FE-MEDIATED NITROGEN FIXATION WITH A METALLOCENE

MEDIATOR: EXPLORING PK_A EFFECTS AND DEMONSTRATING

ELECTROCATALYSIS

Reproduced in part with permission from:

Chalkley, M.; Del Castillo, T.; Matson, B.; Peters, J. C.; J. Am. Chem. Soc., 2018, accepted.

DOI: 10.1021/jacs.8b02335

© 2018 American Chemical Society

We've reached the final chapter of our tale. I'm afraid I don't have a particular message to

accompany this project, perhaps it is still too fresh for me to have formed an impression of

it. I'll relate here that, as I've alluded to, demonstrating electrocatalytic N2RR was one of

the very first targets I latched onto when I started my research with Jonas. The idea seemed

optimistic (to say the least) at the time and even until almost the end of my fifth year I didn't

think I would see this result in my time at Caltech. I suppose something can be said here for

persistence in pursuing a goal, but probably the better message is that while it is important

to work towards big, overarching targets it is also important to be open to things you discover

along the way.

5.1 Introduction

There has been substantial recent progress in the development of soluble, well-defined

molecular catalysts for N2-to-NH3 conversion, commonly referred to as the nitrogen

reduction reaction (N₂RR).¹ Nevertheless, a significant and unmet challenge is to develop molecular catalysts, and conditions, compatible with electrocatalytic N₂RR. Progress in this area could have both fundamental and practical benefits, including access to informative in situ mechanistic studies via electrochemical techniques, and an electrochemical means to translate solar or otherwise derived chemical currency (H⁺/e⁻) into NH₃. The latter goal, which has been the subject of numerous studies using heterogeneous catalysts, is key to the long-term delivery of new ammonia synthesis technologies for fertilizer and/or fuel.²

Many soluble coordination complexes are now known that electrocatalytically mediate the hydrogen evolution reaction (HER),³ the carbon dioxide reduction reaction (CO₂RR),⁴ and the oxygen reduction reaction (O₂RR).⁵ The study of such systems has matured at a rapid pace in recent years, coinciding with expanded research efforts towards solar-derived fuel systems. In this context, it is noteworthy how little corresponding progress has been made towards the discovery of soluble molecular catalysts that mediate electrocatalytic N₂RR. To our knowledge, only two prior systems address this topic directly.^{6,7,8}

More than three decades ago, Pickett and coworkers reported that a Chatt-type tungsten-hydrazido(2–) complex could be electrochemically reduced to release ammonia (and trace hydrazine), along with some amount of a reduced tungsten-dinitrogen product; the latter species serves as the source of the tungsten-hydrazido(2–) complex (via its protonation by acid). ^{6a} By cycling through such a process, an electrochemical, but not an electrocatalytic, synthesis of ammonia was demonstrated. Indeed, efforts to demonstrate electrocatalysis with this and related systems instead led to substoichiometric NH₃ yields. ^{6c}

An obvious limitation to progress in electrochemical N₂RR by molecular systems concerns the small number of synthetic N₂RR catalysts that have been available for study; it is only in the past five years that sufficiently robust catalyst systems have been identified to motivate such studies. In addition, the conditions that have to date been employed to mediate N₂RR have typically included non-polar solvents, such as heptane, toluene, and diethyl ether (Et₂O), that are not particularly well-suited to electrochemical studies owing to the lack of compatible electrolytes.¹

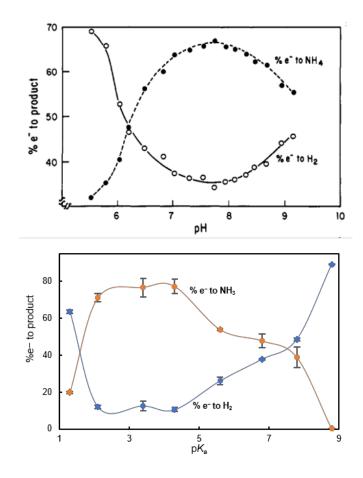
Nevertheless, several recent developments, including ones from our lab, point to the likelihood that iron (and perhaps other) molecular coordination complexes may be able to mediate electrocatalytic N₂RR in organic solvent. Specifically, our lab recently reported that a tris(phosphine)borane iron complex, P₃^BFe⁺, that is competent for catalytic N₂RR with chemical reductants, can also mediate electrolytic N₂-to-NH₃ conversion,^{6d} with the available data (including that presented in this study) pointing to bona fide electrocatalysis in Et₂O.

Focusing on the $P_3^BFe^+$ catalytic N_2RR system, a development germane to the present study was its recently discovered compatibility with reagents milder than those that had been originally employed. Thus, decamethylcobaltocene ($Cp*_2Co$) and diphenylammonium acid are effective for N_2RR catalysis; these reagents give rise to fast, and also quite selective (> 70% vs HER), N_2RR catalysis at low temperature and pressure in ethereal solvent. In addition, based on preliminary spectroscopic evidence and density functional theory (DFT) predictions, it appears that a protonated metallocene species, $Cp*(\eta^4-C_5Me_5H)Co^+$, may be an important intermediate of N_2RR catalysis under such conditions. Indeed, we have suggested that $Cp*(\eta^4-C_5Me_5H)Co^+$ may serve as a proton-

coupled-electron-transfer (PCET) donor (BDE_{C-H}(calc) = 31 kcal mol⁻¹), thereby mediating net H-atom transfers to generate N–H bonds during N_2RR . The presence of a metallocene mediator might, we therefore reasoned, enhance N_2RR during electrocatalysis.

We present here a study of the effect of p K_a on the selectivity of $P_3^BFe^+$ for N_2RR vs HER. By using substituted anilinium acids, we are able to vary the acid pK_a over 9 orders of magnitude and find that the selectivity is highly correlated with the p K_a . In our efforts to investigate the origin of the observed pK_a effect, we found, to our surprise, that in stoichiometric reactions, the catalytically competent anilinium triflate acids are unable to faciltate productive N-H bond formation with early-stage N₂-fixation intermediates. We therefore hypothesize that the formation of a protonated metallocene species, Cp*(η^4 -C₅Me₅H)Co⁺, plays a critical role in N–H bond-forming reactions, either via PCET, PT, or a combination of both during N₂RR catalysis. DFT studies support this hypothesis and also establish that the observed p K_a correlation with N₂RR selectivity can be explained by the varying ability of the acids to protonate Cp*2Co. The suggested role of this protonated metallocene intermediate in N-H bond forming reactions led us to test the effect of Cp*₂Co⁺ as an additive in the electrolytic synthesis of NH₃ mediated by P₃^BFe⁺. We find that the addition of co-catalytic Cp*₂Co⁺ enhances the yield of NH₃ without decreasing the Faradaic efficiency (FE), and furnishes what is to our knowledge the first unambiguous demonstration of electrocatalytic N₂RR mediated by a soluble, molecular coordination complex.

5.2 Results and Discussion


5.2.1 p K_a Studies.

