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ABSTRACT 

Let M (dim(M) =· m + n) be an oriented Riemannian manifold and 

M a compact oriented submanifold of · M. The tube M(r) of radius 

r about M is the set of points p that can be joined to M by a 

geodesic of length r meeting M peroendicularly. We give a formula 

for the volume of M(r) in the case M is a naturally reductive 

Riemannian homoge~eous space (this includes all Riemannian symmetric 

spaces) and M is such that for each point p of M there is a 

totally geodesic submanifold of M of di.mension complementary to M 

through p and perpendicular to M at p. 

To be more specific, 
n 

VO l(M ( r) ) = .6 J hJ. (. p 'r) QM ( p) . 
J=O M 

Here h. is a function of the point p e M and the real number r. 
J 

Also hj(p,r) is a homogeneous polynomial of degree j in the 

components of the second fundamental form of M in M. 
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1. Introduction 

Let M be a submanifold of the Riemannian manifold ~. Then a 

fundamental problem in the geometry of submanifolds is to give 

invariants of the pair (M,M) that relates the geometry of M to that 

of M. One such invariant is the volume of the tube M(r), of radius 

r, about M in M. 

In the case where ~ is a Euclidean space of dimension n + m 

and M is compact of dimension n, Hennann Weyl [13] proved that 

( ) m-1 +2k 
vol (M r) = 6 c2k n mr f h ( )r-. ( ) 

0<2k<n ' ' 2k p ~bM p 
- - M 

where h2k(p) is a polynomial of degree 2k in the components of the 

second fundamental form (or of the Weingarten map) of M in M. It is 

also possible to express h2k(p) as a polynomial of degree k in the 

components of the curvature tensor of M. 

The in'variants · h2k just defined have proven to be useful in 

geometry. For example, the first proof of the Gauss-Bonnet theorem for 

manifolds of dimension greater than two was given by Allendoerfer and 

Weil [l], and used Weyl 's formula. Another example where the invariants 

h2k are important is the Kinematic formula of Chern [3] and Federer[6]. 

This shows that it is of some interest to compute the volume of tubes 

for more general pairs (M,M) and see if invariants similar to the 

h2k defined by· weyl can be defined. 

The results of this paper show that in the case M is a 

"symmetrically embedded" submanifold of a naturally reductive Riemannian 

homogeneous space M (definitions below) then it is possible to define, 

for each real t and each integer k wi'th 0 < k ~ dim M a function 
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p + hk(p,t;M,M) on M such that a formula for the volume of the tube 

M(r) analogous to Weyl ls holds. Specifically, if n = dim M, then 

n 
vo 1 ( M( r) ) = 6 J h k ( p , r; M, M) OM ( p) . 

k=O M 

The function hk is a polynomial of degree k in the components of 

the second fundamental form of M in · M. 

In section 2. those standard results on the geometry of manifolds 

which will be needed later are given. For the most part, the exposition 

follows that of Kobayashi and Nomizu [8]. 

In section 3, we give formulas to compute the curvature and Jacobi 

fields of a Riemannian manifold M in terms of the curvature and 

torsion of a connection on M that preserves the metric of M and has 

the same geodesics as the Riemannian connection of M. It is also shown 

there is a bijective correspondence between such connections and the 

smooth 3-forms on M. The results of this section seem to be new, 

however it is possible they are only of interest when the connection in 

question is the canonical connection of a naturally reductive Riemannian 

homogeneous space. In this case they are well known. 

Sections 4 and 5 are both expository-. Section 4 gives the results 

on the geometry of submanifolds needed in the sequel. Section 5 gives 

the results on Riemannian homogeneous spaces that are needed. The 

calculations of section 3 are used here. 

Section 6 contains the main results of this paper. First the 

notion of a symmetrically embedded submanifold of a naturally reductive 

Riemannian homogeneous space is defined (definition 6.1). Proposition 

6.2 then gives a geometric interpretation of what being symmetrically 
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embedded means. The volume of a tube about a compact symmetrically 

embedded submanifold is then computed. It is the introduction of the 

fields of linear maps S(t;U), C(t;U), and si(t;U) along geodesics 

normal to the submanifold which allows the calculation to be done. 

These linear maps can also be used to compute the Weingarten map of the 

tube. However, this calculation is not done here. 

The results of section 7 are algebraic. The basic problem is to 

expand det(A+ B) into a sum by something resent> ling the bionomial 

theorem. This was done by Flanders [5]. He uses the universal 

properties of tensor products in his definition of what is written here 

as A* B. This makes comparison with formulas in c 1 ass i ca 1 not a ti on 

hard. The calculations needed to compare the two are done in detail 

here. 

In section 8, the algebraic results of section 7 are used to expand 

the function h(p,t) of the tube formula of theorem 6.14 into terms 

hk(p,t) = hk(p,t;M,M) homogeneous of degree k in the components of 

the Weingarten map of M in M. The functions hk(p,t;M,M) are then 

the natural generalization of the invariants defined by Weyl. It is 

also shown that, if M is a symmetric space then hk(p,t;M,M) vanishes 

for k odd. 

In section 9 the classical results of Steiner [11] on parallel 

surfaces are generalized to hypersurfaces in a naturally reductive 

Riemannian homogeneous space. 

In the case where M is a symmetrically errbedded submanifold of 

a symmetric space M, it is possible to express the linear maps C(t;U), 

S(t;U), and si(t;U) needed in the tube formula explicitly in terms of 
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the Lie algebra of a transitive group of isometries of M. This is 

done in section 10. 

In section 11 a formula relating the invariants 

h2k(( Pi, p2), t;M1 x M2 ,'M1 x M2) to the · invariants of the pairs (M1 ,'M1) 

and (M2,'M2) is given. This generalizes the corresponding result for 

the invariants given by Weyl in the case M1 and 'M2 are Euclidean. 

This gives more evidence that the invariants introduced here are 

reasonable generalizations of Weyl ls invariants. 

In the last section some examples are give. 
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2. Connections on the frame bundle of a manifold. 

All manifolds will be assumed to be Hausdorff, paracompact and of 

class ~- If a manifold is not connected, then all connected components 

are assumed to have the same dimension. The word 11 smooth 11 applied to 

either manifolds or maps will mean "of class c'° 11
• If M is a manifold, 

then TM (also written as T(M)) will be the tangent bundle of M and 

™p (or T(M)P) wi~~ be the tangent space to M at p. If f: M + N is 

a smooth map between manifolds, then f*p: TMP + TNf{p) is the 

derivative of f at p. The characterization of tensor fields as 

objects multi·linear over the ring of smooth functions of a manifold will 

be used (see [8] vol. 1, page 26). 

For the rest of this chapter, fix some manifold M of dimension n 

and a real vector space ~ of the same dimension as M. We now define 

the bu:ndle of linear frames over M, or, more briefly' the frame bundle 

of M . For ea ch p i n M , 1 et L ( M) p be the set of a 11 l i near 

isomorphisms of m onto ™p· An element of L(M)P will be called a 

frame at p. The frame bundle L(M) is the disjoint union of the L(M)P 

with p in M. For each p in M, the set L(M)P is called the 

fibre of L(M) over p. A map TI: L(M) + M is defined by taking all 

elements of L(M)p to p. This map is called the projection of L(M) 

onto M. Let GL(m) be the group of all linear automorphisms of the 

vector space m with its usual structure as a Lie group. Then there is 

a natural right action of GL(M) on L(M) by 

(u,a) 1+ u 0 a, 

where u € L(M) and a€ GL(m). We now wish to make L(M) into a 

smooth manifold in such a way that the projection TI and the action of 
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GL(~) on L(M) are smooth. By way of notation, for each open subset 

U of M let L(U) = n-1(U). 

Definition 2.1. Let U be an open subset of M. Then a moving frame 

over U is a function 

e : U -+ L ( M) 

such that: 

(1) Tioe=identityon U; 

(2) If ep is the value of e at p, then for all v in Jn, the 

function p-+ ep(v) is a smooth vector field on U. 

Remark. Let ~: U -+Jn be a diffeomorphism of the open subset U of 

M with the open subset ~(U) of Jn. Then, under the standard 

identification of tangent spaces to Jn with Jn, the function 

. ~: U -+ L(M) defined by 

is a moving frame over U. Therefore every point of M is in the 

domain of some moving frame. 

Proposition 2.2. There is a unique structure of a differential manifold 

on L(M) such that: 

(1) The projection TI: L(M)-+ M is smooth; 

(2) the right action of GL(rn) on L(M) given above is smooth; 

(3) every moving frame e: U-+ L(M) over some open subset U of M 

is a smooth function. 

Outline of the proof. If the three conditions of the proposition hold, 

then it is straightforward to check that, for each moving frame 
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e: U + L(M) over some open subset U of M, the map ~e from 

U x GL (In) onto TI - l ( U) given by 

= e o a 
p 

is a diffeomorphism. This determines the smooth structure of L(M) in 

the open subset TI-l(U) of L(M). By the remark before the proposition, 

L(M) is covered by such sets. Thus, the smooth structure on L(M) is 

unique, provided it exists. 

Let e.: U. + L(M) j = l, 2 be two moving frames over the open 
J J 

subsets u1, u2 of M. Then it is not hard to check that 

-1 
~e 0 ~e : (U1 n U2) x GL(rn) + (U1n U2) x GL(rn) 

l 2 

is a di ffeomorph ism. Therefore, the maps ~ e, where e is a moving 

frame, can be used to define an atlas for L(M). This finishes the 

proof. 

The proof of the following is left to the reader. 

Proposition 2.3. With notation as above, 

(l) The dimension of L(M) 2 is n + n; 

(2) the projection TI is a submersion (that is, TI*U is surjective 

for all u in L(M)); 

(3) each fibre L(M)P is a closed embedded submanifold of L(M) 

diffeomorphic to GL(rn) and the action of GL(tn) on the fibre L(M) 

is simply transitive; 

(4) the tangent space to a fibre L(M) at a frame u is the kernel p . 
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We now define the class of geometric objects on which most of our 

calculations will be done. If G is a closed subgroup of GL(~), 

then G also has a right action on L(M) in an obvious way. 

Definition 2.4. Let G be a closed subgroup of GL(m). Then a 

G-strueture on M (also called a reduction of L(M) to G) is an 

embedded submanifold P of L(M) such that; 

(1) The restriction of the projection TI to P is a submersion of P 

onto M; 

(2) for each p in M the fibre PP, defined to be PP = L(M)P n P, 

is an embedded submanifold of P such that the action of G on PP 

is simply transitive. 

Some elementry facts about G-structures are given in the following. 

Proposition 2.5. Let P be a G-structure on M; then, 

(1) The dimension of P is dim(M) + dim(G). 

(2) Each fibre of P is diffeomorphic to G. 

(3) If TI: P + M is the projection, then, for each p in M and u 

in the fibre Pu, 

T(Pp)u =kernel (TI*U). 

(4) Each point of M has an open neighborhood U and a moving frame 

e: U + L(M) defined on U such that ep e P for all p in U. 

(Such moving frames are called sections of P over U.) 

Proof. The first three parts are easy. 

Because TI is a submersion of P onto M the implicit function 

theorem lets us find a smooth function e: U + P, defined in an open 
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neighborhood of any given point of M, with no e = identity on U. 

It is not hard to verify that e is a section of P over U. 

Examples. (1) It is clear that L(M) is a GL(~) structure on M. 

(2) Recall that a Riemannian metric on M is an assignment of an 

inner product ( , )p on each tangent space ™p to M, in such a 

way that if X and Y are smooth vector fields on M, then the 

function 

pH- (X(p),Y(p))p 

is smooth. Put an inner product ( , ) on ~ and let O~) be the 

group of all automorphisms of this inner product. Thus O(~) is 

isomorphic as a Lie group to the group of all n x n real orthogonal 

matrices. Let M have a Riemannian metric ( , _). Then, for each p 

in M, let O(M)P be the set of all isometries of ~ onto ™p· 

Define O(M) to be the union of the O(M)p with p in M. Then it 

can be verified that O(M) is an O(~)-structure on M, called the 

bundle of orthogonal frames of M. 

Conversely, given an O(~)-structure P on M we can define a 

Riemannian metric on M by 

( -1 -1 ) (X,Y)p = u X,u Y 

where u is any element of PP and ( , ) is the inner product on 

~; this inner product is well-defined because any two frames . in Pp 

are related by the right action of an element of O(~). Then P will 

be the bundle of orthogonal frames for this Riemannian metric. Thus, 

giving an O(~)-structure on M is the same as giving a Riemannian 

metric on M. 
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(3) Suppose M is a complex analytic manifold of complex dimension 

m (and thus real dimension n = 2m). Recall that this means that M 

has an atlas {(cp ,U): a€A} such that for each a e A cp('J is a 
a a '-" 

diffeomorphism of the open subset U of M onto the open subset 
a 

cp (U ) of [m so that for each pair a,6 e A the function a a 

is holomorphic. If M is such a manifold, then each tangent space 

™p' to M has the structure of a complex vector space. Multiplica­

tion of a tangent vector X e TM by a complex scalar a can be . p 

described as follows: Choose a chart (~a'Ua) from the defining 

atlas or M with _ p € U , then __ .-
et 

This can eas i lY be checked to be well-defined· by using- that if · -· 

a,S e A and p e ua n u8, then (ep a 0 epS1 )~(fl is complex 1 inear. 
S(p) 

Now assume that th is a complex vector space. For each p in M, 

let C(M)P be the set of all complex linear isomorphisms of ~ onto 

™p' and let C(M) be the union of all of the C(M)P with p in M. 

If GL ([,th) is the group of a 11 complex 1 i near automorphisms of th, 

then C(M) is a GL(rL,tn) structure on th called the bundle of 

holomorphic frames over M. 

(4) If M is a complex analytic manifold, then a Hermitian metric 

( , ) on M is a choice of a Hermitian inner product ( , >p on each 

tangent space ™p to M such that for all smooth vector fields X,Y 

on M the complex valued function 

p >-+ (X(p),Y(p))p 
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is smooth. Assume that rn is a complex vector space with Hermitian 

inner product ( , ) and that U(rn) is the group of all complex linear 

automorphisms of ( , ). Then it is possible to define a 

U(rn)-structure U(M) on M in a way that should be clear from the 

last two examples. This U(rn)-structure is called the bundie of 

unitary frames over M. 

We now record some facts we will need about GL(rn) and its closed 

subgroups. Let . ge(rn) be the Lie algebra of all linear endomorphisms 

of rn with Lie bracket given by 

[A,B] = AB - BA. 

Then 91,(tn) is the Lie algebra of GL(rn). 

For any A€ g,e(rn) define eA by its power series 

eA = ~ Ak 
L.J -k, • 
k=O . 

Then every continuous homomorphism from the group of additive real 

nurrbers to GL (rn) is of the form 

for some A i n g,e (rn ) . 

If G is a closed subgroup of GL(rn) then, by the "closed 

subgroup theorem" of E. Cartan ([12] Theorem 3.42, page 11), G is 

an embedded submanifold of GL(rn). Let 1 be the identity element of 

GL(rn). Then tJ:r, the tangent space to G at 1, is the Lie algebra 

of G and is a Lie subalgebra of g,e.(Jn). By parallel translating the 

tangent space to G at to the origin (zero element) we can and 

often will view elements of {)y- as linear transformations on rn. It 
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should also be noted that f!f is the set of all A in ge(m) such 

that etA is in G for all real t. 

The adjoint representation of G on Cf.{ is given by at+ Ad(a) 

where 

Ad(a)A = aAa-l. 

It is easy to check that 

Convention 2.6. Unless stated otherwise, for the rest of this chapter 

11 P11 wi 11 denote some fixed G-s tructure on M where G is some fixed 

closed subgroup of GL(rn) with Lie algebra {)J. 

Definition 2.7. (1) For each a in G define right translation by 

a on P by 

* (2) For each A in OJ define the fundamental vector field A on 

p by 

* d tA A (u) ~ dtl ue 
t=O 

Proposition 2.8. (1) * The flow of the vector field A is retA. 

(For the definition of the flow, or local 1-parameter group generated 

by a vector field see [12] 1.49 Definitions, page 39.) 

(2) For A e {)]' and a e G 

* -1 * ra*A = (Ad(a )A) . 

* (3) The map A 1-+ A is a Lie algebra homomorphism of tf.r into the 

Lie algebra of all smooth vector fields on P. 

* (4) For each u in P the map A~ A (u) is injective. 
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(5) For each u in P the tangent space to the fibre Pnu at u is 

Proof. ( 1 ) It is easy to check that 

r tA 0 r sA = r ( t+s) A· 
e e e 

The result now follows from the deftni'tion of a flow. 

(2) The tangent vector to the curve t ~ uetA at t = O is * A (u). 

Therefore 

* d tA ra A (u) = dtl ra(ue ) 
* t=O 

This proves (2). 

(3) For each u in P define a map cru: G-+ P by cru(a) = ua. The 

tangent vector to _the curve tr-+ etA at t = 0 is A; therefore, 

d tA 
cru*lA = dtl crue 

t=O 

= _Q_l ue tA 
dt t=O 

* =A (u). 

* The map cru*l is linear, which shows A 1-+ A{_u) is linear for all u. 

* It follows that . A1+ A is linear. 
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* Let s.,A* be the Lie derivative with respect to A (see [12], 

pages 69 and 70 for the definition of Lie derivative and for a proof of 

the equality s.,xY = [X,Y]). Using (2) and the fact that the flow of 

* A is -r tA' we have 
e 

* * * [A , B ] ( u) = (J: A*B ( u) 

d * tA 
= d t I r -tA B ( u e ) 

t=O e · * 

* We have just shown the map CJ+ C (u) to be linear from ~ to 

T(P)u. Therefore, if t 1-+ Ct is any smooth curve in (JT it follows 

that 

This yields 

* = [A, B] ( u) . 

* This completes the proof that A rt- A is a Lie algebra homomorphism. 

* (4) Let A e ~ and u e P with A (u) = 0. Then because the flow 

* of A is r tA it follows that 
e 

r tA(u) = uetA 
e 

= u 

for all real t. The action of G on fibres is simply transitive; 

therefore etA = 1 for all t. This implies A = 0. This along with 
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* linearity of the map A~ A (u), proves (4). 

(5) By (3) and (4) we see that * {A (u): A e ()j} is a linear space of 

the same dimension as G. The vector space T(P ) is also of this 
TIU U 

dimension. Thus to show ·the two are equal it is enough to show the 

first is a subspace of the second. If a e G then it is clear that 

TI 0 r a = TI. Consequently 

Thus 

* d tA 
TI*uA . (u) = dtl TIUe 

t=O 

d 
= dtl TIU 

t=O 

= 0. 

