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ABSTRACT

Let M (dim(M) = m + n) be an oriented Riemannian manifold and
M a compact oriented submanifold of M. The tube M(r) of radius
r about M is the set of points p that can be joined to M by a
geodesic of length r meeting M perpendicularly. We give a formula
for the volume of M(r) 1in the case M is a naturally reductive
Riemannian homogeneous space (this includes all Riemannian symmetric
spaces) and M 1is such that for each point p of M there is a
totally geodesic submanifold of M of dimension complementary to M

through p and perpendicular to M at p.
To be more specific,

n
1M = 3, h.(p, .
vol(M(r)) < i J(p r)QM(p)

Here hj is a function of the point p € M and the real number r.
Also hj(p,r) is a homogeneous polynomial of degree j in the

components of the second fundamental form of M in M.
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1. Introduction

Let M be a submanifold of the Riemannian manifold M. Then a
fundamental problem in the geometry of submanifolds is to give
invariants of the pair (M,M) that relates the geometry of M to that
of M. One such invariant is the volume of the tube M(r), of radius

r, about M in M.

In the case where ™ 1is a Euclidean space of dimension n + m

and M s compact of dimension n, Hermann Weyl [13] proved that

-1+2k
vol(M(r)) = 2 ¢ M
0<zken 2KoMsm &th(P)QM(D)

where hzk(p) is a polynomial of degree 2k 1in the components of the
second fundamental form (or of the Weingarten map) of M in M. It is
~also possible to express h2k(p) as a polynomial of degree k in the

components of the curvature tensor of M.

The invariants h2k just defined have proven to be useful in
geometry. For example, the first proof of the Gauss-Bonnet theorem for
manifolds of dimension greater than two was given by Allendoerfer and
Weil [1], and used Weyl's formula. Another example where the invariants
h,, are important is the Kinematic formula of Chern [3] and Federer[6].
This shows that it is of some interest to compute the volume of tubes
for more general pairs (M,M) and see if invariants similar to the

h2k defined by Weyl can be defined.

The results of this paper show that in the case M 1is a
“symmetrically embedded" submanifold of a naturally reductive Riemannian
homogeneous space M (definitions below) then it is possible to define,

for each real t and each integer k with 0< k< dim M a function
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p > hk(p,t;M,ﬁ) on M such that a formula for the volume of the tube

M(r) analogous to Weyl's holds. Specifically, if n = dim M, then

n
vol(M(r)) = = [ h (p,rsMH) 0,(p).
k=0

The function hk is a polynomial of degree k in the components of

the second fundamental form of M in M.

In section 2 those standard results on the geometry of manifolds
which will be needed later are given. For the most part, the exposition

follows that of Kobayashi and Nomizu [8].

In section 3, we give formulas to compute the curvature and Jacobi
fields of a Riemannian manifold M in terms of the curvature and
torsion of a connection on M "that preserves the metric of M and has
the same geodesics as the Riemannian connection of M. It is also shown
there is a bijective correspondence between such connections and the
smooth 3-forms on M. The results of this section seem to be new,
however it is possible they are only of interest when the connection in
question is the canonical connection of a naturally reductive Riemannian

homogeneous space. In this case they are well known.

Sections 4 and 5 are both expository. Section 4 gives the results
on the geometry of submanifolds needed in the sequel. Section 5 gives
the results on Riemannian homogeneous spaces that are needed. The

calculations of section 3 are used here.

Section 6 contains the main results of this paper. First the
notion of a symmetrically embedded submanifold of a naturally reductive
Riemannian homogeneous space is defined (definition 6.1). Proposition

6.2 then gives a geometric interpretation of what being symmetrically
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embedded means. The volume of a tube about a compact symmetrically
embedded submanifold is then computed. It is the introduction of the
fields of l1inear maps S(t;U), C(t;U), and S*(t;U) along geodesics
normal to the submanifold which allows the calculation to be done.
These linear maps can also be used to compute the Weingarten map of the

tube. However, this calculation is not done here.

The results of section 7 are algebraic. The basic problem is to
expand det(A+B) 1into a sum by something resembling the bionomial
theorem. This was done by Flanders [5]. He uses the universal
properties of tensor products in his definition of what is written here
as A*B. This makes comparison with formulas in classical notation
hard. The calculations needed to compare the two are done in detail

here.

In section 8, the algebraic results of section 7 are used to expand
the function h(p,t) of the tube formula of theorem 6.14 into terms
hk(p,t) = hk(p,t;M;M) homogeneous of degree k 1in the components of
the Weingarten map of M in M. The functions hk(p,t;M;M) are then
the natural generalization of the invariants defined by Weyl. It is
also shown that, if M 1is a symmetric space then hk(p,t;M;M) vanishes

for k odd.

In section 9 the classical results of Steiner [11] on parallel
surfaces are generalized to hypersurfaces in a naturally reductive

Riemannian homogeneous space.

In the case where M 1is a symmetrically embedded submanifold of
a symmetric space M, it is possible to express the linear maps C(t;U),

S(t;U), and S*(t;U) needed in the tube formula explicitly in terms of
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the Lie algebra of a transitive group of isometries of M. This is

done 1in section 10.

In section 11 a formula relating the invariants
hy (PysP,) s tsMy x Mooty x My)  to the invariants of the pairs (M;,M;)
and (Mz,ﬂz) is given. This generalizes the corresponding result for
the invariants given by Weyl in the case 'M] and Mz are Euclidean.
This gives more evidence that the invariants introduced here are

reasonable generalizations of Weyl's invariants.

In the last section some examples are give.
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2. Connections on the frame bundle of a manifold.

A1l manifolds will be assumed to be Hausdorff, paracompact and of
class C®. If a manifold is not connected, then all connected components
are assumed to have the same dimension. The word "smooth" applied to
either manifolds or maps will mean "of class C*". If M is a manifold,
then TM (also written as T(M)) will be the tangent bundle of M and
TMp (or T(M)p) will be the tangent space to M at p. If f:M-N is

a smooth map between manifolds, then f*p: TMp - TN is the

f(p)
derivative of f at p. The characterization of tensor fields as
objects multilinear over the ring of smooth functions of a manifold will

be used (see [8] vol. 1, page 26).

For the rest of this chapter, fix some manifold M of dimension n
vand a real vector space | of the same dimension as M. We now define
the bundle of linear frames over M, or, more briefly the frame bundle
of M. Foreach p in M, let L(M)p be the set of all linear
isomorphisms of | onto TMp. An element of L(M)p will be called a
frame at p. The frame bundle L(M) 1ds the disjoint union of the L(M)p
with p in M. For each p in M, the set L(M)p is called the
fibre of L(M) over p. Amap m:L(M) > M 1is defined by taking all
elements of L(M)p to p. This map is called the projection of L(M)
onto M. Let GL(n) be the group of all linear automorphisms of the
vector space  with its usual structure as a Lie group. Then there is

a natural right action of GL(M) on L(M) by
(u,a) > u° a,

where u e L(M) and a e GL(n). We now wish to make L(M) into a

smooth manifold in such a way that the projection m and the action of
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GL(m) on L(M) are smooth. By way of notation, for each open subset

U of M Tet L(U) = n (V).

Definition 2.1. Let U be an open subset of M. Then a moving frame

over U 1is a function

e: U~ L(M)
such that:
(1) me e = identity on U;

(2) If ep is the value of e at p, then for all v in @, the

function p ~» ep(v) is a smooth vector field on U.

Remark. Let ®:U - be a diffeomorphism of the open subset U of
M with the open subset ®(U) of m. Then, under the standard
identification of tangent spaces to | with p, the function

.®:U > L(M) defined by

is a moving frame over U. Therefore every point of M is in the

domain of some moving frame.

Proposition 2.2. There is a unique structure of a differential manifold

on L(M) such that:
(1) The projection w:L(M) + M 1is smooth;
(2) the right action of GL(p) on L(M) given above is smooth;

(3) every moving frame e:U - L(M) over some open subset U of M

is a smooth function.

Qutline of the proof. If the three conditions of the proposition hold,

then it is straightforward to check that, for each moving frame
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e: U~ L(M) over some open subset U of M, the map we from

Ux GL(p) onto ﬂ_](U) given by
v, (p,a) = e, ° a

is a diffeomorphism. This determines the smooth structure of L(M) in
the open subset ﬂ_](U) of L(M). By the remark before the proposition,
L(M) 1is covered by such sets. Thus, the smooth structure on L(M) is

unique, provided it exists.

Let ey Uj +L(M) j =1, 2 be two moving frames over the open
subsets Uy, U2 of M. Then it is not hard to check that
: -1
Pe, Pe, (UynUy) x 6LMm) ~ (Uyn Uy) x 6L(n)
~is a diffeomorphism. Therefore, the maps Do where e - is a moving
frame, can be used to define an atlas for L(M). This finishes the

proof,
The proof of the following is left to the reader.

Proposition 2.3. With notation as above,

(1) The dimension of L(M) is n2 + n;

(2) the projection m is a submersion (that is, m , is surjective

u
for all u in L(M));

(3) each fibre L(M)p is a closed embedded submanifold of L(M)
diffeomorphic to GL(p) and the -action of GL(n) on the fibre L(M)

is simply transitive;

(4) the tangent space to a fibre L(M)p at a frame u 1is the kernel

of Teu
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We now define the class of geometric objects on which most of our
calculations will be done. If G 1is a closed subgroup of GL(p),

then G also has a right action on L(M) 1in an obvious way.

Definition 2.4. Let G be a closed subgroup of GL(m). Then a

G-structure on M (also called a reduction of L(M) to G) is an

embedded submanifold P of L(M) such that;

(1) The restriction of the projection m to P is a submersion of P

onto M;
(2) for each p in M the fibre Pp, defined to be Pp = L(M)p n P,

is an embedded submanifold of P such that the action of G on Pp

is simply transitive.
Some elementry facts about G-structures are given in the following.

- Proposition 2.5. Let P be a G-structure on M; then,

(1) The dimension of P 1is dim(M) + dim(G).
(2) Each fibre of P 1is diffeomorphic to G.

(3) If m:P->M 1is the projection, then, for each p in M and u
in the fibre Pu,

).

*U

T(Pp)u = kernel (w

(4) Each point of M has an open neighborhood U and a moving frame
e: U~>L(M) defined on U such that e, € P for all p in U.

(Such moving frames are called sections of P over U.)
Proof. The first three parts are easy.

Because 7 is a submersion of P onto M the implicit function

theorem lets us find a smooth function e: U ~ P, defined in an open



9
neighborhood of any given point of M, with mwee = identity on U.

It is not hard to verify that e 1is a section of P over U.
Examples. (1) It is clear that L(M) dis a GL(n) structure on M.

(2) Recall that a Riemannian metric on M 1is an assignment of an
inner product ( , )p on each tangent space TMp to M, 1in such a
way that if X and Y are smooth vector fields on M, then the

function

p*+<X(pLY(m>p

is smooth. Put an inner product ( , ) on | and let O(y) be the
group of all automorphisms of this inner product. Thus O(n) is
isomorphic as a Lie group to the group of all n x n real orthogonal
matrices. Let M have a Riemannian metric ( , ). Theh, for each p
in M, let O(M)p be the set of all isometries of | onto TMp.
Define 0(M) to be the union of the O(M)p with p in M. Then it
can be verified that 0(M) is an O(p)-structure on M, called the

bundle of orthogonal frames of M.

Conversely, given an O(p)-structure P on M we can define a
Riemannian metric on M by

-1

Koy = (w,uY)

where u 1is any element of Pp and ( , ) is the inner product on

ms this inner product is well-defined because any two frames. in Pp
are related by the right action of an element of O(p). Then P will
be the bundle of orthogonal frames for this Riemannian metric. Thus,
giving an O(m)-structure on M 1is the same as giving a Riemannian

metric on M.



10
(3) Suppose M 1is a complex analytic manifold of complex dimension
m (and thus real dimension n = 2m). Recall that this means that M
has an atlas {Gpa,Ud): aeA} such that for each a e A @ isa
diffeomorphism of the open subset Ua of M onto the open subset
@G(Ua) of C" so that for each pair a,8 € A the function

_].
Py °%g .mg(qxn UB)-+wa(qxn UB)

is holomorphic. If M s such a manifold, then each tangent space
TMp, to M has the structure of a complex vector space. Multiplica-
tion of a tangent vectbr X e TMp by a complex scalar a can be
described as‘fo11ows: Choose a chart &pu,Uu) from the defining

atlas of M with p e Ua, then

aX = G@d);;(a&pu)*px).

" This can easily be checked to be well-defined by using that if ~

a,B €A and p € Ua nu then Gpaocpé1) is complex linear.

& "Pa(p)
Now assume that | 1is a complex vector space. For each p in M,

let C(M)p be the set of all complex linear isomorphisms of | onto
TMp, and let C(M) be the union of all of the C(M)p with p in M.
If GL(C,n) is the group of all complex linear automorphisms of m,
then C(M) s a GL(T,n) structure on m called the bundle of

holomorphic frames over M.

(4) If M dis a complex analytic manifold, then a Hermitian metric
{ )y on M 1is a choice of a Hermitian inner product ( , )p on each
tangent space TMp to M such that for all smooth vector fields X,Y

on M the complex valued function

p*+<X(pLY(pbp
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is smooth. Assume that | is a complex vector space with Hermitian
inner product ( , ) and that U(m) is the group of all complex linear
automorphisms of ( , ). Then it is possible to define a
U(n)-structure U(M) on M 1in a way that should be clear from the
last two examples. This U(p)-structure is called the bundle of

unitary frames over M.

We now record some facts we will need about GL() and its closed
subgroups. Let gg(m) be the Lie algebra of all linear endomorphisms

of m with Lie bracket given by
[A,B] = AB - BA.
Then gg(n) 1is the Lie algebra of GL(n).

~For any A e g¢(m) define eA by its power series

k

eA = 21
k=0

wl>

Then every continuous homomorphism from the group of additive real
numbers to GL(p) is of the form

£ g etA

for some A in gy(m).

If G 1is a closed subgroup of GL(n) then, by the "closed
subgroup theorem" of E. Cartan ([12] Theorem 3.42, page 11), G is
an embedded submanifold of GL(p). Let 1 be the identity element of
GL(m). Then 07, the tangent space to G at 1, is the Lie algebra
of G and is a Lie subalgebra of gg¢(n). By parallel translating the
tangent space to G at 1 to the origin (zero element) we can and

often will view elements of QT as linear transformations on p. It
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should also be noted that ¢7 1is the set of all A in gg(m) such

tA

that e is in G for all real t.

The adjoint representation of G on ¢ is given by a » Ad(a)

where

Ad(a)A = aAa'].

It is easy to check that
eAd(a)A - aeA —1.

a

Convention 2.6. Unless stated otherwise, for the rest of this chapter

"P" will denote some fixed G-structure on M where G is some fixed

closed subgroup of GL(n) with Lie algebra (7.

Definition 2.7. (1) For each a in G define right translation by

a on P by

ra(u) = ua

*
(2) For each A in ({7 define the fundamental vector field A on
P by

* d tA
A (u) = o ue
g

Proposition 2.8. (1) The flow of the vector field A* is retA.
(For the definition of the flow, or local 1-parameter group generated

by a vector field see [12] 1.49 Definitions, page 39.)
(2) For Ae@y and aeG
_ *
rsh = (Ad(a A

b
(3) The map A A is a Lie algebra homomorphism of {7 into the

Lie algebra of all smooth vector fields on P.

*
(4) For each u in P the map AH A (u) ids injective.
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(5) For each u 1in P the tangent space to the fibre P, at u is

T(P_ ), = (A (u): A edr.

mu

Proof. (1) It is easy to check that

r o aor =r .
etA esA e(t+s)A

The result now follows from the definition of a flow.

*
(2) The tangent vector to the curve tr uetA at t=0 1is A (u).
Therefore
* _-d tA
ry A () = dt[t=0ra(ue )
= é%l vaa letha
t=0

-1
_ §%1 uaetAd(a YA
t=0

(Ad(a~M)A) (ua).

This proves (2).

(3) For each u in P define a map oy’ G->P by gu(a) = va. The

tangent vector to the curve t+~ etA at t =0 is A; therefore,

_d tA
ah = dtltzocue
d tA
= 0 ue
I
= A" (u).
*
The map Ty is linear, which shows A~ A (u) ds linear for all u.

*
It follows that Aw A s linear.
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*
Let g, be the Lie derivative with respect to A (see [12],
pages 69 and 70 for the definition of Lie derivative and for a proof of

the equality gXY = [X,Y]). Using (2) and the fact that the flow of

*
A dis .r tAs e have

e
[A",8"3(u) = (£, (u)

* JtA
= aTC-]tzore_tA*B (ue™™)

(Ad(e®™B)* (u).
t=0

1
o
il

*
We have just shown the map Cr C (u) to be linear from (7 to
T(P)u. Therefore, if t+ Ct is any smooth curve in ¢ it follows

that

*

()" (u) = (Fc,) " (u).

Q.
d'lQ'

This yields

(Ad(e*M)B)” (u)
t=0

[A",87(u) = &

Sk

ad(e*™)8) ™ (u)
t=0

1]
Pam)
o
t

*
[A,B] (u).
*
This completes the proof that A+ A is a Lie algebra homomorphism.

(4) Let Ae@r and u e P with A*(u) = 0. Then because the flow
of A" is r ., it follows that
e

uetA

]

r ,n(u)
etA
= 1

for all real t. The action of G on fibres is simply transitive;

therefore e =1 for all t. This implies A = 0. This along with
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Tinearity of the map A H-A*(u), proves (4).

