise interparticle forces, denoted F'yp, are also included, and these
are discussed further below.

Fixing the wall velocity at zero, the equation of motion for the particles is

N (e [morn | (- ) (B (0
F 0 R RY, u' — (u) Fi, F,
(5.4)

We have decomposed Rpy, denoting couplings by superscripts: R is the resistance
tensor denoting the interaction among wall particles, R* denotes the interaction of
wall with interior particles, and so forth. Solving (5.4) for the suspended particle

velocities yields

— i = (u) + (Rjy) (R () + Fip + F), (55)

where 2° is the N;-particle position vector. Having constructed the resistance tensor,
the positions are updated using (5.5) and the procedure is repeated. The near-
field lubrication portion of the resistance tensor varies significantly for small relative
motions of the particles, and is updated at each step in the evolution, whereas the
far-field approximation obtained as the mobility invert R changes significantly only
for relative motions of neighboring particles on the order of the particle size and is
updated less frequently.

The set of ordinary differential equations (5.5) is completely coupled in the sense
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that the motion of any particle depends upon the position of all other particles in the
unit cell. Hydrodynamic interactions are nonlinear in particle position, and thus, as
pointed out by NB, these equations exhibit deterministic chaos which leads readily

to irreversible behavior.

Interparticle forces

Repulsive interparticle forces influence the bulk flow rather dramatically, apparently
through disruption of the development of clusters of particles. Yet the range of these
forces has essentially no influence, provided the ranée remains small relative to the
particle size. In the sirm;lations, pairwise repulsive forces are incorporated with the

force on particle a due to particle 8 given by

Te ¢

e daﬁ7 (56)
(&)

Faﬁ:Fﬂl_

where ¢ = r/a — 2 is the dimensionless distance between the sphere surfaces, and dag
is the unit vector directed from sphere a to sphere 3. The parameter 7 determines the
range of the for'ce, while the product Fy7 fixes the strength. This interparticle force
was used in the simulations of NB, who observed essentially identical results for the
rate of particle migration and the eventual steady state as 7 varied from 100 to 10%. In
the absence of repulsive forces (1 — o0), however, clusters of particles formed which
spanned the channel, thus disrupting smooth shearing and altering the migration
process. Here, we also find that repulsive forces have a qualitative influence on the

flow, as illustrated by the results of simulations with interparticle forces (7 = 1000
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and Fp7 = 0.6) and without at ¢% =04, Hla = 30.54, and B = 11.75 presented
in Figure 5.3. Particle fraction, velocity, and suspension temperature profiles from
the two simulations are plotted against the y-coordinate scaled by the channel width
H. Also plotted, in (b), is the parabolic velocity profile for Newtonian fluid at the
same volumetric flux. When the short-ranged repulsive forces (the force scaled by
6mna(u) is unity at a surface separation of about 5 x 107° particle radius) are absent,
a concentrated and slowly-sheared layer of particles lies adjacent to the lower wall.
Conditions change abruptly at the top of the layer, with a rapid increase in Y, a
similarly rapid increase of T' to a maximum followed at further increase in y by a
smooth but rapid decrea.se. While ¢4 decreases immediately, it then increases with
Increasing y as the result of shear-induced migration within the channel of truncated
width formed by the concentrated layer and the upper wall.

We offer the following explanation for this behavior. Particle surfaces approach
very closely without interparticle forces, allowing formation of persistent clusters
bound together by lubrication forces. At nonzero B, the clusters sediment to cre-
ate a relatively concentrated and therefore very viscous layer, so that % is reduced
and the rate at which the clusters are torn apart is slowed. This apparently allows
the clusters to become more tightly packed and ordered, contributing further to the
development and stability of the concentrated layer.

All further results reported are from simulations which include interparticle forces
of very short range. Weak Brownian motion, short-ranged interparticle forces or sur-

face irregularities disrupt the influence of lubrication to some degree in any suspen-
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sion (the influence of Brownian motion and repulsive forces upon the microstructure
is analyzed in Chapter 3) and thus we believe the flow behavior of most noncolloidal
suspensions (excepting, of course, those which have attractive interactions) is best

represented by simulations including these forces.

5.3.2 Results

The simulations elucidate flow behavior as a function of ¢, H/a, and the buoyancy
parameter B defined by (5.1). Our discussion is focused on values of B ranging from
3.4 to 16.8. At the moderate concentrations we have studied, smaller values of B yield
flow much like that in the; case of a neutrally-buoyant suspensi‘on, which was studied
in detail by NB. For B in excess of about 20, the particles settle into a well-ordered
layer, and larger values of B would yield only similar behavior with perhaps eventual
cessation of shearing of the particle layer. The yield stress which would be indicated
by cessation was not investigated.

