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ABSTRACT

Antiferromagnets are choice systems to study quantum critical behavior. Unlike fer-
romagnets, they can experience continuous quantum phase transitions when tuned
by pressure. However, the lack of a net magnetization renders experimental ap-
proaches difficult and often indirect. Here I demonstrate that both non-resonant and
resonant x-ray magnetic diffraction under pressure provide the highly-desired direct
probe for microscopic insights into the disappearance of the magnetic order, as well
as the evolution of the charge and structural degrees of freedom. In Mo3Sb7, where
spins are itinerant with small magnetic moments, we have discovered the doubling
of the superconducting transition temperature under pressure and relate it to a lattice
change from tetragonal to cubic structure. In MnP, a spiral magnetic order with
tightened pitch was revealed in the high-pressure phase near a superconducting state
at ∼7 GPa. As the spiral pitch changes, fluctuations move from antiferromagnetic to
ferromagnetic at long and short wavelengths, respectively, thereby potentially pro-
moting spin-fluctuation-mediated superconductivity of different symmetries. In the
all-in-all-out (AIAO) pyrochlore antiferromagnet Cd2Os2O7, we discovered an anti-
ferromagnetic quantum critical point at 35.8 GPa using new techniques for resonant
x-ray magnetic diffraction under pressure. The continuous suppression of AIAO
antiferromagnetic order to zero temperature is accompanied by inversion symmetry
breaking of the lattice, dividing the P − T phase space into three regions of differ-
ent time reversal and spatial inversion symmetries. While phase lines of opposite
curvature indicate a striking departure from a mean-field form at high pressure, the
intertwined spin, charge, and phonon fluctuation modes point to a strong-coupled
scenario of quantum criticality.



vi

PUBLISHED CONTENT AND CONTRIBUTIONS

[1] Yejun Feng, YishuWang, A. Palmer, Ling Li, D.M. Silevitch, S. Calder, and
T. F. Rosenbaum. “Multiple Superconducting States Induced by Pressure in
Mo3Sb7”. Physical Review B 95.125102 (2017). doi: 10.1103/PhysRevB.
95.125102.
Y.Wang conducted experiments and participated in preparing themanuscript.

[2] Yishu Wang, Yejun Feng, J.-G. Cheng, W. Wu, J. L. Luo, and T. F. Rosen-
baum. “Spiral Magnetic Order and Pressure-Induced Superconductivity in
TransitionMetal Compouns”.Nature Communications 7.13037 (2016). doi:
10.1038/ncomms13037.
Y.Wang conducted experiments, analyzed data and prepared themanuscript.

[3] Yejun Feng, A. Palmer, Yishu Wang, D. M. Silevitch, and T. F. Rosenbaum.
“Direct probe of Fermi surface evolution across a pressure-tuned quantum
phase transition”. Physical Review B 91.155142 (2015). doi: 10.1103/
PhysRevB.91.155142.
Y. Wang conducted experiments and participated in preparation of the
manuscript.

[4] A. Palmer, D. M. Silevitch, Yejun Feng, Yishu Wang, R. Jaramillo, A.
Banerjee, Y. Ren, and T. F. Rosenbaum. “Sub-Kelvinmagnetic and electrical
measurements in a diamond anvil cell with in situ tunability”. Review of
Scientific Instrument 86.093901 (2015). doi: 10.1063/1.4929861.
Y. Wang conducted experiments and commented on the manuscript.



vii

TABLE OF CONTENTS

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Published Content and Contributions . . . . . . . . . . . . . . . . . . . . . . vi
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
List of Illustrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii
Chapter I: Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Phase transitions and Landau-Ginzburg-Wilson (LGW) theory . . . 2
1.2 Quantum phase transitions (QPTs) . . . . . . . . . . . . . . . . . . . 4
1.3 Antiferromagnetic QPTs and competing ground states . . . . . . . . 7
1.4 Structure of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . 13

Chapter II: Experimental Methods . . . . . . . . . . . . . . . . . . . . . . . 14
2.1 High pressure sample environment . . . . . . . . . . . . . . . . . . 15
2.2 X-ray magnetic diffraction . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 Optical Raman spectroscopy under high pressure . . . . . . . . . . 28

Chapter III: Magnetism, structure and superconductivity in Mo3Sb7 . . . . . 31
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Experimental methods . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.4 Discussion and conclusion . . . . . . . . . . . . . . . . . . . . . . . 38

Chapter IV: Spiral magnetic order and superconductivity in MnP . . . . . . . 40
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2 Experimental methods . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Chapter V: Quantum phase transitions in Cd2Os2O7 . . . . . . . . . . . . . . 55
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.2 Spin and orbital resonance . . . . . . . . . . . . . . . . . . . . . . . 58
5.3 Lattice structure and symmetry . . . . . . . . . . . . . . . . . . . . 63
5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Chapter VI: Conclusions and outlook . . . . . . . . . . . . . . . . . . . . . . 80
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84



viii

LIST OF ILLUSTRATIONS

Number Page
1.1 Generic diagram of phase transitions. By varying the control param-

eter r , such as temperature, pressure, chemical doping, field, etc., the
order parameter m is tuned from zero to nonzero at critical point r = rc. 3

1.2 A generic phase diagram of quantum criticality. The T − r phase
line separates the ordered and disordered states, with the thermal
critical region bounding it. The quantum critical region is set by
T ≥ |r |νz, where the critical behavior is dominated cooperatively by
dynamic and thermodynamic properties. For region T ≤ |r |νz, only
thermodynamic critical behaviormatters. The region outside both the
asymptotic classical and quantum scaling regimes is characterized by
crossover scaling governed by both classical and quantum fixed points. 6

1.3 Schematic phase diagram of ferromagnetic metals in T − P − H

phase space. Shown are the ferromagnetic (FM, dark shaded) and
paramagnetic (PM) phases at H = 0, the tricritical point (TCP),
and the two quantum critical points (QCPs). Also shown are various
lines of first-order (dashed lines) and second-order (solid lines) phase
transitions, and the “wing” surfaces of first-order transitions (light
shading). From Ref. [5]. . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 P − T phase diagram of CePd2Si2 [21]. TN, the antiferromagnetic
transition temperature, is suppressed by pressure. At the boundary of
the magnetic ordered state, superconductivity arises with transition
temperature Tc, which is scaled by three times for clarity. inset: ρ−T

curve at 2.8 GPa, with ρ ∼ T1.2 above Tc over nearly two decades,
and a sharp drop at 500mK indicating the superconducting transition.
From Ref. [21]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5 Phase diagramandBrillouin zone schematic formagnetism in chromium
[23]. Spin density wave transition temperature TN is suppressed by
application of pressure. Inset: schematic of the first Brillouin zone,
showing the incommensurate wave vector Q. From Ref. [23]. . . . . 10
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2.1 3-pin diamond anvil cell. (a) Photograph of actual cell components.
Numbers are correspnding to those in panel b. (b) Cross-sectional
view of a modified three-pin Merrill-Bassett type [38] diamond anvil
pressure cell. 1, 2: Upper and lower pieces of cell body. Pins press-fit
into the lower part align the two pieces with each other. 3,4: Rear-
perforated diamonds mounted on tungsten carbide seats; one seat is
mounted on a rocker for angular alignment. The partially-perforated
diamond anvils are specially designed to remove background signal
from the diamonds in scattering experiments. A retaining ring 5
holds the rocker and seat in position. Screws and stacks of Belleville
disc washers 6 provide the sealing force and initial room-temperature
pressurization. A helium bellows actuator 7 and retaining cap 8 allow
for in situ cryogenic pressurization. . . . . . . . . . . . . . . . . . . 15

2.2 Design of the compact bellows-controlled diamond anvil cell com-
patible with PPMS [42]. (a) Disassembled cell showing individual
components: (1) optics mount containing SMA fiber coupler and
two plano-convex lenses to couple sample chamber to fiber; a Cernox
thermometer is attached to the outside to measure the cell temper-
ature. (2) Outer cylinder of the cell body. A mounted diamond is
visible through the window. (3) Inner cylinder of the cell body with
a second mounted diamond. (4) Helium bellows actuator. (5) Plug
with external thread to screw into part 1 of the cell body for bellows
confinement. (6) PPMS sample puck for mounting to cryostat base.
A GaAs Hall sensor mounted to the puck measures the applied field.
(7) Four brass 6-32 screws with stacks of 302 stainless steel Belleville
spring washers (Associated Spring Raymond) for sealing and initial
pressurization of cell. (b) Cross-sectional rendering of the internal
structure of the cell. (c) Photograph of a fully assembled cell. (d)
Loading curve of the bellows-actuator at T = 8 K. Pressure is mea-
sured using the ruby fluorescence through the fiber optics. Stick-slip
motion of the cell is observed at high membrane pressures. From
Ref. [42] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
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2.3 Components and schematics of x-ray diffraction. (a) Overall layout of
x-ray optical components in the horizontal diffraction geometry; see
text for details of the individual elements. Two additional degrees
of rotational freedom in the vertical plane are not specified. Note
that the extra degree of rotational freedom φ of the sample controls
its azimuthal condition. (b) Two choices of diffraction geometry.
The linearly polarized x-rays from the synchrotron provide either a
π (for horizontal diffraction) or a σ (for vertical diffraction) initial
condition. (c) Measured mosaic profile (0.35◦ FWHM) of our 5 mm
thick HOPG polarization analyzer for x-rays at the Os L2 edge. . . . 26

2.4 High pressure, low temperature Raman setup. Components in the
picture: (a) commercial Raman microscope; (b) He-4 flow cryostat;
(c) liquid helium dewar; (d) Lakeshore temperature controller; (e)
vacuum pump; (f) high pressure manifold control system; (g) high
pressure helium gas bottle, providing gas to change cell pressure. . . 29

3.1 P−T phase diagram of Mo3Sb7. Red squares mark the phase bound-
ary between tetragonal and cubic structures at TS(P), as determined
from electrical resistivity [85]. Superconducting transitions (dark
and light blue circles) in both crystal structures are demarcated by
characteristic signatures of the magnetic susceptibility. The shaded
area marks the phase coexistence region. . . . . . . . . . . . . . . . 32

3.2 The ac magnetic susceptibility in Mo3Sb7. (a) The ac magnetic
susceptibility at the superconducting transition at a series of pressures
P in Mo3Sb7. The two-step transitions indicate phase coexistence.
(b) An applied magnetic field suppresses the superconductivity. . . . 34

3.3 Lattice symmetry and phase continuity. (a) Longitudinal (θ/2θ) scans
of three lattice orders of Mo3Sb7, measured for various pressures (in
units of GPa) at T = 80 K (red) or T < 4.3 K (blue). All scans are
plotted on a logarithmic scale in order to show the symmetry state
and to rule out the presence of minor phases. (b) The Mo3Sb7 lattice
constant vs Ag lattice constant at each (P, T) point along the specified
path in the inset. (Inset) Trajectory in the P−T phase space for x-ray
measurements. Mo3Sb7 remains in the same cubic phase throughout.
The bulk modulus at 80K is B0 = 111.5 ± 0.8GPa. . . . . . . . . . . 35
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3.4 Chemical and magnetic characteristics of Mo3Sb7. (a) X-ray absorp-
tion near-edge spectroscopy at ambient conditions for a comparison
between four different Mo compounds of various valence conditions.
(b) Magnetization measurements M(H) at T = 60K and 6 K, brack-
eting TS at P = 0, indicate no magnetic hysteresis and no saturation
up to H = 7 T. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1 P − T phase diagram of MnP from Ref. [100]. Pressure dependence
of the magnetic transition temperatures, TC, Tm, T∗, TS, and the
superconducting transition temperature TSC; TSC has been scaled by
a factor of 20 for clarity. . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 X-ray diffraction evidence of helical order in MnP. (a) Raw scans
around the (1, 1, 0) order at ambient pressure and T = 4 K, showing
both the lattice Bragg peak and a pair of non-resonant magnetic peaks
associated with the helical spin order Ha-I. Solid lines are guides to
the eye. (b–d) Longitudinal (θ/2θ) line shapes of (2, 0, 0) lattice,
and (1±Q’, 0, 0) helical magnetic order, measured at T = 4 K. We set
a > b > c in the Pbnm space group for the lattice [101]. Vertical
dashed lines mark the commensurate (0.75, 0, 0) and (1.25, 0, 0)
positions. (e) Above Pc = 6.7 GPa, magnetic diffraction is no longer
observed in longitudinal scans at same positions of b–d. Vertical
error bars represent 1σ s.d. counting statistics. . . . . . . . . . . . . 43

4.3 Single crystal nature of the magnetic order at P = 5.28GPa. The sin-
gle crystal nature of the magnetic order is proven by independent raw
scans across the 3D reciprocal space for both (1-Q’, 0, 0) and (1+Q’,
0, 0) orders. The out-of-diffraction-plane transverse scan is domi-
nated by the resolution function determined by the wide horizontal
detector slits, while the in-plane transverse scan is intrinsic to the
sample mosaic (full-width at half-maximum∼0.1◦) under pressure.
The longitudinal scans are of the θ/2θ type (plotted against 2θ here)
and identical to those in Fig. 4.2c. Measurements were performed
at T = 4 K. Vertical error bars represent 1σ s.d. counting statistics.
Solid lines are guides to the eye. . . . . . . . . . . . . . . . . . . . 44
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4.4 Primary wave nature of the observed diffraction order. A comparison
of longitudinal scans between the observed (1-Q’, 0, 0) order and null
(1-Q’/2, 0, 0) position. This indicates that our observed peaks are
primary waves and not higher harmonics of another wave vector. The
longitudinal scan of (1-Q’, 0, 0) is identical to the data in Fig. 4.2b.
Vertical error bars represent 1σ s.d. counting statistics. . . . . . . . 45

4.5 Magnetic phases of MnP. The P − T phase diagram includes ferro-
magnetism (FM), a double-helical order (Ha-I) at low pressure [101],
a new helical order (Ha-II) discovered at high pressure in the cur-
rent work, superconductivity (SC) and paramagnetism (PM). Phase
boundary data is adapted from [100] (open circles) with a reduction of
pressure scale by a factor of 1.12 to match our X-ray measured Ha-II
phase boundary at 4K (filled circle). Alsomarked are (P,T) positions
where the helical order was observed or proved null through mag-
netic scattering (filled squares) and where the lattice parameters are
measured (crosses). The presence of multiple ferromagnetic phases
[125] is not distinguished here for clarity. (Inset) Schematics of spin
structures of three magnetic ground states, presented in a sequence of
ascending pressure. The n-glide plane constraint between two helical
orders in Ha-I is broken in the Ha-II phase. . . . . . . . . . . . . . 46
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4.6 Scaled evolution of the magnetostriction and the magnetic phase
boundary in MnP. (a,b) Normalized lattice evolution at T = 4 K under
pressure, with a(P = 0) = 5.8959 Å, b(P = 0) = 5.2361 Å and c(P =
0) = 3.1807 Å in the Pbnm space group. a(P)/a(0) and b(P)/b(0)
evolve slowly under pressure and are non-monotonic, while c(P)/c(0)
has a strong monotonic pressure dependence. The shapes of a, b and
c(P) indicate large magnetostriction. Assuming that the lattice of a
non-magnetic phase should evolve linearly over this pressure range
(dashed lines in a and b as a0(P)/a(P = 0) and c0(P)/c(P = 0)),
and that the low-pressure behavior can be modelled from extensions
of the high-pressure lattice, the magnetostriction is then extracted
by subtracting the estimated a0(P) and c0(P). (c) Magnetostriction,
expressed as ∆l/l = (l(P) − l0(P))/l0(P) in both ∆c/c and ∆a/a, can
be scaled to magnetic phase transition temperatures TC and TN as a
function of pressure. ∆c and ∆a are of different signs, indicating
the anisotropic nature in both magnetic exchange interactions and
the lattice’s response to the magnetic order. Horizontal error bars
represent the full range of pressure during a measurement. . . . . . . 48

4.7 Magnetization and inverse magnetic mass susceptibility at ambient
pressure. The magnetization M was measured in a SQUID based
Magnetic Property Measurement System (Quantum Design) in a 100
Oe d.c. field, and plotted in SI units. Magnetic susceptibility χ’(T)
was fit to the Currie–Weiss law above the ferromagnetic transition
at 291 K to extract a moment of 2.79 µB per Mn. The measured
Curie–Weiss moment is compared with the literature value of the
saturated moment 1.3 µB per Mn [101] in the high field and low
temperature limit to provide a Rhodes-Wohlfarth ratio of 2.2. Vertical
error bars represent 1σ s.d. of measured magnetization. . . . . . . . 49
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4.8 Variable helical pitch length as a tuning method for magnetically
mediated superconductivity. (a) Schematic of a superconducting
electron pair coupled through helical spin order in a projected planar
view. The two sites of itinerant electron coupling are separated along
the helical order by a half wavelength λ/2, suggesting the possibility
of singlet dz2-wave pairing. This scenario competes with supercon-
ductivity of a ferromagnetic type, while the nearly parallel local spin
configuration always suppresses phonon-mediated superconductivity
at a single site [117]. (b) Superconducting transition temperature Tc
plotted as a function of helical wave vector Q in selected 3d inter-
metallic compounds. Data for MnSi [126, 133], MnP [100, 101] and
CrAs [114–116] are collected from either the literature or current
work. Red solid circles represent observed superconducting transi-
tions, which only exist in pressure-induced disordered phases beyond
the helical order, and are likely antiferromagnetically mediated. The
horizontal bars of the downward arrows represent the lower bounds
of null searches for superconductivity. Ferromagnetically mediated
superconductivity is expected to be at a lower temperature than its
antiferromagnetic counterpart [30, 135]. The pitch of the helical
order represents a potential tuning method between ferromagneti-
cally (blue region) and antiferromagnetically (red region) mediated
superconductivity. . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.1 Pyrochlore lattice structure and spin configurations in the all-in-all-
out magnetic order. (a) A schematic of Cd2Os2O7, showing only Os
sites to highlight the pyrochlore spin structure, with layers of Kagome
lattice and triangular lattice stacked alternatively along the <1,1,1>
direction. (b) Local spin arrangement at two neighboring tetrahedra,
with spin moments pointing radially to the center in one tetrahedron
(all-in), and pointing towards the outside in the other (all-out). . . . 57

5.2 Raw scans of resonant magnetic diffraction at low pressures. (Left)
Mosaic scans of (6, 0, 0) order at different azimuthal angles with the
values specified in the panel. (Right) Energy resonance profiles under
various azimuthal conditions. Intensity is expressed in Counts/s for
I = 100 mA synchrotron storage current. While multiple scattering
is present, the minimum trace of these curves manifests the energy
resonance profile of the magnetic diffraction. . . . . . . . . . . . . . 59
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5.3 Raw scans of resonant magnetic diffraction close to and beyond the
critical point. Left and right panel assignments are the same as Fig.
5.2. At the phase boundary (36.7 GPa), the magnetic resonance
has disappeared, and the energy dependence is that of the Os L2

fluorescence background. Beyond that pressure, lattice distortion
allows charge diffraction at the (6, 0, 0) order, as the resonance
profile reflects the charge nature of the energy dependence. . . . . . 61

5.4 Raw scans of the ATS resonance at (4, 2, 0). For simplicity, we only
display one mosaic profile (left) and one resonance profile (right).
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C h a p t e r 1

INTRODUCTION

From the origin of the universe to boiling water in the kettle, phase transitions
stand out as one of the most fundamental and fascinating topics in physics. In
the past several decades, the focus has shifted to two major interests in condensed
matter physic. The first is about competition between emergent phases involving
topics such as magnetism, superconductivity, fractional quantum hall states, and
topological order as major model systems. The second focus is on phase transitions
at zero temperature, so-called quantum phase transitions (QPTs), where quantum
mechanical effects become part of the puzzle in comparison to classical phase
transitions at a finite temperature.

Phase transitions in a wide variety of phenomena were unified by Landau’s mean-
field theory [1], where the general concepts of order parameters and the character
of spontaneous symmetry breaking were introduced. This theory was further devel-
oped into Landau-Ginzburg-Wilson (LGW) theory [2, 3] , incorporating an adequate
consideration of fluctuation effects, and the establishment of renormalization group
(RG) theory, which gives a clear physical understanding of universality and scal-
ing laws in critical behavior. A natural extension of the LGW paradigm [4] maps
QPTs to classical phase transitions with a modified (higher) dimensionality intro-
duced by an additional imaginary time dimension in quantum mechanical systems.
Although quantum criticality is theoretically predicted, both quantum fluctuations
and quantum universality classes remain experimentally unresolved, mainly due
to the difficulty of establishing model systems and effective tuning in a clean and
continuous fashion.

While metallic ferromagnets have been proved to categorically host first-order QPTs
[5, 6], several cases of antiferromagnets, such as heavy fermions [7] and densitywave
systems [8], have been experimentally established to exhibit continuous quantum
phase transitions under athermal tuning. Varying a control parameter, such as
chemical doping, pressure, and electrical and magnetic fields, at zero temperature
can tune the competing interactions, and effectively drive the system towards a
QPT. Enhanced spin fluctuation effects [9, 10] in the critical regime are manifested
not only by novel phenomena such as non-Fermi liquid behavior [11], but also by
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generating new ground states as a consequence of entropy accumulation [12]. Hence
probing non-classical signatures and ground states while establishing the underlying
mechanism of intertwined interactions has emerged as the central theme of studies
of continuous QPTs.