In our recent study on the ability of $P_3^BFe^+$ to perform N_2RR with $Cp*_2Co$ as the chemical reductant, 9 we found that there was a marked difference in efficiency for NH_3 generation with diphenylammonium triflate ($[Ph_2NH_2][OTf]$) versus anilinium triflate ($[PhNH_3][OTf]$). In that study, we posited that this difference could arise from several possibilities, including the differential solubility, sterics, or pK_a 's of these acids. 9

To investigate the last possibility, we have studied the efficiency of the catalysis by quantifying the NH₃ and H₂ produced when using substituted anilinium acids with different p K_a values (Table 5.1). The table is organized in increasing acid strength, from [$^{4-}$ OMePhNH₃][OTf] as the weakest acid to the perchlorinated derivative ([$^{per-Cl}$ PhNH₃][OTf]) as the strongest. Importantly, good total electron yields (85.8 \pm 3.3) were obtained in all cases. As can be seen from the table, the NH₃ efficiencies are found to be strongly correlated with p K_a . 10

In particular, a comparison of the efficiency for NH₃ with the p K_a of the anilinium acid used gives rise to four distinct activity regimes (Table 5.1, Figure 5.1). One regime that is completely inactive for N₂RR, but active for HER, is defined by the weakest acid, [$^{4\text{-OMe}}$ PhNH₃][OTf] (p K_a = 8.8). 11 A gradual increase in observed NH₃ yields, coupled with a decrease in H₂ yield, comprises a second regime, in which the acid is strengthened from [PhNH₃][OTf] (p K_a = 7.8), to [$^{2\text{-G-Me}}$ PhNH₃][OTf] (p K_a = 6.8), to [$^{2\text{-Cl}}$ PhNH₃][OTf] (p K_a = 3.4), and [$^{2\text{-4},6\text{-Cl}}$ PhNH₃][OTf] (p K_a = 3.4), constitute another, most active N₂RR regime, one in which the H₂ yields are nearly invariant. 12 The highest selectivity for N₂RR (\sim 78%) was observed

using [$^{2,5\text{-Cl}}PhNH_3$][OTf] as the acid. A final regime of very low N₂RR activity is encountered with [$^{per\text{-Cl}}PhNH_3$][OTf] ($pK_a=1.3$) as the acid. We suspect this last acid undergoes unproductive

Figure 5.1. (top) Percentage of electrons being used to form NH₃ or H₂ at different pH values by the FeMo-nitrogenase in *A. vinelandii*. Reprinted with permission from Pham, D. N.; Burgess, B. K. *Biochemistry* **1993**, *32*, 13725. Copyright 1993 American Chemical Society. (bottom) Percentage of electrons being used to form NH₃ or H₂ at different p K_a values by $P_3^BFe^+$.

Table 5.1. Literature and calculated pK_a values and efficiencies observed in catalytic N_2 -to- NH_3 conversion

	pK_a^{exp} $(THF)^{10}$	pK_a^{calc} $(298 \text{ K})^a$	pK_d^{calc} $(195 \text{ K})^b$	Equiv of NH ₃ /Fe	% yield of NH ₃ /e ⁻	% yield of H ₂ /e ^{-c}
[^{4-OMe} PhNH ₃] [OTf]	8.8	9.6	15.7	0.04 ± 0.01	0.2 ± 0.1	89.1 ± 0.2
[PhNH ₃] [OTf]	7.8	7.7	13.8	7.3 ± 0.1	40.4 ± 0.5	48.6 ± 0.7
[^{2,6-Me} PhNH ₃] [OTf]	6.8	7.3	13.2	8.6 ± 0.7	47.5 ± 4.0	37.8 ± 0.2
[Cp*(exo-\pi^4- C5Me5H)Co] [OTf]	N/A	9.2	11.8	_	_	_
[^{2-Cl} PhNH ₃] [OTf]	5.6	5.6	6.0	10.7 ± 0.1	53.9 ± 0.4	26.1 ± 1.9
$[^{2,5\text{-Cl}}\text{PhNH}_3]$ [OTf]	4.3	4.0	5.0	13.9 ± 0.7	77.5 ± 3.8	10.5 ± 1.1
[^{2,6-Cl} PhNH ₃] [OTf]	3.4	3.4	3.4	13.8 ± 0.9	76.7 ± 4.9	12.6 ± 2.5
[^{2,4,6-cl} PhNH ₃] [OTf]	2.1	2.7	1.8	12.8 ± 0.4	70.9 ± 2.2	12.0 ± 0.8
[per-ClPhNH ₃] [OTf]	1.3	0.8	0.4	3.6 ± 0.1	19.9 ± 0.5	63.5 ± 1.1

[4-OMePhNH₃][OTf] = 4-methoxyanilinium triflate, [PhNH₃][OTf] = anilinium triflate, [2,6-MePhNH₃][OTf] = 2,6-dimethylanilinium triflate, [2-ClPhNH₃][OTf] = 2-chloroanilinium triflate, [2,5-ClPhNH₃][OTf] = 2,5-dichloroanilinium triflate, [2,6-ClPhNH₃][OTf] = 2,6-dichloroanilinium triflate, [2,4,6-ClPhNH₃][OTf] = 2,4,6-trichloroanilinium triflate, [per-ClPhNH₃][OTf] = 2,3,4,5,6-pentachloroanilinium triflate. ^aAcidities calculated at 298 K in THF and referenced to the known literature value for [2,6-ClPhNH₃][OTf]. ^b All species calculated as the ion-paired OTf⁻ species in Et₂O at 195 K and referenced to the known literature value for [2,6-ClPhNH₃][OTf] in THF.

reduction via ET, thereby short-circuiting N_2RR . The only other N_2RR system for which this type of acid-dependent correlation has been systematically studied is the enzyme MoFe-nitrogenase. ^{13,14} As shown in Figure 5.1, the N_2RR vs HER activity of $P_3^BFe^+$ as a function of acid strength, is, in broad terms, similar to the behavior of the enzyme ¹³ across a wide pH range.

In a previous study of $Cp*_2Co$ -mediated N_2RR by $P_3^BFe^{+,9}$ we identified that $P_3^BFeN_2^-$ forms under the catalytic conditions. Earlier studies on the reactivity of $P_3^BFeN_2^-$ with an excess of soluble acids, including HOTf and $[H(OEt_2)_2][BAr^F_4]$ ($HBAr^F_4$, BAr^F_4 = tetrakis(3,5- bis(trifluoromethyl)phenyl)borate)), at -78 °C in Et_2O , established rapid formation of the doubly protonated species, $P_3^BFeNNH_2^+$. Recent computational work from our group suggests that, under catalytic conditions with a soluble acid, different efficiencies for N_2RR (versus HER) by P_3^EFe catalysts (E=B, C, Si) are likely correlated to the rate of formation and consumption of early N_2RR intermediates (i.e., P_3^EFeNNH and $P_3^EFeNNH_2^+$.