We discuss nine simulations, with conditions and selected results summarized in
Table 5.1. The simulations are labeled in column 1. Input parameters are listed in
columns 2-7: ¢%, H/a, and B are given in columns 2-4, respectively; the number of
particles and the number making up the wall in the unit cell are listed in columns 5 and
6, respectively; and column 7 lists Fu7, the leading constant in the interparticle force.
Taking For = 1.0 and 0.6 for H/a = 18.32 and 30.54, respectively, the repulsive force
has the same relative magnitude with respect to the shear rate for all simulations,

because (u) is fixed. The time, ¢, required to achieve a steady fully-developed flow



----- Without repulsive forces
— With repulsive forces

Figure 5.3: Comparison of profiles of the (a) particle areal fraction ¢, (b) particle
velocity u, and (c) suspension temperature T for B = 11.75, H/a = 30.54 and
bulk areal particle fraction ¢% = 0.4, for simulations with short-ranged tepulsive
interparticle [orces, solid curves, and without these lorces, dashed curves; (6) aud (c¢)
are on the following page. The parabolic profile of a Newtonian fluid at the same
volumetric flux is shown in (b).
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Simulation (25?4 H/a B N N, Fr tos hoo @,
A 04 3054 0 79 9 0.6 12000 0.49 1.20
B 04 3054 34 79 9 0.6 4000 0.46 1.17
C 0.4 3054 117 79 9 0.6 4000 0.40 1.14
D 04 3054 168 79 9 0.6 3500 0.35 0.97
E 0.2 3054 11.7 44 9 0.6 3200 0.21 0.62
F 06 3054 11.7 114 9 0.6 4000 045 1.07
Gl 04 1832 34 51 9 1.0 1600 0.43 1.05
G2 0.4 1832 34 51 9 1.0 2000 0.45 1.02
H 04 1832 34 102 18 1.0 1800 046 1.14

Table 5.1: Summary of the simulations discussed. Columns 2-7 list input parameters,
column 8 lists the times to achieve fully-developed flow, and columns 9-10 provide
qualitative measures of the resulting bulk flow. Simulations G1 and G2 differ only in
the separation between the monolayers: in GI the layers are adjacent, while in G2
they are separated by four particle radii.

is given in column 8, with time made dimensionless by scaling with a/(u). Columns 9
and 10 provide qualitative measures of the fully-developed flow behavior. In column
9 is the average distance, scaled by H, of the suspended particles from the lower wall,

denoted ho. Column 10 lists the particle flux normalized by its value for a uniformly

dispersed suspension,

1 1
Q= g [, Salu)uly)dy. (5.7)

We present profiles of ¢4, (u), and T averaged over 500 dimensionless time units,
with averaging begun after the flow is fully-developed based on the criterion that
he ceases to decrease. Lengths are scaled with a, velocities with (u), forces with

6mna(u), suspension temperature with ((u)a/H)?, and stresses with n(u)/H, where

7 is the fluid viscosity.
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Influence of particle buoyancy

We presen;o in Figure 5.4 the particle fraction, velocity, and suspension temperature
profiles in the fully-developed flow for simulations at H/a = 30.54, ¢% = 0.4, and
B =0, 3.4, 11.7, and 16.8 ( simulations A, B, C, and D in order of increasing B).

The profiles for the neutrally-buoyant suspension in simulation A are essentially
symmetric about the channel centerline, with large ¢4 near the center of the channel
caused by shear-induced particle migration. For B > 0, competition at the bottom
of the channel between settling and migration yield a density stratification with rela-
tively heavy material ab9ve light for simulations B, C, and D; adjacent to the upper
wall, both fluxes are directed down, resulting in a clear fluid layer for B > 0. On
average, ho, decreases as B increases, indicating that particles lie progressively closer
to the lower wall, but note that the maximum in ¢4 is at larger y for simulations
B, C, and D relative to simulation A (the point at which the maximum ¢4 occurs
in simulation B is close to y = 0.5, but the center of the concentrated region lies
above this point). The large values of ¢4 near the centerline in simulation A are
reduced at nonzero B, because ¢, is increased near the lower wall, resulting in better
“contact” between suspension and wall. This generates greater fluctuational motion
in the interior of the channel and loosens the particle packing.

Figure 5.4 (b) shows that reduction of ¢4 near the center of the channel lessens the
blunting of the velocity. For B > 0, it is a general result that the maximum velocity
occurs above the channel centerline, because the increase in ¢, at the bottom of the

channel due to particle settling results in increased effective viscosity. Hence, 7 is
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reduced and the approach to the maximum from the lower wall of the channel is
slower than from the upper.

The upper portion of the channel becomes devoid of particles and T', measured only
over the particles, drops to zero here. Though there certainly remains fluctuational
motion in the fluid, this is not sampled by our method. In the lower portion of the
channel, the region where T exceeds unity widens while the maximum 7' grows as the
gravity is increased. This may be attributed to stronger interaction of the suspension
rwith the wall, as well as to the increased number and intensity of interactions between

suspended particles, as ¢4 increases.

