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Abstract

The thesis consists of three chapters. The first chapter intro-
duces the basic notions of graph theory and defines vertex-reconstruc-
tion and edge-reconstruction problem. The second chapter and third
chapter are devcted to the edge-reconstruction of bi-degreed graphs and
bipartite graphs respectively.

A bi-degreed graph G 1is a graph with two degrees d> &§. By
elementary arcuments we can assume d = § + 1 and there are at least
two vertices of degree §. Call vertices of degree d "big" vertex and
degree & "small" vertex. Define "symmetrie" path of length p Sp to
be one with both ends small vertices and all other internal vertices big
vertices; define “asymmetric" path of length p Ap to be one with one
end a small vertex and all others big vertices. If s(G) is the mini-
mum distance between two small vertices in G, we can show that s{G) is
"independent" of G (i.e. it is edge-reconstructable), and that G has
at most one nonisomorphic edge-reconstruction H. From this, the con-
cept of "forced move" posed by Dr. Swart is obvious. Using the princi-
ple of forced move (snd sometimes also "forced edge" posed by Dr. Swart
as well), it's easy to cderive & few interesting properties, like say G
is edge-reconstructable if s(&) is even or if two SS(G)'S intersect
at an internal vertex, etc. Write s for s(G). W4hen s is odd, con-
sider the conzept of s - n-chain, which is n Ss's following from
end to end. Ve can shew first s - 3-chain and then s - 2-chain cannot

exist. Hence eli S_'s are disjoint. Thirk of S_'s as "lines" in

S = S
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some geometry. Define two morzs "distance" functions $1 and Sy such
that $1 "represents" the distance from a point to a line and s, means
the distance between two "skew" lines. With the aid of forced move
principle again, we can at last prove every bi-degreed graph with at
least four edges is edge-reconstructable.

A bipartite graph G is a graph whose vertex set V is the disjoint
union of two sets V] and V2 such that every edge joins V1 and V2.
By elementary recduction we can assume G to be connected. We define
special chains inductively so that it starts at a vertex of minimum de-
gree and always goes to a neighbor or minimum degree. Special chains
will be the main tool to prove edge-reconstructability. By G's finite-
ness, we note they will "terminate" somewhere,and we have three types of
termination for them. Let condition A's be that degree sequence of

special chain is edge-reconstructable, condition Bi‘s be that number

of special chains is edge-reccnstructable (and some more general varia-
tions); condition P's be that the "last vertices" of two special chains
be not adjacent; we can prove that all A, Bi and P's should hold in-
ductively in an interlocked way. (This is a big task). Then condition
P's can be used to prove G's edge-reconstructability for all three
types of termination. We can then prove every bipartite graph witn at

least four edges is edge-reconstructable.
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1
CHAPTER 1. Reconstruction problem of graph theory,

problem definition, fundamentals, and surveys.

Section 1. Graph theory terminologies.

In this thesis, graph theory notations will be principally those of
F. Harary [ 7] unless otherwise mentioned. Fortunately, the notations
do not differ too much in literature. (To name a few of graph theory
textbooks, see M. Behzad and G. Chartrand [ 1 ], C. Berge [ 2 1,
0. Ore [15], N. Deo [ 6], etc.)

A graph G consists of a finite nonempty set (vertex set) V = V(G)
of p vertices together with a prescribed set E(G) (edge set) of q
unordered pairz of distinct vertices of V. Each pair e = {u,v} of
vertices in E(G) is an edge of G, and e 1is said to join u and v.
We write e = uv {or vu equivalentiy) and say that u and v are
adjacent vertices (vertex u and edge e = uv are said to be incident
with each other, as are v and uv. If two distinct edges e and f
are incident with each other, they are adjacent edges).

It is customary to represent a graph by means of a diagram. The
diagram in Fig. 1-1 represents a graph G with V(G) = {a,b,c,d,e]

and E(G) = {ab, bc, ce, be, bd, de}.
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In this graph, we have say b,e are adjacent vertices, but c¢,d are not.

There are several variations of graphs which deserve mention. Note
that the definition of a graph permits no Zoop, that is no edge joining
a vertex to itself. In a multigraph, no locps are allowed but more than
one adge can join two vertices. (They are called multiple edges.) 1If
both loops and multiple edges are allowed, we have a pseudograph. To
discriminate, graphs {in the more general sense) without loops or multi-
ple edges will be called simple graphs.

A directed graphk or digraph G consists of a finite nonempty set
V = V(G) of vertices together with a prescribed set E(G) of ordered
pairs of distinct vertices. The elements of E(G) are called directed
edges or arcs. (By definition, a digraph is simple, i.e. it contains no
loops or multiple arcs.) Our original definition of graphs with edges
unordered pairs of distinct vertices will be called wundirected graphs.

An infinite graph G consists of an infinite set V = V(G) or ver-
tices together with & prescribed set E(G) of unordered pairs of dis-
tinct vertices. (By definition, an infinite graph is simple and un-
directed). 1t is possible thatavertex of G be adjacent to infinitely
many vertices (it's easy to construct such an infinite graph, say let Z
be the set of all integers, and join an edge for any two distinct inte-
ger). If every vertex of (an infinite graph) G 1is adjacent to only a
finite number of vertices, G is called locally finite. A graph G
with a finite nonempty vertex set V(G) will then be called a finite
graph.

With the introduction of these various notations, the graph defined

originally (as in Fig. 1-1) will L2 a finite simpie undirected graph for
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clarity. From now on (and in whole of Chapter 2 and Chapter 3 following),
graphs will mean finite simple undirected graphs unless otherwise mentioned.
A graph G 1is labeled (or vertex-labeled) if 1its p vertices are

associated with p distinct 1abels (or names) in a one-to-one manner.

A graph G 1is unlabeled if we do not have names for its vertices. A
graph G is portly labeled 1if some vertices are labeled and some are
not. In Fig. 1-2 below we have the same graph G which is labeled in

(a), unlabeled in {b), and partly labeled in {c).

1L

(a) (b) (c)
Labeled Unlabeled Partly labeled
Fig. 1-2

We can define edge-labeled graphs, edge-unlabeled graphs and partly
edge-labeled graphs in an analogous way.

Two graphs G and H are isomorprhic, denoted by G= H, if there
exists a one-to-ore mapping o (called an isomorphism), from V(G) onto
V(H) such that zdjacency (and so unadjacency as well) is preserved;
j.e. uv € E{G) if and only if o(u)o (v) € E{H). The relation "iso-
morphic to" is easiiy seen to be an equivalence relation on graphs. We
will call H an isomorph of G (and vice versa) if G and H are iso-

morphic. Two isomcrphic graphs are considered to be the same graph in a
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natural way. Two graphs G and H are non-isomorphic (and considered
as different) if they are not isomorphic; denoted by Gzt H.

A necessary condition that two (finite) graphs G and H are
isomorphic is that they have the same number p of vertices and same
number q of edyes. Conversely, given two graphs G and H both with
p vertices and q edges (q‘g_(g) = Ei%:ll. by simple argument), we
know that after finite number of steps, we can determine if G and H
are isomorphic, for say p! , the number of permutations of the p ver-
tices would suffice. However, since p! grows very fast, the general
problem of determining if two graphs are isomorphic (by an algorithm or
not) is convincingly very hard. In Fig. 1-3 below we give three graphs

G, Hand I with G= H, G= I.

Fig. 1-3

A1l three graphs here are unlabeled. It is easy to see that G
and I are nonisomorphic since I contains a "triangle" (a configura-
tion of three adjacent vertices) but G doesn't.

The isomorpnism cf G and H 1is hard by "inspection” only. It

would be much easier if we label the graphs as in Fig. 1-4 following:



Fig. 1-4

The mapping o from V(G) to V(H) defined by o(a) = a, o(b) =c,
o(c) = e, o(d) = b, g(e) =d, o(f) = f can be verified to be an isomor-
phism. This induces a concept called Zlabel-isomorphism. Given two
graphs G and H with same number p of vertices and q of edges; and
Suppose U, ..., up are labels used to label both graphs, then a one-
to-one mapping o which preserves adjacency (hence an isomorphism) from
V(G) onto V(H) is a Zabel-isomorphism if o(ui) =uj, 1< i< p. De-
note this by Gg;ZH. It is clear that if two unlabeled graphs are
isomorphic, then they are label-isomorphic by some appropriate labelings
(although the labeling might be very hard to find). Conversely, if two
labeled graphs are label-isomorphic, then their corresponding unlabeled
graphs (obtained by "erasing" the labels) are isomorphic. It is conceiv-
able that twc labeled graphs may be non-label-isomorphic with the corres-
ponding unlabeled graphs isomorphic however. Label isomorphism {(equiva-
lence) classes is then a finer partition of isomorphism classes of

graphs. In Fig. 1-5 below we see there are one up to Zsomorphism and

three up to label Zsomorphiem graphs of three vertices and two edges.
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unlabeled 3 1abe1ed

Fig. 1-5

Note that we have six ways to label G by a, b, ¢ and only three
label-isomorphism classes (and only one isomorphism class). On p.4 of
M. Behzad and G. Chartrand [ 1 ], twenty non-label-isomorphic graphs of
4 vertices and 3 edges are shown; among them there are only three iso-
morphism classes.

We introduce a concept dual to that of isomorpnism (or vertex-iso-
morphism). Two nonempty graphs G and H are edge-isomorphic, denoted
by Gaae H, 1if there exists a one-to-one mapping o; from E(G) to
E(H), such that two edges e and f are adjacent in G if and only if
the edges o(e) and o(f) are adjacent in H. (Edge-isomorphism pre-
serves adjacency of edges just as isomorphism preserves adjacency of
vertices). However, the roles of edge-isomorphism and isomorphism are
not "equal" as hinted by "duality". We see trivially that isomorphic
graphs are edge-isomorphic but the converse does not necessarily hold

as evidenced by the fellowing nonisomorphic pairs G and H:
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Since the edges a, b, c are pairwise adjacent in G and in H,
any permutation o of {a,b,c} 1is an edge-isomorphism, which however
cannot "induce" a vertex isomorphism in a natural way since G has 3
but H has 4 vertices. Edge-isomorphisms are thus a less natural
concept than isomorphisms.

So far we have defined graphs, adjacency, labels, and isomorphisms.
Next we will define the important notion of subgraphs. A subgraph H of
G 1is a (finite, simple, undirected) graph having all its vertices and
edges in G, i.e. V(H)< V(G) and E(H)< E(G). Given a set S of
vertices < V(G), the <rduced subgraph (S) 1is the maximal subgraph of
G with vertex set S. A subgraph H of G is vertex-induced or in-
duced 1if H =(S) for some Sc V(G); H 1is edge-induced if H = (F‘)e
for some Fc E(G) and (F}e defined to be the graph whose vertex set
consists of those vertices of G incident with at least one edge of F
and whose edge set is F. Note that a subgraph need nct be vertex-in-
duced or edge-induced.

The removal of a vertex v from a graph G results in that sub-
graph G - v of G consisting of all vertices of G except v and
all edges not incident with v. G - v is thus the (vertex-)induced
subgraph on V{(G) - {v}. The removal of an edge e from a graph G
results in that subgraph G - e of G consisting of all vertices of G
and all edges except e. G - e 1is a so called spanning subgraph, i.e.
it contains all vertices of G; it is an edge-induced graph, and it is
maximal with respect to the property of not containing e. The removal
of a set of vertices or edges from G is defined by the removal of

single elements in succession.
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Now we will define a "reverse" operation. The addition of edge uv
to a graph G where u and v are nonadjecent results in the graph G +
uv with the same vertex set and same set of edges with the addition of
an edge uv . G+ uv 1is a "supergraph" of G, i.e. G 1is a subgraph
of it. The addition of a vertex x € V(G) results in a graph G + x
whose vertex set is the union of V(G) and {x} and its edge set is,
in addition to those in E(G), all edges of the form xv, v € V(G).
Starting from G, we can define a graph H “recursively" by means of
series of additions and/or removals of edges or vertices. For example
G- u-v+wx-za may be meaningful. Note further that these opera-
tions "commute", say G - ab +cd = G + cd - ab.

At this early stage, we are able to state a famous longstanding

foremost conjecture in graph theory (since 1941):

Ulam's (reconstruction) conjecture. Let G have p vertices u; and
H p vertices Vs with p> 3. If G - U = H - v for each i, then
G= H. (see S. Ulam [19]).

This conjecture says that the vertex deleted maximal subgraphs
uniquely determines a graph with at least three vertices. This conjec-
ture is false whan G has only two vertices. For if G is the graph
cf two vertices Uys Uy and one edge uyu, and H 1is the graph of two
vertices VisVo without any edge, then G - Uy = H - vy, G - u, = H- v,
since they are all graphs with one vertex only (and hence no edges at
all), which is called ¢rivial and denoted by Kl. But G# H, for Uiy
areadjacent in G but VqVo aren't in H.

F. Harary reformulated Ulam's Conjecture in the following way:



First come some definitions. A reconstruction of a graph G 1is a
graph H such that V(H) = V(6) and H - v=G-v for all v € V(G).
G is reconstructable (or notaticnally equivalently reconstructible) if

every reconstructicn of G 1is isomorphic tc G.

(Vertex)-Reconstruction Conjecture (reformulated by F. Harary). Any
graph with at least three vertices is reconstructable.

A word of comment. Though G may be Zabeled when we find G - v's,

ail {§ - v's are unlabeled, otherwise there is no problem.

To get feeling for this problem, it is sometimes helpful to imagine
a "deck™ of cards on which the vertex-deleted subgraphs of G are
drawn, but unlabeled. Presented with such a deck, it is routine to find
some graph which produced that deck. The problem confronting the recon-
structor is however more demanding. He must show that, regardless of
the algorithm used, one necessarily ends up with the same graph.

A good way to know how the reconstruction problem looks is to try
reconstructing the graph G in Fig. 1-6 (i.e. finding an algorithm and
show there is only one solution).

Note G dis labeied but all G - v are unlabeled in Fig. 1-6.

The full generaiity of (Vertex)-Reconstruction Conjecture seeming
intractable anyway, F. Harary later posed the conceptualily
easier edge-version of Vertex-Reconstruction Conjecture, the Edge-Recon-
struction Conjecture.

An edge-reconstruction of a graph G is a graph H such that
E(H) = E(G) and H - e= G- e forall ec E(G). Note that edge-re-

construction is not a verbatim retormuiation of vertex-reconstruction,
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G-

. &

Fig. 1-6

because H is a vertex-reconstruction of G if every vertex-deleted
(maximal) subgraph is vertex-isomorphic; while H is an edge-reconstruc-
tion if every edge-deleted (maximal) subgraph is vertex-isomorphic (not
edge-isomorphic!)

A graph G 1is edge-reconstructable if all its edge-reconstructions

are isomorphic to G.

Edge-Reconstruction Conjecture. Every graph with at least four edges is
edge-reconstructable.
There are twc non-edge-reconstructable pairs with two edges and

three edges respectively as shown in Fig. 1-7.

To test the muscle on Edge-Reconstruction Problem, the graph G in

Fig. 1-6 is good again.
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(a) (b)
Fig. 1-7

Though edge-reconstruction problem seems much easier, and more prog-
ress has been made, the solved cases are mainly on graphs with simpler
topological structures or graphs with "many" edges (compared with number
of vertices). Chapter 2 and Chapter 3 of this thesis presents edge-
reconstruction of bi-degreed graphs and bipartite graphs (defined later)
with discussions mainly on degrees (i.e. the number of edges incident
with each vertex), but not too much on topolegy. We will come back to
this topic in Section 2.

Let's continue the definitions and terminologies. A walk of a
graph G 1is an alterrating sequence of vertices and edges Vos X715 Vs
sees Vo1 X0 Yy beginning and ending with vertices in which each edge
is incident with the two vertices immediately preceding and following
it. This walk joins Vo and Vo and may be denoted naturally as

Vo¥1 o0 Yy (edges being evident by context); and called a v - Vi, walk.

0

It is closed it Vo * Yy and open otherwise. It is a trail if all

edges are distinct, a path if all vertices (and hence all the edges) are

distinct. It is a eyele if it is closed, all its n vertices are dis-

tinct, and n> 3. The Zength of a walk v vy ... v, is defired to be

n, and it may be called an n-walk. n-paths and n-cycles are defined in

a similar way. We denote by Cn the cycle of n vertices {and hence
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of length n , or an n-cycle), P_ the path of n vertices (and hence

n
of length n-1,and it is an (n-1)-path.). C3 is often called a triangle.

A graph is connected if every pair of vertices are joined by a path;
disconnected if not connected. A maximal connected subgraph of G 1is a
component of G.

The girth of G is the length of a shortest cycle (if any) in G;
the eircumference the length of any longest cycle. The distance d(u,v)
between any two vertices u and v is the length of a shortest path
joining them if any; otherwise d(u,v) =. A shortest u-v path is
often called a geodesic. The diameter of a connected graph is the
length of any longest geodesic.

The degree of a vertex v 1in a graph G, denoted deg (v), is the

number of edges incident with v. It is trivial to observe that the sum

of the degrees of vertices of a graph G 1is twice the number of edges.

If all vertices of G are of degree r, G is called regular of degree

r or r-regular. If G has only two degrees & and d, G is

called bi-degreed. We have special names for vertices of small degree.

A vertex v is fsolated if deg(v)= o; it is an endvertex if deg(v)=1.
The complement & of a graph G also has V(G) as its vertex set,

and two vertices are adjacent in G if and only if they are not adja-

cent in G. The complete graph Kp has every pair of its vertices adja-

cent. Thus Kp nas (g) edges and is regular of degree p-1. The

graphs E;' are called totally discomnected, and are regular of degree O.
A bipartite grapk G 1is a graph whose vertex set V can be par-

titioned into twe subsets V] and V? such that every edge of G Jjoins
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V] with V2. If G contains every edge joining V] and V2, then G
is a complete bipartite graph, and G is denotedbme,n if Vi and V,

have respectively m and n vertices. A simple characterization of bi-
partite graph is that all its cycles are even (see F. Harary [ 71,

p. 18).

A graph is acyclic if it has no cycles. A tree is a connected
acyclic graph. Thus trees are obviously special cases of bipartite
graphs. An easy way to recognize a giraph as a tree is that G is con-
nected and p, the number of vertices, is equal to q + 1, where q is
the number of edges. The eccentricity e(v) of a vertex v in a con-
nected graph G is max d(u,v) for all wu in G. The radius r(G) is
the minimum eccentricity of the vertices. Note that the maximum eccen-
tricity is the diameter. A vertex v 1is a central vertex 1if e(v) =
r(G) and the cenver of G 1is the set of all central vertices. It can
be proved that every tree has a center consisting of either one or two
adjacent vertices, and trees are called central or bicentral accord-
ingly.

A cutvertex of a graph is one whose removal increases the number of
components. A nonseparable graph is connected, nontrivial without cut-
vertices. A Zlock of a graph is a maximal nonseparable subgraph. If G
is nonseparable, then G 1itself is called a block. For a connectied
graph with at least three vertices, we note G is a block if and only if
every two vertices of G 1lie on a ccmmon cycle (p. 27 or F. Harary [7 1)
A block having more than one edge is also 2-connccted, i.e. we have to
remove at least two vertices to "disconnect" G.

A graph is said to be embedded in a surface S when it is drawn on
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S so that no two edges "intersect". A graph is planar if it can be
embedded in the plane.

Finally, fer two graphs G] and 62 with disjcint vertex sets V]
and V2 and edge sets X] and X2 respectively, the union G = G]U G2

has vertex set V = V] U Vz, edge set X = X] U X2.
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Section 2. Vertex Reconstruction and Edge Reconstruction Conjectures.

In Section 1, we introduced the concepts of Vertex Reconstruction
and Edge Reconstructicn Conjectures. In this section, several basic
lemmas and properties will be stated and/or proved.

We will call a parameter of G reconstructable if it takes the
same value for all reconstructions of G. Similar definitions hold for
edge-reconstructable parameters. The first fundamental theorem is due

to P. J. Kelly [ 9 ].

Lemma 1.1 (Kelly's Lemma).
(a) For any two graphs F and G such that |V(F)] < |V(G)], the

number s(F,G) of subgraphs of G isomorphic to F is reconstructable.

(b) For any twe graphs F and G such that |E(F)| < |E(G)|, the num-

ber of subgraphs of G isomorphic to F is edge-reconstructable.

Proof of (a). Each subgraph of G isomorphic toc F occurs in exactly

|[V(G)] - |V(F)| of the subgraphs of G - v. Therefore
s(F,6) = 2 oS
ve V(G)
Since the right-hand side of this identity is clearly reconstruct-
able, so, too, is the left-hand side.

Proof of (b) is similar. Q.E.D.

Kelly's Lemna appears to be very useful in general (with a very
simple combinatorial proof).

A sequence d],dz, PR dp of nonnegative integers is called a
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degree sequence of a graph G 1if the vertices of G can be labeled

VisVos «eus Vp SO that deg wi): di for all i. Often we express the

sequence so that d, > dy> --- dp.

I\

Corollary 1.1. For any two graphs F and G such that |V(F)| < |Vv(G)],
the number of subgraphs of G which are isomorphic to F, and include a

given vertex v, is reconstructable.

Proof of Coroliary. This number is just s(F,G) - s(F,G - v) Q.E.D.

Taking F = K2 in Kelly's lemma and in the corollary, we find that
the number of edges and the degree sequence, respectively, are reconstruc-
able parameters.

It is now easily seen, as noted by Kelly [ 9 1, that reguiar graphs
are reconstructable. Consider a k-regular graph G. Since the degree
sequence of G 1is reconstructable, all reconstructions of G are k-reg-
ular. But it isclear that all k-regular reconstructions of G are isomor-
phic, since each can be obtained (up to isomorphism) from any G-v by ad-
ding a vertex and joining it to all the vertices of degree k -1 in G-v.
We deduce that all reconstructions of G are isomorphic.

This proof is typical of many on reconstruction in that it splits
naturally into two parts, which we shall refer to as "recognizability"
and "weak reconstructability." A class G of graphs is recognizable if,
for each graph G 1in @, every reconstruction of G 1is also in @, and
weakly reconstructable, if, for each graph G in G, all reconstruc-
tions of G that are in G are isomorphic to G. Thus a class G is
reconstructable if and only if it is recoanizable and weakly reconstruct-

able.
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The edge-reconstructability of degree sequence, though evident, can-

not be proved in a way identical to that of Corollary 1.1.

Lemma 1.2. The degree sequence of a graph with at least four edges is

edge-reconstructable.

Proof of Lemma. First, it is a trivial matter to prove the edge-recon-
structability of Ky n for n> 4.
3

Suppose G has exactly a. vertices of degree do’ o vertices

(0]

of degree d], ...y 0. vertices of degree ds >0 and a vertices

S s+1

of degree ds+] = 0 where do > d] > oo > ds = D

Let H be an edge-reconstruction of G. We will show that H
satisfies similar conditions.

Let H have By vertices of degree 60, By vertices of degree
61, . Bt vertices of degree dt:> 0 and B i+ vertices of degree

6¢41 = 0, Where 8> 87> 2> 6,> 6 = 0. We will show that s=t

t+]
and oc]-=si,dj=6jvi,j,0§_1‘,j<_s+1.

If d0 =1, then G is union of Kz's plus some F%. The only non-
isomorphic edge-reconstruction H will contain K],Z as a proper sub-
graph, hence G o G- f=H - f contains K],Z’ a contradiction.

(o]

Now d°:> 1 and by assumption G has exactly % K] q 'S as

edge-proper subgraphs.

So Kelly's Lemma {Lemma 1.1) applies and H has exactly %y

K],do s as subgraphs. So by > 0 .

by By symmetry, do?—éo and d0=6

.
But H has exactly BQC> o)K] 5 = Ky 4 's, S0 B, = ag-
*o >~o

Let ¢ = min (s,t) and suppose



0.0=5030.]=Bo’ ---,a'=3.i and

o,
—d
1]
(o2d
-
v
-
o,
1]
o

; j for some O0< i< 4.

We will see Gip1 = Bisle diyy = 8449-

Suppose di+‘| > 1 first.
The number of K 's contained in G is exactly

T otz
. i+l
i+] /dk
2 o (d > = the number of K] d 's in H by Kelly's Tlemma.
k=0 i+ >4

If 61-+]< di+] then H would have only

3 <dk ) < iy (dk >
a . K 's < 2 «a ) .
k=0 K N/ Thediy k=0 K \diy

SO 8541 d1‘+]' By symmetry then, Si41 = d1'+] and since H has

exactly
i#] /6 i d
k > k
;s B = Z—_) (04 < ) +
k=0 K (6141 k=0 K \ 94 1%
K Ki © 'Ss Qs,1 =B whenever d.,. > 1. (and
1,61-“ 1,01.” i+l i+l i+l
di1 = 8447)-

Similar results hold if 61.” > 1. So let d1‘+] = 61-_” = 1. In

this case i +1 =35 =t. Since |E(G)|] = |E(H)] and aj = Bjs 0<j

< i, we have readily a;,; =By -

Induction says that oy = 51., dJ. =%:, 0< i, j< £. Suppose s # t,

J
say s< t. Then the number of edges in G 1is
S S t
JZ_ 2 ogdg = % I oBiby < 12 2 B30

-
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]
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(S
1]
o
[
[ &)



19
which is impossible since E(G) = E(H).
So degree sequence is edge-reconstructable (H - e= G - e implies

that V(G) = V(H) as well, and so Ggyp = Bs+1)' Q.E.D.

We can define edge-recognizability and weakly edge-reconstructabil-
ity 1in a similar way.

We end this section by citing some useful concepts from J. A. Bondy
and R. L. Hemminger [5].

Let ¥ be a class of graphs (that is, a family of graphs closed
under isomorphism), and let F and G be graphs such that F € & and
s(F,G) > 0. A subgraph of G which belongs to ¥ is called an F-sub-
graph of G; & mowimal F-subgraph of G is one which is contained in
no other F-subgraph of G. For instance, when F 1is the class of con-
nected graphs, the maximal &F-subgraphs of G are the components of G.
An  (F.G)-chain of length n 1is a sequence (Xo’ Kps eees Xn) of F-sub-
graphs of G such that F= XO e X] c e Xn < G. Two (F,G)-chains
are isomorphic if they have the same length and corresponding terms are

isomorphic graphs. The rank of F in G is the leagth cf a longest

(F,G)-chain. We state below without proof an interesting result:

Lemma i.3. (Counting Theorem), Let ¢ be a recognizable class of graphs,
and let ¥ be any class of graphs such that, for every G in @G, each
F-subgraph of G is (i) vertex-proper; (ii) contained in a unique
maximal F-subgraph of G. Then, for every F 1in & and every G in G,
the number mw{F,G} of maximal J-subgraphs of & isomorphic to F is
reconstructabie.

Counting theorem is generaiication of Keliy's Lemma.
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Corollary 1.3.1. Disconnected graphs are reconstructable.

Proof of Corollary 1.3.1. A graph G is disconnected if and only if
at most one G-v 1is connected. Therefore, disconnected graphs are
recognizable. The counting thesrem, with * as the class of connected
graphs and G as the class of disconnected graphs, establishes weak

reconstructability. Q.E.D.

Corcllary 1.3.2. If G 1is reconstructable and has no isolated vertices,

then G 1is edge reconstructable.

Proof of Coroliary 1.3.2. For a graph G without isolated vertices,
let G be the class of all edge reconstructions of G and let F be
the class of graphs with v - 1 vertices. Since edge reconstructions of
G have no isolated vertices, their J-subgraphs are edge proper and the
counting theoremn applies. But the maximal F-subgrapns of G are exact-
1y the vertex-deleted subgraphs of G. It follows that G 1is edge re-

constructable if G 1is reconstructable. Q.E.D.
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Section 3. A very brief survay

This survey does not tond to be complete, nor will it prove any-
thing in detaii f{with an exception, construction of trees).

The survey paper by J. A. Bondy and R. L. Hemminger [5] summarized
more than sixty cas2s up to 1977. For vertex reconstructions, trees
have been treated very aeeply{P. J. Kelly [8], F. Harary and E. M. Palm-
er [8), B. Manvel [13], J. A. Rondy [3] etc.); graphs with cutvertices
but no isolated vertices are done by J. A. Bondy [4]; and discornected
graphs were done by almost everyone,

For edge-reconstructions, L. Lovdsz [12] has proved G 1is edge-
reconstructable if |E(G)| > + |V(G)| ([V(8)] - 1); V. Mtller [14] has
proved G is edge-reconstructable if ol ECG) -1, (Ivea)})!. J. Lauri
[10] did the interesting case that all planar graphs with minimum degree
5 is edge-reconstructabie. Ard in this thesis, we present in full de-
tail the edge-reconstructability of bi-degreed graphs in Chapter 2, and
bipartite graphs in Chapter 3.

For digraphs and infinite graphs, counterexamples exist (P. K.
Stockmeyer [16], C. Thomassen [i8]), and the problen there is to find
those reconstructable. The author [11] hes proved the (vertex)-recon-
structability of some locally-finite trees.

There are many other related reconstruction problems, say recen-
structing matrices, reconstructing relationships etc. We finisn this
chapter by a comparatively short proof of vertex-reconstructability of

trees cited from J. A. Bondy and R. L. Hemminger [5].

Theorem 1.1. Trees ave reconstructable,
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Proof of Theorem 1.1. Trees are recognizable, since a graph G is a
tree if and only if G i$ connected and |E(G)| = |V(G)] - T.

A tree is a path if and oniy if each degree is at most two. There-
fore paths are recognizable, and hence reconstructable.

In a tree which is not a path, every longest path is a vertex-proper
subgraph. It follows from Kelly's lemma that the diameter and radius of
a tree are reconstructable, and hence that central and bicentral trees
are recognizable.

A vertex of a tree is peripheral if it is an end of a longest path.
Since v 1is peripheral if and only if deg (v) =1 and v 1is in a
longest path, the number of peripheral vertices is reconstructable.

A branch of a central (bicertral) tree is a maximal subtree in
which the central vertex {central edge) is of degree cne (is incident
with a vertex of degree one). A branch is radiai if it includes a pe-
ripheral vertex of the tree. Note that a bicentral tree has exactly two
branches, both of which are radial. A tree is basic if it has exactly
two branches, justone of which is a path; the path branch is the stem
and the other branch the top.

Now a tree of radius r (and nct a path) is basic if and only if
it contains no subgraph of one of the three types shown in Fig. 1-8
(where the centers are indicated ir black and the distances a and b
range between 1 and r - 1). Trees of these types are easily recognizable.

(For example, a tree G 1is of type 1 if and only if it contains a path

' e
o—-———i~———_o o———I-—-o-_—I—-o o i 0 beee
a

b a b
Type 1 Type 2 Type 3
Fig. 1-8
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of length 2r = v - 2 and v + 2 paths of length r + 1). Therefore,
by Kelly's lemma, basic trees are recognizable.

Basic trees are also weaklyv reconstructable. For let G be a cen-
tral (bicentral) basic tree. Then all reconstructions of G are isomor-
phic, since each can be obtained, up to isomorphism, from the bicentral
(central) G - v which has a vertex of degree greater than two closest to
the central edge (central vertex) by extending a radial path.

It remains to prove that nonbasic trees are reconstructable. Let
G be a nonbasic tree, and Tet F be a basic tree with the same diameter
as G. By the counting theorem, the number of maximal basic subtrees of
G isomorphic to F 1is reconstructable. We can use this information to
find the radial branches of G as follows. Each non-path radial branch
which includes k peripheral vertices of G is the top of p(G)-k maxi-
mal basic subtrees of G, where p(G) is the nuwber of peripheral ver-
tices in G. This gives us the non-path radial branches of G (with
multiplicities). The number of path radial branches is then p(G) minus
the total number of peripheral vertices in the non-path radial branches.

In the central case, it still remains to reconstruct the nonradial
branches. But they are just the nonradial branches of a G - v obtained
by deleting either a peripheral vertex of a radial branch which includes
at least two peripheral vertices, if there is such a branch, or a non-
peripheral end vertex of a radial branch, if there is such a vertex;
otherwise, all radial branches are paths, and the nonradial branches

can be found from a G - v obtained by deleting a peripheral vertex.
Q.E.D.
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CHAPTER 2. Edge-reconstruction of bideyreed graphs

Section 1. Introduction.

Recall from Chapter 1 that a graph G 1is edge-reconstructable if
all possible edge-reconstructions of G are isomorphic to G. In this
chapter we will investigate the edge-reconstructability of bidegreed
graphs, i.e. graphs which have exactly two degrees d and § with
d> s > 0.

The result of this chapter comes out in this way: it was first
motivated by J. A. Bondy and R. L. Hemminger [ 5] as the adge-version
of problem 1 in their paper; and then greatly prompted by Edward R.
Swart [17] wherefrom a few nice ideas and theorems were used and then

generalized. The main result obtained (in Section §) is:

MAIN THEOREM. Every bidegreed graph G with at least four edges is edge-

reconstructable (which solves this problem in full force).

Section 2 introduces elementary results and the useful concept of
"forced move" (and "forced edge") by E. R. Swart [17]. In Section 3, the
principie of "forded move" is applied by the author to establish a few
more interesting "excludable configurations". 1In Section 4, we investi-
gate the structure of "connection pattern" of "minimm-distance-paths",and
cuncluae that they must all be disjoint. The remaining case is then

solved by two more "distance functions" in Section 5.
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Section 2. Elementary results and inspiration by Swart.

By Lemma 1.2, degree sequence is edge-reconstructable for graphs G
with at least four edges. So bidegreed graphs are edge-recognizable,
i.e. if H 1is an edge-reconstruction of a bidegreed graph G with two
degrees d and &, then H 1dis also bidegreed with degrees d and §.

We immediately observe that there is nothing to do unless d=¢§ +1.

For if d>g§ + 2, then
(i) removing a § -5 edge creates two vertices of degree & - 1,

(i1) removing a & -d edge creates a vertex of degree d-1> & and

a vertex of degree § -1,

(i1i) removing a d-d edge creates two vertices of degrees d-1> &;
and so, edge-reconstructability of degree sequence implies that G can
be edge-reconstructed from any of the G-e's. In the above, a 6 -0 edge
means an edge with both ends vertices of degree 6, etc. Henceforth we
assume d =6 + 1.

A few more elementary properties can be proved using degree argu-
ment:

1. G is edge-reconstiructable if d =1 or 2.
2. G 1is edge-reconstructable if it has just one vertex of small-

est degree §.

For if d =1, then G is disconnected consisting of links plus isolated
vertices and is trivially edge-reconstructable; and d = 2 (and 6 =1)
means G 1is disjoint union of free standing paths and so presents no

difficulty at a11. The case G has only one vertex u of smallest
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degree § is also easy, for if we delete any edge wuv, then in G - uv,
u is the only vertex of degree d-2, and v the only vertex of degree
d-1, so we have only one way to restore the deleted edge: its original
position. Henceforth we assume d> 3 and G have at least two ver-
tices of degree 3.

