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ABSTRACT

In this thesis, we adapt an approach by assuming quantum mechanics as a funda-
mental theory of nature and attempt to recover familiar concepts such as space-time
geometry and gravity from quantum wavefunctions and their unitary evolutions.
More specifically, we explore a number of approaches in “geometrizing” quantum
systems using techniques such as tensor networks and manifold learning. We find
that consistency conditions in quantum gravity can be used to put constraints on
tensor network models that approximate the anti-de Sitter/Conformal Field Theory
correspondence. Furthermore, quantum circuits and tensor networks can also be
used to describe cosmological models and reproduce important features of space-
time configurations such as de Sitter space. We find that a generic framework
using quantum circuit to describe cosmology puts an upper bound on the number
of e-folds during the inflationary phase of the Universe’s expansion. In addition to
tensor network models, we also propose a Bulk Entanglement Gravity framework
that analyzes the entanglement data of a quantum state in a Hilbert space without
any a priori assumptions on geometry, such as the likes of a boundary conformal
field theory. We find that from an amorphous configuration, one can directly re-
cover geometry of bulk space-time from a generic class of wavefunctions that is
fully characterized in this thesis via quantum entropy cone techniques. We find
that under a number of assumptions, it is possible to derive linearized Einstein’s
equation from a version of Jacobson’s entanglement equilibrium conditions for an
emergent spacetime geometry in the weak field limit near Minkowski space. We
show that non-local entanglement perturbations display features of wormhole-like
configurations. We also clarify connections between Bulk Entanglement Gravity
and highly generic features in quantum error correction codes that can be used to
derive gravity.
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C h a p t e r 1

INTRODUCTION

Since the early twentieth century, general relativity and quantum mechanics has
transformed and continue to reshape our understanding of the Universe. Both
theories are highly successful in their respective domains, and are verified by a large
number of experiments.

On one hand, the theory of general relativity[1, 2, 3] has provided a framework that
combined space and time, which we had previously thought to be immutable. It
is, in a way, a geometrization of gravity: it turns what Sir Isaac Newton calls the
“invisible hand” of gravitational attraction into a fantastic landscape of distortions
and curvatures of spacetime geometry. In all appearances, it is a highly powerful
and consistent theory on a large scale. From black holes to gravitational waves, from
the Big Bang to the near future of our Universe, hints of general relativity echoes
through out the cosmos.

Quantum mechanics[4, 5], on the other hand, has its appeals on a microscopic
scale. The micro-world, after all, seems to be puzzled with quantum weirdness
and uncertainty. Despite many of the open questions surrounding it, quantum
mechanics has revolutionized our understanding of the small. Thus far, it has
yielded a number of breakthroughs from semi-conductors to exotic materials and to
quantum computation.

Following the development and triumphs of quantumfield theory[6, 7] by combining
special relativity and quantum mechanics, a natural question, therefore, is how does
general relativity, which has been quite successful in the macroscopic, relate to
quantummechanics, which thus far has been ruling a predominantly complementary
realm? What is the intermediary that interpolates the two seemingly disparate
theories? Are they two sides of the same coin or does one supersede the other? One
supposition is that gravity and spacetime geometry, like hydrogen atoms, also has
quantum mechanical features. Such a school of thought, also known as quantum
gravity, has been a long-sought-after price since the inception of quantummechanics
and general relativity. Several approaches such as string theory[8, 9], loop quantum
gravity[10], causal set[11], canonical quantum gravity[12, 13], quantum graphity
[14] have offered various insights into understanding many aspects of a possible
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theory of quantum gravity.

Although from the outset, quantumgravity seems to position itself by taking quantum
mechanics as a more fundamental theory, it can seem counter-intuitive that many of
the common approaches to a generate quantum theory often start by “quantizing”
a classical theory[6, 7]. Nevertheless, many have made tremendous progress using
a semiclassical approach[2], yielding important clues for quantum gravity such as
blackhole thermodynamics[15, 16, 17] and holographic bounds [18, 19, 20].

However, if one were to treat quantum mechanics truly as the fundamental theory
of nature, then it is crucial that our existing physical constructs should be derivable
from the inner workings of a purely quantum mechanical theory. Such is a moti-
vation behind an it-from-qubit program, where anything (“it”) can emerge from the
more fundamental quantum information constituents (“qubit”). As a proper subset
of those problems, one has to, therefore, also find gravity inside quantummechanics.

In other words, instead of quantizing gravity by taking the form of general rel-
ativity as is, we would like to “gravitize” quantummechanics by finding general
relativity in it.

For instance, given a complex manybody quantum mechanical system, the approach
aims to define spacetime geometry from an amorphous but complex quantum config-
uration. In particular, if the aforementioned hypothesis has any validity, we should
also find features of gravity emerging naturally from the fundamental properties of
quantum mechanics in some of those geometries.

In this thesis, I will focus primarily on the different methods in obtaining spatial
geometries from quantum information or related data. The first approach focuses
on tensor networks, which are complex networks with additional structures that can
effectively encode entanglement information of a quantum state. Intuitively, the net-
work connectivity often reflects the structure of quantum entanglement in different
parts of the state. Certain types of tensor networks can also have connectivities that
can be recognizable as spatial or spacetime geometries. Indeed, we will examine a
particular network construction which mimics the spatial geometry of a timeslice
of anti-de Sitter (AdS) space, a spacetime geometry with a negative cosmological
constant. The same network also has a natural interpretation as de Sitter space,
which is a spacetime with a positive cosmological constant and a better description
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of our own Universe.

More specifically, we will study the proposal that tensor network can be used to
capture features of the Anti-de Sitter/Conformal Field Theory (AdS/CFT) corre-
spondence. The AdS/CFT correspondence was first discovered in the context of
Superstring Theory by Juan Maldacena [21], although traces of its existence can
also be found in earlier works [22]. The theory can be understood as a concrete real-
ization of the holographic principle, where a gravitational theory of N-dimensions
can be described by an equivalent theory of N − 1-dimensions. In this specific
instance, the bulk theory, which is a theory of quantum gravity, lives in an N-
dimensional anti-de Sitter space, while its dual, the conformal field theory (CFT),
is living on the conformal boundary of AdS: an N − 1 dimensional spacetime with
flat geometry.

Interestingly, it was proposed by Shinsei Ryu and Tadashi Takayanagi [23] that
for a CFT with holographic dual, the entanglement entropy of a subregion in the
boundary CFT is, to leading order, equal to the area of a minimal surface in the AdS
bulk which anchors on the boundary of the subregion. Therefore, by treating the
CFT as a fundamental quantum mechanical theory, a theory of quantum gravity in
the bulk can emerge from the quantum information encoded on the boundary. Given
the powerful and more concrete construction of AdS/CFT, most of the interesting
progress in the recent it-from-qubit program are examined in this particular context,
which includes the reconstruction of spatial geometry[24, 25, 26, 27], emergence of
linearized gravity[28, 29], black holes[30, 31], bulk action and complexity [32, 33,
34, 35], and many more[36, 37, 38]. It has also become a fertile testing ground for
other general guidelines and insights for understanding quantum gravity.

Nevertheless, ideally one wish to understand the theory of quantum gravity beyond
AdS/CFT, because it does not naïvely describe our physical Universe. Furthermore,
in a fully quantum approach, a minimal set of information also should not include a
background geometry of, for instance, the boundary CFT. Hence it is interesting to
extend the lessons from AdS/CFT to a more general setting by cutting down some of
the assumptions that were freely available in the form of a CFT. To this end, we will
also consider a more general scenario of finding geometry from quantummechanics.
In particular, we assume that only a quantum state and a preferred factorization are
given. Using entanglement data, I show that a flat spatial geometry can be obtained
using certain methods in machine learning. We will see that features of gravity
naturally emerge from entanglement properties such as monotonicity of mutual
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information or monogamy of entanglement. Under a list of assumptions, it is also
possible to derive the linearized Einstein’s equation directly in the a bulk spacetime
in theweak field regime using quantum entanglement ormutual information, without
relying on holography or the various structures of a boundary geometry or conformal
field theory such as the case of AdS/CFT.

In Chapter 2, I will examine a tensor network representation of AdS/CFT correspon-
dence. It is first discussed by [37] that a particular type of tensor network known as
theMultiscale Entanglement Renormalization Ansatz (MERA) [39] captures simple
features of the correspondence. Wewill review the concept of tensor network as well
as MERA networks. We find that the MERA network describes the proposed bulk
geometry only on super-AdS scales. It also needs to satisfy a number of constraints
in order to be consistent with a theory of gravity in the bulk. It is found that MERA
as it stands is inconsistent as a toy model of AdS/CFT without modifications.

In Chapter 3, we will discuss the proposal where the same MERA network can be
interpreted as de Sitter space, a spacetime geometry that has a positive cosmological
constant. We confirm the earlier proposal that MERA carries causal structures, such
as cosmological horizons, consistent with those of de Sitter space on the Hubble
scale or greater. The tensor network description also naturally produces a version
of the cosmic no-hair theorem, such that any perturbations or inhomogeneities
are “washed out” by the expansion of the universe over time. The network most
naturally describes a global picture of de Sitter space, however a local description
is also possible with modifications. Finally we derive a bound on the quantum
complexity of states generated by the MERA network and show that it is consistent
with a version of the complex equals action/volume proposal in the bulk of de Sitter
spacetime.

In Chapter 4, a proposal of constructing cosmological models with quantum circuits
is discussed. Although a concrete model is still lacking, we find that coupled with
the usual assumptions of de Sitter entropy and holography, the framework in its most
general form upper bounds the maximum number of e-folds during the inflationary
expansion phase of the Universe. Interestingly, the number is just large enough to
resolve the horizon problem.

In Chapter 5, we characterize the so-called quantum entropy cone of a class of
low energy quantum states in many condensed matter systems that satisfy the area
law. More explicitly, for any subsystem of the quantum state that corresponds
to a subregion, for instance, of a spatial lattice, the entanglement entropy of the
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quantum state associated with the subregion scales as the surface area of the same
subregion. To leading order, where the entropy is exactly the area, we provide
a complete set of (in)equalities of entanglement entropies that fully characterize
the allowed entanglement structure of such states. The allowed configurations of
entanglement entropies form a quantum entropy cone, whose super-cone overlaps
with the quantum entropy cone of states which have a holographic dual. We also
propose a generic 4-party quantum inequality which to the best of our knowledge
has not been proposed or ruled out by previous literature.

In Chapter 6, we will examine an algorithm to derive geometry from a quantum state
given a state and its Hilbert space factorization. Making use of some of the results
in chapter 4, we find that it is possible to recover the geometric information encoded
in the form of quantum mutual information. We use a machine learning technique
to recover the best-fit dimensionality of the “emergent” spatial manifold. Then we
show that entanglement properties of any quantum state can give rise to features
akin to those of gravity by deriving a spatial analog of the Einstein’s equation.
Furthermore, non-local entanglement perturbations also give rise to a configuration
that iswormhole-like, reminiscent to theER=EPRproposal [30]where entanglement
is conjectured to gives rise to wormholes.

Finally in Chapter 7, we further refine the proposal in 6 by considering entanglement
perturbations on a flat spacetime background, which can be derived from the tech-
niques introduced in the previous chapter. We use tensor Radon transform to show
that the spatial metric tensor can be uniquely reconstructed up to a gauge transforma-
tion. Similarly, we show that the linearized Hamiltonian constraint is equivalent to a
version of Jacobson’s entanglement equilibrium [40]. With additional assumptions,
it is possible to show that such systems satisfy linearized Einstein’s equation. We
make the observation that a highly generic class of quantum error correction codes
also have the natural structure needed to derive such relations.

The works in this thesis demonstrate a glimpse of the power of combining quantum
information theory, high energy physics, gravity and cosmology. It shows promise
that an approach to quantum gravity by geometrization of quantum mechanics can
provide insights that are previously not apparent in the other quantization approaches.
The generality of such emergent phenomena also open doors for connections with
complex behaviours in manybody quantum systems, complex networks, and ma-
chine learning. On a broader level, the work also connects with foundations of
quantum mechanics and quantum to classical transition. By understanding how the
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perceived classical spacetime geometry can be derived from information encoded
in a wavefunction, this thesis also points toward a great number of interesting future
works and questions.
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C h a p t e r 2

CONSISTENCY CONDITIONS FOR AN ADS/MERA
CORRESPONDENCE

TheMulti-scale Entanglement Renormalization Ansatz (MERA) is a tensor network
that provides an efficient way of variationally estimating the ground state of a
critical quantum system. The network geometry resembles a discretization of spatial
slices of an AdS spacetime and “geodesics” in the MERA reproduce the Ryu–
Takayanagi formula for the entanglement entropy of a boundary region in terms of
bulk properties. It has therefore been suggested that there could be an AdS/MERA
correspondence, relating states in the Hilbert space of the boundary quantum system
to ones defined on the bulk lattice. Here we investigate this proposal and derive
necessary conditions for it to apply, using geometric features and entropy inequalities
that we expect to hold in the bulk. We show that, perhaps unsurprisingly, the MERA
lattice can only describe physics on length scales larger than the AdS radius. Further,
using the covariant entropy bound in the bulk, we show that there are no conventional
MERAparameters that completely reproduce bulk physics even on super-AdS scales.
We suggest modifications or generalizations of this kind of tensor network that may
be able to provide a more robust correspondence.

This chapter is based on the Ref:
Ning Bao, ChunJunCao, SeanM. Carroll, AidanChatwin-Davies, Nicholas Hunter-
Jones, Jason Pollack, and Grant N. Remmen. “Consistency conditions for an AdS
multiscale entanglement renormalization ansatz correspondence”. In: Phys. Rev.
D91.12 (2015), p. 125036. doi: 10.1103/ PhysRevD.91.125036. arXiv:
1504.06632 [hep-th].

2.1 Introduction
The idea that spacetime might emerge from more fundamental degrees of freedom
has long fascinated physicists. The holographic principle suggests that a (D + 1)-
dimensional spacetime might emerge from degrees of freedom in a D-dimensional
theory without gravity [42, 43]. While a completely general implementation of
this idea is still lacking, the AdS/CFT correspondence provides a specific example
in which to probe the holographic emergence of spacetime. AdS/CFT is a con-
jectured correspondence between D-dimensional conformal field theories (CFTs)

https://doi.org/10.1103/PhysRevD.91.125036
https://arxiv.org/abs/1504.06632
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in Minkowski space and (D + 1)-dimensional asymptotically anti-de Sitter (AdS)
spacetimes [21, 44, 45]. An intriguing aspect of this duality is the Ryu–Takayanagi
formula [23, 46], according to which the entanglement entropy of a region B on
the boundary is proportional to the area of a codimension-two extremal surface B̃

embedded in the bulk curved spacetime whose boundary is B:

S(B) =
area(B̃)

4G
+ corrections. (2.1)

In other words, given a CFT state, one may think of bulk distance and geometry (at
least near the boundary) as being charted out by the entanglement properties of the
CFT state.

A central question in this picture of spacetime emerging from entanglement is:
What is the precise relationship between bulk degrees of freedom and boundary
degrees of freedom? Expressed in a different way, what is the full map between
states and operators in the boundary Hilbert space and those in the bulk? While
investigations of AdS/CFT have thrown a great deal of light on this question, explicit
simple models are still very helpful for studying it in more detail.

Meanwhile, from a very different perspective, tensor networks have arisen as a
useful way to calculate quantum states in strongly-interacting many-body systems
[47]. One significant example is the Multi-scale Entanglement Renormalization
Ansatz (MERA) [39], which is relevant for critical (gapless) systems, i.e., CFTs.
Starting from a simple state in a low-dimensional Hilbert space, acting repeatedly
with fixed tensors living on a network lattice produces an entangled wave function
for the quantum system of interest; varying with respect to the tensor parameters
efficiently computes the system’s ground state.

Working “backwards” in the MERA, starting with the ground state and gradually
removing entanglement, produces a set of consecutively renormalized quantum
states. This process reveals a renormalization direction along the graph, which
may be thought of as an emergent radial direction of space. As pointed out by
Swingle [37], the MERA graph can serve as a lattice discretization of spatial slices
of AdS. Furthermore, one can use the MERA to calculate the entanglement entropy
of regions of the original (boundary) critical system; this calculation amounts to
tracing over bonds in the tensor network that cross the causal cone of the boundary
region. The causal cone is a sort of extremal surface for the MERA, motivating
comparison to the Ryu–Takayanagi formula.
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It is therefore natural to conjecture that the MERA provides a concrete implemen-
tation of the emergence of spacetime, in the form of a correspondence between
boundary and bulk regions reminiscent of AdS/CFT [37]. Such an AdS/MERA
correspondence would be extremely useful, since the basic building blocks of the
MERA are discrete quantum degrees of freedom from which quantities of physi-
cal interest may be directly calculated. Some specific ideas along these lines have
recently been investigated [48, 49, 50, 51].

In this paper, we take a step back and investigate what it would mean for such
a correspondence to exist and the constraints it must satisfy in order to recover
properties we expect of physics in a bulk emergent spacetime. After reviewing the
MERA itself and possible construals of the AdS/MERA correspondence in the next
section, in Sec. 2.3 we then derive relationships between the MERA lattice and the
geometry of AdS. We find that the MERA is unable to describe physics on scales
shorter than the AdS radius. In Sec. 2.4 we explore constraints from calculating the
entanglement entropy of regions on the boundary, in which we are able to relate
MERA parameters to the central charge of the CFT. Finally, in Sec. 2.5 we apply
the covariant entropy (Bousso) bound to regions of the bulk lattice. In the most
naïve version of the AdS/MERA correspondence, we find that no combination of
parameters is consistent with this bound, but we suggest that generalizations of the
tensor network may be able to provide a useful correspondence.

2.2 AdS/MERA
Let us begin by recalling the definition and construction of the MERA. We will
then introduce the AdS/MERA correspondence and discuss the motivation for and
consequences of this proposal.

2.2.1 Review of the MERA
The MERA is a particular type of tensor network that provides a computationally
efficient way of finding the ground states of critical quantum many-body systems,
i.e., CFTs, in D dimensions. (For a recent review of tensor networks in general, see
Ref. [47]. Detailed analyses of the MERA are given in [39, 52, 53] and references
therein.) In this work, we restrict our attention to the case D = 1 + 1.

TheMERA tensor network is shown in Fig. 2.1. The quantum system beingmodeled
by the MERA lives at the bottom of the diagram, henceforth “the boundary” in
anticipation of the AdS/MERA connection to be explored later. We can think of
the tensor network as a quantum circuit that either runs from the top down, starting
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Figure 2.1: (a) Basic construction of a k = 2 MERA (2 sites renormalized to 1). (b)
The squares represent disentanglers: unitary maps that, from the moving-upward
perspective, remove entanglement between two adjacent sites. (c) The triangles
represent isometries: linear maps that, again from the moving-upward perspective,
coarse-grain two sites into one. Moving downward, we may think of isometries as
unitary operators that, in the MERA, map a state in V ⊗ |0〉 into V ⊗ V . The i and j
labels in (b) and (c) represent the tensor indices of the disentangler and isometry.

with a simple input state and constructing the boundary state, or from the bottom
up, renormalizing a boundary state via coarse-graining. One defining parameter
of the MERA is the rescaling factor k, defining the number of sites in a block to
be coarse-grained; in Fig. 2.1 we have portrayed the case k = 2. The squares and
triangles are the tensors: multilinear maps between direct products of vector spaces.
Each line represents an index i of the corresponding tensor, ranging over values from
1 to the “bond dimension” χ. The boundary Hilbert space Hboundary = V⊗Nboundary

is given by a tensor product of Nboundary individual spaces V , each of dimension χ.
(In principle the dimension of the factors in the boundary could be different from
the bond dimension of the MERA, and indeed the bond dimensions could vary over
the different tensors. We will assume these are all equal.)

As its name promises, the MERA serves to renormalize the initial boundary state
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via coarse-graining. If we were to implement the MERA for only a few levels, we
would end upwith a quantum state in a smaller Hilbert space (defined on a fixed level
of the tensor network), retaining some features of the original state but with some
of the entanglement removed. However, we can also run the MERA backwards, to
obtain a boundary state from a simple initial input. By varying the parameters in
the individual tensors, we can look for an approximation of the ground state of the
CFT on the boundary. Numerical evidence indicates that this process provides a
computationally efficient method of constructing such ground states [53, 54].

The tensors, or gates, of the MERA come in two types. The first type are the
disentanglers, represented by squares in Fig. 2.1. These are unitary maps U :
V ⊗ V→ V ⊗ V, as in Fig. 2.1b. The name comes from thinking of moving upward
through the network, in the direction of coarse-graining, where the disentanglers
serve to remove local entanglement; as we move downward, of course, they take
product states and entangle them. The second type of tensors are the isometries,
represented by triangles. From the moving-downward perspective these are linear
maps W : V → V ⊗ V; moving upward, they implement the coarse-graining, see
Fig. 2.1c. The isometries are subject to the further requirement that W†W = IV ,
where IV is the identity map on V , and WW† = PA, where PA is a projector onto
some subspace A ⊂ V ⊗ V. From the top-down perspective, we can also think of
the isometries as bijective unitary operators WU : V ⊗ V→ V ⊗ V, for which a fixed
“ancilla” state (typically the ground state |0〉) is inserted in one of the input factors,
as shown in Fig. 2.1c. More generally, isometries could map q < k sites onto k

sites, W : V⊗q → V⊗k .

The MERA is not the simplest tensor network which implements coarse-graining.
For instance, the tree tensor network [55] (also considered in a holographic context
in Ref. [48]), similar to MERA but without any disentanglers, also implements
coarse-graining. However, tensor networks without disentanglers fail to capture the
physics of systems without exponentially-decaying correlations, and consequently
cannot reproduce a CFT ground state.

An example that invites analysis with a MERA is the transverse-field Ising model
[56]. In 1+1 dimensions, the model describes a chain of spins with nearest-neighbor
interactions subject to a transverse magnetic field. Its Hamiltonian is

Ĥ = −J
∑

i

σ̂z
i σ̂

z
i+1 − h

∑
i

σ̂x
i , (2.2)

where σ̂z
i and σ̂x

i are Pauli operators and where J and h set the strength of the
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nearest-neighbor interactions and the magnetic field, respectively. Notably, the
system achieves criticality at J = h, where a quantum phase transition occurs
between ordered (J > h) and disordered (J < h) phases. In this example, the open
legs at the bottom of the MERA describe the state of the one-dimensional lattice of
spins. A single application of disentanglers and isometries can be thought of as a
true real-space renormalization, producing a lattice of spins that is less dense than
the preceding lattice by a factor of q/k.

In general, much information is required to describe an arbitraryMERA. In principle,
the Hilbert spaces, the disentanglers, and the isometries could all be different. Also,
for k > 2, there is no canonical way of laying out the disentanglers and isometries;
the circuit itself must be specified. Wewill restrict ourselves to the case q = 1, so that
isometries have 1 upward-going leg and k downward-going legs. Further, without
loss of generality, we take the same vector spaces, disentanglers, and isometries
everywhere in the MERA, a simplification that is enforced by the symmetries of
the boundary ground state. These symmetries — namely, translation- and scale-
invariance — dictate that the MERA parameters and structure be homogeneous
across the whole tensor network.

For geometric considerations, it is useful to abstract away all of the information about
unitary operators and to draw a MERA as a graph as shown in Fig. 2.2. In such a
graph, we only indicate the connectivity of sites at any given level of coarse-graining
as well as the connectivity of sites under renormalization group flow.

2.2.2 An AdS/MERA Correspondence?
The possibility of a correspondence between AdS and the MERAwas first proposed
by Swingle in Ref. [37], where it was noted that the MERA seems to capture certain
key geometric features of AdS. At the most basic level, when viewed as a graph with
legs of fixed length, a MERAmay be thought of as a discretization of the hyperbolic
plane, which is a spatial slice of AdS3. In this discretization, the base of the MERA
tree lies on the boundary of the AdS slice and the MERA lattice sites fill out the
bulk of the slice [37, 31].

Interestingly, the structure of a MERA is such that it seems to go beyond a simple
discretization of the hyperbolic plane. Certain discrete paths in the MERA naturally
reproduce geodesics of the hyperbolic plane [37, 57]. Moreover, this phenomenon
makes it possible to understand the computation of CFT entanglement entropy using
a MERA as a discrete realization of the Ryu–Takayanagi formula [58]. These and
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Figure 2.2: (a) A k = 2 MERA, and (b) the same MERA with its disentanglers
and isometries suppressed. The horizontal lines in the graph on the right indicate
lattice connectivity at different renormalization depths, and the vertical lines indicate
which sites at different depths are related via coarse-graining due to the isometries.
Each site, represented by a circle, is associated with a Hilbert space V with bond
dimension χ. In the simplest case, a copy of the same Hilbert space is located at
each site. When assigning a metric to the graph on the right, translation and scale
invariance dictate that there are only two possible length scales: a horizontal proper
length L1 and a vertical proper length L2.

other examples [37, 57] seem to suggest that a MERAmay in fact be elucidating the
structural relationship between physics on the boundary of AdS and its bulk.

In this work we take the term “AdS/MERA correspondence" to mean more than
simply a matching of graph geometry and continuous geometry. In the spirit of the
AdS/CFT correspondence, we suppose that (at least some aspects of) both boundary
and bulk physics are described by appropriate Hilbert spaces Hboundary and Hbulk

respectively, whichmust have equal dimensions. A full AdS/MERAcorrespondence
would then be a specification of these Hilbert spaces, as well as a prescription which
makes use of the MERA to holographically map states and operators inHboundary to
corresponding states and operators in Hbulk and vice-versa. To preserve locality in
the bulk and the symmetries of AdS, it is natural to identify Hbulk with the tensor
product of individual spaces Vbulk, each located at one site of the MERA. If it exists,
this correspondence provides a formulation of bulk calculations in terms of the
MERA. An AdS/MERA correspondence should allow us to, for example, calculate
bulk correlation functions, or bulk entanglement entropies using tools from or the



14

structure of the MERA.

There is one straightforward way to construct such a map Hboundary ↔ Hbulk. We
have noted that the isometries W : V → V ⊗ V can be thought of as unitaries
WU : V ⊗ V → V ⊗ V by imagining that a fixed ancillary state |0〉 is inserted in the
first factor; for a k-to-one MERA, one would insert k − 1 copies of the |0〉 ancilla
at each site to unitarize the isometries. From that perspective, running upwards in
the tensor network provides a map from the MERA ground state on the boundary
to a state |0〉⊗(k−1)Nbulk ∈ V⊗(k−1)Nbulk , where at each isometry there is a copy of
V⊗(k−1) and Nbulk denotes the number of bulk lattice sites, excluding the boundary
layer. As we ultimately show in Sec. 2.5, one has Nboundary = (k − 1)Nbulk. We
can then identify Hboundary = Hbulk = V⊗Nboundary and think of the tensor network
as a quantum circuit providing a map between arbitrary states Hboundary → Hbulk.
In this construction, the MERA ground state on the boundary gets mapped to the
factorized bulk state |0〉⊗(k−1)Nbulk , but other boundary states will in general produce
entangled states in the bulk (keeping the tensors themselves fixed).

Something very much like this construction was proposed by Qi [48], under the
name “Exact Holographic Mapping" (EHM). That work examined a tensor network
that was not quite a MERA, as no disentanglers were included, only isometries. As
a result, while there is a map Hboundary → Hbulk, the boundary state constructed
by the tensor network does not have the entanglement structure of a CFT ground
state. In particular, it does not seem to reproduce the Ryu–Takayanagi formula in a
robust way. Alternatively, we can depart from Qi by keeping a true MERA with the
disentanglers left in, in which case the bulk state constructed by the quantum circuit
has no entanglement: it is a completely factorized product of the ancilla states. Such
a state doesn’t precisely match our expectation for what a bulk ground state should
look like, since there should be at least some entanglement between nearby regions
of space.

Therefore, while it is relatively simple to imagine constructing a bulk Hilbert space
and a map between it and the boundary Hilbert space, it is not straightforward to
construct such a map that has all of the properties we desire. It might very well
be possible to find such a construction, either by starting with a slightly different
boundary state, or by adding some additional structure to the MERA.

For the purposes of this paper we will be noncommittal. That is, we will imagine
that there is a bulk Hilbert space constructed as the tensor product of smaller spaces
at each MERA site, and that there exists a map Hboundary → Hbulk that can be
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constructed from the MERA, but we will not specify precisely what that map might
be. We will see that we are able to derive bounds simply from the requirements
that the hypothetical correspondence should allow us to recover the properties we
expect of bulk physics, including the background AdS geometry and features of
semiclassical quantum gravity such as the Bousso bound on bulk entropy.

2.3 MERA and Geometry
If a MERA is a truly geometrical object that describes a slice of AdS, then the
graph geometry of a MERA should give the same answers to geometric questions
as the continuous geometry of a slice of AdS. Here, we reconsider the observation
by Swingle [37, 57] that certain trajectories on the MERA coincide with trajectories
in AdS and we investigate the constraints that this correspondence places on the
graph metric of the MERA. We find that a MERA necessarily describes geometry
on super-AdS length scales, and moreover, there is no redefinition of the MERA
coordinates that results in the proper distance between MERA sites mapping to any
sub-AdS length scale.

2.3.1 Consistency conditions from matching trajectories
In order to speak of graph geometry, one must put a metric on the MERA graph, i.e.,
one must assign a proper length to each bond in the graph of Fig. 2.2. Presumably,
the metric should originate from correlations between the sites in the MERA. In
the absence of an explicit identification of the origin of the graph metric, however,
at least in the case of a MERA describing the ground state of a CFT, it is sensible
to identify two length scales. Explicitly, we must assign a proper length L1 to
horizontal bonds and a proper length L2 to vertical bonds. Indeed, translational
and conformal invariance guarantee that these are the only two length scales in any
graph metric one can assign to a MERA for which an AdS/MERA correspondence
exists. In particular, the ground state of a CFT is translation invariant, so each
horizontal bond in the finest (UV-most) lattice should have the same proper length
so as to respect this symmetry. Self-similarity at all scales then requires that any
horizontal bond at any level of renormalization have this same proper length. There
is no a priori reason why the vertical bonds should share the proper length of the
horizontal bonds and indeed we will see that their proper length will be different.
However, again by self-similarity and translation invariance, all vertical bonds must
be assigned the same proper length.

The observation in Ref. [37] that certain paths in the MERA graph coincide with
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corresponding paths in slices of AdS is what established the possibility of an
AdS/MERA correspondence. Here we will carefully examine these paths and deter-
mine what constraints the requirements that they match place onMERA parameters,
i.e., on the bond lengths L1 and L2 and on the rescaling factor k.

Consider a constant-time slice of AdS3 with the following metric:

ds2 =
L2

z2 (dz2 + dx2). (2.3)

We will compare the proper lengths of straight horizontal lines and geodesics in the
AdS slice to the proper lengths of the corresponding paths in the MERA graph. In
the AdS slice, let γ1 be a straight horizontal line (dz = 0) sitting at z = z0 with
coordinate length x0. Let γ2 be a geodesic whose endpoints lie near the boundary
z = 0 and are separated by a coordinate distance x0 at the boundary. In this
choice of coordinates, such a geodesic looks like a semicircle (see Fig. 2.3). It is a
straightforward computation to show that the proper lengths of these curves are

|γ1 |AdS =
L
z0

x0 and |γ2 |AdS = 2L ln
( x0

a

)
. (2.4)

Note that there is a UV cutoff at z = a � x0 and that we have neglected terms of
order a/x0.

z

x

γ1

γ2

a

x0

z0

Figure 2.3: A horizontal line (γ1) and a geodesic (γ2) in a spatial slice of AdS3.

We fix L1 and L2 by comparing γ1 and γ2 to horizontal lines and “geodesics" in the
MERA, respectively. Consider two sites in a horizontal lattice at depth m (i.e., m

renormalizations of the UV-most lattice) and separated by a coordinate distance x0

in the coordinate system shown in Fig. 2.2. By fiat, this lattice sits at z0 = kma. The
number of bonds between the two sites at depth m is x0/(kma) (see Fig. 2.2 for the
case k = 2). It follows that the proper length of the line connecting the two points
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is just
|γ1 |MERA = L1 · (number of bonds between endpoints)

= L1
x0
z0

����
z0=kma

.
(2.5)

To have |γ1 |AdS = |γ1 |MERA, we should therefore set L1 = L.

Similarly, consider two lattice sites on the UV-most lattice separated by a coordinate
distance x0. If we assume that x0 � a, then the shortest path (geodesic) in the
MERA connecting the two lattice sites is the path that goes up in the renormalization
direction and then back down again. The two sites are separated by x0/a bonds on
the UV-most lattice, so logk(x0/a) renormalization steps are needed to make the
sites either adjacent or superimposed. This means that the geodesic that connects
the endpoints is made up of 2 logk(x0/a) bonds (as we have to go up and then back
down again, giving the factor of 2). It follows that the proper length of the geodesic
is

|γ2 |MERA = L2 · (number of bonds in the geodesic)

= 2L2 logk

( x0
a

)
.

(2.6)

To have |γ2 |AdS = |γ2 |MERA, we should therefore set L2 = L ln k.

2.3.2 Limits on sub-AdS scale physics
One aspect of the matching of geodesics that is immediately apparent is that the
MERA scales L1 and L2 that parametrize the proper distance between lattice sites
are of order the AdS scale L or larger, as was also noted in Refs. [37, 31]. This runs
counter to the typical expectation that, in a discretization of spacetime, one expects
the granularity to be apparent on the UV, rather than the IR, scale. That is, sub-AdS
scale locality is not manifested in the MERA construction and must be encoded
within each tensor factor [57].

One could try to evade this difficulty by attempting to redefine theMERAcoordinates
(x, z)MERA (those of Fig. 2.2) as functions of the AdS coordinates (x, z)AdS (those
of Fig. 2.3) and taking a continuum limit; above, we assumed that the two sets
of coordinates were simply identified. That is, suppose xMERA = f (xAdS) and
zMERA = g(zAdS). (For example, one could consider f (x) = εx for small ε and
imagine taking the continuum limit, with the aim of making L1 much smaller
than the AdS scale.) If a is still the UV cutoff on the AdS side, then in the
MERA we have f (a) as the UV-most lattice spacing and g(a) as the UV cutoff
in the holographic direction. Consider the computation of |γ1 |. From the AdS
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side, we have |γ1 |AdS = LxAdS
0 /zAdS

0 . On the MERA side, the number of sites
spanned by xMERA

0 = f (xAdS
0 ) is xMERA

0 /km f (a), while the holographic coordinate
is zMERA

0 = kmg(a). Hence,

|γ1 |MERA = L1
f (xAdS

0 )

f (a)
g(a)

g(zAdS
0 )

. (2.7)

Equating |γ1 |AdS = |γ1 |MERA ≡ |γ1 |, we have

g(zAdS
0 )

∂

∂xAdS
0
|γ1 | = L1

f ′(xAdS
0 )

f (a)
g(a) = L

g(zAdS
0 )

zAdS
0

. (2.8)

Since the right side of the first equality only depends on xAdS
0 and the second

equality only depends on zAdS
0 , but we can vary both parameters independently, both

expressions must be independent of both AdS coordinates. Hence, we must have
f (x) = εx x and g(z) = εzz for some constants εx and εz. Plugging everything
back into Eq. (2.7) and comparing with |γ1 |AdS, we again find that L1 = L, so no
continuum limit is possible. Similarly, in computing |γ2 |, we note that the number
of bonds between the endpoints on the UV-most lattice level is xMERA

0 / f (a), so the
geodesic connecting the endpoints has 2 logk(x

MERA
0 /εxa) bonds. On the other hand,

we have |γ2 |AdS = 2L ln(xAdS
0 /a) = 2L ln(xMERA

0 /εxa). That is, in equating |γ2 |AdS

and |γ2 |MERA, we must again set L2 = L ln k. We thus also find that no continuum
limit is possible in the holographic direction. That is, we have shown that there is a
constant normalization freedom in the definition of each of the coordinate distances
on the AdS and MERA sides of any AdS/MERA duality, but such a coordinate
ambiguity is unphysical and does not allow one to take a continuum limit. One still
finds that the physical MERA parameters L1 and L2 are AdS scale. This means that
there truly is no sense in which a discrete MERA can directly describe sub-AdS
scale physics without the addition of supplemental structure to replace the individual
tensors. This fact limits the ability of the MERA to be a complete description of the
gravity theory without such additional structure. It might be the case that one needs
a field theoretic generalization of the MERA, such as continuous MERA (cMERA)
[59, 60, 61] or some local expansion of the individual tensors into discrete tensor
networks with a different graph structure to describe sub-AdS physics, but such a
significant generalization of the tensor network is beyond the scope of this work and
in any case would no longer correspond to a MERA proper.

2.4 Constraints from Boundary Entanglement Entropy
Because the MERA can efficiently describe critical systems on a lattice, quantities
computed in the MERA on scales much larger than the lattice spacing should agree
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with CFT results. In this section, we will compute the entanglement entropy of `0

contiguous sites in the MERA and exploit known CFT results to obtain constraints
on the properties of the MERA. In particular, we will find an inequality relating the
MERA rescaling factor k and bond dimension χ to the CFT central charge c. This
constraint is interesting in its own right, but it will prove critical in the next section
when we begin to compute bulk properties.

2.4.1 MERA and CFT Entanglement Entropy
For a (1 + 1)-dimensional CFT in a pure state, the von Neumann entropy of a finite
interval B, which is typically referred to as the entanglement entropy, is known to
be [62, 63]

S(B) =
c
3

ln `0 , (2.9)

where the length of the interval is much smaller than the system size. Here, `0 is the
length of the interval in units of the UV cutoff. In the notation of the last section, we
have `0 = x0/a. In the special case that the CFT is dual to AdS in 2+ 1 dimensions,
the central charge is set by the Brown–Henneaux formula [22],

c =
3L
2G

. (2.10)

Also note that the length of the geodesic that connects the two ends of B (the curve
γ2 in Fig. 2.3) is given in Eq. (2.4) by |γ2 | = 2L ln `0. The Brown–Henneaux relation
allows us to reproduce the Ryu–Takayanagi formula [23, 64] from the entanglement
entropy,

S(B) =
area(B̃)

4G
, (2.11)

where B̃ = γ2 is the extremal bulk surface with the same boundary as B. For a
boundary with one spatial dimension and a bulk with two spatial dimensions, any
simply-connected region B is an interval, the extremal bulk surface is a geodesic,
area(B̃) is a length, and G has mass dimension −1.

The MERA calculation of the entanglement entropy of `0 sites in the CFT has an
analogous geometric interpretation. Suppose one is given the MERA representation
of a lattice CFT ground state, i.e., one uses a MERA to generate the CFT state.
Denote by SMERA(`0) the entanglement entropy of the resulting state restricted to `0

sites. In Ref. [58], it is shown that for a specific, optimal choice of `0 sites, for `0

parametrically large, the following bound is placed on SMERA(`0) for a MERA with
k = 2:

SMERA(`0) ≤ 2 log2 `0 ln χ. (2.12)
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Parsing the equation above, this bound essentially counts the number of bonds that
the causal cone of the `0 sites in question crosses (∼ 2 log2 `0) and ln χ is the
maximum entanglement entropy that a single bond can possess when the rest of the
MERA is traced out.

The causal cone of a region B consisting of `0 contiguous UV sites in a MERA
resembles a bulk extremal surface for the boundary region B. Given `0 sites in the
UV, their causal cone is defined as the part of the MERA on which the reduced
density matrix (or in other words, the state) of B depends. An example of a causal
cone is illustrated in Fig. 2.4.

Figure 2.4: Causal cone (shaded) for a set of `0 = 6 sites in a MERA with k = 2.
The width `m of the causal cone at depth m is `1 = 4, `2 = 3, `3 = 3, `4 = 3, etc.
The crossover scale for this causal cone occurs at m̄ = 2. Between the zeroth and
first layer, ntr

1 = 2 bonds are cut by the causal cone. Similarly, ntr
2 = 2, ntr

3 = 3, etc.

In particular, note that the number of bonds that a causal cone crosses up to any fixed
layer scales like the length of the boundary of the causal cone up to that layer. It is
in this sense that Eq. (2.12) is a MERA version of Ryu–Takayanagi. Also note that
the width of the causal cone shrinks by a factor of ∼ 1/k after every renormalization
step until its width is comparable to k. As such, if one denotes the width of the
causal cone at a layer m by `m, then `m is roughly constant for all m greater than
some m̄ (see Fig. 2.4). The scale m̄ is called the crossover scale.

For general k, it is also possible to formulate a bound similar to Eq. (2.12) for the
entanglement entropy of `0 sites. For parametrically large `0, we find that

SMERA(`0; B) ≤ 4(k − 1) logk `0 ln χ . (2.13)
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We demonstrate this bound in App. 2.A using techniques that are similar to those
developed in Ref. [58]. In particular, note that we do not allow ourselves to choose
the location of the `0 sites in question. As such, we remind ourselves that SMERA can
depend on the location of the region B (and not only its size) by including it in the
argument of SMERA. This is also the reason why our Eq. (2.13) is more conservative
than the optimal bound given in Eq. (2.12).

2.4.2 Constraining SMERA

Let us examine Eq. (2.13) a bit more closely. As discussed in App. 2.A, 4(k − 1)
is an upper bound on the number of bonds that the causal cone could cut at any
given depth m below the crossover scale m̄. (The crossover scale m̄ is attained after
roughly logk `0 renormalization steps.) For a given causal cone, i.e., for `0 sites
at a given location with respect to the MERA, let us parametrize our ignorance by
writing

SMERA(`0; B) ≤ 4 fB(k) logk `0 ln χ , (2.14)

where fB(k) grows no faster than (k − 1) and counts the (average) number of bonds
cut by the causal cone at any depth up to the crossover scale. Explicitly,

fB(k) ≡
1

4m̄

m̄−1∑
m=0

ntr
m , (2.15)

where ntr
m denotes the number of bonds that the causal cone cuts at the mth level.

