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Abstract 

 Virtual ligand screening has proven to be a successful strategy in drug design.  An 

in house-developed procedure (HierDock), a coarse grain docking method followed by a 

fine grain search procedure, was used to determine the binding site for sugars in the outer 

membrane protein A in E.coli, a key interaction in the pathogenesis of neonatal 

meningitis.  These results are being further extended in suggesting possible peptide 

antagonists and drugs for therapeutic strategies.   

 Prediction of binding site of ligands in proteins, starting with the apo-protein is 

one of the challenges in the field of virtual ligand screening. HeirDock was modified for 

accurately predicting the ligand binding sites in apo-proteins that undergoes significant 

structural changes on binding to a ligand.  The method was evaluated for finding the 

binding site for methionine in methionyl tRNA synthetase.  We followed up on our 

understanding of binding mechanism in aminoacyl tRNA synthetases by attempting to 

design these enzymes to bind to non-natural amino acids.  Using the computational 

protein design software (ORBIT), a phenylalanyl-tRNA synthetase variant that allows 

efficient in vivo incorporation of aryl ketone functionality into proteins was designed. 

 Ligand- induced conformation changes are commonly seen in proteins.  We have 

developed a procedure by combining computational protein design with methods from 

mean-field theory to design protein sequences capable of switching between two 

completely different protein folds on chelating to metal.  This method is potentially 

useful in characterizing protein sequence-structure relationships. 
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Chapter 1 

Introduction to Molecular Docking and Virtual Ligand 

Screening 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 



 
 I-3 

Protein interactions with ligands, other proteins, or surfaces are controlled 

by a complex array of intermolecular interactions.  Such interactions depend both 

on the specific interactions in the binding site as well as the non-specific forces 

outside the binding pocket.  This interplay of specific and non-specific forces 

controls all protein interactions ranging from bimolecular collisions in solutions to 

adhesion between cells.  The complexity of interactions between proteins and 

flexible target molecules, including other proteins, nucleic acids and small 

molecules, is often determined by the considerable flexibility of the protein binding 

sites and by the structural rearrangements that occur upon binding of the associated 

molecule.  

A goal of many biophysical studies is to determine the molecular forces that 

control biological interactions and to use this information to rationally manipulate 

protein function by modifying the protein, the interacting ligand, or both.  The 

forces that control protein behavior and their physical chemical origins are inferred 

from equilibrium binding kinetic measurements or are calculated with molecular 

models.  Calculated energies are used to identify the role of the physical and 

chemical interactions in protein function and behavior.  Although detailed 

calculations are feasible for small molecules, such calculations become prohibitive 

as the size and complexity of the biological macromolecules increase.  Time-

dependent forces between soft or mobile species add yet another degree of 

complexity, while static models of interactions do not describe the full range of 

parameters that influence biological behavior.   
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As we approach the post-sequencing phase of many genome projects, it is 

estimated that the number of potential drug targets will increase from about 500 to 

5000-10000 in the next few years (Drews, 2000).  The scope and the importance of 

structure-based drug design will also increase significantly.  Virtual ligand 

screening using in silico methods can provide prospective leads and is a practical 

alternative to high-throughput screening of large compound libraries provided the 

binding modes and affinities of the distinct ligands can be predicted correctly.  The 

docking and scoring problems countered in this endeavor are central to the theory of 

bimolecular interactions and are ultimately determined by the nature of the 

underlying binding energy landscape.  However, the desired synergy of adequate 

conformational sampling combined with accurate evaluation of energetics has been 

difficult to achieve with any computational model.    

Computational structure prediction of ligand-protein complexes using 

docking methods, like DOCK, FLEXx, and GOLD (Ewing et al., 2001; Jones et al., 

1997; Kramer et al., 1999), in combination with empirical scoring functions are 

used to predict ligand orientations in binding sites and binding affinities of ligands 

to proteins.  While the binding geometries depend on the docking methods, binding 

energy estimates rely heavily on the potential functions used to calculate them.  

Knowledge based potentials fo llow rules based on statistical analysis of binding 

affinities and geometries of experimentally determined protein- ligand complexes.  

These rules are converted to “pseudo-potentials” which are then applied to score 

computer generated ligand orientations (Gohlke et al., 2000; Muegge & Martin, 

1999).  A major concern with such methods is that they might only select for those 
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orientations that have been observed in the crystal structures used to derive the 

potential.   

Regression-based scoring functions estimate binding affinities by adding up 

interaction terms derived from the weighted structural parameters of the complexes.  

The weights are assigned by regression methods by fitting predicted and 

experimentally determined affinities to a given set of training complexes (Bohm 

and Stahl, 1999).  A concern with these methods is the dependence on the size, 

composition, and generality of the training set used to derive the weights (Tame, 

1999).  Moreover, such methods can only interpolate and thus, are unable to 

identify new molecular scaffolds that are not present in the training set.  

Nevertheless, improvements in regression-based methods have contributed to some 

encouraging examples demonstrating the potential of such techniques (Rognan et 

al., 1999).   

First-principle-based approaches also approximate binding free energy by 

adding up individual contributions of different interactions.  However, the 

individual energy terms are derived from physico-chemical theory and are not 

determined by fitting to experimental affinities.  In most cases, gas phase molecular 

mechanical contributions are combined with solvation free energies.  Evaluation of 

solvation energy is a challenge both in terms of computational demands and 

accuracy (Massova and Kollman, 2000).  The methods used to calculte solvation 

include implicit solvent methods like Possion-Boltzmann and surface generalized 

Born methods (Shoichet et al., 1999). The gas phase energy calculations depend on 

the type of the force field, for example, AMBER, CHARMM, DRIEDING (Brooks 
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et al., 1983; Mayo et al., 1990).  First-principle based approaches often calculate 

the correct order of the binding free energies but the numbers generally exceed the 

experimental values significantly.   

Protein flexibility and the dynamics of inter molecular interfaces can 

regulate binding affinity and specificity in molecular recognition.  It has been 

suggested that structural stability and flexibility during molecular recognition are 

associated with the ruggedness of the underlying binding energy landscape and can 

be related to various functions, such as specificity or permissiveness in recognition.  

However, predicting the correct substructures of the protein- ligand complexes is 

extremely difficult, especially in cases where the binding site of a flexible protein is 

unknown.  Hierarchical approaches incorporating both ligand and protein 

flexibilities have contributed to recent progress in ligand-protein docking.  Such 

procedures include multistage docking approaches and a hierarchy of energy 

functions that aim to capture the subtleties of protein flexibility on ligand binding.   

Our method of virtual ligand screening, called HierDock (Figure I-1), uses 

flexible ligand docking using DOCK 4.0 as a coarse grain search followed by fine 

grain dynamics based on first principles.  An advantage of using DOCK 4.0 is that 

its fragment-based ligand reconstruction scheme can effectively generate a large 

number of ligand conformations in a very short time using a fast, although crude 

scoring function based on van der Waal’s and columbic interactions.  The ligand 

ensemble generated from DOCK is then passed on to the next level: a finegrain 

molecular dynamics simulation where the ligand is allowed to optimize in the 

binding pocket.  The fine grain optimization step involves simulations with implicit 
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solvent and also allows protein flexibility. Our results are verified with 

experimental observations aimed at improving the fine grain optimizations scoring 

techniques.  Besides trying to improve the HierDOCK procedure, we have also 

applied the technology in trying to answer interesting biological questions and have 

found our current technology can be leveraged to understand pathogenesis of E. coli 

meningitis (Chapter 2).  By combining docking with quantum chemistry, we have 

delineated an interesting biological mechanism by which antibodies oxidize water 

molecules to produce hydrogen peroxide (Chapter 3).   In searching for binding site 

for small ligands in large, flexible globular proteins, we have incorporated 

modifications in both the coarse and fine grain levels and have been successful in 

finding the binding region of methionine in methionine tRNA synthetase (Chapter 

4).   
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regions interaction with the lipid bilayers in membrane proteins) 
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DOCK4.0  
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Optimize Protein plus ligand and select  

Score using PBF/SGB/AVGB solvation and select 
best few    

Fine grain MD search  
Dreiding FF and QEq charges with solvation) Obtain optimum local 

conformation Select best 10% 
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Chapter 2 
 

Interaction of E. coli Outer Membrane Protein A with Sugars on the 
Receptors of the Brain Microvascular Endothelial Cells 
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ABSTRACT 

E. coli, the most common gram-negative bacteria, can penetrate the brain 

microvascular endothelial cells (BMEC) during the neonatal period to cause meningitis. 

Experimental studies have shown that outer membrane protein A (OmpA) of E. coli plays 

a key role in the initial steps of the invasion process by binding to specific sugar moieties 

present on the glycoproteins of BMEC.  These experiments also show that polymers of 

chitobiose (GlcNAcβ1,4-GlcNAc) block the invasion, while epitopes substituted with the 

L-fucosyl group do not.  

We have used a hierarchy of coarse grain docking method with molecular 

dynamics (MD) to predict the binding sites and energies for interactions of 

GlcNAcβ1,4GlcNAc and other sugars with OmpA.  The results suggest two important 

binding sites for the interaction of carbohydrate epitopes of BMEC glycoproteins to 

OmpA.  We have identified one site as the binding pocket for chitobiose (GlcNAc1, 

4GlcNAc) in OmpA, while the second region (including loop 1 and 2) may be important 

for recognition of specific sugars.  We find that the site involving loops 1 and 2 has 

relative energies that correlate well with experimental observations.  This theoretical 

study elucidates the interaction sites of chitobiose with OmpA and the binding site 

predictions are testable either by mutation studies or by invasion assays. These results can 

be further extended in suggesting possible peptide antagonists and drug design for 

therapeutic strategies.  
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Introduction 

E. coli, a common gram-negative bacterium, causes meningitis during the 

neonatal period (1,2).  The morbidity and mortality associated with this disease has 

remained significant with case fatality rates ranging from 15% to 40% of the infected 

neonates while ~50% of the survivors sustain neurological sequelae (1,3).  Incomplete 

understanding of the pathogenesis and pathophysiology of E. coli meningitis has 

hampered the development of new therapeutic avenues, thus contributing to the high 

morbidity and mortality.  For example, E. coli meningitis develops as a result of 

hematogenous spread. However, it is not clear how the circulating E. coli traverses across 

the blood-brain barrier, which contains a single cell lining of the brain microvascular 

endothelial cells (BMEC).  Several cell surface structures (such as S-fimbriae) present in 

E. coli are involved in the pathogenesis of E. coli meningitis.  However, one of the more 

important steps involves the interaction of OmpA with the BMEC.  Prasadarao et al (4) 

showed that the expression of outer membrane protein A (OmpA) enhances the E. coli 

invasion of BMEC.  Thus  OmpA+ E. coli strains invade BMEC with 50- to 100-fold 

higher frequency than OmpA- E. coli strains (4).  Moreover, OmpA interacts with a 95 

kDa BMEC glycoprotein for E. coli invasion, which is specifically expressed in 

endothelial cells of brain origin but not of systemic origin (N. V. Prasadarao private 

communication). To examine the specificity of interaction of the sugar moietie s on Ecgp, 

the glycoprotein of BMEC, the BMEC was treated with wheat germ agglutinin (WGA), 

which blocked E.coli invasion (5).  Since WGA is specific to binding of GlcNAcβ1-

4GlcNAc epitopes, it was concluded that WGA binds to GlcNAc-β1-4GlcNAc epitopes 



  
 II-4   

on the glycoprotein on BMEC, thus preventing invasion.  However treatment of BMEC 

with WGA does not block the interaction of S-fimbriae (specific for NeuAc2,3-Galactose 

epitopes) binding to BMEC.  This suggests that the inhibition is specific to chitobiose and 

not a mere steric hindrance by lectin.  Other lectins such as ConA (specific to mannose) 

and AAL (specific to NeuAc2,3-Galactose) did not show such blocking activity (6).  In 

addition, during invasion OmpA+ E. coli induces actin filament rearrangement in BMEC, 

but this rearrangement is blocked significantly by both chitobiose and wheat germ 

agglutinin (7).  On the other hand, OmpA- E. coli did not exhibit any effect on actin 

rearrangement (7).  Moreover, chitobiose-sepharose chromatography shows binding of 

OmpA to chitobiose, suggesting that the observed inhibition is due to the direct 

interaction of OmpA with GlcNAcβ1-4GlcNAc epitopes. 

Prasadarao and coworkers have further shown that masking of OmpA binding 

sites for GlcNAcβ1-4GlcNAc epitopes with these chito-oligomers significantly reduces 

the incidence of meningitis in newborn rat model of hematogenous meningitis, 

suggesting the biological relevance of this interaction (6).  They tested simple 

disaccharides such as chitobiose, lactose, cellobiose and fucosyl substituted chitobiose for 

invasion assays and showed clearly that chitobiose blocks the invasion of BMEC by E. 

coli while lactose, cellobiose and fucosyl substituted chitobiose do not.  

Although the GlcNAcβ1-4GlcNAc epitopes are universally present on many N-

linked glycoproteins, studies by Prasadarao et al., indicate clearly that OmpA interaction 

with GlcNAcβ1-4GlcNAc epitopes on Ecgp is crucial for the establishment of the 

disease.  It has been demonstrated (8-10) that the same sugar or amino acid present on 

different proteins can contribute to specificity of the pathogen (5,6).  For example, 
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enteropathogenic E. coli binding to epithelial cells depends on type 1 fimbriae, which is 

specific to the mannose residue and can be blocked by mannose sugar (6). However, the 

same strain does not bind to BMEC very efficiently even though BMEC contain mannose 

residues.  This suggests that either the protein sequence and conformation around the 

GlcNacβ1-4GlcNAc epitopes in Ecgp or the density of the carbohydrate-bearing proteins 

on BMEC differ from that of epithelial cells and might depend on the microenvironment 

of the cells. Thus these extensive biochemical studies provide evidence that OmpA 

interacts with chitobiose and that this interaction could be important in the initial steps of 

the E.coli pathogenesis.  

Experiments have also shown that two short synthetic peptides (the hexamer, 

Asn27-Gly32 and the pentamer, Gly65-Asn69) generated from the N-terminal amino acid 

sequence of OmpA exhibit significant inhibition of OmpA-contributed E. coli invasion of 

BMEC (5).  These results indicate that the interaction of amino acid residues in loops 1 

and 2 of the OmpA interact with GlcNAcβ1-4GlcNAc epitopes for E. coli invasion of 

BMEC.   

On the other hand, OmpA mediated E. coli invasion was not observed with 

systemic endothelial cells such as HUVEC (5). Further studies on systemic endothelial 

cells revealed that the majority of GlcNAcβ1-4GlcNAc epitopes are substituted with L-

fucose, thus possibly blocking the interaction with OmpA for E. coli invasion.  