In investigating this problem, it is a usual practice to restrict
consideration to certain subgraphs or "configuration". To illustrate,
consider the case when G has two adjacent vertices u,v of smallest
degree &. Then G 1is easily seen to be edge-reconstructable for u
and v are two vertices of degree d - 2 1in G - uv and again the only
way to restore the deleted edge to get an edge-reconstruction H of G
is its original position, otherwise H will have a vertex of degree
d-2 which is impossible. Hence we have only to consider the "petite"
subgraph or "configuration" uv, not any "large" graph G-e at this

stage. Te represent this concept diagramatically, we call

a vertex of degree d a "big" vertex and denote it by 0,
a vertex of degree 5= d-1 a "small" vertex and denote it by X,

a vertex of degree d-2 a "tiny" vertex and denote it by A.
The above argument becomes:

G: u ' G - uv u v

In drawing a configuration as above the structure of the rest of
the graph is assumed to be arbitrary - except insofar as it is con-

strained by the structure of the cenfiguration itself. Moreover it is
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understoond that we do not mean deg(u) = deg{v) =1 1in G, but
deg(u) = deg(v) =d - 1> 1 1in general.

From the above, we see that if a bidegreed G of degrees d and
d-1 contains a cenfiguration uv with deg(u) = deg{v) = d-1, that G

is edge-reconstructable. This leads to a new useful concept:

Definition 2.1. Excludable configuration. A configuration C is ex-
cludable if its existence in G enforces G to be edge-reconstructdble.
We then see immediately that the edge uv of two adjacent "small" ver-
tices is an excludable configuration.

Let's call Ap a path of length p with one end a vertex of degree

& and all other vertices of degree d; let's also dencte by S_ a

p
path of length p with both ends vertices of degree & and all other

vertices of degree d. A4 and 54 are depicted below for illustration:

4 % Y % %3 Yy 47 3 3 2 23 %y
O Xm0

An S_ which starts at ag, and then passes Ays Bpy oees @

sequentially tc stop at a viill be denoted as an S, a ay ... or

P’ p o
simply an Sp a, - ap if it is immaterial to mention the internal

vertices. Similar convention holds for Aq‘s.

Since G has no isolated vertices (d> 3), the two facts that
disconnected graphs are vertex-reconstructabie and that the vertex-re-
constructability of a graph without isolated vertices implies its edge-

reconstructability {see [ 5]) together tell us that G can be assumed

to be connected. Hence some Sp‘s must exist in G for certain p's.
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Let s(G) be the minimum of such p's. Clearly, s{(G)> 2 for S1 is
an excludable configuration already mentioned. If H is any edge-
reconstruction of G, then s(H})> 2 for s{H) =1 implies H is edge-
reconstructabie which in turn implies G 1is edge-reconstructable. Con-
sider an SS(G) aoa] as(G)' In G - agays g is a vertex of degree

d-2, hence H= G -aga; * aoh, where h may be aps Ag(q

gy Or some other

small vertex. In any case it is readily seen that s(H) < s(G). A
symmetry argument (since s(H)> 2) implies immediately s(G) < s(H) and
so s(H) = s(G) for any edge-reconstruction H of G. From now on, we
wili write 5 for s(G) (or s(H)). Intuitively, it is the minimum dis-
tance between any two vertices of degree d-1 1in G (or any edge-
reconstruction H). s and SS will be a principal tool to solve our
problem in the following.

It is conceivable that a big graph G may have a large number of
edge-reconstructions, all nonisomorphic to each other. So it is quite
remarkable at this early stage to observe that G can have at most one
nonisomorphic edge-reconstruction H. In fact, any edge-reconstruction
H= G - a5y + aoh, h is ay, a4 Or some other small vertex by the
previous paragraph, where apay +.. 4 is an SS in G. But if h s

)

not a, or ag, then s(H) < s-1=s(6)-1, which is impossible.

So H=G -ag3y * 3,2 is the only possible nonisomorphic edge-recon-

S
struction.

If H= G, then G is edge-reconstructable. If H % G, then G
is not edge-reconstructable by definition, we wiil then prove G's edge-

reconstructability logically by either deriving a contradiction or

proving H is edge-reccnstructable (then G is edge-reconstructable



since G 1is also an edge-reconstruction of H) or even that G is

edge-reconstructable.

Before going further, we cite a few interesting notations and re-

sults from [17].
We notice that in order to restore a missing edgye to an edge-deleted

subgraph, it is necessary to:

1. Avoid creating a multiple edge.
2. Ensure that the degree sequence is preserved.
3. Avoid creating another configuration already known to be exclud-

able.

Definition 2.2. Forced edge. If, in conformity to the three condi-
tions mentioned above, an edge deleted from a given configuration can
only be restored to its original position, we refer to it as a forced
edge.

Note that edge uv Jjoining two vertices of degree d-1 is then
also a forced edge. Forced edge is a very useful tool to make lots of
configurations excludable. The main idea of introducing excludable con-
figurations is that we will build larger excludable configurations from
smaller ones gradualiy so that &t last we have a list big enough to
prove edge-resconstructability for every bidegreed graph 6.

A concept similar to forced edge, which is also very powerful is:

Definition 2.3. Forced move. 1f any edge deleted from a configuration
can be validly replaced in two identical positions in conformity to the
three conditions just before Definition 2.2, we will refer to its re-

placement in the position which differs from its original position as a
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forced move.

As an example, since H= G - aga; t+aga is the only possible non-

S

)
isomorphic edge-reconstruction for a given S

s 8537 +-- g the move

from 53, to agag is a forced move. We will denote this symbolicaliy

as aoa] 5 aoas or aoa1 —>asao.
We note that a forced move always changes an isomorph G'of G to

an isomorphs H' of H and vice versa. So if we start at G and execute

an odd number of forced moves, we are ending at an isomorph Hk of H

(it goes in this way, G = H, - G] -> H2 - G2 > e +<Gkn] -> Hk’ where

1
Gi's and Hj's are isomorphs of G and H respectively); if furthermore
we return to our initial configuration after this odd number of forced
moves, then we get H= HkEE G since the structure of the rest of the
graph is not affected by this sequence of forced moves, and we get a

contradiction. Hence follows [17]:

Lemma 2.7. Every configuration which contains a forced edge or which can
be recovered by an odd number of forced moves is excludable.
We conclude this section with a simplc application of the idea of

Lemma 2.1.
Lemma 2.2. G 1is edge-reconstructablie if s s even.

Proof of Lemma. Consider an SS a

CIRRRL in G. The forced move

o

e i S C P
ajay ~aa, changes G to H].m H and the old s 2,39 ag to a

new SS 313y ... A, while leaving the remaining part of the graph

intact. The next forced mcve 4,3, > A,y changes H] to G]zz G, the

‘ nother S 3.... a_a_a,. Proceeding in this
SS ajay ... agdy to another S a4 a.a ay g
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way, we see that when s is even, ag_1 g T A5 03¢ 3 changes Hs/zsz H

to GS/ZEE G and the S, a, ja.a ) ... a; , to aaaa; ...a, y,and

S

aga, > ag_ja, changes Gs/ZEE G to Hs/2+15§ H and a.aa; ... a

S SO0

s-1
to aoa1 .. A
"w H . s _
In Hg o4 » We see that the "old" S aja; ...ag in G is return

ing to its original position while the remaining part of the graph is

kept intact through the whole process. Hence Hs/2+1 is identically G

and so H= Hs/2+1 = G, a contradiction, and we are done. Q.E.D.

Figure 2-1 iliustrates the argument used in Lemma 2.2.

G 4 Ly g Rep Bg.y Be
R W— 0- O———X
H, 8y B Hp Bg.p 951 a,
G, : 4 4 4 33 851 A
T ———
Hs/é: a0 a] sz ag.2 as-l as
Q::::f::::jf ...... ~— //f:::::o
————a
6 /p° 8y % o -2 Pg.] Gy
F—O——0 ... —O——X X
‘\\‘g/
Hs/?+1: &% 4 A2 %51 4
¥——O———0— —_———O0——X
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Section 3. Further application of forced-move principle.

In this section, the forced-move principle stated in Secticn 2

is used to derive several interesting lemmas.

Definition 2.4. Tp—configuration. A Tp—configuration C is a con-

. . Eon
figuration consisting of an Ss aay +-. A and an Ap bob]"' b

P
with deg(bp) =d-1, b0 = a; for some i, OG< i< s, and no bj = a for

any 0< j<p, 0< k< s.

Remark. We cannot allow b0 =a, or ag for otherwise G would con-

tain an Sp with p< s = s(G), impossible by the definition of s.

Intuitively a Tp-configuration looks Tike below:

&b 9 21-1%5 44 ag
X————0-— ++ 0 0——X
by
b?
b
p

Lemma 2.3. Every Tp-configuration with p< s 1is excludable.

Proof of Lemma. If not, then & has the unique ronisomorphic edge-
reconstruction H. And s{G) = s(H) says that none of G or H or
their isomorphs can contain an S_. Now applying i consecutive

P

- + By@p > 8 Bys esss By _18s
forced-moves (a a; > aca .22, > a,a;, > 851

s i ai_zai_]) we get

an isomorph of G or H which contains Sp as a configuration, con-

tradiction. Q.E.D.
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As a special applicaticn of Lemma 2.3, we see that two Ss's cannot
intersect at the internal "big" vertices. They can be joined at the
end "small" vertices however. This simplifies the future confiqurations
very much.

It can be proved that To—configurations are excludable for bp > S,
but their proofs are mush much harcer, exactiy that of the proof of the
problem in fulil force.

It is conceivable that the two small vertices a, and ag in an

a

Ss ajay...ag may also be joined by another SS a0b1b2 '“‘bs—] -

4.3y ... Qa and a_b

o1 S o1°"" b

gu] Hg need not be disjoint interioriy, that

is, we might have bi = a; for some 0< i< s ({(obviously, we cannot
have bi = 3y for some 0< i # i< s).
Our next step will be to prove that the above situation cannct hao-

pen.

Lemma 2.4. It is impossible that two vertices of degree d-1 be
Joined by two Ss's. (So the configuraticn of two small vertices joined

by two Ss's is excludable.)

Proof of Lemma. We suppose at first that b] # ajg - Let j be the

first positive integer such that bj =a;, then 1< j< s. Now

3?7
aob] > agag is a forced move sending G to Hy = G-aob]-faoassf}L
for in G - a0b1, a, is a vertex of degree d-2 (an impossible degree
in G or H) and b],aS are two vertices of degree d-1 of dis-
tance s-1 apart. Consider H} - a3y In this edge-deleted sub-

graph > 3 is a vertex of degree d-2, and so by H}'s non-edge-recon-
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structability, some iscmorph G,= of G 1is equal to H] - 2,9 + a c,C

0

is a small vertex in H] - 353y other than aj- If ¢ 1is not b1,

1 G
then in G;, the S a3, ...a.a, and Aj_] byb, ... bj form a Tj—]

excludable by Lemna 2.3, and so G, = H, - a a, + a_ b, = G. But now
1 1 o | o1

5 ; ) . ) s - .
g > ajay s 2 forced move sending GI to HZ H since a, laa

vertex of degree d-2 and a;,a; are two small vertices distance s -1

apart in G] - 3,3,-
So far the set of three forced moves we used are sequentially:

b, > > > .
ao 1 458> 859 aobl’ T aoa]

It is then obvious that we return to G identically (not just an iso-
morph) after them, and so G = stz H, a contradiction.

We have proved the case when b] # aj - Now Tet b] =ag. Let

i> 1 be the first integer such that bi # a . Applying 1i-1 forced
moves as in Lemma 2.3 we see that in an isomorph of G or H (depend-

in i i T T R d
gon i 1is odd or even), a;_ 174 8.a, a;_o and

e abs a BB ol ' ' joini wo small vertices
a1_]b] bsm]“s“o a;_p are two S 's Jjoining two sm

a;_y and a; 5, and the condition b, #a; 1in this isomorph has the

same meaning as b] # a, in G. O.E.D.

Remark. This Temma is proved for G. But the same argument holds for
any isomorph of G or H. We will assume this practice throughout.
A similar argument can prove G's edge-reconstructability if G

has only two small vertices. Consider the unique SS agay «--8g in G

(uniqueness by Lemma 2.4) and consider a vertex ¢ # 3 adjacent to a-

a,c > a3, is a forced move sending G to Hy=H since G has only
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two small vertices. 3, and ¢ are joined in H] by an SS

a C-|C2 S o

o c. = ¢ since s(H]) = s(G). c; may be a; or not. And

s?*~g
a,C1Cp +--Cq is an AS in G. Now it's trivial to observe that

a - (= > e ~ed 1 S so the se-
o%1 a,Cst aoc) and a,ag ajey are forced moves, and so th

quence of three moves:

a > a_q - > g
0C aoas, a0c1 aoc, a_a ad C-l

return us to G identically, and we get a contradiction.

Now the topology of interconnections of different Ss's becoming
simpler, we may then ask the natural question: Is the number n(G) of
Ss‘s in G edge-reconstructable, in other words, is n(G) = n(H)? The
affirmative answer is proved by the following lemma:

Lemma 2.5. The number n(G) of Ss‘s in G is edge-reconstructable.

Proof of Lemma. Before starting tc prove, let's make a few intuitive
concepts more precise. Recall that a vertex is small if it has the
smallest degree &, and big if it has degree d. A vertex b will be

said to "lieon" an S_ or A_  a ay ... if b dis some ass

S s o S
0< i< sy b=a;, isanend" if 1=0 or s, "internal" vertex if
0< i< s; and in this case we will also say that the Ss or
AS agay ... "contains" b.
Consider in € a fixed S  a a; ...a,. Let
nG(aO) be the number of S_'s containing &, not counting a,ay-.-a
nG(aS) be the number of S_'s containing a; not counting & a;...a
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nG(ai) be the rumber of As's of the form aib]b .b_, with bs

2 °°°7s

the unique small vertex unequal to a, or ag, and 0< i< s.

Ncte that in the As a.b.b

i ] 2--¢b

5 bS 7 a, or ag, ho bj can be

equal to some Ay otherwise Lemma 2.3 enforces G's edge-reconstruct-
ability. Let KG be the set of all other Ss's. Then every Ss in KG

is of the form bob .b_ with none of b_ or bS equal to a_. or

1 *°°"s o 0

a_. And every SS in KG is disjoint from 4,8y ...

s by Lemma 2.3.

s
We see immediately that:

/

n{G) = ng(a,) + nglag) +1 + Kyl -

Consider now the forced move 3,3y *agag, which transforms G to

Hy=H. The old S. aja, ...a. in G becomes a new S, aja, ...aa

0 1 S 2 S0

in Hy. The ng(a ) S_'s containing a_ not counting a,a;.--a be-

G(‘s S S S

come in H] nG(aS) As's containing a; as a big end (an end which is a

big vertex) with the other small end unequal to a, or a;. The

nG(a]) As's which contain a; as the big end with the small end un-

equal to a, or ag become now nG(al) 55'5 containing a; asa small

end (aoa] L exclusive however). It can be seen very easily that

the other Ss‘s or As's which have a; asa big end or which are mem-
bers ofKG yemain intact in this move. (Lemma 2.4. eliminates some anncyance)

Now if we define 1in H] a function ny in the same way ng was
1

cgefined by considering the SS a,2,...2.3 then we see from the previous

03

argument that nH](a) = nG(a) for all vertices a in a3y ---2g- De -

fine KH in the same way as KG’ we see again:
1 (
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n(H]) = nH](a]) ¥ nH](ao) + 1+ [KH][.

Actually, n(H]) = nH](a]) + nH](ao)i'i%-{Ksl = nG(al) + nG(ao) ¥

1+ [KGI since K is easily seen to be the same set as K.. Next,

H
1
consider the forced meve a]a2 > agars which transforms H1 =

G - aoa] + a_a to G, = H] - 443, + ajay = G. We can define N and

S0 1 1
KG in a way similar as before and get n, (a) = ny (a) = nG(a) for all
1 A 1
a € aoa] cee g and KG1 = KH] = KG. Furtherimore, since our SS of
consideration is a2a3... asaoa] this time, we have

n(G]) = nG1(a2) + nG](a]) + 1 + tKGl’ or

li

n(G) nG(az) + nG(a]) +1 + IKGl, since G, =G implies

n(G]) = n(G).

Similar argument shows that the forced move aaz > a;2, sends

G] to H, = Gy - aya; + aja, with nHZ(a) = nG(a) for all a €
aoa] e Ao KH2 = KG’ and

n(HZ) = nG(a3) + nG(az) + 1 + lKGi.

Proceeding in this way, we see that

n(6) = nglay) + nglag) + 1 + |4

!
=i
—
o
a—t
~—
!
=
[p)
—~
ja’]
~nNo
~
5
[ep)
—
]
-
-
-+
e
<~
m._.



38

=G5 1)/2) = nglag_y) + nglag_p) + 1+ [Kgl, and

n(Hy) = nglay) + nglay) +1 + [Kg

it

n(H2) = nG(a3) + nG(aZ) + 1 + IKGI

= n(H(S+])/2) = nG\aS) + nG(aS_]) +1 + |KG|;
where Gi's and Hj's come from the sequence:
G > H> G Hy 2 Gy e H(s-])/z'* G(s—])/Z »+ G resulted from the
sequence of forced moves: aoa] > a2, 8, *agay, a2a3 T Aq8ps eees
85-185 * 35.9%5.17 3% T A%
Adding the (s + 1)/2 equations for n(Gi)‘s (with G = GO say),
we get

(s41)n(6)/2 = 2 nay) + (1+]Kg])(s-1)/23
k=0 N

adding the (s+1)/2 equations for n(Hj)'s, we get

i
NS

=
—

Q
~

(s+1)n(H;)/2 = + (1+]Kg)) (s -1)/2

(s+1):n(G)/2.

Hence n{H) = n(H]) n{G) as was to be proved. Q.E.D.

Corollary 2.5. Notations as in the proof cf Lemma 2.5, we have

nG(aO) = nG(aZ) = see = nG(aS_]), and nG(ai) = nG(a3) = ee. = nG(aS).

Also, n.(a) = n

(a) = n, {&) for all a in some fixed S_ a_ a; ...a
G G- “ ' R S

o1
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and G, and H, are some isomorphs when we do the sequence of ferced
<

moves a, - > &

52y 8ys +.. A8, > A 2

0 S0 s-1°s°

Procof of Corollary. The second half of the statement was aiready noted
in the preof of lemma. For the first half, we see that n(G]) = n(H])
implies ng(a,) + nglag) + 1+ |Kgl = ngla;) + nelag) + 1+ [Kgl s which
in turn implies nG(aa) = nG(az) % n(Gz) = n(HZ) implies by a similar
way that nG(az) = nG(a4); and sc by comparing n(Gi) = n(Hi) for

i< i< (s-1)/2, we see easily nG(a ) = nG(aZ) = nG(a4) = ee. = nG(as_]).

The second equality nﬂ(a]) = na(a,) = -+- = ne(a )} follows by compar-

s/

ing n(Gj) = n(Hj 1< J< (s-1)/2. Q.E.D.

Remark. 1It's conceivable that nG.(a) or nHL(a) i nG(a) for some iso-
morph G' of & or isomerph H' of H if they do not appear some-

wher i 101n ed moves A > a “n -> .
e while doing the forced move 2,2y 2.2 s s a8, *ag 13

The more strict term for nG(a), a€aa ...a should be

0 S

Na.a ay ... a (a). and so nG(a) = nHl(a) more precisely means

0 S

Ne . (a) = n (a). However, since n. is always
G,aOa} cee A H], a1, ... agag G
defined by implicitly assuming an 3p87 +..8g, We will write nG(a) for
n {a) unless it is confusing.
Gsa R
0} s
Also, we may write n (a) as n . (a) if the internal
Gs8_ s ag G,ao—dS

vertices are irrelevant.

By means of lLemma 2.4, we establish the exciudability of a configura-
tion which will be useful in Secticn 4.

Consider the configuration in Fig. 2-2 below, which consists of an

S. aa, ...a__qa. together with an A_ a__,eq€ Joining a

! i . e a
S 0 i s-175 - s s-17172 €5-1% S-1



- - ie o R - ~a.a_ is
to a;. Some of the e;'s may Tie on agja, ag. A5 3¢ s

obviously a forced move, and it gives two Ss‘s Jjoining 2.1 and ag in

4

H' = G - a,_qa. + so ' and hence G is edge-reconstructable by

g © Bgfyt
Lemma 2.4.

Fig. 2-2

This tells us that a,_; onan S, aa; ... a; 3, cannot lie on

an AS Jjoining it and a- (However, it is conceivable that ag_y may

l1ie on an AS with a, the other end). Similar fact holds for ay .
<.] and a. are joined
by an Ap,p-< s, instead of Ag, then G 1is edge-reconstructable; for

Furthermore, we note that if in Fig. 2-2, a

H' = 2 5 + a ~or¥a : . oA
G - ag_ja, a.a, contains the obviously excludable Sp.
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Section 4. Excludability of s-three-chains, s-three-cycles, and s-two-

chains.

Let's review the interconnection structure of 55'5 so far. We
know that no two 55'5 can intersect at an internal vertex (Lemma 2.3),
and no two Ss's will have the same two ends (Lemma 2.4); but since
Ss's can have one end in cemmon, it is still conceivable that long
"chains" (or "cycles") of Ss's joined end to end can exist making the

structure still qguite intricate.

To investigate this possibility, we have:

Definition 2.5. s-three-chaoin. An ordered quadruple (a,b,c,d) of four
distinct small vertices a,b,c.d is called an s-three-chain if a-b,

b-c, c-d are all SS%.

Remark. 1In the definition above, there is nc problem of which S5 join-
ing @ and b will be chosen, for there is only cne. A permutation

of a.b,c,d say (a,c,b,d) need not be an s-three-chain. Alsc,
(d,c,b,a) is an s-three-chain physically the same as (a,b,c,d) but de-
fined as different logically. To rescue this situation, we define an
equivaience relation ~ on the set of s-three-chains by letting each
equivalence class consist of exactly two elements (a,b,c,d) and
(d,c,b,a). By abuse of language, we will write (a,b,c,d) for the class

[{a,b,c,d)].

Definition 2.6. s-three-cycle. MAn unordered triple {a,b,c} of three

distinct small vertices a.b,c is calied an s-three-cycle if a-b, b-¢,

]

c-a are all S_
>

S.

~

C

Feelings of s-three-chairn and s-three-cycies can be gained by look-

¢

ing at Fig. 2-3{a) and (b) below:
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b a a

Q0=+ o+ ~O—X

] /\

. -p 0\ .

; VAN

»-1_0_.__0... o o —0——X X=P=— . . . =0

c d b c
{a) (b)

Fig. 2-3. a depiction of (a) s-three-chain and

(b) s-three-cycle.

Before investigating them, we will introduce another useful defini-

tion which is a generaiization of the concept of forced edge.

Definition 2.7. Forced vertex. If, in conformity to three conditions
mentioned before Definition 2.2, an edge o c¢an only be replaced with
one of its end o« fixed (i.e. ap changed to o¥ for someY), we re-
fer to « as a forced vertex (in G - aB).

As an example, if a 1is a small vertex, and b is any adjacent
vertex, then a 1is a forced vertex in G-ab. Though not seeming very
useful at first sight, the concept of forced vertex is applied easily to
establish a forced edge (and hence G's edge-reconstructability): ab can
be proved to be a forced edge if we can show that a and b are both
forced vertices. For illustration, we see that if a.,b are adjacent small
vertices, then in G-ab, a and b are both forced vertices, hence
establishing ab as a forced edge (cf. Secticn 2).

Lemma 2.5 proved at the end of Section 3 will be the main tool to
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prove excludabhility of s-three-chains and s-three«cyclgs.

Recall that s 1is odd by Lemma 2.2. We will divide the proof of
excludability of s-three-chains into two parts: s> 7 and s =3 or 5.
The proof for s> 7 will be stated as Proposition 2.6, due tc its big
size; and the proof for s =3 or 5 will be stated as Lemma 2.9.

Consider now foir s3> 7 an s-three-chain (a,b,c,d) and rewrite
b =by, ¢ = b (so that b and ¢ are joined by an S, boby «- bs).

We will write nG(bi) for "G,bo...bs(bi) unless some other S 1is used.

Now nG(b);;l since b 1lies on a-b and b-c. Similarly, nG(c);;l

and we see immediately that n (bi) > 1 for all 0< i< s by Corollary

G
2.5. 1In particular, nG(bB) > 1 implies b3 lies on some AS b3e] cee €
in G with e, # b or c. Here none of ej for 1< j< s can lie on
the s-three-chain if e, #a or d. (However, it is conceivabie that

e, =a or d.) We see also that b4 iies cn some Al b4 f1 == T 0 G

with fg # b or c¢. Again, none of fk for 1< K<« s can 1ie on the
s-three-chain; and it is still possible that fs =a or d or e when
e # a or d.

We will prove excludability case by case depending on the distinct-

ness of fs, e, a and d. The recognizability that G contains an

S)
s-three-chain satisfying a certain case is trivial by looking at G - bb',
where b' is adjacent to b on ab.

First comes the most general case:

Case 1. T _, e a and d are all distinct.

s> °s?

Let's draw the configuration T consisting of the s-three-chain
-~ a Ful [} - A = 3 i o_
(a,b,c,d) plus the two As 3 b3u] ... and by fy ... in Fig. 2-4
below.
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b b' a
—0—O0—X
By
by o
by ¢—o- —0-—0—X
; Fig. 2-4 Configuraticn T
b4 f used in Case 1 of excluda-
s-2 fo_4 T bility of s-three-chains
for s> 7.
. S WU I R R S —
¢ d

Note that f__; # e 1, fo_o 7 €. p» oOtherwise s< 4 (and it is

clear that e._o # foqs fon? es_]). %1 =G =g 408, * eb=H and

F% =G - e 18 + e.c == H are the only two possible ways to edge-recon-
struct from G - e, ;e . since e  1is a forced veriex and the S  b-c
and A _, by - eg_p forma T, , in G - e ;e,.

Let's consider ql first. Denote by ﬁl the configuration in ﬂx
obtained from T 1in G by the same kind of operations from which Fh
is obtained from H, i.e. T =T -e_.,e_+e_b. (We will assume this

(o} s-17s S
"natural" association of graphs and configurations from now on). In

ﬂx - €5 18c_p» e,y 1is a forced vertex, and a candidate for edge-recon-

struction is ql,] = }h,' g 1852 * €. 19, where g # o is any
small vertex in Wx LT LINE (g may be a, egs C, d, fs or something
eise).
Suppose for now that g # fs‘ Then fs is a small vertex in ql,]
and b4f1 . fs is still an AS in Tg,}. The only possible ways to
edge-reconstruct from Qx,i - fsfs~} are %152 = Q1,1 = fsfs;] 4 fsh’



H
o

with h # fs—] any small vertex in ql 1" fsfs=1' Now cur configuration

T - f

g2 = ol gfsy ¥ fsh=>=T-e¢

e +e b - 1 + e =
s-17s sb Ce-1"e-2 s-1 g

fgfg_q * fgh will have the general look as below:

Uy & 4 b > S
D — e s -—?——0—-— oo e e © a1

i

s-2-0r s-1 Us
b3 Q= s e Q=X
b4 e S L X, fs—l
s-1
e e e,
u, <3 C > 8

The picture is self-explanatory. The upper left corner "u] < 5 b
says that the distance of Uy and b is at most three (u] can be fs’es—]’
e, orb with distance respectively 3, 2, 1, 0). Also b3 - U is an As-2

if Uz = €. o> and As_q if Uz = fs, us cannot be any other vertex.

Note that though Uy and uz can be fs at different times, they cannot

be equal to f. at the same time.
Consider 11,2 = baby. b, Ties onan S__, b, - fo_q and an

Sp by - u, with p<s -4 +3<s. Soeither b, 1is a forced vertex

or fs_]uz is a replacing edge. Similarly we see that b3 lies on
b3 -u

q< 3 +3<6, and so either b3 is a forced vertex or Ujusg is

which is an S¢.1 Or S._, and an Sq by - u; with

(%)

a replacing edge. Since Ups Ups Ua, T 1 are all distinct in T o With
* ~ (> e a’

none of them equal to b3 or b4, we see that b3 and b4 are both

S P - i ) . .
forced vertices, enforcing baby, to be a forced edge; so Wx,Z and hence
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G 1s edge-reconstructable.
We have shown that s> 7 implies G's edge-reconstructability in

the subcase Wx and assuming g # fs.

We will now show g # f_ for the subcase %1. Suppose nct, and we

go back to G,1 = Hy = 8182 * egqTs (now g =f.). In Teu1 ™ bsbg »
by lieson S _, by - e, and S, by - e, soeither bs isa
forced vertex or e, , isa replacing edge. But b4 - ¢ 1is an Ss_4,

and so since b, ¢, by, e, ,, e, are ali distinct, bgb, - by c s a

forced move sending G ¢ to H . In T _, rewrite c-d as
G.,l o4 Y

Y s
CoCy -+ cs(d = cs), and consider ﬂls - dsds~1’ Any pessible edge-recon-
struction %x,é will be = Wx,Y - dsds-l + ds_]j, with j any small
vertex # dS in ﬁx,y - dsds_]. Now as in the previous paragraph, in
%1,6 - byc, by liesonan S, by-e._, or an S, ; by -d. anc
also an Sp, p<3+2=5<7, and ¢ liesonan S ., c-b, or S, 5

c-dg and also an Sg-1 €~ dg_q3 SO as before bgc s a"forced edge"

and we are done, finishing the subcase WI for Case 1.

The proof for HB follows in the same vein except when g = fs

(i.e. GB 1= Ho - e 180 * es-Tfs)' The above argument does not apply

3
. _ . T : :
since b, - ¢ is ro longer an S._, in '8, bab, (c is not a small
vertex now). We proceed by using results for P&. From GB ] = EgC» wer
b
can edge-reconstruct some GB 1 - &C + eskif H. If k # b, then our

new graph contains a T _, {the S, b-c and A _, by -e,_ o) and so G

&

is edge-reconstructable. But k = b dimplies our isomorph of H contains

the excludable configuration T as described before, and we are done,

a

completing the proof for Case 1.
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Remark. In the proof before, we deleted edges in this order: eses-l’

] <% 4 , " ;
€ _18s-2> fg_1fs_o- We can prove excludability of T 1in the same vein

if edges are deleted in another way: f_f f. . f

s's-1° Ts-17s-2* ©5-1%s°
Pausing for a moment, we see that the above type of argument works
when eS = fs # a or d; the proof is even simpler. Some minor

. S — : - = - e + . g ma
change is observed, for example, in qx’] Ha €. 1852 es_'g, g Yy

be fe_q now (g couldn't be fo_q when e, f_, a, d are distinct as in
case 1). The type of argument leading to that b2b4 +-b3c is a forced
move sending G to H is no longer necessary here.

0.1 Q sy

We state this as a variation of Case 1:

Case 1", fs = By #a or d (proof already mentioned).

Next we consider the case when exactly one of fs or e coincides

with a or d.

i

Case 2. f

. a or d, ey # a or d; or

e, = a or d, . # a or d. (still s> 7 assumed)

Graphically we mean that all the four configurations shown in Fig.

2-5 are excludable.

The proofs of these four subcases being essentially the same, we will

do Fig. 2-5 (a) only as an illustration. For simplicity, we assume €s 1

¢ c-d. Same practice will hold for Case 3 following. To get feeling for
proof, see Lemma 2.12.

Denote the configuration in Fig. 2-5(a) by U(a). To avoid T the

s-12
only edges we can replace in G - e ]d (to get H' = H) are dc and bd.
If we repiace by dc, then Kelly's Lemma {Lemma 1.1) on (s+1)-cycles

says that there is a path of length s (easily shown to be an As) joining
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b a b a = eg
f——O0— - ~—~O0——0—X Yrrenl— ——o-::g:;;x
e
- €y 51
b e b
3 “‘\ol\\ fs-2 Tso1 Ts 34—
b4 ——0—- . —0—0—X b4 —0— e aani
3 Ty S0 s 1 . T fso2 fsa1 fs
i—n_--n—gzilx S W, S
= > d
c d e
(a) (b)
b a
S, S W)
e e e e.
b, 1. %2 %1 5%
by 0 Tg2
. ] . e f
. 'O\QS'--I
—o— -—o-—-o:::R
c d = fs c d
(c) {d)
Fig. 2-5
e,.7 and d in G not containing e _,d (so that the A, e, ,-d

foilowed by edge de94 is the "ol1d"
followed by the newly added edge dc
The Ag es_]-d cannot contain any
Now three

some possible Tp,p < S.

bob] and b2b3 % b]b2 give us an

cludable configuration as in Fig. 2-

Now we cecrisider replacing de

C -
~

(s+1)-cycle in G, and the AS d-c
is the "new" (s+1)-cycle in H').
vertex on bobl y bs’ to avoid

byby >

isomorph of H containing the ex-

forced moves bobl - bsbo’

2

by db. The only ways to edge-

1
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reconstruct from H' - e _18;_p are G] =H' -e 48, o * €, 19,9

some small vertex in the edge-d<leted subgraph. We claim that g can-
not be fS. Suppose not, we see that the fact that b3 lies on an Ss-2
by - e, and S; by-d and b,-c disan S__, 1in Gy - bgb, en-
forces the move b3b4 »-b3 ¢ and gives us stz H. Consider deleting
db in Uga), then db » db4 is the only possibility (to avoid a Ts—i

or Ts-2)’ which also gives us Gg= G. Rewrite c-d as c,c; ...C

ula)

in the configuration 3

S’
with ¢ = Co> d = cg, and delete c._;cg

(which is contained in G3), the only eligible edge-reconstructions are
H4 = G3 - cs_]d + dh, where h may be a, b, e 25 € ) or some

other small vertices not on U(a). We note now that in H, - b b

3
b

47 P3%
3- d and also onan S, , by -e, o

3

lies on an 53 b3-b or 54

or S b3 -d (it depends on the value of h, note also that it is im-

s-1
possible that by and d are joined by both an S, and an Ss-1) such

that the other two small vertices are distinct, and ¢ lies cnan S 4

€ " s

and 54 c-d; so it is easy to see that b3c is the only

way to recover a graph, proving our claim that g cannot be fs'
Returning now to G, = H' - e, je. o, * e, ;g 1in the previous para-

graph, with the reccgnition that ¢ # fs. We can edge-reconstruct

H" = Gl - fsfs-

Similar type of argument as before will show that from H" - b3b4, b3b4

y * fhish' o some small vertex # f in G - ffoq-

s-1

is the only edge we can replace (hence a "forced edge" in a more general
sense) using the fact that s> 7 1is the minimum distance between any
two small vertices. We are now done for the proof of subcase

Fig. 2-5 {a) of Case 2. Similar proofs of the other three subcases will

be omitted here.
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The results obtained in Case 1, Case 1' and Case 2 readily give a

new interesting summary-type result which we state as:

Lemma 2.7. G 1is edge-reconstructable if G contains an s-three-chain

(a,b,c,d) with nG,b-c(b) >3 or ng (c) > 3; here s> 7.

,b-c

Proof of Lemma. Consider nG,b-c(b) > 3 first. Then nG,b-c(b4) =
nG,b—c(b) > 3, and b, is the big end of at least three A_'s in G. It
cannot happen that b4 and a are joined by more than one As’ for
then, in an isomorph of G which 1s obtained from G by four forced

moves bob] -> bsbo,b]b2 -> bob],bzb3 »—b]bz, b3b4 +~b2b3, we see two

small vertices joined by two Sc‘s, contradictory to Lemma 2.4. Simiiar-

ly, b4 and d are joined by at most one A, in G. So b, must lie

= = - = ta 3 4 inc
on at least 3 -1 1 1 AS b4'] e fs with fs # a or d. Since
nG,b-c<b3) = nG,b~c(C) > 1, b3 lies on an AS b3e1 ces € The case
e, =a or d 1is treated in Case 2, e, = fs in Case 1', and e #

any of fs, a, d in Case 1. 1In all cases, we see our s-three-chain for
s> 7 1is excludable, in other words G is edge-reconstructable if G
contains such a configuration.