Influence of particle fraction

We present in Figure 5.5 the particle areal fraction, velocity, and suspension temper-
ature profiles in the fully-developed flow at B = 11.7 and H/a = 30.54 for ¢% = 0.2,
0.4, and 0.6 ( simulations are labeled E, C, and F in order of increasing ¢4).

The flow behavior depends strongly upon ¢%. In Figure 5.5 (a), we see that
the particles have sedimented into a shear layer in the fully-developed flow at ¢% =
0.2, simulation E; shear rate, ¢4, and T are all roughly constant within this layer.
Surprisingly, the particle fraction adjacent to the lower wall, for y =0 to y = 0.2, is
larger for simulation E than simulation C at ¢} = 0.4. Above y & 0.35, the particle
fraction in simulation E drops rapidly to zero, while the particle fraction in simulation
C increases, indicating that at this B shear-induced particle migration is important
for ¢4 = 0.4, but has little influence for ¢% = 0.2.

For both simulations C and F, the maximum in ¢4 lies above the centerline, so
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Figure 5.5: Comparison of profiles of the (a) particle areal fraction ¢4, (b) particle
velocity u, and (c¢) suspension temperature T', for B = 11.7, H/a = 30.54, and
¢% = 0.2, 0.4, and 0.6 (simulations E, C, and F); (b) and (¢) are on the following
page.
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that relatively dense material flows over light. Note that in simulations C and F,
rapid shearing near the lower wall generates larger values of T' than in simulation E.
The fluctuational motion in the dilute layer is apparently related to the suspension

of the denser material.

Influence of channel width

We present in Figure 5.6 the results of simulations at ¢ = 0.4 and B = 3.4 for
H/a = 18.32 and H/a = 30.54, simulations G1 and B, respectively.

The flow behavior depends weakly upon H/a relative to the dependence upon ¢%
and B. This implies that to a good approximation for these and, presumably, larger
values of H/a, the suspension may be treated as a continuum in this bounded flow.
Our definition of B (recall the scaling of B with (H/a)?; see Eq. (5.1)) effectively
reduces the influence of buoyancy, as evidenced by the similarity of the profiles of ¢4
and u from simulations B and G1 in Figure 5.6 (a) and (b), respectively. The profiles
of T do, however, show evidence of the finite size of the particles: in Figure 5.6 (¢), we
see that smaller values of T at the center of the channel occur for the larger H/a, and
that the width of the region adjacent to the wall where T varies rapidly scales roughly
as a/H, with T of simulation G1 reaching a maximum relatively farther from the wall
than in the wider channel. These observations are consistent with the findings of NB

for the influence of H/a for B = 0.
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H/a
— 18.32
--- 30.54

Figure 5.6: Comparison of profiles of the (a) particle areal fraction b4, (b) particle
velocity u, and (c) the suspension temperature T, for ¢% = 0.4, B = 3.4, H/a =18.32
and f/a = 30.54 (simulations G1 and B, respectively); (b) and (c) are the previous
page. The parabolic velocity profile of a Newtonian fluid at the same volumetric flux

is shown in (b).
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Simulational parameters: separated monolayers and size of the unit cell

We have studied the influence of varying the separation between monolayers and the
size of the simulational unit cell for fixed ¢’ and H/a. The studies were motivated by
the observation of NB that, with other parameters held constant, 7" was systematically
larger for larger N, the number of particles in the unit cell, a result which they could
not explain. As noted in §5.3, the unit cell is periodically replicated in all directions,
so that when the cell is a single particle diameter in thickness, particles essentially
form cylinders in the direction perpendicular to the plane of motion, resulting in
a quasi-two-dimensionality that was considered a potential source of the anomalous
finding. By increasing t};e width of the unit cell in this direction, while maintaining
the restriction of motion within the plane of the monolayer for the particles, this
geometrical feature is broken, but we find that the dependence of T' upon N remains
and therefore is not due to this feature of the simulations. It remains possible that the
anomalous dependence results from constraining the motions of particles to the plane
of the monolayer, and fully three-dimensional simulations of channel flows should be
undertaken to determine if the cause of the anomaly is this restriction.

A summary of the results of this investigation are presented in two figures. First
consider Figure 5.7, which compares the results of simulation G2, in which monolayers
of suspension are separated by a clear fluid layer of four particle diameters, with those
of simulation G1, in which particles are directly adjacent to their nearest images in
the z-direction. Both simulations are at the conditions B = 3.4, ¢% = 0.4, and

H/a = 18.32. The only systematic difference is a slightly smaller u over the entire
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—— Adjacent
--- Separated

Figure 5.7: Comparison of profiles of the (a) particle areal fraction b4, (b) particle
velocity u, and (c) suspension temperature T, for simulations G1 and Q2 at ¢ = 0.4,
B =34, and H/a = 18.32; (b) and (c) are on the following page. The monolayers of
G1 are directly adjacent, solid curves, while those of G2 are separated by a layer of
clear fluid of four particle diameters, dashed curves. '
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channel in simulation G2, a result discussed in the following paragraph. Now consider
Figure 5.8, in which the results of simulation G1 with N = 51 are compared with those
of simulation H with N = 102, but all other conditions are the same (the unit cell
of simulation H is twice the length in the flow direction of the unit cell of simulation
G1), and there is no clear fluid layer between the monolayers of suspension. No
systematic difference is observed in the profiles of ¢4 and u for these simulations.
However, in Figure 5.8 (¢), the profile of T for simulation H is larger over the entire
channel than in simulation G1, with the difference most pronounced near the peaks
in T. Because simulations G1 and G2 showed essentially no difference in 7', the
anomalous dependence of‘ T upon N is not explained by the simulation of monolayers
lying directly adjacent to one another.

