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ABSTRACT

Witten proposed a fasinating program interpreting the Jones polynomial of knots on
a 3-manifold by counting solutions to the Kapustin-Witten equations with singular
boundary conditions.

In Chapter 1, we establish a gluing construction for the Nahm pole solutions to
the Kapustin-Witten equations over manifolds with boundaries and cylindrical ends.
Given two Nahm pole solutions with some convergence assumptions on the cylindri-
cal ends, we prove that there exists an obstruction class for gluing the two solutions
together along the cylindrical end. In addition, we establish a local Kuranishi
model for this gluing picture. As an application, we show that over any com-
pact four-manifold with S3 or T3 boundary, there exists a Nahm pole solution to
the obstruction perturbed Kapustin-Witten equations. This is also the case for a
four-manifold with hyperbolic boundary under some topological assumptions.

In Chapter 2, we find a system of non-linear ODEs that gives rotationally invariant
solutions to the Kapustin-Witten equations in 4-dimensional Euclidean space. We
explicitly solve these ODEs in some special cases and find decaying rational so-
lutions, which provide solutions to the Kapustin-Witten equations. The imaginary
parts of the solutions are singular. By rescaling, we find some limit behavior for
these singular solutions. In addition, for any integer k, we can construct a 5|k |
dimensional family of C1 solutions to the Kapustin-Witten equations on Euclidean
space, again with singular imaginary parts. Moreover, we get solutions to the
Kapustin-Witten equation with Nahm pole boundary condition over S3 × (0,+∞).

In Chapter 3, we develop a Kobayashi-Hitchin type correspondence for the extended
Bogomolny equations on Σ× with Nahm pole singularity at Σ × {0} and the Hitchin
component of the stable SL(2,R) Higgs bundle; this verifies a conjecture of Gaiotto
and Witten. We also develop a partial Kobayashi-Hitchin correspondence for so-
lutions with a knot singularity in this program, corresponding to the non-Hitchin
components in the moduli space of stable SL(2,R) Higgs bundles. We also prove
the existence and uniqueness of solutions with knot singularities on C×R+. This is
joint a work with Rafe Mazzeo.

In Chapter 4, for a 3-manifoldY , we study the expansions of the Nahm pole solutions
to the Kapustin-Witten equations overY×(0,+∞). Let y be the coordinate of (0,+∞)
and assume the solution convergence to a flat connection at y → ∞, we prove the
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sub-leading terms of the Nahm pole solution is C1 to the boundary at y → 0 if and
only if Y is an Einstein 3-manifold. For Y non-Einstein, the sub-leading terms of
the Nahm pole solutions behave as y log y to the boundary. This is a joint work with
Victor Mikhaylov.
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C h a p t e r 1

A GLUING THEOREM FOR THE KAPUSTIN-WITTEN
EQUATIONS WITH A NAHM POLE

1.1 Introduction
In [63], Witten proposed a gauge theory approach to the Jones polynomial and
Khovanov homology. Witten predicted that the coefficients of Jones polynomial
should count certain solutions to the Kapustin-Witten equations over R3 × (0,+∞)
with singular boundary conditions on R3 × {0}. See [25] for a physics approach of
this program.

Given a smooth 4-manifold X with boundary, let P denote a principal SU(2) bundle
over X and let gP be the adjoint bundle. Let A be a connection over P and Φ be a gP

valued one-form. The Kapustin-Witten equations are:

FA − Φ ∧ Φ +?dAΦ = 0,

d?AΦ = 0.
(1.1)

When the knot is empty, the singular boundary condition is called the Nahm pole
boundary condition and in [45], Mazzeo andWitten proved that there exists a unique
Nahm pole solution to (4.1) which corresponds to the Jones polynomial of the empty
knot. For a general 4-manifold X with 3-manifold boundary Z , we hope to find
ways to count the number of solutions to the Kapustin-Witten equations with the
Nahm pole boundary condition over the boundary. This might lead to the discovery
of some new invariants.

Therefore, a basic question to ask is whether there exists a solution to (4.1) with the
Nahm pole boundary condition over a general 4-manifold with boundary? In [27],
the author constructed some explicit solutions to the Kapustin-Witten equations
over S3 × (0,+∞). Kronheimer [37] constructed some explicit solutions to the
Kapustin-Witten equations over Y3 × (0,+∞), where Y3 is any hyperbolic closed
3-manifold.

Following Taubes [53] [54], in order to prove the existence of solutions, we hope
to establish a gluing theory for the Kapustin-Witten equations, such that the known
Nahm pole model solutions can be glued to general 4-manifolds with boundary to
obtain new Nahm pole solutions.
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Figure 1.1: Gluing X1, X2 along the cylindrical ends

The main difference in gluing in the Nahm pole case compared to the gluing in the
Yang-Mills case and the Seiberg-Witten case is that the Nahm pole boundary is not
a classical non-degenerate elliptic boundary condition. However, it is a uniformly
degenerate elliptic problem, as studied by R.Mazzeo [41]. We mainly need the
analytic tools developed in [41] [45].

For i = 1, 2, let Xi be 4-manifolds with boundaries Zi and infinite cylindrical ends
identifiedwithYi×(0,+∞). Let (Ai,Φi) be solutions to theKapustin-Witten equations
(4.1) over Xi with Nahm pole boundary conditions over Zi and convergence to flat
SL(2;C) connections (Aρi,Φρi ) over the cylindrical ends.

If Y1 = Y2, (Aρ1,Φρ1) = (Aρ2,Φρ2), we can define a new 4-manifold X] and approx-
imate solutions (A],Φ]) by gluing together the cylindrical ends. See Figure 1.1,
where the shaded parts are glued together.

We prove the following theorem:

Theorem 1.1.1. Under the hypotheses above, if

(a)For some p0 > 2, limT→+∞ ‖(Ai,Φi) − (Aρ,Φρ)‖L
p0
1 (Yi×{T})

= 0,

(b) ρ is an acyclic flat SL(2;C) connection,

then for p ≥ 2 and λ ∈ [1 − 1
p, 1) and sufficiently large T , we have:

(1) for some constant δ, there exists a y
λ+ 1

p H1,p
0 pair (a, b) ∈ Ω1

X]T
(gP) × Ω

1
X]T
(gP)

with
‖(a, b)‖

y
λ+ 1

p −1Lp
1
≤ Ce−δT,

(2) there exists an obstruction class h ∈ H2
(A1,Φ1)

(X1) × H2
(A2,Φ2)

(X2) such that h = 0
if and only if (A] + a,Φ] + b) is a solution to the Kapustin-Witten equations (4.1).

In the statement of the theorem, ρ acyclic means that ρ is a regular point in the
representation variety, and H2

(Ai,Φi)
means the cokernel of the linearization operator
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of the Kapustin-Witten equations over the point (Ai,Φi). Further, yλ+
1
p H1,p

0 and
y
λ+ 1

p−1Lp
1 are weighted norms which will be precisely introduced in Section 5.

In addition, in Section 8, we also prove a gluing theorem when ρ is reducible with
a different weighted norm.

The statement and proof of Theorem 1.1 are analogous to the statement and proof
of the gluing theorem for the ASD equation, due to C.Taubes [53], [54]; cf. also
[19], [20], [24].

Moreover, for p ∈ (2, 4) and λ ∈ [1 − 1
p, 1), denote by Mi the moduli space of

solutions to the Kapustin-Witten equations satisfying the assumption (a), (b) in
Theorem 1.1 modulo the gauge action. We have the following Kuranishi model for
the gluing picture.

Theorem 1.1.2. Let (Ai,Φi) be a connection pair over a manifold Xi with a Nahm
pole over Zi. For sufficiently large T , there is a local Kuranishi model for an open
set in the moduli space over X]:

(1) There exists a neighborhood N of {0} ⊂ H1
(A1,Φ1)

× H1
(A2,Φ2)

and a map Ψ from
N to H2

(A1,Φ1)
× H2

(A2,Φ2)
.

(2) There exists a map Θ which a homeomorphism from Ψ−1(0) to an open set
V ⊂ MX] .

HereHk
(Ai,Φi)

is the k-th homology associated to theKuranishi complex of (Ai,Φi) and
MX] is the moduli space of Nahm pole solutions to the Kapustin-Witten equations
over X]. See also the Kuranishi model construction in Seiberg-Witten theory by T.
Walpuski and D. Aleksander [17].

As for the model solutions, we don’t know whether the obstruction class vanishes or
not and right now we don’t have any transversality results for the Kapustin-Witten
equations. We just consider the obstruction class as a perturbation to the equation.
See [18] for the obstruction perturbation for ASD equations. We obtain the following
theorem:

Theorem 1.1.3. Let M be a smooth compact 4-manifold with boundary Y . Assume
Y is S3, T3 or any hyperbolic 3-manifold. When Y is hyperbolic, we assume that the
inclusion of π1(Y ) into π1(M) is injective. For a real number T0, we can glue M to
Y × (0,T0] along ∂M and Y × {T0} to get a new manifold, which we denote as MT0 .
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For T0 large enough, there exists a SU(2) bundle P and its adjoint bundle gP over
MT0 such that given any interior non-empty open neighborhood U ⊂ M , we have:

(1) There exist h1 ∈ Ω
2
MT0
(gP), h2 ∈ Ω

0
MT0
(gP) supported on U,

(2) There exist a connection A over P and a gP-valued 1-form Φ such that (A,Φ)
satisfies the Nahm pole boundary condition over Y × {0} ⊂ MT0 and (A,Φ) is
a solution to the following obstruction perturbed Kapustin-Witten equations over
MT0:

FA − Φ ∧ Φ +?dAΦ = h1,

d?AΦ = h2.
(1.2)

Here is the outline of the paper. In Section 2, we introduce some preliminaries on the
Kapustin-Witten equations, including the Kuranishi complex and some examples of
the Nahm pole solutions. In Section 3, we introduce a gauge fixing condition and
the elliptic system associated to the equations. In Section 4, we study the gradient
flow of the Kapustin-Witten equations, and the structure of the linearization operator
over Y × R. In Section 5, we establish the Fredholm theory for the linearization
operator over manifolds with boundaries and cylindrical ends. In Section 6, we build
up a slicing theorem and Kuranishi model for the Nahm pole solutions. In Section
7, after assuming the solution over cylindrical ends is simple and Lp

1 converges to
a flat SL(2;C) connection over the cylindrical end for p > 2, we prove that the
solution will exponentially decay to the SL(2;C) flat connection in the cylindrical
ends. In Section 8, we describe the obstruction in the second homology group of the
Kuranishi complex to the existence of solutions when gluing along the cylindrical
ends. In Section 9, we build up a local Kuranishi model for the gluing picture.
In Section 10, we apply the gluing theorem and get some existence results for the
Nahm pole solutions to the perturbed equations. In Appendix 1, we introduce the Lp

version of Mazzeo’s work for a uniformly degenerate elliptic operator. In Appendix
2, we introduce a proof of a Hardy type inequality for the weighted norm which is
used to prove a slicing theorem.

1.2 Preliminaries of theKapustin-WittenEquations and theNahmPoleBound-
ary condition

In this section, we introduce some preliminaries on the Kapustin-Witten equations
and the Nahm pole boundary condition.
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Figure 1.2: The shape of manifold we study

Kapustin-Witten Map
Let X̂ be a smooth compact connected four-manifold with two connected boundary
components Y and Z . Take X to be the four-manifold obtained by gluing X̂ and
Y × [0,+∞) along the common boundary Y , that is X := X̂ ∪Y (Y × [0,+∞)).
For any positive real number T , we denote by YT the slice Y × {T} ⊂ X and
X(T) := X̂ ∪Y (Y × (0,T)). For simplicity, the metric we always consider on X is
cylindrical along a neighborhood of Z and is the product metric over Y × [T,+∞)

for some T big enough. This is illustrated in Figure 1.2:

Now suppose P is an SU(2) bundle over X , gP is the associated adjoint bundle and
AP is the set of all the SU(2) connections on P. We define the configuration space
as follows: CP := AP ×Ω

1(gP), C
′

P := Ω2(gP) ×Ω
0(gP).

The gauge-equivariant Kapustin-Witten map is the map KW : CP → C
′

P:

KW(A,Φ) : =

(
FA − Φ ∧ Φ +?dAΦ

d?AΦ

)
. (1.3)

To be more explicit, denote by GP the gauge group of P. Then, the action of g ∈ GP

on (A,Φ) ∈ AP ×Ω
1(gP) is given by

g(A,Φ) = (A − (dAg)g
−1, gΦg−1).

Under this action, the Kapustin-Witten map is gauge equivariant, i.e.,

KW(A − (dAg)g
−1, gΦg−1) = gKW(A,Φ)g−1.

Nahm Pole Boundary condition
In [63], Witten proposed a gauge theoretic approach to Jones polynomial. A key
objective of this program is to study the solutions to the Kapustin-Witten equations
(4.1) satisfying the Nahm pole boundary condition.
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To begin with, we introduce the Nahm pole boundary condition.

Given a 4-manifold X , with 3-dimensional boundary Z , a SU(2) bundle P over X

and the associated adjoint bundle gP, for integers a = 1, 2, 3, take {ea} to be any
unit orthogonal basis of T Z , the tangent bundle of Z , take {e?a } to be its dual and
take {ta} to be section of the adjoint bundle gP with the relation [ta, tb] = 2εabctc.
Identify a neighborhood of Z with Z × (0, 1), denote the boundary of W by ∂W and
identify it with Z × {0}. We denote by y as the coordinate on (0, 1).

Definition 1.2.1. A connection pair (A,Φ) ∈ CP over X satisfies the Nahm pole
boundary condition if there exist {ea}, {ta} as above such that the expansion of
(A,Φ) in y → 0 of Z × (0, 1) will be A ∼ A0 + O(y) and Φ ∼

∑3
a=1 e?a ta

y + O(1). In
addition, we call (A,Φ) ∈ CP a Nahm pole solution if (A,Φ) is a solution to the
Kapustin-Witten equations (4.1).

In fact, a Nahm pole solution to the Kapustin-Witten equation will have more
restrictions on the expansion, as pointed out in [45].

Proposition 1.2.2. [45]For a Nahm pole solution (A,Φ) to the Kapustin-Witten
equation, we have

(1) Φ0 = 0.

(2) Using
∑

e?a ta to identify gP |Y with TY , A0 is the Levi-Civita connection of Z .

Examples of Nahm Pole Solutions
Here are some examples of solutions to the Kapustin-Witten equations satisfying
the Nahm pole boundary condition.

Example 1.2.3. (Nahm [51])Nahm pole solutions onT3×R+. Take the trivial SU(2)
bundle and denote (A,Φ) = (0,

∑
tidxi
y ). Then FA = 0 and Φ ∧ Φ =

∑
[ti,t j ]dxi∧dx j

2y2 .

In addition, dAΦ = −
∑
tidy∧dxi

y2 . Therefore, (A,Φ) is a Nahm pole solution to the
Kapustin-Witten equations FA − Φ ∧ Φ +?dAΦ = 0.

Example 1.2.4. Nahm pole solutions on S3 × R+. Equip S3 with the round metric
and take ω be Maurer–Cartan 1-form of S3 and we can write ω = g−1dg for some
suitable function g : S3 → SU(2) with deg(g) = 1. Then, let y be the coordinate of
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R+, and denote

(A1,Φ1) = (
6e2y

e4y + 4e2y + 1
ω,

6(e2y + 1)e2y

(e4y + 4e2y + 1)(e2y − 1)
ω),

(A2,Φ2) = (
2(e4y + e2y + 1)
e4y + 4e2y + 1

ω,
6(e2y + 1)e2y

(e4y + 4e2y + 1)(e2y − 1)
ω).

(1.4)

Theorem 6.2 in [27] shows that (A1,Φ1) and (A2,Φ2) are two Nahm-Pole solutions
to the Kapustin-Witten equations. In addition, the solutions (4.56) will converge to
the unique flat SL(2;C) connection in the cylindrical end of S3 × R+.

Example 1.2.5. (Kronheimer [37]) Nahm pole solutions on Y3 × R+, where Y3 is
any hyperbolic three manifold.

Let Y3 be a hyperbolic three manifold equipped with the hyperbolic metric h.
Consider the associated PSL(2;C) representation of π1(Y ). By Culler’s theorem
[15], this lifts to SL(2;C) and determines a flat SL(2;C) connection ∇ f lat . Denote
by ∇lc the Levi-Civita connection and by Alc the connection form. Take iω :=
∇ f lat − ∇lc. Then locally, ω =

∑
tie?i where {e?i } is an orthogonal basis of T?Y

and {ta} are sections of the adjoint bundle gP with the relation [ta, tb] = 2εabctc. We
also have ?Yω = F∇lc . Therefore, by the Bianchi identity, we obtain ∇lc(?Yω) = 0.

Combining Ff lat = 0 and the relation ∇ f lat − ∇lc = iω, we obtain F∇lc+iω = 0.
Hence Flc = ω ∧ ω, ∇lcω = 0.

Take y to be the coordinate of R+ in Y3 × R+, set

f (y) :=
e2y + 1
e2y − 1

,

and take
(A,Φ) = (Alc, f (y)ω). (1.5)

Clearly, f (y) → 1 as y → +∞ and f (y) ∼ 1
y as y → 0.

Let us check that the solution satisfies the Kapustin-Witten equations over Y3 ×

(0,+∞). We compute

FAlc − Φ ∧ Φ = (1 − f 2)FAlc,

dAlcΦ = dAlcω + f ′(y)dy ∧ ω = f ′(y)dy ∧ ω,

and

dAlc ?Y×(0,+∞) ( f (y)ω) = dAlc ( f (y)(?Yω) ∧ dy) = f (y)dAlc (?ω) ∧ dy = f (y)(dAlc FAlc ∧ dy) = 0.
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Combining this with the previous equations and using the relation 1 − f 2 + f ′ = 0,
we see that KW(A,Φ) = 0.

Since f (y) → 1 as y → +∞, (1.5) converges to the SL(2;C) flat connection ρ.

Example 1.2.6. Nahm Pole solutions on the unit disc D4.

This is an example from [27] of the Nahm pole solution to the Kapustin-Witten
equations (4.1) over a compact manifold with boundary. Identify the quaternions H
with R4, x = x1 + x2I + x3J + x4K ∈ H and let D4 be the unit disc of H. Now define:

(A,Φ) = (Im(
3

|x |4 + 4|x |2 + 1
x̄dx), Im(

3(|x |2 + 1)
(|x |4 + 4|x |2 + 1)(|x |2 − 1)

x̄dx)).

It is shown in [27] that this solution is a Nahm pole solution to the Kapustin-Witten
equations over D4.

Example 1.2.7. (S.Brown, H.Panagopoulos and M.Prasad [11])Two-sided Nahm
pole solutions on (− π2,

π
2 ) × T3.

Consider the trivial SU(2) bundle P over (− π2,
π
2 ) × T3 and let {ta} to be elements

in gP with the relation [ta, tb] = 2εabctc and dxi to be three orthogonal basis of
cotangent bundle of T3. Now define:

(A,Φ) = (0,
1

cos(y)
dx1t1 +

1
cos(y)

dx2t3 +
sin(y)
cos(y)

dx3t3). (1.6)

Then it is easy to check that KW(A,Φ) = 0.

Remark. All these solutions over manifolds with cylindrical ends decay exponen-
tially to flat SL(2;C) connections. The Φ terms in these examples do not have a dy

component on the cylindrical ends.

Kuranishi Complex
Now we will present the Kuranishi complex associated to the Kapustin-Witten
equations (4.1). See also [40] some similar computations for the Vafa-Witten
equations

Given a connection pair (A,Φ) ∈ CP satisfying (4.1), the complex associated to
(A,Φ) is:

0→ Ω
0(gP)

d0
(A,Φ)

−−−−→ Ω
1(gP) ×Ω

1(gP)
d1
A,Φ
−−−→ Ω

2(gP) ×Ω
0(gP) → 0, (1.7)
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where d0
(A,Φ) is the infinitesimal gauge transformation and d1

(A,Φ) is the linearization
of KW at the pair (A,Φ).

To bemore explicit, denote the Lie algebra ofGP byΩ0(gP). Then, the corresponding
infinitesimal action of ξ ∈ Ω0(gP) will be:

d0
(A,Φ)(ξ) : Ω0(gP) → Ω

1(gP) ×Ω
1(gP),

d0
(A,Φ)(ξ) =

(
−dAξ[
ξ,Φ

] )
.

(1.8)

The linearization of the Kapustin-Witten equations at a point (A,Φ) is given by:

d1
(A,Φ) : Ω1(gP) ×Ω

1(gP) → Ω
2(gP) ×Ω

0(gP),

d1
(A,Φ)

(
a

b

)
=

(
dAa − [Φ, b] +?(dAb + [Φ, a])

−? [a,?Φ] + d?Ab

)
.

(1.9)

The following result about this Kuranishi complex is classical:

Proposition 1.2.8. The connection pair (A,Φ) ∈ CP satisfies KW(A,Φ) = 0 if and
only if ∀ξ ∈ Ω0(gP), we have d1

(A,Φ) ◦ d0
(A,Φ)(ξ) = 0.

Proof. The Ω2(gP) component of the image of d1
(A,Φ) ◦ d0

(A,Φ)(ξ) equals:

− dAdAξ + [Φ, [Φ, ξ]] +?(dA[ξ,Φ] + [Φ,−dAξ])

= − [FA, ξ] + [Φ ∧ Φ, ξ] −?[dAΦ, ξ]

= − [FA − Φ ∧ Φ +?dAΦ, ξ].

While the Ω0(gP) component is:

d?A[ξ,Φ] −?[−dAξ,?Φ]

= −?dA[ξ,?Φ] +?[dAξ,?Φ]

= − [ξ,?dA ?Φ]

=[ξ, d?AΦ].

The statement follows immediately. �

Therefore, d0
(A,Φ) and d1

(A,Φ) in (1.7)will form a complex. We can define the homology
groups:

H0
(A,Φ) = Ker d0

(A,Φ), H1
(A,Φ) = Ker d1

(A,Φ)/Im d0
(A,Φ), and H2

(A,Φ) = Coker d1
(A,Φ).
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We denote the isotropy group of connection pair (A,Φ) as Γ(A,Φ) = {u ∈ G|u(A,Φ) =
(A,Φ)}. Recall that H0

(A,Φ) is the Lie algebra of the stabilizer of (A,Φ) and H1
(A,Φ) is

the formal tangent space.

The formal dual Kuranishi complex with respect to the L2 norm and Dirichlet
boundary condition is:

0→ Ω
2(gP) ×Ω

0(gP)
d1,?
(A,Φ)

−−−−→ Ω
1(gP) ×Ω

1(gP)
d0,?
(A,Φ)

−−−−→ Ω
0(gP) → 0, (1.10)

where

d1,?
(A,Φ) : Ω2(gP) ×Ω

0(gP) → Ω
1(gP) ×Ω

1(gP),

d1,?
(A,Φ)

(
α

β

)
=

(
d?Aα +?[Φ, α] − [Φ, β]

−? dAα +?[Φ,?α] + dAβ

)
,

(1.11)

and

d0,?
(A,Φ) : Ω1(gP) ×Ω

1(gP) → Ω
0(gP),

d0,?
(A,Φ)

(
a

b

)
=

(
−d?Aa +?[Φ,?b]

)
.

(1.12)

The Kapustin-Witten map also has the following structure:

Proposition 1.2.9. The map KW has an exact quadratic expansion:

KW(A + a,Φ + b) = KW(A,Φ) + d1
(A,Φ)(a, b) + {(a, b), (a, b)},

where

{(a, b), (a, b)} =

(
a ∧ a − b ∧ b +?[a, b]

−? [a,?b]

)
. (1.13)

Proof. We have the following direct computation:

FA+a − (Φ + b) ∧ (Φ + b) +?dA+a(Φ + b) ⊕ d?A+a(Φ + b)

=FA + dAa + a ∧ a − Φ ∧ Φ − [Φ, b] − b ∧ b

+?dAΦ +?dAb +?[Φ, a] +?[a, b]

⊕ d?AΦ + d?Ab −?[a,?Φ] −?[a,?b]

=KW(A,Φ) + d1
(A,Φ)(a, b) + {(a, b), (a, b)}.

�
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1.3 Gauge Fixing, Elliptic System and Inner Regularity
Recall that we consider a smooth 4-manifold X with boundary 3-manifold Z and
cylindrical ends identified with Y × (0,+∞) and with an SU(2) bundle P over X.
In this section we will discuss the properties of solutions to the Kapustin-Witten
equations (4.1) away from the boundary Z .

Suppose that (A0,Φ0) is a fixed reference connection pair in CP and write (A,Φ) =
(A0,Φ0) + (a, b). Our Sobolev norms used in this section are defined in the usual
way: for example, for a ∈ Ω1(gP), we write

‖a‖Lp
k
(X) := (

k∑
j=0
‖∇

j
A0

a‖pLp(X))
1
p ,

and for a pair (a, b) ∈ Ω1(gP) ⊕ Ω
1(gP), we write

‖(a, b)‖Lp
k
(X) := (‖a‖p

Lp
k
(X)
+ ‖b‖p

Lp
k
(X)
)

1
p ,

for any 1 ≤ p ≤ ∞ and non-negative integer k.

Gauge Fixing Condition
For gauge-invariant equations, in order to use elliptic PDE theory, we need to define
a suitable gauge fixing condition.

Given a reference connection pair (A0,Φ0), in our situation, we can considered the
traditional Coulomb gauge or another gauge differing by lower order terms which is
associated by the operator d0,?

(A0,Φ0)
in (1.10).

Denote
L

g f
(A0,Φ0)

:= d0,?
(A0,Φ0)

(1.14)

and we have the following definition:

Definition 1.3.1. Let (A,Φ) ∈ CP and denote (a, b) := (A,Φ) − (A0,Φ0). We say
(A,Φ) is in the Coulomb gauge relative to (A0,Φ0) if d?A0

a = 0. In addition, we
say (A,Φ) is in the Kapustin-Witten gauge relative to (A0,Φ0) if (a, b) satisfies
L

g f
(A0,Φ0)

(a, b) = 0 or
d?A0

a −?[Φ0,?b] = 0.

For the Coulomb gauge fixing, there are some known results in [62] for compact
manifolds with boundary.
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Proposition 1.3.2. [62, Theorem 8.1] Suppose U is a compact submanifold of X ,
P is the SU(2) bundle over X . Fixed a reference connection pair A0, there exists a
constant C depending on A0 such that if (A,Φ) ∈ CP and for p > 2,

‖A − A0‖Lp
1 (U)
≤ C

then there exists a gauge transformation u ∈ GP such that

d?A0
(u(A) − A0) = 0,

? (u(A) − A0)|∂U = 0.
(1.15)

We also prove a simple result on the existence of the Kapustin-Witten gauge repre-
sentatives, working over a closed base manifold.

Proposition 1.3.3. Let M be a closed 3 or 4-dimensional manifold and let P be
an SU(2) bundle over M , fix (A0,Φ0) ∈ CP := AP × gP. There exists a constant
c(A0,Φ0) such that if (A,Φ) ∈ CP and for some p > 2,

‖(A − A0,Φ − Φ0)‖Lp
1 (M)
≤ c(A0,Φ0),

then there is a gauge transformation u ∈ GP such that u(A,Φ) is in the Kapustin-
Witten gauge relative to (A0,Φ0).

Proof. Denote a := A− A0 and b := Φ−Φ0, so by definition, for u ∈ GP, the gauge
group action on (A,Φ) will be:

u(A0 + a) − A0 = uau−1 − (dA0u)u−1,

u(Φ0 + b) − Φ0 = uΦ0u−1 + ubu−1 − Φ0.

The equation to be solved for u ∈ GP, is

d?A0
(uau−1 − (dA0u)u−1) −?[Φ0,?(uΦ0u−1 − Φ0)] −?[Φ0,?ubu−1] = 0. (1.16)

We write u = exp(χ) = eχ for a section χ ∈ gP, and define

G(χ, a, b) := d?A0
(eχae−χ−(dA0 eχ)e−χ)−?[Φ0,?(eχΦ0e−χ−Φ0)]−?[Φ0,?eχbe−χ].

To solve the equation G(χ, a, b) = 0, we use the implicit function theorem. We
extend the domain of G to sections χ ∈ Lp

2 (M) and bundle valued 1-forms a, b ∈
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Lp
1 (M). Since for p > 2, Lp

2 (M) sections are continuous in 3-dimensions and 4-
dimensions, we get G(χ, a, b) in Lp(M). The derivative of G at χ = 0, a = 0, b = 0
is

DG(ξ, α, β)

=d?A0
α − d?A0

dA0ξ −?[Φ0,?[ξ,Φ0]] −?[Φ0,?β]

= − d?A0
dA0ξ −?[Φ0,?[ξ,Φ0]] + d?A0

α −?[Φ0,?β].

Denote H(ξ) := −d?A0
dA0ξ −?[Φ0,?[ξ,Φ0]] and I(α, β) := d?A0

α −?[Φ0,?β], then

DG(ξ, α, β) = H(ξ) + I(α, β).

Denote A0 = A0 + iΦ0 and define

d?A0
(α + iβ) := d?A0

α −?[Φ0,?β] + i(d?A0
β +?[Φ,?α]).

Obviously,
I(α, β) = Re(d?A0

(α + iβ)).

If we show that the operator H is surjective to the image of I, the implicit function
theorem will give a small solution χ to the equation G(χ, a, b) = 0. Thus we will
study the cokernel of the operator H.

If η ∈ Coker H, we have
〈H(ξ), η〉 = 0 for all ξ,

by taking ξ = η, we obtain

〈H(η), η〉 = −‖dA0η‖L2(M) − ‖[η,Φ0]‖L2(M).

Therefore, any element η in the cokernel of H satisfies ‖dA0η‖ = 0 and ‖[η,Φ0]‖ = 0,
which implies

dA0(η) = 0.

If for some α0, β0, I(α0, β0) is not in the image of H, we have dA0 I(α0, β0) = 0 and
we know that:

0 =〈dA0 Re(d?A0
(α0 + iβ0)), α0 + iβ0〉

=〈Re(d?A0
(α0 + iβ0)), d?A0

(α0 + iβ0)〉

=〈Re(d?A0
(α0 + iβ0)), Re(d?A0

(α0 + iβ0))〉.

By taking the real part of the inner product, we get I(α0, β0) = 0.

Therefore, H is surjective to the image of I and by implicit function theorem, we
prove the result. �
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Elliptic System
Now, we will use the gauge fixing condition to get an elliptic system associated
with the Kapustin-Witten equations. This is also considered similarly for the Vafa-
Witten equations in [40]. We denote L(A0,Φ0) := d1

(A0,Φ0)
. Here the d1

(A0,Φ0)
is the

linearization of the Kapustin-Witten map in (1.7).

Given (A0,Φ0) ∈ CP, by Proposition 1.2.9, for (a, b) ∈ Ω1(gP)×Ω
1(gP), the equation

KW(A0 + a,Φ0 + b) = ψ0 is equivalent to

L(A0,Φ0)(a, b) + {(a, b), (a, b)} = ψ0 − KW(A0,Φ0).

To make the equation elliptic in the interior, it is natural to add the gauge fixing
condition Lg f

(A0,Φ0)
(a, b) = 0 or d?A0

a = 0.

By adding the Kapustin-Witten gauge, we define the Kapustin-Witten operator
D(A0,Φ0):

D(A0,Φ0) : Ω1(gP) ×Ω
1(gP) → Ω

2(gP) ×Ω
0(gP) ×Ω

0(gP)

D(A0,Φ0) := L(A0,Φ0) + L
g f
(A0,Φ0)

.
(1.17)

Denote ψ = ψ0 − KW(A0,Φ0), then the elliptic system can be rewritten as:

D(A0,Φ0)(a, b) + {(a, b), (a, b)} = ψ. (1.18)

Similarly, for the Coulomb gauge, we can denote D̂(A0,Φ0) := L(A0,Φ0)+ d?A0
, then we

get another elliptic system:

D̂(A0,Φ0)(a, b) + {(a, b), (a, b)} = ψ. (1.19)

Interior Regularity of the Elliptic System
Local interior estimates for the elliptic system (1.18) are considered in [22] in the
context of PU(2) monopoles.

Theorem 1.3.4. [22] Take a bounded open set Ω in the interior part of X and let P

to be a principal SU(2) bundle over X. Suppose that P |Ω is trivial and Γ is a smooth
flat connection. Suppose that (a, b) is an L2

1(Ω) solution to the elliptic system (1.18)
over Ω and take the back ground pair (A0,Φ0) = (Γ, 0), where ψ is in L2

k (Ω) for
k ≥ 1 an integer. There exist an constant ε = ε(Ω) such that for any precompact
open subset Ω′ ⊆ Ω, if ‖(a, b)‖L4(Ω) ≤ ε we have (a, b) ∈ L2

k+1(Ω
′) and there is a
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universal polynomial Qk(x, y), with positive real coefficients, depending at most on
k,Ω,Ω′ with Qk(0, 0) = 0 and

‖(a, b)‖L2
k+1(Ω

′) ≤ Qk(‖ψ‖L2
k
(Ω), ‖(a, b)‖L2(Ω)).

In addition, if (ψ, τ) is in C∞(Ω) then (a, b) is in C∞(Ω′) and if (ψ, τ) = 0, then

‖(a, b)‖L2
k+1(Ω

′) ≤ C‖(a, b)‖L2(Ω).

By the previous theorem, we can get interior regularity for the solutions with Nahm
pole boundary conditions:

Corollary 1.3.5. If (A,Φ) is a solution to the Kapustin-Witten equations (4.1) over
X , for Ω ⊂ a bounded open set, if ‖(A,Φ)‖Lp

1 (Ω)
is bounded, then for any proper

open subset Ω′ ⊂ Ω, (A,Φ) is smooth over Ω′.

Proof. Applying Proposition 1.3.2 and Theorem 1.3.4, the corollary comes out
immediately.

�

1.4 Gradient Flow
In this section, we will discuss the gradient flow associated to Kapustin-Witten
equations over a cylinder X := Y ×R. See Taubes [56] for a general computation of
the topological twitsted equations. Denote the coordinate in R as y, then we use the
product metric on X and the volume form we specify is VolY ∧ dy, where VolY is a
volume form over Y . In this section, we denote by ?4 the 4-dimensional Hodge star
operator of VolY ∧ dy and denote by ? the 3 dimensional Hodge star operator with
respect to VolY .

Generalized Gradient Flow Equations
To begin, suppose P is an SU(2) bundle over X and A is a given connection on P.
Using parallel transport along the slice of Y into Y ×R, we can consider A as a map
from R to connections on P. Similarly, the field Φ can be written as Φ = φ + φydy.
Here φ is a map from R to Ω1(gP) and φy is a map from R to the section of the
adjoint bundle gP.
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If (A,Φ) = (A, φ+φydy) obeys theKapustin-Witten equations (4.1), thenwe compute

FA − Φ ∧ Φ = −
d
dy

Ady + FA + [φy, φ]dy − φ ∧ φ,

?4dAΦ = ?dAφy −?
d
dy
φ +?dAφ ∧ dy,

?4dA ?4 Φ =
d
dy
φy +?dA ? φ = 0.

(1.20)

Thus the Kapustin-Witten equations (4.1) are reduced to the following flow equa-
tions:

d
dy

A −?dAφ − [φy, φ] = 0,

d
dy
φ − dAφy −?(FA − φ ∧ φ) = 0,

d
dy
φy − d?Aφ = 0.

(1.21)

These gradient flow equations are closely related to the complex Chern-Simons
functional. DenoteA := A+ iφ, then the complex Chern-Simons functional CSC(A)
on 3-manifold Y3 is:

CSC(A) :=
∫

Tr(A ∧ dA +
2
3
A ∧ A ∧ A). (1.22)

Now, we define the following functional for the flow equations (1.21)

Definition 1.4.1. Use the notation above, the extended Chern-Simons functional
ECS is denoted as follows:

ECS(A, φ, φy) =
1
2

Im(CSC(A)) +
∫

Y
Tr(φ ∧?dAφy), (1.23)

where the Im is taking the imaginary part of the complex Chern-Simons functional.

Then we have the following proposition:

Proposition 1.4.2. Equation (1.21) is the gradient flow for the extended Chern-
Simons functional.
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Proof. Take A = A0 + a, φ = φ0 + b, φy = (φy)0 + c, then the linearization of
1
2 Im(CSC(A)) is: ∫

b ∧ (FA0 − φ0 ∧ φ0) +

∫
a ∧ dAφ.

In addition, the linearization of
∫
Y Tr(φ ∧?dAφy) is:∫

Y
Tr(b ∧?dA0(φy)0) +

∫
Y

Tr(a ∧?[(φy)0, φ0]) +

∫
Y

Tr(c ∧?d?A0
φ0).

Therefore, the gradient of ECS at (A0, φ0, (φy)0) is:

∇ECS(A0, φ0, (φy)0) = (−?dA0φ0−[(φy)0, φ0], −dA0(φy)0−?(FA0−φ0∧φ0), −d?A0
φ0),

(1.24)
where the minus sign is coming from the inner product we take for s, s′ ∈ Ω0(gP) is
−Tr(ss′).

The result follows immediately. �

In addition, we can compute the Hessian operator H(A,φ,φy) of −ECS at point
(A, φ, φy):

H(A,φ,φy) : Ω1
Y (gP) ×Ω

1
Y (gP) ×Ω

0
Y (gP) → Ω

1
Y (gP) ×Ω

1
Y (gP) ×Ω

0
Y (gP),

H(A,φ,φy)
©­­«

a

b

c

ª®®®¬ =
©­­«
?dAb +?[φ, a] + [φy, b] − [φ, c]

?dAa −?[φ, b] + dAc − [φy, a]

d?Ab −?[a,?φ]

ª®®®¬ .
(1.25)

Then we have the following expansion of the extended Chern-Simons functional
ECS:

Proposition 1.4.3. For (a, b, c) ∈ Ω1
Y (gP) ×Ω

1
Y (gP) ×Ω

0
Y (gP), we have the following

expansions: (1) For the ECS, we have

ECS(A + a, φ + b, φy + c) − ECS(a, b, c)

=

∫
Y
(〈(a, b, c),∇ECS(A, φ, φy)〉 −

1
2
〈(a, b, c),H(A,φ,φy)(a, b, c)〉 − {a, b, c}

3),

(1.26)

where ∇ECS(A, φ, φy) is the gradient of ECS defined in (1.24), H(A,φ,φy) is the
Hessian operator (1.25) and {a, b, c}3 are cubic terms of a, b, c.
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To be explicit, if we denote B = a + ib, then the cubic terms are

{a, b, c}3 =
1
3

Im(B ∧ B ∧ B) + b ∧?[a, c]. (1.27)

(2) For ∇ECS, we have

∇ECS(A + a, φ + b, φy + c) − ∇ECS(A, φ, φy)

= −H(A,φ,φy)(a, b, c) − {a, b, c}
2,

(1.28)

where

{a, b, c}2 =
©­­«

?[a, b] + [c, b]

[a, c] +?(a ∧ a −?b ∧ b)

−? [a,?b]

ª®®®¬ . (1.29)

Proof. By a direct computation, we can verify these results. �

As we have the gauge action, we can formally defined the extended Hession operator
for ECS:

The extended Hession operator EH at the point (A, φ, φy) is defined as:

EH (A,φ,φy) : Ω1
Y (gP) ×Ω

1
Y (gP) ×Ω

0
Y (gP) ×Ω

0
Y (gP) → Ω

1
Y (gP) ×Ω

1
Y (gP) ×Ω

0
Y (gP) ×Ω

0
Y (gP),

EH (A,φ,φy)

©­­­­­«
a1

b1

a0

b0

ª®®®®®¬
=

©­­­­­«
?dAb1 +?[φ, a1] + dAa0 − [φ, b0] + [φy, b1]

?dAa1 −?[φ, b1] + dAb0 + [φ, a0] − [φy, a1]

d?Aa1 +?[b1,?φ] + [φy, b0]

d?Ab1 −?[a1,?φ] + [φy, a0]

ª®®®®®¬
.

(1.30)

We have the following proposition of these two Hessian operators:

Proposition 1.4.4. (1) EH (A,φ,φy)(a1, b1, 0, b0) = H(A,φ,φy)(a1, b1, b0).

(2) EH andH are self-adjoint operators.

Proof. By a direct computation, we can verify these results. �

In some case of 4-manifold with boundary and cylinderical ends, we can have some
simplification of the flow equations (1.21). Let X to be a 4-manifold with boundary
Z and cylindrical end which identified with Y × (0,+∞) and we denote y to be the
coordinate of (0,+∞).
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Definition 1.4.5. Let (A,Φ) to be a solution to the Kapustin-Witten equations (4.1)
over X . Over the cylindrical end Y × (0,+∞), let φy be the dy component of φ. The
solution (A,Φ) is called simple if there exists T0 such that the restriction of φy over
Y × (T0,+∞) is zero.

Here is an identity due to Taubes:

Lemma 1.4.6. [56, Page 36] If (A, φ, φy) satisfies (1.21), we have the following
identity:

1
2
(−

∂2

∂y2 |φy |
2 + d?d |φy |2) + |

∂

∂y
φy | + |dAφy | + 2|[φy, φ]|2 = 0.

With this identity, we have an immediate corollary by the maximum principle:

Corollary 1.4.7. Let (A,Φ = φ + φydy) be a solution to the Kapustin-Witten equa-
tions or equivalently the flow equations (1.21) over Y × I where I ⊂ R. We have the
following:

(1) Over Y × R, if supY |φy | has limit zero in the non-compact directions of R, then
φy = 0 over Y × R.

(2) Over Y × (0,+∞), let y be the coordinate of (0,+∞). If (A,Φ) satisfies the Nahm
pole boundary condition over Y × {0} ⊂ Y × (0,+∞) and converges under C0 norm
to a flat SL(2;C) connection when y → +∞, we have φy = 0.

Proof. (1) is an immediately corollary of the previous lemma andmaximal principle.

For any (A,Φ = φ + φydy) in the assumption of (2), by the definition of Nahm pole
boundary condition and flat SL(2;C) connection, we know

lim
y→0

sup |φy |Y3×{y} = 0, lim
y→+∞

sup |φy |Y3×{y} = 0.

(2) also follows from an application of maximal principal. �

Therefore, we have the following simplification of the gradient flow equation:

Corollary 1.4.8. When φy = 0, (1.21) reduces to simple gradient flow equations:

d
dy

A −?dAφ = 0,

d
dy
φ −?(FA − φ ∧ φ) = 0,

d?Aφ = 0.

(1.31)
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This will be the gradient flow to the functional Im(CSC(A)) along with the stability
condition d?Aφ = 0.

Proposition 1.4.9. If (A, φ) satisfies the first two equations of (1.31):

d
dy

A −?dAφ = 0,

d
dy
φ −?(FA − φ ∧ φ) = 0,

then d
dy (dA ? φ) = 0.

Proof. We compute:

d
dy
(dA ? φ) = d ?

d
dy
φ + [

d
dy

A,?φ] − [?
d
dy
φ, A]

= dA(FA − φ ∧ φ) +?dAφ ∧?φ −?φ ∧?dAφ

= 0.

�

Acyclic Connection of the Characteristic Variety
Now, consider the behavior of the complex Chern-Simons functional in a neighbor-
hood of an SL(2;C) flat connection. For a 3 manifoldY3, let ρ : π1(Y3) → SL(2;C)
be an SL(2;C) representation of Y3’s fundamental group and let A = A + iφ be the
flat SL(2;C) connection associated to ρ.

A flat SL(2;C) connection will satisfy the equations:

FA − φ ∧ φ = 0,

dAφ = 0.

Denote gCP as the complexification of gP, then a flat SL(2;C) connection will bring
in a twisted de Rham complex:

0→ Ω
0(gCP)

dA
−−→ Ω

1(gCP)
dA
−−→ Ω

2(gCP)
dA
−−→ Ω

3(gCP) → 0, (1.32)

with the homology groups:

Hk
A :=

Ker(dA : Ωk(gCP) → Ωk+1(gCP))

Im(dA : Ωk−1(gCP) → Ωk(gCP))
.
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In addition, we have the natural identification given by the real part and imaginary
part of the bundle:

Ω
k(gCP) � Ω

k(gP) ⊕ Ω
k(gP).

To be explicit, given a + ib ∈ Ωk(gCP), we have the following maps:

dA : Ωk(gCP) → Ω
k+1(gCP),

dA(a + ib) = dAa − [φ, b] + i(dAb + [φ, a]),

d?A : Ωk+1(gCP) → Ω
k(gCP),

d?A(a + ib) = d?Aa −?[φ,?b] + i(d?Ab +?[φ,?a]).

Remark. Given s, s′ ∈ Ω0(gCP), under the identification of Ω0(gCP) � Ω0(gP) ⊕

Ω0(gP), there exist s1, s2, s′1, s
′
2 ∈ Ω

0(gP) such that s = s1 + is2 and s′ = s′1 + s′2. The
inner product we take is 〈s, s′〉 = −Tr(ss̄′) = 〈s1s′1〉 + 〈s2s′2〉 and d?

A
is the adjoint of

dA with respect to this inner product. This explains the sign of d?
A
(a + ib).

Now we will discuss the Hessian for the complex Chern-Simons functional.

For the first two equations of (1.31), we have:

d
dy

A −?dAφ = 0,

d
dy
φ −?(FA − φ ∧ φ) = 0.

(1.33)

By a direct computation, we define the Hessian for the functional at an SL(2;C)
connection A = A + iφ as:

QA : Ω1
Y (g
C
P) → Ω

1
Y (g
C
P),

QA

(
a

b

)
=

(
?dAb +?[φ, a]

?dAa −?[φ, b]

)
,

(1.34)

which is a y-independent linearization of (1.33).

In addition, it is not hard to see that the Hessian operator is horizontal, which means
QA can also be considered as an operator:

QA : Ker d?A → Ker d?A.
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However, it is much eaiser to consider operators with gauge fixing conditions. We
define the extended Hessian Q̂A as follows:

Q̂A : Ω1
Y (gP) ×Ω

1
Y (gP) ×Ω

0
Y (gP) ×Ω

0
Y (gP) → Ω

1
Y (gP) ×Ω

1
Y (gP) ×Ω

0
Y (gP) ×Ω

0
Y (gP),

Q̂A

©­­­­­«
a1

b1

a0

b0

ª®®®®®¬
=

©­­­­­«
?dAb1 +?[φ, a1] + dAa0 − [φ, b0]

?dAa1 −?[φ, b1] + dAb0 + [φ, a0]

d?Aa1 +?[b1,?φ]

d?Ab1 −?[a1,?φ]

ª®®®®®¬
.

(1.35)

Now we have the following proposition about the Hessian operator:

Proposition 1.4.10. (1) Q̂A = EH (A,φ,0) and it is a self-adjoint operator.

(2) Q̂A is an isomorphism if and only if H1
A
= 0 and H0

A
= 0.

Proof. (1) is an immediate corollary of Proposition 1.4.4.

For (2), using the Hodge theorem, we can decompose the 1-form as Ω1(gCP) =

Ker d?
A
⊕ Im dA. Under this decomposition, the extended Hessian operator can be

separated into two parts, which we denote as Q̂A = QA ⊕ SA. Here SA is defined as
follows:

SA : Im dA ×Ω0(gP) → Im dA ×Ω0(gP),

SA

©­­­­­«
a1

b1

a0

b0

ª®®®®®¬
=

©­­­­­«
dAa0 − [φ, b0]

dAb0 + [φ, a0]

d?Aa1 −?[φ,?b1]

d?Ab1 +?[φ,?a1]

ª®®®®®¬
.

(1.36)

By Hodge theory, we know that Ker(QA) = Ker dA ∩ Ker d?
A
= H1

A
and Ker(SA) =

H0
A

�

Therefore, we have the following terminology:

Definition 1.4.11. The flat connection A is called non-degenerate if H1
A
is zero and

acyclic if H1
A
and H0

A
is zero.

Now, we will discuss the relation of the extended Hessian and the linearization of
the Kapustin-Witten map. Let (A,Φ) be a solution to the Kapustin-Witten equations.
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Recall the linearization

L(A,Φ) : Ω1
X(gP) ×Ω

1
X(gP) → Ω

2
X(gP) ×Ω

0(gP),

L(A,Φ)

(
a

φ

)
=

(
dAa − [Φ, b] +?(dAb + [Φ, a])

−? [a,?Φ] + d?Ab

)
,

(1.37)

as well as the gauge fixing operator

L
g f
(A,Φ) : Ω1(gP) ×Ω

1(gP) → Ω
0(gP),

L
g f
(A,Φ)

(
a

b

)
= d?Aa +?[b,?Φ].

(1.38)

and define the following operator

D(A,Φ) := L(A,Φ) + L
g f
(A,Φ) : Ω1(gP) ×Ω

1(gP) → Ω
2(gP) ×Ω

0(gP) ×Ω
0(gP).

