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Abstract 

The thesis consists of three chapters. The first chapter intro­

duces the basic notions of graph theory and defines vertex-reconstruc­

tion and edge-reconstruction problem. The second chapter and third 

chapter are devoted to the edge-reconstruction of bi-degreed graphs and 

bipartite graphs respectively. 

A bi-degreed graph G is a graph with two degrees d > 6. By 

elementary arguments we can assume d = o + 1 and there are at least 

two vertices of degree o. Ca 11 vertices of de9ree d "big 11 vertex and 

degree o 11 sma11 11 vertex. Define 11 symmetrk 11 path of length p SP to 

be one with both ends small vertices and all other internal vertices big 

vertices; def"ine 1;asymm2tric 11 path of length p AP to be one with one 

end a small vertex and all others big vertices. If s(G) is the mini-

mum distance between two small vertices in G, we can show that s(G) is 

11 independent 11 of G (i.e. it is edge-reconstructable), and that G has 

at most one nonisomorphic edge-reconstruction H. From this, the con­

cept of 11 forced move" posed by Dr. Swart is obvious. Using the princi­

ple of forced move (and sometimes also 11 forced edge•i posed by Dr. Sv1art 

as well), it 1 s easy to derive a few interestins properties, like say G 

is edge-reconstnictable if s(G) is even or if ti.·Jo Ss(G) 's intersect 

at a.n internal vertex, etc. t~ri te for s(G). When s is odd, con-

sider the con .::ept of ~.; - n-cha in) which is n S 1 s s fo 11 owing from 

end to end. We can $hew first s - 3-chain and then s - 2-chain cannot 

exist. Hence a 1 ·i Thi ri!< of t;"' 's .:is a:,; 11 l i ne s •: i r. 
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some geometry. Define two more 11 distance 11 functions s1 and s2 such 

that s1 "represents" the distance from a point to a line and s 2 means 

the distance between b10 11 skew 11 1 ines. With the aid of forced move 

principle again, we can at last prove every bi-degreed graph with at 

least four edges is edge-reconstructable. 

A bipartite graph G is a graph whose vertex set V is the disjoint 

union of two sets v
1 

and v2 such that every edge joins v1 and v2. 

By elementary reduction \-Je can assume G to be connected . We define 

special chains inductively so that it starts at a vertex of mir.imum de­

gree and always goes to a neighbo-r or minimum degree. Special chains 

will be the main tool to prove edge-reconstructability. By G's finite-

ness, we note they will "terminate" somewhere,and we have three types of 

termination for them. Let condition A's be that degree sequence of 

special chain is edge-reconstructatle, condition B. 1 s 
1 

be that number 

of special chafos is edge·-recc·nstructable (and some more general var-ia­

tior.s); conditfon P's be that the 11 last vertices" of two specia·1 chains 

be not adjacent; we can prove that all A, B. and P's should hbld in-
1 

ductively in an interlocked way. (This is a big task). Then condition 

P's can be used to prove G's edge-reconstructability for all three 

t_ypes of termination. We can then prove every bipartite graph with at 

least four edges is edge-reconstructable. 
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CHAPTER 1. Reconstruction problem of graph theory, 

prob1em def'initiun, fundamentals, and surveys. 

Section 1 • Graph theory termi nol ogi es. 

In this thesis, graph theory notations will be principally those of 

F. Harary [ 7] unless otherwise mentioned. Fortunately_, the notations 

do not differ too much in literature. (To name a few of graph theory 

textbooks, see M. Behzad and G. Chartrand [ 1 ], C. Berge [ 2 ], 

0. Ore [ 15 ] , N. Deo [ 6 ] , etc. ) 

A graph G consists of a finite nonempty set (vertex set) V = V(G) 

of p vertiaes together with a prescribed set E(G) (edge set) of q 

uno-Pdered pairs of distinct vertices of V. Each pair e = ( u,v} of 

vertices in E(G) is an edge of G, and e is said to join u and v. 

We write e = u v (or vu equiva1ent1y) and say that u and v are 

adjacent vertices (vertex u and edge e = u v are said to be -incident 

with each other, as are v and u v. If two distinct edges e and f 

are incident vri th each other, they are adJaeent edges). 

It is customary to represent a graph by means of a diagram. The 

diagram in Fig. 1-1 represents a graph G with V(G) = {a,b,c,d,e} 

and E(G) = [ab, be, ce, be, bd, de}. 

a 

c d 

e 

Fi 9. 1-1 
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In this graph, we have say b,e are adjacent vertices, but c,d are not. 

There are several variations of graphs which deserve mention. Note 

that the definition of a graph permits no loop, that is no edge joining 

a vertex to itself. In a muit1:graph, no loops are allowed but more than 

one edge can join two vertices. (They are called multiple edges.) If 

both loops and multiple edges are allowed, we have a pseudograph. To 

discriminate, graphs (in the more general sense) without loops or multi­

ple edges wi l1 be ca 11 ed simple graphs. 

A directed graph or digraph G consists o·I" a finite nonempty set 

V = V( G) of vertices together with a prescribed set E( G) of ordei;ed 

pairs of distinct vertices. The elements of E(G) are called directed 

edges or arcs. (By definition, a di graph is simple, i.e. it contains no 

loops or multiple arcs.) Our original definition of graphs with edges 

unordered pairs of distinct vertices will be called undireated graphs. 

An infinite graph G consists of an ·infinite set V = V(G) or ver­

tices together with a prescribed set E(G) of unordered pairs of dis­

tinct vertices. (By definition, an infinite graph is simple and un­

directed). It is possible that a vertex of G be adjacent to infinitely 

many vertices (it's easy to construct such an infinite graph, say let Z 

be the set of all ·integers, and join an edge for any two distinct inte­

ger). If every vertex of (an infinite graph) G is adjacent to only a 

finite number of vertices, G is caned ZoaaUy finite. A graph G 

with a finite nonempty vertex set V(G) will then be called a finite 

graph. 

With the introduction of these various notations, the gl"aph defined 

originally (as in Fig. ·1-1) 'tlil1 ~1e a finite simpZe undirc<;:tedgraph for 
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clarity. From now on (qnd in whole of Chapter 2 and Chapter 3 following), 

graphs wi 11 mean finite simple .undirected. graphs unless otherwise mentioned. 

A graph G is labeled (or vertex-labeled) if its p vertices are 

associated with p distinct labels (or names) in a one-to-one manner. 

A graph G is unlabeled if we do not have names for its vertices. A 

graph G is po:rtZy labeled if some vertices are 1 abel ed and some are 

not. In Fig. 1-2 below we have the same graph G which is labeled in 

(a), unlabeled in (b), and partly labeled in (c). 

a. 

LJ LJ 
y 

(a) (b) (c) 

Labeled Unlabeled Partly labeled 

Fig. 1-2 

We can define edge-labeled graphs, edge-unlabeled graphs and partly 

edge-labeled graphs fa an analogous way. 

Two graphs G and H are isomorphi~, denoted by G~ H, if there 

exists a one-to-one mapping o (called an isomorphism), from V(G) onto 

V(H) such that adjacency (and so unadjacency as well) is preserved; 

i.e. E-r r..) UV E \'1 if and only if cr(u) cr (v) E E(H). The relation "iso-

morphic to" is easi1y seen to be an equivalence relation on graphs. We 

will call H an isomorph cf G (and vice versa) if G and H are iso­

morphic. Two isomorphic graphs a1"'e considered to be the same graph in a 
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natura·t way. Two graphs G and H are noi'L-isomorphic (and considered 

as different) if they are not isomorphic; denoted by G~ H. 

A necessary condition that two (finite) graphs G and H are 

isomorphic is tJ-iat they have the same number p of vertices and same 

number q of eciyes. Conversely, given two graphs G and H both with 

p vertices and q edges (q ~ (~) = p(~-l). by simple argument), we 

know that after finite number of steps, we can determine if G and H 

.are isomorphic, for say p ! , the number of permutations of the p ver­

tices would suffite. However, since p! grows very fast, the general 

problem of determining if two graphs are ison~rphic (by an algorithm or 

not) is convincingly very hard. In Fig. 1-3 below we give three graphs 

G, Hand I with G::= H, G~ I. 

G H I 

Fig. 1-3 

All three graphs here a re unlabeled. It is easy to see that G 

and I are nonisomorphic since I contains a "triangle" (a configura­

tion of three adjacent vertices) but G doesn't. 

The isomorphism cf G and H is hard by "·inspection" only. It 

would be much easier if we ·1abel the graphs as in Fig. 1-4 following: 
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a b c a 
G H 

f b 

f e d e c 

d 

Fig. 1-4 

The mapping o from V(G) to V(H) defined by o(a) =a, o(b) =c, 

o(c) = e, o(d) = b, o(e) = d, a(f) = f can be verified to be an isomor-

phism. This induces a concept called ZabeZ-isomor1ph-fom. Given two 

graphs G and H with same number p of vertices and q of edges; and 

suppose u1, ... ,up are labels used to label both graphs, then a one­

to-one mapping o which preserves adjacency (hence an isomorphism) from 

V(G) onto V(H) is a label-isomorphi$m if o(u;) = ui' 1 45.. i ~ p. De-

note this by G ::;::.;., H. It is clear that if two unlabeled graphs are 

isomorphic, then they are label-isomorphic by some appropriate labelings 

(although the labeling might be very hard· to find). Conversely, if two 

labeled graphs are label-isomorphic, then their corr2sponding unlabeled 

graphs (obtained by "erasing" the labels) are isomorphic. It is conceiv-. 

able that two labeled graphs may be non-label-isomorphic with the corres­

ponding unlabeled graphs isomorph -le however. Label isomorphism (equiva­

lence) classes is then a finer partition of isomorphism classes of 

graphs. In Fig. l-5 below we see there are one up to isomorphism and 

three up to Zabel -tsomorphism gra.phs of three vertices and two edges. 
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a c b a c b 
G: 

v v v b c 

y 
1 unlabeled 3 labeled 

Fig. 1·-5 

Note that we have six ways to label G by a, b, c and only three 

label-isomorphism classes (and only one isomorphism class). On p.4 of 

M. Behzad and G. Chartrand [ 1 ], twenty non-label-isomorphic graphs of 

4 vertices and 3 edges are shown; among them there are only three i so­

morphi sm classes. 

We introduce a concept dual to that of isomorphism (or vertex-iso­

morphism). Two nonempty graphs G and H are edge-isomorphic, denoted 

by G ~e H, if there exists a one-to-one mapping a; from E(G) to 

E(H), such thdt two edges e and f are adjacent in G if and only if 

the edges o(e) and o(f) are adjacent in H. (Edge-isomorphism pre-

serves adjacency of edges just as isomorphism preserves adjacency of 

vertices). However, the roles of edge-isomorphism and isomorphism are 

not "equal 11 as hinted by "duality". VJe see trivially that isomorphic 

graphs are edge-isomorphic but the converse does not necessarily hold 

as evidenced by the following nonisomorphic pairs G and H: 

a. a. 
G ;/'c H 

0 ~ 
1:1 b 

'·l 
I 

p y 
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Since the edges a, b, c are pairwise adjacent in G and in H, 

any permutation a of (a,b,c} is an edge-isomorphism, which however 

cannot "induce" a vertex isomorphism in a natural 'it1ay since G has 3 

but H has 4 vertices. Edge-isom?rphisms are thus a less natural 

concept than isomot~phisms. 

So far we have defined gi,aphs, adjacency, labels, and isomorphisms. 

Next we will define the important notion of subgraphs. A subgraph Hof 

G is a (finite, simple, undirected) graph having all its vertices and 

edges in G, i.e. V(H) c:_ V{G) and E(H) <:: E(G). Given a set S of 

vertices '=- V(G), the i.nduced subgraph (S} is the maximal subgraph of 

G with vertex set S. A subgraph H of G is vertex-induced or in-

duced if H = (S} for some S <:=_ V(G); H is edge-induced if H = ( F'; e 

for some F '=- E(G) and (F} e defined to be the graph whose vertex set 

consists of those vertices of G incident with at 1 east one edge of F 

and whose edge set is F. Note that a subgraph need not be vertex-in­

duced or edge-induced. 

The removal of a vertex v from a graph G results in that sub­

graph G - v of G consisting of all vertices of G except v and 

all edges not incident with v. G - v is thus the (vertex-)induced 

subgraph on V(G) - [v}. The removal of an edge e from a graph G 

results in that subgraph G - e of G consisting of all vertices of G 

and a 11 edges except e. G - e is a so ca 11 ed spanning subgraph_, i . e. 

it contains all vertices of G; it is an edge-induced graph, and it is 

maximal with respect to the property of not containing e. The removal 

of a set of vertices or edges from G is defined by the removal of 

single elements in succession. 
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Now we will define a "reverse" operation. The addition of edge u v 

to a graph G where u and v are nonadjecent results in the graph G + 

u v with the same vertex set and same set of edges with the addition of 

an edge uv. G+uv isa "supergraph"of G, i.e. G is a subgraph 

of it. The addi.tion of a vertex x E V( G) results in a graph G + x 

whose vertex set is the union of V(G) and [x] and its edge set is~ 

in addition to those in E(G), all edges of the form xv, v E V(G). 

Starting from G, we can define a graph H a:recursively" by means of 

series of add.itions and/or removals of edges or vertices. For example 

G - u - v + wx - za may be meaningful. Note further that these opera-

tion.s "commute", say G - ab + cd = G + cd - ab. 

At this early stage, we are able to state a famous longstanding 

foremost conjecture in graph theory (since 1941): 

Ulam's (reconstruction) conjecture. Let G have p vertices 

H p vertices v~ 
l 

with p ~ 3. 

G ~ H. (see S. U1 am [ 19 ] ) . 

If G - u.=H-v. 
l 1 

for each 

u. 
1 

and 

·i, then 

This conjecture says that the vertex deleted maximal subgraphs 

uniquely determines a graph with at least three vertices. This conjec­

ture is false when G has only two vertices. For if G is the graph 

of two vertices u1, u2 and one edge u1u2 and H is the graph of two 

vertices v1,v2 without any edge, then G - u1 ~ H - v1 , G - u2 ~ H - v2 
since they are all graphs with one vertex only (and hence no edges at 

a 11 ) , which is ca 11 eti trivlal and denoted by K1 . But G ¥:= H, for u1 u2 

are adjacent in G but v1 v2 aren't in H. 

F. Harary reformulated Ulam's Conjecture in the following way: 
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First come some definitions. A reconstr>uction of a graph G is a 

graph H such that V(H) = V(G) and H - v ~ G - v for all v E V{G). 

G is reconstr>uctahZe (or notationally equivalently reconstr>uctibZe) if 

every reconstruction of G is isomorphic to G. 

(Vertex)-Reconstruction Conjecture (reformulated by F. Harary). Any 

graph with at least three vertices is reconstructable. 

A word of comment. Though G may be labeled when we find G - v's, 

a 11 .G - v 1 s a re unZabe led, otherwise there -: s no problem. 

To get feeling for this problem, it is sometimes helpful to imagine 

a 11 deck 11 of cards on which the vertex-deleted subgraphs of G are 

drawn, but unlaheled. Presented with such a deck, it is routine to find 

some graph which produced that deck. The problem confronting the recon­

structor is however more demanding. He must show that, regardless of 

the algorithm used, one necessarily ends up with the same graph. 

A good way to know how the reconstruction problem looks is to try 

reconstructing the gra.ph G in Fig. 1-6 (i.e. finding an algorithm and 

show there is only one solutinn). 

Note G is labeled but all G - v are unlabeled in Fig. 1-6. 

The full generality of (Vertex)-Reconstruction Conjecture seeming 

intractable anyway, F. Harary later posed the conceptually 

easier edge-version of Vertex-Reconstruction Conjecture, the Edge-Recon­

strzw·tion Conj ectu~e. 

An edge-Peeonstruct·ion of a graph G is a graph H such that 

E(H) = E(G) and H - e 2 G - e for all e E E(G). Note that edge-re­

construction is not a verbatim reformu1 at ion of vertex-reconstruction, 
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G a G - a: G - b: G - c: 
0 

e c v 
d 

G - d: G - e: 

Fig. 1-6 

because H is a vertex-reconstruction of G if every vertex-del.eted 

(maximal) subg~aph is vertex-isomorphic; while H is an eo.ge-reconst~uc­

tion if every edge-del.eted (maximal) subgraph is ve"Ptex-isomorphic- (not 

edge-isomorph:ic ! ) 

A graph G is edge-reconstructable if all its edge-reconstructions 

are isomorphic to G. 

Edge-Reconstruction Conjecture. Every graph with at least four edges is 

edge-reconstructable. 

There are two non-edge-reconstructable pairs with two edges and 

three edges respectively as shown in Fig. 1-7. 

To test the muscle on Edge-Reconstruction Problem, the graph G in 

Fig. 1-6 is good again. 
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r r 
(a) (b) 

Fig. 1-7 

Though edge-reconstruction problem seems much easier, and more prog­

ress has been made, the solved cases are mainly on graphs with simpler 

topological structures or graphs with 11many 11 edges (compared with number 

of vertices). Ch~pter 2 and Chapter 3 of this thesis presents edge­

reconstruction of bi-degreed graphs and bipartite graphs (defined later) 

with discussioris mainly on degrees (i.e. the number of edges incident 

with each vertex), but not too much on topology. We will come back to 

this topic in Section 2. 

Let's continue the definitions and termi no 1 ogi es. A -walk of a 

graph G is an alternating sequence of vertices and edges v
0

, x1, v1, 

••• !i vn-l' xn~ vn beginning and ending with ver·tices in which each edge 

is incident with the two vertices immediately preceding and following 

it. This walk joins v and v and may ~e denoted naturally as 
o n 

v
0

v1 ••• vn (edges being evident by context); and called a v
0 

- vn walk. 

It is closed if v 
0 

:.. v n and open otherwise. It is a trail if a 11 

edges are distinct, a path if all vertices (and hence all the edges) are 

distinct- It is a cycle if it is closed, all its n vertices are dis­

tinct, and n > 3. The length of a walk v
0

v1 ••. vn is defined to be 

n, and it may be called an n-walk. n-paths and n-cycles are defined in 

a similar way. We denote by en the cycle of n vertices (and hence 
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of length n , or an n-cycle), Pn the path of n vertices (and hence 

of length n-1,and it is an (n-1)-path.). c3 is often called a triangle. 

A graph is co1inected if every pair of vertices are joined by a path; 

disconnected if not connected. A maximal connected subgraph of G is a 

component of G. 

The girth of G is the length of a shortest cycle (if any) in G; 

the circwnfere~e the length of any longest cycl~. The distance d(u,v) 

between any two vertices u and v 'is the length of a shortest path 

joining them if any; otherwise d(u,v) =ex>. A shortest u-v path is 

often ca 11 ed a geodes·ic. The diameter of a con nee ted graph is the 

length of any longest geodesic. 

The degree of a vertex v in a graph G, denoted deg (v), is the 

number of edges incident with v. It is trivial to observe that the sum 

of the degrees of vertices of a graph G is twice the number of edges. 

If all vertices of G are of degree r, G is called regulax~ of degree 

r or r-regular. If G has only two degrees 6 and d, G is 

called bi-degreed. We have special names for vertices of small degree. 

A vertex v is {3olated if deg(v)= o; it is an endvertex if deg(v)=l. 

The complement G of a graph G also has V(G) as its vertex set, 

and two vertices are adjacent in G if and only if they are not adja­

cent in G. The corrrplete graph KP has every pair of its vertices adja­

cent. Thus KP ~·1as (~) edges and is regular of degree p - 1. The 

graphs KP are called totally disconnected, and are regular of degree 0. 

A bipa:ratite graph G is a graph whose vertex set V can be par­

titioned into .two subsets v1 and v2 such that every edge of G joins 
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V1 with v2. If G contains every edge joining v1 and V2' then G 

is a aomplete bipartite gi)aph, and G is denoted byKm,n if v1 and V2 
have respectively m and n vertices. A simple characterization of bi­

partite graph is that all its cycles are even (see F. Harary [ 7 ], 

p. 18). 

A graph is acyclic if it has no cycles. A tree is a connected 

acyclic graph. Thus trees are obviously special cases of bipartite 

graphs. An easy way to recognize a graph as a tree is that G is con­

nected and p~ the number of vertices, is equal to q + 1, where q is 

the number of edges. The eccentricity e{v) of a vertex v in a con­

nected graph G is max d{u,v) for all u in G. The radius r(G) is 

the minimum eccentricity of the vertices. Note that the maximum eccen­

tricity is the diameter. A vertex v is a central- vertex if e{v) = 

r(G) and the centeP of G is the set of all central vertices. It can 

be proved that every tree has a center consisting of either one or two 

adjacent vertices, and trees are called central or bicentraZ accord-

ingly. 

A cutvertex of a graph is one whose removal increases the number of 

components. A nonsepo.r-abZe graph is connected, nontrivial without cut­

vertices. A b!ock of a graph is a maximal nonseparable subgraph. If G 

is nonseparab-le, then G itself is called a block. For a connected 

graph with at least three vertices, we note G is a block if and only if 

every two vertices of G lie on a common cycle (p. 27 or F. Harary [7 ]). 

A block having more than one edge is also 2-connacted, i.e. we have to 

remove at least two vertices to "disconnect" G. 

A graph is said to be embedded in a surface S when it is drawn on 
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S so that no two edges "intersect". A graph is plaru:i:P if it can be 

embedded in the plane. 

Finally, for two graphs G1 and G2 with disjoint vertex sets v1 
and v2 and edge sets x1 and x2 respectively, the union G = G1 U G2 
has vertex set V = v1 U v2, edge set X = x1 U X2. 
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Section 2. Vertex Reconstruction and Edge Reconstruction Conjectures. 

In Section 1, we introduced the concepts of Vertex Reconstruction 

and Edge Reconstruction Conjectures. In this section, several basic 

lemmas and properties will be stated and/or proved. 

We will call a parameter of G reconstructable if it takes the 

same value for all reconstructions of G. Similar definitions hold for 

eclge-reconstruetable parameters. The ffrst fundamental theoremis due 

to P • J . Ke 11 y [ 9 ] . 

Lenma l • l ( Ke 11 y ' s Lemma ) • 

(a) For any two graphs F and G such that I V(F)f < J V(G)J, the 

number s(F,G) of subgraphs of G isomorphic to F is reconstructable. 

(b) For any two graphs F and G such that IE(F)i < IE(G)(, the num­

ber of subgraph$ of G isomorphic to F is edge-reconstructabl e. 

Proof of (a). Each subgraph of G isomorphic to F occurs in exactly 

IV( G) I - IV( F) I of the subgraphs of G - v. Therefore 

s{F,G) = 6 s(F,G - v) 
VE V(G) I V(G)l -1 V(F)i 

Since the right-hand side of this identity is clearly reconstruct­

able, so, too, is the left-hand side. 

Proof of (b) is similar. Q.E.D. 

Kelly's Lemma appears to be very useful in general (with a very 

simple combinatorial proof). 

A sequence d1 ,d2, ... , d
0 

of nonnegative integers is called a 
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<iegree sequence of a graph G if the vertices of G can be labeled 

v1 ,v2, ... , vp so that deg ~ 1 )= di for all i. Often we express the 

sequence so that d1 ~ d2 ~ • • • ~ dp. 

Corollaryl.l. For any two graphs F and G such that JV(F)I< IV{G)I, 

the number of subgraphs of G which are isomorphic to F, and include a 

given vertex v, is reconstructable. 

Proof of Corollary. This number is just s{F,G) - s(F,G - v) Q.E.D. 

Ta.king F = K2 in Kelly's lemma and in the corollary, we find that 

the number of edges and the degree sequence, respectively, are reconstruc­

abl e parameters. 

It is now easily seen, as noted by Kelly [ 9 ], that regular graphs 

are reconstructable. Consider a k-regular graph G. Since the degree 

sequence of G is reconstructable, all reconstructions of G are k-reg­

ular. But it is clear that all k-regular reconstructions of G are isomor­

phic, since each can be obtained {up to isomorphism) from any G-v by ad­

ding a vertex and joining it to an the vertices of degree k - l in G-v. 

We deduce that all reconstructions of G are isomorphic. 

This proof is typical of many on reconstruction in that it splits 

naturally into two parts, which we shall refer to as 11 recognizabil ity" 

and "weak reconstructability. 11 fl. class G of graphs is recognizable if, 

for each graph G in q, every reconstruction of G is also in q, and 

u.'eakly reconst1--uctahle~ if, for each graph G in q., all reconstruc­

tions of G that are in q are isomorphic to G. Thus a class q is 

reconstructab1e if and only if it is recognizable and weakly reconstruct-

able. 
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The edge-reconstructability of degree sequence, though evident, can­

not be proved in a way identical to that of Corollary 1 .1. 

lemma 1.2. The degree sequence of a graph with at least four edges is 

edge-reconstructable. 

Proof of Lemma. First, it is a trivial matter to prove the edge-recon-

structabil ity of K for n > 4. 1 ,n 

Suppose G has exactly a.
0 

vert"ices of degree d
0

, a. 1 vertices 

of degree d1 , ••• , a.s vertices of degree ds > 0 and a.s+l vertices 

of degree ds+l = 0 where d
0 

> d1 > · · · > d
5 

> 0. 

Let H be an edge-reconstruction of G. We will show that H 

satisfies similar conditions. 

Let H have ~o vertices of degree 6
0

, ~ 1 vertices of degree 

cS 1 , ... , ~ t vertices of degree dt > 0 and f3t+1 vertices of degree 

6t+l = 0, where 6
0 

> o1 > · · · > ot > 6t+l = 0. We will show that s = t 

and a.i = ~ i, d j = oj v i, j, o ~ i, j ~ s + l . 

If d = 1 , then G is unior. of K"' 1 s p"lus some Kn • The onl Y non-o ~ ~ 

isomorphic edge-reconstruction H will contain K1 , 2 as a proper sub-

graph, hence G ~- G - f == H - f contains K1 ,., , a contradiction. 
''-

Now d
0 

> 1 and by assumption G has exactly a.
0 

K1 d 's as 
' 0 

edge-proper subgraphs. 

So Kelly's Lemma (Lemma 1.1) applies and H has exactly a.0 

K
1 

d 's as subgraphs. So 6
0 

~- d
0

• By symmetry, d
0 
~ o

0 
and d0 =6 0 • 

' 0 
But H has exactly '3

0
(> o)K1 $:. = K1 d 's, so p

0 
= a.

0
• 

'V Q ' Q 

Let £ =min (s,t) and suppose 
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a.o = t3o' a.1 = t3o' ···'a.; = ~; and 

d
0 

= o 
0

, d1 = o 1 , .•• , di = o; for some 0 ~ i < 1., • 

Suppose di+ i > 1 first. 

The number of K I s 
l ,di+l 

contained in G is exactly 

the number of in H by Ke 11 y' s 1 emma. 

If o; +l < di+ 1 then H would have only 

( 

i+l 
Kl d Is < L a.k 

, i+l k=O 

so oi+l ~ di+l · By symmetry then, oi+l = di+l and since H has 

exactly 

i+l 'Ok ) 
Li Pk ( I = 
k=O \ 0 i +1 

Kl ,oi+l = Kl ,di+l 's , a.i+l = ~i+l whenever di+l > l. 

di+l = 6 i+l ). 

(and 

Similar results hold if oi+l > 1. So let di+l = oi+l = 1. In 

this case i + 1 = s = t. Since IE(G)I ~ IE(H)I and a. = ~ . , 0 ~ j 
J J 

...s_ i, we have readily a.i+l = ~ i+l. 

Induction says that a; ::: f3;, dj = o j, O ~ ·i, j ~ .i. Suppose s ;. t, 

say s < t. Then the r.umber of edges in G is 

-· 1 '\~ P. ~ , l ~ .t: 
- ·;:;- /......) 1-.i .• (J • <. 2 LJ f3 J. v ~ ) 

c i =f) I 1 j =O J 
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which is impossible since E(G) = E(H). 

So degree sequence is edge-re~onstructable (H - e= G - e implies 

that V(G) = V{H) as well, an<l so as+l = ~s+l). Q. E. D. 

We can define edge-reaognizability and weakly edge-reaonstruatabit­

ity in a similar way. 

We end th·is section by citing some useful concepts from J .. A. Bondy 

and R. L. Hemminger [5]. 

Let ~ be a class of graphs (that is, a family of graphs closed 

under isomorphism)~ and let F and G be graphs such that FE~ and 

s(F,G) > 0. A subgraph of G which belongs to 3 is called an 3-sub-

graph of G; a ma:.c--ZmaZ. 3-subgraplt. of G is one which is contained in 

no other J-subgraph of G. For instance, when ~ is the class of con-

nected graphs, the maximal J-subgraph5 of G are the components of G. 

An (F: G)-aha·in of Z.eng·th n is a sequence (x A., X ) of ~-sub-o' l' ... , n .... 

graphs of G such that F=:X cX c ···cX cG 
I 0 1 n • Two (F,G)-chains 

are isomorphic if they have the same length a.nd corresponding terms are 

isomorphic graphs. The rank of F in G -is the 1 ength of '1 longest 

(F,G)-chain. We state below without proof an interesting result: 

Lemma i . 3. (Counting Theorem) . Let q. be a recogn i zab 1 e c 1 ass of graphs, 

and let J be any class of graphs such that, for every G in q., each 

3-subgraph of G is (i) vertex-proper; (ii) contained in a unique 

maxima 1 3-sub9raph of G. ThE:n, for every F in ~ and every G in Q, 

the number m(F,G) of maximal J·· s ubgrcphs of G isomorphic to F is 

reconstructabie. 

Counting theorem is genera~ization of Kelly's L~rnna. 
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Corollary 1.3.1. Disconnected graphs are reconstructable. 

Proof of Corollary l .3.1. A graph G is disconnected if and only if 

at most one G-v is connected. Therefore, disconnected graphs are 

recognizable. The co unting theorem, with s as the class of connected 

graphs and q as the cl ass of disconnected graphs, establishes weak 

reconstructability. Q.E.D. 

Corollary 1.3.2. If G is reconstructablE: and has no isolated vertices, 

then G is edge reconstructable. 

Proof of Corollary 1.3.2. For a graph G without isolated vertices, 

let G be the class of all edge reconstructions of G and let ~ be 

the class of graphs with v - l vertices. Since edge reconstructions of 

G have no isolated vertices, their ~-subgraphs are edge proper and the 

counting theorem applies. But the maximal ~-subgraphs of G are exact­

ly the vertex··deleted subgraphs of G. It follov:s that G is edge re-

constructable if G is reconstructable. Q.E.D. 
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Section 3. A very brief survey 

This survey does not t(!nd to be comp1 cte, nor will it p!·ove any-

thing in detai1 (with an sxcertion, construction of trees). 

The survey paper· by J. A. Bondy and R. L. Hemminger [5] summarized 

more than sixty CJ!:;. ;~~ up to 1977. :-or vertex reconstructions, trees 

have b~en treated very dec:ply (P. J. Kelly [9], F. Harary and E. M. Palm­

er [8]~ B. Nanve1 [13], J. A. Bondy [3] etc.); graphs with cutvertices 

but no ·j sol ated vertices are done by J. f,. Bondy [4]; and di scor.nected 

graphs were done by almost everyone. 

For edge-reconstructions, L. Lovasz [12] has proved G is edge­

reconstructable if fE(G)I >} jV(G)I {lV(G)I - l); V. Ml!ller [14] has 

proved G is edge-reconstructable if 2IE(G)i -l > (jV(G)j )!. J. Lauri 

[10] did the ititeresting case that all planar graphs with minimum degree 

5 is edge-reconst.ructc.ble. And in this thesis, \ve present in fun de-

tail the edge~reconstructability of bi-degreed graphs in Chapter 2, and 

bipartite grCiphs in Chapter 3. 

For digraphs and infinite graphs, counterexamples exist (P. K. 

Stockmeyer [16], C. Thomassen [18]), and the problem there is to find 

those reconstructable. The author [11] has proved the (verte~)-recon-

structability of some locally-finite trees. 

There are many other related reconstruction problems, say recon -

structing matrices, reconstructing relationships etc. We finish this 

chapter by a comparatively short proof of vertex-reconstructability of 

. [51.J. trees cited from J. A. Bondy and R. L. Hemminger 

Theorem l . 1 . Trees a Y'e recons trtx: tub 1 e. 
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Proof of Theorem 1.1. Trees are recognizable, since a graph G is a 

tree it and only if G is connected and )E(G)J = JV(G)J - 1. 

A tree is a path if and on1y if each degree is at most two. There­

fore paths are recognizable, and hence reconstructable. 

In a tree which is not a path, every longest path is a vertex-proper 

subgraph. It follows from Kelly's lemma that the diameter and radius of 

a tree are reconstructabl~, and hence that central and bicentral trees 

are recognizable. 

A vertex of a tree is peripheral if it is an end of a longest path. 

Since v is peripheral if and only if deg (v) = 1 and v is in a 

longest path, the number of peripheral vertices is reconstructable. 

A branah of a central (bicentral) tree is a maximal subtree in 

which the central vertex (cen t ral edge) is of degree one (is incident 

with a vertex of degree one). A branch is radial ·if it inc 1 udes a pe·­

ri pheral vertex of the tree. Note that a bicentral tree has exactly two 

branches, both of which are radial. A tree is bafric if it. has exactly 

two branches, just one of which is a path; the path bl"'anch is the stem 

and the other branch the top. 

Now a tree of radius r (and not a path) is basic if and only if 

it contains no subgraph of one of the three types shown in Fig. 1-8 

(where the centers are indicated in black and the distances a and b 

range between 1 and r - 1). Trees of these types ar-e easily recognizable. 

(For example ~ a tree G is of type 1 if and only if it contains a path 

~--0 ~ L ~ 
Q 
.I • • • o---c 

a b a b 
Type 1 Type 2 Type 3 

Fig. 1-8 
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of length 2r = v - 2 and r + 2 paths of length r + 1). Therefore, 

by Kelly's 1 emma, basic trees are recogn'lzabl e. 

Basic trees are also weakly rcconstructable. For let G be a cen­

tral (bicentra~) basic tree. Then all reconstructions of G are isomor-

phic, since each can be obtained, up to isomorphism, from the bicentral 

(central) G - v which has a vertex of degree greater than two closest to 

the central edge (central vertex) by extending a radial path. 

It remains to prove that nonbasic trees are reconstructable. Let 

G be a nonbasic tree, and let F be a basic tree with the same diameter 

as G. By the counting theorem, the number of maximal basic subtrees of 

G isomorphic to F is reconstructable. We can use this information to 

find the radial branches of G as follows. Each non-path radial branch 

which includes k peripheral vertices of G is the top of p(G)-k maxi-

mal basic subtrees of G, where p(G) is the number of peripheral ver-

tices in G. This gives us the non-path radial branches of G (with 

multiplicities). The number of path radial branches is then p(G) minus 

the total number of peripheral vertices in the non - path radial branches. 

In the central case~ i t st i ll remains to reconstruct the nonradial 

branches. But they are just the nonradial branches of a G - v obtained 

by deleting either a peripheral vertex of a radial branch which includes 

at least two per~pheral vertices, if there is such a branch~ or a non­

peripheral end vertex of a radial branch, if there is such a vertex; 

otherwise, all radial branches are paths, and the nonradial branches 

can be found from a G - v obtained by deleting a peripheral vertex. 
Q.E.D. 
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CHAPTER 2. Edge-reconstruction of bidegreed graphs 

Section 1. Introduction. 

Recall from Chapter l that a graph G is edge-reconstructable if 

all possible edge-reconstructions of G are isomorphic to G. In this 

chapter we will investigate the edge-reconstructability of bidegreed 

graphs, i.e. graphs which have exactly two degrees d and o with 

d > 0 > 0. 

The result of this chapter comes out in this way: it was first 

motivated by J. A. Bondy and R. L. Hemminger [5] as the edge-version 

of problem l in their paper; and then greatly prompted by Edward R. 

Swart [17] wherefrom a few nice ideas and theorems were used and then 

generalized. The main result obtained (in Section 5) is: 

MAIN THEOREM. Every bidegreed graph G with at least four edges is edge­

reconstructable (which solves this problem in full force). 

Section 2 introduces elementary results and the usefu1 concept of 

"fo reed move" (and 11 forced edge 11
) by E. R. Swart [17]. In Sect ion 3, the 

pri.nciple of "foY·ded move 11 is applied by the author to establish a fe\·1 

more in t eres-ting "e.xc1udable configurations''. In Section 4, we investi­

gate the structure of "connection pattern" of 11minimum--distance-paths 11 ,and 

c;_uncluae that they must al 1 be disjoint. The rerna"ining case is then 

solved by two more "d·istance functions" in Section 5. 
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Section 2. Elementary results and inspiration by Swart. 

By Lemma 1.2, degree sequence is edge-reconstructable for graphs G 

with at least four edges. So bidegreed graphs are edge-recognizable, 

i.e. if H is an edge-reconstruction of a bidegreed graph G with two 

degrees d and 6, then H is also bidegreed with degrees d and o. 

We immediately observe that there is rwthing to do unless d =o +l. 

for if d ~ o + 2, then 

( i ) removing a 6 - o edge creates two vertices of degree 6 - 1 , 

(ii) removing a o - d edge creates a vertex of degree d - l > o and 

a vertex of degree 6 - 1 , 

(iii) removing a d - d edge creates two vertices of degrees d;.., l > 6; 

and so, edge-reconstructabi 1 ity of degree. sequence implies that G car. 

be edge-reconstructed from any of the G..;e• s. In the above, a 6 - 6 edge 

means an edge· with both ends vertices of degree 6, etc. Henceforth we 

assume d = 6 + 1 . 

A few more elementary properties can be proved using degree argu·· 

ment: 

1. G is edge-reconstructable if d = 1 or 2. 

2. G · is edge-reconstruct~ble if it has just one vertex of small-

est degree 6. 

For if d = 1, then G is disconnected consisting of links plus isolated 

vertices and is trivially edge-reconstructable; and d = 2 (and 6 =l} 

means G is disjoint union of free standing paths and so presents no 

difficulty at all. The case G has only one vertex u of smallest 
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degree o is a 1 so easy, for if we delete any edge uv, then in G - uv, 

u is the only vertex of degree d - 2, and v the only vertex of degree 

d -1, so we have only one way to restore the deleted edge: its original 

position. Henceforth we assume d > 3 and G have at least two ver­

tices of degree o. 

In investigating this problem, it is a usual practice to restrict 

consideration to certain subgraphs or 11 configuration 11
• To illustrate, 

consi~er the case when G has two adjacent vertices u,v of smallest 

degree o. Then G is easily seen to be edge-reconstructable for u 

and v are two vertices of degree d - 2 in G - uv and again the only 

way to restore the deleted edge to get an edge-r·econstruction H of G 

is its original position, otherwise H will have a vertex of degree 

d - 2 which is impossible. Hence we have only to consider the "petite" 

subgraph or 11 configuration 11 uv, not any "large" graph G-e at this 

stage. To represent this concept diagramatically, we call 

a vertex of degree d a 11 big 11 vertex and denote it by o, 

a vertex of degree o = d - 1 a 11 sma11 " vertex and denote it by x, 

a vertex of degree d - 2 a "tiny" vertex and denote it by ~. 

The above argument becomes: 

G: u v G - UV 

In drawing a configuration as above the structure of the rest of 

the graph is assumed to be arbitrary - except insofar as it is con­

strained by the structure of the configuration itself. Moreover it is 
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understoond that we do not mean deg(u) == deg(v) -

deg ( u) = deg ( v) = d - 1 ~ 1 in £encra l . 

in G, but 

From the above, we see that if a bidegreed G of degrees d and 

d -1 contains ;;i configuration uv with deg(u) = deg(v) = d -1, that G 

is edge-reconstructable. This leads to a new useful concept: 

Definition 2.1. ExeZud.ahZe conf'igUPation. A configuration C is ex-

cl udable if its existence in G enforces G to be edge-reconstn1ctable. 

We then see immediate.iy that the edge uv of two adjacent "smal 1 11 ver­

tices is an excludable configuration. 