The difference in the velocity profiles in simulations G1 and G2 is due simply
to the fact that resistance to flow is less within the clear fluid than the suspension
layers. The clear fluid is lower in viscosity and, on average, farther from the fixed wall
particles than the monolayers of suspension, so that at a given z and y, the velocity

is larger in the clear fluid than in the suspension layers, yet satisfies the specified (u).

5.4 Suspension flow modeling

The suspension-balance model outlined by NB is used to predict the fully-developed
flow, with model predictions presented together with simulation results at the same
conditions to facilitate evaluation of the success of the model. Predictions for condi-

tions not simulated are also presented.
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— 102

Figure 5.8: Comparison of profiles of the (a) particle areal fraction ¢4, () particle
velocity u, and (c¢) the suspension temperature T, for simulations G1 (IV = 51, dashed
curves) and H (N = 102,, solid curves) at ¢% = 0.4, B = 3.4, and H/a = 18.32; (b)
and (c) are the following page.
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5.4.1 Balance equations and constitutive laws

Following the derivation in NB, we have the conservation of mass and momentum for

the particle phase,

% 4V -stu), =0, (53)
and
oot D2 _ by (F), 4V (3, (5.9)

respectively, where the material derivative in (5.9) follows the particles D,/Dt =
/ot + (u), - V.

We are interested in the case where the particle density differs from that of the
fluid. The average body force on the particles per unit volume is pPprg @, but only the
differential body force (p, — p;)g ¢ is relevant to the particle dynamics, as a constant
body force psg at all points can be absorbed into a linearly varying isotropic stress
which is hydrostatically stable. Hence, the body force in (5.9) is (b)p = (pp — ps)gd.

The average hydrodynamic force per unit volume on the particle phase is (F),,
which is modeled from a consideration of its expression in terms of a low-Reynolds-
number resistance tensor and the deviation of the particle velocity from the suspension

average,

(F)p = —n(Rpy-(u— (u))),

~ *n<RFU>p'(<u>p — (u))

X

~6rans(9)” ((u), — (u)), (5.10)
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where n is the particle number density. The hindered settling function, f(4), is the
ratio of the settling velocity of a particle in bulk sedimentation relative to the Stokes
settling velocity of an isolated particle; f (¢) has been measured experimentally (see
the review by Davis & Acrivos 1985) and by Stokesian Dynamics simulation (Phillips,
Brady & Bossis 1988).

The particle contribution to the suspension stress is given (Brady 1993a) by
(Z)p =(8), + %6'<Lezt>p - (‘Cibi>p - %Pp(ra +ar), — pp(u'u),. (5.11)

In (5.11), (S), is the hydrodynamic stresslet; ~(x'b"), is the stress due to nonhydro-
dynamic interparticle forces; —pp(u'u’), is the particle contribution to the inertial
Reynolds stress; %E(Lm) is the antisymmetric stress which results from the applica-
tion of an external torque (L***), upon the particles with e the unit alternating tensor;
and the stress resulting from the moment about the particle centers (r = & — 2, with
' the center of the i*" particle) of the local acceleration is —(pp/2)(ra + ar),. The

hydrodynamic stresslet (Batchelor 1970) is given by
S; = %/ [ron + o-nr]dA,
Ai

where m is the normal projecting out of the particle and A; is the surface of particle
t. The stresslet is a continuum concept, and is the only stress contribution without
a direct counterpart in the expression for the stress in a molecular system (Irving &

Kirkwood 1950) for molecules of finite size.
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No external torque is applied to the particles, and we consider low-Reynolds-
number flows, so that both the acceleration and Reynolds stresses are negligible.

Thus, the constitutive law for the particle stress is

(S)p = —ILT + 2, (9)(e) (5.12)

in which II is the particle contribution to the pressure, 5, = 1, — 1 is the particle
viscosity made dimensionless with the fluid viscosity, and (e) is the bulk rate of strain.
In general, a term representing normal stress differences must be included in (5.12)
as discussed by NB, but-is omitted because normal stress differences play no role in
the fully-developed flow in a straight channel. While it was shown by Jeffrey et al.