Let I to be an interval of R and denote y as the coordinate of I. Over Y × I, we have
the following identifications:

Ω
1
X(gP) � Ω

0
Y (gP) ⊕ Ω

1
Y (gP),

α0dy + α1 → α0 ⊕ α1,

Ω
2
X(gP) � Ω

1
Y (gP) ⊕ Ω

1
Y (gP),

α1dy + α2 → α1 ⊕ ?α2.

(1.39)

Take (a, b) ∈ Ω1
X(gP) × Ω

1
X(gP), under the previous identification, we denote a =

a0dy + a1, b = b0dy + b1, then we have the following relation of the operatorD(A,Φ)
and the extended Hessian EH :

Proposition 1.4.12. For any connection (A,Φ = φ + φydy) over Y × I, if we choose
a gauge such that A don’t have dy component, then we have

L(A,Φ) = −
d
dy
+H(A,φ,φy),

D(A,Φ) = −
d
dy
+ EH (A,φ,φy).

Proof. OverY ×Rwith volume form VolY ∧ dy, under the identification (1.39), take
a = a0dy + a1 and b = b0dy + b1, and we have the following computation:

dAa − [Φ, b] = (−
d
dy

a1 + dAa0 − [φ, b0] + [φy, b1])dy + (dAa1 − [φ, b1]),
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and

dAb + [Φ, a] = (−
d
dy

b1 + dAb0 + [φ, a0] − [φy, a1])dy + (dAb1 + [φ, a1]).

Therefore, we have

dAa − [φ, b] +?4(dAb + [φ, a])

=(−
d
dy

a1 + dAa0 − [φ, b0] + [φy, b1] +?(dAb1 + [φ, a1]))dy

+?(−
d
dy

b1 + dAb0 + [φ, a0] − [φy, a1] +?(dAa1 − [φ, b1])).

By our assumption, Φ doesn’t have dy component, we have the following computa-
tion:

d?4
A b −?4[a,?4Φ]

=d?Ab1 −?[a1,?Φ] −
d
dy

b0 + [φy, a0]

=d?Ab1 +?[Φ,?a1] −
d
dy

b0 + [φy, a0].

Similarly, we have

d?4
A a +?4[b,?4Φ]

=d?Aa1 +?[b1,?Φ] −
d
dy

a0 − [φy, b0]

=d?Aa1 −?[Φ,?b1] −
d
dy

a0 − [φy, b0].

The result follows immediately from our computation. �

1.5 Fredholm Theory
In this section, we will introduce the Fredholm theory for the Kapustin-Witten
equations with Nahm Pole boundary condition over manifold with boundary and
cylindrical end. See [19], [23] for the Fredholm theory of manifold with cylindrical
end and see also [45],[41], for the Fredholm theory on compact manifold with
boundary.

Sobolev Theory on a Manifold with Boundary
In this subsection, we review the Sobolev theory on a manifold with boundary and
cylindrical end.
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We begin with a suitable functional space. Take X̂ to be a compact four-manifold
with two boundary components Y and Z . Take X to be the four-manifold gluing X̂

andY ×[0,+∞) along the common boundaryY , X = X̂∪Y Y ×[0,+∞).Denote by E

a bundle over X and fix a background connection ∇, let Lp
k (X, E) be the completion

of smooth E-valued functions on X with respect to the norm

‖ f ‖Lp
k
=

( k∑
i=0

∫
X
|∇i f |p

) 1
p ,

where ∇k f is the symmetric tensor product of ∇ f .

For a manifold with boundary, we have the following Sobolev embedding theorem

Proposition 1.5.1. ([9, Thm 2.30], [62, Appendix]) For a compact 4-manifold X̂

(with boundary), k ≥ l, q ≥ p and the indices p, q are related by

k −
4
p
≥ l −

4
q
,

then there is a constant CX̂,p,q, such that for any section f of a unitary bundle over
X̂ , we have

‖ f ‖Lq
l
≤ CX̂,p,q, ‖ f ‖Lp

k
.

As amanifold with cylindrical ends has finite geometry, we have the parallel Sobolev
embedding theorem for a manifold with boundary and cylindrical ends.

Corollary 1.5.2. If X is a 4-manifold with boundary and cylindrical ends, k ≥ l,
q ≥ p and the indices p,q are related by

k −
4
p
≥ l −

4
q
,

then there is a constant CX,p,q, such that for any section f of a unitary bundle over
X ,we have

‖ f ‖Lq
l
≤ ‖ f ‖Lp

k
.

Proof. After identifying the cylindrical ends with Y × [0,+∞), we can take open
covers {Ui} as follows: U0 := X/(Y × [1,+∞)) and for i ≥ 1, Ui := Y × (i − 1, i + 1).

Given a function f , let fi be the restriction of the function to the open cover Ui, for
p ≤ q, we have the following inequality,

‖ f ‖Lq
l
≤ C(

+∞∑
i=0
‖ fi‖

q
Lq
l

)
1
q ≤ C(

+∞∑
i=0
‖ fi‖

p
Lq
l

)
1
p ≤ C(

+∞∑
i=0
‖ fi‖

p
Lp
k

)
1
p ≤ C‖ f ‖Lp

k
.

�
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Elliptic Weight and Nahm Pole Model
In this subsection, we will discuss the elliptic weights and Fredhlom property of the
Kapustin-Witten operator, which is first introduced in [45],[41] .

Take X to be a manifold with boundary and cylindrical end, choose a cylindrical
neighborhood of X which we will denote as Y × (0, 1] ⊂ X , Y × {0} = ∂X .

Now we shall study the action of L on the weighted Sobolev space, and so we start
by giving the definition of these.

Choose a smooth function y : X → R, which is smaller than 1 and equals the
distance function d(x, ∂X) in a neighborhood of ∂X .

For any λ ∈ R, we can define the following weighted Sobolev space:

yλLp(X, E) := {yλ f | f ∈ Lp(X, E)}.

It is easy to see that a suitable norm on this space will be:

‖ f ‖yλLp(X,E) := (
∫

X
y−λp | f |pdx)

1
p .

Next, we have the following edged Sobolev space which was introduced in [41].
Using a local coordinate on X and let y to be the coordinates locally orthogonal to
the boundary, we have

Hk,p
0 (X) = { f ∈ Lp(X)|(y∂®x)

α(y∂y)
j f ∈ Lp(X), ∀ j + |α | ≤ k}. (1.40)

To be explicit, a suitable norm on this space will be

‖ f ‖Hk,p
0 (X)

:= (
∫

X

∑
∀ j+|α |≤k

|(y∂®x)
α(y∂y)

j f |p)
1
p .

We define the weighted edge Sobolev space as follows:

yλHk,p
0 = { f = yλ f1 | f1 ∈ Hk,p

0 }. (1.41)

Mazzeo andWitten in [45] have the following theorem for the Fredholm property of
the Kapustin-Witten operator D(A,Φ) with suitable weighted edge Sobolev spaces:

Theorem 1.5.3. [45, Proposition 5.2] Let X be a manifold with boudary and (A,Φ)
be a Nahm pole solution to the Kapustin-Witten equations. Let D(A,Φ) be the
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Kapustin-Witten operator (1.17) to the Nahm pole solution, and suppose that λ ∈
(−1, 1), then the operator

D(A,Φ) : yλ+
1
2 H1,2

0 (X) → yλ−
1
2 L2(X)

is a Fredholm operator.

We also have the following modification of the Theorem for p ≥ 2 due to R.Mazzeo
[42]:

Theorem 1.5.4. [42] Let X be a manifold with boudary and (A,Φ) be a Nahm
pole solution to the Kapustin-Witten equations. Let D(A,Φ) be the Kapustin-Witten
operator (1.17) to the Nahm pole solution, and suppose that λ ∈ (−1, 1) and p ≥ 2,
then the operator

D(A,Φ) : yλ+
1
p H1,p

0 (X) → y
λ+ 1

p−1Lp(X)

is a Fredholm operator.

Proof. See Appendix 1. �

Now, we will introduce some basic properties of these weighted Sobolev spaces that
will be used in this paper.

Proposition 1.5.5. yl Hk,p
0 = { f ∈ Lp | f ∈ yl Lp,∇ f ∈ yl−1Lp, · · · ∇k f ∈ yl−k Lp}.

Proof. By (1.40), for g ∈ Hk,p
0 , we know that g ∈ Lp,∇g ∈ y−1Lp, · · · ,∇kg ∈

y−k Lp. Therefore, by the definition of the weighted edge Sobolev space (1.41), for
f ∈ yl Hk,p

0 , there exist a g ∈ Hk,p
0 such that f = ylg. For any positive integers

m, n ≤ k, by the Leibniz rule, we have

∇m
x ∇

n
y f =

l∑
i=0

yl−i∇m
x ∇

n−i
y g. (1.42)

By the definition of g, we have ∇m
x ∇

n−i
y g ∈ yi−m−nLp, therefore yl−i∇m

x ∇
n−i
y g ∈

yl−m−nLp. So for m, n, we have ∇m
x ∇

n
y f ∈ yl−m−nLp.

Therefore, for any integer j with 0 ≤ j ≤ k, we have ∇ j f ∈ yl− j Lp.

�

In addition, we have the following properties for these spaces.
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Proposition 1.5.6. (1)(Different Weight Relation)For any positive integer p, if λ2 >

λ1, then
yλ2 Lp(X) ↪→ yλ1 Lp(X).

Here the ↪→ means the inclusion of Banach space.

(2)(Embedding to Usual Sobolev Space) yλHk,p
0 ↪→ yλ−k Lp

k ,

(3)(Hölder inequality) ∀λ, λ1, λ2 ∈ R with λ ≤ λ1 + λ2, and positive real numbers
p, q, r , we have

‖ f g‖yλLr (X) ≤ ‖ f ‖yλ1 Lp(X)‖g‖yλ2 Lq(X).

Proof. (1) Given a function f over a manifold X , we have the following inequality:

‖ f ‖yλ1 Lp = (

∫
y−λ1p | f |p)

1
p

= (

∫
y−λ2py(λ2−λ1)p | f |p)

1
p

≤ (

∫
y−λ2p | f |p)

1
p (here we use λ2 > λ1).

(2) Given f ∈ yl Hk,p
0 , by Prop 1.5.5, for any 0 ≤ j ≤ k, ∇ j f ∈ yl− j Lp and by (1),

we have the embedding yl− j Lp ↪→ yl−k Lp. The result follows immediately.

(3) Given two functions f and g over X , we have the following inequality:

‖ f g‖yλLr (X) = (

∫
f rgr y−rλ)

1
r

≤ (

∫
( f y−λ1)r(gy−λ2)r)

1
r

≤ (

∫
( f y−λ1)p)

1
p (

∫
(gy−λ2)q)

1
q

≤ ‖ f ‖yλ1 Lp(X)‖g‖yλ2 Lq(X).

�

Using these inequalities, we have the following two corollaries:

Corollary 1.5.7. (1) For any λ ∈ R, p ≥ 2, we have

y
λ+ 1

p H1,p
0 (X) ↪→ y

λ+ 1
p−1Lp

1 (X) ↪→ y
λ+ 1

p−1L2p(X),

(2) For λ ≥ 1 − 1
p , we have

‖ f g‖
y
λ+ 1

p +1Lp(X)
≤ ‖ f ‖

y
λ+ 1

p L2p(X)
‖g‖

y
λ+ 1

p L2p(X)
.
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(3)For λ ≥ 1− 1
p , p ≥ 2, we have ‖ f g‖

y
λ+ 1

p −1Lp(X)
≤ ‖ f ‖

y
λ+ 1

p −1Lp
1 (X)
‖g‖

y
λ+ 1

p −1Lp
1 (X)

.

Proof. For (1) this is immediate corollary of Proposition 1.5.6 combining with the
Sobolev embedding Lp

1 ↪→ L2p with p ≥ 2.

(2) For λ ≥ 1 − 1
p , we have λ +

1
p + 1 ≤ λ + 1

p + λ +
1
p . By Proposition 1.5.6, the

Holder inequality implies the result.

(3) For λ ≥ 1 − 1
p , we have λ +

1
p − 1 ≤ λ + 1

p − 1 + λ + 1
p − 1. Using Proposition

1.5.6 and Sobolev embedding Lp
1 ↪→ L2p, the statement follows immediately. �

Fredholmness on Infinite Cylinder
In this section, we introduce the Fredholm theory for the Kapustin-Witten operator
D(A,Φ) (1.17) over the four-manifold W := Y3 × (−∞,+∞).

Consider a smooth solution (A,Φ) to the Kapustin-Witten equations over W , which
converges in Lp

1 norm to acyclic flat SL(2,C) connection over both sides, we have
the following proposition:

Proposition 1.5.8. Under the assumption above, the operator D(A,Φ) : Lp
1 (W) →

Lp(W) is a Fredholm operator.

Proof. By Proposition 1.4.12, we have D(A,Φ) = − d
dy + EH . As we assume that

(A,Φ) converges to acyclic flat connections over both sides, for some p > 2, this is a
classical result of [39, Theorem 1.3]. See [23, Proposition 2b.1] for the Yang-Mills
case and also [38, Proposition 14.2.1] for the p = 2 version.

�

The Kapustin-Witten Operator with Acyclic Limit
As before, denote by X̂ a compact four-manifold with two boundary components Y

and Z . Take X to be the four-manifold obtained by gluing X̂ and Y × [0,+∞) along
the common boundary Y , that is X = X̂ ∪Y Y × [0,+∞). Given an SU(2)-bundle P

over X , and a solution (A,Φ) to the Kapustin-Witten equations (4.1), with Nahm pole
boundary condition on Z and which converges in Lp

1 norm to acyclic connections
over the cylindrical ends for some p > 2, we have the following theorem:

Proposition 1.5.9. Under the assumption as above, the Kapustin-Witten operator
(1.17)

D(A,Φ) : yλ+
1
p H1,p

0 (X) → y
λ−1+ 1

p Lp(X)



30

is a Fredholm operator.

Proof. We will use the parametrix method to prove this theorem. For simplicity, we
denoteD(A,Φ) by D in this proof. To be more explicit, we hope to find two operators

P : yλ−1+ 1
p Lp(X) → y

λ+ 1
p H1,p

0 (X)

and
R : yλ+

1
p H1,p

0 (X) → y
λ−1+ 1

p Lp(X)

such that Sl(ρ) := DP(ρ) − ρ, Sr(ρ) := RD(ρ) − ρ, are two compact operators.

Choose U0 := Y ×(T,+∞) and let U1 be a compact cylindrical neighborhood of ∂X .
By Proposition 1.5.8, there exist P0, R0 such that over U0, we have DP0(ρ) = ρ and
R0D(ρ) = ρ. By the compactness of X̂ , we can take a finite cover {Ui |i = 0 · · · n}.
In each open setUi, by Theorem 1.5.4 and the elliptic operator property on the inner
open set of the manifold, there exist Pi, Ri and compact operators Sl

i and Sr
i such

that DPi(ρ) = ρ + Sl
i (ρ), RiD(ρ) = ρ + Sr

i (ρ).

Denote X =
⋃n

i=0 Ui, take Sl
0(ρ) := 0 and Sr

0(ρ) := 0. We take a partition of
unity {βi} to these covers and define operators P(ρ) :=

∑n
i=0 βiPi(ρ) and R(ρ) :=∑n

i=0 βi Ri(ρ).

We have

DP(ρ) =
n∑

i=0
∇βi ? Pi(ρ) +

n∑
i=0

βiDPi(ρ)

=

n∑
i=0
∇βi ? Pi(ρ) + ρ +

n∑
i=0

βiSl
i (ρ).

(1.43)

Here,
∑n

i=0 Sl
i (ρ) is a finite sum of compact operators and it will be compact.

For the terms
∑n

i=0 ∇βi ? Pi(ρ), recall that

Pi : yλ−1+ 1
p Lp(X) → y

λ+ 1
p H1,p

0 (X).

In addition, we know ∇βi is supported over X̂ . For functions supported on X̂ , the
norm y

λ+ 1
p H1,p

0 (X) is equivalent to Lp
1 (X) and y

λ−1+ 1
p Lp(X) is equivalent to Lp(X).

By the compactness of the Sobolev embedding of Lp
1 (X) into Lp(X), we know that∑n

i=0 ∇βi ? Pi(ρ) is also a compact operator.
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For the right inverse, we have the following computation:

RD(ρ) =
n∑

i=0
βi RiD(ρ) =

n∑
i=0

βi(ρ + Sr
i (ρ)) = ρ +

n∑
i=0

βiSr
i (ρ). (1.44)

Here
∑n

i=0 βiSr
i (ρ) is a finite sum of compact operator thus it is a compact operator.

To summarize, we proved that D is a Fredholm operator. �

Reducible Limit Connection
Given (A,Φ) a solution to the Kapustin-Witten equations (4.1) over W := Y ×

(−∞,+∞), take t as the coordinate for (−∞,+∞). Assume that (A,Φ) L2
2 converges

to a non-degenerate SL(2;C) flat connection (Aρ1,Φρ1) when y → −∞ and a non-
degenerate SL(2;C) flat connection (Aρ2,Φρ2) when y → +∞. For i = 1, 2, if either
of (Aρi,Φρi ) is reducible, Proposition 1.5.8 is not true since zero can be in the
spectrum of the extended Hessian operator Q̂(Aρi ,Φρi ) (1.35).

Therefore, we hope to use a weight to get rid of the 0 spectrum and we need
to introduce the exponential weight in the cylindrical end. For any real positive
number α and norm U, given an arbitrary smooth function h which equals eαt over
every cylindrical end [T,+∞) × Y and Y × (−∞,−T] when T is big enough, we can
define the weighted norm by

‖ f ‖Uα = ‖h f ‖U .

To be explicit, for a f , we denote ‖ f ‖
y
λ+ 1

p Hk,p
0,α

:= ‖h f ‖
y
λ+ 1

p Hk,p
0

and ‖ f ‖
y
λ+ 1

p −1Lp
α

:=

‖h f ‖
y
λ+ 1

p −1Lp
.

Our operator D(A,Φ) can naturally defined over these weighted spaces:

D(A,Φ),α : yλ+
1
p H1,p

0,α(W) → y
λ+ 1

p−1Lp
α(W).

We have the following result:

Proposition 1.5.10. Under the assumption as above, we can choose α such that the
operator D(A,Φ),α : Lp

1,α(W) → Lp
α(W) is a Fredhom operator.

Proof. Considering the operatorD(A,Φ),α over a tube, acting on theweighted Sobolev
space with eαt as weight function. This is equivalent to an operator D′ acting on an
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unweighted space with the relation

D′ = D(A,Φ),α − α.

Therefore, when α is not in the spectrum of the extended Hessian operator over the
limit flat connections Q̂(Aρi ,Φρi ), this is a classical result of [39, Theorem 1.3]. �

Sobolev Theory for weighted space

Recall that we denote by X̂ a compact four-manifold with two boundary components
Y and Z . Take X to be the four-manifold obtained by gluing X̂ andY ×[0,+∞) along
the common boundary Y , that is X = X̂ ∪Y Y × [0,+∞). Take an SU(2)-bundle P

over X , and a solution (A,Φ) to the Kapustin-Witten equations (4.1), with Nahm
pole boundary condition on Z which converges to a reducible SL(2;C)-connections
over the cylindrical ends.

Over this space X , for any real number α and norm U fix a smooth weight function
h which approximates eαt over the cylindrical end [T,+∞) × Y . When T is large
enough, we can define the weighted norm Uα as:

‖ f ‖Uα := ‖h f ‖U .

Similarily, we have the Sobolev embedding theorem for the weighted norms.

Proposition 1.5.11. If X is a 4-manifold with boundary and cylindrical ends, k ≥ l,
q ≥ p and the indices p,q are related by

k −
4
p
≥ l −

4
q
,

for any given weighted function, there exists a constant C, such that for any section
f of a unitary bundle over X , we have

‖ f ‖Ll
q,α(X) ≤ C‖ f ‖Lk

p,α(X).

Proof. This is immediate from the definition of the weighted norm and the usual
Sobolev embedding theorem. �

In addition, after fixing a weight function, we have the following inequalities for
these weighted edge norms:
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Proposition 1.5.12. (1) For any λ ∈ R, we have

y
λ+ 1

p H1,p
0,α(X) ↪→ y

λ+ 1
p−1Lp

1,α(X),

(2) For λ ≥ 1 − 1
p , α > 0, we have the following inequality:

‖ f g‖
y
λ+ 1

p −1Lp
α (X)
≤ ‖ f ‖

y
λ+ 1

p −1L2p
α (X)
‖g‖

y
λ0−

1
2 L2p

α (X)
.

Proof. The statement in (1) is immediately using Corollary 1.5.7 and the definition
of weighted Sobolev space. By Corollary 1.5.7, we know

‖ f g‖
y
λ+ 1

p −1Lp
α (X)
≤ ‖ f ‖

y
λ+ 1

p −1L2p(X)
‖g‖

y
λ+ 1

p −1L2p
α (X)

.

In addition, as we assume α > 0, we know that

‖ f ‖
y
λ+ 1

p −1L2p(X)
≤ ‖ f ‖

y
λ+ 1

p −1L2p
α (X)

.

The statement in (2) follows immediately. �

Fredholm Property for the Reducible Limit

Proposition 1.5.13. Under the assumpution above, there exist α such that the
operator

D(A,Φ),α : yλ+
1
p H1,p

0,α(X) → y
λ−1+ 1

p Lp
α(X)

is a Fredhlom operator.

Proof. The main difference between the reducible limit and the acyclic limit is the
behavior of the operator D(A,Φ) over the cylindrical end. In the reducible case, we
use Proposition 1.5.10 over the cylindrical ends to get a parametrix and the results
follow similarly as Theorem 1.5.9. �

The Index
Nowwewill give an explicit computation of the index for a manifold with cylindrical
end.

For a compact manifold with boundary, in [45], Mazzeo and Witten have a compu-
tation of the index of D(A,Φ) where (A,Φ) is a Nahm pole solution to the Kapustin-
Witten equations (4.1):
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For our case, let X be a manifold with boundary Z and cylindrical end which is
identified with Y × [0,+∞). We finish a parallel computation for the index of a
manifold with boundary and cylindrical end. Under the previous assumption, by
Proposition 1.5.9, 1.5.13, we can define the index for these Fredholm operator.

If (A,Φ) has an acyclic limit, we denote by IndX(P) the index ofD(A,Φ) in the setting
of Theorem 1.5.9:

IndX(P) := dim KerD(A,Φ) − dim CokerD(A,Φ). (1.45)

For compact manifold with Nahm pole boundary condition, Mazzeo and Witten has
the following computations:

Proposition 1.5.14. [45, Proposition 4.2] Let X be a compact manifold with bound-
ary, let P be an SU(2) bundle over X , let (A,Φ) be a solution to the Kapustin-Witten
equations with acyclic limit which satisfies the Dirichlet boundary condition over
the boundary, then

IndP = −3χ(X).

After a modification of their proof, we have the following computation for solutions
have irreducible limits:

Proposition 1.5.15. Let X be a manifold with boundary and cylinderical ends,
let P be an SU(2) bundle over X , let (A,Φ) be a solution to the Kapustin-Witten
equations with acyclic limit which satisfies the Dirichlet boundary condition over
the boundary, then

IndP = −3χ(X).

Proof. Let (A,Φ) be a solution to the Kapustin-Witten equation with Dirichlet
boundary condition, then the index of the operatorD(A,Φ) corresponds to the relative
boundary condition for the Gauss-Bonnet operator, which the index is equals to
−3χ(X, ∂X) and by Poincare duality, χ(X, ∂X) = χ(X).

�

Proposition 1.5.16 ([45, Proposition 4.3]). Under the same assumption as Propo-
sition 1.5.15, let (A,Φ) be a solution to the Kapustin-Witten equations (4.1) with the
Nahm pole boundary condition over ∂X , then
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IndP = −3χ(X).

Here χ(X) is the Euler characteristic of X .

Proof. First consider the special case of (0, 1] × Z with the product metric. Let
(A0,Φ0) be a connection pair satisfying the Nahm pole boundary condition over
{0} × Z and regular over {1} × Z . Let DN,R be the elliptic operator corresponding
to this. By [45] (3.12), as DN,R is pseudo skew-Hermitian, we have Ind DN,R=0.

Now consider a general (A,Φ) over X satisfying the Nahm pole boundary condition,
we choose a tubular neighborhood of X near the boundary and identify it with
Y × (0, 1]. LetDN,R be the restriction of the operatorD(A,Φ) toY × (0, 1] and letDR
be the restriction of D(A,Φ) over the complement of Y × (0, 1] in X . By a standard
excision theorem of index [10, Prop 10.4], we obtain

Ind D(A,Φ) = Ind DN,R + Ind DR .

By the previous argument, we have Ind DN,R = 0 and by Proposition 1.5.15, we
know Ind DR = χ(X). Thus we have Ind D(A,Φ) = χ(X).

�

If (A,Φ) is a reducible but non-degenerate limit as in the case of Proposition 1.5.13,
we denote by IndX(P, α) the index of D(A,Φ),α with respect to weight α:

IndX(P, α) := dim KerD(A,Φ),α − dim CokerD(A,Φ),α. (1.46)

Take α+ to be a real number that is slightly bigger than 0 and below the positive
spectrum of Q̂Aρ and α− to be a real number that is slightly smaller than 0 and above
the negative spectrum of Q̂Aρ , then we have two indices:

Ind+X(P) := Ind(P, α+), Ind−X(P) := Ind(P, α−). (1.47)

For i = 1, 2, suppose Xi is a manifold with boundary Zi and cylindrical end Yi ×

[0,+∞) and Y1 = Y2, Pi is an SU(2) bundle over Xi. Let (Ai,Φi) ∈ CPi converge to
the same SL(2;C) flat connection ρ, then we can glue these two manifolds along the
common boundary Y to form X] and a bundle P]. As it converges to the same flat
connection ρ, we can define a new pair (A],Φ]) on P].
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We denote by IndX](P
]) the index of the operator D(A],Φ]) on X].

If (Ai,Φi) both have acyclic limits, then we have the following gluing relation of
these indices:

Proposition 1.5.17. IndX](P
]) = IndX1(P1) + IndX2(P2).

Proof. It is straight forward to apply the same argument in [19, Proposition 3.9] to
our case. �

If (Ai,Φi) is reducible but non-degenerate, we can choose α1 = −α2 > 0 whose
absolute value is smaller than the smallest absolute value of eigenvalues of Q̂Aρ .
We denote Ind+X1

(P1) to be the index corresponding to the weight α1 and Ind−X2
(P2)

to be the index corresponding to the weight α2. We have the following Proposition:

Proposition 1.5.18. IndX](P
]) = Ind+X1

(P1) + Ind−X2
(P2).

Proof. See [19, Proposition 3.9], the same argument is straight forward in our
case. �

Moreover, for the index over the same bundle with small positive and negative
weights, we obtain:

Proposition 1.5.19. [19, Proposition 3.10] Ind+X(P) − Ind−X(P) = − dim kerQ̂Aρ .

Now we will do some explicit computation of indices. Consider the model case W

to be the ’flask’ manifold obtained by gluing a punctured 4-sphere to a tube S3 ×R.
Consider the trivial bundle and the trivial connection over this space, we have the
following Lemma for indices:

Lemma 1.5.20. The indices for W are

Ind+W = −6, Ind−W = 0.

Proof. Obviously, W]W is diffeomorphic to S4. In addition, by Proposition 1.5.16,
we know the index of operatorsD(A,Φ) over S4 is -6. Therefore, by the gluing relation
of the index Proposition 1.5.18, we have

Ind+W + Ind−W = −6.

In addition, by Proposition 1.5.19, we have

Ind+W = Ind−W − 6.

Combining these two index formulas, we get the result we want. �
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Corollary 1.5.21. If the cylindrical end of X has the form S3 × [0,+∞), we have

Ind+X(P) = −3χ(X) − 3, Ind−X(P) = −3χ(X) + 3. (1.48)

Proof. Denote by X̄ a smooth compactification of X over the tube S3 × [0,+∞) and
denote by P̄ the extension of the bundle P.

By Proposition 1.5.18, we have

Ind+X(P) + Ind−W = IndX̄(P̄),

Ind−X(P) + Ind+W = IndX̄(P̄).

In addition, by Proposition 1.5.16, we know that

IndX̄(P̄) = −3χ(X̄) = −3χ(X) − 3.

We get the result we want. �

1.6 Moduli Theory
In this section, we will introduce the moduli theory for the solutions to the Kapustin-
Witten equations (4.1) with Nahm pole boundary condition.

Framed Moduli Space
In this section, we will give suitable norms to define the moduli space.

Let X to be a smooth 4-manifold with 3-manifold boundary Z and cylindrical end
which is identified with Y × (0,+∞). Now suppose P is an SU(2) bundle over X , gP

is the associated adjoint bundle, AP is the set of all SU(2) connections on P, and
CP := AP ×Ω

1(gP).

For i = 1, 2, 3, fix an orthogonal frame {ei} ∈ T?Y , choose a reference connection
pair (A0,Φ0) ∈ CP to the Kapustin-Witten equations (4.1). We require that (A0,Φ0)

satisfies the Nahm pole boundary condition for this frame, thus there exists {ti} ∈ gP

such that the leading expansion of Φ0 when y → 0 is Φ0 ∼
∑3

i=1 eiti

y . In addition, fix
a flat acyclic SL(2;C) representation ρ. If we denote YT := {T} × Y ⊂ (0,+∞) × Y ,
we assume that (A0,Φ0) convergence to ρ in Lp

1 norm for some p > 2.

Now, we will introduce a suitable configuration space. Given real numbers p, λ with
p > 2 and λ ∈ [1 − 1

p, 1) , we have the following definition:
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Definition 1.6.1. Given a smooth Nahm pole solution (A0,Φ0), we define the framed
configuration space C f r

p,λ as follows:

C
f r

p,λ := {(A0,Φ0) + (a, b) | (a, b) ∈ y
λ+ 1

p H1,p
0 (Ω

1(gP) ×Ω
1(gP))}. (1.49)

Here y
λ+ 1

p H1,p
0 (Ω

1(gP) × Ω
1(gP)) is the completion of smooth 1-forms with respect

to the norm y
λ+ 1

p H1,p
0 .

We have some basic properties of the framed configuration space:

Proposition 1.6.2. (1) Any (A,Φ) ∈ C f r
p,λ satisfies theNahmpole boundary condition.

(2) Assume X has non-vanishing boundary and cylindrical end which identified with
Y × (0,+∞). Let P be an SU(2) bundle over it, let (A1,Φ1) be a connection pair

satisfying the Nahm pole boundary condition, denote
∑3

j=1 ej t1
j

y is the leading part of

Φ1. If (A1,Φ1 −

∑3
j=1 ej t1

j

y ) ∈ H1,p
0 (X), then there exists a global gauge transformation

g ∈ G such that g(A1,Φ1) ∈ C
f r

p,λ.

Proof. For (1), as for λ ∈ [1 − 1
p, 1) ,p > 2, any differential form which blows-up as

y−1 is not contained in y
λ+ 1

p H1,p
0 , the result follows immediately.

For (2), for i = 0, 1, (Ai,Φi) both satisfies the Nahm pole boundary condition
(Definition 1.2.1). Then there exists orthogonal basis e j ∈ T?Y and ti

j ∈ gP for
j = 1, 2, 3 such that [ti

j1
, ti

j2
] = ε j1 j2 j3ti

j3
where ε j1 j2 j3 is the Kronecker symbol of

j1, j2, j3. In addition, let the asymptotic expansion of Φi at y = 0 to be
∑3

j=1 ej tij
y +

O(y). By the commutation relation of ti
j , there exists a ĝ : Z → SU(2) such

that ĝ(
∑3

j=1 ej t1
j

y )ĝ−1 =

∑3
j=1 ej t0

j

y . By the Hopf theorem, the homotopy type of maps
from Y3 to SU(2) is totally determined by the degree. Given ĝ : Z → SU(2),
consider YT0 = Y × {T0} ⊂ X , we can choose a band to connect Z and Y which is
homeomorphic to Z]YT0 . We can choose a map ĝ′ : YT0 → SU(2) whose degree
equals minus degree of g and extend these two maps to Z]YT0 and denote as g̃. Then
g̃ has degree zero and can be extended to whole X , which we denote as g.

By the assumption that (Ai,Φi) are smooth, we have g(A1,Φ1)−(A0,Φ0) ∈ y
λ+ 1

p H1,p
0 .

�

Remark. For a general compact 4-dimensional manifold with boundary, Proposi-
tion 1.6.2 is not true. For D4, the 4-dimensional unit disc, a choice of frame gives a
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map from S3 → SO(3) which is π3(SO(3)). Two frames corresponding to different
elements in π3(SO(3)) can not be globally gauge equivalent.

As we fixed a base connection (A0,Φ0) to define the framed configuration space, we
can also consider the gauge group that preserves the frame.

Definition 1.6.3. The framed gauge group G f r is defined as follows:

G f r := {g ∈ Aut(P) | g |Y = 1}. (1.50)

Given g ∈ G f r , the action of g on (A0,Φ0) will be

g(A0,Φ0) = (A0 − dA0g g−1, gΦ0g
−1). (1.51)

Then, we have

g(A0,Φ0) − (A0,Φ0) = (−dA0g g−1, [g,Φ0]g
−1). (1.52)

We consider the following weighted frame gauge group G f r
p,λ:

G
f r
p,λ = {g ∈ G

f r | dA0g g−1 ∈ y
λ+ 1

p H1,p
0 (Ω

1), [g,Φ0]g
−1 ∈ y

λ+ 1
p H1,p

0 (Ω
1)}.

(1.53)

For convenience, we denote d0(ξ) := d0
(A0,Φ0)

(ξ) = (dA0ξ, [Φ0, ξ]) and we have the
following lemma on the weighted frame gauge group G f r

p,λ.

Lemma 1.6.4. G f r
p,λ = {g ∈ G

f r | ∇0g ∈ y
λ+ 1

p Lp, ∇2
0g ∈ y

λ+ 1
p−1Lp, [Φ0, g] ∈

y
λ+ 1

p Lp, ∇0[Φ0, g] ∈ y
λ+ 1

p−1Lp}.

Proof. Obviously {g ∈ G f r | d0g ∈ y
λ+ 1

p Lp, ∇0(d0)g ∈ y
λ+ 1

p−1Lp} ⊂ G
f r
p,λ. For

the other side, we argue as follows: take α := dA0gg
−1, then α ∈ y

λ+ 1
p H1,p

0 ↪→

y
λ+ 1

p−1L2p. By dA0g = αg, we have ∇0g ∈ y
λ+ 1

p−1L2p since the pointwise norm of
g is 1. In addition, ∇0dA0g = (∇0α)g+α∇0g.As∇0α ∈ y

λ+ 1
p−1Lp and the pointwise

norm of g is 1, we have ∇0αg ∈ y
λ+ 1

p−1Lp. As α ∈ y
λ+ 1

p−1L2p, ∇0g ∈ y
λ+ 1

p−1L2p,
we have α∇0g ∈ y

λ+ 1
p−1Lp. For [g,Φ0]g

−1 ∈ y
λ+ 1

p H1,p
0 (Ω

1), we have [g,Φ0]g
−1 ∈

y
λ+ 1

p Lp. Letting β = [g,Φ0]g
−1, then β ∈ y

λ+ 1
p Lp implies βg = [g,Φ0] ∈ y

λ+ 1
p Lp.

In addition, β ∈ y
λ+ 1

p H1,p
0 implies ∇0β ∈ y

λ+ 1
p Lp and β ∈ y

λ+ 1
p−1L2p. In addition,

we have ∇0g ∈ y
λ+ 1

p−1Lp, thus ∇0[g,Φ0] = ∇0(β g) = (∇0β)g+ β∇0g ∈ y
λ+ 1

p−1Lp.

Therefore, G f r
p,λ ⊂ {g ∈ G

f r | ∇0g ∈ y
λ+ 1

p Lp, ∇2
0g ∈ y

λ+ 1
p−1Lp}.

�

Thuswe can rewriteG f r
p,λ asG

f r
p,λ = {g ∈ G

f r | d0g ∈ y
λ+ 1

p Lp, ∇0d0g ∈ y
λ+ 1

p−1Lp}.
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Lemma 1.6.5. The space y
λ+ 1

p+1H2,p
0 (gP) is an algebra and y

λ+ 1
p H1,p

0 (gP) is a
module over this algebra.

Proof. For the algebra statement, we only need to prove u1u2 ∈ y
λ+ 1

p+1H2,p
0 (gP), or

equivalently, u1u2 ∈ y
λ+ 1

p+1Lp, ∇0(u1u2) ∈ y
λ+ 1

p Lp, ∇2
0(u1u2) ∈ y

λ+ 1
p−1Lp.

Since ui ∈ y
λ+ 1

p+1H2,p
0 , we have ui ∈ y

λ+ 1
p+1Lp, ∇0ui ∈ y

λ+ 1
p Lp and ∇2

0ui ∈

y
λ+ 1

p−1Lp.

ByProposition 1.5.6, ui ∈ y
λ+ 1

p+1H1,p
0 ↪→ y

λ+ 1
p Lp

1 ↪→ y
λ+ 1

p L2p.ByCorollary 1.5.7,
we have u1u2 ∈ y

λ+ 1
p+1Lp. In addition, we know ∇0ui ∈ y

λ+ 1
p H1,p

0 ↪→ y
λ+ 1

p−1L2p

and ui ∈ y
λ+ 1

p L2p. As λ ≥ 1− 1
p , we have λ +

1
p + λ +

1
p − 1 ≥ λ + 1

p . By the Hölder

inequality in Proposition 1.5.6, we have ∇0u1u2 ∈ y
λ+ 1

p Lp.

For ui ∈ y
λ+ 1

p+1H2,p
0 , as p > 2 and λ ≥ 1 − 1

p , we have ui ∈ y
λ+ 1

p−1Lp
2 ↪→ C0 and

∇2
0u ∈ y

λ+ 1
p−1Lp. Therefore, we have ∇2

0u1u2 ∈ y
λ+ 1

p−1Lp.

The module statement can also be proved in a similar way. �

Fix a base point p0 ∈ X and define a system of neighborhoods of the identity in GP

as

Uε = {g ∈ G
f r | ‖d0g‖

y
λ+ 1

p Lp
≤ ε, ‖∇0d0g‖

y
λ+ 1

p −1Lp
≤ ε, |g(p0) − 1| ≤ ε}.

(1.54)

This topology is independent of the base point p0.

With the previous lemma, we can establish a Lie group structure on G f r :

Corollary 1.6.6. (1) G f r
p,λ is a Lie group with Lie algebra

Lie(G f r
p,λ) = y

λ+ 1
p+1H2,p

0 (gP).

(2) G f r
p,λ acts smoothly on C

f r
p,λ.

Proof. This result follows immediately from Lemma 1.6.4 and Lemma 1.6.5. �

Now, we have the following proposition of the framed configuration space C f r
p,λ and

the framed gauge group G f r
p,λ:

Proposition 1.6.7. For any (A,Φ) ∈ C f r
p,λ, we have KW(A,Φ) ∈ y

λ+ 1
p−1Lp(Ω2⊕Ω0),
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Proof. By the definition of C f r
p,λ, there exists (a, b) ∈ y

λ+ 1
p H1,p

0 (Ω
1(gP) × Ω

1(gP))

such that (A,Φ) = (A0,Φ0) + (a, b).

By Proposition 1.2.9, we have KW(A,Φ) = KW(A0,Φ0)+L
1(a, b)+ {(a, b), (a, b)}.

Here {(a, b), (a, b)} is a quadratic term. By theorem 1.5.4, we have L1(a, b) ∈

y
λ+ 1

p−1Lp(Ω2 ×Ω0). By the embedding y
λ+ 1

p H1,p
0 ↪→ y

λ+ 1
p−1Lp

1 ↪→ y
λ+ 1

p−1L2p, we
have {(a, b), (a, b)} ∈ y

λ+ 1
p−1Lp. �

Now we will study the behavior of the gauge group (1.53) over the cylindrical end.
We have the following proposition which describes the limit behavior of the group
G

f r
p,λ. We need the hypothesis that ρ is acyclic. Let (Aρ,Φρ) be the flat SL(2;C)

connection associate to ρ.

Recall that d0
(A,Φ)(ξ) = (dAξ, [Φ, ξ]) and ρ acyclic implies Ker d0

(Aρ,Φρ)
= 0 and the

connection dAρ itself may still be a reducible SU(2) connection.

We have the following lemma over the cylindrical end:

Lemma 1.6.8. Suppose X is a manifold with boundary and cylindrical end which is
identified with Y × (0,+∞), for (A0,Φ0) a reference connection which Lp

1 converges
to (Aρ,Φρ) over the cylindrical end for p > 2, then for T is large enough, we have

(1) d0
(A0,Φ0)

: Lp
2 (Y × (T − 1,T + 1)) → Lp

1 (Y × (T − 1,T + 1)) is injective,

(2) ‖ξ‖Lp
2 (Y×(T−1,T+1)) ≤ C‖d0

(A0,Φ0)
ξ‖Lp

1 (Y×(T−1,T+1)).

Proof. For convenience, during the proof, wewrite Lp
k short for Lp

k (Y×(T−1,T+1)).

(1) Denote (a, b) = (Aρ,Φρ) − (A0,Φ0), then for any ξ ∈ Lp
2 , we have

‖d0
(Aρ,Φρ)

ξ − d0
(A0,Φ0)

ξ‖Lp
1
≤ C(‖[a, ξ]‖Lp

1
+ ‖[b, ξ]‖Lp

1
) ≤ C(‖a‖Lp

1
+ ‖b‖Lp

1
)‖ξ‖Lp

2
.

If ξ ∈ Ker d0
(A0,Φ0)

, we obtain

‖d0
(Aρ,Φρ)

ξ‖Lp
k
≤ C(‖a‖Lp

1
+ ‖b‖Lp

1
)‖ξ‖Lp

2
.

ForT is large enough,C(‖a‖Lp
1
+ ‖b‖Lp

1
) is smaller than the operator norm of d0

(A0,Φ0)
,

which implies ξ = 0.

(2) If the inequality is not true, then there exists a sequence {ξn} with

‖ξn‖Lp
1
= 1, lim

n→∞
‖d0
(A0,Φ0)

ξn‖Lp
1
= 0,

which implies ‖ξn‖Lp
2
is bounded.
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Then, ξn weak converges to ξ∞ in Lp
2 and strongly converges to ξ∞ in Lp

1 , which
implies ‖d0

(A0,Φ0)
ξ∞‖Lp

1
= 0 and ‖ξ∞‖Lp

1
= 1. As Ker d0

(A0,Φ0)
= 0, we have ξ∞ = 0,

contradicting ‖ξ∞‖Lp
1
= 1.

�

We have the following corollary:

Corollary 1.6.9. If over the cylindrical end, (A0,Φ0) converges in Lp
1 norm to

(Aρ,Φρ) and (Aρ,Φρ) is an irreducible flat SL(2;C) connection, then Ker d0
(A0,Φ0)

=

0.

Proof. As before, we denote d0 := d0
(A0,Φ0)

. ByKato inequality, we know for ξ ∈ Ω0,
we have the pointwise estimate

d |ξ | ≤ |dA0ξ | ≤ |d
0(ξ)|.

Therefore, ξ ∈ Kerd0 implies |ξ | is a constant. In addition, by Lemma 1.6.8, we
know ξ = 0 over Y × (T − 1,T + 1) when T is large enough, therefore, we have ξ is
identically zero. �

Proposition 1.6.10. If the limiting connection ρ is irreducible, then for T is large
enough, there is a constant C such that for any section ξ ∈ gP, with d0ξ ∈ Lp(Y ×

[T,+∞)) and ∇0d0ξ ∈ Lp(Y × [T,+∞)), we have

(1) |ξ | → 0 at the cylindrical end and sup |ξ | ≤ C(‖d0ξ‖Lp
1 (Y×[T,+∞))

),

(2) Either |g(x) − 1| → 0 or |g(x) + 1| → 0 as x tends to infinity in X.

Proof. (1) For an integer k > T + 1, over a band Bk := Y × (k − 1, k + 1), we have

‖ξ‖C0(Bk )
≤ ‖ξ‖Lp

2 (Bk )
≤ C‖d0ξ‖Lp

1 (Bk )
.

The statement follows immediately.

(2) Denote by gk the restriction of g to the band Bk . After identifying different
bands with Y3 × (−1, 1), we can consider {gk} a sequence of gauge transformation
over Y3 × (−1, 1) with ‖∇0d0gk ‖Lp, ‖∇0gk ‖Lp converging to zero. As the pointwise
norm of g is always 1, by Rellich lemma, gk strongly converges to g∞ in Lp

1 which
implies d0g∞ = 0. By our assumption, we have g∞ = ±1. �

Now, we can define a framed quotient space as follows:
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Definition 1.6.11. We define B f r
p,λ as the following weighted framed moduli space:

B
f r
p,λ = C

f r
p,λ/G

f r
p,λ.

In addition, we have the following definition of the moduli space:

Definition 1.6.12. The framed moduli spaceM f r,ρ
p,λ (X) is defined as follows:

M
f r,ρ
p,λ (X) = {(A,Φ) ∈ C

f r
p,λ |KW(A,Φ) = 0}/G f r

p,λ. (1.55)

We have the following basic properties of the framed moduli space:

Proposition 1.6.13. (1) For any (A,Φ) ∈ M f r,ρ
p,λ satisfies the Nahm pole boundary

condition.

(2) Any (A,Φ) ∈ M f r,ρ
p,λ converges to ρ in Lp

1 norm.

Proof. (1) is an immediate consequences of Proposition 1.6.2. (2) is a consequence
of the definition of C f r

p,λ. �

Slicing Theorem
Now we study the local properties of the moduli space and we will assign a suitable
norm to the Kuranishi complex (1.7).

Define (Ω0, λ, k, p) as follows:

(Ω0, λ, k, p) := yλHk,p
0 (Ω

0(gP)).

Here the notation yλHk,p
0 (Ω

0(gP)) means the completion of the smooth sections of
Ω0(gP) in the norm yλHk,p

0 . Similarly, we define

(Ω1 ×Ω1, λ, k, p) := yλHk,p
0 (Ω

1(gP) ×Ω
1(gP))

and
(Ω2 ×Ω0, λ, k, p) := yλHk,p

0 (Ω
2(gP) ×Ω

0(gP)).

Now we rewrite the Kuranishi complex (1.7) at the point (A0,Φ0) with respect to
the new norm as follows:

0→ (Ω0, λ+1+
1
p
, 2, p)

d0
(A0,Φ0)
−−−−−−→ (Ω1×Ω1, λ+

1
p
, 1, p)

L(A0,Φ0)
−−−−−−→ (Ω2×Ω0, λ+

1
p
−1, 0, p) → 0,

(1.56)
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Here we only considered λ ∈ [1 − 1
p, 1).

We have the following Proposition for the operator d0
(A0,Φ0)

:

Proposition 1.6.14. The operator d0
(A0,Φ0)

:

d0
(A0,Φ0)

: yλ+1+ 1
p H2,p

0 (Ω
0(gP)) → y

λ+ 1
p H1,p

0 (Ω
1(gP) ×Ω

1(gP))

is a closed operator.

Proof. see Appendix 2. �

Corollary 1.6.15. yλ+
1
p H2,p

0 (Ω
1(gP)×Ω

1(gP)) = Im d0
(A0,Φ0)

⊕(Ker d0,?
(A0,Φ0)

∩y
λ+ 1

p H1,p
0 )

Proof. Let x = (x1, x2) ∈ Ω
1(gP) ×Ω

1(gP), by definition of d0
(A0,Φ0)

, we have

〈d0
(A0,Φ0)

ξ, x〉 = 〈dA0ξ, x1〉 + 〈[Φ0, ξ], x2〉

where 〈 , 〉 means the L2 inner product.

Integrating by parts, we have

〈dA0ξ, x1〉 = 〈ξ, d?A0
x1〉 −

∫
∂X

tr(ξ ∧?x1).

As ξ ∈ y
λ+ 1

p H2,p
0 (Ω

0(gP)) and x1 ∈ y
λ+ 1

p H1,p
0 (Ω

1(gP) × Ω
1(gP)), we have x1 |∂X = 0

and ξ |∂X = 0. Therefore,

〈d0
(A0,Φ0)

ξ, x〉 = 〈ξ, d0,?
(A0,Φ0)

x〉.

Suppose x ∈ Coker d0
(A0,Φ0)

, then for ∀ξ ∈ y
λ+ 1

p+1H2,p
0 , we obtain 〈d0

(A0,Φ0)
ξ, x〉 = 0.

As λ > −1, integrating by parts, we have 〈ξ, d0,?
(A0,Φ0)

x〉 = 0. Thus d0,?
(A0,Φ0)

x = 0.
Combining this with Proposition 1.6.14, we finish the proof.

�

Fixe a reference connection pair (A0,Φ0) ∈ C
f r

p,λ and ε > 0. We set:

T(A,Φ),ε := {(a, b) ∈ Ω1(gP) ×Ω
1(gP) | d

0,?
(A,Φ)(a, b) = 0, ‖(a, b)‖

y
λ+ 1

p H1,p
0
< ε}.