* {A (u): A e (Jj} s. Kernel(Tiau) 

= T(P )u. TIU 

This finishes the proof. 

Definition 2.9. Vectors tangent to some fibre PP of P will be 

called vertical. 

Remark. It will be convenient to use the formalism of vector valued 

differential forms. The following 1ist of definitions is given so as 

to fix our conventions on what constants are used in the definitions of 

exterior derivative and wedge product. Let V be a real vector space. 

Then a V-vaZued r-form w on M is a smooth assignment for each p 

in M of an r-linear alternating function wp on ™p with values in 

V. When r = 0, w is defined to be a smooth function with values in 

V. In the case V = IR, w is just ca 11 ed an r-form. The exterior 

derivative dw of w is the V-va 1 ued (r + 1 )-form given on smooth 
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vector fields x0, ... , Xr by 

. i+j A A 

+ .6.(-1) w([Xi,Xj],X0 , ..• ,Xi, ... ,X., ... ,X ). 
0.::_1 <J2_r J r 

where "' means the term is omitted. For r = 0 and l this becomes 

dw(X) = Xw, 

dw (X , Y ) = Xw ( Y) - Y w ( X ) - w ( [ X , Y] ) • 

If w i, s a V - val ue d r- fo nn , e i s a W- v a 1 u e d s - form and ( , ) 

a bilinear function on V x W with values in the vector space S 

then the wedge product of w and e is the s-va 1 ued ( r + s )-fonn 

given by 

(w~e) (x1 , ... ,xr+s) 

= r~s ! ~ ( - l)cr (w(X cr ( 1 )' · · • •\r ( r p,e(Xcr ( r+ 1)' · .. ,Xa ( r+s) )} 

where the sum is over all permutations cr of the set {l , ... ,r+s} and 

(-l)cr is the sign of the permutation cr. It can be checked that 

d(w"'e) = (dw~e) + (-l)r(w"'de) . 

In the case in which both V and W are the real numbers and ( , ) 

is multiplication of real numbers, we just write W/\8 for (w4'e) . 

Definition 2.10. A connection on P is a smooth Qr- valued one-form 

w on P that satisfies the following two conditions; 

(1) The value of w on vertical vectors is given by 

* wu(A (u)) =A 

for all A in Cf.! and u in P. 
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(2) w transforms under the action of a e G by 

* -1 raw = Ad(a )w. 

Definition 2.11. If w is a connection on P then for each u e P 

let 

H = kernel(n ). 
U *LI 

Then H is called the space of horizontal vectors at u or more u 

briefly the horizontal space at u. 

Proposition 2.12. Let {H : u € P} be the set of all horizontal 
u 

vectors, for the connection w on P. Then, 

(1) · {H : u e P} is a smooth distribution on M. 
u 

(2) For all a e G and u e P 

(3) For all u e P 

(direct sum). 

Conversely, let {Hu: u e P} satisfy (1), (2) and (3) and define w · 

* to be the O,r-valued one-form on P given by wu(A (u)) = A for A 

in !!r:r and w (X ) = 0 if X is in Hu. Then w is a connection 
VJ U U U 

on P and the horizontal spaces defined by w are {Hu: u e P}. 

Proof. See proposition 1.1 on page 64 of vol. 1 of [8]. 

Remark. A connection is often defined to be a smooth distribution 

{H : u e P} satisfying (1), (2) and (3) of the last proposition. Then 
u 

w is defined as above and is called the connection form of the 

connection. 
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(2) Let ~ be a connection on L(M). Then w is the extension of a 

connection on P if and only if, for each u in P, the space Hu 

of horizontal vectors determined by ~· at u is tangent to P. 

Proof. The first part is a special case of proposition 6.1 on page 61 

of vol. 1 of [8]. The second part is straightforward. 

Remark. Some of the definitions below, such as parallel translation 

along a curve or the curvature and torsion tensors on M, can be 

given in terms of either a connect ion w on P or the extended 

connection on L(M). It will be left to the reader to show these 

definitions ~re independent of which of these two connections is used. 

Definition 2.14. Let w be a connection on P and c: (a,B) + M be 

any piecewise smooth curve. Then a piecewise smooth curve 2: (a,S) + P 

is Called a horizontal lift Of C if and Only if 1TO C: C and C1 (t) 

is horizontal for all t. 

Proposition 2.15. Let w · be a connection on P, c: (a,S) + M a 

piecewise smooth curve, t 0 € (a,6) and u e Pc(to)" Then there is a 

unique hori zonta 1 1 ift c of c to P with 2( t0 ) = u0 . If a e G, 

then the horizontal lift y: (a,S) + P with y(t0) = u0a is given by 

y(t) = c(t)a. 

Proof. This follows from proposition 3.1, page 69 of [8]. 

Definition 2.16. Let w be a connection on P, c: (a,B) + M a 

piecewise smooth curve and t
1

, t 2 e (a,6). Then parallel translation 

along c from ™c(tl) to ™c(t ) is defined by 
2 

tl A A -1 
Tt = c(t2)c(t1) 

2 
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/'\ 

where c is any horizontal lift of c to P. 

1 i near i soma rph ism of ™c ( tl ) onto ™c ( t
2

) · 

t, 
Clearly Tt is a 

2 

By the 1 as t proposition any other hori zonta 1 lift of c i. s of 

the form t t+ c(t)a. It follows that parallel translatton is independent 

of the choice of the horizontal lift of c. It is also easy to check 

that if t 1 , t 2 , t 3 are in (a,6) then 

t2 t, tl 
Tt Tt = Tt . 

3 2 3 

Definition 2.17. Let Y be a smooth vector field defined on some open 

subset U of M and X(p) a tangent vector to M at p e U. Choose 

a smooth curve c: (-s,s) 7 U for some s > 0 with cl(Q) = X(p). 

Then define 

where -r6: ™c(t) 7 ™c(O) is the parallel translation along c defined 

by the connection w. 

Remarks. (1) For all ts (-s,s) the vector -r~Y(c(t)) is in the 

finite dimensional vector space TMp. The derivative Jt -r6Y(t) is 

computed as the tangent vector to a curve in a vector space. 

(2) The vector vX(p)y is independent of the choice of the curve c 

with c'(O) = X(p). See pages 114 and 115 of vol. 1 of [8]. 

(3) To compute vX(p)Y it is enough to know the values of Y along 

any curve c that fits X(p) in the sense of the definition. 

Proposition 2.18. The map (X(p),Y) t+vX(_p)y defined above satisfies 

the following five relations: 
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(1) "Vx
1

(p)+x
2

(p)Y = "Vx
1

(p)Y + vx
2
(p)v. 

( 2) 'V cX ( P) Y = c 'V X (p) Y for a 11 real c. 

( 3) 'Vx(p)(v,+Y2) = 'Vx(p)vl + 'Vx(p)Y2· 

( 4 ) 'V X ( P) ( b Y ) . = b ( p ) v X ( p) Y + ( X ( p) b ) Y ( p) fa r a 11 smooth real val u e d 

b with the same domain as Y. 

( 5) If X and Y a re smooth vector fie 1 ds on the open subset U of 

M, then so i s p 1-+ 'V x ( p ) Y . 

Proof. See proposition 1 .1, page 114 of vol . 1 of [8]. 

Definition 2.19. Let ~ be the set of all pairs (X(p),Y) where Y 

is a smooth vector fl e 1 d on some open subset of M and X (_p) is a 

vector tangent to M at some point p in the domain of Y. Then a 

function (X(p) ,Y) >+ 'VX(p)y defined on ~ and satisfying the five 

conditions of 2. 18 is ca 11 ed a covariant derivation on M. If 'V is 

defined from a connection w then v is called the covariant 

derivation of w. 

Proposition 2.20. (1) Two connections on P with the same covariant 

derivation are equal. 

(2) Every covariant derivation on M ts the covariant derivation of a 

(unique by (1)) connection on L(M). 

Proof. See proposition 7.5, page 143 of vol. 1 of [8]. 

We now describe parallel translation in terms of the covariant 

derivation of a connection. 

Definition 2.21. Let 'V be the covariant derivation of the connection 

w on P, and c: (a,S) -+ M a smooth curve. Then a vector field 
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t t-+ Y(t) along c is. called paraUe"l if and only if 

for all t in (a,S). 

Proposition 2.22. Let w he a connection with covariant derivation v 

on P, c: (a,S) ~ M a smooth curve, and t0 e (a,S). If T is the 

parallel translation defined along c by w, then every parallel 

vector field t t-+ Y(t) along c is of the form 

to 
Y(t) = Tt Y0 

for some v0 in ™c(t )• Therefore, for every Y0 in 
0 

there is a unique parallel field t ~ Y(t) along c with 

™c(t0) 

Y (ta) = Yo. 

The vector Y(t) is called the parallel translate of Ya along c to 

c(t). 

Proof. 
to 

If Y(t) = T t Y0 then for any t 1 in (a,S) 

d t 
'Vc•(t )Y(t) = dtl Tt Y(t) 

l t=t, l 

d t ta 
= dtl T t T t Yo 

t=t1 1 

d to 
= cttl T t Yo 

t=t, l 

= 0. 

Therefore Y(t) is parallel. Let t t+ Y(t) be parallel along c and 

let xl' ... , xn be a basis of 

x1(t), ... , xn(t) along c by 

™c(t )• 
0 

Define fields 
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Then we have just shown each Xj(t) is parallel along c. The map 
ta 

,.t from ™c(to) to ™c(t) is a linear isomorphism,therefore 

x1 (t), ... , Xu(t) is a basis of ™c(t) for all t in ™c(t). 

Whence, 
n 

Y(t) = 611.(t) x.(t) . , 'it, 1 
1= 

for some smooth functions y1 , •.. , Yn on (a, S). By proposition 2. 18, 

we have 

This shows Yi = 0, so each Yi is constant. Consequently, 

n 
y ( t) = .6 lJ i ( t 0) xi ( t ) 

i=l . 

n t
0 

· 
= 6 11 . ( t 0 ) ,. t x . 

. l 1 1 1= 

t 0 n 
= ,. t ( 6 lJ . ( t 0 ) x . ) 

. 1 1 1 1= 

This finishes the proof (with v0 = Y(t0)). 

The next several definitions are devoted to defining the curvature 

and torsion forms on P and the corresponding curvature and torsion 

tensors on M. 

Definition 2.23. The canonical form e on P is the rn-valued one-form 
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on P given by 

e (X) = u-l'Tf x. 
U *U 

Remark. The canoni ca 1 fonn e is defined independently of any 

connection on P and the kernel of eu is the space of vertical 

vectors at u. 

Proposition 2. 24. If e is the canoni ca 1 form on P then e 

transforms under the action of G on P by 

r;e = a ... 1e. 

Proof. Strai-ghtforward. 

Definition 2.25. Let a be a k~form on P with values in some vector 

space V. Then the covariant differential Dex of ex defined by the 

connection w on P is the V-valued k + l form given by 

(Dex) (_Xl, ..• ,Xk+l) = dex{_hX1 , ... ,hXk+l) 

where d is exterior derivative and X = hX + vX is the decomposition 

of X into its horizontal component hX and its vertical component 

vX defined by the connection w. 

Definition 2.26. Let w be a connection on P and D the covariant 

differential defined by w. Then: 

(1) The torsion form e of w is the ~-valued two-form given by 

8 = De. 

(2) The curvature form O of w is the eq--valued two-form given by 

0 = Ow. 
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The proof of the next proposi.tion is straightforward. 

Proposition 2 ~ 27. The torsi.on form e and the curvature form o of 

a connection w on P transform under the action of G by 

* -.1 ra e = a e, 

r: o = Adla-1) o 

for a in G. 

Definition 2.28. Let w be a connection on P. Then, for each p e M, 
A 

Xe ™p and u e Pp we define the horizontal lift X(u) of X to u 
A 

by letting X(u) be the unique hodzontal vector at u with 

A A 

Remark. It is easy to check using 2.12 (2) that ra*X(u) = X(ua). 

Definition 2.29. Define the torsion tensor T and the curvature tensor 

R of a connection w on P by 

A A 

TP(X,Y) = u(eu(X(u),Y(u))) 

A A 

where X,Y,Z e ™p' TIU= p and X(u), Y(u) are the horizontal lifts 

of X and Y to P. 

Elementary calculations using proposition 2.27 and the remark 

preceding the definition show that the definitions are independent of 

the choice of u with TIU = p. 

Proposition 2.30. The two tensors T and R defined above are related 

to the covariant derivation v of the connectton w by 
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T(X,Y) ~ -~xy - vyX - [X,Y], 

R ( X , Y) Z = v XJ y Z - v yV X Z - V [ X , y i 

where x~-y, Z are smooth vector fields define·ct on some s_ub-set-of M. 

Proof. This is theorem 5.1, page 133, vol. 1 of [8]. 

We now define the covariant derivatives of (vxT) and (vxR) 

in the usual way, .which is by requiring the product rule to hold, i.e., 

( v ~ T )( Y , Z) = V7 X ( T ( Y, Z)) - T ( v X Y, Z) - T ( Y ,v Xz) , 

(vxR) (Y ,Z)W = v x(R(Y ,Z)W) - R(v xY ,Z)W 

where Y, Z, W are smooth vector fields on some open subset of M. 

Proposition 2.31. Let T be the torsion tensor and R the curvature 

tensor of a connection w on P. Then the following hold: 

First Bianchi Identity. 

~(R(X,Y)Z) = ~(T(T(X,Y)~Z+ bxT)(Y ,Z)) 

Second Bianchi Identity. 

~((vxR)(Y ,Z) + R(T(X,Y) ,Z)) = 0 

where ~ is cyclic sum over X, Y and Z. 

Proof. This is theorem 5.3, page 135 of vol. 1 of [8]. 

Definition 2.32. Let w be a connection on P with covariant 

derivation v. Then a smooth curve g: (a,S) + M is a geodesic of w 

(or of v) if and only if t 1-+ g' (t) is a parallel vector field along 

g. That is, g is a geodesic of w if and only if 

Vg'(t)g'(t) = 0 
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for all t in (a,S). 

Definition 2.33. Let w be a connection on P and v a vector in 

rn. Then the basic vector field B(v) on P determined by v e rn is 

defined by letting B(v)u be the unique horizontal vector at ,u with 

An equivalent definition is 

. _ /\~ 
B(v)u = u(v)(u). 

Proposition 2.34. A curve g =··(a,S) -+ M is a geodesic for the 

connection w on P if and only if g is of the form noy, where 

y: (a,S) -+ P is an integral curve of one of the basic vector fields 

B(v). Consequently, for each tangent vector X(p) to M there is a 

unique geodesic g defined in a maximal connected neighborhood of zero 

in the rea 1 numbers lR with y ( O) = p and y 1 
( 0) = x ( p). 

Proof. See proposition 6.3 and theorem 6.4 on page 139 of vol. 1 of 

[8]. 

Definition 2.35. Let w be a connection on P then the exponential 

map determined by w is defined as fo 11 ows. 

t ~ expp(tX) for the unique geodesic with 

expp(oX) = p 

d dt l exp ( tX) = X. 
t=O p 

For X e ™p 

Then the exponential map from TM to M is the function p 

X t-+ exp P ( X ) = exp P ( 1 • X) . 

This is defined in a neighborhood of zero in ™p· 

write 
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We will need to take derivatives of the exponential map. This task 

is reduced to computations with ordinary differential equations by the 

following definition and proposition. 

Definition 2.36. Let g: (a,b} + M be a geodesic for a connection 

with covariant derivation v. Then 

(1) A vector field Y(t) along g is a Jaeobi field along . g if and 

only if it is a s.oJution to the Jacobi equation 

2 
vg'(t)Y(t) +'Vg•(t)(T(Y(t},g'(t))) + R(Y(t},g 1 (t}}g 1 (t) = 0 

along g. Here T and R are the torsion and curvature tensor of v. 

(2) A variation of g through geodesics is a smooth function 

a: (-s,s) x (a,b} -+ M (for some s > 0) such that a(O,t) = g(t) and 

for all s e (-s,s) the map t ~ a(s,t) is a geodesic. 

Proposition 2.37. Let g: (a,h) + M be a geodesic for a connection 

with covariant derivation 'V· 

Then: 

(1) A Jacobi field Y along g is determined by the values of Y(tO) 

and (vg'(t)Y)(t0) for any t 0 e (a5b) and these values can be 

specified arbitrarily. 

(2) If a: (-s,s) x (a,b) + M is a variation of g through geodesics 

then t t+ ~~(0,t) is a Jacobi field along g. 

Proof. (1) The Jacobi equation is a homogeneous linear second order 

ordinary differential equation; therefore, (1) follows from standard 

results. 

(2) See theorem 1.2, page 64 of vol. 2 of [8]. 
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Proposition 2.38. Let v and 'V '·. be covariant derivations on M. For 

smooth vector fields X and Y on M~ let 

Then C is a tensor field of type (1,2) (called the difference tensor 

of v and v '). The covariant derivations v and v have the same 

geodesics 'if and only if C is alternating. 

Proof. See propos_iti on-1.5 · on page 271 of vol . 2 of [l 0 l. 

We now turn to connections on Riemannian manifolds. 

Proposition Z.39. Let M be a Riemannian manifold with metric ( , ) 

and let O(M) be the bundle of orthogonal frames over M. If w is a 

connection on L(M) then the following are equivalent: 

(1) w is the extension of some connection on O(M). 

(2) Parallel translation along any smooth curve in M is an isometry 

between tangent spaces of M. 

(3) If v is the covariant derivation of w and X, Y, Z are 

smooth vector fields on M thEn 

Proof. The equivalence of (1) and (2) is the content of proposition 1.5 

on page 117 of vol. 1 of [8]~ 

Suppose (2) holds and let Y,Z be smooth vector fields on M. 

Let X be any tangent vector to M and choose a smooth curve 

c: (-c:,E:) + M such that c'(O) = X. Let ,. be the parallel translation 

along c. Choose an orthonormal basis e1, 

(t) 0 B 0 . . t ej = ,.tej. ecause ,.t is an isome ry, 

... ,en of ™c(O) 

e1(t), ... , en(t) 

and let 

is an 
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orthonormal basis of ™e(t)' for all t. There are smooth functions 

y1 , ... , y n and z1 , •.. , zn on (-s,s) with 

n 
Y(c(t)) = .6 y i ( t ) eJ. ( t ), 

1 =l 

n 
Z(c(t)) = 6 zJ. ( t) e . ( t) . 

j=l J 

Therefore, 

c'(t)(Y(c(t)),Z(c(t))) 

d n n 
= dt <.6 yi(t) e;(t), ~ zJ.(t) eJ.(t)} 

1 =l J=l 
d n 

= dt 6 y k ( t ) z k ( t) 
k=l 

n n 
= ( 6 y k ( t ) e . ( t ) , 6 z . ( t) eJ. ( t ) ) 

i=l 1 j=l J 

n n 
+ ( 6 y . ( t) e . ( t) , 6 z ~ ( t) e . (.t) ) 

i=l 1 1 j=l J J 

+ (Y(c(t)), ~c'(t)X(c(t))). 

