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ABSTRACT 

This thesis deals with the properties of defects in tetrahedrally-bonded 

semiconductors. The detects which will be studied here are impurity atoms 

substitutional for host atoms in the crystal. In particular, those defects which 

produce localized electronic states in the middle of the electronic energy gap 

("deep levels") will be discussed. The main experimental technique used is 

photoluminescence. The crystals are excited with a laser, and they emit light due 

to various electronic transitions at the defects. The energy of this luminescence 

yields information about the nature of the excited electronic states. Also, excited 

vibrational states of the defects are apparent in the luminescence, and these 

vibrational states yield structural information about the defect. 

The major system studied here is GaP containing Zn and 0 impurities. The 

Zn and 0 ions experience an attractive Coulomb interaction, so that they tend to 

occupy lattice sites which are near to each other, forming defect pairs. The energy 

or luminescence emitted from a (Zn, 0) pair depends on the separation of the im­

purities. Thus, a luminescence spectrum contains information about the number 

or pairs of each possible separation. I have used this phenomenon to monitor 

the relative positions of Zn and 0 impurities in the lattice. I have observed reac­

tions in which the impurity atoms move through the lattice under the influence 

of laser excitation. Specifically, I observe the dissociation of nearest-neighbor 

(Zn,O) pairs, and the subsequent formation of further separated pairs. The dis­

sociation of the nearest-neighbor pairs can occur thermally, or by a photoinduced 

mechanism. At temperatures near 200 C, the intensity of the (Zn,O) luminescence 

spectra changes with time, a direct observation of the photoinduced reactions in 

progress. The (Zn,O) pairs are observed to dissociate by purely thermal means 

at temperatures near 900 C. From the rates of these two types of reactions, I 

identify the photoinduced pair dissociation as being a "recombination-enhanced 
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defect reaction". In the reaction, electron-hole recombination puts the defect into 

a highly excited vibrational state, leading to the dissociation. This is the first 

observation of this sort of reaction in a system with known defect types. Thus, 

my study provides unique information about the electron-phonon interaction at 

defects. This study also has some practical application. The material GaP:(Zn,O) 

is used for fabricating red light-emitting-diodes, and the dissociation or the pairs 

provides an explanation for the degradation of these diodes. Presumably the 

degradation of some other semiconductor devices proceeds by mechanisms similar 

to those observed here. 

This thesis deals with several other topics aside from GaP:(Zn,O ). The 

geometry or impurity pairs in zinc-blende crystals is discussed. For a giYen 

separation or the impurity atoms, there is some number or different possible 

relative orientations of the impurities. I have derived an analytic form for this 

distribution of impurity pair separations, and I show how this formula can be 

used to interpret the observed luminescence spectra of GaP:N. Another system 

studied here is Si containing In and B impurities. Recombination of excitons 

bound onto the impurities produces luminescence. From the observed decay 

times of these luminescence lines, I deduce values of the cross sections for free 

exciton capture onto In and B impurities. The magnitude of the In cross section 

indicates the presence of excited states of the In bound exciton. Finally, a 

theoretical treatment of the vibrational modes of substitutional defects in zinc­

blende crystals is presented. The defects consist of an impurity atom, with springs 

or variable strength connecting it to its neighbors. For the case of oxygen in GaP, 

the theory predicts the existence or two defect vibrational modes, in agreement 

with experiment. From the energies of the observed vibrational modes, it appears 

that the oxygen impurity is quite weakly bonded to its neighboring atoms. 
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CHAPTER 1 

ELECTRONIC AND VIBRATIONAL STATES OF POINT DEFECTS 
IN SEMICONDUCTORS 
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1.1 Introduction 

The quantum theory of solids attempts to divide a system into different 

types of excitations. Each type or excitation has some set of energy levels 

(eigenstates, normal modes). These energy levels are occupied by the "particles" 

of the system. For example, the electronic eigenstates are occupied by electrons, 

and the vibrational states or the atoms are occupied by phonons. In the first 

approximation we view these excitations as noninteracting. For certain ranges 

of energy this may indeed be a good approximation. Weak interactions between 

the excitations can be viewed as causing transitions of the particles between the 

energy levels. Strong interactions give rise to strongly coupled excitations, in 

which case the physics of both types of excitations must be treated together and 

the result is some new type or excitation. 

The particles we will be considering here consist or electrons and phonons 

in crystalline solids, and their interaction with photons (electromagnetic waves 

which propogate through the material). These photons cause transitions of the 

electrons between various states. In some cases it will be convenient to view an 

unoccupied electron state as a hole in the occupation of the states, and these holes 

will be regarded as another type of particle. The photons we will be using in the 

experiments described here are of the energy range 1-2 eV (in or near the visible 

part of the spectrum). The phonons have energies typically 50 meV or less, and 

the electronic states we will be considering have energies ranging from 1 me V-2 

eV. Our experiments involve the transfer of energy between these different types 

or excitations. In Fig. 1.1 we show the major processes which occur; (a) a photon 

is absorbed to create an electron-hole pair, (b) an electron-hole pair recombines 

to produce a photon, and (c) an electron-hole pair recombines to produce many 

phonons. The sequence of events which occur in a typical experiment are pictured 
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Figure 1.1: Important processes which occur in photoluminescence experiments: 
(a) optical absorption, (b) optical emission (luminescence), and (c) multi-phonon 
emission. (d) A sequence or events occurring in a typical experiment: the incident 
laser light is absorbed to created excited electrons and holes, which Jose energy 
by phonon emission to become bound onto a defect, and eventualJy recombine 
with the emission or a photon and one or more pbonons. 
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in Fig. 1.l{d). An incident photon Crom a laser is absorbed to produce an excited 

electron-hole pair, the electron and hole lose energy by phonon emission, they 

eventually become bound onto a defect in the material, and finally the electron 

and hole recombine to produce a photon and one or more phonons. 

In this thesis, we will be studying the properties of those materials known as 

tetrahedrally-bonded semiconductors. These include the elements from Column 

IV of the periodic table (e.g. Si), and also the compounds from Columns III-V (e.g. 

GaP ), and Columns II-VI. The elemental semiconductors are of course covalent, 

and the compound semiconductors are also at least partially covalent. Thus, a 

suitable picture for the structure of the material consists or localized bonds, with 

the electrons residing in the region between the atomic cores 1. Each atom has four 

nearest-neighbors, and the point group symmetry about each atomic site is Td. 

The electronic states in these materials can be divided into three groups; the core 

levels, the valence band, and the conduction band. An energy gap of the order 

of 1 eV exists between the valence and conduction bands. At zero temperature, 

in a pure material, the valence band is full of electrons and the conduction band 

is empty of electrons. In this situation the material is an insulator, since the 

electrons are not Cree to propagate through the crystal (Cull bands carry no net 

current). Even at room temperature, pure (intrinsic) conduction is very small. 

However, by introducing small amounts or impurities into these materials we can 

drastically modify their electrical characteristics. Certain impurities known as 

donors will donate electrons to the conduction band. These electrons are free to 

move through the states of the band, and in this way they carry a net current. 

Other impurities known as acceptors will accept electrons from the valence band, 

leaving behind a hole in the valence band. The holes carry current in the valence 

band. Thus there are two types of carriers, electrons and holes, and the currents 
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in a real device are divided up in various ways between these carriers. 

By judiciously introducing donor and acceptor impurities into semiconduc­

tors we are able to accurately control their electrical properties. The prepara­

tions of semiconductors in this way has led to the development of transistors, 

and eventually led to the revolution in computer technology which is occurring 

at the present time. Aside from the donor and acceptor impurities present in 

the material, there always exist other defects. These defects may (and often 

do) produce unwanted electrical behavior. For this reason, the identification and 

characterization or detects in semiconductors is of very practical use. The study 

of these defects is also interesting for its own sake since it employs very modern 

experimental and theoretical techniques. The detects which we will be mainly 

concerned with in this thesis are impurity atoms which are substitutional for host 

atoms in the lattice. However, many or the considerations should also apply to 

other point defects such as vacancies and interstitial impurities. 

Generally speaking, most of the investigations or defects in semiconductors 

to date have concentrated on their electrical properties. This is not surprising, 

since it is these properties which directly affect device operation. However, the 

vibrational properties or the defects have recently been under more investigation. 

When the excited electrons in the material relax, their energy can be dissipated 

in the Corm of phonons. Such an event is known as nonradiative recombination 

by multi-phonon emission, as shown in Fig. 1.l(c ). This type of recombination 

will limit the lifetime of carriers in the device, and thus lead to poor device 

performance. Also, the energy which is transferred to the phonons may be 

localized in some region around an impurity. This may lead to motion of the 

impurity atoms through the material. In this thesis we report on the first real 

identification of such a process in a serniconductor2 , and we show how this is 
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directly responsible for the degradation of a semiconductor device. 

In this chapter, we will give a brief introduction to the electronic and 

vibrational states of point defects in semiconductors. In Section 1.2 we will discuss 

the nature of the states. It is shown that the states or a perfect lattice are basically 

just plane waves, labelled by their wave-vector k. We will present energy levels for 

the electrons and phonons in GaP. Then we will discuss what happens when we 

introduce a defect into the material. The translational symmetry of the perfect 

lattice is lost, and we are reduced to the point group symmetry of the defect. 

The states of the defect are labelled according to the point group symmetry. 

We give some examples of these defect states, including shallow electronic levels, 

deep electronic levels, and vibrational levels. In Section 1.3 we will discuss in 

greater detail how photoluminescence can be used to probe the electronic and 

vibrational states of the defects. We consider the effects of having donor and 

acceptor impurities close to each other in the crystal. The luminescence resulting 

from this pair of impurities is shown to depend on their relative separation, so 

that the spectrum gives us information about the number of pairs of each possible 

separation. We also discuss the effects in the luminescence spectrum of having 

phonons emitted in the electronic transition. We show how the spectrum gives 

us information about the vibrational modes of a defect, which tells us something 

about the local environment or the defect in the crystal. In Section 1.4 a summary 

or Chapters 2-5 is presented. 
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1.2.1 States of the Perfect Lattice 
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Let us now consider the states of a perfect lattice. In general the excitations 

in a system will not be truly noninteracting. The description of the entire 

system is a very complicated many-body problem. In order to make progress, 

we approximate the Hamiltonian by some one-body operator which describes 

the states of a system in which the particles move in the mean-fi"eld or all the 

other particles. The resulting states are known as single-particle states. The 

particles in the system are seen as occupying these states, and forming a gas 

of weakly interacting particles. For electrons in semiconductors, many-body 

effects are certainly important in any theoretical descriptions or the material, but 

conceptually it is usually sufficient to simply consider the single-particle states of 

the system. Phonons are a much better example of noninteracting particles, at 

least in a completely covalent material. In any case, in the following discussion 

we will restrict ourselves to single-particle states. 

The single-particle states of any system are given by the solutions or the 

eigenvalue problem 

H'lj;(r) = E'lj;(r), (1.1) 

where H is the Hamiltonian operator, E are the energy eigenvalues and '¢i(r) 

are the eigenfunctions. The quantity l'l/J(r)l 2 gives the probability of finding 

the particle at any point r in space. The perfect lattice is invariant under any 

translation by 

(1.2) 

where (a1, a2, &3) are the primitive vectors which define the Bravais lattice, and 

(li,l2,l3) run over all integer values. The Hamiltonian for the perfect lattice is 

also invariant under any translation by R. 
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Intuitively, it seems resonable that the normal modes in a perfect crystal 

or infinite extent are plane waves propagating through the material. Let us now 

investigate how the symmetry of the lattice leads us to this conclusion3 . Consider 

the set of translation operators T(R) whose effect is to displace any function 

through the distance R: 

T(R)f(r) = J(r + R). (1.3) 

Since the Hamiltonian is invariant under a translation by R, then the commutator 

[T(R ), H] = 0. Therefore, these two operators can be simultaneously diagonal­

ized, i.e. the eigenfunctions or T(R) can also be used as the eigenfunctions of H. 

The eigenvalue problem for T(R) can be written as 

T(R)g(r) = C(R)g(r), (1.4) 

where C(R) are the eigenvalues and g(r) are the eigenfunctions. Since T(R1 + 
R~d = T(R1 )T(R2), this implies that C(R1 + R2) = C(R1 )C(R2) or that 

C{nR) = cn(R). One solution of these equations is given by C(R) = exp(i"k · R) 

for any value of k. The eigenvalues and eigenfunctions of T are labelled by this 

k-value, and Eq. (1.4) can be rewritten as 

T(R)gk(r) = gk(r + R) = exp(£k · R)gk(r). (1.5) 

Now, by writing the eigenfunctions in the form 

Uk(r) = exp(ik · r)uk(r) (1.6) 

we find that Uk(r+R) = expl-ik·(r+R)]gk(r+R) = exp(-ik·r)gk(r) = Uk(r). 

Thus, the eigenfunctions or T(R) and of H are or the form Eq. (1.6) where Uk(r) 

is a periodic function of r. For a homogeneous material of infinite extent, the 

values or k must be real in order that the wavefunction remain bounded. The 
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Jc-vector now labels the solutions for the eigenstates or the perfect crystal, and 

Eq. (1.1) can be rewritten as 

(1.7) 

where the eigenfunctions th(r) are simply plane waves exp(£k · r), modulated by 

some periodic function Uk(r). This result is known as Bloch's theorem3. 

Let us now examine some energy levels in a real material. Figure l.2(a) 

shows the calculated electronic band structure for GaP. The figure shows the 

energy ot the states as a function or the wave-vector k. The labels r, X, L, U, 

and K on the abscissa ref er to particular values or k in the first Brillouin zone. 

The labels in the figure refer to the symmetry of the eigenfunctions. Many energy 

bands are shown. There are an infinite number or bands for the electrons. The 

top of the valence band is at the point labelled r15, occurring at k = r and 

E = 0. The bottom of the conduction band is labelled X1, occurring at k = X 

and E = 2.4 eV. In the energy gap between these bands, no states of the perfect 

crystal occur. The electronic defect states we will be studying here occur in this 

energy gap. In Fig. l.2(b) we show experimentally determined dispersion curves 

for phonons in GaP. The labelling of the curves is similar to that in Fig. l.2(a). 

There are six branches; three acoustic branches at low energy and three optical 

branches at high energy. These branches are separated by an energy gap in the 

region 30-40 meV. The defect vibrational modes we will be studying here may 

have their energies above the optical branches (split-off modes), in the energy gap 

(gap modes), or in the bulk bands (resonant modes). 

1.2.2 States or the Imperfect Lattice 

Let us now consider the effect of introducing a defect into the material. 

We expect two types of states for this imperfect system. First, the states for 

the perfect system (bulk states) will be modified by the presence of the defect. 
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Figure 1.2: Electronic and vibrational states in GaP. The energy of the states 
is plotted as a function or the wave-vector k along various directions in the first 
Brillouin zone. (a) Computed electron states. The top of the valence band occurs 
at k = r and E = O. The bottom of the conduction band occurs at k = X 
and E = 2.4 eV. {After J. P. Walter and M L. Cohen, Phys. Rev. 183, 763, 

1969). (b) Measured phonon states. Longitudinal modes are shown by squares, 
and transverse modes by circles. Modes whose polarizations a.re not determined 
by symmetry are indicated by triangles. The dashed lines represent a shell model 
fit to the data. (After J. L. Yarnell, J. L. Warren, R. G. Wenzel, and P. J. Dean, 
in Neutron Inelastic Scattering, {IAEA, Vienna, 1968), Vol. 1, p. 301). 
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Second, the defect may introduce new states in those energy regions where no 

bulk states occur. In those regions or the crystal not affected by the defect, 

the solutions for the states should be similar to those discussed above for the 

perfect crystal, i.e. eigenfunctions given by exp( zlc · r)uk (r). However, now we 

have a defect in the material, and so we must allow complex values of k in the 

solutions. In regions of energy which are forbidden to the bulk states, the k­

values for the imperfect crystal states will be purely imaginary. This leads to 

decaying exponentials for the defect modes. These types of states are known as 

localized states of the defect. The wavefunction for these states falls to zero as 

one proceeds away from the defect. In those energy regions where we have bulk 

states, there may also be certain states which are caused by the defect. These 

states are characterized by a peak in the wavefunction in the vicinity or the defect. 

For electrons, this corresponds to a larger charge density around the defect. For 

phonons, the amplitude or vibration near the defect is significantly greater than 

that far removed from the defect. These types of states are known as resonant 

states, since their energy is resonant with modes of the bulk crystal. We will use 

the term defect modes to ref er to both of these types of states associated with 

crystal defects. 

The states of the perfect lattice are labelled by their k-vector, which arose 

directly from the translational symmetry or the lattice. With a defect in the 

crystal, the translational symmetry is lost. What remains is the point group 

symmetry, with the defect as the origin in space. For substitutional defects in 

zinc-blende lattices this point group symmetry is Td. The eigenstates of the defect 

will now be labelled by the irreducible representations or the Td group; Ai, A2, 

E, Ti, and T2. These labels give the degeneracy the levels and specify the nature 

of the eigenfunctions. The theoretical problem or describing defect states consists 
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in part or dividing those bulk states labelled by k into their various components 

which are labelled by Ai, A2, E, Ti, and T2. These states then form bases 

with which we construct the states or the imperfect crystal. The calculations 

presented in Chapter 5 explicitly demonstrate this decomposition, for the case of 

vibrational states in GaP. 

Let us now consider some specific types or point detects in semiconductors. 

Perhaps the most common types of defects are donor and acceptor impurities. 

A donor atom has one extra electron and one extra proton relative to the host 

atom it replaces. All of the bonds in the material are satisfied without this extra 

electron. The core of the donor appears as a single positive charge, and the 

extra electron resides in a hydrogenic-type orbit around the donor core. The 

ground state of the electron is an s-like (A1) state, with a binding energy given 

by effective-mass theory 4 to be 

m* e4 

E=--, 
2-n2i:2 

(1.8) 

where m * is the effective-mass of the electron. In GaP, effective-mass donor 

binding energies are 14 meV, corresponding to a Bohr radius of 45 A. At room 

temperature, most of the donor-bound electrons are thermally ionized to the 

conduction band states where they carry current. An acceptor impurity in a 

semiconductor has one less electron and one less proton than the atom it replaces. 

In analogy with the donors, these acceptors will bind a hole in a hydrogenic-type 

orbit. At room temperature these holes are ionized into the valence band where 

they carry current. The energy levels produced by acceptors and donors are 

known as sh~llow levels since they are very near to the edges or the bands. 

Many defects in semiconductors produce electronic energy levels which are 

in the middle or the energy gap. Such levels are known as deep )evels5 . These 

levels may be associated with changes in the charge density of the actual bonds 
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in the crystal. Whereas a shallow level impurity does not produce significant 

changes in the bonds, a deep level impurity often does. Typical examples of 

defects which produce deep levels are vacancies, anti-site defects, and interstitial 

impurities. Deep levels may also be formed by impurities which, according to 

their position in the periodic table, should form shallow levels. One example 

or this is oxygen in GaP. The electronic energy levels of this impurity have 

been extensively studied5 _g, and are still the subject of much controversy. The 

wave-function of a deep level is quite localized around the defect. The nature 

of the wave-function can be similar to molecular-orbitals formed by the bonds 

associated with the defect and its neighbors. Electronic transitions at the defect 

may produce significant changes in the configuration of the atoms. This leads to 

large electron-phonon coupling, which is a characteristic trait of many deep level 

impurities. 