To our surprise, a freeze-quench EPR spectrum of the reaction of excess [^{2,6-Cl}PhNH₃][OTf] (high N₂RR efficiency regime) at -78 °C in Et₂O with P₃^BFeN₂⁻ does not show any P₃^BFeNNH₂⁺. Also, freeze-quench Mössbauer analysis shows the formation of the oxidized products P₃^BFeN₂ and P₃^BFe⁺, but nothing assignable to P₃^BFeNNH₂⁺ (see SI for relevant spectra). Analysis of such a reaction for NH₃ or N₂H₄ after warming shows no fixed-N products. The observation of exclusive oxidation, rather than productive N–H bond formation, is analogous to what is observed upon addition of 1 equiv of a soluble acid

(HBAr F_4 or HOTf) to P_3^B FeN $_2^-$. We have previously suggested that if unstable P_3^B FeNNH is formed (eq 1) without excess acid to trap it (to form more stable P_3^B FeNNH $_2^+$, eq 2), then it can decay bimolecularly with the loss of 1/2 H₂ to form P_3^B FeN $_2$ (eq 3).

$$P_3^B \text{FeN}_2^- + \text{H}^+ \rightarrow P_3^B \text{FeNNH} \tag{1}$$

$$P_3^B FeNNH + H^+ \rightarrow P_3^B FeNNH_2^+$$
 (2)

$$P_3^B FeNNH \rightarrow P_3^B FeN_2 + 1/2 H_2 \tag{3}$$

The low solubility of the anilinium triflate acids studied herein, in excess (50 equiv) and under the catalytically relevant conditions (1 mL Et₂O, -78 °C), likely leads to a similar scenario; consequently, P_3^B FeNNH that is generated is not efficiently captured by excess acid, leading instead to bimolecular H₂ loss. In accord with this idea, a freeze-quench EPR spectrum of the addition of 50 equiv of [$^{2,6\text{-Cl}}$ PhNH₃][BAr^F₄], a far more ether soluble derivative of the same anilinium, to P_3^B FeN₂⁻ shows P_3^B FeNNH₂⁺ formation, and the detection of fixed-N products upon warming (0.20 ± 0.04 eq. NH₃ per Fe).

These observations must next be reconciled with the seemingly contradictory observation that comparatively efficient N_2RR catalysis is observed when [2,6 - $^{Cl}PhNH_3$][OTf], and other anilinium triflate acids, are employed under catalytic conditions. For example, [Ph_2NH_2][OTf] leads to better efficiency for NH_3 formation versus [Ph_2NH_2][BAr F_4] ($72 \pm 3\%$ and $42 \pm 6\%$, respectively). A key difference between the stoichiometric reactions described above, and the catalytic reaction, is the presence of $Cp*_2Co$ in the latter.

We have suggested that $Cp*_2Co$ can be protonated under the catalytic reaction conditions, to form $Cp*(\eta^4-C_5Me_5H)Co^+,^9$ which may then play a role in N–H bond forming steps. ¹⁷ The results presented here (and below) suggest that such a mechanism is

not only plausible, but is likely necessary, to explain the observed catalytic results with anilinium triflate acids. Given the effect of pK_a on the efficiency for N_2RR , we now hypothesize that this effect can arise from the relative energetics and rates of $Cp*_2Co$ protonation by the different anilinium triflate acids.

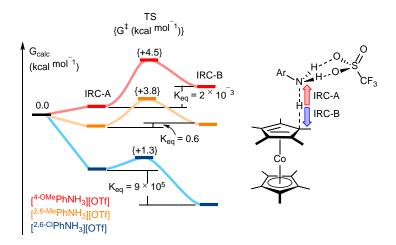
5.2.2 Computational Studies.

To investigate the kinetics and thermodynamics of $Cp*_2Co$ protonation by anilinium triflate acids we turned to a computational study. DFT-D₃¹⁸ calculations were undertaken at the TPSS/def2-TZVP(Fe); def2-SVP¹⁹ level of theory, as used previously for studies of this $P_3^BFe^+$ system.²⁰ The free energy of H^+ exchange (ΔG_a) was calculated for all of the anilinium acids used (representative example shown in eq 4), and also for $Cp*(exo-\eta^4-C_5Me_5H)Co^+$, in Et₂O at 298 K. These free energies were then used to determine the acid pK_a 's, with inclusion of a term to reference them to the literature pK_a value for [$^{2,6-Cl}PhNH_3$][OTf] at 298 K in THF (eq 5).

$$PhNH_{2} + {}^{2,6-Cl}PhNH_{3}^{+} \rightarrow PhNH_{3}^{+} + {}^{2,6-Cl}PhNH_{2}$$
 (4)

$$pK_a(PhNH_3^+) = -\Delta G_a/(2.303 \times RT) + pK_a(^{2,6-Cl}PhNH_3^+)$$
 (5)

Because we presume that variable triflate hydrogen bonding effects (0.5-10 kcal mol⁻¹) are likely to be important under the catalytic conditions (low temperature and low polarity solvent), we additionally calculated the free energy for net HOTf exchange reactions (ΔG_d) at 195 K in Et₂O (representative example shown in eq 6). The free energies of these reactions can then be used to determine a p K_d , referenced to the p K_a value for [^{2,6-Cl}PhNH₃][OTf] at 298 K in THF, for ease of comparison (eq 7). Hereafter, we use these p K_d values for discussion, but note that use of the p K_a values instead does not substantively alter the conclusions drawn.


 $PhNH_2 + [^{2,6-Cl}PhNH_3][OTf] \rightarrow$

$$[PhNH3][OTf] + 2,6-ClPhNH2$$
 (6)

$$pK_d([PhNH_3][OTf]) = -\Delta G_d/(2.303 \times RT) + pK_a(^{2,6-Cl}PhNH_3^+)$$
 (7)

Calculations of the p K_d of all of the relevant species (Table 5.1) shows that the p K_d of $[Cp*(exo-\eta^4-C_5Me_5H)Co][OTf]$ (p $K_d^{calc}=11.8$; Table 5.1) falls within the range of the anilinium acids studied ($0.4 \le pK_d^{calc} \le 15.7$), suggesting there should be a significant acid dependence on the kinetics and thermodynamics of $Cp*_2Co$ protonation. To better elucidate the differences in $Cp*_2Co$ protonation between the acids studied, we investigated the kinetics of protonation for three acids, [$^{2,6-Cl}PhNH_3$][OTf] (high selectivity; $pK_d^{calc}=3.4$), [$^{2,6-Me}PhNH_3$][OTf] (modest selectivity; $pK_d^{calc}=13.2$), and [$^{4-OMe}PhNH_3$][OTf] (poor selectivity; $pK_d^{calc}=15.8$).

Transition states for Cp*₂Co protonation were located for all three acids. To confirm that these transition states accurately reflect proton transfer, internal reaction coordinates (IRC) were followed to determine the reactant (IRC-A) and product (IRC-B) minima (Figure 5.2). These minima represent hydrogen bonded arrangements of the reactants and products. Protonation is found to have only a moderate barrier (ΔG^{\ddagger} in kcal mol⁻¹) in all three cases: ([^{4-OMe}PhNH₃][OTf], +4.5; [^{2,6-Me}PhNH₃][OTf], +3.8; [^{2,6-Cl}PhNH₃][OTf], +1.3).

