Appendix 1

SUPPLEMENTARY INFORMATION FOR CHAPTER 2: EVALUATING MOLECULAR COBALT COMPLEXES FOR THE CONVERSION OF N₂ TO NH₃

Reproduced in part with permission from:

Del Castillo, T. J.; Thompson, N. B.; Suess, D. L.; Ung, G.; Peters, J. C.; *Inorg. Chem.*, **2015**, 54, 9256-9262. **DOI:** 10.1021/acs.inorgchem.5b00645

© 2015 American Chemical Society

A1.1 General considerations:

All manipulations were carried out using standard Schlenk or glovebox techniques under an N₂ atmosphere. Solvents were deoxygenated and dried by thoroughly sparging with N₂ followed by passage through an activated alumina column in a solvent purification system by SG Water, USA LLC. Nonhalogenated solvents were tested with sodium benzophenone ketyl in tetrahydrofuran in order to confirm the absence of oxygen and water. Deuterated solvents were purchased from Cambridge Isotope Laboratories, Inc., degassed, and dried over activated 3-Å molecular sieves prior to use.

 $[H(OEt_2)_2][BAr^F_4],^1 KC_8,^2 (TPB)Co(N_2),^3 (TPB)CoBr,^3 (SiP_3)Co(N_2),^4 NArP_3,^5 (PBP)Co(N_2),^6 CP_3H,^7 and Co(PPh_3)_2I_2^8$ were prepared according to literature procedures. All other reagents were purchased from commercial vendors and used without further purification unless otherwise stated. Et₂O for NH₃ generation reactions was stirred over Na/K (≥ 2 hours) and filtered before use.

Physical Methods:

Elemental analyses were performed by Midwest Microlab, LLC (Indianapolis, IN). ¹H and ¹³C chemical shifts are reported in ppm relative to tetramethylsilane, using ¹H and ¹³C resonances from residual solvent as internal standards. ³¹P chemical shifts are reported in ppm relative to 85% aqueous H₃PO₄. Solution phase magnetic measurements were performed by the method of Evans.⁹ IR measurements were obtained as solutions or thin films formed by evaporation of solutions using a Bruker Alpha Platinum ATR spectrometer with OPUS software. Optical spectroscopy measurements were collected with a Cary 50 UV-vis spectrophotometer using a 1-cm two-window quartz cell. Electrochemical measurements were carried out in a glovebox under an N₂ atmosphere in a one compartment cell using a CH Instruments 600B electrochemical analyzer. A glassy carbon electrode was used as the working electrode and platinum wire was used as the auxiliary electrode. The reference electrode was Ag/AgNO₃ in THF. The ferrocene couple (Fc/Fc^+) was used as an internal reference. THF solutions of electrolyte (0.1 M tetra-*n*-butylammonium hexafluorophosphate, TBAPF₆) and analyte were also prepared under an inert atmosphere. X-band EPR spectra were obtained on a Bruker EMX spectrometer.

X-ray Crystallography:

X-ray diffraction studies were carried out at the Caltech Division of Chemistry and Chemical Engineering X-ray Crystallography Facility on a Bruker three-circle SMART diffractometer with a SMART 1K CCD detector. Data was collected at 100K using Mo K α radiation ($\lambda = 0.71073$ Å). Structures were solved by direct or Patterson methods using SHELXS and refined against F2 on all data by full-matrix least squares with SHELXL-97. All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were placed at geometrically calculated positions and refined using a riding model. The isotropic displacement parameters of all hydrogen atoms were fixed at 1.2 (1.5 for methyl groups) times the U_{eq} of the atoms to which they are bonded.

Notes specific to individual structures:

The 12-crown-4 fragments are disordered for [Na(12-crown-4)₂][(TPB)Co(N₂)]. One 12crown-4 (with O atoms labeled O5-O8 and O50-O80) is fully disordered over two unique positions. The other 12-crown-4 (O atoms labeled O1-O4) shows a disorder in the methyl carbons but not the oxygen atoms. In all cases, the positions of the carbons could be located in the difference map and refined anisotropically and the hydrogen atoms were placed at geometrically calculated positions as usual. The oxygen atom in one of the solvent THF molecules (O10 and O100) is disordered over two positions. The other THF molecule (with O9) shows large thermal ellipsoids, potentially indicating an unresolved disorder of this moiety. A diethylether molecule was located on an inversion center and is therefore disordered about this symmetry element. The occupancies of all disordered fragments were freely refined and the bond lengths and angles were restrained to be the same for the disordered fragments. Hydrogen atoms were not included on any of the solvent molecules for these reasons.

The fluorine substituents on C143, C144, C152, and C168 in $[(TPB)Co][BAr_4^F]$ are disordered by rotation about the C–C bonds to varying extents and were refined as two-part positional disorders in each case. The occupancies of the disordered fragments were freely refined and the bond lengths and angles were restrained to be the same for the disordered fragments.

One isopropyl group attached to P2 is disordered for (CP₃)Co(N₂); one methyl group (labeled C37A and C37B) is disordered over two positions. Each position was located in the difference map and refined anisotropically with hydrogen atoms calculated in the usual manner. The occupancies of the two fragments were refined freely. In addition, after refinement, the model displays large positive residual electron density located within 0.06 Å of CO1. This is likely due to unresolved disorder; attempts to include this as disorder with respect to the cobalt atom do not improve the model upon refinement. The residual electron density may also be due to poor data at high angles, as imposing a high-angle cutoff (using SHEL 100.0 0.84) during refinement reduces the residual density significantly. Importantly, the bond distances about CO1 do not change significantly when this restraint is imposed.

The isopropyl substituents on P3 are disordered for $[(CP_3)Co(N_2)][BAr^F_4]$. The disorder reflects simultaneous rotation of the methyl substituents about the methine carbon for

each isopropyl group, which was modeled as a two-part positional disorder. All carbons in the disordered fragments were located in the difference map and refined anisotropically, with hydrogen atoms geometrically calculated in the usual manner. In addition, the CF₃ groups attached to C16B and C18B are disordered between two positions, reflecting rotation of the CF₃ group with simultaneous rotation of the arene fragment attached to B. Both CF₃ groups were refined as two-part positional disorders. In all cases, the occupancies of disordered fragments were freely refined and the bond lengths and angles were restrained to be the same for disordered fragments of the same type.