Many defects in semiconductors will produce significant changes in the vibra­

tional states of the system. The defect phonons which are formed may be either 

localized or resonant. It is well-known that an impurity with small mass will 

produce a localized mode split-off from the bulk modes. A heavy mass im­

purity will produce resonant modes. An impurity with significantly different bond 

strengths compared to the bulk may have many types of vibrational modes. As 

discussed above, the bonds of a deep level impurity can be significantly different 

from those of the bulk material. Therefore, those impurities which produce deep 

levels will also tend to produce defect phonons, and these phonons are observed 

in experiment. 
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1.3 Observation or the States using Photoluminescence 

1.3.1 Donor-Acceptor Luminescence 

Defects in semiconductors will often tend to cluster together to form defect 

complexes. One simple complex which commonly occurs is a donor-acceptor pair, 

consisting of one donor impurity and one acceptor impurity. As discussed above, 

the core of a donor appears to be positive, and the core or an acceptor appears 

to be negative, relative to the atoms which they replace. Thus, there exists an 

attractive Coulomb interaction between the acceptor and donor impurity cores, 

and they tend to form pairs. There are certain discrete lattice sites on which the 

impurities may reside, and this results in a series of discrete separations between 

the donor and acceptor. We refer to these separations as shells and label them 

by m; m = 1 for first-nearest-neighbor pairs, m = 2 for second-nearest-neighbor 

pairs, etc. At zero temperature, in thermal equilibium, all of the pairs would 

be nearest-neighbor m = 1 pairs (this state is never achieved of course). At 

elevated temperatures, some of the the pairs will have m > 1. The number or 

pairs or each possible separation can be computed using a statistical model of 

oppositely-charged centers in equilibrium at some specified temperature10 . At 

a typical crystal growth temperature of 1000 K, roughly 10% of the pairs are 

nearest-neighbor. 

As long as a pair of donor and acceptor impurities are not too close together, 

they will still bind their respective electron and hole. This electron and hole may 

recombine, producing a photon. Ir the impurites are far enough separated so 

that their wavefunctions do not overlap, then the energy of this photon can be 

estimated by the following simple model. In the initial state we have a bound­

electron and bound-hole, together with two neutral (noninteracting) impurities. 

The energy of this state will be the band-gap minus the sum of the donor and 
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acceptor binding energies, Eg - (ED + EA). In the final state there are two 

oppositely-charged centers separated by some distance rm, with an interaction 

energy of -e2 /Erm where f is the dielectric constant of the material. Thus, the 

luminescence energy is given by 11 

r? 
hvm = Eg - (ED+ EA)+ -. 

Erm 
(L 9) 

Even though we have derived this formula under the assumption that the im­

purities are far separated, it actually works remarkably well for closer pairs of 

impurities also. The result is a whole series of luminescence lines, one for each 

possible donor-acceptor separation (shell). This phenomenon is known as donor­

acceptor (DA) luminescence. It was first observed about twenty years ago, and 

has since been studied in great detail by many workers12. The energy of the 

observed luminescence lines has provided us with some or the most accurate 

measurements of impurity binding energies and the dielectric constant of the 

bulk material. The observed spectra also provided some of the first information 

about which particular site a given impurity was residing on. The intensity of the 

luminescence lines is related to the number or possible sites in the various shells. 

Inequivalent sites in a given shell will result in line-splitting and this produces 

fine structure on the DA spectrum. 

Figure 1.3 shows an example of donor-acceptor luminescence. The material 

under study is GaP, doped with Zn and 0 impurities. The Zn atom substitutional 

for P is a shallow acceptor, and the 0 atom substitutional for P is a deep 

donor. Together, they produce DA luminescence in the manner described above. 

The spectrum shown in Fig. 1.3 was obtained at 1.6 K, using above-band­

gap continuous Ar+ laser excitation. We see a series or luminescence lines. 

These lines are labelled by ( m) for m th _nearest-neighbor pairs, with a superscript 

indicating the type of phonon involved in the transition. These phonons will 
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Figme 1.3: Low temperature donor-acceptor pair ]uminescence from GaP con­
taining (Zn,O) pairs. The lines are labelled by (m) for mth ... nearest-neighbor 
pairs, with a superscript indicating the type of phonon involved in the transition 
(O=optical, LOC=local, NP=no-phonon). Those labels with no superscripts 
refer to no-phonon transitions. Theoretical predictions for the line positions are 

shown on the abscissa. 
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be discussed in the following section, and let us for now examine those sharp 

luminescence lines with m> 4. As expected, we observe a luminescence line for 

each possible separation of donor and acceptor. The lines in the spectrum were 

identified from the work or previous authors 13 , and also by comparing their 

observed energy with the theoretical predictions from Eq. (1.9) shown on the 

abscissa (the details of this calculation will be discussed in Chapters 2 and 3). The 

agreement between experiment and theory is very good for the further separated 

pairs, and there are sufficiently few or the close pairs to make their identification 

possible. Some splittings of the lines are observed (e.g. for m = 4, 8 and 11 ). 

This is due to inequivalent sites in a given shell. Actually, on the basis or Fig. 1.3 

alone, one might not be able to identify all of the lines. But when observations 

are made versus laser power, temperature, and for many different samples, the 

identification eventually becomes quite certain. 

In this thesis, we are not so much interested in the phenomenon of donor­

acceptor luminescence itself. Rather, we use the phenomenon as a technique for 

monitoring the relative positions of Zn and 0 impurities in GaP. In this way, we 

have a microscopic probe of the impurity positions in the sample. Movement of 

the impurities is seen directly as a shift in the luminescence energy. \Ve are able 

to observe reactions in which the impurity atoms diffuse through the material 

under conditions or 'photo-excitation. These "defect reactions" are discussed in 

detail in Chapter 3. 

1.3.2 Phonon-Assisted Luminescence 

When an electron and hole recombine at a defect, their energy may be 

emitted in the form or a photon (i.e. luminescence). However, the defect may be 

left in some excited vibrational state in the final state of the electronic transition. 

In that case, the emitted photon will be reduced in energy by the amount or the 
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vibrational energy. We can view this process as the emission or one of more 

phonons. What will be observed in the luminescence spectrum is a series or 

luminescence lines. The highest energy line (the no-phonon line) is due to the 

emission of a photon and no phonons. The lower 'energy lines (phonon-assisted 

lines) are due to the emission of a photon and some phonons. The energy of these 

lines will be shifted from the no-phonon line by the energy or the phonon(s) 

involved. If the defect level is shallow, so that the carrier wavefunctions are 

quite extended in space, then the phonons which may be excited will generally 

be characteristic of the bulk material. Alternatively, if the defect level is deep, 

so that the wavefunction is quite localized, then the vibrational modes will be 

characteristic of the defect itself i.e. defect phonons. 

An example of these phonon-assisted luminescence lines is given in Fig. 1.3. 

As discussed in the previous section, the defects which produced the lumines­

cence shown in this figure are actually mth_nearest-neighbor pairs of Zn and 

0 impurities in GaP. The lines are labelled by ( m), with a superscript indicat­

ing the type or phonon involved in the transition {NP=no-phonon, LOC=local 

phonon, O=optical phonon). Let us consider the second-nearest-neighbor lines. 

The no-phonon line is labelled by (2)NP. A number of phonon replicas of this 

line are visible. The lines labelled (2)LOC 1 , (2)LOC 2 , and (2)LOC 3 are due to 

excitations or defect phonons of the second-nearest-neighbor (Zn,O) complex. 

The line labelled (2)0 is probably due the excitation of the bulk optical phonon. 

Similarly the lines labelled (2)o+LOC i, etc. are due to the excitation of two 

phonons in the final state or the electronic transition. These identifications will 

be discussed in greater detail in Chapter 3. All we wish to note here is that these 

phonon-replicas do indeed exist in the luminescence spectra, and they contain 

some information about the vibrational modes of the defect and of the bulk. 
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1.4 Summary or Thesis 

1.4.1 Periodicity in the Undulation Spectra of GaP:N 

In Chapter 2 or this thesis, we will consider some of the geometrical aspects of 

the relative positions of donor-acceptor pairs in the crystal lattice. This is a fairly 

brief chapter, and it is meant to serve as an introduction to the subject of donor­

acceptor pairs, which will be investigated further in Chapter 3. The original 

results of Chapter 2 are purely mathematical. We use these results to give a 

very simple geometrical interpretation or an observed physical phenomenon. We 

consider the calculation or the distribution or donor-acceptor site separations. 

For very close pairs, the number of sites in each shell can be counted from a 

physical model; for the zinc-blende structure we are considering, there are 4 first­

nearest neighbors, 12 second-nearest-neighbors, 12 third-nearest-neighbors, etc. 

By using some numerical model to generate the appropriate lattice, a procedure 

can easily be implemented on a computer to count the number of sites in any 

given shell. The results from such a calculation are tabulated in Chapter 2. The 

donor-acceptor separation in each shell, and the DA luminescence energies fom 

Eq. (1.9) are also given. 

For quite far separated DA pairs, the discrete distribution of sites becomes a 

rather wildly fluctuating quantity. For example, there are 72, 120, 60, and 48 sites 

in the m = 97, 98, 99, and m = 100 shells respectively. The averaged number 

ot sites in each shell will vary simply like 47rr2 , but the fluctuations around this 

quantity appear to be quite random. However, when one actually computes the 

averaged number of sites in each shell, we find quite regular oscillations in this 

quantity. These oscillations were first observed by Street and Wiesner14 , who 

associated them with undulations observed in the DA luminescence spectra of 

GaP doped with N (a donor) and various acceptors. Street and Weisner observed 
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that oscillations in the distribution of donor-acceptor site separations existed, 

and they speculated that these oscillations were purely random in origin. In 

Chapter 2 we derive an analytic form for the distribution of donor-acceptor site 

separations, and we show that it is composed of a series of functions which are 

approximately periodic in r. This periodicity is shown to arise directly from the 

long-range order of the lattice. In this way we show that the observed undulations 

in the GaP:N spectra are due to the crystal symmetry, and how in principle the 

symmetry or the lattice could be deduced from the spectra. 

1.4.2 Defect Reactions in GaP:(Zn,O) 

Chapter 3 forms the major part of this thesis. Here we will be considering 

phenomena involving Zn (an acceptor) and 0 (a donor) impurities in GaP. When 

the Zn and 0 atoms occupy nearest-neighbor lattice sites, they produce donor­

acceptor luminescence in the red part of the spectrum 15116• Consequently, this 

material has been used for making red-light-emitting-diodes. When operated 

under forward bias, the performance of these diodes is observed to decay with 

time17. This study provides a microscopic explanation for this degradation; 

namely, that the nearest-neighbor (Zn, 0) pairs dissociate and subsequently re­

form as further separated pairs. This reaction can be written as 

(Zn,O)m=l -+ (Zn,O)m> 1 • (1.10) 

The observation and identification of this reaction is the main result of this 

thesis. The dissociation or the nearest-neighbor pairs can occur by a photoin­

duced mechanism. Such a process or photoinduced reactions among defects of 

known chemical type has not previously been observed in a semiconductor. The 

phenomenon of donor-acceptor luminescence is used here to observe the motion 

or the impurities directly, in terms or a shift in the luminescence energy. This is 

the first time donor-acceptor luminescence has been used as a microscopic probe 
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or defect reactions. In Chapter 3, high temperature photoJuminescence spectra 

are presented which show this reaction in progress. Low temperature spectra are 

displayed in order to clearly identify the initial and final states of the reaction. 

We have identified the mechanism for the photoinduced pair dissociation 

by performing measurements of the reaction rate versus laser power and tem­

perature. The dissociation rate of the nearest .. neighbor pairs is deduced using 

a model for the electron-hole recombination kinetics which includes the effects 

of high carrier occupation (saturation) and spatially varying carrier generation. 

The activation energy for the photoinduced reaction is found to be 0.60 ± 0.07 

eV with a pre-exponential factor of about 3 X 104 s- 1. The dissociation or 

the nearest-neighbor (Zn,0) pairs can also occur by purely thermal mechanisms. 

From annealing studies, the activation energy for thermal dissociation of the 

pairs is estimated to be 2.6 ± 0.6 eV with a pre-exponential factor of roughly 

1010 s- 1. From these values, the photoinduced pair dissociation is identified 

as a "recombination-enhanced defect reaction". In the reaction, nonradiative 

electron-hole recombination puts the defect into a highly excited vibrational 

state, leading to the dissociation of the pair. 

Although recombination-enhanced reactions have been previously observed 

in semiconductors 19 , the chemical identity of the defects in those studies was 

unknown. In this work, we know that the defect involved is a (Zn,O) pair. This 

knowledge makes our work unique, and enables us to study in greater detail the 

microscopic mechanism for the observed pair dissociation. In Chapter 3 it is 

argued that a strong electron-phonon interaction is responsible for the reactions. 

This interaction is clearly evident in the intense phonon replicas which are present 

in the photoluminescence spectra. Ultimately, a detailed understanding of these 

defect phonons should lead to a greater understanding of the reactions. The 
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calculations presented in Chapter 5 represent the first step in an analysis of these 

defect phonons. 

1.4.3 Exciton Capture Cross Sections in Si:ln,B 

Free electrons and holes in semiconductors can interact to form a variety 

of multi-particle complexes. These complexes represent a breakdown of the 

single-particle picture for the electronic states. In Chapter 4, we will discuss the 

properties of some or these complexes, namely, free excitons and bound excitons. 

A free electron and hole will experience · an attractive Coulomb interaction, and 

they will bind to form a free exciton. These free excitons may in turn bind onto 

impurities in the crystal to form bound excitons. Electron-hole recombination 

of an exciton results in luminescence. The energy of the luminescence is charac­

teristic of the particular type or exciton involved. In silicon, we observe bound 

excitons consisting of a free exciton bound onto a neutral donor or acceptor. The 

study described in Chapter 4 deals with the properties of excitons bound onto In 

and B acceptors in Si. 

The intensity of bound exciton luminescence is proportional to the con­

centration of impurities in the material. Therefore, it seems reasonable that we 

may use this luminescence as a technique for measuring the impurity concen­

trations20. To quantitatively relate the luminescence intensity to the impurity 

concentration requires detailed knowledge of all the exciton kinetics (generation, 

capture, release, and recombination) in the system. In Chapter 4, we study 

the process by which free excitons are captured onto impurities to form bound 

excitons. From observed lifetimes of luminescence lines, we deduce the cross 

sections for free exciton capture onto In and B impurities. We find that at low 

temperature the In cross section is much larger than that of B. This is rather 

surprising since the excitons are more tightly bound to In than B, and hence 
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should have a smaller cross section. We conclude that excited states or the In 

bound exciton exist, and capture into these excited states produces the observed 

large capture rates. 

The kinetics of excitons in semiconductors is very similar to the kinetics 

involved with single carriers (electrons or holes). In this way, the kinetic con­

siderations in Chapters 3 and 4 are related. There is however one important 

difference between the results presented in these two chapters. In Chapter 3, 

we are in the regime or high laser powers, in which the the (Zn,O) centers are 

almost always occuppied by electrons (t".e. the centers are saturated). In that 

case, a change in laser power results in almost no change in luminescence inten­

sity (or in pair dissociation rate). In Chapter 4, we are in the limit of low laser 

powers, in which the exciton occupation or the impurities varies linearly with 

power. In both cases, it was not obvious a priori what laser power levels were 

suitable to use in the experiments. Only after careful observation over a very 

wide range of powers were the appropriate ranges for the laser powers in each 

type or experiment determined. 

1.4.4 Vibrational Modes or Oxygen in GaP 

The photoluminescence spectra of defects in semiconductors often contain 

information about the vibrational modes or the defects. A good example of this 

behavior is found in the oxygen defect in GaP. The photoluminescence spectra 

of GaP:O display a very large amount of phonon coupling216 . In Chapter 5, we 

present theoretical calculations which were undertaken in an effort to understand 

the vibrational modes or substitutional defects in zinc-blende lattices. The results 

are applied to the case or oxygen in GaP. For the charge state o+, two resonant 

vibrational modes are observed in experiment. On the basis or our calculations 

we identify these as being a Ai breathing mode, and a T2 motion of the oxygen 
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atom itself. Furthermore, on the basis or the observed energies or the modes we 

find that the 0-Ga spring constants are roughly 50% or the bulk P-Ga spring 

constants, which suggests that 0 in GaP is a weakly bonded detect. This weak 

bonding has implications to the dissociation of the (Zn,O) pairs discussed in 

Chapter 3, since it indicates that it may be the oxygen atom which moves in the 

dissociation rather than the zinc atom. 

The technique ot Green's functions is widely used in solid-state physics to 

compute the properties or defects in crystals, and in particular it has been used 

for computing the vibrational modes of defects21122• This technique is used in 

Chapter 5 to treat the vibrational modes of point defects. The first step in the 

computation is to calculate the phonon bands or the perfect crystal. The defect 

is then introduced as a localized perturbation, and the vibrational modes of the 

imperfect crystal are evaluated. In all or our calculations the spring constants of 

the bulk crystal and of the defect are treated as parameters. The bulk spring 

constants are chosen to fit the actual phonon bands. The defect spring constants 

are unknowns, and the defect phonons are computed as a function of these 

unknowns. The quantity which effectively describes the vibrational modes of 

a defect is the local density-of-states. Localized modes show up as 5-functions 

in the local density-of-states, and resonant modes appear as peaks with some 

nonzero width. In Chapter 5, we will emphasize the investigation of resonant 

vibrational modes, since it is these modes which are observed in experiment. 
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CHAPTER 2 

PERIODICITY IN THE UNDULATION SPECTRA OF GaP:N 
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2.1 INTRODUCTION 

2.1.1 U nd ula.tion Spectra or GaP:N 

Donor-acceptor (DA) pairs in semiconductors produce a variety or interest­

ing luminescence spectra. As discussed in Section 1.3.1, the energy or lumines­

cence emitted from a pair depends on the separation of the impurities. Thus, a 

luminescence spectrum provides information about the number of pairs of each 

possible separation. The different separations of the impurities are ref erred to as 

shells, and labelled by m; m = 1 for first-nearest-neighbors, m = 2 for second­

nearest-neighbors, etc. The intensity of the luminescence lines is affected by the 

number of sites in each shell. For example, in the DA spectrum shown in Fig. 

1.3, the intensity or each discrete line ( m) is determined in part by the number of 

sites in the mth shell. For far separated DA pairs (say m;:::3o), the luminescence 

lines from adjacent shells start to overlap and smear together to form a band. 

The luminescence spectrum or GaP:N co-doped with acceptors displays this sort 

of luminescence band1- 5• Nitrogen substituting for phosphorous in GaP is an 

unusual type or donor. When N is paired with acceptors, they produces a unique 

type of DA luminescence. Since N is isoelectronic with P, this DA luminescence 

does not follow Eq. (1.9), but the luminescence energy still has some dependence 

on the donor-acceptor separation. 

The DA luminescence spectrum of GaP:(N,acceptor) displays approximately 

periodic undulations1. A variety of explanations have been proposed for this un­

dulatory behavior2- 5, including an "interference effect" of the carrier wavefunc­

tions at the N and acceptor sites, and "rotational levels" of the acceptor wavefunc­

tion. . Finally, it was shown by Street and Wiesner5 , the undulatory behavior 

of the spectrum results from the properties of N(r ), the distribution of acceptor 

sites located a distance r from the donor site. It turns out that the averaged 
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number of sites in each donor-acceptor shell displays quite regular oscillations as 

a function or r. Street and Wiesner observed that fluctuations in N(r) existed, 

and they speculated that these fluctuations were purely random in origin. Here 

we will show that oscillatory nature of N(r) is in fact due to the long-range 

symmetry of the crystal lattice. 