Figure 5.2. The kinetics and thermodynamics of protonation of Cp*₂Co for three acids from different catalytic efficiency regimes ([^{4-OMe}PhNH₃][OTf] = poor selectivity]; [^{2,6-Cl}PhNH₃][OTf] = modest selectivity; [^{2,6-Cl}PhNH₃][OTf] = high selectivity).

This suggests that Cp*2Co protonation is kinetically accessible in all cases, in agreement with the experimental observation of background HER with each of these acids (see SI).

The small differences in rate, and the large variance in the equilibrium constant K_{eq} defined in eq 8, points to a significant difference in the population of protonated metallocene, [Cp*(exo- η^4 -C5Me5H)Co][OTf], for these anilinium acids during catalysis.

$$K_{\text{eq}} = \frac{\left[{}^{\text{R}}\text{PhNH}_{2} - \text{Cp}^{*}(exo - \eta^{4} - \text{C}_{5}\text{Me}_{5}\text{H})\text{Co}^{+}\right]}{\left[{}^{\text{R}}\text{PhNH}_{3}^{+} - \text{Cp}_{2}^{*}\text{Co}\right]}$$
(8)

We reason that the low solubility of the anilinium triflate acids, and the low catalyst concentration (2.3 mM P_3^BFe), leads to a scenario in which the interaction between the acid and the $Cp*_2Co$, the latter being present in excess relative to the iron catalyst (measured solubility of $Cp*_2Co$ at -78 °C in Et₂O is ~ 6 mM, see SI), significantly affects the overall kinetics of productive N–H bond formation. As such, the difference in $[Cp*(exo-\eta^4-C_5Me_5H)Co][OTf]$ concentration and formation rate should relate to, and likely dominate,

the origin of the observed pK_a effect. This explanation, rather than one that involves differences in rates for the direct interaction of a given $P_3^BFeN_xH_y$ species with an anilinium acid, better captures the collected data available.²¹

[Cp*(exo- η^4 -C₅Me₅H)Co][OTf], characterized by a very weak C–H bond, should be a strong PCET donor, and we presume it serves such a role under the catalytic conditions being discussed herein.²² Its reactions with P₃^BFeN_xH_y intermediates may occur in a synchronous fashion, akin to HAT, or in an asynchronous fashion more akin to a PT-ET reaction.²³ While many P₃^BFeN_xH_y intermediates may, at least in part, be generated via PCET with [Cp*(exo- η^4 -C₅Me₅H)Co][OTf],²⁴ available experimental data point to a critical role for such a reaction via trapping of the highly reactive first fixed intermediate, P₃^BFeNNH (**Figure 5.3**), before it can bimolecularly release H₂ (eq 3). We hence investigated this reaction in more detail.

$$\begin{array}{c} & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

Figure 5.3. The calculated thermodynamics and kinetics of synchronous PCET and asynchronous PCET (PT-ET), between P_3^B FeNNH and $[Cp*(exo-\eta^4-C_5Me_5H)Co][OTf]$ to generate P_3^B FeNNH₂. Note: k_{rel} for ET is defined as 1 M⁻¹ s⁻¹.

Both a synchronous PCET ($\Delta G_{PCET} = -17.3 \text{ kcal mol}^{-1}$; eq 9) and an asynchronous PCET path ($\Delta G_{PT} = -5.7 \text{ kcal mol}^{-1}$, $\Delta G_{ET} = -11.6 \text{ kcal mol}^{-1}$; eq 10 and 11), are predicted to be thermodynamically favorable.

$$P_3^B$$
FeNNH + [Cp*(exo - η^4 -C₅Me₅H)Co][OTf] \rightarrow

$$P_3^B FeNNH_2 + [Cp*_2Co][OTf]$$

$$(9)$$

 P_3^B FeNNH + [Cp*(exo- η^4 -C₅Me₅H)Co][OTf] \rightarrow

$$[P3BFeNNH2][OTf] + Cp*2Co$$
 (10)

 $[P_3^BFeNNH_2][OTf] + Cp*_2Co \rightarrow$

$$P_3{}^BFeNNH_2 + [Cp*_2Co][OTf]$$
 (11)

To evaluate the kinetics of these reactions the Marcus theory expressions²⁵ and the Hammes-Schiffer method²⁶ were used to approximate relative rates of bimolecular ET and PCET. We find that there is a slight kinetic preference for the fully synchronous PCET reaction ($k_{\text{rel}}^{\text{PCET}} \sim 3 \times 10^3 \,\text{M}^{-1}\text{s}^{-1}$) compared to the fully asynchronous PT-ET reaction ($k_{\text{rel}}^{\text{PT-ET}} \approx k_{\text{rel}}^{\text{ET}} \equiv 1 \,\text{M}^{-1} \,\text{s}^{-1}$; Figure 5.3).²⁷

The above discussion leads to the conclusion that the efficiency for NH₃ formation in this system is coupled to the kinetics and/or thermodynamics of the reaction between the anilinium triflate acid and the Cp*₂Co reductant. This conclusion is counterintuitive, as the protonation of Cp*₂Co is also the requisite first step for background HER.²⁸ The fact that a key HER intermediate can be intercepted and used for productive N₂RR steps is an important design principle for such catalysis. Similar design strategies are currently being used to repurpose molecular cobalt HER catalysts for the reduction of unsaturated substrates.²⁹

Efforts are often undertaken to suppress background reactivity between acid and reductant in catalytic N₂RR systems.^{1a-b} We were hence particularly interested to explore whether the inclusion of a metallocene co-catalyst, in this case Cp*₂Co, might improve the yield, and/or the Faradaic efficiency (FE), for N₂RR versus HER, in controlled potential electrolysis (CPE) experiments with P₃^BFe⁺ under N₂.

5.2.3 Electrolysis Studies.

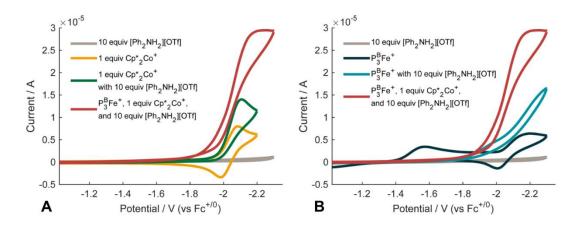
To set the context for this section of the present study, we had shown previously that ~ 2.2 equiv NH₃ (per Fe) could be generated via controlled potential electrolysis (CPE; -2.3 V vs Fc^{+/0}) at a reticulated vitreous carbon working electrode, using P₃^BFe⁺ as the (pre)catalyst in the presence of HBAr^F₄ (50 equiv) at -45 °C under an atmosphere of N₂.