Let 1 s call A a path of length p with one end a vertex of degree p 

6 and all other vertices of degree d; let's also denote b.~. · S a p 

path of length p w"!tt1 both ends vertices of degree o and a 11 oth-=r 

vertices of degree d, A4 and s4 are depicted below for illustratfon: 

a,., a, 
" I 

x.----O--···C---0--0 x----0---0----0--x 

An SP which starts at a0, and then passes a1, a2, ... , ap-1 

sequentially to stop a.t ap, will be denoted as an SP a0 a1 ... ap 

simply an Sp a
0 

- ap if it is immaterial to m~~ntfon the internal 

vertices. Similar convention holds for 

Since G has no isolated vertices 

A 'c q ¥• 

(d ~ 3), the two facts that 

disconnected graphs are vertex-reconstructab1e and that the vertex-re-

or 

constructability of a graph without isolated vertices impl ·ies its edc;e­

reconstructahil ity {see [ 5 ]) togethr.r tel1 us that G can be assumed 

to be connscted. Hence som<=~ S 's must exist in 
p 

G for certa ~n p's. 
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Let s(G) be the minimum of such p's. Clearly, s{G) ~ 2 for s1 is 

an excl udabl e configuration a 1 ready mentioned. If H is any edge­

reconstruction of G, then s(H} ~ 2 for s(H) = 1 implies H is edge­

reconstructabl e which in turn impli~s G is edge-reconstruct~ble. Con­

sider an Ss(G) a0a1 ... as(G)• In G - a0a1 , a0 is a vertex of degree 

d-2, hence H6..G-a 0a1 +a0h,whereh maybea-1,as(G) or some other 

small vertex. In any case it is readily seen that s(H) ~ s(G). A 

symmetry argument (since s(H) ~ 2) implies immediately s(G) ~ s.(H) and 

so s(H) = s(G) for any edge-reconstruction H of G. From now on, we 

wili writes for s(G) (or s(H)). Intuitiveiy, it is the minimum dis­

tance between any two vertices of degree d - 1 in G (or any edge­

reconstruction H). s and S
5 

will be a principal tool to solve our 

problem in the following. 

It is conceivable that a big graph G may have a large number of 

edge-reconstructions, all nonisomorphic to each other. So it is quitA 

remarkable at this early stage to observe that G can have at most one 

nonisomorphic edge-reconstruction H. In fact, any edge-reconstruction 

H ::::: G - aOal + aoh, h is al , a s or some other small vertex by the 

previous paragraph, where a Dal ... a s is an S
5 

·in G. But if h is 

not al or as, then s(H) < s - 1 = s ( G) - 1 • wh i c h ·j s imposs i b'l e. -
So H=:= G-a

0
a

1 
+ a

0
a

5 
is the only possible nonisomorphic edge-recon­

struction. 

If H ~ G, then G is edge-reconstructable. If H ~ G, then G 

is not edge-reconstructable by definition, we will then prove G's edge­

reconstructabi"! ity logically by either deriving a contradiction or 

proving H is edge-reco11structable (then G is edge-reconstructable 
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since G is also an edge-recon$truction of H) or even that G is 

edge-reconstructable. 

Before going further, we cite a few interesting notations and re­

s u 1 ts from [ 1 7] . 

We notice that in order to restore a missing edge to an edge-deleted 

subgraph, it is necessary to: 

1. Avoid creating a multiple edge. 

2. Ensure that the degree sequence is preserved. 

3. Avoid creating another configuration already known to be exclud­

abl e. 

Definition 2.2. Forced edge. If, in conformity to the three condi­

tions mentioned above, an edge deleted from a given configuration can 

only be restored to its original position, we refer to it as a forced 

edge. 

Note that edge uv joining t\t>'O vertices of degree d -1 is then 

al so a forced edge. Forced edge is a very usefu·I tool to make 1 ots of 

configurations excludable. The main idea of introducing excludable con­

figurations is that we will build larger excludable configurations from 

smaller ones gradually so that at last we have a list big enough to 

prove edge-reconstructability for every bidegreed graph G. 

A concept s"imilar to forced edge, which is also very powerful ·is: 

Definition 2.3. Forced move. If any edge deleted from a configuration 

can be validly replaced in two identical positions in conformity to the 

three conditions just before Definition 2.2, we will refer to its re­

placement in the position \•1hich differs from its origioa.1 position as a 
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forced move. 

As an example, since H~ G - a
0
a1 + a

0
a

5 
is the only possible non­

isomorphic edge-reconstruction for a given Ss a
0
a

1 
••• a

5
, the move 

from a
0

a1 to a
0

a-
5 

is a forced mov~. We w·ill denote this symbolically 

as 

We note that a forced move a 1 ways changes an isomorph G' of G to 

an isomorphs H' of H and vice versa. So if we start at G and execute 

an odd number of forced moves, we are ending at an isomorph H of H k 

G;'s and Hj's are isomorphs of G and H respective·ly); if furthermore 

we return to our initial configuration after this odd number of forced 

moves, then we get H == Hk = G s i nee the st rue ture of the rest of the 

graph is not affected by this sequence of forced moves, and we get a 

contradiction. Hence follows [17]: 

Lemma 2.1. Every configuratfon which contains a forced edge or which can 

be recovered by an odd !1umber of forced moves is excludable. 

We conclude this section with a simple application of the idea of 

Lerrrna 2 • i . 

Le~na 2.2. G is edge-reconstructable if s is even. 

Proof of Lemma. Consider an S
5 

a
0
a1 ... a5 

in G. The forced move 

a
0
a1 + asao changes G to H1 ~ H and the old 5

5 
a

0
a1 ... a5 to a 

new s s 
a1a2 ... a

5
a

0 
while leaving the remaining part of the graph 

intact. The next forced move a1a2 ~ a0
a1 changes H1 to G1 ~ G, the 

S t Ot, elf" s· a a a a a Proceeding in this s ala2 ... asao o an n, s 2-3··· s o'1· 
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way, we see that when s is even, a5_
1 

C:t
5 

-+ a5_2a
5

_1 changes H512 = H 

In H512+l' we see that the ,.-old 11 5s a
0

a1 ... a
5 

in G is return­

ing to its original position while the remaining part of the graph is 

kept intact through the whole process. Hence H512+l is identically G 

and so H ~ H512+l = G, a contradiction, and we are done. 

Figure 2-1 i 1 i us tra tes the a,rgument used in lemma 2. 2. 

G : 

Gl : 

Hs/2: 

a 
0 as-2 as-1 as 

--0--()--7( 

x~o 

ao al a2 a3 a.s-1 as 

0 x X---0- ~ ~ 
ao al a2 a_ 2 s- as-1 as 

---0--0-~ 

Fig 2-1. 

Q.E.D. 
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Section 3. Further application of forced-move principle. 

In this section, the forced-move principle stated in SectiGn 2 

is used to derive several interesting lemmas. 

Definition 2.4. TP-configuration. A TP-configuration C is a con­

figuration co~sisting of an S
5 

a
0
a1 ••. as and an AP b

0
b1 •.. bp 

with deg(bp) = d-1, b
0 

= a1 for some i, 0< i < s, and no bj = ak for 

any 0 < j "5_ p, 0 < k < s . 

Remark. We cannot anew b
0 

= a
0 

or as for otherwise G wou"!d con­

tain an Sp with p < s = s(G), impossible by the definition of s. 

Intuitively a TP-configuration looks like below: 

Lemma 2.3. Every TP-configuration with p < s is excludable. 

Proof of Lemma. If not, then G has the unique nonisomorphic edge-

reconstruction H. And s(G) = s(H) says that none of G or H or 

their isomorphs can contain an Sp. Now applying i consecutive 

forced-moves (a
0

a1 -+ asa0 ~a -1 a 2 --). a
0
a1 , . . . , a1_1a; ->- ai_2ai-l) we get 

an isomorph of G or H which contains S as a cor.figuration, con-
p . 

tradi ct ion. Q.E.D. 
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As a specia l application of Lerrnna 2.3, we see that two S 's cannot s 

intersect at th~ i nte rnal 1!big 11 v2rtices. They can be joined at the 

end "smal 1 11 ver t ices however. This simplifies the future configurations 

very much. 

It can be proved t hat Tp-confi gura t ions are excludable for p ~ s, 

but their proofs ii r e i ~iu c h much ha r cer, exac ti y tha t of the proof of the 

problem in fu ll fo rce . 

It is co nceivable that the t wo small vertices a
0 

and a
5 

in u.n 

S
5 

a
0

a1 ... a5 
may also be joined by another Ss a

0
b1b2 . . . b

5
_1 a

5 
• 

is, we might have b. = a. for some 0 < i < s (obvio usly, we cannot 
1 1 

have b. = a. 
1 J 

for some 0 < i t j < s). 

Our next step wi l l be to prove that t he above sHuation ca;inot hap-· 

pen. 

Lemrna 2.4. It is impossible that two vertic es of degree d - 1 be 

joi ned by two Ss's . (So the configuration of two small verti c es j oined 

by two S
5

's is excl udable . ) 

Proof of Lemma . We suppose at first t hat b1 t a1 . Let j be the 

fir st posit ive integer such that bj = aj' then l < j -s._ s. Now 

is a forced move sending G to H.
1 

= G - a b1 + a a :::: H, 
0 0 s 

for in G a
0

b
1 

, a
0 

·j s a vertex of degree d - 2 (an imposs i b 1 e degree 

in G or H) and b
1 

,a
5 

are two vertices of deg r ee d -1 of dis­

tance s - 1 apa r t. Consider H1 -· a
0

a1 . In this edge-deleted sub­

graph , a
0 

i s a ve rtex of deg r ee d - 2 , and so by H1 
1 s no n-edoe- recon-
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is a small vertex in 

then in 

G., 
i 
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of G is equal to 

other than If c 

and A. 1 J-

is not 

b. 
J form a Tj-l 

excludable by Lemna 2.3, and so G1 - H1 - a
0
a 1 + a

0
b1 ~ G. But now 

a
0
a

5 
-+ a

0
a1 ·is 3. forced move sending G1 to H2 = H s 'ince a

0 
i a a 

vertex of degree d - 2. and ai ,a
5 

are two sma 11 vertices d·i stance s - l 

apart in G1 - a
0
as. 

So far the set of three forced moves we used are sequentially: 

It is then obvious that we return to G identic~lly (not just an iso­

morph) after them, and so G = H2 = H, a contradiction. 

We have proved t he case when b
1 

t a1 . Now let b1 = a1 . Let 

i > l be the first integer such tha t bi 1 ai. Applying i -1 forced 

moves as in Lemma. 2.3 we see that in an isomorph of G or H (depend-

ing on i is odd or even), a. 1 F.1. . .. asao · · · ai-2 and 
1- 1 

a. 
1 

b. 
1- 1 · · .bs - l asc(o · · · ai-2 are two s 1 s s join"ing two small vertices 

a. 1 1-
and a. 2, 1 ~· 

and the condition b. f a . 
1 1 

in this isomorph ha s the 

same meaning v.s b1 t a1 in G. Q.E.D. 

Remark. Thi s iemrna i s proved for G. But the same argument h)lds for 

any isomo rph of G or H. We will assume this practice t hroughout. 

A simil ar argument can prove G's edge-reconstruc tability if G 

has only two small vertices. 

(uniqueness by Lemma 2 .4 ) and consider a vertex c t a 1 

in G 

ad jacent to a
0

. 

a c -+ a a is a forced move send i ng G to H1 ~ H since G has only 
0 0 $ 



35 

two small vertices. a
0 

and c are joined in H1 by an S
5 

a
0
c1c2 ... c

5
,cs = c since s(H1 ) = s(G). c1 may be a1 or not. And 

a
0
c1c2 ••• c

5 
is an A

5 
in G. Now it's trivial to observe that 

and are forced moves, and so the se-

quence of three moves: 

return us to G identically, and w~ get a contrad ict ion. 

Now the topology of interconnections of different S 's becoming s 

simpler, we may then ask the natural question: I~ the number n(G) of 

S
5

's in G edge-reconstructa bl e , in other words, is n(G) = n(H)? The 

affirmative answer i s proved by the following lemma: 

Lemma 2.5. The number n(G) of in G is edge-reconstructable. 

Proof of Lemma . Before starting tu prove, let's make a few intuitive 

concepts more precise. Recall that a vertex 

sma 11 est degree 6 ' and big if it has degree 

said to 11 1 i e on 11 an SS or As aoa .1 ..• as 

0 < i < s; b =a. 
l 

is an 11 end 11 if i ~ 0 or 

is sma.11 . f' 
1 • it has the 

d. A vertex b 'di 11 be 

if b is some ai, 

s, "·internal 11 vertex if 

0 < i < s; and in this case we will also say that the S
5 

or 

Consider in G a fixed s aoal ... a c: • Let s .:> 

nG(ao) be the number of C I containing a not counting aoal ... as ~'s s 0 

nG(as) be tr:e n umb21~ of S 's containing <1 S not counting a a,, ••• a
5 s 0 I 
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the unique small vertex unequal to a
0 

or as, and 0 < i < s. 

equal to some ak, otherw·i se Lemma 2.3 enforces G's edge-reconstruct-

ability. Let KG be the set of all other Ss's. Then every SS in K 

is of the form bobl ... bs with none of bo or bs equal to ao or 

a
5

• And every S
5 

in KG is disjoint from a
0
a1 •.• as by Lemma 2.3. 

We see immediately that: 

G 

Consider now the forced move which transforms G to 

come in H1 nG(a
5

) As's containing a
5 

as a big end (an end wh i ch is a 

big vertex) with the other small end unequal to a
0 

or a1 . The 

n (a ) A 's which contain G 1 s a
1 

as the big end with the small end un-

equal to a
0 

or as become now nG(a1 ) Ss's containing a1 as a small 

end (a
0

a1 ... as exclusive however). It can be seen very easily that 

the other S 1 s or s A 's s which have a_i as a big end or which are mem-

hers of KG rermin intact in this move. (Lemma 2.4. eliminates some annoyance) 

Now if we define in H1 a function nH 
1 

in the same way nG was 

defined by considering the S
5 

a1a2 ... asa
0

, then we see from th~ previous 

ar9ument that nH (a) = n,_(a) 
l Ll 

for a 11 vertices 

fine KH in the ~ame way as KG' we see again: 
l 

a i n De -
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Actually, n(H1 ) = nH
1 

(a .1) + nH
1 

(a
0

) +I+ I KG! = DG(a1 ) + n~(a0 ) + 

1 + lKGI since KH is easily seen to be the same set as KG. Next, 
1 

consider the forced mcve a
1

a2 + a
0

a1 , which transforms H1 

We can define nr and 
\.11 

KG in a way similar a. s before and get n~ (a) ·- nH (a) ;::: nG(a) for 
l \)1 1 

a E aoal ... as and K = KH = KG. Furthermore, since our s of 
G.I l s 

consideration is a2a3 ••. asaoal this time~ W2 have 

n ( G1 ) = nG (a?) + nG (al) + l + t KGI' or 
·1 '- l 

n(G) = nG(a2) + nG(al) + l + I KG!' since G1 = G irnpl·ies 

n ( G1 ) = n ( G) • 

Similar argument shows that the forced move a2a3 ~ a1a2 sends 

to H2 = G1 - a2a3 + a1a2 with nH (a) = nG(a) for all a E 
2 

Proceeding in this way, \ve see that 

n(G) = nG(ao) + nG(as) + 1 + I KGI 

= n ( G
1 

) = nG (a 2) L I ) ·· nG\a1. + l + I KG! 

= n(G2) = nG(a4) + nG(a3) + l + I KGI 

all 
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and Hj's come from the sequence: 

sequence of forced moves: a
0 

a
1 

-~ <\o.
0

, a
1 

a2 -+ a
0 

a
1 

, a2a 
3 

-+ a1 a2 , ... , 

as-las-+ as-2as-l' asao 7 as-las. 

Adding the (s + 1 )/2 equations for n(Gi) 1 s (with G = G
0 

say), 

we get 

s 
(s + 1 )·n(G)/2 ·- 2= n ( a k ) + ( 1 + I K" I )( s - 1 ) I 2 ; 

k=O u 

adding the (s+l)/2 equations for n(Hj)'s, we get 

s 
( s + 1 ) ·· n ( H 1 ) I 2 = 6 n (a k) + ( 1 + I KG I ) ( s - 1 ) I 2 

k=O 

= (s+l)·n(G)/2. 

Hence n( H) - n(H
1

) = n(G) as was to be proved. Q.E.D. 

Corollary 2.5. Notations as in the proof of Lemma 2.5, we have 

A 1 so~ '\/a ) = n G. (a 
1 
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and G. 
1 

and H; are some isomorphs when we do the sequence of forced 
...) 

moves 

Proof of Corollary. The second half of the statement was already noted 

in t~e proof of 1em na ,. For the ffrst half, we see that n(G1 ) = n(H1 ) 

implies nG(a 2) + nG(a1 ) + 1 + l KGI = nG(a 1 ) + nG(a 0) + 1 + I KGI, which 

in turn implies nG(a
0

) = nG( a2) ; n(G2) = n(H2) i mpli es by a similar 

way tha~ nG(a 2) ::: nG( a4 ); and su by compa r"lng n( G; ) = n(Hi) for 

i ~ i ~ (s ~· l )/2, we see easily nG(a
0

) = nG(a 2) = nG(a4 ) = · · • = nG(a 5 _1 ). 

The second equality nG(a1 ) = nG( a3 ) = ··· = nG(a
5

) follows by compar-

ing n ( GJ. ) = n ( H . +l ) , l < j < ( s - l ) / 2 • Q • E • D . J - - -

Remark. It's conce ivable that ' \ nG'~a; or for some i so-

morph G' of G or isomorph H' of H if they do not appear some-

The more stric t term for nG(a), a E a
0
a.i •.. a

5 
should be 

nG ( a)~ and so nG(a) = nH (a ) more preci sely means 
),aoal ··· as - " 1 

n . (a) = n G,a
0

a1 ... as ' . H1 , a1a2 
(a) However, since n is always a a · · G 

s 0 
defin ed by i mp l i c i tly as suming an a.0 a1 ... a

5
, we will write nG(a) for 

nG (a) unles s it is confusing. 
Jsd a, . . . a c: 

0 . ..J 

Also, we may write nG a 
' 0 

vertices are irrelevant . 

.. (a) 
as as nGa -a (a) 

' 0 s 
if the internal 

By means of Ler1ma 2.4, we establish the exci udability of a configura-

tion which will be usefJ i i n Secti on 4 . 

Consider' the confi gur fi ti on in F·i ~L 2-2 bel O\"! , \~h i ch consists of an 
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to a
5

• 

obviously a forced rno~e, and it gives two S
5

's joining a 1 s-

is 

and 

H' = G - a
5

_1as + a
5
a

0
; so H' and hence G is edge-reconstructable by 

Lemma 2.4. 

"s-1 

Fig. 2-2 

e. 
1 

This tens us that as-1 on an SS aoal ... as-las cannot lie on 

an As jo'ining it and as. (However, it is conceivable that as-.1 may 

lie on an Ac w·!th ao the other· end). Similar fact holds for al . 
.;) 

Furthermore, we note that if in Fig. 2-2, a
5

_1 and a
5 

are joined 

by an 

HI :: G 

A P .,.,. ~ · .:1 .,..1ste;:ir1 r- + A th·er1 p' ._ ;.'!- 1 .• ·· c..vi V1 S' . I . . G is edge-reconstructable; for 

-· a a s-1 s contains the obviously excludable 
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Section 4. Excludability of s-three-chains, s-three-cycles, and s-two­

chains. 

Let's review the interconnection structure of s I -s ::::> 
so far. We 

know that no two S
5

's can intersect at an internal vertex (Lemma 2.3), 

and no two S 'swill have the same two ends (Lemma 2.4); but since s 
S

5
's can have one end in common, it is still conceivable that long 

11 chafos 11 (or 11 cycles 11
) of S

5 
's joined end to end can ex ·ist making the 

structure still quite intricate. 

To investigate this possibility, we have: 

Definition 2.5. s-th:r•ee-ehain. J\n ordered quadruple (a,b,c,d) of four 

distinct small vertices a,b,c :; d is called an s-three-chain if a - b, 

b - c , c - d a re a 11 S 's. s 

Remark. In the deflnition above, there is no problem of which \ join­

ing a and b will be chosen, for there is only one. A permutation 

of a,b,c,d say (a,c,b,d) need not be an s -three--chain. Also, 

(d,c,b,a) is an s- three-chain physically the same as (a,~,c,d) but de-

fined as different logically. To rescue this situation, we define an 

equivalence r elation r..- on the set of s-three-·chains by letting each 

equivalence class consist of exactly two elements (a,b,c,d) and 

(d,c,b,a). By o.buse of language, vie will write (a,b,c,d) for t he class 

[ (a:.b,c,d)]. 

Definition 2.6. s--th.,ree-cycle . An unordered tr-iple [a,b,c} of three 

distinct small vertices a~b"c is caned ans-three-cycle if a -b ~ b-c, 

c - a a re a 11 S .- 1 s. 
::.> 

Feel fogs of s--three-cha i n and ~.; -thre e - cyc ·i e s can be ga ined by ·1ook·-

ing at Fig. 2-3(a) and (b) be1ow: 



b 
~-- ...;,.0----0- • • 

a 
• -0----X 
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a 

/\ i o, 
·. . ~ 

. -0--~ 

d 
L. . --0\ 

c b 

(a) (b) 

Fig. 2-3. a depiction of (a) s-three-chain and 

(b) s-three-cycle. 

c 

Before investigating thero; we will introduce another useful defini~ 

tion which is a gener alization of the concept of forced edge. 

Definition 2 . 7. Forced vertex. If, in conformity to three conditions 

mentioned before Definition 2.2, an edge aa can only be replaced with 

one of its end a fixed (i.e. a. B changed to a.¥ for some Y), we re­

fer to a. as a for ced vertex (in G - a. (3). 

As an example, if a is a small vertex, and b is any adjacent 

vertex, then a is a forced vertex in G - ab. Though not seeming very 

useful at first sight, the concept of forced vertex is applied easily to 

establish a forced edge (and hence G.'s edge-reconstructability): ab can 

be proved to be a forced edge if we can show that a and b are both 

forced vertices. For illustration, we see that if a , b are adjacent small 

vertices, then "in G ~·ab, a and b are both forced vertices, hence 

est ab l i sh i n g ab as a fo reed ed g f.:~ (cf. Sec. t fo n 2 ) . 

Lemma 2. 5 proved at t he end of Sect io n 3 will be the main tool to 
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prove excludability of s-three-chains ands-three-cycles. 

Recall that s is odd by Lemma 2. 2. We wi'll div ·ir.le the proof of 

excludability of s-three-r.hains into two parts: s > 7 and s = 3 or 5. 

The proof for s > 7 will be stated as Proposition 2.6, due to its big 

size; and the proof for s = 3 or 5 will be stated as Lemma 2.9. 

Consider now fo~ s > 7 an s-three-chain (·a- b c d) and re .. 1,· 1rite 
' ' ' 'f 

b = b
0

, c = b
5 

(so that b and c are jo'ined by an \ b
0

b1 . . . b5 ). 

We will write nG(bi) for nG b b (bi) unless some other S5 is used. 
' 0... s 

Now nG(b) '.:?__ l since b li-es on a-b and b-· c. Similarly, nG(c) ~ 1 

and we see immediately that n"(b.) > 1 for all 0 < i < s by Corollary 
•.::1 1 -

2.5. In particular, nG(b3 ) ~- 1 ·implies b3 lies on some As b3el ... es 

in G with ec t b or c. Here none of ej for 1 < j< s can lie on 
.;) -

the s-three-chain ff e,... f a or d., CHmAJever ,, it -1 s conceivable that 
::>. 

e
5 

=a or d.) We see also that b4 lies en some A
5 

b4 f 1 

with f
5 

'f b or c. Again, none of fk for 1 < k < s can l ·ie on the 

s-three-chain; and it is still possible that f
5 

= a or d or e
5 

when 

e
5 

'f a or d. 

We will prove excludability case by case depending on the distinct-

ness of f
5

, e
5

, a and d. The recognizability that G contains an 

s-three-chain sa.ti'sfyfog a certain case is trivial by looking at G - bb 1
, 

Where b' is adjacent to b on ab. 

First comes the most general case: 

Case 1. f
5

, e
5

, a and d are a11 distinct. 

Let 1 s dra\'J t he co nf i gu ratfo n T consisting of the s-three-chain 

(a,b,c,d) p 1 u::; t he titm 

be1 OvJ. 

A 's s 
in Fi g. 2-4 



b b' 

b l 
b 2 
b3 

b4 ·---0-

1 
>i---O-· 

c 

a 
-0---0----X 

e e s-2 s-1 es 
--0---0---X 

~ 

f s-2 f 
5

_ .
1 f s 

- o---0---X 

d 
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Fig. 2-4 Confi guration T 
used in Case l of excluda­
bil ity of s-three-chains 
for s > 7. 

Note that f
5

_
1 

~ e
5

_
1

, f
5

_
2 

f e
5

_
2

, otherwise ss_ 4 (and it is 

clear that e5 _ 2 "f fs - l' f 5 _ 2 t- es_1). Ha. =G-· es_ 1e5 +esb==H and 

H = G - e 1e + e c ~ H are the only t wo possible ways to edge-recon -
~ s- s s 

since es is a fo r ced vert ex and the c::: b - ·c ... s 

Let's consi der H first. Denote by T the configuration in H a a a 
obtained from T in G by the same kind of operations from which H a 

is obtained from H) i.e. Ta. = T - es_ 1e
5 

+ e
5

b. (We will assume this 

"natural 11 associati on of graphs and confi gurations from now on). In 

Ha. - e
5

_ 1es_ 2 , e
5

_ 1 is a forced vertex, and a candidate for edge-recon-

struction is G 
a. ' l 

sman vertex in Ha. - es- ·ie
5

_1 . (g may be a, e
5

, c, d, f
5 

or something 

e 1 se). 

Suppose for now t hat g 

and b4f.! .. ' f s i s s t"i 11 an 

edge-recon struct from G · ~ 

a , 1 

t f ~· . 
..;J 

A ' s 
~ f I s s- ·1 

Then f 5 is a sma l l vertex in G 
a.' 1 

in Tc~ , 1. Tile ordy pos s ible ways to 

are H 2. ~ G 1 - f f 1 + f h, a , a.., s s;.:; s · 
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with h f f s- l any sma 11 vertex in Gu, 1 - f 5 fs~ 1 . Now our configuration 

T = T - ff + f h = ··· = T - e ~ +Pb - e .e 2 + e 1 9 -a,2 a,1 s s-1 s s-1-s -s s-1 s- s-

f
5

f s-l + f
5 

h will have the general look as below: 

b > s a' 

S, ... -1 u3 
-0---)( 

---o~ fs-1 

)f:----0- ••• L 
< 3 c > s 

·---()---)( d I 

The picture is self-explanatory. The upper 1 eft corner 11 u1 < 3 b" 

says that the distance of u1 and b is at most three (u1 can be f
5

,e
5

_1, 

e
5

orbwith distance respectively 3, 2, l, 0). 1\1 so b" - u3 .) 
i 3 an 

· if u3 = e
5

_ 2, and A
5

_1 if u3 = f
5

, u3 cannot be any other vertex. 

A s-2 

Note that though u
1 

and u
3 

can be f
5 

at different times, they cannot 

be equal to fs at the same time. 

lies on an ~ b f --'s- ·1 4 - s-1 and an 

Sp b4 - u2 with p~ s - 4 + 3 < s. So either b4 is a forced vertex 

or f s-1u2 is a replacing edge. s·i,;nilarly we see that b3 1 i es on 

b3 - u" which is an 5s-1 or s and an s b3 - u, wHh .j s-2 q 

q ~ 3 + 3 ~ 6, and so either b3 is a f6rced vertex or u1u3 is 

a replacing edge. Since are all distinct in T with a ,2 
none of them equa 1 to b3 or b4 , \"1!2 see that b

3 
Z!ffd b

4 
are both 

forced vertices, enfo rcing to be a forced edge; so H 2 and hence 
a.' 
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G is edge-reconstr uctable. 

We have shown tha t S> 7 implies G's edge-recor.structability in 

the subcase H and assumir.g g I .c 

a 's. 

We will now show g t f for the subcase u Suppose not, and we II . r a. .., 

go back to G = H es-les-2 + es-lfs (now g = f s). In T - b3b4, o. , 1 a. a, 1 

b3 lies on 5s-2 b3 - es-2 and s/.l b3 - es, so either b3 ·is a 
+. 

forced vertex or eses-2 is a replac ing edge. But b4 - c is an 5s-4' 

and so since b4 ' c, ' es - 2' ec are all dist inct , b3b4 -+ b3 c is a 03, 
~ 

to H forced move sending G ·1 a., a. ,y 
In T , rewrite c ·· d as 

a. ,y 

co cl ... c (d = cs) !I and consider T - dsds -1 · Any possible edge-recon-
s a <»y 

struction G will be = H - dsds-1 + ds-lj' with j any sma 11 
a. ,o a.,y 

vertex r d
5 

in H - dsds-1" Now as in the previous pa ragraph, in 
a. ,y 

al so an SP , p -s:_ 3 + 2 = 5 < 7 , and c 1 i es on an \ _ 4 c - b 4 or S s _ 3 

c - d
5 

and also an s
5

_1 c - d
5

_1 ; so as before b3 c is a 11forced edge" 

and we are don e , fi ni shing the subcase H for Case 1 • 
a. 

The proof fo r Ha follows in the same vein except when g = f s 

(i.e. GB, 1 The above argument does not apply 

c is no longe r an S
5

_4 in Tf3,l - b3b4 (c is no t a small 

v!e proceed by using re s ul t s for Ha. From GB, 1 "" esc, we · 

can edge-recons truct some G~, 1 - esc + esk = H. If k t- b, then our 

since b4 -

vertex now). 

new graph conta i ns a ,.. (the S 
·s-2 s and so G 

is edge-recons t r uctable . But k = b ·i mpli es our isomorph of H contains 

the excl udab·: e configura tio n T 
Ct 

completing t he proof for Case l. 

as desc ribed before ~ and we ar e done , 
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Remark. In the proof before, we de1eted edges in this order: e
5
e

5
_1 , 

e
5

_ 1e
5

_ 2 , f
5

_ 1fs_ 2 . We can prove excludnbility of T in the same vein 

if edges are deleted in another way: f f 1 , f 1f 2 ~ e 1e . s s- s- s- . s- s 

Pausing for a moment, we see thut the above type of argument works 

when es ~ f s r a or d; the proof is even simpler. Some minor 

change is observed, for example, in Ga,l =Ha - e
5

_1es_2 + e
5

_1g, g may 

be fs-l now (g couldn't be fs-l when es, f
5

, a, d are distinct as in 

case 1). The type of argument leading to that b3b4 + b3c is a forced 

move sending G 
od 1 

to H a,y is no longer necessary here. 

We state this as a variation of Case l: 

Case 1.-. f = e f a or d (proof al ready mentioned). s s 

Next we consider the case when exactly one of f or e coincides s s 
with a or d. 

Case 2. f s :::: a or d5 es f a or d; or 

es = a or d, f t- a or d. ( sti 11 S> 7 assumed) s 

Gra phi ca 11 y we mean that all the four configurations shown in Fig. 

2-5 are excludable. 

The proofs of these fou r subcases being essentially the same, we wi 11 

do Fig. 2-5 (a) only as an illustration. For simplicity, we assume es-l 

~ c-d. Same practice will hold for Case 3 following. To get feeling for 

proof, see Lemma 2. 12. 

Denote the configuration 'in Fig. 2-5(a) by U(a). To avoid T
5

_1, the 

only edges we can replace in G - e
5

_1d (to get Hi~ H) are de and bd . 

If we replace by de, then K1-~l'Jy 1 s Lemma (Leinma 1.1) on (s+l)-cycles 

says that there is a path of length s (easily shown to be an As) joining 
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c 

b a 
--0---0-X 

el...... . f s-2 f s - l f s 
0-- ·· .·.~ 

f 1 
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~-

(a) 

b 

(c) 

d = e s 

a 

d - f s 

Fig. 2-5 

c 

c 

b 

r---o-

b 
~-0-

. 
~-

d 

(b) 

(d) 

e
5

_1 and d in G not containing e
5

_
1

d (so that the As e
5

_
1

-d 

foa lowed by edge de
5
_1 is the 11 old 11 (s+l )-cycle in G, and the A

5 
d -c 

followed by the newly added edge de is the "new" (s+l)-cycle in W). 

The As es_ 1-d cannot contain any vertex on b
0

b
1 

•.. bs~ to avoid 

some possible Tp,p < s. Now three forced moves b
0

b1 ~ b
5
b

0
, b1b2 ~ 

b
0

b1 and b2b3 -~ b1 b2 give us an isomorph of H containing the ex-· 

cludable configuration as in Fig. 2-2. 

Now we consi der replacing de s-1 by db. The only ways to edge-
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reconstruct from are 

some small vertex in the edge-deleted subgraph. We claim that g can-

not be f
5

. Suppose not, we see that the fact that b
3 

lies on an S
5

_2 

and is an ~ 
~s-4 

en-

forces the move b
3
b

4 
-+ b

3 
c and gives us H

2 
=::: H. Consider deleting 

db in U~a), then db~ db4 is the only possibility (to avoid a Ts-l 

or T
5

_ 2), which also gives us G3 ~ G. 

with c = c
0

, d = cs, and delete c
5

_1cs 

Rewrite c-d as c
0
c1 ... c

5
, 

in the configuration U~a) 
(which is contained in G~), the only eligible edg~-reconstructions are 

..) 

H4 = G3 - cs-ld + dh, where h mdy be ~' b, es_2, e
5

_1 or some 

other sma n vertices not on U~ a). We note now that in H
4 

- b3 c, b3 

1 i es on an s3 b3 - b or S4 b3 - d and also on an 5s-2 b -3 es-2 

or 5s- l b3 - d (it depends on the value of h, note also that it is im-

possible that b3 and d are joined by both an S4 and an 5s-1) such 

that the other two small vertices are distinct, and c lies on an 5s-1 
c

0 
- cs- l and s4 c - d; so it is easy to see that b3c is the only 

way to recover a graph, proving our claim that g cannot be fs. 

Returning now to G1 = H' - es-les_2 + es-lg in the previous para­

graph, with the recognition that g t f
5

. We can edge-reconstruct 

H11 = G.,. - f f ·1 + f h I 'h I s s- s some small vertex i f
5

_1 in G, - f f , . 
I S S-1 

Similar type of argument as before will show that from H11 
- b3b4 , b3b4 

is the only edge we can repl ace (hence a 11 forced edge 11 in a more general 

sense) using the fact that s > 7 is the minimum distance between any 

two small vertices. ~Je are rm..; done for the proof ot subcase 

Fig. 2-5 (a) of Case 2. Sind la r proofs of th 0 other three subcases 1tlill 

be omitted here. 
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The results ~btained in Case l, Case 1' and Case 2 readily give a 

new interesting summary-type result whkh we state as: 

Lemma 2.7. G is edge-reconstructable if G contains ans-three-chain 

(a,b,c,d) with nG,b-c(b) ~ 3 or nG,b-c(c) ~ 3; here s > 7. 

Proof of Lemma. Consider nG,b-c(b) ~ 3 first. Then nG,b-c(b4 ) = 

nG,b-c(b) ~ 3, and b4 is the big end of at least three A5 ~s in G. It 

cannot happen that b4 and a are joined by more than one As, for 

then, in an isomorph of G which is obtained from G by four forced 

moves b
0

b1 ~ b
5
b

0
,b1b2 ~ b

0
b1 ,b2b3 ~· b

1
b2, b3b4 ~ b2b3, we see two 

small vertices joined by two 5s 's, contradictory to Lemma 2.4. Similar­

ly, b4 and d are joined by at most one As in G. So b4 must lie 

on at least 3 - 1 - 1 ~ 1 f + a or d . Since s r 

nG,b-c(b3) = nG,b-c(c) ~ 1, b3 lies on an As b3e.1 ••• es. The case 

es= a or d is treated in Case 2, e
5 

= fs in Case 1 ')and e5 f 

any of fs, a, d in Case l . In all cases, we see our s-three-chain for 

s > 7 is excluciable, in other words G is edge- reconstructable if G 

contains such a configuration. 

The case nG,b-c(c) ~ 3 is done in a similar way. Q.E.D. 

Henceforth we assume that nG,b-c(b) ~ 2, nG,b-c(c) ~ 2 for any 

s-three-chain (a,b,c,d). We note that if b3 lies on an As b3e1 ... e
5 

withe I a or d, then ar guments as in Lemma 2.7 using Case l, Case 1 ', s 
Case 2 say that G is edge-reconstructable. So any small end of an A

5 

with b3 or b4 as t he big end win be assumed to be a or d. Fur-

thermore, if nG b- (b) ' . c 
·- 2 ~ then b - d should be another SS, other-

wise say b - e i s another SS, t hen for the s-three-·cha in (e,b,c,d), 
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b3 - a is an A
5 

with a t e or d, a:1d the previous argument works. 

Similar fact holds for c as wen. Furthermore \·Je have nG,a-b (a:) ".S_ 2 

and nG,c-d(d) ~ 2= for if not and say nG,a ··b(a) ~ 3, then a is 

joined by 3 - 1 - 1 = l S to some small vertex e t b, c, or d, s 
and then G is edge--reconstructable by Lemma 2.7 applied to the s-three-

chain (e,a,b,c). 

We now come to the remaining case of Proposition 2.6. 

Without loss of generality, let nG,b-c(b) ~ nG,b-c(c) 

Subcase 3. (a) nG,b-c(c) = 2, nG,b-c(b) = 1 or 2. 

The situation is illustrated in Fig. 2-6. 

b 

c 

{a) 

a = 
-~-0---,7< 

s-1 / 
,,? 

d = e' =-= f s s 

Fig. 2-6 

(b) 

d=e' =f s s 

Let b3 1 ie on t1110 1\ Ir t s ..> b e ' e' with . 3 l . . . s 



52 

e
5 

=a, e~ = d. Let b4 lie o~ an A
5 

b4f 1 ... f
5 

with f
5 

=a or d. 

(The c~se f
5 

= d corresponding to Fig. 2-6 {a), f =a to Fig. s 
2-6{b)). The three A

5
''s just mentioned are disjoint except intersecting 

at the ends b3, a or d; and this car. be easily seen in an ison~rph 

G2 of G where b
0

b1 ..• b
5 

becomes b4b
5 

•.. b
2

b
3 

(app7ying 4 

forced moves to G) .. 

Since proofs are similar, we will do the case for Fig. 2-6 (a) only. 

G - a e
5

_ 1 can only be edge-reconstructed to G - a e 1 + ab Gr G -s-

a e
5

_ 1 + ac. In the former case, e
5

_1 and es are joined by an A
5 

in 

G and we have an excludable configuration as in Fig. 2- 2 in G2 of 

last paragraph. Next delete f
5

_1d in H1 = G - a e~ 1 +ab. s-
sible edge-reconstruction is G' = H' - f 1 d + dg, with g some small s-

vertex. If g is e
5

_1 , then b3 is joined to d by two different 

A5 's (namely b3el ... e~ and b3e1 ... es-l d) in G1
• So three 

forced moves b
0

b1 -+ b
5
b

0
,b.

1
b2 -+ b

0
bl'b2b3 -+ b1b2 will give us an iso-

morph of H where two small vertices b3 and d are joined by two 

different ss' s; this is impossible by Lemma 2.4. (This is a place 

where we use heavily the fact that nG(c) = 2). If g is not es-1 ' 

then argument as in Case l tells us that b3b4 is a "forced edge" in 

G', i.e., after considering all possibilities, . b3b4 is the only edge 

we can _ replace in G' - b3b4 . (s ~ 7 is also used heavily, argument 

fails if s = 5). Hence we are done with subcase 3(a). 

Sv.hcase 3. (b). nG,b-c(b) = nG,b-c(c) = 1. 

Again, we note nG(a) ~ 1, nG(d) ~- 1, otherwi se we are done by sub­

case 3. (a) by some s - three--cha in (h,a,b,c). Nov1 \'v'e observe that none 
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of a, b, c, d can lie on any s-three-cycle. For if, say, b lies 

on an s-three-·cycle !\ then nG(b) = 1 enforces the third "side" of this 

s-three-cycle to be an S joining a and c, which in turn implies s 
nG(c) ~ 2, a contradiction. 

Let b' be adjacent to b on the Ss a - b. The forced move 

bb' + ba gives some H' = H. Since nH,(b') = nG(b') = nG(a) ~ 1 

(Corollary 2.5), b' lies on no s-three-cycle in H1
: Hence the move 

bb' + ba has no effect on any existing s-three-cycles, and we see 

readily that the number of s-three-cycles is edge-reconstructable in 

this subca.se. 

As before, let b3 lie on the As b3e1 ... e
5 

and b4 on 

b4f 1 ..• fs. We know es and f
5 

must be either a or d. To save 

writing in this subcase, we use G + H1 + G1+ H2 + G2 + ·•· + H(s-1)/2 + 

G(s-l)/ 2 + H(s+l)/ 2 when the sequence of forced moves is b0 b1 + 

b
5

b
0

,b1b2 + b
0

b
1

, ..• , etc. Now e
5 

and f
5 

cannot be equal, other­

wise 

b, c 

more 

in G2 = G we have a 11 new 11 

1 i es on no s-three-cycle in 

s-three-cycle than G has, 

S··three-cycl e [b3,b4,es} 

G, the isomorph G2 of 

i rnpo s s i b 1 e . Hence we have 

G 

and s'ince 

has one 

e = a, s 

Consider e
5 

=a, fs = d first~ b1 must lie on an As b1 - h, 

h 1 b,c. h cannot be a, otherwise H1 has one more s-three-cycle than 

b~. Now if h 1 d, 

then in H, ' b :::;. b I 4 3 1 i es on an for the s-

three-chain (h,b1,b,a), and so H1 is edge-reconstructable by the 

paragraph right before Case 3. Hence h = d. 