Computational Methods:

All computations were carried out using version 3.0.2 of the ORCA program system.¹⁰ DFT calculations employed the BP86 exchange-correlation functional. The 6-31+G* basis set¹¹ was used for all geometry optimizations, while single point calculations were performed at the 6-311++G**¹² level of theory. The atomic coordinates of **2** and **5** obtained from XRD studies were used as inputs for geometry optimizations at the lower level of theory, and the optimized geometries obtained in this way were used as inputs for single point calculations of the electron densities at the higher level of theory. Molecular electrostatic potentials were computed from the calculated electron densities using the orca_vpot subroutine. Atomic charges were computed using the CHELPG method developed by Breneman and Wiberg.¹³ Electrostatic potential maps were visualized using version 5 of the GaussView program.¹⁴

A1.2 Synthetic Details:

$[Na(12-crown-4)_2][(TPB)Co(N_2)](2):$

To a -78 °C solution of (TPB)CoBr (70.5 mg, 0.0967 mmol) in THF (2 mL) was added a freshly prepared solution of NaC₁₀H₈ (23.5 mg C₁₀H₈, 0.222 mmol) in THF (3 mL). The solution was brought to RT and allowed to stir for six hours. Addition of 12-crown-4 (51.1 mg, 0.290 mmol) and removal of solvent *in vacuo* provided a dark red solid. Et₂O was added and subsequently removed *in vacuo*. The residue was suspended in C₆H₆ and filtered and the solids were washed with C₆H₆ (2 x 2 mL) and pentane (2 x 2 mL) to furnish a red solid (68.8 mg, 0.0660 mmol, 68%). Single crystals were grown by vapor diffusion of pentane onto a THF solution of the title compound that had been layered with Et₂O. ¹H NMR (400 MHz, THF-*d*₈) δ 7.41 (3H), 6.94 (3H), 6.66 (3H), 6.44 (3H), 3.64 (32H), 2.29 (br), 1.37 (6H), 1.20 (6H), 0.93 (6H), -0.26 (6H). ¹¹B NMR (128 MHz, THF-*d*₈) δ 9.32. ³¹P NMR (162 MHz, THF-*d*₈) δ 62.03. IR (thin film, cm⁻¹): 1978 (N₂). Anal. Calcd. for C₅₂H₈₆BCoN₂NaO₈P₃ : C, 59.32; H, 8.23; N, 2.66. Found: C, 59.05; H, 7.99; N, 2.47.

$[(TPB)Co][BAr^{F_{4}}](3):$

To a -78 °C solution of (TPB)Co(N₂) (1) (91.5 mg, 0.135 mmol) in Et₂O (2 mL) was added solid [H(OEt₂)₂][BAr^F₄] (134.0 mg, 0.132 mmol). The reaction was brought to RT and vented to allow for the escape of H₂. The purple-brown solution was stirred for 1 hr. The solution was layered with pentane (5 mL) and stored at -35 °C to furnish red-purple

single crystals of the title compound (162.9 mg, 0.0952 mmol, 82%) which were washed with pentane (3 x 2 mL). ¹H NMR (400 MHz, C₆D₆) δ 26.25, 23.80, 8.64, 8.44 ([BAr^F₄]), 7.88 ([BAr^F₄]), 6.33, -2.16, -3.68. UV-Vis (Et₂O, nm {L cm⁻¹ mol⁻¹}): 585 {1500}, 760 {532}. Anal. Calcd. for C₆₈H₆₆B₂CoF₂₄P₃ : C, 53.99; H, 4.40. Found: C, 53.94; H, 4.51.

$(CP_3)Co(N_2)$ (5):

(CP₃)H (100 mg, 0.169 mmol) and CoCl₂ • 1.5 THF (40 mg, 0.169 mmol) were mixed at room temperature in THF (10 mL). This mixture was allowed to stir for one hour, yielding a homogeneous cyan solution. This solution was chilled to -78 °C, and a solution of MeMgCl in tetrahydrofuran (0.5 M, 0.560 mmol) was added in three 370 µL portions over three hours. The mixture was allowed to warm slowly to room temperature, and then was concentrated to ca. 1 mL. 1,4-dioxane (2 mL) was added, and the resultant suspension was stirred vigorously for at least 2 hours before filtration. The filtrate was concentrated to a tacky red-brown solid, which was extracted with $1:1 C_6H_6$: pentane (10) mL), filtered over celite and lyophilized to yield the product as a red powder (96 mg, 0.141 mmol, 83%). Crystals suitable for X-ray diffraction were grown via slow evaporation of a pentane solution. ¹H NMR (300 MHz, C₆D₆) δ 7.28 (br, 3H), 6.82 (m, 9H), 2.82 (oct., -CH, 3H), 2.09 (sept., -CH, 3H), 1.49 (m, 18H), 1.06 (dd, -CHCH₃, 9H), 0.30 (dd, -CHCH₃, 9H). ³¹P{¹H} (121 MHz, C₆D₆): δ 47.39. IR (thin film, cm⁻¹): 2057 (N₂). Anal. Calcd. for C₃₇H₅₄CoN₂P₃ : C, 65.48; H, 8.02; N, 4.13. Found: C, 64.14; H, 8.36; N, 4.03.