(5) By (3) and (4) we see that {A*(u): A e 7} s a linear space of
the same dimension as G. The vector space T(Pﬂu)u is also of this
dimension. Thus to show the two are equal it is enough to show the
first is a subspace of the second. If a e G then it is clear that

mer., =. Consequently

A" :
Tay (u) a€1t_onue

tA

1

ol

&
=)
=

Thus
{A*(_u) tAeltc Kerne](wau)

= T(P_ )u.

mu

This finishes the proof.

Definition 2.9. Vectors tangent to some fibre Pp of P will be

called vertical.

Remark. It will be convenient to use the formalism of vector valued
differential forms. The following 1list of definitions is given so as
to fix our conventions on what constants are used in the definitions of
exterior derivative and wedge product. Let V be a real vector space.
Then a V-valued r-form @ on M is a smooth assignment for each p
in M of an r-linear alternating function Wy on TMp with values in
V. When r =0, @y 1is defined to be a smooth function with values in
V. In the case V =R, y is just called an r-form. The exterior

derivative dy of  is the V-valued (r+1)-form given on smooth
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vector fields XO’ 8% ¢ Xr by

XX ) = 2 D X0, Xeyett X))
0 r Ofﬁff i 0

.+. N
TREED 20 3 DEAETAS U0 Vi IS SUUUUES SUURU YRS O B
0<i<j<r § #5922 i J r

where =~ means the term is omitted. For r =0 and 1 this becomes
dw(X) = Xw,
dw(X,Y) = Xw(Y) - Yu(X) - w([X,Y]).

If w is a V-valued r-form, g 1is a W-valued s-form and ( , )
a bilinear function on V x W with values in the vector space S
then the wedge product of w and g is the s-valued (r+s)-form

given by

(w/,\e)(X] ""’Xr‘+s)

1 . .
= TS!_§(-] )U<m(XG(] ),. o ,Xo‘(r)).,e(xc(r_}_-l),...,Xo_(r+s))>

where the sum is over all permutations o of the set {1,...,r+s} and

(-1)° is the sign of the permutation . It can be checked that
d(wpey = (duwdey + (-1)(whdg).

In the case in which both V and W are the real numbers and ( , )

is multiplication of real numbers, we just write wag for <(wéey.

Definition 2.10. A comnection on P is a smooth @ -valued one-form

w on P that satisfies the following two conditions;
(1) The value of w on vertical vectors is given by
*
wu(A (u)) = A

for all A in ¢y and u in P.
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(2) w transforms under the action of a e G by

r:w = Ad(a'])w.

Definition 2.11. If w 1ds a connection on P then for each u e P

let
).

Hu = kerne](ﬂ*u

Then Hu is called the space of horizontal vectors at u or more

briefly the horizontal space at u.

Proposition 2.12. Let {Hu: u € P} be the set of all horizontal

vectors, for the connection w on P. Then,
(1) '{Hu: u € P} 1is a smooth distribution on M.

(2) Forall aeG and uebP

-
1]
=

a*Hu au
(3) Forall ueP

T(P) = Hu<3 T(Pnu)u (direct sum).

u

Conversely, let {Hu: ue P} satisfy (1), (2) and (3) and define w
to be the ¢y-valued one-form on P given by wu(A*(u)) = A for A
in 07 and wu(Xu) =0 if Xu is in H .. Then w s a connection

on P and the horizontal spaces defined by w are {Hu: ue Pl
Proof. See proposition 1.1 on page 64 of vol. 1 of [8].

Remark. A connection is often defined to be a smooth distribution
{Hu: u € P} satisfying (1), (2) and (3) of the last proposition. Then
w 1s defined as above and is called the connection form of the

connection.
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(2) Let w be a connection on L(M). Then w is the extension of a
connection on P if and only if, for each u in P, the space ﬁh

of horizontal vectors determined by w at u 1is tangent to P.

Proof. The first part is a special case of proposition 6.1 on page 61

of vol. 1 of [8]. The second part is straightforward.

Remark. Some of the definitions below, such as parallel translation
along a curve or the curvature and torsion tensors on M, can be
given in terms of either a connection w on P or the extended
connection on L(M). It will be left to the reader to show these

definitions are independent of which of these two connections is used.

Definition 2.14. Let w be a connectionon P and c: (a,8) - M be

any piecewise smooth curve. Then a piecewise smooth curve ¢C: (a,B) + P
is called a horizontal 1ift of ¢ if and only if mo c=c and E'(t)

is horizontal for all t.

Proposition 2.15. Let w be a connection on P, c: (0,8) >~ M a

piecewise smooth curve, t, e (asB) and u € Pc(t ) Then there is a
0
0) = uo. If aeG,

then the horizontal 1ift y: (a,8) - P with Y(to) = Uya is given by

unique horizontal 1ift ¢ of ¢ to P with c(t

y(t) = c(t)a.

Proof. This follows from proposition 3.1, page 69 of [8].

Definition 2.16. Let w be a connectionon P, c: (a,B) > M a
piecewise smooth curve and tys t, e (a,8). Then parallel translation

is defined by

along ¢ from TMc( t

5)

. &(t,)8(t) !
th 2 ]

1
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~ t
where ¢ 1is any horizontal 1ift of ¢ to P. Clearly Tt] is a
2

linear isomorphism of TMc( onto TM

t]) c(tz)‘

By the last proposition any other horizontal 1ift of ¢ 1is of
the form t~ c(t)a. It follows that parallel translation is independent
of the choice of the horizontal Tift of c. It is also easy to check
that if tys ty, ty are in (a,B) then
t2 t] t1

Ty Ty =T
t3 t2 t3

§
Definition 2.17. Let Y be a smooth vector field defined on some open

subset U of M and X(p) a tangent vector to M at p e U. Choose

a smooth curve c: (-e,e) -~ U for some € >0 with c'(0) = X(p).

Then define

_ i .
vX(p)Y T dt g ( )

t. : . ’
where To TMc(t) > TMc(O) is the parallel translation a1qng ¢ defined
by the connection w.

Remarks. (1) For all t e (-e,e) the vector TSY(c(t)) is in the
t

finite dimensional vector space TMp. The derivative é%—TOY(t) is

computed as the tangent vector to a curve in a vector space.

(2) The vector VX(p)Y is independent of the choice of the curve c

with c'(0) = X(p). See pages 114 and 115 of vol. 1 of [8].

(3) To compute vX(p)Y it is enough to know the values of Y along

any curve c¢ that fits X(p) in the sense of the definition.

Proposition 2.18. The map (X(p),Y) H'vx(p)Y defined above satisfies

the following five relations:
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(M vy (et = 7%, (0)Y * I,y ()Y

(2) ch(p)Y = CVX(p)Y for all realv &,

(3) oy (p)*Y2) = vy (Y1 * vx(p)Yer
(4) VX(p)(bY)’= b(p) VX(p)Y + (X(p)b) Y(p) for all smooth real valued

b with the same domain as Y.

(5) If X and Y are smooth vector fields on the open subset U of

M, then so is p»r §X( )Y.

P
Proof. See proposition 1.1, page 114 of vol. 1 of [8].

Definition 2.19. Let g be the set of all pairs (X(p),Y) where Y

is a smooth vector field on some open subset of M and X(p) is a
vector tangent to M at some point p in the domain of Y. Then a
function (X(p),Y) H'Vx(p)y defined on g and satisfying the five

~ conditions of.2.18 is called a covariant derivation on M. If ¢ is
defined from a connection w then ¢ 1is called the covariant

derivation of w.

Proposition 2.20. (1) Two connections on P with the same covariant

derivation are equal.

(2) Every covariant derivation on M 1is the covariant derivation of a

(unique by (1)) connection on L(M).
Proof. See proposition 7.5, page 143 of vol. 1 of [8].

We now describe parallel translation in terms of the covariant

derivation of a connection.

Definition 2.21. Let y be the covariant derivation of the connection

w on P, and c: (0,8) = M a smooth curve. Then a vector field
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t » Y(t) along c is called parallel if and only if

(Vc'(t)Y)(t) =0

for all t 1in (a,B).

Proposition 2.22. Let w be a connection with covariant derivation ¢

on P, c¢c:(a,8) > M a smooth curve, and tO e (a,B). If g is the
parallel translation defined along ¢ by w, then every parallel

vector field t’+‘Y(t) along c¢ is of the form

>

Y(t) = TtOY

0

for some Y0 in TMc(tO)’ Therefore, for every YO in TMc(tO)

there is a unique parallel field t& Y(t) along c with Y(tO) =Yy
The vector Y(t) is called the parallel translate of Y, along c to

..c(t).

t
Proof. If Y(t) = r,0Y, then for any t; in (,8)

d t
Verp yV(E) = 55 Ty Y(t)
c'(t;) dtlt=t1 t,
4y Loy
@t gty BT E 0
£
d 0
= 4 .0 Y
dtlt=,C1 t, 10
- 0.

Therefore Y(t) ds parallel. Let tw~ Y(t) be parallel along c¢ and

let X], cees Xn be a basis of TM Define fields

c(to)'
x](t), cees xn(t) along ¢ by

t

__0
Xo(t) - Tt X

i
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Then we have just shown each Xj(t) is parallel along c¢. The map
1

Tto from TMC( to TMC( is a linear isomorphism,therefore

t t)

o)
X](t), cees Xu(t) is a basis of TMc(t) for all t 1in TMc(t)’
Whence,

n
Y(t) = E]L),](t) X'i(t)
1:

for some smooth functions Yps eees Yy ON (a,8). By proposition 2.18,

we have

D= VC'(t)Y(t)

n n
1?}1‘),.:(1:) X.I(t) + 1§]1}i(t) VC(_t) X'i (t)

n
Dyile) % (0).

This shows g% = 0, so each W is constant. Consequently,

Y(t) =

I
o
[y
-
)
(—1-
O
~—
><

i
Ry
—do
P
‘-’-
o
S
2
ct

I
-
—~
(—'-

This finishes the proof (with Yg = Y(to)).

The next several definitions are devoted to defining the curvature
and torsion forms on P and the corresponding curvature and torsion

tensors on M.

Definition 2.23. The canonical form g on P is the p-valued one-form



on P given by

Remark. The canonical form g is defined independently of any
connection on P and the kernel of 8y is the space of vertical

vectors at Uu.

Proposition 2.24. If g 1is the canonical form on P then g

transforms under the . action of G on P by

Proof. Straightforward.

Definition 2.25. Let o be a k=formon P with values in some vector

space V. Then the covariant differential Da of o defined by the

connection w on P s the V-valued k + 1 form given by

(Do) (XysenesXyyq) = da(hXy,..ohX, ,4)

where d is exterior derivative and X = hX + vX is the decomposition
of X 1into its horizontal component hX and its vertical component

vX defined by the connection w.

Definition 2.26. Let w be a connection on P and D the covariant

differential defined by w. Then:
(1) The torsion form ® of w 1is the p-valued two-form given by
® = Dg.
(2) The curvature form Q of w is the {y-valued two-form given by

Q = Dw.
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The proof of the next proposition is straightforward.

Proposition 2.27. The torsion form @ and the curvature form q of

a connection w on P transform under the action of G by

]
ra @ = a @9
r: a=Ada") g

for a in G.

Definition 2.28. Let w be a connection on P. Then, for each p e M,

X e TMp and U e Pp we define the horizontal 1ift Q(u) of X to u

by letting X(u) be the unique horizontal vector at u with
W*UX(U) = X.
Remark. It is easy to check using 2.12 (2) that ra*x(u) = X(ua).

Definition 2.29. Define the torsion tensor T and the curvature tensor

R of a connection w on P by
T,06Y) = u(,(K(u),¥(u))
R (Y)Z = wlay(X(u),Y(w)u™'2)

where X,Y,Z € TMp, mu = p and i(u), ?(u) are the horizontal 1ifts
of X and Y to P.

Elementary calculations using proposition 2.27 and the remark
preceding the definition show that the definitions are independent of

the choice of u with mwu = p.

Proposition 2.30. The two tensors T and R defined above are related

to the covariant derivation y of the connection w by
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T(X,Y) =9, Y - vyX - [X,Y],
R(X,Y)Z = VXVYZ - vaXZ - V[X,Y]z
where X,Y, Z are smooth vector fields definéd on some subset of M.
Proof. This is theorem 5.1, page 133, vol. 1 of [8].

We now define the covariant derivatives of (VXT) and (vXR)
in the usual way, which is by requiring the product rule to hold, i.e.,
(wyTIY,Z) = 9y(T(Y,2)) - Tloy¥,Z) - T(Y.wyZ),
(wgRIY.Z)W = 9y (R(Y.ZW) - Rz Y, ZW
-R(Y,7yZW = R(Y,Z)y M
where Y, Z, W are smooth vector fields on some open subset of M.

Proposition 2.31. Let T be the torsion tensor and R the curvature

tensor of a connection w on P. Then the following hold:

First Bianchi Identity.

F(R(X,Y)Z) = G(T(T(X,Y),Z+ (vyT)(Y,Z))

Second Bianchi Identity.

G((7yR) (Y, 1)+ R(T(X,Y),2)) = 0

where 4 is cyclic sum over X, Y and Z.

Proof. This is theorem 5.3, page 135 of vol. 1 of [8].

Definition 2.32. Let w be a connection on P with covariant

derivation y. Then a smooth curve g: (a,B) = M 1is a geodesic of w
(or of y) if and only if tw g'(t) 1s a parallel vector field along

g. That is, g 1is a geodesic of w 1if and only if

vgl(t)gl(t) = 0
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for all t in (a,B).

Definition 2.33. Let w be a connection on P and v a vector in

m. Then the basic vector field B(v) on P determined by v ep is

defined by letting B(v)., be the unique horizontal vector at .u with

u

'rr*uB(v)u = u(v).

An equivalent definition is

3(v), = 6(V)

(u).

Proposition 2.34. A curve g: (a,8) > M 1is a geodesic for the

connection w on P if and only if g is of the form me+y, where
vy : (a,B) = P is an integral curve of one of the basic vector fields
B(v). Consequently, for each tangent vector X(p) to M there is a
unique geodesic g defined in a maximal connected neighborhood of zero

in the real numbers R with y(0) = p and y'(0) = x(p).

Proof. See proposition 6.3 and theorem 6.4 on page 139 of vol. 1 of

[8l.

Definition 2.35. Let w be a connection on P then the exponential

map determined by w is defined as follows. For X e TMp write

thr expp(tX) for the unique geodesic with

Xy =

expp(o ) =0p

é%j exp_(tX) = X.
t=0 P

Then the exponential map from TMp to M is the function

X > expp(X) = expp(]- X).

This is defined in a neighborhood of zero in TMp.
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We will need to take derivatives of the exponential map. This task
is reduced to computations with ordinary differential equations by the

following definition and proposition.

Definition 2.36. Let g: (a,b) + M be a geodesic for a connection

with covariant derivation y. Then
(1) A vector field Y(t) along g 1is a Jacobi field along g 1if and

only if it is a solution to the Jacobi equation

VZ'(’t)Y‘(t) +Vg'(t)(T(Y(f),9'(t))) + R(Y(t),g'(t))g'(t) = 0

g’
along g. Here T and R are the torsion and curvature tensor of v.

(2) A variation of g through geodesics is a smooth function
a: (-e,e) x (a,b) > M (for some € > 0) such that «(0,t) = g(t) and

for all s e (-e,e) themap tw o(s,t) is a geodesic.

Proposition 2.37. Let g: (a,h) > M be a geodesic for a connection

with covariant derivation y.

Then:

(1) A Jacobi field Y along g is determined by the values of Y(t0)
and (vg.(t)Y)(tO) for any tg € (a,b) and these values can be

specified arbitrarily.

(2) If a:(-e,e) x (a,b) > M 1is a variation of g through geodesics
then t H~%%(O,t) is a Jacobi field along g.
Proof. (1) The Jacobi equation is a homogeneous linear second order

ordinary differential equation; therefore, (1) follows from standard

results.

(2) See theorem 1.2, page 64 of vol. 2 of [8].
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Proposition 2.38. Let ¢ and ¢' be covariant derivations on M. For

smooth vector fields X and Y on M, let
C(X,Y) = VXY - ViY'

Then C 1is a tensor field of type (1,2) (called the difference tensor
of v andy'). The covariant derivations y and y' have the same

geodesics if and only if C 1is alternating.
Proof. See proposition-1.5 on page 271 of vol. 2 of [10].
We now turn to connections on Riemannian manifolds.

Proposition 2.39. Let M be a Riemannian manifold with metric ( , )

and let 0(M) be the bundle of orthogonal frames over M. If w is a

connection on L(M) then the following are equivalent:
(1) w 1is the extension of some connection on O0(M).

(2) Parallel translation along any smooth curve in M is an isometry

between tangent spaces of M.

(3) If ¢ 1is the covariant derivation of w and X, Y, Z are

smooth vector fields on M then
XY,Z) = QVXY,Z> + (Y,VXZ).

Proof. The equivalence of (1) and (2) is the content of proposition 1.5

on page 117 of vol. 1 of [8].

Suppose (2) holds and let Y,Z be smooth vector fields on M.
Let X be any tangent vector to M and choose a smooth curve
c: (-e,e) > M such that c¢'(0) = X, Let ¢ be the parallel translation
along c. Choose an orthonormal basis s +ves € of TMc(O) and let

_ 0 0 . : .
ej(t) = T8y Because T4 is an isometry, e](t), e en(t) is an
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orthonormal basis of TMe(t)’ for all t. There are smooth functions

Yis vees Y and Zys +ees Z, ON (-e,e) with
Y(c(t)) = 2 y;(t) ej(t),
n
Z(c(t)) = izazj(t) ej(t).

