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A~TRACT 

The neurophysiological response properties of single neurons were studied 

quantitatively in four extrastriate areas of the owl monkey: the medial (M), 

dorsomedial (DM), dorsolateral (DL), and the middle temporal (MT) areas. Direc­

tionality was computed by comparing the responses to stimuli moved in the optimal 

and opposing directions; MT cells had much higher directionality to moving bars than 

cells in the other areas. Cells in all four areas were sharply tuned to the orientation 

of stationary flashed bars. Tuning for moving bars was broader than for flashed bars; 

DM cells were more sharply tuned to moving bars than were cells in the other areas. 

Tuning was broader to spots than to bars, while directionality was relatively 

unaffected. A moving array of random dots was the best stimulus for many MT 

neurons. Random dot stimuli were also effective in M, but evoked weak or no 

response from DM and DL cells. Extrastriate receptive fields were much larger than 

striate receptive fields. Eccentricity was correlated with receptive field size, but 

was uncorrelated with other variables. 

Neurons in these four areas were tested for their selectivity to the spatial 

dimensions, the length and width, of visual stimuli. Cells in DL were much more 

selective for the spatial dimension than were cells in the other areas. The dimen­

sional selectivity of DL cells is independent of the amount or sign of contrast in the 

receptive field, and the position of the stimulus within the receptive field. The 

optimal lengths and widths of visual stimuli are specified independently, and have a 

wide range of optimal dimensions from 1 to 30° in length, and from 0.25 to 7° in 

width. 

Since many of the neurons of MT show strong directionality, it has been hy­

pothesized that MT contributes to the perception of motion. A well-known aspect of 

motion perception is the phenomenon of direction-specific adaptation. We tested the 

neurons of MT for changes in responsiveness due to prolonged adaptation to stimuli 
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moving in various directions. For directional cells, the response to a bar was 

suppressed following adaptation in the best direction, and enhanced following 

adaptation in the opposite direction, when compared to the response to a bar 

following a period of stationary stimulation. For nondirection cells, the effects were 

much weaker, or absent. 

These results support the notion of a localization of function among the various 

extrastriate areas. 
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INTRODUCTION 

The idea of cerebral localization of function received its first wide publicity 

and first serious setback in the middle of the 19th century when Gall and Spurzheim 

advanced the notion of cranioscopy or phrenology. Gall believed that specific regions 

of the cerebrum were responsible for such human qualitites as avarice and 

appreciation of music, and claimed that the development of these qualities could be 

discerned from bumps on the skull overlying the hyperthrophied cerebral regions. 

These beliefs have not withstood the test of empirical observation. 

A major discovery that legitimized the notion of cerebral localization of 

function was reported by Fritsch and Hitsig in 1870 (10). They applied weak 

electrical stimulation to the exposed cerebral cortex of the dog and found that small 

movements of the animal's body could be elicited by stimulation of the precentral 

area of the cortex. Fritsch and Hitsig's results had three important implications. 

First, the cerebral cortex was shown to be excitable, which was contrary to the 

beliefs of the time. Second, in contradiction to Fluoren's accepted preachings on the 

functional equivalence of all cortex, the fact that weak electrical stimulation caused 

movements only when applied to the precentral cortex was a clear example of 

localization of function. Finally, the muscles which reacted to the stimulation were 

arranged in a topographic manner, with the facial muscles being represented most 

laterally, and the posterior limbs being represented more medially. 

The repeatability and clarity of Fritsch and Hitsig's results and their interpreta­

tion of these results in light of the notion of functional localization were buttressed 

by the experiments and observations of many other workers. Slightly before the work 

of Fritsch and Hitsig, clinical observations by Broca implicated damage to a certain 

region of the frontal lobe of humans with particular disorders of speech production. 

Brodmann, through careful inspection of cortical cytoarchitecture, was able to 

delimit dozens of distinct subdivisions. Clinical studies by Holmes and anatomical 
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Figure 1. A schematic unfolding of the visual cortex of the left hemisphere in the 

owl monkey. The visual cortex corresponds to approximately the posterior third of 

the entire neocortex. The unfolded visual cortex is approximately a hemispherical 

surface, which is viewed from above in this diagram. The perimeter chart on the left 

shows the contralateral (right) half of the visual field. Abbreviations and conventions 

as in Figure 1, Chapter 1. 
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studies by many workers succeeded in localizing visual function to the occipital lobes 

and showing that there was also a topographic representation of visual spac_e on the 

striate cortex such that nearby points in the field of vision are represented nearby on 

the striate map (see refs. 9,23). 

The discovery of the topographic representation of sensory domains on cerebral 

cortex underlies another method of addressing the question of functional localization: 

the method of functional mapping. In the early 1940s, Lord Adrian, using evoked 

potential and implanted electrode techniques, described the representation of the skin 

on somatosensory cortex of several animals including pig, the shetland pony, and the 

ferret (1, 2). Woolsey recorded evoked potentials from small regions of the brains of 

anesthetized animals, while presenting the animals with somesthetic (30) or auditory 

stimuli (31). In this way he was able to map the animal's body onto the somatosensory 

cortex (SI) in monkey in regions 3A, 3B, 1, and 2, and to localize a second 

representation to the body (SII) in adjacent cortex. Likewise, the peripheral structure 

of the auditory system, the cochlea, which is organized in a tonotopic way (a 

representation of the domain of the frequency of sound waves), was mapped onto a 

region of the temporal lobe in two discrete representations. 

Talbot, Marshall and Ades (16, 25) employed similar techniques in the study of 

the occipital lobe. Using visual stimulation, they found, not surprisingly, two 

representations of the visual hemifield in occipital cortex, and more laterally, a third 

region of visually responsive cortex. This lateral region has since become known as 

the Clare-Bishop area, after Clare and Bishop who were to rediscover it. 

At this time, around 1950, circumscribed regions of cortex were thought to be 

contributing to particular sensory processes, while other areas were concerned with 

control of motor activity. These regions of known topographic cortex included about 

30% of the cerebral cortex, with the remainder of cortex being deemed "association 

cortex," tissue in which higher order processing and interrelation of sensory 

information was thought to occur. 
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The single unit studies of Hubel and Wiesel on areas 17, 18, 19 (12, 13), made it 

clear that much could be learned not only about the response properties of cortical 

neurons, but also about the topographic representation of receptive field positions. In 

1968, Allman and Kaas (3-8) began a series of microelectrode mapping studies of the 

topographic representation of visual space on the striate and adjoining cortex of the 

owl monkey. They found, much to their surprise, that owl monkey visual cortex is not 

aligned in three concentric belts, as in the cat, but that cortex beyond the second 

concentric region, V-II, consists of at least 7 visuotopically organized representations 

of all or part of the visual hemifield. These representations comprised approximately 

half of the cortex, and were complexly aligned so that there was minimal distortion 

of the visual representation at the borders of areas (see Fig. 1.). 

Microelectrode mapping of the visual cortex of the cat was subsequently carried 

out by Tusa, Rosenquist, and Palmer (22, 26, 27). In cat visual cortex, there were 

found to be 13 visuotopic representations, again taking up a large percentage of 

cortex. Recent work on the visual cortex of the macaque (11, 19, 28, 29) has revealed 

a complex mosaic of areas as · well. In other modalities, careful microelectrode 

mapping again led to the discovery of multiple representations. The region of 

somatosensory cortex formerly thought to contain a single representation, was shown 

to contain four representations of the skin (15, 17). In auditory cortex, tonotopic 

representations number at least four in the owl monkey (14) and the cat (see ref. 20), 

with six representations in macaque monkey auditory cortex (19). Motor and 

premotor cortex of the macaque has been shown to contain several representations of 

the face and hand (18, 23). 

As can be seen in Fig. 1 in Chapter 1, the cortex of the owl monkey is now 

known to be populated in great part by topographic representations of the various 

modalities. The ubiquitous nature of these multiple representations has led to several 

lines of thought as to their significance. Hubel and Wiesel, because of the increasing 
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level of complexity of the neurons when moving from Vl to V2 to V3 (13), tentatively 

forwarded a hierarchical model for visual information processing. Merzenich and 

Kaas (20) have recently forwarded a different view as more data have been collected. 

They believe that there is a multiplicity of parallel channels which are complexly 

interconnected (see Fig. 2). Evidence at the present time seems to favor this view. 

In the visual system of the owl monkey, the large number of visuotopic repre­

sentations and the large amount of cortex devoted to these representations has led to 

the hypothesis that there is a localization of function to the various areas of visual 

perceptual abilities, or aspects of visuomotor coordination. To test this hypothesis, 

my collaborators and I began an assessment of the differences and similarities of four 

of the extrastriate areas of the owl monkey. We tested single unit properties in these 

four areas quantitatively for their responsiveness to simple visual stimuli, such as 

bars, spots, and fields of random dots, moving in different directions at different 

speeds, and in varying orientations. The similarities and differences between 

populations of cells from each of the four areas are reported in Chapter 1. Single 

unit studies of stimulus length, width, and diameter showed that one area, DL, had 

many cells that were particularly sensitive to the spatial dimensions of visual stimuli, 

while the other three areas tested did not. We then examined the dimensional 

selectivity of DL cells while varying the contrast or intensity of the stimulus, or the 

position of the stimulus within its excitatory receptive field. These results are 

reported in Chapter 2. The directional selectivity of many cells in MT led us to test 

MT cells for direction-specific adaptation. Direction-specific adaptation is one of a 

class of effects of prolonged adaptation to movement, which includes the classic 

waterfall illusion. The results of these experiments are reported in Chapter 3. 

The outcome of studies of the physiological response properties of owl monkey 

extrastriate cells is strong evidence for functional localization in these areas. 
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Figure 2. Simplified wiring diagram of two pathways in owl monkey visual system. 