(1993) that the particle contribution to the pressure could be written as

T = ~11:(S), = (P-(u - (u)) - Q:(e)),, (5.13)

in which P and @ are the hydrodynamic resistance tensors relating particle velocity
and the bulk flow to the isotropic stress, respectively, we constitutively relate I to
the fluctuational motion of the particles alone. In a flow with homogeneous rate of
strain, T can be written in terms of (e), and relating II to T alone or to (e) alone
is equivalent. If, however, we relate II to the local (e) alone, it will vanish at the
velocity maximum in a pressure-driven flow, leading to an aphysical prediction of a

cusplike maximum in ¢4, as shown by Phillips et al. (1992). Thus, as first suggested
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by Jenkins & McTigue (1990), we relate the pressure to T as
T = na~'p(¢)VT, (5.14)

in which II is proportional to the square root of the suspension temperature (and
hence linear in velocity) because it is a viscously-generated stress.

The suspension-averaged velocity (u) is governed by the ensemble average of the
mass and momentum conservation equations, taken over all points in the suspension.

For incompressible materials, these equations are
V{u) =0, (5.15)

and
D(pu)

=L = (b) + V{(D), (5.16)

where the material derivative in this case, D/Dt = 9/0t + (u)-V, follows the
suspension-averaged motion. The expression for the suspension stress is of the same
form as (5.11) for the particle stress, with averaging now over the entire suspension.

The constitutive law for the suspension stress is thus

(Z) = =T +2n{e) +(2),

= —(IT+{p);) I + 2nm5(¢){e), (5.17)

where (p); is the average pressure in the fluid.
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To determine the stress in (5.14), we must determine 7. An equation governing T
is deduced from a consideration of the balance equation for kinetic energy of the entire
suspension. Multiplying the velocity w in a scalar product with Cauchy’s equation,
taking the suspension average of the resulting equation and subtracting from it the
scalar product of (u) with the average momentum equation for the suspension, (5.16),

yields (Batchelor 1970)
Dip(w')") = (b'u) + (Z):(e) — (B) — V(Z'u'). (5.18)

On the right-hand side of (5.18), (b"-w’) and (X):(e) represent the rates of working
by fluctuating interparticle and body forces and by the mean bulk stress, respectively,
(<I)) is the average rate of viscous dissipation of mechanical energy into heat, and the
final term is the divergence of the flux vector of microscopic kinetic energy.

The equation (5.18) is used to motivate the form (;f the equation governing 7'. The

dissipation rate for a low-Reynolds-number suspension is given by (Brady & Bossis

1988)
u—(u) | | Rrv Rpp | [ u—(u)

5.19
—<6> RSU RSE —(e) ( )

=

The dissipation consists of a term (u'-Rpp-u'), where v’ = w — (u), which is due
to the fluctuational motion of the particles relative to the local mean motion of the
material, a term (e):(Rsg):(€e) due to the particles moving “affinely” with the average

bulk motion and terms due to the coupling of the fluctuational motion to the bulk.
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The fluctuational dissipation is proportional to the suspension temperature
(u'-Rpyu') ~ 6rnaf(s)~'T, (5.20)

a fact that is used to model the dissipation as proportional to 7. By introducing a
Newtonian constitutive law for the stress, the flux vector appears in a form which

suggests modeling by a Fourier law,
— (X" "y ~ = (u'Vu') ~ —nk($)VT, (5.21)

in which the conductivity coefficient x(¢) is proportional to the particle viscosity
np(#). We discard the dissipation due to affine motion and use the constitutive
models expressed by (5.20) and (5.21) to deduce the following equation for the particle

fluctuational motion,

o9 2 = BA)b-u) +(Dyile) —na(@)aT — V(YT (522
Keeping the rate of working unchanged while discarding the affine dissipation requires
introduction of phenomenological coefficients: ¢(¢) is analogous to a heat capacity,
o) describes the magnitude of T in a homogeneous shear flow, and 5(¢) together
with a(¢) gives T in a homogeneous sedimentation. The average particle stress (X,
appears on the right of (5.22) because the fluid dissipation is associated with the

discarded affine motion.
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Closure of the governing equations requires sprecification of the gﬁ-d‘ependent func-

tions 7s, p, ¢, @, B, and k. For the suspension viscosity, we take

ns(¢) = (1 - q;im) —2, (5.23)

which differs only through the exponent of —2 (rather than —1.82) from Krieger’s
(1972) correlation of experimental data, and the particle viscosity is given by
np = s — 1. The other ¢-dependent functions, all recently defined by NB, can be de-
termined from independent experiments or simulatioﬁs. All except the “conductivity”
coeflicient x(¢) can be determined from experiments at homogeneous conditions. This
work has yet to be performed, however, and the coefficients used here are modeled.