Noting that c'(O) = X shows (2) implies (3). 

Now assume (3) holds. Let c: [a,b] ~ M be a smooth curve and T 

the parallel translation along c. Let Y,Z be vectors in ™c(a)· 

Then 
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a a 
+<rt Y,-vc (t)rt Z) 

= 0. 

a a Therefore (rt Y,rt Z) is constant as a function of t. This shows 
a a a (rb Y ,rb Z) = (Y ,Z), whence rb is an i sometry of ™a with ™b. 

Thus (3) implies (2). 

Definition 2.40. A connection on a Riemannian manifold that satisfies 

the three conditions of the last proposition is called metric 

preserving. 

Proposition 2.41 (Fundamental lemma of Riemannian Geometry). 

Every Riemannian manifold has a unique metric preserving connection 

with vanishing torsion. 

Remark. This connection is called the Riemannian connection or the 

Levi-Civita connection. 

Proof. See theorem 2.2 on page 158 of vol. l of [8]. 

Definition 2.42. Let M be a Riemannian manifold. Then the geodesics 

of M a re the ·geodesics of the Riemann i an connection on M. The 

curvature tensor of M is the curvature tensor of the Riemannian 

connection. If R is the curvature tensor of M and P is a two-

dimensional subspace of some tangent space ™p then the sectional 

curvature of M at P i s 

K(P) = (R(X,Y)Y,X) 

where X,Y is any orthonormal basis of P. An easy calculation shows 

this is independent of the choice of the basis X,Y. 
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Proposition 2.44. If M is a Riemannian manifold with metric ( , ) 

and curvature tensor R then for all X, Y, Z, W tangent to M at 

some point 

(1) (R(X,Y)Z,W) + (Z,R(X,Y)W) = 0. 

(2) (R(X,Y)Z,W) = (R(Z,W)X,Y). 

Proof. See proposition 2.1 on page 201 of vol. l of [8]. 

Remark. (1) of the last proposition tells us that for each X, Ye TMP 

the linear map· R(X,Y) on ™p is sk~1-symmetric with respect to the 

inner product ( , >p· 

Definition 2.45. Let M be a Riemannian manifold with metric ( , ) 

and c: [a,b] ~ M a smooth curve. Then the length of c is defined 

·to be the number 

b 
L ( c) = J II c' ( t) II dt 

a 
where 

II c' ( t) 11 = J < c' ( t) , c' ( t) > . 

If p and q are points of M then the distance from p to q in 

M is defined to be the infimum of the set of numbers L(c) where c 

is a curve from p to q. 

Proposition 2.46. The geodesics in a Riemannian manifold locally are 

the curves of minimum length, in the sense that every point of M has 

an open neighborhood U such that any two points p and q of U 

can be joined by a unique geodesic contained in U and the length of 

this geodesic is the distance between p and q. 

Proof. See proposition 3.6 on page 116 of vol. 1 of [8]. 
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3. Connections preserving the metric and geodesics of a Riemannian 

manifold. 

It will be convenient to speak of both a connection on the frame 

bundle L(M) and of its covariant derivation as a connection. Because 

of the bijective correspondence between covariant derivations and 

connections on L(M) given by proposition 2.20, this should not lead 

to any confusion. For the rest of this section 11M11 will denote a 

Riemannian manifo1d with metric ( , ). 

Definition 3.1. A connection with covariant derivative D will be 

called a geom'etric connection if and only if D preserves the metric 

of M and has the same geodesics as the Riemannian connection on M. 

We will refer to D and not its connection as the geometric 

connection. Examples of geometric connections will be given below. 

Proposition 3.2. Let D b~ a geometric connection on the Riemannian 

manifold M. Let T be the torsion tensor and B the curvature tensor 

of D. Let R be the curvature tensor of the Riemannian connection ~ 

on M. Then, for all smooth vector fields X, Y, Z on M: 

(1) The connections D and ~ are related by 

1 
~xY = DxY - 2 T(X,Y). 

(2) The torsion tensor T of D satisfies 

(T(X,Y),Z) + (Y,T(X,Z)) = 0. 

(Thus the map Y ._. T(X,Y) is skew-symmetric.) 

(3) R(X,Y)Z = B(X,Y)Z 

-¥ DX T) ( Y , Z ) + }( Dy T )( X , Z) - ~ T ( T ( X , Y ) , Z) 

+ t T(X,T(Y,Z)) - } T(~,T(X,Z)) 
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(4) R(X,Y)Y = B(X,Y)Y + ¥ovT)(X,Y) - ~ T(T(X,Y),Y). 

(5) The sectional curvatures of M can be computed by 

(R{X,Y)Y ,X) = (B(X,Y)Y ,X) + ~IT(X,Y)ll 2 . 

Proof. (1) Let C(X,Y) = DxY - vxY be the difference tensor of D 

and v. The connections D and v have the same geodesics; therefore, 

proposition 2.38 yields that C(X,Y) is alternating. Whence, 

T(X,Y) = DxY - DyX - [X,Y] 

= vxY + C(X,Y) - vyX + C(Y ,X) - [X,Y] 

= (vxY - vyX - [X,Y]) + 2C(X,Y) 

= 2C(X,Y), 

where we have used that v has vanishing torsion. This shows 

l C(X,Y) = 2 T(X,Y) 

and proves ( 1). 

For (2) we use that both v and D are metric preserving. For 

any smooth vector fields X, Y, Z 

X(Y,Z) = (DxY,Z) + (Y,DxZ> 

1 l = <vxY + 2 T(X,Y),Z) + (Y,vxY + 2 T(X,Z)) 

1 - <vxY,Z) + (Y,vxZ) + i<<T(X,Y),Z) + (Y,T(X,Z))) 

= X(Y,Z) + ~(T(X,Y),Z) + (Y,T(X,Z))). 

Therefore, 

(T(X,Y),Z) + (Y,T(X,Z)) = 0. 

(3) Let X(p), Y(p), Z(p) be vectors tangent to M at some point p. 

Extend these to smooth commuting vector fields X, Y, Z defined on a 
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neighborhood of p. Then 

Now compute 

R ( X, Y) Z = \J X\J yZ - \J y'l X Z, 

B(X,Y)Z = DxDyZ - DyDxZ, 

T(X,Y) = DxY - DyX. 

R(X,Y)Z = 'lx\/yZ - \Jy\JxZ 

= Dx(DyZ-} T(Y ,Z)} - } T(X ,DyZ -1 T(Y ,Z)) 

- Dy (DX Z - ~ T ( X , Z ) ) + ~ T ( Y , DX Z - 1 T ( X , Z) } 

= DxDyZ - ~DxT)(Y,Z) - ~ T(DxY,Z)_:~ 

-~) + l T(X,T(Y,Z)) 

- DYDXZ + ~DyT)(X,Z) + 1 T(DyX,Z) +~ 

+ ~)_ ~ ~ -r(Y ,T(X,Z)) 

1 = ( DxDyZ - DyDxZ) - ¥Dx T)(Y ,Z) + 

l - 2 T(DxY- DyX,Z) 

+ t T(X,T(Y,Z)) - } T(Y,T(X,Z)) 

= B(X,Y)Z - ~DXT)(Y,Z) + ~DyT)(X,Z) - } T(T(X,Y),Z) 

+ t T(X,T(Y,Z)) - } T(Y,T(X,Z)). 

Evaluation at p finishes the proof of (3). 

(4) Set Z = Y in (3) to get 

R(X,Y)Y = B(X,Y)Y - ~DXT)(Y,Y) + }(DyT)(X,Y) ~} T(T(X,Y),Y) 

+ ! T(X,T(Y,Y)) -}T(Y,T(X,Y)). 
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But T(Y,Y) = 0 and 

= 0. 

Consequently, 

R ( X , Y) Y = B ( X , Y ) Y + ¥ DyT )( X , Y ) - i T ( T ( X , Y ) , Y ) 

1 + .4 T(T(X,Y),Y) 

= B(X,Y)Y + ~DyT)(X,Y) - l T(T(X,Y),Y). 

Thi s proves ( 4) . 

To prove (5), use (4) to get 

- 1 
(R(X,Y)Y,X) = (B(X,Y)Y,X) + "2 ((DyT)(X,Y),X) 

-t (T(T(X,Y),Y},X). 

By (2) (T(X,Y),X) = 0, whence 

((DyT)(X,Y),X) = Y(T(X,Y),X) - (T(DyX,Y),X) 

- (T(X,DyY),X) - (T(X,Y),DyX) 

= 0 + (T(Y,DyX),X) - 0 + (DyX,T(Y,X)} 

= 0' 

where (2) has been used in this calculation. 

Also by (2) 

(T(T(X,Y),Y),X) = -(T(Y,T(X,Y)),X} 

= (T(X,Y),T(Y,X)) 

= -(T(X,Y),T(X,Y)) 

= -llT(X,Y)!!2· 
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The above expression for (R{X,Y)Y,X) thus reduces to 

(B{X,Y)Y,X) + ~jT(X,Y)ll 2 . 

This finishes the proof. 

Proposition 3.3. Let g: [a,b] ~ M be a geodesic and let U(t) = g'(t) 

be the tangent vector field along g. Then the Jacobi field t H X(t) 

along g defined by 

can be defined in tenns of the geometric connection D by 

(2) (Du) 2x + Du(T(X,U)) + B(X,U)U = 0 

- -- - 1 
X(a) = x,' (DuX){a) = x, + 2 T(U,Xa) 

where R is the curvature tensor of "V and T is the tors ion and B 

the curvature tensor of D. 

Proof. By (1) of the last proposition 

2 1 1 1 ("Vu) x = Du(DuX-2 T(U,X)) - 2 T(U,DuX- 2 T(U,X)) 

2 1 1 l 
= (Du) x - 2 Du(T(U,X)) - 2 T(U,DuX) + 4 T(U,T(U,X)). 

Using (4) of the last proposition and that DuU = 0 we find 

2 2 l 1 ("Vu) x + R(X,U)U = (Du) x - 2 Du(T(U,X)) - 2 T(U,DuX) 

1 1 1 + "4 T(U,T(U,X)) + B(X,U)U + ~DUT)(X,U) - -zr T(T(X,U),U) 

2 l l 1 = (Du) x + 2 Du(T(X,U)) + 2 T(X,DuU) + 2 T(DuX,U) 

+ ~DUT)(X,U) + B(X,U)U 

2 l l = (Du) x + 2 Du(T(X,U)) + 2 Du(T(X,U)) + B(X,U)U 

= (Du) 2x + Du(T(X,U)) + B(X,U)U. 
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Also note 

x (a) = x0, ( v uX )(a) = (DuX)(a) - 1 T(U,X(a)) = x, 

if and only if 

X(a) = Xa' (DUX) (a) = 1 
X l + 2" T ( U , x0 ) • 

This finishes the proof. 

The rest of this section is devoted to proving there is a bijective 

correspondence between the geometric connections on M and the smooth 

three-forms on M. 

Lemma 3.4. Let T be a smooth tensor field of type (1,2) on M such 

that, for al 1 X, Y, Z tangent to M at some point, the following 

hold 

(1) T(X,Y) + T(Y,X) = 0 

(2) (T(X,Y),Z} + (Y,T(X~Z)) = 0. 

Then the connection D defined by 

where v is the Riemannian connection is a geometric connection with 

T as its torsion tensor. Thus there is a bijective correspondence 

between the geometric connections on M and the tensor fields of type 

(1,2) satisfying (1) and (2). 

Proof. Because T is alternating it follows from proposition 2.38 

that D has the same geodesics as \7· The following computation shows 

that D is metric preserving. 
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X(Y,Z) = ('VxLZ) + (Y,'VxZ) 

1 1 = ('V X Y, Z) + ( Y ;v X Z) + "2 ( T ( X, Y) Z) + "2 ( Y, T ( X, Z)) 

l 1 
= ('V X Y + 2 T ( X , Y) , Z) + ( Y ,'V X Z + '[ T ( X , Z)) 

= (DxY,Z) + (Y,DxZ). 

Therefore D is geometric. That T is the torsion tensor of D now 

follows from proposition 3.2 part (1). This finishes the proof. 

Lemma 3.5. For every smooth three-form a on M there is a unique 

smooth tensor field T of type (1,2) satisfying (1) and (2) of the a 

1 as t 1 emma wfth 

a(X,Y,Z) = (T (X,Y),Z). a 

Moreover, every smooth tensor field T of type (1,2) satisfying (1) 

and (2) of the last proposition is T for some smooth three-form a. 
a 

Proof. It is easy to see there is a unique tensor field T of type 
a 

( 1 , 2) with 

a(X,Y,Z) = (T (X,Y),Z). 
a 

Then a(X,Y,Z) + a(Y,X,Z) = 0 implies (1) and a(X,Y,Z) + a(X,Z,T) = 0 

implies (2) of 3.4. 

If T is a tensor field of type (1,2) satisfying (1) and (2) of 

3. 4 then define 

a(X,Y,Z) = (T(X,Y),Z). 

Then a is alternating in X and Y by 3.4 (1), and alternating in 

Y and Z by 3.4 (2). Therefore a is a three-form on M and it is 

clear that T = T . 
a 
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Proposition 3.6. Let v. be the Riemannian connection on M. Then, 

using the notation of the last lemma, there is a bijective correspondence 

between the geometric connections D on M and the smooth 3-forms on 

M given by 

DxY ~ vxY + ~ Ta(X,Y). 

Proof. This follows immediately from the last two lemmas. 
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4. Sorre geometry of submanifolds. 

In this section we record some of the facts we need about 

submanifolds of Riemannian manifolds. Let M be a Riemannian manifold 

of dimension m + n with metric ( , ), and M be an embedded 

submanifold of M of dimension n. It will be assumed M has the 

induced metric from · M. The metric on M wi 11 a 1 so be denoted by 

11
( , )". The following notation will be used: 

roJ 

Riemannian connection M; 'J = on 

"V = Riemannian connection on M; 
,...., 

curv'ature 
,...., 

R = tensor on M; 

R = curvature tensor on M; 

t.LM = normal bundle of M in ~. 

Definition 4.1. Let p e M and g(p) e T.LM p 

A(g(p)): TMP ... TMP is given by . 

then the Weingarten map 

A(g(p))X = orthogonal projection of ~xs onto ™p' 

where s is any 1oca1 extension of g ( p) to a smooth section of T.L M. 

Remarks. (1) Let X be a smooth vector field on X and g a smooth 

section of T.LM. Then an elementary calculation shows that the map 

(X,g) ... (orthogonal projection of ';xs onto TM) 

is bilinear over the smooth functions on M, whence A(g(p)) is 

independent of the extension of g(p) to s· 

(2) The above definition differs by a sign from the usual definition. 

This choice of sign purges latter formulas of enough factors of -1 to 

justify it. 

Proposition 4.2. With notation as above, for any smooth vector fields 
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X, Y on M and smooth section s of TLM the following hold: 

(1) ~XY =orthogonal projection of 'ixY onto TM. 

(2) (A(g)X,Y) = -(vxY,g) = (A(g)Y,X). 

Thus A(g(p)) is a self-adjoint map on ™p· 

(3) Let e1 , ... , em be on orthonormal basis of :TLMP. Then, for 

X, Y, Z, W in TMP 

(~(X,Y)Z,W) = (R(X,V)z;W) 
m 

+ 6 ((A(e.)X,Z)(A(e.)Y,W) - (A(eJ.)X,W)(A(e.)Y,Z)). 
j=l J J . J 

Proof. See [10] where(l) follows from the last formula on page 46, 

and (2) and ( 3) fo 11 ow from formulas on page 51 . 

It will be convenient to restate (3). 

If V is any finite dimensional real vector space with inner 

-produce ( , ) then A2(V) is also an inner product space with the 

inner product on A2(V), also denoted by ( , ), given by 

_ (X,Z) (Y,Z) - ~ (X A y ,Z AW) - detl(x ,W) (Y ,w) . 

= (X,Z)(Y,W) - (X,W)(Y,Z). 

Any linear endomorphism A of V determines a linear endomorphism 

A2(A) of A2(V} given on decomposable elements by 

A2(A)(X A Y) = (AX) A (AY). 

Let R be the curvature tensor at some point p of M. Then, 

as R(X,Y) is an alternating function of X and Y, R induces a 

linear endomorphism A(R) of A2TMP by 

(A(R)(XAY),Z/\W) = (R(X,Y)Z,W). 
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Usually R and A(R) are both written as simply 11 R11
• When A(R) is 

to be referred to, we will say "view Ras a linear map on /\2TM 11
• 

Proposition 4.3 (Equation of Gauss). View R as a linear map on 

A
2TM and R as a linear map on A

21M. Let Pp be the orthogonal 

projection of A
21'Mp onto its subspace A2TMP. Then, for any 

orthonorma 1 basis e1, ••• , e of T.L M 
m P 

,...., n 2 
pp RP - RP = ;121 /\ (A ( e j ) ) . 

Proof. This is a restatement of (3) of the last proposition. 

Definition 4 .4. The excess tensor Hp of M in 'fVf at p e M is the 

linear endomorphism of A
2TMP given by 

,...., 
H = P R .. R p p p p 

where RP • 2,...., 
is viewed as a linear map on /\ TMP, R is viewed as a 

1 i near map on A 
2TMP and P is. the orthogona 1 projection of A

2TMP 
2 

onto /\ ™p. 

We will be interested in product submanifolds of product manifolds. 

We recall the definitions. Let M1, M2 be Riemannian manifolds. Let 

( , }i be the metric on M;. If pi: M1 x M2 _. M; is projection then 

define the product metric ( , ) on M1 x M2 by 

The proof of the following is straightforward and is left to the 

reader. 

Proposition 4.5. Let V'i be the covariant deri~tion of the Riemannian 

connection on M.' 1 
and R. 