These findings strongly implicate OmpA as the necessary microbial structure for 

the neurotropic nature of E. coli to invade BMEC, an important event in the pathogenesis 

of E. coli meningitis. Blocking of OmpA binding site by small molecules is a potential 
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strategy to prevent the penetration of E. coli into central nervous system.  Thus, to lay the 

groundwork for rational drug design, we initiated studies of the molecular level 

interactions of OmpA with chitobiose and other disaccharides already tested 

experimentally. 

OmpA is a highly conserved outer membrane protein of E. coli with a molecular 

weight of ~35 kDa (325 amino acids) containing eight transmembrane domains and four 

extracellular loops.  The crystal structure of the N-terminal 1-171 residues in the 

transmembrane domain of OmpA has been solved (11) to a resolution of 2.5Å and further 

refined to 1.65Å (12).  The crystal structure consists of a regular eight-stranded β-barrel 

with large water-filled cavities, but does not form a pore. The barrel is exceptionally long 

with an average length of 13 residues. The barrel interior is polar with salt bridge 

networks that form a barrier for passage of water or ions.  Nevertheless, it contains water 

filled cavities that could serve  as interaction sites with other proteins.  The four 

extracellular loops are mobile and not well defined in the crystal. The high-resolution 

structure of OmpA (12) is better resolved in the transmembrane regions, but there are 

several missing residues in other regions.  Hence our study uses the 2.5Å structure (pdb 

code: 1bxw) since this was complete (11).  The hexamer, Asn-27-Gly-32 and pentamer, 

Gly65-Asn69, tested for inhibition of E. coli invasion are present in the extracellular 

loops L1 and L2.  

We use the HierDock first principles simulation procedure (13) to predict the 

binding site of chitobiose in OmpA. The HierDock procedure finds two important 

interaction sites on OmpA favorable to chitobiose.  Substitution of fucosyl group on 
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chitobiose makes the  epitope very unfavorable for binding to OmpA, providing an 

explanation for why E.coli does not invade the systemic endothelial cells.  

 

Methods and Validation 

To obtain an accurate description of the binding of small molecules to a protein 

requires an accurate description of the forces between them plus an accurate description 

of the changes in solvation that accompany binding.  Also required is a comprehensive 

conformation search over the potential binding sites while considering all plausible 

conformation changes in the ligand and the protein.  The best computational methods are 

believed to provide reasonably accurate predictions of relative binding energies (14-16); 

however, for cases where the binding site is not known it is not practical to use these 

most accurate methods at every possible site.  Thus we have developed the HierDock 

hierarchical strategy that starts with a coarse grain search (fast but not too accurate) over 

the full protein to identify the best sites for finer grain studies, which are followed by a 

succession of increasingly accurate but increasingly costly studies that ultimately include 

an accurate description of solvation and fully flexible protein and ligand.  HierDock has 

previously been applied successfully to predict the binding of non-natural amino acids to 

phenylalanyl t-RNA synthetase (17) and to predict the affinity of odorants to the 

mammalian olfactory receptor (13), a membrane-bound protein.   

HierDock uses a coarse grain Monte Carlo procedure [currently, DOCK4.0 (18)] 

to select an ensemble of conformations over which to do a hierarchy of more accurate 

(fine grain) Molecular Dynamics (MD) annealing (19) to optimize the ligand in the 
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various potential binding sites.  The MD calculations use an all-atom forcefield (FF) with 

continuum solvation calculations of the energies and forces arising from solvation for 

both the ligand and the protein receptor (20,21).  The Poisson-Boltzmann (PB) 

description (20) leads to accurate energies and forces to describe the solvent effects on 

the energies and structure of small molecules.  However, PB is too slow for MD. 

Consequently, we use the Surface Generalized Born (SGB) method (21), which leads to a 

reasonably accurate description of the solvent effects at considerably less cost.  We have 

found that the SGB method leads to results as accurate as the PB method in describing 

the electrostatic response of the solvent (22).  These solvation methods have been used in 

our calculations of scoring functions.  

FF Validation Studies: Critical elements of the HierDock protocol are the 

hierarchical sequence of conformational searching, the accuracy of the FF, and the 

inclusion of solvation in the calculating structures and binding energy.  

We use the DREIDING FF (23) with CHARMM (24) charges for the protein and 

charge equilibration (25) charges for the carbohydrate/sugar ligands.  This approach has 

been used previously to study the binding of chitin (a polysaccharide) to family 18 and 19 

chitinases (26,27).  Simulated annealing dynamics were reported (26) for hexaNAG 

substrate binding to family 18 chitinase.  The RMS in coordinates for all atoms in the 

binding site was 2.13Å, which is within the crystal resolution.   

In another study (28) the structure of sugars bound to proteins were predicted and 

compared to co-crystal structures available for these complexes.  Calculations for the 

binding of L-arabinose and D-fucose to the L-arabinose binding protein (pdb code: 1abe) 

were performed. Starting with the crystal structure (1abe) the ligands were removed from 
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the binding pocket and using the HierDock protocol (DREIDING FF) and we docked L-

arabinose and D-fucose to 1abe structure.  The predicted structures of the protein/ligand 

complexes are in good agreement with the crystal structures (coordinate RMS error of 

0.4Å compared to the crystal structure of L-arabinose in L-arabinose binding protein, 

1abe).  The coordinate RMS error for D-fucose binding to L-arabinose binding protein is 

1.4Å compared to the corresponding crystal structure (1abf).  Using a single target 

protein as a starting point we predicted the co-crystal structure of both L-arabinose and 

D-fucose binding to L-arabinose binding protein.  This is in fairly good agreement with 

co-crystal structures, of resolution 1.7 and 1.9Å for 1abe and 1abf respectively.   Other 

groups have also used the DREIDING FF for molecular dynamics for glycoproteins (29).   

Summarizing, a number of studies validate that our FF and charges should lead to 

reasonable binding sites and energies for sugar protein complexes such as in the current 

study.  Indeed we report here that the calculated binding energies for various sugars to 

OmpA correlate well with experimental invasion assays.  

Application of HierDock protocol to sugars binding to OmpA. 

A. Coarse grain docking ensemble 

Starting with the crystal structure of OmpA, we removed the waters so that the 

volume of the receptor site will be explored more completely.  The HierDock procedure 

was as follows. 

1. Sampling volume. The docking site was not known for OmpA and hence the 

negative image of the entire receptor's molecular surface was mapped as shown in Fig. 

II-1, and filled with a set of overlapping spheres.  A probe of 1.4 Å radius was used to 
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generate a molecular surface with 5 dots/Å.  Sphere clusters were generated for the whole 

binding site using the program Sphgen. 

2. Defining regions for docking: The sphere filled volume from step1 representing 

the possible binding sites, was partitioned into 12 regions. These regions included the 4 

loops, the space in between the loops, and the space inside the barrel till half way within 

the transmembrane region.  Since the barrel is very narrow and the ligands are reasonable 

big, it seemed improbable that the ligand would go deep into the barrel without any steric 

clashes. Moreover, the sugars are attached to Ecgp, the glycoprotein on the BMEC 

surface that will further prevent it from going far into the barrel cavity.  Also, the barrel 

has internal polar networks that form a prominent barrier in the barrel interior with 

ordered water molecules inside the β  barrel.  

3. Ensemble selection (scoring): To generate an ensemble of docked receptor-

ligand complexes, we used the program DOCK (version 4.0) to sample various 

orientations and conformations of the ligands in the receptor site.  We used flexible 

ligand docking option in DOCK4.0, with torsion minimization of ligands.  A non-

distance dependent dielectric constant of 1 and a distance cutoff of 10 Å were applied for 

calculating protein- ligand coulombic interaction energy. The energy score in DOCK4.0 

uses coulombic energy and van der Waals energy as described in reference 18. The 

conformations were ranked using energy scoring in DOCK4.0. The top 10-30 

conformations were selected by energy score for each ligand in each of the 12 potential 

binding regions. These selected conformations were further used for fine grain molecular 

dynamics calculations.   
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B. Fine grain MD search  

The next step in HierDock is to perform a fine grain MD with an all atom 

forcefield to optimize the ligand conformation inside the binding pocket.  

1. Annealing Molecular Dynamics: For each of the 12 regions, the 20 best scoring 

docked conformations from DOCK were subjected to five cycles of annealing dynamics 

(each from 50K to 600K and back to 50K with 25 picoseconds of MD at each 

temperature).  This allows for the optimization of the ligand conformation in the protein. 

One lowest energy conformation is stored from each cycle of annealing MD. The 

energies of the best-annealed structures were calculated using all atom DRIEDING 

forcefield (23) and SGB continuum solvation model.  We find that this step of ligand 

optimization is critical in getting energetically favorable conformations for the complex 

(Protein plus ligand).  

2. Binding Energy Calculation: The binding energies of the 20x5 annealed 

structures for each ligand in each of the 12 docking regions were calculated.  Binding 

energies were calculated using DREIDING forcefield, and charge equilibration (24) 

charges using MPSim simulation code (19). Solvation effects for ligand binding were 

calculated using the SGB description of the continuum solvent model. The binding 

energy is calculated as the difference between the total energies of the complex (protein 

+ligand) and the sum of the protein and ligand energies. The best conformation from this 

pool was selected by the binding energy for each of the 12 docking regions. 

Summarizing, the HierDock protocol uses a hierarchical strategy for conformation 

search and a corresponding scoring function to select a subset of structures for the next 

level.  The coarse grain level (DOCK4.0) uses a crude scoring function including just 



  
 II-12   

coulombic and van der Waals interactions of the ligand with the protein.  Using this 

scoring function a subset of conformations generated by DOCK4.0 is selected for the 

annealing step. At the fine grain level (annealing MD level) the scoring function uses an 

all tom forcefield and continuum solvation method to calculate the binding energies and 

select the best-bound structure of the ligand in the protein. 

C. Selection of the best two regions through application to Chitobiose 

A complete scanning of all possible docking regions for OmpA was done with 

chitobiose.  The structure of the ligands used is shown in Fig. 2.2. The final 1200 

structures in 12 regions (100 conformations from each region) were scored using SGB 

solvation and DREIDING forcefield. Comparison of the binding energies in various 

regions showed that regions 1 and 2 shown in Figure II-3 have the best binding energies.  

Hence, these two regions were ranked are possible binding sites. The binding energy of 

conformations of chitobiose in regions 1 and 2 were about –15 kcal/mol and –20 

kcal/mol, the difference being 5 kcal/mol, was small enough to treat these two regions on 

an equal footing.  Hence these two regions were kept as possible binding regions for 

chitobiose.  The binding energy of chitobiose in other regions was less than –5 kcal/mol 

and hence considered insignificant compared to regions 1 and 2.  

D. Application to all four ligands 

Having identified the probable binding sites for chitobiose, we then carried out 

the complete sequence of HierDock calculations over regions 1 and 2 for the three 

ligands using structure of the ligands shown in Figure II-2.   

Fucosylated chitobiose 
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Cellobiose  

Lactose 

Thus, these ligands were docked and the structures were further annealed using 

MD and all the resulting complexes (OmpA+ligand) were optimized (energy minimized) 

using conjugate gradient method. Finally, the binding energies of these ligands were 

calculated and ranked in these two binding sites.  

E. Optimization with the flexible binding site on OmpA 

Protein flexibility is critical to determining the binding conformation and the 

critical ligand protein interactions energies.  Hence, we performed five cycles of 50ps 

annealing MD heating from 50K to 600K and cooling from 600K to 50K for the best 

conformation of chitobiose bound to region 2. These simulations were performed 

allowing the ligand and all the amino acid residues that are in the top half of the barrel in 

Figure II-3 to be flexible but keeping the rest of the protein fixed.  These simulations 

optimized the hydrogen bonds and van der Waals contacts made by the ligand to 

particular residues in the binding cavity. The final conformation from these simulations 

was used for all analysis. 

Results and Discussion 

Using the procedure described above we predicted the binding site and binding 

energies of sugars in OmpA.  Regions 1 and 2 shown in Figure II-3 were ranked as the 

most favorable regions for binding of the best ligand (chitobiose) in OmpA.  The binding 

energy of the best conformation of chitobiose is –15.42 kcal/mol in regions 1 and–20.50 

kcal/mol in region 2.  In contrast the calculated binding energy of chitobiose in all other 
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regions was worse than -5.0 kcal/mol.  Hence we consider region 1 and region 2 as likely 

binding sites for chitobiose in OmpA.  Indeed peptides from region 1 [between external 

loop structures loop1 (L1) and loop2 (L2)] have been tested experimentally for inhibition 

of E.coli invasion.   

The binding energies of chitobiose, fucosylated chitobiose, lactose, and cellobiose 

in regions 1 and 2 are shown in Figure II-4.  The result is that chitobiose has the best 

binding energy in both regions 1 and 2.  This indicates that binding of chitobiose in these 

two regions of OmpA is specific. Experimentally, chitobiose dramatically reduced 

invasion (>95%) when BMEC are infected with E. coli K1 after pretreating with ligands 

(5), while none of the other ligands show reduced invasion.  Thus we find a good 

correlation between the binding energies of the ligands to OmpA and the experimental 

invasion assay measurements.  This suggests that binding to OmpA may be a necessary 

step in the pathogenesis of bacterial meningitis.  

Figure II-5 shows the contribution of the valence and non-bond energies to the 

binding energy. Interestingly, lactose and cellobiose (both similar in size to chitobiose) 

do not show good binding energies.  We attribute the lack of good binding energy for 

lactose compared to chitobiose to the absence of NHCOCH3 group.  The hydrogen bonds 

made by the NHCOCH3 group in chitobiose to His152, His20, and Arg157 are absent in 

lactose and cellobiose.  On the other hand fucosyl substituted chitobiose in region 1 has 

non-bond interactions similar to chitobiose but the binding is weakened by the steric 

clash with the bulky fucosyl substitution.  In region 2, fucosyl chitobiose does not have 

favorable non-bond interactions since it loses hydrogen bonds to His152 and Arg 157.  
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Fucosyl chitobiose is a bulky ligand that does not bind to OmpA due to steric 

hindrance from the protein.  We observed that during step B.1 of the HierDock protocol 

(i.e., the ligand annealing MD for fucosyl chitobiose with OmpA fixed in region 2) the 

sugar ring was forced into a boat conformation due to steric clashes with the fixed 

protein.  We found that the ligand gets trapped in this conformation during the cooling 

phase of annealing MD, resulting in a strained state for fucosyl chitobiose.  Such a 

transformation to the boat form does not occur if annealing MD is performed with all 

protein atoms are allowed to move along with the ligand.  However, even with full 

relaxation (to the chair form) the binding energy of fucosyl chitobiose is still worse than 

chitobiose by 14.2 kcal/mol.  We consider that annealing MD with all atoms movable is 

too expensive computationally to do for all docked structures.  Thus we refined the 

HierDock procedure to identify the large strain energies (caused in this case by the chair 

to boat transformation) in the internal energy of the ligand during protein fixed annealing 

MD.  Then for structures leading to high internal strain energy, the HierDock procedure 

now carries out annealing MD with all protein atoms movable when calculating the 

binding energy.  

