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Dávid Guszejnov
ORCID: 0000-0001-5541-3150

All rights reserved



iii

ACKNOWLEDGEMENTS

This thesis would not have been possible without the tireless efforts of my

adviser Philip Hopkins, who has been tremendously helpful from day one,

AND who, when things were going poorly, always managed to find a way to

rekindle my interest in research.

I would also like to thank Mark Krumholz for his patience, for all the stimu-

lating discussions we had and for his continued help and support.

I am grateful to my former advisors Gergő Pokol, Tünde Fülöp and Attila
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ABSTRACT

Stars are the fundamental objects of astrophysics and their formation is a key

process that influences the evolution of galaxies and planets, and the devel-

opment of life. Understanding how stars form is crucial even for seemingly

unconnected fields of astronomy, as the interpretation of observed starlight

from galaxies (even as a background) and other unresolved sources relies on

our understanding of star formation. There is no comprehensive theory of

star formation, despite intense effort on both the theoretical and observational

sides, due to the complicated, non-linear physics involved (e.g., magnetohydro-

dynamics, gravity, radiation) and the enormous dynamic range of the problem.

My goal has been to identify the role different physical processes (e.g., turbu-

lence, feedback) play in star formation.

Using the semi-analytical framework that I developed, I found that a large

number of star formation models are inherently sensitive to the initial condi-

tions of the progenitor clouds (e.g., temperature). This led to another study

where I predicted the expected variation of the initial mass function (IMF) of

stars in a Milky-Way-like galaxy for different star formation models. I showed

that IMF models where the peak is either set by turbulent properties or cool-

ing physics (using an effective equation of state) are unable to reproduce the

universal IMF of the Milky Way. I also utilized my semi-analytical tools to

predict higher-order statistics of star formation: stellar correlation, multiplic-

ity and the companion mass distribution for binaries. I showed that due to

observational biases all explored models could roughly reproduce the observed

multiplicity and companion mass distributions. This means that observations

are currently unable to differentiate between most models.

While working on these projects I found that several scaling relations (e.g., the

slopes of IMF, stellar correlation function and gas column density distribution)

are insensitive to our choice of physical model; they are universal. Inspired

by this I developed an analytic model that I used to show that scale-free

structure formation inherently leads to these scaling relations. This provides a

deep physical reason why the mass functions and correlation functions of very

different systems (e.g., stars, protostellar cores, star clusters, Dark matter

halos) follow roughly the same power-law relations.

My previous findings with my semi-analytical models indicated that isothermal

collapse would lead to an infinite fragmentation cascade, i.e. there is no inher-

ent low-mass cut-off. Part of the literature supports these findings and claims

that additional physics is needed to imprint a mass scale into the problem,

but there are theoretical models and simulations that claim that such a cut-off

exists. Using GIZMO, a fully adaptive, meshless MHD code, I have carried

out a convergence study and have shown that the isothermal fragmentation

cascade continues to ever smaller scales without limit.
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NOMENCLATURE

Core. Protostellar core, smallest bound structure of molecular gas in a GMC.
Cores are the progenitors of stars. Cores often have a protostar at their
center; the ones without a protostar are refereed to as prestellar cores.

Excursion set formalism. Also known as the extended Press-Schecter for-
malism, a mathematical tool that allows the calculation of the statistics
of objects defined by an arbitrary criterion in a stochastic density field.
This is achieved by effectively mapping the problem onto random walks.
The formalism was first applied in astrophysics to explain the distribu-
tion of dark matter (see Bond et al., 1991; Press & Schechter, 1974).

GMC. Giant Molecular Cloud, the largest bound structures of molecular gas
in a galaxy. Most stars form inside such clouds.

IMF. Initial Mass Function, the mass distribution of newly formed stars, a
key quantity in astrophysics.

IMF turnover mass. The IMF is observed to follow a power-law at higher
masses in both the MW and neighboring galaxies. The mass scale be-
low which it starts deviating from this power-law is often referred to as
the IMF turnover mass. Note that since the turnover mass is within a
factor of 2 of the IMF peak, the two terms are sometimes used inter-
changeably..

ISM. Interstellar Medium, the gas/plasma and radiation between star sys-
tems in a galaxy.

MHD. Magnetohydrodynamics, the study of the evolution of a fluid that is
coupled to a magnetic field.

Protostar. A young star that is still accreting material from its gas reservoir,
usually a protostellar disk.

Salpeter slope. The canonical power-law slope of the Milky Way’s IMF
(dN/dM ∝ M−2.35), first observed by Salpeter (1955).

Scale-free process. A process is considered scale-free if it contains no phys-
ical scales except the ones defined by the initial condition. Example:
realizations of the Cantor-set or other fractals are scale-free .
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C h a p t e r 1

OVERVIEW

1.1 Motivation

Star formation is a key process of cosmic evolution that influences the forma-

tion of galaxies and planets, and the development of life. It influences virtually

every field in astrophysics on all scales, from reionization of the Universe by

the first stars (Gpc-Mpc scale), through the evolution of galaxies (kpc-pc) to

the development of habitable planets (AU-km). Even though it is vital to our

understanding of the Universe, there is no comprehensive theory of star for-

mation, despite intense effort on both the theoretical and observational sides,

due to the large amount of complicated, non-linear physics involved.

Star formation includes a wide range of physical phenomena: both super- and

subsonic turbulence, magnetic fields, weakly ionized plasmas, continuum and

line radiative processes compounded by complex chemical processes and (of

course) gravity. These by themselves would be enough to make the search for

a comprehensive theory of star formation extremely hard. The difficulty is

further compounded by the wide dynamic range of the problem: the process

of star formation is initiated in giant molecular clouds (GMCs), which are

O (10 − 100 pc) in size, and eventually lead to the formation of O (R�) ∼ 10−8pc
size protostars and stars. On these different size scales the system is governed

by wildly different physics. On the largest, GMC scales the system can be

modeled as supersonic, isothermal gas undergoing gravitational collapse (which

is an extreme simplification of the problem, yet it is still poorly understood,

see Chapter 8). On smaller scales the isothermal assumption breaks down (e.g.

high opacity leads to inefficient cooling), while chemistry and magnetic fields

are no longer negligible, making the modeling of such problems extremely

complicated (see Klessen et al., 2011; Krumholz, 2014; McKee & Ostriker,

2007a, for detailed overviews of the theoretical and numerical challenges).

One of the most popular high level pictures of star formation is the “gravito-

turbulent” model of star formation (see Fig. 1.1). In these models the initial

evolution of gas clouds (part of which will eventually turn into stars) is gov-

erned by the interplay between gravity and turbulence, with gravity pushing

the cloud towards local collapse, while random turbulent motion stabilizes it
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Figure 1.1: Cartoon illustration of the star formation process in the “gravito-
turbulent” picture. An unstable molecular clouds undergoes gravitational col-
lapse, while supersonic motions create self-gravitating subregions that collapse
on their own. This leads to the hierarchical fragmentation of the cloud. Once
some of these fragments become stars, their feedback unbinds the rest of the
gas, terminating the star formation process. After the gas is blown out the
remaining stars rearrange themselves into sub-clusters, which merge to form
larger clusters, see Grudić et al. (2017).

against global collapse (see e.g., Padoan et al., 1997). Although turbulence is a

stabilizing force on large scales, supersonic turbulence leads to the creation of

high-density subregions (e.g. through shocks), which might be self-gravitating

and thus start collapsing on their own. This leads to a hierarchical frag-

mentation (Ballesteros-Paredes et al., 2011b), which is terminated when the

collapsing fragments reach the point that they turn into stellar-mass clumps.

The feedback from the stars that form out of these unbinds the rest of the gas

(stopping the formation of new stars), and the already formed stars rearrange

themselves into clusters.

One of the most compelling questions in the field of star formation is the origin

of the IMF (initial mass function), the mass distribution of newly formed

stars. Observations in the Milky Way (MW) have found this quantity to be

remarkably universal and independent of the age of the stellar population or

the local galactic environment (see Bastian et al., 2010; Offner et al., 2014).

The universality of the IMF in old stellar populations in the MW is widely

taken as a suggestion that it may be near-universal in other galaxies, because

older populations in the MW formed when the galaxy was much younger and

very different, likely a typical high-redshift, gas-rich, metal-poor dwarf galaxy.

There are indirect constraints on the IMF both from spectral features and

integrated mass-to-light constraints in nearby galaxies: these mostly also favor

a universal IMF (e.g. Andrews et al., 2013, 2014; Fumagalli et al., 2011; Koda

et al., 2012; Weisz et al., 2015). More recently there have been more interesting
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hints of variation in the centers of massive elliptical galaxies (see Cappellari

et al., 2012; Conroy & van Dokkum, 2012; Mart́ın-Navarro et al., 2015c; Parikh

et al., 2018; Posacki et al., 2015; Sonnenfeld et al., 2015; Treu et al., 2010;

van Dokkum & Conroy, 2010). It should be noted that these variations of

the IMF are well-correlated with changes in metallicity (Parikh et al., 2018),

which might indicate that the inferred variations are due to poorly constrained

stellar evolution models at high metallicity, and not a non-universal IMF.

Qualitatively the IMF is well approximated by a power-law at high masses

(dN/dM ∝ M−2.35, see Salpeter 1955) and a turnover around 0.2 M�, fit either

by a broken power-law (Kroupa, 2002) or a lognormal (Chabrier, 2005) distri-

bution. A significant part of my research has been devoted to identifying what

physical processes could be responsible for setting this characteristic scale of

the IMF, considering its near-universality in the Milky Way (see Chapters 2-6).

The universal power-law tail of the IMF is also an intriguing question, but in

this case the challenge does not come from finding a theory that predicts a uni-

versal slope, but from the fact that nearly all theories of star formation predict

a slope close to the observed value (“gravito-turbulent” models like Hennebelle

& Chabrier 2008; Hopkins 2012b; Padoan et al. 1997, “competitive-accretion”

models like Bonnell et al. 2007; Larson 1982; Zinnecker 1982 or even “fractal

ISM” models like Chappell & Scalo 2001; Elmegreen 1997; Elmegreen & Fal-

garone 1996, see Chapter 7), making it difficult to distinguish between IMF

models even if they are based on very different physics.

In summary, my work has addressed a number of pertinent questions of star

formation, such as:

• What could set the IMF peak? (Chapters 2-5)

• Which IMF models are consistent with the universal MW IMF? (Chapter

5)

• Is there a one-to-one mapping between protostellar cores and stars?

(Chapter 2)

• Why are stars clustered? (Chapters 6-7)

• Why is it so easy for models to reproduce the IMF power-law tail? (Chap-

ter 7)

• What sets the column density distribution of star forming gas? (Chapter

7)
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• Does the observed stellar multiplicity and companion distributions con-

strain star formation models? (Chapter 6)

• What happens when an isothermal cloud undergoes collapse? (Chapter

8)

• Is there a characteristic scale of isothermal turbulence and does it influ-

ence star formation? (Chapter 8)

The rest of this chapter is devoted to short summaries of my projects. The

subsequent chapters contain my published works on these questions.

1.2 Semi-Analytical Modeling of Star Formation

Analytical models of star formation are useful for understanding the principal

mechanism behind different observed phenomena. One of the most popular

ideas is to assume that the formation of gas clouds (that will eventually turn

into stars) is governed by the interplay between gravity and turbulence. For

such models it is possible to “borrow” the excursion set formalism, a math-

ematical tool set originally used to explain the large scale structure of dark

matter (Bond et al., 1991; Press & Schechter, 1974). This usually involves

modeling the density field on different scales around a random point. As we

go to smaller and smaller scales the average density fluctuates stochastically,

allowing us to redefine the problem as a random walk. The properties of this

random walk are prescribed by the stochastic properties of the density field,

which in this case is often approximated with a lognormal distribution that

is spatially uncorrelated (motivated by simulations of turbulent media, e.g.

Kritsuk et al., 2011; Vazquez-Semadeni, 1994). Such models are able to pre-

dict several key properties of bound structures in dense gas, e.g. their mass

function (Hennebelle & Chabrier, 2008; Hopkins, 2012a; Padoan & Nordlund,

2002). Since these models do not include the effects of gravity (other than using

it to define structures), their results can be thought of as the instantaneous

mass functions of bound objects (without accounting for further evolution)

that make them the theoretical equivalents of the observed protostellar cores.

Since these models calculate the properties of a randomly chosen point mass

just as gravity is “turned on”, it is hard to predict the time evolution and

spatial structure of star formation (see e.g., Hennebelle & Chabrier, 2013a).
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1.2.1 Expanding the Excursion set Formalism of Hopkins (2012b)

In my first project I expanded on the work done by Hopkins (2012b) by im-

plementing time evolution, based on Hopkins (2013c). While the original ex-

cursion set model provided the equivalent of the observed core mass function

(CMF), my expansion allowed it to follow the evolution down to the proto-

stellar scales, effectively mapping cores to stars, the CMF to the IMF (see

Chapter 2 or Guszejnov & Hopkins 2015b for details).

I found that the commonly quoted claim that “1/3 of the core mass ends up

in the star” mapping between the CMF and the IMF is not correct: massive

cores may develop strong turbulence that leads to fragmentation into smaller

objects on a wide spectrum of masses.

1.2.2 Development of the MISFIT semi-analytic framework

As noted above, the excursion set approach has the major shortcoming that

it only predicts the properties around a random Lagrangian point, making

it hard to extract any kind of information about the spatial and temporal

evolution of star formation (see Hopkins, 2013a, for an example). In order

to overcome this issue I developed the MISFIT (MInimalist Star Formation

Including Turbulence) semi-analytical framework (see Chapter 3 or Guszejnov

& Hopkins 2016 for details).

MISFIT uses the same assumptions as Hopkins (2013c) and Guszejnov & Hop-

kins (2015b) while still preserving spatial and temporal information. This is

accomplished by simulating the stochastic density field on a grid that repre-

sents a collapsing molecular cloud and recursively restarting the simulation for

self-gravitating substructures. Due to its semi-analytical nature MISFIT can

simulate a much wider dynamic range than conventional hydro codes: it can

follow the evolution clouds from the scale of giant molecular clouds (∼ 10 pc)

down to the scales of protostars (∼ 0.1 AU) at modest computational cost

(a couple of CPU hours). MISFIT provides a way to explore different star

formation models and parameters on a wide dynamic range and to generate

statistically significant samples for them, which would be a hopelessly expen-

sive exercise for detailed hydrodynamical simulations.

1.2.3 Testing IMF models with MISFIT

As the first application of MISFIT I set out to test different classes of IMF

models, in collaboration with Mark Krumholz (UCSC, ANU), to see whether

they can reproduce the IMF observed in the Milky Way (see Chapter 4 or
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Guszejnov et al. 2016 for details).

I found that models based solely on isothermal turbulence and gravity (e.g.

the excursion set model of Hopkins 2012b) lead to a purely power-law IMF

without turnover. Meanwhile, models based on a transition from an isothermal

to an adiabatic equation of state require fine tuning to reproduce observations

and are inherently sensitive to the initial conditions of the progenitor clouds,

making them incompatible with the apparent universality of the MW IMF

(see Chapter 5 or Guszejnov et al. 2017c for details). I also tested an IMF

model based on protostellar feedback, where the accretion luminosity from the

protostar heats up the surrounding gas, preventing further fragmentation (see

Krumholz, 2011). I found that this model not only reproduces the observed

IMF peak but is also insensitive to the initial conditions of the progenitor cloud

(Chapter 4).

1.2.4 Stellar Correlation and Multiplicity with MISFIT

As a follow-up to the previous projects I took advantage of MISFIT’s ability

to provide information about the spatial structure of star formation to com-

pare the predictions of the isothermal and the protostellar feedback-regulated

models with observations. I calculated the stellar correlation function, mul-

tiplicity, companion mass and period distributions and compared them with

observations (see Chapter 6 or Guszejnov et al. 2017b for details). It is im-

portant to note that apart from MISFIT there is no analytical framework for

star formation where such spatial information is readily available.

When investigating the initial clustering of stars, I found that regardless of the

underlying small scale physics (e.g. isothermal or adiabatic EOS, protostellar

heating) the two-point correlation function of stars is a power law with a

fixed slope (see Chapter 7 or Guszejnov et al. 2017a for an explanation of this

behavior).

Using MISFIT I predicted the multiplicity and companion mass distributions

for stellar binaries (Chapter 6). I found that observational biases can severely

distort the results so that all models roughly reproduce the observed multiplic-

ity and companion mass distributions. To break the degeneracy, observations

need to extend their completeness limit to companions with very low relative

mass. Interestingly, the protostellar feedback model can reproduce the ob-

served companion mass distributions for both Solar type and very low mass

(VLM) stars with or without the observational biases.
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All models included in the study under-predict the number of short-range bi-

naries. Since MISFIT only treats fragmentation out of a common protostellar

core, the cause of the discrepancy is likely due to the fragmentation of pro-

tostellar disks (disk physics are not included in MISFIT). This implies that

short-range binaries likely form out of a single protostellar disk.

1.3 IMF variations in a MW-like Galaxy

With my semi-analytical models I discovered that the position of the IMF

peak is sensitive to the initial conditions of the parent cloud in several classes

of star formation models. Meanwhile the IMF in the Milky-Way is observed

to be almost universal (see e.g. Offner et al., 2014) which provides a way to

test the predictions of these models. By convolving the initial conditions of

progenitor clouds (e.g. GMCs) with the analytical scaling laws I predicted

for different IMF models, I showed that all but the protostellar heating model

(detailed in Krumholz, 2011) are incompatible with the apparent universality

of the MW IMF (see Chapter 5 or Guszejnov et al. 2017c for details).

While the idea of convolving the initial conditions with the analytic models

seems simple at first, it is complicated by the fact that the characteristic stel-

lar mass (IMF peak) depends on the at-formation properties of star-forming

clouds, which can be wildly different from the properties of clouds that are

forming stars today. To model these progenitor clouds I utilized simulated

MW-like galaxies from the Feedback in Realistic Environments (FIRE) project

(see Hopkins et al., 2017a, for details about the simulations). These simula-

tions have a mass resolution of ∼ 104 M� and include much of the relevant

physics on these scales. This is insufficient to resolve the IMF but enough to

resolve the bulk properties of GMCs and thus provide the initial conditions

for star forming clouds, which then can be convolved with my semi-analytical

predictions for each IMF model. With these, I showed that models attribut-

ing the IMF peak to the Jeans mass, sonic mass or an isothermal-adiabatic

transition are incompatible with a universal IMF in the MW.

1.4 Universal Scaling Laws

While investigating the effects of different star formation models on the IMF

and the stellar correlation function, I noticed that several predictions are in-

sensitive to the underlying model. This prompted me to develop analytical

models to show that these scaling relations are universal to all models featur-

ing scale-free structure formation (see Chapter 7 or Guszejnov et al. 2017a for
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details).

I found that structure formation models that are scale-free in a wide dynamic

and have uncorrelated scales1 predict a number of universal power-law rela-

tions:

• dN/dM ∝ M−2 for the mass functions of stars, protostellar cores, star

clusters and dark matter halos.

• ξ2D ∝ R−1 for the two-point correlation function of these objects.

• dA/dΣ ∝ Σ−1 for the gas column density distribution.

These predictions all agree with observations and simulations to first order,

with the caveats that the observed correlation function steepens at smaller

scales (likely due to binaries) and that the observed column density only

matches this trend at the high density end (it is obscured by non-star-forming

gas at lower densities).

This provides a deep physical reason for why seemingly unrelated systems

(e.g. stars, GMCs, star clusters and dark matter halos) have similar scaling

relations. The effects of additional physics are captured by the deviations from

these relations, which are often comparable to the uncertainties of observations.

1.5 Isothermal Collapse

The last project of my PhD focused on the fundamental question “Is there a

characteristic scale in isothermal collapse?”. There is some confusion about

this in the literature as some claim to produce a converged IMF in pure-

isothermal collapse (Gong & Ostriker, 2015; Haugbølle et al., 2017) while oth-

ers argue that there is no inherent low mass cut-off and the system should

undergo an infinite fragmentation cascade (Krumholz, 2014). Furthermore, a

large number of analytical theories of star formation assume such a cut-off

scale exists and that it sets the peak of the IMF (e.g. Hennebelle & Chabrier,

2008; Hopkins, 2012b; Padoan & Nordlund, 2002), while others argue that

the turnover can only come from additional physics (e.g. Bonnell et al., 2006;

Guszejnov et al., 2016; Jappsen et al., 2005a; Krumholz, 2014; Larson, 2005).

My previous semi-analytical results indicated the latter, but to rigorously an-

swer this question I ran detailed hydrodynamical simulations with high enough

1In other words: scale free systems where the process does not “know” how far it is from
the starting scale, the initial microstate is “forgotten”.
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dynamic range to resolve multiple generations of fragmentation (see Chapter

8 or Guszejnov et al. (2018) for details).

Carrying out this convergence study required a simulation with extremely high

mass resolution, so I utilized GIZMO, a fully adaptive, meshless MHD code

(Hopkins, 2015). None of the previous works have probed the problem of

isothermal fragmentation with such a high dynamic range (highest resolution

I ran had ∆m/Mcloud = 7 × 10−9), which enabled me to establish the following:

1. Isothermal clouds have two modes of collapse: either all the mass ends

up in a few massive objects (homologous collapse) or the cloud breaks

into a spectrum of smaller objects (fragmentation).

2. Contrary to claims in the field that “Subsonic clouds collapse without

fragmentation”, I found that a low turbulent Mach number does not

necessarily indicate homologous collapse, and that it is possible to con-

struct subsonic clouds that undergo fragmentation. The actual indicator

is the number of infall Mach number (the Mach number derived from

the large-scale characteristic gravitational freefall speed of the system,

vfreefall
√
(GM/Rcloud) or the number of initial thermal Jeans masses in

the cloud, which are simple functions of each other.

3. Isothermal fragmentation continues to ever smaller scales without limit.

Any mass scale imprinted by initial conditions (e.g. Jeans mass, sonic

mass) is “forgotten” due to the non-linear behavior of the system. I

demonstrated this non-convergence over an 8 dex mass range.

Note that I also carried out several tests and found these answers to be un-

changed if I used use a different hydrodynamic scheme (e.g. smoothed particle

hydrodynamics based on Hopkins 2013b), changed the method of sink particle

formation, added random noise to the initial conditions or if turbulent driving

is involved.

These findings further reinforce the conclusions of Guszejnov et al. (2016) that

isothermal turbulence and gravity by themselves cannot explain the IMF, it

requires additional physics.

1.5.1 Future Plans

The IMF in dwarf galaxies is observed to be similar to the MW IMF (e.g. Weisz

et al., 2015), while it is also observed to be “bottom-heavy” (more low mass
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stars compared to MW) within massive elliptical galaxies (e.g. van Dokkum,

2008). I am currently conducting a study similar to Guszejnov et al. (2017c),

where I utilize FIRE simulations of dwarf and massive elliptical galaxies to

model the initial conditions of progenitor clouds and then convolve these prop-

erties with different star formation models. The aim of this study is to show

how these observations constrain IMF models and to see which models would

be compatible with both these extragalactic constrains and the universal MW

IMF.

In the future several new high resolution telescopes will come online (e.g.,

JWST, TMT, GMT) that will be able to resolve individual stars or star forming

regions/clusters in nearby galaxies in both IR and optical bands. These will

provide an unprecedented amount of new data on star formation in different

environments, ranging from galaxy and cluster scale IMFs and their variations

in extragalactic sources to the properties of protostars and stellar binaries. By

combining these data with my results I will attempt to further constrain which

IMF models could satisfy all observational constraints. This will culminate

in cosmological simulations of galaxies where the stellar populations and the

local environment are evolved self-consistently2. After having identified the

star formation models that satisfy the observational constraints on the stellar

initial mass function (IMF) in these new simulations, I will start exploring

higher order statistics (e.g. correlation, multiplicity) and their variations in

different galactic environments.

2A significant caveat of the post-processing of galaxy simulations is that the simulations
themselves include no IMF variations, so the inferred results neglect the feedback from
having a non-MW IMF. Having the IMF variations built-in as a subgrid prescription would
make the simulation self-consistent.
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C h a p t e r 2

MAPPING THE CORE MASS FUNCTION TO THE INITIAL
MASS FUNCTION

Guszejnov D., Hopkins P. F., 2015, MNRAS, 450, 4137

Abstract

It has been shown that fragmentation within self-gravitating, turbulent molec-

ular clouds (“turbulent fragmentation”) can naturally explain the observed

properties of protostellar cores, including the core mass function (CMF). Here,

we extend recently-developed analytic models for turbulent fragmentation to

follow the time-dependent hierarchical fragmentation of self-gravitating cores,

until they reach effectively infinite density (and form stars). We show that

turbulent fragmentation robustly predicts two key features of the IMF. First,

a high-mass power-law scaling very close to the Salpeter slope, which is a

generic consequence of the scale-free nature of turbulence and self-gravity. We

predict the IMF slope (-2.3) is slightly steeper than the CMF slope (-2.1),

owing to the slower collapse and easier fragmentation of large cores. Second,

a turnover mass, which is set by a combination of the CMF turnover mass (a

couple solar masses, determined by the ‘sonic scale’ of galactic turbulence, and

so weakly dependent on galaxy properties), and the equation of state (EOS).

A “soft” EOS with polytropic index γ < 1.0 predicts that the IMF slope be-

comes “shallow” below the sonic scale, but fails to produce the full turnover

observed. An EOS which becomes “stiff” at sufficiently low surface densities

Σgas ∼ 5000 M� pc−2, and/or models where each collapsing core is able to heat

and effectively stiffen the EOS of a modest mass (∼ 0.02 M�) of surrounding

gas, are able to reproduce the observed turnover. Such features are likely a

consequence of more detailed chemistry and radiative feedback.

2.1 Introduction

The mass distribution of newly formed stars, often referred to as the Initial

Mass Function or IMF, is fundamental in many aspects of astrophysics. Under-

standing the processes leading to the observed IMF provides valuable insight

into not only star formation but into the evolution of galactic structures and

the formation of planets. So far observations of different galaxies and regions

within the Milky Way suggest that some qualitative features of the IMF are

universal (Offner et al. 2014, Bastian et al. 2010). These include:

http://dx.doi.org/10.1093/mnras/stv872
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• a power law-like slope (dn/dM ∝ M−2.3) for large masses;

• turnover around 0.1-1.0 solar mass;

• lognormal-like or power law-like behavior for small masses.

The universality of these properties implies that some fundamental physical

process influences the initial stellar mass distribution. It is important to note

that, of these three properties, the power law-like slope is also ubiquitous

to wildly different systems including dark matter halos (Press & Schechter

1974), giant molecular clouds (Rosolowsky & Blitz 2005), young star clusters

(Portegies Zwart et al. 2010) and HI holes in the interstellar medium (Weisz

et al. 2009). The exponent of dn/dM ∝ M−2.3 is close to that which implies

that an equal amount of mass is distributed in every logarithmic interval in

mass, which points to a self-similar process being the main driving force behind

these distributions.

A candidate for such process is turbulent fragmentation. It is widely accepted

that stars are formed by the gravitational collapse of dense molecular clouds

(McKee & Ostriker 2007b). Gas in these clouds is highly turbulent, which

leads to large fluctuations in density that in turn then lead to the emergence

of subregions that are independently collapsing (see Fig. 2.1). Denser regions

collapse faster, turning into stars whose feedback (e.g. radiation, solar winds)

heats up or blows the surrounding gas away, effectively preventing further star

formation in that area.

This process is inherently hierarchical, which suggests that it should be pos-

sible to derive a single model which simultaneously links the largest scales of

collapse all the way down to the smallest (the scales of individual stars). This

is not possible in simulations because of resolution limitations, but can be

approximately treated in analytic models.

This paradigm was explored by Padoan et al. (1997) and Padoan & Nordlund

(2002), then made more rigorous by Hennebelle & Chabrier (2008) who at-

tempted to approximate the IMF in a manner analogous to Press & Schechter

(1974). Hopkins (2012a) expanded upon these works by using an excursion set

formalism to calculate the distribution of first crossing mass scales in galactic

disks1. This yielded mass functions very similar to the mass distribution of

1In the usual terminology the largest collapsing scale is referred to as the scale of first
crossing while the smallest collapsing subregion is at the scale of last crossing.
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Figure 2.1: Cartoon illustration of hierarchical turbulent fragmentation in a
galactic disk. The scale of the largest self gravitating clouds is called the
“first crossing” (largest scale where the density ρ > ρcrit, see Eq. 2.6), which
corresponds to giant molecular clouds (GMCs) while the scale of the smallest
clouds (usually embedded in larger ones) is the last “crossing scale” which
correspond to protostellar cores.

giant molecular clouds (GMC s) which are the largest known bound collections

of gas in a galaxy. Meanwhile Hopkins (2012b) found that the mass function

of structures at the last crossing scale show a striking similarity to the distri-

bution of protostellar cores (also referred to as cores). This core mass function

(CMF ) is remarkably similar to the IMF, the only difference being the position

of the turnaround which is at a mass scale 3 time larger than the case of the

IMF (Alves et al. 2007; Rathborne et al. 2009; Sadavoy et al. 2010). Building

on these results Hopkins (2013c) generalized the formalism to be applicable

to a wide range of phenomena by incorporating gases with arbitrary equa-

tion of state, magnetic fields, intermittency etc. They also showed that this

naturally predicts observed cloud and protostellar core properties such as the

“Larson’s laws” scalings of cloud size, mass, and linewidth (Brunt et al. 2009;

Enoch et al. 2008; Larson 1981), stellar clustering and correlation functions

from scales ∼ 0.1 − 1000 pc (Lada & Lada 2003; Portegies Zwart et al. 2010)

as a consequence of turbulent fragmentation.

Nevertheless a major shortcoming of these models is that they only extend to

the CMF2. It is by no means clear that the “mapping” from CMF to IMF is

2Other attempts were made to connect the IMF and CMF, notable examples are Padoan
& Nordlund (2011), which used the IMF predicted by Padoan & Nordlund (2002) to ’guess’
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simple or universal. And in fact some of the simple assumptions in these pre-

vious works – for example, that of isothermal gas – must break down on small

scales. Therefore, in this paper we expand upon these works and argue that

it is possible to bridge the gap between the CMF and the IMF by analytically

following the collapse of protostellar cores. Gravitational collapse takes place

during a finite amount of time during which collapse pumps energy into tur-

bulence, causing the cloud to fragment. We are able to build a simple model

meant to capture this, and from it derive the principal qualitative features of

the IMF. We will show that the high mass IMF slope can be explained purely

by turbulent fragmentation and that the turnover position is dependent on the

underlying thermodynamics and galactic properties, while the low mass end is

highly influenced by the aforementioned processes and feedback physics.

The paper is organized as follows. A general overview of the excursion set

formalism is given in Sec. 2.2, including several further assumptions regard-

ing the collapsing medium (Sec. 2.2.3) and the time evolution of collapsing

protostellar cores (Sec. 2.2.4). In Sec. 2.3 the model we developed for map-

ping between CMF and IMF is described in detail. The final results and their

implications are discussed in Sec. 2.4.

2.2 Methodology

To map the CMF to the IMF one needs to describe the transition from proto-

stellar cores into protostars. To do that we employ the excursion set formalism

outlined in Hopkins (2012a) and Hopkins (2012b) with the addition of time

dependence from Hopkins (2013c). Only a broad summary of the method will

be given here; see the references for more details.

2.2.1 Density Field Evolution

The aim of the model is to describe the properties of self gravitating turbulent

medium (see Sec. 2 of Hopkins (2013c) for detailed description). In the case of

an isothermal medium, ignoring (for now) self-gravity, the density fluctuations

in both sub and supersonic cases have lognormal statistics3, which means that

the density contrast δ(x) = ln [ρ(x)/ρ0] + S/2, where ρ(x) is the local density,

the CMF, and Clark et al. (2007), which discussed some general properties of the mapping.
Both drew attention to the problem of time dependence as the time scales of forming stars
of different sizes differs greatly (this has been shown to be important by the simulations of
Padoan et al. 2014). Our model attempts to partially address this issue.

3As shown in Hopkins (2013d) the statistics are not perfectly lognormal even in the
isothermal case, however those particular corrections have very little effect on our results.
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ρ0 is the mean density and S is the variance of ln ρ, would follow a normal

distribution, thus

P(δ |S) = 1
2πS

exp
(
− δ

2

2S

)
. (2.1)

It is a property of Gaussian and lognormal random variables that an integral

over such fields is also Gaussian/lognormal. Thus let us define the average

density on scale λ as

ρ(λ, x) =
∫

ρ(x′)Wλ(x′ − x)d3x′, (2.2)

where Wλ(x′− x) is the window function for averaging. Then, according to the

theorem δ(λ, x) will be also Gaussian. For the sake of brevity from this point

on let us drop the x coordinate from these quantities. Also, to simplify the

formulas the Fourier transform of the window function (W (k)) is assumed to

be a Heaviside function (cut-off at k) 4.

Instead of dealing with δ directly it is more convenient to introduce a new

quantity ∆δ (λ2 |δ [λ1]) = δ(λ2) − δ(λ1) which is the contribution to the log-

arithmic density by scales between λ1 and λ2. This way we can express δ

as

δ(λi) =
λj>λi∑

j

∆δ j, (2.3)

where we use the fact that the density on the largest scale is by the definition

the mean density with no variance thus δ(λmax) = 0.

In a turbulent system the variance of the logarithmic density field (σ2(λ)) will

tend to an equilibrium value S(λ) prescribed by the turbulence. It is well known

in the isothermal case that the variance of density is related to the variance of

velocity as S ≈ ln
(
1 +M2

compressive

)
whereM2

compressive is the compressive Mach

number related to the turbulent velocity dispersion (Federrath et al. 2008).

Following the derivation of Hopkins (2013c):

S(λ) =
∫ λ

0
∆S(λ̂)d ln λ̂ ≈

∫ λ

0
ln

1 +
b2v2

t

(
λ̂
)

c2
s + κ2λ̂2

d ln λ̂, (2.4)

where vt (λ) is the turbulent velocity dispersion on scale λ, cs is the thermal

4The calculation could be repeated with W(k) corresponding to real space spheres or
filaments but that would have < 10% effect on the final results.
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sound speed, b is the fraction of the turbulent velocity in compressive motions,

which we take to be about 1/2 (appropriate for randomly driven, super-sonic

turbulence, though we have experimented with b ∼ 1/4 − 1 and find it makes

no qualitative difference to our conclusions), and κ is the epicyclic frequency

which represents angular momentum suppressing large-scale density fluctua-

tions. Note that this particular scaling for S(λ), as well as the functional form

for the density statistics on different scales ρ(λ) which we adopt, have been di-

rectly measured in numerical simulations (Federrath et al. 2010a; Kowal et al.

2007).

Let us suppose that instead of an isothermal medium we have gas which follows

a polytropic equation of state as

c2
s = c2

s0

(
ρ

ρ0

)γ−1
, (2.5)

where cs0 is the sound speed at the mean density (ρ0) and γ is the polytropic in-

dex. In this case (for 0.3 < γ < 1.7), the statistics can still be approximated as

locally lognormal (i.e. lognormal for differentially small perturbations; Passot

& Vázquez-Semadeni 1998) if we apply the replacement c2
s → c2

s0 (ρ/ρ0)−(γ−1)

to Eq. 2.4, which means that we get S(λ) → S(λ, ρ) so S becomes a func-

tional of ρ. This scheme is also an acceptable approximation for gases with

more complex equation of states (e.g. γ(ρ)). Note that this means the total

PDF can differ significantly from a lognormal; for γ > 1 large positive-density

fluctuations become rarer while γ < 1 makes them more common (producing

a power-law high-density tail).5 It should be noted that previous treatments

(e.g. Hennebelle & Chabrier 2008) ignored the effect of γ on the distribution

of ρ despite the fact that it can produce radically different PDFs. For more

details see Sec. 3 of Hopkins (2013c).

2.2.2 The Collapse Threshold

Various authors (e.g. Chandrasekhar 1951, Elmegreen 1987) have shown that

including the effects of turbulence and finite vertical disk thickness into a

Toomre-type analysis yields a simple scaling for the critical density (ρcrit)

above which a spherical subregion of size λ embedded in a larger disk or cloud

5These effects and the validity of our analytic expressions have been directly verified in
simulations (Scalo et al. 1998a, Lynn & Quataert, private communication).
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becomes gravitationally unstable and collapses. This can be written

ρcrit(λ)
ρ0

=
Q
2κ̃

(
1 +

h
λ

) [
σ2
g (λ)

σ2
g (h)

h
λ
+ κ̃2λ

h

]
, (2.6)

where h is the vertical scale of the disk, σ2
g (λ) ≈ c2

s + v
2
t (λ) is the total velocity

dispersion on scale λ where v2
t (λ) is the turbulent velocity dispersion at that

scale, κ̃ = κ/Ω where Ω = vcirc/rdisk is the orbital frequency at the location rdisk ,

κ is the epicyclic frequency, and Q = σg(h)κ/(πGΣ) is the Toomre parameter,

where Σ is the surface density of the disk. For the scales of interest here, λ

is in the inertial-range of turbulence where turbulent kinetic energy scales as

E(λ) ∝ λp with p being the turbulent spectra index; generally p ∈ [5/3; 2],
but in this paper we assume p = 2 for our calculations based on the observed

linewidth-size relations (Larson 1981; Bolatto et al. 2008; Enoch et al. 2008),

theoretical expectations (Burgers, 1974, 1995; Murray, 1973), and numerical

simulations (Schmidt et al., 2009)). This leads to the following scaling of the

turbulent velocity dispersion and Mach number M

M2(λ) ≡
v2

t (λ)〈
c2

s (ρ0)
〉 =M2(h)

(
λ

h

) p−1
. (2.7)

Since we are only interested in protostellar cores, which are much smaller than

their parent galactic disk, it is justified to take the limit of λ � h leading to

ρcrit(λ)
ρ0

=
Q′

1 +M2
edge

λ̃−2
[(

T(λ)
T0

)
+M2

edgeλ̃
p−1

]
, (2.8)

where T(λ) is the temperature averaged over the scale λ, while T0 is the mean

temperature of the whole collapsing cloud.

If we further assume that the gas has a polytropic equation of state then Eq.

2.8 becomes

ρcrit(λ)
ρ0

=
Q′

1 +M2
edge

λ̃−2

[(
ρcrit(λ)
ρ0

)γ−1
+M2

edgeλ̃
p−1

]
, (2.9)

where λ̃ = λ/h is the normalized size scale, Q′ = Q/(2κ̃) and Medge = M(h)
is the Mach number for the turbulent velocity dispersion at the largest scale6.

6Once again we note that direct simulations (Federrath & Klessen 2012; Hennebelle &
Chabrier 2013b; Zentner 2007) have confirmed that this is a good approximation for the
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This is an implicit equation in case γ , 1 which always has a unique solution

for γ < 2. Note that this equation applies identically for sub-structures inside

a core, where in that case ρ0, Q′, andMedge are defined at the scale of the core.

For collapsing cores the core scale itself has to be unstable, which prescribes

Q′ = 1, which we will adopt for the rest of the paper.

ForM2
edgeλ̃

p−1 � 1 turbulence dominates over thermal support and the critical

density becomes roughly

ρcrit(λ) ≈ ρ0λ̃
p−3, (2.10)

while in the opposing, subsonic limit

ρcrit(λ) ≈ ρ0

[(
1 +M2

edge

)
λ̃2

]−1/(2−γ)
. (2.11)

Since we are in the λ � h limit, the mass of a structure with size scale λ and

density ρ(λ) is just M(λ) = (4π/3) λ3 ρ(λ). And since protostellar cores begin

themselves as “last-crossings” (smallest collapsing subregions of the galactic

disk) in this formalism, they are at the critical density (if they were above it,

some smaller scale would necessarily also be self-gravitating), so we can use

this equation with ρ(λ) = ρcrit(λ) and Eq. 2.10-2.11 to obtain their size-mass

relation (see Sec. 2.3).

2.2.3 The Equation of State

For the purpose of modeling a collapsing protostellar core, a simple polytropic

equation of state is not sufficient due to the highly complex heating and cooling

processes involved. As a first approximation one can describe the whole cloud

as having an effective polytropic index which is dependent on global properties

(e.g. size, mass). Since the primary physical quantity for radiation absorption

is surface density Σ, we choose to have a polytropic index dependent on this

global quantity. Sufficiently dense clouds become optically thick to their own

cooling radiation, meaning that blackbody radiation is the primary cooling

mechanism. For realistic temperatures molecular hydrogen has a polytropic

index of γ = 7/5. In case of less dense clouds, line cooling is the dominant

cooling mechanism whose rate is ∝ n2, where n is the cloud’s number density,

while the dominant heating mechanism is cosmic radiation which depends only

linearly on the density. This means that an increase in density leads to an effec-

tive decrease in temperature, and thus γ < 1. Based on these assumptions and

collapse criterion. Even for highly non-spherical, filamentary clouds, the corrections are of
O (10%) to the final predicted mass function.
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on the works of Masunaga & Inutsuka (2000) and Glover & Mac Low (2007),

who calculated effective equation of state using full chemical networks in ra-

diation hydrodynamics simulations, we define a simple interpolating equation

of state which reproduces the aforementioned two limits:

γ(Σ) =


0.7 Σ < 3 M�/pc2

0.094 log10

(
Σ

3 M�/pc2

)
+ 0.7 3 < Σ

M�/pc2 < 5000

1.4 Σ > 5000 M�/pc2

, (2.12)

where Σ = M/(4πR2) is defined for each “fragment” (cloud or sub-cloud, if

it has collapsed independently). This γ(Σ) equation of state does capture

the physics of the limit where the cloud is optically thick to its own cooling

radiation, however in the optically thin limit the local density ρ determines

the effective polytropic index, not Σ. Nevertheless this EOS is still useful as

the optically thin limit is populated by massive clouds whose fragmentation is

barely dependent on the value of γ (see Fig. 2.11) so changing to a ρ dependent

EOS for less dense clouds would not make a significant difference. In any case

the effects of variations in the equation of state are investigated in Sec. 2.3.1.1.