 $[(CP_3)Co(N_2)][BAr^F_4]$ (6):

5 (75 mg, 0.11 mmol) and $[Cp_2Fe][BAr^{F_4}]$ (122 mg, 0.12 mmol) were dissolved separately in diethyl ether (ca. 3 mL each) and the ethereal solutions were cooled to -78°C. The chilled solution of $[Cp_2Fe][BAr^{F_4}]$ was added dropwise to the solution of 5, and the resultant mixture was allowed to stir at low temperature for one hour. At this point, the mixture was allowed to warm to room temperature before filtration over celite and concentration to ca. 2 mL. The concentrated filtrate was layered with pentane, and placed in a freezer at -35°C to induce crystallization. Decanting the mother liquor off crystalline solids and washing thoroughly with pentane yields $[(CP_3)Co(N_2)][BAr^{F_4}]$ (6) as dark green-brown crystals (147 mg, 0.095 mmol, 86%). Crystals suitable for X-ray diffraction were grown by slow diffusion of pentane vapors into an ethereal solution of 6at -35°C. µ_{eff} (5:1 d₈-toluene:d₈-THF, Evans' method, 23 °C): 3.49 µ_B. ¹H NMR (300 MHz, C₆D₆) δ 17.22, 9.94, 8.24 ([BAr^F₄]), 7.72 ([BAr^F₄]), 3.13, 2.57, 1.5 - -2 (br, m), -3.68. IR (cm⁻¹): 2182 (N₂, thin film), 2180 (N₂, solution). Elemental analysis shows low values for N consistent with a labile N₂ ligand, Anal. Calcd. for C₆₉H₆₆BCoF₂₄N₂P₃ : C, 53.75; H, 4.31; N, 1.82. Found: C, 53.86; H, 4.31; N, 0.27. Note: The magnetic moment for **6** in solution may be complicated by some degree of solvent exchange for N_2 at the cobalt center. Freeze-pump-thaw experiments monitored by optical spectroscopy establish that the N_2 ligand is labile in solution (see Figure A1.6). Low temperature (80 K) EPR spectroscopy in a solvent of lower donicity (2-Me-THF) is consistent with a low spin, S = 1/2 species (see Figure A1.7).

[(NArP₃)CoCl][BPh₄]:

THF (5 mL) was added to a solid mixture of NArP₃ (58 mg, 91.2 mmol), CoCl₂ (12 mg, 92.4 mmol) and NaBPh₄ (31 mg, 90.6 mmol). The reaction was stirred for 4 hours at room temperature during which the color evolved from yellow to green to purple. The solvent was removed *in vacuo* and the residue was taken up in dichloromethane. The suspension was filtered over a plug of Celite and the filtrate was dried yielding a purple powder (86 mg, 82.1 mmol, 90%). Single crystals were grown by slow evaporation of a saturated solution of [(NArP₃)CoCl][BPh₄] in diethyl ether/dichloromethane (1:2 v:v). ¹H NMR (CD₂Cl₂, 300 MHz) δ 177.77, 37.50, 23.78, 13.48, 12.96, 7.37, 7.08, 6.92, 4.41, 1.50, -3.60, -9.81; UV-Vis (THF, nm {L cm⁻¹ mol⁻¹}): 564 {452}, 760 {532}; µeff (CD₂Cl₂, Evans' method, 23 °C): 3.97 µ_B. Anal. Calcd. for C₆₃H₈₀BClCoNP₃ : C, 72.10; H, 7.68; N, 1.33. Found: C, 71.97; H, 7.76; N, 1.30.

Treatment of $[(TPB)Co(N_2)][Na(12-crown-4)_2]$ (2) with 10 equiv $[H^{\bullet}(OEt_2)_2][BAr^F_4]$ and 12 equiv KC₈:

[(TPB)Co(N₂)][Na(12-crown-4)₂] (10 mg, 0.01 mmol) was suspended in Et₂O (0.5 mL) in a 20 mL scintillation vial equipped with a stir bar. This suspension was cooled to -78°C in a cold well inside of a N₂ glovebox. A solution of [H·(OEt₂)₂][BAr^F₄] (95 mg, 0.094 mmol) in Et₂O (1.5 mL) similarly cooled to -78 °C was added to this suspension in one portion with stirring. Residual acid was dissolved in cold Et₂O (0.25 mL) and added subsequently. This mixture was allowed to stir for 5 minutes. Then KC₈ (16 mg, 0.119 mmol) was suspended in cold Et₂O (0.75 mL) and added to the reaction mixture over the course of 1 minute. The vial was then sealed, and the reaction was allowed to stir for 15 min. The reaction mixture was then filtered and evaporated to dryness under vacuum. The resulting residue was extracted with C_6D_6 and submitted to ³¹P NMR spectroscopy, revealing a signal consistent with uncoordinated phosphine at 10.8 ppm (Figure A1.1).

Figure A1.1: ³¹P NMR of reaction mixture

A1.3 Ammonia Quantification:

A Schlenk tube was charged with HCl (3 mL of a 2.0 M solution in Et₂O, 6 mmol). Reaction mixtures were vacuum transferred into this collection flask. Residual solid in the reaction vessel was treated with a solution of [Na][O-t-Bu] (40 mg, 0.4 mmol) in 1,2-dimethoxyethane (1 mL) and sealed. The resulting suspension was allowed to stir for 10 min before all volatiles were again vacuum transferred into the collection flask. After completion of the vacuum transfer, the flask was sealed and warmed to room temperature. Solvent was removed in vacuo, and the remaining residue was dissolved in H₂O (1 mL). An aliquot of this solution (20 µL) was then analyzed for the presence of

NH₃ (present as [NH₄][Cl]) by the indophenol method.¹⁵ Quantification was performed with UV–vis spectroscopy by analyzing absorbance at 635 nm.