This thesis focuses on the experimental study of pressure-induced antiferromagnetic
QPTs in transition-metal compounds from 3d to 5d electrons, providing insights into
competing interactions from spin, charge, orbit and structural degrees of freedom at
both weakly- and strongly-coupled quantum critical points. By directly measuring
the antiferromagnetic order parameter and the underlying lattice, we have inves-
tigated a wide spectra of competing ground states, including metal and insulator,
magnetism and superconductivity, as well as characterizing the global and local
symmetry changes.

1.1 Phase transitions and Landau-Ginzburg-Wilson (LGW) theory
Landau’s theory of phase transitions starts from the free energy as an analytic
function of a mean-field variable m:

FL(m) = rm2 + νm3 + um4 +O(m5), (1.1)

where r, ν, u are parameters depending on all the degrees of freedom in the system
other thanm. The physical value ofmminimizes FL , as required by thermodynamics.
For sufficiently large r , F is always minimized by m = 0; while for sufficiently
small r , the minimum of F is located at m , 0 (Fig. 1.1). Depending on ν

and u, the transition from a zero to nonzero value of m at a critical value r = rc

could be either discontinuous (ν , 0) or continuous (ν = 0, u > 0), where the
latter is of more interest with its analytic properties. The mean-field variable m is
referred to as the order parameter. Its acquisition of a nonzero value characterizes
a spontaneous symmetry breaking of the system’s Hamiltonian by the ground state,
which is the central principle of Landau’s phase transition theory. For the topic of
antiferromagnetic orders in this thesis, the order parameter is the staggered moments
with the form of m =

∑
i eiQ·ri si, where Q is the antiferromagnetic wavevector and

si is spin on the ith site. Spins discussed in the thesis varies from itinerant to local
limits and are of Ising- or Heisenberg- types. In addition, r can be regarded as any
control parameter, whether thermal or nonthermal, making the Landau paradigm
versatile enough to be generalized to phase transitions at zero temperature.

The most prominent prediction from Landau’s theory is critical behavior governed
by a scaling law, which is universal for all systems in the mean-field limit. For
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Figure 1.1: Generic diagram of phase transitions. By varying the control parameter
r , such as temperature, pressure, chemical doping, field, etc., the order parameter m
is tuned from zero to nonzero at critical point r = rc.

example, it predicts that the critical exponent β, defined as m ∝ |r |β, has a value
of β = 0.5. However, the universality observed experimentally is much weaker.
Different categories of materials manifest different values of the critical exponent
and they can fall beyond the predicted value of 0.5. Dimensionality also seems to
be a factor, which is in contrast to the prediction of Landau theory. For instance,
bulk Ising ferromagnets share a common β ≈ 0.32, but in the two-dimensional Ising
case, β = 1/8 [13, 14].

The reason that Landau theory fails to predict the critical behavior in real materials
turns out to be the inadequate consideration of fluctuation effects. This also explains
the fact that deviations are larger in low-dimensional systems since fluctuations more
strongly deviates from a Gaussian distribution for lower dimensionality. In general,
there is an upper critical dimensionality, where for d > d+c , Landau theory gives
the correct answer as the interactions are essentially mean field, but for d < d+c ,
fluctuations have to be taken into account. This problem was solved by Wilson [2]
who generalized Eq.(1.1) by writing the partition function Z = e−F/T as a functional
integral:

Z = e−F/T =

∫
D[φ]e−S(φ), (1.2)

where
S(φ) = 1

TV

∫
dx[FL(φ(x)) + c(∇φ(x))2]. (1.3)
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Here, φ(x) is a fluctuation field whose mean value weighted by e−S is m in Eq.(1.1).
V is the volume and T refers to temperature. With the additional (∇φ(x))2 term, this
Landau-Ginzburg-Wilson functional integral takes account of fluctuation effects.

The renormalization group (RG) analysis of Eq.(1.3) takes advantage of the features
of critical points, where all fluctuations on smaller length scales are averaged,
making it possible for the first time to prove scaling laws near criticality. Basically,
the critical behavior is characterized by two thermodynamic exponents ν and η, and
one dynamic exponent, z, which are defined as:

ξ ∝ |r |−ν, χm(r = 0) ∝ |k |−2+η, τξ ∝ |ξ |z, (1.4)

where r ∝ |T − Tc | is the reduced temperature, ξ is the correlation length, χm is the
static order-parameter susceptibility, and τ is the correlation time.

The thermodynamic quantities follow the RG transformation:

f (r, h) = b−d f (rb1/ν, hbyh ), (1.5)

where d is the dimensionality, f = −(T/V) ln Z is the free-energy density, h is the
field conjugate to the order parameter, and yh is related to η by yh = (d + 2 − η)/2.
Here, b > 1 is the RG scaling factor. A similar RG iteration for the time correlation
function is given by:

C(k,Ω; r, h) = bxCC(kb,Ωbz; rb1/ν, hbyh ), (1.6)

where Ω is frequency and xC characterizes the correlation function C.

The critical exponents defined in Eq.(1.4), i.e., (ν, η, z), uniquely characterize the
critical behavior of a physical system and define a universality class.

1.2 Quantum phase transitions (QPTs)
There is a clear distinction between thermodynamic and dynamic critical behavior.
As the correlation length ξ always diverges at critical point, the renormalization
transformation Eq.(1.5) can always be extended to infinity. However, for a quantum
mechanical state in equilibrium, the correlation time τ is upper bounded by inverse
temperature 1/kT , which only goes to infinity for T = 0. Such a difference marks
the fundamental difference between phase transitions at finite temperature and those
at zero temperature, so-called quantum phase transitions.

This distinction is most clearly manifested by statistical mechanics. A classical
canonical partition function with no velocity-dependent potential for a system of N
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particles is given by:

Z =
1

N!

∫
dpdq exp(−βH(p, q))

=
1

N!

∫
dp exp(−βHk(p))

∫
dq exp(−βHp(q)).

(1.7)

Here β = 1/kT is the inverse temperature. H is the Hamiltonian that could be fac-
torized to a phase-space integral with Hk and Hp as the kinetic and potential energies
respectively. Thus one can integrate over momenta and leave the spatial integral
alone to solve for thermodynamic critical behavior, and vice versa. Therefore, the
thermodynamic and dynamic parts are independent.

For quantum statistical mechanics, however, Ĥk and Ĥp are operators that do not
commute. Therefore, the grand canonical partition function,

Z = Tr exp(−β(Ĥk + Ĥp − µN̂)), (1.8)

doesn’t factorize, yielding a mutual dependence of dynamics and thermodynamics.
The fundamental difference between Eq. (1.7) and (1.8) is the uncertainty relation-
ship between momentum and space, distinguishing quantum and classical statistics.
This is also manifested by the equivalent uncertainty relationship between energy
and time, which is why the fluctuating time scale is cut off by β = 1/kT . This
coupling modifies scaling relation Eq. (1.4) to [15]:

f (r, h,T) = b−(d+z) f (rb1/ν, hbyh,Tbz). (1.9)

There are three features directly reflected by the revised relation Eq.(1.9). First, tem-
perature becomes a relevant operator for a T = 0 critical point. Second, temperature
and frequency are expected to scale in the same way, taking into account Eq.(1.6).
Last, and most remarkably, the dynamic critical exponent z modifies the dimension-
ality d to deff = d + z, as a consequence of imaginary time τ effectively acting as an
extra dimension. Notably, when τξ > 1/kTc, this only leads to a finite-size scaling
effect. Only for transitions at Tc = 0 will it add an extra dimension.

Consequently, QPTs at zero temperature are fundamentally different with respect
to their classical counterparts in dimensionality and in the coupling of dynamic
criticality with the thermodynamics, thus forming different universality classes.
There is essentially a crossover region between quantum criticality and classical
criticality, with the boundary defined by |r |νz (Fig. 1.2).

Fluctuations in the quantum critical region are manifested in various ways. On one
hand, they can help build up new ground states. One example, which has been
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Figure 1.2: A generic phase diagram of quantum criticality. The T − r phase line
separates the ordered and disordered states, with the thermal critical region bounding
it. The quantum critical region is set by T ≥ |r |νz, where the critical behavior is
dominated cooperatively by dynamic and thermodynamic properties. For region
T ≤ |r |νz, only thermodynamic critical behavior matters. The region outside both
the asymptotic classical and quantum scaling regimes is characterized by crossover
scaling governed by both classical and quantum fixed points.

under intensive investigation for decades, is high-Tc superconductivity in cuprates,
potentially mediated by spin fluctuations as a residue from the ordered antiferro-
magnetic state. On the other hand, novel phenomena such as non-Fermi liquid states
and asymptotic behavior deviating from mean-field predictions could be induced by
fluctuations. As mentioned earlier, fluctuation effects on critical behavior will be
weaker with increased dimensionality, which finally ends up in a mean-field regime
when d > d+c . Since quantum phase transitions can be mapped to classical phase
transitions with higher effective dimensionality, it will tend to approach mean-field
predictions, especially for 3-dimensional materials. This, however, is based on one
assumption dating back to Landau theory, i.e. order parameter fluctuation is the
only mode that extends over infinitely large length and time scales. In fact, such
fluctuations, so-called soft modes, could have other origins. In addition, they could
be coupled under certain circumstances [16, 17], providing one potential venue to-
wards quantum criticality beyond the mean-field regime in 3-dimensional systems.
Experiments related to this perspective will be discussed in Chapter 5.
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1.3 Antiferromagnetic QPTs and competing ground states
QPTs in magnetic materials
As a common ground state, magnetism manifests connections to many other cor-
related states, thus providing one of the best platforms for characterizing phase
transitions. Especially in ferromagnetic materials, where the spontaneous magneti-
zation has a macroscopic effect with a net moment, the direct measurement of the
order parameter is very accessible.

Figure 1.3: Schematic phase diagram of ferromagnetic metals in T − P − H phase
space. Shown are the ferromagnetic (FM, dark shaded) and paramagnetic (PM)
phases at H = 0, the tricritical point (TCP), and the two quantum critical points
(QCPs). Also shown are various lines of first-order (dashed lines) and second-order
(solid lines) phase transitions, and the “wing” surfaces of first-order transitions (light
shading). From Ref. [5].

The ferromagnetic transition temperature (Curie temperature) TC can be effectively
suppressed to zero by applying pressure and magnetic field (Fig. 1.3). Disappoint-
ingly, it has been observed in a multitude of ferromagnetic metals that although
transitions at finite temperature are second order, transitions in the T = 0 plane
are all first-order except for two isolated quantum critical points (Fig. 1.3) [5, 6].
This diagram has later been proved for all metallic ferromagnets and can be un-
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derstood as fluctuation-induced first-order behavior due to a coupling between the
magnetization and the electronic soft modes [5].

Hence quantum phase transitions in antiferromagnetic materials become of more
interest. In spite of the apparent inconvenience of directly measuring the staggered
moment, antiferromagnetism turns out to be a playground with significant tunability
and diversity. Unlike ferromagnetism, where spins are aligned in the same direction,
antiferromagnetism, either in ordered or disordered phases, manifests spin configu-
rations in various kinds of geometries, facilitating versatile fluctuation modes that
could be linked to new correlated states. For example, the resonant valence bond
(RVB) state [18], or quantum spin liquid, was initially proposed as a ground state for
antiferromagnetically coupled S = 1/2 spins on a frustrated lattice in low dimen-
sion, and was later connected to the pre-paired singlet for high-Tc superconductivity
in cuprates [19]. Both the fractional excitation in quantum spin liquids and its con-
nection to novel superconductivity are long standing topics of fundamental interest
with continuous input from new quantum materials [20].

One case of antiferromagnetic QPTs that has been intensively studied and well es-
tablished occurs in heavy fermion materials, where the antiferromagnetic ground
state can be tuned by pressure and small magnetic field (Fig. 1.4) [11, 21]. In
intermetallic CePd2Si2, the antiferromagnetic order temperature TN is reduced by
applying pressure and the system finally becomes a paramagnetic metal. The critical
point, however, is not directly observed. It is instead buried in a pressure-tuned su-
perconducting dome (Fig. 1.4) [21]. Manifesting the similarity to the phase diagram
of cuprates are organic superconductors and the recently discovered iron pnictides.
Together, these examples exemplify a general proposal that antiferromagnetic quan-
tum criticality provides a mechanism for unconventional superconductivity beyond
the Bardeen-Cooper-Schrieffer (BCS) theory. Quantum criticality is more clearly
revealed in another heavy fermion material, YbRh2Si2 [11]. At finite temperature
above the QCP at zero temperature, where the antiferromagnetic state is suppressed
by a small magnetic field (< 1T), the electrical resistivity shows a linear dependence
on temperature, which is an anomalous metallic state beyond Fermi-liquid theory.
This non-Fermi liquid behavior is another relevant feature potentially emerging from
quantum criticality. Similar quantum criticality has been observed in many other
heavy fermion materials, such as CeCu2Si2, CeRhIn5, and β-YbAlB4 [7].

In addition to the series of fascinating phenomena around QCPs, quantum criticality
in heavy fermions deviates from the Landau paradigm due to an effect called Kondo-
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Figure 1.4: P − T phase diagram of CePd2Si2 [21]. TN, the antiferromagnetic
transition temperature, is suppressed by pressure. At the boundary of the magnetic
ordered state, superconductivity arises with transition temperature Tc, which is
scaled by three times for clarity. inset: ρ − T curve at 2.8 GPa, with ρ ∼ T1.2

above Tc over nearly two decades, and a sharp drop at 500 mK indicating the
superconducting transition. From Ref. [21].

exchange coupling, which introduces quantum coherence between local moments
of 4 f electrons to conduction electrons. While approaching the QCP from the
paramagnetic side, Kondo screening will lead to an effective ground state where
local moments and conduction electrons are entangled, which has its own QCP
[7, 22]. Whether the two QCPs marking breakdown of antiferromagnetic order
and Kondo effect are locked or separated is still an open question, but it provides
one venue to break out from Landau phase transition theory by introducing local
criticality. With the combination of superconductivity, non-Fermi liquid behavior,
and novel quantum criticality, heavy fermion compounds demonstrate the richness
of phenomena related to antiferromagnetic QCPs.
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Figure 1.5: Phase diagram andBrillouin zone schematic formagnetism in chromium
[23]. Spin density wave transition temperature TN is suppressed by application of
pressure. Inset: schematic of the first Brillouin zone, showing the incommensurate
wave vector Q. From Ref. [23].

Another well established case of a continuous QPT is the spin density wave (SDW)
in Cr [23, 24], which breaks down under pressure Pc ∼ 10GPa (Fig. 1.5), discovered
by high-resolution x-ray magnetic diffraction. Unlike heavy fermions, where the
magnetism ismanifested by local moments, instabilities in Cr at theQCP of the SDW
is of an itinerant nature located at an incommensurateQ. A non-monotonic evolution
of Qwith pressure alongwith the limiting sinusoidal form of the densitywave reveals
the dominant role of this itinerant instability in the vicinity of the critical points,
with little influence from the lattice [24]. The magnetotransport measurement in
Cr around the critical pressure demonstrates a non-mean-field feature [25], which
reveals reconstruction of the magnetic Fermi surface and is distinct from the critical
scaling measured in chemically disordered Cr:V under pressure [25]. So far, no new
ground state has been discovered in the magnetically disordered phase, in contrast
to heavy fermions. Nevertheless, as a clean elemental metal, Cr sets the benchmark
for itinerant metals with signatures of strong coupling [26], which can be compared
with other experimental cases.
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Spin-fluctuation mediated superconductivity
As has been demonstrated earlier, antiferromagnetic quantum criticality could fa-
cilitate superconductivity alternative to the phonon-mediated BCS mechanism [27].
First proposed for heavy fermion superconductors [28, 29] and high-Tc cuprates, this
scenario has been revived in iron pnictides and other transition-metal magnets. In
a traditional BCS picture, electrons with opposite momentum and spin, i.e. (+k, ↑)
and (−k, ↓), are paired through a lattice vibrational mode (phonon), opening an
isotropic gap (s wave) around the Fermi surface. The electron-phonon coupling is
on site (r = 0), while the net attraction potential is achieved by a retardation effect
(t0) to avoid the primary Coulomb interaction between two electrons [27], forming
an attractive region in space and time.

In addition to charge, electrons also have a spin degree of freedom, which also could
generate an attractive potential without assistance from phonons [10, 30]. Although
the microscopic mechanism is still under investigation, a phenomenological de-
scription by analogy to the BCS formula is helpful for proposing new materials and
predicting experimental observations. Following Refs. [10] and [30], the induced
interaction between two quasiparticles with charge e, e’ and spin s, s’, respectively,
in the linear response approximation, can be written as:

Vind = −ee′g2
n χn(r, t) − s · s′g2

m χm(r, t), (1.10)

where gn and gm are empirical parameters thatmeasure the strength of the coupling to
charge and to spin, while χn and χm are the non-local charge density and magnetic
susceptibility, respectively. The quasiparticle pairing induced by this interaction
will generate Cooper pairing with certain oscillatory features, with an attraction
area located differently in space and time. Following Fig. 2 in Ref. [30], repulsive
interaction at r = 0, t = 0 for static charges becomes attractive at r = 0, t > 0 due
to the phonon effects. This is the mechanism in BCS theory. Spin-spin interaction
at the border of long-range ferromagnetic orders will involve two parallel spins,
i.e. in a spin triplet state, for which attraction region centers at r = 0. As for
antiferromagnetic cases where antiparallel spins form a singlet state, the attracted
quasiparticles are separated by a finite r .

Due to the requirement of the Pauli principle, the overall wavefunction of Cooper
paris should be antisymmetric. Thus the spin triplet pairing will occupy the lowest
allowed p-wave state with odd angularmomentum. As for the antiferromagnetically-
coupled spin singlet state, it has to take a d-wave with even angular momentum



12

instead of an s-wave symmetry since the interaction is repulsive at the origin. The
symmetry of Cooper pairing, effectively that of the superconducting gap, is the
most definitive nature of unconventional superconductivity. For example, d-wave
superconductivity has been measured in cuprates [31, 32], while superconductivity
in Sr2RuO4 has been predicted to be chiral p-wave [33].

In real materials, superconductivity at the border of a ferromagnetic state is rare
unless the electron moments that form the ferromagnetism are different from the
electrons that pair to give superconductivity [34]. In most cases, the two are hard
to reconcile because an attraction region around r = 0 necessitates a large magnetic
energy scale to overcome repulsion effects. In addition, the inner product of triplet-
paired spins is a factor of three smaller than singlet-pairing, which is an intrinsic
weakness quantum mechanically. Therefore, antiferromagnetic QCPs seem to be
more likely to host superconducting states. The richness of the spin configurations
also provides tunability to reveal the microscopic pairing mechanism. We will
discuss this idea further in Chapter 4.

Magnetically-driven metal-insulator transitions
Correlated insulators are materials that should be metallic from conventional band
theory, but are insulators due to the localization by electron-electron correlations,
which also can be expressed in magnetic ordering. Therefore, a magnetic transition
involved with a metal-insulator transition is always of interest. The most prominent
model for correlated insulators is the Mott-Hubbard model, most of which are
antiferromagnetic. The gap opening in Mott insulators is driven by the on-site
Coulomb repulsion,U, which is independent of themagnetic order [35]. In addition,
quantum phase transitions of Mott insulators are typically first order.

In contrast, Slater insulators are proposed as a pure magnetic transition, where the
insulating gap is opened naturally by the formation of a long-range magnetic order
[36]. This transition is predicted to be continuous [36]. More interestingly, the crit-
ical point will involve fluctuations from charge and spin degrees of freedom coupled
naturally, which might exhibit novel features of criticality. As originally proposed
by Slater [36], electrons with opposite spins should move in different Hartree-Fock
potentials. Particularly for antiferromagnetic cases, the potential energy difference
will result in a periodic perturbation of the potential, which has twice the lattice
periodicity, leading to an energy band splitting with a gap in the middle. This model
only works for traditional antiferromagnetic order with a superlattice twice the size
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of the lattice. Recently, this theory has been generalized to apply to antiferromag-
netic ordering without Brillouin zone folding [37]. We will address this possibility
in detail in Chapter 5.

1.4 Structure of this thesis
The remaining five chapters of the thesis are organized as follows:

In Chapter 2, I will introduce the experimental setup and principle of x-ray diffrac-
tion and optical Raman spectroscopy techniques within a high pressure sample
environment. These techniques have been developed to address the microscopic
features and symmetry evolution across a quantum critical point.

In Chapter 3, I will present the pressure-tuned superconducting states in Mo3Sb7,
where we have addressed the effects of magnetism and crystal structure on the
superconductivity.

In Chapter 4, I will discuss our discovery of the spiral magnetic order in MnP along
with its inspiration of antiferromagnetically-induced superconductivity, addressing
both the physics and possibilities for experiments on related materials.

In Chapter 5, I will describe our work on Cd2Os2O7, where so-called all-in-all-out
antiferromagnetic order on a pyrochlore lattice has been suppressed by pressure with
additional inversion symmetry breaking of the lattice. Features of quantum critical
behavior beyond mean-field theory and the implications for the metal-insulator
transition also will be discussed.