It should be noted that the global parameter of our EOS (Σ surface density)

changes on the dynamical time scale so for sufficiently small ∆t time step the

temperature field evolution can be approximated with the polytrope

T(λ, t + ∆t) = T(λ, t)
(
ρ(λ, t + ∆t)
ρ(λ, t)

)γ(Σ)−1
. (2.13)

2.2.4 Time-Dependent Collapse of Cores

One of the key physical processes in mapping the CMF to the IMF is the non-

linear density field evolution during the collapse phase, which can cause the

fragmentation of the cloud (see Fig. 2.2). To get a handle on this problem, let

us first look at the time evolution of the density field in a stationary (statisti-

cally time-steady e.g. not globally collapsing/expanding) background. Using

the notation of Sec. 2.2.1 and Eq. 2.3, we consider not the density contrast

itself, but its modes in Fourier space, as their time evolution simply follows

the generalized Fokker-Planck equation (see Sec. 9 of Hopkins 2013c)

∆δ(λ̃, t + ∆t) = ∆δ(λ̃, t) (1 − ∆t/τλ) + R
√

2∆S(λ̃)∆t/τλ, (2.14)
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Figure 2.2: Evolution of collapsing protostellar cores, with time increasing from
left to right (darker subregions are higher-density, arrows denote regions which
are independently self-gravitating and become thicker with increasing collapse
rate). As the initial core collapses, density fluctuations increase (because gravi-
tational energy pumps turbulence), creating self-gravitating subregions. These
then collapse independently from the parent cloud, forming protostars at the
end.

where R is a Gaussian random number with zero mean and unit variance while

τλ ∼ λ/vt(λ) is the turbulent crossing time on scale λ, and the turbulence

dispersion obeys v2
t (λ) ∝ λ thus τλ ∝

√
λ̃ which we normalize as τλ(λmax) = 1

thus setting the time units for our problem (see collapse time in Eq. 2.15). This

formalism holds for polytropic gases too if we apply the substitution ∆S(λ̃) →
∆S(λ̃, ρ) and set it according to Eqs 2.4-2.5 and Eq. 2.7. For verification of

evolution timescale in simulations, see Pan & Scannapieco (2010).

Note that, as the sub-regions collapse the total ensemble density distribution

– even for isothermal gas – will deviate significantly from a lognormal. In

fact what we predict is that self-gravitating regions develop a power-law tail

in their “total” (ensemble) density PDFs, as sub-regions collapse on power-law

(free-fall) time-scales. This is, of course, exactly what is observed in real dense

molecular clouds (see Kainulainen et al. 2009), and it has been previously

shown in simulations that it results naturally from such a fragmentation cas-

cade (see e.g. Ballesteros-Paredes et al. 2011b; Federrath et al. 2010b; Kritsuk

et al. 2011; Schmalzl et al. 2010; Veltchev et al. 2011).

2.2.4.1 Turbulent Density Fields in a Collapsing Background

In the case of collapsing protostellar cores the density evolution is influenced

by the gravitational collapse which pumps energy into turbulence, potentially
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leading to large density fluctuations and further fragmentation of the cloud.

Hopkins (2013c) developed a simple model for collapsing spherical clouds which

assumes a constant virial parameter (based on Robertson & Goldreich 2012a

and Murray & Chang 2015)7. Of course a perfectly spherical collapse would

not drive turbulence, but any inhomogeneity in a ’roughly’ homogenous media

would be greatly amplified by the collapse which will drive the turbulence.

Instead of dealing with the microscopic details our model assumes that virial

equilibrium is realized between turbulence and gravity on the largest scale,

thus the contraction is set by the rate of turbulent energy dissipation whose

characteristic time scale is the crossing time τλ. This leads to an equation for

the contraction of the cloud:

dr̃
dτ̃
= −r̃−1/2

(
1 − 1

1 +M2
edge

)3/2

, (2.15)

where r̃(t) = r(t)/r0 is the relative size of the cloud at time t while τ̃ ≡ t/t0 is

time, normalized to the initial cloud dynamical time t0 ∼ 2Q′−3/2
(
GM0/R3

0

)−1/2

(see Fig. 2.3 for solutions and Hopkins (2013c) for derivation). In this case

the initial dynamical time (t0) and crossing time only differ by a freely-defined

order unity constant, so in our simulations we consider them to be equal with-

out loss of generality. Virial equilibrium implies that that during the collapse

of the cloud:

d
(
M2

edge

)
dτ

=
(
1 +M2

edge(t = 0)
)
(−1 + 3 (γ − 1)) r̃−2+3(γ−1) dr̃

dτ
, (2.16)

which for constant γ simplifies to

1 +M2
edge(t) =

(
1 +M2

edge(t = 0)
)

r̃−1+3(γ−1). (2.17)

In the case γ > 4/3, after some time the sound speed cs will begin growing

faster than vt , stabilizing against collapse. Thus the contraction will seize at

a finite r̃ value (see Figs. 2.3-2.4). In this case we consider the collapse “done”

when this size limit is reached. However, if γ < 4/3 then r̃ = 0 is reached in

a finite amount of time. This also means that the cloud cannot fragment on

arbitrarily small scales as there is not enough time for these fluctuations to

7It should be noted that based on current data it is not at all clear that these collapses
really happen at constant virial parameter, however we believe it is a reasonable approxi-
mation.
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Figure 2.3: Contraction of a self gravitating, collapsing, turbulent parent cloud
in time according to Eq. 2.16 for different polytropic indices γ and edge Mach
numbersMedge (Mach number of the turbulence on the cloud scale). For high
Mach numbers the equation of state (e.g. different γ values) has little effect
on the collapse rate, because the cloud is supported by turbulence. However,
for γ > 4/3 the contraction ceases at a finite scale.

grow. For sufficiently small r̃ the collapse becomes scale-free (dr̃/dτ ≈ −r̃−1/2).

In this limit the collapse also becomes independent of γ.

2.3 Mapping From CMF to IMF

In this section we discuss an algorithm for mapping an initial CMF to a sim-

ulated IMF. For that we carry out several Monte Carlo simulations, which

calculate the time evolution of last crossing surfaces around a randomly cho-

sen point in a collapsing medium. This means solving the stochastic differential

equation of Eq. 2.14 for the case of a collapsing protostellar core.

In our simulation the cores start out internally homogeneous (this is a good

approximation for the density and temperature below the last crossing scale of

a full galaxy calculation) and start to collapse following Eq. 2.15. As Fig. 2.5

shows, this leads to increased turbulence, which in turn leads to large density
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Figure 2.4: Evolution of the edge Mach number (Mach number of turbulence
on the cloud scale) in collapsing clouds for different polytropic indices. For
γ < 4/3 the contraction of the cloud pumps energy into turbulence, thus the
Medge diverges as we approach the time of collapse (marked with dotted lines).
In the opposite case the sound speed increases faster than the turbulent veloc-
ities, pushing the cloud into the subsonic limit (where fragmentation becomes
inefficient).

fluctuations (Eq. 2.4). Through pumping turbulence, the collapse also modifies

the critical density (Eq. 2.8), combined with the aforementioned density fluc-

tuations, this can lead to the formation of self gravitating subregions and thus

the fragmentation of the parent cloud (see Fig. 2.2). Fig. 2.6 shows the time

evolution of the averaged and critical density on a specific scale for a subsonic

and a supersonic cloud. The first time the density reaches the critical den-

sity on some scale, a self gravitating subregion appears, which is subsequently

assumed to evolve independently from the parent cloud. This assumption is

supported by the fact that the collapse timescale t0 ∼ (GM/λ3)−1/2 ∝ 1/√ρ
and ρcrit > ρ0 so smaller regions collapse faster, meaning that a small fragment

can form a protostar much sooner than its parent could.

Based on these assumption our model follows the scheme:
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Figure 2.5: Evolution of the ratio of turbulent to gravitational energy as a
function of surface density in clouds during collapse (γ (Σ) from Eq. 2.12 used
as EOS). The solid, dashed and dotted lines show the evolution during the
first 50%, 90% and the entirety of the collapse time (collapse is achieved when
the cloud size reached 10−4 pc which is roughly the size of a protostar). It is
apparent that smaller clouds are mainly supported by thermal pressure and
the relative importance of turbulence increases as the cloud collapses until
γ = 4/3 is reached (at Σ ≈ 2500 M�/pc2 for this EOS) after which thermal
energy grows faster than turbulent energy and starts dominating (see Eq.

2.16). For this plot Eturb ∼ M v2
t
2 and Egrav ∼ M 5GM

3R . Virial equilibrium

implies c2
s (1 +M2) = GM/R, leading to Eturb

Egrav
∼ 3M2

10(1+M2) , which sets 0.3 as the

theoretical maximum.
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Figure 2.6: Time evolution of the averaged density (smoothed on some sub-
scale λ around a specific random point within a cloud) and the critical density
on the same scale (the density above which a region of this size becomes inde-
pendently self gravitating). The curves follow a region whose size evolves with
the parent cloud (it is a constant fraction of the parent cloud size). We consider
both a supersonic (blue) and subsonic (red) cloud. The density field follows
an essentially random walk. The first time it reaches the critical threshold,
the subregion becomes self gravitating and starts to collapse on its own, thus
fragmenting the cloud.

1. Initialize a cloud (e.g. density and temperature distribution).

2. Evolve the density and temperature (assuming locally polytropic behav-

ior) on all scales within the cloud until the first collapsing subregion

appears (see Fig. 2.6).

3. If there is a self gravitating subregion, evolve it forward starting again

from step 1 using the parameters of the fragment at the moment of

fragmentation as initial conditions.

This scheme yields the so called collapse history, which contains the time

evolution of the last crossing scale around a point. It is important to note that
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this model makes no assumptions about the relative position of the fragment

within the parent cloud, thus what we calculate is the collapse history of a

random point. By carrying out a large number of these simulations we can

determine the statistical collapse history of a random Lagrangian point for

a specific initial cloud. In other words we calculate the probability that a

Lagrangian point/volume element inside the cloud“ends up”in a final fragment

of some mass.

The initial clouds represent the smallest self gravitating structures formed by

fully developed turbulence in a galactic disk, which we consider to be equiva-

lent to the observed protostellar cores. Their distribution has been calculated

by Hopkins (2012b) using the same excursion set formalism, which naturally

predicts their global parameters (see Fig. 2.7). By definition these clouds

“start out” at the critical density so according to Eqs. 2.10-2.11 in the super-

sonic limit Mcore ∝ λp
core (we took p = 2 for the turbulent power index in our

simulations) meaning a constant surface density Σ, and thus constant γ(Σ) (see

Sec. 2.2.3). Meanwhile in the subsonic limit Mcore ∝ λ3−2/(2−γ)
core which we can

further approximate by taking the isothermal γ = 1 case yielding Mcore ∝ λcore.

To get absolute scales let us assume virial equilibrium at cloud’s scale which

yields c2
s + v

2
t (R) ∼ GM/R. Now we can introduce the sonic scale Rsonic, which

correspond to the scale where v2
t (Rsonic) = c2

s , and the sonic mass Msonic which

is the minimum self-gravitating mass contained in this subregion of size Rsonic.

These assumptions lead to the following mass-size relation for the initial cores:

R(M) =


Rsonic
M

Msonic
M < Msonic

Rsonic

√
M

Msonic
M > Msonic

(2.18)

By substituting in typical values for cores (T = 30 K, R ∼ 0.1 pc, see Mac Low

& Klessen 2004) we get Msonic ∼ 3 M� for the sonic mass and

R(M) =


0.1 M
3M� pc M < 3M�

0.1
√

M
3M� pc M > 3M�

(2.19)

Note that the predicted size-mass relation agrees with that observed (Bolatto

et al., 2008; Larson, 1981; Pineda et al., 2009); we would obtain nearly identical

results if we simply took the observed relation as our input.

Since the protostellar core in question has not yet started collapsing, the tur-

bulent velocity at its edge must (initially) obey the turbulent power spectrum.
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Figure 2.7: Comparison between the CMF used in our calculations (the result
of the excursion set model from Hopkins 2012b) and a compilation of observed
core mass functions from Sadavoy et al. (2010). Since the exact scaling of
the CMF is determined by the sonic mass, which depends on the parameters
of the galactic disk, it was set in a way that the CMF turnover mass is be-
tween the observational limits. Effects of deviations from this default CMF
are investigated in Sec. 2.3.1.2.

Thus v2
t (R) ∝ R for the supersonic and v2

t (R) ∝ R2/3 (the Kolmogorov scaling)

for the subsonic case. Using the mass-size relations of Eq. 2.18 leads to the

following fitting function:(
1 +M2

edge

)
M2

edge

1 +M−1
edge

=
M

Msonic
, (2.20)

which exhibits scalings of M ∝ M3 for the subsonic and M ∝ M4 for the

supersonic case respectively, and (coupled to the size-mass relation above)

very closely reproduces the observed linewidth-size relations (Bolatto et al.

2008; Lada & Lada 2003; Larson 1981).

This means that an initial parent cloud can be described with only one physical

parameter, which we chose to be its mass (see Fig. 2.8). Using the aforemen-

tioned Monte Carlo algorithm it is possible to calculate PV (M0, M), which is
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Figure 2.8: Mass dependence of the initial parent core properties of the clouds
on the observed CMF, used as the initial conditions for our calculation. We
show the initial cloud scale or “edge” Mach number (top left), cloud radius
R (top right), cloud-averaged surface density Σ (bottom left), and effective
polytropic index γ (bottom right) for protostellar cores before the collapse
begins, each as a function of the initial core mass. These are calculated from
the same excursion-set models from which the CMF in Fig. 2.7 is derived. But
the mass-size relation we adopt agrees well with Larson’s law for both small
and large masses (Bolatto et al. 2008; Larson 1981; Pineda et al. 2009) as does
the Mach number-mass relation (or equivalently, the linewidth-size relation).

the probability that a randomly chosen initial Lagrangian point, within a par-

ent core with initial mass M0, ends up in a fragment of mass M after collapse

(see Fig. 2.9). Thus PV = 0.1 means that 10% of the initial points (thus

10% of the total mass) will end up in fragments of size M. The number of

initial subregions containing M mass is just M0/M so assuming the subregions

are independent, the expected number of fragments becomes PV (M0, M)M0/M.

Thus, if the CMF is given by ncore(M) then the stellar IMF is

nstars(M) =
∫ ∞

M
ncore(M′)PV (M′, M)M

′

M
dM′. (2.21)
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Figure 2.9: Distribution of final (successfully collapsed to formally “infinite”
density) fragments of different masses (total mass of fragments per logarith-
mic interval in fragment mass dM/d log Mfragment = M dN/d log Mfragment =

M2 dN/dMfragment so it is trivial to get dN/dMfragment which is a more natural
observable). We consider this for initial parent cores with different masses (and
the surface density-dependent equation of state from Eq. 2.12). Massive frag-
ments can form (albeit rarely) without sub-fragmentation. In all cases where
the parent is sufficiently large, there is a flat distribution (dN/dM ∝ M−2,
approximately) at high fragment masses & M�, which is cut-off at the mass
of the parent cloud. This self-similar mass function owes to the fact that this
is the “scale free” regime where turbulence and gravity dominate. The stiffer
equation of state at higher densities, and sub-sonic nature of turbulence on
small scales, suppress the number at low masses. Although only a small frac-
tion of mass ends up in these fragments, this corresponds to a large number of
individual stars. Also, a significant amount of mass ends up in substellar sized
fragments which may either be destroyed by feedback mechanisms or form gas
giants.

It should be noted that the CMF have significant uncertainties (Pineda et al.

2009); to account for that the effect of variations in the CMF are investigated

in Sec. 2.3.1.2.

It should be noted that Eq. 2.21 neglects two important effects: geometry

and feedback. Geometry becomes important as more fragments collapse to
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stars, leaving behind “holes” in their parent cloud which hinder the formation

of large scale substructures. This is related to the so-called “sphere packing

problem” that only a fraction of a sphere’s volume (e.g. parent cloud) can

be filled by non-overlapping spheres8. Furthermore, Eq. 2.21 assumes stars

form independently and have no feedback on their parent cloud. This is not

the case, especially if numerous small fragments form. We can imagine that

when a protostar forms, it heats a region around it, preventing that region

from collapsing and forming protostars, with some mass Mexc which we call

the exclusion mass. We can crudely account for this effect by by taking the

number of independent regions to be M0/M → M0/(M + Mexc). Essentially

this “excludes” Mexc mass from further collapse each time a protostar forms.

What is a reasonable choice for the exclusion mass? Krumholz (2011) argue

that young, low-mass protostars accrete gas at a very high rate (leading to a

luminosity L ∝ G M ÛM/R which grows rapidly in time) until they reach the

mass required for deuterium burning, which leads to a characteristic luminosity

and correspondingly, a characteristic mass of the surrounding median-density

cloud which can be heated to the point where it is no longer gravitationally

unstable. In their argument, depending on the background pressure, this pro-

duces an effective “exclusion mass” which varies between 10−2−100 M�. Based

on this as a first approximation we will experiment with an exclusion mass of

O (0.01 M�). It should be noted that our intention with this crude assumption

is not at all to give a full account of stellar feedback but to provide a sim-

ple correction mechanism for the overabundance of small mass fragments. In

future work, we will explore a more self-consistent accounting for feedback in

these calculations.

Another uncertainty is introduced by the fact that protostellar discs can frag-

ment, creating further brown dwarf sized objects. This combined with the

sensitivity of the low mass end of the IMF to the equation of state of the

gas and the crude approximation of feedback means that the model is highly

uncertain in the very low mass region of the IMF.

We now consider the results of our calculation. Figure 2.10 shows the core

mass function before any collapse (ncore(M)) and after collapse (nstars(M)).
Compare this to the three qualitative properties of the IMF mentioned in Sec.

2.1. We find that it exhibits

8Preliminary results from spatially resolved simulations suggest that these geometric
effects cause only order of unity differences.
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Figure 2.10: Core mass function before and after final collapse compared with
IMFs by Kroupa (2002) and Chabrier (2005). Note that the absolute number
(vertical normalization) is arbitrary, so we normalize each to the same peak
value. After collapse/fragmentation, the high mass slope becomes slightly
steeper, and the turnover point and cut-off mass move to lower masses. The
model provides a near perfect fit to the observed IMF at the high mass end
(the predicted slope of 2.32 is well within the error of the nominal 2.35). The
calculations here use the surface density-dependent equation of state Eq. 2.12;
this preserves the turnover at low masses; crudely the difference resembles a
“shift”of the IMF peak by a factor of ∼ 2−3. However even in this case, there is
some pile-up at small masses < 0.1 M�, which may disagree with observations
(depending on the preferred “correct” IMF); this can be mitigated by applying
an appropriate exclusion mass (here we show the results for Mexc = 0.02 M�),
which accounts for the protostars heating up their surroundings and preventing
fragmentation.

1. a power law scaling of of O
(
M−2) for high masses;

2. turnover at O (0.5 M�);

3. close to lognormal dependence at low mass scales.

In summary, it seems that this excursion set formalism can reproduce the main

qualitative features of the IMF, and potentially provide an explanation for the

universality of these properties. In the following subsections we consider these

properties in more detail.
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2.3.1 Dependence of the IMF on System Properties and Robust-

ness of These Results

Considering the the ubiquity of these IMF features in nature, and the number

of assumptions in the model, it is critical to investigate the robustness of our

results. The two primary parameters of our model are the initial CMF, which

is dependent on the parameters of the original galactic disk for which the pre-

collapse “last crossing scale” calculation was carried out, and the equation of

state, which is highly uncertain.

2.3.1.1 Dependence on the Equation of State

First, we have repeated our calculations using different functional forms for

the equation of state γ. Fig. 2.11 shows the resulting IMFs for constant γ

values (pure polytropes), for the original equation of state γ1 (Σ) and for shifted

equations of states (γ2 (Σ) and γ3 (Σ)), where the upper surface density limit

corresponding to γ = 1.4 is set to Σ = 2 · 104 M�/pc2 and Σ = 2 · 105 M�/pc2

respectively (see Eq. 2.12 for original).

By analyzing the collapse histories, we have found that turbulent fragmen-

tation occurs in a top-down cascade as large clouds fragment into clouds of

smaller, but still comparable sizes (i.e. the largest scales tend to fragment

first), which then undergo fragmentation again. Based on Fig. 2.11, it is ap-

parent that the high-mass power-law slope of the IMF is unaffected by the

choice of γ, as all solutions tend to a power-law like slope which is slightly

steeper than the original CMF slope, and is in good agreement with the ob-

served Salpeter slope. That is because they are in the super-sonic regime (i.e.

clouds have virial motions and/or initial turbulent motions which are firmly

super-sonic); so the cloud dynamics and fragmentation are, to first order, de-

pendent on turbulence and gravity, not on the thermal pressure of the gas,

and the fragmentation cascade is inherently scale-free (as are both turbulence

and gravity).

Note that our calculation predicts that “final” objects (which have success-

fully collapsed to infinitely high densities) can exist at high masses; success-

ful collapse without fragmentation is rare, but not impossible. Because the

cloud collapses in finite time, and the turbulent fluctuations are self-similar in

the scale-free regime, the probability of avoiding a density fluctuation which

would cause fragmentation is only power-law suppressed, not exponentially

suppressed. Thus high-mass “final” cores can form. In fact our calculation
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Figure 2.11: Predicted IMF for different equations of state (constant poly-
tropes, the original γ (Σ) from Eq. 2.12, and the shifted equations of state γ2 (Σ)
and γ3 (Σ), where the upper surface density limit corresponding to γ = 1.4 is
set to Σ = 2 ·104 M�/pc2 and Σ = 2 ·105 M�/pc2 respectively, with no exclusion
mass correction. The high mass end is insensitive to the choice of γ, as massive
clouds are highly turbulent (see Eq. 2.10), leading to scale free fragmentation.
We normalize the IMFs at 100 M� for ease of comparison. A “soft” EOS with
γ < 4/3 at all density scales would predict an excess (relative to observations)
of fragmentation into brown dwarfs and sub-stellar objects (M . 0.1 M�).
Some fragmentation can occur even with a “stiff” (γ > 4/3) EOS, but only at
very high masses where the turbulence is highly super-sonic. Lower γ values
lead to an increase in the number of small fragments, as there is less thermal
pressure to resist fragmentation (see Eq. 2.9). Changing between the different
functional forms of γ (Σ) (which means increasing the upper density limit of
the EOS) shifts the turnover point to lower masses and increases the number
of small fragments as a higher surface density is required to reach high enough
γ values to resist further collapse.
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predicts that the Salpeter slope continues to ∼ 104M�. If there is an actual

“maximum” stellar mass – i.e. if the actual stellar IMF cuts off at O (100 M�),
other factors besides pure turbulent fragmentation (e.g. fragmentation within

the protostellar disk, or stellar stability at high masses, feedback from smaller

stars, that form faster), must play a role. However whether such a cut-off

exists is still uncertain.

Meanwhile, Fig. 2.11 also shows that the low-mass end of the IMF is heavily

dependent on the equation of state. A stiff EOS (γ > 4/3) basically freezes

the CMF shape at solar and lower masses (no fragmentation occurs on small

scales), while small values of γ lead to increased fragmentation (Fig. 2.11),

which predict either no turnover in the IMF, or a turnover at much too-low

masses. Note that in Fig. 2.11 it might at first appear that fragmentation is

stronger in the γ = 1.0 case than in the γ = 0.8 case, however this is just an

effect of the limited range and normalization of the plot, as there are actually a

significant number of fragments which have smaller masses than 0.01 M� when

γ = 0.8. Fig. 2.12 shows more clearly the fraction of the total mass ending up

in substellar (M < 0.01 M�) fragments, as a function of the EOS assumed9.

As expected, the formation of small fragments decreases monotonically with

γ, and falls rapidly as we approach γ = 4/3.

2.3.1.2 Dependence on the Core Mass Function

The initial CMF used in our calculation is, itself, the prediction of turbulent

fragmentation theory (it is the result of a similar excursion-set calculation

of the “last-crossing” scales in a galactic disk; see Hopkins 2012a). But the

CMF could vary, or be different than predicted by this calculation owing to

additional physics. We therefore next consider the IMF which results from

different initial CMFs.

To clearly isolate the most important dependencies and physics, it is actually

much more instructive to adopt the following simple approximation of the

9Our preliminary calculations with an explicitly 3D spatially dependent version of the
model indicate that the substellar fraction is overestimated in Fig. 2.12 because it is assumed
that all mass ends up in bound structures while it is possible in reality for loose material to
become unbound after fragmentation (see sphere packing considerations in Sec. 2.3). The
same discrepancy occurs in the cosmological Press-Schecter treatment, where it amounts to
a factor of 2 at low masses. In case of our default EOS the difference is about a factor of 5.
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Figure 2.12: Fraction of the total “original CMF” mass which ends up in
sub-stellar (M < 0.01 M�) fragments, for different equations of state. The
single value lines correspond to our default (surface density-dependent) equa-
tion of state γ (Σ) and the shifted γ′ (Σ); otherwise we assume a constant
polytropic EOS and show the fraction as a function of that γ. For very soft
(sub-isothermal) EOS values γ < 1, the fragmentation cascades tend to pro-
ceed without limit, and most of the initial core mass ends up in arbitrarily
small fragments! Higher γ values allow the clouds to resist fragmentation, and
above γ = 4/3 small fragments basically vanish. No exclusion mass correction
is applied here.

CMF, rather than some more complicated functional form:

dN
d log M

∝


Mα M < MT

M−β M > MT

, (2.22)

where in our “default” CMF, α = 1/2 and β = 1.1 are the approximate expo-

nents of the low and high mass slopes, respectively, while MT = 0.5 M� is the

turnover mass. This allows us to systematically vary these three parameters

and examine their impacts on the IMF. In each case, we will hold the equa-

tion of state γ(Σ) fixed to our “default” value, and include no exclusion mass

correction, so that the changes are purely a consequence of the CMF variation.
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In the turbulent framework we don’t expect the high mass slope of the CMF

(β) to vary as it is set by purely supersonic turbulence (see Hopkins (2013e)),

however it is instructive to see whether the initial distribution (CMF) or the

turbulent fragmentation sets the slope of the IMF. As Fig. 2.13 shows frag-

mentation at the high mass end is close to scale free – i.e. the slope of the

IMF is always a power-law, which is systematically steeper than the CMF by

a small, approximately fixed amount, independent of the actual initial high-

mass slope of the CMF (or turnover mass, or low-mass CMF slope). The

high-mass steepening is systematically ∆β ∼ 0.2 − 0.25. Let us consider now

how much of a steepening would we expect. The IMF reflects the average rate

at which final fragments collapse. The collapse time of a cloud is approxi-

mately Tcollapse ∼ tdynamical ∼ 1/
√

GM/R3, which in the high-mass, supersonic

limit (R ∝
√

M; see Eq. 2.10) gives Tcollapse ∝ M1/4. So in the time for one high-

mass core to collapse, multiple generations of low-mass cores can be spawned

and collapse; to first approximation the ratio of the number of stars produced

if we integrate over a fixed timescale (the collapse time of the large clouds)

will be nstars/ncores ∝ 1/Tcollapse ∝ M−1/4, meaning ∆β = 0.25.

The low mass end of the CMF is heavily dependent on galactic properties

(see Fig. 2 of Hopkins (2013e)) so the value of α is far from fixed. However,

small cores tend to collapse without further fragmentation so their effect on

the IMF is just providing an initial population of small stars which is increased

by the smaller fragments of high mass cores. This means that the low-mass

end of the predicted IMF is sensitive to all changes in the CMF (Figs. Fig.

2.13-2.14). If we adopt an unphysical but instructive toy model where there

are initially no low-mass cores, we see a sizable population of low-mass objects

still appears in our final IMF. This is clear also from Fig. 2.9; cores fragment

into a very broad mass spectrum, and even high-mass cores can form very

low-mass fragments. This is also evident if we adopt an initial CMF which

has an (unphysically) shallow high-mass slope, such that there is an unlimited

mass supply of very high-mass cores – in turn there would be far too many

small cores. It is also worth nothing that we appear to robustly predict that

the approximate total number density (dN/d log M) of objects with sub-stellar

masses (∼ 0.01 − 0.1 M�) is never much less than ∼ 10% that of objects with

∼ 0.1 − 1 M�.

Finally, the turnover mass of the CMF (MT) is proportional to the the sonic

mass Msonic ∼ c2
s Rsonic/G which is set by both galactic and local properties.

This means that there could be some variation in the CMF turnover point
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Figure 2.13: Effects on the predicted IMF from having different slopes
(dN/d log M ∝ M−β) for the initial CMF. For each we keep all other parameters
(e.g. γ (Σ)) fixed at their default values from Fig. 2.10, and include no exclu-
sion mass correction. We show the resulting IMF, with the final high-mass
power-law (β′) scaling. It is clear that fragmentation is close to scale-free as
the IMFs produce high-mass power-law slopes close to the “progenitor” CMF
slope, but steeper by a systematic ∆β ∼ 0.2. This systematic change can be
understood as a consequence of time-dependent fragmentation at high masses;
it also naturally explains the difference between the observed Salpeter slope of
the IMF (∼ 1.3) and the predicted slope of the CMF from turbulent fragmenta-
tion models (closer to β ≈ 1.0−1.1; see Hennebelle & Chabrier 2013b; Hopkins
2012b). Note that if the high-mass slope is sufficiently shallow (β < 1), a pile-
up at low masses results from fragmented large cores. However such shallow
values are unphysical (they imply a divergent amount of mass in large cores).

(as noted by Hennebelle & Chabrier (2013b); Hopkins (2012b)) which is in

agreement with the observations (see Fig. 2.7). Interestingly, the position of

the turnover point in the initial CMF only determines the point where the

IMF starts to “flatten”; however the details here are also dependent on the

underlying physics (e.g. the equation of state). Nevertheless we can say that

the turnover mass for reasonable parameters resides around O (0.5 M�).
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Figure 2.14: Effects from different having slopes (dN/d log M ∝ M+α) at the
low mass end of the initial CMF. As Fig. 2.13, we keep all other parameters
fixed. Since fragmentation is top-down, the low-mass CMF slope has no impact
on the high-mass IMF. It is apparent that a significant fraction of the low-mass
objects in the IMF are in fact fragments from much larger“parent”cores – most
clear when there are essentially no small cores to begin (the unphysical but
instructive α = 10 case). However, for“shallower” initial CMF low-mass slopes,
the IMF tends to trace the CMF, and the low mass stars are predominantly
formed from low mass cores.

2.4 Conclusions

The aim of this paper was to provide a feasible candidate for the primary phys-

ical phenomena that determine the qualitative properties of the stellar initial

mass function. This was achieved by expanding upon the excursion set formal-

ism outlined in more detail by Hopkins (2013c), and applying it to follow the

time-dependent collapse of protostellar cores into protostars. This improves

on previous work done by Padoan et al. (1997), Hennebelle & Chabrier (2008)

and Hopkins (2012b), by following fragmentation down to stellar scales while

taking into account the nonlinear time dependence and complicated equations

of state (and their effects in making the density PDFs deviate dramatically

from log-normal distributions). We found that this simple model reproduces

the main qualitative features of the IMF, and it allows us to answer several
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Figure 2.15: Effects from moving the turnover mass (MT) of the initial CMF.
As Fig. 2.13, we keep all other parameters fixed. The high-mass slope is
unchanged by this choice, as in the turbulence-dominated regime the behavior
becomes scale free (see Eq. 2.10). But the turnover point of the predicted
IMF (or more accurately, where the resulting IMF becomes “shallow” and the
total mass in stars converges, even if the IMF it does not completely turn over)
clearly scales here with the turnover mass of the CMF.

critical unresolved questions in the theory of turbulent fragmentation.

The fact that both turbulence and gravity are scale free robustly predicts a

CMF – an instantaneous mass function of “last-crossings” – with a high-mass

slope dN/dM ∝ M−(2.0−2.1) (see references above). This is the inevitable result

of any scale-free, self-similar fragmentation process (basically, a slope of −2,

which implies equal mass per log interval in mass, with a small logarithmic cor-

rection which depends on the properties of the medium but only very weakly).

Time-dependent turbulent fragmentation slightly steepens this slope by a sys-

tematic ∆β = 0.25, creating a near-perfect fit with the canonical Salpeter slope

of the observed IMF. The results are very robust to changes in both the initial

conditions of the galactic disk, the equation of state of the gas, the presence of

stellar feedback, the strength of the turbulence and the form of the CMF. Thus

we can say that the Salpeter slope is an inevitable consequence of turbulent

fragmentation and is expected to be “universal.”
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Observed IMFs and CMFs have very similar shapes, and it appears as if the

IMF is just a “shifted” version of the CMF. The simplest explanation would

be that a constant fraction ∼ 1/3 of each core ends up in a single star. This

is not the case in turbulent fragmentation. Rather, the apparent shift is the

result of the nearly scale-free fragmentation in the high mass regime, and

the flattening/turnover imprinted by the CMF and equation of state. We

showed that, in fact, a high-mass core (which has initially no self-gravitating

substructure) is typically expected to fragment into a broad range of masses,

with comparable mass in fragments of all masses down to sub-solar masses.

However, because this fragmentation produces a similar power-law slope for

the IMF and CMF (see above), the result looks like a “shift.” We stress that

the shift should not even be interpreted as an “average fragment size” – that

is actually much smaller (factor < 0.1 of the original core size, for � 10 M�
cores). It is more accurate to say that sufficiently massive cores fragment into

a spectrum of masses which resembles the IMF mass spectrum itself; since the

convolution of a lognormal (or power-law) with another lognormal (or power-

law) yields the same function, this produces the observed IMF shape. There

is no one-to-one relation between cores and stars (far from it).

It has been argued that purely isothermal turbulent fragmentation cannot

produce the observed universal IMF, because collapsing clouds will inevitably

become supersonically turbulent as gravitational energy pumps random mo-

tions, until fragmentation occurs. We confirm this is the case. Thus a CMF

model based purely on isothermal turbulence – or any simple polytrope – is

incomplete. However, that does not mean there could be no “flattening” of the

IMF. Even for pure isothermal gas, the IMF still becomes more shallow than

Salpeter around the “sonic scale.” This is related to what has been shown for

the CMF: there is a characteristic scale in isothermal turbulence, the sonic

scale, around which fragmentation becomes more or less “easy.” (It is only

if one considers only thermal pressure, i.e. the Jeans length, that there is no

characteristic scale). However, with isothermal gas, there is no true “turnover”

in the IMF; moreover, most of the core mass ends up in very small (substellar)

fragments.

We found that the turnover point in the initial CMF determines the point

at which the IMF first “flattens” from the Salpeter slope. However, this does

not necessarily amount to a full “turnover” in the IMF. Observationally, this

“flattening” mass occurs at ∼ 0.5 M�; for reasonable assumptions, we obtain a

similar result. The CMF turnover point in turbulent fragmentation is robustly
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set by the “sonic mass” Msonic ∼ c2
s Rsonic/G, the minimum self-gravitating

mass at the sonic scale. Below this scale, the turbulence is sub-sonic, so large

density fluctuations (in the parts of the medium which are not already self-

gravitating) are not generated. As a result, we predict a “flattening mass”

that scales as ∼ 0.5 M� (Tmin/30 K) (〈Rsonic〉/0.1 pc), where Tmin is the minimum

temperature reached by molecular cooling, and 〈Rsonic〉 is the sonic length of

the pre-collapse clouds – i.e. the mean sonic length in the galactic disk (not

a cloud-by-cloud quantity, since this changes as the cloud starts collapsing).

As noted in Hopkins (2013e), this predicts a very close to universal flattening

mass within the Milky Way and nearby galaxies, but a lower flattening mass in

extreme (high-Mach number) environments, where the sonic length is smaller,

at the center of starburst galaxies and ellipticals. We will investigate this

further in future work.

The choice of equation of state, and effects of stellar feedback (crudely modeled

here via an“exclusion mass”which is heated by each protostar) have some effect

on the“flattening mass,” but a surprisingly weak one (shifting it by factors ∼ 2,

for a fixed CMF). However, they critically determine the behavior below this

mass. In particular, whether the IMF actually “turns over,” or simply flattens,

depends on these effects. If we assume any polytropic equation of state with

γ < 4/3, the IMF will still flatten, but will not turn over as observed (the IMF

peak, in dN/d log M, which is observed to be between ∼ 0.1−0.3 M�, does not

occur until � 0.1 M�). However, a surface-density dependent EOS, motivated

by direct numerical calculations, is able to produce a reasonable turnover.

This is because the characteristic surface density required for such a fragment

to be self-gravitating is & 1 g cm−2 (higher if the fragment is embedded in an

already-collapsing core, as we find is usually the case), and so approaches the

limit where it becomes optically thick to its own cooling radiation. If the this

is indeed the relevant limit, we expect this mass to be weakly dependent on the

minimum cooling temperature and the metallicity of the gas: requiring that

a thermally pressure-supported cloud be self-gravitating, we predict this mass

scales as ∼ 0.1 M� (Tmin/10 K)2 (κ/κMilkyWay) ∼ 0.1 M� (Tmin/30 K)2 (Z/Z�) –

this is weakly-varying in most systems, since Tmin tends to decrease with metal-

licity (as low-temperature cooling is more efficient), while κ increases. The

presence of an “exclusion mass” further influences the details of the low-mass

turnover, and may lead to a “more universal” behavior. We argue below that

the key effects of feedback may be in preventing other effects we have ignored

in our calculations.
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2.4.1 Speculations

We found that fragmentation usually occurs on a scale comparable to the

parent cloud (because in turbulence, the power in density fluctuations is dom-

inated by the large-scale fluctuations), which means that the fragmentation of

collapsing cores can be accurately modeled as a top-down cascade. On aver-

age a large cloud loses equal amounts of mass to fragments per logarithmic

interval in “fragment mass” (see Fig. 2.9), demonstrating the scale-free nature

of the process. But even the largest, supersonic clouds have a nonzero chance

of not fragmenting. This leads to an interesting prediction: turbulent frag-

mentation alone predicts that the Salpeter slope in a galactic disk continues

to very high masses, ∼ 104 M�. Whether such stars actually exist is still a

matter of debate; however, it is commonly assumed that the most massive

stars have masses ∼ 100 − 200 M�. If this is the case, some other physics (e.g.

fragmentation in proto-stellar disks, or stellar stability) must be the reason.

The fragmentation cascade predicted by the model can lead to the creation of

substellar sized fragments, which could theoretically condense into gas giants.

The amount of mass ending up in such fragments is heavily dependent on the

initial CMF and the equation of state. Nevertheless, it is important to note

that these fragments would not be visible in numerical simulations (due to

their resolution limits), but could lead to a large population of gas giant sized

objects – “free-floating planets” – in the ISM. This, however, might not be

the case if some physical process (e.g. stellar feedback) stops the cascade at

smaller scales.

It should be noted that this model incorporates no real feedback physics, and

does not take accretion by the protostars into account. Considering how well

the results fit to the observed IMF, we tentatively conclude that those processes

have negligible effect on the high-mass slope of the IMF. However, we believe

stellar feedback could potentially solve the problem of the model predicting

extremely massive (∼ 103 M�) stars. Since small objects collapse faster, there

would be a significant number of realistic sized stars before a substructure

of 103 M� could collapse. The more massive of these stars have a lifetime of

several Myr which is comparable to the collapse time of the substructure. This

means the cloud could be unbound by neighboring supernovae before it could

collapse.

Meanwhile at the low-mass end, there is clearly a very strong effect from feed-

back, which we crudely modeled by way of either the “effective equation of
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state” or “exclusion mass.” However, even there, we do not necessarily expect

feedback to strongly modify the “top-down” cascade we model. What may

be more important, instead, is that feedback could prevent runaway accre-

tion. Turbulent fragmentation naturally produces an IMF with the Salpeter

slope and a turnover mass at the appropriate scale: subsequent “competitive

accretion” would make the IMF more and more shallow, and turn sub-stellar

fragments into brown dwarfs, leading to an excess population of such objects.

The key role of feedback may therefore be to prevent such accretion – i.e. “shut

down” further accretion after the “initial” collapse (the part we model here).

And in fact, this has been suggested in numerical simulations, where the “ini-

tial” IMF formed by turbulent fragmentation looks reasonable, but (without

feedback) increasingly deviates from the observations as the system evolves

(Bate 2009a, 2012b; Krumholz 2011; Offner et al. 2009a).

2.4.2 Future Work and Caveats

Of course, although this model represents a qualitative improvement on the

previous work in this area, further work is needed:

• Many of the above points have been suggested by simulations (Feder-

rath et al. 2010b; Krumholz 2011; Offner et al. 2009a etc.), however our

analytical model allows us to follow an arbitrarily large range of scales

(well beyond the resolution of numerical simulations). With our analytic

model, we can also obtain statistically robust results, and easily explore

a huge parameter space. Nevertheless it is necessary to test these results

in full radiation hydrodynamics experiments.

• Due to its simplicity the model ignores several physical processes which

could have a significant effect on star formation. An obvious omission is

accretion, however the results do reproduce the observed IMF remark-

ably well, so the question is: does it not matter? An extension of the

model which includes accretion (like done by Veltchev et al. (2011)) could

answer that question.

• Our model ignores magnetic fields, which may be an acceptable approx-

imation in the high mass limit where the clouds are supersonic, but in

the subsonic case ambipolar diffusion could be a serious factor in the

collapse of clouds. It may, however, be possible to implement the most

important effects of magnetic fields into the model by integrating it into

the “effective” equation of state.
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• The fragmentation cascade predicts a large number of substellar frag-

ments which could potentially collapse into gas giants. In future work,

we will investigate in more detail the formation and evolution of such

fragments, and compare their statistics to observational constraints.

• Another key observable is the spatial correlation function of star clusters

and young stars. In future work, we will extend the models here to

explore these observational constraints.
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C h a p t e r 3

STAR FORMATION IN A TURBULENT FRAMEWORK:
FROM GIANT MOLECULAR CLOUDS TO PROTOSTARS

Guszejnov D., Hopkins P. F., 2016, MNRAS, 459, 9

Abstract

Turbulence is thought to be a primary driving force behind the early stages of

star formation. In this framework large, self gravitating, turbulent clouds frag-

ment into smaller clouds which in turn fragment into even smaller ones. At the

end of this cascade we find the clouds which collapse into protostars. Following

this process is extremely challenging numerically due to the large dynamical

range, so in this paper we propose a semi analytic framework which is able to

model star formation from the largest, giant molecular cloud (GMC) scale, to

the final protostellar size scale. Due to the simplicity of the framework it is

ideal for theoretical experimentation to explore the principal processes behind

different aspects of star formation, at the cost of introducing strong assump-

tions about the collapse process. The basic version of the model discussed in

this paper only contains turbulence, gravity and crude assumptions about feed-

back, nevertheless it can reproduce the observed core mass function (CMF)

and provide the protostellar system mass function (PSMF), which shows a

striking resemblance to the observed IMF, if a non-negligible fraction of grav-

itational energy goes into turbulence. Furthermore we find that to produce a

universal IMF protostellar feedback must be taken into account otherwise the

PSMF peak shows a strong dependence on the background temperature.