This yield of NH₃ corresponded to a \sim 25% FE which, while modest in terms of overall chemoselectivity, compares very favorably to FE's most typically reported for heterogeneous electrocatalysts for N₂RR that operate below 100 °C (< 2%).^{2,30}

To further explore the possibility of using P₃^BFe⁺ as an electrocatalyst for N₂RR, various conditions were surveyed to determine whether enhanced yields of NH₃ could be obtained from CPE experiments. For example, various applied potentials were studied (ranging from -2.1 to -3.0 V vs Fc^{+/0}), the concentrations of P₃^BFe⁺ and HBAr^F₄ were varied, the ratio of acid to catalyst was varied, and the rate at which acid was delivered to the system was varied (e.g., initial full loadings, batch-wise additions, reloadings, or continuous slow additions). None of these studies led to substantial improvement in N₂RR; in all cases, < 2.5 equiv of NH₃ was obtained per P₃^BFe⁺. Attempts to vary the ratio of the electrode surface area to the working compartment solution volume, either by employing smaller cell geometries or by using different morphologies of glassy carbon as the working electrode (e.g., reticulated porous materials of different pore density or plates of different dimensions), also failed to provide substantial improvement in NH₃ yield. The replacement of HBAr^F₄, the original acid used in our electrolysis studies,^{6d} by 50 equiv of [Ph₂NH₂][OTf] led to similar yields of NH₃ (Table 5.2, entry 1).

We next investigated the effect of Cp*₂Co⁺ as an additive on the electrolysis/electrocatalysis. Traces of relevant cyclic voltammograms (Figure 5.4A and 5.4B) collected with glassy carbon as the working electrode in Et₂O under glovebox atmosphere N₂ at -35 °C are provided. Background traces including only [Ph₂NH₂][OTf] are present in both panels (gray traces). Cp*₂Co⁺ (panel A, yellow trace), Cp*₂Co⁺ with the addition of ten equiv of [Ph₂NH₂][OTf] (panel A, green trace), P₃^BFe⁺ (panel B, dark blue

trace), $P_3{}^BFe^+$ with the addition of ten equiv of $[Ph_2NH_2][OTf]$ (panel B, light blue trace), and $P_3{}^BFe^+$ with the addition of one equiv of $Cp^*{}_2Co^+$ and ten equiv of $[Ph_2NH_2][OTf]$ (both panels, red trace).


Table 5.2. Yields and Faradaic Efficiencies of NH $_3$ from CPE Experiments with $P_3{}^BFe^{\scriptscriptstyle +}$

Entry	Equiv Cp*2Co+	Equiv NH ₃ (per Fe)	Equiv NH ₃ (per Co)	NH ₃ FE (%)
1	0	2.6 ± 0.3^d	_	24 ± 5
2^a	0	2.6 ± 0.6	_	18 ± 1
3	1	4.0 ± 0.6	4.0 ± 0.6	28 ± 5
4	5	4.0 ± 0.6^d	0.8 ± 0.1	25 ± 3
5^a	5	5.5 ± 0.9^e	1.1 ± 0.2	19 ± 1
6	10	4 ± 1	0.4 ± 0.1	24 ± 7
7^b	5	1.9 ± 0.2	0.4 ± 0.1	10 ± 1
8^c	5	0.9 ± 0.4	0.2 ± 0.1	6 ± 3

All CPE experiments conducted at -2.1 V vs Fc^{+/0} with 0.1 M NaBAr^F₄ in Et₂O as solvent at -35 °C under an N₂ atmosphere, featuring a glassy carbon plate working electrode, Ag^{+/0} reference couple isolated by a CoralPorTM frit referenced externally to Fc^{+/0}, and a solid sodium auxiliary electrode. Working and auxiliary chambers separated by a sintered glass frit. See SI for further experimental details, controls, and additional data. Averages represent two runs unless noted. ^aAfter initial electrolysis with 50 equiv [Ph₂NH₂][OTf], an additional 50 equiv [Ph₂NH₂][OTf] in 0.1 M NaBAr^F₄ Et₂O solution

was added to the working chamber, via syringe through a rubber septum, followed by additional CPE at -2.1 V vs Fc^{+/0}. The listed Equiv NH₃ (per Fe) for these runs is the total yield after both electrolysis experiments are completed. $^b[^{2,6\text{-Cl}}\text{PhNH}_3][\text{OTf}]$ employed as the acid. $^c[\text{PhNH}_3][\text{OTf}]$ employed as the acid. dA verage of three runs. eA verage of five runs.

The cyclic voltammogram of Cp*₂Co⁺ is shown in panel **A** (yellow trace), displaying the reversible Cp*₂Co^{+/0} couple at -2.0 V. The addition of [Ph₂NH₂][OTf] to Cp*₂Co⁺ causes an increase in current at this potential, consistent with HER

Figure 5.4. A) Cyclic voltammograms of 10 equiv [Ph₂NH₂][OTf] (gray trace), 1 equiv [Cp*₂Co][BAr^F₄] (Cp*₂Co⁺) (yellow trace), 1 equiv Cp*₂Co⁺ with 10 equiv [Ph₂NH₂][OTf] (green trace), and P₃^BFe⁺ with 1 equiv of Cp*₂Co⁺ and 10 equiv [Ph₂NH₂][OTf] (red trace). **B**) Cyclic voltammograms of 10 equiv [Ph₂NH₂][OTf] (gray trace), P₃^BFe⁺ (dark blue trace), P₃^BFe⁺ with 10 equiv [Ph₂NH₂][OTf] (light blue trace), and P₃^BFe⁺ with 1 equiv of Cp*₂Co⁺ and 10 equiv [Ph₂NH₂][OTf] (red trace). All spectra are collected in 0.1 M NaBAr^F₄ solution in Et₂O at -35 °C using a glassy carbon working electrode, and externally referenced to the Fc^{+/0} couple. Scan rate is 100 mV/s.

catalyzed by $Cp*_2Co^+$ (panel **A**, green trace).

Panel B provides the cyclic voltammogram of $P_3^BFe^+$ in the absence (dark blue trace, showing previously assigned and quasi-reversible $P_3^BFeN_2^{0/-}$ couple at ~ -2.1 V) and in the presence (light blue trace) of $[Ph_2NH_2][OTf]$. The latter is indicative of modest HER and N_2RR . Also evident upon the addition of acid is the disappearance of a wave corresponding to the $P_3^BFe^{+/0}$ couple at ~ -1.6 V. This wave, in the absence of acid, is broad and shows a large peak-to-peak separation, likely due to the presence of both $P_3^BFe^+$ and $P_3^BFeN_2^+$ in solution at -35 °C. The addition of a large excess of $[Ph_2NH_2][OTf]$ presumably results in triflate binding (to generate P_3^BFeOTf , thereby attenuating the waves associated with the reduction of $P_3^BFe^+$ and $P_3^BFeN_2^+$). The red trace of Panel A is reproduced in Panel B to illustrate the marked increase in current observed when $Cp*_2Co^+$ is added.