In Chapter 6, I will summarize my results and conclusions and describe future
prospects.



14

C h a p t e r 2

EXPERIMENTAL METHODS

Quantum phase transitions can be experimentally realized by non-thermal control
parameters such as chemical doping, magnetic field, pressure, etc., among which
pressure is a particularly clean tuning method without introducing disorder or ad-
ditional symmetry breaking. I have summarized in Table 2.1 the properties that
need to be experimentally revealed about a quantum phase transition and the mea-
surement methods we have incorporated with high pressure sample environments.
Such experiments are technically challenging in two aspects: i) to create a sam-
ple environment with uniform and stable pressure condition, and ii) to distinguish
small signals from miniature samples while the background level is high and the
measurement geometry is limited due to the high pressure apparatus.

Table 2.1: Experimental study of pressure-tuned quantum phase transitions

properties of a quantum
phase transition probe techniques

related experimental
systems and chapters
in this thesis

order parameter (micro-
scopic magnetic order
for AFM)

(non-resonant; resonant1) x-
ray magnetic diffraction

MnP (Ch4);
Cd2Os2O7 (Ch5)

critical point

x-ray diffraction;
optical Raman spectroscopy2;
electrical transport;
ac magnetic susceptibility

Mo3Sb7 (Ch3);
MnP (Ch4);
Cd2Os2O7 (Ch5)

first-order signature or
continuous nature

x-ray diffraction;
optical Raman spectroscopy

Mo3Sb7 (Ch3);
MnP (Ch4);
Cd2Os2O7 (Ch5)

new ground state ac magnetic susceptibility;
x-ray magnetic diffraction

Mo3Sb7 (Ch3);
Cd2Os2O7 (Ch5)

quantum critical behav-
ior electrical transport3 not included

In this thesis, we have used multiple probes, including x-ray magnetic diffraction,
optical Raman spectroscopy, and ac magnetic susceptibility, in order to address the
issue of complexity in both weak and strong coupling regimes through a quantum
phase transition.
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2.1 High pressure sample environment

Figure 2.1: 3-pin diamond anvil cell. (a) Photograph of actual cell components.
Numbers are correspnding to those in panel b. (b) Cross-sectional view of amodified
three-pin Merrill-Bassett type [38] diamond anvil pressure cell. 1, 2: Upper and
lower pieces of cell body. Pins press-fit into the lower part align the two pieces with
each other. 3,4: Rear-perforated diamonds mounted on tungsten carbide seats; one
seat is mounted on a rocker for angular alignment. The partially-perforated diamond
anvils are specially designed to remove background signal from the diamonds in
scattering experiments. A retaining ring 5 holds the rocker and seat in position.
Screws and stacks of Belleville disc washers 6 provide the sealing force and initial
room-temperature pressurization. A helium bellows actuator 7 and retaining cap 8
allow for in situ cryogenic pressurization.

Due to their relatively lowmass, diamond anvil cells (DACs) are themost convenient
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pressure vessels to be incorporated into a cryogenic sample environment. We use
cells made from silicon aluminum bronze (C64200), which does not need heat
treatment and thus is straightforward to be machined to high precision. It also has
excellent anti-galling and anti-seizing properties under non-lubricated and vacuum
conditions. The originalMerrill-Bassett design [38] wasmodified to allow pins with
a larger diameter (1/4 inch) for better stability (Fig. 2.1). To improve efficiency,
pressure was varied in situ using a helium diaphragm or membrane [39–41] (Fig.
2.1, part 6), removing the need to thermally cycle to room temperature for each
pressure point. Ruby fluorescence and Ag lattice constant are used to measure
pressure, while the latter is only functional for diffraction experiments.

Apart from the traditional 3-pin cell design, we have also designed a more compact
cell with a 1 in. diameter (Fig. 2.2) [42]. Compared with the 3-pin design, the
choice of cell body materials and the capability of changing pressure in situ using
a helium membrane are the same. Instead of using pins to align the two opposing
parts of the cell body, this cell use sliding cylindrical surfaces for alignment (Fig.
2.2, part 2 and 3). The 1 in. diameter of this cell makes it compatible with many
commercial helium-4 cryostats in a large field-temperature (H −T) phase space and
top-mounting systems such as helium-3 and dilution refrigerators, while allowing
ample clearance for the necessary vacuum and radiation shields needed for sub-
Kelvin operation. For the measurements described in this thesis (mainly in Chapter
3), the pressure cell was loaded inside a commercial helium-4 cryostat (PPMS,
Quantum Design) with a base temperature of 1.7 K and a 9 T magnet.

Compared to the typical pressure conditions used in geophysical research for which
the diamond anvil cell was originally developed, condensed matter physics research
at high pressure presents a new set of technical constraints. Most condensed matter
phenomena arise from subtle interplay of small energy scales, thus it is most critical
to have a stable and uniform pressure condition and to preserve the initial crystal
quality through the entire cooling and pressurization process, from ambient pressure
and temperature to the targeted P − T point.

As we noted previously [40], the choice of pressure medium can help maintain a
large chamber-to-sample volume ratio as the pressure increases. A typical pres-
sure chamber has an initial volume of order 0.02 mm3 and a chamber-to-sample
ratio of about 100:1. Some highly compressible noble gases, such as helium and
neon, significantly reduce their own volumes to 5-10% at high pressure and low
temperature, and thus require a very small and thin sample (such as 10 × 10 × 5
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Figure 2.2: Design of the compact bellows-controlled diamond anvil cell compatible
with PPMS [42]. (a) Disassembled cell showing individual components: (1) optics
mount containing SMA fiber coupler and two plano-convex lenses to couple sample
chamber to fiber; a Cernox thermometer is attached to the outside to measure the
cell temperature. (2) Outer cylinder of the cell body. A mounted diamond is visible
through the window. (3) Inner cylinder of the cell body with a second mounted
diamond. (4) Helium bellows actuator. (5) Plug with external thread to screw into
part 1 of the cell body for bellows confinement. (6) PPMS sample puck for mounting
to cryostat base. A GaAs Hall sensor mounted to the puck measures the applied
field. (7) Four brass 6-32 screws with stacks of 302 stainless steel Belleville spring
washers (Associated Spring Raymond) for sealing and initial pressurization of cell.
(b) Cross-sectional rendering of the internal structure of the cell. (c) Photograph
of a fully assembled cell. (d) Loading curve of the bellows-actuator at T = 8 K.
Pressure is measured using the ruby fluorescence through the fiber optics. Stick-slip
motion of the cell is observed at high membrane pressures. From Ref. [42]

µm3 in Ref. [43]), which significantly cuts down the signal. We regard a 4:1
methanol:ethanol mixture as an ideal pressure medium up to at least 40 GPa, com-
bining both quasi-hydrostaticity and low compressibility to preserve single crystal
samples in a voluminous pressure chamber. A careful choice of chamber diameter
and thickness will allow reaching pressures comparable to the estimated limits given
in Ref. [44] while minimizing any pressure anisotropy [40] for a fixed anvil size.
However, the equation of state of the pressure medium only dominates when the
gasket material is strong enough. Thus, different materials are preferred depending
on the targeted pressure. For example, stainless steel gaskets typically maintain
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pressure below 15 GPa, while for the experiments in the pressure range of 15 - 40
GPa, Rhenium is used instead.

Pressurization is a mechanical process that is always dynamic and non-adiabatic.
The pressure-driven evolution of a sample chamber’s lateral diameter and vertical
thickness has been well discussed in the literature [44, 45]. In addition, diamond
anvils tend to elastically buckle towards the center under pressure [45]. With the
chamber shape changing upon pressurization, a new pressure gradient is established
in both the gasket and pressure medium that eventually relaxes towards a quasi-
hydrostatic condition, limited by the shear modulus of the medium and the chamber
geometry. This redistribution of the pressure medium through plastic deformation
and rheology inside a shape-changing chamber is a major characteristic of diamond
anvil cells. It suggests that a voluminous pressure chamber is always preferable,
as such a chamber effectively insulates the sample from large movements of the
pressure medium. At low temperature (∼ 4 K), the pressure medium relaxation
process can take as long as hours.

2.2 X-ray magnetic diffraction
X-ray and neutron magnetic diffractions are the only two probes that are capable of
providing direct and microscopic understanding of both the ordering wave vector
and the spin structure, in comparison to macroscopic techniques such as magnetic
susceptibility, heat capacity, optical Kerr effect, muon spin rotation (µSR), and elec-
trical transport measurements, or local probes such as nuclear magnetic resonance
and x-ray magnetic dichroism. These two diffraction techniques are complementary
to each other. Neutrons have better sensitivity to magnetic moments, but also have
intrinsic strong absorption from several elements of natural abundance such as Gd,
Sm, Eu, B, Cd, Dy, and Ir, for which isotope enriched specimen are typically pre-
pared. Second, it is not always easy to grow single crystals of large sizes for neutron
diffraction, especially for samples containing scarce and expensive elements such as
Ir and Os. In addition, neutrons cannot be focused down to a small beam size. Thus
typical pressure cells for neutron diffraction are large, and difficult to cool down to
very low temperature [46]. Neutron magnetic single-crystal diffraction is typically
limited to pressures below 10 GPa [46–48], mainly due to the combined effect of
a large range of accessible reciprocal space, which weakens the pressure cell, and
cryogenic cooling capability, which limits a pressure cell’s size.

All the issues listed above can be addressed with x-ray magnetic diffraction. As
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an electromagnetic wave, x-rays are sensitive to both charge distribution and mag-
netization density. Compared with that for neutron scattering from magnetically
ordered states, the cross section is reduced by a factor of (~ω/mc2)2 [49], which,
however, could be made up by the brightness of a synchrotron radiation source. In
addition, it brings special effects of high resolution in momentum space, polariza-
tion phenomenon and resonance techniques, which give an enhanced cross section.
With much better focusing of the beam down to ∼100 µm, a high pressure cell
with smaller mass (Fig. 2.1) can also be used. X-ray magnetic diffraction of both
non-resonant [49–56] and resonant [57–64] types became a research tool only after
the availability of 2nd generation synchrotron radiation sources.

A nonrelativistic calculation using perturbation theory gives the cross section for
elastic scattering as [49]:( d2σ
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(2.1)

where |a〉 and |b〉 are the initial and final eigenstates, kλ and k′λ′ represent the
momentum and polarization of incident and outgoing photons, and K = k − k′ is the
momentum transfer. ε , ε′ are the unit vectors of polarization with reference to the
scattering plane. The first term in Eq. (2.1) gives the usual Thomson cross section for
Bragg scattering and depends on the Fourier transform of the charge density. With
the other three terms being spin-dependent, and noticing that anomalous dispersion
effects occur when ~ωk ∼ Ea − Ec, the magnetic scattering cross section needs to
be discussed under both non-resonant and resonant conditions.
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Non-resonant x-ray magnetic scattering
Following Ref. [49], assume ωk ∼ ωk ′ � (Ea − Ec)/~. Neglecting the latter terms
in the denominators, Eq.(2.1) is reduced to:( d2σ
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where

A = ε′ × ε
B = ε′ × ε + (k̂′ × ε′)(k̂ · ε) − (k̂ × ε)(k̂ · ε′) − (k̂′ × ε) × (k̂ × ε).

(2.3)

Compared with the first charge scattering term, the magnetic terms are smaller by
(~ω/mc2) in amplitude. Therefore, the pure charge scattering is larger than the pure
magnetic scattering by a significant factor:
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2 f 2

m
f 2 , (2.4)

where Nm is the number of magnetic electrons or atoms, N is the number of electrons
or atoms, and fm and f are the magnetic and charge form factors, respectively. For
10keV photons, (~ω/mc2)2 ∼4 10−4. Considering that fm of an atom falls off more
rapidly than f , the ratio is even further reduced. The x-ray pure magnetic scattering
should be observed in magnetic structures where the Bragg peaks do not occur at
the same point in reciprocal space.

Eq.(2.2) also shows a different polarization factor for the orbit and spinmagnetization
densities. The magnetization-dependent part 〈Mm〉 of the x-ray cross section can be
written explicitly in terms of L(K) and S(K):

〈Mm〉 =
1
2

L(K) · A′ + S(K) · B, (2.5)

where
A′ = 1(1 − k̂ · k̂′)(ε′ × ε) − (k̂ × ε)(k̂ · ε′) + (k̂′ × ε′)(k̂′ · ε). (2.6)

B has the same definition as in Eq.(2.3).

From the point of view of performing synchrotron experiments, it is convenient to
express the vectors A′ and B as 2 × 2 matrices in a basis whose components are
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parallel (π-polarized) and perpendicular (σ-polarized) to the diffraction plane. In
this basis, Eq.(2.5) becomes [53]:

〈Mm〉 =
(
〈Mm〉σ−σ 〈Mm〉σ−π
〈Mm〉π−σ 〈Mm〉π−π′

)
=

©«
S · (k × k′) − K2

2k2

[(
L(K)

2 + S(K)
)
· k′ + L(K)

2 · k
]

K2

2k2

[(
L(K)

2 + S(K)
)
· k + L(K)

2 · k′
] (

K2

2k2 L(K) + S(K)
)
· (k × k′)

ª®¬ .
(2.7)

It is worth noting that the diagonal matrix element involves magnetization density
oriented only in the direction perpendicular to the diffraction plane, while the off-
diagonalmatrix elements involve components that arewithin the diffraction plane. In
addition, the most sensitive σ − σ channel is independent of the orbital component
L(K). In a real scattering experiment, the magnetic scattering with angle 2θ is
represented by:

〈Mm〉 =(
(sin 2θ)S2 −2(sin2 θ)[(cos θ)(L1 + S1) − (sin θ)S3]

2(sin2 θ)[(cos θ)(L1 + S1) + (sin θ)S3] (sin 2θ)[2(sin2 θ)L2 + S2]

)
,

(2.8)

where θ is the Bragg angle and S1,2,3 are projections of the reciprocal space spin
density with S2 out of the diffraction plane and S1,3 in plane (similar for Li, i = 1, 2).
For materials with a quenched orbital moment, as is the case in most 3d materials,
Eq.(2.8) gives a cross section of:
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For hard x-rays and when the transferred momentum is low, 2θ angles are small
with sin 2θ ∼ 0.005, and Eq.(2.9) can be simplified to:
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where only the S2 perpendicular spin projection remains. In MnP, as we will discuss
in Chapter 4, we have observed magnetic Bragg peaks at (1±Q′, 0, 0) parallel to the
magnetic order parameter (Q′, 0, 0). Hence the observed diffraction signals indicate
a transverse component of antiferromagnetic order, ruling out a purely longitudinal
spin wave.
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Although a polarization study under non-resonant conditions could separate spin
and charge magnetization density along different directions in 3-dimensional space,
it is experimentally not practical given the small cross section and the intensity loss
of 99% after reflection by an analyzer crystal. Non-resonant diffraction without a
polarization study mainly picks up signals from the σ − σ channel, which is only
sensitive to the spin density out of the diffraction plane, as indicated in Eq.(2.10).

Resonant x-ray magnetic scattering
Starting with the general expression of Eq.(2.1), we have discussed the cross section
of magnetic scattering in the limit of high energy, away from resonant conditions.
We have also noticed the anomalous dispersion in Eq.(2.1) when ~ω ∼ Ec − Ea

. In fact, large resonant enhancements of x-ray magnetic scattering cross sections
have been observed while tuning the incident x-ray energy through the L or M

absorption edges [57, 59]. This can be understood as electric quadrupole (E2)
transitions to 4 f levels and electric dipole (E1) transitions to 5d levels, i.e. the
exclusion principle allows only transitions to unoccupied orbitals, resulting in an
exchange interaction sensitive to the magnetization of the f and d bands. The
multiple magnetic contributions are smaller by a factor of (~ω/mc2), < 1/60 for
typical x-ray edges and are not considered here [58, 60].

Following the discussion of resonant γ-ray scattering, for an electric 2L-pole reso-
nance (E L) in a magnetic ion, the contribution to the coherent scattering amplitude
is given by [58]:

f e
E L =

4π
|k | fD

L∑
M=−L

[
ε′∗ · Y (e)LM(k

′)Y (e)∗LM (k) · ε
]
F(e)LM(ω), (2.11)

where fD is the Debye-Waller factor and Y (e)LM(k) are vector spherical harmonics.
The strength of the resonance is determined by the factor FLM , which, in turn, is
determined by atomic properties:

F(e)LM =
∑
a,c

[
PaPa(c)Γx(aMc; E L)/Γ(c)

]
/
[
x(a, c) − i

]
, (2.12)

where |c〉 is the excited state of the ion and |a〉 is the initial state. Pa is the probability
of the ion existing in the initial state |a〉 and Pa(c) is the probability for a transition
from |a〉 to |c〉, which is determined by the overlap integral between the two states.
Γx/Γ is the ratio of the partial line width of the excited state due to a pure 2L-
pole radiative decay due to all processes, both radiative and non-radiative. Finally,
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x = Ec−Ea−~ω/(Γ/2) is the deviation from the resonance condition in units of the
total half-width following Eq.(2.1) [49]. Eq.(2.12) is valid for isotropic systems in
which the symmetry is only broken by the magnetic moment. The application of the
symmetries of a particular point group produced by the local environment will alter
the allowed terms, such as the resonant charge scattering at forbidden Bragg peaks,
referred to as Anisotropic Tensor Susceptibility (ATS) scattering, as we will discuss
later. Nevertheless, this atomic factor determines the resonance most directly. For
example, enhancement of the cross section at the K edge is usually within a factor
of 10, while that at the L edge could be a factor ∼ 100 (Os L2 and L3) – 1000 (Ir
L3).

Electric dipole transitions (E1) usually dominate the resonant magnetic cross sec-
tion, such as the case of transitions in 2p 1

2 ,
3
2
→ 5d electron systems like Ho [57],

osmates [63] and iridates [64]. With L = 1, the operators with spherical harmonics
become:
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where zn is a unit vector in the direction of the magnetic moment of the nth ion.
Therefore, the form factor for E1 resonant scattering cross section from the nth ion
is:

f XRESnE1 =
[
(ε′ · ε)F(0) − i(ε′ × ε) · znF(1) + (ε′ · zn)(ε · zn)F(2)

]
, (2.14)

with
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The first term of Eq.(2.14) simply contributes to the charge Bragg peak since
no magnetic moments are included. It is noteworthy that in an incommensurate
antiferromagnet, the second term produces first-harmonic magnetic satellites and
the third term, containing two powers of the magnetic moment, produces the second-
harmonic magnetic satellites [60]. The last two terms should have polarization
dependence. By formulating in the same coordinates as we discussed for non-
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resonant scattering, Eq.(2.14) becomes:
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where θ is the Bragg angle. A similar method applies for the E2 transition from
2p 1

2 ,
3
2
→ 4 f . Eq.(2.16) suggests that the cross sections in polarization switch

channels π − σ and σ − π are purely magnetic, clearly separated with a large
charge scattering background from the σ − σ channel. In addition, the resonant
enhancement could compensate the loss of intensity while reflected by an analyzer
crystal, making the polarization study feasible.

While the scattering from such processes is typically weaker than that due to E1
transitions, it can sometimes be significant. For example, the quadrupole terms
produce two extra resonant harmonics for incommensurate anntiferromagnets. The
result analogous to Eq.(2.16) is more tedious [60]. As we have only used the E1
transition in this thesis, we are not going to discuss E2 transitions in further detail.

Anisotropic Tensor Susceptibility (ATS) scattering
As mentioned earlier, charge scattering at forbidden Bragg peaks could also be
enhanced under resonant conditions. This anomalous scattering has been observed
in sodium bromate [65], which breaks a screw-axis selection rule, and Fe2O3 [66],
which has a C3 point group at the Fe site. A general reason for forbidden reflections
to occur is that the scattering amplitudes of the crystallographically equivalent atoms
are not the same due to the small asphericity of the atoms from interatomic inter-
actions. This anisotropy is very small in the x-ray region and in conventional x-ray
diffraction theories the tensor susceptibility is supposed to be isotropic. However,
near x-ray absorption edges the absorption of x-ray beams depends on their polar-
izations and, in this case, taking into account the anisotropy of the susceptibility
becomes essential [67]. Therefore, at resonant condition, the scattering due to the
anisotropic susceptibility tensor (ATS) will have measurable values. The general
properties of ATS scattering can be obtained from symmetry considerations [67].

Starting with the most general local relationship between the x-ray electric field
E(r)and the polarization of the crystal P(r),

4πP(r) = χ̂(r)E(r), (2.17)
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where the vector P(r) is not parallel to E(r) due to the anisotropy of the susceptibility.
The tensor χ̂(r) is symmetric: χik(r) = χki(r); i, k = 1, 2, 3 and should be invariant
under the space group of the crystal. By introducing the tensor structure amplitude
F̂H , which is proportional to the Fourier component χ̂H of the tensor :

F̂H = − v

r0λ2 χ̂
H =

v

r0λ2

∫
χ̂(r) exp

(
2πiH · r

)
dr, (2.18)

where v is the volume of the unit cell, r0 is the classical electron radius e2/(mc2);
λ is the x-ray wavelength; and H is the reciprocal-lattice vector. The integration is
over the volume of the unit cell. By considering the symmetry operations, Eq.(2.18)
will give the properties of scattering amplitude Fhkl which typically has the form
of Fhkl = F(h, k, l, θ, ψ), where θ is the Bragg angle and ψ is the azimuthal angle
[67]. Fhkl also has a polarization dependence, analogous to Eq.(2.16).