Conventions and abbreviations as in Figure 1, Chapter 1. 
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Chapter 1 

VISUAL RESPONSE PROPERTIES OF NEURONS IN 

OWL MONKEY EXTRASTRIATE CORTEX 
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INTRODUCTION 

The discovery of a large number of extrastriate cortical visual areas has led to 

the hypothesis that each area performs its own set of functions in visual perception or 

visuomotor coordination (1-9, 35, 54, 58, 73, 75, 76, 78, 91). The representations are 

most numerous and the amount of cortex devoted to these representations most 

extensive in animals apparently specialized for complex uses of visual information, 

such as the cat (58, 75, 76) and various primates (1-9, 54, 78). Owl monkey visual 

cortex contains at least nine topographic representations of the visual field (3-8, 54) 

(see Fig. 1). We have studied functional localization in four extrastriate areas by 

making quantitative comparisons of the visual response properties of single neurons in 

the middle temporal (MT), dorsolateral (DL), dorsomedial (DM), and medial (M) areas. 

In this chapter the response properties of neurons in these areas to direction of 

movement, bar orientation, single spot and random dot stimuli are reported. Rather 

than attempt to classify neurons into categories, we have developed a series of 

indices computed for each cell for directionality tuning and other parameters through 

which we have assessed the similarities and differences among the populations of 

cells recorded from MT, DL, DM, and M. This work has been published (11, 55, 59). 

METHODS 

Seven owl monkeys were surgically prepared and used in weekly recording 

sessions. The preparatory surgery was performed under aseptic conditions and 

general anesthesia (Ketamine HCl, 25 mg/kg, IM, supplemented as needed). A stain­

less steel cylindrical chamber, 15 mm in diameter, with a threaded cap was positioned 

over an opening in the skull exposing extrastriate cortex and was cemented in place 

with Grip dental cement (L. D. Caulk Co., Milford, Delaware 19963). Thorough 

removal of the periosteum and application of primer and cement over a large portion 

of the skull insured a strong bond. The chamber could be positioned for microelec­

trode penetrations nearly perpendicular to the cortical surface, or for obliquely 
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Figure 1. The representations of the sensory domains in the cerebr_al cortex of the 

owl monkey. Above is a ventromedial view; below is a dorsolateral view. On the left 

is a peri_meter chart of the visual field. The symbols in this chart are superimposed 

on the surface of the visual cortex. Pluses indicate upper quadrant representations; 

minuses, lower quadrants; dashed lines, borders of areas that correspond to the 

representations of the relatively peripheral parts of the visual field, but not the 

extreme periphery. The row of V's indicates the approximate border of visually 

responsive cortex. The dashed line broken by a question mark indicates an uncertain 

border. AI, first auditory area; AL, anterolateral auditory area; CC, corpus callosum; 

DI, dorsointermediate visual area; DL, dorsolateral crescent visual area; DM, dorso­

medial visual area; IT, inferotemporal cortex; M, medial visual area; MT, middle 

temporal visual area; ON, optic nerve, OT, optic tectum; PL, posterolateral auditory 

area; PP, posterior parietal cortex; R, rostral auditory area; VA, ventral anterior 

visual area; VP, ventral posterior visual area; X, optic chiasm. The cortical visual 

areas were mapped by Allman and Kaas (3-8) and Newsome and Allman (54). The 

somatosensory areas were mapped by Merzenich et al. (51). The auditory areas were 

mapped by Imig et al. (38). 
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angled penetrations. After the chamber was in place, the exposed brain visible 

through the unopened dura mater was photographed for later reference. Within a few 

weeks a tissue growth covered the dura and obscured the cortex, and in some animals 

after several experiments it was necessary to remove this growth surgically so that 

microelectrodes could penetrate the cortex without being damaged. 

At the outset of each experimental session a monkey was tranquilized with 

Vetame (Triflupromazine HCl, 5 mg/kg IM initial session, tapered to 2 mg/kg in later 

sessions). Very small doses of Ketalar (Ketamine HCl, 3-10 mg/kg/hr IM) were used 

to maintain sedation throughout the 12 to 14 hr session. The monkey's head was fixed 

in place with a circular ·clamp tightened around the recording chamber. This clamp 

was attached to a specially-designed monkey chair in which the animal was restrained 

in the normal owl monkey posture. Owl monkeys, like other New World monkeys, 

squat rather than sit as do Old World monkeys which possess ischial callosities, thus 

most commercially manufactured primate chairs are inappropriate for New World 

monkeys since they force the animal into an unnatural posture. The monkey was 

wrapped in a towel for warmth. The corneas, scleras, and eyelids were then topically 

anesthetized with a buffered solution of 0.5% Dibucaine HCl, and the pupils were 

dilated with Cyclogyl (Cyclopentolate 1 %). After allowing the local anesthetic to 

take effect, the eyelids were retracted and held open with tape. Eye rings machined 

to fit the contour of the eye were cemented around the margins of the corneas with 

Histoacryl tissue adhesive (n-butyl-cyanoacrylate, B. Braun, Melsungen, West 

Germany), thus fixing the animal's gaze. 

Contact lenses of +4 diopters power were used to protect the corneas from 

drying and bring the eyes into focus on a tangent screen 28.5 cm away. Images of the 

optic discs were projected onto the tangent screen with an ophthalmoscope (22), 

allowing the experimenters to check the focus and to bring the eyes into binocular 

alignment. Correct binocular alignment was achieved by adjusting ball joints to 
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which the eye ring stems were attached until the optic discs were projected at the 

same height on the screen and 40° apart. Superimposition of monocular receptive 

fields confirmed that 40° separation was the normal physiological position in all but 

one animal, for which 36-37° separation superimposed monocular fields. Care was 

taken riot to torque the eyes or put pressure on the globe when positioning the eyes. 

Optic disc alignment was checked periodically during the session and at the end of the 

sessions before the eye rings were gently removed. The corneas remained in good 

condition throughout the course of these experiments. The owl monkey, like the owl, 

tends to move its eyes very little; the attachments of the extraocular muscles are 

placed far back on the globe relative to other monkeys and have a poor mechanical 

advantage. Thus this sytem provided good ocular stability. 

The recording chamber was opened and cleaned with a mild solution of hydrogen 

peroxide (0.1 %), then filled with warm mineral oil and sealed by the attachment of 

the microelectrode positioning device. This device could be rotated on the chamber, 

and the microelectrode advance mechanism was mounted on a calibrated slide, thus 

establishing a polar coordinate system. Glass insulated platinum-iridium microelec­

trodes were used to penetrate the dura and record the activity of single neurons (85). 

All materials coming into contact with the interior of the recording chamber were 

sterile. 

Initial microelectrode placements in an experimental animal were guided by the 

need to construct a map of the exposed extrastriate cortex based on the visual field 

positions of single unit and background responses. Progressions of receptive fields 

from the upper visual quadrant to the lower quadrant and reversals of progressions at 

the vertical and horizontal meridians were used to locate the extrastriate areas and 

their boundaries by comparison with the known organization of owl monkey visual 

cortex shown in Fig. 1. Usually, two or three extrastriate areas were studied in an 

animal. Most units could be unambiguously assigned to a particular area. However, 
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some mits (126/480) were recorded at area boundaries, or near uncertain area 

boundaries, and these were excluded from the data analyses reported here. 

Assignment of units to extrastriate areas was based solely on receptive field 

progressions and/or histological reconstructions, and all units which could be 

classified were included in the data analyses. 

The visual responses of extrastriate units were studied both qualitatively and 

quantitatively. A unit was considered to be isolated well enough for study when its 

impulse could be made to trigger an oscilloscope sweep reliably, as determined by 

stored waveform superimposition. When a unit was isolated, a suitable stimulus was 

found and the receptive field was plotted with hand-controlled stimuli while listening 

to the unit's activity over an audio monitor. An estimate was made of the unit's 

pref erred stimulus parameter values, then quantitative study was begun using 

computer-controlled stimuli. After quantitative study, a final qualitative assessment 

was made to reconfirm the unit's characteristics. 

Quantitative evaluation of unit properties was done by computer routines 

developed for a Data General Nova 2 computer primarily by Francis Miezin. These 

programs controlled a rear projection optic stimulator equipped with galvanometer 

mirrors, stepping motors, and an electric shutter. The computer operated these 

peripheral devices to control stimulus orientation, direction of movement, velocity, 

shape, and size. Normally, one of these parameters was varied in a pseudorandom 

sequence of 8 to 12 values, and the sequence was presented 5 times. Repeated 

pseudorandomized presentations were necessary to avoid possible habituation effects 

(35), and to minimize the effects of trial-to-trial variability in extrastriate unit 

responses. The interstimulus interval was 6 s, with the 3 s immediately preceding the 

stimulus presentation used for estimating spontaneous activity. Parameters not being 

studied were held at their e_stimated best value. When a unit responded well to a light 

or dark bar stimulus, the effect of varying the orientation and direction of a moving 
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bar was studied first. The responses were displayed as they occurred on an 

oscilloscope as peristimulus-time histograms. As soon as the 5 runs of the stimulus 

sequence were completed, the orientation tuning of the unit was displayed on a polar 

plot. The optimal orientation was then used when studying other parameters with 

elongated stimuli. Responses were studied to different velocities, directions of spot 

movement, bar lengths, widths, spot sizes, and random dot stimuli. The random dot 

stimuli consisted of a fixed 40° area centered on the receptive field and in which 

randomly spaced small spots (density = 10%, 0.5° or 1.3° diam. spots) moved in the 

same direction at a uniform velocity. In addition to the immediate display of results, 

the time of occurrence of each impulse and the stimulus parameter values were 

stored on magnetic disc for later analysis. 

A second set of programs was used for off-line data analysis. A neuron's 

spontaneous firing rate (spikes/s) in the 3-s interval before stimulus presentation was 

subtracted from its firing rate during the stimulus presentation to yield the net 

response rate for a single sweep. The stimulus sweep was adjusted to extend slightly 

beyond a unit's receptive field boundaries. The average net response rate over the 5 

identical sweeps in . the repeated pseudorandom sequence was used in subsequent 

calculations to compare responses at different parameter values, and, after 

normalizing the data, to compute various indices of stimulus selectivity. 