Standard NH₃ Generation Reaction Procedure with [(TPB)Co(N₂)][Na(12-crown-4)₂] (2):

[(TPB)Co(N₂)][Na(12-crown-4)₂] (2.2 mg, 0.002 mmol) was suspended in Et₂O (0.5 mL) in a 20 mL scintillation vial equipped with a stir bar. This suspension was cooled to -78 °C in a cold well inside of a N₂ glovebox. A solution of [H·(OEt₂)₂][BAr^F₄] (95 mg, 0.094 mmol) in Et₂O (1.5 mL) similarly cooled to -78 °C was added to this suspension in one portion with stirring. Residual acid was dissolved in cold Et₂O (0.25 mL) and added subsequently. This mixture was allowed to stir 5 minutes at -78 °C, before being transferred to a precooled Schlenk tube equipped with a stir bar. The original reaction vial was washed with cold Et₂O (0.25 mL) which was added subsequently to the Schlenk tube. KC₈ (16 mg, 0.119 mmol) was suspended in cold Et₂O (0.75 mL) and added to the reaction mixture over the course of 1 minute. The Schlenk tube was then sealed, and the reaction was allowed to stir for 40 min at -78 °C before being warmed to room temperature and stirred for 15 min.

 Table A1.1: UV-vis quantification results for standard NH3 generation experiments with

 [(TPB)Co(N2)][Na(12-crown-4)2] (2)

Iteration	Absorbance (635	Eq. NH ₃ /Co	% Yield Based on
	nm)		H^{+}

А	0.225	2.3	16
В	0.187	2.1	14
С	0.199	2.2	14
D	0.240	2.5	18
Е	0.255	2.8	19
F	0.197	2.2	14
Average	0.217 ± 0.027	2.4 ± 0.3	16 ± 2

Hydrazine was not detected in the catalytic runs using a standard UV-Vis quantification method.¹⁶

Standard NH₃ Generation Reaction Procedure with (TPB)Co(N₂) (1):

The procedure was identical to that of the standard NH_3 generation reaction protocol with the changes noted. The precursor used was (TPB)Co(N₂) (1.3 mg, 0.002 mmol).

Table A1.2: UV-vis quantification results for standard NH_3 generation experiments with (TPB)Co(N₂) (1)

Iteration	Absorbance (635	Eq. NH ₃ /Co	% Yield Based on
	nm)		H^+
А	0.064	0.7	4
В	0.058	0.6	4
С	0.107	1.2	8
Average	0.076 ± 0.027	0.8 ± 0.3	5 ± 2

Standard NH₃ Generation Reaction Procedure with [(TPB)Co][BAr^F₄] (3):

The procedure was identical to that of the standard NH₃ generation reaction protocol with the changes noted. The precursor used was $[(TPB)Co(N_2)][BAr^{F_4}]$ (2.3 mg, 0.002 mmol).

Table A1.3: UV-vis quantification results for standard NH₃ generation experiments with $[(TPB)Co][BAr^{F_4}]$ (3)

Iteration	Absorbance (635	Eq. NH ₃ /Co	% Yield Based on
	nm)		H^+
А	0.092	1.4	6
В	0.122	1.8	9
C^1	0.091	1.5	6
Average	0.107 ± 0.021	1.6 ± 0.2	7 ± 1

¹ Used 2.0 mg (0.001 mmol) of catalyst; omitted from average absorbance

Standard NH₃ Generation Reaction Procedure with (TPB)CoBr:

The procedure was identical to that of the standard NH₃ generation reaction protocol with the changes noted. The precursor used was (TPB)CoBr (1.6 mg, 0.002 mmol).

Table A1.4: UV-vis quantification results for standard NH₃ generation experiments with

 (TPB)CoBr

Iteration	Absorbance (635	Eq. NH ₃ /Co	% Yield Based on
	nm)		H^+

А	0.035	0.3	2
В	0.101	1.0	7
C^1	0.088	0.7	6
Average	0.068 ± 0.047	0.7 ± 0.4	5 ± 3

¹ Used 2.0 mg (0.003 mmol) of catalyst; omitted from average absorbance

Standard NH₃ Generation Reaction Procedure with (SiP₃)Co(N₂) (4):

The procedure was identical to that of the standard NH_3 generation reaction protocol with the changes noted. The precursor used was (SiP₃)Co(N₂) (1.5 mg, 0.002 mmol).

Table A1.5: UV-vis quantification results for standard NH_3 generation experiments with $(SiP_3)Co(N_2)$

Iteration	Absorbance (635	Eq. NH ₃ /Co	% Yield Based on
	nm)		H^+
А	< 0.005	< 0.1	

В	< 0.005	< 0.1	—
С	< 0.005	< 0.1	_
Average	_	< 0.1	_

Standard NH₃ Generation Reaction Procedure with (CP₃)Co(N₂) (5):

The procedure was identical to that of the standard NH_3 generation reaction protocol with the changes noted. The precursor used was (CP₃)Co(N₂) (1.4 mg, 0.002 mmol).

Table A1.6: UV-vis quantification results for standard NH₃ generation experiments with (CP₃)Co(N₂)

Iteration	Absorbance (635	Eq. NH ₃ /Co	% Yield Based on
	nm)		H^+
А	0.044	0.21	1.5
В	< 0.005	< 0.1	
С	< 0.005	< 0.1	_
Average	0.02 ± 0.02	0.1 ± 0.1	_

Standard NH₃ Generation Reaction Procedure with [(NArP₃)CoCl][BPh₄]:

The procedure was identical to that of the standard NH₃ generation reaction protocol with the changes noted. The precursor used was [(NArP₃)CoCl][BPh₄] (1.9 mg, 0.002 mmol).

 Table A1.7: UV-vis quantification results for standard NH₃ generation experiments with

 [(NArP₃)CoCl][BPh₄]

Iteration	Absorbance (635	Eq. NH ₃ /Co	% Yield Based on
	nm)		H^+
А	< 0.005	< 0.1	—
В	< 0.005	< 0.1	—
С	< 0.005	< 0.1	—
Average	—	< 0.1	—

Standard NH₃ Generation Reaction Procedure with (PBP)Co(N₂):

The procedure was identical to that of the standard NH_3 generation reaction protocol with the changes noted. The precursor used was (PBP)Co(N₂) (1.1 mg, 0.002 mmol).