The pressure function is recommended by NB as

p(8) = 6/%1,(9), (5.2)

with the leading ¢'/? included so that for ¢ — 0, Il = O(¢?) (T is proportional to
¢ for ¢ — 0), in agreement with the analysis of Jeffrey et al. (1993). The factor
of $*/? was omitted here, taking p(¢) = 5,(¢). This relation for p(¢) works well for
moderately- to highly-concentrated suspensions, but convergence difficulties in the
numerical solution were encountered for ¢% < 0.15, suggesting that the neglected

dependence is significant for small ¢.
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The coefficients in the equation governing T are

a(¢>=’“°‘”;;(¢), and  £(g) = kury(@), (5.25)

where k, and k. are constants. The coefficient c¢(¢) is not needed here because we
consider only the fully-developed flow; B(¢) is also not needed because there is no
average phase slip in the fully-developed flow and we assume the interparticle forces
to have the effect only of inhibiting cluster formation.

The model equations are made dimensionless by scaling lengths with H, velocities
with (u) ~ [V(p)|H?/n,"and T with (¢/H)?(u)2. We define ¢ = a/H. For steady,
fully-developed channel flow variations are only in the cross-stream, i.e. y, direction,

and the dimensionless particle momentum balances are

= (n M) 41 = ses 510 (), — ), (5.26)

and

=~ (s&VT) = -Bs, (5.27)

dy
where B is the buoyancy parameter defined by (5.1). An immediate simplification is
obtained by assuming €* < 1, an assumption consistent with describing the partic-
ulate phase as an effective continuum. In this case, the z-momentum balance (5.26)
states (us), = (ug) + O(¢?): in the fully-developed flow, there is negligible slip be-

tween the average particle and suspension average velocities. The equation governing
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the velocity is thus the z-momentum balance for the entire suspension,

& (o) (529

At steady state, the equation governing 7T is

() (%)) - a(@)T+ (K(@%) ~o0. (5.29)

Here and in the following, we omit the subscript z on the velocity. We carry out the

differentiation in (5.27) to yield

/_d_¢ p dr —B¢

= , 5.30
Py Ty =~ 7 (5.30)

where p’ = dp/d¢. For B = 0, this equation is linear in 7', but this is no longer
the case for B > 0. Thus, particle buoyancy introduces a new type of nonlinearity
to the model equations, with the other nonlinearity being due to the ¢-dependent
coefficents.

Boundary conditions on (u) and 7' and an integral condition on ¢ must be speci-

fied. The boundary conditions on the velocity are no slip at both walls,

u=0 at y=0 and y=1, (5.31)
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while the particle fraction must sum to the bulk value,

/01 $a(y)dy = ¢5. (5.32)

The conditions on T prove to be more problematic. Simulations and a consideration
of the hydrodynamic interactions of particles with the walls suggest that the boundary
condition should be T' = 0 at the walls. However, NB showed that this forces ¢4 to
take on its maximum value ¢4,, (areal fraction is used because of the modeling of a
monolayer) at the wall to generate the finite particle pressure necessary to satisfy the
y-momentum balance, ard this does not agree with observed results. Here, we apply
an ad hoc condition intended to reflect in a simple fashion the physical influence of the
wall, which is to hydrodynamically damp the fluctuational motion and substantially

reduce the value of T in the immediate vicinity of the wall. This condition is

7, = T(%0) (f‘lﬁ)z at y=0 and y=1, (5.33)
a* dy

where the subscript w indicates the limiting value as the wall is approached from
the suspension, and a* is larger than a(¢,) by an arbitrarily chosen factor of 20.
Thus, the wall is represented as a region of particles near maximum packing. This
condition forces T to be small but finite at the wall and we will see that it yields good
agreement with simulation results. The coupled set of ordinary differential equations
(5.27-5.29) are solved subject to the conditions (5.31-5.33) for ¢, (u), and T.

To generate model predictions for comparison with the simulational results, the
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constitutive laws are modified for use in determining the areal fraction ¢4. As shown
by NB, the constitutive laws reported above are satisfactory for use in predicting areal
fraction if ¢ and ¢,, are replaced by ¢4 and ¢4 ,,, where @4 ,, is the maximum random
packing fraction of circles in a plane, determined by Kausch, Fesko & Tschoegl (1971)
to be ¢4m ~ 0.83.

A finite-difference scheme is used to solve the second-order equations (5.28) and
(5.29) for (u) and T, respectively. The y-momentum equation is a first-order equation
for ¢4, and the linearized difference equation in 'ghe numerical solution is solved
analytically using a summing factor analogous to the integrating factor used for first-
order linear differential équations (see Bender & Orszag 1978, p. 38). Simulations
show that for sufficiently large B, there is a region with no particles adjacent to the
upper wall, a result which the continuum equations can not predict. Thus, we set the
particle fraction to zero if it falls below 1073, and find this ad hoc method entirely
satisfactory. The solution is computed on a one-dimensional grid of 500 nodes.