1 
be the curvature of the Riemannian 

connection on Mi. Then the covariant derivation V' and the curvature 
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R of the Riemannian connection on M1 x M2 are defined by 

('V p xP1 * y 'P1 *Z) + ('V p xP2* y 'P2*Z) ' 
l* 1 2* 2 

= (R1 (pl*X'pl*Y)pl*Z'pl*W) 
l 

(R{X,Y)Z,W) 

In the first equation X, Y, Z are smooth vector fields on M1 x M2 

so that pi*X' P;:*Y, pi*Z are vector fields on Mi, for i = 1, 2; 

in the second equation, X, Y, Z, W can be any vectors tangent to 

M1 x M2 at some point. 

Proposition 4.6. Let M1 be a submanifold of ~i and let Ai be the 

Weingarten map of Mi in · 'M. 
l 

for i = 1, 2. Then the Weingarten map 

where X is tangent to M1 x M2, U is norma 1 to M1 x M2, and Y 

is tangent to M1 x M2 at some point of M1 x M2. 

Proof. A straightforward calculation using the last proposition. 
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5. Riemannian homogeneous spaces. 

Let M be a connected Riemannian manifold, and J(M) be the 

group of isometries of M. That is, J(M) is the group of all 

diffeomorphisms of M whose derivatives preserve the length of 

tangent vectors. We give J(M) the compact-open topology. For each 

p in M let J(M)p be the subgroup of J(M) consisting of those 

isometries which fix p. The subgroup J(M)p is called the isotropy 

subgroup of J(M) at p. The following is well known. 

Proposition 5.1. If J(M) i.s the isometry group of the connected 

Riemannian manifold M then: 

(1) J(M) is a Lie transformation group on M. (That is J(M) has the 

structure of a Lie group and the map (a, p)-+ ap from J (M) x M to M is smooth). 

(2) Each isotropy subgroup J(M)p is compact. 

(3) If M is compact then so is J(M). 

(4) If g e J(M)P then g is the identity. 

Proof. For the first three see [8],vol. 1, page 239, theorem 3.4. 

The last part follows easily from the formula g(expp(X)) = expp(g*pX). 

This formula is clear as exp is defined in terms of the Riemannian 

metric and g preserves the metric. 

The manifold M will be called a Riemannian homogeneous space if 
~ 

and only if J(M) is transitive on M. Since it is not always easy to 

work with the full group of isometries we make the following: 

Convention 5.2. For the rest of this section, we assume that M is a 

Riemannian homogeneous space and that G is a closed subgroup of the 

group of isometries of M such that 



(1) G is transitive on M; and 

(2) Each isotropy subgroup 
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Gp = [ g e G : g (.p) = P} 

is a compact subgroup of G. 

The following will also be useful. · 

Notation 5.3. For the rest of this section we fix some point o in 

M and call it the origin of M. Also let· H = [ g e G: g(o) = O} be 

this isotropy subgroup of G at the origin. 

~ = TM
0 

= tangent space to M at the origin. 

Then the frame bundle L(M) of M can be assumed to have as its 

fibre L(M)P over p the set of linear isomorphisms of ~ onto 

™p· With this convention it follows that: 

Proposition 5.4. The map g .+'g*o ·is a diffeomorphism of G onto a 

closed embedded submanifold of L(M). Call the image of G under this 

map G(M). Then G(M) is an H-structure over M in the sense of 

definition 2.4. The fibre G(M)p over p = g(o) is the image of the 

coset gH. 

Proof. See chapter X of volume 2 of [8]. 

Convention 5.5. We will, when convenient, identify G with G(M) via 

the diffeomorphism of the last proposition a~d use this identification 

to move the algebraic structure of G over to G(M). The identity 

element of G goes over to the identity map on ~· The tangent space 

to G(M) at the identity will be written as Cf.!, and be assumed to 

have its usual structure as a Lie algebra. Let h be the tangent 

space to H at the identity. Then h is a Lie subalgebra of Dy- and, 
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by proposition 2.8, part (5), h is also the space of vertical 

vectors at 1. To make the notation look like that of section 2 the 

exponential map from OJ" to G will be written as AH eA. 

Definition 5.6. For g e G let L
9 

be left translation on G = G(M). 

That is, 

Proposition 5.7 . . . For A eh the fundamental vector field determined 

by A on G{M) is 

* A (g{o)) =Lg* A. 

Proof. This is an easy computation 

* · d tA A (g(o)) = dtl . g(.o)e 
t=o 

d I tA = dt Lge 
t=O 

= Lg* A. 

Proposition 5.8. There is a subspace 111
0 

of Of such that 

( 1 ) ~ = 1h 
0 

(±) h ( di rec t sum) 

(2) 111
0 

is invariant under the adjoint action of H on tJ:r. 

Proof. See page 199 of volume 2 of [8]. 

Convention 5.9. We now fix some 111
0 

as in~roposition 5.8. If 

n: G(M) ~ M is the projection then 

is easily seen to be a linear isomorphism. From now on 111
0 

will be 

identified with 1h by this isomorphism. 
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Definition 5.10. For any vector A in DJ" let Ah be the h-component 

and l\n the ~ component of A relative to the splitting of ~ as 

fJT = ~ ~ h. Then 

(1) Define a ~-valued one-form e on G(M) by 

e g ( X ) = ( L _ l X)lh • 
g* 

(2) Define an h-valued one-form w on G(M) by 

Proposition 5.11. The form e is the canonical form on · G(M) and - w 

is a metric-preserving connection on G(.M). This connection will be 

called the canonical connection on M. 

Proof. By definition the value of the canonical form at X i TG(M)
9 

-1 
is g* n*g X. 

But therefore, 

-1 . e
9

(X) = g~ n~g X 

= n *l Lg -1 * X 

The last line holds because the convection 5.9 makes n*l into the 

projection of ~ onto ~. 

* It follows directly from proposition 5.7 that w
9

(A (g)) =A for 

* every fundamental vector field A on G(M). Let a e H, g e G(M) 

and X e T G ( M ) g . 
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* (raw) 9(X) = w9a(ra*X) 

= (L -1 -1 ra*X)h 
a g * 

= (La-l*ra*(L -1 (L -1 X))h 
g * g * 

= (Ad(a-1)(L -l X))h 
g * 

= Ad(a-1((L _1*X)h) 
g 

= Ad(a-1) w
9
(X), 

where we have used the following facts: 

L _1ra = raL _1, 
g g 

Ad(a- 1) = L 1 r *' 
a- * a 

The last of these holds because ~ is Ad(H) invariant. This 

completes the proof that w· is a connection. 

Because G is a group of i sometri es of M the H-structure G(M) 

is a submanifold of O(M), the bundle of orthogonal frames on M. 

Therefore w can be extended to a conn~tion on O(M). Proposition 

2.39 now yields that w is metric preserving. This finishes the proof. 

Proposition 5.12. Let w be the canonical connection on G(M) and e 

the canonical form. Let ~ and Y~ be as in 5.10. Then 
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(1) The torsion form of w is given at ~ = TG(M) 1 by 

(2) The curvature form of w is given at ~ = TG(M) 1 by 

(3) The torsion tensor of w is given on TM
0 

= ~ by 

(4) The curvature tensor of w is given on TM
0 

= ~ by 

Proof. If X is a left invariant vector field on G(M) (that is 

L *X = X for all g e G) then it follows directly from the definitions . . g 

that e(X) and w(X) are constants on M. If X is a left invariant 

vector field on G(M) then let X be the left invariant extension 
th 

X(l)~ and likewise for Xh. Then for left invariant vector fields 

X,Y 

e(X,Y) = de(\n,Y~) 

= \ e ( Y~) - Y~ e ( xm) - e ( [ \ , Y~ J) 

= 0 - 0 - e([\n,Y~]) 

= -e ( [ x~, v~ J) . 

As the point 1 e G(M) this reduces to (1). 

A similar calculation proves (2). 

The convention 5.9 shows that a vector in TM
0 

= ~ is its own 

horizontal lift to 1 in G(M). Putting this into the definition of 

the torsion tensor and using (1) yields 
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= -[X,Y~. 

Part (4) follows from (2) the same way (3) followed from (1). This 

completes the proof. 

Proposition 5.13. For the canonical connection on M the geodesics 

through o are the curves t ,_. netX where X 

translation along the geodesic t H netX from 
tX 

by ( e )*l. 

is in 

o to 

tn • Para 11 e 1 

tX ne is given 

Proof. It is easy to check that the left invarient vector fields X 

on G(M) · with X(l) in tn are the basic vector fields on G(M) 

(see definition 2.33). Therefore the integral curves of the basic 

vectors that pass through 1 are the .curves t t-+ etX where X is in 

· rn. The first statement of the proposition now follows from proposition 

2.34. The curve t ~ etX is horizonal so the second part follows from 

the definition of parallel translation. 

Proposition 5.14. Let D be the covariant derivation of the canonical 

connection. Then D, T (the torsion tensor) and B (the curvature 

tensor) are all invariant under G. If S is any tensor field on M 

invariant under G then OS = 0. Thus OT = O and DB = 0. 

Proof. It is clear that w is invariant under G. Each of D, T and 

B is defined in terms of w and therefore they ire also invariant. 

Let X e rn. Define a vector field · l on M by 

,..., d I tX X(p) = df .e (p). 
t=O 

The flow of this vector field is clearly at(p) = etX(p). Therefore S 
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is invariant under the flow of X and thus the Lie derivative of S 

with respect to X is zero. But (etX)* is parallel translation 

along the geodesic t H netx. Thus 

( D XS ) 0 = ( Dx'5) 0 

= (i1s )o 

= 0. 

This shows OS vanishes at the origin of M. But OS is G 

invariant and G is transitive, so DS vanishes everywhere. This 

completes th~ proof. 

Definition 5.15. The natural connection on M is naturally reductive 

if and only if it has the same geodesics as the Riemannian connection 

on M. 

Because the natural connection on M is metric preserving we see 

that D is naturally reductive if and only if it is geometric in the 

sense of section 3. 

Proposition 5.16. The canonical connection on M is naturally 

reductive if and only if, for all X, Y and Z in rn, 

Proof. If the canonical connection is naturally reductive then the 

above equation follows from proposition 3.2 (2) and proposition 5.12 

(3). To prove the converse, note that by 5.12 (3) the above equation 

can be rewritten as 

where T
0 

is the torsion tensor of the canonical connection at 0. Let 

D be the covariant derivation of the canonical connection. Then 
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define a new covariant derivation 0 on smooth vector fields X and 

y by 

Then a straightforward calculation shows that 0 is metric preserving 

and torsion free. Thus o = v, the covariant derivation of the 

Riemannian connection. But then the difference tensor of D and v 

is alternating, so D and v have the same geodesics by proposition 

2.38. This finishes the proof. 

Proposition 5.17. Assume the canonical connection on M is naturally 

reductive and that D is its covariant derivation. Let T be the 

torsion tensor and B the curvature tensor of D. Let R be the 

curvature tensor of v. Then 

(1) For smooth vector fields X and Y on M 

(2) 

( 3) 

vxY = DxY - }T(X,Y) 

(T(X,Y),Z) + (Y,T(X,Z)) = 0 

R(X,Y)Z = B(X,Y)Z - } T(T(X,Y)Z) 

+ t T(X,T(Y,Z)) - 1 T(Y,T(X,Z)) 

(4) R(X,Y)Y = B(X,Y)Y - -} T(T(X,Y),Y) 

(5) (R(X,Y)Y,Y) = (B(X,Y)Y,X) + ~!T(X,Y)lj 2 . 

Proof. The connection D on M is geometric, therefore this 

proposition is just proposition 3.2 plus the extra information that 

OT = 0. 

Proposition 5.18. Assume the canonical connection on M is naturally 

reductive and let T, Band R be as in the last proposition. For any 
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vector U e ™p define linear endomorphisms Tu, Bu and Ru by 

Tu(X) = T(X,U) , 

Bu ( X) = B ( X , U) U , 

Ru(X) = R(X,U)U. 

Then 
1 2 

Ru + 8u - 2 Tu, 

both Ru and Bu are symmetric and Tu is skewsymmetric. 

Proof. That Ru = Bu - ~ TG is (4) of the last proposition. The 

skew-symmetry follows from (2) of the last proposition. The Ricci 

identity (proposition 2.44 (2)) shows Ru 

a skewsymmetric map is syrrunetric therefore 

sum of symmetric maps and thus symmetric. 

is symmetric. The square of 
l 2 Bu = Ru + 2 Tu is the 

Proposition 5.19. With notation as in the last proposition, if 

g: (a,s) ~ M is a geodesic and U(t) = gl(t) is the tangent along g 

then the initial value problems 

(1) 

(2) 

define the same Jacobi field along g. 

Proof. This is proposition 3.3, where we also use that (OUT) = 0 and 

DuU = 0 so that Du(T(X,U)) = T(DuX,U). 

Definition 5.20. A submanifold N of a Riemannian manifold M is 

totally geodesic if and only if every geodesic of N in the induced 

metric is a geodesic of M. 
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Proposition 5.21. · Let M be a naturally reductive Riemannian 

homogeneous space and p e M. Let S be a vector subspace of ™p· 

Then there is a totally geodesic submanifold N of M passing through 

p with TNP = S if and only if for all X, Y, Z in S both T(X,Y) 

and B(X,Y)Z are in S. (Here Tis the torsion tensor and B the 

curvature tensor of the canonical connection on M). 

Proof. See [2], .theorem 3. 2, page 57. 

The following defines a class of Riemannian manifolds that has 

been very much studied. 

Definition 5.22. A Riemanntan manifold is a symmetric space if and 

only if it is a naturally reductive Riemannian homogeneous space in 

which the Riemannian connection equals the canonical connection. 

Proposition 5.23. If M is a symmetric space, then, with the notation 

of proposition 5.17, 

T = 0, B = R. 

Proof. Clear from proposition 5.17. 
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6. Geometry of symmetrically embedded submanifolds of naturally 

reductive Riemannian homogeneous spaces. 

In this section the following notation will be maintained. First 

M wil1 be an oriented naturally reductive Riemannian homogeneous space 

of dimension m + n. Then M will be an oriented submanifold of M 

of dimension n. Because most of what follows is local, M will be 

assumed compact with smooth (possibly empty) boundry. 

D = covariant derivation of the canonical connection on M, 

T = torsion tensor of D, 

B = curvature tensor of D, 

'i = Ri emanni an connection on · ~, · 

v = Riemannian connectfon on M, 

R = curvature tensor of v, 

R = curvature tensor of v. 

Define, for each U e ™p' linear maps from ™p to itself by 

T'u(X) = 'T(x,u), 

Bu(x) = B'(x,u)u, 

Ru(X) = 'R(x,u)u. 

Definition 6.1. The submanifold M is symmetrically erribedded in M 

if and only if for a 11 p e M and U e T.L Mp the vector space T.L Mp 

is stable under both Bu and Tu. 

Examples of symmetrically embedded submanifolds of homogeneous 

spaces will be given after the following proposition . 
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Proposition 6.2. The following are equivalent for a submanifold M of 

-M: 

(1) M is symmetrically embedded in· M. 

(2) For all p e M and U e T.LMP the vector space ™p is stable 

under both Tu and Bu. 

(3) For all p e M there is a totally geodesic submanifold N of M 

passing th rough .p with TNP = l.L Mp. 

Proof. A symmetric or skew-symmetric linear map on an inner product 

space stabilizes a subspace if and only if it stabilizes its orthogonal 

complement. The map Bu is symmetric and the map Tu is skew-symnetric 

by proposition 5.18. This proves the equivalence of (l) and (2). 

By proposition 5 .21, i'f ( 3) holds then for a 11 p e M and 

U, X e T.t M , . p 

The re fore ( 3 ) imp l i es ( l) . 

lu(X) = ~(X,U)U e ™p' 

Tu(x) = T'(x,u) e ™p· 

To finish it is enough to show (l) implies (3). By proposition 

5.21 it is enough to show that if M is symmetrically embedded in M 

and X, Y, Z e ·T.tMP then B(X,Y)Z e ™p· Therefore suppose M is 

symmetrically errbedded in M and that X, Y, Z e T.tMP. Then 

B(X,Y)Z + B(X,Z)Y = B(X,Y+Z)(Y+Z) - B(X,Y)Y = B(Y ,Z)Z € T.LMP. 

Combining the fact that OT = 0 with the first Bianchi identity 

(proposition 2.31) yields 

B(X,Y)Z + ~(Y,Z)X + B(Z,X)Y = T(T(X,Y)Z) + 1(1(Y,Z),X) + T(T(Z,X),Y) 
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Adding these gives 

(B(X,Y)Z + B(Y,Z)X + B(Z,X)Y) + (B(X,Y)Z + B(X,Z)Y) 

= 2B(X,Y)Z + B(Y ,Z)X + (B(Z,X)Y + B(Y ,Z)X) 

= 2B ( x 'y' ) z + B (.Y 'z) x € T.L Mp • 

Doing the permutation X ._. Y, Y .._. X, Z ,_. Z in B(X,Y)Z + B(X,Z)Y shows 

B(Y,X)Z + B(Y,Z)X = -B(X,Y)Z + B(Y,Z)X e l.LM • . . p 

Therefore 

3B(X,Y)Z = (2B(X,Y)Z + B(Y,Z)X) - (-B(X,Y)Z + B(Y,Z)X) € T.LM p· 

This finishes the proof. 

Examples. (1) M is called a hypersurface of M if the codimension 
.. 

of M in M is one. If p is a point of M then there is a geodesic 

of ~ passing through p and perpendicular to M. By (3) of the last 

proposition this shows all hypersurfaces of any naturally reductive 

homogeneous spaces are symmetrically embedded. 

(2) Let M be a space of constant curvature K. Then by definition 

T = 0 and B = R is given by 

B(X,Y)Z = K((Z,Y)X- (Z,X)Y). 

Thus 

From this it is easy to check that every submanifold of M is 

symmetrically embedded. 

(3) Let M be a complex analytic manifold of constant holomorphic 

curvature. Then calculations that will be done later show that every 

complex submanifold of M is symmetrically embedded. 
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Other examples will ge given later. 

Convention 6.3. From now on M will be assumed to be a symmetrically 

embedded submanifold of M. 

-Recall that D and v have the same geodesics and therefore the 

same exponential map. The common exponential map for these two 

connections wi 11 be denoted by exp. The fo 11 owing notation wi 11 be 

used to study the. image of :s.t M under the exponent i a 1 map. 

Definition 6.4. (1) Let 1T: S.tM.-. M be the. bundle projection. 

(2) For U e S.LM let 

g(t;U) = expp(tU). 

(3) Set U(t) = g'(t;U). 

(4) J(t;U) = D-parallel translate of ™nu along g(•;U) to g(t;U). 