Each cut bond contributes at most ln χ to the entropy (the case of maximal entangle-
ment). As such, it is instructive to introduce a parameter ηB ∈ [0, 1] that describes
the degree of entanglement of the sites in the causal cone. In doing so we may
rewrite the inequality (2.14) as an equality:

SMERA(`0; B) = 4 fB(k) logk `0 · ηB ln χ. (2.16)

The quantity ηB ln χ is the average entanglement entropy per cut bond in the causal
cone of B. Equivalently, Eq. (2.16) may be taken as the definition of ηB.

This definition of ηB of course depends on the location of B and only applies to
bonds that are cut by the causal cone of B. In what follows, it will be advantageous
to have a notion of average entanglement entropy per bond that applies to all bonds
in the MERA. To this end, start with a lattice consisting of `tot sites in total and
consider the limit in which the size of a region B is unbounded but where the ratio
`0/`tot is held constant (so that B does not grow to encompass the whole domain
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of the CFT). In this limit, SMERA(`0; B) → SMERA(`0) and fB(k) → f (k) should
be independent of the exact location of B, i.e., SMERA should exactly agree with
Eq. (2.9). Let us consequently define the average entanglement entropy per bond in
the MERA:

η ln χ = lim
`0→∞

SMERA(`0)

4 f (k) logk(`0)
, (2.17)

The quantity η is then a property of the MERA itself.

Intuitively, one would not expect each individual bond in theMERA to bemaximally
entangled and so it should be possible to constrain η more tightly than η ≤ 1.
This expectation is made more precise via the following considerations. To begin,
consider a MERA with k = 2 and examine a pair of isometries at a fixed depth m.
As indicated in Fig. 2.5a, let ρ2 denote the density matrix of the bonds and ancillae
emanating from the two isometries and let ρ1 denote the density matrix of the four
highlighted bonds below the isometries. We again assume that the ancillae are
initialized to the pure product state composed of factors of |0〉. Taking into account
the ancillae, or in other words promoting the isometries to unitaries, we see that ρ1

and ρ2 are related by a unitary transformation, so S(ρ1) = S(ρ2). By assumption,
the state of each ancilla is |0〉, so ρ2 = ρ̃2 ⊗ |0〉〈0| ⊗ |0〉〈0| for some density matrix
ρ̃2. This in turn implies that S(ρ2) = S(ρ̃2) ≤ 2 ln χ. From the definition of η
above, the entanglement entropy of a single bond is asymptotically given by η ln χ,
so S(ρ1) ' 4η ln χ. It therefore follows that η ≤ 1/2.

b b b

b b b

b b b

ρ2

ρ1

|0〉 |0〉

bb b b

(a)

b
b

b

b b b

b b b

b b b

b

b b b

b b b

b b b

b
b

b

|0〉⊗(k−1) |0〉⊗(k−1)

ρ2

ρ1

b b b

b b b

(b)

Figure 2.5: A pair of isometries with their ancillae explicitly indicated for a MERA
with (a) k = 2 and (b) general k. The thick bonds below the isometries, the state
of which is denoted by ρ1, are unitarily related to the bonds that exit the isometries
and the ancillae, the state of which is denoted by ρ2.



23

For general k, the argument is nearly identical. We again begin by considering a
pair of isometries at a given level m (see Fig. 2.5b). Analogously with the k = 2
case, let ρ2 denote the density matrix of the two bonds and 2k−2 ancillae emanating
from the two isometries and let ρ1 denote the density matrix of the 2k highlighted
bonds below the isometries. There is only one disentangler that straddles both
of the isometries in question for any layout of the MERA. As such, at most k of
the lower bonds enter a disentangler from below and the rest directly enter the
isometries. Here as well ρ1 and ρ2 are related by a unitary transformation so that
S(ρ1) = S(ρ2). Similarly, ρ2 = ρ̃2 ⊗ (|0〉〈0|)⊗2k−2 for some density matrix ρ̃2, so
S(ρ2) = S(ρ̃2) ≤ 2 ln χ. The region described by ρ1 always consists of 2k bonds,
so we may again asymptotically write S(ρ1) ' 2kη ln χ. It therefore follows that
kη ≤ 1, and since f (k) ≤ (k − 1), we may write

η f (k) ≤
k − 1

k
. (2.18)

We note that, in computational practice, one typically does not use the “worst-
case scenario” construction explored in App. 2.A; a more conventional construction
would result in a tighter bound on f (k) and hence a stricter inequality than Eq. (2.18).
For our purposes, however, we will remain as conservative as possible and therefore
use the inequality (2.18) in our subsequent bounds.

2.4.3 Matching to the CFT
Finally, we obtain a constraint on k, χ, and η in terms of the central charge c by
collecting the results of this section. Let us work in the limit where the interval
is much larger than the lattice spacing, logk `0 � 1. We have seen that this is
precisely the regime in which η and f (k) are well-defined quantities independent
of the choice of B. It is also the regime in which we can equate the CFT entropy
S(`0) = (c/3) ln `0 with the MERA entropy (2.16). Doing so, the central charge is
given by

c =
3L
2G
= 12η f (k)

ln χ
ln k

. (2.19)

Then in light of Eq. (2.18), we find that

c ≤ 12
(

k − 1
k ln k

)
ln χ . (2.20)

To recapitulate, given a CFT with central charge c and a MERA representation of
its ground state, a necessary condition for a consistent AdS/MERA correspondence
is that the MERA parameters k and χ satisfy the constraint (2.20). Importantly, this
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implies that, for a well-defined semiclassical spacetime (for which c � 1), the bond
dimension χ must be exponentially large in the size of the AdS scale compared to
the Planck scale.

Let us also note that we can still obtain a bound from Eq. (2.19), albeit a weaker
one, without using the result of Eq. (2.18). Recall that this latter result relies on
having unentangled ancillae in the MERA. This is not necessarily the case for other
tensor network bulk constructions, as we will subsequently discuss. As such, if
we disregard the result of Eq. (2.18), we still have by virtue of their definitions that
f (k) ≤ k−1 and η ≤ 1. The followingweaker but more general bound on the central
charge therefore follows from Eq. (2.19) for such generalized tensor networks:

c ≤ 12
(

k − 1
ln k

)
ln χ. (2.21)

2.5 Constraints from Bulk Entanglement Entropy
In addition to the compatibility conditions from geodesic matching and boundary
entanglement entropy, it is well-motivated to seek out any other possible quantities
that can be computed in both the MERA and AdS/CFT frameworks, so as to place
further constraints on any AdS/MERA correspondence. One important example of
such a quantity is the entropy associated with regions in the bulk, as opposed to on
the boundary.

2.5.1 The Bousso Bound
The notion of placing bounds on the entropy of regions of spacetime in a quantum
gravity theory has been explored for many years, first in the context of black hole
thermodynamics [65] and the Bekenstein bound [66] and later in more general
holographic contexts, culminating in the covariant entropy bound, i.e., the Bousso
bound [18, 20].

The statement of the Bousso bound is the following: given a spacelike surface B of
area A, draw the orthogonal null congruence on the surface and choose a direction
in which the null generators have non-positive expansion. Let the null geodesics
terminate at caustics, singularities, or whenever the expansion becomes positive.
The null hypersurface swept out by these null geodesics is called the lightsheet.
Then the entropy S going through the lightsheet is less than A/4G.

Let our spacelike surface B be a 2-ball of area A on a spacelike slice of AdS and
choose as the lightsheet the ingoing future-directed null congruence. This lightsheet
will sweep out the entire interior of B and will terminate at a caustic at the center
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of B. Since the system is static, the entropy S passing through this lightsheet is the
entropy of the system on B, which by the Bousso bound satisfies

S(B) ≤
A

4G
. (2.22)

It is natural to cast the Bousso bound as a constraint on the dimension of the bulk
Hilbert space. As argued in Ref. [67], the thermodynamic entropy of a system about
which we only know the boundary area A is just the logarithm of the dimension of
the true Hilbert space of the bulk region in question (as opposed to the naïve Hilbert
space in quantum field theory), which the Bousso bound implies is less than A/4G.1
As such, if we denote the Hilbert space of B by HB , let us replace Eq. (2.22) with
the slightly more concrete statement

ln dimHB ≤
A

4G
. (2.23)

2.5.2 A MERA version of the Bousso Bound
Our aim is to compute both sides of the inequality (2.23) using the MERA. For this
calculation, it is instructive to change our parametrization of the hyperbolic plane
from coordinates (x, z), which take values in the half-plane z > 0, to coordinates
(ρ, θ), which take values in a disk 0 ≤ ρ < 1, 0 ≤ θ < 2π. Embeddings of the
MERA in a disk are often depicted in the literature, e.g., [71]; here we make this
coordinate transformation explicit, since we wish to carefully study the geometric
properties of the MERA.

To begin, consider a MERA consisting of a single tree that contains a finite number
of layers m. This situation is illustrated in Fig. 2.6a for k = 2 and m = 4. Note that
such a MERA begins with a top-level tensor at the mth level that seeds the rest of
the MERA in the IR.

The base of the MERA is made up of km sites. Without loss of generality, let us
locate the leftmost site of the base of the MERA at x = 0, so that the UV-most
sites sit at coordinates (x, z) = (na, a), where n = 0, 1, 2, . . . , (km − 1) as shown in
Fig. 2.6b. Let us also assume periodic boundary conditions for this MERA and
hence identify x = 0 and x = kma.

1Moreover, it is known that there exists an asymptotically-AdS bulk configuration that saturates
the Bousso bound, namely, the BTZ black hole [68, 69], which further implies that ln dimHB in
fact equals A/4G. However, we will not need this stronger assertion in what follows. A similar but
unrelated result equating the area of a region with its entanglement entropy in vacuum was obtained
in Ref. [70].
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Figure 2.6: (a) A k = 2 MERA consisting of m = 4 layers and with periodic
boundary conditions, (b) the corresponding embedding in (x, z) coordinates, and (c)
the embedding in (ρ, θ) coordinates.

Next, define the coordinates (ρ, θ) as follows:

ρ =
kma − z

kma
,

θ = 2π
x

kma
.

(2.24)

In these coordinates, the metric reads

ds2 =
L2

(1 − ρ)2

[
dρ2 +

(
dθ
2π

)2
]
, (2.25)

cf. Eq. (2.3). This embedding of the MERA is shown in Fig. 2.6c; the top-level
tensor always sits at ρ = 0 and the lower layers of the MERA are equally spaced on
circles of radii 1/2, 3/4, 7/8, . . . that are centered at ρ = 0.



27

More generally, one could construct a top-level tensor that has T legs, each of which
begets a tree of sites. In this case, x = 0 and x = T km−1a are identified, so one
should define the angular variable as θ ≡ 2πx/(T km−1a). The metric (2.25) is
correspondingly modified and reads

ds2 =
L2

(1 − ρ)2

[
dρ2 +

T2

k2

(
dθ
2π

)2
]
. (2.26)

This situation is depicted in Fig. 2.7. (If T = k, however, then it is not necessary to
introduce any new structure in addition to the disentanglers and isometries that were
already discussed, i.e., one may take the top-level tensor to be one of the isometries.)

Figure 2.7: Disk parametrization of the Poincaré patch of AdS in which a MERA
has been embedded. The top tensor of the MERA shown has T = 6. The shaded
region is a ball B, which is this case contains NB = 1 generation.

We may immediately compute the right-hand side of Eq. (2.23). Let the ball B be
centered about ρ = 0, and suppose B contains the top-level tensor, the sites at the
top tensor’s legs, and then the first NB generations of the MERA emanating from
these sites, as indicated in Fig. 2.7. The boundary of B is a circle at constant ρ, so
its circumference according to the MERA is A = T kNBL. As such, we may write

A
4G
=

T kNBL
4G

=
T kNBc

6
, (2.27)

where in the second equality we used the Brown-Henneaux relation, Eq. (2.10).

How one evaluates the left-hand side of Eq. (2.23) using the MERA is not as
immediate. Recall thatHB is the Hilbert space of bulk states. TheMERA, however,
does not directly prescribe the quantum-gravitational state in the bulk; it is not
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by itself a bulk-boundary dictionary. As we mentioned in Sec. 2.2.2, the minimal
assumption that one can make is to posit the existence of a bulk Hilbert space factor
Vbulk associated with each MERA site that is not located at the top tensor. To keep
the assignment general, we assign a factor VT to the top tensor. The dimensionality
of eachVbulk factor should be the same in order to be consistent with the symmetries
of the hyperbolic plane. The assumption of a Hilbert space factor at every MERA
site is minimal in the sense that it introduces no new structure into the MERA. A
true AdS/MERA correspondence should dictate how states in the bulk Hilbert space
are related to boundary states. However, for our analysis, it is enough to simply
postulate the existence of the bulk Hilbert space factors Vbulk and VT, each of which
may be thought of as localized to an AdS-scale patch corresponding to the associated
MERA site.

In addition to the site at the top tensor, the number of regular MERA sites that the
ball B contains is given by

NB = T
NB∑
i=0

ki = T
(

kNB+1 − 1
k − 1

)
. (2.28)

As such, the Hilbert space of bulk states restricted to B is HB = (Vbulk)
⊗NB ⊗ VT.

Next, suppose that dim Vbulk = χ̃ and that dim VT = χ̃T, where, like χ, χ̃ and χ̃T are
some fixed, NB-independent numbers. Then dimHB = χ̃T( χ̃

NB ). Note that one
would expect χ and χ̃ to have a very specific relationship in a true bulk/boundary
correspondence, the nature ofwhichwill be explored later in this section. Combining
Eqs. (2.27) and (2.28), the dimensionality ofHB is upper bounded as follows:

ln dimHB ≤
A

4G
=⇒ T

(
kNB+1 − 1

k − 1

)
ln χ̃ + ln χ̃T ≤

T kN
B

c

6
. (2.29)

After isolating c in Eq. (2.29) and using the result of Eq. (2.19), we find that

c = 12η f (k)
ln χ
ln k
≥ 6

(
kNB+1 − 1
kNB (k − 1)

ln χ̃ +
1

T kNB
ln χ̃T

)
. (2.30)

Next, let us consider this inequality in the limit of large NB . A motivation for this
limit is the fact that the natural scale of validity of an AdS/MERA correspondence
is super-AdS, as was established in Sec. 2.3. Moreover, by virtue of its definition,
there is always an ambiguity of order the AdS scale in the radius of the ball B. That
is, the region in AdS denoted by B is only well-defined in the MERA if B is large
compared to the AdS scale L. Taking the limit of large NB , Eq. (2.30) reduces to

η f (k) ≥
k ln k

2(k − 1)

(
ln χ̃
ln χ

)
. (2.31)
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By using the bound on η f (k) given by Eq. (2.18), we arrive at a constraint on k, χ,
and χ̃:

k2 ln k
2(k − 1)2

(
ln χ̃
ln χ

)
≤ 1. (2.32)

In principle, the above inequality could be satisfied for any k, provided that the
dimension χ̃ of the factors Vbulk can be arbitrarily chosen with respect to the bond
dimension χ. However, the essence of holography, that the bulk and boundary are
dual descriptions of the same degrees of freedom and therefore have isomorphic
Hilbert spaces [45], implies a relation between χ and χ̃. Namely, for a MERA
with a total of N levels of sites in the bulk strictly between the UV-most level and
the top-level tensor, the number of bulk sites Nbulk that are not located at the top
tensor is given by Eq. (2.28) with NB = N , and the number of sites in the boundary
description is Nboundary ≡ T kN+1. The bulk Hilbert space thus has dimension
χ̃Nbulk χ̃T and the boundary Hilbert space has dimension χNboundary . Equating2 the
dimension of the bulk and boundary Hilbert spaces then yields

ln χ̃
ln χ

=
1
Nbulk

(
T kN+1 −

ln χ̃T
ln χ

)
N large
→ k − 1, (2.33)

where we took the limit of N large, consistent with Eq. (2.31) and in keeping with
the expectation that the UV cutoff be parametrically close to the boundary at ρ = 1.
Putting together Eqs. (2.32) and (2.33), we obtain a constraint on k alone:

k2 ln k
2(k − 1)

≤ 1. (2.34)

This constraint cannot be satisfied for any allowed value of the rescaling factor k,
whichmust be an integer greater than or equal to 2. We thus learn that a conventional
MERA cannot yield a consistent AdS/MERA correspondence. The MERA cannot
simultaneously reproduce AdS geodesics, respect the Ryu–Takayanagi relation, and
(using the only construction for the bulk Hilbert space available to the MERA by
itself) satisfy the Bousso bound. That is, there exists no choice ofMERA parameters
that can faithfully reproduce geometry, holographic properties, and bulk physics.

If we relax this bound and, instead of Eq. (2.18), only observe the weaker, natural
bounds η ≤ 1 and f (k) ≤ k − 1 as discussed at the end of Sec. 2.4.3, the constraint
(2.34) is correspondingly modified:

k ln k
2(k − 1)

≤ 1. (2.35)
2We recognize that there are other proposals [49, 72] that do not require an exact equivalence

between the bulk and boundary Hilbert spaces, but, even in these cases, there is the requirement of
an exact equivalence between the logical qubits on the boundary with the Hilbert space of the bulk.
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In contrast to Eq. (2.34), this latter bound can be satisfied, but only for k = 2, 3, or
4. As such, other AdS/tensor network correspondences, in which the ancillae are
perhaps entangled and therefore do not describe a conventionalMERA, are not ruled
out. Note that we never needed to compute bulk entanglement entropy explicitly —
and therefore did not need to treat separately the possibility of entanglement among
ancillae — because we cast the Bousso bound as a constraint on the size of the bulk
Hilbert space itself. The appearance of η in Eq. (2.31) corresponds to entanglement
in the boundary theory as computed by the tensor network; Eqs. (2.31) and (2.33)
still apply.

2.6 Conclusion
The notion of emergence of spacetime based on a correspondence between AdS and
a tensor network akin to AdS/CFT is a tantalizing one. A necessary step in such a
program is the evaluation and comparison of calculable quantities on both sides of the
duality. In this work, we have subjected the proposed AdS/MERA correspondence
to such scrutiny. To summarize, let us restate our three main findings:

1. In matching the discrete graph geometry of the MERA to the continuous
geometry of a spatial slice of AdS, we demonstrated that the MERA describes
geometry only on scales larger than the AdS radius. Concretely, as shown in
Sec. 2.3, the proper length assigned to the spacing between adjacent sites in
the MERA lattice must be the AdS scale.

2. By requiring that the entropy of a set of boundary sites in the MERA —
whose computation is a discrete realization of the Ryu–Takayanagi formula
— be equal to the CFT ground state entropy of the same boundary region
in the thermodynamic limit, we obtained a constraint on the parameters that
describe a MERA in terms of the CFT central charge [Eqs. (2.20) and (2.21)],
which implies that the bond dimension χ must be exponentially large in the
ratio of the AdS scale to the Planck scale.

3. In the natural construction of a bulkHilbert space (Hbulk) using theMERA,we
used the Bousso bound to constrain the dimension ofHbulk. When combined
with our previous results, we found that any strict AdS/MERA correspondence
cannot satisfy the resulting constraint, Eq. (2.34). Upon relaxing the definition
of the MERA or allowing for additional structure, however, we obtained a
looser constraint, Eq. (2.35), which may not rule out some other AdS/tensor
network correspondences.
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In particular, more general correspondences between AdS and MERA-like tensor
networks, in which we allow the ancillae to be entangled when reproducing the CFT
ground state [and for which Eq. (2.35) applies in place of Eq. (2.34)] are not ruled
out by our bounds, provided that the rescaling factor k = 2, 3, or 4. Further, it is
interesting to note that our bounds extend to states other than the vacuum that are
described by a MERA. One such example, namely, states at finite temperature dual
to black holes in AdS, is discussed in App. 2.B below.

While the consistency conditions that we found are specific to the MERA tensor
network, many of the ideas and techniques that we used apply equally well to
other tensor networks. In the EHM, for instance, the type of bulk Hilbert space
dimensionality arguments that we made based on the covariant entropy bound may
be directly transferred to the EHM. The same stringent final constraints that we
derived do not apply to the EHM, however, since it is unclear to what extent the
EHM reproduces the Ryu–Takayanagi formula (which renders the results of Sec. 2.4
inapplicable). Our bulk Hilbert space arguments similarly apply to the holographic
error-correcting code proposal in Ref. [49], which furthermore purports to reproduce
a version of the Ryu–Takayanagi formula. It is presently unknown, however, whether
the boundary state of a holographic code can represent the ground state of a CFT,
so an identification of entropies similar to the identification SMERA = SCFT, upon
which our boundary entropy constraints so crucially depend, cannot yet be made.

In closing, we have found several consistency conditions that any AdS/MERA
correspondence must satisfy. The totality of these constraints rules out the most
straightforward construal of an AdS/MERA correspondence. Other interesting
holographic correspondences that are described by tensor networks more general
than the MERA and that respect all of our bounds may indeed be possible. Our
consistency conditions are nice validity checks for these correspondences when
applicable and in other cases they may inspire similar consistency conditions. The
program of identifying the emergence of spacetime from the building blocks of
quantum information is an ambitious one; stringent consistency conditions, such
as those presented in this paper, are important for elucidating the subtleties in this
quest and in providing guidance along the way.

2.A Entropy bound for general MERAs
Following the method presented in Ref. [58], let us compute an upper bound for the
entanglement entropy of a region B consisting of `0 sites in a MERA with rescaling
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factor k. We will use the notation of Ref. [58] throughout.

First, recall the result from Ref. [58] that the entanglement entropy of a region
consisting of `0 sites is bounded by

SMERA(`0; B) ≤ (`m′ + N tr
m′) ln χ. (2.36)

The quantity `m′ is the width of the causal cone at depth m′ and N tr
m′ =

∑m′−1
m=0 ntr

m is
the total number of sites that are traced out along the boundary of the causal cone.
In other words, N tr

m′ is the number of bonds that are cut by the causal cone up to a
depth m′ (cf. Fig. 2.4). The quantity ln χ is the maximum entanglement entropy that
each site that is traced out could contribute to SMERA(`0; B). Note that Eq. (2.36)
holds for all m′ ≥ 0.

Thewidth of the causal cone for a givenm′ depends sensitively on the structure of the
MERA. In particular, the number of sites that are traced out at each renormalization
step depends on the choice of disentanglers, as well as how they are connected
to the isometries. For instance, in a MERA with a rescaling factor k, any given
disentangler could have anywhere from 2 up to k incoming and outgoing legs. (It
should be reasonable to require that any disentangler can have no more than k

incoming and k outgoing legs so that it straddles no more than two isometries.) It
is thus clear that the number of bonds that one cuts when drawing a causal cone,
and hence the entanglement entropy of the region subtended by that causal cone,
depends on the choice of disentanglers and connectivity.

Nevertheless, we can compute an upper bound for SMERA(`0; B) by considering a
worst-case scenario for the number of bonds cut by the causal cone. We begin by
asking: What is the largest number of bonds that a causal cone could cut in one
renormalization step at a depth m′? The layout of disentanglers and isometries that
produces this situation is shown at one side of a causal cone in Fig. 2.8. If the
causal cone at the bottom of the renormalization step incorporates a single bond
that goes into a disentangler accepting k bonds, then the causal cone must cut the
other k − 1 bonds entering the disentangler. Then if this disentangler is arranged
so that its leftmost outgoing bond is the first bond to enter an isometry from the
right, the causal cone must cut the other k − 1 bonds entering the isometry. If this
arrangement is mirrored on the other side of the causal cone, we see that 4(k − 1)
bonds are cut by the causal cone in this renormalization step, i.e., ntr

m′ = 4(k − 1).

Recall that for any finite `0, after a fixed number of renormalization steps, the width
of the causal cone remains constant for any further coarse-grainings. The depth at
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k − 1k − 1

Figure 2.8: Left side of a causal cone that cuts the maximum possible number of
bonds over the course of one renormalization step. The rectangles are disentanglers
that accept k bonds as input and the triangles are isometries that coarse-grain k
bonds into one. The causal cone is the shaded region. If this situation is mirrored on
the right side of the causal cone, then 4(k − 1) bonds are cut in this renormalization
step.

which this occurs is called the crossover scale and is denoted by m̄. Therefore, the
causal cone will cut the largest possible number of bonds when the arrangement
described above and depicted in Fig. 2.8 occurs at every step up until the crossover
scale. Then, by Eq. (2.36), the entropy bound is given by

SMERA(`0; B) ≤ (`m̄ + 4(k − 1)m̄) ln χ, (2.37)

where `m̄ is the width of the causal cone at the crossover scale.

For any given causal cone in aMERAwith scale factor k ≥ 2, the maximum number
of additional sites the causal cone can pick up at some level m′ is 4(k−1). Therefore,
for a causal cone that contains `m′ sites at depth m′, the number of sites in the causal
cone after one renormalization step `m′+1 ≤ d(`m′ + 4(k − 1))/ke ≤ `m′/k + 5.
Applying the relation recursively, we find that the number of sites `m′ at any layer
m′ < m̄ is bounded,

`m′ ≤
`0
km′ + 5

m′∑
m=1

1
km ≤

`0
km′ + 5 . (2.38)

Setting m′ = m̄, it trivially follows that the crossover scale obeys m̄ ≤ logk `0.
Furthermore, we notice that this is the scale at which the entanglement entropy is
minimized if we trace over the remaining sites. In other words, the number of bonds
cut by going deeper into the renormalization direction is no less than the bonds cut
horizontally, so 4(k − 1) ≥ `m̄ 3. Applying the bounds for m̄ and `m̄ on Eq. (2.37),

3Alternatively, we can see this from a heuristic argument by noting that the crossover scale is the
scale atwhich the causal cone has a constantwidth for further coarse-grainings, i.e., (`m̄+4(k−1))/k ≈
`m̄. Therefore, `m̄ . 4 ≤ 4(k − 1).
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we arrive at an upper bound on SMERA(`0; B) for a k-to-one MERA,

SMERA(`0; B) ≤ 4(k − 1)(1 + logk `0) ln χ. (2.39)

When `0 is parametrically large, we neglect the O(1) contribution to the bound on
SMERA(`0; B), which yields Eq. (2.13).

2.B BTZ Black Holes and Thermal States in AdS/MERA
Thus far, we have found constraints on the structure of a MERA that can describe
CFT states dual to the AdS3 vacuum. One might ask whether these results extend to
other constructions that exist in three-dimensional gravity. Although pure gravity
in AdS3 has no local or propagating degrees of freedom, there exist interesting non-
perturbative objects, namely, BTZ black holes [68]. In this appendix, we extend our
constraints on boundary entanglement entropy to these objects.

The non-rotating, uncharged BTZ black hole solution is given in Schwarzschild
coordinates by

ds2 = −
(r2 − r2

+)

L2 dt2 +
L2

(r2 − r2
+)

dr2 + r2dφ2 , (2.40)

with a horizon at r = r+. Noting that Euclidean time is compactified by identifying
τ ∼ τ+2πL2/r+, the horizon temperature of the black hole is given byT = r+/2πL2.
Additionally, the Bekenstein–Hawking entropy of the black hole is

SBH =
Area
4G
=
πr+
2G

. (2.41)

Let us now consider applying a MERA with rescaling factor k and bond dimension
χ to a CFT at a finite temperature, where instead of minimizing the energy of
the boundary state, one minimizes the free energy. In the CFT, turning on a
temperature introduces a scale, going as the inverse temperature, which screens
long-range correlations. Thus, the state will have classical correlations in addition
to entanglement and the effect of a finite temperature on the entanglement entropy
is the appearance of an extensive contribution. As one runs the MERA and coarse-
grains, the thermal correlations that cannot be removed become more relevant.
The MERA, which is unable to remove the extensive contribution, truncates at
a level with multiple sites. The schematic entanglement renormalization process
is illustrated in Fig. 2.9. The state at the top level effectively factorizes, where
each factor appears maximally mixed [37, 57]. A tractable realization of this
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Figure 2.9: The MERA, when applied to a thermal CFT state Z−1 exp(−ĤCFT/T),
where Z = tr(exp(−ĤCFT/T)), truncates after a finite number of layers. The bound-
ary state at the top of the truncated MERA effectively factorizes into a product of
maximally mixed states ρ = I/χ.

tensor network structure recently appeared in Ref. [73], which found a MERA
representation of a thermal state.

Keeping in mind that the holographic dual of a finite-temperature state in the CFT is
a black hole in AdS, where the temperature of the CFT corresponds to the Hawking
temperature of the black hole, we note that the truncated MERA is suggestive of a
black hole horizon [37]. If the MERA is to be interpreted as a discretization of the
geometry, then the geometry has ended at some scale. Also, as we approach the
horizon, the amount of Hawking radiation that we see increases and the temperature
measured by an observer at the horizon diverges. The density matrix of some system
in the infinite-temperature limit is given by the product of a maximally mixed state
at each site, just like the state at the top of the MERA. It is important to note that,
as was pointed out in Ref. [73], in order to reproduce the correct thermal spectrum
of eigenvalues, a small amount of entanglement must be present between the sites
at the horizon. If the bond dimension were taken to be infinite, then the sites at the
horizon truly would factorize. But for a finite bond dimension, one should really
think of the horizon as a high-temperature state, with sites effectively factorized.

For small regions on the boundary, the length of the subtending bulk geodesic
is subextensive and so the Ryu–Takayanagi formula maintains that the boundary
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region’s entanglement entropy is subextensive as well. However, if we consider a
large enough region on the boundary, the geodesic will begin to probe the horizon
of the black hole. The geodesic will run along the black hole horizon and pick up
an extensive contribution to the entropy. We consider a boundary theory living on a
lattice consisting of nb sites, with total system coordinate length xsys = nba. In the
limit as r approaches the boundary in the metric (2.40), we see that T xsys = r+/L, as
was pointed out in Refs. [23, 64]. We further note that this implies that the system
coordinate size is of order AdS radius, xsys = 2πL.

Let us now view the MERA of Fig. 2.9 as a discretization of a BTZ spacetime and
repeat the analysis of Sec. 2.3. In this discretization, the layers of the MERA lie
along circles of fixed radius r in the coordinates of Eq. (2.40). Again, we ask what
proper length L1 separates sites in any given layer of the MERA.

First, note that a path at fixed r0 that subtends an angle φ0 has proper length r0φ0.
At the boundary of the MERA, we consider a region defined by 0 ≤ φ ≤ φ0 =

2πx0/xsys, where x0 is the coordinate length of the interval, consisting of `0 lattice
sites. The boundary of theMERA is at a fixed radius r = rb. Naturally, the boundary
radius rb can be interpreted as a UV cutoff and is related to the lattice spacing a by
rb = L2/a [23]. By equating the proper distance of the region in the MERA, `0L1,
with that at the boundary of the BTZ spacetime, rbφ0, we find the proper length
between horizontal bonds to be L1 = L.

With the foresight that the top of theMERA is suggestive of a black hole horizonwith
proper length 2πr+, the number of sites at the final layer is therefore nh = 2πr+/L.
This further tells us that the MERA truncates after a finite number of layers m, given
by

m = logk

(
nb
nh

)
= logk

1
2πTa

. (2.42)

This coincides with the conclusion in Refs. [73, 74] that the MERA representation
of a thermal state is obtained after O(logk(1/T)) iterations of coarse-graining.

Now consider a region B on the boundary consisting of `0 sites and for which the
corresponding geodesic contains a segment running along the BTZ horizon. The
subextensive contribution to the entropy in the MERA is exactly as before, in which
we pick up at most ln χ from each bond we cut with the causal cone of the region
B. Furthermore, we will now pick up an extensive contribution from the horizon,
where the number of horizon sites within the causal cone is `h and each such site in
the product state on the horizon contributes maximally to the entropy by an amount
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ln χ. Combining the contributions, we find

SMERA(B) = 4ηB fB(k) logk

(
`0
`h

)
ln χ + `h ln χ . (2.43)

Recall that the entanglement entropy of a single interval B of coordinate length x0

in a CFT at finite temperature [63] is given, up to a non-universal constant, by

SCFT(B) =
c
3

ln
(

1
πaT

sinh πx0T
)
, (2.44)

where x0 is much smaller than the total system size xsys. The standard field-theoretic
derivation of the above entropy is done by computing the Euclidean path integral on
an n-sheeted Riemann surface and analytically continuing to find the von Neumann
entropy. The same result can be derived by computing geodesic lengths on spatial
slices of BTZ spacetimes and making use of the Ryu–Takayanagi formula.

WhenT → 0 in Eq. (2.44), we recover the usual result (2.9). In theT →∞ limit, the
von Neumann entropy gives the usual thermal entropy as entanglement vanishes.
Taking T x0 � 1, the leading and subleading contributions to the entanglement
entropy are

SCFT =
c
3
πx0T +

c
3

ln
1

2πaT
, (2.45)

where the first term is the thermal entropy for the region B.

Now let us consider a finite-temperature CFT that is dual to a BTZ black hole with
horizon temperature T = r+/2πL2. In terms of geometric MERA parameters, we
find that Eq. (2.45) becomes

SCFT =
c
6
`h +

c
3

m ln k . (2.46)

Here we used the fact that `h = x0r+/L2 as well as Eq. (2.42), where we note
that m can also be written as logk(`b/`h). The result (2.46) coincides precisely
with the extensive and subextensive contributions calculated using the MERA in
Eq. (2.43) provided that c/ln χ ∼ O(1). Therefore, we find that the truncatedMERA
correctly captures the entanglement structure of thermal CFT states and their dual
BTZ spacetimes. These conclusions are in agreement with those in Refs. [31, 74].

As a check of the claim that c and ln χ should be of the same order, we can compare
the horizon entropy given by the contribution from the sites at the final layer with
the Bekenstein–Hawking entropy (2.41) of a BTZ black hole. There are nh sites
comprising the horizon, each with Hilbert space dimension χ. The system is in
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the infinite-temperature limit — and hence described by a maximally mixed density
matrix, with entropy contribution ln χ from each site — so

Shorizon = nh ln χ . (2.47)

Making use of the Brown–Henneaux relation and requiring that the entropy (2.47)
coincide with the Beckenstein-Hawking entropy, we again find that c/ln χ ∼ O(1).
More specifically, taking the counting to be precise, we find that

c/ln χ = 6 , (2.48)

which is qualitatively in agreement with the previous conclusion (2.20) that the
Hilbert space dimension must be exponentially large in c.

With this relation, the extensive terms in Eqs. (2.43) and (2.46) agree precisely.
Further identifying the subextensive terms, we find ηB fB(k) = (ln k)/2. If we then
impose the constraint (2.18), we find that

k ln k
2(k − 1)

≤ 1 . (2.49)

This last inequality exactly reproduces Eq. (2.35) and thus constrains k to be 2, 3,
or 4. Interestingly, we have found the weaker of the two bounds derived in Sec. 2.5,
without needing to consider the Bousso bound.

As desired, the truncated MERA computation of entanglement entropy agrees with
the expected entanglement entropy given by the application of the Ryu–Takayanagi
formula to the length of the minimal surface in a BTZ spacetime. The fact that
the results of matching boundary entanglement entropy given in Sec. 2.4 further
hold in BTZ spacetimes might not be too surprising given that such spacetimes are
quotients of pure AdS3.
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C h a p t e r 3

DS-MERA CORRESPONDENCE

We investigate the proposed connection between de Sitter spacetime and the MERA
(Multiscale Entanglement Renormalization Ansatz) tensor network, and ask what
can be learned via such a construction. We show that the quantum state obeys a
cosmic no-hair theorem: the reduced density operator describing a causal patch of
theMERA asymptotes to a fixed point of a quantum channel, just as spacetimes with
a positive cosmological constant asymptote to de Sitter. The MERA is potentially
compatible with a weak form of complementarity (local physics only describes
single patches at a time, but the overall Hilbert space is infinite-dimensional) or,
with certain specific modifications to the tensor structure, a strong form (the entire
theory describes only a single patch plus its horizon, in a finite-dimensional Hilbert
space). We also suggest that de Sitter evolution has an interpretation in terms of
circuit complexity, as has been conjectured for anti-de Sitter space.

This chapter is based on the Ref:
Ning Bao, ChunJun Cao, Sean M. Carroll, and Aidan Chatwin-Davies. “De Sitter
Space as a Tensor Network: Cosmic No-Hair, Complementarity, and Complexity”.
In: Phys. Rev. D96.12 (2017), p. 123536. doi: 10.1103/PhysRevD.96.123536.
arXiv: 1709.03513 [hep-th].

3.1 Introduction
Even in the absence of a completely-formulated theory of quantum gravity, a great
deal can be learned by combining insights from classical gravity, semiclassical
entropy bounds, the principles of holography and complementarity, and the general
structure of quantum mechanics. A natural testing ground for such ideas is de Sitter
space, a maximally symmetric spacetime featuring static causal patches with a finite
entropy. De Sitter is also of obvious phenomenological relevance, given the positive
value of the cosmological constant in the real world. In this paper we apply ideas
from quantum circuits and tensor networks to investigate quantum properties of
de Sitter on super-horizon scales.

The Multiscale Entanglement Renormalization Ansatz (MERA) is a well-studied
tensor network thatwas originally developed to find ground states of 1+1 dimensional

https://doi.org/10.1103/PhysRevD.96.123536
https://arxiv.org/abs/1709.03513


40

condensed matter theories [39]. In recent years, an interesting connection has been
drawn between theMERA and AdS3/CFT2, by way of using theMERA to discretize
the AdS space [37, 57]. The argument was made that this could be seen as a way of
emerging AdS space from the boundary CFT, thus establishing AdS/CFT as a theory
in which bulk spacetime emerges from entanglement properties on the boundary.
Further work exploring this direction and generalizing it to other types of tensor
networks has been done by [48, 49, 76], and a p-adic approach to AdS/CFT using
trees is explored by [77, 78]. However, the AdS/MERA correspondence seems to
have tensionswith other known results in holography. For example, it is puzzling that
AdS/MERA appears to suggest a “bulk geometry” in the form of a tensor network
even for a CFT with a small central charge. Additionally, it needs to satisfy a set
of stringent constraints, brought on by the fact that it is supposed to duplicate the
established results of AdS/CFT [21, 23]. It appears that AdS/MERA in its simplest
form is not able to satisfy all of the constraints imposed by holography with AdS
geometry [41, 79, 80], although extensions may be able circumvent this difficulty
[81].

There is also considerable interest in studying a more general notion of geometry
from entanglement beyond the context of AdS/CFT [82], where geometries are
related to our physical universe [83, 84]. A connection between the MERA and
de Sitter spacetime has been suggested, where we think of the tensors as describing
time evolution, rather than as relating different spatial regions [51, 79, 85]. In the
case of 1+1 dimensions, it is also claimed [79] that the MERA can be thought of as
a discretization of a slice in the “kinematic space” [50, 26], which corresponds to
the space of geodesics in the hyperbolic plane in the particular case of AdS3/CFT2.
This beautifully illustrates a correspondence between regions in the dual kinematic
space, which take on information-theoretic interpretations, and the individual tensors
localized in the MERA. More tentatively, quantum circuits have been proposed as a
way of studying realistic cosmological evolution from inflation to the present epoch
and beyond [86].

In this paper we investigate this proposed connection between the MERA and
de Sitter, under the assumption that a MERA-like circuit is able to simulate effective
quantum gravitational dynamics on super-Hubble scales for some subset of quantum
states in a theory of quantum gravity. We show that the structure of the MERA is
able to reproduce some desirable features of evolution in a de Sitter background. In
particular, we identify a scale invariant past causal cone as the static patch where
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an analogous light-like surface functions as the cosmic horizon. Then we show that
a version of the cosmic no-hair theorem can be derived from the fixed point of the
quantum channel, whereby any state will asymptote to the channel fixed point at
future infinity. We next examine the issue of horizon complementarity in theMERA
context, and argue that the global and local descriptions of de Sitter [87, 88] can be
equivalent up to a unitary change of basis. We observe similarities between a strong
version of local de Sitter and the implementation of a quantum error correcting code.
Lastly, we derive a bound on the quantum complexity of the MERA circuit, and
show that the complexity scales in a manner that is consistent with the “complexity
equals action” conjecture [32].

3.2 The MERA and the de Sitter causal patch
In Fig. 3.1 we illustrate the MERA tensor network. In its original conception as an
ansatz for constructing ground states of 1-d spin systems, one starts with a simple
quantum state at the top of the diagram, and propagates it downward through a series
of gates to a final state at the bottom. Each line represents a factor of Hilbert space,
which might be quite high-dimensional. Moving downward is the “fine-graining”
direction, and upward is “coarse-graining.” The square gates are “disentanglers”
(although they create entanglement as we flow downward), which take two factors in
and output another two factors. The triangular gates are “isometries,” which can be
thought of as taking in a single factor and outputting two factors; alternatively, we
can imagine inputting two factors, one of which is a fixed state |0〉, and outputting
another two, so that the total dimensionality entering and exiting each tensor is
equal. We will adopt the latter perspective in this paper. It is often convenient to
consider generalizations where k > 2 factors enter and exit each tensor.

In the AdS/MERA correspondence, tensors are taken to represent factors of Hilbert
space, and the two-dimensional geometry of the graph is mapped to the hyperbolic
plane. Here, where we are interested in studying a dS/MERA correspondence, flow
through the circuit represents evolution through time. Note that, while it is common
in general relativity to draw spacetime diagrams with the future at the top, the
convention in quantum circuits for MERA is to start with one or more “top tensors”
and evolve downward. Here we will stick to the conventions of the respective
communities; time flows downward in MERA circuit diagrams, and upward in
spacetime diagrams.1

1We will occasionally draw circuit diagrams in which time flows from left to right, just to keep
things lively.
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|0〉 |0〉 |0〉|0〉

|0〉 |0〉 |0〉 |0〉 |0〉 |0〉 |0〉 |0〉

|0〉|0〉 |0〉|0〉 |0〉|0〉 |0〉|0〉 |0〉|0〉 |0〉|0〉 |0〉|0〉 |0〉|0〉

t

Figure 3.1: A periodic binary MERA. The green triangles denote the isometries
and the blue squares denote the disentanglers. The kets labeled |0〉 are ancilla states
inserted into each isometry. The action of the circuit is to take a state at the top and
evolve it downward. In anticipation of the connection to de Sitter, the fine-graining
direction is labelled as the direction of increasing t.