3.1 Introduction

Finding a comprehensive description of star formation has been one of the

principal challenges of astrophysics for decades. Such a model would prove

invaluable to understanding the evolution of galactic structures, binary star

systems and even the formation of planets.

It has been long established that stars form from collapsed dense molecular

clouds (McKee & Ostriker 2007b). Currently the most promising candidate

for a driving process is turbulence, as it can create subregions with sufficiently

high density so that they become self gravitating on their own, while also ex-

hibiting close to scale free behavior (in accordance with the observations of

http://dx.doi.org/10.1093/mnras/stw619
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Figure 3.1: Evolution of collapsing clouds, with time increasing from left to
right (darker subregions are higher-density, arrows denote regions which are in-
dependently self-gravitating and become thicker with increasing collapse rate).
As the initial cloud collapses, density fluctuations increase (because gravita-
tional energy pumps turbulence), creating self-gravitating subregions. These
then collapse independently from the parent cloud, forming protostars at the
end. These protostars can provide a sufficiently strong feedback that the rest
of the cloud becomes unbound and ceases to collapse.

Bolatto et al. 2008; Larson 1981). These fragments are inherently denser than

their parents so they collapse faster, quasi independent from their surround-

ings. However, once they turn into stars they start heating up the surrounding

gas (by radiation, solar winds or supernova explosions), preventing it from col-

lapsing and forming stars (see Fig. 3.1). This process is inherently hierarchical

so it should be possible to derive a model that follows it from the scale of the

largest self gravitating clouds, the GMCs (∼ 100 pc), to the scale of protostars

(∼ 10−5 pc). This is not possible in direct hydrodynamic simulations due to res-

olution limits, but can be treated approximately in analytic and semi-analytic

models.

This paradigm has been explored by Padoan et al. (1997) and Padoan & Nord-

lund (2002), and then made more rigorous by Hennebelle & Chabrier (2008),

who attempted to create an analytic model analogous to Press & Schechter

(1974), which approximates the background density field as a Gaussian ran-

dom field. A similar model was developed by Zamora-Avilés et al. (2012),

however that did not rely on turbulence. Later Hopkins (2012a) expanded on

these works by adopting the excursion set formalism to find the distribution

of the largest self gravitating structures, which was found to be very similar

to the observed distribution of GMCs. Similarily Hopkins (2012b) found that
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the distribution of the smallest self gravitating structures fit well the observed

CMF. Building on these results Hopkins (2013c) generalized the formalism

to be applicable to systems with different equations of state and turbulent

properties.

Observed cores are sub-sonic and show no clear sign of fragmentation and

the CMF looks very similar to the IMF apart from a factor of ∼ 3 shift in

the mass scale (Offner et al. 2014). However, if no other physics is assumed

other than isothermal turbulence and gravity, during the collapse the cores

develop strong turbulence and eventually sub-fragment into smaller objects

(Goodwin et al. 2004; Walch et al. 2012a, for discussion see Krumholz 2014).

This implies that some additional physics must play a role, but there is no

clear consensus on what it could be; e.g., magnetic fields (McKee & Ostriker

2007a; Nakano & Nakamura 1978), radiation (Krumholz 2011), cooling physics

(Jappsen et al. 2005a) etc. Using a cooling physics motivated “stiff” EOS

Guszejnov & Hopkins (2015b) incorporated the time dependent collapse of

the cores into the excursion set formalism and found that the distribution of

protostars closely reproduced the observed IMF.

These excursion set models did successfully reproduce the CMF, IMF and the

GMC mass function, however they had several shortcomings. First, they did

not account for the differences in formation and collapse times of clouds of

different sizes (e.g. small clouds form faster and collapse faster). Secondly,

the excursion set formalism describes the density field around a random La-

grangian point. This means that the spatial structure of a cloud cannot be

modeled directly (e.g. there is no way to find if a cloud forms binary stars).

Finally, there is no self consistent excursion set model that follows from the

GMC to the protostar scale (i.e. Hopkins 2012b covered scales between the

galactic disk and cores, Guszejnov & Hopkins 2015b between cores and pro-

tostars). We believe these shortcomings can be overcome by moving away

from the analytic excursion set formalism and instead adopting a simple semi-

analytical approach with the same random field assumption. This framework

would allow us to follow the evolution self gravitating clouds while resolving

both the GMC and protostellar scales and preserving spatial information. In

this paper we will outline a possible candidate for such a model.

The paper is organized as follows. Sec. 3.2 provides a general overview of

the model, including the primary assumptions and approximations and briefly

outlines its numerical realization. Sec. 3.3 shows the simulated time evolution
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of the CMF and the protostellar system mass function (PSMF), which shows

a striking similarity to the IMF. Sec. 3.3.2 also discusses the effects of having

a temperature independent equation of state on the peak of the PSMF and

the universality of the IMF. Finally, Sec. 3.4 discusses the results and further

applicability of the model.

3.2 Methodology

In short, instead of doing a detailed hydrodynamical simulation involving grav-

ity and radiation, our model assumes a simple stationary model for the den-

sity field, collapse of structures at constant virial parameter and an equation

of state that depends on cloud properties. Starting from a GMC sized cloud

it evolves the density field as the cloud collapses and pumps turbulence (this

is not a bad approxiation, see Murray & Chang 2015; Murray et al. 2015;

Robertson & Goldreich 2012b). Note that our assumptions do not necessarily

mean that all clouds have supersonic turbulence. Paper II has shown that if a

medium has a “stiff” equation of state (γ > 4/3), then turbulence is dampened

during collapse. Since it is observed that dense, low mass cores are subsonic

while high mass, low density clouds are supersonic, some form of physics is

needed to remove the turbulent energy. For that purpose we are using an

equation of state that becomes stiff at high densities, which in combination

with the constant virial parameter assumption makes dense clouds sub-sonic,

arresting fragmentation.

In the model, at each time step we search for self gravitating structures which

we treat as new fragments, for which the process is repeated in recursion until a

substructure is found that collapses to protostellar scale without fragmenting.

Our assumptions will be discussed in more detail in the following subsections

while a step-by-step description of the algorithm is provided in Sec. 3.A.

Our model is a modified version of the excursion set model used by Guszejnov

& Hopkins (2015b) (henceforth referred to as Paper I) using the theoretical

foundation of Hopkins (2013c) (henceforth referred to as Paper II). Due to the

significant overlap between models we show only the essential equations and

emphasize the differences and their consequences. If the reader is familiar with

Paper I we suggest skipping to Sec. 3.2.3.

3.2.1 The Density Field

It is known that the density field in the cases of both sub and supersonic,

isothermal flows follows approximately lognormal statistics (for corrections
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see Hopkins (2013d)). This means that if we introduce the density contrast

δ(x) = ln [ρ(x)/ρ0]+ S/2, with ρ(x) as the local density, ρ0 as the mean density

and S as the variance of ln ρ, it would follow a close to Gaussian distribution1;

thus

P(δ |S) ≈ 1
2πS

exp
(
− δ

2

2S

)
. (3.1)

It is a property of normal and lognormal random variables that a linear func-

tional of these variables will also be normal/lognormal, and thus the averaged

density in a region has lognormal equilibrium statistics whose properties are

prescribed by turbulence. Following Paper II this yields

S(λ) =
∫ λ

0
∆S(λ)d ln λ ≈

∫ λ

0
ln

[
1 + b2M2 (λ)

]
d ln λ, (3.2)

where λ is the averaging scale,M (λ) is the Mach number of the turbulent ve-

locity dispersion on scale λ and b is the fraction of the turbulent kinetic energy

in compressive motions, which we take to be about 1/2 (this is appropriate

for an equilibrium mix of driving modes, see Federrath et al. 2008 for details.

Paper I experimented with b ∼ 1/4 − 1 and found no qualitative differences).

It is important to note that although ρ is lognormal, which means δ is Gaus-

sian, there is significant spatial correlation (i.e. ρ cannot change instantly

over arbitrarily small spatial intervals) so it is not possible to model the den-

sity field as a spatially independent random field. To circumvent this issue we

solve the problem in Fourier space since δ (k) is also lognormal, while there is

little correlation between modes so it is acceptable to assume them to be inde-

pendent (note: having correlated modes in Fourier space introduces only mild

effects on the final mass functions, see Appendix A of Paper II for details).

Combined with the fact that the number of modes in the [k, k + dk] range is

dN(k) =
(
4πk2dk

)
nk , where nk is the mode density, we get the variance for an

1It is a common misconception that analytical models such as the one presented in this
paper take the total density distribution to be purely lognormal. While the density distribu-
tion in each cloud/fragment is indeed assumed to be locally lognormal on a single timestep,
these have different means and deviations (see Eq. 3.2) depending on their initial condi-
tions and time, which means that the total distribution will be different. If we measure the
density distribution in our calculations (see Fig. 3.2), we find it is approximately lognormal
at low densities (set by the lowest density structure: the parent cloud), while the high mass
end becomes a power law as it is a mass weighted average of the distributions for different
substructures whose mass distribution is a power law (see Fig. 3.4).
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Figure 3.2: Time evolution of the distribution of density in a parent GMC
of 105 M�. This is a mass weighted average of the density distribution of
all substructures in the parent cloud (which are all assumed to be lognormal
with different parameters), thus the low mass end is set by the lowest density
structure which is the parent cloud while the high mass end is a power law
due to the power law like distribution of fragments (see Fig. 3.4). There is
also a clear trend as the high mass end tail rises in time. This is caused by the
formation of new self gravitating substructures (Federrath & Klessen 2013).

individual density contrast mode:

Smode(k) =
ln(1 + b2M(k)2)

4πk3nk
. (3.3)

Paper II showed that to realize a steady state density contrast field with such

variance and zero mean, the Fourier component δ(k, t) must evolve as

δ(k, t + ∆t) = δ(k, t) (1 − ∆t/τk) + R
√

2Smode(k)∆t/τk, (3.4)

where R is a Gaussian random number with zero mean and unit variance

while τk ∼ vt(k)/λ is the turbulent crossing time on scale λ ∼ 1/k, and the

turbulence dispersion obeys v2
t (λ) ∝ λp−1, thus τλ ∝ λ

p−3
2 (in our simulations
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we use p = 2, appropriate for supersonic turbulence, see (Federrath, 2013;

Murray, 1973; Schmidt et al., 2009)).

3.2.1.1 The Equation of State

It is easy to convince oneself that a purely isothermal or polytropic equation

of state (EOS) would be a very poor description of the complex physical pro-

cesses contributing to the cooling and heating of clouds, however, modeling

these processes in detail would require full numerical simulations. Instead we

try to find a simple, heuristic EOS that captures the behaviors critical to our

calculation. One of the most important effects during collapse is the transi-

tioning from the state where the cooling radiation efficiently escapes from the

cloud to the state where the cloud becomes optically thick to it and heats up

as it contracts. As the virial parameter is assumed to be constant, this leads

to a decrease in turbulence, which effectively arrests fragmentation. This is

essential to reproduce the IMF shape as pure isothermal collapse would lead

to an infinite fragmentation cascade. We adopt the same effective polytropic

EOS model as Paper I where for small time steps (compared to the dynamical

time):

T(x, t + ∆t) = T(x, t)
(
ρ(x, t + ∆t)
ρ(x, t)

)γ(t)−1
, (3.5)

where γ (t) is the effective polytropic index of the cloud at time t.

One of the main goals and advantages of our framework is that it allows the

exploration of different physical EOS models simply and efficiently. For exam-

ple, let us consider first the volume-density (n) dependent EOS model based

on works like Glover & Mac Low 2007; Masunaga & Inutsuka 2000 that follows

the form

γ(n) =


0.8 n < 105 cm−3

1.0 105 < n
cm−3 < 1010

1.4 n > 1010 cm−3

. (3.6)

Simulations have shown that this leads to a “turnover” only at extremely low

masses (∼ 0.001 M�, Fig. 3.9 later), making the IMF nearly a pure power-

law at the observable masses. We will explore this model and some of its

physical consequences for observables in more detail in a future paper, but

explicitly show below that our semi-analytic model also captures this behavior.

This is a valuable vindication both of the accuracy of the semi-analytic model

(compared to full numerical simulations), and of the need for additional physics
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to establish the turn-over of the IMF.

For the purposes of this study, let us assume that we do not know the detailed

origin of such physics (it may be due to magnetic fields, or radiative heating,

for example, both of which we will explore in detail in follow up papers). The

simplest approach, and one commonly adopted in numerical simulations, is to

parametrize their effects via an “effective equation of state”. Motivated by the

work on radiative feedback from [(Bate 2009c; Krumholz 2011), let us consider

a toy model where the effective EOS is not volume-density but surface-density

(Σ) dependent:

γ(Σ) =


0.7 Σ < 3 M�/pc2

0.094 ln
(

Σ

3 M�/pc2

)
+ 0.7 3 < Σ

M�/pc2 < 5000

1.4 Σ > 5000 M�/pc2

. (3.7)

This is the same EOS as we used in Paper I. Note that the “turnover” where

this becomes “stiff” is at much lower surface densities than we would obtain

if we modeled cooling physics alone (Glover & Mac Low 2007) which would

essentially give the same answer as our γ(n) case above (for a comparison of

the two types of EOS models, see Guszejnov et al. (2016). Instead, we are

assuming some form of physics makes the EOS stiffen at much higher surface

densities – we choose the particular value here empirically, because it provides

a reasonable fit to the observed IMF. We will then explore the consequences of

such a parametrization, for the IMF and its time-evolution in different clouds

3.2.2 Collapse: criterion and evolution

It has been shown in Paper I and Paper II that the critical density for a

(compared to the galactic disk) small, homogeneous, spherical region of radius

R to become self gravitating is

ρcrit(R)
ρ0

=
1

1 +M2
edge

(
R
R0

)−2
[(

T(R)
T0

)
+M2

edge

(
R
R0

) p−1
]
, (3.8)

where the two terms represent thermal and turbulent energy, respectively. T(λ)
is the temperature averaged over the scale λ, while T0 is the mean temperature

of the whole collapsing cloud and we used the following scaling of the turbulent
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velocity dispersion and Mach number M

M2(R) ≡
v2

t (R)〈
c2

s (ρ0)
〉 =M2

edge

(
R
R0

) p−1
, (3.9)

where R0 is the size of the self gravitating parent cloud and p is the turbulent

spectra index, so the turbulent kinetic energy scales as E(R) ∝ Rp; generally

p ∈ [5/3; 2], but in this paper, just like in Paper I we assume p = 2 as is

appropriate for supersonic turbulence.

It should be noted that the fragmentation process is complex even in the ideal-

ized case of homologous collapse (see Hanawa & Matsumoto 1999; Ntormousi

& Hennebelle 2015). This means that our method of finding self gravitat-

ing subregions using Eq. 3.8 is a strong approximation; however, a proper

treatment would require drastically more computation power, which would go

against one of the primary goal of the framework: the rapid exploration of

parameter space and testing of physical models.

Our goal is to create a model that resolves clouds from GMC to protostellar

scales, so the initial structures of the model are the GMCs which themselves are

self gravitating (first crossing scale in the excursion set formalism). This means

they must satisfy Eq. 3.8, which for spherical clouds (M(R) = (4π/3) R3 ρ(R))
in isothermal parents yields the mass-size relation:

M =
Msonic

2
R

Rsonic

(
1 +

R
Rsonic

)
. (3.10)

Note that for very high mass clouds a correction containing the angular fre-

quency of the galactic disk would appear, however this term is small (see Paper

II for details). Eq. 3.10 introduces Rsonic, which is the sonic length, the scale

on which the turbulent velocity dispersion is equal to the sound speed, so in

an isothermal cloud using the scaling of Eq. 3.9, we expect

Rsonic = R0M−2/(p−1)
edge . (3.11)

Meanwhile Msonic is defined as the minimum mass required for a sphere with

Rsonic radius to start collapsing, so

Msonic =
2

Qcoll

c2
s Rsonic

G
, (3.12)
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where G is the gravitational constant and Qcoll is the virial parameter for a

sphere of the critical mass for collapse (see Eq. 3.15 later). For reasonable

galactic parameters and temperatures Rsonic ≈ 0.1 pc and Msonic ≈ 6.5 M�
(assuming we use the value for Qcoll we specify in Sec. 3.2.2.1).

Since the GMC in question has just started collapsing, the turbulent velocity

at its edge must (initially) obey the turbulent power spectrum. Thus v2
t (R) ∝ R

for the supersonic and v2
t (R) ∝ R2/3 (the Kolmogorov scaling) for the subsonic

case. Using the mass-size relation of Eq. 3.10 leads to the following fitting

function: (
1 +M2

edge

)
M2

edge

1 +M−1
edge

=
M

Msonic
, (3.13)

which exhibits scalings of M ∝ M3 for the subsonic and M ∝ M4 for the

supersonic case, respectively, and (coupled to the size-mass relation above)

very closely reproduces the observed linewidth-size relations (Bolatto et al.

2008; Lada & Lada 2003; Larson 1981). Note that dense regions will deviate

from this scaling, as observed (see references above), because collapse “pumps”

energy into turbulence (Murray & Chang 2015; Murray et al. 2015; Robertson

& Goldreich 2012b).

3.2.2.1 Evolution of Collapsing Clouds

One of the key assumptions of the previous models in Paper I and Paper II is

that the kinetic energy of collapse pumps turbulence (Murray & Chang 2015;

Murray et al. 2015; Robertson & Goldreich 2012b) whose energy is dissipated

on a crossing time. As turbulent motion provides support against collapse,

the collapse can only continue after this extra energy has been dissipated by

turbulence (see Sec. 9.2 in Paper II for details). This leads to the following

equation for the contraction of the cloud:

dr̃
dτ̃
= −r̃−1/2

(
1 − 1

1 +M2
edge(τ̃)

)3/2

, (3.14)

where r̃(t) = R(t)/R0 is the relative size of the cloud at time t while τ̃ ≡ t/t0 is

time, normalized to the initial cloud dynamical time t0 ∼ 2Q−3/2
coll

(
GM0/R3

0

)−1/2

(see Paper II for derivation). In this case the initial dynamical time (t0) and

the crossing time only differ by a freely-defined order unity constant, so in our

simulations we consider them to be equal without loss of generality.
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The other key assumption of the model is that collapse happens at constant

virial parameter. We define Qcoll as

Qcoll
GM

R
= c2

s + v
2
t = c2

s

(
1 +M2

edge

)
. (3.15)

Note that Qcoll is not the Toomre Q parameter, merely the ratio of kinetic

energy to potential energy needed to destabilize the cloud, thus the higher

Qcoll the more unstable clouds are to fragmentation. One can find Qcoll using

the Jeans criterion:

0 ≥ ω2 =
(
c2

s + v
2
t

)
k2 − 4πGρ, (3.16)

which for the critical case (ω = 0) leads to

Qcoll =
3

k2R2 . (3.17)

One would be tempted to substitute in k = 2π/R, but that would be incorrect,

as we have a spherical overdensity with R radius to which the correspond-

ing sinusoidal wavelength is not R. We therefore chose k = π
2R , which yields

Qcoll = 12/π2 ≈ 1.2. Note that all formulas contain c2
s /Qcoll ∝ T/Qcoll , so an

uncertainty in the virial parameter is degenerate with an uncertainty in the

initial temperature.

Combined, the above equations completely describe the collapse of a spherical

cloud, as the EOS (Eq. 3.5-3.7) sets the temperature and thus the sound

speed. Using that, Eq. 3.15 provides the edge Mach number, which allows us

using Eq. 3.14 to calculate the contraction speed.

3.2.3 Differences from previous models

So far we are following the same assumptions as Paper I and Paper II, how-

ever, instead of simulating a stochastic density field averaged on different scales

around a random Lagrangian point (the basis of analytic excursion set models)

we use a grid in space and time. This means that we directly evolve the δ (k)
modes to simulate the density field. This allows us to preserve spatial infor-

mation as we now have information about the relative positions and velocities

of substructures.

Having a proper density field not only allows us to take basic geometrical ef-

fects into account (as substructures are still assumed to be spherical) but it

allows a proper application of the self gravitation condition of Eq. 3.8. The

excursion set formalism finds the smallest self gravitating structure a point is
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embedded in. The problem is that this “last crossing” structure may have fur-

ther self gravitating fragments which do not contain the aforementioned point.

These substructures will form protostars of their own (see Fig. 3.1) leaving

their parent cloud with less mass which in turn might not be self gravitating

anymore. This is not addressed in excursion set models which instead simply

assume 100% of the mass ending up in protostars of different sizes (which of

course is not realistic), while the proposed grid model predicts only about 5%

(see Sec.3.3.2), which in fact depends on the physical assumptions of the model

(i.e. how to deal with unbound material).

It should be noted that like the model of Paper I, in this first study we in-

clude no explicit feedback mechanism. Instead the model utilizes a few crude

approximations to account for the qualitative effects of feedback. First, it

is assumed that the clouds that become unbound by fragmentation stop col-

lapsing and “linger” for a few dynamical times (during which they may form

new self gravitating fragments) before being heated up/blown up/disrupted

by feedback from the newly created protostars in such a fashion that they can

no longer participate in star formation2. Note that this assumption is made

for convenience, and is not inherent in the code as it is possible to implement

direct feedback prescriptions. Similarly magnetic fields are neglected in this

base model, but can be easily implemented into the framework. Like in Paper

I we neglected the effects of accretion and protostellar fragmentation when

comparing to the IMF as the protostellar system mass function (from now on

PSMF ) is already a good enough qualitative fit so their effects are assumed to

be modest (except for the very high and low mass ends where fragmentation

could provide a high mass cut-off while accretion could affect the turnover

point, see McKee & Offner 2010 for details on the protostellar mass function).

We would also like to note that it is possible to apply a crude implementation

of supernova feedback by simply stopping the evolution after a few Myrs (when

enough supernovae have exploded to unbind the GMC). Since the simulation

provides a time dependent output, it can be done during post-processing. Of

course, the point of our framework is that one could easily add models for

feedback and/or accretion if desired.

We would like to note that using hydrodynamical simulations would allow a

much more realistic treatment of certain details of the problem; however the

2For example photoionization can destroy the molecular cloud (Dale et al. 2012; Geen
et al. 2015; Walch et al. 2012b), while both supernovae (Iffrig & Hennebelle 2015) and
outflows (Arce et al. 2007) can provide momentum for turbulence or eject material.
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large dynamic range (10−5 − 100 pc) and the long range gravitational interac-

tions make such attempts extremely computationally intensive, preventing one

from getting substantial statistics. A further issue with direct hydrodynamical

simulations is that they involve the full, detailed form of all physical interac-

tions, making it harder to pinpoint the primary driving mechanisms behind

certain phenomena.

In summary we propose a semi-analytical model which has negligible compu-

tational cost but still captures phenomena (e.g. spatial correlation, motion of

objects, complicated time dependence) which are beyond the capabilities of

the analytical excursion set formalism. Our intention in this paper is not to

present a“complete”model of star formation, but rather to illustrate the power

of this approach with a first study involving only turbulence and self-gravity.

3.3 Evolution of the IMF and CMF in GMCs

In this section we present an application of the model for simulating the col-

lapse of an ensemble of GMCs (distributed following the first crossing mass

function obtained by Hopkins 2012b, see Fig. 3.3). This includes simulating a

number of GMCs of different masses where the initial conditions are set by Eq.

3.9 and Eq. 3.10. The clouds are assumed to start with fully formed turbu-

lence (as GMCs form out of an already turbulent medium) which means that

before simulating the collapse the density field is initialized to have the appro-

priate lognormal distribution. The output of the code contains the formation

time and properties (e.g. mass, position, velocity) of individual protostars

along with snapshots of the hierarchical structure of bound objects at differ-

ent times. In Sec. 3.3.1 we investigate the latter and compare the distribution

of nonfragmented structures with the observed CMF. Later, in Sec. 3.3.2 we

discuss the time evolution of PSMF and how it relates to the IMF and whether

it can be universal without invoking feedback physics.

3.3.1 Fragmentation and self-gravitating substructures: the ob-

served CMF

It is well known that during their collapse clouds fragment into smaller self

gravitating structures (see Fig. 3.1). It is instructive to see how much mass is

bound in structures of different sizes. Fig. 3.4 shows the time evolution of the

number of structures of different sizes counting all “clouds-in-clouds”, which

follows a distribution similar to the observed IMF and CMF (for quick overview
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Figure 3.3: Initial mass function of GMCs according to the excursion set model
of Hopkins (2012b) compared to the observations (X symbols) and empirical
fitting function (dashed black line) of Rosolowsky (2005). The normalization
of the plot is arbitrary.

see Offner et al. 2014), however it has a significantly shallower slope3 of roughly

M−0.3. The distribution is established fairly quickly and is maintained until

the collapse of the parent cloud ends. This mass function of bound structures

is consistent with the cloud in cloud picture shown in Fig. 3.1 in that there is

a vast hierarchy of bound structures embedded in each other.

Observationally finding the substructure of a GMC is very challenging (al-

though see Rosolowsky et al. 2008), most observers instead concentrate on

the so called cores which are collapsing clouds that have no self gravitating

fragments. Figure 3.5 shows the total CMF (time and mass averaged over an

ensemble of GMCs following the distribution shown in Fig. 3.3) for different

inital parameters. The simulated CMF reproduces the shape of observed re-

sults, having both a turnover point and a slightly shallower high mass slope

3In this paper the approximate high mass end behavior is estimated by fitting a power
law between 0.5 M�-100 M�. The error presented in the figures only accounts for the uncer-
tainty in the fitting.
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Figure 3.4: Time evolution of number of bound structures of different masses
in a parent GMC of 106 M�. Here we count all self-gravitating structures,
including clouds embedded in other clouds, cores etc. The plot is normalized
so that integrated mass (

∫
M dN

d log M d log M) corresponds to the mass of gas
bound in self gravitating clouds relative to the total mass of the parent GMC,
which explains the decreasing trend with time as more and more gas ends
up in either protostars or becomes unbound. The upper end cuts off close to
the parent GMC mass. The high mass power law fitting is done according to
Footnote 3.

(∼ M−1.15) than the canonical Salpeter result of ∼ M−1.35 for the IMF (see

Offner et al. 2014).

Fig. 3.6 clearly shows that there is very small difference between the CMF

turnover masses and high mass slopes between GMCs of different sizes after

1 Myr. This is because early collapse is roughly isothermal so these clouds all

have the same characteristic fragment mass (Mcrit, see Eq. 3.20 for details).

Systems which are on the same linewidth-size relation (i.e. they form out of the

same turbulent cascade) will always have the same Msonic, Mcrit (see Hennebelle

& Chabrier 2008; Hopkins 2012b). During later evolution the GMCs heat up

at a different pace as the dynamical times are different. Meanwhile Fig. 3.7

shows that there is a clear trend of increasing turnover mass with time in
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Figure 3.5: Comparison of the average simulated CMF with the observed
CMF by Sadavoy et al. (2010) in different clouds in the Milky Way (the plot is
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case reflect having different T/Qcoll values, for definition see Eq. 3.20.
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Figure 3.6: The CMF in GMCs of different masses 1 Myr after collapse starts
for each cloud (using EOS of Eq. 3.7). The plot is normalized so that inte-
grated mass corresponds to the relative mass of gas bound in cores, the peaks
are denoted with solid circles. The high mass power law fitting is done accord-
ing to Footnote 3. Both the turnover mass and the high mass slope exhibit
very little sensitivity to the mass of the parent GMC similar to what was found
by Hennebelle (2012); Hennebelle & Chabrier (2008).

each cloud. This phenomenon and its possible cause is further investigated in

Sec. 3.3.2. This trend is not visible in case of the physical EOS of Eq. 3.6

as the peak is well below the stellar mass scales (see Fig. 3.9). Nevertheless,

this scenario shows that in the absence of a dominant Mcrit the initial CMF

turns over around the sonic mass scale (as shown by previous analytical works

e.g. Hennebelle & Chabrier 2008; Hopkins 2012b), but this mass scale gets

“forgotten” during the fragmentation cascade.

3.3.2 Evolution of the PSMF

We now examine the mass function of the final collapsed objects: the proto-

stellar system mass function (PSMF).

In Fig. 3.8 we show that parent clouds of all masses produce Salpeter-like
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Figure 3.7: Left: Time evolution of the CMF in a 106 M� parent GMC using
the γ(Σ) EOS of Eq. 3.7. The plot is normalized so that integrated mass
corresponds to the mass of gas bound in self gravitating clouds relative to the
total mass of the parent GMC, which explains the downwards trend since less
and less gas is bound in cores as more protostars are produced and the cloud
gets heated by contraction. The high mass power law fitting is done according
to Footnote 3. There is a clear trend in the turnover mass (the peaks are
denoted with solid circles) which increases significantly while preserving the
overall shape of the function (e.g. high mass slope). Right: Time evolution
of the CMF in a 104 M� parent GMC using the physically motivated EOS of
Eq. 3.6 (a density dependent EOS where the transition point to the γ > 1
regime is calculated from cooling physics). As expected the CMF has a peak
around the sonic mass at early times; however, that feature gets “washed out”
by the fragmentation cascade which is not arrested by this EOS until very
small scales.

scalings at the high mass end with lower mass clouds producing slightly steeper

slopes. Also, there is a clear trend of increasing turnover mass with increasing

parent mass, unlike the case of the CMF (See Fig. 3.6). It is worth noting

that the GMC mass function is top heavy, which means that the high mass

clouds dominate the integrated mass function. If we accept this result then it

suggests a possible observational bias of the IMF as most observations focus

on smaller clouds in the Milky Way. Also, turbulent fragmentation does not

produce a cloud mass dependent “maximum stellar mass”.

The increasing turnover mass for both PSMF and CMF is related to the equa-

tion of state. In a turbulent cloud, self gravitating fragments of different sizes

form, which (according to the EOS of Eq. 3.7) have different effective poly-

tropic indices. According to the EOS there exists a threshold in the surface

density (Σcrit) above which γ > 4/3, stabilizing the cloud against further frag-

mentation. Thus it is instructive to find the critical mass (Mcrit) corresponding
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Figure 3.8: Protostellar system mass function (PSMF) after collapse ends in
parents of different masses assuming our simple equation of state. The Salpeter
slope is always present (the high mass power law fitting is done according to
Footnote 3). For these assumptions there appears to be “too many” brown
dwarfs, and too much dependence on the parent GMC mass. These are the
direct consequences of the EOS of the gas.

to Σcrit. Using the collapse condition of Eq. 3.8 and expanding up to linear

order in γ around 1 (this is a good approximation during most of the cloud’s

lifetime as the collapse starts at close to isothermal conditions) yields that

Σ > Σcrit requires that

R < Rcrit = R0

γ
(
Σcrit
Σ0

)γ−1

Σcrit
Σ0

(
1 +M2

edge

)
−M2

edge + γ − 1
, (3.18)

where R is the fragment radius and R0, Σ0, γ = γ (Σ0) are the radius, surface

density and the effective polytropic index of the parent cloud. From Eq. 3.18

we can find the critical mass Mcrit = 4πR2Σcrit below which fragments are

unlikely to collapse (note: according to the EOS of Eq. 3.7 the critical surface

density Σcrit ≈ 2400 M�/pc2). These formulas can be simplified by assuming
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isothermal collapse (γ ' 1) and that the parent GMC is highly supersonic

(M2
edge � 1); Eq. 3.11 then yields:

Rcrit ≈
R0Σ0

M2
edgeΣcrit

= Rsonic
Σ0
Σcrit

. (3.19)

Using the mass-size relation of Eq. 3.10 and that R0 � Rsonic we obtain

Mcrit ≈
4πR2

sonicΣ
2
0

Σcrit
=

M2
sonic

16πR2
sonicΣcrit

=
c4

s

4πG2Q2
collΣcrit

∝ T2

Σcrit
. (3.20)

The critical mass only depends on the cloud temperature and the equation

of state. A similar sensitivity to the initial temperature has been found by

Bate (2009c) using a Jeans mass argument. Assuming that there exists a

critical density ρcrit where some physics terminates the fragmentation cascade

the corresponding Jeans mass will simply be ∝ T3/2. It is easy to see that this

is the same result one would get when trying to find the critical mass using a

γ(n) EOS.

Fig.3.9 shows the time evolution of the time and ensemble averaged PSMF for

different initial Mcrit values (the different critical masses in these cases arise

from having different σ/QcollΣcrit, where we fix Qcoll and Σcrit and vary Tinit ,

for definition see Eq. 3.20) which all produce a shape similar to the IMF

but with different peak masses. If we compare the results to the canonical

IMF fitting functions of Kroupa (2002) and Chabrier (2005), then it is clear

that the average PSMF always reproduces the Salpeter scalings, however the

turnover point is heavily influenced by T/QcollΣcrit . Since Qcoll is a constant

this implies that the average temperature of the cloud could have a significant

effect on the turnover point if Σcrit is constant. Meanwhile, Fig.3.9 also shows

that the physical EOS of Eq. 3.6 has such a low characteristic mass that the

resulting PSMF in the stellar mass range is just a power law. Nevertheless,

the position of the peak is still sensitive to the initial conditions (∝ T3/2), if

one extends the plot to substellar mass scales.

Fig. 3.10 shows how this critical mass evolves in time for our default model

assumptions (Σcrit = const.). It is clear that Mcrit correlates well with the peaks

of the PSMF of the corresponding time interval.

This increase of the critical mass with time has an interesting consequence.

Fig. 3.11 shows that the average time of formation monotonically increases
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Figure 3.9: Evolution of the averaged PSMF (normalized to integrated mass)
for different initial critical masses (set by having different T/QcollΣcrit values,
for definition see Eq. 3.20) compared to results using the “traditional” EOS of
Eq. 3.6 and the canonical IMF of Kroupa (2002) and Chabrier (2005). The
PSMF is averaged both over time (assuming the age of GMCs is uniformly
distributed in the [0,5] Myr range) and the GMC mass function (following Fig.
3.3). We included the standard Mcrit = 0.03 M� (solid red), an Mcrit = 0.08 M�
(solid blue) and an Mcrit = 0.2 M� (solid black) scenarios with the γ(Σ) EOS
along with a run which had the physically motivated γ(n) EOS of Eq. 3.6. For
realistic temperatures (10 − 30 K) the critical mass of the latter is well below
the stellar mass range so the PSMF becomes a pure power law. Meanwhile,
for the γ(Σ) EOS case the PSMF shape is similar for different critical masses,
and there is a clear shift of the peak to higher masses with increasing Mcrit. In
all cases the high mass end is close to the Salpeter result.
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Figure 3.10: The peak masses of the PSMF of different time intervals (solid
line with symbols) and the critical mass (dashed lines) for different parent
GMC masses according to Eq. 3.18. The critical mass correctly predicts the
qualitative evolution of the peak mass.

with the protostellar system mass.

So, if the equation of state does not depend on temperature (e.g. our γ(Σ)
is invariant) then the turnover mass shows a strong (∝ T2) dependence on

the initial conditions which would likely lead to a non-universal IMF (∝ T3/2

in the γ(n) case). A possible solution to this issue is if Σcrit from Eq. 3.20

has a temperature dependence. This perfectly plausible, just recall that the

effective EOS is just a crude approximation of complex cooling physics. Bate

(2009c) argues that radiative feedback effectively weakens the dependence of

the Jeans mass on density, making the turnover mass less sensitive to initial

conditions. A similar example is provided by Krumholz (2011), where the

initially formed protostar “seed” heats up its environment, preventing it from

collapsing. This dense cloud is heated up to Theating ∝ M3/8R−7/8 ≈ Σ3/8 by

the accretion luminosity from the protostar4, which, using our EOS language,

4One can derive this temperature by assuming an optically thick cloud in equilibrium
that is heated by accretion luminosity Lacc ∼ ÛMΨ ∼ M/tf fΨ ∝ M3/2R−3/2 and cooled by
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Figure 3.11: Average time of formation for protostars of different masses (the
error bars represent the standard deviation) in a model with an invariant
EOS. There is a clear trend of more massive protostars forming at later times
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however the scatter is comparable to this difference. Nevertheless it is clear
that most massive stars only start forming after roughly a Myr after the cloud
starts collapsing. Changing this requires additional physics beyond turbulence,
gravity and cooling.

roughly translates to Σcrit ∝ T2, which would produce a constant Mcrit, and

thus a universal IMF.

In a paper in preparation we will explore this feedback model in a fully

spatially-dependent framework. For now, let us consider a simple experiment

where Σcrit ∝ T2.

Fig. 3.12 compares the results of two simulations, one with Σcrit = const. and

one with Σcrit ∝ T2. Although the latter still shows some time dependence,

the shifting of the peak is greatly reduced, making it more consistent with

observations, even though the only assumption about feedback was that it

prevents collapsed cores from accreting from their surroundings. Note that

thermal radiation Lcool ∼ 4πR2σSBT4
heat .
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Figure 3.12: PSMF for protostars in a parent GMC of 105 M� for an EOS
with Σcrit = const. (left) and for an EOS with Σcrit ∝ T2 (right). The solid
circles show the peaks, which move considerably less for the Σcrit ∝ T2 case.
As implied by Eq. 3.20, if Σcrit ∝ T2 then Mcrit ∼ const, and the IMF becomes
invariant.

our aim with this experiment was only to demonstrate what would be required

from a purely EOS based model to produce an invariant IMF; any other physics

that sets the critical mass of the EOS constant would achieve similar results.

An important question of star formation is what fraction of the gas ends up in

stars. The analytical excursion set models like in Paper I could not answer that

question as they assume by default that 100% of the mass ends up in bound

structures similar to the Press-Schecter model (Press & Schechter 1974) of dark

matter halos which they are based on). However, our semi-analytic framework

here allows us to explore different assumptions for the time-dependent behavior

of both bound and unbound gas, and thus (in principle) to make predictions

for this quantity.

In the “basic” models presented in this paper, we assume that whenever a core

collapses and forms a star, any remaining mass in its parent cloud which is no

longer self-gravitating (once the core is fully collapsed) is simply thrown out of

the system. This is meant to represent a very crude toy model for the effects

of feedback (from e.g. protostellar jets) on the parent sub-clumps from which

the stars form. With this assumption, we find an integrated star-formation

efficiency (after all mass either turns into stars or is unbound) of ∼ 5−10% for

GMCs of all sizes. Interestingly, this is almost completely independent of the

EOS we assume (either constant Σcrit or Σcrit ∝ T2), as long as it terminates
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the fragmentation cascade at roughly the same point. Of course, if we assume

this gas remains bound to the total system, so it is simply recycled back to the

“top level” of the original fragmentation hierarchy until it is consumed (which

obviously corresponds to a no-feedback case), then we trivially predict that

eventually all gas turns into stars. Of course, the effects of realistic feedback

are much more complex than these simplistic assumptions, and we could adopt

arbitrarily complex models (for example, evolving each protostar and tracking

explicitly location-dependent photo-ionization feedback, which we then use

to explicitly calculate whether gas is unbound from the system). We note

this result simply to demonstrate the utility of these semi-analytic models for

rapidly exploring different assumptions regarding the effects of feedback.

3.4 Conclusions

The aim of this paper is to provide a general framework for the modeling of

star formation through turbulent fragmentation from the scale of GMCs to

the scale of stars in order to quickly test the effects of different assumptions

and new physics. Such a tool could allow theorists to explore different mod-

els and parameters before committing significant resources towards a detailed

numerical simulation. We propose a semi analytical extension of the model

of Guszejnov & Hopkins (2015b) (Paper I) that we believe is detailed enough

to capture the physics essential for modeling the formation of stars without

being too demanding numerically. Just like the analytical excursion set models

it does not simulate turbulence directly; instead it assumes that the density

follows a locally random field distribution whose parameters evolve in time

so that virial equilibrium is satisfied. This is an assumption about turbulent

collapse that needs to be tested in future work. The density field is directly

resolved on a grid which preserves spatial and time information, allowing the

implementation of more detailed physics (e.g. proper checking for self gravita-

tion, time dependent cloud collapse) and the analysis of the spatial structure.

This is not possible in the excursion set formalism which describes the den-

sity field around a random Lagrangian point. This also means that unlike the

analytical models not 100% of the mass ends up in protostars.

The presented form of the model contains only the minimally required physics

(turbulence, self gravity, some equation of state). It is however possible to

integrate more sophisticated models to provide a more accurate description of

these processes. Also, since the output of our model contains the time depen-

dent evolution of the CMF and the PSMF, one can easily apply corrections
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during post processing to account for effects like protostellar fragmentation or

supernova feedback (stop the evolution when enough SNe exploded).

By applying this framework to modeling the collapse of giant molecular clouds,

we found that even the basic model qualitatively reproduces the observed core

mass function. The CMF evolution has little dependence on the mass of the

parent GMC mass.

Another result of the simulation is the mass distribution of all bound structures

in the cloud. This appears to have the same shape as the CMF with a shallower

slope of roughly M−0.3 at the massive end. These clearly show the hierarchy

of bound structures.

One of the main results of our basic model is the protostellar system mass

function (PSMF) which is obtained by following the collapse of an ensemble of

GMCs following a GMC mass function determined by Hopkins (2012b). As in

Paper I we found that the PSMF is qualitatively very similar to the observed

IMF: it exhibits a close to Salpeter slope almost independent of the initial

conditions, while the turnover mass is mainly set by the equation of state and

the initial temperature.

Due to the minimalistic nature of the model we managed to pinpoint the

physical quantities influencing the different features of the PSMF and thus

the IMF. We found that the Salpeter slope at the high mass end is a clear

consequence of turbulence (as shown before in Paper I) where the inclusion of

extra physics only causes slight deviation from the pure power law behavior.

Furthermore we found that in a medium with a stiff equation of state the actual

turnover point in leading order is set by the local temperature (Mcrit ∝ T2/Σcrit).