Table A1.8: UV-vis quantification results for standard NH₃ generation experiments with (PBP)Co(N₂)

Iteration	Absorbance (635	Eq. NH ₃ /Co	% Yield Based on
-----------	-----------------	-------------------------	------------------

	nm)		H^+
А	0.021	0.15	1
В	0.03	0.29	2
С	0.057	0.62	4
Average	0.036 ± 0.019	0.4 ± 0.2	2 ± 1

Standard NH₃ Generation Reaction Procedure with Co(PPh₃)₂I₂:

The procedure was identical to that of the standard NH₃ generation reaction protocol with the changes noted. The precursor used was Co(PPh₃)₂I₂ (1.8 mg, 0.002 mmol).

Table A1.9: UV-vis quantification results for standard NH₃ generation experiments with Co(PPh₃)₂I₂

Iteration	Absorbance (635	Eq. NH ₃ /Co	% Yield Based on	
	nm)		H^{+}	
A^1	0.036	0.3	2	
В	0.036	0.3	2	
С	0.046	0.4	3	
Average	0.041 ± 0.007	0.4 ± 0.1	2 ± 0.4	

¹ Used 2.0 mg (0.0024 mmol) of catalyst; omitted from average absorbance

Standard NH₃ Generation Reaction Procedure with CoCp₂:

The procedure was identical to that of the standard NH_3 generation reaction protocol with the changes noted. The precursor used was $CoCp_2$ (0.6 mg, 0.003 mmol).

Iteration	Absorbance (635	Eq. NH ₃ /Co	% Yield Based on
	nm)		H^+
А	0.020	0.09	1
В	0.008	0.02	0
С	0.033	0.20	2
Average	0.020 ± 0.013	0.1 ± 0.1	1 ± 1

Table A1.10: UV-vis quantification results for standard NH₃ generation experiments with CoCp₂

Standard NH₃ Generation Reaction Procedure with Co₂(CO)₈:

The procedure was identical to that of the standard NH₃ generation reaction protocol with the changes noted. The precursor used was $Co_2(CO)_8$ (0.4 mg, 0.001 mmol, 0.002 mmol Co) sampled as a 100 µL aliquot of a stock solution (2.0 mg $Co_2(CO)_8$ in 0.5 mL Et₂O).

Iteration	Absorbance (635	Eq. NH ₃ /Co	% Yield Based on
	nm)		H^+
А	< 0.005	< 0.1	_
В	< 0.005	< 0.1	_
С	< 0.005	< 0.1	—
Average		< 0.1	

Table A1.11: UV-vis quantification results for standard NH_3 generation experiments with $Co_2(CO)_8$

NH₃ Generation Reaction of [(TPB)Co(N₂)][Na(12-crown-4)₂] (2) with Reductant Added First Followed by Acid:

N.B.: The following experiment was conducted to study the effect of the order of addition of reagents in the NH₃ generation reaction with **2**.

[(TPB)Co(N₂)][Na(12-crown-4)₂] (2.2 mg, 0.002 mmol) was suspended in Et₂O (0.5 mL) in a 20 mL scintillation vial. This suspension was cooled to -78 °C in a cold well inside of a N₂ glovebox. This suspension was transferred to a precooled Schlenk tube equipped with a stir bar. Residual solid was suspended in additional cold Et₂O (2 x 0.25 mL) and transferred subsequently. To this mixture was added a precooled suspension of KC₈ (16 mg, 0.119 mmol) in 0.5 mL Et₂O. Residual solid was suspended in additional cold Et₂O (2 x 0.25 mL) and transferred subsequently. To this mixture was allowed to stir for 5 minutes at -78 °C. To this mixture was then added a similarly cooled to -78 °C solution of [H·(OEt₂)₂][BAr^F₄] (95 mg, 0.094 mmol) in Et₂O (1.5 mL) in one

portion with stirring. Residual acid was dissolved in cold Et_2O (0.25 mL) and added subsequently. The Schlenk tube was then sealed, and the reaction was allowed to stir for 40 min at -78 °C before being warmed to room temperature and stirred for 15 min.

Table A1.12: UV-vis quantification results for NH_3 generation experiments with [(TPB)Co(N₂)][Na(12-crown-4)₂] (**2**) and reductant being added first

Iteration	Absorbance (635	Eq. NH ₃ /Co	% Yield Based on	
	nm)		H^+	
A^1	0.175	2.2	13	
В	0.153	1.7	11	
Average	_	1.9 ± 0.4	12 ± 1	

¹ Used 1.9 mg (0.0018 mmol) of catalyst; omitted from average absorbance

Calibration Curves for NH₃ and N₂H₄ Quantification

Figure A1.2: Calibration curve for NH₃ quantification by indophenol method.

Figure A1.3: Calibration curve for UV-vis quantification of hydrazine.

A1.4 X-ray Diffraction Tables

Table A1.13: Crystal data and structure refinement for [Na(12-crown-4)₂][(TPB)Co(N₂)]
(2) and [(TPB)Co][BAr^F₄] (3)

Identification code	2	3
Empirical formula	$C_{62}H_{86}BCoN_2NaO_{10.5}P_3$	$C_{68}H_{66}B_2C_0F_{24}P_3$
Formula weight	1212.97	1512.67
Temperature/K	100(2)	100(2)
Crystal system	monoclinic	orthorhombic
Space group	P21/n	Pbca
a/Å	10.8142(5)	26.3920(15)
b/Å	27.5046(13)	19.7049(13)
c/Å	22.3660(10)	26.4995(19)
α/°	90	90
β/°	91.141(2)	90
γ/°	90	90