(1.57)

Thus we have a natural map p : T(A,Φ),ε → B
f r
p,λ, which is induced by the inclusion

of T(A,Φ),ε into C
f r

p,λ composed with quotienting by the gauge group G f r
p,λ.

We have the following slicing theorem for the moduli space B f r
p,λ.
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Theorem 1.6.16. Given a point (A,Φ) ∈ C f r
p,λ, denote by [(A,Φ)] ∈ B

f r
p,λ the equiv-

alence class under the projection map. For small ε > 0,

(1) if (A,Φ) is irreducible, then T(A,Φ),ε is a homeomorphism to a neighborhood of
[(A,Φ)] in B f r

p,λ.

(2) if (A,Φ) is reducible, then T(A,Φ),ε/Γ(A,Φ) is a homeomorphism to a neighborhood
of [(A,Φ)] in B f r

p,λ.

Proof. Consider the map

S : T(A,Φ),ε × GP/{±1} → CP,

S(A + a,Φ + b, g) = g(A + a,Φ + b).
(1.58)

The map has derivative at a = 0, b = 0, g = 1 as:

DS :Ker d0,?
(A,Φ) ×Ω

0(gP) → Ω
1(gP) ×Ω

1(gP),

(a, b, ξ) → (a, b) + d0
(A,Φ)(ξ).

(1.59)

By Corollary 1.6.15, we know DS is always surjective.

(1) If (A,Φ) is irreducible, then DS is injective, by the implicit function theorem,
we know for ε small enough, S is a homeomorphism.

(2) If (A,Φ) is reducible, then DS has kernel H0
(A,Φ). Let H0⊥

(A,Φ) be the orthogonal of
H0
(A,Φ) with respect to the L2 inner product. Then this time the restriction map

S : T(A,Φ),ε × exp(H0⊥
(A,Φ))/{±1} → CP

is a local diffeomorphism. In addition, themultiplicationmap Γ(A,Φ)×exp(H0⊥
(A,Φ)) →

GP at the identity will have derivative 1. Thus for g ∈ GP close to 1, there exist
l ∈ Γ(A,Φ) and m ∈ exp(H0⊥

(A,Φ)) such that g = ml and the splitting is unique.
Therefore, we get a homeomorphism from T(A,Φ),ε/Γ(A,Φ) to a neighborhood of
[(A,Φ)] in B f r

p,λ.

�

Kuranishi Model
Given (A0,Φ0) a solution to the Kapustin-Witten equations, all the other solutions
within the slice T(A,Φ),ε are given by the set Z(Ψ) of zeros of the map

T(A,Φ),ε
Ψ
−→ y

λ+ 1
p−1Lp(Ω2(gP) ×Ω

0(gP)),

Ψ(a, b) = KW(A0 + a,Φ0 + b) = L1(a, b) + {(a, b), (a, b)}.
(1.60)
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By Theorem 1.5.9, DΨ is a Fredholm operator and for the homology associated to
the Kuranishi complex, we have the following identification:

H2
(A,Φ) � KerL? ∩ y

λ+ 1
p−1Lp,

H1
(A,Φ) � KerL ∩ (Kerd0,?

(A0,Φ0)
∩ y

λ+ 1
p H1,p

0 ).
(1.61)

Therefore, we have the following Kuranishi picture of the moduli space:

Proposition 1.6.17. [18, Proposition 8] For any solution (A,Φ)with KW(A,Φ) = 0,
for ε sufficiently small, there is a map ρ from a neighborhood of the origin in the
harmonic space H1

(A,Φ) to the harmonic space H2
(A,Φ) such that if (A,Φ) is irreducible,

a neighborhood of [(A,Φ)] ∈ M f r
p,λ is carried by a diffeomorphism onto

Z(ρ) = ρ−1(0) ⊂ H1
(A,Φ)

and if (A,Φ) is reducible, then a neighborhood of [(A,Φ)] is modelled on

Z(ρ)/Γ(A,Φ).

1.7 Exponential Decay
In this section, we will prove the exponential decay over the cylindrical ends which
is identified with Y3 × (0,+∞) with the convergence assumption. We denote y as
the coordinate of (0,+∞). As before, let VolY be a given volume form of Y . We
denote ?4 by the 4-dimensional Hodge star operator with respect to the Volume
form VolY ∧ dy and denote ? by the 3 dimension Hodge star operator with respect
to VolY .

Theorem 1.7.1. Let (A,Φ) be a solution to the Kapustin-Witten equations over
Y3 × (0,+∞), and YT := Y3 × {T} ∈ Y3 × (0,+∞) is a slice. For a non-degenerate
flat SL(2;C) connection (Aρ, φρ) corresponding to the representation ρ.

Suppose for some p > 2, limT→+∞ ‖(A,Φ) − (Aρ, φρ)‖Lp
1 (YT )
= 0, then there exists a

positive number δ, such that ‖(A,Φ) − (Aρ, φρ)‖C∞(Y×[T,+∞)) ≤ Ce−δT .

We follow the ideas in [19].

Over sliceYt , denote (A,Φ)|Yt = (A(t), φ(t)+φy(t)dy), denote γ(t) := (A(t), φ(t), φy(t)).
Recall the gradient of the extended Chern-Simons function is denoted as∇ECS, then
the flow equations (1.21) can be rewrote as

d
dy
γ(t) + ∇ECS(γ(t)) = 0. (1.62)
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Definition 1.7.2. The analytic energy is defined asEan(t) :=
∫
Yt
| d
dyγ(t)|

2+|∇ECS(γ(t))|2dVol.

Now we introduce some basic computation related to the analytic energy Ean(t).
Let ECS(ρ) to be ECS(Aρ, φρ, 0) and ECS(T) to be ECS(γ(T)), then we have the
following proposition:

Proposition 1.7.3. OverY×(0,+∞), under the assumption of Theorem 1.7.1, denote
(A,Φ = φ + φydy) and denote J(T) :=

∫ +∞
T Ean(t)dt, then J(T) = 2(ECS(T) −

ECS(ρ)).

Proof. We have the following computations for the gradient flow equations (1.62):

0 =
∫

Y×[T,+∞)
|

d
dy
γ(t) + ∇ECS(γ(t))|2

=

∫
Y×[T,+∞)

|
d
dy
γ(t)|2 + |∇ECS(γ(t))|2 + 2〈

d
dy
γ(t),∇ECS(γ(t))〉.

(1.63)

By definition of the gradient, we obtain∫
Y×[T,+∞)

2〈
d
dy
γ(t),∇ECS(γ(t))〉 = 2(ECS(ρ) − ECS(T)). (1.64)

Therefore, J(T) = 2(ECS(T) − ECS(ρ)). �

Let (At,Φt = φt+(φy)t dy) be the restriction of the solution (A,Φ) to the sliceYt . Take
(at, bt, ct) = (At,Φt, (φy)t)−(Aρ, φρ, 0), denoteHρ(at, bt, ct) := H(Aρ,φρ,0)(at, bt, 0, ct)

and EH ρ := EH (Aρ,φρ,0). Then we have the following lemma:

Lemma 1.7.4. Under the assumption of Theorem 1.7.1, then for t large enough,
there exist positive constant C1, C2 such that we have the following estimates:

Ean(t) ≥ C1‖EH ρ(at, bt, ct)‖
2
L2(Yt )

, (1.65)

ECS(Aρ + at, φρ + bt, ct) − ECS(Aρ, φρ, 0) ≤ C2‖EH ρ(at, bt, ct)‖
2
L2(Yt )

, (1.66)

where C2 is a number depends on the smallest absolute eigenvalue of EH ρ.

Proof. As we assume ρ is nondegenerate, by Proposition 1.4.10, we have the fol-
lowing estimate ‖(at, bt, ct)‖L2

1 (Yt )
≤ C‖EH ρ(at, bt, ct)‖L2(Yt ) over the slice Yt .

In addition, by the convergence assumption, (at, bt, ct) will have small Lp
1 norm

when t is large enough, by Proposition 1.3.3, in each slice Yt , we can make (A,Φ) in
the Kapustin-Witten gauge relative to (Aρ,Φρ):

L
g f
(Aρ,Φρ)

(at, bt) = 0.



48

To be explicit, we have
d?Aρat −?[Φρ,?bt] = 0. (1.67)

Under this gauge, we have

Hρ(at, bt, ct) = EH ρ(at, bt, ct). (1.68)

Now, we have enough preparation for proving the estimate.

Ean(t) ≥
∫

Yt
|∇ECS(At, φt, (φy)t)|

2

≥

∫
Yt
|Hρ(at, bt, ct) + {(at, bt, ct)

2}|2

≥

∫
Yt
|Hρ(at, bt, ct)|

2 + |{(at, bt, ct)
2}|2 + 2〈Hρ(at, bt, ct), {(at, bt, ct)

2}〉.

(1.69)

Over 3 dimensional manifold, we have the Sobolev embedding L2
1(Yt) → Lr(Yt) for

r ≤ 6.

Then we have

‖{(at, bt, ct)
2}2‖2L2(Yt )

≤ C‖(at, bt, ct)‖
4
L4(Yt )

≤ C‖EH ρ(at, bt, ct)‖
4
L2(Yt )

,∫
Yt
〈Hρ(at, bt, ct), {(at, bt, ct)

2}〉 ≤ C‖EH ρ(at, bt, ct)‖
3
L2(Yt )

.

By the convergence assumption, we know limt→+∞ ‖EH ρ(at, bt, ct)‖L2(Yt ) = 0.
Thus, for inequality (1.69), ‖{(at, bt, ct)

2}2‖2
L2(Yt )

and
∫
Yt
〈Hρ(at, bt, ct), {(at, bt, ct)

2}〉

can be absorb by the first term and by choosing t large enough, we get the estimate
we want.

For the statement (2), under the gauge fixing condition (1.67), we have the following
estimate ∫

Yt
〈(at, bt, ct),Hρ(at, bt, ct)〉

=

∫
Yt
〈(at, bt, ct), EH ρ(at, bt, ct)〉

≤
1
δ
‖EH ρ(at, bt, ct)‖

2
L2(Yt )

,

(1.70)
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where δ is smallest absolute eigenvalue of the operator EH ρ and by the non-
degenerate assumption, KerEH ρ = 0 and δ is bounded blow away from 0.

Thus, we have

ECS(Aρ + at, φρ + bt, ct) − ECS(Aρ, φρ, 0)

≤ −
1
2

∫
Yt
〈(at, bt, ct),Hρ(at, bt, ct)〉 −

∫
Yt
{(a, b, c)3}

≤C‖EH ρ(at, bt, ct)‖
2
L2(Yt )

+ C‖EH ρ(at, bt, ct)‖
3
L2(Yt )

≤C2‖EH ρ(at, bt, ct)‖
2
L2(Yt )

.

(1.71)

�

Now we obtain the following proposition:

Proposition 1.7.5. With the assumption above, if Ean(t) is bounded, then there exists
a constant C such that

J(T) ≤ Ce−δt .

Proof. By Lemma 1.7.4, we have the following:

J(t) = ECS(Aρ + at, φρ + bt, ct) − ECS(Aρ, φρ, 0)

≤ C2‖EH ρ(at, bt, ct)‖
2
L2(Yt )

≤
C2
C1
Ean(t)

≤ −
C2
C1

d
dt

J(t).

(1.72)

Thus, take δ = C1
C2
, we have:

δJ(t) +
dJ(t)

dt
≤ 0.

From here we get that J(t) ≤ Ce−δt . �

Using these corollaries, we can give the following estimate of the decay of solutions.

Proposition 1.7.6. For allT is large enough thatwe have ‖(At,Φt)−(Aρ,Φρ)‖
2
L2
k
(Y×[T,+∞))

≤

Ce−δT .

Proof. Fixing a Kapustin-Witten gauge for (at, bt, ct) := (At, φt, (φy)t) − (Aρ, φρ, 0).
By the non-degenerate assumption, we have ‖(at, bt, ct)‖L2

1 (Yt )
≤ C‖EH ρ(at, bt, ct)‖L2(Yt ).
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In addition, by Lemma 1.7.4, for T is large enough, we have

‖EH ρ(at, bt)‖
2
L2(Yt )

≤ CEan(t).

Therefore, we compute

‖(A,Φ) − (Aρ,Φρ)‖L2
1 (Y×[T,+∞))

=

∫ +∞

T
‖(at, bt)‖L2

1 (Yt )
dt

≤C
∫ +∞

T
‖EH ρ(at, bt)‖L2(Yt )dt

≤C
∫ +∞

T
Ean(t)dt

≤CJ(t).

(1.73)

By the exponential decay of J(t), we proved the result for k=1. Take bootstrapping
method, we get that the L2

k norm exponentially decays. �

Proof of Theorem 1.7.1: We only need to show that for every integer k, we have
‖(at, bt)‖Ck ≤ Ce−δt . By the Sobolev embedding for L2

k ′ and Ck , the result follows
immediately. �

1.8 Constructing Solutions
In this section, we will prove the gluing theorem for the Kapustin-Witten equations
with Nahm pole boundary condition.

For i = 1, 2, consider Xi to be a 4-manifold with boundary Zi and infinite cylindrical
end identified with Yi × (0,+∞) ⊂ Xi, let Pi to denote a SU(2) bundle and (Ai,Φi) ∈

CPi be a solutions to theKapustin-Witten equations over bundle Pi which approach to
a flat connection ρi and satisfies the Nahm pole boundary condition on the boundary
Zi.

If Y1 = Y2, we can define a new family of 4-manifolds X]T . To be precise, we fix
an isometry between Y1 and Y2, we first delete the infinite portions Y1 × [2T,+∞)

Y2×, [2T,+∞) from the two ends, and then identify (y, t) ∈ Y1 × (T, 2T) with
(y, 2T − t) ∈ Y2 × (T, 2T). This is in Figure 1.3 and Figure 1.4:

In addition, if the limit flat connections coincide, we denote ρ = ρ1 = ρ2, we can
fix an identification of these flat bundles and get a new bundle P]T with a natural
connection (A],Φ]), which we will explicitly define in subsection 7.1.

Now we restate our theorem as follows:
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Figure 1.3: Two cylindrical-end manifold X1 and X2 with boundary

Figure 1.4: X1, X2 glued together to form X]T

Theorem 1.8.1. Under the hypotheses above, if

(a) limT→+∞ ‖(Ai,Φi) − (Aρi,Φρi )‖L
p0
1 (Yi×{T})

= 0 for some p0 > 2,

(b) ρ is an acyclic SL(2;C) flat connection,

then for p ≥ 2 and λ ∈ [1 − 1
p, 1), we have:

(1) for some constant δ, there exists a y
λ+ 1

p H1,p
0 pair (a, b) ∈ Ω1

X]T
(gP) × Ω

1
X]T
(gP)

with
‖(a, b)‖

y
λ+ 1

p −1Lp
1
≤ Ce−δT,

(2) there exists an obstruction class h ∈ H2
(A1,Φ1)

(X1) × H2
(A2,Φ2)

(X2) such that h = 0
if and only if (A] + a,Φ] + b) is a solution to the Kapustin-Witten equations (4.1).

We break the proof of this theorem into several parts.

Approximate Solutions
Denote by (ai, φi) := (Ai,Φi) − (Aρi,Φρi ), the difference between our solution and
the limit flat connections.

Define a new pair (A′i,Φ
′
i) = (Aρi,Φρi ) + χ(t)(ai, φi), here χ(t) is a cut off function

which equals 0 on the complement of Yi × (T + 1,+∞) and 1 on Xi(T) := Xi\Yi ×

(T,+∞). From this construction, we know that KW(A′i,Φ
′
i) is supported on Y ×

(T,T + 1).
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As (A′1,Φ
′
1) and (A

′
2,Φ
′
2) agree on the end, we can glue then together to get an

approximate solution (A],Φ]) on X]T , and we denote the new bundle as P]. Using
the above process, we can define a map:

I : CP1 × CP2 → CP]

I((A1,Φ1), (A2,Φ2)) := (A],Φ]),
(1.74)

and this map depends on choice of T and the cut-off function we choose.

We have the following estimate for the approximate solution:

Proposition 1.8.2. ‖KW(A],Φ])‖
y
λ+ 1

p −1Lp(X]T )
≤ Ce−δT .

Proof. By construction, we know KW(A],Φ]) is only supported on a compact subset
of X]T and in this area the weight function is bounded. Combining this with the
exponential decay result: Theorem 1.7.1, we get the estimate we want. �

Gluing Regular Points
First, we assume that H2

(A1,Φ1)
= 0 and H2

(A2,Φ2)
= 0 and the limit flat connection is

irreducible.

We use the previous notation from (1.17). Recall that L(Ai,Φi) is the linearization of
the Kapustin-Witten equations, we denote Li := L(Ai,Φi). Recall L

g f
i := Lg f

(Ai,Φi)
is

the Kapustin-Witten gauge fixing operator (1.14). Now, we denoteDi := Li ⊕ L
g f
i .

By Theorem 1.5.9, we get a Fredholm operator over Xi:

Di : yλ+
1
p H1,p

0 (Xi) → y
λ+ 1

p−1Lp(Xi).

By assumption, we know Di is surjective, then there exists a right inverse

Qi : yλ+
1
p−1Lp(Xi) → y

λ+ 1
p H1,p

0 (Xi), (1.75)

such that DiQi = Id. Therefore, after restricting the domain of Qi to the image of
Li, we get a right inverse for Li and for simplicity, we still denote the right inverse
as Qi and we obtain LiQi = Id.

Take φi to be a cut off function supported in Xi(2T), with φi(x) = 1 on Xi(T) and
φ1 + φ2 = 1 on X]T . The graph of cut-off function φ1 is in the following Figure 1.5:

By definition, we chose φi with the estimate ‖∇φi‖L∞(Xi) ≤ ε(T) ≤
C
T .
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Figure 1.5: The graph of cut-off function φ1

Take ξ ∈ y
λ+ 1

p−1Lp(X]T ), denote by ξi the restriction of ξ on Xi(2T), then we define
a new approximate inverse operator Q̂(ξ) := φ1Q1(ξ1) + φ2Q2(ξ2), which can be
written as

Q̂ : yλ+
1
p−1Lp(Xi) → y

λ+ 1
p H1,p

0 (Xi). (1.76)

Denoting L]T := L(A],Φ]) as follows:

L]T : yλ+
1
p H1,p

0 (Xi) → y
λ+ 1

p−1Lp(Xi).

After these preparations, we have the following relationship between these two
operators:

Lemma 1.8.3. For L]T , Q̂ as above, and for ∀ξ ∈ y
λ+ 1

p−1Lp(X]T ), we have

‖L]TQ̂(ξ) − ξ‖
y
λ+ 1

p −1Lp(X]T )
≤ ε(T)‖ξ‖

y
λ+ 1

p −1Lp(X]T )
.

Proof. For L]TQ̂(ξ), by definition, we have the following computation:

L]TQ̂(ξ) = L]T (φ1Q1(ξ1) + φ2Q2(ξ2))

=∇φ1 ?Q1(ξ1) + ∇φ2 ?Q2(ξ2) + φ1L
]TQ1(ξ1) + φ2L

]TQ2(ξ2)

=∇φ1 ?Q1(ξ1) + ∇φ2 ?Q2(ξ2) + φ1L1Q1(ξ1) + φ2L2Q2(ξ2)

+ φ1(L
]T − L1)Q1(ξ1) + φ2(L

]T − L2)Q2(ξ2).

(1.77)

For the term ∇φ1 ?Q1(ξ1) + ∇φ2 ?Q2(ξ2), we know ‖∇φ‖L∞ < ε(T).

Therefore, we obtain

‖∇φ1 ?Q1(ξ1)‖
y
λ+ 1

p −1Lp(X]T )
≤ ε(T)‖Q1(ξ1)‖

y
λ+ 1

p −1Lp(X]T )
.

By Proposition 1.5.5, yλ+
1
p H1,p

0 (X
]T ) ⊂ y

λ+ 1
p Lp(X]T ), and by Proposition 1.5.6, we

obtain yλ+
1
p Lp(X]T ) ⊂ y

λ+ 1
p−1Lp(X]T ), therefore, yλ+

1
p H1,p

0 (X
]T ) ⊂ y

λ+ 1
p−1Lp(X]T ).

In addition, by (1.75), we know

‖Q1(ξ1)‖
y
λ+ 1

p H1,p
0 (X

]T )
≤ C‖ξ1‖

y
λ+ 1

p −1Lp(X]T )
.



54

Therefore, we obtain

‖∇φ1 ?Q1(ξ1)‖
y
λ+ 1

p −1Lp(X]T )
≤ε(T)‖Q1(ξ1)‖

y
λ+ 1

p −1Lp(X]T )

≤ε(T)‖Q1(ξ1)‖
y
λ+ 1

p H1,p
0 (X

]T )

≤ε(T)C‖ξ‖
y
λ+ 1

p −1Lp(X]T )
,

(1.78)

where the constant C is independent of T . Similarily, we have the same estimate for
Q2:

‖∇φ2 ?Q2(ξ2)‖
y
λ+ 1

p −1Lp(X]T )
≤ ε(T)C‖ξ‖

y
λ+ 1

p −1Lp(X]T )
. (1.79)

For the term φ1(L
]T − L1)Q1(ξ1) + φ2(L

]T − L2)Q2(ξ2), by Theorem 1.7.1, we
know that the operators L]T − L1 and L]T − L2 are order zero and the operator
norm will exponentially decay as T →∞ . Therefore, we have

‖φ1(L
]T − L1)Q1(ξ1) + φ2(L

]T − L2)Q2(ξ2)‖
y
λ+ 1

p −1Lp(X]T )
< ε(T)‖ξ‖

y
λ+ 1

p −1Lp(X]T )
.

(1.80)

For the remaining terms, we have

φ1L1Q1(ξ1) + φ2L2Q2(ξ2) = φ1ξ1 + φ2ξ2 = ξ. (1.81)

Combining all the discussion above, we get the estimate we want.

�

Proposition 1.8.4. There exists an operator Q]T with

Q]T : yλ+
1
p−1Lp(X]T ) → y

λ+ 1
p H1,p

0 (X
]T ),

such that L]TQ]T = Id. In addition, there exists a constant C independent of T

such that for ∀ξ ∈ y
λ+ 1

p−1Lp(Xi), we have

‖Q]T (ξ)‖
y
λ+ 1

p H1,p
0 (X

]T )
≤ C‖ξ‖

y
λ+ 1

p −1Lp(X]T )
.

Proof. Take R(ξ) := L]TQ̂(ξ) − ξ, by Proposition 1.8.3, we know when T is large
enough, the operator norm of R will be very small. Therefore, R + Id is invertible.

Take Q]T := Q̂(Id + R)−1 then by definition, we have that Q]T is an operator from
y
λ+ 1

p−1Lp(X]T ) to y
λ+ 1

p H1,p
0 (X

]T ) and L]TQ]T = Id.
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The operator norm of R + Id is less than three and the operator norm of Q̂ is
dominated by the operator norm of Q1 plus the operator norm of Q2. Thus, the
operator norm of Q]T is independent of T .

�

Given an approximate solution (A],Φ]), for any connection (A,Φ), write

(A,Φ) = (A],Φ]) + (a, b).

We hope to find suitable (a, b) such that KW(A,Φ) = 0.

By Proposition 1.2.9, we have the following quadratic expansion:

KW(A,Φ) = KW(A],Φ]) + L]T (a, b) + {(a, b), (a, b)}.

We will solve the equations

KW(A],Φ]) + L]T (a, b) + {(a, b), (a, b)} = 0. (1.82)

Take η := −KW(A],Φ]) and replace (a, b) by Q]T (α), then the quadratic expansion
becomes

η = α + {Q]T (α),Q]T (α)}. (1.83)

Now our target is to solve this equation for some α ∈ y
λ+ 1

p−1Lp(X]T ).

Take S(α) := {Q]T (α),Q]T (α)}, we have the following proposition for the operator
S:

Proposition 1.8.5. For any λ0 ∈ [1 − 1
p, 1), S is an operator:

S : yλ+
1
p−1Lp(X]T ) → y

λ+ 1
p−1Lp(X]T )

satisfying S(0) = 0 and for two elements α, β ∈ Lp(X]T ), there exists a constant k

independent of T such that

‖S(α) − S(β)‖
y
λ+ 1

p −1Lp
≤ k(‖α‖

y
λ+ 1

p −1Lp
+ ‖β‖

y
λ+ 1

p −1Lp
)(‖α − β‖

y
λ+ 1

p −1Lp
).

Proof. First, we prove S is the suitable operator. As Q]T : y
λ+ 1

p−1Lp(X]T ) →

y
λ+ 1

p H1,p
0 (X

]T ), using the Sobolev embedding yλ+
1
p H1,p

0 (X
]T ) ↪→ y

λ+ 1
p−1Lp

1 (X
]T )(Corollary

1.5.7), we can consider Q]T as an operator from y
λ+ 1

p−1Lp(X]T ) to y
λ+ 1

p−1Lp
1 (X

]T ).
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Denote α = (α1, α2) and from the definition of S, we have

S(α) = {(α1, α2), (α1, α2)}

=

(
Q]T (α1) ∧ Q

]T (α1)) − Q
]T (α2) ∧ Q

]T (α2) +?[Q
]T (α1),Q

]T (α2)]

−? [Q]T (α1),?Q
]T (α2)]

)
.

(1.84)

As the terms appearing in S(α) are quadratic terms, using the Hölder inequality for
λ ≥ 1− 1

p such that ‖ f g‖
y
λ+ 1

p −1Lp(X]T )
≤ ‖ f ‖

y
λ+ 1

p −1Lp
1 (X

]T )
‖g‖

y
λ+ 1

p −1Lp
1 (X

]T )
(Corollary

1.5.7), we have that S is an operator

S : yλ+
1
p Lp(X]T ) → y

λ+ 1
p Lp(X]T ).

Now, we will show that S has the desired estimate. Denote β = (β1, β2), from the
definition of S, we have the following computation:

S(α) − S(β)

={(α1, α2), (α1, α2)} − {(β1, β2), (β1, β2)}

=
Q]T (α1) ∧ Q

]T (α1) − Q
]T (α2) ∧ Q

]T (α2) +?[Q
]T (α1),Q

]T (α2)] −?[Q
]T (β1),Q

]T (β2)]

−? [Q]T (α1),?Q
]Tα2] +?[Q

]T (β1),?Q
]T β2]

(1.85)

Now we make estimates for each term appearing in S(α) − S(β).

‖Q]T (α1) ∧ Q
]T (α1) − Q

]T (β1) ∧ Q
]T (β1)‖

y
λ+ 1

p −1Lp(X]T )

≤‖Q]T (α1) ∧ (Q
]T (α1) − Q

]T (β1))‖
y
λ+ 1

p −1Lp(X]T )

+ ‖(Q]T (α1) − Q
]T (β1)) ∧ Q

]T (β1)‖
y
λ+ 1

p −1Lp(X]T )

≤‖Q]T (α1)‖
y
λ+ 1

p −1Lp
1 (X

]T )
‖Q]T (α1) − Q

]T (β1)‖
y
λ+ 1

p −1
L
p
1 (X

]T )

+ ‖Q]T (β1)‖
y
λ+ 1

p −1Lp
1 (X

]T )
‖Q]T (α1) − Q

]T (β1)‖
y
λ+ 1

p −1
L
p
1 (X

]T )

≤C‖α1‖
y
λ+ 1

p −1Lp(X]T )
‖α1 − β1‖

y
λ+ 1

p −1Lp(X]T )

+ C‖β1‖
y
λ+ 1

p −1Lp(X]T )
‖α1 − β1‖

y
λ+ 1

p −1Lp(X]T )

≤C(‖α1‖
y
λ+ 1

p −1Lp(X]T )
+ ‖β1‖

y
λ+ 1

p −1Lp(X]T )
)(‖α1 − β1‖

y
λ+ 1

p −1Lp(X]T )
).

(1.86)
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For another term, we have

‖ ? [Q]T (α1),Q
]T (α2)] −?[Q

]T (β1),Q
]T (β2)]‖

y
λ+ 1

p −1Lp(X]T )

≤‖[Q]T (α1),Q
]T (α2)] − [Q

]T (α1),Q
]T (β2)]

[Q]T (α1),Q
]T (β2)] − [Q

]T (β1),Q
]T (β2)]‖

y
λ+ 1

p −1Lp(X]T )

≤‖[Q]T (α1),Q
]T (α2 − β2)]‖

y
λ+ 1

p −1Lp(X]T )
+ ‖[Q]T (α1 − β1),Q

]T (β2)]‖
y
λ+ 1

p −1Lp(X]T )

≤C‖α1‖
y
λ+ 1

p −1Lp(X]T )
‖α2 − β2‖

y
λ+ 1

p −1Lp(X]T )

+ ‖β2‖
y
λ+ 1

p −1Lp(X]T )
‖α1 − β1‖

y
λ+ 1

p −1Lp(X]T )

≤C(‖α‖
y
λ+ 1

p −1Lp(X]T )
+ ‖β‖

y
λ+ 1

p −1Lp(X]T )
)(‖α − β‖

y
λ+ 1

p −1Lp(X]T )
).

(1.87)

Similarily, we have the following estimate:

‖ −?[Q]T (α1),?Q
]T (α2)] +?[Q

]T (β1),?Q
]T (β2)]‖

y
λ+ 1

p −1Lp(X]T )

≤C(‖α‖
y
λ+ 1

p −1Lp(X]T )
+ ‖β‖

y
λ+ 1

p −1Lp(X]T )
)(‖α − β‖

y
λ+ 1

p −1Lp(X]T )
).

(1.88)

Combining the previous computations, we have the result we want. �

We have the following lemma about the operator S:

Lemma 1.8.6. ([20] Lemma 7.2.23) Let B be a Banach space and let ‖ ‖B be the
norm on B. Let S : B → B be a smooth map on the Banach space B with S(0) = 0
and ‖Sξ1 − Sξ2‖B ≤ k(‖ξ1‖B + ‖ξ2‖B)(‖ξ1 − ξ2‖B), for some constant k > 0 and
all ξ1, ξ2 in B,then for each η ∈ B with ‖η‖B < 1

10k , there exists a unique ξ with
‖ξ‖B ≤

1
5k such that

ξ + S(ξ) = η.

We now can complete the proof of Theorem 1.1.
Proof of Theorem 1.1: Recall we hope to solve the equation (1.83), which is

η = α + S(α).

ByProposition 1.8.5, inLemma1.8.6, ifwe take theBanach space B as yλ+
1
p−1Lp(X]T ),

we know that the operator S satisfies the assumption in Lemma 1.8.6. Therefore,
there exists an solution α to equation (1.83) with α ∈ y

λ+ 1
p−1Lp(X]T ).

Let (a, b) := Q]T (α) where (a, b) ∈ Ω1 × Ω1, then (A],Φ]) + (a, b) is a solution to
the Kapustin-Witten equations (4.1).
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Now we will prove the regularity statement of Theorem 1.1. By Proposition 1.8.4,
we have

Q]T : yλ+
1
p−1Lp(X]T ) → y

λ+ 1
p H1,p

0 (X
]T ).

Therefore, we know (a, b) ∈ y
λ+ 1

p H1,p
0 (X

]T ).

As S satisfies

‖S(α)−S(β)‖
y
λ+ 1

p −1Lp(X]T )
≤ k(‖α‖

y
λ+ 1

p −1Lp(X]T )
+‖β‖

y
λ+ 1

p −1Lp(X]T )
)(‖α−β‖

y
λ+ 1

p −1Lp(X]T )
).

Take β = 0, we have ‖S(α)‖
y
λ+ 1

p −1Lp(X]T )
≤ k ‖α‖2

y
λ+ 1

p −1Lp(X]T )
. By equation (1.83),

we have the following estimate:

‖α‖
y
λ+ 1

p −1Lp(X]T )
≤‖η‖

y
λ+ 1

p −1Lp(X]T )
+ ‖S(α)‖

y
λ+ 1

p −1Lp(X]T )

≤‖η‖
y
λ+ 1

p −1Lp(X]T )
+ k ‖α‖2

y
λ+ 1

p −1Lp(X]T )
.

(1.89)

WLOG, we can assume 1 − k ‖α‖
y
λ+ 1

p −1Lp(X]T )
≥ 1

2 and we obtain

‖α‖
y
λ+ 1

p −1Lp(X]T )
≤ 2‖η‖

y
λ+ 1

p −1Lp(X]T )
. (1.90)

As in Proposition 1.8.5, we use the estimate ‖Q]T (α)‖
y
λ+ 1

p −1Lp
1 (X

]T )
≤ C‖α‖

y
λ+ 1

p −1Lp(X]T )
,

we have

‖(a, b)‖
y
λ+ 1

p −1Lp
1 (X

]T )
≤ C‖α‖

y
λ+ 1

p −1Lp(X]T )
≤ 2C‖η‖

y
λ+ 1

p −1Lp(X]T )
. (1.91)

Applying Proposition 1.8.2, we get the estimate we want. �

We can say more about the regularity of solutions we get. Using the equations
(1.82), we have the following proposition.

Proposition 1.8.7. For p > 2 and T is large enough, suppose (a, b) satisfies the
equations (1.82) over X]T , then (a, b) is smooth in the interior of X]T .

Proof. Fix a interior open set U ⊂ X]T . By (1.91), for any given constant C, we can
choose T is large enough such that ‖(a, b)‖

y
λ+ 1

p −1Lp
1 (X

]T )
≤ C. Applying Theorem

1.3.2 overU, we get a gauge fixing condition for (a, b). Combing this with equations
(1.82) and using the bootstrapping method, we get the regularity we want. �

Corollary 1.8.8. Under the assumption as Theorem 1.8.1, if H2
(Ai,Φi)

= 0 and the
limiting flat connection is irreducible, then for T is large enough, there exists a
solution to the Kapustin-Witten equations (4.1).
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Gluing Singular Points in Moduli Space
In this subsection, we will deal with the singular points (Ai,Φi) with H2

(Ai,Φi)
,

0. As before, we take the norm y
λ+ 1

p H1,p
0 (Xi) on Ω1

Xi
(gP) and y

λ+ 1
p−1Lp(Xi) on

Ω0
Xi
(gP) ⊕ Ω

2
Xi
(gP).

As before, we denote H2
(Ai,Φi)

:= (Ω2(gP) × Ω
0(gP))/ImLi. For any τ ∈ Ω2(gP) ×

Ω0(gP), we denote by [τ] ∈ H2
(Ai,Φi)

the equivalence class of τ.

We have the following lemma for this cohomology group:

Lemma 1.8.9. Given any bounded open set U ⊂ Xi, for any α ∈ H2
(Ai,Φi)

, there exist
a β ∈ Ω2(gP) × Ω

0(gP), such that β is supported in U and [β] = α as cohomology
class.

Proof. As the range of Li is closed in y
λ+ 1

p−1Lp(Ω2(gP) × Ω
0(gP), we have the

following splitting:

y
λ+ 1

p−1Lp(Ω2(gP) ×Ω
0(gP)) = ImLi ⊕ (KerL?i ∩ y

λ+ 1
p−1Lp), (1.92)

where L?i is the L2 adjoint of Li.

Thus we have the identification H2
(Ai,Φi)

� KerL?i ∩ y
λ+ 1

p−1Lp. By the classicial
unique continuation property of an elliptic operator on the interior [4], for any α ∈
KerL?i , we have α nonvanishing on any interior open set. Denote l = dim H2

(Ai,Φi)
,

then for an integer j, 0 ≤ j ≤ l, there exist a basis {a j} ∈ H2
(Ai,Φi)

. In addition, we
can choose {a j} orthogonal to each other w.r.t the L2 inner product.

In order to prove the lemma, we only need to prove the statement for one of the base
a j . We claim that for any fixed a j , there exists a differential form f ∈ Ω2(gP)×Ω

0(gP)

such that 〈 f , a j〉 , 0 and f vanishes over the boundary, f |∂U = 0. If not, for any
f ∈ C∞0 (Ω

2(gP) × Ω
0(gP)), we have 〈 f , a j〉 = 0. This will imply a j is identically 0

over an interior open set which contradicts a j ∈ KerL?i .

By theGram–Schmidt process and rescaling, we can find a function gwhich vanishes
over ∂U, 〈g, a j〉 = 1 and for s , j 〈g, as〉 = 0. By the splitting (1.92), we know
there exists a g0 ∈ ImLi, such that g = g0 + a j . �

By the previous lemma, we know there exists linear operators σi,

σi : H2
(Ai,Φi)

→ Ω
2
Xi
⊕ Ω0

Xi
,
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such that the operators

Li ⊕ σi : Ω1
Xi
⊕ Ω1

Xi
⊕ H2

(Ai,Φi)
→ Ω

2
Xi
⊕ Ω0

Xi

are surjective. By Theorem 1.5.9, we know that H2
(Ai,Φi)

is finite dimensional,
therefore, we can take the image of σi to be supported in Xi(T) for T is large enough.

In the notation above, take H = H2
(A1,Φ1)

⊕ H2
(A2,Φ2)

, we can define a map σ:

σ = σ1 + σ2 : H → Ω
2
X]T
⊕ Ω0

X]T
.

As Li ⊕ σi is surjective, there exists an operator Qi, such that (Li ⊕ σi)Qi = Id,

Qi : Ω2
Xi
⊕ Ω0

Xi
→ H2

(Ai,Φi)
⊕ Ω1

Xi
⊕ Ω1

Xi
. (1.93)

Composing Qi with the projection map into different part of the image, we get
operators πi and Pi. To be explicit, Qi := πi ⊕ Pi where

πi : Ω2
Xi
⊕ Ω0

Xi
→ H2

(Ai,Φi)
,

and
Pi : Ω2

Xi
⊕ Ω0

Xi
→ Ω

1
Xi
⊕ Ω1

Xi
.

Therefore, by definition, for ∀ξ ∈ Ω2
Xi
⊕ Ω0

Xi
, we have

ξ = LiPi(ξ) + σiπi(ξ).

As before, we take φi be a cut off function supported in Xi(2T) as in Figure 1.5, with
φi(x) = 1 on Xi(T) and φ1+φ2 = 1 on X]T . We have the estimate ‖∇φi‖L∞(Xi) ≤ ε(T).

Given ξ ∈ Ω2
X]T
⊕ Ω0

X]T
, denote by ξi the restriction of ξ to Xi(2T), we can define

two approximate inverse operators as follows:

Let P̂(ξ) := φ1P1(ξ1) + φ2P2(ξ2), π̂(ξ) := φ1π1(ξ1) + φ2π2(ξ2). Similarly, we take
L]T := L(A],Φ]), we have the following lemma:

Lemma 1.8.10. ‖L]T P̂(ξ) + σπ̂(ξ) − ξ‖
y
λ+ 1

p −1Lp(X]T )
≤ ε(T)‖ξ‖

y
λ+ 1

p −1Lp(X]T )
.

Proof. Compared to Lemma 1.8.3, we have some additional terms in computing
L]T P̂.
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We have the following computation:

L]T P̂(ξ) = L]T (φ1P1ξ) + L
]T (φ2P2ξ)

= ∇φ1 ? P1(ξ) + ∇φ2 ? P2(ξ) + φ1L
]T P1(ξ) + φ2L

]T P2(ξ)

= ∇φ1 ? P1(ξ) + ∇φ2 ? P2(ξ) + φ1L1P1(ξ) + φ2L2P2(ξ)

+ φ1(L
]T − L1)P1(ξ) + φ2(L

]T − L2)P2(ξ).

(1.94)

For the terms φ1L1P1(ξ) + φ2L2P2(ξ), we have

φ1L1P1(ξ) + φ2L2P2(ξ)

=(φ1 + φ2)(ξ) + φ1σ1π1(ξ) + φ2σ2π2(ξ)

=ξ + σ ˆπ(ξ).

(1.95)

For the other terms in the final step of (1.94), the estimates are exactly the same as
Lemma 1.8.3 and is bounded by ε(T)‖ξ‖

y
λ+ 1

p −1Lp(X]T )
.

Combining all the arguement above, we get the estimate we want. �

Now we can construct the inverse of the operator L]T .

Corollary 1.8.11. ForT is large enough, there exist operatorsP]T : Ω2
X]T
⊕Ω0

X]T
→

Ω1
X]T
⊕ Ω1

X]T
and π]T : Ω2

X]T
⊕ Ω0

X]T
→ H such that ∀ξ ∈ Ω2

X]T
⊕ Ω0

X]T
, we have

ξ = L]TP]T (ξ) + σπ]T (ξ). (1.96)

In addition, the operator norm of P]T and π]T is bounded independent of T .

Proof. By Lemma 1.8.10, denoting R := (L]T ⊕ σ)(P̂ ⊕ π̂) − Id, we know that
when T is large enough, R has operator norm small. Therefore, Id + R is invertible
and Q = (P̂ ⊕ π̂)(1 + R)−1 will be the right inverse of L]T ⊕ σ. As the image of
Q is H2

(A],Φ])
⊕ Ω1

X]T
⊕ Ω1

X]T
, we can take P]T to be the projection to the Ω1 ⊕ Ω1

part of image of Q and π]T to be the projection of H2 part of image of Q, then by
definition, we have

ξ = L]TP]T (ξ) + σπ]T (ξ).

By classical functional analysis, we know the operator norm of Id+R can be choose
to be smaller than 3 and the operator norm of P̂ ⊕ π̂ is dominated by Qi (1.93).
Therefore, the operator norm is independent of T . �
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For a pair (ξ, h) with ξ ∈ Ω2
X]T
⊕ Ω0

X]T
and h ∈ H2, consider the perturbation

equation
KW((A],Φ]) + P]T (ξ)) + σ(h) = 0. (1.97)

Therefore, we have

KW(A],Φ]) + L]TP]T (ξ) + {P]T (ξ),P]T (ξ)} + σ(h) = 0,

KW(A],Φ]) + ξ − σπ]T (ξ) + {P]T (ξ),P]T (ξ)} + σ(h) = 0.(Applying (1.96))
(1.98)

Take h = π]T (ξ), we obtain

KW(A],Φ]) + ξ + {P]T (ξ),P]T (ξ)} = 0, (1.99)

which is the equation (1.83) and it has solution ξ. As P]T is an operator mapping
Ω2

X]T
⊕Ω0

X]T
toΩ1

X]T
⊕Ω1

X]T
, we can define (a, b) ∈ Ω1

X]T
⊕Ω1

X]T
by (a, b) := P]T (ξ).

Then if we denote (A,Φ) := (A] + a,Φ] + b), (A,Φ) will solve the equation

KW(A,Φ) + σ(h) = 0.

By the previous arguments, we get the following corollary, which completes the
proof of the second part of Theorem 1.1.

Corollary 1.8.12. For any interior open set U, there exists (a, b) ∈ Ω1
X]T
⊕ Ω1

X]T

and h ∈ H2
(A1,Φ1)

⊕ H2
(A2,Φ2)

solve the equation KW(A] + a,Φ] + b) + σ(h) = 0 and
satisfy (1) (A] + a,Φ] + b) is a solution to the Kapustin-Witten equations over X]T

if and only if h=0.

(2) We have the estimate:

‖(a, b)‖
y
λ+ 1

p −1Lp
1
≤ Ce−δT, ‖σ(h)‖ ≤ Ce−δT .

These two constants depend on the choice of the open set and δ is the positive
constant in Proposition 1.8.2.

(3) σ(h) is supported in U.
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Proof. The first statement is obvious. For the second statement, by definition, we
have

‖(a, b)‖
y
λ+ 1

p −1Lp
1
= ‖P]T (ξ))‖

y
λ+ 1

p −1Lp
1

≤ C‖ξ‖
y
λ+ 1

p −1Lp
1
(P]T is bounded)

≤ C‖KW(A],Φ])‖
y
λ+ 1

p −1Lp
1
(By (1.90))

≤ Ce−δT .( By Proposition 1.8.2)

(1.100)

Similarly,

‖σ(h)‖
y
λ+ 1

p −1Lp
1
= ‖σ(π]T (ξ))‖

y
λ+ 1

p −1Lp
1

≤ C‖ξ‖
y
λ+ 1

p −1Lp
1
(π]T and σ are bounded)

≤ Ce−δT .( By Proposition 1.8.2)

(1.101)

The third statement is a direct corollary of lemma 1.8.9. �

Given (Ai,Φi), denote by Γi the isotropy group of (Ai,Φi), Γi = {g |g(Ai,Φi) =

(Ai,Φi)}. By Corollary 1.6.9, we know Γi = 1. We will combine the Kuranishi
descriptin in Proposition 1.6.17 with the previous construction. Let Ni ⊂ H1

(Ai,Φi)

be a set parametrize a neighborhood of (Ai,Φi) in the moduli space of Nahm pole
solutions. If we denote N := N1 × N2, then we have the following proposition:

Proposition 1.8.13. For large enough T and small enough Ni, given n ∈ N then we
have

(1) A family of yλ+
1
p H1,p

0 connections (A(n),Φ(n))+ (a(n), b(n)) parametrized by N .

(2) There exist amapΨ : N → H2
(A1,Φ1)

×H2
(A2,Φ2)

, such that (A(n),Φ(n))+(a(n), b(n))
satisfies the Kapustin-Witten equations if and only if Ψ(n) = 0.

(3) LetMX]T be the moduli space of Nahm pole solutions to the Kapustin-Witten
equations over X , then there exists a mapΘ, whose image is the moduli spaceMX]T :

Θ : Ψ−1(0) → MX

n→ (A(n),Φ(n)) + (a(n), b(n)).
(1.102)
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Figure 1.6: The shaded part is Y × (−T
2 ,

T
2 )

Gluing for Non-degenerate Limit
In this section, we will build the gluing theorem for the reducible connection. For
simplicity, in this subsection, we only consider the case H2

(Ai,Φi)
(Xi) = 0. For the H2

non-vanishing case, the result will follows similarly as in subsection 7.3.

As before, we are dealingwithmanifolds X1, X2 with cylindrical ends and boundaries
as in Figure 1.3. We constructed X]T , identified the connecting region with Y ×

(−T
2 ,

T
2 ). This will be more precisely shown in Figure 1.6.

For a positive real number α, take a smooth weighted function WT = eα(
T
2 −|t |) and

over a neighborhood of the boundary of X]T , let WT be the distance function to the
boundary.

Over the manifolds with boundary and cylindrical ends X1 and X2, we have fixed
weighted functions W1 and W2, such that in the connected area W1 = eα(

T
2 +t),

W2 = eα(
T
2 −t) and in the neighborhood of the boundary, W1 and W2 are the distance

functions to the boundaries. It is easy to get that in the common area W1, W2 and
WT dominated each other.

On 1-forms of X]T , use the norm y
λ+ 1

p H1,p
0,α(X

]T ) given by the weighted norm
given by H1,p

0 (X
]T ) and weight function WT . On the 2-forms of X]T , use the norm

y
λ+ 1

p−1Lp
α(X]T ) given by Lp(X]T ) and weighted function WT . Respectively, we get

y
λ+ 1

p H1,p
0,α(Xi) and y

λ+ 1
p−1Lp

α(Xi) for Xi.

By these constructions, we get the following estimate for the approximate solution:

Proposition 1.8.14. ‖KW(A],Φ])‖
y
λ+ 1

p −1
L
p
α (X

]T )

≤ C(e(α−δ)T ).

Proof. By Theorem 1.7.1, we know the C∞ norm will decays as e−δt . In addition,
we have the weighte function that equals to eαt in the end. Therefore, we get the
decay rate we want. �

Therefore, we can take α < δ such that the approximate term exponentially decays
as T →∞.



65

For i = 1, 2, denoting Li := L(Ai,Φi), we can regard the operator as

Li,α : yλ+
1
p H1,p

0,α(Xi) → y
λ+ 1

p−1Lp
α(Xi).

For the approximate solution (A],Φ]), we also have the Fredholm operator L]Tα for
the weighted norm

L
]T
α : yλ+

1
p H1,p

0,α(X
]T ) → y

λ+ 1
p−1Lp

α(X
]T ).

By our assumption H2
(Ai,Φi)

(Xi) = 0, we know there exists a right inverse Qi:

Qi : yλ+
1
p−1Lp

α(Xi) → y
λ+ 1

p H1,p
0,α(Xi),

such that Li,αQi = Id.

As before, we take φi be a cut off function supported in Xi(2T) as in Figure 1.5,
with φi(x) = 1 on Xi(T) and φ1 + φ2 = 1 on X]T and we can have the estimate
‖∇φi‖L∞(Xi) ≤ ε(T).

Take ξ ∈ y
λ+ 1

p−1Lp
α(X]T ), denote by ξi the restriction of ξ on Xi(2T), then we define

a new approximate inverse operator Q̂α(ξ) := φ1Q1(ξ1) + φ2Q2(ξ2), which can be
written as

Q̂ : yλ+
1
p−1Lp

α(Xi) → y
λ+ 1

p H1,p
0,α(Xi).

Right Inverse

Similarily, we have the following estimate for the operator L]Tα .

Lemma 1.8.15. For L]Tα , Q̂α as above, and for ∀ξ ∈ y
λ+ 1

p−1Lp
α(X]T ), we have

‖L
]T
α Q̂α(ξ) − ξ‖

y
λ+ 1

p −1Lp
α (X]T )

≤ ε(T)‖ξ‖
y
λ+ 1

p −1Lp
α (X]T )

.