In this work, we will mostly be concerned with MERAs that are scale and transla-
tionally invariant (the same disentanglers and isometries appear everywhere in the
network). We use the term “site” in the MERA to refer to a Hilbert space factor
that lives on a leg that exits a disentangler (or equivalently, that enters an isometry).
When the MERA is used as a variational ansatz for a physical system like a spin
chain, the collection of sites at any given layer corresponds to the state of the physical
lattice at that renormalization scale. For more extensive reviews of tensor networks
and the MERA see [52, 71, 41].

Viewed as a circuit in which the fine-graining direction corresponds to the future
or past direction (away from the de Sitter throat), the MERA reproduces the causal
structure of de Sitter spacetime [51, 79, 85]. Recently, as a part of their studies
of kinematic space, Czech et al. further pointed out that there is a natural way of
associating the MERA with half of the 1+1-dimensional de Sitter manifold [79].
Here we briefly explain how this works.

LetM be 1+1-dimensional de Sitter spacetime with the usual global coordinatiza-
tion:

ds2 = `2
dS(−dt2 + cosh2 t dθ2). (3.1)

The timelike coordinate t takes all real values, and θ is an angular coordinate that
is 2π-periodic. In these coordinates,M looks like a hyperboloid whose constant-t
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sections are circles that attain a minimum radius at t = 0 and that grow in either
direction away from t = 0. The proper radius at t = 0 is equal to `dS, which is called
the de Sitter radius. A convenient coordinate transformation is to set cosh t = secα,
under which the metric becomes conformally flat:

ds2 =
`2

dS
cos2 α

(
−dα2 + dθ2

)
. (3.2)

Because of this, the full de Sitter manifold is often represented by a rectangle in the
θ-α plane with −π/2 < α < π/2 and 0 < θ < 2π, as in the Penrose diagram of
de Sitter, Fig. 3.2.

Consider now the top half of the de Sitter manifold with t ≥ 0 (or 0 ≤ α < π/2).
Starting at t0 ≡ 0, the length of the constant-tn slice doubles at every subsequent
time tn = arccosh 2n with n = 1, 2, . . . This suggests identifying the top of a
translationally invariant binary MERA with the t0 = 0 slice, and subsequent layers
of the MERA with the subsequent tn slices, so that the MERA describes the top half
of the de Sitter hyperboloid. This identification is illustrated in Fig. 3.3, in which
the sites of the nth layer of the MERA have been chosen to lie at the angles

θ
(n)
j =

π

2n+1

(
j +

1
2

)
j = 0, . . . , 2n+2 − 1 . (3.3)

The fact that the top of the MERAwas chosen to have four sites was no coincidence.
With this choice, the future domain of dependence of any two adjacent sites at the
top of the MERA precisely coincides with (the top half of) a single static patch of
de Sitter. Or, to use terminology that is more familiar in the MERA literature, each

θ = 0 π 2π

α = 0

−π/2

π/2

Figure 3.2: The Penrose diagram of global (1+1)-dimensional de Sitter spacetime.
As this is a spacetime diagram, time now runs from bottom to top. The boundaries
of two complete disjoint causal patches, one centered at θ = 0 and the other centered
at θ = π, are drawn with a dashed line, and the interiors of the patches are shaded.
Light rays travel along 45◦ lines in this diagram.
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Figure 3.3: A geometric de Sitter-MERA correspondence, mapping the MERA
circuit to the top half of the de Sitter geometry. Note that the fine-graining direction
of the MERA in this diagram points upward to match the future direction in the
Penrose diagram. The domain of dependence of any pair of adjacent sites in the
initial layer of theMERA is entirely containedwithin a single static patch in de Sitter.
Two of the four possible static patch interiors are shaded in red. (The other two
static patches are centered at θ = π/2 and θ = 3π/2.)

static patch of de Sitter that is centered at θ = 0, π/2, π, or 3π/2 coincides with
a causal cone [58] in the MERA such that every layer of the causal cone contains
precisely two sites of the MERA (i.e., the causal cone is stationary).

Let us elaborate a bit on the terminology above. First, recall how a domain of
dependence is defined on a smooth manifold:

Definition 3.2.1. Let S ⊂ M be a subset of a smooth Lorentzian manifoldM. The
future (resp. past) domain of dependence of S is the set of all points p ∈ M such
that every past (resp. future) inextensible causal curve through p intersects S.

This suggests the following analogous definition for a domain of dependence in a
MERA:

Definition 3.2.2. Let S be a collection of sites in a MERA. The future (resp. past)
domain of dependence of S is the set of all MERA sites p such that starting at p and
moving only in the past, or coarse-graining direction (resp future, or fine-graining
direction), one inevitably arrives at a site in S.

In de Sitter space, the proper radius of the cosmological horizon is constant. Given
an inextendible timelike geodesic, a static patch is defined as the set of all points
connected to that geodesic by both past- and future-oriented causal curves, and its
size is given by the horizon radius. In particular, in 1+1 dimensions the horizon
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radius is π`dS/2. Within a constant-t slice, a horizon volume is an interval of proper
length π`dS, and static patches are diamonds in the Penrose diagram (cf. Fig. 3.2).

In line with [79], we here adopt a correspondence between the MERA and half
of the full 1+1-dimensional de Sitter manifold in which stationary causal cones in
the MERA are in correspondence with static patches of de Sitter. In the spirit of
tensor-network/spacetime correspondences, one should think of the MERA and the
state that it describes as some state of quantum gravity describing quantum fields
evolving in a semiclassical de Sitter background. In other words, despite lacking
an explicit theory of quantum gravity, we suggest that some aspects of the effective
dynamics for a quantum gravity state that describes classical de Sitter spacetime can
be described and organized at a fundamental level by a suitably-chosen MERA.

In this picture, each site of the MERA carries a Hilbert space H∗, and the Hilbert
space that corresponds to a given horizon volume, call itHstatic, is the tensor product
of the Hilbert spaces of the sites that lie within the horizon. We do not count the
Hilbert spaces that correspond to unentangled ancillae as part of the static patch
Hilbert space, sincewe only attach a spacetime interpretation to entangled degrees of
freedom in the MERA proper. To be consistent with the Gibbons-Hawking entropy
of de Sitter spacetime [89], it should be that ln dimHstatic ∼ SdS, where SdS is the
de Sitter entropy. Hence, for our Universe, where SdS ∼ 10122, the corresponding
bond dimension (i.e., the dimensionality ofH∗) is of order dimH∗ ∼ exp(10122) per
site.

This is a very coarse-grained description of de Sitter spacetime. For a binaryMERA,
there are only two sites per horizon volume, and layers of the MERA within a static
patch are separated by cosmological timescales. Furthermore, a binary MERA only
accommodates 4 distinct static patches (Fig. 3.2). We imagine, however, that it
should be possible to refine this horizon-scale description via, e.g., local gadget
expansions, in which the large Hilbert space H∗ could be factorized according to
sub-horizon locality. This perhaps can be achieved by some version of cMERA [59,
60, 90].

One might wonder whether it is possible to pack more MERA sites into a single
slice of the static patch by starting with more sites at the top of the MERA, or by
considering a MERA with a larger branching factor. The number of sites at the
top of the MERA is fixed by the number of sites per layer in the stationary causal
cone, however. If the stationary causal cone has m sites per layer, then the t = 0
slice contains 2m sites. The reason is simply because the t = 0 slice of de Sitter
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Figure 3.4: A ternary MERA. Ancillae are suppressed in this diagram. A stationary
causal cone with three sites per layer is indicated by the shaded region.

contains exactly two disjoint horizon volumes. The quantity m in turn is fixed by the
branching factor and the structure of the MERA. For a binary MERA, a stationary
causal cone always has m = 2 sites per layer. A ternary MERA has m = 3 sites per
layer in a stationary causal cone (Fig. 3.4). However, in general for a k-nary MERA,
in which the number of sites increases k-fold in each layer of the MERA, there can
only ever be m = 2 or 3 sites per layer in a stationary causal cone. Further details of
stationary causal cones and a proof of this last fact are given in App. 3.A.

Unfortunately, the global de Sitter-MERA correspondence as formulated on a (hy-
per)cubic lattice does not easily generalize to higher dimensions due to discretization
artifacts. The possibility of a de Sitter-MERA correspondence in higher dimensions
is discussed in App. 3.B.

3.3 Cosmic No-Hair as a channel property
Via the correspondence described above, each constant-t slice of a de Sitter static
patch is assigned a Hilbert space

Hstatic = H∗ ⊗ H∗, (3.4)

whereH∗ is the Hilbert space of a single MERA site. If we restrict our attention to
a single static patch, then the MERA also defines a superoperator, E, which maps
a state in Hstatic forward by one Hubble time to a state on the next slice. With the
disentanglers and isometries held fixed and uniform across the MERA, the action
of E may be written explicitly as

E(ρ) = UBC TrAD

[
VAB ⊗ VCD(|0〉〈0|A ⊗ ρBC ⊗ |0〉〈0|D)V†AB ⊗ V†CD

]
U†BC . (3.5)

The labels A, B, C, and D indicate on which Hilbert space factors operators act, but
we may subsequently omit them when it does not cause confusion. The ancillae are
labelled by A and D, andHstatic is labelled by B and C, cf. Fig. 3.5.
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|0〉 |0〉

ρ

A

CB

D

E(ρ)

(a)

ρ

|0〉〈0|

|0〉〈0|

V †

V †

V

V

U †U

E(ρ)

(b)

Figure 3.5: (a) A single step of the MERA within the causal patch, viewed as a
channel E, and (b) the equivalent circuit diagram. Time runs in the downward
direction in (a).

In theMERA literature, E is known as the descending superoperator [52, 53]. It is a
quantum channel by construction, i.e., it is completely positive and trace-preserving
on the set of states (density operators), which for future reference we will denote
by S(Hstatic). In precise language, given a Hilbert space H , if H (H) denotes the
space of Hermitian operators onH , then the set of states is

S(H) ≡ {ρ ∈ H (H) | Tr ρ = 1, 〈ψ |ρ|ψ〉 ≥ 0 ∀ |ψ〉 ∈ H} . (3.6)

Consider now starting at some given layer with a state ρ0 ∈ S(Hstatic) and repeatedly
applying the map E. Intuitively, every application of E dilutes the original state
ρ0 by entangling it with the same ancillary state |00〉〈00|AD before taking a partial
trace, at which point information about ρ0 flows out of the static patch. It is therefore
natural (and correct) to expect that the state on the static patch should settle down
to a future asymptotic steady state, regardless of the initial state ρ0.

We will make this expectation rigorous below, but first we note that this observation
suggests a sort of cosmic no-hair theorem for the de Sitter-MERA correspondence.
In classical general relativity, a cosmic no-hair theorem is roughly the statement
that a positive cosmological constant causes a spacetime to asymptotically tend
to a de Sitter state in the future. The following theorem of Wald pertaining to
Bianchi spacetimes, which are homogeneous but anisotropic cosmological models,
is perhaps the most precise statement of a cosmic no-hair theorem [91]:

Theorem 3.3.1 (Wald). All Bianchi spacetimes (with the exception of certain
strongly-curved Bianchi IX spacetimes) that are initially expanding, that have a
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positive cosmological constant, and whose matter content obeys the strong and
dominant energy conditions asymptote to de Sitter in the future.

Various generalizations and variations of this theorem exist in the literature [92, 93,
94, 95, 96, 97, 98, 99, 100, 101]. In particular, quantum cosmic no-hair theorems
show that the quantum states of fields tend to their respective vacuum states on an
asymptotically de Sitter background [102, 103, 104]. The MERA results here are
reminiscent of these quantum cosmic no-hair theorems.

Let us now add some rigor to the above observations. WhenH is finite-dimensional,
quantum channels are necessarily contractions on S(H) [105]. Recall that a linear
map T : X → X on a Banach space X is a contraction if there exists 0 < κ ≤ 1 such
that d(T(x1),T(x2)) ≤ κ d(x1, x2) for all x1, x2 ∈ X , where d is the metric on X . For
S(H), the metric is most commonly defined using the 1-norm,

d(ρ, σ) ≡ ||ρ − σ | |1, (3.7)

where | |A| |1 = Tr
√

A†A for any linear operator A.2 A contraction is strict when
0 < κ < 1, in which case the contraction mapping principle guarantees that there
is a unique fixed point x? ∈ X such that T(x?) = x?. Furthermore, the sequence
{Tn(x0)}

∞
n=1 converges to the fixed point x? for any choice of the starting point x0.

Quantum channels need not be strict contractions in general; however, it is certainly
easy to write down channels that are strict contractions [105]. Returning to the
de Sitter-MERA correspondence, we may simply suppose that the disentanglers U

and isometries V are chosen such that the superoperator E is a strict contraction.
Moreover, numerical assays seem to indicate that this is generally the case for random
U and V [53, 52]. Our intuition that the state in a causal patch should tend to some
asymptotic fixed state in the future is therefore warranted.

Regardless of the channel’s contractive properties, it is easy to see that E has at least
one fixed point by examining its adjoint. To define the adjoint, take the domain of E
to be the space of Hermitian operators, H (H), which is closed under addition and
multiplication by real numbers. The space H (H) with the Frobenius inner product

〈T, S〉 ≡ Tr
(
S†T

)
(3.8)

is then aHilbert space over the real numbers. As usual, the adjoint operator is defined
by the relation 〈E(T), S〉 = 〈T, E†(S)〉. Using this definition, it is straightforward to

2All norms are equivalent in finite dimensions, i.e., for any two norms ‖ · ‖a and ‖ · ‖b , there
exist constants m > 0 and M > 0 such that m‖v‖a ≤ ‖v‖b ≤ M ‖v‖a for all v in the normed space.
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show that the action of E† is

E†(S) = AD〈00|V†ABV†CD

[
IAD ⊗ (U†SU)BC

]
VABVCD |00〉AD . (3.9)

In the MERA literature, E† is known as the ascending superoperator. In this form,
it is clear that the identity operator is an eigenvector of E† with eigenvalue λ = 1.
Therefore, λ̄ = λ = 1 is also in the spectrum of E, or in other words, E necessarily
has a fixed point.

That λ = 1 is an eigenvalue of E is well-known [52, 53]; however, we exhibited
E† because it clearly shows that, in general, E is not self-adjoint. In particular,
this means that the eigenvector of E to the eigenvalue 1, call it ρ?, is not trivially
the identity operator. An interesting question is how much freedom is possible in
choosing ρ? by specifying the disentanglers and isometries U and V . Clearly there
are families fixed points. For example, if ρ? is such that E(ρ?) = ρ? for a given
choice of U and V , then ρ̃? ≡ (W† ⊗W†)ρ?(W ⊗W) is the fixed point of the channel
Ẽ with Ũ = W†U and Ṽ = (I ⊗ W)V for any unitary operator W on H∗. From
exactly what subset of S(H) the fixed point ρ? may be chosen is an open problem.

3.4 Global de Sitter and Complementarity
In classical general relativity, there are no barriers to describing de Sitter spacetime
in a global way. However, in light of complementarity [106], an interesting question
is whether quantum gravity also accommodates a global description of de Sitter, or
whether a fully quantum theory only exists on a single causal patch. We will suggest
that a local picture (describing only a single patch) is possible via the MERA if the
Hamiltonian is essentially time-dependent; as a result, this perspective also avoids
Poincaré recurrences.

Complementarity, as it was originally envisioned for black holes, asserts that the
ability of an observer to describe the region around them in terms of local quantum
field theory on a smooth spacetime background does not extend into the unobservable
region behind a horizon. For example, when describing physics outside of the
black hole in a black hole spacetime, one should think of all of the black hole’s
degrees of freedom as residing just above its apparent horizon on a stretched horizon
[107]. Nevertheless (and neglecting possible issues regarding firewalls [108]), there
should also exist a complementary description of the black hole that is appropriate
to, e.g., an observer who crosses the horizon, where the black hole interior is
very much a real place. Any possible discrepancies in these two descriptions are
then purportedly resolved by the fact that an observer who crosses the horizon
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becomes causally disconnected from the black hole exterior, and so information
about these discrepancies cannot be communicated to the exterior. Applied to
de Sitter cosmology, horizon complementarity suggests that a single observer can
only describe physics using local quantum field theory in a region that stretches
out to the horizon, but no farther. To this observer, the only sign of the rest of the
universe is encoded on a stretched horizon. If one considers two observers that
have overlapping horizon volumes, then there is presumably some partial mapping
between their respective local descriptions of physics.

The question then arises as towhether an infinitely big spacetime outside the de Sitter
horizon actually exists in this picture. A weak version of complementarity might
posit that it does, but that its existence cannot be described by any one observer; the
underlying quantum theory would nevertheless still describe states in an infinite-
dimensional Hilbert space. A stronger version would postulate that the entire
quantum theory has a finite-dimensional Hilbert space (with dimension of order
eSdS), and all that exists can be described by a single Hubble patch and its horizon
[109, 110, 111, 112, 113, 114, 115, 87, 88]. The descriptions of physics in
different horizon volumes contained in different causal patches are then related
by a global unitary transformation. The distinction might seem academic, but is
actually crucial: unitary evolution with a time-independent Hamiltonian in a finite-
dimensional Hilbert space leads to Poincaré recurrences and Boltzmann brains [114,
116, 117], which can be avoided if Hilbert space is infinite-dimensional [118].

Let us refer to the weak complementarity perspective as the “global” view (different
regions of the classical de Sitter spacetime have an independent existence, and
Hilbert space is infinite-dimensional), and the strong complementarity perspective
as the “local” view (there is only one patch worth of information, and Hilbert space
is finite-dimensional). TheMERA tensor network, we will argue, can accommodate
the local description, and with a bit of modification, the global description as well.
We find that there is a natural sense in which the information associated with
any single static patch can be localized on the static patch and its horizon. We
then propose a modified network that we call SCMERA (“Strong Complementarity
MERA”) that could, in principle, capture the local strong complementarity view.
In order to have consistent time-evolution in the SCMERA, we will see that it is
effectively generated by a time-dependent Hamiltonian, i.e., the unitary operator
that maps a layer in the SCMERA to the next layer changes as a function of depth in
the network. While such evolution is in tension with our expectations in cosmology,



51

where the Hamiltonian evolution should be time-independent, it does avoid certain
undesirable phenomena like Poincaré recurrences. Given how little we know about
quantum cosmology, it seems worth keeping different perspectives in mind.

3.4.1 Slicing, weak complementarity, and pseudo-holography
A notable feature of the MERA is that it naturally provides a way to both define
different Cauchy slices and relate the states defined on them. Up until now, we have
thought of states in global de Sitter as being defined on constant time slices, or in
other words, on a single layer at constant depth in the MERA. However, given such
a state that we label by |Ψ〉dS, by picking some collection of sites on which it is
defined, one can define a new state |Ψ̃〉dS (which is in a tensor product with some
collection of n ancillae) and a new Cauchy slice by pushing the state on the chosen
sites back up (i.e., backwards in time) through the MERA. In other words, |Ψ〉dS and
|Ψ̃〉dS ⊗ |0〉⊗n are related by partial unitary evolution, and the horizontal cut through
the MERA on which |Ψ̃〉dS ⊗ |0〉⊗n is defined constitutes a new Cauchy slice. In
particular, given a static patch, the state |Ψ〉dS can be pushed back up through the
MERA in this way so that the resulting state is supported entirely on the sites that
compriseHstatic and sites that are on the lightlike horizon, as illustrated in Fig. 3.6.
Note that this wouldn’t be possible for a generic state living on a constant t = T slice
in the Hilbert space of the complete theory, but can be done for the specific states
that arise via the MERA from the initial state at t = 0 (the top tensors).

Figure 3.6: Sites outside the horizon at any given layer (indicated by white dots) are
unitarily related, via the MERA, to a state on the horizon (indicated by red dots) and
a collection of ancillae (not shown), |Ψ̃〉dS ⊗ |0〉⊗n. A state |Ψ〉dS corresponding to
the de Sitter spatial slice is prepared at the bottom layer. The sites inside the static
patch are indicated by the filled black dots.
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The observation above suggests a toy model for weak complementarity as well
as a sort of “pseudo-holography.” The network clearly admits a global de Sitter
description on constant time slices, but a more observer-centric view of the local
patch consists of the state defined on Hstatic and a collection of horizon sites, as
discussed above and shown in Figure 3.6. For a stationary observer OA who travels
along a timelike geodesic at the center of the static patch, all information relevant to
OA’s local description of physics is given by the degrees of freedom in the static patch
interior. The information about the exterior is encoded in the degrees of freedom
that reside on the horizon. However, for another observer OB who travels away from
OA and leaves the patch, their surrounding spacetime geometry and description of
the quantum state can be “manufactured” by propagating OA’s horizon degrees of
freedom down through the MERA. In this way, the region that is accessible to OB is
realized by decompressing [79] the information that is contained on OA’s horizon.
The information that was previously understood to have localized on the horizon
for OA is, up to inclusion of ancillae, unitarily transformed to a state defined on
spacetime that is to the exterior of OA’s static patch. This map between the local
descriptions of different observers is a realization of weak complementarity, with
information about spacetime to the exterior of an observer’s cosmic horizon being
encoded on the horizon in a way that seems holographic.

This picture of weak complementarity is not really holographic, however, because
the number of apparent degrees of freedom associated with the horizon increases
toward the future in the MERA, i.e., the number of horizon sites grows with every
subsequent layer. In a true holographic model, the size of the boundary Hilbert
space should remain constant. We investigate this possibility, or in other words, the
possibility of strong complementarity, in the next section.

3.4.2 Strong Complementarity, recoverability, and quantum error correction
In the local, strong complementarity picture, the degrees of freedom represented
by the static patch of a single observer, plus those on the corresponding horizon,
together describe a closed system constituting the entirety of Hilbert space, which
is correspondingly finite-dimensional. Ordinarily, assuming a time-independent
Hamiltonian, such a setup would lead to recurrences and Boltzmann brains. What
we will find, however, is that it is more natural from the MERA perspective to imag-
ine evolution inside the patch that is equivalent to a time-dependent Hamiltonian.
(Cosmological evolution with a time-dependent Hamiltonian also plays a role in
Banks and Fischler’s approach to holographic spacetime [119, 120, 121].)
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A local picture is possible in theMERA because of its particular circuit construction
that begins with a finite number of inputs (4 for a binary MERA), where only two
non-overlapping static patches at t = 0 are present. Consequently, the total number
of quantum degrees of freedom for the input is limited to that of two non-overlapping
patches and is, of course, finite. Let χ∗ ≡ dimH∗ denote the dimension of theHilbert
space of a single MERA site (the bond dimension). Then, even though the number
of sites in the MERA grows as a function of depth, the global state at any given
subsequent layer of the MERA only resides in a subspace of dimension χ4

∗ . Because
dimHstatic = χ2

∗ remains the same at every step in theMERAwithin the static patch,
there always exists a purification of the state ρstatic ∈ S(Hstatic) in a Hilbert space
with dimension χ2

∗ . Therefore, simply by counting Hilbert space dimensions, we
could imagine that such a purifying Hilbert space, call it Hhorizon, resides on the
horizon of the static patch. The horizon state would have to be unitarily related to the
global state of the MERA outside the static patch (which is a preferred purification
of ρstatic).

To turn the network into a description of a single-patch universe, we propose mod-
ifying the MERA circuit as follows. First, choose any single static patch in the
MERA (cf. Fig. 3.3). At t = 0, we identify the degrees of freedom inside a static
patch as interior degrees of freedom living in the Hilbert space Hstatic. The re-
maining exterior degrees of freedom in the other patch can now be identified with
the horizon within the Hilbert space Hhorizon, with dimHstatic = dimHhorizon < ∞.
For a local picture, we preserve the circuit structure for the static patch interior, but
now we introduce separate circuit dynamics for Hhorizon, as shown in Fig. 3.7. In
particular, a recovery tensor (indicated by the ellipse) acts to extract ancilla states
at the horizon. Because the interior network is unchanged, the previous cosmic
no-hair result about the interior state continues to hold.

This circuit structure constrains the action of the recovery tensor that acts onHhorizon

in Fig. 3.7 if we demand unitary evolution. At each time step, new ancillae are
mixed with the interior via the action of the isometries (triangular tensors), and then
some information will flow to the horizon and become inaccessible to any interior
observer via the action of the disentanglers (square tensors). To be consistentwith the
literature, label the Hilbert space of the ancillae by S, the static patch Hilbert space
by E (i.e.,Hstatic ≡ E), and the horizon Hilbert space by A (i.e. Hhorizon ≡ A). If it
is always the same ancillary state σS (which we have simply taken to be σS = |0〉〈0|S
throughout) that gets mixed in via the isometries, then in order to have consistent
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|0〉

|0〉

|0〉

S A S

|0〉 |0〉

Figure 3.7: The strong complementarian version of MERA that describes a static
patch for a local observer with horizon degrees of freedom. The future direction
points downward in the fine-graining direction. Dashed red lines demarcate the
interior of the de Sitter static patch. The combined system, including a constant
number of ancillae, evolves unitarily. The horizon degrees of freedom at each time
step are acted upon by a single recovery tensor (orange ellipse), which serves as
a map that distills the same ancillary state (represented by |0〉 in the figure) that
is entangled in the interior at the horizon. (Half-ellipses on opposite sides of the
tensor network are identified.) The ancillary system is denoted by S while the
horizon degrees of freedom are denoted by A.

unitary evolution, it must be that the recovery tensor, which acts on AS, must spit out
a state of the form ρ′′A ⊗ σS. Put another way, if at every time step we re-introduce
a fresh “copy” of the ancillary state σS, then unitarity in each time step demands
that σS be restored after evolving forward in time. (Alternatively we could drop the
requirement of unitary evolution; we will return to this possibility at the end of this
section.) We call such a circuit for the local picture the Strong Complementarity
MERA (SCMERA). The usual global picture can be easily restored by allowing
ourselves more ancillary degrees of freedom and replacing the horizon tensors with
the usual MERA circuit. As a result, the local and global pictures are related by
some global unitary transformation that act on the extended set of ancillae.

Let us ask whether it is possible to have a circuit with the tensor structure in Fig. 3.7
that spits out the state σS at every time step. To answer this question, it is useful to
analyze the SCMERA circuit from the perspective of recovery maps. At each time
step of SCMERA, we can describe the quantum process by

ρAES = ρAE ⊗ σS
USE⊗IA
−−−−−−→ ρ′AES

USA⊗IE
−−−−−−→ ρ′′AES = ρ

′′
AE ⊗ σS, (3.10)

as shown in the quantum circuit diagram in Fig. 3.8. USE corresponds to the
isometries that entangle the ancillae and the interior degrees of freedom, as well as



55

Ancillae (S)

Interior (E)

Horizon (A)

ρAE ⊗ σS ρ′
AES

ρ′′
AE

⊗ σS

USE

USA

Figure 3.8: Each time step of SCMERA can be condensed into a circuit diagram.
The dashed lines mark the resulting quantum state at the end of a subprocess. In
the case where the MERA global state is pure, which is the case we consider here,
it follows that ρSE A, ρ′SE A, and ρ

′′
SE A are all pure states.

the disentanglers, while USA acts on the horizon. Since USA, which corresponds to
the elliptical orange tensor in Figure 3.7, must recover the state σS, we call it the
recovery tensor.

Although the existence of such a recovery tensor is not always guaranteed, we can
examine the necessary conditions that these tensors and states must satisfy to allow
such a recovery operation. For instance, if the ancillary qudit is always initialized in a
fixed vector, e.g., |0〉S, or more generally is always chosen from some fixed subspace
of S, then one can derive necessary conditions for recoverability by appealing to
results from quantum error correction.

To understand the recoverability of the ancillary state, we first consider the action
of USE as a quantum channel on S,NρSE : S(HS) → S(HS). This is always possible
because the initial state is uncorrelated across S and E . However, because the state in
E is in principle arbitrary (and certainly will change at each time step if the mapping
is not at a fixed point), the channel can depend on the input ρSE . Likewise, the
recovery tensor will not remain fixed at every time step. This is what we mean when
we say that the SCMERA describes evolution that is generated by a time-dependent
Hamiltonian; the recovery tensor will change at every time step if it must recover
σS exactly.

Given such a channel and knowledge of the fixed ancillary state σ, there always
exists a process in the reduced system S that recovers σ. Let σ ≥ 0 be the known
state in which the ancillary system is initialized. In general, there exists a completely
positive trace preserving (CPTP) recovery map R such that R ◦ NρSE (σ

′) = σ′ for
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all σ′ if and only if the monotonicity condition is saturated [122, 123, 124, 125]:

D(σ′‖σ) = D(NρSE (σ
′)‖NρSE (σ)), (3.11)

where D(σ′‖σ) is the relative entropy between σ′ and σ. In particular, σ is always
recoverable because the monotonicity condition is trivially saturated when σ′ = σ.
For the finite-dimensional case, one can construct an explicit Petz recovery map P

that will always recover σ′:

Pσ,NρSE
: X 7→ σ1/2N†ρSE (NρSE (σ)

−1/2XNρSE (σ)
−1/2)σ1/2. (3.12)

Since we here consider the trivial case where σ′ = σ, the Petz map can always
recover σ.

Unfortunately, in the case of interest here the existence of a Petz recovery map does
not lead us to the sought-after unitary USA, since the Petz map doesn’t necessarily
take the form of a partial trace TrA(USA ρ

′
SA U†SA). Indeed, we can in fact argue that

the Petz map cannot identically be the map TrA(USA ρ
′
SA U†SA). This latter recovery

map cannot be CP over the set of all density operators if A, S, E are in an entangled
state, which will generally be the case3, whereas the Petz map is CP by construction.
So while USA may exist, it cannot be found in this way.

In light of this difficulty, a different line of attack is to use the given unitary structure
of the SCMERA as a starting point and see whether recovery can be engineered.
This amounts to interpreting recovery as an instance of quantum error correction that
protects against deletion of E . Think of the state σS that the ancillae are initialized
in as an encoded message. At any given time step, the message is encoded into
the combined SE A system by entangling it with E A. A part of the system, E ,
subsequently becomes inaccessible to us. We then wish to recover the encoded
message by acting on the reduced SA system only with USA. If this is to be possible,
then the allowed interactions USE are constrained. (This picture is reminiscent of
quantum secret sharing.)

Since σS is the message that we want to recover and since we discard E , here NρSE

is essentially a noisy channel, which we suppose takes on a particular Kraus form,

NρSE : X 7→
∑
µ

NµXN†µ, (3.13)

3Even if one fixes a particular input at t = 0 to be a product state, entanglement will still be
generated at a later time. This is because S, E generically become entangled after the isometry.
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for a given initial state ρSE 4. In this context, in order for a recovery map R to exist,
the Kraus operators Nµ must obey the following necessary and sufficient condition
[127]. For the sake of generality, suppose that instead of wanting to recover a fixed
state |0〉S, the encoded message was chosen from a fixed subspace of S that has
an orthonormal basis {|φi〉S} (the specific case for SCMERA corresponds to there
only being one basis vector, namely, |0〉S). Then, the Kraus operators must obey the
Knill-Laflamme condition,

〈φi |N†µNν |φ j〉 = Cµνδi j , (3.14)

where Cµν is a Hermitian matrix. This condition places a constraint on what USE

are allowed.

In the case of a single fixed state |0〉S, the condition above is trivially satisfied, and
so recovery is always possible. However, here as well it is not guaranteed whether
there is a quantum error correcting code (QECC) on the whole SE A system that is
consistent with SCMERA such that the ancillary state can always be recovered on
the SA subsystem on the horizon. We do not know whether such a code exists, but
it would have to satisfy certain requirements that we now explore.

In the casewhere the ancillary qudit is fixed to be a particular state, the code subspace
is 1-dimensional. An implementation that allows one to decode the message may be
possible to realize with the help of a k = 0 code5. (See [127] for a detailed review.)
For a binary MERA, in which the interior, horizon, and ancillary Hilbert spaces are
altogether comprised of 8 qudits, a satisfactory encoding would require a [[8, k, d]]

code, where k = 0 if the ancillary states are always fixed to be |0〉S. Because 2 qudits
are effectively erased in discarding the interior (i.e., a known erasure location), the
distance of the code must satisfy d ≥ t + 1 with t = 2. As a zeroth order check, we
see that this requirement is consistent with the quantum Singleton bound

n − k ≥ 2(d − 1) (3.15)

for 3 ≤ d ≤ 5 with k = 0. Also note that, while we mainly consider the case
where k = 0, larger code spaces with k > 0 (i.e., a situation where the ancillary
state is chosen among several options at each step) are not ruled out. For example,

4Recall that any trace-preserving channel on a reduced system can be written using a (potentially
input-dependent) set of Kraus operators {Nµ}, where

∑
µ N†µNµ = I [126].

5The properties of a quantumerror correcting code on qudits of dimension χ are often abbreviated
by the notation [[n, k, d]] where n is the block size, k is the number of encoded qudits, and d the code
distance. For k = 0, the χk-dimensional code subspace is precisely one-dimensional.
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a hypothetical tensor network that encodes k = 2 qudits worth of information could
realize a QECC with d = 3, 4. We note that there exist binary codes that are
compatible with our requirements on n, k, and d, for example, the [[8, 3, 3]] code (see
section 7.12.3 in [128]), and presumably there also exist codes for qudit systems;
however, we are unaware of their specific forms, and much less whether or not they
are compatible with the tensor structure of SCMERA.

In summary, by interpreting SCMERA as a recovery operation or an error cor-
recting code, we identify several necessary but generally insufficient criteria that
the SCMERA circuit must meet. Note, however, that failure to meet these criteria
cannot rule out strong complementarity, but it can rule out SCMERA as a model.

Finally, we elaborate a bit more on the unitarity of the proposed SCMERA circuit.
The overall SCMERA tensor network can be understood as a circuit by including the
ancillary degrees of freedom, S. In the case of perfect recovery of the ancillary state
on the horizon, the ancillary state that was added in the interior can be discarded
from the horizon at the end of the computation in each time step so that the total size
of Hilbert space remains constant throughout. Alternatively, we can also understand
the adding-and-discarding process as recycling the ancillary degrees of freedom
at each step. It is clear in this sense that we have a unitary process on the same
finite-dimensional Hilbert space. However, note that the unitary recovery mapping
on the horizon need not recover the ancillary state perfectly. In fact, a universal (i.e.,
constant in time) unitary recovery map applied to every time step cannot in general
achieve perfect recovery. In this case, recycling of the approximately recovered
ancillary qudit will lead to information backflow into the static patch interior, which
in turn leads to Poincaré recurrences. Discarding such ancillary qudits on the horizon
avoids recurrences even when using a universal recovery map, but breaks unitarity.
If we demand perfect recovery of the ancillary qudit, then the unitary evolution is
necessarily time-dependent. It is, however, unclear if such time-dependence is only
limited to swapping operations on the horizon.

3.5 Circuit Complexity and de Sitter Action
In AdS/CFT, the “complexity equals action” proposal [32] suggests that the com-
plexity of a CFT thermofield double state as it evolves in time is proportional to the
Einstein-Hilbert (EH) action of a region of the bulk known as the Wheeler-De Witt
patch. Explicitly, C = qSEH, where the proportionality constant is calculated to be
q = 1/π~. Similarly, here we can show that complexity, calculated using the MERA
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circuit, scales in the same way as the corresponding spacetime action in de Sitter
space.

For a givenMERA-like circuit that is translationally and scale invariant, it is possible
to estimate its complexity by choosing a reference state and gate set. It is natural
to choose the reference state to be the initial state of dS/MERA, which we write
as |Ψ(t = 0)〉 = |ψ〉 ⊗ |φ〉⊗N . |Ψ〉 consists of the initial entangled component |ψ〉
which encodes the entanglement information needed to reconstruct the de Sitter
spatial geometry at t = 0, and |φ〉⊗N denotes all the ancillary degrees of freedom
that will later get entangled up to some time t = T . Here, because we only consider
bounds on complexity, the estimate won’t depend on the particular form of |ψ〉; we
can take it to be an arbitrary state that lives on the initial few sites of the MERA at
t = 0.

We obtain a straightforward estimate of complexity if we choose a reference gate set
that corresponds to the exact disentanglers and isometries, {U,V}, that were used
to build the MERA circuit. For a k-nary MERA, suppose that U,V are k-local and
denote the total number of ancillae that get entangled up to time t ≤ T by

N(T) =
T∑

j=0
k j . (3.16)

It then follows that for any non-trivially entangled state |Ψ(T)〉, where none of the
qudits in |Ψ(T)〉 can be written as a product state between the qudit and its com-
plement6, a lower bound on its complexity C(T) is proportional to N(T). This is
because, even using an optimal circuit that could potentially be more efficient than
the MERA, it takes at least N(T)/k k-local gates to even minimally entangle all
of the product ancillae. The actual complexity to create the state with the correct
entanglement structure at t = T is therefore strictly lower-bounded. In addition,
the MERA circuit itself that constructs the state |Ψ(T)〉 constitutes a trivial com-
plexity upper bound. Hence, for generic scale and translationally invariant MERA
in arbitrary dimensions with k-local disentanglers and isometries, the complexity
satisfies

C0N(T) ≤ C(T) ≤ C1N(T), (3.17)

where C1 > C0 are order-unity numbers that depend on the specific circuit con-
struction. For the (1+1)-dimensional binary MERA shown, C0 = 4 and C1 = 8.

6For example, this is expected for a CFT vacuum state.
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Choosing a different reference gate set would give different coefficients C0 and C1,
but the exponential dependence on T would remain unchanged.

An important distinction from the usual holographic complexity proposal [32] is the
lack of a boundary theory, and hence a notion of bulk-boundary duality. Similarly,
the proposal also differs from [129], where the complexity of the state on the de Sitter
boundary is compared to the action or volume of a holographic asymptotically anti-
de Sitter bulk. Because only the de Sitter bulk is present, we test a bulk complexity-
action (volume) proposal by directly comparing the circuit complexity of MERA,
which is conjectured to describe de Sitter spacetime, to the Einstein-Hilbert action
(spacetime volume) of the same region in de Sitter.

The Einstein-Hilbert action of the portion of de Sitter spacetime covered by the
global time interval 0 ≤ t ≤ T in D dimensions is given by

SEH =
1

16πG

∫ T

0
dt

∫
dΩD−1

√
−gR

=
R`D

dSSD−1

16πG

∫ T

0
dt coshD−1 t

=
R`D

dSSD−1

16πG
1

(D − 1)2D−1 e(D−1)T + subleading,

where R = D(D − 1)/`2
dS = 2DΛ/(D − 2) is the Ricci curvature for de Sitter space

with cosmological constantΛ and SD−1 is the volume of the (D−1)-sphere. We see
that the scaling behavior is indeed consistent with the circuit complexity computed
above, and the action satisfies the complexity bound for some appropriate choice of
constant q. Note that each tensor in the MERA is mapped to a proper volume in de
Sitter [79]. Therefore, comparison of other spacetime regions would yield a similar
conclusion. It cannot differentiate the complexity = volume versus complexity =
action proposal, because the constant Ricci curvature in de Sitter space only changes
q by a constant factor.

The proportionality constant between complexity and action depends on the choice
of gate set, and differs from q = 1/π~ in the original proposal. See [34, 35]
for similar conclusions from more detailed studies in the context of quantum field
theory. Interestingly, assuming the validity of the conjecture, the (`dS/`pl)

D−2 scaling
behavior in the action may suggest that the complexity of a correct circuit with sub-
Hubble features should approximately scale as the horizon area (recall that R scales
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like `−2
dS ). In the case of the MERA, this is encoded in the otherwise arbitrary choice

of q, because the network structure is not sensitive to `dS/`pl.

3.6 Discussion
Discretizing de Sitter spacetime using the MERA seems to provide some interesting
interpretations, in particular in terms of giving a natural information-theoretic reason
for cosmic no-hair, constraining de Sitter complementarity, and giving the de Sitter
action an information-theoretic interpretation. It would be interesting to ask what
other consequences thinking of de Sitter spacetime in a tensor network/information-
theoretic way could provide. For example, would a different tensor network dis-
cretization be more natural for answering other questions, or is the choice of tensor
network discretization fixed by the spacetime metric one is attempting to dupli-
cate? If so, are there other natural spacetimes (Lorentzian or Euclidean), for which
different tensor networks might provide insights into open problems?

The MERA is naturally suited to describing de Sitter spacetime on super-Hubble
scales, since structure within a horizon volume is not resolved. The state within a
patch can nevertheless be encoded in the tensors inside the horizon, and perturbations
of such a state in the de Sitter background can be initialized in the MERA input
state. The cosmic no-hair result is then the fact that such perturbations flow to a
fixed-point of the evolution superoperator within a patch.

Another limitation of this de Sitter-MERA correspondence is that it clearly breaks
the rotational symmetry of spacelike sections of de Sitter; a binary MERA that
corresponds to (1+1)-dimensional de Sitter spacetime picks out four preferred causal
patches, or equivalently, fixes the cardinal directions on the circle. It also breaks
boost symmetry in that the MERA fixes a preferred global t = 0 slice. To this end,
hyperinvariant tensor networks may be an interesting improvement on the MERA
[81]. Hyperinvariant tensor networks were introduced to address, among other
issues, a similar problem for AdS-MERA correspondences that the MERA picks
out a preferred center point of the hyperbolic plane. In a hyperinvariant tensor
network, any node in the tensor network can be taken to be the “center” of the
hyperbolic plane, thus restoring a significant amount of symmetry. Since the radial
direction in AdS corresponds to the renormalization direction of the MERA, which
here corresponds to the timelike direction of de Sitter, a hyperinvariant tensor-
network/de Sitter correspondence would likely no longer fix a preferred global t = 0
slice. Instead, the effective causal cone of any pair of adjacent nodes could be used
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to define a de Sitter static patch.

It would be interesting to push the present analysis beyond a strict de Sitter back-
ground. For example, it should be possible to adapt the tensor network to allow
for bubble nucleation and eternal inflation. A classical variant of this was already
considered in [130], and it would be useful to further investigate the evolution of
quantum states using the kind of methods explored here.

Thismaterial is based uponwork supported by theU.S.Department of Energy, Office
of Science, Office of High Energy Physics, under Award Number DE-SC0011632,
as well as by the Walter Burke Institute for Theoretical Physics at Caltech and the
Foundational Questions Institute.

3.A Stationary causal cones of the MERA
Given a k-nary MERA, in which the number of sites in each layer increases k-fold
with every fine-graining step, what is the number of sites per layer of a stationary
causal cone?