Volume/Å ³	6651.2(5)	13781.1(16)
Z	4	8
$\rho_{calc}g/cm^3$	1.211	1.458
µ/mm ⁻¹	0.391	0.424
F(000)	2576	6176
Crystal size/mm ³	$0.38 \times 0.30 \times 0.25$	$0.35 \times 0.32 \times 0.24$
Radiation	MoKa ($\lambda = 0.71073$)	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	3.94 to 86.26	3.72 to 64.06
T 1	$-20 \le h \le 20, -52 \le k \le 52,$	$-39 \leq h \leq 39, -23 \leq k \leq$
Index ranges	$-43 \le 1 \le 43$	29, $-39 \le 1 \le 39$
Reflections collected	451328	377520
Independent reflections	49547 [R _{int} = 0.0632,	23962 [$R_{int} = 0.0539$,
independent reflections	$R_{sigma} = 0.1797]$	$R_{sigma} = 0.0255$]
Data/restraints/parameters	49547/1385/952	23962/1174/1007
Goodness-of-fit on F ²	1.091	1.052
Final P indexes [1>-25 (I)]	$R_1 = 0.0629, wR_2 =$	$R_1 = 0.0459, wR_2 =$
$F \text{ Interval} \in [1220 (1)]$	0.1600	0.1084
Final P indexes [all data]	$R_1 = 0.0999$, $wR_2 =$	$R_1 = 0.0720, wR_2 =$
Tinai K indexes [an data]	0.1797	0.1241
Largest diff. peak/hole / e Å ⁻³	1.78/-0.83	1.27/-1.34

Table A1.14: Crystal data and structure refinement for $(CP_3)Co(N_2)$ (5) and $[(CP_3)Co(N_2)][BAr^F_4]$ (6)

Identification code	5	6
Empirical formula	C37H54CoN2P3	C50H60BN2F24P3C0
Formula weight	678.66	1541.89
Temperature/K	100(2)	100(2)
Crystal system	trigonal	orthorhombic
Space group	R-3	Pbca
a/Å	19.3720(4)	19.7869(17)
b/Å	19.3720(4)	25.670(2)
c/Å	48.1269(14)	26.680(3)
a/°	90	90
β/°	90	90
$\gamma/^{\circ}$	120	90
Volume/Å ³	15641.1(8)	13552(2)
Z	18	8
$\rho_{calc}g/cm^3$	1.297	1.511
μ/mm^{-1}	0.660	0.421
F(000)	6516.0	6296.0
Crystal size/mm ³	$0.380 \times 0.330 \times 0.210$	0.5 imes 0.3 imes 0.2
Radiation	MoKa ($\lambda = 0.71073$)	MoKα (λ = 0.71073)
2Θ range for data	2.57 to 49.982°	3.014 to 69.836°

collection/°

	$-20 \le h \le 22,$	$-31 \le h \le 30,$	
Index ranges	$-23 \le k \le 23$,	$-40 \le k \le 40,$	
	$-57 \le l \le 57$	$-42 \le 1 \le 22$	
Reflections collected	56089	259812	
Independent reflections	6124[R(int) = 0.0480]	28701[R(int) = 0.0932]	
Data/restraints/parameters	6124/0/412	28701/138/1046	
Goodness-of-fit on F ²	1.088	1.027	
Final R indexes [I>=2 σ	$\mathbf{P}_{t} = 0.0728 \text{ w}\mathbf{P}_{t} = 0.1010$	$P_{1} = 0.0747 \text{ w} P_{2} = 0.1811$	
(I)]	$K_1 = 0.0738$, $WK_2 = 0.1910$	$\mathbf{K}_1 = 0.0747, \ \mathbf{W}\mathbf{K}_2 = 0.1811$	
Final R indexes [all data]	$R_1 = 0.0825, wR_2 = 0.2046$	$R_1 = 0.1609, wR_2 = 0.2254$	
Largest diff. peak/hole / e	2 12/ 0 82	1 42/ 0 00	
Å-3	3.13/-0.82	1.42/-0.77	

 Table A1.15: Crystal data and structure refinement for [(NArP₃)CoCl][BPh4]

Identification code	[(NArP ₃)CoCl][BPh ₄]
Empirical formula	C63H80BClCoNP3
Formula weight	1049.38
Temperature/K	100
Crystal system	triclinic
Space group	P-1
a/Å	10.9491(7)
b/Å	14.9096(10)
c/Å	17.8512(11)
α'°	83.935(3)
β/°	79.063(3)
γ/°	89.303(3)
Volume/Å ³	2845.1(3)
Z	2
$\rho_{calc}g/cm^3$	1.225
µ/mm ⁻¹	0.472
F(000)	1118
Crystal size/mm ³	$0.06 \times 0.04 \times 0.02$
Radiation	MoKa ($\lambda = 0.71073$)
20 range for data	2.746 to 59.26

collection/°

Index reneas	$-15 \le h \le 15, -20 \le k \le 20,$	
index ranges	$-24 \le 1 \le 24$	
Reflections collected	103727	
Independent reflections	15990 [Rint = 0.0972,	
independent reflections	Rsigma = 0.0851]	
Data/restraints/parameters	15990/0/646	
Goodness-of-fit on F ²	1	
Einel D indexes [1>-2- (1)]	R1 = 0.0457, wR2 =	
Final K indexes $[1^2-20(1)]$	0.0837	
Final D indexes [all data]	R1 = 0.0986, wR2 =	
Final K indexes [an data]	0.0978	
Largest diff. peak/hole / e	0.53/ 0.53	
Å-3	0.33/-0.33	