Chitobiose makes a number of critical contacts with residues on the loops in 

region 1 and region 2.  In region 1, it makes significant contacts with residues Val 68, Ser 

67, and Glu 69 on loop L2 and with Asn 27, Asn 28, and Ile 25 on loop L1 (Table 1).  

The NHCOCH3 group on chitobiose makes a critical hydrogen bond with Asn 27 as 

shown in Figure II-6.  There is experimental support of a role for residues in region 1.  A 

number of peptides have been tested experimentally for inhibition of E. coli invasion, but 
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only peptides from L1 and L2 were able to block invasion when compared against 

random peptides.  This correlates very well with our predicted site in region 1.  

Region 2 is in the water filled pocket between the extracellular loops. Chitobiose 

makes a number of contacts in this region including a number of van der Waals contacts 

with loops L1, L3, and L4, and with some residues in the β-barrel.  The residues that are 

within 5Å of chitobiose are listed in Table 1. Chitobiose is partially buried in the cavity 

between the loops (Table 1) and present in the boundary between the β-barrel and the 

loops. Chitobiose makes electrostatic contacts with Trp 103, Arg 157 and His 152 (shown 

in Figure II-7). On annealing MD with the protein cavity movable, the loops come closer 

to complex more strongly with the ligand. Loops 1 and 4 show maximum displacements 

from the original crystal structure (Figure II-8). Annealing dynamics suggest that 

chitobiose stays at the mouth of the cavity rather than going far into the cavity.  OmpA 

has a very narrow pore, which hinders chitobiose from inserting further into the cavity. 

We suggest experimental studies on invasion assays using the peptides from this list of 

residues in Table II-1.  

In this study we correlated the binding energies to the percentage invasion results 

from invasion assay experiments.  It should be noted that many other steps might be 

involved in the pathogenesis leading to invasion of BMEC by E.coli.  The correlation 

between the calculated binding energies and invasion assay results suggests that the 

binding of OmpA is a necessary step in the pathogenesis.  Of course there may be many 

other important factors.  To further validate this model, we suggest several experimental 

tests of the predictions made by the model:. 
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1. Synthesize peptides from binding region 2 on OmpA and test the efficacy 

of these peptides for blocking of E. coli invasion.  For example we recommend testing 

the following peptides for blocking invasion: QYHDTGLIH, QYHDT, HDTGL, TGLIH, 

DTGLI, GMVWRADTWS, GMVWR, ADTWS, VWRAD, KNHDT, NHDT, 

TNNIGDAHTIGTRPDNG, TNNIG, DAHTI, GTRPDNG, NIGDAHTIGTRPD, 

TRPDNG, NNIGDAHT, AHTIGTRPDN  

2. Carry out point mutation studies for OmpA, targeting the polar and 

charged residues within 3Å of chitobiose in region 2.  Our predicted binding site suggests 

that mutations of residues Asp117, Asn147, His152, Arg157, and Asp159 will lead to 

disruption of OmpA interaction with chitobiose.  

3. Design small molecule drugs that would bind more strongly than 

chitobiose to regions 1 and 2 to inhibit the OmpA invasion of BMEC.  We are currently 

using the data from our predicted sites to search for new compounds for experimental 

tests. 

 The glycoprotein (Ecgp) that interacts with OmpA has been sequenced 

and its two glycosylation sites have been recently identified by Prasadarao et al. 

(unpublished results).  Based on these modeling studies we propose two possible 

mechanisms of OmpA binding to the sugars in Ecgp.   

• One possibility is a two-step mechanism: Here the chitobiose is first 

recognized by the loop1 in region 1 and then transferred to region 2 for stronger binding.  

In this case it seems plausible that region 1 is a recognition region and region 2 is the 

binding region.  This recognition mode involving a sequence of two interaction regions 
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has been shown for such other membrane proteins as CCR5 (30), a cofactor of CD4 in 

HIV invasion.   

• A second plausible mechanism is that two sugar moieties from two 

glycosylated sites from Ecgp interact with both sites of OmpA at the same time. This 

might give stronger binding constants and additional selectivity. 

Conclusions 

We find two regions on OmpA that are potential interaction sites for GlcNAc1 

and 4GlcNAc epitopes on glycoproteins of BMEC.  For both the regions, we showed that 

OmpA of E. coli, binds most favorably to chitobiose as compared to cellobiose, fucosyl 

substituted chitobiose and lactose.  The difference in the binding energies of OmpA with 

chitobiose and fucosylated chitobiose is of significance in understanding the pathogenesis 

of E. coli meningitis.  Since most of the systemic cells of the body have fucosylated 

glycoproteins, this explains the specificity of E. coli invasion of BMEC.  A good binding 

between OmpA and chitobiose arises from specific interactions of the NHCOCH3 groups 

on chitobiose with the OmpA residues.  Lactose and cellobiose, although they have the 

same β1-4 linkage as chitobiose, they lack the NHCOCH3 group that is important in 

making favorable specific interactions.  Fucosylated chitobiose, on the other hand, makes 

good contacts with the receptor and has a high non-bonded energy but it has an 

unfavorable valence energy.  

The binding site predictions made are testable either by point mutation studies or 

by invasion assays.  It is important to note that we have studied the interaction of only 
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sugars with OmpA, because the experimental invasion assays were tested with the same 

sugars.  
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Table 1 : List of residues that are in the binding regions 1 and 2 of chitobiose. Residues 
listed here are within 5 Å of chitobiose in regions 1 and 2. Residues in bold are within 
 3 Å of chitobiose and make critical contacts with chitobiose.  

 

 

        Loop1         Loop2          Loop3           Loop4  Barrel 

Region1 Ile25  Asn26  

Asn27  Asn28  

Gly29   Pro30 

 

Ser67 Val68  

Glu69 

   

Region2 Gln18  Tyr19  

His29  Asp21  

Thr22  Gly23  

Leu24  Ile25  

His 20 

 Gly100    

Met101 Val102   

Trp103 Arg104   

Ala105 Asn115  

His116  Asp117  

Thr118 

Thr145  Asn146  

Asn147 Ile148 

Gly149 Asp150  

Ala151  His152  

Thr153  Ile154    

Gly155  Thr156   

Arg157  Pro158  

Asp159 Asn160  

Gly161 

Asp106  Thr107  

Tyr108  Ser109  

Lys114   
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Figure II-1 Sphere filled volume representing the possible binding sites on 

OmpA. (a) shows the side view of the protein and (b) represents the top view. 
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Figure II-2 Sugars used for Docking in the twelve regions of OmpA. 
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Figure II-3 OmpA region 1 and region 2.  Region 1 (weaker binding) is in 

between loops L1 and L2.  Region 2 (stronger binding) is in the water filled cavity 

between the 4 loops. 
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Figure II-4 Binding energies of the four ligands in regions 1 and 2.  Chitobiose 

has the best binding energy in both regions. 
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Figure II-5 Valence and non-bond energy contributions to the binding energy of 

lactose, chitobiose, cellobiose and fucosylated chitobiose in regions 1 and 2. (a) 

Valence energy components in region1.  (b) Non-bond energy components in 

region1.  (c) Valence energy components in region 2.  (d) Non-bond energy 

components in region.  
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Figure II-6.   Important residues within 5 Å of chitobiose in region 1 (between loops, L1 

and L2).   
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Figure II-7. Residues within 3Å of chitobiose in region 2.  Residues on loop4 

(which moves significantly) make important contacts with chitobiose.  Almost all 

residues within 3Å of chitobiose are either polar or charged 
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Figure II-8 Four loops move significantly on binding to chitobiose.  Loop4 and 

Loop1 show maximum change in structure. 
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Chapter 3 
 

Mechanism for Antibody Catalysis of the Oxidation of Water by  
Singlet Dioxygen 
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Abstract 

Wentworth and coworkers (Wentworth et al. (2001), Science, 293,  1806-1811) 

recently reported the surprising result that antibodies and T-cell receptors efficiently 

catalyze the conversion of molecular singlet oxygen (1O2) plus water to hydrogen 

peroxide (HOOH).  Recently quantum mechanical (QM) calculations were used to 

delineate a plausible mechanism, involving reaction of 1O2 with two waters to form 

HOOOH (plus H2O), followed by formation of HOOOH dimer, which rearranges to form 

HOO-HOOO + H2O, which rearranges to form two HOOH plus 1O2 or 3O2.  For a system 

with 18O H2O, this mechanism leads to a 2.2:1 ratio of 16O:18O in the product HOOH, in 

good agreement with the ratio 2.2:1 observed in isotope experiments by Wentworth et al. 

In this paper we use docking and molecular dynamics techniques (HierDock) to 

search various protein structures for sites that stabilize these products and intermediates 

predicted from QM calculations.  We find that the reaction intermediates for production 

of HOOH from 1O2 are stabilized at the interface of light and heavy chains of antibodies 

and T-cell receptors.  This Inter Greek Key Domain Interface (IGKD) structure is unique 

to antibodies and T-cell receptors.   

IGKD interface is not present in β2-microglobulin, which does not show any 

stabilization in our docking studies.  This is consistent with the experimentally observed 

lack of HOOH production in this system. Our results provide a plausible mechanism for 

the reactions and provide an explanation of the specific structural cha racter of antibodies 

responsible for this unexpected chemistry.  
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1.   Introduction 

Recently, Wentworth et al. [1] reported surprising results that antibodies can 

convert molecular oxygen to hydrogen peroxide and they also showed that the antibodies 

catalyze the oxidation of H2O to H2O2 by singlet oxygen molecules, 1O2 [2].  This 

suggests that in addition to the well-known antigen recognition function of antibodies, 

they may also promote destruction of the molecules to which they bind.  This could have 

implications in the function (and malfunction) of the immune system and in the evolution 

of this system. 

Investigations of the long-term photo-production of H2O2 by antibodies and non-

immunoglobulin proteins reveal a remarkable difference [2].  It was demonstrated that 

the sustained high concentrations of H2O2 produced recursively could not have been by 

the oxidation of the amino acids in the antibodies.  Thus, production of H2O2 by 

antibodies remains linear for a much longer period than for all non- immunoglobulin 

proteins tested (up to > 50 mol equivalents of H2O2).  Furthermore, if the H2O2 generated 

during the assay is removed, antibodies are able to resume H2O2 production at the same 

initial rate as at the start of the experiment while other proteins that produce H2O2 do so 

by the photo-oxidation of the amino acids (e.g. tyrosine, tryptophan) and are not able to 

resume the same initial rate of H2O2 production.  These experiments strongly suggest that 

the antibodies play a catalytic role in converting 1O2 plus water to H2O2.   

Through isotopic labeling experiments Wentworth et al. [1] concluded that water 

was oxidized by the 1O2 generated.  However, the experiments have not provided a 

mechanism to understand how the antibodies and T-cell receptors (TCR) carry out this 

remarkable and unexpected chemistry.  They observed that only antibodies and TCR 
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catalyze this reaction, which implies that these molecules probably have unique structural 

features not present in other proteins.  One unique feature of these systems is the 

interfaces created by the Greek key motifs.  However, β-microglobulin also has a Greek 

key motif but does not convert 1O2 to H2O2.   

The goal of this paper is to determine which sites in the antibodies (and TCR) 

play a role in the process by which 1O2 interacts with H2O to produce H2O2.  A 

companion paper [3] presents quantum mechanical (QM) calculations that delineate 

plausible chemical reaction mechanisms for this chemistry, which are summarized in 

section 3.  Briefly, this mechanism involves formation of HOOOH from the reaction of 

1O2 with H2O dimer, followed by complexing with another HOOOH to form a dimer that 

rearranges to form two HOOH plus O2.  For a system with 18O H2O, this mechanism 

leads to a 2.2:1 ratio of 16O:18O in the product HOOH, in good agreement with the ratio 

2.2:1 observed in isotope experiments by Wentworth et al [1].   

In this paper, we use docking and molecular dynamics (MD) techniques to search 

various protein structures for sites that stabilize these products and intermediates 

predicted from QM calculations.  We used the HierDock docking and MD protocol [4] to 

find antibody sites that might stabilize the reaction intermediates.  These HierDock 

studies considered high-resolution (<2.0Å) crystal structures known to catalyze this 

chemistry (Several Fab fragments of antibodies with varying sequence homology and 

TCR) and other structures (β2-microglobulin) known not to.  We find that all antibodies 

and TCR have unique sites that stabilize the QM intermediates and products, whereas no 

such sites are found for the β2-microglobulin or other proteins.  The deduced catalytic 

sites are at the interface of light and heavy chains of the antibody and TCR.  
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These results suggest a specific structural characteristic of antibodies that is 

responsible for this unexpected chemistry.  Armed with such specific predictions it 

should be possible to design experimental tests that would help verify or discard some of 

the plausible mechanisms.  The predictions about specific important sites in the antibody 

could be used to design mutation studies in the antibodies and TCR to provide detailed 

tests on the role of the antibody.  Since the proposed mechanism does not require an 

energy or electron source (other than 1O2) one might be able to use these insights to 

design nanoscale biomimetics to carry out this remarkable chemistry in very different 

environments.    

 Section 2 presents the methods used in the HierDock protocol, section 3 

summarizes the QM results, section 4 describes the sites in antibody found to stabilize the 

catalytic intermediates, and section 5 discusses the results. 

2.0 METHODS 

To identify plausible catalytic sites in the antibodies, we used the HierDock [4] 

protocol to search the entire antibody structure for sites that would bind to the reaction 

intermediates in Eqn. 1 using the structures obtained from QM [3].  HierDock uses a 

hierarchy of coarse grain docking and fine grain MD methods (including continuum 

solvation forces) to sample possible binding sites for ligands in the protein to determine 

binding sites and energies.  HierDock has been applied successfully to such membrane-

bound proteins as the olfactory receptors [4] and outer membrane protein A of E. coli [5] 

and to phenylalanyl t-RNA synthetase [6].   