Example 3.A.1. Consider a binary MERA as in Fig. 3.1. Within the MERA,
consider a set of sites at some layer and draw their causal cone in the coarse-
graining direction. If the smallest simply-connected region that contains all of the
initial sites is made up of L sites, then after ∼ log2 L steps in the coarse-graining
direction, the causal cone will contain 2 or 3 sites [58]. Once the cone at some
layer contains 2 or 3 sites, Fig. 3.9 illustrates how the width of the causal cone can
evolve under further coarse-graining. Notice that if the cone contains 2 sites at some
layer, then it is possible for the next layer to have either 2 or 3 sites, but if a given
layer contains 3 sites, then all subsequent layers will contain 3 sites. Therefore, a
stationary causal cone having the same width at every layer can only have 2 sites per
layer or 3 sites per layer. In particular, only the stationary causal cone with 2 sites
per layer is left/right-symmetric in a binary MERA.

(a) (b) (c)

Figure 3.9: Ways in which a minimal-width causal cone can propagate between
layers in a binary MERA. (a) 2→ 2, (b) 2→ 3, (c) 3→ 3.
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Example 3.A.2. Consider a ternary MERA as in Fig. 3.4. Similarly, the causal
cone of any given collection of sites will contain 2 or 3 sites after ∼ log3 L steps in
the coarse-graining direction. If the cone contains 3 sites at some layer, then it is
possible for the next layer to have either 2 or 3 sites, but if a given layer contains
2 sites, then all subsequent layers will contain 2 sites (Fig. 3.10). Therefore, a
stationary causal cone having the same width at every layer can only have 2 sites
per layer or 3 sites per layer. Here, only the stationary causal cone with 3 sites per
layer is left/right-symmetric in a ternary MERA.

(a) (b)

(c) (d)

Figure 3.10: Ways in which a minimal-width causal cone can propagate between
layers in a ternary MERA. (a) 3 → 3, (b) 3 → 2, (c) 2 → 2, first instance, (d)
2→ 2, second instance.

The case of a general k-naryMERA follows straightforwardly from the two examples
above:

Proposition 3.A.3. A stationary causal cone having the same width at every layer
in a homogeneous k-nary MERA has 2 or 3 sites per layer.

Proof: Given some homogeneous k-naryMERAwith any arrangement of disentan-
glers and isometries, all of the legs in the tensor network can be blocked together to
form composite legs so that the network takes the form of a binary or ternaryMERA,
as illustrated in Fig. 3.11, whence the proposition follows from the examples above.

�

3.B Higher-dimensional generalizations
Consider a d-dimensional MERA, where each layer is a hypercubic d-dimensional
lattice. Here, the MERA is k-nary when each site in one layer gives rise to kd sites
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· · ·

· · ·· · ·

· · · · · ·

· · ·· · ·

· · ·

Figure 3.11: Legs in an arbitrary MERA can be blocked together. In this way, that
the causal structure matches that of a binary or ternary MERA becomes apparent.

in the next layer (see Fig. 3.12). The global MERA-de Sitter correspondence does
not carry through in this case, simply because, on the de Sitter side, there is no way
to latticize the d-sphere using a regular hypercubic lattice that is self-similar under
fine-graining (although see [131] for a generalization to 2 dimensions).

Figure 3.12: A 2D MERA. In a single coarse-graining step, blocks of 4 sites are
acted on by a disentangler (blue); then blocks of 4 sites that are displaced from the
last set of blocks are acted on by an isometry (green), reducing the number of sites
by a factor of 4.

This is not to say that a generalization to higher dimension is impossible. One could
consider a different tiling of global de Sitter that preserves uniformity and is self-
similar under some refinement operation. For example, on a 2-sphere, regular or
semi-regular tilings are possible using triangularizations, but these different tilings
would necessarily require some sort of variation on the MERA tensor network. To
the best of our knowledge, such generalizations are still unexplored.

On the other hand, one could still study the correspondence between de Sitter and a
hypercubic MERA by restricting one’s attention to only a single static patch. In this
scenario, it is consistent to think of the MERA as defining a superoperator which
maps the state on md sites of a given slice of a single static patch to the next slice.
(Remember, the number of sites per horizon volume, i.e., per slice of the static patch,
remains constant.) Therefore, the usual unmodified MERA may still be useful for
understanding local aspects of de Sitter quantum gravity in higher dimensions.
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C h a p t e r 4

QUANTUM CIRCUIT COSMOLOGY

In this chapter, we consider cosmological evolution from the perspective of quantum
information. We present a quantum circuit model for the expansion of a comoving
region of space, in which initially-unentangled ancilla qubits become entangled as
expansion proceeds. We apply this model to the comoving region that now coincides
with our Hubble volume, taking the number of entangled degrees of freedom in this
region to be proportional to the de Sitter entropy. The quantum circuit model is
applicable for at most 140 e-folds of inflationary and post-inflationary expansion:
we argue that no geometric description was possible before the time t1 when our
comoving region was one Planck length across, and contained one pair of entangled
degrees of freedom. This approach could provide a framework for modeling the
initial state of inflationary perturbations.

This chapter is based on the Ref:
Ning Bao, ChunJun Cao, Sean M. Carroll, and LiamMcAllister. “Quantum Circuit
Cosmology: The Expansion of the Universe Since the First Qubit”. In: (2017).
arXiv: 1702.06959 [hep-th].

4.1 Introduction
Predictions of inflationary cosmology [132, 133, 134] are generally derived in the
framework of quantum fields evolving in a classical background spacetime. While
this approach has had empirical success, it raises an important conceptual problem:
degrees of freedom are represented as modes of fixed comoving wavelength, and as
space expands, modes with wavelengths less than the Planck length are stretched to
be super-Planckian, and so become visible in a long-wavelength effective descrip-
tion. One manifestation of this issue is the trans-Planckian problem (see e.g. [135,
136, 137, 138, 139, 140, 141]), which asks whether newly-appearing modes are in
a state other than the usual Bunch-Davies vacuum [142], and if so, how this affects
the predictions of inflation.

Our concern in this paper is with a deeper problem: not the quantum state of
modes that are initially trans-Planckian, but the very nature and existence of such
modes. In the context of quantum field theory in curved spacetime, where the

https://arxiv.org/abs/1702.06959
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dimensionality of Hilbert space is infinite, it is possible in principle to imagine a
limitless store of zero-energy modes initially frozen into their vacuum states, which
become dynamical when their wavelengths grow longer than the Planck length. But
is this infinite supply of degrees of freedom physically meaningful? In this note
we confront this problem from the perspective of the emergence of spacetime from
quantum entanglement [23, 143, 31, 28, 65, 144, 120, 121, 82].

We suggest that each finite-sized comoving region of space is described by a finite
number of quantum degrees of freedom, so the supply of newmodes is not limitless.
Concretely, we posit that a finite comoving region of space can be described by
a density matrix associated with a Hilbert space H of fixed, finite dimension D.
A convenient, though logically inessential, representation takes H to be the tensor
product of n qubit degrees of freedom, so that D = 2n. These degrees of freedom
include both those describing space itself, and the modes of an emergent field theory
on wavelengths much larger than the Planck scale.

As a toy model for the evolution of a fixed comoving region C, we propose a simple
quantum circuit. (Our approach thus bears a family resemblance to the proposal
that the universe can be thought of as a quantum computer [145, 146].) A quantum
circuit consists of a network of quantum gates, each of which performs a unitary
transformation on the basic factors of the Hilbert space of a quantum system, which
we have taken to be qubits. This yields a convenient representation of the evolution
of the system. At any time t, we can divide the n degrees of freedom in H into
a number ne(t) that are entangled with each other (and whose entanglements are
responsible for the spacetime structure), and a number nu(t) that are not entangled
with anything:

n = ne(t) + nu(t) . (4.1)

The unentangled degrees of freedom can be thought of as “ancilla” qubits. These are
initially not entangled with each other, nor with the degrees of freedom describing
other regions. In our model, as space expands and the physical size of C increases,
no new degrees of freedom are brought into existence. Instead, more and more of
the ancilla qubits become entangled with those that are already part of the spacetime
structure. The fundamental gate in our quantum circuit entangles an ancilla qubit
with the rest of the circuit; this is interpreted as a small amount of expansion. See
Fig. 4.1.

We will apply this picture to the history of our comoving patch, i.e. the comoving
volume that nowcoincideswith ourHubble volume. For aHubble volume in de Sitter
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Figure 4.1: A schematic for a cosmological quantum circuit. The ancillary qubits
are initialized in |0〉 states, and the boxes are unspecified unitary gates.

space we argue that D ≈ eS, with S the de Sitter entropy, so that n ≈ ne ≈ S/ln 2.
Our own comoving patch therefore contains n ≈ 10122 entangled degrees of freedom
today. In our past, when our comoving region was smaller, many of these degrees
of freedom were not yet entangled.

This picture provides a candidate description of the quantum state of our comoving
region at very early times. If inflation lasted for just the minimal number of e-
folds necessary to solve the horizon problem, then at the start of inflation our
comoving region was approximately a Hubble volume. However, if inflation lasted
slightly longer than this (as quantified below), then sufficiently early in inflation
the diameter of our comoving region was the Planck length `p. A semiclassical
description of quantum fields in this region is problematic, because the wavelengths
of such modes are < `p. In most approaches to the trans-Planckian problem, the
underlying spacetime is taken to be smooth, and ambiguities associated to modes
on this background are addressed by imposing a cutoff prescription.

In our picture, in contrast, even the notion of a classical metric ceases to make sense
for a region of Planckian size: we will argue that for such a small region, there is
insufficient entanglement for a description in terms of a smooth emergent spacetime
to be valid. Correspondingly, we will find that the time evolution in our quantum
circuit is trivial before the time t1, the “time of one e-bit”, when our comoving patch
contained just one pair of entangled degrees of freedom, and had size ≈ `p. Before
this time, the space corresponding to our comoving patch had not yet emerged.

We will argue that the total number of e-folds of inflationary and post-inflationary
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expansion since the time t1 is bounded,

Ntot ≤ 140 . (4.2)

This implies an upper bound on the total number of e-folds of inflation between the
time t1 and the time of reheating, which is close to (but safely above) the number
needed to provide a resolution to the horizon problem [132, 147, 148, 149]. (The
upper bound (4.2) is related to other bounds that rely on the finite dimensionality of
Hilbert space [150, 151, 152, 153, 154], as we explain in the Discussion.)

One aim of this note is to initiate a new approach to the trans-Planckian problem.
The time t1 entering the bound (4.2) is the time when our comoving region was one
Planck length across, and correspondingly when modes that are horizon-sized today
had Planckian wavelengths. Although our quantum circuit has trivial time evolution
before this point, it provides a simple quantum-mechanicalmodel for the time shortly
after t1, when a geometric description of our comoving region was not yet valid, but
ancilla qubits were beginning to become entangled, as a precursor to the emergence
of a smooth geometry. One might therefore adapt our setup to examine the quantum
state of the curvature perturbations for t ≈ t1. More broadly, our approach provides a
speculative but relatively concrete framework for answering certain questions about
the very early history of our universe: what happenedwhen our regionwas Planckian
in size? Does cosmological expansion proceed continuously or in quantized steps?

4.2 The Trans-Planckian Problem
We will first briefly recall some well-known aspects of the trans-Planckian problem
in inflationary cosmology (see [141] for a review).

We consider a flat Friedmann-Robertson-Walker universe with metric

ds2 = −dt2 + a(t)2d ®x2 . (4.3)

A comoving volume C is one that has fixed coordinates ®x over time, while a Hubble
volume at a given time t is a ball of physical radius H−1(t), where H = Ûa/a. We
write R(t) for the physical radius of C. The number of e-folds between two times t1
and t2 > t1, denoted N(t1, t2), is defined as

eN(t1,t2) =
R(t2)
R(t1)

. (4.4)

The region of primary interest is the comoving volume that coincides now with our
Hubble volume, i.e. the region such that R(t0) = H−1(t0), with t0 the present time.



69

We refer to this region as “our comoving patch” or “our comoving volume”, and
denote it by CH(t).

The trans-Planckian problem is a potential ambiguity that arises if the total amount of
expansion that our comoving patch experienced exceeds the minimum number of e-
folds needed to solve the horizon problem. The underlying issue is that semiclassical
methods may not be valid for describing modes with wavelengths shorter than the
Planck length `p. In cosmologieswith considerablymore than 60 e-folds of inflation,
some of the modes visible in the Cosmic Microwave Background (CMB) and Large
Scale Structure had such sub-Planckian wavelengths at the beginning of inflation 1.
To see this, recall that in an inflationary scenario involving just enough e-folds to
solve the horizon problem, the large-angle modes of the CMB exited the horizon at
the very beginning of inflation. Because these modes now have wavelengths of order
H−1

0 ≈ e140`p, with H0 the present-day Hubble parameter, they were sub-Planckian
at the beginning of inflation if the total number Ntot of e-folds of inflationary and
post-inflationary expansion exceeds 140. The critical number Ntot = 140 does not
depend on the equation of state during or after inflation, nor on the reheat temperature
TRH . However, the division of Ntot into NI e-folds of inflationary expansion and
NP e-folds of post-inflationary expansion does depend on TRH . (For example, with
Standard Model particle content and TRH = 1015 GeV, the critical value of NI is 75.)

Thus, in cosmologies with
Ntot = 140 + ∆N (4.5)

total e-folds of expansion between the beginning of inflation and the present, all
modes of present wavelength ≤ H−1

0 e∆N were sub-Planckian at the beginning of
inflation. While it may be that such a cosmology can be described semiclassically,
with modes in the Bunch-Davies vacuum or in another well-behaved vacuum state,
the trans-Planckian question consists of taking seriously the issue of modes with
sub-Planckian wavelengths.

Requiring that modes of current wavelength H−1
0 had wavelengths longer than `p at

the start of inflation is equivalent to requiring that our comoving region, of current
size H−1

0 , had size greater than `p at the start of inflation. However, in most reasoning
about trans-Planckian issues, the physical origin of the ambiguity is the problem
of specifying the quantum state of modes with sub-Planckian wavelengths, not the

1This trans-Planckian problem, which concerns perturbations with wavelength� `p , should not
be confused with the problem of controlling super-Planckian field displacements ∆φ � Mp . The
former can occur in inflationary models with ∆φ � Mp .
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problemof describing a comoving region of sub-Planckian size. After all, in classical
gravity a comoving region is just some chosen subset of a spacelike hypersurface,
and at the level of a classical, homogeneous FRW cosmology there is no obvious
problem when the size of this subset becomes sub-Planckian. Correspondingly, the
trans-Planckian problem is usually understood as a question about the initial state of
currently-observable modes, rather than as a hard upper bound on the total amount
of expansion in our history. The condition Ntot ≤ 140 is then a bound only to
the extent that one insists on making predictions for the CMB without providing a
description of modes of sub-Planckian wavelengths.

Here we will derive a superficially identical upper limit, Ntot ≤ 140, from rather
different assumptions. Importantly, in our treatment Ntot = 140 turns out to be a
limit beyond which our description of the background, not just of the inflationary
perturbations, fails. Specifically, we will find that for Ntot > 140, a description of
our comoving region as emerging from entanglement is inapplicable at sufficiently
early times. Thus, inflationary cosmologies with Ntot > 140 necessarily violate one
or more of our assumptions, which we enumerate below. Although we believe these
assumptions are all plausible, any of them may reasonably be questioned. Our main
point is to explore the consequences of assuming their validity.

4.3 Counting Entangled Degrees of Freedom
Our analysis rests on counting entangled degrees of freedom in de Sitter space,
so we will first recall the relevant definitions in a quantum-mechanical toy model
without gravity. Consider N spins in some subsystem A, and N′ spins in AC , the
complement of A. (By specifying “spins”we imagine that the factorization ofHilbert
space into fundamental qubits is fixed, so that the amount of entanglement between
any particular degrees of freedom is uniquely defined.) The entanglement entropy
of A across the bipartition is defined as SA = −Tr ρA ln ρA, where ρA is the reduced
density matrix of A. The number of entangled degrees of freedom in A, ne(A), is
defined as the number of qubits in the A subsystem that are nontrivially entangled
with at least one other qubit, either inside or outside A. For bipartite entanglement,
the number of entangled degrees of freedom is (up to factor of 2) a quantity known as
the distillable entanglement. There are multipartite generalizations of this quantity
as well, though computing them becomes more challenging.

The amount of entanglement in A can also be expressed in terms of e-bits. An e-bit
is a unit of entanglement that corresponds to the entanglement entropy of one half of
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a Bell pair. The number of e-bits is equal to the total amount of entanglement (in the
form of Bell pairs or other fundamental units of multipartite entanglement, such as
GHZorW states for tripartite information) that can be extracted from a quantum state
through a theoretically optimal distillation protocol. Said colloquially, the number
of e-bits is the amount of entanglement inherent in a quantum state. Because each
degree of freedom can share at most one e-bit of entanglement with the entire
remainder of the system, the number of e-bits in the spins in A is bounded above by
ne(A).

For a fixed tensor product decomposition of the Hilbert space into a set of qubits,
the number of entangled degrees of freedom is a well-defined property of a quan-
tum state, whereas the entanglement entropy of a subregion depends on how that
subregion is defined 2. For example, simply by considering a bipartition where all
of the entangled degrees of freedom reside on one side of a bipartition, one makes
the entanglement across that bipartition zero, while this choice has no effect on the
number of entangled degrees of freedom in the state as a whole.

Suppose the Hilbert space of the spins in A + AC has dimension D = DA × DAC =

2N × 2N ′, with DA and DAC the dimensions of the subspaces describing A and AC ,
respectively. Assume, without loss of generality, DA ≤ DAC . We say that A is
maximally entangled with AC if every spin in A is maximally entangled with one or
more spins in AC . In such a case the entanglement entropy of A across the bipartition
is maximized, so that

SA = ln DA = ne(A) ln 2 = N ln 2 . (4.6)

That is, in maximally entangled configurations, the number of entangled degrees of
freedom determines the dimension of the entangled subsector of the Hilbert space.
(In the case where the joint A, AC system is a thermal system, the entanglement
entropy is nearly maximized and (4.6) is approximately satisfied.) More generally,
however, ne can be much greater than the entropy. Take, for example, the N-party
GHZ state, where ne = N but S = 1 for any non-trivial bipartition.

2The number of entangled degrees of freedom is not necessarily invariant under a global change
of basis implemented by some unitary transformation that can change the notion of a “fundamental
qubit.” For example, in the AdS/CFT correspondence the entangled boundary degrees of freedom
are mapped nonlocally to the bulk. In more specific examples, such as those illustrated by Exact
Holographic Mapping [48] or MERA as a unitary quantum circuit [52], a change of basis turns a
highly entangled set of qudits into a set that has little or no entanglement. However, for our purposes,
ne should be understood as being defined with respect to a fixed set of qubits.
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4.4 Framework and Assumptions
We now consider the number of entangled degrees of freedom in the context of
cosmology. Our assumptions are as follows:

1. The evolution of an approximately homogeneous comoving region of space
can be described as that of a density matrix associated with a factor of Hilbert
space of fixed, finite dimension D.

2. At any time t, to a given comoving region C there is associated a number
ne(t) of entangled degrees of freedom describing the spacetime (and matter)
structure of C. There are also nu(t) = n − ne(t) unentangled degrees of
freedom, with n = log2D, which play no role in the emergent semiclassical
geometry or matter configuration.

3. For a Hubble volume in de Sitter space with cosmological constant Λ and
Hubble constant HΛ =

√
Λ/3, the total number of entangled degrees of

freedom is approximately the de Sitter entropy,

ne(dS) ≈
SdS
ln 2

. (4.7)

We assume that (4.7) holds to good approximation as long as the expansion
is very close to de Sitter, as it is in inflation and in the present epoch.

4. The number of entangled degrees of freedom ne(t) in the comoving volume
CH that now coincides with our Hubble volume can never be less than one.

Let us briefly discuss the motivation for these assumptions.

The first assumption, that the quantum state of our comoving region of space is
described by a fixed factor of Hilbert space, is a well-justified approximation in a
universe that is nearly homogeneous on large scales. In a general curved spacetime,
it would be hard to think of a given region of space as describing a fixed quantum
system for all times, as there is no preferred way to evolve it into the future.
(Equivalently, there is no preferred timelike vector field along which to associate a
spatial region at one time with one at other times.) But the large-scale homogeneity
of our observed universe allows us to define comoving coordinates, and to use these
to divide the universe into well-defined regions. (There is now a preferred vector
field, orthogonal to the hypersurfaces of homogeneity.) This is not to say that our
comoving patch evolves as a causally closed system; individual photons, for example,
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certainly enter and leave such a region. But a photon entering our comoving patch
does not represent a new degree of freedom; it is described by previously unexcited
degrees of freedom (the vacuum of the electromagnetic field) now becoming excited.
Information is entering our region, in other words, but not new qubits, much like a
wave traveling through the ocean is not made of a fixed set of water molecules. In our
picture, the entangling of qubits causes space to expand, but the qubits themselves
were always part of the Hilbert space factor describing our observable patch, and
were simply unentangled initially. Unentangled “ancilla” qubits of this sort are
commonplace in quantum circuits and tensor networks, including in the description
of emergent holographic spaces [155, 39, 37, 47, 41, 79, 49, 76].

A crucial feature in our analysis is that the dimension D of the Hilbert space of
our comoving region is finite. There are well-known obstacles to imagining that
regions of spacetime are described by finite-dimensional Hilbert spaces, including
the fact that the Lorentz group does not admit nontrivial finite-dimensional unitary
representations. On the other hand, there is suggestive evidence — for example,
the Bekenstein/holographic bounds [156, 18, 157] — that in quantum gravity the
Hilbert space of a finite region is indeed finite, and for our purposes we will accept
this as a working assumption. Note also that reasoning about complementarity
leads to similar conclusions [114], although our work does not rely on the validity
of complementarity.

The second assumption is inspired by the program of relating spacetime geometry to
quantum entanglement (for a review, see [158]). While geometry from entanglement
was originally motivated from examples in AdS/CFT, more general constructions
of emergent spacetime are possible [30, 82], including tensor network descriptions
in which the entanglement of finitely many quantum degrees of freedom creates
connectivity that reflects the geometry [37, 71]. It has also been argued that MERA
[39] can be interpreted as de Sitter space [51, 79, 85]. Entanglement is crucial
for such models of emergent space, where smoothness and connectedness of space
usually corresponds to a large number of degrees of freedom being entangled in an
organized manner. In the case where there is little or no entanglement among the
quantum degrees of freedom associated with spatial regions, the spatial geometry
becomes disconnected, and in certain contexts a firewall can form.

The third assumption captures the idea that a horizon-sized patch of de Sitter space
is an equilibrium system, with a maximum entropy. The Gibbons-Hawking entropy
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of a Hubble volume is proportional to the area [159],

SdS =
AdS

4`2
p
=

π

`2
pH2
Λ

, (4.8)

and can be interpreted as the entanglement entropy across the horizon. The approxi-
mate equality (4.7) is then a conjectured property motivated by the near-equilibrium
character of an approximately de Sitter phase.

The final assumption, that ne(t) ≥ 1 for our comoving patch, is crucial to our
argument. This assumption may be less familiar and less plausible than the others,
so let us explain the justification. The statement is that for t such that ne(t) < 1,
the degrees of freedom in our comoving patch were not entangled with anything.
Because our region of space literally is that collection of entangled qubits, there
is a sense in which our space did not exist before t1. Said more carefully, our
semiclassical region of space had not yet emerged at such early times: the factor of
Hilbert space that would eventually describe our comoving region did not contain
even a single e-bit, and there was no geometric interpretation of the degrees of
freedom that we find around us today. Nonzero entanglement is necessary for
smooth spacetime.

The quantum circuit of Fig. 4.1 provides a useful perspective on assumption (iv).
In this setting, time evolution is described via the discretization of the Hamiltonian
evolution into smaller unitaries in the form of quantum gates. When no gates are
being applied to the quantum degrees of freedom in the comoving patch, these
degrees of freedom are evolving trivially. However, it is always conceivable that
space is infinite in extent, and that the total dimension of Hilbert space (once we
include regions outside our observable patch) is infinite. Our comoving patch is
then a subset of a larger circuit that allows other patches or observers to evolve
further back in time, to times before t1. As far as the degrees of freedom in our
comoving patch are concerned, the larger “super-circuit,” whose degrees of freedom
are detached from our own, has no effect whatsoever on our comoving patch, as
long as no nontrivial gate acts on the degrees of freedom in our comoving patch.
This is indeed consistent with a crude model that uses MERA to model the initial
inflationary phase. After the last entangled degree of freedom of our comoving
patch is disentangled from the rest of the network, evolving time further backwards
on the remaining circuit will not apply any more gates on the qubits describing our
region. If instead our comoving patch is not a part of a larger circuit, the initial state
is necessarily pure and there is no further time evolution backwards to times t < t1.
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4.5 Upper Bound on Total Expansion
We will now derive a bound on the amount of inflation that can be described in our
quantum circuit model. Denote by ne(C

H, tI) the number of entangled degrees of
freedom at time tI in our comoving volume CH . We are interested in finding the
critical time t1 (“the time of one e-bit”) when this number barely exceeds 1,

ne(C
H, t1) ≈ 1 . (4.9)

We denote the physical size R(CH) at t = t1 by R(t1).

Reasoning based on holography and black hole physics strongly suggests that R(t1) &

`p, corresponding to atmost of order one entangled degree of freedom per Planckian-
sized region. To see this, consider a black hole with radius of order the Planck scale.
It is widely believed that a black hole provides the densest packing of information
into a region of a given size, and is also maximally entangled with the remainder of
the universe it resides in. A system that is maximally entangled with its purifying
region has S = ne ln 2, as previously discussed. Moreover, the entropy of the
black hole is given by the Bekenstein-Hawking formula [156], S = A/(4`2

p), which
the Gibbons-Hawking formula closely parallels. This suggests that the number of
entangled degrees of freedom inside a Planck-sized black hole is also of order unity.
Taking a region of space to have a number of entangled degrees of freedom less than
or equal to that of a black hole of comparable size, we conclude that the number of
entangled degrees of freedom in a Planckian-sized region C obeys

ne(C) . 1 . (4.10)

Indeed, it has been suggested that the black hole bound, at least for entanglement
entropy, is saturated in de Sitter space [157].

We will take (4.10) to be approximately saturated, corresponding to R(t1) ≈ `p,
which leads to the loosest bound on the total duration of inflation: the quantum
circuit picture then becomes valid once R(CH) & `p. (We have not excluded the
possibility that R(t1) � `p, in which case our description becomes valid only when
R(CH) � `p, but this would lead to a tighter bound on the duration of inflation.)
We thus find that

N(t1, t0) . − ln(H0`p) ≈ 140. (4.11)

Our argument for this result has been fairly general; in the Appendix we discuss
more specific assumptions about de Sitter entanglement that lead to tighter bounds.
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Note that (4.11) bounds the total amount of inflationary and non-inflationary ex-
pansion between the time t1, defined by the property that our comoving volume
contains a single e-bit at t = t1, and the present time t0, with ne(t0) ∼ 10122. It does
not directly limit expansion occurring before t1 or after t0, but as we discuss further
below, our logic does lead to suggestive statements about these times.

Our bound on the total number of e-folds of expansion can be converted into one
on the number of e-folds of inflation using standard cosmology. If reheating to a
temperature TRH is approximated as instantaneous, and occurs at a time tRH, the
number of e-folds since reheating is

Npost = ln
a(t0)

a(tRH)
. (4.12)

The scale factor is related to the temperature and the effective number of relativistic
degrees of freedom g∗S via a ∝ g

−1/3
∗S T−1. In the Standard Model, g∗S is of order 4

today, and of order 100 above the electroweak scale. We therefore have

Npost ≈ ln
(
3

TRH
T0

)
(4.13)

= 65 + ln(TRH/1015 GeV) . (4.14)

This expression only depends on the current CMB temperature, T0 = 2.25×10−4 eV,
and the expected entropy production in the Standard Model; it is independent of
the equation of state of the universe since inflation. If inflation ends near the GUT
scale, TRH ∼ 1015 GeV, our limit (4.11) implies that the total number of effective
inflationary e-folds is bounded by

NI = Ntot − Npost . 75 . (4.15)

Lower reheating temperatures lead to weaker bounds on NI , e.g. for TRH ∼ 105 GeV
we have NI . 98.

In a model with a given reheating temperature TRH, solving the horizon problem
requires

NI ≥ Npost −
1
2

ln(1 + zeq) ≈ Npost − 4 , (4.16)

with zeq the redshift of matter-radiation equality. Thus, according to our bound
(4.11), the number of inflationary e-folds since the time t1 can exceed the number
needed to solve the horizon problem by at most

Nextra = 14 − 2 ln(TRH/1015 GeV) . (4.17)
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The bound (4.11) is therefore compatible with solving the horizon problem via
inflation occurring after the time t1, but does not allow for much “unnecessary”
inflation after t1.

4.6 Details of the Quantum Circuit
A few features of our proposed quantum circuit deserve additional explanation.
First of all, in our setup the initial state contains no entanglement. This is a highly
non-generic situation, but is perfectly compatible with the empirical fact that our
universe began in a state of very low entropy [160] – the von Neumann entropy of
any subregion described by the initial state of the circuit will vanish. We do not
attempt here to provide an explanation for this well-known cosmological fine-tuning,
merely to model it.

Second, the circuit in Fig. 4.1 is constructed to describe our comoving region CH(t),
but causal influences have entered CH(t) at various times in cosmic history. Such
influences should be represented by the action of gates that entangle the qubits
shown in Fig. 4.1 with qubits describing different degrees of freedom elsewhere: for
example, an atom outsideCH might emit a photon that we detect. A more rigorously
complete quantum circuit representing cosmological evolution would include gates
describing such processes, which we are neglecting here. As discussed above, the
entry of a a photon into our region does not change the dimensionality of our Hilbert
space, though it does change the quantum state of our region.

What matters for our analysis is that the spacetime structure of our comoving
region comes into being (interpreted semiclassically as “the universe expands”)
by entangling existing degrees of freedom within our Hilbert space, rather than
by attaching additional degrees of freedom from outside. This is our answer to
the questions posed in the introduction about the appearance of new modes as the
universe expands. For cosmological evolution described by a finite-dimensional
Hilbert space, the total number of degrees of freedom is always fixed. In essence,
the quantum circuit picture presents a natural framework for the newly “created”
modes to become entangled with the rest when they are no longer trans-Planckian,
by modeling the process as ancillary qubits becoming entangled as time evolves.

The circuit picture provides a concrete, operational sense in which the condition
that there should be at least one entangled degree of freedom can be made precise.
Namely, no information about the spacetime is imparted by gates acting on qubits in
our comoving region at times t < t1. All entanglement that sources such information
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must be injected by unitaries that appear later in the circuit, i.e. at a time after the
“beginning” of the universe.

We can ask how the quantum circuit picture applies to the future evolution of the
universe. One the one hand, it is conceivable that we live in a universe near a late
time de Sitter vacuum in which almost all of the n = S/ln 2 degrees of freedom in the
entire Hilbert space of our region are entangled, and all further time evolution simply
increases the circuit complexity. It may then be possible to adopt the complexity
picture where time evolution is directly defined by the growth of complexity [33].

On the other hand, it is also plausible that the current de Sitter phase is metastable,
and can decay into a vacuum with a smaller (positive) cosmological constant, and
so a larger entropy S′ > S. We will not give a quantum circuit description of the
associated tunneling process in this work. However, we remark that (S′ − S)/ln 2
additional ancilla qubits are required, and the gates that entangle them with the
degrees of freedom of the false vacuum are different from those that describe
exponential expansion within the false vacuum.

4.7 Discussion
We have proposed a quantum circuit picture for cosmological expansion. Our funda-
mental assumption was that expansion corresponds to the progressive entanglement
of degrees of freedom that were initially unentangled. Time evolution corresponds
to the application of quantum gates that create entanglement, and the amount of
cosmic time elapsed since the unentangled initial state is determined by the circuit
complexity. We posited that the total number of degrees of freedom in our Hubble
volume is a finite number related to the area of the de Sitter horizon, and that the
number of entangled degrees of freedom in a region with a geometric description
can never be less than one.

This picture differs markedly from the conventional intuition based on quantum field
theory in curved spacetime. In that context, the number of degrees of freedom (and
hence the dimensionality of Hilbert space) is potentially infinite. In an effective
description with a Planck-scale cutoff, new degrees of freedom are continually
appearing as they expand from sub-Planckian to safely super-Planckianwavelengths.
Our picture seems more compatible with the principles of unitary evolution (new
degrees of freedom are never created) and holography (the total number of degrees
of freedom is finite in a de Sitter universe).

In our approach, there is a general upper bound on the number of e-folds of cosmo-
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logical expansion since the time t1 when there was a single pair of entangled degrees
of freedom in the comoving region that now coincides with our Hubble volume. The
number of inflationary e-folds consistent with this bound is comfortably, but not
parametrically, larger than what is needed to solve the horizon problem.

Our bound limits the total number of e-folds of expansion within our comoving
patch, but our ignorance about the underlying theory of quantum gravity allows for
potentially different global scenarios. If we take seriously the de Sitter entropy as
telling us the dimensionality of the Hilbert space corresponding to our observable
patch of spacetime, there are two possibilities. One is that this Hilbert space
represents the entire universe; there is no larger multiverse described by additional
degrees of freedom, and only the degrees of freedom in the bulk and on the boundary
of de Sitter exist [112, 113, 115, 88]. In that case our bound is a straightforward limit
on the total amount of expansion space can undergo before reaching its de Sitter
equilibrium state.

The other possibility is that our observable patch represents only part of the universe,
and its Hilbert space is just one part of a larger Hilbert space. In that case, the
classical universe is much larger than what we observe. It follows that there could
be many more e-folds of total expansion than what our bound indicates. However,
even in that case our bound applies to the number of physically meaningful e-folds
of expansion of our own space. Any additional expansion occurring before t1 did
not involve any of the degrees of freedom that currently constitute the spacetime
geometry in our observable universe: at that early stage our degrees of freedomwere
completely unentangled, and the space that was then expanding now corresponds
to regions outside our comoving volume. In this sense, our bound applies to the
universe we see, even if the full theory describes additional degrees of freedom as
well.

Our upper bound on inflationary e-folds is similar to a bound derived by Banks
and Fischler [150]; see also [151, 152, 154]. Like ours, their bound comes from
assuming that physics in a de Sitter patch is described by a finite-dimensional
Hilbert space. Unlike us, they require that the quantum state be pure rather than
mixed and that the de Sitter phase be absolutely stable, and their early-time constraint
comes from insisting that physics be described by an effective quantum field theory,
rather than insisting that the entangled spacetime structure contain at least one
qubit. Our bounds are also numerically different, both because we do not invoke
any assumptions about the equation of state at early times, and because we find
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a different scaling of the entropy with the number of e-folds. The bound due to
Kaloper, Kleban, and Sorbo [151] is based on what an observer in de Sitter can
conceivably measure, rather than on unitary quantum evolution by itself. That of
Phillips, Scacco, and Albrecht [154] is derived within the framework of a de Sitter
equilibriumpicture [161], which again involves a slightly different set of fundamental
assumptions. The spirit behind these various bounds is certainly similar; we believe
that the one presented here is based on a simple set of explicit assumptions, and is
unique in making direct reference to ancilla degrees of freedom gradually becoming
entangled as space expands, but our logic is not incompatible with that of previous
bounds.

There is also related work by Arkani-Hamed et al., which proceeds from weaker
assumptions than those we have invoked, and finds bounds exponentially weaker
than our own [153]. Their analysis is different: they rely on the slow increase of
entropy during slow-roll inflation, which follows from the gradual reduction of the
energy density during that phase. They then obtain a bound involving the de Sitter
entropy at the end of non-eternal inflation, which wemay denote Searly

dS . Their logic is
to place an upper bound on the number of modes detectable by a hypothetical future
observer in a late-time phase with negligible cosmological constant, e.g. Minkowski
space. We have instead considered an observer in a cosmology that has entered, or
is entering, a late-time de Sitter phase (possibly but not necessarily metastable) with
finite cosmological constantΛ > 0, and finite de Sitter entropy Slate

dS . Notice that our
analysis allows Ntot → ∞ in the limit Λ→ 0. The bound of [153] (see also [162])
is

Ntot ≤
1

12
Searly

dS , (4.18)

while ours is
Ntot ≤ ln

(
Slate

dS /π
)
. (4.19)

Thus, our bound is compatible with, but quite different from, that of [153].

In closing, let us point out some possible applications of our picture. One advantage
of describing time evolution through a quantum circuit is that one can in principle
reverse the computation. As the quantum circuit we outlined in this work is a unitary
circuit, one can imagine simply running it in reverse, with generic data about the
quantum state today, to gain intuition about what generic states in the early universe
could have looked like. This could be done either via Monte Carlo generation of the
state of the current universe, or through some ansatz for the current entanglement.
(Our circuit is meant to describe the full quantum state of the universe, not only
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the branch of the wave function we find ourselves on; details of the actual state are
therefore unobservable to us.) This computation would of course require knowledge
of the specific gates in the circuit. Performing the evolution backward in time by
inverting each gate separately is in principle much simpler than inverting a generic
unitary operator acting on the Hilbert space.

We stress that although the spacetime picture breaks down when the number of
entangled qubits is not large, the circuit as a unitary picture does not. By an
appropriate modification of the quantum circuit presented here one could aim to
explore the initial state of inflationary perturbations, by characterizing how the
degree of entanglement of the state evolves as a function of time. More ambitiously,
entanglement in a phase where ne(t) is not large (but ne(t) > 1) might provide a
model for the chaotic conditions at nearly-Planckian densities, and for the emergence
of inflating regions in this era. However, realizing these applications would require
the development of a more detailed dictionary between entanglement and (quasi) de
Sitter spacetimes.

The assumptions leading to our proposal are not secure beyond reasonable doubt,
although they do seem to follow from plausible conjectures about holography and
unitarity. Perhaps the most important lesson from this analysis is that phenomena
in quantum gravity can be very different from our semiclassical intuition, in ways
that can have important consequences for cosmology.

4.A Appendix
We arrived at the bound N(t1, t0) ≤ 140 by means of relatively general assumptions.
In this appendix we comment on how specific models for the emergence of de Sitter
space from entanglement could lead to more restrictive bounds. These speculations
are largely based on [82].

Two persistent difficulties in understanding de Sitter space from entanglement are
the absence of a spatial boundary and the presence of de Sitter entropy. This
entropy, and hence the number of entangled degrees of freedom (since de Sitter
is supposed to be an equilibrium state), scales as the horizon area, whereas local
bulk quantities naively scale as volumes. It therefore appears that one cannot assign
quantum degrees of freedom locally to each subregion in de Sitter space, as many
of these degrees of freedom would have to be shared non-locally to account for the
sub-extensive scaling.

On the other hand, in order to be consistent with the picture presented in [82, 28,
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65, 144], the entanglement entropy will also need to satisfy an approximate area law
for local regions in order for Einstein gravity to emerge. This constrains the kind of
structure we are allowed to consider in order to build up de Sitter space. For small
regions, the entanglement has to be predominantly short-ranged, and satisfy an area
law. However, on longer scales comparable to the Hubble radius, the dominant
entanglement will be long-ranged, so that some of the quantum degrees of freedom
that encode the geometry of such regions are shared non-locally. This picture of
entanglement is similar to that presented in [163].

To start, we assume that the state from which de Sitter emerges allows us to define
subregions of the emergent geometry. Consider a subregion A of linear size R in
a Hubble patch of a de Sitter phase with Hubble constant H. We assume that the
number ne(A) of quantum degrees of freedom that encode the geometric information
of A is well-defined (even if one cannot necessarily localize all ne(A) degrees of
freedom to the subregion), and that

ne(A) ≈ fR(x)ne(dS) . (4.20)

Here we have some function 0 ≤ fR(x) ≤ 1, where 0 ≤ (x = RH) ≤ 1 parametrizes
the dimensionless ratio between the size of the subregion and that of the Hubble
patch. The R-dependent functional form captures the transition of the scaling
behaviour for the number of quantum degrees of freedom, which changes from
volume law scaling to area law scaling when considering larger and larger regions.
Correspondingly, the dominant form of entanglement in these regions transitions
from short-ranged to long-ranged.

As such, it is reasonable to conjecture that

x3 ≤ fR(x) ≤ x2, (4.21)

which captures the area-to-volume transition. Now we can derive a bound on the
duration of inflation. Let x = R(t1)/R(tI), where t1 marks the beginning of inflation,
tI is any time during the inflationary phase, and t0 is the present. Then we have

ne(t1) ≈ fR(t1)(x)
πR(tI)

2

`2
p ln(2)

≤ x2 πR(tI)
2

`2
p ln(2)

=
πR(t0)2e−2N(t1,t0)

`2
p ln 2

, (4.22)

where we have used R(tI) ∼ H(tI)
−1 = H(t1)−1. Combining (4.22) and assumption

(iv), we have

N(t1, t0) ≤
1
2

log
πR(t0)2

`2
p ln(2)

≈ 140. (4.23)
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However, if the form of fR(x) were known, e.g. from a model of a de Sitter tensor
network, the transition function could be explicitly evaluated. For instance, suppose
we obtained fR(x) = xq(R) for some q(R) such that (4.21) is satisfied. Then we could
write

N(t1, t0) ≤
2 − q

q
ln

R(tI)

`p
+ ln

R(t0)
`p
+

1
q

ln
π

ln 2
≈ 140 −

q − 2
q

ln
R(tI)

`p
, (4.24)

which is sensitive to the inflationary scale and to the entanglement structure of de
Sitter. Because R(tI) ≥ `p by (iii) and (iv), we see that for q(R) between 2 and 3,
(4.24) yields a potentially tighter bound.