The case n. b_C(c) > 3 is done in a similar way. Q.E.D.

Henceforth we assume that nG,b~ckb) < 2, nG’b‘C(c) < 2 for any

s-three-chain (a,b,c,d). We note that if b

ies e, ...e
lies on an A b3 1 5

3 s
with € # a or d, then arguments as in Lemma 2.7 using Case 1, Case 1',

Case 2 say that G 1is edge-reconstructable. So any smalil end of an AS

with b3 or b4 as the big end will be assumed to be a or d. Fur-

thermore, if n, . (b) = 2, then b-d should be another $ other-

SS
wise say b-e is another SS, then for the s-three-chain (e,b,c,d),
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b3-a is an As with a # e or d, and the previcus argument works.

Similar fact holds for c¢ as weil. Furthermcre we have na a-b(a) < 2
' \ . s £ ' o , 3
and nG,c-d(d’ < 2: for if not and say nG,a"D\a) > 3, then a is

joined by 3-1-1=1 S_ to some small vertex e # b, ¢, or d,

<&

and then G 1is edge-reconstructable by Lemma 2.7 applied to the s-three-

chain (e,a,b,cj.

We now come tc the remaining case of Proposition 2.6.

Case 3. nG,b—c(b) < 2, nG,b-c(C) < 2.

Without loss of generality, let nG,b»c(b) 5—"G,b-c(c)

Subcase 3. (a) g b_c(c) =2, ng b-c(b) =1 or 2.

The situation is illustrated in Fig. 2-6.

f
T - o Q:E}\\ ~o———o—:>m
o d=e'= " d=e'=fg
(a) (b)
Fig. 2-6

5 I LIPS N a ! . ] 'uh
Let b3 Tie on twe AS s L3e] L and b3e] e, wit
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e, = a, eg = d. Let b4 Tie on an AS b4f] ...fs with fs =a or d.

(The case f, = d corresponding to Fig. 2-6 (a), f. = a to Fig.

2-6(b)). The three A;s just mentioned are disjoint except intersecting
at the ends b3, a or d; and this can be easiiy seen in an isomorph

G2 of G where bob] ...bS becones b4b5 S0 b2b3 (applying 4

forced moves to G).
Since proofs are similar, we will do the case for Fig. 2-6 (a) only.

G- ae._; canonly be edge-reconstructed to G - a e, fab or G -

ae + ac. In the former case, €1 and e_ are joined by an A_ in

s-1 S S

G and we have an excludable configuration as in Fig. 2-2 in G2 of

last paragraph. Next delete fq_]d in H' =6 -ae + ab. The pos-

s=-1
sible edge-reconstruction is G' = H' - fg_q 4 + dg, with g some small

vertex. If g is e 1> then b3 is joined to d by two different

387 .- e; and b3 1 - 8y

forced moves b b] > b b b]b +~b b b2b3 +Ab]b2 will give us an iso-

A s (namely b.e d) in G'. So three

morph of H where two small vertices b3 and d are joined by two

different Ss’s; this is impossible by Lemma 2.4. (This is a place
where we use heavily the fact that nG(c) =2). If g isnot e,
then argument as in Case 1 tells us that b3b4 is a "forced edge" 1in
G', i.e., after considering all possibilities, b3b4 is the only edge
we can replace in G' - b3b4. (s> 7 s also used heavily, argument
fails if s = 5). Hence we are done with subcase 3(a).

Subcase 3. (b). b) = n =1,

ng,b-ct G,b-c(¢)
Again, we note nG(a) z 1, nG(d) < 1, otherwise we are done by sub-

case 3. (a) by socme s-three-chain (h,a,b,c). HNow we observe that none
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of a, b, ¢, d can 1ie on any s-three-cycle. For if, say, b 1lies
on an s-three-cycle, then nG(b) = 1 enforces the third "side" of this
s-three-cyclie to be an Ss joining a and c, which in turn implies
nG(c) > 2, a contradiction.

Let b' be adjacent to b on the SS a-b. The forced move
bb' -~ ba gives some H' = H. Since nH.(b') = nG(b’) = nG(a) <1
(Corollary 2.5), b"' 1ies on no s-three-cycle in H'. Hence the move
bb' -~ ba has no effect on any existing s-three-cycles, and we see
readily that the number of s-three-cycles is edge-reconstructable in

this subcase.

As before, let b3 1ie on the AS b3e] cee € and b4 on

b4f] ST fs. We know e and fs must be either a or d. Teo save

writing in this subcase, we use G - H] - G]+ H2 -> G2 > oee. > H(s-])/2 >

G(s-l)/z > H(s+])/2 when the sequence of forced moves is bob] =3

bsbo’b]bz +bybys ..., etc. Now e, and f. cannot be equal, other-
wise in stz G we have a "new" s-three-cycle {b3,b4,es} and since
b, ¢ 1ies on no s-three-cycle in G, the isomorph G2 of G has one

more s-three-cycle than G has, impossible. Hence we have e = a,

fs =d, or ey = d, fs = a.

Consider e = 2 fs =d first. b] must 1ie on an As bl - h,

h # b,c. h cannot be a, otherwise H] has one more s-three-cycle than
G. Reindex b1 b2, . bS in H] by bo,b‘, el bs' Now if h # d,

then in H,, b, = b% 1ies on an A b3-a with a # h,d for the s-

1° 74 S
three-chain (h,b1,b,a), and so H, is edge-reconstructable by the

paragraph right before Case 3. Hence h = d.

-a (or b; -d

Observe that it is impossible that bi -a and b £

i+l
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and bi+] -d) are both As's in G, for otherwise some isomorph of G
or H will have cne more s-three cycle than G. Now it is clear that

b5 -a 1is an AS (not b5"9 for any other g).

Let b2-j be the AS with a, as the big end (nG(az) =1) in

G. J cannot be d since b] -d is an A_, cannot be a since b3- a

>

is an As' In G2 with reindexing b2 = bs 5 b3 = b{, vaes b5 =

bg, P, b5 -a isan A_. with a # j,d for the s-three-chain

S
(j,az,a1,d) and so 62 is edge-reconstructable.

Let now B * d {and fs =a). From G - es_}d, we have two possi-

ble edge-reconstructions = H, namely G - e _qd +dc and G- e, d+

s-1

db (so that no T is created). The former is excluded as usual

=]
since e, ; and e  are joined by an A_ in G. For the latter, we

s

see that e._; lies on two S;'s in H' =G - e _;d + db since b Ties

on two S.'s in G. Denote these two by e, ; -ou, e,y - 8. Then

€ 1” %s €y - B are As's in G. We claim that one of «,8 say a

must be c. Suppose not. Since ng . (b3) =1, by lieson1 +1 =2
S¢'s as the small end in H,, and we still have nHZ’erl"'es(b3)= 1.
But a,p # ¢ implies 2 =n R (eg_]) = n, (b,)=1, a

H2,b3e].._S 2,b3e1,...es
contradiction, proving our claim.

Let the AS joiring ¢ and € 1 be Cgy --» 9gs€q7 = Gg- Sup-

pose at first that g;does nct 1ie on b-c or c-d. Then G - cg, can be
edge-reconstructed to give G - cgy + ce, an isomorph of H. If e# b

or c, then in Hy (see p.52) we have a 1 IT e=bor ¢, thenc

s-1°
and g, are joined by an AS in G, and in H' we have an excludable

configuration as in Fig. 2-2. So 9y must lie on b-c or c-d. If 9
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lies on c¢-d, then 9 = ¢4 (with cd = €€y - cs). Let i>1 be
the first integer such that 9; 7 Cis 944y # Cit1s then H' contains a

Tg_j (S c-d and Ac_; ©5 - €._q)» and we are done. Now let g; Tlie

on b-c, or 9 = b Now G - b_ b + bsbo has one more s-three-

s-1"s
cycle than G ({b._,.b., d} is new), a contradictien.

s-1°

Having done now Case 3 also, we claim to have proved the technical

Temma below:

Proposition 2.6. An s-three-chain is excludable if s> 7.

Note that the argument used in proving Proposition 2.6 does not ap-
ply when s = 3 or 5, and we nead a separate discussion. We wiil
appeal to a result or p. 22 of Swart [17], which is restated here for

reference:

Proposition 2.8. (Swart) If a bi-degreed G 1is not edge-reconstruct-

able, then the girth (the shortast length of cycles) of G is > 8.
Lemma 2.9. An s-ihree-chain is exciudable if s = 3 or b.

Precof of Lemna. Let s = 3 first, and consider a 3-three-chain
(a,b,c,d). Rewrite the 53'5 a-b, b-c, c-d as 2,343,235 bob]b2b39

P respactively with the understanding that a = a,s b = ag = bo’

]
~

c=b, = d=c
3 CO’ “

(93]

he two forced moves o > a,a ive us in an iso-
The two forced moves CoCq C3Cyo aza3 aza g
morph G' of & a configuration C which looks Tike the English Tet-

ter "H" as showa in the following:
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0
b3 = bc = a3
49
34
We readily observe that nG',c?—c3(Co) = nGZcz—c3(C2)' Now, in the
graph H0 =G' - aza  + g8, b3b2b}bO becomes a "new" A3 at
b3 =y (b3b2b1bO is neither A3 nor S3 in G), and we would have
n, . (c.) =n ¢c,) +1 wunless, in G, c¢_ 1is joined to a
Hy»CpmCq o) Ho,c2~c3( 2) 0 Jot

by an A3 Co ~ 87 or ¢ is joined to b0 by an A3 b0 - Cye None

of the two A3‘s in G, namely c_ - a; or c, - bo, can contain any

0
"big" vertex in (a,b,c.d); otherwise it is easy to find some Tp, p< 3
in an isomorph of G or H by suitabie forced moves.

In G, the first alternative gives us a cycle of length 8: the 53
Cy ~ a3 (i.e. c-h) followed by A2 a32,58 and then the A3 joining
a, and Cos there are exactly two small vertices (co,a3) of dis-
tance 3. The second alternative that Co be joined to b0 by an A3 in
G gives us also a cycle of length 8 of a similar "description” as a-
bove. Since prcefs will be identical except changes in notation, we
do the first alternative only. But this is trivial now, since b2b3 3
b3b0 is a forced move; and in the new graph (=H) the edge b3b0
(=coa3), followed by A2 838,34 and the A3 3y - ¢, is a cycle of

length 1 + 2 + 3 = 6< 8, centradictory to Proposition 2.8.

5, and corsider a 5-three-chain (a,b.,c,d). As

Next, 1et ¢

before, rewrite a-b, b-c. c-d by dy +-- g bO cen b5, €y +*+ Cpo
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with a = ags b = ag = bo’ c = b5 = Cy» d = Cg- Arguing as in the case
s = 3, we see that cycle of length 5+ 5+ (5-1) = 14 exists by two
alternatives, where, say, the first alternative gives in G the cycle

by the 35 c-b Tollowed by A4 agd,a453,3, and then the AS a; - c.

The two forced moves aoa1l %-aan and aja, -> 2,37 now send G to

Glsz G. Then let e be adjacent to ¢ on the 35 C -ay in G],

ce > cay is a forced move sending G] to H?’ wherein the original

4 4 e
,/ﬂk——do——~o~—~<>—-y
L a 2
o 0 ?
C O——O0—ro b=b = ag
5 b .
1
5 3
8
d
Fig. 2-7

5-three-chain (a,b,c,d) becomes a configuration C' as in Fig. 2-7.
In C', we have a cycle of length 1 + 2 + 5 = 8, which is pretty im-
proved from the starting value 14, but still not good enough : we need
some cyclie of length < 8.

Let's consider H] - bb]. Since b] - ¢ 1is an S4 and a, -b is
an 33 in this subgraph, we have 4 -1 =3 ways of replacing an edge

to get G253 G, namely b1a2, Cca,, and bc.

If the replacing ecge is bc, then in G, cb 3,3 ¢ is a cycle of
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length 4 < 8, we are done by Proposition 2.8. If it is Cays then ca,

followed by a2a3a4a5a0a] and a]c is a cycle of length 1 +5 + 1 =
7< 8; and if it is b1a2, then b and ¢ are now small vertices on
an 53 baoa]c, a contradiction. Hence we have provec the case s =5
completing the proof of Lemma 2.S. Q.E.D.

We combine the resuits of Proposition 2.6 and Lemma 2.9 in the fol-

Towing

Proposition 2.10. All s-three-chains are excludable for bi-degreed
graph G.

Next we come to the excludability of a closely related cenfiguration,
the s-three-cycles. The proof for it is much simpler by the result of

Proposition 2.10.
Lemma 2.11. s-~three-cycles are excludable.

Proof of Lemma. Let {a,b,c} be an s-three-cycle in G. Then we see
immediately that nG,a—b(a) = nG,a—c(a) =1, for if not, then from an

SS a-d with d # b,c, we have an s-three-chain (d,a,b,c), impossi-

ble by Proposition 2.10. Similarly ng , (b) =ng, (b) =1,

nG,a-b(C) = nG,b—c(c) =1,

Rewrite a-b as agja; ... a; with a = a b = ag. NG,a_-a

C S(a1)

= nG’ao'as(b) =1 dimplies that a lies on an As ay -d, d # a,b. If
d # c, the forced move a,ay > agag gives an s-~three-chain (d,a],ao,c)
in H' =G - 2,2y + 2., impossibie, and we should have d = c. a; - ¢

cannot contain any big vertex in {a,b,c} by the same move ajay > aa,.
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In particular, if f 1is adjacent toc ¢ on & = Cs f cannct lie on
{a,b,c}.

Now G - cf «can be edge-reconstructed in only two ways to get an
isomorph of H and also to avoid a Ts-]’ namely G - cf + ca and
G - ¢f + cb. 1In both cases, Kelly's Lemma on (s+1)-cycles tells us
that f is joined to ¢ byan A, f-c in G. Now H' =G - a2, +

aa, contains an excludable configuration as in Fig. 2-2 and we are

done. Q.E.D.

Coming back to the connection pattern of the "minimum-distance-
paths" Ss's, we see that no "s - n-cycle" can exist (n = 2 by Lemma
2.4, n =3 by Lemma 2.11, n> 4 by Proposition 2.10), and also no
"s - n-chain" can exist for n> 3 by Proposition 2.10. (Here "s - n-
cycle" and "s - n-chain" are defined in a natural way similar to s-
three-cycle and s-three-chain). The pattern is simplified greatly, but

it still remains the possibility that two SS s be joined &t an end,
in other words, "s-two-chain" might exist. To make the notation more

precise, we state

Definition 2.9. s-two-chain. An ordered triple (a,b,c) of distinct

SS.

small vertices is an s-two-chain if a-b, b-c are all S
As in the case of s-three-chains, (c,b,a) and (a,b,c) will be
"equivalent" in a natural way, and we will write (a,b,c) to mean
[(a,b,c)], the eguivalence class of (a,b,z).
Let's now consider an s-two-chain (a,b,c} in G. We have immediate-
1y that nG,a-b(a) = nG,b'C(cﬁ = 0 since s-three-chain and s-three-

’

cycle are impossible. Write b-a as b by ... b with b =b_, a = b_.

o
197 >
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We see nG(bZ) = nG(b )> 1 and b, lies on an A bzd] ... d

0 S

.
Conceivably d] A dS can intersect b-c at an internal vertex or an

end small vertex.

As an aid of proof, let's introduce the concept of an "n-star".
An n-star (o Bps «ves Bn) or simply an n-star at o 1is a set of
n Ss's @ -By> @ = Bys cous 0 - By such that «, Bys -..5 B, are
all distinct.

An n-star at o Tlooks Tike a star with n "arms" all joined at
the “center" o. No two o - Bisa - B; can intersect internally by
Lemma 2.3. We will now show that for every positive integer n, the
number of n-stars is edge-reconstructable. Consider our S-two-chain
(a,b,c) again. Since "G,b-a(b]) = nG,b—a(a) = 0, the forced move
bob] . bsb0 does not "destroy" any n-star at a nor "create" any n-
star at b]; it does not affect any other n-stars at all (n fixed in
the argument). and so the number of n-stars is edge-reconstructabie.

The small end ds of the AS bzd] ... d . can coincide with ¢
or not, and we will treat them differently. We now state and prove the

lemma on excludability of s-two-chains.
lLemma 2.12. <s-two-chains are excludable.

Proof of Lemma. We let G] be the graph obtained from G by twc

forced moves bob] -+ bsbo 5 bob2-+ bobl in this lemma.

let d_ # c first. HNote now nc di can be an internal vertex on
S

v = { ~ - b o ' AES
a-b or b-c. We see "G,b-éb) "G,b-c(bz) ntDZ us(bZXtruetnzdefl

; (dg4). d _y canrot be joined by an A, te dg fo
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avoid configuration as in Fig. 2-2. The only ways to edge-reconstruct

from & - d,_,d, are G- d  ,d+d,a and G-d _;d. +d b, to

prevent Ts-]‘ If the new edge is dsa, an "old" (nG(b) +1)-star at

b is "destroysd", and the edge-reconstructability of (nG(b)-+])—stars
implies that there is an (nG(b)-fi)-star at dS"] in G - ds-lds + dga.
s.] asa big end

1> dg_7 shouid be joined by an A, to b in G. In G- dg_;dg +

dsa again, the fact that there is an (nG(b)+-1)—star at ds—] says

But there are only ng (dS”]) = nG(b) As’s with d
1
n G

d,_; lies on another S_ d

s do_q-e since nG(b) > 1, and so we get an

s-three-chain (e,ds_],b,c) if e # ¢ or s-three-cycle {ds_],b,c} if
e = ¢, a contradiction.

Now consider H'= G - ds-1ds + dsb (still dS # ¢ assumed). In

H' - b]b, ds-b is an S], a -b] is an Ss-] and there are 4-1 =3
ways to edge-reconstruct some G', namely replacing by des’ adS and
ab. By a discussion on (nG(b) +1)-stars as before, we note that d 1
is the "center " ¢f an (nG(b) +1)-star in H' and hence must be
joined to a by an As in G.

If the replacing 2dge from H' - b]b is b3dqs then G' has

nG(b) S.'sat b and nG(b) +1 SS‘s at ds-1 and no S, at d

S S

while G has (b)+1 S_'s at b, no SS’S at d

s , at most one

Ng

SS at dS (easy to see nG (ds) = 0 and the only S.'s d. can lie

~

s-1

on in G are ds—a and d - b, dS -a 1is impossible by the s-three-
chain (ds,a b,c)). Since no other Ss's is affected going from G to
G', we see n{G') -~ n(G) > nG(b) + nG(b) +7 - (nG( by +1) - 1 =

nG(b) -1> 0. n(G') = n(G) then enforces nG(b) =1 and also that dS
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is joined to b by an SS at the same time. But since dS # ¢ by
assumption, we see immediately that nG(b) > 2, contradictory to the
fact that nG(b) =1 Jjust proved.

Next consider replacing by ads. The edge-reconstructability of

(nG(b) + 1)}-stars now enforces the existence of an Ss joining b and

b] or joining b and d in G'. The former case gives an exclud-

s-1
able configuration in G as Fig. 2-2. The latter case gives us an

s-three-chain or s-three-cycle in G' since d lies on nG(b) +1 >

s-1

At last, we consider replacing by ab. The edge-reconstructability

of (nG(b) + 1)-stars entails that ds-] and b] be joined by an S

S

in G', or equivalently, a path of length s in G. Consider H' -
b]bz. In this subgraph, b2 lies on an Ss-Z bz-a and Ss-] b2-ds_1,
s 3 " 4 ne A 1" s }=
and b] -dS is an SZ' So bzb] > b2dS is a "forced move" sending H
to some q} since all vertices mentioned are distinct. But now in Qx’

d

5.1 lies on nG(b) +2 S 's, the number of (nc(b)-fi)-stars is then

found to be one less than that of G (b] cannot be the "center" of
(nG(b) +1)-star since nG(b) > 1), a centradiction. We are now done

for the case dg # cC.

Next consider the case d. =c. First sucpose d._; & the S

b=rc (ds-] ¢ the S_ a-b clearly otherwise we have a T]). Consider

S

G-d_ .d dsb or dsa must be a replacing edge to avoid a T

s-1"s° s-1°

If dsb is a replacing edge, the new graph contains a newly created

(s +1)-cycle, namely the S_b-c followed by the edge cb, and

<

x

Kelly's Temma impiies the existence ot an A_ joining dg 4 and dg;

but then in G], we have an excludable configuration as in Fig. 2-2.
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If dsa is a replacing edge, the same argument as the case dS #c

works and we are done when ds_1 € b-c.

Now suppose d._, € b-c. MWrite b-c as CoCq -+- Cg With

0* C = Cg- Clearly ds—] =Cg 1 let k< s -1 be the biggest
integer such that dy ¢ CyCqe-nCq (we have dk+1 =Ck+}’dk+2::ck+2’ 5w

d d. =c. then). Clearly k> 2 ({otherwise we have a cycle

s-1 -~ Cs-1° S

of length < 6). Consider G - dydy4qy- Since cdp ., end dp ¢ are

forbidden Sk+]’ Ss—k-] and a, b, dk are the three "ends" of a for-
bidden Tk in this subgraph, we see that the only replacing edges are
bc and dk+]a. In the former case, Kelly's Lemma implies dk and dk+]
are joined by a path of length s and so we can get a configuration as
in Fig. 2-2 after number of appropriate forced moves. The latter case

would imply that b and d, are joined by an A b -d, in G. Let

Kk

b' be adjacent to b on b-dk. Suppose b' # Cye b]. Consider G -

bb' + bd. If d#a or c, then G, containsa T, ;. If d=a or

] L 2 . - .
¢ then bb' are joined by an As and in H' = G - dkdk+] o+ dk+]a
we get an excliudable configuration. Note b' cannot bhe C; otherwise

H' contains a T Hence b' = b} is the only possibility. Next

s-1°
consider G - dk-ldk' We can prove that b and dk«] are joined by an

AS (dk_1c, say, cannot be a replacing edge since b -a and b - dk
will form some Tp, p< s by the fact b' = b]). If b" s the vertex

adjacent to b on the AS b -d we can show similarly that diffi-

k-1°
culty presents only when b" = b]. Then we can consider G - dk—1dk-2’

show d, _, and b are joined by an A and we can assume the vertex

s’
b(3) adjacent to b on the A_ b -d _, is b, again. Proceed in

this way, we can at last show that d. and b are joined by an AS
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and if b(k) is the vertex adjacent to b on d] - b, then we can as-
sume b(k) = b]. But now observe that b2d1 > b2c is a forced move
which gives in some H" = H two 53'5 which are not disjoint internally
(b-~a and b-d] have at least b] in conmon), so H and hence G
is edge-reconstructable. We are thus done for the procf of lLemma 2.12.

Q.E.D.

n

Remark. In the proof of Case 2 and Case 3 of Proposition 2.6 befcre, we

have assumed e or f ¢ a-b to simplify discussion; their

s-1
proofs will be essentially similar to the case d_. = c, ds~1 €Eb-c

-

s-1

of Lemma 2.12.



Section 5. Use of some other minimum-distance-functions and proof of

the main theorem.

By Lemma 2.12 of Section 4, we know that no two SS's can intersect
at any vertex, whether at a big vertex of degree d or a small vertex
of degree §. The Ss's now have no interconnection patterns and they
are hence very "sparsely" distributed in the graph G. We will intro-
duce two new "minimum-distance-functions" to handle this remaining case.

Recall in Section 2 we have proved that G cannot have only one
small vertex by degree argument and G cannot have only two small ver-
tices by principle of forced move. So G must have at Teast three
small vertices. We will also assume: G to be connected (see Corol-

laries 1.3.1 and 1.3.2.)

In G, given an SS a,aq -e. A and a small vertex c¢ which does

not 1ie on any SS, we may ask : can we define the distance of ¢

from the "1ine" 3,8y +.. A in a natural way? The answer is yes and
]

is quite easy to implement. For G's connectivity telis us that ¢

and a, are joined by some path P. Let a; be the first vertex on

the intersection of P and a_ ... a_. Then the "segment" Q of P

0 s
traversed from ¢ to aj is disjoint from a, - ag except at a5, and
its length can be naturally thought of as the "distance of ¢ to a, -
ag along the path GQ". With ¢ and By ~ B fixed, we let (@ range
over all possibie paths joining ¢ and some a; on a - ag and
also disjoint from a, - ag except at a,, then the minimum of dis-
tance of ¢ to a, - ag along the path Q over all Q's is the

"distance" ¢f ¢ from 8, = . We denote it by gﬁc,ao—as):

>

We define s](G) = min péb,a -a_) with ¢ ranging over all small
pe

0
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vertices not lying on any Ss’ and a, - ag ranging over ail Ss's in
G. s](G) is our first minimum-distance-function to be used.

Now if say the minimum s](G) is attained at some small vertex c¢

and S - a_ (i.e. s = 2,3 _~a_)) iste

s 3, - ag (i.e >?(G) péc,do as)), and the distance of ¢ to
a, - ag is attained by a path G Joining ¢ to a certain a; on
a, - g then an even number i dimplies that even number of forced

moves will lead us to some G'= G and in G' agay «-- 3 beccmes

9

Q38547 - A5 with a path Q of length s](G) joining ¢ to a;

and edge-disjoint from a.a and an odd number i implies

,i+-i e o a_im]’

that even number of forced moves will lead us to some G"= G and in

G" 231 -.. A becomes 85498540 -0 8y with a path Q of length

a1.+]a1-+2 cee a,;.

51(9) joining ¢ to a; and edge-disjoint from
In any cf the two cases just described, we can assume (renaming if

necessary) in G that we have the configuration oi an S_ a a, ... a

S 0 S

and a small vertex ¢ not on any SS and a path Q of lengtn s](G)
joining a, tc ¢ and disjoint from a_ ... ag except at a, (note

0
s](G) =

n

](G') = s](G“)). The situation is drawn as below:

ao a]

—-U..._. e a o ._....0.___._...X

5, (G)
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Now, for the unique noniscmorphic edge-reconstruction H of G,

we can define s](H) in a similar way. For the SS agay ... g just

described, the forced move LRGP P gives us H'= H, and in

H', ¢ is a small vertex not on any Ss's and there is a path joining
a, and c¢ of distance s](G), sc we see immediately sI(H') g_d(ao,c)
(definition of s](H')) g_s](G), or s](}n g’s](G). A symmetry argu-
ment readily gives s](G)AghS](H) and so s](G) = s](H) and we may
denote it by Sy
We define cur second minimum distance function SZ(G) as follows.

REE bS (they are disjoint
by Lemma 2.12), we define their distance to be the minimum length of a

Given any two Ss S 2,3y ... A and bob

path Q Jjoining some a; in aj - ag and bj in b

that Q 1is disjoint from a, - ag and b0 - bS except  a; and bj'

- 1
s bs’ such

Denote this by pG(ao-as, bo-bs). (This is conceptually the perpen-

dicular distance of two skew 1ines in space). Define SZ(G) to be the

minimum of pG(aO I bo —bs) as a_ - a_, bo - bS range over all

o s
distinct pairs of Ss‘s in C.

As in the case of s](G), we may assume {by forced moves) that in

G we have a configuration consisting of two different Ss's agaq «e- 3
bob1 - bS and a path Q of length SZ(G) joining a, to by
which is disjoint from a, - g bo - bS except at a, and bo. We

can define SZ(H) in a similar way. By forced move and symmetry argu-
ment we have immediately SZ(H) = SZ(G) and we may denote their common

value by So. (We define S, to be « if there is only one SS).
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We know that S and s, are both greater than or equal to s + 1
by means of Lemma 2.12. Also recall that Ts is an excludable config-

uration (since after a certain number of forced moves, TS becomes an

s-two-chain); or equivalently, (a;) = 0 for any vertex

n
G,2 a, ... 1
>“o"1 ag

a; on an arbitrary SS ajay .- - Before going too far, we wili

prove a useful result similar to Lemma 2.4 by utilizing Lemma 2.12:

Lemma 2.13. It is impessibie that two small vertices be joined by an

SS and also an Ss+]’

Proof of Lemma. Suppose not, and let two small vertices a and b be

. d with a =c_ =

1 s+1? 0
Without Toss of generaiity, let o # d] (otherwise

Joined by an S, CoC1 +-- Cg and Ss+] dod

do’ b = Cs = ds+'i‘
applying a certain number of forced moves and we get the same condition
in an isomorph of G or H as in Lemma 2.4). ad] -+ ab is a forced

move otherwise the two Ss's a-b, b -d] form an s-two-chain excludable
by Lemma 2.12. We see next acy » ad] is a forced move otherwise the
SS a-cy and AS b - d] form a Ts‘ At last ab » acy is a ferced
meve since in the isomorph of G with ab deleted, b-d] is an Ss-]’
a is a vertex of degree d-2.

Now the three forced moves ad] -+ ab, acy ~ ad], ab - acy return
us to the original graph G, so G 1is edge-reconstructable by Lemma 2.1,

and we are done. Q.E.D.

Corollary 2.13. It is impossible tec have a configuration C consisting

of an Ss+] a3y -- Ao together with a path bob1l ...bp of length

P< s Joiring two adjacent vertices a, and G for some i, with



Proof of Coroliary. Conceptually the configuraticn C has the form as

in Fig. 2-8 below:

2 a; = bo Q41 7 bp a5 541
VR __1:.____ ~O—n —O—X
b-I ; bp-]
\
?
Fig. 2-8

It is conceivable that some bj for 0< j< p may be an internal

ertex of ... a,_. i = 0 first. dy * i
vertex of 3,3y ag Suppose i C first a,d1 > agyq 3y 1S

clearly a forced move (otherwise an s-two-chain results), which gives an
SS and an Ss+] Joining a, and ays impossible by Lemma 2.13. Now

Tet i > 0. We see aoa] > is again a forced move, for if not,

4s541%
then the configuration consisting of an SS a; - ag and a path of
length p< s Jjoining a, and aj4p  can be transformed by means of

i - 1 forced moves to a configuration excludable by Fig. 2-2 or the
comment after it. Next, we see a]az > aga, is also a forced move us-
ing the same argument as before (when 1> 1). Proceeding in this way,
we see i forced moves will transform our configuration to one satisfy-
ing the condition i = 0 specified at the beginning (with reindexing of

course). G.E.D.



We will investigate the problem by comparing the values of 51 and

So (in two cases).

Case 1. Sy < Sy

As remarked before, we assume in G & configuration C consist-

ing of two S_'s 3,87 .. A and boh} . bs’ and also an S

S

g

¢ Cy ... C. {is the Q before) with Co = Bys €y =-bo, and no c;
2

lies on a ay ... @

. or bobl oo b for O< i< s

S S 2°

As a first reduction we will show that s. can be assumed to be

2

equal to s + 1. So suppose s,> s +1 now. Censider G - c_ ¢ 1°

S, N
then

N

If our edge-reconstruction H'

n
jp}
t
(¢
O
1
—~
+
(@)

‘52 Sy Szd, d# CHPE I
Sp = Sp(H') < s,-1 when d Tliesonan S, in H' and s, = s,(H') <
S (assumption} < sp-1 when d does not Tie on any S in H',
both of them lead to the impossible inequality s, < s,-1; and so d =
2,2 If d = a, then no matter whether b 1lies on an SS or not in
H', we will have sZ(H‘) < s+ 1 (since So < S by assumption) and so
S, =s +1 since s,> s+ 1. If d=b, then it is clear that

s

+ 1 and hence s + 1

T

pH.(bo—bS, co-cs) = sz(H‘) g_pH.(bo—bS,co-c )

enforces So = s,(H') = s + 1,

In G, ¢. iJiesonan A c¢c.-c.. If c¢_. 1lies alsc on another

[ 4

3 S S (0] S

%)

- 5 ~ - » >
Cgm9> With g # AL then c 00 > ¢

excludability of s-two-chains (Lewmma 2.12);
v

1% is a forced move by the
a

+

(VI - is ti
na if cS c0 1s the

in 6 shich ¢_ s & Rig en 2. i
oniy As in 6 c¢n vhich ¢ ‘s @ ki end, C.41Cs 7 Cg478g 15 2

forced move by Lemma 2,172 znd alse the edge-reconstructability of

) Note that c_¢

| TR o wil] 1s a forced edge if

numbar of Ss's (l.emma 2.5
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Cg lies on at least two As's Cs=9ys €79 with 915905 3, all dis-

tinct (Lemma 2.12 again).)

Consider first the case that Cq lies on an As cs-e, e # a ;e

may be a bS or some other small vertex in G (rote e cannot be

S’
Cotq by Corollary 2.13). Let e # as,bS first. Llet e' be adjacent

to e on the A_ c.-e and consider G-e'e., If some H" = G-ee'+ef
S

with f # bys then pyu(a -a., b-e') <'s when f#a; and

s? S
pyu(ao,b-e') < s when f = a_; both of these two inequality enforces

s
$, = s, a contradiction, and so f = bo' But then n(H") = n(G) implies

!

that e’ lies on SS e'-g in H", g # bo’ or equivalently an AS e'-g

in G, #b_. Now =G - c_ + i e
2§ F by Now for H G = Co41Cs F Co49Cys W will have
"H',c _e(e') =1 # 0, an impossibility, unless g = a, in which case
s
TR _e(e') = 0. But then ee' 1is a forced edge since otherwise either
L)
S
(3.a,,e") or (e’,b »b.) will appear as an s-two-chain. We are done

when ¢ .
e # ag or bs
If e= bs,

by the SS bO - bS and also an Ss+1 (b Cg followed by the As c

then b0 and bS are two small vertices joined in G

S - bs)i

and G 1is edge-reconstructable by Lemma 2.13.

Now let e = a_. Suppose first that 2 and c¢_ are not joined

S S

by a path of iength s in G. Consider H} = G- 8,2y *aga. In H!,

our original configuration C (mentioned in the bLeginning of Case 1) be-

comes a configuration C, consisting of the S 's ajea. q... ap and
b by ... i a g L g Wi = b =

o1 bs’ and also an SS+} a1 Copp With 2y = C s by = Coyy
and no c; lieson aa_ ...a, or b ...bh.0< i< s +]1.

3 05 1 O 8-
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Furthermore Cq and a; are not joined by an AS in H]. Now

Cs41Ss > Co41 2 is a forced move (Lemma 2.5 & 2.12), and in the new

graph, a_ and ¢

a are small vertices joined by a new SS a_-c_. and

S 0 S

a new Ss+1 (a_a_ followed by the AS a

EPC —cs), impossible by iLemma

s
2.13. So ay and cg are joined by a path of length s 1in G.

Since Co is joined to ag by an AS by assumption, G contains
a configuration C' of the same form as C; more explicitly, C' con-

3 1 .. e .
sists of two SS S adg q .- ao, b0 P bS and an Ss+] joining ag
and bo (bocS followed by the AS cs-as) which is disjcint form

- - 1] ‘e 1
ag - a, and b0 bS except at the "ends a and bo‘ By arguments

as in the previous paragraph, a4 and cg are joined by a path of
length s in G.

Now, in G - ¢ is a vertex of degree d-2 (hence a

sCs+1° Cs+l

forced vertex) and {ao,as,cs} is an s=-three-cycle. so the replacing

edge can only be Ce4jlp O Cgypds- In either case, we get a configu-
ration excludable by Lemma 2.13 (if the replacing edge is Co4dso then
in G - C<Coi + Co1dsr 3, and cg are joined by the SS a, = Cg

and an Ss+1 formed by a,3; and the AS a; - €43 and when the re-

s’
. . S g
placing edge is Cs41%0° 3 and ¢, are joined by an SS and an 5+]

in a similar way).