The set of equations is solved by a nested-iteration algorithm. This procedure
begins with assumption of a particle fraction profile d)ff)(y) having the desired bulk
fraction ¢%. This particle fraction is inserted to the z-momentum equation, which is
solved to yield the velocity field u(®(y). This velocity field is used in the temperature
equation, which is solved for T®)(y). The field T®)(y) is substituted to the linearized
y-momentum equation, which is iterated with systematic increase or decrease of ¢4(0)
until the average particle fraction is ¢%, with the field satisfying this condition denoted

¢£})(y). This nested iteration completes the first overall iteration, and ¢g)(y) is used
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in the z-momentum equation to begin the second. The procedure is continued until
convergence 1s achieved, with our convergence criterion being that the integrated
absolute difference between two subsequent ¢»§) is less than a specified tolerance of

one-half of a percent.

5.4.2 Model predictions

We present model predictions for two conditions simulated and a composite of the
predictions for varying B. Also, we present predictions at conditions which require
excessive simulation time at present capacity.

In Figure 5.9, the preélicted fully-developed flow at B = 3.4, #% = 0.4, and Hja =
30.54 is presented together with the results of simulation B, at the same conditions.
The model predictions were fitted to the simulation results at these conditions using

ko and k, as fitting parameters, with the appropriate values found to be
ko = 0.815, and k. =0.8, (5.34)

substantially larger than the values of k, = 0.19 and k. = 0.17 used by NB; the
values given by (5.34) were used in all of the modeling reported here. The agreement
between the model predictions and the results of simulation B is very good. There
is a clear fluid layer above y ~ 0.82. The model predicts a similar particle-fraction
profile with the value of ¢, just beneath the clear fluid predicted accurately. The
location of the maximum ¢4 and the small local maximum in T" above the channel

centerline are both accurately predicted. The velocity from the model solution is
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extremely close to the particle velocity of the simulation, and has the merit of also
predicting the velocity in the fluid layer.

In Figure 5.10, the model predictions are compared with simulation results at
¢% =06, Hla = 30.54, and B = 8.4. The bulk particle fraction has been increased
by one-half and B by a factor of roughly 2.5 from their values at the conditions for
which k, and k. were fitted. For an example of the change in conditions, note that
ns(#%) increases by a factor of 3.5. Model predictions remain in good agreement with
the simulation results. Prediction of ¢4 is less accurate than in the prior case, but
the qualitative features are captured correctly. In the ¢4 profile from simulation in
Figure 5.10 (a), conside;‘able ordering is seen at the channel center. Ordering can
not be predicted by this model, and because the model assumes smooth shearing
of the suspension at all ¢4 < $a,m, the sticking of particles to the walls observed
in the simulation results in an understandable disparity between the predicted and
observed u. Remarkably, the maximum in T is correctly predicted to lie above the
channel centerline.

A composite of the predicted fully-developed flow profiles for % =04 and H Ja =
30.54 over a range of B are shown in Figure 5.11. Note the large difference between
the predicted flows at B = 25 and 25.5, and that the maximum in T undergoes
nonmonotonic variation with respect to B. Apparently, as ¢4 at the lower wall
increases with B, the reduction in shear rate is outstripped by the growth in intensity
of particle interactions until B ~ 25. At larger values of. gravity, the increased

viscosity reduces 4 enough to cause T in this region to drop dramatically. Between
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Figure 5.9: Model predictions and Stokesian Dynamics simulation results for the fully-
developed flow of a suspension at ¢4 = 0.4, B = 3.4, and H/a = 30.54. Profiles of
(a) the particle fraction ¢4, (b) the velocity u (of the entire suspension in the case of
the model, particles for the simulation) and (c) suspension temperature T are shown;
(b) and (c) are the following page. The parabolic velocity profile of a Newtonian fluid
at the same volumetric flux is shown in (b).
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Figure 5.10: Model predictions and Stokesian Dynamics simulation results for the
fully-developed flow of a suspension at ¢% = 0.6, B = 8.4, and H/a = 30.54. Profiles
of the (a) particle fraction ¢4, (b) velocity u (of the entire suspension in the case of
the model, particles for the simulation), and (c) suspension temperature T are shown;
(b) and (c) are on the following page. The parabolic profile of a Newtonian fluid at
the same volumetric flux is shown in (b).
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B = 10.2 and 25, the upper surface of the suspended layer of particles falls below
the suspension velocity maximum, and for the larger values of B, the majority of the
volumetric flux in the channel occurs in the clear fluid layer, with particles transported
in a shear layer.

The model does not accurately reflect the reduction in both the maximum particle
fraction and degree of blunting as B is increased that was demonstrated by simulations
A-D (see Figure 5.4). Figure 5.11 illustrates that the model predicts only a slight
reduction in the maximum ¢4 in going from B = 3.4 to 10.2, and consequently
predicts an almost indiscernible change in the u profiles. It is possible that this could
be remedied by an increz;se in the value of k., but this would entail also a change in
the value of &,.