The programs then classified these indices and other unit data into groups by 

extrastriate areas, and statistical tests (F-tests, t-tests, linear regression, cor­

relations) were performed on the grouped data to determine whether data were 

significantly different across areas, and which indices were correlated within an area 

or across all areas. 

The physiologically derived maps of extrastriate cortex were confirmed by 

histology done on three animals. Small electrolytic lesions (10 µA for 10 s) were 

placed at one to three locations along selected penetrations. At the termination of 
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the final unit recording session the monkey was deeply anesthetized with a lethal dose 

of sodium pentobarbitol and then perfused with 0.9% saline followed by 3. 7% formal­

dehyde in 0.9% saline. The head was mounted in the experimental position, and 

marking pins were placed at designated coordinates to aid electrode track 

reconstruction. The brain was removed from the skull, photographed, and placed in 

30% sucrose in formol-saline. Alternate 40-µ frozen sections were stained with 

cresyl violet for cell bodies and hematoxylin for myelin. The heavy myelination of 

MT, visible even in unstained sections, was the most readily identified myelo­

architectonic feature (3). Histological reconstruction confirmed the area designa­

tions determined by receptive field progressions. 

RESULTS 

Neurons in all four areas shared certain response properties. An appropriately 

sized bar of a particular orientation, direction, and velocity of movement through a 

neuron's receptive field was nearly always an effective stimulus, although a few 

exceptions will be noted below. Hand-mapped receptive fields were homogeneously 

excitatory. Computer-controlled raster maps of 21 cells confirmed the homogeneity 

of the receptive fields, showing no strong inhibitory regions. In DM, M, and MT, 

responses for most cells summated for stimuli up to the length of the receptive fields 

and were unaffected by further increases in length (60). In DL, the preferred stimulus 

length for 70% of the cells was much smaller than the length of the receptive field. 

The results are presented below as distributions of response properties rather than as 

arbitrary classes of cells. Most distributions were unimodal, and thus did not provide 

the natural bases for class divisions. Exceptions included the flashed bar and random 

dot response distributions; some cells in certain areas were unresponsive to these 

types of stimuli. 
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Figure 2. Calculation of the direction and tuning indices for representative neurons 

from MT (top) and a neuron from DM (bottom). Directions of motion at which stimuli 

were presented are plotted horizontally. The neuronal response for stimuli moving in 

each direction as a percentage of the optimal response is plotted vertically. The 

illustrated response in each direction is the arithmetic mean of the individual 

responses to the five stimulus presentations. Formulas for computation of direction 

and tuning indices are given at the bottom. The shaded area for each response curve 

is the area under the curve computer for calculation of the tuning index. The 

direction index may be greater than one if spontaneous firing is inhibited by stimuli 

directed opposite to the optimum direction, as is the case for the upper neuron. In 

the calculation of the tuning index, if the spontaneous firing rate is inhibited in some 

of the directions within :!:. 90° of the optimum, the area under the curve is the 

algebraic sum of the areas above and below the zero response level (areas of 

inhibition being negative). This situation obtains for the upper neuron. 
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Responses to moving bars 

The most important factors affecting the responses of the majority of extra­

striate neurons studied were the direction · and orientation of a moving stimulus. 

These were first assessed for each neuron with a bar stimulus oriented perpendicular 

to its direction of movement, which was swept through the receptive field in a 

pseudorandomly ordered sequence of twelve directions separated by 30° intervals that 

was repeated five times. This bar direction/orientation series was run on a total of 

480 cells, 56 in M, 89 in DM, 80 in DL, 129 in MT, and 126 which could not be assigned 

to a particular area. 

A neuron's spontaneous firing rate was subtracted from the mean firing rate 

during the stimulus presentation to obtain response rates which were averaged for the 

five sweeps in a particular direction. Responses were normalized to a percentage of 

the maximum response and displayed as in Fig. 2, which shows responses as a function 

of bar stimulus direction for a cell in MT (top) and a cell in DM (bottom). Two 

response measures were calculated from these data, a direction index, which 

compared the response in the best direction of movement with the response in the 

direction 180° opposite, and a tuning index, which compared the response in the best 

direction with those to directions within 2: 90°. The formula used for calculating the 

direction index was one minus the ratio of the response in the 180° opposite direction 

to the response in the best direction. Thus for the cell illustrated at the bottom of 

Fig. 2, the ratio of opposite response to best response was almost one, and the 

direction index almost zero. For the cell illustrated at the top of Fig. 2, the direction 

index was approximately one, exceeding this value because spontaneous firing was 

inhibited in the opposite direction. Previously described direction selective cells (12) 

would have high direction indices. 

The distributions of direction indices for cells in the four extrastriate areas 

studied are shown in Fig. 3. Cells in M and DM had consistently low direction indices, 
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Figure 3. Distribution of direction indices for DM, DL, MT, and M. MT neurons are 

strongly grouped near a direction index of 1.0, which differs markedly from the 

distributions present in DM, DL, and M. An analysis of variance was performed on 

these data (62). The value of S (Scheffe's multiple comparisons) for MT versus DM 

was 10.89; MT versus M was 9.37; MT versus DL was 3.5; pis very much smaller than 

0.01 for the MT-DM and MT-M differences and less than 0.02 for the MT-DL 

differences. 
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while MT cells usually had high direction indices. The direction indices of DL cells 

varied widely. 

The statistical test used was a one-way analysis of variance with· comparisons 

being made between areas using Scheffe's multiple comparisons (62, see Fig. 3 for s­

values). we· assumed that recordings made in the same area of different animals were 

from the same population. 

The tuning index measured a cell's selectivity for the best direction of 

movement as compared with other directions within 90°. The normalized area under 

the tuning curve out to 90° on either side of the best direction (the shaded area in 

Fig. 2) was subtracted from one to yield the tuning index. The area measured was 

restricted to .:!:: 90° so that the tuning for bidirectional and directionally selective cells 

could be measured on the same scale. The tuning index is close to one for sharply 

tuned cells and close to zero for very broadly tuned cells. When spontaneous firing 

was inhibited in some of the relevant directions the area under the curve was taken as 

the difference between the areas above and below the spontaneous level. This 

inhibition was uncommon and, when present, was usually weak. The distributions of 

tuning indices for M, DM, DL, and MT are illustrated in the histograms of Fig. 4. 

Although the differences are not as striking as for the direction index, an analysis of 

variance showed that DM cells were significantly more sharply tuned than M 

(p < 0.02), DL (p < 0.01), and MT (p < 0.02) cells. The average response magnitude 

and signal-to-noise ratios are shown in Table 1. 

Two-dimensional plots of the cells' tuning and directionality indices are shown 

for the four areas in Fig. 5. The bulk of the data for an area falls in a single region of 

its graph. The different location of this region in each graph is an indication of the 

differences among the areas. There is no evidence in the form of multiple clusters on 

a graph, which would suggest- multiple classes of cells within an area. Figure 5 also 

shows the small but significant correlation between directionality and tuning in DL 

(r=0.47), DM (r=0.29), and MT (r=0.34). 
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Figure 4. Distribution of tuning indices for DM, DL, MT, and M. Cells in DM tend to 

be more sharply tuned than cells in the other areas. An analysis of variance was 

performed on these data (62). The value of S (Scheffe's multiple comparisons) for DM 

versus DL was 7 .66; DM versus MT was 3.5; DM versus M was 3.41; p is very much 

smaller than 0.01 for the DM-DL difference and less than 0.02 for the DM-MT and 

DM-M differences. 
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Figure 5. Two-dimensional plots of tuning and directionality indices for cells in DL, 

DM, M, and MT. The size of a dot represents the percentage of cells that have 

appropriate values for the two indices. Each area has a high concentration of cells in 

a single region of its graph; for example, DM cells generally have low direction 

indices and high tuning indices. 
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Responses to moving spots 

Direction series were also run with moving spot stimuli to test direction sen­

sitivity in the absence of an oriented stimulus (71). Many neurons in M and DM, most 

notably DM, responded quite poorly to small spot stimuli. Fifteen of 23 DM cells 

tested with spots of various diameters showed summation up to or beyond 15° 

diameter, so discs up to 13° diameter were used to obtain good responses, although in 

every case the test spot was smaller than the tested neuron's mapped receptive field. 

Smaller spots evoked good responses from many DL cells (60) and were used to 

minimize the possibility that the disc stimulus acted as an approximate edge oriented 

orthogonal to its direction of movement. In every extrastriate area studied, the 

tuning indices for directions of spot movement (M, X = 0.462; DM, X = 0.449; DL, X 

= 0.390; MT, X = 0.45) were significantly lower than the tuning indices for direction 

of bar movement (DM, DL, MT, p < 0.005; M, p < 0.025). Ninety-four of 120 cells 

were more sharply tuned to bars than to spots. The distribution of direction indices 

for bar stimuli was not significantly different from the distribution of direction 

indices for spot stimuli in any area. 

Responses to flashed bars 

The presentation of pseudorandomly ordered orientations of flashed bar stimuli 

was used to test orientation sensitivity in the absence of movement. Responses to 

flashed bar stimuli were obtained from all areas, though some cells were unresponsive 

(9/106 cells), and others responded only weakly. A cell generally responded 

transiently to the onset of a bar flashed at the optimal orientation (as determined 

with a moving bar stimulus), with a minority of cells (29/106) showing a clear off-

, response. Occasionally (2/106) a cell was encountered which gave only an "off" 

response. Only the responses to stimulus onset were used in the data analysis for this 

study. The tuning indices to stationary bar stimuli were high, as shown in the 

histograms of Fig. 6a; in each area, the average tuning index for stationary flashed 
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Figure 6. A. The distributions of tuning indices to oriented stationary flashed bar 

stimuli. The tuning indices were significantly higher in DM than in DL and DM, and 

higher in MT than DL (p less than 0.05). 

B. Distributions of the differences between each cell's flashed bar and moving 

bar tuning indices for each area. 
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bars was higher than for moving bars. Figure 6b shows the distribution of differences 

between a cell's flashed and moving bar indices for each area. Orientation tuning was 

tested with flashed bars centered in two or more different regions of the receptive 

field of three neurons; the optimal orientation was independent of the position of the 

stimulus in the field. There was no significant difference between the flashed bar 

tuning of cells with high direction indices and cells with low direction indices. 