We have done the subcase when ¢ 1ies on some AS c

= -e, e ¢ a-

s
We now know that ag is the only small vertex in G which is joined

to Cq by an Aq. ay cannot be joined to Cq by a path of length

s in G, otherwise in G - 3y * aga , we are returning to the subcase

that Cq lies on some AS €. ~Hy BT a, (actuaily e = ay is a smail

vertex in the rew graph). a, may be or may be not joined to c_ by a

S
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path of length s 1in G. Suppose first that a, is not joined to Cq

by a path of length s. Consider the isomorph G, of G obtained from

B
G by two forced moves : aja; *aa,, 2a, *aja. In GB = C41Cs2
Cgpp 1s a forced vertex of degree d -2, and since the Ss ajaag ---
aja, and AS a, - Cg together form an excludabie Ts’ NTLE and

Ci4pdp are the only two possible replacing "new" edges. But neither of

these is possible since it will make n(GB) = n(G) - 1 (since the S¢

a; - a, s destroyed and no new SS a; - ¢g or a, - ¢, can be

created by assumption that a;, a, are both not joined to c_. by a

S
path of length s by assumption).

Hence assume a, is joined by a path of length s te “Cg in G.
Now Co41Cs T Co4795 is a forced move, and let PQ =G - Cs41Cs + Cg1qdg-
We have three edges to replace for HY - 2423, namely 3,255 a]bo, aobo'
If it is PP then n(Gé) = n(HY) -1 for 66 = HY - a3, * a2,

. - 1 . \ - °
C : = is not
since a, lies on no As s in G (nG,ao_aS(a], 0 and a

joined to Cq by a path of length s), and we get a contradiction. If
it is a]bo, then the new graph contains an s-two-chain (ao,cs,az), and
we are done. So let the replacing edge be a b . Then n(6;) = n(HY)- 1

v = - 51 s -C - in |
fo G6 HY 2y, + aob0 ince two 5 S a, - Cg and b0 bs in HY

are destroyed, but only one SS 3y - Cg is created, and we get a contra-
diction to Lemma 2.5.
Now that we have also done the subcase that Cg does not lie on

any As cg-e, e # a,, we are done with the proof of Case 1.
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Case 2. s] < 52.

Now in G we can assume the existence of a configuration D con-

sisting of an S_ a.a, ... } . i =
g s 3533 ag and an Ss] CoCp - cs] with c0 a
no c. Tlieson aa, ...as, 0< i< s,, and c lies on no S in
1 o1 =71 Sy (3
G.

As in Case 1, our first reduction will be to show that s] can be

assumed to be s + 1. Consider G - c_c If H'=6G-c.cC +

SN S

¢, d is an edge-reconstruction with d # a, or ag; then S = s](H')

1
< sy -1 if ¢, does not lie on any S_ in H' and 51 < sZ(PV) <
J]— S

=

Sy - 1 if CS]‘] lies on an Sg in H'. Both lead to the result that

S1 < 84 and are hence impossible. So d = a, or ag. Let d = ag

first. n(H') = n(G) implies that Cs]—l is on an SS cs]_] - e in
H'. If e isn't ays then pH.(ao,CS]_1 - e) < 8 - 1 implies s, =

s1(H") < sy - 1, a contradiction, and so e =a_ . But then c - cg

is an Ss and we have Sy = s+ 1 1in this case.
Next let d = 2y and suppose S1> s + 1. We will prove a contra-

3 3 i * - B B 1 > Yy -
diction. cs1_] must 1ie on an S cs]_] f in H' since n(H')

S 0O S

n(G). If f =a_, then P (cS ,a -a_)< 1 + s, and we have s, = s * 1.
1

If f= Cs]’ then pG(as’Cs]-1' Csi) <1 +s, and we have again s; =

s +1. So let f # a.s Consider G - ¢ Co _p- In this edge-

Cs}' s]-l 51
deleted subgrapn, we see that cS}_]and Cs]-2 are two adjacent small
vertices, and cs]_2 is & small vertex with the "distance" of Cs1—2
and a, - ag equal to s}-2»< Sy To edge-reconstruct some iscmorph H"
of H from G- ¢ _1Cs. po the replacing edge must have one of its

09
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end be equal to c or ¢ , and the other end be one of ¢ 23
51 51-1 S1-

a,»a8g; and we have 6 - 1 =5 subcases to consider, namely

Ce .2 Cg 5 35Cs _75 3,Co 5 8,Cg 5 A Cg _q- For illustration, let E
i 1 1 1 1 1
be the configuration consisting of the SS 3, - g Ss] Co ™ cs], and
A_c_ -f
S 7Sy
First consider the subcase when the replacing edge is Cs._p Cg._ -
1 1
This subcase is trivial for clearly n(H") = n(G) + 1 (since . - f s
1
a new SS and no SS at cg. can be "destroyed" by assumption c¢f our
1

configuration D) which leads to a contradiction.

Secondly let the replacing edge be a_c Then n(H") = n{(G)

0 s]-l‘

says that c. _, Ties on an S

5 . cS]— g in H", g clearly unequal to

t - . & 1

a,- Now Cs]Cs]—} > cs]a0 is a forced move sending G to H', and we

note p (g9, ¢, -f) < s+ 1 enforces s; =s+1if g# f. But when
1

g=f, c and f are clearly joined by an SS and an S and

s, -1 s+1°?
1

this pnssibility is excluded by Lemma 2.13. Hence we have done the sub-

case when the replacing edge 1is ayCe 1+

Then we let the replacing edge be a,c

S]'
Since p,ula_, ¢ -f)< 2 + s, we see s, =s + 2 by the assump-
“H"Y s s]—l = 1
tion S1> s+ 1. Next we note we can edge-reconstruct G' = H" -

ag_qa, tacg. If g# Co,p OF f, then pG.(as_],cS+.]-'F)§i s + 1

impliies s](G'} = s + 1, and we are done. Now if g = Ceyp OF ts

then n(G') = n(G) says that ag_y lies on an A agq - h in G.
-1 5
Note that c._; must Tie onan A cg 5 -1, 17 Ceypof in W
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(otherwise c¢_ ¢

s ©s1 is obviously a torced edge). In H", we have a

configuration F as illustrated below in Fig. 2-9. Note i # ag

otherwise Sp = 8 + 2 = S].

Fig. 2-9

Note h may coincide with cg or not. If h = Cqo then in G' =

tag with g=c or f, pG.(i, By 7 = Cs) <1+s

s+1
enforces Sy = s+ 1. So let h # Cg- But then it is easy to see that
Cs42 S is a forced edge. (Any other way of replacing €42 Co by a

new edge will create a Ts configuration except ¢

. y nlac-
Cs41 S And replac

ing by Cs41 Co enforces the existence of an As Cegp=d 1N H"; so
since the "distance" of j and Cs4] ~ f is < s +1, we get $1 =s+1
again). We are done for the subcase that the replacing edge is a_ c

0 “s+2°
Next, let the new edge be ascs]. pH”(ao’ cs]_]nf) <1+1+s-=

s + 2 1implies that S1 =S + 2 and so ¢ Cy ==+ €

is a new S_
o) S

S] '2
in H". We then have n{H") = n{(G) + 1, a contradiction (note Cs] does

not 1ie on any S_ in G, neither does as)~

D
Finally, let's consider the subcase when the replacing edge is

i 3 § = (e %3 - 7 2 "
ascs]_]. Since n{H") = n{G), CS‘_2 iies on some S Cs}~2 g in H".
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g must be a, otherwise pyu (ao, Cs]-2 -g) < sy - 2 implies sy <
S1 - 2, a contradiction. We then see immediately that Sp =S8+ 2.

Consider G - CoCy  NOW. We can replace new edges by three ways:

C a - i Lo i a q ] = i
CoC3> CoCg42 and CoCgyp Since cg ¢, isan S, and Csy Coyp 1S

an S in G - CyC3e Denote by H(4) the new graph obtained.

s-1
Let CoC3 be the new edge first. Then n(H(4))= n(G) enforces

that Co 1ie on an SS Cy - h in H(4). We see Cy lies on an AS

Cy - h in G nrow. If hi# ag, we have a configuration in G of the
same form as F in Fig. 2-9 by the same kind of argument over there.

The argument following Fig. 2-9 then shows that Sp =s % 1.. Now let

a. = g

h = ~i - a . = .
as, and rewrite Cy a as e.e - By Cy Cos g g

S o1

Consider G - C,C7 Now. ¢, is clearly a forced vertex and if

(5) _ ~ _ . i ) N
H = G CoCp T Cpds # ags then pH(S) {cys ¢, as) <1+s

implying s] = s + 1 by the fact that Co and a_ are jecined by a

S
path of length s. Hence j = ag is the only possibility. But then,
in H(S)

" pH(S) (Cs+2’ ¢y - Cs+2) < s +1 implying that s, =s +1,

and we are done for the subcase the replacing edge is o3 (and $1 =

s + 2).
Now under the assumpticn Sy = s * 2 we have seen a few interest-
ing facts. For the configuration D consisting of an SS a, - ag and
- i = . . i and ¢
an Ss+1 Co = Coyl with Co = 3> Cy # any aJ for i> 0, a 4]

not on any S_, we see that g cannot 1ie on any AS (by Lemma 2.13
D
or s;> s+ 1). The previous argument also shows that Cy cannot iie

onany A_ in G. (Note also that cg ., must Tie onan A Cguq - f
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otherwise Cotq Co42 is clearly a forced edge).
Next, let CoCotp be the edge replacing CoCs in G. Since
n(H(4)) = n(G), ¢, or c; must lie on an SS in H(4). The possi-

bility that <, lies on some SS Cy - h with h # C3 is already ex-

cluded. Consider the case that c, - C3 is an SS in H<4)% Then

C, and C3 are joined by an SS and also an SS+2 Cq ve* C42€,C1Co-

Such configuration can be shown tc be excludable in a way similar to
cemma 2.5 or Lemma 2.13. More explicitly, let's write the Ss joining

c, and c3 by 9997 -+ 9g and the by hoh . h with

q ~
Ts+2 1 s+2

9o h0 =Cps g = hS+2 = C,. By means of forced moves, we can assume
9 # h]. Then hoh1 a‘ho"s+2’ 9591 hoh1’ 9,95 > 9,97 are three
forced moves returning us to G. The factl Sy =S + 2 is used twice

in the proof. Sc¢ now assume €3 is on an AS Cqy - i in G. The

X
original configuration E in G becomes in H(4) a configuration E(4’

in which Cy is the small vertex of distance s + 2 form the SQ c3-i

-Js J# Cps €35 1 in H(q) (other-

Hence S must 1ie on an SS <

wise €yCq is a forced edge). Then j 1is a true small vertex in G,

and we see pn(j, a -a.) <s +1 implies s, = s +1. We note that
G 0 s’ = 1

a, cannot lie on any A_ in G in the configuration E< G.
>

o)

At Tast, we let €y Ceyo be the edge replacing CoCy in G. It

readily follows that s lies on some As Cq - j in €. In G - C3Cys

- i - i \ . 50 we have three ways to
C,-C3 1san 53, Cg - C is an S, _,, and so W v y

542
) .
replace C3Cy to get H(Jf, namely CoCa> CoCs42 and €3Cg4p0 if

2 (5)\ ’ . =
s> 3. If it is c.c,, then n(H'7/J= n{G) says A, 1ies on some A

074’ S
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in G, @& situation already excluded. If it is CoC then E becomes

£(5)

g42?
with c, the small vertex of distance s + 2 from the S, c, - J,

and so Cy lies ¢n an AS in G, another impossible situation. If it
is C3 Coyps then n(H(s)) = n(G) + 1, contradiction.

So we are done except the case Sp = st 2 and s = 3. Since the
details for this casearerather lengthy we will skip its proof here and
leave it in Appendix 2-A.

So far we have finished the "elementary" reduction that sy can be
assumed to be s + 1. Consider cur configuration D again, which is

described at the beginning of Case 2. c¢_-a_ isan A_ in G. ¢

S 0 S : S
may Tie on some other Ag Ce = f, f# ag, Or ¢, may not.
& 2. i .- a_.
ubcase 2.(a) cg lie on an As Cg - ag

Note that c¢_ cannot lie on more than one As's c

" = iy cs - g

S

with f, g, a, all distinct, for otherwise o C is clearly a

S+l
forced edge. Let's consider the case f = ag first. The proof will

be very similar to that for Case 1. If aj and a, are not Joined by

an As in G, then for H] =G - a2y + 2485 Cg41Cq 4]

forced move since a and cg are not joined by an As in H]; this

sl o a, is a

then gives two small vertices joined by an SS and an Ss+1 in the

new grapn, impossible by Lemma 2.13. So ay and ¢, are joined by an

As in G. Symmetry argument then says that a__; and c, are joired

by an As in G as well. Since the only ways we can "replace"”

are a or C

-
“s+1 To s+

contain an S_ and an S ., Joining two small vertices a, and ¢

a we see that our new graph will
CS‘H CS o grap

P -

(aS and c. vresp.} if the replacing edge is ¢ g2, (c_,,a_ resp.
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We are done when f = as.

Subcase 2(b) Cq does not lie on any AS Cg - f, f # ags in G.

(The proot essentially the same as in Case 1.)

In particular, we know that Cq and ag are not joined by an As.
-%

It's obvious that ¢ Cor19s is a forced move sending G to

s+1%s

some H'. If aq is joined to c_

2 by a path of length s (this path

cannot contain c ., otherwise S1< s - 1), then in H' we have cg

eon " . cod S
and C Jjoined by an Ss and an S0 impossible by Lemma 2.13. 0

ay and c¢_ are not joined by a path of length s. If a, and a

S S

are neither joined by a path of length s, then consider the isomorph

GB of G obtained from G by two forced moves: 2,817 a8 53 3y > ady .

Now it is easy to see that Co47Cs is a forced edge, for c ., 15 a

forced vertex in G - we have tc replace by Ceypdy OF

€s+1%s>

Coy18p tO avoid a T and doing any of them will cause the number of

s’
S,'s in the new graph to be 1 less than that of G since a,, ap are

not joined to Ce by an S_ now.

3

So a, fis joined to c. by a path of length s. Consider HY =

G - +
CeyCs * €

a . In H, we see, as in Case 1, that we have three
s+l s Y

> -; 3 ¢ t A P .
edges a8y &jag,qs dOCs+] to replace aja, (to get a new graph qé)

G 2
. . cL . At
an s-two-chain (ao,cs,az) in G@‘ If it is 8y Coyps W are return

If it is a a we have n(Gé) = n(Hy) - 1. If it is ajcg . we get

ing to subcase 2(a) with our new configuration D' now consists of thne

Sq a2 -c_, an S

joini i i j t to a
S c+] Joining a, and a;, and aj 1s adjacen 1

with a_ and c¢_ also lving on an A_. An easy

on the S 4 oy 1 " s

<41 @2
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‘e 3 . . - - . _ Vo
way to see it 1is considering a, ays Cg P s+

(This argument also holds in Case 1.)

Subcase 2(c) Cq 1ies on some As Cg - f, f #a_.
ps

Now consider f # as. We can replace 5%

by cof or € Ceyq
since in G - €C1° Cp> Ts Cqoyy are the three ends of a forbidden Ts'
We cannot replace by cof for otherwise in the new graph H',

oy (eq - Co1s 35 ~ 8g) < 1 +s enforces s, = s +1, contradictory to

k3

the assumption (and fact) that s< §1 < Sy Hence in H', we have a

configuration F' as in Fig. 2-10.

4 %o a,
ves QX
cy
Cy e wn sl
d f=d
Cs~1 s-1 S
¢ i
L
Fig. 2-10

We note f cannot be a;, or a by discussion before. f can-

0
not be ¢, since Cy is a big vertex in G while f is small in G.

i - as d d = = . d cannot be an
Rewrite Cy f as ddy ... ds’ Cg do’ f dS g
i rte f - co- bvious argument.
internal vertex of ag - 35 Or ¢, - Coy by obv g

Consider H' - dg 1ds‘ Suppose we edge-reconstruct G" = H

ds-1ds + dSe, e # 3,385Cy- We see immediately that c,Cq s @ forced
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edge; for c_ is cbviously a forced vertex, and the new edges should be

(o]

Cods-l or C, %53 but for both cases we easily get the unhappy conse-

.

quence that 52 = s. Hence e must be one of ao, aS, or ¢

%]

For the configuration D< F' consisting of an Ss ay - 2 and
an C wae CaCals i = t T s 1
Ss+1 <, Cs+1 r.3(.2cl with a0 Co’ we see that Cs+1 cannot l1ie

on an AS Cep1 -9 in H', g# cq- For i¥ g = ags then we have an ex-

cludable configuration by Lemma 2.13. So let g # ag- Let g' be adja-

s+ ~ 9- g' cannot lie on a, - a; or c, - ¢ by

cent to g on ¢
S 0 !

i

trivial argument. We can edge-reconstruct G" = H' - gg' + gh. h must

be a0 or ag otherwise G" contains an s-two-chain. If h = as,

then G" contains a Ty (a0 -g' as S, cq - ¢ as AS). So h=a_.

s+l 0

n(G") = n(H') says that g' lies on an AS g'-i 1in H'. Conceivably

i may coincide with ¢y or not. From our configuration F' on p. 81,

we see ¢, must lie on some As C, - j in H' by subcase 3(b), ]

cannot be ag by subcase 3(a). J may coincide with dS or not. J

cannot be ¢y otherwise 04 is easily seen to be a forced edge.

1y~ 3 4 ] LI e £Ay AV
First let 1 # Cys J # ds‘ In H S, c3+], ¢, 1sa forced ver

r ] { - LI 4
tex, and we have two TS s (one has SS Ceyy — 9> AS g' -1, the other

has S. c¢c_ ... Cqo A c2~j). So ¢ ¢ is a forced edge in order

s s S 0 “s+l
to avoid any Ts's. If 1= ¢y or Jj = ds’ we can show easily that

the new graph %1 will have a Ts-configuration or will satisfy 52(G )
= s + 1, which is impossibie. As an illustration, let 1 = Cys Jj=d_.

In H' - CoCor]> WE have oniy one T (SS Copp ~ 95 As g'-1), and we

s+i S

may replace hy c,9 or coi to avoid a Tg, But then we will have

a -a_, Cq~C = B+ ' (a_-a., -g)< s+
pgl( 0”3 & "Gl s+ 1 or pq~\ao &gy Coypm9) < s 1
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enforcing S, = s+ 1 which is impossible. So ¢ 1 cannot lie on any

S+
As Cg41 - 95 9 # ¢, 1in H'.
Returning to our discussion at the beginning of subcase 3(c). Con-

sider our configuration D consisting of the SS a, - ag and Ss+1

S = Co41 again. Recall that Cq must Tie on an As G = f in G

with f £ a_. We have seen > Cqy > C
Fag ave seen that 4% ‘ocs+1

G to H' and Cy lies on an AS Cy - j in H'. Since Jj # Cys j s

is a forced move sending

a true small vertex in G; and look at cur D again, we see c, lies
1 o i ¢ ' \ ide -
on scme C2-J). Rename j by Cos f by Cg - Censider G C4Co- In

this subgraph c,C1 1s an S], Cp - ¢C is an Ss~1 and so CoCos

s+]

and are the only three possible edges to replace C4Coe

c
0Cs+1 CoCsi1

Joining CoCZ would enforce, by edge-reconstructability of number of
Ss's, that ¢y 1ies on an Ss cy - ci in the new graph. Since c{ is

a small vertex in G, C lies on an A ¢y - €y, @ situation excluded

S

d give p(c0 -Cgs Cp - C

-— -—

in the previous paragraph. Joining cqc Wou

s+1
< s + 1 1in the new graph implying S, = s+ 1, a contradiction. Hence
€1€y > Ce41C, is a "forced move" sending G o some H2 in which our
configuration D becomes some 02 consisting of the Ss Cy - cé and
Ss+1 ChCq wen CyaCCye Repeating the same argument for the configura-
tion 02 in the graph H,, we see ¢, will lie on an AS Cq - c& in
H2 and the forced move C3Cy > C1Cy will send H2 to G4 with D2
becoming D4 consisting of the S . ¢, - c& and S iy C4Cp - -

r & i A - ! . P eed"
Cs41 CC1C0C3- Furthermore 6 would 1ie on an PS Ce = Cg roc
ing in this way, we see that since s is odd, (s-1)/2 forced moves

will send us to G, ;o H 1 depending on whather the residue of s

S= S =

=

moduloc 4 ds 1 or 3; in this new graph, the "0ld" configuration D



84

- r
becomes D, ; consisting of the S_. c. 4 -c¢. y and S .,
Cs_1€sCs+1C +-+ C5_p- The small vertex c; in G is still a small
vertex in this new graph since Cq # Co® Cs+] (cS # ¢ 18 the defini-

tion of subcase 3{c), c! =c¢ to be a forced

S s+ would enforce cC

s+1
edge by Lemma 2.5 and Lemma 2.12) and thus is unaffected by the se-
quence of forced moves. But then we again get a situation excluded in
the previcus paragraph. Note that in the proof, we do not treat the

three cases e = 3,5 Ags Cq separately.

Now that we have done subcase 2(c), we have proved Case 2 complete-
ly since these three subcases are exhaustive (and mutually exclusive).
Combining the resuits of Case 1 and Case 2, we are ready to state (and

claim having proved) the following:

Proposition 2.14. If s-two-chains are excludable, then a bi-degreed
graph G (with at least four edces) is edge-reconstructabie.
With Lemma 2.12 and Proposition 2.14, we conclude immediately our

main theorem:

Theorem 2.1. (MAIN THEOREM OF CHAPTER 2) Every bi-degreed graph G

with at least four edges is edge-reconstructable.
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Section 6. Brief digression of generalization of methods.

Bi-degreed graphs are a natural "next step" when people have done
the trivial regular graphs (of one degree only). And this "next step"
is terribly hard to prove. After this is done, one might think: what
is the next family of graphs we can do? Tri-degreed graphs might seem a
natural approach. 1Its solution is trivial unless the three degrees are
d, d+1,d+2;d,d+1,d+3; or d,d+2,d+ 3. (Seel we have
more annoying cases to do). It does not sound trivial to generalize re-
sults of bi-degreed graphs to graphs with three, four, five, ... etc.
degrees.

Most of the methods (and concepts) in this chapter however can be
generalized to graphs such that its minimum degree § and the next to
minimum degree d differ by 1. For example, <f there exist two ver-
tices of degree & and a path joining them with all "internal” vertices
of degree d, we can then define s(G) in a way as in Section 2, and
we can show that G 1is edge-reconstructabie. Under the same assumption,
we can show the validity of Lemma 2.3, Lemma 2.5, Proposition 2.6, Lem-
ma 2.11, Lemma 2.12 etc., but not Proposition 2.14 (i.e. s-three-chains
can be sncwn to be excludable, but Sq and S, may be hard to define).
Note that G wmay contain vertices of degree & and degree d =8 + 1
but no paths joining vertices of degree & with all internal vertices

of degree d .
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Appendix 2-A
Prcof of the subcase Sy =s ¥ 2, s=3o0np. 79

In G - C1Chs CoCq is an $1s Cp» Cg, and T are the three small
vertices of a T3. So we have 6 - 1 = 5 ways, namely CoC2s C€4Cs0 cif,
CCss cof, to replace the edge ¢Cy- If it is CoCos We get immediate-
ly Sy = 4, and if it is c]f, we have Sp =51 = 5, contrary to our as-
sumption that 5 = $1 < S, If it 1is CoCgs We will get a contradiction
by the same argument leading to an excludable configuration as in
Fig. 2-9 (i.e. if we reindex, then some cé 1ies on an As in a con-
figuration D' of the same form as D). If it is ¢1Cg> then we get a
contradiction as in the case of CoCst2 replacing CyC3s in other words,
after reindexing, some cg lies in an AS in some D" "congruent" to

D, an already excluded situation. Hence we are left with the case of

cof replacing 1€y And we see some ﬂ; = G - CqC

16 F Cofif H (c]cz -

cof is then a forced move).

Consider in G again our configuration D (as depicted in Fig.
2-Aa)), a,cy > a,f is a forced move sending G to H' and D to D' as
in Fig. 2-A(b). (Note we cannot replace by a,Cs otherwise a config-
uration as in Fig. 2-9 results: we cannot replace by aod, d ¢ D,

otherwise H' contains an excludable configuration T as below.
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T 1is easily shown to be excludable since C4Cs is obviously a forced

edge for otherwise Sy = 3+ 1 =4, a contradiction.)

In H', apply the arguments in this appendix one paragraph before,
say let g be adjacent to f on g - f, we see fg~> a,C1 is a
forced move sending H' to G" (and D' to D") as in Fig. 2-A(c).
(Heuristically, think ci = f, cé =g, T' =-c].) Then consider G" -
aof. If fg is the replacing edge, we are returning to D after three
forced moves, and so G is edge-reconstructable by Lemme 2.1. (see
Fig. 2-A(d)). The only remaining possibility is that we join c5f. But
for this we can prove contradiction easily by looking at G - CyCq and
consider all possible replacing edges (say some of them will Tead to

s, = 5, impossible).

. a a = a a
¢ 3 0 P 3
c. c
1 1 1
g f
c " T W
4 g ¥
C5 C4
c
(a) ° (b)
D" : % ———x %3 p(3) L D

-ry
s
w
)
i
e



Chapter 3. Edge-reconstruction of bipartite graphs
Section 1. Introduction

In this chapter, we will investigate the edge-reconstructability
of bipartite graphs, i.e. graphs G whose vertex set VY(G) can be par-
titioned into two subsets V](G) and VZ(G) such that every edge of G
joins V](G) with VZ(G)'

A simple necessary and sufficient condition for a graph to be bi-
partite is that all its cycles are of even length (see p. 18 of F.
Harary [ 7 ] for proof). Trees are then special cases of bipartite
graphs since they are acyclic. Since the recenstruction problem of
trees has been dene quite deeply and extensively, it then comes natural-
ly to investigate the (edge-) reconstructability of bipartite graphs.

In J. A. Bondy and R. L. Hemminger [ 5 ], they pointed out that the re-
construction of bipartite graphs is a challenging open problem and they
singied out the edge-version as Problem 9 of their survey paper.

This chapter solves that problem in full force by Theorem 3.1 (in

Section 7)) stated as follows:

MAIN THECREM. Every bipartite graph with at Teast four edges is edge-

reconstructable.

As in Chapter 2, we will start to build a 1ist of excludable con-
figurations until at last the list is big enough to cover every bipartite
graph with at ieast four edges. Since we have in general more than two
kinds of degrees for our graph G, we wiil use the small circles o tc

represent vertices; vertices will be labeled by lcwer case Latin letters
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a, b, ¢, ... etc. (with cr without subscripts), their degrees denoted by
Greek letters a, B, y, ... etc. or Arabic numerals 1, 2, 3, ... etc. If
we want to mention labeling as well as degree, we write the labeling
followed by a comma, and then the degreze. As an illustration, suppose a
vertex a of degree o 1is joined te a vertex b of degree 4, then we
have three different ways tc represent them diagramatically as in

Fig. 3-1 below:

a b a 4 a,a b4
0———0 o—o~0 o—9
(a) (b) (c)
labelings only degrees only labelings and degrees
Fig. 3-~1

Section 2. Elementary resuits

First, we show that bipartite graphs are edge-recognizable. Suppose
G 1is bipartiie and H is an edge-reconstruction of G which is not bi-
partite. We will derive a contradiction.

Note that a graph is bipartite if and only if it contains no odd
cycles, we see at once that H contains an odd cycle Cn. If H has
an edge ef nct on Cn’ then H - ef contains Cn and so G G-ef = H-ef
has an odd n-cycle, contradictory to the fact that G 1is bipartite.

cycle and m> 1 isolated vertices. Obviously n> 5 since H has at

least four edges. How all G - af == H - ef are of the form P, U Kms
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the union of a path of length n -1 and m isolated vertices for any
edge ef on Cn. Clearly G, nonisomorphic to H, wili either be of
the form Pn+1U Rﬁ or contain some Ck’ k even, as an edge-proper sub-
graph. The former says some G - gh= Poq U Ky U K #P U Rﬁ; and
the latter says some G - gh= P Uﬁﬁ contains C, as & subgraph;
both 1ead to contradiction, and we see bipartite graphs are edge-rec-
ognizable.

Next, we will prove that G can be assumed to be connected. Logical-
ly, we will show that if all connected bipartite graphs are edge-recon-

Structable, then all bipartite graphs are edge-reconstructable. (All
graphs assumed to have at least four edges). Recall Lemma 1.2., which

says that the degree sequence is edge-reconstructable; in particuiar we
know if G has isolated vertices or not. By assumption, we may assume G
to be disconnected {and then prove its edge-reconstructability based on
the premise that all connected bipartite graphs be edge-reconstructable).
Since disconnected graphs are weli-known to be vertex-reconstructable
and vertex-reconstructable graphs without isolated vertices are edge-re-

constructabie (Lemma 1.3), we will assume G to have isolated vertices.

Let G=1U Km,wherenr?} and I has no isolated vertices. I may
be connected or disconnected, and is edge-reconstructable by the last
paragraph. Now an edge-reconsiruction H 1is obtained from H - ef =
- ef = (I - ef) U Kﬁ by adding a new edge; ef here is an arbitrary
edge. We can write H=1LU ?5, where L has no isolated vertices and
p> 0 (Note I - ef may have ncne, one, or two isolated vertices). By
the edge-reconstructability of degree sequence, H must have the same

number of isolated vertices {vertices of degree 0) as G has, and so



p=m. Now {(I-gh)u Kﬁ =G -gh=H-gh=(L-gh)U Kﬁ for all
edges gh of G. Since graph isomorphisms are doing with incidence re-
lationships and have nothing te do with isolated vertices, we have im-
mediately I - gh= L - gh for all edges gh in G, and so I= L
since I s assumed to be edge-reconstructable. So G =1U Eﬁez

LU Eﬁ = H, and we have preoved that G can be assumed to be connected.

In particular, the minimum degree ;10(6) of G is > 1. Note
that the vertex set partition V(G) = V!(G) U VZ(G) for a connected bi-
partite graph is unique, i.e. well-defined (the partition is not unique
for a disconnected bipartite graph by obvious argument). We will say
that two vertices a, b are "in the same part" in G if a, b both
telong to V](G) or both belong to VZ(G); a,b will be "in different
part" in G if one of a,b beleng to Vl(G) and the other belongs to
V2(G). The same practice will be used for any isomorph or edge-recon-
struction of G or edge-deleted subgraphs G - ef's.

Let's say that an edge ab has a degree type (a,8) if
deg (a) = a, deg (b) =8, or deg (a) =8, deg {b) =«.
Lemma 3.1. For fixed integers g and Bo» the number of edges of
degrec type (ao,go) is edge-reconstructable.
Proof of Lemna. GCefine a partial ovder "go" on the set of all
ordered pairs {y,8) which is the degree type of some edge in G such
that (Y],é}}-iﬁ (yz,ég) if and only if Y1 < Yoo Oy < &p- We say
(yq:87) <g {yg065) F (ryatqd g (rps8p) But (yysd7) # (rp:85).

(y,6) is a maximal degree type in G if (v:6) <g (v ,&") for

(y.6) and (y ,6' ) degree types of some edges in G implies

(ys6) = (v .6’ ). Since G is finite, degrees are bounded, and
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maximal degree type (pairs) in G exists.

Let H be an arbitrary edge-reconstruction of G. We can define
<y in a similar way. Suppose (ao,Bo) is a maximal degree type in G
at first. Let G have A > (0 edges of degree type (ao,Bo). Then G

has exactly ) (edge-)subgraphs T of the form below (by maximality):

A

“a, 1 edges

< Bo -1 edges

If T is G itself, then very elementary argument will show G's
edge-reconstructability (ab is clearly a forced edge if oy > 2, Bo> 2.

If G

1, we have K which was done in the proof of Lemma 1.2.

1.8,

If g = 2, ab is again a forced edge). So T 1is edge-proper in @,

and by Kelly's Lemma {Lemma 1.1), H has exactly A > 0 subgraphs of
the form T. Let (d ,p°) >y (ag,so) be of maximal type in H, then
H has a subgraph T' of a similar form as T except that we have a'

edges incident with a (instead of «o_ edges) and p' edges incident

c
with b. Again, we can assume T' to be edge-proper in H. By Kelly's

Lemma again, G has a subgraph of the form T'. let (a’.8")>¢

(of ,8' ) be of maximal type in G. Now (o ,8") >4 (o ,5") implies

, . . 4 2
">, 8 25 (o )2y () B,) implies o >ay and BT > B,

z “>p, @ - o I (N i is of
s0 o'>ag, B > 8, and (o .p ) >4l 0B,).  Since (o 5B )

o

maximal type in G, we have (a“,p") = ( .,8') = (G,O,BO)- Now that
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(ao,so) is of maximal type in H, the fact that H has exactly A > 0
subgraphs of the form T is exactly equivalent to that H has exactly
A > 0 edges of degree type on,so) (equivaience not true if (ao,Bo)

is not maximal). We have done the case that (ao,go) is maximal degree
type in G.

Now let's do "induction" on the partial order < We assume that -

._G'
the number of edges of degree type (y,6) is edge-reconstructable for

every (v,6) >g (o s8,). In symbols, et H be an edge-reconstructicn

of G, let a (b resp.) > 0 be the number of edges in G

Y0 Y »0
(H resp.) of the degree type (y,5) with vy > a6 By but no equal-
ity for both. "Induction" says aY 5 = b, 5 for all such (y,s)'s. We
also see (y,6)>G (qo,so) & (y,8) >4 (ao,ao) since aY,é >0e bY 5>

0. The number of subgraphs in G 1isomorphic to T (with deg(a) = g

deg (b) = Bo) as mentioned earlier is

SO e = GG

(Y §)>C\G‘0"0) (Ys6)>G (G'O’BO)

a s Where a is the number of edges of degree-type (aO,BO)

G'C ’BO SB

in G. This number is, by Keily's Lemma, equal to the number of sub-

graphs in H isomorphic to T, which in turn is'equal to:

DI VR EPRSD S A Gy

(Ya6)> \O. sB ) (Y56)>H (aO’BO)

+ b . s Where b _ is the number of edges of degree-type (ao’Bo)
%g2 P %g°Po

in H.
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Since a6 " b\(,6 for all  (y,5) >q (ay:8,) and (v:8) >
! . 7 - J—L 1 =
‘“o’Bo) iff (y,0) >4 (ao,so), we see immediately that %10=Bo
b and we are done for the lemma. Q.E.D.
CLO’BO

In Section 3 following, we will define specicl chains as a path
or walk with some minimum properties on degrees. The "degree sequence"
o7 such a chain is called degree type. Let condition A's and Bo‘s be
respectively that the degree type and the number of special chains
(of a certain length) be edge-reconstructable. (With condition Bi‘s
generalizations of Bo's). Let condition P be that the "last ver-
tices" of two special chains cannot be adjacent. We can do inductive
proofs of these three conditions in an interlocked way in Section 5
and Section 6; Tleaving the definitions and elementary cases n =0, 1,
2, 3 1in Section 4. Section 7 then concludes with the proof of main
theorem using condition P's. 1In Section 8, there is a short digres-

sion on generalization of proof.



Section 3, Definition of special chains and several basic lemmas.