2.1.2 Results or this Work 

The original results of this work are purely mathematical. We derive an 

analytic form for N(r ), the distribution or donor-acceptor site separations. We 

show that N(r) is composed of a series of functions which are approximately 

periodic in r. The period or the oscillations is given by 27r /IGI, where G is 

a reciprocal lattice vector. This period equals the perpendicular separation of 

those lattice planes labelled by G. This leads us to the following geometrical 

interpretation tor the periodic behavior of N (r ): consider a sphere or radius 

r centered at the donor site. As r increases the sphere intersects new lattice 

planes. The total number or points L(r) enclosed by the sphere will show a sharp 

increase each time a new plane is intersected1 and N(r) = dL(r)/dr will show a 

corresponding peak. Thus, N(r) will show oscillatory behavior with period given 

by the lattice plane spacing. In particular, the low frequency oscillations in N(r) 

result from lattice planes or high symmetry ( (100), (110), etc. ) . 

2.1.3 Outline or Chapter 

In this chapter we will mainly be considering the geometrical aspects of 

donor-acceptor pair luminescence. The donor-acceptor pairs in the lattice are 

divided into shells, the radius of a shell corresponding to the separation of the 

donor and acceptor sites. Section 2.2.1 presents this shell-decomposition for the 

case or a zinc-blende lattice. We consider the number of different sites in each 

shell. This quantity is just the discrete analogue of N(r) discussed above. In 
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Section 2.2.2 we present a numerical computation of N(r ). The purpose or this 

computation is mainly to make a connection with the work or other authors5 . 

Finally, in Section 2.2.3 we present the major result or this work: an analytic 

form for N(r). We discuss the connection between this formula and the observed 

luminescence spectra in GaP:N. Our conclusions are presented in Section 2.3. 

2.2 THE DISTRIBUTION OF DONOR-ACCEPTOR SITE SEPARATIONS 

2.2.1 Geometrical Considerations 

Let us take our origin in space to be a donor site in the lattice. Then the set 

or all possible acceptor sites can be divided into shells, each shell corresponding 

to a particular donor-acceptor separation. Let us denote the number of sites 

in a shell by Nm, where m labels the shell (m = 1 for first-nearest-neighbor, 

etc.). Nm is the discrete distribution of donor-acceptor site separations. The 

continuous distribution N(r) is related to Nm by 

N(r) = LNm o(r - rm), (2.1) 
m 

where rm is the radius (donor-acceptor separation) of the mth shell. 

Let us now consider the donor-acceptor shells for (N ,acceptor) pairs in GaP. 

The GaP lattice has the zinc-blende structure, consisting of two face-centered­

cubic (fee) sublattices offset by ao(l/4, 1/4, 1/4) where ao is the lattice constant 

(length of a cube face). The Ga atoms reside on one fee sublattice and the 

P atoms on the other. The nitrogen donors substitute for P atom, and the 

acceptor impurities substitute for a Ga atom. This situation with the impurities 

on different sublattices is known as a type-II geometry 6• The coordinates of a 

displaced rec lattice in units of ao / 4 ca~ be generated by the set of all integers 
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all odd, 

and 

even. 

These coordinates define shells, having radius6 

rm = a: J mf + m~ + m~ 
ao ---= 4 vsm-5, 

(2.2a) 

(2.2b) 

(2.3a) 

(2.3b) 

where m = 1, 2, 3, ... is the shell number. The number ot lattice sites in each 

shell can be computed by finding all the different sets of (m1, m2, m3) which 

satisfy Eq. (2.2) and which result in the same m. Those sets or (mi, m2, m3) 

in which the elements mi are just rearranged, or in which the sign of one or 

more elements is changed, belong to the same subshell. There are 4, 12, or 24 

sites in a subshell7 , corresponding to one, two or three different values or I mil in 

(m1,m2,m3). Table 2.1 gives the number or sites and the coordinates of a site 

in various subshells of the lattice. Also listed in the table are the donor-acceptor 

separations, Eq. (2.3), and the luminescence energy, Eq. (1.9). The data used in 

the calculations were for (Zn,O) pairs in GaP; Eg = 2339 meV, EA= 64 meV, 

ED = 893 meV, € = 11.1, and ao = 5.45 A. From this table is appears that the 

number of sites in each shell varies more or less randomly from one shell to the 

next, especially for large m. However, as we will see in the following sections, 

there is an underlying periodicity in this quantity. 

2.2.2 Numerical Computations 

It is straightforward to numerically compute N(r), where N(r)dr is the 

number of acceptor sites located a distance between r and r + dr from the donor 
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TABLE 2.1: Type-II donor-acceptor shells. The donor-acceptor separation in the 
mth shell is denoted rm, and hvm gives the luminescence energy. Nm is the total 
number of sites in the mth shell. The number of sites in each subshell is denoted 
by n:n. (m1, m2, m3) are the coordinates or a site in each subshell. 

m rm(A) hvm(meV) Nm ni _m (m1, m2, m::s) 

l 2.360 1933.2 4 4 1, 1, 1 ) 
2 4.519 1669.9 12 12 3, -1, 1 j 3 5.939 1601.0 12 12 3, 3, 1 
4 7.080 1565.7 16 4 3, -3, 3 j 12 5, 1, 1 
5 8.061 1543.4 24 24 5, -3, 1 
6 8.935 1527.6 12 12 5, 3, 3 
7 9.730 1515.7 24 12 5, 5, 1 

12 7, -1, 1 
8 10.466 1506.3 36 12 5, -5, 3 

24 7, 3, 1 
g 11.153 1498.6 12 12 7, -3, 3 j 10 11.800 1492.2 28 4 5, 5, 5 

24 7, -5, 1 ) 
11 12.413 1486.8 36 24 7, 5, 3 l 12 9, 1, 1 
12 12.997 1482.1 24 24 9, -3, 1 
13 13.557 1478.0 36 12 7, -5, 5 

12 7, 7, 1 
12 9, 3, 3 

14 14.094 147 4.3 36 12 7, -7, 3 
24 9, 5, 1 

15 14.611 1471.0 24 24 9, -5, 3 

97 37.832 1416.4 72 24 ( 19, 17' 11 ) 
12 { 19,-19, 7 ) 
12 23...'-ll' 11 ) 
24 2;:>,-11, 5 ) 

Q8 38.028 1416.2 120 12 ( 21, 13, 13 ) 
24 ! 21,-17, 7 l 24 23,-13, 9 
24 23, 15, 5 j 
12 27, -5, 5 
24 27, 7, 1 

99 38.223 1416.0 60 24 l 2i5, 1~: ~l l 12 
24 27, -7, 3 

100 38.417 1415.9 48 24 25, 11, 7 
• 24 25, 13, 1 
• 
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DISTRIBUTION OF DONOR-ACCEPTOR 

SITE SEPARATIONS 

""'er =0.3A 

\ ~ 
CY= O.BA 

o--~----'-~------.__------_._---------_._---------1.---------~ 
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Figure 2.1: The broadened distribution N (r) of acceptor sites located a dis tame 
r from the donor site for (N,acceptor) pairs in GaP. Upper curve: o = 0.3 A 
broadening with the peaks labelled as in Ref. 5. The dashed line is a plot 
of 4Trr2 /Vc, where Ve is the volume of a unit cell. Lower curve: a = 0.8 A 
broadening showing the lowest frequency oscillations with period 2.73 A= ao/2. 
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site. As shown in Eq. (2.1), N(r) is a series of a-functions, one Cor each donor-to­

acceptor shell. Experimentally, these discrete lines are broadened. To simulate 

this line broadening we replace each a-function by a Gaussian of width a. The 

. averaged number of sites N(r) is then computed by summing each Gaussian 

weighted by the number of sites in each shell. Figure 2.1 shows N(r) for a 

type-II spectrum in a zinc-blende lattice (donor and acceptor ions on different 

sublattices). For a broadening or a = 0.3 A the results are basically identical 

with those of Street and Wiesner5 . The approximately periodic behavior of N(r) 

is clearly seen. For a = 0.8 A the period or the oscillations as measured from 

Fig. 2.1 is 2.73 A= ao/2 where ao is the lattice constant. This period will be 

theoretically justified below. 

2.2.3 Analytic Form 

Let us now derive an analytic form for N( r ). Consider a lattice composed 

or all possible acceptor sites. For simplicity, assume that this lattice has only one 

atom per unit cell. The acceptor sites are then specified by 

(2.4) 

where &1, &2, and &3 are the primitive translation vectors and n 1, n2, and n3 

run over all integer values. Let Ve denote the volume of the unit cell, and let the 

reciprocal lattice vectors be labelled by G. Let the donor position be specified by 

Rd. The total number of lattice points enclosed by a sphere or radius r, centered 

at Rd, can be expressed as 

L(r,Rd) = E 0(r - IT -Rdj), 
T 

(2.5) 

where 0 is a unit step-function. The function L( r, Rd) is periodic in Rd and so 

it can be expanded in a Fourier series, 

L(r, Rd) = E c(G) exp( iG ·Rd). (2.6) 
G 
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Following Kendall and Rankin8 , the coefficients c( G) are given by 

(2.7a) 

(2.7b) 

(2.7c) 

(2. 7 d) 

where }1 is a spherical Bessel function or the first kind. The distribution of 

acceptor sites located a distance r Crom the donor can now be evaluated to be 

N( ) = dL(r, Rd) = 47rr
2 

( + """' sin(IGlr) (·a. R )) (2.8) 
r dr Ve 1 GL..J IGlr exp i d . 

~o 

It is clear from Eq. (2.8) that N(r) is approximately periodic in r with frequencies 

given by IGl/27r. Depending on the value of Rd some frequencies may not be 

observed. In particular, if cos(G·Rd) = 0 then the frequency IGl/27r is forbidden. 

The above discussion can easily be generalized to include more than one type of 

acceptor site (i.e. more than one atom per unit cell in the lattice). N(r) then 

contains a summation of the form Eq. ( 2.8) for each inequivalent type of acceptor 

site. Inequivalent donor sites can be handled in a similar manner. Finally, we note 

that the role or acceptors and donors in the above discussion can be interchanged 

and the results are the same. 

These results can be applied to the problem or GaP:(N,acceptor ). The 

acceptor ions are located on an face-centered-cubic lattice with Ve= ao 3 /4 where 

ao = 5.45 A is the lattice constant. The frequencies or oscillation are found to 

be V?,/ao, 2/ao, 2v'2/ao, .... The donor is located at Rd= ao(l/4, 1/4, 1/4) so 

that the frequency ./3/ ao is forbidden. Therefore, the lowest frequency will be 

2/ ao as observed in the numerical calculation shown in Fig. 2.1 for o = 0.8 A. 



36 

For a broadening of a = 0.3 A, some of the higher frequency components are 

observed. 

2.2.4 Physic&! Interpretation 

Now that we have a mathematical reason for the observed undulations in 

the GaP:(N,acceptor) spectrum, it is interesting to seek some simple physical 

interpretation of the results. From the form of Eq. (2.8) this interpretation is 

obvious. The reciprocal lattice vectors label lattice plane in real-space. The 

period of oscillation 27r /I GI is simply equal to the perpendicular distance between 

lattice planes. Consider the number of lattice points contained in a sphere of 

radius r. As r increases, the sphere will intersect new lattice planes. Each 

time such an intersection occurs there will be a sharp increase in L(r) and a 

corresponding peak in N(r). Thus, the frequency IGl/27r is associated with those 

lattice planes labelled by G. As a corollary, we note that those acceptor ions 

which contribute to the jGJ/27r fluctuations in N(r) will be concentrated around 

the directions from the donor which are parallel to G. 

This physical interpretation is demonstrated graphically for the two-dimen­

sional simple-cubic lattice shown in Fig. 2.2. The reciprocal lattice is also simple­

eubic. The lowest frequencies of oscillation are 1/ ao and V2/ ao corresponding 

to reciprocal lattice vectors G = 27r(l, 0)/ ao [(10) lattice planes] and G = 

27r(l, 1)/ ao [(11) lattice planes] respectively. As shown in the figure, the {10) 

planes give rise to 1/ ao fluctuations in N (r) and the (11) planes give rise to v'2 / ao 

fluctuations in N(r ). For other lattice types the geometry is more complicated 

but the source of oscillations in N(r) is the same. 
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Figure 2.2: Lattice planes in a twcrdimensional simple-cubic lattice. As r in­
creases, the total number of points L(r) contained in a circle or radius r increases 
sharply each time a new plane is intersected. This results in periodic oscillations 
in N(r) = dL(r)/dr, the distribution of lattice sites located a distance r from the 
center or the circle. 
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2.3 CONCLUSIONS 

In this chapter we have discussed the geometry or donor-acceptor pairs in 

a zinc-blende lattice. We have calculated the number of possible sites in each 

donor-acceptor shell. The luminescence energies for GaP:(Zn,O) pairs have been 

tabulated. The original part or this work is the derivation of an analytic form for 

N(r ), the continuous distribution or donor-acceptor site separations. From this 

analytic form, we have shown that the observed periodicity of GaP:{N,acceptor) 

luminescence spectra is the result or long-range order in the crystal lattice. In 

principal the crystal symmetry could be deduced from the spectra, but in practice 

this may be difficult since it would require detailed knowledge of the relationship 

between luminescence energy and the donor-acceptor separation. 
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CHAPTER 3 

DEFECT REACTIONS IN GaP:(Zn,O) 
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8.1 INTRODUCTION 

S.1.1 Degradation of G&P:(Zn,O) Light-Emitting-Diodes 

Defect complexes in semiconductors can play an important role in determin­

ing the electrical and optical characteristics or the material. One simple complex 

which commonly occurs is a pair of donor and acceptor impurities. The energy or 

the luminescence emitted from donor-acceptor (DA) pairs depends on the separa­

tion or the impurities 1 ' and so a luminescence spectrum provides information 

about the number or pairs or each possible separation. 

In gallium phosphide, a zinc atom substituting for gallium (ZnGa) forms a 

shallow acceptor, and an oxygen atom substituting for phosphorous (Op) forms 

a deep donor. When these impurities occupy nearest-neighbor lattice sites they 

produce intense red luminescence. Consequently, this material has been used 

for making red-light-emitting-diodes2 . When operated under forward bias, the 

performance or these diodes is observed to degrade with time3- 5 . This study 

provides a microscopic explanation for this degradation; namely, that the nearest­

neighbor (Zn,O) pairs dissociate and re-form as further separated pairs. 

In general the degradation of semiconductor devices is due to some change 

in the physical structure of the device. Defects are formed by the rearrangement 

or the atoms in the bulk material or at interfaces. These changes in the struc­

ture affect the recombination paths for carriers and thereby affect the device 

characteristics. The energy to move the atoms comes either from purely thermal 

processes, or from some type or carrier recombination event in the material. In 

the latter case, we can view the process as involving the transfer of energy from 

an electronic excitation to a vibrational excitation, ultimately leading to atomic 

motion. This phenomenon clearly requires a strong electron-phonon interaction. 

In the GaP:(Zn,0) system studied here, we have obtained a detailed picture of 
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the reactions which cause the device degradation. These types or reactions have 

not previously been observed in a material which is as well characterized as 

GaP:(Zn,0 ). Thus, this system provides a unique opportunity for studying the 

strong electron-phonon interaction which is often present at "deep-level" defects 

in semiconductors. The understanding or this interaction is important since it 

significantly affects the performance or semiconductor devices6
'
7

. 

8.1.2 Results or this Work 

In this work we use photoluminescence to monitor the relative positions of 

Zn and 0 impurities in GaP. When the GaP is subjected to laser excitation at 

high temperatures, we observe reactions in which the impurities diffuse through 

the lattice to occupy new substitutional sites. This is the first time that DA 

luminescence has been used as a microscopic probe of defect reactions. From 

low-temperature studies we identify these reactions as being the dissociation of 

nearest-neighbor (Zn, 0) pairs and the formation or further separated pairs. Such 

a dynamic process ot reactions among lattice defects of known chemical type has 

not previously been observed in a semiconductor. 

We have identified the mechanism for the photoinduced reactions by measur­

ing the reaction rates versus laser power and temperature. The dissociation rate of 

the nearest-neighbor pairs is deduced using a model for the electron-hole recom­

bination kinetics which includes the effects of high carrier occupation (saturation) 

and spatially varying carrier generation. The activation energy for the photoin­

duced reaction is found to be 0.60±0.07 eV with a pre-exponential factor of about 

3 X 104 s- 1. From annealing studies, the activation energy for purely thermal 

dissociation of the pairs is estimated to be 2.6 ± 0.6 eV with a pre-exponential 

factor of roughly 1010 s-1. From these values, the photoinduced pair dissocia­

tion is identified as a "recombination-enhanced defect reaction" (REDR). In the 
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reaction, nonradiative electron-hole recombination puts the defect into a highly 

excited vibrational state, leading to the dissociation or the pair. 

8.1.3 Outline or Chapter 

Photoluminescence (optical emission) data will be presented throughout this 

chapter, and some experimental details are summarized in Section 3.2. In Section 

3.3 photoluminescence spectra are displayed which clearly show the dissociation 

of nearest-neighbor (Zn, 0) pairs and the formation of further separated pairs. 

These reactions are observed in real-time at high temperatures. Low temperature 

spectra are obtained in order to identify the initial and final states or the reaction. 

In Section 3.4 we discuss the reaction rates for the photoinduced pair dis­

sociation. Equations are formulated describing the electron-hole recombination 

kinetics. Simple relations between the observed photoluminescence intensities 

and the defect concentrations are derived. Using these relations, an analysis is 

made of the decay rates of the luminescence intensities. Activation energies for 

the reactions are deduced. In Section 3.5, a discussion is given of the mechanism 

for the photoinduced reactions. It is argued that the dissociation proceeds by 

the excitation or vibrational modes or the defect by nonradiative electron-hole 

recombination. The conclusions which can be drawn from this work are presented 

in Section 3.6. 

3.2 EXPERIMENTAL 

3.2.1 Apparatus 

Figure 3.1 shows a diagram of the apparatus used in these experiments. The 

excitation source was an Ar+ laser. The laser beam was filtered to remove stray 

lines and was directed at the sample. For the low temperature work (T < 100 
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Figure 3.1: A schematic of the apparatus used in photoluminescence experi­
ments. The incident laser excites the sample, causing it to emit characteristic 
luminescence. A particular wavelength of the luminescence is selected with the 
spectrometer, and the intensity or this signal is measured with a photomultiplier 
(PM). The data a.re acquired on a multi-channel-analyzer (MCA) and passed to 
a computer ror analysis and storage. A typical experiment will record intensity 
versus wavelength as the spectrometer is scanned, or intensity versus time at a 
single wavelength. 
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K) reported here the sample was mounted in a variable temperature cryostat and 
C> 

illuminated with the 4545 A laser line. The sample was moved vertically to permit 

observation or different regions or the crystal and the change in photon collection 

efficiency between these runs was very small. For the high temperature work (300 

K < T < 700 K) the sample was mounted on a heating block and illuminated 

with the 4880 A laser line, focussed to a beam diameter of 55 µm (FWHM). For 

the results reported here the sample was in air, although similar results were 

obtained when the sample was in a He environment. The photoluminescence 

spectra were obtained using a LN2 cooled S-1 type photomultiplier and a SPEX 

1269 spectrometer with a 1200 gr /mm grating blazed a 1 µm. The data were 

acquired on an ND-60 multi-channel-analyzer and were passed to a PDP 11/34 

computer for permanent storage. Annealing studies (T > 1000 K) were performed 

in a furnace purged with He. Following each anneal the sample was quenched in 

3.2.2 Sample Description 

The samples used in this work were liquid-phase-epitaxially gr0wn pn junc­

tions on n-type GaP (single crystal). The growth technique is described by Saul, 

Armstrong, and Hackett2 . The samples consisted of an n-type substrate on 

which was grown a 50 µm thick n-type layer followed by a 50 µm thick p-type 

layer. This top p-type layer was doped with Zn and 0. The {substitutional) 0 

concentration is about 1016 cm-3 and the Zn concentration is about 3 X 1017 

cm-3 (based on crystal growth conditions). Other impurities include N and S. 