Observe that it is impossible that bi - a o.nd bi+l -a (or b; - d 
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and bi+l - d} are both 

or H will have one more 

in G, for otherwise some isomorph of G 

s-three cycle than G. Now it is clear that 

b5 - a is an !\ (not b5 - g for any other g). 

Let b2 - j be the As with a2 as the big end (nG(a2) = 1 ) in 

G. j cannot be d since bl - d is an As' cannot be a since b
3 

- a 

is an As. In G2 ~·ith reindexing b2 = b" b3 = b" b5 = 
0 1 ' . .,, . ' 

b ll • 3' ... , b5 - a is an A
5 

w"ith a =i j ,d for the s- three-chain 

(j,a 2,a1 ,d) and so G2 is edge-reconstructable. 

Let now e
5 

= d (and fs =a). From G - e
5

_1d, we have two possi ­

ble edge-recons t ructions ~ H, namely G - es-ld + de and G - es - ld + 

db (so that no T s-1 is created) . The former is excluded as usual 

since e and e a re joined by an A in G. For the latter, we s-1 s s 
see that e ~ 1 i es on two SS 's in H' = G - es-ld + db since b 1 i es 

S-1 

on two S 's s in G. Denote these two by e s ·· l - u.) es-1 - ~. Then 

es_1- a, es-1 -~ f3 are A ' s in G. lJe claim that one of a. , [3 say a. s 
must be c. Suppose not. Since nG,b-c(b3) = l ' b3 lies on l + l = 2 

S 's s as the small end in H2' and we st in have n 
H2,b3el ... es (b3) = 1. 

But a. ,s "f c ·implies 2 = n.. b ( e 1 ) = nH2, b3el . .. es {b3) = l ' a 
H2, 3e1 .. es s--

contradiction, provi ng our claim. 

Let the '\ j oining c a. nd e
5

_
1 

be cg
1 

.•. g
5

,e
5

_1 = g
5

• Sup­

pose at first t hat g
1 

does not li e on b-c or c-d. Then G - cg.1 can be 

edge-recons t ructed to give G - cg1 + ce, an isomorph of H. If e f b 

or c, then i n H ( see p."53) we have a Ts -1 . If e = b or c, then c 
2 

and 91 are j oi ned by an f\s "in G, and h i H' v.Je ha ve an exc1udab1e 

configuration as in ri g. 2-2 . So 91 mus t li e on b-c or c-d. If 91 



55 

lies on c-d, then g1 = c1 (with cd ::! c
0
c1 ... cs). Let i > 1 be 

the first integer such that gi ~ ci' gi+l f ci+l; then H' contains a 

c-d and A . 
S-1 

on b-c, or g1 = bs-l. Now 

cycle than G (( b
5

_ 1 ,b
5

, d} 

c. - e 1 ), and we are done. 
1 s- lie 

G ·• b 1 b + b b has one more s-three-s- s s 0 

is new), a contradiction. 

Having done now Case 3 also, we claim to have proved the technical 

l emma be 1 ow : 

Proposition 2.6. Ans-three-chain is excludable if s > 7. 

Note that the argument used in proving Proposition 2.6 does not ap-

ply when s = 3 or 5, and we need a separate discussioo. We will 

appeal to a result or p. 22 of Swart [17 ], which is restated here for 

reference: 

Proposition 2.8. (S~art) If a bi-degreed G is not edge-reconstruct­

able, then the girth (the shortast length of cycles) of G is > 8. 

Lemrna 2.S. An ~-three-chain is exch:dable if s = 3 or 5. 

Proof of Lem~a. Let s = 3 first, and consider a 3-three-chain 

(a,b,c,d). Rewrite the S Ir 3 ~ a-b, b-c, c-d as 

cr_c.,c,..,cJ resp.2ct iveiy with the understanding that a = a0 , b = a3 = b0 , 
J I t.. .) 

b ·- c 3 -- 0, 

morph G1 of G a configuration C which looks like the English let-

ter "H" as shm..;r: in the following: 
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c 3 ao 

b3 = co bo = a3 

cl a2 

c2 al 

We readily observe that nG' ,c2-c3 (co) = n Gr - c ( c 2 ) . Now, in the 
,c2 3 

graph H
0 

= G' - a a 3 0 
+ a

1
a

0
, b3b2b1bo becomes a 11 new 11 

A3 at 

b3 = co (b3b2blbo is neither A3 nor S3 in G), and we would have 

nH c -c (c
0

) = nH (c2 ) + 1 unless, in G, c
0 

is joined to a 
o' 2 3 o'c2-c3 

by an A3 c
0 

- a1 or c2 is jo~ned to b
0 

by an A3 b
0 

~ c2. None 

of the two A 's in 3 G, namely c
0 

- a1 can contain any 

"big" vertex in (a,b,c,d); otherwise it is easy to find some T , p< 3 p 

in an isomorph of G or H by suitable forced moves. 

In G, the first alternative gives us a cycle of leng t h 8: the s3 

c
0 

- a3 (i.e. c-b) followed by A2 a3a2a1 and then the A
3 

jo ining 

and there are exactly two small vertices Of d·i S-· 

tance 3. The second alternative that c2 be joined to bo by an A3 in 

G gives us <11-SO a cycle of 1 ength 8 of a similar "description" as a-

bove. Since proofs will be identical except changes in notation, we 

do the first alternative only. But this is trivial now, since b2b3 + 

b3b
0 

is a fol'ced move; and in the new graph (~ H) the edge b3b
0 

(=c
0
a

3
), followed by A

2 
a

3
a2a1 and the A3 a1 - c

0 
is a cycle of 

length 1 + 2 + 3 = 6 < 8, contradictory to Proposition 2.8. 

Next, let s = 5, and cor:sider a 5-three-cha in (a, b ,.c ,d). As 

before, ~ewrite a-b, c-c, c-d by a
0 

... a5, b
0 
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with a = a
0

, b ~ as ~ b
0

, c = b5 = c
0

, d = c5. Arguing as in the case 

s = 3, we see that cycle of length 5 + 5 + (5 -1) -= 14 exis t s by two 

alternatives, where , say, t he first alternative gives in G the cycle 

by the S5 c-b fol lowed by A4 a5a4a3a2a.1 and then the As a1 - c. 

The two forced mo ves aoa1 ->- a5ao and a 1a2 -+ aoal now send G to 

G
1 
~ G. Then let e be adjacent to c on the S5 c - a1 in Gl , 

ce ~ ca
1 is a forced move sending G 1 to Hl ' wherein the original 

al 4 e 
-0---Y. 

1 
2 

--·--- ao · f c 
~-0----0-1 

b = b -- a5 

~ 5 bl . 

0 

5 3 

a2 

d 

Fig. 2-7 

5-three-chain (a,b,c,d) becomes a configurat i on C' as i n Fig. 2-7. 

In C', we have a cycle of length l + 2 + 5 = 8, which is pretty irn-

proved from t he starting val ue 14, but still not good eno ugh : we need 

some cycle of 1 ength < 8. 

Let's cons 1· der Hl - bbl. Since bl - c is an S4 and a 2 - b is 

an S3 in this subgraph ,, we have 4 - 1 = 3 ways of repl ac ing an edge 

to get G2 = G, name·l y bl a2, ca .'), and be. 
( .. 

If the replac i ng ecge i ,~ :.> h r · ' ; ..,., then "in G cb aoal c is a cycle of 
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length 4 < 8, we are done by Pro po s ·i t ·ion 2.8. If it is ca 2 , then ca2 

fol 1 owed by a2a3a4a5a.oal and a
1
c is a cycle of 1 ength 1 + 5 + 1 = 

7< 8; and if it is bl a2, then b and c are now small vertices on 

an s3 ba
0
a1c, a contradiction. Hence we have proved the case s = 5 

completing the proof of Lemma 2.9. Q.E.D. 

We combine t he results of Proposition 2.6 and Lemma 2.9 in the fol­

lowing 

Proposition 2.10. All s-three-chains are excludable for bi-degreed 

graph G. 

Next we come to the excludability of a closely related configuration~ 

the s-three-cycles. The proof for it is much simpler by the result of 

Proposition 2.10. 

Lemma 2.'ll. s-three-cycles are excludable. 

Proof of Lemma. Let [a,b,c} be an s-three-cycle in G. Then we see 

immediately that nG,a-b(a) = nG,a-c(a) = 1, for if not, then frnm an 

S
5 

a - d with d 'f b,c, we have an s-three-cha"in (d,a,b,c), impossi-

ble by Proposit ion 2.10. Similarly nG,b-c(b) = "G,b-c(b} = l, 

0 G,a-b(c) = nG,b-c(c) - 1 · 

Rewrite a - b a s a 
0

a1 . . . a s w i th a = a 
0 

, b = as . n G , a 
0 

-a s (a 1 ) 

= nG,a
0

- a
5
(b) = 1 implies that a1 lies on an ·\ a1 -d, d t- a,b. If 

d ~ c, the forced move a
0

a1 ~ a
5
a

0 
gives an s-three-chain (d,a1 ,a0

,c) 

in H' = G - a6a1 + a
5
a

0
, impo ssible, and we shoul d have d = c. a1 - c 

cannot contain any big vertex in £a,b,c} by the same move a
0
a1 ~ a5a0 • 
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In particular, if f is adjacer1t to c on a1 -c, f cannot lie on 

{a,b,c}. 

Now G - cf can be edge-reconstructed in only two ways to get an 

isomorph of H and al so to avoid a T
5

_1, namely G - cf+ ca and 

G - cf + cb. ln both cases, Kelly's Lemma on (s+l )-cyc1es tens us 

that f is joined to c by 

asao contains an excludable 

done. Q.E.D. 

As f-c 
.. 

an in 

configuration as 

G. 

in 

Now H' = G - a a + 
0 1 

Fig. 2-2 and we are 

Coming back to the connection pattern of the "minimum·~ di stance-

Pa ths II ~ I$ th t ~ ~ 5 ) we see · a no "s - n-cycle" can exist (n = 2 by Lemma 

2.4, n = 3 by Lemma 2.11, n > 4 by Proposition 2.10), and a·1 so no 

"s - n-chain" can exist for n > 3 by Proposition 2.10. (Here "s - 11-

cycle" and "s ·- n-chain" a.re defined in a natural way similar to s-

three-cycle and s-three-chain). The pattern is simplified greatly, but 

it still remains the possibility that two S 's be joined at ~n end, s 

in other words, 11 s-two-chain 11 might exist. To make the notation more 

precise, we state 

Definition 2.9. s -two-chain. An ordered triple (a,b,c) of distinct 

small vertices is an s-two-chain if a-b, b~c are all S 's s . 

As in the case of s-three-chairis, (r,b,a) and (a,b,c) will be 

"equivalent" in a natural way, and we will write (a,b,c) to mean 

[(a,b,c)], the equivalence class of (a,b, c ). 

Let's now cons·ider an s-·two-chain (a,b,c) in G. We have immediate-

ly tha t "G · -b(a) = "G' 'o-r(c) = O 'a , . "' 
since s-three-chai n and s-three-

cycle are irnpossib.!e. Write b = b"", a = b,... 
v ..:> 
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We see nG(b2) = nG(b
0

) ~ l and b2_ lies on an A
5 

b2d1 ... d
5

• 

Conceivably d1 . ·~ d
5 

can intersect b-c at an i nternal vertex or an 

end small vertex. 

As an aid of proof, ·1et's introduce the concept of an "n-star" . 

An n-star (a; a 1 , \ ... , an, or simply an n-sta r at a is a set of 

n S 
5 

1 s a. - 1B 1 , a. - a 2 , ... , a. - an sue h that a. ~ a 1 :. ... , an a re 

a11 distinct. 

An n-star at a. looks 1 i ke a star with n "arms 11 a 11 joined at 

the •=center" a.. No two a. - a., a. - a . can in t er sect interna 11 y by 
l J 

Lemma 2 .3. We will now show that for every positive integer n, the 

number of n-stars is edge-reconstructable. Consider our s-two-chain 

(a,b,c) again. Since nG,b-a(b1 ) = nG,b- a( a ) = 0, the forced move 

b
0

b1 + b
5
b

0 
does not 11 destroy 11 any n-star at a nor 11 create 11 any n­

star at b1; it does not affect any other n-s tars at all (n f i xed in 

the argument) , and so t he number of n-sta r s is edge-recon structable . 

The small end d of the As s b d d Can coincide with c 2 l . . . s 

or not, and we wil l treat them di f f erently. We now state and prove the 

1 emma on ex c 1 u dab i 1 it y o f s - two - cha i n s . 

Lemma 2.12. -s-two-cha ins are excludable. 

Proof of Lemma . We let G1 be the graph obt c.tin ed frorn G by two 

forced moves b bl -'r b b , b b,.., -+ b bl 
0 S 0 Q L Q 

in this lemma. 

Let d,.. f c firs t. f~ote now no d. can be an internal vertex on 
.::> 1 

a-b or b-·C. We see nG ,b-c( b) = nG, b-c ( b2 ) = nGi, b2- d5 ( b2 X true by defi -

n it i on ) ;=. n " k , ( d .. , ) . 
l..J, ., u2-a s- , . s 

d
5

_1 cannot be j oined by an A
5 

to d5 
t o 
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avoid configuration as in Fig. 2-2. The only ways to edge-reconstruct 

from G - d .. d a r e s-1 s and G - d ~d + d b, to 
S- I S S 

prevent Ts-i · If the new edge is dsa, an "old" (nG(b) + 1 )-star at 

b is "destroyed' 1 ~ and the edge-reconstructabil ity of (nG(b) + 1 )-stars 

implies that the r e is an (nG(b) +i )-star at ds -- l in G - ds-lds + dsa. 

But there are only nG
1

(d
5

_1 ) = nG(b) As's with ds-l as a big end 

in G1 , ds-l should be joined by an A
5 

to b in G. In G ds-lds + 

dsa agai n , t he fact that there is an (nG(b) +1)-star at d
5

_1 says 

ds-l lies on another 5s d
5

_1 -e since nG(b)c l, and so we get an 

s-three-chain (e,d
5

_1 ,b,c) if et- c ors-three-cycle [ds_1 ,b,c} if 

e = c, a contradiction . 

Now conside~ H' ~ G - d .1d + d b s- s s (still assumed) . In 

H' b1b, ds - b is an s1 , a-b1 is an Ss-l and there a re 4-1 =3 

ways to edge-reconstruct some G', namely repiacing by b1d
5

, ads and 

ab. By a di scussion on (n G(b) + l )-stars as before , we note that d
5

_1 

is the "center 11 of an (nG(b) + l )-star in H' and hence must be 

joined to a by an As in G. 

If the replaci ng edge from H' - blb is blds , then G' has 

nG(b) 5s IS at b and nG(b)+l S 's at ds-1 and no 5s at ds s 

while G has nG(b) + l S 's at b, no Ss's at ds-1' at most one 
s 

5s at ds (easy to see nG ( ds) = 0 and the only S 's ds can lie 
2 s 

on in G are d - a s and d - b 
s ' 

d -a s is impos s ible by the s-three-

chain (ds,a.,b , c)). Si nce no othPr S 's s is affected going from G to 

G 1 
, we see n ( G') - n ( G) ~- nG ( b) + nG ( b) + 1 - ( nG ( b) + 1 ) - 1 = 

nG(b) -1 ~ 0. n ( G' ) = n(G) then enfor ces nG( b) = 1 and al so that d5 
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S 3t the same time. s But since d
5 

r c by 

assumption, we see immediately that nG(b) ~ 2, c.:ontradictory to the 

fact that nG(b) = l just proved. 

Next consider replacing by ads. The edge- reconstructability of 

(nG(b) + 'l )-stars now enforces the existence of an S
5 

joining b and 

b1 or joining b and d~-l in G'. The formEr case gives an exclud­

able configuration in G as Fig. 2-2. The latter case gives us an 

s-three-chain ors-three-cycle in G' since d
5

_1 lies on nG(b) +l ~ 

2 s I$• s 

At last, we consider replacing by ab. The edge-reconstructability 

of (nG(b) + l )-stars entails that ds-l and b1 be joined by an S
5 

i n G ' , or eq u i val en t 1 y , a path of l en gt h s i n G . Cons ·; de r H ' 

bl b2. In this subgraph, b2 1 i es on an 5s-2 b,, - a and 5s- l b2-ds-l' L 

and b - d 1 s is an 52" So b2bl -+ b2ds is a "forced move 11 sending HI 

to some G since all vertices mentioned are distinct. But now in G ' ex. a. 
d

5
_1 lies on nG(b) + 2 S

5 
's, the number of (nG(b) + 1 )-stars is then 

found to be one less than that of G (b1 cannot be the 11 center 11 of 

( n G ( b ) + 1 ) - s ta r s i n c e n G ( h ) ~ l ) , a contra.di ct i on . vJ e are now done 

for the case d
5 

; c. 

Next consider the case ds = c. First su ppose d
5

_1 ~ the S
5 

b- c (d
5

_1 r:/. the S
5 

a - b clearly otherwise we have a T1 ) . Consider 

G - d
5

_1d
5

• d
5
b or d

5
a must be a replacing edge to avoid a Ts-l. 

If d
5
b is a replacing edge, the new graph contains a newly created 

(s + 1 )-cycle$ namely the 5s b - c followed by the edge cb, and 

Kelly's lemma i mp.l ies the ex·istenc0 of an A
5 

jo in ing ds-l and d5 ; 

but then in G1, we have an excludabl e configurat i on as in Fig. 2-2. 
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If d
5
a is a replacing edge, the same argument as the case d

5 
I c 

works and we are done when d 
1 

~ b - c. s-

Now suppose d
5

_ 1 E b - c. Write b - c as c
0

c
1 

. . • cs with 

b = c
0

, c =cs . Clearly d
5

_ 1 = cs-l" Let k < s - l be the biggest 

integer such that dk r/:. c
0

c1 .. ., c5 (we have dk+l == ck+l 'dk+Z = ck+Z' . .. , 

d5 _1 = c
5

_1 , ds = c
5 

then) . Clearly k > 2 (otherwise we have a cycle 

of length < 6). Consider G - dkdk+l. Since c
0

dk+l and dk+lcs are 

forbidden Sk+l' Ss-k-l and a, b, dk are the three "ends" of a for­

bidden Tk in this subgraph, we see that the only replacing edges are 

be and dk+la. In the former case, Kelly's Lemma -implies dk and dk+l 

are joined by a pa t h of length s and so we can get a configuration as 

in Fig. 2-2 after number of appropriate forced moves . the latter case 

would imply that b and dk are joined by an As b - dk in G. Let 

b' be adjacent to b on b - dk. Suppose b' f- Cp bl. Consider G -

bb' + bd. If d -f a or c , then Gl con t ains a T 1. s- If d = a or 

c then bb 1 are joined by an A
5 

and in H1 = G - dkdk+l + dk+la 

we get an excl udable configuration. Note b 1 cannot be c1 otherwise 

H' contains a T
5

_
1

. 

consider G - dk- ldk. 

Hence b' :; b, is th e only possibility . Next 
I 

We can prove that b and dk-l are joined by an 

As (dk_ 1c, say, cannot be a replacing edge since b - a and b - dk 

wil 1 form some T p' p < s by the fact b 1 = b1 ). If b" is the vertex 

adjacent to b on the ,\ b - dk-l' we can show similarly that diffi ­

culty pres ents on ly when b'' = b1 . Then we can consider G - dk-ldk_ 2, 

show d k·- 2 and b are joined by an As, and we can assume t he vertex 

b(3) adjacent to b on t he Ac· b - dk -2 i s bl again . Proceed in 
_, 

this way, wo can at l ast show thnt d--: and b are joined by an As '-• 
I 
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and if o(l<) is the vertex adjacent to b on ct1 - b, then we can as­

sume b(k) = b1. But now observe that b2d1 ~ b2c is a forced move 

whkh gives in some H11 =: H two 5s 's which are not disjoint internally 

(b-a a.nd b-d
1 

have at least b
1 

in common), so Hand hence G 

is edge-reconstructable. We are thus done for the proof of lemma 2.12. 

Q.E.D. 

Remark. In the proof of Case 2 and Case 3 of Proposition 2.6 before, we 

have assumed es_ .1 or f
5

_1 rf:. a - b to simplify discussion; their 

proofs will be essentially similar to the case d
5 

= c, ds-l E b ~ c 

of Lemma 2. 12. 
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Section 5. Use of some other mini mum-dis t ance-functions and proof of 

the main theorem. 

By Lemma 2. 12 of Section 4-, we know that no two 5s 1 s can intersect 

at any vertex, whether at a big vertex of degree d or a small vertex 

of degree 6. The Ss's now have no interconnect i on patterns and they 

are hence very "sparsely" distributed in the graph G. We will intro-

duce two nevJ 11 rn inimum-distance-functfons 11 to handle this remaining case. 

Recall in Section 2 we have proved that G cannot have only one 

small vertex by degree argument and G cannot have only two small ver­

tices by princi~le of forced move. So G must have at least three 

small vert i ces. We \'Jill also assume · G to be connected (see Corol­

laries 1.3.l and 1.3.2.) 

In G, given an SS aoal ... as and a sma ll vertex c which do es 

not lie on any SS, we may ask can we define the di stance of c 

from the 11 1 i ne" a a, . .. a in a na tura 1 way? The answer i s yes and 
0 I s 

is quite easy to impl ement. For G's connectivity tells us that c 

and are joi ned by some path P. Let a. 
l 

be the first vertex on 

the intersec t ion of P and a
0 

... as. Then the "segment" Q of P 

traversed from c to a. 
l 

is disjoint from a
0 

- as except at a1, and 

its length ca n be naturally thought of as the '"distance of c to a ·­o 

a
5 

along the path Q" . With c and a
0 

- a
5 

fixed, we let Q range 

over all possible pa th s joining c and some 

also disjoin t f rom a
0 

- a
5 

except at 

tance of c to 

11 di stance 11 cf c 

a - a 
0 s afong the path 

from a - a..
5

. 
0 

a., 
l 

Q 

a. 
l 

then 

over 

on ao - as and 

the minimum of dis-

all Q's is t he 

He define s
1 

(G) ~ min plfc~a0 -- a 5 ) with c rang ing ove r al 1 small 
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vertices not lying on any Ss, and a
0 

- as ranging ove r all 

G. s1(G) i s our first minimum-dista nce-func tion to be used. 

s IS in s 

Now if say the minimum s
1 

( G) is attained u.t some small vertex 

and 5s ao a I • s, ( G) = p~ c , a 
0 

- a 
5

) ) , and the dis t ance of c - \ 1 • e. s I. 

ao - a is attained by a path Q joining c to a certain a. on s l 

a
0 

- a
5

, then an even number i implies t hat even number of forced 

moves wi ll lead us t o some G' = G and in G' 

with a path Q of length s1 (G) joining c 

becomes 

to a. 
l 

c 

to 

and edge-disjoint from a. a.+"' ... a. 1 , l l l l ·-
and an odd number i implies 

that even number of forced moves w"il 1 1 ead us t o some G" = G and in 

joining c t o a. 
l 

with a path Q of length 

and edge-disjoint f rom 

In ~ny cf the t~o cases just descrihed, we can ass ume {renaming if 

necessary) in '"' that we have the con f igura t i on of an SS a
0

a .
1 as \:; 

and a small vertex r; not on any 5 s and a pa th Q of length ,. ( G \ .:)1 \ I 

joining ao t o c and disjo i nt from a 
0 

... a s except at ao (note 

s1 (G) = s1 (G') = s1 (G ' )). The situation is drawn as below: 

G 

t 
c 
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Now, for the unique nonisomorphk edge-reconstruction H of G, 

we can define s1 (H) in a similJr way. For the Ss a
0
a

1 
•.. as just 

described, the forced move u a
1 

-+ a a 
0 s 0 

gives us H' =:: H, and in 

H', c is a small vertex not on any S
5

's and there is a path joining 

a
0 

and c of distance s1(G), so we see immediately s 1 (H')~d{a0 ,c) 

(definition of s1(H')) ~ s1(G), 

ment readily gives s1(G) ~ s1(H) 

denote it by s1 . 

or s1 (H) ~ s1 (G). l\ symmetry argu­

and so s1(G) = s1(H) and we may 

We define our second minimum distance function s2{G) as follows. 

Given any t\!JO S 's .. s aoal . ~ . as a.nd bob.I . .. bs (they are disjoint 

by Lemma 2.12), we define their distance to be the minimum length of a 

path Q join"ing some a. 
l 

in a -
0 as and b. 

J 
in b -

0 bs, such 

that Q is disjoint from ao - a and bo - b except a. and b .• s s 1 J 

Denote this by pG(a
0 

- as, b
0 

- bs). (This is conceptually the perpen­

dicular distance of two skew lines in space). Define s2(G) to be the 

minimum of pG(a
0 

- as, b
0 

- bs) as a
0 

- a
5

, b
0 

- b
5 

range over all 

distinct pairs of G. 

As in the case of s1(G), we may assume (by forced moves) that in 

G we have a configuration consisting of two different Ss 's a
0

a1 . .. a
5

, 

b
0

b1 . . . bs and a path Q of length s2(G) joining a
0 

to b
0 

which is disjoint from a
0 

- a
5

, b
0 

- bs except at a
0 

and b
0

• We 

can define s?(H) in a simi'lar way. By forced move and symmetry argu-
e.. 

ment we have immediately s2(H) ~ s2(G) and we may denote their corrmon 

value by s2. (He define s2 to be co if there is only one S5 ). 
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We know that s1 and s2 are both greater than or equal to s + 1 

by means of Lemma 2.12. Also recall that T
5 

is an excludable config­

uration (since after a certain n'Jmber of forced moves, T
5 

becomes an 

s-two-chain); or equivalently, n (a.) = 0 for any vertex G,a
0

a1 ... a
5 

1 

ai on an arbitrary S
5 

a
0
a1 ... a

5
• Before going too far, we will 

prove a useful result similar to Lemma 2.4 by utilizing Lemma 2.12: 

Lemma 2.13. It is impossible that two sma"ll vertices be jo'ined by an 

Ss and also an Ss+l. 

Proof of Lemma. Suppose not, and let two small vertices a and b be 

joined by an 5s+1 with a = c = 
0 

d ... 
s+I Without loss of generality, let (otherwise 

applying a certain number of forced moves and we gAt the same condition 

in an isomorph of G or H as in Lemma 2.4). ad1 +ab is a forced 

move otherwise the two 5s 's a - b, b - d
1 

form an s-two-cha in exc 1udab1 e 

by Lemma 2 .12. We see next ac1 + ad1 is a forced move otherwise the 

S
5 

a-c1 and A
5 

b - d
1 

form a Ts. At last ab->-ac1 is a forced 

move since in the i!>omorph of G with ab deleted, b - d1 is an 5
5

_1 , 

a is a vertex of degree d - 2. 

Now the three forced moves ad
1 

+ ab, ac1 + ad1 , ab + ac1 return 

us to the original graph G, so G is edge-reconstructable by Len~a 2.1, 

and we are done. Q.E.D. 

Corollary 2.13. ~t is impossible to have a configuration C consisting 

of an C' 

.Js+ 1 together with a path b b, ... bp of length 
0 • 

p-:;,.. s joir.in~J tvn acijacerd·. ve1·ticcs a. 
1 and ai+l for some i, with 
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Proof of Corollary. Conceptually the configuration C has the form as 

in Fig. 2-8 below: 

v 
Fig. 2-8 

It is conceivable that some b. for 0< j< p may be an internal 
J 

vertex of aoal . . . as. Suppose i . •. O first. aoal -+ as+l ao is 

clearly a forced move (otherwise an s-two-chain results), which gives an 

and an joining and impossible by Lemma 2.13. Now 

let i > 0. We see a
0

a1 -+ as+lao is again a forced move, for if not, 

then the configuration consisting of an S
5 

a1 - a
5 

and a path of 

length p~ s joining a. 
1 

and can be transformed by means of 

i - l forced moves to a configuration excludable by Fig. 2-2 or the 

comment after it. Next, we see a
1
a2 -+ a

0
a1 is also a forced move us­

ing the same argument as before (when i > 1). Proceeding in this way, 

we see i forced moves will trans.corm our configuration to one satisfy-

ing the condition i = 0 specified at the beginning (with reindexing of 

course). Q.E.O. 
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We will investigate the problem by comparing the values of s1 and 

s~ (in two case5). ,_ 

As remarked before, we assume in G a configuration C consist-

ing of two s I~· 
.... c ~ 

,J 
and also an Ss 

2 

(is the Q before) a , c 
0 s,... 

(. 

=·=· b o' 

n < i < s?. 
t.. 

and no c. 
1 

As a first reduction we will show that s2 can be assumed to be 

equal to s + 1. So suppose s,.. > s + 1 
t:. 

now. Co~sider G - cs c
5 

_1. 
2 2 

If our edge-rec.:onstruc ti on H' = G - c
5 

c
5 

_1 + c
5 

d, d f. a
0 

,as, theri 
2 2· ~ 2 

s2 ~- s2 ( H') ~ s2-1 when d lies on an 5s in H' and s2 = s (HI) < 2 --

sl (assumption) < s')-1 when d does not i ie on any SS in HI' 
- £. 

both of them 1 cad to the impossible i nequa "Ii ty s2 ~- s2-1; and so d = 

a0 ~a 5 • If d ~a, then no matter whether b lies on an S
5 

or not in 

H', we will have s~:'.(H') ~ s + l (since s2 ~ s1 by assumption) and so 

s2 = s + 1 since s2 ~ s + 1. If d = b, then i't is clear that 

pH,(b
0

-b
5

, c
0

-c
5

) ;;: s + l and hence s + 1 ·£. s2(W) ~ pH,(b
0

-b
5

, c
0
-c

5
) 

enforces s2 = s2(H') = s + l. 

If er lies also on another _., 

cs:-g, with g I a0 ,a 5 ~ then cs+lcs -+ c
5
+1c

0 
·is a forced move by the 

excludability of s-two- chains (Lemma 2.12); anci if c
5 

- c
0 

is the 

in G on v:hich c_ is a 
:::i 

forc ed. move by u~mma 2. ·1 2 ;.rnd ,~ 1 so the ed9e- rtcor:structabi l ity of 

number of c • ,.. 
~s :,, (I 

,., ... \ 
!' I rl ,~ 1.-. .. ~rnr.1.A __ • v ,1 .. f "'(l ·'.· :) ·" t. :.:. i' c ,. 'I~ .••,.!_ 1, , l h.1, '-- • 1 ' s s·;- I 

·is a forced edge if 



cs lies on at least two A
5

's c
5
-g1 , cs-g2 with g1,g2, a

0 
all dis­

t i nct (Lemma 2.12 again).) 

Cons·ider first the case that c
5 

lies on an l\ c
5
-e, e 1 a

0
; e 

may be as, b
5 

or some other small vertex in G (rote e cannot be 

Cs+l by Corol 1 ary ?..13). Let e i a
5

,b
5 

first. Let e' be adjacent 

to e on the !\,_ c -e s and consider G·-e'e. If some H" = G - ee 1 + ef 
.::a 

with f 1 b o' then pH"(ao-as, b
0
-e') ~ s when f f a and s 

p W ( n
0

, b-e') -s_ s when f = a
5

; both of these two ·i nequa 1 ity enforces 

s2 ~ s, a contradiction, and so 

that e: 1 i es on 5s e' - g "in 

in G,g I b . 
0. 

Now for H"' = 

f = b
0

• But then n(H") = n(G) implies 

H", g ;. b
0

, or equivalently an A
5 

e 1 -g 

cs+lcs + c 5+1c0 , we will have 

nH',c -e(e') = 1 t 0, an impossibility, unless g c a
0 

in which case 
s 

n1.. ( e') = 0. But then ee 1 is a forced edge s i nee ot hr: rwi se eit her 
1 ,c

5
-e 

(\,a
0
,e') or (ei,b

0
,bs) will appear as an s-two-chain. We are done 

when e ~ as or b
5

• 

If e = bs, then bo and bs are two small vertices joined in G 

by the s bo - bs and also an 5s+l ( bocs fol lm\led by the As cs - bs) : s 

and G is edge-reconstructab1e by Lemma 2., 3. 

Now let e = as. Suppose first that a1 
by u path of 1 ength s in G. Consider H1 -· 

,;ind 

(~ 
.A 

cs are not joim::d 

aoal + asao. In H ! ' 

our original configuration C (mentioned in the beginning of Case 1) be·· 

comes a configuration c, consisti1 ig of t h2 a r.ct 

bobl ... bs, and al so an 5s+l c c., cs+l with ;.J = co~ b = Cs+·I 0 I -·o 0 

and no c. lie s on i:l a ... al •JI' h bs ~ 0 < i < s + l. 1 0 ~, ·o 



72 

and a1 are not joined by an As in H1. Now 

is a forced move (Lemma 2.6 & 2.12), and in the new 

Furthermore cs 

cs+lcs ~ cs+l a, 

graph, a
0 

and ts are small vertices joined by a new S
5 

a
0 

- cs and 

2 .13. So and cs are joined by a path of length s in G. 

Since cs 

a configuration 

sists of two 

is joined to as by an As by assumption, G contains 

C' of the same form as C· , more explicitly, C' con-

S 's s asas-1 ... a o' bo ~ .. bs and an 5s+l joining as 

and b
0 

(b
0
cs followed by the As cs - as) which is di sjci nt form 

a
5 

- a
0 

and b
0 

- bs except at the 11 ends" a
5 

and b
0

• By arguments 

as in the previous paragraph, a
5

_1 and cs are joined by a path of 

length s in G. 

Now, in G - cscs+l' c·s+l is a vertex of degree d - 2 (hence a 

forced vertex) and {a ,a
5
,c} is an s ... three-cycle, so the replacfog 

0 s 

edge can only be cs+lao or cs+las. In either case, we get a configu-

ration excludable by Lemma 2.13 (if the replacing edge is cs+las, then 

in and are joined by the Ss 

and an Ss+l formed by a
0
a1 and the A

5 
a1 - cs; and when the re­

placing edge is cs+lao~ as and cs are joined by an S5 and an Ss+l 

in a similar way). 

We have done the subcase when c
5 

lies on some A
5 

cs-e, e ! a
0

. 

We now know that as is the only small vertex in G which is joined 

to by an As. cannot be joined to by a path of length 

s in G, otherwise in G - a
0

a1 + asa
0

, we are returning to the subcase 

that cs lies on some A
5 

vertex in the new graph). 

(actually e ::: a1 

a
2 

may be or may be not joined to 

is a small 
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path of length s in G. Suppose first that a2 is not joined to cs 

by a path of length s. Consider the isomorph G~ of G obtained from 

G by two forced moves : a
0

a.
1 

-+ a a , s 0 a.I a2 + aoal . In G'3 - cs+lcs, 

Cs+l is a forced vertex of degree d - 2, and since the SS alaoas ... 
a3a2 and As a.o - c together form an excludab1e Ts, cs+l al and s 

cs+la2 are the only two possible replacing 11 new 11 edges . But neither of 

these is possible since it will make n(G~) = n(G) - l (since the Ss 

a, - a2 is destroyed and no new SS al - C" or- a -s 2 

created by assumption that a1 , a2 are both not joined 

path of length s by assumption). 

Hence assume a2 is joined by a path of length s 

cs can 

to cs 

to "'" C s 

be 

by a 

in G. 

Now cs+ 1 cs-+ cs·t·l as is a forced move, and let H = G - cs+lcs + cs+las. y 

We have three edges to replace for H - a
1
a2, namely aoa2, a

1
b

0
, aobo. y 

If it is a
0
a2, then n( G

0
) ::: n ( H ) - 1 for G = H a

1
a2 + a a2 y 6 y o· 

since al 1 i es on no A 's in G (nG a -a (al ) = 0 and al is not 
s ::i, 0 s 

joined to cs by a path of length s), and we get a contradiction. If 

it is a
1
b

0
, then the new graph contains an s-two-chain (a

0
,cs,a2), and 

we are done. So let the replacing edge be 

for since two 

a b • 
0 0 

Then 

in H 
y 

are destroyed, but only one S
5 

a2 -c
5 

is created!. and we get a contra­

diction to Lemma 2.5. 

Now that we have also done the ~u~case that c
5 

does not lie on 

any A
5 

cs-e, et a
0

, we are done with the proof of Case 1. 
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Now in G we can assume the existence of a configuration D con-

sisting of an 5s aoal ... as and c.n SS co cl . .. cs with co = ao' 
l l 

no c. lies on aoal ... as, 0< i ~ s1 , and cs 1 i es on no SS in 1 
1 

G. 

As in Case 1 , our first reduction will be to show that sl can be 

assumed to be s + 1. Consider G - c c s1 s1 - 1 · If H' = G - cc cs -l + 
"'l l 

c5 d is an edge-reconstruction with d I a
0 l 

or as, then s1 = s1 ( H' ) 

".5.. s, - 1 

s - l 1 

if cc 1 does not lie on any Ss 
Jl -

if c
51

_1 lies on an Ss in H'. 

in H' and s1 < s2(H') < 

Both lead to the result that 

s, < s, and are hence impossible. So d 

first. n (H') = n(G) implies that cs -1 
1 

HI. If e isn't a then pH'(ao,cs -1 o' l 

s1 (H 1
) ~ s1 -· 1, a contradiction, and so 

= a 
0 

or 

is on an 

- e) ~ s1 

e = a a· 

is an Ss and we have s1 = s + 1 in this case. 

as. Let d = a s 

SS cs -1 - e in 
1 

- 1 implies s = 1 

But then 

Next let d = a
0

, and suppose s1 > s + l. We will prove a contra­

diction. cs _1 m~st lie on an 5
5 

c
5 

_1 - f in H' since n(H') -
1 1 

n(G). If f =as, then pG (c
5 

,a
0

-a
5

) ~ 1 + s, and we have s1 = s + 1. 
1 

If f -= cs , then pG(a
5 

,c
5 

_ 1- cs ) ~- 1 + s, and we have again s1 = 
1 1 1 

s + 1. So let f i a,., c
5 

• Consider G - c
5 

_1c
5 

_2 . In this edge-
~ 1 l l 

deleted subgraph, we see that c~,~ and cc _2 are two adjacent small 
! ~, 

vertices, and c 2 sl -

of H from 

is a small vertex with the "distance" of 

s., - 2.< 
I 

~ ... #., • 
I 

To edge·-reconstruc t some isomorph 

the r epl ac ing edge must have one of its 

H" 
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end be equal to cs or cs _1, and the other end be one of cs _2, 
1 l 1 

a
0

,as; and we have 6 - 1 = 5 subcases to consider, namely 

c 2 c ' s.
1
- s

1 
aocs -1' 

l 

be the configuration 

As cs -f. 
1 

aocs , 
l 

ascs ' 
1 

as cs -1 · 
1 

consisting of the Ss ao 

For i 11 us t ration , 

- as~ SS co -
1 

let E 

cs ' and 
l 

First consider the subcase when the replacing edge is cs
1

-2 cs
1 

· 

This subcase is tr i vial for clearly n(H") = n(G) + l (since c
5 

- f is 
1 

a new and no can be "destroyed '' by assumption of our 

configuration D) which leads to a contradi ction . 

Secondly let the replacing edge be aocs - 1 · Then n(H") = n(G) 
1 

says that cs _2 li es on an 5s c - g in H"' g c1early unequal to 
l s, 

ao. Now cs cs - 1 -)- cs ao is a forced move sending G to HI ' and we 
l 1 1 

note pH'(g, c -f) < s + 1 enforces s, = s + l if g f f. Bu t when 
::>l 

g = f, cs _1 and f are clearly joined by an 5
5 

and an Ss+l , and 
l 

this possibility is excluded by Lemma 2.13. Hence we have done the sub -

case when the repl ac ing edge is a
0
cs_

1
. 