In this paper we first used HierDock to search the entire Fab structure for low 

energy binding sites.  Here we partitioned the entire Fab antibody structure into four  
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docking regions that could be searched in parallel.  First, we carried out a coarse grain 

search in each region to generate a set of conformations for ligand binding.  This 

procedure used DOCK 4.0 [7] to generate 20,000 configurations, of which 100 were 

ranked using the DOCK scoring function.  Docking the intermediates and products of this 

reaction was done using rigid ligand option in DOCK4.0    

We then selected the 20 best conformations from DOCK in each region and 

subjected each ligand to annealing MD to further optimize the conformation in the local 

binding pocket while allowing both the ligand and binding cavity (residues with an atom 

within 5Å of the binding ligand) to move.  In this step, the ligand and the binding cavity 

in the protein were heated and cooled from 50K to 600K in steps of 10K (0.05ps at each 

temperature) for 1 cycle.  This allows the protein cavity to readjust for the interaction 

with the ligand.  This fine grain optimization was performed using MPSim [8] and a full 

atom forcefield (FF) (DREIDING)[9].   

In addition we used the Surface Generalized Born (SGB) continuum solvent 

method [10] to obtain forces and energies resulting from the polarization of the solvent 

by the charges of the ligand and protein.  This allows us to calculate the change in the 

overall binding conformation resulting from differential solvation to obtain accurate 

binding energies.  The charges on the various ligands were obtained from quantum 

mechanics (Mulliken population densities at the atom centers), while the charges for the 

protein were from CHARMM22 [11].  A dielectric constant of 80.37 was used for the 

solvent field in the SGB calculation and 2.0 for the inside of the protein.    

From the 20 trajectories of annealing calculations in each docking region, we 

selected the 20 best conformations.  The relative binding energies of the 20 best 
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structures in each region were compared (DREIDING FF with solvation) to decide which 

of the four docking regions leads to good binding energies for the ligands.  In addition to 

the binding energies we also examined the population density of good binding structures 

in each region.  The most populated regions of good structures (structures with good 

binding energies) were chosen for analysis 

3.0 Summary of results from QM calculations and plausible mechanisms   

The QM studies [3] lead to plausible mechanisms for formation and 

decomposition of HOOOH and related compounds.  The most plausible mechanism 

involves several steps: 

a) Reaction of 1O2 with two waters to form HOOOH plus H2O (reaction 1 in Figure 

III-1) 

b) Formation of HOOOH dimer 

c) Unimolecular rearrangement of HOOOH dimer to form [HOO-HOOO + H2O] 

(reaction 2 in Figure III-1) 

d) Unimolecular rearrangement of this complex to form HOOH-OOO + H2O  

e) Unimolecular rearrangement  of this complex to form HOOH product + 

HOOOOH (reaction 3 in Figure III-1) 

f) Fission of the HOOOOH to 2 HOO and association to form cyclic HOO dimer 

(singlet or triplet) 

g) Rearrangement of cyclic HOO dimer to form HOOH product plus 1O2 or 3O2.   

For a system with 18O H2O, this mechanism leads to a 2.2:1 ratio of 16O:18O in the 

product HOOH, in good agreement with the ratio 2.2:1 observed in isotope experiments 
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by Wentworth et al [1].  Depending on the products from steps f and g, this QM based 

mechanism leads to a net reaction of  

2 1O2 + 2 H2O à 2 HOOH + 1O2     (A) 

2 1O2 + 2 H2O à 2 HOOH + 3O2     (B) 

The net reaction in (A) has a molecularity of 2 HOOH formed from each 1O2 is in 

agreement with the experimental results from Wentworth et al.  This excellent agreement 

with the experiments gives some credence to the QM based mechanism. To determine 

sites in antibodies and TCR that might play a role in enhancing these catalytic processes, 

we searched for sites in the antibody that bind 

The HOOOH product of reaction 1 (step a) (part of P1 and of R2)

 (1a) 

The HOOOH dimer (R2) of reaction 2 (step c)  

 (1b) 

The HOOH product of steps e and g (part of P3 in reaction 3)

 (1c) 

Given the clusters of binding sites favorable for these stable intermediates or products, 

we also examined if they would stabilize the reaction intermediates 

TS1: the H2O-H2O-1O2 transition state of reaction 1 (step a) 

 (2a) 

TS2: the transition state for reaction 2 (step c)  

 (2b) 

TS3: the transition state for reaction 3 (step e).   (2c) 
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The gas-phase structures for important intermediates and complexes are summarized in 

Figure III-1.  Some additional comments are: 

• Xu et al [3] finds that the barrier for the direct reaction of 1O2 with H2O to form 

HOOOH is over 60 kcal/mol, whereas the reaction of 1O2 with H2O dimer (R1 of 

Figure III-1) has a barrier (TS1) of ~ 30 kcal/mol.   

• Xu et al [3] find two stable structures for the monomer: trans (P1 of Figure III-1) and 

cis (shown in R2 of Figure III-1).  The cis structure is 2.4 kcal/mol higher in energy 

than the trans structures.  We docked both conformations.  

• Xu et al [3] find 12 stable but distinct structures for the dimer, (HOOOH)2.  The most 

relevant for the formation of HOOH is R2 in Figure III-1. This structure is 4.9 

kcal/mol more stable than the cis-monomer.  We docked this dimer conformation. 

4.0 The Catalytic Site in Antibodies for Catalytic Transformation of 1O2 and H2O to 

HOOH 

4.1 Binding sites in the Fab antibody fragment [crystal structure (4c6.pdb)] 

To seek plausible reaction sites for various steps in the QM mechanism we used 

the 1.2Å Fab crystal structure 4c6.pdb[12], which is the highest resolution Fab crystal 

structure available.  The crystal structure was supplemented by adding hydrogens at 

standard geometries (as given by DREIDING) and hydrated counterions Na+ and Cl- 

were also added to charged side chain residues to maintain neutrality [13].   

The crystal structure was optimized using the FF, charges, and continuum 

solvation methods described in section 2.  This minimized structure has a coordinate 

RMS error of 0.71Å to all atoms of the crystal structure.  (The experimental resolution of 



                                                                  III -10 

the crystal structure is 1.2Å.)  This indicates that the FF, charges, and solvation methods 

are sufficient to describe the system.  We used this optimized 4c6 Fab structure in the 

HierDock protocols to search for sites in the 4c6 Fab structure that strongly bind 

HOOOH, HOOOH dimer, and H2O2 (see Eqn. 1).  In addition, we examined the 

stabilization of the transition states in Eqn. 2 at the predicted binding sites for Eqn. 1.   

4.1.1 Binding sites for HOOOH monomer and dimer 

We find three sites (denoted I1, I2, I3) that strongly bind HOOOH monomer and 

dimer.  Two of these sites (I1, I2) are at the interface of VH and VL and one site (I3)  is 

between CH1 and CL, as shown in Figure III-2a.  To help a reader to locate sites I1, I2, I3 

in the 3D structure, table 1 lists the residues at each site within 5Å of the bound HOOOH 

dimer.  It is interesting that near I1 is trp109 on the heavy chain that is conserved across 

all antibodies and could be a potential sensitizing residue for the singlet oxygen.  

All three sites are at the interface of two Greek key domains and hence we call 

this interface region as “Inter Greek Key Domain Interface” or IGKD.  The two xenon-

binding sites reported by Wentworth et al. [1] in the 4c6 structure lie in the IGKD, very 

close to the sites I1 and I2.  Thus Xe1 is 18.4Å from Site I1 while Xe2 is 11.8Å from site 

I1 and 13.0Å from site I2.  

Since the QM predicted mechanisms require two H2O for the reaction with 1O2, 

we would expect that the reaction site should have ordered water clusters at this site.  

Indeed Figure III-4a and 4b show that the crystal has higher ordered water clusters at site 

I1, I2, and I3, with several water dimers and trimers. Although the QM calculations use a 

second H2O to catalyze the reaction of 1O2 with H2O, it is possible that these IGKD sites 
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that stabilize the water clusters, might also be able to replace the catalytic role of the H2O 

(that is protons from the amino acids surrounding these sties might play similar roles).  

4.1.2 Binding sites for product H2O2 

The same HierDock procedure was used to search for sites in the 4c6 antibody 

structure that would stabilize the product H2O2.  Here we find the two clusters (P1 and P2 

shown in Figure III-2b) containing most of the highest binding structures.  P1 is at the 

base of the antigen-binding site, completely overlapping the Xe2 site reported by 

Wentworth et al. [1].  P2 is between the CL and CH1 domains and overlaps region I3.  

Both P1 and P2 are in the hydrophobic region between the barrel like interface of the 

variable and constant domains.  In contrast to I1, I2, and I3, sites P1 and P2, do not 

exhibit bound water in the crystal structure, indicating that they are buried hydrophobic 

pockets.   

The results derived from our docking studies of the intermediates and the product 

suggest that this catalytic reaction takes place in the interface regions of the variable and 

constant domains.  This is supported by experimental evidence that shows strongly bound 

water dimers and trimers in these regions and the Xe binding studies suggesting that these 

regions are hydrophobic.  Both predicted regions seem to be ideal for the reactions 

because of their ability to stabilize the key intermediates of the reaction cascade. 

We also verified that the sites I1, I2, and I3 also stabilize the transition states for 

the reaction by performing a HierDock calculation for TS1, TS2, and TS3 [defined in 

Figure III-1 and Eqn. (2)] in the I1, I2, and I3 regions of the 4c6 structure.  The transition 

state structures were kept rigid in all these docking studies.  We found that the transition 

states cluster favorably in these regions.  
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4.2 Binding sites for HOOOH dimers, monomers, and H2O2 in other Immunoglobulin 

Fab fragments. 

The formation of H2O2 has been observed for a large number of antibodies (over 

200), all of which have been observed (1,2) to catalyze the conversion of 1O2 to HOOH.  

This suggests that the reaction center is highly conserved across all antibodies.  This may 

seem surprising since these antibodies include a reasonable diversity in sequences.  

However, the sites I1-I3 and P1-P2 we find to be important are associated with a unique 

structural motif of the fold in antibodies (and TCR) which might be rather insensitive to 

sequence.  To test whether these sites would stabilize the intermediates for a range of 

antibodies, we selected three high-resolution (< 2Å) Fab structures (pdb codes: 2fb4, 

1c5c, 1e60) that have maximally diverse sequences.  This selection of structures was 

accomplished using the ClustalW sequence alignment program[14].  The three Fab 

structures selected have sequence identities of 47% to 68% with each other and with 

4c6.pdb.   

HierDock was performed across the entire antibodies to prevent a bias towards 

any particular sequence in docking protocol.  In each case we find three clusters 

corresponding to I1-I3 and two corresponding to P1-P2 at the same positions as for 4c6.  

Thus the bound HOOOH dimer and monomer cluster along the VH and the VL interface 

of the IGKD for all three additional structures.  This study confirms that IGKD fold is 

important in the catalysis of this reaction and the commonality of the binding sites for 

different sequences supports the IGKD region as the catalytic site.  

4.3 Predicted binding sites of intermediates in T-cell receptor (TCR) 
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Experimentally it is known that TCR produces HOOH from 1O2, just as for 

antibodies.  To determine whether our procedure would explain this  observation, we 

examined TCR (pdb code: 1tcr), which has the Greek key motif and the IGKD just as in 

antibodies.  Again we used the HierDock protocol to perform an unbiased search for 

binding site across all regions of the TCR.   

We found that the HOOOH monomers and dimers cluster at the heavy and light 

chain interface (sites I1-I3) of the TCR.  This is consistent with the experimental 

observation that TCR does produce H2O2.  Since, the sequence similarity between 4c6 

and TCR is only 25%, this suggests tha t the essential feature is structural not sequence 

specific.  These results support the conclusion that it is the IGKD interface created by the 

arrangement of immunoglobulin domains that is required for the stabilization of the 

intermediates. 

4.4 Predicted binding sites of intermediates in β2-microglobulin:  

β2-microglobulin has the characteristic Greek key motif present in antibodies, but 

it is monomeric and hence does not have the barrel- like interfacial structure of the TCR 

and the Fab region of antibodies.  Consequently, we use HierDock to perform an 

unbiased search for binding sites across all regions of ß2-microglobulin (pdb code: 1duz) 

to find favorable binding regions for HOOOH monomer, its dimer, and the transition 

states.  However, we found no common consensus-binding region for the monomer and 

dimer in β2 microglobulin.  The bound structures did not have a high population of 

docked conformations in any one region.   

This indicates that the immunoglobulin fold by itself is not sufficient to catalyze  

the reaction.  Rather, we require an interface created by the arrangement of 
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immunoglobulin domains, IGKD, to create the environment required for the stabilization 

of the intermediates.  This is consistent with the results of Wentworth et al., who showed 

experimentally that β2 microglobulin does not produce H2O2 from 1O2.  We attribute the 

lack of H2O2 production in β2 microglobulin to the absence of a hydrophobic interface 

lined with organized water molecules.  This suggests that the unique feature responsible 

for the catalysis is the IGKD (only present for antibodies and TCR), not the Greek key 

fold (which is present in all immunoglobins, including β2-microglobulin and other 

proteins).   

5.0 DISCUSSION 

5.1 Nature of binding site for HOOOH monomer and dimer: 

 The two catalytic sites predicted here are at the interface of light and heavy chains 

of the antibody, a structure unique to antibodies and TCR.  This IGKD interface of two 

Greek key domains is shown in Figs 3a and 3b.  The two binding sites are each located 

on the sides of the barrel- like structural motif [15] at the interface of VH and VL, as shown 

in the inset of Figure III-3b.  This structure has the beta sheets of VH and VL separated by 

~ 5 Å, favoring the binding of the water sheet observed experimentally.  The residues 

lining these sites shown in bold face in table 1 are strictly conserved and those in italics 

are conservative replacements.  These results were obtained by performing a clustalW 

sequence alignment of the 37 Fab sequences having structure resolved to within 2.0Å. 

Trp109 in the I1 binding site is conserved across all antibodies and could be a potential 

sensitizing residue for the singlet oxygen.  

There are a number of well-ordered crystallographic waters on the sides of this 

interfacial barrel- like structure between the VH and VL, as shown in Figure III-4a and 4b.  
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These waters are ordered in dimers (O--O distances approximately 2.6Å), trimers (O--O 

distances varying from 2.6 to 3.3Å), and a pentamer cluster (see Figure III-4a) with 

distances of 2.54 to 2.79Å.  This pentamer ring of H2O is in region I2 (it is formed by the 

crystallographic waters: Wat 12, 54, 60, 249, and 339).  The water dimers shown in 

Figure III-4b are Wat5 and Wat404.  Such well-ordered water clusters can be observed 

only in high-resolution crystal structures, such as 4c6 structure with 1.2Å resolution.   