Responses to moving random dot patterns 

For some cells, most frequently encountered in MT, the most effective stimulus 

among those tested was not a bar or a spot, but an array of randomly spaced small 

dots moving in the same direction at a uniform velocity within a stationary window 

40° in diameter. Outside the window, the field was uniformly illuminated. Figure 7 

shows for cells in the four areas, the comparison between the mean response to an 

optimally oriented bar stimulus moving in its best direction and the mean response to 

a random dot array moving in its best direction. Sixteen of 31 MT cells tested with 

both random dot arrays and the quantitatively determined optimal bar stimulus 

orientation and direction responded better to the array. The median signal-to-noise 

ratio for random dot responses in MT was much higher than for the other areas and 

also was the highest for any class of stimuli tested in any area (see Table I). Cells in 

M were also often quite responsive to the dot arrays (optimal stimulus for six of 21 

cells tested), while DM (8/13) and DL (8/21) cells were frequently unresponsive. 

Responses to stimulus velocity 

The large majority of neurons in all four extrastriate areas fired best at a 

velocity in the 10-100°/s range. We chose the mean response rate during the stimulus 

sweep as our velocity response measure; this represents a compromise between total 

spikes per sweep and peak rate measures, which emphasize low and high velocity 

responses, respectively (61). Typical examples of velocity tuning curves for a cell 

from DL and one from M are shown in Fig. 8. There was no uniform shape of velocity 



TABLE 1 

Average best response in spikes per second 

Moving Bar Single Spot Flashed Bar Random Dots 

- - - -
Area N x s.d. N x s.d. N x s.d. N x s.d. 

DL 80 13.14 11.56 51 13.08 12.93 23 4.94 4.48 21 2.54 3.74 

DM 89 14.12 15.57 25 8.85 11.64 20 8.16 7.12 13 3.89 4.63 

M 56 20.65 17.18 32 21.08 23.73 22 12.03 10.09 21 21.74 19.46 CA:> 
CTI 

MT 129 14.40 14.63 51 14.74 17.48 37 9.35 12.52 31 15.33 14.89 

Median signal-to-noise ratio 

Area N SIN N SIN N SIN N SIN 

DL 80 14.48 51 13.37 N 4.00 21 2.54 

DM 89 13.13 25 8.82 20 15.31 13 2.50 

M 56 13.42 32 7.50 22 7.80 21 10.30 

MT 129 24.73 51 24.00 37 10. 98 31 37 .50 

(Continues) 



Best res12onse to 12articular stimulus t~12e 

Best response to moving bar 

Single Spot Flashed Bar Random Dots 

- - -Area N x s.d. N x s.d. N x s.d. - -

DL 39 .97 .64 23 .75 .63 20 .40 .61 

DM 25 .74 .59 20 .85 .66 13 .25 .42 
c,...) 
O') 

M 24 .78 .56 21 .62 .43 19 .83 .51 

MT 43 .93 .63 34 .66 .65 31 1.13 .59 

Legend for Table 1 

The signal-to-noise ratio was calculated for each cell by dividing its mean discharge rate for the 

optimal direction of movement or orientation by its average spontaneous activity. Median signal-to-

noise ratios were used because cells with little or no spontaneous activity have very large signal-to-

noise ratios, and would tend to skew the mean ratios to a level that does not reflect their actual 

distributions. 
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Figure 7. Comparison between the response to an optimally oriented bar moving in 

its optimal direction at optimal velocity with the response to a moving array of 

random dots for DM, DL, MT, and M. The response to the moving array is expressed 

as a percentage of the response to the bar. 
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tuning curves; the majority of cells were broadly tuned, but sharply tuned cells, low 

pass responses, and high pass responses were occasionally encountered. Overall, as 

displayed in Fig. 9, DL and MT contained a larger share of neurons which responded 

optimally at lower velocities around 10°/s, although both these areas contained some 

neurons which responded best at quite high velocities. Fourteen of 69 MT cells tested 

gave their optimal response at a velocity over 100°/s. Some MT cells fired well to a 

500°/s stimulus, the highest velocity tested. DM neurons preferred intermediate 

velocities, and M cells preferred higher velocities. There was no correlation between 

the optimal velocity and the sharpness of tuning about that velocity (r = 0.12). Two 

neurons were encountered which did not respond to any smoothly moving stimulus but 

were excited by erratic small displacements produced under hand stimulus control. 

Vertical organization of MT 

Long penetrations nearly perpendicular to the cortical surf ace were made in MT 

to investigate systematic differences between superficial and deep cells in their 

orientation, direction, and random array stimulus responses. The responses of a series 

of single neurons in a penetration in MT, which histological reconstruction showed to 

be perpendicular to the cortical surf ace and nearly parallel to the radial fibers, is 

illustrated in Fig. 10. The graphs on the right show the average response of each 

neuron to six different orientations each presented 10 times in pseudorandom order. 

The dotted line indicates the level of spontaneeous activity for each neuron. 

Neuron A was broadly tuned; B through K all strongly preferred horizontally oriented 

bars; L was strongly inhibited by horizontal bars and thus was the negative 

complement of the other cells in the penetration. These data, together with other 

data we have obtained, suggest the presence of vertical columns of orientation 

selective neurons in MT such as have been described for the primary visual area (V-1) 

(37). The graphs on the left show the average response of each neuron to moving bar 

stimuli crossing the receptive field in 12 different directions. In each case the bar 
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Figure 8. Example of a cell in DL preferr.ing a slow velocity (top) and a cell in M 

preferring a relatively high velocity (bottom). The response measure was mean 

spikes/second during the stimulus sweep. 
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Figure 9. Distributions of preferred velocities for neurons in DM, DL, MT, and M. 
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Figure 10. Direction and orientation selectivity for a series of neurons recorded in a 

single penetration nearly perpendicular to the surface of MT. A pair of graphs is 

illustrated for each unit (HEMT69 A through L). The depth beneath the surface at 

which each cell was recorded is given beneath each identifying number. An electro­

lytic lesion was made at the bottom of the microelectrode track. Histological 

reconstruction indicated that the penetration was perpendicular to the surface of MT 

and nearly parallel to the radial fibers. Cells A through J were located in layers Il 

and III; cells K and L were located in layer IV. The graphs on the left illustrate the 

average response of each cell to 5 presentations of a 20° x 1° light bar at 12 different 

angles. HEMT69 A through F preferred 270°; HEMT69 G through K preferred 90°. 

The graphs on the right illustrate the average response of the cells to 10 presen­

tations of a flashed bar at the orientations shown. All of the cells except the last 

preferred the horizontal orientation; the last was inhibited by horizontal bars. The 

direction of movement was 90° to the bar orientation, thus the preferred directions of 

270° (down) and 90° (up) are consistent with the preferred horizontal orientation. The 

receptive field centers were located an average of 16.6° below the horizontal 

meridian with a standard deviation of 0.9°, and an average of 6. 7° temporal to the 

vertical meridian with a standard deviation of 3.3°. 
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was oriented perpendicular to the direction of movement. Neurons A through F 

responded optimally to a horizontally oriented bar approaching from 270° (straight 

down); neurons G through K responded optimally to a horizontally oriented bar 

approaching from 90° (straight up). One or more of these abrupt 180° shifts in 

preferred direction of movement have been observed in most of the long penetrations 

we have made in MT. These data suggest that groups of neurons with diametrically 

opposed preferred directions of movement lie juxtaposed within a larger system 

sharing the same orientation preference. We do not believe that the preferred 

direction is necessarily related to superficial versus deep layers, because we have 

observed other penetrations through all the layers in which all the cells had 

approximately the same preferred direction and orientation. While the preceding 

observations are generally characteristic of MT, some penetrations yielded less 

orderly patterns of organization. 

The relative responsiveness to the array of randomly spaced dots was greater in 

the deep layers of MT, as demonstrated by the significant correlation between 

electrode depth in the cortex and the maximal responses obtained to the random dot 

array as a percentage of the best response to a bar stimulus (r = 0.43, N = 31, 

p < 0.01). 

Eccentricity and receptive field size 

The magnification of central vision differs widely across the extrastriate areas 

(1) and the distribution of eccentricities of single unit receptive fields from each area 

studied reflected the magnification in that area. The mean eccentricities (straight 

line distance from the center of gaze) of receptive field centers were: M, 36°; DM, 

18°; DL, 13°; MT, 21°. 

Extrastriate receptive fields varied widely in size and were generally much 

larger than striate fields (4). Excitatory receptive field areas were usually computed 

from elliptical mapped regions, although rarely an odd shape such as a very long 
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narrow rectangle or a kidney-shaped region was needed to accurately encompass the 

excitatory region. The mean receptive field areas were: M, 768o2 (sd = 919o2); DM, 

257o2 (sd = 737o2); DL, 229o2 (sd = 297o2); MT, 258o2 (sd = 371o2). -Receptive field area 

correlated well with eccentricity (r = 0.62 overall; M, r = 0. 74; DM, r = 0.62; DL, 

r = 0.48; MT, r = 0.67). The large average receptive field size of M neurons could be 

partially explained by the peripheral location of receptive fields in M (8). Correlating 

eccentricity with the direction index (r = 0.07), tuning index (r = 0.17) and best 

velocity (r = 0.13) showed that the differences in response properties across the four 

areas. could not be attributed to. the eccentricity differences in the samples. 