Then we let the replacing edge be a
0
c

5 
• 

l 
Si n c e p H 11 ( a s , c 

51 
_ 1 - f ) -s_ 2 + s., we see s 1 = s + 2 by the assump-

ti on s
1 

> s + l • Next we note we can edge-recons t ruct G' = H" -

implies s1 (G' ) = s + 1 ' and vJe ar e done . Nrw; if g - Cs+l or f, 

then n ( G') - n( G) says ti at a s - ·1 li es on an A as -1 - h in G. 
s 

Note that cs-1 r:ius t l ·i e 1) il an As cs 1 - i ' i t- Cs+l ,f in H" 
- 1 
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(otherwise c
5 

c
5

_
1 

is obviously a forced edge). In H", we have a 

configuration F as i"l 1 ustrated below in Fig. 2-9. Note i -; as, 

otherwise s2 = s + 2 = s1. 
cs+l 

cs+2 r~ 
co~ao r f 

-G---X 

a-".f-x as 

s . -L 
i 

Fig. 2-9 

Note h may coincide with 

H11 
- a a + a g with s-1 s s 

cs or not. If h == c 5 ~ then in G' = 

or f , p G , ( i , a s _ 1 - c s ) -:::_ 1 + s. 

enforces s1 = s + l. So let h 1 c
5

. But then it is easy to see that 

c
5
+2 c

0 
is a forced edge. (Any other way of replacing c

5
+2 c

0 
by a 

new edge wi 11 create a Ts configuration except Cs+l co. And replac-

ing by cs+l co enforces the existence of an Ac: Cs+2-j in H II; so 
;;, 

since the "distance" of j and Cs+l - f is < ~) + l , we get s = s + l l 

a.gain) • We a.re done for the subcase that the rep-I acing edge is ao Cs+2" 

Next, let the new edge be pH .. (a, c 1--f) < 1 +l +s-· 
0 s,- -

s + 2 imp1 ies that s = s + 2 l 
c c1 ... c 2 is a new Ss 

0 s, -
i n H" . We then ha v e n ( H 11 

) n(G) + 1, a contradiction (note cs does 
1 

not lie on any s s in G, neither does 

Finally, let•s consider the subcase when the replacing edge is 

Since n ( H" ) = n ( G) , cs., _ 2 
l 

1 ies on some 5s cs -2 - g 
1 

in H11
• 
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o the rw i s e p H" ( a 
0 

, cs _ 2 - g ) ~ s 1 - 2 
l 

implies 

s1 - 2, a contradiction. We then see immediately that s1 = s + 2. 

Consider G - c2c3 now. We can replace new edges by three ways: 

coc3, cocs+2 and c2cs+2 since co ·- c2 is an S2 and C3 - Cs+2 

an 

that 

c2 -
same 

The 

h = 

5s-1 in G - c2c3. Denot e by H(4) the new graph obtained .. 

Let coc3 be the new edge first. Then n(H(4))= n(G) enforces 

c2 lie on an 5s c2 -

h in G now. If h t 
form as F in Fig . 2-9 

argument foll owi ng f·j g. 

as, and rewr-i te c2 - a s 

now. 

h in H ( 4). We see C2 lies on an As 

as ~ we have a configuration in G of the 

by the same kind of argument over there. 

2-9 then shows that s = 1 s + 1. .. Now 1 et 

as eoel ... ec::' c2 = co' as = es. 
;;::,; 

c is clearly a forced ver tex and if 
0 

H( 5 ) = G - c c + c J. J. + a 
o l o ' r s' 

imp·iyi ng s, ·- s + 1 by the fact that Cz and as are joined by a 

path of length s. Hence j = a is the only possibility. But then, s 
in (5) 

(cs+2' cl -cs+2)<S._ s + 1 implying t hat s, = s + 1' H ' p (5 ) 
H 

and we are done for the subcase the re placing edge is c
0
c3 (and s1 = 

s + 2). 

is 

Now unde r the assumption s1 = s + 2 we have seen a few interest­

ing facts. For the configuration D consisting of an Ss a
0 

- as and 

an Ss+l c
0 

- cs+l with c
0 

= a
0

, c1 -; any aj for i > 0, and cs+l 

not on any s<"", \.'~e see t hat c cunnot lie on any As (by Lemma 2 .13 
, ) 1 

or s, > s + n. The prev fow; argument a lso shows t hat c2 cannot lie 

on any As in G. ( Note a l so t ha t Cs+l mus t "Ii e on an As Cs +l - f 
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otherwise cs+l c
5
+2 is clearly a forced edge). 

Next, let cocs+2 be the edge replacing c2c3 in G. Since 

n(H(4 )) = n(G), c2 or C3 must lie on an s s in H( 4). The possi-

bi 1 ity that. c2 1 i es on some (' 

..JS c2 - h 'lw'ith h t C3 ·is already ex-

eluded. Consider the case that c2 - c3 is an in Then 

c2 and c3 are joined by an S
5 

and also an S
5
+2 c3 ··· cs+2c

0
c1c2. 

Such configuration can be shown to be excl udable i n a way similar to 

Lemma 2.5 or Lt:~mma 2.)3. More explicitly, l et ' s w~t ite the S
5 

joining 

9
0 

-- h
0 

= c2, g
5 

= h
5
+2 = c3 • By means of forced moves ~ we can assume 

forced moves returni ng us t !) G. The fact s = s + 2 ·is used t wic e 
1 

in the proof. So now assume C3 is on an Ac C3 - i in G. The 
.;;) 

ori gfo a 1 configuration E i n G becomes in H(4) a configuration E( 4) 

in wh i ch c2 is t he srna 11 vert ex of distance s + 2 form the SS c - i 3 

Hence c, must lie on an s s cl - j' j t c2, C3, ; in H(4) (o t her-

wise c2cl i <.• -· a forced edge) . Then j is a true small vertex in G, 

and we see p ~(j' ao - as ) < s + 1 implies s, -· s + 1. We note t hat 
\:.l -·-

a ,. 
.;:, 

cannot li e on any i:\,s in G in the confi g u !~at ion Ee G. 

At l ast, we l et c2 c s+2 be the edge replacing c2c3 in G. It 

readily fo 11 ows that C4 lies on some As C4 - j in G. In G - C3C4 ' 

CO - C3 ·is an S3, C4 - Cs+2 is an ss-2' and so we have three ways to 

replace C3C4 to get 
(q H ~ . , namely coc4, cocs+2 and C3Cs+2' if 

s·> 3. If it i s coc4 ) t hen ( 5) \ n ( H · J :.:: n(G ) says a? 
,J 

lies on some As 
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in G, a situation already excluded. If it is then E becomes 

E(S) with c3 the small vertex of distance s + 2 from the Ss c4 - j, 

and so c2 lies on an A
5 

in G, another impossible situation. If it 

is c3 c
5
+2 ' then n(H(S)) = n(G) + 1, contradiction. 

So we are done except the case s1 = s + 2 and s = 3. Since the 

details for this case are rather lengthy we will skip its proof here and 

leave it in Appendix 2-A. 

So far we have finished the "elementary" reduction that s
1 

can be 

assumed to be s + l. Consider our configuration D again, which is 

described at the beginning of Case 2. cs - a is an As in G. ,.. 
0 "'s 

may lie on some other A s cs - f, f t ao, or cs may not. 

Subcas e 2 . (a ) cs lie on an As cs - as . 

Note that cs cannot lie on more than one A 's cs - f, cs - g 
s 

with f, g, ao ali distinct, for ot.h_erwi se cs cs+·1 is clearly a 

forced edge. Let's cons ·j de ·" the case f = ac, first. The proof will 
..;) 

be very similar to that for Case 1. If al and aC'.. are not joined by 
.;,:) 

an As in G, then for Hl = G - aoal + asao' cs+l cs -+ cs+l al is a 

forced move since al and cs are not joined by an As in Hl ; this 

then gives two small ver t ic2s joined by an SS and an 5s+1 in the 

new graph, impossible by Lemma 2. 13. So al and c s are joined by an 

As in G. Symmetry argument then says that a_ 1 and cs are joined 
~-

by an As in G as we 11 . Since the only ways we can "repl ace 11 

cs+l c
5 

are cs+l a
0 

or cs+l a
5

, we see that our new graph will 

contain an S5 and an Ss~l joini0g two small vert ices a0 and c5 

(a
5 

and cs resp.) i f the replacing edge is c511 a5 (c 5+1a0 r esp.). 
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Subcase 2(b) cs does not lie on any As c
5 

- f, f 1 a
0

, in G. 

(The proof essentially the same as in Case 1 .) 

In partic ul u. r ~ we know that cs and as are not joined by an 

It's obvious that cs+lcs -~ c a s+l s is a forced move sending G to 

As. 

some HI • If al is joined to cs by a path of length s (this path 

cannot contain c · 1 otherwise s., ~ s - l ) ' S-t-
then in H' we have co 

and cs joined by an 5s and an C' 

...>s+l ' impossibl e by Lemma 2.13. So 

al and cs are not joined by a path of lengt h s. If a 2 and as 

are neither joined by a path of length s, then consider the isomorph 

G
13 

of G obta ined from G by two forced moves: a
0
a1 _,._ asa

0
,a1a2 -+ a0a1 • 

Now it is easy t o see t hat cs+lcs is a fo rced edge, for cs+l is a 

forced vertex in G - cs+lcs, we have to replace by cs+lal or 

cs+la2 to avoid a Ts' and doing any of them will cause the number of 

S 's in the new graph to be 1 1 ess than that of G since al ' a2 are 
s 

not joined to c
5 

by an Ss now. 

So is joined to by a path of length s. Consider H = y 

G - cs+lcs + cs+l a
5

. In Hy ' we see, as in Case l, tht1. t we have three 

edges a
0
a2, a.1as +l' a

0
c s+l to replace a1a2 (to get a new graph G0 ). 

If it is a
0
a2, 1t1e have n(G

0
) = nO\) - 1. If it is a1cs+l' we get 

an s-two-cha in (a
0

,c
5

,a2 ) in G
0

. If it ·is a
0 

cs+l' we are r eturn-

ing to subca se 2(a) with our new configuration D' now consi s ts of t he 

\ a 
2 

- cs , an S s + 1 j o i n i n g a 2 and a 1 , and a 0 i s adjacent to a 1 

on the S 1 s+ wi t h a 
0 

and al so l y ing on an ft.n easy 
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way to see it is considering = C~+l. 

crhis argument also holds in Case 1 .) 

Subcase 2(c) c
5 

lies on some As c
5 

- f, f 1 a
5

. 

since in cs_._, 
- I I 

are the three ends of a forbidden Ts. 

We cannot replace by c
0

f for otherwise in the new graph H', 

pH I (cl - cs+l' ao a,_)< 
,"') ---

the assumption (and fact) 

configuration F' as in 

1 + s enforces s2 = s + 

that S< sl < 52. Hence 

Fig. 2-10. 

---0--- . " • ---0-------x. 
ds-1 f = ds 

Fig. 2-10 

l , contradictory 

in HI' we have a 

to 

We note f cannot be a or a by discussion before. f can-
s 0 

not be c2 since c2 is a big vertex in G while f is small in G. 

d C - d
0

, f - d
5

. s' s ds-l cannot be an 

internal vertex of a
0 

- as or c
0 

- cs+l by obvious argument. 

Consi der H' - d 1d . ~uppo,:,e we edge-reconstruct G11 =- H' -
s~ s 

ds_1d
5 

+ d
5
e, e f a

0
,a

5
,c2. We see immediately that c

0
c1 is a forced 
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edge; for c
0 

is obviously a forced vertex, and the new edges should be 

c
0

d
5

_
1 

or c
0

c
2

; but for both cases we easily get the unhappy conse-

quence that Hence e must be one of a
0

, a
5

, or cl"). 
L 

For the configuration De F' consisting of an 5s ao - as and 
an 5s+l co cs+l ... C3C2C1 with ao = co' we see that Cs+l cannot lie 

on an As CS+ 1 - 9 ·i n HI ' g f c,. For i f g - as, then we have an ex-

cludable confi gura tfon by Lemma 2. 13. So 1 et g t- at-. Let g' be adja-
~ 

cent to g on cs+l - g. g' cannot lie on ao - a or co - c1 by s 
trivial argument. VJe can edge-reconstruct G" = H' - gg' + gh. h must 

be ao or as otherwise G" conta ·ins an s-two-chain. If h = a s' 
then G" contains a Ts (a - g I as SS, c, - c;s+l as As). So h = ao . 0 

n( G") - n(H') says that g' lies on an As g I - i in HI. Conceivably 

; may coincide wHh cl or not. From ou r conf igu ra tion F' on p. 81, 

we see c2 must l i e on some As c2 - j "in H' by subcase 3(bL j 

cannot be as by subcase 3(a). j may coincide with d ~ 
;;) 

or not. j 

cannot be cl othervJi se c2cl is easily seen t o be a forc ed edge. 

Fi r st 1 et i f c,, j "f ds. In H' - co cs+l' co is a fo rced ver-

tex, and we have two T 's s (one has SS Cs+l - g' As g I - i ' the other 

has SS cs ... cl ' As c2-j). So co cs+l is a forced edge in order 

to avoid any T 's If i = cl or j = ds, we can show easily that s . 

the new graph G will have a T -configurat i on or will satisfy s2 (Ga) 
a. s 

= s + 1' whkh is impossible. As an illustration, le t i = c,' j = ds. 

In 

may replace by c
0

g or c i 
0 

g' - i ) , a rid we 

t o avoid a Ts . But then we will have 

or p G (a0 ·- c.:
5

:. cs+ l -g) ~ s + 1 
a. 
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enforcing s2 = s + 1 which is impossible. So cs+l cannot lie on any 

As cs+ l - g' 9 ; c1 in H' • 

Returning to our discussion at the begi nning of subcase 3(c). Con-

sider our configuration D consisting of the 5
5 

a
0 

- as and 

c0 - cs+l again. Recall that c
5 

must lie on an A
5 

c
5 

- f 

5s+l 
in G 

We have seen that C c -+ ,.. c 
o 1 "-o s+l is a forced move sending 

G to H' and lies on an H'. Si nee j f c1 , j is 

a true small vertex in G; and look at our 

on some c2-j). Rename j by c~, f by c~ 

this subgraph c
0
c1 is an s1, c2 - cs+l 

D again) we 

Considt:r G 

is an 5s-1 

see c2 1 i es 

- clc2. In 

and so coc2, 

c
0

cs+l and c
0
cs +l are the only three possible edges to replace c1c2. 

Joining c
0
c2 would enforce, by edge-reconstructa bility of number of 

s ., that cl ii es on an 5s c, - c' in the new graph. Since c' is s _, 
1 1 

a small vertex in G, c, 1 i es on an As c, - cl' a situation excluded 
I 

in the previous paragraph. Joining cl cs+ l would give p(co-cs, c2 - c2) 

< s + l in the new graph implying s2 = s + 1, a contradiction. Hence 

clc2 -+ cs+lco 

configuration 

5s+l c2c3 

is a "forced move" sending G t o some H 2 

D becomes some o2 consisting of the Ss 

c_t, cocl. Repeating the same argument for 
~- -, 

in which our· 

C c' and 2 - 2 

the configura-

tion 02 in the graph H2, we see C4 will lie on an As C4 ~ c' 4 in 

H2 and the forced move c3c4 + c1c2 will send H2 to G4 with D2 

becoming D4 consisting of the 5s C4 -
I 

C4 and 5s+l C4C5 

Cs+l coclc2c3. Furthermore c6 would lie on an I\ c6 - cf,. Proceed-

ing in this 'V~·ay, we see that since s is odd, (s-1 )/2 forced moves 

will send us to G,. ;., ·· 1 or H. ·1 S·· 
depending on whether the resid ue of s 

modulo 4- is or 3; in this ne1r1 graph, the 1;ol d 11 configuration D 
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consisting of the S
5 

c
5

_1 - t~-l and ss+l 

G is still a small 

vertex in this new graph since c' # c , c +l (c' ! c is the defini-s . 0 s s 0 

tion of subcase 3(c), c~ = cs+l would enforce c
5
cs+l to be a forced 

·edge by Lemma 2. 5 and Lemma 2. 12) and thus is unaffected by the se-

quence of forced moves. But then we again get a situation excluded in 

the previous paragru.ph. Note that fo the proof, we do not treat the 

three cases separately. 

Now that we have done subcase 2(c), we have proved Case 2 complete­

ly since these three subcases are exhaustive (and mutually exclusive). 

Cambi ning the resu·· ts of Case 1 a·1d Case 2 ~ we ar e ready to state (and 

claim having proved) the following: 

Proposition 2.14. If s-two-chains are excludable, then a bi-degreed 

graph G (with at lea st four edges) is edge- reconstructable. 

With Lemma 2. 12 a.nd Proposition 2.14, we conclude immediately our 

main theorem: 

Theorem 2.1 . (MAIN TH EOREM OF CHAPTER 2) Every bi-degreed graph G 

with at least four edges is edge-reconstructable. 
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Section 6. Brief digression of generalization of methods. 

Bi-degreed graphs are a natural "next step" when people have done 

the trivial regular graphs (of one degree only). And this "next step" 

is terribly hard to prove. After this is done, one might think: what 

is the next family of graphs we can do? Tri-degreed graphs might seem a 

natural approach. Its solution is trivial unless the three degrees are 

d, d + 1, d + 2; d, d + 1, d + 3; or d, d + 2, d + 3. (See! we have 

more annoying cases to do). It does not sound trivial to generalize re­

sults of bi-degreed graphs to graphs with three, four, five, ... etc. 

degrees. 

Most of the methods (and concepts) in this chapter however can be 

generalized to graphs such that its minimum degree o and the next to 

minimum degree d differ by 1. For example, if there exist two ve11
-

tices of degree o and a path joining them uYith al i "intenwl" -:;er~t--Zces 

of degree d, 1t1e can then define s ( G) in a way as in Section 2, and 

we can shew that G is edge-reconstructable. Under the same assumption, 

we can show the validity of Lemma 2.3, Lemma 2.5, Proposition 2.6, Lem­

ma 2. 11, Lemma 2 .12 etc. , but not Propos H ion 2. '14 (i.e. s-three-cha ins 

can be show1 to be excludable, but s1 and s2 may be hard to define). 

Note that G may contain vertices of degree 6 and degree d = 6 + l 

but no paths joining vertices of degree 6 with all internal vertices 

of degree d . 
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Appendix 2-A 
Proof of the subcase s1 = s + 2, s = 3 on p. 79 

In G - c1c2, c
0
c1 is an s1 , c2, c5, ~nd f are the three small 

vertices of a T3• So we have 6 - 1 = 5 ways, namely c
0
c2, c

0
c5 , cif, 

If it is c c
2

, we get iw.mediate­
o -

ly s1 = 4, and if it is c1f, we have s2 = s1 = 5, contrary to our as­

sumption that 5 = s
1 

< s
2

. If it is c
0
c

5
, we will get a contradiction 

by the same argument leading to an excludable configuration as in 

Fig. 2-9 (i.e. if we reindex~ then some c2 in a c.;on~ 

figuration 0 1 of the same form as D). If it is c1c5 , then we get a 

contradiction as in the case of replacing 

after reindexing, some cu 
3 

cocs+2 

1 i es in an in some D" "c.ongruent 11 to 

D, an already excluded situa t ion. Hence we are left with the case of 

c
0

f replacing clc2. And we see some H = G - c
1
c

2 
+ c

0
f::= H (clc2 -r 

µ 

c
0

f is then a forced move). 

Consider in G again our configuration D (as depicted in Fig. 

2- A(a)), a
0
c
1 

·+ a
0

f is a forced move se.nding G to H' and D to D' as 

in Fig. 2-A(b). (Note we cannot replace by a
0
c5 otherwise a config­

uration as in Fig. 2-9 res ults; we cannot replace by a
0
d, d ~ D, 

otherwise H1 contains an excludabl e configuration T as below. 

c, 

T i 
~ f 

C4 t-4--4--¥. 
C r· ,, 

::J 
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T is easily shown to be excludable since c4c5 is obviously a forced 

edge for otherwise s1 = 3 + l = 4, a contradiction.) 

In H', apply the arguments in this appendix one paragraph before, 

say let g be adjacent to f on c
4 

- f, we see fg ~ a
0
c1 is a 

forced move sending H' to G11 (and 0 1 to 0 11
) as in F'ig. 2-A(c). 

(Heuristically, think cl= f, c2 = g, f' = c1 .) Then cons·ider G" -

a
0
f. If fg is the replacing edge, we are returning to D after three 

forced moves, and so G is edge-reconstructabl e by Lemma 2. 1. (see 

Fig. 2-A(d)). The only remaining possibility is that we join c5f. But 

for this we can prove contradiction easily by looking at G - c c and 2 3 

consider all possible replacing edges (say some of them will lead to 

s 2 = 5 , i m poss ·j b 1 e ) . 

D : D' a ao a3 ao 
~·-0-~ 

3 
0---X 

c,. c, 
~l 

g f 
C4 

f 
c 5 C4 

(a) 
C5 

{b) 

ol• ao a3 0(3) ao a3 

~~ 
---0--0---)( 

c, c 

~~ 
1 

f 
g f 

C4 C4~ 
C5 x C5 

( (' \ ., } (d) 
Fig . 2--f\ 



88 

Chapter 3. Edge-reconstruction of bipartite graphs 

Section l . Introduction 

In this chapter, we will investigate the edge-reconstructability 

of bipartite graphs, i.e. graphs G whose vertex set V(G) can be par­

titioned into two subsets v1(G) and v2(G) such that every edge of G 

joins v
1 

(G) with V
2

(G). 

A simple necessary and sufficient condHion for a graph to be bi­

partite is that all its cycles are of even length (see p. 18 of F. 

Harary [ 7 ] for proof). Trees are then special cases of bipartite 

graphs since they are acyclic. Since the reconstruction problem of 

trees has been done quite deeply and extensively, it then comes natural­

ly to investigate the (edge-) reconstructabi1ity of bipartite graphs. 

In J. A. Bondy and R. L. Hemminger [ 5 ], they pointed out that the re­

construction Of bipartite graphs is a challenging open problem and they 

singled out the edge-version as Problem 9 of their survey paper. 

This chapter solves that problem in full force by Theorem 3.1 (in 

Section 7) stated as follows: 

MJUN THEOREM. Every bipartite graph 11Jith at least four edges is edge-

reconstructabl2. 

As in Chapter 2, we vdll start to build a list of excluda.ble con­

figu1-aa-tions until at last the 1 ist is big enough to cover every bipartite 

graph with at -!east four edge.s. Since v.'e have in general more than two 

kinds of degrees for our graph G, we 'iAJil 1 use the sma 11 c ire 1 es o to 

represent vertices; vertices will be labeled by lower case Latin letters 
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a~ b, c, •.• etc. (with er without subscripts), their degrees denoted by 

Greek letters a., 13, y, ... etc. or Ara.bk numerals l, 2, 3, ... etc. If 

we want to mention labeling as well as degree, we ~rite the labeling 

fo 11 owed by a ·r.omrria, and then the degr2e. f\s an i 11 ustra t ion, suppose a 

vertex a of degree u is joined to a vertex b of degree 4, then we 

have three different ways to represent them diagramatically as in 

Fig. 3-1 below: 

a b 
0---0 

(a) 

label fogs only 

Section 2. Elementary results 

a. 4 
0------0 

(b) 

degrees only 

Fig. 3-1 

a ,a. b ,4 
0---t> 

(c) 

labelings and degrees 

First, we show that bipartite graphs are edge-recognizable. Suppose 

G is bipartite and H is an edge-reconstruction of G which is not bi-

partite. We will derive a contradiction. 

Note that a graph is bipartite if and only if it contains no odd 

cycles, we see at once that H contains an odd cycle Cn. If H has 

an edge ef not on en, then H - ef contains en and so G :J G.- ·-ef ~ H-ef 

has an odd n-cycle, contradictory to the fact that G is bipartite. 

Hence H = C u T<" i.e. H n m s 
is the disjoin~ union of an (odd) n-

cycle and m > 1 ·isolated vert·ices. Obviously n ;::-_ 5 sine~ H has at 

1ea st four edges. Now a 11 (; "' i;;+· =::: H - e·f ci \''e of the form 
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the union of a path of length n - 1 and m isolated vertices for any 

edge ef on en. 
the form P u K n+l ·m 

Clearly G, nonisomorphic to H, will either be of 

or contain some Ck' k even, as an edge-proper sub-

graph. The f0rmer says some 

the latter says some G - gh == 

G - g h = P l U K,."' U K '=!- P +l U K ; n- ~ m n m and 

P UK contains n m Ck as a subgraph; 

both lead to contradiction, and we see bipartite graphs are edge-rec-

ognizable. 

Next, we will prove that G can be assum~d to be connected. Logical­

ly, we will show that if all connected bipartite graphs are edge-recon­

structable, then all bipartite graphs are edge-reconstructable. (All 

graphs assumed to have at least four edges). Recall Lemma 1 .2., which 

says that the degree sequence is edge-reconstructable; in particular we 

know if G has isolated vertices or not. By assumption, we may assume G 

to be discon nected (and then prove its edge-reconstructability based on 

the premise that all connected bipartite graphs be edge-reconstructable). 

Since disconnected graphs are well-known to be vertex-reconstructable 

and vertex-reconstructable graphs without isolated vertices are edge-re­

constructab1e (Le~ma l .3), we will assume G to have isolated vertices. 

Let G == i u K , where m:> l and I has no isolated vert ices. I may m - -

be connected or disconnected, and is edge-reconstructable by the last 

paragraph. Now an edge-reconstruction H is obtained from H - ef ~ G 

- ef = (I - ef) u Km by adding a new edge; ef here is an arbitrary 

edge. We can write H = Lu KP, where L has no isolated vertices and 

p~ O (Note I - ef may have none, one, or t wo isolated vertices). By 

the edge-rernnstruct ab ility of degree sequence~ H must have the same 

numbet· of isolated vertices ( vertices of degree 0) as G has) and so 
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p=m. Now (I-gh)u~=G-gh=H-gh= (L-gh)ui<111 for all 

edges gh of G. Since graph isomor·phisms are doing with incidence re­

lationships and have nothing to do with isolated vertices~ we have im-

mediately I - gh == L - gh for al 1 edges gh in G, and so I= L 

since I is assumed to be edge-·reconstructable. So G = 1 U Y)TJ == 

L U V)n = H, and we have proved that G can be assumed to be connected . 

In particular, the minimum degree µ
0

(G) of G is > 1. Note 

that the vertex set partition V(G) = v1(G) u v2(G) for a connected bi­

partite graph is unique, i.e. well-define~ (the partition is not unique 

for a disconnected bipartite graph by obvious argument). We will say 

that two vertices a, b are 11 in the same part" in G 'if a, b both 

belong to v1 (_G) or both belong to v2(G); a,b will be "in different 

part" in G if one of a,b belong to v.1 (G) and the other belongs to 

v2(G). The same practice will be used for any isomorph or edge-recon­

struction of G or edge-deleted subgraphs G - ef 1 s. 

let 1 s say that an edge ab has a degr•ee type (a ,f3) if 

deg (a) = a, deg ( b) = s , or de:g (a) = f3 , deg ( b) = a. 

Lemma 3. 1 . For fixed integers a
0 

and 13 
0

, the number of edges of 

degree type (c:.
0 

, f3 c) is edge-reconstructab 1 e. 

Proof of Lemma. Define a partial o rde~ 
1<: 11 on the set of a 11 

-:{; 

ordered pair's {y ,0 ) which is the degree type of some edge in G such 

that (y
1 

,b
1

) ·::-G (y
2

,o
2

) if and only if y1 ~ y 2 , o1 ~ o2. We say 

(y
1

,6
1

)<G (y
2

,6
2

) if (y
1

,c 1 }:sG (y 2 ,o 2 ) but (y 1 ,6 1) "f (y 2 ,o 2). 

('Y ,0 ) ·is a rnaxima ·1 degree type in G if (y ~o} ~ (y' ,6' ) for 

(y ,(,) and (y' ,s' ) deg r ee types of some edges in G implies 

(y, 0 ):::: (y' ,o' ). Since G ·is f·inHe, degrees a.re bounded, and 
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maximal degree type (pairs) in G exists. 

Let H be an arbitrary edge-reconstruction of G. We can define 

-SH in a similar way. Suppose 

at first. Let G have A> O 

(a.
0 
,~ 

0
) is a maxima 1 degree type in 

edges of degree type (a.0 ,~ 0 ). Then 

G 

G 

has exactly A. (edge-)subgraphs T of the form below (by maximality): 

T 

+a. - 1 edges 
0 

~ f; - 1 edges 
0 

If T is G itself, then very elementary argument wi 11 show G's 

edge-reconstructabi .lity (ab is clearly a forced edge if a.
0

> 2, 13
0
>2. 

If a. = 1, we have K which was done in the proof of Lemma 1.2. 
0 1 ,13 0 

If a.
0 

= 2, ab is agair, a forced edge). So T is edge-proper in G, 

and by Kelly's Lemma ( Lemma 1 .1), H has exactly A> 0 subgraphs of 

the form T. Let (a.' ,13') ~ (a.
0

,13
0

) be of maximal type in H, then 

H has a subgraph T' of a similar form as T except that we have a' 

edges incident with a (instead of a.
0 

edges) and ~· edges incident 

with b. Again, we can assume T1 to be edge-proper in H. By Kelly 1 s 

L · G h b h f ti f T 1 Let (a." ,c/' ) _>G emrna again) as a su .grap o 1e orm . ~ 

(d ,~ ) be of maximal type in G. 

a' > a.' ' ~11 C p I ; (a' 'p' ) ~fi (a. 0 '~ 0 ) 

r''OW ( II R" ) > ( I ,-.I ) ~ a. 'p --G a. 'p 

implies a.' > a. - 0 
and 

implies 

so a.11~ a.
0

, 1311 ~ ~ 
0 

and (u' ,.f3'' ) ~ (o:.
0 
,~ 

0
). Si nee (a.0 ,~ 0 ) is of 

maximal type in G., we have (a"' ,13") = (a.' ,p') = (a,
0

,f)
0

). Now that 
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(a.
0

,'3
0

) is of maximai type in H, the fact that H has exactly A.> 0 

subgraphs of the form T is ex~ctly equivc.lent to that H has exactly 

A. > 0 edges of degree type (a.
0

,13
0

) (equivalence not true if (a.
0

,13
0

) 

is not maximal). We have done the case that (u
0

,a
0

) is maximal degree 

type in G. 

Now let's do 11 induction 11 on the partial order~· We assume that· 

the number of edges of degree type (y ,6) is edge-reconstructabl e for 

every {y,6) >G (a.
0

,13
0

). In symbols, let H be an edge-reconstruction 

of G!. let a $:. (b ~ resp.)> 0 be the number of edges in G 
y ,u y ,v 

(H resp.) of the degree type (y,6) with y ~a.0 , o ~-- [3
0 

but no equal-

ity for both. "Induction 11 says a ~ = b $:. for all such 
y ,u y ,v 

• \ I 
{y ,6 J s. We 

also see (y,o) >G (a.
0

,13
0

) <=> (y,o) >H (a.
0

,f'
0

) since a ~>O<=>b ~> Y 'u Y ,•.; 

0. The number of subgraphs in G isomorphic to T (with deg (a) = a
0

, 

deg (b) = a
0

) as mentioned earlier is 

L C
0

- -

1x::_\) ay,Q = I: (:0-:1)(:0-: 1) ay.o + 

( Y ,o) > G (a.o ,13 o) 

where is the number of edges of deg r ee-type 

in G. This number ·is, by Kelly's Lemma, equal to the number of sub­

graphs in H ·isomorphic to T, which in turn is' equa 1 to: 

+ b r ' where b ,.., is the numbe r of edges of degree-type (a.a ~ 13 0) 
a.o,Po cx.o'Po 

in H. 
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Since a = b y,6 y,6 for all and 

iff we see immediate.ly that a 
a.o '~ o 

= 

b and we are done for the lemma. 
a.o ,f3 o 

Q .. E.D. 

In Section 3 following~ we will define specia l chains as a path 

or walk with some minimum properties on degrees. The "degree sequence" 

of such a chain is called degree type. Let condition A's and B 's be 0 -

respectively that the degree type and the number of special chains 

(of a certain length) be edge-reconstructable. (With condition Bi •s 

gener-alizations of B 's). Let condition P be that the "last ver-o 
tices'' of two special chains cannot be adjacent. We can do inductive 

proofs of these three conditions in an interlocked way in Section 5 

and Section 6; leaving the definitions and elementary cases n = 0, 1, 

2, 3 in Section 4 . Section 7 then concludes with the proof of main 

theorem using ~ondition P's. In Section 8, there is a short digres-

sion on generalization of proof. 
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Section 3. Definition of special chains and several basic lemmas. 

We will generalize the concept of "minimum distance path" between 

two small vertices in a b·i-·degr·eed graph, Oi" S
5

, in Chapter 2. Given 

a b·ipa.rtite graph G, we wi·11 now define special n-chains for n> 0 

recursively. 

Recall G can be assumed to be connected by Section 2. Hence 

µ
0

(G}, the minimum degree "in G, is > 1. By edge-reconstructabil ity 

of degree sequences, we have µ
0

{G) = µ
0

(H) for any edge-reconstruc­

tion H of G) and we may denote thefr common value by µ
0

. We beg·in 

our recursive definition step by step in the fo 11 owing manner: 

Step 0. l\ny vertex of degree p 
0 

in. G is a special o-chain 

in G. Go to next step. 

Step ·1. Let O"l (G) = { b E V(G) I b
0

b E c(G) for some b
0 

of min­

imum degree in G, i.e. deg (b
0

) = µ
0
}. cr 1 (G) is non­

empty obviously. Let a1 be a vertex of minimum degree 

in al ( G). Symbol i ca 11 y, deg (a, ) = min deg (b),bEo,(G) 
I I 

Let ao be a vertex of degree equal to µo' we 

call aoa.l a spee:iaZ 1-chain b G. Denote deg (a ' l I 
by 

µ~(G). Go to next step. 
I 

Step 1'. We terminate the recursive defining process if µ 1(G) = 

µ (G); otherwise go to next step. 
0 

Step 2. Let a 2{G) = (b E v(G)jbb1 E E(G) for some special 1-

chain b
0

b
1

, bf b
0
}. o2(G) cannot be empty since 

d20 ( b, b p > 1 . Let a,.
2 

be a vertex of minimum degree in 
I tj . -· 
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cr 2(G); i.e. deg (a 2 ) =min deg (b), b E a
2

(G). Let a
0

a1 

be a special 1-chain such that a2a1 E E(G), a2 t a
0

. 

We call a
0

a 1u2 a special 2-chain in G. Denote deg (a 2) 

by µ 2(G) . Note furthermore that a
0

,a1 ,a2 are all dis­

tinct. Go to next step. 

Step 2'. We terminate the process if µ 2(G) = µ
0

(G); otherwise 

go to nexi step. 

Step n. (n ~ 3) We will get to this step only i f we do not term-

inate at any step k', 0 < k < n. Suppose we have con-

structed the sets of all special (n-1)-chains of the form 

c
0

c1 ... cn- l where c
0 

,c1 , ... , cn- l are a 11 di sti net, 

an c! µ 1 ( G ) = deg ( c 1 ) > µ . Cons i de r cr n ( G) = n- . n- o 

{b E V(G)lbbn-l E E(G) for a special (n - 1 )-chain 

b
0

b1 ... bn-l' b /: bn ~ 2 }. an(G) is nonempty since 

deg (an_1) > µ
0 

~- 1. Let an be a vertex of minimum de­

gree in crn(G) (deg (an) =min deg (b), b E crn(G)), and 

let a a
1 

... a 1 be a special (n-1 )-chain (by recur-o n-
si ve definition, they are all distinct) such that an-lan 

( E(G), an t- a n-2' we can a a 
0 l an a special n-

aJu;,-in in G. It may ha pp en that an - a - i for some i ' 

0< i < n - 3. Denote deg (a ) by µn(G). Go to next 
n 

step. 

Step n'. Terminat~ if u (G) = µ , but a f a ~_ ; otherwi s e go to · n o n ~ 

next step. 



97 

Step n11
• Terminate if an = a

0
; otherwise go to next step. 

Step n{ 3). Terminate if an= ai, 0< i < n - 3; otherwise go to 

next step. In the latter case, we see that a
0

,a1 ... , 

an are all distinct, so the recursive definition assump­

tion that a
0

,a1 , ... , an-l are distinct is justified. 

Since G is a finite graph, there is a unique smallest positive 

integer k such that the process terminates at step k' or step ku or 

step k( 3)_ Denote this k by n(G). We will say that we have a Type­

I (Type- II ;rnd Type- I I I respectively) termination if we terminate at 

step o(G)' (step o(G)" and step o(G)( 3·) respectively). Note that 

the special o(G)-chain is a path if we have a Type-I termination. 

Note al so that every graph can have only one type of termination by 

algorithm of defin~tion. 

For any edge-reconstruction H of G, we can define special n-

chains in H, µ
0

(H), p 1 (H), ... , µn(H) and n (H) in an analogous 

way. 

Conceivably for a bipartite graph of large size, we can have an 

immense number of edge-reconstrt!ctions, all nonisomorphic to each other. 

At this early stage, however, we a!"e unable to estab.lish that G can 

have at most on~ edge-reconstruction H as we did for the case of bi-

degreed graphs. The problem i s convincingly harder. 

Remark. The above r ecursi ve definition of special n-chains holds good for 

general graphs, not only bipartite ones. We also see that this is a 

generalization of t he concept of S
5

's for bi-degreed graphs. Jn fact, 

we have a Type-I t ermi 11at ion at. steps for bi - deg1--eed graphs. It's 

impossihle th&.t b ·i-deg 1~e ed graphs hav e Type-II or Type- III 
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terminations. For if say, a bi-degreed I has a Type-II termination at 

step t, then t < s otherwise we have Type-I termination at step s a 1 -

ready. This now says that there is a t-cycle passing through a small 

vertex a in I. Let b be a vertex c.djacent to a on this t-cycl e. 

We now see that ab is a forced edge for a is a forced vertex, and 

for I - ab + ac, c f b, a and b are small vert:1ces of distance 

< t - 1 < s - J < s, ·impossible. Next assume that a bi-degreed I has 

a Type-III termination at step u, then u < s. We have a special u­

chain a
0

a1 ... au-lau with a
0 

a smtill vertex, a1 ,a2 , ... au all 

big vertices and a =a. for some 0 < i < u - 3. If i = 1, then n 1 

a
0

a 1 is a forced edge for other-wise we ha ve a Type-II termination at 

step u - 1 < s in another edge-reconstruction of T 
... ' an impossibili-

ty a 1 ready proved. If i > 1 , then we have a Type- I II termination 

at step u -1 <u in an edge-reconstruction of I provided a
0

a1 is not 

a forced edge. If among the (finite number· of) edge-reconstructions of 

I, we choose J to Le one with o(J) the minimum, then starting anew 

with J, we see readily that b b 
0 1 is a forced edge for a special o(J)-

bo(J)' and we are done. In the argument here, we do 

not as:;ume the knowledge that I can have at most one nonisomorphic: 

edge-reconstructions. 

Given a bipartite graph G, let EG be the (finite) set of all its 

edge-reconstructions. Clearly HE ~G implies that EH= EG. Let 

ME EG be one edge-reconstruction such that o(M) is the minimum in 

LG' i.e. o(M) = mfo o(H), H E L:G. Rena ming if necessary, we can as-

sume from now on that o(G) ~ o(H) for all HE ZG. This simple ob ·­

servation \~ill prove fruitfLi'l in a few lemma s to come. Note also 
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o(G) ~ 1 by definition. 

For a given \'1alk v
0

v1 ... vn of n + 1 vertices in any HE L:G, 

we will say that v
0

v1 ... vn is of degree type (a.
0

,a.
1

, •.. , a.n) if 

deg (v;) =a.; in H for all i, O~ i "S.. n. This notfon of degree 

type agrees with the not ion of degree type of an edge on p. 91 when 

n = 1. Consider a special o(G)-chain a
0
a1 ... ao(G) in G, which 

has degree type (µ 0 (G), µ1(G), .•• µo(G)-l (G), µn(G) (G)) . We note 

µ 0{G) = µ 0; the lowest possible degree for µ;(G), 0 < i < o(G), is 

µ 0 + l; and the lowest possible degree for µ~"2(G)(G) is µ
0 

if it is 

a Type-I or Type-II termination; the lowest possible degree for 

~.to(G)(G) is i.-t 0 + 1 if it is a Type-III termination. We will show in 

two following lemmas that we can exclude "minimal-degree" conf ·igura-

tions of the form of special o.(G)-chain 'in which the degree of every 

vertex is as low as possible. 

Lemma 3.2. A bipartite graph G is edge- reconstructable if G con-

tains a special o(G)-chain a
0

a1 ... ao(G) of degree type (µ
0

,µ
0

+1, 

µ
0 

+ 1, .•. , ~L 0 + 1, µ
0 

+ 1, µ
0

), µ
0 

==µ
0

(G). (i.e. He have deg (a
0

) = 

deg (ao{G)) = µ._
0 

in G, and deg (a 1) = µ
0 

+ 1 for 0 < i < o(G) in 

G). 

Proof of Lemma . If µ
0 

= 1, then G is Po(G)+l' the path of length 

O(G), and its edge-reconstructability is trivial. We may assume 

µ 0 > 1 in this 1 emma. 

Note a
0 

and ao(G) may coincide or not (and we have Type-II or 

Type-I termination correspondingly). 
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Case 1 of Lemma 3.2. ao(G) t- rt
0

• 

Let O(G) = 

and a, 
I 

first. Then a
0
a1 is a forced edge since in G 

are both forced vertices of degree µ 0 - 1 < µ 0 . 

Next, we observe that our graph G can be assumed to be a block. 

