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"The tails of the animalcula, so far from assisting locomotion, 

impede it, and produce an unstable oscillatory movement. They are, 

in fact, long filaments of the viscid seminal substance which is 

trailed after the moving globule." 

Needham, 1749, from Cole (27) 





Frontispiece. A dark-field, multiple-exposure photograph of an ir

radiated spermatozoon of a starfish, Pisaster brevispinus. The tail 

was beating 15.5 times/second before irradiation. The brightest ex

posure was taken about 0.5 milliseconds before irradiation; the other 

exposures were taken at a rate of 50 exposures/second after irradiation. 

The irradiated point has attached to the glass, and appears in the 

same position on all exposures. Beating has stopped between that 

point and the head, and one of the bends behind that point can be 

seen progressing to the tip of the tail after irradiation. The large 

light circle in the background is due to slight scattering of some of 

the unfocussed laser beam by a dielectric mirror in the optical system. 
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ABSTRACT 

The mechanisms of flagellar movement were investigated by studying 

the ability of various regions of a flagellum to initiate bends, and to 

propagate bends independently of activities in other regions. Two 

experimental approaches were used: the establishment of an artificial 

gradient of ATP along a flagellum, and the inactivation of a small 

region of a flagellum by localized irradiation. Flagella of the sperma

tozoa of sea urchins and a few other marine invertebrates were used in 

this study. Glycerinated flagella were activated by ATP gradients 

established by means of diffusion from the tips of micropipettes. These 

gradients could be made broad enough to produce a gradual decrease in 

ATP concentration along the entire flagellum, or narrow enough to sup-

ply ATP to only part of the flagellum. Localized supply of ATP to regions 

of the flagell11m other than the basal end produced no beating. Beating 

properties along the flagellum appeared quite sensitive to ATP concen

tration at the basal end, but rather insensitive to ATP concentration at 

other points, and centering a gradient about points other than the basal 

end did not cause beating to start at those points. 

Small regions of flagella were irradiated at preselected phases of 

beating by means of a pulsed ruby laser microbearn. Multiple-exposure 

dark field photographs of the spermatozoa were taken immediately before 

and after irradiation. The region of a flagellum between the head a nd 

the irradiated point continued beating for at least a few beats if t hat 

region was at least a quarter of the length of the tail, and stopped 
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imrnedi2tely if it was shorter. Bends which were already established 

beyond the irradiated point continued to the tip, but showed a variety 

of changes in their properties. No new bends were formed in this region. 

Irradiation within a bent region caused that region to straighten im

mediately. 

These experiments indicate that the basal end of the flagellum is 

necessary for bend initiation, and largely responsible for the determi

nation of wave properties. Although a portion of a flagellum can in

dependently propagate established bends, the bend properties at any 

point are influenced by activities along the rest of the flagellum. 

The relevance of these observations to current models of f lagellar 

beating is discussed. 
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CHAPTER I 

General Introduction to Problems of Flagellar Motility 
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Early Observations on Cilia and Flagella 

In November of 1677, in a letter to the Royal Society of London (27), 

Antony van Leeuwenhoek announced the discovery of "living animalcules" 

in human semen. They had been found and shown to him by a medical 

student, Johan Ham. Leeuwenhoek observed that: 

Their bodies were rounded, but blunt in front and running to 

a point behind, and furnished with a long tail .... The 

animalcules moved forward with a snake-like motion of the 

tail, as eels do when swinnning in water. 

Leeuwenhoek had observed ciliated protozoa (31), and he later discovered 

flagellated ones (32). 

Leeuwenhoek's observations on spermatozoa were the subject of 

much controversy. During the following century his descriptions were 

amply verified by many investigators, although as late as 1833 Treviranus 

(93) ascribed the apparent motion of sperm tails to Brownian movement. 

Many of the early studies on spermatozoa were both stimulated and ham-

pered by contemporary theories of reproduction ~ The pref ormation 

doctrine dominated thought on the subject until about the middle of the 

eighteenth century, so that even workers who admitted seeing spermatozoa 

often considered the tail to be a miniature backbone or umbilicus. 

By 1835, cilia were known to be widely distributed among animals . 

Cloquet (26) in 1827, noticed that small patches removed from mussel 

gills resembled spermatozoa. This was perhap~ · the first suggestion of 

the basic similarity of cilia and ~lagella. Some theories on the mechanism 
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of cili a ry beating began to appear about this time. Some workers 

have assumed, even quite recently (83,56~ that cilia are moved by 

muscles, or muscle-like fibers, attached to their bases. Grant (42) 

suggested that cilia might beat by the flow of water in and out of a 

tubular structure. Sharpey (84), however, noted that cilia bend along 

much of their length, and suggested that contractile material extends 

all along the cilium. This suggestion attempted to answer two distinct 

questions: (1) Is the passage of bending waves along the flagellum 

passive or active? (2) If the bending waves are active, are they 

produced by a contractile apparatus, or by some other mechanism? Each 

of these questions has evoked much further discussion (86). 

Interest in cilia and flagella increased toward the end of the 

nineteenth century, and observations became more refined as the quality 

of microscopes improved. Rootlet fibers were seen running from the 

bases of cilia and flagella in a number of cells, and were postulated 

to cause beating. This role for them - or for any extra-ciliary struc-

tures - was ruled out by several investigators. Peter (74) found that 

cilia of protozoa can continue to beat after the cell is crushed into 

small fragments, showing that an intact cellular structure is unnecessary. 

Verworn (98) observed beating in cilia isolated with only a bit of their 

basal cytoplasm, and Engelmann (33) observed beating in frog spermatozoa 

severed between their heads and mid-pieces. They concluded that very 

little of the cell body is needed for beating. The role of rootlet 

fibrils is still unknown, although they may help anchor the 

They are absent in spermatozoa. Engelmann found no motility in spermatozoa 
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severed between their mid-pieces and tails, and several workers tried 

unsuccessfully to completely remove cilia from cells without destroying 

their ability to beat. They concluded that the basal apparatus is 

necessary for movement, but their results may now be interpreted as 

being due to interruption of the normal supply of chemical energy 

substrates to the active parts of the cilium. There were, however, some 

workers who thought that cilia could beat without any extra-basal mater

ial. Erhard (34) claimed he could destroy basal granules by heating 

without affecting the motility of cilia. 

By 1900, workers noticed that cilia and flagella seem to develop 

from basal bodies. Henneguy (37) and von Lenhossek (58) noticed the 

similarity of basal granules and centrioles; von Ienhossek suggested 

that basal bodies and centrioles are identical. 

Even though the width of flagella (about 0.2p ) is small compared 

to the resolving power of light microscopes, some workers managed to 

observe internal fibrils after disrupting the flagellar membranes. 

The work of Ballowitz (6) and others demonstrated that fibrils are 

widespread in cilia and flagella, and these workers suggested that the 

fibrils they observed were contractile. 
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Contemporary Observations and Calculations on the Movement 

of Cilia and Flagella 

The present period of study began largely with the work of James 

Gray, in the early 1920's. Earlier observations have been refined and 

enlarged, and new approaches have been developed. 

Detailed descriptions of various types of waveforms have been made, 

using cilia and flagella from a number of types of cells, since the 

introduction of the stroboscope (64) and flash photomicrography (44) 

for viewing and recording their movements. Gray's (45) description of 

the movement of sea urchin spermatozoa has formed the basis for much 

of the discussion about the waveforms and possible mechanisms of beating. 

He described the beating as planar, with a waveform which could be fit

ted by a sinusoidal curve, as shown in Figure la. He emphasized the 

fact that the amplitude of the waves did not diminish as they passed 

along the tail. Gray (43) had pointed out earlier that if a passive 

flagellum were moved only at its base the wave amplitude should decrease 

towards its tip as the wave energy was dissipated in propelling the 

celi forward, and that the demonstration of a constant wave amplitude 

along the tail would provide strong evidence that flagella beat actively 

along their entire length. Machin (59) has developed this argument 

quantitatively, and has shown that a passive flagellum driven at its 

base could not produce the waveforms recorded by Gray. Machin proposed 

that the energy could be supplied by contractile elements, which were 

triggered to contract as a wave reached them. In a detailed analysis 
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a. Sinusoidal waveform 

b. Waveform composed of circular regions connected by 
straight regions 

Figure 1 . Flagellar waveforms. Arrows indicate direction of propa-

gation of waves. C =circular region; S =straight region. 
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of this possibility (60), he showed that this model would develop spon

taneous standing waves if the elements were identical along its length, 

and that distally propagating waves could be established by the presence 

of a dominating region at the basal end. Brokaw and Wright (20) obtained 

photographs of the posterior flagellum of a dinoflagellate protozoan, 

Ceratiu~, with high enough resolution to determine that its waveform 

is planar, but not sinusoidal. The bent regions appeared to be circular, 

with a constant radius of curvature; these arcs appeared to be connected 

by st r aight regions, as shown in Figure lb. This waveform ha~ since 

been found in some invertebrate spermatozoa (14). This waveform can 

be generated by switching regions along the flagellum among on ly three 

states: a straight state and two bent states. Brokaw (16) has proposed 

that the transition from straight to bent state at any point might be 

induced by bending just proximal to that point. This localized propa

gation does not require the long-range viscoelastic interactions implicit 

in Machin's (60) model, and can more easily explain the more asymmetrical 

waveforms of cilia (16). Other types of waveforms have also been des

cribed . The plane of bending of a bull spermatozoon (46,77) changes as 

the wave progresses along the tail, giving it a partially helical 

character, and causing the cell to rotate as well as move forward . In 

addition, the amplitude of the waveform increases as the wave passes 

distally. Numerous other three-dimensional waves have been observed, 

and some flagella (such as those of the protozoa Peranema and Monas) 

exhibit quite bizarre waveforms, for which no simple models have been 

proposed. Successful photography of these three-dimensional bending 
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patterns has not been accomplished; detailed knowledge of flagellar ben

ding patterns is only available for a very few cases, in which the 

movements are planar and have been successfully photographed. 

In 1955, Hoffman-Berling (49) obtained beating by supplying 

adenosine triphosphate (ATP) to flagella which had been suspended in 

an aqueous solution of glycerin. Although the flagella bent and straight

ened rhythmically, waves did not propagate along their length. Brokaw 

(11~ in 1961, obtained wave propagation in glycerinated flagella of 

Po l ytorna uvella by reactivating them with ATP. Unlike glycerin-extrac

ted muscles, flagella reactivate after only a few minutes in glycerin; 

their motility diminishes markedly within hours, even when stored at 

-20° C. The glycerin apparently damages the membrane enough to allow 

ATP diffusion inward, but leaves the axonerne intact. 

A number of workers have carried out calculations concerning the 

energetics and hydrodynamics of cilia and flagella. Bidder (8) noted 

that the Reynolds number for flagellar movement, which is a measure of 

t he ratio of inertial to viscous forces operating on them during move

ment, is very small. Gray and Hancock (47) developed equations relating 

the swimming velocity of a flagellum with sinusoidal waves to the 

frequency, amplitude and wavelength of its waveform, and obtained good 

agreement with measurements on living sea-urchin spermatozoa. Brokaw 

(14) developed an equation relating swimming velocity and wave parameters 

of a flagellum whose waveform consists of circular arcs and straight 

lines, and obtained results differing only slightly from those of Gray 

and Hancock. The speed of the organism, then, does not seem very sen-
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sitive to the detailed shape of the waveform. Brokaw also calculated 

the bending moments due to external viscous forces and concluded that 

the flagellum must be very stiff in the straight and bent regions to 

maintain its waveform as it moves against the viscous resistance of the 

water, but this stiffness must be appreciably reduced at the junctions 

between these regions, where bending and unbending occur. These hydro

dynamic analyses also make it possible to estimate the rate at which a 

flagellum does work against external viscous resistance as it moves. 

Measureffients of ATPase activity have been made on cilia and flagella 

from a number of organisms, after treating them to remove permeability 

barriers to ATP (9). They break down ATP at high enough rates to 

satisfy the calculated energy requirements, assuming a reasonable 

efficiency of conversion. 

Variations of wave parameters with changes in temperature (52), 

viscosity (15) and hydrostatic pressure (55) have been studied. At present, 

it is difficult to interpret these changes in terms of a mechanism of 

flagellar beating. 