Therefore,

c'(e)(Y(e(t)),z(c(t))y

_d !

5 a_€<1§]y1( ) e, (t), j§1zj(t) e;(t))
dFy(t) z,(t)

= 2 Z
ok K k

n

2 yi(t) z(0) + zyk(t) Le)

i=

=

<2yUﬂe(ﬂ,EZ(ﬂe(ﬂ>
‘: J.—

n
+ (D y;(t) ey(t), 52%25(f) e;(t)
= <vc-(t)Y(C(t)),Z(C(t)))>

+ (Y(c(t)), Vc'(t)x(c(t))>'
Noting that c¢'(0) = X shows (2) implies (3).
Now assume (3) holds. Let c:[a,b] > M be a smooth curve and -

the parallel translation along c. Let Y,Z be vectors in TMc(a)‘

Then

d
EE<T2Y’Ti 7y = c’(t)(TiY,Ti 7y



30

= <VCI (t)TiYaTi Z)

a a
YV ()T D
= 0.

Therefore (T%Y,Ti Zy is constant as a function of t. This shows

(10 Ys1p Zy = (Y.Z), whence 71 s an isometry of TM_ with TM.

Thus (3) implies (2).

Definition 2.40. A connection on a Riemannian manifold that satisfies

the three conditions of the last proposition is called metric

preserving.

Proposition 2.41 (Fundamental lemma of Riemannian Geometry).

Every Riemannian manifold has a unique metric preserving connection

with vanishing torsion.

“ Remark. This connection is called the Riemannian connection or the

Levi-Civita connection.

Proof. See theorem 2.2 on page 158 of vol. 1 of [8].

Definition 2.42. Let M be a Riemannian manifold. Then the geodesics
of M are the geodesics of the Riemannian connection on M. The
curvature tensor of M 1is the curvature tensor of the Riemannian
connection. If R is the curvature tensor of M and P is a two-
dimensional subspace of some tangent space TMp then the sectional

curvature of M at P s

K(P) = (R(X,Y)Y,X)

where X,Y 1is any orthonormal basis of P. An easy calculation shows

this is independent of the choice of the basis X,Y.
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Proposition 2.44. If M 1is a Riemannian manifold with metric ( ,

and curvature tensor R then for all X, Y, Z, W tangent to M at

some point

(1) (RIX,Y)Z,WYy + (Z,R(X,Y)Wy = 0.

(2) (R(X,Y)Z,Wy = (R(Z,W)X,Y).

Proof. See proposition 2.1 on page 201 of vol. 1 of [8].

Remark. (1) of the last proposition tells us that for each X, Y ¢ TMp
the linear map R(X,Y) on TMp is skew-symmetric with respect to the

inner product ( , )p.

Definition 2.45. Let M be a Riemannian manifold with metric ( , )

and c: [a,b] + M a smooth curve. Then the Zength of ¢ is defined

to be the number
b
L(c) = [ |¢ (t)]dt
a

where

I (2)]] = WK (1), (1)) .

If p and g are points of M then the distance from p to q 1in
M s defined to be the infimum of the set of numbers L(c) where ¢

is a curve from p to gq.

Proposition 2.46. The geodesics in a Riemannian manifold locally are

the curves of minimum length, in the sense that every point of M has
an open neighborhood U such that any two points p and q of U
can be joined by a unique geodesic contained in U and the length of

this geodesic is the distance between p and q.

Proof. See proposition 3.6 on page 116 of vol. 1 of [8].
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3. Connections preserving the metric and geodesics of a Riemannian

manifold.

It will be convenient to speak of both a connection on the frame
bundle L(M) and of its covariant derivation as a connection. Because
of the bijective correspondence between covariant derivations and
connections on L(M) given by proposition 2.20, this should not lead
to any confusion. For the rest of this section "M" will denote a

Riemannian manifold with metric ( , ).

Definition 3.1. A connection with covariant derivative D will be

called a geometric comnection if and only if D preserves the metric

of M and has the same geodesics as the Riemannian connection on M,

We will refer to D and not its connection as the geometric

connection. Examples of geometric connections will be given below.

Proposition 3.2. Let D be a geometric connection on the Riemannian

manifold M. Let T be the torsion tensor and B the curvature tensor
of D. Let R be the curvature tensor of the Riemannian connection v

on M. Then, for all smooth vector fields X, Y, Z on M:
(1) The connections D and vy are related by

Y = DY - %—T(X,Y).

VX X

(2) The torsion tensor T of D satisfies
(T(X,Y),Zy + (Y,T(X,Z)y = 0.
(Thus the map Y » T(X,Y) is skew-symmetric.)
(3) R(X,Y)Z = B(X,Y)Z
- HDTHY.Z) + H(D,T)(X,2) - 5 T(T(X,Y),Z)
TOGT(Y,2)) - 5 T(Y,T(X,2))

ot

+

Bl— N
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(4) R(X,Y)Y = B(X,Y)Y + %(DYT)(X,Y) - %—T(T(X,Y),Y).

(5) The sectional curvatures of M can be computed by

RIGYIY,XY = (BOLYYXY + AIT(X, V)2,

Proof. (1) Let C(X,Y) = DyY - v,¥Y be the difference tensor of D
and y. The connections D and y have the same geodesics; therefore,

proposition 2.38 yields that C(X,Y) 1is alternating. Whence,

T(X,Y) DXY - DYX - [X,Y]

VXY + C(XaY) = VYX + C(st) = [XaY]

(VXY = VYX - [XsY]) ¥ ZC(XsY)

2C(X,Y),

where we have used that vy has vanishing torsion. This shows
C(X.Y) = 3 T(X,Y)

and proves (1).

For (2) we use that both v and D are metric preserving. For

any smooth vector fields X, Y, Z

X(Y,Zy = (DyY,Zy + (Y.DyZ)

@y + 3 TOGY)Zy + (YagyY + 3 TOGL2))
= (@, V.2) * (YaryDy + HCTOGY)LD) + (Y, T(K,2)Y)
= KYLZy + HUTIGY)LZY + (TG,

Therefore,

(T(X,Y),Zy + (Y,T(X,Z)y = 0.

(3) Let X(p), Y(p), Z(p) be vectors tangent to M at some point p.

Extend these to smooth commuting vector fields X, Y, Z defined on a
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neighborhood of p. Then

R(XaY)Z = VXvYZ - VYVXZs
B(X,Y)Z = DXDYZ - DYDXZ,
T(X,Y) = DXY - DYX'

Now compute

R(X,Y)Z = vyoyZ - vywyZ

DX(DYZ-% T(Y.2)) - 5 T(X, DYZ—%T(Y 7))

- Dy(DyZ- 3 T(X,2))+ % T(Y,0y2- T T062))

X

] 1 1
DyDyZ = 5Dy T)(Y,Z) - = T(DyY,Z) - zH¥D,7)

- FTHQD) + § TOLT(Y,D))

1 1
- DYDXZ + ?(DYT)(X,Z) + ?-T(DYX,Z) +-§

(DyDyZ- D,D,Z) - —( (D7) +

- L1

5 Y- D X,Z)

X

+ 7 TOGT(Y,2)) - § T(Y,T(X,2))

B(X,Y)Z - H{D,TH(Y,Z) + D, T)(X,2) - 5 T(T(X,Y),2)

1

+ 7 TX,T(Y,Z)) - %‘T(Y’T(X’Z))'

Evaluation at p finishes the proof of (3).
(4) Set Z =Y in (3) to get

MLHY=MLHY-QDUWJ)+%WUMJ)-%NHLHJ)

4]

£ 7 TOGLTINLY)) = 7 TO,TOGY)).
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But T(Y,Y) = 0 and

(DyT)(Y,Y) = Dy(T(Y,Y)) = (T(D,Y,Y)+T(Y,D,Y))
= 0. |
Consequently,

R(X,Y)Y

B(X,Y)Y + HD,T)(X,Y) - £ T(T(X,Y),Y)
+ 7 T(TOGLY),Y)
= BOGYY + MO T)(GY) = 1 T(T(RY),Y).
This proves (4).
To prové (5), use (4) to get
RUGYIYSXy = (BIXYIY, Xy + % <Dy T)(6,Y) )
- 7 (TTIXY),Y) ).

By (2) (T(X,Y),X) =0, whence

((DyTI(X,Y) Xy = Y(T(X,Y),X) - (T(DyX,Y),X)

= (T(X,DyY),Xy = (T(X,Y),DyX)

0 + (T(Y,DyX),Xy = 0 + (DX, T(Y,X))
- 0’

where (2) has been used in this calculation.

Also by (2)
(TETEX,Y)LY) Xy = =(T(Y,T(X,Y)),X)
= (T(X,Y),T(Y,X))
= =(T(X,Y),T(X,Y))

TGN
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The above expression for (R(X,Y)Y,Xy thus reduces to

BOGYYXY + TG

This finishes the proof.

Proposition 3.3. Let g:[a,b] + M be a geodesic and let U(t) = g'(t)
be the tangent vector field along g. Then the Jacobi field tw X(t)

along g defined by
2
(1) ()X + ROGUU = 0 X(a) = Xg»lvX)(a) = X,

can be defined in terms of the geometric connection D by

)2

(2) (DU X + DU(T(X,U)) + B(X,U)Uu = 0

X(a) = X, (DX)(a) = X, + %—T(U,XO)

where R is the curvature tensor of ¢y and T is the torsion and B

the curvature tensor of D.

Proof. By (1) of the Tast proposition

1 1 1
Dy(DyX =7 T(U,X)) - 5 T(U,D X - 5 T(U,X))

)X - 3 Dy(T(U,X)) - 5 T(UDX) + 3 T(U,T(UX)).

(v,)°X

= (D,

Using (4) of the last proposition and that DUU =0 we find

1

(7)) + ROGUIU = (D)%X = 5 DY(T(U,X)) - 5 T(U,D0)

|

T(U,T(U,X)) + BIX,U)U + D, T)(X,U) - 7 T(T(X,U),U)

=

1 1
DU(T(X,U)) % ?-T(X,DUU) % §-T(DUX,U)

1

1
2

+ 2D, T)(X,U) + B(X,U)U
7 Dy(T(X,U)) + % Dy(T(X,U)) + B(X,U)U

]
—
o

(e
S
nN
>
o

1]
—
O

=
~
[AS]
><
+

Dy (T(X,0)) + B(X,U)U.
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Also note

X(a) = Xg» (wyX)(a) = (DX)(a) - 3 T(U,X(a)) = X,

if and only if

X(a) = Xg» (DyX)(a) = X; + 5 T(U,X,).

This finishes the prodf.

The rest of this section is devoted to proving there is a bijective
correspondence between the geometric connections on M and the smooth

three-forms on M.

Lemma 3.4. Let T be a smooth tensor field of type (1,2) on M such
that, for all X, Y, Z tangent to M at some point, the following
hold

(1) T(X,Y) + T(Y,X) =0
(2) (T(X,Y),Zy + (Y,T(X,Z)) = O.
Then the connection D defined by
DY = gyY + 2 T(X,Y),

where vy is the Riemannian connection is a geometric connection with
T as its torsion tensor. Thus there is a bijective correspondence
between the geometric connections on M and the tensor fields of type

(1,2) satisfying (1) and (2).

Proof. Because T 1is alternating it follows from proposition 2.38
that D has the same geodesics as y. The following computation shows

that D is metric preserving.
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XYLZYy = (oyYsZ) + (YavyZ)
= @Dy * (Tawygdy + 5 CTGY)Zy + 4 (Y, T(X,2))
= @y 3 TOLY), Ty + (Yogy 2+ 1 T(X,D))
= (DyY,Zy + (Y,DyZ).
Therefore D 1is geometric. That T is the torsion tensor of D now

follows from proposition 3.2 part (1). This finishes the proof.

Lemma 3.5. For every smooth three-form o« on M there is a unique
smooth tensor field T, of type (1,2) satisfying (1) and (2) of the

last lemma with
a(X,Y,Z) = (Ta(X,Y),Z).

Moreover, every smooth tensor field T of type (1,2) satisfying (1)

and (2) of the last proposition is Ta for some smooth three-form «a.

Proof. It is easy to see there is a unique tensor field Ta of type
(1,2) with
a(X,Y,Z) = (Tu(X,Y),Z).

Then o(X,Y,Z) + a(Y,X,Z) = 0 dimplies (1) and a(X,Y,Z) + a(X,Z,T) =0
implies (2) of 3.4.

If T 1is a tensor field of type (1,2) satisfying (1) and (2) of
3.4 then define

a(X,Y,Z) = (T(X,Y),Z).

Then o is alternating in X and Y by 3.4 (1), and alternating in
Y and Z by 3.4 (2). Therefore o is a three-formon M and it is
clear that T = Tu.
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Proposition 3.6. Let ¢ be the Riemannian connection on M. Then,

using the notation of the last lemma, there is a bijective correspondence
between the geometric connections D on M and the smooth 3-forms on

M given by

- 1
DXY = vXY + ?'TG(X’Y)‘

Proof. This follows immediately from the last two lemmas.
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4. Some geometry of submanifolds.

In this section we record some of the facts we need about
submanifolds of Riemannian manifolds. Let ™M be a Riemannian manifold
of dimension m+ n with metric ( , ), and M be an embedded
submanifold of M of dimension n. It will be assumed M has the
induced metric from M. The metric on M will also be denoted by

"¢ , Y'. The following notation will be used:

v = Riemannian connection on W;
v = Riemannian connection on M;
R = curvature tensor on W;
R = curvature tensor on M;

T*M = normal bundle of M in WM.

Definition 4.1. Let peM and £(p) e T"'Mp then the Weingarten map

A(e(p)) : TMp = TMp is given by
A(z(p))X = orthogonal projection of S&g onto TMp,

where £ is any 1o¢a1 extension of g(p) to a smooth section of TM,

Remarks. (1) Let X be a smooth vector field on X and & a smooth

section of T*M. Then an elementary calculation shows that the map
(X,g) » (orthogonal projection of S&g onto TM)

is bilinear over the smooth functions on M, whence A(g(p)) is

independent of the extension of e(p) to .

(2) The above definition differs by a sign from the usual definition.
This choice of sign purges latter formulas of enough factors of -1 to

justify it.

Proposition 4.2. With notation as above, for any smooth vector fields
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X, Y on M and smooth section g of T*M the following hold:

(1) vyY = orthogonal projection of GRY onto TM.
(2)  (A(E)X,Yy = =¥y Y\g) = (A(E)Y.X).

Thus A(g(p)) is a self-adjoint map on TMp.

X’ " Z, w ‘“ l’1

(3) Let ey, ..., e be on orthonormal basis of W*Mp. Then, for

RIX,Y)ZMY = (R(X,Y)Z, WY
m
+ j3(<A(ej)x,z><A(eJ.)Y,w> - (A(ej)X,w)(A(ej)Y,Z)).

Proof. See [10] where(1) follows from the last formula on page 46,

and (2) and (3) follow from formulas on page 51.
It will be convenient to restate (3).

If V s any finite dimensional real vector space with inner
-produce ( , ) then AZ(V) is also an inner product space with the

inner product on AZ(V), also denoted by ( , ), given by

(XAY,Z AW)

i
Q.
®
(—'-
/\/\l
>
“w v
=N
NS
NN
<<
- -
= N
I\/\/'

CGLIYYL WY = (XGHY(YLZY.

Any linear endomorphism A of V determines a linear endomorphism

AZ(A) of AZ(V) given on decomposable elements by

AZ(AY(XAY) = (AX) A (AY).

Let R be the curvature tensor at some point p of M. Then,
as R(X,Y) is an alternating function of X and Y, R induces a

linear endomorphism A(R) of /\ZTMp by

AWRY(XAY)ZAWY = (R(X,Y)Z,WY.
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Usually R and A(R) are both written as simply "R". When A(R) is

2

to be referred to, we will say "view R as a Tinear map on A“TM".

Proposition 4.3 (Equation of Gauss). View R as a linear map on

AZTM and R as a linear map on AZTM. Let Pp be the orthogonal

2

projection of Azfﬁp onto its subspace A TMp. Then, for any

: 1
orthonormal basis s vees € of T Mp

B 3
PpRp - Rp = éE%A (A(ej)).

Proof. This is a restatement of (3) of the last proposition.

Definition 4.4. The excess tensor Hp of M in M at peM is the

linear endomorphism of AZTMp given by

where 'ﬁp is viewed as a linear map on Azfﬁp, R is viewed as a

Tinear map on /\ZTMp and P 1is the orthogonal projection of A ™

onto A2TM .

P

p

We will be interested in product submanifolds of product manifolds.
We recall the definitions. Let M], M2 be Riemannian manifolds. Let
{ s )1 be the metric on Mi' If p;: M] X M2 - Mi is projection then

define the product metriec ( , ) on My x M, by
(X,Yy = (O]*X’D]*Y)] + <02*X:02*Y>2'

The proof of the following is straightforward and is left to the

reader.