A1.5 DFT Calculations

Tab	le A1.16: DF	T Calculatio	ons	С	-2.350013	10.456601	6.623530
				Н	-1.315073	10.282269	6.938001
Opti	mized coord	inates (Å) fo	r	C	-3.418954	9.904690	7.345217
(CP:	$C_0(N_2)$		_	Н	-3.227213	9.293903	8.234740
Co	-6.493886	11.262439	3.205589	C	-8.171005	14.688130	5.486194
N	-6.498954	11.321632	1.436042	Н	-8.895772	15.267989	4.902966
N	-6.509619	11.385450	0.291428	C	-6.290306	13.242663	6.974586
P	-8.326503	12.522417	3.530507	Н	-5.546257	12.689483	7.558133
P	-4 468119	12.255409	3 466626	С	-6.663915	14.537630	7.381966
P	-6.717203	9 021548	3 482688	Н	-6.211178	14.975618	8.278356
C	-6 448223	11.249419	5.315842	C	-2.618218	11.224609	5.475974
C	-7.421986	10.199514	5.854976	Н	-1.778935	11.644663	4.910620
C	-6 831755	12 659131	5 809506	C	-8.973486	9.348391	7.556041
C	-3 940694	11 432267	5 038929	Н	-9.520264	9.499953	8.493350
C	-7 788337	13 400564	5.064772	C	-9.117028	8.151983	6.838150
C	-5 023737	10 903746	5 778111	Н	-9.780016	7.359107	7.201788
C	-7 568622	8 990937	5 132867	C	-8.410860	7.978161	5.633634
C	-7 603117	15 265630	6 637577	Н	-8.543338	7.044435	5.079921
н	-7 887795	16 279035	6.939901	C	-8.870946	13.927902	2.377234
n C	-1.001195	10.136998	6.931716	Н	-9.579139	14.549161	2.960254
ч	-5 568096	0.715601	7 513027	C	-7.900856	7.939713	2.420048
n C	-3.300070 8 107009	10 350550	7.068504	Н	-8.881225	8.224247	2.846787
	-0.12/028	10.00007	7.000394	С	-2.974980	11.978914	2.306120
Н	-8.021476	11.293607	18/060./				

Η	-2.138575	12.558042	2.749566	Н	-4.366117	16.114986	3.072409
С	-11.073490	12.803315	4.510635	Н	-4.893794	14.855473	1.930931
Η	-11.460515	13.353930		Н	-3.157001	15.064980	2.302688
3.63	4190			C	-9.609634	13.412697	1.125076
Н	-10.701499	13.537242		Н	-9.843467	14.265270	0.459541
5.24	6478			Н	-10.561744	12.918383	
Н	-11.933946	12.280737		1.37	2599		
4.97	0473			Н	-8.989970	12.703071	0.551246
С	-3.155907	14.432185	4.936140	C	-10.558264	10.713993	3.153910
Н	-2.159615	14.205199	4.513040	Н	-11.275419	10.065197	
Н	-3.263170	13.874622	5.878956	3.69	0750		
Н	-3.168058	15.512103	5.177167	Н	-9.756200	10.075649	2.751813
С	-4.285126	14.122349	3.935571	Н	-11.095315	11.160582	
Н	-5.248225	14.315181	4.440866	2.30	0029		
С	-9.996182	11.777970	4.114182	C	-7.678939	14.805649	1.967150
Н	-9.674600	11.254092	5.032798	Н	-6.977841	14.237435	1.333723
С	-5.136224	6.885483	4.794468	Н	-7.125591	15.188887	2.840252
Н	-5.782644	6.041163	4.502203	Н	-8.036167	15.674064	1.381632
Н	-5.478636	7.259548	5.772591	C	-4.537403	7.491093	2.393519
Н	-4.112307	6.486414	4.928211	Н	-3.454400	7.295446	2.497673
С	-5.111683	8.001046	3.732927	Н	-4.667629	8.216410	1.571018
Н	-4.436670	8.792666	4.106835	Н	-5.011330	6.545616	2.083009
С	-4.174136	15.079503	2.733239	С	-7.792465	6.401362	2.524942

Η	-8.705875	5.949101	2.092706
Η	-7.694497	6.030410	3.555785
Н	-6.938697	6.010390	1.948296
С	-7.904811	8.352731	0.936507
Η	-6.920300	8.196505	0.460825
Η	-8.178301	9.409648	0.801834
Η	-8.640228	7.738209	0.384056
С	-3.216013	12.483650	0.865156
Н	-3.500306	13.543308	0.807540
Н	-4.003415	11.894901	0.368387

- H -2.285833 12.356421 0.279678
- C -2.570856 10.495897 2.228057
- Н -3.389036 9.905335 1.785547
- Н -2.324313 10.056729 3.207090
- Н -1.685878 10.388535 1.571978

Total Energy: -3957.61934856 Eh

(BP86/6-311++G**)

Optimized coordinates (Å) for

 $[(TPB)Co(N_2)]^{-}$

- Co 5.278117 27.030827 17.095131
 P 6.125307 28.046072 18.886124
 P 3.060970 26.876003 16.921108
 P 6.470673 27.144088 15.217970
- N 5.627731 25.347668 17.547636
- B 4.817109 29.224289 16.525303
- C 5.694135 28.434162 14.141827
- C 6.659431 29.741719 18.371700
- C 8.356512 27.596015 15.041523
- H 8.852351 26.898761 15.744263
- С 2.349616 28.554979 17.254355 5.919014 30.203287 17.243942 С С 4.249169 30.366935 14.143766 Η 3.613935 31.089718 14.672539 3.298031 29.589854 17.025977 С 2.039333 26.364325 15.342342 С Η 2.508052 25.411985 15.027534 С 8.632318 29.033776 15.509744 Η 9.724234 29.225133 15.517654 8.240887 29.232546 16.516177 Η 8.165162 29.763658 14.825147 Η С 5.776139 28.504122 12.734994

Н	6.347344	27.754542	12.173135	Н	7.469612	23.621753	13.990762
С	4.916069	29.360531	14.888824	С	8.994765	27.410878	13.648312
С	7.654097	30.537197	18.977000	Н	8.510202	28.063279	12.900483
Η	8.234583	30.154477	19.825542	Н	8.967805	26.373773	13.274978
С	7.696175	27.281935	19.678655	Н	10.061346	27.711202	
Η	8.113875	28.047126	20.361713	13.69	8303		
С	6.505175	25.578416	14.108638	С	2.863843	30.916667	17.272552
Η	6.911463	25.889319	13.126608	Н	3.572857	31.743962	17.141225
С	5.097816	25.012789	13.875878	С	7.207457	32.308686	17.379210
Η	5.149571	24.119288	13.221278	Н	7.426705	33.305361	16.974755
Η	4.435311	25.751866	13.395731	С	5.200391	28.462003	20.552587
Η	4.640644	24.714059	14.833576	Н	4.768821	27.487389	20.853188
С	8.769269	26.956916	18.629434	С	4.046442	29.450732	20.325145
Η	9.662297	26.521936	19.121695	Н	3.455086	29.562047	21.256355
Η	9.088697	27.858071	18.080500	Н	3.367768	29.136369	19.521294
Η	8.389141	26.224844	17.897330	Н	4.435636	30.447730	20.053591
С	5.086680	29.504431	12.026363	Ν	5.856363	24.255842	17.849517
Η	5.132996	29.537479	10.930024	С	2.156451	25.748101	18.179342
С	6.213374	31.510860	16.783934	Н	1.079237	25.995091	18.113992
Η	5.686654	31.896838	15.901416	С	2.219078	27.389988	14.211139
С	7.428237	24.484391	14.686274	Н	1.747463	27.013325	13.281694
Η	7.051899	24.114548	15.653220	Н	3.274732	27.607010	13.999641
Н	8.463576	24.833229	14.841144	Н	1.735394	28.347886	14.470504