(5) h(t;U) = Orthogonal complement of the span of U(t) and J(t;U) 

in TMg(t;u)· 

Proposition 6.5. Let IRU(t) be the span of the vector U(t) in 

TM g ( t ; U) . Then each of J ( t ; U ) , h ( t ; U) and IR U ( t ) i s par a 11 e 1 a 1 o ng 

g(·;U) and TMg(t;U) is the orthogonal direct sum of these spaces. 

Also ;r(t;U), h(t;U) and IRU(t) are all stable under all three of the 

linear maps TU(t)' Bu(t) and Ru(t)• 

Proof. The field of spaces J(t;U) is D-parallel along g(·;U) by 

definition. The spaces IR(t) are D-paral lel along g( • ;U), because 

g(·;U) is a geodesic and U(t) is its tangent vector. Therefore 

h(t;U) is also D-parallel along g(·;U), as it is the orthogonal 

complement of D-parallel spaces and D is metric preserving. 
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Because ;r(t;U), h(t;U) and IRU(t) are D-parallel along 

g(·;U) to show ™g(t;U) is the orthogonal sum of the three it is 

enough to show for a particular value of t. At t = 0 this is easily 

checked. 

Since we are assuming M is symmetrically embedded in M it 

follows from proposition 6.2 that both ;r(O;U) = TM and 
p 

Ti.M1Tu= (h(O;U)<±)lRU(O)) 

are stable under both Bu and Tu. 
But 

B'u(u) = 'B(u,u)u = o, 

Tu(u) ~ r(u,u) = o. 

Therefore IRU(O) is also stable under both Bu and 1u. But ~U is 
r.J 

symmetric and Tu is skew-symmetric. Therefore the orthogonal 

complement of U which is h(O;U), is also stable under 

both Bu and Tu. This shows ;r(t;U). h(t;U) and IRU(t) are stable 

under BU(t) and 1U(t) when t = 0. But as all of these are 

D-parallel along g(•;U) it follows that ;r(t;U), h(t;U) and IRU(t) 

are stable under Bu(t) and TU(t)• That the three subspaces of 

TMg(t;U) in question are stable under Ru(t) follows from the equation 
";< "?< 1 ....., 2 
KU(t) = oU(t) - 2(TU(t)) which is given in proposition 5.18. This 

completes the proof. 

Definition 6.6. Let 



Ru(t) = Ru(t)I , 
;r(t;U) 

~t(t> = 1u(t)I , 
h(t;U) 

Bt(t) = ~U(t)I ' 
h(t;U) 

R-U(t) = Ru(t)I . 
h(t;U) 

Then define linear maps 

S(t;U): ;r(t;U)-+ ;r(t;U), 

c( t; u) : J ( t; u) ... J ( t; u), 

si(t;U): h(t;U)-+ h(t;U), 
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as the unique solutions to the initial value problems: 

(1) (;U(t» 2 S(t;U) + Ru(t) S(t;U} = 0 

S(O;U) = o, (~U(t)S)(O;U) = (id)ITM, 
p 

(9'u(t)) 2 C(t;U) + Ru(t) C(t;U) = 0 

C(O,U) = (id)TM ,(;U(t)C)(O;U) = 0, 
p 

(9u(t)) 2 Sl.(t;U) + Ru(t) 'S1 (t;U) = 0 

Sl.(O;U) = 0, (~U(t)S1 )(0;U) = (id) lh(O;U)" 

By proposition 5.19 these can also be defined by 

(1 ') (DU(t)) 2 S(t;U) + Tu(t)(DU(t)S)(t;U) + Bu(t) S(t;U) = 0 

s(o;u) = o, (Du(t)s)(o;u) = (id)TM , 

(DU(t/ C(t;U) + Tu(t){DU(tf)(tlU) + Bu(t) C(t;U) = 0 

C(O;U) = (id)TM ,(DuC)(t;U) = -} Tu(O), 
p 
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(Du(t))
2 s1 (t;U) + Tt(t)(Du(t)'S.1.)(t;u) + st(t) 

1

S.1.(t;U) = o 

S.1.(0;U) = O; (Du(t)S1 )(0;U) = (id)h(O;u)· 

Remarks. (1) if t ,_. X(t) is any D-parallel vector field along 

g(·;U) with X(O) in J(O;U) then both t...,. S(t;U)X(t) and 

t 1-+ C(t;U)X(t) are Jacobi fields along g(•;U). In this case 

S(t;U)X(t) and C(t;U)X(t) are both in J(t;U) for all t. A 

similar statement · is true for tr+ S1(t;U)X(t) when X(t) is a 

D-parallel vector field along g( •;U) with X(O) in h(O;U). These 

facts fol low directly from the definitions. 

(2) If the differential equations defining S, C and 'S1 are 

written with · respect to 0-parallel fields, then the differential 

equations in (1 ') have constant coefficients. 

Definitibn 6.7. For each number r, define a map 

fr: 'sJ. M _. M 

by 

The image M(r) by fr is the tube of radius r about M. 

We now compute the derivative of fr· If U e SJ.M and p = nU, 

then the fibre SJ.MP is an embedded submanifold of the total space 

5.L M. Th us, the tangent T (SJ.Mp) U to the fib re can be viewed as a 

subspace of the tangent space T(SJ.M)u to SJ. M. But the sphere 

5J. Mp is al so embedded in the vector space 'TJ. MP as the set of all 

vectors of unit length. Therefore, the tangent space T(SJ.Mp)U to the 

fibre can be identified with the set of all vectors in ™p that are 

orthogonal to U. But this is h(O;U). Thus h(O;U) can be identified 
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with a subspace T(SiM)u. Under this identification it is easy to 

check that h(O;U) is the kernel of 

Lemma 6.8. Consider h(O;U) as a subspace of . T(SiM)u as above. If 

Xe h(O;U) and X(t) is the D-parallel translation of X along 

g(•;U) to g(t;U) then 

Proof. Without loss of generality we may assume X is a unit vector. 

Then define a curve by 

c(s) = cos(s) U + sin(s) X. 

Because U and X are orthogonal vectors, this is a curve from the 

reals to siM. Clearly C(O) = U and C'(O) = X. Therefore, 

(fr*) U X = Js I fr ( c ( s)) 
s=O 

d j 
= d"S:t . exp ( re ( s ) ) , 

s=O - · p 

where p = TIU. Define a(s,t) by 

a(s,t) = expp(tc(s)). 

Then f r(c(s)) = a(s,r) so that 

(fr)*U X = ~0,r). 

Clearly (see definition 3.26) a(s,t) is a variation of 

a(O,t) = expp(tU) = g(t;U) through geodesics. Thus, by proposition 

2.37, the vector field ~~(O,t) along g(·;U) is a Jacobi field. But 

si(t;U)X(t) is also a Jacobi field along g(•;U). Thus, to prove the 

lemma it is enough to prove . ~~(O,t) and ·si(t;U)X(t) have the same 

initial conditions at t = 0. (See proposition 2.37). We now compute 
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~as(0,0) = _Q_I exp (0) 
u <JS s=O p 

= 0 

The covariant derivation ~ has no torsion and the vector fields 

oa (Ja os , ot commute thus, 

This yields 

(~ u ( t ) ~ ~ )( 0 '0 ) = 

= (~oa ~~)(O ,0) 
oS 

- /"-1 ox 
- 'Vaa ot expp(tc(s)) 

oS s=O t=O 

= 'Voa c(s) 

05 s=O 

= c'(O) 

= x 

= ~U(t) si(t;U)X(t). 
t=O 

This finishes the proof. 

Definition 6.9. Let A be the Wiengarten map of M in ~ (see 

definition 4.1). Then, for each U e S.LM, let A(t;U) be the 

D-parallel translate of A(U) along g{·;U) to g(t;ur Therefore 

A(t;U) is a linear transformation on J(t;U). 
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A A 

Lemma 6.10. Let Xe T(S.LM)u, X = 1T*UX, and X(t) be the 

D-parallel translate of X along g(·;U) . to g(t;U). Then 

A 

(fr)*U X = (C(r;U)+S(r;U)A(r;U)) X(r) 

+ (an element of h(r;U)). 

Proof. Choose a smooth curve s : (-E:, s) _. 5.L M from some neighborhood 
A 

(-E:,E:) of 0 such that g(O) = U and g'(O) = X. Set p = nU and 

c =TIO s· Then 'c: (-E:,E:) _. M is a smooth curve with c(O) = p and 

Define a(s,t) = expc(s)(tg(s)). Then the last equation can be 

written as 

But, as in the last lemma, a(s,t) is a variation of a(O,t) = g(t;U) 

through geodesics and thus ~~(0,t) is a Jacobi field along g(t;U). 

We now find its initial conditions. 

~0,0) = ~sls=Oexpc(s)(O) 

= _Q_I c(s) 
05 s=O 

= c• ( O) 

= x. 

The curve s can be viewed as a section of s.t M and, thus, of 

T.LM along c. 
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Therefore, 

';aa g(s) = ;'c'(O) g(s) 

0sls=O 

=,;'xg(s) 

= A(g (0) )X +(element of h(O;U)) 

= A(U)X + (element of h(O;U)). 

This yields, 

(vu( t)~) (o ,o) 

= V oa : t / - exp c ( s) (ts ( s)) -1 t-0 
as s=O 

= ~a g(s) 

~'s=O 
= A(U)X + (element of h(O;U)). 

rJ 

Where, as in the last lemma, we have used the facts that v is 

without torsion and that ~~ and ~~ commute . 

Let J(t) be the vector field along g(·;U) defined by 

J(t) = (C(t;U) + S(t;U)A(t;U))X(t). 

Then J is a Jacobi field and from the definitions of C and g 

J(O) = X(O) = X, (~UJ)(O) = A(O;U)X(O) = A(U)X. 

Thus, if Y(t) = ~0,t) - J(t), then Y is a Jacobi field along 

g(· ;U) with Y(O) = 0 and (~UY)(O) € h(O;U). Hence, Y(t) is in 
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"" 

h(t;U) for all t. This, together with the expression for (f r)*UX 

in terms of ~~' completes the proof. 

its volume form o 
·s.tM 

p 

as a unit sphere in 
1

T.LMP. If OM is the volume form on M and 

n : s.L M -+ M is the bundle projection, then a vo 1 ume form o is 
SLM 

defined on s.L M by 

where p = nU. We choose the orientations so that Fubini 's theorem 

holds with the following choice of signs 

where f is any compactly supported continuous function. 

Proposition 6.11. Let r e IR and U € ;S.L M. Assume 

(*) det(C(r;U)+ S(r;U)A(r;U))det(S1 (r;U)) 1 O. 

Then (fr)*U . is injective, and thus fr maps some neighborhook K of 

U in S.LM into a hypersurface K(r) of M. The tangent space to 

K(r) at f r(U) is 

T(K(r)) = J(r;U) EB h(r;U). 
f r(U) 

If OK(r) is the volume element on K(r), then 

f* OK( ) = det(C(r;U)+ S(r;U)A(r;U))det(S1 (f;U))n (U). 
r r S.LM 

Proof. Let x1 , ... , Xm-l be an oriented orthonormal basis of 

T(S.LM )U = h(O;U) (with p = nU) and Y1, ... , Yn be an oriented 
p ' 

"" "" of orthonormal basis of T(S.LM)u. Choose elements Y1, ... , Yn 



67 
A 

T(S.LM)u with n*Uyi =Y; i =l, ... , n. Bythelasttwolemrnas 

(fr)*U X; = s.t(r;U)X;(r) 

(fr)* Yj = (C(r;U)+S(r;U)A(r;U))Y/r) + Zj 

where Xi(t) is the parallel field along g(·;U) with Xi(O) = x0; 

and Yj(t) is the parallel field along g(·;U) with Yj(O) = Yj 

and Zj is an element of h(r;U). The condition (*) easily implies 

that ·s.t(r;U)Xi(r) for l < /\ < m - 1 is a basis of h(r;U), and 

that 

(C(r;U) + S(r;U)A(r;U))Yj(r) 

is a basis of J(r;U). Therefore 

(fr)*Uxi' (fr)*Uyj 1 < i < m - 1, 1 '$.. j < n 

is a basis of J(r;U) e;> h(r;U). This proves (f r)*U is injective. 

The statements that U has a neighborhood K mapped into a 

hypersurface K(r) of M and that the tangent space to this 

hypersurface is as claimed now follow from the implicit function 

theorem. 

It is now easy to check that 
/\ A 

(fr)*Uxl /\ ••• A(fr)*Uxm-1 A (fr)*Uyl A ···A (fr)*UYN 

= de t ( C ( r ; U ) + S ( r ; U ) A ( r ; U ) ) de t ( si ( r ; U ) ) X 1 ( r) /\ • • • /\ Xm- 1 ( r) /\ Y 1 ( r ) /\ • • • /\ Y n ( r) . 
A A 

But as x1 /\ • • • /\ X 1 A v1 /\ • • • /\ Y is dual to o (that is, 
m- n S.LM 

A A * 
o

5
.LM(x1, ... ,Xm-l'Yl, . . . ,Yn)= l) the given formula for fr oK(r) holds. 

This completes the proof. 

Corollary 6.12. If the condition (*) holds for all U in ·s.L M, then 

the volume of the tube M(r) of radius r about M is 



68 

vol(M(r)) = J det(C(r;U)+ S(r;U)A(r;U))det(S.L(r;U))o (U). 
S.LM S.LM 

Proof. Clear from the last proposition. 

Convention 6.13. From here on,the volume of the tube M(r) will be 

defined by the formula of the last corollary, even when the condition 

(*)of proposition 6.11 does not hold. 

The followin§ result restates what we said above without having to 

compute any parallel translations. 

Theorem 6.14. Let M · be a compact symmetrically embedded submanifold 

of M with smooth boundary. For each U in 5.L M, set p = nU, and, 

Define linear maps 

s ( t; u) ' c ( t; u) : ™p _. ™p' 

and 

by the initial value problems 

S"(t;U) + TuS'(t;U) + BuS(t;U) = 0 

S(O;U) = 0, S'(O;U) = (id)TM , 
p 
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C11 (t;U) + TuC'(t;U) + BuC(t;U) = 0 

C(O;U) = (id)TM , C'(O;U) = -l TU' 
p 

cs.L) 11 
( t ; u) + tt cs.L) ' ( t; u) + st (s.L )( t ; u) = o 

S.t(O;U) = 0, (~.t)(O;U) = (id) . 
T.LM 

p 

Let h : M x IR -. IR be the function defined by 

h(p,t) = t J . det(C(t;U)+ S(t;U)A(U))det(S.t(t;U))O .t (U), 
's.tM S Mp 

p 

where A is the Weingarten map of · M in · M. Then the volume of the 

tube M(r) of radius r about M is 

VO 1( M ( r) ) = J h ( p 'r )OM ( p) . 

M 

Remarks. (1) The derivatives, denoted as primes, are to be taken in 

the usual sense of a function from the real numbers to a finite 

dimensional real vector space. 

(2) It should be noted that Tt ~ Tt(o) as rt has as its domain 

T.LMP, while ·Tt(o) has h(O;U) for its domain. 

Proof of the theorem. Let r(t;U) be 0-parallel translation along 

g(·;U) from p to g(t;U). Then, because TU(t) and Bu(t) are 

D-parallel along g(t;U), we have 

S(t;U) = r(t;U)-l I (t·U)~(t;U)r(t;U) ITM , 
J ' p 

C(t;U) = r(t;u-l I (t·U)C(t;U)r(t;U) I™ , 
J ' p 

A(U) = r(t;ur
1 

IJ(p;U)A(t;U)r(t;U) l™p' 

Therefore, 

det(C(t;U) + S(t;U)A(U)) = det(C(t;U) + S(t;U)A(t;U)), 
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and likewise, 

However, we have T.l Mp = h(O ;U) ~ lRU. Therefore it only remains to 

compute S.L(t;U) on mu. Let X(t) = tu. Then X'(t) = U and 

X"(t) = O; also Tu(X'(t)) = O as Tu(U) = o, and ~Bt(x(t)) = O as 

·st(u) = O. Thus, X(t) is a solution to 

x II ( t) + rt ( x f ( t) ) + Bu ( x ( t) ) = 0 

X(O) = 0, X'(O) = U. 

But s.L(t;U)U is also a solution to this initial value problem. 

Therefore 

S.l(t;U)U = tU. 

Using this with what we know about ~.L(t;U) lh(O(U) yields 

det(SJ.(t;U)) = det(SJ.(t;U) lh(O;U)) det('SJ.(t;U) !mu) 

= de t ts.t ( t ; u ) ) t , 

whence 

det(C(t;U)+ S(t;U)A(t;U)) det(S.l(t;U)) 

= l det(C(t;U)+ S(t;U)A(U)) det(S.t(t;U). 

The result now follows from corollary 6.12 or convention 6.13 and 

Fubini 1 s theorem. 
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7. Some multilinear algebra. 

The results of this section are inessential variants of the 

algebraic results in [5]. What is here written as "A* 8 11 is 

written in Flanders as "AB". His definition of A* B differs from 

that given here; instead, he uses proposition 7.2 as its definition. 

If W is a real vector space, then end(W) will be the algebra 

of all linear endomorphisms of W. Throughout this section V will 

be an n-dimensional real vector space, /\k(V) will be the k-th 

exterior power of V and S£ is the group of all permutations of 

(1 , ... ,£]. lf a is a permutation, then (-1)0 will denote the 

sign of cr. 

Definition7.l. If Aeend(Aa(V)) and Beend(Ab(V)) then let A*B 

a+b be the endomorphism of A (V) defined on decomposable elements by 

( A*B Hx "· • ·Ax ) 1 a+b 

If a is a real valued alternating b-form on v, then a can be 

viewed as a linear functional on Ak(V) by 

a(x1A•••/\xk) = a(x,, ... ,Xk). 

