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ABSTRACT

Let M (dim(M) = m + n) be an oriented Riemannian manifold and
M a compact oriented submanifold of M. The tube M(r) of radius
r about M is the set of points p that can be joined to M by a
geodesic of length r meeting M perpendicularly. We give a formula
for the volume of M(r) 1in the case M is a naturally reductive
Riemannian homogeneous space (this includes all Riemannian symmetric
spaces) and M 1is such that for each point p of M there is a
totally geodesic submanifold of M of dimension complementary to M

through p and perpendicular to M at p.
To be more specific,

n
1M = 3, h.(p, .
vol(M(r)) < i J(p r)QM(p)

Here hj is a function of the point p € M and the real number r.
Also hj(p,r) is a homogeneous polynomial of degree j in the

components of the second fundamental form of M in M.
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1. Introduction

Let M be a submanifold of the Riemannian manifold M. Then a
fundamental problem in the geometry of submanifolds is to give
invariants of the pair (M,M) that relates the geometry of M to that
of M. One such invariant is the volume of the tube M(r), of radius

r, about M in M.

In the case where ™ 1is a Euclidean space of dimension n + m

and M s compact of dimension n, Hermann Weyl [13] proved that

-1+2k
vol(M(r)) = 2 ¢ M
0<zken 2KoMsm &th(P)QM(D)

where hzk(p) is a polynomial of degree 2k 1in the components of the
second fundamental form (or of the Weingarten map) of M in M. It is
~also possible to express h2k(p) as a polynomial of degree k in the

components of the curvature tensor of M.

The invariants h2k just defined have proven to be useful in
geometry. For example, the first proof of the Gauss-Bonnet theorem for
manifolds of dimension greater than two was given by Allendoerfer and
Weil [1], and used Weyl's formula. Another example where the invariants
h,, are important is the Kinematic formula of Chern [3] and Federer[6].
This shows that it is of some interest to compute the volume of tubes
for more general pairs (M,M) and see if invariants similar to the

h2k defined by Weyl can be defined.

The results of this paper show that in the case M 1is a
“symmetrically embedded" submanifold of a naturally reductive Riemannian
homogeneous space M (definitions below) then it is possible to define,

for each real t and each integer k with 0< k< dim M a function
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p > hk(p,t;M,ﬁ) on M such that a formula for the volume of the tube

M(r) analogous to Weyl's holds. Specifically, if n = dim M, then

n
vol(M(r)) = = [ h (p,rsMH) 0,(p).
k=0

The function hk is a polynomial of degree k in the components of

the second fundamental form of M in M.

In section 2 those standard results on the geometry of manifolds
which will be needed later are given. For the most part, the exposition

follows that of Kobayashi and Nomizu [8].

In section 3, we give formulas to compute the curvature and Jacobi
fields of a Riemannian manifold M in terms of the curvature and
torsion of a connection on M "that preserves the metric of M and has
the same geodesics as the Riemannian connection of M. It is also shown
there is a bijective correspondence between such connections and the
smooth 3-forms on M. The results of this section seem to be new,
however it is possible they are only of interest when the connection in
question is the canonical connection of a naturally reductive Riemannian

homogeneous space. In this case they are well known.

Sections 4 and 5 are both expository. Section 4 gives the results
on the geometry of submanifolds needed in the sequel. Section 5 gives
the results on Riemannian homogeneous spaces that are needed. The

calculations of section 3 are used here.

Section 6 contains the main results of this paper. First the
notion of a symmetrically embedded submanifold of a naturally reductive
Riemannian homogeneous space is defined (definition 6.1). Proposition

6.2 then gives a geometric interpretation of what being symmetrically
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embedded means. The volume of a tube about a compact symmetrically
embedded submanifold is then computed. It is the introduction of the
fields of l1inear maps S(t;U), C(t;U), and S*(t;U) along geodesics
normal to the submanifold which allows the calculation to be done.
These linear maps can also be used to compute the Weingarten map of the

tube. However, this calculation is not done here.

The results of section 7 are algebraic. The basic problem is to
expand det(A+B) 1into a sum by something resembling the bionomial
theorem. This was done by Flanders [5]. He uses the universal
properties of tensor products in his definition of what is written here
as A*B. This makes comparison with formulas in classical notation
hard. The calculations needed to compare the two are done in detail

here.

In section 8, the algebraic results of section 7 are used to expand
the function h(p,t) of the tube formula of theorem 6.14 into terms
hk(p,t) = hk(p,t;M;M) homogeneous of degree k 1in the components of
the Weingarten map of M in M. The functions hk(p,t;M;M) are then
the natural generalization of the invariants defined by Weyl. It is
also shown that, if M 1is a symmetric space then hk(p,t;M;M) vanishes

for k odd.

In section 9 the classical results of Steiner [11] on parallel
surfaces are generalized to hypersurfaces in a naturally reductive

Riemannian homogeneous space.

In the case where M 1is a symmetrically embedded submanifold of
a symmetric space M, it is possible to express the linear maps C(t;U),

S(t;U), and S*(t;U) needed in the tube formula explicitly in terms of



4
the Lie algebra of a transitive group of isometries of M. This is

done 1in section 10.

In section 11 a formula relating the invariants
hy (PysP,) s tsMy x Mooty x My)  to the invariants of the pairs (M;,M;)
and (Mz,ﬂz) is given. This generalizes the corresponding result for
the invariants given by Weyl in the case 'M] and Mz are Euclidean.
This gives more evidence that the invariants introduced here are

reasonable generalizations of Weyl's invariants.

In the last section some examples are give.
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2. Connections on the frame bundle of a manifold.

A1l manifolds will be assumed to be Hausdorff, paracompact and of
class C®. If a manifold is not connected, then all connected components
are assumed to have the same dimension. The word "smooth" applied to
either manifolds or maps will mean "of class C*". If M is a manifold,
then TM (also written as T(M)) will be the tangent bundle of M and
TMp (or T(M)p) will be the tangent space to M at p. If f:M-N is

a smooth map between manifolds, then f*p: TMp - TN is the

f(p)
derivative of f at p. The characterization of tensor fields as
objects multilinear over the ring of smooth functions of a manifold will

be used (see [8] vol. 1, page 26).

For the rest of this chapter, fix some manifold M of dimension n
vand a real vector space | of the same dimension as M. We now define
the bundle of linear frames over M, or, more briefly the frame bundle
of M. Foreach p in M, let L(M)p be the set of all linear
isomorphisms of | onto TMp. An element of L(M)p will be called a
frame at p. The frame bundle L(M) 1ds the disjoint union of the L(M)p
with p in M. For each p in M, the set L(M)p is called the
fibre of L(M) over p. Amap m:L(M) > M 1is defined by taking all
elements of L(M)p to p. This map is called the projection of L(M)
onto M. Let GL(n) be the group of all linear automorphisms of the
vector space  with its usual structure as a Lie group. Then there is

a natural right action of GL(M) on L(M) by
(u,a) > u° a,

where u e L(M) and a e GL(n). We now wish to make L(M) into a

smooth manifold in such a way that the projection m and the action of
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GL(m) on L(M) are smooth. By way of notation, for each open subset

U of M Tet L(U) = n (V).

Definition 2.1. Let U be an open subset of M. Then a moving frame

over U 1is a function

e: U~ L(M)
such that:
(1) me e = identity on U;

(2) If ep is the value of e at p, then for all v in @, the

function p ~» ep(v) is a smooth vector field on U.

Remark. Let ®:U - be a diffeomorphism of the open subset U of
M with the open subset ®(U) of m. Then, under the standard
identification of tangent spaces to | with p, the function

.®:U > L(M) defined by

is a moving frame over U. Therefore every point of M is in the

domain of some moving frame.