Proposition 4.5. Let V5 be the covariant derivation of the Riemannian

connection on Mi’ and Ri be the curvature of the Riemannian

connection on Mi' Then the covariant derivation v and the curvature
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R of the Riemannian connection on M] X M2 are defined by
Y,Z = Y, JA + Y, Z s
Wyls2) CVQ]*XD]* P+ )1 QVOZ*XOZ* Pox >2
(R(X,Y)Z,W) = <R](D]*X:p]*Y)Q]*ZsQ]*w>]
+ (RZ(pz*xspz*y)pz*z’pz*w)z-
In the first equation X, Y, Z are smooth vector fields on M] X M2
so that pi*X, pi*Y, pi*Z are vector fields on Mi’ for =1, 23

in the second equation, X, Y, Z, W can be any vectors tangent to

M] X M2 at some point.

Proposition 4.6. Let M, be a submanifold of ﬁi and Tet A, be the

Weingarten map of Mi in ﬁi for i =1, 2. Then the Weingarten map

.of M, x M, in M, x 'ﬁz is defined by
(A(U)X,Y) = (A](p]*U)pl*X,p]*Y)] * (Az(pz*u)pz*X,pz*Y>2

where X is tangent to M] X MZ’ U 1is normal to M] X MZ’ and Y

~

is tangent to ﬁ1 X M2 at some point of M] X M2.

Proof. A straightforward calculation using the last proposition.
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5. Riemannian homogeneous spaces.

Let M be a connected Riemannian manifold, and (M) be the
group of isometries of M. That is, &(M) ds the group of all
diffeomorphisms of M whose derivatives preserve the length of
tangent vectors. We give (M) the compact-open topology. For each
p in M let J(M)p be the subgroup of (M) consisting of those
isometries which fix p. The subgroup J(M)p is called the <sotropy

subgroup of §(M) at p. The following is well known.

Proposition 5.1. If g(M) 1is the isometry group of the connected

Riemannian manifold M then:

(1) s(M) is a Lie transformation group on M. (That is 4(M) has the

structure of a Lie group and the map (a,p)-» ap fromg(M)x M to M is smooth).
(2) Each isotropy subgroup g(M)p is compact.

(3) If M is compact then so is Jg(M).

(4) If ge J(M)p then g 1is the identity.

Proof. For the first three see [8],vol. 1, page 239, theorem 3.4.
The last part follows easily from the formula g(expp(X)) = expp(g*pX).
This formula is clear as exp is defined in terms of the Riemannian

metric and g preserves the metric.

The manifold M will be called a Riemamnian homogeneous space if
and only if (M) 1ds transitive on M. Since it is not always easy to

work with the full group of isometries we make the following:

Convention 5.2. For the rest of this section, we assume that M is a

Riemannian homogeneous space and that G s a closed subgroup of the

group of isometries of M such that



45
(1) G 1ds transitive on M; and

(2) Each isotropy subgroup
G, ={geG:glp)=p}
is a compact subgroup of G.
The following will also be useful.

Notation 5.3. For the rest of this section we fix some point o in

M and call it the origin of M. Also Tet' H={ge G: g(o)=0} be

this isotropy subgroup of G at the origin.
m = TM0 = tangent space to M at the origin.

Then the frame bundle L(M) of M can be assumed to have as its
fibre L(M)p over p the set of linear isomorphisms of | onto

vTMp. With this convention it follows that:

Proposition 5.4. The map g G is a diffeomorphism of G onto a
closed embedded submanifold of L(M). Call the image of G under this
map G(M). Then G(M) 1ds an H-structure over M in the sense of
definition 2.4. The fibre G(M)p over p = g(o) is the image of the

coset gH.
Proof. See chapter X of volume 2 of [8].

Convention 5.5. We will, when convenient, identify G with G(M) via

the diffeomorphism of the last proposition and use this identification
to move the algebraic structure of G over to G(M). The identity
element of G goes over to the identity map on m. The tangent space
to G(M) at the identity will be written as 07, and be assumed to
have its usual structure as a Lie algebra. Let h be the tangent

space to H at the identity. Then h 1is a Lie subalgebra of {7 and,
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by proposition 2.8, part (5), h is also the space of vertical
vectors at 1. To make the notation look like that of section 2 the

exponential map from {7 to G will be written as Aw eA.

Definitjon 5.6. For g e G 1let Lg be left translation on G = G(M).

L .X °

Proposition 5.7. For A e h the fundamental vector field determined

by A on G(M) is

R(g(0)) = Ly A.

Proof. This is an easy computation

A" (g(0))

i
a
ci-l 0

wn
—
o
i
)
(-’-
=

tA
Le
tt:og

Proposition 5.8. There is a subspace M, of 07 such that
(1) & = My @ h (direct sum)

(2) Mg is invariant under the adjoint action of H on (7.
Proof. See page 199 of volume 2 of [8].

Convention 5.9. We now fix some My as in_proposition 5.8. If

m: G(M) » M is the projection then

Tep| M

is easily seen to be a linear isomorphism. From now on M, will be

identified with W by this isomorphism.
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Definition 5.10. For any vector A in (7 let Ah, be the h-component

and ﬁn the m component of A relative to the splitting of (7 as
07 = me h. Then

(1) Define a m-valued one-form g on G(M) by

0,(%) = (L %)

g 9z m

(2) Define an h-valued one-form w on G(M) by

wg(X) = (Lg;]x)h-

Proposition 5.11. The form g 1is the canonical form on G(M) and

is a metric-preserving connection on G(M). This connection will be

called the eanonical connection on M.

- Proof. By definition the value of the canonical form at X € TG(M)CI
is g3 T, X.

g
But g']o m=mol g3 therefore,

g

0g(X) = G T X

g * g
= w*]Lg']*.X
= (Lg™T* ) .

m

The Tast line holds because the convection 5.9 makes T into the

projection of (7 onto m.

*
It follows directly from proposition 5.7 that wg(A (g)) = A for
*
every fundamental vector field A on G(M). Let a e H, g e G(M)
and X € TG(M)g.
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Then

(T;m)g(x) =w _(r

i n ] 1
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L qr.=rlL .,
g 1'a a7y 1
-1y
Ad(a ") = La_]*ra*,
(Ad(a™)¥)y, = Ad( _qy(¥p).
a

The last of these holds because 1 1is Ad(H) idnvariant. This

completes the proof that w is a connection.

Because G is a group of isometries of M the H-structure G(M)
is a submanifold of 0(M), the bundle of orthogonal frames on M.
Therefore @ can be extended to a connection on 0(M). Proposition

2.39 now yields that  is metric preserving. This finishes the proof.

Proposition 5.12. Let  be the canonical connection on G(M) and ¢

the canonical form. Let ﬁn and nn be as in 5.10. Then
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(1) The torsion form of w 1is given at ¢ = TG(M)1 by

@(X!Y) = —[)S,nst%.
(2) The curvature form of w 1is given at ¢ = TG(M)] by
Q(XsY) = '[)ﬁ.nst]h'
(3) The torsion tensor of w 1is given on TM0 =m by
TO(X,Y) = —[X,Y%n.
(4) The curvature tensor of w s given on TM0 =m by

B,(X,1)Z = -[[X,Y],,Z].

Proof. If X 1is a left invariant vector field on G(M) (that is
‘_Lg*X = X for all g e G) then it follows directly from the definitions
that g(X) and w(X) are constants on M. If X is a left invariant
vector field on G(M) then let Xm be the left invariant extension

X(])In and Tikewise for Xh' Then for left invariant vector fields

X,Y

]

a(X,Y) = da(X »Y. )

X80t ) - ¥ e(X) - e(lX ¥ 1)

0-0-o(lX,% 1)

-o(LX , .
o(L ' Ym])
As the point 1 e G(M) this reduces to (1).

A similar calculation proves (2).

The convention 5.9 shows that a vector in TM0 =nmqm is its own
horizontal 1ift to 1 in G(M). Putting this into the definition of

the torsion tensor and using (1) yields
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T (X.¥) = 1, (8(X,Y))

-[X,Y%n.

Part (4) follows from (2) the same way (3) followed from (1). This

completes the proof.

Proposition 5.13. For the canonical connection on M the geodesics

through o are the curves tr ﬂetx where X 1is in m. Parallel

tX tX

translation along the geodesic t w» me from o to me

by ()

is given

Proof. It is easy to check that the left invarient vector fields X
on G(M) with X(1) 1in m are the basic vector fields on G(M)

(see definition 2.33). Therefore the integral curves of the basic

tX

vectors that pass through 1 are the.curves tp e where X 1is in

‘m. The first statement of the proposition now follows from proposition

tX

2.34. The curve the is horizonal so the second part follows from

the definition of parallel translation.

Proposition 5.14. Let D be the covariant derivation of the canonical

connection. Then D, T (the torsion tensor) and B (the curvature
tensor) are all invariant under G. If S 1is any tensor field on M

invariant under G then DS = 0. Thus DT =0 and DB = 0.

Proof. It is clear that w is invariant under G. Each of D, T and

B is defined in terms of ® and therefore they are also invariant.

Let X em. Define a vector field X on M by

tX(

The flow of this vector field is clearly at(p) = e "(p). Therefore S
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is invariant under the flow of X and thus the Lie derivative of §
with respect to X 1is zero. But (etx)* is parallel translation

tX

along the geodesic t » me Thus

(D8)g = (035),
= (£’XS )0
= 0.

This shows DS vanishes at the origin of M. But DS dis G
invariant and G is transitive, so DS vanishes everywhere. This

completes the proof.

Definition 5.15. The natural connection on M is naturally reductive

if and only if it has the same geodesics as the Riemannian connection

“on M.

Because the natural connection on M 1is metric preserving we see
that D 1is naturally reductive if and only if it is geometric in the

sense of section 3.

Proposition 5.16. The canonical connection on M is naturally

reductive if and only if, for all X, Y and Z in p.,

([X,Y%n,Z) + <Y,[x,zln) = 0.
Proof. If the canonical connection is naturally reductive then the
above equation follows from proposition 3.2 (2) and proposition 5.12
(3). To prove the converse, note that by 5.12 (3) the above equation

can be rewritten as
(T (X,Y),Zy + (Y,T (X,2)y = 0

where TO is the torsion tensor of the canonical connection at 0. Let

D be the covariant derivation of the canonical connection. Then
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define a new covariant derivation § on smooth vector fields X and
Y by
5yY = DyY - 2 T(X,Y).

Then a straightforward calculation shows that s is metric preserving
and torsion free. Thus § =y, the covariant derivation of the
Riemannian connection. But then the difference tensor of D and v
is alternating, so D and ¢ have the same geodesics by proposition

2.38. This finishes the proof.

Proposition 5.17. Assume the canonical connection on M 1is naturally

reductive and that D 1is its covariant derivation. Let T be the
torsion tensor and B the curvature tensor of D. Let R be the

curvature tensor of y. Then

(1) For smooth vector fields X and Y on M

1

vyY = DY - 2 T(X,Y)
(2) (TOLY)LZYy + (Y, T(XLZ)) = 0
(3) R(XY)Z = BOLY)Z - 3 T(T(X,Y)Z)
+ 3 TOGT(Y,D)) - 3 T(Y,T(X,2))
(4) ROGLY)Y = BOGY)Y - £ T(T(X,Y),Y)
(5) ROGYIY,Yy = (BUGYIY,XY + gITOGY)]E.

Proof. The connection D on M 1is geometric, therefore this
proposition is just proposition 3.2 plus the extra information that

DT = 0.

Proposition 5.18. Assume the canonical connection on M s naturally

reductive and let T, B and R be as in the last proposition. For any
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B,, and R

vector U e TMp define linear endomorphisms TU’ U U by

Ty(X) = T(X,0),

RU(X) R(X,U)U.

Then

+ B, -

2
v 7 Ty

| —

both RU and BU are symmetric and TU is skewsymmetric.

Proof. That R, =B - %—Tﬁ is (4) of the last proposition. The

skew-symmetry follows from (2) of the last proposition. The Ricci
identity (proposition 2.44 (2)) shows RU is symmetric. The square of
a skewsymmetric map is symmetric therefore BU = RU + %—TS is the

sum of symmetric maps and thus symmetric.

Proposition 5.19. With notation as in the last proposition, if

g: (a,8) » M 1is a geodesic and U(t) = g'(t) 1is the tangent along g
then the initial value problems

(1) G X+ RX =0 X(tg) = X (y0(ty) = X,

2 _
(2) (D)X + TU(DUX) +ByX =0

= _ 1
X(to) = XO(DUX)(tO) =Xy - 7 TyXo

U)

define the same Jacobi field along g.

Proof. This is proposition 3.3, where we also use that (DUT) =0 and

DUU = 0 so that DU(T(X,U)) = T(DUX,U).

Definition 5.20. A submanifold N of a Riemannian manifold M is

totally geodesic if and only if every geodesic of N in the induced

metric is a geodesic of M.
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Proposition 5.21. Let M be a naturally reductive Riemannian

homogeneous space and p e M. Let S be a vector subspace of TMp.
Then there is a totally geodesic submanifold N of M passing through
p with TNp =S if and only if for all X, Y, Z in S both T(X,Y)
and B(X,Y)Z are in S. (Here T is the torsion tensor and B the

curvature tensor of the cononical connection on M).
Proof. See [2], theorem 3.2, page 57.

The following defines a class of Riemannian manifolds that has

been very much studied.

Definition 5.22. A Riemannian manifold is a symmetric space if and

only if it is a naturally reductive Riemannian homogeneous space in

which the Riemannian connection equals the canonical connection.

Proposition 5.23. If M is a symmetric space, then, with the notation

of proposition 5;17,

Proof. Clear from proposition 5.17.
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6. Geometry of symmetrically embedded submanifolds of naturally

reductive Riemannian homogeneous spaces.

In this section the following notation will be maintained. First
M will be an oriented naturally reductive Riemannian homogeneous space
of dimension m+ n. Then M will be an oriented submanifold of M
of dimension n. Because most of what follows is local, M will be

assumed compact with smooth (possibly empty) boundry.

o~

D = covariant derivation of the canonical connection on M,
T = torsion tensor of D,
B = curvature tensor of Dy
g = Riemannian connection on W,
| § = Riemannian connection on M,
R = curvature tensor of ¢,
R = curvature tensor of y.

Define, for each U € TMp, linear maps from TMp to itself by
Ty(X) = T(x,0),

B(X,U)U,

o
{ o
~
>
-
"

ﬁu(x) = R(X,U)U.

Definition 6.1. The submanifold M is symmetrically embedded in M

if and only if for all pe M and Ue TLMp the vector space T"'Mp

and T,,.

is stable under both ‘§U U

Examples of symmetrically embedded submanifolds of homogeneous

spaces will be given after the following proposition.
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Proposition 6.2. The following are equivalent for a submanifold M of

:

(1) M 4s symmetrically embedded in - M.

(2) Forall peM and Ue T*M_ the vector space TMp is stable

p
under both TU and BU.

(3) For all p e M there is a totally geodesic submanifold N of M

passing through p with ™, =3T*Mp.

Proof. A symmetric or skew-symmetric linear map on an inner product
space stabilizes a subspace if and only if it stabilizes its orthogonal
complement. The map ‘§U is symmetric and the map TU is skew-symmetric

by proposition 5.18. This proves the equivalence of (1) and (2).

By proposition 5.21, if (3) holds then for all p e M and
U,X e T"M_,
_ € p

B(X,U)U € TMp,

T(X,U) € TM_.
(X,U) € 5

o
=
P
><
S
1}

—
<
P
><
N
1}

Therefore (3) implies (1).

To finish it is enough to show (1) implies (3). By proposition
5.21 it is enough to show that if M is symmetrically embedded in M
and X, Y, Z e'T"'Mp then B(X,Y)Z e TMp. Therefore suppose M is

symmetrically embedded in M and that X, Y, Z ¢ TLMp. Then

B2 + BOGDY = BOGH2) (142) - BGYY = B(Y,2)Z € T,

Combining the fact that DT =0 with the first Bianchi identity

(proposition 2.31) yields

—<

B(X,Y)Z + B(Y,2)X + B(Z,X)

>

R
l

= T(T(x,Y)Z) + T(T(v,2),%) + T(T(Z,%),Y)
T

¥ ¥ ¥ x
X + TXTZY + T XZ Mp'

-

=
—
m

'Y Y
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Adding these gives

Bx,V)Z + BV, )X + B(Z,X)Y) + (B(X,Y)Z + B(X,2)Y)

2B(X,Y)Z + B(Y,Z)X + (B(Z,X)Y + B(Y,Z)X)

B(X,Y,)Z + B(Y,Z)X e T"Mp.
Doing the permutation Xe Y, Yo X, Zm Z in B(X,Y)Z + B(X,Z)Y shows
Bv,0z + B(Y,2)x = BX,Y)z + B(Y,2)X e .

Therefore

3B(X,Y)Z = (2B(X,Y)Z + B(Y,Z)X) - (-B(X,Y)Z + B(Y,Z)X) ¢ T*Mp.
This finishes the proof.

Examples. (1) M is called a hypersurface of M if the codimension
“of M in M is one. If p is a point of M then there is a geodesic
of M passing through p and perpendicular to M. By (3) of the last
proposition this shows all hypersurfaces of any naturally reductive

homogeneous spaces are symmetrically embedded.

(2) Let M be a space of constant curvature . Then by definition

T=0 and B =R is given by

B(X,Y)Z = k({Z,Y)X- (Z,X3Y).
Thus
By(X) = k(¢U,UyX- (U, X).
From this it is easy to check that every submanifold of M is

symmetrically embedded.

(3) Let M be a complex analytic manifold of constant holomorphic
curvature. Then calculations that will be done later show that every

complex submanifold of M is symmetrically embedded.



58

Other examples will ge given later.

Convention 6.3. From now on M will be assumed to be a symmetrically

embedded submanifold of M.