The photoluminescence spectra were obtained with the excitation laser incident 

on the p-type layer. The absorption depth of the laser light is roughly 10 µm so 

that only luminescence from this top layer is observed. 
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3.2.3 Sample Heating 

The reactions observed in these experiments can proceed thermally or by 

athermal photoinduced mechanisms. In order to separate these processes it is 

essential to know how much the laser excitation source heats the sample. This 

sample heating can be theoretically estimated by considering the heat diffussion 

problem in an infinite slab or thickness l with one side at a constant temperature 

and the other side exposed to a surface heat source with a Gaussian profile. The 

maximum temperature increase ~T in the sample can be shown to be 

AT=_.!:__· { 1 

27rka -}; 
a~l 

a>l 
~ 

(3.1) 

where P is the laser power, k is the thermal conductivity (k = 0.4 W /cmK 

at 473 K for GaP8
) and a is the beam width (FWHM= 2ayf (2 ln 2) ). For 

the experiments discussed here a = 55µm and l = 350µm so that the limit 

a¢:.l applies. For a typical power level of P = 200 mW we find ~T = 35 K. 

This amount of sample heating is small enough so that we can easily distinguish 

thermal and photoinduced effects. 

3.3 OBSERVATION OF PHOTOINDUCED REACTIONS 

3.3.1 Identification or the Reaction 

In this section we will present data which show photoinduced reactions 

involving (Zn,O) pairs in GaP. Figure 3.2 shows several high and low temperature 

photoluminescence spectra obtained from samples of GaP:(Zn,O). These spectra 

were obtained using above-band-gap laser excitation at the power levels indicated. 

Figure 3.2(a) shows a series of successive scans, obtained at the relatively high 

temperature or 470 K. As first shown by Ooton and Lorenzg these spectra consist 

of a band centered at 1. 7 eV due to nearest-neighbor (Zn,O )m= 1 pairs, and a 
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GaP:(Zn,0) 
(a) T=470 K I 

P=5000 W/cm2 ,.._m_= __ 

-tr 

b) T= 18 K 
P=O.I W/cm2 m=I 
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TIME (MIN) 

---- 0 
-·-37 
........ 68 
-··-99 
-214 

SHALLOW 

---- UNAGED 
- AGED 

(Zn. S) 

2.1 2.2 2.3 

Figure S.2: Photoluminescence spectra at various temperatures (T) and laser 
power densities (P); (a) time-resolved spectra showing defect reactions in progress 
and (b) the initial and final states or the reaction. The label m denote lumines­
cence from an mth_nearest-neighbor (Zn,0) pair. NP refers to a no-phonon­
assisted transition. Theoretical predictions for the line positions are shown on 
the abscissa. 
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band centered at 1.5 eV due to further separated pairs (Zn,O)m> 1· There is also 

luminescence at 2.1 eV due to various shallow impurities and possibly free-exciton 

or band-to-band recombination. The incident laser was illuminating the sample 

continuously during these measurements. The scans were acquired successively , 

and are separated in time by about 30 min each. We see that the spectra are 

changing with time. This is a direct observation of a reaction in progress. We 

ref er to this reaction as an "aging" process. The initial and final spectra shown 

are similar to those seen by Dapkus and Henry4 • These authors showed that 

the aging reaction is due to photoinduced destruction of nearest-neighbor (Zn~O) 

pairs, and they speculated that the pairs were in fact dissociating and forming 

further separated pairs. Here, we prove that this speculation is correct. 

To clearly identify the luminescence bands we go to the low temperature 

spectra shown in Fig. 3.2(b ). In this figure, the spectrum labelled "aged!' was 

obtained from a sample which was subjected to the high temperature aging 

treatment discussed above. The "unaged" spectrum was obtained from a sample 

which was not aged. From the work of previous authors10 - 12 we identify the 

band centered at 1.82 eV as being due to nearest-neighbor pairs (Zn,O)m=l, and 

the band centered at 1.35 eV as due to far separated pairs (Zn,O )m_.00 • The 

breadth of these bands is due to phonon-assisted radiative transitions. Centered 

at 1.59 eV is a luminescence band which is seen in the aged sample, but barely 

visible in the unaged material. The breadth of this band is similar to those of 

(Zn,O )m=l and (Zn,O )m-+oo and the resolved phonon structure is characteristic 

of a complex involving 0. Furthermore, if we compare the no-phonon transition 

energy with theoretical predictions1 ,l 3 , we see that the position of this new band 

is as expected for (Zn,O)m=2· Thus, we identify the new luminescence as being 

due to second-nearest-neighbor (Zn, 0 )m=2 pairs. 
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The aging process has clearly affected the intensity of the various lumines­

cence bands shown in Fig. 3.2(b ). The intensity or the m = 1 band has decreased 

and the intensity or the 'm > I bands have increased. The luminescence at about 

2.05 eV is due to (Zn,S) donor-acceptor pairs. This luminescence is constant in 

intensity between the unaged and aged material, indicating that the low tempera­

ture minority carrier concentration is also constant. Thus, the reduced intensity 

of the m = 1 band in the aged material must be due to a reduction of the 

(Zn, 0 )1 concentration. Similarly, the (Zn, 0 )m > 1 concentration has increased. 

The reduction in m = 1 pair concentration has been accompanied by an increase 

in concentration or m > 1 pairs. We note that in Fig. 3.1( a) the m > 1 band is 

increasing at exactly the same rate as the m = 1 band is decreasing. Also, as will 

be shown in following section, the number or dissociated m = 1 pairs is roughly 

equal to the number of newly formed m > 1 pairs. Thus, we conclude that the 

nearest-neighbor pairs are dissociating and forming further separated pairs. 

The (Zn, 0)m=1 dissociation reaction is not a thermal one, since the tem­

perature in Fig. 3.2(a) is only 470 K (sample heating due to the laser is about 

20 K), and the (Zn,O)m=l pairs are thermally stable up to 800 K. Rather, the 

reaction is photoinduced4 . The incident light creates electron-hole pairs in the 

material, and the electrons and holes may be captured and may recombine at the 

(Zn,0) centers. The energy to dissociate the (Zn,O)m=l pairs comes from some 

electron (or hole) capture or recombination event at the defect. In Section 3.4 we 

will identify this event to be electron-hole recombination. 

S.8.2 Redistribution of Pairs 

We have studied the pair re-formation process by measuring the number 

of pairs of a given shell number m which are produced by the aging process. 

Figure 3.3 shows low temperature spectra in an unaged and an aged sample. The 
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Figure 3.8: Low temperature donor-acceptor luminescence from an aged (solid 
line) and an unaged (dashed line) sample. The lines are labeled by (m) for mth_ 

nearest-neighbor pairs with a superscript indicating the type of phonon involved 
in the transition (O=optical, LOC=local, NP=no-phonon). Those labels with 
no superscripts refer to no-phonon transitions. Note the intensity and energy 
scale change at 1.57 eV. The data on the leh had a flat background subtracted 

from them. 
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discrete lines in the spectra are (Zn,O )m donor-acceptor (DA) luminescence. The 

broad background is due to radiative processes involving mainly recombination or 

electrons bound to m = 1 and m = 2 pairs with holes bound to distant acceptors. 

The pairs responsible tor the discrete DA lines are labelled in accordance with 

previous identifications 12, although we have reidentified a few or the lines as 

phonon-assisted transitions. The minority carrier concentration is observed to 

be the same in the unaged and aged samples, so that the ratio or line intensities 

between the samples is equal to the ratio of pair concentrations. In the aged 

material, the line intensity is the sum of that from the new centers produced by 

the aging and that from the centers which existed prior to the aging. Thus, the 

concentration of centers produced by the aging is given by 

1 (I'm ) Nm =Nm Im -1 , (3.2) 

where Im and I'm are the luminescence intensities in the unaged and aged sample 

respectively, and Nm is the pair concentration in the unaged material. Nm can 

be computed14 by considering equilibrium between oppositely charged ions at 

the growth temperature of the crystal. For small m this is a very crude model, 

but it has been shown to give reasonable resultsg. 

The concentration of new m > 1 centers produced by the aging process 

is dependent on the sample conditions prior to aging. Figure 3.4 shows typical 

results, based on the integrated DA line intensities or Fig. 3.3. We see that 

the dissociated nearest-neighbor pairs tend to re-form as pairs with low m. By 

interpolating between the data points in Fig. 3.4 and extrapolating to large m, 

we can estimate the total number of new m > 1 pairs formed by the dissociation 

of the m = 1 pairs. We find that the number of newly formed m > 1 pairs 

roughly equals the number or dissociated m = 1 pairs. The distribution or new 

pairs contains some information about the pair re-formation process. At present 



10-4 
N' 

_!!L 

Zm 

52 

I 

10-6 -------------.._ ____ -'-____ ....._ ___________ __ 
0 5 10 15 

m 
20 25 30 

Figure 3.'= The distribution of new pairs formed by the aging process. N~ 
is the concentration of mth_nearest-neighbor pairs, normalized to the total con­
centration of pairs (estimated) in the sample. Zm is the number of equiva]ent 
mth_nearest-neighbor sites. 
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we do not have a theory which allows us to uniquely identify the re-formation 

mechanism. In Section 3.5 we will discuss further the atomic motions involved 

in the pair dissociation and re-formation. 

3.4 REACTION RATES 

3.4.1 Electron-hole Recombination Kinetics 

To understand the mechanism or the (Zn,O) pair dissociation, we have 

performed measurements of the reaction rates. The first step in a quantitative 

analysis of these rates is to relate the observed luminescence intensities with the 

pair concentrations. This relation requires some understanding of the electron­

hole populations in the material. The kinetics of electron-hole recombination in 

GaP:(Zn,O) have been extensively studied15- 21 . It is not the purpose of this 

work to obtain a detailed understanding of the recombination kinetics. Rather, 

we wish to arrive at approximate values for some of the kinetic parameters. From 

these values we will determine the regime of carrier concentrations in which our 

experiments lie and this will enable us to make a reasonable interpretation of the 

data to be presented in Section 3.4.2. 

We use a simple but accurate model which is similar to that used for nearest­

neighbor pairs by Henry, Bachrach, and Schumaker21
. Each (Zn,0 )m center is 

considered to be a single electron trap, with an associated electron release rate 

Rm, capture rate Cm, and a total recombination rate I/rm. For m-+oo, i.e. 

isolated oxygen, a second electron level has been observed6
• Here we will be 

considering centers with m < 50 for which this level has not been observed 

(it probably is not bound due to the Coulomb repulsion of the acceptor) and 

so we need not consider it. For the present discussion, the hole occupation of 
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the (Zn,O )m centers will be implicitly included in the electron recombination 

rate I/rm. Later, we will consider the dependence or I/Tm on the various hole 

concentrations. The concentration nm of (Zn,O )m centers which are occupied by 

electrons is given by 

dnm -nm 
-- = -- - Rm nm+ Cm(Nm - nm)no, 

dt Tm 
m = 1, 2, 3, ... (3.3) 

where Nm is the total concentration of (Zn,O )m centers and no is the free electron 

concentration. In steady state, the concentration of occupied (Zn,O )m centers is 

found by equating Eq. (3.3) to zero to yield 

where 

f m = nm = no/ntm 
Nm 1 + no/ntm' 

(3.4a) 

(3.4b) 

Here, f m represents the fractional electron occupation or the centers. The inten­

sity or luminescence emitted from an m th _nearest-neighbor pair is given by 

1 1 
Im= --nm= --Nmf m, 

7 rad r'"ad m m 

(3.5) 

where I/r':;d is the radiative decay rate. Later m this work we will discuss 

processes in which the impurity concentrations Nm vary with time. However, 

these time variations are very slow compared with thoses expressed in Eq. (3.3) 

and so Eq. (3.4) is still valid at each point in time. 

Let us consider the minority carrier (electron) concentration no. The vari­

ables or interest in these experiments are the laser power P, the temperature T, 

and the impurity concentrations Ni. The impurities labelled by Ni include the 

(Zn,O )m centers as well as various intrinsic impurities which could be undergoing 

photo induced reactions5,22• In steady state no is a complicated function of T, P 
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and Ni. Neglecting spatial diffusion we write 

no= Gro, (3.6) 

where G is the electron-hole generation rate and ro is defined by this equation 

to be the steady-state minority carrier lifetime. We will assume that ro has no 

spatial dependence. This neglects effects such as surface recombination. The 

spatial dependence of G is derived by considering the incident laser beam which 

is perpendicular to the surface (x, y plane) of the crystal. The photon density 

has a Gaussian dependence on p = J(x2 + y2) and varies exponentially with z 

(the direction into the crystal). Thus, the generation rate can be expressed as 

aP (-p2 ) G = exp -
2
- - az , 

hvi27ra2 2a 
(3.7) 

where 1/ a is the absorption depth, a is the beam radius, hvi is the incident 

photon energy, and Pis the absorbed laser power. The laser power levels reported 

here actually correspond to incident power, but this difference is not significant 

in our calculations. The minority carrier lifetime To is determined by all of the 

various recombination channels in the material. In our experiments we observe 

quantities which are independent or To and so we do not need to know its precise 

value. The minority carrier concentration can be estimated by observing the 

luminescence intensity as a function of laser power16 . For the nearest-neighbor 

pairs at T ~ 500 K we observe significant saturation effects (h ~ 0.5) to begin 

at P ~ 100 mW (FWHM=55 µm). At this temperature l/T1 ~ 106 s- 1 (Ref. 

21) <.R1 ~ 108 s- 1 (Ref. 19). The maximum minority carrier concentration 

is then given by no ~ nt1 ~ R1/C1 ~ 5 X 1015 cm-3. This also equals the 

concentration of majority carriers (holes) introduced by the laser. From Eqs. 

(3.6) and (3.7) this value of no corresponds to a lifetime of ro ~ 1 nsec which 

seems quite reasonable. 
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Much of the complicated electron-hole recombination kinetics has been hid­

den in the rates l/ro, 1/rm and 1/r",!/;d. The rate 1/rm is the sum of nonradiative 

and radiative rates. There are two nonradiative decay channels: Auger decay19 

and multi-phonon-emission (:MPE) recombination6
• There are also two radiative 

decay channels: the bound electron can recombine with a hole bound onto the 

same (Zn,O)m center, or with a hole bound onto a distant impurity, namely, a Zn 

acceptor11 ' 15. The rates 1/rm and 1/r':;d are therefore functions of the tempera­

ture and various hole concentrations. For T ~ 500 K the concentration of holes 

introduced by the laser is small compared with the free hole concentration of 

p ~ 1017 cm-3. Furthermore, the shallowly bound holes are in equilibrium with 

the free holes20 ,21 . Thus, 1/rm and 1/r':;d will be functions only of temperature, 

and will have very little spatial or time dependence. 

Now let us specialize to the experimental results presented in the follow­

ing section. In these experiments the sample is exposed to the laser at some 

temperature 300 K < T < 700 K and some laser power P. The intensity of 

(Zn,O)m=l luminescence is observed to decrease with time, presumably due to 

some changing impurity concentration Ni. The luminescence intensity is given 

by 

li(t) = -
1-f dV Ni(p, z, t)fl(p, z, t), 

r1ad 
(3.8) 

where the spatial dependence or the electron occupation ft is given by Eqs. (3.4a)~ 

(3.6), and (3.7). Ni refers to the concentration of nearest-neighbor (Zn,O )m= 1 

pairs, whereas Ni refers to the concentration of any type of impurity in the 

sample ((Zn,O)m pairs, intrinsic defects, etc.). At low power levels the electron 

occupation fl is proportional to the minority carrier concentration no. In general, 

no changes with Ni and results in changes in the (Zn, 0)m=1 luminescence 

intensity. We have observed these effects. At low powers, a change in no will cause 
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the entire luminescence spectrum to change uniformly. However, at high powers 

the luminescence band saturates; f 1~1 for most or the centers contributing to 

the band. In that case the luminescence intensity is independent of no. The 

observed decreasing intensity is due to a decreasing concentration or (Zn,0)1 

pairs, and the intensity is directly proportional to the pair concentration. The 

data presented in the following section are in this high power regime. 

S.4.2 Analysis or Observed Dissociation Rates 

Figure 3.5 shows the decay of the (Zn,O)m=l luminescence at several dif­

ferent temperatures. These decay curves are nonexponential. Typically, the 

luminescence intensity initially changes relatively fast, then it slows down to 

a long-lived tail. We attribute this nonexponential behavior to a nonuniform 

minority carrier (electron) density in the material. This nonuniformity is due to 

the Gaussian profile of the incident laser beam, and the exponential dropoff of its 

intensity into the sample. A nonuniform electron density results in a nonuniform 

electron occupation or the (Zn,O)i centers. Those centers with high occupation 

(f 1 --+-1) dissociate at some rate, and those centers with low occupation (h -..o) 

dissociate at a much slower rate. The observed decay curves are integrals over the 

sample or all the individual exponential decays. The result is a nonexponential 

decay. For high laser powers the observed luminescence is initially due almost 

entirely to the saturated centers. In that case the luminescence intensity is 

proportional to the pair concentration and independent of no, as discussed in 

Section 3.4.1. At later times we observe those centers whose occupation is lower. 

Then, the luminescence intensity may depend on no. We can monitor no by 

observing the intensity of luminescence from the shallow impurity levels. As 

shown in Fig. 3.2, the variation in no occurs over a much shorter time period 

than the (Zn,O)m=l decay time. We observe that this is true for P>lOO mW at 
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the /(0, 0)-+0 curve shown in Fig. 3.6. 
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all of the temperatures discussed here. Thus, the final part or the decay curves 

are not affected by no because it is a constant. Therefore, we need not further 

concern ourselves with the time dependence or no or Ji. 

Let us now derive a functional form for the observed decay curves. From 

Eqs. (3.3-3.7) we find that the electron occupation of the (Zn,0 )1 centers is given 

by 

f(p,z)=/(0,0)[ ]' 
1 + /(0, O)exp ( 2:: - o:z) 

(3.9) 

where we have dropped the subscript 'l'. We assume that the dissociation rate 

of a given center is proportional to its occupation. This assumption is justified 

below. Thus, the concentration or (Zn,O)i centers at (p, z) varies with time 

according to 

N(p, z, t) = N(O) exp(-f(p, z)rt), (3.10) 

where r is the reaction rate and N(O) is the spatially uniform impurity concentra­

tion at t = 0. From Eqs. (3.8}-(3.10) the total intensity of (Zn,O)i luminescence 

can be evaluated to be 

[ 
-fO,Ourt l 

- N(O)f(O, O)o-211 exp 1+ f(O,O)(u-1 j 
I ( t) - d du In ( 1 / u) + f ( )( ) . arra o 1 0, 0 u - 1 

(3.11) 

Figure 3.6 shows several examples of Eq. (3.11) for various values of f(O, 0). For 

f ( 0, 0)--+1 the decay is purely exponential. This corresponds to an infinitely large 

excitation region with uniform occupation of all the centers. For f(O, 0)-+0 the 

decay follows an exponential integral form. In our experiments J(O, 0) < 0.9. 