CPE studies were undertaken to characterize the reduction products associated with the red trace at $\sim -2.1~V~vs~Fc^{+/0}$. These studies employed a glassy carbon plate electrode, a $Ag^{+/0}$ reference electrode that was isolated by a CoralPorTM frit and referenced externally $Fc^{+/0}$ redox couple, and a solid sodium auxiliary electrode. The latter was used to avoid excessive, non-productive redox cycling between the working and auxiliary chambers.³² Unless otherwise noted, CPE experiments were performed at $-2.1~V~versus~Fc^{+/0}$, with 0.1 M NaBAr^{F4} as the ether-soluble electrolyte, under a glovebox N2 atmosphere at -35~°C. The electrolysis was continued until the current had dropped to 1% of the initial current measured, or until 21.5 hours had passed. The Supporting Information provides additional details.

CPE experiments were conducted with the inclusion of 0, 1, 5, and 10 equiv of $Cp*_2Co^+$ with respect to $P_3^BFe^+$, using excess $[Ph_2NH_2][OTf]$ as the acid. In the absence of added $Cp*_2Co^+$, a significant amount of NH_3 was generated $(2.6 \pm 0.3 \text{ equiv per Fe}, \text{ entry } 1)$, consistent with the previous finding that, in the presence of a strong acid, $P_3^BFe^+$ can electrolytically mediate N_2 -to- NH_3 conversion. Notably, when a CPE experiment that did not include $Cp*_2Co^+$ was reloaded with additional acid after electrolysis and electrolyzed again, the total yield of NH_3 $(2.6 \pm 0.6 \text{ equiv } NH_3 \text{ per Fe}, \text{ entry } 2)$ did not improve.

We found that inclusion of 1.0 equiv of Cp*₂Co⁺ enhanced the NH₃ yield, by a factor of ~ 1.5 (Table 5.2, entry 3) without decreasing the FE. The data provide a total yield, with respect to both Fe and Co, that confirm modest, but still unequivocal, N₂RR electrocatalysis. In single run experiments, the highest NH₃ yield in the absence of Cp*₂Co⁺ was 2.8 equiv, compared with 4.4 equiv in the presence of 1 equiv of Cp*₂Co⁺. Conversely, the lowest single run NH₃ yield in the absence of Cp*₂Co⁺ was 2.3 equiv, compared with 3.5 equiv in the presence of 1 equiv of Cp*₂Co⁺.

Increasing the amount of added Cp*₂Co⁺ did not affect the NH₃ yield (entry 4). However, the addition of a second loading of [Ph₂NH₂][OTf] following the first electrolysis (entry 5), followed by additional electrolysis, led to an improved yield of NH₃, suggesting that some active catalyst is still present after the first run.^{6d,9} Even higher Cp*₂Co⁺ loading did not lead to higher NH₃ yields (entry 6).

CPE of P₃^BFe⁺ in the presence of Cp*₂Co⁺ was also explored with other acids. Replacing [Ph₂NH₂][OTf] in these experiments with [^{2,6-Cl}PhNH₃][OTf] led to lower yields of NH₃, and with [PhNH₃][OTf] even lower yields of NH₃ were observed (entries 7 and 8 respectively). The lower, but nonzero, yield of NH₃ provided by [PhNH₃][OTf] in these

CPE experiments is consistent with chemical trials employing various acids (vide supra) and can be rationalized by the relative pK_a of the acids (Table 5.1). The intermediate yield of NH₃ provided by [$^{2,6\text{-Cl}}$ PhNH₃][OTf] in these CPE experiments is less consistent with simple pK_a considerations, suggesting that additional factors are at play, perhaps including the relative stability of the acid or conjugate base to electrolysis.

To probe whether electrode-immobilized iron might contribute to the N₂RR electrocatalysis, X-ray photoelectron spectroscopy (XPS) was used to study the electrode. After a standard CPE experiment with P₃^BFe⁺, 5 equiv of Cp*₂Co⁺, and 50 equiv [Ph₂NH₂][OTf], the electrode was removed, washed with fresh 0.1 M NaBAr^F₄ Et₂O solution, then fresh Et₂O, and probed by XPS. A *very low* coverage of Fe (< 0.3 atom % Fe) was detected in the post-electrolysis material; no Fe was detected on a segment of the electrode which was not exposed to the electrolytic solution. This observation implies a detectable but likely small degree of degradation of P₃^BFe⁺ over the course of a 15 hour CPE experiment. Worth noting is that no Co was detected on the post-electrolysis electrode. This may be consistent with the known stability of metallocenes and the recently discovered stability of protonated-Cp* ligands on Rh.³³

To test whether the small amount of deposited Fe material might be catalytically active for N_2RR , following a standard CPE experiment the electrode was removed from the cold electrolysis solution, washed with fresh 0.1 M NaBAr^F₄ Et₂O at -35 °C (the electrode itself was maintained at -35 °C at all times), and then used for an additional CPE experiment, under identical conditions except that $P_3^BFe^+$ was excluded. This CPE experiment yielded no detectable NH₃. The charge passed, and H₂ yield, were very similar to a "no $P_3^BFe^+$ " control experiment conducted with a freshly cleaned electrode (See SI for

further details). Accordingly, a CPE experiment in the absence of $P_3^BFe^+$ demonstrated that $Cp^*_2Co^+$ serves as an effective electrocatalyst for HER with $[Ph_2NH_2][OTf]$ as the acid source, but does not catalyze the N_2RR reaction (0% FE for NH_3 , 75% FE for H_2 ; see SI). This background HER, and the observed catalytic response to the addition of $[Ph_2NH_2][OTf]$ at the $Cp^*_2Co^{+/0}$ couple, provides circumstantial evidence for the formation of a protonated decamethylcobaltocene intermediate, $Cp^*(\eta^4-C_5Me_5H)Co^+$, on a timescale similar to that of the N_2RR mediated by $P_3^BFe^+$.

To probe whether the sodium auxiliary electrode used in the CPE experiments might play a non-innocent role as a chemical reductant, a standard CPE experiment with $P_3^BFe^+$, 5 equiv $Cp^*_2Co^+$, and 50 equiv $[Ph_2NH_2][OTf]$ was assembled, but was left to stir at -35 °C for 43 hours without an applied potential bias. This experiment yielded 0.3 equiv N_3 (relative to Fe), suggesting that background N_2RR due to the sodium auxiliary electrode is very minor.

To ensure the NH₃ produced was derived from the N₂ atmosphere during these electrolysis experiments, as opposed to degradation of the anilinium acid used, a standard CPE experiment using P₃^BFe⁺, 5 equiv Cp*₂Co⁺, and 50 equiv of [Ph₂¹⁵NH₂][OTf] was performed. Only ¹⁴NH₃ product was detected.