Conversely it is clear that every linear functional on /\ k(V) is of 

this form, for some a. 

e. /\ • •• /\ e. , where 
11 1 k 

integers with 1 < i 1 < 

Let e1, ... , en be a basis of V. Then 

i 1, ... , ik range over all k-tubles of positive 

••• < i < n is a basis of /\k(V). Therefore, 
k -

our remarks about linear functionals tell us that every element of 

end(Ak(V)) can be written as 
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where each ai ···; is a real valued alternating k-form on V. This 
l k 

means A is given on decomposable elements by 

A(x1A···Axk) = 6 a. ,. (x1,···'xk)e.A 
. < <" 11 ... k 11 11 • • • l k 

•••A 

Proposition 7.2. Let e1, ... , en be a basis of V and 

A= 6 a. . e. A ···A e. e end(Aa(V)) 
i < • • •< i 11 · · · 

1 a 11 1 a l a 

Then 

Proof. Let x1, ... , Xa+b e V. Then, 

(A*B )( X l'" • • ""Xa+b) = a !
1
b ! ~s (-1 )cr A (xcr ( l )"···A\,-( a) )AB (xcr (a+ l )" • .. "Xcr ( a+b )) 

cr L 

6 SJ· J. (x (a+l)' ... 'X (a+b))eJ. A···AeJ. ) 
j < • • • <j l · · · b cr cr l b 1 b 

=. 6 . (a!
1
b! 6

5 
(-l)cro:i

1 
... i (Xcr(l)' ... 'Xcr(a))Sj

1 
... jb(Xcr(a+l)'"""'Xa(a+b))) 

1 < • • • < 1 cre -. a . . 1 .a L J < •• •<J 
l b 

e. "···A e. · /\ e. A 
11 1a J1 

•••A 

= 6 (a. . "s . . )( x1· , ... ,X +b) e. " • • ·" e. " eJ. A • ··A eJ. . 
· · 11··· 1 J, ... Jb a 1 1 1 a 1 b 1 <···<1 a .1 .a 
J < •• •<J 1 b 
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This finishes the proof. 

Proposition 7.3. Let A€ end(/\a(V)), B € end(/\b(V)) and 

C € end(/\c(V)). Then the map 

(A,B) HA* B 

is bilinear, and 

A*B=B*A 

(A*B)*C = A*(B*C). 

Proof. That A* B is a bilinear function of (A,B) is clear. To 

prove the other two statements, we use the last proposition. Let 

e1, ... ,en be a basis of V and 

A = 6 a. . e. /\ 
. . 11···1 11 . 11<· ··<ia a 

••• /\ e. 
la 

... " 

Then 

(A*B) = 

= ( 1 ) ab ( 1 ) ab 6 ~ . . " a. . e . " • • • /\ e . /\ e . " • • • /\ e. . 
- - i <···<i J, ... Jb 11 ··· 1a J1 Jb J1 1a 

.1 .a 
J < •• •<J 1 b 

= (B*A). 

The associativity of * follows from proposition 7.2 and the 

associativity of /\ by a similar calculation. This completes the proof. 

Recall that if A e end(V), then "k(A) is the 1 inear 

endomorphism of /\k(V) given on decomposable elements by 
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Definition 7.4. If A € end(Aa(V)) then define A*k € end(Aak(V)) by 

A*k = A* A * • • • * A ( k factors). 

Proposition 7.5. If A, B, A1, ... , Ake end(V), then 

(1) (A1*···*Ak)(X1A···Axk) = 11~\{-l)crAlXa{l) A ••• A AkXcr(k) 

= cr~\A cr ( 1 ) X 1 A • • • A A cr ( k )X k ; 

(2) A*k = k! Ak(A); 

( 3) A k ( A+ B) = ~ A j (A) * A k- j ( B ) , 
j=O 

(where A0 (A) = 1) 

n . . 
det(A+B) = 6AJ(A)*An-J(B); 

j=O 

k · (4) (BA ) *(BA ) * ••• * (BA ) = /\ (B) o (A1*·· ·*Ak), l 2 k 

(A1B)*(A2B) * ••• * (AkB) = (Ai*···*Ak)oAk(B). 

Proof. To show (1) we use induction. Let perm(a 1, ... ,ak) be the group 

of pennutations on [a1 , ... ,ak}· Assume (l) holds for (k-1). 

Then 

(A1 *· • ·*Ak Hx1A • • ·Axk) = ( (A1 *· • ·*Ak-l) * AkHx1A • • ·Axk) 

= (k~lj ft~ (-l}cr(A1*···*Ak-l )(Xa(l)"···Axcr(k-l))A AkXcr(k) 
crE\ 

= 1 ( )cr ( ) e ( A· .. "A x ( ) ) A A x ( ) ( k-1) ! ~S -1 6 -1 AlXecr ( l) k-1 ecr k-1 k cr k 
cr k eeperm(cr(l),~ •. ,cr(k-1)) 

(k-1)! p 
= (k-1}! P~\ (-1} A]Xp(l} A ••• A AkXp(k) 
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The second line of (1) follows from the first by a change of 

variable. Now (2) follows from (1) by letting A1 = A2 = ••• = Ak =A. 

For (3) we remark that * is commutive and associative, so that 

(A+ B)*k can be expanded by the binomial theorem. 

l k k! A*j * s*k-j 
= rr},?0 j!(k-j)! 

= {; (~ A*j) * ( 1 B*(k-j)) 
j=O J. (k-j)! 

= {; Aj(A) * Ak-j(B). 
j=O 

The second line of (3) follows from the first and that det(A) = An(A). 

To prove (4) we use (1). 

(BA ) *. • • • * ( BA ) (x A • • ·AX ) 1 k l k 

= "k (B) (er~\ (-1 )crAl'Xcr (1 )" •• ·AAk\r ( k)) 

= A k ( B ) o (Al * .. • *A k )( X l A • •• AX k ) . 

The second line of (4) follows by a similar calculation. This 

completes the proof. 

Remark. It follows from (3) that Ak(A) * An-k(I) is crk(A), the 

k-th elementary symmetric function in the eigenvalues of A. To see 

this, note that (3) implies 



det(x I+ A) = 6 crk (A) x n-k 
k 
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= 6 /\ k(A) * /\ n-k(I) Xn--k. 
k 

Definition 7.6. Let e1, ... ,en be a basis of V and A e end(Ak(V)). 

j 1 ••• j k 
A. . of A in the basis e1, ... ,en 

, , ••• 1 k 
Then the components 

are defined by 

1 j, ... j~ . 
Ae . /\ • • • /\ e . · - -k 1 :0 . A • . . e . /\ . • • • /\ e . 

l 1 .. 1 k . . J' - . -· . • . l l : •• l k· J 1 J k , , .... •<JJk 

j 1 •••. j k 
where A. . is an alternating function of i 1, ••• , ik and also 

11 ... l k 

of j 1 ' ... ' j k. 

If we restrict ourselves to increasing sequences 

1 < i 1 < i 2 < • • • < i k ~ n and 1 ~ j 1 < • • • < j k ~ n, then the 

components of A in the basis e 1 ' ... ' en of v are components of 

the matrix of A in the basis [ e. /\ • • •/\e. } of k It follows /\ (V). 
, , l k 

that 

tr(A) = 
i 1 •.• i k 

6 A. . 
i <•••<i 11··· 1 k 
1 k 

1 il ... ik 
= -k1 6 A. . . . . ,, ... lk 

11 ... 1 k 

i, ... ik k 
We will write 0 . . for the component of /\(I), the identity 

J 1 ..• J k 
map on /\k(V). The components of /\k(I) are the same for any choice 

i 1 ••. i k 
of basis of V. It is easy to check that 0 . . vanishes unless 

J 1 ••. J k 
i 1, ... , ik are all distinct and the sets [i 1, ... ,ik} are the same. 

In this case, its value is the sign of the permutation taking each 

i 
1 

for 1 ~ 1 ~ k. 
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Proposition 7.7. If A e end(Aa(V)), then 

A* An-a(!) = tr(A). 

Proof. 
jl · · · j a 

Let A. . be the components of A in the basis e1 , ... , en 
11 .•• 1 a 

of V. Then, 

A*An-a(I)(el'\···Aen) = a!(n~a)! a~S (-l)crA(ecr(l)l\ ... l\ea(a» 
n 

/\ ecr(a+l) /\ ···A ecr(n) 

1 ;, ... ia 
= a!a!(n-a)! , 6 (-l)o". 6. A cr(l)·. ·cr(O) e. A .. ·A e. A e ( +l) 

cr es n 11 ... , a , 1 , a cr a 

A • • • /\ ecr(n) 

1 ;, ..• ia 
= "\'"'\ (-1 )0 

"\'"'\ A e A • • • " e A e a!a!(n-a)! ~es ~ (1) (a) i '' i (a+l) cr n [ i 1 , ... 'i al cr ... cr 1 a cr 

= [ cr ( l) , ... ,cr (a)} 

A • • • /\ ecr(n) 

a! cr cr(l)···cr(a) A···Ae Ae 
= 1 i( )' 6 (-1) A e (l) cr(a) cr(a+l) 

a . a . n- a . cr es a ( 1 ) ... cr ( a) cr 
n 

A • • • /\ ecr(n) 

cr(l)···cr(a) 
1 6 A e1 /\ 

= a ! ( n -a ) ! cr es cr ( 1 ) · · · cr ( a) n 

••• A e 
n 

1 ;, ... ia 
- aT 6 A. . e1 A 

; 1 ... ia 11··· 1 a 
••• /\ e 

n 

= tr(A) e1 A • •• /\ en. 



78 

We now relate our formulas to those in the literature. 

Proposition 7.8. Let He end(A2(V)). Then 

(1) H*k(x,A···Ax2k) = -t- 6 (-l)crH(x (l)"X (2)) 
2 creSk er cr 

A ••• A H(xcr(2k- l) /\ Xcr(2k)) 

(2) If Hij 
k,e are the components of H in the basis e1, ... ,en of 

V then 

H*k *A n-2k( I) = tr(H*k) 

-1 i l ... i 2k j 1j2 j 3j 4 
= 4k 6 o. . H. . H .. 

~i···~2k J1···J2k 
1
1

1
2 

1
3

1
4 

J 1 ... J 2k 

Proof. We show (1) by induction. 

= 1 
E (-l)cr H*(k-l)(x '1)" 0

• "/\X (2k-2))/\ H(x (2k-l)AX (2k)) (2k-2)!2! creS cr\ cr cr cr 
2k 

= 1 ' ' E ( - l f _l_ E ( - 1) e H ( Xecr ( 1 ) " Xecr ( 2 ) ) 
(2k-2)· 2· cr€S2k 2k-leeperm(cr(l), ... ,cr(2k-2) 

This proves (1). To prove (2), we use (1) to find the components of 

H*k. 
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*k H e. /\ ••• /\ e. 
11 1 2k 

= ;k 6 (-l)crH(ecr(i1)" ecr(i2))" ··•" H(ecr(izk~l )" ecr(i2k» 

a€perm( i 1 , ... 1"2k) 

1 jl ... j2k 
= -k 6 6· . H(e. /\ e. ) /\ ••• /\ H(e. "e. ) 

2 j,, ... ,j2k 11··· 1 2k J1 J2 J2k-l J2k 

Therefore 

so by the last proposition 

1 *k i, ... i2k 
= ( 2 k) l . 6 . ( H ) i 1 ... i 2k 

11 ' ... 'l 2k 

This completes the proof. 
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Proposition 7.9. Consider mm with its standard inner product and 1et 

A be a linear map from IRm into end(V). Then for any orthonormal 

basis e1, .•• ,em of .IRm define 

Then H is independent of the choice of orthonormal basis, and 

for k odd 

and 

J 2k( ( )) ( ) vol (Sm-l) H*k. 
/\ A u 0 m- 1 u = k ! m ( m+ 2 ) · · · ( m+ 2 k - 2 ) 

sm-1 s 

Proof. The independence of H from the choice of orthonormal basis 

follows from the second integral formula with k = l. This is because 

the 1 eft side is independent of the basis. 1 he fffs t i ntegra 1 

formula is clear, as Ak(A(u)) is an odd function of u and the 

m-1 integral of an odd function over the sphere S is zero. To prove 

the second integral formula we need; 

Lemma. If a= (a1 , ..• ,am) is a multi-index (that is each aj is a 

nonnegative integer) then 

J u2a 0 m-l(u) 
sm-1 s 

Here 2a 2a1 2a2 u = u1 u2 

= (2a)! vol(Sm-1). 
m(m+2) · · · (m+2lal-2)2 la~ 

2a 
u m 
m 

(where u = ( u1 , u2, ... , um) ) and 

a! = a I I ..• a ! 1 . a2. m ' 

lal = a + a2 + ... + a . 1 m 
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S 
2a 

Proof. If X e-x~ o ( ) is i.ntegrated in polar coordinated 
lRm IRm X 

co -t2 1 +l 
(and re ca 11 i n g that J ta e dt = 2 r cy) ) we f i n d 

0 

J X 2a e-x -X o m(x) 
IRm IR 

= { J ( ru) 2a e - r2 0 m- l ( u) rm- l d r 

0 5m-1 s 

= Joo r21aI+m-1 e - r
2 

d r J u
2
a o m- 1 ( u) 

5m-1 s 
0 

= l r ( I a I + ~) J u
2
a o m- 1 ( u) 

5m-l s 

= .}_ m(m+2) · · ·(m+2lal-2) _r(m) J u2a 0 (u). 
2 2lal 2 rn-1 sm-1 s 

But this integral can also be computed using Fubini 's theorem: 
2 2 

2a -x ·x 2a1 2am -x 1 -xm 
J x e dx = J x · · · x e • • • e dx • • • dx 

1 m 1 m 
IRm IRm 

m co 2a. 2 
= .TI J t 1 e-t dt 

1=1 -co 

m 2a. -1 
= TI r( ~ ) 

i =l 

m ( 2a.) ! 1 
= TI ( 1 

) r(-)) 
. 1 Cl. 2 
i= 1 4 . Cl.! 

1 
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By equating these two expressions for J x2a e-x )( o (x), 
m lRm 

IR 

when a= (0, ... ,0) we see that 

Now, for any a, equate the two expressions for the integral and use 

the formula for vol(Sm-l) to finish the proof of the lemma. 

We now finish the proof of proposition 7.9. Using the multi-index 

notation of the lemma, the multinomial theorem can be written as 

l ! al a2 am 
(x + • • ·+x ) = 6 g_ x x • · · x · 

1 m lal=la! 1 2 m 

Now let e1, •.. , em be an orthonormal basis of mm. We then write 

elements of sm-l as 2 2 where u1 + ···+um= 1. 

Let u = (u
1 

, ... ,um); then the multinomial theorem and 7.5 (2) imply 

J A
2k(A(v))o m-l(v) 

sm-1 s 
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and any 13. 
J 

is odd, then 

f u13 o (u) = 0 
m-1 sm- l s 

by summetry. Using this fact and the lemma yields 

f A2k(A(v))o m-l(v) 
5m- l s 

= 

= 
(2a)! vol(Sm-l) *2a *2a 

6 1 A(e ) 1 * • • • * A(e ) m 
I a I = k ( 2 a) ! m ( m+ 2 ) · · · ( m+ 2 I a 1-2 ) 2 I a I a ! 1 m 

- Vo 1(· sm~1 ) k' *2 *2a 
- k 6 -j A( e ) al * · · · * A( e ) m 

m ( m+ 2 ) · · · ( m+ 2 k -2 ) 2 k ! I a I = k a · 1 m 

_ vol(Sm-l) *2 *2*k 
- k (A(e1) +••• +A(em) ) 

m(m+2)·· ·(m+2k-2)2 k! 

vol(Sm-l) k 2 2 *k 
= ---~----=---=--k- 2 (A (A( e1)) + ···+A (A( em))) 

m(m+2)···(m+2k-2)2 k! 

_ vol(Sm-l) H*k 
- m(m+2)···(m+2k-2)k! 

This finishes the proof. 
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8. The tube formula. 

In this section the algebraic results of the last section are used 

to restate theorem 6.14. 

Theorem 8.1. Let M, ~' C(t;U), S(t;U), si(t;U) be as in theorem 6.14. 

For each k with 0 < k < n, define hk: M x IR_. 1R by 

hk{p,t) = t J /\k(S(t;U)A(U))*/\n-k(C(t;U))det(si(t;U))o .L (U). 
SLM s M 

p p 

Then, the volume of the tube M(r) of radius r about M is 

n 
vol(M(r)) = 6 J hk(p,r)oM(p). 

k=O M 

Proof. By theorem 6.14 

where 

= 

vol(M(r)) = J h(p,r)oM{p) 
M 

h(p,t) = i J det(C(t;U)+S(t;U)A(U))det(S.L(t;U))o, .L (U) 
S.LM S Mp 

p 

In this computation we have used proposition 7.5 (3) to expand 

det(C(t;U) + S(t;U)A(U)). 

Remarks. (1) We can use the formula 

k k k /\ (S 0 A) =/\ (S)o/\ (A) 

to rewrite the formula for hk(p,t) as 
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hk(p,t) =if (Ak(S(t;U)) 0 Ak(A(U))*An-k(C(t;U))det(:S"t(t;U))O .t (U). 
· .t · S M 
S Mp p 

This shows that hk(p,t) is a linear function of the map U 14 Ak(A(U)). 

(2) Both S(t,.U) and is.t(t;U) vanish to order one at t = 0. Thus, 

for any U, Ak(S(t;U)A(U)) vanishes to order at least k at t = 0, 

and det(S.L(t;U)) vanishes to order m at t = 0. Therefore, it is 

easy to see that · hk{p,t) vanishes to order at least m + k - 1, for 

al 1 p in M. · 

The above formula becomes simpler if M is a symmetric space. 

Theorem 8.2. If 1V1 is an oriented symmetric space, and M is a 

compact symmetrically embedded submanifold of 1V1 with smooth boundary, 

then, for each U e s.t M let 

,...,, 
where R is the curvature tensor of the Riemannian connection of M. 

Define 

by 

C(t;UL S(t;U): TMP -+ TMP 

5.t ( t ; U) : t.tM p -> ™p, 

(p =TIU), 

s ( 0; u) = 0' s II ( 0 ; u) = (; d) TM ' 
p 

C(O,U) = (id)TM , C11 (0;U) = 0, 
p 

S11 (t;U) + RuS(t;U) =: -0 

C11 (t;U) + RuC(t;U) = 0 

(S.t)"(t;U) + RuS(t;U) = 0 s.t(O;U) = 0, (S.t)"(O;U) =(id) . 
T.tM 

p 
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Then the volume of the tube M(r) of radius r about M is 

where is the greatest integer in ~· 

Proof. In a symmetric space, T = 0 and B = R by proposition 5.21. 

Therefore, by 8.1, it is enough to show that if M is symmetric, then 

hk(p,t) vanishes for k odd. 

Note that 

R (X) = R(X,-U)(-U) 
-U 

This shows Ru = R ( -U) and R(-u) = H(-u). It then fo 11 ows from the 

defining equations of C(t;U), S(t;U) and :si(t;U) that all three 

are even functions of U. But A(U) is a linear function of U and 

thus an odd function of U. Thus, 

is an odd function of U for k odd. The integral of an odd function 

over the sphere s~MP is zero. This shows hk(p,t) vanishes for odd 

k and finishes the proof. 
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9. Parallel hypersurfaces. 