Structure and Composition of Cilia and Flagella 

Since Grigg and Hodge (48) introduced the electron microscope as a 

tool for the study of flagellar morphology in 1949, electron micrographs 

of cilia and flagella of many organisms have been published. The fam

iliar pattern of nine outer and two inner fibrils first published by 

Manton and Clarke (63) has proven to be quite widespread. More subtle 
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features have since been demonstrated. Each of the outer fibers is com

posed of two subfibrils, of approximately equal size, with a pair of 

arms projecting from one of the subfibrils. These fibrils appear to 

belong to a general class of cellular structures known as microtubules. 

A set of radial spokes and secondary fibrils are sometimes seen between 

the central and outer fibrils, but these structures may vary or be 

absent in electron micrographs of different cells. The central fibrils 

are often surrounded by a sheath, and an extra central fibril is some

times observed. 

The set of nine plus two fibrils, together with the matrix and 

auxiliary structures, is referred to as the "axoneme," and is illus

trated in Figure 2. Details vary among different cilia and flagella. 

Afzelius ( 2· ) has reported a motile spermatozoon which lacks the central 

fibrils. The mitochondria of spermatozoa are arranged around the basal 

portion of the axoneme, in a region of the cell called the "mid-piece." 

This region is quite short in invertebrate spermatozoa, but may extend 

for some distance in vertebrate spermatozoa. In other cells, the mito

chondria are generally found only within the cell body, with some mito

chondria near the flagella or cilia. Mammalian spermatozoa contain a 

set of large bodies distal to the mitochondria . These bodies run paral 

lel to the axonemal fibrils, between the axoneme and the flagellar mem

brane, and often taper distally . Their function is unknown. The tails 

of these spermatozoa are often surrounded by a heavy sheath. 

Although Miescher (66) found lipid and protein in plasmolysed 

salmon sperm flagella, and Marza (65) found proteins in the fl agella of 
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Figure 2. Diagram of cross-section of a flagellum viewed from basal 

end. Various structures, including secondary fibrils, spokes, central 

sheath and midfibrils are absent in some flagella. a = arm; cf = central 

fibril; cs = central sheath; fm = flagellar membrane; mf = midfibril; 

pf = peripheral fibril; s = spoke; sf = secondary fibril. 

Modified from Gibbons and Grimstone (39)· 
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various spermatozoa by histochemical techniques, detailed study of 

flagellar chemistry began with the work of Zittle and O'Dell (102), 

in 1941. They fractionated bull spermatozoa, and analysed the head, 

mid-piece and tail regions. 23% of the tail fraction was lipid, pre

sumed due to the sheath. 13.6% of the remaining material was nitrogen. 

The lipid fraction of flagella has since been studied by a number of 

workers (.'9 ) . Tibbs (92) examined flagella from several types of cells, 

and found flagella of Polytoma to contain 0.6% ribonucleic phosphorus, 

but found none in tails of fish spermatozoa. Infrared absorption indi

cated that the protein existed substantially in the a-helix form, and 

paper chromatography of Polytoma flagella revealed little hydroxyproline, 

ruling out collagenous protein as a major constituent. Culbertson (29) 

did find some hydroxyproline in cilia of Tetrahymena pyriformis, but 

considered the total amino acid pattern to be unlike that of collagen. 

He found a small amount of nucleic acid (0.4%), as have other inves

tigators (25,100). 

Muscle-like proteins have been found in flagella. Burnasheva (21) 

extracted "spermosin' 1 from bull sperm homogenates, using standard pro

cedures for the extraction of myosin from muscle. It has high ATPase 

activity and combines with actin to form "actospermosin", which shows a 

reversible configurational change on the addition of ATP, virtually 

identical to that of actomyosin. Cytochemical studies by Nelson and 

Plowman (71) on rat spermatozoa suggest that a rnyosin-like component is 

localized in the large bodies surrounding the axoneme. Plowman and 

Nelson (75) obtained "flactin" from starfish sperm flagella with standard 



13 

procedures for the extraction of actin from muscle. It polymerizes in 

0.1 M KCl, contains bound nucleotide, and combines with rabbit myosin. 

Pautard (73) extracted an actomyosin-like gel from fish sperm flagella, 

which was observed to undergo rhythmic oscillation on addition of ATP. 

At present, it is unclear whether these observations on muscle-like 

proteins reflect phenomena actually involved in flagellar beating . 

Mann (61) identified ATP in bull spermatozoa in 1945, and Burnasheva 

(22) later found them to contain guanosine triphosphate (GTP) and guanosine 

diphosphate (GDP) along with adenosine triphosphate (ATP), adenosine 

diphosphate (ADP) and adenosine monophosphate (AMP). Felix, et. al (35) 

found ATPase in salmon sperm flagella. ATP and ATPase activity have 

since been found in many flagella. Gibbons (38) separated isolated 

cilia from Tetrahymena pyriformis into fractions of axonemes, outer 

fibrils and plasma membrane. The axoneme accounted for about half of 

the total protein, the soluble matrix and membrane for about a quarter 

each. About 70% of the Mg++-dependent ATPase activity was associated 

++ -t+ 
with the axoneme; the remainder, which was activated by Ca and Mg 

was associated with the membranes. The ATPase activity of the axoneme 

was correlated with the presence of the arms on the outer fibrils. 

Mitochondria in the mid-piece of spermatozoa appear to contain the normal 

complement of respiratory enzymes and carry out oxidative phosphory l a tion 

in the presence of oxygen (40). Sea urchin spermatozoa are normally 

functional in sea water, which supplies dissolved oxygen but little or 

no substrate for glycolysis; they exhibit little or no glycolytic 

activity, and do not beat in the presence of respiratory inhibitors (78). 
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Spermatozoa of animals with external fertilization generally exhibit 

little or no glycolytic activity (62). On the other hand, spermatozoa 

of animals with internal fertilization (such as manunals), which are 

normally supplied with sugars, are capable of glycolysing a number of 

hexoses (62,76). Terner (90) found turnover in the lipid fraction 

of bull spermatozoa, and suggested that energy is used for active syn

thesis of lipids as well as for motility. 

Although ATP appears to be the primary energy source for motility, 

the implication of intermediate phosphagens (72) and the discovery of 

bound GTP along the outer fibrils (89) suggest that much remains to be 

learned about the chemical aspects of flagellar energetics. 

Acetylcholinesterase activity has been found in some flagella (69), 

and nerve-like transmission of a bending signal has been suggested. 

The effects of a number of chemicals - even LSD (41) - have been studied 

but the results are difficult to interpret, and these substances may 

be acting indirectly, through other parts of the cell. Sleigh (86), 

Bishop (9), Holwill (51), and Nelson (70) have extensively reviewed 

recent work. 

Current Speculations About the Mechanism of Bending 

It is generally agreed that flagella are self-contained organelles 

which utilize energy obtained from glycolysis or respiration to bend 

actively along their length. Beyond this, little is known about the 
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mechanism of beating. Two very general models are currently popular. 

The more popular model achieves bending by means of contractile 

elements arranged along the flagellum. These elements may contract so 

as to amplify the undulations of an otherwise passively vibrating 

elastic flagellum (59,60) or a bending wave may be propagated along the 

flagellum as contraction at one site triggers contraction of the next 

site (16). This model works equally well, of course, if the elements 

on the convex side expand instead of those on the concave side con

tracting. These contractile elements have usually been presumed to be 

located in the outer fibrils of the axoneme. Satir (81), however, 

has obtained electron micrographs of the tips of straight and bent cilia, 

in which the relative lengths of the outer fibrils can be compared. 

While the nine outer fibrils end in the same plane in straight cilia, 

the fibrils on the concave side of bent cilia extend farther at the tip 

than those on the convex side, by an amount consistent with the suppo

sition that the length of the outer fibrils remains unchanged during 

bending. Horridge (53), using photographs of the macrocilia of a 

ctenophore, has reached a similar conclusion. These observations sug

gest that, if bending is due to contraction, the contractile elements 

are not the outer axonemal fibers. 

The second model achieves bending by means of the sliding of in

compressible and inextensible filaments. The outer axonemal fibrils in 

Satir's photographs could be interpreted as having caused the cilium to 

bend as they slid past one another, instead of having slid passively as 

a result of bending (81). Both models are considered in more detail in 

Chapter 5. 



16 

Summary of Remaining Problems 

While a number of features of flagellar motility are known, much 

remains to be elucidated before a model can be constructed at the molec

ula r and electron micrograph levels of structure. Almost nothing is 

known about the mechanism of energy transfer along the flagellum, the 

chain of transfer of the high-energy phosphates, or the coupling of the 

energy reactions and the reactions concerned with beating. 

Although bending waves are normally initiated at the basal end of 

a flagellum (except for a few flagella, in which bends can be initiated 

at either end), it is not known whether other regions along the flagellum 

are capable of initiating waves. In addition, the mechanism of wave 

transmission is not understood. 

It has been suggested that flagellar waves are merely an amplifi

cation of the undulations of a passive, elastic flagellum (59) but the 

waveforms seen in ciliary beating are difficult .to produce with this 

model. The stiffness of an actively beating flagellum has not been 

measured, and might well' change during the beat cycle. The mechanism 

of transmission may be an integral part of bend formation, or it may 

be a separate process . 

Much remains to be discovered about the nature of the bends them

selves. Their possible contractile nature has already been mentioned. 

Only further comparative studies will tell whether flagellar bending 

is inherently a process of switching between discrete states or a con

tinuous bending process. The question of how unbending, and the various 
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wave characteristics, are controlled - which may, indeed, turn out to 

be a large set of questions - remains mostly unanswered. 
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CHAPTER 2 

Introduction to the Study of the Localization of 

Function along Flagella 
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Previous Work 

Few observations have been reported concerning the nature and 

effects of interactions along the flagellum or the localization of 

functions to given regions. Holwill (50) reported seeing flagella of 

a trypanosome flagellate, Strigomonas oncopelti, which were prevented 

from moving at one point by an obstruction. Flagella of this organism 

are normally capable of passing waves in either direction; distally 

directed waves were observed proximal to the obstruction, and proxi

mally directed waves distal to it. Nelson (67,70) observed rat sperm

atozoa beating distally while appearing quiescent and relatively 

rigid proximally. Baker (5) observed that in tails of spermatozoa of 

a urodele, Crypotobranchus, impeded by other spermatozoa or debris, 

cessation of beating near the proximal end did not prevent beating of 

more distal regions. In fact, any part of the flagellum could be 

motile while other parts were immotile. The tails of urodele sperma

tozoa, however, are not simple flagella. They are large organelles, 

called'undulating membranes," and contain structures in addition to 

the axoneme . 

Terni (91) found that pricking the undulating membrane of a sper

matozoan of a urodele, Geotriton fuscus, with a fine needle caused 

beating to stop at the point touched, and to reverse direction on both 

sides of that point. He claimed that, if he cut a tail into two or 

more pieces, each piece was capable of beating. He irradiated small 

parts of a tail, using an ultraviolet beam of 8p diameter (the tail was 
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about 700 p long). The irradiated region stopped immediately, but 

beating remained normal on both sides of that region. The complexity 

of urodele sperm tails makes these results difficult to interpret. 

The study of Engelmann (33) on frog spermatozoa severed behind 

the neck has been mentioned in the section on Early Observations in 

Chapter 1. 

Kaneda (54) impaired the beating of frog spermatozoa by either 

pressing a pcint on their tails to the coverslip with a glass micro

plate or drawing the spermatozoa into short lengths of capillary tubing. 

He found that the parts of the tail on the two sides of the microplate 

coul d beat at different frequencies. However, if less than 20% of the 

tail was proximal to the obstruction, beating usually stopped in the 

proximal region while the remainder of the tail continued to beat. 

Restricting the amplitude of part of the tail with capillary tubing 

caused a decrease in frequency. The frequency was decreased equally 

in and out of the capillary, but he did not state whether the amplitude 

was also decreased outside of the capillary. Walker (99) irradiated 

short regions of flagella of a trypanosome, Trypanosoma, with a focused 

beam of visible light (4300-4650 i) while the organism was in a medium 

containing acriflavine, which rendered it sensitive to this light . 