Recall that D and 5’ have the same geodesics and therefore the
same exponential map. The common exponential map for these two
connections will be denoted by exp. The following notation will be

used to study the image of S*M under the exponential map.

Definition 6.4. (1) Let m:S*Ma M be the bundle projection.

(2) For UeS*M Tlet
9(t;U) = exp,(tU).

(3) Set U(t) = g'(t;U).

(4) 3(ts;U) = D-parallel translate of ™ |, along g(+;U) to g(t;U).
(5) n(t;U) = Orthogonal complement of the span of U(t) and g(t;U)
mn TMg(t;U).

Proposition 6.5. Let RU(t) be the span of the vector U(t) in

fﬁg(t'u)' Then each of g(t;U), n(t;U) and RU(t) is parallel along

g(-3;U) and fﬁg(t'U) is the orthogonal direct sum of these spaces.
Also g(t;U), n(t;U) and IRU(t) are all stable under all three of the

~

linear maps TU(t)’ B ) and RU(t)'

Proof. The field of spaces g(t;U) is D-parallel along g(-;U) by
definition. The spaces R(t) are D-parallel along g(-;U), because
g(-;U) s a geodesic and U(t) ds its tangent vector. Therefore
n(t;U) is also D-parallel along g(-;U), as it is the orthogonal

complement of D-parallel spaces and D 1is metric preserving.
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Because g(t;U), n(t;U) and TRU(t) are D-parallel along
g(-3;U) to show TMg(t'U) is the orthogonal sum of the three it is
enough to show for a particular value of t. At t =0 this is easily

checked. -

Since we are assuming M 1is symmetrically embedded in M it

follows from proposition 6.2 that both gz(0;U) = TMp and

T, = (n(05U) @ RU(O))

are stable under both B, and ?

u U

But
“B“U(u) = B(U,u)u = 0,
T,(0) =T, =0

" Therefore TRU(0) 4s also stable under both '§U and ’TU’ But '§U is

symmetric and TU is skew-symmetric. Therefore the orthogonal
complement of U in TLN%U, which is n(0;U), ds also stable under
both §U and ‘?U' This shows F(t;U). n(t;U) and RU(t) are stable

under BU(t) and TU(t) when t = 0. But as all of these are

D-parallel along g(-;U) it follows that g(t;U), n(t;U) and TRU(t)
are stable under BU(t) and TU(t)' That the three subspaces of

™
Ry(e) =

completes the proof.

g(t;U) in question are stable under RU(t) follows from the equation

1% 2 o al . o d .
ﬁu(t) - ?(TU(t)) which is given in proposition 5.18. This

Definition 6.6. Let

=T
i) lz(t;U),

B

ct
~
]

i) lg(t;u),
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Rul®) = ’ﬁu(t) 3(t;U)
Bt(t) = B ,
. ut) n(t;v)
Rﬁ(t) " Rue) n(t;U)

Then define linear maps

5{ts0) = 3(t:0) - z(ks0),

C(tsU) = 3(tsU) - g(tsU),
St(t50) s n(ts;U) » n(t;v),
as the unique solutions to the initial value problems:
(1) Gye))® S(Es0) + Ry(t) S(t30) = 0
S(03U) = 0, (Fy(4)S)(030) = “d)lTMp’
Fy(e))? TEU) + Ry(E) C(ts0) = 0

Fy(e))? SHEL) + Ry(8) SH(E3U) = 0
<L(n. - ~ <L . -
By proposition 5.19 these can also be defined by

(1) (Dy))® SEU) + Ty(£) (D SE30) + By(t) S(t30)
S(050) = 0, (Dy)S)(03U) = (id)py
7 '

(Dy(ey)? TEV) + T(E)(Dy (D) (E1U) + By(t) T(ts0)

T03U) = (id)gy, - (DTN (t30) = -5 T,(0),
P
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2 L., Tl L ) nl ol -
(DU(t)) St(t;U) + TU(t)(DU(t)S Y(tsU) + BU(t) St(t;U) = 0
LAY = 0 TLY(A-1) = (4

Remarks. (1) if tw X(t) 1is any D-parallel vector field along
g(+;U) with X(0) 1in 3(03;U) then both tw S(t;U)X(t) and
t » C(t;U)X(t) are Jacobi fields along g(-3;U). In this case
S(t;u)X(t) and C(t;U)X(t) are both in g(t;U) for all t. A
similar statement is true for t:4'§1(t;U)X(t) when X(t) ids a

D-parallel vector field along g(-3;U) with X(0) in n(0;U). These

facts follow directly from the definitions.

(2) If the differential equations defining S, C and S* are
written with respect to D-parallel fields, then the differential

~ equations in (1') have constant coefficients.

Definition 6.7. For each number r, define a map

fr:‘SJ‘M M
by

fr(U) = expﬂU(rU).

The image M(r) by ¥a is the tube of radius r about M.

We now compute the derivative of f_. If U e S'tM and p = U,
then the fibre :S*Mp is an embedded submanifold of the total space
S*M. Thus, the tangent T(SJ'Mp)U to the fibre can be viewed as a
subspace of the tangent space T(S"’M)U to St*M. But the sphere
SLMp is also embedded in the vector space W*'Mp as the set of all
vectors of unit length. Therefore, the tangent space T(-S*Mp)U to the
fibre can be identified with the set of all vectors in TMp that are

orthogonal to U. But this is n(0;U). Thus n(0;U) can be identified
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with a subspace T(S*M)U. Under this identification it is easy to

check that n(0;U) 1is the kernel of Ty

Lemma 6.8. Consider n(03;U) as a subspace of. T(-SJ'M)U as above. If
X e n(0;U) and X(t) is the D-parallel translation of X along
g(-3;U) to g(t;U) then

(f)ayX = SHrsU)X(r).

Proof. Without loss of generality we may assume X 1is a unit vector.

Then define a curve by
c(s) = cos(s) U + sin(s) X.

Because U and X are orthogonal vectors, this is a curve from the

reals to S*M. Clearly C(0) = U and C'(0) = X. Therefore,

f.(c(s))

s=0 '

o
&l

(fY‘*)U X =

exp_(rc(s)),
. P
where p = nU. Define a(s,t) by

a(s,t) = exp _(tc(s)).

Then fr(c(s)) = a(s,r) so that

Clearly (see definition 3.26) ofs,t) 1is a variation of

a(0,t) = expp(tU) = g(t;U) through geodesics. Thus, by proposition
2.37, the vector field %%(O,t) along g(-;U) 1is a Jacobi field. But
SH(t;U)X(t) s also a Jacobi field along g(+3U). Thus, to prove the
Temma it is enough to prove %%(O,t) and S*(t;U)X(t) have the same

initial conditions at t = 0. (See proposition 2.37). We now compute



o =3

as(0,0) - s=Oexpp(O)
= 0
= $+(03U)x(0).

The covariant derivation 3 has no torsion and the vector fields

o0 3%
35 ° 3t commute thus,

This yields

Fyer) 29)(0,0) = @, 29(0,0)

|
—
2
lQJ
Q
~
—
o
©
~

“Vaa| 3t expp(tC(S))

1] 1]

> (oF
—
(=]
~

I
<
[ e
—
+
~
Al
'—
—
-+
(ol
~—
>
—
~~

This finishes the proof.

Definition 6.9. Let A be the Wiengarten map of M in M (see

definition 4.1). Then, for each U e S*M, 1let A(t;U) be the
D-parallel translate of A(U) along g{-;U) to g(t;U). Therefore

A(t;U) is a Tinear transformation on g(t;U).
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Lemma 6.10. Let X e T(S*M)U, X = mX, and X(t) be the

D-parallel translate of X along g(-;U) to g(t;U). Then

(F )uy X = (T(rs0) + S(r30)A(r30)) X(r)

+ (an element of n(r;u)).

Proof. Choose a smooth curve ¢: (-e,e) + S*M from some neighborhood
(-e,e) of 0 such that g(0) = U and g'(0) = i. Set p=7U and

c=mog. Then c: (-e,e) » M 1is a smooth curve with ¢(0) = p and

c'(0) = myg'(0) = X. Also

(£ )uy X = gg}szof,(g(s>)
- 521 =Oexpc(s)(rg(s)).

Define a(s,t) = expc(s)(tg(s)). Then the last equation can be

written as

But, as in the last lemma, a(s,t) is a variation of a(0,t) = g(t;U)
through geodesics and thus %%(O,t) is a Jacobi field along g(t;U).

We now find its initial conditions.

%%(0,0) = 5%15=0expc<s)(0)
- B
= aSIS=OC(S)
= .cl(o)
= X.

The curve £ can be viewed as a section of S*M and, thus, of

T*M along c.
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Therefore,

Vaa
03 1g=0

§(S) = ;C'(O) 5(5)

vy&(s)

A(g(0))X +(element of n(0;U))

A(U)X + (element of n(03U)).

This yields,

1]
—
Q)
Q
~
P
o
w
o
~

1]
—
<

(0%
Q
~
—
o
o
~

1}
<
Q/
Q
=
ﬁ
r*.
1

as’s=0

A(U)X + (element of n(0;U)).

Where, as in the last lemma, we have used the facts that ¢ is

without torsion and that 9% apd % commute.
oS ot
Let J(t) be the vector field along g(-3;U) defined by
3(t) = (T(t3U) + S(tsU)A(L;0))X(t).

Then J 1is a Jacobi field and from the definitions of € and ¢

J(0) = X(0) = X, (vd)(0) = A(05U)X(0) = A(U)X.
Thus, if Y(t) = %E(O,t) - J(t), then Y is a Jacobi field along
g(+;U) with Y(0) =0 and ($UY)(0) € n(0;U). Hence, Y(t) 1is in
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n(t;U) for all t. This, together with the expression for (fr)*Ui

in terms of %%, completes the proof.

We now give each fibre vSLMp of S*M its volume form Q

StM

p
as a unit sphere in T*Mp. If Oy is the volume formon M and
m: S*M - M is the bundle projection, then a volume form Q = is

_ S™™
defined on S*M by

Q (U) =

U m* U
IORERNOIC T

P

where p = mU. We choose the orientations so that Fubini's theorem
holds with the following choice of signs

[ flua . (V) = flua 4 0P

L
sty SM M StH iy

where f 1is any compactly supported continuous function.

Proposition 6.11. Let re R and Ue S'M. Assume

(*) det(T(r;U) + S(r;U)A(r;U))det(S*(r;U)) # 0.

Then (fr)*U‘ is injective, and thus fr maps some neighborhook K of
U in S*M  into a hypersurface K(r) of M. The tangent space to
K(r) at fr(U) is

= 3(r;U) @ n(r;V).
T(K(r))fr‘(u)
If QK(r) is the volume element on K(r), then

f’; O (r) = det(f(r;U)+§(r;U)A(r;U))det(§L(f;U))QSJ_M(U).

be an oriented orthonormal basis of

Proof. Let Xq» ..o X
T(SLMp)U =n(0sU) (with p =7U) and Yy, ..., Y be an oriented
orthonormal basis of T(S*M)U. Choose elements Y], cees Yn of
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T(’SLM)U with m¥; =Y. =1, ..., n. By the last two lemmas

(f ey X5 = SH(rsU)X,(r)

(f)x Y5 = (CrsU) + S(rsU)A(rsU))Y 5(r) + Z,

J

where Xi(t) is the parallel field along g(-;U) with Xi(O) = Xg3

and Yj(t) is the parallel field along g(-;U) with Yj(O) = Yj
and Zj is an element of n(r;U). The condition (*) easily implies
that S*(r;U)Xi(r) for T<Aa<m-1 is abasis of n(r;U), and
that

(T(r;0) + S(rsU)A(rsU) )Y, () T< i<,
is a basis of 3(r;U). Therefore
(FagXis (Fle¥y T<icm-1, T<ign
is a basis of g(r;U) @ n(r;U). This proves (fr)*U is injective.
The statements that U has a neighborhood K mapped into a
hypersurface K(r) of M and that the tangent space to thfs

hypersurface is as claimed now follow from the implicit function

theorem.

It is now easy to check that
(Fdegkya s A g g AU gfy aees A (F )Yy
= det(T(r;U) + S(r;U)A(r;U) ) det(SH(rsU)) Xy (r)ac e saX _;(r)aYy(r)ase«a¥ (r).

But as Xy A *cc A Xm—T A Y] A o0 A Yn is dual to QS*M (that is,

A A~ *
QSLM(Xl""’Xm-1’Y1""’Yn)= 1) the given formula for f_ Qg(p) holds.
This completes the proof.

Corollary 6.12. If the condition (*) holds for all U din S*M, then

the volume of the tube M(r) of radius r about M is
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vol(M(r)) = [ det(C(r;U)+S(r;U)A(r;U))det(S*(r;u))a = (U).
siy S*M

Proof. Clear from the last proposition.

Convention 6.13. From here on, the volume of the tube M(r) will be

defined by the formula of the last corollary, even when the condition

(*) of proposition 6.11 does not hold.

The following result restates what we said above without having to

compute any parallel translations.

Theorem 6.14. Let M be a compact symmetrically embedded submanifold

of M with smooth boundary. For each U in S'M, set p = wlU, and,

T, =T :
. “TMp
B, =F.|
U UTMp
=Ty o F

T
By = By
T

Define linear maps
S(tyU), C(tsU) : TM_ » TM_,
P %
and

RS ; :».L 'TJ. s
SE(tal) e T Mp - Mp
by the initial value problems

S"{tsl) + TUS'(t;U) + BUS(t;U) =0

s(0sU) = 0, s'(03U) = (id)gy »
P
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C"(tsU) + TUC'(t;U) % BUC(t;U) = 0
1

C(O;U) = (id)TM ] C|(O;U) = ”? Tus
P
(s7)"(tsu) + Ty(s%) ' (t5U) + BG(S™)(tsu) = 0

SH(03U) = 0, (SY)(03U) = (id)
T*Mp

Let h:MxIR -+ IR be the function defined by

h(p,t) = I det(C(t;U) + S(t3U)A(U))det(s*(tsU))a (U),
ol
, p
where A is the Weingarten map of M in M. Then the volume of the
tube M(r) of radius r about M is
vol(M(r)) = [ h(p,r)ay(p).

M

* Remarks. (1) The derivatives, denoted as primes, are to be taken in

the usual sense of a function from the real numbers to a finite

dimensional real vector space.

(2) It should be noted that Tﬁ # Tﬁ(o) a8 Tﬁ has as its domain

TLMp, while 'Tﬁ(o) has n(0;U) for its domain.

Proof of the theorem. Let 7(t;U) be D-parallel translation along

g(+3;U) from p to g(t;U). Then, because TU( and BU(t) are

t)
D-parallel along g(t;U), we have

S(t30) = T<t;ur]lg(tguﬁ(t;uw(t;uump,
C(t30) = r(tsu lg(t;u)f(t;U)'r(t U)ITMp,
. _ . =y
A(U) = T(t,U) lg(p;U)A(t U lTMp
Therefore,

det(C(t;U) + S(t;U)A(U)) = det(C(t;U)+ S(t;U)A(t;U)),
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and likewise,
SHEU) | gsny = 7OV 4,y SHOUIT(O0 ] 0

However, we have TLMP = n(03U) ® RU. Therefore it only remains to
compute S*(t;U) on RU. Let X(t) = tU. Then X'(t) = U and

X"(t) = 0; also Tﬁ(X‘(t)) =0 as Ty
‘Bﬁ(U) = 0. Thus, X(t) is a solution to

(U) = 0, and bﬁ(x(t)) =0 as

X"(t) + TH(X'(£)) + BY(X(t)) = 0
X(0) = 0, Xx'(0) = uU.

But SY(t;U)U is also a solution to this initial value problem.
Therefore

St(t;U)U = tu.
s . . N .
Using this with what we know about S (t’U)Ih(O(U) yields

det(St(t;U))

det(Sl(t;U)ln(O;U)) det(SL(t;U)&RU)

det(S*(t;U))t,

whence

det(C(tsU) + S(t;U)A(t;U)) det(SH(t;U))

1

= ¢ det(C(t3U) + S(t3U)A(U)) det(S*(t;U).

The result now follows from corollary 6.12 or convention 6.13 and

Fubini's theorem.
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7. Some multilinear algebra.

The results of this section are inessential variants of the
algebraic results in [5]. What is here written as "A*B" is
written in Flanders as "AB". His definition of A*B differs from

that given here; instead, he uses proposition 7.2 as its definition.

If W is a real vector space, then end(W) will be the algebra
of all linear endomorphisms of W. Throughout this section V will
be an n-dimensional real vector space, Ak(V) will be the k-th
exterior power of V and Sz is the group of all permutations of
{1,...43. If o 1is a permutation, then (-1)9 will denote the

sign of o¢.

Definition 7.1. If A e end(a’(V)) and Be end(A®(V)) then Tet A*B

be the endomorphism of Aa+b(V) defined on decomposable elements by
(A*B ) (X]/\ e '/\Xa+b)

1
- alb! ce% er(—1 A (1N " Mg () A BOKG (a1 N Mg (ab) -
d

If o 1is a real valued alternating b-form on V, then o can be

viewed as a linear functional on Ak(V) by

O(,(X-l/\' J '/\Xk) = OL(X-I 3o an) .