We will generalize the concept of "minimum distance path" between
two small vertices in a bi-degreed graph, or SS, in Chapter 2. Given
a bipartite graph G, we wiil now define special n-chains for n> 0
recursively.

Recall G can be assumed to be connected by Section 2. Hence
po(G), the minimum degree in G, 1is > 1. By edge-reconstructability
of degree sequences, we have pO(G) = po(H) for any edge-reconstruc-
tion H of &, and we may denote their common value by Mg We begin

our recursive definition step by step in the following manner:

Step 0. Any vertex of degree M in. 6 is a special o-chain

in G. Go to next step.

Step 1. Let a](G) ={b e V(G){bob ¢ £(6) for some b, of min-
imum degree in G, 1i.e. deg (bo) = po}. o](G) is non-
empty obviously. Let a, be & vertex of minimum degree
in o](G). Symbolically, deg (a1) = min deg (b),bEG](G).

Let a, be a vertex of degree egual te Hos W

call ajay a special I-chain in G. Dencte deg (a]) by

p1(G). Go to next step.

Step 1'. We terminate the recursive defining process if }11(6) =

pO(G); otherwise go to next step.

Step 2. Let o,{G) ={b € v(G)|bb, € E(G) for some special i-
chain bobi, b # bo}- 02(8) cannot be empty since

dea {b,)>u > 1. Let 2, be a vertex of minimun degree in
RNt 2

~



Step 2'.

Step n.

Step n'.
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GZ(G); i.e. deg (az) = min deg {b), b € cZ(G). Let a2,
be a special 1-chain such that a,a, € E(G), a, # a,-

We call a a;a, a special Z-chain in G. Denote deg (a2)
by ;¢2(G)“ Note furthermore that a,53y,3, are all dis-

tinct. Go to next step.

We tarminate the process if ;12(8) =;;O(G); otherwise

go to next step.

(n> 3) We wiil get to this step only if we do not term-
inate at any step k', 0< k< n. Suppose we have coi-
structed the sets of all special (n-1)-chains of the form
CoC1 -+ Cno1 where CpsCps +=+s € are all distinct,
and pn_](G) = deg (Cn-l) > [y Consider on(G) =

{be V(G)lbbn_] € E(G) for a special (n-1)-chain

bob] - bn-]’ b # bnn2}' on(G) is nonempty since

deg (an_]) > Mg > 1. Let a, be a vertex of minimum de-

gree in on(G) (deg (a,.) = min deg (b), b € on(G)), and

n

let O - be a special (n-1)-chain (by recur-
sive definition, they are all distinct) such that a3,
¢ E(G), a, # a 55 ve call agay -.. 2, @ special n-

n
chain in G. It may happen that a, = 2y for some i,
0< i< n - 3. Denote deg (an) by “n(G)' Go to next
step.

Terminate if ;1n(G) =, but a Foags otherwise go to

next step.
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Step n". Terminate if ag = ays

o’ otherwise go to next step.

\

Step n(3’.Terminate if a, =y, 0< i< n - 3; otherwise go to
next step. In the latter case, we see that 35537 +-es
a, are all distinct, so the recursive definition assump-

tion that ao,a], —Sar an—i are distinct is Jjustified.

Since G 1is a finite graph, there is a unique smallest positive
integer k such that the process terminates at step k' or step k" or
step k(3). Denote this k by (G). We will say that we have a Type-
I (Type-TI and Type-III respectively) termination if we terminate at
step Q(G)' (step Q(G)" and step Q(G)(B) respectively). Note that
the special Q(G)-chain is a path if we have a Type-I termination.
Note also that every graph can have only one type of termination by
algorithm of definition.

For any edge-reconstructien H of G, we can define special n-
chains in H, uO(H), u}(H), cees pn(H) and Q (H) in an analogcus
way .

Conceivably for a bipartite graph of large size, we can have an
immense number of edge-reconstructions, all nonisomorphic to each other.
At this early stage, however, we are unable to establish that G can
have at most onc edge-reconstruction H as we did for the case of bi-

degreed graphs. The problem is convincingly harder.

Remark. The above recursive definition of special n-chains holds good for
general graphs, not only bipartite ones. We also see that this is a
generalization of the concept of Ss's for bi-degreed graphs. In fact,
we have & Type-1 termination at step s for bi-degreed graphs. It's

impossible that bi-degreed graphs have Type-11 or Type-III
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terminations. For if say, a bi-degreed I has a Type-II termination at
step t, then t < s otherwise we have Type-I termination at step s al-
ready. This now says that there is a t-cycle passing through a small
vertex a in I. lLet b be a vertex adjacent tc a on this t-cycle.

We now see that ab 1is a forced edge for a 1is a forced vertex, and
for I -ab +ac, c#b, aand b are small vertices of distance

< t-1<s-1<s, inpossible. Next assume that a bi-degreed I has
a Type-III termination at step u, then u< s. We have a special u-
chain 3gd7 -+ 8, 43, with a_. a small vertex, 3585, ... @ all

0 u
big vertices and a_ = a. for some O< i< u -3. If i =1, then

n i =
a3, is a forced edge fur otherwise we have a Type-II termination at
step u - 1< s in another edge-reconstruction of I, an impossibili-
ty already proved. If 1i> 1, then we have a Type-III termination
at step u~1 <u in an edge-reconstruction of I provided a3y is not
a forced edge. If among the (finite number of) edge-reconstructions of
I, we choose J to be one with ((J) the minimum, then starting anew
with J, we see readily that bob] is a forced edge for a special Q(J)-
chain bobi _— QQ(J)’ and we are done. In the argument here, we do
not assume the knowledge that I can have at most cne nonisomorphic
edge-reconstructions.

Given a bipartite grapn G, let Lo be the (finite) set of all its
edge-reconstructions. Clearly H € XG implies that ZH = ZG' Let
Me EG be one edge-reconstruction such that @(M) is the minimum in
Lo 1.e. QM) = min Q(H), H € Lo Renaming if necessary, we can as-

sume from now on that Q(G) < Q(H) for all He Z.. This simple ob-

servation will prove fruitful in a few lemmas to come. Note also
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0(G) > 1 by definition.
For a given walk Vo¥i:r Vi of n+ 1 vertices in any H € ZG’

we will say that Vo¥p cee Y is of degree type (ao,a], cens an) if
deg (Vi) =y in H for all i, 0< i< n. This notion of degree
type agrees with the notion of degree type of an edge on p. 91 when
n=1. Consider a special Q(G)-chain 3,31+« 3q(g) in G, which
has degree type UJO(G),}ﬁ(G), - “Q(G)—1(G)’ pQ(G)(G)). We note
“O(G) = Mgi the lowest possible degree for “i(G)’ 0< i< Q(G), is
Mo * 1; and the Towest possible degree for ;JQ(G)(G) is g if it is
a Type-I or Type-II termination; the lowest possible degree for
*ﬁ)(G)(G) is Ho + 1 if it is a Type-II! termination. We will show in
two following lemmas that we can exclude "minimal-degree" configura-

tions of the form of special Q(G)-chain in which the degree of every

vertex is as low as possible.

Lemma 3.2. A bipartite graph G is edge-reconstructable if G con-
tains a special Q(G)-chain agdy - aQ(G) of degree type Qio,po'+],

Mo t1s syt g + 1, Ho)s Mg =y (6). (i.e. We have deg (ao) =

CMQ(%KGﬂ =H, in G, MM(ﬁQ(aQ =p, +1 for 0< i< (G) in
G).

Proof of Lemma. If Mo = 1, then G is ﬂ7(6)+1’ the path of length
Q(G), and its edge-reconstructability is trivial. We may assume
;1O>-1 in this Temma.

Note a4 and a4 (8) may coincide or net (and we have Type-II or

Type-1 termination correspondingly).
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Case 1 of Lemma 3.2. aQ(G) # a,-

Let Q(G) =1 first. Then a3y is a forced edge since in G -

a,a;s a, and a; are both forced vertices of degree Mg - 1 <Mg-

Next, we observe that our graph G can be assumed to be a block.
Since ho > 1, G has no isolated vertices (vertices of degree 0) or
"end-vertices" (vertices of degree 1); a result of J. A. Bondy [ 4 ]
says that connected graph G having cut-vertices but no end-vertices
is vertex-reconstructable. So if our bipartite G has cut-vertices,
it is vertex-reconstructable and hence edge-reconstructable since it
has no isolated vertices. Our graph G then is connected without cut-
vertices, hence it is a biock. By the characterization of blocks as in
p. 27 of F. Harary [ 7 ], every two vertices a,b of G lie on a common
cycle; in other words every two vertices a and b are joined by two
paths disjoint everywhere except at a and b. Note that two vertices
a and b of G are in the "same part" V](G) (or VZ(G)) of a conneci-
ed bipartite G if and only if a and b are of even distance apart
in G, and they are in "different parts" if a and b are of odd
distance apart (this can be seen readily by elementary argument and
the proof is omitted). So a and b in the same part of G are
joined by two paths of even length disjoint everywhere except at a and
b.

Now, consider the case Q(G) = 2. H' =G - a,ay taga, = H is
the only possible non-isomorphic edge-reconstruction since a, is a
forced vertex and Ay, an adge of degree type Qio’“o) in G - a,3ys

cannot appear in H by the case Q(G) = 1 before. But now a, and
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a, are joined bcth by a path P of even length not passing aq (by
the discussion of previous paragraph) and the edge PY in H', so H'
contains an odd cycle and cannot be bipartite, contradiction to the fact
that bipartite graphs are edge-recognizable,

So suppose Q(G) > 3. We will first show that 0O(G) must be odd.
Suppose Q(G) 1is even and consider H' =G - a2 + aobsa H for some
vertex b # a; of degree Ho -in G - a @ b cannot be a. for

0 i
0< i< Q(G) since degree of a; in G-ag@; is pu, +1. If b#

Q)

aQ(G), then 13 - 4(6) is a path of Tength Q(G) - 1 < Q(G) in
H' of degree type (po,po+],;10+], S po+],‘40). Since mo * 1 s
the minimum pessible degree of as, i > 0 before termination of special
chain, we have Q(H') < Q(G) - 1, for H' should have a Type-I termi-
nation at step (Q(G) - 1)' if it did not terminate at some step k',
step k" or step k(3) for k< Q(G) -1 (aoa] “++ 39(H) is clearly a
special Q(H')-chain by definiton). This is contradictery o our as-
sumption that (G) < Q(H) for HE€ Zgq- So b= %(6) is the only
chuice. But 2, and aQ(G) are in the same nart of & since Q(G)
is even, and so they are joined by a path P disjoint from a,ay
aQ(G) except at the "ends" a, and aQ(G). In particular, a,d; is
not an edge on P, and P is a subgraph ¢f H'. So H' contains an
odd cycle formad by P and aQ(G)aO, impossible, and we have shown
Q(G) must be odd.

It's not absolutely necessary to use G's being bipartite in prov-
ing that Q(G) must be even. Actually the proof of Lemma 2.2 is still

valid if G has more than twe degrees with 1 and + 1 the two

Ho

lowest degrees, but we don't need 1t now.
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1 ! $ "
So we see that Q{G) must be odd and a,3; *-aQ(G)ao is a "forced
move". In particular, we see in this case that G car have at most ore
. . _ . e @ s
nonisomorphic edge-reconstruction H. In H G-ajay + 3q(6)%0°
3135 -+ 3506)3 is a path of degree type QJO, By tlapg 1, ens
Mo tlaug +1, uo) and so clearly Q(H') < Q(G). So Q(G) = Q(H) since
we assumed Q(G) < Q(I) for all Ic¢ Iy at the outset. In this Case 1

of Lemma 3.2, we may then denote their common value by Q. The forced

move a,a; > asa, changes the special Q-chain a3y «-+ 39 10 G to
the special Q-chain 248y ... 35305 it increments the indices cyclical-

ly by 1, note that the remainders of the graphs are intact during this
move. Clearly all the other forced moves of the form aja;,; > a5 43
for 0< i< Q have the same effects of incrementing indices cyciically
by 1 (aQ+] is meant to be a , and a_; to be a,). Call them forced
moves of the first kind (in this lemma only).

Consider now & - aja,. In this subgraph, a2y is an edge of de-
gree type (“o’ po), apdg +ev 2y is a path of degree type QJO, Hot1s
HotTs «0es u0-+1,, p0'+], uo). Necne of these two cenfigurations can
exist in any isomorph of H (otherwise Q(H)< Q(G) - 2). So H' =G -
aja, + cd = H, where cd has three possibilities: SR a3, A,3,-
Since Q s odd, 3y and a (ao and a, resp.) lie in the same part

of G, and are joined by a path of even length not containing a3, SO

in H', we have an odd cycle, a contradiction. Hence 2;a, > a2 ic a

Q0
forced move, and this sends the special Q-chain a a;a, ... 3, 13, in
G to a,a, ... a.a a, in H'; it changes the indices cyclically by 2.

2°3 Qo1
Call them forced moves of the second kind.

Suppose we can find two nonnegative integers o and B such
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that

Q+1=qa+2g, and

a +p is odd.

then, applying « forced moves of the first kind and B forced moves

of thesecond kind, the indices of =& ay ... @ are incremented by

o Q
lea+2-8=0Q+1, so 3,3y ... 3y is returning to its original
position after o +p3 forced meves. But o +pB 1is odd, so by Lemma
2.1 (which is true for general graph), we see G is edge-reconstruct-
able.

We now proceed to Took for such o and B. We may write Q +1 =

2¥s, with y >1 and & an odd integer since Q + 1 is even. If

y>1,%et a=2,p=(T-1), then o +23 =25 + (2¥-2)6 = 25 =
Q+1 and a +8 1is odd, being the sum of an even integer and an odd

integer; while for y =1, let g =0, B =8, we have o + 28 = 26 =
Q+1 anda +8 =% 1is odd. So we are successful to find o« and B's

and we are done for Case 1 of this iemma.

Case 2 of Lemma 3.2. aﬂ(G) =a,.

From G - ao?ﬂ(

i - - i -2 + 3 rtex of
phic edge-reconstructions are G aoaﬂ(G) ob for b a vertex

6)? the only ways we can edge-reconstruct nonisomor-

degree Mo in G not on the special Q{G)-chain since 2, is forced
vertex and no a, is of degree p_ in G for 0< i< Q(G) (edge-
reconstructability of degree sequence implies b should be of degree
Mo, in G). But then for a given b with H' =G - KNON ab,

a_ay ... aQ(G)-] is a path of degr=ze type (go, My Flg wams p0~+1, po)

o1

(det (aj) o TP 1 for 0< j<0(G) -1) and so Q(H') <q(G) -1
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since we should terminate at step (Q(G) - 1)' 1if we didn't terminate
before. This is contradictory to our assumption that Q(G) < Q(H')
(since H' ¢ Zo» the set of edge-reconstructions of G), and G has
no nonisomorphic edge-reconstructions; hence G is edge-reconstructable.

So we are done with Case 2 as well, completing our proof of Lemma 3.2,

Q.E.D.

Remark: The proof of this lemma isn't too hard, if not trivial. We
have used heavily the fact that G is bipartite (in Case 1). The cor-
responding proof for a most general graph would sound intractable,
though interesting.. For example, when G 1is bi-degreed (not necessar-
ily also bipartite), this lemma says SS is excludable, which takes a
whole chapter (proof of edge-reconstructability of bi-degreed graphs)

to implement. Since G(G) =1 1implies in any case that }1](6} = and

Ho
> 2

hence G is edge-reconstructable trivially, we will assume Q(G)
from now on.

We have shown the excludability of "minimal-degree" configurations
as mentioned in p. 99 of this Chapter for Type-I and Type-II termina-
tions. We will see the corresponding result holds for Type-III termina-

tion as well.

Lemma 3.3. G is edge-reconstructable if G contains a special Q(G)-

chain aja; ... a,qy of degree type (hgs Mg * s cees bt * 1) (deg (a;)

(G
= Wy T 1 for 0< i< Q(G)).

Proof of Lemma. This is a Type-II1 termination with 3(6) ~ s 0< k
< Q(G). Note that k may vary if we choose a different special Q(G)-

chain b.b, ... b ,., of the same degree type. We may fix a chain
ol Q(R)
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CIC T aQ(G) and hence k 1in this Temma. Any non-isomorphic edge-
reconstruction H of G will have the form G - a + aob, where b
1s a vertex of degree By not on a2, ... aQ(G). In H, Ay95 .- aQ(G)
is a walk of degree type ('uo, p0+1, ...,u0+1) (deg (ai) =p0+] if
1< i<a(B), deg (a;) =py) if k> 1, it is of degree type (u s pgy+1s
s gt 1,--[.10) (deg (ai) ® P +1 if 1< i<Q(6), 31 = 25(q) with
deg (aj) =, in H) if k =1; both iead to Q(H) < Q(6) - 1, a con-

tradiction. Q.E.D.

Corollary 3.3.1. G 1is edge-reconstructable if G contains a path
boby --- b of degree type (“o’ g +1s weesitg +1) (deg (b)) =pgs

deg (by) =n  +1, T< i<w) with w>0q(6) - 1> 1.

Proof of Coroliary 3.3.1. Since Mo + 1 1is the lowest possible degree
before termination of constructing special chains, we have immediately
uj(G) =gt 1 forall j, 1< j<q(6) -1. Now G is edge-reconstruc-
table by Lemma 3.2 if we have a Type-I or Type-II termination, and G
is edge-reconstructable by Lemma 3.3 if we have a Type-III termination.

g.E. D,

Corollary 3.3.2. G is edge-reconstiructabie if G contains paths

i r \ + e
CoCy ++- S and 'dod] GB both of degree type (_,10,“0 1s

Mo t 1) with a, 8> 0 and ey dB (we have deg (Co) = deg (do) =

Ho and deg (ci)=deg (dj)=p.0 +1 for O0< i<a, 0< j<B).

Proof of Coroliary 3.3.2. First suppose o1 +o- G and dodl' dB

are everywhere disjoint except at c, - dB (in particular o # do).

Now c.cqy ... Cad,e—'ids-Z cee dy is a path of degree type (-uo’ ”o”’
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e gt 1. po} in G and so we have o +pg > Q(G). Then we have a

path of length o +8 ~ 1> Q(G) - 1 of degree type (uo, My + 1, ..

Mo + 1) and Coroilary 3.3.17 apolies to say that G is edge-reconstruct-

able. Next, let S, # d0 and suppose CoCp =+ C and dod] ces dB

intersects at somewhere besides Cy = dB' Let y < o be the smallest
S_i Lo . = s Y . T = LAy
positive integer such that cY ies on dod1 i dB hen cY d6 for

a fixed 6, 0< 6 <. Applying the previous argument to CoCy - CY

and dod d, we have readily that G 1is edge-reconstructable.

17" 7%
Let now Co = do. Let u > 0 be the first positive integer such

that ﬁl # qi (since CoCp «++ G and dod1 _— dB are different).

Let v>pu (v<a) be the first positive integer such that c, 1s
some dg, p<p<p. Now the walk cocq ... cvdp_1 e qi ¢, -1 suggests
that Q(G) < p -1+~ @w=-1)) +{p-@-1)) =, for we will have a
Type-III termination at step A" (at ﬁ4-1) if not before. Now

€%

. ) . . in - ¥ )
: cvdp_] ; %4 is a path of length A - 1> (68) -1 degree

type (“o’ Ho*1s «oes g *1) and we are done by Corollary 3.3.1.0Q.E.D.

Remark. Case 2 of Lemma 3.2, Lemma 3.3, Corollary 3.3.1, and Corcliary
3.3.2 are all still valid if G 1s a general graph (not necessarily
bipartite). Ncte that definitions of special chains and Type-I, II, III
termination are still meaningfui for general graphs (Q{(G) < Q(H) for

all He Zg stil1l used in the proof).

Lemma 3.4. Given a positive integer &, the number of paths of Tength
k of the form a2y .- ak"1b of degree type (MO,}lo 1, e pg t 1,
k -1, deg (b) =6 1in

A

6) (deg (a,) =, deg (a3) =n +1 for 1< i<

G) 1is edge-reconsiructable for all k, 1< k< Q{G) -1 (when k=1,
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we mean edges of degree type (uo,é).).

Proof of Lemma. Prove by induction on k. When k = 1, we see immediate-
1y that number of edges of degree type (“0’5) is edge-reconstructable
by Lemma 3.1.

Now suppose the number of paths of length k of the degree type
(g * 15 ..oy kg *+ 1,8) is edge-reconstructable for 1< k< Q(6) -
2, we will show that the number of paths of length k + 1 of degree
type (uo, Hot s vvvag * 1,6) 1is edge-reconstructable. Note that
6>p, + 1. For the fixed integer &, G may or may not have a path of
length of k + 1 of degree type (po, Hy * T, cues B * 1,6). Let G
have such a path agay +.- akb at. first. From G - a ays We can have
a nonisomorphic edge-reconstruction H =G - ajay +tanc, c # a;. ¢ is
a vertex of degree o in G and cannot lie on 8,3y .. akb by de-
gree argument. Let a, lie on « > 1 paths of length k of the degree
type (o> iy * 1, ooopg +1,8) with a; as the "starting" vertex (i.e.
paths are of the form agdy ... dk_]e) in H; then edge-reconstructa-
bility of paths of length k of degree type (uo, Hg ¥ 15 «us uo-+],6)
implies that there are exactly o > 1 paths of length k of degree type
(uo, Ho * Ts «oospy +1,8) "starting” at ¢ in G (paths baving the form
cdi - dé_]e'). Now the "move" a,ay > a,c "destroys" exactly a > 1
paths of length of k + 1 of degree type (u,, Mo v 1s coespg t 1,8)
(of the form aoa]d] - dk_]e) and it "creates" exactly a paths of
length k + 1 of degree type (“o’ Mo 15 sy * 1,6) (of the form
ajcdy ... dy_
type (uo,]Jo s 8 PR bl + 1,8) is edge-reconstructable when G has

1e'), so the number of paths of length k + 1 of degree

at least one patn of this form.
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Now suppose G has no such path of iength k + 1. Suppose some
1€ I; contains a path 1 i, ... 1,3 of degree type QJO, THRL S
g + 1,6). We will have G= 1 - ioi] tiym for some m # i1, of degree
Mo in I. Argue as in the previous paragraph, we see that G will
have the same number ( > 1) of paths of length k + 1 of degree type

GJO, By * lg s3ag Mo ¥ 1,6) as I, and we get a contradiction.

We are done with our induction step and hence proof of our lemma.

Q.E.D.

Corollary 3.4. A bipartite G 1is edge-reconstructable provided that G
contains a special Q(G)-chain 3,315 ++-3q(g) with “Q(G)-](G) =
Ho + 1, “O(G)(G) =j, and provided that also “i(H) =;1i(G) for all

i, 0< i< Q(G) -2, and for all He & (Q(G) < Q(H) for ail He

o
Za assumed).
Proof of Corollary. If aQ(G) =ag, then for H =G - doaQ(G) + aob,
b # aQ(G), we have Q(H) < Q(G) -1 for if we do not have Q(H) <

l - n - . . . _ " . -
Q{G) - 2, then 3587 +-- Aq(g).] 1S @ special (Q(G) - 1)-chain of de
gree type (EJO(G)s H](G): 'S HQ(G)-Z(G)’ ‘U'O) = (UO(H)s’J](H), £ w8
“Q(G)-Z(H)’ po) in H (by assumption) , and so Q(H) =Q(G) - 1. In any
case, we get Q(H) < Q(G) - 1, a contradictior to the fact that Q(H) >
Q(G).

Now let aQ(G) # & By Lemma 3.2, we can assume some ;11(6) >

uo+1, 0< i< Q(G). Let k be the smallest such 1i's.
(o} G,aoa].-.an(G)

k will in general depend on G as well as on 2,34

G,aoa] % ¥ .aQ(G)

< - , CCq ...C.rny @ special Q(G)-chain
G,c v‘].:uCQ((;) ¢ 1 gl\C)
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with o # CQ(G) ;and suppose the maximum is attained for the special
) - i hav
Q(G)-chain dod1 - dQ(G)' We have 0< kG < q(6) and G cannot have

£ ey 1
a path of length k. of degree type (“o’ Ho 1o coeapg # 1).

Consider H =G - %)(G)-]dQ(G) + dQ(G)e for some e # dQ(G)-] of
degree Mo in G. e cannot lie on dod! . dQ(G)—] by simple degree
requirement. If e # do, then we get a contradiction by the fact that
Q(H) < (6) -1, for if Q(H)> Q(G) - 1, then as before, d,d
dy(gy-1 Will be a special (Q(G) -1)-chain of degree type (u (G), p;(G),
¢« e ey HQ(G)_](G), p,o) =(“0(H), H](H), e e e 9 HQ(G)_](H), p.o) and Q(H) =
Q(G) - 1.

So now let e = do. In H, dQ(G)dodl .. dk . isa path of length

G
kG of degree type (uo, P P T 1); so with k = kg and & =
Mo + 1 in the lemma, G must have a path of length kG of degree type
Qlo,}io +1, ees by + 1), a contradiction to what we have observed two

paragraphs before. Q.E.D.

Corollary 3.4 will prove to be a useful criterion later. By the way,
Coroilary 3.4 is true also for any graph for which Lemma 3.2 holds (not
necessarily bipartite).

We will prove a Temma nore general than Lemma 3.4 in a similar vein.

Lemma 3.5. When Q(G)> 3, then for fixed integers & and p, the num-

ber of paths of length k of degree type (;;O,exo+ T, oy ¥ 1,6,p)

are edge-reconstructable for 2< k< Q(G) - 1.

Proof of Lemma. When k = 2, we mean that the number of paths aobc of

length 2 of degree type (po,é,p) arve edge-reconstructable. Since
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2<Q(G) -1, we have immediately that & >p, + 1, p>p, + 1. Consid-
er H=2G - aob + aod, d # b. Suppose d 1is not adjacent to b in G,
at first. Let b lie ona> 1 edges of degree type (6-1,5) in H
(bc is such an edge). Then d must lie on exactly « > 1 edges of de-
gree type (5-1, p) in G by edge-reconstructability of edges of such
degree type {Lemma 3.1). Now the move aob +-a0d destroys exactly «
paths of degree type QJO, &,p) contairing aob and creates exactly a
paths of the same degree type starting with aods and we are dona for
this case. Next, let d be adjacent to b in G. We have then & =
p+1 (dmaybe c, say). Let b 1lieon p> 0 edges of degree type
(psp) in H, then d 1ies on B edges cf degree type (p.,p)} in G
and the move aob * aod destroys B + 1 paths of the degree type

(bg» p +1,6) starting with a b and creates p + 1 paths of the same

type starting with aod. So we are decne when k = 2.

We then proceed inductively. Assuming it true for k, and we will
prove it true for k + 1, 2< k< Q{G) - 2. Prove in the same way as in
Lemma 3.4, we first suppose G has a (k+1)-path a3y ..o ak_]bc of
degree type QJO, Bo *1s ceespg +158,p). If a; is the starting ver-
tex of exactly « > 1 k-paths of degree type (uo, Mo * 1, cea g T
1, 8,p) in H =06 - ajay; tad, d#a, then d s the starting ver-
tex of exactly o > 1 k-paths of degree type (“o’ Mo * Ts asig by F 1,
dsp) by induction assumption; and so the "move” {not necessarily a
forced move) 2,3, w-aod destroys o (k+1)-paths of degree type
GJO, Mo t 15 ...,L10-+1,5,p) starting at a  and creates « (k+1)-

paths of same degree type, and hence we are done. Q.E.D.
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Remark. We cannot generalize Lemma 3.5 in a "natural" way for the num-
ber of k-paths of degree type (uo, Mg * Ts caay o * 1, 615 695 «vvs
6,) with n> 3, n< k<Q(G) - 1. The difficulty lies in starting the
induction, for we do not have any "generalized" version of Lemma 3.1 for
n-paths, n> 3 (we have only the version for n = 2, i.e. edges).

We can define k-chains bob1 . bk in a way similar to special k-
chains so that bo,b], okng bk-] are all disjoint and bk may be on

boby -++ by_y or not.
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Section 4. Several more technical definitions.

Recall from Section 3 that a special n-chain 3537 --- A, in H

(n< Q(G)) has the degree type (“O(H)’ Hy(H) 5 +oes un(H)), where
He 2z (and Q(G) < Q(H)). We would ask naturally: is (kg (H), u](H),
s 1w (H)) = (bg(6)> uy(6)s «..y p (G))? This equality is a necessary

condition if H= G, and so we would expect it to hold to achieve our

goal (that H= G for every H¢€ Ig)-

Definition 3.1. Condition A(n). This condition says that for any
H e Zgs (“o(H)’ u1{H), S BRE pn(H)) =(¢10(G), p](G), cees pn(G)) for a
given n. (Q(G) < Q(H) assumed).

Once Condition A(n) holds true, we can then use u; to denote
the common values of ail “i(l)’ Ie Lo We will write simply A(n) to
mean Condition A(n) 1in the following. The same practice holds for any
other definitions of this kind. Now the degree type of special n-chains
being independent of the graph in which it lies, we may then ask: is
the number of special n-chains edge-reconstructable? We state a more

general definition in the following:

Cafinition 3.2. Condition Bi(n)‘ This condition says that N i(G)’
the number of chains of degree type (uo, His «oeo pn_],}4n+i) in G for
n>0, i> 0, 1is equal to Nn 1.(H), the numbeyr of chains of the same

type in H, for any H € Ig (Q(G) < Q(H) assumed).

Condition BG(n) says that the number of spacial n-chains is edge-
reconstructable.
Clearly A(n) and Bi(n) are necessary conditions when H= G for

any H¢€ ZG. We then naturally expect them io hold in our struggle to
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prove G's edge-reconstructability. Their validity will be a building
block for our final goal, the main theorem. Of course some other tech-
nical (i.e. artificial) definitions (and their vaiidity) will be re-
quired as well.

Now let's see how to show the validity of A(n) for the first few
values of n. A(0) 1is the statement that “o(H) = po(G) for any
H € ZG and is true by the edge-reconstructability of degree sequence.

Note that Q(C)

1 implies that p](G) =, and a special 1-chain
a,a; is itself a forced edge; so we may assume Q(G)> 2. To prove
A(1), consider G - a,ay for a special T-chain CACE of degree type
(po, u](G)) in G. By edge-reconstructability of degree sequence, G -
a,a; can oniy be edge-reconstructed to become some H =G - 2,34 + aob,
b # a; is a vertex of degree ;1](6) -1 in G. Now, aob is an edge
of degree type (uo, u](G)) in H, and so the "minimality" of special
1-chain in H 1implies ;1](H)§;p](G). Let bobT be a special 1-chain
of degree type (u, p](H)) in H, then G=xH - bb, +byc for some

c # by. We get as before that uy(6) <uq(H). So py(H) =upq(G) and

A(1) 1is proved (we then can denote their common value by p]).

If (G) =2, then p,(G) =p by definition cf special 2-chain in
G (there can be no Type-1I or Type-III termination by obvious argument).
If Y My ¥ 1, then our special chain in G has the degree type
(po, Ho + 1,;;0), and so G 1is edge-reconstructable by Lemma 3.2. Now
let My >, * 1. Consider G - ay23,, where 3,342, is a special 2-
chain in G. In this subgraph, ay is a forced vertex of degree Ho -1

< Hgo and a,2y is a forbidden edge of degree type (po, My - 1). So

ay3, is a forced edge, since we cannot join a2a0 by degree argument
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(u] - 1> po). We may assume Q(G)> 3 from now on.

Now appiy Lemma 3.5 (which is true when Q(G) > 3) with & = Hqs
p =;42(G), k = 2, we see that the fact that G has a special 2-chain of
degree type (go, pi,!iz(G)) implies that H has a 2-path of degree
type 040, H1> Ho (G)) and gZ(H)'E_pZ(G) for any He Lg. Suppose
a certain H, satisfies pZ(HO) < “Z(G)’ then Lemma 3.5 again implies
that G has a 2-path of degree type QJO, s “Z(Ho)) and so ;Jz(e)f;

}JZ(HO) < pZ(G), a contradiction, and we have proved A(2).

When Q(G) = 3 we observe again that there can be no Type-II or
Type-II1 terminations by simple arguinent and so u3(G) =Hg and ag #
a, for a special 3-chain 2,213,585 (when Q(G) = 4, we can have Type-

I or Type-1II but no Type-III termination; so u4(G) =y, but a, may

)
coincide with s, for a special 4-chain 8,373,253, in G. When Q(G)
> 5, we can have Type-III termination as well. The above argument works
for bipartite ygraphs only. For a general non-bipartite graph we may

have a Type-III termination when Q(G) = 4.).

Consider a speciai 3-chain 2,272,24 (actually a path) in G. If
Mo =g + 1, then Covollary 3.4 applies and G 1is edge-reconstructable.
So let Mo > 1y + 1 now. Suppose Ho > 1 first. As in the second
paragraph of proof of Lemma 3.2, we see that G 1is a block if Mo > 1,
and a and ags being in the same "part" of G, are joined by a path
of even lengtn not containing CPLEE Hence it's impossible that a non-
isomorphic edge-reconstruction H = G - ay35 + ajdys for otherwise we
have an odd cycle in H. H cannct be G - ay34 *+ 343, since My = 1>

M- H cannot be G - aja, + @ b, b # a3y, for then uz(%ﬂ <u

3 c‘.o ']5

5]
[ 4



115

H

a contradiction to A(2). So Q{C}) =3 1implies G's edge-reconstruct-

ability when Ho > 1. Now cornsider 1, = 1. Arque as above, we see
difficulty will present only when H = G - CPER + agdys in which case

Ho =pq + 1. By Lenmz 3.1 on edges of degree type (p],l) (note Hy > 1)»

(3]

we see a, must be adjacent teo ancther vertex b # ag of degree 1 1in
G. Suppose My > 2. By edge-reconstructability of degree sequence,

H= G - aja, + cd, where c¢ 1is a vertex of degree Hq -1> 1= Ho in

G - aja,, and d a vertex of degree Myt 1 -1 = g in the same sub-
graph. c¢ cannot be a, by degree argument. ¢ then must be a, other-
wise H contains an edge of degree type QJO, My -1) and **!(H) <up -1,
a contradiction. d cannot be az or b by degree argument QJ] > 1).
If d isn't a,, then an isomorph of H (= G - aja, + cd) contains a
path a3a2b of degree type (1, My 1), which immediately implies

Q(H) < 2< 3 =Q(G), a contradiction to our assumption that Q(G) < Q(H).
Finally we Tet My = 2 (and Mo = 1). G's connectivity implies at

once that G 1is itself a graph as depicted beiow:

a2,3 ao,l

1 a],2

From G - ayd3, any possible nonisomorphic edge-reconstruction
would be P5 only (since G cannot contain triangle). But Pe cannot
have K]’3 as an edge-proper subgraph, which is G - a,ay - So G is
edge-reconstructable in this case as well, and we have proved Q(G) = 3

implies G's edge-reconstructability.
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We note that Ho = 1 deserves special treatment since G 1is no
longer a block in this case. We state the fact that Mo > 1 dimplies G
is a block in the following lemma for later reference (proved already in

second paragraph of Lemma 3.2).
Lemma 3.6. G can be assumed to be a block if Ho > 1

Now let's assume Q(G)> 4 and start to prove A(3). Consider a
special 3-chain 3,312,525 in G. Let Ho>pg + 1 first. Every H=
G - aja, + cd for some c¢ of degree Hq -1 and d of degree Mo - 1
in G - a;2,. If Hi> Mg + 1 as well, then a, cannot be ¢ or d
by degree argument, and a, is a forced vertex. The edge-reconstruct-
ability of edges of degree type (“2 -1, p3(G)) implies that d is
adjacent to a vertex of degree u3(G) in G and so u3(H) §_u3(G).
Consider a special 3-chain bob]bzb3 in H. We see Hs Mo > K + 1
still hold and same argument as before says that p,(6) <ugz(H). So
A(3) holds for this subcase. Let My Mo t 1 now (still Ho > u0+1).
c can be a, or a {and nothing else) by degree argument and d must
be adjacent to a vertex of degree u3(G) in G as before. So we get
u3(H) 5_;13‘((5). Symmetry argument then says that u3(G) = p.3(H) and
A(3) holds.