Beating ceased in the irradiated region, but continued on both sides of 

it. He did not give the directions of wave propagation or compare the 

beating on the two sides of the injury. Since trypanosomes are usua lly 

capable of initiating waves at either end of the flagellum, the results 

of these experiments are difficult to assess. 
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Gray (45) reported observing a sea urchin spermatozoon attached 

to a slide by a point in the central part of its flagellum. The region 

of the tail proximal to the point of restraint beat, while the remainder 

of the tail did not. As the spermatozoon moved slowly forward, points 

on the tail beat as they became proximal to the constraint, suggesting 

that beating cannot pass a point of restraint. This not only disagrees 

with the observations mentioned above, but is contrary to the behavior 

of several sea urchin spermatozoa which I have observed, which continued 

to beat distally to regions that had become attached to the slide. 

The previous observations on constrained or damaged spermatozoa 

are somewhat confusing. Beating appears to be possible on both sides 

of an immobilized region, but it is usually unclear whether beating was 

initiated independently in each region or some sort of bending signal 

passed through the immobilized area. This distinction is only clear 

on unusual types of flagella (50,91). If waves are initiated only at 

the basal end, propagation through a region apparently does not depend 

on undulation of the flagellum in that part and some regions of a fla

gellum can beat while others are quiescent. As yet, the ability of 

any region to initiate and sustain beating independently of other 

regions remains largely unexplored. 

Potentialities of Microbeam Irradiation 

Ultraviolet microheams have been used since 1912 (94) for destruc

tion at subcellular levels. Monochromatic sources may be used, and both 
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reflecting and quartz optics have been developed for focusing the col

limated beams, so that spot diameters of lp or less can be achieved. 

Alpha particle, proton, electron and X-ray beams have also been used 

to a small extent, but are generally less convenient to control than 

ultraviolet beams. The major drawback to using these beams for irra

diation of flagella is the relatively long exposures needed to produce 

significant damage. This disadvantage has been overcome with pulsed 

ruby laser microbeams. These lasers produce highly monochromatic 

visible light (usually 6943 .i) from a small (about 3 mm diameter), 

well-collimated source, and are normally focused by the microscope 

that is used Dr viewing the specimen to be irradiated. The laser is 

aimed into one of the oculars, and the beam emerges from the objective 

reduced and concentrated by a factor equal to the magnification of the 

microscope. The pulse duration is a fraction of a millisecond, pro

viding very quick destruction. Q-switched lasers, in which the pulse 

duration has been decreased to a fraction of a microsecond, provide 

even faster, more powerful tools. The use of a pulsed ruby laser micro

bearn for partial destruction of cells (human leukocytes) was first 

described in 1962 by Bes sis, Gire:;, Mayer and Nomarski (7). They realized 

that these cells are transparent to visible light, and stained them 

with Janus green B to absorb the red beam. When this stain is used, the 

mitochondria are selectively damaged (3). The main effect from ab

sorption of visible laser irradiation appears to be simple thermal 

destruction of the irradiated region, but second-order effects might 

arise from the intense electrical field of the be~m, which could cause 
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compressive (electrostrictive ) effects (8la), and from ionization and 

rapid vaporization, which could give rise to shock waves (30,36). 

The pulsed ruby laser provides a means of rapidly damaging a small 

region of an actively bending flagellum at a preselected point, and at 

a predetermined phase of its beat cycle at that point. It has been 

used for that purpose in the present study. Photomicrographs have been 

taken innnediately before and after irradiation, which show the changes 

in the movement of the flagellum resulting from the damage. The sperm

atozoa of a number of invertebrates have been used. These flagella have 

a relatively simple ultrastructure, and the components of their tails 

are probably common to most cilia and flagella. They have planar 

waveforms, so that photographs were obtained in which the entire tail 

is in focus. 

Localized Application of ATP to Selected Regions of the Tail 

No mechanism is known for the active transfer of ATP from mito

chondria to the various parts of the flagellum, and adequate ATP to 

supply the energy needed for beating can probably be supplied by simple 

diffusion from the basal region (17). However, an appreciable diffusion 

gradient would result, the distal region of the flagellum having a lower 

concentration of ATP than the proximal end. If any of the wave par

ameters at a point are sensitive to the ATP concentration at that point, 

variations in waveform along the flagellum should be noticeable. Since 

bending waves normally appear constant all the way to the tip (45, 14)~ 
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this suggests that either beating is insensitive to local ATP concen

tration or there is a mechanism for supplying a constant ATP concen

tration to the entire flagellum. 

When glycerinated spermatozoa are diluted into solutions contain

ing ATP, their beat frequency and wave velocity increase with increasing 

ATP concentration over very wide ranges (12), while other parameters 

appear to be relatively insensitive to ATP concentration, suggesting 

that at least some part of the flagellum is sensitive to ATP concen

tration. Glycerinated spermatozoa offer a system on which the effect 

of ATP gradients along a flagellum may be studied. They lack an internal 

ATP supply and their membranes seem permeable to ATP supplied from 

an external source. In the experiments described in the section on 

ATP Diffusi.on Experiments in Chapter 3, external ATP gradients were 

developed along glycerinated flagella by means of diffusion of ATP 

solutions from the tips of micropipettes. The gradient could be 

centered around any region of a flagellum, to test the possibility 

that waves might be initiated at, and their parameters therefore deter

mined by, the region with the greatest ATP concentration. Very steep 

gradients were used to test the effects of supplying ATP to a limited 

region of a flagellum, and the ability of any region to beat indepen

dently of the rest of the organelle. 
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CHAPTER 3 

Materials and Methods 
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Solutions Used 

The following solutions were used in this study. 

1. Prepared sea water: l0- 3M ethylenediaminetetraacetate (EDTA) (96), 

2% (w/v) polyvinyl pyrrolidinone (PVP) in filtered sea water, ad

justed to pH= 8.1 with 0.5 M tris (hydroxymethyl) aminomethane 

(tris). 

2. Tris-thioglycolate buffer (TTG): 0.2 M thioglycolic acid ad

justed to pH= 7.8 with tris. This stock solution was diluted 

down to 0.02 M for use in solutions (3) and (4). 

3. Basic glycerol salt solution: 0.01 M MgC1
2

, 0.25 M KCl, 

0.02 M TTG, 2% PVP, adjusted to pH= 7.6 with tris. 

4. Basic ATP salt solution: 0.004 M MgC1 2 , 0.25 M KCl, 0.02 M TTG, 

2% PVP, adjusted to pH= 7.6 with 0.5 M tris. 

5. Glycerol solution: 55% glycerol, O~l M MgC1
2

, 0.25 M KCl, 

0.02 M TTG, 2% PVP adjusted to pH= 7.6 with 0.5 M tris. 

ATP Diffusion Experiments 

Collection of Spermatozoa 

Experiments involving the diffusion of ATP from the tips of micro

pipettes were performed on spermatozoa of two species of sea urchins, 
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Strongyloc entrotus purpuratus and Lyte chinus pictu s ,collected in or 

near Newport Bay, California. The a nimals were induced to spawn by 

the injection of 1-2 ml of 0.5 M KCl into their perivisceral cavity 

(95 , 97) and about 1 ml of the spermatozoa was collected from the dorsal 

surface with a Pasteur pipette. 

Glycerina ti on of Spermatozoa for ATP Diffusion Experiments 

Spermatozoa were glycerinated by a method similar to that of Brokaw 

(18). The concentrated spermatozoa were diluted with an approximately 

equal volume of prepared sea water. This procedure helped to prevent 

clumping of the spermatozoa when they were introduced into the g ly

cerol solution. This sperm suspension in sea water was then introduced 

with a Pasteur pipette into about 20 volumes of basic glycerol solution. 

The tip of the Pasteur pipette had usually been drawn to a diameter of 

a few tenths of a millimeter so that a fine stream of spermatozoa could 

be injected into the g lycerol solution to facilitate the r apid sus-

pension of the spermatozoa in the glycerol solution. These preparations 

were stored between -10°c and -20°C, and used within a few hours. 

Apparatus for ATP Diffusion Experiments 

Pipettes were pulled on an automatic pipette puller from Kimax 

thin-wall capillary tubing with an outside diameter of 1.2 to 1.5 mil

limeters. The tubing had been cut into lengths of 3 inches, fire

polished, washed with hot 3 N HCl and rinsed with boiling filtered 

distilled water . . Two pipettes, with tip diameters of less than lp 

were produced from each piece . A pipette was broken to a final tip 
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diameter of about 1 p by touching its tip lightly to the frosted end 

of a frosted glass slide, and was filled through the shank with a so-

lution containing basic ATP salt solution and varying amounts of ATP. 

This solution was filtered through a Millipore filter of pore size 

-4 -2 
0.45 p. The ATP concentrations ranged franlO M to 10 M; most ob-

-4 
servations were made using 5 x 10 M ATP. A short length of polyethy-

lene tubing, partially filled with this solution, was placed over the 

tip to act as a reservoir until the pipette was ready for use. The 

end of the shank was cleaned with acetone and sealed with melted paraffin. 

The pipette was manipulated by means of a Brinkmann Instruments 

RP micromanipulator. It was placed in the micromanipulator and allowed 

to stand for about 15 minutes before use, to assure equilibr~tion of 

temperature and of flow of the solution in the pipette. All observations 

d . h b' f 18°C. were ma e wit an am ient temperature o 

Observations were made with a Zeiss GFL microscope, using dark-

field optics and continuous illumination. It was convenient to view 

the edge of the slide through the microscope while the pipette was 

being introduced under the coverslip; however, the mechanical stage of 

the microscope could not be moved back far enough to place the front 

edge of standard one-inch wide slides in the viewing field, so one-

half inch slides were used. These were prepared by scoring 311 x 111 

slides lengthwise with a diamond pencil and breaking them. 22mm x 22mm 

#1~ cover glasses were similarly divided into 3 equal pieces, and mounted 

above the slides. Vaseline was initially used to Dount the cover glasses, 

but was replaced with a mixture of 3 parts vaseline to 1 part paraffin 
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(by weight), which allowed prepared slides to be stored for long periods. 

Earlier observations were made with cover glasses mounted 50p above 

the slides; later ones were made with cover glasses mounted about 1 mm 

above the slides, supported by pieces of cut slides. 

Manipulation of Apparatus and Spermatozoa 

A drop of concentrated glycerinated spermatozoa was diluted into 

about 1 ml of basic ATP salt solution, and enough of this sus pension 

was placed on a slide to completely fill the space under the cover glass. 

The reservoir was removed from the tip of the pipette and the pipette 

was maneuvered under the cover glass and into the center of the viewing 

field. The mechanical stage was used to position sperma tozoa; the 

rr~cromanipulator was used to withdraw and reintroduce the pipette 

from a region of the field, as a means of regulating the ATP supply to 

that region. The apparatus is diagramed in Figure 3. 

Laser Irradiation Experiments 

Collection of Spermatozoa 

Most of the experiments involving microbeam irradiation were per

formed on the spermatozoa of a sea urchin, Strongylocentrotus purpuratus , 

collected as described above . Spermatozoa for these experiments 

were also obtained from a starfish, Pisa ster brevispinus, allowed to 

spawu spontaneously; from a tunicate, Ciona intestinalis, by dissection 

of the sperm duct; and from a keyhole limpet, Kega thura crenulata, by 

dissection of the gonad . 
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I: · 1.--1--1--l-~-s .._ _ __., 

p 

Figure 3. Apparatus used in ATP diffusion studies. Reservoir was 

removed immediately before pipette was introduced into sperm suspension . 

p = pipette; r = reservoir; s = sperm suspension. 
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Absorption of Beam Energy 

Cells are usually transparent to visible light and the need for a 

dye to increase absorption of light at 6943 R was anticipated. Although 

the diameter of the focused laser beam was 1 to 2 p in diameter, flagella 

are only about 0.2 µ in diameter, and only a fraction of the energy in 

the beam intersected a flagellum. In addition, the small diameters of 

flagella give them a large surface-to-volume ratio, allowing them to 

dissipate energy rapidly and further increasing the difficulty of heat-

ing them. These difficulties were circumvented by dissolving a dye in 

the medium, so that the entire volume of water intersected by the 

be;au absorbed light. Any dye that may have adsorbed to the spermatozoa 

should have further increased heating of the tail. Various dyes were 

tested for ability to absorb light in the region of 6943 R , using a 

Bausch and Lomb colorimeter. An optical density (O.D.) of about 1.5-2 

was sought for reasons discussed in Appendix 1. In practice, concen-

trations were adjusted to give convenient readings, and the concen-

trations necessary for O.D. = 1.5 were calculated from the Beers-Lambert 

law. Methylene blue, brilliant cresyl blue, Janus green B, and Food, 

"/~ 

Drug and Cosmetic (FD&C) blue #1 were examined and tested for toxicity 

to sea urchin spermatozoa in prepared sea water. 