For instance, following the arguments in [163], let us assume a q = 3 relation. Then
we find that

N(t1, t0) ≈ − ln(H0`p) +
1
3

ln(H(t1)`p) +
1
3

ln
( π

ln 2

)
. (4.25)

Observational upper limits on primordial tensor modes [164] give an upper bound
H(tCMB)`p ≤ 5 × 10−6 on the Hubble scale at the time tCMB when the modes
visible at large angular scales in the CMB exited the inflationary horizon. Because
t1 < tCMB in general, we cannot directly bound H(t1) from observations: the
inflationary energy could have diminished noticeably between t1 and tCMB. But if
we could exclude a rapid decrease in energy over that interval — perhaps through
limits on the scale-dependence of the scalar and tensor power spectra— and so have
H(t1) ∼ H(tCMB), the bound (4.25) would read

N(t1, t0) . 140 +
1
3

ln(5 × 10−6) = 136 . (4.26)

For inflation that ends near the GUT scale,TRH ∼ 1015GeV, we would have NI . 71.
Lower reheating temperatures lead to weaker bounds on NI , e.g. for TRH ∼ 105GeV
we have NI . 98.
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C h a p t e r 5

ENTROPY INEQUALITIES FOR AREA-LAW SYSTEMS

For gapped phases of many local Hamiltonians, the low energy states of the system
satisfy an area law scaling of entanglement entropy. To characterize the entan-
glement structure of such systems, we determine the linear entropy inequalities
satisfied by systems for an arbitrary number of subsystems. To leading order, where
the entropy satisfies an exact area law, we fully characterize the entanglement en-
tropy cone of any number of systems. In particular, we find that all holographic
entropy inequalities found in [165] are also valid in such systems. In gapped systems
with topological order, the “cyclic inequalities” derived recently for the holographic
entanglement entropy generalize the Kitaev-Preskill formula for the topological
entanglement entropy. Finally, we propose a candidate linear inequality

S(ABD) + S(ABC) + S(BCD) − 2S(BD) − 2S(BC) + S(CD) − S(AD)

− S(AC) − S(AB) + 2S(B) + S(A) ≤ 0

for general 4-party quantum states.

This chapter is based on the Ref:
Ning Bao, ChunJun Cao, Michael Walter, and Zitao Wang. “Holographic entropy
inequalities and gapped phases of matter”. In: JHEP 09 (2015), p. 203. doi:
10.1007/JHEP09(2015)203. arXiv: 1507.05650 [hep-th].

5.1 Introduction
In recent years, the study of quantum entanglement and quantum information in gen-
eral has produced a myriad of applications in high energy physics and condensed
matter physics. A key tool for the quantification of entanglement is, in particular,
the entanglement entropy. For general quantum systems, the von Neumann entan-
glement entropies of subsystems are known to obey subadditivity, the Araki-Lieb
inequalities, weak monotonicity, and strong subadditivity, respectively:

Subadditivity:
S(A) + S(B) − S(AB) ≥ 0. (5.1)

https://doi.org/10.1007/JHEP09(2015)203
https://arxiv.org/abs/1507.05650
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Araki-Lieb:
S(C) + S(ABC) − S(AB) ≥ 0. (5.2)

Weak Monotonicity:

S(AB) + S(AC) − S(B) − S(C) ≥ 0. (5.3)

Strong Subadditivity:

S(AB) + S(AC) − S(A) − S(ABC) ≥ 0. (5.4)

Such inequalities are important, as they constrain the phase space of entanglement
in quantum systems and can in turn be translated into other physical quantities. In
particular, in condensed matter physics there exists a conjectured relationship [167,
168] between the existence of a gap in a system and whether or not the entanglement
entropy in that system obeys an area law [169]. It therefore seems a fruitful direction
to explore and better characterize the properties of the entanglement entropy in
quantum-mechanical systems.

It should be noted, however, that entropy inequalites for general quantum states are
relatively rare; indeed, (5.1)–(5.4) are the only unconditional entropy inequalities
known to date. Luckily, there exist classes of quantum systems for which the
entanglement entropy is easier to characterize.

5.1.1 Entropy inequalities from holography
In holography, it has been shown that entanglement entropies of regions on the
boundary are equal to the areas of the minimal surfaces subtending the boundary
region, or in terms of the celebrated Ryu-Takayanagi formula [23, 64]:

S(A) =
Area
4G

. (5.5)

The Ryu-Takayanagi formula gives us a powerful new tool for computing entan-
glement entropies in regimes where such calculations are usually intractible. In
higher dimensions, for example, it turns what would be a difficult (if not impossible)
conformal field theory calculation into a straightforward minimization of area in a
classical metric.

Interestingly, these holographic entenglement entropies obey a larger set of inequal-
ities than those obeyed by the generic quantum mechanical systems. In [170], it
was discovered that, indeed, there is a new entanglement entropy inequality which
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is true for all systems with semi-classical holographic duals, i.e., the conditional
mutual information is monogamous, or

S(AB) + S(AC) + S(BC) ≥ S(A) + S(B) + S(C) + S(ABC). (5.6)

This was done using a method known as inclusion/exclusion, in which minimal
surfaces corresponding to the (positively signed) entropic terms on the left hand side
are repartitioned into non-minimal surfaces corresponding to the terms on the right
hand side. As non-minimal surfaces have more area than minimal surfaces, if such
a partitioning can be done, then the inequality is true. A more detailed description
of the methodology is available in [170]. Recently, this has also been generalized to
higher numbers of regions in [171] by converting the geometric procedure described
above to a combinatoric set of contraction mappings from points on a hypercube,
which corresponds to the left hand side entanglement entropies, to points on another
hypercube, which corresponds to the right hand side entropies. This new method
has yielded a new, infinite family of inequalities that has been proven for holographic
systems. These so-called “cyclic” inequalities for n = 2k + 1 subsystems take the
form

CYC =
k−1∑
l=1

I(A1...Al : Ak+l+1 : Ak+l+2...A2k+1) −

k∑
j=1

I(A1...A j : A j+1...A j+k : A j+k+1)

=

n∑
i=1

S(Ai |Ai+1 . . . Ai+k) − S(A1 . . . An) ≥ 0, (5.7)

where I(A : B : C) = S(A)+ S(B)+ S(C) − S(AB) − S(AC) − S(BC)+ S(ABC) and
S(X |Y ) = S(XY ) − S(Y ) is the conditional entropy. This new generalization has also
led to the discovery of several further holographic entropy inequalities [171].

Holographic systems are not the only class of quantum systems that obey a more
restrictive set of entanglement entropy inequalities. The set of stabilizer states in
quantum error correction does so, as well [172, 173, 174]. It is interesting, however,
that the known stablizer inequalities are implied by (weaker than) the holographic
inequalities, thus suggesting a nontrivial relationship between these two types of
states.

It is important to note that the utilization of holography in the inclusion-exclusion
proof technique is actually quite minimal. Instead, holographic entropy inequalities
are reduced to linear inequalities between the areas of boundaries of certain bulk
regions. However, these inequalities are then proved for arbitrary bulk regions, not
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only for those that minimize the Ryu-Takayanagi entropy. As suggested in [171], it is
therefore natural to expect that they hold likewise in condensed matter systems that
satisfy an area law. The exploration of this idea, and the applicability of the resulting
inequalities for other condensedmatter systems, will be the focus of the remainder of
this work. As any system with an exact area law entropy scaling necessarily satisfies
these entropy inequalities, they may also provide further indication, particularly in
the direction of falsification, as to whether a gapped system indeed implies area law
scaling for entanglement entropy.

Another potentially interesting relationship here is to the field of AdS/CMT [175,
176]; as we will see, the entanglement entropies for gapped phases of matter with
an exact area scaling obey the constraints of general holographic systems, which is
suggestive of possibly nontrivial holographic duals of condensed matter systems.

5.1.2 Organization
In this work we extend and characterize the realm of applicability of the holographic
entanglement entropy inequalities to condensedmatter systems. The organization of
the paperwill be as follows: In section 5.2, we formally prove the validity of the cyclic
inequalities for systems that obey an exact area law. In section 5.3, we show that
these inequalities have a valid interpretation as the topological entanglement entropy
in two spatial dimensions. In section 5.4, we fully characterize the entanglement
entropy in systems satisfying an exact area law, and we give a minimal and complete
set of entropy inequalities and equalities for any fixed number of regions. We
comment about the analogous problem for general quantum system and propose
a candidate inequality for four-partite quantum systems. Finally, we conclude in
section 6.6.

5.2 Gapped systems with trivial topological order
Here we consider gapped systems with trivial topological order in d+1 dimensions.
The entanglement entropy S(A) of a subsystem A, which measures the entanglement
between A and its complement Ac, is defined to be the von Neumann entropy

S(A) ≡ − tr ρA log ρA, (5.8)

where ρA is the reduced density operator for A obtained by tracing out all degrees
of freedom outside of A in the many-body ground state of the gapped system.

Note that for a bipartite system in a pure state, the reduced density operators obtained
by tracing out either part have the same set of eigenvalues, hence the same von
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Neumann entropy, which can be seen via a Schmidt decomposition [128] of the
pure state that we started with. This implies that for any division of the system into
subsystems A and its complement Ac,

S(A) = S(Ac) (5.9)

is satisfied.

For gapped systems with trivial topological order, we assume that the entanglement
entropy S(A) of a subsystem A scales as the area of its boundary and neglect any
sub-area scaling for the moment. Namely,

S(A) ∼ ∂A. (5.10)

Note that for any two regions A and B in d spatial dimensions that are non-
overlapping except possibly at their boundaries, the entanglement entropy of the
combined region AB satisfies

S(AB) ∼ ∂(AB) = ∂A + ∂B − 2A ∩ B. (5.11)

Here A∩B denotes the area of the codimension 1 hypersurface where regions A and
B intersect. The above follows from (5.10) because for any d-dimensional regions
A, B, and C, the triple intersection A ∩ B ∩ C is of measure zero.

We claim that the cyclic inequality (5.7) for n = 2k + 1 regions is satisfied as a strict
equality in this system, namely

n∑
i=1

S(Ai |Ai+1 . . . Ai+k) = S(A1 . . . An), (5.12)

where the sum is cyclic and all indices are taken modulo n. To prove (5.12), we
compute:

LHS ∼
n∑

i=1
∂(Ai . . . Ai+k) − ∂(Ai+1 . . . Ai+k)

=

n∑
i=1

{
∂Ai −

∑
{ j1, j2}

j1, j2∈Q0

2A j1 ∩ A j2 −
∑
{ j1, j2}

j1, j2∈Q1

2A j1 ∩ A j2

}

=∂A1 + · · · + ∂An −

n∑
i=1

∑
j∈Q0

2Ai ∩ A j,

RHS ∼∂(A1 . . . An)

=∂A1 + · · · + ∂An −
∑
{ j1, j2}
j1, j2∈N

2A j1 ∩ A j2,
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where Ql = {i + l, . . . , i + k}, N = {1, . . . , n} and { j1, j2} are unordered pairs that
take on the indicated values. Hence to prove that LHS = RHS, we need to show that∑

{ j1, j2}
j1, j2∈N

A j1 ∩ A j2 =

n∑
i=1

∑
j∈Q0

Ai ∩ A j . (5.13)

The LHS sums over n(n+ 1)/2 = (k + 1)(2k + 1) distinct unordered pairs of indices
{ j1, j2}, so it contains (k + 1)(2k + 1) distinct terms. The summation on the RHS
also contains (k +1)(2k +1) terms. So in order to prove that LHS = RHS, it suffices
to prove that any term appearing in the summation on the LHS also appears in the
summation on the RHS. This is equivalent to proving that for any unordered pair
{ j1, j2}, j1, j2 ∈ {1, . . . , n}, there exists i ∈ {1, . . . , n}, j ∈ {i, . . . , i + k}, such that
{ j1, j2} = {i, j}.

We have the following two cases:

1. j2 ∈ { j1, . . . , j1 + k}. In this case, we just take i = j1, j = j2.

2. j2 < { j1, . . . , j1+k}. In this case, if j1 < { j2, . . . , j2+k}, then { j1, . . . , j1+k}∩

{ j2, . . . , j2+ k} = ∅, otherwise j1+ h1 = j2+ h2, for some h1, h2 ∈ {1, . . . , k}.
Therefore, either j1 = j2 + h2 − h1, or j2 = j1 + h1 − h2. Since either
h1 − h2 ∈ {1, . . . , k}, or h2 − h1 ∈ {1, . . . , k}, we are forced to conclude
that either j2 ∈ { j1, . . . , j1 + k}, or j1 ∈ { j2, . . . , j2 + k}. Both lead to
contradictions. So if j2 < { j1, . . . , j1 + k}, and if j1 < { j2, . . . , j2 + k}, then
{ j1, . . . , j1 + k} ∩ { j2, . . . , j2 + k} = ∅. Since each set contains k + 1 distinct
numbers, and if their intersection is empty, their union would contain 2k + 2
distinct numbers, contradicting n = 2k + 1. Thus we finally arrive at the
conclusion that j2 < { j1, . . . , j1 + k} =⇒ j1 ∈ { j2, . . . , j2 + k}. In this case,
we just take i = j2, j = j1.

Combining cases 1 and 2, we conclude that for any unordered pair { j1, j2}, j1, j2 ∈

{1, . . . , n}, there exists i ∈ {1, . . . , n}, j ∈ {i, . . . , i + k}, such that { j1, j2} = {i, j}.
Hence (5.13) indeed holds and (5.12) is exactly satisfied by such systems.

In section 5.4 below, we will generalize this result and identify all entropy inequal-
ities and equalities that are obeyed in systems with an exact area-law scaling. We
will find that any holographic entropy inequality is valid for systems with an exact
area law.
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5.3 Topological entanglement entropy
5.3.1 Construction and validity
Here we consider general gapped systems in 2 + 1 dimensions. It is shown in [177,
178, 179] that the entanglement entropy of a region A with smooth boundary has
the form

SA = αL − b0γ (5.14)

in the limit L/a → ∞ where a is the correlation length. Here b0 denotes the
number of connected components of ∂A, the boundary of region A. The topological
entanglement entropy −γ is a universal constant characterizing the topological state
and α is a non-universal and ultraviolet divergent coefficient dependent on the short
wavelength modes near the boundary of region A. In particular, γ = logD captures
the far-IR behaviour of entanglement and the total quantum dimension, D, which
can be obtained from topological quantum field theory computations, is related to
the number of superselection sectors of the system[177].

We divide the plane into 2k + 2 regions, labeled by A0, A1, A2, . . . , A2k+1, where
A0 labels the complement of A1 A2 . . . A2k+1, i.e., A0 ≡ (A1 A2 . . . A2k+1)

c. In order
for the topological entropy Stopo defined in (5.16) to be a topological invariant, we
require the division of the plane to satisfy⋂

i∈I

Ai = ∅, for all I ⊂ {0, 1, 2, · · · , 2k + 1}, such that 0 ∈ I, and |I | > 3. (5.15)

In other words, there is no point on the plane that is shared by A0 and more than two
other regions. We define the topological entropy Stopo for 2k + 2 regions as

Stopo ≡
2k+1∑
i=1

S(Ai |Ai+1 . . . Ai+k) − S(A1 . . . A2k+1), (5.16)

where all indices are takenmodulo (2k+1). Note that our definition of the topological
entropy reduces to the Kitaev-Preskill one [177] when k = 1 (i.e., a division of the
plane into 4 regions). Also note that our calculation in section 5.2 implies that for
gapped systems with trivial topological order, Stopo = 0, that is, the dependence of
Stopo on the length of the boundaries cancels out.

To see that Stopo is a topological invariant, consider deforming the boundary between
regions labeled by the index set J ⊂ {0, 1, 2, . . . , 2k + 1}, i.e., points in the set

S ≡
⋂
j∈J

A j .
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We note the following properties of the entanglement entropy before proceeding to
the main arguments:

• Under general deformations of the plane, the change in the entanglement
entropy of any region A, ∆S(A), is equal to the change in the entanglement
entropy of the complement of A, ∆S(Ac). This follows as a consequence of
(5.9).

• For any k < J, points of deformation (points in S) are far from Ak . Therefore,
we expect ∆S(Ak) = 0, provided that all regions are large compared to the
correlation length. In the same spirit, ∆S(A) = 0 for any region A that is a
union of such Ak’s. It then follows if A is appended to any region B, the change
in entanglement of that region is unaffected, namely, ∆S(B ∪ A) = ∆S(B).

Now we argue for the topological invariance of Stopo. Possible deformations of the
regions are classified into the following two cases:

1. 0 < J. In this case,

∆Stopo =
2k+1∑
i=1
[∆S(Ai Ai+1 . . . Ai+k) − ∆S(Ai+1 . . . Ai+k)] − ∆S(A1 . . . A2k+1)

=

2k+1∑
i=1
[∆S((Ai Ai+1 . . . Ai+k)

c) − ∆S(Ai+1 . . . Ai+k)] − ∆S((A1 . . . A2k+1)
c)

=

2k+1∑
i=1
[∆S(A0 Ai+1+k Ai+2+k . . . Ai+2k) − ∆S(Ai+1 . . . Ai+k)] − ∆S(A0)

=

2k+1∑
i=1
∆S(Ai+1+k Ai+2+k . . . Ai+2k) −

2k+1∑
i=1
∆S(Ai+1 . . . Ai+k)

=

2k+1∑
i=1
∆S(Ai+1 Ai+2 . . . Ai+k) −

2k+1∑
i=1
∆S(Ai+1 . . . Ai+k) = 0,

where in the last step, we cyclically left permute the summands in the first
summation by k steps, which leaves the summation invariant.

2. 0 ∈ J. In this case, by condition(5.15), we can either have |J | = 2 or |J | = 3.
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a) |J | = 2. Denote the only nonzero element in J as j. In this case,

∆Stopo =∆S(A j A j+1 . . . A j+k) + ∆S(A j−1 A j . . . A j+k−1) + · · ·

+ ∆S(A j−k A j−k+1 . . . A j) − ∆S(A j A j+1 . . . A j+k−1)

− ∆S(A j−1 A j . . . A j+k−2) − · · · − ∆S(A j−k+1 A j−k+2 . . . A j)

− ∆S(A1 A2 . . . A2k+1)

=(k + 1)∆S(A j) − k∆S(A j) − ∆S(A j) = 0.

b) |J | = 3. Denote the nonzero elements in J as j1 and j2. Moreover, since
j1, j2 ∈ {1, 2, · · · , 2k + 1}, | j1 − j2 | ≤ k, i.e., they are separated by a
distance of at most k (note j1, j2 are mod (2k+1) integers). Without loss
of generality, we assume j2 = j1 + l, for some 0 < l ≤ k. We further
write j1 as j for simplicity. In this case,

∆Stopo =∆S(A j . . . A j+l . . . A j+k) + · · · + ∆S(A j+l−k . . . A j . . . A j+l)

+ ∆S(A j+l−k−1 . . . A j . . . A j+l−1) + · · · + ∆S(A j−k A j−k+1 . . . A j)

+ ∆S(A j+l A j+l+1 . . . A j+l+k) + · · · + ∆S(A j+1 . . . A j+l . . . A j+k+1)

− ∆S(A j . . . A j+l . . . A j+k−1) − · · · − ∆S(A j+l−k+1 . . . A j . . . A j+l)

− ∆S(A j+l−k . . . A j . . . A j+l−1) − · · · − ∆S(A j−k+1 A j−k+2 . . . A j)

− ∆S(A j+l A j+l+1 . . . A j+l+k−1) − · · · − ∆S(A j+1 . . . A j+l . . . A j+k)

− ∆S(A1 A2 . . . A2k+1)

=(k − l + 1)∆S(A j A j+l) + l∆S(A j) + l∆S(A j+l)

− (k − l)∆S(A j A j+l) − l∆S(A j) − l∆S(A j+l) − ∆S(A j A j+l) = 0.

To see that Stopo is a universal quantity, we consider the same argument in [177],
where a smooth deformation of the local Hamiltonian during which no quantum
critical points are encountered. Since the Hamiltonian is local, any smooth defor-
mations of the Hamiltonian can be written as a sum of smooth deformations of local
terms. Moreover, by utilizing the topological invariance of Stopo, we may deform
the regions in the following ways while keeping Stopo invariant:

• Stretch the boundaries of the regions so that L → ∞, and the entanglement
entropy of a region takes the form of (5.14).

• Deform the boundaries of the regions so that all deformation of the Hamilto-
nian happens locally in the bulk of the regions.
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We further assume that the correlation length remains small compared to the size
of the regions throughout the deformation. Hence any local deformations of the
Hamiltonian in the bulk only has miniscule effects for the ground state near the
boundary. As a result, the entanglement entropies of the deformed regions (and
hence Stopo) should not be affected by such local deformations of the Hamiltonian.

Thus we conclude that the topological entropy we defined in (5.16) is both a topo-
logical invariant (invariant under deformations of the boundary of the regions that
keep the topology of the regions unchanged) and a universal quantity (invariant
under smooth deformations of the Hamiltonian during which no quantum critical
points are encountered).

For a general division of the plane into 2k + 2 regions that satisfies condition (5.15),
we can compute the topological entropy:

Stopo = −γ
{ 2k+1∑

i=1

(
b0[∂(Ai . . . Ai+k)] − b0[∂(Ai+1 . . . Ai+k)]

)
+ b0[∂(A1 . . . A2k+1)]

}
,

(5.17)

where all indices are taken modulo (2k + 1), and b0[∂A] denotes the zeroth Betti
number (the number of connected components) of the boundary of a region A.

Hence Stopo is proportional to the topological entanglement entropy −γ, with the
proportionality constant determined by the topology of the regions. This implies
that we can extract the topological entanglement entropy of a 2 + 1 dimensional
topologically ordered system with a mass gap by suitably divide the system into
2k + 2 regions, and compute the topological entropy Stopo.

5.3.2 Examples
Here we consider a few examples which elucidate some of the general constructions
in section 5.3.1. Figures 5.1 and 5.2 illustrate two possible divisions of the plane
into 2k + 2 regions that satisfy condition (5.15).

There are three types of deformations to the regions for both divisions. We consider
the change in Stopo under such deformations.

First, consider deforming the boundary between two regions in figures 5.1 and 5.2.
This can either be the boundary between two slices of the pie, say A1 and A2, or
the boundary between a slice of the pie and the complement of the pie, say A1 and
A0. In the former case, region A0 is not involved in the deformation, so case 1 of
our general analysis for the topological invariance of Stopo implies that ∆Stopo = 0.
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In the latter case, there is one more region (A1) besides A0 that are involved in the
deformation, so case 2a of our general analysis implies ∆Stopo = 0.

Next, consider deforming a triple point where three regions meet. Without loss of
generality, consider the three regions A1, A2 and A0. There are twomore regions (A1

and A2) besides A0 that are involved in the deformation, so case 2b of our general
analysis implies that ∆Stopo = 0.

Note that for the division in figure 5.1, one could also deform the center of the pie
chart, which is seemingly different from other points in the plane. All 2k+1 regions
but A0 are involved in the deformation. However, since A0 is not involved, case 1 of
our general analysis still applies in this case, and ∆Stopo = 0.

To compute the topological entropy Stopo for these two divisions, we apply the
general formula (5.17). For pie-chart divisions in figures 5.1 and 5.2,

b0[∂(Ai . . . Ai+k)] = b0[∂(Ai+1 . . . Ai+k)] = 1;

therefore the summation in (5.17) gives zero, and one simply counts b0 for the
boundary of the union of all 2k + 1 regions, which yields −γ and −2γ respectively.

Figure 5.1: A pie-chart division of the plane into 2k + 2 regions, labeled by
A0, A1, . . . , A2k+1.

5.3.3 Beyond area-law scaling
In the above sections, we have considered systems where the entanglement entropy
is in the form of (5.14). In general, (5.14) will be supplemented with various
corrections. We here consider a few examples and examine the behavior of the
topological entropy (5.16) as a function of k in systems that deviate from exact
area-law scaling.
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Figure 5.2: A pie-chart division of the plane into 2k + 2 regions, with a hole in the
middle, labeled by A0, A1, . . . , A2k+1.

Figure 5.3: For systems that deviate from exact area law, the general behaviors
of corrections to Stopo in the forms of 1/` and ` log ` are sketched in purple and
blue respectively (color online) for R = 10. The numerical values are up to some
unknown constant of order ε or β.

Since the correction leads to imperfect cancellation of the local contributions to
entanglement entropy, (5.16) thus yields the topological entropy up to some local
correction factors. For the following examples, we restrict ourselves to the pie-chart
division in 2+ 1 dimensions in figure 5.1 with radius R in units of the lattice size a.
For the sake of simplicity, the 2k + 1 slices are divided evenly.

For a generic 2 + 1 dimensional gapped system with non-trivial topological order,
the entanglement entropy of some region A with perimeter L large compared to the
correlation length is given by

SA = αL − b0γ +
β1
L
+
β3

L3 + · · · , (5.18)

where the correction from (5.14) assumes the form of βp/Lp, for all odd integers p.
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The O(L−p) correction to the topological entropy (5.16) is given by

∆Sp
topo =

βp

(2πR)p

{
(2k + 1)p+1

( 1
(x + 1)p

−
1
xp

)
− 1

}
, (5.19)

where x = (1 + 2/π)k + 1/π. For k ≥ 1, (∂ |∆Sp
topo |/∂k) < 0 for each p. The higher

k expressions are therefore slightly less sensitive to deviations of the local piece
from perfect area-law scaling.

More generally, we may consider entropy scaling SA = αL − γ + ε f (L/a) where
we recast other small deviations in the local piece of entanglement entropy into the
form of f (L/a). Let ` = L/a for a lattice with spacing a, we here briefly sketch
the behaviors for corrections f (`) = log(`) and f (`) = ` log(`) [180, 181]. Note
that near criticality[181], ` log(`) scaling becomes dominant in the local piece of
entanglement entropy. For systems sufficiently far from a phase transition, we can
treat them as an order ε correction in the area-law systems.

For f (`) = log(`),

∆Stopo = ε log
{ 1

2πR

(
1 +

1
x

)2k+1}
, (5.20)

where x = (1 + 2/π)k + 1/π.

And for f (`) = ` log(`),

∆Stopo = ε log
{ 1
(2πR)2πR

( (2R + 2π
2k+1 (k + 1)R)2R+ 2π

2k+1 (k+1)R

(2R + 2π
2k+1 kR)2R+ 2π

2k+1 kR

)2k+1}
. (5.21)

In such cases, (∂ |∆Stopo |/∂k) > 0 for regions with boundary much larger than the
correlation length. which renders higher k definitions of the topological entropy
Stopo more sensitive to local corrections to entanglement entropy. In principle,
for some realistic condensed matter system with non-trivial topological order, the
generalized definition (5.16) offers a wider range of selection where one can choose
the optimal k for purposes of studying both the topological entanglement entropy
and local deviations from area-law scaling.

5.4 All entropy inequalities for systems with an exact area law
We will now derive the full set of constraints satisfied by the entanglement entropy
in systems with an exact area law, S(A) ∼ ∂A. We begin with a useful construction
from [171] that allows us to reduce from continuous geometries to a combinatorial
problem. For simplicity, we shall assume that the system lives on a manifold without
boundary.
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Let A1, . . . , An be disjoint (apart from their boundaries) regions in a system with an
exact area law. We introduce the purifying region An+1 as the closure of (A1 ∪ · · · ∪

An)
c. The entropy of an arbitrary composite region AI =

⋃
i∈I Ai for I ⊆ [n + 1] :=

{1, . . . , n + 1} can then be evaluated in the following way,

S(AI) ∼ ∂AI =
∑

i∈I, j∈Ic
∂Ai ∩ ∂A j,

where Ic denotes the complement of I in [n + 1].

We now consider the undirected complete graph on n + 1 vertices, equipped with
the edge weights w(i, j) = ∂Ai ∩ ∂A j . Let w(I, J) =

∑
i∈I, j∈J w(i, j) denote the total

weight of all edges between two disjoint subsets I and J, and δ(I) = w(I, Ic) the cut
function. Then it follows from the above that

S(AI) ∼ ∂AI = δ(I).

Conversely, for any given undirected graph with non-negative edge weights we
can always construct a geometry and associated regions A1, . . . , An+1 such that
∂AI = δ(I) (cf. [171]). Therefore, proving entropy inequalities for systems with
an exact area law is completely equivalent to proving linear inequalities for the cut
function.

To determine if a linear inequality∑
I

cI δ(I) ≥ 0 (5.22)

holds for the cut function in an arbitrary undirected weighted graph, we expand:∑
I

cI δ(I) =
∑

I

cI w(I, Ic) =
∑

I

cI

∑
i∈I, j∈Ic

w(i, j) =
∑
i, j

w(i, j)
∑

I:i∈I, j<I

cI =
∑
{i, j}

w(i, j)
∑

I:i∈I xor j∈I

cI .

In the last step, the outer sum is over edges of the undirected graph. Since the edge
weights w(i, j) are arbitrary non-negative numbers, this immediately implies that
the inequality (5.22) is valid if and only if

(5.23)∑
I:i∈I xor j∈I

cI ≥ 0

for any edge {i, j}. Note that (5.23) asserts simply that the inequality (5.22) holds
for the graph with a single edge {i, j} of edge weight 1, since the cut function in this
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case is given by

(βi j)I := δ(I) =


1 i ∈ I xor j ∈ I

0 otherwise
. (5.24)

But note that βi j are precisely the entropies of a Bell pair shared between subsystems
i and j in an (n + 1)-partite pure state. In view of our reduction from systems with
an exact area law to graphs, we thus obtain the following result:

Lemma 5.4.1. An entropy inequality
∑

I⊆[n] cI S(AI) ≥ 0 is valid for all systems
with an exact area law if and only if it is valid for the entropies of Bell pairs shared
between any two subsystems Ai and A j of the purified (n + 1)-partite system.

In section 5.2, we had proved that the cyclic inequalities (5.7) hold with equality
for system that satisfy an exact area law. It follows immediately from lemma 5.4.1
that we can test the validity of an arbitrary entropy equality by verifying that they
hold with equality when evaluated for Bell pairs. In [171], it was observed that
this is the case for the cyclic inequalities (5.7) as well as four other holographic
entropy inequalities established therein. It follows that all these inequalities hold
with equality for systems satisfying an exact area law. In particular, this confirms
our explicit derivation for the cyclic inequalities in section 5.2.

In principle, lemma 5.4.1 solves completely the problem of characterizing the en-
tanglement entropy in systems with an exact area law. We will now describe the
set of all possible entanglement entropies more concretely. For this, it is useful
to observe that, for any fixed number of regions n, the collection of valid entropy
inequalities

∑
I cI S(AI) ≥ 0 cuts out a convex cone. This cone consists of all vectors

s = (S(AI))∅,I⊆[n] ∈ R
2n−1 formed from the entanglement entropies obtained by

varying over arbitrary regions A1, . . . , An and all systems satisfying an exact area
law. Following [182, 183, 173, 171], we shall call it the area-law entropy cone.
Like any convex cone, it can be dually described in terms of its extreme rays, which
we obtain immediately from lemma 5.4.1:

Lemma 5.4.2. The extreme rays of the area-law entropy cone for n regions are
given by the entropy vectors βi j of Bell pairs shared between any two subsystems in
the purified (n + 1)-partite system.

Since the entropies of Bell pairs can be realized holographically, we may think
of the area-law entropy cone as a degeneration of the holographic entropy cone
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defined in [171]. It is arguably the smallest entropy cone that can capture bipartite
entanglement.

The following theorem then gives a complete characterization of the entanglement
entropy in systems with an exact area law:

Theorem 5.4.3. A minimal and complete set of entropy (in)equalities for systems
with an exact area law is given by (1) the subadditivity inequality S(A1) + S(A2) ≥

S(A1 A2) and its permutations, (2) the Araki-Lieb inequality S(A1) + S(A1 . . . An) ≥

S(A2 . . . An) and its permutations, and (3) the multivariate information equalities∑
I⊆V (−1)|I |S(AI) = 0 induced by any subset V ⊆ [n] of cardinality at least three.

Proof. We first argue that the entropy equalities in (3) are correct and linearly
independent. Their correctness can be verified by evaluating them on the rays βi j

for i < j ∈ [n + 1]: ∑
I⊆V

(−1)|I |(βi j)I =
∑

I:i∈I⊆V\{ j}

(−1)|I | +
∑

I: j∈I⊆V\{i}

(−1)|I | .

By symmetry, it suffices to consider the first sum. If i < V then it is zero. Otherwise,∑
I:i∈I⊆V\{ j}

(−1)|I | = −
∑

J:J⊆V\{i, j}

(−1)|J | = −
|V\{i, j}|∑

k=0
(−1)k

(
|V \ {i, j}|

k

)
= 0

by the standard identity for an alternating sum of binomial coefficients, which is
applicable since |V \ {i, j}| ≥ 3 − 2 = 1. The fact that the equalities in (3) are all
linearly independent can easily be seen by induction on |V |.

It follows from the above that the area-law cone is contained in a linear subspace
of dimension 2n − 1 −

∑n
k=3

(n
k

)
= n +

(n
2
)
=

(n+1
2

)
. We will now show that this

is indeed the dimension of the area-law cone. For this, it suffices to observe that
(βi j)k + (βi j)l − (βi j){k,l} = 2 if {i, j} = {k, l}, and otherwise zero. This not only
implies that the

(n+1
2

)
many extreme rays βi j are all linearly independent, but also

that the area-law entropy cone is cut out by the inequalities

S(Ak) + S(Al) ≥ S(Akl)

on the subspace defined by the multivariate information equalities (3). For l ≤ n,
these are just the inequalities in (1), while for l = n+ 1 we obtain the inequalities in
(2) by using the relation S(AI) = S(AIc ). It is clear from the above that the entropy
(in)equalities (1)–(3) form a minimal set. �
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Geometrically, the area-law entropy cone is an “orthant” of dimension
(n+1

2
)
, as

follows from the proof of the theorem, where we have shown that the extreme rays
are linearly independent. We note that the set of defining (in)equalities is in general
not unique as the entropy cone has positive codimension for n > 2.

5.4.1 Generating entropy equalities from graphs
Our method can be easily adapted to include information about the spatial connec-
tivity of the regions A1, . . . , An that enter an (in)equality: If we can guarantee that
Ai∩A j = ∅ thenwe do not need to consider the correspondingBell pair βi j when veri-
fying an entropy (in)equality by using lemma5.4.1. For a concrete example, consider
the conditional mutual information I(A : C |B) = S(AB)+ S(BC) − S(ABC) − S(B),
which is equal to zero for all Bell pairs except for βAC . If we choose A, B, and C

as in the figure 5.4 below then I(A : C |B) = 0 for systems with an exact area law,
since A∩C = ∅. This cancellation has been used in [178] to extract the topological
entanglement entropy.

Figure 5.4: In systemswith an exact area law, the conditional information I(A : C |B)
vanishes for this configuration of regions [178].

This example has the following pleasant generalization:

Lemma 5.4.4. Let (V, E) be an undirected graph on the vertex set V = [n], n ≥ 3,
and let A1, . . . , An be regions such that ∂Ai ∩ ∂A j , ∅ only if {i, j} ∈ E . Then we
have the following entropy equality,∑

I⊆V

(−1)|I |
∑

J∈π0(I)

S(J) = 0, (5.25)

where π0(I) denotes the connected components of the induced subgraph with vertex
set I.

For a complete graph (V, E), (5.25) is precisely one of the multivariate information
equalities proved in theorem 5.4.3 for arbitrary regions.
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Proof. It suffices to argue that the difference to themultivariate information vanishes
given our assumption on the spatial connectivity of the regions A1, . . . , An. For this,
note that, for any I ⊆ V ,

©­«
∑

J∈π0(I)

S(J)ª®¬ − S(I) =
∑

J,K∈π0(I)

∑
j∈J,k∈K

∂A j ∩ ∂Ak = 0,

since j and k are in different connected components so that ( j, k) < E and therefore
∂A j ∩ ∂Ak = ∅ by our assumption. �

For the graph displayed in figure 5.5 below we recover the statement derived above
that I(A : C |B) = 0 for systems with A ∩ C = ∅.

A B C

Figure 5.5: Graph corresponding to I(A : C |B) = 0 for regions with A ∩ C = ∅.

We note that the connectivity assumption in lemma 5.4.4 is equivalent to requiring
that I(Ai : A j) = 0 for all {i, j} < E . Wemay therefore think of 5.25 as a constrained
entropy equality in the sense of [184]. Below we list all non-trivial constrained
entropy equalities obtained by lemma 5.4.4 from graphs with four vertices:

(e.g., K1,3): S(A1 A2 A3 A4) − S(A2 A3 A4) − S(A1 A2 A4) − S(A1 A3 A4)

+S(A1 A4) + S(A2 A4) + S(A3 A4) − S(A4) = 0

(C4 = K2,2): S(A1 A2 A3 A4) −

4∑
i=1

S(Ai |Ai+1 Ai+2) = 0

(Diamond): S(A1 A2 A3 A4) − S(A1 A2 A3) − S(A2 A3 A4) − S(A3 A4 A1)

−S(A1 A2 A4) + S(A1 A2) + S(A1 A4) + S(A2 A3)

+S(A2 A4) + S(A3 A4) − S(A2) − S(A4) = 0

(K4 = W4): S(A1 A2 A3 A4) − S(A1 A2 A3) − S(A1 A2 A4) − S(A1 A3 A4) − S(A2 A3 A4)

+S(A1 A2) + S(A1 A3) + S(A1 A4) + S(A2 A3) + S(A2 A4) + S(A3 A4)

−S(A1) − S(A2) − S(A3) − S(A4) = 0.

The last equality is in fact unconditionally true for systems with an exact area law;
it is the fourpartite information equality from theorem 5.4.3.
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5.4.2 The search for general quantum entropy inequalities
The simplistic method of graph combinatorics has thus far managed to reproduce
the forms of many familiar entropic inequalities. In light of the observation, one
may suspect that it could also be useful in generating other generic n-party quantum
inequalities. In light of the above speculation, we attempt a simple search for
4-party linear quantum inequalities beyond the von Neumann entropy inequalities
(5.1)–(5.4).

To search for the 4-party non-von Neumann inequality candidates, we employ again
the notion of an entropy cone [182, 183]. Let K = {A, B,C,D} be the labels of
the 4 systems and E be the purifying system. Given a density operator ρABCD, we
obtain the entropy vector v = (vI) ∈ R

15 where ∅ , I ⊆ K and vI = S(I)ρ denotes
the von Neumann entropy of the reduced density matrix ρI obtained by tracing out
all but the systems in I. Consider the set Γ∗4 ⊂ R

15 of all entropy vectors v produced
by physical 4-party quantum states, we define the 4-party quantum entropy cone as
the closure Γ∗4, which is shown to be a a convex cone in the entropy vector space
R15. Similarly, the von Neumann cone Γ4 can be defined as the set of vectors that
satisfy the von Neumann entropy inequalities for 4-party systems, i.e., positivity,
strong subadditivity, and weak monotonicity. Because these inequalities hold for an
arbitrary quantum system, it necessarily follows that Γ∗4 ⊂ Γ4. It was proven that
Γ∗n = Γn for n ≤ 3. Therefore von Neumann inequalities completely characterize
the quantum entropy cone for 3 or fewer parties.

Due to the convexity of the cones, we know that all points inside an entropy cone
can be written as a linear combination of its extremal rays. The entropy cone Γ4

produced by all von Neumann entropy inequalities is known and is characterized by
the extremal rays listed in table 5.1 [185].

It is shown in [184], however, that families 7 and 8 are not physically constructible.
Therefore, it is suspected that Γ∗4 should be a proper subset of Γ4 for n ≥ 4 [184,
185],1 so that additional 4-party entropy inequalities may be needed to complete
the entropy cone.2 By searching through the integral linear combinations of the
constrained entropy equalities constructed from graphs as described in section 5.4.1
above, we have generated a set of inequalities that satisfy families 1 through 6 but
can violate families 7 and 8 for certain permutations. After a cursory search, we

1In fact, studies in the classical Shannon entropy reveal that additional entropy inequalities, such
as Zhang-Yeung Inequality, are needed in addition to the Shannon-type entropies.

2There is also the possibility of a characterization in terms of non-linear inequalities. However,
that is beyond the scope of this work.
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A B C D E AB AC AD AE BC BD BE CD CE DE
Family 1 1 1 0 0 0 0 1 1 1 1 1 1 0 0 0
Family 2 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1
Family 3 1 1 1 1 0 2 2 2 1 2 2 1 2 1 1
Family 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Family 5 2 1 1 1 1 3 3 3 3 2 2 2 2 2 2
Family 6 1 1 2 2 2 2 3 3 3 3 3 3 2 2 2
Family 7 3 3 2 2 2 4 3 3 3 3 3 3 3 4 4
Family 8 3 3 3 3 2 4 4 4 5 4 4 5 6 5 5

Table 5.1: Families of extremal rays of the 4-party von Neumann cone constructed
using known quantum inequalties. For a (mixed) state with subregions A, B, C and
D, the region E is the corresponding purifying region.

A B C D E AB AC AD AE BC BD BE CD CE DE
1 1 2 2 2 2 2 2 2 2 2 2 2 2 2

Table 5.2: A candidate extremal ray for the 4-party quantum entropy cone proposed
by [185].

found two such candidate inequalities (up to permutations):

S(ABD) + S(ABC) + S(CD) − S(BC) − S(AB) − S(BD) − S(AC)

− S(AD) + S(B) + S(A) ≤ 0
(5.26)

S(ABD) + S(ABC) + S(BCD) − 2S(BD) − 2S(BC) + S(CD) − S(AD)

− S(AC) − S(AB) + 2S(B) + S(A) ≤ 0.
(5.27)

Both inequalities, as well as the quantum analogue of the Zhang-Yeung inequality
[186, 187],

I(A : B) + I(A : CD) + 3I(C : D |A) + I(C : D |B) − 2I(C : D) ≥ 0,

also satisfy the candidate extremal ray in table 5.2 for the 4-party quantum entropy
cone Γ∗4. We note that the graph construction, as currently formulated, cannot
produce the Zhang-Yeung inequality.

Inequality (5.26) is known as the Ingleton inequality. It can also be written as

I(A : B |C) + I(A : B |D) + I(C : D) − I(A : B) ≥ 0.

It is known that the Ingleton inequality does not hold for general quantum states
(not even for classical probability distributions), but that it is a valid inequality for
the subclass of stabilizer states [172, 173].
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Inequality (5.27) on the other hand seems to be independent of the other 4-party
linear candidates, and to the best of our knowledge has not been tested to a greater
extent. All tests we’ve conducted so far on this inequality return the same result as
the quantum analogue of Zhang-Yeung inequality. It will be worthwhile to generate
random 5-partite quantum pure states and numerically check if the inequality can be
violated. Note that such checks do not constitute a proof. However, it can be useful
in finding a counterexample.