Proof. After we choose α < δ, we still get the exponential decay result and the
proof is exactly the same as Lemma 1.8.3. �

Proposition 1.8.16. There exists an operator Q]Tα ,

Q
]T
α : yλ+

1
p−1Lp

α(X
]T ) → y

λ+ 1
p H1,p

0,α(X
]T )

such that L]Tα Q
]T
α = Id. In addition, the operator norm of QSα is independent of T.

Proof. By Lemma 1.8.15, we know L]Tα Q̂α has an inverse and we just take Q]Tα :=
Q̂α(L

]T
α Q̂α)

−1. By definition, we get the inverse we want. For the independence ofT

from the operator norm, the arguement is exactly the same as Proposition 1.8.4. �
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Existence Theorem

Over X]T , for arbitary (A,Φ), we denote (a, b) := (A,Φ) − (A],Φ]). We have the
following expansion for the Kapustin-Witten map:

KW(A,Φ) = KW(A],Φ]) + L
]T
α (a, b) + {(a, b), (a, b)}. (1.103)

Take Sα(a, b) = {(a, b), (a, b)}, then we have the following proposition:

Proposition 1.8.17. For anyλ0 ∈ [1− 1
p, 1), Sα is an operator Sα : yλ+

1
p−1Lp(X]T ) →

y
λ+ 1

p−1Lp(X]T ) satisfying Sα(0) = 0 and for two elements β, γ ∈ y
λ+ 1

p−1L2
α(X

]T ),
there exists a constant k such that

‖Sα(β) − Sα(γ)‖
y
λ+ 1

p −1Lp
α

≤ k(‖β‖
y
λ+ 1

p −1Lp
α

+ ‖γ‖
y
λ+ 1

p −1Lp
α

)(‖β − γ‖
y
λ+ 1

p −1Lp
α

).

Proof. The proof is basically the same as the proof of Proposition 1.8.5. We only
need to check the Sobolev inequality is still true in the weighted case and this is
proved in Proposition 1.5.12. �

Now, we have a parallel theorem to Theorem 1.1:

Theorem 1.8.18. Under the gluing hypotheses in the beginning of the chapter, if

(a) limT→+∞ ‖(Ai,Φi) − (Aρi,Φρi )‖L
p0
2 (Yi×{T})

= 0 for some p0 > 2,

(b) ρ is a non-degenerate SL(2;C) flat connection,

then for λ0 ∈ [1 − 1
p, 1), there exists a real number α > 0 such that we have

(1) for some constant δ, there exists a yλ0+
1
2 H1,p

0,α pair (a, b) ∈ Ω1
X]T
(gP) × Ω

1
X]T
(gP)

with
‖(a, b)‖

y
λ0−

1
2 Lp

1,α
≤ Ce(α−δ)T,

(2) there exists an obstruction class h ∈ H2
(A1,Φ1)

(X1) × H2
(A2,Φ2)

(X2) such that h = 0
if and only if (A] + a,Φ] + b) is a solution to the Kapustin-Witten equations (4.1).

Proof. For the case that H2 vanishes, by Proposition 1.8.17, we know that the
opertor Sα satisfies the assumption for Lemma 1.8.6. By Proposition 1.8.14, we
know we can choose η small enough satifying Lemma 1.8.6. Therefore, by Lemma
1.8.6, there exists a solution to the equation (1.103) and we get a solution to the
Kapustin-Witten equations (4.1). The regularity statements of the connections in
the theorem will follows by the same way as in Chapter 8.1.
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Similarly, we can follow exactly the same as Chapter 1.8.3 and prove the second
statement of the theorem.

1.9 Local Model for Gluing Picture
In this section, we will give a Kuranishi description of the gluing construction for
the Kapustin-Witten equations.

For the description for the anti-self-dual equations, see [19], [20], [53]. In this
section, we assume p ∈ (2, 4), λ ∈ [1 − 1

p, 1) and denote by q the real number
satisfying the relationship 1 + 4

q =
4
p .

Gauge Fixing Problem
For i = 1, 2, letMi be the moduli space of Nahm pole solutions to the Kapustin-
Witten equations over Xi defined in (1.55). Let Ni be pre-compact subsets of the
moduli spaceMi such that any element of Ni is regular in the moduli spaceMi. To
be more explicit, for any (Ai,Φi) ∈ Ni, we have H0

(Ai,Φi)
= 0 and H2

(Ai,Φi)
= 0. By

Proposition 1.8.13, we know there exists a map ΘT defined as follows:

ΘT : N1 × N2 →MX . (1.104)

We have the following proposition on the map Θ:

Proposition 1.9.1. There exists a T0, such that for any T > T0, we have:

(1) For (Ai,Φi) ∈ Ni, let (A,Φ) := ΘT ((A1,Φ1), (A2,Φ2)), we have H2
(A,Φ) = 0,

(2) ΘT is a diffeomorphism to its image.

Proof. (1) Let (A],Φ]) be the approximate solution, let (a, b) := (A,Φ) − (A],Φ]).
By Theorem 1.8.1, we have ‖(a, b)‖

y
λ+ 1

p −1Lp
1
≤ Ce−CT . Let L1

(A],Φ])
(L1
(A,Φ) ) be

the linearization operator of (A],Φ]) (L(A,Φ)). By Proposition 1.8.4, there exists an
operator Q] : yλ+

1
p−1Lp → y

λ+ 1
p H1,p

0 such that L1
(A],Φ])

Q] = Id. Therefore, we can
choose T big enough such that ‖L1

(A,Φ)Q
] − L1

(A],Φ])
Q]‖

y
λ+ 1

p −1Lp
≤ 1

2 . This implies

that L1
(A,Φ) has a right inverse and it is surjective.

(2) By the assumption that Ni is regular, we have dim Ni = IndPi. By Proposition
1.5.17, we have IndP = IndP1 + IndP2. Let Im(Θ) to be the image of Θ. We have
dim(Im(Θ)) = dim N1+dim N2. Therefore, in order to proveΘT is a diffeomorphism,
we only need to prove dΘ is injective. Choose an open subsetU ⊂ X1 which is away
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from the gluing part. By Proposition 1.8.7, we know over U, (A,Φ) is C1 close to
(A1,Φ1) thus proves that dΘ is injective. �

Now we will characterize the Nahm pole solutions we found by our gluing construc-
tion. Given solutions (Ai,Φi). Let (A],Φ]) be the approximate solution. Let dλq be
the metric on the space B given by

dλq ([(A1,Φ1)], [(A2,Φ2)]) = inf
u∈G
‖(A1,Φ1) − u(A2,Φ2)‖

y
λ+ 1

p −1Lq
. (1.105)

Then, we can define an open neighborhood U(ε) of (A],Φ]) by

U(A],Φ])(ε) = {(A,Φ) ∈ B|d
λ
q ((A,Φ), (A

],Φ]))| < ε, ‖KW(A,Φ)‖
y
λ+ 1

p −1Lp
< ε}.

(1.106)

Then we have the following theorem

Theorem 1.9.2. For ? = 0, 1, 2, if H?
(Ai,Φi)

= 0, then for small enough ε , any point
(A,Φ) ∈ U(ε) can be represented by the following form (A,Φ) = (A],Φ]) + Qφ,
where ‖φ‖

y
λ+ 1

p −1Lp
≤ Cε and Q is the right inverse operator defined in Proposition

1.8.4.

We prove Theorem 1.9.2 by the method of continuation. We need a new interpreta-
tion of the operator.

Given (Ai,Φ) satisfying the assumption of Theorem 1.9.2, let (A],Φ]) be the ap-
proximate solution over X]T . In this section, for simplification, we denote L the
linearization operator of (A],Φ]) and let Q be the right inverse of L. Combining
this with the embedding y

λ+ 1
p H1,p

0 ↪→ y
λ+ 1

p−1Lq, we have

L : yλ+
1
p H1,p

0 (Ω
1(gP) ×Ω

1(gP)) → y
λ+ 1

p−1Lp(Ω2(gP) ×Ω
0(gP)),

Q : yλ+
1
p−1Lp(Ω2(gP) ×Ω

0(gP)) → y
λ+ 1

p−1Lq(Ω1(gP) ×Ω
1(gP)).

(1.107)

Let B ∈ U(A],Φ])(ε), then WLOG, we assume B = (A],Φ]) + (a, b) and consider Bt

which is a path of connection pairs defined as follows:

Bt := (A],Φ]) + t(a, b)

and we can define the following set S:

Definition 1.9.3. Given δ small enough, define S ⊂ [0, 1] to be the interval of all
t ∈ [0, 1] such that there exists gauge transform u : [0, t] → G and φ : [0, t] →
Ω2(gP) ×Ω

0(gP) such that
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(1) φ(0) = 0, u(0) = 1,

(2) ut(Bt) = (A],Φ]) +Q(φt) with ‖φt ‖
y
λ+ 1

p −1Lp
< δ.

Our target is to prove S = [0, 1]. By definition of S, we have the following Proposi-
tion:

Proposition 1.9.4. S is non empty.

Proof. As B0 = (A],Φ]), take φ0 = 0 and u(0) = 1, we know 0 ∈ S. �

Now, we are going to prove S is an open set and before the proving, we will need
some preparations.

Let d0 to be d0
(A],Φ])

in the Kuranishi complex (1.7), where for ξ ∈ Ω0(gP), d0(ξ) =

(−dA]ξ, [ξ,Φ
]]). For any ξ ∈ Ω0(gP) and φ ∈ Ω2(gP) ×Ω

0(gP), define the operator

Π :Ω0(gP) ×Ω
2(gP) ×Ω

0(gP) → Ω
1(gP) ×Ω

1(gP),

(ξ , φ) → d0(ξ) +Q(φ).
(1.108)

Let V1 be a norm over Ω0(gP) ×Ω
2(gP) ×Ω

0(gP) defined as follows:

‖(ξ, φ)‖V1 = ‖d
0(ξ)‖

y
λ+ 1

p −1Lq
+ ‖φ‖

y
λ+ 1

p −1Lp
.

For (a, b) ∈ Ω1(gP) ×Ω
1(gP), we define another norm V2 as

‖(a, b)‖V2 = ‖(a, b)‖
y
λ+ 1

p −1Lq
+ ‖L(a, b)‖

y
λ+ 1

p −1Lp
.

Then we have the following Proposition:

Proposition 1.9.5. Considering Π as operator from V1 to V2:

Π : V1 → V2,

we have

(1) Π is a bounded operator from V1 to V2,

(2) There exists a constant C independent of T such that ‖(ξ, φ)‖V1 ≤ C‖Π(ξ, φ)‖V2 .
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Proof. (1) We have the following computation for the operator Π:

‖Π(ξ, φ)‖B2

≤‖d0(ξ) +Q(φ)‖
y
λ+ 1

p −1Lq
+ ‖L ◦ d0(ξ) + L ◦Q(φ)‖

y
λ+ 1

p −1Lp

(Here we use L ◦ d0(ξ) = [KW(A],Φ]), ξ] and L ◦ Q = Id)

≤‖d0(ξ)‖
y
λ+ 1

p −1Lq
+ ‖φ‖

y
λ+ 1

p −1Lp
+ ‖[KW(A],Φ]), ξ]‖

y
λ+ 1

p −1Lp
+ ‖φ‖

y
λ+ 1

p −1Lp

≤‖d0(ξ)‖
y
λ+ 1

p −1Lq
+ ‖φ‖

y
λ+ 1

p −1Lp
.

(1.109)

(2) Take α = d0(ξ) + Q(φ), then we have Lα = [KW(A],Φ]), ξ] + φ. We have the
following estimate:

‖d0(ξ)‖
y
λ+ 1

p −1Lq
≤ ‖α −Qφ‖

y
λ+ 1

p −1Lq

≤ ‖α‖
y
λ+ 1

p −1Lq
+ ‖Qφ‖

y
λ+ 1

p −1Lq

≤ ‖α‖
y
λ+ 1

p −1Lq
+ ‖φ‖

y
λ+ 1

p −1Lp
.

(1.110)

In addition, by the relation Lα = [KW(A],Φ]), ξ] + φ, we have

‖φ‖
y
λ+ 1

p −1Lp
≤ ‖Lα‖

y
λ+ 1

p −1Lp
+ ‖[KW(A],Φ]), ξ]‖

y
λ+ 1

p −1Lp

≤ ‖α‖V2 + ε ‖ξ‖C0(Here we use Proposition 1.8.2)

≤ ‖α‖V2 + ε ‖d
0(ξ)‖

y
λ+ 1

p −1Lq

= ‖α‖V2 + ε ‖α −Qφ‖
y
λ+ 1

p −1Lq

≤ ‖α‖V2 + ε ‖α‖
y
λ+ 1

p −1Lq
+ ε ‖φ‖

y
λ+ 1

p −1Lp
.

(1.111)

By taking ε small enough, we get ‖φ‖
y
λ+ 1

p −1Lp
≤ C‖α‖V2 .

By definition, ‖(ξ, φ)‖V1 = ‖d
0(ξ)‖

y
λ+ 1

p −1Lq
+ ‖φ‖

y
λ+ 1

p −1Lp
. Combining equations

(1.110) and (1.111), we obtain

‖(ξ, φ)‖V1 ≤ C‖α‖V2 = C‖Π(ξ, φ)‖V2 .

�.

By this estimate, we get an immediate corollary:

Corollary 1.9.6. Π is an injective operator.
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Proposition 1.9.7. For ? = 0, 1, 2, if H?
(Ai,Φi)

= 0, the operator Π is a surjective
operator from V1 to V2

Proof. As Q is the inverse of L, by the assumption H?
(Ai,Φi)

= 0, we know Ind Π =
−Ind D(A,Φ) = 0. By Proposition 1.9.5, we know Π is injective, thus Π is surjective.

�

Proposition 1.9.8. S is an open set in [0, 1].

Proof. By Proposition 1.9.7, Π is surjective. By the implicit function theorem, we
get the result immediately. �

Now, we hope to prove that the set S is a closed set. To begin with, we prove that
the condition (2) in Definition 1.9.3 is a closed condition:

Lemma 1.9.9. For suitable δ and ε , we have ‖φt ‖
y
λ+ 1

p −1Lp
≤ 1

2δ.

Proof. By the relation ut(Bt) = (A],Φ]) +Q(φt), we have:

KW(ut(Bt)) = KW(A],Φ]) + φt + {Q(φt),Q(φt)}. (1.112)

Therefore, we have

‖φt ‖
y
λ+ 1

p −1Lp
≤ ‖KW(A],Φ])‖

y
λ+ 1

p −1Lp
+ ‖KW(Bt)‖

y
λ+ 1

p −1Lp
+ ‖Q(φt)‖

2
y
λ+ 1

p −1Lq

(Here we use Proposition 1.8.2 and de f inition (1.106))

≤ ε(T) + ε + C2‖φt ‖
2
y
λ+ 1

p −1Lq
.

(1.113)

For δ < 1
2C2 , ε(T) ≤ 1

4δ and ε ≤
1
4δ, we have ‖φt ‖ ≤

1
2δ, so the open condition is

also closed. �

Proposition 1.9.10. For δ small enough and suitable parameter T and ε , S is a
closed set in [0, 1].

Proof. Now is routine to prove the set S is closed. Let assume a sequence ti ∈ S

with ti → t0. For simplification, we denote Bi := Bti and φi := φti . By the definition
of S, we have the relationship ut(Bi) = (A],Φ]) +Q(φi).

By Lemma 1.9.9, we have the closed condition ‖φt ‖
y
λ+ 1

p −1Lp
≤ 1

2δ. By definition of

Bi, we have Bi = (A],Φ])+ ti(a, b) and (a, b) ∈ y
λ+ 1

p H1,p
0 ⊂ y

λ+ 1
p−1Lp

1 . We know Bi

strongly converges in y
λ+ 1

p−1Lp
1 .
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By the uniform bound on the φi, the φi converges to a limit φ0 weakly in y
λ+ 1

p−1Lp.
Define Ai = (A],Φ]) + Q(φi). Ai is uniformly bounded in y

λ+ 1
p H1,p

0 ↪→ y
λ+ 1

p−1Lp
1 .

Therefore, Ai converges weakly in y
λ+ 1

p−1Lp
1 .

As ui is a gauge transformation, by the relation ui(Bi) = Ai, we have dui = ui Ai−Biui .

By the boundedness of Ai and Bi, we know ui weakly converges to u0 in y
λ+ 1

p−1Lp
2 .

Therefore, by the Sobolev embedding theorem, ui strongly converges in y
λ+ 1

p−1Lp
1

to u0. Therefore, we have the relationship u0(B0) = A0 which imply t0 ∈ S. �

We get an immediate corollary from Proposition 1.9.4, Proposition 1.9.8 and Propo-
sition 1.9.10:

Corollary 1.9.11. For the set S in definition 1.9.3, we have S = [0, 1].

The proof of Theorem 1.9.2 follows immediately.

Local Model for Regular Moduli Space
Now, we are able to construct a local model for the gluing picture in the acyclic case
without the assumption on H1.

Denote ni = Ind(Pi) and we don’t assume ni = 0. Denote M?
Pi

(M?
P) to be the

moduli space which only consists of solutions to the Kapustin-Witten equations
over Xi (X]T ), which have H2 = 0.

For i = 1, 2, given two solutions (Ai,Φi) ∈ M
?
Pi
, there exists an open neighborhood

Ui such that we can find functions

χ : Ui ⊂ M
?
Pi
→ Rni

which give local coordinates around (Ai,Φi) in the moduli spacesM?
Pi
. Denote

UP(ε) = {(A,Φ) ∈ B|∃(A0,Φ0) ∈ M
?
P, dλq ((A,Φ), (A0,Φ0)) < ε, ‖KW(A,Φ)‖

y
λ+ 1

p −1
Lp

< ε}.

(1.114)
Then by the exponential decay result (Theorem 1.7.1), we know that by choosing
suitable compact sets Gi ⊂ Xi and cut-off functions, we have a natural inclusion Ui

intoM?
Pi
. Choose yi ∈ Im(χi(Ui)) and define the cut-down moduli space

L = χ−1
1 (y1) ∩ χ

−1
2 (y2) ∩M

?
P ⊂ UP(ε),

which has virtual dimensional 0.

For T is large enough, recall I : CP1 × CP2 → CP is the operator defined in (1.74)
that constructs the approximate solution. Denote by (A0,Φ0) := I(χ−1

1 (y1), χ
−1
2 (y2))
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the approximate solution constructed by χ−1
1 (y1) and χ−1

2 (y2). Then we have the
following Proposition. Compare this to Theorem 1.9.2:

Proposition 1.9.12. For ε small enough, there exists a unique solution (A′,Φ′) in L

such that U(A0,Φ0)(ε) ∩ L = (A′,Φ′).

Now, we will define a distance to make a comparision between connection pairs
(A0,Φ0) over X]T and (Ai,Φi) over Xi.

We can define the norm d as

d((A],Φ]); (A1,Φ1), (A2,Φ2)) = in fu∈GP ‖(A0,Φ0) − I((A1,Φ1), (A2,Φ2))‖Lq(X]T ),

(1.115)

where the I is the operator that constructs the approximate solutions defined in
(1.74).

Summarizing Proposition 1.9.1 and Theorem 1.9.2, we obtain the following state-
ment:

Theorem 1.9.13. Denote by Ui the compact sets of regular points in the moduli
space M?

Pi
. There exist T0, ε0 such that for T > T0 and ε < ε0, there exist open

neighborhoods Ni of Ui and a map

Θ : N1 × N2 →M
?
P,

such that

(1) Θ is a diffeomorphism to its image, and the image contains regular points,

(2) d(Θ((A1,Φ1), (A2,Φ2)); (A1,Φ1), (A2,Φ2))) ≤ ε for any (Ai,Φi) ∈ Ni,

(3) Any connection (A],Φ]) ∈ M?
P with d((A],Φ]); (A1,Φ1), (A2,Φ2)) ≤ ε for some

(Ai,Φi) ∈ Ni lies in the image of Θ.

Now we will have a brief discussion of the local gluing picture in the general case
the H2 is non-vanishing. For (Ai,Φi) ∈ Mi with H2(Ai,Φi) non-vanishing, we can
do the trick as in Section 1.8 by adding some finite dimensional linear space as
the obstruction class and have a similar obstruction type statement as in Theorem
1.9.13. We will precise by state the theorem in general in the next subsection.
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Conclusions
Now, we can summarize what we have proved and state the following theorem

Theorem 1.9.14. Let (Ai,Φi) be connections pairs over manifolds Xi with Nahm
poles over Zi, for sufficiently large T , there is a local Kuranishi model for an open
set in the moduli space over X]T :

(1) There exists a neighborhood N of {0} ⊂ H1
(A1,Φ1)

× H1
(A2,Φ2)

and a map Ψ from
N to H2

(A1,Φ1)
× H2

(A2,Φ2)
.

(2) There exists a map Θ which is a homeomorphism from Ψ−1(0) to an open set
V ⊂ M?

X]
.

1.10 Some Applications
In this section, we will introduce some applications of the gluing theorem 1.8.1.

As for the model solution in Section 2, we don’t know whether the obstruction
class vanish or not and right now we don’t have any transversality result for the
Kapustin-Witten equations. We just consider the obstruction class as a perturbation
to the equation. See [18] for the obstruction perturbation for ASD equations.

Consider a compact 4-dimensional manifold X4 with a cylindrical end which is
identified with Y3 × [0,+∞), given any SL(2;C) representation ρ of π1(X4):

ρ : π1(X4) → SL(2;C),

denote by (Aρ,Φρ) the SL(2;C) flat connection associated to ρ. Then we know
(Aρ,Φρ) satisfies the following equations:

FAρ − Φρ ∧ Φρ = 0,

dAρΦρ = 0,

d?AρΦρ = 0.

(1.116)

Obviously, (Aρ,Φρ) is a solution to the Kapustin-Witten equations (4.1).

By gluing the suitable SL(2;C) flat connection, we have the following theorem:

Theorem 1.10.1. Consider a smooth compact 4-manifold M with boundary Y .
Assume Y is S3, T3 or any hyperbolic 3-manifold. For Y is hyperbolic, we assume
the inclusion of π1(Y ) into π1(M) is injective. For a real number T0, we can glue
M with Y × (0,T0] along ∂M and Y × {T0} to get a new manifold, which denote
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as MT0 := Y × (0,T0) ∪ M . For T0 large enough, there exists an SU(2) bundle P

and its adjoint bundle gP over MT0 such that given any interior non-empty open
neighborhood U ⊂ M , we have:

(1) There exist h1 ∈ Ω
2
MT0
(gP), h2 ∈ Ω

0
MT0
(gP) supported on U,

(2) There exists a connection A over P and a gP-valued 1-form Φ such that (A,Φ)
satisfies the Nahm pole boundary condition over Y × {0} ⊂ MT0 and (A,Φ) is
a solution to the following obstruction perturbed Kapustin-Witten equations over
MT0:

FA − Φ ∧ Φ +?dAΦ = h1,

d?AΦ = h2.
(1.117)

Proof. By Example 4.4.3, 1.2.3 and 4.4.4, we know we have model Nahm pole
solutions for Y × (0,+∞) when Y is S3, T3 or any hyperbolic manifold. Denote
the limit of the model solution as ρ which is a flat SL(2;C) connection. Here the
model solution for hyperbolic manifold has limit in cylindrical end to a irreducible
flat SL(2;C) connection.

Let M∞ = Y ×(0,+∞)∪M , choose the flat connection ρ and this will give a solution
to the Kapustin-Witten equations over M∞. ForY hyperbolic, we use the assumption
π1 injective in order to obtain a flat SL(2;C) connection over M∞ with limit the
irreducible SL(2;C) connection over the cylindrical end coming from the hyperbolic
metric.

Applying Theorem 1.8.1 and Theorem 1.8.18, we can glue these two solutions
together and by Corollary 1.8.12, we prove the statement for h1, h2. �

In addition, by gluing the model solutions (A0,Φ0) on Example 4.4.3, 1.2.3 and
4.4.4 with themselves, we get the following corollary:

Corollary 1.10.2. For a 3-manifold Y3 equals to S3, T3 or any hyperbolic 3-
manifold, for T large enough, there exists a solutions (A,Φ) over Y3 × (−T,T) to the
twisted Kapustin-Witten equations

KW(A,Φ) + h = 0.

Here (A,Φ) satisfies the Nahm pole boundary condition overY3×{−T} andY3×{T}

and h can be choosen to be supported on any interior open set.
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Appendix 1
In this Appendix, we will give a brief introduction to the Fredholm theory of
uniformly degenerate elliptic operators that is developed in [41] and [45]. We use
the notation from [45] for most of the definitions in this Appendix.

Let M be a compact smooth 4-manifold with 3-manifold boundary Y and choose
coordinates (®x, y) near the boundary where y ≥ 0 and ®x = (x1, x2, x3) ∈ R

3. A
differential operatorD0 is called uniformly degenerate if for α = (α1, α2, α3), in any
coordinate chart near the boundary, it has the form

D0 =
∑

j+|α |≤m

A jα(®x, y)(y∂y) j(y∂x)
α, (1.118)

where (y∂x)
α = (y∂x1)

α1(y∂x2)
α2(y∂x3)

α3 .

We define the leading term of D0 in this coordinate chart as

Dm
0 :=

∑
j+|α |=m

A jα(®x, y)(y∂y) j(y∂x)
α. (1.119)

The operatorD0 is called uniformly degenerate elliptic ifD0 is elliptic at the interior
point and if in a neighborhood of the boundary and for (1.119), we replace each y∂xi

and y∂y by variables
√
−1ki and

√
−1k4 and it is invertible when (k1, · · · , k4) , 0.

There is a model operator over R4
+, called the indicial operator

I(D0) =
∑
j≤m

A j0(®x, 0)λ j . (1.120)

The indicial root of I(D0) is the set of complex numbers λ such that s−λI(D0)sλ is
not invertible.

In [41], Mazzeo works in the class of pseudodifferential operators on M adapted to
some particular type of singularitywhich includes theNahmpole bounary condition.
The class is called 0-pseudodifferential operators. Denote by Ψ?0 (M) the elements
which are described by the singularity structure of their Schwartz kernels.

Given a pseudodifferential operator A, we denote the Schwartz kernel of A as
κA(y, ®x, y, ®x′) which is a distribution over M2 := M × M . We allow κA to have the
standard singularity of pseudodifferential operator along the diagonal {y = y′, ®x =

®x′} and we will require some special behavior over the boundary of M2, which in
coordinates is described as {y = 0, y′ = 0} and over the intersection of diagonal
with the boundary, {y = 0, y′ = 0, ®x = ®x′}.
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Let M2
0 be a real blow-up of M2 at the boundary of diagonal, which is constructed

by replacing each point in {y = 0, y′ = 0, ®x = ®x′} with its inward-pointing normal
sphere-bundle. We can describe it in polar coordinates:

R = (y2 + (y′)2 + | ®x − ®x′|2)
1
2 , ω = (ω0, ω

′

0, ω̂) = (
y

R
,
y′

R
,
®x − ®x′

R
).

Each point at R = 0 is replaced by a quarter-sphere and (R, ω, x′) can be regarded
as a full set of coordinates. M2

0 is a manifold with corners, we call the surface
corresponding to R = 0 the front face. The surfaces corresponding to ω0 = 0 and
ω′0 = 0 are called its left and right faces. We have an obviously blow-down map
π : M2

0 → M2.We say A ∈ Ψ?0 if κA is the push forward of a distribution on M2
0 by

the blow-down map π.

Take a cut-off function χ over M2
0 which is equals 1 over a small neighborhood of

the diagonal set {ω0 = ω
′
0, ω̂ = 0} and 0 outside of a larger neighborhood. Then

κA = κ′A + κ
′′
A, where κ

′
A = χκA and κ′′A = (1 − χ)κA. Here κ′A supported away

from the left and the right faces and has a pseudodifferential singularity of order m

along the lift diagonal area. If we factor κ′A = R−4 κ̂′A, then κ̂A extends smoothly of
the front face of M2

0 along the conormal diagonal singularity and R−4 only depends
on the manifold’s dimension that corresponds to the determinant of the blow-down
map π and κ′′A is smooth over the diagonal singularity.

Now we have the following definition of space Ψm,s,a,b
0 (M):

Definition 1.10.3. For any real number s, a, b, we denote a psedudifferential opera-
tor A ∈ Ψm,s,a,b

0 (M) if its Schwartz kernel κA has polyhomogeneous expansion with
the terms R−4+s at the front face, ωa

0 at the left face and ωb
0 at the right face.

We denote A ∈ Ψ−∞,a,b(M) if its Schwartz kernels are smooth in the interior and
polyhomogeneous at two hypersurfaces (y = 0 and y′ = 0) of M2.

In this setting, the identity operator Id ∈ Ψ0,0,∅,∅
0 , has zero order over the diagonal

and its Schwartz kernel δ(y − y′)δ(®x − ®x′) is supported over the diagonal which has
a trivial expansion at the left and right faces. In polar coordinates, we have the
following identification:

δ(y − y′)δ(®x − ®x′) = R−4δ(ω0 − ω
′
0)δ(ω̂), (1.121)

and this corresponds to zero in the second superscript.

Now, suppose P is an SU(2) bunlde over M and let (A,Φ) ∈ CP be a Nahm pole
solution to the Kapustin-Witten equations. For simplification, let D := D(A,Φ). We
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denote D0 = yD. As pointed out in [45], D0 is a uniformly degenerate operator of
order 1. Choose p ≥ 2 and q satisfying 1

p +
1
q = 1.

In [45] Section 5.3, Mazzeo and Witten prove the following result:

Theorem 1.10.4. [45] There exists operators S ∈ Ψ−1,1,λ̄,b
0 (M), R1 ∈ Ψ

−∞,λ̄,b(M)

and R2 ∈ Ψ
−∞,b,λ̄ such that

D ◦ S = Id − R1, S ◦ D = Id − R2, (1.122)

where λ̄ = 1 for the case this paper considered and b ≥ 1.

In [41], Mazzeo prove the following lemma about the distribution Ψm,s,a,b
0 .

Lemma 1.10.5. [41, Theorem 3.25, Remark above Proposition 3.28]

• For any real number δ and δ′, take A ∈ Ψ−∞,s,a,b and let A′ = yδ
′

Ay′−δ be its
conjugation, then we have A′ ∈ Ψ−∞,s+δ−δ

′,a−δ′,b+δ.

• For A ∈ Ψ−∞,s,a,b, if a > − 1
p , b > − 1

q , s ≥ 0, and u ∈ Lp, v ∈ Lq, we have
|〈Au, v〉L2 | ≤ ‖u‖Lp ‖v‖Lq , which implies that A is a bounded operator from Lp to
Lp.

Wehave the following propositionwhose proof is slightlymodified from [41] Section
3 due to R. Mazzeo.

Proposition 1.10.6. For any real number λ and any p > 1, the operator D,

D : yλ+
1
p H1,p

0 (M) → y
λ+ 1

p−1Lp(M) (1.123)

is a bounded linear operator.

Proof. As D is a differential operator, the result follows immediately from the
definition of D. �

For the operator S, we have the following proposition:

Proposition 1.10.7. For λ ∈ (−1, 1), the operator S ∈ Ψ−1,1,1,b
0 (M):

S : yλ+
1
p−1Lp(M) → y

λ+ 1
p H1,p

0 (M) (1.124)

is a bounded linear operator.
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Proof. Denote the Schwartz kernel of S as κS. By choosing a cut off function over
the diagonal, κS = κ

′
S + κ

′′
S where κ′S supported away from the left and the right faces

and has a pseudodifferential singularity of order m along the lift diagonal area and
κ′′S is smooth over the diagonal. Denote S′ (S′′) to be the operator corresponds to
the Schwartz kernel κ′S(κ

′′
S ).

We first prove that S′ : yλ+
1
p−1Lp(M) → y

λ+ 1
p H1,p

0 (M) is bounded. It is sufficient to
prove that S′y−1 is bounded operator from y

λ+ 1
p Lp(M) to y

λ+ 1
p H1,p

0 (M). We denote
A′ := S′y−1 and now the A′ is dilation invariant. Choose a Whitney decomposition
of M into a union of boxes Bi whose diameter in x and y directions is comparable
to the distance to ∂M . For each Bi, we can choose an affine map pi which identifies
a standard box B with Bi. For f ∈ y

λ+ 1
p−1Lp(M), denote by fi its restriction to

Bi. Then ‖ f ‖
y
λ+ 1

p H1,p
0 (M)

and
∑

i y
−λ− 1

p

i ‖ fi‖H1,p
0 (Bi)

are comparable to each other

where yi can be the y coordinate of any points in Bi and same for ‖ f ‖
y
λ+ 1

p −1Lp
and∑

i y
−λ− 1

p

i ‖ fi‖Lp(Bi). We denote A′i to be the restriction of A′ over Bi then we have
p?i (A

′ f )i = A′i(p
?
i fi). By the approximate dilation invariance, we know A′i are a

uniformly bounded family of psedodifferential operators. Then we have

‖A′ f ‖
y
λ+ 1

p H1,p
0 (M)

≤ C
∑

i

y
−λ− 1

p

i ‖(A′ f )i‖H1,p
0 (Bi)

≤ C
∑

i

y
−λ− 1

p

i ‖p?i (A
′ f )i‖H1,p

0 (Bi)
.

The classical Lp theory about pseudodifferential operators of order 1 in every box
[58] gives

‖p?i (A
′ f )i‖H1,p

0 (Bi)
= ‖A′i p

?
i fi‖Lp

1 (B)
≤ C‖p?i fi‖Lp(B) = C‖ fi‖Lp(Bi).

Summarizing the discussion above, we get

‖A′ f ‖
y
λ+ 1

p H1,p
0 (M)

≤ C‖ f ‖
y
λ+ 1

p Lp(M)
,

thus we get ‖S′ f ‖
y
λ+ 1

p −1H1,p
0 (M)

≤ ‖ f ‖
y
λ+ 1

p Lp(M)
.

Now, let’s consider the operator S′′, for some b > 1. For any integer k and k′, we
will show S′′ : yλ+

1
p−1Hk,p

0 (M) → y
λ+ 1

p Hk ′,p
0 (M) is a bounded operator. As S′′ is an

infinite smoothing operator over the diagonal, we only need to prove S′′ is bounded
from y

λ+ 1
p−1Lp to y

λ+ 1
p Lp. Denote A′′ = y

λ+ 1
p S′′y1− 1

p−λ, then after the shifting, on
the left faces, A′′ will be polyhomogenous with leading order b+ λ+ 1

p − 1. In order
to get bounds of the Schwartz kernel, we require that b + λ + 1

p − 1 > − 1
q . When

λ > −1, this is automatically satisfied as b > 1. The leading order on the right faces
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will be λ̄ − λ − 1
p , as λ < 1 and λ̄ = 1, we automatically get λ̄ − λ − 1

p < − 1
p . By

applying the second bullet of lemma 1.10.5, we get A′′ is bounded from Lp to Lp

which implies that S′′ is bounded from y
λ+ 1

p−1Lp to y
λ+ 1

p Lp. �

For the operator R1, R2, we have the following proposition:

Proposition 1.10.8. For λ ∈ (−1, 1), i = 1, 2, and any λ′ ≤ 1, the operator Ri

Ri : yλ+
1
p Hk,p

0 (M) → y
λ′+ 1

p Hk ′,p
0 (M) (1.125)

is a bounded for any k, k′. In addition,

Ri : yλ+
1
p Lp → y

λ+ 1
p Lp

is a compact operator.

Proof. We first prove the bounded statement. As R1 ∈ Ψ
−∞,1,b, it is smooth over

the diagonal, we only need to prove that R1 is a bounded operator from y
λ+ 1

p Lp

to y
λ′+ 1

p Lp. Using the same trick as the previous proposition, we denote R′1 =

yδ
′

R1y
−λ− 1

p . In order to get C0 bound of the Schwartz kernel, now we require
δ′ < 1

p + 1 on the left face, which implies λ′ ≤ 1, same argument works for R2.

By Arzela-Ascoli theorem, we get that Ri is compact operator. �

Appendix 2
Let X be a manifold with boundary Z and cylindrical end with a fixed limit SL(2;C)
flat connection, then for any connection pairs (A0,Φ0) satisfying the Nahm boundary
condition over Z and converges to SL(2;C) flat connection over the cylindrical end
in Lp

1 norm for some p > 2, we will prove the closeness property of the operator
d0
(A0,Φ0)

. In this appendix, we assume k ≥ 0 and λ ≥ −1.

We have the following lemma about bounded linear operators between Banach
spaces:

Lemma 1.10.9. [62, Appendix E, Lemma E.3] Let D : X → Y be a bounded
operator between Banach spaces.

(i) The following are equivalent:

• D has a finite dimensional kernel and its image is closed.

• There exists a compact operator K : X → Z to another Banach space Z and a
constant C such that

‖u‖X ≤ C(‖Du‖Y + ‖Ku‖Z ) ∀u ∈ X . (1.126)
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(ii) The following are equivalent:

• D is injectie and its image is closed.

• There exists a constant C such that

‖u‖X ≤ C‖Du‖Y ∀u ∈ X . (1.127)

In particular, if a bounded linear operator satisfies (1.126) and it is injective, then it
satisfies (3.45).

Consider the operator dA0 associated with the following norms defined as:

dA0 : yλ+
1
p+1H2,p

0 (Ω
0(gP)) → y

λ+ 1
p H1,p

0 (Ω
1(gP)). (1.128)

By the definition of the norm, dA0 is a bounded linear operator.

Let Ωodd(gP) be the direct sum of odd differential forms and let Ωeven(gP) be the
direct sum of even differential forms. Consider the following operator:

K : yλ+
1
p+1H2,p

0 (Ω
even(gP)) → y

λ+ 1
p H1,p

0 (Ω
edd(gP)). (1.129)

We denote K0 = yK and we will study the semi Fredholm property of operators K
and K0.

Proposition 1.10.10. K0 is a uniformly degenerate elliptic operator and 0 is the
only indicial root.

Proof. The statement of uniformly degenerate elliptic operator is obvious. The
indicial operator of K0 is I(K0, λ) = A10λ where A10 is an invertible matrix. Thus
I(K0, λ) is not invertible if and only if λ = 0. �

In [41], Mazzeo proves the following semi Fredholm theory of uniformly degenerate
operator:

Theorem 1.10.11. [41, Theorem 6.1] For any λ > 0, there exist operators G and P

such that
GK0 = Id − P.

Here G is a bounded operator G : y
λ+ 1

p H1,p
0 → y

λ+ 1
p H2,p

0 and P is a compact
operator.

Remark. As there is only one indicial root, the λ̄ in the original statement has to be
0. The bounded operator statement and compact operator statement can be proved
in a similar way as Proposition 1.10.7 and Proposition 1.10.8.
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An immediately corollary of this theorem is that

Corollary 1.10.12. When λ > 0,K0 has finite dimensional kernel and closed range.

Proof. By the previous theorem, as P is a compact operator and if f ∈ KerK0, we
have P f = f . Therefore, the kernel of P is finite dimensional. By Lemma 1.10.9
and the boundness property of G, we know K0 has closed range. �

We have the following proposition:

Proposition 1.10.13. Forλ > −1, the dA0 : yλ+
1
p+1H2,p

0 (Ω
0(gP)) → y

λ+ 1
p H1,p

0 (Ω
1(gP))

has finite dimensional kernel and closed range.

Proof. WLOG, we can assume KerdA0 is zero and prove the closed range statement.
As Ω0(gP) is a closed subset of Ωeven(gP), the restriction of K0 over Ω0(gP) which
is ydA0 also has closed image. By Lemma 1.10.9, we have the following inequality

‖u‖
y
λ+ 1

p +1H2,p
0 (Ω

0(gP))
≤ C‖ydA0u‖

y
λ+ 1

p +1H1,p
0 (Ω

1(gP))
, (1.130)

which implies

‖u‖
y
λ+ 1

p +1H2,p
0 (Ω

0(gP))
≤ C‖dA0u‖

y
λ+ 1

p H1,p
0 (Ω

1(gP))
. (1.131)

Thus dA0 has closed range. �

Remark. If Ker dA0=0, we have ‖ξ‖yλ+ 1
p+1 ≤ C‖dA0ξ‖yλ+ 1

p
which is a gauge theory

version of the Lp Hardy inequality over R4
+ for compact supported functions u and

s = pλ + p + 1:

(

∫
R4
+

yp−s |∂yu|p)
1
p ≥

n − 1
p
(

∫
R4
+

y−s |u|p)
1
p . (1.132)

Now we have the following proposition:

Proposition 1.10.14. The operator

d0
(A0,Φ0)

: yλ+1+ 1
p H2,p

0 (Ω
0(gP)) → y

λ+ 1
p H1,p

0 (Ω
1(gP) ×Ω

1(gP))

is a closed operator with finite dimensional kernel.

Recall the definition of d0
(A0,Φ0)

is d0
(A0,Φ0)

(ξ) = (dA0(ξ), [Φ0, ξ]). Therefore, we
obtain Ker d0

(A0,Φ0)
⊂ Ker dA0 and by Proposition 1.10.13, we know Ker d0

(A0,Φ0)
has

finite dimension.



83

Without loss of generality, we assume Ker d0
(A0,Φ0)

= 0. By Proposition 1.10.13,
there exists a constant such that ‖u‖

y
λ+ 1

p +1H2,p
0 (Ω

0(gP))
≤ C‖dA0u‖

y
λ+ 1

p H1,p
0 (Ω

1(gP))
. By

adding a positive term on the right hand side of the inequality, we have

‖u‖
y
λ+ 1

p +1H2,p
0 (Ω

0(gP))

≤C(‖dA0u‖
y
λ+ 1

p H1,p
0 (Ω

1(gP))
+ ‖[Φ0, u]‖

y
λ+ 1

p H1,p
0 (Ω

1(gP))
)

=C‖d0
(A0,Φ0)

u‖
y
λ+ 1

p H1,p
0
.

Applying Lemma 1.10.9, d0
(A0,Φ0)

is a closed operator. �
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C h a p t e r 2

ROTATIONALLY INVARIANT SINGULAR SOLUTIONS TO
THE KAPUSTIN-WITTEN EQUATIONS

2.1 Introduction
In [63], Witten proposed a new physical interpretation of the Jones polynomial and
Khovanov homology in terms of counting the solutions of a certain supersymmetric
gauge theory in four dimensions and five dimensions. The BPS equations of N=4
twisted superYang-Mills theory in four dimensions are called the topological twisted
equations [34] and play an essential role in this framework.

Let X be a connected, smooth, oriented 4-manifold with a Riemannian metric. Let
P be a chosen principle SU(2) bundle over X and let ad(P) denote the adjoint bundle
of P. The topological twisted equations are equations for a pair (A, φ) where A is a
connection on P and φ is a ad(P) valued 1-form. These equations have the following
form:

(FA − φ ∧ φ + λdAφ)
+ = 0,

(FA − φ ∧ φ − λ
−1dAφ)

− = 0,

d?Aφ = 0.

(2.1)

Witten points out that the most interesting case to study is when λ = −1. In this case,
we obtain the following equations, which we call the Kapustin-Witten equations:

FA − φ ∧ φ −?dAφ = 0,

d?Aφ = 0.
(2.2)

In [34], Kapustin and Witten prove that over a closed manifold, all the regular
solutions to the Kapustin-Witten equations are flat SL(2;C) connections. Therefore,
the regular solutions to these equations are not so interesting over closed manifolds.
However, the Kapustin-Witten equations are interesting over non-compact spaces
with singular boundary conditions. Witten’s gauge theory approach [63] to the Jones
polynomial conjectures that the coefficients of the Jones polynomial of a knot are
determined by counting the solutions to the Kapustin-Witten equations with Nahm
pole boundary conditions. See also Gaiotto and Witten [25] for an approach to this
conjecture. The case of the empty knot is resolved in [44].
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In addition, Taubes studied the compactness properties of the Kapustin-Witten
equations [57][56]. He shows that there can be only two sources of non-compactness.
One is the traditional Uhlenbeck bubbling phenomenon [60] [61], and another is the
non-compactness coming from the unboundness of the L2 norm of φ.

Therefore, a natural question to ask is whether the Uhlenbeck bubbling phenomenon
can appear for solutions to the Kapustin-Witten equations. In addition, do we have
a model solution to the Kapustin-Witten equations.

In this paper, we construct some singular solutions to the Kapustin-Witten equations.

To be more precise, consider the trivial SU(2) bundle P0 over R4. Denote x to be
a point in R4, after identifying R4 with the quaternions H and the adjoint bundle
ad(P0) with imaginary part of the quaternions, we prove the following:

Theorem 2.1.1. for any real number C, the formulas
A(x) =Im

( 3C
C2 |x |4 + 4C |x |2 + 1

x̄dx
)

φ(x) =Im
( 3C(C |x |2 + 1)
(C2 |x |4 + 4C |x |2 + 1)(C |x |2 − 1)

x̄dx
) (2.3)

give solutions to the Kapustin-Witten equations (4.1) with the following properties:

(1) For C , 0, the solutions are smooth away from |x | = 1√
C
and decay to 0 when

|x | → ∞.

(2) The solutions have instanton number 0.

(3) When C → +∞, |FA | converges to a Dirac measure at x=0.

(4) For C , 0, the pole singularity of φ at |x | = 1√
C
cannot be removed by SU(2)

gauge transformations.

In addition, we also prove the following theorem:

Theorem 2.1.2. There exists a family of rotationally invariant solutions to the
Kapustin-Witten equations on Euclidean R4 with instanton number ±1. These
solutions are smooth away from a sphere where the real parts are C1 and the
imaginary parts are singular.

In addition, given an integer k, we can generalize the ADHM construction [6] and
obtain the following theorem:
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Theorem2.1.3. Given an integer k, there exists a 5|k | dimensional family of singular
solutions to the Kapustin-Witten equations on Euclidean R4. When k = ±1, these
include the solutions from Theorem 1.2.

We conjecture that under some non-degeneracy condition, the solutions we obtain
in Theorem 2.1.3 have instanton number k.

In addition, Witten in [63] suggested to study solutions to (4.1) with a singular
boundary condition called the Nahm pole boundary condition. Solutions with the
Nahm pole boundary condition play an important role in the gauge theory approach
to the Jones polynomial.

In the last chapter, we observe the relation between the singularity which appears in
Thm 1.1 and the Nahm pole boundary condition and get the following theorem:

Theorem 2.1.4. There exist two Nahm pole solutions to the Kapustin-Witten on
S3 × (0,+∞), with instanton number 1

2 and −1
2 .

In Section 2, we find a system of non-linear ODEs which will give rotationally
invariant solutions to the Kapustin-Witten equations. In Section 3, we find a first
integral of these ODEs and solve them to obtain the solutions in Theorem 1.1. In
Section 4, we prove the rest part of Theorem 1.1. In Section 5, we construct other
families of solutions to the Kapustin-Witten equations and prove Theorem 1.2 and
Theorem 1.3. In section 6, we build up the relation of our singular solution and
Nahm pole.

2.2 ODEs from the Kapustin-Witten Equations
Background
In accordance with the philosophy of the ADHM construction [5][6] for the anti-
self-dual equation, we use quaternions to describe the gauge field in R4. We begin
by briefly recalling the elementary properties of quaternions.

We have three elements I, J, K satisfying the identities: I2 = J2 = K2 = −1, I J =

−JI = K, JK = −K J = I, KI = −IK = J. A general quaternion x is of the
following form:

x = x1 + x2I + x3J + x4K,

where x1, x2, x3, x4 are real numbers. After choosing a canonical basis of R4, we can
naturally identify points in R4 with quaternions. The conjugate quaternion is given



87

by
x̄ = x1 − x2I − x3J − x4K

and with we have the relation xy = ȳ x̄. In addition, we also know that x x̄ =

x̄ x = |x |2 =
∑

x2
i . For x = x1 + x2I + x3J + x4K , the imaginary part of x is

Im(x) := x2I + x3J+ x4K . Therefore, the Lie group SU(2) can be identified with the
unitary quaternions and the Lie algebra su(2) can be identified with the imaginary
part of the quaternions.

Using the well known isomorphism of the Lie group SO(4) with SU(2) × SU(2)/∼,
the action of SO(4) on a quaternion x is given by x → axb, where a, b are unitary
quaternions.

In order to find rotationally invariant solutions, we assume that the gauge fields of
(2.1) (4.1) have the following form:

A(x) : = Im( f (t) x̄dx)

φ(x) : = Im(g(t) x̄dx)

t : = |x |2.

(2.4)

Here f (t), g(t) are real functions with variable t = |x |2. Obviously, t ≥ 0.

Remark. In the remaining part of the paper, we use f ′, g′ to simplify writing df (t)
dt

and dg(t)
dt .

Proposition 2.2.1. A(x) and φ(x) defined as in (2.4) are rotationally invariant up
to gauge equivalence.