Proposition 2.2. There is a unique structure of a differential manifold

on L(M) such that:
(1) The projection w:L(M) + M 1is smooth;
(2) the right action of GL(p) on L(M) given above is smooth;

(3) every moving frame e:U - L(M) over some open subset U of M

is a smooth function.

Qutline of the proof. If the three conditions of the proposition hold,

then it is straightforward to check that, for each moving frame
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e: U~ L(M) over some open subset U of M, the map we from

Ux GL(p) onto ﬂ_](U) given by
v, (p,a) = e, ° a

is a diffeomorphism. This determines the smooth structure of L(M) in
the open subset ﬂ_](U) of L(M). By the remark before the proposition,
L(M) 1is covered by such sets. Thus, the smooth structure on L(M) is

unique, provided it exists.

Let ey Uj +L(M) j =1, 2 be two moving frames over the open
subsets Uy, U2 of M. Then it is not hard to check that
: -1
Pe, Pe, (UynUy) x 6LMm) ~ (Uyn Uy) x 6L(n)
~is a diffeomorphism. Therefore, the maps Do where e - is a moving
frame, can be used to define an atlas for L(M). This finishes the

proof,
The proof of the following is left to the reader.

Proposition 2.3. With notation as above,

(1) The dimension of L(M) is n2 + n;

(2) the projection m is a submersion (that is, m , is surjective

u
for all u in L(M));

(3) each fibre L(M)p is a closed embedded submanifold of L(M)
diffeomorphic to GL(p) and the -action of GL(n) on the fibre L(M)

is simply transitive;

(4) the tangent space to a fibre L(M)p at a frame u 1is the kernel

of Teu
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We now define the class of geometric objects on which most of our
calculations will be done. If G 1is a closed subgroup of GL(p),

then G also has a right action on L(M) 1in an obvious way.

Definition 2.4. Let G be a closed subgroup of GL(m). Then a

G-structure on M (also called a reduction of L(M) to G) is an

embedded submanifold P of L(M) such that;

(1) The restriction of the projection m to P is a submersion of P

onto M;
(2) for each p in M the fibre Pp, defined to be Pp = L(M)p n P,

is an embedded submanifold of P such that the action of G on Pp

is simply transitive.
Some elementry facts about G-structures are given in the following.

- Proposition 2.5. Let P be a G-structure on M; then,

(1) The dimension of P 1is dim(M) + dim(G).
(2) Each fibre of P 1is diffeomorphic to G.

(3) If m:P->M 1is the projection, then, for each p in M and u
in the fibre Pu,

).

*U

T(Pp)u = kernel (w

(4) Each point of M has an open neighborhood U and a moving frame
e: U~>L(M) defined on U such that e, € P for all p in U.

(Such moving frames are called sections of P over U.)
Proof. The first three parts are easy.

Because 7 is a submersion of P onto M the implicit function

theorem lets us find a smooth function e: U ~ P, defined in an open
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neighborhood of any given point of M, with mwee = identity on U.

It is not hard to verify that e 1is a section of P over U.
Examples. (1) It is clear that L(M) dis a GL(n) structure on M.

(2) Recall that a Riemannian metric on M 1is an assignment of an
inner product ( , )p on each tangent space TMp to M, 1in such a
way that if X and Y are smooth vector fields on M, then the

function

p*+<X(pLY(m>p

is smooth. Put an inner product ( , ) on | and let O(y) be the
group of all automorphisms of this inner product. Thus O(n) is
isomorphic as a Lie group to the group of all n x n real orthogonal
matrices. Let M have a Riemannian metric ( , ). Theh, for each p
in M, let O(M)p be the set of all isometries of | onto TMp.
Define 0(M) to be the union of the O(M)p with p in M. Then it
can be verified that 0(M) is an O(p)-structure on M, called the

bundle of orthogonal frames of M.

Conversely, given an O(p)-structure P on M we can define a
Riemannian metric on M by

-1

Koy = (w,uY)

where u 1is any element of Pp and ( , ) is the inner product on

ms this inner product is well-defined because any two frames. in Pp
are related by the right action of an element of O(p). Then P will
be the bundle of orthogonal frames for this Riemannian metric. Thus,
giving an O(m)-structure on M 1is the same as giving a Riemannian

metric on M.
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(3) Suppose M 1is a complex analytic manifold of complex dimension
m (and thus real dimension n = 2m). Recall that this means that M
has an atlas {Gpa,Ud): aeA} such that for each a e A @ isa
diffeomorphism of the open subset Ua of M onto the open subset
@G(Ua) of C" so that for each pair a,8 € A the function

_].
Py °%g .mg(qxn UB)-+wa(qxn UB)

is holomorphic. If M s such a manifold, then each tangent space
TMp, to M has the structure of a complex vector space. Multiplica-
tion of a tangent vectbr X e TMp by a complex scalar a can be
described as‘fo11ows: Choose a chart &pu,Uu) from the defining

atlas of M with p e Ua, then

aX = G@d);;(a&pu)*px).

" This can easily be checked to be well-defined by using that if ~

a,B €A and p € Ua nu then Gpaocpé1) is complex linear.

& "Pa(p)
Now assume that | 1is a complex vector space. For each p in M,

let C(M)p be the set of all complex linear isomorphisms of | onto
TMp, and let C(M) be the union of all of the C(M)p with p in M.
If GL(C,n) is the group of all complex linear automorphisms of m,
then C(M) s a GL(T,n) structure on m called the bundle of

holomorphic frames over M.

(4) If M dis a complex analytic manifold, then a Hermitian metric
{ )y on M 1is a choice of a Hermitian inner product ( , )p on each
tangent space TMp to M such that for all smooth vector fields X,Y

on M the complex valued function

p*+<X(pLY(pbp
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is smooth. Assume that | is a complex vector space with Hermitian
inner product ( , ) and that U(m) is the group of all complex linear
automorphisms of ( , ). Then it is possible to define a
U(n)-structure U(M) on M 1in a way that should be clear from the
last two examples. This U(p)-structure is called the bundle of

unitary frames over M.

We now record some facts we will need about GL() and its closed
subgroups. Let gg(m) be the Lie algebra of all linear endomorphisms

of m with Lie bracket given by
[A,B] = AB - BA.
Then gg(n) 1is the Lie algebra of GL(n).

~For any A e g¢(m) define eA by its power series

k

eA = 21
k=0

wl>

Then every continuous homomorphism from the group of additive real
numbers to GL(p) is of the form

£ g etA

for some A in gy(m).

If G 1is a closed subgroup of GL(n) then, by the "closed
subgroup theorem" of E. Cartan ([12] Theorem 3.42, page 11), G is
an embedded submanifold of GL(p). Let 1 be the identity element of
GL(m). Then 07, the tangent space to G at 1, is the Lie algebra
of G and is a Lie subalgebra of gg¢(n). By parallel translating the
tangent space to G at 1 to the origin (zero element) we can and

often will view elements of QT as linear transformations on p. It
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should also be noted that ¢7 1is the set of all A in gg(m) such

tA

that e is in G for all real t.

The adjoint representation of G on ¢ is given by a » Ad(a)

where

Ad(a)A = aAa'].

It is easy to check that
eAd(a)A - aeA —1.

a

Convention 2.6. Unless stated otherwise, for the rest of this chapter

"P" will denote some fixed G-structure on M where G is some fixed

closed subgroup of GL(n) with Lie algebra (7.

Definition 2.7. (1) For each a in G define right translation by

a on P by

ra(u) = ua

*
(2) For each A in ({7 define the fundamental vector field A on
P by

* d tA
A (u) = o ue
g

Proposition 2.8. (1) The flow of the vector field A* is retA.
(For the definition of the flow, or local 1-parameter group generated

by a vector field see [12] 1.49 Definitions, page 39.)
(2) For Ae@y and aeG
_ *
rsh = (Ad(a A

b
(3) The map A A is a Lie algebra homomorphism of {7 into the

Lie algebra of all smooth vector fields on P.