From Fig. 3.6 we see that Eq. (3.11) is quite well approximated by its /(0, 0)-+0 

limit: 

a 
I(t) ~ -(7 + ln(rot) + Ei(rot)) + b, 

rot 
f(O, 0) < 0.9 (3.12) 



>­
t-
(j) 

z 
w 
t­
z 

60 

f (0, 0) 

o ________ _,_ __ __,, ____ ,,__ __ -'-----'------'----"'---~--..... 
0 

TIME 

Figure 3.6: Theoretica] curves for the decay of the (Zn,O)m=l luminescence. 
/(0, 0) is the maximum electron occupation or the centers. J(O, O~l for very 
large laser powers and /(0, 0)-..o for small laser powers. For the experiments 
described here, J(O, 0) < 0.9. 



61 

where a is a constant, / is Euler's constant, r0 = f (0, O)r is the observed decay 

rate, and Ei is an exponential integral of the first kind. To this form, we 

have added another constant b to account for the background intensity due to 

(Zn,O)m> I· Equation (3.12) provides a good fit to all of the observed decay 

curves. 

The data shown in Fig. 3.5 were fit to the functional form Eq. (3.12). The 

decay curves shown in the figure have had a background intensity b (determined 

from the fit) subtracted from them. The decay rates determined from the fits 

are plotted in Fig. 3.7 versus the incident laser power. At low powers the rates 

increase linearly with power, at high powers the rates approach some limit: the 

saturated decay rate. The decay rates saturate when the electron occupation 

saturates. This justifies the above assumption that the dissociation rate is propor­

tional to the electron occupation. The saturation power level increases with tem­

perature as expected from Eq. (3.4b). The fact that the decay rates do indeed 

saturate provides evidence that sample heating and large hole concentrations due 

to the laser excitation are not significantly affecting our results. 

The saturated decay rates are plotted versus temperature in Fig. 3.8. We 

find an activation energy of 0.60 ± 0.07 eV with a pre-exponential factor of 

approximately 3 X 104 s- 1. Similar activation energies have been observed in 

other GaP:(Zn, 0) degradation studies3' 5 . For the data in Fig. 3.8 we have 

not included any corrections to the temperature due to sample heating since 

these corrections produce a negligible change to the activation energy within 

the quoted uncertainties. In addition to measuring the activation energy for the 

photoinduced reaction, we have also measured the barrier for the nearest-neighbor 

dissociation to proceed by purely thermal means. The procedure consisted of 

observing the absolute intensity of luminescence (at 1.77 eV) from a sample, 
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putting it in a furnace for some amount or time, removing, quenching and etching 

the sample, and finally observing again the luminescence intensity. The annealing 

temperatures were greater than 600 ~ C (the initial state of the crystal2) and so 

the luminescence intensity decreased with annealing time due to dissociation of 

the nearest-neighbor pairs9. The resulting exponential decay rates are shown in 

Fig. 3.8. The activation energy is 2.6 ± 0.6 eV with a pre-exponential factor 

of approximately 1010 s- 1. This activation energy represents the barrier for 

dissociation of {Zn, 0 )1 without a bound electron on the center (let us call this 

the ground state of the center). 

3.5 :MECHANISMS FOR THE REACTIONS 

Now let us consider what mechanisms may be responsible for the photoin­

duced dissociation reaction. From the literature 7 ' 23 we identify two mechanisms 

which have been observed in other systems. First, the (Zn,O h dissociation could 

be a "recombination-enhanced" defect reaction (REDR) in which energy avail­

able from electron-hole recombination is transferred to defect vibrational modes: 

leading to a reaction. This is the mechanism we believe to cause the reactions ob­

served here. The activation energy of 0.60 e V we identify roughly as the difference 

between the thermal barrier ( 2.6 ± 0.6 e V) and the recombination energy ( ,...._, 1. 9 

e V). Since all of the recombination energy is used in surmounting the barrier, the 

reaction is the result of nonradiative recombination by multi-phonon-emission 

(:MPE). Although :tv1PE recombination has not been reported for (Zn,O )1 it has 

been reported8 for isolated 0 and it seems likely that it also occurs for (Zn, 0 )1. If 

we assume that the 0.60 eV activation energy belongs to the :MJ>E recombination 

rate, then the fraction of nonradiative recombination events which lead to a pair 
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dissociation is estimated to be 10-4 (roughly, this is the value of 'f/ defined in 

Ref. 7). 

The second mechanism which must be considered is a "charge state" reaction 

in which the (Zn,O )1 dissociation would occur thermally from the excited state 

or the complex in which the bound electron is present. At high laser powers the 

pairs are almost always in this state. The observed 0.60 e V would be identified 

as the thermal reaction barrier for the excited state. This is rather different 

than the ground state barrier of 2.6 eV. Furthermore, the observed 3 X 104 s- 1 

is about nine orders of magnitude less than a phonon frequency. This implies 

a multi-jump process in which the (Zn,O) pair dissociates and recombines 109 

times before permanently dissociating, or in which a third particle is needed for 

the reaction and must diffuse to the site. Although we cannot prove that these 

processes are not occurring, we consider them to be unlikely and we pref er the 

simpler explanation or the recombination-enhanced reaction. 

The strong electron-phonon coupling required for a recombination-enhanced 

reaction is clearly evident in the photoluminescence spectra. As shown in Fig. 

3.2(b), the (Zn,O)m=l band is very broad (due to a series of phonon replicas 

which are all smeared together). This strong coupling suggests that the dissocia­

tion reaction may proceed without the presence of any additional defects. Thus, 

it seems quite likely that the oxygen (or zinc) simply jumps from its substitutional 

site to an interstitial site and migrates away. The mobile ion is subsequently cap­

tured by a vacancy to form a (Zn, 0 )m pair with the nearest zinc (or oxygen) ion. 

The observed activation energy or 0.60 eV will in general contain contributions 

from each of the processes; dissociation, diffusion, and re-formation. From Fig. 

3.8 it is clear that the observed reaction is a first order kinetic process. Also, as 

shown in Fig. 3.2(a) the (Zn,O)m> 1 pairs form at exactly the same rate as the 
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(Zn,O )m=l pairs dissociate. Thus,, the rate limiting process is the dissociation, 

and the observed rates are indeed the rates for dissociation. We emphasize that 

it is the dissociation of the pairs which we believe to be a photoinduced reaction. 

The subsequent diffusion and re-formation can probably occur thermally at the 

temperatures considered here. 

8.6 CONCLUSIONS 

In this chapter we have given a detailed description of photoinduced reac­

tions between nearest-neighbor zinc and oxygen impurities in gallium phosphide. 

We have shown that under conditions of laser excitation at elevated tempera­

tures, the nearest-neighbor (Zn,O) pairs dissociate and subsequently re-form as 

further separated pairs. This reaction can be written as 

(3.13) 

We have identified the mechanism for this reaction by measurements or the dis­

sociation rates. The observed luminescence decay curves are analyzed by a model 

or the electron-hole recombination kinetics which includes the effects of satura­

tion and a spatially dependent generation rate. From the resulting dissociation 

rates, in the limit of high laser power, the activation energy for the photoinduced 

dissociation is found to be 0.60±0.07 eV. We also observe dissociation of the pairs 

by purely thermal means, with an activation energy of 2.6 ± 0.6 eV. From these 

activation energies along with the observed pre-exponential factors, we conclude 

that the dissociation is a recombination-enhanced defect reaction. A nonradia­

tive electron-hole recombination event puts the (Zn,O )m=l center into a highy 

excited vibronic state, resulting in the dissociation. The atomic motion in the 

dissociation and re-formation is not well understood. However, we propose that 
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in the dissociation the oxygen (or zinc) ion jumps to an interstitial site. This 

interstitial ion then diffuses thermally some short distance and is captured by a 

vacancy to Corm a pair with the nearest zinc (or oxygen) ion. 
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CHAPTER 4 

EXCITON CAPTURE CROSS SECTIONS IN Si:In,B 
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4.1 INTRODUCTION 

4.1.1 Bound Excitons in Silicon 

Free electrons and holes in semiconductor crystals can interact amongst 

themselves, and with impurities, to form a variety or multi-particle complexes1 . 

A free electron and free hole experience an attractive Coulomb interaction, and 

they bind to form a free exciton (FE). These FE are neutral particles. They 

are free to move around in the crystal, and at sufficiently low densities they 

Corm a gas of noninteracting particles (at higher densities they condense into 

an electron-hole droplet2 ). If there are impurities in the crystal, then the FE 

may bind onto them. In silicon, bound exciton (BE) complexes consisting of a 

FE bound to a neutral donor or acceptor are observed3 . The neutral impurity 

consists or a charged ion-core plus a bound electron or hole. In the simplest 

view, the attractive interaction between the neutral impurity and the FE is a 

Van der Waals type interaction. The resulting BE consists of a total of three 

mobile charged particles centered around the charged ion-core. If the FE density 

is high enough, an impurity may bind more than one exciton, resulting in bound 

multi exciton complexes4 . 

During the past several years studies have been made on the process by 

which free excitons (FE) in a semiconductor crystal are captured on impurity 

sites to form bound excitons (BE). The luminescence resulting from radiative 

recombination or a bound exciton in silicon was first observed about twenty 

years ago3 , but only recently have attempts been made to measure the cross 

section (which characterizes the capture rate) for FE capture. Knowledge of the 

capture cross sections for many impurities is necessary in order to use exciton 

photoluminescence as a quantitative tool for determining impurity concentrations 

in semiconductors5- 7• 
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To date, FE capture processes have been studied in detail only in silicon. 

Elliott et. al.8 observed the In BE lifetime in the temperature range 10-30 Kand 

deduced values for the In cross section OJn which have a temperature dependence 

of roughly T- 4 with OJn ~ 1013 cm2 at 10 K. Hammond and Silver9 assume 

a cross section of (10- 12 cm2K)/T for B and P impurities in silicon, and show 

that this value is consistent with their observations of the FE lifetime and BE to 

FE intensity ratios, in the temperature range 2- 16 K. Nakayama et. al. 6 report 

a value or 1.51 X 10-14 cm2 for the B cross section at 4.2 K. 

4.1.2 Results of this Work 

In this work, measurements are reported for the BE luminescence decay 

rates and intensity ratios in silicon doped with In and B. From these data, 

values are deduced for the exciton capture cross sections of In and B in the 

temperature range 3.6 - 5. 9 K. The impurity concentrations of the sample used 

in these experiments were suitable to permit cross section measurements in this 

temperature range. 

The results indicate that the In cross section shows a strong temperature 

dependence, increasing to greater than 10-12 cm2 at 3.6 K. We believe that this 

temperature dependence is due to excited states of the In BE. The B cross section 

is found to be about 10-13 cm-2 for T F::::::J 5 K, in agreement with the Hammond 

and Silver estimate. The ratio of B BE release rate to capture rate is shown to 

agree with simple detailed balance results using a ground state binding energy of 

3.3 ± 0.2 meV. 

4.1.3 Outline of Chapter 

In Section 4.2.1 we describe the samples and the apparatus used to measure 

the lifetime of the BE luminescence lines. The results or the lifetime measure­

ments are presented in Section 4.2.2. To relate these lifetimes to the capture 
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cross sections, it is necessary to understand the various capture and recombina­

tion mechanisms for the excitons in the system. In Section 4.2.3 we present a 

quantitative theory or the exciton recombination kinetics. Rate equations are for­

mulated which describe the capture, release, and recombination or the excitons. 

We are able to obtain an analytic solution or these equations in the form of a 

linear eigenvalue problem. The principle or detailed balance is used in Section 

4.2.4 to reduce the number or unknowns in the rate equations. In Section 4.2.5 

the cross sections for FE capture are computed from the observed lifetimes. The 

In cross section is observed to have a relatively strong temperature dependence. 

In Section 4.3 we discuss this behavior in terms or excited states of the In BE. 

The conclusions or this work are presented in Section 4.4. 

4.2 Kinetic Measurements 

4.2.l. Experiment&l 

Measurements were made on a single crystal float-zoned silicon sample doped 

with In and B. The impurity concentrations were determined by Hall effect 

measurements to be 6.8 X 1012 cm-3 and 3.5 X 1013 cm-3 respectively 10 . The 

residual P concentration was determined to be 0.9 X 1013 cm-3 . The sample was 

mounted in a variable temperature cryostat. Optical excitation was provided by 

an Ar+ laser with an opto-acoustic coupler to provide pulses of variable width. 

The beam was unfocussed, with a diameter or approximately 2 mm. Observations 

of the B BE decay rate were usually made using 2 µs pulses with a 0.2% duty 

cycle. Average power levels were always less than 5 mW, which was determined 

to result in less than O.l K sample heating. Continuous mode laser operation 

was used for observations of the intensity ratios. The luminescence wavelength 
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was selected with a SPEX 1269 single-pass spectrometer and photon counting 

was accomplished with a cooled S-1 photomultiplier. A time-to-pulse-height 

converter was used for decay rate measurements. The photomultiplier response 

as a function of wavelength was calibrated using a 1500 K black body source. All 

data were acquired on a Nuclear Data ND-60 multichannel analyzer and then 

passed to a PDP 11/34 computer for storage on floppy disk. 

4.2.2 Luminescence Decay Rates 

Figure 4.1 shows a typical photoluminescence spectrum of Si:In,B. The 

B(TO) line at 1.0928 e V and the In (NP) line at 1.1409 e V were used for the 

decay rate observations. In general, the decay rates of these BE luminescence 

lines depend on all the kinetic processes occurring in the system. Once the FE 

are created by the laser excitation, they can bind onto impurities, they can be 

released from impurities, or they can recombine. As will be shown, the BE decay 

curves (intensity versus time) are the sum of several exponentials, the decay time 

of each exponential being affected by all of these kinetic processes. 

Figure 4.2 shows the observed decay rates of the BE luminescence lines. For 

T < 7 K the In and B BE decay curves appear to be single exponentials. Roughly 

speaking, the In BE decay rate equals the capture rate or FE on In sites, and 

the B BE decay rate is the sum of the recombination rate (Auger decay) and the 

release rate of the BE. As the temperature increases the FE population increases 

(relative to the BE) and the decay curves or the In BE, B BE, and FE all start to 

resemble each other. The major component of the resulting decay curve is due 

to FE recombination, which does not contain any information about the cross 

sections. For T < 3 K the B BE decay rate equals (within experimental error) 

the Auger decay rate, so that the B BE release rate is too small to measure and 

the associated cross section cannot be calculated. Thus, only for 3 < T < 7 K do 



-

~ 

0 

>­
~ 

(/) 

z 
w 
~ 
z 

~ 

-1oso 

75 

PHOTOLUMINESCENCE SPECTRUM OF 
Si:In,B 

B(TO) 

P(TO) 

Nin = 6.8 x 1012 cm3 

Ne = 3.5 x 1013 cm3 

T = 4.2 K 

PUMP POWER = 3 mW CW 

--.it-- IOx SLIT WIDTH 

B(TA) ln(NP) 
P(NP) ' B(LO) + ~ 

(,FE (TO) j rB(NPl J ~f,__,FE(LOl , 
. - .~ 

l I T I I 

1100 1120 1140 1160 
ENERGY (meV) 

Figure 4.1: A typical photoluminescence spectrum of Si:In,B. A 3 mW unfocussed 
Ar+ laser was used for optical excitation. The bound exciton luminescence lines 
are labelled by the impurity (B, P, or In), with the symbol in brackets ref erring to 
the type of phonon involved in the transition (NP=no-phonon, TA=transverse­
acoustic, TO=transverse-optical, and LO=longitudinal-optical). 
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DECAY RATE OF THE Si:In AND 
Si:B BOUND EXCITONS AS A 
FUNCTION OF TEMPERATURE 
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Figure 4.2: Decay rates or the In(NP) and B(TO) luminescence lines. Below 5 K 
the observed decays were exponential and the error bars are too small to show. 
Above 5 K the observed dec~s appeared to be the sum of several exponentials, 
with decay rates in the indicated range. 
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the observed decay rates yield the kinetic information required for computation 

or the cross sections. 

4.2.8 Exciton Recombination Kinetics 

Let us now investigate how the cross sections can be calculated from the 

observed decay rates of the luminescence lines. The observed intensity I, of the 

luminescence arising from a particular exciton state, is linearly related to the 

concentration or occupied states n, by 

R 
I= --n, 

r"ad 
( 4.1) 

where R is the collection efficiency, which is determined by the sample charac­

teristics and the efficiency of the photon collection system. The radiative decay 

rate 1/ Trad is proportional to the oscillator strength f of the transition. The oc­

cupation of the exciton states is determined by a set of coupled kinetic equations9 

which describes the effect of exciton capture, release and recombination at neutral 

impurities. In the limit or low FE concentrations (low laser power), the role of 

bound multiexciton complexes can be neglected and the resulting equation for 

the FE (subscript 0) is 

(4.2a) 

where no is the FE concentration, ni is the concentration of excitons bound 

on impurity type ( i), Ni is the concentration of impurity type ( i), g is the FE 

generation rate, Ci and Ri are the capture and release rates of excitons on im-

purity type ( i), and TO is the FE recombination lifetime. For BE of concentration 

nt, ( i = 1, 2, ... ), the rate equations are 

(4.2b) 
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where Ti is the BE recombination lifetime. For BE in silicon, Auger decay is the 

dominant recombination mechanism. For low exciton concentrations (i.e. when 

the impurities are far from saturation), these equations may be linearized by 

taking the concentration of unoccupied impurities (Ni - ni) to be equal to the 

total concentration of impurities Ni. For the case of interest viz. decay following 

an optical pulse, g = 0 in Eq. ( 4. 2a). With these two simplifications, the solution 

of Eq. ( 4.2) for the case of m impurity types can be written as 

where 

m 

n = L aiZie>..'t, 
i=O 

n= 

(4.3) 

Zi are the eigenvectors and Ai the eigenvalues of the fundamental matrix A formed 

from the coefficients of the concentrations in Eq. ( 4.2). The ai are constants 

determined by the initial conditions. For the case of two impurity types and the 

FE, 

A= (4.4) 

0 

This matrix has three negative eigenvalues. Thus, the exciton concentrations wiJl 

be composed of three decaying exponentials. The amplitudes of the exponentials 

are determined by the initial conditions, which for the case of decay following a 

long optical pulse will be the steady-state solutions of Eq. ( 4.2 ). 

Once the fundamental matrix A is known it is straightforward to calculate 

its eigenvalues, which are equal to the experimentally observed decay times. For 

the case of In (subscript 1) and B (subscript 2) impurities, let us examine which 
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parameters in Eq. ( 4.4) are known. The FE recombination time ro is not very 

well-known and could be spatially dependent. Since these experiments were 

conducted at relatively low temperatures the results were not very dependent 

on ro, and in all calculations ro was varied in the range 2 - 1000 µs. The In BE 

Auger time r1 was taken to be 3 ns 11 but the results are insensitive to this value 

(one ot the eigenvalues of A is always very close to -(3 ns)- 1 and contains no 

useful kinetic information). The B BE Auger time 12 has been extrapolated from 

low temperature measurements12 (see Fig. 4.2) and is l/r2 = 0.91±0.02 µs- 1. 

The T = 3.6 K results to be presented later in this work are somewhat sensitive 

to this Auger rate, although the higher temperature results are not. The capture 

rates Ci are related to the capture cross sections CJi by 

Ci= CJiVth, 

where Vth is the FE thermal velocity. The mean velocity will be used here, 

Vth = ( 8kT )1/2 
Trmex 

(4.5) 

(4.6) 

where mex is the FE mass (0.6 m 0 )
8 . The cross sections O'i in Eq. (4.5) are the 

major unknowns in this work. Roughly speaking, by measuring two eigenvalues 

of A we can deduce a1 and a2. As will be discussed in the following section, the 

release rate Ri can be related to the capture rates Ci using detailed balance. We 

find that R1 is negligibly small for the temperatures used here. R2 is computed 

from C2, but only with the use or one additional parameter (E2). This parameter 

is the third unknown, and a luminescence intensity ratio is measured in order to 

determine its value. 