We also sought to compare the chemical N_2RR catalysis efficiency of the $P_3^BFe^+$ catalyst under conditions similar to those used for electrocatalysis. Hence, chemical catalysis with $P_3^BFe^+$, employing Cp^*_2Co as a reductant and $[Ph_2NH_2][OTf]$ as the acid at -35 °C instead of the more typical temperature of -78 °C, in a 0.1 M NaBAr F_4 Et₂O solution, afforded lower yields of NH₃ (1.8 \pm 0.7 equiv of NH₃ per Fe) than the yields observed via electrolysis with $Cp^*_2Co^+$ as an additive. The lower yields of NH₃ in these

chemical trials, compared with our previously reported conditions (12.8 ± 0.5 equiv of NH₃ per Fe at -78 °C),⁹ may be attributable to increased competitive HER resulting from a more solubilizing medium (0.1 M NaBAr^F₄ Et₂O vs pure Et₂O) and a higher temperature (-35 °C vs -78 °C).⁹ These results suggest that an electrochemical approach to NH₃ formation can improve performance, based on selectivity for N₂RR, of a molecular catalyst under comparable conditions.

5.3 Conclusion

Herein we described the first systematic pK_a studies on a synthetic nitrogen fixation catalyst and find a strong correlation between pK_a and N_2RR vs HER efficiency. Chemical studies reveal that, on their own, the anilinium triflate acids employed in the catalysis are unable to generate the N–H bonds of early-stage N_2RR intermediates such as $P_3^BFeNNH_2^+$. We propose that the insolubility of these triflate acids prevents the sufficiently rapid proton transfer necessary to capture the critical but unstable first fixed intermediate, P_3^BFeNNH . Under catalytic conditions, we believe that the presence of the metallocene reductant (Cp^*_2Co) is essential, as this species can be protonated in situ to form $Cp^*(\eta^4-C_5Me_5H)Co^+$, which in turn is effective in N–H bond formation with early intermediates. This leads to the intriguing conclusion that an intermediate of the background HER pathway is redirected for productive N_2RR chemistry during catalysis.

DFT studies illustrate that the p K_a effect on the N₂RR efficiency may be explained by the variation in the kinetics and thermodynamics of Cp*₂Co protonation by the different acids. Investigation of the reactivity of Cp*(exo- η^4 -C₅Me₅H)Co⁺ with the P₃^BFeNNH intermediate revealed that PCET reactivity, either synchronous or asynchronous, is favorable and may proceed with only a small barrier, suggesting that P₃^BFeNNH can be rapidly trapped by Cp*(*exo*-η⁴-C₅Me₅H)Co⁺. We suspect Cp*(η⁴-C₅Me₅H)Co⁺ is likely involved in a variety of N–H bond forming reactions during the overall catalysis, including reactions with late-stage nitrogen fixation intermediates.

Despite the fact that Cp*₂Co⁺ itself catalyzes HER under the conditions employed for electrocatalytic N₂RR, we found that its inclusion in CPE experiments containing P₃^BFe⁺ and acid under an N₂ atmosphere led to modest improvements in the overall catalytic yield of NH₃. This system represents what is to our knowledge the first unambiguous example of electrocatalytic N₂RR mediated by a soluble, molecular coordination complex.

5.4 REFERENCES

- ¹ (a) Yandulov, D. V.; Schrock, R. R. *Science* **2003**, *301*, 76. (b) Arashiba, .; Miyake, Y.; Nishibayashi, Y. *Nat. Chem.* **2010**, *3*, 120. (c) Anderson, J. S.; Rittle, J.; Peters, J. C. *Nature* **2013**, *501*, 84. (d) Imayoshi, R.; Tanaka, H.; Matsuo, Y.; Yuki, M.; Nakajima, K.; Yoshizawa, K.; Nishibayashi, Y. *Angew. Chem. Int. Ed.* **2015**, *21*, 8905.
- (e) Ung, G.; Peters, J. C. Angew. Chem. Int. Ed. 2015, 54, 532. (f) Kuriyama, S.; Arashiba, K.; Nakajima, K.; Matsuo, Y.; Tanaka, H.; Ishii, K.; Yoshizawa, K.; Nishibayashi, Y. Nat. Commun. 2016, 7, 12181. (g) Hill, P. J.; Doyle, L. R.; Crawford, A. D.; Myers, W. K.; Ashley, A. E. J. Am. Chem. Soc. 2016, 138, 13521.
 (h) Buscagan, T. M.; Oyala, P. H.; Peters, J. C. Angew. Chem. Int. Ed. 2017, 56, 6921. (i) Wickramasinghe, L. A.; Ogawa, T.; Schrock, R. R.; Müller, P. J. Am. Chem. Soc. 2017, 139, 9132. (j) Fajardo Jr., J.; Peters, J. C. J. Am. Chem. Soc. 2017, 139, 16105.
- ² (a) Shipman, M. A.; Symes, M. D. *Catal. Today* **2017**, *286*, 57. (b) Kyriakou, V.; Garagounis, I.; Vasileiou, E.; Vourros, A.; Stoukides, M. *Catal. Today* **2017**, *286*, 2.
- ³ (a) McKone, J. R.; Marinescu, S. C.; Brunschwig, B. S.; Winkler, J. R.; Gray, H. B. Chem. Sci. 2014, 5, 865. (b) Bullock, R. M.; Appel, A. M.; Helm, M. L. Chem. Commun. 2014, 50, 3125.

- ⁴ (a) Benson, E. E.; Kubiak, C. P.; Sathrum, A. J.; Smieja, J. M. Chem. Soc. Rev. 2009, 38, 89. (b) Appel, A. M.; Bercaw, J. E.; Bocarsly, A. B.; Dobbek, H.; DuBois, D. L.; Dupuis, M.; Ferry, J. G.; Fujita, E.; Hille, R.; Kenis, P. J. A.; Kerfeld, C. A.; Morris, R. H.; Peden, C. H. F.; Portis, A. R.; Ragsdale, S. W.; Rauchfuss, T. B.; Reek, J. N. H.; Seefeldt, L. C.; Thauer, R. K.; Waldrop, G. L. Chem. Rev. 2013, 113, 6621. (c) Francke, R.; Schille, B.; Roemelt, M. Chem. Rev. 2018, DOI: 10.1021/acs.chemrev.7b00459.
- ⁵ Zhang, W.; Lai, W.; Cao, R. Chem. Rev. 2017, 117, 3717.
- ⁶ (a) Pickett, C. J.; Talarmin, J. Nature 1985, 317, 652. (b) Al-Salih, T. I.; Pickett, C. J. J. Chem. Soc. Dalton Trans. 1985, 1255. (c) Pickett, C. J.; Ryder, K. S.; Talarmin, J. J. Chem. Soc. Dalton Trans. 1986, 1453. (d) Del Castillo, T. J.; Thompson, N. B.; Peters, J. C. J. Am. Chem. Soc. 2016, 138, 5341.
- ⁷ In this context, a recent report in which the bioelectrosynthesis of ammonia by nitrogenase is coupled to H₂ oxidation is also noteworthy: Milton, R. D.; Cai, R.; Abdellaoui, S.; Leech, D.; De Lacey, A. L.; Pita, M.; Minteer, S. D. *Angew. Chem. Int. Ed.* **2017**, *56*, 2680.
- 8 Very recently there was a report of electrolytic NH₃ synthesis by Cp₂TiCl₂. Although rates and Faradaic efficiencies are discussed, no yields of NH₃ are reported: Jeong, E.-Y.; Yoo, C.-Y.; Jung, C. H.; Park, J. H.; Park, Y. C.; Kim, J.-N.; Oh, S.-G.; Woo, Y.; Yoon, H. C. ACS Sustainable Chem. Eng. 2017, 5, 9662.
- ⁹ Chalkley, M. J.; Del Castillo, T. J.; Matson, B. D.; Roddy, J. P.; Peters, J. C. ACS Cent. Sci. 2017, 3, 217.
- In some cases, the pK_a of a particular anilinium acid was already known in THF in which case this value was used. In cases where the pK_a has not been reported in THF a literature procedure was used to appropriately convert the pK_a from the solvent in which it was measured into a value for THF. See SI for details.
- Consistent with this observation is that efforts to use other weak, non-anilinium acids such as benzylammonium triflate (p K_a in THF of 13.2) and collidinium triflate (p K_a in THF of 11.2) also led to no observed NH₃ formation.