We found that if we assume a γ(Σ) equation of state then the PSMF for proto-

stars of the same age changes as the parent cloud collapses: the turnover mass

increases with time. This can be explained by the increase of Mcrit. This leads

to a quadratic dependence of the turnover mass on the initial temperature

which is inconsistent with the observed universality of the IMF. This means

that it is not possible to derive a universal IMF with an equation of state that

has no temperature dependence. One way to “fix” the model is by implement-

ing the feedback from protostars. Using the assumptions of Krumholz (2011)

in leading order the heating from the protostars cancels the aforementioned

quadratic scaling (due to Σcrit ∝ T2), leading to a close to universal turnover

mass.
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3.A Basic Simulation Algorithm

In this appendix we detail step-by-step how the basic version of the simulation

works (see flowchart of Fig. 3.13), but note that it can be greatly expanded

with new physics, as long as the fundamental assumption (locally random

density modes) is kept.

(1) We begin with a GMC sized cloud whose initial parameters (mass, radius,

temperature, density, edge Mach number, sound speed etc.) are derived

from its mass (M), the sonic mass (Msonic) and length (Rsonic), using the

mass-size relation of Eq. 3.10 and linewidth-size relation of Eq. 3.9.

These are all initialized on a 3D spatial grid, of resolution N × N × N
chosen such that the final statistics converge (we found this happens at

N ≥ 16). The density field is initialized assuming that it is lognormal

(variance set according to Eq. 3.3) using the full density power spectrum

model (transforming to Fourier space and back), while the temperature

field follows the density according to the desired equation of state.

(2) We take timestep ∆t (∆t � tdyn and ∆t � tcross(d), where d = 2R/N is

the spatial resolution of the grid). This means:

(a) Global contraction of the cloud (all scales shrink, density uniformly

increases) according to Eq. 3.14.

(b) The density perturbation power spectrum δ(k) is updated following

Eq. 3.4, which assumes density mode statistics obey a local“random

walk” in phase space. The actual density field is calculated by

Fourier transforming to real space and normalizing the field with

the cloud mass (this way mass is conserved).

(c) The temperature field is updated according to new densities and

the chosen EOS (see Eq. 3.5).

(d) The cloud scale Mach number is updated according to our assump-

tion that the virial parameter is constant during collapse.

(3) We now check whether any self-gravitating substructures have formed by

using a Monte Carlo method that involves placing spheres of all possible

sizes at random positions and testing them using the collapse criterion

of Eq. 3.8.

(4) If such a region is found it is “removed” temporarily and expanded into

its own grid. This new grid will have a higher spatial resolution than its
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parent, and thus density modes on the newly available small scales need

to be initialized (larger modes are inherited from the previous grid). We

then repeat steps (2)-(4) on this new grid. This means that during the

evolution of its fragments the parent cloud is “frozen” in time. This is

motivated by the fact that the dynamical time of fragments is smaller,

as tdyn ∝ 1/√ρ, so they evolve “fast” compared to their parents. Note

that all clouds keep track of physical time, so it is possible to properly

date the formation times of protostars and clouds.

(5) The time evolution of each cloud/grid continues until:

(a) The cloud reaches the protostellar size scale (R < Rmin), below which

it is assumed to have formed a protostar.

(b) The cloud is still self gravitating after a number of dynamical times

(t > tmax)5. After this limit is reached the cloud is assumed to

have cooled and collapsed through other means. Essentially, this

represents non-fragmenting cores.

(c) The cloud stops being self-gravitating. This can happen if a cloud

loses enough of its mass that it becomes unbound. Since virial

equilibrium is enforced this means no turbulence, which means no

more fragmentation. In the model presented above these clouds

are not forming stars or contributing to the mass of the protostars

forming from their fragments, instead this material is“thrown away”

(this represents “feedback” in some sense, see Sec. 3.2.3). Note that

it is possible within the framework to return this unbound material

to the parent GMC where it may form stars, but for simplicity in

the presented model we chose not to do that.

(6) Clouds that formed protostars are removed the properties of the proto-

stars are cataloged. We then return to the parent cloud and continue its

evolution from Step (4).

(7) This continues until 100% of the original original mass of the cloud is

either in protostars or unbound. The final output is the catalog of pro-

tostars. Note that it is also possible to get the CMF by exporting the

properties of bound structures at a specified time. The whole process

5This can happen if γ > 1, as r̃ in Eq. 3.14 does not reach zero in a finite amount of
time.
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is repeated for a large number of initial GMCs (with different random

seeds) to gain adequate statistics.
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1
Start cloud evolution with

ρ(x), T(x), R and Medge as

input. Initialize turbulence.

Prepare δ (k, 0) using FFT.

2
Evolve global param-

eters and δ (k, t) one

time step. Calculate ρ

and T fields at t + dt.

3
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Figure 3.13: Basic algorithm of fragmentation code. The bold numbers in each
box show which step from Sec. 3.A they represent. See Sec. 3.A for a more
detailed description.
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C h a p t e r 4

THE NECESSITY OF FEEDBACK PHYSICS IN SETTING
THE PEAK OF THE INITIAL MASS FUNCTION

Guszejnov D., Krumholz M. R., Hopkins P. F., 2016, MNRAS, 458, 673

Abstract

A popular theory of star formation is gravito-turbulent fragmentation, in which

self-gravitating structures are created by turbulence-driven density fluctua-

tions. Simple theories of isothermal fragmentation successfully reproduce the

core mass function (CMF) which has a very similar shape to the initial mass

function (IMF) of stars. However, numerical simulations of isothermal turbu-

lent fragmentation thus far have not succeeded in identifying a fragment mass

scale that is independent of the simulation resolution. Moreover, the fluid

equations for magnetized, self-gravitating, isothermal turbulence are scale-free,

and do not predict any characteristic mass. In this paper we show that, al-

though an isothermal self-gravitating flow does produce a CMF with a mass

scale imposed by the initial conditions, this scale changes as the parent cloud

evolves. In addition, the cores that form undergo further fragmentation and

after sufficient time forget about their initial conditions, yielding a scale-free

pure power-law distribution dN/dM ∝ M−2 for the stellar IMF. We show that

this problem can be alleviated by introducing additional physics that provides

a termination scale for the cascade. Our candidate for such physics is a simple

model for stellar radiation feedback. Radiative heating, powered by accretion

onto forming stars, arrests the fragmentation cascade and imposes a charac-

teristic mass scale that is nearly independent of the time-evolution or initial

conditions in the star-forming cloud, and that agrees well with the peak of the

observed IMF. In contrast, models that introduce a stiff equation of state for

denser clouds but that do not explicitly include the effects of feedback do not

yield an invariant IMF.

4.1 Introduction

New stars form in dense molecular clouds as self-gravitating subregions col-

lapse. Turbulent fragmentation is thought to be the main driving force of

this process: turbulence compresses the gas, creating local density fluctua-

tions that may be large enough to become self-gravitating. The appeal of this

model comes from the fact that supersonic turbulence naturally produces a

http://dx.doi.org/10.1093/mnras/stw315


76

power-law relationship between velocity dispersion and size scale that is in

good agreement with observations of molecular clouds (Bolatto et al. 2008;

Kritsuk et al. 2013; Larson 1981). A second advantage of a turbulence-based

model is its universality. The initial mass function (IMF) of stars is observed

to be close to universal (Bastian et al. 2010; Offner et al. 2014), with a high-

mass end that is well described by a power-law with a slope of roughly M−2.35

(Salpeter 1955) and a turnover at a few tenths of a Solar mass1. The mass

at which this turnover occurs is robustly determined to be a few tenths of a

Solar mass in all resolved stellar populations in the Milky Way (e.g., Figure 2

of Offner et al. 2014) and in nearby galaxies (e.g., Geha et al. 2013). Only a

few resolved systems show even minor deviations in the location of the peak,

and even then only by a factor of ∼ 2 (e.g., 0.6 − 0.8 M� in Taurus – Luhman

et al. 2009). This lack of variation is remarkable, given that the star-forming

systems over which it is measured span many orders of magnitude in mass and

density. Even in the most extreme environments, such as the cores of giant

elliptical galaxies, the IMF turnover mass differs from the one found locally by

at most a factor of a few (Cappellari et al. 2012; Geha et al. 2013; van Dokkum

& Conroy 2010). Such a universal distribution is most naturally explained by

simple, universal physics that is independent of galactic environment, and the

physics of turbulence is an obvious candidate.

There have been many attempts to formulate an analytic theory for the IMF,

and for its turnover in particular, based on turbulence. Most are based on the

random field approach first used in cosmology by Press & Schechter (1974).

This method was first applied to explain the IMF by Padoan et al. (1997)

and Padoan & Nordlund (2002), then made more rigorous by Hennebelle &

Chabrier (2008, 2009, 2013a) and Hopkins (2012a). Using such a model Hop-

kins (2012b) calculated the mass function of non-fragmented bound structures

at a fixed time instant, a real life equivalent of which would be the core mass

function (CMF), as opposed to the IMF. The observed CMFs of nearby star-

forming regions have functional forms similar to that of the IMF (Alves et al.

2007; Rathborne et al. 2009; Sadavoy et al. 2010), with a Salpeter-like power-

law at high masses and a turnover at lower masses, though the existence and

the exact location of the CMF turnover are both quite uncertain due to issues of

completeness and confusion – see Offner et al. (2014) and Krumholz (2014) for

1Due to the high uncertainty of measurements of brown dwarfs the functional form of
the turnover is not obvious from the data (Krumholz 2014; Offner et al. 2014). The most
common fits are either a broken power law (Kroupa 2002) or a lognormal (Chabrier 2005).
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more discussion. The CMF derived by Hopkins (2012b) shares these features.

The turnover mass in this model is set by the sonic mass Msonic ∼ c2
s Rsonic/G

that corresponds to the scale below which self-gravitating structures are sub-

sonic; a similar mass scale arises in the Hennebelle & Chabrier model, and

one can show that the Hennebelle & Chabrier and Hopkins mass scales are in

fact identical up to constants of order unity (Krumholz 2014). However, this

scale is not universal, as it depends on the initial conditions in the star-forming

cloud, which calls into question whether such a model can truly explain the

near-universality of the IMF.

The proposition that the IMF is determined by the CMF, which in turn is set

by the physics of isothermal gravito-turbulent fragmentation, has the appeal

of simplicity. However, there remains an obvious question: once a core forms,

why should one assume that it will collapse to form a single star, rather than

fragmenting further? Simulations of isolated isothermal cores suggest exactly

the latter (fragmented) outcome (e.g., Dobbs et al. 2006; Goodwin et al. 2004;

Walch et al. 2012a). In principle, the question of the fate of isothermal cores

should be resolvable by simulations. In practice, however, this turns out to be a

formidable technical challenge. Isothermal turbulence is scale-free (Krumholz

2014; McKee et al. 2010), and thus it is not obvious what dynamic range

is required to obtain a converged numerical result. To date, no published

simulation of isothermal gravito-turbulent fragmentation has demonstrated

that the spectrum of point masses it produces is numerically converged, and

those few authors who have attempted convergence studies (Kratter et al.

2010; Martel et al. 2006) report non-convergence to the highest numerical

resolutions probed. One possible explanation, advanced by Krumholz (2014),

is that the characteristic structures created by isothermal turbulence are not

singular points but singular filaments. Simulations produce filaments down to

the smallest size scales they reach, and then the sink particle algorithm they

use to represent collapsing regions breaks those filaments up into points at the

grid scale.

Given these problems with purely isothermal fragmentation, a number of au-

thors have proposed that the fragmentation cascade is arrested when the gas

begins to heat up, in which case the characteristic stellar mass is determined by

whatever physics causes the deviation from isothermality. The most common

approach to this problem has been to adopt an equation of state that “stiff-

ens” (i.e., the temperature begins to rise) above some characteristic density or

surface density. Since super-isothermal gas is resistant to further fragmenta-
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tion, one then identifies the IMF peak with the Jeans mass at this “stiffening

density”, on the basis that fragmentation will be suppressed beyond that point

(Larson 2005; Whitworth et al. 1998).

Stiffening of the equation of state can be caused by a diverse range of processes,

including the inability of radiative cooling to keep up with adiabatic heating at

a density n ∼ 1010 cm−3 (e.g., Masunaga et al. 1998) or a surface density Σ ∼
5000 M� pc−2 (e.g., Glover & Mac Low 2007), the onset of dust-gas coupling at

a density n ∼ 105 cm−3 (Elmegreen et al. 2008; Larson 2005), or combinations

of the above (e.g., Spaans & Silk 2000). Numerical simulations based on

these equations of state do find a converged mass scale that can plausibly be

identified as a characteristic mass for the IMF (e.g., Bate 2009b; Bonnell et al.

2006). However, it is not clear that the mass scale introduced by those models

is actually universal (as opposed to set by initial conditions). Moreover, a

number of authors have pointed out that radiative feedback is likely to be

more important than any of these processes in setting the gas temperature

in an actively star-forming region, and that this process is not well-described

by an equation of state (Krumholz 2006; Krumholz et al. 2007; Offner et al.

2009b; Urban et al. 2010). Simulations of star cluster formation including

radiative feedback suggest that it is capable of producing an IMF peak that

is numerically converged and relatively insensitive to changes in interstellar

conditions (Bate 2009c, 2012a, 2014; Krumholz et al. 2011, 2012; Myers et al.

2011).

While these developments are promising, the numerical expense of large-scale

simulations including radiative feedback means that only a very small number

of calculations have been performed. Moreover, analytic models of fragmen-

tation with radiative feedback have, up to this point, been quite simple (e.g.,

Krumholz & McKee 2008; Krumholz et al. 2011), and have not been linked to

an analytic theory for the full IMF. Recently, Guszejnov & Hopkins (2015a) in-

troduced a new method for performing semi-analytic calculations of turbulent

fragmentation. Crucially, this method retains spatial information about how

gas fragments, making it possible to include localized feedback mechanisms

like stellar radiative heating. These calculations are rapid, enabling a much

broader exploration of parameter space than can yet be accomplished with full

three-dimensional radiation-hydrodynamic simulations.

In this paper we combine the Guszejnov & Hopkins (2015a) fragmentation

model with the Krumholz (2011) model for stellar radiative feedback (hence-
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forth referred to as GH15 and K11 respectively). We also explore alternative

treatments of gas thermodynamics, including both isothermal and stiff equa-

tion of state models. We use these method to study the predicted IMF in a

wide variey of star-forming environments. The remainder of this paper is laid

out as follows. First, in Sec. 4.2 we introduce the semi-analytical framework

we use to test different models of star formation. In Sec. 4.3.1 we show that

isothermal turbulent fragmentation leads to a scale-free IMF. In Sec. 4.3.2 we

show that models with a stiffened equation of state are inherently sensitive to

the initial conditions so they cannot provide an invariant mass scale. In Sec.

4.3.3 we provide a simple model for protostellar heating that leads to an IMF

with remarkably little sensitivity to initial conditions. Finally, in Section 4.4

we discuss the implications of our findings, and conclude.

4.2 Model and Methodology

4.2.1 Model Overview

In order to test the different models we are using the semi-analytical framework

of GH15. This takes advantage of the fact that the density fluctuations in a

highly turbulent medium locally obey approximately lognormal random field

statistics, thereby avoiding the need for computationally expensive hydrody-

namical simulations while still preserving spatial information (unlike analytical

excursion set models like Guszejnov & Hopkins 2015b; Hopkins 2012b). The

present version of the model only includes the bare essential physics: turbu-

lence (pumped by the collapse of the cloud), collapse (at constant virial pa-

rameter, motivated by Robertson & Goldreich 2012b and Murray et al. 2015),

an equation of state (EOS) and a simple feedback prescription.

The initial conditions of clouds are defined by their mass, the sonic length

(Rsonic, scale at which the turbulent velocity dispersion is equal to the sound

speed) and the sonic mass (Msonic), from which other parameters (e.g. tem-

perature, Mach number) can be derived. For details about initial conditions

see GH15 (a detailed step-by-step guide to the model is provided in Appendix

A).

Our simulations start from a giant molecular cloud (GMC) with fully devel-

oped turbulence and follow its collapse. Every time a new self-gravitating

substructure appears (i.e., the cloud fragments) the code is run recursively for

each substructure. When a cloud reaches the protostellar size scale (∼ 10−4pc)

it is considered to be fully collapsed into a protostar and the simulation stops.

This means that the final output of the code is the protostellar system mass
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function (PSMF) which we will assume to be identical to the IMF through-

out this paper. This assumption is not quite accurate, particularly in the

brown dwarf regime, as it neglects the production of brown dwarfs via disk

fragmentation. We also neglect the growth of stars by Bondi-Hoyle accretion

of gas that was not initially part of their collapsing core, though this effect

is likely negligible (Krumholz et al. 2005). The leftover unbound material is

assumed to escape. All the simulations we present here start from 104 M�
GMCs, as the results are completely insensitive to the size of the parent cloud

(for demonstration see GH15).

4.2.2 Equation of State Models

In this paper we consider a series of models that include increasingly sophis-

ticated treatments of gas thermodynamics. The simplest, which correspond

to the usual assumption in turbulent fragmentation models, is that the gas

is isothermal, corresponding to an adiabatic index γ = 1. The next level of

complexity is simulations with a non-constant γ. The simulation allows for

arbitrary equations of states which are taken into account as effective poly-

tropes:

T(x, t + ∆t) = T(x, t)
(
ρ(x, t + ∆t)
ρ(x, t)

)γ(t)−1
, (4.1)

where γ (t) is the effective polytropic index at the time t. To explore models

in which the key physical process is a stiffening of the equation of state, we

consider two possible formulations. Some authors have proposed that stiffening

occurs at a characteristic surface density Σcrit, and we refer to models of this

form as γ(Σ) equations of state (EOS’s). The particular parameterization we

explore in this work is similar to that that proposed by Glover & Mac Low

(2007), which is

γ(Σ) =


1.0 Σ < Σcrit

31/24 Σ > Σcrit
, (4.2)

where Σ = M/(4πR2) for a cloud of mass M and radius R2. GH15 shows that

using the standard value of Σcrit = 5000 M�/pc2 leads to a turnover mass of

∼ 0.01 M�, much too low compared to the observed IMF; indeed, the mass

picked out by this choice is simply the opacity limit for fragmentation (Rees

1976). For this reason, we set Σcrit so that it is equal to critical surface density

2Note that the value of 31/24 was chosen to allow the comparison of models with pro-
tostellar heating and γ(Σ) EOSs (see Sec. 4.3.3). The choice of this value has no effect on
the sensitivity of the results to initial conditions.
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of the protostellar heating model (Σheat , see Sec. 4.3.3) in the standard (T0 =

10 K) scenario. This means Σcrit ∼ 130 M�pc−2. Using a higher surface density

would only shift the turnover mass scale to lower values, but would not affect

its sensitivity to initial conditions (see GH15 for results with such an EOS).

In other words, we are giving these models their “best chance” to fit the data.

Another formulation we consider is one where the stiffening occurs at a char-

acteristic volume density ρcrit, which we refer to as a γ(ρ) EOS. The form we

adopt for this EOS is equivalent to the one used by Bate (2009b):

γ(ρ) =


1.0 ρ < ρcrit

1.4 ρ > ρcrit
, (4.3)

where ρ = 3M/4πR3. Once again we chose the critical value so that it is

convenient to compare with the other models so we set ρcrit = 15000 M�/pc−3

corresponding to nH2,crit ≈ 2.6 × 105 cm−3.

For reference we also include a scenario with a more physically-motivated EOS

based on the works of Masunaga & Inutsuka (2000) and Glover & Mac Low

2007:

γphys(ρ) =


0.8 ρ < ρcrit,1

1.0 ρcrit,1 < ρ < ρcrit,2

1.4 ρ > ρcrit,2

, (4.4)

where we set ρcrit,1 = 5000 M�/pc−3 and ρcrit,2 = 5×108 M�/pc−3 corresponding

to nH2,crit,1 ≈ 105 cm−3 and nH2,crit,2 ≈ 1010 cm−3.

While these are only three of the EOS’s that have been proposed in the litera-

ture, they serve as representative examples of the outcomes produced by such

an approach.

4.2.3 Radiation Feedback Models

The final class of models we consider are those with a simple treatment of

protostellar radiative feedback. In these we assume that the center of self-

gravitating clouds collapses first, forming a protostellar seed, and then the

rest of the cloud collapses onto it. The energy of the matter accreted by this

seed is radiated within the optically thick core. The temperature of the mate-

rial depends on the accretion rate onto the protostar (and thus the mass and

dynamical time of the gas around it), and on the energy yield per unit mass

from accretion, which we denote Ψ. The value of Ψ is set by the protostellar
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mass-radius relation, and K11 shows that it is determined primarily by the

effects of deuterium burning, which thermostats the central temperatures of

protostars. Because deuterium burning begins when protostars are only a few

×10−2 M�, and, for low mass protostars, continues for ∼ 10 Myr, it is the dom-

inant factor in setting Ψ during the bulk of a molecular cloud’s star-forming

history. Comparing with detailed protostellar evolution calculations, K11 finds

Ψ ≈ 2.5×1010 J/kg to better than half a dex accuracy for all protostellar masses

in the range 0.05−1 M�, and to better than a dex accuracy from 0.01−0.05 M�.

We therefore adopt this value of Ψ throughout the remainder of this paper.

Following K11, this heats any core harboring an accreting protostar up to a

temperature

T4
heat ≈

Ψ
√

G
4πσSB

M3/2R−7/2. (4.5)

Crudely, this scaling reflects energy conservation as L = 4πR2σSBT4
heat for the

opaque cloud. Combined, internal heating and the physical processes captured

by the EOS models set the temperature as

T4 = T4
EOS + T4

heat, (4.6)

where TEOS is the temperature of the cloud if only EOS effects are taken into

account. Note that this is an extremely simplistic treatment of protostellar

heating, where each cloud is assumed to have a protostar “seed” at its center

which heats (uniformly) only its own cloud. This heating is assumed to be

“turned on” as soon as the cloud forms. However, since the temperature de-

pends on Ψ only to the 1/4 power, even a factor of ∼ 10 error in its value, as

can happen for 0.01 M� protostars, corresponds to a relatively modest error

in T . For stars near the peak of the IMF, which we shall see this model places

at ∼ 0.3 M�, the error is even smaller.

To easily identify the results for different models and initial conditions we

use the labels shown in Table 4.1. The T10 label refers to initial conditions

similar to MW GMCs, T20 and T75 have enhanced temperatures as are typ-

ically found in regions of very active star formation or in the Galactic center,

hiDens has enhanced temperature and density, similar to a dense, massive star-

forming region in the MW, while ULIRG runs have the very high temperature

and strong turbulence characteristic to the clouds of Ultra Luminous Infrared

Galaxies (ULIRGs). Finally, the hiMach model has an enhanced Mach number

but fixed temperature; we are unaware of a physical analog for this case, but
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we include it because it provides useful insight into the physics of the model.

4.3 Source of Invariant Mass Scale

One of the key features of the IMF is the turnover mass which appears to be

close to universal. In this section we investigate different models of turbulent

fragmentation – starting from the simplest – to test whether they are capable of

producing a nearly-invariant turnover mass, as demanded by the observations.

4.3.1 Failure of Isothermal Fragmentation

We first examine our isothermal case, IsoTherm T10, the results for which are

shown in Fig. 4.1. As the Figure shows, the IMF we obtain in the isothermal

case is a pure power-law, with no visible turnover. Although not shown in

Figure 4.1, we obtain a similar scale-free result for the IMF produced by purely

isothermal fragmentation independent of our choice of initial conditions. It is

important to note that, in the isothermal case, the core mass function (CMF)

does have a turnover, at the sonic mass Msonic ∼ c2
s Rsonic/G, which is set by the

initial conditions (see GH15). However, this does not result in an IMF with a

turnover.

This result might at first seem surprising, but we can understand it through

a simple analytic argument. In a number of analytical studies (e.g. Hopkins

2012b) the IMF is inferred from the CMF by shifting the mass scale by a factor

of 1/3 (rule of thumb: “a third of the bound mass ends up in the star”), which

is not physically correct, as cores undergo gravitational collapse which takes

a finite amount of time, allowing them to further fragment into a spectrum of

submasses (Guszejnov & Hopkins 2015b).

This means that a single initial core forms its own sub-cores starting from

different initial conditions, so the distribution of subfragments (CMF of “sec-

ond generation” fragments) will have its turnover at a different scale than the

parent population. The collapse of highly supersonic clouds is self-similar, so

every factor of 2 contraction takes about a dynamical time (see Sec. 9.2 in

Hopkins (2013c)). This means that the cloud can fragment at any scale, and

thus there is the same “amount of fragmentation” at each scale, producing

an infinite fragmentation cascade3. This explains why numerical studies have

3Note that to have finite mass in any mass bins the cascade cannot be infinite, it has
to be terminated at some finite scale by additional physics. So our isothermal model still
has two mass scales: 1) the outer scale set by initial conditions (e.g. GMC mass) and 2)
the cascade termination scale. If these scales are sufficiently far, a scale-free regime forms
between them (similar to the inertial range in turbulence). Assuming that the stellar mass
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Figure 4.1: The IMF in the case of purely isothermal equation of state
(model IsoTherm T10, solid black), a surface density dependent “stiff” EOS
(EOSΣ T10, solid blue), a volume density dependent “stiff” EOS (EOSρ T10,
solid green), a physically motivated “stiff” EOS (EOSPhys T10, solid orange)
and a protostellar heating (Heating T10, solid red) model. We compare these
to the canonical IMFs of Kroupa (2002) and Chabrier (2005). Isothermal
collapse leads to a featureless power-law close to dN/dM ∝ M−2 while both
protostellar heating and the EOS introduce a turnover at lower masses while
having close to canonical behavior at higher masses. Although the physically
motivated EOS of Eq. 4.4 does create a turnover, it is at such a low mass that
the resulting IMF looks like a power law in the stellar mass range.

been unable to get converged results, as higher resolution leads to fragmenta-

tion on even smaller scales.

We will now attempt to illustrate the qualitative behavior we might expect

from a self similar fragmentation cascade, by calculating the IMF in a special

case. First, let us assume that a self gravitating cloud has λ chance of collapsing

without fragmentation and forming a star. Because the process is self-similar,

λ must be independent of cloud mass. Let us further assume that when a

cloud of M mass fragments, the newly formed clouds have an average mass

of αM. For convenience let us further simplify the model by assuming that a

scale is much higher than the termination scale, the distribution in the that range must be
close to the self similar.
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cloud either collapses to a star or breaks up into fragments of α relative mass.

In this simplified model, calculating the mass budget is very easy. The ith
generation of fragmentation produces clouds of mass Mi = αi M0, where M0

is the mass of the initial cloud. The total mass of these clouds is M0(1 − λ)i,
where the second factor is simply the fraction of the mass not collapsed to stars

yet in the previous i − 1 generations. Since a fraction λ of these clouds will

collapse to stars without fragmenting further, the total mass of stars of mass

Mi is just fi = M0λ(1− λ)i. As mentioned in Sec. 1, the results from numerical

simulations show a large degree of fragmentation, so we expect λ � 1. In

this limit, fi ≈ M0λ(1 − iλ), and fi will therefore be approximately constant

for all i � 1/λ. Since 1/λ � 1, this means that fi is nearly constant over

a very large number of generations of fragmentation. Further recall that,

since the generations of of fragments are separated logarithmically in mass

(i.e., log(Mi/Mi+1) = logα is constant), a constant value of fi corresponds to

constant mass per logarithmic interval in object mass. In terms of number of

objects per unit mass (as opposed to per unit log mass), this is dN/dM ∝ M−2,

which is close to what we find. Our actual model is considerably more complex,

in that clouds can produce variable numbers of fragments with variable masses,

but this simple illustration captures the essence of the isothermal result.

In summary: although isothermal models like Hopkins (2012b) recover the

CMF shape, they are unable to explain the shape of the IMF. In the case

of isothermal fragmentation, independent of the form of the CMF, the IMF

becomes a power-law of M−2 as the initial conditions are “forgotten” during

the fragmentation cascade. This means that to produce an IMF that is not a

pure power-law, as observed, an extra physical process is required that would

stop the cascade at a mass scale invariant to the initial conditions.

4.3.2 Can a Universal Mass Scale Come from the Equation of

State?

One mechanism to imprint a mass scale onto the process of turbulent frag-

mentation is to have the equation of state deviate from isothermality, either

because the gas becomes optically thick to its own cooling radiation, or due

to a change in the cooling process such as the onset of grain-gas coupling. We

investigate this approach in our EOS models.

Figure 4.2 shows the results of simulations using our γ(Σ) (surface density-

dependent) EOS (EOSΣ models), for a variety of initial conditions. We see
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that, with an appropriate choice of Σcrit, one can obtain a stellar mass func-

tion that agrees reasonably well with the observed IMF. However, one can

do so only for a particular choice of initial conditions. As shown in GH15,

an EOS with stiffening suppresses fragmentation below mass scale Mcrit ∼
c4
s

ΣcritG2 ∝ T2/Σcrit, which is clearly shown by the figure. Also, stronger turbu-

lence leads to more fragmentation and thus more brown dwarfs (see EOSΣ T75

and EOSΣ ULIRG) in accordance with predictions (e.g. Hopkins 2013e). At

first EOSΣ hiMach might seem to contradict that as it has more large proto-

stars than the standard case. This, however, is caused by the interaction of

the initial conditions with the adopted EOS. In this scenario the initial sur-

face density Σinit ∼ Msonic/
(
R2

sonic8π
)
∝ T/Rsonic is already above the stiffening

transition surface density Σcrit. As a result, there is very little fragmentation

because the EOS is always “stiff”. It is also worth noting that the EOS model

always has a slow cut-off at low masses despite the fact that protostellar disk

fragmentation (a potential source of brown dwarfs) is neglected, so it is likely

to overproduce brown dwarfs,

We have similarly tested an EOS that becomes stiff at a critical volume density

ρcrit (see Eq. 4.3). Fig. 4.3 shows that, as in the case for the γ(Σ) models, the

volume density dependent EOS is also very sensitive to initial conditions. This

can be easily understood using a similar arguments as the ones used by GH15

in the γ(Σ) case: using the collapse condition and size-mass relations (see Sec.

2.2 in GH15) one can find the size and mass of a self gravitating fragment

whose density is ρcrit, which leads to the corresponding turnover mass scale

Mcrit ≈ MJeans(ρcrit) ∝ T3/2
0 ρ

−1/2
crit (this is also shown by Bate 2009c).

We have therefore shown that, while it is possible to choose critical values Σcrit

or ρcrit such that a stiffened equation of state produces an IMF peak that is

qualitatively consistent with observations, such a choice works for only one

particular set of initial conditions (see Figures 4.2-4.3). Substantially different

initial temperatures necessitate different choices to keep the IMF peak fixed,

and there is no obvious physical reason why the critical parameters should vary

in such a manner. Indeed, we remind readers that even the values we have

used for the standard MW case (T0 = 10 K) have been optimized to fit the ob-

servations, and are not motivated by any plausible physical model. Choosing

the values of Σcrit or ρcrit that one would naturally predict based on consid-

erations of gas thermodynamics would make the agreement with observations

very poor even in the Milky Way-like case (see EOSPhys T10 in Fig. 4.1).
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Figure 4.2: The IMF of the surface density dependent EOS model (EOSΣ)
for standard (EOSΣ T10 : T = 10 K, Rsonic = 0.1 pc), high temperature
(EOSΣ T20 : T = 20 K), extreme turbulence (EOSΣ hiMach: Rsonic =
0.0026 pc), extreme temperature (EOSΣ T75 : T = 75 K) and ULIRG
(EOSΣ ULIRG : T = 75 K, Rsonic = 0.0026 pc) initial conditions (see Table 4.1).
There is a clear trend of increasing turnover mass with initial temperature, con-
sistent with our expectation that, for these EOS models, the turnover should
scale as Mcrit ∝ T2

0 .

4.3.3 Effects of Protostellar Heating

Another proposed origin of a universal mass scale is stellar feedback, including

protostellar heating, outflows, accretion, photo-ionization heating and super-

novae, none of which are scale-free processes. Thus they all have the capability

to imprint a mass scale. In this paper we only concentrate on protostellar heat-

ing as it is the earliest and strongest feedback mechanism during the evolution

of protostellar cores. Most of the other mechanisms act after the stars form,

which can therefore only alter the IMF of “second generation” stars.

Figure 4.4 shows the results of our calculation including protostellar heating.

Similar to the EOS models, at very high masses the additional physics (proto-

stellar heating) has no significant effect, and thus the IMF looks similar to the
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Figure 4.3: The IMF of the volume density dependent EOS model (EOSρ)for
standard (EOSρ T10 : T = 10 K, Rsonic = 0.1 pc), high temperature
(EOSρ T20 : T = 20 K), extreme turbulence (EOSρ hiMach: Rsonic =
0.0026 pc), extreme temperature (EOSρ T75 : T = 75 K) and ULIRG
(EOSρ ULIRG : T = 75 K, Rsonic = 0.0026 pc) initial conditions (see Table 4.1).
There is a clear trend of increasing turnover mass with initial temperature, con-

sistent with Mcrit ∝ T3/2
0 . Despite having stronger turbulence EOSρ ULIRG

seems to produce more top heavy IMF than EOSρ T75. This occurs because
in this model the initial density starts out very close to the critical density.

isothermal result of M−2. The isothermal fragmentation cascade is terminated

around the characteristic mass of the model, creating a “pile up”. Note that

the current model underproduces brown dwarfs as it neglects disk fragmenta-

tion, and more generally any fragmentation process that depends on angular

momentum. As the figure shows, inclusion of heating produces a peak that

is consistent with the observed peak of the IMF, and that is remarkably in-

sensitive to changes in the star-forming environment. The only changes in the

position of the peak visible in Figure 4.4 are in the ULIRG and hiMach runs,

where the peak is shifted to lower masses by a factor of ∼ 2. The hiDens run,

which is set up to emulate a dense star forming region in the Milky Way, is

intermediate between these two cases and the normal Milky Way case, with

a peak that is shifted by a tens of percent slightly relative to T10. We em-
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phasize that, unlike the γ(Σ) and γ(ρ) cases where we explicitly tuned model

parameters to produce the correct peak mass, the protostellar heating model

is not tuned, and has no free parameters. Its only parameter is the value of Ψ,

which is determined entirely by the physics of stellar structure and deuterium

burning. Thus both the location and the invariance of the IMF peak in this

model are independent predictions.

It is worth noting that this model does seem to produce too few brown dwarfs

and an excess of M dwarf stars. However, it also neglects protostellar disk

fragmentation and other “sources” of brown dwarfs, which would reduce the

excess between 0.1−1 M� and enhance the number of objects at lower masses.

Whether including these processes leads to the correct proportion of brown

dwarfs remains an open question, though the radiation-hydrodynamic simula-

tions of Bate (2009b, 2014) and Krumholz et al. (2012) suggest this is in fact

the case.

It is also instructive to compare the results of the protostellar heating models

to the EOS models, in order to understand why the results are so different.

We use a simple model that assumes the cloud behaves “isothermally” except

for a global heating term. This means that TEOS = T0 (from Eq. 4.6), which is

the initial temperature of the cloud (set by external heating like cosmic rays).

At first glance the protostellar heating model proposed above seems very much

like an opacity limit EOS model, as Theat ∝ M3/8R−7/8 ≈ Σ3/8 so the collapse of

the cloud is isothermal until a characteristic Σheat is reached where Theat = T0.

From that point on T ≈ Theat , which means that the temperature increases as

if we had a polytropic index of γ = 31/24 (see Eq. 4.2). Similar to the EOS

models we can find the characteristic fragment mass Mcrit where this transition

happens. Using the above relations, the collapse threshold M
R

1
T

1
1+M2 = const.

and assuming a subsonic, fragment (M � 1) we get McritT
1/4
0 = const. which

means that there is remarkably weak sensitivity to the initial temperature (K11

includes a more rigorous derivation which yields Mcrit ∝ T−1/18
0 ). Comparing

Fig. 4.4 with Fig. 4.2 makes the difference this produces in the resulting IMF

abundantly clear.

4.4 Conclusions

The aim of this paper is to investigate what physical processes can explain the

origin of the IMF, and in particular the fact that the IMF is not a powerlaw,

and that its characteristic mass scale is remarkably insensitive to variations in

the star-forming environment. To this end, we have considered three classes
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Figure 4.4: The IMF of the protostellar heating model with standard (Heat-
ing T10 : T = 10 K, Rsonic = 0.1 pc), high temperature (Heating T20 :
T = 20 K), high density and temperature (Heating hiDens: T = 20 K,
n = 5000 cm−3), extreme turbulence (Heating hiMach: Rsonic = 0.0026 pc),
extreme temperature (Heating T75 : T = 75 K) and ULIRG (Heating ULIRG :
T = 75 K, Rsonic = 0.0026 pc) initial conditions (see Table 4.1). The predicted
IMF is remarkably invariant to initial conditions. The turnover point does
shift slightly to lower masses for both very strong turbulence and high tem-
perature (stronger turbulence makes fragmentation easier and a higher initial
temperature means that protostellar heating becomes dominant at a smaller
size scale).
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of models for gas thermodynamics: purely isothermal models, models with an

equation of state that stiffens at a characteristic volume or surface density,

and models containing a simple analytic estimate for the effects of protostellar

heating.

We find that purely isothermal models categorically fail to reproduce the IMF.

Although the initial conditions do imprint a mass scale (the sonic mass), which

is apparent in the distribution of bound structures (i.e., the CMF), due to the

lack of mass scale in the equations of motion this scale is “forgotten” during

the fragmentation cascade, leading to an M−2 power-law solution for the IMF

(consistent with the lack of convergence reported thus far in numerical studies).

This means that isothermal gravito-turbulent fragmentation cannot explain

the existence or universality of the turnover scale in the IMF. Some other

physics is needed for that.

An often invoked expansion of the fragmentation model is to have the clouds

transition from an isothermal to a “stiff” equation of state when they reach

a critical surface or volume density and become thick to their own cooling

radiation. This does provide a mass scale for the system, and by tuning the

parameters of the model appropriately one can reproduce the observed IMF

turnover. However, we find that this approach results in a mass scale that is

extremely sensitive to initial conditions (Mcrit[γ (Σ)] ∝ T2 and Mcrit[γ (ρ)] ∝
T3/2), rendering these models unable to provide a universal mass scale as is

observed. Moreover, producing agreement with the observed mass scale even

for initial conditions similar to those found in Solar neighborhood star-forming

regions requires parameter choices that are very far from what one would have

estimated based on any first-principles physical argument.

We argue instead that feedback physics can provide a mass scale that is both in

good agreement with observations and insensitive to the conditions in the star-

forming region. As an example, based on Krumholz (2011), we have formulated

a simple prescription for protostellar heating. This alone of all the analytical

models we consider is able to provide a universal IMF turnover, despite large

variations in initial gas temperature, densities, Mach number and masses of

star forming clouds.

4.4.1 Caveats and Future Work

We close with a discussion of the limitations of our model, and how we plan to

improve it in future work. We utilize the semi-analytical framework of Gusze-
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jnov & Hopkins (2015a) which makes strong approximations. Motivated by

Robertson & Goldreich (2012b) we assume collapse at constant virial param-

eter as turbulence is pumped by gravity. While this assumption has empirical

support, it has not been rigorously demonstrated (although simulations so far

seem to confirm this, see Murray et al. 2015). Furthermore, the simulation

only follows the evolution of self gravitating structures until they reach the

size scale where angular momentum becomes important (which is not treated

in the current models), and thus processes that act on the scales of disks or

smaller (e.g. disk fragmentation) are neglected. This could have a significant

effect on the low mass end of the resulting IMF. Also, fragments are assumed

to evolve independently, so mergers and other interactions are neglected4. Fi-

nally, the protostellar heating model assumes instantenous, isotropic, steady

state heating and neglects other forms of feedback (e.g. outflows).

Some of these limitations will be easier to remove than others. The assump-

tion that collapse occurs at constant virial parameter can be investigated by

simulations, as can be the fragmentation of disks, and in principle results from

these calculations could be incorporated into our model. Similarly, a number

of authors have proposed more complex models for the protostellar heating,

including the effects of fluctuations in time (e.g., Lomax et al. 2014) that was

found to have significant effect on the statistics of star formation (Lomax et al.

2015; Stamatellos et al. 2012), and these could be included as well. Further-

more, it is possible to include angular momentum (like in Hopkins 2012b) and

interaction between fragments with significant extension of the model. The

entire framework can also be checked against radiation-hydrodynamic simula-

tions such as those of Krumholz et al. (2012) or Myers et al. (2014).

In addition to these improvements in the model itself, an obvious next step is

to identify predictions of the model that can be compared with real data. We

mention here two obvious, first order predictions that we plan to investigate

in future work. First, using the output of cosmological simulations or semi-

analytic models, we can investigate the extent to which the small amount of

variation we do find in the protostellar heating model produces significant

variations in the IMFs of elliptical galaxies over cosmological times. These

predictions can then be compared to observations (e.g., Cappellari et al. 2012;
4This is actually a fairly good assumption. The timescale for two clouds of R radius

to merge in this framework is tmerger ∼ d/v, where d is the separation between clouds and
v is their relative velocity towards each other. It is easy to show that tmerger/tfree f all ∼√

d/R (1 + Rsonic/R) >
√

d/R. This means that the timescale for merging is only comparable
to the freefall time if the clouds initially form right next to each other (d ∼ 2R).
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van Dokkum & Conroy 2010). Second, because our model retains spatial

information, it makes predictions for the clustering of stars as well as for their

mass distribution. This too can be checked against the spatial distribution

of stars in nearby star-forming regions, a test that has been performed before

using both analytic (Hopkins 2013a) and numerical (Hansen et al. 2012a; Myers

et al. 2014) models. It should be noted, however, that without accounting

for protostellar disk fragmentation most results (e.g. correlation function,

binarity) will only be valid on scales larger than the typical protostellar disk

size.
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C h a p t e r 5

COMPARING MODELS FOR IMF VARIATION ACROSS
COSMOLOGICAL TIME IN MILKY WAY-LIKE GALAXIES

Guszejnov D., Hopkins P. F., Ma X., 2017, MNRAS, 472, 2107

Abstract

One of the key observations regarding the stellar initial mass function (IMF)

is its near-universality in the Milky Way (MW), which provides a powerful

way to constrain different star formation models that predict the IMF. How-

ever, those models are almost universally “cloud-scale” or smaller – they take

as input or simulate single molecular clouds (GMCs), clumps, or cores, and

predict the resulting IMF as a function of the cloud properties. Without a

model for the progenitor properties of all clouds which formed the stars at

different locations in the MW (including ancient stellar populations formed in

high-redshift, likely gas-rich dwarf progenitor galaxies that looked little like

the Galaxy today), the predictions cannot be fully explored, nor safely applied

to “live” cosmological calculations of the IMF in different galaxies at different

cosmological times. We therefore combine a suite of high-resolution cosmolog-

ical simulations (from the Feedback In Realistic Environments project), which

form MW-like galaxies with reasonable star formation properties and explic-

itly resolve massive GMCs, with various proposed cloud-scale IMF models.