Proof. It is easy to see that for a, b are two unitary quaternions, under the
change x → axb, we obtain |axb|2 = |x |2, A(axb) = Im( f (t) axb d(axb)) =

b̄Im( f (t) x̄dx)b. Therefore, A(axb) is gauge equivalent to A(x) by a constant gauge
transformation. Similarly, we can show φ(x) is also rotationally invariant up to the
same gauge transformation. �

Basic Properties of Rotationally Invariant Connections
As the equations (4.1) depend on the metric, we need to be explicit about the metric
we choose.

Definition 2.2.2. A metric g on R4 is called rotationally invariant if in quaternion
coordinate g = h(t)dx ⊗ dx̄. h(t) here is a positive function, t = |x |2.
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Example 2.2.3. The Euclidean metric dx ⊗ dx̄ and the round metric 4
(1+t)2 dx ⊗ dx̄

on R4 are both rotationally invariant metrics.

Remark. In the rest of the paper, all the metrics we considered are rotationally
invariant.

Now, we will introduce some basic properties of connections in (2.4).

Lemma 2.2.4. Im(x̄dx ∧ x̄dx) = −1
2 |x |

2 dx̄ ∧ dx − 1
2 x̄dx ∧ dx̄x.

Proof. Since the wedge product of a real form with itself is zero, we know that

<(x̄dx) ∧ <(x̄dx) = 0.

Since
<(x̄dx) =

x̄dx + dx̄x
2

,

we obtain

0 =<(x̄dx) ∧ <(x̄dx)

=
(x̄dx + dx̄x) ∧ (x̄dx + dx̄x)

4

=
x̄dx ∧ x̄dx + x̄dx ∧ dx̄x + t d x̄ ∧ dx + dx̄x ∧ dx̄x

4
.

In addition, we have

Im(x̄dx ∧ x̄dx) =
x̄dx ∧ x̄dx + dx̄x ∧ dx̄x

2
.

The plus sign on the right hand side of the above identity is because given two
quaternion one forms ω1, ω2, we have ω1 ∧ ω2 = −ω̄2 ∧ ω̄1.

The result follows immediately. �

Lemma 2.2.5. Im(x̄dx) ∧ Im(x̄dx) = Im(x̄dx ∧ x̄dx).

Proof. We calculate that

Im(x̄dx) ∧ Im(x̄dx)

=
(x̄dx − dx̄x) ∧ (x̄dx − dx̄x)

4

=
x̄dx ∧ x̄dx − x̄dx ∧ dx̄x − t d x̄ ∧ dx + dx̄x ∧ dx̄x

4

=
x̄dx ∧ x̄dx + dx̄x ∧ dx̄x

2
(by Lemma 2.2.4)

=Im(x̄dx ∧ x̄dx).
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�

Lemma 2.2.6.

dx∧dx̄ = −2((dx1∧dx2+dx3∧dx4)I+(dx1∧dx3+dx4∧dx2)J+(dx1∧dx4+dx2∧dx3)K)

dx̄∧dx = 2((dx1∧dx2+dx4∧dx3)I+(dx1∧dx3+dx2∧dx4)J+(dx1∧dx4+dx3∧dx2)K).

Proof. By direct computation. �

Remark. Given a rotationally invariant metric g (Definition 2.2.2), we can define
the Hodge star operator with respect to g. Denote Ω2+(Ω2−) to be the self-dual
(anti-self-dual) two-forms with respect to the Hodge star operator. It is easy to
see that dx ∧ dx̄ ∈ Ω2+ and dx̄ ∧ dx ∈ Ω2−. Also Im(dx ∧ dx̄) = dx ∧ dx̄ and
Im(dx̄ ∧ dx) = dx̄ ∧ dx.

Separating Terms in the Topological-Twisted equations
Since the equations in (2.1) are separated into the self-dual parts and the anti-self-
dual parts, we also want to separate our calculation into the self-dual parts and the
anti-self-dual parts.

Lemma 2.2.7. For A(x) defined as in (2.4), we have

F+A = −
1
2
( f ′ + f 2) x̄dx ∧ dx̄x

F−A = (
1
2

t f ′ −
1
2

t f 2 + f ) dx̄ ∧ dx.

Proof. We calculate that

FA = dA + A ∧ A

= dIm( f x̄dx) + Im( f 2 x̄dx ∧ x̄dx)

= Im(df x̄dx) + Im( f d x̄ ∧ dx) + Im( f 2 x̄dx ∧ x̄dx)

= Im(( f ′ + f 2) x̄dx ∧ x̄dx) + Im(( f ′t + f ) dx̄ ∧ dx) (by x x̄ = |x |2 = t)

= −
1
2
( f ′ + f 2)t d x̄ ∧ dx + ( f ′t + f ) dx̄ ∧ dx −

1
2
( f ′ + f 2) x̄dx ∧ dx̄x (by Lemma 2.2.4)

= (
1
2

t f ′ −
1
2

t f 2 + f ) dx̄ ∧ dx −
1
2
( f ′ + f 2) x̄dx ∧ dx̄x.

The result follows immediately. �
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Lemma 2.2.8. For φ(x) defined as in (2.4), we have

(φ ∧ φ)+ = −
1
2
g2 x̄dx ∧ dx̄x

(φ ∧ φ)− = −
1
2
g2t d x̄ ∧ dx.

Proof. We calculate that

φ ∧ φ =Im(g x̄dx) ∧ Im(g x̄dx)

=Im(g2 x̄dx ∧ x̄dx) (by Lemma 2.2.5)

= −
1
2
g2t d x̄ ∧ dx −

1
2
g2 x̄dx ∧ dx̄x. (by Lemma 2.2.4)

�

Lemma 2.2.9. For (A(x), φ(x)) defined as in (2.4), we have

(dAφ)
+ = −

1
2
(g′ + 2 f g) x̄dx ∧ dx̄x

(dAφ)
− = (

1
2
g′t + g − f gt) dx̄ ∧ dx.

Proof. We calculate that

dAφ =dφ + A ∧ φ + φ ∧ A

=dIm(g x̄dx) + Im(2 f g x̄dx ∧ x̄dx) (by Lemma 2.2.5)

=Im(dg x̄dx) + Im(g dx̄ ∧ dx) + Im(2 f g x̄dx ∧ x̄dx)

=Im((g′ + 2 f g) x̄dx ∧ x̄dx) + Im((tg′ + g) dx̄ ∧ dx)

=(−
1
2
(g′ + 2 f g)t + (g′t + g)) dx̄ ∧ dx −

1
2
(g′ + 2 f g) x̄dx ∧ dx̄x

=(
1
2
g′t + g − f gt) dx̄ ∧ dx −

1
2
(g′ + 2 f g) x̄dx ∧ dx̄x.

�

Now, we will discuss the third equation of (2.1).

At first, we have the following identity:

Lemma 2.2.10. x1Im(x̄) + x2Im(x̄ I) + x3Im(x̄ J) + x4Im(x̄K) = 0.
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Proof. We calculate that

x1Im(x̄) + x2Im(x̄ I) + x3Im(x̄ J) + x4Im(x̄K)

=x1(−x2I − x3J − x4K) + x2(x1I + x3K − x4J)

+ x3(x1J − x2K + x4I) + x4(x1K + x2J − x3I)

=0.

�

Lemma 2.2.11. Given a rotational invariant metric h(t)dx ⊗ dx̄, denote? to be the
Hodge star operator with respect to this metric, we have d(Im(x̄)? dx1 + Im(x̄ I)?

dx2 + Im(x̄ J)? dx3 + Im(x̄K)? dx4) = 0.

Proof. By definition, we have Im(x̄) = −x2I−x3J−x4K ,?(dx1) = hdx2∧dx3∧dx4,
therefore (dIm(x̄)) ? dx1 = 0. Similarly, we have (dIm(x̄ I)) ? dx2 = (dIm(x̄ J)) ?

dx3 = (dIm(x̄K))? dx4 = 0.

Therefore,

d(Im(x̄)? dx1 + Im(x̄ I)? dx2 + Im(x̄ J)? dx3 + Im(x̄K)? dx4)

=2h
′

(x1Im(x̄) + x2Im(x̄ I) + x3Im(x̄ J) + x4Im(x̄K))

=0.

(2.5)

�

Lemma 2.2.12. For (A(x), φ(x)) defined as in (2.4), we have A∧?φ+?φ∧ A = 0.

Proof. For A ∧?φ, we calculate that

A ∧?φ

= f g Im(x̄dx) ∧?Im(x̄dx)

= f g (Im(x̄)dx1 + Im(x̄ I)dx2 + Im(x̄ J)dx3 + Im(x̄K)dx4)∧

(Im(x̄)? dx1 + Im(x̄ I)? dx2 + Im(x̄ J)? dx3 + Im(x̄K)? dx4)

= f g (Im(x̄)Im(x̄)dx1 ∧?dx1 + Im(x̄ I)Im(x̄ I)dx2 ∧?dx2

+ Im(x̄ J)Im(x̄ J)dx3 ∧?dx3 + Im(x̄K)Im(x̄K)dx4 ∧?dx4).
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In addition, we calculate that

? φ ∧ A

= f g ? Im(x̄dx) ∧ Im(x̄dx)

= f g (Im(x̄)? dx1 + Im(x̄ I)? dx2 + Im(x̄ J)? dx3 + Im(x̄K)? dx4)∧

(Im(x̄)dx1 + Im(x̄ I)dx2 + Im(x̄ J)dx3 + Im(x̄K)dx4)

= f g (Im(x̄)Im(x̄)? dx1 ∧ dx1 + Im(x̄ I)Im(x̄ I)? dx2 ∧ dx2

+ Im(x̄ J)Im(x̄ J)? dx3 ∧ dx3 + Im(x̄K)Im(x̄K)? dx4 ∧ dx4)

= − A ∧?φ.

Therefore, we obtain A ∧?φ + φ ∧?A = 0. �

Proposition 2.2.13. For (A(x), φ(x)) defined as in (2.4), for a Hodge star operator
correspond to a rotational invariant metric h(t)dx ⊗ dx̄, we have dA ? φ = 0.

Proof. By definition,

dA ? φ = d ? φ + A ∧?φ +?φ ∧ A.

First, we compute d ? φ = 0.

Take ?E to be the Hodge star operator correspond to the Euclidean metric in R4,
then ?dxi = h(t)2 ?E dxi.

By (2.4), we have

φ = g Im(x̄dx)

= g (Im(x̄)dx1 + Im(x̄ I)dx2 + Im(x̄ J)dx3 + Im(x̄K)dx4).

Therefore, we calculate

d ? φ

= d(gh2) ((Im(x̄)?E dx1 + Im(x̄ I)?E dx2 + Im(x̄ J)?E dx3 + Im(x̄K)?E dx4))

+ g d(Im(x̄)?E dx1 + Im(x̄ I)?E dx2 + Im(x̄ J)?E dx3 + Im(x̄K)?E dx4)

=
∂(gh2)

∂x1
Im(x̄)dx1 ∧?E dx1 +

∂(gh2)

∂x2
Im(x̄ I)dx2 ∧?E dx2

+
∂(gh2)

Im(x̄ J)dx3 ∧?E dx3 +
∂(gh2)

Im(x̄K)dx4 ∧?E dx4 (by Lemma 2.2.11)
∂x3 ∂x4

= 2(gh2)′ (x1Im(x¯) + x2Im(x¯I) + x3Im(x¯J) + x4Im(x¯K))dx1 ∧ dx2 ∧ dx3 ∧ dx4 (by Lemma 2.2.10)

= 0.

Combining this with Lemma 2.2.12, we finish the proof.

�
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ODEs from the Kapustin-Witten Equations
Recall that the topological twisted equations (2.1) are equivalent to the following:

F+A − (φ ∧ φ)
+ = −λ(dAφ)

+

F−A − (φ ∧ φ)
− = λ−1(dAφ)

−

d?Aφ = 0.

By Proposition 2.2.13, we know that d?Aφ = 0 is always satisfied under our assump-
tion (2.4).

Combining Lemma 2.2.7 and 2.2.9, we obtain the following ODEs:{
f ′ + λg′ + f 2 − g2 + 2λ f g = 0

t f ′ − tλ−1g′ + 2 f − 2λ−1g + g2t − f 2t + 2t f gλ−1 = 0.
(2.6)

To summarize the previous computation, we have the following theorem:

Theorem 2.2.14. Given a solution ( f (t), g(t)) to the ODEs (2.6), taking A(x) =

Im( f (x) x̄dx) and φ(x) = Im(g(x) x̄dx) gives a solution to the topological twisted
equations (2.1).

By some linear transformations, we obtain the following ODEs:{
(λ + λ−1)t f ′ + 2λ f − (λ − λ−1)(t f 2 − tg2) − 2g + 4 f gt = 0

(λ + λ−1)tg′ + 2λ−1g − 2 f + (λ − λ−1)2 f gt + 2t( f 2 − g2) = 0.
(2.7)

Taking λ = −1, we obtain {
t f ′ + f + g − 2 f gt = 0

tg′ + g + f − t( f 2 − g2) = 0.
(2.8)

We call the equations (2.8) the Kapustin-Witten ODEs.

Remark. The equations (2.7) are degenerate at t=0, which means that we may not
have the uniqueness theorem for a given initial value. Given a solution ( f (t), g(t)) to
(2.7), if we assume ( f (t), g(t)) is continous near t = 0 and limt→0(t f ′(t), tg′(t)) =

(0, 0), we can take t → 0 in both sides of the equations (2.7) and we obtain that
λ f (0) = g(0).

2.3 Explicit Solutions for ODEs
In this section, we will discuss some properties of the equations (2.7) and explicitly
solve the equations (2.7) for some special cases.
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Change of Variables
We are going to simplify the equations (2.7) by a change of variables.

Take f̃ (t) := t f (t), g̃(t) := tg(t), then the equations (2.7) become
λ + λ−1

2
t f̃ ′ =

λ − λ−1

2
( f̃ 2 − g̃2 − f̃ ) + g̃ − 2 f̃ g̃

λ + λ−1

2
tg̃′ =

λ − λ−1

2
(g̃ − 2 f̃ g̃) + ( f̃ − f̃ 2 + g̃2).

(2.9)

Remark. It is easy to see that if ( f , g) is a solution for some parameter λ0, then
( f ,−g) is a solution for −λ0. This is compatible with changing the orientation of
the manifold in the topological twisted equation (2.1).

Taking u(t) := f̃ (t) − 1
2 , v(t) := g̃(t), we obtain

λ + λ−1

2
tu′ =

λ − λ−1

2
(u2 − v2 −

1
4
) − 2uv

λ + λ−1

2
tv′ = −

λ − λ−1

2
2uv − (u2 − v2 −

1
4
).

(2.10)

In order to obtain an autonomous ODE systems, we take ũ(s) := u(es) and ṽ(s) :=
v(es). We obtain 

λ + λ−1

2
ũ′ =

λ − λ−1

2
(ũ2 − ṽ2 −

1
4
) − 2ũṽ

λ + λ−1

2
ṽ′ = −

λ − λ−1

2
2ũṽ − (ũ2 − ṽ2 −

1
4
).

(2.11)

Here ũ′ := dũ(s)
ds and ṽ′ := dṽ(s)

ds .

Some Basic Properties
Even though the equations (2.11) are non-linear, we can find a first integral which
can simplify the equations in some special cases.

Proposition 2.3.1. Given (ũ, ṽ) a solution to the equations (2.11) , I(ũ, ṽ) = 1
3 ũ3 −

ũṽ2 − 1
4 ũ − λ−λ−1

2 (ṽ
3 − ũ2ṽ + 1

4 ṽ) is a constant.
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Proof. We calculate that

(
1
3

ũ3 − ũṽ2 −
1
4

ũ)′

=ũ2ũ′ − ũ′ṽ2 − 2ũṽṽ′ −
1
4

ũ′

=ũ′(ũ2 − ṽ2 −
1
4
) − 2ũṽṽ′

=
λ − λ−1

λ + λ−1 ((ũ
2 − ṽ2 −

1
4
)2 + (2ũṽ)2).

(2.12)

We calculate that
(ṽ3 − ũ2ṽ +

1
4
ṽ)′

=ṽ2ṽ′ − ṽ′ũ2 − 2ṽũũ′ +
1
4
ṽ′

= − (ũ2 − ṽ2 −
1
4
)ṽ′ − ũ′(2ũṽ)

=
2

λ + λ−1 ((ũ
2 − ṽ2 −

1
4
)2 + (2ũṽ)2).

(2.13)

The proposition follows immediately. �

Since we would like our solution to exist near t = 0, recalling that ũ(s) = es f (es) −

1
2 , ṽ(s) = esg(es), we obtain the following restrictions: lims→−∞ ũ(s) = −1

2 and
lims→−∞ ṽ(s) = 0. Therefore, combining this with Proposition 2.3.1, we have the
following identity:

1
3

ũ3 − ũṽ2 −
1
4

ũ −
λ − λ−1

2
(ṽ3 − ũ2ṽ +

1
4
ṽ) =

1
12
. (2.14)

By Proposition 2.3.1, we can prove the following:

Proposition 2.3.2. For λ , ±1, if f (t) does not blow-up in finite time, then g(t) will
not blow-up in finite time.

Proof. By the identity (2.14), we have

1
3

ũ3 −
1
4

ũ =
λ − λ−1

2
(ṽ3 − ũ2ṽ +

1
4
ṽ) + ũṽ2 +

1
12
.

If f (t) does not blow-up in finite time, ũ will also not blow-up in finite time. If ṽ
blows-up in finite time then the right hand side of the identity will be unbounded
but the left hand side will be bounded, which gives a contradiction. �
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Even though the topological twisted equations (2.1) are not conformally invariant,
we still have that it is invariant under rescaling by a constant, which leads to the
following proposition:

Proposition 2.3.3. If ( f0(t), g0(t)) is a solution of the equations (2.7), then for any
constant C, (C f0(Ct),Cg0(Ct)) are solutions to the equations (2.7).

Proof. By a direct computation. �

t’Hooft Solution when λ = 0
In this subsection, wewill prove thatwe can obtain the t’Hooft solution ofYang-Mills
equation from the equations (2.7). By taking λ = 0, (2.1) becomes

(FA − φ ∧ φ)
+ = 0

(dAφ)
− = 0

d∗Aφ = 0.

(2.15)

If φ = 0, then we are just considering the anti-self dual equation

F+A = 0.

By taking λ = 0, (2.7) becomes{
f ′ + f 2 − g2 = 0

g′t + 2g − 2t f g = 0.
(2.16)

By Theorem 2.12, we know that every solution to the equations (2.16) will give a
solution for the SL(2;C) anti-self-dual equation.

If g = 0, the equations (2.16) have a solution ( f (t), g(t)) = ( 1
1+t , 0). The correspond-

ing gauge fields are (A(x) = Im( 1
1+|x |2 x̄dx), φ(x) = 0), which recovers the t’Hooft

solution for anti-self-dual equation in [14].

Remark. We can also find a solution using the first integral I(ũ, ṽ) = ṽũ2− 1
3 ṽ

3− 1
4 ṽ.

After some computation, we obtain the solution ( f (t), g(t)) = ( t
t2−1,

√
3

t2−1 ) to (2.16).
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Explicit Solutions to the Kapustin-Witten ODEs
Taking λ = −1, the equations (2.7) become{

t f ′ + f + g − 2 f gt = 0

tg′ + f + g − t( f 2 − g2) = 0.
(2.17)

We can find a solution 
f (t) =

1
2t

g(t) =
tan(−1

2 ln(t) + C)
2t

.

(2.18)

However, the solution will have so many poles that 0 will be an accumulation point
of singularities, which is not what we want. We hope to find a solution which is
well-defined near 0.

From the equations (2.10), we obtain the ODEs corresponding to the Kapustin-
Witten equations: 

tu′ = 2uv

tv′ = u2 − v2 −
1
4
.

(2.19)

Recalling that u(t) = t f (t) − 1
2 and v(t) = tg(t), we hope to obtain a solution

well-defined near t = 0. Therefore, we hope to solve (2.19) for the initial value
(u(0) = −1

2, v(0) = 0).

By taking ũ(s) := u(es), ṽ(s) := v(es), we obtain an autonomous system of ODEs:

ũ′ = 2ũṽ

ṽ′ = ũ2 − ṽ2 −
1
4

lim
s→−∞

ũ(s) = −
1
2

lim
s→−∞

ṽ(s) = 0.

(2.20)

By Proposition 2.3.1, we the following identity:

ṽ2ũ −
1
3

ũ3 +
1
4

ũ = −
1
12
. (2.21)
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Combining (2.20) and (2.21), we obtain

12ṽ2ũ = (2ũ + 1)2(ũ − 1)

ũ′ = 2ũṽ

lim
s→−∞

ũ(s) = −
1
2

lim
s→−∞

ṽ(s) = 0.

(2.22)

Assuming ũ < 0, take W(s) := −ũ(s), so we are trying to solve the following ODEs:

W(s)′ = ±
1
√

3

√
W(s)

√
W(s) + 1(2W(s) − 1).

We first solve W(s)′ = 1√
3

√
W(s)

√
W(s) + 1(2W(s) − 1),

Taking H(s) := 1+4W(s)

2
√

3
√

W(s)2+W(s)
, we have the following Lemma:

Lemma 2.3.4. 1
1−H2(s) dH(s) = −ds

Proof. We calculate that

H′(s) =
(2W(s) − 1)W(s)′

4
√

3(W(s)2 +W(s))
√

W(s)2 +W(s)
.

In addition, we calculate that

1 − H(s)2 = −
(2W(s) − 1)2

12(W(s)2 +W(s))
.

Combining this with W(s)′ = 1√
3

√
W(s)

√
W(s) + 1(2W(s) − 1), the result follows

immediately. �

By the previous lemma, 1
2 ln(H(s)+1

H(s)−1 ) = −s + C. Therefore, H(s) = Ce−2s+1
Ce−2s−1 . Com-

bining this with H(s) = 1+4W(s)

2
√

3
√

W(s)2+W(s)
, we find W(s) = 2−3H2+3H

√
H2−1

2(3H2−4) .

Therefore, we have

W(ln t) =
1
2

C2t2 − 2Ct + 1
C2t2 + 4Ct + 1

.

By definition,

f (t) =
1
2 −W(ln t)

t
.



99

We calculate that

f (t) =
3C

C2t2 + 4Ct + 1
(for any constant C).

Putting this into the equations (2.20) and taking g(t) = ṽ(ln(t))
t , we obtain

g(t) =
3C(Ct + 1)

(C2t2 + 4Ct + 1)(Ct − 1)
.

ForW(s)′ = − 1√
3

√
W(s)

√
W(s) + 1(2W(s)−1), we obtain another solution ( f (t), g(t)) =

(1t
C2t2+Ct+1

C2t2+4Ct+1,−
3C(Ct−1)

(C2t2+4Ct+1)(Ct+1) ).

To summarize, by solving the equations (2.7) with λ = −1, we obtain the following
proposition:

Proposition 2.3.5. 
f1(t) =

3C
(Ct)2 + 4(Ct) + 1

g(t) =
3C(Ct + 1)

((Ct)2 + 4(Ct) + 1)(Ct − 1)
,

(2.23)


f2(t) =

1
t

C2t2 + Ct + 1
C2t2 + 4Ct + 1

g(t) =
3C(Ct + 1)

((Ct)2 + 4(Ct) + 1)(Ct − 1)

(2.24)

are two families of solutions to the Kapustin-Witten ODEs (2.8).

2.4 Instanton Number Zero Solutions
In this section, we will give a complete proof of Theorem 1.1.

Computation of Instanton Numbers
We will now give a formula to compute the instanton number for the rotationally
invariant solutions, which will prove property (2) of Theorem 1.1.

Lemma2.4.1. x̄dx∧dx̄x∧x̄dx∧dx̄x = 24t2 dx1∧dx2∧dx3∧dx4, dx̄∧dx∧dx̄∧dx =

−24 dx1 ∧ dx2 ∧ dx3 ∧ dx4.

Proof. By Lemma 2.2.6, it is just a direct computation. �
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Combining this with Lemma 2.2.7, we obtain that

|F−A |
2 = 6(t f ′ + 2 f − t f 2)2

|F+A |
2 = 6( f ′ + f 2)2t2.

(2.25)

Since we are considering the solutions over the non-compact space R4, the instanton
number is defined as:

Definition 2.4.2. Given that a connection (A(x), φ(x)) is a solution to the Kapustin-
Witten equations (4.1), if the integral 1

4π2

∫
R4 tr(FA∧FA) exist, we define the instanton

number k for (A(x), φ(x)) is k := 1
4π2

∫
R4 tr(FA ∧ FA) ∈ R.

For a rotationally invariant solution as in (2.4), we have a simple formula to compute
the instanton number.

Proposition 2.4.3. For a globally defined C1 connection A(x) = Im( f (t) x̄dx) over
R4, by taking f̃ (t) := t f (t), the instanton number k satisfies:

k = 6
∫ +∞

0
f̃ ( f̃ − 1) f̃ ′dt = (2 f̃ 3 − 3 f̃ 2) |+∞0 .

Proof. We calculate that

k =
1

4π2

∫
R4

tr(FA ∧ FA)

=
1

4π2

∫
R4
(|F+A |

2 − |F−A |
2) dx1 ∧ dx2 ∧ dx3 ∧ dx4

=
1

4π2

∫
R4
(6( f ′ + f 2)2t2 − 6(t f ′ + 2 f − t f 2)2) dx1 ∧ dx2 ∧ dx3 ∧ dx4

=
1

4π2

∫
R4

24(t f 2 − f )(t f ′ + f ) dx1 ∧ dx2 ∧ dx3 ∧ dx4

=
1

4π2

∫
R4

24(
1
t

f̃ ( f̃ − 1) f̃ ′) dx1 ∧ dx2 ∧ dx3 ∧ dx4

=
1

4π2 12Vol(S3)

∫ +∞

0
( f̃ ( f̃ − 1) f̃ ′) dt (by dx1 ∧ dx2 ∧ dx3 ∧ dx4 = d VolS3

1
2

tdt)

= 6
∫ +∞

0
( f̃ ( f̃ − 1) f̃ ′) dt (since Vol(S3) = 2π2)

= (2 f̃ 3 − 3 f̃ 2) |+∞0 .

�
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Remark. The previous formula for the instanton number only works for connections
with the specific type A(x) = Im( f (t) x̄dx).

For A(x) = Im( f (t) xd x̄), a conjugate form of (2.4), we have the following corollary:

Corollary 2.4.4. For a globally defined C1 connection A = Im( f (t) x̄dx) over R4,
by taking f̃ (t) := t f (t), the instanton number k satisfies:

k = −6
∫ +∞

0
f̃ ( f̃ − 1) f̃ ′dt = (3 f̃ 2 − 2 f̃ 3) |+∞0 .

Proof. We can calculate in a similar way and obtain that

|F+A |
2 = 6(t f ′ + 2 f − t f 2)2

|F−A |
2 = 6( f ′ + f 2)2t2.

(2.26)

By the same computation as in Proposition 2.4.3, we obtain the result. �

Corollary 2.4.5. The solution ( f1(t), g(t)) = ( 3
t2+4t+1,

3(t+1)
(t2+4t+1)(t−1) ) to the Kapustin-

Witten ODEs (2.8) has instanton number zero.

The solution ( f2(t), g(t)) = (1t
t2+t+1

t2+4t+1,
3(t+1)

(t2+4t+1)(t−1) ) to the Kapustin-Witten ODEs
(2.8) has instanton number zero.

Proof. Defining f̃1(t) := t f1(t), then f̃1(0) = f̃1(+∞) = 0. Therefore, by Proposition
2.4.3, we know the instanton number of A(x) = Im( f1(t) x̄dx) is 0.

Similarly, for f̃2(t) := t f2(t), we have f̃2(0) = f̃2(+∞) = 1. Therefore, by Proposition
2.4.3, we know the instanton number of A(x) = Im( f2(t) x̄dx) is 0. �

Proposition 2.4.6. Given that ( f̃ (t), g̃(t)) is a solution to the equations (2.9), if

(1) limt→0 f̃ (t) and limt→0 g̃(t) exist.

(2) limt→+∞ f̃ (t) and limt→+∞ g̃(t) exist.

Then A(x) = Im( f̃ (t)
t x̄dx) is a connection with instanton number 0, 1 or -1.

Proof. After a change of variable and translation, the ODEs (2.9) turn into (2.11).
Equation (2.11) is an autonomous system, therefore the limit point must be a equi-
librium point of (2.11).
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There are two equilibrium points, (ũ, ṽ) ∈ {(12, 0), (−
1
2, 0)} or equivalently ( f̃ , g̃) ∈

{(0, 0), (1, 0)}. Therefore, ( f̃ (0), g̃(0)) ∈ {(0, 0), (1, 0)} and ( f̃ (+∞), g̃(+∞)) ∈
{(0, 0), (1, 0)}. By Proposition 2.4.3, we know that A(x) = Im( f̃ (t)

t x̄dx) can only
have instanton number 0, 1 or -1. �

Bubbling for Instanton Number 0 Singular Solutions to the Kapustin-Witten
Equations
In this subsection, we will prove property (3) of Theorem 1.1: the existence of some
bubbling phenomenon for singular solutions.

By previous computation, we know that:

|F−A |
2 = 6(t f ′ + 2 f − t f 2)2

|F+A |
2 = 6( f ′ + f 2)2t2.

(2.27)

Consider the solution 
f (t) =

3
t2 + 4t + 1

g(t) =
3(t + 1)

(t2 + 4t + 1)(t − 1)
.

(2.28)

Combining (2.27) and (2.28), we obtain that

|FA |
2 =|F+A |

2 + |F−A |
2

=(6(t f ′ + 2 f − t f 2)2 + 6( f ′ + f 2)2t2)

=
108(2t4 + 2t3 + t2 + 2t + 2)

(t2 + 4t + 1)4
.

As the curvature norm |FA | plays an important roles in the Uhlenbeck compactness
theorem [20] [60], we also hopes to understand it in the Kapustin-Witten equations.

The graph of |FA |(t) is depicted in Figure 1:

Proposition 2.4.7. |FA |(t) is decreasing and |FA |(0) is its maximum.

Proof. A direct computation shows that d
dt |FA |

2(t) = −216(4t5+5t4+3t3+8t2+19t+15)
(t2+4t+1)5 , so

|FA |
′ < 0 for all t ≥ 0. Therefore, |FA | is decreasing and |FA |(0) is its maximum. �

By Proposition 3.5, for any constant C, we have the solutions
f C(t) =

3C
C2t2 + 4Ct + 1

gC(t) =
3C(Ct + 1)

(C2t2 + 4Ct + 1)(Ct − 1)

(2.29)
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Figure 2.1: Norm of |FA | as a Function of Radius t

to the Kapustin-Witten ODEs.

We define |FC
A |(t) as the curvature norm for f C(t), then we have the following

proposition:

Proposition 2.4.8. (1) |FC
A |(t) = C |FA |(Ct).

(2)
∫
R4 |FC

A |
2(t)dVol =

∫
R4 |FA |

2(t)dVol.

Proof. For (1), this is an immediately computation. For (2), by the definition of
t = |x |2, we get the result immediately. �

Proposition 2.4.9. LetD to be a real number defines as follows: D :=
∫
R4 |FC

A |
2(t)dVol.

Then we have limC→+∞
1
D |F

C
A |(t) = δ0, where δ0 is the Dirac measure at 0.

Proof. ByProposition 2.4.8, we know that 1
D |F

C
A |(t) =

C
D |FA |(Ct) and

∫
R4

1
D |F

C
A |

2(t)dVol =
1. Therefore, the function C

D |FA |(Ct) is a rescale of |FA |(t) and has integral 1. By
classical approximations to the identity results [52], we obtain limC→+∞

1
D |F

C
A |(t) =

δ0. �

Non-removability of Singularities for φ by SU(2) Gauge Transformations
In this subsection, we will prove property (4) of Theorem 1.1. It is suffice to consider
the C = 1 case.

By Lemma 2.2.9, we obtain that

(dAφ)
+ = −

1
2
(g′+2 f g) x̄dx∧dx̄x =

3(t3 + 3t + 2)
(t2 + 4t + 1)(t − 1)(t3 + 3t2 − 3t + 1)

x̄dx∧dx̄x

(dAφ)
− = (

1
2
g′t+g− f gt) dx̄∧dx = −3

2t3 + 3t2 + 1
(t2 + 4t + 1)(t − 1)(t3 + 3t2 − 3t + 1)

dx̄∧dx.
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We calculate that

|dAφ|
2 =

432(2t8 + 6t7 + 5t6 + 2t5 + 6t4 + 2t3 + 5t2 + 6t + 2)
(t2 + 4t + 1)2(t − 1)2(t3 + 3t2 − 3t + 1)2

.

Therefore, we know | |dAφ| |L2 is unbounded near t = 1.

Since | |dAφ| |L2 is invariant under the SU(2) gauge action, we know that the singu-
larities of φ can not be removed by SU(2) gauge transformations.

2.5 Non-Zero Instanton Number Solutions
Instanton Number ±1 Solutions
In this subsection, we are going to give a proof of Theorem 1.2.

First, we are going to give a construction of an instanton number 1 solution.

By Proposition 2.4.3, we know that the instanton number is determined by the limit
behavior of our connection A(x) = Im( f (t) x̄dx). In order to construct an instanton
number ±1 solution, we only need to construct a solution with different equilibrium
points at t = 0 and t = +∞.

By Proposition 2.3.5, taking C = 1, we have the following solutions:
f1(t) =

3
t2 + 4t + 1

g1(t) =
3(t + 1)

(t2 + 4t + 1)(t − 1)
,

(2.30)


f2(t) =

1
t

t2 + t + 1
t2 + 4t + 1

g2(t) =
3(t + 1)

(t2 + 4t + 1)(t − 1)
.

(2.31)

As g1(t) = g2(t), we hope to understand the relationship of f1(t) and f2(t). The
graphs of f1(t) and f2(t) are depicted in Figure 2 and obviously, we get f1(1) = f2(1).

Now, we hope to glue these two solutions to obtain a new solution.

Proposition 2.5.1.

A(x) =


Im

( 3
t2 + 4t + 1

x̄dx
)
(t ≤ 1)

Im
(1

t
t2 + t + 1
t4 + 4t + 1

x̄dx
)
(t ≥ 1)

(2.32)

φ(t) = Im
( 3(t + 1)
(t − 1)(t2 + 4t + 1)

x̄dx
)

(2.33)
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Figure 2.2: Graph of f1(t) and f2(t).

is a solution to the Kapustin-Witten Equations (4.1) which satisfies the following
properties:

(1) The solution has instanton number=1.

(2) A(x) is C∞ away from t = 1 and C1 at t = 1, φ(t) is singular at t = 1.

Proof.

f (t) =


3

t2 + 4t + 1
(t ≤ 1)

1
t

t2 + t + 1
t4 + 4t + 1

(t ≥ 1)
(2.34)

Taking f̃ (t) = t f (t), by a direct computation, we know that f̃ (0) = 0, f̃ (+∞) = 1.
By Proposition 2.4.3, we know that the instanton number is equal to 1.

Defining u(t) := f̃ (t) − 1
2 , then

u(t) =


1
2

t2 − 2t + 1
t2 + 4t + 1

(t ≤ 1)

−
1
2

t2 − 2t + 1
t2 + 4t + 1

(t ≥ 1).
(2.35)

By a direct computation, we know that u(t) is a C1 function. Therefore, A(x) is also
a C1 connection. �

Remark. By Corollary 2.4.4, we know

A(x) =


Im

( 3
t2 + 4t + 1

xd x̄
)
(t ≤ 1)

Im
(1

t
t2 + t + 1

t2 + 4t + 1
xd x̄

)
(t ≥ 1)

(2.36)

φ(x) = Im
( 3(t + 1)
(t − 1)(t2 + 4t + 1)

xd x̄
)

(2.37)

is a instanton number −1 solution to the Kapustin-Witten equations.
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Linear Combination of Solutions
In this subsection, we aim to generalize the ADHM construction from [5] to obtain
higher instanton number solutions to the Kapustin-Witten equations. However,
there exists an essential problem to generalizing the instanton number computation
method from the anti-self-dual equation case [5]. We conjecture that we will obtain
some higher instanton number solutions from this construction.

In view of Corollary 2.4.4, without loss of generality, we can focus on instanton
number k ≥ 0.

Now, let λ1, ..., λk be k real numbers and b1, ..., bk be k numbers in H. Take
U := (λ1(x − b1), ..., λk(x − bk))

T and U? be the conjugate transpose of U. Take
e0 = 1, e1 = I, e2 = J, e3 = K , then for any quaternion bi, we can write bi = bi je j .

Now we are going to compute an identity which is parallel to k = 0 case.

Lemma 2.5.2. For any g(t) ∈ C1, d ? Im(g(|U |2) U?dU)=0

Proof. We calculate that

dIm(g(|U |2) ?U?dU)

=

k∑
i=1

dg(|U |2)Im(λ2
i (x̄ − b̄i) ∧?d(x − bi)) (by Lemma 2.2.11)

=

k∑
i=1

4∑
j=1

dg(|U |2)λ2
i Im((x̄ − b̄i)e j) ∧?d(x j − bi j)

=

k∑
i=1

λ2
i

4∑
j=1

∂g

∂x j
Im((x̄ − b̄i)e j) dx j ∧?dx j

=

k∑
i=1

λ2
i g
′

4∑
j=1

∂ |U |2

∂x j
Im((x̄ − b̄i)e j) dx j ∧?dx j

=

k∑
i=1

λ2
i g
′

k∑
l=1

λ2
l (x j − bl j)

4∑
j=1

Im((x̄ − b̄i)e j) dx j ∧?dx j

=2g′dVol
k∑

i=1

k∑
l=1

4∑
j=1

λ2
i λ

2
l (x j − bl j)Im((x̄ − b̄i)e j)

=g′dVol
k∑

i=1

k∑
l=1

4∑
j=1

λ2
i λ

2
l (

4∑
j=1
(x j − bl j)Im((x̄ − b̄i)e j) +

4∑
j=1
(x j − bi j)Im((x̄ − b̄l)e j)).

(2.38)
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Therefore, in order to show d ? Im(g(|U |2) U?dU)=0, we only need to show

4∑
j=1
(x j − bl j)Im((x̄ − b̄i)e j) +

4∑
j=1
(x j − bi j)Im((x̄ − b̄l)e j) = 0.

By translation, without loss of generality, we can assume bi = 0. Then we calculate
that

4∑
j=1
(x j − bl j)Im((x̄)e j)

=

4∑
j=1

x jIm((x̄)e j) −

4∑
j=1

bl jIm((x̄)e j)

= −

4∑
j=1

bl jIm((x̄)e j).

(2.39)

For the rest, we calculate that

4∑
j=1

x jIm((x̄ − b̄l)e j)

= −

4∑
j=1

x jIm(b̄le j)

= − (x1(−bl2I − bl3J − bl4K) + x2(bl1I + bl3K − bl4J)

+ x3(bl1J − bl2K + bl4I) + x4(bl1K + bl2J − bl3I))

=

4∑
j=1

bl jIm((x̄)e j).

(2.40)

Therefore, we obtain the following identity:

4∑
j=1
(x j − bl j)Im((x̄ − b̄i)e j) +

4∑
j=1
(x j − bi j)Im((x̄ − b̄l)e j) = 0.

Combining all the things above, we obtain the lemma. �

Lemma2.5.3. For any f (t), g(t) ∈ C1, we have Im( f (|U |2) U?dU)∧?Im(g(|U |2) U?dU) =

0.

Proof. Since f (|U |2), g(|U |2) are real functions, we only need to show that Im(U?dU)∧

?Im(U?dU) = 0.
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We calculate that

Im(U?dU) ∧?Im(U?dU)

=

k∑
i=1

4∑
j=1

λ2
i Im((x̄ − b̄i)e j) dx j ∧

k∑
m=1

4∑
n=1

λ2
mIm((x̄ − b̄m)en) ? dxn

=

k∑
i=1

k∑
m=1

4∑
j=1

λ2
i λ

2
mIm((x̄ − b̄i)e j)Im((x̄ − b̄m)e j) dx j ∧?dx j

= −?Im(U?dU) ∧ Im(U?dU).

(2.41)

�

Corollary 2.5.4. For any f (t), g(t) ∈ C1, if A(x) = Im( f (|U |2) U?dU) and φ(x) =
Im(g(|U |2) U?dU), then we have dA ? φ = 0.

Proof. We have dA?φ = dφ+ A∧?φ+φ∧?A. This is a direct corollary of Lemma
2.5.2 and Lemma 2.5.3. �

Taking f1(t) = 3
t2+4t+1 , f2(t) = 1

t
t2+t+1

t2+4t+1 , g(t) =
3(t+1)

(t−1)(t2+4t+1) , we have the following
proposition:

Proposition 2.5.5.

A(x) =


Im

(
f1(|U |2) U?dU

)
= Im

( 3
|U |4 + 4|U |2 + 1

U?dU
)
(|U | ≤ 1)

Im
(

f2(|U |2) U?dU
)
= Im

( 1
|U |2

|U |4 + |U |2 + 1
|U |4 + 4|U |2 + 1

U?dU
)
(|U | ≥ 1)

(2.42)

φ(x) = Im
(
g(|U |2) U?dU

)
= Im

( 3(|U |2 + 1)
(|U |2 − 1)(|U |4 + 4|U |2 + 1)

U?dU
)

(2.43)

are solutions to the Kapustin-Witten equations.

Proof. By Corollary 2.5.4, the equation d?Aφ = 0 is always satisfied. Therefore, we
only need to show that the equation FA − φ ∧ φ − ?dAφ = 0 is satisfied by (A(x),
φ(x)) defined above.

For
(A(x), φ(x)) = (Im( f (|U |2)U?dU), Im(g(|U |2)U?dU)), (2.44)

we observe that all the computations in Section 2 can be finish similarly. To be more
precise, replacing every computations in section 2 of t = |x |2 with |U |2, replacing
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x with U and x̄ with U?, we can easily obtain the following results comparing to
Lemma 2.2.7, Lemma 2.2.8 and Lemma 2.2.9:

F+A = −
1
2
( f ′ + f 2) U?dU ∧ dU?U,

F−A = (
1
2

t f ′ −
1
2

t f 2 + f ) dU? ∧ dU

(φ ∧ φ)+ = −
1
2
g2 U?dU ∧ dU?U

(φ ∧ φ)− = −
1
2
g2t dU? ∧ dU

(dAφ)
+ = −

1
2
(g′ + 2 f g) U?dU ∧ dU?U

(dAφ)
− = (

1
2
g′t + g − f gt) dU? ∧ dU.

(2.45)

The derivative here is taking the derivative of |U |2.

Therefore, by (2.45), we could get an ODEs comparing to (2.6):


f (|U |2)′ + λg(|U |2)′ + f (|U |2)2 − g(|U |2)2 + 2λ f (|U |2)g(|U |2) = 0,

t f (|U |2)′ − tλ−1g(|U |2)′ + 2 f (|U |2) − 2λ−1g(|U |2)

+ g(|U |2)2t − f (|U |2)2t + 2t f (|U |2)g(|U |2)λ−1 = 0.

(2.46)

The derivative here is the derivative of |U |2.

Comparing this with (2.7), we are exactly solving the same equations. Therefore,
comparing to Proposition 2.5.1, our construction gives solutions to the Kapsutin-
Witten equations. �

Proof of Theorem 1.3. By our construction, we have the freedom to choose k real
numbers λ1, ..., λk and k quaternions b1, ..., bk in H in Proposition 2.5.5. Therefore,
we have a 5k dimension family of solutions to the Kapustin-Witten equations. �

2.6 Nahm Pole Boundary Solution over S3 × (0,+∞)
In this section, we will show that our solutions in Section 4 can provide solutions
on S3 × (0,+∞) with Nahm Pole boundary.
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Nahm Pole Boundary condition
Now, we will discuss what is a Nahm Pole boundary condition to the Kapustin-
Witten equations. Give a closed 3-manifold Y3, let P to be a principle SU(2) bundle
over Y3 × (0,+∞) and let ad(P) denote the adjoint bundle of P. Give a point x ∈ Y3,
for integer a=1,2,3, let ea be any orthonormal basis of TxY and ta ∈ ad(P) satisfy
the lie algebra relationship [ta, tb] = εabctc.

From [44] [63], we have the following definition of Nahm Pole boundary condition
on Y3 × (0,+∞) and denote y as the coordinate on (0,+∞).

Definition 2.6.1. A solution (A, φ) to KW equation (4.1) over Y3 × (0,+∞) satisfies
the Nahm pole boundary if there exist orthonormal basis ea such that the Taylor
expansion in y coordinate nears y = 0 will be φ ∼

∑3
a=1 tae?a

y + φ0 + . . . , A ∼

A0 + ya1 + . . .

Nahm Pole Boundary condition over S3 × (0,+∞)
In this subsection, we will describe the Nahm Pole boundary condition on S3 and
show that our solution satisfy the Nahm pole boundary condition.

Now, we first describe the tangent space of S3. Consider S3 as the unit quaternion,
S3 = {x = x1 + x2I + x3J + x4K ∈ H|x2

1 + x2
2 + x2

3 + x2
4 = 1}, and the metric is

induced by Euclidean metric on R4. Fix a point x ∈ S3, we can identify the tangent
space with vectors on R4, TxS3 = {v ∈ R4 | < v, x >= 0}, here we consider x as a
vector space on R4.

Define three orthnonormal basis

e1 = (−x2, x1,−x4, x3)

e2 = (−x3, x4, x1,−x2)

e3 = (−x4,−x3, x2, x1).

(2.47)

Obviously, we have TxS3 = span{e1, e2, e3}.

So by the induced metric from the Euclidean metric on R4, we have the dual unit
basis

e?1 = −x2dx1 + x1dx2 − x4dx3 + x3dx4

e?2 = −x3dx1 + x4dx2 + x1dx3 − x2dx4

e?3 = −x4dx1 − x3dx2 + x2dx3 + x1dx4.

(2.48)
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In addition, we have

Im(x̄dx) =(−x2dx1 + x1dx2 − x4dx3 + x3dx4)I

+ (−x3dx1 + x4dx2 + x1dx3 − x2dx4)J

+ (−x4dx1 − x3dx2 + x2dx3 + x1dx4)K

= e?1 I + e?2 J + e?3 K .

(2.49)

Therefore, (0, Im(x̄dx)
2 ) can be consider as a leading term of Nahm pole boundary

condition on S3.

Now, we will show that the following singular solutions to the Kapustin-Witten
equations over R4 can be consider as solutions to the Kapustin-Witten equations
over (0,+∞) × S3.

As the first equation of (4.1) are conformal invariant, consider the solutions
A(x) =Im

( 3C
C2 |x |4 + 4C |x |2 + 1

x̄dx
)

φ(x) =Im
( 3C(C |x |2 + 1)
(C2 |x |4 + 4C |x |2 + 1)(C |x |2 − 1)

x̄dx
)
.

(2.50)

Using the following conformal transformation,

Ψ : (0,+∞) × S3 → R4
|x |≥ 1√

C

(y, ω) →
1
√

C
eyω.

Then the pull back of (2.50) using Ψ gives the following solution on (0,+∞) × S3:
A(x) =

6
e4y + 4e2y + 1

3∑
a=1

tae?a

φ(x) =
6(e2y + 1)

(e4y + 4e2y + 1)(e2y − 1)

3∑
a=1

tae?a .

(2.51)

It is easy to see that when y → 0, 6(e2y+1)
(e4y+4e2y+1)(e2y−1) ∼

1
y and y → +∞, the solution

exponentially decays.

From section 4, we get another solution to the Kapustin-witten equations (4.1),
A(x) =Im

( 1
|x |2

C2 |x |4 + C |x |2 + 1
C2 |x |4 + 4C |x |2 + 1

x̄dx
)

φ(x) =Im
( 3C(C |x |2 + 1)
(C2 |x |4 + 4C |x |2 + 1)(C |x |2 − 1)

x̄dx
) (2.52)
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Following the same process, we get another solution to the Kapustin-Witten equa-
tions with Nahm Pole and exponentially decays.

Then the pull back of (2.52) using Ψ gives the following solution on (0,+∞) × S3:
A(x) =

2
e2y

e4y + e2y + 1
e4y + 4e2y + 1

3∑
a=1

tae?a

φ(x) =
6(e2y + 1)

(e4y + 4e2y + 1)(e2y − 1)

3∑
a=1

tae?a .

(2.53)

Therefore, we have the following theorem:

Theorem 2.6.2.

(1) 
A(x) =

6
e4y + 4e2y + 1

3∑
a=1

tae?a

φ(x) =
6(e2y + 1)

(e4y + 4e2y + 1)(e2y − 1)

3∑
a=1

tae?a

is a solution to the Kapustin-Witten equations over (0,+∞) × S3 with Nahm pole
boundary with instanton number +1

2 .

(2) 
A(x) =

2
e2y

e4y + e2y + 1
e4y + 4e2y + 1

3∑
a=1

tae?a

φ(x) =
6(e2y + 1)

(e4y + 4e2y + 1)(e2y − 1)

3∑
a=1

tae?a .

is a solution to the Kapustin-Witten equations over (0,+∞) × S3 with Nahm pole
boundary with instanton number −1

2 .