*
(4) For each u in P the map AH A (u) ids injective.
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(5) For each u 1in P the tangent space to the fibre P, at u is

T(P_ ), = (A (u): A edr.

mu

Proof. (1) It is easy to check that

r o aor =r .
etA esA e(t+s)A

The result now follows from the definition of a flow.

*
(2) The tangent vector to the curve tr uetA at t=0 1is A (u).
Therefore
* _-d tA
ry A () = dt[t=0ra(ue )
= é%l vaa letha
t=0

-1
_ §%1 uaetAd(a YA
t=0

(Ad(a~M)A) (ua).

This proves (2).

(3) For each u in P define a map oy’ G->P by gu(a) = va. The

tangent vector to the curve t+~ etA at t =0 is A; therefore,

_d tA
ah = dtltzocue
d tA
= 0 ue
I
= A" (u).
*
The map Ty is linear, which shows A~ A (u) ds linear for all u.

*
It follows that Aw A s linear.
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*
Let g, be the Lie derivative with respect to A (see [12],
pages 69 and 70 for the definition of Lie derivative and for a proof of

the equality gXY = [X,Y]). Using (2) and the fact that the flow of

*
A dis .r tAs e have

e
[A",8"3(u) = (£, (u)

* JtA
= aTC-]tzore_tA*B (ue™™)

(Ad(e®™B)* (u).
t=0

1
o
il

*
We have just shown the map Cr C (u) to be linear from (7 to
T(P)u. Therefore, if t+ Ct is any smooth curve in ¢ it follows

that

*

()" (u) = (Fc,) " (u).

Q.
d'lQ'

This yields

(Ad(e*M)B)” (u)
t=0

[A",87(u) = &

Sk

ad(e*™)8) ™ (u)
t=0

1]
Pam)
o
t

*
[A,B] (u).
*
This completes the proof that A+ A is a Lie algebra homomorphism.

(4) Let Ae@r and u e P with A*(u) = 0. Then because the flow
of A" is r ., it follows that
e

uetA

]

r ,n(u)
etA
= 1

for all real t. The action of G on fibres is simply transitive;

therefore e =1 for all t. This implies A = 0. This along with
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Tinearity of the map A H-A*(u), proves (4).

(5) By (3) and (4) we see that {A*(u): A e 7} s a linear space of
the same dimension as G. The vector space T(Pﬂu)u is also of this
dimension. Thus to show the two are equal it is enough to show the
first is a subspace of the second. If a e G then it is clear that

mer., =. Consequently

A" :
Tay (u) a€1t_onue

tA

1

ol

&
=)
=

Thus
{A*(_u) tAeltc Kerne](wau)

= T(P_ )u.

mu

This finishes the proof.

Definition 2.9. Vectors tangent to some fibre Pp of P will be

called vertical.

Remark. It will be convenient to use the formalism of vector valued
differential forms. The following 1list of definitions is given so as
to fix our conventions on what constants are used in the definitions of
exterior derivative and wedge product. Let V be a real vector space.
Then a V-valued r-form @ on M is a smooth assignment for each p
in M of an r-linear alternating function Wy on TMp with values in
V. When r =0, @y 1is defined to be a smooth function with values in
V. In the case V =R, y is just called an r-form. The exterior

derivative dy of  is the V-valued (r+1)-form given on smooth
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vector fields XO’ 8% ¢ Xr by

XX ) = 2 D X0, Xeyett X))
0 r Ofﬁff i 0

.+. N
TREED 20 3 DEAETAS U0 Vi IS SUUUUES SUURU YRS O B
0<i<j<r § #5922 i J r

where =~ means the term is omitted. For r =0 and 1 this becomes
dw(X) = Xw,
dw(X,Y) = Xw(Y) - Yu(X) - w([X,Y]).

If w is a V-valued r-form, g 1is a W-valued s-form and ( , )
a bilinear function on V x W with values in the vector space S
then the wedge product of w and g is the s-valued (r+s)-form

given by

(w/,\e)(X] ""’Xr‘+s)

1 . .
= TS!_§(-] )U<m(XG(] ),. o ,Xo‘(r)).,e(xc(r_}_-l),...,Xo_(r+s))>

where the sum is over all permutations o of the set {1,...,r+s} and

(-1)° is the sign of the permutation . It can be checked that
d(wpey = (duwdey + (-1)(whdg).

In the case in which both V and W are the real numbers and ( , )

is multiplication of real numbers, we just write wag for <(wéey.

Definition 2.10. A comnection on P is a smooth @ -valued one-form

w on P that satisfies the following two conditions;
(1) The value of w on vertical vectors is given by
*
wu(A (u)) = A

for all A in ¢y and u in P.
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(2) w transforms under the action of a e G by

r:w = Ad(a'])w.

Definition 2.11. If w 1ds a connection on P then for each u e P

let
).

Hu = kerne](ﬂ*u

Then Hu is called the space of horizontal vectors at u or more

briefly the horizontal space at u.

Proposition 2.12. Let {Hu: u € P} be the set of all horizontal

vectors, for the connection w on P. Then,
(1) '{Hu: u € P} 1is a smooth distribution on M.

(2) Forall aeG and uebP

-
1]
=

a*Hu au
(3) Forall ueP

T(P) = Hu<3 T(Pnu)u (direct sum).

u

Conversely, let {Hu: ue P} satisfy (1), (2) and (3) and define w
to be the ¢y-valued one-form on P given by wu(A*(u)) = A for A
in 07 and wu(Xu) =0 if Xu is in H .. Then w s a connection

on P and the horizontal spaces defined by w are {Hu: ue Pl
Proof. See proposition 1.1 on page 64 of vol. 1 of [8].

Remark. A connection is often defined to be a smooth distribution
{Hu: u € P} satisfying (1), (2) and (3) of the last proposition. Then
w 1s defined as above and is called the connection form of the

connection.
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(2) Let w be a connection on L(M). Then w is the extension of a
connection on P if and only if, for each u in P, the space ﬁh

of horizontal vectors determined by w at u 1is tangent to P.

Proof. The first part is a special case of proposition 6.1 on page 61

of vol. 1 of [8]. The second part is straightforward.

Remark. Some of the definitions below, such as parallel translation
along a curve or the curvature and torsion tensors on M, can be
given in terms of either a connection w on P or the extended
connection on L(M). It will be left to the reader to show these

definitions are independent of which of these two connections is used.

Definition 2.14. Let w be a connectionon P and c: (a,8) - M be

any piecewise smooth curve. Then a piecewise smooth curve ¢C: (a,B) + P
is called a horizontal 1ift of ¢ if and only if mo c=c and E'(t)

is horizontal for all t.

Proposition 2.15. Let w be a connection on P, c: (0,8) >~ M a

piecewise smooth curve, t, e (asB) and u € Pc(t ) Then there is a
0
0) = uo. If aeG,

then the horizontal 1ift y: (a,8) - P with Y(to) = Uya is given by

unique horizontal 1ift ¢ of ¢ to P with c(t

y(t) = c(t)a.

Proof. This follows from proposition 3.1, page 69 of [8].

Definition 2.16. Let w be a connectionon P, c: (a,B) > M a
piecewise smooth curve and tys t, e (a,8). Then parallel translation

is defined by

along ¢ from TMc( t

5)

. &(t,)8(t) !
th 2 ]

1
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~ t
where ¢ 1is any horizontal 1ift of ¢ to P. Clearly Tt] is a
2

linear isomorphism of TMc( onto TM

t]) c(tz)‘

By the last proposition any other horizontal 1ift of ¢ 1is of
the form t~ c(t)a. It follows that parallel translation is independent
of the choice of the horizontal Tift of c. It is also easy to check
that if tys ty, ty are in (a,B) then
t2 t] t1

Ty Ty =T
t3 t2 t3

§
Definition 2.17. Let Y be a smooth vector field defined on some open

subset U of M and X(p) a tangent vector to M at p e U. Choose

a smooth curve c: (-e,e) -~ U for some € >0 with c'(0) = X(p).