Summary comparison of response properties in DL, MT, DM, and M 

A comparison of the functional indices for each area from this and related data 

from chapter II (60) are presented in Table 2. The high direction index for MT 

neurons compared with the significantly lower direction indices for DL, DM, and M 

indicates that MT neurons generally discriminate much better than cells in the other 

three areas the difference between movement in the preferred direction and 

movement in the direction 180° opposite. The orientation tuning index indicates that 

neurons in DM are significantly better tuned to the orientation of moving bars than in 

the other three areas, but the difference is small. In each of the four areas, the 

average tuning index for moving bars is lower than for stationary flashed bars. This 

implies that the response of a cell to moving oriented bars is some combination of a 

broadly-tuned response to direction of movement, and sharply· tuned response to a 

stimulus' orientation. The random dot index indicates that MT neurons respond 

significantly better to the moving random dot array than do cells in DL and DM. The 

dimensional selectivity indices, which are explained fully in chapter IT (60), indicate 

that DL neurons generally are significantly better tuned than neurons in the other 

three areas for stimuli of particular spatial dimensions. 
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TABLE 2 

Comparison of response properties and central visual field 

representation in DL, MT, DM, and M. 

The direction, orientation, and moving random dot indices are described in the text. 

The standard deviations for these indices are in the figures for each index. The 

dimensional selectivity index is taken from work published elsewhere (60). The 

index is calculated as: 1 - response to lon~est sti~ulus tested . Length is the 
response to optimal stimulus tested 

dimension orthogonal to the direction of movement. DL was also found to be sig-

nificantly more selective for spot size than MT, DM, and M, and significantly more 

selective for width (dimension parallel to direction of movement) than MT (60). 

The percentage of each area devoted to the representation of the central 10° of 

the visual field was calculated from previous data (1, 3, 6-8). 

Significant 
Index DL MT DM M Differences 

Directionality index (df=3,351) .61 .81 .41 .37 MT> DL,DM,M 

Orientation tuning ( df-3, 99) .78 .85 .88 .80 none 

Index for flashed bars 

Orientation tuning (df=3,351) .50 .56 .67 .54 DM> MT,M,DL 

Index for moving bars 

Best random dot response (df=3,83) .40 1.13 .25 .83 MT> DM,DL Best moving bar response 

Dimensional selectivity ( df=3 '94) .59 .31 .28 .27 DL> MT ,DM,M 

Index for length 

Percentage of area devoted to central 

10° of visual field 73% 10% 22% 4% 
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DISCU~ION 

Significance of multiple cortical areas 

There is strong evidence that some aspects of the response properties of 

neurons are segregated in the four extrastriate areas studied. Why has functional 

localization of response properties taken place? In attempting to develop computer 

analogues of visual perception, Marr (48) elaborated the principle of modular design. 

Marr stated that any large computation should be broken into a collection of smaller 

modules as independent_ as possible from one another. Otherwise, "the process as a 

whole becomes extremely difficult to debug or improve, whether by a human designer 

or in the course of natural evolution, because a small change to improve one part has 

to be accompanied by many simultaneous changes elsewhere." 

The formation of modules may have been produced by the replication of visual 

areas. The replication of existing structures appears t~ be a fumdamental mechanism 

in evolution. The paleontologist Gregory (29) proposed that a common mechanism of 

evolution is the replication of body parts due to genetic mutation in a single 

generation which is then followed in subsequent generations by the gradual divergence 

of structure and functions of the duplicated parts. The geneticist Bridges (13) 

proposed that chromosomal duplications would offer a reservoir of extra genes from 

which new ones might arise. It has been theorized that duplicated genes escape the 

pressures of natural selection operating on the original gene and thereby can 

accumulate mutations which enable the new gene, through changes in its DNA 

sequence, to encode for a novel protein capable of assuming new functions (57). Many 

clear-cut examples of gene replication have been discovered (39, 45, 57) and DNA 

sequence homologies in replicated genes have recently been established (64). The 

same evolutionary advantages which hold for the replication of genes may also hold 

for the replication of visual areas (3, 6). 

What then are the likely modular functions of the extrastriate areas studied 
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here? Most neurons in all four areas are tuned for bar orientation as are the neurons 

in the primary visual cortex (37). This indicates that orientation selectivity is a main 

component of the basic plan for all the areas. MT neurons have supplemented this 

basic property of orientation selectivity with the further capability of discriminating 

direction of movement. This capacity is present in a minority of neurons in the other 

areas, but is much better developed in MT. In addition, MT has the capacity for 

discriminating an entirely different type of stimulus, moving arrays of random dots. 

In primary visual cortex in the cat, responsiveness to moving random dot arrays is 

characteristic of complex cells particularly in layer V, although these cells rarely 

respond better to visual texture than to an optimal bar as do the majority of cells in 

MT (33). This capacity to respond to random arrays requires a neural mechanism for 

integration over considerable distances in the visual cortex. A likely source of this 

integration is the convergence of input from primary visual cortex onto MT, 

particularly from the giant Meynert cells in layer V (52, 67; Wall, Lin . and Kaas, 

personal communication). One of the outputs of MT is to the pontine nuclei (28), and 

this output is probably from the cells in the deep laminae, as is the case for the MT 

homologue in the macaque (26). Layer V corticopontine cells and pontine visual cells 

in the cat are similar to cells in the deep layers of MT; both are directionally 

selective and strongly respond to multiple spot stimuli (10, 24). The entire output of 

the pontine nuclei is to the cerebellum, a major center for the control of body and 

eye movement. 

In DL about 70% of the neurons are selective for the spatial dimensions of 

visual stimuli within excitatory receptive fields that are generally much larger than 

the preferred stimulus dimensions (see Table 2). For details, see chapter II. The 

dimensional selectivity of DL neurons suggests that DL contributes to form 

perception. This hypothesis is consistent with the observation that DL has the most 

expanded representation of the central visual field (6) where the most acute 
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recognition of form takes place, and the recent discovery that DL is the main source 

of input to the inferotemporal cortex (84). Inferotemporal cortex has been strongly 

implicated in the analysis of complex visual stimuli and the learning of visual form 

discriminations (30, 31). 

The most obvious distinctive feature of M is its relative emphasis on the 

representation of the peripheral visual field, which suggests that M might have a 

special role in functions in which peripheral vision is important, such as motion per­

ception or orientation in space (8). However, the average direction index for area M 

neurons was the lowest of the··four areas tested. DM is more sharply orientation 

selective when tested with moving bars than the other areas, but like the other areas 

is much less well tuned to moving bars than to flashed stationary bars. DM neurons 

were the least responsive to the moving array of random dots. 

Homologies 

There is abundant evidence for similarities between the organization of visual 

cortex ~n the owl monkey and in other primate species; in some cases these 

similarities are so striking that the areas in question should be considered to be 

homologous. The most widely quoted definition is that of Simpson (66): ''homology is 

resemblance due to inheritance from common ancestry." Three major criteria for the 

recognition of homology in the nervous system proposed by Campbell and Hodos (15) 

are the multiplicity of similarities, the fineness of detail of the similarities, and 

evidence from fossil lineages of common ancestry. 

The most powerful case for homology of the extrastriate visual areas is that of 

MT and similar visual areas in other primate species. This homology has been pointed 

out by several workers (31, 77, 78, 83). The argument for homology is based on 

similar location, myeloarchitecture, topography, distinctive anatomical connectivity, 

and visual response properties. Owl monkey MT is a striate-receptive region of dense 

myelination coextensive with an orderly map of the visual hemifield (3). A 
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corresponding striate-receptive region of dense myelination coextensive with a 

similar map of the visual field has been reported in Galago (9, 7 4), marmoset (68, 69), 

and macaque (23, 50, 80, 82). A major source of input to MT in the owl monkey is 

from V-1 cells in or near the stria of Gennari and from the giant cells of Meynert 

located in the lower part of layer V (personal communication, Wall, Lin and Kaas). A 

similar projection occurs in marmoset (67) and macaque (46) from striate cortex cells 

in the stria of Gennari and the giant Meynert cells. MT is the only known extrastriate 

cortical target of the Meynert cells (47). Directional selectivity is the principal 

characteristic of owl monkey MT cell responses, and this has been shown to be true 

for the corresponding region of the macaque (50, 89). The presence of these 

extensive and detailed similarities in three superfamilies of primates, including 

primates from both infraorders, indicates that MT probably existed in the early 

primates ancestral to all living primates. 

In a recent paper, Zeki (92) contends that MT in the owl monkey and the striate 

projection zone of the superior temporal sulcus in the macaque are not homologous. 

However, Zeki's discussion of structural similarities does not include any mention of 

the distinctive heavy myelination of the deeper layers of owl monkey and macaque 

MT, nor does he mention the precise similarity in anatomical projection to MT from 

striate cortex. While Zeki found that owl monkey MT cells shared with macaque MT 

cells the major property of directional selectivity, his argument rests primarily on his 

contention that there are major differences in the visual response properties of owl 

monkey and macaque MT cells. He cites three differences: a) the dependence of owl 

monkey MT cell responses on the presence of a near optimal stimulus and the relative 

absence of such dependence in the macaque, b) the presence of orientation selectivity 

in most owl monkey MT cells and its relative rarity in macaque MT cells, and c) the 

presence of a wide variety of binocular interaction effects on owl monkey MT cells 

but not on macaque cells. 
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Zeki states that the stimulus requirements of owl monkey MT cells "made the 

initial penetrations frustrating, with cell after cell either not responding, or 

responding in a vague manner." This was not the case under our experimental con­

ditions. While we found many examples of orientation, length, width, and/or diameter 

selectivity (59), we also found in the same cells that any of a wide variety of non­

optimal, non-oriented stimuli evoked vigorous responses and these responses had 

impressive signal-to-noise ratios. In fact, a field of randomly scattered dots was the 

optimal stimulus for the majority of MT cells, and most cells were also well driven by 

a single spot (see Table 1). This contradiction between our results and Zeki's may be 

due to differences between the two preparations, possibly the use of vetame­

ketamine tranquilization versus barbiturate anesthesia. The results of our flashed 

oriented bar presentations clearly support Zeki's claim of orientation selectivity in 

owl monkey MT cells. However, we do not know whether orientation selectivity 

would be revealed in macaque MT with the flashed bar test, and without a description 

of Zeki's orientation selectivity testing procedure, it is difficult to evaluate the 

differences he reports. In both owl monkey MT and the striate projection zone in the 

superior temporal sulcus of the macaque, Zeki found the majority of cells to be driven 

equally by stimulation of either eye. The presence of a minority of cells having more 

specialized binocular interactions in the owl monkey MT suggests a greater emphasis 

on binocular processing. 