Proof. The computation of instanton number directly follows from Prop. 4.3. �
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C h a p t e r 3

THE EXTENDED BOGOMOLNY EQUATIONS AND
GENERALIZED NAHM POLE BOUNDARY CONDITION

This is joint work with Rafe Mazzeo.

3.1 Introduction
An intriguing proposal byWitten [63] interprets the Jones polynomial andKhovanov
homology of knots on a 3-manifold Y by counting solutions to certain gauge-
theoretic equations, see [34], [63], [26] for much more on this. In this picture,
the Jones polynomial for a knot K ⊂ Y is realized by a count of solutions to the
Kapustin-Witten equations on Y × R+ satisfying a new type of singular boundary
conditions. We refer [25], [64], [65] for a more detailed explanation, along with
[43], [46] and [28] for the beginnings of the analytic theory for this program. In
the absence of a knot, the problem is still of interest and may lead to 3-manifold
invariants. When K = ∅, the singular boundary conditions are called the Nahm pole
boundary conditions, while in the presence of a knot, they are called the generalized
Nahm pole boundary conditions, or Nahm pole boundary conditions with knot
singularities. For simplicity, we usually just refer to solutions with Nahm pole or
with Nahm pole and knot singularities.

There are twomain sets of technical difficulties in this program. The first arises from
the singular boundary conditions, which turn the problem into one of nonstandard
elliptic type. These are now understood, see [43], [46]. A more serious difficulty
involves whether it is possible to prove compactness of the space of solutions to

Figure 3.1: A knot placed at the boundary of Y × R+
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the Kapustin-Witten (KW) equations. An important first step was accomplished by
Taubes in [55], [56], but at present there is no understanding about how the Nahm
pole boundary conditions interact with these compactness issues.

Gaiotto andWitten [25] proposed the study of amore tractable aspect of this problem.
Suppose that we stretch the 3-manifold across a separating Riemann surface Σ in
a Heegard decomposition of Y which meets the knot transversely. In the limit, Y

separates into two components Y± and zooming in on the transition region leads to
a problem on Σ × R × R+ which is independent of the R direction normal to the
separating surface. We are thus led to study the dimensionally reduced problem,
called the extended Bogomolny equations, on Σ × R+ with the induced singular
boundary condition.

A further motivation for studying the moduli space of solutions of the extended
Bogomolny equations on Σ × R+ is provided by the Atiyah-Floer conjecture [8]. In
terms of a handlebody decomposition Y3 = Y+ ∪Σ Y−, the Atiyah-Floer conjecture
states that the instanton Floer homology of Y can be recovered from Lagrangian
Floer homology of two Lagrangians associated to the handlebodies in the moduli
spaceM(Σ) of flat SU(2) connection of Σ. These Lagrangians consist of the flat
connections which extend into Y+ or Y−. Another way to view M(Σ) is as the
moduli space for the reduction of the anti-selfdual equations to Σ. One then expects
to use Lagrangian intersectional Floer theory to define invariants. We refer to [16],
[1] for recent progress on this.

In any case, we are presented with the problem of studying the dimensionally re-
duced Kapustin-Witten equations on Σ × R+ with generalized Nahm pole boundary
conditions. We describe these now; their derivation and further explicit computa-
tions appear in Section 2 below. Let P be a principal SU(2) bundle over Σ, pulled
back to Σ × R+, and gP its adjoint bundle. The extended Bogomolny equations are
the following set of equations for a connection A on P, and gP-valued 1- and 0-forms
φ and φ1, respectively:

FA − φ ∧ φ = ?dAφ1,

dAφ = ?[φ, φ1],

d?Aφ = 0.

(3.1)

The knot corresponds in this setting to where the stretched knot crosses Σ, or in
other words, to a set of marked points {p1, . . . , pN } on Σ, see Figure 3.2.
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Figure 3.2: Σ × R+; the ‘knots’ correspond to points on Σ × {0}

In the following we the standard linear coordinate y on R+. Define MEBE
NP and

MEBE
KS to be the moduli spaces of solutions to (3.1) which satisfy the Nahm pole,

and generalized Nahm pole, boundary conditions at y = 0, and which converge to
an SL(2,R) flat connection as y → ∞. For the second of these spaces, we tacitly
restrict to the subset of solutions which are compatible with a SL(2,R) structure,
as explained more carefully in Section 3. The subscripts NP and KS here stand
for ‘Nahm pole’ and ‘knot singularity’. We also writeM for the moduli space of
stable SL(2,R) Higgs pairs and recall thatM =MHit tMHitc , where the first term
on the right is the Fuchsian, or Hitchin, component and MHitc the union of the
other components. It is well-known thatMHit identified with a finite cover of the
Techmüller space for Σ.

In the spirit of Donaldson-Uhlenbeck-Yau [21],[59], Gaiotto and Witten [25] define
maps

INP :MEBE
NP →M

Hit,

IKS :MEBE
KS →M

Hitc,
(3.2)

which we recall in Section 3. They conjecture that INP is one-to-one. We prove this
here and also describe the map IKS. Our main result is:

Theorem 3.1.1. (i) The map INP is bijection. Explicitly, to every element in the
Hitchin componentMHit, there exists a solution to (3.1) satisfying the Nahm pole
boundary condition. If two solutions to (3.1) satisfying these boundary conditions
map to the same element inMHit under INP, then they are SU(2)-gauge equivalent.

(ii) The map IKS is two-to-one: for every element in the MHitc , there exist two
solutions to (3.1) which satisfy generalized Nahm pole boundary conditions with
knot singularities and which are compatible with the SL(2,R) structure as y → ∞.
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Any solution to (3.1) satisfying these boundary and compatibility conditions is equal,
up to SU(2)-gauge equivalence, with one of these two solutions.

We define in Section 3 what it means for solutions of (3.1) with knot singularities
to be compatible with the SL(2,R) structure as y →∞. This condition allows (3.1)
to be reduced to a scalar equation. There are almost surely solutions to (3.1) which
do not satisfy this condition.

The expectation, explained in [63], is that the Jones polynomial should be recovered
by counting solutions to the extended Bogomolny equations on R3 × R+, with a
knot singularity at some K ⊂ R3. Thus, as a dimensionally reduced version of this
problem, we also consider these equations on C × R+:

Theorem 3.1.2. Given any positive divisor D =
∑

ni pi on C, there exists a solution
to (3.1) which has knot singularities of order ni at pi. This solution is unique to the
scalar equation.

Acknowledgements. The first authorwishes to thankCiprianManolescu, Qiongling
Li and Victor Mikhaylov. The second author is grateful to Edward Witten for
introducing him to this problem originally and for his many patient explanations.
The second author has been supported by the NSF grant DMS-1608223.

3.2 Preliminaries
We begin by considering various ways in which the extended Bogomolny equations
(3.1) may be interpreted.

S1-Invariant Kapustin-Witten Equations
Let X be a smooth 4-manifold with boundary, P an SU(2) bundle over X and gP the
adjoint bundle of P. If Â is a connection on P and Φ̂ is a gP-valued one-form, then
the Kapustin-Witten equations for the pair (Â, Φ̂) are

FÂ − Φ̂ ∧ Φ̂ +?dÂΦ̂ = 0,

d?
Â
Φ̂ = 0.

(3.3)

Consider the special casewhere X = S1×Y is the product of a circle and a 3-manifold,
and where (Â, Φ̂) is an S1 invariant solution to (4.1). We then set

Â = A + A1dx1, Φ̂ = φ + φ1dx1, (3.4)
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where A, φ ∈ Ω1
Y (gP) and A1, φ1 ∈ Ω

0
Y (gP) are independent of x1 ∈ S1. Then (4.1)

becomes

FA − φ ∧ φ −?dAφ1 −?[A1, φ] = 0,

?dAφ + [φ1, φ] + dAA1 = 0,

d?Aφ − [A1, φ1] = 0.

(3.5)

Denoting the quantities on the left of these three qualities by X1, X2 and X3,
respectively, we define the expressions

I0 =

∫
Y
|X1 |

2 + |X2 |
2 + |X3 |

2

I1 =

∫
Y
|FA − φ ∧ φ −?dAφ1 |

2 + | ? dAφ + [φ1, φ]|
2 + |d?Aφ|

2,

I2 =

∫
Y
|[A1, φ]|

2 + |dAA1 |
2 + |[A1, φ1]|

2,

(3.6)

and also, if Y is a 3-manifold with boundary,

I3 = −

∫
∂Y

Tr(dAA1 ∧ φ1) −

∫
∂Y

Tr([A1, φ1] ∧?φ).

After a straightforward calculation, assuming that all integrations are valid, we have

I0 = I1 + I2 + I3. (3.7)

Since I0, I1, I2 are all nonnegative, we deduce the

Proposition 3.2.1. If (A1, φ1) satisfies a boundary condition which guarantees that
I3 = 0, and if (A, φ) is irreducible, then A1 = 0 and (3.5) reduces to the equations
corresponding to I1 = 0.

The case of principal interest in this paper is whenY = Σ×R+y and (Â, Φ̂) satisfy the
Nahm pole boundary conditions at y = 0 and converge as y → ∞ to a flat SL(2,C)
connection. The conditions of this proposition are then satisfied. We recall the
claim, see [56, Page 36] as well as [28, Corollary 4.7], that for solutions satisfying
these boundary conditions, the dy component of φ vanishes. Results from [43] show
that as y ↘ 0, A1 ∼ y2 and φ1 ∼

1
y , hence ?φ = 0 at y = 0. In addition, A1 and φ1

both converge to 0 as y → ∞. These facts together imply that I3 vanishes at both
y = 0 and y = ∞, so Proposition 3.2.1 holds.

If an S1-invariant solution satisfies the Nahm pole boundary condition at y = 0 and
converges to a flat SL(2,C) connection as y → ∞, then the pair (A,Φ) satisfies the
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so-called extended Bogomolny equations on Σ × R+:

FA − φ ∧ φ = ?dAφ1,

dAφ = ?[φ, φ1],

d?Aφ = 0.

(3.8)

Here A is a connection, φ ∈ Ω1(gP), φ1 ∈ Ω
0(gP) and the dy component of φ

vanishes.

These equations reduce, when φ1 = 0, to the Hitchin equations, when φ = 0, to the
Bogomolny equations, and when A = 0 and φ is independent of Σ, to the Nahm
equations. Thus one expects that all known techniques for these special cases should
be applicable to these hybrid equations as well.

Hermitian Geometry
Choose a holomorphic coordinate z = x2+ix3 on Σ and let y be the linear coordinate
on R+. In these coordinates, define dA = ∇2 dx2 +∇3 dx3 +∇y dy and φ = φ2 dx2 +

φ3 dx3 =
1
2 (ϕz dz + ϕ†z̄ dz̄), where ϕz = φ2 − iφ3; we also write ϕ = ϕzdz. Using

these, we can rewrite (3.1) in the “three D’s” formalism: with Ay = Ay − iφ1, set

D1 = ∇2 + i∇3,

D2 = ad ϕz = [ϕz, ·],

D3 = ∇y − iφ1 = ∂y +Ay = ∂y + Ay − iφ1.

(3.9)

The adjoints of these operators are

D
†

1 = −∇2 + i∇3,

D
†

2 = −[φ2 + iφ3, ·],

D
†

3 = −∇y − iφ1.

(3.10)

The extended Bogomolny equations can then be written in the alternate form

[Di, D j] = 0, i, j = 1, 2, 3, and
3∑

i=1
[Di, D

†

i ] = 0. (3.11)

We write out the last of these, which is the most intricate. Noting that

[D1, D
†

1 ] = [∇2 + i∇3,−∇2 + i∇3] = 2iF23,

[D2, D
†

2 ] = −2i[φ2, φ3],

[D3, D
†

3 ] = −2i∇yφ1,

(3.12)
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we have
1
2i

3∑
k=1
[Dk, D

†

k ] = F23 − [φ2, φ3] − ∇yφ1 = 0.

As is standard for such equations, cf. [63], the smaller system [Di,D j] = 0 is
invariant under the complex (SL(2;C)-valued) gauge group GCP , while the full
system (3.11) is invariant under the unitary gauge group, Di → g−1Dig, g ∈ GP

and the final equation is a real moment map condition. Following the spirit of
Donaldson-Uhlenbeck-Yau [21],[59], we thus expect that Hermitian geometric data
from the GCP -invariant equations play a role in solving the moment map equation.

Suppose that E is a rank 2 Hermitian bundle over Σ × R+. As we now explain,
for any function f and section s, D1( f s) = ∂z̄ f s + fD1s, which is a ∂-operator
in Newlander-Nirenberg sense; D2 is then a KΣ-valued endomorphism of E, while
D3 specifies a parallel transport in the y direction. In terms of these, the equations
[Di,D j] = 0 have a nice geometric meaning.

Denote by Ey := E |Σ×{y} the restriction of E to each slice Σ × {y}. Since D2
1 = 0

is always true for dimensional reasons, the Newlander-Nirenberg theorem gives that
D1 induces a holomorphic structure on Ey for each y, i.e., in some gauge, we can
writeD1 = ∂̄. A connection A is compatible with this holomorphic structure if A0,1

equals ∂̄.

Next, [D1,D2] = 0 says that the endomorphism ϕ is holomorphic with respect to
this structure, so (E,D1, ϕ) is a Higgs pair over each slice. Finally, the equations
[D2,D3] = 0, [D1,D3] = 0 show that this family of Higgs pairs is parallel in y, i.e.,
there is a specified identification of these objects at different values of y.

Following [21], a data set for our problem consists of a rank two bundle E over
Σ × R+ and a triplet of operators Θ = (D1,D2,D3) on C∞(E) satisfying

• D1( f s) = ∂z̄ f s + fD1s, D3( f s) = (∂y f )s + fD3s for f ∈ C∞(Σ × R+) and
s ∈ C∞(E);

• D2 = [ϕ, ·] for some ϕ ∈ Ω1,0(gP);

• [Di, D j] = 0 for all i, j.

Given (E,Θ), a choice of Hermitian metric H on E determines Hermitian adjoints
D′i of the operators Di by the requirements that for any smooth functions f and
sections s:
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• D′1 andD
′
3 are derivations, i.e.,D

′
1( f s) = (∂z f )s+ fD1s,D′3( f s) = (∂y f )s+

fD3s, while D2( f s) = fD2(s);

• ∂z̄H(s, s′) = H(D1s, s′) + H(s,D′1s′), ∂yH(s, s′) = H(D3s, s′) + H(s,D′3s′);

• H(D2s, s′) + H(s,D
′

2s′) = 0

Themoment map equation in (3.11) can be regarded as an equation for the Hermitian
metric H. Indeed, setting Dy =

1
2 (D3 +D

′

3), Dz̄ = D1 and Dz = D
′

1, we define a
unitary connection DA, and an endomorphism-valued 1-form φ and 0-form φ1 on
(E,Θ,H) by

DA(s) : = D1(s)dz̄ +D
′

1(s)dz +Dy(s)dy,

[φ, s] : = [D2, s]dz + [D
′

2, s]dz̄,

φ1 : =
i
2
(D3 − D

′

3).

(3.13)

We call (A, φ, φ1) a unitary triplet. Note however that in an arbitrary trivialization
of E , (A, φ, φ1) may not consist of unitary matrices. We recall a standard result [7]
which provides the link between connections in unitary and holomorphic frames. In
the following, and later, we refer to parallel holomorphic gauges. These are, as the
moniker suggests, holomorphic gauges for each Ey which are parallel with respect
to D3.

Proposition 3.2.2. With (E,Θ,H) as above, there is a unique triplet (A, φ, φy)
compatible with the unitary structure and with the structure defined by Θ. In other
words, in every unitary gauge, A? = −A, φ? = φ, φ?1 = −φ1, while in every parallel
holomorphic gauge, D1 = ∂E and D3 = ∂y, i.e., A(0,1) = Ay − iφ1 = 0.

Proof. With the convention H(s, s′) = s̄>Hs′, we compute first in a holomorphic
parallel gauge, from the defining equations for the D′i , that ∂̄H = (A(1,0))>H and
∂yH = H(−Ay − iφ1), so in this gauge, A = A(1,0) = H−1∂H and Ay + iφ1 =

−H−1∂yH.

Suppose next that we know H with respect to a homolomorphic frame. If g is a
complex gauge transformation such that H = g†g, then in the parallel holomorphic
gauge,

A(1,0) = H−1∂H = g−1(g†)−1(∂zg
†)g + g−1∂zg, A(0,1) = 0. (3.14)

If Â is the connection form in unitary gauge, then

Âz = (g
†)−1∂zg

†, Âz̄ = −(∂z̄g)g
−1, (3.15)
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and Â†z̄ = −Âz. Thus g transforms the holomorphic form to the unitary one.

Similarily, the same Higgs field in holomorphic and unitary gauge, ϕ and φ, are
related by

φz = gϕg−1, φz̄ = (g
†)−1ϕ̄>g†. (3.16)

For the final component, suppose that Ay is given in holomorphic gauge. Then in
unitary gauge,

Ay =
1
2
((∂yg)g

−1 − (g†)−1∂yg
†), φ1 =

i
2
((g†)−1∂yg

† + ∂yg
†(g†)−1). (3.17)

�

We now record some computations in a local holomorphic coordinate chart. Writing
D1 = ∂z̄ + α, D

′

1 = ∂z + A(1,0), D3 = ∂y +Ay and D
′

3 = ∂y +A
′

y, we compute:

A(1,0) = H−1∂zH − H−1(ᾱ)>H,

A = A(1,0) + α = H−1∂zH − H−1ᾱ>H + α,

ϕ† = H−1ϕ̄>H,

A
′

y = H−1∂yH − H−1Āy
>H.

(3.18)

Thus if α = Ay = 0, and the adjoint operators become

D
†

1 = −D
′

1 = −(∂z + H−1∂zH), D†2 = −D
′

2 = [ϕ
†, ], D†3 = −D

′

3 = −∂y − H−1∂yH.

(3.19)

Altogether, in a local holomorphic coordinate z for which the metric on Σ equals
g2

0 |dz |2, and in the holomorphic parallel gauge where D1 = ∂̄, D3 = ∂y, then in
local coordinate (z, y), the extended Bogomolny equations (3.11) become

−∂̄z̄(H−1∂zH) − g2
0∂y(H

−1∂yH) + [ϕz, ϕ
?
z̄ ] = 0. (3.20)

Two sets of data (E,Θ) and (E, Θ̃) are called equivalent if there exists a complex
gauge transform g such that g−1D̃ig = Di, i = 1, 2, 3. A key fact is that (E,Θ) is
completely determined by a Higgs pair (E, ϕ) over the Riemann surface Σ.

Proposition 3.2.3. (1) Suppose that (E,Θ) and (E, Θ̃) are two data sets. If the
restrictions of Θ to Ey and Θ̃ to some possibly different Ey′ are complex gauge
equivalent, then (E,Θ) and (E, Θ̃) are equivalent.
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(2) If (E,Θ,H) is a solution to the extended Bogomolny equations , and if g is a com-
plex gauge transform, then (E,Θg), where Θg = (g−1D1g, g

−1D2g, g
−1D3g),Hg =

Hg?Hg is also a solution.

Proof. Since D3 and D̃3 both define isomorphisms of the Higgs pairs, (1) follows
immediately. Then, recalling that D†i is the conjugate of Di with respect to H, one
may check (2) directly from the definition. �

3.3 Boundary Conditions
In this section we introduce boundary conditions for the extended Bogomolny equa-
tions over Σ × R+ at y = 0 and as y → +∞.

SL(2,R) Higgs-bundles
We impose an asymptotic boundary condition as y → +∞ by requiring that solutions
of (3.1) converge to flat SL(2,R) connections. To explain this more carefully, we
recall some basic facts about the moduli space of stable SL(2,R) Higgs-bundles, cf.
[31], [32].

Consider a Riemann surface Σ of genus g > 1. A Higgs bundle consists of a
pair (E, ϕ) where E is a holomorphic structure on a complex vector bundle E and
ϕ ∈ H0(End(E) ⊗ K) is a Higgs field. Let (E, ϕ) be a rank 2 Higgs bundle such that
deg E = 0. It is proved in [31] that once an SL(2,R) structure is fixed, there is an
isomorphism E � L−1 ⊕ L, where L is a line bundle with 0 ≤ deg L ≤ g − 1, in
terms of which the Higgs field takes the form

ϕ =

(
0 α

β 0

)
(3.21)

where α ∈ H0(L−2 ⊗ K) and β ∈ H0(L2 ⊗ K). When deg L = g − 1 and L = K
1
2

for one of the 22g square roots of K , then we write this canonical form for the Higgs
field in the familiar form

ϕ =

(
0 1
q 0

)
(3.22)

Here 1 is the canonical identity element in Hom(L, L−1)⊗K = Hom(K 1
2 ,K−

1
2 )⊗K =

O and q ∈ H0(L2 ⊗ K) = H0(K2) is a holomorphic quadratic differential. This set
of Higgs bundles constitutes the Hitchin component of the SL(2,R) moduli space.

The splittings with | deg L | < g − 1 constitute the non-Hitchin components. Write
k = deg L so that deg(L−2 ⊗ K) = deg K − 2 deg L = 2g − 2 − 2k. Thus when
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0 ≤ k < g − 1, the section α has 2g − 2 − 2k zeros; these are of course invariant
under complex gauge transform.

If φ1 = 0 in (3.1), or if D3 = 0 in (3.11), we obtain the Hitchin equation

FH + [ϕ, ϕ
?] = 0, ∂̄Aϕ = 0. (3.23)

A rank 2 Higgs pair (E, ϕ) with det(E) = O is stable if for every ϕ-invariant
subbundle S ⊂ E , deg S < 0. We say in general that (E, ϕ) is polystable if it is direct
sum of stable Higgs bundle. In the rank 2 case, a polystable Higgs bundle takes the

form (E = L−1 ⊕ L, ϕ =

(
a 0
0 −a

)
), but by assumption we shall exclude these.

The solvability of the Hitchin equation (3.23) was analyzed completely in [31].

Theorem 3.3.1. [31] Let (E, ϕ) be a Higgs pair over Σ. There exists an irreducible
solution H to the Hitchin equations if and only if the Higgs pair is stable, and a
reducible solution if and only if it is polystable.

When deg L > 0, the Higgs pairs (L−1 ⊕ L, ϕ =

(
0 α

β 0

)
) are all stable. If deg L = 0,

then L � O and E is holomorphically trivial. If ϕ =

(
0 α

β 0

)
, then the pair is stable

if and only if neither α nor β are identically zero. If precisely one of α, β vanishes,
the pair is neither stable nor polystable and the Hitchin equation has no solution.
If both α = β = 0, then the Higgs bundle is polystable and there exist a reducible
solution.

In this paper we restrict attention to irreducible solutions. The moduli space of
stable SL(2,R)-Higgs pairs can then be described as follows:

Theorem 3.3.2. [31] The SL(2,R) Higgs bundle moduli space contains 2g − 1
components, classified by the degree k of the line bundle L, |k | ≤ g − 1. The
componentMSL(2,R)

k is a smooth manifold of dimension (6g − 6) diffeomorphic to a
complex vector bundle of rank (g − 1 + 2k) over the 22g-fold cover of the symmetric
product S2g−2−2kΣ.

Proof. We sketch the proof. For the SL(2,R) Higgs bundle (L−1 ⊕ L,

(
0 α

β 0

)
), the

zeroes of α ∈ H0(L−2 ⊗ K) give a divisor D where O(D) = L−2 ⊗ K , and hence an
element of S2g−2−2kΣ. Then β ∈ H0(Σ,O(−D)K2) determines a line bundle.
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Note that since we are working with SL(2,R), given D we can only determine
L2 = O(−D)K , but L itself can only be recovered up to the choice of a line bundle
I with I2 = O. There are precisely 22g such choices. �

We recall finally a well-known result:

Proposition 3.3.3. The harmonicmetric H corresponding to a stable SL(2,R)Higgs

pair splits with respect to the decomposition E = L−1 ⊕ L, H =

(
h 0
0 h−1

)
.

A proof appears in [13, Theorem 2.10].

The Nahm Pole Boundary Condition and Holomorphic Data
We next recall the Nahm pole boundary condition and its associated Hermitian
geometry, following [25].

The starting point is the model solution [63]. Consider a trivial rank 2 bundle E

over C × R+. The model Nahm pole solution is

Az = 0, φz =
1
y

(
0 1
0 0

)
, Ay = −iφ1 =

1
2y

(
1 0
0 −1

)
. (3.24)

Under the singular complex gauge transformation, these fields become g =

(
y−

1
2 0

0 y
1
2

)
to ϕ =

(
0 1
0 0

)
, Az = 0 andAy = 0, i.e., the connection in theR+ direction transforms

to ∂y.

Now, s =

(
ay−

1
2

by
1
2

)
is an D3 parallel section of E for any a, b ∈ R, and indeed is

a solution of the full extended Bogomolny equations. A generic solution of this
form blows up as y → 0, but there is a well-defined subbundle L ⊂ E , called the
vanishing line bundle, defined as the space of solutions which tend to 0 as y → 0.
For this model solution and line bundle, span {ϕ(L), L ⊗ K} = E ⊗ K at all points.

We say that a solution (A, ϕ, φ1) to (3.1) on a rank 2 Hermitian bundle E with
determinant zero over Σ satisfies the Nahm pole boundary condition if in terms of
any local trivialization

Az ∼ O(y
−1+ε ), ϕ =

1
y

(
0 1
0 0

)
+ O(y−1+ε ), Ay =

1
2y

(
1 0
0 −1

)
+ O(y−1+ε ) (3.25)
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as y → 0. As described in [43], it is of course necessary to consider fields which
lie in some function space, e.g. a weighted Hölder space, and the error estimate
O(y−1+ε ) is interpreted in terms of that norm. The regularity theory in that paper
shows that a solution of the extended Bogomolny equations, or indeed of the full
Kapustin-Witten system, is then much more regular after being put into gauge.

In exactly the same way as in the model case, this boundary condition defines a
line bundle L ⊂ E , and since det E = O, we have E/L � L−1. On the other hand,
span{ϕ(L), L ⊗ K} = E ⊗ K , so that pushing forward L via

L
ϕ
−→ E ⊗ K → (E/L) ⊗ K (3.26)

shows that L � L−1 ⊗ K , i.e., L � K
1
2 , and then E/L � K−

1
2 . In other words,

0→ K
1
2 → E → K−

1
2 → 0. (3.27)

In addition, denote i1 : ϕ(L) → E ⊗ K and i2 : L ⊗ K → E ⊗ K , and define:

i : ϕ(L) ⊕ L ⊗ K → E ⊗ K

i = i1 + i2.
(3.28)

As span{ϕ(L), L ⊗ K} = E ⊗ K , we obtain that i is surjective between two rank two
bundles thus isomorphism. Tensoring by K−1, we obtain E � K−

1
2 ⊕ K

1
2 .

Under a complex gauge transform, we can then put the Higgs field into the form

ϕ =

(
t 1
β′ −t

)
. Setting g =

(
1 0
−t 1

)
, we compute that g−1ϕg =

(
0 1
β 0

)
. This shows

that a SL(2,R) Higgs bundle lies in the Hitchin component of the SL(2,R) Higgs
bundle moduli space.

In summary, recalling thatMEBE
NP is the moduli space of solutions of the extended

Bogomolny equations with limit in SL(2,R) andMHit is the Hitchin component of
stable SL(2,R)Higgs bundle, we have now explained the map INP :MEBE

NP →M
Hit.

Gaiotto and Witten [25] conjectured that this map is a bijection, and we show below
that this is the case.

Knot Singularity
We next define the model knot singularity introduced by Witten in [63], and the
modified Nahm pole condition for knots. In the Riemann surface picture, knot
singularities correspond to marked points, at which monopoles are wrapped.



126

Fix coordinates z = x2 + ix3 ∈ C and y ∈ R+ on C × R+. Then, with respect to

the Higgs field ϕ =

(
0 zn

0 0

)
and Hermitian metric H =

(
eu 0
0 e−u

)
, equation (3.20)

takes the form
−(∆ + ∂2

y )u + r2ne2u = 0, (3.29)

where ∆ = ∂2
x2 + ∂

2
x3 and r = |z |.

Assuming homogeneity in (z, y) and radial symmetry in z, Witten [63] obtained the
model solution

Un(r, y) = log

(
2(n + 1)

(
√

r2 + y2 + y)n+1 − (
√

r2 + y2 − y)n+1

)
. (3.30)

To investigate this further, introduce spherical coordinates (R, ψ, θ),

R =
√

r2 + y2, z = reiθ, sinψ =
y

R
, cosψ =

r
R
.

Writing a =
√

r2 + y2 + y and b =
√

r2 + y2 − y, then

a
R
= 1 +

y

R
= 1 + sinψ,

b
R
= 1 −

y

R
= 1 − sinψ,

and hence
Un = − log y − n log R + log

n + 1
Sn(ψ)

,

where

Sn(ψ) = Sn(a, b) =
n∑

k=0
an−k bk .

Note that U0 = − log y when n = 0, which recovers the model Nahm pole solution.
Moreover, Un is compatible with the Nahm pole singularity in the sense that Un ∼

− log y as y → 0 for r ≥ ε > 0.

Defining gn =

(
eun/2 0

0 e−un/2

)
, then in unitary gauge

Az = g−1
n ∂gn, Az̄ = −(∂̄gn)gn

−1, φz = gnϕg
−1
n , φ1 =

i
2
(g−1

n ∂ygn + ∂ygng
−1
n ),

(3.31)
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or explicitly,

φz =

(
0 zneUn

0 0

)
=

2
R

(n + 1) cosn ψ

(1 + sinψ)n+1 − (1 − sinψ)n+1 einθ

(
0 1
0 0

)
=

1
R sinψ

(n + 1) cosn ψ

Sn(ψ)
einθ

(
0 1
0 0

)
φ1 = −U′n

(
i
2 0
0 − i

2

)
=

n + 1
R
(1 + sinψ)n+1 + (1 − sinψ)n+1

(1 + sinψ)n+1 − (1 − sinψ)n+1

(
i
2 0
0 − i

2

)
Ay = 0.

(3.32)

Suppose that s is a section with D3s = 0. Then for any a, b ∈ R, s =

(
aeUn/2

be−Un/2

)
is a solution, where eUn = (n + 1)/(yRnSn(ψ)). As in the Nahm pole case, we can
still define a line subbundle L corresponding to parallel sections whose limits as
y → 0 vanish; generic parallel sections blow up. However, a new feature here is
that span(L ⊗ K, ϕ(L)) , E ⊗ K precisely at the knot singularities, reflecting the
zeroes of ϕ.

For any p ∈ Σ we can transport the model solution to Σ × R+ using the local
coordinates (z, y), giving an approximate solution (Ap, φp, φ

p
1) in a neighborhood of

(p, 0). It is convenient

Definition 3.3.4. A solution (A, φ, φ1) to the extended Bogomolny equations satisfies
the general Nahm pole boundary condition with knot singularity of order n at
(p, 0) ∈ Σ × R+ if in a suitable gauge it satisfies

(A, φ, φ1) = (Ap, φp, φ
p
1) + O(R

−1+ε (sinψ)−1+ε ) (3.33)

for some ε > 0, where R and ψ are the spherical coordiates used above.

Corresponding to a solution with knot singularity is a set of holomorphic data.
Suppose (A, φ, φ1) is a solution with a knot singularity at the points {p j} with orders
n j , j = 1, · · · , N . We define the line subbundle L of E and obtain the exact sequence

0→ L → E → L−1 → 0. (3.34)
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Using the asymptotic boundary condition at y → +∞ and theMilnor-Wood inequal-
ity [50], [66], we have | deg L | ≤ g − 1.

The knot singularity and Higgs field induce a map

P : L
ϕ
−→ E ⊗ K → L−1 ⊗ K . (3.35)

Regarding P as an element of H0(L−2 ⊗ K), we deduce that that there are 2g − 2 −
2 deg L marked points, counted with multiplicity.

The data we must specify then consists of the following:

1. An SL(2;C) Higgs bundle with a line subbundle L;

2. Marked points {p j} with orders n j ;

3. Generic parallel sections of E over Σ \ {p j} blow up at the rate y− 1
2 ;

4. The section P ∈ H0(L−2K) in (3.35) has zeroes precisely at p j of order n j .

Just as for the Nahm pole case, we impose an SL(2,R) structure on the Higgs bundle.
The following assumption simplifies the Hermitian geometric data.

Definition 3.3.5. Suppose we have a solution to (3.1) which satisfies the general
Nahm pole boundary conditions, and assume that the solution converges to an

SL(2,R) Higgs bundle (L−1 ⊕ L, ϕ =

(
0 α

β 0

)
) as y →∞. We say that this solution

is compatible with the SL(2,R) structure at y = ∞ if either L or L−1 is the vanishing
line bundle.

Merely assuming that the Higgs bundle converges to an SL(2,R) Higgs bundle, as
above, is not enough to imply that L is the vanishing line bundle.

Remark. If the exact sequence (3.34) splits, the Higgs field may take the slightly

more general form ϕ =

(
t α

β −t

)
. Such Higgs fields with t , 0 exist, but at present we

do not know whether it is possible to solve the extended Bogomolny equations with
knot singularity with this data. The vanishing of t will play a minor but important
technical role below in Proposition 3.3.9, which we need in proving uniqueness
theorems later.
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The compatibility of the solution with the SL(2,R) structure is a technical condition
that allows us to reduce the Bogomolny equation to a scalar equation. There is one
special case where we do not need to assume this compatibility condition. Under
the assumption of Definition 3.3.5, denote the vanishing line bundle as L′. We then
obtain

Proposition 3.3.6. If L′ , L or L−1, then deg L′ ≤ −| deg L |,

Proof. The line subbundle L′ induces the exact sequence:

0→ L′→ L−1 ⊕ L → L′−1 → 0,

which defines the holomorphic map γ1 : L → L′−1 and γ2 : L−1 → L′−1. Since
L′ , L or L−1, we obtain that neither γ1 nor γ2 equal the identity. In other words,
we obtain non-zero elements γ1 ∈ H0(L−1 ⊗ L′−1) and γ2 ∈ H0(L ⊗ L′−1). Since
γ1, γ2 do not have poles, we obtain deg(L−1 ⊗ L′−1) ≥ 0 and deg(L ⊗ L′−1) ≥ 0,
which implies deg L′ ≤ −| deg L |. �

Denoting by N :=
∑

n j the sum of the orders of the marked points, we conclude the

Corollary 3.3.7. If deg L > 0 and N < 2g − 2 + 2 deg L, then L′ = L.

Proof. Recall that N = 2g − 2− 2 deg L′, and furthermore, if N < 2g − 2+ 2 deg L,
then deg L′ > − deg L. Proposition 3.3.6 then implies this result. �

Regularity
We have defined these boundary conditions both at y = 0 and at the knot singular
points by requiring the fields (A, φ) to differ from the corresponding model solutions
by an error term, the relative size of which is smaller than the model. In the
existence theorems later in this paper this may be all we know about solutions at
first. However, to be able to carry out many further arguments it is important to know
that, in an appropriate gauge, solutions have much stronger regularity properties.
Fortunately there is an appropriate regularity theory available which was developed
in [43] in the Nahm pole case and [46] near the knot singularities. We note that in
those papers solutions to the full four-dimensional KW system are treated, but those
results specialize directly to the present setting, and in fact there are some minor but
important strengthenings here which we point out inter alia.

Regularity theory relies on ellipticity, and to turn the extended Bogomolny equa-
tions into an elliptic system we must add an appropriate gauge condition. We recall
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the choice made in [43] for the KW system on a four-manifold and then specialize it
in our dimensionally reduced setting. Fix a pair of fields (Â0, φ̂0) on a four-manifold
which are either solutions or approximate solutions of KW equations. Then nearby
fields can be written in the form (Â, φ̂) = (Â0, φ̂0)+(α, ψ). The gauge-fixing equation
is then

d∗
Â0α +?[φ̂

0,?ψ] = 0. (3.36)

It is shown in [43] that adjoining (3.36) to the KW equations is elliptic.

Denote byL the linearization of this system at (Â0, φ̂0). This is a Dirac-type operator
with coefficients which blow up at y = 0 and R = 0 in a very special manner. In the
absence of knots,L is (up to amultiplicative factor) a uniformly degenerate operator,
while near a knot it lies in a slightly more general class of incomplete iterated edge
operators. These are classes of degenerate differential operators for which tools of
geometric microlocal analysis may be applied to construct parametrices, which in
turn lead to strong mapping and regularity properties. We refer to [43], [46] for
further discussion about all of this and simply state the consequences of this theory
here.

Before doing this we first recall that for degenerate elliptic problems it is too re-
strictive to expect solutions to be smooth up to the boundary. Instead we consider
polyhomogeneous regularity. Let X be a manifold with boundary, with coordinates
(s, z) near a boundary point, with s ≥ 0 and z a coordinate in the boundary. We say
that a function u is polyhomogeneous at ∂X if

u(s, z) ∼
∞∑

j=0

Nj∑̀
=0

a j`(z)sγj (log s)`, a j` ∈ C
∞(∂X).

The exponents γ j here is a sequence of (possibly complex) numbers with real parts
tending to infinity; importantly, for each j, only finitely many factors with (positive
integral) powers of log s can appear. The set of pairs (γ j, `) which appear in this
expansion is called the index set for this expansion. Denoting this index set by I,
we say that u is I-smooth, which emphasizes that this regularity is a very close
relative of and satisfactory replacement for ordinary smoothness. Similarly, if X is
a manifold with corners of codimension 2, with coordinates (s1, s2, z) near a point
on the corner, then u is polyhomogeneous if

u(s1, s2, z) ∼
∞∑

i, j=0

Ni, j∑
p,q=0

ai jpq(z)s
γi
1 sλj2 (log s1)

p(log s2)
q.
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In other words, we require the expansion for u to be of product type near the corner.
These are all classical expansions with the usual meaning and the corresponding
expansions for any number of derivatives hold as well. The reason for introducing
thismore general notion is precisely because at least in favorable situations, solutions
of have this regularity but are not smooth in a classical sense. The important point
is that this is a perfectly satisfactory replacement for smoothness up to the boundary
and allows one to analyze and manipulate expressions using these ‘Taylor series’
type expansions.

We first consider the case where there are no knot singularities, but note that this
result is a local one and can be applied away from knot singular points. Here the
manifold with boundary is simply Σ × R+ and we use coordinates (y, z).

Proposition 3.3.8 ([43]). Let (A, ϕ, φ1) be a solution to the extended Bogomolny
equations near y = 0 which satisfies the Nahm pole boundary conditions and is in
gauge relative to the model approximate solution. Then these fields are polyhomo-
geneous with

A = O(1), ϕ =
1
y

(
0 1
0 0

)
+ O(y), φ1 =

1
y

(
i
2 0
0 − i

2

)
+ O(y log y)

This statement incorporates recent work in [29] which provides much more detail
about the expansions than is present in [43].

To state the corresponding result in the presence of a knot singularity, we first define
the manifold with corners X to be the blowup of Σ × R+ around each of the knot
singular points (p j, 0). In other words, we replace each (p j, 0) by the hemisphere
R = 0 (parametrized by the spherical coordinate variables (ψ, θ)), points of which
label directions of approach to that point. The discussion is local near each p j so
we may as well fix coordinates (R, ψ, θ). The corner of X is defined by R = ψ = 0.

Proposition 3.3.9 ([46]). Let (A, φ, φ1) satisfy the extendedBogomolny equations near
(0, 0) as well as the gauge condition relative to the model knot solution Un. Then
these fields are polyhomogeneous with the same asymptotics as in the previous
proposition when y → 0 away from the knot, while

A = An + O(Rε sinψ), ϕ = ϕn + O(Rε sinψ), φ1 = φ
n
1 + O(R

ε (sinψ) log(sinψ))

near the knot. Here (An, ϕn, φn
1) is the model solution described in §3.3 associated

to Un.
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Referring to the language of [46], these rates of decay, i.e., the first exponents in the
expansions beyond the initial model terms, are indicial roots of type I I and I I′. The
exponent 0 is a possible indicial root of type I I′, but does not appear in our setting
because the SL(2,R) structure forces ϕ to have no diagonal terms, see Remark 3.3,
and it is precisely in these diagonal terms where the exponent 0 might appear in the
expansion.

The Boundary Condition for the Hermitian Metric
Since we must deal with singularities of the gauge field, it is often simpler to work
in holomorphic gauge but consider singular Hermitian metrics. We now describe a
boundary condition for the Hermitian metric compatible with the unitary boundary
condition defined above. We use the Riemannian metric g = g2

0 |dz |2 + dy2 on
Σ × R+. The following result is a direct consequence of the previous computations
in Section 3.3, 3.3.

Proposition 3.3.10. Consider the Higgs bundle (E � L−1 ⊕ L, ϕ =

(
0 α

β 0

)
). Fix

p ∈ Σ× {0} and an open setUp containing p. Let H be a polyhomogeneous solution
to the Hermitian Extended-Bogomolny Equations (3.11).

(1) Suppose that in a local trivilization on Up, ϕ|Up =

(
0 1
? 0

)
. If for some ε > 0,

H ∼

(
y−1(g0 + O(y

ε )) 0
0 y(g−1

0 + O(y
ε ))

)
as y → 0, (3.37)

then the unitary solution with respect to H satisfies the Nahm pole boundary condi-

tion near p and

(
0
1

)
is the vanishing line bundle in this trivialization.

(2) Suppose that in a local trivialization on Up, ϕ|Up =

(
0 zn

? 0

)
(where z = 0 is the

point p). In spherical coordinates (R, θ, ψ), suppose for some ε > 0,

H =

(
eUn(1 + O(Rε )) 0

0 e−Un(1 + O(Rε ))

)
as R→ 0. (3.38)

Then the unitary solution with respect to H satisfies the Nahm pole condition with

knot singularity at p and

(
0
1

)
is the vanishing line bundle in this trivialization. .
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Since we wish to work with holomorphic gauge fields and singular Hermitian
metrics, we obtain some restrictions. Let P be an SU(2) bundle and (A, φ, φ1) a
solution to the Extended Bogonomy Equations (3.1) with Nahm pole boundary and
knot singularities of order n j at the points p j , j = 1, · · · , n. For each j choose small
balls B j around p j , and also let B0 be a neighborhood of Σ \ {B1, · · · , Bk} which
does not contain any of the p j . Choosing a partition of unity χj subordinate to
this cover, define the approximate solution u =

∑
j=0 χjUnj where Unj is the model

solution, and with Un0 = − log y.

Proposition 3.3.11. There exists a Hermitan bundle (E,H) such that:

(1) (H, A(0,1), ϕ,Ay) is a solution to the Hermitian Extended Bogomolny equations;

(2) (A(0,1), ϕ,Ay) is bounded as y → 0;

(3) H =

(
euh11 h12

h21 e−uh22

)
, where u is the approximate function above and the hi j

are bounded.

Proof. We have explained that (A, φ, φ1) is polyhomogeneous, i.e., (A, φ, φ1) =

(Apj, φpj, φ
pj

1 ) + (a, b, c) near p j , where (a, b, c) are bounded. Near other points of
Σ × {0} (A, φ, φ1) is the sum of a Nahm pole and a bounded term. Since P is
an SU(2) bundle over Σ × R+, it is necessarily trivial, so consider the associated
rank 2 Hermitian bundle (E,H0), with H0 = Id in some trivialization. Now write

H =

(
h11 h12

h21 h22

)
where the hi j are bounded. Then (H0, A(0,1), ϕ,Ay), where ϕ = φz,

Ay = Ay − iφ1, is a solution to the Hermitan extended Bogomolny equations (3.11).

Consider the complex gauge transform g =

(
e

u
2 0

0 e−
u
2

)
. Since u is compatible with

the knot singularity, we obtain a new solution (H′, A(0,1)
′

, ϕ′,A′y), H′ = H0g
†g =(

euh11 h12

h21 e−uh22

)
, and A(0,1)

′

, ϕ′,A′y are all bounded. �

We conclude this section with a brief discussion about the regularity of a harmonic
metric which satisfies the boundary conditions described here. Such metrics corre-
spond precisely to the solutions (Az, Ay, ϕ, φ1) of the original extended Bogomolny
equations , and for this reason one obvious route to obtain this regularity is to exhibit
the direct formula from the set of A′s and φ′s to the metric H. Another reasonable
approach is to simply look at the equation (3.20) defining H and prove the necessar-
ily regularity directly from this equation. In fact, the methods used in [43] and [46]
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are sufficiently robust that this adaptation is quite straightforward. In the interests
of efficiency, we simply state the conclusion:

Lemma 3.3.12. A harmonic metric H which satisfies the boundary conditions
discussed above is necessarily polyhomogeneous.

The termswhich appear in the polyhomogeneous expansion of H may be determined
by the obvious formal calculations once we know that the expansion actually exists.

3.4 Existence of Solutions
We shall prove in this section an existence theorem for the extended Bogomolny
equations on Σ × R+, either without or with knot singularities at y = 0. The proofs
employ the classical barrier method, which we review briefly.

Semilinear Elliptic Equations on Noncompact Manifolds
We consider on a Riemannian manifold (W, g) the elliptic equation

N(u) := −∆u + F(x, u) = 0, F ∈ C∞(W × R). (3.39)

A C2 function u+ is called a supersolution for this problem if N(u+) ≥ 0, while
u− is called a subsolution if N(u−) ≤ 0. These are called barriers for the operator.
It is often much simpler to construct such functions which are only continuous,
and which satisfy the corresponding differential inequalities weakly (either in the
distributional or viscosity sense).

Proposition 3.4.1. Suppose that W is a possibly open manifold, and that there exist
continuous barriers u± which satisfy u− ≤ u+ everywhere on W . Then there exists
a solution u to N(u) = 0 which satisfies u− ≤ u ≤ u+.

Proof. (Sketch) We first assume that W is a compact manifold with boundary. Then
u± are bounded functions and we may choose λ > 0 so that ∂uF(x, u) ≤ λ for all
numbers u lying in the interval [u−(x), u+(x)] for every x ∈ W . The equation can
then be written as

(∆ − λ)u = F̃(x, u) := F(x, u) − λu.

We then define a sequence of functions u j , j = 0, 1, 2, . . ., by setting u0 = u− and
successively solving (∆ − λ)u j+1 = F̃(x, u j), and with u j+1 equal to some fixed
function ψ on ∂W which satisfies u− |∂W ≤ ψ ≤ u+ |∂W . The monotonicity of F̃ in u

and the maximum principle can be used to prove inductively that u− = u0 ≤ u1 ≤

u2 ≤ · · · ≤ u+. When W is a manifold with boundary we require a version of the
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maximum principle which holds up to the boundary even for weak solutions; one
version appears in [33, Theorem II.1].

It is then obvious that u j converges pointwise to an L∞ function u, and standard
elliptic regularity implies that u ∈ C∞ and that N(u) = 0.

Now suppose that W is an open manifold. Choose a sequence of compact smooth
manifolds with boundaryWk withW1 ⊂ W2 ⊂ · · · , which exhaust all ofW . For each
k, choose a function ψk on ∂Wk which lies between u− and u+ on this boundary,
and then find a solution uk to N(uk) = 0 on Wk , uk = ψk on ∂Wk . The sequence uk

is uniformly bounded on any compact subset of W , so we may choose a sequence
which converges (by elliptic regularity) in the C∞ topology on any compact subset
of W . The limit function is a solution of N and still satisfies u− ≤ u ≤ u+ on all of
W . �

We conclude this general discussion by making a few comments about the construc-
tion of weak barriers. A very convenient principle is that sub- and supersolutions
may be constructed locally in the following sense. Suppose that U1 and U2 are
two open sets in W and that w j is a supersolution for N on Uj , j = 1, 2. Define
the function w on U1 ∪ U2 by setting w = w1 on U1 \ (U1 ∩ U2), w = w2 on
U2 \ (U1∩U2), and w = min{w1,w2} onU1∩U2. Then w is a supersolution for N

onU1∪U2. Similarly, the maximum of two (or any finite number) of subsolutions is
again a subsolution. In our work below, the individual w j will typically be smooth,
but the new barrier w produced in this way is only piecewise smooth, but is still a
sub- or supersolution in the weak sense. We refer to [12, Appendix A] for a proof.

The Scalar Form of the Extended Bogomolny Equations
Following the discussion in §3, suppose that E � L ⊕ L−1 and

ϕ =

(
0 α

β 0

)
. (3.40)

When deg L = g − 1, L = K1/2 and α = 1, we seek a solution of the extended
Bogomolny equations which satisfies the Nahm pole boundary condition at y = 0,
while if deg L < g − 1, then the zeroes of α determine points and multiplicities p j

and n j on Σ at y = 0 and we search for a solution which satisfies the Nahm pole
boundary condition with knot singularities at these points.