Then define

_ i .
vX(p)Y T dt g ( )

t. : . ’
where To TMc(t) > TMc(O) is the parallel translation a1qng ¢ defined
by the connection w.

Remarks. (1) For all t e (-e,e) the vector TSY(c(t)) is in the
t

finite dimensional vector space TMp. The derivative é%—TOY(t) is

computed as the tangent vector to a curve in a vector space.

(2) The vector VX(p)Y is independent of the choice of the curve c

with c'(0) = X(p). See pages 114 and 115 of vol. 1 of [8].

(3) To compute vX(p)Y it is enough to know the values of Y along

any curve c¢ that fits X(p) in the sense of the definition.

Proposition 2.18. The map (X(p),Y) H'vx(p)Y defined above satisfies

the following five relations:
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(M vy (et = 7%, (0)Y * I,y ()Y

(2) ch(p)Y = CVX(p)Y for all realv &,

(3) oy (p)*Y2) = vy (Y1 * vx(p)Yer
(4) VX(p)(bY)’= b(p) VX(p)Y + (X(p)b) Y(p) for all smooth real valued

b with the same domain as Y.

(5) If X and Y are smooth vector fields on the open subset U of

M, then so is p»r §X( )Y.

P
Proof. See proposition 1.1, page 114 of vol. 1 of [8].

Definition 2.19. Let g be the set of all pairs (X(p),Y) where Y

is a smooth vector field on some open subset of M and X(p) is a
vector tangent to M at some point p in the domain of Y. Then a
function (X(p),Y) H'Vx(p)y defined on g and satisfying the five

~ conditions of.2.18 is called a covariant derivation on M. If ¢ is
defined from a connection w then ¢ 1is called the covariant

derivation of w.

Proposition 2.20. (1) Two connections on P with the same covariant

derivation are equal.

(2) Every covariant derivation on M 1is the covariant derivation of a

(unique by (1)) connection on L(M).
Proof. See proposition 7.5, page 143 of vol. 1 of [8].

We now describe parallel translation in terms of the covariant

derivation of a connection.

Definition 2.21. Let y be the covariant derivation of the connection

w on P, and c: (0,8) = M a smooth curve. Then a vector field
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t » Y(t) along c is called parallel if and only if

(Vc'(t)Y)(t) =0

for all t 1in (a,B).

Proposition 2.22. Let w be a connection with covariant derivation ¢

on P, c¢c:(a,8) > M a smooth curve, and tO e (a,B). If g is the
parallel translation defined along ¢ by w, then every parallel

vector field t’+‘Y(t) along c¢ is of the form

>

Y(t) = TtOY

0

for some Y0 in TMc(tO)’ Therefore, for every YO in TMc(tO)

there is a unique parallel field t& Y(t) along c with Y(tO) =Yy
The vector Y(t) is called the parallel translate of Y, along c to

..c(t).

t
Proof. If Y(t) = r,0Y, then for any t; in (,8)

d t
Verp yV(E) = 55 Ty Y(t)
c'(t;) dtlt=t1 t,
4y Loy
@t gty BT E 0
£
d 0
= 4 .0 Y
dtlt=,C1 t, 10
- 0.

Therefore Y(t) ds parallel. Let tw~ Y(t) be parallel along c¢ and

let X], cees Xn be a basis of TM Define fields

c(to)'
x](t), cees xn(t) along ¢ by

t

__0
Xo(t) - Tt X

i
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Then we have just shown each Xj(t) is parallel along c¢. The map
1

Tto from TMC( to TMC( is a linear isomorphism,therefore

t t)

o)
X](t), cees Xu(t) is a basis of TMc(t) for all t 1in TMc(t)’
Whence,

n
Y(t) = E]L),](t) X'i(t)
1:

for some smooth functions Yps eees Yy ON (a,8). By proposition 2.18,

we have

D= VC'(t)Y(t)

n n
1?}1‘),.:(1:) X.I(t) + 1§]1}i(t) VC(_t) X'i (t)

n
Dyile) % (0).

This shows g% = 0, so each W is constant. Consequently,

Y(t) =

I
o
[y
-
)
(—1-
O
~—
><

i
Ry
—do
P
‘-’-
o
S
2
ct

I
-
—~
(—'-

This finishes the proof (with Yg = Y(to)).

The next several definitions are devoted to defining the curvature
and torsion forms on P and the corresponding curvature and torsion

tensors on M.

Definition 2.23. The canonical form g on P is the p-valued one-form



on P given by

Remark. The canonical form g is defined independently of any
connection on P and the kernel of 8y is the space of vertical

vectors at Uu.

Proposition 2.24. If g 1is the canonical form on P then g

transforms under the . action of G on P by

Proof. Straightforward.

Definition 2.25. Let o be a k=formon P with values in some vector

space V. Then the covariant differential Da of o defined by the

connection w on P s the V-valued k + 1 form given by

(Do) (XysenesXyyq) = da(hXy,..ohX, ,4)

where d is exterior derivative and X = hX + vX is the decomposition
of X 1into its horizontal component hX and its vertical component

vX defined by the connection w.

Definition 2.26. Let w be a connection on P and D the covariant

differential defined by w. Then:
(1) The torsion form ® of w 1is the p-valued two-form given by
® = Dg.
(2) The curvature form Q of w is the {y-valued two-form given by

Q = Dw.
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The proof of the next proposition is straightforward.

Proposition 2.27. The torsion form @ and the curvature form q of

a connection w on P transform under the action of G by

]
ra @ = a @9
r: a=Ada") g

for a in G.

Definition 2.28. Let w be a connection on P. Then, for each p e M,

X e TMp and U e Pp we define the horizontal 1ift Q(u) of X to u

by letting X(u) be the unique horizontal vector at u with
W*UX(U) = X.
Remark. It is easy to check using 2.12 (2) that ra*x(u) = X(ua).

Definition 2.29. Define the torsion tensor T and the curvature tensor

R of a connection w on P by
T,06Y) = u(,(K(u),¥(u))
R (Y)Z = wlay(X(u),Y(w)u™'2)

where X,Y,Z € TMp, mu = p and i(u), ?(u) are the horizontal 1ifts
of X and Y to P.

Elementary calculations using proposition 2.27 and the remark
preceding the definition show that the definitions are independent of

the choice of u with mwu = p.

Proposition 2.30. The two tensors T and R defined above are related

to the covariant derivation y of the connection w by
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T(X,Y) =9, Y - vyX - [X,Y],
R(X,Y)Z = VXVYZ - vaXZ - V[X,Y]z
where X,Y, Z are smooth vector fields definéd on some subset of M.
Proof. This is theorem 5.1, page 133, vol. 1 of [8].

We now define the covariant derivatives of (VXT) and (vXR)
in the usual way, which is by requiring the product rule to hold, i.e.,
(wyTIY,Z) = 9y(T(Y,2)) - Tloy¥,Z) - T(Y.wyZ),
(wgRIY.Z)W = 9y (R(Y.ZW) - Rz Y, ZW
-R(Y,7yZW = R(Y,Z)y M
where Y, Z, W are smooth vector fields on some open subset of M.

Proposition 2.31. Let T be the torsion tensor and R the curvature

tensor of a connection w on P. Then the following hold:

First Bianchi Identity.

F(R(X,Y)Z) = G(T(T(X,Y),Z+ (vyT)(Y,Z))

Second Bianchi Identity.

G((7yR) (Y, 1)+ R(T(X,Y),2)) = 0

where 4 is cyclic sum over X, Y and Z.