In our present state of knowledge, it is more difficult to establish clear-cut 

homologies for the other visual areas found beyond V-11 in the owl monkey. However, 

evidence for the homology of several areas is emerging. The principal input to 

inferotemporal visual cortex in the owl monkey is DL (84). In macaques a region 

adjacent to MT is a main input to inferotemporal cortex (20). This region, like DL in 

the owl monkey, emphasizes the representation of the central visual field (21). MT in 

both owl monkeys and macaques does not appear to project to inferotemporal cortex. 
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The position of DL between MT and V-II in owl monkeys is topographically similar to 

V-4 in macaques. However, the boundaries of V-4 have not been completely mapped, 

and it may constitute more than one area (80, 88). Neurons in V-4 have been reported 

to be color selective, but the percentage of neurons showing this attribute in V-4 has 

ranged from 100% to 32% in different studies, and a recent report suggests that color 

processing in V-4 is substantially similar to the color selectivity found in foveal V-I 

and V-II (43). 

Another potential homology is that of the Ventral Posterior (VP) areas of the 

owl monkey and the macaque (54, 56, see Fig. 1). These areas are similar in that they 

both are long narrow strips that lie immediately anterior to V-II on the ventral 

surface, with this common border corresponding to a representation of the horizontal 

meridian. In both monkeys, the anterior border of VP corresponds to a discrete band 

of degeneration following section of the corpus callosum. In both monkeys, the visual 

field representation in VP appears to be limited to the upper quadrant with the more 

central portions represented laterally and the more peripheral portions medially. The 

establishment of potential homologies for DM and M awaits further investigation. 

Outside of primates it is much more difficult to establish homologies. The last 

common ancestor of the different mammalian orders lived no more recently than the 

late Cretaceous period more than 60 million years ago (63). This ancestral mammal 

had only a very limited development of its neocortex (40). In addition, the adaptive 

radiation of mammals into different ecological niches with widely divergent 

behavioral specializations serves to make very difficult the discovery of diagnostic 

similarities among potentially homologous cortical areas in different mammalian 

orders. 

In the cat, area 21a and area 19 (V-3) occupy positions that bear some topo­

graphic similarities to MT and DL; area 19 partially wraps around area 21a, and the 

two areas adjoin each other along a common border representing the vertical 
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meridian in the lower field (76). The dimensionally selective properties of DL neurons 

resemble some of the higher-order-hypercomplex cells described by Hubel and Wiesel 

for v-m in the cat, although these cells were only a small portion of their sample 

(35). Area 21a, while bearing some topographic similarity to MT, contains a represen­

tation of only the central 30° of the contralateral hemifield. The striate-receptive 

lateral suprasylvian region in the cat has been suggested as a potential homologue of 

MT (1). The neurons in the lateral suprasylvian region typically are directionally 

selective and thus resemble MT in this respect (36, 71). The neurons have also been 

reported to have dimensionally selective properties similar to DL (14). The estab­

lishment of homologies with this region in the cat is further complicated by the 

recent discovery that it contains six visual areas (58). 

In the grey squirrel, the temporal posterior area (Tp) is a possible homologue of 

MT. Tp lies adjacent to part of the vertical meridian representation in area 19, and 

thus these areas bear a topographic similarity to MT and DL (32). In addition, Tp, like 

MT, is densely myelinated with a laminar pattern similar to MT (41). In a similar 

location in the rabbit, there is a striate-receptive visual area that has been suggested 

as a possible homologue of MT, but the r.esponse properties of the nuerons in this area 

in the rabbit differ markedly from MT (17, 49). 

While similarities in the organization of other mammals is less well docu­

mented, multiple representations of the visual field exist in many other species (78). 

Multiple representations also occur in other sensory systems, . for example the 

auditory (38), and somatosensory (51, see Fig. 1). The ubiquitous nature of multiple 

representations, and the evidence for the localization of response properties to these 

areas argues that functional localization is a successful evolutionary solution to the 

problems of complex information processing. 
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INTRODUCTION 

As was noted in Chapter 1, one of the extrastriate areas, the dorsolateral 

crescent visual area, DL, has an extreme magnification, or overrepresentation, of the 

central portions of the visual field. This magnification of the center of vision 

suggests that DL contributes to the analysis of form, since it is at the center of gaze 

that the most critical analysis of form takes place. A simple and easily measurable 

aspect of the form of a visual stimulus is its size. We tested the neurons of the 

dorsolateral crescent for length, width, and spot diameter selectivity, and found that 

a high percentage of neurons in that area are selective for the spatial dimensions of 

visual stimuli within excitatory receptive fields much larger than the preferred 

stimulus dimensions. In preliminary results from three other extrastriate areas, such 

neurons are much less common. In Chapter 2, the properties of the dimensional 

selectivity of DL neurons are reported, and their properties are compared with 

similar neuronal response properties in other species. 

METHODS 

Single neurons were recorded from four extrastriate areas of two chronically­

prepared owl monkeys. One hundred nine neurons were studied quantitatively (52 

from DL; 30 from the middle temporal area, MT; 13 from the dorsomedial area, DM; 

14 from the medial area, M. Recording techniques were identical to those described 

in Chapter 1. To test for dimensional selectivity, the computer presented stimuli in 

pseudorandomly-ordered sequences of bars of various lengths (the dimension 

orthogonal to the direction of motion), widths (the dimension parallel to the direction 

of motion), and spots of various diameters. All spike information was computer­

collected and stored on magnetic disk for later analysis. Response magnitude was 

calculated as the difference between the mean impulse rate during the stimulus 

presentation and the mean spontaneous rate. Nearly all extrastriate neurons 
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Figure 1. Responses of 3 units to different bar lengths. Length is the stimulus 

dimension perpendicular to the direction of movement; stimuli were oriented at 9D° to 

the direction of movement and were 1° wide. The value at each length is the average 

of 5 stimuli. Lengths were presented in pseudorandom order. The upper two cells 

were recorded from DL and show marked length selectivity. The length of the 

excitatory receptive field for the top cell was 27° and for the middle cell, 20°. The 

bottom cell illustrates the typical response profile for cells in MT, DM, and M, in 

which the cell summates with increasing length until the length of the excitatory 

receptive field is reached, whereupon the response levels off. 
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exhibited some direction, orientation and velocity sensitivity (see Chapter 1), and the 

dimension series were run at the optimal velocity in the preferred direction for each 

neuron studied. 

RESULTS 

Most DL neurons were sharply dimensionally selective; they responded well only 

to stimuli which had near optimal dimensions (see Fig. la and lb). Most cells outside 

of DL showed response summation up to a certain stimulus value, but were unaffected 

by further increases (Fig. le). An index of stimulus dimension selectivity was 

calculated using the formula: 

DI= 1 _ response to the largest stimulus dimension tested 
response to the optimal stimulus dimension tested 

For length and spot diameter, DL cells were significantly more selective than cells in 

DM, M, and MT, and were significantly more selective for width than MT neurons. 

The statistical test used was a one-way analysis of variance with comparisons being 

made between areas using Scheffe's multiple comparisons (see Fig. 2 for S-values) 

(14). We assumed that recordings made in the same area of different animals were 

from the same population. Figures 2a, 2b and 2c are the distribution of selectivity 

indices for the four areas. 

The dimensional selectivity of DL cells was independent of the amount or sign 

of contrast in the receptive field. Eight cells which responded well to either contrast 

were tested using both light-on-dark and dark-on-light stimuli, and the results were 

invariably similar (Fig. 3). Varying stimulus contrast over a 1.5 log unit range 

likewise had little effect on a unit's responsiveness. 

The optimal length and width were typically considerably smaller than the 

mapped excitatory receptive field. This is illustrated in Figs. 4a and 4b which are 

distributions of optimal lengths as a proportion of receptive field length. Cells which 
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Figure 2. Distributions of stimulus dimension selectivity indices for length (A), width 

(B), and spot diameter (C). The distributions for DL cells are on the left, and the 

distributions for MT, M, and DM ceµs are on the right. Statistics comparing these 

distributions; df for length = 3, 94; width = 3, 36; spot diameter = 3, 81. S-values for 

length, width and spot diameter selectivity, respectively: DL vs MT = 3.42*, 3.91 *, 

8.66*; DL vs M = 3.14*, 1.53, 3.44*; DL vs DM = 2. 76*, 1.55, 4.94*; MT vs M = 0.05, 

0.21, 0.29; MT vs DM = 0.03, 0.07, 0.01; M vs DM = 0.01, 0.02, 0.21. 

* means p less than 0.05. 
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Figure 3. Responses of a DL neuron to light and dark spots of different diameters. 

Receptive field position is shown above. The stimuli were presented in pseudorandom 

order. Responses to stimuli of the same size were virtually the same regardless of 

contrast. 
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had a selectivity index of 0.5 or less were considered as non-selective and are repre­

sented in the columns at the right. The dimensional selectivity of DL cells was also 

independent of stimulus position in the excitatory receptive field. 

DL neurons had a wide range of optimal stimulus dimensions. The length and 

width preferences appeared independent of each other for 21 cells in which both 

dimensions were tested. Although, as shown in Fig. 5, a 1 degree square was the most 

frequently encountered optimal stimulus, the figure clearly demonstrates that 

dimensionally-selective DL cells are not spot detectors tuned to different diameters 

but are selective for the shape of the stimulus in both dimensions. Of the 17 cells in 

DL from which complete data for all three spatial tests were available, 14 responded 

better to the best rectangular stimulus than to the best spot. 

DISCUSSION 

Many examples of cells sensitive to the spatial dimensions of visual stimuli have 

been reported. These reports are summarized in Table 1. In some cases, the cells 

exhibit profound differences from the cells found in DL. The cells in the rabbit 

temporal lobe (5), and the convex edge detectors in the frog optic nerve and tectum 

(13) are not independent of contrast, in that they fire only to dark-on-light stimuli. 