4.2.4 Detailed Balance 

Let us consider a system which consists of some population of species which 

can exist in either free states or bound states. The free species are captured into 
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the bound states, and the bound species are released into the free states. We 

assume that our system is in contact with some large heat bath (e.g. phonons) 

which provides the energy for the release process, and absorbs the energy from 

the capture process. Clearly there is some similar physics involved in the capture 

and release processes. The principle of detailed balance30 tells us that the actual 

transition probabilities (matrix elements) for capture and release are equal. If the 

capture rate is large, then the release rate should also be large (just how large 

depends on the temperature and possibly other quantities). Thus, we expect some 

sort of proportionality to exist between the release and capture rates. This type 

or relationship goes under the general title or "mass-action". Here, we will derive 

this relationship for our system of free excitons (FE) and bound excitons (BE). 

Excitons in semiconductors undergo various kinetic processes other than 

just capture and release. As shown in Eq. (4.2), the FE are generated and can 

recombine, and the BE can also recombine. However, the ratio of release to 

capture rate should not depend on these additional processes. In other words, 

the probability per unit time for release or capture should be independent of 

whatever other kinetic processes exist (but the number of particles released or 

captured per unit time clearly depends on all or the kinetics). Thus, the release 

to capture ratio in the real system should be equal to the release to capture ratio 

in some imaginary system in which the generation and recombination channels 

do not exist. Let us call this latter system the "long-lived" system (since the 

species have an infinite lifetime in this system). Our preceding remarks can be 

summarized as 

(~)real = (~)long-lived' (4.7) 

where R is the release rate and C is the capture rate. This equation is the basic 

assumption of detailed balance. The arguments which led us to this assumption 
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are rather subtle. However, in our case we believe Eq. ( 4.7) to be valid as long 

as the system is truly in equilibrium with a large heat bath, and possibly as long 

as the concentration of Cree species is not too large. 

The long-lived exciton system can be described as 

(4.8) 

where A 0 refers to a neutral acceptor. In analogy with Eq. ( 4. 2 ), the rate equation 

for both the FE and the BE in this long-lived system, in steady-state, is given by 

0 = noC(N - n) - Rn, (4.9) 

where no is the FE concentration, n is the BE concentration, and N is the total 

acceptor concentration. By rewriting Eq. (4.9), we find that 

(R) ((N - n) ) - = no . 
c long-lived n long-lived 

(4.10) 

The quantity on the right-hand side of this equation can be computed using 

statistical mechanics. The FE are described using a spherical band of degeneracy 

go and effective-mass mex· We assume that the occupation or the band can be 

described by a classical occupation factor; exp[-(E- µ)/ kT]. The concentration 

of FE is then computed to be 

100 ( )3/2 go 2mex 
no= exp[-(E-µ)/kT]-

2 
-- VEdE 

0 47r n,2 
(4.lla) 

( 
kT)

3/2 
mex 

= go exp(µ/ kT), 
2trn2 

( 4. llb) 

where µ is the chemical potential. The concentration or BE is computed using 

a grand-canonical-ensemble or discreet levels with energy -E and degeneracy g. 

Neglecting the probability for multiple occupation, we find that 

n 
( ) = gexp(E/kT)exp(µ/kT). 
N-n 

( 4.12) 
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By combining Eqs. (4.7)-(4.12), the release to capture ratio (in the real system 

or the long-lived system) is found to be 

R = K(T) =go mexkT exp(-E/kT), 
( )

3/2 

c g 2tr1i2 
(4.13) 

where K(T) is defined here as an "equilibrium constant". Finally, by evaluating 

the degeneracy factors and adding a subscript i to denote the impurity type, the 

equilibrium constant is computed to be 

Ki= 4 · 24{1 + exp(AEo/kT)] mexkT exp(-Ei/kT), 
( )

3/2 

12 + 60 exp ( -l:l.Ei/ kT) 2trn2 
(4.14) 

where AEo = 0.31 meV is the splitting of the FE ground state t 3 ,l 4 (degeneracy 

of 24 in each of the upper and lower states), AEi is the J-J splitting of the BE 

ground state (degeneracy of 12 and 60 in the lower and upper states respectively), 

and Ei is the BE binding energy. For In, E1 = 13.7 meV, and for the temperature 

range used in these experiments the In release rate is negligibly small. The 

reported values of theB BE binding energy are 4.2±0.2 15, 3.8±0.2 16 , 3.9±0.3 

4, and 3.6±0.5 meV4 • For discussion we will use the value E2 = 3.9±0.3 meV. 

The 8% uncertainty in E2 resu)ts in almost an order of magnitude uncertainty 

in the factor exp (-E2/kT) (for 3 < T < 7 K). For this reason, the value of E2 

(and then of K2) is treated as an unknown in the calculations. 

4.2.S Analysis of Observed Data 

The theoretical decay rates of the BE luminescence lines are given by the 

eigenvalues of A, Eq. ( 4.4). As discussed in the previous sections, this matrix 

contains three unknowns; the In cross section 01, the B cross section 02, and the 

B equilibrium constant K2. The purpose of these experiments is to determine 

these three parameters, as a function of temperature, based on measurements of 

the decay times and intensity ratios of various luminescence lines. In particular, 
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the quantities which are measured are two eigenvalues or the matrix Eq. ( 4.4 ), 

and the intensity ratio, I1n/ IB or the B(TO) line to the In(NP) line. The observed 

values or IIn / IB were corrected for photomultiplier response, and were related to 

a concentration ratio using a B(TO) oscillator strength or 2.8 X 10-5 ± 10%17 

and an In(NP) oscillator strength or 8.5 X 10-5 ± 10%18. This concentration 

ratio is related to the unknowns through the eigenvectors of Eq. ( 4.4) and the 

steady-state solutions or Eq. (4.2). The procedure used to analyze the data 

was to calculate as a function or K2, values for a1, a2 and Jin/ lB based on the 

observed decay rates. The observed value of fin/ lB was then used to determine 

the appropriate range or K2 consistent with experiment, and using these K2 

values the cross sections were determined. This procedure was repeated at each 

temperature. 

The results for the B equilibrium constant K2 are in agreement with the 

theoretical predictions of Eq. (4.14) using a binding energy E2 = 3.3 ± 0.2 meV 

and a splitting fl.E2 = 0. This binding energy is about 20% lower than the 

values observed by other authors. Most of these other values were obtained using 

spectroscopic line positions, and do not rely on the use of detailed balance. One 

possible source of the observed 20% discrepancy is that Eq. (4.14) is too simple, 

since it neglects effects such as anisotropic FE bands and excited states of the 

BE resonant with FE states. 

Shown in Fig. 4.3 are the cross sections measured in these experiments, 

along with previously reported values e,s,g. The error bars on the cross sections 

are the result or uncertainties in the various quantities used in the calculations, 

and include possible errors due to the residual P in the sample. We see that 

the In cross section continues to show a strong temperature dependence down 

to T ~ 5K, in contrast with the mild temperature dependence of the B cross 
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section. The B cross section measured here appears to be somewhat smal1er 

than the Hammond and Silver estimate, although the difference is not significant 

within experimental error. It is surprising to see that for T ~ 5K, the B cross 

section is an order of magnitude less than the In cross section. This is opposite 

to what is expected from consideration of BE ground state binding energy, since 

the In BE is more tightly bound than the B BE and hence should have a smaller 

capture cross section. 

4.3 Excited States or the Bound Exciton 

In the previous section we have presented results for the In and B BE 

capture cross sections. We observe that the In cross section has a much stronger 

temperature dependence than that of B, and at low temperatures OJn is an order of 

magnitude larger than 013. In an effort to explain these large differences between 

the In and B cross sections, let us consider excited states of the BE and what 

effect these states may have on the results presented here. The spatial extent of 

an excited state is large compared to the ground state, and so the probability 

of capture into these states should also be large. However, a particle which is 

captured into an excited state will have a relatively large probability for being 

thermally released back into the free states. At zero temperature, the total cross 

section for particle capture will simply be the sum of the cross sections of all 

states. At increased temperatures, the higher lying excited states will not be 

effective since the particles captured into these states will usually be immediately 

released. Thus, excited states lead to a temperature dependent cross section 

which could be rather large at low temperatures. 

The BE spectrum for Si:In and Si:B has been previously investigated using 
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both luminescence and absorption l S, 17' 19- 21 • For Si:In a low energy triplet 

structure (ground state plus two excited states) has been observed as well as 

two highly excited states 19
• For Si:B the ground state appears to be split into a 

triplet21 , and no other excited states have been observed. Calculations by Chang 

and McGill22 indicate that the excitation energy of the 2s excited state of the 

outer particle, for the case of Si:In, is comparable to the BE binding energy so 

that the state might be bound. For Si:B the calculations indicate that this state is 

definitely not bound. Inner particle excitations and multiple-particle excitations 

may provide bound excited states. 

It is straightrorward to incorporate excited states into the rate equations 

(4.2). One simply writes an equation for each state, the population of the states 

being related by the transition rates between bound states and the transition 

rates from bound to free states. A more common procedure (especially for the 

case of electron-donor capture) is to analyze the decay rates (eigenvalues) on the 

basis or a single-level model with one rate equation for the free species and one 

rate equation for each bound species. The resulting capture cross sections are 

then interpreted as total cross sections and are compared with that computed 

from the theory of cascade capture, first developed by Lax23
, and extended by 

many authors 24- 28• Roughly speaking, the theory of cascade capture says that 

those levels bound by energies greater than kT (lower levels) will contribute to 

the capture process whereas those levels bound by energies less than kT (upper 

levels) do not contribute to the total capture cross section. Particles captured 

in lower levels are seen as rapidly losing their energy via phonon emission and 

moving down to the ground state. Particles captured in upper states are quickly 

ejected into the free states via phonon absorption. The total cross section crt is 

computed from the cross sections of the individual levels C!j by 
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(4.15) 

where S;j is the sticking probability or the lh level, defined as the probability 

that a particle captured in the jth level will reach the ground state before being 

ejected into the free states. Sj is close to unity for the lower levels and close to 

zero for the upper levels. 

It is clear that the total cross section defined by Eq. ( 4.15) is in no way 

rigorously related to that computed from experiment. As was originally pointed 

out by Lax, the very concept of a sticking probability implicitly makes some 

assumptions about the transition rates in the system, such that the captured 

particle reaches the ground state, or escapes, in a time that is small compared 

to the decay times in the experiment23• The validity or replacing a complete set 

of rate equations with just a single equation (for each impurity type) has been 

examined by Pickin28 for the case or electron-donor capture. He shows that if 

the impurity concentration is low enough then the single rate equation is valid, 

with the capture rate being interpreted as a total capture rate (due to cascade 

capture) and the release rate as a total release rate (due to inverse- cascade). 

Direct calculation indicates that these total capture and release rates are related 

by detailed balance, using the ground state binding energy29 • The reason that 

the ground state plays such an important role, even if most capture and release is 

via excited states, is that most or the population or the bound species resides in 

the ground state. Thus, when analyzing data in order to produce cross sections, 

it is only necessary to use one rate equation for each impurity type and one 

equation for the free species (e.g. as done in Eq. (4.2)) even if there are excited 

states in the spectrum. Also, detailed balance (using ground-state energies) can 

be used to relate release and capture rates. The resulting cross sections must be 

interpreted as total cross sections (in the sense or Eq. ( 4.15)) and may contain 



88 

small dependences on seemingly unrelated parameters, due to the approximations 

involved in defining a total cross section. 

Now let us consider the case or interest, namely, acceptor bound excitons 

in silicon. The cross section or a single level O"j is the integral over occupied FE 

states or the cross section for capture or a FE or energy E into the Jth level (JJ·f..: 

Uj(T) = laoo f ( E, T)aj,N( E )dE, ( 4.16) 

where f(t, T) is the occupation or FE states and N(t)dt is the density or FE 

states . . This equation will result in some temperature dependence or the O), 

although CJ)e is not temperature dependent and is related to the matrix element 

or the electron-phonon interaction between neutral acceptor with FE state and 

the BE state. It seems reasonable that the temperature dependence expressed 

by Eq. (4.16) could account for the observed temperature dependence or the B 

cross section (see Fig. 4.3). However, the rapid variation with temperature or the 

In cross section must be due to highly excited states whose sticking probabilities 

contain the temperature dependence. The fact that the In cross section still varies 

rapidly at temperatures as low as 5 K suggests that the relevant excited states 

are bound by energies as small as about 1 meV. The 1.1544 eV line observed by 

Elliott et. al. rn for Si:In probably plays an important role in determining the 

magnitude of the capture cross section. 

4..4 Conclusions 

In conclusion, we have measured the boron BE equilibrium constant (ratio or 

release to capture rates) and the boron and indium FE capture cross sections, in 

silicon, for the temperature range 3.6 - 5.9 K. The B BE equilibrium constant is 

shown to agree with detailed balance results using a ground state binding energy 
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or 3.3±0.2 meV. The In cross section is found to be quite temperature dependent, 

increasing to greater than 10-12 cm2 at 3.6 K. The B cross section about 10-13 

cm2 for T r:::::::; 5 K. The strong temperature dependence of the In cross section, 

compared to that or B, probably results from highly excited states of the In BE. 
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CHAPTER 5 

VIBRATIONAL MODES OF OXYGEN IN GaP 
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5.1 INTRODUCTION 

5.1.1 Phonon Spectroscopy 

The photoluminescence spectra or defects in semiconductors often contain 

information about the vibrational modes of the d'efect. As was discussed in 

Section 1.3.2, "phonon replicas" of the main n<>-phonon luminescence line are 

observed in the spectra. These phonon-assisted lines are shifted from the ncr 

phonon line by the energy of the particular phonon involved. Thus, the spectrum 

directly yields phonon energies, and in this sense can be regarded as a type or 

phonon spectroscopy. Ir the optical transition produces significant changes in the 

local electronic configuration of the defect, then the phonons which are excited 

will be characteristic of the defect itself (rather than the bulk crystal). This 

is often the case for "deep-level" defects in semiconductors. The observation 

and identification or the defect phonon modes yields information about the bond 

strengths and atomic configuration near the defect. 

A defect vibrational mode can be roughly defined as a mode in which the 

amplitude of vibration in the vicinity of the defect is much larger than the 

amplitude far away from the defect. For a local£zed mode, th<: vibrational 

amplitude falls to zero as we move away from the detect. A localized mode occurs 

at some energy where no bulk modes appear. For a resonant mode, all or the 

atoms in the crystal vibrate with nonzero amplitude. However, in some range of 

energies the atoms near the defect may vibrate with a much enhanced amplitude. 

If this range of energies is small, we then have a "narrow" resonance which may 

be observed as a sharp spectral peak. If the energy range is large, we have a 

"broad" resonance which will probably not be observed. One quantity which 

effectively describes defect modes is the local density-of-states. Roughly, this is 

just the fraction or a state which is concentrated near some point in space (e.g. 
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the defect). Localized modes show up as 8-Cunctions in the local density-of-states, 

and resonant modes appear as peaks with some nonzero width. For particular 

types or experiments, the local density-of-states can be rigorously related to the 

observed quantity 1. For our purposes, it will suffice to examine the local density­

oC-states itself. 

For the case or oxygen in gallium phosphide, it is resonant vibrational modes 

which are observed in experiment. The calculations to be presented in this 

chapter were undertaken in an effort to understand the nature or these phonon 

resonances. The computational technique used is that or Green's functions. The 

first step in the computation is to calculate the normal modes of the perfect 

crystal. The defect is then introduced as a localized perturbation, and the 

vibrational modes of the imperfect crystal are evaluated. The Green's function 

method has been widely used in the evaluation or defect vibrational modes 1- 9 . 

For the case or substitutional defects in zinc-blende crystals these applications 

have generally been concerned with localized phonons. Here we will be mainly 

concerned with resonant phonons. In particular, we will concern ouselves with 

the coupling between the vibrations or the defect and those or the bulk crystal. 

If this coupling is strong then the defect phonon will be quite extended in space 

and will probably not be observed in experiments. However, those defect phonons 

which are weakly coupled to the lattice may be observed. This investigation of 

the coupling ("width") of the resonances is a unique aspect of this work. 

Let us consider the spectrum of phonons which may be observed for some 

defect in a crystal. What information can be obtained Crom the defect phonons? 

The energy of the phonons is determined by the mass and spring constants of 

the defect, along with the energies of the bulk phonons. For the case or a defect 

of known symmetry and known chemical type, we obtain information about the 



95 

strength of the bonds in the vicinity of the defect. However, it is often the 

case that the symmetry and/or chemical type of the defect is not known. Then 

the interpretation of the defect phonons is more difficult. Perhaps the phonon 

spectrum can be used to identify the type of defect. This immediately leads 

us to the following question: how many defect modes exist for some given type 

of defect? We are not so much concerned about the energies of the modes -

the real question concerns the existence of modes and an assignment of their 

symmetries. In this chapter we will specialize to the case of oxygen in gallium 

phosphide, and so the question we will address is: how many defect vibrational 

modes exist !or a substitutional impurity in a zinc-blende lattice? To answer 

this question, we must concern ourselves with the nature of the defect and the 

coupling between the defect and the bulk crystal. The number of defect modes 

depends on this coupling. We will use a simple model to describe the bulk crystal 

and the defect. Within this model, the vibrational modes of the entire system 

are evaluated exactly, and we will investigate the amplitude of these modes in 

the vicinity of the defect. 

5.1.2 Defect Reactions 

The intensity of phonon replicas observed in luminescence spectra is related 

to the change in the atomic configuration which occurs in the optical transition10 . 

If a large change occurs in the value of some collective coordinate, then the 

associated phonon replicas will be very intense. Thus, by understanding the 

nature of the defect phonons which are observed in the spectrum, we learn about 

the ways in which the atoms move in the electronic transition. 

In Chapter 3 we have argued that the dissociation of nearest-neighbor (Zn,O) 

pairs in GaP is due to some large amplitude vibration which is excited upon 

electron-hole recombination at the defect. This mechanism implies the existence 
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of some very intense phonon modes in the luminescence spectrum. These in­

tense modes are indeed observed. The broad band seen in Fig. 3.2(b) for the 

(Zn,O )m=l DA luminescence is due to a series of phonon replicas. Although 

the band shown in Fig. 3.2{b) is featureless, other workers 11 have been able to 

resolve a 6.0 meV ripple on the high energy edge or the band. For the case of 

(Cd, 0)m=1 pairs 12, the phonon replicas are clearly resolved and most of the 

luminescence is contained in a 7.2 meV replica. We conclude that the broad 

(Zn,O )m=l band is due mainly to 6.0 meV replicas. This mode is very strongly 

coupled to the electronic transition and so it is almost certain that this mode 

leads to the dissociation of the nearest neighbor (Zn,O) pairs. Thus, by iden­

tifying the nature of this 6.0 me V mode we can gain a better understanding of 

the atomic motion which occurs when the nearest-neighbor pairs dissociate. The 

calculations presented in this chapter represent the first step towards identifying 

this 6.0 me V mode. 

5.1.3 Results or this Work 

The purpose of this work is to understand the vibrational modes of defects 

in crystals. The detect we will consider consists of an 0 atom on a P~site in GaP. 