Now let by =gt 1. Every H= G - anaz *+ c'd', for some c' of
degree Mg and d' of degree p3(G) -1 in G - aya,. If u3(G)>
o +1, ¢' must be a, or a, otherwise Q(G) < 2 and we see |J.3(H)
g_u3(G) readily. If p3(G) =, * 1, then one of c' or d' must be
a, or a, andwe see u3(H) < 1,(G) (which implies }.13(H) =u3(G)
otherwise Q(H) < 3 < q(G)). Repeating the same argument for a special
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3-chain b b]bzb3 in H, as before we see u3(G) §_p3(H) and so A(3)
is proved in its Tull force.

Let's summarize the foregoing results in the following two lemmas.
Lemma 3.7. G 1is edge-reconstructable if Q(G) < 3.

Henceforth, we may assume 4 < Q(G} (< Q(H) for all He€ ZG).
Lemma 3.8. Condition A(n) holds for n =20, 1, 2, 3.

Next, we investigate the validity of Bi(n) for the first three
values of n (n =1, 2, 3). Bi(l) says that the number of edges of de-
gree type (“o’ Hy t i) 1is edge-reconstructable and this is solved
readily by Lemma 3.1. For Bi(Z), we apply Lemma 3.5 for & = Hys P
Mo ¥+ i. We are left with Bi(3) only. Let Mo >y * 1 first. Let

a, ona special 3-chain 2,372,534 be adjacent to « > 1 vertices of

degree + 1 other than ay. If My > Mg + 1, then ay is a forced

Mg
vertex and any edge-reconstruction H= G - 22, + a1d, d # ay. If d

isn't adjacent to a in G, then d must be adjacent to o vertices

2
of degree Mo +1i in G by Lemma 3.1, and we have "destrcyed" a 3-
paths of the form a aja,c of degree type (11gs s Hps g + 1) and
"created" meanwhile q 3-paths of the form aoa]de of degree type
(uo, HisHdops Ky * i) while going from G to H, so 81(3) holds for
this situation. If d is adjacent to a, in G, then we have p, =4
i +1 and we have "created" o - 1 23-paths of degree type QJO, My
Hopspg ¥ i) and “"destroyed" meanwhile o - 1 3-paths of the same de-

gree type while going from G to H (the 3-path =2 a,a od is changed
to a 3-path aoa]da2 of the same degree type). Sc B (3) holds in this
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case. When Mp =M, + 1, we see in an analogous way as before that when
G has 3-chain a,27a,C of degree type Gio’ Hys Mos Mg t i),H= G - a,C
+ c'd' for some c' of degree Wo and d' of degree Mg t i-1 1in

G - asc . One end of our new edge must be a_ or a, otherwise

0

Q(H) < 2. If one end is a,, the other end cannot be W otherwise

2
we have a triangle (3-cycle). and this case is trivial since if say a,=

c' s adjacent to B> 1 vertices of degree My * i in G, the
"change" anc +'a2d' gives us in H still B > 1 vertices of degree
Mg t i (except that vertex ag is replaced by d'), and so the number
of 3-paths of degree type QJO, Mys oo g * i) s unchanged. If one
end of the new edge is a, and a, is adjacent to y vertices of de-
gree pg + i in G, then the change ac > aod‘ (d* # 15 8y, C by
obvious reasons) destroys g edges of degree type hlo +1, Mgt i)
and creates y + 1 edges of degree type Q*o +1, hg * i) and so B =
vy +1 by Lemma 3.1. But clearly the same change asc »—aod‘ destroys
B 3-paths of the form a ajase’ of degree type (ug>pysbps Mg ¥ i)
and creates y + 1 3-paths of the form azalaof' of the same degree
type. No other 3-paths will be affected by this change unless a, or
a, is adjacent to some vertex b] # ay of degree M1 in G. By the
move a,c - aod‘ and temma 3.1 on the edges of degree type (uo,iil),
we see that if some b; of degree j, 1is adjacent to a, in G, then
some b2 of the same degree must be adjacent to a, in G and H3 <
My in particular.

If Mg < kg -2, consider a special 3-chain a,313,24 in G and
delete aja, from G. In G - a2y, 3.3, has degree type (i, »i, -1),

CPL has degree type (“o’ H3)§ both cannot happen in any edge-
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reconstruction. Furthermore, degree argument says that we have to join
a vertex of degree Ho to a vertex of degree My -1 in G - aja,s SO
aa, is a forced edge in this case. We can now assume Mg = Hj -1 or

M3 =Hq. Note u;>p  + 1 otherwise we are done by Lemma 3.4.

Let S 1 first. By argument two paragraphs before, Bi(?’)
holds except when we have H== G.- a,c + aod'. If G contains a 3-path
of degree type (“o’ Hys Hos kg + i) with M3 > s
then d' cannot be aq by degree argument and an isomorph of H
contains an edge 3,34 of degree type (“o’ My - 1), a contradiction.
So we have to consider only M + i =M - 1 or M1 finally. It's
impossible that some c¢ # ays a3 of degree My - 1 be adjacent to ays
otherwise a;a, is clearly a forced edge (this is clear if My >Hg ¥ 1,
to avoid an edge of degree type (po, 1y - T} If My = Hg + 1, then we
have immediately Q(G) < 3, and Lemma 3.7 says that G is edge-recon-
structable).

Our graph G will contain a configuration C as in Fig. 3-2, from
which it is easily seen that G can have at most one nonisomorphic edge-
reconstruction H. {proof later)

Consider G - a,ay, We see a is a forced vertex and 81(3)

0
would be trivial if we can show that the number of 2-paths of degree
type (u] -y tloug - 1) or (ug - Topgy* 1, 1y) s edge- re-
constructable. To prove this, it suffices to show by induction that the

number of 2-paths of degree type (u] -lopg t Ty 14 k) is
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edge-reconstructable for Ofgicg_u] “Hg - 1. Recall My > Mgt T

Let defk represent a 2-path of degree type (;1] -1, Mg < A Mo 1 #
k). For k =0, consider G - ef,. Since My T 1>p, and de isa
forbidden edge of degree type (uo, iy = 1), we see that e 1is a forced
vertex. Let e be adjacent to a > 1 vertices of degree My - 1 in G.
Going from G to some H = G - ef0 + eg for some g, we see that the «

2-paths of the form d'ef, of degree type (u; - l,ug +1,uy + 1)

0
become o 2-paths of the form d'eg of the same degree type, and no
other 2-path of the same degree typz can be created or destroyed cther-
wise we would have Hy Mgy * 1, a contradiction. So the case k =0

is proved. Now assuming the validity for k-g_u] - My - 2 and we will
show the validity for k + 1. Consider defk+] and let e be adja-
cent to g > 1 vertices of degree My - T in G. In G- ef g, ed

is an edge of degree type (LLO, My - 1) and fk+] is of degree by * 1
+ k< Mq - 1, so degree argument says that e is a forced vertex. Let
H=2G6 - efk+] + eg. Let fk+] be on y 2-paths of the form ihfk+]
with h # e of the degree txpe(u] -1,u0 +1,;¢0 +k+1) in G - of 41
(and hence in H). g must lie on y 2-paths of the form 1i'h'g, h' # e,
of the degree type (341 - Topy t 1, My + k+1) in G- ef (and
also in G) by induction assumption. But then the move efk+} - eg-
creates y 2-paths of degree type \y - 1, Ho + 1,;40 + k +2) pass-
ing g and destroys y 2-paths of some type passing fk+]’ it changes
the B 2-paths of the form d'ef ,; of the degree type (u] -1t
By +k +2) top 2-paths of the form d'eg of the same type, leaving
all other 2-paths of -such degree type unaffected. So clearly, the num-

+1,u. +k+2) is edge-

ber of 2-paths of degree type (gi] -1,u "

0



reconstructable, and we are done for the proof of B.(3) when p, =u -
g =pq -1 (and My > Mgt 1).

What's left in the proof of 81(3) is the case Moy =Hg +1,
M3 =My (and My >yt 1 by Lemma 3.4). Consider G - a;2, for a
special 3-chain a,aqa5a3. Degree argument says that one end of the
replacing edge should be a, or aj. If one end of the replacing edge
is a,s then the new graph I will have cne more edge of degree type
(’,uo + 1,u] - 1) than G (given by aob for some b # a3) unless a,
is adjacent to some vertex of degree M - 1 in G, which in turn gives
an edge of degree type (po, My - 1) in I, a contradiction. Hence
a, is a "forced vertex", and Lemma 3,1 applied to edges of degree type

(s bg * 1) easily establishes B.(3). We have thus done the proof of

Lemma 3.9. Bi(n) are true for n =1, 2,3, any 1> 0.

Note that the idea and details of proof are pretty simple except

the case when p,.l>p,o+],u2"uo+] and M3 = Hq - 1.

aptg agaly =1 P
G : H : .
/\\ . \
\
Yo
a-l,p,] aS,u-l "1 a'IQu" -.I a3’u]
Fig. 3-2

For the proof of Fig. 3-2, note that a2y and a,dg in G - a;a,

are both forbidden of degree type (;10, uy - 1), hence pqy - 1>ug

impiies aj8, ¥ a,35 as a forced move. For later reference, we intro-
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duce an excludable configuration C' in Fig. 3-3 which occurs very
often in practice. To prove the excludibility, note CoCq is a forced
edge since coc]czc3 and CqCg are both of forbidden degree type and

U]'Z#U]"l.

Caatg +1 Costg *1 Co'Ho

Craby = 1 Caoby = 1 C1aky

Fig. 3-3

To conclude this section, we wili introduce a new technical defini-
tion, whose vaiidity for general n will lead to our main theorem in
Section 7.

Given n, 0< n< Q(G) - 2 (note Q(G) > 4), let a2y ... a and

bobl o bB be two special chains of length o and B respectively,

with 0<a, 3<n. If ﬁbe 5

not have the annoying situation that agdy .. By happens to be bobl"‘

is an edge of G (aab € E(G)) and we do

bB“]’ i.e.a=p -1 and a; =b;, for 0< i<y -1or the situation
that boby ... by is aga; ... a g3 then we call this an (5B ) ~coup-

ling in G of the twe special chains of LI and bob1 - bB,
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or simply an {o.,3)-coupling if nc confusion is caused.
Definition 3.3. Condition P(n). For 0< n< Q(G) - 2. This condition
says that an (g,p)- coupling for 0< a, B < n 1is an excludable config-
uration.

Notice that for an (a,g)-coupling in G, it is not necessarily
true that aay --- a, and bobl . bB are disjoint; they must be
distinct however.

Condition P(n) s analogous to the excludability of Tp-configura—
tion in Chapter two (Lemma 2.3).

To give an insight of how P{n) look Tike (and also to start the

induction), we will prove the validity of P(n) here for n =0, 1, 2.

Lemma 3.10. P(n) 1is true for n =0, 1, 2.

Proof of Lemma. We will divide the proof into threecases according to

the value of n. Without loss of generality, we may assume o > B.

Case 1 of Lemma 3.10. n = 0,

The only possible (a,8)-coupling is that of an edge a b, with
deg (ao) = W, = deg (bo)‘ so aob0 is clearly a forced edge; and P(o)
is true trivially.
Case 2 of Lemma 3.10. n = 1.

If o« =0 then 8 = 0, then we are returning to Case 1. So let
a =1 now. If g =0, then we have Q(G) < 2, and G 1is clearly edge-

reconstructable. So let g = 1 now. Clearly aoalblbo is a 3-path in G

(they are all distinct obviously). If Hy “Hy t 1, then we have a path
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of degree type (po, Ho * 1, Mg * 1, Mo ), so Q(G)< 3 and G s
edge-reconstructable. Now let Hy > Mg + 1. a1b] is clearly a forced
edge by degree argument and the fact that (“o’ My - 1) 1is a forbidden

degree type for edges. We have then done the proof of P(1).

Case 3 of Lemma 3.10. n = 2,

We may assume o = 2, otherwise we are returning to Case 1 and
Case 2. Let B =0 first. We have then (G) < 3 by the 3-path
aoa]azb0 of degree type (“o’ Hys Hos po), and G 1is edge-reconstruct-
able by Lemma 3.7. Next consider p = 2 (the case g =1 1is much hard-
er and is treated later). We note b2 is adjacent to 2, If b2 = ay,
then bob]b2 and a, forma (2,0)-coupling for n =2 (e =2, B = 0)
and we are done. So b2 is distinct from CAREINLPY If b] is 2y,
then 2,3y and bob] form a (1,1) coupling and Case 2 implies G's

edge-reconstructability. So we have that 3,2

182 and bob]b2 are dis-
joint and form a "true" (2,2)-coupling. Let Ho>pg t1 first and con-
sider G - a2b2. A(2) and the fact that Ho = 1>p, tell us that we
can replace a2b2 by azb], a]b2 and a]b1 only, to get a nonisomorphic
edge-reconstruction H. If the edge replacing a2b2 is azb}, then

Mp =pq * 1 (and Mg = 1 otherwise G 1is a block and we can show H

contains an odd cycle), and since the edge bobl of degree type (uo,
p]) is changed to a new degree type (“o’ Hq +.1) in H, Lemma 3.1

on degree type (“o’ u}) says that b, must Tie on an edge CDbZ of
degree type (“o’ pi) in H. We then see that the degree of <o in H
is Mg Since the move a2b2 - azb] neither creates nor destroys any
vertex of degree Moo the degree of Co in G is also Moo Now the 3-

path bgb1bzc0 in G of degree type (“o’ 175 Koo “o) readily
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establishes that Q(G) < 3 and we are done. The proof when the replac-
ing edge is a]b2 is done similar to the case of azb] by symmetry of
configuration (by interchanging a's and b's in the above argument).
Now let the replacing edge be a]b]. Again Mo =hq ¥+ 1 and lemma 3.1
on edges of degree type (“o’ u]) tell us that one of a5, b2, say a,,
must be adjacent to a vertex o of degree Mo in H and hence in G.

So now 3,373, gives Q(G) < 3 and we are done.

The case remaining with our (2,2)-coupling is when Ho =Hg + 1
If My = Mg + 1, then G 1is edge-reconstructable by Lemma 3.2; and so
we may assume U]>‘Ho‘*7- Consider G - b]bz. In this edge-deleted sub-
graph, 3,@ja,b, 1is a forbidden 3-path of degree type (“o’ Mps Mg * 14
po) and bob1 is a forbidden edge of degree type QJO, My - 1). De-
gree argument says that the degree type of the replacing edge must be
(uo, wy - 1) in G - b;b,. So it can only be bja  or bga, besides
the trivial replacement b]b2 which returns us to G; the latter pos-
sibility boa2 can happen only when My oo * 2. If the replacing
edge is b]ao, then in the new graph H, b2a2 is an edge of degree

type (uo, uy + 1) and we get py =pg  +1,a contradiction. If the

)
replacing edge is boaz, then in H, a,2y and boa2 forma (1,1)-
coupling and we are done by Case 1. So we have proved the excludabili-
ty of (2,2)-coupling.

We are left with the possibility that 8 = 1. We may assume
b1 7 a, otherwise we have an excludable (1,0)-coupling. Depending on
b0 # a, or bO =a,, we will have twoc configurations as depicted in
Fig. 3-4 below:
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812 Wy bys by 3, % bys Mg
3y iy bys 1y
¢
852 Ho s My bgs g
a2. [-12
(a) (b)
Fig. 3-4

We will prove their excludability in two subcases following.

Subcase 3(a) of Lemma 3.10. bO # a, fora (2,1)-coupling.

We now have a configuration M as in Fig. 3-4 (a). First observe
that My >, * 1 otherwise we have Q(G) = 4 and Corollary 3.4 ap-
plies to show G's edge-reccnstructability. Next we see that Mo must
be Ho + 1 otherwise we see a2b] - a]b] is a forced move since in G -

b], a,a;3, and b b, are both forbidden by their degree types (and

a4 o1

note Mo - 1> Hy now). But then the edge-reconstructability of edges

of degree type (u ’“2) implies that there exists a vertex o in H of

degree‘io (and hence in G) adjacent to az(u2 =uy t 1 now) and we have
Q(H) < 3, implying Q(G) < 3 and G is edge-reconstructable.

Now the 3-path a a;a,b; of degree type (p »mqs>ig * 15 Hq)
tells us that Hy =Hq OF pg - 1. If pg =uy, then we can edge-re-
construct from G - bobl by replacing bob} by b0a2 (and Q] =y + 2,

Mg = 1 then). But then B_(2) implies that there exists aspecial 2-

"

chain €,C1%2 in the new graph H with Cy = b1. The degree of ¢/
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in G must be Mo (i.e. % is not a vertex of degree Mo * 1 in G
which becomes a vertex cf degree Ho in H) by obvious argument. S
cannot be a, otherwise 2,212, and oA form a (2,0)-coupling. Now

C,C7 and b b, s a (1,1)-coupling in G and we are done.

So we know that Mg =My - 1. We have immediateiy the fact that
G can have at most one nonisomorphic edge-reconstruction H by the

forced move d}d2 »-d0d3 of a special 3-chain dod]d2d3.

We will investigate the interconnection pattern of special 3-
chains in G for this subcase. Consider two distinct (but not disjoint
special 3-chains dod]dzd3 and €,€1€,€3- The four degrees Hgs Hypo
iy +1, My - 1 are all distinct except the possibility that My - 1 =
Mo T 1 when yy =y  + 2. This excludes the possibility that e, = dj
for 1 # J except possibly ey = d2 or e, = d3. But es = d2 (or €5
= d3) gives us a (2,2)-coupling treated at the beginning of Case 3,

and so ei = dj only when 1 = j.

Now let y > 0 be the smallest integer that eY = dy. We will
have 0< y< 3 since dod]d2d3 and e eje,e; are assumed to be non-
disjoint (but still distinct).

Suppose y = 3 first. The configuration D connecting

at d, = e

d d.d,d, and €,818,83 3 3 has the general look as in

017273
Fig. 3-5(a).
Let's delete €0y from G. In G - eoe], & is a forced vertex
of degree Hi = 1, and dod]d2d3e2e1 is a b5-path of degree type
(Hgotqs kg * 1o = 1oy ¥ 1upy - 1) which is excludable as configu-

ration D' in Fig. 3-3. So 8,81 ~ eod3 is a forced move sending G
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sty d3=epuql eqay dpskiy dg=egay Eptyl
(a) (b)
dosHg  dpbigtl ety eqsit ] dooHg  dpput €2oHoH 0“0
o q\\\\{///R\\\\r///f>x<;;;;7p Y \\////
dpppy  dz=equpy-1 eqany dpsity  dg=egtiy_yCyaHy
(c) (d)
Fig. 3-5

to some H'= H as we can see in Fig. 3-5(b). (Note that it's impos-
sible to replace €,y by e 08 oOr eod2 since then Hy = Hg + 2, and
if the new edge is e d2, then dod] and eod2 forma (1,1)-coupling in
the new graph; while if the new edge is €,€5> then d,e2 > dzeo is a
forced more and in the last graph we obtained, dod1 and d2d3 form a
(1,1)-coupling.) Since €,83808, is a special 3-chain of degree type
(Hgs Bys g + 1o uy - 1), e,e; > e e; 1is a forced move sending H' to
some G"= G (the configuration D 1is changed to D" as depicted in
Fig. 3-5(c)). Now in G" - €,€3> dod]dzd3 is forbidden of degree type
(“o’ My Mo * 1, My - 2) and €,81€ is forbidden of degree type

Qio, Mo “o) ; and since we have to repiace €,83 by an edge of degree
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type (“o’ My - 2) in G" - €,e3> the only possible ways are e85, ezdo,

eodo’ede’eodZ' If the replacing edge is then in H(3)a: H, we

€584,
are returning tc our original configuration D (i.e. D(3) = D} and so
Lemma 2.1 applies to say that G is edge-reconstructable (see Fig. 3-5(d)).
The latter four possibilities can happen only when Mo = 7 since other-
wise G 1is a block and we would have an odd cycle if we join any one of
the four : eodo’ e2do’ eodZ’ e2d2. If we join eodo or eZdo’ then

My =M, + 2 by degree argument and d3d2 is an edge of degree type

(“o’ By * 1) in the new graph H(3), impossible since Hy> Mg +1. If
we join eod2 or e2d2, then in H(3), we have a 5-path fe}gdzd]do of
degree type (“o’ Hys Mg * 1, b, * 2, s “o) with f = e 9= e, if
we join e2d2 (and f = €, 9 = €, if we join eodz). Obviously we
have My “Ho ¥ 3 in this case. Now ey9 > fd2 is a forced move, and
in the newly obtained graph gd2 and dodl form a (1,1)-coupling. We

have now proved vy = 3 1is impossible.

Next, let y = 2. This means that d_d,d, and e,e.e, are dis-

012
e,. The forced move d]d2 > dcd3 gives us in the

joint except at d2
new graph H' that €,218 is a 2-path of degree type (uo, My “o) and
so Q(H')< 2 and we are done (for Q(G) < qQ(H')< 2 implies by Lemma
3.7 that G 1is edge-reconstructable).

Now, consider y = 1. This means d, # €y> but d; = e;. So
dod]eo is a 2-path of degree type (“o’ Hys po) and we see immediately
that this case is again impossible.

Finally let y = 0. Let 0< 86 < 3 be the first integer that
d. # e. If & =3, then dy =e, and dj and e; are two distinct

vertices of degree Hy - 1 adjacent tc d2 of degree Hy ¥ 1. The

~
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forced move d]d2 s dod3 gives in the new graph an edge d2e3 of de-

gree type QJO, My - 1) which is impossible.

Next, let & = 2 (still y = 0). We have d0 = d] = e but

d2 # e,. d3 and e; may coincide or not. Suppose d # e3 at first.
The forced move d]d2 -+ d d3 gives us in the new graph a 5-path
d2d3d0d]e2e3 of degree type QJO,Lll,LlO *hopy - Topg 1y - 1),
excludable as configuration C' in Fig. 3-3 . Now let d3 = es. In

G we have a configuration as in Fig. 3-6(a) below.

dy =gt dpaitytl dp=Cgeito* dospt o *1
G : 3 H* &
di=e ,u ey d3 =egy-1
1 1271 “-‘ -1 d-l =e] ’H.'l
€51
e2410+1 2o
(a) (b)
dy=eyskt 5! . d_=e .u
(0] Gzouo 0 07¢C d29“0+]
3) /
G" : H( 3 { d =@, =1
- do=eq,uq -1 o 31
d]—e] "ri'] 3 3 ] d-l v"au‘l
(o}
82,}.10'” e2’l~10+]

Fig. 3-6



In G d,, d d.d,d, and e,d,d,d, are forbidden of degree

T €29 %9199 2919

type (po, His Mg t 1,;i] - 2) and dod]e2 is forbidden of degree type
(“o’ My» uo) 5 SO since our replacing edge must be of degree type

QJO, My - 2) in G - e,dsy, the possibilities are d d,, d d,, d,es95e,
(observe that dod2 will be possible only if Ky = Hg + 2 etc.). The
latter three will be clearly impossible for a bipartite graph G since
they "create" triangles in the new graph H' in an obvious way (so they
have to be considered if we want to prove the same lemma for more gener-
al graph). After these considerations, e2d3 —>~dod3 is a forced move
sending G to H'= H (see Fig. 3-6(b)).

In H' - d2d3, dzd]do, d2d]dod3 and eZd]dod3 are all forbidden
by degree argument as the previous paragraph; so the replacing edge can
be e2d3 only (to avoid any triangles again). We see now dydg > e,dy
is a forced move sending H' to G"= G. (see Fig. 3-6{(c)).

Finally, in G" - d0d3, dod]dZ’ dod]e2d3, dzd]ezd3 are forbidden

by same argument and dod3 > d2d3 is a forced move sending G" to H(3)

= H (Fig. 3-6(d)). We see three forced moves: e2d3 »vdod3, d2d3 -

3> d2d3 return us to the original configuration 1in

Fig. 3-6(a) (Fig. 3-6(d) and Fig. 3-6(a) are identical), and so Lem-

e2d3, and dod

ma 2.1 applies to say that G is edge-reconstructable. We have proved
now that § = 2 1is impossible.

For y = 0, we consider at last the case & = 1. We have now
d0 = e, d-l # ey- d2 and e, may coincide or not. Let d2 # e, first.

Suppose furthermore that ds # e; at this moment. This will be proved

to be the only possible interconnection pattern later. Next, suppose

d., =

3 = €3 (still d] # ey d2 # ez). Our two special 3-chains form a
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configuration as in Fig. 3-7(a).

g gkt Gty kg
—0
G : :
= ,H. +]
do eo,uo 0 0 0 \——/ 33“]
epity  epitgH ey Bt
(a) (b)
d],p]—i d ,p0+] d],u1-—- d2440+1
6" 4(3),
d. =e. -
= 0 0’ 0 d,)-e ’u ...l
——d
e-l ,LJ.] 82:“0'{'] e] ,!J_-I 92,[.10’!']
(c) (d)
Fig. 3-7
In G - d2d3, dod]d2 is forbidden of degree type (“o’ My “o)
and d e

18,45 is forbidden of degree type (“o’ Histg * 1opg - 2):
so degree argunent as well as the requirement of no odd cycles in any
edge-reconstruction says that d2d3 —>—dod3 is a forced move sending G
to H'=H (Fig. 3-7(b)). Now dyd;d,d; s of degree type (“o’ Hys
Mg + 1,;i] - 1) din H' and so d]d - d2d3 is sbviously a forced move

sending H' to G" (Fig. 3-7(c)). Finally we observe that dj is a



forced vertex in G" - d0d3, and if another end of the replacing edge g
doesn't 1ie on the configuration in Fig. 3-7(c), then doe]e2d3d2d] is

the excludable configuration in Fig. 3-3(b); so g must be €5, d2, d].
70 avoid an odd cycle, we see readily that d] is the only choice. As

in Fig. 3-5 or Fig. 3-6, we see that three forced moves return us to the
original graph and so G is edge-reconstructable by Lemma 2.1.

Finally let d, = e, (with vy =0, 8 =1). We have d] # e-

2
d3 and es must coincide otherwise the forced move d]d2 - dod3 gives

an edge d2e3 of degree type QJO, My - 1). Consider the configuration

consisting of the two 3-paths dod]dzd3 and e,e1€,85 as below:

Aty

G : _ _
do = €oHg =€t

d3 = 93,[.1] -]

SR

We can prove its excludability in a way very similar to that of
excludability of the configuration in Fig. 3-6(a). First we note
Gpy + dgiy
is a special 3-chain of degree type (po, Hys HgtTs My - 1)in G. Next

is a forced move sending G to H'= H since e,18,€3

dod] > dze] is a forced move sending H' to G"= G since dzd]doe] is

of degree type (n_,uysug + Touq - 1) in H'. Finally, djds > dyd,

is a forced move since 1in G" - dodq, dO is a forced vertex, and if

the other end g of the replacing edge isn't d1 or d2’ the new graph

H(3) will contain a special 3-chain doe1d?di with d3 # d1 another
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vertex of degree My - 1 adjacent to d2 which is excludable by the
forced move e.ld2 ¥ dodi’ if a s ds, then H(3) contains the tri-
angle doe}dZ’ so g = d] is the only choice. We have thus seen that
the three forced moves d2e] =+ dod d d] = dze1 and dod3 * dod1 re-
turn us to the original configuration, so G 1is edge-reconstructable
by Lemma 2.1.

We have now investigated all the possibilities of interconnection
pattern for non-disjoint special 3-chains of degree type (pb, p1,;10+1,
My - 1). We found that almost no interconnection pattern exists,

i.e. they must be all disjoint except at the starting vertex. Let's

state this as a bypassing lemma in proving Lemma 3.10.

Lemma 3.11. A1l special 3-chains of degree type (“o’ SRRt +1, Ky -1)
must be disjoint except at the starting vertex.
Let's come back to the configuration M in Fig. 3-4(a). Recall

that py>ug +1 and y, =p  + 1. Rename a . aj, a,s by, by by

0
Co> C1s €5 €35 Cy respectively. Note that C1Co > CiCy is a forced
move sending the 5-path ¢ 0€1€2C3C4 1N G to €;C1C4C3Cp 1n some

H' = H. Similarly C3Cy > is a forced move sending CoC1C2C3Cy to

“1%
€5C1CC3Cy (or €4€3C4C1C) whichk is the same path traced backwards).
For simplicity of notaticn, we will use 01 2 3 4 to represent symbol-
ically ¢ 0€12%3%4 - The forced move C{Cp = CyCq» OF more simply 1 2 »
14, will change 01234 to 014 3 2. The other forced move
32~>30 willchange 01234 to 21034. Notethat 01234
and 4 321 0 mean the same path, une is the other traced backwards.

We note that the effect of forced moves here is to reverse the order

of either the first three digits ("01" "234" to "0O1" "432", 2 3 4 s
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reversed to 4 32 and Ol is intact) or the last three digits ("012"
"34" {o "210" "34") when we transform from an isomorph of G to an
isemorph of H (and vice versa).

After a moment of reflection, we see that if we start with 01234

in G, we will have

in G (or isomorphs) in H (or isomorphs)
01234 21034
21430 4123¢C
41032 01432

provided our forced moves affects only the vertices Co> C1» €25 €35 Cy
(Tike C1Cp > €qCq OF C3C,y > CoCo etc.).
Let's ook at our €,C162C3C (that is 01 2 3 4) again. G must

have at least one special 3-chain since Q(G) > 4. We will show that

]

B cannot 1ie on a special 3-chain cé c{ cé cé with o cé (in the
language of previous paragraphs, we will show that O cannot lie on a
special 3-chain 0' 1' 2' 3' with 0' =0 ) Suppose not, and let's
consider G - Cp C3- Oy is a forced vertex in this subgraph and if

Cy9 is an edge replacing ¢4 C3» then g cannot be c, or cé other-
wise the new graph has an excludable (1,1)-coupling (given by 01 and
24 or 0'1'" and 2'4). g must then be Cé by Lemma 3.11 (or 0123
and 0' 1' 2' 3 are two distinct nondisjoint special 3-chains in the
new graph). So some H' =G - CsC3 + c4césf H. Looking at the previous
paragraph, we see that if 012 34 14is a path in G, then 41 03 2

or 23 014 is a path in an isomorph of G by appropriate forced

moves. This tells us that if ©0' 1* 2' 3' 4 is a path in H', then
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2' 3' 0" 1' 4 is a path in an iscmorph H" of H. Let's delete 1'4

and see what happens. Note that 012 3 and 0'1'2'3' may intersect
somewhere besides 0 = 0'. If they do not intersect anywhere except at
0=20', then 1'4 - 34 1is a forced move otherwise we have an excludable
configuration as in Fig. 3-3 . The same argument applies if they inter-
sect at 1 =1" as well. If they intersect at 2 = 2' (they cannot in-

tersect at 3 = 3' since 3 s a vertex of degree M and 3' of de-

degree;i] and 3' of degree u]-1in G), then in H", 2 3 1is an edge of
degree type (po, My - 1), impossible.
3 l=ll_l Ilatanlsxl 2 . - 7

Now in G H 1S + C4Cqs CpC3CCy 15 @ special 3-chain and
the forced move cé cé + cécf returns us to our original configuration

s : b I § b . (3)
consisting of 6162635, and €5C1¢2C3 while sending us to some H
=~ H. We then have G= H(3)sz H, a contradiction. Similar argument

says that c, cannot lie on any special 3-chain.

As an illustration, we depict the case when 012 3 and 0'1'2'3'
intersect at 0 = 0' only in Fig. 3-8 below. The pictures themselves
are self-explanatory.

In G, with the fixed 4-path €4C19C3%, of degree type (“o’ Hys
Mg * 14 Hqo po), we see that Cyq is a forced vertex in G - C3Cq> and
any edge-reconstruction must be of the form G - C3Cy + d3c4 with d3
lying on a special 3-chain dod]dzd3 in G by BO(3). (Note we cannot
have G - C3Cq + CpCp as an edge-reconstruction otherwise we have a
(1,1)-coupling and are thus done.). dy must not coincide with c3
since d3 has degree 4 -1 while C3 has degree in G. It's
conceivable that G - €30y + d3C4 nay be isomorphic to H, the only ron-

isomorphic edge-reconstruction of G, or even isomorphic to G.
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.
Caskg*l € oty CottoHl Cpult kgl CpTCaay Coukl Chaltg

NN - AR

c3’l~1] =1 C]at-l'l C]aU'i C3,l-l-| c3sl-l] C]’Ll'l C]sIJ-] 391-11

= W% cpuy co=Chugtl cpugtl cpmg G':ic ’“o 0 CoHotT Costgl
CpMy O Gty Cagaty-l Cy Cy~T Cpaity Caby

= H(3ls G: ;

Cogtl €o=Coukty Coubltl Cqabtg

CpHy=l  Cply Cpty Gy

Fig. 3-8

We partition the special 3-chains in G into two classes with respect

to the 4-path ¢ 0°1€2€34 Call a special 3-chain dod]d d, a Class-1]

273

3-chain if G - d3 4 is isomorphic to H, otherwise a Class-2

C3CIJ, +
3-chain (i.e. when G - €3¢y + d3c4%f G). Similar definitions hold for
any isomorph of G or H. Class 1 must be nonempty otherwise G is
edge-reconstructable (Class 2 can be empty though). Let n> 1 and

m>0 be the number of special 3-chains of Class 1 anrd Class 2
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respectively in G. Denote by 0'1'2'3"', ..., oMy (ny{n)sin) ype

\ 5
special 3-chains of Class 1 and 0{M*1)1(n*1),(n+1)5(n+1)

9 esoce 9

0(n+m)](n+m)2(n+m)3(n+m) the m special 3-chains of Class 2 in G

(they are all disjoint by Lemma 3.11). Choose C,C1CoC3C, among 4-paths
of the same degree type in G so that the number of special 3-chains
in Class 2 is maximum M. Let C be the configuration in G consist-

ing of (the disjoint union of) 01234, 0'1'2'34", ..., o{ny(n)y(n)
3(n), 0(n+]) (n+1) (n+1) (n+1), L 0(n+m)](n+m)2(n+m)3(n+m) Let H'

- (i) . : - (1),
G-34+3 74 for some i, 1< i<n (i.e. H' =6 - csc, + ¢y 'cq).

Since 0(1)1(1)2(1)3(1)4 is in H', we see as before that 2(1)'(])

O(i)](i)4 is in some H" = H. Consider H = H obtained from G by
the forced move c§1) (1) . cé1) (1) (so 0(1) (1) (1) (1) in C be-
comes 2(1)3(1)0(1)1")). We will see that a Class-2 3-chain 0(3)1(3)
2(j)3(j) in €, n+1<j<n+m will also be Class 2-chain for H/
as well (i.e. H - cgcp + c:(,’j)c4 or H -34+ 3304 wi11 be isomor-
phic to H, and hence H, but not G). This is trivial because first

6 - 34 +39)2 =6 s isomorphic to G by definition of "Class 2" in
G; and secondly G' - 1(1)2(1) ¥ O(i)B(i) = H  is obviously isomorphic
to H; finally we see that wx - 34 + 3(j)4 =G - ](1)2(1) + 0(1)3(1) -
34 + 30 45 identically equal to Hy = G- 1 (10,01) 4 oli)3(3) .