Conversely it is clear that every linear functional on Ak(V) is of
this form, for some a. Let €15 +oes € be a basis of V. Then
ei A et A, where i], N ik range over all k-tubles of positive

" k

integers with 1 < iy eee< i, < n 1is a basis of Ak(V). Therefore,

k
our remarks about linear functionals tell us that every element of

end(Ak(V)) can be written as



A = b3 s « By B *eup R
) . 1y 1 i
Py<eee<iy 1 k 1 k
where each Os eves is a real valued alternating k-form on V. This
1 k
means A is given on decomposable elements by
AlxiAeeeny,) = > .  {xqseeeaxples A oo A e
1 k i <eeeciy LERRRR IR k7714 Ty

Proposition 7.2. Let s +uns € be a basis of V and

A= T a. e Acecne, eendad(V))
: s Amanal 1 i
Pq<eve<i 1 a 1 a
a
B = I Bj....58. ActtAe; € end(A®(V)).
Go<eee<i, J17009p N Ib
1 b
Then
A* B = 23 O . AB . @ A **ct AR, AB. A *cc A€
PR T R T N R Ib
j](ooo(jk

Proof. Let X1> <+ Xa+p € V- Then,

* = ] eoe eee
(B mayp) = FIBT Z (1Rl (1A kg () M Bt (a1 A" g (a4
£

- 8 1 1 500 08 . coe .
- a!]b! Ogsz( 1) (i]<.z‘>.<1aa1].,,1a(xc(]) Xo(a))e1_l/\ /\e1a) A

( 2 ; . ( ey Ye. Aseene. )
j-l<"‘<ij‘]'[""Jb XO’(a+]) XO'(a+b_) J‘] Jb

rZ WP B(1)e e (a) By, L, Do) o o (asb))

) E (Ot. .“.iAB‘j]"’jb)(X]’...’Xa"'b)ei /\"‘/\e_i ABC: A *°°A €.

1 a Y1 b’
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This finishes the proof.

Proposition 7.3. Let A e end(a®(V)), B e end(n’{V)) and

C € end(A€(V)). Then the map

(A,B) » A*B
is bilinear, and
A*B = B*A
(A*B)*C = A*(B*C).

Proof. That A*B 1is a bilinear function of (A,B) 1is clear. To
prove the other two statements, we use the last proposition. Let

e], P en be a basis of V and

A: Z) (3 e. A ooo/\ e.
IRIRS T R R 'a
B: E ‘e. A ocer' -
Jp<eee<gy J1dp b
Then
(A*B) = 2 (o W . AB; . 8. A *°° AL, A°cc AL
'i]<...<ia 1"0-.1a \]]...\]b 1" 1a Jb
J]<...<Jb
_ (_1yab,_qyab 23 B « A O . B: A" "AE, AB: A " AL, .
(-1)°7(-1) << Jeeedp " iy i3y 3" Iy iy
j<...<j
1 b
= (B*A).

The associativity of * follows from proposition 7.2 and the

associativity of A by a similar calculation. This completes the proof.

Recall that if A € end(V), then Ak(A) is the linear

endomorphism of Ak(V) given on decomposable elements by
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AR Gq A weeax) = () A =ee (i)

k

Definition 7.4. If A e end(A2(V)) then define A™X ¢ end(n®*(V)) by

*k
A" =A*A* «cc * A (k factors).

Proposition 7.5. If A, B, Ays oens Ak e end(V), then

(]) (A]*...*Ak)(X]A...AXk) = O.%Sk(-])GA]XO'(]) AR ) Ak‘xo_(k)
) ;ngAc(l)X1 s S Ac(k)xk;
(2) A% = k1 AKa);
K K i k-]
(3) A'(mB) = ZAT(R)*A J(B),  (where A°(A) = 1)
i
det(A+B) = Zn)/\j(A)*/\n-j(B);
j=0
(4) (BA)* (BA,) * ==+ * (BA) = AK(B) o (A*+-w%a),
* * * = * * k
(AB)* (AB) * == * (AB) = (Aj*+++*A ) o aK(B).

Proof. To show (1) we use induction. Let perm(a],...,ak) be the group
of permutations on {a],...,ak}. Assume (1) holds for (k-1).
Then

(A]*...*Ak)(X]A...AXk) = ((A1*."*Ak-1)* Ak)(X]A°'”NXk)

_ 1 1 PR
"?Eﬁ?TTﬁ%J'”GM1 A1) G (1) M (k-1) )8 Ak (k)

S T Z, 17D A () M aotien) ! Ao k)
€K geperm(g(1),...,0(k-1))

(k-1)!
DT gggk('1)pA1Xp(1) At ARG (k)

p P
s, () A A,
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The second 1ine of (1) follows from the first by a change of

variable. Now (2) follows from (1) by letting Ap = Ay = o= A =A
For (3) we remark that * 1{s commutive and associative, so that

(A+-B)*k can be expanded by the binomial theorem.

A¥(a+B) = JHa+8)”

k 5 .
A(A) * AKI(B).
j=0
The second 1ine of (3) follows from the first and that det(A) = An(A).

" To prove (4) we use (1).

(BA])*."'* (BAk)(X]A...AXk)

25, 1 Bhugy) e R )

MBS (1% (e My (1))

2
geSk

k
A (B) ) (A]*..'*Ak)(X]A...AXk)'
The second line of (4) follows by a similar calculation. This

completes the proof.

Remark. It follows from (3) that Ak(A) * An-k(I) is qk(A), the
k-th elementary symmetric function in the eigenvalues of A. To see

this, note that (3) implies
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det(yI+A) =2 o (A) "7
k

Definition 7.6. Let €15 vees € be a basis of V and A e end(Ak(V)).

J]..;jk

Then the components Ai ; of A in the basis €15 +ves @
1T

are defined by

Ae_i A ...Ae'i=_k-lT 2 A3:1,'..‘_:ijké, A -oo/\e.
-I k ' k j S-..—.aj ]:.. k J] Jk
) 1 k
Jpeeedp
where Ai ; is an alternating function of i], .o g 1k and also
'lct. k

of j], N jk.
If we restrict ourselves to increasing sequences
1 <iy<is< < ik <n and 1 << < jk < n, then the

components of A in the basis €5 cees € of V are components of

the matrix of A 1in the basis {ei A®one; } of Ak(V). It follows
1 k
that
T wwi
trd) =z A
Tq<eee<iy 1 k
Ynonal
“qr. DAL
L PP 1°°° 'k
1 k
i]...ik K
We will write 85 : for the component of A (I), the identity
1look
map on Ak(V). The components of Ak(I) are the same for any choice
i)
of basis of V. It is easy to check that 5j] jk vanishes unless
13k

i1s «..» 1 are all distinct and the sets {i,,...,i,} are the same.
In this case, its value is the sign of the permutation taking each

i to j f 1 k.
i, to J, for T<u<
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Proposition 7.7. If A e end(rA®(V)), then

A* A1) = tr(A).

S,
Proof. Let Ai] ia be the components of A in the basis s e
—_— 10014

of V. Then,

A*,«n'a(l)(e1A'-~Ae ) = ] b2 ('])GA(EG(])A"'Aec(a))

al(n-a)!
eS
0%

n

A Colat) A 7T A S(n)

i,
Lo, |
2 R o(1) o) B TN A Gy (an)

1 o}
= -2 (-1)
alal(n-a)! oesn

i].. . a

i 'f. e ec(n)
- . 2 [-1)2 > »Ai1...ia €: A°** A B, AE

alal(n-a)! =y {10end ] o(1)- (), i" Tolatl)

= {o(1),...,0(a)}
A v i ec(n)
1) -c(a)
al g 2 : AceepnE A€
2 (-1)° A e o(a)” “o(atl)
AT
alal(n-a)! =y (1 (a) a(1)
A A ec(n)
o(1)---o(a)

- 1 2 A By A *t A€

al(n-a)! oeS, g(1)---g(a)

..
_._-l_— ]"a ®
"l EiAiT. R A
T

= tr(A) e A A e
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We now relate our formulas to those in the literature.

Proposition 7.8. Let H e end(Az(V)). Then

*k 1
(1) H A= wAxgy) = EE';Zgi-])cH(Xo(l)"Xo(Z))

A e ARG k1) A g (2K))

(2) If H;g are the components of H in the basis s +evs € of
V  then

H*k * An-2k( I) = tY‘(H*k)

1 i ... Jyds Jad Jop_1J
- " 23 6_1 j2k Hiliz H1'314 L HiZk IiZk_
i oy Je-sdop N2 T34 2k-1"2k
J1-- 32k

Proof. We show (1) by induction.

H*k(')(_] /\X2k) *(k ]) % H(X-l/\' . AXZk)
- 1 ) 2 (_])O’ H*(k'])( A® A )/\ H( A )
(2k-2)121 5es X5(1) g (2k-2) Xg(2k-1)" %5 (2k)

2k

= z___lj____ > (-1°_1_z(-1)8 (x AXg(2))
ek-g)tel aesyy ok, ]eeperm( (1), F.zc(Zi?é))

A HXgo(2k-3) M Xag (2k-2) ) G (26-1) A X (2K)

1
=8 B NG A (2) A et ARG (a11) A g (2) )
0€>2k

This proves (1). To prove (2), we use (1) to find the components of

ek,
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1

& 2 IPHes g a ey

2
geperm(il,...izk)

Jpend
L I L
2 j j -I'l.t.
120 >J2k
‘?]l..jzk ( E Hul

1
3 ) 8 ,
k ]0..12k

_ 1
K 2% 5 ameendoge |

2

o o
2k-1"2k 5

A oA ( , )
J2k-192k  %2k-1

2 H
To-1 %0k

Z (D s
JoreesQop Jyseeesdpp

1
4k o
Therefore

*k CX,-I . o -azk _
550k
1Ko g

so by the Tast proposition

(W) * AM2K(1) = tr(n')

oy g
2k 12

. ) *H
TyeesTop 3735

This completes the proof.

) A e A He

1%2
ay505 Jqdp

A

Jreed OOy Ol
5.] 12k H.].2 H.3.4---
1700k J1d2 I3y

1]0

0'(12k_'l)/\ eG(1Zk))

P

Bak

uzk-T?Zk)

H.
Jok-192k

e Aoao/\e
o %2k

. ol
2k H

ok 1% | P2k-1%2k
igg dydz

Jok-192k

Tak-112k
Jok-192k
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Proposition 7.9. Consider R™ with its standard inner product and let

A be a linear map from R™ into end(V). Then for any orthonormal
basis €1s +ves € of R™ define
i 2
H = Z%A (A(es)) e end(A™(V)).
'l:
Then H 1is independent of the choice of orthonormal basis, and

AR (w) =0 for k odd
m-1 S

J
S

and

» 1 (s™! &
jm_1A K(A(U))Qsm_1(U) = kgm(;22)§'~(m12k—2) .
S

Proof. The independence of H from the choice of orthonormal basis
follows from the second integral formula with k = 1. This is because
the left side is independent of the basis. 1he fivst integral

formula is clear, as Ak(A(U)) is an odd function of u and the

1

integral of an odd function over the sphere s™! is zero. To prove

the second integral formula we need;

Lemma. If a = (a],...,am) is a multi-index (that is each o5 is a

nonnegative integer) then

20, _ (2a)! - m-1
i u=o Q m_](u) = |uT——'VO1(S Ja
gm-1 S m(m+2) - - - (m2]a|-2)2"" 'a!
20, 2a 20,
Here uza = u] 1 u2 2 ... um L

(where u = (u],uz,...,um)) and

al = u]! uzl see o I,

la] Gt oy toeee oo
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20
Proof. If Im X eXX g o(x) is integrated in polar coordinated

R R
© 2
(and recalling that | t2 et gt = %-P(Q%l)) we find
0
20L —X'X
f x € Q m(X)
IRm IR
- 20 -1 -1
=[] (rw™e’ a  (ur dr
0 Sm—] &

©

2
r2|a|+m-] e-rz dr [ u % q m_1(u)

]
o —

1 | 2
sT(la[+3) [ g
Sm—1

20 :
u= Q m_](u).

m=1 S

1 2) . (mt2|al-2
E’m(m+ ) 2%2{ la|-2) r(g) {

But this integral can also be computed using Fubini's theorem:
2

_ 20, 20, =X =X
br Xzaex.x dx'_"J.l X ].'.Xmme ]oooe mdx] LI Y dx
m m

m
R R ]
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By equating these two expressions for j X2a e XX q (%) »

Rr" R"
when o = (0,...,0) we see that
T\m
20 (%)
vo](Sm']) = 2° .
(D

Now, for any a, equate the two expressions for the integral and use

m—])

the formula for vol(S to finish the proof of the lemma.

We now finish the proof of proposition 7.9. Using the multi-index

notation of the lemma, the multinomial theorem can be written as

Q4 QO Q,
e e 0 'z —— Z{.—!— ] 2... m
(xy* = ) lé?;za! X1 X2 Xm
Now let e], ceas em be an orthonormal basis of ]Rm. We then write
. m—] - e e e 2 oo e 2 -
elements of S as u = u]e1 + + umem, where u] + + um 1.

Let u-= (u],...,um); then the multinomial theorem and 7.5 (2) imply

(v)

*
= (‘72& TJ 1(A(u1el+'“+umem)) Zkﬂsmq(“)
gl

)" ()

1
= (usA(eq)+---+u A(e
(2k)1 {m-] T motm S

*Q *8
B (2;51 IBEZK“—ZE?!I UBQSm_1(U)A(e]) 1*---*A(em) m,
) S
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If B = (BT""’Bm) and any Bj is odd, then

Im-1us An1 () = 0
s

by summetry. Using this fact and the lemma yields

Im_]AZK(A(V))QSm_](v)
S

*ZOL *2(1 *ZOL
IJEK(ZJTQWﬁC”gw4“)A@ﬂ.* Ale,) "*eeexp(e) "

1 (2! wol(s™h) R "
I;§Lk(2“)! m(m+2)-"(m+2|dl'2)21al“! “)

m"'»] 1
= g K 2 gﬁ-A(e]f2a1'*...
m(m+2) .- . (m+2k-2)2"k! |o|=k °°

- VO](Sm-]) (A(e

*2
K )
m(m+2) .-+ (mt2k-2)2"k!

+ eoe +A(e

1

B
PN iaks RSP 7T O
m(m+2) -« (m+2k-2)2 k!
1
- vol(s™") H*k.

m(m+2) -« - (m+2k-2) k!

This finishes the proof.
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8. The tube formula.

In this section the algebraic results of the last section are used

to restate theorem 6.14.

Theorem 8.1. Let M, M, c(t;U), S(t;U), S*(t;U) be as in theorem 6.14.

For each k with 0< k< n, define h :Mx R4 R by

K(c(t;0))det(s*(t;U))a  (U).

h (p,t) = %j‘ AK(S(t30)A(U) )oA" sty
p

StM
p

Then, the volume of the tube M(r) of radius r about M is

vol(M(r))

n
k}=30 ﬂ h, (psr)ay(p).

Proof. By theorem 6.14

| vol(M(r))

J hlp,riay(p)
M

where

h(pit) = ] det(C(Es0) + S(LDAWeet(s* (e, (V)
StM P
P

1 k . n-k . by,
T 2 [ A (S(EUAU) )T " (C(t50))det(ST(t5U) )a s (U)
k=0 sy S Mp
p

n
Z hy (p,t).
k=0

1]

In this computation we have used proposition 7.5 (3) to expand

det(C(t3;U) + S(t;U)A(U)).
Remarks. (1) We can use the formula
AK(s o A) = AK(s) o aK(A)

to rewrite the formula for hk(p,t) as
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n (pot) = £ (AK(S(£50)) 0 AN (AWK (C(t50)) det(sH (130))a | (V).
p

This shows that hk(p,t) is a linear function of the map Up Ak(A(U)).

(2) Both S(t,U) and 'St(t;U) vanish to order one at t = 0. Thus,

for any U, Ak(S(t;U)A(U)) vanishes to order at least k at t =0,

and det(St(t;U)) vanishes to order m at t = 0. Therefore, it is

easy to see that hk(p,t) vanishes to order at least m+ k - 1, for

all p in M.
The above formula becomes simpler if M is a symmetric space.

Theorem 8.2. If ™ 1is an oriented symmetric space, and M is a
compact symmetrically embedded submanifold of M with smooth boundary,

‘then, for each U e S*M Tlet

Ry ='§U}TM .
p

RY =‘§U, ,
IT*Mp

where R is the curvature tensor of the Riemannian connection of M.

Define
C(t;U), S(t;u): TMp -+ TMp _ (p = mU),
SH(t50) s T ™,
by
S"(t;U) + RyS(tsU) =0 $(030) = 0, $"(03U) = (id)qy »
p
c"(t;U) + R, C(ts;U) =0 c(o,u) =

' lidhgy , €7(030) = 0,

(S)"(t;0) + RyS(tsV) =

I
o

st(o;u) =0, (st)"(0;U) = (id) )
T*Mp
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2K(s(t50)AU) ) A 2R (C(t;0) ) det(SH(t30))a (V).

el
h2k(pst) - tjl A S—LM
StM P

P

Then the volume of the tube M(r) of radius r about M is

£
vol(M(r)) = 2 [ hy (p.r)ay(p)
k=OrM

where [%J is the greatest integer in %u
Proof. In a symmetric space, T=0 and B =R by proposition 5.21.

Therefore, by 8.1, it is enough to show that if M s symmetric, then

hk(p,t) vanishes for k odd.

Note that

20
P
>
"
1]
o
P
><
1
—
g
P o)
]
{
o

]
-
oo
—
>
~

: - pl - pl
This shows R R(-U) and R(—U) R(—U)‘ It then follows from the

defining equations of C(t;U), S(t;U) and S*(t;U) that all three
are even functions of U. But A(U) 1is a linear function of U and

thus an odd function of U. Thus,
AR (S (£30)AU) AN K (C(50) ) det (St (t530))

is an odd function of U for k odd. The integral of an odd function
over the sphere SJ'Mp is zero. This shows hk(p,t) vanishes for odd

k and finishes the proof.
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9. Parallel hypersurfaces.