We consider that these water clusters are the H2O structures that react with 1O2, to 

form HOOOH, which subsequently reacts with a second HOOOH or 1O2 to form H2O2 

and the other reactive intermediates discussed above.  Thus the first step of our QM 

mechanism involves two waters in a dimer-like structure, just as in Figure III-4a or 4b, 

with one of the waters acting as a catalyst in this step.  

The I1, I2 sites determined using HierDock seem quite appropriate for the 

reaction to generate HOOOH from 1O2 plus two H2O.  This product HOOOH is also 

favorable in this same site or in I3.  It is plausible that a second HOOOH (formed from an 

additional 1O2 and another H2O dimer) could remain in these regions to combine with the 

first to form HOOOH dimer at either I1-I2 or at I3.  This could then form H2O2 as in the 

QM mechanism.  This H2O2 might then migrate to the sites P1-P2 that we find most 

favorable for H2O2. 

A closer look at the interface of light and heavy chains of all antibodies shows 

that the bottom of the channel or barrel is capped by polar amino acids.  For most 

antibodies these are glutamines forming a hydrogen bond network, as shown in Figure 

III-3b.  We suggest that these residues could serve two functions.   
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• One, they could gate the reactants and various intermediates from entering the 

hydrophobic channel.  Instead, these intermediates would go to the side of the barrel 

at the interface of light and heavy chain as shown in Figure3a.   

• Second, they could prevent the H2O2 formed from escaping from the bottom of the 

barrel.  This might direct them to be released towards the antigen-binding site.   

To determine if these glutamines play a role in capping the products from the 1O2 

chemistry, it would be interesting to examine systems where the glutamines are mutated 

to hydrophobic residues. 

For Fab our studies of binding HOOOH and its dimer and of H2O2 suggest the 

model that the IGKD motif is essential for H2O2 production from singlet oxygen.  Since 

the Fc structure of antibodies have one such IGKD interface compared to two in the Fab 

structure, this suggests that the efficiency of HOOH production in Fc should be half that 

of Fab.  Indeed Wentworth and Lerner[16] have shown that Fc structures have half the 

efficiency of Fab structures.  

5.2 Geometric Pathway for the conversion of 1O2 to HOOH. 

A schematic geometric roadmap based on our proposed mechanism is given in 

Figure III-5 (for the 4c6 Fab structure).   

a) We assume that 1O2 may enter the antibody from near the Xe1 (and Xe2) xenon-

binding site to migrate through the hydrophobic environment of VH and VL to the 

IGKD interface region (sites I1 and I2).   

b) Here it 1O2 can convert the clustered waters at this site to HOOOH.   
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c) This HOOOH might react with a second 1O2 or it might migrate to the I3 site where it 

could react with a second HOOOH.  In either case this reaction produces two HOOH.  

The HOOH products of this reaction might migrate to sites P1 and P2.   

d) Subsequently these HOOH might migrate towards the interior of the barrel where 

H2O2 (or other intermediate such as HOOOH or the (HOO)2 dimer) could react with 

the antigen.  This might mark it for destruction.   

Such a destructive role of consistent with the observation that 1O2 is produced in 

processes involved with the macrophage engulfing the antigen bound antibody.   

6.0 Conclusions:  

Based on the experiments by Wentworth et al. showing that antibodies can 

catalyze 1O2 to oxidize water to form H2O2 and based on the QM computational studies of 

Xu et al showing that the chemical mechanism involves production of HOOOH and 

subsequent reactions to form a series of products culminating in H2O2, we searched 

various proteins for special sties compatible with this chemistry. 

Our HierDock studies lead to the conclusion that the interfacial motif IGKD, 

between two Greek keys (present only in antibodies and TCR and not present in β2 

microglobulin) is critical to catalysis of 1O2 to oxidize water to form HOOOH and H2O2.  

For both antibodies and TCR, we found sites (I1-I3) in the region favorable for binding 

the HOOOH reaction intermediates and sites (P1-P2) favorable for the H2O2 product.  

Based on these docking results and on the QM calculations, we propose a sequence of 

steps by which antibodies can produce HOOOH and H2O2 from 1O2.  These results 

suggest that such reactive intermediates as HOOOH and (HOO)2 and the product HOOH 

are favorably formed in the IGKD paired Greek key barrel region close to the antigen.  
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We speculate that the conversion of 1O2 to HOOOH and/or HOOH might provide for a 

protective function against singlet oxygen (which can attack dienes and other molecules 

in cells).  

Alternatively these reactive intermediates might react with the antigen to help 

make the protein recognized by the antibody more susceptible to attack by other enzymes 

in the macrophage.  This might provide a defense mechanism against the proteins having 

antigens to these antibodies.  Here the HOOOH and/or HOOH might react selectively 

against just the antigen recognized.  Based on the detailed prediction of binding sites 

involved in various steps, one can imagine a variety of biological experiments that might 

test our QM and HierDock results.  Thus elective mutations could be made to enhance or 

inhibit various steps.  These results suggest a number of experimental tests and provide a 

guideline for how to build biomimetic nanoscale systems to producing HOOH (or 

HOOOH).    

These computational studies provide mechanistic insight to the experimental 

observations by Wentworth et al. that antibodies and TCR can catalyze the conversion of 

1O2 plus water to H2O2.  The results gives very close agreement with observed isotope 

ratio of 2.2:1.  In particular the results explain the observed molecularity of 2.0 for the 

number of HOOH produced per 1O2.  This supports strong support for the QM 

mechanism. 
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I1 

VL             VH 
I2 

VL           VH 
I3 

CL              CH1 
Ser 48 Gln 3 Asp 1 Lys 45 Val164 Leu 147 
Lys 50 Leu 4 Pro 100 Glu 47 Leu 165 Lys 149 
Arg 51 Gly 107 Tyr101 Trp 48 Asn 166 Phe 172 

 Ser 108 Thr 102 Asn 61 Ser 167 Ala 174 
 Trp 109  Pro 62 Ser 181 Pro 173 
 Gly 110  Ser 63 Ser 182 Val 175 
    Thr 183 Tyr 181 
     Thr 182 
     Leu 183 
     Ser 184 

 
 

 
 
 

Table III-1 : List of residues in the 4c6 Fab structure in the three 
predicted binding sites I1, I2 and I3 of the HOOOH dimers. The bold 
face residues are strictly conserved across 37 aligned sequences of Fab. 
The residues in italics are conservative replacements.  
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Figure III-1.  Gas phase structures (optimized using quantum mechanics, see reference 

[3]) for various clusters and transition states.  These structures were used in the docking 

studies.    
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Figure III-2. (a) Clustering sites for docking of HOOOH dimers.  All sites are located 

between the VL and VH interface.  This shows Regions I1 and I3 in front.  Region I2 is 

opposite region I1 in the back.  The inset shows where this region is relative to the overall 

immunoglobulin.  Regions I1-I3 are in the Inter Greek Key Domain Interface (IGKD) 

unique to antibodies and TCR. (b) Clustering sites for docking of H2O2.  Region P1 is 

situated within the Beta-barrel created by the VH and VL interface.  P2 is located between 

the CH and CL interface.  Regions P1-P2 are in the Inter Greek Key Domain Interface 

(IGKD) unique to antibodies and TCR. 

 
 
 
 
 
 



                                                                  III -25 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                  
 
 
 

                 
 
 
 
 
 
 

P1 

P2 

VH VL 

CL CH1 

VH 

VL 

CL CH1 

I1 

I3 

I2 

 

(a) (b) 



                                                                  III -26 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Figure III-3. (a) The purple dots indicate two regions (A and B) of the Fab antibody 

fragment that bind strongly to the HOOOH dimer and which we conclude are plausible 

regions for the catalysis of 1O2 plus H2O dimer to form HOOOH.  Here A is on the left 

and B is on the right.  These sites are at the interface of the VH and VL in a region 

containing well-ordered crystallographic waters (shown with half bonds).  Regions A and 

B are in the Inter Greek Key Domain Interface (IGKD) unique to antibodies and TCR.  

The inset shows a schematic antibody structure with a yellow circle to indicate the region 

magnified.  (b) The structure in (a) is rotated 90º about the horizontal axis to show the 

hydrophobic channel bounded by Gln38 from VL and Gln39 from VH.  This forms a 

hydrogen bond network at the mouth of the barrel.  (Region A is again at the left)  The 

inset shows the barrel like structure (containing two Greek keys) unique to antibodies that 

we suggest is critical to the catalysis.    
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Figure III-4: Ordered water molecules found in the crystal structure at the IGKD 

interface of the Fab antibody fragment.  (a) A pentamer ring of H2O molecules with each 

hydrogen bonded to two others.  (b) An example water dimer where hydrogen from one 

water molecule is pointing towards the oxygen of the other molecule 
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Figure III-5.  The geometric pathway for the sequence of reactions converting 1O2 and 

water to HOOOH and then to HOOH.  Here we assume that 1O2 enters the hydrophobic 

region near Xe1 (and Xe2).  At I1 (or I2) it can react with a water dimer (or trimer) to 

form HOOOH.  The HOOOH may stay at I1 (or I2) but it may go to I3, which does not 

have crystallographic waters.  This HOOOH may react directly with a second 1O2 or with 

the HOOOH from a previous reaction to form the HOOOH dimer.  This may occur at I3.  

The HOOOH dimer can rearrange through a series of steps to form HOOH, which may 

go to sites P1 or P2 (there are no crystallographic waters at these points).  Here the 

HOOH is positioned close to the region at which antigen may be bound (HOOOH may 

also go to this region).  From here the HOOH (or HOOOH) might react directly with the 

part of a protein whose antigen is recognized by the antibody. 
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 Chapter 4 

Selectivity And Specificity Of Substrate Binding 
In Methionyl-tRNA Synthetase   

 

 

 

 

 

 

 

 

 

Adapted from an unpublished manuscript coauthored with Nagarajan Vaidehi, David 
Zhang, Professor David A. Tirrell and Professor William A. Goddard III 
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Abstract 

In vivo incorporation of amino acids in protein biosynthesis is a precisely 

controlled mechanism.   The accuracy of this process is controlled to a significant 

extent by a class of enzymes called the aminoacyl tRNA synthetases.   Aminoacyl 

tRNA synthetases achieve this control by a multi-step identification process that 

includes “physical” binding and “chemical” proofreading steps.   However, the 

degree to which each synthetase uses these specificity-enhancing steps to distinguish 

their cognate amino acid from the non-cognate ones vary considerably.   We have 

used Hier-Dock computational protocol to elucidate this binding mechanism in 

methionyl tRNA synthetase (MetRS) by first predicting the recognition site of 

methionine in the apo form of methionyl tRNA synthetase (apo-MetRS).   We have 

developed this generalized procedure, which can be used to search for ligand binding 

region in globular proteins with no prior information about the binding site.   We have 

further investigated the specificity of MetRS towards the binding of 19 other natural 

amino acids to both apo-MetRS and to the co-crystal structure of MetRS with 

methionine bound to it (co-MetRS).   We have established through our computed 

binding energies that the discrimination towards the non-cognate substrate increases 

in the second step of the physical binding process that is associated with a 

conformation change in the protein.    
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 Introduction 

Specific recognition of amino acids by their corresponding tRNAs and 

aminoacyl-tRNA synthetase (aaRS) is critical for the faithful translation of the 

genetic code into protein sequence information.   The aaRSs catalyze a two-step 

reaction in which amino acids are esterified to the 3? end of their cognate tRNA 

substrates [1].   In the first step, the amino acid and ATP are activated by the aaRS to 

form an enzyme-bound aminoacyl-adenyla te complex.   In the second step, the 

activated amino acid is transferred to the 3?-ribose of the conserved CCA-3? end of 

the cognate tRNA.   The fidelity of protein synthesis depends, in part, on the accuracy 

of this aminoacylation reaction.   aaRSs bind their cognate amino acid through a 

multi-step recognition process and correction mechanisms that include physical 

binding and a chemical proof reading [2].   The four major steps involved in the 

transfer of aminoacyl group to the t-RNA are: 

1.   Binding of amino acid and ATP 

2.  Conformational change in the aaRS induced by binding and formation of the 

aminoacyl-adenylate complex.    

3.  Proof reading of misactivated non-cognate aminoacyl adenylate complex 

4.  Transfer of aminoacyl to the tRNA and proof reading  

The physical binding of the amino acid and ATP to aaRS is achieved in steps 1 

and 2, which is accompanied by a conformation change in the aaRS.  However, this 

binding event is necessary but not sufficient for the incorporation of the analog or the 

cognate amino acid during protein biosynthesis.  Binding is followed by chemical 
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proof reading steps 3 and 4 which are termed as the pre-transfer and the post-transfer 

proof reading steps, respectively.  With every step, the aaRS recognizes its cognate 

amino acid with increased specificity, while discriminating more efficiently against 

the non-cognate amino acids.  However, the degree to which each aaRS uses the 

specificity enhancing steps varies considerably with regard to the twenty naturally 

occurring amino acids and the type of aaRS.  For example, tyrosyl t-RNA synthetase 

has the highest specificity in the first binding step whereas isoleucyl tRNA 

synthetase, achieves maximum discrimination in the pre-transfer proofreading step 

[3-6].   

Many research groups have focused on the use of in vivo methods for 

incorporating the non-natural amino acid analogs into proteins.  It has been 

demonstrated that the wild-type translational apparatus can use non-natural amino 

acids with fluorinated, electroactive, unsaturated and other side chain functions [7-

13].  However, the number of amino acids shown conclusively to exhibit translational 

activity in vivo is small, and the chemical functionality that has been accessed by this 

method remains modest.  Only those analogs that are able to successfully circumvent 

the multi-step filter mechanisms of the natural synthetases eventually get 

incorporated.   

With an increase in efforts of incorporating artificial amino acids in vivo, it has become 

vital to enhance our understanding of the molecular level mechanism at different steps 

that aaRSs utilize to ensure high fidelity in translation.  A better understanding of this 

mechanism will also be very useful in allowing us to design mutants of aaRS for 

incorporation of specific analogs and also in suggesting analogs that are more efficiently 
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incorporated [14-16].  In this study, we have implemented a computational procedure to 

gain insight into the binding mechanism of methionyl- tRNA synthetase (MetRS).  

Computational methods are becoming increasingly important to understand the molecular 

level mechanisms that are not feasible with experiments and also for faster virtual 

screening of analogs prior to synthesis.   