Since µ 0 > 1, G has no isolated vertices (vertices of degree 0) or 

"end-vertices 11 (vertices of degree 1); a result of J. A. Bondy [ 4 ] 

says that connected graph G having cut-vertices but no end-vertices 

is vertex-reconstructable. So if our bipartite G has cut-vertices, 

it is vertex-reconstructable and hence edge-reconstructable since it 

has no isolated vertices. Our graph G then is connected without cut­

vertices, hence it is a b1ock. By the cha~acterization of blocks as in 

p. 27 of F. Harary [ 7 ], every two vertices a,b of G lie on a common 

cycle; in other v.iords every two vertices a and b are joined by two 

paths disjoint everywhere except at a and b. Note that two vertices 

a and b of G are in the ··same part" v1 (G) (or v2(G)) of a connec t ­

ed bipartite G if and only if a and b are of even distance ~part 

in G, and they are in "different parts" if a and b are of odd 

distance apart (this can be seen readily by elementary argument and 

the proof is omitted) . So a and b in the same part of G are 

joined by two paths of even length disjoint everywhere except at a and 

b. 

Now, consider the case a(G) = 2. H' = G - a a + a a2 = H is 
0 1 0 

the only possible non - isomorphic edge-reconstruction since a
0 

is a 

forced vertex and a.
11 

(1
2

, an edge of degree type (µ ,µ ) in 
0 0 

cannot appea r in H by the case o( G) ~ 1 before. But now a0 and 
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a2 are joined both by a path P of even length not passing a1 (by 

the discussion of previous paragraph) and the edge a
0
a2, in H1

, so H1 

contains an odd cycle and cannot be bipartite~ contradiction to the fact 

that bipartite graphs are edge-recognizable. 

So suppose o(G) =:-_ 3. We vrill first show that n(G) must be odd. 

Suppose o(G) is even and consider H 1 = G - a a
1 

+ a b 2!: H for some 
0 0 

of degree p
0 

·in G - a
0

a1 . b cannot be ai for vertex b 1 a
1 

0 < i < O{G) 

then 

sir.ce degree of ai hi G - a
0

a1 is µ
0 

+ 1. If b f 

a 1 a 2 . . . an ( G ) i s a path of l en gt h n ( G) - 1 < o ( G) i n 

H' of degree type ( µ
0

:µ
0 
+l, ~1 0 +1, ... , µ

0 
+l, p

0
). Since µ

0 
+ l is 

the minimum possible dr!gree of ai, ·j > 0 before termination of special 

chain, we have n (li 1
) -s_ O(G) - l, for H" should have a Type-I termi­

nation at step (O(G) - 1) • if it did not terminate at some step k', 

step k'' or step k( 3 ) for k < n(G) 1 (a 
0

a 1 . . . a0 ( H) i s cl ear 1 y a 

special O(H')-ch:t·in by def"in"iton). This is contradictory to our as-

sumption that n(G) ~O(H) for H E I:G. So b = ao(G.) is the only 

choice. But ao and ao(G) are in the same part of r· 
\) since n(G) 

is even, and so they are joined by a pa.th p disjoint from a a. 
o I 

... 

an(G) except at the 11 ends 11 

ao and ao ( G) • In pat·· ti CU 1 iH' ~ aoal is 

not an edge on P, and p is a subg~aph of HI . So H' contains an 

odd cycle formed by P and impossible, a nd we have shown 

n{G) must be odd. 

It's not absolutely necessary to use G's being bipartite in prov-

·ing that o(G) must be even. Actually the proof of Lemma 2.2 is still 

val id if G has more than tvil' degrees with µ
0 

and p
0 

+ 1 the t\v-o 

lm-1est degrees , bu t v;e don't need it ~1ow. 
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So we see that O(G) must be odd and a
0
a1 -+ ao(G)ao is a "forced 

move". In particular, we see in this case that G can have at most one 

nonisomorphic edge-reconstruction H. In H' = G - a
0
a1 + an(Gfo' 

a1a 2 ... an(G)ao is a path of degree type (µ
0

, µ
0 

+l, µ
0 

+l, ... , 

µ
0

+1, µ
0

+1, p
0

) and so clearly o(H') ~ n(G). So .o(G) = .o{H) since 

we assumed n(G) ~ o(I) for all IE LG at the outset. In this Case 1 

of Lemma 3.2, we may tben denote their common value by n. The forced 

move a
0
a1 + a0a

0 
changes the special n-chain a

0
a1 ... a0 in G to 

the special n-chain a1a2 ..• a
0

a
0

; it increments the indices cyclical­

ly by 1, note that the remainders of the g~aphs are intact during this 

move. Clearly all the other forced moves of the form a1ai+l -+- ai-lai 

for O~ i ~o have the same effects of incrementing indices cyclically 

by 1 (ao+l is meant to be a
0

, and a_1 to be a0 ). Call them forced 

moves of the first kind (in this lemma only). 

Consider now G - a
1
a2• In this subgraph, a

0
a1 is an edge of de­

gree type (µ
0

, µ
0

), a
2
a

3 
... a

0 
is a path of degree type (µ

0
, µ

0
+1, 

µ + 1, ... , µ + l,, µ + 1, µ ) . None of these two configurations can 
0 0 0 0 

exist in any isom0rph of H (otherwise o(H) ~o(G) - 2). So H' ~ G -

a1a
2 

+ cd= H, where cd has three possibilities: a
0

a
0

, a1a0 , a
0

a2 • 

Since n is odd, a
1 

and a
0 

(a
0 

and a2 resp.) lie in the same part 

of G, and are joined by a path of even length not containing a1a2, so 

in H', we have an odd cycle, a contradiction. Hence a1a2 -+- a0 a0 is a 

forced move, and this sends the special o-chain a0 a1a2 .··· an_1a0 in 

G to a
2
a

3 
••• a

0
a

0
a

1 
in H'; it changes the indices cyclically by 2. 

Call them forced moves of the second kind. 

Suppose we can find two nonnegative integers a and ~ such 
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that 

O + 1 = a. + 2 ~ , and 

a. + p is odd!' 

then, applying a forced moves of the first kind and ~ forced moves 

of the second kind, the ind ices of ·a
0

a
1 an C\re incremented by 

1 • a. + 2 • f3 = n + l, so a
0

a1 ... an is r·eturr.ing to its original 

position after a. + ~ forced moves. But a. + ~ is odd, so by Lemma 

2.1 (which is true for general graph), we see G is edge-reconstruct-

able. 

We now proceed to 1 ook for such a. and f3 • ~Je may write n + 1 

2Yc-0, with y ?__ 1 and 6 an odd integer since n + 1 is even. If 

y> 1 , 1 et a. = 26' ~ = (2Y-l ·· l)o, then a. + 213 = 26 + (2Y -2}o = 2Yo 

n + 1 and a. + ~ is odd, beir.g the sum of an even ·integer and an odd 

integer; while for y = 1, let a.= 0, B = o, we have a.+ 2~::: 26 = 

= 

= 

O + 1 and a. + p = o is odd. So we are successful to find a. and f3 's 

and we are done for Case l of this lemma. 

Case 2 of Lemma .3. 2. 

From G - a a,.,,")' the only ways \'le can edge-reconstruct nonisomor-o i. ~ ~ '.:. 

phic edge-reconstructions are G - a
0

ao(G) + a
0

b for b a vertex of 

degree µ
0 

in G not on the special n(G}-chain since a
0 

is forced 

vertex and no a; is of degree µ
0 

in G for 0 < i < o(G) (edge­

reconstructabil ity of dE~ gree sequence implies b should be of degree 

µo in G). But then for a given b 

aoal ... ao ( G )-· 1 is a path of deqree 

(det (a.) = µo + 1 for 0< j < n(G) 
J 

with 

type 

- 1) 

H' = G - a0 ao(G) + a0 b, 

(µo' µo + 1 ' · • ·' µo + 1 ' µo) 

and so n(H') ~o(G) - 1 
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since we should tenninate at step (O(G) - 1) • if we didn't terminate 

before. This is contradictory to our assumption that o(G) ~o(H') 

(since H' E LG' the set of edge-reconstructions of G), and G has 

no nonisomorphic edge-reconstructions; hence G is edge-reconstructable. 

So we are done with Case 2 as well, completing our proof of Lerrrna. J.2, 

Q.E.D. 

Remark: The proof of this lemma isn't too hard, if not trivial. We 

have used heavily the fact that G is bipartite (in Case 1). The cor­

responding proof for a ~~st general graph would sound intractable, 

though interesting .. For example, when G is bi-degreed (not necessar­

ily also bipartite), this lemma says Ss is excludable, which takes a 

whole chapter (proof of edge-reconstructabi'lity of bi-degreed graphs) 

to implement. Since O(G) = l implies in any case that µ 1 (G) = µ
0 

and 

hence G is edge-reconstructable trivially, we will assume o(G) ~ 2 

from now on. 

We have shown the excludabil ity of "minimal-degree" configurations 

as mentioned in p. 99 of this Chapter for Type-I and Type-II termina­

tions. We will see the corresponding result holds for Type-III termina­

tion as well. 

Lemma 3.3. G is edge-reconstructable if G contains a special O.(G)­

chain a
0
a
1 

•.. ao(G) of degree type (µ
0

, µ
0 

+ 1, ... , µ 0 + 1) (deg (ai) 

= µ + 1 for o < i < n ( G)) • 
0 -

Proof of Lerrrna. This is a Type-III termination with ao(G) = ak, 0 < k 

< O(G). Note that k may vary if we choose a different special o(G)­

chain b
0
b1 ... bo(G) of the same degree type. We may fix a chain 
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a
0

a1 .•• ao(G) and hence k in this iemrna. Any non-isomorphic edge­

reconstruction H of G will have the form G - a
0

a1 + a
0
b, where b 

is a vertex of degree µ
0 

not on a1a2 .•• ao(G)" In H, a1o. 2 ••• ao(G) 

isawalkofdegreetype c~10,µo+l, ... ,µo+l) (deg (a;) =µo+l if 

l < i ~n(GL deg (a1 ) = µ
0

) if k> l, it is of degree type (µ
0

, µ
0 

+l, 

•.. , µ
0 

+ l,µ
0

) (deg (a;) =µ
0

+1 if 1 < i < o(G), a1 = ao(G) with 

deg (a1) = µ
0 

in H) if k = l; both lead to n(H) ~ o{G) - 1, a con-

tradiction. Q.E.D. 

Corollary 3.3.1. G is edge-reconstructable if G contains a path 

b
0

b1 ... bw of degree type (µ
0

, µ
0

+1, ..• , p
0 

+ 1) (deg (b
0

) == µ
0

, 

deg ( b; ) = µ 
0 

+ 1 , 1 ~ i ~ 'JJ ) with w ~ o ( G) - 1 > 1 . 

Proof of Corollary 3.3.1. Since µ + l is the lowest possible degree 
0 

before termination of constructing special chains, we have immediately 

µj(G) = µ
0 

+ ·1 for all j, 1 <S._ j <S._ Q(G) - l. Now G is edge,-reconstruc­

table by Lemma 3.2 if we have a Type-I or Type-II term·ination, and G 

is edge-reconstructable by Lemma 3.3 if we have a Type-III termination. 

Q.E.D. 

Coro 11 a r y 3 . 3 . 2 . G is edge-reconstructable if G contains paths 

co cl c ar.d .dodl ... dl3 both of degree tyµe (.µo' µo + 1 ' ... ' a. 

µo + 1) with a.' B > 0 and ca. = d
13 

(we have deg (co) = deg (do) -

µo and deg (Ci) = deg ( d.) = µ + 1 for 0< i ".S_ a.' 0< j~p). 
J 0 

Proof of Coronary 3.3.2. First suppose c
0

c1 ... ca. and d0 d1 .... d~ 

are everywhere disjoint except at c = d (in particular c0 f d0 ). 
(1. i3 

Now c
0

c
1 

••• cudF3_ .
1
d

13
_2 ••• d

0 
is a path of degree type (µ 0 ,µ 0 +1, 



106 

... , µ
0 

+ 1, µ
0

) in G and so we have a.+~ ~o(G). Then we have a 

path of length a+ f3 ·- i :::_o(G) - 1 of degree type (u
0

, µ
0 

+ 1, ••• , 

µ
0 

+ 1) and Corollary 3.3.1 a pplies to say that G is edge-reconstruct-

able. 

intersects at somewhere besides c - d Let y <a be the smallest a - P. 

positive intege r such that cy 1 i es on d
0

d1 ... d~. Then cy = d
0 

for 

a fixed 6, 0 < 6 < f3. Applying the previous argum-ent to c
0

c1 cy 

and d
0

d1 ..• d
0 

we have readily that G is edge-reconstructable. 

Let now c
0 

= d
0

. Let µ > 0 be the first positive integer such 

that c "f d (since co cl µ µ ... c and a 
d d., 

0 I 
. .. dj3 are different). 

Let v>µ (\> ":S_ a.) be the first posHive integer such that c 
\1 

some d P' µ< p ~_ fj. Now the walk co cl ... c d d c 'l v p-1 µ µ-

that O(G) "5_µ - 1 + (\i - (µ -1)) + (p - (µ - l ) ) = D. fo r we will 

Type-III term i natio~ a t step 1:1 11 (at c 1 ) if not before . Now 
µ-

is 

suggests 

ha ve a 

cocl c d 1· ... d is a path of ·1ength !:J. - l >_ n( G) - l o f degree v p- µ 

type (µ
0

, µ
0 

+l, . .. , p
0 

+1) and we are done by Corollary 3.3.1. Q.E.D. 

Remark. Case 2 of Lemma 3.2 ) Lemma 3.3 , Corollary 3.3.1, and Co ro llary 

3.3.2 are all still valid if G is a general graph (not necessar i ly 

biparti t e). Ncte t ha t definitions of specia l chains and Type- I , II,. III 

termination are still meaningful for general graphs (o(G) ~o(H) for 

all HE L:G still used in the proof). 

Lemma 3. 4. Given a pos Hi ve in t eger o , the number of paths of 1 ength 

k of the fo r m a
0

a
1 

... a k··l b of degree type (µ
0

, p
0 

+ 1, ... , µ 0 + 1' 

o ) ( deg ( a 
0 

) = p 
0 

, cl e g ( a .1 ) = ~ 1 
0 

-t 1 fo r 1 -:::_ i -s_ k - 1 , deg ( b ) = 6 i n 

G) is edge- r econst r uc t ab-ie for an k~ 1 -s._ k~O(G) - l (when k = 1, 
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we mean edges of degree type (1-t
0 

,o).). 

Proof of Lemma. Prove by induction on k. When k = 1, we see immediate-

1y that number of edges of degree type (µ
0

,o) is edge-reconstructable 

by Lemma 3.1. 

Now suppose the number of paths of length k of the degree type 

(µ
0

' µ
0 

+ 1, ••• , p
0 

+ 1 ,6) is edge-reconstructabl e for 1 -s k -:::_ O( G) -

2, we will show that the number of paths of length k + l of degree 

type (µ
0

, µ
0 

+ 1, ... , µ
0 

+ 1 ,o) is edge-reconstructabl e. Note that 

o ~ µ
0 

+ 1. For the fixed integer o, G may or may not have a path of 

1 ength of k + 1 of degree type (µ , p + 1, ••• , µ + 1 ,o). Let G 
0 0 0 

have such a path a
0
a1 •.• akb at first. From G - a

0
a1, we can have 

a nonisomorphic edge-reconstruction H = G - a
0

a1 + a
0
c, c I a1 . c is 

a vertex of degree ~1 0 in G and cannot lie on a
0

a1 akb by de-

gree argument. Let a1 lie on a> l paths of length k of the degree 

type (µ
0

, µ
0 

+ l, ... , µ
0 

+ l ,o) with a-1 as the "starting" vertex (i.e. 

paths are of the form a1d1 ••. dk_1e) in H; then edge-reconstructa­

bil ity of paths of length k of degree type (µ
0

, µ
0 

+ 1, ... , µ
0 

+1,o) 

implies that there are exactly a~ l paths of length k of degree type 

( µ 
0 

, µ 
0 

+ 1 , • • • , µ 
0 

+ 1 , \) ) 11 start i n g 11 at c i n G ( paths ha v j n g the form 

cd] ••• dk_1e 1
). Now the "move" a

0
a1 -+ a

0
c "destroys" exactly a> 1 

paths of length of k + 1 of degree type (µ
0

, µ
0 

+ 1 ~ ••• , µ
0 

+ 1 ,o) 

(of the form a
0

a1d
1 

••• dk_1e) and it "ci"eates 11 exactly a paths of 

k + l of degree type ( µ s µ + 1 , . . . , µ + l , o ) (of the form 
0 0 0 

d~_ 1 e
1 ), so the number of paths of length k + l of degree 

type (µ
0

, µ
0 

+ 1, ..... µ
0 

+ l,o) is edge-reconstructable when G has 

at least one path of this form. 
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Now suppose G has no s uch path of 1ength k + 1. Suppose some 

I E l:G contains a pa th i 0i1 i 1,) of degree type (µo' µo + 1' ... ' 
~to + 1 ,o). We wi 11 have G == I - i 0i1 ... i om for some m 1 i ' of degree 

µo 'in I. Argue as in the previous paragraph, we see that G will 

have the same number ( ::::_ 1 ) of paths of 1 ength k + l of degree type 

(JJ.
0
,µ

0
+1, ... ,µ

0
+1,o)- as I, andwegetacontradiction. 

We a re done with ou r induction step a.nd hence proof of our 1 emma. 

Q.E.D. 

Corollary 3.4. A bipartite G is edge-reconstructable provided that G 

conta ins a speci al o(G)-chain a
0

a1 , ... ao(G) with µo(G)-l (G) -· 

µ
0 

+ 1, µo(G) (G) = µ
0 

and provided that al so µ i (H) = µi (G) for al 1 

i , 0 'S_ i "S_ 0. ( G) - 2, and for a 11 H E L:G. (n ( G) ~- O ( H) for a li H E 

L:G assurried). 

Proof of Corollary . If ao(G) = a
0

, then for H = G - a
0
ao(G) + a0 b , 

b t ao(G), we have o(H) "S_ o(G) - 1 for if we do not have o(H) ~-

o'G) - 2, then a a a is a special (o(G) - l) ~chain of de-\ o l ..• O(G) ·- 1 

gree type ( 1...L
0

(G), µ 1 (G), ... , µo(G)~ 2 (G), µ
0

) = (µ
0

(H);u 1 (H), . .. , 

µo(G)-2(H), 1..1
0

) i h H (by assumption) , and so o (H) = o(G) - 1. In any 

case, we get O(H) "S_ o (G) - 1, a contradic t -ion to the fact tha t n(H) ~ 

O(G). 

Now let ao(G) 'f a
0

• By Lemma 3 . 2, we can ass ume some µi (G) > 

µ
0 

+ 1 , 0 < i < O( G). Let be the smallest such i IS• 

k w·il l in general depend on G as wel 1 a.s on a
0

a1 G, a0 a1 . . . a0 ( G) 

Jn ( G). 

Let k,.. = ma ): kG .. c c1 ••• er 1G ) o. special o(G)-chain 
\;i ' c c 1 • , . en ( ( ) . 0 d \ :i 

0 ~ l ' ) 
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with c0 'f co(G) ;and suppose the maximum is attained for the special 

o(G)-chain d
0

d1 do(G). We have O < kG < o(G) and G cannot have 

a path of length kG of degree type (µ
0

, µ
0 

+ 1, ... , µ
0 

+ 1). 

Cons .. ider 

degree µo in 

requirement. 

o(H) ~ o(G) -

H = 

G. 

If 

1 ' 

G - do(G)-ldo(G) + do(G)e for some e 'f do(G)-l of 

e cannot 1 i e on d 
0

d
1 

. • • d
0 

( G) _ 1 by s imp l e degree 

e I d
0

, then we get a contradiction by the fact that 

for if O(H) ~ O(G) - l, then as before, d
0

d1 

do(G)-l will be a special (o(G) -1 )-chain of degree type (u
0

(G), µ 1 (G), 

... , µO(G)-1 (G), µo) = (µo(H), µl (H), ... 'µo(G)-1 (H), µ.o) and O(H) = 

n(G)-1 . 

So now let e = d
0

. In H, do(G)d
0

d1 ••• dk _1 is a path of length 
G 

kG of degree type Cu
0

, µ
0 

+ 1 , .•. , µ
0 

+ 1); so with k = kG and o = 

µ
0 

+ 1 in the lemma, G must have a path of length kG of degree type 

(µ
0

, µ
0 

+ l, . .. , µ
0 

+ l), a contradiction to what we have observed t wo 

paragraphs before. Q.E.D. 

Corollary 3.4 111ill prove to be a useful criterion later. By the way, 

Corollary 3.4 is true also for any graph for which Lemma 3.2 holds (not 

necessarily bipartite). 

We will prove a lemma more general than Lemma 3.4 in a similar vein. 

Lemma 3. 5. When o ( G) ~ 3, then for fixed integers o and p, the num­

ber of paths of length k of degree type ( µ
0

, l.l
0

+ l, . . . , µ
0 

+ 1 ,o ,p) 

are edge-reconstructabl e for 2 ~ k ~. o(G) - 1 . 

Proof of Lemma. \tJhen k :.:: 2, i'Je mean that the number of paths a
0

bc of 

1 ength 2 of de91ee t ype (µ
0 

, 6 ,p) a r e edge-reconstr uctabl e. Si nce 
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2 < n(G) - l, we have immediately that o ~ µ
0 

+ 1, p ~ µ
0 

+ 1. Cons id-

er H = G - a b + a d, d t b. Suppose d is not adjacent to b in G, 
0 0 

at first. Let b 1 i e on a. > edges of degree type (o-1,p) "in H 

(be is such an edge). Then d must 1 ie on exactly a.~ 1 edges of de­

gree type (&-1, p) in G by edge-reconstructability of edges of such 

de.gree type (Lemma 3. l) .- Now the move a
0

b -+ a
0

d destroys exactly a. 

paths of degree type (µ , o,p) containing a
0

b and creates exactly a. . 0 

paths of the same degree type starting with a
0

dt and we are done for 

this case. Next, let d be adjacent to b in G. We have then 6 = 

p + l (d may be c, say). Let b lie on 13 ~- 0 edges of degree type 

(p ,p) in H, then d 1 i es on 13 edges of degree type (p ,p) in G 

and the move a b ~a d 
0 0 

destroys f3 + 1 paths of the degree type 

(µ
0

, p + 1 ,o) starting with a
0

b and creates f3 + 1 paths of the same 

type starting with a
0

d. So we are done when k = 2. 

We then proceed inductively. Assuming it true for k, and we wi 11 

prove it true for k + l, 2 "S.. k "S_ O(G) - 2. Prove in the same way as in 

Lemma 3.4, we first suppose G has a (k + 1 )-path a
0

a1 ... ak_1bc of 

degree type (u
0
,µ

0
+1, ... ,µ

0
+1,o,p). If a

1 
is the starting ver­

tex of exactly a.> 1 k-paths of degree type (u
0

, µ
0 

+ 1, ... , µ
0 

+ 

l ' 0 ,p ) in H = G - a a + a d 
0 1 0 ' 

then d is the starting ver-

tex of exactly a.> 1 k-paths of degree type (µ
0

, µ
0 

+ 1, ... , µ
0 

+ 1, 

o,p) by induction assumption; and so the "move 11 (not necessarily a 

forced . move) a
0

a
1 

_,,.. a
0

d destroys a. ( k + 1 )-paths of degree type 

(µ
0

, µ
0 

+ l, ... ,µ
0

+1,o,p) starting at a
0 

and creates a. (k+l)-

paths of same degree type, and hence we are done. Q.E~D. 



Remark. We cannot generalize Lemma 3.5 in a "natural" way for the num-

ber of k-paths of degree type (µ 0 , µ 0 + 1, ... , µ 0 + 1, o1 , c2 , •.. , 

on) with n c 3, n -:s_ k -s_ o(G) - 1. The difficulty 1 ies in starting the 

induction, for He do not have any "generalized" version of Lemma 3.1 for 

n-paths, n ~ 3 (we have only the version for n = 2, i.e. edges). 

We can define i<-chains bobl bk in a way similar to special k-

chains so that b 0, bl ' ... ' bk-1 are all disjoint and bk may be on 

bobl bk-l or not. 
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Section 4. Several more technical definitions. 

Recall from Section 3 that a special n-chain a
0
a1 ••• an in H 

(n~O(G)) has the degree type (µ
0

(H), µ .
1
(H), .•• , µn(H)), where 

H E E G (and Q ( G ) ~ 0 ( H) ) • We wo u 1 d ask n at u r a 11 y : i s ( µ 
0 

( H) , µ l ( H ) , 

... , µn(H)) = (µ 0 (G), µ 1(G), ... , µn(G))? This equality is a necessary 

condition if H = G, and so we would expect it to hold to achieve our 

goal (that H = G for every H E L.G). 

Definition 3.1. Condition A(n). This condition says that for any 

HE L:G, ('µ
0

(H), µ 1 0-1), ... , µn(H)) = (.µ
0

(G), µ 1 (G), ••• , µ.n(G)) for a 

given n. (o(G) ~ o(H) assumed). 

Once Condition A(n) holds true, we can then use µ 1 to denote 

the common va1ues of all µ;(I), IE We will write simply A(n) to 

mean Condition A(n) in the following. lhe same practice holds for any 

other definitions of this kind. Now the degree type of special n-chains 

being independent of the graph in which it lies, we may then ask: is 

the number of special n-chains edge-reconstructable? We state a more 

general definition in the following: 

C2finition 3.2. Condition B;(n). This condition says that Nn,i(G), 

the number of chains of degree type (u , µ .. , ... , µ 1 , µ +i) in G for · o 1 n- n 

n > 0, i > 0, is equal to N . (H), the number of chains of the same - n,1 

type in H, for any H E IG (o(G) -5_ o(H) assumed). 

Condition B (n) says that the number of special n-chains is edge­
o 

reconstructa.ble. 

Clearly A(n) and B; (n) are necessary conditions when H =: G for 

any HE L:G. We then naturally expect them to hold i n our struggle to 
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prove G's edge-reconstructability. Their validity will be a building 

block for our final goal, the main theorem. Of course some other tech­

nical (i.e. artificial) definitions (and their validity) will be re­

quired as well. 

Now let's see how to show the validity of A(n) for the first few 

values of n. A(O) is the statement that µ
0

(H) = µ
0

(G) for any 

HE EG and is true by the edge-reconstructability of degree sequence. 

Note that o ( G ) = 1 imp 1 i es that µ 1 ( G ) = µ 
0 

and a spec i a 1 1 -cha i n 

a
0
a1 is itself a forced edge; so we may assume o(G) ~ 2. To prove 

A(l ), consider G - a
0

a1 for a special 1-chain a
0
a1 of degree type 

(~0 , µ 1(G)) in G. By edge-reconstructability of degree sequence, G -

a
0

a1 can only be edge-reconstructed to become some H = G - a
0
a1 + a

0
b, 

b t- a1 is a VP.rtex of degree µ 1 (G) - 1 in G. Now, a
0

b is an edge 

of degree type Cµ
0

, µ 1 (G)) in H, and so the 11minimal ity 11 of special 

1-chain in H implies µ 1 (H) ~µ 1 (G). Let b
0

b1 be a special 1-chain 

of degree type (µ
0
,µ 1(H)) in H, then G::::: H-b

0
b1 +b

0
c for some 

c t- b1. We get as before that µ 1 (G) -s._µ 1 (H). So µ 1 (H) = µ 1 (G) and 

A(l ) is proved (we then can denote their common va 1 ue by µ 1 ) . 

If o(G) = 2, then µ 2(G) = µ
0 

by definition of special 2-chain in 

G (there can be no Type-II or Type-III terminat"ion by obvious argument). 

If l-41 =µ + 1 ' 0 
then our special chain in G has the degree type 

(~o'µo+l,µo), and so G is edge-reconstructable by Lemma 3.2. Now 

let µl > µo + 1 · Consider G - a1a2, where aoala2 is a special 2-

chain in G. In this subgraph, a2 is a forced vertex of degree µ - 1 
0 

~µ and aoal is a forbidden edge of degree type (µo' µl - 1 ) . So 
o' 

a1 a2 is a . forced edge, s i nee we can no t join a2ao by degree argument 
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{µ 1 - 1 > µ
0

). We may assume n(G) ~ 3 from now on. 

Now apply Lemr.ia 3.5 (which is true when o(G) ~ 3) with 6 = µ 1 , 

p = µ 2(G), k = 21 we see that the fact that G has a special 2-chain of 

degree type (µ
0

, µ 1 , µ 2(G)) implies that H has a 2-path of degree 

type (µ
0

, µl, µ 2 (G)) and µ 2(H) ~µ 2 (G) for any HE L.:6 . Suppose 

a certain H
0 

satisfies µ 2(H
0

) < µ 2(G), then Lemma 3.5 again implies 

that G has a 2-path of degree type (µ
0

, µ 1 , µ 2(H
0

)) and so µ 2(G) ~ 

µ 2-(H0
) < µ 2(GL a contradiction, and we have proved A(2). 

When o(G) = 3 we observe again that there can be no Type-II or 

Type-III terminations by simple argument and so µ
3

(G) = µ
0 

and a3 f: 

a
0 

for a special 3-chain a
0
a1a2a3 (when O(G) = 4, we can have Type-

1 or Type-II but no Type-III terminatfon; so µ 4(G) = p
0 

but a4 may 

coincide with a
0 

for a special 4-chain a
0
a1a2a3a4 in G. When o(G) 

~ 5, we can have Type-III termination as well. The above argument works 

for bipartite graphs only. For a general non-bipartite graph we may 

have a Type-III termination when o(G) = 4.). 

Consider a special 3-chain a
0

a1a2a3 (actually a path) in G. If 

µ 2 = µ
0 

+ 1, then Corollary 3.4 applies and G is edge-reconstructable. 

So 1 et µ 2 > µ + 1 novJ. Suppose µ > first. As in the second 
0 0 

paragraph of proof of Lemma 3.2, we see that G is a block if µ
0 

> 1, 

and a1 and a
3

, being in the same 11 part 11 of G, are joined by a path 

of even length not containing a2a3. Hence it's impossible that a non­

isomorphic edge-reconstruction H = G - a2a3 + a3a1, for otherwise we 

have an odd cycle in H. H cannot be G - a2a3 + a3a
0 

since µ 2 - 1 > 

µ
0

• H cannot be G - a
3

a
2 

+ a
3

b, b ! <:t
0

,a1 , for then µ 2 (H) -s_µ 2 - 15 
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a contradiction to A(2). So o (C) = 3 implies G's edge-reconstruct-

ability when µ
0 

> 1. Now consider i-tc - 1. Argue as above, we see 

difficulty will present only when H = G - a2a3 + a3a1 , in which case 

µ 2 =µ 1 +1. Bylemma3.l oneage~ofdegreetype (µ 1 ,1) (note µ 1 >l), 

we see a2 must be adje\cent to anolher vertex b t- a3 of degree l in 

G. Suppose µ 
1 

> 2. By edge-reconstructabil i ty of degree sequence, 

H == G - a1 a2 + cd, Where c is a vertex of degree µ 1 - 1 > 1 = µ
0 

in 

G - a1 a2 , and d a vertex of degree µ 1 + 1 - l = µ 1 in the same sub­

graph. c cannot be a
0 

by degree argument. c then must be a1 other­

wise H contains an edge of degree type {µ
0

:, µ 1 -1) and µ 1 (H) ~- ~1 1 -1, 

a contradiction. d cannot be a3 or b by degree argument (µ 1 > 1). 

If d isn't a2, then an isomorph of H (= G - a1a2 + cd) contains a 

path a3a2b of degree type (1, µ 1, 1), which immediately implies 

o(H) ~ 2 < 3 = O(G), a contradiction to our assumption that o(G) < o(H). 

Finally we let µ
1 

= 2 {and µ
0 

= 1). G's connectivity implies at 

once that G is itself a graph as depicted below: 

From G - a2a3, any possible nonisomorphic edge-reconstruction 

would be P
5 

only {since G cannot contain triangle). But P5 cannot 

h~ve K
1

,3 as an edge-proµer subg ra ph, which is G - a0 a1. So G is 

edge-reconstructable in th i s case as well~ and we have proved o(G) = 3 

implies G's edge-reconst ruc t a bil ~ ty . 
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We note that µ = 1 deserves special treatment since G is no 
0 

longer a block in this case. We state the fact that µ
0 

> 1 implies G 

is a block in the following lem~a for later reference (proved already in 

second paragraph of Lemma 3.2). 

Lemma 3.6. G can be assumed to be a block if µ
0 

> 1. 

Now let's assume n(G) ~ 4 and start to prove A(3). Consider a 

special 3-chain a
0

a1a2
a

3 
in G. Let µ 2 > µ

0 
+ 1 first. Every H ~ 

G - a1 a 2 + cd for some c of degree 1--l l - 1 and d of degree µ 2 - 1 

in G - a1a2• If µ 1 > µ
0 

+ 1 as well, then a
0 

cannot be c or d 

by degree argument, and a1 is a forced vertex. The edge-reconstruct­

abil ity of edges of degree type (µ 2 - 1, µ 3(G}) implies that d is 

adjacent to a vertex of degree µ
3

(G) in G and so µ 3(H) ~µ 3 (G). 
Consider a special 3-chain b

0
b
1

b2b
3 

in H. We see µ 1 , µ 2 > µ
0 

+ 1 

still hold and same argument as before says that µ 3(G) ~µ 3 (H). So 

A(3) holds for this subcase. Let µ 1 = µ
0 

+ 1 now (still µ 2 > µ
0 

+l ). 

c can be a
0 

or a
1 

(and nothing else) by degree argument and d must 

be adjacent to a vertex of degree µ 3(G) in G as before. So we get 

µ
3

(H) ~µJ(G). Symmetry argument then says that µ 3(G) = µ 3(H) and 

A(3) holds. 

Now 1 et µ 
2 

= µ 
0 

+ 1 • Every H =:: G - a 2a 3 + c 1 d 1 
, for some c' of 

degree µ
0 

and d' of degree µ 3(G) - 1 in G - a2a3• If µ 3(G) > 

µ
0

+1, c' must be a
0 

or a
2 

otherwise o(G):s_2 and we see µ 3(H) 

<µ
3

(G) readily. If µ
3

(G) =µ
0

+1, then one of c' or d' must be 

a
0 

or a
2 

and we see µ 3(H) ~µ 3 (G) (which implies µ 3(H) = µ 3(G) 

otherwise o(H) < 3 < o(G)). Repeating the same argument for a special 
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3-chain b
0

b1 b2b3 in H, as before we see µ
3

(G) cs.. µ 3(H) and so A(3) 

is proved in its fu11 force. 

Let's summarize the foregoing results in the following two lemmas. 

Lerrana 3.7. G is edge-reconstructable if O(G) cs.. 3. 

Henceforth, we may assume 4 ~ O(G) (~ o(H) for all H E l:G). 

Lemma 3.8. Condition A(n) holds for n = 0, 1, 2, 3. 

Next, we investigate the validity of B.(n) for the first three 
1 

valu~s of n (n = 1, 2, 3). Bi(l) says that the number of edges of de-

gree type (µ
0

, µ 1 + i) is edge-reconstructab1e and this is solved 

readily by Lemma 3.1. For Bi (2), we apply Lemma 3.5 for e-i = µ 1 , p -

µ 2 + i. We are left with Bi (3) only. Let µ 2 > µ
0 

+ 1 first. Let 

a2 on a special 3-chain a
0

a
1

a
2

a
3 

be adjacent to a.> 1 vertices of 

degree ~1 3 + i other than a
1

. If µ 1 > µ
0 

+ 1, then a1 is a forced 

vertex and any edge-reconstruction H ~ G - a1a2 + a1d, d ! a2. If d 

isn't adjacent to a2 in G, then d must be adjacent to a. vertices 

of degree µ 
3 

+ i in G by Lemma 3.1, and we have 11 destrcyed 11 a. 3-

paths of the form a
0

a
1

;:i
2

c of degree type (jl
0

, µ 1 , ~~ 2 , µ 3 + i) and 

"created" meanwhi 1 E: a 3-paths of the form a
0

a1 de of degree type 

( µ 
0

, µ 1 , µ 2, µ 3 + i ) wh i 1 e going from G to H, so Bi ( 3 j ho 1 d s for 

this situation. If d is adjacent to a2 in G, then we have µ 2 = µ 3 + 

i + 1 and we have 11 created 11 a. - 1 3-paths of degree type (.µ
0

, µ 1 , 

µ
2

, µ
3 

+ i) and 1!destroyed 11 meanwhile a. - 1 3-paths of the same de­

gree type while going from G to H (the 3-pa t h a
0

a1a2d is changed 

to a 3-path a
0
a

1
da 2 of the same degree type). So B1(3) holds in this 
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case. When µ 2 = µ
0 

+ 1, we see in an analogous way as before that when 

G has 3-chain a
0

a1a2c of degree type (µ.
0

, µ
1

, µ 2, ~L 3 + i),H= G - a 2c 

+ c'd' for some c' of degree µ
0 

and d 1 of degree i.-t 3 + i - l in 

G - a2c . One end of our ne\'1 edge must be ao or a2 otherwise 

O(H) ~ 2. If one end is a2s the other end cannot be a
0 

otherwise 
-

we have a tri a-ngl e (3-cyc1 eL. and this case is trivial since if say a = 2 

c' is adjacent to s ~ 1 vertices of degree µ 3 + i in G, the 

"change" a c -+ a d' 2 2 gives us in H still 13 ~ 1 vertices of degree 

µ 3 + i (except that vertex a3 is replaced by d 1
), and so the number 

of 3-paths of degree type (µ
0

, µ 1 , ·µ 2 , µ
3 

+ i) is unchanged. If one 

end of the new edge is ao and ao is adjacer.t to y vertices of de-

gree µ3 + i in G, then the change a?c 
'-

~a d' 
0 

(d' t: a1 , a2 , c by 

obvious reasons) destroys 13 edges of de~ree type (µ + 
0 1' µ3 + i ) 

and creates y + l edges of degree type (~ 
0 

+ 1' µ3 + i ) and so 13 = 

y + l by Lemma 3.1. But clearly the same change a2c -+ a d I 

0 
destroys 

13 3-pa ths of the form a
0

a
1

a 2e 1 of degree type (µ 
0

, µ 1 , µ 2 , µ 3 + i) 

and creates y + l 3-paths of the form a2a1a
0
f' of the same degree 

type. No other 3-paths will be affected by this change unless a0 or 

a 2 is adjacent to some vertex b1 i a1 of degree µ 1 in G. By the 

I ' and Lemma 3. 1 on the edges of degree type 1 µ
0

, ,µ l J, 

we see that if some b1 of degree µ 1 is adjacent to a
0 

in G, then 

some b
2 

of the same degree must be adjacent to a2 in G and ~t 3 ~ 

µ 1 in particular. 

If µ
3 
~Pl -· 2, consider a special 3-chain a

0
a1a 2a 3 in G and 

delete a
1

a
2 

from G. In G - a
1

a
2

, a
0

a1 has degree type (µ 0 ,µ 1 -1), 

a
2
a

3 
has degree t ype (µ

0
, p

3
); both cannot happen in any edge-
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reconstruction. Furthermore, degree argument says that we have to join 

a vertex of degree µ
0 

to a vertex of deg ree µ 1 - l in G - a1 a2; so 

a.1a2 is a forced edge in this r.ase . . We can now assume µ 3 = µ 1 -1 or 

µ 3 = µ 1 . Note 1-1 1 > µ
0 

+ 1 otherwise we are done by Lemma 3.4. 

Let µ 3 = µ 1 - 1 first. By argument two paragraphs before, Bi(3) 

holds except when we have H = G.- a2c + a
0
d'. If G contains .a 3-path 

of degree type (µ
0

, µ
1

, µ 2, µ 3 + i) with µ 3 + i > µ 1 , 

then d' cannot be a3 by degree argument and an isomorph of H 

contains an edge a2a3 of degree type (µ
0

, µ
1 

- 1), a contradiction. 

So we have to consider only µ 3 + i = µ 1 -:- 1 or µ 1 finally. It's 

impossible that some c f a1 , a3 of degree µ 1 - 1 be adjacent to a2, 

otherwise a1a2 is clearly a forced edge (this is clear if µ 1 >~1 0 +1, 

to avoid an e:dge of degree type (µ
0

, 
1
1

1 
- 1) . . If µ 1 = µ

0 
+ 1, th9n we 

have immediately o(G) ~ 3, and Lemma 3.7 says that G is edge-recon­

structabl e). 

Our graph G will contain a configuration C as in Fig. 3-2, from 

which it is easily seen that G can have at most one nonisomorphic edge-

reconstruction H. (pr0of later) 

Consider G - a
0 
a

1 
, we see a

0 
is a forced vertex a;1d Bi ( 3) 

would be trivial if we can show that the number of 2-paths of degree 

type (µ
1 

- l, µ
0 

+ l, µ
1 

- 1) or (u
1 

- 1, µ
0 

+ 1, µ 1 ) is edge- re·· 

constructable. To prove this, it suffices to show by induction that the 

number of 2-paths of degree type (µ 1 -1, µ
0 

+ 1, µ
0 

+ 1 + k) is 
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edge-reconstructabl e for 0 ~ k "'S.. µ 1 - µ
0 

- 1:. Recall µ 1 > µ
0 

+ 1. 