С	4.325635	30.444635	12.741090	Н	0.020513	27.043374	15.878152	
Η	3.772521	31.226887	12.204249	Н	0.291949	25.313607	16.248614	
С	7.366421	26.022881	20.507880	Н	0.074957	25.846405	14.563890	
Η	6.952413	25.222948	19.873021	C	0.654345	30.165915	17.966300	
Η	6.643132	26.219178	21.317461	Н	-0.349915	30.380368		
Η	8.291398	25.631095	20.977402	18.3	352394			
С	7.941743	31.818806	18.473149	С	2.613088	26.022466	19.619329	
Η	8.737444	32.423937	18.925743	Н	2.062411	25.370398	20.325778	
С	2.330158	24.252065	17.843386	Н	2.433085	27.070631	19.910027	
Η	3.384122	23.944599	17.933429	Н	3.692725	25.819015	19.729581	
Η	1.991543	23.999396	16.823928	С	6.065299	28.994192	21.714186	
Η	1.738459	23.637376	18.550680	Н	6.545033	29.952417	21.444344	
С	1.569705	31.207822	17.738468	Н	6.851377	28.295209	22.046501	
Η	1.280539	32.247270	17.943962	Н	5.415134	29.194200	22.590266	
С	1.047615	28.839125	17.714406					
Η	0.337713	28.028272	17.918176	Tota	al Energy: -39	944.4581838	5 E _h	
С	0.527783	26.123393	15.537653	(BP	(BP86/6-311++G**)			

A1.6 Additional Characterization of Complexes

Figure A1.4: Cyclic voltammagram of (TPB)Co(N₂) (1) scanning oxidatively (left) and reductively (right) at 100 mV/sec in THF with 0.1 M TBAPF₆ electrolyte.

Figure A1.5: Temperature dependence of the magnetic susceptibility of $[(TPB)Co][BAr^{F_4}]$ (3) as measured by SQUID magnetometry.

Figure A1.6: UV-Vis spectra of **6** under 1 atm N₂ and under static vacuum (after three freeze-pump-thaw cycles). Spectra collected of a 1 mM solution of **6** in THF at 298 K.

Figure A1.7: X-band EPR spectrum of **6** collected under 1 atm N₂ in 2-Me-THF at 80 K. No low-field features were detected.

A1.7 REFERENCES

- 1 Brookhart, M.; Grant, B.; Volpe Jr., A. F. Organometallics 1992, 11, 3920-3922.
- 2 Wietz, I. S.; Rabinovitz, M. J. J. Chem. Soc., Perkin Trans. 1993, 1, 117.
- 3 Suess, D. L. M.; Tsay, C.; Peters, J. C. J. Am. Chem. Soc. 2012, 134, 14158.
- 4 Whited, M. T.; Mankad, N. P.; Lee, Y.; Oblad, P. F.; Peters, J. C. Inorg. Chem. 2009, 48, 2507.
- 5 MacBeth, C. E.; Harkins, S. B.; Peters, J. C. Can. J. Chem. 2005, 83, 332.
- 6 Lin, T.-P.; Peters, J. C. J. Am. Chem. Soc. 2013, 135, 15310.
- 7 Creutz, S. E.; Peters, J. C. J. Am. Chem. Soc. 2014, 136, 1105.
- 8 Cotton, F. A.; Faut, O. D.; Goodgame, D. M. L.; Holm, R. H. J. Am. Chem. Soc. 1961, 83, 1780.
- 9 Evans, D. F. J. Chem. Soc. 1959, 2003.
- 10 Nesse, F. Comput. Mol. Sci. 2012, 2, 73.
- 11(a) Hehre, W. J.; Ditchfield, R.; Pople, J. A. J. Chem. Phys. 1972, 56, 2257. (b) J. D.; Pople, J. A. J. Chem. Phys. 1975, 62, 2921. (c) Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. J. Chem. Phys. 1980, 72, 650. (d) McLean, A. D.; Chandler, G. S. J. Chem. Phys. 1980, 72, 5639. (e) Francl, M. M.; Pietro, W. J.; Hehre, W. J.; Binkley, J. S.; Gordon, M. S.; DeFrees, D. J.; Pople, J. A. J. Chem. Phys. 1982, 77, 3654. (f) Clark, T.; Chandrasekhar, J.; Schleyer, P. V. R. J. Comp. Chem. 1983, 4, 294. (g) Rassolov, V. A.; Pople, J. A.; Ratner, M. A.; Windus, T. L. J. Chem. Phys. 1998, 109, 1223.
 12 Schaefer, A.; Horn, H.; Ahlrichs, R. J. Chem. Phys. 1992, 97, 2571.
- 13 Breneman, C. M.; Wiberg, K. B. J. Comput. Chem. 1990, 11, 361.
- 14 GaussView, Version 5, Dennington, Roy; Keith, Todd; Millam, John. Semichem Inc., Shawnee Mission, KS, 2009.
- 15 Weatherburn, M. W. Anal. Chem. 1967, 39, 971.
- 16 Watt, G. W.; Chrisp, J. D. Anal. Chem. 1952, 24, 2006.