MetRS is a class I aaRS, and undergoes a large conformational change on 

upon binding to methionine.  It is a dimeric protein and the crystal structures of E.  

coli MetRS in its apo form and as a co-crystal with its native ligand, methionine, have 

been solved to 1.85Å and 2.03Å resolution, respectively.  [We refer to the apo form 

of MetRS protein structure as apo-MetRS(crystal) and the co-crystal structure of E.  

coli MetRS with methionine as Met/MetRS(crystal).  Note that the protein 

conformations in both these crystal structures are different especially in the binding 

site.  The symbol MetRS always denotes the E.  coli  MetRS unless otherwise 

specified.  ] Both in vivo incorporation of methionine analogs into proteins and their 

in vitro measurements of the rate of incorporation have been studied extensively and 

it has been demonstrated that MetRS is one of the more permissive aaRS for the 

incorporation of a large number of analogs [9].  We are interested in computationally 

determining the specificity of MetRS for the natural non-cognate amino acids and 

methionine analogs in the steps of amino acid recognition and binding.  A better 

understanding of its binding mechanism would be useful to streamline a virtual 

screening approach for the incorporation of non-natural amino acids.   

We have used the HierDock computational protocol to first predict the 

binding site of methionine in MetRS in the apo-MetRS (crystal) [17].  We scanned 
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through the entire protein (except the anticodon recognitio n region) for predicting the 

preferential binding site for methionine using no knowledge from the crystal structure 

of Met/MetRS (crystal).  We refined the HierDock protocol and derived what we call 

as the “recognition site” which includes all the residues in the binding pocket of 

methionine as seen in Met/MetRS (crystal) however, methionine is oriented in this 

pocket with its side chain exposed to solvent.  Our results indicate that the first step to 

amino acid binding is the recognition of the zwitterion part of the ligand which is 

referred to as the “recognition mode”.  We find that apo-MetRS is able to distinguish 

methionine  from the non-cognate natural amino acids but has cysteine and serine as 

competitors.  We also find that MetRS in the Met/MetRS (FF) protein structure has 

better discrimination for the twenty amino acids and once again methionine has the 

best binding energy in this structure with Gln as a close competitor.   

The calculated binding energies of methionine analogs are correlated with 

either the in vivo incorporation results or the in vitro measurements of rate of the 

aminoacyl adenylate formation.  We find that in Met/MetRS (FF) protein, the analog 

with high incorporation rates bind better than those that do not get incorporated.  In 

an attempt to incorporate novel methionine analogs Kiick et al. reported that 

Homopropargylglycine (myag) replaces methionine most efficiently  utilizing the 

natural translation apparatus of E.  coli while cis-crotglycine (ccg) shows almost no 

incorporation [18].  Our calculated binding energies correlate well with the in vivo 

incorporation trends exhibited by these analogs and with the binding energies 

calculated by in vitro methods.   
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Methods  

Preparation and Optimization of Structures.   

Ligand Structures:  Both the neutral and the zwitterion forms were used for all the 

twenty natural amino acids as well as the five methionine analogs.  The ligand 

conformations were optimized in the extended conformation at the Hartree-Fock level 

of theory with a 6-31G** basis set, including solvation according to the Poisson-

Boltzman functional using the Jaguar computational suite [19] (Schrödinger, 

Portland,  OR).  The Mulliken charges ascertained from this calculation were retained 

for the subsequent molecular mechanics simulations.  The conformations of the 5 

methionine analogs are shown in Figure IV-4a.   

Preparation and Optimization of Protein Structures: The 2.03Å E.  coli apo-MetRS 

structure was obtained from PDB database  (pdb code: 1QQT) that included the fully 

active monomer α chain of a homodimer, crystal waters, and a zinc (II) ion [20].  

CHARMM22 charges with the nonpolar hydrogen charges summed onto the heavy 

atoms were assigned to the α chain according to the parameters set forth in the 

DREIDING force field [21].  The protein was neutralized by adding counterions (Na+ 

and Cl-) to the charged residues (Asp, Arg, Glu and Lys) and subjected to a 

minimization of the potential energy by the conjugate gradient method using Surface 

Generalized Born continuum solvation method [22].  The RMS in coordinates 

(CRMS) of all atoms after minimization is 0.68Å and this structure is referred to as 

apo-MetRS(FF).  Using the same procedure the co-crystal structure of E.  coli MetRS 

(pdb code: 1F4L; resolution 1.85Å) was minimized and the CRMS for all atoms of 
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the minimized structure compared to the crystal is 0.57Å [23].  We refer to this 

structure as met/MetRS(FF).  The CRMS values for both the structures are well 

within experimental error that demonstrates the proficiency of the FF used in present 

studies.  The crystal waters and other bound molecules were removed for docking to 

maximize the searchable surface of the protein.  We have used continuum solvation 

method for all structure optimizations and energy scoring in this study with an 

internal protein dielectric constant of 2.5 was employed for all calculations.   

HierDock Protocol 

     We use the HierDock procedure, which has been applied successfully to study 

the binding of odorants to membrane-bound olfactory receptors [17, 24] for outer 

membrane protein A binding to sugars [15] and for Phenylalanine and its analogs 

binding to PheRS [25], [26].  The HierDock ligand screening protocol follows a 

hierarchical strategy for examining conformations, binding sites and binding energies.  

Such a hierarchical method has been shown to be necessary for docking algorithms 

[27].  The steps in HierDock involve using coarse grain docking methods to generate 

several conformations of protein/ligand complexes followed by molecular dynamics 

(MD) simulations including continuum solvation methods performed on a subset of 

good conformations generated from the coarse grain docking.  Methods combining 

docking and MD simulations have been tested [28] but the main drawback of these 

tests were that only a single protein/ligand complex structure was kept from the 

coarse grain docking methods for MD simulations.  This is risky considering that the 

coarse grain methods do not have reliable scoring functions that include solvation.   
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Free energy perturbation methods are generally regarded to lead to accurate free 

energies of binding but are computationally intensive and not readily applicable to a 

wide variety of ligands [29].  Our goal is to derive a fast hierarchical computational 

protocol that uses hierarchical conformation search methods along with different 

levels of scoring functions, which would allow screening of amino acid analogs for 

aaRSs.  The three major steps in HierDock procedure in this paper are: 

• First, a coarse grain docking procedure to generate a set of conformations for 

ligand binding.  In this paper we used DOCK 4.0 [30, 31] to generate and 

score 20000 configurations, of which 10% were ranked using the DOCK 

scoring function.   

• We then select the 20 best conformations for each ligand from DOCK and 

subject them to annealing molecular dynamics (MD) to further optimize the 

conformation in the local binding pocket, allowing the atoms of the ligand to 

move in the field of the protein.  In this step the system was heated and cooled 

from 50K to 600K in steps of 10K (0.05 ps at each temperature) for 1 cycle.  

At the end of annealing MD cycle, the best energy structure is retained.  

Annealing MD allows the ligand to readjust in the binding pocket to optimize 

its interaction with the protein.  This fine grain optimization was performed 

using MPSim [32] with DREIDING forcefield [21] and continuum solvation 

methods.  We use the SGB continuum solvent method to obtain forces and 

energies resulting from the polarization of the solvent by the charges of the 

ligand and protein.  This allows us to calculate the change in the ligand 

structure due to the solvent field and hence, obtain more realistic binding 
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energies that take into account the solvation effects on the ligand/protein 

structure.  The annealing MD procedure generated 20 protein/ligand 

complexes for each ligand.    

• For the 20 structures generated by annealing MD simulations for each ligand, 

we minimized the potential energy (conjugate gradients) of the full 

ligand/protein complex in aqueous solution using SGB.  This step of 

protein/ligand-complex optimization is critical to obtaining energetically good 

conformations for the complex (cavity + ligand).  Then we calculated binding 

energies as the difference between the total energy of the ligand-protein 

complex in solvent (∆G(protein+ligand)) and the sum of the total energies of 

the protein (∆G (protein)) and the ligand separately in solvent (∆G(ligand)).  

The energies of the protein and the ligand in solvent were calculated after 

independent energy minimization of the protein and the ligand separately in 

water.  Solvation energies were calculated using Poisson-Boltzmann 

continuum solvation method available in the software Delphi [33].  The non-

bond interaction energies were calculated exactly using all pair interactions.  

Thus the binding energy is given by 

              )()()( ligandGproteinGligandproteinGGcalc ∆+∆−+∆=∆∆        (1) 

Since the structure optimizations included solvation forces using the SGB 

continuum solvent approximation with the experimental dielectric constant, we 

consider that the calculated energies are free energies [34].  This multi-step 

scanning procedure is based on docking via DOCK 4.0 coupled with fine-grain 

MM techniques.  The coarse grain docked complex structures generated are 
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scored with FF and differential solvation, which effectively filters the docked 

complexes to isolate the top contenders.  As demonstrated in Kekenes-Huskey 

2002, Dock 4.0 structures vary erratically with rank, whereas filtering with 

MPSim optimization brings the best structures to the top of the rank list.   

Scanning the entire apo-MetRS(FF) for predicting binding site of met: For the 

case of apo-MetRS(FF) we wanted to test the HierDock procedure for scanning 

the entire protein for the favorable binding site of met.  However, it has not been 

tested for a case where the protein undergoes a large conformational change in the 

binding site after the ligand binding starting from apo-protein structure.  The steps 

involved in the scanning procedure are: 

1. Mapping of possible binding regions.  A probe of 1.4 Å radius was used to 

trace a 4 dots/Å negative image of the protein molecular surface, 

according to Connolly’s method [35].  The resulting data was used to 

generate clusters of overlapping spheres with the SPHGEN  program.  

These spheres serve as the basis for the docking method.   

2. Definition of docking region.  The pockets of empty space of the receptor 

(apo-MetRS(FF)) surface represented by spheres were divided into 14 

possible 10 Å wide overlapping cubes, which covered the entire protein 

surface.  Each region was scanned to determine its suitability as a binding 

site.  The site that contains the greatest number of lowest energy docked 

conformations is designated as the putative binding region.   

3. Prediction of binding site:  Steps 1 to 3 of HierDock procedure was 

performed with methionine as the ligand in all the 14 possible binding 
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regions in the entire apo-MetRS(FF).  The orientations of the ligand in the 

receptor were generated by DOCK 4.0, using flexible docking with 

torsional minimization of the ligand, a continuum dielectric of 1.0 and a 

distance cutoff of 10 Å for the evaluation of energy.   

4. Selection of the most probable binding site and best configurations: The 

best conformation from each region was determined using the buried 

surface area cutoff criteria for the ligand along with the binding energy.  

Such a buried surface area cutoff is required for filtering at the coarse 

grain level.  An average of the most buried and the least buried conformer 

was calculated and all conformers whose buried surface area was lower 

than the average were eliminated from further analysis [36].  The 

conformations that passed the buried surface area filter were sorted by 

binding energies calculated using equation (1) and the conformation with 

the best binding energy in every region were compared between regions.  

All the complex energies were calculated.  The region with the lowest 

energy binding energy calculated using equation (1) was selected as the 

preferential binding region.   

Docking of ligand pool into the binding region and calculating relative 

binding energies:  Steps 1 to 3 of HierDock procedure was performed for all 

the ligands in the ligand pool in the putative binding region and the relative 

binding energies for the best ligand conformations were calculated using 

equation (1).  The ligands (20 natural amino acids and analogs of met) were 

ranked according to binding affinities to determine which ligands have the 
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highest affinity for the binding site.  The best energy conformation of 

methionine in optimized apo-MetRS(FF) structure is the predicted structure of 

methionine in apo-MetRS(FF).  We denote this predicted structure as 

met/apo-MetRS(FF).   

Prediction of binding site for met/MetRS(FF) co-crystal structure: For the 

case of met/MetRS(FF) structure, the receptor was prepared by removing the 

methionine from the met/MetRS(FF) structure.  The protein surface was 

mapped with spheres, as described above, and the binding regions was 

covered by a 12 Å × 12 Å × 12 Å box centered in the center of mass of 

methionine ligand.  Only this region was used in subsequent docking.  Steps 1 

to 3 of HierDock procedure were performed using the same set of control 

parameters but only in the known binding region.  The conformation with the 

best energy binding energy in this region calculated using equation (1), 

starting from the protein structure in met/MetRS (FF) is the predicted co-

crystal structure of met/MetRS.  We denote this predicted structure of 

methionine in MetRS co-crystal structure as met/MetRS (HierDock).   

Docking of ligand pool into the binding site and calculating relative binding 

energies in met/MetRS (HierDock) We performed steps 1 to 3 of HierDock 

procedure for all 20 natural amino acids and the methionine analogs in the 

12Å x 12Å x12Å binding region and the relative binding energies for the best 

ligand conformation for each ligand was calculated using equation (1).  The 

ligands (20 natural amino acids and analogs of met) can then be ranked 
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according to binding affinities to determine which ligands have the highest 

affinity for the binding site.   

Binding energy calculation of the 20 natural amino acids and methionine 

analogs in the  conformation that activates the protein: HierDock protocol 

predicts the best energy conformation for each ligand (20 natural amino acids 

and methionine analogs) in the defined 12Å x 12Å x 12Å binding region in 

Met/MetRS(FF) structure.  These predictions give rise to different preferred 

binding conformation for each ligand.  However, the orientation that 

methionine  adopts in the makes the necessary contacts required for the 

enzymatic activity is referred to as the “activation mode”.  To assess the 

relative binding energies of the twenty natural amino acids and their analogs 

in the activation mode perturbation calculations for all the ligands were 

performed as follows: 

• An amino acid rotamer library [37] was used to generate all the conformations 

of each amino acid in the binding site, and a similar library was generated for 

the five methionine analogs.   

• The best rotamer was chosen by matching each rotamer k in the binding site 

and evaluated with the following equation using the Dreiding force field: 
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where i and j sum over all atoms in the ligand and protein residue residues in the 

binding site, qi and qj are partial charges on atoms i and j, respectively.  rij is the 

distance between atoms i and j, and rm and De are van der Waals distance and well 
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depth of atoms i and j, rHB and DHB are hydrogen bond distance and well depth, 

respectively.  θ is the hydrogen bond angle between atoms i, j and their bridging 

hydrogen atom.  The hydrogen bond term is only evaluated for hydrogen bond 

donor and acceptor atoms.  To avoid over penalizing clash, the van der Waals 

radii were reduced to 90% of the standard values in the Dreiding force field.   

• After the best rotamer was chosen for each ligand, the total energy was   

minimized in the presence of protein, and the binding energy was then 

calculated using equation (1) for each of the twenty natural amino acids in the 

“activation mode” and compared.   

Results and Discussion 

Prediction of Binding site of methionine in apo-MetRS(FF) and Met/MetRS(FF) 

 Figure IV-1 shows the location of region14 box in apo-MetRS(FF) which  was 

determined to be the binding region by  sifting through the 14 regions in apo-MetRS.  