We apply the models independently to every star particle formed in the sim-

ulations to synthesize the predicted IMF in the present-day galaxy. We test

models where the IMF depends on Jeans mass, sonic or “turbulent Bonner-

Ebert” mass, fragmentation with a polytropic equation-of-state, or where it

is self-regulated by protostellar feedback. We show that all of these models,

except the feedback-regulated ones, predict far more variation (∼ 0.6 − 1 dex

1σ scatter in the IMF turnover mass) in the simulations than is observed in

the MW.

5.1 Introduction

The (instantaneous) mass distribution of stars at their formation time, also

known as the initial mass function (IMF), is one of the key predictions of any

star formation model. This governs essentially all observable and theoretical

aspects of star formation and stellar populations – observable luminosities and

colours; effects on stellar environments via feedback in the form of stellar winds,

http://adsabs.harvard.edu/abs/2017MNRAS.472.2107G
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radiation and supernovae; nucleosynthesis and galactic chemical evolution, and

so on. The IMF has been well-studied within the MW, and appears to be

well-fit by a simple function with a Salpeter (1955) power-law slope at high

masses and lognormal-like turnover at low masses (Chabrier, 2005; Kroupa,

2002). Perhaps the most interesting feature of the IMF is its universality: it

has been found that there is quite weak variation within the MW (for recent

reviews, see Bastian et al., 2010; Chabrier, 2003; Krumholz, 2014; Offner et al.,

2014, and references therein), albeit with a few possible outliers (e.g. Kraus

et al., 2017; Luhman et al., 2009). As Offner et al. (2014) emphasize, this

universality includes both very young (∼Myr-old) and very old (∼ 10 Gyr-

old) stellar populations; stars forming in small, nearby GMCs with masses

∼ 104 − 106 M� and massive complexes with masses ∼ 106 − 107 M�; the solar

neighbourhood at ∼ 10 kpc from the galactic centre (where the gas disk surface

density is ∼ 10 M� pc−2) and the central molecular zone at sub-kpc and ∼
100 pc scales (where gas surface densities are order-of-magnitude larger).

In other galaxies, the IMF usually must be assumed, and with an IMF as-

sumption, physical properties of the stellar populations and galaxies (e.g. their

stellar masses) are derived from observables (e.g. light, colours). This makes it

critical to understand the IMF, in order to understand galaxy formation. Like-

wise it is critical for models of galaxy formation to predict or assume some IMF

model, in order to make any meaningful predictions for observable quantities.

The universality of the IMF in old stellar populations in the MW is widely

taken as a suggestion that it may be near-universal in other galaxies, because

older populations in the MW formed when the galaxy was much younger and

very different, likely a typical high-redshift gas-rich, metal-poor dwarf galaxy.

There are indirect constraints on the IMF both from spectral features and in-

tegrated mass-to-light constraints in nearby galaxies: these mostly also favor

a universal IMF (e.g. Andrews et al., 2013, 2014; Fumagalli et al., 2011; Koda

et al., 2012; Weisz et al., 2015). More recently there have been more interesting

hints of variation in the centres of massive elliptical galaxies (Cappellari et al.,

2012; Conroy & van Dokkum, 2012; Mart́ın-Navarro et al., 2015a,b,c; Posacki

et al., 2015; Sonnenfeld et al., 2015; Treu et al., 2010; van Dokkum & Conroy,

2010, 2011), and perhaps also in faint dwarf galaxies (Brown et al., 2012; Geha

et al., 2013; Hoversten & Glazebrook, 2008). Even so, it is worth stressing that

the implied variation is not radical: it implies variation of a factor < 2 in the

stellar mass-to-light ratio.

As a result, there is a long history of both theoretical and empirical models
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for galaxy formation which have attempted to predict the IMFs that should

arise in different galaxy populations, either as a function of either galaxy-scale

or ∼kpc-scale properties (what can be resolved in most previous calculations)

within the galaxies (see e.g. Baugh et al., 2005; Blancato et al., 2016; Davé

et al., 2012; Hopkins, 2013e; Lacey et al., 2016; Narayanan & Davé, 2012;

Recchi & Kroupa, 2015; van Dokkum, 2008). At the same time, the specific

hints of galaxy-to-galaxy variation discussed above have prompted a new wave

of theoretical models which argue the IMF could vary under certain conditions

at the GMC or sub-GMC scale, in a way that may connect to the systematic

variation inferred in different galaxies (e.g. Bekki 2013; Chabrier et al. 2014;

Ferreras et al. 2015; Weidner et al. 2013).

However, these models in every case rely on very strong simplifying assump-

tions – the IMF is predicted as a function of the cloud properties out of which

the stars form, such as its temperature, density, turbulent velocity dispersion,

virial parameter, etc. (from which properties like the Jeans mass, or the tur-

bulent Bonner-Ebert mass, or the IGIMF turnover mass, are determined). It

is impossible at present to know this empirically for all the clouds that formed

the old stellar populations today in a galaxy (or even for most clouds within

a galaxy at present day), so instead some strong additional assumptions are

usually applied. For example, authors assume isothermal gas with T = 10 K

(or some other temperature) at all densities, a universal linewidth-size rela-

tion across all galaxies, redshifts, and regions within galaxies, or a Jeans or

sonic mass within clouds that somehow scales proportionally to that measured

from the gas at the &kpc scales resolved in the cosmological calculations. But

if these properties vary across cosmic time, or cloud-to-cloud, then any such

model will produce variation in the predicted IMF which can be compared to

the observational limits within the MW.

In this paper we therefore investigate the predicted variation in the IMF peak

imprinted by these physics in a number of IMF models. We combine high-

resolution simulations of MW-like galaxies (where the cloud-scale properties

can be at least partially resolved) with the relevant small-scale models for IMF

variation as a function of cloud properties.

5.2 Model and Methodology

5.2.1 Simulation

We utilize a set of numerical simulations of MW-like galaxies (see Table 5.1)

presented in Hopkins et al. (2017a), from the Feedback in Realistic Envi-
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Figure 5.1: Visualization of the starlight (mock ugr composite image, ac-
counting for each stellar sink-particle’s age and metallicity and ray-tracing
including dust obscuration) from one of the simulated MW-like galaxies (see
Table 5.1) we use in our calculations (galaxy m12i from Hopkins et al. 2017a
with 56000,M� resolution). Note that resolved molecular clouds and arms are
evident. See Fig. 5.2 for the other galaxies from Table 5.1.

ronments (FIRE) project (Hopkins et al. 2014).1 The simulations are fully

cosmological “zoom-in” simulations (where resolution is concentrated on one

galaxy in a large cosmological box, run from redshift z > 100 to today) and

are run using GIZMO (Hopkins 2015)2, with the mesh-free Godunov “MFM”

method for the hydrodynamics (Hopkins, 2015). Self-gravity is included with

fully-adaptive force and hydrodynamic resolution; the simulation mass resolu-

tion is fixed at 7000 or 56000 M� (Table 5.1). The simulations include detailed

metallicity-dependent cooling physics from T = 10 − 1010 K, including photo-

ionization/recombination, thermal bremsstrahlung, Compton, photoelectric,

1http://fire.northwestern.edu
2http://www.tapir.caltech.edu/~phopkins/Site/GIZMO.html

http://fire.northwestern.edu
http://www.tapir.caltech.edu/~phopkins/Site/GIZMO.html
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Figure 5.2: Face on (top) and edge on (bottom) visualizations of starlight
(mock ugr composite image, accounting for each stellar sink-particle’s age and
metallicity and ray-tracing including dust obscuration) for the simulated MW-
like galaxies from Table 5.1. Unlike Fig. 5.1 the m12i example shown here is
from the high resolution (7000 M�) run. The MHD run is not shown as it gives
virtually identical results as the non-MHD runs (see Su et al., 2016). Note the
edge-on images of m12i and m12f are a mock Galactic (Aitoff) projection
from a random star at ∼ 10 kpc from the galactic center. For more details on
the individual runs see Hopkins et al. 2017a.

metal line (following Wiersma et al. 2009), molecular, fine structure (following

Ferland et al. 2013), dust collisional and cosmic ray processes, including both a

meta-galactic UV background and each star in the simulation as a local source.

Individual stars are not resolved in the simulations; but star formation is

approximated from resolved scales via a sink-particle method. Gas which is

locally self-gravitating, self-shielding, Jeans unstable, and exceeds a minimum

density n > ncrit = 1000 cm−3 (Table 5.1) is transformed into “star cluster

sink particles” on its dynamical time. Each such particle represents an IMF-

averaged single stellar population of the same age and metallicity, with mass

equal to the mass resolution.

Once formed, the simulations include feedback from these star particles via

OB & AGB mass-loss, SNe Ia & II, and multi-wavelength photo-heating and
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Figure 5.3: Mock Galactic (Aitoff) projection from a random star at ∼ 10 kpc
from the galactic center, for m12i (top) and m12f (bottom). For more details
on the individual runs see Hopkins et al. 2017a.

radiation pressure; with inputs taken directly from stellar evolution models

(Leitherer et al., 1999), assuming (in-code) a universal IMF (Kroupa, 2002).

There are two reasons for using cosmological simulations instead of present-

day observational data or a more localized cloud simulation. (1) We wish to

test and validate the approach of using cloud-scale IMF models dynamically

in next-generation cosmological simulations. Because stellar feedback and ob-

servable properties depend on the IMF, truly self-consistent predictions should

include some sub-grid IMF model. These cosmological simulations were run

assuming a universal IMF, but others (see references in § 5.1) adopt a dynami-

cal IMF model based on resolution-scale properties. But it has not been asked

whether the models they considered violate observational constraints in the

MW. (2) Stars at a given present-day position in a galaxy can form at wildly

different times/places (some even in other dwarf galaxies). This is especially

true for the stars in old MW clusters, which appear to have formed at high
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redshifts, probably in distinct dwarf galaxies with entirely distinct radiation

fields, turbulent velocity dispersions, gas masses, etc. It is impossible to know

the distribution of progenitor cloud properties at star formation for old stars

(needed for a given IMF model to make predictions) from observations (or

localized simulations) alone.

The galaxies studied here, shown in Figs. 5.1-5.2 – have been studied exten-

sively in previous work: they are similar to the MW in their stellar mass,

present-day gas fractions and SFRs (Hopkins et al., 2014), and metallicity

(Ma et al., 2016b). Our “fiducial case” m12i is also similar to the MW in

its stellar kinematics, thin+thick disk morphology, metallicity gradient and

metal abundance ratio gradients (in both vertical and radial directions) stellar

age distribution (Ma et al., 2016a, 2017), R-process element distribution (van

de Voort et al., 2015) and galactic stellar halo and satellite dwarf population

(Wetzel et al., 2016). The other two examples represent a slightly later-type

(m12f) and earlier-type (m12m) galaxy, at the same stellar mass and SFR.

This is particularly useful because of course no simulation will exactly match

the formation history of the MW, so it is important to understand whether

our predictions are sensitive to this.

These and other FIRE simulations have also been shown to reproduce the

observed Kennicutt-Schmidt relation (Orr et al., 2017; Sparre et al., 2015),

properties of galactic outflows (Muratov et al., 2015) and (in higher resolu-

tion, non-cosmological simulations) the observed mass function (and CO lumi-

nosities), size-mass, and linewidth-size distributions of GMCs (Hopkins et al.,

2012, 2013b). One might reasonably worry that this cannot be captured at the

lower resolution necessary in cosmological simulations. Therefore in Fig. 5.4

we plot the mass function and linewidth-size relation of GMCs identified at

present-day in the actual simulations studied here. They appear to agree at

least plausibly with observed properties (Dobbs et al., 2014; Heyer & Dame,

2015). Note that our mass resolution introduces a cut-off at the low mass end

of the GMC mass function because these clouds cannot be resolved by the sim-

ulation. However, all simulations included in this paper do resolve the most

massive GMCs (> 106 M�), in which most of the mass is concentrated (owing

to the shape of the GMC mass function), allowing us to recover galactic prop-

erties even at lower resolutions. This is clearly apparent in the linewidth-size

relation which shows a good agreement with Bolatto et al. (2008). All of this

is not to say that the simulations are perfect analogues to the MW; however

they are at least a reasonable starting point (see Fig. 5.4 for details).
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Our choice of ncrit = 1000 cm−3 (at mass resolution 7000 − 56000 M�) can be

justified by assuming that GMCs follow the mass-size relation of Bolatto et al.

(2008) (Mcloud ∼ π (85 M� pc−2) R2
cloud), which implies the density threshold for

star formation is slightly higher than the mean density of the most-dense re-

solved clouds. More specifically, we chose the density threshold to correspond

to the typical density where the Jeans/Toomre fragmentation scale falls be-

low our mass resolution. In either case the GMC mass function and SFR is

dominated by the most massive (hence well-resolved) clouds. This is evident

in Fig. 5.4, where we show the GMC mass function and linewidth-size relation

predicted at present-day in the galaxy both (a) agree reasonably well with

observations (within a factor ∼ 2 at all cloud sizes/masses resolved), and (b)

are insensitive to resolution (except, of course, that at higher resolution they

extend to smaller GMCs). This gives us some confidence that our predictions

are not strongly resolution-dependent. In Table 5.1 we show that varying res-

olution and physics (in an otherwise identical run including magnetic fields,

m12i+MHD) do not significantly alter our predictions.

Because the simulations resolve down to cloud scales, but no further, we treat

each star-forming gas element as an independent“parent cloud”, which sets the

initial conditions for its own detailed IMF model (in accordance with the IMF

models we investigate). Specifically, whenever a sink particle is spawned, we

record all properties of the parent gas element from which it formed, and use

these in post-processing to predict the IMF. Fig. 5.5 shows the properties of

gas elements at one instant, z = 0, weighted by star formation rate. Integrating

over all times and all galaxies which form stars that ultimately reside in the

final galaxy, Fig 5.6 shows the density and temperature distribution of these

“star forming particles” (gas at the moment the simulation assigned its mass

to a sink particle) at the time of their formation, from our high-resolution

m12i run. Not surprisingly most sinks form around the simulation density

threshold from this particular run (∼ 1000 cm−3). This choice has no effect on

the scatter in both ncloud and Tcloud, which are the relevant parts to our study.

Scatter in these quantities translate to a scatter in the local IMF according

to the IMF models we are studying. Note that Narayanan & Hopkins (2013)

show the inferred temperature range from mock CO-ladder observations will

tend to be significantly smaller than the range plotted here. We wish to

emphasize that what is plotted in Fig. 5.6 is not the density/temperature

of the core or proto-stellar gas that which directly collapses and forms stars;

that is not resolved in these simulations. Instead these are the properties of the
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progenitor molecular clouds, measured at the smallest resolved scales, which

will (and must, physically) fragment into denser sub-clumps that can directly

form stars. Also, the width in this distribution is expected to be higher than

in present day clouds because of the longer lifetime of stars which preserves

the progenitor cloud properties in their IMF for cosmological timescales.

5.2.2 From Parent Cloud to IMF Properties

From this point we infer the IMF turnover mass from the initial conditions of

these parent clouds. This exercise has been done in detail by Guszejnov et al.

(2016) where the semi analytical framework of Guszejnov & Hopkins (2016)

was utilized to create a mapping between GMC properties and the IMF. Fig.

5.7 shows how the IMF peak scales with initial temperature in an equation

of state (EOS) and a protostellar feedback based IMF model. Such scaling

relations can be analytically derived for other IMF models (e.g. Jeans mass)

as well – we focus here on how each model predicts the turnover or “critical”

mass Mcrit scale, because this is the most identifiable feature of the IMF (it sets

the mass-to-light ratio, and varies significantly between models). In contrast

the bright-end slope varies negligibly between models3, so it is not useful as a

diagnostic.

In this paper we investigate the sensitivity to initial conditions for the following

classes of IMF models (summarized in Table 5.1):

• Jeans mass models: The Jeans instability is the primary mechanism

for the collapse of gas clouds into stars, so these models assume that

IMF properties are set by local mean Jeans mass of the parent molecular

cloud complex (e.g. Bate & Bonnell 2005). Therefore, the critical mass

is

Mcrit,J ∼
πc3

s

6G3/2ρ1/2 . (5.1)

Note that the models may still assume sub-fragmentation to smaller

scales, but the key assumption (for our purposes) is simply that the

turnover mass somehow scales proportional to the parent cloud Jeans

mass.

3Note that observations do indicate variations in the IMF slopes in extra-galactic pop-
ulations (e.g. Cappellari et al., 2012; Shu et al., 2015; Spiniello et al., 2012) but these
measurements only sample the relatively low mass region of the IMF (< M�). The IMF
in the MW, however, is well sampled at higher masses and appears to be consistent with
a near-universal power-law tail (Offner et al., 2014), which most IMF models are able to
roughly reproduce (see references in Table 5.1 for specifics in each case).
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Figure 5.4: Top: Mass function (MF) of GMCs in the fiducial simulation (Fig. 5.1) at
z ≈ 0, at different mass resolution (baryonic particle mass mi = 1000 mi, 1000 M�). We restart
the fiducial simulation from Fig. 5.1 (with mi, 1000 = 56) at z = 0.1, after re-sampling the
particles to raise/lower the mass resolution. We then evolve it for ∼ 1 Gyr to z = 0, and
measure the MF of dense cold-gas clouds (identified in post-processing with a friends-of-
friends group-finder) time-averaged over the last ∼ 100 Myr inside < 20 kpc of the galaxy
center. All details of the resampling and group-finding method are in Hopkins et al. (2017a).
We compare the observed MW GMC MF from Rice et al. (2016), normalized to the same
total mass, measured inside (solid) and outside (dotted) the solar circle. At all resolutions,
a GMC MF similar to that observed is recovered. The most massive GMCs contain most of
the mass/star formation and are the first-resolved. At higher resolution we extend to smaller
GMCs. Bottom: Linewidth-size relation for the same clouds (median in thick lines; 5− 95%
intervals in thin lines), vs. observations in nearby galaxies (Bolatto et al., 2008; Colombo
et al., 2014a; Fukui et al., 2008; Heyer & Dame, 2015; Heyer et al., 2009; Muraoka et al., 2009;
Roman-Duval et al., 2010; Tosaki et al., 2017); note our definition of Rcloud is equivalent to
their σr). The predicted normalization and 1σ dispersion (≈ 0.12 dex, although it increases
slightly to ≈ 0.2 dex at the lowest masses) are consistent with observations (compare e.g.
Kauffmann et al. 2013). There is no systematic resolution dependence (other than sampling
smaller clouds at higher resolution).
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Figure 5.5: Density-temperature diagram for gas at present-day (z = 0) in
our high-resolution m12i simulation (others are similar). Colors show a 2D
histogram colored by the gas-mass per-pixel (log-weighted, increasing black-
blue-green-red with a ∼ 6 dex stretch), so this is peaked where there is signifi-
cant mass in a narrow temperature range. HII regions, warm ionized medium,
and warm and cool neutral phases are evident (we do not show lower densities
where hot gas is prevalent). Solid (dashed) lines show the median (inter-
quartile) temperature of all gas denser than > n, weighted by mass (white)
or star formation rate (red). The latter converges rapidly because SF is re-
stricted to high-n gas. At z = 0 in the simulation, most SF occurs in gas with
n > 1000 cm−3 and T ≈ 20 − 30 K.

• Opacity limit equation of state (EOS) models: As the molecu-

lar gas becomes denser it reaches the point where it becomes opaque

to its own cooling radiation, leading to a transition from isothermal to

adiabatic behavior, terminating fragmentation at the Jeans mass at this

density. This can occur at a critical volume density ρcrit (e.g. Glover &

Mac Low 2007; Jappsen et al. 2005a; Larson 2005; Low & Lynden-Bell

1976; Masunaga & Inutsuka 2000; Whitworth et al. 1998). Motivated by

radiation transfer simulations like Bate 2009c we also investigated the

case where the transition occurs at a critical surface density Σcrit. The
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Figure 5.6: Density-temperature diagram (as Fig. 5.5; same galaxy), but for
the progenitor clouds (gas elements which formed a stellar sink particle) of all
stars which reside in the z = 0 galaxy (integrated over all cosmic time). Note
these are the cloud properties at the moment the sink formed, weighted by
mass in stars today (colors use ∼ 3 dex stretch). As expected, most sinks form
a factor of a few above our minimum threshold (ncrit = 1000 cm−3), though
some gas reaches much higher densities. Lines again show the median and
inter-quartile range for stars formed at resolved densities > n. Accounting for
different times and progenitor galaxies, the dispersion in temperatures at a
given density is a factor ∼ 3 − 4 larger here than for star-forming gas just at
z = 0.

critical masses in these cases are

Mcrit,ρ ∼
πc3

s

6G3/2ρ1/2
crit

, Mcrit,Σ ∼ c4
s

G2Σcrit
, (5.2)

where ρcrit and Σcrit are the critical densities for the isothermal-adiabatic

transition.

• Turbulent/sonic mass models: A number of analytical theories de-

rive the CMF and IMF from the properties of the turbulent medium,

in which they form (e.g. Hennebelle & Chabrier 2008, 2013a; Hopkins

2012b; Padoan & Nordlund 2002). In these models, both the CMF and

IMF peaks are set by the“sonic mass” Msonic, namely the turbulent Jeans
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Figure 5.7: Predicted IMF using the framework of Guszejnov & Hopkins
(2016), within progenitor clouds with different initial temperatures Tcloud =

10 K or 20 K. We compare two IMF models from Table 5.1: (1) accounting
for proto-stellar heating, and (2) ignoring heating and treating the gas with a
polytropic equation-of-state until some it reaches the opacity limit. We com-
pare the standard fit to the observed IMF from Chabrier (2005). Differences
in temperature produce different model shifts, per the scalings in Table 5.1.

or Bonner-Ebert mass at the sonic scale (Rsonic) below-which the turbu-

lence becomes sub-sonic and therefore fails to generate large fluctuations

(which seed fragmentation). The critical mass is

Mcrit, S = Msonic ∼
2c2

s Rsonic

G
, (5.3)

where Rsonic is defined through the linewidth-size relation

σ2
turb(λ) = c2

s
λ

Rsonic
. (5.4)

In our calculations σ2
turb is estimated from the simulations when a star

particle forms by measuring the velocity dispersion (after subtracting the

mean shear) between neighboring particles in a sphere of radius λ (taken

to be that which encloses the nearest ∼ 32 gas neighbours).

• Protostellar feedback models: Although there are a number of ways
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newly-formed stars can regulate star formation, most studies have con-

cluded that at the scale of the IMF peak (early protostellar collapse

of ∼ 0.1 M� clouds) the most important self-regulation mechanism is

radiative feedback from protostellar accretion (Bate, 2009c; Guszejnov

et al., 2016; Krumholz, 2011). This sets a unique mass and spatial scale

within which the protostellar heating has raised the temperature to make

the core Jeans-stable, terminating fragmentation. The resulting critical

masses are

Mcrit,B ∼ 0.5
(

ρ

1.2 × 10−19 g/cm3

)−1/5 (
L∗

150 L�

)3/10
M�, (5.5)

Mcrit,K ∼ 0.15
(

P/kB

106 K/cm3

)−1/18
M� (5.6)

where L∗ is the average luminosity of accreting protostars and P is

the pressure. These different formulas come from Bate (2009c) and

Krumholz (2011), respectively; the differences are due to the detailed

uncertainties treating radiation. However for our purposes they give

nearly identical results, so we will focus on the model from Krumholz

(2011).

5.3 Results and Discussion

Fig. 5.8 shows that there is significant variation in the properties of the progen-

itor GMC complexes which formed stars that ultimately end up at a specific

galacto-centric radius. We stress that this is not the variation of properties

in present-day star-forming clouds, but includes all variations in time as well:

if the galaxy progenitor was gas-rich (gas fraction ∼ 1/2) at z ∼ 1 − 2 for

example, then the midplane gravitational pressure (∼ G Σ2
gas) would have been

a factor ∼ 100 larger than in the galaxy today. Fig. 5.9 shows that this, in

turn, produces large IMF variations in all models here except those accounting

for protostellar heating. Such variations (> 0.5 dex in Mturnover) are strongly

ruled-out by observations (Bastian et al., 2010). Note that these results are

robust to variations in simulation parameters (see Table 5.1).

The variations in the IMF predicted by some of the simple models here (e.g. the

Jeans-mass models) have often been substantially underestimated in previous

work in the literature. In analytic models of the IMF (see references in Sec.

5.1) or galaxy-scale models which fail to resolve individual “parent clouds”,

but post-process the entire galaxy (with > kpc-scale resolution) to determine
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Figure 5.8: Standard deviation in star-forming progenitor cloud properties
(measured at the time of star formation, as in Fig. 5.6), across the progenitor
clouds of all stellar sink particles which reside at a given present-day galacto-
centric radius (in our fiducial m12i run with 56000 M� resolution; however the
dependence on radius is weak and all our simulations in Table 5.1 give similar
results). Note that this is not the variation of present-day star forming clouds
at different radii, as stars at some present-day radius could have formed at
wildly different times and positions (for example, at high redshift in a more
gas-rich disk with much larger pressures and densities). Thermodynamic and
turbulent progenitor-cloud properties vary by ∼ 0.3 − 0.5 dex; this implies
large IMF variations for any model which has a strong dependence on these
quantities.
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Figure 5.9: Mean (top) and standard deviation (bottom) of the IMF turnover
mass Mcrit normalized its galactic average (Mcrit,avg) at different galacto-centric
radii (in our fiducial m12i run with 56000 M� resolution). We compare the
IMF models in Table 5.1 and the observationally allowed range of scatter in the
IMF across the Milky Way, from Bastian et al. (2010). In these simulations,
only models accounting for protostellar heating avoid strongly over-predicting
the scatter in MW IMFs. The models are shown here for the same exam-
ple galaxy in Fig. 5.8, but we obtain very similar results for each of the five
simulated galaxies in Table 5.1.
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an IMF (Blancato et al., 2016; Hopkins, 2013e; Narayanan & Davé, 2012), it

is commonly assumed that all star-forming clouds are uniformly at the same

isothermal temperature (e.g. T = 10 K at all densities), virial parameter, and

lie exactly on the same linewidth-size relation. For example, if the gas at

all densities and all cosmic times had exactly the same temperature, then

the variation in the IMF for the opacity-limited EOS models would vanish

(all clouds and cores lie on exactly one adiabat). This assumption is not

correct, however, as even in the present-day MW (e.g. fixed redshift and galaxy

properties) both GMC and clump temperatures (e.g. Bergin & Tafalla, 2007;

Mills & Morris, 2013; Nishimura et al., 2015; Ott et al., 2014; Sánchez-Monge

et al., 2014)4 and virial parameters (e.g. Kauffmann et al., 2013; Svoboda

et al., 2016) vary substantially. As expected variations are more pronounced

in other nearby dwarf or star-forming galaxies (Gorski et al., 2017; Tang et al.,

2017) or redshift z & 1 − 2 galaxies and starburst systems (see e.g. González-

Alfonso et al., 2012; Mangum et al., 2013; Miyamoto et al., 2015; Narayanan

& Krumholz, 2014; Ott et al., 2011; Zschaechner et al., 2016), which are better

analogues to the progenitors where many of the stars in the present-day Galaxy

formed.

It is certainly possible that we (and these observations) have over-estimated

the range of temperatures of GMCs in different environments. But the strong

temperature sensitivity of the EOS models (e.g. ∝ T2) means that the temper-

ature of all progenitor clouds, at all redshifts and in all progenitor galaxies,

which formed stars in today’s MW, would have to lie within a scatter of just

∼ 20% in temperature (smaller than that observed in just solar-neighborhood

clouds) in order to avoid exceeding the allowed IMF variation in the MW.

Moreover the linewidth-size relation is observed to vary systematically, both

within the MW and galaxy-to-galaxy, with high-redshift galaxies (the pro-

genitors of the MW) differing by more than an order of magnitude (see e.g.

Canameras et al., 2017; Swinbank et al., 2011, 2015, and references therein).

Even if temperature variations are neglected entirely, in the “Turbulent/Sonic

Mass” models the turnover mass is proportional to the square of the deviation

((σcloud/〈σ[R]〉)2) of each cloud from the linewidth-size relation (Hennebelle

& Chabrier, 2008; Hopkins, 2012b), but these deviations are observed to be

4Note that Nishimura et al. (2015) only focuses on Orion A and B so these results are not
necessarily representative of the entire MW. Also, as our stars form primarily around ncrit =
1000 cm−3, the average temperature of the progenitor clouds is higher than the observed
GMCs because they have not reached the cooler, higher-density fully-molecular phases (see
Figs. 5.5-5.6).
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∼ 0.3 − 0.5 dex even within the MW at present-time (Bolatto et al., 2008)

implying > 0.6 dex scatter. Likewise the density dependence in “Jeans Mass”

models predicts > 0.3 dex scatter even if all temperature variations, time vari-

ations, and progenitor-galaxy variations are neglected (e.g. if we use only the

scatter in cloud densities observed in the solar neighborhood of the MW at

the present instant).

Recall, the cloud properties we use to predict the IMF are measured at a

density scale of ∼ 1000 cm−3 and mass scale ∼ 7000 − 56000 M�. Obviously

the clouds must continue to evolve and fragment to form actual stars – this

is what our cloud-scale IMF models attempt to model. One might wonder,

however, whether during this process some of the scatter might be reduced

(if, for example, the clouds all converged to the same temperature eventually,

owing to some additional physics). In the opacity-limited models, the equation

of state (EOS) is specified (generally the cloud cools with T ∝ ρ−0.3 to some

density, becomes approximately isothermal, then becomes adiabatic above the

opacity-limit density), so this is already built into the model explicitly. In the

“Jeans Mass” or “Turbulent/Sonic Mass” models, we have implicitly assumed

an isothermal EOS within each cloud so their temperature was assumed to

be constant throughout their evolution and set by the initial conditions. One

might, therefore, consider a more complicated version of these models (dif-

ferent from the simple scalings used thus far). Let us assume star formation

occurs above some critical density ρcrit and the gas follows a polytropic EOS

with index γ. The critical mass (Table 5.1) will then depend on Tcrit(ρ =
ρcrit) = Tcloud (ρcrit/ρcloud)γ−1, as Mcrit ∝ Tα

crit where α = 3/2, 1 for the Jeans

and Turbulent/Sonic models, respectively. Some simple algebra then gives us

logarithmic variance in Mcrit, Slog Mcrit = α (Slog Tcloud + [γ − 1] Slog ρcloud ). Putting

in the actual values (Fig. 5.8) this gives a dispersion σlog Mcrit ≈ 0.6, 0.4 dex for

the Jeans and Turbulent/Sonic models (for any γ ∼ 0.5 − 1.5). This reduces

the predicted IMF variation, but still leaves it far larger than observed.

Thus we have shown that some additional physics on cloud or sub-cloud scales

must be accounted for to reconcile the predictions of the “no-feedback” IMF

models with the (weak) IMF variations observed in the MW. The “protostellar

heating” models represent one physically-motivated class of models that do

exactly this. Of course there may be others, but, broadly-speaking, they would

need to either (a) strongly reduce the level of dependence of the predicted IMF

on cloud properties (as the protostellar heating models do), or (b) strongly

reduce the variation in GMC-scale properties predicted across cosmic time
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in the progenitor galaxies that form the MW. The latter is not impossible

but seems to contradict the direct observations cited above, showing large

variations in cloud properties in distant galaxies.

5.3.1 Caveats

Of course detailed, complex simulations (like the cosmological FIRE runs we

are using) employ a large number of approximations to make problems nu-

merically tractable. Although these simulations have been extensively vetted

numerically (for details see Hopkins et al., 2017a) some caveats worth noting

include:

• Our analysis uses a somewhat arbitrary ncrit = 1000 cm−3 minimum den-

sity threshold for star formation, based on numerical considerations. Us-

ing a much higher threshold would require much greater mass resolu-

tion (or else it would introduce severe numerical artifacts), which is not

computationally feasible (these are the highest-resolution cosmological

simulations of MW-mass galaxies ever run, at present). However, within

the range we can probe, our results do not appear to depend sensitively

on the density threshold or other numerical criteria for star formation.5

• In the simulations, gas elements are replaced by star particles instanta-

neously once all star formation criteria and timescales are satisfied, so

star formation happens in discrete steps. In the large GMCs where most

stars form (∼ 106 − 107 M�), this means that the first generation of stars

formed can continue to alter the GMC properties while subsequent star

formation occurs. However star formation in the smallest GMCs will

be artificially “abrupt” (although GMCs with masses this low contribute

negligibly to the variation in the IMF).

• Feedback processes from low-mass stars, e.g. proto-stellar outflows, are

not explicitly included in the simulations. We only consider the effects

of massive stars, which dominate on GMC scales provided there are

sufficient stars to sample the IMF.

5In Orr et al. (2017), we show the results of a number of simulations where we re-run
our m12i galaxy from z ≈ 0.1 − 0.0, as in Fig. 5.4, but vary the numerical SF criteria. This
includes changing the minimum SF density (from ∼ 10− 1000 cm−3), removing requirements
that the gas be molecular and/or self-gravitating, and changing the efficiency per free-fall
time with which gas that meets this criteria will turn into stars (from ∼ 1−100%). We have
re-run our analysis, restricted to just those stars formed over the period the simulations were
re-run, and find these changes do not significantly influence the predicted IMF variations.
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• The turbulent velocity dispersion in the code is calculated from using a

kernel interpolation over the the relative velocities between the nearest

∼ 32 resolution elements, after subtracting the coherent shear and con-

traction/expansion terms. This means that for very small GMCs with

masses . 10 times the resolution, internal motions are not well-resolved.

In this limit the general tendency is to under-estimate the turbulent

velocity dispersions (see e.g. the detailed turbulence studies in Hopkins

2015). But again, these do not contribute significantly in our predictions.

• The simulations do not explicitly follow non-equilibrium chemistry (e.g.

molecular hydrogen formation/destruction), instead relying on pre-tabulated

equilibrium cooling rates as a function of density, temperature, metallic-

ity, and the strength of the local radiation field in several bands. It was

shown by Hopkins et al. (2012) that these approximations have little to

no effect on galactic star formation properties, but they could conceiv-

ably alter the scatter in small-scale cloud properties.

5.4 Conclusions

In this paper we explore the application of broad classes of IMF models to high-

resolution fully-cosmological galaxy formation simulations. Stars at a some

present-day location might have formed at very different times and places, in

an environment radically different from today’s MW: only by using a cosmo-

logical simulation instead of local simulations or observations can we predict

the properties of their progenitor star-forming clouds at these times and places,

and therefore use these models to predict, for example, the variations in the

IMFs of old stellar populations in the present-day galaxy. This also provides

an important consistency and validity check for future attempts to incorporate

these IMF models into such simulations dynamically, as stellar feedback plays

a critical role in the simulations and it, obviously, depends on the IMF.

In summary, we find that only models accounting for protostellar heating pro-

duce sufficiently weak IMF variations, in these simulations, to be compatible

with observations. This discrepancy is not obvious in many previous studies

(either analytic or idealized single-cloud simulations) as they artificially assume

all clouds (at all locations and cosmic times) have the same temperature and

obey the same linewidth-size relation (without scatter or systematic variation),

whereas observations find significant variations in molecular gas temperatures

and velocity dispersions (both within the MW and in nearby and high-redshift

star-forming galaxies, which may more closely resemble the MW progenitors
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where these stars formed).

The protostellar heating models, on the other hand, actually predict IMF vari-

ations significantly below the observational upper limits (see Fig. 5.9). Addi-

tional sources of variance are therefore easily accommodated in these models,

such as those that should come from a combination of (a) stochastic statistical

sampling effects (see Bastian et al. 2010; these may be especially important

in small clouds such as Taurus which are not resolved by our simulations, see

Kraus et al. 2017), (b) measurement uncertainties, or (c) additional physics

not accounted for by the model (e.g. bursty accretion or other physics may

modify the radiative efficiency and heating effects of protostars, introducing

some IMF variation).

In future work, we will examine whether the protostellar heating models con-

sidered in this study should produce observably-large IMF variation under

more extreme conditions. Preliminary comparison of single-cloud conditions

in Guszejnov et al. (2016) suggests these models can produce as much as factor

∼ 2 shifts in the turnover mass under extreme starburst conditions analogous

to Arp220, but this needs to be explored in more detail. We will also explore in

more detail IMF shape variations, the predicted IMF in different sub-regions

of the galaxy (e.g. the galactic nucleus), and the IMF in specific populations

(e.g. metal-poor globular clusters versus present-day stellar populations).
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C h a p t e r 6

PROTOSTELLAR FEEDBACK IN TURBULENT
FRAGMENTATION: CONSEQUENCES FOR STELLAR

CLUSTERING AND MULTIPLICITY

Guszejnov D., Hopkins P. F., Krumholz M. R., 2017, MNRAS, 468, 4093

Abstract

Stars are strongly clustered on both large (∼ pc) and small (∼binary) scales,

but there are few analytic or even semi-analytic theories for the correlation

function and multiplicity of stars. In this paper we present such a theory, based

on our recently-developed semi-analytic framework called MISFIT, which mod-

els gravito-turbulent fragmentation, including the suppression of fragmenta-

tion by protostellar radiation feedback. We compare the results including

feedback to a control model in which it is omitted. We show that both classes

of models robustly reproduce the stellar correlation function at > 0.01 pc scales,

which is well approximated by a power-law that follows generally from scale-

free physics (turbulence plus gravity) on large scales. On smaller scales pro-

tostellar disk fragmentation becomes dominant over common core fragmenta-

tion, leading to a steepening of the correlation function. Multiplicity is more

sensitive to feedback: we found that a model with the protostellar heating

reproduces the observed multiplicity fractions and mass ratio distributions for

both Solar and sub-Solar mass stars (in particular the brown dwarf desert),

while a model without feedback fails to do so. The model with feedback also

produces an at-formation period distribution consistent with the one inferred

from observations. However, it is unable to produce short-range binaries below

the length scale of protostellar disks. We suggest that such close binaries are

produced primarily by disk fragmentation and further decrease their separa-

tion through orbital decay.

6.1 Introduction

Star formation (SF) is complex problem that involves nonlinear physics (tur-

bulence, chemistry, gravity, radiation, etc.) on a vast dynamic range. To

achieve a deeper understanding of this process a number of simplified theo-

retical models have been proposed that try to pinpoint the physical processes

responsible for individual qualitative features. The most common test of these

models is a comparison to the initial mass function (IMF), but that is just one

http://adsabs.harvard.edu/abs/2017MNRAS.468.4093G
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aspect of star formation. It has been long proposed that the stellar clustering

and multiplicity properties carry the imprints of the physical processes of star

formation (Kuiper 1935), making them an ideal secondary test for different

star formation models.

It is well known that star-forming regions are highly structured, with stellar

positions correlated on a wide range of scales Bressert et al. (2010); Goulier-

mis et al. (2015); Lada & Lada (2003); Portegies Zwart et al. (2010). The

stellar correlation function has been measured in a wide range (about 5 orders

of magnitude in radius) and is found to be rising monotonically on smaller

scales in all star clusters (Hartmann 2002; Hennekemper et al. 2008; Kraus &

Hillenbrand 2008; Nakajima et al. 1998; Simon 1997). Despite the overwhelm-

ing observational data and statistical analysis (Bate et al., 1998; Cartwright

& Whitworth, 2004) there has been little effort to formulate a theoretical un-

derstanding of why star formation is clustered. A number of authors have

measured the clustering of the stars produced in numerical simulations (e.g.,

Hansen et al. 2012b; Klessen & Burkert 2000; see the review by Krumholz

2014 for further references) and found reasonable agreement with observa-

tions, but the physical origin of the result was not completely clear. Hopkins

(2013a) (henceforth referred to as H13) was the first to provide a quantitative

explanation in terms of the statistics of turbulence. Using the excursion set

formalism H13 showed that the correlation function of “last crossing objects”1

is remarkably similar to that of observed cores, which itself is similar to the

correlation function of stars (Stanke et al. 2006). However, this model has a

significant limitation in that it is calculated at a fixed time, so the collapse and

further fragmentation of cores is not taken into account; it cannot therefore

predict the correlation function of stars, nor their multiplicity statistics.

There is similarly an abundance of observational data about the multiplic-

ity properties of stars (e.g. Raghavan et al. 2010 for Solar-type stars, Bur-

gasser et al. 2007 for brown dwarfs; see Duchêne & Kraus 2013 for a more

detailed review). It is generally understood that most multiple star systems

either form during the star formation phase through common core fragmenta-

tion and protostellar disk fragmentation (Tohline 2002) or during the cluster

dissolution phase (Kouwenhoven et al., 2010; Parker & Meyer, 2014). Most

theoretical work is focused on modeling these processes in detailed numerical

studies. Hydrodynamical simulations (e.g. Bate 2009b, 2012a; Krumholz et al.

1Smallest self-gravitating structures in a fully developed turbulent medium at a fixed
time. They are considered to be the analogues of protostellar cores.
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2012; Offner et al. 2010) have shown good agreement with observed multiplic-

ity statistics and found that radiation feedback is essential. However, these

simulations necessarily have limited dynamical range and statistics, of key im-

portance for high-mass stars and long range binaries, and pinpointing the key

physics in them is quite challenging.

There has also been significant effort to infer at-formation multiplicity prop-

erties from observations. Both observations (Duchêne 1999; Kraus et al. 2008,

2011) and simulations have shown that stars are born in complex, multiple

systems that are broken up by dynamical effects (e.g., ejection of stars), caus-

ing multiplicity to drop (Goodwin et al. 2007; Kaczmarek et al. 2011) and the

period distribution (commonly referred to as the binary distribution function)

to shift to shorter periods (Kroupa 1995; Marks et al. 2011). This can be un-

derstood as the result of long range binaries being preferentially broken up by

ejection events, which also increase the binding between leftover stars (“hard-

ening”). This means that to reproduce the present day multiplicity and binary

distribution functions the at-formation multiplicity should be of order unity

for massive stars, and their period distribution should be flat. These find-

ings, however, have recently been called into question. Parker (2014) showed

that the densities of star forming regions are constant or increasing with time,

while Parker & Meyer (2014) found that an initial distribution of stars with

unit multiplicity and an excess of wide binaries will not evolve through N-body

processes into a distribution consistent with that observed in field stars.