Proof. This is theorem 5.3, page 135 of vol. 1 of [8].

Definition 2.32. Let w be a connection on P with covariant

derivation y. Then a smooth curve g: (a,B) = M 1is a geodesic of w
(or of y) if and only if tw g'(t) 1s a parallel vector field along

g. That is, g 1is a geodesic of w 1if and only if

vgl(t)gl(t) = 0
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for all t in (a,B).

Definition 2.33. Let w be a connection on P and v a vector in

m. Then the basic vector field B(v) on P determined by v ep is

defined by letting B(v)., be the unique horizontal vector at .u with

u

'rr*uB(v)u = u(v).

An equivalent definition is

3(v), = 6(V)

(u).

Proposition 2.34. A curve g: (a,8) > M 1is a geodesic for the

connection w on P if and only if g is of the form me+y, where
vy : (a,B) = P is an integral curve of one of the basic vector fields
B(v). Consequently, for each tangent vector X(p) to M there is a
unique geodesic g defined in a maximal connected neighborhood of zero

in the real numbers R with y(0) = p and y'(0) = x(p).

Proof. See proposition 6.3 and theorem 6.4 on page 139 of vol. 1 of

[8l.

Definition 2.35. Let w be a connection on P then the exponential

map determined by w is defined as follows. For X e TMp write

thr expp(tX) for the unique geodesic with

Xy =

expp(o ) =0p

é%j exp_(tX) = X.
t=0 P

Then the exponential map from TMp to M is the function

X > expp(X) = expp(]- X).

This is defined in a neighborhood of zero in TMp.
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We will need to take derivatives of the exponential map. This task
is reduced to computations with ordinary differential equations by the

following definition and proposition.

Definition 2.36. Let g: (a,b) + M be a geodesic for a connection

with covariant derivation y. Then
(1) A vector field Y(t) along g 1is a Jacobi field along g 1if and

only if it is a solution to the Jacobi equation

VZ'(’t)Y‘(t) +Vg'(t)(T(Y(f),9'(t))) + R(Y(t),g'(t))g'(t) = 0

g’
along g. Here T and R are the torsion and curvature tensor of v.

(2) A variation of g through geodesics is a smooth function
a: (-e,e) x (a,b) > M (for some € > 0) such that «(0,t) = g(t) and

for all s e (-e,e) themap tw o(s,t) is a geodesic.

Proposition 2.37. Let g: (a,h) > M be a geodesic for a connection

with covariant derivation y.

Then:

(1) A Jacobi field Y along g is determined by the values of Y(t0)
and (vg.(t)Y)(tO) for any tg € (a,b) and these values can be

specified arbitrarily.

(2) If a:(-e,e) x (a,b) > M 1is a variation of g through geodesics
then t H~%%(O,t) is a Jacobi field along g.
Proof. (1) The Jacobi equation is a homogeneous linear second order

ordinary differential equation; therefore, (1) follows from standard

results.

(2) See theorem 1.2, page 64 of vol. 2 of [8].
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Proposition 2.38. Let ¢ and ¢' be covariant derivations on M. For

smooth vector fields X and Y on M, let
C(X,Y) = VXY - ViY'

Then C 1is a tensor field of type (1,2) (called the difference tensor
of v andy'). The covariant derivations y and y' have the same

geodesics if and only if C 1is alternating.
Proof. See proposition-1.5 on page 271 of vol. 2 of [10].
We now turn to connections on Riemannian manifolds.

Proposition 2.39. Let M be a Riemannian manifold with metric ( , )

and let 0(M) be the bundle of orthogonal frames over M. If w is a

connection on L(M) then the following are equivalent:
(1) w 1is the extension of some connection on O0(M).

(2) Parallel translation along any smooth curve in M is an isometry

between tangent spaces of M.

(3) If ¢ 1is the covariant derivation of w and X, Y, Z are

smooth vector fields on M then
XY,Z) = QVXY,Z> + (Y,VXZ).

Proof. The equivalence of (1) and (2) is the content of proposition 1.5

on page 117 of vol. 1 of [8].

Suppose (2) holds and let Y,Z be smooth vector fields on M.
Let X be any tangent vector to M and choose a smooth curve
c: (-e,e) > M such that c¢'(0) = X, Let ¢ be the parallel translation
along c. Choose an orthonormal basis s +ves € of TMc(O) and let

_ 0 0 . : .
ej(t) = T8y Because T4 is an isometry, e](t), e en(t) is an
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orthonormal basis of TMe(t)’ for all t. There are smooth functions

Yis vees Y and Zys +ees Z, ON (-e,e) with
Y(c(t)) = 2 y;(t) ej(t),
n
Z(c(t)) = izazj(t) ej(t).

Therefore,

c'(e)(Y(e(t)),z(c(t))y

_d !

5 a_€<1§]y1( ) e, (t), j§1zj(t) e;(t))
dFy(t) z,(t)

= 2 Z
ok K k

n

2 yi(t) z(0) + zyk(t) Le)

i=

=

<2yUﬂe(ﬂ,EZ(ﬂe(ﬂ>
‘: J.—

n
+ (D y;(t) ey(t), 52%25(f) e;(t)
= <vc-(t)Y(C(t)),Z(C(t)))>

+ (Y(c(t)), Vc'(t)x(c(t))>'
Noting that c¢'(0) = X shows (2) implies (3).
Now assume (3) holds. Let c:[a,b] > M be a smooth curve and -

the parallel translation along c. Let Y,Z be vectors in TMc(a)‘

Then

d
EE<T2Y’Ti 7y = c’(t)(TiY,Ti 7y
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= <VCI (t)TiYaTi Z)

a a
YV ()T D
= 0.

Therefore (T%Y,Ti Zy is constant as a function of t. This shows

(10 Ys1p Zy = (Y.Z), whence 71 s an isometry of TM_ with TM.

Thus (3) implies (2).

Definition 2.40. A connection on a Riemannian manifold that satisfies

the three conditions of the last proposition is called metric

preserving.

Proposition 2.41 (Fundamental lemma of Riemannian Geometry).

Every Riemannian manifold has a unique metric preserving connection

with vanishing torsion.

“ Remark. This connection is called the Riemannian connection or the

Levi-Civita connection.

Proof. See theorem 2.2 on page 158 of vol. 1 of [8].

Definition 2.42. Let M be a Riemannian manifold. Then the geodesics
of M are the geodesics of the Riemannian connection on M. The
curvature tensor of M 1is the curvature tensor of the Riemannian
connection. If R is the curvature tensor of M and P is a two-
dimensional subspace of some tangent space TMp then the sectional

curvature of M at P s

K(P) = (R(X,Y)Y,X)

where X,Y 1is any orthonormal basis of P. An easy calculation shows

this is independent of the choice of the basis X,Y.
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Proposition 2.44. If M 1is a Riemannian manifold with metric ( ,

and curvature tensor R then for all X, Y, Z, W tangent to M at

some point

(1) (RIX,Y)Z,WYy + (Z,R(X,Y)Wy = 0.

(2) (R(X,Y)Z,Wy = (R(Z,W)X,Y).

Proof. See proposition 2.1 on page 201 of vol. 1 of [8].

Remark. (1) of the last proposition tells us that for each X, Y ¢ TMp
the linear map R(X,Y) on TMp is skew-symmetric with respect to the

inner product ( , )p.

Definition 2.45. Let M be a Riemannian manifold with metric ( , )

and c: [a,b] + M a smooth curve. Then the Zength of ¢ is defined

to be the number
b
L(c) = [ |¢ (t)]dt
a

where

I (2)]] = WK (1), (1)) .

If p and g are points of M then the distance from p to q 1in
M s defined to be the infimum of the set of numbers L(c) where ¢

is a curve from p to gq.