Let def k represent a 2-path of degree type ( p 1 - l, µ
0 

+ l, µ
0 

+ l + 

k). For k = 0, consider G - ef . Since µ - l > µ
0 

and de is a 
0 l 

forbidden edge of degree type (•.J.
0

, µ
1 

- l), we see that e is a forced 

vertex. Let e be adjacent to a.> 1 vertices of degree µ 1 - l in G. 

Going from G to some H = G - ef 
0 

+ eg for some g, we see that the a. 

2-paths of the form d 'ef
0 

of degree type (µ 1 - 1, µ
0 

+ 1, µ
0 

+ 1) 

become a. 2~paths of the form d'eg of the same degree type, and no 

other 2-path of the same degree typ2 can be created or destroyed other­

wise we would have µ 1 = µ
0 

+ l, a contradiction. So the case k = 0 

is proved. Now assuming the validity for k ~µ 1 - µ
0 

- 2 and we will 

show the validity for k + 1. Consider defk+l and let e be adja­

cent to 13 ~ 1 vertices of degree µ 1 - l in G. In G - efk+l, ed 

is an edge of degree type (µ
0

, µ
1 

- 1) and fk+l is of degree µ
0 

+ 

+ k< µ 1 - 1, so degree argument says that e is a forced vertex . Let 

H = G - efk+l + eg. Let fk+l be on y . 2-paths of the form ihfk+l 

with h -f e of the degree txpe (µ 1 -1,µ
0 

+l, µ
0 

+ k + 1) in G ~- 2fk+l 

(and hence in H). g must lie on y 2-paths of the form i 'h'g, h' -f e, 

of the degree ty.pe (µ 1 - 1, µ
0 

+ 1, µ
0 

+ k + 1) in G - efk+l (and 

also in G) by induction assumption. But then the move efk+l ~ eg · 

creates y 2-paths of degree type \µ 1 - 1, µ
0 

+ 1, µ
0 

+ k + 2) pass­

ing g and destroys y 2-paths of some type passing f k+l, it changes 

the 13 2-paths of the fonn d'efk+l of the degree type (µ 1 - 1, µ 0 +1, 

µ
0 

+ k + 2) to ~ 2-paths of the form d'eg of the same type, leaving 

all other 2-paths of ·such degree type unaffected. So clearly, the num-

ber of 2-paths of degree t ype ( 1..t -
1 

- ·1 , µ
0 

+ 1, µ
0 

+ k + 2) i s edge-
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reconstructable, and we are done for the proof of Bi(3) when µ 2 = µ
0

., 

1 , ~t 3 :i: µ 1 - l (and µ 1 > µ 
0 

+ 1 ) . 

What's left in the proof of Bi(3) is the case µ 2 = µ
0 

+ 1, 

µ 3 = µ 1 (and µ 1 > µ
0 

+ 1 by Lemma 3.4). Consider G - a1a2 for a 

special 3-chain a
0

a1a2a3. Degree argument says that one end of the 

replacing edge should be a
0 

is a
0

, then the new graph 

or a1. If one end of the replacing edge 

I will have one more edge of degree type 

h1 0 + l' µ 1 - 1) than G (given by a
0

b for some b t- a3) unless a2 

is adjacent to some vertex of degree µl - 1 in G, which in turn gives 

an edge of degree type (µo, µl - l ) in I' a contradiction. Hence 

a1 is a "forced vertex 11
, and Lemma 3 ~ l applied to edges of degree type 

(µ
0

, µ 3 + i) easily establishes B; ( 3). We have thus done the proof of 

Lemma 3.9. Bi(n) are true for n = 1, 2.3, any i > 0. 

Note that the idea and details of proof are pretty simple except 

the case when µ 1 > µ
0 

+ 1, µ 2 ::r µ
0 

+ 1 and µ 3 = µ 1 - 1. 

ao,µo -t 1 a2,µo 
G H 

~~ 
Fig. 3-2 

For the proof of Fig. 3-2, note that a
0
a1 and a2a3 in G - a1a2 

are both forbidden of degree type {t1
0

, µ 1 - 1), hence µ 1 - 1 > µ 0 

For later reference, we intro-
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duce an excludable configuration C' in Fig. 3-3 which occurs very 

often in practice. To prove the excludibility, note c
2
c

3 
is a forced 

edge since c0 c1c2c3 and c4c5 are both of forbidden degree type and 

µ 1 - 2 t- µl - 1 . 

Fig. 3 ... 3 

To conclude this section, we will introduce a new technical defini­

tion, whose validity for general n ~ill lead to our main theorem in 

Section 7. 

Given n, O ~ n ~ o(G) - 2 (note o(G) ~ 4), let a
0

a1 ••• aa. and 

b
0

b1 ... bf3 be two special chains of length a. and f3 respectively, 

with 0 ~a., '3 ~ n. If a b 
a. f3 

is an edge of G (aa. bf3 E E(G)) and we do 

not have the annoying situation that aoal ... a happens to be bobl ... a. 

and a. = b. for Q < i < H - l or the situation 
1 1 - - t' 

b
13 

_ 1 , i . e. a. = s - 1 

that b
0

b
1 

••• b~ is a
0
a

1 
•.• aa._1; then we call this an (a.,13)-coup-

Zing in G of the two special chains of a
0
a1 
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or simply an (a.,a)-coupling if no confusion is caused. 

Definition 3.3. Condition P(n). For 0 ~ n ~o{G) - 2. This condition 

says that an (c. ,13 )- coupling for 0 -c::_ a., f3 ~ n is an exc 1 udab le confi g­

ura tion. 

Notice that for an (a.,~)-coupling in G, it is not necessarily 

true that a
0

a1 .•• aa. and b
0

b1 ••• b
13 

are disjoint; they must he 

distinct however. 

Condition P(n) is analogous to the excludability of Tp-ccnfigura­

tion in Chapter two (Lemma 2.3). 

To give an insight of ho\'t P(n) look like (and also to start the 

induction), we will prove the validity of P(n) here for n = 0, 1, 2 .. 

Lemma 3. l 0. P ( n) is true for n = 0, 1 , 2 .. 

Proof of Lemma. We will divide the proof into three cases according to 

the va 1 ue of n. Without 1 ass of genera 1 ity, we may assume a. ~- 13. 

Case .1 of Lemma 3.10. n = 0. 

The only possible (a.,~)-coupling is that of an edge a b with 
0 0 

deg (a
0

) = µ
0 

= deg (b
0

) l so a
0

b
0 

is clearly a forced edge; and P(o) 

is true trivially. 

Case 2 of Lemma 3 . 1 0. n :-: l . 

If a. = 0 then ~ = 0, then \'Je are returning to Case l. So let 

a. = 1 now. If p = 0, then we have o(G) -s_ 2, and G is clearly edge­

reconstructable. So let s = l now. Clearly a
0

a 1b1b
0 

is a 3-path in G 

(they are all distinct obviously). If µ 1 ::: µ
0 

+ 1, then we have a pc.th 
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of degree type (µ 0 ~ µ
0

+1,µ
0

+1, µ
0 

), so o(G)~3 and G is 

edge-reconstructable. Now let µ 1 > µ
0 

+ 1. a1b1 is clearly a forced 

edge by degree argument and the fact that (µ
0

, µ 1 - 1) is a forbidden 

degree type for edges. We have then done the proof of P(l). 

Case 3 of Lemma 3. 1 0. n = 2 . 

We may assume a. = 2, otherwise we are returning to Case 1 and 

Case 2. Let a = 0 first. We have then o(G) ~ 3 by the 3-path 

a
0
a1 a2b

0 
of degree type ( µ

0
, µ 1, µ 2, µ

0
), and G is edge-reconstruct-

abl e by Lemma 3.7. Next consider ~ = 2 (the case ~ = is much hard-

er and is treated later). We note b2 is adjacent to a2. If b2 = a1 , 

then b 
0 

b1 b 2 and a 
0 

form a ( 2 ,, O ) ~coup 1 i n g for n = 2 (a. = 2 , a = O ) 

and we are done. So b2 is distinct from a
0

,a1 ,a 2. If b1 is a 2 ~ 

then a
0
a1 and b

0
b1 form a (1, 1) coupling and Case 2 implies G's 

edge-reconstructability. So we have that a
0
a1a2 and b

0
b1b2 are dis-

joint and form a 11 true 11 
( 2, 2 )-coupling. Let µ 2 > µ

0 
+ 1 first and con-· 

sider G - a2b2. A(2) and the fact that µ 2 - l > µ
0 

tell l!S that we 

can replace a2b2 by a2b1 , a1 b2 and a1 b1 only, to get u. noni somorphi c 

edge-reconstruction H. If the edge replacing a2b2 is a2b1, then 

µ 2 = µ 1 + 1 (and µ
0 

= 1 otherwise G is a block and we can show H 

contains an odd cycle), and since the edge b
0

b1 of degree type (µ
0

, 

µ 1 ) is changed to a new degree type (µ
0

, 1-1 1 + .1) in H, Lemma 3.1 

on degree type (µ
0

, µ 1) says that b2 must lie on an edge c
0

b2 of 

degree type ( µ
0

, µ 1) in H. We then see that the degree of c
0 

in H 

is µ
0

. Since the move a2b2 ~ a2b1 neither creates nor destroys any 

vertex of degree µ 
0

, the degree of c
0 

in G is a 1 so µ
0

• Now the 3-

path b
0

b1 b2c
0 

in G of degree type (µ
0

, µ 1, µ 2, µ.
0

) readily 
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establishes that n(G) ~ 3 and we are done. The proof when the replac­

ing edge is a
1

b2 is done similar to the case of a2b
1 

by symmetry of 

configuration (by interchanging a's and b's in the above argument). 

Now let the replacing edge be a
1

b
1

• Again µ 2 = µ
1 

+ l and Lemma 3.1 

on edge:s of degree type (µ
0

, µ.1) tell us that one of a2 , b2 , say a2 , 

must be adjacent to a vertex c of degree µ in H and hence in G. 
0 0 

So now a
0
a1a2c

0 
gives O(G) ~ 3 and we are done. 

The case remaining with our (2,2)-coupling is when µ 2 = µ
0 

+ l. 

If µ 1 = µ
0 

+ l, then G is edge-reconstructable by Lemma 3.2; and so 

we may assume µ 1>µ
0

+1. Consider G - b
1

b
2

• In this edge-deleted sub­

graph, a0a 1 a 2 b~ is a forbidden 3-path of degree type (µ
0

, µ 1 , µ
0

+1, 

µ
0

) and b
0

b1 is a forbidden edge of degree type (:..t
0

, µ 1 - 1). De­

gree argument says that the degree type of the replacing edge must be 

(µ
0

, µ 1 - 1) in G - b1b2. So it can only be b1a
0 

or b
0

a2 besides 

the trivial replacement b1b2 which returns us to G; the latter pos­

sibility b
0

a2 can happen only when µ 1 = µ
0 

+ 2. If the replacing 

edge is b1a
0

, then in the new graph H, b2a2 is an edge of degree 

type (µ
0

, u
0

+1) and we get µ
1 

=µ
0

+1,acontradiction. If the 

replacing edge is b
0
a2, then in H, a

0
a1 and b

0
a2 form a (1 ,1 )­

coupling and we are done by Case l. So we have proved the excludabili-

ty of (2,2)-coupling. 

We are left with the possibility that a= 1. We may assume 

b
1 

t a
1 

otherwise we have an excludable (l ,0)-coupling. Depending on 

b 4 a or b ~a , we will have t wo configurations as depicted in o r o o O -

Fig. 3-4 below: 
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(a) (b) 

f-ig. 3-4 

We will prove their excludability in two subcases following. 

Subease 7
1
1a) of Lemma 3.10. b +a for a (2 l) coup11·ng 

v or o ' - · 

We now have a configuration M as in Fig. 3-4 (a). First observe 

that µ 1 > µ
0 

+ l otherwise we have o(G) = 4 and Corollary 3.4 ap­

plies to show G's edge-reconstructability. Next we see that µ 2 must 

be µ
0 

+ l otherwise we see a2b
1 
~ a1b

1 
is a forced move since in G -

a2b1, a
0
a

1
a2 and b

0
b
1 

are both forbidden by their degree types (and 

note µ. 2 - 1 > µ
0 

now). But then the edge-reconstructabil ity of edges 

of degree type(µ. ,µ. 2} implies that there exists a vertex c
0 

in H of 

degree µ.
0 

(and hence in G) adjacent to a
2

(µ. 2 == µ. 1 + ·i now) and we have 

o(H) -s._ 3, implying n(G) ~ 3 and G is edge-reconstructable. 

Now the 3-·path a
0
a

1 
a

2
b
1 

of degree type (µ
0

, µ 1 , µ
0 

+ 1, µ 1 ) 

tells us that µ
3 

= µ
1 

or µ
1 

- 1. If µ
3 

= µ 1 , then vie can edge-re­

construct from G - b
0

b1 by replacing b
0

b1 by b
0
a2 (and µ 1 = µ 0 + 2, 

µ
0 

== l then). But then 8
0

{2) implies that there exists a special 2-

chain c
0
c1c2 in the new graph H with c2 = b1. The degree of c0 
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in G must be µ
0 

(i.e. c
0 

is not a vertex of degree µ
0 

+ 1 in G 

which becomes a vertex of degree µo in H) by obvious argument. c, 
cannot be a2 otherwise aoala2 and co form a ( 2, 0)-coup1 ing. Now 

co cl and bobl is a (1, 1 )-coupling in G and we are done. 

So we know that µ 3 = µ 1 - l. We have immediately the fact tha.t 

G can have at most one nonisomorphic edge-reconstruction H by the 

We will investigate the interconnection pattern of special 3-

chains in G for this subcase. Consider two distinct (but not disjoint 

special 3-chains d
0

d1ct 2d3 and e
0
e1e2e3. The four degrees µ

0
, µ 1 , 

µ
0 

+ 1, µ 1 - 1 are al 1 distinct except the possibility that µ 1 - 1 = 

µo + 1 when µ1 ==-µ0+2. This excludes the possibility that e. :::. d . 
l J 

for i f j except possibly e = 3 d2 or e2 = d3. But e3 = d2 (or e2 

= d ) 3 gives us a (2,2)-coupling treated at the beginning of Case 3, 

and so e. = d_. only when i = j. 
l J 

Now let y ~ 0 be the smallest integer that e = d • 
y y 

We wi 11 

have 0 ~ y ~ 3 since d
0
d1d2d3 and e

0
e1e2e3 are assumed to be non­

disjoint (but still distinct). 

Suppose y ~ 3 first. The configuration D connecting 

d
0

d1d2d3 and e
0
e1e2e3 at d3 = e3 has the general look as in 

Fig. 3-5(a). 

Let's delete eoel from G. In G - eoel' eo is a forced vertex 

of degree µ - l 
0 ' 

and do d l d 2 d 3 e 2 e ·1 is a 5-path of degree type 

(µo, µl' µo + 1' µl - l µ + l' µ l - 1 ) which is excludable as configu-
' 0 

ration Of in Fig. 3-3. 
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G HI : 

(a) (b) 

G" 

{ c) (d) 

Fig. 3-5 

to some H' == H as we can see in Fig. 3-5(b). (Note that it's impos-

sible to replace e
0

e1 by e
0

e2 or e
0

d2 since then µ 1 = µ
0 

+ 2, and 

i f the new edge i s e 
0 

d 2 , then d 
0

d1 and e 
0 

d 2 form a ( 1 , l ) - coup l in g i n 

the new graph; while if the new edge is e
0

e2 , then d3e2 + d2e
0 

is a 

forced . more and in the last graph we obtained, d
0

d1 and d2d3 form a 

( 1 , 1 )-coup 1 ing.) Si nee e
0 

e3e2e1 i's a s peci a 1 3-cha in of degree type 

(µ
0

, µ 1 , µ
0 

+ l, µ 1 - 1) > e2e
3 

+ e
0

e1 is a forced move sending H' to 

some G11 == G (the configuration D is changed to 011 as depicted in 

Fig. 3-S(c)). Now in G" - e
0

e3 , d
0

d1d2d3 is forbidden of degree type 

(µ
0

, µ 1 , µ
0 

+ l, µ 1 - 2) and c
0

e1e2 is forbidden of degree type 

(µ
0

, µ
1

, µ
0

) ; and since we have to replace e
0

e3 by an edge of degree 
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type (µo' µl - 2) in G" - e e the only possible ways are e2e3' e2do' 0 3' 

eodo,e2d2,eod2. If the replacing edge is e2e3, then in H(J) ~ H, we 

are returning to cur original configuration D (i.e. 0(3) = D} and so 

Lemma 2.1 applies to say that G is edge-reconstructable (see Fig. 3-5(d)). 

The latter four possibilities can happen only when µ = 1 since other­o 

wise G is a block and we wouid have an odd cycle if we join any one of 

the four 

µ1 = µo 

(µo' µo 

: eodo, e2do, eod2, e2d2 . If we join 

+ 2 by degree argument and d3d2 is an 

+ 1) in the new graph H ( 3) , i mpo s s i bl e 

eodo or e2do, then 

edge of degree type 

since µl > µo + 1. If 

we join e
0

d2 or e
2
d

2
, 

degree type ( µ , µ
1

, µ 
0 0 

we join e2d2 (and f = 

then in H( 3), we have a 5-path fe
1

gd2d1d
0 

of 

+ l , µ 
0 

+ 2 , µ 
1 

, µ 
0 

) wi th f = e 
0 

, g :;:; e 2 i f 

e2, g = e
0 

if we join e
0
d2). Obviously we 

have µ 1 = µ
0 

+ 3 in this case. Now e1g -+ fd 2 is a forced move, and 

in the newly obtained graph gd2 and d
0
d1 form a (1 ,1 )-coupling. We 

have now proved y = 3 is impossible. 

Next, let y = 2. This means that d
0
d1d2 and e

0
e1e2 are dis­

joint except at d2 = e2. The forced move d1d2 -+ d
0
d3 gives us in the 

new graph H' that e
0

e1e2 is a 2-path of degree type (µ
0

, µ 1, µ
0

) and 

so o(H') ~ 2 and we are done (for o(G) ".S_ o(H') ~ 2 implies by Lemma 

3.7 that G is e~ge-reconstructable). 

Now, consider y = 1. This means d
0 

r e
0

, but d1 = e1 . So 

d
0
d1e

0 
is a 2-path of degree type (µ

0
, µ 1, µ

0
) and we see immediately 

that this case is again impossible. 

Finally let y = 0. Let O < o ~ 3 be the first integer that 

d
0 

1 e6 . If o = 3, then d2 = e2 and d3 and e3 a}'e two di sti net 

vertices of degree 1-t 1 - 1 adj acent tc d2 of degree µ
0 

+ 1. The 
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forced move d1a2 -+ d
0

d
3 

gives in the new graph an edge d2e3 of de­

gree type (µ
0

, µ 1 - 1) which is impossi b1 e. 

Next, let o = 2 (still y = 0). We have d
0 

= e
0

, d1 = e1 but 

d2 r e2. d3 and e
3 

may coincide or not. Suppose d
3 

r e
3 

at first. 

The forced move dld2 -+ dod3 gives us in the new graph a 5-path 

d2d3dodle2e3 of degree type (!.lo' µl' µo + 1' µ1 - 1, µo + l' µ1 - l), 

excludable as configuration C' in Fig. 3-3 Now 1 et d3 = €3· In 

G we have a ccnfiguration as in Fig. 3-6{a) below. 

G 

G" 

H' 

(a) 

d =e ,.µ + 1 
0 0 0 

d2,µo do =eo,µo 

d3=e3,µ 1 -1 d-1 =e, ,µ l 

(c) 

Fig. 3-6 

e2,µo 

(b) 

(d) 

d 
e2,µo+l 
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In G - e2d3, d
0
d1d2d3 and e2d1d2d3 are forbidden of degree 

type (µ
0

, µ 1 ~ µ
0 

+ 1, µ
1 

- 2) and d
0
d

1
e2 is forbidden of degree type 

(µ
0

, µ 1 , µ
0

} so since our r t.:} placing edge must be of degree type 

( µ 
0 

, µ 1 - 2 ) i n G - e 2 d 
3 

, the poss i bi 1 i ti es a re d 
0 

d 3 , d 
0 
d 2 , d 

0 
e 2 , d 2 e 2 

(observe that d
0

d2 wiil be possiblE! only if ~1 1 =µ
0 

+ 2 etc.). The 

latter three will be clearly impossible for a bipartite graph G since 

they "create" triangles in the new graph H' in an obvious way (so they 

have to be considered if we want to prove the same lemma for more gener­

al graph). After these considerations, e2d3 ~ d0
d3 is a forced move 

sending G to H' == H (see Fig. 3~6(b)). 

In H1 
- d2d3, d2d1d

0
, d2d1d

0
d3 and e2d1d

0
d3 are all forbidden 

by degree argument as the previous paragraph; so the replacing edge can 

be e2d3 only (to avoid any triangles aga~n). We see now d2d3 ~ e2d3 

is a forced move sending H' to G" == G. (see Fig. 3-6(c)). 

Finally, in G" - d
0
d3, d

0
d1d2, d

0
d1e2d3, d2d1e2d3 are forbidden 

by same argument and d
0
d3 ~ d2d3 is a forced move sending G11 to H( 3) 

~ H (Fig. 3-6(d)). We see three forced moves: e2d3 ~ d
0

d3, d2d3 ~ 

e2d3, and d
0
d3 + d2d3 return us to the original configuration in 

Fig. 3-6(a) {Fig. 3-6(d) and Fig. 3-6{a) are identical) J and so Lem-

ma 2.1 applies to say that G is edge-reconstructable. We have proved 

now that 6 = 2 is impossible. 

For y = 0, we consider at last the case o = 1. We have now 

e? may coincide or not. 
'-

Let d2 i e2 first. 

Suppose furthermore that d3 I e3 at this moment. This will be proved 

to be the only possible interconnection pattern la t er. Next, suppose 

d3 = e3 (still d1 1 e1, d2 t e2) . Ou r t v..;o special 3-chains form a 



132 

configuration as in F·ig. 3- 7(a). 

dl ,µ 1 

G 

do= eo,µo 

el ,µ1 

G" 

d2,µo+l 

HI: 

do= eo,µo +l 

d3 = e3' 
J..l -1 . l 

e2,µo +l 

(a) 

( c) 

do= eo,flo 

d3=e3,µ 1 

Fig. 3-7 

... 
ul ,µl d2,µo 

d3 = e3,µl -1 

el ,µ1 e2,µo +l 

(b) 

(d) 

In G - dl1 3 , d
0

d1d2 is forbidden of degree type (µ
0

, µ 1 , µ
0

) 

and d
0

e1e2d3 is forbidden of degree type (µ
0

, µ 1 , µ
0 

+ l, µ 1 - 2); 

so degree argument as well as the requirement of no odd cycles in any 

edge-reconstruction says that d
2

d
3 

-+ d
0

d3 is a forced move sending G 

to H' == H (Fig. 3M1(b)).. Now d
2
d

1
d

0
d

3 
is of degree type (µ 0 , µ 1 , 

µ
0 

+ l, 1..1.
1 

- l) in H' and so d1d
0 

-+ d2d
3 

is obviously a forced move 

sending H' to .s•= (Fig. 3-7(c)). Ffoally we observe that d
0 

is a 
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forced vertex in G" - d
0
d3, and if another end of the replacing edge g 

doesn't lie on the configuration in Fig. 3-7(c), then d
0
e1e2d3d2d1 is 

the excludable configuration in Fig. 3-3(b); so g must be e2, d2, d1 . 

To avoid an odd cycle, we see readily that d1 is the only choice. As 

in Fig. 3-5 or Fig. 3-6, we see that three forced moves return us to the 

original graph and so G is edge-reconstructable by Lemma 2.1. 

Finally let d2 = e2 (with y = 0, o = 1). We have d1 t e1. 

d3 and e3 must coincide otherwise the forced move d1d2 + d
0

d3 gives 

an edge d2e3 of degree type (µ
0

, µ 1 - l ). Consider the configuration 

consisting of the two 3-paths d
0
d1d2d3 and e

0
e1e2e3 as below: 

G 

~Je can prove its excludability in a way very similar to that of 

excludability of the configuration in Fig. 3-6(a). First we note 

d2e1 -+ d
0

d3 is a forced move sending G to H' = H since e
0

e1e2e3 

is a special 3-chain of degree type (µ
0

, µ 1, µ
0
+1, µ 1 - l)in G. Next 

d
0
d1 + d2e1 is a forced move sending H' to G" = G si nee d2d1 d0 

e1 is 

of degree type (µ
0

, µ 1, µ
0 

+ 1, µ 1 - 1) in H'. Finally, d
0
d3 + d

0
d1 

is a forced move since in G" - d
0
d3, d

0 
is a forced vertex, and H 

the other end g of the rep 1 acing edge i sn 1 t d.1 or ct 2, the new graph 

H( 3) will contain a special 3-chain d
0

e1ct 2d1 with d3 ~ d1 another 
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vertex of degree µl - 1 adjacen: to d2 which is excludable by the 

forced move e
1 

d
2 

_,. d
0

d
1

; if g is d2, then H(3) contains the tri-

angle d0 e~d2 , so g = dl is the only choice. We have thus seen that 

and dd -~· dd 
0 3 0 l re-

turn us to the original configuration, so G is edge-reconstructable 

by Lemma 2.1. 

We have now investigated all the possibilities of interconnection 

pattern for non-disjoint special 3-chains of degree type (µ---
0

, µ 1 , µ
0 
+l, 

µ 1 - 1). We found that almost no interconnection pattern exists , 

i . e. they must be all disjoint except at the starting vertex. Let's 

state this as a bypassing lemma in proving Lemma 3.10. 

Lemma 3.11. All special 3-chains of degree type (µ
0

, µ
1

, µ
0 

+ 1, µ 1 - ·l) 

must be disjoint except at the starting vertex. 

Let's come back to the configuration M in Fig. 3-4(a). Recall 

that µl > µo + 1 and µ2 = µo + l. Rename a
0

, a1 , a2' bl ' bo by 

co, cl ' c2, c 3, C4 respectively. Note that c1c2 -+ c;c4 is a forced 

move sending the 5-path coclc2c3c4 in G to coclc4c3c2 in some 

H' .= H. Similarly c
3

c
2

-+ c
3
c

0 
is a forced move sending c

0
c1c2c3c4 to 

c2c1c
0

c3c4 (or c
4

c
3
c

0
c

1
c2 which is the same path traced backwards) . 

For simplicity of notation, we will use 0 l 2 3 4 to represent symbo l ­

ically c
0

c1c2c
3
c

4
. The forced move c

1
·c

2 
~ c1c4 , or more simply l 2-+ 

l 4, will change 0 l 2 3 4 to 0 l 4 3 2. The other forced move 

3 2-+ 3 0 will change 0 1 2 3 4 ·to 2 l 0 3 4. Note that O 1 2 3 4 

and 4 3 2 1 0 mean the same path, une is the other traced backward s. 

We note that the ef fect of forced moves here is to re verse the order 

of either the first three digits (' 10"l 11 "234:i to 11 01 11 "Ll32', 2 3 4 is 
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reversed to 4 3 2 and 01 is intact) or the 1ast three digits ("012" 

"34" to "21 O" "34") when we transform from an isomorph of G to an 

isomorph of H (and vice versa). 

After a moment of reflection, we see that if we start with 01234 

in G> we wi11 have 

in G (or isomorphs) in H (or isomorphs) 

0 l 2 3 4 2 l 0 3 4 

2 1 4 3 0 4 l 2 3 0 

4 1 0 3 2 0 1 4 3 2 

provided our forced moves affects only the vertices c
0

, c1 , c2, c3 , c4 

(like c1c2 + c
1
c

4 
or c

3
c2 + c

3
c

0 
etc.). 

Let's look at our c
0
c1c2c3c4 (that is 0 l 2 3 4) again. G must 

have at least one special 3-chain since .n(G) ~ 4. We wi"ll show that 

c
0 

cannot li e on a special 3-chain c
0
' c' c' c' wi t h l 2 3 c

0 
= c~ (in the 

cannot li e on a language of previous paragraphs, we will show that 0 

special 3-chain 0' 1' 2' 3' with O' = 0 l Suppose not, and let 1 s 

cons ider G - c4 c3. c4 is a forced vertex in this subgraph and if 

C49 is an edge replacing c4 c3, then g cannot be c2 or c• 
2 other-

wise the new grnph has an excludable (1 ,1 )-coupl ing (given by 01 and 

2 4 or 0 1 1 I and 2 '4). g must then be c3 by Lemma 3. 11 {or 0 1 2 3 

and O' 1 I 2' 3 are t\110 distinct nondisjoint special 3-chains in the 

new graph). So some H' = G c4c3 + c4c3 =: H. Loo king at the previous 

paragraph, we see that if 0 1 2 3 4 is a path in G, then 4 1 0 3 2 

or 2 3 0 1 4 is a path in an isomorph of G by appropriate forced 

moves. This tel l s us t hat if o• 1 • 2' 3 ' 4 is a path in HI ' then 



136 

2' 3' O' 1 1 4 is a path in an isomorph W' of H. Let's delete l '4 

and see what happens. Note that 0 l 2 3 and O'l 1 2 1 3 1 may intersect 

somewhere besides 0 = 0'. If they do not intersect anywhere except at 

0 = O', then l 1 4 ~ 3 4 is a forced move otherwise we have an excludable 

configuration as in Fig. 3-3 . The same argument applies if they inter-

.sect at l = 1 1 as well. If they intersect at 2 = 2' (they cannot in-

tersect at 3 = 3 1 since 3 is a vertex of degree µ 1 and 3 1 of de-

degreeµ 1 and 3' of degree µ 1-1 in G), then in H", 2 3 is an edge of 

degree type (µ
0

, µ 1 - 1), impossible. 

Now in G' ::: H" clc4 + c3c4 , c2c3c~cl is a special 3-chain and 

the forced move c~ c~ ~ c~ci returns us to our original configuration 

consisting of c
0
c1c2c3c4 and c~c1c2c3 while sending us to some H( 3) 

~ H. We then have G = H( 3) = H, a contrad iction. Similar argument 

says that c4 cannot lie on any special 3-chain. 

As an illustration, we depict the case when 0 1 2 3 and 0 1 1 1 2 1 3 1 

intersect at 0 = 0 1 only in Fig. 3-8 below. The pictures themselves 

are self-explanatory. 

In G, with the fixed 4-path c
0
c1c2c3c4 of degree type (µ

0
, µ 1 , 

µ
0 

+ l, µ
1

, µ
0

), we see that c4 is a forced vertex in G - c3c4, and 

any edge-reconstruction must be of the form G - c3c4 + d3c4 with d3 

lying on a special 3-chain d
0
d

1
d2d3 in G by 8

0
(3). (Note we cannot 

have G - c3c4 + C2C4 as an edge-reconstruction otherwise we have a 

(1, l )-coupling ar.d are thus done.). d3 must not cofocide with C3 

since d3 has degree µ 1 - 1 while C3 has degree µ, in G. It's 

conceivable thu.t G - c3c4 + d3c4 niay be isomorphic to H, the only non­

isomorphic edge-reconstruction of G, or even isomorphic to G. 
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Hll • I _ I +1 
~ . c 2' µ c -c 'u. 0 0 0 I 0 c µ G 1 : c 1 µ c =c' µ +l c2,µ

0
+1 4' o 2' o o o' o 

Fig. 3-8 

We partition the special 3-chains in G into two classes with respect 

to the 4-path c
0
c1c2c3c4 • Call a special 3-chain d

0
d1d2d3 a Class-1 

3-chain if G - c
3
c4 + d3c

4 
is isomorphic to H, otherwise a Class-2 

3-chain {i.e. when G - c3c4 + d3c4 ~ G). Similar definitions hold for 

any isomorph of G or H. Class l must be nonempty otherwise G is 

edge-reconstructable (Class 2 can be empty though). Let n > l and 

m>O be the number of special 3-chains of Class 1 and Class 2 
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respectively in G. Denote by 0'1 '2'3', ... , o(n)l (n)2(n)3(n) the n 

and O( n+l ', 1 (n+1 )2(n+l )3 (n+l ), special 3-chains of Class l ... , 

O(n+m)l{n+m)2(n+m)3( 11 +m) the m special 3-chains of Class 2 in G 

(they are all disjoint by Lemr.a 3.11). Choose c
0

c1c2c
3
c4 among 4-paths 

of the same degree type in G so that the number of specia7 3-chains 

in Class 2 is maximum M. Let C be the configuration in G consist­

ing of (the disjoint union of) O 1 2 .3 4, O'l '2'3'4', ... , O(n)l (n)2(n) 

3 ( n ) , 0 ( n + l ) 1 ( n + l ) 2 ( n + 1 ) 3 ( n + 1 ) , • • • , 0 ( n +m ) 1 ( n +rn ) 2 ( n +m ) 3 ( n +m ) . Let H , = 

(") - (i) G - 34 + 3 1 
4 for some i; l ~- i ~ n (i.e. H 1 

- G - c3c4 + c3 c4). 

Since o(i)1(i)2(i)3(i)4 is in H', we see as before that 2(i)3(i) 

o(i)l (i)4 is in some H" == H. Consider H = H obtained from G by 
a 

the forced move c(i)c(i) ~ c(i)c(i) (so o(i)1(i)2(i)3(i) in C be-
1 2 0 3 

comes 2(i)3(i)o(i)1(i)). We will see that a Class-2 3-chain O(j)l(j) 

2 (j ) 3 ( j) in G, n + l ~ j ~ n + m, wi 11 a 1 so be Class 2 -chain for Ha. 

as well (i e H - c c + c(j)c or H - 34 + 3(j)4 will be isomor-. .. a 34 3 4 a 

phic to ~ and hence H, but not G). This is trivial because first 

G - 34 + 3 ( j ) 4 = G ' i s i so morph i c to G by def i n i t ion of 11 Cl ass 2 " i n 

G; and secondly G' - l(i)2(i) + o(i)3(i) = H~ is obviously isomorphic 

to H; finally we see that H - 34 + 3(j)4 = G - l(i)2(i) + o(i)3(i) -
a 

34 + 3(j)4 is identically equal to H = G' - l(i)2(i) + O(i)3(i) = 
~ 

G - 34 + 3(j) 4 - l(i)2(i) + 0Ci)3(i) since all paths involved 

(0 1 2 3 4, O{i)l(i)2(i)3(i), O(j)l(j)2(j)3(j)) are disjoint. Since 

2 ( i ) 3 ( i) 0 ( i ) l ("i ) 4 is in some H" = H, we see that 2 ( -j) 3 ( i ) 0 ( i ) 1 ( i ) is 

also a Class-2 3-chain for H , and H (and hence H which is isomor-
a. O~ 

phic to H) has at ·1east one more element 'in its Class 2 special 3-chains 

than G does with respect to the sume 4- path c
0
c1c2c3c4 common to both 
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graphs. If we start anew in H with a 4-path d
0

d1d2d3d4 of degree 

type (~1 0 , µ 1 , µ
0 

+ 1, µ 1,µ
0

) and define its Class 1 and Class 2 

special 3-chains, we will see that an isomorph of G has at least 

(M + l) + l = M + 2 > M special 3-chains of Class 2 with respect to 

d
0

d1 d2d3d4 , contradiction to the maximality of M defined for 4-paths 

of degree type (µ, µ , µ,... + 1, µ 1 , µ) in G. 
0 1 v 0 

Since we have obtained a contradiction finally, we are done with 

our subcase 3(a). 

Subaase 3 {b). of Lemma 3 .1 C. b =a for a (2,1)-coupling. 
0 0 

Recall Fig. 3-4(b), which is redrawn here for convenience. 

If µ 1 is µ
0 

+ 1 , then a
0

a1 is a forced edge otherwise 

a
0

b1a 2a1 is an excluda.ble configuration of degree type (µ
0

, µ
0 

+ l, 

µ
0 

+ l, µ
0

) by Lemma 3.?. We now let µ
1

>µ
0

+1. a
0 

is obviously a 

forced vertex and ·in G - a a
1 

+a c, a b1a?a1 is a newly created 
0 0 0 ~ 

special 3-chain of degree type (µ
0

, µ 1 , l-4
0 

+ 1, µ,1 - 1) (note that if 

is again a forced edge for we cannot join a a 2 0 

edge-reconstruct in order to avoid triangles), and so B
0

(3) implies 

that we have to destroy a special 3-c ha in by joining a
0
d. Degree 

to 
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argument (and principle of avoiding triangles) says that a
0 

and c lie 

in G on a srecial 3-chain d
0

d1d2d3 with a = d
0

, d = d3. for sim­

plicity, first suppose that n0ne of d
1 

or d
2 

is any of a
1

, a2, b1 • 

Consider the configuration consisting of the 4-cycle a
0
a1a2b1 and 3-

path d
0

d1d2d3 as in Fig. 3-9(a). 

G H1 : a =d µ +l o o' o 

al ,µl 

a2,µo 

(a) (b) 

al ,µ1 

d3,µl 

(c) (d) 

Fig. 3-9 

By Lemma 3.11, all special 3-chains are disjoint and there can't be 

another d'd'd'd' with d' 
0 1 2 3 0 

is 

a forced move sending G to some H1 ~ H (In G - a2a1 , a
0

a1 has de­

gree type (µ
0

, µ 1 - 1) and a0 b 1 ~ 2 has forbidden degree type 
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(µ
0

, µ 1, µ
0

)) as seen in Fig. 3-9(b). Next, a
0

b1 -+ a1a2 is a forced 

t00ve sending H1 to some G1 ~ G since a1a
0

b1a2 is a special 3-chain 

of degree type {µ
0

, µ ·1 , µ
0 

+ 1, µ 1 - l) in H1 (see Fig. :~-9(c)). 

Finally we note that a
0

d3 -+ a
0

b1 is a forced move sending G1 to some 

H2 2! H since a
0 

is a forced vertex and all special 3-chains are dis­

joint by Lemma 3.11 (so a
0

a1a2b1 and d
0

d1d2d3 cannot both be spec­

ial 3-chains in some edge-reconstruction of G). 

Now three forced moves a2a1 -+ a
0

d3, a
0

b1 -+ a1a2, a
0

d3 -+ a1a2 re­

turn us to our or i g i n al con f i g u rat i on G , and we get H = H 2 = G , a 

contradiction. 

Let's consider then the cases when dl or d2 is one of a1 , a2 , 

bl . First suppose dl is but d
2 

is not. Then dl must be one of al 

or bl to avoid triangles. The above argument works except the justi-

fication of the forced move a
0
d

3 
-+ a

0
b
1 

is by the fact that the con-

figuration in Fig. 3-3 is excludable. The argument for the case 

when d2 is one of a
1 

, a
2

, b1 but d
1 

isn't, fo 11 ows the same ·1 i ne 

as the first case when none of d1 , d2 is a1 , a2 or b1. Lemma 3.11 

is applied in a different way (so that we don't have 

a
0

a1a 2b1 both as special 3-chains). For the case when 

are among a1 , a2 , b1 , we must have d1 = a1 , d2 = a?. 

aoala2a3 

both d1 

or dl -

and 

and d2 

bl ' dz 

= a2 to avoid triangles. Without loss of generality, let d1 = a1 , d2 

= a
2

. But now a1a2 -+ a
0

d3 is clearly a forced move which gives us two 

non-disjoint special 3-chains of degree type (µ
0

, µ. 1 , p
0 

+ l, µ 1 - l)' 

namely a2b,a a, 
I 0 I 

and and this is impossible by Lemma 3.11. 

So we have done the proof of our subcase 3(b), hence completing the 

proof of Case 3, and we are done with the lengthy proof of Lemma 3.10. 

Q.E.D. 
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Inductive proof of A(n) and B.(n) 
l 

By Lemma 3.8, 3.9 and 3.10 of Section 4, we know that A{n) and 

Bi(n) are true for n = 1, 2, 3, and P(k) is true for k = 0, 1, 2. To 

prove the validity of A(n), B.(n) and P(n) for a general n, we will 
l 

do some induction which interlocks these three conditions in a peculiar 

way. We prove two technical lemmas: 

Proposition 3. 12. When n ( G) ~ 5, then for any k, 4 -s_ k -s_ O ( G) - 1 , 

A(k) and B
1 
(k) are true for any i ::::__ 0 provided (1) A(j) and 

Bi(j) are true for any 1 ~ j < k and (2) P(k-1) is true. 

Proposition3.13. When o(G)::::_5, then for any rn, 3~m'S_O(G)-2, 

P(m) is true if (1) A(j) and B; (j) are true for any 1 ~ j -s_ m, i > 0 

and (2) P(m-1) is true. 