A large fraction of methylene blue precipitated out when it was 

added to sea water, because of the high salt concentration. Dissolving 

Q'flo(w/v) methylene blue in sea water and filtering yielded an approxi-

"";'< 
Colour Index number 42090 (28). Obtained in 89% pure form from H. 

Kohnstamm & Co., Chicago, N.Y., Huntington Park. Also available as 

brilliant blue FCF. 
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mately correct absorption value, but when sea urchin spermatozoa were 

added to a filtered solution containing 0.1% methylene blue, they showed 

appreciably decreased activity. 

Brilliant cresyl blue and Janus green B also partially precipitated 

out when added to sea water. 0 . .5% (w/~ of brilliant cresyl blue, and 

OJ%(w/v) of Janus green B, absorbed enough light after filtration, but 

when sea urchin spermatozoa were added to a filtered solution of either 

dye, the proximal portion of the tails beat normally, while the waves 

died out quickly toward their tip. 

FD&:C blue #1 did not precipitate out in sea water. The absorption 

-5 
spectrum ~f a 10 gm/ml solution, as measured on a Bausch & Lomb color-

imeter, is shown in Figure 4a. The optical density at 695 mp 0 0.02. 

A concentration C = ~ ~ 10-5 = l0- 3gm/ml is needed for O.D. 2. 

Measurements of O.D. vs. log C for this dye in the region of 6943 i 

is shown in Figure 4b, and the Beers-Lambert law can be seen to hold 

fairly well for it. 
-3 

This dye, at a concentration of 10 gm/ml, caused 

no noticeable effects on intact spermatozoa, and caused fairly slight 

reduction in motility when added to suspensions of glycerinated sperm-

atozoa in ATP solutions. Irradiation of spermatozoa in FD&:C blue #1 at a 

-3 
concentration of 10 gm/ml caused the desired damage to the flagellum 

and the dye was used at this concentration in all the microbeam experi-

ments. 

Att a chment of Spermatozoa to Glass 

Spermatozoa were far easier to hit if their heads adhered to the 

slide or cover glass, holding them in position. Spermatozoa of St rongy lo -

centrotus rarely attach this way, and several techniq~cs for increasing 
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Figure 4. /.bsorption properties of FD&C blue 111, in distilled water. 
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the number adhering were tried. 

Silicone-coating slides and cover glasses with Siliclad(a water 

soluble silicone concentrate of Clay-Adams, Inc., N.Y.) did not noticeably 

affect the number of spermatozoa attaching to the glass. 

Finely ground pieces of cover glass were added to the sea water in 

an attempt to increase the surface area available for attachment. 

Spermatozoa did not adhere to these particles, nor did they attach to 

droplets of paraffin vapor whichv.e:-e condensed onto the slides for the 

same purpose. 

Fertilizin was prepared from sea urchin eggs (97) and added to 

the sperm suspension. About ~ cc of Strongylocentrotus purpura tus 

eggs was washed 3 times in JO ml of ice cold sea water and added to 

2 ml of sea water at room temperature, which had been adjusted to pH= 

2.8 with HCl. After 10 minutes, the eggs were spun down, the superna

tant was added to 4 parts of sea water and the pH was adjusted to 8.1 

with 0.5 M tris. This fertilizin solution was diluted with about 4 

parts of sperm solution. Fertilizin increased the number of spermatozoa 

attaching to the glass, but spermatozoa tended to attach .by the tip of 

their tails as well as by their heads, and often attached only by their 

tails. 

Strongylocentrotus purpuratus eggs were added to a dilute sperm 

solution, so that there were a few eggs on a slide. The eggs burst when 

the cover glass was placed on the slide, and a few spermatozoa could 

usually be found in the vicinity of each egg which were attached only by 

their heads and beating normally. 
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Bovine serum albumin (BSA) and PVP were added, both with and 

without eggs, but nei~her seemed to improve attachment. 

Preparation of Live Spermatozoa 

A very small drop of spermatozoa was diluted just before use with 

about 1 ml of prepared sea water. Strongylocentrotus purpuratus eggs 

were added to the sperm suspension in all experiments performed on 

Strongylocentrotus purpuratus spermatozoa. Spermatozoa of the other 

animals used (as well as glycerinated spermatozoa) attached only by their 

head often enough so that no special methods were used. 

A small drop of this suspension was placed on a slide, and a cover 

g lass was lowered over the drop. The drop was small enough to form 

a very thin film, and all the spermatozoa appeared to be swimming in 

the same plane. Such a thin film maximized the chance of spermatozoa 

attaching to the glass and minimized the chance of tails drifting out 

of focus after irradiation. The slides and cover glasses had been 

carefully washed, because the dark-field optics were very sensitive to 

light scattered from debris. 

Glycerination of Spermatozoa for Microbeam Experiments 

Glycerinated spermatozoa did not beat well in the thin films used 

for the microbeam experiments. In addition, the dye impaired their 

motility somewhat, so that glycerinated spermatozoa prepared by the 

method described for ATP diffusion experiments did not beat well enough 

for use in the microbeam experiments, and a modified preparative pro

cedure was therefore used. Concentrated semen was diluted with an 
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approximately equal volume of prepared sea water. This sperm suspension 

wa s then introduced with a Pasteur pipette into about 5 volumes of 

glycerol solution. The tip of the pipette had been drawn to a diameter 

of a few tenths of a millimeter. 
0 

This preparation was stored at -10 C 

for 12 hours, and was then sedimented in a Beckman Spinco centrifuge 

at 10,000 rpm in a 40A rotor for 10 minutes at -s0 c. Most of the 

spermatozoa were spun down, and the supernatant medium, containing 

a very dilute suspension of spermatozoa, was pipetted off and stored 

at -10°c until used. 

Preparation of Glycerinated Spermatozoa 

A few drops of the glycerinated sperm suspension were mixed with 

a small amount of a solution which contained basic ATP salt solution , 

-4 -3 
0.3%(w/v) BSA, 3 x 10 M ATP and 10 gm/ml FD&C blue #1 and had been 

adjusted to pH= 8.1 with 0.5 M tris, and a small drop of this suspen-

sion wa s placed on a slide and covered in the manner described in the 

section on preparation of live sperm. The initial concentration of 

spermatozoa in the glycerol solution, and the final concentration of the 

glycerol solution during observation, were both increased by this pro-

cedure. 

Appa ratus for Microbeam Experiments 

A general description of the equipment and its use is given in 

this section. A detailed description of the components is given in 

Appendix 2. A block diagr am of the system described in this section is 

shown in Figure 5. A simplified schematic diag~am is shown in Figure 6. 
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A Zeiss GFL microscope, with a trinocular he ad and a 40X variable 

aperture (n.a. 0.6-1.0), oil immersion objective, was used with dark-

field stroboscopic illumination. The microscope was mounted on a heavy 

Zeiss frame, which also supported a 35mm camera and associated reflex 

accessory above the vertical (monocular) tube of the microscope. The 

camera was a Robot VollaUtomat star II, and was mounted on a Zeiss 

reflex adapter with a magnification of O.SX. Photograp hs were taken 

on Kodak Tri-X or Iford Mark V films, at a magnification of 200X. They 

0 
were developed in Acufine for 30 minutes at 18-20 C, and stopped, fixed 

and washed in a conventional manner. The photographs are negative 

prints, on DuPont Varigam paper at contrast grade 4, made from inter-

mediate positive transparencies on Kodak Contrast Process Ortho film 

to increase contrast. 

A TRG model 513 biolaser system was used. The laser head and hous-

ing were mounted directly on the vertical tube of the microscope. Al-

though the housing was designed for use with a Leitz Ortholux micro-

scope, it was easily mounted on the Zeiss microscope by means of an 

adapter made for this purpose. The unit was light enough to be suppor-

ted by the microscope without aid. The laser head was cooled with 

filtered air. Laser emission was reflected down the monocular tube 

by a dielectric mirror between the monocular eyepiece (American Optical, 

lOX, wide angle) and the camera. A filter, which absorbed the red 

light of the laser, but passed the bluish light of the xenon flash lamp, 

was interposed between the mirror and the camera to diminish this image 

and the image of the focused laser spot. The size of the beam was 
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reduced by an aperture between the mirror and laser head. It was 

further reduced by the microscope optics, and emerged from the objective 

with a diameter of about 2 p, as determined by the manufacturer's 

specifications and the microscope optics. 

The laser was aligned in the following manner. A thin layer of a 

2 * 4.4 x 10- gm/ml solution of light green SF yellowish stain was allowed 

to dry on a slide (79), and a cover glass was cemented over it with 

Canada balsam. This slide was used as a target. A single pulse produced 

a hole in the dye film. The position of this hol~ was aligned to coin-

cide with crosshairs in one of the binocular (viewing) eyepieces by 

adjustment of controls on the mirror. 

Stroboscopic illumination was used for observation and photography. 

A General Electric FT-230 short gap xenon flash lamp was used as a 

light source. This lamp discharges without external triggering when 

a potential of greater than 2,500-3,000 volts is applied. It was ig-

nited by connecting across a capacitor which had been charged to 4,000 

volts. This capacitor served as the flash capacitor to store the energy 

for the discharge . A 0.07 p f capacitor (C3 in Figure 6) was used for 

the low-intensity flashes for observation; a qpf capacitor (CS in 

Figure 6) was used for the high·intensity flashes needed for photography. 

A 45 p f capacitor (C4 in Figure 6) was placed across the voltage supply 

for the larger flash capacitor, to store energy for multiple-exposure 

photographs. The intensity of these exposures diminished as 

Colour Index number 42095. It is also available as FD&C gr2en #2, 

and might be useful as a biological stain for laser adsorption. 
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this storage capacitor discharged, and the first image was easily 

distinguished from subsequent ones. 

A type 5949 high-power hydrogen thyratron was used as a switch 

between the flash lamp and each fl a sh capacitor. It was triggered by 

a ClK xenon thyratron, which was driven by pulses from the "output 

trigger" connector of a General Radio type 1531-A "Strobotac 11 strobo

scope. Two such pairs of thyratrons were used: one to connect the flash 

lamp to the small flash capacitor and one to connect it to the large 

flash capacitor. Output pulses from the 11 Strobotac 11 were directed to 

the appropriate thyratron by the electronic-flash contacts of the camera, 

and high-intensity flashes were produced only when the shutter was 

opened. 

During observation of spermatozoa, the 11 Strobotac 11 flashed at 

the frequency indicated on its control dial, which was usually adjus

ted to be equal to the beat frequency of the spermatozoon being ob

served. During photography, the 11 Strobotac11 could be operated at the 

same frequency or another, predetermined, frequency. This frequency 

was determined by the "photography timer". This timer also controlled 

the number of exposures on each photograph, by clamping the thyratron 

grid of the "Strobotac" to -9 volts a preselected time after the first 

high-intensity flash. From 1 to 5 exposures were available, at flash 

rates of 5, 10, 25, 50 and 100 flashes per second. The control dial 

of the "Strobotac" was calibrated against 60 Hz line current. An 

oscilloscope was calibrated against the 11 Strobotac 11 dial at each of the 

above freq~encies, and in turn was used to calibrate the timer to an 

accuracy of within a few per cent. 
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Figure 7 shows some spermatozoa which were not damaged by the 

laser. They were all beating at about 25 Hz, and the timer was set 

to 4 flashes at a rate of 50 flashes/second. The flash rate can be 

seen to be about twice the frequency of the tails, and the first expo

sure is noticeably more intense than the subsequent ones. 