X-ray optics
From the discussion above, a successful x-ray magnetic diffraction experiment
requires the following capabilities from the working station: (1) a bright synchrotron
source focused down to 100 µm size to compensate for weak diffraction from aDAC-
sized crystal, (2) a full six-circle diffractometer allowing single crystal diffraction
in the desired geometry, and (3) an analyzer crystal with high reflectivity and wide
enough acceptance angle for polarization studies. I now describe our experimental
setup at 4-ID-D of the Advanced Photon Source, Argonne National Laboratory.

A schematic overview of the x-ray setup is shown in Fig. 2.3a. X-rays are generated
by circulating electrons in the synchrotron and are∼ 99% polarized in the horizontal
plane. The initial broadband x-rays are monochromatized by two Si(1,1,1) single
crystals. For a symmetric Si(1,1,1) monochromator, the x-ray energy resolution is
dE/E ∼1.32 10−4 FWHM, which is the major factor in determining the reciprocal
space resolution. Finer resolution is possible, at the cost of reductions in the x-
ray flux. Using a pair of single crystals brings the monochromatic x-rays to the
horizontal direction, improves x-ray energy stability by removing the heat load on
the second crystal, and allows a detuning process to remove higher harmonics of the
primary x-rays.

The X-ray beam emerges from the monochromator with a typical cross section
of 2.5×1 mm2 and are then focused by a pair of palladium coated mirrors down to
250×120 µm2, and further cut down bymotorized slits to 100×100 µm2, comparable
to the typical sample size in a diamond anvil cell. The Pd coating on the mirror
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Figure 2.3: Components and schematics of x-ray diffraction. (a) Overall layout of
x-ray optical components in the horizontal diffraction geometry; see text for details
of the individual elements. Two additional degrees of rotational freedom in the
vertical plane are not specified. Note that the extra degree of rotational freedom φ of
the sample controls its azimuthal condition. (b) Two choices of diffraction geometry.
The linearly polarized x-rays from the synchrotron provide either a π (for horizontal
diffraction) or a σ (for vertical diffraction) initial condition. (c) Measured mosaic
profile (0.35◦ FWHM) of our 5 mm thick HOPG polarization analyzer for x-rays at
the Os L2 edge.

also effectively rejects higher harmonics. The beam intensity on the high-pressure
sample is about 1/8 of that of the unfocused monochromatic x-ray beam emerging
from the monochromator.

A Huber 5021 diffractometer with nine circles provides rotational freedom for both
the sample and the analyzer, in either the vertical or horizontal planes (Fig. 2.3b).
As all of the rotation axes of the diffractometer meet at the sphere of confusion with
a radius of about 50 µm, comparable to both the sample size in a diamond anvil
cell and the focused x-ray beam cross section (∼100 µm), a set of motorized x-y-z
translational stages is necessary to move the sample into the x-ray beam every time
a new diffraction order is approached. It is desirable to place the x-y-z stages, such
as Huber 5106.20M, inside the last rotational circle to hold a Gifford–McMahon
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type cryostat (Sumitomo RDK-205E) with 0.5 W cooling power at 4 K.

There are in general two diffraction geometries for opposing-anvil pressure vessels:
a reflection (Bragg) type on the side surface of a plate sample through a Beryllium
gasket close to the anvil culet plane [68], and a Laue transmission type through
both the sample body and anvils [40, 42]. For the Bragg diffraction geometry, there
is very limited reciprocal space access. By contrast, the Laue geometry provides
much greater freedom in the azimuthal range and a higher level of tolerance for
sample misalignment, both during preparation and from motion inside the pressure
chamber during pressurization.

To be sensitive to theweak diffraction signals, it is necessary to use a tight collimation
to reject random elastic scattering along the incident x-ray beam path, rather than
two-dimensional image plate detectors. We used Huber 3002.60M tuber slits to
provide the tight collimation. Single-element x-ray detectors such as NaI based
scintillation detectors (CyberStar, Oxford Danfysik) or avalanche photodiodes were
used in accordance with the tight collimation.

The polarization analyzer is a standard component of resonant magnetic diffraction.
It allows for switching between π − π’ and π − σ channels, and for compensating
for movements of both the analyzer and the detector under the Bragg condition to
follow energy scans across the resonant edge. To perform polarization analysis of
x-rays around 12.4 keV, a 5-mm thick plate of highly oriented pyrolytic graphite
(HOPG) was used as the analyzer, due to its spatial uniformity and relatively broad
mosaic profile (0.35◦ FWHM, Fig. 2.3c), whichmatches the samplemosaicity under
pressure. This mosaic width is a compromise between analyzer and samples under
pressure tomatch the angular reception range between them. Methods of keeping the
sample mosaic below 0.5◦ FWHM have been discussed in Section 2.1. The resonant
enhancement for magnetic diffraction is typically a factor of 10-1000, which is offset
by the low reflectivity (1∼2%) of a typical HOPG polarization analyzer.

Resonant x-ray scattering in Cd2Os2O7

I have discussed the general behavior of magnetic and ATS scattering at the reso-
nance edge. On one hand, magnetic behavior could be cleanly investigated at the
polarization switch channel (π−σ, σ− π) with, however, a potential contamination
from the ATS signal, which could be minimized by certain geometric configura-
tions (θ, ψ). On the other hand, the information about orbital and local symmetries
conveyed by the ATS resonance ideally should be picked up. In our resonant x-ray
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scattering experiment in Cd2Os2O7 at the Os L2 edge (Chapter 5), these two types
of resonance have both been addressed.

For Cd2Os2O7, which belongs to space group Fd3̄m, the selection rule is h = 4n for
(h, 0, 0) and h+ k = 4n for (h, k, 0). The selection rules are determined by the local
inversion symmetry of 16d (Cd) and 16c (Os) sites. With a Q = 0 antiferromagnetic
state, magnetic Bragg peaks overlap with integer diffraction orders and could be
observed at lattice forbidden peaks with no azimuthal dependence. In contrast, ATS
scattering for Fd3̄m, as has been calculated and observed in various systems [63,
64, 69], shows a strong dependence on azimuthal angles and diffraction orders. In
our experiment, we performed diffraction in a horizontal geometry to reduce the
leakage from charge channel σ − σ to σ − π. Specifically, we have placed (6, 0, 0)
at an azimuthal angle of 45◦, where the ATS signal vanishes at the π − σ channel
[63]. Simultaneously, the diffraction order (4, 2, 0), with ψ ∼ 50◦, manifests an
ATS signal in the π − σ channel which is one order of magnitude stronger than that
frommagnetic diffraction. In this way, the magnetic and ATS resonances are cleanly
separated. The resonant scattering cross sections have very small π−π’ components
(Eq.(2.16)) [69], leaving the polarization non-switch channel a sensitive indicator
of lattice scattering.

2.3 Optical Raman spectroscopy under high pressure
Raman spectroscopy is a powerful technique to characterize the elastic, vibrational,
electronic, and magnetic properties by utilizing inelastic scattering process of a
light source, usually a laser, from the near UV to the near IR range. It is most
sensitive to phonon modes, which provide information about the symmetry of the
crystal structure. Combined with high pressure and cryogenic sample environment,
it enables a quick determination of phase transitions [70]. Using the commercial
high-resolution Ramanmicroscope (LabRAMHREvolution, Horiba, Ltd.), we have
customized an optical flow-helium cryostat (CryoIndustry) with a cold stage to host
our high-pressure cells and membrane line to change pressure in situ. A small 3-pin
cell (Fig. 2.1) of 37 cm diameter was built to be compatible with the stage size.
An objective with a long working distance of 20 mm and relatively large numerical
aperture of 0.42 (20X Mitutoyo Plan Apochromat Objective, N. A. 0.42, 20 mm
WD) was used to allow focusing on the sample in the pressure chamber through the
cryostat window and a diamond anvil. We chose a 632 nm laser considering both
efficiency for Raman spectroscopy and ruby fluorescence, as well as background
issues. The complete experimental set up is shown in Fig. 2.4.
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Figure 2.4: High pressure, low temperature Raman setup. Components in the
picture: (a) commercial Raman microscope; (b) He-4 flow cryostat; (c) liquid
helium dewar; (d) Lakeshore temperature controller; (e) vacuum pump; (f) high
pressure manifold control system; (g) high pressure helium gas bottle, providing gas
to change cell pressure.

As our most commonly used pressure medium, the mixture of methanol and ethanol,
generates active vibrational modes from molecular interactions, it is not ideal for a
Raman experiment. Instead, noble gases such as helium, neon, and argon, which
are single atom molecules, are more desirable. Helium provides the best pressure
conditions at low temperature [71]; the volume of the pressure chamber, however,
collapses significantly. By comparison, argon will maintain the chamber size better,
but the pressure condition degrades quickly with higher pressure [71]. We have tried
loading with liquid argon, finding Raman peaks broadened by a factor of 2 from 0
to 8.8 GPa. Considering these effects related to atom mass, we finally chose neon as
the pressure medium. The gas loading system of GSECARS at the Advanced Photon
Source [43] was used to load high pressure neon gas into the chamber. Real-time
views of the pressure chamber and in situ ruby measurements are available while
sealing the cell with a clamping mechanism.
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1Resonant x-ray magnetic diffraction under high pressure is a technique developed during this
thesis.

2Optical Raman spectroscopy at low temperature under high pressure is a technique further
developed during this thesis

3Electrical transport could be used to measure the power law behavior of the resistivity, which is
an established technique but not included in the projects of this thesis.
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C h a p t e r 3

MAGNETISM, STRUCTURE AND SUPERCONDUCTIVITY IN
Mo3Sb7

The interplay of multiple degrees of freedom in correlated electron systems is
profoundly manifested in superconductivity, where electrons can be paired either
through electron-phonon coupling or spin fluctuations. Using high pressure as a
tuning method of competing ordering mechanisms, we have studied the intricate
interaction of structure, magnetism, and superconductivity in the 4d intermetallic
compound Mo3Sb7.

Synchrotron x-ray diffraction and magnetic susceptibility measurements, both em-
ploying diamond anvil cell technologies, link a first-order structural phase transition
to a doubling of the superconducting transition temperature. In contrast to the
spin-dimer picture for Mo3Sb7, we deduce from x-ray absorption near-edge struc-
ture and dc magnetization measurements at ambient pressure that Mo3Sb7 should
possess only very small, itinerant magnetic moments. The pressure evolution of the
superconducting transition temperature strongly suggests its enhancement is due to
a difference in the phonon density-of-states with changed crystal symmetry.

The discussion below follows Phys. Rev. B 95, 125102 (2017).

3.1 Introduction
The magnetism and superconductivity combined with crystal structure in the 4d

intermetallic compound Mo3Sb7 captures both the excitement and the difficulty of
understanding the emergence of collective quantum states. Examples range from
metal-insulator transitions [72] to density waves [8] to superconductors [30, 73–77].
InMo3Sb7 itself, superconductivity emerges below a structural phase transition with
claims of accompanying magnetic order and spin dimerization [78–80], potentially
placing it in a growing cohort of exotic superconductors with unconventional pairing
mechanisms [30–33].

Mo3Sb7 goes superconducting at Tc = 2.35 K, with a structural phase transition
from high-temperature cubic symmetry to low-temperature tetragonal symmetry at
TS = 53 K [78–80]. Whether this structural transition is magnetically driven is still
an open question [78–81], although no long-range spin order has been observed
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through either neutron or x-ray magnetic diffraction [80]. Magnetic susceptibility
measurements give one S = 1/2 local moment per Mo site from fits to a Curie-Weiss
law at high temperature [78–80], with spin gap behavior at low temperature that
suggests a spin-Peierls transition at TS [79, 80]. The presence of shortened Mo-
Mo bond distances in the tetragonal phase [80] reinforces the idea that one-third
of the Mo ions form dimers below TS [79, 80]. A valence bond crystal also has
been suggested as a possible ground state amid strong spin frustration [78]. The
superconductivity has been claimed to be s-wave at ambient pressure [82–84], but
the possibility of unusual magnetic phases at low temperature [78–81] have raised
the question about the role of spin coupling.

Figure 3.1: P−T phase diagram of Mo3Sb7. Red squares mark the phase boundary
between tetragonal and cubic structures atTS(P), as determined from electrical resis-
tivity [85]. Superconducting transitions (dark and light blue circles) in both crystal
structures are demarcated by characteristic signatures of the magnetic susceptibility.
The shaded area marks the phase coexistence region.

Chemical doping has been exploited previously to study superconductivity inMo3Sb7

[81, 86]. We combine x-ray diffraction and acmagnetic susceptibilitymeasurements
up to 17 GPa of applied pressure to examine the nature of the superconductivity
in Mo3Sb7. Thereby, we show that hydrostatic pressure is a particularly effective
tuning mechanism, and we find a second superconducting state with a factor of



33

two greater Tc following a pressure-induced first-order phase transition to a higher
structural symmetry phase (Fig. 3.1). The high-pressure phase is cubic and contin-
uously connects to the ambient-pressure, high-temperature paramagnetic phase. By
contrast to previous suggestions of spin-dimer magnetic order in a local spin picture
[78], we argue that spins in Mo3Sb7 should be considered as both highly itinerant
and small in magnitude. The link of Tc to structure suggests that spin fluctuations
are not a dominant coupling mechanism in this system, while the abrupt variation
in Tc points to a symmetry-related difference in the phonon density-of-states.

3.2 Experimental methods
Mo3Sb7 single crystals of several mm in size were grown using a Sb self-flux
technique [80]. Single crystals were polished down to plates of 20 - 30 µm thickness
with a surface normal of (1, 0, 0) and broken into small shards (120 × 120 × 20
µm3) to be loaded into the diamond anvil cell. The ac magnetic susceptibility
measurements at a probe field of 0.5 Oe were carried out using a diamond anvil cell
designed for rapidly exploring H − P − T parameter space [42]. Sapphire seats and
thermally hardened BeCu or MP35N gaskets were used to avoid any ferromagnetic
background disturbance to the superconducting transition [42, 87]. Four different
crystals were studied in a methanol:ethanol = 4:1 hydrostatic pressure medium.
Pressure was monitored by ruby fluorescence in situ at low temperature [40]. X-ray
absorption and high-pressure diffraction measurements were carried out at Sector 4-
ID-D of the Advanced Photon Source. X-ray absorption was performed at ambient
pressure and temperature, using single crystal Mo3Sb7 along with annealed Mo
metal foil and MoO2 and MoO3 powders. For diffraction, 19.950 keV x-rays were
used in order to avoid the Mo K edge fluorescence. The methanol:ethanol 4:1
mixture was used as the pressure medium, and a piece of polycrystalline silver
foil was included as a manometer at low temperature [40]. The ambient-pressure
magnetization was measured using a superconducting quantum interference device
(SQUID) magnetometer (Quantum Design Magnetic Property Measuring System)
on a cubic shaped single crystal of 0.0138 g along the (1, 1, 0) direction and at both
T = 60 and 6 K, bracketing the phase transition at TS.

3.3 Results
The pressure evolution of superconductivity inMo3Sb7 wasmeasured using acmag-
netic susceptibility (Fig. 3.2). From 0 to 10 GPa, Tc slowly increases from 2.3 to 3 K
with increasing P. Starting at 10 GPa, a new superconducting phase was observed
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Figure 3.2: The ac magnetic susceptibility in Mo3Sb7. (a) The ac magnetic sus-
ceptibility at the superconducting transition at a series of pressures P in Mo3Sb7.
The two-step transitions indicate phase coexistence. (b) An applied magnetic field
suppresses the superconductivity.

with Tc ∼ 6 K, a jump of a factor of two. This quantum phase transition between
two superconducting states is clearly first order, with susceptibility manifesting two
superconducting steps as a sign of phase coexistence over a wide pressure region
(Fig. 3.2a). As expected, an external magnetic field suppresses the superconducting
transitions (Fig. 3.2b).

Turning to structural information, the phase boundary TS(P) was tracked by macro-
scopic probes such as the electrical resistivity [85], where TS(P) is suppressed by
increasing pressure (Fig. 3.1), but only slowly (∼2.5 K/GPa), remaining well above
zero out to 12 GPa. We performed a set of x-ray diffraction measurements to specify
the evolution with P of the microscopic structure and associated lattice symmetries.
Longitudinal diffraction line scans of various lattice orders such as (4, 0, 0), (4, 4,
0), and (4, 4, 4) at T = 4 K (Fig. 3.3(a)) indicate a lattice symmetry change from
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Figure 3.3: Lattice symmetry and phase continuity. (a) Longitudinal (θ/2θ) scans
of three lattice orders of Mo3Sb7, measured for various pressures (in units of GPa)
at T = 80 K (red) or T < 4.3 K (blue). All scans are plotted on a logarithmic scale
in order to show the symmetry state and to rule out the presence of minor phases.
(b) The Mo3Sb7 lattice constant vs Ag lattice constant at each (P, T) point along
the specified path in the inset. (Inset) Trajectory in the P − T phase space for x-ray
measurements. Mo3Sb7 remains in the same cubic phase throughout. The bulk
modulus at 80K is B0 = 111.5 ± 0.8GPa.
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tetragonal at low pressure to cubic at high pressure. We examine in Fig. 3.3(b) the
relationship between this high-pressure, low-temperature cubic phase and the am-
bient pressure, high-temperature cubic paramagnetic phase by traversing the P − T

phase diagram forT > TS out to P = 17.1 GPa. The lattice constants of bothMo3Sb7
and the silver manometer were measured at various (P, T) points along the path and
then compared to each other. We find that aMo3Sb7(P, T) vs aAg(P, T) collapses onto
a straight line throughout the trajectory. Hence the cubic phase of Mo3Sb7 at high
P and low T and the cubic phase at P = 0 and T > TS are continuous, ruling out
the separation that would result from a sudden unit cell collapse in an isostructural
phase transition.

Given the continuous evolution of the ambient pressure paramagnet aboveTS = 53 K
to high pressure and low temperature, we might expect the spins in the high-pressure
cubic phase ofMo3Sb7 to remain disordered. Spin fluctuations inMo3Sb7 have been
discussed in the literature based on the assumption of one S = 1/2 local moment per
Mo site [79, 80]. However, the existence of magnetic moments in Mo compounds
strongly depends on its ionic state and local symmetry. For example, Mo4+ carries a
moment of S = 1 in 1T-MoS2 but no moment in 2H-MoS2 due to a different splitting
of the 4d orbitals by local symmetries [81]. In Ba2YMoO6 [88], a Mo5+ state leads
to a localized S = 1/2 moment, which also was assumed for Mo3Sb7 [78]. The ionic
state of Mo in Mo3Sb7 can be determined by x-ray absorption near-edge structure
(XANES) measurements [89]. In the cubic phase of paramagnetic Mo3Sb7, there is
only one unique Mo site in the unit cell [80], and the measured XANES K edge of
Mo3Sb7 is very similar to that of pure Mo metal (Fig. 3.4a), lying 10 - 15 eV away
from the K edge of both Mo4+ in MoO2 and Mo6+ in MoO3. This suggests that
the Mo ions in Mo3Sb7 are close to charge neutral. They are also unlikely to have
valence fluctuations like those displayed by highly ionized Re5+ ions in Cd2Re2O7

[90].

We plot in Fig. 3.4(b) the dc magnetization, M(H), at ambient pressure. It is linear
and nonsaturating at both T = 60 and 6 K, above and below TS, without hysteresis
for applied fields between ±7 T. Since Mo3Sb7 is cubic in the paramagnetic phase,
no strong anisotropy of M(H) is expected along the major crystalline axes. Here the
nonsaturating M(H) of Mo3Sb7 differs from the isothermal magnetization behavior
of many magnetic Mo compounds. For ferromagnetic and paramagnetic MoS2 [81,
91] and ferromagnetic GaMo4S8 and GaMo4Se8 [92, 93], M(H) would saturate at
relatively low fields, typically < 3 T. At H = 7 T, there is no saturation, and the
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Figure 3.4: Chemical and magnetic characteristics of Mo3Sb7. (a) X-ray absorption
near-edge spectroscopy at ambient conditions for a comparison between four differ-
ent Mo compounds of various valence conditions. (b) Magnetization measurements
M(H) at T = 60K and 6 K, bracketing TS at P = 0, indicate no magnetic hysteresis
and no saturation up to H = 7 T.

measured moment is extremely small: 2×10−3 µB/Mo. This small and unsaturated
moment ofMo3Sb7 derived from M(H) contrasts sharply from themagneticmoment
deduced from the paramagnetic susceptibility, χ’(T). Fitting to a Curie-Weiss law
for 230 K < T < 700 K yields a local moment of 1.56 ± 0.10 µB/Mo, consistent with
S = 1/2 moment per Mo site [79, 80]. The discrepancy between the values of the
magnetic moment following from the magnetization at 7 T and fits to the magnetic
susceptibility gives a Rhodes-Wohlfarth ratio ∼500. This indicates that the Curie-
Weiss behavior is due to band structure effects rather than localized spins [9]. Indeed,
the shortest Mo-Mo distance inMo3Sb7 is 2.98 Å[80], a distance similar to the value
of 2.73 - 2.9 Å in elemental Mo and ferromagnetic GaMo4S8 and GaMo4Se8 [92],
where the overlap of 4d orbitals results in the electrons being considered as itinerant
[92–94]. The combination of the valence state (Fig. 3.4a) and magnetization (Fig.
3.4b) measurements therefore permits us to conclude that the spins in Mo3Sb7 are
highly itinerant and very small in magnitude. The magnetic nature of the tetragonal
phase in Mo3Sb7 is consistent with paramagnetism (Fig. 3.4b); the temperature
dependence of the magnetic susceptibility at ambient pressure [79, 80] could be
due to a structural phase transition with no magnetic correlation, similar to that
in Cd2Re2O7 [90]. Hence we do not expect that the localized spin-dimer picture
should be applicable to either phase of Mo3Sb7.
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3.4 Discussion and conclusion
The superconducting transition in Mo3Sb7 lacks significant pressure dependence in
either the tetragonal or cubic phase, leading to an abrupt doubling of the transition
temperature at the phase boundary (Fig. 3.1). While the connection between
superconductivity and structural symmetry is particularly prominent, the crystal
symmetry dependence of superconductivity is opposite to the typical expectation
for spin-fluctuation-mediated superconductivity, which is believed to benefit more
from a tetragonal structure than a higher symmetry cubic phase [30]. An increasing
tetragonal distortion drives the system closer to the two-dimensional limit and hence
enhances spin fluctuations via a diverging χm(q, ω). This trend has been observed in
heavy fermion superconductors; for example, Tc is significantly larger in tetragonal
CeRhIn5 than in cubic CeIn3 [30]. Here in Mo3Sb7, Tc in the high-symmetry cubic
phase doubles that in the low-symmetry tetragonal phase, while both structures
are stable ground states. Symmetry considerations thus favor phonon-mediated
superconductivity in Mo3Sb7 at high pressure.