5.5 Conclusion and future directions
We here restate our findings:

1. We have completely characterized the entropy (in)equalities obeyed by sys-
tems in which the entanglement entropy satisfies an exact area law. We find
that such an entropy inequality is valid if and only if it is valid for the en-
tropies of Bell pairs shared between arbitrary subsystems. In particular, all
holographic entropy inequalities, such as the cyclic inequalities established
recently in [171], are satisfied by systems with an exact area law. These
(in)equalities may provide constraining tests to determine whether certain
condensed matter systems satisfy an area law.

2. The cyclic (in)equalities in two-dimensional systems with non-trivial topo-
logical order can be seen as a generalization of [177] which extracts the
topological entanglement entropy using higher number of partitions. These
higher k generalizations of Stopo are sensitive (or insensitive) to different types
of deviations from area-law scaling.

3. A graph representation for constrained entropy equalities for systems with an
exact area-law scaling is found. As this construction recovers a wide class
of entropy equalities including strong subadditivity, it may be suspected that
further quantum inequalities may also be found in the set of graph-generated
equalities. Following this approach, we have found a candidate linear entropy
inequality for general 4-party quantum states.

As we have seen, the graph representation of entropies in area-law systems used in
section 5.4 offers surprisingly powerful insights. In the absence of the minimiza-
tion that appears in holography, several holographic inequalities now hold exactly
as equalities for systems satisfying an exact area law, and we may understand the
entropy cone spanned by the area law systems as a particular degeneration of the
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holographic entropy cone [171]. The method may also provide useful insight for
the long-standing problem of finding linear inequalities for the entropies of general
multipartite quantum states. In this regard, we also note that generalizations of the
graph-theoretical approach is much desirable. One such generalization will involve
constructing different graphs for a quantum state with holographic dual. We suspect
that the geometry of AdS or its dual kinematic space can be effectively captured
by analyzing generalized graph representations for these states. In particular, ma-
chineries developed in spectral graph drawing may be used to recover the emergent
geometry for more general states.
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C h a p t e r 6

SPACE FROM HILBERT SPACE

We examine how to construct a spatial manifold and its geometry from the entan-
glement structure of an abstract quantum state in Hilbert space. Given a decom-
position of Hilbert space H into a tensor product of factors, we consider a class
of “redundancy-constrained states” in H that generalize the area-law behavior for
entanglement entropy usually found in condensed-matter systems with gapped local
Hamiltonians. Using mutual information to define a distance measure on the graph,
we employ classical multidimensional scaling to extract the best-fit spatial dimen-
sionality of the emergent geometry. We then show that entanglement perturbations
on such emergent geometries naturally give rise to local modifications of spatial
curvature which obey a (spatial) analog of Einstein’s equation. The Hilbert space
corresponding to a region of flat space is finite-dimensional and scales as the volume,
though the entropy (and the maximum change thereof) scales like the area of the
boundary. A version of the ER=EPR conjecture is recovered, in that perturbations
that entangle distant parts of the emergent geometry generate a configuration that
may be considered as a highly quantum wormhole.

This chapter is based on the Ref:
ChunJun Cao, Sean M. Carroll, and Spyridon Michalakis. “Space from Hilbert
Space: Recovering Geometry from Bulk Entanglement”. In: Phys. Rev. D95.2
(2017), p. 024031. doi: 10.1103/PhysRevD.95.024031. arXiv: 1606.08444
[hep-th].

6.1 Introduction
Quantum-mechanical theories are generally thought of as theories of something.
Quantum states are square-integrable complex-valued functions of the configuration
of some particular kind of “stuff,” where that stuff may be a simple harmonic
oscillator, a set of interacting spins, or a collection of relativistic fields.

But quantum states live in Hilbert space, a complete complex vector space of
specified dimension with an inner product. The same quantum states, even with
the same dynamics, might be thought of as describing very different kinds of
stuff. Coleman long ago showed that the quantum theory of the sine-Gordon

https://doi.org/10.1103/PhysRevD.95.024031
https://arxiv.org/abs/1606.08444
https://arxiv.org/abs/1606.08444
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boson in 1+1 dimensions was equivalent to that of a massive Thirring fermion
[188]. AdS/CFT posits an equivalence (in a certain limit) between a conformal field
theory in a fixed d-dimensional Minkowski background and a gravitational theory
in a dynamical (d + 1)-dimensional spacetime with asymptotically anti-de Sitter
boundary conditions [21]. The wave functions of a single quantum theory can be
represented in very different-looking ways. It is therefore interesting to consider the
inverse problem to “quantizing” a theory: starting with a quantum theory defined in
Hilbert space, and asking what it is a theory of. In this paper we take steps toward
deriving the existence and properties of space itself from an intrinsically quantum
description using entanglement.

A good deal of recent work has addressed the relationship between quantum entan-
glement and spacetime geometry. Much of the attention has focused on holographic
models, especially in an AdS/CFT context. Entanglement in the boundary theory
has been directly related to bulk geometry, including deriving the bulk Einstein
equation from the entanglement first law (EFL) [189, 28, 190, 191]. (The EFL
relates a perturbative change in the entropy of a density matrix to the change in the
expectation value of its modular Hamiltonian, as discussed below.) Tensor networks
have provided a connection between emergent geometry, quantum information, and
many-body systems [71, 37, 57, 48, 41, 80, 79, 49, 76].

It is also possible to investigate the entanglement/geometry connection directly in a
spacetime bulk. The ER=EPR conjecture relates entanglement between individual
particles to spacetime wormholes [192, 143, 193, 194, 195, 196]. Consider two
entangled particles, separated by a long distance, compared to the same particles but
unentangled. If sufficient entanglement gives rise to a wormhole geometry, some
weak gravitational effects should arise from small amounts of entanglement, and
evidence for this phenomenon can be found in the context of AdS/CFT [197, 193,
143]. From a different perspective, Jacobson has argued that Einstein’s equation can
be derived from bulk entanglement under an assumption of local thermodynamic
equilibrium between infrared and ultraviolet degrees of freedom [40, 198, 199].

While the current paper is inspired by the idea of emerging space from entanglement,
our approach of bulk emergent gravity differs from the aforementioned papers in
that our starting point is directly in Hilbert space, rather than perturbations around
a boundary theory or a semiclassical spacetime. We will first try to construct a
generic framework by which an approximate sense of geometry can be defined
purely from the entanglement structure of some special states. We conjecture that
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mutual information (See [128, 127] for a review), similar to suggestions by [143,
48], can be used to associate spatial manifolds with certain kinds of quantum states.
More tentatively, we explore the possibility that perturbations of the state lead to
relations between the modular Hamiltonian and the emergent geometry that can be
interpreted as Einstein’s equation, as has been suggested in a holographic AdS/CFT
context. In doing so we will follow some of the logic in [190] and [40]. In particular,
we show that “nonlocal” perturbations that entangle distant parts of the emergent
geometry, similar to the case in ER=EPR, will give rise to what might be understood
as a highly quantum wormhole, where spatial curvature generated by (modular)
energy, in a manner similar to Einstein’s equation, is localized at the wormhole
“mouths”.

Our basic strategy is as follows:

• Decompose Hilbert space into a large number of factors,H =
⊗N

p Hp. Each
factor is finite-dimensional.

• Consider states |ψ0〉 ∈ H that are “redundancy-constrained,” a generalization
of states in which the entropy of a region obeys an area law.

• Use the mutual information between factors A and B, I(A : B) = S(A)+S(B)−

S(AB), to define a metric on the graph connecting the factorsHp.

• Show how to reconstruct smooth, flat geometries from such a graph metric
(when it exists).

• Consider perturbations |ψ0〉 → |ψ0〉 + |δψ〉, and show these produce local
curvature proportional to the local change in entropy.

• Relate the change in entropy to that in an effective IR field theory, and show
how the entanglement first law δS = δ〈K〉 (where K is the modular Hamilto-
nian) implies a geometry/energy relation reminiscent of Einstein’s equation.

We do not assume any particular Hamiltonian for the quantum dynamics of our state,
nor do we explore the emergence of Lorentz invariance or other features necessary
to claim we truly have an effective quantum theory of gravity, leaving that for future
work.

We begin the paper by reviewing entropy bounds and properties of entanglement
for area-law systems in section 6.2. In section 7.3 we introduce the notion of redun-
dancy constraint for entanglement structure and show how an approximate sense of
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geometry for can emerge in such states. In particular, we give a generic outline of
the procedure, followed by an example using an area-law state from a gapped system
where it is possible to approximately reconstruct space with Euclidean geometry.
Then in section 6.4 we discuss the effects of entanglement perturbations in terms of
the approximate emergent geometry, and in 6.5 show that an analog of the Einstein’s
equations can be derived. Finally, in 6.6 we conclude with a few remarks.

As this work was being completed we became aware of a paper with related goals
[200]. There are also potential connections with a number of approaches to quantum
gravity, including loop quantum gravity [10], quantum graphity [14], holographic
space-time[201, 120], and random dynamics [202]; we do not investigate these
directly here.

Throughout this paper, we will use d to denote spacetime dimension and D = d − 1
for spatial dimensionality.

6.2 Area-Law Entanglement
6.2.1 Gravity and Entropy Bounds
The Bekenstein-Hawking entropy of a black hole in 3+1 dimensions is proportional
to the area A of its event horizon,

SBH =
A

4G
= 2π

A

`2
p
, (6.1)

where we use ~ = c = 1 and the reduced Planck length is `p =
√

8πG. At a
quick glance this might seem like a surprising result, as the entropy of a classical
thermodynamic system is an extensive quantity that scales with volume rather than
area. What does this imply about the Hilbert space describing the quantum system
that is a black hole, or spatial regions more generally?

Consider a fixed lattice of qubits, with a spacing `0 and a linear size r . The total
number of qubits is n ∼ (r/`0)

D, where D is the dimensionality of space, and the
associated dimension of Hilbert space is N = 2n. If the system is in a (potentially
mixed) state with density matrix ρ, the von Neumann entropy is S = −Tr ρ log ρ.
The maximum entropy of such a system is then Smax = log2(N) = n, proportional to
the system volume. We might guess that gravity provides an ultraviolet cutoff that
acts similarly to a lattice with `0 = `p. However, Bekenstein argued that the vast
majority of the states included in such a calculation are physically unattainable, and
that the entropy of a systemwith mass M and linear size R is bounded by S ≤ 2πRM

[203, 204]. Since a system with GM > R/2 undergoes gravitational collapse to
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a black hole, this suggests that (6.1) represents an upper bound on the entropy of
any system in spacetime, a constraint known as the holographic bound. If we were
able to construct a higher-entropy state with less energy than a black hole, we could
add energy to it and make it collapse into a black hole; but that would represent a
decrease in entropy, apparently violating the Second Law. The Bousso bound [19]
provides a covariant version of the holographic bound. ’t Hooft and Susskind built
on this argument to suggest the holographic principle: in theories with gravity, the
total number of true degrees of freedom inside any region is proportional to the area
of the boundary of that region [43, 42], and such a system can be described by a
Hilbert space with dimension of approximately

dimH ∼ eS ∼ e(r/`p)
D−1
. (6.2)

Meanwhile, it is nowappreciated that area-lawbehavior for entanglement entropy oc-
curs in a variety of quantum systems, including many non-gravitational condensed-
matter examples [205]. Divide space into a region A and its complement A. A
quantum state |ψ〉 is said to obey an area law if the entropy SA of the reduced density
matrix ρA = TrA |ψ〉〈ψ | satisfies

SA = ηA + · · · , (6.3)

where A is the area of the surface bounding A, and η is a constant independent of
A. (Here and elsewhere in this paper, entropy equalities should be interpreted as
approximations valid in the limit of large system size.) This behavior is generally
expected in low-energy states of quantum field theories with an ultraviolet cutoff
[206, 70] and those of discrete condensed-matter systems with gapped local Hamil-
tonians (i.e., short-range interactions) [167]. In conformal field theories, Ryu and
Takayanagi showed that the entanglement entropy of a region was related to area,
not of the region itself, but of an extremal surface in a dual bulk geometry [23, 207,
208].

The existence of an area law does not by itself imply holographic behavior; holog-
raphy is a statement about the number of degrees of freedom in a region, which is
related to the maximum possible entropy, but not directly to the entropy of some spe-
cific state as in (6.3). (The AdS/CFT correspondence is of course holographic on the
dual gravity side, but the CFT by itself is not.) In either a gapped condensed-matter
system or a QFT with an ultraviolet cutoff `0, we would still expect degrees of free-
dom to fill the enclosed volume, and the subsystem in A to have dimHA ∼ e(r/`0)

D .
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As the UV cutoff length is taken to zero, we find an infinite-dimensional Hilbert
space in any QFT, and the entropy of a region of space will generically diverge.
Nevertheless, QFT reasoning can be used to derive a quantum version of the Bousso
bound [209, 18, 20], by positing that the relevant entropy is not the full entanglement
entropy, but the vacuum-subtracted or “Casini” entropy [210]. Given the reduced
density matrix ρA in some region A, and the reduced density matrix σA that we
would obtain had the system been in its vacuum state, the Casini entropy is given by

∆S = S(ρA) − S(σA) = −Tr ρA log ρA + TrσA logσA. (6.4)

This can be finite even when Hilbert space is infinite-dimensional and the individual
entropies S(ρA) and S(σA) are infinite. This procedure sidesteps the question of
whether the true physical Hilbert space is infinite-dimensional (and the holographic
entropy bounds refer to entanglement entropy over and above that of the vacuum) or
finite-dimensional (and the Casini regularization is just a convenient mathematical
trick).

One might imagine being bold and conjecturing not only that there are a finite
number of degrees of freedom in any finite region, as holography implies, but also
that the holographic bound is not merely an upper limit, but an actual equality [157,
211, 212]. That is, for any region of spacetime, its associated entanglement entropy
obeys an area law (6.3). Evidence for this kind of area law, and its relationship to
gravity, comes from different considerations. Jacobson [213] has argued that if UV
physics renders entropy finite, then a thermodynamic argument implies the existence
of gravity, and also vice-versa. Lloyd [214] has suggested that if each quantum event
is associated with a Planck-scale area removed from two-dimensional surfaces in
the volume in which the event takes place, then Einstein’s equation must hold.

In this paper, we examine quantum states in a finite-dimensional Hilbert space
and look for emergent spatial geometries, under the assumptions that distances are
determined by mutual information and that “redundancy constraint,” which reduces
to the usual area-law relationship of the basic form (6.3), holds when there exists
an emergent geometric interpretation of the state. The conjecture that arbitrary
regions of space are described in quantum gravity by finite-dimensional Hilbert
spaces represents a significant departure from our intuition derived from quantum
field theory.

We suggest that the emergence of geometry from the entanglement structure of the
state can reconcile dimHA ∼ e(r/`0)

D (degrees of freedom proportional to enclosed
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volume) with the holographic principle in a simple way: if we were to “excite” states
in the interior by entangling them with exterior degrees of freedom, the emergent
geometry would be dramatically altered so that the systemwould no longer resemble
a smooth background manifold. In other words, those degrees of freedom are only
“in the interior” in a geometric sense when they are entangled with their neighbors
but not with distant regions, in a way reminiscent of ER=EPR.

6.2.2 Area Laws and Graphs
Simply being given a state |ψ0〉 in a Hilbert space H is almost being given no
information at all. Hilbert space has very little structure, and we can always find a
basis {|φn〉} forH such that 〈ψ0 |φ1〉 = 1 and 〈ψ0 |φn>1〉 = 0. To make progress we
need some additional data, such as the Hamiltonian or a decomposition ofH into a
tensor product of factors. In this paper we don’t assume any particular Hamiltonian,
but begin by looking at states and decompositions that give us a generalization of
area-law behavior for entropy.

To get our bearings, we start by considering systems for which we have an assumed
notion of space and locality, and states that obey an area law of the form (6.3), and
ask how such behavior can be recovered in a more general context. Typically such
a state |ψ0〉 is a low-lying energy state of a gapped local system. Its entanglement
structure above a certain scale seems to capture the space on which the Hamiltonian
is defined [71]. The entanglement structure of such states is highly constrained.

A remarkable feature of these states is that the entanglement structure above the said
scale can be fully characterized once all the mutual information between certain
subsystems are known. Divide the system into a set of sufficiently large non-
overlapping regions Ap. We can calculate the entropy S(Ap) of each region, as well
as the mutual information I(Ap : Aq) between any two regions. The system therefore
naturally defines a weighted graph G = (V, E), on which vertices V are the regions
Ap, and the edges E between them are weighted by the mutual information (which
is manifestly symmetric). .

The mutual information between regions is a measure of how correlated they are.
It provides a useful way of characterizing the “distance” between such regions
because of its relation to correlation functions between operators. We expect that
in the ground state of a field theory, correlators of field operators will decay as
exponentials (for massive fields) or power laws (for massless ones). The mutual
informationmay reflect this behavior, as it provides an upper bound on the correlation
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function between two operators. For the mutual information between regions A and
B, we have:

I(A : B) = S(ρAB | |ρA ⊗ ρB) (6.5)

≥
1
2
|ρAB − ρA ⊗ ρB |

2 (6.6)

≥
{Tr[(ρAB − ρA ⊗ ρB)(OAOB)]}

2

2‖OA‖ ‖OB‖
2 (6.7)

=
(〈OAOB〉 − 〈OA〉〈OB〉)

2

2‖OA‖
2 ‖OB‖

2 . (6.8)

We therefore choose to concentrate onmutual information as a way of characterizing
emergent distance without picking out any preferred set of operators.

Consider grouping a set of non-overlapping subregions Ap into a larger region B,
dividing space into B and its complement B. Taking advantage of the short-ranged
entanglement in such states, the approximate entanglement entropy of B can be
calculated using the cut function,

S(B) = 1
2

∑
p∈B,q∈B

I(Ap : Aq). (6.9)

To find the approximate entanglement of region B, one simply cuts all edges con-
necting B and its complement B. The entanglement entropy is the sum over all
the weights assigned to the cut edges. This is similar to counting the entanglement
entropy by the bond cutting in tensor networks, except in this special case where
we are content with approximate entanglement entropy for large regions, a simple
graph representation is sufficient. Comparatively, a tensor network that characterizes
this state contains far more entanglement information than the simple connectivity
captured by the graphs considered here.

Our conjecture is that this graph information is enough to capture the coarse ge-
ometry of this area-law state. If we restrict ourselves to work at scales for which
S ∝ A, all information encoded in the form of larger-scale entanglement is highly
redundant. In a generic state, the mutual information between all disjoint regions
Ap, Aq would not be enough to characterize entanglement entropy of S(Ar As At Au)

for r, s, t, u ∈ V . Naively, to specify the entanglement entropy of all larger regions
B, one needs on the order of O(2N ) data points, where N is the number of vertices
(Hilbert-space factors). However, in the special case of area-law entanglement, it
suffices to specify all the mutual information between N factors. The amount of
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Figure 6.1: An “information graph” in which vertices represent factors in a de-
composition of Hilbert space, and edges are weighted by the mutual information
between the factors. In redundancy-constrained states, the entropy of a group of
factors (such as the shaded region B containingH1 ⊗H2 ⊗H3 ⊗H4 ⊗H5.) can be
calculated by summing over the mutual information of the cut edges, as in (6.9). In
the following section we put a metric on graphs of this form by relating the distance
between vertices to the mutual information, in (6.13) and (6.14).

classical bits needed to store this is only of order O(N2). Therefore, all larger parti-
tion entanglement entropy data are “redundant” as they are captured by the mutual
information of smaller parts. Because all subsequent higher-partition entanglement
information is encoded in the mutual information between all suitably chosen parti-
tions, the approximate geometric information above the chosen scale of partitioning
can be characterized by the graph representation.

One may worry that the subleading terms in the area-law function can scale as
volume and therefore ruin the estimate for higher-partition entropies at some level
of coarse-graining. This is, however, an over-estimation. The entropy of a region
with approximate radius r computed by the cut function assumes a strict area law,
which scales as rD−1 for a D-spatial-dimensional area-law system. This is off from
the actual entropy by amount rD−2 + . . . , where missing terms have even lower
power in r . The relative error, which scales as r−1, vanishes in the large-region
limit.

On the other hand, if one keeps all sub-leading terms, the correct edge weights one
should assign are given by the intersecting area plus an error term,

I(Ap : Aq) = αA(Ap ∩ Aq) + βE . (6.10)
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Therefore one may worry that in our subsequent estimate of entropy for a bigger
region, the error term may accumulate as rD. But since the system is dominated
by short-range entanglement, the number of edge cuts only scales as rD−1. So in
the worst case scenario, the subleading terms will contribute a term that scales as
area. Therefore, the error in using the cut function as an estimate for the entropy
of a region A in an area-law system is upper bounded by a term βA for some β,
which one may absorb by redefining α′ = α + β. In this discussion, we are not
concerning ourselves with the specific value of α, so the sub-leading terms only
minimally change the results.

6.3 Emergent Space
6.3.1 Redundancy-Constrained States
Having established the above properties for area-law states in systems for which
space and locality are defined, we now turn to a more general context. For area-
law states, the entanglement information between different factors of Hilbert space
is sufficiently redundant that it can be effectively characterized by only limited
knowledge ofmutual information [215]. In the rest of this work, we restrict ourselves
to the study of quantum states that are approximately “redundancy-constrained,”
defined by slight generalizations of the observations we made for area-law states
using purely entanglement information.

Consider a quantum state |ψ0〉 ∈ H =
⊗N

p Hp. We say that the state is redundancy-
constrained (RC) if, for any subsystem B constructed as a tensor product of some
subset of the {Hp}, its entanglement entropy is given by a cut function of the form
(6.9), where Ap denotes the subsystem that lives in the Hilbert subspace Hp. Note
that there is no geometric meaning associated with the Hilbert space at this point.

Due to the redundancy of the entanglement entropy information, the entanglement
structure for more coarse-grained partitions can be sufficiently captured by quantum
mutual information, and hence admit a graph description as in the previous section.
The vertices of the graph label subregions, and edge weights are given by their
mutual information. By (6.9), it immediately follows that the degree of each vertex
Ap (the number of edges emerging from it) is bounded from above by

deg(Ap) =
∑

q

I(Ap : Aq) ≤ 2Smax(Ap) ≤ 2 ln Dp, (6.11)

where dimHAp = Dp.



116

RC states admit the same graph construction as area-law states, G = (V, E), where
vertices are Hilbert-space factors and edges are weighted by the mutual information
between them. Such states can be seen as a straightforward generalization of states
with area-law scaling that also lie in the area-law entropy cone [215]. As such, they
form a superset of area-law states which also satisfy the holographic inequalities
[165]. This doesn’t imply, however, that such states have holographic duals. It
is easy to check that satisfaction of all holographic inequalities is not a sufficient
condition to indicate if a state has a holographic dual. (As a simple example, we
know that area-law states from a gapped system don’t have holographic duals, yet
they still satisfy the holographic inequalities.)

The individual Hilbert-space factors Hp are not necessarily qubits or some other
irreducible building blocks of the space. In particular, they may be further factor-
izable, and are required to be sufficiently large that redundancy-constraint becomes
a good approximation, even if it would not hold at finer scales. In a phenomeno-
logically relevant model, we would expect each factor to describe not only the
geometry but the field content of a region of space somewhat larger than the Planck
volume, though we will not discuss those details here. Note that the RC property is
preserved under a coarse-graining operation in which we decompose Hilbert space
into factors HP that are products of several of the original factors Hp. We discuss
coarse-graining more in Appendix 6.A.

RC states are highly non-generic; they represent situations where entanglement is
dominated by short-range effects. For example, a CFT ground state in D dimensions
with a holographic dual is not RC, although its entanglement data is still somewhat
redundant in that one only needs the entanglement entropy for balls of all radii to
reconstruct the AdS geometry [28, 191]. However, additional data encoded in the
larger partitions cannot be characterized by mere mutual information between the
partitions Ap for any coarse-graining. In this case, the attempt to define entanglement
entropy as area or mutual information doesn’t quite work in d spatial dimensions any
more because there is no simple additive expression for S(BX) from I(Ap : Aq). This
extra data for larger partitions is essential in constructing the emergent dimension
with AdS geometry.

At the same time, if we have some dual bulk fields living in AdS whose ground state
is presumably also short range entangled [48], then it may in turn be described by
a RC state in AdS with proper coarse-graining. Therefore, if one has the complete
holographic dictionary, an experiment of entangling two copies of CFT to create a
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thermofield double state has its dual experiment with certain constraints in the bulk,
where the entanglement now is directly created in the bulk and two copies of AdS
are turned into a wormhole. Our general program, however, does not rely on the
existence of a dual CFT.

Althoughmost states inHilbert space given a certain decomposition are not redundancy-
constrained, RC states seem like an appropriate starting point for investigating the-
ories of quantum gravity, especially if area-law behavior for entropy is universal.
For the remainder of the program, we are going to focus on simple RC states that
correspond to flat space in D spatial dimensions.

6.3.2 Metric from Information
Consider a state |ψ0〉 for which there exist a decomposition of the Hilbert space
such that |ψ0〉 ∈ H =

⊗N
p Hp is redundancy-constrained. Such a state naturally

defines a graph G = (V, E), with N vertices labelled by p and each edge {p, q} is
weighted by the mutual information I(Ap : Aq). Without loss of generality, assume
G is connected. In the case when G has multiple large disconnected components,
one can simply perform the procedure separately for each connected component.

Our conjecture is that this graph contains sufficient information to define another
weighted graph, G̃(Ṽ, Ẽ), on which the edge weights can be interpreted as distances,
thereby defining a metric space. In general, passing from the “information graph”
G to the “distance graph” G̃ might be a nontrivial transformation,

G(V, E) → G̃(Ṽ, Ẽ), (6.12)

with a different set of vertices and edges as well as weights. However, we will make
the simplifying assumptions that the vertices and edges remain fixed, so that the
graph is merely re-weighted, and furthermore that the distance weight for any edge
w(p, q) is determined solely by the corresponding mutual information, I(Ap : Aq)

(where it is nonzero), rather than depending on the rest of the graph.

Our expectation is that nearby parts of space have higher mutual information, while
faraway ones have lower. We therefore take as our ansatz that the distance between
entangled factors is some function Φ of the mutual information, and express this as
a new weight w(p, q) on the edges of our graph. That is, for any p, q ∈ V where
I(Ap : Aq) , 0, define the edge weights to be

w(p, q) =

`RCΦ

(
I(Ap : Aq)/I0

)
(p , q)

0 (p = q)
(6.13)
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for some length scale `RC, the “redundancy-constraint scale”. No edges are drawn
if I(Ap : Aq) = 0. Here we define the “normalized” mutual information i(p : q) ≡

I(Ap : Aq)/I0, where normalization I0 is chosen such that I(Ap : Aq)/I0 = 1 when
two regions Ap, Aq are maximally entangled. In the case when the Hilbert space
dimension is constant for all subregions, we have I0 = 2S(Ap)max = 2 log(dimHD).

The specific form of the scaling function Φ will presumably be determined by the
kind of system we are describing (e.g. by the matter content); only some of its
basic properties will be crucial to our considerations. To be consistent with our
intuition, we require Φ(1) = 0 and limx→0Φ(x) = ∞, namely, the distance is zero
when two states are maximally entangled and far apart when they are unentangled.
Similar notions were found in [48, 143]. In addition, we choose Φ(x) to be a non-
negative monotonically decreasing function in the interval [0, 1], where a smaller
mutual information indicates a larger distance. For definiteness it may be helpful to
imagine that Φ(x) = − log(x), as might be expected in the ground state of a gapped
system [167, 216].

We can now construct a metric space in the usual way, treating weights w(p, q) as
distances d̃(p, q). For vertices connected bymore than one edge, the metric d̃(p, q) is
given by the shortest distance connecting p and q. Let P be a connected path between
p and q, denoted by the sequence of vertices P = (p = p0, p1, p2, . . . pk = q). The
metric d̃(p, q) is then

d̃(p, q) = min
P
{

k−1∑
n=0

w(pn, pn+1)} (6.14)

for all connected paths P. It is clear from the definition that for a connected
component, d̃(p, q) = d̃(q, p), d̃(p, q) = 0 ⇔ p = q, and the triangle inequality is
satisfied.

Given a graph with N vertices with a metric defined on it, we would like to ask
whether it approximates a smooth manifold of dimension D � N . Clearly that
will be true for some graphs, but not all. One approach is to consider an r-ball
centered at p using the metric d̃, and compute the entropy of the reduced density
matrix obtained by tracing out all regions outside the ball. The fractal dimension
near some vertex p can be recovered if

S(r, p) ∼ rD f . (6.15)

In general this expression may not converge to an integer D f . In the case of integer
dimension, one can then proceed to find a D = D f + 1 dimensional manifold on
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which G can be embedded that comes closest to preserving the metric d̃(p, q). We
also assign the interface area between two subregions Ap, Aq as

A := I(Ap : Aq)/2α, (6.16)

for some constant α. Note that this implies the area that encloses the region Ap

in a redundancy-constrained state is given by A(Ap) = S(Ap)/α. We define this
to be the emergent spatial geometry of the state and assign geometric labels to the
Hilbert space factors based on the embedding. For simple geometries, we will show
in section 6.3.3 that one can use the so-called dimensionality reduction techniques
in manifold learning.

6.3.3 Classical Multidimensional Scaling
Wenow turn to the problemof going fromagraphwith ametric to a smoothmanifold.
One approach is to use Regge calculus, which we investigate in appendix 6.B. Here
we look at an alternative procedure, multidimensional scaling (MDS). For a more
detailed review, see e.g. [217].

This procedure defines an embedding of the graph into a symmetric manifold; for
simplicity, we restrict our attention to cases where the manifold is Euclidean. The
embedding is an isometry when the graph itself is exactly flat, but also works to
find approximate embeddings for spaces with some small distortion. In our current
program, one expects that there exists some natural number D � N where the
corresponding embedding in D-Euclidean space is (approximately) isometric, but
there can be distortion since there is some arbitrariness in our choice of the distance
function Φ appearing in (6.13).

Consider the distance graph G̃ = (V, E), with edges weighted by the metric distance
d̃(p, q). These vertices and distances now define a metric space (V, d̃). The first
thing we can do is define the emergent dimension of this discrete space. Consider a
subset of vertices, X = {v0, v1, . . . , vr} ⊆ G, equipped with its induced metric. X is
a metric subspace and a r-simplex of V . Now construct the matrix

Ri j =
1
2
(d̃(vi, v0)

2 + d̃(v j, v0)
2 − d̃(vi, v j)

2). (6.17)

Since the determinant det(R) = R(v0, v1, . . . , vr) is a symmetric function, define
simplicial volume

volr(X) =
1
r!

√
det(R), (6.18)

which is nothing but the spatial volume of the r-simplex if X is a subset of Euclidean
space equippedwith the induced Euclideanmetric. The dimension of ametric space,
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if it exists, is the largest natural number k for which there exists a D-simplex with
positive volume. As demonstrated by [218], the metric space can be isometrically
embedded into Euclidean space with dimension d if and only if the metric space is
flat and has dimension ≤ D.

The output of MDS applied to N vertices with distances d̃(p, q) embedded into a
D-dimensional space is an N×D matrixX, which can be thought of as the embedded
coordinates of all the vertices: the nth row contains the D coordinate values of the
nth vertex, up to isometric transformations.

To see how this might work, imagine for the moment working backwards: given
some coordinate matrix X, how is it related to the distances d̃(p, q)? First define an
n×n matrix B = XXt = (XO)(XO)t , which is equivalent for coordinate matrix X up
to some arbitrary orthonormal transformation O. Then we notice that the Euclidean
distances between two rows of X can be written as

d̃(p, q)2 =
d∑

r=1
(Xpr − Xqr)

2 (6.19)

=

d∑
r=1
[Xpr Xpr + Xqr Xqr − 2Xpr Xqr] (6.20)

= Bpp + Bqq − 2Bpq. (6.21)

Therefore, ifB can be recovered only from the Euclidean distances d̃(p, q), a solution
for X can be obtained.

The solution X for the embedding coordinates is non-unique up to isometric trans-
formations. To get a unique solution, we first impose the following constraints such
that the embedding is centered at the origin,

N∑
p=1

Xpr = 0, ∀r . (6.22)

Then it follows that
∑N

q=1 Bpq = 0 and

Bpq = −
1
2

(
d̃(p, q)2 −

1
N

N∑
l=1

d̃(p, l)2 −
1
N

N∑
l=1

d̃(l, q)2 +
1

N2

N∑
l,m=1

d̃(l,m)2
)
. (6.23)

This defines the components Bpq in terms of the graph distances.

We diagonalize B via
B = VΛVt . (6.24)
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Here Λ is a diagonal matrix with diagonal eigenvalues λ1 ≥ λ2 ≥ . . . λN arranged in
descending order. In addition, because B has rank D, we choose the D eigenvectors
corresponding to the D non-zero eigenvalues. A solution for X is then

X̃ = (
√
λ1v1, . . . ,

√
λdvd), (6.25)

which is an isometric embedding of N points into a D-dimensional Euclidean space.

For the case where exact embedding is not possible, i.e., the distance function is
Euclidean but with some small deviations, there will be D dominant positive eigen-
values followed by smaller non-zero eigenvalues. We consider the D-dimensional
embedding to be approximately valid if εD = 1 −

∑D
i=1 |λi |/

∑N
i=1 |λi | is sufficiently

small. One can quantify the distortion from exact embedding in various ways. For
instance, for the classical MDS algorithm we use here, a so-called stress function is
used as a measure of distortion

Stress =

√√
1 −

(
∑

p,q d̃(p, q)dE (xp, xq))
2∑

p,q d̃(p, q)2
∑

p,q dE (xp, xq)
2
, (6.26)

where dE (xp, xq) is the Euclidean distance between the two corresponding vertices
p, q in the embedded space. Essentially, MDS analytically generates a set of em-
bedding coordinates in a lower dimensional Euclidean space [219, 217], where the
algorithm seeks an optimal Euclidean embedding such that the inter-vertex distances
are best preserved in sense that Stress is minimized. Although it also works well
for graph embedding in highly symmetric surfaces (hyperbolic and spherical as well
as flat) [219, 220, 221], it is considered a difficult problem to find an embedding
for generic curved manifolds. The matching problem, although non-trivial, can be
significantly simplified if the embedding manifold is known [222].

6.3.4 Examples with Area-Law States
Let’s see how MDS works in practice for our redundancy-constrained quantum
states. To do this, we will examine states whose geometric interpretation is known,
and show that our procedure can recover that geometry.

We start by imagining that an unsuspecting group of theorists have been handed the
state |ψ0〉 ∈ H =

⊗N
p Hp, which is actually the ground state of a d-dimensional

gapped local Hamiltonian that also satisfies an area law. Although the theorists are
only given |ψ0〉 and its Hilbert space decomposition, they are tasked with finding an
approximate geometry for the state.
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(a) (b)

Figure 6.2: Multidimensional scaling results for the 1-d antiferromagnetic Heisen-
berg chain. On the left we plot the eigenvalues of the matrix (6.24). The fact that
the first eigenvalue is much greater than the others indicates that we have a 1-d
embedding. On the right we show the reconstructed geometry by plotting the first
three coordinates of the graph vertices.

We start by constructing the graph G̃ = (V, E), where the vertices are labelled
by subregions Ap, and edge weights are given by the distance function w(p, q) =

`RCΦ[I(Ap : Aq)/I0], as in (6.13). For convenience we choose Φ(x) = − ln(x). This
function is chosen as most finitely correlated states have fast decaying correlation
which, in the limit of large distances, is exponentially suppressed [167]. In particular,
this is satisfied for any system with a spectral gap whose observables commute at
large distances [216]. The correlation of any state that is locally entangled (finitely
correlated states), e.g., ones that can be expressed in terms of MPS or PEPS tensor
networks, are expected to take this form.

Twoexamples are illustrated here, corresponding to a state living on a one-dimensional
line and one living on a two-dimensional plane. In both cases we start with a known
vacuum state of a gapped local system, where correlations are expected be short-
ranged. Computing the mutual information for a quantum state of such systems is
in general not an easy task. Consequently, we did not calculate directly the mutual
information from density matrices in the 1-d case and instead used the correlation
function as a proxy.

Our one-dimensional example is the ground state of an (S=1) 1-dimensional anti-
ferromagnetic Heisenberg chain [223, 224]. Recalling (6.8), we use the magnitude
squared of the correlation function as an estimate for the mutual information. The
ground state correlation function |〈Sa

i Sa
j 〉| is approximately proportional to the mod-

ified Bessel function K0(r/ξ), where a = x, y, z. This is a fast-decaying correlation,
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(a) (b)

Figure 6.3: Multidimensional scaling results for a coarse-grained 2-d toric code
ground state. Again, the left shows the eigenvalues of (6.24) and the right shows
the reconstructed geometry. The two dominant eigenvalues show that the geometry
is two-dimensional, though the fit is not as close as it was in the 1-d example.
Similarly, the reconstructed geometry shows a bit more distortion.

scaling as as exp(−r/ξ)/
√

r/ξ in the asymptotical limit when r � ξ. (For a = z

the correlator is supplemented with an extra term of the same order, given by
∼ 2ξK0(r/2ξ)K1(r/2ξ)/r . The distortion is still minimal, and in fact yields a
slightly better isometric embedding.)

We constructed a graph of 100 vertices and assigned edge weights given by the
square of correlator. No coarse-graining is performed. Applying MDS to this graph
returns a vector of embedding coordinates in Euclidean space. As expected, there
is distortion in the embedding and the coordinate matrix X̃ has rank greater than
one. However, the distortion, as measured using eigenvalues, has ε1 = 0.0167, from
which we determine that it only slightly deviates from an embedding in 1d. In figure
6.2, a patch of approximately 50 points is plotted. The one-dimensional nature of
the reconstructed geometry is evident.

Our second example reconstructs a patch of the 2-d toric code [225], where it is
possible to exactly calculate the entropy for different subregions [226]. In a coarse-
graining where each region is homeomorphic to a plaquette, the exact entropy is
S = ΣAB − 1 = L∂A − n2 − 2n3 − 1 = n1 + n2 + n3 − 1, where L∂A is the length of
the boundary that separates bipartitions A and B. Here, ni denotes the number of
sites/star operators that have i nearest neighbors in A. The mutual information used
for the network is again given by the length of overlapping boundary, up to a constant
correction term. As neighboring spins are uncorrelated, the constant entanglement
entropy offset only changes the overall definition of length scale by a constant factor
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for a near-uniform coarse-graining. As a result, the geometric reconstruction of a
2-d patch is given by (6.3), up to coordinate rescaling. The distortion now is visibly
higher because − ln(x) is no longer an ideal ansatz forΦ(x). The distortion factor as
measured by eigenvalues for an embedding in 2-d has ε2 = 0.41, but the 2-d nature
of the emergent space is evident from figure 6.3.

6.4 Curvature and Entanglement Perturbations
In this section we examine the effects on our reconstructed spatial geometries of
perturbing the entanglement structure of our states. Aswe are only considering space
rather than spacetime, we cannot directly make contact with general relativity; in
particular, we can say nothing about the emergence of dynamical fields obeying local
Lorentz invariance. Nevertheless, we will see that the induced geometry responds
to perturbations in a way reminiscent of Einstein’s equation, suggesting that an
emergent spacetime geometry could naturally recover gravity in the infrared.

6.4.1 Entanglement Perturbations
Consider some unperturbed “vacuum” density operator σ = |ψ0〉〈ψ0 | ∈ L(H), for
which there exists a D-dimensional geometric reconstruction as discussed in the
last section. (Here L(H) denotes the space of complex-valued linear operators
on H , of which the density operator is an element.) We choose a vertex p on the
distance-weighted graph G̃ that is associatedwith some subregion Ap of the emergent
geometry. The reduced density matrix associated with the region is defined in the
usual way: σAp = TrAp

[σ], where Ap is the complement of Ap. The entropy
of such a region is again SAp (σAp ) = −Tr[σAp logσAp ] = 1/2

∑
I(Ap : Ap). The

interface area between regions Ap and Aq is defined as αA = I(Ap : Aq)/2, and the
distance between vertices p, q is defined by d̃(p, q) = lpΦ(i(Ap : Aq)). Recall that the
normalized mutual information is i(p : q) = I(Ap : Aq)/I0(p : q), where i(p : q) = 1
when subsystems Ap, Aq are maximally entangled.

There are a variety of entanglement perturbations one can consider. We can sep-
arately investigate “local” perturbations that change the entanglement between Ap

and nearby degrees of freedom, and “nonlocal” ones that introduce entanglement be-
tween Ap and degrees of freedom far away; the latter can be modeled by nonunitary
transformations onHAp .

A local perturbation is generated by some unitary operator UAp Ap
acting on the

original systemH = HAp ⊗ HAp
. The perturbed state is ρ = U†

Ap Ap

σUAp Ap
. From
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the definition of mutual information, we know that

δI(Ap : Ap) = δSAp + δSAp
− δSAp Ap

= 2δSAp, (local) (6.27)

where δSi = Si(ρ) − Si(σ) denotes the infinitesimal change of entanglement entropy
for region i. (This relation also holds for finite changes in entropy.) The second
equality follows because δSAp = δSAp

and δSAp Ap
= 0, sinceUAp Ap

does not change
the total entropy of the system. By construction, the definitions of area and length
are related to mutual information of the quantum state; as we will soon discover,
the entanglement perturbation here is tantamount to a local curvature perturbation
at Ap.

Nonlocal entanglement perturbations correspond to applying a lossy quantum chan-
nelΛ, which can equivalently be treated as a completely positive and trace preserving
(CPTP) map, to the system. To that end we introduce an extended Hilbert space

H ∗ = HAp ⊗ HAp
⊗ HB, (6.28)

where B represents some ancillary degrees of freedom that are initially unentangled
with those in Ap. One can think of B, described by state σB ∈ L(HB), as a
different patch of emergent space, or simply some degrees of freedom that the
system has not yet encountered. A nonlocal perturbation is enacted by a unitary
UAp ApB = UApB ⊗ IAp

that acts only on the degrees of freedom in Ap and B. The
perturbed state is ρ = Λ(σ) = TrB[U

†

Ap ApB
σ ⊗ σBUAp ApB]. In this case, the change

in mutual information between Ap and Ap is non-positive, and will depend on the
local entanglement structure as well as the entangling unitary.