The TRG model 513 biolaser system is normally triggered by a manual 

switch. A silicon controlled rectifier (SCR) was placed in series 

with this manual switch, and a pair of contacts on the relay activated 

by the camera was placed in parallel with it. The SCR was triggered 

to conduct by pulses from the multivibrator of the 11 Strobotac 11
• When 

the camera shutter was opened, the laser was triggered to fire on the 

next flash. The laser was thus synchronized with the stroboscope. 

When the stroboscope flashed at the same frequency as a beating flagel

lum, the laser was synchronized with that flagellum. 

When a suitable spermatozoon was selected for injury, the frequency 

of illumination was adjusted to be equal to that of the tail, so that 

the tail was in the same position each time the lamp fired. The mechan

ical stage was then positioned so that the desired point on the tail 

appeared under the crosshair. The microscope prism was set to the 

"monocular" position and the camera shutter was opened. On the next 

flash (high-intensity), the timer and the laser were activated. Al

though the xenon flash lamp of the laser probably flashed within a 

few microseconds of the illuminating flash, there is typically a delay 

of about 0.5 milliseconds from the start of the xenon flash until 

stimulated emissiori begins and the laser fires (57). This delay 
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Figure 7. Undamaged spermatozoa, beating at approximately half the 

exposure frequency. 

a. ~ purpuratus spermatozoon. Frequency before irradiation = 26.2 Hz. 

b. C. intestinalis spermatozoon. Frequency before irradiation 25.2 Hz. 
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allowed one exposure before injury, but did not allow the spermatozoon 

to move significantly far from the position at which the laser was aimed. 

The period of beating was typically about 40 milliseconds, and the amp

litude was about 5 p , so a point on the tail moved about 0.3p between 

the xenon flash and the firing of the laser. 

Measurements of Parameters from Photograph~ 

All measurements were taken on positive prints made at a magni

fication of 4,000 X on grade 5 paper. Lengths along a flagellum were 

determined by measuring lengths of polyethylene tubing laid along it. 

Radii of curvature of circular regions were measured by overlaying circles 

drawn on transparent plastic; radii of curvature of bent regions with 

varying radii were measured by overlaying Archimedean spirals drawn 

on transparent plastic. 
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CHAPTER 4 

Observations 
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Experiments With ATP Gradients 

When a pipette containing ATP was introduced into a field of sperma

tozoa, as described in the section on ATP diffusion experiments in 

Chapter 3, beating began within a few seconds and occurred within a 

radius of 50-100 p from the tip of the pipette. Beating always began 

at the basal end of a flagellum and proceeded distally, even when the 

tip of the pipette was placed near the distal end, thus presumably 

reversing any normal head-to-tail gradient. 

Most observations were made on spermatozoa which remained fixed 

in the field of view because their heads became attached to the slide 

or cover glass. As a pipette was brought nearer to a flagellum, the 

beat frequency increased continuously, while the amplitude and wave

length appeared to remain constant. When the pipette was brought to 

within a few p of the basal end, the frequency increased markedly and 

the amplitude fell to almost a quiver, as if a bend started before the 

previous one had developed fully. The critical frequency was not mea

sured stroboscopically, but was probably about 20 or 30 Hz. Ihe frequency 

decreased and the amplitude increased to their previous values as the 

pipette was withdrawn, and beating stopped completely when the pipette 

was r emoved from the field . These results were reversible: the pipette 

could be moved up to and away from a spermatozoan several times, with 

the same results occurring each time. 

No gradient of activity along the tail was noticed, except that 

the most distal portion (approximately the last quarter) often showed 
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no activity. Lack of activity in the distal portion is also found, 

however, in glycerinated spermatozoa in uniform ATP solutions. 

When the pipette was removed, bends almost always propagated to 

the tip before beating stopped; a spermatozoon almost never stopped 

beating with a bend having progressed only part ~ay along its flagellum. 

Sometimes, however, a bend could be stopped part way along by placing 

the pipette tip far enough from the flagellum so bends progressed very 

slowly, and quickly withdrawing the pipette. When the pipette was re-

turned, the bend continued. 

With a separation of 50? between the slide and cover glass, the 

re gion in the vicinity of the pipette tip quickly became saturated with 

ATP, and the ATP concentration was less localized than if the pipette 

had been diffusing into an unlimited volume (see Appendix 3). To reduce 

this effect and produce sharper gradients, the experiments were repeated 

with the cover glasses mounted 1 mm above the slides . Using these 

-3 
slides, the tip of a pipette filled with 10 M ATP could be brought 

to within 15 ? of the basal end of a flagellum without producing beating. 

As the pipette was moved nearer a spermatozoon, bending waves began at 

the basal end of the tail and proceeded distally . wnen the pipette 

was placed near the distal end of the tail, the tail remained ina ctive 

~ntil the pipette was moved near the basal end . Once beating bega n, 

no changes in velocity or amplitude were observed as the bend propa -

gated along the tail, except in the tip region, as noted previously. 

Beating could not be initiated in other regions by placing the pipette 

tip near them. 
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Laser Irradiation Experiments 

General Considerations 

The results of irradiation were recorded on multiple-exposure 

photographs, as described in Chapter 3. All photographs shown were 

taken at a flash rate of SO/second and have a final magnification of 

3,000 X, except where otherwise noted. Damaged regions generally 

appear as sharp breaks, with visible damage limited to a region of 

1 ? or less in length. 

The beat frequency (f) of a spermatozoon before lasing was de-

termined from the "Strobotac", which had been adjusted to flasr. at the 

same frequency. The wavelength (L) of a spermatozoon before lasing al-

ways refers to the wavelength as measured along the flagellum, and was 

determined by direct measurement on a photograph. Measurement of the 

position of a bent region was m&de to the center point of that region. 

The normal velocity (V ) at which bends movedalong the fl &gellum, was 
s 

calculated from these observed values of f and L. The distance (S') 

that a wave travelled between two successive exposures after irradiation 

of the flagellum was determined from direct measurements on a photo-

graph. The time (t') between exposures was known, and the velocity 

V ' (Vs' = S'/t') was calculated. These measurements are illustrated 
s 

in Figure 8. 

An irradiated flagellum often attached to the slide or cover glass 

at the damaged point, which appears in the same position on the last few 

images of a photograph. 
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a. Spermatozoon before lasing. 

b. Spermatozoon after lasing. S'=S' 
2 

travelled between exposures. 

Figure 8. Values Measured From Photographs 

S' = distance 
1 
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That portion of a flagellum between the head and the irradiated 

point is referred to as "proximal"; that portion of the tail beyond 

the point of damage is referred to as "distal." Observations on the 

effects of irradiation on the proximal and distal regions are described 

separately. 

Although the microbeam experiments were usually performed on 

spermatozoa of Strongylocentrotus purpuratus, spermatozoa of some 

other invertebrates were also irradiated and photographed, as mentioned 

previously and noted in the photographs. The effects were similar on 

all types of spermatozoa, and conclusions drawn from these experiments 

apply to all spermatozoa observed. 

Behavior of the Proximal Portion of Live Spermatozoa After Laser 

Microbeam Irradiation 

The irradiated region of live spermatozoa almost invariably adhered 

to the slide or cover glass. Suchipermatozoa, in which the proximal 

portion of the flagellum stopped immediately after irradiation, are 

st.own in Figure 9. Spermatozoa which adhered to the glass and contin

ued to beat prox~mally are shown in Figure 11. The frequency of the 

spermatozoon shown in Figure lla was 26 Hz before irradiation, slightly 

faster than half the frequency at which the exposures were taken (50 

flashes/second). If the proximal beating had continued unchanged after 

injury, the phase of the waveform in images 3 ana 4 would be slightly 

more advanced than that of images 1 and 2, respectively. However, the 

reverse is true, indicating that beating slowed down after irradiation. 
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Figure 9. Spermatozoa in which the proximal portion (arrows) did not 

beat after irradiation. Arrowhead indicates point irradiated. Numbers 

indicate order in which exposures were taken. 

a. .§...:_ purpuratus spermatozoon. Frequency before irradiation = 18.3 Hz. 

b. ~ ,purpuratus spermatozoon. Frequency before irradiation= 20.0 Hz. 

Figure 10. Spermatozoon in which the irradiated point (arrowhead) did 

not attach to the glass. First two exposures were taken before irradiation. 

Numbers indicate order in which exposures were taken . 

.§..:.. purpuratus spermatozoon. Frequency before irradiation = 20.2 Hz. 
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Figure 11. Spermatozoa in which the proximal portion continued to beat 

after irradiation. Numbers indicate order in which exposures were taken. 

a. ~ purpuratu.£. spermatozoon. Frequency before irradiation = 26.0 Hz. 

b. ~ purpuratus spermatozoon. Frequency before irradiation= 29.3 Hz. 

Figure 12, Spermatozoon in which the radius of curvature of' a proximal 

bent region (arrows) is smaller in exposure 3 than exposure 2. Numbers 

indicate order in which exposures were taken. 

.§...:.. purpuratus spermatozoon. Frequency before irradiation 20.0 Hz . 
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In normal steady state beating, the relationship between the frequency 

of bend initiation and the velocity of bend propagation is well defined, 

and the two are easily distinguished. However, the wavelength is not 

constant near the head even in intact spermatozoa, so decreases in these 

parameters could not be distinguished in the proximal waves in these 

photographs. 

The continuation of beating in a proximal region after irradiation 

was related to the length of that region. This relationship is shown 

in Figure 13. The proximal region continued to beat only if it was at 

least 25-30% of the length of the entire tail. 

Figure 10 shows a spermatozoon in which the injured point did not 

adhere to the glass. Some bending of the proximal portion occured 

after irradiation, aithough no beating was occurring when the sperma

tozoon was observed a second o~ two later. 

Spermatozoa were generally observed visually within a second or 

two after injury. Beating had often stopped in the proximal region, 

and when it did continue its frequency was usually much lower than 

before irradiation. The amplitude sometimes appeared normal, but in 

other cases it was greatly reduced. The beating often slowed gradually 

to a stop within a few seconds, although the proximal regions of some 

spermatozoa beat spasmodically for several seconds before stopping. 

When the injured point was attached to the glass, the radius of 

curvature of a bend decreased as the wave passed down the proximal 

region and the bend was forced into a smaller radius between the at

tached point and a new bend coming along behind. This can be seen in 

exposures 2 and 3 0f Figure 12. 



continue 

stop 

57 

. . ............... . 

. i: . • • . •.. • • .. 

. I .2 .4 .5 .6 .7 .s .9 

Figure i3. Continuation 0£ beating vs. iength. L = length of 

proximal region; Lo = length of entire tail. 
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Behavi or of the Proximal Portion of Glycerinated Spermatozoa After 

Las e r Microbeam Irradi a tion 

Glycerinated spermatozoa beat rather slowly and asymmetrically 

under the conditions necessary for irradiation. Stroboscopic deter

mination of the beat frequency of such spermatozoa is very difficult . 

The "Strobotac" could not be synchronized with these spermatozoa, and 

exact measurements of their beat parameters were not made . The prox

imal regions of irradiated glycerinated spermatozoa often appeared 

to beat quite normally after damage , without obvious changes in ampli

tude , f requency or wavelength. In contrast to irradiated live sperm

atozoa, the glycerinated spermatozoa often continued beating proximally 

for several minutes. 

Behavior of the Distal Portion of Live Spermatozoa After Laser Micro

beam Irradiation 

Bent regions distal to the injured point at the time of irradiation 

usually continued propagating to the tip of the tail, but the radius of 

curvature, total angle and velocity of the bent regions were all affected 

by the damage. No new bends ever developed in the distal region after 

injury . Propagating distal bent regions can be seen in most of the 

photographs, and are particularly clear in Figure 9. The effects of 

r adiation on the above parameters are described separately, snd the 

relationships between these effects are discussed . 