Fix a metric g = g2
0 |dz |2+ dy2 on Σ×R+ (where z = x2+ ix3 is a local holomorphic
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coordinate on Σ), and assume also that the solution metric splits as H =

(
h 0
0 h−1

)
,

where h is a bundle metric on L−1. We are then looking for a solution to

−∆g log h + g−2
0 (h

2αᾱ − h−2ββ̄) = 0. (3.41)

We simplify this slightly further. Choose a background metric h0 on L−1 and recall
that its curvature equals −∆g0 log h0. Then writing h = h0eu and calculating the
norms of α and β in terms of g0 and h0, (3.41) becomes

Kh0 − (∆g0 + ∂
2
y )u + |α |

2e2u − |β |2e−2u = 0. (3.42)

In the remainder of this paper, we denote by N(u) the operator on the left in (3.42).

An explicit solution to this equation was noted by Mikhaylov in a special case [47]:

Example 3.4.2. Consider the Higgs pair (E � K
1
2 ⊕ K−

1
2 , ϕ =

(
0 1
0 0

)
). Let g0 be

the hyperbolic metric on Σ with curvature −2 and h0 the naturally induced metric
on K−1/2, for which Kh0 = −1. Then restricted to Σ-independent functions, (3.42)
equals

−1 − ∂2
yu + e2u = 0. (3.43)

We seek a solution for which u ∼ − log y as y → 0 and v → 0 as y → ∞. The first
integral of (3.43) is u′ = −

√
e2u − 2u − 1, and hence the unique solution is∫ ∞

u

ds
√

e2s − 2s − 1
= y. (3.44)

Note that u is monotone decreasing and strictly positive for all y > 0.

We now describe the precise asymptotics of this solution. If u→∞, then s is large;
write the denominator as es

√
1 − (2s + 1)e−2s, whence

y =

∫ ∞

u
e−s(1 + 1

2 (2s + 1)e−2s + . . .) ds ∼ e−u + . . . ,

so u ∼ − log y. Similarly, if u < ε for some small ε , then e2s − 2s − 1 ∼ 2s2 + . . .

when u < s < ε , so

u =
∫ ∞

ε

ds
√

e2s − 2s − 1
+

∫ ε

u
( 1√

2s
+ . . .) ds = A − 1√

2
log u + . . . ,

so u = Ce−
√

2y + . . .. Obviously, with only a little more effort, one may develop full
asymptotics in both regimes.
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Limiting Solution at Infinity
We first consider the simpler problem of finding a solution of the reduction of (3.42)
reduced to Σ, i.e., of

K − ∆u∞ + |α |2e2u∞ − |β|2e−2u∞ = 0, (3.45)

where K = Kh0 and ∆ = ∆g0 . Without loss of generality, we assume deg L ≥ 0 and
note that since deg L−1 ≤ 0,

∫
Σ

K ≤ 0 (and is strictly negative if the degree of L is
positive). A solution to (3.45) is the obvious candidate for the limit as y → ∞ of
solutions on Σ × R+.

Proposition 3.4.3. If α . 0, which is equivalent to the stability of the pair (E, ϕ),
there exists a solution u∞ ∈ C∞(Σ) to (3.45).

Proof. Since this is an equation on Σ rather than Σ × R+, this follows immediately
from the existence of solutions to the Hitchin equations [31]. However, we give
another proof, at least when deg L > 0, using the barrier method. A proof in the
same style when deg L = 0 requires more work so we omit it.

Solve ∆w− = K − K , where K < 0 is the average of K , and set u− = w− − A for
some constant A. Then K − ∆u− + |α |2e2u− − |β |2e−2u− ≤ K + |α |2ew

−−A, which is
negative when A is sufficiently large. Thus u− is a subsolution.

To obtain a supersolution, first modify the background metric h0 by multiplying it
by a suitable positive factor so that its curvature K is positive near the zeroes of α.
Next solve ∆w+ = |α |2 − B where B is the average of |α |2 and set u+ = w+ + A.
Then

K − ∆u+ + |α |2e2u+ − |β |2e−2u+ = K + B + |α |2(e2(w++A) − 1) − |β |2e−2(w++A)

≥ K + B + 2|α |2(w+ + A) − |β |2e−2(w++A).

Away from the zeroes of α this is certainly positive if we choose A sufficiently large.
Near these zeroes we obtain positivity using that K + B > 0 there and since the final
term can be made arbitrarily small. Thus u+ is a supersolution.

Noting that u− < u+ and applying Proposition 3.4.1, we obtain a solution of (3.45).
�

Observe that since it is only the boundary condition, but not the equation, which
depends on y, this limiting solution is actually a solution of (3.42) on any semi-
infinite region Σ × [y0,∞), y0 > 0.
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Approximate solutions and regularity near y = 0
As a complement to the result in the previous subsection, we now construct an
approximate solution u0 to (3.42) near {y = 0}. Unlike there, however, we do not
find an exact solution, but rather show how to build an initial approximate solution
and then incrementally correct it so that it solves (3.42) to all orders as y → 0. In
the next subsection we use u0 and u∞ together to construct global barriers.

We first begin with the simpler situation where there is only a Nahm pole singularity
without knots.

Proposition 3.4.4. Let L = K1/2 and α ≡ 1. Then there exists a function u0 which
is polyhomogeneous as y → 0 and is such that N(u0) = f decays faster than y` for
any ` ≥ 0.

Proof. We seek u0 with a polyhomogeneous expansion of the form

− log y +
∑
j,`

a j`(z)y j(log y)` := − log y + v,

where all the coefficients are smooth in z, and where the number of log y factors is
finite for each j. Rewriting N(− log y + v) as(

−∂2
y +

2
y2

)
v +

1
y2 (e

2v − 2v − 1) − |β |2y2e−2v − ∆g0v + Kh0, (3.46)

and inserting the putative expansion for v shows that a0` = a1` = 0 for all ` and
a21 =

1
3 (Kh0 − |β|

2, a2` = 0 for ` > 1, i.e., v ∼ a21y
2 log y + a20y

2 + O(y3(log y)`)

for some `. Inductively we can solve for each of the coefficients a j` with j > 2 using
that

(−∂2
y + 2/y2)y j(log y)`

= y j−2(log y)`−2
(
(− j( j − 1) + 2)(log y)2 − `(2 j − 1) log y − `(` − 1)

)
.

Note that the coefficient a20 is not formally determined in this process and different
choices will lead to different formal expansions, and also that there are increasingly
high powers of log y higher up in the expansion.

Now use Borel summation to choose a polyhomogeneous function u0 with this
expansion. This has a Nahm pole at y = 0 and satisfies N(u0) = f = O(y`) for all
`, as desired. �

We next turn to the construction of a similar approximate solution to all orders in
the presence of knot singularities. To carry this out, we first review a geometric
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construction from [46] which is at the heart of the regularity theorem quoted in
§3.4 for the full extended Bogomolny equations and the analogous result for (3.42)
which we describe below.

If p ∈ Σ, we define the blowup of Σ × R+ at (p, 0) to consist of the disjoint union
(Σ × R+) \ {(p, 0)} and the hemisphere S2

+, which we regard as the set of inward-
pointing unit normal vectors at (p, 0), and denote by [Σ × R+; {(p, 0)}], or more
simply, just (Σ × R+)p There is a blowdown map which is the identity away from
(p, 0) and maps the entire hemisphere to this point. This set is endowed with
the unique minimal topology and differential structure so that the lifts of smooth
functions on Σ×R+ and polar coordinates around (p, 0) are smooth. We use spherical
coordinates (R, ψ, θ) around this point, so R = 0 is the hemisphere and ψ = 0 defines
the original boundary y = 0 away from R = 0. This is a smooth manifold with
corners of codimension two.

Now fix a nonzero element α ∈ H0(L−2K) and denote its divisor by
∑N

j=1 n j p j .
For each j, choose a small ball B̂ j and a local holomorphic coordinate z so that
p j = {z = 0}, and write |α |2 = σ2

j r2nj there, with r = |z | and σj > 0. Extend r

from the union of these balls to a smooth positive function on Σ \ {p1, . . . , pN }. By
the existence of isothermal coordinates, we write g0 = e2φḡ0 where ḡ0 is flat on each
B̂ j , and set g = g0 + dy2, ḡ = ḡ0 + dy2. Then ∆g0 = e−2φ∆ḡ0 in these balls, and by
dilating ḡ0, we can assume that e−2φ = 1 at each p j . We denote by (Σ × R+)p1,...,pN

the blowup of Σ × R+ at the collection of points {p1, . . . , pN }.

Proposition 3.4.5. With all notation as above, there exists a function u0 which is
polyhomogeneous on (Σ × R+)p1,...,pN and which satisfies N(u0) = f with f smooth
and vanishing to all orders as y → 0 (i.e., at all boundary components of the
blowup.

Proof. In a manner analogous to the previous proposition, we construct a polyho-
mogeneous series expansion for u0 term-by-term, but now at each of the boundary
faces of (Σ × R+)p1,...,pN .

The initial term of this expansion involves the model solutionsUn. Choose noninter-
secting balls B̂ j with B j ⊂⊂ B̂ j and an open set B̂0 ⊂ Σ\∪

N
j=1B j so that ∪N

j=0B̂ j = Σ.
Let {χj} be a partition of unity subordinate to the cover {B̂ j} with χj = 1 on B j ,
j ≥ 1. We lift each of these functions from Σ to the blowup of Σ × R+. Finally, set
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G j := Unj − logσj , where G0 := U0 − log |α | = − log y − log |α |. Now define

û0 :=
N∑

j=0
χjG j . (3.47)

We compute that N(û0) = f0, where f0 is polyhomogeneous and is bounded at the
original boundary ψ = 0 and has leading term of order R−1 at each of the ‘front’
faces where R = 0.

Our goal is to iteratively solve away all of the terms in the polyhomogeneous
expansion of f0. This must be done separately at the two types of boundary faces.
It turns out to be necessary to first solve away the series at R = 0 and after that
the series at ψ = 0. The reason for doing things in this order is that, as we now
explain, the iterative problem that must be solved at the R = 0 front faces is global
on each hemisphere, and the solution ‘spread’ to the boundary of this hemisphere,
i.e., where ψ = 0. By contrast, the iterative problem at the original boundary is
completely local in the y directions and may be done uniformly up to the corner
where R = ψ = 0, so its solutions do not spread back to the front faces.

For simplicity, we assume that there is only one front face, and we begin by consid-
ering the model case (C × R+)0, on which the linearization of (3.42) at Un can be
written

Ln = −∂
2
R −

2
R
∂R −

1
R2∆S2

+
+ 2r2ne2Un = −∂2

R −
2
R
∂R +

1
R2

(
−∆S2

+
+ T(ψ)

)
, (3.48)

where the potential equals

T(ψ) =
(n + 1)2

sin2 ψSn(ψ)2
.

In general terms, Ln is a relatively simple example of an ‘incomplete iterated edge
operator’, as explained in more detail in [46], based on the earlier development of
this class in [2, 3]. We need relatively little of this theory here and quote from [46]
as needed. In the present situation, we can regard Ln as a conic operator over the
cross-section S2

+. (It is the fact that this link of the cone itself has a boundary which
makes Ln an ‘iterated’ edge operator.)

The crucial fact is that the operator

J = −∆S2
+
+ T(ψ),

induced on this conic link has discrete spectrum. The proof of this is based on
the observation that T(ψ) ∼ 1/ψ2 as ψ → 0. It can then be shown using standard
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arguments, cf. [2, 3], that the domain of J as an unbounded operator on L2(S2
+) is

compactly contained in L2. This implies the discreteness of the spectrum. Another
proof which provides more accurate information uses that J is itself an incomplete
uniformly degenerate operator, as analyzed thoroughly in [41]. The main theorem
in that paper produces a particular degenerate pseudodifferential operator G which
invers J on L2. It is also shown there that G : L2(S2

+) → ψ2H2
0 (S

2
+) (where H2

0
is the scale-invariant Sobolev space associated to the vector fields ψ∂ψ , ψ∂θ). The
compactness of ψ2H2

0 (S
2
+) ↪→ L2(S2

+) follows from the L2 Arzela-Ascoli theorem.
There is an accompanying regularity theorem: if (J−λ)w = f where (for simplicity)
f is smooth and vanishes to all orders at ψ = 0 and λ ∈ R (or more generally can
be any bounded polyhomogeneous function), then w is polyhomogeneous with an
expansion of the form

w ∼
∑

w j`(θ)ψ
γj (logψ)`, w j` ∈ C

∞(S1).

As usual, there are only finitely many log terms for each exponent γ j . These
exponents are the indicial roots of the operator J, and a short calculation shows
that these satisfy 2 = γ0 < γ1 < . . .. Note that the lowest indiical root equals 2,
so solutions all vanish to at least order 2 at ψ = 0, which is in accord with our
knowledge about the behavior of solutions to the linearization of (3.42) at the model
Nahm pole solution − log y.

Denote the eigenfunctions and eigenvalues of J by µi(ψ, θ) and λi. Since T(ψ) > 0,
each λi > 0. The restriction of Ln to the ith eigenspace is now an ODE Ln,i =

−∂2
R − 2R−2∂R + R−2λi. Seeking solutions of the form Rδµi(ψ, θ) leads to the

corresponding indicial roots

δ±i = −
1
2
±

1
2
√

1 + 4λi,

which are the only possible formal rates of growth or decay of solutions to Lnu = 0
as R → 0. To satisfy the generalized Nahm pole condition, we only consider
exponents greater than −1, i.e., the sequence 0 < δ+1 < δ+2 < . . .. We now conclude
the following

Lemma 3.4.6. Suppose that f ∼
∑

f j`(ψ, θ)Rγj (log R)` is polyhomogeneous at the
face R = 0 on (C × R+)0, where all f j` are polyhomogeneous with nonnegative
coefficients at ψ = 0 on S2

+. Then there exists a polyhomogeneous function u such
that Lnu = f + h, where h is polyhomogeneous at ψ = 0 and vanishes to all orders
as R → 0. At R → 0, u ∼

∑
u j`R

γ′j (log R)`; the exponents γ′j are all of the form
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γi + 2,f where γ j appears in the list of exponents in the expansion for f , or else
δ+i + `, ` ∈ N. Each coefficient function u j`, as well as the entire solution u itself
and the error term h, vanish like ψ2 at the boundary ψ = 0.

Using the same result, we may clearly generate a formal solution to our semilinear
elliptic equation in exactly the same way. Therefore, using this Lemma, wemay now
choose a function û1 which is polyhomogeneous on (Σ × R+)p1...pN and such that
N(û0 + û1) = f1, where f1 vanishes to all orders at R = 0 and is polyhomogeneous
and vanishes like ψ2 at ψ = 0. The lowest exponent in the expansion for û1 equals
min{1, δ+0 > 0}.

The final step in our construction of an approximate solution is to carry out an
analogous procedure at the original boundary y = 0 away from the front faces.
This can be done almost exactly above. In this case, (3.46) can be thought of as
an ODE in y with ‘coefficients’ which are operators acting in the z variables, so
we are effectively just solving a family of ODE’s parametrized by z. This may
be done uniformly up to the corner R = ψ = 0. We omit details since they are
the same as before. We obtain after this step a final correction term û2 which is
polyhomogeneous and vanishes to all orders at R = 0, and which satisfies

N(û0 + û1 + û2) = f ,

where f vanishes to all orders at all boundaries of (Σ × R+)p1...pN .

The calculations above are useful not just for calculating formal solutions to the
problem, but also for understanding the regularity of actual solutions to the nonlin-
ear equation N(u) = 0 which satisfy the generalized Nahm pole boundary conditions
with knots. The new ingredient that must be added is a parametrix G for the lin-
earization of N at the approximate solution u0. This operator G is a degenerate
pseudodifferential operator for which there is very precise information known con-
cerning the pointwise behavior of the Schwartz kernel. This is explained carefully
in [43] for the simple Nahm pole case and in [46] for the corresponding problem
with knot singularities. We shall appeal to that discussion and the arguments there
and simply state the

Proposition 3.4.7. Let u be a solution to (3.42) which is of the form u = u0 + v

where v is bounded as y → 0 (in particular as ψ → 0 and R → 0). Then
u is polyhomogeneous at the two boundaries ψ = 0 and R = 0 of the blowup
(Σ × R+)p1,...,pN , and its expansion is fully captured by that of u0.
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Existence of solutions
We now come to the construction of solutions to (3.42) on the entire space Σ × R+

which satisfy the asymptotic SL(2,R) conditions as y → ∞ and which also satisfy
the generalized Nahm pole boundary conditions with knot singularities at y = 0.
We employ the barrier method. The main ingredients in the construction of the
barrier functions are the approximate solutions u0 and u∞ obtained above.

We first consider this problem in the simpler case.

Proposition 3.4.8. If E = K1/2 ⊕ K−1/2 and ϕ =

(
0 1
β 0

)
, i.e. there are no knot

singularities, then there exists a solution u to (3.42) which is smooth for y > 0,
asymptotic to u∞ as y →∞, (and which satisfies the Nahm pole boundary condition
at y = 0).

Proof. Choose a smooth nonnegative cutoff function τ(y) which equals 1 for y ≤ 2
and which vanishes for τ ≥ 3, and define û = τ(y)u0 + (1 − τ(y))u∞. We consider
the operator

N̂(v) = N(û + v) = −(∂2
y + ∆g0)v + e2û(e2v − 1) + |β|2e−2û(1 − e−2v) + f ,

where f = N(û) is smooth on Σ×R+, vanishes to infinite order at y = 0 and vanishes
identically for y ≥ 3.

We now find barrier functions for this equation. Indeed, we compute that if 0 < ε <

1, then

N̂(Ayε ) = Aε(1 − ε)yε−2 + e2û(e2Ayε − 1) + |β |2e−2û(1 − e−2Ayε ) + f .

The second and third terms on the right are nonnegative because Ayε > 0, and we
can certainly choose A sufficiently large so that the entire right hand side is positive
for all y > 0.

We can improve this supersolution for y large. Indeed,

N̂(A′e−ε y) ≥ −A′ε2e−ε y + e2û(2A′e−ε y) + |β |2e−2û(1 − e−2A′e−εy ) + f ,

and if ε is sufficiently small and A′ is sufficiently large, then the entire right hand
side is positive, at least for y ≥ 1, say.

We now define v+ = min{Ayε, A′e−ε y}. The calculations above show that v+ is
a supersolution to the equation. Essentially the same equations show that v− =
max{−Ayε,−A′e−ε y} is a subsolution.
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Wenow invoke Propostion 3.4.1 to conclude that there exists a solution v to N̂(v) = 0,
or equivalently, a solution u = û + v to N(u) = 0, which satisfies |u + log y | ≤ Ayε

as y → 0 and |u−u∞ | ≤ A′e−ε y as y →∞. The regularity theorem for (3.42) shows
that this solution is polyhomogeneous at y = 0, and hence must have an expansion
of the same type as û, and a similar but more standard argument can be used to
produce a better exponential rate of decay as y →∞. �

Proposition 3.4.9. Let E = L ⊕ L−1 and ϕ =

(
0 α

β 0

)
be a stable Higgs pair, and let

(p j, n j) be the ‘knot data’ determined by α. Then there exists a solution u t o (3.42)
of the form u = û + v where v → 0 as y → 0 and as y →∞.

Proof. We proceed exactly as before, writing

N̂(v) = N(û + v) = −(∂2
y + ∆g0)v + |α |

2e2û(e2v − 1) + |β |2e−2û(1 − e−2v) + f ,

with f = N(û) vanishing to all orders as y → 0 and identically for y ≥ 3. The same
barrier functions obviously work in the region y ≥ 3, and also in the region near
y = 0 away from the knot singularities.

To construct barriers near a knot (p, 0) of weight n, recall the explicit structure of
û near this point and expand the nonlinear term e2v − 1 one step further to write in
some small neighborhood of the front face created by blowing up this point

N̂(v) = (−∂2
R−

2
R
∂R+

1
R2 (−∆S2

+
+T̃))v+ke2Un(e2v−1−2v)+ |β |2e−2Un(1−e−2v)+ f .

Here k is a strictly positive function which contains all the higher order terms in
the expansion for û, and T̃ is a slight perturbation of the term T appearing in the
linearization Ln. Let µ0 denote the ground state eigenfunction for this operator on
S2
+. The corresponding eigenvalue λ′0 is a small perturbation of λ0, which we showed
earlier was strictly greater than 0. Now compute

N̂(ARε µ0(ψ, θ)) = (λ
′
0 − ε(ε + 1))ARε−2µ0 + f + E,

where E is the sum of the two terms involving e±2Un . As before, since v ≥ 0 implies
e2v − 1− 2v ≥ 0 and 1− e−2v, we have that E ≥ 0, and if ε is sufficiently small, then
this first term on the right has positive coefficient, and dominates f . We have thus
produced a local supersolution near (p, 0). The full supersolution is

v+ = min{ARε µ0, A′yε/2, A′′e−ε y}.
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We have chosen to use the exponents ε and ε/2 in the first two terms here in order to
ensure that the first term is smaller than the second in the interior of the front face
R = 0; indeed, ARε µ0 < A′(R sinψ)ε/2 when R < (A′/A)2/ε (sinψ)ε/2. This means
that v+ agrees with A′yε/2 near the original boundary and with ARε µ0 near the other
boundaries, and as before, with the exponentially decreasing term when y is large.

A very similar calculation with the same functions produces a subsolution v−.
Altogether, we deduce, by Proposition 3.4.1 again, the existence of a solution
u = û + v to N(u) = 0 with the correct asymptotics. �

3.5 Uniqueness
In this section, we prove a uniqueness theorem for solutions of the extended Bogo-
molny equations satisfying the (generalized) Nahm pole boundary condition. This
will be phrased in terms of the associated Hermitian metrics. The key to this is the
subharmonicity of the Donaldson metric, which we recall in the first subsection.

The Distance on Hermitian metrics
Suppose that H is a Hermitian metric on a bundle E , with compatible data (A, φ, φ1),
which satisfies the extended Bogomolny equations. As we have discussed, it is
possible to choose a holomorphic gauge which is parallel in the y direction such that
D1 = ∂z̄, D2 = ad ϕ, D3 = ∂y. In this gauge, the Hermitian metric H determines
the gauge fields by

∂A = ∂ + H−1∂H, ϕ? = H−1ϕ†H, ∂Ay = ∂
Ay + iφ1 = ∂y + H−1∂yH, (3.49)

where of course ∂ is the complex differential on Σ and in this trivialization ϕ† =
ϕ† = ϕ̄>. We can then write the extended Bogomolny equations as

∂z̄(H−1∂H) + [ϕ?H, ϕ] + h2
0∂y(H

−1∂yH) = 0,

where h2
0 |dz |2 is the Riemannian metric on Σ.

Following [21], we define the distance between Hermitian metrics

σ(H1,H2) = Tr(H−1
1 H2) + Tr(H−1

2 H1) − 4, (3.50)

and recall from that paper two important properties:

1) σ(H1,H2) ≥ 0, with equality if and only if H1 = H2;

2) A sequence of Hermitian metric Hi converges to H in the usual C0 norm if
and only if supΣ σ(Hi,H) → 0.
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Lemma 3.5.1. Suppose that H1 and H2 are both harmonic metrics. Then the
complex gauge transform h := H−1

1 H2 satisfies

∂z̄(h−1∂A1 h) + ∂y(h−1∂A1
y h) + [h−1[ϕ?, h], ϕ] = 0. (3.51)

Proof. In holomorphic gauge,

A2 = H−1
2 ∂H2 = h−1H−1

1 ∂H1h + h−1∂h = H−1
1 ∂H1 + h−1∂A1 h,

hence ∂z̄(H−1
2 ∂H2) − ∂z̄(H−1

1 ∂H1) = ∂z̄(h−1∂A1 h).

Similarly,

H−1
2 ∂yH2 = H−1

1 ∂yH1 + h−1(∂yh + [H−1
1 ∂yH1, h]) = H−1

1 ∂yH1 + h−1∂
Ay
y h.

Hence ∂y(H−1
2 ∂yH2) − ∂y(H−1

1 ∂yH1) = ∂y(h−1∂
Ay
y h).

Finally,
[ϕ?H2, ϕ] − [ϕ?H1, ϕ] = [h−1[ϕ?H1, h], ϕ].

Altogether, we deduce the stated equation from the harmonic metric equations

∂z̄(H−1
j ∂Hj) + [ϕ

?Hj, ϕ] + h2
0∂y(H

−1
j ∂yHj) = 0, j = 1, 2.

�

We next show that σ is subharmonic.

Proposition 3.5.2. Define h = H−1
1 H2 as above, where H1 and H2 satisfy the

Extended Bogonomy equation. Then (∆ + ∂2
y )σ ≥ 0 on Σ × (0,+∞).

Proof. We first compute

∂z̄∂zTr(h) = Tr(∂z̄∂
A1 h)

= Tr(∂z̄(hh−1∂A1 h))

= Tr(∂z̄(h)h−1∂A1 h) + Tr(h∂z̄(h−1∂A1 h))

≥ Tr(h∂z̄(h−1∂A1 h)),

(3.52)

since Tr(BhB?) ≥ 0 for any matrix B.

Continuing on,

∂2
yTr(h) = Tr(∂y∂A1

y h)

= Tr((∂yh)h−1∂A1
y h) + Tr(h(∂y(h−1∂A1

y h)))

≥ Tr(h(∂y(h−1∂A1
y h))),

(3.53)
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where we use ∂y = (∂A1
y )

? and that ? is the conjugate transpose with respect to H1.

Finally,

0 = Tr([[ϕ?, h], ϕ])

= Tr([h, ϕ]h−1[ϕ?, h]) + Tr(h[h−1[ϕ?, h], ϕ]).
(3.54)

Since Tr([h, ϕ]h−1[ϕ?, h]) ≥ 0, we obtain Tr(h[h−1[ϕ?, h], ϕ]) ≤ 0.

Putting these together gives

(∂z̄∂z + h2
0∂

2
y )Tr(h) ≥ Tr(h∂z̄(h−1∂A1 h) + h2

0h(∂y(h−1∂A1
y h)))

≥ Tr(h∂z̄(h−1∂A1 h) + h2
0h(∂y(h−1∂A1

y h + h[h−1[ϕ?, h], ϕ])))

≥ 0,
(3.55)

and dividing by h2
0 proves the claim. �

Asymptotics of the Hermitian metric
In order to apply the subharmonicity of σ(H1,H2) from the last subsection, we need
to understand the asymptotics of this function near y = 0. This, in turn, relies on a
detailed examination of the asymptotics of the Hermitian metric.

Proposition 3.5.3. Fix a Higgs pair (E � L−1 ⊕ L, ϕ =

(
t α

β −t

)
). For any p ∈ Σ,

choose an open set Up around (p, 0) in Σ×R+. Let H be a solution to the Hermitian
extended Bogomolny equations (3.11); as explained earlier, H is polyhomogeneous
on (Σ × R+)p1...pN (where the p j are the zeroes of α).

(1) Suppose in some local trivilization in Up that ϕ|Ux =

(
0 1
q 0

)
, where q is holo-

morphic. Suppose also that

H =

(
O(y−1) O(1)
O(1) O(1)

)
. (3.56)

HereO(ys) indicates a polyhomogeneous expansion with lowest order term a smooth
multiple of ys. Suppose also that H satisfies the Nahm pole boundary condition in
unitary gauge. Then

H ∼

(
y−1g0 + O(1) o(1)

o(1) yg−1
0 + O(1)

)
, (3.57)
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where o(1) indicates a polyhomogeneous expansion with positive leading exponent.

(2) Suppose that in a local trivilization, ϕ|Up =

(
t zn

q −t

)
where z = 0 is the point p

and q holomorphic. If, in spherical coordinates

H =

(
O(y−1R−n) O(1)
O(1) O(1)

)
, (3.58)

then

H =

(
O(y−1R−n) O(1)
O(1) O(yRn)

)
(3.59)

Proof. We first address (1). Write H =

(
h11 h12

h21 h22

)
and consider a gauge transfor-

mation g for which H = g2. Then g† = g and g =

(
a b

b̄ d

)
where a and d are real

functions and ad − bb̄ = 1. We then compute

φz = gϕg−1 =

(
a b

b̄ d

) (
0 1
q 0

) (
d −b

−b̄ a

)
=

(
bdq − ab̄ −b2q + a2

d2q − b̄2 −bdq + ab̄

)
. (3.60)

By proposition 3.3.8, the Nahm pole boundary condition requires that

bdq − ab̄ ∼ o(1), d2q − b̄2 ∼ o(1), −b2q + a2 ∼
g0
y
+ O(1). (3.61)

By definition, H = g2 =

(
a2 + bb̄ ab + bd

b̄a + b̄d d2 + bb̄

)
. The leading terms of d2 + bb̄ is

positive, hence b and d are bounded. Combining this with (3.61) and the relation
ad − bb̄ = 1, we obtain

a ∼ y−
1
2g

1
2
0 , d ∼ y

1
2g
− 1

2
0 , b = o(y

1
2 ) (3.62)

and thus

H =

(
a2 + bb̄ ab + bd

b̄a + b̄d d2 + bb̄

)
=

(
y−1g0 + o(y−1) o(1)

o(1) yg−1
0 + o(y)

)
. (3.63)

As for (2), we compute

φz = gϕg−1 =

(
a b

b̄ d

) (
t zn

q −t

) (
d −b

−b̄ a

)
=

(
bdq − ab̄zn + atd + |b|2t −b2q + a2zn − 2bat

d2q − znb̄2 + 2tdb̄ −bdq + ab̄zn − |b|2t − adt

)
.

(3.64)
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By Proposition 3.3.9, the knot singularity implies that

bdq−ab̄zn+atd+|b|2t ∼ O(1), −b2q+a2zn−2ba ∼ zneUn+· · · , −bdq+ab̄zn−|b|2t−adt ∼ O(1).
(3.65)

As before, H = g2 =

(
a2 + bb̄ ab + bd

b̄a + b̄d d2 + bb̄

)
where d2 + bb̄ ∼ O(1), so by the same

positivity, d and b are both O(1). Next, eUn = f (ψ)/yRn where f is regular. From
−b2q + a2zn − 2ba ∼ zneUn we get a ∼ y−

1
2 R−

n
2 . In addition, since ab + bd = O(1)

and ad − bb̄ = 1, we see that b ∼ y
1
2 R

n
2 , so d ∼ y

1
2 R

n
2 . Altogether, H has the form

(3.59). �

Proposition 3.5.4. Suppose Hj =

(
p j q j

q†j s j

)
, j = 1, 2, are two solutions which both

satisfy the Nahm pole boundary condition at y = 0 and have the same limit as
y →∞. Then H1 = H2.

Proof. By Propositions 3.3.11 and 3.5.3, we see that as y → 0, p j ∼ y−1g0 + · · · ,
s j ∼ yg−1

0 + · · · , q j ∼ o(1). We claim that this implies that σ(H1,H2) → 0 as
y → 0. First,

H−1
1 H2 =

(
s1p2 − q1q†2 ?

? −q†1q2 + p1s2

)
,

so
Tr(H−1

1 H2) = s1p2 − q1q†2 − q†1q2 + p1s2 = 2 + o(1). (3.66)

The same holds for Tr(H−1
2 H1). This proves the claim.

We have now see that σ(H1,H2) is nonnegative and subharmonic, and approaches
0 as y → 0 and also as y →∞, hence σ(H1,H2) ≡ 0, i.e., H1 = H2. �

Proposition 3.5.5. Let H1 and H2 be twoHermitianmetrics which are both solutions
with a knot singularity of degree n at (p, 0). Then there exists a constant C such that
σ(H1,H2) ≤ C in a neighborhood U of (p, 0).

Proof. Write Hj =

(
a j b j

b†j d j

)
, j = 1, 2. By Propositions 3.3.11 and 3.5.3,

a j ∼ y−1R−n, d j ∼ yRn, b j = o(1), b†j = o(1).

Thus Tr(H1H−1
2 ) = a1d2 − b1b†2 − b†1b2 + d1a2 = O(1), and similarly, Tr(H−1

2 H1) =

O(1). The result follows immediately. �
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We next recall the Poisson kernel of ∆g = ∆g0 + ∂
2
y . For any p ∈ Σ, Pp(z, y) is

the unique function on Σ × R+ which satisfies ∆gPq(z, y) = 0, P |y=0 = δq, and
P(z, y) → 1/Area(Σ) as y →∞.

Theorem 3.5.6. Suppose that there exist two Hermitian metrics H1, H2 which are
solutions and satisfy the Nahm pole boundary condition with knot singularities at

p j of degree n j , as determined by the component α in the Higgs field ϕ =

(
t α

β −t

)
.

Suppose also that H1 and H2 have the same limit as y →∞. Then H1 = H2.

Proof. By Proposition 3.5.3, σ(H1,H2) → 0 as y → 0 and z < {p1, . . . , pN }. Near
each p j there is a neighbourhood U j where σ(H1,H2)|Uj ≤ C.

Now define Q(z, y) to equal the sum of Poisson kernels
∑N

j=1 Ppj (z, y). Then for any
ε > 0, (∆g0 + ∂

2
y )(σ(H1,H2) − εQ) ≥ 0, and σ(H1,H2) − εQ ≤ 0 as y → 0 and as

y → ∞. This means that σ(H1,H2) ≤ εQ. Since this is true for every ε > 0, we
conclude that σ(H1,H2) ≤ 0, i.e., H1 = H2. �

3.6 Solutions with Knot Singularities on C × R+

We now consider the extended Bogomolny equations on C × R+ with generalized
Nahm pole boundary conditions and a finite number of knot singularities.

Degenerate Limit
Consider a trivial bundle E over C × R+, as in [63] and [25], the limiting behavior
of the classical Jones polynomial indicates that one expects that for solutions of the
extended Bogomolny equations on C × R+, φ → 0 and φ1 → 0 as y → ∞. The
equation D3ϕ = 0 also implies that the conjugacy class of ϕ is independent of y,
and as argued in these papers, this implies if Q is any invariant polynomial, then
∂yQ(ϕ) = 0, hence that ϕ is necessarily nilpotent.

Based on these heuristic considerations, we consider a trivial rank 2 holomorphic

bundle over C and assume ϕ =

(
0 p(z)

0 0

)
. We can assume p(z) is a polynomial

as up to a complex gauge transform the equivalent class of the Higgs bundle only
depends on the zeros of the upper trangular part of ϕ. In general, the vanishing

section determined by the line bundle has the form s =

(
R(z)

S(z)

)
. Consider the section

K(z) := (s∧ϕ(s))(z) = p(z)S(z)2 of the determinant bundle, which we can naturally
identify with a holomorphic function on C. Its zero set defines a positive divisor D.
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If the singular monopoles all have order 1, as K(z) := (s ∧ ϕ(s))(z) = p(z)S(z)2, we

obtain that S(z)will not have zeros. Up to a complex gauge transform g =

(
1 −R

S

0 1

)
,

we can assume in the same trivialization, ϕ =

(
0 p(z)

0 0

)
and s =

(
0
1

)
. In general, we

can only assume ϕ =

(
t p

q −t

)
and the vanishing line bundle correspond to s =

(
0
1

)
with the nilpotent condition that t2 + pq = 0.

Although we expect to be able to solve extended Bogomolny equations with knot
singularities corresponding to any divisor, the equation will generally not reduce to

a scalar one, except in the special case where ϕ =

(
0 p(z)

0 0

)
and s =

(
0
1

)
and it

gives an SL(2,R) structure. Now the extended Bogomolny equations reduce to

−(∆ + ∂2
y )v + |p(z)|

2e2v = 0, (3.67)

and we shall search for a solution for which v → −C log y as y →∞.

Remark. It is not enough to simply require that v → −∞ as y → ∞. Indeed, if
p(z) ≡ 1, then z-independent solutions solve the ODE −u′′ + e2u = 0. One solution
is − log y, but there is an additional family log( C

sinh(Cy) ) for any C > 0. These are the
only global solutions to this ODE. The solutions in this second family grow like −Cy

as y →∞, and φ1 → C

(
i
2 0
0 − i

2

)
. These solutions appear in [36] and is described

by Gaiotto and Witten [25] as a real symmetry breaking phenomenon at y →∞.

Existence
In this section, we will prove the

Proposition 3.6.1. Let p(z) be any polynomial on C of degree N0 > 1. Then there
exists a solution u to (3.67) satisfying the generalizedNahm pole conditions with knot
determined by the divisor D =

∑
n j p j of the polynomial p, and which is asymptotic

to −(N0 + 1) log R − log sinψ + O(1) as R→∞, uniformly in (ψ, θ) ∈ S2
+.

Proof. As before, first construct a function û which is an approximate solution to
this equation with boundary conditions to all order in all asymptotic regimes, and
then use the method of barriers to find a correction term which gives the exact
solution.
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We first pass to the blowup of C ×R+ around the points (p j, 0), and in an additional
step, also take the radial compactification as R→∞. This gives a compact manifold
with corners which we call X̂ for simplicity; there are boundary faces F1, . . . , FN ,
each hemispheres corresponding to the blowups at the zeros of p, another boundary
face F∞, also a hemisphere, corresponding to the radial compactification at infinity,
and the original boundary B, which is a disk with N smaller disks removed.

The first step in the construction of û is to use the approximate solutions near each
of these faces. Around Fj , j = 1, . . . , N , we use Unj ; near F∞ we use UN0 , but now
of course with R→∞ rather than near 0, and finally near B we ue − log y. Pasting
these together gives a polyhogeneous function û0 on X̂ for which N(û0) = f0 blows
up like 1/Rj near each Fj , decays like R−3 near F∞, and blows up like − log y near
y = 0. Here we are denoting the nonlinear operator by N as before.

The second step is to correct the expansions, or equivalently, to solve away the terms
in the expansions of f0, at each of these boundary faces. Near each Fj this is done
exactly as in the last section. Near F∞ it is done in a completely analogous manner,
solving away the terms of order R−3− j using correction terms of order R−1− j . Near
Fj we are using the solvability of the operator Jnj , while near F∞ we use the operator
JN0 . Finally, exactly as before, we solve away the terms in the expansion of the
remainder as y → 0 along B. This may be done uniformly up to the boundaries of
B. Taking Borel sums of each of these expansions, there exists a polyhomogeneous
function û1 on X̂ which satisfies N(û0 + û1) = f1 where f1 vanishes to all orders at
every boundary component of X̂ . The approximate solution is û = û0 + û1.

Now write N̂(v) = N(û + v). We expand this as

N̂(v) = −∆ḡv + e2û |p(z)|2(e2v − 1) + f1.

We construct a supersolution using the following three constituent functions: first,
R−ε∞ µN0

0 near F∞ (where µN0
0 is the ground state eigenfunction for JN0); next, Rεj µ

nj

0
near Fj . Finally, yε/2 near B. We then take

v+ = min{R−ε∞ µN0
0 , Rε1µ

n1
0 , . . . , RεN µ

nN

0 , yε/2}.

It is straightforward to check that N̂(v+) ≥ 0. With the obvious changes, we also
obtain a function v− for which N̂(v−) ≤ 0.

Proposition 3.4.1 now implies that there exists a solution v to this equation. By
construction, u = û + v satisfies all the required boundary conditions. �
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As in Section 4, this existence theorem is accompanied by some sharp estimates for
the solution u.

Proposition 3.6.2. The solution u obtained in the previous proposition is polyho-
mogeneous on X̂ . In particular, it has a full asymptotic expansion as R→∞, where
the leading term is the model solution UN0 .

This, in turn, leads to a uniqueness theorem for the scalar equations:

Theorem 3.6.3. Let p(z) be a polynomial on C of degree N0 > 1. Suppose that u1

and u2 are two solutions to (3.67) satisfying the generalized Nahm pole conditions
with knot determined by the zeroes of polynomial p at y = 0. Assume also that as
R→∞, ui ∼ UN0 + R−ε , i = 1, 2. Then u1 = u2.

Proof. By (3.67),

−(∆ + ∂2
y )(u1 − u2) + |p(z)|2(e2u1 − e2u2) =

(
−(∆ + ∂2

y ) + |p(z)|
2F(u1, u2)

)
w = 0

Here w = u1 − u2 and F(u1, u2) = (e2u1 − e2u2)/(u1 − u2). By assumption that both
u1 and u2 satisfy the same boundary conditions, and using the regularity theory for
solutions, we obtain that limy→0 w = 0, while by the hypothesis on decay at infinity,
limR→∞ w = 0 as well. Noting that F(u1, u2) ≥ 0, no matter whether u1 < u2 or
u1 ≥ u2, the maximum principle implies that w ≡ 0, i.e., u1 ≡ u2. �
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C h a p t e r 4

THE EXPANSIONS OF THE NAHM POLE SOLUTIONS TO THE
KAPUSTIN-WITTEN EQUATIONS

This is joint work with Victor Mikhaylov.

4.1 Introduction
Witten [63] proposed a fascinating program for interpreting the Jones Polynomial
of knots on a 3-manifold Y by counting singular solutions to the Kapustin-Witten
equations. We refer [25], [64], [48], [34], [63], [26] for more detailed explanations,
along with [43], [46] and [28] for the beginnings of the analytic background to this
program. In the absence of a knot, the singular boundary condition is called the
Nahm pole boundary conditions and the counting of singular solutions might lead
to new 3-manifold invariants.

Let P be a principal G bundle over Y × R+ where R+ = (0,+∞), and let gP be the
adjoint bundle. The Kapustin-Witten equations are the following set of equations
for a connection A and gP-valued 1-form Φ, respectively:

FA − Φ ∧ Φ +?dAΦ = 0,

d?AΦ = 0.
(4.1)

In [43], Mazzeo andWitten proved a regularity theorem for the Nahm pole solutions.
For any Nahm pole solution (A,Φ) to the Kapustin-Witten equations with a gauge
fixing condition, (A,Φ) is polyhomogeneous along the boundary. Roughly, if we
denote y to be the coordinate of R+ and x the local coordinate of Y , (A,Φ) will have
the following expansions:

A ∼ ω +
+∞∑
i=1

ri∑
p=1

yi(log y)pai,p,

Φ ∼ y−1e +
+∞∑
i=1

ri∑
p=1

yi(log y)pbi,p,

(4.2)

where e : TY → gP is the vierbein form thatngives an endormorphism of the
tangent bundle TY of Y and adjoint bundle gP and ω is the Levi-Civita connection
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of Y under the pullback of e. For each i, ri is a finite positive integer and ai,p, bi,p

are 1-forms independent of y coordinate and smooth in x direction. The choice of
the vierbein term e depends on a choice of principle embedding ρ : su(2) → G

and we write the image of ρ as su(2)t . Let Ω1
Y (gP)(resp. Ω0

Y (gP)) be the gP-
valued 1-form(resp. 0-form) over Y , the action of su(2)t will give a decomposition
Ω1

Y (gP) = ⊕Vσ(Ω0(gP) = ⊕τσ), where the Vσ and τσ are irreducible modules and σ
takes values in positive integers.

Wehave the following descriptions of the polyhomogeneous solutions to theKapustin-
Witten equations:

Theorem4.1.1. Let (A,Φ)be a polyhomogeneous Nahmpole solution to theKapustin-
Witten equations over Y × R+. In the temperal gauge, we write A = ω + a,
Φ = e

y + b + φydy, where e
y + b and A don’t have dy component. Let aσ, bσ

be the projection of a, b into the irreducible module Vσ and let φσy be the projection
of φy into the irreducible module τσ. Suppose aσ, bσ,φσy have the expansions

aσ ∼
+∞∑
i=1

ri∑
p=0

aσi,py
i(log y)p, bσ ∼

+∞∑
i=1

ri∑
p=0

bσi,py
i(log y)p, φσy ∼

+∞∑
i=1

ri∑
p=0
(φσy )k,py

k(log y)p.

We write aσk := aσk,0, bσk := bσk,0, (φ
σ
y )k := (φσy )k,0 and obtain:

(1) When σ = 1, a1, b1, φ1
y have the expansions with leading terms

a1 ∼ y2 log ya1
2,1 + y2a1

2 + O(y
5
2 ),

b1 ∼ y log yb1
1,1 + yb1

1 + O(y
5
2 ),

φ1
y ∼ y2 log y(φ1

y)2,1 + y2(φ1
y)2 + O(y

5
2 ).

When σ > 1, aσ, bσ and φσy have the expansions with leading terms

aσ ∼ yσ+1aσσ+1 +O(y
σ+ 3

2 ), bσ ∼ yσbσσ +O(y
σ+ 1

2 ), φσy ∼ yσ+1(φσy )σ+1 +O(y
σ+ 3

2 ).

(2) The expansions of a, b are determined by the coefficients aσ
σ+1, bσσ, (φ

σ
y )σ+1. To

be explicit, let (Â, Φ̂)be another solutionwith the expansion coefficients âσk,p, b̂σk,p, (φ̂
σ
y )k,p.

If for any σ, aσ
σ+1 = âσ

σ+1, bσσ = b̂σσ and (φσy )σ+1 = (φ̂
σ
y )σ+1 then (A,Φ) and (Â, Φ̂)

have the same expansions.

As the O(1) terms of the A’s expansion is the Levi-Civita connection, we can build
up the relationship of the geometry of Y and the expansions of the Nahm pole
solutions. Under the previous assumptions, we obtain:



156

Theorem 4.1.2. (1) If b1
1,1 = 0, then the expansions of (A,Φ) don’t contains "log y"

terms.

(2) b1
1,1 = 0 if and only if Y is an Einstein 3-manifold.

Combining this with the existence results [51], [27], [37], we obtain the following
corollary:

Corollary 4.1.3. OverY ×R+, there exists a Nahm pole solution whose sub-leading
term is smooth to the boundary if and only if Y is an Einstein 3-manifold.

We can determine the expansions more clearly when G = SU(2) or SO(3):

Theorem 4.1.4. When G = SU(2) or SO(3), under the previous assumptions, let
(A,Φ = φ + φydy) be a polyhomogeneous Nahm pole solution, we obtain:

(1) (A,Φ = φ + φydy) has the following expansions:

A ∼ ω +
+∞∑
i=1

i∑
p=0

a2i,py
2i(log y)p, φ ∼ y−1e +

+∞∑
i=1

i∑
p=0

b2i−1,py
2i−1(log y)p,

φy ∼

+∞∑
i=1

i∑
p=0
(φy)2i,iy

2i(log y)p,

where e is the vierbein form and ω under the pull back of e is the Levi-Civita
connection of Y .

(2) If Y is an Einstein 3-manifold, then (A,Φ = φ + φydy) has the following expan-
sions:

A ∼ ω +
+∞∑
i=1

a2iy
2i, Φ ∼ y−1e +

+∞∑
i=1

∑
p=0

b2i−1y
2i−1, φy ∼

+∞∑
i=1

∑
p=0
(φy)2iy

2i .

Acknowledgements: The authors greatly thanks C.Manolescu, R.Mazzeo, and
C.Taubes for their kindness and helpful discussions. This work was finished during
the Simons center conference "Gauge Theory and Low Dimensional Topology".

4.2 The Nahm Pole Solutions
In this section, we will summarize some basic properties of the Nahm pole solutions
to the Kapustin-Witten equations, largely following [43], [30], [49].
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The Setup of the Nahm Pole Solutions
Let Y be a smooth 3-manifold with a Riemannian metric and we write M := Y ×R+

and y be the coordinate of R+. We choose the product metric over M and volume
form VolY ∧ dy, where VolY is the volume form of Y . Let P be an G bundle over M ,
where G is a compact Lie group with Lie algebra g. Let gP be the adjoint bundle,
take A be a connection of P, and let Φ be a gP valued 1-form.

Given a principle embedding ρ : su(2) → g, for an integer a = 1, 2, 3 and a point
x ∈ Y , take {ea} to be any unit orthogonal basis of T?x Y , the cotangent bundle of Y

and take {ta} to be sections of the adjoint bundle gP lie in the image of ρ with the
relation [ta, tb] = εabctc. We write the vierbein form e :=

∑3
i=1 tiei, where e gives an

endormorphism of the tangent bundle TY to the adjoint bundle gP. The definition
of the vierbein form e depends on the choice of ρ.

Definition 4.2.1. A solution (A,Φ) to (4.1) over M is a Nahm pole solution if for
any point x ∈ Y , there exist {ea}, {ta} as above such that when y → 0, (A,Φ) has
the following expansions: A ∼ O(y−1+ε ), Φ ∼ y−1e + O(y−1+ε ), for some constant
ε > 0.

Now, we will introduce some basic terminology of the regularity of a function
over manifold with boundary, largely follows from [41]. Let ®x = (x1, x2, x3) to be
the local coordinates of Y . For any (gP-valued) differential form α, we say α is
conormal if for any j ≥ 0 and ®k = (k1, k2, k3) with ki ≥ 0, sup |(y∂y) j∂

®k
®x α | ≤ Cj ®k ,

where ∂ ®k
®x = ∂k1

x1 ∂
k2
x2 ∂

k3
x3 and the sup is taken over an open neighborhood of the

boundary. We say α is polyhomogeneous if α is conormal and has an asymptotic
expansion α ∼

∑
yγj (log y)pα jp(®x). Here the exponents γ j lie in some discrete set

E ⊂ C, called the index set of α, which has the properties that <γ j → ∞ as
j → ∞, the powers p of log y are all non-negative integers, and there are only
finitely many log terms accompanying any given yγj . The notation "∼" means
sup |α −

∑
j≤N yγj (log y)pα jp | ≤ y<γN+1(log y)q, and the corresponding statements

must hold for the series obtained by differentiating any finite number of times.