- ¹² These results are also consistent with our previous observation of [Ph₂NH₂][OTf] (p K_a in THF of 3.2) yielding 72 \pm 3 % NH₃. See reference 9.
- ¹³ Pham, D. N.; Burgess, B. K. Biochemistry **1993**, 32, 13275.
- ¹⁴ In some other reports on N₂RR by molecular catalysts, efficiencies for NH₃ have been reported for several acids, but typically these acids span only a small pK_a range, electron yields are inconsistent, and variations are not explained. For a representative example, see Reference 1b.
- ¹⁵ Anderson, J. S.; Cutsail III, G. E.; Rittle, J.; Connor, B. A.; Gunderson, W. A.; Zhang, L.; Hoffman, B. M.; Peters, J. C. J. Am. Chem. Soc. 2015, 137, 7803.
- ¹⁶ Matson, B. D.; Peters, J. C. ACS Catal. 2018, 8, 1448.
- ¹⁷ Recent results on a Cr–N₂ species also support the role of PCET in the formation of early-stage N₂ fixation intermediates in the presence of collidinium triflate and a cobaltocene: Kendall, A. J.; Johnson, S. I.; Bullock, R. M.; Mock, M. T. *J. Am. Chem. Soc.* **2018**, *140*, 2528.
- ¹⁸ Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. J. Chem. Phys. **2010**, 132, 154104.
- ¹⁹ (a) Tao, J.; Perdew, J. P.; Staroverov, V. N.; Scuseria, G. E. *Phys. Rev. Lett.* **2003**, *91*, 146401. (b) Weigend, F.; Ahlrichs, R. *Phys. Chem. Chem. Phys.* **2005**, *7*, 3297.
- For the P₃BFeN_xH_y and related systems, this combination of functional and basis sets is able to reproduce not only crystallographic details, but also experimentally measured singlet-triplet gaps, reduction potentials, and N–H BDFE's, as described in reference 16.
- ²¹ In all cases where the basicity of P₃^BFeN_xH_y intermediates has been evaluated, they are predicted to be readily protonated by the anilinium triflate acids employed (see SI for details).
- ²² DFT calculations suggest that almost all of the P₃BFeN_xH_y intermediates on the N₂RR pathway have N–H bonds stronger than the C–H bond in Cp*(exo-η⁴-C₅Me₅H)Co⁺, suggesting that, at least thermodynamically, the formation of these N–H bonds by PCET is favorable. See reference 16.

- ²³ The reactivity of ring-functionalized Cp* rings has been discussed previously in the context of electrocatalytic HER by 4d and 5d metals, but via a mechanism involving hydride transfer, rather than via PCET. See: (a) Pitman, C. L.; Finster, O. N. L.; Miller, A. J. M. *Chem. Commun.* **2016**, *52*, 9105. (b) Quintana, L. M. A.; Johnson, S. I.; Corona, S. L.; Villatoro, W.; Goddard, W. A.; Takase, M. K.; VanderVelde, D. G.; Winkler, J. R.; Gray, H. B.; Blakemore, J. D. *Proc. Natl. Acad. Sci.* **2016**, *113*, 6409. (c) Peng, Y.; Ramos-Garcés, M. V.; Lionetti, D.; Blakemore, J. D. *Inorg. Chem.* **2017**, *56*, 10824.
- ²⁴ Productive N–H bond formation via PCET with models of late-stage N₂ fixation intermediates (i.e., M≡N or M–NH₂) has been observed previously: (a) Scepaniak, J. J.; Young, J. A.; Bontchev, R. P.; Smith, J. M. Angew. Chem. Int. Ed. 2009, 48, 3158. (b) Pappas, I.; Chirik, P. J. J. Am. Chem. Soc. 2015, 137, 3498. (c) MacLeod, K. C.; McWilliams, S. F.; Mercado, B. Q.; Holland, P. L. Chem. Sci. 2016, 7, 5736. (d) Lindley, B. M.; Bruch, Q. J.; White, P. S.; Hasanayn, F.; Miller, A. J. M. J. Am. Chem. Soc. 2017, 139, 5305.
- ²⁵ Marcus, R. A. J. Chem. Phys. **1956**, 24, 966.
- ²⁶ Iordanova, N.; Decornez, H.; Hammes-Schiffer, S. J. Am. Chem. Soc. 2001, 123, 3723.
- ²⁷ We have assumed a PT-ET mechanism in which ET is rate limiting based on significantly lower reorganization energies and barriers for PT compared to ET. See SI for full description.
- ²⁸ Koelle, U.; Infelta, P. P.; Graetzel, M. Inorg. Chem. 1988, 27, 879.
- ²⁹ Call, A.; Casadevall, C.; Acuna-Pares, F.; Casitas, A.; Lloret-Fillol, J. Chem. Sci. 2017, 8, 4739.
- ³⁰ Very recently there has been a study of electrocatalytic N₂RR under ambient conditions in ionic liquids with Fe nanoparticles that reports FE's for NH₃ as high as 60%: Zhou, F.; Azofra, L. M.; Ali, M.; Kar, M.; Simonov, A. N.; McDonnell-Worth, C.; Sun, C.; Zhang, X.; MacFarlane, D. R. *Energy Environ. Sci.* **2017**, *10*, 2516.

- ³¹ We believe that the quasi-reversible nature of the electrochemical couple results from a high reorganization energy, but the couple is fully chemically reversible: Moret, M.-E.; Peters, J. C. *Angen. Chem. Int. Ed.* **2011**, *50*, 2063.
- ³² Due to the extensive diffusion between the working and auxiliary chambers, production of an oxidation product which can diffuse to the working electrode and be re-reduced at -2.1 V vs Fc^{+/0} leads to excessive, nonproductive redox cycling between chambers over the course of the lengthy CPE experiments. Sodium metal as an electrode material provides a suitable solution to this technical challenge, as the product of its oxidation (Na⁺) is stable to the CPE conditions.