Radius of Curvature of Distal Bent Regions 

The r~dius of curvature of distal bent regions never decreased, 

and in approximately one out of four of the injured spermatozoa it 
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remained constant or nearly constant (within 10% of its original length) 

after irradiation, as shown in Figure 14. In approximately one out of 

ten of the injured spermatozoa, the radius quickly increased to a new 

value at which it remained,as ahown in Figure 15. It increased by 

approximately 25% in Figure 15a and approximately 50% in Figure 15b; 

these values are typical. In the remaining cases, the radius usually 

continued increasing as it proceeded along the tail, as shown in 

Figure 16. The radius was clearly not constant within a given bent 

region, but increased distally. However, within a bent region, the 

radius of curvature at a given point on the flagellum remained constant 

in two successive exposures, even though it was in a more proximal 

part of that region on the later exposure; that is, the radius of 

curvature at a point on the flagellum remained constant while that 

point was within a curved region. The only exceptions to this were 

relatively rare spermatozoa in which distal waves appeared to have 

stopped propagating and begun straightening, as shown in Figure 17. 

When the radius of a bent region remained constant, it did so 

even as that region approached the tip of the tail and shortened, as 

shown in Figure 18 . This is also true of intact spermatozoa (14), 

as shown in Figure 19. 

There were often two distal bent regions. When the radius of the 

more proximal bent region increased, that of the more distal one some

times increased, as shown in Figures 16a and 2la. It was also common, 

however, for the radius of the more proximal bent re gion to increase 

while that of the more distal one remained constant, as shown in Figure 20. 
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Figure 14. Spermatozoa in which the radius of curvature of a distal 

bent region (arrows) has remained constant. 

a. .§...:.. purpuratus spermatozoon. Frequency before irradiat~on 17.5 Hz. 

b. f..:.. brevispinus spermatozoon. Frequency before irradiation= 19.2 Hz. 
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Figure 15. Spermatozoa in which the radius of curvature of a distal 

bent region (arrows) quickly increased to a new constant value. Numbers 

indicate order in which exposures were taken. 

a. S. purpuratus spermatozoon. Frequency before irradiation 28.2 Hz. 

b . .§..:_ purpuratus spermatozoon. Frequency before irradiation= 25.2 Hz. 
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Figure 16. Spermatozoa in which the radius of curvature of ~oth the 

more proximal (arrows) and the more distal (arrowheads) of two distal 

bent regions have increased. The flagella were irradiated within a 

few p of their basal end. 

a. f...:.. brevispinus spermatozoon. Frequency before irradiation 16. 7 Hz 

b. ~ purpuratus spermatozoon. Frequency before irradiation; 17.2 Hz 
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Figure 17. Spermatozoa in which a distal bent region appears to have 

stopped propagating and started to straighten. 

a. P. brevispinus spermatozoon. Frequency before irradiation 16.7 Hz 

b. :th. crenulata spermatozoon. Frequency before irradiation= 20.3 Hz 
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Figure 18. Spermatozoa in which distal bent regions (arrows) can be 

seen approaching the tip of the flagellum. 

a . .§..:. Qurpuratus spermatozoon. Frequency before irradiation 21.8 Hz 

b . .§..:. purpuratus spermatozoon. Frequency before irradiation = 20.5 Hz 

Figure 19. Intact spermatozoon in which bent regions (arrows) can be 

seen approaching the tip of the flagellum . 

.§..:. purpuratus spermatozoon. Frequency before irradiation 22.7 Hz 
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Figure 20. Spermatozoa in which the radius of the more proximal of 

two distal bent regions (arrows) increased, while that of the more 

distal bent regions remained constant. 

a. ~ purpuratus spermatozoon. Frequency before irradiation 25.7 Hz 

b. R..:.. brevispinus spermatozoon. Frequency before irradiation = 18.5 Hz 
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Figure 21. Spermatozoa in which the shape of a distal bent region was 

preserved as it expanded. The photograph of the spermatozoa in the 

overlying transparencies has been reduced so that exposure 4 of the 

bent region in the transparency coincides with exposure 1 of that 

region in the print. 

a. Transparency reduced to 73% of print size. The distance travel

led by this region is significantly less between exposures 3 

and 4 than between exposures 1 and 2. The radius of the more 

distal of the two distal bent regions (arrowhead) has also 

increased. ~ purpuratus spermatozoon. Frequency before ir

radiation= 21.3 Hz. 

b. Transparency reduced to 53% of print size. ~ purpuratus 

spermatozoon. Frequency before irradiation= 20.2 Hz. 
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This was not due to a signal having reached the more distal region 

later than the more proximal one, since the small radius persisted for 

2 or 3 exposures after injury. 

Length of Distal Bent Regions 

The length of a bent region never decreased, and never increased 

when the radius of curvature remained constant; however, it commonly 

increased with increasing radius of curvature. Although exact length 

measurement of such regions is difficult, the shape of the bent region 

was retained in some spermatozoa as the radius increased, so that a 

photograph can be reduced until the reduced image of a later exposure 

coincides with the full-sized image of an earlier exposure. In Figure 

2la, the overlying transparency has been reduced to 73% of the print 

size; in Figure 2lb, it has been reduced to 53% of the print size. 

Length often increased by 25% or more, but no definite relationship 

was found between increases in length and radius of curvature. 

Angle of D~stal Bent Regions 

Bent regions are bordered by straight regions, and the angle 

between these straight regions (a) was measured, as shown in Figure 22. 

The angle remained constant, of course, in - spermatozoa such as those 

shown in Figure 21, in which the shapes of bends were retained; but in 

spermatozoa such as those shown in Figure 22, this angle increased after 

injury, although the length of the bent region remained rather constant. 

Figure 22c shows a spermatozoon irradiated just behind the head, in which 

a bent region appears to have straightened completely. 
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Figure 22. Spermatozoa in which the total angle (a) of a distal bent 

region has increased as the region propagated. 

a. ~ purpuratus spermatozoon. Frequency before irradiation 24.8 Hz 

b . .§...:_ ~uratus spennatozoon. Frequency before irradiation 24.0 Hz 

c. A bent region (arrows) appears to have straightened completely 

with no propagation. ~ intestinalis spermatozoon. Frequency 

before irradiation approximately 12 Hz. 

Exposures taken at 10/second. 
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Velocity of Distal Bent Regions 

When a flagellum was irradiated, the velocity of distal bent 

regions almost invariably decreased. In approximately one out of ten 

of the injured spermatozoa, this velocity quickly decreased to a new 

value, which varied from less than 30% of normal to over 90%, but no 

definite relationship was found between velocity and position irradiated. 

Because the normal velocity of bend propagation is constant, the dis-

tinction could not usually be made between the velocity having decreased 

to a constant velocity, which depended only on conditions at the ir-

radiated point, or having decreased to a constant fraction of the 

velocity at each point along the flagellum. This distinction can be 

made, however, in the spermatozoon shown in Figure 23, where the wave 

velocity increased towards the tip before irradiation. Exposures 1 

and 2 were taken before irradiation; exposures 3 and 4 were taken after . 

The normal positions of bent regions as a function of time, as measured 

in exposures 1 and 2, are shown by the solid line in Figure 25. If 

the velocity (Vs') after irradiation was a constant fraction (k) of the 

normal velocity (Vs) at each point, the time (t') needed to propagate 

a given distance (S) would have been 

f SdS' 
t' = -, 

o Vs 
-- 1 JSdS' 

k o Vs 
= t/k, where t = the time 

needed to propagate the distance S before irradiation, as indicated by 

the dashed line. The position of the distal region in exposure 4 is 

consistent with the velocity having decreased to a constant fraction of the 

normal velocity at each point along the flagellum . 



78 

Figure 23. Spermatozoon in which the velocity of bent regions increased 

distally before irradiation. Numbers indicate order in which exposures 

were taken. Exposures 1 and 2 were taken before irradiation. Arrowhead 

indicates point irradiated. Arrows indicate distal bent region followed. 

f..:_ brevispinus. Frequency before irradiation 20.3 Hz 

Figure 24. Spermatozoa irradiated near the center of a bent region. 

Arrowhead indicates point irradiated. 

a. 2...:._ purpuratus spermatozoon. Frequency before irradiation 23.2 Hz 

b. A bubble appears to have formed at the point irradiated . Numbers 

indicate order in which exposures were taken. The distal bent 

region (arrows) has travelled significantly less between exposures 

3 and 4 than between exposures 1 and 2. 2...:._ purpuratus spermatozoon. 

Frequency before irradiation = 26.8 Hz. 
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Figure 25. Propagation of bends in spermatozoon shown in Fi gure 23. 

Solid line = position of bent regions before irradia tion; da shed line 

position of a bent region after irradiation; dotted line = linea r ex-

trapolation of position of that bent region in exposures 2 and 3. 
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A second class of spermatozoa was observed, in which the velocity 

of distal bends did not assume a constant value, but continually de

creased as the wave proceeded along the tail, as shown in Figure 2la 

and 24b. In Figure 2la the average velocity has decreased from 42% 

of normal between exposures 1 and 2 to 17% between exposures 3 and 4; 

in Figure 24b it has decreased from 41% of normal between exposures 

1 and 2 to 17% between exposures 3 and 4. 

Relationships of Effects 

The effects of irradiation have been described for radii of cur

v2ture and velocities of distal bent regions, and changes in total 

length and angle subtended from those bent regions whose radii of cur

vature increased have been described. Those regions which exhibited 

the greatest increase in radius usually showed the greatest decrease 

in velocity. Beyond this, no well-defined relationships were observed, 

and changes in velocity were not necessarily related in any flagellum. 

The angle and length of a region are, of course, directly related for 

a given radius. They remained constant with constant radius, a nd 

neither ever decreased as the radius increased. Beyond this, no definite 

relationship was observed between them and either the radius or velocity. 

A bent region has been considered to be immediately distal to the 

irradiated point if the point was anywhere from the proximal end of that 

region to the distal end of the following bent region. No relationship 

was observed between the locus of damage within those limits and the 

effects produced. 
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Irradiation of Bent Regions 

Irradiating the proximal end of a bent re~ion did not prevent 

propagation of that region. The propagation of such regions is shown 

in Figure 27. When a flagellum was irradiated near the center of a 

bent region, that region is absent in subsequent exposures, as shown 

in Figure 24; shortened bent regions were never maintained. Figure 26 

shows a spermatozoon which appears to have been incompletely damaged 

in a bent region. The bend appears to have passed through the irra

diated point, and to have regained its original length. 

Irradiation of Basal Regions 

Figures 14a, 16, 17b and 21 show spermatozoa which were irradiated 

within a few? of their heads. The effects appear identical to those 

in spermatozoa irradiated more distally. Figures 15a and 28 show 

similarly irradiated flagella which exhibited a second effect: the 

region behind the head curved. This could be due to the force of waves 

passing back along the tail, if the tail became unusually flexible in 

that region. These flagella were straight when observed a second or 

t~vo later. No new bent regions ever developed after injury to the 

basal end of the flagellum. 

Distal Portion of Glycerinated Spermatozoa 

Exact determination of the beat parameters of glycerinated sperma

tozoa before irradiation were not made, for reasons discussed earlier in 

this chapter. Glycerinated spermatozoa were not as bright as live sperm

atozoa under dark-field illumination, and were ve~y difficult to photo

graph. A glycerinated spermatozoon which was irradiated near the head 
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Figure 26 . Spermatozoon which appears to have been incompletely 

damaged by irradiation in a bent region (arrows). Arrowhead indicates 

point irradiated. Numbers indicate order in which exposures were taken. 

§...:.. purpuratus spermatozoon. Frequency before irradiation= 25.0 Hz. 

Figure 27. Spermatozoa irradiated at the proximal end of a bent region 

(arrows). Arrowhead indicates point irradiated. 

a. ~ purpuratus spermatozoon. Frequency before irradiation 20 .2 Hz 

b . .f.:.. brevispinus spermatozoon. Frequency before irradiation approx

imately 15 Hz 
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Figure 28. Spermatozoa irradiated within a few p of the basal end of 

their flagellum, showing a curvature (arrows) behind their head. Numbers 

indicate order in which exposures were taken. 

a. ~ purpuratus spermatozoon. Frequency before irradiation = 24.8 Hz 

b. ~ purpuratus spermatozoon. Frequency before irradiation = 26.0 Hz 

Figure 29. Glycerinated spermatozoon, irradiated near the head. 