The local edge detectors in the cat and rabbit retinae (6, 13), the spot cells in V-11 of 

the macaque (2), and the convex edge detectors of the frog are strongly dependent on 

the position of the stimulus in the receptive field. Most of these cells, including the 

neurons in the superficial layers of the superior colliculus in the macaque (15), lack 

the orientation and direction specificity of the DL neurons, and the DL cells' 

independent specification of length and width. One type of higher order hyper­

complex cell (see ref. 10, Figs. 23-25) found in V-III of the cat closely corresponds to 

the neurons found in DL. However, we have found no evidence, other than the DL 

cells' preference for rectangular stimuli, that the cells show the characteristic higher 



75 

Figure 4. Optimal bar length compared with receptive field length for DL, DM, MT, 

and M. Optimal bar length is expressed as a percentage of the comparable dimension 

of the excitatory receptive fields. The non-selective cells are represented by the bins 

at the right. The average length of the excitatory receptive fields in DL was 20.3° 

with a standard deviation of 9.5°. The average length of the excitatory receptive 

fields in DM, MT, and M was 15° with a standard deviation of 7.4°. 
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Figure 5. Optimal stimuli derived from the length, width, and spot diameter series. 

Length is represented in the vertical dimension, and width in the horizontal 

dimension. The number under each stimulus represents the number of times that the 

particular stimulus was encountered. 
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order hypercomplex pattern of selectivity to sets of orientations 90 degrees apart. 

The strongest similarities exist between the DL neurons and the neurons of the medial 

bank of the lateral suprasylvian sulcus in the cat studied by Camarda and Rizzolati 

(4). There is agreement in every category reported, and a striking similarity between 

the percentage of dimensionally-selective cells found in the two regions. There have 

been conflicting reports as to whether the lateral suprasylvian sulcus neurons are 

orientation selective or not (11, 16, 18). In the owl monkey, virtually all of the 

extrastriate neurons we tested, including those in DL, were selective for the 

orientation of a flashed stationary bar. 

In summary, a large percentage of DL cells respond selectively to the spatial 

dimensions of visual stimuli. This selectivity is independent of the contrast, or 

intensity of the stimulus, and of its position in the excitatory receptive field. These 

cells show a broad range of preferred dimensions. These results are strongly 

suggestive that one of the functions of the dorsolateral area is the discrimination of 

the size of the visual stimulus. 

An important question left unresolved by our experiments is that of whether DL 

neurons respond to retinal image size or to perceived size; specifically, do they 

exhibit size constancy in the presence of depth cues (9)? In either case, the spatial 

selectivity of these cells likely contributes to the perception of size, and may 

contribute to the determination of size constancy. 

The dimensional selectivity of DL neurons also implicates DL in the perception 

of shape or form. This is consistent with the other observations about this area: the 

aforementioned expanded representation of the central visual field and the obser­

vation that DL is a main source of input to the inferotemporal cortex (17), a region 

which has been strongly implicated in the analysis of complex visual stimuli and the 

learning of visual form discrimination (7, 8). 
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Legend for Table 1 

L/D, fires to light-on-dark stimuli; D/L, fires to dark-on-light stimuli; Dir. sel., 

directionally selective; Orien. sel., orientation selective; Sus./Trans., Sustained or 

transient response; Opt. stim./Excitat. RF, optimal stimulus as a fraction of the 

excitatory receptive field dimension. 

* The receptive field of an event detector colliculus cell had a small central 

excitatory region with a larger inhibitory surround, making it difficult to determine 

whether response was independent of excitatory receptive field position and what. 

relation there was between the optimal stimulus size and the excitatory receptive 

field size. 

** In categories 2 and 3, the optimal stimulus was much smaller than the excitatory 

receptive field. In category 4, the optimal stimulus was the same length as the 

receptive field. 



Table 1 

Independently Independent 
% of Dir. Orien. tuned in both of stimulus Sus./ Opt. slim. 

Author Animal Structure Cell type cells L/D D/L sel. sel. dimensions position Trans. Excitat. RF 

Maturana frog optic convex not no yes not not no no sus. 10-30130_50 
et al. nerve and edge rep. rep. rep. 

tectum detectors 

Hubel cat area 19 higher 10% yes yes yes yes yes yes trans. 25°/much 
and order (11/109) larger sti m • 
Wiesel hypercom. 

Levick rabbit vis. strk. local 19% yes yes no no no no trans. -101. 50-20 
ret. gang. e~e ( 30/154) 

cells detectors 

Schiller macaque superfic. event 42% yes yes no no no • trans. • 
and monkey layers detectors (102/243) 00 
Koerner sup. coll. ~ 

Cleland cat ret. gang. local 5% yes yes no no no no trans. • 20-. so/. 50_30 
and cells e~e (45/960) 
Levick detectors 

Camarda cat med. bank categories 69% yes yes yes not not yes trans. •• 
and lateral 2,3,4 (66/95) rep. rep. 
Rizzolati suprasyl. 

Chow rabbit temporal dark spot 38% no yes no no no yes sus. 1°-2°/10°-20° 
et al. cortex cells ( 29/96) 

Chow rabbit temporal dark bar 9% no yes no no yes yes trans. "narrow bar I 
et al. cortex cells (9/96) 10°-20° 

Baizer macaque area 18 spot 11% yes not no no no no not "stim. much 
et al. monkey cells (26/238) rep. rep. smaller than RF 

Petersen owl DL dimen.- see yes yes yes yes yes yes trans. see text 
et al. sel. cells text 
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Chapter 3 

DIRECTION-SPECIFIC ADAPTATION IN AREA MT OF OWL MONKEY 
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INTRODUCTION 

The motion aftereffect, or "waterfall illusion", is a well-known perceptual 

phenomenon. After prolonged exposure to motion in a certain direction, such as 

prolonged staring at a waterfall, stationary objects appear to be moving in the 

opposite direction. This change in perception of motion may reflect short term 

changes in neural populations. The visual cortical area MT, because of a high 

percentage of cells that are selective for the direction of motion, has been suggested 

to be implicated in motion perception (3, see Chapter 1). In this chapter, neurons in 

MT are reported which exhibit changes in responsiveness following prolonged exposure 

to visual stimuli moving in certain directions. When adapting MT neurons in the 

preferred direction of motion, responses to bars moving in the preferred direction are 

suppressed; when adapting opposite to the preferred direction, responses to identical 

bars are enhanced. 

The middle temporal area (MT) of the owl monkey is a well-defined region of 

the temporal lobe that contains a high percentage of directional cells (2, see Chapter 

1, 29). This area can be further characterized as a heavily-myelinated striate­

receptive region which is coextensive with an orderly map of the visual hemifield (2). 

Homologies of MT have been documented in several primate species (see Chapter 1, 

homologies). The directional cells of MT respond well to movement of a visual 

stimulus in a preferred direction, and poorly to stimuli moving in other directions, 

with stimuli moving in the direction 180° opposite least effective or inhibitory. In the 

owl monkey most of the directional cells respond to many types of stimuli (spots, 

bars, and random dot fields of different sizes and velocities); thus, the direction of 

movement seems to be an important aspect of a visual stimulus to most MT neurons. 

The work of Scott and Milligan (18) suggests that monkeys "see" motion after­

effects similar to human aftereffects. Many students of perception have quantita­

tively explored a related effect in humans. In experiments with moving gratings (20), 
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and fields of random dots (11), Sekuler and colleagues have shown that adaptation in a 

certain direction raises the threshold of visibility for similar stimuli moving in the 

same direction. They have termed this phenomenon direction-specific adaptation. 

Also, the perceived direction of a moving stimulus is displaced away from the adapted 

direction for nearby directions of movement ·(10). 

METHODS 

Neurons from MT and surrounding cortex were recorded in four chronically­

prepared owl monkeys. Recording techniques were similar to those used in 

Chapters 1 and 2 (3), except that the stimuli were presented on a TV screen by 

computer-controlled hardware rather than projected on a tangent screen. The TV 

screen was placed either 28.5 or 57 cm away from the animal so that the 40 cm by 30 

cm screen subtended either 40 by 30 or 80 by 60° of the visual field. 

A neuron's preferred direction of movement was determined using a series of 

bar stimuli swept through the receptive field in 12 different directions. The 

directions were pseudorandomly interleaved and presented five times each. The bar 

was usually oriented orthogonally to the direction of movement, and was of a length, 

width, and velocity qualitatively determined to elicit a good response from the 

neuron. 

The cell was then tested for direction-specific adaptation as shown in Fig. 1. A 

20 sec adaptation period of random visual noise (dot size = 0.2 cm, 50% density) was 

presented moving in the preferred direction, 180° opposite to the pref erred direction, 

or as a stationary field. Each adaptation period was followed by a bar sweeping 

through the receptive field in the best or opposite direction. The test therefore 

consisted of six possible conditions: three adaptation fields paired with either of two 

bar stimulus conditions. In an adaptation test series, each of the six conditions was 

presented five times in a pseudorandomly interleaved sequence. The stationary noise 
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Figure 1. The left half of Figure 1 is a diagrammatic representation of an adaptation 

series. A period of adaptation of stationary noise, or noise moving in either the best 

or opposite directions was followed by a bar stimulus moving in the best or opposite 

direction. These six conditions were pseudorandomly interleaved, and presented five 

times each. The right half of the figure shows an example of an adaptation series. 

Notice ~hat the response is strongest after adaptation in the opposite direction, and 

weakest after adaptation in the best direction. 
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conditions (SB, SO) were used as control conditions to compare changes in 

responsiveness following adaptation in the best and opposite directions. 

RESULTS 

We saw strong adaptation effects in most of the directional cells in MT. An 

online display of an adaptation series is shown in Fig. lB. In three of the test 

conditions, SB, OB, and BB, identical bars are moved through the receptive field in 

the same direction, but the response of the neurons to the bars is affected in a 

systematic way by the preceding adaptation period. Adaptation in the preferred 

direction of movement suppressed the response to the bar in the best direction, while 

adaptation in the opposite direction enhanced the response to the bar in the best 

direction. The responses to bars in the opposite direction (SO, 00, BO) were 

generally much weaker, and any changes in their responsiveness was unsystematic. 