Analogous to the original BCS formula in the weak coupling limit, Tc is expressed
in McMillan’s formula for intermediate phonon-coupling strength [84, 95, 96] as:

Tc =
Θ

1.45
exp

(
− 1.04(1 + λ)
λ − µ∗(1 + 0.62λ)

)
, (3.1)

with the Debye temperature, Θ, dimensionless electron-phonon coupling constant,
λ, and screened Coulomb potential, µ∗. While all three could potentially vary under
pressure to account for the Tc evolution, both the constancy of the superconducting
transition within each structural phase and its discontinuous nature in the phase
coexistence region strongly suggest that the cause can be identified by comparing
two structural phases of different symmetries at the samepressure. Fromcalculations
at ambient pressure [95], it is reasonable to assume that both Θ and µ∗ are nearly
identical in the tetragonal and cubic phases at the same pressure in the phase
coexistence region. We therefore believe that the main influence on Tc should come
from the electron-phonon coupling constant λ, with λ dependent on both electronic
structure and the phonon dispersion spectrum [96]. The smoothly varying resistivity
under pressure [85] indicates a continuously evolving electronic structure, consistent
with an estimated small difference between the tetragonal and cubic structures by
theoretical calculation at ambient pressure [95]. Hence the origin of the doubled Tc
most likely arises from details of the symmetry-dependent phonon dispersion [96].
This causes λ to grow from 0.55 at ambient pressure [84, 95] to 0.75 in the cubic
phase.
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Spin fluctuations in general would disrupt a phonon-coupled superconductor by
suppressing the value of λ [84] and thereby Tc. All suggested forms of singlet
magnetic correlations (either long range antiferromagnetic order or spin-dimer pairs)
in the tetragonal phase would introduce reduced singlet-type spin fluctuations as
compared to fluctuations in the spin-disordered, high-pressure phase. This dearth
of spin fluctuations in the tetragonal phase is consistent with the fact that ρ(T) does
not manifest T3/2 behavior at ambient pressure [79, 80, 97]. If spin fluctuations
would affect the phonon-mediated superconducting state inMo3Sb7 [97], thenTc(P)
should be suppressed in the spin-disordered cubic high-pressure phase, while the
experiments demonstrate the opposite.

In summary, pressure enhances the superconducting transition temperature inMo3Sb7

by a factor of two, accompanied by a first-order phase transition from tetragonal
to cubic lattice symmetry at low temperature. Direct x-ray diffraction results re-
veal that the high-pressure cubic phase continuously evolves from the paramagnetic
phase at ambient pressure and is expected to be spin disordered. However, given the
relatively small itinerant moments and weak spin fluctuation effects, we attribute the
increase of Tc to a modified phonon density-of-states in the high-symmetry cubic
structure. We are able to draw this conclusion because of the combination of mag-
netic, electronic, and structural measurements and the ability to tune different lattice
symmetries with pressure. This general approach is necessary to parse the compe-
tition between different pairing mechanisms in materials with tendencies towards
both magnetic and superconducting order.
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C h a p t e r 4

SPIRAL MAGNETIC ORDER AND SUPERCONDUCTIVITY IN
MnP

It has been more than 30 years since the discovery of high-Tc superconductivity,
yet the microscopic mechanism for unconventional superconducting order in the
cuprates is still not clear. The similar phase diagram connecting a magnetically
ordered state to a superconducting state has been discovered in other systems,
potentially suggesting alternative magnetic origins for Cooper pairing. Experiments
providing microscopic information about magnetism in clean model systems are
beneficial in addressing this topic.

Using a synchrotron-based non-resonant x-ray magnetic diffraction technique, we
reveal a spiral spin order in MnP and trace its pressure evolution towards super-
conducting order via measurements in a diamond anvil cell. Judging from the
magnetostriction, ordered moments vanish at the quantum phase transition as pres-
sure increases the electron kinetic energy. Spins remain local in the disordered
phase, and the promotion of superconductivity is likely to emerge from an enhanced
coupling to residual spiral spin fluctuations and their concomitant suppression of
phonon-mediated superconductivity. As the pitch of the spiral order varies across
the 3d transition metal compounds in the MnP family, the magnetic ground state
switches between antiferromagnet and ferromagnet, providing an additional tuning
parameter in probing spin-fluctuation-induced superconductivity. The discussion in
this chapter follows Nat. Commun. 7, 13037 (2016).

4.1 Introduction
Magnetic materials have played an outsized role in revealing the shape of the world
around us. The similarly venerable field of superconductivity serves as a prime ex-
ample of emergent, collective behavior in nature, with raised hopes of technological
import with the discovery of exotic superconducting order in the cuprates. Mag-
netism and superconductivity often compete for preeminence as a material’s ground
state, but in the right circumstances the fluctuating remains of magnetic order can
induce superconducting pairing. The intertwining of the two on the microscopic
level, independent of lattice excitations, is especially pronounced in heavy fermion
compounds [21], rare earth cuprates [98], and iron pnictides [99].
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The recent discovery of a superconducting phase in the transition metal compound
MnP [100] opens the possibility of investigating this scenario. MnP possesses a
complex pressure-temperature (P − T) phase diagram [100] (Fig. 4.1). At ambient
pressure, there is helical spin order below TN = 50 K, with a wave vector Q = (0.117,
0, 0) [101]. Under pressure, the helical order is quickly replaced by ferromagnetism
at ∼1 GPa, and another magnetic state, assumed to be antiferromagnetic [100],
emerges for P > 2 GPa. Superconductivity appears after the high-pressure magnetic
phase is suppressed at P ∼ 7 GPa [100]. The spin structure in the high-pressure
magnetic phase remains unsettled, and is under active exploration by both x-ray and
neutron [102] magnetic diffraction techniques.

Figure 4.1: P − T phase diagram of MnP from Ref. [100]. Pressure dependence
of the magnetic transition temperatures, TC, Tm, T∗, TS, and the superconducting
transition temperature TSC; TSC has been scaled by a factor of 20 for clarity.

We employ synchrotron-based magnetic x-ray diffraction to investigate the high-
pressure magnetic phases in MnP [100]. This sensitive probe, suitable for 0.0002
mm3 single crystal volumes and diamond anvil cell techniques, directly reveals
a reduced moment, incommensurate spin state at high pressure proximate to the
superconducting state. This newmagnetic order is most likely a magnetic helix with
a tightened pitch in comparison to that at ambient pressure where superconductivity
is absent. The extant data correlating magnetic pitch length and superconductivity is
sparse but suggestive in the (V/Cr/Mn/Fe/Co/Ni)(P/As/Sb) family [100, 101, 103–
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116] and, as discussed in detail below, we suggest this family of spiral magnets as a
new venue for tunable, spin-fluctuation-mediated superconductivity.

Here we point out that for a helical arrangement of localized spins, a variable
spiral period could provide a unique tuning process from ferromagnetic to anti-
ferromagnetic ground state in the long and short wavelength limits, respectively.
Such chemical or pressure adjustable helical order naturally provides the possi-
bility for continuous tuning between ferromagnetically- and antiferromagnetically-
mediated superconductivity. At the same time, phonon-mediated superconductivity
is suppressed because of the local ferromagnetic spin configuration [117] in the
low-frequency spiral fluctuation modes.

4.2 Experimental methods
Following the general principle of non-resonant x-ray magnetic diffraction that has
been discussed inChapter 2, we can estimate the scattering cross sectionσmag/σcharge

in this experiment. MnP is a 3d transition metal compound with low local symmetry
at the Mn sites. Thus it is reasonable to assume that the orbital moments are
quenched in this system. Spins localized at Mn sites, as suggested by our measured
Rhodes–Wohlfarth ratio, are the major source of magnetism. For MnP, with N = 25
for Mn, and a projected spin moment s about 1.3/

√
2µB, σmag/σcharge is estimated

to be 2-5 × 10−8 for I(1±Q , 0, 0) / I(2, 0, 0). This value becomes smaller as the ordered
moment, 〈m〉, decreases with increasing pressure.

4.3 Results
We performed non-resonant single crystal X-ray magnetic diffraction under pressure
[40, 42, 118] to elucidate the cascade of magnetic states in the P −T phase diagram
of MnP (Fig. 4.1) and their relation to superconductivity. We discover helical
magnetic order with Q’= (0.25, 0, 0) presaging the high-pressure superconductor
(Fig. 4.2). We observe a pair of superlattice peaks in mirror symmetry to the
lattice order at three pressures, 3.17, 5.28 and 6.43 GPa, but absent at P = 8.99
and 10.4 GPa. Lattice line shapes are instrument resolution limited for the whole
pressure range, and can be fit to a Pseudo-Voigt form with a lattice coherence length
exceeding 1500 Å. The magnetic peaks are significantly broadened, indicating a
shorter correlation length of the helical spin order from ∼310 Å at 3.2 GPa to ∼70 Å
at 6.4 GPa, about three times the pitch length of 24 Å. All magnetic peaks are fit with
a Lorentzian form on a sloped background, which could be attributed to influence
from spin fluctuations in the ordered phase. However, our counting statistics are not
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Figure 4.2: X-ray diffraction evidence of helical order in MnP. (a) Raw scans around
the (1, 1, 0) order at ambient pressure and T = 4 K, showing both the lattice Bragg
peak and a pair of non-resonant magnetic peaks associated with the helical spin
order Ha-I. Solid lines are guides to the eye. (b–d) Longitudinal (θ/2θ) line shapes
of (2, 0, 0) lattice, and (1±Q’, 0, 0) helical magnetic order, measured at T = 4 K.
We set a > b > c in the Pbnm space group for the lattice [101]. Vertical dashed
lines mark the commensurate (0.75, 0, 0) and (1.25, 0, 0) positions. (e) Above Pc
= 6.7 GPa, magnetic diffraction is no longer observed in longitudinal scans at same
positions of b–d. Vertical error bars represent 1σ s.d. counting statistics.

sufficient to make a distinction from a Lorentzian-squared form, which results from
disorder pinning [119]. The reduced background benefits from the use of a pair of
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wide-angle perforated diamond anvils [24, 42]. Our instrument resolution is fine
enough to indicate that the observed magnetic pairs are mirror symmetric to the (1,
0, 0) order, but not commensurate. The presence of mirroring peaks around (1, 0,
0) indicates the n-glide plane constraint is broken for the spin arrangement at high
pressure [101], although the (1, 0, 0) lattice order is still forbidden.

Figure 4.3: Single crystal nature of the magnetic order at P = 5.28GPa. The single
crystal nature of themagnetic order is proven by independent raw scans across the 3D
reciprocal space for both (1-Q’, 0, 0) and (1+Q’, 0, 0) orders. The out-of-diffraction-
plane transverse scan is dominated by the resolution function determined by the
wide horizontal detector slits, while the in-plane transverse scan is intrinsic to the
samplemosaic (full-width at half-maximum∼0.1◦) under pressure. The longitudinal
scans are of the θ/2θ type (plotted against 2θ here) and identical to those in Fig.
4.2c. Measurements were performed at T = 4 K. Vertical error bars represent 1σ
s.d. counting statistics. Solid lines are guides to the eye.

These diffraction peaks are always of single crystal nature (Fig. 4.3) and their
pressure evolution is commensurate to that of the a axis. Here we adopt the Pbnm

space group setting for MnP with a > b > c [101] The low transferred momentum
of (1±Q’, 0, 0) rules out diffraction from integer lattice orders from both MnP and
other components of the high-pressure cell (diamond and Ag manometer) [40, 42,
120, 121]. The peak intensities lie in the range of 1 - 4 10−8 relative to the (2, 0, 0)
lattice intensity, which are comparable with the estimate of non-resonant magnetic
diffraction intensities and the observed diffraction signal of the low-pressure helical
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order under the same experimental condition (Fig. 4.2a). It is known that spin order
can induce higher harmonics [122, 123]. However, we did not observe a diffraction
peak at (1±Q’/2, 0, 0) with commensurate sensitivity (Fig. 4.4). This implies that
our observed pair of peaks represents the primary wave describing the spin order.
We did not observe diffraction intensity at (1±2Q’, 0, 0), thereby ruling out a strong
charge harmonic to the magnetic order.

Figure 4.4: Primary wave nature of the observed diffraction order. A comparison
of longitudinal scans between the observed (1-Q’, 0, 0) order and null (1-Q’/2, 0, 0)
position. This indicates that our observed peaks are primary waves and not higher
harmonics of another wave vector. The longitudinal scan of (1-Q’, 0, 0) is identical
to the data in Fig. 4.2b. Vertical error bars represent 1σ s.d. counting statistics.

Our limited number of observed diffraction orders and the lack of a full azimuthal
study because of constrained high-pressure cell geometry make it insufficient to
fully refine the high-pressure spin structure. However, in our diffraction geometry,
the non-resonant magnetic cross section for orders along the (H, 0, 0) direction
is only sensitive to magnetic moments projected out of the vertical diffraction
plane and transverse to the wave vector Q’ (Chapter 2 and Chapter 4.2). With
spin moments localized in Mn (see below) and an incommensurate wave vector in
MnP, the magnetic order is not likely to be of a collinear, amplitude-modulated
type. Thus it is reasonable to identify the magnetism in MnP as helical order
with tightened pitch (Ha-II, Fig. 4.5 inset). This provides a consistent perspective
on all three spin structures (Ha-I, FM and Ha-II). The spiral magnetism develops
with a varying twist angle between neighboring spin pairs along the wave vector
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direction, a subtle result due to pressure-dependent, competing exchange constants
from multiple close neighbors in an anisotropic lattice [124]. By contrast, a recent
non-polarized neutron diffraction study at P = 3.8 GPa [102] suggests spiral order
along the shortest axis, b, in the Pnma space group. This result is surprising since
for all other (V/Cr/Mn/Fe/Co/Ni)(P/As/Sb) family members (Table 4.1) [100, 101,
103–116] the spiral order exists along either of the longer axes, a or c, in the Pnma

space group setting.

Figure 4.5: Magnetic phases of MnP. The P − T phase diagram includes ferromag-
netism (FM), a double-helical order (Ha-I) at low pressure [101], a new helical order
(Ha-II) discovered at high pressure in the current work, superconductivity (SC) and
paramagnetism (PM). Phase boundary data is adapted from [100] (open circles)
with a reduction of pressure scale by a factor of 1.12 to match our X-ray measured
Ha-II phase boundary at 4 K (filled circle). Also marked are (P, T) positions where
the helical order was observed or proved null through magnetic scattering (filled
squares) and where the lattice parameters are measured (crosses). The presence
of multiple ferromagnetic phases [125] is not distinguished here for clarity. (In-
set) Schematics of spin structures of three magnetic ground states, presented in a
sequence of ascending pressure. The n-glide plane constraint between two helical
orders in Ha-I is broken in the Ha-II phase.

The boundary of the magnetic phase is determined most accurately by the pressure
evolution of the lattice. Single crystal refinement of five to six Bragg orders of
MnP at each pressure indicates that the lattice structure remains in the orthorhombic
phase to 10.4 GPa. Longitudinal scans of lattice orders such as (2, 0, 0), (0, 2, 1), (2,
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2, 0) and (2, 2, 2), showing instrument resolution limited profiles with no noticeable
peak splitting, support this conclusion. All three lattice constants evolve nonlinearly
at low pressure but linearly at high pressure, with the crossover defining the critical
pressure, Pc = 6.7±0.2 GPa (Fig. 4.6a and 4.6b), consistent with the range where
magnetic diffraction was observed directly [100]. The lattice changes continuously
under pressure to a sensitivity level of |∆l |/l ∼ 1 × 10−3 (Fig. 4.6a and 4.6b). The
orthorhombic structure of MnP is considered to be a distortion from the hexagonal
structure of NiAs [106, 112], as the two symmetries can evolve continuously across
the ratio a/c = 1.732. Under pressure, the orthorhombic distortion inMnP,measured
by a/c, keeps increasing from 1.85 to 1.98 and moves away from the hexagonal
symmetry. While helical order in both MnSi and CrAs are suppressed by pressure
through a clear first-order quantum phase transition [114, 115, 126], the quantum
phase transition in MnP at Pc is isostructural and could be continuous.

The lattice evolution with pressure indicates a significant magnetostriction, which
is common to many 3d and rare-earth magnetic compounds [127, 128]. Here in
MnP, magnetostriction can be extracted from ∆c and ∆a of the lattice and scaled to
the magnetic phase boundary of either the Curie or Nêel temperatures TC,N, as ∆c/c
∼ ∆a/a ∼ TC,N (Fig. 4.6), regardless of whether there is underlying ferromagnetic
or antiferromagnetic order. Since the staggered magnetic moment 〈m〉 is directly
related to the magnetostriction, both ∆l and 〈m〉 vanish at the quantum phase
transition. Beyond Pc, an energy density of 7 GPa distributed over eight valence
electrons in the P 3p and Mn 3d orbitals [129] increases the electron kinetic energy
t by ∼15 meV per electron, comparable to the magnetic exchange constants J (2.5
- 11meV, [130]). An increasing t/J ratio reduces the ordered moment, 〈m〉, and
eventually destabilizes the magnetism. While 〈m〉 drops to zero at a quantum critical
point, the fate of individual local moments remains of high interest, as exemplified
in heavy fermion materials [131].

Spins in MnP are deep in the local limit at ambient pressure given a Rhodes-
Wohlfarth ratio of 2.2 (Fig. 4.7). The 15 meV per electron increase in kinetic
energy sufficient to destabilize the magnetic order is not enough to fully delocalize
the 3d moments, considering their 0.20 eV bandwidth [129]. Therefore, MnP is a
system with local moments surviving beyond the quantum critical point, and spin
fluctuations in the disordered state naturally raise special interest aboutmagnetically-
driven superconductivity.

In the disordered phase, the predominant spin fluctuation modes likely are still
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Figure 4.6: Scaled evolution of the magnetostriction and the magnetic phase bound-
ary in MnP. (a,b) Normalized lattice evolution at T = 4 K under pressure, with a(P
= 0) = 5.8959 Å, b(P = 0) = 5.2361 Å and c(P = 0) = 3.1807 Å in the Pbnm
space group. a(P)/a(0) and b(P)/b(0) evolve slowly under pressure and are non-
monotonic, while c(P)/c(0) has a strong monotonic pressure dependence. The
shapes of a, b and c(P) indicate large magnetostriction. Assuming that the lattice of
a non-magnetic phase should evolve linearly over this pressure range (dashed lines in
a and b as a0(P)/a(P = 0) and c0(P)/c(P = 0)), and that the low-pressure behavior
can be modelled from extensions of the high-pressure lattice, the magnetostriction
is then extracted by subtracting the estimated a0(P) and c0(P). (c) Magnetostriction,
expressed as ∆l/l = (l(P) − l0(P))/l0(P) in both ∆c/c and ∆a/a, can be scaled to
magnetic phase transition temperatures TC and TN as a function of pressure. ∆c
and ∆a are of different signs, indicating the anisotropic nature in both magnetic
exchange interactions and the lattice’s response to the magnetic order. Horizontal
error bars represent the full range of pressure during a measurement.
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Figure 4.7: Magnetization and inverse magnetic mass susceptibility at ambient
pressure. The magnetizationMwas measured in a SQUID basedMagnetic Property
Measurement System (Quantum Design) in a 100 Oe d.c. field, and plotted in SI
units. Magnetic susceptibility χ’(T) was fit to the Currie–Weiss law above the
ferromagnetic transition at 291 K to extract a moment of 2.79 µB per Mn. The
measured Curie–Weissmoment is comparedwith the literature value of the saturated
moment 1.3 µB per Mn [101] in the high field and low temperature limit to provide
a Rhodes-Wohlfarth ratio of 2.2. Vertical error bars represent 1σ s.d. of measured
magnetization.

dictated by the nearby magnetic instability [131–133]. In MnSi, helical fluctuations
in the form of spiral/helix paramagnons were observed forT >TC despite a weak first
order transition. Those fluctuations center at a wave vector similar in magnitude to
the ordering wave vector Q, but with a random direction [133], presumably because
of the short range Dzyaloshinskii-Moriya interaction in a cubic lattice symmetry.
In MnP and CrAs, the lattice anisotropy likely confines wave vector directions of
magnetic fluctuations. The pressure evolution of Q in CrAs [116] is constant up to
Pc ∼ 0.65 GPa [114–116, 134]. Interpreting its behavior for P > Pc [134] is clouded
by a strong first-order phase transition and a highly strained sample condition (lattice
mismatch of several per cent) in the phase coexistence region. With no significant
evolution of Q in the ordered phase under pressure (Fig. 4.2) [116], the disordered
phases ofMnP andCrAs should possess spin fluctuations dominated by themagnetic
instability in the ordered phase, that is, spiral modes centered at Q ∼ (0.25, 0, 0) for
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MnP and (0.36, 0, 0) for CrAs.