Let FΛ(∆SAp ; Ap, Ap) be a function that describes the finite change in mutual in-
formation between Ap and its complement. The specific implementation of this
function will depend on Λ and the entanglement structures related to the regions of
interest, Ap and Ap. The total change in mutual information in this case is given by

∆I(Ap : Ap) = FΛ(∆SAp ; Ap, Ap). (6.29)

Because the change in mutual information has to be zero when no unitary is applied,
we must have FΛ(0; Ap, Ap) = 0. For infinitesimal perturbations, we can write

δI(Ap : Ap) = δSAp

dFΛ(∆SAp ; Ap, Ap)

d(∆SAp )

���
∆SAp=0

(6.30)

= δSAp F′
Λ
(0; Ap, Ap). (nonlocal) (6.31)
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We have written the change in mutual information as if it is proportional to the
change in entropy, but note that (in contrast with the case of local perturbations)
here the proportionality is not a universal constant, but rather a factor that depends
on the channel Λ. In general, for mixed states σ, σB which are not maximally
entangled, we can easily find unitary operations where F′

Λ
(0; Ap, Ap) , 0. Note that

this relation differs from the local perturbation by an F′
Λ
-dependent constant factor.

6.4.2 Geometric Implications
We now consider the effect of an entanglement perturbation on the emergent spatial
geometry. In this sectionwe imaginemapping our graph to aRiemannian embedding
manifold, as we did for the vacuum case using MDS in the previous section. In
appendix 6.B we study the problem using Regge calculus.

Although it is operationally difficult to find for the graph an embedding manifold
with variable curvature, it is considerably more tractable if we only wish to quantify
a perturbation around a known manifold that corresponds to the density matrix σ.
Namely, in order for the manifold to be a good embedding, its perturbed form should
at least be consistent with the deviations in area and geodesic lengths. Since we
have outlined explicit algorithms for flat space configurations, here we assume that a
D-dimensional flat configurationM has been obtained using the above framework.

6.4.2.1 Effects of Local Entanglement Perturbations

We begin by considering a local perturbation that decreases the entropy of our
region,

δSAp < 0, (6.32)

which as we will see induces positive spatial curvature. Thus we are considering a
local operation that decreases the entanglement between Ap and the rest of Hilbert
space. Without altering the dimension, the minimal change to M that can be
imposed is some perturbation to spatial curvature at p. For the simplest case, let
Ap be a region that contains a single graph vertex p whose entanglement with the
adjacent vertices q (regions Aq) is gradually decreased.

Following Jacobson [40], we proceed by defining Riemann normal coordinates in
the vicinity of Ap,

hi j = δi j −
1
3

r2Ri j kl xk xl +O(r3). (6.33)
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Figure 6.4: For a graph G̃ embedded in some manifold, we assign subregion Ap
(dark blue region) to the vertex p, which is connected to adjacent vertices q (Black
solid line). An entanglement perturbation that decreases the mutual information
between Ap with its neighbors elongates the connected edges (dashed red lines),
creating an angular deficit which is related to the curvature perturbation at p.

Consider the perturbed subregion fixed at some constant volumeV , of characteristic
linear size r = V1/D. The decrease in area under the perturbation is given by

δA = −
ΩD−1rD+1

2D(D + 2)
Rp, (6.34)

where Rp = Ri j
i j(p) is the spatial curvature scalar and ΩD−1 is the volume of a

unit (D − 1)-sphere. We know that the boundary area is defined by local mutual
information, namely,

δA =
1

2α

∑
Aq∈Ap

δI(Ap : Aq) ≈
1

2α
δI(Ap : Ap). (6.35)

Because the system is only short-range entangled, the local mutual information is
well-approximated by the mutual information between the region and its comple-
ment. For instance, if the graph that captures entanglement structure for the toric
code ground state above the RC scale is used, then the two quantities will be exactly
equal. In general for systems with exponentially decaying mutual information, the
error with this estimation is also upper-bounded by a quantity of order exp(−r/`RC),
which vanishes as long as the vertices correspond to sufficiently coarse-grained
regions.

Plugging (6.27) for the change in mutual information due to an infinitesimal local
perturbation into (6.34) and (6.35), we can relate the curvature scalar to the entropy
perturbation by

Rp = −
2D(D + 2)

αΩD−1(γ`RC)D+1 δSAp . (6.36)
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Here we have set r equal to γ`RC, a characteristic size of the region for some constant
γ. Such an approximation ismost accurate when the symmetry is also approximately
reflected by the graph. Because δSAp < 0, the induced curvature is positive.

The relation between curvature and the entropy perturbation can alternatively be
derived by using (6.35) to estimate the decrease in mutual information for each
individual edge, and relate that to a length excess. Since the edge weights sum to
the total change in entropy, for each edge we can write

δI(Ap : Aq) = 2ηqδSAp, (6.37)

for some constants ηq such that
∑

q ηq = 1. The values of ηq are determined by the
graph structure near p, as well as the unitaryUAp Ap

. For a unitary that symmetrically
disentangles all the edges on a regular lattice, ηq = 1/deg(p).

Alternatively, we can also relate the change in entropy to the curvature perturbation
by considering the change in linear size. The radius excess for the same perturbation
at some fixed area is

δd =
r3Rp

6D(D + 2)
. (6.38)

Recall that distance is related to mutual information by d̃(p, q) = `RCΦ(i(p : q)),
where the normalized mutual information is i(p : q) = I(Ap : Aq)/I0(p : q). Assum-
ing an approximately symmetric configuration, to leading order we have

δd̃(p, q) = `RCΦ
′(i(p : q))δi(p : q) +O(δi2) (6.39)

= −2ηq`RC |Φ
′(i(p : q))|δSA/I0(p : q) +O(δi2),

where for the last line we used (6.27) to relate the linear change in entropy to the
change in the distance function. Note that Φ′ = dΦ/di is negative by construction.

Comparing (6.38) to (6.39) yields an alternative relation between curvature and
entanglement entropy,

Rp = −
12ηq |Φ

′(i(p : q))|D(D + 2)
I0(p : q)`2

RCγ
3

δSAp, (6.40)

where again we have set r = γ`RC. One can check that for 1/α ∝ `D−1
RC , the two

results (6.36) and (6.40) are equivalent up to some dimension-dependent choice of
ηq, the inverse function Φ, and constant factor α. Both imply positive curvature for
local disentangling perturbations. Similarly, entangling perturbations with δSAp > 0
yields negative spatial curvature.
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6.4.2.2 Effects of Nonlocal Entanglement Perturbations

The derivation with nonlocal entanglement perturbation is similar, where we simply
replace the constant proportionality factors with the channel-dependent factor F′

Λ
(0).

Repeating the above steps, analogously to the area deficit condition (6.36) we have

Rp = −
D(D + 2)F′

Λ
(0; Ap, Ap)

αΩD−1(γ`RC)D+1 δSAp, (6.41)

while analogously to the radius deficit (6.40) we obtain

Rp = −
6F′
Λ
(0; Ap, Aq)|Φ

′(i(p : q))|D(D + 2)
I0(p : q)`2

RCγ
3

δSAp . (6.42)

Interestingly, we find that nonlocal entanglement perturbations are only able to
generate positive curvature perturbations. Because δI(Ap : Ap) ≤ 0 under any
operations acting on Ap and B, from (6.31) we must have

F′
Λ
(0; Ap, Ap) < 0 (6.43)

for a generic entangling unitary when δSA > 0. If δSAp < 0, then it must follow that
F′
Λ
(0; Ap, Ap) > 0 for the same reason.

The nonlocal case is also interesting due to its connection with the ER=EPR con-
jecture. In this case, some spatial region Ap, described by some mixed state σAp , is
far separated from some other spatial region B, with corresponding mixed state σB.
An entangling unitary then creates some weak entanglement between the regions,
similar to having an EPR pair shared between them. Such entanglement, as we have
seen, decreases the mutual information between Ap (B) and their respective neigh-
boring regions. This, we claim, can be interpreted as a quantum proto-wormhole.
No smooth classical geometry is present to form the usual ER bridge; nevertheless,
the entanglement backreacts on the emergent geometry in a way such that positive
modular energy “curves” the spatial regions near the “wormhole mouths."

A large entanglement modification beyond the perturbative limit does not create
disconnected regions. Heuristically, because the entanglement of Ap is always
constant under such a unitary, it must become more entangled with region B. From
the point of view of emergent geometry from entanglement, it implies that the region
Ap should also be connected to the distant region B in some way. When such a
connection between the two regions becomes manifestly geometric, the process may
then be interpreted as the formation of a classical wormhole.
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Figure 6.5: For perturbations that slightly entangle two regions of the emergent
space, as represented by the vertices, a positive curvature perturbation is induced
locally near each perturbed site. We may interpret this as a highly “quantum
wormhole.” The dotted red line joining p and p′ denotes some trace amount of
entanglement between the two subsystems.

However, because the function FΛ depends on the entanglement structure of ρAA and
Λ in addition to ∆SA, the entropy-curvature relation does not seem to be universal
as in the local case. Interpreting nonlocal effects as “gravitational” in this model
may be in tension with our expectations for a theory of gravity, although further
assumptions on symmetries in entanglement structure may resolve this issue.

6.5 Energy and Einstein’s equation
We have seen how spatial geometry can emerge from the entanglement structure of
a quantum state, and how that geometry changes under perturbations. This is a long
way from completely recovering the curved spacetime of general relativity, both
because we don’t have a covariant theory with dynamics, and because we haven’t
related features of the state to an effective stress-energy. We can address the second
of these points by considering general features of a map from our original theory
to that of an effective field theory on a fixed spacetime background, then appealing
to the entanglement first law (EFL); we leave the issue of dynamics to future work.
Our approach here is similar in spirit to previous work in AdS/CFT [189, 28, 190,
191] and bulk entropic gravity [40, 198, 199].

6.5.1 Renormalization and the Low Energy Effective Theory
To make contact with semiclassical gravitation, we need to understand how an
effective field theory, and in particular a local energy density, can emerge from our
Hilbert-space formalism. This is a nontrivial problem, and here we simply sketch
some steps toward a solution, by integrating out ultraviolet (gravitational) degrees of
freedom to obtain an infrared field theory propagating on a background. We argue
that, for local entanglement perturbations, a perturbation that decreases the entropy
of a quantum-gravity state in a region Awill correspond to increased entropy density
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in the effective IR field theory, which lives in a lower-dimensional (coarse-grained)
Hilbert space.

Our construction posits an RC scale `RC at distances greater than which the state
obeys the redundancy-constraint condition. Intuitively we expect `RC to be close to
the reduced Planck length `p, at which the spatial geometry has barely emerged. Let
the corresponding UV energy scale be λRC = 1/`RC. We imagine an “emergence”
map

E : H → HEFT(λRC), (6.44)

which maps states in the Hilbert space of our original theory to those of an effective
field theory with cutoff λRC in a semiclassical spacetime background.

To study the relationship of entropy and energy in this emergent low-energy effective
description, we consider the RG flow of the theory, defined by a parameterized map
that takes the theory at λRC and flows it to a lower scale λ by integrating out UV
degrees of freedom:

Fλ : HEFT(λRC) →HEFT(λ). (6.45)

This flow is defined purely in the context of QFT in curved spacetime, so that
the background geometry remains fixed. Note that we could also discuss RG flow
directly in the entanglement language, where it would be enacted by a tensor network
similar to MERA [39]. There, the equivalent of Fλ would be a quantum channel that
could be defined by a unitary circuit if we include ancillae representing UV degrees
of freedom that are integrated out. In this case, λ depends on the number of layers
of the MERA tensor network.

Given that (6.36) relates a spatial curvature perturbation in the emergent geometry to
a change in entropy in the full theory, we would like to know how this entropy change
relates to that of the vacuum-subtracted entropy SEFT(λ) in the effective field theory
with cutoff λ defined on a background (and ultimately to the emergent mass/energy
in that theory). We posit that they are related by a positive constant κλ that depends
on the cutoff but is otherwise universal:

δS = −κλδSEFT(λ). (6.46)

The minus sign deserves some comment. A perturbation that disentangles a Hilbert
space factor Ap decreases its entropy, δSAp < 0, while inducing positive spatial
curvature in the emergent geometry and a decrease in the area Ap of the boundary
of the corresponding region. Naively, a decrease in boundary area results in the
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decrease of the entropy of a region in a cutoff effective field theory. However,
that expectation comes from changing the area of a near-vacuum state in a fixed
background geometry. Here we have a different situation, where the perturbation
affects both the geometry and the EFT state defined on it.

In that context, as Jacobson has argued [40], we expect an equilibrium condition
for entanglement in small regions of spacetime. Consider a perturbation of the
EFT defined on a semiclassical background, which changes both the background
geometry and the quantum state of the fields. Fix a region in which we keep the
spatial volume constant. In the spirit of holography and the Generalized Second
Law, the total entropy in the region can be considered as the sum of an area term
representing UV quantum gravity modes plus a term for the IR effective field theory,

δV Stotal = ηδVA + δV SEFT(λ). (6.47)

Here, the subscript V reminds us that we are considering a variation at fixed volume
(in contrast with the original perturbation in our underlying quantum theory). The
unperturbed state is taken to be an equilibrium vacuum state. The total entropy is
therefore at an extremal point, δV Stotal = 0. A decrease in the geometric entropy
(represented by the boundary area) is thus compensated by an increase in the entropy
of the EFT state. Since our original perturbation δS decreases the boundary area
of our region, we expect the field-theory entropy to increase. This accounts for the
minus sign in (6.46).

Plugging (6.46) into (6.36) produces a relation between the local scalar curvature of
a region around p and the change in the entropy of the EFT state on the background:

Rp =
2D(D + 2)κλ

αΩD−1(γ`RC)D+1 δSEFT(λ)
Ap

. (6.48)

Here, δSEFT(λ)
Ap

is interpreted as the change in the entropy of the EFT state in
the region defined by Ap, due to shifts in both the background geometry and the
fields themselves. Considering nonlocal rather than local perturbations results in
multiplying the right-hand side by F′

Λ
(0)/2.

6.5.2 Energy and Gravity
We can now use the Entanglement First Law to relate the change in entropy to an
energy density. The EFL,which relates changes in entropy under small perturbations
to the system’smodular Hamiltonian, holds true for general quantum systems. Given
a density matrix σ, we define its associated modular Hamiltonian K(σ) through the
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relation
σ =

e−K

Tr(e−K)
. (6.49)

The Kullback-Leibler divergence, or relative entropy, between two density matrices
ρ and σ is given by

D(ρ| |σ) ≡ Tr(ρ ln ρ) − Tr(ρ lnσ)

= −∆S + ∆〈K(σ)〉, (6.50)

where
∆S = S(ρ) − S(σ), ∆〈K(σ)〉 = Tr[ρK(σ)] − Tr[σK(σ)]. (6.51)

The relative entropy is nonnegative, and is only zero when the states are identical.
Hence, for infinitesimal perturbations σ = ρ + δρ, we have D(σ| |ρ) = 0 to linear
order, and we arrive at the EFL [189],

δS = δ〈K〉. (6.52)

This equation allows us to establish a relationship between (modular) energy and
the change in entropy, and thereby geometry, of our emergent space.

Comparing to the curvature-entropy relations for local perturbations (6.36), we see
that the (positive) induced local curvature Rp is proportional to −δ〈KAp〉. We
therefore define an effective modular energy density,

εp = −δ〈KAp〉. (6.53)

The curvature is then related to the effective modular energy via

Rp = −ζδSAp = ζεp, (6.54)

where
ζ ≡

2D(D + 2)
αΩD−1(γ`RC)

D+1 (6.55)

is a positive constant. On the other hand, an entangling operation in the vicinity
of Ap would give rise to a negative “energy” in the region, adding negative spatial
curvature to the emergent geometry. Having a large amount of negative energy
seems unphysical; if our model for emergent space is to be consistent with gravity
as we know it, there must be conditions limiting such effects, such as instabilities or
other dynamical processes rendering them unattainable.
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For nonlocal perturbations, we saw from (6.43) that only positive curvature is gen-
erated, regardless of the precise form of the perturbation. The curvature-modular-
energy relation for nonlocal perturbations is therefore

Rp = ζ̃ |εp |, (6.56)

where ζ̃ = |F′
Λ
(0)|ζ/2.

Thus, once we define an emergent geometry using mutual information, we see that
perturbing the modular energy induces scalar curvature in the surrounding space.
This is manifestly reminiscent of the presence of mass-energy in the region for
the usual case in Einstein gravity. This relationship between energy and curvature
did not come about by “quantizing gravity”; rather, it is a natural consequence of
defining the emergent geometry in terms of entanglement.

However, the effective modular energy is only an analogous expression for the actual
mass/energy. To connect with our familiar notion of energy, we need to find the
explicit expression of the modular Hamiltonian in terms of a stress tensor. Such
expression will generally be highly nonlocal, and is not known explicitly except for
a few cases [227]. One exception, however, is for a conformal field theory, where K

can be directly related to the stress-energy tensor TCFT
µν [28, 189]. Consider a small

region centered at p of size γ`RC, in which TCFT
00 is approximately constant. Then

we have
δ〈KCFT

Ap
〉 =

2πΩD−1(γ`RC)
D+1

D(D + 2)
δ〈TCFT

00 (p)〉. (6.57)

Here δ〈TCFT
00 〉 = Tr[δρ(IR)

λ TCFT
00 ] is the expectation with respect to the perturbed state

of the IR effective theory. Of course the 00 component of the stress tensor is simply
the energy density of the theory.

Suppose that the RG flow Fλ for our EFT passes through an IR fixed point at a scale
λ∗. At that scale, the entanglement structure of the IR state can be approximated by
the ground state of a conformal field theory, and (6.57) applies. Combining (6.52)
and (6.57) with (6.48) in the context of of the low-energy effective field theory, we
find that the spatial curvature is related to the EFT stress tensor by

R =
4πκλ∗
α

δ〈TCFT
00 〉, (6.58)

where α is the constant in the entanglement/area relation (6.16) and κλ∗ relates the
full entropy perturbation to that of the EFT as in (6.46). For nonlocal perturbations,
we saw from (6.43) that only positive curvature is generated, regardless of the
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precise formof the perturbation. The curvature-modular-energy relation for nonlocal
perturbations is therefore

R =
2π |F′

Λ
(0)|κλ∗
α

δ〈TCFT
00 〉. (6.59)

All of ourwork thus far has been purely in the context of space, rather than spacetime.
We have not posited any form of Hamiltonian or time evolution. Let us (somewhat
optimistically) assume that the present framework can be adapted to a situation
with conventional time evolution, and furthermore that the dynamics are such that
an approximate notion of local Lorentz invariance holds. (Such an assumption is
highly nontrivial; see e.g. [228].) Thinking of our emergent space as some spatial
slice of a Lorentzian spacetime manifold, the spatial curvature can be related to
the usual quantities in the Einstein tensor. In particular, for slices with vanishing
extrinsic curvature we have

Rp = 2G00(p). (6.60)

Comparing to (6.58), we therefore find

G00 =
2πκλ∗
α

δ〈TCFT
00 〉. (6.61)

If we make the identification 2πκλ∗/α→ 8πG, this is nothing but the 00-component
of the semiclassical Einstein equation. The interaction strength is determined in part
by the dimensionful constant α that relates entropy to area, similar to [40]. If this
reasoning is approximately true for all time-like observers traveling along uµ, then
one can covariantize and arrive at the full equation

Gµν =
2πκλ∗
α

δ〈TCFT
µν 〉. (6.62)

This is the result for local perturbations using the smooth-manifold approach to the
emergent geometry. An additional factor of F′

Λ
(0)/2 would accompany nonlocal

perturbations using the lossy channel on Ap, and an analogous equation can be
derived from the Regge calculus approach using (6.71).

An immediate consequence of our bulk emergent gravity program is that there is a
bound on the change in entropy within a region, reminiscent of the Bekenstein and
holographic bounds. We have argued that positive energy corresponds to a decrease
in the (full, UV) entropy, so we expect there to be an upper limit on the amount by
which the entropy can decrease. This is of course automatic, as the entropy is a
nonnegative number. Once the region Ap is fixed, the maximum possible decrease
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in entropy that corresponds to positive “mass-energy” has to be bounded by the total
entanglement entropy of SAp , which is proportional to the area Ap of the region.
More explicitly,

|∆SAp | ≤ αAp. (6.63)

This resembles the holographic entropy bound. For an entropy change that saturates
the bound, the vertices in regions Ap and Ap become disconnected from the graph
point of view. An embedding space for Ap that reflects this change now has a hole
around region Ap. Perturbations that increase the entropy are also bounded, but
the bound scales with the volume of the region; we believe that configurations that
saturate such a bound do not have a simple geometric interpretation.

6.6 Discussion
We have examined how space can emerge from an abstract quantum state in Hilbert
space, and how something like Einstein’s equation (in the form of a relationship
between curvature and energy) is a natural consequence of this bulk emergent
gravity program.

We considered a particular family of quantum states, those that are “redundancy-
constrained” in a given decomposition of Hilbert space. For such states, a weighted
graph that captures the entanglement structure can be constructed from the mutual
information between different factors, and a manifold on which the graph can be
(approximately) isometrically embedded is defined to be its emergent geometry.
We presented specific implementations of the reconstruction framework using the
classical multidimensional scaling algorithm for certain known area-law states.
Both the dimension and the embedding coordinates for flat geometries can be found
through the procedure. At leading order, entanglement perturbations backreact on
the emergent geometry, and allow modular energy to be associated with the spatial
curvature. This relation is analogous to the semiclassical Einstein equation.

A crucial feature of this approach is that we work directly with quantum states, rather
than by quantizing classical degrees of freedom. No semiclassical background or
asymptotic boundary conditions are assumed, and the theory is manifestly finite
(since regions of space are associated with finite-dimensional factors of Hilbert
space). There is clearly a relation with approaches that derive geometry from
the entanglement structure of a boundary dual theory, but the entanglement we
examine is directly related to degrees of freedom in the emergent bulk spacetime.
Because lengths and other geometric quantities are determined by entanglement,
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a connection between perturbations of the quantum state and perturbations of the
geometry appears automatically; in this sense, gravity appears to arise from quantum
mechanics in a natural way.

Clearly, the framework is still very incomplete, and leaves much for future inves-
tigation. An important step in our procedure was assuming that we were given a
preferred Hilbert-space decompositionH =

⊗
Hp; ultimately we would like to be

able to derive that decomposition rather than posit it. Perhaps most importantly,
our definition of distance in terms of mutual information is compatible with the
behavior of field theories at low energies, but we would like to verify that this really
is the “distance” we conventionally refer to in quantum field theory. Ultimately that
will require an investigation of the dynamics of these states. An obvious next step
is to define time evolution, either through the choice of an explicit Hamiltonian or
by letting time itself emerge from the quantum state. One important challenge will
be to see whether approximately Lorentz-invariant dynamics can be recovered at
low energies, and whether or not the finite nature of Hilbert space predicts testable
deviations from exact Lorentz symmetry. We might imagine that, given a state |ψ〉
whose geometry is constructed using entanglement, one can generate all time-slices
using a known local Hamiltonian such that |ψ〉 is a low energy state. Alternatively,
by working with mixed states one could adopt the thermal time hypothesis [229] and
generate state-dependent time flow purely from the modular Hamiltonian, which is
in principle attainable from just the density operator.

To analyze the emergent geometries of states beyond redundancy-constraint, deeper
understandings of the entropy data for subregions of different sizes will be impor-
tant. One such case is manifest in the context of AdS/CFT correspondence, where
entanglement entropy of different-sized balls in the CFT are needed to obtain bulk
geometric information through a radon transform. One such approach may be to
introduce additional structures on the graph and extend it to a tensor network. The
program of geometry from tensor networks has mostly been based on states with a
high degree of symmetry, such that notions of length and curvature can be assigned
through simple geodesic matching and tessellation of space. The results obtained
here suggest that for tensor networks with small perturbations, one can also modify
the geometric assignment accordingly, matching the change in correlation or entan-
glement to perturbation in geodesic lengths. A notion of (coarse) local curvature
can also be defined on triangulated spaces using entanglement and Regge calculus,
which seems more natural for programs that relate network geometries to those of



138

spacetime.

The emergence of time evolution will also be useful for the study of more complex
behaviors related to entanglement perturbations. For instance, one can examine
the interactions among multiple perturbations created in some local region. If the
model is truly gravitational, the time evolution experiment should be consistent
with our knowledge of gravitational dynamics. It will also be interesting to study
the redundancy-constrained deformations of states beyond perturbative limit. Intu-
itively, we expect the emergence of a classical wormhole geometry by nonlocally
entangling large number of degrees of freedom in a coherent manner. One can also
examine purely quantum phenomena outside the context of classical Einstein grav-
ity, including black-hole entropy and evaporation, using mutual information rather
than classical spacetime geometry.

6.A Redundancy-Constraint and Coarse-graining
In this appendix we consider how to construct a coarse-grained decomposition of
Hilbert space that is redundancy-constrained (RC), as defined in Section 6.3.1, when
an initial fine-grained one is not.

Given some state |ψ0〉 ∈ H and some fixed Hilbert space decomposition H =⊗M
i Hi for M sufficiently large, we first create a network represented by a graph

G0 = (V0, E0). The graph has N vertices labelled by i, and each edge {i, j} is
weighted by I(i : j), where I(i : j) is the mutual information of partitions i and j.
If the resulting graph is RC to the desired degree of accuracy, no further coarse-
graining is needed.

If not, consider the set of all partitioning schemes C for a coarse-grained decom-
position of the Hilbert space such that H =

⊗N
p Hp. For each scheme S ∈ C, we

require that N ≤ M for some sufficiently large N so that non-trivial entanglement
structure is still allowed. Each partition S = {{i1, i2, . . . }, {ik, ik+1, . . . }, . . . } corre-
sponds to constructing a more coarse-grained decomposition of the Hilbert space
by taking the union of original subfactors; that is, for each sp ∈ S,Hp =

⊗
i∈sp Hi.

A partition is RC-valid if the mutual-information-weighted-network G = (V, E)

based on the coarse-grained decomposition is redundancy-constrained. While there
is no obvious way to choose the best coarse-graining scheme at this point, it is natural
to consider the most uniform partitioning, so that all Hilbert-space subfactors have
approximately equal dimensions.

If no such coarse-graining can be found for N reasonably large, then the procedure



139

fails and we are forced to conclude that the given state cannot be cast in RC form in
a simple way. We do not claim, however, that it doesn’t admit a simple geometric
description, as this is clearly false from our knowledge of AdS/CFT. Reconstructing
the geometry from such states are interesting problems.

A more specific method for coarse-graining can also be constructed using network
renormalization. While the algorithm is less computationally intensive, it fails for
certain states if the original decomposition yields little useful information. For
instance, it fails for the ground state of Toric code on a square lattice where the
given Hilbert space decomposition is the usual tensor product of spin-1/2 degree
of freedom on each link. It is, however, useful for certain finitely correlated states
and/or those of typical condensed matter system at scales larger than the correlation
length. It also works for the toric code if the decomposition is more coarse-grained.

For such states and decompositions, we follow network renormalization procedure
by again constructing the mutual-information-weighted-network G0 = (V0, E0).
Assume G0 is connected; in the case when G0 has multiple large disconnected
components, one can simply perform the procedure separately for each connected
component.

Then proceed to define a metric d̃0(i, j) on G0 in the same manner as (6.14), with
`RC → `0. Then, for any vertex v on the graph, we consider an ε-ball Bε (v) such
that

Bε (v) = {v′ ∈ V |d̃(v, v′) ≤ ε}, (6.64)

where d̃(v, v′) is a metric defined on the set of verticesV . Seed the entire graph with
points like v until the whole graph is covered by ε-balls. Choose a minimum cover
and compute the entanglement entropy for each the union of subregions in each ball
to generate a coarse-grained graphG1, where each vertex now is labeled by the union
of the original subregions and the edge weights are given by the mutual informations
of the coarse-grained subregions. Repeating the coarse-graining procedure until all
higher subregions BX can be well approximated by the cut function (6.9), we then
label the coarse-grained subregion at this scale to be Ap for p ∈ S, and label the
corresponding coarse-grained network with Ap also. The resulting state will be, to
a good approximation, redundancy-constrained.

6.B Entanglement Perturbations and Coarse Curvature
In this appendix we consider an alternative approach to calculating the curvature
induced by an entanglement perturbation, working directly with the discrete graph
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rather than finding an embedding Riemannian manifold. Here we use the techniques
in Regge calculus [230], in which the sense of spatial curvature is determined by
deficit angles.

For a space of fixed integral Hausdorff dimension D obtained from (6.15), consider
a vertex p and construct a local triangulation, if one exists. We say the space is
r-locally triangulable at p if one can construct a abstract simplicial complex K,
where the simplices are sets of vertices in the metric subspace near p, by imposing a
distance cutoff r , and if there exists an isometry (with respect to the metric distance)
that maps K to a geometric simplicial complex K where inter-vertex distances of
the metric subspace are preserved. If K is also a simplicial manifold we can proceed
to define Regge curvature.

Select a codimension-2 simplex X 3 p as a hinge, its volume given by (6.18). As
the simplices in K are equipped with the usual Euclidean inner product, angles can
be defined and deficit angle at the hinge δ(X) = 2π − θ(X) can computed using the
inner product structure in Euclidean space. Here we define

θ(X) =
∑

i

φi(X), (6.65)

where φi(X) is the angle between the unique two faces of a simplex containing
the hinge X . In the case of a D-dimensional area-law system where I(p : q) , 0,
construct a simplex by considering the n shortest distances. The curvature is then
related to the deficit angles δi in the region by

RT =
∑

i

δi Li, (6.66)

where Li are the volumes of the codimension-2 hinges at which the curvature is
concentrated. For D = 2, the hinge is a point, and the curvature is given by
the deficit angle, where we set Li = 1. In the continuum limit, (6.66) becomes∫

dD x
√
gR, where R is the scalar curvature. In the case of emergent Euclidean

(flat) space, we require RT = 0.

Let us consider the effect of an entanglement perturbation on the geometry of a
distance-function graph G̃, using this technique. Again, the forms for both local and
nonlocal perturbations are similar up to an overall factor.

Since the original deficit angle δp = 0 in flat space, for p lying on the hinge, we may
consider the angular deficit produced by varying each elongated edge connected
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to p. For each such simplex S connected to the hinge, the deficit at p induced by
varying the length l j of each edge in the simplex assumes, at leading order, the form

δ
(S)
p =

δl j

`
(S)
j (l1, l2, . . . )

+O((δl j/l
(S)
j )

2), (6.67)

where l j denotes the jth edge length of the D-simplex S. `(S)j (l1, l2, . . . ) is a function
that has dimension of length and depends on the edge that is varied, as well as all
the edge lengths that connect the vertices of S.

The overall deficit in a triangulation where all edges have roughly the same (unper-
turbed) length ` is

∆p =
∑
j,S

δl j

`
(S)
j

+O((δl j/l
(S)
j )

2) (6.68)

= Np(D)
δ`

`
+O((δ`/`)2), (6.69)

whereNp(D) depends on the simplices in the triangulation. For example, if equilat-
eral triangles with sides ` are used to triangulate the 2-dimensional flat space around
p, then Np(D = 2) = 12/

√
3 in the case where all edges emanating from p vary by

the same amount δ` under the entanglement perturbation. Note that in dimension
greater than 2, there is no uniform tiling such that all edges are equal, hence the
approximation in some average sense.

To estimate the coarse curvature at p, take Lp ∼ `D−2 as the volume of the
codimension-2 hinge. δ` is identified with δd̃(p, q) for the change in distance
between adjacent vertices, and ` ≈ d̃(p, q) for all q immediately adjacent to p in the
triangulation. The total coarse curvature is given by

Rc = ∆pLp ∼ Np(D)`D−3δ`. (6.70)

On the other hand, we know from [230] that in the continuum limit, if the metric g
is approximately constant in the small region, Rc → `DR, where R is the average
coarse scalar curvature of the space contained in the small region with approximate
volume `D. Applying (6.39) and the EFL, the average coarse curvature in the region
is

R = Zδ〈H〉. (6.71)

Here, for a perturbation induced by a unitary UAp Ap
, the constant Z = `−2

RCξ(p, q,D)

depends on the triangulation, strength of entanglement, and choice of coarse-
graining. The factor ξ(p, q,D) ∝ |Np(D)Φ′(i(p : q))|/I0(p : q), which parametrizes
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all the order-one constants that enter into the process of averaging, can be explicitly
computed once the triangulation and the inverse function Φ are known. We have
taken ` = γ`RC to denote the average radius of the region, as before. Note that this
is consistent with (6.40) up to the dimension- and triangulation-dependent factors.

For a nonlocal perturbation through a channel Λ, because the unitary only acts on
Ap and the ancilla, the mutual information δi(s : q) = 0, and hence the distance
functions d̃(s, q) are invariant for all s, q , p. Only legs emanating from the vertex
p in the triangulation are varied. The unitary perturbing map has a wider range of
possible consequences, as its form is unspecified. Although the values of Z may
be different depending on the specific map used, the formalism remain the same.
As a result, for nonlocal perturbations with channel Λ, we have an equation of the
same form, with Z → ZF′

Λ
(0)/2. In particular, if we restrict UAp Ap

to only remove
entanglement symmetrically near the boundary of the region Ap as before, the values
of Z will be the same.
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C h a p t e r 7

BULK ENTANGLEMENT GRAVITY

We consider the emergence from quantum entanglement of spacetime geometry
in a bulk region. For certain classes of quantum states in an appropriately factor-
ized Hilbert space, a spatial geometry can be defined by associating areas along
codimension-one surfaces with the entanglement entropy between either side. We
show how Radon transforms can be used to convert this data into a spatial metric.
Under a particular set of assumptions, the time evolution of such a state traces out
a four-dimensional spacetime geometry, and we argue using a modified version of
Jacobson’s “entanglement equilibrium” that the geometry should obey Einstein’s
equation in the weak-field limit. We also discuss how entanglement equilibrium is
related to a generalization of the Ryu-Takayanagi formula in more general settings,
and how quantum error correction can help specify the emergence map between
the full quantum-gravity Hilbert space and the semiclassical limit of quantum fields
propagating on a classical spacetime.

This chapter is based on the Ref:
ChunJun Cao and Sean M. Carroll. “Bulk Entanglement Gravity without a Bound-
ary: Towards Finding Einstein’s Equation in Hilbert Space”. In: (2017). arXiv:
1712.02803 [hep-th].

7.1 Introduction
There has been considerable recent interest in the idea of deriving an emergent
spacetime geometry from the entanglement properties of a quantum state [37, 143,
71, 28, 29, 79]. Much of this work has taken place within the context of the Anti-
de Sitter/Conformal Field Theory (AdS/CFT) correspondence [21]. In particular,
various results related to emergent gravity [28, 232, 29] have yielded not only
confidence in the program, but also helpful insights in understanding quantum
gravity itself [233, 234]. Moreover, the idea need not be restricted to the context of
holographic duality. Indeed, as it was originally proposed [143], it can in principle
be generalized to derive other geometries closer to our own physical universe [235,
82, 86, 75, 236]. Entanglement also plays a role in entropic/thermodynamic gravity
[65, 237, 238, 239, 199, 163] and the holographic-spacetime approaches of Banks
and Fishler [201, 120, 121] and of Nomura et al. [240, 241].

https://arxiv.org/abs/1712.02803
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The real world, needless to say, does not seem to have anti-de Sitter boundary
conditions. It is therefore interesting to ask whether we can derive spacetime and
gravitational field equations directly in the bulk from the entanglement properties
of quantum states. The emergence of a semiclassical spacetime description from
a quantum state, thought of as an abstract vector in Hilbert space, is essentially
inevitable if we think that such an evolving quantum state provides a sufficient and
complete description of physical reality. Our approach is to take the quantum state
as fundamental and search for an appropriate classical limit, rather than quantizing
any particular classical model.

In this work we tackle this problem, building on previous work on deriving emergent
spatial geometry from entanglement of a quantum state [82]. There we investigated
how a spatial metric (distance along curves) could be derived from a quantum
state using the mutual information between different factors in Hilbert space. Our
interest here is dynamical rather than static: to model the universe as a quantum
state evolving in Hilbert space, show how the geometry of spacetime can emerge
from the entanglement features of such a state in an appropriate factorization, and
derive Einstein’s equation in the semiclassical limit, an approach we label Bulk
Entanglement Gravity (BEG). This requires us to consider a somewhat generic
quantum system (or operator algebra), and examine which properties of a complex
quantum system may be important in emerging spacetime geometry and gravity.

To concretely implement aspects of BEG, we will restrict ourselves in this paper
to quantum states corresponding to emergent spacetimes in the weak-field regime,
small perturbations of Minkowski space. (Since boundary conditions play no role in
our analysis, the results will apply equally well to spacetimes with a nonzero cosmo-
logical constant, as long as we consider regions much smaller than the background
curvature scale.) This represents a significant departure from the AdS/CFT version
of the geometry-from-entanglement program. That approach may be thought of as
“maximally holographic,” with all of the bulk data encoded directly on the confor-
mal boundary, and in particular the entanglement from which geometry emerges is
that of the CFT state. Our regime is “anti-holographic”, considering a small region
that is a weak perturbation of flat spacetime. We are therefore interested in the
entanglement of quantum states in Hilbert spaces that can be decomposed directly
into factors corresponding to local regions of bulk spacetime (or equivalent ways of
encoding entanglement data).

We will consider three different aspects of the BEG program. The first involves
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deriving emergent spatial geometry from entanglement data. Using assumptions
(A1), (A2), and (A3) below, one may start from an appropriate quantum state and
obtain an emergent geometry and its best-fit dimensionality. Rather than deriving
distances from mutual information, it is more natural to derive areas of surfaces
using the entanglement entropy across them. We will show in section 7.3 that for
some class of geometries, the metric tensor can be obtained from these data using
the tensor Radon transform [242]. In the case of AdS/CFT, a procedure like this
would correspond to directly recovering the bulk geometry (plus matter) from a
state of the fundamental theory, such as that of a CFT, but without relying on the
knowledge that it has a flat geometry or that it can be interpreted to reside on the
asymptotic boundary of the emergent geometry. In general, we still refer to this
emergent spatial geometry as the “bulk” geometry, even when no boundary theory
is available.

The second aspect is the emergence of gravitational dynamics. In section 7.4, we
show that the linearized Einstein’s equation can be derived from a background-free
approach using quantum entanglement when a set of assumptions outlined in the
next section are satisfied. In particular, one can derive the Hamiltonian constraint
7.4.1 from assumptions (A1) through (A5). Our approach is closely related to
the entanglement-equilibrium proposal of [239]. It differs from [239] in that the
analogous entanglement condition is valid across global cuts, instead of small local
spherical surfaces. In addition, it is valid for all matter fields and does not rely on
CFT modular Hamiltonians, which require matter fields to have UV fixed points.
The main difference is that we derive our results directly from an abstract quantum
state, rather than starting with quantum fields on an existing classical spacetime.

The third aspect deals with the “emergence map”: the map from abstract quantum
states in Hilbert space to quantum fields on a semiclassical background geometry.
Part of this task can be thought of as determining which quantum degrees of freedom
are responsible for emergent geometry as opposed to matter fields. This is important
for the emergence of Einstein’s equation with sources. To this end, we elaborate the
relations with entanglement equilibrium and the Ryu-Takayanagi (RT) formula in
section 7.5. In particular, we will discuss how one can distinguish the semiclassical
geometry from quantum fields on that geometry solely from the features in a general
background-free setting. Following Harlow [243], we argue that this can be done
purely from the entanglement structure of the state or from the properties of a
quantum error-correction code (QECC). It seems that quantum error correction
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properties can naturally provide a separation between geometric and matter degrees
of freedom.

Our framework, partly inspired by [27], uses the Radon transform to tie together
previous work on the thermodynamics of spacetime [65, 239], AdS/CFT approaches
to emergent gravity [28], and kinematic space [50]. The Radon transform can also
be used to construct emergent geometries for quantum error correction codes or
tensor networks in general.

For the sake of concreteness, we will use the specific language of entanglement
as computed from a quantum state in a Hilbert space. However, this work only
relies on a configuration that defines subsystems and entanglement entropy data.
Consequently, it also applies to more general formulations.

7.2 The Road to Bulk Entanglement Gravity
Our derivation of Einstein’s equation from entanglement in the bulk of spacetime can
be considered axiomatically: we can specify a list of explicit assumptions allowing
us to start with an abstract quantum state and derive a semiclassical spacetime
geometry with the appropriate dynamics. Here we briefly list the assumptions,
before discussing them in detail in subsequent sections. Some of these assumptions
will seem prima facie reasonable, while others aremore conjectural. Wewill present
arguments for their validity where available, and sketch a roadmap for the future
work to complete this kind of program.

Our assumptions are as follows:

(A1) Factorization. Hilbert space H comes equipped with a preferred tensor
product decomposition into individual factors,

H =
⊗

i

Hi . (7.1)

The individual factors Hi will correspond roughly to local points or small
regions of space. See also [244]. The decomposition may be defined by the
dynamics of the theory, as in [245].

(A2) Redundancy constraint. We are given a state |Ψ〉 in this decomposition
with a very specific behavior of the entanglement entropy: the entangle-
ment entropies of individual factors (or groups thereof) are approximately
“redundancy constrained” (RC). Given a collection B of factors ofH and its
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complement B̄, a state is RC if its entropy can be written as a sum over the
mutual informations of the individual factors,

S(B) :=
1
2

∑
i∈B, j∈B̄

I(i : j). (7.2)

(Details of our notation are given in Section 7.3.1.) Thus, RC states generalize
the notion of area-law states. In an approximately RC state, the entanglement
entropy of a subsystem B can be written as

S(B) = SRC + Ssub, (7.3)

where SRC is the leading order contribution that satisfies the RC condition,
and Ssub is a subleading correction.