~ purpuratus spermatozoon. Frequency before irradiation approxi-

mately 10 Hz. Exposures taken at 25/second. 
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is shown in Figure 29. The distal bend propagated to the tip of the 

tail. No bends ever developed distal to the point of irradiation, even 

when the proximal section continued to beat actively. 
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CHAPI'ER 5 

Discussion 



89 

Role of the Basal End of the Flagellum in Initiating Bends and 

Determining Wave Parameters 

Experiments with ATP Gradients 

Glycerinated spermatozoa receive energy from the ATP in the external 

medium, which presumably enters all along the flagellum. Even in intact 

spermatozoa, the tails have been reported to be permeable to some ions 

(88). When external ATP gradients were established along a flagellum, 

bending waves were only initiated at the basal end, even when the ATP 

source was placed near other regions. These regions did not beat when 

the ATP supply was localized to them. ATP gradients established by the 

micropipettes caused no obvious variations in wave parameters along the 

flagellum, even though these parameters could be changed by changing 

the ATP concentration at the ·basal end of the flagellum. The determina

tion of wave parameters by ATP concentration appears to be localized 

to the basal region. 

Laser Microbeam Experiments 

When a point on a flagellum was irradiated, bent regions distal to 

the point of damage continued to the tip of the flagellum, but new bent 

regions never formed distal to the irradiated point, even though the 

proximal region often continued beating. 

Although the mechanism of energy transfer from the mitochondria 

to points all along the flagellum is not knoun, it could possibly be 

diffusion of an energy-rich compound such as ATP (17). However, the 

cessation of beating does not seem to have been simply due to interruption 
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of an ATP gradient along the tail, since, for a gradient to produce 

enough ATP to reliably supply energy for every beat, there must be an 

excess supply of ATP, so that at least a few beats should have occurred 

distally after irradiation. This was never seen to occur. In addition, 

glycerinated spermatozoa, in which ATP presumably entered all along 

the flagellum from the external medium, never initiated distal bends 

after irradiation. 

This inability of distal regions to beat independently indicates 

that the basal region of a flagellum is specialized for the initiation 

of bends. This agrees well with the observation that mechanically 

damaged glycerinated spermatozoa often beat proximal to the damaged point, 

while the distal region is inactive, but independently beating proximal 

and distal portions of glycerinated spermatozoa are never observed. 

In fact, breakage of tails by mechanical shearing has been used to 

inhibit the motility of distal tail fractions (19). 

Distal regions failed to initiate bends even when a tail was 

irradiated within 1 or 2p of its basal end, indicating that initiation 

is localized very close to the base of the flagellum. Cilia and flagella 

have been removed from cells by several investigators (11) and can be 

made to beat on the addition of ATP to the medium, even though they 

have been separated from their basal bodies. The region of the flagel

lum within a few? of the basal end therefore appears to be the site of 

bend initiation. 
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Formation and Propagation of Bends 

Current Models 

The mechanical models for flagellar bending which are currently 

popular fall into two classes. According to the more prevalent of these, 

bending is caused by contractile elements arranged serially along the 

flagellum. In the second of these, bending is achieved by the active 

sliding of incompressible and inextensible filaments, which extend 

the length of the flagellum. In both models, the outer axonemal fibrils 

are generally identified as the active elements. 

Local Contraction Model 

Several investigators (45,59,85) have suggested that bending is 

achieved by the contraction of elements on one side of a bent region. 

A simple version of this model is shown in Figure 30. Some longitudi

nal component of the flagellum must be incompressible enough for bending 

to result rather than contraction. Connections between the elements on 

the two sides keep bending localized to the region of the contracting 

elements. Development of circular bent regions consists of a trans

ition of the elements on the concave side of that region from a relaxed 

to a contracted state, perhaps accompanied by a passive extension of 

the elements on the convex side. Contraction of one element may trigger 

the contraction of the next element . This model could work equally well, 

of course, with elements which actively extend rather than contract. 
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Figure 30. Local contraction model. 

a. Links in straight regions. 

b. Links in hcnt regions 

Figure 31. Sliding filament model 
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Sliding Filament Model 

Bending may also be produced if fibrils are caused to slide with 

respect to one another, without contracting (80). Two simple versions 

of this model are shown in Figure 31. Bending is kept localized to a 

small region by cross-links, as in the local contraction model, and 

the filaments are assumed to be flexible, but incompressible and in

extensible. The cross-links can be in the straight regions, as shown 

in Figure 3la, or in the bent regions, as shown in Figure 3lb, or both. 

A bent region is propagated in the former model by maki ng connections 

at its proximal end and breaking them at its distal end; in the latter 

model the r e gion is propagated by making connections at its distal 

end and breaking them at its proximal end, and connections in the bent 

region continually shift as the region propagates. 

The sliding filament model imposes more severe constraints on ben

ding than the local contraction model, and should react differently to 

microbeam irradiation. 

Experimental Implication on Models of Beating 

In the microbeam irradiation experiments, the proximal region 

stopped beating when the flagellum attached to the glass at the ir

radiated point if that region was less than 25 to 30 % of the length 

of the entire tail . The length of a normal bent region of a s ea urchin 

spermatozoon is approximately 25% of the length of the entire tail (14). 

The unattached spermatozoon shown in Figure 10 has continued to bend 

after irradiation, and in glycerinated spermatozoa, which showed less 
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tendency to adhere to the glass than live spermatozoa, proximal beating 

often continued for several minutes. In mechanically broken sperma-

tozoa, very small pieces of tail remaining attached to the heads are 

regularly observed beating. The inability of short proximal sections 

to beat may therefore be due to mechanical constraint caused by their 

attachment to the glass . These results agree well with the observations 

of Kaneda (54) that frog spermatozoa usually stopped beating proximally 

when a point on the tail was pressed to the slide so that less than 

20% of the flagellum was proximal to the constraint. This behavior 

would be expected of a sliding filament model, if the filaments were 

prevented from sliding past one another at the constrained point. 

Irradiation affected the radius of curvature, length, total angle 

and velocity of dista.l bent regions. Bending and unbending at a point 

are therefore affected by activities in other regions of the flagellum, 

indicating that bend propagation is not a completely localized pheno-

menon. The outer axonemal fibrils do not appear to have slid past one 

another at their basal ends in electron micrographs, so that the develop-

ment of new bends in a sliding filament model necessitates movement 

of the active filaments along the entire flagellum. Interruption of 

this movement in the distal portion by irradiation might easily result 

in immediate changes in the beating in that region. 

On the other hand, some of the changes in the parameters of distal 

bent regions are difficult to explain in terms of a sliding filament 

model. Figure 32 illustrates the parameters of a bent region. An 

increment of length of the inner filament is dS. (8) = r(8)d8. Similarly, 
1. 
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d~ 

Figure 32. Parameters of a bent region. 
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dS ~ (r(8) + t.r)d8. The incremental difference in the length of the 
0 

inner and outer filaments is dS(8) = dS -dS.= 
0 l. 

t.rd 8. The total dif-

ference in the length of the filaments within the bent regions is 

S ={ ds(8) = {t.rd8 = 8 t.r = (180-a) t.r. So a= 180- S/ t.r, inde-

pendent of the shape of that region or the mechanism of bending; the 

total angle (a) of a bent region is determined only by the difference 

of length of the inner and outer fibers in that region. The total 

angle of distal bent regions often increased in irradiated spermatozoa, 

without preventing them from propagating. An increase in a only 

requires elements to contract less than normally in a contractile model, 

but requires filaments to slide past one another in a sliding filament 

model. A sliding filament model has the difficult task of maintaining 

and propagating a be~t region by cross-links between the filaments while 

those filaments are sliding and breaking the cross-links within or on 

at least one end of that region. A similar difficulty has been mentioned 

by Gibbons and Grimstone (39), who point out that flagellar bending 

would require continual sliding all along the flagellum due to the for-

mation of new bent regions at the basal end. 

Laser irradiation never produced "partially damaged" bent regions; 

damage within a bent region caused that region to quickly straighten. 

Two types of partial damage might have been expected: 1) irradiation 

within a bent region might have led to propagation of a shortened bent 

region; 2) bending might have continued to propagate, without being fol-

lowed by unbending, causing the flagellum to curl up. Either of these 

results might be expected from a local contraction model for bend propa-
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gation in which ben<ling and unbending are relatively independent events. 

However, bent regions consistently appear to be maintained as units. 
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Summary of Concl:..isions 

Bending waves appear to be initiated only in the basal region of 

a flagellum, and the wave parameters are determined primarily by con

ditions in this region. 

The type of change occurring in the proximal portion and the 

rapidity of change occurring along the distal portion upon irradiation 

suggest constraints imposed by incompressible and inextensible sliding 

filaments, while the types of changes occurring within distal bent 

regions suggest that the actual forces accomplishing oending involve 

some form of contraction. 

Bending a t any point is affected by activities at other points, 

but propagation of bent regions does not require that the entire f la

gellum remain intact. However, it does require that the entir~ bent 

region remain intact. 
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APPENDIX 1 

Dye Concentration Needed for Irradiation of Spermatozoa 
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The laser beam intercepted a volume of dye solution approximately 

2 }J deep and 2 }l in diameter. This volume would absorb approximately 

3 x 10- 9 joules in heating from 18°C (at which the slide was maintained) 

to l00°c, if the water were heated instantaneously so that no conduction 

losses occurred. The rate of cooling of an instantaneously heated 

sphere is discussed by Carslaw and Jaeger (23), who present a graphical 

solution. One or 2 microseconds is needed for the center of a sphere 

of the above volume to cool halfway down to its initial temperature; 

the dye solution must therefore absorb at least 3 x 10-
9 

joules/micro

second in order to reach a temperature of around l00°c. The energy of 

the laser pulse is approximately 15 millijoules, and is produced over 

a period of about 300 microseconds, so the average power is approximately 

5 x 10-5 joules/microsecond; the dye solution must absorb about 6 x 10-5 

of the beam in a path le~1gth of 2 u, so that the theoretically required 

optical density (O.D.) is 0.13. Because of the very approximate nature 

of the calculation, I desired an extra order of magnitude as a safety 

factor, so an 0.D. = 2 was sought in evaluating dye solutions. Since 

this value was not always sufficient to produce noticeable damage, 

lower concentrations were not tested, and satisfactory results were 

obtained by using this dye concentration in all the microbeam experiments. 
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APPENDIX 2 

Description of Apparatus for Microbeam Experiments 
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A detailed descrip t ion of the equipment used in the laser micro

beam experiments is given in the Appendix. A simplified schematic 

diagram of the complete system is shown in Figure 6. 

Laser gate 

A type 2N2322 SCR is in series with the manual trigger switch of 

the laser power supply, as shown in Figure 6. The ~CR is triggered by 

a pulse from the multivibrator of a General Radio "Strobotac. 11 The 

gate of the SCR is biased just below threshold by the "bias adjust" 

potentiometer. 

General Description of Stroboscope 

The illumination system for flash photography and stroboscopic 

illumination desi gned by Brokaw (13) utilized two General Electric 

FT-230 short gap xenon flash lamps. Each flash lamp was connected to 

its own flash capacitor, and was tri ggered to discha~ge by a high vol

tage pulse from the 11 Strobotac 11 thr ough a pulse transformer. The flash 

lamps were mounted on a moveable platform beneath the microscope, and 

only the flash lamp in proper position for illumination of the micro

scope stage was triggered. The flash capacitors were operated at po

tentials of 2500 volts or less; at this voltage the flash lamps did 

not fire until triggered. 

Switching that system from observational to photographic mode re

quired about a second to turn off the "strobotac," slide the flash lamps 

into position, open the camera shutter and turn the 11 strobotac 11 on again. 
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During this time the spermatozoon could drift slightly out of position, 

and turning the "Strobotac" off changed its phase with respect to the 

fla gellum. For the present study, a new system was designed, using a 

single flash lamp. The photographic capacitors were switched in simul

taneously with the laser and timing circuitry while the strobotac was 

running. 

High Voltage d.c. Power Supply 

The stroboscope power supply, shown in Figure 33, is used to supply 

the high voltage for the flash lamp, and delivers a maximum potential 

of 4,000 volts. This voltage is high enough to cause the flas h lamps 

to conduct when the potential is applied, and to allow the hydrogen 

thyratrons to conduct when they are triggered. The voltage is adjusted 

with variable autotransformer T2. Flash capacitors C3-l and C3-2 supply 

energy for observation; either one or both of them can be switched in. 