4.4 Discussion
Fluctuation modes in spiral magnets are of particular interest in terms of the com-
petition between spin and lattice (phonon) fluctuations and their connection to
superconducting pairing of s, p, or d character. Consider a helical fluctuation
at a finite wavelength. By contrast to the usual antiferromagnet, spins of nearest
neighbors along the wave vector Q direction share a large ferromagnetic projection.
These ferromagnetic spin fluctuations in the low frequency limit would suppress
phonon-mediated superconductivity due to on-site pairing of itinerant electrons
[117], emphasizing magnetically mediated coupling channels. Furthermore, vary-
ing the pitch of the helical order provides a continuous tuning of local ferromagnetic
order versus intermediate- range antiferromagnetic order, thus tilting the competition
between the two types of magnetically mediated superconductivities.

The spin interaction between two itinerant electrons is an oscillating function in real
space, with attractive regions at distance (n + 1/2)λ (where n is an integer). The
strongest interaction happens at a half pitch length λ/2 of the fluctuating spiralmodes
(Fig. 4.8a), which is about 12 Å in MnP. This is similar to the antiferromagnetic
fluctuation-mediated interaction in the rare earth cuprates and the heavy fermion
compounds [30, 136]. There is a relatively long interaction length between itinerant
charge carriers as comparedwith both the on-site interaction of the phonon-mediated
type [136] and the nearest-neighbor resonant valence bond type for underdoped
cuprates [137]. On the other hand, the coherence lengths of Cooper pairs are
typically much longer than interaction lengths in both phonon- and magnetically-
mediated superconductors [30, 136] and for MnP, the superconducting coherence
length extends over 300 Å [100]. This coherence length is necessarily smaller than
the mean free path of itinerant electrons, thereby allowing the electron pair overlap
to maintain phase coherence. The MnP samples we used have a residual resistance
ratio of ∼1000 at ambient pressure [100], close to the clean limit. The issue of
pairing symmetry is more tenuous, but the model of helical magnets allows certain
predictions. The interaction of paring itinerant electrons at a distance r = (n+1/2)λ
along the wave vector Q direction of helical spin fluctuations (Fig. 4.8a) mandates
a preferred axial direction and suggests that the superconductivity might be of the
singlet dz2 type, especially in light of the low-symmetry lattice structures of MnP
and CrAs.
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Figure 4.8: Variable helical pitch length as a tuning method for magnetically me-
diated superconductivity. (a) Schematic of a superconducting electron pair coupled
through helical spin order in a projected planar view. The two sites of itinerant
electron coupling are separated along the helical order by a half wavelength λ/2,
suggesting the possibility of singlet dz2-wave pairing. This scenario competes with
superconductivity of a ferromagnetic type, while the nearly parallel local spin con-
figuration always suppresses phonon-mediated superconductivity at a single site
[117]. (b) Superconducting transition temperature Tc plotted as a function of he-
lical wave vector Q in selected 3d intermetallic compounds. Data for MnSi [126,
133], MnP [100, 101] and CrAs [114–116] are collected from either the literature
or current work. Red solid circles represent observed superconducting transitions,
which only exist in pressure-induced disordered phases beyond the helical order,
and are likely antiferromagnetically mediated. The horizontal bars of the downward
arrows represent the lower bounds of null searches for superconductivity. Ferro-
magnetically mediated superconductivity is expected to be at a lower temperature
than its antiferromagnetic counterpart [30, 135]. The pitch of the helical order
represents a potential tuning method between ferromagnetically (blue region) and
antiferromagnetically (red region) mediated superconductivity.

While spiral fluctuations suppress phonon-mediated superconductivity and enhance
the coupling channels for the magnetic interactions, helical fluctuations of differ-
ent pitches provide the means to switch from ferromagnetic to antiferromagnetic
character. With increasing spiral wavelength, the interaction strength of the antifer-
romagnetic coupling is reduced over an elongated r [30]. Moreover, an increased
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spiral wavelength reduces the turning angle between neighboring spins and thereby
heightens the local ferromagnetic spin density. By varying the pitch, it is possible
to tune both the ferromagnetic and antiferromagnetic spin fluctuations. Our focus
on local moment helical order complements itinerant models of continuous tuning
by band filling from ferromagnetic to antiferromagnetic order with a concomitant
switch between magnetically mediated superconductivities of different symmetries
[135]. Through the comparison of the cuprates and Sr2RuO4, it appears that fer-
romagnetically mediated superconductivity typically has an orders of magnitude
lower transition temperature than its antiferromagnetic analogue of the same dimen-
sionality [135].

The dimensionality of the spin fluctuations is another interesting issue. The helical
order in 3d compounds can be compared with incommensurate antiferromagnetic
order in heavy fermion materials like CeCu6−xAux [131], where spin fluctuations
with two-dimensional character were observed around the ordering wave vector Q
[132]. Even though the effective low dimensionality enhances the spin fluctuations,
the extremely low magnetic coupling strength in CeCu6−xAux [131] suppresses the
possible magnetically mediated superconductivity below experimental sensitivity.
Spin fluctuations in MnP are likely three-dimensional (3D) judging from the T3/2

dependence of the resistivity [100], but they are matched with a large magnetic
coupling strength [130] and bandwidth [129], so the superconducting transition
temperature,Tc, could still be measurable even at a level ofTN/1, 000. For 3D helical
magnets such as MnP and CrAs with Tc = 1 - 2 K (Fig. 4.8b), the corresponding
ferromagnetic type could be below the lowest range of temperatures measured to
date.

Although experimental evidence is still limited, the effects of a variable spiral pitch
are suggestive. We illustrate the trends in Fig. 4.8b for the series MnSi, MnP and
CrAs as a function of their different magnetic wave vectors. With a small spiral
wave vector of (0.017, 0.017, 0.017) [133], MnSi does not superconduct under
pressure down to at least 10 mK [126], although the lack of an inversion center
could complicate the symmetry properties of a superconducting state. For MnP at
low pressure, the helical order with a wave vector of 0.117 r .l .u. [101] was replaced
by ferromagnetic order at P ∼ 1 GPa, and no superconductivity was observed down
to 350 mK [100]. On the other hand, both MnP at high pressure (0.25 r .l .u.) and
CrAs (0.36 r .l .u.) have relatively large wave vectors (short pitches) and demonstrate
superconducting ground states once the helical order is suppressed by pressure [115,
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Table 4.1: Compounds in the (V/Cr/Mn/Fe/Co/Ni)(P/As/Sb) family with spiral
antiferromagnetic order, organized by Q-vector from 0.07 to 0.40. Marked as well
is the direction of the helical order along either the a- or c-axes in the Pnma space
group setting.

Compounds TN(K) Q (r .l .u.) Helical order Reference
Mn0.65Cr0.35As 195 0.071 a [110]
Mn0.7V0.3As 142 0.08 a [105]
Mn0.75Cr0.3As 202 0.088 a [110]
Mn0.75Cr0.25As 205 0.097 a [110]
MnAs0.925P0.075 232 0.10 a [108]
Mn0.95Co0.05P 53 0.101 c [111]
Mn0.9Co0.1P 49 0.107 c [111]
Mn0.95V0.05P 107 0.109 c [111]
Mn0.8Co0.2P 70 0.111 c [111]
Mn0.9Cr0.1P 50 0.112 c [111]
Mn0.95Fe0.05P 62 0.113 c [111]
Mn0.95Cr0.05P 53 0.116 c [111]
Mn0.9V0.1As 206 0.116 a [105]

MnP (low pressure) 50 0.117 c [101]
Mn0.8Cr0.2As 208 0.120 a [110]
Mn0.95V0.05As 200 0.128 a [105]
Mn0.9Cr0.1As 210 0.133 a [110]
Mn0.95Fe0.05As 211 0.142 a [107]
Mn0.9Fe0.1P 172 0.145 c [111]
Mn0.9V0.1P 152 0.151 c [111]

Mn0.95Ni0.05As 202 0.155 a [109]
Mn0.95Co0.05As 196 0.166 a [106]
Mn0.9Co0.1As 174 0.184 a [106]
Mn0.85V0.15P 141 0.189 c [111]
Mn0.8V0.2P 113 0.194 c [111]

FeP 125 0.20 c [103]
Mn0.85Co0.15As 152 0.209 a [106]
Mn0.8Fe0.2P 142 0.210 c [111]

MnP (high pressure) 0.250 c current work
Mn0.6Cr0.4As 232 0.252 c [110]
Mn0.72Fe0.28P 173 0.258 c [111]

CrAs 265 0.356 c [116]
Cr0.98Ni0.02As 202 0.357 c [109]

FeAs 70 0.395 c [113]
CrAs0.86Sb0.14 340 0.40 c [104]
CrAs0.72Sb0.28 340 0.40 c [104]
CrAs0.66Sb0.34 310 0.40 c [104]
CrAs0.5Sb0.5 175 0.40 c [104]
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116].

We list in Table 4.1 38 different intermetallic compounds with magnetic pitch
varying nearly continuously from 0.07 to 0.40 r .l .u. Most of them have not been
examined under pressure, neither to map the evolution of their magnetism nor
to search for superconductivity. With such studies, the 3d helical magnets of
the (V/Cr/Mn/Fe/Co/Ni)(P/As/Sb) family [100, 101, 103–116] present manifest
opportunities to further our understanding of the linkage between magnetism and
unconventional superconductivity.
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C h a p t e r 5

QUANTUM PHASE TRANSITIONS IN Cd2Os2O7

Correlated electron systems are characterized by competing energy scales. These
include the on-site Coulomb (Hubbard) interaction U, the electron kinetic energy
represented by the hopping integral t, the crystal field strength ∆, and the spin-orbit
coupling constant λ. In decades-long explorations of 3d electron systems, such as
cuprates and vanadium oxides, λ is negligible; thus the competition among U, t,
and ∆ determines the general physical properties. When it comes to 5d electrons,
λ ∼ Z4 is significantly enhanced and plays a major role, while U/t also becomes
smaller due to the more extended d band. For example, Sr2IrO4 inherited the Mott
physics from 3d transition-metal compounds with an additional contribution from λ,
becoming a spin-orbit Mott insulator [138]. As a consequence, 5d electron systems
provide a new testbed to study correlation effects in a regime where all energy scales
are similar: U ∼ t ∼ λ ∼ ∆.

Orthogonal to the energy perspective, spatial and/or geometrical properties could
play an equally important role in shaping the physics of correlated electron systems.
First, crystal structures with particular symmetry properties could fundamentally
determine the parity of ground states. For instance, superconductivity in latticeswith
and without inversion symmetry should have distinct parity and pairing properties
[139]. Second, lattice geometry can introduce magnetic frustration or induce long-
range magnetic order of certain spin configurations, such as the cases of Kagomé
[140], Shastry-Sutherland [141], and pyrochlore lattices [142]. Finally, for phase
transitions in which the crystal structure is less distorted, a continuous transition is
preferred, which is relevant to this chapter, and a theme that connects the topics in
this thesis, especially this chapter.

All combined, 5d electron systems with special symmetry properties potentially can
be tuned through continuous quantum phase transitions where various interactions
strongly compete, thus involving entangled fluctuation modes. As we discussed in
Chapter 1, this type of strongly-coupled QPT could exhibit nontrivial quantum crit-
ical phenomena beyond mean-field theory [16, 17]. Recently, pyrochlore-structured
5d transition-metal oxides such as A2Ir2O7 (A = Y, La, Eu, Sm, and Nd) and
Cd2Os2O7, with a concurrent metal-insulator and paramagnetic-antiferromagnetic
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transition, were proposed as candidates for studying this type of quantum criticality
[17]. Here, we directly track the breakdown of all-in-all-out antiferromagnetic order
in the low temperature limit at 35.8GPa inCd2Os2O7, employing a newly-developed,
high-pressure, resonant x-ray magnetic scattering technique. Both x-ray diffraction
and Raman spectroscopy support a scenario of a continuous quantum phase tran-
sition. Concurrent with the antiferromagnetic QPT, the lattice undergoes inversion
symmetry breaking, corresponding to the softening of a breathing mode. With the
high pressure phase line manifesting a curvature strongly deviating from the mean-
field prediction, we argue that the critical region, which connects three phases of
different time-reversal and inversion symmetry properties, is of a strongly-coupled
nature involving the spin, charge and structural degrees of freedom.

5.1 Introduction
An all-in-all-out (AIAO) spin arrangement on corner-sharing tetrahedra (Fig. 5.1a)
has spins pointing either all towards or all against the center of each tetrahedron
(Fig. 5.1b), which is an unusual form of magnetism that preserves the underlying
cubic lattice symmetry. This spin order is often termed as a Q = 0 state in order to
reflect the preservation of lattice symmetry and unit cell size. However, this should
be distinguished from a Q = 0 type of ferromagnetic order where the wave length
is infinitely long. AIAO spin order has been observed in pyrochlore systems such
as FeF3 [143], Nd2Zr2O7 [144], A2Ir2O7 (A = Sm, Eu and Nd) [64, 145, 146], and
Cd2Os2O7 [63] and suggested for additional A2Ir2O7 systems with A = Y, Eu, Gd,
Tb, Dy, Ho, Yb, and Lu [147].

The formation of such a magnetic order in A2Ir2O7 (A = Y, La, Eu, Sm, and Nd)
and Cd2Os2O7 is also concomitant with a metal-insulator transition without any
structural discontinuity at TN, MIT [148–150]. The continuous nature of this thermal
transition is directly reflected by the slow rise of the ordered moment size as well as
the electrical resistivity at the transition temperature [63, 64, 145, 146, 148–150].
The concurrent spin and quasiparticle fluctuations at the transition, combined with
the general strong spin-orbit coupling in 5d electrons, makes the quantum version of
this AIAO/MIT phase transition intriguing for establishing a model system for non-
mean-field type QPTs. In Ln2Ir2O7 (Ln = Nd, Sm, Eu, Gd, Tb, Dy, and Ho), TMIT

was suppressed to zero by field [151, 152], pressure [151, 153, 154], and chemical
tuning of Ln [150, 151], while signatures of non-Fermi liquid behavior have been
proposed both experimentally [154, 155] and theoretically [156, 157] in the quantum
critical region. However, for the AIAO type of antiferromagnetic QPT, there is still
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Figure 5.1: Pyrochlore lattice structure and spin configurations in the all-in-all-out
magnetic order. (a) A schematic of Cd2Os2O7, showing only Os sites to highlight
the pyrochlore spin structure, with layers of Kagome lattice and triangular lattice
stacked alternatively along the <1,1,1> direction. (b) Local spin arrangement at two
neighboring tetrahedra, with spin moments pointing radially to the center in one
tetrahedron (all-in), and pointing towards the outside in the other (all-out).

lacking a direct measurement to prove its existence and the underlying symmetry
evolution. Thus it is crucial to develop a microscopic probe of the intertwined
electron, spin, orbital, and lattice degrees of freedom at the quantum critical point.

A direct measurement of the AIAO order could be performed by either neutron or
x-ray magnetic scattering. For Ln2Ir2O7 and Cd2Os2O7, neutron scattering would
encounter strong intrinsic absorption by either Cd or Ir, along with the difficulties
of both the high cost of Ir and Os materials and growing large single crystals from
a high temperature solution. X-ray magnetic diffraction provides an alternative and
potentially more accessible venue for experimental exploration [63, 64]. In addition,
as discussed in Chapter 2, a focused x-ray beam is of compatible dimensions with
a high pressure sample. For commensurate magnetic order such as AIAO with a
wave vector coincident to that of the lattice, magnetic diffraction at an x-ray resonant
edge combined with polarization analysis is necessary to verify the magnetic nature.
With all these factors considered, resonant x-ray magnetic diffraction is the most
suitable technique under high pressure to directly probe QPTs of AIAO order. The
experimental methods of resonant x-ray magnetic scattering have been discussed in
detail in Chapter 2.
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Using the combined experimental tools of resonant x-ray magnetic diffraction and
optical Raman scattering, we have explored the potential quantum critical state in
a system with antiferromagnetic AIAO order. We select Cd2Os2O7 as our model
system over Ln2Ir2O7, mainly to avoid the site-disorder issue from 3+/4+ valence
states of Ln and Ir, in comparison with the 2+/5+ valence states of Cd and Os [142].
This stoichiometry and site disorder issue renders a large uncertainty in determining
the transport nature of the paramagnetic state [147, 158]. In addition, this choice
also avoids the potential complication from an extra set of Lanthanide magnetic
moments on the A site pyrochlore (excepting Eu). At ambient pressure, Cd2Os2O7

undergoes ametal-insulator transition atTMIT = 227K concurrent with the formation
of AIAO magnetic order. The transition temperature can be suppressed by pressure
with an initial rate of ∼4 K/GPa, measured through electrical transport to 2 GPa
[148]. The AIAOmagnetic order was directly illustrated by resonant x-ray magnetic
diffraction at the Os L3 edge [63], and the lattice symmetry was characterized in
detail by optical Raman scattering [63].

We have successfully performed high-pressure single-crystal resonant x-ray diffrac-
tion experiments across the quantumphase boundary ofAIAOspin order inCd2Os2O7

at Pc = 35.8 GPa, observing neither a discontinuity in the lattice constant nor an
abrupt change in the electronic configuration of valence orbitals. Concomitant to
the recovery of time-reversal symmetry in the magnetically disordered state, the
crystal lattice experiences a spontaneous inversion symmetry breaking with a con-
tinuous space group change from Fd3̄m to F4̄3m. Broad phase space exploration
by optical Raman also confirmed the presence of the Fd3̄m lattice space group from
10 - 300 K, and 0 - 29 GPa. All these results combine to manifest a coexistence
of spin fluctuations, lattice breathing modes, and quasiparticle excitations in the
quantum critical region, and a potential interplay between them surrounding the
confluence point of quantum phase transitions of spin and lattice degrees of free-
dom. Those components naturally point to strongly-coupled quantum criticality in
this three-dimensional antiferromagnet.

5.2 Spin and orbital resonance
The antiferromagnetic order introduces a different set of selection rules for diffrac-
tion in comparison to that of the lattice. With a commensurate wave vector Q = 0 in
the AIAO phase of Cd2Os2O7, magnetic diffraction peaks could be probed at forbid-
den lattice orders such as (2, 0, 0) and (6, 0, 0) [63]. However, diffraction signals at
these reciprocal space positions still could contain contributions from two other scat-
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Figure 5.2: Raw scans of resonant magnetic diffraction at low pressures. (Left)
Mosaic scans of (6, 0, 0) order at different azimuthal angles with the values specified
in the panel. (Right) Energy resonance profiles under various azimuthal conditions.
Intensity is expressed in Counts/s for I = 100 mA synchrotron storage current.
While multiple scattering is present, the minimum trace of these curves manifests
the energy resonance profile of the magnetic diffraction.
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tering mechanisms, namely, multiple scattering and anisotropic tensor susceptibility
(ATS) scattering. The latter is typically understood as a type of orbital ordering in
the system [65–67] (Chapter 2). Multiple scattering does not possess a resonance
profile, and could be easily detected and eventually separated. On the other hand,
ATS scattering potentially could lead to the same resonance profile as its magnetic
counterpart (Figs. 5.2, 5.3, 5.4). Unlike the scattering matrix of regular Bragg
diffraction that only has the diagonal components and preserves the polarization of
the incident beam, both magnetic and ATS scattering matrices have off-diagonal
components to switch the polarization of the scattered x-rays [60, 67] (Chapter 2).
Scattering matrix elements from these two processes (ATS and magnetism) can be
separated by using different incident and scattered x-ray polarizations, together with
the azimuthal conditions of the diffraction order, which makes resonant scattering a
type of spectroscopy within diffraction.