In this section we will use the notation of section 6 with the 
~ 

extra condition that m = 1. Then M is a hypersurface of M. We 

assume that M is compact and oriented with smooth boundary. If this 

is the case, it is possible to choose a smooth unit normal field U 

a 1 ong M. For each p in M the vector space T.LM is one-di mens i ona 1 
p 

and therefore contains exactly two vectors of unit length. Therefore, 

S.tMP = ( U( p), - U(p)J. 

Define ~he parallel hypersurface at a distance r from M by 

PM(r) = (expp(rU(p)): p e M}. 

It is then clear that the tube M(r) of radius r about M is 

the union of PM(r) and PM(-r). 

Proposition 9.1. With notation as in 8.1, 

n + 
vol(.PM(r)) = E J hk(p,r)oM(p), 

k=O M 

where 

h;(p,r) = /\k(S(r;U(p))A(U(p))) * /\n-k(C(r;U(p))). 

Proof. If M is an oriented hypersurface then S.LM is the disjoint 

union of 
+ S M = [ U( p) : p e M} 

and 

S-M = (-U(p): p e MJ. 

+ If S.LM is replaced by SM, then all the results of section 6 go 

through as before, except that we will be computing the volume of PM(r) 
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rather than M(r). The same holds true of theorem 8.1. Because 

TU(p) (U(p)) and st(p) (U(p)) both vanish_, the initial value problem 

defining ·sJ.{t;U{p)) becomes 

(SJ. ) II ( t ; u ( p) ) : 0 s.t(O;U(p)) = 0, (S.L)'(O;U(p}) =(id). 

Therefore SJ.(t;U(p))U(p) = tU{p}. This yields 

det(SJ.( t;U{_p))) = t. 

Because S+MP has only the one point U{p}, integration over S+Mp 

is just evaluation at this point. Theorem 8.1 now yields 
n 

vol(PM(.r)) = k~O J f k.(p,r)oM(p}, 
M 

where 

. fk(p,t) = t J t\k(S(t;U)A(U))* t\n-k(C(t;U))det(S.1.(t;U))n .L (U) 
S+Mp S Mp 

= t\k(S(r;U(p))A(U(p})) * t\n-k(C(r;U(p))) 

This completes the proof. 

-Remark. In the case M is the Euclidean space of dimension n + 1, 

then both B and T vanish. Using this in the definitions of c(t;U} 

and S(t;U) shows 

Whence 

C(t;U(p}} = (id)TM 
p 

S(t;U(p}) = t(id)TM 
p 

h~(p,t} = Skt\k(A(U(p))) * t\n-k(_I) 

= sktr(t\k(A(U(P))) 

= skcrk(A(U(p)} 
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where crk(A(U(p))) is the k-th elementary symmetric function in the 

eigenvalues of A(U(p)). This follows from the remark after the proof 

of 7.5. This yields 
n 

vol(PM(r)) = 6 rk J crk(A(U(p)))oM(p), 
k=O M 

a formula due to Steiner, [11]. 

Proposition 9.2. If M is a hypersurface of the symmetric space M 

then the volume of M(r), the tube of radius r about M, is 

where 

Here H is the excess tensor of M in M defined in definition 4.4. 

This shows each h2k is a linear function of H*k and that vol(M(r)) 

only depends on the excess tensor of M in M, but is otherwise 

independent of the embedding of M in M. 

Proof. By theorem 8.2, 

where 

h2k(p,t) = ~ J "2k(S(t;U)A(U))*An-2k(C(t;U))det('s.t(t;U))n .l (U) 
s.tM S Mp 

p 

= /\2k(S(t;U(p))A(U{p)}) * /\n-2k(C(t;U(p)) 

+ /\2k(S(t;-U(p))A(-U(p))) * /\n-2k(C(t;-U(p)) 

= 2 (/\ 2 k ( S ( t ; U ( p) ) ) o /\ 
2 k (A ( U ( p) ) ) ) * /\ n - 2 k ( C ( t ; U ( p) ) ) . 
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We have used the facts th.at det(S.L(t;U)) = t, that integration over 

S.LM is the sum of the evaluations at U(p) and -U(p), and that 
p 

S(t;U), C(t;U) and A2k(A(U)) are even functions of U. In the case 

at hand, the excess tensor is given by 

Set A= A(U(p)). Then, by proposition 7.5 (2) we have 

2k l *2k 
A (A) = (2k) ! A 

= ~A*2)*k 
t2kJ!' 

= ~2A2(A))*k 

2k *k 
= (2k) ! H • 

Putting this into the above formula for h2k yields the result. 

l"Y 

Remark. If M is not a symmetric space then it is easily seen from 

the differential equations defining C(t,U) and S(t;U) that they are 

not even functions of U. Therefore there is no reason to expect the 

last proposition to hold in any space other than a symmetric space. 
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10. An algebraic reformulation for symmetric spaces. 

Let M be an oriented symmetric space. Let G be a transitive 

group of isometries of M satisfying the two conditions of convention 

5.2. Let o be the origin of M, and H be the subgroup of all 

elements of G that fix o. Let ffi be the tangent space to M at 

o. Then, as in proposition 5.8 and convention 5.9, we identify fh 

with a subspace of ~ (the Lie algebra of G) so that ffi is invariant 

under the adjoint action of H, and 

where h is the Lie algebra of G. If 1h is a vector subspace of m, 
then denote by •n..l II the Orthogona 1 Comp 1 ement Of 1h in ffi • 

Definition 10.1. A second order germ of a manifold (or briefly a 

second order germ) is a pair (lh,A) where 1h is a vector subspace of 

1h and A is 1 i near map from lh.L to the symmetric 1 i near maps on 1h. 

The dirrension· of (m,A) is defined to be the dimension of ffi. The 

linear map A is called the Weingarten map of (lh,A). Two second order 

germs (lh1 ,A1) and (lh 2,A2) will be considered equivalent if and only 

if there is an element a in H so that 

for a 11 X in lhl 
' .L and Y in m1• 

Definition 10.2. If M is a submanifold of M and p e M, then the 

second order germ (m,A) of M at p will now be defined. 

Choose any element g in G with g(p) = 0. Then 1h = T(gM)
0

, and 

A is the Weingarten map for the manifold gM at o. It is clear 
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that different choices of g with g{p) = o give equivalent second 

order genns in the sense of the last definition. 

Definition 10.3. Let (tn,A) be a second order germ, 1{ the 

curvature tensor of M at o viewed as a linear map on /\ 2T'M
0 

and 

P the orthogonal projection from /\ 2TM
0 

onto /\ 2(rn). Then the 

curvature tensor · R of (m,A) is defined to be 
n 

R = PR - L: /\ 2 (A ( e . )) 
i=l J 

where e1, ..• ,em is any orthonormal basis of ~L. The excess tensor 

H of (rn,A). is defined to be 
m 

H = 6A2(A(e.)) = 
j=l J 

~ 

PR - R 

·Remark. Let M be a submanifold of M passing through o whose 

tangent space at o is tn and whose Weingarten map at o is A. 

Then proposition 4.3 and definition 4.4 imply that the curvature of M 

at o, viewed as a linear map on /\ 2TM , is the same as the 
0 

curvature of the second order germ (tn,A). 

Definition 10.4. The second order germ (rn,A) is said to be 

symmetrically err/bedded if and only if, for all X and U in tn.l, the 

vector R(X,U)U is also in tn.l. 

Remark. It is easy to check that a submanifold M of M is 

symmetrically embedded if and only if its second order germ at each 

of its points is symmetrically embedded. 

Definition 10.5. Let (rn,A) be a symmetrically embedded second order 

germ. Define for a 11 U € tn.l 1 i near maps '1n, U : th -+ th, ~, U : tn.l -+ Ih.l 



93 

by 

Now def i n e sin ( t ; u) , Sn ( t ; u) : rn ... rn and :s~ ( t ; u ) : rn ... rn .L by the 

initial value problems: 

S~(t;U) + f1n·,uSrn(t;U) = 0 Sln(O;U) = 0, S~(O,U) = (id)rn' 

~ ( t; u) + '1n, ucrn ( t; u) = o cm ( o; u) = (id )rn, c~ ( o; u) = o, 

( ~) 11 
( t ; 1.n + '\n , us~ ( t ; u ) = o s~ ( o ; u) = o , cs~ ) · ( o ; u ) = ( i d )m . 

Proposition 10.6. Let M be a symmetrically embedded submanifold of 

M and (tn,A) the second order germ of M at p e M. Then the 

function h2k(p,t) of theorem 8.2 can be computed by 

h2 k ( p , t) = t J 11 
2 k ( slh ( t ; u) A ( u ) ) * 11 n -

2 k ( 1n { t ; u) ) de t ( s~ ( t ; u) ) n ( u) . 
·s.LM . s-Tu 

p 

Here 's-Tu is the unit sphere of tn.L. 

Proof. By definition there is a g e G with . g(p) = o and such that 

rn = T(gM)
0 

and A is the Weingarten map of gM at o. Let A1 be 

the Weingarten map of M at p. Then, because g is an isometry of 
,...., 
M, we see for all U e ~iMP, that g*PU e T.L(gM)

0
, and 
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Set P1 = g I and 
*P TM 

p 

p = g I . 
2 *P T.tM 

p 

It then follows from the initial 

value problems defining the linear maps involved that, 

S~(t;P2 U) = P1S(t;U)Pll 

C~(t;P2 U) = P1C(T;U)Pll 

. 1 
S~(t;P2U) = P2s.t(t;U)P2 . 

This shows detCS~(t;P2U)) = det(S.L(t;U)). We now use 

proposition 7.5 (4) to compute 

"2 k ( s~ ( t .; P 2 u) A ( P 2 u) ) * "n-2 k ( c ( t ; P 2 u) ) 

= /\ 2k(P2S( t ;U)Al (U) P2 l) * /\ n2-k( P2C(t;U)P2 l) 

= /\ n ( P 2) "2 k ( S ( t; U) Al ( U)) * "n-2 k ( C ( t; U) ) /\ n ( P 2 l ) 

= /\2k(S(t;U)A1(U)) *An-2k(C(t;U)). 

The function h2k(p,t) is then given by 

h2k(p,t) =} f /\2k(S(t;U)A,(U))*An-2k(C(t;U))det(S.l(t;U))o (U) 
~.LM s.tMP 

p 

= i S /\ 2 k ( sh\ ( t ; P 2 u) ) A ( P 2 u ) ) * /\ n-2 k ( Sn ( t ; P 2 u) ) de t (~ ( t ; P 2 u) )n .t ( u) . 
S.LM S Mp 

p 

The map U,,... .P2u is an isometry of · S.LMP with 's-ln. The result 

thus follows by a change of variables in the integral. 

We now compute C~(t;U), S~(t;U) and 'S~(t;U) in terms of the 

Lie algebra tr· for X €Of define a linear map ad(X): ~-+ Oj by 

ad(X)Y = [X,Y]. 

The map X1-+ ad(X) is called the adjoint representation of OJ. It is 

a Lie algebra homomorphism of OJ- into the Lie algebra of all 
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derivations of ()T·. 

Proposition 10.7. Let (rn,A) be a symmetrically embedded second order 

germ, and U € rn.L. Then l\n, U : rn -+ ffi and ~, U : rn.L -+ rn.L a re given by 

R = -ad(U) 2
1 ·rn,u rn 

R.t. = -ad(U) 2
1 .L. ·rn,u rn 

Also if cosh(t ad(U)) and ~d(U)-l sinh(t ad(U)) are defined by 

their power series, that is 

then 

o:> t 2k 2k 
cos.h(t ad(U)) = k12o (2k)! (ad(U)) , 

1 ~ t 2k+l 2k 
ad(U)- sinh(t ad(U)) = 6 (2k+l)! (ad.(U)) , 

k=O 

Sm(t;U): ad(U)-l sinh(t ad(U))lm 

Crn(t;U) = cosh(t ad(U)) Im' 

Sm ( t ; u) = ad ( u) -1 s i n h ( t ad ( u) ) lrn .L ~ 

Proof. By proposition 5.23, the torsion tensor T of M is zero and 

the curvature tensor is the same as that of the canonical connection. 

Therefore, by proposition 5.12 (3), for X,Y in ~' 

0 = T(X,Y) = -[X,Yin. 

Thus [X,Y] eh. Using this in 5.12 (4) yields, for X, Y, Z e fh, 

R(X,Y)Z = -[[X,Y]h,Z] 

= -[[X,Y],Z]. 
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So, if x, u € fn' then 

'R'u(X) = 'R(x,u)u 

= -[[X,U],U] 

= -[U,[U,X]] 

2 = -ad(U) X. 

This proves the statements about \,u and ~,u· 

From the formula fk,u = -ad(U) 2 1rn' it is easy to check that 

cosh(t ad(U)} lrn is a solution to the initial value problem defining 

Crn(t;U). The other formulas are proved in the same way. 

Corollary 10.8. Let (rn,A) be a symmetrically embedded second order 

· germ and U e rn...L. Then, for any rea 1 number a, 

Sn(t;aU) = Crn(at;U), 

1 Srn(t;aU) =a ).(at;U) 

s~ ( t ; au ) = ~ srn ( at ; u ) . 

Proof. By the formulas of the last proposition 

S(t;aU) = ad(aU)-l sinh(t ad(AU)) 

= ~ ad(U)-l sinh((at)ad(U)) 

= ~ S(at;U). 

The other two equations are proved in the same way. 
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11. Tubes in product manifolds. 

For a = 1, 2 let M be a compact oriented symmetrically a 

errbedded submanifold of dimension n in the oriented symmetric space a 

Ma: of dimension na + ma. Let (ha) 2k ·(p,t) be the function given by 

theorem 8.2, so that 

In this section we prove 

Theorem 11.1. The submanifold M = M1 x M2 is a symmetrically 

errbedded submanifold of 1Vf = ~l x 'M2• Let n = n1 + n2 and 

VO 1 (M ( r) ) = 6 J h 2 k ( ( p 'q) 'r )OM ( ( p 'q)) 
0<2k<n M 

where h2k((p,q),t) is as in 8.2. 

Then 

with the convention that (ha) 2£ = 0 if 2L > na. Therefore, 

TI/2 
VO l ( M( r)) = r s VO 1 (Ml ( r cos e) ) VO 1( M2 ( r sin e) ) de. 

0 

Proof. Assume the formula for h2k( (p,q), t). 

Then 

vol(M(r)) = ~ f h2k((p,q),r)oM((p,q)) 
0~2k<n 0 
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rr/2 
= r J J ( 6 ( h 1 ) 2 k ( p , r cos e )( ~ ( h 2 )( q , r s i n e )) oM x M ( p , q ) de 

a M M 0<2k<n1 0<2J <n2 · 1 2 
lx 2 - - - -

rr/2 
= r J (J 6 (h1 )2k(p,rcos e)oM (p)J(J ~ (h2)2j(q,rsin e)°m (q)}de 

0 Ml 0<2k.2_n1 1 . M
2 
0<2J2n2 2 

rr/2 
= r J vol(M1 ( r cos e) )vol(M2( r sin e) )de. 

0 

The proof that the formula for h2k(p,t) holds will be done in a 

series of lemmas. It will be more convenient to work with the second 

order germs of submanifolds than with the submanifolds thenselves. Let 

p e M1, q e M2, and (tn1 ,A1) be the second order germ of M1 at p, 

and (tn 2 ,A2) the second order germ of M2 at q. Let ffi'a be the 

space to ~ at 0, its origin. Then, as in the last section, 
Ct 

there is a decomposition 

Let ffi' be the tangent space to ~ at (0,0). Then we can assume 

that tn1, tn 2, tn1 and rn2 are subspaces of fh in the natural way. Let 

lh = lh 1 e tn 2. Then the orthogona 1 comp 1 ement to rn in fii' is 

rn.1. = lhl e rn2. 

Convention 11 .2. The letter U always denotes elements of tn1 and the 

letter V will always denote elements of rn2· 

Define a linear map A from rn.t. to the symmetric linear_maps on rn by 

A ( u) Im, = A1 ( u), 

A ( u ) Ith· = 0 , 
1112 . 

A ( v ) Im 
1 

= o , 

A(V) Im = A2(v). 
2 
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Lemma 11. 3. The second order germ of M = M1 x M2 at ( p ,q) is (rn ,A). 

,..., 
Proof. It can be assumed that p is the origin of M1 and that A1 is 

the Weingarten map for M1 at 0. Similar assumptions are made for M2 

and q. If p : M-+ M is projection, then our identification of fii' 
Cl Cl Cl 

with a subspace of fii' identifies the derivative pa*(O,O) with ortho-

gonal projection of fii' onto fTi' • It is clear that the tangent space to 
Cl 

M1 x M2 at · (0,0) is rn = rn 1 ern2. Let B be the Weingarten map of 

M at (0,0). Then because pa* is orthogonal projection, proposition 

4.6 becomes 

where x1, Y1 e rn 1 and x2, v2 e rn 2. This shows B = A, and finishes 

the proof. 

Lemma 11.4. Let R, 'R1 and .'R2 be the curvature tensors of M, 'M1 
,..., 

and M2 respectively. Then for. all 
I _t 

u, v' a 11 four of rn, ' lh2' 1n 1 

and rn2 are stable under R(U+V)' and 

,..., 
This shows that M = M1 x M2 is symmetrically embedded in M. 

Proof. Let x1, Y1 e m1, x2, Y2 e tn2. Using the notation of the last 

lemma proposition 4.5 yields 
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<I\ U+ v ) ( x 1 + X2 ) 'y 1 + y 2) 

= (R(X1+x2,U+V)(U+V), Y1 + Y2) 

= <R,(x, ,U)U,Y1) + (R2(X2,V)V,Y2> 

= ((Rl)UXl ,Y1> + ((R2)vX2,Y2>· 

The result now follows easily. 

Let C(t;U+V), c1(t;U) and c2(t;V) be defined for M, M1, and 

M2 respectively as in theorem 8.2. Make analogous definitions for 

' .L ' .L .L s, s1, s2 and S , s1, s2 . 

Lemma 11. 5. 

C(t;U+ V) = c
1

(t;U)@ c2(t;V), 

S(t;U+ V) = s1(t;U)@ c2(t;V), 

si ( t , u + v) = :st ( t ; u) (f) s2 ( t ; v ) , 

where the notation means 

etc. 

c ( t; u + v) lrn = c 1 ( t ; u) , 
1 

c ( t ; u + v ) lrn 
2 

= c 2 ( t ; v ) , 

Proof. Using 11 .4 it is easy to check that c1(t;U) $ c2(t;V) 

satisfies the differential equation defining C(t;U+ V). The other 

cases are similar. 