In this section we will use the notation of section 6 with the
extra condition that m=1. Then M 1is a hypersurface of M. We
assume that M 1is compact and oriented with smooth boundary. If this
is the case, it is possible to choose a smooth unit normal field U
along M. For each p in M the vector space T*Mp is one-dimensional

and therefore contains exactly two vectors of unit length. Therefore,
S = {U(p), - U(p)}-
Define the parallel hypersurface at a distance r from M by

PM(r) = {expp(rU(p)): p e M.

It is then clear that the tube M(r) of radius r about M is
the union of PM(r) and PM(-r).

Proposition 9.1. With notation as in 8.1,

n
vol(PM(r)) = Z [ h; P, P)QM(P)
k=0 M

where

hy (p.1) = AR(S(r3U(p))ALU(R))) * AV (C(r30(p))).

Proof. If M is an oriented hypersurface then S'M is the disjoint

union of

sM = {U(p):peMm

and
S™M = {-U(p):p e M.

If S'M is replaced by S+M, then all the results of section 6 go

through as before, except that we will be computing the volume of PM(r)
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rather than M(r). The same holds true of theorem 8.1. Because
Tﬁ(p)(U(p)) and Bﬁ(p)(U(p)) both vanish, the initial value problem
defining S*(t;U(p)) becomes

(st)"(tsu(p)) =0 s*(05U(p)) = 0, (S*)'(0sU(p)) = (id).
Therefore St(t;U(p))U(p) = tU(p). This yields

det(S*(t;U(p))) = t.

Because S+Mp has only the one point U(p), integration over S+Mp
is just evaluation at this point. Theorem 8.1 now yields
n
vol(PM(r)) = ézz S fi(p.r)ay(p),

M
where

fi(pst)

[}

StM

£f, ASEUAW)* AT (0 det(s (esua, (V)
STM P
P

AKS(rsU(p))AU(P))) * AMK(C(r5U(p)))

+
hy (psr).
This completes the proof.

Remark. In the case M is the Euclidean space of dimension n + 1,
then both B and T vanish. Using this in the definitions of c¢(t;U)
and S(t;U) shows

C(t:0(p)) = (1d)qy,
p

™
p

s(t;U(p)) = t(id)

Whence

siAkaip))) * A"k
sKtr(AK(A(U(P)))
s, (ACU(P))

+
hy (p,t)

1]
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where gk(A(U(p))) is the k-th elementary symmetric function in the
eigenvalues of A(U(p)). This follows from the remark after the proof
of 7.5. This yields
ok
vol(PM(r)) = 2 r" [ o (A(U(P)))ay(p),
= M

a formula due to Steiner, [11].

~

Proposition 9.2. If M 1is a hypersurface of the symmetric space M

then the volume of M(r), the tube of radius r about M, is

1(M = h >
vol(M(r)) Oféifp £ o (Par)ay(p)

where

k+1 N
oy (Par) = Fapyr (AN(S(Esu(p)) & HFY * A" 2K (e (250 (R))).

Here H 1is the excess tensor of M in M defined in definition 4.4.

k and that vol(M(r))

*
This shows each h2k is a linear function of H
only depends on the excess tensor of M in M, but is otherwise

independent of the embedding of M in M.

Proof. By theorem 8.2,

vol (M(Y‘)) = Z) J'th(p,Y‘)QM(p),

0<2k<n
where
oy (Pot) = 11 AZK(S(E300A00)) * A" 2K(C(t50) ) det (S (£50))a | (V)
o StM
SM p
p
= AZK(S(t3U(p))AU(P))) * A 2K (C(t5U(p))

+ AZK(S(t5-U(p))AC-U(p))) * AR (C(t5-U(p))

22K (S (t3U(p))) o AZK(A(U(R)))) * A 2K (C(t3U(p))).
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We have used the facts that det(S*(t;U)) = t, that integration over
SJ'Mp is the sum of the evaluations at U(p) and -U(p), and that
S(t;U), C(t;U) and AZk(A(U)) are even functions of U. In the case

at hand, the excess tensor is given by

Ho = AZ(AU(R))).

Set A = A(U(p)). Then, by proposition 7.5 (2) we have

2k 2k
AT

'l *
A) = T A
RN
= oTA )
o 2, ¥k
K

_ 2* ok
Tt

Putting this into the above formula for th yields the result.
Remark. If M is not a symmetric space then it is easily seen from
the differential equations defining C(t,U) and S(t;U) that they are

not even functions of U. Therefore there is no reason to expect the

last proposition to hold in any space other than a symmetric space.
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10. An algebraic reformulation for symmetric spaces.

Let M be an oriented symmetric space. Let G be a transitive
group of isometries of M satisfying the two conditions of convention
5.2. Let o be the origin of M, and H be the subgroup of all
elements of G that fix o. Let fi be the tangent space to M at
o. Then, as in proposition 5.8 and convention 5.9, we identify f
with a subspace of 07 (the Lie algebra of G) so that fi 1is invariant

under the adjoint action of H, and

Oor=fMeh

where h is-the Lie algebra of G. If m is a vector subspace of fy,

then denote by 'm*" the orthogonal complement of m in f.

Definition 10.1. A second order germ of a manifold (or briefly a

second order germ) is a pair (m,A) where | 1is a vector subspace of
f and A is linear map from m* to the symmetric linear maps on p.
The dimension of (m,A) 1is defined to be the dimension of m. The
linear map A 1is called the Weingarten map of (m,A). Two second order
germs Qn],A]) and (mZ’AZ) will be considered equivalent if and only

if there is an element a 1in H so that

8xg ml - m2

for all X in My and Y in m#.

Definition 10.2. If M is a submanifold of M and p e M, then the

second order germ (m,A) of M at p will now be defined.
Choose any element g in G with g(p) = 0. Then p = T(gM)O, and

A is the Weingarten map for the manifold gM at o. It is clear



92
that different choices of g with g(p) = 0o give equivalent second

order germs in the sense of the last definition.

Definition 10.3. Let (m,A) be a second order germ, ® the

curvature tensor of M at o viewed as a linear map on AZTMO and
P the orthogonal projection from AZTMO onto Az(m). Then the

curvature tensor R of (m,A) is defined to be

~ B 3
R=PR - 2 A (Ale;))
i=1 !

where €ys ves € is any orthonormal basis of fmt. The excess tensor
H of (m,A) is defined to be
m

H = ;D;\Z

(Ale.)) = PR - R
3=1 !

Remark. Let M be a submanifold of M passing through o whose
tangent space at o is | and whose Weingarten map at o 1is A.
Then proposition 4.3 and definition 4.4 imply that the curvature of M

at o, viewed as a linear map on AZTMO, is the same as the

curvature of the second order germ (y,A).

Definition 10.4. The second order germ (n,A) 1is said to be

symmetrically embedded if and only if, for all X and U in p*, the

vector R(X,U)U is also in pt.

Remark. It is easy to check that a submanifold M of M s
symmetrically embedded if and only if its second order germ at each

of its points is symmetrically embedded.

Definition 10.5. Let (p,A) be a symmetrically embedded second order

germ. Define for all U em* 1linear maps ﬁn gim o ms R% Ut nt ot
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RisU ='§ulm
%n,U B ﬁulm.x_'

Now define %uwu %ﬁwhm»m md%#uw:maw by the

initial value problems:
%n(t;U) + %n,U%n(t U
gﬁ(t;U) + %n UC (tsV) =
gn )"(tsU) tR Us* £ U)

Proposition 10.6. Let M be a symmetrically embedded submanifold of

I
o

5.(0:0) =0, 5'(0,0) = (id) ,

I
o

%n(O;U) = (1d%n, qg(O;U) =0,

0 %;(O;U) 0, (%;)'(O;U) = (id)m-

M and (m,A) the second order germof M at p e M. Then the

function h2k(p,t) of theorem 8.2 can be computed by
APK(S (B0)A) *AMPK(G (£50))det(SH(Es U (V).
.Lm

S
M ,
P

_ 1
'S"L

Here 'Sty is the unit sphere of p*t.

Proof. By definition there is a g € G with g(p) = o and such that
m o= T(gM)0 and A is the Weingarten map of gM at o. Let A; be
the Wéingarten map of M at p. Then, because g is an isometry of

~

M, we see for all U e TLMp, that g, Ue T*(gM) and

*p
_ -1
Mg, pu) = g*plTMpA](U)(g*p) ‘m’
= -1
. g*PlTMpRu(g*p) |
R, - RE(g, )| .
o ™ Seplpay Rulo) L
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Set P] =g and P2 = It then follows from the initial

"l g*p|T*Mp°

value problems defining the Tinear maps involved that,

-1
1
-1
1

%n(t;PZU) = P]S(t;U)P

Cm(t;P2

e
SL(t3P,U)

u) = P]C(T;U)P

L s -1
P,S (t,U)P2 )

This shows det(%;(t;PzU)) = det(St(t;U)). We now use

proposition 7.5 (4) to compute

AZK(S (£3PU)A(P,U)) * AMK(C(£5P,0))

n2-k(

APK(P,S(t30)A, (U)P;1) * AM2 K (p.C(t50)P5 )

AM(P,) AZK(S(E50)A (U)) * ATBK(C(150)) AT(P)

APK(s(t50)8, (0)) * AM K (C(t50).
The function h2k(p,t) is then given by

) cer(s (B0, (V)
P

] —

no(Pst) = £ [ APK(S(E30)A (1)) *
S

L
M
P

2k .

n'Zk(qn(tQqu))dEt(%;(t;PZU))Q ().

1
- E.I A SLM
StM p

p
The map U# PoU is an isometry of SJ'Mp with S%,. The result

thus follows by a change of variables in the integral.

We now compute gn(t;U), %n(t;U) and '%;(t;U) in terms of the
Lie algebra @7. for X ey define a linear map ad(X):87 -+ 0r by

ad(X)Y = [X,Y].

The map X ad(X) 1is called the adjoint representation of 7. It is

a Lie algebra homomorphism of (7 into the Lie algebra of all
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derivations of (7.

Proposition 10.7. Let (m,A) be a symmetrically embedded second order

germ, and U em*. Then ﬁn yim =M and Rg U :mt »>mt are given by

Ry = ~ad()?]

ol —ad()?|

Also if cosh(t ad(U)) and ad(U)_] sinh(t ad(U)) are defined by

m.!.

their power series, that is

cosh(t ad(U)) = :2) £ (ad(U))2k
| L T2kt ’

1. ® t2k+1 oK
ad(U)™" sinh(t ad(U)) = ézg TRET)T (ad(U)) :
then
a1y = o
%n(t,U) = ad(U)™" sinh(t ad(U))lm
¢ (t:0) = cosh(t ad(V)) ] ,
%n(t;U) = ad(U)“] sinh(t ad(U))mee

Proof. By proposition 5.23, the torsion tensor T of M s zero and
the curvature tensor is the same as that of the canonical connection.

Therefore, by proposition 5.12 (3), for X,Y 1in ff,
0 = T(X,Y) = -[X,Y%ﬁ'
Thus [X,Y] € h. Using this in 5.12 (4) yields, for X, Y, Z e fy,

R(X,Y)Z

]

-[IX,¥1,,2]

-[IX,¥1,2].
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So, if X, Uefy, then

Ry(x) = R(x,u)u
= -[[x,ul,u]
= -[U,[u,x]]
= -ad(U)?x.

This proves the statements about ﬁn U and ﬁ; T

From the formula ﬂn U —ad(U)Zlm, it is easy to check that

cosh(t ad(U))]m is a solution to the initial value problem defining

qn(t;U). The other formulas are proved in the same way.

Corollary 10.8. Let (m,A) be a symmetrically embedded second order

“‘germ and U ept. Then, for any real number a,

qn(t;aU) = gn(at;U),
s (tsal) = %—%n(at;U)
: . 1 )
%ﬁ(t,au) = %n(at,U).

Proof. By the formulas of the last proposition

S(t;al) = ad(al)™! sinh(t ad(AU))
= Lag(u)™! sinh((at)ad(v))
1
= —a— S(at;U).

The other two equations are proved in the same way.
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11. Tubes in product manifolds.

For a =1, 2 Tlet Mu be a compact oriented symmetrically
embedded submanifold of dimension Ny in the oriented symmetric space
Ma of dimension n +m . Let (ha)Zk (p,t) be the function given by

theorem 8.2, so that

vol(M (r)) = = [ (h )y (Par)ay(p).

Of?kfﬁa M

In this section we prove

Theorem 11.1. The submanifold M = M] X M2 is a symmetrically
embedded submanifold of M ='M] " ﬁz. Let n=ny +n, and

vol(M(r)) = 2 [ hy ((p,a),r)ay((p.a))

0<2k<n M
where h2k((p,q),t) is as in 8.2.
Then
m/2 )
ho ((psa)st) =t 2 [ (hy)y;(pst cos g)(hy)y(y_5y(ast sin g)ds

0<J<k

with the convention that (ha)2£ =0 if 25 > n,- Therefore,

m/2
vol(M = f vo](M](r cos e))vo1(M2(r sin g))dg.

Proof. Assume the formula for h2k((p,q),t).

Then
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m/2

=y ( 2 (hy)y (psrcosp)( X (h,)(g,rsing))n (p,q)ds
I o L e, 2 MyxM,
0 MxM, ="M ALY

/2
= rg ({; Oiz%in](h])z,((p,rcos e)QM](p))(b'[’4 O<§<n2(h2)23(q,rsin e)nmz(q))de
1 27 7

/2 .
=7 ! vol(M](r cos e))vo](Mz(r sin g))dg.
0

The proof that the formula for th(p,t) holds will be done in a
series of lTemmas. It will be more convenient to work with the second
order germs of submanifolds than with the submanifolds thenselves. Let
p € M], q e MZ’ and (m],A]) be the second order germ of M] at p,
and (mZ’AZ) the second order germ of M2 at q. Let ﬁ& be the
space to 'Ma at 0, its origin. Then, as in the last section,
there is a decomposition

. = Lo
ﬁu My, © M -

Let fi be the tangent space to M at (0,0). Then we can assume
that My mys m? and;né are subspaces of ff in the natural way. Let

m =My ®hy- Then the orthogonal complement to m in fy s

n' =m7 @ m3-

Convention 11.2. The letter U always denotes elements of mT and the

letter V will always denote elements of mé.

Define a linear map A fromm* to the symmetric linear maps onm by

AW, = Ay (0),

AW, = 0,
/-\(V)Im] =0,
A, = AV)
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Lemma 11.3. The second order germ of M = My x M, at (p,q) 1is (m,A).

Proof. It can be assumed that p 1is the origin of 'ﬁ] and that A] is
the Weingarten map for M] at 0. Similar assumptions are made for M2
and q. If pa:ﬁ —»ﬁa is projection, then our identification of fﬁ‘u

with a subspace of fy identifies the derivative »p with ortho-

a*(0,0)
gonal projection of fy onto fﬁ'a. It is clear that the tangent space to
M] X M2 at (0,0) is @ = my @ Mo- Let B be the Weingarten map of

M at (0,0). Then because P is orthogonal projection, proposition

4.6 becomes

BUR) (H+X,) Yy + V)

= (A (U)X, Y) + (AL V)X, Y00

where X], Y1 em] and X2, Y2 €Mmo- This shows B = A, and finishes
the proof.

~ ey

Lemma 11.4. Let R, 'ﬁ] and -EZ be the curvature tensors of M, 1

and 'MZ respectively. Then for all U, V, all four of m],mz,ﬁﬁ]'

and m'é are stable under AR,(U+V)’ and

Tz(U+V) . = (i])ulm],
f(uﬂ,) . = (Rz)v|m2,
Ru+v) ot i (ﬁﬁulm{
Riu+v) - - (Rz)vlm_é-

This shows that M = M1 X M2 is symmetrically embedded in M.

Proof. Let X], Y] € ﬁ{], X2, Y2 eﬁ{z. Using the notation of the last

Temma proposition 4.5 yields
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Ry Frp) oYy + Y

- (R(X]+X2,U+V)(U+V),Y]+ Yo)

= Ry (X UNUL Yy + (Ry (X5, V)V, Y,0)
- <<R1)u 12Y1) + ((Ry)y X5, Y5).
The result now follows easily.

Let C(t;U+V), C,(ts0) and Cy(tsV) be defined for M, M

M2 respectively as in theorem 8.2. Make analogous definitions for

S, Sy» S, and el S?, Sé

Lemma 11.5.
C(tsu+V) = C(tsU) @ Ch(tsV),
S(tsU+V) = 5.(tsU) @ Cy(t3V),
St(t,U+ V) = 53(t50) @ S5(t3v),

where the notation means

C(t;U+ v)lm] = Cy(ts1),
C(tsU+V) lmz = Cy(tsV),
etc.
Proof. Using 11.4 it is easy to check that C](t;U) ® Cz(t;V)

satisfies the differential equation defining C(t;U+V). The other

cases are similar.

Lemma 11.6. det(S“(t;U+V)) = det(S7(t;U))det(S5(tsV)).
Proof. Clear from 11.5.

Lemma 11.7.  S(t;U+ V)A(U+V)

S (S](t;U)A](U)) @ (Sz(t;V)Az(V))o

and
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Proof. This also follows from 11.5 (and the definition of A).