At the Os L2 edge, these two types of resonances share the same virtual transition
probability from the core 2p 1

2
orbit to empty orbitals of the t2g band as the inter-

mediate state, and they exhibit a similar energy dependence in the resonance profile
(Figs. 5.2, 5.3, 5.4). In the π −σ channel of the horizontal scattering geometry, the
ATS resonance at azimuthal angle ψ ∼ ±45◦ (relative to the <0 0 1> order) becomes
zero for both (2, 0, 0) and (6, 0, 0) orders of the Fd3̄m space group [63], while
that of the (4, 2, 0) order is finite. In addition, the magnetic scattering intensity in
Cd2Os2O7 is about one to two orders of magnitude smaller than typical ATS scatter-
ing. Thus, in the π−σ channel, the intensity of the (4, 2, 0) order mainly represents
the ATS signal, while that of the (6, 0, 0) order represents the pure magnetic signal.
In the π − π’ channel, both magnetic and ATS scattering are weak, and intensities
from forbidden orders (6, 0, 0) and (4, 2, 0) would be sensitive to the regular Bragg
diffraction of the lattice, and reflect the change of the space group.

The low intensity signal of the magnetic resonance can be contaminated by multiple
scattering that shows up in both the mosaic curves and the energy spectra (Figs. 5.2,
5.3), and is sensitive to slight changes in the sample azimuthal angle. Therefore,
several scans with slightly different azimuthal conditions around 45◦ were always
taken to distinguish the true magnetic signal as the minimum shape of all energy
spectra (Figs. 5.2, 5.3). It was possible to find a position where a clean energy
resonance signal exists without additional multiple scattering, especially for samples
with a broad mosaic at high pressure. In Cd2Os2O7, magnetic resonance has been
observed at the (6, 0, 0) order on seven samples at 4.0 ± 0.5 K, and in the pressure
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Figure 5.3: Raw scans of resonant magnetic diffraction close to and beyond the
critical point. Left and right panel assignments are the same as Fig. 5.2. At the
phase boundary (36.7 GPa), the magnetic resonance has disappeared, and the energy
dependence is that of the Os L2 fluorescence background. Beyond that pressure,
lattice distortion allows charge diffraction at the (6, 0, 0) order, as the resonance
profile reflects the charge nature of the energy dependence.

range between ambient and 34.5 GPa.

We believe that the magnetic order is fully suppressed by 36.7 GPa (Fig. 5.3),
judging by the differently-shaped energy spectrum profile; no clear resonance at
12.387 keV was observed. Instead, the minimum profile of the energy scan exhibits
a similar shape with the L2 fluorescence background across the absorption edge (Fig.
5.3). This behavior was verified on another sample at a slightly higher pressure of
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Figure 5.4: Raw scans of the ATS resonance at (4, 2, 0). For simplicity, we
only display one mosaic profile (left) and one resonance profile (right). The ATS
signal is 10 - 100 times stronger than the magnetic diffraction intensity. Hence the
contamination from multiple scattering is small. The resonance extends beyond the
magnetic phase boundary at Pc = 35.8 GPa, although the resonance profile at 41
GPa shows a summation of ATS resonance in the channel and a projection of 2.5%
of the diffraction intensity in the channel due to the fact that the graphite analyzer
crystal was placed at an angle of about 5 degrees off 90 degrees.
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38.6 GPa with an increased overall intensity. At 41 GPa, the diffraction intensity
at (6, 0, 0) was significantly enhanced by 1.5 orders of magnitude. Meanwhile, the
energy scan manifests a typical profile of those allowed Bragg peaks, which has an
inverse shape of the L2 edge absorption spectrum (Fig. 5.3). This indicates that
the (6, 0, 0) order becomes non-forbidden at high pressure due to a variation in
the lattice symmetry. The lattice symmetry assignments will be discussed in the
following section.

Resonance scattering at the (4, 2, 0) order, with an azimuthal angle about 50◦ in our
sample geometry, manifests a significant ATS diffraction signal in the π−σ channel
(Fig. 5.4). An ambient pressure characterization indicates that the ATS diffraction
at (4, 2, 0) is about one order of magnitude stronger than the magnetic resonance,
with little temperature dependence from 4 K to 300 K. Therefore, measurements at
the (4, 2, 0) order naturally are less affected by multiple scattering and show consis-
tent behavior in both rocking and energy scan curves at various azimuthal angles.
Unlike magnetic resonance, which diminishes at high pressure, ATS resonance has
been observed all the way up to 41 GPa (Fig. 5.4). The resonance profiles remain
unchanged in the whole pressure–temperature phase space within an energy resolu-
tion of approximately 1.7 eV, suggesting an essentially constant t2g band, in which
the empty states provide pathways to virtual transitions in the resonant process. At
41 GPa, the ATS resonance signal is still distinguishable, as the energy spectrum is
a superposition of both the ATS resonance and that of normal lattice diffraction in
both the π − π’ and σ − σ (∼1.3% leakage) channels (Fig. 5.4).

5.3 Lattice structure and symmetry
At ambient pressure, Cd2Os2O7 belongs to the Fd3̄m space group (No. 227) of
cubic structure through the entire temperature range. No discontinuity of the lattice
constant has been discovered through the magnetic transition at TN = 227 K [63,
148]. At 4 K, longitudinal scans at diffraction orders (1, 1, 1) and (2, 2, 0) (Fig. 5.5)
both remain in a single peak profile over the whole pressure range up to 41 GPa,
indicating that the cubic structure is preserved throughout. As a consequence of both
the fragmented mosaic structure of the single crystal and pressure inhomogeneity
across the sample, theHWHMof the longitudinal line shape at (0, 2, 2) (Fig. 5.5) has
evolved from 0.005◦ at 1.4 GPa to 0.016◦ at 37.3 GPa, corresponding to a correlation
length changing from 2000 Å to 600 Å. Starting with a = 10.1614 Å at ambient
pressure, the lattice constant shrunk by ∼5% at 41 GPa without discontinuity within
a sensitivity of ∆a/a ∼ 10−3 (Fig. 5.5). While the Fd3̄m space group is uniquely
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Figure 5.5: Lattice evolution under pressure. (a) Pressure evolution of the lattice
constant was fit to a two-parameter Birch equation of state with B = 190.4 ± 3.6
GPa, and B′ = 4.2 ± 0.2. (insets) Longitudinal (θ/2θ) scans of (1, 1, 1) and (0, 2,
2) orders measured at various pressures using 12.387 keV x-rays verify the cubic
symmetry. (b-c) Pressure evolution of integrated diffraction intensities of (0, 2, 2)
and (1, 1, 1) orders, normalized by (0, 4, 4) and (2, 2, 2) orders, respectively. The
measurement was performed under either resonant (E = 12.387 keV) or off-resonant
(E = 12.355 keV) conditions. These two orders are sensitive to O 48 f sites in the
unit cell, and develop in opposite fashion up to 40 GPa. (d) Simulated (0, 2, 2) and
(1, 1, 1) intensities as a function of x. The overall percentage changes of (0, 2, 2)
and (1, 1, 1) give an x increasing from 0.319 at P = 0 [148] to approximately 0.325
at Pc.

determined by the unit cell’s lattice constant and one free coordinate x for oxygen
position on 48 f sites that characterizes the trigonal distortion of the Os-O6 cluster
[148, 159], diffraction intensities at (1, 1, 1) and (0, 2, 2) show a continuous evolution
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through the quantum phase transition, with x increasing by a small amount from
0.319 at P=0 [148] to ∼0.325 at Pc (Fig. 5.5b-c).

Although the cubic symmetrywas preserved and the lattice constant evolves continu-
ously under pressure, a change in the space group which characterizes the symmetry
properties of all sites is still allowed. Specifically, the Fd3̄m space group could have
a cascade of continuous symmetry evolution to cubic structured F4̄3m, F4132 and
Fd3̄ space groups and other tetragonal and trigonal space groups, as exemplified
in the closely-related, non-magnetic superconductor Cd2Re2O7 [160–162]. Such
symmetry changes could be observed by the violation of certain forbidden selection
rules when lattice symmetry is lowered [160].

Lattice symmetry at low temperature
As we pointed out earlier, both the ATS and magnetic resonant scattering matrices
have very small π − π’ components in Cd2Os2O7, allowing a sensitive probe of
lattice symmetry changes. While the π − π’ intensity at both (6, 0, 0) and (4, 2, 0)
orders remains consistently low below 36GPa, it starts increasingwhen themagnetic
diffraction intensity is suppressed (Fig. 5.6). The energy scans show an inverse
shape of the absorption spectrum without any resonance signature, indicating that
the intensity is not coming from a different ATS behavior. Instead, it comes from
selection rules of a different symmetry group at high pressure, which make (6, 0,
0) and (4, 2, 0) no longer forbidden. Within a cubic structure (Fig. 5.5), the low-
pressure Fd3̄m group could continuously evolve to F4̄3m, F4132 and Fd3̄ groups.
However, selection rules for F4132 (h = 4n for (h, 0, 0) orders) would not allow
diffraction intensity at (6, 0, 0), while those of the Fd3̄ group (h = 4n for (h, 0, 0)
and k + l = 4n (k, l = 2n) for (0, k, l) orders) would allow neither (6, 0, 0) nor
(4, 2, 0). Therefore, F4̄3m, allowing diffraction at both orders, is the only possible
choice.

A similar symmetry group change has been reported in Cd2Re2O7 upon cooling
[160], with a lower symmetry from breaking lattice inversion symmetry, which is
exactly why (6, 0, 0) and (4, 2, 0) orders gain diffraction intensity. In the Fd3̄m

group, the Cd 16d site and the Os 16c site both manifest .3̄m local symmetry.
Therefore, the Cd- and Os-tetrahedra are identical (Fig. 5.1). Both atoms bear no
free parameters in their coordinates and the geometric diffraction factors for (6, 0, 0)
and (4, 2, 0) simply sum up to be zero. In the F4̄3m group, however, both Cd and Os
occupy 16e sites, coordinated by (x, x, x) in position with x being a free parameter
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Figure 5.6: Polarization-sensitive resonant diffraction data under pressure. Raw
energy scan profiles at both (a-c) (6, 0, 0) and (d-f) (4, 2, 0) orders from two
separate polarization channels (π − σ in red/pink and π − π’ in navy/aqua). While
magnetic resonance in the π − σ channel at (6, 0, 0) has been suppressed (Fig. 5.4,
text), the π − π’ charge diffraction intensities rise dramatically for both (6, 0, 0) and
(4, 2, 0) orders, with a small leakage into the π − σ channel becoming apparent
through the polarization analyzer.

characterizing the perturbation around 1/8 (Os) and 5/8 (Cd), respectively [148].
Accordingly, the inversion symmetry is removed from .3̄m to .3m local symmetry.
The newly found freedom allows Cd and Os atoms to slide along local <1 1 1>
direction, yielding different sizes of adjacent tetrahedra in the Cd and Os networks.
The diffraction intensities from both (6, 0, 0) and (4, 2, 0) are proportional to
| fOs∆Os + fCd∆Cd |2, where fOs and fCd are the atomic factors of Os and Cd atoms,
respectively, and ∆Os and ∆Cd represent the perturbations from equal-sized adjacent
tetrahedra. From the perspective of inversion symmetry breaking, this corresponds
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to a lattice breathing mode, which has been discovered in many pyrochlore systems
such as KOs2O6 [163], LiGa1−xInxCr4O8 [164–166], Ba3Yb2Zn5O11 [167], etc.,
and has direct implications on the nature of the magnetism [168–170].

Lattice symmetry in broader P −T phase space
Our optical Raman spectroscopy provides an efficient survey of symmetry conditions
over the broad pressure-temperature phase space in the range of 10-300 K and 0-29
GPa. With a surface normal in the (1, 1, 1) direction, we were able to measure
all six Raman-active modes predicted (Figs. 5.7, 5.8) for space group Fd3̄m [171]
without a specific polarization condition, which is difficult to fully control given the
stress-induced birefringence in diamond [172, 173]. The six modes we observed
are consistent with previous optical Raman measurements in Cd2Os2O7 [63] and
other materials of the same space group, such as Cd2Re2O7 [174] and AOs2O6 (A =
K, Rb) [175, 176]. These peaks are typically assigned as T2g(1), Eg, T2g(2), T2g(3),
A1g and T2g(4) from low to high frequencies. Since all Cd and Os atoms are located
at sites of inversion symmetry, all six optical Raman active modes correspond to
the vibration of oxygen atoms [171, 175]. Among these modes, only the T2g(2)
mode represents the vibration of oxygen atoms O’ occupying 8b sites, which could
be depicted by a distortion of the Cd4-O tetrahedral cage [177]. The remaining
five modes are all attributed to the motion of oxygen atoms O occupying 48 f sites,
representing Cd-O stretching, O-Cd-O bending, O-O stretching, O-Os-O bending,
and Os-O stretching in the ascending frequency sequence [177].

We show representative raw Raman spectra between 100 and 1000 cm−1 (12.4 to
124 meV) at T = 10 K from low pressure to 28.3 GPa (Fig. 5.7), and around 29 GPa
from 10 K to 295 K (Fig. 5.8). These two sets of data enclose the most important
boundary of the phase space we have explored (individual P − T points are marked
by grey crosses in the phase diagram in Fig. 5.11). Our search was not able to
reach the quantum critical pressure at Pc = 35.8 GPa, but it does cross the AIAO
antiferromagnetic phase boundary as a function of pressure at T = 150 K and 215 K
(Fig. 5.11). Lattice distortion or symmetry changes typically will generate dramatic
changes in the Raman spectrum. Specially for a change from the Fd3̄m to the F4̄3m

group in Cd2Os2O7, the number of Raman active modes will change from 6 to 15
[175], with additional peaks showing up from the vibrations of Cd and Os atoms
due to the inversion symmetry breaking. One soft mode of particular interest is the
Raman inactive mode with A2u symmetry in space group Fd3̄m, which will become
Raman active in the F4̄3m structure with A1 representation. This low-frequency
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Figure 5.7: Raman spectra at T = 10 K for different pressures. All six Raman active
modes have been observed up to 28.3 GPa and are labeled. Pictures of the pressure
chamber at the lowest (left) and highest (right) pressure are shown in the inset.

mode has been observed in Cd2Re2O7 at low temperature [174]. Some of our
Raman spectra were taken in an extended range down to 20 cm−1 (2.5 meV), but no
peaks with consistent behavior in temperature and pressure have been observed. In
addition, our spectrometer is not specialized for low frequency range, where some
electronics designed to suppress elastic scattering background make it difficult to
distinguish real signals of low-energy Raman modes. Nevertheless, the fact that the
Raman spectra stay unchanged indicates that there is no symmetry change at finite
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Figure 5.8: Raman spectra at the highest pressure point from T = 10 K to 300 K.
All six Raman active modes have been observed from 10 K to room temperature at
28.3-29.2GPa and are labeled.

temperature phase transitions.

The analysis of Raman modes is often discussed in terms of wave number and
intensity. In our high pressure experiment, the wave number could be determined
within the relative precision of ∼ 1 10−3 at low pressure and ∼ 3 10−3 at the high
pressure end with a well-preserved sample condition. The evolution of wave number
vs pressure for all the six modes atT = 10 K and 295 K are shown in Fig. 5.9. All six
modes are getting stiffer under pressure, which is the direct effect of enhanced short-
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Figure 5.9: Raman shift vs. pressure. The pressure dependence of all six Raman
active modes in Cd2Os2O7 at T = 10 K (solid circles) and 295 K (open circles). The
lines are guides to the eye.
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range interactions from the squeezed unit cell. One difficulty in determining wave
number is to distinguish the T2g(3) and A1g peaks, which are close by at ambient
condition but get even closer with increasing pressure as the pressure dependence
of the lower energy mode T2g(3) is stronger (Fig. 5.9). This introduces additional
systematic errors in measuring the Raman shifts. The relative changes of all six
modes over a 29 GPa pressure range (ω(29GPa)- ω(0))/ ω(0)) are: 17.6%, 27.4%,
14.1%, 14.6%, 9.8% and 15.8%, respectively (Fig. 5.9).

The stronger pressure dependence of Eg indicates a strong anharmonic component in
the vibration of O(1), a conclusion which is also supported by the large temperature
dependence of T2g(4) (Fig. 5.9). Due to an offset from its ideal position, the oxygen
atom O(1) at the 48 f site manifests vibrations with high anharmonicity, which has
been discussed for Tb2Ti2O7 [178, 179] and can be characterized by

√
〈u〉2/d, where

u is the vibration amplitude and d is the bond length between oxygen and adjacent
Tb or Ti atoms [178]. Not all modes are affected by this anharmonicity due to
symmetry constraints. For example, T2g(1), T2g(3) and A1g modes show no obvious
temperature difference and only moderate pressure dependence. While the Eg mode
shows strong pressure dependence, it has barely any temperature dependence. In
contrast with temperature tuning [148], we have observed a slight evolution of the
O(48 f ) coordinate x towards being more imperfect under pressure (Fig. 5.5), which
will enhance the anharmonicity of oxygen vibrations. The Eg mode could be more
sensitive to this distortion, thereby yielding its enhanced pressure dependence.

Typically, the Raman scattering intensity contains significant information to resolve
lattice symmetry. However, intensity is not a well-defined quantity in our experiment
due to the polarization effects from the diamond anvils, which changeswith the strain
distribution under pressurization and is hard to characterize. With the intensity of
Raman modes showing a strong polarization dependence, the evolution of intensity,
even relative intensity, will be difficult to analyze and even could be misleading.

5.4 Discussion
Our x-ray diffraction results (Figs. 5.2, 5.3, 5.4, 5.6) have clearly shown a phase
transition around 36 GPa, where the breakdown of AIAO magnetic order and a
coincident change of lattice symmetry are most clearly reflected by the integrated
intensity of the magnetic peak at (6, 0, 0) and the charge diffraction peaks at both
(6, 0, 0) and (4, 2, 0) (Fig. 5.10). The continuous nature of this quantum phase
transition is manifested by the smooth evolution of the lattice constant (Fig. 5.5),
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Figure 5.10: Continuous magnetic and structural quantum phase transitions (a)
Magnetic diffraction intensity was measured at (6, 0, 0) and in the π − σ channel,
with a power-law fit (solid line) to model the evolution over the whole pressure
range. (b) Lattice diffraction intensities, measured at both the (6, 0, 0) and (4, 2,
0) orders in the π − π’ channel, indicate a continuous switching between the Fd3̄m
and F4̄3m space groups with a phase boundary that rises effectively exponentially.

the gradual suppression of magnetic scattering intensity below Pc (Fig. 5.10a), and
the continuous rise of lattice scattering intensity at (6, 0, 0) and (4, 2, 0) above Pc

(Figs. 5.10b). Moreover, the ATS resonance profile, which is very sensitive to small
local distortions, stay unchanged through the transition (Fig. 5.3, 5.6), providing
strong evidence for a second-order phase transition.

For magnetic states, I(6,0,0), π−σ ∼ 〈m〉2, where 〈m〉 is the staggered moment size,
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i.e. the antiferromagnetic order parameter. A fit to the intensity over pressure
I ∼ (Pc − P)2β yields Pc = 35.8 ± 0.7 GPa and a critical exponent β = 0.40 ± 0.04
for 〈m〉, which has no strong deviation from mean-field theory [1]. From energetic
considerations of localized 3d - 5d spins [180, 181], our magnetic diffraction
results at the low temperature limit of 4 K also provide a means to estimate the
AIAO magnetic phase boundary through TN ∼ L ∼ 〈m〉2, where L is the external
magnetostriction that develops under 〈m〉. In AIAO-ordered pyrochlores, where the
cubic lattice symmetry is preserved by the magnetic order and the phase transition is
continuous, the external magnetostriction L is difficult to observe over the lattice’s
thermal expansion. Nevertheless, a non-monotonic evolution of the lattice constant
with temperature, a(T), for AIAO order at very low T has been demonstrated in
Nd2Ir2O7 (TN = 33.5 K and ∆a/a ∼ 1 10−4) [182]. Following this logic, we identify
the magnetic phase boundary TN(P) of Cd2Os2O7 in Fig. 5.11 via the relationship
TN ∼ I ∼ 〈m〉2. At high pressure, for P > Pc, the presence of a charge resonance
at (4, 2, 0) verifies that the unoccupied t2g orbitals remain the same in promoting
the resonance behavior (Figs. 5.3, 5.6e, 5.6f). At the same time, the absence of a
resonance at (6, 0, 0) importantly marks the vanishing of the staggered moment 〈m〉
and the long-range antiferromagnetic order (Figs. 5.3, 5.6c).

We believe that the high-pressure phase is most likely magnetically disordered.
Spins are still configured as corner-shared tetrahedra networks with axial single-ion
anisotropy along the <1 1 1> direction. Thus ferromagnetic interactions will mani-
fest strong geometric frustration [142, 183, 184]. The pyrochlore lattice also prefers
long-range order with a wave vector of qorder = (000) [142], but no commensurate
antiferromagnetic peaks have been observed in our experiment. Moreover, tuning
by either chemical doping or pressure drives the ratio of the magnetic interaction
strength to the hopping integral smaller in A2(Os,Ir)2O7. With an increasing elec-
tron density under 15% volume reduction by pressure, and moving away from the
strong interaction strength limit [147], one would not naturally expect a ferromag-
netic ground state. Finally, ferromagnetic quantum phase transitions, as well as
commensurate-incommensurate antiferromagnetic transitions, are first order, which
would contrast with the continuous AIAO quantum phase transition observed in our
experiment.