Lemma 11.6. det(s.t(t;U+V)) = det(Sl(t;U))det(S2(t;V)). 

Proof. Clear from 11.5. 

Lemma 11.7. S(t;U+V)A(U+V) 
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Proof. This also follows from 11.5 (and the definition of A). 

It is possible to view c1(.t;U) as a linear map on rn by 

extending c1(t;U) from rn1 to rn 1 @rn2 by having c1(t;U)!,.,_ =O. 
. 1u2 

Using a similar convention for c2(t;V) lets us write 

C(t;U+ V) .= c1(t;U) + c2(t;U). 

This convect ion wi 11 be used i.n the fo 11 owing few lemmas. 

Lemma 11.8. 

A 
2k(S( t ;U+V)A(U+V)) * /\ n- 2k(.C(t ;U+V)) 

= 

Proof. Let S = S ( t ; U + V) , A = A ( U + V) , C = C ( t ; U + V) , S 1 = S 1 ( t ; U ) , etc . 

Then the last few lemmas and 7.5 (3) yield 

/\ 2k(SA) * /\ n-2k( C) 

= /\ 2k(S1Al + S2A2) * /\ n-2k(Cl + C2) 

= :0 (A i ( S A ) * /\ j ( C ) ) * ( /\ 2 k - i ( S A ) * /\ n - 2 k- j ( C ) ) • 
O<i< 2k l l l 2 2 2 

O<j_::.n-2k 

The linear maps s1A1 and c1 take values in a vector space of 

dimension n1. Therefore, if i + j > n1, it follows that 

/\ i ( s
1 
A

1 
) * /\ j ( c

1 
) = 0. 

Likewise, if (2k-i) + (n-2k-j) = n1 + n2 - (i+j) > n2, then 

/\2k-i(S2A) * /\n-2k-j(C2) = 0. 

Consequently, the only nonvanishing terms have i + j = n1. Replacing 

j by n1 - i and summing on i yields the lemma. 
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Lemma 11 . 9 . For 0 < i ~ 2k ~ n 1 et 

1 i . 2k-i n,-i =ts /\ (s,(t;U)A,(U))*A (S2(t;V)A2(V))*A (c,(t;U)) 
:Sln 

n -2k+i ~ 
* " 2 

( c2 ( t; V) )detCsl( t ;U)) det(S2( t; V) )n
5
-ln ( u + V). 

Then 

Proof. This ·is 1errnna 11.8 substituted into the definition of h2k(t) . 

Lemma 11.10. If f is a continuous real valued function on s-Tu, 
then 

J f(U+ V)o. (U+ V) 
's1n s-Tu 

rr /2 m - 1 m -1 ( ) 
· = S S J f(cos(e)U+sin(e)V)o. (U)n (V)cos 1 (e)sin 2 e de. 

0 S-lnl Sln2 Slnl Sln2 

Proof. Let S.L = S-ln a = 1, 2 and . si. = S-ln. Put the product metric 
()'. ()'. 

on [O,n/2] x st x s2 and define cp: [O,rr/2] x st x s2 ~ si by 

~(e,u,v) = cos eu + sin ev. 

We now compute the pullback of the volume from o. to ·si 
[O,rr/2] x st x s2. 

( ) [ 
TI J .L . .L Let e,u,v e 0, /2 x s1 x s2. Let u1 , ... ,um 

1 
be an 

orthonormal basis of ~l with u1 = u and let v1 , ... , vm
2 

be an 

orthonormal basis of ~~ with v, = v. Then :e' u2 , . .. ' um ' 
1 

·v2, ... , vm
2 

is an orthonormal basis of the tangent space to 
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[O,rr/2] x st x 52 at (9,u,v), and 

c:p 0 -
* 0e - -sin e ul + cos e v, ' 

cp* u. = cos 9 u. 
1 1 

2 ~ i ~ m, 

cp* v. 
J 

= sin e v. 
J 

Therefore, 

cp* :a /\ cp *u2 /\ •.•• /\ qi kum/' cp *v2 /\ ... /\ cp* v m2 

m1 -1 m2- l 
= cos (e)sin (e)(-sin(e)u1+cos(e)v2) 

/\ u2 /\ • • • /\ u /\ v /\ m1 2 ••• /\ vm . 
2 

m +m -1 
The length of this vector is an element of /\ 1 2 (rn.L) is 

m-1 m-1 
cos 1 . ( e ) s i n 2 ( e ) . Thi s s. hows 

m -1 m -1 
cp * o = o /\ o " cos 1 

( e) sin 2 
( e) de. 

5.L st s2 
The function c:p is surjective. It is also injective outside of a set 

of measure zero. Therefore 

* Using the form of c:p o completes the proof. 
5.L 

Lemma 11.12. Let c and s be real nunbers. Then 

/\ i ( S l ( t ; c U ) Al ( c U ) ) * /\ 2 k - i ( S 2 ( t ; s V ) A
2 

( s V ) ) 

n -i n -2k+i *" 1 
(c1(t;cU))*A 2 (c2(t;sV)) 

det(5l(t;cU))detCS2(t;sV)) 
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= 1 A 1 (s, (ct;U)A, (U)) *A 2k-i(S2(st;V)A2(V)) 
cmlsml · 

n -1 n -2k+i 
* A 1 ( c

1 
(ct; u) ) *A 2 ( c2 (st; v) ) 

det(Sl(ct,U) )detCS2(st;V)). 

Proof. This is a consequence of corollary 10.7. 

We can now finish the proof of the theorem. If H2k,i(t) is as 

in 11.9, then we use the last two lemmas to rewrite H2k,i(t) as 

H2 k' i ( t) 

l Tr/2 . 2k . 
=1J J s A1 (s,(tcose;U)A,(U))*A -l(S2(tsin9;V)A2(V)) 

o ·s-Tu1 s"ln2 

n -i n -2k+i 
* A 1 ( c, ( t cos e ; u)) *A 2 ( C2 (ts in 9; v) 

det(Sl( t cos e ;U) )det(S2( t sine; V) )o (U) 
. s-Tu, 

de 
0 (V) cos(e)sine ·s1n2 

Tr /2 . n -i 
=tJ (tc~sef A

1
(S1(tcose;U)A1(U))*A 1 (c1(tcose;U)) 

o s-ln1 

de t (st ( t cos e ; u ) ) o ( u ) ) 
. s-Tu, 

. n -2k+i 
( t s 1; n 

8 
J "2 

k- i ( s2 (ts in e ; V)) *A 2 ( c2 ( t cos e ; v)) 
S°ln2 

de t ( s 2 ( t s i n e ; v) ) o ( v) ) de . 
s1n2 
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If i is odd then the integrand for the integral over s1n1 is an 

odd function of U and thus reduces to zero. For H2k, 2i(t), we use 

the definition of (h )2. to see that a. l 

rr/2 
H2k, 2i(t) = tf (h1)2;(tcos e)(h 2)2(k-i)(tsin e)de. 

0 

The theorem now follows from lemma 11.9. 
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12. Examples. 

,...., 
We first consider the case where M is the complete simply 

connected manifold of constant curvature K of dimension n + m. 

Then every submanifold of M is symmetrically embedded. Let M be a 
,..., 

compact oriented submanifold of M of dimension n. Using the 

notation of theorem 8.2, and the form of the curvature tensor for M 
given in example (2) following the proof of proposition 6.2, we see 

that if U e siM , V e TiM and X e TM , then 
p p p 

see 

Ru(X) = KX 

Rt ( X) = KX - ( U , V) U. 

Define two real valued functions c, s on m by 

c 11 (t) + Kc(t) = 0 

s 11 
( t) + Kc( t ) = 0 

c(O) = 1, c'(O) = 0, 

s(O) = 0, s'(O) = 1. 

Using the initial value problems defining C(t,U) and S(t;U) we 

C(t;U) = c(t)(id)TM , 
p 

S(t;U) = s(t)(id)TM . 
p 

We now compute det(si(t;U)). 

Note that Ru(U) = 0, and 

If Ve TiMP and V is perpendicular to U, then Rt(V) = KV. Thus, 

si(t;U)V = s(t)V, 

and it follows that 

det(si(t;U)) = ts(t)m-l. 
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Let A be the Weingarten map of M in M, and let H be the 

excess tensor of M in M. The integral formula of proposition 7.9 

can now be used to compute the function h2k(p,t) of theorem 8.2. 

h2k(p,t) = t J /\2k(S(t;U)A(U))*/\n- 2k(C(t;U))det(S.L(t;U))o .L (U) 
's.tM 3 Mp 

p 

= s(t)m+2k-lc(t)n-2kf /\2k(A(U))*An-2k(I)o (U) 
s.tM s.tM 

p p 

= s ( t) m+ 2 k- l c ( t ) n-2 k (J I\ 2 k (A ( U) ) 0 ( U) ) * /\ n -2 k ( I) 
s.tM 

S.tM p 
p 

= s( t)m+2k- l d t) n-2kvol ( Sm-1) H*k *A n-2k( I). 
n k!m(m+2J·. ·-(m+2k- l) . 

If the curvature tensor of M at p ·is viewed as a linear map on 

2 "' 
I\ ™p' then it has the form 

Let I be the identity map on ™p and view the curvature tensor of 
2 M at p as a linear map on I\ ™p· Then, by proposition 4.5 the 

excess tensor H of M at p is given by 

2 H = R + KA (I) 

Here we have used r*j = j! Aj(I). This is also used in the following 

calculation. 
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H*k*/\n-2k(I) = 1 (R+-
2
Kr*2)*k* r*(n-2k) 

(n-2k)! 

1 k k' k . *. * . ~ (-2K) -J .R J * I n-J = ( 2k)' L.J •t(k. •)i n- . j=O J. -J . 

= k! ~ (n-j)! (
2
K)k-j R*j * /\n-j(I) 

(n-2k)! j=O j!(k-j)! 

= k! k (n-j) ! (-2K)(k-j) tr(R*j). 
(n-2k)! jf2o j!(k-j)! 

The last line of the above follows from proposition 7.8. 

The following integral invariants of a Riemannian manifold were 

introduced by Hennann Weyl [13]. 

Definition 12.1. If M is a compact oriented Riemannian mantfold with 

smooth boundary and R is the curvature tensor of M viewed as a 
. 2 
linear map on /\ TM then for each k with 

0 -5- 2k -5- dim(M) 

set 

Then the following (also due to Weyl) holds. 

Proposition 12.2. If M is the complete simply connected Riemannian 

manifold of dimension n + m and M is a compact oriented submanifold 

of M of dimension n then the volume of M(r), the tube of radius 

r about M, is given by 

VO l(M( r)) 

m-1 m-1 s(r) 2kc(t)n- 2k k (n-j)! K (k-j) 
= s ( r) v 01 ( 5 ) 6 ( n - 2 k ) 1 m ( m+ 2 ) · · • ( m+ 2 k - 2 ) .6 j 1 ( k - j ) I ( 2) w 2 j ( M ) 

0<2k<n · J =O · · 
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where 

c 11 
( t ) + Kc ( t ) = O c(O) = 1, c'(O) = 0 

s 11 
( t) + Ks (t) = O s(O) = 0, s'(O) = 1. 

Proof. This follows from theorem 8.2 by using the above expression for 
*k n-2k . . H */\ (I) in the formula given for h2k(p,t). 

We now turn to complex manifolds of constant holomorphic curvature. 

Let M be a complex manifold of complex dimension n + m. Recall from 

example (3) following proposition 2.5 that each tangent space TMP to 

"' M is a compl~x vector space. Let 

be the linear map on TMP induced by multiplication by J-::f. It will 

be assumed that M has a Riemannian metric ( , ) such that 

(JX,JY) = (X,Y) 

for all X,Y tangent to M at the same point. A Hermitian metric 

( , ) is then given on each tangent space by 

(X,Y) = (X,Y) + (X,JY) J-::f. 

"' The manifold M is said to have constant holomorphic curvature K 

if its curvature tensor is given by 

~(X,Y)Z = K((X,Y)Z - (Y,X)Z - (Y,X)Z + (Z,Y)X); 

in this case, 

Ru(x) = R(x,u)u 

= K((U,U)X + (X,U)U - Z(U,X)U). 

-Let M be the complete simply connected space of constant 
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holomorphic curvature K. Then M is known to be a Riemannian symmetric 

space (See [8] volume II, example 10.5, page 273 and example 10.7, 
,..., 

page 282). If K is positive th~n · M is complex projective space. Let 

M be a compact complex submanifold of M with smooth boundary. Then, 
,..., 

for each p in M, both ™p and 'T.LMP a re comp 1 ex subspaces of ™p. 

If U e S.LMP, then 

Ru(X) = K((u,u)x + (x,u)u - 2(u,x)u) 

= KX. 

This shows that M is symmetrically embedded in M. It also shows that 

Ru = K(i_dTM ) . 
p 

So, if we again define functions c(t), s ( t) by the di fferenti a 1 

equations 

then 

c 11 
( t) + Kc ( t) = 0 

s"(t) + K(s(t) = 0 

c(O) = l, c' (0) = 0, 

s(O) = 0, s'(O) = 1, 

C ( t ; U ) = c ( t )(_ i dTM ) , 
p 

s ( t; u) = s (t )(id™ ) . 
p 

If Ye T.LMP and (Y,U) = 0 then 

Rt (Y) = KY. 

Thus s.t(t;U)Y = s(t)Y. 

Assume that M has complex dimension n. Then the set of Y e T.LMP 

with (Y,U) = 0 has real dimension 2(.m-1). As before, 'Rt(u) = 0 so 

si(t;U) = tU. Finally, note that 
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.Rt(JU) = K((U,U)JU + (JU,U)U - 2(U,JU)U) 

= 4KJU; 

therefore, 

si(t;U)JU = } s(2t)JU. 

Combining these, we obtain 

det(si(t;U)) = ~ s(t) 2(m-l)s(2t). 

We can now use the integral formula of proposition 7.9 to compute 

roJ 

Let A ·be the Weingarten map for M in M and H the excess 

tensor of M in M. Then we have 

h2k ( p, t) = ~ f I\ 
2k ( S ( t; U) A ( U)) */\ 2 ( n-k) ( C ( t; U)) det (Si ( t; U) )O i ( U) 

~M SM 
p p 

= s ( ~ t) 5 ( t) 2 ( m+ k - 1 ) c ( t ) 2 ( n - k ) f A 2 k (A ( u ) )o * I\ 2 ( n - k) (I ) 

siM siMP 
p 

_ s(2ts(t) 2(m+k-l)c(t) 2(n-k) 2m-l *k* 2(n-k) 
- 2(k!)(2m)(2m+2)···(2m+2k-2) vol(S ) H I\ (I) 

~ s(2t)s(t)2(m+k-l)c(t)2(n-k) vol(S2m-l) tr(H*k) . 

2k+l(k!) m(m+l)· · ·(m+k-1) 

This yields the following proposition due to R. Wolf ([14]) and 

F. J. Flaherty ([4]). 

Proposition 12.3. With notation as above the volume of the tube M(r) 

about M is 

2(m 1) n (( )2(k-l) ( )2(n-k) 
vol(M(r)) = s(2t)s(~) - vol(S2m-1)6 s kt - ct ftr(H*k)~. 

k = O 2 m ( m+ l) · · · ( m+ k- 1 ) M 
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Therefore vol(M) only depends on the excess tensor of M in M. 

As a last example we do a hypersurface in a space of constant 

holomorphic curvature. To this end let · M be the space of constant 

holomorphic curvature and complex dimension n. Suppose that M is a 

hypersurface of M. Let p e M and U e 's.LMP. Then the vector J(U) 

is perpendicular to U and thus tangent to M at p. Define 

p = 1 Orthogonal projection of ™p onto 

. orthogona 1 complement of JU in ™p· 
p -2 - Orthogonal projection of ™p onto 

span of JU. 

If X e TMP and X is perpendicular to JU, then (X,U) = 0. 

-Thus 

and so 

As above, 

therefore 

C(t;U)X = c(t)X, S(t;U)X = s(t)X. 

RU ( JU ) = 4 KJ U ; 

C(t;U)JU = c(2t)JU, 

S(t;U)JU = ~ s(2t)JU. 

These facts together yield 

C(t;U) = c(t)P1 + c(2t)P2, 

l S(t;U) = s(t)P1 + ~ s(2t)P2. 

Because P2 has rank one it follows that Aj(P2) = 0 for j ~ 2. 
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Whence 

/\2n-l-k(C(t;U)) = c(t)2n-l-k/\2n-l-k(Pl) 

+ c(t)2n...:k-2c( 2t)P
2

*A2n-k-2(P1). 

We choose a smooth unit normal along M and let A be the 

corresponding Weingarten map. Then P2A also has rank one; thus 

Ak(S(t;U)) = s(t)kAk(P
1

A) 

+} s(2t)s(t)k-l(P
2
A)*Ak-l(P

1
A). 

But P2 and. P2A both have the same one-dimensional range, and thus 

P2 * (P2A) = 0. Therefore, using the notation of proposition 9.1, we 

have 

h~(p,t) = /\k(S(t;U)A) * A2n-l-k(C(t;U}) 

= s(t)kc(t)2n-l-kAk(P A)*/\2n-l-k(P1) 
1 

+} s(2t)s(t)k-lc(t)2n-l-k(P2A)*Ak-l(P1l 

+ s ( t) kc ( 2 t) c2 n-2- k ( t )A k ( Pl A) * p 2 * A 2 n -2-k ( p 1 ) • 

Choose A so that JU is one of its eigenvectors with eigenvalue a1 

and let a2, ... , a2n-l be the other eigenvalues of A. Then let 

crk(a2, ... ,a2n_ 1) be the k-th element symnetric function in 

a2, ... , a2n_ 1. Then 

Ak(P,A) * /\2k-l-k(Pl) = crk(a2,··· ,a2n-l). 

However, it is not hard to show that, if Kr 0, then s(t)kc(t) 2n-l-k 

( ) ( )k-1 ( )2n-1-k is linearly independent of s 2t st ct and 

s(t)kc(2t)c(t) 2n-2-k. Therefore, we can compute crk(a2, ... ,a2n_ 1) from 

h~(p,t). But this is independent of a1 so h~(p,t) is not a 
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function of the k-th element symmetric function of A. The best that 

can be proved is that h~(p,t) is a linear function of Ak(A). 
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