Proposition 2.46. The geodesics in a Riemannian manifold locally are

the curves of minimum length, in the sense that every point of M has
an open neighborhood U such that any two points p and q of U
can be joined by a unique geodesic contained in U and the length of

this geodesic is the distance between p and q.

Proof. See proposition 3.6 on page 116 of vol. 1 of [8].
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3. Connections preserving the metric and geodesics of a Riemannian

manifold.

It will be convenient to speak of both a connection on the frame
bundle L(M) and of its covariant derivation as a connection. Because
of the bijective correspondence between covariant derivations and
connections on L(M) given by proposition 2.20, this should not lead
to any confusion. For the rest of this section "M" will denote a

Riemannian manifold with metric ( , ).

Definition 3.1. A connection with covariant derivative D will be

called a geometric comnection if and only if D preserves the metric

of M and has the same geodesics as the Riemannian connection on M,

We will refer to D and not its connection as the geometric

connection. Examples of geometric connections will be given below.

Proposition 3.2. Let D be a geometric connection on the Riemannian

manifold M. Let T be the torsion tensor and B the curvature tensor
of D. Let R be the curvature tensor of the Riemannian connection v

on M. Then, for all smooth vector fields X, Y, Z on M:
(1) The connections D and vy are related by

Y = DY - %—T(X,Y).

VX X

(2) The torsion tensor T of D satisfies
(T(X,Y),Zy + (Y,T(X,Z)y = 0.
(Thus the map Y » T(X,Y) is skew-symmetric.)
(3) R(X,Y)Z = B(X,Y)Z
- HDTHY.Z) + H(D,T)(X,2) - 5 T(T(X,Y),Z)
TOGT(Y,2)) - 5 T(Y,T(X,2))

ot

+

Bl— N
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(4) R(X,Y)Y = B(X,Y)Y + %(DYT)(X,Y) - %—T(T(X,Y),Y).

(5) The sectional curvatures of M can be computed by

RIGYIY,XY = (BOLYYXY + AIT(X, V)2,

Proof. (1) Let C(X,Y) = DyY - v,¥Y be the difference tensor of D
and y. The connections D and y have the same geodesics; therefore,

proposition 2.38 yields that C(X,Y) 1is alternating. Whence,

T(X,Y) DXY - DYX - [X,Y]

VXY + C(XaY) = VYX + C(st) = [XaY]

(VXY = VYX - [XsY]) ¥ ZC(XsY)

2C(X,Y),

where we have used that vy has vanishing torsion. This shows
C(X.Y) = 3 T(X,Y)

and proves (1).

For (2) we use that both v and D are metric preserving. For

any smooth vector fields X, Y, Z

X(Y,Zy = (DyY,Zy + (Y.DyZ)

@y + 3 TOGY)Zy + (YagyY + 3 TOGL2))
= (@, V.2) * (YaryDy + HCTOGY)LD) + (Y, T(K,2)Y)
= KYLZy + HUTIGY)LZY + (TG,

Therefore,

(T(X,Y),Zy + (Y,T(X,Z)y = 0.

(3) Let X(p), Y(p), Z(p) be vectors tangent to M at some point p.

Extend these to smooth commuting vector fields X, Y, Z defined on a
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neighborhood of p. Then

R(XaY)Z = VXvYZ - VYVXZs
B(X,Y)Z = DXDYZ - DYDXZ,
T(X,Y) = DXY - DYX'

Now compute

R(X,Y)Z = vyoyZ - vywyZ

DX(DYZ-% T(Y.2)) - 5 T(X, DYZ—%T(Y 7))

- Dy(DyZ- 3 T(X,2))+ % T(Y,0y2- T T062))

X

] 1 1
DyDyZ = 5Dy T)(Y,Z) - = T(DyY,Z) - zH¥D,7)

- FTHQD) + § TOLT(Y,D))

1 1
- DYDXZ + ?(DYT)(X,Z) + ?-T(DYX,Z) +-§

(DyDyZ- D,D,Z) - —( (D7) +

- L1

5 Y- D X,Z)

X

+ 7 TOGT(Y,2)) - § T(Y,T(X,2))

B(X,Y)Z - H{D,TH(Y,Z) + D, T)(X,2) - 5 T(T(X,Y),2)

1

+ 7 TX,T(Y,Z)) - %‘T(Y’T(X’Z))'

Evaluation at p finishes the proof of (3).
(4) Set Z =Y in (3) to get

MLHY=MLHY-QDUWJ)+%WUMJ)-%NHLHJ)

4]

£ 7 TOGLTINLY)) = 7 TO,TOGY)).
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But T(Y,Y) = 0 and

(DyT)(Y,Y) = Dy(T(Y,Y)) = (T(D,Y,Y)+T(Y,D,Y))
= 0. |
Consequently,

R(X,Y)Y

B(X,Y)Y + HD,T)(X,Y) - £ T(T(X,Y),Y)
+ 7 T(TOGLY),Y)
= BOGYY + MO T)(GY) = 1 T(T(RY),Y).
This proves (4).
To prové (5), use (4) to get
RUGYIYSXy = (BIXYIY, Xy + % <Dy T)(6,Y) )
- 7 (TTIXY),Y) ).

By (2) (T(X,Y),X) =0, whence

((DyTI(X,Y) Xy = Y(T(X,Y),X) - (T(DyX,Y),X)

= (T(X,DyY),Xy = (T(X,Y),DyX)

0 + (T(Y,DyX),Xy = 0 + (DX, T(Y,X))
- 0’

where (2) has been used in this calculation.

Also by (2)
(TETEX,Y)LY) Xy = =(T(Y,T(X,Y)),X)
= (T(X,Y),T(Y,X))
= =(T(X,Y),T(X,Y))

TGN
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The above expression for (R(X,Y)Y,Xy thus reduces to

BOGYYXY + TG

This finishes the proof.

Proposition 3.3. Let g:[a,b] + M be a geodesic and let U(t) = g'(t)
be the tangent vector field along g. Then the Jacobi field tw X(t)

along g defined by
2
(1) ()X + ROGUU = 0 X(a) = Xg»lvX)(a) = X,

can be defined in terms of the geometric connection D by

)2

(2) (DU X + DU(T(X,U)) + B(X,U)Uu = 0

X(a) = X, (DX)(a) = X, + %—T(U,XO)

where R is the curvature tensor of ¢y and T is the torsion and B

the curvature tensor of D.

Proof. By (1) of the Tast proposition

1 1 1
Dy(DyX =7 T(U,X)) - 5 T(U,D X - 5 T(U,X))

)X - 3 Dy(T(U,X)) - 5 T(UDX) + 3 T(U,T(UX)).

(v,)°X

= (D,

Using (4) of the last proposition and that DUU =0 we find

1

(7)) + ROGUIU = (D)%X = 5 DY(T(U,X)) - 5 T(U,D0)

|

T(U,T(U,X)) + BIX,U)U + D, T)(X,U) - 7 T(T(X,U),U)

=

1 1
DU(T(X,U)) % ?-T(X,DUU) % §-T(DUX,U)

1

1
2

+ 2D, T)(X,U) + B(X,U)U
7 Dy(T(X,U)) + % Dy(T(X,U)) + B(X,U)U

]
—
o

(e
S
nN
>
o

1]
—
O

=
~
[AS]
><
+

Dy (T(X,0)) + B(X,U)U.



37

Also note

X(a) = Xg» (wyX)(a) = (DX)(a) - 3 T(U,X(a)) = X,

if and only if

X(a) = Xg» (DyX)(a) = X; + 5 T(U,X,).

This finishes the prodf.

The rest of this section is devoted to proving there is a bijective
correspondence between the geometric connections on M and the smooth

three-forms on M.