Based on the agreement of model predictions with simulation results at conditions
well-removed from those at which k. and k, were determined, we conclude that the
modeled coefficients accurately capture the ¢ dependence. Thus, we may with some
confidence predict flows for which simulation and experimental data are lacking. This
is especially useful for conditions which would be prohibitively time-consuming to
simulate. Predictions for the conditions ¢% = 0.6, H/a = 100, and B = 5 are
presented in Figure 5.12. The particle fraction is predicted to be close to ¢4, in a
wide layer, with consequent extreme blunting of the velocity profile and essentially
vanishing T'. This layer is supported by a rapidly-sheared layer in which ¢4 is more
dilute and T 1is large.

The model equations converge to legitimate solutions for ¢% > 0.15. At smaller
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Figure 5.11: Model predictions for the fully-developed flow of a suspension at ¢% =
0.6, H/a = 30.54, and a range of B. Profiles of (a) particle fraction ¢4, (b) suspension
velocity u, and (c) suspension temperature T are shown; (b) and (c) are on the
following page.
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particle fractions, the model as implemented in this study typically failed to converge.
One possible cause of this failure, noted in §5.4.1, is the omission of $/2 in the
constitutive law p(¢) = ¢'/?n,(¢). Further study of the functional forms of p(¢),
a(¢), and k() (in particular for ¢ — 0) is needed in order to assess whether the
cause of difficulty is this omission, inappropriate forms of other coefficients of the

model for small ¢, or the method of solution of the governing equations.

5.5 Summary and concluding remarks

Channel flow of a suspension of dense particles flowing in a monolayer was simulated
by Stokesian Dynamics over a range of the bulk particle areal fraction ¢%, dimen-
sionless channel width H/a, and buoyancy parameter B = (U°/(u))(H/a)?*. The
simulations provide basic information which is unavailable from present experimental
results. Direct comparisons between simulation results and predictions of the flow
by the suspension balance model have established the validity of the model under
conditions where buoyancy is relevant. Buoyancy effects can be continuously var-
ied, and a large range of behavior is exhibited. For intermediate to large values of
B, the fully-developed flow is quite unlike that of a neutrally-buoyant suspension
in pressure-driven flow. Good agreement between simulation and model predictions
with flow behavior over a range of B and ¢%, with model parameters fitted at a single
condition, indicates that the constitutive modeling proposed is based upon correct
physical principles.

Pressure-driven flow of a suspension of dense particles results in the interesting
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and somewhat surprising phenomenon of a relatively heavy material flowing over
light, first shown by Altobelli et al. (1991). Zhang & Acrivos (1994) have used
the diffusive-flux phenomenology of Leighton & Acrivos (19875) to predict this flow,
finding excellent agreement with the experiments of Altobelli et al. (1991) for the
fully-developed flow. They also find that the model predicts a mean secondary non-
axial flow; it does not, however, appear that the model based upon diffusive flux
could predict the density stratification seen in the channel flow simulations. Aphysical
predictions (Phillips et al. 1992) of the diffusive-flux model result from its locality
in 4. The suspension-balance model we use achievés a nonlocality in 4 indirectly
by assuming the particler‘pressure to depend on the suspension temperature as /7.
An equation for T', whose form is deduced by physical arguments from the balance
equation governing the microscopic kinetic energy in the suspension presented by
Batchelor (1970), includes diffusion of T, so that fluctuational motion is produced in
regions of large 4, with diffusive transport to regions of small or zero 4.

Simulations show that the flow behavior depends strongly upon both ¢% and B,
but only weakly upon H/a. The weakness of the dependence on H/a is largely due
to the fact that the influence of particle size has been included in B; consistent with
the finding of NB for B = 0, the primary influence of H/a at nonzero B is upon
the suspension temperature, as T is larger in the weakly-sheared regions for smaller
H/a and varies rapidly near the walls in a layer whose thickness scales roughly as
a/H. At fixed ¢% and H/a, increasing B has the expected effect of driving particles

toward the lower wall, but the maximum ¢, often lies above the channel centerline:
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shear-induced migration causes the particles to move toward the velocity maximum,
which lies above the centerline because of the increased 7, (and hence reduced %) near
the lower wall. As a result, there is heavy suspension over light, and this occurs for
a wide range of B for moderate concentrations. The strong dependence of the flow
behavior on ¢ is understandable given the strong dependence of the viscosity upon
particle fraction.

Confidence in suspension-flow modeling in which T is a variable of central im-
portance is increased by the success of the suspension-balance model in this study.
We have tested the model over a range of conditions and it should be noted also
that a new type of noniinearity in T is introduced by particle buoyancy (see Eq.
(5.30)). The equation for T', unlike the others, was deduced rather than derived, and
its boundary conditions caused some difficulties in the original application. The suc-
cess with which the model predicted the T field, including some unexpected behavior,
indicates that the physical arguments used in deducing the equation are sound. The
ad hoc boundary condition applied to T is also successful and, although unsatisfying
because it is retains considerable freedom in its specification, accurately reflects the
hydrodynamic damping effect of a solid boundary. With the work of NB and the
present investigation establishing the validity of this model in a straight channel, it
would be of interest to know its predictions for other geometries, including rheometric

flows and curved channels or pipes.
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