The continuous increase of charge diffraction intensity beyond Pc can be regarded
as the evolution of a new order parameter. As we have discussed before, the fact that
(6, 0, 0) and (4, 2, 0) become non-forbidden corresponds to the broken inversion
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Figure 5.11: P − T phase diagram of Cd2Os2O7. The Cd2Os2O7 lattice retains
its cubic symmetry throughout the probed P − T phase space, but continuously
transitions between Fd3̄m and F4̄3m space groups. The Fd3̄m lattice symmetry
was verified by optical Raman scattering from 0 - 29 GPa and 10 - 300 K (grey
crosses), while both phases of magnetism and structure (pink and blue shading)
were inferred from x-ray diffraction measurements at T = 4 K. The two phase lines
effectively converge at the same quantum critical region, dividing the P−T space into
three phases with distinct time-reversal (T) and inversion (I) symmetry properties.
The metallic paramagnetic phase in the low-pressure Fd3̄m space group has both
spatial inversion (I) and time reversal (T) symmetries. In the low-pressure AIAO
phase (inset), time reversal symmetry is broken. On the high-pressure side, the
F4̄3m space group breaks the spatial inversion symmetry, introducing a tetrahedral
breathing distortion (inset), and restores the time reversal symmetry with disordered
spins.

symmetry, which derives from differently-sized adjacent tetrahedra of the Os and Cd
sublattices (Fig. 5.11, inset) and can be regarded as fully-softened breathing modes
with spontaneous symmetry breaking [163–170]. These breathing modes disappear
above kBTc ∼ K |∆Os |2, with the lower F4̄3m symmetry replaced by the higher Fd3̄m

symmetry with adjacent tetrahedra of equal size. Here K is the vibrational elastic
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constant and ∆Os is the amplitude of the Os tetrahedron breathing mode. We expect
Tc ∼ I, given that the measured x-ray diffraction intensities (Fig. 5.10b) depend on
these lattice distortions as I ∼ | fOs∆Os + fCd∆Cd |2, where fOs/Cd are x-ray atomic
form factors. As we have observed no charge diffraction intensity at P = 34.5 GPa
and very weak intensity at P = 36.7 GPa, taking Tc ∼ 4 K at the measured Pc is a
reasonable benchmark while mapping I(6, 0, 0), (4, 2, 0), π − π’ ∼ | fOs∆Os + fCd∆Cd |2 ∼
K |∆Os |2 ∼ Tc, leading to the striking concave high-pressure phase boundary in
Fig. 5.11. It is of particular interest that the high-pressure phase line manifests a
curvature that rises with a power much greater than 1 (Figs. 5.10b, 5.11), strongly
deviating from a mean-field prediction. Rather, this is in the spirit of theoretical
discussions of strong-coupled quantum critical behavior in AIAO pyrochlores [17].

Within our experimental resolution of ∼1 GPa at T = 4 K, the two phase lines
set by two different types of order parameters converge at the same point, thus
dividing the P − T phase space into three areas with different symmetry properties.
From Landau’s phase transition theory, these two quantum phase transitions should
be either separated or share a first-order phase line. However, the concurrence
within experimental resolution and the clear deviation from themean-field prediction
stimulate a discussion of strong coupling in the quantum critical region.

The P − T phase space is divided into three regions with distinct symmetry prop-
erties (Fig. 5.11). This quantum phase transition with unique symmetry properties
also distinguishes itself from its counterpart at finite temperature as well as from
previous studies of quantum phase transitions in 5d AIAO materials. In the family
Ln2Ir2O7 (Ln = Eu, Sm, Nd, Pr), the ordering temperature could be tuned by chem-
ical substitution with a phase transition happening between Nd and Pr [150, 151],
while Pr2Ir2O7 stayed a non-magnetic metal down to the lowest measured tempera-
ture [147, 185, 186]. Quantum critical behavior such as non-Fermi liquid features
have been studied by ARPES in Pr2Ir2O7, which emerges after the breakdown of
an insulating antiferromagnetic state [155]. According to x-ray diffraction data,
Pr2Ir2O7 preserves inversion symmetry at low temperature [182], which is also the
model used to discuss non-trivial quantum critical behavior in theoretical predic-
tions, where a major assumption of inversion symmetry being preserved was used
to construct band structure degeneracy [17]. In spite of the inapplicability of this
assumption to Cd2Os2O7, as shown by our experimental results, the high pressure
phase line demonstrates a curvature similar to that predicted by theory [17], a strong
signature of nontrivial quantum criticality. Therefore, the break from mean-field



76

behavior in this system might not depend on detailed band structure, but could be
more universal.

In the phase diagram of Cd2Os2O7 (Fig. 5.11), the quantum critical regime above
the critical point manifests both spin fluctuations and a lattice breathing mode that
get soft simultaneously at the quantum critical point. The exact nature of their
interaction will help determine the character of the high-pressure phase, but is
likely complicated. Although spin-phonon coupling is known to generate unequal
bond lengths in spin-Peierls dimers and antiferromagnetic superlattices [180], in the
AIAO phase the breathing phonons are not fully softened, at least in the static limit,
where AIAO order only induces an external magnetostriction with a homogenous
expansion [182]. In the high-pressure phase, a breathing lattice could in principle
still permit AIAO spin configurations on different sized tetrahedra, despite a loss of
site inversion symmetry in the F4̄3m space group, but our diffraction result did not
show any AIAO order at high pressure. In short, these two modes are competing
with each other in both the low-P and high-P phases, and this nature is most clearly
reflected by the reduction of lattice symmetry from the Fd3̄m to F4̄3m group when
the AIAO order breaks down. Nevertheless, the quantum critical region should
involve multiple fluctuations from both the spin and lattice degrees of freedom, with
further studies required to specify the microscopics.

The relationship between themagnetic andmetal-insulator transitions is also intrigu-
ing. The increased bandwidth under pressure suggests that the electronic properties
of Cd2Os2O7 in the high-pressure F4̄3m state become more metallic, potentially
even superconducting in analogy to superconducting Cd2Re2O7 with its broken in-
version symmetry [187]. AIAO magnetic order and the metal-insulator transition
respond similarly to compression across the P − T phase diagram. Our projected
magnetic phase boundary in Fig. 5.11 gives dTN

dP ∼ −5.0 K/GPa at P=0, which is
consistent with dTMIT

dP = −4 K/GPa in Cd2Os2O7 measured by electrical transport
over the first 2 GPa range [148]. Comparing the two 5d AIAO ordered compounds
with clear high-temperature metallic states, we find an average dTN

dP ∼ −6.5 K/GPa
over the whole AIAO phase in Cd2Os2O7 and a dTMIT

dP ∼ −5.8 K/GPa in Nd2Ir2O7

[151, 153]. This comparison holds true despite large differences in TN of 227 K and
33.5 K, respectively. Thus it is very likely that an insulator-metal transition happens
at the same critical point Pc.

The coupling between quasiparticle fluctuations with spin and lattice, however,
are more complicated. So far, the discussion has been limited to iridates and has
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assumed band touching of different types including Weyl nodes, Dirac nodes or a
simple quadratic band touching at Q = 0 [17, 155, 186] to specify and simplify
the model. The coupling mechanisms of electron-spin [17] and electron-lattice
[188] have been established under these assumptions and quantum critical behavior
beyond mean-field theory has been predicted [17]. The band structure in various
systems can be more complicated, but the advantage of involving low carrier density
states, for instance via an insulator-metal transition at the quantum critical point,
could be universal. With the Fermi surface fully gapped, quasiparticle fluctuations
would involve all itinerant states in reducing the screening of the CoulombU, and the
increased interaction range would then help stabilize a continuous quantum phase
transition [17, 186]. Indeed, at the ambient-pressure metal-insulator transition in
Cd2Os2O7, an increase in U from 0.8 to 1.5 eV in the theoretical modeling is
consistent with the observed spectral weight shift in infrared conductivity over the
broad range of 0 - 4 eV [189].

In the quantum critical region in Fig. 5.11, soft AIAO spin fluctuations and lat-
tice breathing modes could exist and compete, and further couple to quasiparticle
fluctuations. The competition between spin and lattice degrees of freedom might
explain the remarkable concave-shaped phase line at high pressure, as TC scales
to pressure with a non-trivial exponent much larger than one, a characteristic of
strongly-coupled quantum criticality [17]. We note as well that the quantum critical
region is asymmetric in P − T phase space, as the magnetic and structural phase
lines approach Pc with different asymptotic behavior (Fig. 5.11). A major reason
for most quantum phase transitions in 3-dimensional materials to exhibit mean-field
behavior is the fluctuation of a single order parameter being the only soft (critical)
mode (Chapter 1). To breakout of this framework, the quantum behavior should
coherently involve multiple soft modes, which is the idea of a strongly-coupled
quantum critical point [16, 17]. Our study of Cd2Os2O7 has demonstrated an exper-
imental realization of this scenario withmultiple fluctuationmodes from spin, lattice
and quasiparticles as well as signatures deviating from mean-field predictions. In
addition, the time-reversal and inversion symmetry properties at the quantum crit-
ical point could fundamentally determine the ground state of Cd2Os2O7 at high
pressure, generating even more exotic critical behavior. The phase diagram in 5d

pyrochlores with consideration of spin-orbit coupling have been intensively stud-
ied theoretically with a strong dependence on the underlying symmetry flow. For
instance, one could get topological insulators, Dirac semimetals, Weyl semimetals,
etc. in 5d pyrochlore iridates [147, 188] by removing or introducing time-reversal
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symmetry and inversion symmetry since the band degeneracy they determine will
directly affect band topology. Moreover, a parity-breaking liquid crystal has been
discovered in the spin-orbit-coupled noncentrosymmetric system, Cd2Re2O7 [190],
and odd-parity superconductivity has been theoretically proposed [191, 192].

The scenario of a metal-insulator transition evolving together with a magnetic transi-
tion naturally brings up the consideration of the magnetically-driven metal-insulator
transition, which we have discussed in Chapter 1. From the band structure perspec-
tive, the Os 5d t2g band in Cd2Os2O7 is neither degenerate and forming a S = 3/2
state under Hund’s rule, as indicated by the reduced staggered moment 〈m〉 = 0.59
µB/Os, nor cleanly separated into several narrow bands as demonstrated for a perfect
Os-O6 octahedron [148, 193, 194]. Instead, the t2g orbitals in Cd2Os2O7 extend
continuously over a spectral width of order 2 eV [193] from the combined effect
of U (∼1 eV) [195], spin-orbit coupling (∼0.35 eV) [194], and trigonal distortion
(∼0.3 eV) on the Os-O6 octahedron [159]. Through the continuous quantum phase
transition, the overall stability of the empty t2g band is verified by the constant charge
resonance profile at (4, 2, 0), with a coarse energy resolution slightly above 1 eV.
Therefore, the Mott-Hubbard mechanism of exchange coupling J opening an insu-
lating gap will not apply to Cd2Os2O7. Alternatively, a Slater mechanism has been
proposed. In contrast to a traditional Slater mechanism where an insulating gap is
opened by the folding of the Brillouin zone due to a doubling of unit cell size when
a superlattice is formed [36] (Chapter 1), AIAO order preserves the size of the unit
cell. However, the formation of antiferromagnetic order from the paramagnetic state
would influence the oscillating dynamic component of the quasiparticle self-energy.
Although the frequency-independent Hartree part fails to open up a full gap, which
is why the system is a paramagnetic metal at high temperature, it could assist the
gap opening by producing preexisting mass renormalization when the antiferromag-
netic order creates extra repulsion between the empty and filled bands [37]. This
cooperative opening of an insulating gap involves a shifting of bands along with
the magnetic order parameter, and could be continuous as experimentally observed.
Specifically, if the gap opens through a critical state of singular points at the Fermi
surface, instead of a removal of states altogether, its thermodynamics could fit the
Lifshitz description [195, 196].

The quantum phase transition in Cd2Os2O7, with its interwoven spin, orbit, lattice,
and charge degrees of freedom, contrasts sharply with systems that have a partially-
gapped Fermi surface, exemplified by itinerant spin density waves where persistent
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carriers screen spin fluctuations and lead to mean-field behavior [16, 17, 24]. The
cubic AIAO antiferromagnet also differs from itinerant ferromagnets, where strong
spin and charge mode coupling at wave vectorQ = 0 categorically induces first-order
quantum phase transitions [5, 6]. Spin-orbit coupling in 5d systems is regarded as
intermediately strong [147], and pressure drives U/t smaller with increasing ki-
netic energy t, away from the strong-correlation limit. Pressure tuning thus likely
induces a continuous quantum phase transition while still preserving non-trivial
quantum criticality in this 5d antiferromagnet. By Luttinger’s theorem, a continu-
ous insulator-metal transition would result in either a carrier-mass enhancement or
non-Fermi-liquid behavior [72] in Cd2Os2O7’s high-pressure phase, and the broken
inversion symmetry sets the conditions for odd-parity superconductivity. A micro-
scopic theory remains to be developed to describe the interaction between the AIAO
spin fluctuations, breathing phonon modes, and quasiparticle excitations, especially
taking into consideration the symmetry, chirality, and wave vector characteristics of
each.
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C h a p t e r 6

CONCLUSIONS AND OUTLOOK

My Ph.D. dissertation has focused on quantum phase transitions in antiferromag-
netic materials ranging from 3d to 5d electrons, relating various types of magnetic
ordering to other correlated electron phenomena such as metal-insulator transitions
and superconductivity. Using high-pressure as the major tuning technique at cryo-
genic temperature, I have developed and utilized multiple probes in order to address
the issue of electronic instabilities and symmetry evolution through quantum phase
transitions. In particular, my instrumental development effort in resonant x-ray
magnetic diffraction and optical Raman spectroscopy under high pressure could be
applied broadly to a great many model systems for a variety of scientific topics.

Motivated by the pursuit to reveal microscopic mechanisms of spin-fluctuation-
mediated superconductivity, we have studied Mo3Sb7 and MnP, both of which
manifest a pressure-dependent superconducting state potentially intertwined with
magnetism. In Mo3Sb7, the superconducting transition temperature was doubled
under pressure. However, given the small itinerant moments and weak spin fluc-
tuation effects, it was concluded that the superconductivity is most likely to be
phonon-mediated and we attributed the increase of Tc to a modified phonon density-
of-states in the high-symmetry cubic structure. InMnP, we have discovered a helical
magnetic order with a tightened spiral pitch near the pressure-induced supercon-
ductivity. The unique spiral type of spin fluctuations would naturally suppress
phonon-mediated BCS pairing due to the ferromagnetic component, leaving spin
fluctuations as a favorable mediating channel. We point out that the spiral pitch in
the MnP family, with about 40 available compounds, provides a tuning parameter
between ferromagnets and antiferromagnets at long and short wavelengths, respec-
tively. Both magnetic states potentially could promote superconductivity mediated
by spin fluctuations, albeit of very different types.

Our x-ray magnetic diffraction experiment on the 5d pyrochlore Cd2Os2O7 un-
der high pressure has discovered the breakdown of the AIAO antiferromagnetic
order accompanied by an inversion symmetry breaking of the lattice, with a po-
tential insulator-metal transition occurring simultaneously. Combining the x-ray
measurements with optical Raman spectroscopy, we have traced the underlying
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symmetry changes across the P − T phase space, confining the allowable ground
states within certain time-reversal and inversion symmetry conditions. The quantum
phase transition in Cd2Os2O7 is of a continuous nature, with striking deviations from
a mean-field form at high pressure. This is presumably due to a strong interaction
of spin fluctuations, lattice breathing modes and quasiparticle excitations, which
may be an experimental realization of the theoretically proposed strongly-coupled
quantum criticality. Cd2Os2O7 stands out as one of the rare cases of quantum phase
transitions beyond the mean-field regime in three-dimensional materials.

Similar resonant x-raymagnetic diffraction inquiries should be conducted in pyrochlore-
based AIAO iridates. As mentioned in Chapter 5, similar to Cd2Os2O7, pyrochlore-
structured A2Ir2O7 (A = Sm, Eu and Nd) manifests a metal-insulator transition
concurrent with the formation of AIAO antiferromagnetic order. The quantum
phase transition in A2Ir2O7 has been studied by chemical tuning: TMIT is suppressed
by varying elements on the A site and finally Pr2Ir2O7 remains metallic down to the
lowest measured temperature. However, this A-site chemical-doping driven quan-
tum phase transition preserves lattice inversion symmetry in Pr2Ir2O7, in contrast
with our pressure study of Cd2Os2O7. A pressure-induced insulator-metal transition
has also been reported for both Nd2Ir2O7 and Eu2Ir2O7, but with no direct informa-
tion about the AIAO order or symmetry evolution. Therefore, a comparative study
of A2Ir2O7 (A = Sm, Eu and Nd) will shed light on the understanding of how the
AIAO magnetic order is related to phonon modes and the formation of an insulating
gap. Experimentally, although there is no magnetic resonance at the Ir L2 edge,
the resonant effect is significantly enhanced at the Ir L3 edge (E = 11.215keV) by
a factor of ∼1000. Moreover, the relatively lower transition temperature at ambient
condition implies a lower critical pressure, making experimental inquiries more
accessible. It remains to be seen whether magnetic iridates under pressure would
bring the same strongly-coupled critical phenomena as their osmate counterpart.

In addition to this pyrochlore family with magnetic and metal-insulator transitions,
resonant x-ray magnetic diffraction at the Ir L3 edge would also contribute signifi-
cantly to the long-standing interest in quantum spin liquids. Due to the combined
effects from crystal field splitting and spin-orbit coupling, the correlated 5d electrons
residing on the Ir ions can be described by an effective Jeff = 1/2 spin. Therefore,
iridates on a honeycomb lattice could potentially host quantum spin liquid states
proposed for spin-1/2 systems with the interactions between nearest neighbors of
the XX, YY, or ZZ type [147, 197, 198]. So far, candidates such as Na2IrO3 and
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α-Li2IrO3 are magnetically ordered at low temperature. While more candidate
materials have been proposed, pressure could provide an alternative way of tun-
ing magnetic exchange conditions other than the chemical synthesis approach, and
possibly destabilize the long-range order to achieve a quantum spin liquid state.
This evolution will be most clearly tracked with the capability of directly probing
magnetically ordered states with microscopic details under pressure. With further
instrument development of resonant magnetic diffuse scattering under pressure, not
only long-range order but also short-range magnetic fluctuations possibly could be
probed under pressure, which could provide direct evidence of excitation modes in
the reciprocal space to be examined for quantum spin liquid states. Though the cross
section for magnetic scattering is typically small and the signal is further reduced
due to a short-range correlation, the considerable enhancement at the Ir resonant
edge will serve as an essential compensation.

Further extension of our successful experience with resonant x-ray diffraction at
the Os L2 edge allows the investigation of magnetism and orbital ordering at the L

edges of Ta, Re, Ir, Pt, Pb, Tl, etc., opening up a series of experiments of 5d electron
systems. Materials based on these elements manifest the complexity arising from
competing energy scales of the on-site Coulomb interaction (U), spin-orbit coupling
(λ) and hopping integral (t), thus becoming a vibrant playground to study correlated
states.

Furthermore, there remains plenty of interest in the macroscopic understanding of
both metal-insulator transitions and superconductivity under pressure, so it is worth
pointing out some future scientific opportunities based on experimental develop-
ments.

In Cd2Os2O7, the metal-insulator transition remains one missing piece of the puzzle
as the magnetic order and lattice symmetry have been directly probed by x-rays.
Given the high critical pressure value, with the extra difficulty of making electri-
cal contacts on the semimetallic surface, measuring the TMIT(P) phase boundary
using electrical transport measurements is challenging. Instead, non-contact tech-
niques such as optical spectroscopy are often preferred. Our Raman experiment
has demonstrated a successful incorporation of optics into a high-pressure sample
environment. Considering the distinct signature of a metal-insulator transition man-
ifested by optical reflectivity and the absorption coefficient, the instrument we set
up for Raman spectroscopy should be sufficient to probe the transition under high
pressure. With additional time-resolved capabilities, such as a pump-probe tech-



83

nique, dynamic properties of phonon modes and electronic responses could also be
tracked, potentially allowing a more detailed discussion of critical behavior and the
mechanism of the metal-insulator transition.

As for superconductivity, the discussion of spin-fluctuation-mediated Cooper pair-
ing will only be definitive if the superconducting gap symmetry can be clearly
resolved. Under ambient conditions, both phase-sensitive quantum interference
devices and amplitude-sensitive optical Raman spectroscopy have been used to de-
termine the parity of the superconductivity [199]. While the former requires a strict
remnant field condition that is difficult to achieve in a high-pressure sample environ-
ment, polarization-sensitive Raman spectroscopy is more promising to cooperate
with a high-pressure environment. Raman spectroscopy could measure magnetic
excitations at the same time, which presumably could establish directly the con-
nection between spin fluctuations and superconductivity. Starting from our current
high-pressure Raman setup, there are several technical issues to overcome, namely
surface conditions, sample heating, suppression of fluorescence from both sample
and background, and weak signals of the superconducting gap state. In addition,
diamonds under stress could further complicate the polarization effect. Potentially,
time-resolved Raman spectroscopy could solve some of these issues and provide a
unique perspective into the long-standing topic of unconventional superconductivity.
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