To compare populations of cells, an adaptation index was computed using the 

formula: 

AI=% enhancement after adaptation in the opposite direction (OB/SB-1) + 

% suppression after adaptation in the best direction (1-BB/SB) = 

(OB-BB)/SB 

The distribution of adaptation indices for 38 directional cells is shown in 

Fig. 2A. A cell was considered directional if it fired three times as well to a stimulus 

in the preferred direction than to stimuli in directions 120, 150, or 180° opposite. 

61 % of the cells studied were directional by this stringent criterion. In a previous 

study (3), 66% of MT cells were found to meet this criterion. 70% of direction cells 

had indices higher than 20, 38% higher than 40. The mean adaptation index for 

direction cells was 36.5 with approximately equal contributions from enhancement 

(mean = 18. 7) and suppression (mean = 17 .9) effects. A distribution of the much 

weaker adaptation effects for nondirectional cells from MT and surrounding cortex is 
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Figure 2. The distributions of adaptation indices for directional (top) and non­

directional (bottom) cells. The adaptation index was calculated by adding the 

% enhancement after adaptation in the opposite direction to the % suppression after 

adaptation in the best direction. The adaptation indices for direction cells are 

generally high, while those for the nondirection cells tend to congregate near zero. 

The differences between these distributions are statistically significant at the 0.001 

level. 
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shown in Fig. 2B. 80% of the nondirectional cells' indices were lower than 20 (mean = 

8.1). The differences between these populations were very significant (t = 3.58, 

p <0.005). 

Direction cells which exhibited direction-specific adaptation effects were 

intermixed with nondirection cells that did not show the effect. An example of an 

oblique penetration is shown in Fig. 3. In this penetration, complete direction 

preference and adaptation information was collected for eight cells. Five of these 

cells were clearly directional and had clear adaptation effects. The three nondirec­

tional cells showed little systematic change following the adaptation stimuli. 

Although most MT cells respond well to a field of scattered (10% density) 1° 

spots (3), the finer-grained, higher-density (50%) texture of the noise adaptation field 

produced by the TV system rarely (5/38) evoked strong responses from directional 

neurons, and in only one case was this response comparable to the best response to a 

moving bar. Most often the neurons responded weakly to movement of noise in the 

best direction, with very weak or no response to either the stationary noise field or 

the field moving in the opposite direction. A strong response to the adaptation field 

was not necessary to produce a strong adaptation effect. In the example in Fig. lB, 

no response above spontaneous was observed to any of the adaptation stimuli. 

Early this century Wohlgemuth reported that repeated presentations of the 

waterfall illusions in alternating directions of adaptation caused a weakening of the 

effect over time (27). Although our paradigm tests for direction-specific adaptation 

rather than for the waterfall illusion, a small progressive decrement of the median 

adaptation index is suggested by the data shown in Fig. 4. 

DISCUSSION 

A great deal of psychophysical evidence suggests that there are at least two 

separate sets of functional pathways in the mammalian visual system. One of these 
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Figure 3. A display of adaptation effects for eight cells from the same penetration. 

The polar plot of a cell's directionality is shown in the left hand column, the 

adaptation index next to the polar plot and the appropriate histograms in the suc­

ceeding three columns. For cells with strong directional preferences, such as 

BAXX21A, C, F, G, and I, the adaptation indices are high, and the histograms reflect 

this effect. For those cells which are without directional preference E, H, and J, the 

adaptation indices are uniformly low. 
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Figure 4. A plot of the median adaptation index for each run. Wohlgemuth (27) 

reported a similar run-by-run decrement for repeated presentations of the waterfall 

illusion in opposing directions. 
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pathways is more sensitive to the form, or pattern of a visual stimulus, and the other 

is more concerned with the motion of a stimulus. Sekuler and Levinson reported that 

there were separate thresholds for the detection of motion of a grating and for the 

detection of the pattern of the grating itself (11, 19). In a separate set of 

experiments, they showed that when using a "pattern criterion" after adaptation to a 

grating, no direction-specific adaptation was reported by the observer (19). Further, 

a threshold elevation for motion was shown for the direction opposite to the adapted 

direction when gratings were used as the stimuli, but was not seen when random dot 

stimuli were employed (11, 20). This and other evidence led to the conclusion that in 

grating adaptation there were both form- or orientation-specific, and direction­

specific mechanisms present, but in the random dot experiments, the direction­

specific mechanisms played a greater role. 

To dissociate the adaptation due to form, and the adaptation due to direction, 

perhaps a psychophysical paradigm similar to the one employed in our physiological 

experiments could be used. Using random dots for adaptation, and bars or gratings 

for test stimuli may well avoid the confounding influence of form adaptation of either 

dots or gratings on the direction-specific adaptation. 

There is also growing neurobiological evidence for the existence of parallel 

processing pathways in the visual system. There are several efferent pathways from 

V-1 in the owl monkey. One of these pathways originates in the neurons of the stria 

of Gennari and the giant meynert cells at the boundary of layers 5 and 6 (25). This 

pathway projects to MT which in turn projects to most of the known visual areas and 

regions. A second set of major connections ascends from neurons in layers 2 and 3 of 

V-1 to V-11 to DL to IT (12, 13, 25, 26). Evidence from the macaque monkey suggests 

that these two paths have relatively separate inputs from different layers of the 

LGN. The magnocellular layers, which have a preponderance of broad-band Y-type 

cells project mainly onto the Gennari-MT pathway through layer IVc alpha, while the 
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V-II-DL pathway gets input mainly from X-like cells in the parvo-cellular layers of 

the LGN, which project to layers 2 and 3 through layer IV c beta (8). 

Neurophysiological data confirm that these two pathways contribute to 

different aspects of visual perception. In area DL, 70% of the neurons are selective 

for the spatial dimensions (length and width) of" visual stimuli (see Chapter 2). DL 

also has the most expanded representation of the central visual field of all the 

topographically arranged areas thus far studied in the owl monkey (1), and central 

vision is where the most acute recognition of form takes place. IT in the macaque 

appears to contribute to the analysis of complex visual stimuli and the learning of 

visual form discriminations (6, 7). The specializations of the V-II-DL-IT 

pathway-discrimination of spatial dimensions, complex stimuli, and the learning of 

form discrimination-deal with the form of the stimulus. 

The MT pathway conversely appears to be more interested in the motion of a 

stimulus. This pathway is characterized by the high percentage of directional cells 

found in layer IV-B (the stria of Gennari) in the macaque (5), and the high percentage 

of directional cells in MT of owl monkey (3, 29). The tuning of MT cells to direction 

of motion of random dots is strikingly similar to the tuning of the elevation of 

threshold after direction specific adaptation to random dots in humans (3, 11) (Fig. 5). 

The direction-specific adaptability of MT cells suggests more strongly that MT 

contributes to the perception of motion. It must be noted however that we have not 

tested for direction-specific adaptation in other regions of cortex, so we cannot say 

that these effects are completely localized to MT. It is also quite likely that either 

or both of these pathways must contribute to other aspects of visual perception, such 

as color vision, depth perception, etc., and that other pathways may well contribute 

to the perception of form and motion. 

Barlow (4) previously reported direction cells in the retina of the rabbit which 

responded strongly to a prolonged stimulus moving in one direction. After the 
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Figure 5. On the left is a polar plot of direction-specific adaptation in a human 

subject from Levinson and Sekuler (10). The adapting stimulus was a field of random 

dots moving in the direction indicated by the arrow. The distance from the center of 

the polar plot is the log elevation in detection threshold for various directions of 

moving test dots. On the right is a polar plot of the response of an MT neuron to a 

field of random dots moving in different directions. The distance from the center of 

the plot is the average response in spikes per second. The tuning of directional 

selectivity for this neuron is almost exactly the mean for the population of MT 

neurons tested with random dots (53, see Chapter I). 
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prolonged stimulation, the cells showed a suppression of spontaneous firing for a 

period of time appropriate to the waterfall illusion. Similar effects have been 

reported in the striate cortex of the cat by Vautin and Berkeley (24). The cat striate 

cells exhibited habituation effects which were consistent with the decay of visual 

aftereffects. These cells showed some direction specificity, and a small amount of 

adaptation in the non-preferred direction consistent with the fact that they used 

gratings and bars as adaptation stimuli, and thus could have been adapting the cells 

for orientation as well. Movshon et al., in a recent report (17), demonstrated that 

adaptation effects for contrast sensitivity were present at the level of the striate 

cortex but were absent at the level of the LGN. In cat striate cortex, the directional 

cells were also more affected by adaptation. Fatiguable cells such as these could 

provide input to the adaptable MT neurons. The enhancement of MT cells could be 

the result of the habituation of an inhibitory input tuned to the direction opposite the 

preferred direction of movement. However, the adaptation effects of MT neurons 

cannot be explained by fatiguing at the level of MT, since in the MT neurons, the 

adaptation stimulus rarely fires the cell at a high rate. 

The suppression of a bar response after adaptation is consistent with the 

suppression of detectability of gratings reported psychophysically by Sekuler and 

colleagues. However, the enhancement effect evident in MT neurons was not directly 

predicted by previous psychophysical or neurophysiological reports. Some models 

forwarded by psychophysicists to explain the motion aftereffect and direction­

specific adaptation include comparisons between direction-specific channels tuned for 

opposing directions of movement (16, 22), or distributions of activity of several 

direction-specific channels (15). One of these models predicts a facilitation of 

response similar to the enhancement effect seen in MT cells (16). 

The response of MT directional neurons is contingent on the degree of 

difference between a stimulus' motion and the motion of the preceding period of 
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adaptation. If a bar stimulus moves in the same direction as (i.e., is similar with 

respect to direction to) the adaptation stimulus, the subsequent response is weakest. 

If a bar is most different, moving in the opposite direction, then the response is 

strongest. With the intermediate condition of bar movement following stationary 

adaptation the bar elicits a response of intermediate strength. 
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