The aim of this paper is to expand upon the work of H13 by investigating

the features imprinted by isothermal fragmentation and protostellar heating

through common core fragmentation in the stellar correlation and multiplici-

ties. This is accomplished by utilizing the MISFIT (Minimalistic Star Forma-

tion Including Turbulence) semi-analytical framework described by Guszejnov

et al. (2016) (hereafter referred to as GKH16), which combines the fragmenta-

tion formalism of Guszejnov & Hopkins (2015a) and the protostellar heating

model of Krumholz (2011) (henceforth referred to as GH15 and K11) to follow

the evolution and collapse of a statistical ensemble of giant molecular clouds

(GMCs) down to the protostellar size scale.

The remainder of this paper is organized as follows. First, in Sec. 6.2 we briefly

outline the MISFIT framework that we use. In Sec. 6.3.1 we show that the

stellar correlation function is insensitive to both initial conditions and under-

lying physics and that the predicted 2D correlation function agrees well with
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observations. In Sec. 6.3.2 we show that for low mass stars, turbulent frag-

mentation mediated by radiation feedback can roughly reproduce the observed

multiplicities and mass ratio distribution, and provides qualitative agreement

with the expected binary distribution function. However, we also show that

protostellar disk fragmentation is necessary to explain the short period tail of

the distribution. Finally, in Sec. 6.4 we summarize our findings and conclude.

6.2 Model and Methodology

6.2.1 Semi-Analytic Framework

In this study we use an improved version of the MISFIT semi-analytical frame-

work introduced in GH15 and GKH16 (see Sec. 6.A for a detailed description of

all changes from the previously published version) which allows us to simulate

the evolution and fragmentation of GMC sized clouds at a modest computa-

tional cost (compared to full radiation-hydro simulations). This not only allows

the rapid exploration of different initial conditions and underlying physics but

also enables a statistical analysis as we are able to simulate an ensemble of

clouds.

This, of course, comes at the cost of some simple approximations. The main

assumption of MISFIT is that density fluctuations in collapsing GMCs are

created by turbulence and thus obey“random walk”statistics (see e.g. Hopkins

2013d). As the cloud collapses it pumps energy into turbulence (so that virial

equilibrium is maintained) as motivated by Robertson & Goldreich (2012b)

and Murray et al. (2015). Unlike most analytical models MISFIT preserves

spatial and temporal information and can be easily expanded with additional

physics (e.g. equation of state, angular momentum etc.). We show in Sec. 6.B

that, despite these strong assumptions, our results are roughly in agreement

with the detailed radiation hydrodynamical simulation of Bate (2012a).

The simulation starts from a GMC with fully developed turbulence and follows

its collapse. The density field of the cloud is resolved on a grid with N3 points

and is evolved in Fourier space following a Fokker-Planck equation (see Hopkins

2013c and GH15). For the bulk of this paper we use N = 32, and in Sec. 6.C

we show that this is sufficient to achieve convergence. Every time a new self-

gravitating substructure appears (i.e., the cloud fragments) the code is run

recursively for each substructure. When the cloud size reaches the pre-defined

relative size scale Rmin/R0 (the relative termination scale) the simulation stops.

This termination scale represents the length scale where the initial assumptions

break down and the self-similar fragmentation cascade is terminated.
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The primary effect that breaks self-similarity and imposes a scale in our cal-

culations is angular momentum, which leads to the formation of a disk once

the object has contracted a certain amount. Disk formation is the natural

termination scale. In our model the source of angular momentum is random

turbulent motion, which in the supersonic limit means that the distribution of

the rotational kinetic energy fraction β = Erot/Epot is strongly peaked around

a few percent (Burkert & Bodenheimer, 2000), consistent with the observed

distribution of protostellar core rotation rates (Goodman et al., 1993). If one

translates this into an angular momentum and assumes that the specific angu-

lar momentum of fluid elements is conserved during collapse, the characteristic

radius of disk formation is Rmin ≈ βR0. In this paper we adopt Rmin/R0 = 0.01
as our fiducial value for most calculations, and we explore the sensitivity of

the results to our choice in Sec. 6.C.

The initial conditions of the parent clouds are defined by their mass MGMC,

the sonic length Rsonic (the scale at which the turbulent velocity dispersion is

equal to the sound speed), the sonic mass Msonic (the minimum self-gravitating

mass at the sonic scale), and the termination scale Rmin. All other parameters

(e.g. temperature, Mach number) can be derived from these. Moreover, the

total mass only affects our results by changing the outer scale of the turbulent

cascade, a result we demonstrate in Sec. 6.C, so we shall not discuss it further

here. For details about initial conditions and the detailed algorithm see GH15

in which a detailed step-by-step guide to the model is provided in Appendix

A.

The final output of the simulation is a list of protostars and their initial proper-

ties (e.g. mass, velocity, position). As we are not accounting for later dynam-

ical processes, our results only apply at the time of formation. The leftover

unbound material is assumed to escape.

6.2.2 Implementation of Stellar Feedback

In this paper we investigate the clustering properties of two classes of mod-

els: the case of pure isothermal fragmentation and a model with feedback

from protostellar heating based on K11. Isothermal turbulence is scale-free

(Krumholz 2014; McKee et al. 2010), so we expect no absolute scales in any

results (although scales from initial conditions may appear), while the heated

model imprints a mass scale that is insensitive to initial conditions (hence there

is a peak in the IMF, as shown in GKH16). For comparison we also include

some runs where in addition to protostellar heating the gas has a “stiffening”
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equation of state (EOS). This means that the gas reacts to compression as

a sub-isothermal medium at very large scales, isothermally at intermediate

scales and transitions to an adiabatic behavior after reaching a threshold vol-

ume density where it becomes opaque to its own cooling radiation. We model

this effect using a physically motivated EOS based on Masunaga & Inutsuka

(2000) and Glover & Mac Low (2007). In this case the effective polytropic

index depends on the local volume density as

γphys(ρ) =


0.8 ρ < ρcrit,1

1.0 ρcrit,1 < ρ < ρcrit,2

1.4 ρ > ρcrit,2

, (6.1)

where we set ρcrit,1 = 5000 M�/pc−3 and ρcrit,2 = 5×108 M�/pc−3 corresponding

to nH2,crit,1 ≈ 105 cm−3 and nH2,crit,2 ≈ 1010 cm−3. See GKH16 for more details.

Our treatment of protostellar radiative feedback is a fairly crude approach

motivated by K11, and supported numerically by Krumholz et al. (2016).

We assume that the center of self-gravitating clouds collapses first, forming a

protostellar seed, then the rest of the cloud accretes onto it. The energy of the

matter accreted by this seed is radiated within the optically thick core. The

temperature of the material depends on the accretion rate onto the protostar

(and thus the mass and dynamical time of the gas around it), and on the

energy yield per unit mass from accretion, which we denote Ψ. The value

of Ψ is set by the protostellar mass-radius relation, and K11 shows that it is

determined primarily by the effects of deuterium burning, which regulates the

central temperatures of protostars. Because deuterium burning begins when

protostars are only a few ×10−2 M�, and, for low mass protostars continues for

∼ 10 Myr, it is the dominant factor in setting Ψ during the bulk of a molecular

cloud’s star-forming history. Comparing with detailed protostellar evolution

calculations, K11 finds that Ψ ≈ 2.5 × 1014 erg g−1 to better than half a dex

accuracy for all protostellar masses in the range 0.05 − 1 M�, and to better

than a dex accuracy from 0.01 − 0.05 M�. We therefore adopt this value of Ψ

throughout the remainder of this paper. If we assume a spherically symmetric

system then, following K11, the gas at R distance from an accreting protostar

is heated up to a temperature of

T4
heat ≈

Ψ
√

G
4πσSB

M3/2R−7/2, (6.2)
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where M is the mass enclosed in radius R, while G, σSB are the gravitational

and Stefan-Boltzmann constant respectively. Crudely, this scaling reflects en-

ergy conservation as L = 4πR2σSBT4
heat for the opaque cloud (see K11 for more

details). Combined, internal heating and the physical processes captured by

the EOS of the model set the temperature as

T4 = T4
EOS + T4

heat . (6.3)

Note that in the feedback only case we use an isothermal EOS, which means

that TEOS = T0 where T0 is the initial temperature of the cloud.

It is important to note that protostellar feedback is not scale-free. By using

Eq. 6.2 and assuming virial equilibrium we can find the length scale λheat

around a protostar below which heating becomes important (Theat ≥ T0):

λheat =

(
Ψ
√

G
4πσSB

)1/2 (
kB

GµmH

)3/4
T−5/4

0 ≈ 0.02 pc
(

T0
10 K

)5/4
, (6.4)

where µ is the mean molecular weight measured in units of mH and kB is

the Boltzmann constant. For our numerical calculations we adopt µ = 2.3,

appropriate for fully molecular H2 with 1 He per 10 H nuclei. We can similarly

find the characteristic mass scale

Mheat ≈ 0.5 M�
(

T0
10 K

)−1/4
(6.5)

that sets the peak of the IMF (see K11 for a more detailed calculation that

leads to Mheat ∝ T−1/18
0 ).

To easily identify the results for different models and parameters we use the

labels shown in Table 6.1. The STD label refers to initial conditions simi-

lar to Milky Way GMCs, while ULIRG runs have the very high temperature

and strong turbulence characteristic to the clouds of Ultra Luminous Infrared

Galaxies (ULIRGs). There are also a number of runs where the physical pa-

rameters are not varied but the numerical ones are, so that we can identify

numerical artifacts in our results.

6.2.3 Clustering and Multiplicity Statistics

For each simulation we have as output a list of stellar masses and positions.

From these, we compute several statistical quantities describing the stellar
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distribution. Our first quantity of interest is the correlation function. In this

paper we adopt the usual definition of the 3D correlation function ξ(r),

P(r, dr) = 〈N(r, dr)〉
〈n〉 dV

1 + ξ(r) = lim
dr→0

P(r, dr), (6.6)

where N(r, dr) is the number of objects whose distance is ∈ [r, r + dr], n is the

density of objects, dV = 4πr2dr and 〈...〉 denotes ensemble averaging.

We can similarly define the 2D correlation function ξ2D(r), which is identi-

cal to ξ except that one computes the distance only in 2 of the 3 orthogonal

directions. Unlike ξ, the stellar ξ2D(r) is measurable and it is easy to show

that ξ2D(r) ∝ Σ∗(r), where Σ∗(r) is the mean surface density of stars measured

in an annulus at r distance from other stars. For the purpose of generating

quantities that can be readily compared to observations, we must also account

for sensitivity limits, which make it difficult to detect low mass objects. Since

studies of stellar correlation have been performed with a wide range of sensitiv-

ities, we simply choose a roughly representative limiting mass Mmin = 0.5 M�,

and compute our correlation function using only stars more massive than this

limit.

Our second characteristic of interest is the multiplicity properties of the stars –

both the multiplicity fractions and the distribution of periods and mass ratios.

Since our calculations involve no dynamical evolution after the protostars are

formed, deriving these statistics is not trivial, as the newly formed stars form

a fractal-like structure where each star is bound to a number of other stars.

Such a configuration is expected for young star clusters based on simulations,

and is completely consistent with the observed distribution of newly-formed

stars (e.g., Bate, 2009a; Kruijssen, 2009; Krumholz et al., 2012). However, it

makes identification of distinct, bound systems difficult, and leads to structures

which are very unlikely to survive for even a single cluster crossing time (e.g.

non-hierarchical quadruple systems orbiting each other). Thus it is important

that we try to correct for this behavior. In this paper we use the hierarchical

algorithm introduced by Bate (2009a), which has the following steps:

1. Calculate the binding energy between all pairs of stars.

2. Find the most bound pair and replace it with a single point mass with

the same total mass and momentum, located at the center of mass of the
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removed pair.

3. Recursively repeat steps 1 and 2 until no more bound stars are left, with

the exception that we do not combine pairs of objects if the resulting

bound aggregate would consist of more than 4 individual stars. If such

an aggregate is the most bound pair at any point, proceed to the next

most bound pair, terminating if no other bound pair exists. Also, in

order to get stable, hierarchical multiples we require that the period of a

newly assigned star is at least ten times higher than that of the original

aggregate.

This algorithm provides a list of single, binary, triple and quadruple star sys-

tems with which we can calculate the multiplicity fraction f , defined as

f (M) = B + T +Q
S + B + T +Q

, (6.7)

where S, B,T,Q are the number of single, binary, triple, quadruple systems

within which the most massive star (primary star) has mass M. This defi-

nition has the advantage that it can be observed fairly robustly (Bate 2009a;

Hubber & Whitworth 2005), as this does not differentiate between the classes

of multiple star systems, so f does not change if a new companion star is dis-

covered in a binary system. Note that to account for the decreased sensitivity

of observations to very low mass stars we neglect companions below 0.01 M�.

6.3 Results

6.3.1 The Stellar Correlation Function

Figure 6.1 shows the predicted stellar correlation function for a selection of

our models, computed using an ensemble average of the ∼ 20 − 200 GMCs we

have run for each case. The shape is close to a power-law, ξ(r) ∝ r−γ with

γ ' 2, with a cut-off at the size scale of the parent GMC. These properties are

remarkably robust to changes in initial conditions and even to changes in the

underlying small scale physics.

Qualitatively, the isothermal pure-power-law behavior can be understood with

a simple toy model: small objects form after significant contraction and a

number of fragmentation events for which the physics is self-similar in the

isothermal case. So imagine that a cloud contracts by a factor of ε , and then

fragments into two equal-mass fragments. Then each of these two fragments

contracts and produces two more fragments, and so on. This prescription is
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Figure 6.1: Stellar correlation function for star formation models with isother-
mal physics (Isothermal), protostellar heating (Heating) and protostellar heat-
ing with an artificial EOS (Heating+EOS ) for two sets of initial conditions:
the MW-like MW and the more extreme ULIRG. It is apparent that the ini-
tial conditions and underlying physics have limited effect on the qualitative
behavior which is close to a power law (the sub-isothermal regime of the EOS
models cause a slight difference in the slope). The different large scale cut-offs
are introduced by the different initial cloud sizes, and the different normaliza-
tion simply results from the different linewidth-size relation between the Milky
Way and ULIRG cases.
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similar to a well-studied fractal, the Cantor Set (Cantor Dust more specifi-

cally). For this, the correlation function is a power-law with slope f (ε) ∼ 2 for

ε ∼ 1/2 (see Sec. 6.D).

Figure 6.2 compares our predictions to the observed surface density of stars

(proportional to the 2D correlation function). In examining this plot, note

that the absolute values of the stellar surface densities are not meaningful,

since these are just dictated by a our choice of sonic length, and thus can be

tuned freely by considering slightly different physical scalings, exactly as one

might expect when considering a range of star-forming regions of widely vary-

ing density, mass, and velocity dispersion. Instead, the meaningful comparison

is the shapes of the functions. In this regard, we see that the simulated corre-

lation functions have a slope quite similar to the observations at scales larger

than ∼ 10−2 pc. Below this scale our models cannot reproduce the significant

steepening of the correlation function. We show below that this directly mani-

fests in the distribution of short period binaries where the simulation fall short

of observations at the same scale. This is the length scale of the largest pro-

tostellar disks, which suggests that disk physics (which are neglected in these

models) is responsible for the steepening. However, we must stress that dy-

namical relaxation does affect the observed, finite age systems and is probably

responsible for outlier systems like Trapezium and Upper Sco. Both of these

systems are dynamically older, in the sense that they have existed for more

crossing times, than the other systems shown, which supports this conjecture.

One should be careful not to draw the false conclusion that this model fully

explains the observed stellar spatial distribution simply because it reproduces

the correlation function. It has been shown that very different geometries (e.g.,

fractal vs spherical) can lead to similar correlation function slopes (Gouliermis

et al., 2014). Nevertheless we can say that this model is at least consistent

with the observed stellar correlation function in the large scale, fractal-like

regime.

6.3.2 Multiplicity

After grouping stars into bound systems following the procedure described in

Section 6.2.3, we assign each star one of the following labels:

1. Single: The star is not bound to any other stars.

2. Multiple: The star is the most massive (primary) star of a multiple star

system.
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Figure 6.2: Observed surface density of neighboring stars (Σ∗, which is propor-
tional to the projected correlation function ξ2D) for Chamaeleon, Ophiucus, ρ
Oph, Taurus, Trapezium, Upper Sco, Lupus and Vela (using data from Hart-
mann 2002; Hennekemper et al. 2008; Kraus & Hillenbrand 2008; Nakajima
et al. 1998; Simon 1997) compared to predicted Σ∗ functions for our models
including protostellar heating (solid lines, Heating M1E3, Heating-MW, Heat-
ing M1E5 ). The absolute values of the observation depend on a number of
external factors so they are normalized to roughly match simulations in the
0.1-1 pc range.
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3. Non-primary : The star is part of a multiple star system, but it is not

the primary star.

Not all of the companion stars that emerge from our analysis would be de-

tectable by current techniques. In particular, brown dwarf companions to

main sequence stars are quite hard to detect. Therefore we must correct for

completeness before comparing to observations. As a guide to the current ob-

servational capabilities, we follow the summary given in Table 8 of De Rosa

et al. (2014). Based on this summary, we apply the following cuts to our data:

1. For primaries with mass M > 0.08 M�, we discard any companions with

masses below 0.08 M�

2. For primaries with mass M < 0.08 M�, we discard companions for which

the secondary to primary mass ratio is < 0.2.

While these cuts are only an approximate representation to the diversity of

observational survey selection functions in the literature, they provide a rea-

sonable approximation to the capabilities of the current state of the art.

Fig. 6.3 shows the fraction of stars in each of the three classes as a function

of stellar mass before and after applying the observational bias. Since the

isothermal model has no inherent physical scale, in an ideal case we would not

expect any mass dependence. However, the finite initial mass MGMC and the

cut-off imposed by observational selection affect the results. The former leads

to finite size effects at larger masses. Specifically, since there is a finite total

mass, there must be a single most massive star, and for obvious reasons it

cannot be non-primary. Similarly, other stars that are near the most massive

are also biased against being non-primary. This effect is responsible for the

decline in the non-primary curve at high masses. At the other end of the

mass spectrum, the fact that brown dwarf companions to hydrogen-burning

primaries are difficult to detect explains the sharp decline in the non-primary

fraction and sharp rise in the multiple fraction for the lowest mass bin. The

sharp change in behaviour above and below 0.1 M� has a simple explanation:

for hydrogen-burning stars, multiplicity surveys are primarily conducted in

the field, while for brown dwarfs they are mainly conducted in young clusters.

Since brown dwarfs are easier to detect in young clusters than in the field,

surveys of brown dwarf primaries are much more complete in finding brown

dwarf companions than surveys of hydrogen-burning primaries.
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Figure 6.3: Fraction of stars in bound systems as a function of mass in our
models of isothermal fragmentation (left; Isothermal - MW ) and including pro-
tostellar heating (right; Heating - MW ). We assign each star one of the single,
multiple and nonprimary labels. The dashed lines show the true distribution
predicted by the model, while the solid lines show the results that would be
observed given the completeness limits of current surveys. The brackets show
the results of Moe & Di Stefano (2016) based on their analysis of the Ragha-
van et al. (2010) observations. The sudden change around 0.1 M� is due to
the different observational bias for very low mass stars; see the main text for
details.

The case including stellar radiation feedback looks qualitatively similar to the

isothermal one. In both cases we recover the simple rule that more massive

stars tend to be the primary stars of systems while smaller stars tend to be

their companions. However, most of the stars in the isothermal model were

born in systems of multiple stars, while there is a significant number of single

stars in the radiative heating case. The transition from where it becomes more

common for stars to be the primaries of multiple systems than to be single is

∼ 1 M�, which is a result of the peak in the stellar mass function imposed

by heating, which suppresses the formation of stars below the IMF peak at

∼ 0.3 M�. Smaller stars are unlikely to be primaries mainly because there are

increasingly few lower mass stars available to be their companions.

We can also compare the results of our models to observations. In Fig. 6.3

we plot in the right panel the results of Moe & Di Stefano (2016), based

on analysis of the observations of Raghavan et al. (2010). Compared to these

observations, our model slightly overpredicts the multiplicity of solar type stars

and underpredicts the fraction that are single.
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We compare the stellar multiplicity as a function of primary mass with obser-

vations in Figure 6.4. We find that the observed results for the heated and

isothermal cases are similar, and both qualitatively reproduce the observational

result that the multiplicity fraction is near unity for primaries substantially

above 1 M�, dropping to tens of percent for ∼ 0.3 M� or smaller primaries.

However, the apparent similarity between the observed distributions for the

isothermal and heated cases is primarily an illusion due to observational com-

pleteness effects. In the isothermal case, essentially every ∼ 1 M� primary has

an undetected brown dwarf companion, and thus the true multiplicity fraction

for primaries of this mass is close to unity. It is only our inability to detect

these brown dwarfs that makes the predicted distribution in the isothermal

case at all compatible with the observations.

It is also worth investigating how these results would be affected by protostellar

disk fragmentation. To do so, we construct a toy model for protostellar disk

fragmentation that can be used to post-process our simulation results, based

on the works of Kratter et al. (2010) and Offner et al. (2010). They define the

thermal parameter of the disk as ξ = ÛMinG/c3
s,d, where ÛMin is the infall accretion

rate onto the disk and cs,d is the sound speed of the disk. Both find that ξ is

the main parameter in determining whether a protostellar disk fragments or

not. Physically, ξ is just the ratio of the accretion rate ÛMin into the disk to

the maximum rate at which a gravitationally stable disk with dimensionless

viscosity α . 1 can deliver mass to the central star, which is ∼ c3
s,d/G.

Using our protostellar heating prescription we can express c2
s,d ∝ Td ≈ Theat (Rd/Rcore)−1/2

where we have used that T4 ∝ R−2 in an opaque medium. As noted above,

the outer edge of the disk should be found at a radius Rd ≈ βRcore, where β is

the rotational kinetic energy divided by the binding energy. Using Eq. 6.2 to

evaluate Td at this radius Rd yields

ξ ∼
(
G7/8µmH(4πσSB)1/4

Ψ1/4kb

)3/2
β3/4R−3/16

core M15/16, (6.8)

where we used c2
s = kBT/µmH with µmH as the molecular weight of the gas.

ξ has a weak dependence on the radius so we can safely use the R ∼ 10−4 pc
protostellar disk size scale. This leads to ξ ≈ 0.65 (M/M�)15/16. Based on

Fig. 2 of Kratter et al. (2010) fragmentation is very likely if ξ > 1, which

corresponds to collapsing final fragment masses > 1.5 M� in our model. Thus,

in this crude approximation, the only effect protostellar disk fragmentation
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Figure 6.4: The multiplicity of stars of different masses in the isothermal
case (Isothermal - MW ) and the model with protostellar heating (Heating
- MW ) compared to the observed multiplicity fractions (black circles with
error bars) from the review of Duchêne & Kraus (2013). The dashed lines
show the results without the observational bias. Both models overpredict the
multiplicity fraction as dynamical processes are neglected in our simulations,
but the effect is far more severe for the isothermal model, particularly at low
masses. Note that the sudden change around 0.1 M� is due to the different
observational bias for very low mass stars.

would have on our multiplicity fraction in Fig. 6.4 is that it would reach unity

at a somewhat lower stellar mass. Our conclusion that low mass disks are

for the most part too warm to fragment, but that disk fragmentation should

be common for somewhat super-Solar and larger stars, is consistent with the

numerical results of Offner et al. (2010).

6.3.3 Demographics of the Binary Population

6.3.3.1 Mass Ratios and the Brown Dwarf Desert

One of the key observed properties of binaries is the apparent flat mass distri-

bution of companion masses with a cut-off at very low masses (the so-called
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Figure 6.5: The relative frequency of most massive companions of Solar type
stars (left) and VLM stars (right). Red and blue points and dashed lines show
the results of our simulations with and without applying the observational bias,
as indicated in the legend, while hatched histograms show the observations of
Raghavan et al. (2010) for Solar type stars and Burgasser et al. (2007) for VLM
stars. While both the isothermal and radiative models are consistent with
observations after applying completeness limits, the isothermal simulations
predict the existence of a very large number of currently-unseen low-mass
companions that would be detectable in deeper observations. Also, none of
our results reproduce the peak at unit relative mass which could be the result
of either preferential dynamical hardening/ejection or missing physics in the
model (e.g. disk physics).

“brown dwarf desert”). In Fig. 6.5 we test to what extent our models can

reproduce this observation by comparing the mass distribution of the most

massive companions in our simulations with observations of this quantity for

Solar type and very low mass (VLM) stars (M ∼ 0.1 M�). Although in prin-

ciple we could compute other mass ratios (e.g., the mass ratios of all pairs of

stars in multiple systems, c.f. Raghavan et al. 2010), we focus on the most

massive companions because these are the most robustly determined from ob-

servations. It is extremely challenging observationally to identify secondary

and tertiary companions of a star in a triple or quadruple system. As a result,

observations are most likely to discover the most massive companion rather

than all companions, making the primary to secondary mass ratio the most

well-determined. This also has the advantage that the most massive compan-

ion is the least likely to be ejected by dynamical processes. For our heated

models, however, in practice it makes relatively little difference whether we

include all companions or just the most massive one.
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Examining Figure 6.5, it is clear that the isothermal and heated models are

both roughly consistent with observations after the observational bias is ap-

plied. The primary exception is that both models somewhat underpredict the

frequency of near-equal mass companions; such companions can plausibly be

attributed to disk fragmentation, which tends to produce mass ratios close to

unity (Bate, 2000). It is important to note that without the observational bias

the isothermal model predicts an overwhelming number of very low mass ratio

companions. Meanwhile the results for Solar type stars in the heated case is

only slightly affected by observational bias, which means that the brown dwarf

desert is not an observational bias.

To gain further insight into why our heated models are able to reproduce the

brown dwarf desert, while our isothermal models fail, let us compare these

companion mass distributions with the null hypothesis that that companion

masses are randomly drawn from the IMF2. Fig. 6.6 compares our measured

companion mass ratio distribution with that we would expect under the null

hypothesis, again considering only the most massive pair in a given star sys-

tem3. The figure shows that in no case are the results consistent with random

sampling of companions from the IMF. In the isothermal case the companion

distribution for both Solar and VLM primaries follows the IMF for very low

mass companions, but that there is a significant excess of companions at mass

ratios ∼ 0.5−1. In the heated case the situation is qualitatively similar, in that

mass ratios near unity are overrepresented compared to the null hypothesis.

Now let us consider the implications of this finding for the brown dwarf desert.

The companion mass ratio distribution is a product of two factors: the un-

2Binaries forming from randomly sampling the IMF has been ruled out (Reggiani &
Meyer, 2011), making it an important test for theoretical models.

3Computing the null hypothesis distribution requires some care, because for systems with
> 2 stars, even if all companions are drawn randomly from the IMF, the mass distribution
for the most massive companion does not follow the IMF. Specifically, suppose we have an
IMF dN/dM = p(M), so that the cumulative distribution function (CDF) of masses (i.e.,

the probability that a randomly chosen star has mass < M) is P(M) =
∫ M

0 p(M) dM. Now
consider a system where the primary has mass Mp. Since we require companion masses to

be smaller than Mp, they follow the conditional CDF P(M | Mp) ∝
∫ min(M,Mp)

0 p(M) dM,
which for M < Mp has the same shape as the CDF for single stars. However, now consider a
system consisting of n stars. The most massive companion has a mass < M only if all n − 1
companions have mass < M, and if the companion masses are independent the probability
of this is P(M | Mp)n−1. This does not have the same shape as the single star CDF. For the
purposes of Figure 6.6, we account for this effect by generating our null hypothesis lines as
a weighted sum P1(M | Mp) =

∑
n>1 wn(Mp)P(M | Mp)n−1, where both the single star CDFs

P(M | Mp) and the relative frequencies wn(Mp) of multiplicity n are measured directly from
the simulations for each primary mass Mp.
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Figure 6.6: The two panels show the PDF of mass ratios between the two
most massive stars in a given system, for primary masses Mprimary = 0.1 M�
(solid blue) and Mprimary = 1 M� (solid red). We show these quantities both
for the isothermal case and the model with protostellar heating, as indicated.
For comparison, the dotted lines show the distributions that would result from
the null hypothesis that companions are randomly drawn from the IMF. Note
that the underlying simulation results shown here are identical to those shown
in Figure 6.5, but they have been binned differently here for clarity.

derlying IMF of all stars, and any biases imposed by the fact that the stars

whose mass distribution we are computing are non-primaries. With or without

heating, we find that mass ratios near unity are favoured compared to a null

hypothesis of random IMF sampling. That is, if we collect two samples of stars

with the same upper mass limit, and for one sample we randomly select only

non-primary stars and for the other we randomly select stars without regard

to multiplicity characteristics, the non-primary sample will typically be more

massive. For Solar-type primaries, the combination of a bias towards higher

mass companions and the overall negative slope of the IMF near 1 M� (so that

lower mass stars are more probable overall) yields a relatively flat mass ratio

distribution – the IMF shape and the bias nearly cancel.

Now let us consider VLM stars. For VLM primaries, the bias towards equal

mass companions is qualitatively similar to that for Solar-type stars. For

our isothermal case, and unlike in reality, the IMF slope near 0.1 M� is also

about the same as that near 1 M�, due to the overall scale-free nature of

isothermal fragmentation. Because both the IMF slope and the bias are about

the same for Solar and VLM stars, the distribution of companion mass ratios

is also qualitatively similar. For our heated case, as in reality, we have a very
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different situation. The slope of the IMF is negative near 1 M�, but positive

(or at least close to flat) near 0.1 M�. As a result, for VLM primaries both

the bias towards massive companions and the IMF itself favour more massive

objects as companions. The result is a companion mass ratio distribution that

is sharply biased towards stellar companions and away from brown dwarfs,

producing the observed brown dwarf desert. We therefore find that the brown

dwarf desert is a result of the change in the IMF slope between ∼ 0.1 and ∼ 1
M�, which in turn is imposed by thermal feedback, causing a deviation from

scale-free behaviour during gas collapse and fragmentation.

6.3.3.2 Binary Separations

In addition to the mass ratio distribution, our spatially-resolved model allows

us to examine the predicted semi-major axis distribution of binaries. We do so

in Fig. 6.7 for Solar-type stars. The distribution appears peaked which comes

from the peak of the companion mass ratio distribution (Fig. 6.6) with the

corresponding length scale of ∼ GMp

c2
s
≈ 0.05 pc.

Comparing with the observations from Marks et al. (2011) we can see that on

large scales our model of common core fragmentation seems to very roughly

reproduce the present day observations. Although our results only give the

“at-formation” period distribution, the comparison is still meaningful because,

as explained in Sec. 6.2, we have attempted to limit the systems we count

in our model to hierarchical systems that should be dynamically stable. In

any case, it is clear that, similar to the case of the 2D correlation function

(Fig. 6.2), turbulent fragmentation is unable to reproduce the observations

on small scales. Another source for such binaries is required at ≤ 100 AU,

for which protostellar disk fragmentation is a good candidate4. Note that

decreasing Rmin/R0 would technically improve the fit (see Sec. 6.C), but this

would require unphysically low values.

6.4 Conclusions

The aim of this paper is to investigate the origin of the stellar correlation func-

tion and multiplicity statistics, and in particular to understand which features

of these distributions result from pure scale-free isothermal fragmentation, and

4It should be noted that disc fragmentation simulations also fail to produce extremely
close binaries (≤ 10 AU). These are likely to have either formed from a wider binary whose
separation decreased due to orbital decay (e.g. Korntreff et al. 2012; Stahler 2010), or from
exchange interactions in star clusters.
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Figure 6.7: Semi-major axis distribution for binaries with fixed primary mass
(∼ 1 M�) in case of the isothermal model (dashed) and the case with pro-
tostellar heating (solid). The figure also includes the observed present day
distribution from Moe & Di Stefano (2016) for solar type stars. The observed
period distribution of solar type stars could plausibly be explained by com-
mon core fragmentation at large scales, but there a serious discrepancy for
short-range binaries, further implying that protostellar disk fragmentation or
dynamical effects play a crucial role.

which bear the imprints of scale-dependent stellar feedback. Using the MISFIT

semi-analytical turbulent fragmentation framework of GH15 and GKH16 we

find that the shape of the correlation function is almost entirely set by isother-

mal turbulence. Stellar feedback, which operates primarily on small scales,

has little effect. On smaller scales (≤ 100 AU) both a purely isothermal model

and one including stellar radiation feedback underpredict the stellar correla-

tion, suggesting that our turbulent fragmentation models lack certain small

scale physics (likely protostellar disk fragmentation). As with the correlation

function, we find that our models provide a reasonable match to the observed

the binary period distribution at large separations. This is true regardless of
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whether we include protostellar heating or not, just as they fail to produce

enough very close binaries. We again conjecture that these close binaries are

a result of disk fragmentation and N-body interaction, which our model does

not include.

The situation for the mass ratios and multiplicity fraction of binaries is quite

different. Isothermal fragmentation produces far too many multiple stars com-

pared to what is observed, with even ∼ 1 M� stars predicted to have multi-

plicities near unity. Adding protostellar heating substantially improves the

situation, though the multiplicity fraction is still somewhat too high, likely

because our models do not include dynamical evolution that will disrupt un-

stable systems. These differences, however, are almost completely washed out

by the observational biases.

Most interestingly, if we neglect the observational bias we find that while turbu-

lent fragmentation with or without protostellar heating can adequately repro-

duce the observed companion mass distribution for Solar type stars (except for

very low mas companions), but only when protostellar heating is included can

we reproduce the mass distribution of companions for low-mass primaries. In

particular, only our models including radiative feedback reproduce the “brown

dwarf desert”, whereby the companions to low mass stars (∼ 0.1 M�) are

overwhelmingly stellar objects (i.e., close to a mass ratio of unity) rather than

brown dwarfs. Models that include only scale-free physics predict a companion

mass ratio distribution for low mass stars that is qualitatively similar to that

for Solar-type stars, a direct consequence of the scale-free nature of these mod-

els. In contrast, protostellar heating suppresses the number of brown dwarfs

relative to stars, so that the companion mass ratio distribution is very differ-

ent for Solar-type stars that lie above the IMF peak and low-mass stars that

lie at ore below it. We therefore conclude that the brown dwarf desert is a

consequence of the physical mass scale imprinted by protostellar heating into

the otherwise scale free star formation process.

6.A Improvements to Previous Model

Two papers (Guszejnov & Hopkins 2015a; Guszejnov et al. 2016) have been

published so far using the MISFIT (Minimalist Star Formation Including Tur-

bulence) semi-analytical star formation framework as this paper. Since the

publication of those results, several improvements have been made to the al-

gorithm, all of which are implemented for this paper. These do not change

any of the published qualitative IMF results (e.g. general shape, sensitivity to
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initial conditions). They include:

• Correction of a bug that suppressed fragmentation at the end of the

cloud evolution, violating self-similarity at a weak level. The effects on

our previous work are small, but are substantial on the statistics on low

mass companions. This is now fixed.

• Fragments are properly tracked and taken into account for the evolution

of their parent (e.g. their contribution to the gravitational potential is

taken into account as long as the parent has not yet contracted beyond

their position). This causes no qualitative difference.

• Instead of using an absolute termination scale (taken to be Rmin = 10−4 pc
in the previous papers, roughly the size of protostellar disks), the collapse

of clouds now terminates once clouds have contracted to a fixed fraction

of their initial radius, chosen to be roughly when angular momentum

support becomes dominant. This assumes that the source of angular

momentum for clouds is from random turbulent motion. The resulting

distribution for β = Erot
Epot

is strongly peaked around a few percent (Burkert

& Bodenheimer 2000). If collapse happens at constant virial parameter

than the size scale where angular momentum starts dominating is βR0.

This is the scale where the cloud flattens and forms a disk, which we

choose as our termination point.5

• We set a lower limit of 0.007 M� on fragment masses based on the opacity

arguments of Low & Lynden-Bell (1976). This is in fact equivalent to a

simplified EOS model, where we terminate the fragmentation once the

cloud reaches the adiabatic limit. This provides a natural termination

for the fragmentation cascade in our “isothermal” models, otherwise our

results would not converge (see GKH16)

6.B Comparison with detailed hydrodynamic simulations

There have been a number of hydrodynamical simulations attempting to find

the multiplicity statistics and separation distribution of newly formed stars

(e.g. Bate 2009b, 2012a; Delgado-Donate et al. 2004; Goodwin et al. 2004;

Krumholz et al. 2012; Offner et al. 2010). The semi-analytical approach we

present in this paper has several advantages over these (e.g. faster, no absolute

5The choice of a relative termination scale instead of an absolute value has the added
benefit of imprinting no absolute length scale into the problem, preserving self-similarity.
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Figure 6.8: The multiplicity of stars of different masses in the isothermal case
(Isothermal - MW ) and the model with protostellar heating (Heating - MW )
compared to the results of Bate (2012a) (black circles with error bars).

resolution limit, starts from GMC) but at the cost of several strong assump-

tions, so it is crucial that we compare our results with theirs. We choose to

compare with the simulations of Bate (2012a), as these have the largest sam-

ple of multiple systems. Since we know the full binary distribution from the

simulations, we make this comparison without the observational completeness

correction that we apply when comparing to observations in the main text.

Figures 6.8-6.10 show that our results are qualitatively, and in many cases

quantitatively, consistent with the simulations of Bate (2012a). An important

difference between our current model and the traditional simulations is that

MISFIT does not have a finite resolution limit, but it does neglect disk physics.

This leads to the discrepancy at small separations shown in Fig. 6.10.

6.C Numerical Tests and Convergence

In this section we show how the GMC massMGMC, the termination scale

R0/Rmin, and the resolution parameter N affect our results. To explore these
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Figure 6.9: The relative frequency of most massive companions of small
stars (left, Mprimary = 0.1− 0.5 M�) and VLM stars (right, Mprimary = 0.1 M�).
Red and blue points show the results of our simulations without applying the
observational bias, while hatched histograms show the results of Bate (2012a).
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questions, we have repeated our fiducial Heating - MW run with different reso-

lutions (N = 16, 32, 64), GMC masses (MGMC = 104, 105, 106 M�), and different

termination scales (R0/Rmin = 10−3, 10−2, 10−1). The full list of runs performed

in given in Table 6.1. Note that unlike the results in the main text these are

not modified to account for observational biases.

We first examine how our results affect the same of the IMF produced by our

models. Fig. 6.11 shows that the shape of the IMF is robust to changes in N,

reaching convergence around N = 32. The location of the IMF peak and the

high mass slope are also essentially insensitive to the GMC mass; the location

of the peak does shift by an extremely small amount as we vary the GMC

mass, as a result of its dependence on the Mach number of the turbulence;

the two are related thanks to our assumption that clouds have virial ratios

αvir ≈ 1. However this shift is only ∼ 10% over a plausible range of GMC

masses. The IMF shows its greatest sensitivity to the relative termination

scale Rmin/R0, particularly the abundance of brown dwarfs beyond the peak.

In reality our choice of a single Rmin/R0 value is an oversimplification, since

real turbulence fields produce a distribution of rotational kinetic energies β,

and thus a distribution of Rmin/R0 parameters; the real IMF should therefore

resemble a weighted average of the curves shown in Fig. 6.11.

Fig. 6.12 shows how variation of our three parameters affects the stellar cor-

relation function. As with the IMF, we find that the correlation function is

insensitive to changes in both the resolution parameter N and the initial GMC

mass – the former produces no noticeable differences past N = 32, while the

latter mostly rescales the outer cut-off/size scale. Also, as with the IMF, larger

initial masses lead to verly slightly shallower slopes. This is consistent with

the discussion in Section 6.3.1 and Sec. 6.D: larger masses mean stronger ini-

tial turbulence which in turn means easier fragmentation. However, as with

the IMF, the effect is extremely modest. Finally, the bottom panel of Fig.6.12

shows that the relative termination scale has no effect on the correlation func-

tion apart from introducing a small-scale cut-off.

Fig. 6.13 shows the peak of the separation distribution converges above

N = 32, and the parent GMC mass has little effect on it. The relative termi-

nation scale Rmin/R0 sets the width of the peak; its position is set by
GMprimary

c2
s

,

as discussed in Sec. 6.3.2. Decreasing Rmin/R0 increases the abundance of

binaries at small separations, since it pushes the transition between common

core fragmentation (which we are modeling) and disc fragmentation (which are
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Figure 6.11: Effects of the simulation resolution N (top left), parent GMC
mass (top right) and the relative termination scale Rmin/R0 (bottom) on the
IMF.

are not) to smaller scales. However, as noted in the main text, only a value of

Rmin/R0 that is unphysically small would produce enough short-period binaries

to be consistent with the observations.

6.D Cantor-like Model of Fragmentation

One of the most important properties of isothermal fragmentation is that it is

scale-free, so we expect self-similar, fractal-like structures to emerge. We can

formulate a simple toy model to describe this process where self-gravitating

clouds contract to about ε relative scale before breaking into two (see Fig. 6.14)

along a random axis. The distance of the two fragments is uniformly chosen

between 0 and Rparent . The fragments then rearrange themselves into spheres

at the same density as their parent (meaning their radius is 2−1/3Rparent). This

model is very similar to the generalized Cantor dust (3D analogue of the gen-

eralized 1D Cantor set) that have the fractal dimensions of Dset =
ln 2

ln 2−ln ε and
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Figure 6.12: Effects of the simulation resolution N (top left), parent GMC
mass (top right) and the relative termination scale Rmin/R0 (bottom) on the
stellar correlation function.

Ddust =
3 ln 2

ln 2−ln ε , leading to a 3D correlation function of rD−3.