6 - 3¢ + 30 4 - 1000508) 4 g(1)301) gince a11 paths involved

(01 234, ol (1)00300) | 4(3)1(3)2(3)303)) 4re disjoint. Since
Z(i)3(i)0(i)](i)4 is in some H" = H, we see that 2(1)3(i)0(1)1(i) is
also a Class-2 3-chain for ﬁx’ and ﬁx (and hence H which is iscmor-
phic to H) has at least one more element in its Ciass 2 special 3-chains

than G does with respact to the same 4-path CoC1CnCaCyq COMmMON to both
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graphs. If we startarewin H with a 4-path dod]d2d3d4 of degree
type (“o’ Hys g ¥ 1, p.],uo) and define its Class 1 and Class 2
special 3-chains, we will see that an isomorph of G has at least
(M+1) +1 =M+ 2> M special 3-chains of Class 2 with respect to
dod]d2d3d4 » contradiction to the maximality of M defined for 4-paths

of degree type (u_»pt,s by * 1, Hy51,) in G

1

Since we have obtained a contradiction finally, we are done with

our subcase 3(a).

Subcase 3(b).of Lemma 3.1C. b0 = a, for a (2,1)-coupling.

Recall Fig. 3-4(b), which is redrawn here for convenience.

3, =bgsiy

a1sHy bysiy

a2*10+1

If Hq is My F 1, then 53, is a forced edge otherwise
aob]aza] is an excludable configuration of degree type (1_10, g ¥ 1s
Wy ¥ 1, po) by Lemma 3.2. We now let Hy>Hg * 1. a, is obviously a

forced vertex and in G - aja; +apr, agbyas2, is a newly created

()
special 3-chain of degree type (“o’ Hps by * 1. By - 1) (note that if
M3 7 My then a,a, is again a forced edge for we cannot join CPEN to
edge-reconstruct in order to avoid triangles), and so BO(3) implies

that we have to destroy a special 3-chain by joining aod. Degree
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argument (and principle of avoiding trianglec) says that a, and c¢ 1lie

in G on a special 3-chain d.d,d,d, with a = do’ d =d For sim-

01273 3
plicity, first suppose that ncone of d] or d, 1is any of Gys 35 b].
Consider the configuration consisting of the 4-cycle aoa]azb] and 3-

path dod]d2d3 as in Fig. 3-9(a).

H] - ao=d0,uo+l d2,u0+1

ayskly -1
az:Hg
(a) (b)
6+ 7o doatio*] Hy=G @ a =d ., dahg
1 e S dpty ke byspty dpsiy  dgspig-l
Aot Apitotl
(c) (d)
Fig. 3-9

By Lemma 3.11, all special 3-chains are disjoint and there can't be

another dédidédé with dé =a,. We see easily that aay a0d3 is

a forced move sending G 1o some H]Ef H (In G - 5375 3,34 has de-

gree type (po, wy - 1) and aob]a, has forbidden degree type

2



147

(po, Hye uo)) as seen in Fig. 3-9(b). Next, aob] SLIED) is a forced
move sending H] to some G]sz G since a]aob]a2 is a special 3-chain
of degree type (u,»uqsiy * 1oug - 1) in Hy (see Fig. 3-9(c)).

Finally we note that aod3 - aob] is a forced move sending G] to some
stz H since a,. 1is a forced vertex and all special 3-chains are dis-

0
joint by Lemma 3.11 (so aoa]aob] and d_d.d,d, cannot both be spec-

01723

jal 3-chains in some edge-reconstruction of G).

Now three forced moves a2a] - a0d3, aob] > 2425, aod3 > a]a2 re-
turn us to our original configuration G, and we get 112:H2 =G, a
contradiction.

Let's consider then the cases when d] or d, is one of ays 8y
b]. First suppose d] is but d2 is not. Then d] must be one of a,
or b] to avoid triangles. The above argument works except the justi-
fication of the forced move aod3 . aob] is by the fact that the con-
figuration in Fig. 3-3 is excludable. The argument for the case
when d2 is one of ays Ay, b] but d] isn't, follows the same 1line
as the first case when none of d], d2 is ay, a, or b]. Lermma 3.11
is applied in a different way (so that we don't have a,313,24 and
aoa]azb] both as special 3-chains). For the case when both d7 and d2

are among  a;, 2,, b], we must have d] =y, d, = a, or d] = b], d2

2
a, to avoid triangles. Without loss of generality, let d1 =2y, d2

a,. But now a;2, +—a0d3 is clearly a forced move which gives us two
non-disjoint special 3-chains of degree type (“o’ Bys Hg + 1, My - 13s

namely a2b1a0a1 and a2d3aoa], and this is impossible by Lemma 3.11.

So we have done the proof of our subcase 3{(b), hence completing the
proof of Case 3, and we are done with the lengthy proof of Lemma 3.10.

Q.E.D.
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Section 5. Inductive proof of A(n) and Bi(n)

By Lemma 3.8, 3.9 and 3.10 of Section 4, we know that A{(n) and
Bi(n) are true for n=1, 2, 3, and P(k) is true for k=0, 1, 2. To
prove the validity of A(n), Bi(n) and P(n) for a general n, we will
do some induction which interlocks these three conditions in a peculiar

way. We prove two technical lemmas:

Proposition 3.12. When Q( G) > 5, then for any k, 4< k< Q(G) -1,
A(k) and Bi(k) are true for any i> 0 provided (1) A(j) and

B].(j) are true for any 1< j< k and (2) P(k-1) is true.

Proposition 3.13. When Q(G)> 5, then for any m, 3< m<Q(G) - 2,
P(m) s true if (1) A(j) and B;(j) are true forany 1< j<m, 1>0
and (2) P(m-1) 1ds true.

Assuming the validity of Proposition 3.12 and Proposition 3.13, we

can prove now an interesting fact:

Proposition 3.14. A(n) and B].(n) are true for any n, 1< n< Q(G)-1;

Ple) 1is true for any o, 0< a < Q(G)-2.

Proof of Proposition 3.14 (assuming Proposition 3.12 and 3.13).

Assume Q(G) > 5 first. The proof is a folklore one. Suppose
A(n) is false for some n, 1< n<Q(G)-1, and let o be the smallest
such integer. Then o > 4 by Lemma 3.8. By Proposition 3.12, either
P (x-1) or 81‘(8) is false for some 1< pg<a (Alg) 1is true by mini-
mality of a). Suppose first P(x-1) 1is false. Let y<a -1 be the

smallest integer such that P{y) is faise. Then y > 3 by Lemma 3.1C.
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Proposition 2.13 says that either P(y-1) is false or A(j) or Bi(é)
is false for some 1< j, 6§ <y. Since j< a, the minimality of « and
y say that the only possibility is that Bi(é) is false for some &,
1<8<y. Llet ¢ be the smallest integer such that Bi(c) is false.

e >4 by Lemma 3.9. Proposition 3.12 again says that either P(e-1) or
A(v) or Bi(X) is false, some 1< v,x<e, i> 0. This is impossible
since e<y<a and a, y, ¢ are respectively the smallest integer
that A, P and B; fail; and we get a contradiction. So A(n) 1is true
for any n, 1< n<q(G) -1.

The validity of Bi(n) for 1< n<Q(G)-1 and P(m), C<m<
Q(G) -1 s done in a similar way (by applying Propositions 3.12 and
3.138) .

Heuristic feeling of the interlock induction step of Proposition
3.14 by Proposition 3.12 and Proposition 3.13 can be obtained by the dia-
gram in Fig. 3-10. In that figure, conditions A(n), Bi(n) for any
i> 0 and P(n) are classified as a rank-n condition.

There is only one rank-0 condition P(0) (A(O) is also rank-0 con-
dition, but we don't need it). There is no rank-(Q-1) condition for P,
only those for A and Bi's.

For 4< k< Q(G) -1, we see that conditions A and Bi's of rank
k are proved by conditions P's, A's and Bi's of smaller rank. For
1< k< 3, their validity is ensured by Lemmas 3.8 and 3.9. For 3 < k
< Q(G) - 2, the condition P(k) is proved by conditions P,A, and B,'s
of smaller rank and the conditions A(k) and Bi(k)'s (of the same rank).

We are left with the cases Q(G) < 4. But these are readily justi-

fied by Lemmas 3.8, 3.9 and 3.10 (actuaily Q(G) can be assumed to be
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Rank 0 P(0)
Proved by
Rank 1 P(1)\lemma 3.1C A(1) B0(1)... Bi(l) -
proved by
Rank 2 P(2) A(2) BO(2)... Bi(2) - | sirmas 3.8
Rank 3 P(3) A(3) B (3)... B,(3) ... e
Rank 4 P(4) A(4) 80(4)... 81(4) cen
Rank k-1 P(k-1) A(k-1) Bo(k-1) Bi(k-])
Rank k P(k) A(k) Bo(k) Bi(k)
Rank Q-2 P(Q-2) A(Q-2) 80(0-2) e B]-(Q—Z)
Rank Q-1 A(Q-1) BO(Q-l) Bi(n—l)
Fig. 3-10 Interlock hierarchical structure of
Proposition 3.14 (here Q means Q(G))
> 4 by Lemma 3.7). Q.E.D.

Proposition 3.14, especially the validity of P{a)'s, will be the
main tool to prove the edge-reconstructability of G when we have Type-I,
Type-1I, Type-III terminations respectively (we will prove the main the-
orem in Section 7). We will prove Proposition 2.12 in this section and
Proposition 3.13 in next section (Section 6) in order to complete the
proof of Proposition 3.14.

In the following, we will assume Q(G)> 5 and P(k-1), A(j) and

Bi(j) are true for any 1< j< k, 1> 0, and our k satisfies
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4< k< Q(G) - 1. We will prove the validity of A(k) and Bi(k).

Note that the validity of P(k-1) implies those of P(g)'s for any
B, 0< p<k -1, by definiticn.

Consider a special k-chain a2, ... a, in G, 4< k<a(G) -1.
We will divide the proof of Proposition 3.12 into four cases, according
to the degree of L and y_o- Induction assumption says that ;Jm(G) =
w,(H) forany Hezy if 0O<m< k-1. However, u (6) and i (H)
may be different (we want to show they are equal).

The validity cf A(n) and Bi(n) seem so trivial that they may be

classified as "folklore" theorems. In fact, in Edward R. Swart [177,

he conjectured something interesting:

Conjecture of Swart: The number of polygon (i.e. n-cycie) of given de-

grees for every vertex is edge-reconstructable in a general graph G.
This is a substantial generalization of the well-known fact that

the number of n-cycles {so degree of each vertex is assumed to be 2 only)

is edge-reconstructable (proof by Kelly's Lemma applied to n-cycles).

However, this more general Conjecture of Swart is terribly hard to prove

in general graphs. The validity of Bi(n) is trivial if we can have a

conjecture similar to that of Swart:

Conjecture. The number of n-paths 3gd1s «.- @, of degree type
(ao,a], R an) is edge-reconstructable for any general graph G.

The validity of A(n) 1is actually a quick zorollary of Bi(n).
However since the "obvious" conjecture stated above has no obviocus proof,

we need the validity of P(a)'s as an interlock in our induction step.

-

Case 1 of Propositicn 3.12. Mpop > Hg ¥ . My o> Mg $-7
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Consider G - a, _;a, _, for a special k-chain aja;... a, in G.
In this edge-deleted subgraph, agdy ++- Ao has a forbidden degree
type (u,> Mys ++es My os My _q-1). Let H=G - a _,a 4 +cd be a non-
isomorphic edge-reconstruction of €, where ¢ and d have respect-
ively degrees u, o-1 and p, ;-1 in G - 8 _o8, 1+ Suppose first
that a, o is neither ¢ nor d. By A(k-2), oneof ¢ or d must

be some aj, < j< k-2 (c or d cannot be a_ since Mpo1™ 1>

0
“o"lk—2'1>-uo by assumption of our case). But then Bo(j) implies

that in H we should have a special j-chain bob] e bi with bj =

~

t is es ) S ) . i "genuine"
a1 Or 3, It is easy to see that bobl " bJ_] is a "genuine

special (j-1j-chain in G. (Note that though b,by ... b, is a genuine

special j-chain in H, it is not a special j-chain in G). MNow bob]

bj_] and a,dy - A o (aoa1 e A resp.) forma (k-2,j-1)-

coupling ((k-1,j-1)-coupling) in G if bj =8, (bj = resp.),

and so P(k-1) says G is edge-reconstructable (bob1 cem D cannot

j-1

be a a or aja; ... a _, since otherwise j=k-2 or

01 “** 3
k - 1; note also bj—]ak-] or bj_]ak_2 € E(G)). So this case can be

excluded.

Hence we may assume one of ¢, d 1is Ao When Moo #‘*k—1’
then a, _, must be c by degree argunent, and when wu, o =u,_y, then
it doesn't matter to call &, _, by c or d (i.e. ¢ or d isa
"dummy" label here). So wa can always assume ¢ = o d may lie

on aa, ... a, -~ or not. Suppose first that d =a;, 0< j< k -3
0 1 K=J J =
(d cannot be a, since ot -1> “0)' Bo(j) implies the existence

of special b b, ... bj in H with bj = a, 4. S0 as befere, we have

a (k-1,j-1)-counling in G, and P{k-!) implies G's edge-reccnstruct-
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ability. This case car also be excluded now.

The only case left is that ¢ = I and d # aj, for any J,
0< j< k- 3. Now if a7 1s adjacent to o> 1 vertices of degree
uk(G) in G (ak is such a vertexj, we can show easily by Lemma 3.1 that
d is adjacent to exactly o > 1 vertices of degree pk(G) in H. Let
e be such a vertex, then the k - path agdy ... 8, _,de in H says
that pk(H) g_uk(G) (conceivably e might be some a3 0< j< k - 2).
Note that n, , =p.k(G) +1 when d =a,.

Hence we have “k(H) <_pk(G) for any H €2, when Hi-1s g2 >
Mo + 1. The abcve argument doesn't use the fact that Q(G) < Q(H) for
all HeZ,.; sowe can use the symmetry argument (starting at some
Hs G, get an isomorph G' of G from H - bk—zbk-] for some special
k-chain bob] cee by in H, and show uk(G') iuk(H)) and finally
conclude that “k(H) = p.k(G) for all H EEG. A(k) 1is proved now.
The argument of the previous paragraph actually shsws the validity of

Bo(k) also.

For a fixed 1> 0, suppose G has a k-chain aja; ... a, 1 b;
(b]. may lie on ay .- ak_3) of degree type (;10, Hys «oes Hk_7> p.k‘*"i).
We will show that N 1.(H) = N 1.(G), i.e. the number of k-chains of
such degree type is edge-reconstructable. The proof is essentially the
same as that of A(k). Let's sketch it briefly. Consider a nonisomor-
phic edge-reconstruction H = G - a, _,2, _; *+cd, witk the degrees of
c and d be respectively u, ,-1 and ji ;- in 6-ay o3y If
ay_o is neither ¢ nor d, then 2{k-2) jmplies that ¢ or d must
be some aj, 0< j< k -2, and o & (j) 1implies that theve exists

special b b, ... bJ. in H with bj =a,_ 7 Or & o Since
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bb, ... b

oP1 is clearly a genuine special (j-1)-chain in G, P(k-1)

J-1
implies G's edge-reconstructability then. We then may assume without
loss of generality that ¢ = CIPY d nay be some aj, < i< k-2 or

not (say the possibility d = bi = aj may occur). But if d = aj, then
we can easily find a (k-1,j-1)-coupling in G and so G is edge-recon-

structable. So d # any ays O<j<k-1.

Bi(k) now is a straightforward consequence cf Lemma 3.1 on edges
of some specified degree type. (To be more precise, details are a little
bit different according as d 1is not adjacent to a _qs Or d#a is

adjacent to a,_; or d=a,; butall of them are trivial to verify).

We have now proved A(k) and Bi(k) when iy >p g+ Ty o>

Mg + 1. We are thus done with Case 1 of Proposition 3.12.

Remark. Case 1 is the only case we have to do if our graph G has no
vertices of degree Mo * 1, 1i.e. degree one higher than minimum. This
suggests why the edge-reconstructability of bi-degreed graphs deserves
special treatment as in Chapter 2 (or more generally, any graph with two

"Towest" degrees differing by 1).

Case 2 of Proposition 3.12. Mol “Ho Flapgo>ug + 1.

Consider again G - a,_,3, o, for a special k-chain 2.a; ... 3, ,
a,_13, in G. Note that aja; ... a o has forbidden degree type
(hgs s =ees My pH_g 1) in 6 -a _qa 5, and so any edge-recon-
struction H 1is of the form G - ) _13k-2 +cd, with degree of c,d
in G-a 49, respectively equal to p  and . _, -1>p,- It's

conceivable that c may be a  in this case which presents more diffi-

culty.
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Let's assume ¢ = a  first and consider H =G -a, 3, _, *23,d
G. Let a  be adjacent to a> 1 vertices of degree u, in G (a.] is
such a vertex), then a1 is adjacent to « > 1 vertices of degree
My in H (d cannot be a1 by degree argument). First et d be
nonadjacent to a_q- We see readily that Hq i“k(G)' uy < “k(G) is
impossible, otherwise if e 1is a vertex of degree M1 adjacent to a;
in H, the k-walk aga; ... a,_je in G says p(6) <pq<p(6), and
we have p.k(G) = 1 for that case. If d 1is adjacent to a1 and
d # s then same argument as above says that p.k(G) =y and when
d = a,_y We can prove by same type of argument that uk(G) =pq or

}.l'l -1.

As a summary, we see that “k(G) =Wy Or py - 1 when c = a,
(i.e. when some H =G - a 13- * aod). Suppose pk(G) Mg - 1 now.
This can happen only when d = a- Since k< Q(G) - 1, we have My - 1
> g Or py>pg gt 1. The 3-path y_12k%021 in H says that M3 <
My and p, =p + 1. u, cannot be strictly less than p; - 1 other-
wise b]b2 is a forced edge for a special 3-chain bob1b2b3 in G. So
M3 Ty Or py - 1. Suppose M3 =Hq first. We note Ho =M, + 1
which implies k> 5. If k =5, then the 5-path a,aza a;a,3, in H
says that Hg Wy =Hg + 1. Now consider a3y -+ 3 again in G.

Its degree type is (!_10, Hys Mg +1, Hys Mg +1, My - 1)(L15(G) =M -1).
Now aza, > agd, is a forced move sending G to some nonisomorphic
edge-reconstruction I 1in which a,3123,353,25 becomes a,353,3135333
for in G - 38y a,3;3,525 is forbidden of degree type (p.o, Hys Mg +1,
My - 1) and ayag is of degree type (“o’“] -1). 1 is then the

. . . M . e R |
unique nonisomcrphic edge-reconstructicn by forced move. Now it's clear
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that aja, > aza, and aga, > aja, are forced moves sending I to G'
=G and G' tc I'=1 by same arguments. Since we obviously return
to our original G after these 3 (an odd number) forced moves, G
is edge-reconstructable by Lemma 2.1 and we may assume k> 6 now.
However, k cannot be six otherwise Mg =Hg =B 1, (as seen
from 53,313,348, in H), contradictory to the assumption of Case 2.
We have then k> 7. Suppose k =7, and we will show G's edge-recon-
structability in a similar vein. The 7-path aga;a dy ... ag in H
says that Mg =up =g+ 1,us =py. We have pg = u5(G) = deg(as) in
G by degree argument and hence we have readily Mg =My * 1 (and
u7(G) =uq - 1). To simplify the notation, let 0123456 7 repre-
sent aoa]a2a3a4a5a6a7 (we will follow the same practice in the next
few paragraphs) and write 0123 4567 € G to mean a2, . 2y
is a 7-path which is a configuration in G. We see 34 >7 0 is a
forced move sending G to a nonisomorphic edge-reconstruction I in
which 0123 4567 becomes 4567 0123 since in G- 34,
0123 and 456 7 are beth forbidden of degree type (uo, T uo-+1,
My - 1). Next we see that 1 2 > 3 4 is a forced move sending I to
G' sincein G-12,4567 01 and 2 3 are both of forbidden de-

gree type. Now the following diagram is self-explanatory to prove G's

edge-reconstructability.

01234567 ¢

45670123 € 1
23456701 € G
01234567

i
W

I?
e I P)

\
R
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We may then assume k> 8 (still My = Hy and “k(G) =Hy - 1
assumed). Clearly k # 8 by assumption of Case 2, and we have k> 9.
For k =2m> 9, the move a, . ja,. » >a,a, (possible only if p = 1)
9ives Hap o Hopg THopg Tttt THg THp Tug t 1, (while pp, 5=
Hop-g = *** T3 =;4]), contradictory to the assumption of Case 2 that
Mo > Mg+ 1. Let k be an odd integer> 9. We can prove G's edge-
reconstructability according as k=1 (mod 4) or k= 3 (mod 4) as
the cases k = 5, 7 proved above. By the k-path 3, 132027 - ¥-2o
we have wy o =hpg T vz THy AN gy g Shy g T ot Ty THp S
Mo * 1 (by the fact M3 =»p]). We have furthermore u, ; =u, and

uk(G) =pq - 1. (Using inductive assumption as well).
For k=1 (mod 4), the following diagram is self-explanatory.
0 1 Z 3 4S 4S+1 € G
4S5 4S+] 0 1 2 3 e 45-2 4S-1 €1

4S-2 4S-1 4S 4S¥1 0 1 .-« 4S-4 45-3 € G'= G

€ GG-])E G

N
w
N
(8]
(@]
—

s as+l € 18) = 1

o
—
N
w

and for k= 3 (mod 4), k> 9, with k =4S + 3, we note first that
(45-1) 4S - (45+3)0 is a forced move so that the k-path 01 23 ...4S5
(45+1) (4S+2) (45+3) in G becomes 4S(45+1) (45+2) (45+3) ... (4S-2)
(45-1) in I. Now clearly 2S forced moves (45-3) (45-2) +{s5-1) 4S,
(45-5) (45-4) > (45-3) (45-2), ..., (45+3) 0 »1 2} gives us 1V =T
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while returning us to the original configuration 01 2 3 -.. 4S (4S+1)
(45+2) (4S+3) and Lemma 2.1 applies to show G's edge-reconstructabil-
ity.

We have now proved that G 1is edge-reconstructable when “k(G) =
mp =1 and pg =p,. We next assume pg =pg -1 (and B (G) =pq -1
still holds).

Since k> 4, the 2-path 13k, Tn H=06-a _q3, 5, *aa, says
Ho =pg + 1 (it is easy to see that Hpop =M and so pg>pg + 1).
If a, 1is adjacent to a> 1 vertices of degree M1 in G, then a, 4
is adjacent to o > 1 vertices of degree My in H and hence adja-
cent to vertices of degree My in G(ak_2 inclusive). If Moz >Hg * 1,
then note every edge-reconstruction is isomorphic to G - ak_3ak_2 +ef;
and we must have one of e,f say e equal to a3 otherwise P(k-1) as
in Case 1 proves G's edge-reconstructability. By Bo(k—]), 2,3,
a,_3 Must be the "initial segment" of a special (k-1)-chain 8,3
ag_3 fg. If g is adjacent to p> 0 vertices of degree p; in the
new graph, we can easily see g =a by argument above and so p,k(H) <
MY l.lk(H) cannot be | by the edge-reconstructability of number of paths of
degree type (u] -1, my t 1, My - 1). uk(H) cannot be less than My -1
otherwise fg 1is a forced edge ir the special 3-chain 2,2,

a,_3 fgh in the new graph, so uk(H) =Wy -] =uk(G) if gy 5> Mo t1-
Then clearly k> 5 since By >yt 1. Suppose aj is adjacent
to a> 1 vertices of degree My in G, while ay_3 is adjacent to B
such vertices in G. If uy 4, FHyps then a, , is adjacent to g such
vertices in the new graph reconstructed from G - a, _5 3, , SO B =«

oroa + 13 and if we consider G - a3 32> we see that all replacing
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placing edge is a a,_,; 1in the latter case we get a contradiction
since the new graph has one less edge of degree type (“o’ u.‘) except
When “k-4 =u~l - ]- But .if “k—4 =u-l - 1, then .in H = G - ak_zak_]
+ aia, (c = ao), we have one more 2-path of degree type (u] -1, po-kl,
My - 1), contradiction (ak_] cannot be adjacent to two vertices of de-

gree py -1 otherwise a, _,a _; is a forced edge).

Now we have iy » =My o "uqsp_3 =My =Hy + 1 (we can then
prove k> 9, but this result is not needed). Furthermore, we note that
if a, is adjacent to o > 1 vertices of degree Hq in G, then a1
is adjacent to o> 1 vertices of degree My in G (including ak_z),
and LI is adjacent to (exactly) one vertex of degree by - 1 in G;
and 3 _3 is adjacent to a + 1 vertices of degree Hq in G (includ-
ing a,_, and ak_4). But then for H =G -a, _,a, _; *a,a.. we have

one more edge of degree type (p,o, u]-), contradiction.

We have proved that pk(H) = “k(G) (or even more G is edge-recon-
structable) when H = G - 08,1 T aa, with l..lk(G) =My - ] (;13 =

My Or My - 1). So A(k) is proved for such case.

Now suppose “k(G) =pqp and consider H =G - a, _,3a 1 * a d

again (c = a_ at the beginning of Case 2). If a_, is adjacent to

0o 0

a> 1 vertices of degree Hq in G, then G is adjacent to a > 1
vertices of degree p; in G, and we will have that a,_; 1s adjacent
to a +1 vertices of degree Hq in G with Mpop SHp OF 1y + 1 by
looking at G - a; 43, o-

Suppose first u, = U, (uk(G) ’:p]). Then g >pg + 1. Suppose



o
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M3 > Hy + 1. Then a replacing edge will give G's edge-reconstruct-
ability by P(k-1) wunless one end of the edge is a,_s3- Say the new
edge is ak_,3b0. Bo(k-l) says that we have a special (k-1)-chain

agay ... 3 bobl in the new graph I, and b] cannot be adjacent to
a + 1 vertices of degree My in I, and we have p.k(I) _<_pk(G) =Hq-
If pk(I) <pq -2, d_4d, , s a forced edge for a special k-chain
dd; ... d in I; and the case “k(I) =pq -1 (similar to the case
uk(G) Mg 1) is treated before, so pk(I) = U =p,k(G). We can
then assume Mg.3 “Hy t 1. This argument is the same as that we used
for [.lk(G) =pq T 1 u3 =|J,-! - 1.

As before we can show that Mpog SHy OF wy g =iy = 1. IF gy g
=My - 1, then by considering G - 33 _p> We see that aa,_a is
the only replacing edge which will give some trouble. From ay 331 _42,237>
we see that Mo =uo+'| and Hy <My If M3 =Hq> We see soon that if
k 1is odd, then Mpog SHpog = """ Hp SHg =iy, 2 contradicticn to the
fact that py_, =pq - 13 and if k is even (then b, =T1and a = 1),
then Myog SHygog = *°° SHo =H, Lol | =Hq - 1 implying My = 3. For
the latter case, ) _38,_o can be easily seen to be a "forced edge”
(after eliminating all other trivialities). If p; =py - 1, then look-
ing at G- ag_s2; », We see 3 4 is the starting vertex of a special
3-chain ak_3b b.b, in G with bo' # . _g> but then pk(u) <Hq - |

0172
contradiction to our assumption that p.k(G) = Mq- So we have shown that

Hi-g4 = Hq-
Proceed in this way, we can show that we can assume k is odd, Mo =i, =
« THpy THe T Topy =g = 77" o S Moo and a; ... 3 1s

"symmetric" in the sense of degrees. Now consider G - a;a,. The
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replacing edge must have one of its ends be a, or ay. Suppose it is

a first, and let the new edge be a]b. b cannot lie on ajay ... 3
since the degree of b in G is o By Bo(k-2), b0 must be the
starting vertex of the same number of special (k-2)-chains in G as a,
is in H, and so it follows (as in the proof of Lemma 3.3) that a is

)
the starting vertex of the same number of k-paths in H of degree type

(oo ks kg *Tougang + 1, ey + Topg) as it isin G. So we

have in particular that uk(H) <u,(6G) =1y and so “k(H) =;Jk(G) since

K
the case when “k(H) is smaller than ;Jk(G) is already treated. Next,
let one end of replacing edge be 3 The edge-reconstructability of 2-
paths of degres type establishes a contradiction (for a, cannct be ad-
Jjacent to a vertex of degree e ]>iJo) unless one end of the replac-
ing edge is some a5 2< j< k. Now B](j-2) gives a special (j-2)-
and

chain b b, ... bs_» with by_o = ay, by # 3y (b, may be a

(o} 0)

P(k-1) implies G's edge-reconstructability.

Now let Hgop =Hq t 1 with pk(G) = W (H] may be p, + 1 here).
We can easily prove that p,_, =p,+1 and a_5 1is adjacent te «
vertices of degree in G excluding a,_, (that is, if deg(ak_4) =
My then CI is adjacent to o + 1 such vertices) by considering
G - a, 33, _,- But this is impossible since a > 1 implies that a; i
is adjacent to some vertex # ay _g of degree u, and SO p_» < Hyps
contradiction.

So far we have proved that if H =G - a,_,a, 1 * a,d, then by (H)
=p (6) in all cases. MNow consider H =G - ap o3 4 * cd with ¢ # a,.
The "P(k-1) type" of argument readily says that ¢ must be a, _,. Lem-

ma 3.1 applied socn says that le(H) g_uk(C). Hence we have 'uk(H)‘i
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pk(G) in all possibilities without using the fact Q(G) < Q(H) (just
that k< Q (G) -1, k< Q(H) - 1). Symmetry argument can then be ap-
plied to say “k(G) <_uk{H) ard so A(k) is proved in complete force
for Case 2.

Though its form seems more intricated, the proof of Bi(k) isn't

too hard after A(k) 1is proved. Consider H = G + cd with

" 828k
c#a, first. We have to consider c =a,_, only and Lemma 3.1 immedi-
ately implies that Bi(k) holds. Next let c¢ = a,. We know that p,
can only be uy - 1 or M- Suppose M =Hq - 1 first. We know that
M3 can only be Hy Oor pg - 1. When Mg =Hqp, we have shown G s
edge-reconstructable and there is nothing to worry about Bi(k). Now
let My =Hq - 1. We know Hpop Sy > Mg * Topy =g * T. If a is
adjacent to g > 0 vertices of degree My ¥ i in G, then a, ;4 is
adjacent to g > 0 vertices of degree My +1i in H and also in G
when i> 0 (when 1 = o, a, is adjacent to no vertex of degree My - 1
in G while I is adjacent to exactly one such vertex in G). We
see that M3 > Mgt 1 implies Bi(k) trivially and we can assume
Mgz "My ¥ 1. We have proved that Hy-a must be My then. But then
we can prove a contradiction as before since H =G - ay 28y _j + 2,3y
has one more edge of degree type (p.o, “1)'

For the proof of Bi(k) in Case 2 we are left with the cases ¢ =
a, and pk(G) =q- As before we note . , can be py or pg ¥ 1, and
the Tattercase leads to contradiction easily. When p, _>pg  + 1,
Bi(k) is proved trivially and we have Hyog = Hg + 1 and Mg =My in

a way as in the proof of A(k) for this case; we have k *s odd and

Mo SHg = o0 Ty THy + 1,u] Mg T ot Ty Consider G - a13,-
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If one end of the replacing edge is aj, we have Bi(k) in a straight-
forward manner (say if 1> 0, then a, and a,_y are adjacent to the
same number of vertices of degree p.k+1' for any special k-chain aoa,l...
Ay in G); and if a, is one end of the replacing edge we get a con-
tradiction as in the proof of A(k) for this case.

So we have proved A(k) and Bi(k) and are done for Case 2.
Case 3 of Proposition 3.12. Mg “Hgaz "By * L

If all My = Hg +1 for 0< j< k - 3, then A(k) and Bi(k)'s
are trivial consequences of Lemma 3.4 (with § = “k(G) first, we see
uk(H) <_uk(G); then with & --uk(H), we see p,k(G) iuk(H)’ so p.k(G) =
uk(H) for all H GEG and can be represented by i3 then with & =

Hy t i, we can prove Bi(k)).

Let now m< k - 3 be the largest integer such that Hy > Mg ¥a
(Then Bpsg = =" T Tl Ty ¥ 1). As in the proof of Case 2,
we will prove the validity of A(k) by proving uk(H) g_uk(G) for any

edge-reconstruction H (without utilizing the fact Q(G) < Q(H)).

Consider H= G - amamﬂ

aani respectively equal to i and My - 1> Mo Suppose c # a,

+ cd with degrees of ¢ and d in G -

first. Then if d # a ., we see by A(m) that d = some aj 0< j< m;

so by B.(j), & special j-chain b b, ... bJ. in H with b  # a,,

and bj =d (since ¢ # ao) and so bobl bj-] and aga; ... 3

in G implies by P(k-1) that G is edge-reconstrucable. If d=am

(and c # ao) we see by Lemma 3.4 that _uk(H) <—f‘k(G) (later the same
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lemma is used to prove Bi(k))'

Now let c = a,- d may lie on ay ... 3 or not. First we will

prove that d cannot be some aJ., m+ 1< j< k. Suppose d = aj, and

s =uA-] =
o * 1 (condition void if A =1) and My <Hy + 2. We have further-

let A =3 - (m1)> 0. We have immediately Hy SHp = .

more . =p, + 2. We note b, can be My * 2 or By * 1. Suppose
My “Hy 1, then 1342 v - aj is a new A-chain of degree type
(Hgsuys seesdpys My + 1) in H, and so B;(a) says that a "genuine"
A-chain byby --- bA of degree type (“o’ Hys wees My yo by F 1) in G
must be destroyed. Clearly bo # G and bA = a

o P(k-1) now ap-

plies. Hence Hy = Mg + 2. A cannot be greater than m for My = Ho +

2 but Mg =Hg +1 for 0< s< A. Let's consider A =m now. We

have l"‘l] =“2 © aw s =um-] =“0 + ],um .-.:uo + 2’.u_m+] = owm e =u2m =

Moms] Mo ¥ 1 with j =2mtl < k. In G - aZmazmH, agay -+ g, s

"symmetric", i.e. the degree type is the same whether we start at a, or
Ao By degree argument any edge-reconstruction H of G will join
two vertices of degree Ho in G - CPRCPERE and Lemma 3-4 on the edge-
reconstructability of (k -2m-1)-paths of degree type (“o’ g * 1, ...
sy t 1, “k(G)) readily gives us uk(H) g_pk(G) (later the same lemma
is used to prove B].(k) whern A(k) s proved). So now we may assume

A< m.