Now, we will summarize the regularity theorem in [43]:

Theorem 4.2.2. ([43, Prop 5.3, Prop 5.9, Section 2.3)] For (A,Φ) a Nahm pole
solution to the Kapustin-Witten equations, choose a smooth reference connection A0

and denote Φ0 the leading term of Φ, if (A,Φ) satisfies the gauge fixing equation

d?4
A0
(A − A0) −?4[Φ0,?4(Φ − Φ0)] = 0,
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where ?4 is the 4-dimensional Hodge star operator, then (A,Φ) is polyhomoge-
neous with the following expansions:

A ∼ ω +
+∞∑
i=1

ri∑
p=1

yi(log y)pai,p, Φ ∼ y−1e +
+∞∑
i=1

ri∑
p=1

yi(log y)pbi,p. (4.3)

Here for each i, ri are finite positive integers and ai,p, bi,p are 1-forms independent
of y coordinate and smooth in x direction.

Remark. We write a := A − A0, b := Φ − Φ0, the statement that (A,Φ) is poly-
homogeneous with the gauge fixing condition d?4

A0
a − ?4[Φ,?4b] = 0 is proved in

[43, Proposition 5.9] and it also works for many other gauge fixing conditions, for
example Ay = 0 and d?A0

a −?[Φ,?b] = 0, or even d?A0
(A− A0) = 0, where Ay is the

dy component of A and ? is the Hodge star operator of Y . It is straight forward to
check that these two gauge fixing conditions will only bring integer expansions. The
claim that (A,Φ) has the leading terms (ω+ y(log y)pa1, y

−1e+ y(log y)p) is proved
in [43, Section 2.3].

For (A,Φ) a Nahm pole solution over Y × R+, under the temperal gauge, we can
assume A doesn’t have dy component. We write Φ = φ + φydy. We have the
following well-known vanishing claim for the φy term, for a proof see [56, Page 36],
[28, Corollary 4.7].

Proposition 4.2.3. For (A,Φ) a Nahm pole solution overY×R+, writeΦ = φ+φydy,
then if limy→+∞ |φy |C0 = 0, then φy = 0.

It is straightforward to obtain the following:

Corollary 4.2.4. Let (A,Φ) be a Nahm pole solution convergences to a flat irre-
ducible GC connection at y →∞, then Φ don’t have dy component.

As pointing out in [49], the reducible limit is important to considered, where φy
term might appear. In our paper, we don’t make any assumption of the limit of the
solution at y → +∞.

Elementary Representation Theory
Now we will introduce some representation theory of su(2). Consider a principal
embedding ρ : su(2) → g, we call the image su(2)t the principal subalgebra. When
ρ is a principal embedding, under the action of su(2)t, g decomposes as a direct
sum of irreducible modules τσ with dimension 2σ + 1, and we write g = ⊕στσ.
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Here σ are positive integers of which precisely one equals to 1, corresponding to the
principle subalgebra. For simple Lie algebra g, the values ofσ are precisely compute
in [30]. For example, when G = SU(N), the values of σ are 1, 2, 3, · · · , N − 1.

Under the action of su(2)t , the decomposition of g will automatically induce a
decomposition of Ω1

Y (gP), which is the gP-valued 1-from on Y . We write Vσ =

Ω1
Y (τσ), and then

Ω
1
Y (gP) = ⊕σVσ . (4.4)

We can define the projection map Pσ : Ω1
Y (gP) → Vσ and Pσ : Ω0

Y (gP) → Ω0(τσ),
for a, b ∈ Ω1

Y (gP), we write aσ := Pσa, bσ := Pσb and φσy := Pσφy. The
Clebsch-Gordan theorem will imply the following proposition:

Proposition 4.2.5. [35] Under the previous assumptions, for σ1, σ2 are positive
integers, then

?aσ1 ∧ bσ2 ∈ ⊕
σ1+σ2
σ=|σ1−σ2 |

Vσ, ?[φ
σ1
y , a

σ2] ∈ ⊕
σ1+σ2
σ=|σ1−σ2 |

Vσ .

It is also important to understand the action of the vierbein form e. We define a
linear operator:

L :Vσ → Vσ,

a→ ?[e, a],
(4.5)

which obeys the following properties:

Proposition 4.2.6. [43, Section 2.3.2] (1) L has three eigenspaces V−σ ,V
0
σ,V

+
σ with

dimension 2σ − 1, 2σ + 1, 2σ + 3 and eigenvalues σ + 1, 1,−σ. We can write
Vσ = V−σ ⊕ V0

σ ⊕ V+σ .

(2) For 1-form a ∈ Vσ, [?e, a] = 0 implies V0
σ component of a is zero.

We also denote V◦ := ⊕σV◦σ, where ◦ ∈ {+,−, 0}. For an integer k, we can define
the following operator Lσk (a) := ka +?[e, a] and obtain

Corollary 4.2.7. Lσk is an isomorphism for k , (σ + 1),−1,−σ.

Let ω be a connection on Y , for the 3-dimensional differential operator ?dω, which
acts from the space Ω1

Y (gP) to itself, has the following properties:

Proposition 4.2.8. [30, Page 5]?dω : V−σ → V0
σ, V0

σ → V−σ ⊕ V0
σ ⊕ V+σ , V+σ →

V0
σ ⊕ V+σ .
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In addition, the vierbein form e will give an identification of V0
1 and Ω0(τ1). We

define the operator

Γ : Ω1(gP) → Ω
0(gP),

Γ(a) := ?[a,?e],
(4.6)

where a is a 1-form, then we have the following identities:

Proposition 4.2.9. [49, Appendix A] For a ∈ Vσ = Ω1(τσ), b ∈ Ω0(τσ), we have:

(1)Γa = Γ(a)0, [e, Γa] = 2(a)0, Γ[e, b] = 2b, where (a)0 means the projection to
the V0

σ part under the decomposition Vσ = V+σ ⊕ V0
σ ⊕ V0

σ,

(2)[e, d?ωa] = 2(?dωa)0, Γ(?dωa) = d?ωa, where (?dωa)0 is the V0
σ part of ?dωa.

With this preparation, we will state an algebraic lemma which will be heavily used
in the following parts of the paper:

Lemma 4.2.10. For a1, a2 ∈ Vσ, b ∈ V+σ , c1, c2 ∈ Ω
0(τσ) and a positive integer r , if

they satisfy the following algebraic equations,

(σ + 1)a1 = ?[e, a1] − [e, c1],

(σ + 1)c1 = −Γa1,

ra1 + (σ + 1)a2 = ?[e, a2] + [c2, e] +?dωb,

rc1 + (σ + 1)c2 = −Γa2 + d?ωb,

(4.7)

then a1 = 0 and c1 = 0.

Proof. Consider the V+σ part of the first equation, and we obtain (a1)
+ = 0, where

(a1)
+ is the V+σ part of a1. As −(σ + 1)a2 + ?[e, a2] ∈ V+ ⊕ V0 and by Lemma

4.2.8, ?dωb ∈ V+ ⊕ V0, consider the V−σ part of the third equation, and we obtain
(a1)

− = 0.

The only situation left is the V0 part. Consider the V0 part of the first two equations,
we obtain

σ(a1)
0 = −[e, c1], c1 = −

1
σ + 1

Γa1. (4.8)

Applying Proposition 4.2.9, we obtain σ(a1)
0 = 2

σ+1 (a1)
0. When σ , 1, then

(a1)
0 = 0.

If σ = 1, then the two equations in (4.8) are equivalent. To be explicit, we obtain
(a1)

0 = −[e, c1] or c1 = −
1
2Γa1. We consider the V0

σ part of the last two equations,
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we obtain

r(a1)
0 + (a2)

0 = [c2, e] + (?dωb)0

rc1 + 2c2 = −Γa2 + d?ωb.
(4.9)

Using [e, ] acts on the second equation of (4.9), we obtain

−r(a1)
0 + 2(a2)

0 = 2[c2, e] + 2(?dωb)0.

Comparing the coefficients with the first equation of (4.9), we obtain (a1)
0 = 0. �

Lemma 4.2.11. Let a,Θ ∈ V0
σ, φ,Ξ ∈ Ω0(τσ), let λ be a real number such that

λ , 2 or −1. If they satisfy

(λ − 1)a = Θ − [e, φ], λφ = −Γa + Ξ, (4.10)

then

a =
1

λ2 − λ − 2
(λΘ − [e,Ξ]), φ =

1
λ2 − λ − 2

((λ − 1)Ξ − ΓΘ). (4.11)

Specially, if Θ = Ξ = 0, then a = φ = 0.

Proof. Applying [e, ] to the second equation, by Proposition 4.2.9, we compute

λ[e, φ] = −[e, Γa] + ΓΞ = −2a + ΓΞ.

Combining with the first equation, we obtain a = 1
λ2−λ−2 (λΘ − [e,Ξ]). Acting

the operator Γ to the first equation and combing with the second, we will obtain
φ = 1

λ2−λ−2 ((λ − 1)Ξ − ΓΘ). The rest follows immediately. �

4.3 Leading Expansions of the Nahm Pole Solutions
In this section, we will determined the coefficients of the Kapustin-Witten equations
up to several leading terms. For P a principle G bundle over Y ×R+, A a connection
over P and Φ a gP-valued 1-form. We choose a gauge such that A doesn’t have dy

component. We write Φ = φ + φydy.

The Kapustin-Witten equations reduce to the flow equations:

∂yA = ?dAφ + [φy, φ],

∂yφ = dAφy +?(FA − φ ∧ φ),

∂yφy = d?Aφ.

(4.12)
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We denote A = ω + a, Φ = y−1e + b + φy dy where ω is a connection independent
of the R+ direction, a, b are 1−forms independent of y. Recalling theorem 4.2.2, we
can assume a, b have expansions with leading order O(y(log y)p).

By a straight forward computation, the O(y−2) order coefficients of the flow equa-
tions (4.12) is ?e = e ∧ e, which is automatically satisfied. The O(y−1) order
coefficients of equations (4.12) reduce to dωe = 0, d?ωe = 0. These equations can
be understood as:

Proposition 4.3.1. [43, Section 4.1] Under the pull back induced by the vierbein
form e : TY → gP, ω is the Levi-Civita connection of Y .

Under the decomposition of Proposition 4.2.6, we can also decompose the dual?Fω
of the Riemannian curvature

?Fω = (?Fω)− + (?Fω)+, (4.13)

where the first term is the curvature scale and the second term is the traceless part
of the Ricci tensor, where these determine the curvauture tenser completely for 3-
dimensional manifold. In addition, under the decomposition (4.4),?Fω ∈ V1, which
is the principal subalgebra.

Leading Order Expansion
Now, we will explicitly study the expansions of the subleading terms. Recall that
we write A = ω + a, Φ = y−1e + b + φy dy, using (4.12), we obtain the following
equations:

∂ya = ?dωb + y−1 ? [a, e] + y−1[φy, e] +?[a, b] + [φy, b],

∂yb = ?Fω − y−1 ? [e, b] +?dωa + dωφy + [a, φy] +?a ∧ a −?b ∧ b,

∂yφy = d?ωb − y−1 ? [a,?e] −?[a,?b].

(4.14)

σ = 1

Recalling (4.4), we have the projection map Pσ : Ω1(gP) → Vσ and Pσ : Ω0(gP) →

Ω0(τσ). We define aσ := Pσa, bσ := Pσb, φσy := Pσφy By Proposition 4.3.1,
P1 ? Fω = ?Fω. Using P1 to (4.14), we obtain:

∂ya1 = ?dωb1 + y−1 ? [e, a1] + y−1[φ1
y, e] + P1(?[a, b] + [φy, b]),

∂yb1 = ?Fω − y−1 ? [e, b1] +?dωa1 + dωφ1
y + P1([a, φy] +?a ∧ a −?b ∧ b),

∂yφ
1
y = d?ωb1 − y−1 ? [a1,?e] − P1(?[a,?b]).

(4.15)
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By Theorem 4.2.2, suppose a1, b1, φ1
y have the following expansions:

a1 ∼

r1∑
p=0

a1
1,py(log y)p+· · · , b1 ∼

r1∑
p=0

b1
1,py(log y)p+· · · , φ1

y ∼

r1∑
p=0
(φ1

y)1,py(log y)p+· · · .

For simplification, we also denote a1
1 := a1

1,0 and b1
1 := b1

1,0.

We obtain the following proposition:

Proposition 4.3.2. (a) a1
1,p = (φ

1
y)1,p = 0 for any p,

(b) For p ≥ 2, b1
1,p = 0,

(c) b1
1,1 equals to the V+ part of ?Fω. Moreover, there exists c+ ∈ V+ such that we

can express b1
1 in the following way:

b1
1 = c+ +

1
2
(?Fω)0 +

1
3
(?Fω)−.

Proof. (a) Consider the O((log y)r1) order coefficients of the first and third equations
of (4.15), we obtain:

a1
1,r1
= ?[e, a1

1,r1
] + [(φ1

y)1,r1, e],

(φ1
y)1,r1 = −? [a

1
1,r1
,?e].

(4.16)

As [(φ1
y)1,r1, e] ∈ V0, by Proposition 4.2.6, (a1

1,r1
)+ = (a1

1,r1
)− = 0. Projecting the

first equation into V0 part, we obtain [(φ1
y)1,r1, e] = 0. Using Proposition 4.2.9, we

obtain (φ1
y)1,r1 = Γ[(φ

1
y)1,r1, e] = 0. Combing this with (φ1

y)1,r1 = −? [a
1
1,r1
,?e], we

obtain (a1
1,r1
)0 = 0. By an induction on the integer r1, (1) is proved.

(b) For r1 ≥ 2, consider the O((log y)r1) and O((log y)r1) coefficients of the second
equation of (4.15), we obtain

b1
1,r1
= −? [e, b1

1,r1
],

r1b1
1,r1
+ b1

1,r1−1 = −? [e, b
1
1,r1−1].

(4.17)

The first equation implies b1
1,r1
= 0, where as b1

1,r1−1 + ?[e, b
1
1,r1−1] < V+, from the

second equation we obtain b1
1,r1
= 0.

(c) Consider the O(log y) and O(1) coefficient equations for the "b" terms, we obtain

b1
1,1 +?[e, b

1
1,1] = 0,

b1
1,1 + b1

1 +?[e, b
1
1] = ?Fω,

− a1
1 +?[e, a

1
1] = 0, [a1

1,?e] = 0.

(4.18)
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The first equation implies b1
1,1 ∈ V+. From the second equation, we obtain that

b1
1,1 is determined by the V+ part of ?Fω. However, for any c+ ∈ V+, b1

1 + c+ also
satisfies

b1
1,1 + b1

1 + c+ +?[e, b1
1 + c+] = ?Fω

and b1
1 can not be determinant by these algebraic equations. �

Now, suppose the leading orders of (a, b) is y instead of y(log y), we compute the
O(1) coefficients of equations (4.14) : b1

1 +?[e, b
1
1] = ?Fω and obtain the following

theorem:

Theorem 4.3.3. If the sub-leading term (a, b) of a polyhomegenous solution is C1

to the boundary, then Y is an Einstein 3-manifold.

Proof. If (a, b) is C1, we obtain b1
1,1 = 0. By (4.18), we obtain b1

1 +?[e, b
1
1] = ?Fω.

By Proposition 4.2.6, this implies Fω < V+. In addition, by Proposition 4.3.1, we
obtain that ω is the Levi-Civita connection, thus Fω ∈ V− ⊕ V0 which implies Y is
Einstein. �

Now, we will determine the next order of the expansions. We have the following
descriptions of the "y2" order coefficients:

Proposition 4.3.4. Under the previous notation, we have :

(a) for p ≥ 0, b1
2,p = 0,

(b) for p ≥ 2, a1
2,p = (φ

1
y)2,p = 0,

(c) (a1
2,1)
− = 0, (a1

2,1)
+ = 1

3 (?dωb1
1,1)
+ and (a1

2,1)
0 = 1

3 (?dωb1
1,1)

0, (φ1
y)2,1 =

1
3 d?ωb1

1,1,

(d)there exist c0 ∈ V0, c− ∈ V−, such that we can write

a1
2 = −

1
9
(?dωb1

1,1)
+ +

1
3
(?dωb1

1)
+ + c0 + c− −

1
3
(?dωb1

1,1)
0 + (?dωb1

1)
0,

(φ1
y)2 = −

1
2
Γc0.

(4.19)

Proof. (a) For r2 ≥ 0, consider the O(y(log y)r2) coefficients of (4.14), we obtain
2b1

2,r2
= −? [e, b1

2,r2
], which implies b1

2,r2
= 0. By induction, we obtain b1

2,p = 0 for
any p ≥ 0.
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(b) Now, we will consider the φy and a parts. For r2 ≥ 2, consider the O(y(log y)r2)

and O((y log y)r2−1) coefficients of (4.14), the quadratic terms don’t contribute to
this order and we obtain

2a1
2,r2
= ?[e, a1

2,r2
] − [e, (φ1

y)2,r2],

2(φ1
y)2,r = −? [a

1
2,r2
,?e],

ra1
2,r2
+ 2a1

2,r2−1 = ?[e, a
1
2,r2−1] + [(φ

1
y)2,r2−1, e],

r2(φ
1
y)2,r2 + 2(φ1

y)2,r2−1 = −? [a1
2,r2−1,?e].

(4.20)

By Lemma 4.2.10, we obtain a1
2,r2
= 0.

For statement (c) and (d), we will first determine the V+ part of the coefficients.

Consider the O(y log y) coefficients, we obtain

2a1
2,1 = ?dωb1

1,1 +?[e, a
1
2,1] − [e, (φ

1
y)2,1],

2(φ1
y)2,1 = d?ωb1

1,1 − Γa1
2,1.

(4.21)

The V+ projection of the first equation gives (a1
2,1)
+ = 1

3 (?dωb1
1,1)
+. As b1

1,1 ∈ V+,
dωb1

1,1 ∈ V+ ⊕ V0. The V− projection of the second equation gives (a1
2,1)
− = 0.

From the O(y) coefficients, we obtain

2a1
2 + a1

2,1 = ?dωb1
1 +?[e, a

1
2] − [e, (φ

1
y)2],

(φ1
y)2,1 + 2(φ1

y)2 = d?ωb1
1 −?[a

1
2,?e].

(4.22)

The V+ projection of the first equation gives a1
2 := 1

3 (?dωb1
1)
+ − 1

9 (?dωb1
1,1)
+. We

cannot determine the V− part of the a1
2.

Now, consider the V0 projection of (4.21) and (4.22), we obtain

(a1
2,1)

0 = (?dωb1
1,1)0 − [e, (φ

1
y)2,1],

(a1
2)

0 + (a1
2,1)

0 = (?dωb1
1)

0 − [e, (φ1
y)2],

(φ1
y)2,1 + 2(φ1

y)2 = d?ωb1
1 − Γa1

2 .

(4.23)

Using [e, ] acts on the third equation and combing with the first equation, we obtain

2(a1
2)

0 − (a1
2,1)

0 = 2(?dωb1
1)

0 − 2[e, (φ1
y)2] − (?dωb1

1,1)
0,

2(a1
2)

0 + 2(a1
2,1)

0 = 2(?dωb1
1)

0 − 2[e, (φ1
y)2].

(4.24)

Thus, we obtain (a1
2,1)

0 = 1
3 (?dωb1

1,1)
0. Using (4.21), we compute

(φ1
y)2,1 =

1
2

d?ωb1
1,1 −

1
2
Γa1

2,1 =
1
2

d?ωb1
1,1 −

1
6
Γ(?dωb1

1,1) =
1
3

d?ωb1
1,1. (4.25)



166

Now, we write (a1
2)

0 = c0 + (?dωb1
1)

0 − 1
3 (?dωb1

1,1)
0, then we compute

(φ1
y)2 = −

1
2
(φ1

y)2,1 +
1
2

d?ωb1
1 −

1
2
Γa1

2

= −
1
6
(d?ωb1

1,1)
0 +

1
2

d?ωb1
1 −

1
2
Γa1

2

= −
1
2
Γc0.

(4.26)

�

For σ > 1.

Now, we will study the coefficients of the expansions when σ > 1.

Under the projection Pσ : Ω1(gP) → Vσ of (4.14), as Pσ ? Fω = 0 for σ , 1, we
obtain

∂yaσ = ?dωbσ + y−1 ? [e, aσ] + y−1[φy, e] + Pσ(?[a, b] + [φy, b]),

∂ybσ = −y−1 ? [e, bσ] +?dωaσ + dωφy + Pσ([a, φy] +?a ∧ a −?b ∧ b),

∂yφ
σ
y = d?ωbσ − y−1 ? [aσ,?e] − Pσ(?[a,?b]).

(4.27)

Letσ1, · · · , σN be the possible indices of (4.4) withσi > 1.We assume aσi, bσi, φσiy
have the expansions with leading terms:

aσi ∼
ri∑

p=1
aσiλi,py

λi (log y)p + · · · , bσi ∼
ri∑

p=1
bσiλi,py

λi (log y)p + · · · ,

φσiy ∼

ri∑
p=1
(φσiy )λi,py

λi (log y)p + · · · .

(4.28)

Relabel these indices, we can assume 1 ≤ λ1 ≤ λ2 ≤ · · · ≤ λN . As we only care
about the leading asymptotic behaviors, we can assume λi ≤ σi.

Proposition 4.3.5. (a) For σ > 1, the expansions of aσ, bσ and φσy are

aσ ∼ yσ+1aσσ+1 + O(y
σ+ 3

2 ), bσ ∼ yσbσσ + O(y
σ+ 1

2 ), φσy ∼ yσ+1(φσy )σ+1 + O(y
σ+ 3

2 )

where we write aσ
σ+1 := aσ

σ+1,0, bσ
σ+1 := bσ

σ+1,0 and (φ
σ
y )σ+1,0 := (φσy )σ+1.

(b) There exist c0
σ ∈ V0

σ, c−σ ∈ V−σ , c+σ ∈ V+σ , such that we can write the leading
coefficients of the expansions of aσ, bσ, and φσy as

(φσy )σ+1 = c0
σi, bσσ = c+σ,

aσσ+1 = c−σ +
1

2σ + 1
(?dωc+σ)

+ + (?dωbσσ)
0 + [c0

σ, e]
(4.29)
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Proof. We will show aσi
λi+1,p = bσiλi,p = 0 for any λi < σi and p ≥ 1. We prove

by induction on the index i. As when i = 1, the proof is exactly the same as the
following proof, and we omit the proof for this case.

Suppose for any i ≤ k − 1, aσi
λi+1,p = bσiλi,p = (φ

σi
y )λi+1 = 0 for any λi < σi and p ≥ 1,

in other words, σi = λi. Then for i = k, consider the quadratic terms of (4.27), by
Cebsch-Gordan coefficients [35] and the induction assumption, for some positive
integer p, we have

Pσ(?[a, b] +?[φy, b]) ∈ O(yσk+1(log y)p), Pσ(?[a,?b]) ∈ O(yσk+1(log y)p),

Pσ(?a ∧ a −?b ∧ b + [a, φy]) ∈ O(yσk+1(log y)p).

(4.30)

Next, we consider the coefficients of O(yλk−1(log y)p) and O(yλk (log y)p). When
λk ≤ σk , the quadratic terms will not influence our following discussions.

Consider the O(yλk−1(log y)rk ) and O(yλk (log y)rk−1) order coefficients of the first
equation of (4.27), we obtain

λkaσk

λk,rk
= ?[e, aσk

λk,rk
] + [(φσk

y )λk,rk, e], (φ
σk
y )λk,rk = −Γaσk

λk,rk
. (4.31)

Projecting the first equation into V+ and V− part, for λk ≤ σk and any rk , (aσk

λk,rk
)± =

0.

Consider the V0 part of the equation, we obtain

(λk − 1)(aσk

λk,rk
)0 = [(φ

σk
y )λk,rk, e], (φ

σk
y )λk,rk = −Γaσk

λk,rk
. (4.32)

Applying Lemma 4.2.11, we obtain aσk

λk,rk
= 0.

Consider the O(yλk−1(log y)rk ) and O(yλk−1(log y)rk−1) order coefficients of the
second equation of (4.27), for rk ≥ 1, we obtain

λk bσk

λk,rk
= −? [e, bσk

λk,rk
], rk bσk

λk,rk
+ λk bσk

λk,rk−1
= −? [e, bσk

λk,rk−1
]. (4.33)

Thus, λk = σk and bσk

λk,rk
= 0 for rk ≥ 1. The O(yσk ) order coefficients give

σk bσk
σk
= −? [e, bσk

σk
], thus bσk

σk
∈ V+ and it might be non-zero.

Now, we can assume that aσk, φσk
y have the leading expansions

aσk ∼

rk∑
p=0

yλi+1(log y)paσk

λi+1,p + · · · , φ
σk
y ∼

rk∑
p=0

yσk+1(log y)p(φσk
y )σk+1,p, (4.34)
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where for simplification, we also denote the highest order of the "log y" terms as rk .

Forλk < σk and rk ≥ 0 orλk = σk and rk > 1, consider theO(yλk (log y)rk ),O(yλk (log y)rk−1)

order coefficients of (4.15), we obtain

(λk + 1)aσk

λk+1,rk = ?[e, a
σk

λk+1,rk ] + [(φ
σk
y )λk+1,rk, e],

(λk + 1)φσk

λk+1,rk = −? [a
σk

λk+1,rk,?e],

rkaσk

λk+1,rk + (λk + 1)aσk

λk+1,rk−1 = ?[e, a
σk

λk+1,rk−1] + [(φy)
σk

λk+1,rk−1, e],

rk(φ
σk
y )λk+1,rk + (λk + 1)(φσk

y )λk+1,rk−1 = −? [a
σk

λk+1,rk−1,?e].

(4.35)

By Lemma 4.2.10, we obtain aσk

λk+1,rk = (φ
σk
y )λk+1,rk = 0.

When λk = σk and rk = 1, we obtain

(σk + 1)aσk

σk+1,1 = ?[e, a
σk

σk+1,1] + [(φ
σk
y )λk+1,rk, e],

(λk + 1)φσk

σk+1,rk = −? [a
σk

σk+1,rk,?e],

(σk + 1)aσk

σk+1 + aσk

σk+1,1 = ?dωbσk
σk
+?[e, aσk

σk+1],

rk(φ
σk
y )σk+1,rk + (λk + 1)(φσk

y )σk+1,rk−1 = −? [a
σk

σk+1,rk−1,?e].

(4.36)

Applying Lemma 4.2.10, we obtain aσk

σk+1,rk = (φ
σk
y )λk+1,rk = 0 for rk ≥ 1. This

completes the first half of the proposition.

For the second half of the proposition, we can assume for σ > 1, we have the
expansion

aσ ∼ yσ+1aσσ+1 +O(y
σ+ 3

2 ), bσ ∼ yσbσσ +O(y
σ+ 1

2 ), φσy ∼ yσ+1(φσy )σ+1 +O(y
σ+ 3

2 ).

Using (4.27), the leading coefficients satisfy the following equations:

(σ + 1)aσσ+1 = ?dωbσσ +?[e, a
σ
σ+1] + [(φ

σ
y )σ+1, e],

σbσσ = −? [e, b
σ
σ],

(σ + 1)(φσy )σ+1 = d?ωbσσ −?[a
σ
σ+1, e].

(4.37)

The claim follows immediately. �

Remark. Even by Proposition 4.3.5, the leading terms in the expansions of aσ, bσ

don’t have "log y" terms, the log terms might still appear in the rest terms of the
expansion. By Proposition 4.2.5, the quadratic terms that come from the expansions
of a1, b1 will contribute to the expansions of aσ, bσ.
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Formal Expressions of Higher Order Terms
In this section, we will give formal expressions of Higher order terms. We write the
expansions of a, b, φy as

a ∼
∑

ak,py
k(log y)p, b ∼

∑
bk,py

k(log y)p, φy ∼
∑

bk,py
k(log y)p

and write aσk,p := Pσak,p, bσk,p := Pσbk,p. For each order of k, there will be only a
finite number of p such that aσk,p, bσk,p and (φ

σ
y )k,p are non-vanishing. We obtain the

following proposition:

Proposition 4.3.6. For any integer σ, p ≥ 0 and k ≥ σ + 1, aσk+1,p, bσk,p, (φ
σ
y )k,p

are determined by {aσi
σi+1, b

σi
σi+1, (φ

σi
y )σi+1} for all possible integers σi in the decom-

position (4.4).

Proof. Using (4.15), (4.27), consider the O(yk(log y)p) and O(yk−1(log y)p) order
coefficients, and we obtain

(k + 1)aσk+1,p −?[e, a
σ
k+1,p] = ?dωbσk,p − (p + 1)aσk+1,p+1 + [(φ

σ
y )k+1,p, e]

+ Pσ

∑
k1+k2=k, p1+p2=p

(?[ak1,p1, bk2,p2] + [(φy)k1,p1, bk2,p2]),

kbσk,p +?[e, b
σ
k,p] = ?dωaσk−1,p + dω(φσy )k−1,p − (p + 1)bσk,p+1

+ Pσ

∑
k1+k2=k, p1+p2=p

?(ak1,p1 ∧ ak2,p2 − bk1,p1 ∧ bk2,p2 + [ak1,p1, (φy)k2,p2]),

(k + 1)(φσy )k+1,p = −(p + 1)(φσy )k+1,p+1 + (d?ωbσ)k,p −?[aσk+1,p,?e]

− Pσ

∑
k1+k2=k, p1+p2=p

(?[ak1,p1,?bk2,p2]).

(4.38)

We can write the left hand side of the first equation as −Lσ
−(k+1)(a

σ
k+1,p) and the left

hand side of the second equation as Lσk (b
σ
k,p).

When k ≥ σ + 1, by Corollary 4.2.7 and Lemma 4.2.11, we see aσk+1,p, bσk,p
and (φσy )k+1,p are uniquely determinant by an algebraic combination of aσk+1,p+1,
(φσy )k+1,p+1 and lower yk order terms. Inducting k and p, we can complete the
proof. �

For the log y terms appear in the expansions, we have the following Proposition:

Proposition 4.3.7. If b1
1,1 = 0, then the expansion of a, b don’t have "log y" terms.

To be explicit, for any p , 0 and any σ, we have aσk,p = bσk,p = 0.
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Proof. By Proposition 4.3.4, if b1
1,1 = 0, we obtain a1

2,1 = (φ
1
y)2,1 = 0. Combing

this with Proposition 4.3.5, for any σ, aσ, bσ will not contain ” log y” terms in
their leading orders of the expansions. We will prove the proposition by induction.
Suppose for k, for any σ, the expansions for aσ, bσ up to order O(yk+ 1

2 ) don’t
contains ” log y” terms. Let r by the largest order that for some σ, aσk+1,r or bσk+1,r
non-vanishing. By (4.38), as by our assumption aσk+1,r+1 = bσk+1,r+1 = 0, we obtain

−Lσ
−(k+1)(a

σ
k+1,r) =? dωbσk,r + [(φ

σ
y )k+1,r, e]

+ Pσ

∑
k1+k2=k, p1+p2=p

(?[ak1,p1, bk2,p2] + [(φy)k1,p1, bk2,p2]),

Lσk+1(b
σ
k+1,r) =? dωaσk,r

+ Pσ

∑
k1+k2=k+1, p1+p2=r

?(ak1,p1 ∧ ak2,p2 − bk1,p1 ∧ bk2,p2 + [ak1,p1, (φy)k2,p2])

(k + 1)(φσy )k+1,r = dσω bσk,r −?[a
σ
k,r,?e] − Pσ

∑
k1+k2=k+1, p1+p2=r

(?[ak1,p1,?bk2,p2])

(4.39)

By the induction assumption, for r , 0, bσk,r = 0, aσk,r = 0 and the quadratic term
in the previous equations vanish. By Corollary 4.2.7 and Lemma 4.2.11, for r , 0,
aσk+1,r = bσk+1,r = (φ

σ
y )k+1,r = 0. �

Now, we can complete the proof of the first two theorem in Chapter 1:

Proof of Theorem 1.1

Proof. The statement (1) follows from Proposition 4.3.2, 4.3.4, 4.3.5. The statement
(2) follows from Proposition 4.3.6. �

Proof of Theorem 1.2

Proof. The statement follows from Proposition 4.3.4 and 4.3.7. �

More Restrictions
In this subsection, we will provide a geometry restriction of the coefficients of the
expansions. By Theorem 1.1, we can assume a, b have the expansions

a ∼ a2,1y
2 log y + a2y

2 + · · · , b ∼ b1,1y log y + b1y + · · · , φy ∼ (φy)2,1y
2 log y + (φy)2y

2

(4.40)

The following identity over closed manifold comes from [34]. For any 4-manifold
M with 3-manifold boundary Y, let P be a principle SU(2) bundle and gP its
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adjoint bundle, A a connection on P and Φ a gP-valued 1-form, denote I+ :=
(FA − Φ ∧ Φ + dAΦ)

+ and I− := (FA − Φ ∧ Φ + dAΦ)
−, where +(−) means the

(anti-)self-dual parts of the two form over the 4-manifold M . We obtain:

Proposition 4.3.8.∫
M

Tr(I2
+ + I2

−) =

∫
M

Tr(FA ∧ FA) +

∫
Y

Tr(Φ ∧ dAΦ). (4.41)

Proof. We compute∫
M

Tr(I2
+ + I2

−) =

∫
M

Tr(F2
A + (Φ)

4 − 2FA ∧ (Φ)
2 − dAΦ ∧ dAΦ).

Integrating by parts, we obtain
∫

M Tr(2FA ∧ Φ
2 + dAΦ ∧ dAΦ) =

∫
Y Tr(Φ ∧ dAΦ).

In addition,
∫

M Tr(Φ4) = 0. �

Denote M = Y × R+, consider (A,Φ) a Nahm pole solution and convergence C∞ to
a flat GC connection at y → ∞. Let Yy := Y × {y} ⊂ Y × R+. By previous identity,
we obtain the following:

lim
y→0

∫
Yy

Tr(Φ ∧ dAΦ) −

∫
Y∞

Tr(Φ ∧ dAΦ) +

∫
M

Tr(FA ∧ FA) = 0. (4.42)

In addition, recall the Chern-Simons functional of a connection A over 3-manifoldY

is CP(A) :=
∫
Y Tr(A∧dA+ 2

3 A∧A∧A) and it satisfies
∫

M Tr(FA∧FA) =
∫

M dCP(A) =

CP(A|Y0) − CP(A|Y+∞).

By Proposition 4.3.1 and the assumption that (A,Φ) convergence to GC flat connec-
tion at y = +∞, we obtain that

∫
M Tr(FA ∧ FA) is determined by the Levi-Civita

connection and the limit flat connection. In particular, it is bounded and we denote
k := −

∫
M Tr(FA ∧ FA) +

∫
Y∞

Tr(Φ ∧ dAΦ). Combing this with (4.42), we have the
following relationship:

k = lim
y→0

∫
Yy

Tr(Φ ∧ dAΦ), (4.43)

where k is a finite number.

We obtain the following proposition:

Proposition 4.3.9. For (A = ω + a,Φ = y−1e + b), a polyhomogeneous solution
with expansions as in (4.2), we have

lim
y→0

∫
Yy

Tr(Φ ∧ dAΦ) = − lim
y→0

∫
Yy

Tr(e ∧?y−1∂ya). (4.44)
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Proof. As Φ doesn’t have dy-component, under the temporal gauge, we compute:∫
Yy

Tr(Φ ∧ dAΦ) =

∫
Yy

Tr(Φ ∧?4(FA − Φ ∧ Φ))

= −

∫
Yy

Tr(Φ ∧?4(Φ
2)) +

∫
Yy

Tr(Φ ∧?4(FA)),

where ?4 is the 4-dimensional Hodge star of M .

For the first term, when y small, as φy ∼ O(y2 log y), we compute∫
Yy

Tr(Φ ∧?4(Φ
2)) =

∫
Yy

Tr(φ ∧?4(Φ
2)) +

∫
Yy

Tr(φydy ∧?4(Φ
2))

=

∫
Yy

Tr(φ ∧?[φ, φy]) + o(1)

= log y

∫
Yy

Tr(e ∧?[e, (φy)2,1]) +
∫

Tr(e ∧?[e, (φy)2]) + o(1).

(4.45)

Using the identity ?e = e ∧ e over Y , for any 0-form c, we have

Tr(e ∧?[e, c]) = Tr(e3c − e ∧ c ∧ e2) = 0.

Thus, limy→0
∫
Yy

Tr(Φ ∧?4(Φ
2)) = 0.

For the other term, we have∫
Yy

Tr(Φ ∧?4FA) =

∫
Yy

Tr(Φ ∧?4(dωa))

= −

∫
Yy

Tr(Φ ∧?(∂ya))

= −

∫
Yy

Tr(y−1e ∧?(∂ya) + b ∧?(∂ya))

= −

∫
Yy

Tr(y−1e ∧?(∂ya)) + o(1).

The last equality is because b ∼ O(y(log y)p) and ∂ya ∈ O((log y)p) for some p. �

We have the following corollary:

Corollary 4.3.10. For the polyhomogeneous solutions (A,Φ), we obtain:

(1)
∫
Y0

Tr(e ∧?a2,1) = 0,

(2) k = 2
∫
Y0

Tr(e ∧?a2), where Y0 is Y × {0} ⊂ Y × R+.
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Proof. By previous computation, the non-vainishing terms of Tr(y−1e ∧?∂ya) will
be

Tr(2 log ye ∧?a2,1 + e ∧?a2,1 + 2e ∧?a2).

By the polyhomogeneous assumption, we know a2,p ∈ C
∞(Y ). Combine this with

(4.44), we know all singular terms should vanish. Thus
∫
Y0

Tr(e ∧ ?a2,1) = 0 The
only remaining term that contributes to the integral is

∫
Y0

Tr(e∧?a2), which verifies
the statement (2). �

4.4 The Expansions When G = SO(3) or SU(2)
Formula Expansions
In this section, we will determine all the rest terms in the expansion of a Nahm pole
solution when G = SU(2) or SO(3). When G = SU(2) or SO(3), in the notation of
(4.4), we only have σ = 1 and τ1 is the only irreducible module. Proposition 4.3.2,
4.3.4 still works for this case. We will give a proof Theorem 1.4 by induction.

For k ≥ 1, suppose (a, b, φy) satisfies (4.14) and has the following expansions:

a ∼
k∑

i=1

i∑
p=0

a2i,py
2i(log y)p +

r2k+1∑
p=0

a2k+1,py
2k+1(log y)p + · · · ,

b ∼
k∑

i=1

i∑
p=0

b2i−1,py
2i−1(log y)p +

r2k+1∑
p=0

b2k+1,py
2k+1(log y)p + · · · ,

φy ∼

k∑
i=1

i∑
p=0
(φy)2i,py

2i(log y)p +

r2k+1∑
p=0
(φy)2k+1,py

2k+1(log y)p + · · ·

(4.46)

where "· · · " means the higher order terms. In addition, we denote

A2k :=
k∑

i=1

i∑
p=0

a2i,py
2i(log y)p, B2k :=

k∑
i=1

i∑
p=0

b2i−1,py
2i−1(log y)p,

C2k :=
k∑

i=1

i∑
p=0
(φy)2i,py

2i(log y)p,

(4.47)

which are terms in the expansions of a and b which vanish slower than O(y2k+ 1
2 ).

Recall for any 1-form α, we define L2k+1(α) = (2k + 1)α + ?[e, α] and obtain the
following proposition:

Proposition 4.4.1. Assume a, bhave the expansions in (4.46), let p, s be non-negative
integers, and we have:
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(1)For any p, a2k+1,p = (φy)2k+1,p = 0 and for integer s > k + 1, b2k+1,s = 0,

(2)For k + 1 ≥ s ≥ 0, b2k+1,s = L
−1
2k+1(Θ

s
2k+1 − (s + 1)b2k+1,s+1), where Θs

2k+1
depends onA2k and B2k . IfA2k and B2k don’t have log terms, for s ≥ 1, we obtain
b2k+1,s = 0.

Proof. Consider the first equation in (4.14), consider the expansion of orderO(y2k(log y)r2k+1),
the quadratic term ?[a, b] will not contribute as A2k, C2k only contains even order
terms and B2k only contains odd order terms. Thus, we obtain

(2k + 1)a2k+1,r2k+1 = ?[e, a2k+1,r2k+1] + [(φy)2k+1,r2k+1, e],

(2k + 1)(φy)2k+1,r2k+1 = −Γa2k+1,r2k+1 .
(4.48)

As k ≥ 1, by Proposition 4.2.6 and Lemma 4.2.11, we obtain a2k+1,r2k+1 = 0. By
induction, we obtain a2k+1,p = 0 for any p.

For the second equations of (4.14), let s, s1, s2 be non-negative integers, we define

Θ
s
2k+1 : = ?dωa2k,s + dω(φy)2k,s +

k∑
l=1

∑
s1+s2=s

?a2l,s1a2k−2l,s2

−

k∑
l=1

∑
s1+s2=s

?b2l−1,s1 b2k−2l−1,s2 +

k∑
l=1

∑
s1+s2=s

?[a2l,s1, (φy)2k−2l,s2],

(4.49)

where a2k,s, b2k,s are understood as zero if it don’t appears in the coefficients ofA2k

and B2k .

Consider the coefficients of order O(r2k(log y)s), and we obtain

(2k + 1)b2k+1,s = −? [e, b2k+1,s] + Θ
s
2k+1 − (s + 1)b2k+1,s+1. (4.50)

Thus, as k ≥ 1, we obtain b2k+1,s = L
−1
2k+1(Θ

s
2k+1 − (s + 1)b2k+1,s+1). Suppose

s = r2k+1 and r2k+1 > k + 1, then Θr2k+1
2k+1 = 0. Thus, b2k+1,r2k+1 = 0 for r2k+1 > k + 1.

If A2k,B2k don’t contain log terms and s , 0, we obtain Θs
2k+1 = 0. By induction

of s, this proves the last claim. �

There is another type of expansions we need to consider: for k ≥ 1, suppose (a, b)
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has the following expansions:

a ∼
k∑

i=1

i∑
p=0

a2i,py
2i(log y)p +

r2k+2∑
p=0

a2k+2,py
2k+2(log y)p + · · · ,

b ∼
k+1∑
i=1

i∑
p=0

b2i−1,py
2i−1(log y)p +

r2k+2∑
p=0

b2k+2,py
2k+2(log y)p + · · · ,

φy ∼

k∑
i=1

i∑
p=0
(φy)2i,py

2i(log y)p +

r2k+2∑
p=0
(φy)2k+2,py

2k+2(log y)p + · · · ,

(4.51)

where "· · · " means the higher order terms. Similarly, we define

A2k+1 :=
k∑

i=1

i∑
p=0

a2i,py
2i(log y)p, B2k+1 :=

k+1∑
i=1

i∑
p=0

b2i−1,py
2i−1(log y)p,

C2k+1 :=
k∑

i=1

i∑
p=0
(φy)2i,py

2i(log y)p.

(4.52)

We obtain the following proposition:

Proposition 4.4.2. Assume a, b, φy have the expansions in (4.51), let p, s be non-
negative integers, and we have:

(1)For any p, b2k+2,p = 0 and for integer s ≥ k + 2, a2k+2,s = (φy)2k+2,s = 0,

(2)For k + 1 ≥ s ≥ 0, we can write

a+2k+2,s =
1

2k + 3
((s + 1)a+2k+2,s+1 + (Θ

s
2k+2)

+),

a−2k+2,s =
1

2k
((2 + 1)a−2k+2,s+1 + (Θ

2
2k+2)

−),

a0
2k+2,s =

1
4k2 + 6k

((2k + 2)((s + 1)a2k+2,s+1 + Θ
s
2k+2)) − [e,Ξ

s
2k+2 − (s + 1)(φy)2k+2,s+1],

(φy)2k+2,s =
1

4k2 + 6k
((2k + 1)(Ξs

2k+2 − (s + 1)(φy)2k+2,s+1) − Γ((s + 1)a2k+2,s+1 + Θ
s
2k+2)),

(4.53)

a2k+2,s = −L
−1
−(2k+2)(Θ

s
2k+2−(s+1)a2k+2,s+1), whereΘs

2k+2,Ξ2k+2 depend onA2k+1,
B2k+1 and C2k+1. If A2k+1 and B2k+1 don’t have log y terms, for s ≥ 1, we obtain
b2k+2,s = 0.

Proof. Consider theO(y2k+1(log y)r2k+2) terms of the second equations of (4.14). As
A2k+1, C2k+1 only contains even order expansions andB2k+1 only contains odd order
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expansions, the quadratic terms doesn’t contribute and we obtain (2k+1)b2k+2,r2k+2+

?[e, b2k+2,r2k+2]=0, which implies b2k+2,r2k+2 = 0. By induction, we obtain for any p,
b2k+2,p = 0.

For a non-negative integer s, write

Θ
s
2k+2 :=

k∑
l=1

∑
s1+s2=s

?[a2l,s1, b2k+1−2l,s2] +?[(φy)2l,s1, b2k+1−2l,2s] +?dωbs
2k+1,

Ξ
s
2k+2 :=

k∑
l=1

∑
s1+s2=s

?[a2l,s1,?b2k+1−2l,s2].

(4.54)

We compute the O(y2k+1(log y)s) coefficients and obtain

(2k + 2)a2k+2,s + (s + 1)a2k+2,s+1 = Θ
s
2k+2 +?[e, a2k+2,s] + [(φy)2k+2,s, e],

(2k + 2)(φy)2k+2,s + (s + 1)(φy)2k+2,s+1 = −Γa2k+2,s + Ξ
s
2k+2.

(4.55)

As k ≥ 1, applying Lemma 4.2.11, we obtain (4.53).

Suppose s = r2k+1 and r2k+1 > k + 2, then Θ
r2k+2
2k+2 = Ξ

r2k+2
2k+2 = 0. Also by

the assumption of the expansion, we have a2k+2,s+1 = (φy)2k+2,s+1 = 0. Thus,
a2k+2,r2k+2 = a2k+2,r2k+2 = 0 for r2k+2 ≥ k + 2. If A2k+1,B2k+1 don’t contain log

terms and s , 0, we obtain Θs
2k+2 = 0. By induction of s, this proves the last

claim. �

Now, we will give a proof for Theorem 1.4:

Proof of Theorem 1.4: By Proposition 4.3.2, 4.3.4, 4.4.1, 4.4.2, the result follows
immediately. �

Examples
Now, we will introduce some known results that verifies our theorem:

Example 4.4.3. [27] Nahm pole solutions on S3 × R+. Equip S3 with the round
metric and take ω be Maurer–Cartan 1-form of S3 and ω satisfies the following
relation dω = −2ω∧ω and?ω = ω∧ω. Denote y the coordinate of R+ and denote

(A,Φ) = (
6e2y

e4y + 4e2y + 1
ω,

6(e2y + 1)e2y

(e4y + 4e2y + 1)(e2y − 1)
ω), (4.56)

[27, Theorem 6.2] shows that (A,Φ) is a Nahm-Pole solution to the Kapustin-Witten
equations. In addition, the solutions (4.56) will converge to the unique flat SL(2;C)
connection in the cylindrical end of S3 × R+.
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The expansions of this solution along y → 0 will be

A ∼ (1 −
2
3
y2 +

2
9
y4 −

4
135

y6 + · · · )ω, Φ ∼ (
1
y
−

1
3
y −

1
45

y3 +
58

945
y5 + · · · )ω.

(4.57)

Example 4.4.4. [37] Nahm pole solutions on Y × R+ where Y is any hyperbolic
three manifold.

Let Y be a hyperbolic three manifold equipped with the hyperbolic metric h. Con-
sider the associated PSL(2;C) representation of π1(Y ), this lifts to SL(2;C) and
determines a flat SL(2;C) connection ∇ f lat . Denote by ∇lc the Levi-Civita con-
nection and by Alc the connection form. Take iω := ∇ f lat − ∇lc. Then locally,
ω =

∑
tie?i where {e?i } is an orthogonal basis of T?Y and {ta} are sections of the

adjoint bundle gP with the relation [ta, tb] = 2εabctc. We also have ?Yω = F∇lc .
Therefore, by the Bianchi identity, we obtain ∇lc(?Yω) = 0. Combining Ff lat = 0
and the relation ∇ f lat − ∇lc = iω, we obtain F∇lc+iω = 0. Hence Flc = ω ∧ ω,
∇lcω = 0.

Take y to be the coordinate of R+ in Y3 × R+, now set f (y) := e2y+1
e2y−1, and take

(A,Φ) = (Alc, f (y)ω). We refer [28, Section 2.3] for a record of proof in [37] that
this is a Nahm pole solution to the Kapustin-Witten equations.

As Alc is independent of y, the solution has the following expansions:

A ∼ Alc, Φ ∼ (
1
y
+

1
3
y −

1
45

y3 +
2

945
y5 + · · · )ω. (4.58)
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