(A3) Area from mutual information. For states that define an emergent geometry,
the mutual information I between subsystems is proportional to the interface
area A between corresponding subregions in that geometry,

A(B, B̄) = 1
2α

I(B : B̄). (7.4)

(A4) Entanglement equilibrium. Entanglement perturbations of this configuration
satisfy a modified entanglement equilibrium condition (MEEC), following
Jacobson [239]. That is, under small perturbations, the total entropy pertur-
bation δS(R) of certain subsystems vanish, so that

0 = δSRC + δSsub. (7.5)

(A5) Emergent field theory. The variation of the subleading correction can be
generated by the entanglement variation of a state in some emergent effective
field theory (EFT),

δSsub = δSEFT. (7.6)

Here by SEFT we mean the vacuum-subtracted or Casini entropy, representing
entanglement over and above the divergent contribution of the QFT vacuum
[210, 18, 20].

(A6) Dynamics. There exists a consistent dynamical theory, e.g., a Hamiltonian
or a quantum circuit, that generates a sequence of such configurations, each
admitting an emergent spatial geometry. Furthermore, there is a way to or-
ganize these emergent geometries to create a consistent Lorentzian spacetime
geometry via time evolution.
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(A7) Lorentz invariance. The above assumptions hold for any constant-time slice
of the emergent Minkowski space, and the overall theory is Lorentz-invariant
in an appropriate limit.

In the sections that follow we will show how to weave together these assumptions
to derive geometry and Einstein’s equation in the weak-field regime.

7.3 Emergent Spatial Geometries and Radon Transforms
In our earlier work on emergent space [82] we derived a spatial metric by using
the quantum mutual information of two factors of Hilbert space to define a distance
measure, based on our intuition from quantum field theory that the entanglement
of low-energy states decreases monotonically with distance. If entanglement is
our main quantity of interest, however, it is more natural to directly derive areas
from the entanglement across a boundary separating two regions, rather than to
derive distances between any two small regions. We expect the entropy across
such a boundary to be proportional to the geometric area, plus some subdominant
correction. In this section we explore the Radon transform as a natural tool for
characterizing this data, and converting the entanglement of a quantum state into
the metric tensor of a spatial slice.

7.3.1 Space from Hilbert Space
Here we briefly review the emergence of spatial geometry from appropriate quantum
states [82]. Following assumption (A1), we are given a quantum state and a tensor
product decomposition of the Hilbert space, |ψ〉 ∈ H =

⊗
iHi. The individual

factors Hi correspond roughly to the degrees of freedom (geometric and field-
theoretic) associated with a small local region of space. In the back of our minds
we are thinking of these factors as finite-dimensional vector spaces [246], though
this doesn’t play a crucial role in our analysis. While this local picture of degrees of
freedom runs against the spirit of holography, our interest here is in the weak-gravity
regime, where it should be sufficient to think of gravity as a theory of local degrees
of freedom.

One can generate an “information graph” G = (V, E) based on this structure. The
graph vertices in V = {i} label each individual Hilbert space factors in {Hi}, and
the edges E between any two vertices i, j are weighted by the quantum mutual
information between those factors,

I(i : j) = S(i) + S( j) − S(i ∪ j). (7.7)
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An example graph is shown in Figure 7.1. For convenience, when we talk about
quantities associated with the quantum state or the Hilbert space, we will use
graph vertices and sets of vertices to denote tensor factors of the Hilbert space and
products of the tensor factors, respectively. Note that we are not given the graph
as a fundamental piece of information; it is derived from the quantum state in this
particular factorization. The factorization itself could be derived, for example, from
the requirement that the Hamiltonian look approximately local [245].

We say that the state |ψ〉 (or more generally, the entanglement data) is “redundancy
constrained” (RC) if the entanglement entropy of any subsystem B ⊂ V can be
computed by summing over the weights of all edges that connect vertices in B with
those in its complement B̄, as in assumption (A2). More precisely, the entanglement
entropy of a subsystem B in a redundancy-constrained state is given by the cut
function [166],

S(B) = SRC(B) :=
1
2

∑
i∈B, j∈B̄

I(i : j). (7.8)

Other than the familiar examples, such as area-law states [180] in certain condensed
matter systems, a wider class of states such as Projected Entangled-Pair states [47],
holographic quantum error correction code [49], and (bulk) random tensor network
states [76] are also (approximately) redundancy constrained. Note that a generic
state in Hilbert space will be very far from RC, and the information graph will be
highly connected rather than taking the sparse form suggested by locality; the states
we have in mind resemble low-energy states of approximately-local Hamiltonians.

In states that are only approximately RC, (7.8) holds to leading order, and the exact
entanglement entropy takes on a subleading correction

S(B) = SRC(B) + Ssub(B), (7.9)

where Ssub � SRC. There are two natural sources for such corrections. One is
long-range entanglement even in the vacuum, which we expect to be present but
subdominant. The other is entanglement between excited degrees of freedom over
and above the vacuum. An EPR pair, for example, can have an entanglement that
is independent of the distance between the two particles; however in a quantum
field theory such entanglement is a very small correction to the huge entanglement
between the vacuum modes. (For discussions of vacuum-subtracted entropy in
quantum field theory, see [210, 18, 20].)

In order to obtain an emergent space, one has to make certain assumptions about
the connection between entanglement and geometry. A natural identification can be
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Figure 7.1: This shows an example of the information graph in which vertices
represent factors in a decomposition of Hilbert space, and edges are weighted by
the mutual information between the factors. In redundancy-constrained states, the
entropy of a group of factors (such as the shaded region B containing H1 ⊗ H2 ⊗
H3 ⊗ H4 ⊗ H5.) can be calculated by summing over the mutual information of the
cut edges, as in (7.8).

motivated by area-law systems, where the entanglement entropy of a region scales
as the interface area that separates the region and its complement. To leading order,
this implies that the interface area is proportional to the mutual information between
the region and its complement. Because RC states generalize area-law states, a
natural definition is to define the “interface area” of an emergent geometry as the
mutual information between a system and its complement, as in assumption (A3).
That is,

A(B, B̄) :=
1

2α
I(B : B̄). (7.10)

See also [157, 212]. At this level α serves as an undetermined constant of propor-
tionality; we will later relate it to Newton’s gravitational constant via α = 1/4GN .

Given the information graph, however, it is more convenient to work with the length
measure between factors, instead of their mutual interface areas. To derive the
approximate geometry that may be encoded by the graph, [82] defines an ad hoc
distance function between vertices from the edge weights. This, together with the
set V , generate a metric space, which is isometrically embedded in to a manifold.
We define the embedding manifold as the emergent geometry of the graph. The
technique of classical multi-dimensional scaling (MDS) [219, 220, 221, 222, 217]
can be used for this purpose to determine the best-fit dimensionality of the geometry,
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as well as the embedding coordinates for the elements of V .

7.3.2 Metric tensor from the inverse tensor Radon transform
While straightforward in an approximate recovery of geometry, the correct “trans-
form” function from an area quantity to distances can, in principle, be non-local. A
simple local function from area to distance is expected to yield a distortion unless
we operate in the case with a high degree of symmetry. To address this deficiency,
we seek an improved method to directly transform (dualize) the area quantity, which
is proportional to mutual information, to a measure of distances via a global trans-
formation. In this section, we reconstruct the spatial metric tensor directly from
entanglement data.

In cases of interest where the emergent geometry is not highly symmetric, we
can imagine a two-part procedure, in which we use MDS to emerge a symmetric
“background” geometry, and then recover the metric perturbation from an inverse
tensor Radon transform. (In fact the background geometries of interest to us will
generally be flat Euclidean spaces.) The recovery procedure is valid as long as
the tensor Radon transform has a unique inverse. Such is the case for simple
manifolds in 2 dimensions [247], which have been extensively studied in the context
of the boundary-rigidity problem. In higher dimensions, similar inversions are also
possible in Riemannian geometries that are close to flat space or hyperbolic space
[248].

Intuitively, the Radon transform maps a function on a space to a function on a set
of surfaces embedded in that space, by integrating the function over the surface
[helgason1999Radon, 242, 27]. More formally, consider an n-dimensional Rie-
mannian manifoldM and a totally-geodesic codimension-1 submanifold S, where
“totally geodesic” means that the geodesics of the submanifold with respect to its
induced metric are also geodesics of the original manifold.1 Most geometries will
not admit any totally-geodesic submanifolds, but they are plentiful in the highly-
symmetric backgrounds of interest to us here, e.g. hyperplanes in Euclidean spaces.
The Radon transform of a function f onM at S is defined as the integral

R[ f ](S) =
∫
S

f dσ (7.11)

overS with area element dσ. Clearly, a well-defined transform requires the function
to be regularized in some way, e.g., by setting f = 0 outside some domain. If the

1Analogous transforms along n− k dimensional submanifolds can also be defined. Here we only
discuss the case when k = 1.
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f(x, y)

Figure 7.2: The Radon transform of a scalar function f (x, y) defined on some com-
pact domain (shaded area) is done by integrating the function over the submanifold
S, which is a line in 2-dimensional flat space. The transformed data R[ f ](p, α)
corresponds to the value at a point in the space of S (the space of lines in this case).
p is the perpendicular distance between the plane and the origin and α parametrizes
the direction of the unit normal n̂.

geometry onM is Euclidean (in the sense of flat), an appropriate set of surfaces S
is given by planes specified by a distance and angle from the origin, as shown in
Figure 7.2.

We can also perform the Radon transform of a tensor field. Such tensor Radon
transforms were used in [27] to derive the linearized Einstein’s equation in the
context AdS/CFT. We will employ analogous techniques, but directly in the bulk,
without reference to kinematic space or holography.

Let gi j be themetric tensor onM and letwi j be the inducedmetric of the submanifold
S. (Our notation follows [27], and differs from the more common notation in the
mathematical literature.) The longitudinal tensor Radon transform of si j onM is
defined as

R‖[si j] =

∫
S

wi j si j dσ. (7.12)

(Henceforth we will drop the explicit appearance of the submanifold S on the
right-hand side.) Similarly, the transverse tensor Radon transform is

R⊥[si j] =

∫
S

(gi j − wi j)si j dσ. (7.13)
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Indices are raised and lowered with the spatial metric. Since at this point we are
only considering spatial geometry and related tensors, we do not discuss metrics
with Lorentzian signatures. A process to invert the above transform and obtain the
tensor si j is referred to as inverse tensor Radon transform.

The inversion problem in n = 2 has been mostly studied in the context of the
boundary-rigidity problem [249, 250], which examines if the bulk geometry of a
manifold can be recovered knowing only the pair-wise geodesic distances between
all its boundary points. A manifold for which this is possible is called boundary-
rigid. This problem has been shown [242] to be equivalent to the tensor geodesic
X-ray transform problem [251, 242, 250], which coincides with the tensor Radon
transform in 2 dimensions. An earlier classification of boundary-rigid manifolds
is now known as the Michel’s conjecture [252], where so-called simple manifolds
are boundary-rigid. (A Riemannian manifoldM is simple if, given any two points,
there exists a unique geodesic joining the points, and if the second fundamental
form is positive definite at every point on ∂M.) A proof has been given in n = 2
[247], although some other higher-dimensional results are also known [253]. See
[250, 254, 255] and references therein. Results related to applying the inverse
were explored both analytically [256, 257] and numerically [258]. The inverse
problem of the higher-dimensional tensor Radon transform has remained largely
unexplored until recently, where a proof on invertibility was produced [248], but an
explicit inversion formula and numerical results are still unknown, to the best of our
knowledge. Henceforth we will simply assume that the appropriate tensor-transform
inversion can be performed.

7.3.3 Spatial metric from entanglement
We now describe how to use the Radon transform to obtain an emergent spatial
geometry from the quantum state. Suppose we begin with a quantum state |ψ〉 from
which, following [82], we may use MDS to find a best-fit maximally-symmetric
geometry gi j on a spatial manifold {M}, which we will refer to as the background.
We now would like to consider a perturbed state,

|Ψ〉 = |ψ〉 + δ |ψ〉. (7.14)

The perturbed entanglement entropy δS associatedwith each subsystem also changes
the associated emergent geometry. Using these perturbed data δS for different
subsystems, we will show that the inverse tensor Radon transform allows us to
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recover a perturbed metric δhi j on the background.2

We are thus considering a situation in which we attempt to recover δhi j when we
are given a background metric gi j and an entanglement perturbation δS that can be
computed from the state itself. For discrete finite-dimensional quantum systems,
such as some condensed matter models [259, 260, 225] or the ones we considered
in [82], we will also assume a continuum limit or a smoothing process over the
data δS such that the usual Radon transform is well-defined and can be performed.
Alternatively, a discrete version may also be applied [261].

We illustrate the reconstruction of δhi j with an example in flat space, although the
procedure can be easily generalized to other backgrounds, as long as an inverse
transform exists. Consider the case where one determined the exact geometry
encoded in the state |ψ〉 to be an n-dimensional flat space with metric gi j = δi j . For
any codimension-1 hyperplane C(p, n̂) that separates the space into two adjacent
regions Σ, Σ̄, one can compute the interface area A(C) using the flat metric of the
embedding space. This follows from assumption (A3), that area is proportional to
mutual information,3

A(C) =
1

2α
I(ΣC : Σ̄C). (7.15)

Given the RC assumption (A2), I(ΣC : Σ̄C) is determined by the sum of mutual
informations along all edges that are cut by C [166]. Adding a perturbation δ |ψ〉 in
general also perturbs the mutual information across different bipartitions. For the
same bipartition along the cut, the perturbed area is now given by perturbed mutual
information A′ = (1/2α)I′(ΣC : Σ̄C), and one can define the area perturbation

δA = A′ − A =
1

2α
δI =

1
2α
(I′ − I)(ΣC : Σ̄C), (7.16)

so that
δI(C) = 2αδA(C). (7.17)

Let w̃i j be the induced metric of C in the perturbed geometry, where wi j is the
induced metric in the background,

w̃i j = wi j + δwi j . (7.18)
2A similar procedure may be used when MDS itself gives an imperfect embedding of the

background geometry.
3With MDS, we are considering only a geometry that is finite in extent. In the case where the

space is infinite, we restrict ourselves to a particular finite region for analysis.
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The area is then
A′(C) =

∫
C

√
det w̃i j dσ, (7.19)

and the area perturbation is

δA =

∫
C

(√
det w̃i j −

√
detwi j

)
dσ. (7.20)

Using det(I+ εM) = 1+ ε Tr[M]+O(ε2) for any symmetric matrix M , this becomes

δA =
1
2

∫
C

Tr(δw) dσ, (7.21)

where Tr(δw) = wi jδwi j . Comparing to (7.12), we see that the area perturba-
tion is directly related to the longitudinal Radon transform of the induced metric
perturbation,

δA =
1
2
R‖[δwi j]. (7.22)

It is straightforward to show, for example by choosing an appropriate coordinate sys-
tem, that R‖[δwi j] = R‖[δhi j]. We therefore see that the mutual information across
the bipartition is proportional to the Radon transform of the metric perturbation,

δI(C) = αR‖[δhi j]. (7.23)

Given the entanglement data δI(C) = 2αδA(C) over all such cuts C(p, n̂), we can
perform the inverse tensor Radon transform of R‖[δhi j], thus completing the metric
reconstruction procedure, so that the full spatial metric gi j + δhi j is obtained from
entanglement data of a quantum state in a background-free approach.

We therefore need assurance that the tensor Radon transform of interest is indeed
invertible. At first sight, this requirement of invertibility to recover a tensor from
a scalar function seem unlikely, simply from counting degrees of freedom; there
are several components of the metric, and only one value each of R⊥ and R‖ .
However, this is indeed uniquely invertible for a certain set ofmanifolds, up to natural
obstructions that are not simply fixed by the data. In this case, the degrees of freedom
that are undetermined by entanglement are manifested as gauge transformations of
the δhi j field by an arbitrary vector field ξ,

δhi j → δhi j + ∂iξ j + ∂jξi, (7.24)

for the simple reason that the longitudinal tensor Radon transform vanishes for
tensors of the form ∂( jξi) .
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From the existing mathematical literature, we conclude that for n = 2, an inverse
transform can be explicitly implemented to obtain δhi j from an entanglement pertur-
bation as long as the backgroundmanifoldM is boundary-rigid. Current knowledge
classifies simple manifolds and certain quotients [262] as boundary-rigid, although
other particulate examples such as tori have also been given [255, 263, 264]. For
n > 2, an inverse, if it exists, can also be uniquely obtained near flat or hyperbolic
geometries. Recently, [25] also proposes a recovery of the metric for certain types
of Riemannian manifolds at n = 3. However, an explicit reconstruction algorithm
for general dimensions is still contingent on further progress in the mathematical
community.4

7.4 Emergent Gravity from Quantum Entanglement
We now turn to the gravitational dynamics of our emergent geometries, and explain
how assumptions (A1) through (A7) allow us to derive the linearized Einstein
equation in theweak-field limit. In the first subsectionwe look at classical spacetime,
using the Radon transform to write the terms appearing in Einstein’s equation in a
convenient form. In the following subsection we use the results to derive a modified
entanglement equilibrium condition, and in the final subsection we derive Einstein’s
equation for an emergent Lorentzian spacetime geometry from the quantum state.

7.4.1 The Hamiltonian Constraint and its Radon transform
Let us momentarily set aside spacetime emerging from quantum mechanics and
instead consider the conventional classical Einstein’s equation linearized around a
Minkowski background.

Given a spacetime with a parameterized set of time slicesMt with timelike unit nor-
mal vectors tµ, the classical Hamiltonian constraint of general relativity corresponds
to the condition

Gµνtµtν = 8πGNTµνtµtν . (7.25)

In the following derivation, we work in the linearized regime where we consider
metric perturbations on a Minkowski background: gµν = ηµν + δhµν. As such,
we can consider the constant-time slices of Minkowski space. The (background)

4The boundary-rigidity problem is intimately related to that of reconstructing bulk geometry from
boundary data in the context of AdS/CFT. The existence of a manifold that is not boundary-rigid may
be indicative of the limitations of the Ryu-Takayanagi formula in AdS3/CFT2 for constructing bulk
geometries. Similar conclusions also apply to certain reconstruction schemes in higher dimensions,
which use correlation functions to estimate geodesic lengths [265]. For instance, consider the back-
reacted geometry of a single massive particle in AdS. The spatial geometry of a time slice is not
boundary-rigid.
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extrinsic curvature vanishes on each of these time slices. At the linearized level we
can then relate the Einstein tensor to the spatial curvature scalar via R = 2Gtt [266].
Therefore, for linearized equations, the Hamiltonian constraint reads

δR = 16πGNδTtt . (7.26)

Because we are specializing to flat backgrounds, for each such constant time slice,
let the background spatial metric be δi j and the perturbation be δhi j , which is a
tensor-valued function on flat space. To linear order we can expand

δR = δi j 1
2
(∂i∂rδh jr + ∂j∂rδhir − ∂i∂jδh − ∇2δhi j), (7.27)

where ∇2 is the Laplacian in n-dimensional flat space, with n being the dimension
of the constant-time slice. Now consider taking the Radon transform of both sides
of equation (7.27) along (n − 1)-dimensional hyperplanes. We can derive5

R[δR] = −R‖[∇
2δhi j]. (7.28)

Radon transforms obey an intertwinement relation [helgason1999Radon],

R[∇2 f ] =
∂2

∂p2 R[ f ], (7.29)

where p is the distance from the origin to the hyperplane. From this and the fact
that R‖[δhi j] = 2δA, we find a relation between the spatial curvature and the area
perturbation,

R[δR] = −2
∂2

∂p2 δA. (7.30)

Comparing to (7.26), we end up with

−
∂2

∂p2 δA = 8πGNR[δTtt]. (7.31)

To solve (7.31) for δA, we convolve the source with the Green function,6

G(p, q) = (q − p)θ(q − p). (7.32)
5The derivation is simpler by writing the metric in the Gaussian normal coordinate.
6The full Green function has additional terms c1p+c2. However, since the boundary condition is

unknown, unlike the case in AdS/CFT, we fix the coefficients by requiring the solution δA matches
to the Rindler Hamiltonian of the bulk matter fields, by choosing c1 = c2 = 0.
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This yields

δA = −

∫
(q − p)θ(q − p)R[8πGδTtt] dq (7.33)

= −8πGN

∫
C

∫
q>p
(q − p)δTtt dq dn−1σ. (7.34)

Recall that each surface C is specified by a distance parameter p from the origin and
its unit normal n̂. Then the integral is over the half space up to a surface with unit
normal n̂ and distance p from the origin.

7.4.2 Emergent entanglement equilibrium
We can now connect these classical GR concepts to entanglement data of an under-
lying quantum state in an abstract Hilbert space. Although the physical meaning
of equation (7.34) is unambiguous in the classical theory, these quantities should
ultimately be derived from the quantum state if space is emergent from entangle-
ment. On the left-hand side, as we know from previous constructions [82], the area
perturbation δA can be identified with the sum of mutual information δI/2α along
the cut C in an RC state. In the case where the overall state is pure,

δI(ΣC : Σ̄C) = 2δS(ΣC). (7.35)

On the right-hand side of (7.34), in a semiclassical theory we interpret the classical
quantity δTtt as the expectation value of a quantum operator T̂tt in some particular
state of a quantum field theory on curved spacetime. We then recognize that the
integral in (7.34) is related to the modular Hamiltonian of the right Rindler wedge
for a quantum field theory, translated spatially by p. More explicitly, take p = 0 and
identify the normal of C with the direction in which the Rindler observer accelerates,
which we take to be the x-axis. We then have the QFT expression for the Rindler
modular Hamiltonian,

Ĥmod = 2π
∫ ∫

x>0
xT̂tt dnx. (7.36)

We therefore consider the right-hand side of (7.34) to represent the expectation value
of the modular Hamiltonian of some effective field theory on a flat background,
evaluated with respect to some linearized perturbation of a quantum state δρEFT,
such that

δTtt = Tr[δρEFTT̂tt]. (7.37)

In the linearized regime, it must also be proportional to the entanglement entropy
perturbation δSEFT(C) of the same half-space demarcated by C, via the entanglement
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first law [267],
δ〈Ĥmod〉 = δSEFT(C). (7.38)

Substituting these new variables and using (7.15), (7.34) becomes

1
2
δI(ΣC : Σ̄C) + 4GαδSEFT(C) = 0 (pure state), (7.39)

or using the RC relation (7.2),

δS(ΣC) + 4GNαδSEFT(C) = 0. (7.40)

Let us try to understand this relation in the context of deriving geometry from a
quantum state. By construction, δS(ΣC), which is proportional to the area pertur-
bation, is the contribution that we have consistently identified with the RC part of
the entanglement. The more difficult question is how δSEFT should be identified.
Recall that from assumption (A2), in ground states of systems satisfying an area law
[180] or other approximately-redundancy-constrained states, one can write the total
entanglement entropy associated with a subsystem Σ as

Stotal(Σ) = SRC(Σ) + Ssub(Σ), (7.41)

where the RC contribution SRC, or the area-scaling contribution when there is a
well-defined geometry, dominates over the subleading correction Ssub. Motivated
by the RT formula with subleading corrections, we claim in assumption (A5) that
SEFT can be interpreted as originating from the subleading corrections Ssub to the
RC entropy contribution. We will further discuss this claim and its similarities with
a generalized form of the RT formula in section 7.5.

Jacobson [239] derived Einstein’s equation in a semiclassical bulk spacetime from
the concept of entanglement equilibrium. This is the assumption that the total
entanglement entropy of a small ball in some maximally-symmetric background
spacetime is extremal, i.e., δStotal = 0 when a small perturbation is added. To
complete the derivation, one has to separate the entanglement into UV and IR
contributions, such that δStotal = δSUV + δSIR. In [239], δSUV ∼ δA is assumed to
be the area variation in some background geometry and δSIR is identified with the
entanglement entropy of a field theory regulated in some way.

Our equation (7.40) relating geometric entropy to the entropy perturbation of an
emergent EFT can be thought of as a version of the modified entanglement equilib-
rium condition (MEEC) from assumption (A4). The geometric term corresponds to
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the UV contribution, while the EFT (matter) term corresponds to the infrared,

δS(ΣC) ↔ δSUV ↔ δSRC, (7.42)

4GNαδSEFT(C) ↔ δSIR ↔ δSsub, (7.43)

and the condition (7.40) states that these sum to zero near the background. A crucial
difference, however, is instead of entanglement across some small ball centered at a
point, the condition now has to hold across all cuts C made by (n − 1)-dimensional
totally-geodesic submanifolds in the background space. This also differs from [239]
in that one no longer has to rely on CFT modular Hamiltonians by assuming the
special property of the matter field theory having an UV fixed point. The result
holds for a generic QFT with the corresponding Rindler Hamiltonian.

For now, we will proceed with the identification δSsub = δSEFT. This fixes the con-
stant α = 1/4GN , the value required for the consistency of Einstein’s equation and
the holographic bound. Consequently, MEEC translates into amore general relation,
whereby UV and IR portions of the entropy are identified not based on assumptions
in semiclassical physics, but rather on the properties of quantum entanglement,

0 = δStotal

= δSRC + δSsub

= αδA + δSEFT. (7.44)

With this identification, the above relation is a necessary condition for a state to
have emergent properties consistent with general relativity at low energies.

Therefore, by making the identification that the subleading entropy to RC with
matter field entropy, similar to the vacuum-subtracted (Casini) entropy [210, 18,
20], we establish an equivalence between the modified entanglement equilibrium
condition (7.44) and the Radon transform of the linearized Hamiltonian constraint
(7.31). This argument can also be used to generalize the result of [28] in AdS/CFT
to other (non-flat) geometries, as long as the function is invertible under Radon
transform in the background Riemannian manifold.

7.4.3 Linearized Einstein Equation from entanglement
We can now put the picture together to derive dynamics for the emergent spacetime
geometry, in a way similar to [239]. For the sake of convenience, let’s assume
that from our previous results one has already emerged a flat background geometry
from MDS or tensor Radon transform techniques. Similar to the AdS/CFT case
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considered in [28], we now wish to determine if the geometric deformation from
entanglement perturbations responds in a way consistent with Einstein gravity. A
similar conclusion can also be generalized to hyperbolic spaces using MDS with a
best fit curvature parameter following the procedure of [27], but we will not consider
that case here.

Consider the quantum system from which flat space is emergent. For concreteness,
the total system could be described by a quantum state |ψ〉 ∈ H =

⊗
iHi, as

in assumption (A1). A subsystem is thus described by the reduced density op-
erator associated with some Hilbert subspace. Any cut C that corresponds to a
codimension-1 hyperplane in the emergent geometry will bipartition the system into
two adjacent non-overlapping regions. One can compute the entanglement entropy
for either region Σ, which reads S(Σ) = SRC(Σ) + Ssub(Σ), as in (A2). Now we
add a perturbation to obtain |Ψ〉 = |ψ〉 + δ |ψ〉. The perturbation will modify the
entanglement, which in turn changes the emergent geometry, following the area
perturbation defined by (A3).

The MEEC assumption (A4) relates perturbations in the RC and subdominant con-
tributions to the entropy across C,

0 = δSRC + δSsub. (7.45)

Using assumption (A5) to relate the subdominant term to the vacuum-subtracted
entropy of an effective field theory, the MEEC is equivalent to the (scalar) Radon
transform of the classical Hamiltonian constraint linearized against a flat back-
ground,

R[δR] = 16πGNR[δTtt], (7.46)

as argued in the previous subsection. Here δR is the spatial curvature perturbation
and δTtt is the linear perturbation of the stress-energy associated with an effective
field theory living on the background. Because this relation holds for all such cuts
in the flat background space, equation (7.46) uniquely determines the linearized
Hamiltonian constraint,

δR = 16πGNδTtt, (7.47)

provided the inverse is well-defined.

Following assumption (A6) about dynamics, we consider a sequence of states |Ψ(t)〉
labeled by a single parameter t, which together describe a Lorentzian spacetime.
The corresponding emergent spatial geometries can be thought of as embedded
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spacelike slices in a spacetime with coordinates in synchronous gauge. In terms
of a unit timelike vector field tµ normal to these slices, the Hamiltonian constraint
(7.47) can be written as

δGµνtµtν = 8πGNδTµνtµtν . (7.48)

Under the Lorentz-invariance assumption (A7), this must be valid for arbitrary
normal tµ. We therefore have the full linearized Einstein’s equation,

δGµν = 8πGNδTµν . (7.49)

While the number of conjectural assumptions needed to reach the result is admittedly
considerable, we find the path we’ve outlined to be a promising route to deriving
bulk gravitational dynamics directly from the evolution of an abstract wave function
in Hilbert space.

7.5 Entanglement RT Formula and Quantum Error Correction
It would be useful to have a more systematic approach to decomposing an abstract
quantum state into geometric (UV) and matter (IR) degrees of freedom. In the
previous section we proposed one such procedure, identifying SRC = αA and
Ssub = SEFT when the state is approximately RC and admits an emergent geometry.
This identification also proposes a background-free way of understanding these
“UV” and “IR” entropies purely from the characteristics of entanglement, which
can be done for arbitrary quantum states.

In this section, we will connect these observations with the Ryu-Takayanagi (RT)
formula from AdS/CFT. We will also argue that more general emergent geometries
can be assigned to quantum error correction codes, where the code subspace natu-
rally separates the geometric and matter contributions to entanglement entropy. Our
considerations here are tentative (even by the standards of the rest of the paper), and
would require more elaboration to make precise.

Let’s first recall the RT entropy relation in the case of AdS/CFT with a subleading
N0 correction [208],

SCFT(A) =
Aext(A)

4GN
+ Sbulk. (7.50)

Here, SCFT(A) is the entanglement entropy of a subregion A in the boundary field
theory, Aext(A) denotes the area of a bulk extremal surface homologous to A, and
Sbulk is a correction representing contributions from bulk matter fields.
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The RT formula relates boundary quantities to bulk quantities in a holographic
setting. But there is an obvious analogy to the BEG relation

Stotal = SRC + Ssub (7.51)

=
A(C)

4G
+ SEFT(C) (7.52)

for a cut C by a totally geodesic codimension-1 submanifold of an emergent space-
time. In this case, the MEEC is an infinitesimal version of (7.52), and can be
interpreted as a perturbative version of an RT-like relation for which δSCFT = 0.
It may be possible to understand this relation from a more general perspective, in
which AdS/CFT is a special case manifested as a duality.

If we interpret the bulk AdS as an emergent entity from the boundary conformal
field theory, we can think of the CFT to be the fundamental theory, from which we
reconstruct a theory in the IR that describes bulk gravity. In this emergent limit,
different parts of the entanglement entropy of the supposed fundamental theory take
on other physical meanings related to geometry and matter. In [268], Lin proposed
that such a separation of entanglement may also be understood in a more general
setting, where the “fundamental” theory, whose Hilbert space factorizes and does
not have a gauge symmetry, has an emergent gauge theory in the IR.7 As such, the
entanglement entropy Sfund of a subregion in the fundamental theory can be written
in a form Sfund = Sedge + SIR. Here Sedge, which depends on the UV regulator such
as a lattice cutoff, takes on the meaning of the analogous area-law term in RT. The
IR entropy SIR corresponds to the entanglement of the emergent gauge theory8.

Therefore, we may also speculate that a geometry other than AdS emerges from a
fundamental theory that is amorphous, in the sense that there are no pre-determined
geometric elements. In this case, a generalization of the RT formula (7.50) should
still provide a natural separation between UV and IR and identification of the
geometric and matter parts of the entanglement without something like a 1/N
expansion. It’s worth investigating the prospect that this can be done directly from
the state and its associated Hilbert space.

Here we point out another possible construction proposed by Harlow [243] making
use of quantum error correction codes (QECC), or more specifically, the erasure

7A gauge theory is emergent if the low energy behavior of the fundamental theory can be
identified with that of a gauge theory. We refer the readers to the original reference for the precise
definition used in the derivations.

8Similar ideas appear in the study of emergent gravity in condensed matter models [269] with
emergent gauge theories [270].



164

correction codes. A similar RT-like formula is derived in the context of quantum
error correction, without having to rely on a background geometry. For the sake of
clarity we briefly review some findings of [243].

A typical way to protect states against quantum errors is to encode the information
non-locally, such that local errors will not easily contaminate the protected informa-
tion. For instance, let |φ〉 ∈ Hφ be a qudit worth of quantum information. One can
encode it in a larger Hilbert space

H = (Hφ)
⊗N . (7.53)

A basis for H can be formed from the tensor product of basis vectors |i j〉 of each
copy j ofHφ. To encode the original state

|φ〉 =
∑

i

Ci |i〉 ∈ Hφ (7.54)

by mapping it toH , we first map each basis element by some fixed rule,

|i〉 → |ĩ〉 =
∑

i1,i2...iN

µĩ
i1i2...iN |i1, i2 . . . iN〉 (7.55)

for some coefficients µĩ
i1i2...iN

. The encoding then takes the form

|φ〉 → |φ̃〉 =
∑̃

i

Cĩ |ĩ〉 ∈ H . (7.56)

The vector subspace ofH spanned by {|ĩ〉} is the code subspace,Hcode.

To be consistent with the notation in the literature, we will refer to the N qudits
making upH as the physical qudits. Let A be a subsystem consisting of a subset of
the physical qudits, and Ā its complement, so that

H = HA ⊗ HĀ. (7.57)

The encoded information is said to be protected against erasure on Ā if for all

|φ̃〉 ∈ Hcode ⊂ H, (7.58)

there exists an operator UA ⊗ IĀ such that

UA ⊗ IĀ |φ̃〉A∪Ā = |φ〉 j∈A ⊗ |χ〉A∪Ā\{ j} (7.59)

for some state |χ〉 ∈ ⊗i, jHφ. Intuitively, this property allows one to recover the
encoded quantum information even though degrees of freedom in HĀ are inacces-
sible.
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Now consider the scenario in which the code subspace can encode many qudits.
One construction is to consider a QECC in which the code subspace factorizes

Hcode = Ha ⊗ Hā. (7.60)

We want the subset a of these code-subspace qudits to be recoverable from the
subsystem A of the larger Hilbert space, and similarly the complementary set ā to
be recoverable from Ā. Assume each ofHA,HĀ is further factorizable:

HA = HA1 ⊗ HA2, HĀ = HĀ1 ⊗ HĀ2, (7.61)

where dimHA1 = dimHĀ1 = dimHcode. As demonstrated by Harlow, a QECC that
performs the desired complementary recovery, which satisfies

|ĩ〉| j̃〉 = UAUĀ(|i〉A1 | j〉Ā1 |χ〉A2 Ā2) (7.62)

for some entangled state |χ〉A2 Ā2 and unitaries UA ⊗ IĀ, IA ⊗ UĀ, will also satisfy
an analogous RT relation. Here, |ĩ〉, | j̃〉,|i〉A1, | j〉Ā1 are orthonormal basis vectors for
the Hilbert spacesHa,Hā,HA1 andHĀ1 respectively.

Given a density operator in the code subspace

ρ̃ = |φ̃〉〈φ̃| ∈ L(Hcode) ⊂ L(H), (7.63)

define reduced density matrices

ρ̃A = TrĀ ρ̃ (7.64)

ρ̃a = Trā ρ̃ (7.65)

ρχ = TrĀ2 |χ〉〈χ |. (7.66)

The resulting RT-like relation for the entropies then takes the form,

S(ρ̃A) = S(ρχ) + S(ρ̃a)

S(ρ̃Ā) = S(ρχ) + S(ρ̃ā). (7.67)

In the familiar examples of holographic tensor networks and quantum error correc-
tion codes [49, 76], the term S(ρχ) is proportional to the area of the minimal RT
surface anchored at the boundary of A.9 Consequently, the term S(ρχ) can be under-
stood as the geometric entanglement contribution, while S(ρ̃a) is naturally identified

9For example, the entropy S(χ) is computed by a distillation process and counting the Bell pairs
in Sec 4 of [49]. The cut along the Bell pairs is precisely the bulk minimal surface γAĀ anchored at
the boundary of A and Ā.
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with the “matter” contribution to bulk entropy. The sum of these two quantities is
equal to S(ρ̃A), which is the entanglement entropy of the boundary subregion A.

This generalized RT-like formula can be compared to our equation for the entan-
glement entropy of a subsystem (7.41) as the sum of an RC contribution and a
subdominant correction. In particular, the emergent entanglement equilibrium rela-
tion (7.40) can be thought of as the first-order variation of this formula, with the first
term representing an area and the second the contribution from the emergent EFT.
In this sense, the entropy formulae underlying BEG can be found more generally in
the context of quantum error-correcting codes. This relation helps shed light on the
decomposition of the entanglement entropy into UV geometric contributions and
IR contributions from matter fields.

The derivation leading to (7.67) makes no reference to a pre-existing geometry or
holography. Indeed, it is reasonable to expect such properties to apply to con-
texts more general than AdS/CFT. In particular, conventional QECC as well as the
operator-algebra quantum error correction seem directly applicable to bulk entan-
glement gravity. In fact, they can be used to reconstruct a geometry as long as a
notion of entanglement entropy can be consistently defined and computed.

In the case we are currently interested in, the overall finite-dimensional Hilbert
spaces H in BEG can be identified with the physical Hilbert space in QECC. A
state |ψ〉 that encodes geometric information corresponds to the code state |φ̃〉 ∈ H
above. The subsystem A in the form of physical qudits can be identified with some
collection of Hilbert space factors (graph vertices) in BEG. In addition, the code
comes equipped with a code subspace Hcode ⊂ H which is now identified with
the IR subspace of the emergent matter fields. Thus, a natural separation of UV
(geometric) and IR (matter) degrees of freedom is simply provided by the subspace
or subalgebra associated with a QECC.

Hence, a spatial geometry can be obtained and assigned to quantum error correc-
tion codes that do not presume a geometrical interpretation a priori. BEG can
be particularly useful in the case when one considers deviations from maximally
symmetric spaces. For a dynamical theory that preserves the code subspace and
Lorentz invariance, the linearized Einstein’s equation may emerge as a more generic
property, rather than coming from a special theory.
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7.6 Discussion
In this work, we have extended the “space from Hilbert space” program of [82],
which posits that spatial geometry can emerge from the entanglement features of
appropriate quantum states, to consider the gravitational dynamics of spacetime.
By suggesting a modified entanglement equilibrium condition as well as other as-
sumptions, we are able to sketch how the spacetime metric can be reconstructed
from entanglement using the Radon transform, and it how it naturally obeys Ein-
stein’s equation at the linearized level. Our analysis was carried out entirely in
(what emerges as) the bulk of spacetime; the entanglement we consider is between
Hilbert-space factors representing local degrees of freedom, without reference to
AdS/CFT or any other holographic boundary construction. Colloquially, this bulk
entanglement gravity approach can be thought of as finding gravity within quantum
mechanics, as opposed to the more conventional approach of quantizing a particular
model of spacetime structure. It also seems to indicate the plausibility of discovering
gravitational features from more generic complex quantum systems.

Further work will clearly be required to flesh out this program and put the necessary
assumptions on a firmer footing. We can list a few of the biggest looming questions.

• One is to explore the feasibility of developing a specific theory of quantum
gravity using quantum information beyond the context of AdS/CFT, for exam-
ple by specifying an explicit Hamiltonian, but perhaps by less direct means.
For instance, a set of constraints on the quantum dynamics could be derived
by requiring the emergence of classical general relativity.

• Geometry from entanglement is an interesting program all by itself, even
without the emergence of gravity. It is important to understand how and if
more general emergent geometries, possibly along with their metric tensors,
can be reconstructed from entanglement data.

• It is also important to address the hope that Lorentz symmetry can be emergent.
While there have been discussions mostly in the loop quantum gravity and
condensed matter communities, a clear understanding of its feasibility is still
lacking.

• Given the recent interest in emergent gauge theories in condensed matter
models, it may be possible to understand if certain condensed matter models
can be “gravitized” by emerging the geometry through entanglement of a state,
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instead of using the pre-existing geometry provided by the lattice structure or
Hamiltonian. This may yield interesting toy models that exhibit (analogous)
features of gravity.

• It would be useful to contemplate the emergence of holography from this
perspective, going beyond the weak-field gravity context considered here.

In addition, one can point to a few more circumscribed and well-defined challenges.

• The BEG framework is natural for assigning emergent geometries to tensor
networks directly from entanglement. It is also useful for deriving emergent
geometry for conventional QECCs as well as their generalizations in the form
of operator-algebras. It may be interesting to construct toy models using these
concrete tool sets to improve our intuition for the program.

• Generalizing the tensor Radon transform approach to other Riemannian back-
grounds. One particular direction is to make contact with AdS/CFT by con-
sidering asymptotically hyperbolic spaces.

• Another task is to further understand the UV/IR separation. Since QECC
provides a natural separation and a concrete testing ground, specific toymodels
may be constructed that have non-trivial dynamical properties [271]. Efforts
in this direction would also improve our understanding in adding backreaction
and incorporating general geometries in a tensor network model. On the other
hand, geometric characterizations may also help categorize entanglement and
code properties.

• It would be useful to understand how general theMEEC is in quantum systems
near equilibrium, and what physical interpretation can be attached to the two
terms.

This work has been guided by the conviction that quantum mechanics is the most
fundamental theory we have, and implicitly by the Everettian formulation of the
theory (the wave function is the only physical variable, and it evolves smoothly and
deterministically over time). In that context, one can argue informally that quantum
gravity must emerge in roughly the way outlined here. We human beings generally
construct quantum theories by starting with classical theories and quantizing them,
but presumably nature doesn’t work that way. There simply is a quantum state,
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represented by a vector in Hilbert space, evolving according to the Schrödinger
equation with some particular Hamiltonian. (For these purposes we take time as
fundamental, but it is also conceivable that time itself is emergent, arising through the
entanglement of “system” and “clock” factors of Hilbert space.) Familiar classical
concepts such as “locations in space” and “fields” are necessarily emergent from this
basic structure. Here we have sketched how space and its geometry may plausibly
emerge from the entanglement between discrete Hilbert-space factors, and how
gravitational dynamics obeying Einstein’s equation can be related to entanglement
equilibrium. The is a promising route to a perspective on quantum gravity that puts
“quantum” first.
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