The number of defect modes depends on the force constants of the springs which 

connect the impurity to its neighbors. For values of the defect force constants 

less than those of the bulk, we find two defect vibrational modes, one with Ai 

symmetry and the other with T2 symmetry. Depending on the force constants, 

these modes may be localized, or resonant with the bulk phonons. These results 

compare well with experiment, in which we observe two resonant modes. From 

the energy of the observed modes we find that the strength of the 0-Ga springs 

is roughly 50% of the P-Ga springs. This suggests that 0 in GaP is a weakly 

bonded defect. 
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5.1.4 Outline or Chapter 

The general theory of Green's functions as applied to the problem of the 

vibrational states of crystal defects will be discussed in Section 5.2. Symmetry 

considerations are presented in Section 5.2.1. The defect we are considering 

consists of a substitutional impurity atom together with its four nearest-neighbor 

atoms. This 5-atom cluster is described by 15 cartesian coordinates, leading to 

15 X 15 = 225 elements in the Green's function matrix. By defining appropriate 

collective coordinates for the cluster, the number of independent matrix elements 

can be reduced to only 9. In Section 5.2.2, we present the two-parameter model 

which is used to describe the bulk phonons. The dynamical matrix for the system 

is derived, and the eigenvalues and eigenvectors of this matrix give the normal 

modes ot the perfect crystal. In Section 5.2.3, we define the Green's function for 

the perfect crystal and we show how this can be used in the evaluation of the 

vibrational modes of the defect. The actual computation of the Green's function 

is discussed in Section 5.2.4. The perturbation which defines the defect in the 

crystal is given in Section 5.2.5. 

The results of our calculations are presented in Section 5.3. We show 

the computed dispersion curves and density-of-states for the bulk phonons in 

GaP. The values for the two parameters in our model were chosen to give good 

agreement between the calculated phonon energies and the real energies. The P­

site Green's functions are presented in Section 5.3.2. The local density-of-states 

for the A1 and T2 defect vibrational modes are shown in Section 5.3.3. For 

reduced values of the defect force constants, we find one Ai defect mode and one 

T2 defect mode. The energies of these modes are quite close to those obtained 

from an approximate solution to the problem. A comparison between theory and 

experiment is given in Section 5.3.4. The conclusions which can be drawn from 
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this work are presented in Section 5.4. 

5.2 GENERAL THEORY 

S.2.1 Symmetry Considerations 

The labelling or the bulk phonon modes is determined by the space group 

or the crystal. The translational symmetry of the perfect crystal results in 

vibrational modes which are plane-waves, labelled by their wave-vector k. The 

values of k can be restricted to the first Brillouin zone. The shape of this zone 

is determined by the rotation symmetry (point group) of the Bravais lattice. 

Here we will be considering zinc-blende crystals for which the Bravais lattice is 

face-centered-cubic and the first Brillioun zone is a truncated octahedron13. The 

zinc-blende crystal has two atoms per unit cell, resulting in a total of six branches 

in the dispersion curves; three acoustic branches and three optical branches. 

The symmetry of an imperfect crystal (perfect crystal plus a defect) is most 

easily seen by considering a small molecule which includes the defect and its 

neighboring atoms. For the case of a. substitutional defect in a zinc-blende crystal 

this molecule consists of a 5-atom cluster with Td symmetry, as shown in Fig. 

5.1( a). The positions of the 5 atoms are specified by 15 cartesian coordinates. 

These coordinates form a 15-dimensional representation of the Td group. This 

reducible representation r can be decomposed into the irreducible representations 

of the Td group according to 

(5.1) 

This equation classifies the collective coordinates of the 5-atom cluster. These 

coordinates are very useful for describing the motion of the molecule. The 

coordinates which we will use here are shown in Fig. 5.l(b) and 5.l(c ). The 
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(a) 

(b) to 
-o,~ 

(A.) 

Figure 5.1: Coordinates for a five-atom defect with tetrahedral symmetry; (a) 
cartesian coordinates of the atoms, (b) an A1 collective coordinate consists or 
radial motion of the outer atoms in a "breathing mode", and (c) motion of the 
inner atom which forms a T2 collective coordinate. 
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Ai coordinate consists of a "breathing" type of motion in which the central 

atom is stationary and the outer atoms move radially. In terms of the cartesian 

coordinates shown in Fig. 5.l(a), the A1 coordinate can be expressed as 

1 
Qi = -(xi+ Yi+ z1 - x2 - Y2 + z2 - X3 + Y3 - Z3 + X4 - Y4 - Z4). (5.2) 

v'i2 
The motion of the central atom, as shown in Fig. 5.l(c), forms a basis for a T2 

representation of the Td group. This T2 coordinate is simply expressed as 

Qi3 = xo, Qi4 =yo, Qis = zo. (5.3) 

The other two sets of T2 coordinates involve particular types of motion of the 

outer atoms. Similarly, the E and Ti coordinates involve motion of the outer 

atoms with the inner atom stationary. The definition of all the collective coor­

dinates is given in Table 5.1. 

The description of the normal modes of a point defect in a crystal is greatly 

facilitated by the use of the collective coordinates described above. As will be 

discussed in Sections 5.2.3 and 5.2.4, the lattice dynamics is described by a 

Green's function matrix, with elements GiJ°· Initially i and J label cartesian 

coordinates of each atom. The 5-atom defect molecule is described by a 15 X 15 

block of the Green's function. This 15 X 15 matrix will be block diagonalized by 

transforming to the collective coordinates Q. The transformed matrix consists of 

1 X 1, 2 X 2, 3 X 3, and 9 X 9 blocks for the Ai, E, Ti, and 3T2 representations 

respectively. Futhermore, the matrix elements do not depend on the row or 

column of the representation, so that these blocks can be further reduced to 

1 x 1, 1 x 1, 1 x 1, and 3 x 3 blocks respectively; for a total or g independent 

matrix elements. Thus, using symmetry the 15 X 15 = 225 matrix elements 

of the Green's function in the space of the defect have been reduced to only 9 

independent elements. 
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Table 5.1: Collective coordinates for a 5-atom tetrahedral molecule. The collec­
tive coordinates Q are expressed in terms of the cartesian coordinates ( x, y, z) of 
each atom. The collective coordinates form bases for the irreducible representa­
tions of the Td group as indicated. 

Qi = (x1 + Yl + z1 - x2 - y2 + z2 - x3 + y3 - z3 + x4 - Y4 - z4)/.Jl2 

E: 

Q2 = (-x1 - Yl + 2z1 + X2 + Y2 + 2z2 + X3 - Y3 - 2z3 - X4 + Y4 - 2z4)/v24 

Q3 = (x1 - Yl - x2 + Y2 - x3 - Y3 + x4 + Y4)/VB 

T a. 
2· 

Q4 = (-y1 + z1 -y2 - z2 + Y3 + z3 + Y4 - z4)/VB 
Qs = (+x1 - z1 + x2 + z2 - x3 + z3 - x4 - z4)/Vs 

Q5 = (-x1 + Yl + x2 - Y2 - X3 - Y3 + x4 + Y4)/../8 

Q1 = (+2x1 - y1 - z1 + 2x2 -y2 + z2 + 2x3 + Y3 - z3 + 2x4 + Y4 + z4)/v'24 

Qs = (-x1+2y1 -z1 - x2 + 2y2 + z2 + x3 + 2y3 + z3+ x4 + 2y4 - z4)/v'24 

Qg = (-x1 - Yl + 2z1 + x2 + y2 + 2z2 - X3 + y3 + 2z3 + x4 - Y4 + 2z4)/v'24 

T b. 
2· 

Qio = (x1 + Yl + z1 + x2 + Y2 - z2 + X3 - Y3 + Z3 + X4 - Y4 - z4)/v112 

Qu = (x1 + Yl + z1 + x2 + Y2 - z2 - X3 + Y3 - Z3 - X4 + Y4 + z4)/v112 

Qi2 = (x1 +YI+ z1 - x2 - Y2 + z2 + x3 - Y3 + z3 - x4 + Y4 + z4)/.Jl2 

T c. 
2· 

Qi3 = xo 

Qi4 =Yo 

Q15 = zo 
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5.2.2 Description or Bulk Phonons 

In this section we discuss the solution for the vibrational modes of a perfect 

crystal. The lattice dynamics will be described using a simple two-parameter 

model. This model consists of nearest-neighbor bond-stretching and bond-bending 

interactions. The potential energy for the entire lattice is constructed, and from 

this potential the dynamical matrix is computed. This model gives identical 

results with those described by Grimm et. al. 1• They derived their dynamical 

matrix entirely from symmetry considerations and they showed that the model is 

the most general two-parameter model for a zinc-blende system described entirely 

by nearest-neighbor interactions. 

Consider a lattice containing N unit cells and r atoms per unit cell. The 

indices l and m will label the cells, and a and b will label the atomic types. A 

general atom will be labelled by i or j. Let the equilibrium position of an atom 

be denoted by Rta, and let its position away from equilibrium be denoted by Uta. 

The atoms are connected to their nearest-neighbors by springs. Each spring is 

described by a stretching force constant Ji and a bending force constant f2. The 

total potential for the system can be expressed as a summation over all springs 

s: 

where 

Ri. - R1·• es=-----
IRi. - RJ~I 

(5.4a) 

(5.4b) 

is the direction vector for the sth spring. The terminating atoms of the sth spring 

are labelled by is and j 6 • The kinetic energy tor the system can be expressed as 

a summation over all atoms i: 

(5.5) 
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where mi is the mass or the ith atom. 

The normal modes or the system can be obtained immediately from Eqs. 

(5.4) and (5.5) in the form of a 3rN-dimensional eigenvalue problem14 . An 

expansion of the potential energy is made, and in the limit of small oscillations 

only the 2nd-derivative terms are retained, 

V - 1 '""" ""at f3 at f3 - 2 ~ 'i' lm ab Uta Umb' (5.6) 
laombf3 

where a and f3 label cartesian components (x, y or z). The force constants <I> are 

given by 

af3 tPv 
'l>tmab = · 

ouFaau~b 

Assuming a harmonic time dependence for ·u~(t), 

ufa(t) = u~ exp(iwt) 

the equations or motion of the perfect lattice can be expressed as 

L(maw2
btmbabDaf3 - <I>?'~ ab)u~b = 0. 

mbf3 

This equation can be written more compactly in matrix form as 

Lu =O, 

(5.7) 

(5.8) 

(5.9) 

(5 .10) 

where L is a matrix whose elements are the quantities given in brackets in Eq. 

(5.9), and u is a vector whose elements are the amplitudes u?'a· The matrix L 

here plays the role of the operator E-H in the electronic (quantum-mechanical) 

defect problem. 

The translational symmetry of the perfect lattice enables us to solve for its 

vibrational modes in terms of a 3r-dimensional eigenvalue problem 14
. First we 
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Table S.2: The dynamical matrix for a zinc-blende lattice. The matrix elements 
are denoted by D~f where a and f3 label cartesian coordinates (x, y, or z), and 
a and b label atomic types (1 or 2). The dynamical matrix is Hermitian, so that 

* Df: = D~f . The spring constants are given by h for bond-stretching and f2 

for bond-bending. The lattice constant is denoted by a0 • 

aa 1 (1 2 ) Di2 = -h+-h · 
Jm1m2 3 3 

(-1- expf-iao(kx + ky)/2] - exp[-iao(kx + kz)/2] - exp[-iao(ky + kz)/2]) 

xy yx 1 ( 1 1 ) Di2=D12= -h--h · 
.Jm1m2 3 3 

(-1 - exp[-iao(kx + ky)/2] + expl-iao(kx + kz)/2] + exp[-iao(ky + kz)/2]) 

xz zx 1 ( 1 1 ) D12=D12= -h--h · 
Jm1m2 3 3 

(-1 + exp(-iao(kx + ky)/2] - exp[-iao(kx + kz)/2] + exp[-iao(ky + kz)/2]) 

yz zy 1 ( 1 1 ) D12=D12= -h--h · 
..jm1m2 3 3 

(-1 + exp[-ia0 (kx + ky)/2] + exp(-iao(kx + kz)/2] - exp{-iao{ky + kz)/2]) 
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construct a dynamical matrix, defined by 

D~f (n, k) = 
1 L 4>ufabexp(-ik · Rta). 

../mamb l 
(5.11) 

The index k labels the normal modes, which are plane-waves with wave-vector k. 

From Eqs. (5.4), (5.6) and (5.11), the dynamical matrix for a zinc-blende lattice 

can be determined, and the result is given in Table 5.2. The normal modes are 

then given by the eigenvalues w2(n, k) and eigenvectors ~i:(n, k) of the dynamical 

matrix, 

L D~f (n, k)ef (n, k) = w2(n, k) ~~(n, k), 
b/3 

(5.12) 

where the 3r different solutions of this equation are labelled by n. The phonon 

energies are now given by Enk = nWnk and the atomic vibrational amplitudes 

in the (nk)th normal mode are given by 

u?a(n, k) = €~(n, k)-
1

- exp(z'k · Rta). 
rm;, 

5.2.3 Green's Function Formalism 

(5.13) 

The Green's function technique has been generally used in solid-state physics 

for treating the properties of defects in crystals. The idea of the technique is 

to solve the defect probem by first considering the normal modes of the perfect 

crystal. These modes are divided into various types according to the symmetry of 

the defect. One then constructs a perturbation matrix, which represents the effect 

or the defect in the crystal. Using this defect perturbation matrix, along with the 

normal modes of the perfect crystal, the normal modes for the imperfect crystal 

can be obtained. The size of the matrices involved in this final step depends on the 

extent of the defect perturbation in the crystal. For a localized defect, the Green' s 

function technique offers significant computational advantages over the direct 

computation of the normal modes of the imperfect crystal. The general theory 
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of Green's functions as applied to defect problems has been discussed by many 

authors15- 20 • Maradudin and co-workersl,lQ,20 treat the case of vibrational 

modes in crystals, and the formalism presented here closely follows their work. 

In the previous section we discussed the solution for the normal modes of 

a perfect crystal. Now let us introduce a defect into the crystal. Let the new 

L-matrix be given by L = Lo - 8L where L 0 refers to the perfect crystal. We 

will refer to 5L as the "defect perturbation matrix". Just as in Eq. (5.10), the 

normal modes of the imperfect crystal are given by those values of w2 and u 

which satisfy 

Lu = (Lo - 8L )u = o. (5.14) 

This equation can be solved by introducing the Green's function for the perfect 

crystal G0
, which is formally defined as the inverse of L 0 : 

(5 .15) 

Assuming that such a G0 does indeed exist, Eq. (5.14) can be rewritten as 

G0(L 0 
- 8L)u = o 

(1- G0 8L)u = 0. 

(5 .16a) 

(5.16b) 

This equation as it stands does not offer any particular advantage over Eq. (5 .14) 

since it is still a 3r N-dimensional eigenvalue problem. However, if the defect 

perturbation extends over only some small number of atoms, say n atoms, then 

5L will only contain a small 3n X 3n block of non-zero values. We can partition 

8L, G0 , and u into those coordinates in the space of the defect and those outside 

the defect: 

(5.17) 
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Equation (5.16b) then can be rewritten as 

( 1 - g0 81)u1 = O 

G~2 81 u1 = u2. 

(5.18a) 

(5.18b) 

Equation (5.18a) is 3n-dimensional and thus it is relatively easy to solve. If we 

denote q = (1 - go 81), then the solutions of Eq. (5.18a) are given simply by 

detq = 0. (5.19) 

So far we have assumed that G0 as defined by Eq. (5.15) does indeed exist. 

This is true for energies outside of the allowed energy bands. However, for 

energies inside the bands, Eq. (5.15) clearly cannot be satisfied since L0 (w~k) 

has a zero eigenvalue and therefore has no inverse. Formally, this problem is 

avoided by adding a small imaginary part to w2; w2-+w2 + iE, and later taking 

the limit E-+0+. Physically, the problem can be interpreted in terms of scattering 

theory, in which the defect is viewed as a scattering center of incident waves. 

For certain values of w2 the defect may have a very large scattering cross-section. 

Alternatively, we can maintain a picture similar to localized modes but now all of 

the atoms in the system vibrate with non-zero amplitude. A resonant mode is one 

in which the defect atoms vibrate with significantly larger amplitude relative to 

atoms far away. Whereas a localized mode exists for only one discrete value of :.v• 2 , 

resonant modes exist for some range of w2 values. A characteristic of a resonant 

mode is its "width" in terms of w2 or w. Narrow (small width) resonances will 

generally be experimentally observable whereas broad (large width) resonances 

will be indistinguishable from bulk modes. 

A useful way to study resonant modes is to examine the the local density-of­

states. This can be computed from the diagonal elements of the Green's function 

Gii according to 

_.!_ImGii = ith partial density-of-states. 
7r 

(5.20) 



108 

For a perfect crystal the local density-of-states is identical at each equivalent 

atomic site. For the imperfect crystal, defect modes will be seen as peaks in the 

local density-of-states near the defect. The Green's function for the imperfect 

crystal is given by Dyson's equation 

(5.21) 

with the solution 

(5.22) 

Partitioning Gin the manner of Eq. (5.17), we find that the Green's function for 

the imperfect crystal, in the space of the defect, can be computed from 

-1 0 g= q g (5.23) 

where q = (1 - g0 81). Roughly speaking, peaks in g should occur near zeroes 

of q. For a multi-dimensional q we can search for zeroes in its eigenvalues. For 

localized modes, q and its eigenvalues are real. For resonant modes, go and q 

are complex, but peaks in g may still occur near zeroes in the real part of the 

eigenvalues of q. If the eigenvalues of q are denoted by :A, then the energy of a 

defect mode is given by E = 1iw, at those w values which satisfy 

(5.24) 

This equation unambiguously defines the energies of localized modes, but it is 

a somewhat arbitrary definition of a resonant defect mode. In general the local 

density-of-states as computed from Eqs. (5.20) and (5.23) should be examined. 

However Eq. (5.24) is a useful shorthand for locating resonant modes. The width 

in terms or w2 of such a mode can be shown to be19 

r= 2Im:A 

de2Re:A 
(5.25) 
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evaluated at those values or w2 which satisfy Eq. (5.24). The width is terms or 

energy is given by nr /2w. 

5.2.4 Computation of Green's Functions 

In the previous section we considered the method by which the Green's 

function is used in the solution for defect modes. Here, we will discuss the actual 

computation of the function. Maradudin 19 has shown that the Green's function 

for the perfect crystal can be expressed as 

* o af3 ( 2) _ 1 '°' E~(nk)~~ (nk) exp[ik · (Rta - Rmb)] 
Glm ab W - ~ 2 · 2 ' 

NJmamb nk W +it -wnk 
(5.26) 

where l and m label unit cells, a and b label atomic types, and a and f3 label 

Cartesian components. W~k are the eigenvalues and €~(nk) are the eigenvectors 

or the (nk)th normal mode. 