We can analytically calculate the fractal dimension of our Cantor-like model if

we take the separation between fragments to be the mean value of Rparent/2. If

we take the initial radius of the first sphere to be unity then, after n iterations,

the number of the objects is N = 2n while their size is Rn = εN2−N/3. If we

choose a random fragment then the number of fragments within an Rm radius

is Nm = 2n−m, thus

D ≡ d ln Nm

d ln Rm
=

ln 2
1
3 ln 2 − ln ε

. (6.9)

Fig. 6.15 shows that this result is actually exact. Since isothermal fragmen-

tation is quite similar to this toy model, we expect the predicted stellar cor-

relation function to have a slope between -1 and -3 (for reasonable ε values).
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Figure 6.13: Effects of the simulation resolution N (top left and right), parent
GMC mass (bottom left) and the relative termination scale Rmin/R0 (bottom
right) on the stellar correlation function.

This also implies that if some additional physics makes fragmentation harder

(increasing the density threshold and thus decreasing ε) then the correlation

function becomes steeper.

This model has the free parameter ε which we can restrict by assuming that

the fragmentation criteria is set by the Jeans-instability. It is known that the

mass of fragments would be of the Jeans-mass MJeans ∝ ρ−1/2 ∝ ε3/2. The

number of fragments is M/MJeans = 2 which leads to ε = 0.63. For this value

Eq. 6.9 gives D = 1, leading to a ξ ∝ r−2 power law, in perfect agreement with

our results from Fig. 6.1.
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Figure 6.14: The 3D Cantor-set-like toy model of isothermal fragmentation.
Every cloud contracts to ε relative scale before breaking into two along a
randomly chosen plane and the process repeats itself.
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C h a p t e r 7

UNIVERSAL SCALING RELATIONS IN SCALE-FREE
STRUCTURE FORMATION

Guszejnov D., Hopkins P. F., Grudic M. Y., 2017, preprint, ( http://arxiv.org/abs/1707.05799)

Abstract

A large number of astronomical phenomena exhibit remarkably similar scaling

relations. The most well-known of these is the mass distribution dN/dM ∝ M−2

which (to first order) describes stars, protostellar cores, clumps, giant molecu-

lar clouds, star clusters and even dark matter halos. In this paper we propose

that this ubiquity is not a coincidence and that it is the generic result of scale-

free structure formation where the different scales are uncorrelated. We show

that all such systems produce a mass function proportional to M−2 and a col-

umn density distribution with a power law tail of dA/d ln Σ ∝ Σ−1. In the case

where structure formation is controlled by gravity the two-point correlation

becomes ξ2D ∝ R−1. Furthermore, structures formed by such processes (e.g.

young star clusters, DM halos) tend to a ρ ∝ R−3 density profile. We compare

these predictions with observations, analytical fragmentation cascade models,

semi-analytical models of gravito-turbulent fragmentation and detailed “full

physics” hydrodynamical simulations. We find that these power-laws are good

first order descriptions in all cases.

7.1 Introduction

It is well known that the physics of the interstellar medium and star forma-

tion are very complex, involving turbulence, gravity, radiation and chemistry.

Despite this complexity a number of physical quantities show scale-free, power-

law-like behavior over a large dynamic range:

• The initial mass function (IMF) of stars in different regions of the MW

and in extragalactic sources is found be close to a power-law for high

mass stars with a slope of approximately -2.35 (e.g. Bastian et al., 2010;

Offner et al., 2014; Salpeter, 1955).

• Similar to the IMF, the mass function of prestellar cores (CMF) in the

MW also resembles a power-law at high masses with slopes close to that

of Salpeter (e.g. Sadavoy et al. 2010).

arXiv:1707.05799
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• The mass function of clumps (stellar-mass sized condensations of dust

and gas) in molecular clouds exhibits power-law distribution with an

inferred slope close to -2 (see Johnstone & Bally, 2006; Kramer et al.,

1998).

• The mass function of giant molecular clouds (GMC) in the MW is also

found to be close to a power-law at high masses with a slope somewhat

shallower than the canonical IMF value (e.g. Rosolowsky, 2005), but

there can be significant variation with environment (e.g. see Colombo

et al. 2014b where the exponents vary between -1.5 and -2.5).

• The initial mass function of star clusters exhibits a similar power-law

behavior with an inferred slope of -2 (e.g. Bik et al., 2003; Fall & Chandar,

2012; Zhang & Fall, 1999).

• The dark matter halo mass distribution is expected to be close to dN/dM ∝
M−2(Press & Schechter, 1974; Warren et al., 2006) over a large dynamic

range.

• The column density PDF of star-forming regions can be roughly ap-

proximated with a power law dA/d ln Σ ∝ Σ−γ (Kainulainen et al., 2009;

Lombardi et al., 2014). At low-to-intermediate densities, this appears

to be determined by the global mass profile of the cloud with γ ∼ 2 − 3
(Schneider et al., 2015b), while in the dense star-forming gas the slope

appears to approach γ ∼ 1 (Schneider et al., 2015a).

• The stellar two-point correlation function in young star clusters has been

measured over a wide dynamic range (about 5 orders of magnitude in ra-

dius), with the large-scale behavior of the 2D correlation function similar

to a power-law with a slope of -1 (e.g. Hartmann, 2002; Hennekemper

et al., 2008; Kraus & Hillenbrand, 2008; Simon, 1997). Note that it has

been shown that very different geometries (e.g., fractal vs spherical) can

lead to similar correlation function slopes (Gouliermis et al., 2014).

• Similarly the 2D two-point correlation functions of protostellar cores

(Stanke et al. 2006) has also been measured and found to be consistent

with power law slopes of -1 or slightly shallower.

• Studies have investigated the 2D correlation function of star clusters (see

Grasha et al., 2017; Zhang et al., 2001) in nearby galaxies and found it

to be close to a power-law of -1 for young clusters within the scale height
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of the galactic disk. As star formation predominantly happens in GMCs

this implies a similar trend for the correlation function of GMCs.

• The 2D correlation function of dark matter halos has also been found con-

sistent with a power-law with -1 slope both observationally (e.g. Baugh,

1996; So ltan & Chodorowski, 2015) and numerically (e.g. Kauffmann

et al., 1999). Numerical studies have shown that on intermediate scales

(� 10 Mpc <) these results are independent from the initial density

power spectrum.

• The mass profile of young star clusters exhibits power-law-like behavior,

the observed surface density profile at large scales is well approximated

by power-laws consistent with a density profile with slopes between -3

and -5 (see Elson et al., 1987; Mackey & Gilmore, 2003a,b; Portegies

Zwart et al., 2010).

• The density profile of dark matter halos is well described by the NFW

profile (Navarro et al., 1996) that simplifies to ρ ∝ R−3 on larger scales.

There have been a number of attempts to formulate theories to explain some

of these scaling relations. A popular idea for gas clouds is to assume that

the formation of these objects is set by the interplay between turbulence and

gravity (e.g. Guszejnov & Hopkins, 2016; Hennebelle & Chabrier, 2008, 2009,

2013a; Hopkins, 2012a,b, 2013c; Padoan & Nordlund, 2002; Padoan et al.,

1997). These gravito-turbulent models have successfully reproduced the mass

functions and even the two-point correlation function above (see Guszejnov

et al., 2017b; Hopkins, 2013a). These have a number of attractive properties

including the natural appearance of the linewidth-size relation (Kritsuk et al.,

2013). Another interesting aspect of this approach is the apparent universality

one obtains in the supersonic limit where the process becomes an almost self-

similar fragmentation cascade, washing out most of the differences between

individual models (Krumholz, 2014).

Another popular approach to explain these relations in star formation is to rely

on self-similar growth as small “seeds” grow by accreting from the same mass

reservoir (originally proposed by Larson 1982 then worked out by Zinnecker

1982, see review of Bonnell et al. 2007 and references therein for more details).

These competitive accretion models rely of gravity and hydrodynamics to show

that the features of the initial “seed” distribution are washed out by accretion

leading to a power-law distribution consistent with the IMF.
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Finally, in a somewhat different approach, one cannotice that the apparent

similarity in the slopes of the mass functions could be explained by a fractal-

like, self-similar ISM out of which structures like stars, cores and GMCs form

(e.g. Chappell & Scalo, 2001; Elmegreen, 1997; Elmegreen & Falgarone, 1996;

Stutzki et al., 1998). An important property of these models is that they tie

structures of different sizes together (stars, cores, clumps) as their mass distri-

bution is the result of the same fractal ISM structure (e.g. Elmegreen, 2002).

The density structure predicted by these fractal ISM models is in agreement

with simulations of supersonic turbulence (e.g. Kritsuk et al., 2006). In general

these inherently imply an underlying self-similar process, which serves as the

main motivation for this paper.

While the models above tried to explain the ISM-related phenomena, there

has been a similarly large effort related to the scaling laws of dark matter.

The DM halo mass function was first predicted by the random field approach

of Press & Schechter (1974) and Bond et al. (1991), which is actually the same

formalism a number of gravito-turbulent theories for star-formation and the

ISM are based on (e.g. Hopkins, 2012a). A key feature of these Press-Schechter

models is that the phases of the different-scale modes in the density field are

uncorrelated; in other words, the different scales are independent (this is the

reason one can describe the process as a random walk in Fourier-space).

Note that these classes of models concentrate on quite different physics but

still produce similar scaling relations for the mass functions, density PDFs,

correlation functions etc. In this paper we aim to demonstrate that these scal-

ings can be explained to first order by any scale-free structure building process

with a large dynamic range where the different scales are uncorrelated. We

argue this point in Sec. 7.2 and then show that all the processes listed at the

beginning of this section can be described with the same generic hydrodynam-

ical problem. To demonstrate the properties of this problem we concentrate

on one of its subclasses: the scale-free fragmentation cascade. We formulate

a general description of a fragmentation cascade in Sec. 7.3 and then use it

to derive the mass distribution of stars/objects (Sec. 7.4.1), their correlation

function (Sec. 7.4.2), the gas density distribution function (Sec. 7.4.3) and the

power law tail of the young star cluster mass profile (7.4.4). Then we compare

our predictions from the fragmentation cascade model with observed data,

the outputs of MISFIT, our semi-analytical simulation of cloud fragmentation

(Guszejnov & Hopkins 2016), and with the results of the detailed multi-physics

MHD simulations of Grudić et al. (2016).
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7.2 Cause of Universal Behaviour

In Sec. 7.1 we listed a large number of astrophysical objects (stars, molecular

clouds, star clusters, DM) that at first glance seem to obey very different

physics. Let us first investigate the structures that form out of molecular gas

(e.g. stars, cores, GMCs). Since the gas can be described as a fluid it must

obey the nonrealtivistic MHD+gravity momentum conservation equation

∂

∂t
(ρv) + ∇ · (ρv ⊗ v) =

−∇P + ηρ∇2v + (ζ + η/3) ∇ (∇ · v) + 1
µ0
(∇ × B) × B − ρ∇Φ, (7.1)

where ρ, v and B are the usual density, velocity and magnetic fields while P is

the thermal pressure, η is the dynamic viscosity, ζ is the bulk viscosity and Φ

is the gravitational potential. By dividing with the characteristic scales of the

system (size: L0, velocity: v0, density: ρ0, sound speed: cs,0, Alfvén velocity:

vA) we can make Eq. 7.1 dimensionless:

∂

∂ t̃
(ρ̃ṽ) + ∇̃ · (ρ̃ṽ ⊗ ṽ) =

−M−2∇̃P̃ + Re−1 ρ̃∇2ṽ + ζ̃ ∇̃
(
∇̃ · ṽ

)
+M−2

A
(
∇̃ × B̃

)
× B̃ − αρ̃∇̃Φ̃, (7.2)

where t̃ ≡ tv0/L0, ∇̃ ≡ L0∇, P̃ ≡ P
ρ0c2

s
, B̃ ≡ B

vA
√
ρ0µ0

and Φ̃ ≡ Φ

Gρ0L2
0

where G is

the gravitational constant, whileM = v0/cs,0 is the Mach number, Re ≡ ρ0v0L0
ν

is the Reynolds number,ζ̃ ≡ ζ+η/3
ρ0v0L0

, MA ≡ v0/vA is the Alfvén Mach number

and α ≡ v2
0/(Gρ0L2

0) is the virial parameter.

Let us now look at the process of star and cloud formation in more detail! In a

wide dynamic range of this process the flows are supersonic (M � 1) making

the pressure term negligible. Magnetic fields are similarly not important on

these scales (MA � 1), as shown both in simulations (e.g. Federrath & Klessen,

2012; Grudić et al., 2016) and (to some extent, on large scales) in observations

(see review of Crutcher, 2012). Meanwhile, viscous forces only matter close

to the dissipation scale (i.e. Re � 1 and ζ̃ � 1). This leaves us with the

following dimensionless equation:

∂

∂ t̃
(ρ̃ṽ) + ∇̃ · (ρ̃ṽ ⊗ ṽ) = −α−1∇̃Φ̃. (7.3)

Eq. 7.3 describes the motion of a pressureless fluid in a gravitational poten-
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tial1. Note that this equation is completely scale-free (all quantities are nor-

malized) and its only parameter is the dimensionless α, the virial parameter

that describes the ratio of kinetic to gravitational energy in the system.

We can do the same exercise for the case of star clusters and dark matter

halos. Both can be described by the collisionless Boltzmann equation with

self-gravity which we can bring to the dimensionless form

∂ f̃
∂ t̃
+ ṽ · ∇̃ f̃ − α−1∇̃Φ̃ · ∂ f̃

∂ṽ
= 0, (7.4)

where f is the 6D phase space density function. Once again we find that the

governing equation of structure formation is scale-free and only depends on

the virial parameter α . Note that the fluid equation of Eq.7.3 is just the first

moment of the dimensionless Boltzmann equation (Eq. 7.4).

Now let us concentrate on what kind of processes we are trying to describe.

We are interested in how certain astronomical objects form (e.g. DM halos,

GMCs, star clusters). These are gravitationally bound objects, which, by defi-

nition, means that they have a specific virial parameter (of order unity). Thus,

regardless of their inherent differences, the formation of molecular clouds, star

clusters and dark matter halos all follow Eq. 7.4 with a similar virial param-

eter α. Because of this attractor these different phenomena produce similar

scaling relations as shown later in Sec. 7.4.

7.2.1 The Importance of Uncorrelated Scales

It is clear that the equation that describes the evolution of structure formation

(Eq. 7.4 or Eq. 7.3) is scale-free; in other words, it does not know about the

absolute size of the system. But it is also important to look at whether the

process has “memory”, i.e. does a structure remember its progenitor?

By looking at Eq. 7.4 we find that it has actually two time scales: the crossing

time scale tcross(L) ∼ L/v0 =
L
L0

t0 and the gravitational/freefall time scale

t f f ∼ (Gρ0)−1/2 ∼ α1/2t0 ≈ t0. For marginally self-gravitating structures (α ∼ 1)

the crossing time is shorter than the freefall time on all scales except the largest

where they are equal. This means that during the evolution of a self-gravitating

object there is more than enough time for mixing on small scales. Since Eq. 7.4

1Note that supersonic flows are not perfectly pressureless because they create shocks
where pressure inevitably becomes important. Nevertheless, the thickness of a shock tran-
sition will generally be much smaller than the scales of the flows generating the shocks
(represented by the Mach number M) by a factor ∼ M−2.
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is highly nonlinear (e.g. admits turbulence) this mixing effectively erases the

details of the initial conditions (ρ̃, ṽ etc.) on smaller scales. Thus, as we argue

below, the initial conditions for a newly formed self-gravitating substructure

(whose evolution is also described by Eq. 7.4) should be independent (at least

to leading order) from the initial conditions of its progenitor.

Another way to say this is that, if we consider some sub-volume Ω of the

parent system which is somehow isolated from its parent (by, say, collapsing

under self-gravity), the initial micro-state (exact spatially-dependent values

of ρ̃(x, t = t0), ṽ(x, t = t0), etc.) will be “wiped out” by small-scale (e.g.

turbulent) motions, on a timescale which is small compared to the global

evolution timescale (the dynamical time) of Ω. The statistical distribution of

properties can only depend on the one governing parameter of the equations,

α – so sub-systems with the same α must be statistically identical (after this

initial short time), up to the overall normalization/units of the system (e.g.

its size). In other words: if the different scales are uncorrelated, the statistics

of objects of different generations are the same2.

We could, conceivably, imagine a process which “selects” a different value of α

for each “level” in scale (say, each time one moves in scale, α doubles). This

would imprint a systematic difference in the statistics of small-scale systems

as compared to large-scale systems. However, the physics of interest for the

properties we study here is gravity, which (by definition) selects the same

α ∼ 1 at all scales – if we define “structures” by self-gravitating or collapsing

objects, or fragments, or merging agglomerations, then they must be at similar

α. Given the assumptions above, this means that each sub-structure must, in

turn, have similar statistical properties to its parent.

Consider the specific example of fragmentation where a large structure repeat-

edly breaks up into smaller objects (or the opposite where small objects join

to form larger structures, i.e. hierarchical merging), but leaves some mass “be-

hind” at each scale. Since the process is scale-free the amount of mass “left” at

each scale has to be some fraction of the current mass, but because the process

has no memory it must be the same fraction at every mass scale. If the process

has a wide dynamic range then it follows that it leaves only a small fraction

of its mass at every scale so the absolute amount of mass is roughly equal at

2Note that the cosmological models for dark matter halos (Press & Schechter, 1974)
and the excursion set models of turbulent fragmentation (Hopkins, 2012a) all rely on the
assumption of uncorrelated scales.
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the different scales. This leads to

d log Mtotal

d log x
= ε ∼ const. � 1, (7.5)

where x is some physical quantity in which the process is moving up/down in

scale (e.g. size, mass). Due to the scale-free nature of the problem all physical

quantities are power-laws of each other thus Eq. 7.5 leads to a large number

of scaling laws. Let us further simplify the expression in the limit ε → 0,

obtaining the following scaling laws:

Mass Function :
d log Mtotal

d ln M
= 0→ dN

dM
∝ M−2 (7.6)

Density PDF :
d log Mtotal

d ln ρ
= 0→ dV

d ln ρ
∝ ρ−1 (7.7)

Column Density PDF :
d log Mtotal

d ln Σ
= 0→ dA

d ln Σ
∝ Σ−1 (7.8)

A more rigorous derivation of the above scalings is presented in Sec. 7.4 for

the special case of a fragmentation cascade.

Note that the above scaling relations have been derived numerous times for

different systems using very different methods (e.g. using random fields for

the DM halo mass function Press & Schechter 1974 or competitive accretion

for the IMF Bonnell et al. 2007). While these models seem to describe very

different physics, they can be all labeled as a realization of scale-free structure

formation with uncorrelated scales, and thus they will tend towards the scaling

relations of Eqs. 7.5-7.8.

7.3 General Model for Scale-Free Fragmentation

In this section we develop a simple but general model for self-similar fragmen-

tation cascades which describe a significant portion of the physical phenomena

we list in Sec. 7.1 (e.g. formation of stars, cores, clumps). Our aim is to clearly

demonstrate for this subclass that the scaling relations of Eq. 7.5-7.8 are in-

herent in these processes. In the model we present here we build on the models

presented in Guszejnov et al. 2016 and Guszejnov et al. 2017b henceforth re-

ferred to as GKH16 and GH17.

Imagine an initial “cloud” of mass M0 and size R0 (e.g. for stars and cores this

would be a GMC). This and all subsequently forming clouds are contracting

and have a small, but finite chance ε of collapsing to infinite density and zero

size (forming a star). Alternatively (with probability 1 − ε) it fragments into
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Parameters

ε Probability that a cloud does not fragment as it collapses.

λ Average contraction scale when fragmentation occurs.

κ Average mass of fragment relative to parent.

Variables

Mn Mass of nth generation clouds.

Rn Size scale of nth generation clouds.

M∗(Mn) Total mass of nth generation stars.

ρn Initial density of nth generation clouds.

Msurv,n Mass of all surviving objects after n fragmentation events.

Initial Conditions

M0 Mass of the initial cloud

R0 Size scale of the initial cloud.

Table 7.1: Parameters and variables in the toy fragmentation model we use to
demonstrate the effects of scale-free behavior (see Fig. 7.1).

a number of fragments (1/κ) with mass=κM0 after contracting by some factor

λ in size (see Fig. 7.1). Afterwards the gas rearranges itself while conserving

density. The process is repeated for each newly formed cloud fragment3. To

make our results normalizable we assume that there is a finite number of

fragmentation events, in other words: the cascade is terminated. This is due

to the breakdown of the scale-free assumption, in case of molecular clouds

this is due to non-isothermal effects at high densities. Table 7.1 shows the

parameters and variables of the model4 . Note that to have an inertial range

of significant size it must be true that ε � 1.

7.3.1 Effects of Gravitational Collapse

Let us assume that fragmentation happens due to the Jeans instability (equiv-

alently we could say all fragments have the same virial parameter). In an

isothermal medium MJeans = const . × ρ−1/2, so if we have a cloud that is

marginally Jeans unstable (M = MJeans(1)) then after it shrinks to λ times its

original size the new Jeans mass becomes

MJeans(λ) = MJeans(1)λ3/2. (7.9)

3Note that this process is highly hierarchical with multiple object forming out of a single
cloud, making it different from the well-known single, spherical cloud evolution models (e.g.
Larson, 1969; Penston, 1969).

4Note that the three parameters of the model all refer to mean quantities (e.g. κ is
the mean relative mass of fragments). Our analysis aims to show that regardless of the
underlying distributions, all self-similar fragmentation models produce a statistically similar
result.
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Figure 7.1: Cartoon illustrating the representative toy model for fragmenta-
tion, which we use in the text to demonstrate how scale-free fragmentation
processes produce universal scalings. In the toy model, every cloud contracts
by a factor λ (i.e. from initial radius R to λ R), before breaking into some num-
ber of sub-fragments, each with mass fraction κ of the parent clump mass. The
fragments have the same density as their parent. A small fraction ε � 1 of the
clouds are “left behind” (or collapse without fragmentation) at each level. In
physical systems self-similarity inevitably breaks down after some number of
iterations (e.g. non-isothermal physics in molecular clouds at high densities),
setting the dynamic range in which the model is applicable.

This cloud then fragments into several pieces, where each is roughly the Jeans

mass, and thus the number of fragments is

N ≡ κ−1 =
M

MJeans(λ)
= λ−3/2. (7.10)

In this case there is a clear connection between κ and λ such that

ln κ = 3/2 ln λ. (7.11)

Note that this simplistic analysis neglects other forms of cloud support (e.g.

turbulence, rotation). Nevertheless, the simulations of GH17 find that turbu-
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Generation (n) Mn/M0 Rn/R0 M∗(Mn)/M0 ρn/ρ0 Msurv,n/M0
0 1 1 ε 1 1

1 (1 − ε)κ λ[κ(1 − ε)]1/3 ε(1 − ε) λ−3 (1 − ε)
2 (1 − ε)2κ2 λ2[κ(1 − ε)]2/3 ε(1 − ε)2 λ−6 (1 − ε)2
n (1 − ε)nκn λn[κ(1 − ε)]n/3 ε(1 − ε)n λ−3n (1 − ε)n

Table 7.2: Values of different variables (see Table 7.1 for definitions) for objects
of different generations in our toy fragmentation model (see Fig. 7.1). Having
a large dynamic range implies ε � 1 (otherwise all the mass would be at the
largest scales) which simplifies most of these expressions.

lence based fragmentation models yield results consistent with Eq. 7.11 (see

Section 7.4.2). We will return to the importance of Eq. 7.11 below.

7.4 Universal Scaling Laws

For the case of scale-free fragmentation we can use our toy model to calculate

the values of the variables from Table 7.1 with relative ease. The results are

shown in Table 7.2.

7.4.1 Mass Function

First, if we look at the total mass of final objects (e.g. stars) in a given

logarithmic mass bin (M∗(Mn)) in Table 7.2, we find it to be proportional to

ε(1 − ε)n. In realistic cases ε � 1 (required to have a large dynamic range) so

we get

M∗(Mn)
M0

= ε

(
Mn

M0

) ln(1−ε )
ln(1−ε )+ln κ

≈ ε
(

Mn

M0

) −ε
ln κ

≈ ε = const, (7.12)

where we used that n = ln Mn/M0
ln(1−ε)+ln κ in the first equality which we can infer from

Table 7.2. The last approximation is only valid while n � ε−1, after that the

expression becomes a very weak power-law (slope of −ε/ln κ ≈ 0).

There is an equal amount of total mass per object mass in structures per

logarithmic interval in mass of the final objects. Since the number of objects

is (Mass per bin)/(Mass of an individual object), this leads to a mass function

of ∝ M−2. This is in rough agreement with the slopes of the IMF, the core,

the GMC, the star cluster and the dark matter halo mass functions (Alves

et al. 2007; Bik et al. 2003; Offner et al. 2014; Rosolowsky 2005; Warren et al.

2006 respectively, see Fig. 7.2 for examples). Note that this conclusion is

independent of the model parameters κ, λ and ε so long as there is a large

dynamic range (ε � 1) .



160

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

Observations
 

Milky WayLMC

 

IM
F 

Sl
op

e

SMC

Prediction
Salpeter

-2 -1 0 1 2 3
-1.0

-0.5

0.0

0.5

1.0

1.5

 

 

Log(M/Mpeak)

dN
/d

 lo
gM

 [a
rb

itr
ar

y 
un

its
]

M-1

Observed CMFs:
    Ophiuchus
    Orion
    Perseus
    Taurus

Prediction

5.0 5.5 6.0 6.5 7.0
1

10

100

 Observed GMC MF

 

 

dN
/d

 lo
gM

 [a
rb

itr
ar

y 
un

its
]

Log(M/M )

M-1

Prediction

Figure 7.2: Top Left: The observed slopes of the high mass end of the IMF
(Massey, 2003) along with the canonical Salpeter slope (Salpeter 1955, dotted
line) and the prediction from our scale-free model (dashed line). Note that
the error bars only account for fitting errors thus one should consider them
lower estimates. The scale-free prediction of M−1 is slightly shallower than the
best fit slope of -1.35 (Salpeter, 1955). Top Right: The observed CMF in
different regions (Sadavoy et al., 2010) normalized in both axes. The observed
high mass slope is roughly consistent with our prediction of M−1 (dashed).
Bottom: The observed GMC mass function (Rosolowsky, 2005) along with
our prediction (dashed line). The observations are roughly in line with the
scale-free predictions for scales below the high mass cut-off.
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7.4.2 Correlation Function

Let us now look at the correlation between objects of the same generation

(mass). By only taking objects that formed after exactly n fragmentation

events we can calculate the fractal dimension of this ensemble. The number

of such objects is Nn = M∗(Mn)/Mn = ε κ
−n. If we focus on one of these objects

and draw a sphere of radius Rm around it we have Nn(Rm) = ε κm−n objects in

it5. Using Rm = λ
m [κ(1 − ε)]m/3 from Table 7.2 we find the fractal dimension

to be

D ∼ d ln Nn(Rm)
d ln Rm

=
ln κ

1
3 ln κ + 1

3 ln (1 − ε) + ln λ
. (7.13)

Combined with Eq. 7.11 this yields D = 1. Since our model is isotropic the

fractal dimension is related to the the two-point correlation function. For the

3D and the (observable) 2D correlation functions this leads to ξ3D ∝ r−2 and

ξ2D ∝ r−1 respectively (using Eq. 7.38, see Sec. 7.A for details), which are in

agreement with the simulation results from GH17 and Grudić et al. (2016).

These predictions also roughly agree with the observed stellar and DM halo

correlation functions (see Fig. 7.3) on intermediate scales6. This is compared

to simulations in Fig. 7.3.

7.4.3 Density PDF

Using Table 7.2 we find the volume occupied by nth generation objects at their

formation (Vn) to be:

Vn

V0
=

Msurv,n/ρn

M0/ρ0
=

Msurv,n

M0

(
ρn

ρ0

)−1
= (1 − ε)n

(
ρn

ρ0

)−1
. (7.14)

Using n = − 1
3 ln λ ln(ρn/ρ0) we can replace n, and thus

Vn

V0
= exp [− ln(ρn/ρ0) ln(1 − ε)/(3 ln λ)]

(
ρn

ρ0

)−1
=

(
ρn

ρ0

)−1− ln(1−ε )
3 lnλ

. (7.15)

This fraction of the total volume once had objects of rhon density inside them

(these either fragmented or collapsed), which means that these regions have

5This can be verified by considering that within Rm radius of such an object are all other
object that formed out of a single ancestor of Rm size.

6Note that due to the finite age of the Universe the spatial structure of DM on very
large scales reflects the primordial density fluctuations and is not related to the subject of
this paper.
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Figure 7.3: Left: Stellar correlation function for different detailed semi-
analytic star formation models in GH17, specifically an“isothermal”simulation
and a model including “protostellar heating”, with MW-like and ULIRG-like
initial conditions, along with the results of the full-numerical MHD simulations
of Grudić et al. (2016). The initial conditions and underlying physics have
limited effect on the behavior, which is close to the predicted power law of
-2. The different large scale cut-offs are introduced by the different initial
cloud sizes, and the different normalization simply results from the different
linewidth-size relation between the Milky Way and ULIRG cases. Right:
Observed surface density of neighboring stars (Σ∗, which is proportional to
the projected correlation function ξ2D) observed in different regions (labeled)
Chamaeleon, Ophiucus, ρ Oph, Taurus, Trapezium, Upper Sco, Lupus and
Vela by Hartmann 2002; Hennekemper et al. 2008; Kraus & Hillenbrand 2008;
Nakajima et al. 1998; Simon 1997. Our prediction of a power law with slope
of -1 seems to match these on larger scales.

an average density of rhon. The binning by n is a logarithmic so

Vn =
dV
dn
=

dV
d ln ρ

d ln ρ
dn
∝ dV

d ln ρ
. (7.16)

Thus the volume density PDF
(

dV
d ln ρ

)
should scale as

dV
d ln ρ

∝ ρ−1− ln(1−ε )
3 lnλ ≈ ρ−1, (7.17)

where we assumed ε � 1 in the last step. Note that ε < 1 and λ < 1 so

the slope of the PDF is, in general, predicted to be somewhat steeper than

-1. However, the approximate slope is, once again, independent of the model

details.
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Note that this is a prediction for the density PDF of all material which un-

dergoes complete fragmentation (e.g. goes on to form stars). It is not the same

as the density PDF one would see at a given instant in time. To calculate

the latter (the observable PDF), we need to convolve the PDF of clouds as

they collapse with some observable “lifetime” (our model, thus far, makes no

assumptions about the amount of time each step in the process actually takes).

Since this requires some outside assumptions (which are unconstrained by the

fundamental nature of fragmentation, and could be related to e.g. cooling, or

dynamical, or turbulent processes), we do not wish to argue for any particular

model for the lifetime in this paper, and so should take the comparison with

observations with some caution. A reasonable possibility, however, would be

to take the lifetime to be proportional to the freefall time tfree f all ∼ ρ−1/2; this

would steepen the proposed slope by 1/2 (giving an observable slope of −3/2).

Other assumptions involving “slower” collapse (longer lifetimes) will generally

produce slopes between −1 and −3/2.

Another important effect comes from the the density profile of the individual

clouds. In our model we assumed all clouds to be homogeneous while in re-

ality they develop significant density gradients. The overall density PDF is a

convolution of this density profile and the PDF we predicted for homogeneous

clouds.

7.4.3.1 Previous Results in the Literature

There have been previous significant theoretical efforts to model the slope of

the density PDF. Many of these were based on numerical simulations (e.g. Au-

dit & Hennebelle, 2010; Ballesteros-Paredes et al., 2011c; Federrath & Baner-

jee, 2015; Federrath et al., 2010c; Klessen & Burkert, 2001; Ostriker et al.,

1999; Scalo et al., 1998b; Squire & Hopkins, 2017; Vázquez-Semadeni & Garćıa,

2001), which we discuss below. There have also been several analytic models

proposed, many of which are similar in spirit to Girichidis et al. (2014), who as-

sumed self-similar collapse, with individual clouds observable (or “surviving”)

at a given density for a time proportional to their free-fall time, and predict

a slope of −1.54 (while our model predicts −1.5, for the same observable-time

assumption).7

7Note that there is a small error in Eq. 12 in Girichidis et al. (2014) where the au-
thors inadvertently assumed that volume is conserved in cloud evolution, despite modeling
shrinking clouds. This can be easily corrected by replacing their Eq. 12 with the mass-
conserving version of the equation (which they present earlier); after accounting for this
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7.4.3.2 Column Density PDF

Because the volume density PDF itself is not directly observable, let us calcu-

late the PDF for the line integrated (surface) density Σ. To do that we choose

a random line of sight to integrate along that goes through the cloud we are

interested in. Let us denote the chance that such a random line goes through

one of the dense substructures of the cloud with p (ε � 1 so we neglect the case

when cloud does not have substructure). If the line avoids the substructures

the line integrated density is Σ0 ∼ ρ0R0 whereas if it hits the dense region we

get Σ1 ∼ (R0 − R1)ρ0 + R1ρ1. From Table 7.2 it is easy to see that

Σ1
Σ0
∼ 1 +

R1
R0

(
ρ1
ρ0
− 1

)
= 1 + λ[κ(1 − ε)]1/3

(
λ−3 − 1

)
≈ 1 + λ−2κ1/3. (7.18)

Using the Jeans collapse condition (Eq. 7.11) we find that λ−2κ1/3 = λ−3/2

which is much greater than 1 for realistic cases. This means that the line

integrated density is dominated by the densest substructure along the line of

sight. In general we get:
Σn

Σ0
=

(
λ−2κ1/3

)n
. (7.19)

Since p is the probability of hitting the dense substructure of a cloud, the

probability of the densest region along our line of sight to be from generation

n is Pn = (1− p)pn as it needs to penetrate exactly n levels of substructure. We

can directly calculate p because it is the cross section of the dense subregions

relative to their parent (while taking into account that there are κ−1 of them),

so

p =
κ−1πR2

n+1

πR2
n
= κ−1[κ(1 − ε)]2/3λ2 ≈ κ−1/3λ2. (7.20)

Now, using Eq. 7.20 and Eq. 7.19 we find the total area with Σn surface

density is

An

A0
= (1 − p)pn ∝ pn =

(
Σn

Σ0

)− 1
nn

∝ Σ−1. (7.21)

Similar to the volume density case the logarithmic binning in n leads to

An =
dA
dn
=

dA
d ln Σ

d ln Σ
dn
∝ dA

d ln Σ
→ dA

d ln Σ
∝ Σ−1, (7.22)

where we have used Eq.7.19.

correction (which amounts to one power of ρ) the result is that their −1.54 result is directly
comparable to our −1.5.
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Just like the volume density PDF, the surface density PDF is affected by

the finite observable lifetimes of clouds; as noted before this will steepen the

slope, most likely producing final slopes roughly between −1 and −2. So any

comparison with observations must be considered with caution here.

Fig. 7.4 shows surface density PDFs in two simulations: the MISFIT semi-

analytic framework (see Guszejnov & Hopkins, 2016) and the detailed MHD

simulations of Grudić et al. (2016). In both simulations star forming regions

develop a similar power-law tail once the fragmentation cascade begins, a phe-

nomenon that has been observed in other simulations (e.g. Kritsuk et al. 2011)

as well. Here (in the simulations) we have the advantage that we can specif-

ically isolate gas which is un-ambiguously known to be star-forming, which

also means it is self-gravitating and undergoing fragmentation (thus, is in the

regime where our model should apply). In Fig. 7.5 we show that this can have

drastic effects. The star forming regions we are observing are embedded in

much larger reservoirs of gas which is not undergoing a fragmentation cascade,

so our model is not applicable there8. Meanwhile the line of sight for our

observation integrates the density in these regions too. The net result is that

instead of the PDF of the star forming region we see a convolution of that and

the background density profile, which leads to a much steeper density PDF

than predicted by our model.

Comparing to observations is more difficult because of both the lifetime ef-

fects and the difficulty of separating “non-fragmenting” (even if dense) cloud

material from that which is truly experiencing runaway fragmentation. But

there have been a number of studies of the density structure of molecular

clouds (e.g. Kainulainen et al. (2009); Lombardi et al. (2014); Schneider et al.

(2013)) which found that the column density PDF in molecular clouds is best

described by a lognormal peak at low and a power law tail at high densities.

On average these studies have found an average slope of ∼ −2.3 (significantly

steeper than our analytic prediction). But it has been shown (see Schneider

et al., 2015b) that these measurements are actually dominated by the mass

profile of the parent clouds9. In other words, just like in the simulation, the

8This does not mean that this larger reservoir is not evolving it roughly follows the
isothermal collapse models formulated for spherically symmetric, non-fragmenting clouds,
which leads to the development of its own density profile and PDF. The key difference is that
in this regime pressure effects are not negligible. For a discussion of the resulting density
PDF see Kritsuk et al. (2011).

9For a spherically-symmetric cloud with a radial mass profile of ρ ∝ r−β, one obtains a
volume-density PDF of dV/d ln ρ ∝ ρ−3/β and a surface-density PDF of dA/d ln Σ ∝ Σ−2/(β−1),
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Figure 7.4: Surface density (Σ) PDF of star-forming gas in the detailed MHD
simulation of Grudić et al. (2016) and in one of the GMC collapse simulations
using the MISFIT semi-analytical framework (see Guszejnov & Hopkins 2016
for details). After the fragmentation cascade begins the system develops a Σ−1

power law tail in line with the predictions of the scale-free model. Note that
both of PDFs take only the star forming gas into account.

measured surface density PDF is a convolution of the global mass profile, and

the PDF driven by fragmentation and turbulence within an annulus of con-

stant density. Our result in Eq. 7.22 is the surface density PDF that would

be measured in such a fragmenting, constant background density annulus of a

cloud – we intentionally have not made any assumption about embedding our

(local) fragmentation model inside some (global) mass profile of a parent cloud

(if we did, we could easily fit these observations, but it would only reflect the

assumed mass profile).

Allowing for a background density profile with locally collapsing regions, one

generically expects the following: at the highest densities, the density PDF

should be dominated by collapsing, star-forming regions, which should (if

our model is correct) follow our prediction with an approximately −1 slope.

At lower (intermediate) densities, where not all the material is locally self-

so a slope of ∼ −2 in dA/d ln Σ corresponds to an isothermal-sphere density profile ρ ∝ r−2.
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Figure 7.5: Surface density (Σ) PDF of star-forming gas vs all gas associated
with the molecular cloud in the detailed MHD simulation of Grudić et al.
(2016). We define star forming gas as fluid elements in a converging flow
within a self-gravitating structure of molecular gas. Both axes are normalized
so that the peak of both PDFs are unity at Σ = 1. Similar to Lin et al. (2017)
we find that star forming gas produces a surface density PDF with a power-law
slope of -1.2, close to our prediction of -1, while the distribution for the total
gas has a much steeper power-law tail. This is because we integrate along the
entire line of sight, and thus our measurement is sensitive to the background
density profile of the non-star-forming gas.

gravitating and fragmenting, one becomes dominated by the combination of

turbulent density fluctuations and the background density profile of the cloud,

and the PDF will have a steeper slope that matches the cloud profile. Inter-

estingly, Schneider et al. (2015a) claim to see almost exactly such a transition,

with steeper slopes ∼ −2.3 at intermediate densities (matching their fits to

the global mass profile) and a shallower slope (or “excess” in their terms) ap-

pearing at approximately Σ & 100 〈Σ〉 with a slope ≈ −1 ± 0.2. Similarly, Lin

et al. (2017) see in the survey of clouds that the PDF becomes systematically

shallower, approaching −1, as clouds (or cloud regions) become more actively

star-forming. We should also note that similar results have been seen in other

numerical simulations (e.g. Burkhart et al., 2015).
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7.4.4 Cluster Mass Profile

Let us assume that some fraction of objects formed remain gravitationally

bound to each other. We expect that the clustered substructures that formed

from fragmentation will eventually merge together into a cluster with a density

profile that decreases monotonically. Let us derive the power law index of this

profile.

Using our model we can calculate the relation between the densities and the

survivor masses before the objects rearrange themselves into clusters. For

density, take their at-formation value (ρn). We can express the index n as:

n =
ln(Msurv,n/M0)

ln(1 − ε) , (7.23)

n = − 1
3 ln λ

ln(ρn/ρ0), (7.24)

which leads to

d ln(Msurv,n/M0)
d ln(ρn/ρ0)

= − ln(1 − ε)
3 ln λ

= const . ≈ 0. (7.25)

Let us assume (for now) that after formation the objects rearrange themselves

to form clusters, while preserving the local volume density - i.e. the local

density (of stars) around a star does not change dramatically before/after

the re-arrangement. This is motivated by the fact that during mergers, tidal

shredding of an object with density ρ occurs at an orbital radius R, where

the mean density enclosed within R is approximately ρ. This means that the

amount of mass at different density levels must be the same as before the

rearrangement, and thus

d ln(Mcl/Mcl,0)
d ln(ρcl/ρcl,0)

=
d ln(Msurv,n/M0)

d ln(ρn/ρ0)
. (7.26)

Let us assume the relaxed cluster has a power-law density profile: ρcl ∝ Rβ−3.

Also, ε � 1 thus the right hand side of Eq. 7.25 is zero. This leads to

β

β − 3
= 0, (7.27)

thus β = 0, so the mass profile of a bound cluster that results from the assembly

of substructures formed in a scale-free fragmentation cascade is ρcl ∝ R−3.

We can repeat the same exercise while assuming that phase space density (ρp)
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is conserved instead of real space density, as per Liouville’s theorem. This is

only true, however, if ρp is resolved on infinitely fine scales, as elements of

higher phase space density effectively get stretched out and diluted in phase

space so that the final observed coarse-grained phase space density is generally

lesser than the initial (Lynden-Bell, 1967). However, we may still suppose that

our self-similarity condition means that the evolution operator on the coarse-

grained phase space density can only map an initially flat (dM/d ln ρp ∼ 0)

phase space distribution into another flat distribution.

We can approximate the phase space density as ρp ≈ ρ

σ3 where σ is the velocity

dispersion. Assuming that the collapsing clouds are virialized we can write

σ2
n =

GMn

Rn
=

GM0
R0
(1 − ε)nκnλ−n[κ(1 − ε)]−n/3, (7.28)

which leads to

ρp,n = ρp,0

(
λ3/2κ(1 − ε)

)−n
. (7.29)

From here we can formulate the surviving mass per phase density (similar to

Eq. 7.25):

d ln(Msurv,n/M0)
d ln(ρp,n/ρp,0)

= − ln(1 − ε)
−3

2 ln λ − ln κ − ln(1 − ε)
≈ 0, (7.30)

where, in the last step, we used the assumption that ε � 1. Since we are inter-

ested in the asymptotic case at large radii. The mass enclosed is approximately

converged (M ≈ const.) thus

σ2
cl(R) =

GM
R
∝ R−1, (7.31)

so we get

ρp,cl(R) ∝
Mcl(R)

R3

R−3/2 ∝ Rβ−3/2. (7.32)

After plugging into Eq. 7.26 and using Eq. 7.30 this yields

β

β − 3/2 = 0, (7.33)

which, once again, means that β = 0 leading to ρcl ∝ R−3.