The best conformation of methionine in this region shows methionine to be making 

electrostatic interactions with His301 and Asp52 (Figure IV-3c), the two amino acids 

that have been shown to play a significant role in methionine binding [38, 39].  His 

301 to alanine mutation results in loss of the affinity for methionine and D52A 

mutation reduces the Kcat of the adenylation reaction by 4 folds indicating that it has 

a major role on the catalytic step in the formation of methionyl adenylate.  Tyr15, 

another key amino acid determined by mutation analysis and has been structurally 

observed in the co-crystal structure to form the binding pocket for methionine [40], 

[23] is located within 5Å of the docked methionine.  The main component of the 

binding energy in our predicted binding orientation comes from the electrostatic 
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interactions tha t methionine makes with Asp52 and His 301 followed by its Van der 

Waals interactions in this binding region.   

 The docked orientation in the apo enzyme occupies the identical position in 

the binding pocket as seen in the co-crystal structure (Figure IV-3a).  However the 

orientation of methionine and the residues lining the binding pocket including parts of 

the protein backbone are very different in the two conformations of MetRS.  

Although methionine seems to be making electrostatic contact with Asp52 the 

anchoring residue, the side chain of methionine is not buried in the 7Å pocket.  The 

reason for this is that we have used the unbounded structure of the synthetase, which, 

on binding to the amino acids undergoes significant conformation change.  The co-

MetRS structure suggests that the large solvent exposed cavity become reduced in 

volume as it gets partially filled with methionine and Y15, W253, F300, W229, F304 

and Y251.  These residues are significantly displaced from their apo-enzyme 

orientation as they reorient to form a hydrophobic pocket for methionine.  In our 

predicted binding mode of methionine in the apo-enzyme, all these residues are 

within 5Å of methionine ligand.  We expect this to be the initial binding orientation 

of methionine.   

        Another interesting observation that substantiates that the predicted orientation 

of methionine could be the initial binding mode is that methionine has one of the best 

binding energies of all 20 natural amino acids in this region.  The specificity of this 

site further confirms that we have been able to find the correct binding region.  

Methionine has serine and cysteine as close competitors but they get eliminated as the 

protein undergoes conformation change.  In an attempt to force the side chain of 
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methionine to be buried in the pocket we did annealing dynamics of the entire 

complex with solvation and reduced VDW radii of the ligand atoms.  However, the 

orientation of methionine did not change.   

 Also, a number of residues within 5Å of methionine in this region are 

conserved among a large number of organisms.  In a sequence alignment among 59 

prokaryotes we find all the amino acids within 4Å of methionine in the predicted 

binding region are either strictly conserved or are conserved replacements.  Of the 12 

residues within 4Å of methionine, 7(Y15, D52, V252, W253, A256, Y260, H301) are 

strictly conserved and 5 (A12, L13, P14, P257, F300) are conserved replacements 

(Figure IV-3c).  This is interesting considering that there are only 21 positions in the 

entire alignment that are strictly conserved and we find a third of them in our 

predicted binding region without any prior knowledge of the binding site.  A binding 

search protocol for unliganded proteins followed by a sequence alignment analysis 

for the predicted binding region could provide more evidence on the accuracy of the 

predicted binding site and help in recognizing key amino acids lining binding pocket.  

Generally, one would expect to see conserved residues or conservative replacements 

in substrate binding sites in proteins across various species.   

 We also docked methionine in the binding region of the co-MetRS(FF).  This 

test was performed to check if we were able to predict the crystallographic binding 

orientation of methionine in the binding pocket.  This test was important to validate 

the accuracy of our docking protocol and the force field.  Our predicted structure had 

a CRMS deviation of 0.55Å from the crystal structure (Figure IV-3a).   
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IV b.    Specificity for methionine in 1QQT and 1FTM 

 We docked all 20 amino acids and calculated their binding energies in the 

predicted binding region in apo-MetRS(FF) and the crystallographic binding site in 

Met/MetRS(FF).  We also did perturbation studies of the natural amino acids in these 

two structures.  The perturbation studies were done to analyze the binding energies of 

the non-cognate amino acids if they oriented in a similar conformation in the binding 

site as methionine.   

Perturbation analysis : In the case of apo-MetRS(FF) closest competitors for 

methionine are serine and cysteine.  However, as the enzyme undergoes conformation 

change, its ability to discriminate against these non-cognate residues increases 

significantly.  It has been noticed that for most synthetases there is no absolute 

specificity for the cognate substrate in the sense of a “lock and key” model.  For 

example, Yeast IleRS is not able to distinguish between Trp and Ile in the first step of 

binding because of the higher hydrophobic interactions gained by the non-cognate 

substrate.  However, as the initial binding process is completed, the enzyme is able to 

discriminate against the non-cognate amino acids more easily [2, 5].   

In Met/MetRS(FF), methionine has the best binding energy, and it has an energy 

difference of more than 20 kcal/mol with its closest competitors, Asn and Arg.  The 

closest competitors from the first binding step (Leu, Glu and Gln) are discriminated 

against with a very high efficiency as the structure of the protein changes.   

Docking analysis: The docking study was done predominantly to recognize possible 

competitors of methionine.  It may be possible that a non-cognate amino acid binds at 
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the methionine binding pocket but does not make the critical interactions that 

methione makes in this binding pocket.  In such cases, the amino acid may not be able 

to react with ATP and charge the tRNA.  In apo-MetRS(FF), methionine has the best 

binding energy of –26.38 kcal/mol  with leucine glutamine and glutamate as the 

closest competitors.  In Met/MetRS(FF) methionine again has the best energy with 

glutamine and serine as the closest competitors.  Gln, in its preferred binding site in 

Met/MetRS(FF) has its zwitterions part and the ?1 torsional angle in the same 

orientation as methionine at this site.  Yet, its ?2 and ?3 angles are significantly 

different from that of methionine.  The Sd of methionine makes two hydrogen bonds – 

one with the terminal oxygen of Tyr260 and the other with the backbone amide of 

Leu13.  However, because of the difference in its binding mode, Gln is unable to 

make a hydrogen bond with Tyr260 and makes only a weak hydrogen bond with the 

backbone amide of Leu13 (O—H-N distance of 3.9Å).   

 

 One more observation is that the order of binding of the amino acids is 

identical in the docking analysis in apo-MetRS(FF) and the perturbation study in 

Met/MetRS(FF).  It indicates that when the enzyme undergoes structural change, if all 

the amino acids were to bind in the binding mode of methionine in the co crystal 

structure, their order of binding would remain the same as indicated by the apo 

enzyme.  However, the magnitudes of binding energies, which indicate the level of 

discrimination, would be very different.   

 

IV c.   Binding energies of analogs   
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 To test the sensitivity of our simulation procedure, we wanted to test if we 

could get good correlation between the computed binding energies for the methionine 

analogs with experimental binding energies.  We tested five methionine analogs of 

which four get incorporated into proteins with reasonable efficiency and for which the 

experimental binding energies are available.  Ccg, which is a cis- form of tcg (Figure 

IV-4a), has the lowest incorporation efficiency and hence, it was used as a negative 

control for which we hoped to get the worst binding energy for this analog.  Binding 

energy calculations of the methionine analogs were carried out in the conformation 

that activates the protein, i.  e.  , by perturbation analysis.   

     In the case of 1QQT, the binding energies of the analogs are all in the top 50% but 

are interspersed with the non-cognate natural amino acids This indicates that in this 

conformation, MetRS lack the capability to discriminate efficiently (Figure IV-4d).  

However, in the co-crystal structure, there is a clear preference for binding the 

analogs.  The analogs and methionine have a binding energy range of  -63.4 to -79.1 

kcal /mol (Figure IV-4b).  The closest competitor from the non-cognate set of natural 

amino acids has a binding energy of  -35.0 kcal/mol.  In this conformation, we also 

find a good correlation between experimentally observed binding energies and 

computed binding energies (Figure IV-4c).  As we had expected, ccg has the worst 

binding energy and gets incorporated with the lowest efficiency whereas myag has 

the best computed binding energy and has been tested to be the most best methionine 

analog.  This information could be useful for initial computational scanning of the 

analogs before experimental testing.  The binding energy of ccg in 
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Met/MetRS(FF)could be used as a cutoff for  designing new analogs and the ones that 

rank above the cut off could be experimentally tested for binding.   

 We analyzed the binding modes of ccg and tcg to understand what in 

particular about the cis-form of the ligand renders it to be an unfavorable ligand.  We 

analyzed the non-bond energies of these ligands with all the residues lining the 

binding pocket and have tabulated our findings as pairwise interactions in Table 1. 

Ccg has a VDW clash with Ala12, the terminal hydroxyl group of Tyr260 and 

His301.  At the same time, the cis orientation of terminal methyl group does not make 

the same favorable interactions with Ala 256 and Pro 267 as tcg (Figure IV-5).  Since 

Tyr 260 and His 301 have an important role in the binding process as indicated by 

experiments, mutating them to smaller residues may be deleterious.  On the other 

hand, it would be interesting to explore the effect of Ala to Gly mutation at position 

12 on the incorporation of cis forms of various analogs.   

 MetRS has been observed to be extremely promiscuous and is able to 

incorporate substrates that are up to 340000 folds poorer than methionine.  This could 

be attributed to the conformational flexibility of the active site of metRS that has not 

been modeled in our simulation.  The active site conformation could be different for 

different analogs.  However, we have performed our perturbation studies only on the 

co-metRS bound to the natural substrate.  The active site flexibility may be important 

in enabling MetRS to activate methionine analogs with varying side chain 

functionalities.  One more consideration is that we are comparing our simulated 

binding energies to experimentally derived binding energies that are further derived 

from ATP-PPi exchange studies.  ATP binding could have other structural effects on 
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the enzyme that were not modeled in our simulations.  However, it is interesting to 

note that we are able to get reasonably good correlation even with the limitations in 

the simulations.  One can expect to gain more insights into the mechanism of this 

system with advancements in the simulation procedures.   

 

Conclusions  

 We have studied the specificity of MetRS for methionine in the first two steps 

of the binding process.  We have demonstrated that its specificity increases in the 

second binding step where the enzyme undergoes a significant conformational 

change.  We speculate that methionine first anchors to residues Asp52 and His301 

with its side chain and as the protein undergoes conformation change due to substrate 

binding (either the amino acid, ATP, or both), the cavity opens up and methionine 

flips into the cavity.  Multi-step binding mechanisms where the ligand-protein 

complexes display “induced-fit” have been illustrated in other protein.  This has been 

attributed to the presence of energy gradients, or funnels, near the binding sites - the 

binding process initiates from a higher energy conformer and terminates in lower 

energy conformation [41].   

        When the structure to be docked is taken from the crystallized co-complex, 

predicting the fitted association is relatively straightforward as indicated by the 

docking study using met/metRS.  Our study with the apo-MetRS illustrates that 

although determining the final bound conformation starting with the “free”, 

“unbound” state of the enzyme is extremely difficult, a refined search method can be 

applied to predict the correct binding region for the ligand.  The predictions can be 
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used to indicate the important residues in the binding regions that can be further 

tested by mutations studies.  Therefore, for those enzyme crystal structures that are 

not co-crystallized with their substrates a powerful docking protocol, like HierDOCK 

can prove to be very useful in recognizing the binding region, even in cases where the 

protein is very flexible.  If the molecules are relatively rigid and have smooth binding 

funnels with single or few minima, there is a higher likelihood that the docked 

conformation of the ligand in the “free”, “unbound” state is the correct bound 

conformation since the conformational diversity of the protein is limited [42].  But in 

the case of proteins that undergo significant conformation changes on associating 

with the ligand, it is unlikely that the predicted ligand plus protein complex would be 

the correct structure.  In the case of a flexible protein, like MetRS, that has a larger 

conformational diversity, achieving a correct prediction bound conformation is 

complicated since the bound conformation could be very different from the free, 

unbound structure.  However, the complex predicted with the apo enzyme should be 

regarded as an important “recognition mode” for the system, a key step in its multi-

step binding process, since even at this stage of binding it could show some level of 

discrimination.  In apo-MetRS, both docking and perturbation analysis indicate that in 

this conformation the enzyme is able to eliminate more than 60% of the natural amino 

acids.  One could imagine that if the final bound complex after the change in 

conformation was the only filtering mechanism for an enzyme, each amino acid 

would first have to bind at this site, followed by the structural change in the enzyme 

and then get eliminated.  Such a process would be both time consuming and 

energetically expensive for the enzyme.  A first level of filter at the apo-enzyme 
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conformation certainly seems to be more efficient screening mechanism adopted by 

flexible enzymes.  It would be interesting to see how the procedure for binding site 

search performs in other apo-enzyme systems.  We have already tested it for the 

predicting the binding site of phe in thermus thermophillus PheRS by scanning the 

entire apo-crystal structure of PheRS and have been able to find the correct binding 

site (unpublished results).   