Assuming the validity of Proposition 3.12 and Proposition 3.13, we 

can prove now an interesting fact: 

Proposition 3.14. A(n) and B. (n) are true for any n, 1 < n < o(G) - l; 
l - -

P(a.) is true for any a., O~a.<S_O(G)-2. 

Proof of Proposition 3.14 (assuming Proposition 3.1?. and 3.13). 

Assume o(G) ~ 5 first. The proof is a folklore one. Suppose 

A(n) is false for some n, l -s_ n ~ o(G) - l, and let a. be the small est 

such integer. Then a.~ 4 by Lemma 3.8. By Proposition 3.12, either 

P (a.-1) or Bi(~) is false for some 1 < (3 < a. (A((3) is true by mini­

mality of a). Suppose first P(o.-1) is false. Let y ~cl. - 1 be the 

smallest integer such tha t P(y) is false. Then y ::::__ 3 by Lemma 3.10. 
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Proposition 3.13 says that either P(y-1) is false or A(j) or Bi(o) 

is false for some 1 ~ j, o ~ y. Since j < a, the minimality of a and 

y say that the only possibility is that Bi(o) is false for some o, 

1 < o ~ y. Let e: be the smallest integer such that B;(e:) is false. 

e: > 4 by lemma 3.9. Proposition 3.12 again says that either P(€-1) or 

A{v) or B;(x) is false, some 1 ~ v, x < E:, i ~ 0. This is impossible· 

since e: ~ y <a and a, y, e are respectively the smallest integer 

that A, P and B; fail; and we get a contradiction. So A(n) is true 

for any n , 1 ~ n ~ o ( G) - 1 . 

The validity of Bi (n) for 1 ~ n ~ n(G) -1 and P(m), 0 < m < 

n(G) -1 is done in a similar way (by applying Propositions 3.12 and 

3.13). 

Heuristic feeling of the interlock induction step of Proposition 

3.14 by Proposition 3.12 and Proposition 3.13 can be obtained by the dia­

gram in Fig. 3-10. In that figure, conditions A(n), Bi(n) for any 

i > 0 and P(n) are classified as a rank-n condition. 

There is only one rank-0 condition P(O) (A(O) is also rank-0 con­

dition, but we don't need it). There is no rank-(O ·- 1) condition for P, 

only those for A and Bi's. 

For 4 ~ k ~ o ( G) - 1 , we see that conditions A and Bi ' s of rank 

k are proved by conditions P's, A's and B. 's of smaller rank. For 
1 

1 ~ k ~ 3, their validity is ensured by Lemmas 3.8 and 3.9. For 3 < k 

~ n(G) - 2, the condition P(k) is proved by conditions P,A, and Bi's 

of smaller rank and the conditions A(k) and B: (k) 's (of the same rank). 
I 

We are left with the cases o(G) ~ 4. But these are readily justi­

fied by Lemmas 3.8, 3.9 and 3.10 (actua"ily n(G) can be assumed to be 



Rank 0 

Rank 1 

Rank 2 

Rank 3 

Rank 4 

Rank k-1 

Rank k 

Rank 0-2 

Rank o-1 

P(O~ 
Proved by 

P{lJ_emma 3.10 

P(2) 

P(3) 

P(4) 

P(k-1) 

P(k) 

P(o-2) 

14~ 

A( 1 ) B
0

(1) ... Bi(l) 

A(2) 8
0 

( 2) ... Bi(2) 

A(3) B
0 

(3) ... Bi (3) 

A(4) 8
0

(4) ... B;(4) 

A(k) Bi(k) 

A(o-2) B
0 

(o-2) 

A(o-1) B
0
(o-l) 

Bi (0-2) 

Bi (0-1 ) 

Fig. 3-10 Interlock hierarchical structure of 
Proposition 3.14 (here o means o(G)) 

> 4 by Lemma 3.7). 

proved by 
Lerr.mas 3.8 
& 3.9 

Q.E.D. 

Proposition 3.14, especially the validity of P(a)'s, will be the 

main tool to prove the edge-reconstructability of G when we have Type-I, 

Type-II, Type-III terminations respectively (we will prove the main the­

orem in Section 7). We will prove Proposition 3.12 in this section and 

Proposition 3.13 in next section (Section 6) in order to complete the 

proof of Proposition 3.14. 

inthefollowing,wewill assume O(G)~5 and P(k-1), A(j) and 

Bi(j) are true for any 1 ~ j < k~ i :::__ 0, and our k satisfies 
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4 ~ k "S.. O(G) - 1. We will prove the validity of A(k) and Bi (k). 

Note that the validity of P(k-1) implies those of P(~)'s for any 

13, o~ f3< k - l, by definition , 

Consider a special k-chain a
0
a1 ... ak in G, 4 ~ k ~ O(G) - 1. 

We will divide the proof of Proposition 3.12 into four cases, according 

to the degree of ak-l and ak-?~ Induction assumption says that µm(G) = 

may be different (we want to show they are equal) . 

The validity of A(n) and Bi(n) seem so trivial that they may be 

classified as "folklore" theorems. In fact, in Edward R. Swart [17j, 

he conjectu~ed something interesting: 

Conjecture of Swart: The number cf polygon (i.e. n-cyc1e) of given de-

grees for every vertex is edge-reconstructable in a general graph G. 

This is a substantial generalization of the well-known fact that 

the number of n-cycles (so degree of each vertex is assumed to be 2 only) 

is edge-reconstructab1e (proof by Kelly's Lemma appli.ed to n-cycles). 

However, this more general Conjecture of Swart is terribly hard to prove 

in general grap.hs. Tre validity of Bi (n) is trivial if we can have a 

conjecture similar to that of Swart: 

Conjecture. The number of n-paths a
0
a1, an of degree type 

(a
0

,u1, ... ,an) is edge-reconstructable for any general graph G. 

The validity of A(n) is actually a quick corollary of B1(n). 

However since the 11 obvious 11 conjecture stated above has no obvious proof, 

we need the validity of P(a)'s as an interlock in our induction step. 

Case 1 of Pr opos Hi on 3 . 12. µ. k 1 > µ + 1 s u. 2 > µ
0 

+ 1. 
- 0 · K- . 
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Consider G - ak-lak_2 for a special k-chain a
0
a1 ... ak in G. 

In this edge-deleted subgraph, a
0
a1 ... ak_ 2 has a forbidden degree 

type (µ
0

, µ 1, ..• , µk_ 2, µk_ 1-l). Let H = G - ak_2ak-l + cd be a non­

isomorphic edge-reconstruction of G, where c and d have respect-

ively d.egrees µk_ 2- l and µk_ 1-l 

that ak_2 is neither c nor d. 

in G - ak_ 2ak-l. Suppose first 

By A(k-2), one of c or d must 

be some aj, 0< j< k - 2 (c or d cannot be a
0 

since µk_ 1-1> 

µo' µk-2 -l > ~t 0 by assumption of o~r case). 

that in H we should have a special j-chain 

ak-l or ak_.2. It is easy to see that b
0

b1 

special (j-1)-chain in G. (Note that though 

But then 

bobl ... 
... b. -1 .] 

b ob1 ... 

Bo (j) implies 

b. 
J 

with b. 
J 

= 

is a "genuine" 

b. 
J 

is a genuine 

special j-chain in H, it is not a special j-chain in G). Now b
0

b1 

bj-l and a
0
a1 ak_ 2 (a

0
a1 ak - l resp.) form a (k-2,j-1)-

coupling ((k-1,j-1)-coupling) in G if bj = ak_ 2 (bj = ak-l resp.), 

and so P(k-1) says G is edge-reconstructa ble (b
0

b1 bj-l cannot 

be a
0

a1 ... ak_3 or a
0

a1 •.• ak_ 2 since otherwise j = k - 2 or 

k - l; note also bj-lak:.l or bj - lak_ 2 E E(G)). So this case can be 

excluded. 

Hence we may ass ume one of c, d i s ak_ 2. When µ k-2 t- µ k- l , 

then ak_ 2 must be c by degree argument , and ~v hen µk_2 = µk -l' then 

it doesn't matter to call ak_ 2 by c or d (i. e . c or d is a 

"dummy" label here). So we can always assume c = ak_2. d ~ay lie 

on a a, ••• a 1 ... or not . . suppose first tha t d =a., 0< j ~ k - 3 
0 I r(-j J 

(d cannot be a
0 

s.ince µk_ 1 -l > µ.
0

). B
0
(j) ··mplies the existence 

of special b
0

b1 ... bj i n H ;d th bj :-= ak·-l · So as befcre, we have 

a (k-1 ,j-1) -cou~ ling i n G: And P(k-1) impl i es G1 s edge- reconstruct-
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ability. This case can also be excluded now. 

The only case left is that c = ak_2 and d; aj' for any J, 

0 < j ~ k - 3. Now if ak-l is adjacent to a.> 1 vertices of degree 

µk{G) in G (ak is such a vertex), we can show easily by Lentma 3.1 that 

d is adjacent to exactly a.> 1 vertices of degree µk (G) in H. Let 

e be such a vertex, then the k - path aoal ... ak_ 2 de in H says 

that µk(H) ~ µk(G) (conceivably e might be some a.' 0< j< k - 2). 
J 

Note that µk-1 = µk(G) + l when d :::. ak. 

Hence we have !..1k(H) ~µk(G) for any HE 6G when µk-l' µk_ 2 > 

µ
0 

+ 1. The above argument doesn't use the fact that o(G) "S_ n(H) for 

all H E :L.;G; so we can use the symmetry argument (starting at some 

H~ G, get an isomorph G' of G from H - bk_2bk-l for some special 

k-chain b
0

b1 .•• bk in H, and show µk(G') ~µk(H)) and finally 

conclude that µk(H) = µk(G) for al i H E :L.;G. A(k) is proved nmv. 

The argument of the previous paragraph actually shows the validity of 

For a fixed i > 0, suppose G has a k-chain a
0

a1 ... ak-l b; 

(bi may lie on a1 ... ak_ 3 ) of degree type (µ
0

, µ 1 , ... , µk_ 1 , µk+i). 

We will show that Nk,i(H) = Nk,i(G), i.e. the number of k-chains of 

such degree type 1s edge-reconstructable. The proof is essentially the 

same as that of A(k). Let's sketch it briefly. Consider a nonisomor­

phi c edge•recons truct ion H = G - ak_ 2ak- l + c d , with the degrees of 

c and d be respectively µk_2 -1 and j.Lk-l -1 in G - ak_ 2ak-1. If 

ak_
2 

is neither c nor d, then P{k-2) implies that c or d must 

be some a.' 
J 

0< j< k - 2, [i ~d :..:o Bo(j) implies that there exists 

specia 1 bobl .... b. in H vri t ;, b. - a.k-1 or a. 2. Since 
J J k-
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b0 b1 • •• bj-l is clearly a genuine special (j-1 )-chain in G, P(k-1) 

implies G's edge-reconstructability then. We then may assume without 

loss of generality that c = ak_ 2• d may be some aj, 0 < j < k - 2 or 

not (say the possibility d = bi = aj may occur). But if d =a., then 
J 

we can easily find a (k-1 ,j-1)-coupling in G and so G is edge-recon-

structable. any a . , 0 < j < k - 1 • 
J - -

So d 'f 

B1 (k) now is a straightforward consequence of Lemma 3.1 on edges 

of some specified degree type. 

bit different according as d 

adjacent to a. 
1 K- or d = 

(To be more precise, details are a little 

is not adjacent to ak-l, or d ! ak is 

but all of them are trivial to verify). 

We have now proved A(k) and Bi (k) ~1hen µk-l > µ
0 

+ 1, µk_ 2 > 

µ
0 

+ 1. We are thus done with Case 1 of Proposition 3.12. 

Remark. Case 1 is the only case we have to do if our graph G has no 

vertices of degree µ
0 

+ 1, i.e. degree one higher than minimum. This 

suggests why the edge-reconstructability of bi-degreed graphs deserves 

special treatment as in Chapter 2 (or nDre generally, any graph with two 

11 1 owes t" degrees differing by 1 ) . 

Case 2 of Proposition 3.12. µk-l :-: µ
0 

+ 1, µk_ 2 > µ
0 

+ 1. 

Consider again G - ak_1ak_2 for a special k-chain a0 a1 ••• ak_2 

ak- l ak in G. Note that a
0
a1 ... ak_2 has forbidden degree type 

(µ
0

, µ 1 , ..• , µk_ 3,µk-21) in G - ak-lak-Z' and so any edge-recon­

struction H is of the form G - ak-lak_2 +cd, with degree of c,d 

in G - ak-lak-Z respectively equal to µ 0 and µk_ 2 -1 > µ 0 • It's 

conceivable that c may be a
0 

in this case which presents more diffi­

culty. 
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Let's assume c = a
0 

first and consider H ~ G - ak-lak_2 + a0 d ~ 

.G. Let a
0 

be adjacent to a.~ 1 vertices of degree µ 1 in G (a. 1 is 

such a vertex), then ak-l is adjacent to a.> l vertices of degree 

µ 1 in H (d cannot be ak-l by degree argument). First let d be 

nonadjacent to ak_1 . We see readily that µ 1 ~ µk(G). µ .1 < µk(G) is 

impossible, otherwise if e is a vertex of degree µ 1 adjacent to ak-l 

in H, the k-walk a
0

a1 ... ak~le in G says µk(G) ~µ 1 < pk(G), and 

we have µk(G) = µ 1 for that case. If d is adjacent to ak-l and 

d 1 ak' then same argument as above says that µk(G) = µ 1 ; and when 

d = ak-l we can prove by same type of argument that µk(G) = ~t 1 or 

µ1 - l. 

As a summary, we see that µk(G) = µ 1 or µ 1 - l when c = a
0 

(i.e. when some H = G - ak- lak_ 2 + a
0
d). Suppose µ k(G) = µ 1 - 1 now. 

This can happen only when d = ak. Since k ~ o(G) - 1, we have µ 1 - l 

> µ 0 or µ 1 >µ
0

+1. The 3-path ak-laka
0

a1 in H says that µ 3 ~ 

µ
1 

and µ
2 

~ µ
0 

+ 1. µ
3 

cannot be strictly less than µ 1 - 1 other­

wise b
1

b
2 

is a forced edge for a special 3-chain b
0

b1b2b3 in G. So 

µ
3 

::'. µ
1 

or µ
1 

- 1. Suppose µ 3 = µ 1 first. We note µ 2 = µ
0 

+ 1, 

which implies k > 5. If k = 5, then the 5--path a4a 5a
0

a1a 2a 3 in H 

says that µ
4 

::: µ
2 

= µ
0 

+ 1. Now consider a
0

a1 ... a5 again ·in G. 

Its degree type is (µ
0

, µ
1

, Po+ 1, µ 1, µ
0 

+ l, µ 1 - 1)(µ 5(G) = µ 1 -1). 

Now a
3

a
4 
~ a

5
a

0 
is a forced move sending G to some nonisomorphic 

edge-reconstruction I in which a
0

a1a 2a 3a4a 5 becomes a4a 5a0 a1a2a3; 

for in G - a
3
a

4
) a

0
a

1
a

2
a

3 
is forbidden of degree type (µ 0 , µ 1 , µ 0 + 1, 

µ
1 

- 1) and a
4

a
5 

is of degree type (µ
0

, µ 1 - 1). I is then the 

unique noni somor·phi c edge-reconstruct ion by forced move. Now it's cl ear 
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that a1a2 + a3a4 and a5a
0 

+ a1a2 are forced moves sending I to G' 

= G and G' to ! 1 = I by same arguments. Since we obviously return 

to our ori gi na 1 G after these 3 (an odd number) forced moves, G 

is edge-reconstructable by Lemma 2.1 and we may assume k ~ 6 now. 

However, k cannot be six otherwise µk_ 2 ~ ~1 4 = µ.
0 

+ l, (as seen 

from a5a6a
0
a1a2a3a4 in H), contradictory to the assumption of Case 2. 

We have then k > 7. Suppose k = 7, and we wi i ·1 show G 1 s edge-recon-

structabi 1 ity in a similar vein. The 7-path a6a7a
0

a1 a5 in H 

says that µ 4 = µ 2 = µ
0 

+ 1, µ 3 = µ 1. We have µ 5 = µ 5(G) = deg(a5) in 

G by degree argument and hence we have readily µ 6 = µ
0 

+ l (and 

µ 7(G) = µ 1 - l). To simplify the notation, let 0 1 2 3 4 5 6 7 repre-

sent (we will follow the same practice in the next 

few paragraphs) and write 0 1 2 3 4 5 6 7 E G to mean a
0

a1 a7 

is a 7-path which is a configuration in G. We see 3 4 + 7 0 is a 

forced move sending G to a nonisomorphic edge-reconstruction I in 

which 0 1 2 3 4 5 6 7 becomes 4 5 6 7 0 1 2 3 since in G - 3 4, 

0 l 2 3 and /I. 5 6 7 are both forbidden of degree type (µ
0

, µ 1, p
0 

+l, 

µ 1 - 1). Next we see that l 2 + 3 4 is a forced move sending I to 

G' since in G - 1 2, 4 5 6 7 0 1 and 2 3 are both of forbidden de-

gree type. Now the following diagram is self--explanatory to prove G's 

edge-reconstructability. 

0 l 234567 E G 

456701 2 3 E I 

23456701 E G' == G 

0 l 2 3 4 5 6 7 ,. I I= T - G. I;: J. = 
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We may then assume k ~ 8 (still µ
3 

= µ
1 

and ..,i.k(G) = µ 1 - 1 

assumed). Clearly k 1 8 by assumption of Case 2, and we have k > 9. 

For k = 2m ~ 9, the rr10ve a2m_1a2m_2 --~ a 2ma
0 

(possible only if µ
0 

= 1) 

gives µ2m-2 =µ2m-4 =µ2m-6 = ••• =µ4 =µ2 =µo + l, (while ~1 2m-3 = 

µ2m-5 = • • • = 1...1. 3 = µ 1 ): contradictory to the assumption of Case 2 that 

µk_ 2 > µ
0 

+ 1. Let k be an odd integer~. 9. We can prove G's edge-

reconstructabi 1 ity according as k = 1 (mod 4) or k = 3 (mod 4) as 

the cases k ~ 5, 7 proved above. By the k-pati1 ak-·l aka
0

a 1 ... ak_2 , 

we have µk-2 = µk-4 = .•. µ3 = 111 and µk-3 = ~lk-5 = ••• = µ4 = µ2 = 

µ
0

+1 (by the fact ~l 3 =-~µ 1 ). We have furthermore µk-l =µ 1 and 

µk(G) = µ 1 - ·1 ~ {Using inductive assumption as well). 

For k = (mod 4), the following diagram is self-explanatory. 

0 1 2 3 4S 4S+l E G 

4S 4S+l 0 l 2 3 ••• 45-2 45-1 E I 

4S-2 4S~l 4S 4S+1 0 l 4S-4 45-3 E GI == G 

... 
2 3 4 5 0 l E G (S - l ) == G 

0 1 2 3 4S tlS+ 1 E I (S ) ~ l 

and for k:: 3 (mod 4), k~ 9:i with k = 4S + 3, we note first that 

(4S-l) 4S + (4S+3)0 is a forced move so that the k-path 0 l 2 3 ••• 4S 

(4S+l) (45+2) (45+3) in G becomes 4S(4S+l) (45+2) (4S+3) ... (45-2) 

(4S-l) in I. Now clearly 2S forced moves ((45-3) {4S-2) +(4S··l) 4S, 

( ) ' · T(S) I {4S-5) (45-4) -+ (45-3) (45-2), ... , 4S+3 0-+ 1 2J g·1ves us .. · = 
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while returning us to the original configuration 0 1 2 3 ··· 4S (4S+l) 

(4S+2) (4S+3) and Lemma 2.1 applies to show G's edge-reconstructabi1-

ity. 

We have now proved that G is edge-reconstructable when µk(G) = 

µ 1 - 1 and µ 3 =µ 1 • We next assume µ
3 

=µ
1 

- l 

st i 11 ho 1 d s) . 

Since k 2:_ 4, the 2-path ak-lakao in H = G - ak-lak_2 + akao says 

µ 2 == µ
0 

+ 1 (it is easy to see that µk_ 2 =µ 1 , and so µ 1 >µ
0

+1). 

If a
0 

is adjacent to a.> 1 vertices of degree µ 1 in G, then ak-1 

is adjacent to a.~ vertices of degree µ 1 in H and hence adja-

cent to vertices of degree µ 1 in G(ak_ 2 inclusive). If µk_ 3 > ~1 0 + 1, 

then note every edge-reconstruction is isomorphic to G - ak_
3
ak_2 + e f; 

and we must have one of e,f say e equal to ak_3 otherwise P(k-1) as 

in Case 1 proves G's edge-reconstructability. By B
0

(k-l), a0 a1 

ak_ 3 must be the "initial segment" of a special (k-1)-chain a0 a1 

ak_ 3 f g . If g is adjacent to ~ ::::_ 0 vertices o.f degree µ 1 in the 

new graph, we can easily see ~ =a. by argument above and so µ. k(H) ~ 

µ J. µ k ( H) cannot beµ, 1 by the edge-reconstructabil i ty of number of paths of 

degree type (µ
1 

-· l,µ
0

+1,µ 1 -1). µk(H) cannot be less than µ 1 -1 

otherwise f g is a forced edge ir. the special 3-chain a
0

a1 

a k- 3 f g h i n the new graph , so µ k ( H ) = µ 1 - 1 = µ k ( G) if µ k- 3 > µ 0 + 1 • 

Then clearly k::::_ 5 since µ 1 >µ,
0

+1. Suppose a
0 

is adjacent 

to a.> 1 vertices of degree µ 1 in G, while ak-J is adjacent to a 
such vertices in G. If µk_ 4 1 µ 1 , then ak_ 2 is adjacent to '3 such 

vertices in the new graph reconstructed from G - ak_3 ak_4 so ~ = a. 

or a. + 1; and if we consider G - ak-J ak_2, we see that all replacing 
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edges lead to µk(I) = µ 1 - 1 = µk(G) when µk_ 4 t µ 1 unless the re­

placing edge is a
0

ak_4 ; in the latter case we get a contradiction 

since the new graph has one 1 ess edge of degree type ( µ
0

, µ 1 ) except 

when µk_ 4 =µ 1 -1. But if µk_ 4 =µ 1 -1, then in H=G-ak_2ak-l 

+ akao (c = a
0
), we have one more 2-path of degree type ( µ 1 - l , µ 0 + l, 

µ 1 - 1), contradiction (ak-l cannot be adjacent to two vertices of de­

gree µ 1 - 1 otherwise ak_2ak-l is a forced edge). 

Now we have µk_ 4 =µk_ 2 =-=µ 1 ,µ.k_ 3 ~µk-l =~1 0 +1 (we can then 

prove k> 9, but this result is not needed). Furthermore, we note that 

if a
0 

is adjacent to a.> 1 vertices of degree µ 1 in G, then ak-l 

is adjacent to a~ 1 vertices of degree µ
1 

in G (including ak_2), 

and ak-l is adjacent to (exactly) one vertex of degree µ 1 - 1 in G; 

and ak_ 3 is adjacent to a. + 1 vertices of degree Ill in G (includ­

ing ak_ 2 and ak_4 ). But then for H = G - ak_2ak-l + a0 ak' we have 

one more edge of degree type ( µ
0

, µ 1), contradiction. 

We have proved that µk{H) = µk(G) (or even more G is edge-recon-

structable) when H = G - ak-2ak-l + aoak with µk(G) = µ1 - 1 (µ3 = 

µl or µl - 1 ) • So A{k) ~ s proved for such case. 

Now suppose µk(G) = µ1 and consider H = G - ak-2<\-1 +a d 
0 

again (c = a
0 

at the beginning of Case 2). If a
0 

is adjacent to 

a.> 1 vertices of degree µ 1 in G, then ak-·l is adjacent to a.~ 1 

vertices of degree µ
1 

in G, and we will have that ak-l is adjacent 

to a. + 1 vertices of degree µ 1 in G with pk_2 = µ 1 or µ 1 + 1 by 

looking at G - ak-lak_ 2 . 

Suppose f i rs t µ k-
2 

= µ 
1 

( µ k ( G } = µ 1 ) . Th en µ 1 > µ 0 + 1 . Su P pose 
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µk_ 3 > µ
0 

+ 1. Then a replacing edge will give G's edge-reconstruct­

abil ity by P(k-1) unless one end of the edge is ak_3. Say the new 

edge is ak_ 3b
0

. B
0

(k-l) says that we have a special (k-1)-chain 

a
0

a1 ak_ 3 b
0

b1 in the new graph I, and b1 cannot be adjacent to 

a. + l vertices of degree µ 1 in I, and we have µk(I) ~µk(G) = µ 1 • 

If µk(I) ~~t 1 - 2, dk-ldk~ 2 is a forced edge for a special k-chain 

d
0

d1 ••. dk in 

µ k ( G) = µ1 - 1) 

I ; and the case µ k (I ) = µ 1 - 1 ( s i mi l a r to the case 

is treated before, so µ k (I) = µ 1 = µ k ( G). We can 

then assume µk~ 3 = µ
0 

+ 1. This argument is the same as that we used 

for µ k ( G) = µ 1 - 1 , µ 3 = µ 1 - 1 • 

As before we can show that ~1 k-4 = µ 1 or µ k-4 = µ 1 - 1. If µ k-4 

=µ 1 - 1, then by considering G - ak_ 3ak_ 2 , we see that a
0

ak_4 is 

the only replacing edge which will give some trouble. From ak_3ak_4a0 a1 , 

we see that µ 2 = µ
0

+i and µ
3 

<£µ 1 . If µ 3 = µ
1

, we see soon that if 

k is odd, then µ k-4 = µ k-fi = • · · µ 5 = µ 3 = µ .1 , a contradiction to the 

fact that µk_ 4 = µ 1 - l; and if k is even (then µ
0 

= 1 and a. = 1), 

then µk_ 4 = µk_ 6 = • • • = µ 2 = µ
0 

+ 1 = µ 1 - 1 implying ~1 1 = 3. For 

the latter case, ak_ 3ak_ 2 can be easily seen to be a "forced edge 11 

(after eliminating all other trivialities). If µ 3 = µ 1 - l, then look­

ing at G - ak_ 3ak_4 , we see ak-J is the starting vertex of a special 

3-chain ak .. 3b
0

b1b2 in G with b
0 

t- ak_4 , but then µk(G) ~-µl - 1, 

contradiction to our assumption that µk(G) = µ 1 . So we have shown that 

Proceed in this way, we can show that 'vie can assume k is odd, µ 2 =µ 4 = 

"symmetric" in the sense of degrees. Now consider G - a1a 2 . The 



155 

replacing edge must have one of its ends be ao or al. Suppose it is 

al first, and let the new edge be a1b. b cannot 1 i e on aoal ... ak 

since the degree of b in G is µ . By B
0

(k-2), bo must be the 
0 

starting vertex of the same number of special (k-2)-chains in G as a2 
is in H, and so it follows (as in the proof of Lemma 3.3) that a

0 
is 

the starting vertex of the same number of k-paths in H of degree type 

( µ 
0 

' µ 1 ' µ 
0 

+ l , µ 1 , µ 
0 

+ 1 , ••• , µ 
0 

+ 1 , µ 1 ) as i t i s ·in G • So we 

have in particula1 that µk{H) "S_pk(G) = µ 1 and so µk(H) = µk(G) since 

the case when µk(H) is smaller than µk(G) is already treated. Next, 

let one end of replacing edge be a
0

. The edge-reconstructability of 2-

paths of degree type es ta bl i shes a contradict ion (for a2 cannot be ad­

jacent to a vertex of degree µ 
1 

- l > µ
0

) unless one end of the repl ac­

ing edge is some aj, 2 < j < k. Now s1 (j-2) gives a special (j-2)-

P(k-1) implies G's edge-reconstructability. 

Now let µk_2 = µ
1 

+ 1 with µk(G) = µ 1 _(1-ti may be µ
0 

+ l here). 

l~e can easily prove that µk_ 3 == µ
0 

+ 1 and ak_3 is adjacent to a. 

vertices of degree µ 1 in G excluding ak_4 (that is, if deg(ak_4 ) = 

µ
1

, then ak_
3 

is adj acent to a + 1 such vertices) by considering 

G - ak_
3

ak _4 • But this is impossible since a~ implies that ak_3 

is adjacent to some vertex r ak_4 of degree µ 1 and so µ k- 2 ~ µ l' 

contradiction. 

So far we have proved that if H = G - ak_2ak-l + a0 d, then µk(H) 

= µk(G) in all ca.ses . Now consider H = G - ak_2ak-l + cd with c "f a0 • 

The "P(k-1) type 11 of argument readily says that c must be ak_ 2 . Lem­

ma 3.1 applied soon says that ~ik(H) -s_µk(G). Hence we have µk(H) ·:s:_ 
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µk(G) in all possibilities without using the fact o(G) ~ o(H) (just 

that k ~ o (G) - 1, k ~ o(H) ~ l). Symmetry argument can then be ap­

plied to say µk(G) ~µk(H) and so A(k) is proved in complete force 

for Case 2. 

Though its form seems more intricated ~ the proof of B;(k) isn't 

too hard after A(k) is proved. Consider H = G ... ak_2ak-l + cd with 

c 1 a
0 

first. We have to consider c = ak_2 only and Lemma 3.1 irm1edi­

ately implies that Bi(k) holds. Next let c = a
0

. We know that µk 

can only be µ 1 - 1 or µ 1. Suppose ~.tk == µ 1 ··· 1 first. We know that 

µ 3 can only be µ 1 or 1..t 1 - 1. When µ
3 

= µ 1 , we have shown G is 

edge-reconstructable and there is nothing to worry about Bi(k). Now 

let µ 3 = µ 1 - l. We know µk_ 2 = µ 1 > µ
0 

+ l, µ 2 = µ
0 

+ l. If a
0 

is 

adjacent to 13 ~ 0 vertices of degree µk + i in Gs then ak-l is 

adjacent to 13 ~ 0 vertices of degree µ k + i in H and a 1 so in G 

when i > 0 (when i = o a 
' 0 

is adjacent to no vertex of degree µ 1 - l 

in G while ak-l is adjacent to exactly one such vertex in G) . We 

see that µk .., > µ + 1 implies 8
1
. (k) trivially and we can assume 

-.) 0 

µk_ 3 = µ
0 

+ l. We have proved that µk_ 4 must be µ 1 then. But then 

we can prove a con~adiction as before since H = G - ak_2ak-l + a
0
ak 

has one more edge of degree type ( µ
0

, µ 1 ). 

For the proof of s.(k) in Case 2 we are left with the cases c = 
l 

a 
0 

and p k ( G ) = µ 
1 

. As before we note µ k _ 2 can be µ 1 or µ 1 + l , and 

the lattercase leads to contradiction easily . When µk_ 3 > µ 0 + 1, 

Bi {k) is proved trivially a.nd we have µk_ 3 == µ 0 + l and µk-4 = µl in 

. h ~ ~ A( 'K ', a way as 1n t e proot o . fo r th i s ca s e .; we have k .; s odd and 

µ 
2 

= µ 
4 

= • • . = µ k-
1 

= µ 
0 

+ 1 , µ 1 = µ 3 ~: • · · = ~l k . Cons i de r G - a 1 a 2 • 
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If one end of the replacing edge is a 1 , we have Bi{k) in a straight­

forwar·d manner (say if i > 0, then a
0 

and ak-l are adjacent to the 

SClme number of vertices of degree µk + i for any special k-chain a a, ... 
0 l 

ak in G); and if a
0 

is one end of the replacing edge we get a con­

tradiction as in the proof of A(k) for this case. 

So we have proved A(k) and Bi(k) and are done for Case 2. 

Case 3 of Proposition 3. 12. µ k-1 = µk-2 = µ + l 0 . 

If all µ. = µ + 1 
J 0 

for 0 < j ~- k - 3, then A(k) and B;(k)'s 

are trivial consequences of Lenma 3.4 (with o = µk(G) first, we see 

µk{H) ~ µk(G); 

µk{H) for all 

then with o =: µk{H), we see µk(G) ~µk(H), so µk(G) = 

H E 6G and can be represented by µ k; then with o = 

µk + i, we can prove 

Let now m < k - 3 be the largest integer such that µ > µ
0 

+ 1. m 

(Then µm+l = = µk_ 2 = µk_.1 = µ
0 

+ 1). As in the proof" of Case 2, 

we will prove the validity of A(k) by proving µk(H) ~µk(G) for any 

edge-reconstruction H (without utilizing the fact O(G) ~ O(H)). 

Consider H=G-aa m m+l + cd with degrees of c and d in G 

a a m m+l respectively equal to µo and µm - 1 > µo. Suppose c I- a 
0 

first. Then if d -:/ a .. , we see by A(m) that d = some a., 0 < j < 
m J 

so by Bi(j), a special j-cha in bobl b. in H with bo -f ak+ 1 J 

and b. = d (since c -f a
0

) and so bobl . . . b. 1 and aoal ... ak 
J J-

m; 

in G implies by P(k-1) that G is edge-reconstrucable. If d =am 

(and c 1 a
0

) we see by Lemma 3.4 that µk(H) ~µk(G) (later the same 
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lemma is used to prove B;(k)). 

Now let d may lie on a1 ••• ak or not. First we wi 11 

prove that d cannot be some aj, m + 1 < j < k. Suppose d = aj, and 

1 et " = J
0 

- ( m· .. 1 ) > O. We h · · · t 1 u ave1mmea1aey µ 1 =µ 2 = =µA-l = 

µ 0 + l (condition void if ~ = l) and µA ...s_ µ
0 

+ 2. We have further-

more µ = µ + 2. m o 
µ[}. = µ

0 
+ 1, then 

We note µll 

am+lam+2 

can be µ
0 

+ 2 or µ
0 

+ 1. Suppose 

a. is a new ll -chain of degree type 
J 

(µo,µl' ... ,µll-l'µll +l) in H, and so B 1 ~) says that a "genuine" 

~-chafo b0 b1 ... bll of degree type (µ
0

, µ
1

, ... , µll-l' µA + 1) in G 

must be destroyed. Clearly b
0 

t- am+l and bll = am. P(k-1) now ap­

plies. Hence µll = µ
0 

+ 2. !J. cannot be greater than m for µm = µ
0 

+ 

2 but µs = µ
0 

+ 1 for 0 < s < /:::,.. Let's consider fl = m now. We 

have µ 
1 

= µ 2 :..: - + 1 + 2 -- µ m-1 = µ o ' µ m = µ o ' µ m+ 1 = • • • = µ 2m -

µ 
2 +l = µ + l with J

0 = 2m+ 1 < k. m o 

"symmetric", i.e. the degree type is the· same whether we start at a
0 

or 

a2m. By degree argument any edge-reconstruction H of G will join 

two vertices of degree µ
0 

in G - a2ma 2m+l, and Lemma 3-4 on the edge­

reconstructabil ity of ( k - 2m - l )-paths of degree type ( µ
0

, 1..t
0 

+ l, ... 

, µ
0 

+ 1, µk(G)) readily gives us µk(H) ~µk(G) (later the sa.me lemma 

is used to prove B;(k) when A(k) is proved). So now we may assume 

ll < m. 

The path am+l a.a all in H readily gives that µ!J.+l = . . . 
J 0 

... 
=µ~ = µ 0 + 1 , µ. 26+1 ~ µ~ = µ 0 + 2. So µ2A+l = µo + 2 or µo + 1 

(since ~ + 1 ~ j < k < O(G), P2Ll+l cannot be µo). Suppose µ~+1 = 

i..L c + 2 = µ ~ at first. Let m = a.£\ + 1 + ~ with 0 "S_ p < A, a. ~ 1. 
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a cannot be 1 otherwise µm =µ~+hp = µo + 1 since ~+l<~+l + 

~ < ~' a contradiction since µm == µo + 2. So a. > 2. Suppose a. = 2 

and let ~ = 0. In H, the path am+lam+2 a. aoal . .. a~ al+l J 

. a2.Ll+l can be thought of as composed of three segments A B C each of 

degree type ( µ
0

, µ 
0 

+ l , ... , µ
0 

+ l , µ
0 

+ 2), ( p
0 

+ l, ... , µ
0 

+ 1 , 

µ 0 + 2) and (µ
0 

+ 1, ... , µ
0 

+ 1) respectively. a~ a~+l -+ a2Ll+lam+l 

is a forced move sending H to some nonisomorphic I and A B C be-

comes C A B. Next ajao -+ ati a~+l is a forced move sending I to H' ~ 

H and C A B to B C A; finally, is a forced move 

sending H' to I'~ I and B CA to AB C. Since three forced 

moves return us to AB C, Lemma 2.1 says H is edge-reconstructable, 

and hence G is edge-reconstructable. The proof uses the same ideas 

in Case 2 wh~n c = a
0

, µ k ( G) = µl - 1 and µ.3 =µ,. Now suppose 

a. = 2 and p > 0. If µ~+l = µo + 1 !'» the above argument {consider 

am+l ... aja0 a1 a~+l in H) says G is edge-reconstructable. So 

µ2.ti+l = µ
0 

+ 1, and we have readily µ2Ll+l-fi3 = µfi-tp = µ
0 

+ 1 by look-

ing at the path a +l ..• a.a a
1 m J o a2Ll+l in H again; contradiction, 

s i n c e µ 0 + 2 = µ m = µ 21>. + 1 +13 
• 

So we conclude a.> 3. The general proof now uses the concept of 

forced-move principle as in Case 2 when c =- a
0

, µk(G) = µ 1 - 1, µ 3 = 

µ 1 and also the ar gument of the previous paragraph. It is quite 

straightforward and hence is omitted. 

Next let's assume µ2.ll+l = µ
0 

+ 1 (= µ~ - 1 ). In this case, proof 

proceeds in a way similar to the case for 1-1 3 :::: pl - 1, µk(G) = 1-1 1 - 1 
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of Case 1 before (just as the case 112t~+l = µ
0 

+ 2 is similar to the 

We now have proved that for H = G - amam+l + a
0
d, d cannot lie on 

am+2 ··· ak-1. 

We then consider the degree of µk(G). It can be equal to or great­

er than µ + 1. 
0 

Subcase 3. {a) of Proposition 3.12. µk(G) =µ
0 

+ 1. (Proof of A{k)). 

With c = a 
0 for H = G - amam+l + cd~ d can be ak or not. First 

suppose d = ak, then µm = µ
0 

+ 2 and for x = k - (m+l) = k - m 1 > 

2, we see µl =µ = 
2 

... :: µx-1 = µo + 1 . Now µx can be µo + 2 or 

µo + 1 and it must be µ + 2 
0 

otherwise B1 (x) implies that P(k-1) 

appl tcabl e as before. Discussing as in the proof that 

am+2 ... ak-l (two separate cases µ2x+l = µ
0 

+ 2 or 

µk(H) -s_µk(G), and so µk(H) = µ
0 

+ l = µk(G) since 

d cannot ·1 i e 

µ + 1), we get 
0 

k ~ n(H) - 1. 

is 

on 

So we may assume d I ak. Let s be the largest integer such that 

µ
5 

= µ
0 

+ 1 and m > s :::_ x (existence of s guaranteed by above argu­

ments). In H = G - amam+l+ a
0
d,B

0
(s) says that am+l is the starting 

vertex of a special s-chain am+lbl ... bs (conceivably b1 may coin­

cide with am+2' say). Suppose that b1 f am+2. If am+3 isn't any 

b's, then from G - am+2am+3' our new edge-reconstruction will have µ 1 = 

• • • = µs+l = µ
0 

+ 1, contradiction to the maximality of s unless am+2 

is an end of the replacing edge. The latter case immediately leads to 

µk{H) = µ
0 

+ 1 except when arn+Zao is a replacing edge. Then am+3 

is the starting ver t ex of a special s-chain in the new graph and it is 
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easy to get a contradiction from the maximality of s. So am+J is some 

bj E b1 bs. We note that in H, am+l is the starting vertex of a.> 

l special s-chains if a
0 

starts a.> l such chains in G. Hence d 

cannot be some b {or we can argue as the proof that d cannot E u 

am+l ... ak_1 ). But then in H am+lam+2am+3 bj-lbj 2 ... b1 am+l is a 

chain of degree type (µ
0

, µ
0 

+ 1, ... , µ
0 

+ 1, µ
0

) with length 2 + j 

< 2 + s < 2 + m < O(G), a contradiction. 

We have done the case b
1 

! am+2 • But it is easy to see why we 

can assume so, for considering G - am+lam+2' then B
0

(s) would imply am+l 

or am+2 is the starting vertex of a special s-chain. The former leads 

to b1 f am+2' the latter leads to a contradiction by maximality of s. 

We have thus done the proof of A(k) for subcase 3(a) . 

Subcase 3 (b) of Propes i tion 3. 12. µ k ( G) > µ
0 

+ 1 (proof of a ( k)). 