Lemma 3.4. Let T be a smooth tensor field of type (1,2) on M such
that, for all X, Y, Z tangent to M at some point, the following
hold

(1) T(X,Y) + T(Y,X) =0
(2) (T(X,Y),Zy + (Y,T(X,Z)) = O.
Then the connection D defined by
DY = gyY + 2 T(X,Y),

where vy is the Riemannian connection is a geometric connection with
T as its torsion tensor. Thus there is a bijective correspondence
between the geometric connections on M and the tensor fields of type

(1,2) satisfying (1) and (2).

Proof. Because T 1is alternating it follows from proposition 2.38
that D has the same geodesics as y. The following computation shows

that D is metric preserving.
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XYLZYy = (oyYsZ) + (YavyZ)
= @Dy * (Tawygdy + 5 CTGY)Zy + 4 (Y, T(X,2))
= @y 3 TOLY), Ty + (Yogy 2+ 1 T(X,D))
= (DyY,Zy + (Y,DyZ).
Therefore D 1is geometric. That T is the torsion tensor of D now

follows from proposition 3.2 part (1). This finishes the proof.

Lemma 3.5. For every smooth three-form o« on M there is a unique
smooth tensor field T, of type (1,2) satisfying (1) and (2) of the

last lemma with
a(X,Y,Z) = (Ta(X,Y),Z).

Moreover, every smooth tensor field T of type (1,2) satisfying (1)

and (2) of the last proposition is Ta for some smooth three-form «a.

Proof. It is easy to see there is a unique tensor field Ta of type
(1,2) with
a(X,Y,Z) = (Tu(X,Y),Z).

Then o(X,Y,Z) + a(Y,X,Z) = 0 dimplies (1) and a(X,Y,Z) + a(X,Z,T) =0
implies (2) of 3.4.

If T 1is a tensor field of type (1,2) satisfying (1) and (2) of
3.4 then define

a(X,Y,Z) = (T(X,Y),Z).

Then o is alternating in X and Y by 3.4 (1), and alternating in
Y and Z by 3.4 (2). Therefore o is a three-formon M and it is
clear that T = Tu.
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Proposition 3.6. Let ¢ be the Riemannian connection on M. Then,

using the notation of the last lemma, there is a bijective correspondence
between the geometric connections D on M and the smooth 3-forms on

M given by

- 1
DXY = vXY + ?'TG(X’Y)‘

Proof. This follows immediately from the last two lemmas.
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4. Some geometry of submanifolds.

In this section we record some of the facts we need about
submanifolds of Riemannian manifolds. Let ™M be a Riemannian manifold
of dimension m+ n with metric ( , ), and M be an embedded
submanifold of M of dimension n. It will be assumed M has the
induced metric from M. The metric on M will also be denoted by

"¢ , Y'. The following notation will be used:

v = Riemannian connection on W;
v = Riemannian connection on M;
R = curvature tensor on W;
R = curvature tensor on M;

T*M = normal bundle of M in WM.

Definition 4.1. Let peM and £(p) e T"'Mp then the Weingarten map

A(e(p)) : TMp = TMp is given by
A(z(p))X = orthogonal projection of S&g onto TMp,

where £ is any 1o¢a1 extension of g(p) to a smooth section of TM,

Remarks. (1) Let X be a smooth vector field on X and & a smooth

section of T*M. Then an elementary calculation shows that the map
(X,g) » (orthogonal projection of S&g onto TM)

is bilinear over the smooth functions on M, whence A(g(p)) is

independent of the extension of e(p) to .

(2) The above definition differs by a sign from the usual definition.
This choice of sign purges latter formulas of enough factors of -1 to

justify it.

Proposition 4.2. With notation as above, for any smooth vector fields
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X, Y on M and smooth section g of T*M the following hold:

(1) vyY = orthogonal projection of GRY onto TM.
(2)  (A(E)X,Yy = =¥y Y\g) = (A(E)Y.X).

Thus A(g(p)) is a self-adjoint map on TMp.

X’ " Z, w ‘“ l’1

(3) Let ey, ..., e be on orthonormal basis of W*Mp. Then, for

RIX,Y)ZMY = (R(X,Y)Z, WY
m
+ j3(<A(ej)x,z><A(eJ.)Y,w> - (A(ej)X,w)(A(ej)Y,Z)).

Proof. See [10] where(1) follows from the last formula on page 46,

and (2) and (3) follow from formulas on page 51.
It will be convenient to restate (3).

If V s any finite dimensional real vector space with inner
-produce ( , ) then AZ(V) is also an inner product space with the

inner product on AZ(V), also denoted by ( , ), given by

(XAY,Z AW)

i
Q.
®
(—'-
/\/\l
>
“w v
=N
NS
NN
<<
- -
= N
I\/\/'

CGLIYYL WY = (XGHY(YLZY.

Any linear endomorphism A of V determines a linear endomorphism

AZ(A) of AZ(V) given on decomposable elements by

AZ(AY(XAY) = (AX) A (AY).

Let R be the curvature tensor at some point p of M. Then,
as R(X,Y) is an alternating function of X and Y, R induces a

linear endomorphism A(R) of /\ZTMp by

AWRY(XAY)ZAWY = (R(X,Y)Z,WY.
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Usually R and A(R) are both written as simply "R". When A(R) is

2

to be referred to, we will say "view R as a Tinear map on A“TM".

Proposition 4.3 (Equation of Gauss). View R as a linear map on

AZTM and R as a linear map on AZTM. Let Pp be the orthogonal

2

projection of Azfﬁp onto its subspace A TMp. Then, for any

: 1
orthonormal basis s vees € of T Mp

B 3
PpRp - Rp = éE%A (A(ej)).

Proof. This is a restatement of (3) of the last proposition.

Definition 4.4. The excess tensor Hp of M in M at peM is the

linear endomorphism of AZTMp given by

where 'ﬁp is viewed as a linear map on Azfﬁp, R is viewed as a

Tinear map on /\ZTMp and P 1is the orthogonal projection of A ™

onto A2TM .

P

p

We will be interested in product submanifolds of product manifolds.
We recall the definitions. Let M], M2 be Riemannian manifolds. Let
{ s )1 be the metric on Mi' If p;: M] X M2 - Mi is projection then

define the product metriec ( , ) on My x M, by
(X,Yy = (O]*X’D]*Y)] + <02*X:02*Y>2'

The proof of the following is straightforward and is left to the

reader.

Proposition 4.5. Let V5 be the covariant derivation of the Riemannian

connection on Mi’ and Ri be the curvature of the Riemannian

connection on Mi' Then the covariant derivation v and the curvature



43

R of the Riemannian connection on M] X M2 are defined by
Y,Z = Y, JA + Y, Z s
Wyls2) CVQ]*XD]* P+ )1 QVOZ*XOZ* Pox >2
(R(X,Y)Z,W) = <R](D]*X:p]*Y)Q]*ZsQ]*w>]
+ (RZ(pz*xspz*y)pz*z’pz*w)z-
In the first equation X, Y, Z are smooth vector fields on M] X M2
so that pi*X, pi*Y, pi*Z are vector fields on Mi’ for =1, 23

in the second equation, X, Y, Z, W can be any vectors tangent to

M] X M2 at some point.

Proposition 4.6. Let M, be a submanifold of ﬁi and Tet A, be the

Weingarten map of Mi in ﬁi for i =1, 2. Then the Weingarten map

.of M, x M, in M, x 'ﬁz is defined by
(A(U)X,Y) = (A](p]*U)pl*X,p]*Y)] * (Az(pz*u)pz*X,pz*Y>2

where X is tangent to M] X MZ’ U 1is normal to M] X MZ’ and Y

~

is tangent to ﬁ1 X M2 at some point of M] X M2.

Proof. A straightforward calculation using the last proposition.
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5. Riemannian homogeneous spaces.