Flash capacitor CS supplies energy for photography, and capacitor C4 

stores energy for recharging CS during multiple exposure photographs. 

Meter Ml indicates the voltage across C2, which is a very close approx

imation to the peak voltage across the bridge. Meter M2 indicates the 

voltage across C4. When the power supply is turned off, the contacts 

onrelay Kl close, discharging the capacitors through R2. 

Thyra tron Stroboscope Switch 

The thyratron stroboscope switch consists of two almost identical 

units, one (Vl and V2) used to connect flashlamp FLl to the smaller 

flash capacitor for observation, and the other (V3 and V4) used to 
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Figure 33 High Voltage Power Supply 

Symbol Description 

Cl capacitor, .01 uf 

C2 II .s II 

' 
C3-l " .02 ti 

C3-2 " .OS II 

' 
C4 II 4S II 

cs II 4 It 

Dl diode stack, RCA CR104 

D2 II II II " 
D3 II II II ti 

D4 II ti II II 

Fl fuse, 3AG, SA SLO-BLO 

Kl relay, 6.3 VAC 

Ml meter, 0-6000 VDC 

1"12 II II II 

PLl pilot lamp, 6v 

Rl resistor, 20M, 2W 

R2 II 25K, sow 
R3 ti lOM, ~w 

R4 II II u 

RS II lOOK, lOOW 

R6 II II II 

R7 ti lK, lOOW 

SWl switch, SPST, power 

SW2 II SPST 
' 

SW3 II SPST , 
Tl filament transformer, 6.3V 

T2 variable autotransformer 

T3 transformer, TRIAD P217AL 
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connect it to the larger flash capacitor for photography, as shown in 

Figure 34. In each unit a type 5949 high-power hydrogen thyratron 

(V2 and V3) acts as a switch between the flash lamp and the appropriate 

capacitor. The circuit is designed to be actuated by pulses from the 

"trigger output" connector of the "Strobotac." Type ClK xenon thyro

trons (Vl and V4) amplify these puJ.ses enough to trigger the nydrogen 

thyratrons. 

The circuit normally operates in the observational (low intensity) 

mode, with relays K2 and K3 de-energized, as shown in Figure 34. In 

this mode, pulse transformer TlO receives a negative pulse from the 

11 Strobotac. 11 The polarity of the pulse is reversed by the transformer 

and used to trigger Vl into conduction. Vl in turn triggers V2 into 

conduction, and is turned off by the back-voltage of inductor 11. When 

V2 conducts, almost 4,000 volts is placed across flash lamp FLl, causing 

it to fire. It discharges the smaller flash capacitor (C3 of Figure 33), 

and V2 and FLl turn off. Continuous operation is possible at up to 

75 flashes/second. For photographs, relays K2 and K3 can be energized 

UY either pressing the 11 teS1: 11 button Or Closing the "electronic flash 11 

contacts of the camera. The incoming pulse from the 11Strobotac" then 

goes into pulse transformer Tll, and V4, V3 and FLl then function as 

described above for Vl, V2 and FLl, respectively, discharging the larger 

flash capacitor (CS), which is then rapidly recharged by the energy 

stored in C4. It has been used for photographs at up to 100 flashes/ 

second. V4 is prevented from firing while the circuit is in the obser

vational mode by resistors Rl3-Rl7, capacitors Cl5-Cl9 and relay K3. 



Symbol 

Cl,C2 

CJ, C4 

cs 
C6,Cl 

C8 

C9, ClO 

Cll 

Cl2 

Cl3-C20 

C21-C23 

Dl-D6 

D7,D8 

D9-Dll 

Fl 

FLl 

Hl,H2 

Jl ,J3 

J2,J4 

Kl 

K2 

K3 

11 ,:12 

Ml 

PLl 

Rl,R2 

R3 

Notes: 1) 

2) 

J) 
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Fi gure 34 Thyratron Stroboscope Switch 

Description Symbol Description 

Capacitor, 9,000, lSO V R4 

RS 

R6 

resistor, 12SO, 20W adjust. 
ti 

II 

ti 

ll 

ti 

ti 

ti 

ti 

II 

, 22, 20V 

, SOO, 2SV 

, 22, 20V 

, 2SO, 2SV 

24, 450V 

) .001 

) • 2 

, .01 

' . 1 

diode, INSJ8 

diode stack, 4-INJ549 

diode, IN459 

fuse, JAG, SA 

flash lamp, GE, FT2JO 

hydrogen reservoir of V2,V3 

plug, J-terminal phone 
11 

, 2-terminal phone 

relay, ll5 VAC 
II 4PST 
11 

, reed, Magnecraft 
Wl02 VX-13 

choke, swinging, UTC,Hl70 

meter, 150 VAC 

pilot light, neon 

resistor, .5, 20W 
II , lOK, 2W 

R7 ,R22 

R8 ,R20 

R9, Rl8 

RlO 

Rll 

Rl2 

Rl3-Rl7 

Rl9 

R21 

R23-R25 

SWl 

SW2 

SWJ 

SW4 

Tl 

T2,TJ 

T4-T7 

T8 

T9 

TlO ,Tll 

Vl, V4 

V2, VJ 

ti 

II 

II 

II 

ti 

II 

,, 

II 

II 

II 

ti 

, SOK, 20W 

JJO, 2W 

22K, lW 

25K, 15W 

, 220K, lW 

, 150, 4W 

, 220K, 2W 

, 10, 25W 

, 56, ~w 

, 220, ~w 

, 220, lW 
II , 100, 2W 

switch, SPST 
II , micro 
II DPDT 
II , pushbutton 

transformer, auto 
11 

, filament, 
Chicago-Standard, P-6454 

transformer, filament, 
Thordarson, 21F76 

transformer, filament, 
TRIAD F45X 

transformer, filament, 
power, TRIAD R-22B 

transformer, pulse, 
Pacific Coil 105PC 

thyratron, .X=non, ClK 

thyratron, hydrogen, 5949 

The cathodes of V2 and VJ are internally coi.1nected to the 
electrical centers of their heaters. 
To turn on, switch SWl, SW2 and SW3 from positions shown and 
turn Tl to zero. Then slowly increase Tl until Ml reads 100- llS 
All capacitances given in illicrofarads. All resistances given in 
ohms. 

v. 
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Relay K2 closes the manual trigger contacts of the laser and turns on 

the power to the photography timer, which is then activated by the 

next pulse through Rl9. The closing time of relay K2 is about 1 milli

second longer than that of K3, and the "strobotac" occasionally fires 

after K3 has closed but before K2 has closed, resulting in 2 exposures 

before irradiation. When the "test" button is released or the camera 

contacts are opened, the circuit reverts to the observational mode. 

Photography Timer 

The photography timer has two parts, as shown in Figure 35: a 

variable R-C timing network to determine the frequency of the "Strobotac" 

during photography, and a unijunction-SCR time delay circuit (82) to 

control the number of exposures on the photographs. 

Closure of relay Kl causes the substitution of a particular RC 

network, determined by the positions of switches SW-1 and SW-2, for the 

RC circuit which normally controls the multivibrator frequency of the 

"Strobotac." Frequencies of 5, 10, 25, 50 or 100 flashes/second can be 

chosen, or the "Strobotac" can be allowed to continue at its normal 

frequency. The frequencies may be adjusted by trimpots R8-Rl2. The 

power for the circuit is turned on by a relay (K2 of Figure 34), as 

described in the last section, and the first pulse from the thyratron 

switch triggers SCR Ql into conduction, energizing relay Kl. This con

nects the frequency-controlling RC network and activates the time delay 

circuit. There is an extra 3 or 4 milliseconds between the first and 

second exposures, due to the closing time of r~lay Kl. 
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Figure 35 Photography Timer 

Symb ol Description Symbol Description 

Bl battery, 9V, Eveready, 216 R4 resistor, 5.lK, 5% 

Cl,Cl3 capacitor, 100 :czs II 33K II 

' 
C2 II .015 R6 :0 3.3K II 

' ' 
C3,C4 II .15 R7 II 39K II 

' 
CS ,C6 II .033 R8-Rl2 trimpot, 20K ' 
C7 II .005 Rl3 resistor, 24K, 5% ' 
C8 II .47 Rl4 II SlK, II 

' ' 
C9 II .22 Rl5 fl 22K II 

' 
ClO II .094 Rl6 ti 43K II 

' 
Cll t i .047 Rl7 II lSK II 

' 
Cl2 II .022 Rl8-R22 ti 5.lM II 

' 
Dl diode, IN538 R23 II lOOK, 1% 

' 
Kl,K2 relay , DPDT, LEACH R24 II 590K, II 

' 9227-3969 
R25 II 910K, II 

' Pl plug, 7-pin miaiature R26 II l.2M, II 

' P2 plug, 3-tenninal phone 
R27 II l.SM, II 

' Ql,Q4 SCR, C20B 
R28 II 100 

Q2 transistor, unijunction 
R29 II 33 2N494 
RJO ,R32 II 3.3K, lW Q3 diode, Zener, 18V, 400mW ' 

Rl ,R31 resistor, 180,2W SWl switch, rotary, 3P6T 

R2 II 150 SW2 switch, rotary, SP5T 
' 

R3 II 30K, 5% 
' 

Notes: 1) Switches viewed from rear. 

2) All capacitances given in microfarads. All resistances 

given in ohms, and 12watt unless otherwise specified. 
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Photographs are difficult to interpret if they contain more than 

about 4 exposures, so a second part of the timer circuit was used to 

turn off the "Strobotac" after a selected number of flashes. After a 

time delay determined by SWl-3 and SW2, unijunction transistor Q2 

triggers SCR Q4 into conduction, energizing relay K.2, which causes the 

grid of the thyratron of the "Strobotac" to be biased to -9 volts, 

preventing further firing. Delays allowing from 1 to 5 flashed may be 

selected at any of the predetermined frequencies. If SWl is set to 

allow the "S~robotac" to continue at its normal frequency, time delays 

assume a frequency of 25 flashes/second. Diode Dl conducts, lowering 

the voltage across Zener diode Q3 to almost zero, preventing the delay 

capacitor from charging before the next photograph. When the thyratron 

stroboscope switch reverts to the observational mode, power to the 

timer is turned off and the timer is ready for the next photograph. 



113 

APPENDIX 3 

Diffusion from Pipettes 
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If ATP were diffusing from the tip of a pipette into an unbounded 

volume, the pipette tip could be approximated by a continuous spherical 

or point source. A solution for the problem of a spherical source of 

radius (a) with a constant concentration (C) at its surface may be ob-

tained from Carslaw and Jaeger (24~. The concentration (c) at any dis-

tance (r) from its center at any time (t) is: 

aC r-a 
c = r erfc2 y(Dt) , r ~ a, 

where D = diffusion constant of ATP, approximately 4 x 10- 6 em2/second 

2 Lz: _22 
(10), and erfc(x) = 1 - 7r e dZ. The gradient resulting from 

0 

aC this source approaches a steady-state solution of c = :C- , so the con-

centration of ATP at a distance of 50 p from a pipette tip of 1 u 

diameter should be 1% of the concentration at the tip, and a large 

gradient should be produced along a sperm tail. However, in the initial 

diffusion experiments the pipette was placed between a slide and cover 

glass separated by 50 u; the tip was within a few u of the cover glass. 

The time-dependent part of the concentration equation at a distance of 

50 p, is: erfc cj~2 
) = 20% of its steady-state value at t = 2 seconds; 

the solution in this region of the tip becomes saturated within a f6v 

seconds, decreasing the slope of the concentration gradient in that region. 

Separating the slide and cover glass by 1 mm lengthens the time scale 

1 r 
by a factor of Li-00, allowing a gradient of the form c = ~erfc.y t to be 

maintained for several minutes. The reflection due to the cover glass 

was within several p of the pipette tip, so this refection caused little 

effect on the shape of the gradient at distances (~) greater than several ?· 
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In practice, the concentration gradient about a pipette tip was tested 

by moving it towards the basal end of a spermatozoon. A pipette 

could be brought to within approximately 15 ? of a spermatozoon before 

beating began, with a large increase in beat frequency as it was moved 

nearer, for a few minutes after the pipette was first placed in the 

sperm suspension. 
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