The path a a, in H readily gives that Ha4l =

m+'| o o o ajao e o 0 A
S THp TR Flabgg S, THy Y20 S0 Mgy THy Y 2or u, *1
(since 24 + 1< j< k< Q(G), Mo 4] cannot be p.o). Suppose Horsl =

“c+2=“A at first. Llet m=asa+1+8 with 0<g<ad,a>1.
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o cannot be 1 otherwise n +1 since A +1<aA+1+

“Hatieg T Ho
B < 20, a contradiction since Mo =My + 2. So a> 2. Suppose o = 2

and let 8 = 0. In H, the path a a, a3y ... Ay

m+1 %m0 3 A
- 35,47 can be thought of as composed of three segments A B C each of
degree type (“0’“0 1, g 1,u0 + 2), (;10 +1, .pg 1,

+ i y
Mo *2) and (p, + 1, ...,u  + 1) respectively. 3,3, 41 > 390113047
is a forced move sending H to some nonisomorphic I and A B C be-

comes C AB. Next a.a is a forced move sending I to H'=

Jjo ” aAaA-ﬂ

H and CAB to B CA; finally, - a\].aO is a forced mcve

320+1%m+1
sending H' to I'=1 and B CA to ABC. Since three forced
moves return us to A B C, Lemma 2.1 says H is edge-reconstructable,
and hence G 1s edge-reconstructable. The proof uses the same ideas
in Case 2 when ¢ = a,s pk(G\ =uq -1 and yg =py. Now suppose

a =2 and g > 0. If Hon+] = Ho + 1, the above argument f{consider
el v ajaoa] o0 92741 in H) says G 1is edge-reconstructable. So
Moaq] Mo F 1, and we have readily Hopn+l4g = Hadg =i, ¥ 1 by look-

ing at the path Apy o ajaoa] L H again; contradiction,

since Mo ¥ 2 =M =u2A+1+B.

So we conclude « > 3. The general proof now uses the concept of
forced-move principle as in Case 2 when ¢ = a,» “k(G) =Hq - 1, Mg =
My and also the argument of the previous paragraph. It is quite
straightforward and hence is omitted.

Next let's assume Hopsl = Mg +1 (= Hp - 1). In this case, proof

proceeds in a way similar to the case for My g - 1s “k(G) =Mq - 1
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of Case 1 before (just as the case Hons] “Ho * 2 1is similar to the
case H3 =U--|’.U~k(G) =!J.'| - 1).
We now have proved that for H =G - . + aod, d cannot lie on

m+2 *° %k-1,

We then consider the degree of ;Jk(G). It can be equal to or great-

er than g * 14

Subcase 3.(a) of Proposition 3.12. }Jk(G) =g F 1. (Proof of A(k)).

With ¢ = a, for H

G - amam+] + cd, d can be a, or not. First

suppose d = a,, then py =p +2 and fory =k - (m¥l) =k -m-1>
2, we see My SHp = «° =;JX_] =Hg t 1. Now Ky can be g +2 or
Ho + 1 and it must be Mo * 2 otherwise B]QK) implies that P(k-1) is
applicable as before. Discussing as in the proof that d cannot lie on

A2 oo (two separate cases “2x+1 = U, +2 or Mo + 1), we get

uk(H) S_uk(G): and so “k(H) =, t 1 =;4k(G) sincg k< Q(H) - 1.

So we may assume d # ay - Let s be the largest integer such that
Mg =Hg +1 and m> s> x (existence of s guaranteed by above argu-
ments). In H =G - aa- gt aod,Bo(s) says that a_., fis the starting
vertex of a special s-chain am+]b] ... bs (conceivably b] may coin-

cide with 405 say). Suppose that b] # CHPR If a isn't any

m+3
[ 5 . s . ' =
b's, then from G - a40@p3s OUr new edge-reconstruction will have Hy
e o= Moyl = Mg + 1, contradicticn to the maximality of s unless a0
is an end of the replacing edge. The latter case immediately leads to
pk(H) = Mg + 1 except when 428, is a replacing edge. Then a3

is the starting vertex of a special s-chain in the new graph and it is
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easy to get a centradiction from the maximality of s. So a is some

m+3

b, € b] ... b . We note that in H, a is the starting vertex of a >

hi S m+1

1 special s-chains if a, starts a > 1 such chains in G. Hence d

cannot be some bu (or we can argue as the proof that d cannot €

a - @,_7). But then in H a3 ,.8 .3 bj-1bj2 cew byag, s a

chain of degree type QJO, g ¥ 1s ceeamg 1, “o) with length 2 + j

m+1

<2 +s<2+m< Q(G), a contradiction.

We have done the case b] # Y But it is ecasy to see why we

~

can assume so, for considering G - then Bo(s) would imply a

An+13m+2° m+1

ora ., is the starting vertex of a special s-chain. The former leads

to b] 7 CHNPY the latter leads to a contradiction by maximality of s.

We have thus done the proof of A(k) for subcase 3(a).

Subcase 3(b) of Proposition 3.12. pk(G) >t 1 {proof of a(k)).

From H =6 - a +a d, it is immediate that for x =k -m -1

mem+1 0

> 2, we have py =, = -o- Myl SHo * 1 and p, o >p  +1 (d may be

X
a, or not here). Note that if a is the starting vertex of a > 1

0
special (x-1)-chains in G, then BO(X—l) says that a4 is the
starting vertex of « special (x-1)-chains in H. Consider G - a .4

e £
a BO(X—1) says that a_,, must be the starting vertex of one

m+2°
special (x-1)-chain in the new graph (since Mo > Mg * 1), which will

imply ;Jk(G) =y ¥ 1, a contradiction.

We have thus done the proof of A(k) for Case 3. We now go through
a quick proof of Bi(k) for Case 3. By arguments before, we have to
consider only subcase 3(a), i.e. when Hy SHy t 1. Also we need cnly

consider H =G - a + aod with d ¢ CI (1coking at the

a
m mt+i
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proof that d ¢ a 47 --+ 37> We can see either Bi(k) hold, or even
more, G 1is edge-reconstructable). Going through the proof again, we
see every possibility leads to contradiction or edge-reconstructability

of G except when a is an end of the replacing edge and a_ isn't.

m+2 o
But for that case Bi(k) is an easy consequence of Lemma 3.3 on
(k -m-2)-paths of degree type (“o’ Ho + 1o coespg ¥ 1o * i), and

so we are done for Case 3.
Case 4 of Prcposition 3.12. Mol > Mo 1 Mg SHo T 1

If B =Hg +1 for 1< j< k -2, then Lemma 3.5 applied to
k-paths of degree type (“o’ Mg * 15 G Mo t 1, My _1e “k(G)) says
“k(H)<—“k(G) for any H GEG and then uk(G)g_uk(H) when p in
Lemma 3.5 is taken to be “k(H)' So A(k) 1is true for this case. Take

P =y t i (and & =Wy as before), we see B].(k) holds as well.

So we can find the largest m, O0< m< k - 2, such that My > u0+

1 (and Mpt] = -+ =Mpop =Hg * 1). Suppose at first that m =k - 3.

Consider G - Ay _33) 2 + cd, with degree of ¢ and d respective-
ly equal to p, and uyp 3 -1>p, in G-a 3 ,. If ¢ #a,, then
d must be 3y _3 otherwise "P(k-1)-type" of argument as the three cases
before says G 1is edge-reconstructable; and pk(H) <—”‘k(G) follows
from Lemma 3.5 on 2-paths of degree type (uo, Hi1e uk(G)). Later
when we prove that uk(H) guk(G) for all cases and write My for
their common value (by symmetry arguments),the same Temma can then be
applied.to prove Bi(k).

So ¢ =ag, and we see as in Case 2 that w4 =y O My - 13



the latter can happen only when d = a1 If Ml =My - 1, then M3
may be My Or py -1 and we may argue as in Case 2 that pk(H) g_pk(G)
is true or even stronger, G 1is edge-reconstructable. (The argument is
essentially the same except some delicate differences in applying differ-
ent lemmas and also note the number of special 2-chains starting at ap_o
in H 1is the same as the number of special 2-chains starting at a, in
G). The proof when;¢k4=kllwi1] follow the same way as in Case 2.

Now let's assume m< k - 3. Then the argument will be of the same

i = = . [}

type as in Case 3 (we have Mo =Hpo3 = Mg 1 say). We can prove

for H=G - a +ajd, d cannot Tie on a ., ... 3 _, asin Case

mem+1
3. Furthermore we can prove a contradiction as in Subcase 3(b) (since
Hp-1 > oo * 1),

So by discussing separately m =k - 3 and m< k - 3 and then
utilizing the same type of proofs as in Case 2 and Case 3, we see that
A(k) and Bi(k) of Case 4 can be proved in an "easy" way, completing

our proof of Case 4 and hence that of

Proposition 3.12. When Q(G) > 5, then for any k, 4< k< Q(G) -1,
A(k) and Bi(k) are true for any 1> 0 provided (1) A(j) and Bi(j)

are true for any 1< j< k and (2) P(k-1) is true.
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Section 6. Inductive proof of P(k).

In this section we will prove Proposition 3.13 which is inductive
proof of P(k). Note in Section 4, we have proved the validity of P(0),
P(1), and P(2). The proof of P(2) is extremely hard. Recall in Sec-
tion 5, we have proved the validity of A's and Bi's based on the in-

ductive assumption of validity of A's, B_i's and P's of lower rank.

We now will assume Q(G)> 5 and for a fixed k, 3< k< Q(G) - 2,

we suppose A(Jj), B;(Jj) and P(k-1) are all true for 1< j< k, i> 0.

Recall that an (¢ ,8)-coupling is a configuration of a special a-
; . g "
chain aja; ...a and a special p-chain byby ... bB with ac‘bB € E(G)
and the degenerate case aa, -++@, = byby ""b8-1 (with a; = by, a =
B-1) orbib ...bp =aa; ... a,_y 1is not counted. Recall that

B

P(n) says an (a,s)-coupling with 0< a, g < n is an excludable con-
figuration. Note that P(n) implies P(m) by definition when n> m.

As our first reduction in proving P(k), we see that we can assume
a > B without loss of generality. Furthermore, « must be k other-
wise P(k-1) applies (since p< a< k - 1 in that case). We will prove
this inductively for g from 0 to k.

But p clearly cannot be zero, otherwisz Q(6) < k + 1< q(G) - 1.
So the induction is vacuously true at the start, and we may assume 1<
B < k. We classify (k,8)-couplings according to the degrees of My and
Mg - It is called a (k,g)-coupling of the first kind if p, > By * 1,

Mo > g + 1; the second kind if one of My Mg is Mo + 1 and the

B
other is greater than iy ¥ 1; the third kind if uk=pB o +1. We note

we have to consider only the first kind when G has no vertices of
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degree Ho *+ 1, (again bi-degreed graphs call attention).

Note furthermore that the cases a, # b0 and a, = b0 differ in

general. When a, # bo’ we can assume ajaj ... 3, and bobl vee bB
are disjoint everywhere (otherwise we may either apply P(k-1) directly
or we have a (k,p')-coupling with B' < B and induction applies).

When a, = bo’ then we assume y > 0 1is the smallest integer such that
aY # bY (then y < B); and aY qY+] ... @ and bY - bB must be
disjoint everywhere (by same type of argument). The former is less

intricated and is usually easier to do; the latteris often harder, but

not intractable because it has more "structures" in it (say some cycles).

Case 1.0f Proposition 3.13. M SHgo ¥ 1y Hg = Hg + 1.

So our (k,g)-coupling is of third kind.

Subcase 1(a) of Proposition 3.13. a_# b

(o} o}

First we note that B can be assumed to be k-1 or k, for if
B< k -2, then 8,8y +-+ A3 and bob] e bBak form a (k-1, g+1)-
coupling which is excludable by P(k-1). Next we observe that G is
edge-reconstructable if aay ... @ is of degree type (uo, Mg * 1, ...
s Mg * 1) by Corollary 3.3.2 (for bobl e bB is of the same type
since g < k). Let k'< k be the largest integer such that u,.>

Mo + 1. Note k'< k-1 if p=k -1, and so k' is aiso the

largest integer < g such that Mo > Hg t 1 (when g =k -1 or k).

Consider G - Api iy Any edge-reconstruction is obtained by re-
placing by an edge ef of degree type (“o’ Hyo - 1) in G - TR

Suppose e = a, first. f must be some vertex in this coupling other-
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wise Apiyq -+ @ and bo 25 % bB forma (k-k'-1,8)-coupling and

we are done (if B = k-1, P(k-1) applies; if B = k, then k - k' -1
< B and inducticn appiies). If f = some bj, Bo(j) implies existence
of special CoCq - cj in the new graph H with j> 0, Ci = A and

we have a (k',j-1)-coupling. If f = some ag> k! + 1< s< k, then

B gt g “Hg T 1 implies a (k', s-k'-1)-coupling; and Mgty “Hgt

a_.

2 dimplies a (k-k'-1,8)-coupling, and we are done when e a

Hence we see that e must be Apryy O bo’ When e = R A(k')
implies f € a; ... @,y and a "P{k-1)-type" argument works. So e =
bo. Again f ¢ g e Apy and "P(k-1)-type" argument says f = a is
the only possibility. Llet A =k +8 - 2k' - 1, we have Mg % 4w S

I
|

My = ; -

A Mo * 1. We now consider G A 1418142 (ak.+2 means bB when

k = k'"+1). There are five ways to repiace by a new edge, namely 353 1470
By raps 321420 Doy
tion quickly and the last three imply that iy Or Ao in the new

and aobo. The first two lead to contradic-

graph I is the starting vertex of a special A-chain by BO(A). Consid-
ernow H=2G - IR + ak.bO or J=G - bk'bk'+1 + bk.ao we can
see easily that a4l = u0+1. Consider G - LI LI again, we can
prove as before that Ha4p “Hg * 1 (by BO(A +1)). Proceed in this
way, we will get a contradiction finally (say after k' - A steps we

prove p . =p ¥ 1), finishing our proof of subcase 1(a).

Subcase 1(b) of Proposition 3.13. iy = bo'

Let y> 0 be the first integer such that aY # bY' As in Subcase
1(a), we note g can be assumed to be k-1 or k. But B cannct be

k since a, = b0 and G 1is bipartite; so p is k-1i. Let
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k! < k -1 be the largest integer such that M > 1 * 1. If k'<
y -1, then in G - A1 igys iy --- @ and bpgy... by ;o isa
forbidden (k-y -1, k-y -2)-coupling, and 3587 - Ay is of for-
bidden degree type; and so any edge-reconstruction must have a, or
Apiyy T bk'+1 as an end of the replacing edge. If it is Q14 then
the other end is some a5 O0< j< k' +1 by A(k'), and a P(k-1)-
type argument works (i.e. we have a (k', j-1)-coupling then). If it
is ags then the other end is say, some aj (or bj)’ k' + 1< j=< k. If
Yy< Jj< k, we read from bk'+1 bybyﬂ”' bj bk that Mkt 4] =
Mo t 1 and so B1(j—k' -1) says that ap, 1is the (j-k' -1)-st vertex
in a special chain in the new graph, so we have a (k', j-k' -2)-coup-
ling and G 1is edge-reconstructable. When j = k and Hpog'-1 Mo T2
then we have a (k-k' -1, k-k' -1)-coupling; while if Hpogic] SHg * 1y
then we have a (k', k-k'-2)-coupling, and G 1is edge-reconstructable
in both cases. The treatment when k' + 1< j<y 1is similar.

Hence we have k'> y. We will show that for H =G - ag.a .y *+
agd, d cannot lie on Aryy o @pe Let d=a,, k' +1<1<i<k

Then g =pp = »oo =pypp Sug ¥ 10wy g canbe p, + 1 or

Mo * 2. If it is by ¥ 1, we will have a (k', i - k' - 2)-coupling at
d and we are done. So let p,_ ..y =u, * 2. Note k'< k - 2. Now
delete LI from G. Since k< Q(G) - 1, a replacing edge must be
aa, or ap_qa, and hence we have Hi_gra1 = Hg +1 when i # k. To
show that d # a note that Ay 147 is adjacent to a vertex of degree
Ho * 1 # A1 40 and so from G - aa,_y we get Hi=k'-1 = Hg +1 as
well. (The case My Sy t 2 can be done simply). The fact a, = bo

is used heavily.
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Now if we follow the proof of Subcase 3(a) of Proposition 3.12, we
see that we are left with the cases that G 1is edge-reconstructable.

Hence we are done for Casz2 1.
Case 1' of Proposition 3.13. Hp =Hpe 1 =My +1, Hg >H, +1; or
= = 1
Hg SHg_15Hg ¥ 1oy >p, + 1.
For simplicity of illustration, we will assume a, # b0 (the case

" b0 is similar to the corresponding case in Case 1).

Q
il

First suppose ) = Moy SHe t 1o Hg > Mg +1. If p<k -2,
then our (k,3)-coupling of 8,37 -.. 3 and bobl - bB can be in-
terpreted as a (k-1, g +1)-coupling a,aqy--- 3 and bobl"' bsak
and so P(k-1) applies. Hence B =k -1 or k, which is impossible
by degree argument.

Next suppose M > Mg 1, Mg =‘pB_] =pg ¥ 1. As before we can
assume B>k -1. B # k obvicusly and so g =k - 1. If a,dy
a1 is of degree type (“o’ Ry * 1, «vus Mo * 1) with Mo > 1, it is
easy to see a, 3, or a, .3 _; is a forced edge depending on k s
even or odd. The case Mg = 1 s trivial. So we may assume k'< k
be the largest integer such that Mo > g * 1. Now the same type of
argument as in Subcase 1{a) works and we are done.

Case 1' eliminates some coupling of second kind which "resembles"

coupling of third kind.

Case & of Proposition 3.13. My Mg * 1, Hi-12 Mg >pg t 1; or Hg =
Mo +1, lesue_]>1~10 + 1.

o~

Suppose first i, = g + 1, Hyeqe Mg > b 1. We may assume
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B>k -1 and B cannct be k by degree argument.

Suppose furthermore a # ho. Consider G - 13- A(k) dimplies

that a replacing edge ef should have e = bU or a . or a, and f €

ay ... @y or b] 25 bk-]' By Bi(j) for all j, 1< j<k -1
and P(k-1), it is easily seen that Q13 ak_]b0 is a forced move
(i.e. ak_]b0 is the only possible replacing edge). From a,a,
ak-lbob]’ it soon follows that ;4k+](H) <y for the new graph H. But
uk+](H) cannot be smaller than My - 1 otherwise L Ck4 is a forced
edge in a special (k+1)-chain CoCq +++ Ckgyp in H. Hence py4q(H) =
H-i OY‘ u] - ].

Note that k> 3 now. Call our special k-chain "symmetric" (with
respect to degree type) if Hp = Hg * 1s M1 “H1s My SHos e

}J.k_.i::i_l.i, ... etc.; for ]Si<_k'].

Assume the special k-chain is "non-symmetric" at first. Note that
it is impossible that there exists a third special k-chain CoC1 * -+ Ck

such that Cp = ak; for if this is the case, then N # a, or b say

(0]

o 7 bys and the forced move a, 12, > 8, _1b, gives in H a k-path

CoCp -+ € of degree type (uo, Hys eevs “k-]’“o) which in turn im-

plies Q(H) < k< Q(G), a contradiction. Note further that we cannot

have a k-path dod1 oo dy with do = a, deg(dk) = Py and deg(di) =

;11,0-< i< k (it has degree type (“o ¥ lg Mys s My ps “o))’ for

then in H' =G - b, _qa, + b, j2,, we have Q(H') < k< a(G).

k-1"k k-1"0"

Call the configuration aay .- ak—1b0b1 e bk—]ak a (k,k-1)-
train (in H). Clearly a (k,k-1)-coupling and a (k,k -1)-train is in-

terchangeable by a forced move. let 0o, be a vertex of degree on

o Ho
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the maximum number M of (k,k-1)-couplings in G and H, say G.
Then b0 cannot be the starting vertex of a (k,k-1)-train otherwise

a forced move gives that bO lies on M+ 1 (k,k-1)-coupiings in H.
The forced move a, _;a, > a, _;b, now creates one mere (k, k~1)-train
in H without destroying any one. We are done if the number of

(k,k -1)-trains is edge-reconstructable. This folklore result however
1s not too trivial. By Bo(k), ay lies on a k-path 8 € --- Cp of
degree type (“o 1o Hyslos s g ¥ 1) in G. ¢y +.- € 15 dis-
Joint from the configuration agdy ... by 4 ... by otherwise a forced

move a,_qa, >3, _,b

b, or b3, > b 2, gives contradiction. Con-

sider G - 2yCq - Ciearly ay is a forced vertex. We see H' =G -
CI + akd (d may lie on Cop v ck) must have the same number of
(ksk =1)-trains as G has since no (k,k-1)-train is affected (other-

wise we easily get a contradiction by looking at H =G - 3 13k * akb0

or H" =6 - bk—lak + bk—]ao)‘

We now can assume our special k-chain is "symmetric". Consider
be_o- If upp>u, + 1, then from G - by _1Py_p» we easily see that
if ‘*k+](H) = Uy then any replacing edge entails applicability of
P(k-1) except when the replacing edge is bk—zak’ which happens only
when =1 and ;i =p +2=23. But then we have a (k-1, k-1)-
coupling and P(k-1) 1s ready again. So we have u, o, =p, * 1. We
can again consider if bob] e bk—2 js "symmetric", i.e. we ask if
lJ.k_z =IJ,O + ], I.J,k_3 =p,-|,}..‘.k_4 =u2, ce oy [J.k__i =u_i, ss OLC. fOY‘
1< i< k-2 are true or not. It's not hard to show that (after all
trivial possibilities are eliminated by P(k-1)) bk—lbk—Z -+ bk~]bo is

a forced move. Define (k + 2, k -~ 3)-train in a similar way. It is
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not too hard to show the edge-reconstructability of number of (k + 2,
k - 3)-trains and hence the edge-reconstructability of G (the details
are more intricated since the two "sides" of the coupling are not of the
same length now).

Hence b b, ... b, _, s "symmetric",i.e. Hj = Hyoje 1< j< k-3.
M2 = Hg + 1. Combined with the "symmetry" of bob1 - bk, i.e.;;i =
Hiqs 1< i< k-1; we conclude at once that My M3 THg = -es My ©

Mg “Hg = +-» =l * 1, and k is even (since Hy>Hg t 1,;Jk =u +1).

0
Now it is clear that by,b; 1s a forced edge since a2y ... a by 1

b, of degree type (uo, His Mg+ Tapgs cewspng g pg ¥ Ts by -1)
can be proved to be excludable easily as we did in Case 2 ¢f Proposition

3.12. (with uk(G) =g = 1,;13 =p.-l).

Next we ccnsider LJk+](H) =uy - 1. As in the previous paragraphs,
we can prove aga; ... a is "symmetric", 1.e.;41 ::Jk-i’] < i<k-1.
Consider G - 1%k for a special (k+1)-chain €oC1 *+ Cpo1Ck4 in
G. Cr-1% is a forced edge unless CoCk+] is a replacing edge, in
which case, Mpop SHysHp SHg t 1. So Mg = iy * 1. We can assume
M3 Tl - 1 otherwise we are done as in Case 2 of Proposition 3.12. We
have furthermore k> 5. But now c, _jc > c c g createsa 2-path
Ch-3Ck-2k-1 of degree type (u} -1, By ¥ 1s Hy - 1) (by "symmetry",
Mgz Mg THy - 1) while destroying none of the same type, so we get a
contradiction.

We have now done the proof of Case 2 for My =H + 1,;Jk_1 >, +1

(o}

and a, # bo’ Let's outline below the ideas when iy ™ bo' Let y> 0

be the first integer such that aY # bY' (Note 8 can only be k -1

here). If we delete aybk_], difficulty will arise only when aj is
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one end of the replacing edge (otherwise P(k-1) is directly applicable.)
let H=6G-ab, ;+ asd. If d isn't on the configuration a 2,

bk-l ... bY of the (k,k -1)-coupling, we can show a contradiction to

a
k

A(k-1) (by proving edge-reconstructability of (k-1)-paths of degree

type (u0+ Tolystlps -ons My oo Hio -1). So d = some a; or bs>

say aj. And we can conclude that in H, ay starts a special Jj-chain

CoC1 -+ € with ¢, = ap, c; = be_y- Similarly, we see that in I =
G - akb_] +a.e, a  starts a special m-chain d.d... d ~ with d  =a,,
d, = a - If ¢, #a,_1> We see that in I we have a special m-chain,
m< k with dmd0 € E(I) and so Q(I)<m+ 1< k+1=q(G), a contra-
diction. Similar contradiction holds when dy # b,_;- It can be proved
that the case d] = bk-] and Cy = a4 (they have more structure to be
considered and hence also more structure to be used) leads to contradic-
tion as well.
Now let's go to the case My > u0+1, Hg™ Mg +1, Mg 1 >uo+1.
Then B < k. Similar type of argument applies with minor modification

and hence proof is omitted.
Case 3 of Proposition 3.13. My > Mgt ]’“8 >, t 1.

This is a coupling of the first kind. We may have a, # b0 or aj =

b,- When a =b , then let y> 0 be the smallest integer such that

a #b.
Y Y

First we observe that 3 can be assumed to be less than k. For
if a, # bO and we consider G - akbk; then A(k) says that a new
edge ef must have e € ay ... 3y and f € b] e bk' When ef #

akbk’ then Bo(j) for some j, O0< j< k, says that there is a special
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J-chain CoC1 * -+ Cj in the new graph with Cj =a, or bk’ We then

have a (k,j-1)-coupling when we have a (k,k)-coupling. So we can as-
sume B < k when a, # bo' If a, = bo’ then by "bipartiteness" of

G, ay and bk must be on the same part of G and akbk € E(G) is im-

possible (actually for a general graph we can show that g < k by argu-

ments similar to the case a, # bo above).

Consider G - aka now. A(k) says that a new edge ef must have

ec ay ... and f ¢ b] e bB, and we can find by conditions Bo's

of lower rank than k a special (& +1)-chain CoCo *- in the new

. Cs41
graph H with c,,; =a, or by, 0< 8 < k-T1. Hence in G we will
have a (k,5)-coupling or (§,8)-coupling. The latter possibility can-
not happen, for 6, 3< k -1 and P(k-1) applies to show G's edge-
reconstructability. The former will happen when Cs+1 = 3 and &6 > 3

(if 6 < p, then induction on B says our (k,5)-coupling is exclud-

able). Also note all three special chains are distinct (Coc] -ev Cg

isn't bob1 - bB since bBak ¢ E(G), but Csdy € E(G); €oCp - C

isn't ajdy ... 3, since e must be some 3y j< k, and in H

)

agay ... aj isn't a special j-chain). It's ccnceivable that they may

intersect, say a, = b0 =C4 may happen.

We now note that c6 ¢ 3y - & and c6 a bob] v i 1m bB since

otherwise P(k-1) is applicable. Consider H =G - cga, t ef, 2 €

= N > + b e-
12,y ... s fe CoCq ++- C Note we can assume Mg > Mg 1 byr

5"
sults of Case 1' and Case 2 before. Closer investigation on the deri-

vation of the special (§5+1)-chain ¢ Cy --- C shows that, with the

0
aid of BO(6+1) and Bo(k), we can assume the existence of a special

6+1

k-chain CoC] cee Cp in H=G46 - bBak + bBC6+1 with C6+1 = ay and
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Ck = 341 (cO may be a, or not). Toget I =G - Cs K + ef, all

possibilities are easily seen to lead tc P(k-1) except when ef =

c6a€+]. Again we can find a special k-chain dod] e dkd€+]... dk
in I such that d€+] = a, dk = a4 hence Mg SHeyy ¥ 1 Qik = Mg 4]
+ 1 as well). Let ¢ #& first. Note 3 41 ¢ d0 e d otherwise

P(k-1) 1is applicable readily (we have & + 1< k - 1 by the way). 1In

H we see dO e de+] and ¢, ... C form an (¢ + 1. &)-coupling

with ¢ + T< k - 1 and we are done. When ¢ = &, the above argument

still works and we have a special (& +1)-chain dodl ... d distinct

5+1

form CoCq + - Co+1 in I, we then have a (§+1, p)-coupling with & + 1,

B < k unless dod1 e d6 = bob1 i bB’ which can hold only if & = 8.

In this case we can easily find a (8 +1,56)-coupling (or we have a

(kyx)-coupling with x < & and 1induction applies), so we are done

. , .
(Tooking at G - CREIOR

The proof of Proposition 3.13 is now complete. Q.E.D.
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Section 7. Proof of Main Theoram

In this section, we will prove the main theorem using Proposition

3.14 as the principal tool which we restate for reference.

Proposition 3.14. A(n) and Bi(n) are true for any n, 1< n< Q(G)-1;

P(a) is true for any «, 0< o< Q(G) - 2.

Recall that any (bipartite) graph can have exactly one type of term-
ination, namely Type-I, Type-II, Type-III terminations defined in Section
3 of this chapter. In Propositions 3.15, 3.16 and 3.17 following, we
will show that each type of termination leads to the edge-reconstruct-
ability of G; and so in Theorem 3.1 following we can combine these re-
sults and say every bipartite graph with at least four edges is edge-re-

constructable.

Proposition 3.15. G 1is edge-reconstructable if it has a Type-I termina-

tion.

Proof of Proposition 3.15. Let AT aQ(G) be a special Q(G)-

chain in G with a,.y 7 a,. Consider H =G - a;6)3506).1 * 35(6)2;

(aQ(G) is a forced vertex by degree argument). Bo(j) implies the ex-

istence of a special j-chain bby ... bj in H with bj = 3a(6)-1°

0< j<a(G) - 2. (b say). 3(6)-2 cannot 1lie on bobl"

"

o My be a

otherwise P(Q(G) -2) works and G 1is edge-reconstructable.

0
J-1

Jien av p: s _2_
Furthermore Ho(G)-1 > M) kg * 1 otherwise we have a (1,Q(G) -2)
coupling.

Suppose bO # 3, at first. Then bob} een bj-] and a,3,

3(g)-2 are disjoint otherwise P(Q{G)-2) applies. Consider I =
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G - 3 (6F2%(G)-1 +ef. If none of e,f € byb, ... bjaQ(G)’ then

boh] bj 3,(6) gives a Type-I termination of length< j + 1<

Q(G)-1 in I and so Q(I)< Q(G), a contradiction; and we may assume

e=b, ¢ boby --- bj. Similarly fe¢ aja; ... 4h(G)-2 Sinee otherwise
we have a forbidden degree type. It's impossible that both e = b0

and f = a, hold since “Q(G)-] > Mg + 1. Now it is easy to find
some couplings such that P(Q(G)-2) works.

Next let b, = a, and Tet y> 0 be the smallest integer such

0
that bY f:aY, then y< j. If Mo (6)-2"Ho +1, then we can argue as before

and easily see that P(Q(G) -2) works. Difficulty arises only when

“Q(G)—Z =4, + 1. If a, is adjacent to a > 1 vertices of degree My

in G, it is easy to see that aQ(G)_2 is adjacent to o vertices of

degree p, 1in G (by looking at G - 30(6)-2%(6)-1 and note ”Q(G)~T>“])'

Hence o =1 and MG (G)-3 B

Suppose pg>pg + 1 at first. Write O for Q(G) here. If
Ho-q4 > Mo * 1, then it is easy to find couplings satisfying P(Q(G)-2)
unless 34-437-7 is a replacing edge (and My =My * 2); but this is
impossible since bY‘]bY bj-]bj(=ag-1) and aY_]aY aﬂ—dan-?_aﬂ—'l
together form an odd cycle. So Ho.q = Hg ¥ T. From G - aj 33,
see p, =p, t 1 (for Mooy =My +1>ug * 3). Consider G - a5 pas 3.

Difficulty will arise only when the replacing edge is aQ_4f, f g 2,3y

..a . In that case, we see a0 is a forced edge by degree argu-
a" e

Q
ment (say a

Q-1
Q-280-3 is of forbidden degree type (;_10, M -1)). So we
see Ho.g M7 92r Hq - 1 and from G - an_]ag_ﬁz, we conclude that
My =My Or u, - 1. Finally from G - 8,_73,.5> We see 80(3) im-

plies that Ho-1 Hq or u]—l,coni‘.rad‘ir;tory to the assumption that
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e = Hy-

When Ry Shg ¥ 1, we can show that Ho.g = Qg +1. So with k =
o - Z,iJk =y + 1, we are in Case 3 of Proposition 3.12. Hence we

can have G's edge-reconstructability unless a is one end of the

Q-4
replacing edge which can be shown to be impossible as previous paragraph.
The above arguments have assumed Q(G) > 6. But it is not tco hard
to prove that G is edge-reconstructable when Q(G) = 4 or 5 (prove like
what we have done for Q(G) < 3), hence we are done for this Proposition.

0.E.D;

Proposition 3.16. G 1is edge-reconstructable if it has a Type-II ter-

mination.

Proof of Proposition 3.16. Again let Q bLe a shorthand for Q(G). We
can assume o > lg + 1 otherwise any edge-reconstruction H = G -

and Q(H) < Q(G) - 1, a contradic-

I aof, fd a3y «e- Ay

tion. Consider now H = G - a,3q.1 ¥ aoaj, 0< j<q-~1. BO(J) im-

plies the existence of a special j-chain bob] o bj in H, bj N E
Let b, # a, first. Then b b, ... bj-] and aja; ... a; q can

be assumed to be disjoint. If Moo > Mg + 1, consider I = G - 3,281

tef. If fe b, ... bj_], then we can assume the existence of special
CoCqp +++ ¢ In I, 0< k< - T, ¢ =ay 4. Itis then clear that
in H=G - 3,31 + 3,35, We have a (j,k -1)-coupling "at a,-1

(k< j -1 1is necessary), and we are done. So we can assume f = aQ_].
But then A(Q-1) implies that e = some 3. D<m<Q -2, and Bo(m)
implies at once a (Q-2, m-1)-coupling and so G is edge-reconstruct-

able by P{n-2).
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Now consider J = G - an_p3,.3 * ef again when . 5 =p I. IF

e=ag then Lemma 3.1 on edges of degree type (“o’ u]) says that

= (j- = i i
Moo = Hy and so bob] - bj-] and 3535 3 form a (j-1, 1)-coupling
in G. e cannot be a2 otherwise we can easily prove a contradic-
tion by P(Q-2); and so e = a_3 (NQ-3 =;10-+1). Then J contains a

configuration of the following form:

all

J

WWAAAN,

This can be easily proved to be exciudable. (Consider K =J -
Cobj + Cobi’ 0< i< j, we see there exists special 9991 -+ 95

but then 9,97 --+ 934, gives Q(K) < 1 +1<q(G6).

When b0 =a,, we see that the above argument still works for
this case except that the excludable configuration is changed so that
bo and <o coincide, and bobj € E(J); the excludability follows in

the same vein, and we are done. Q.E.D.

Proposition 3.17. G 1is edge-reconstructable if it has a Type-III ter-

mination.

Proof of Proposition 3.17. Conceivably G can have more than one spec-
ial Q-chains all cf Type-III terminations. Let k be the smallest

integer such that ay = ag for some D special Q-chain. We
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will consider the degrees y, and Mooy in G (Note 0< k< Q -1).
Case 1. of Proposition 3.17. My > Hg + 1 Mool > K + 1.

Consider G - 3,1 + ef = H. By A(k) we see that e € Ch
a, and (by A({Q-1)) we can find j, O0< j< Q -1, such that a spec-
ay_1- bo may coin-
cide with a, or not. Clearly bj-] é agaq .- 3,2 otherwise P(Q-2)

ial Jj-chain bob1 bj exists in H with bj =

applies. If Moop > Mg + 1, consider G - ay

bob1 sux D

_23-1" In this subgraph,

j_]aﬂ and aoal el @ form a forbidden (k,j)-coupling, and
so, arguing as in Proposition 3.16, we see G 1is edge-reconstructable.
When Ho-2 Mo F 1, we have an excludable configuration in J = G -
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