From H = G - amam+l + a 0 d~ it is immediate that for x = k - m 1 

~- 2, we have µ = µ = · · • µ = µ
0 

+ 1 and µ > µ + 1 ( d may be 1 2 x-1 x o 
ak or not here). Note that if a

0 
is the starting vertex of a. ~ 1 

special (x-1 )-chains in G, then B
0

(x-l) says that am+l is t11e 

starting vertex of a. spec i al (x-1 )-chains in H. Consider G - am+l 

am+2· 

special 

B
0

(x-l) says that am+2 must be the starting vertex of one 

(x-1)-chain in the new graph (since µ > µ + 1), which win m o 

imply µk(G) ::: µ
0 

+ 1, a contradiction. 

We have thus done the proof of A(k) for Case 3. We now go through 

a quick proof of Bi(k) for Case 3. By arguments before, we have to 

consider only subc a se 3(a.) .) i.e. wher. µk = µ
0 

+ 1. Al so we need only 

consider H = G - a a +l + a d with d r/:. a 1 ak 1 (looking at the m m o m+ · · · -
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proof that d ~ am+l ... ak-l, we can see either B;(k) hold, or even 

more, G is edge-reconstructabie). Going through the proof again, we 

see every possibility leads to contradiction or edge-reconstructability 

of G except when am+2 is an end of the replacing edge and ao isn't. 

But for that case Bi(k) is an easy consequence of Lemma 3.3 on 

(k-m-2)-paths of degree type {µo, µo + l, ... ' µo + 1 ' µ k + i ) , and 

so we are done for Case 3. 

Gase 4 of Pro po s i t ion 3 • 1 2 • µ k-1 > µ 
0 

+ 1 , µ k _ 2 = µ 
0 

+ 1 

If µ. = µ + 1 for l ~ j ~ k - 2, then Lemma 3.5 applied to 
J 0 

k-paths of degree type {µ
0

, µ
0 

+ l, ... , µ
0 

+ l, µk-l' µk(G)) says 

µk(H) "S_µk(G) for any HE 6G and then µk(G) -s_µk(H) when p in 

Lemma 3.5 is taken to be µk(H). So A(k) is true for this case. Take 

l 

(and o - µ - k-1 as before), we see B;(k) holds as well. 

So we can find the largest m, O < m < k - 2 s such that µrn > µ
0 

+ 

Suppose at first that m = k - 3. (and µm+ 1 = 

Consider G - ak_ 3ak_2 + cd, with degree of c and d respective-

1 y e qua 1 to µ 
0 

and µ k _ 3 - l > µ 
0 

i n G - a k- 3 a k _ 2 • If c '/: a 
0 

, then 

d must be ak_
3 

otherwise 11 P(k-l )-type" of argument as the three cases 

before says G is edge-reconstructable; and µk(H) ~µk(G) follows 

from Lemma 3.5 on 2-paths of degree type (µ
0

, µk-l' µk(G)). Later 

when we prove that µk(H) ~µk(G) for all cases and write µk for 

their common value (by symmetry arguments},the same lemma can then be 

applied.to prove Bi(k). 

So c = a and we see as in Case 2 that µ ,,. 1 = µ 1 0' .,-
or µ 1 -1; 
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the latter can happen only when d = ak_1. If µk-l = µ 1 - l, then µ 3 
may be. µ 1 or µ 1 - 1 and we may argue as in Case 2 that µk(H) ~µk(G) 

is true or even stronger, G is edge-reconstructable. (The argument is 

essentially the same except some delicate differences in applying differ­

ent lemmas and also note the number of special 2-chains starting at ak_ 2 

in H is the same as the number of special 2-chains starting at a0 in 

G). The proof when µk_1=µ 1 will follow the same way as in Case 2. 

Now let's assume m< k - 3. Then the argument will be of the same 

type as in Case 3 (we have µk-2 = µ k-3 = µo + 1 say). We can prove 

for H = G - amam+ 1 + a
0
d, d cannot lie on am+l ... ak-2 as in Case 

3. Furthermore we can prove a contradiction as in Subcase 3(b) {since 

So by discussing separ~tely m = k - 3 and m< k - 3 and then 

utilizing the same type of proofs as in Case 2 and Case 3, we see that 

A(k) and Bi(k) of Case 4 can be proved in an 11 easy 11 way, completing 

our proof of Case 4 and hence that of 

Proposition 3.12. When O(G) c 5, then for any k, 4 < k ~ o{G) - 1, 

A(k) and Bi(k) are true for any i > 0 provided (1) A(j) and Bi(j) 

are true for any 1 < j < k and (2) P(k-1) is true. 
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Section 6. Inductive proof of P(k). 

In this section we will prove Proposition 3.13 which is inductive 

proof of P(k). Note in Section 4, we have proved the validity of P(O), 

P(l ), and P(2). The proof of P(2) is extremely hard. Recall in Sec-

tion 5, we have proved the validity of A's and B. 's based on the in-
1 

ductive assumption of validity of A's, Bi's and P's of lower 1?ank. 

We now will assume o(G) ~ 5 and for a fixed k, 3 -s:_ k ~ o(G) - 2, 

we suppose A(j), B;(j) and P(k-1) are all true for 1 ~j~ k, i ~O. 

Recall that an {a,13)-coupling is a configuration of a special a­

chain a
0
a1 ••• aa. and a special 13-chain b

0
b1 ••• b

13 
with aa.bl3 E E{G) 

and the degenerate case a
0
a1 ... aa. = b

0
b1 .. . bs-l (with ai = b;, a= 

13 - 1) or b
0

b1 ••• b
13 

= a
0
a1 ••• aa- l is not counted. Reca 11 that 

P( n) says an (a ,13 )-coupling with 0 ~a., p ~ n is an excl udabl e con­

f i g u ration . Note that P ( n ) imp 1 i es P ( m ) by def i nit ion when n > m • 

As our first reduction in proving P(k), we see that we can assume 

u~ S without loss of generality. Furthermore, a must be k other­

wise P(k-1) applies (since 13-:;_ a~ k - 1 in that case). We will prove 

th i s i n duct i v el y for f3 from 0 to k • 

But 13 clearly cannot be zero, otherwis~ o(G) ~ k + 1 ~. o(G) - 1. 

So the induction is vacuously true at the start, and we may ass•Jme 1 ".S_ 

13 ~ k. We cl ass ify ( k ,13 )-couplings according to the degrees of µ k and 

µ
13

• It is called a (k,~ )-coupling of the first kind if µk > µ
0 

+ 1, 

µ
13 

> µ
0 

+ 1; the second kind if one of µk' µ
6 

is µ
0 

+ 1 and the 

other is greater than µ
0 

+ 1 ; the third kind if µk=µ
13 
=~ +l. We note 

we have to consider only the f i rst kind when G has no vertices of 
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degree µ
0 

+ 1, (again bi-degreed graphs call attention). 

Note furthermore that the cases a
0 

'f b
0 

and a
0 

:;: b
0 

differ in 

general. When a
0 

1 b
0

, we can assume a
0
a1 ... ak and b

0
b1 ... b~ 

are disjoint everywhere (otherwise we may either apply P(k-1) directly 

or we have a (k,13')-coupling with 13 1 < 13 and induction applies). 

When a
0 

= b
0

, then we assume y > O is the smallest integer such that 

a 'f b (then y ~ 13); and a a .1 ak and b b must be y y y y-r y • • • 13 

disjoint everywhere (by same type of argument). The former is less 

intricated and is usually easier to do; the latter is often harder, but 

not intractable because it has more "structures" in it (say some cycles). 

Case 1. of Proposition 3.13. µk = µ
0 

+ 1, µ
13 

= µ
0 

+ 1. 

So our (k,~)-coupling is of third kind. 

Subcase l(a) of Proposition 3.13. a
0 

'f b
0 

First we note that 13 can be assumed to be k-1 or k, for if 

b
13 

a k form a ( k-1 , ~ + 1 )-

coupling which is excludable by P(k-1). Next we observe that G · is 

edge-reconstructable if a
0
a1 ... ak is of degree type (µ

0
, µ

0 
+ 1, 

, µ
0 

+ l) by Corollary 3.3.2 (for b
0

b1 ... bf3 is of the same type 

since 13 ~ k). Let k' < k be the 1 argest integer such that µ k, > 

µ
0 

+ 1 . Note k 1 < k - l if ~ = k - 1 , and so k' is a 1 so the 

largest integer< 13 such that µk, > µ
0 

+ 1 (when 13 = k - 1 or k). 

Consider G - ak,ak'+l· Any edge-reconstruction is obtained by re­

placing by an edge ef of degree type (µ
0
,µk' -1) in G-ak,ak'+l· 

Suppose e = a
0 

first. f must be some vertex in this coupling other-
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wise ak '+l ... ak and b
0 

••• b
13 

form a (k - k' - 1 ,13 )-coupling and 

we are done (if f3 =k-1, P(k-1) applies; if~ =k, then k-k'-1 

< " 
and induction applies). If f = some b.' J 

of special co cl . . . c . 
J 

in the new graph H 

we have a (k',j-1)-coupling. If f = some 

Bo(j) 

with 

as, k' 

implies existence 

j > 0, c . = a k, and 
,l 

+ l < s ~ k, then 

µ =µ +1 implies a s-k'-1 o (k 1
, s - k 1 

- 1 )-coupling; and µ = µ + s-k'-1 o 

"2 implies a (k-k' -l,13)-coupling, and we are done when e = a
0

• 

Hence we see that e must be ak'+l or b
0

. When e = ak'+l, A(k') 

implies f E a1 ... ak 1
- l and a "P(k-1)-type" argument works. So e = 

bo. Again f E al ... ak I and 11 P(k-l)-type 11 argument says f = ak' is 

the only poss i bi 1 ity. Let ~ = k + ~ - 2k' - 1 , we have µl = ... = 

= µ + 1. 
0 We now consider G - ak'+lak'+2 (ak'+2 means b~ when 

k = k '+l). There are five ways to rep1 ace by a new edge, namely a
0
ak '+l' 

b0 ak'+2, a0 ak'+2 ' b0 ak'+l and a
0

b
0

. The first two lead to contradic­

tion quickly and the last three imply that ak'+l or ak'+2 in the new 

graph I is the starting vertex of a special 6-chain by 8
0

(6). Consid-

er now H = G - ak,ak'+l + ak,bo or J = G - bk,bk'+l + bk.ao we can 

see easily that µ~+l = µ
0

+1. Consider G - ak'+lak'+2 again, we can 

prove as before that µ~+2 = µ
0 

+ 1 (by B
0 

(6 + 1)). Proceed in this 

way, we will get a contradiction finally (say after k' - ~ steps we 

prove µ k , ::i: µ 
0 

+ 1) , f i n i sh i n g our proof of s u be as e 1 (a ) . 

Subcas~ l(bJ of Proposition 3.13. a
0 

= b
0

• 

Let y > 0 be the first integer such that a # b . As in Subcase y . y 

1 (a), we note f3 can be assumed to be k - 1 or k. But f3 cannot be 

k since a
0 

= b
0 

and G is bipartite; so f3 ·is k -1. Let 
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k' < k - 1 be the largest integer such that µk' >µ
0

+1. If k' < 

y - 1, then in G - ak,ak'+l' ak'+l ... ak and bk'+l · .. bk-l is a 

forbidden (k -y - i, k -y - 2)-coupl ing:: and a
0

a1 .•• ak, i s of for-

bidden degree type; and so any edge-reconstruction must have a
0 

or 

ak'+l = bk'+l as an end of the replacing edge. If it is ak'+l, then 

the other end is some a., O < j < k' + 1 by A( k'), and a P ( k-1 )-
J 

type argument works (i.e. we have a (k', j -1 )-coupling then). If it 

is ao, then the other end is say, some a. (or bj)' k' + 1 < j~ k. If 
J 

y< j< k, we read from bk '+l b b · 1 .•• b. bk that µj-k'+l = . . . y y-r J 
... 

µo + 1 and so s, (j-k I - 1 ) says that ak' is the (j-k I -1)-st vertex 

in a special chain in the new graph, so we have a (k', j-k' - 2)-coup-

ling and G is edge-reconstructable. When j = k and µk-k'-l = µ
0 

+2, 

then we have a (k-k' -1, k-k' -1 )-coupling; while if pk-k'-l = µ
0 

+ 1, 

then we have a (k', k-k' -2)-coupling, and G is edge-reconstructable 

in both cases. The treatment v1hen k' + l < j ~ y is similar. 

Hence we have k' ::::__ y. We wi11 show that for H = G - ak,ak'+l + 

d cannot lie on ak '+ 1 •.. ak. Let d = a i , k ' + 1 < l < i < k. 

Then µ 1 = µ 2 = = µi-k ,_ 2 = ~t 0 + 1. µi-k ,_1 can be µ
0 

+ 1 or 

µ
0 

+ 2. If it is µ
0 

+ 1, we -vlil1 have a (k', i - k' - 2)-coupling at 

d and we are done. So let µi==k'-l = µ
0 

+ 2. Note k' < k - 2. Now 

delete akak-l from G. Since k ~n(G) - 1, a replacing edge must be 

akao or ak_1a
0 

and hence we have µi-k'-l = µ. 0 + 1 when i f k. To 

show that di ak note that ak'+l is adjacent to a vertex of degree 

µo + 1 "f ak'+2 and so from G - akak-1 we get µk=k'-1 =µ + 1 as 
0 

wel 1. (The case µl = µo + 2 can be done simply). The fact il ::: bo 0 

is used heavily'. 
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Now if we follow the proof of Subcase 3(a) of Proposition 3.12, we 

see that we are left with the cases thJt G is edge-reconstructable. 

Hence we are done for Casa 1 . 

Case 1' of Proposition 3.13. µk = µk-l = µ
0 

+ l, µ
13 

> µ
0 

+ 1; or 

µ(3 = µf,3-1 = µo + 1 ' µ k > µo + 1 · 

For simplicity of illustration, we will assume a
0 

r b
0 

(the case 

a
0 

= b
0 

is similar to the corresponding case in Case 1). 

First suppose µk = µk-1 = µo + l , µs > µo + 1 . If (3 4£ k - 2, 

then our (k,p)-coupling of aoal ... ak and bobl b(3 can be in-

terpreted as a (k-1 !> ~ + 1 )-coupling aoal ... ak-1 and bobl ... b(3ak 

and so P(k-1) applies. Hence s = k - 1 or k, which is i mpo s s i b 1 e 

by degree argument. 

Next suppose µk > µo + 1 ' µ(3 = µ~-1 =u ·o + 1. As before we can 

assume s~ k - l. i3 .,. k obviously and so ~ = k 1. If a a 
0 1 

ak-1 is of degree type (µo, µo + l ' ... , µo + l) with µo > 1, it is 

easy to see 

even or odd. 

ak-lak or ak_2ak-l is a forced edge depending on k is 

The case µ == 1 is trivial. So we may assume k' < k 
0 

be the 1 argest integer such that µ k, > µ
0 

+ 1. Now the same type of 

argument as in Subcase l(a) works and we are done. 

Case l 1 eliminates some coupling of second kind which 11 resembles 11 

coupling of third kind. 

Case 2 of Proposition 3.13. µk :: µ
0 

+ 1, µk-l, µP > µ
0 

+ 1; or µS = 

µo + 1 ' µ k' µ~ -1 > µo + 1. 

Suppose first ~1k = p
0 

+ l, µk __ 1 , u.
13 

> µ
0 

+ 1. We may assume 
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~ > k - 1 and ~ cannot be k by degree argument. 

Suppose furth2rmore a0 t b
0

. Consider G - ak-lak. A(k) implies 

that a replaci"g edge ef should have e = b
0 

or ak or a
0 

a.nd f E 

al · · · ak- l or b1 •.. bk- l . By Bi (j) for all j, 1 ~ j ~ k - l 

and P(k-1), it is easily seen that ak-lak + ak_
1

b
0 

is a forced move 

{i.e. ak_1b0 is the only possible replacing edge). From a
0

a
1 

ak-lb0 b1 , it soon follows that µk+l(H)<µ 1 for the new graph H. But 

µk+l (H) cannot be sm:iller than µ 1 - l otherwise ckck+l is a forced 

edge in a special (k+l )-chain c
0

ci ... ck+l in H. Hence µk+l (H) = 

µi or µ 1 - l. 

Note that k > 3 now. Cal 1 our special k-chafo "symmetric" (with 

respect to degree type) if µk = µ
0 

+ 1, µk-l = ~t 1 , µk_ 2 = µ2' · · ·, 

µk-i =µi' ... etc.; for l< i< k -1. 

Assume the special k-chain is "non-symmetric" at first. Note that 

it is impossible that there exists a third special k-chain c
0
c1 ck 

such that ck = a · 
k' 

for if this is the case, then c f a or b
0 0 0 

say 

c0 1 b
0

, and the forced move ak-lak ~ ak_1b
0 

gives in H a k-path 

c
0

c1 ... ck of degree type (µ
0

, µ 1 , .. " , µk_ 1,i..i
0

) which in turn im­

plies o(H) -:;__ k < o ( G), a contradiction. Note further that we cannot 

have a k-path d
0

d1 •.. dk with d
0 

= ak, deg{dk) ~ µ
0 

and deg(di) -

~l i , 0 < i < k ( i t has degree type ( ~.l 
0 

+ l , µ 1 , ... , µ k _ 1 , µ 
0 

) ) , for 

then in H' :.: G - bk-lak + bk_1a
0

, we have n(H') ~ k < o(G). 

Call the configuration a
0

a1 ... ak_1b
0

b1 ... bk-lak a (k,k -1 )-

train (in H) . Cl early a (k)k -1 )-·coupling and a (k,k -1 )-train is in-

terchangeabl e by a forced mo\ie. Let b
0 

be a vert ex of degree !-t 
0 

on 
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the maximum number M of (k,k - l )-couplings in G and H, ~ay G. 

Then b
0 

cannot be the starting vertex of a ( k, k - 1 )-train otherwise 

a forced move gives that b
0 

1 ies on M + 1 (k,k -1 )-couplings in H. 

The forced move ak-lak-+ ak_1b
0 

now creates one more (k, k -1 )-train 

in H without destroying any one. We are done if the number of 

(k,k -1 )-trains is edge-reconstructable. This folklore result however 

is not too trivial. By B
0

(k), ak lies on a k-path ak c1 ck of 

degree type (µ
0 

+ 1, µ 1, µ 2, .•. , µ
0 

+ 1) in G. c1 ... ck is dis­

joint from the configuration a
0

a1 •.. akbk-l ... b
0 

otherwise a forced 

move a k-1 a k -+ a k _ 1 b 
0 

or bk_ 1 a k -+ bk_ 1 a 
0 

g i v es contradiction . Con -

sider G - akcl. Clearly ak is a forced vertex. We see H' = G -

ak c1 + akd (d may lie on c2 ... ck) must have the same number of 

(k,k -1 )-trains as G has since no (k,k -1 )-train is affected (other-

wise we easily get a contradiction by looking at H = G - ak-lak + akbo 

or H" = G - bk-lak + bk_1a0 ). 

We now can C4ssume our special k-chain is 11 symmetric 11
•· Consider 

bk_ 2• If µk_ 2 >µ
0

+1, then from G - bk-lbk_ 2, we easily see that 

if µk+l (H) = u
1

, then any replacing edge entails applicability of 

P(k-1) except when the replacing edge is bk_2ak, which happens only 

when µ
0

=1 and p.
1 

=µ
0

+2=3. But then we have a (k-1, k-1)­

coupl ing _ and P(k-1) is ready again. So we have µk_ 2 = µ
0 

+ 1. We 

can again consider H b
0

b
1 

... bk_2 is 11 syrrmetric 11
, i.e. we ask if 

µk-2 = µo + l, µk-3 = µl, µk-4· = µ2, · · ·' µk-i = µi' · · · etc. for 

1 < i < k - 2 are true or not. It's not hard to show that (after a11 
- · --

trivial possibilities are eliminated by P(k-1)) bk-lbk_ 2 ~ bk- lbo is 

a forced move. Define (k ·i· 2, k - 3)-train in a similar way. It is 



not too hard to show the edge-reconstructability of number cf (k + 2, 

k - 3)-trains and hence the edge-reconstructability of G {the details 

are more intricated since the two "sides" of the coupling arE: not of the 

same length now). 

H bb b . II t .... · l . k 3 enc e 
0 1 . . . k- 2 1 s s ymme ~ r i c , 1 • e . µ j = µ k- j , ~ J ~ - • 

µ k-·2 = µ
0 

+ 1 . Combined with the "symmetry" of b
0

b1 . . . bk, i.e. µ; = 
, . k l 1 h µk-i' ·~-1~ - ; we cone ude at once tat µ 1 =µ 3 =µ 5 = ••• ,µ 2 = 

µ 4 =µ 6 = ••• -=~1 0 + 1, and k is even {since µ .1 >µ
0

+1, µk =µ
0
+1). 

Now i t i s c 1 ear that b 
0 

b1 i s a fore ed edge s i n c e a 
0
a1 a kb k-1 ... 

b1 of degree type {p
0

, µ
1

, µ
0 

+ l , µ
1

, ... , µ
0 

+. 1, µ
1

, µ
0 

+ 1, µ 1 -1) 

can be proved to be excludable easily as we did in Case 2 of Proposition 

Next we consider µk+l {H) = µ 1 - 1. As in the previous paragraphs, 

we can prove a a a is "symmetric", i.e. µ
1
. =-µ 1, ., 1 < i < k - 1. 0 1 . . • k , -1 - -

Cons i de r G - c k _ 1 c k for a spec i a 1 { k + 1 ) -ch a i n c 
0

c1 • . . c k-1 ck+ 1 i n 

G. ck-lck is a forced edge unless c
0

ck+l is a replacing edge, in 

which case, µk-l = µ 1 , µ 2 = µ
0 

+ 1. So µk_ 2 = µ
0 

+ 1. ~!e can assume 

µ 
3 

= µ 
1 

- 1 otherwise we are done as in Case 2 of Propes it ion 3 .12. We 

have furthermore k > 5. Rut now ck-lck ~ c
0
ck+l creates a 2-path 

of degree type {µ, - 1, µ + 1, µ., - l) 
I Q l 

(by "symmetry", 

µk_ 3 = ~l 3 = µ 1 - 1) while destroying none of the same type, so we get a 

contradiction. 

We have now done the proof of Case 2 for pk = 1.1
0 

+ 1, µ k- l > µ 0 + 1 

and a
0 

f b
0

. Let's outline below the ideas when a0 = b0 . Let y > 0 

be the first integer such that a ! b . (Note a can only be k - 1 
y y 

here). If we delete akbk-l, difficulty will arise only when a0 
is 
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one end of the replacing edge (otherwise P(k-1) is directly applicable.) 

Let H = G - akbk-l + a
0
d. If d isn't on the configuration a0 a1 ..• 

akbk- l by of the ( k, k - l )-coupling, we can show a contradict ion to 

A(k-1) (by proviPg edge-reconstructability of (k-1)-paths of degree 

type ( µ
0 

+ l, µ 1 , µ 2, ••. , µ k-2, µ k- l - l). So d = some a j or bj, 

say aj. And we can conclude that in H, ak starts a special j-chain 

co cl c. with co = ak, c j = bk-1 . Similarly, we see that in I = 
J 

G - akb-l + a e, ak starts a special m-cha in d
0
d ... dm with do = ak' 0 

dm = ak-1· If c, 1 ak-l' we see that fo I we have a special m-chain, 
• 

m< k with dmdo E E( I) and so O( I) ~ m + l < k + l = O(G), a contra-

diction. Similar contradiction holds when d1 1 bk_1• It can be proved 

that the case d1 = bk-l and c1 = ak-l (they have more structure to be 

considered and hence also more structure to be used) leads to contradic­

tion as well. 

Now 1et 1 s go to the case µ k > µ
0
+ 1 , µ

13 
= µ

0 
+ 1, µ

13
_1 > µ

0 
+ 1 · 

Then 13 < k. Similar type of argument applies with mfoor modification 

and hence proof is omitted. 

Case 3 of Pro po s it i on 3 . l 3 . µ k > µ 
0 
+ l , µ ~ > µ 

0 
+ 1 . 

This is a coupling of the first kind. We may have a
0 

I b0 or a0 = 

b
0

• When a
0 

= b
0

, 'then 1 et y > O be the sma 11 est integer such that 

a ;. b . 
y y 

First we observe that a can be assumed to be less than k. For 

if a
0 

;. b
0 

and we consider G - akbk; then A(k) says that a new 

edge ef must have e E a1 ak and f E b1 ... bk. When ef t 

akbk, then B
0

(j) for some j, O < j < k, says that there is a special 
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j-chain c
0

c1 ... cj -in the new graph with cj = ak or bk. i~e then 

have a (k,j-1)-coupling when we have a (k,k)-coupling. So we can as-

sume 13 < k when a
0 

:/= b
0

• If a
0 

= b
0

, then by 11 bipartiteness 11 of 

G, ak and bk ~ust be on the same part of G and akbk E E(G) is im­

possib1e (actually for a general graph we can show that ~ < k by argu-

ments similar to the case a
0 

1 b
0 

above). 

Consider 

and 

akbS now. A( k) 

f E bl . . . bl3 , 

says that a new edge ef must have 

cind we can find by conditions 

of lower rank than k a special (6 +1)-chain c
0

c
0 

... ccHl in the new 

graph H with co+l = ak or b
13

, O ~ 6 ~ k - l. Hence in G we will 

have a {k,6)-coupling or (6,S)-coupling. The latter possibility can­

not happen, for o, ~ ~ k - l and P(k-1) applies to show G's edge­

reconstructabil ity. The former will happen when c
6

+l = ak and 6 ~P 

(if 6 < 13, then induction on 13 says our (k,6)-coupling is exclud­

able). Also note all three special chains are distinct (c
0

c1 c6 

isn't ak-l since e must be some aj~ j < k, and in H 

isn't a special j-chain). It's conceivable that they may 

intersect, say a
0 

= b
0 

= c
0 

may happen. 

We now note that c
0 

~ a
0 

••• ak and c6 ~ b
0

b1 ... b13 since 

o the rw i s e P ( k - 1 ) i s a pp 1 i cab 1 e . Cons i de r H = G - c Q a k + e f , e E 

a1a2 ... ak' f E c
0
c1 ... c

6
. Note we can assume p 6 > µ

0 
+ 1 by re-

sults of Case 1' and Case 2 before. Closer investigation on the deri­

vation of the special (o+l )-chain c
0

c1 ... c6+l shows that, with the 

aid of B
0

(0+·1) and 

k-chain c
0
c1 ... ck 

B (k), we can assume the existence of a special 
0 

in H = G - b
13

ak + bpc.o+l with c6+l = ak and 
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ck= a6+l" (c
0 

may be a
0 

or not). To get I= G - c6ak + ef, all 

possibilities are eas i ly seen to lead to P(k-1) except when ef = 

Again we can find a special k-chain d
0
d1 ..• dkde +l ... dk 

in I such that de+l = ak' dk=ae+l; hence µk = µE:+l + 1 (µk = µo+l 

+ l as well). Let c 1 6 first. Note ao+l rf_ do ... d otherwise 
e 

P{ k-1 ) is applicable readily (we have 6 +ls_k-1 by the way). In 

H we see d
0 

•.• dc+l and c
0 

••• c
0 

form an (e + l ~ o )-coupling 

with e + 1 < k - 1 and He a re done. When e = o, the above argument 

s·til l works and we have a special (o + 1 )-chain d
0

d1 ..• do+l distinct 

form 

13 < k 

cocl · · · co+l 

unless d
0
d1 

in I, we then have a (o+l , ~)-coupling with 6 + l, 

d0 = b
0

b1 ... b
13

, which can hold only if o = 13. 

In this case we can easily find a (6 +1,6)-coupling (or we have a 

(k,x)-coupling with x< o and induction applies), so we are done 

(looking at G - ak-lak). 

The proof of Proposition 3.13 is now complete. Q.E.D. 
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Section 7. Proof of Main Theorem 

In this se~tion, we will prove the main theorem using Proposition 

3.14 as the principal tool which we restate for reference. 

Proposition 3.14. A(n) a nd B; (n) are true for any n, 1 < n ~ o(G) - 1; 

P(a.) is true for any a,, O~a.~O(G)-2. 

Recall that any (bipartite) graph can have exactly one type of term-

inatfon, namely Type- I , Type-II, Type-III terminations defined in Section 

3 of this chapter. In Propositions 3.15, 3.16 and 3.17 following, we 

will show that each type of termination leads to the edge-reconstruct­

abil ity of G; and so in Theorem 3.1 following we can combine these re­

sults and say e.very bipartite graph with at least four edges is edge-re­

constructable. 

Proposition 3.15. G is edge-reconstructable if it has a Type-I te rmina­

tion. 

Proof of Proposition 3.15. Let a
0
a1 ... ao(G) be a special o(G)­

chain in G with ao(G) t- a0 • Consider . H = G -· ao(G)ao(G)-l + ao(G)aj 

is a forced vertex by degree argument). implies the ex-

istence of a special j-chain b
0

b1 ••• bj in H with bj = ao(G)-l' 

O < j ~ o ( G ) - 2 • ( b 
0 

may be a 
0 

say) . a
0 

( G ) _ 2 cannot 1 i e on b 0 b1 •• 

.. b. 
1 

otherwise P(o(G)-2) works and G is edge-reconstructable. 
J-

Furthermore µo(G)-l > µ) ~µ 0 + 1 otherwise we have a (l ,n(G) - 2)-

coupling. 

Suppose b f- a at first. 
0 0 

ao(G)- 2 are disjoint otherwise P(n(G) - 2) applies. Consider I = 
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G - ao(Gr2ao(G)-l + ef. If none of e,f E b0 b1 ... bjao{G)' then 

b
0

b1 ... bj ao{G) gives a Type-I termination of length~ j + 1 ~ 

n(G)-1 in I and so o(I) < o{G), a contradiction; and we may assume 

e = b E b b b u 0 l . . . j" Similarly f E a
0

a1 ••. ao(G)~2 since otherwise 

we have a forbidden degree type. It's impossible that both e = b
0 

and f = a
0 

hold since µo(G)-l > µ
0 

+ 1. Now it is easy to find 

some couplings such that P(o(G)-2) works. 

Next let b = a and let y > 0 be the smallest integer such 
0 0 

that by t=-ay, then y ~j. If µO(G)- 2>µ
0

+1, then we can argue as before 

attd easily see that P(O(G) - 2) works. Difficulty arises only when 

µo(G)- 2 = µ
0 

+ 1. If a
0 

is adjacent to a.> 1 vertices of degree µ 1 

in G, it ·is easy to see that ao(G)- 2 is adjacent to a. vertices of 

degree µ 1 in G (by looking at G - ao.(G)-2a0 (G)-l and note _µo(G}--1> µ/-
Hence a.=1 and µo(G)- 3 =µ 1 . 

Suppose pl > µ
0 

+ l at first. Write o for n(G) here. If 

µ
0

_4 > µ
0 

+ l, then it is easy to firid couplings satisfying P(o(G)-2) 

unless a
0

_4a
0

_2 is a replacing edge (and µ 1 = µ
0 

+ 2) ; but this is 

impossible since b 1 b y- y b j - l b j (=an - l ) and a 1a ... a~ 4an 2a0 1 y- y ~: ,- ~!.-- -

together form an odd cycle. So µ
0

_. 4 = µ
0 

+ 1. From G - a0 _1a0 _2 , we 

see µ 2 = µ
0 

+ 1 (for µ
0

_1 ~Pl + 1 ?:_µ
0 

+ 3). Consider G - a0 _4a0 _3 . 

Difficulty will arise only when the replacing edge is a0 _4f, f i a
0

a1 .. 

. . a
0

. In that case, we see an_ 2an-l is a forced edge by degree argu­

ment (say a
0

_
2
a
0

_
3 

is of forbidden degree type (p
0

, µ 1 -1 )). So we 

see µo-5 = µl 

or u, 
• I 

or µ 1 - 1 and from G - a
0

_1<\'"2- 2 , we conclude that 

- l. Finally f'·--om G - a
0

_4a
0

_5 , we see B
0

(3) im-

plies that ~-l = 1..t 1 or: µ 1-1,cont rad ir.tory t o the assumption that 
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When µ 1 = µ
0 

+ 1, we can show that µ
0

_4 = n
0 

+ 1. So ~1ith k = 

O - 2, µk = µ
0 

+ 1, we are in Case 3 of Proposition 3.12. Hence we 

can have G's edge-recons tructabil ity unless a
0

_
4 

·is one end of the 

replacing edge which can be shown to be impossible as previous paragraph. 

The above arguments have assumed o(G) ~ 6. But it is not too hard 

to prove that G is edge-reconstructable when o(G) ~ 4 or 5 (prove like 

what we have done for o(G) ~ 3), hence we at·e done for this Proposition. 

Q.E. D. 

Proposition 3.16. G is edge-reconstructable if it has a Type-II ter­

mination. 

Proof of Proposition 3.16. Again let o be a shorthand for o(G). We 

can assume µ
0

_1 > µ
0 

+ 1 otherwise any edge-reconstruction H = G -

aoao-1 + a
0 
f, f e aoal ao-1,, and O.(H) ~ O(G) - 1 , a contradic-

ti on. Consider now H = G - aoao-1 + a a., 0 < j < Q - 1. Bo(j) im-
0 J 

plies the existence of a special j-cha in bobl b . in H, b. -- an- ·1 · J J 

Let b
0 

1 a
0 

first. Then b bl . . . b . l 
0 J-

be assumed to be disjoint. If µ 0 _2 > µ
0 

+ 1, consider I := G - a0_ 2ao~l 

+ ef. If f E b ... b. 1 , then we can assume t he existence of special 
0 J-

cocl ... ck in I, 0< k~j-1, ck=a
0

_1 . Itisthenclearthat 

in H = G - a a 1 +a a., 
0 Q- 0 J 

we have a (j,k-1)-coupling "at 

(k ~ j - l is necessary), and we are done. So we can assume 

But then A(o-1) implies that e =some a , 0 < m < o - 2, 
m 

ao-1 
II 

f = ao-1. 

and B
0

(m) 

implies at once a (0 - 2, m - 1 ) -·coupling and so G is edge-reconstruct-

ab 1 e by P (o. - 2) . 
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Now consider J = G - a0 _2a0 _3 + ef again when µ 0_2 = µ
0 

+ l. If 

e - a
0

, then Lerrnna 3. 1 on edges of degree type ( µ 
0

, µ 
1 

) says that 

µ
0

_1 =µ 1 and so b
0

b1 ... bj-l and a
0
a
0

_1 form a (j-1, 1)-coupling 

in G. e cannot be a
0

_
2 

otherwise we can eas "ily prove a contradi c­

ti on by P(0-2); and so e=a0_ 3 (1~t0 _ 3 =µ 0 +1). Then J containsa 

configuration of the following form: 

b µ 
0' 0 

b .,µ . + 1 
J J 

b. , ,µ . l J- J .. 

This can be easily proved to be excludable. (Consider 

c b. + c b., 0 < i < j, we see there exists special 
0 J 0 1 

K = J -

g.' 1 

but then g ·.d gives .o(K) < i + 1 < o(G). 
l 0 -

When b
0 

= a
0

, we see that the above argument still works for 

this case except that the excludable configuration is changed so that 

b
0 

and c
0 

coincide, and b
0

bj E E(J); the excludability follows in 

the same vein, and we are done. Q.E.D. 

Proposition 3.17. G is edge-reconstructable if it has a Type-III ter-

mi nation. 

Proof of Proposition 3.17. Conceivably G can have more than one spec­

ial n-chains all of Type-III terminations. Let k be the smallest 

integer such that ak = a0 for some a
0
a1 . a~ special o-chain. We 

~4 
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will consider the degrees µk and µn-l in G. (Note 0< k<0-1). 

Case 1. of ProposHion 3.17. µk > µ
0 

+ 1, µ
0

_1 > µ
0 

+ 1. 

Consider G - akao-1 + ef = H. By A(k) we see that e E a1 

ak and (by A(o-1 ) ) we can find j, 0< j < n - 1 , such that a spec-

ial j-chain bobl ... b. 
J 

exists in H with b. 
J = ao- l · bo may coin-

cide with a
0 

or not. Clearly bj-l <I. a
0

a1 ... a0 _2 otherwise P(o-2) 

applies. If µ.
0

_2 > µ
0 

+ 1, consider G - a
0

_2a
0

_1 . In this subgraph, 

b
0

b1 •.. bj_1a
0 

and a
0

a1 ... ak form a forbidden (k,j)-coupling, ~nd 

so, arguing as in Proposition 3.16, we see G is edge-reconstructable. 

When µ
0

_2 = µ
0 

+ 1, we have an excludable configuration in J = G -

a
0 

_ 2 a0 
_ 3 + a

0 
_ 3 f cons i st i n g of a spec i a 1 ( j - 1 ) -ch a i n b 

0
b1 • • • b j _ 1 , a 

special k-chain a
0

a1 ... ak, a vertex a
0

_2 of degree µ
0 

and three 

edges bj_1a
0

_1, a
0

_2a
0

_1, aka
0

_1 (this is a 11 ger.eralization 11 of the 

excludable configuration in Proposiiton 3.16). 

Case 2. of Proposition 3.17. µk > µ
0 

+ 1, µ
0

_1 = µ
0 

+ 1. 

Case 3. of Proposition 3.17. µk =µ
0

+1, µ
0

_1 =µ
0

+1. 

There are nothing to do with these two cases for a
0

a
1 

••• aka0 _1 

and a
0
a1 ... akak+lak+2 ... a

0
_3an_2 form a (o-2, k+l)-coupling 

and P(o - 2)' applies (Note k < n - 4 by definiton and µk+l = n 0 + 1 

since µ
0

_
1 

=µ
0

+1). 

Case 4 of Proposition 3 . 1 7 . µ k = µ 0 +l , µ n-1 > µ 0 + l · 

We have obviously k > 0. First suppose µk-l > µ
0 

+ 1. Consider 
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G - ak-lak, we see that difficulty will arise only when H = G - ak-lak 

+ ak_1d. In H, ak is a vertex of degree µ
0 

(hence a forced vertex). 

Delete aka
0

_1 and consider all possibilities to replace by a new edge, 

we can prove the existence of some special (.j-1 )-chain b
0

b1 ... bj-l 

in G with bj_1a
0

_1 E E(G) (using some 8
0 

's). Argument as in Case l 

(depending on µ0 _2 > µ
0 

+ l or µn_ 2 = µ
0 

+ 1) shows G is edge-rewo 

constructable. 

Now 1 et µ k- l = µ
0 

+ 1 . We can argue as above unless a
0
a1 ... ak- l 

is "symmetric" with respect to degrees, i.e. µ. = 'lk 
1 . , 1 < .i < k - 2. 

1 t - -1 - -

Consider G - aka
0

_1 . Difficulty arises only when a
0 

is one end of the 

replacing edge. But then we have µ 
1 

= µ
0 

+ 1 and by symmetry µ k-2 = 

µ
0 

+ 1. Consider G - aka
0

_1 again, we then have µ 2 = µ
0 

+ 1. By 

"symmetry" again, µk_ 3 = µ
0 

+ 1. Proceeding in this way, we see that 

µi =µ
0 

+ 1, 1 ~ i :=: k - 1. Now consider G - a
0
a1 . A non i somorphic 

edge-reconstruction will contain a configuration consisting of a special 

(k-1)-path a, ... ak of degree type (µo' µo + l, ... ' µo + 1) fol-

lowed by ak ... ao-1· Consider H - a1a2 for the new graph H again, 

then the "newer" gr·aph I will contain a special (k-2) - path a2 ... ak 

followed by ak ••• a
0

_1• Proceed in this way, we will get a graph in 

which ak is a vertex of degree µ
0 

as in the previous pa r agraph. De-

1 ete aka
0

_
1 

again, we see G contains a special (j-1 )-chain b
0

b1 ..• 

bj-l with bja
0

_1 E E(G). So arguments as before prove G's edge-recon­

structability. We are thus done with the proof of Proposition 3.17. 

Q.E.D. 

Now that Proposition 3.15, 3.16, 3.17 are all proved, we can then 

state our main theorem. 
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Theorem 3.1. (MAIN THEOREM OF CHAPTER 3) Every bipartite graph with at 

least four edges is edge-reconstructable. 
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Section 8. Digression on generalization of results 

Many concepts and lemmas of this chapter sound easily generalizable 

to more general graphs, say, that of special n-chains. Many proofs do 

not use the fact that G is bipartite too heavily; actually just the 

fact that G doesn't contain triangles. It's conceivable that closer 

investigation of the proofs might shed light on the general Edge-Recon-

struction Problem. 

Most lemmas (or propositions) are not too hard when G doesn't have 

any vertex of degree one higher than minimum (µ + l as in the context). 
0 

This suggests that the results of bi-degreed graphs, or more generally, 

graphs with two =
11owest 11 degrees differing by one and the methods of bi­

partite graphs may be combined to prove something. Lemma 3.2 and Coral-

lary 3.4 are very interesting for more general graphs, so are the proofs 

of A, B; and p's for n = 0, 1, 2, 3. 
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