To produce a Green's function suitable for computation, we will apply two 

coordinate transformations. The first transformation is quite trivial and its effect 

is to drop the masses ma and mb from Eq. (5.26) and to absorb them in the 

defect perturbation 8L. This corresponds to expressing G0 with respect to the 

reduced coordinates qi = Vm"i Ui where Ui are cartesian coordinates. Second, 

we transform to the collective coordinates Qi discussed in Section 5.2.1 and 

defined in Table 5.1. In this coordinate system, ( s) and (r) label the irreducible 

representation, a and p label the occurence of the representation, and µ and v 

label the row or column of the representation. The Green's function can now be 

expressed as 

Go fL.V ( 2 ) = _!._ '°' Q(s)a(nk)Qrr),*(nk) 
(sJ(r) up W N ~ 2 + · 2 • 

nk w tE -Wnk 
(5.27) 

The summation on k extends over the entire first Brillouin zone. This can be 

divided into a sum over the irreducible wedge of the zone and a sum over the 

group elements R which define the star of k. Since the Q coordinates form 
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bases for irreducible representations or the Td group, they are orthogonal21 when 

summed over R, and we find that 

G
o f.V ( 2) - I " ~ ~ ~EK Q(s)u(nk)Q(s)p * ( nk) 
(sJ(r) up W - N L.J uµvu(s)( r) 2 + . 2 , (5.28) 

nkEwedge W tE - Wnk 

where hk is the number of points in the star or k, and ds is the dimension or the 

representation (s). We see that the Green's function is zero unless (s) = (r) and 

µ = v (in which case it is not dependent on the value ofµ). Keeping these zero 

elements in mind, we can simplify the notation by dropping the subscripts µ, v, 

and (r ). Futhermore, the Green's function can explicitly be divided into its real 

and imaginary parts by defining the partial density-of-states ("spectral density"): 

D(s)up(w2
) = 2_ E hdk E Q(s)u(nk)Q(s)p * (nk)o(w 2 

- w~k), (5.29) 
N s 

nkEwedge K 

from which Eq. (5.28) can be expressed as 

o 2 j -2D(s)up(w
2

) . 2 G(s)up(w ) = P dw _2 2 - inD(s)up(w ) 
w -w 

(5.30) 

where P signifies a principal value integral. Equations (5.29) and (5.30) are in a 

form suitable for computation. The sum over k (in the first Brillioun zone) was 

reduced to a sum over the irreducible wedge (1/48 of the zone for the zinc-blende 

structure) and was performed using the Gilat-Raubenheimer method22,23• The 

principal value integral was then computed following Bemholc and Pantelides 17
. 

5.2.5 Evaluation of Defect Modes 

Once the Green's function matrix for the perfect crystal is known, the vibra­

tional modes of a defect can be computed in a fairly straightforward manner. The 

defect perturbation matrix (difference between the L-matrices of the perfect and 

imperfect crystals) must be written down and evaluated. The Green's function 

for the imperfect crystal in the space of the defect is then computed from Eq. 
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Table 5.3: The vibrational modes of an OGa4 molecule imbedded in a rigid 
zinc-blende lattice. Springs with bond-stretching constant /~ and bond-bending 
constant /~ connect the 0-atom to its neighboring Ga-atoms. The Garatoms 
are connected to their outer neighbors by springs with constants f 1 and f2. 
The defect perturbation matrix used in the Green's function calculation can be 
obtained from these formulae using the substitutions given in the text. 

2 1 (' 1 8) w (Ai)=- Ji+-Ji+-/2 
mca 3 3 

2 l(' 1 8) w (Ti)=- !2+-h+-h 
mca 3 3 

w2 (T2) = eigenvalues of 

m~JJ~ + tf 1 + if2) 0 J 3m~mcJ~ 
0 m~Jf11 + !Ji + ~h) J 3m04mcJ~ 

J 3m~mcJ~ J 3m,!mc.f'1 ~W~ + Ml 
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(5.23), and this gives the local density-of-states (LDOS) for the imperfect crystal. 

Detect vibrational modes appear as peaks in the LDOS. 

The form of the defect perturbation matrix bl is very similar to the L-matrix 

for a molecule consisting of the defect plus its neighboring atoms, imbedded in a 

rigid lattice. Rather than displaying 81 itself, we will give the L-matrix for this 

defect molecule. In Table 5.3 we show elements of the L-matrix for an 0Ga4 

cluster imbedded in an immovable zinc-blende lattice. This matrix is actually 

15 X 15. When expressed in terms ot the collective coordinates, it is block 

diagonal, as dicussed in Section 5. 2.1. The resulting nonzero matrix elements 

are given in Table 5.3. The w2 values of the molecular modes are given by these 

matrix elements (or by the eigenvalues of the submatrices ). The 81-matrix used 

in the Green's function computations can be obtained from Table 5.3 by the 

substitutions: 
!'1 --+- !::ih 
!~ --+- ~h 

h -+ 0 

f2 -+ 0 

mo -+ mp, 

and a term -w2 (m 0 - mp )/mp must be added to the third diagonal element of 

the T2 matrix. 

5.3 Results 

5.3.1 Bulk Phonons 

Shown in Fig. 5.2 are phonon dispersion curves computed from the two­

parameter model described in Section 5.2.2. These curves can be compared with 

the experimentally determined phonon energies shown in Fig. l.2(b ). The values 

or the model parameters fl and h have been chosen to produce a good fit to the 
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Figure S.2: The phonon dispersion curves of GaP computed using the tw~ 
parameter model described in the text. The acoustic (A) and optical (0) branches 
are labelled according to the polarization of the phonons (T=transverse, L=lon­
gitudinal). Some branches mey have mixed polarization. 
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actual phonon energies of GaP. The fit was accomplished by matching the TAx 

and TOr energies. From the dynamical matrix given in Table 5.2, these energies 

are given by 

and 

where 

2 A 
w (TOr) = -

µ 

w (TAx) = - - - -2 A(l 1 1- 1--4µ [ B2]) 
mGa- mp A2 ' µ 2 2 

and 

(5.31a) 

(5.31b) 

For GaP, the actual energies are known to be28 E(TAx) = 13.1 meV and 

E(TOr) = 45.4 meV, from which the values for the force constants are deter­

mined to be Ji= 6.87 eV/A.2 and f2 = 0.525 eV/A2
. 

The dispersion curves shown in Fig. 5.2 do have the major features or the 

actual GaP phonons, namely, three acoustic and three optical branches separated 

by an energy gap. In our model, the dispersion of the transverse branches is 

entirely due to the bond-bending interactions (i.e. if f2 = 0 then the TA and 

TO branches would be flat). Rather than using bond-bending, we could have 

accomplished this dispersion or the transverse branches using second-nearest-

neighbor interactions. For a purely covalent material the bond-bending model 

is more appropriate, and for a purely ionic material the use of second-nearest-

neighbor interations is more appropriate. For GaP (partially ionic), probably 

both effects should be included. However, we have chosen to limit ourselves to 

bond-bending since this produces a more localized description ot the material. 

The subsequent computation of Green's functions can then be accomplished 

with greater ease. In particular, for very weakly bonded defects we need only 

consider the nearest-neighbor interactions, rather than second-nearest neighbor 
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Figure 5.S: The density-of-states for the phonon modes in GaP computed using 
the two-para.meter model described in the text. The acoustic (A) a.nd optical ( 0) 
branches are labelled according to the polarization of the phonons (T=transverse, 
L=longitudinal). Some branches may have mixed polarization. 
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interactions. Also, the simplicity of the present model helps us to interpret the 

results in a straightforward fashion. 

Shown in Fig. 5.3 is a computed density-of-states, which can be compared 

with that given by other models5125 • The major problem with the present 

computation is that the LO branch (near 40 meV) should actually be higher 

in energy. In our model, the TO and LO branches are degenerate at the r point 

(k = 0 ). In reality, the entire LO branch is raised in energy due to Coulomb 

interactions between the Ga and P ions. For GaP, this f-point splitting is 4.6 

meV24 , so that the LO branch is raised above the TO branch. This discrepancy in 

the bulk phonons may affect some or the energies of the defect phonons which we 

will compute. However, we are not really concerned about the precise energies of 

the defect modes. The primary result of these calculations concerns the existence 

or the modes. Other models for the bulk phonons should produce the same 

number or defect modes as those seen here. 

5.3.2 Green's Functions 

Shown in Fig. 5.4 are the elements of the Green's function matrix for the 

perfect crystal, as computed from Eq. (5.29). These functions are computed 

using a P-site as the origin. We plot -JmG0 /1f for the Ai, E, Ti, and the 

diagonal elements of the T2 representations. We do not show the off-diagonal 

elements of the T2 representations (there are three or these). Shown on the top 

of Fig. 5.4 is the bulk density-of-states. The Green's function elements are the 

partial densities of states in each of the various symmetry types. By summing 

these partial densities for both a P-site origin and a Ga-site origin we get the 

entire density-of-states: 

1 ( 0) 1 ( 0 ) 2 --Im Trgp - -Im TrgGa = 5 · N(u.1 ), 
7f 1f (5.32a) 

where 
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FigUl'e 5.4: The ·imaginary part or the Green's function for the perfect crystal, 
using a P-site for the origin in space. At the top is shown the bulk density-of­
states. The elements of the Green's function matrix shown here are the partial 
density-of-states into each of the Ai, E, Ti, T~, T~, and T~ collective coordinates. 
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Trg = (u(A!) + 2g(E) + 3g(T1) + 3g(T~) + 3g(T~) + 3g(T~J). (5.32b) 

The factor of 5 on the right-hand side or Eq. (5.32a) arises from the presence of 

5 atoms in the defect cluster. The density-of-states obtained from Eq. (5.32) can 

be compared with that directly computed from 

2 1 ~ 2 2 
N(w ) = N ~ o(w - Wnd· 

nk 

(5.33) 

In our calculations, the N(w2 ) computed in these two ways agree to an absolute 

accuracy of 0.004. This agreement provides a very important check on the 

computation of the Green's functions. 

The major part of the computation ot the perfect crystal Green's function is 

performing the summation Eq. (5.29). The results presented here were computed 

using 5950 points in the irreducible wedge, corresponding to 256000 points in the 

entire zone. The computations were all performed as a function of w2 , using an 

w2 interval of 4.12 meV2. This corresponds to an accuracy of about 0.05 meY 

in the optical branches and 0.5 rneV near the bottom of the acoustic branch. 

The number of points used in the k-space summation was consistent with this 

w2 interval size. The Green's function elements G(w) shown in Fig. 5.4 were 

computed from G(w2 ) by 

- 2 2 G(w)dw = G(w )dw . (5.34) 

The Ga-site Green's function elements are identical with the P-site Green's 

function elements except that the relative amplitude of the acoustic and optical 

modes is reversed (e.g. the Ai Ga-site partial density of states has a small peak 

in the acoustic branch and a large peak in the optical branch). 

5.S.3 Defect Vibration&! Modes 

The vibrational modes of a defect are characterized by a peak in the local 

density-of-states (LDOS). This peak is the center of a band of vibrational modes 
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in which the defect vibrates with significantly greater amplitude than those atoms 

far removed from it. The LDOS is computed from the imaginary part of the 

Green's function for the imperfect crystal, which is computed from the Green's 

function for the perfect crystal and from the defect perturbation matrix. The 

defect we are considering here consists or an impurity atom substitutional for the 

P atom. Our results are for oxygen, with a mass defect parameter or 

Am mo-mp - = = -0.4834. 
m mp 

(5.35) 

The springs which connect the impurity to its nearest neighbors are described by 

a bond-stretching / 1
1 and a bond-bending f~ interaction. These interactions are 

allowed to differ from those or the bulk, and they are varied by the same fractional 

amount. Thus, the detect perturbation matrix depends on one parameter Af / f, 

the fractional change m spring constants for the defect relative to the bulk 

material: 

~! Ii -h 
-= 
f Ji 

!~ -!2 -
h 

(5.36) 

where J 1 and f 2 are the bulk spring constants. Negative value of Af / f ref er 

to a weakly bonded defect and positive values of .6.f / f ref er to a strongly 

bonded defect. By definition, Af / f >-1. It seems physically unlikely that a 

substitutional impurity will form bonds which are very much stronger than those 

of the bulk material. Therefore, we will concentrate our attention on the range 

of D.f / f values -1 < Af / f < 1. 

For a given value of defect spring constants, we compute a LDOS for each 

type of vibrational mode (A1, E, T1, and T2). The LDOS reflects some details of 

the bulk vibrational modes, as well having peaks for each of the detect modes. 

For defect perturbation values in the range -1 < D.f / f < 1, we find defect 

modes of A1 and T2 symmetry only. The Ai (breathing) mode shown in Fig. 5.5 
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Figure 5.5: The local density-of-states or At modes for an 0 atom on a P-site in 
GaP. The defect force constant t:.f / J is varied from ~! / J = 0 (defect springs 
identical to bulk springs) to ~! / J = -1 (defect springs of zero strength). A 
resonance in the acoustic branch appears as a peak in the local density-of-states. 
This resonance moves to lower energies as the defect force constant is reduced. 
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Figure 5.6: The local density-of-states of T2 modes for an 0 atom on a P-site 
in GaP. The defect force constant ~! / f is varied from !::./ / f = 0 (defect 
springs identical to bulk springs) to ~!/I ...... -1 (defect springs of iero strength). 
For ~/ / f = 0 a localized mode at 56 me V is shown as a 6-function in the 
local density-or-states. As b./ / f is reduced, this mode moves to lower energies, 
entering the optical branch as a resonance, becoming localized in the acoustic­
optical gap, and entering the acoustic branch as a sharp resonance. As !:if/ f ...... o 
the mode approaches a 6-function at zero energy, corresponding to motion or the 
0 atom in the absence or any restoring force. 
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is a resonance in the acoustic branch. For ll.f / f = 0 the Ai LDOS curve at the 

top is identical to the Ai Green's function for the perfect crystal. As !::,.f / f is 

reduced, a resonance mode appears and moves to lower energies. This resonance 

is rather broad, with a width of about 5 meV. The sum of the LDOS for the T~, 

T~, and T~ modes is shown in Fig. 5.6. These modes consist of vibrations of 

the oxygen atom itself, along with some response of the rest of the lattice. For 

A// f = 0 we see a localized mode at about 56 meV. As t:;.j / f is reduced this 

T2 mode falls in energy; entering the optical branch as a resonance, becoming 

localized in the acoustic-optical gap, and finally entering the acoustic branch as 

a rather sharp resonance. As ll.f / f ~o, the T2 mode approaches a o-function at 

zero energy. This corresponds to motion of the oxygen atom in the absence of 

any restoring force. The T2 resonances in the optical and acoustic branches are 

rather sharp, with a width or about 2 meV or less. 

The results from the LDOS calculations are summarized in Fig 5. 7. Here we 

plot the energies of the defect modes versus the defect spring constant parameter. 

On the left-hand side of the figure a bulk density-of-states is shown for reference. 

The solid lines in the figure are the results from the Green's functions. These 

energies are defined as the location of zeroes in the real part of the eigenvalues of 

the q-matrix, Eq. (5.24 ). For Af / f < 0 we see the Ai and T2 modes discussed 

above. For ll.f / f > 0 another T2 mode appears as a resonance in the acoustic 

branch. For -1 < ll.f / f < 1, no defect modes of E or T1 symmetry occur 

{i.e. there are no zeroes in the real part or the eigenvalues or their q-matrices ). 

Physically, this means that E and Ti vibrations or the defect are strongly coupled 

to the bulk crystal, so that these types or motion are not at all localized near 

the defect. The detect perturbation for the E and Ti modes contains only bond­

bending interactions, which are too weak to produce defect modes for -1 < 
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Figure 5.7: The defect vibrational modes of oxygen on a P-site in GaP. The 
energy of the modes is plotted versus the defect force constant ~/ / J. Values 
of t:,.f /I < 0 imply a weakly-bonded detect, and values of ~! / / > 0 imply a 
strongly-bonded defect. The heavy solid lines show the solutions from the Green's 
function calculations. These solid lines indicate roughly the location of peaks 
in the local density-of-states. An approximate solution for the defect modes is 
given by the normal modes or a 5-atom "molecule" imbedded in a rigid lattice. 
The dashed lines gives the approximate A1 modes and the dotted lines give the 
approximate T2 modes. 
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llf / J < 1. For llf / !> 1, E and Ti modes do appear. The defect perturbation 

for A and T2 modes contains bond-stretching and mass-defect terms which are 

relatively large and produce the modes shown here. 

The energy of some Green's function modes are quite close to those calcu-

lated from a simple molecular model. In Fig. 5.7 we show the modes for a OGa4 

molecule imbedded in a rigid lattice, as listed in Table 5.3. The dashed line is the 

Ai molecular modes, which agree roughly with the Green's function modes. The 

dotted lines give the T2 molecular modes. There are three of these modes for each 

value of !:if/ f. The molecular modes and Green's function modes agree very well 

for the high energy localized T2 mode, whose energy is given asymptotically by 

_1_(~ !'1+~1~) + _1_(!~ + !~) . 
mo 3 3 mca 

(5.37) 

The second term on the right-hand side of this equation is due to the nearest­

neighbor Ga atoms, whose motion always makes a significant contribution to the 

energy of the mode. Some of the molecular modes agree closely with the Green, s 

function modes, but other molecular modes appear where there are no Green's 

function modes. In the latter case, the vibration of the defect molecule is strongly 

coupled to the bulk modes so that a peak in the LDOS does not appear. This 

illustrates the major deficiency or the molecular model results - the number 

of modes is determined by the size of the cluster. The Green's function method 

allows us to couple these molecular modes to the rest of the crystal in order to see 

if they remain somewhat localized around the defect. The real importance of the 

molecular mode calculation is that it provides a very good check on the Green's 

function computation, since in certain limits the modes from both methods agree 

quite well. 

5.S.4 Comparison or Theory and Experiment 

Now let us compare the theoretical results with experiment. The vibrational 
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modes of GaP:O have been observed in a number of photoluminescence experi­

ments. Here, we will discuss those modes associated with the charge state 0 +, 
i.e. without the donor electron present. These modes are shown in Fig. 3.2(b), 

in the luminescence band marked m-+oo. As discussed by other workers26 ,
27

, 

the defect phonons consist or a 19 meV mode (resonance in the acoustic branch), 

and a 47 meV mode (resonance in the optical branch). Comparing these modes 

with the results shown in Fig. 5. 7, we see that for a defect spring constant of 

D.f / f ~ -0.5, the theory predicts two resonances in approximately the right 

location. The 19 meV mode we identify as being an Ai type motion. As shown 

in Fig. 5. l(b) this mode consists as a radial "breathing motion" or the nearest­

neighbor Ga atoms. The 47 meV mode we identify as having T2 symmetry. This 

mode involves motion of the 0 atom itself, as shown in Fig. 5.1( c ). In general, 

for the oxygen impurity with reduced spring constants, our theory predicts the 

existence of two defect modes, and this is just what is observed in experiment. 

5.4 Conclusions 

In this chapter, we theoretically analyze the vibrational modes of oxygen 

in GaP. For the charge state o+, two resonant vibrational modes are observed 

in experiment. On the basis of our calculations we identify these modes as an 

Al breathing mode or the oxygen nearest-neighbors, and a T2 motion of the 

oxygen atom itself. From the observed energies of the modes we find that the 

0-Ga spring constants are roughly 50% or the bulk P-Ga spring constants, which 

indicates that 0 in GaP is a weakly bonded defect. This has implications to the 

dissociation of the (Zn,O) pairs discussed in Chapter 3, since it suggests that it 

may be the oxygen atom that moves in the dissociation, rather than the zinc 
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atom. The techniques developed here can be used to analyze the vibrational 

modes or any type or substitutional deCect in a zinc-blende lattice. With some 

additional effort, other types of defects can also be treated. We hope to continue 

this work and examine the vibrational modes of (Zn,O) pairs in GaP. This should 

lead to a greater understanding of the atomic motions which occur when the pairs 

dissociate. 

Aside from the results for particular defects, the calculations in this chapter 

illustrate some general properties of the normal modes of defects in crystals. \Ve 

have treated both localized and resonant modes, and we have shown how these 

types of modes are similar in many ways. Both types of modes are observed 

in photoluminescence experiments. The important quantity in the theory is the 

local density-of-states, which tells us how much of the mode is concentrated near 

the defect. Localized and resonant modes both appear as peaks in the local 

density-of-states. Also, we have shown how the vibrational modes of molecules 

imbedded in a rigid lattice are similar to the defect modes obtained from the 

Green's function calculations. The important aspect of the Green's function 

results is that they show how a vibration or the defect couples into the rest of the 

lattice. Those modes which remain concentrated near the defect will be observed 

as defect modes, whereas those modes which are distributed equally throughout 

the entire crystal will be indistinguishable from the bulk modes. 
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