Now, let us compare our prediction with observations. The observed brightness

profile of young star clusters is often parametrized using the EFF profile (Elson
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et al. 1987):

µ (r) = µ0

(
1 +

r2

a2

)−γ/2
, (7.34)

where µ0 is a constant, a is the cluster scale radius and γ is the power law

index of the outer profile. Because µ ∝ Σ ∼ ρR this represents an outer column

density profile with −(γ + 1) slope, so in this parametrization our prediction

is γ = 2. Observations young massive clusters, both within the Local Group

(Elson et al., 1987; Mackey & Gilmore, 2003a,b; Portegies Zwart et al., 2010)

and in extragalactic environments (Larsen, 2004; Ryon et al., 2015) have found

that typically γ ∈ [2, 4], with a median around 2.5 (see Fig. 7.6). Meanwhile

the density profile of dark matter halos is well fit by the NFW profile Navarro

et al. (1996) that simplifies to a ρ ∝ r−3 on large scales, corresponding to γ = 2.

In Grudić et al. (2017) we explore the physics of hierarchical cluster assembly,

and its imprint upon the density profiles of objects thus formed, in greater

detail.

7.4.5 Comparison with multi-physics simulations

In Figures 7.3, 7.4 and 7.6 we show that the predictions of our simple scale-

free model are in good agreement with the simulations of Grudić et al. (2016)

that follow the process of star formation in a molecular cloud. Our toy model

of the fragmentation cascade and these simulations represent two extremes of

approach to the problem of star formation: one seeks to minimize complexity,

whereas the other seeks to maximize realism by including a variety of pieces

of physics that could potentially be relevant. Under the forces of MHD and

gravity the star-forming clouds collapse into a complicated structure of dense

filaments (e.g. Collins et al., 2012) that is difficult to reconcile with an idealized

picture of fragmenting gas balls (e.g. Figure 7.1). The realistic ISM equation

of state with radiative cooling and stellar feedback (see Hopkins et al. 2017b

for details) leads to the formation of a multi-phase ISM, so the isothermality

we have assumed does not strictly apply.

Despite all of these complications the simulations and the toy model ultimately

arrive at the same scaling relations. The simulation follows hierarchical frag-

mentation over a significant dynamic range in which the process, despite all

the above complications, is roughly scale-free. Although real star-forming sys-

tems are more complicated than any simulation, this apparent robustness to

such complications suggests that the observed scalings could be (to first order)

explained as fundamental consequences of scale-free structure formation.
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Figure 7.6: The observed surface brightness profile slopes (using the profile of
Elson et al. 1987) of several stellar clusters from the LMC (Mackey & Gilmore,
2003a) and the SMC (Mackey & Gilmore, 2003b) along with the scale-free
prediction (dashed line). For reference we included the cluster population
produced in one of the detailed MHD simulations of Grudić et al. (2016). Both
observed and simulated clusters seem to have steeper profiles than predicted
by the scale-free model. This is due to the fact that γ ∼ 2 is only the limiting
case for an infinitely-extended hierarchical merger history (see Grudić et al.
2017 for more details).

7.5 Conclusions

In this paper we showed that there are universal scaling relations that generally

arise in scale-free models of structure formation with a large but finite dynamic

range and no correlation between scales. These relations are shared between

very different phenomena, including the formation of stars, protostellar cores,

clumps, giant molecular clouds, star clusters and even dark matter halos. De-

spite their differences all these processes can be approximately described by

the dimensionless version of the pressure-free Euler equation with self-gravity.

The only parameter of this equation is the virial parameter, which is of course

how we define gravitationally bound structures. Thus a hierarchical structure

building process would follow the same equation for all these systems on a wide

range of scales. This means that (to first order) the formation of these (very
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different) gravitationally bound structures produces the same scaling relations

for a wide range of physical quantities.

We demonstrate these universal scaling relations for a subclass of processes

that can be described as a fragmentation cascade (e.g. formation of molecular

clouds). We present a minimalist model of self-similar fragmentation with

which we show that any scale-free model with a large dynamic range where

the scales are uncorrelated (the fluctuations on different scales “don’t know

about each other”) is able to reproduce the following scaling relations:

• Mass functions : dN
d ln M ∝ M−1. In the scale-free regime we expect objects

of all sizes to follow this scaling relation. For the stellar initial mass func-

tion (IMF, see Bastian et al. 2010; Offner et al. 2014), the protostellar

core mass function (CMF, see Sadavoy et al. 2010), the molecular clump

mass function (see Johnstone & Bally, 2006), the giant molecular cloud

mass function (GMC mass function, see Rosolowsky 2005), the star clus-

ter mass function (see Bik et al., 2003) and the dark matter halo mass

function (Press & Schechter, 1974) this regime is observed over a wide

dynamic range above/below some minimum/maximum scale where our

assumptions are violated. This relation means that there is a comparable

amount of mass in objects at all mass scales.

• Density and column density PDF :
(

dV
d ln ρ

)
observ

∝ ρ−1 and dA
d ln Σ ∝ Σ−1.

The observed column density PDFs of star forming molecular clouds

exhibit a power-law tail consistent with this prediction (see Schneider

et al., 2015a), which is built up by the hierarchical fragmentation of

clouds. This is a scale-free process as long as we are in the isothermal

phase of the ISM. The scaling can be understood as having an equal

amount of mass at all density scales. Note that our model does not

account for observational biases (e.g. cloud lifetimes) which can lead to

systematic differences with observations.

• Correlation functions : ξ3D ∝ r−2 and ξ2D ∝ r−1. Note that unlike the pre-

dictions above, this depends on the form on the fragmentation criterion

so it is not completely generic. But if we assume that the criterion is set

by gravity (as it is in all the above cases), this provides a good fit to the

observed behavior of the stellar correlation function at larger scales (e.g.

Hennekemper et al., 2008; Kraus & Hillenbrand, 2008). Similarly the

observed protostellar core correlation function is roughly consistent with
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this power-law behavior (see Stanke et al., 2006). For the correlation

function of star clusters, this prediction agrees well with observations

on scales smaller than the galactic scale height, above which the prob-

lem changes dimensionality (see Grasha et al., 2017). For the case of

DM halos this prediction is consistent with the measured correlation on

intermediate scales (Baugh, 1996; So ltan & Chodorowski, 2015) as the

finite age of the Universe causes the very large scale structures to reflect

the primordial initial conditions. A possible interpretation of this slope

is that it implies a fractal dimension of unity which further implies fila-

mentary structures. Note that this is not generally true, for example our

fragmentation model of Sec. 7.3 or even the Cantor-dust produces similar

correlation functions, while none of them exhibit filamentary behavior.

• Cluster mass profile: ρcl ∝ R−3 (or γ = 2 using the EFF fitting function

from Elson et al. 1987), if we further assume that the process responsible

for arranging objects into clusters is also scale-free. This is a somewhat

shallower slope than what is observed for star clusters (see Mackey &

Gilmore, 2003a,b), because γ ∼ 2 is only the limiting case for an infinitely

extended hierarchical merger history (see Grudić et al. 2016 for more

details). This scaling can be understood as the cluster having equal

mass at each distance scale from its centre, as a result of free mixing.

We wish to emphasize that these scaling relation are not unique to the frag-

mentation cascade paradigm. Any scale-free structure building process that

satisfies the requirements of Sec. 7.2 would recover them. The reader should

also note that these universal scaling relations cannot explain all observed scal-

ing laws. For example, the linewidth-size and mass-size relations in molecular

gas (σ2 ∝ R and M ∝ R2 respectively, see Bolatto et al. 2008; Larson 1981;

Scoville et al. 1987 for details) require additional physics. One possible can-

didate is supersonic turbulence, which naturally reproduces the linewidth-size

relation (Kritsuk et al., 2013) due to its power-spectrum (Murray, 1973). If

one further assumes that the clouds are virialized, it naturally follows that

GM/R ∼ σ2 so M ∝ R2.

It is easy to see that the arguments in this paper are invariant under time

reversal transformation (in other words they don’t rely on an “arrow of time”).

For the toy model presented in Sec. 7.3, this means that small objects merge

to form ever bigger ones. This means that the predicted scalings should be

present not only in hierarchical fragmentation but in the time-reversed process
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of hierarchical merging as well. This is the growth mechanism of galaxies and

dark matter halos (Kauffmann et al., 1993; Lacey & Cole, 1993).

Our simple arguments provide a generic, natural reason why so many different

models, with seemingly very different physics, have been able to reproduce

some or all of these scaling relations: the relations do not depend on the

detailed physics, so long as it is scale-free. It follows that these scaling relations

cannot be used to observationally differentiate theories (i.e. almost any theory

can reproduce the IMF slope) because to first order they all give the same

answers. One should instead test models against unrelated scaling laws (e.g.

linewidth-size relation, see above) or investigate the physical scale where the

model predicts the scale-free assumption to break down (e.g. IMF turnover)

and compare them to observations in that regime.

7.A Fractal Dimension and the Correlation Function

In this paper we use the fractal D dimension, which we define as

D
d ln N(r)

d ln r
, (7.35)

where N(r) is the average number of objects within r distance of a reference

object.

In isotropic systems the fractal dimension is related to the ξd(r) d dimensional

correlation function, for which we use the standard definition of

Pd(r, dr) = N(r, dr)
n, dVd(r)

1 + ξd(r) = lim
dr→0

Pd(r, dr), (7.36)

where N(r, dr) is the average number of objects whose d dimensional distance

from a reference object is ∈ [r, r + dr], n is the density of objects, Vd(r) is the

volume of a d-sphere so dVd ∝ rn−1dr.

Assuming ξd � 1 we get

ξd(r) ∝ lim
dr→0

N(r, dr)
rd−1dr

= r1−d dN(r)
dr

=
dN(r)
d ln r

r−d . (7.37)

Let us also assume that N(r) is a power-law (this is true in scale-free systems
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like the ones in this paper), which yields

ξd(r) ∝ rD−d . (7.38)
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C h a p t e r 8

ISOTHERMAL FRAGMENTATION: IS THERE A LOW
MASS CUT-OFF?

Guszejnov, D., Hopkins, P. F., Grudić, M. Y., Krumholz, M. and Federrath,

C. 2018. To be submitted to MNRAS.

Abstract

The evolution of self-gravitating clouds of isothermal gas forms the basis of

many star formation theories. Therefore it is important to know under what

conditions such a cloud will undergo homologous collapse into a single, massive

object, or will fragment into a spectrum of smaller ones. And if it fragments, do

initial conditions (e.g. Jeans mass, sonic mass) influence the mass function of

the fragments, as predicted by many theories of star formation? In this paper

we show that the relevant parameter separating homologous collapse from

fragmentation is not the Mach number of the initial turbulence (as suspected

by many), but the infall Mach numberMinfall ∼
√

GM/(Rc2
s ), equivalent to the

number of Jeans masses in the initial cloud NJ . We also show that fragmenting

clouds produce a power law mass function with slopes close to the expected -2

(i.e. equal mass in all logarithmic mass intervals). However, the low mass cut-

off of this mass function is entirely numerical; the initial properties of the cloud

have no effect on it. In other words, if Minfall � 1, fragmentation proceeds

without limit to masses much smaller than then initial Jeans mass.

8.1 Introduction

The evolution of a gravitationally bound isothermal fluid is the “base model”

for a large number of astrophysical phenomena, including the formation of

stars. In the case of star formation the highly efficient cooling of molecular gas

produces an approximately isothermal behaviour on a wide range of scales,

so many “turbulent fragmentation” theories of star formation are based on

the interaction between isothermal turbulence and gravity (e.g. Hennebelle &

Chabrier, 2008, 2009, 2013a; Hopkins, 2012a; Padoan & Nordlund, 2002). Of

course this neglects a huge range of physics (e.g. radiation, magnetic fields,

optically thick cooling), but clearly one would like to understand this nominally

simple case before considering additional physics.

Isothermal turbulence with gravity is inherently scale-free (Krumholz, 2014;
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McKee & Ostriker, 2007a), so explaining the turnover in the initial mass func-

tion of stars (IMF) requires a mass scale from either additional, non-scale-

free physics (e.g. protostellar heating, see Krumholz, 2011) or from initial

conditions. The specific set of “turbulent fragmentation” models mentioned

here all fall into the latter category: they predict that the initial turbulent

properties imprint a mass scale (Msonic, the sonic mass) where the mass dis-

tribution starts deviating from the scale-free result (a power-law). However,

other works (including some of the same authors) have argued that in a scale-

free fragmentation cascade the initial conditions are quickly “forgotten” by the

system (Guszejnov et al., 2016, 2017a) so the turnover in the IMF can only

come from additional physics (e.g. Bonnell et al., 2006; Jappsen et al., 2005b;

Larson, 2005).

There has been significant effort to numerically verify these claims. Most

simulations find that “supersonic clouds” (we will define this rigorously below)

fragment into a spectrum of smaller objects (e.g. Dobbs et al., 2006; Goodwin

et al., 2004; Murray et al., 2015; Walch et al., 2012a) while “subsonic clouds”

undergo homologous collapse (e.g. Gong & Ostriker, 2009, 2011) similar to the

analytical Larson-Penston solution (Larson, 1969; Penston, 1969). Of the few

convergence studies for the fragmenting case, some report non-convergence up

to the highest probed numerical resolution (see e.g. Federrath et al., 2017;

Kratter et al., 2010; Lee & Hennebelle, 2017; Martel et al., 2006), but a couple

have claimed convergence (Gong & Ostriker, 2015; Haugbølle et al., 2017) in

the mass function (despite the fact that their absolute resolution is comparable

or lower than the studies claiming non-convergence).

It should be noted that there exists an analytic solution for a specific scenario

of isothermal collapse, Inutsuka & Miyama (1992) showed that overdense cylin-

ders collapse to infinite line density faster than they can fragment, and that

systems that form such filaments (e.g. a slowly rotating Gaussian cloud, as

in the widely used code test introduced by Boss 1991) should therefore not

fragment to infinitely small scales. Still, it is not at all clear how these results

generalize to other initial conditions.

Therefore, in this paper we use extremely high resolution simulations, reaching

a maximum density resolution orders of magnitudes higher than the previous

studies, to follow the evolution of a self-gravitating isothermal ball of gas, in

order to explore the following questions:
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• What are the conditions which determine when a cloud will fragment vs

collapse homologously?

• Do the initial conditions (e.g. sonic mass, Jeans mass) imprint a mass

scale into the mass function of the final fragments?

• Is there a converged low-mass cut-off for an isothermal fragmentation

cascade, or does it proceed “indefinitely”?

Our paper is organized as follows. Sections 8.2+8.3 detail the equations solved

and the numerical methods. Section 8.4 shows our results. We also detail a

number of additional numerical tests in Appendix 8.A.

8.2 Isothermal Collapse

An isothermal, self-gravitating fluid is completely described by the following

closed set of equations:

∂

∂t
(ρ) + ∇ · (ρv) = 0,

∂

∂t
(ρv) + ∇ · (ρv ⊗ v) = −∇P − ρ∇Φ, (8.1)

where ρ and v are the usual fluid density and velocity, while P = c2
s ρ is the

thermal pressure (cs = const. is the isothermal sound speed) and Φ is the

gravitational potential (∇2Φ = 4πGρ, where G is the gravitational constant).

By dividing out the characteristic scales of the system (size: L0, density: ρ0

and sound speed: cs) we can make these equations dimensionless:

∂

∂ t̃
(ρ̃) + ∇̃ · (ρ̃ṽ) = 0,

∂

∂ t̃
(ρ̃ṽ) + ∇̃ · (ρ̃ṽ ⊗ ṽ) = −∇̃ρ̃ − αρ̃∇̃Φ̃, (8.2)

where t̃ ≡ tcs/L0, ∇̃ ≡ L0∇ and Φ̃ ≡ Φ

Gρ0L2
0
, while α ≡ c2

s /(Gρ0L2
0) is the

(thermal) virial parameter. It is useful to introduce the Mach number M ≡
1
3 〈| |v| |2/c2

s 〉 = 〈| |ṽ| |2〉. In other words: by introducing the virial parameter α

and the Mach number M we normalize the density and velocity fields (e.g.

Gaussian velocity distribution, dispersion set by M). In other words, the

dynamics are entirely determined by the two dimensionless parameters α and

M, which are fixed by the initial conditions. The only way to imprint scales

on the problem is therefore through these ICs.
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8.2.1 Usual stability measures

When discussing the stability of an isothermal ball of gas the literature uses a

large number of different quantities to characterize these systems. The most

common is the virial parameter, which is the ratio of energy in random motion

over the potential energy. In our case

α ≡ Erandom,kin

Epot
∼

Mcloud

(
3
2 c2

s +
1
2 〈| |v| |2〉

)
3
5

GM2
cloud

Rcloud

=
5Rcloudc2

s (1 +M2)
2GMcloud

. (8.3)

We can similarly define the thermal virial parameter that only takes thermal

motion into account, which leads to

αthermal ≡
Ethermal

Epot
∼

5Rcloudc2
s

2GMcloud
=

α

1 +M2 . (8.4)

Since the behaviour of fluids drastically changes when they become super-

sonic, another measure is the infall Mach number, the characteristic velocity

of infalling material relative to the sound speed, which in our case yields

Minfall ≡
vinfall

cs
∼

√
1
3

Epot
Mcloud

cs
∼

√
GMcloud

5Rcloudc2
s
= (2αthermal)−1/2 . (8.5)

Since the collapse of such isothermal clouds is mainly precipitated by the

Jeans-instability, another common measure of stability is the number of Jeans

masses in the initial cloud

NJ ≡
MJeans
Mcloud

∼
(

3GMcloud

4πRcloudc2
s

)3/2
=

(
15
4π

)3/2
M3

infall. (8.6)

In the case of turbulent fragmentation the initial turbulence has a characteristic

mass scale, the sonic mass Msonic. To find it let us suppose that the cloud

virializes to α = 1 as energy is transferred from gravity to turbulent motion.

The characteristic size scale of turbulence is the sonic length Rsonic. This is

where turbulent dispersion becomes supersonic, so

Rsonic ≡ Rcloud
c2

s

〈| |vturb | |2〉
=

Rcloud

M2 ∼
R

2GMcloud
5Rcloudc2

s
− 1

, (8.7)
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where we used the supersonic linewidth-size relation (v2
turb ∝ R). Msonic is the

mass of a self-gravitating ball of gas with Rsonic radius (see Hopkins 2013c), so

Msonic ≡
2π2

3
c2

s Rsonic

G
. (8.8)

With Eqs. 8.5, 8.7 and 8.8 we can formulate the number of sonic masses in

the initial cloud

NS ≡
Mcloud
Msonic

∼ 15
2π2M

2
infall

(
2M2

infall − 1
)
≈ 15

2π2M
4
infall. (8.9)

Note that αthermal, NJ and NS can be all expressed with the infall Mach number

(see Eqs. 8.4-8.9) so we use only Minfall as a proxy for all of them for the

remainder of this paper.

8.3 Simulations

For our simulation we use the GIZMO code (Hopkins 2015)1, with the mesh-

free Godunov “MFM” method for hydrodynamics (Hopkins, 2015). Note that

we get similar results with other numerical schemes (e.g. SPH), see Appendix

8.A.3. Self-gravity is included with fully-adaptive force and hydrodynamic

resolution - no minimum force length is enforced. Since we are simulating an

isothermal system with only self-gravity, the problem is scale-free and we can

work in code units of L = 2, cs = 1, G = 1, where L is the initial size of the

box, cs is the sound speed of the gas and G is the gravitational constant. We

start by performing an isothermal driven turbulent box simulation without self-

gravity (e.g. Federrath et al., 2010b; Price & Federrath, 2010; Schmidt et al.,

2009) in which the driving force is realized as an Orstein-Uhlenbeck process

following Bauer & Springel (2012), and consists of an equal mix of compressive

and solenoidal modes. After several crossing times the root-mean-square Mach

number saturates toM ∼ 1, and ρ̃ and ṽ are extracted from the simulation to

construct the initial conditions of the simulation with self-gravity. These are

then rescaled in the following way:

• Velocities are rescaled so that 〈| |ṽ| |2〉 = 3M2.

• The average density 〈ρ〉 is rescaled to satisfy Eq. 8.3.

• The relative density fluctuations are rescaled to satisfy 〈| ln ρ̃|2〉 = ln
(
1 + b2M2)

(see Federrath et al., 2008), where b = 1/2 is the ratio of compressive

1http://www.tapir.caltech.edu/~phopkins/Site/GIZMO.html

http://www.tapir.caltech.edu/~phopkins/Site/GIZMO.html
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and solenoidal driving in our initial condition. Effectively this means

ρ = f
(
1 − 〈ρold〉

ρold

)
〈ρ〉 + 〈ρ〉, where 〈ρ〉 is set in the previous step and f is

the appropriate scaling factor.

Note that in these initial conditions the density and velocity fields are not

fully self-consistent. In Appendix 8.A.2 we show that using proper turbulent

initialization does not affect our results. We also show that our results are

insensitive to our choice of decaying or driven turbulence during collapse.

The simulation starts out with Mcloud/∆m gas particles, where ∆m is our mass

resolution (see Table 8.1 for details). These particles evolve (now with fully-

adaptive self-gravity) following a discretized version of Eq. 8.2 (see Hopkins,

2015). They are turned into collapsed objects (sink particles) if they satisfy

the following criteria, motivated by Federrath et al. 2010d:

1. They are locally self-gravitating at the resolution scale using the criteria

from Hopkins et al. 2013a.

2. The mean density of this structure exceeds some ρmax, at this point the

thermal Jeans mass becomes unresolved following the Truelove criterion

(Truelove et al., 1997).

3. They are part of a converging flow (∇ · v < 0).

4. They are the densest of all particles within the stencil of interacting

hydrodynamic cells, and there is no other sink particle within the kernel

radius enclosing these interacting cells.

These sink particles can grow by accreting gas from their surroundings if the

gas is gravitationally bound to the sink, within a hydrodynamic stencil, and

not tightly bound to any other sink particle. In Appendix 8.A.4 we explore

the effects of our choice of sink particle parameters.

Due to finite resolution our simulation cannot resolve the evolution and frag-

mentation of arbitrarily small structures. This means that we set our mass

resolution to the Jeans mass corresponding to ρmax (based on Truelove et al.,

1997), so
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MJeans(ρmax) ∼ ∆m → ρmax ∼
c6

s

G3∆m2 ,

ρmax ∝ Mcloud(α)−2
(
∆m

Mcloud

)−2
∝

(
∆m

Mcloud

)−2
α2. (8.10)

In this paper we examine the effects of varying the two physical parameters

(the virial parameter α and the initial turbulent Mach number M) on the

evolution of an isothermal cloud. To ensure that our results are physical we

carry out a resolution study by varying ∆m
Mcloud

. A number of further tests for

numerical effects are also carried out. They are detailed in Appendix 8.A.

All simulations (with one exception noted) are run until the gas is largely

exhausted and the sink particle IMF has remained stable for at least 2 cloud

dynamical times.

8.4 Results

We carried out a suite of simulations in the α-M parameter space (our fiducial

resolution is ∆m/Mcloud = 4 × 10−6) and found two distinct modes of evolution

(see Fig. 8.1 for surface density snapshots and Fig. 8.2 for statistics). In the

first case the collapse is close to homologous (most of the mass ends up in

several massive objects) while in the second case the cloud fragments during

collapse, forming a spectrum of low mass objects (most of the mass in low

mass objects).

The mass spectrum resulting from fragmentation is the well known dN/dM ∝
M−2 distribution (see Fig. 8.2), which means equal mass at each mass scale (see

Guszejnov et al. 2017a and references therein). Note that this mass spectrum

is present even in the case of homologous collapse but only a small fraction of

the total mass is bound in these low mass objects.

As Fig. 8.3 shows, there is no clear boundary in either the virial parameter α

or the Mach numberM between the two regimes. Instead it is the infall Mach

numberMinfall that determines the mode of collapse2. The transition between

homologous collapse and fragmentation occurs around Minfall ≈ 3 (see Fig.

8.4). This boundary roughly corresponds to the point where the characteristic

velocity of the infalling material becomes highly supersonic. This leads to

2Note that the number of initial Jeans and sonic masses as well as the thermal virial
parameter are equally good predictors, because they are all trivial function of Minfall, see
Sec. 8.2.1 for how they relate.
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Figure 8.1: Typical density maps for isothermal fragmentation (left) and ho-
mologous collapse (right). On each figure the colormap is stretched over a
2 dex interval. In the fragmenting case (left) shocks from supersonic infall
create dense, filamentary structures with high density “beads” embedded in
them. Many of these structures are self-gravitating and undergo gravitational
collapse, either forming sink particles or further fragmenting into even smaller
objects. In case of homologous collapse there is only a single high density
region at the centre of the cloud, which accretes most of the gas.

shocks which in turn lead to the formation of high density subregions that are

self-gravitating and collapse on their own, causing the fragmentation of the

cloud.

8.4.1 Effect of Resolution on the Mass Distribution

In the numerical study of isothermal turbulence the dynamic range (resolution)

of the simulation plays an important role. If the dynamic range is too small,

a multitude of phenomena might not manifest and the results are obscured

by artificial edge effects. Since we are primarily interested in the spectrum

of self-gravitating objects, let us consider the mass of the smallest resolvable

self-gravitating object (∆m) in a generic simulation of isothermal Jeans frag-

mentation with N particles/grid points. We find that

• for fixed mass element (Lagrangian) codes: ∆m/Mcloud ∼ N−1, trivially.

• for fixed volume element (Eulerian) codes: since there is a minimum grid

size ∆x the smallest resolvable structure has a mass of ∆m ∼ MJeans(∆x) ∼
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Figure 8.2: The final mass distribution of sink particles in isothermal gravita-
tional collapse for different virial parameters α and fixed initial turbulent Mach
number of M = 1, demonstrating the two modes of isothermal collapse. The
top row shows the number of particles per mass bin (IMF) while the bottom
row shows the total mass of sink particles in each (logarithmic) mass bin. The
horizontal axis is normalized by the mass of the initial cloud. In the α = 0.6
case (left, blue) most of the mass ends up in a single object comparable in mass
to the initial cloud (homologous collapse). Meanwhile, in the α = 0.06 case
(right, red) most of the mass ends up in objects with much lower masses than
the initial cloud (fragmentation). In both cases the low mass end roughly has
equal mass in each logarithmic bin (this means a -2 power-law slope for the
IMF), in agreement with theoretical predictions (e.g. Guszejnov et al., 2017a).
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Figure 8.3: Fraction of the total cloud mass that ultimately ends up in massive
fragments (Msink > 0.1Mcloud) for different initial virial parameters and initial
turbulent Mach numbers (blue: most of the mass goes undergoes homologous
collapse, red: most of the mass ends up in small fragments). It is clear that
there is no specific α or initial turbulent M value separating the two modes
of collapse. However, the boundary is well fitted byMinfall = 3 (defined in Eq.
8.5), plotted as a solid black line.

c3
s

Gρmax
. Using ∆m ∼ ρmax∆x3 we get ∆m/Mcloud ∼ c2

s

GMcloud
∆x ∝ N−1/3.

This shows that fixed mass element codes (like the Meshless-Finite-Mass scheme

we are using) are (as expected by design) inherently superior at resolving mass

distributions in Jeans collapse for a given number of resolution elements be-

cause their low mass cut-off scales as N−1 compared to the N−1/3 for fixed

volume codes (see Table 8.1 for specifics), provided they use no minimum soft-

ening but allow structures to get as dense as needed to reach the Truelove

criterion. It should be noted that although adaptive mesh refinement (AMR)

codes follow volume elements (thus are Eulerian by nature), their computa-
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Figure 8.4: Fraction of the total cloud mass that ultimately ends up in massive
fragments (Msink > 0.1Mcloud) as a function of the infall Mach-number (see Eq.
8.5) or equivalently the number of initial Jeans masses (see Eq. 8.6). We
define massive fragments as having at least 10% of initial cloud mass. Below
this value (dashed line) we plot the mass of the most massive sink particle
relative to the cloud. There is a clear transition aroundMinfall ∼ 2−4 between
homologous collapse and fragmentation, we fitted generalized logistic functions(

f (x) =
(
1 + e(x−x0)/dx

)−ν)
to the data (solid lines) to make the transition more

apparent (no line was fitted at the highest resolution due to the low number
of data points, but they lie on the trend line predicted from lower resolution
runs). As we go to higher resolutions the transition becomes sharper. Note
that the scatter arises from the stochastic nature of the initial conditions (e.g.
random velocity field).
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∆m/Mcloud Nparticle ∆x/Rcloudαthermal ρmax/(ρcloud
0 α3

thermal)
∆tmin
tcloud
dyn,0

α
3/2
thermal Neffective

Euler

2 × 10−4 (16)3 9.5 × 10−4 1.2 × 106 1.8 × 10−4 (4200)3
3 × 10−5 (32)3 1.2 × 10−4 7.5 × 107 2.3 × 10−5 (3.3 × 104)3
4 × 10−6 (64)3 1.5 × 10−5 4.8 × 109 2.9 × 10−6 (2.7 × 105)3
5 × 10−7 (128)3 1.9 × 10−6 3.1 × 1011 3.6 × 10−7 (2.1 × 106)3
6 × 10−8 (256)3 2.3 × 10−7 2.0 × 1013 4.5 × 10−8 (1.7 × 107)3
7 × 10−9 (512)3 2.9 × 10−8 1.3 × 1015 5.6 × 10−9 (1.4 × 108)3

Table 8.1: Resolution parameters: 1) Fractional mass resolution ∆m/Mcloud,
2) Spatial resolution ∆x/Rcloudαthermal where ρ = ∆m/δx3 becomes high enough
that the corresponding Jeans mass becomes unresolved (< ∆m), 3) Highest
resolvable density ρmax/(ρcloud

0 α3
thermal), the corresponding Jeans mass is ∆m,

4) Smallest resolved time scale ∆tmin/tcloud
dyn,0α

3/2
thermal where ∆t = ∆x

cs
and 5) the

number of grid points Neffective
Euler required in an Eulerian simulation (satisfying

∆x = ϕ∆xgrid from Truelove et al. 1997, where ϕ ∼ 1). Note that the CPU
cost of these calculations (at best) scale as Nparticle log Nparticle × Ntimesteps which
means going up one level in resolution (e.g. from 643 to 1283) increases the
computational cost by roughly a factor of 100.

tional cost is similar to our Lagrangian scheme in this specific problem3.

Fig. 8.5 shows that the mass distribution in the fragmenting case is close to a

power-law with a low mass cut-off set by the mass resolution of the simulation4.

In the homologous collapse case the distribution of low mass fragments exhibit

a similar behaviour, although the majority of the mass is still contained in

several high mass fragments (see Fig. 8.2 for reference). This appears to

contradict some claims in the literature (e.g. Gong & Ostriker, 2015; Haugbølle

et al., 2017) that the mass spectrum peak converges around the sonic mass or

some other mass scale set by initial conditions. We believe the discrepancy is

related to several issues.

First, some authors are using fixed-grid Eulerian simulations (e.g.Gong & Os-

triker 2015 for which even the highest resolution calculations cannot resolve the

fragmentation of substructures due to the unfavourable ∆m ∝ N−1/3 scaling5.

3In isothermal collapse the fraction of volume at each AMR refinement level that needs
further refinement is roughly constant due to scale-freeness of the problem. This, combined
with the increasing number of time steps at higher refinement levels, ultimately lead to a
similar computational costs as our Lagrangian scheme.

4Note that the highest resolution run (∆m/Mcloud = 7×10−9) was not run until completion
due to the CPU cost that arises from modelling tightly bound binaries. At this point the
system has turned only about 20% of its mass into sink particles, so we expect the IMF to
evolve (e.g. accretion should make it less bottom heavy), but the low mass cut-off is already
established.

5To reach the resolution of our ∆m/Mcloud = 6 × 10−8 simulation ≈ 4 × 1021 grid points
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Figure 8.5: The mass distribution of sink particles (IMF) in a fragmenting
cloud (Top: α = 0.06, M = 1, Bottom: α = 0.6, M = 1) for different mass
resolutions. The dashed lines mark mass scales from initial conditions (sonic
mass Msonic and Jeans mass MJeans). For clarity the delta-function-like peaks
around unit relative mass were removed from the right figure (see Fig. 8.2 for
an example). Lower resolution runs are not included in the right figure as they
only produced a single sink particle at unit relative mass. It is clear that the
peak of the distribution is set by the resolution parameter ∆m/Mcloud, initial
conditions imprint no scales into the final result. This means that for the
infinitely well-resolved case we would get an infinite fragmentation cascade.
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Alternatively, it is possible that these simulations start from initial conditions

that are reminiscent of the “homologous collapse” case (e.g. having substruc-

tures in the initial density field that undergo homologous collapse), and only

small fraction of mass undergoes runaway fragmentation. Although this run-

away process is unresolved, the mass function appears converged as most of

the mass is bound in objects well above the resolution limit. In some cases

authors use AMR codes and claim convergence, but the data is not convincing

(e.g. see Figs. 4-6 in Haugbølle et al. 2017, where the IMF peak roughly

follows the predicted N−1/3 trend at higher resolutions). Finally, there is sub-

stantially greater numerical diffusivity in highM flows, due to lack of Galilean

invariance (Springel & Hernquist, 2002), which is well-known to generate spu-

rious heating and suppress small-scale structures in the simulation of “cold”

gravitational collapse (see e.g. Hopkins, 2015).

8.5 Conclusions

We investigate the evolution of self-gravitating, isothermal gas with high reso-

lution Lagrangian hydrodynamic simulations. We identify two distinct modes

of collapse:

1. Homologous collapse (most of the mass ends up in one or a few massive

objects)

2. Runaway fragmentation (most of the mass ends up in a spectrum of low

mass fragments, which continues until the resolution limit)

The mode of collapse is set by the infall Mach number Minfall ≡ vinfall
cs
∼
√

GM
R

cs
(equivalent to the initial number of Jeans masses in the cloud), not the ini-

tial virial parameter or the Mach number of the initial turbulent dispersion.

The difference in behaviour is due to sound waves “smoothing out” density

perturbations when the infall is subsonic leading to a scenario similar to the

well-known solutions of isothermal collapse (e.g. Larson, 1969; Penston, 1969;

Shu, 1977).

In both cases we found that the mass distribution of final objects develops a

power-law behaviour at low masses, close to dN/dM ∝ M−2, in agreement with

theoretical expectations (e.g. Bonnell et al., 2007; Elmegreen, 1997; Hennebelle

& Chabrier, 2008; Padoan et al., 1997). Note that in the case of homologous

would be needed, far exceeding the capabilities of even large computer clusters.
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collapse most of the mass is actually in several massive fragments that lie

outside this power-law regime but the remaining mass which does not end up

in the“primary” scale sinks forms a power-law distribution, with no lower limit

down to the resolution scale.

We conducted a resolution study to examine whether the low mass cut-off of

the power-law in the mass distribution is determined by the initial conditions

of the cloud (e.g. its virial parameter or initial turbulent properties) or by mass

resolution. We found that there is no convergence in the low-mass spectrum

that appears in either mode of collapse. In other words: the fragmentation

goes well below the initial Jeans mass, down to the mass resolution. This

agrees well with several studies (e.g. Federrath et al., 2017; Kratter et al.,

2010; Lee & Hennebelle, 2017; Martel et al., 2006). However, our results and

these others do appear to contradict some others in the literature. We believe

the discrepancy is explained by different simulation methods and the much

wider dynamic range probed in this study.

It is a common argument that subsonic structures don’t fragment so the pop-

ulation of such structures (e.g. cores in star formation), whose characteristic

mass is set by the large scale turbulent properties (e.g. sonic mass, see Hen-

nebelle & Chabrier 2008; Hopkins 2012b), influences the final mass distribu-

tion. This is not the case as these structures form in a larger, supersonic cloud

that forms supersonic substructures as well. These substructures have differ-

ent turbulent properties so they spawn a population of subsonic fragments

different from their parent. In the end this cascade washes out any effects the

initial conditions might have over the low mass end of the mass spectrum.

Our results show that an isothermal fragmentation cascade has to be termi-

nated by additional physics (e.g. breakdown of scale-free assumption at high

densities); the initial conditions (e.g. sonic mass) imprint no mass scale in the

final mass distribution. This means that star formation models that tie the

IMF peak to initial turbulent properties (e.g. Hennebelle & Chabrier, 2008;

Hopkins, 2012a) need to be modified.

More broadly, these results provide insight into the physical character of

isothermal gravito-turbulent fragmentation: it is a self-sustaining process, able

to continuously generate enough power in the density field on the smallest

scales to drive further fragmentation. The requisite energy to drive these

small-scale density perturbations must be produced by local gravitational col-

lapse, in a manner that is decoupled from energy injection at larger scales.
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This is a very different picture from the classical Kolmogorov energy cascade,

in which all kinetic energy originates at large scales and cascades to small

scales, with none generated at intermediate scales. Hence self-gravity alters

isothermal turbulence in a fundamental way. It follows that any model of the

ISM based upon the properties of non-self-gravitating isothermal turbulence

will fail to describe the internal dynamics of the self-gravitating objects that

form.

8.A Additional Numerical Tests

8.A.1 Effects of perturbed initial conditions

Due to the resource intense nature of the simulation, only one initial realization

of the initial conditions (e.g. the specific density field) was simulated for a given

resolution, virial parameter α and Mach number M in Fig. 8.3. To test for

the magnitude of stochastic effects in different realizations (since the system is

chaotic) we consider an experiment where we follow the evolution of 5 different

random realizations with the same global Mach number and virial parameter.

We also included a set where we added Gaussian noise to the position and

velocity of the initial gas particles. Fig. 8.6 shows that the mass distribution

of sink particles (IMF) is qualitatively unchanged by these experiments.

8.A.2 Effects of turbulent driving

The simulations mentioned in the main text include no external driving for

turbulence as this 1) simplifies the problem and decreases the number of de-

grees of freedom, and 2) corresponds to a growing body of literature suggesting

that turbulence in clouds is driven primarily by their own self-gravity, not an

external cascade (Ballesteros-Paredes et al., 2011a; Ibáñez-Mej́ıa et al., 2016;

Murray et al., 2015; Robertson & Goldreich, 2012a). However, it is important

to check whether this alters our results. To investigate the effects of turbu-

lent driving we carried out several simulations where the initial conditions are

generated by driving the turbulence for several dynamical times without self-

gravity, then turning on gravity (as in e.g. Schmidt et al. 2009). Note that

unlike the simulations in the main text in these cases the density and velocity

fields in the initial conditions are self-consistent with the driving and initial

Mach number. Fig. 8.7 shows that turbulent driving has no qualitative effects

on the resulting IMF.
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Figure 8.6: The mass distribution of sink particles (IMF) for 5 different sim-
ulations of clouds, each with the same initial α = 0.06 and turbulent Mach
number of M = 1, but the ICs are drawn randomly from different times in a
turbulent boy simulation (in other words, these are different “realizations” of
the ICs). Points show the median and error bars the 80% inclusion interval of
the sink particle IMF for different realizations. In a second set of simulations
we added a random Gaussian perturbation to the initial position and velocity
of the gas particles. The IMF shape is is qualitatively consistent for different
realizations even if we add significant perturbations onto it.

8.A.3 Effects of the hydrodynamic solver

As GIZMO is an inherently multi-method code, we can re-run several simula-

tions with different hydrodynamics schemes, but otherwise identical physics.

We compare:

• The Meshless Finite-Mass (MFM) method (Hopkins, 2015), a Lagrangian,

finite volume, second order, Godunov method (our default in the text).

• The “Pressure-Energy” formulation of smoothed particle hydrodynamics

(SPH) (Hopkins, 2013b), which has various improvements over the origi-

nal GADGET“Density-Entropy” formulation it is derived from (Springel

& Hernquist, 2002).
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Figure 8.7: The mass distribution of sink particles (IMF) for a cloud with
initial α = 0.5 and M = 4. We compare our fiducial case of non-driven (but
still self-gravitating) turbulence with scenarios with different types of turbulent
driving. It is clear that the external driving has little to no effect on the final
distribution, regardless of the driving method.

Although both are Lagrangian methods, the two work quite differently. In

MFM, inter-cell fluxes are the obtained by solving a Riemann problem across

each effective face between neighbouring cells in such a way that mass fluxes

cancel and the cells are moved with the local fluid velocity. In SPH, effec-

tive forces between interacting neighbour particles are derived from a discrete

particle Lagrangian involving the local fluid properties reconstructed from a

kernel density estimator. Despite these differences, we found that our choice

of hydro solver these has no qualitative effect on our results (see Fig. 8.8).

8.A.4 Effects of the sink particle scheme

In our simulations sink particles are allowed to merge in order to avoid the

spawning of spurious sinks, which can significantly affect their mass distribu-

tion. Two sink particles are allowed to merge if the following criteria are met

(based on Federrath et al. 2010d):
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Figure 8.8: The mass distribution of sink particles (IMF) using Meshless
Finite-Mass (MFM) and Smoothed-Particle Hydrodynamics (SPH) schemes.
The predicted IMF is independent of the details of the hydrodynamics method.

1. Both are in the same interacting hydrodynamic element.

2. They are gravitationally bound.

3. Their epicentric radius is smaller than 3 times the gravitational force

softening and 10−4Rcloud.

To test whether this prescription has any effect on our results we run several

simulations where we forbid sink particle mergers. Fig. 8.9 shows that allowing

sink particles to merge affects their final mass distribution by decreasing the

number of sinks at the resolution limit and thus shifting the peak to a slight

higher mass. Overall, it has no qualitative effect on our results as the low mass

cut-off is still determined by the mass resolution.
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Figure 8.9: The mass distribution of sink particles (IMF), comparing the case
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role.
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Kereš D., Quataert E., 2016b, MNRAS, 456, 2140

Ma X., Hopkins P. F., Feldmann R., Torrey P., Faucher-Giguère C.-A., Kereš
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