Let M be a connected Riemannian manifold, and (M) be the
group of isometries of M. That is, &(M) ds the group of all
diffeomorphisms of M whose derivatives preserve the length of
tangent vectors. We give (M) the compact-open topology. For each
p in M let J(M)p be the subgroup of (M) consisting of those
isometries which fix p. The subgroup J(M)p is called the <sotropy

subgroup of §(M) at p. The following is well known.

Proposition 5.1. If g(M) 1is the isometry group of the connected

Riemannian manifold M then:

(1) s(M) is a Lie transformation group on M. (That is 4(M) has the

structure of a Lie group and the map (a,p)-» ap fromg(M)x M to M is smooth).
(2) Each isotropy subgroup g(M)p is compact.

(3) If M is compact then so is Jg(M).

(4) If ge J(M)p then g 1is the identity.

Proof. For the first three see [8],vol. 1, page 239, theorem 3.4.
The last part follows easily from the formula g(expp(X)) = expp(g*pX).
This formula is clear as exp is defined in terms of the Riemannian

metric and g preserves the metric.

The manifold M will be called a Riemamnian homogeneous space if
and only if (M) 1ds transitive on M. Since it is not always easy to

work with the full group of isometries we make the following:

Convention 5.2. For the rest of this section, we assume that M is a

Riemannian homogeneous space and that G s a closed subgroup of the

group of isometries of M such that
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(1) G 1ds transitive on M; and

(2) Each isotropy subgroup
G, ={geG:glp)=p}
is a compact subgroup of G.
The following will also be useful.

Notation 5.3. For the rest of this section we fix some point o in

M and call it the origin of M. Also Tet' H={ge G: g(o)=0} be

this isotropy subgroup of G at the origin.
m = TM0 = tangent space to M at the origin.

Then the frame bundle L(M) of M can be assumed to have as its
fibre L(M)p over p the set of linear isomorphisms of | onto

vTMp. With this convention it follows that:

Proposition 5.4. The map g G is a diffeomorphism of G onto a
closed embedded submanifold of L(M). Call the image of G under this
map G(M). Then G(M) 1ds an H-structure over M in the sense of
definition 2.4. The fibre G(M)p over p = g(o) is the image of the

coset gH.
Proof. See chapter X of volume 2 of [8].

Convention 5.5. We will, when convenient, identify G with G(M) via

the diffeomorphism of the last proposition and use this identification
to move the algebraic structure of G over to G(M). The identity
element of G goes over to the identity map on m. The tangent space
to G(M) at the identity will be written as 07, and be assumed to
have its usual structure as a Lie algebra. Let h be the tangent

space to H at the identity. Then h 1is a Lie subalgebra of {7 and,
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by proposition 2.8, part (5), h is also the space of vertical
vectors at 1. To make the notation look like that of section 2 the

exponential map from {7 to G will be written as Aw eA.

Definitjon 5.6. For g e G 1let Lg be left translation on G = G(M).

L .X °

Proposition 5.7. For A e h the fundamental vector field determined

by A on G(M) is

R(g(0)) = Ly A.

Proof. This is an easy computation

A" (g(0))

i
a
ci-l 0

wn
—
o
i
)
(-’-
=

tA
Le
tt:og

Proposition 5.8. There is a subspace M, of 07 such that
(1) & = My @ h (direct sum)

(2) Mg is invariant under the adjoint action of H on (7.
Proof. See page 199 of volume 2 of [8].

Convention 5.9. We now fix some My as in_proposition 5.8. If

m: G(M) » M is the projection then

Tep| M

is easily seen to be a linear isomorphism. From now on M, will be

identified with W by this isomorphism.
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Definition 5.10. For any vector A in (7 let Ah, be the h-component

and ﬁn the m component of A relative to the splitting of (7 as
07 = me h. Then

(1) Define a m-valued one-form g on G(M) by

0,(%) = (L %)

g 9z m

(2) Define an h-valued one-form w on G(M) by

wg(X) = (Lg;]x)h-

Proposition 5.11. The form g 1is the canonical form on G(M) and

is a metric-preserving connection on G(M). This connection will be

called the eanonical connection on M.

- Proof. By definition the value of the canonical form at X € TG(M)CI
is g3 T, X.

g
But g']o m=mol g3 therefore,

g

0g(X) = G T X

g * g
= w*]Lg']*.X
= (Lg™T* ) .

m

The Tast line holds because the convection 5.9 makes T into the

projection of (7 onto m.

*
It follows directly from proposition 5.7 that wg(A (g)) = A for
*
every fundamental vector field A on G(M). Let a e H, g e G(M)
and X € TG(M)g.
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Then

(T;m)g(x) =w _(r

i n ] 1
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L qr.=rlL .,
g 1'a a7y 1
-1y
Ad(a ") = La_]*ra*,
(Ad(a™)¥)y, = Ad( _qy(¥p).
a

The last of these holds because 1 1is Ad(H) idnvariant. This

completes the proof that w is a connection.

Because G is a group of isometries of M the H-structure G(M)
is a submanifold of 0(M), the bundle of orthogonal frames on M.
Therefore @ can be extended to a connection on 0(M). Proposition

2.39 now yields that  is metric preserving. This finishes the proof.

Proposition 5.12. Let  be the canonical connection on G(M) and ¢

the canonical form. Let ﬁn and nn be as in 5.10. Then
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(1) The torsion form of w 1is given at ¢ = TG(M)1 by

@(X!Y) = —[)S,nst%.
(2) The curvature form of w 1is given at ¢ = TG(M)] by
Q(XsY) = '[)ﬁ.nst]h'
(3) The torsion tensor of w 1is given on TM0 =m by
TO(X,Y) = —[X,Y%n.
(4) The curvature tensor of w s given on TM0 =m by

B,(X,1)Z = -[[X,Y],,Z].

Proof. If X 1is a left invariant vector field on G(M) (that is
‘_Lg*X = X for all g e G) then it follows directly from the definitions
that g(X) and w(X) are constants on M. If X is a left invariant
vector field on G(M) then let Xm be the left invariant extension

X(])In and Tikewise for Xh' Then for left invariant vector fields

X,Y

]

a(X,Y) = da(X »Y. )

X80t ) - ¥ e(X) - e(lX ¥ 1)

0-0-o(lX,% 1)

-o(LX , .
o(L ' Ym])
As the point 1 e G(M) this reduces to (1).

A similar calculation proves (2).

The convention 5.9 shows that a vector in TM0 =nmqm is its own
horizontal 1ift to 1 in G(M). Putting this into the definition of

the torsion tensor and using (1) yields
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T (X.¥) = 1, (8(X,Y))

-[X,Y%n.

Part (4) follows from (2) the same way (3) followed from (1). This

completes the proof.

Proposition 5.13. For the canonical connection on M the geodesics

through o are the curves tr ﬂetx where X 1is in m. Parallel

tX tX

translation along the geodesic t w» me from o to me

by ()

is given

Proof. It is easy to check that the left invarient vector fields X
on G(M) with X(1) 1in m are the basic vector fields on G(M)

(see definition 2.33). Therefore the integral curves of the basic

tX

vectors that pass through 1 are the.curves tp e where X 1is in

‘m. The first statement of the proposition now follows from proposition

tX

2.34. The curve the is horizonal so the second part follows from

the definition of parallel translation.

Proposition 5.14. Let D be the covariant derivation of the canonical

connection. Then D, T (the torsion tensor) and B (the curvature
tensor) are all invariant under G. If S 1is any tensor field on M

invariant under G then DS = 0. Thus DT =0 and DB = 0.

Proof. It is clear that w is invariant under G. Each of D, T and

B is defined in terms of ® and therefore they are also invariant.

Let X em. Define a vector field X on M by

tX(

The flow of this vector field is clearly at(p) = e "(p). Therefore S
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is invariant under the flow of X and thus the Lie derivative of §
with respect to X 1is zero. But (etx)* is parallel translation

tX
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