It is possible to view C](t;U) as a linear map on | by
extending C](t;U) from m; to my@m, by having C](t;U)l = 0.
_ ny

Using a similar convention for Cz(t;v) lets us write
C(t;u+V) = C](t;U) + C2(t;U).
This convection will be used in the following few lemmas.

Lemma 11.8.
AZK(S (U A(URY) ) * AT 2R (e (13 0+V))

. . n
= D AN(S(ts0A (U)*A-
0<i<2k

(Cy{t;U))* (S5 (tsVIA(V))*A (Co(t5V)).
Proof. Let S=S(t;U+V), A =A(U+V), C = C(t;Uu+V), Sy = S](t;U), etc.
Then the last few lemmas and 7.5 (3) yield

B gy T Bk gy

2k n-2k
AT (S7AL * SR ¥ ATTTH(C + Cy)

DA (syA I (6] * WZKTT(s )M (c,)).
0<i<2k
0<j<n-2k
The linear maps S]A] and C] take values in a vector space of
dimension ny- Therefore, if 1+ J > Nys it follows that

i % . J _
A (S1A) * A%(Cy) = 0.
Likewise, if (2k-i) + (n-2k-j) = ny +n, - (i+3) > ny, then
A2k-1(32A) * An—Zk-J(CZ) = ).

Consequently, the only nonvanishing terms have i + J = ny- Replacing

J by ny - i and summing on i yields the lemma.
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Lemma 11.9. For O0< i< 2k< n let
Ha,1(t)

. , y
-t/ A5y (500 00525, E1A ) ¥A T () (50))

S'm

n2-2k+i 4 .
* A (Cz(t;V))det(S#(t;U))det(Slz“(t;V))Qsﬁn(U+ V).
Then
2k
hoy(t) = 1.‘Z=‘\0H2k,1'(t)'

Proof. This 'is lemma 11.8 substituted into the definition of h2k(t).

Lemma 11.10. If f 1is a continuous real valued function on S',

then
f(U+Vv)a (u+V)
*srﬁn S
/2 -1 r
:=fﬂf [ flcos(p)U+sin(e)V)a (U)o (Vycos | (g)sin 2 (6)de.
0 'Sﬁn]Sﬁnz Sﬂn] Sﬁnz

Proof. Let S; = Sﬁnu a=1,2 and S* = S'y,. Put the product metric
on [0,7/2] x S} x S5 and define o:[0,7/2] x $% x s; 3 St by

o(g,u,v) = cos gu + sin gv.

We now compute the pullback of the volume from Q N to

S
[0,"/2] x 5# X 55-

Let (g,u,v) e [0,7/2] S# % SE. Let u;, ..., u  bean
1

orthonormal basis of m# with U; = u and Tlet Vis eees vm2 be an
: P _ 3,

orthonormal basis of 3 with vy v. Then 39 Ups o um],

Vos eees Vo is an orthonormal basis of the tangent space to

2



103

[0,"/21 x S} x S5 at (g,u,v), and

2
p, & = -sin g u, + cos g v
* 28 1 [
Py Uy = COS B U, 2<i<m,
Py vy = sin 0 v 2< ] < M.

Therefore,
.a_.. o0 e Iy oo
Dy 30 A CP*U2 Acce A ‘Okum]’\w*vz A A PxV
m]—1 .>m2—1
= COoS (g)sin (e)(-sin(e)u]+cos(e)v2)

AlUg A =ss AU AVyA *** AV

1 thg
m]+m2-1
The length of this vector is an element of A (m*) s
m}-1 m2-1
cos © - (g) sin (g). This shows
” m]-l m2-1
P = AQ Acos (g)sin® (g)ds.
SN

The function ® s surjective. It is also injective outside of a set

of measure zero. Therefore

[ f, [ o).
gt S [0,7/2]xs4x53 S

*
Using the form of @ Q . completes the proof.
S

Lemma 11.12. Let ¢ and s be real numbers. Then
i . % . k=1 .
AT (S (£5cU)AL (€0)) * AT (5, (E35V)A (sV))

n]-i n2-2k+1
(C](tSCU))*A

det(sﬁ(t;cu))det(SE(t;sV))

* A (C,(ts3sV))
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1
il

: A (S (ct30)A; () * AR (s, (st3v)AL(Y))
cis

n,-1 n,-2k+1

*al (G (et 0)Fa 8T (Cy(stsV))

det(S?(ct,U))det(SE(st;V)).

Proof. This is a consequence of corollary 10.7.

We can now finish the proof of the theorem. If H, 1.(t) is as

in 11.9, then we use the last two lemmas to rewrite H2k 1.(t) as

Hop 4 (t)

2k-1i

=L AT(s (tcos asU)A () * AZKTT (S, (£ sin 63V)AL(W))
0

‘sﬁn] S’mz

n]-1 n2-2k+1

* A (C](tcos a3U)) *A (C(tsingsV)

det(Sﬁ(tcos e;U))det(sé(tsin G;V))Qsﬁn](U)

Q (V) dg
: v cos(g)sing

n]-i

=t (tc]Os 5 Ai(S](t cos gsUAL(U)) *A © (Cy(tcosgsU))

0 s*m]

det(St(t cos g3U))n (u))
1 'Sﬁn1

1 2k-1 o
(gsmng A~ (Syltsing;V))*a
2

S'm

n2—2k+1

(Co(tcos gsV))

det(SE(tsin 5:V)) (V))da.
Smy
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If i s odd then the integrand for the integral over Sﬁn] is an
odd function of U and thus reduces to zero. For Hop 21.(t), we use

the definition of (ha)Zi to see that

m/2
H2k,2i<t) = tf (h])21(tcos e)(hz)z(k_i)(tsin 6)dg.
0

The theorem now follows from lemma 11.9.
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12. Examples.

We first consider the case where M 1is the complete simply
connected manifold of constant curvature K of dimension n + m.
Then every submanifold of M s symmetrically embedded. Let M be a
compact oriented submanifold of M of dimension n. Using the
notation of theorem 8.2, and the form of the curvature tensor for M
given in example (2) following the proof of proposition 6.2, we see

that if U e s*Mp, Ve T*Mp and X e TMp, then

R, (X) = KX

U(

RE(X) = KX = (U,VyU.

Define two real valued functions ¢, s on R byb

0 c(0) =1, c'(0) =

1]
1]

c"(t) + Ke(t).

{
o
w

s"(t) + Ke(t) =0 s(0) =0, s'(0) =

I
—
.

Using the initial value problems defining C(t,U) and S(t;U) we

see
C(t;V) = C(t)(id)TMp,
S(t;U) = S(t)(id)TM .
p
We now compute det(S*(t;U)).
Note that Ry(U) = 0, and
St(tsU) = tU.

If Vv e'TLMp and V is perpendicular to U, then Rt(v) = KV. Thus,

St(t;U)V = s(t)v,
and it follows that
det(St(t;0)) = ts(t)™ ',
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Let A be the Weingarten map of M in M, and let H be the
excess tensor of M in M. The integral formula of proposition 7.9
can now be used to compute the function h2k(p,t) of theorem 8.2.

ho(Bst) = £ [ AZK(S(E0)AW)) * AN PR (C(t50) ) det (st (£50))a_,  (U)

3M
StM
b p

= s () AN A" D W)

SLMp S Mp
S'LM oo
P p

)m+2k 1 n-2k 1 Sm-] *K, n-2k
St kmﬂng)(méaﬁy L ks (1).

If the curvature tensor of M at p 'is viewed as a linear map on

Azfﬁ , then it has the form

p
R = KkaZ(idgy )
.TMP .
Let I be the identity map on TMp and view the curvature tensor of
M at p as a linear map on AZTMp. Then, by proposition 4.5 the

excess tensor H of M at p 1is given by

H= R+ Ka2(1)

_ K (%2
=R + 7-1 .

Here we have used I = jI AJ(I)f This is also used in the following

calculation.
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- * * * -
H*k*An Zk(I) - n-]2k I (R+§_I 2) k* I (n 2k)
K L. .
o Kl Kikei *§ . *n-
= Th=Zk)1 Eo ST (@) R

K s e
T Z, it @ R amIm
j=

K . L
in-giSI ;EG j%%i%%%f‘(g)(k_a) tr(RY).

The last line of the above follows from proposition 7.8.

The following integral invariants of a Riemannian manifold were

introduced by Hermann Weyl [13].

Definition 12.1. If M 1is a compact oriented Riemannian manifold with

smooth boundary and R 1is the curvature tensor of M viewed as a

'11near map on AZTM then for each k with

0< 2k < dim(M)
set

iy (M) = [ tr(R ).
M

Then the following (also due to Weyl) holds.

Proposition 12.2. If M is the complete simply connected Riemannian

manifold of dimension n+m and M is a compact oriented submanifold
of M of dimension n then the volume of M(r), the tube of radius

r about M, is given by
vol(M(r))

o o s (r)2Kc (1)n-2K K () i, (k=3)
= s(r)" 'vol(S )0<%i<n(n_2k)!;(m+2)...(m+2k_2);§g jg?kij)!(ig sz(

M)
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where

1
o

|
o

c"(t) + Ke(t) c(0) =1, ¢'(0) =

s"(t) + Ks(t)

0 s(0) = 0, s'(0) =

I
il
o

Proof. This follows from theorem 8.2 by using the above expression for

* . n-2k . _
H A (I) in the formula given for h2k(p,t).

We now turn to complex manifolds of constant holomorphic curvature.
Let M be a complex manifold of complex dimension n + m. Recall from
example (3) following proposition 2.5 that each tangent space Tﬁp to

M is a complex vector space. Let
:TM_ -+ T
Ip i My > T

be the linear map on Tﬁp induced by multiplication by ,/:T'. It will

be assumed that M has a Riemannian metric ( , ) such that
(IX,0Yy = (X,Y)

for all X,Y tangent to M at the same point. A Hermitian metric

( , ) 1is then given on each tangent space by
(X,Y) = (X,Yy + (X,3Y) /-T.
The manifold M 1is said to have constant holomorphic curvature K
if its curvature tensor is given by
R(X,Y)Z = K((X,Y)Z - (Y,X)Z - (Y,X)Z + (Z,Y)X);

in this case,

EU(X) R(X,U)U

K((U,U)X + (X,U)U - Z(U,X)U).

let M be the complete simply connected space of constant
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holomorphic curvature K. Then M s known to be a Riemannian symmetric

space (See [8] volume II, example 10.5, page 273 and example 10.7,
page 282). If K 1is positive then M s complex projective space. Let

M be a compact complex submanifold of M with smooth boundary. Then,

for each p in M, both TMp and 'T*Mp are complex subspaces of fﬁp.
If Ue S*Mp, then

ﬁU(X) K((U,U)X + (X,U)U - 2(U,X)U)

KX.

This shows that M is symmetrically embedded in M. It also shows that

Ry = K(idTMp).

So, if we again define functions c(t), s(t) by the differential

equations
c"(t) + Ke(t) =0 c(0) =1, c¢'(0) =0,
Cs"(t) + K(s(t) =0 s{0) = 0, s'(0) =1,
then
C(t;U) = C(t)(idTM Ya
p
S(t;U) = s(t)(idTM ).
p
If Ye T*Mp and (Y,U) = 0 then
Rﬁ(v) = KY.

Thus SH(t;U)Y = s(t)Y.

Assume that M has complex dimension n. Then the set of Y € TLMp

with (Y,U) = 0 has real dimension 2(m-1). As before, TRG(U) =0 so

St(t;U) = tU. Finally, note that
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'Rﬁ(au) K((U,U)dU + (JuU,U)U - 2(U,Ju)U)

4KJu

therefore,

SE(3U)JU = + s(2t)dU.

|

Combining these, we obtain

det(s*(t50)) = & s()2M s (at).

We can now use the integral formula of proposition 7.9 to compute

hy (P)t).

Let A be the Weingarten map for M in M and H the excess

tensor of M in 'ﬁ. Then we have

gy (Pot) = ¢ J A2k<s<t;u)A(u>)*AZ(“'k’<c(t;u>)det(‘s*(t;umsLM (u)
S*M P
p
= S () 2lmrk-T)g () 2(n-k) I, A aa, a2 )
p
p

s(2ts()2(mk-1) )2 (n-K)

2m-1y *k, 2(n-k
= Kk 2ny ey (zzk=zy Vol (s m-Ty y*ka y2(n-k) qy

S(Zt)s(t)z(mk-])C(t)Z(n—k)

vol(s2™ 1y tr(n™ky.

2K 1y mime1) - - - (mk-1)

This yields the following proposition due to R. Wolf ([14]) and
F. J. Flaherty ([4]).

Proposition 12.3. With notation as above the volume of the tube M(r)

about M s

2(m-1
vol(M(r)) = S(2t)s(123) (m-1) vol(

o1y B (02D (2
s2n-T) .
égb ka (m+1) -+« (m+k-1) ﬂitr(H )QM
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Therefore vo](ﬁ) only depends on the excess tensor of M in M.

As a Tast example we do a hypersurface in a space of constant
holomorphic curvature. To this end let M be the space of constant
holomorphic curvature and complex dimension n. Suppose that M 1is a
hypersurface of M. Let bp eM and U e'SLMp. Then the vector J(U)

is perpendicular to U and thus tangent to M at p. Define

P] = Orthogonal projection of TMp onto
~orthogonal complement of JU in TMp.
P2 = Orthogonal projection of TMp onto
span of JU.
If Xe TMp and X 1is perpendicular to JU, then (X,U) = 0.
‘Thus
RU(X) = KX,
and so
C(t;U)X = c(t)X, S(t;U)X = s(t)X.
As above,
RU(JU) = 4KJU;
therefore
C(t;U)au = c(2t)au,
S(t;U)0U = & s(2t)U.

These facts together yield
C(t3U) = c(t)P] + c(2t)P2,

S(t;U)

1
s(t)P] + ?—s(2t)P2.

Because P2 has rank one it follows that AJ(PZ) =0 for j> 2.
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Whence

AZn-T—k(C(t’U)) - C(t)Zn-'l—kAZn—'l-k(P])

2n-k-2 A2n—k-2(P]).

+ ¢c(t) c(2t)P2*

We choose a smooth unit normal along M and let A be the

corresponding Weingarten map. Then PZA also has rank one; thus

A(S(30)) = s(£)A%(p,A)

+ 2 s(2t)s (1) (P A) ¥ AR (P A).

But P2 and PZA both have the same one-dimensional range, and thus

P2 * (PZA) = 0. Therefore, using the notation of proposition 9.1, we

have

2n-1-k

hy (pat) = AK(S(t;0)A) * A (C(t30))

= s(t)Kc(t) 21T Kak (p ) % 20-1-K(Py)

+ L s(ztys(e)Toe)21ok(PA) = AKT N (Py)

|

g s(t)kc(Zt)czn'z'k(t)Ak(P]A)* Pz*yxzn'z'k(P1).

Choose A so that JU 1is one of its eigenvectors with eigenvalue 2,
and let a,, ..., a, 1 be the other eigenvalues of A. Then let
ok(aZ""’aZn-l) be the k-th element symmetric function in

qps «ees 3, 7. Then

AS(PLA) * APKTTKGRL) = g (2, iapy )

However, it is not hard to show that, if K # 0, then s(’c)kc(t)zn‘]"k
is linearly independent of s(2t)s(t)k'1c(t)2“']‘k and
s()Kc(2t) c(£)2"" 27K Therefore, we can compute o (@gse e sapy q)  from

h:(p,t). But this is independent of a; so h:(p,t) is not a
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function of the k-th element symmetric function of A. The best that

can be proved is that hz(p,t) is a linear function of /\k(A).



[1]

[2]

[3]

[4]

[5]

(6]

[7]

(el

[9]

[10]

[17]

[12]

[13]

[14]

(qp]

115

References

. B. Allendoerfer and A. Weil, The Gauss-Connet theorem for

Riemarmian polyhedra, Trans. Amer. Math. Soc.,
vol. 53(1943), 101-129.

. Chavel, Riemannian Symmetric Spaces of Rank One, M. Dekker,

New York, 1972.

. S. Chern, On the kinematic formula in integral geometry,

J. Math. and Mech., vol. 16(1966), 101-118.

. J. Flaherty, The volume of a tube in complex projective space,

I11. Jour. Math., vol. 16(1972), 627-638.

. Flanders, Development of an extended differential calculus,

Trans. Amer. Math. Soc., vol. 75(1951), 311-326.

. Federer, Curvature measures, Trans. Amer. Math. Soc., vol. 93

(1959), 418-491.

. Helgason, Differential Geometry, Lie Groups, and Symmetric

Spaces, Academic Press, New York, 1978.

. Kobayashi and K. Nomizu, Foundations of Differential Geometry,

Interscience, New York, vol. I(1963), vol. II(1969).

. Lang, Differential Manifolds, Addison-Wesley, Reading, Mass.,

1972.

. Spivak, 4 Comprehensive Introduction to Differential Geometry,

vol. IV, Publish or Perish, Inc., Boston, Mass., 1975.

. Steiner, Uber parallel Fldchen, Mber. Preuss. Akad. Wiss., 1840,

114-118; see also "Collected Works", vol. 2, 173-176,
Reimer, Berlin, 1882.

. W. Warner, Foundations of Differentiable Manifolds and Lie

Groups, Scott, Foresmann, Glenview, I11., 1971.

. Weyl, On the colume of tubes, Amer. J. Math., vol. 61(1939),

461-472.

. A. Wolf, The volume of tubes in complex projective space, Trans.
Amer Math. Soc., vol. 157(1971), 247-371.