              Binding site dynamics in enzyme brings in the question of enzyme 

specificity.  An interesting observation about protein plasticity is that proteins 

displaying higher selectivity are also more rigid while those that more flexible can 

bind to a large number of substrates.  Considering the conformational flexibility in the 

MetRS, as indicated by the substantial structural change in the co-crystal, it is not 

surprising that it is one of the more permissive aminoacyl tRNA synthetases.   
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Table IV-1.Energy analysis for CCG and TCG analogs 
 

                      CCG                          TCG 
Residue VDW Coulomb H-bond  VDW Coulomb H-bond 
ASP  52 
LEU  13 
TYR  15 
TRP 253 
ILE 297 
PRO  14 
HIS 301 
PRO 257 
ILE 293 
TYR 260 
ALA 256 
VAL 252 
ALA  12 

0.438 
-1.255 
-2.173 
-3.779 
-2.097 
-0.973 
-0.102 
-0.670 
-0.273 
-0.227 
-0.941 
-0.233 
-0.084 

-21.47 
-6.045 
-7.773 
-1.934 
-0.454 
-1.467 
-1.189 
-0.122 
-0.145 
-0.116 
0.616 
-0.025 
0.673 

-10.246 
-9.898 
-0.677 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 

 0.364 
-1.762 
-3.282 
-3.779 
-0.967 
-1.931 
-1.216 
-1.486 
-1.110 
-1.780 
-1.414 
-0.227 
-0.144 

-21.427 
-6.142 
-6.162 
-1.879 
-1.585 
-0.526 
-1.074 
-0.080 
-0.232 
0.706 
0.601 
-0.047 
0.081 

-9.839 
-10.19 
-0.122 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
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Figure IV-1:  Sphere filled volume of MetRS representing the possible binding sites 
in the enzyme.The search volume was divided into 14 regions as indicated by the 
cubic boxes.The binding site was found in the box colored in red. 
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Figure IV-2: Binding energies of all 20 amino acids in the methionine binding site in 
Met/MetRS(FF) and apo-MetRS(FF).(a) shows binding energies of the 20 aminoacids 
when docked in the predicted methionine binding site in apo-MetRS(FF) and (b) 
shows the binding energies generated from perturbation analysis at the same site.(c) 
reports the binding energies generated from docking all 20 amino acids in the 
crystallographic methionine binding site in  Met/MetRS(FF) and (d) indicates binding 
energies calculated from perturbation analysis at the same site. 
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Figure IV-3(a) Binding site of methionine in apo-MetRS(FF) and 
Met/MetRS(FF).Amino acids lining the bind ing pocket are shown in purple for apo-
MetRS(FF) and in green for Met/MetRS(FF).Methionine orientation from 
perturbation analysis in Met/MetRS(FF) in shown in red and its conformation from 
docking in apo-MetRS(FF) is colored blue.Residues closest to methionine that 
undergo the largest conformation changes are labeled. 
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Figure IV-3(b) The Sd of methionine makes two hydrogen bonds – one with the 
terminal oxygen of Tyr260 and the other with the backbone amide of Leu13 in the 
docked conformation in Met/MetRS(FF).The crystal structure orientation on 
methionine is shown in blue.The CRMS between the two conformations is 0.55 Å. 
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Figure IV-3(c) The predicted binding site for methionine in apo-MetRS(FF).The 
conserved residues within 4 Å are labeled in gold and the conserved replacements are 
labeled in aqua. 
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Figure IV-4: (a) Structures of methionine and its analogs used in this study.L-
methionine (met), homoallylglycine (mhag), homopropargylglycine (myag), 
norleucine (nleu), trans-crotglycine (tcg) and  cis-crotglycine (ccg). 
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Figure IV-4 (b) Binding energies of the analogs in the binding site of Met/MetRS(FF) 
calculated using perturbation method. 
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Figure IV-4(c) shows the correlation between the calcula ted binding energies and the 
experimentally observed ??G with respect to methionine. 
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Figure IV-4(d) Binding energies of analogs along with the natural amino acids in the 
binding site of apo-MetRS (FF).Analogs are represented in shades of pink. 
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Figure IV-5: The binding modes of tcg and ccg, shown in the binding pocket of 
Met/MetRS(FF), were predicted by perturbation analysis at this site.Ccg (orange) has 
VDW clashes with Ala12, His301 and Tyr 260 and at the same time, cis orientation 
of the terminal methyl group created a void near Ala 256 and Pro 257.Tcg (Pink) is 
shown to fill that void and also avoid the unfavorable VDW interactions. 
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 One of the goals in computational protein design is to develop algorithms for 

predicting amino acid sequences that would adopt a specified three-dimensional 

structure. It is an extremely progressive area of research and has been successfully 

applied to engineer proteins with improved stabilities and activities [refer to [1]for a 

recent review]. Developments in this field are beginning to have an impact on 

biotechnology and further advancements in improving design strategies are expected to 

expand the range of applicability of computational protein design to larger and more 

complex biological systems. Besides providing as a suitable tool for designing proteins 

for medicinal and industrial purposes, the development of protein design tools should 

also confer a deeper insight into the principles that underlie protein sequence-structure 

relationship. 

There are three primary aspects of computational protein design that, although 

quite distinct from one another, are significantly interdependent. The progress achieved 

by several groups in this field shows that improvements in design techniques have been 

made possible through refinements in these areas. The first aspect concerns the energy 

expression used to assess and score the relative fitness of different amino acid sequences 

with respect to the desired protein fold. The second area deals with the way in which the 

protein design problem, the model, is represented. The model provides a framework for 

describing the target fold and its flexibility, the amino acids allowed for design positions, 

and the rotamer library used to represent the possible side chain conformations. The third 

area of enhancement is the search strategy used to scan the enormous combinatorial 

complexity of possible sequences and selecting those that are optimal for a given fold. 

 Since the inception of computational protein design, elements of a suitable energy 
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expression or force field to rank the desirability of an amino acid sequence for a 

particular backbone structure have been suggested and evaluated. Alterations and 

additions to the energy terms to improve the correlation between computed and 

experimentally observed properties are usually achieved by iterating between theory and 

experiment [2].  The force-field terms describing the non-bond interactions are usually 

explored for improvement, while the bonded energies are taken from commonly used 

molecular mechanics force fields [3]. Since the rotamers derived from protein databases 

generally have good internal energies, and for most design schemes, rigid backbone 

structures are used, the usefulness of improving “bonded” energies has not been 

rigorously demonstrated in protein design.  

For protein cores, a force field that models packing specificity is usually sufficient 

to design a well- folded protein [2, 4]. For designing protein surfaces however, energy 

terms that properly balance non-bonded polar interactions also need to be included in the 

potential function. Chapter 7 describes an approach used to derive a potential function for 

designing ß-sheet surfaces. This method was used to create a plastocyanin variant with 

enhanced thermostability. The derived potential placed more importance on electrostatic 

interactions that led to the selection of charged residues on protein surfaces. An important 

next step in understanding β-sheet stability was to define the role of side-chain ionic 

interactions. Chapter 8 outlines a study that evaluates the interaction energy of a three-

residue ionic network constructed on the ß-sheet surface of protein G. 

Except for a few notable exceptions, the models used to represent protein design 

problems in most cases, do not allow for backbone flexibility; side-chain flexibility is 

incorporated by selecting amino acid rotamers from a library of discrete conformations 
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[5-9].  If necessary, one may use rotamer libraries with different levels of resolution. 

However, because the size of the design problem grows exponentially with the increase 

in the number of rotamers, using a finely descretized rotamer library is often unfeasible.  

The rigidity of such a framework ignores the possibility of backbone shifts to 

accommodate mutations and an incomprehensive rotamer library could lead to the 

selection of incorrect side chain conformations. These limitations of the design procedure 

are highlighted in Appendix 1. This section reports a study on the redesign of the core 

residues in T-4 lysozyme where a significant shift in the protein backbone is observed in 

the crystal structure of a designed variant.  

  The third area of thrust in computational protein design deals with refinements in 

the search strategy. Searches for the optimal sequence for a target protein fold are 

achieved using various deterministic and stochastic combinatorial optimization 

algorithms. However, as structural targets get larger, it has become necessary to find 

more powerful methods to address the increased combinatorial complexities. Efficient 

algorithms that take into account the limitations of computing power and computational 

time are being developed and applied to numerous design problems. 

The ultimate goal of automated protein design is not only to be able to generate 

amino acid sequences that are compatible with the given backbones, but also to ensure 

that the selected sequences are able to perform specific functions. Intermolecular 

interactions lie at the core of protein function in a wide range of fundamental biochemical 

processes. Proteins function through their interactions with ligands, other proteins, or 

surfaces and these interactions are controlled by a complex array of intermolecular 

forces.  In many instances, binding to ligands induces structural changes that allow, for 



  
 V-6 

example, signal transduction across large distances. Designing ligand binding sites and 

engineering ligand- induced conformation changes in proteins are very important 

applications of computational protein design.   

Chapters 9 and 10 delve into the application of computational techniques in the 

area of ligand-protein interactions. Chapter 9 describes the applicability of protein design 

to alter the specificity of a known binding site to enable it to bind to alternate ligands. An 

aminoacyl tRNA synthetase with altered ligand specificity was designed and was 

subsequently shown to be capable of incorporating an artificial amino acid in vivo.  

Chapter 10 explores the possibility of using computational methods to manipulate 

ligand- induced conformational change. The methodology in this study combines 

computational protein design with techniques from mean-field theory to generate 

sequences that undergo substantial conformational changes upon ligand binding.  The 

design approach and the results in this study will provide important insights and 

information that will aid future design efforts in this direction. 
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that Shows Reversible Folding 
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Abstract 

Plastocyanin, like many other metalloproteins, does not undergo reversible 

folding, which is thought to be due to an irreversible conformational change in the 

copper-binding site.  Moreover, apoplastocyanin’s ability to adopt native tertiary 

structure is highly salt-dependent, and even in high salt it has an irreversible thermal 

denaturation.  Here we report a designed apoplastocyanin variant, PCV, that is well-

folded and has reversible folding in both high and low salt conditions.  This variant 

provides a tractable model for understanding and designing protein ß-sheets. 
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Introduction 

Plastocyanins are small (97-104 amino acids) copper-binding proteins that 

function in photosynthesis to catalyze electron transfer from cytochrome-f of the 

membrane-associated cytochrome-b6f complex to P700+ in photosystem-I.  Like all 

plastocyanins, the poplar plastocyanin used in this study is a small Greek key ß-

sandwich protein (10,500 Da) with eight ß-strands, a single turn of a-helix, and a 

copper site coordinated by two histidines, a cysteine, and a methionine in a distorted 

tetrahedral geometry (1, 2) (Fig 7.1). 

Plastocyanin has been used to assess the role of ß-turns in dictating protein 

structure (3) and to elucidate folding mechanisms in ß-sheet proteins (4).  It has also 

been a useful model for studying electron transport in Type 1 copper proteins and in 

plants (5).  However, plastocyanin has a major drawback as a model for understanding 

protein thermodynamics.  The thermal denaturation of plastocyanin occurs at 61 °C and 

is irreversible (6).  It has been suggested that the overall protein denaturation occurs 

after the disruption of the copper-binding site and that during the thermal transition the 

geometry of this site changes from tetrahedral, in the native form, to square planar, in 

the denatured state (7).   

The apo form of plastocyanin in low salt conditions has an altered circular 

dichroism (CD) spectrum compared to the holo protein, suggesting that the apo protein 

has a significantly reduced ß-sheet content and is unstable in solution (8). 

Apoplastocyanin (apoPC) adopts the folded conformation only in the presence of high 

salt concentrations (1 M NaCl or 0.5 M Na2SO4), and under these conditions, its CD 

spectrum is almost identical to that of holo PC (4).  In order to address both the 
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irreversibility of folding and the salt dependency, we used the ORBIT (Optimization of 

Rotamers By Iterative Techniques) protein design software to redesign the copper-

binding site of poplar apoPC. The design resulted in a variant in which two metal 

coordinating residues, Cys84 and His37, were replaced with an alanine and a valine, 

respectively. The designed mutant, PCV, adopts the folded conformation in both high 

and low salt concentrations and has a completely reversible denaturation under high salt 

conditions.  

 

Results and Discussion  

In the process of redesigning the copper-binding site, calculations were run 

using different van der Waals scale factors. A scale factor of 0.9 has typically been used 

for protein core design (9). In order to replace the metal binding site in plastocyanin, 

van der Waals scale factors smaller than 0.9 were explored (10).  PCV was generated 

using a scale factor of 0.85 where His37 and Cys84 are mutated to a valine and an 

alanine, respectively.  

PCV and apoPC were compared for their thermal stability and reversibility of 

folding in high and low salt conditions.  PCV appears folded in both high and low salt 

concentrations while apoPC lacks the native conformation in low salt conditions. 

ApoPC can only adopt its folded conformation in high salt concentrations or when 

reconstituted with copper to yield holoplastocyanin.  PCV has a completely reversible 

two-state thermal transition in high salt and is almost completely reversible in low salt 

conditions (Fig VI-2a).  Also, thermal denaturation results show that PCV is marginally 

stabilized compared to apoPC (Fig VI-2b). 
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PCV is a salt- independent, metal- free variant of plastocyanin that expresses well 

and is easy to purify. It should therefore be an excellent model system for protein 

studies. We have already found it to be useful in understanding and designing ß-sheet 

surfaces (11).  

 

Experimental Methods 

Computational design:  Simulations were performed using coordinates from the X-ray 

structure of apoplastocyanin (PDB code: 2pcy). The metal binding site residues (Fig 

VI-1) were classified as core and boundary using the RESCLASS residue classification 

program as described previously (9). Cys84, His37 and Met92 were classified as core 

residues and His87 as a boundary residue.  Eight hydrophobic amino acid types (Ala, 

Val, Leu, Ile, Phe, Tyr, Met, and Trp) were considered at the three core positions.  All 

other residues as well as the backbone were held fixed.  To maximize core packing, the 

radius scale factor for van der Waal’s interactions was varied from 0.9 to 0.7 in steps of 

0.5.  Computational details, potential functions and parameters for van der Waals 

interactions, solvation and hydrogen bonding are described in our previous work (12).  

Gene synthesis, mutagenesis and protein purification: The wild type (PC) 

plastocyanin gene (13) was constructed using recursive PCR technique (14) and was 

cloned into the pET-11a expression vector (Novagen).  PCV was obtained by site 

directed mutagenesis (15) on the constructed plastocyanin gene using inverse PCR.   

Protein expression was carried out in E. coli strain BL21(DE3). The cells were grown 

in 2?YT at 37 °C.  Recombinant protein expression was induced by adding IPTG to 

cells at an OD600 of 0.75.  Cells were then incubated at 30 °C for an additional five 
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hours.  To isolate apoPC, cells were sonicated in the presence of 10 mM DTT 

(dithiothrietol) to prevent intermolecular disulfide bond formation. Purification was 

accomplished by reverse phase high performance liquid chromatography.  Two peaks 

corresponding to a 99-residue form (lacking an N-terminal methionine) and a 100-

residue form (including the N-terminal methionine) were observed.  The 100-residue 

form was used for all analysis. 

CD analysis: Circular Dichroism (CD) data were collected on an Aviv 62 DS 

spectrometer equipped with a thermoelectric cell holder using a 1 mm path length cell.    

Protein samples were at a concentration of 70 µM in 50 mM potassium phosphate 

buffer at pH 7.0 (low salt) and potassium phospha te buffer containing 0.5 M sodium 

sulfate (high salt).   Wavelength scans were carried out from 200 nm to 260 nm using 

increments of 2 nm.   Thermal melts were monitored at 210 nm and data were collected 

every 2 °C with an equilibration time of 2 min and an averaging time of 40 seconds.  

The melting temperatures were determined by evaluating the maximum of a d?/dT 

versus T plot. 
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Figure VI-1: Ribbon diagram of the X-ray crystal structure of wild type poplar 

apoplastocyanin illustrating residues in the copper-binding site. This figure was created 

using MOLSCRIPT (16). 
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Figure VI-2: (a) Wavelength scans of PCV in high salt conditions at 1 ºC before 

thermal denaturation (? ) and after refolding (?).  (b) Thermal unfolding curves 

monitored at 210 nm for apoPC in high salt (?), PCV in high salt (? ), and PCV in low 

salt conditions (?).  
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Chapter  7 

Designing Protein β -Sheet Surfaces by Z-Score Optimization 
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Abstract 

Studies of lattice models of proteins have suggested that the appropriate energy 

expression for protein design may include non-thermodynamic terms in order to accommodate 

negative design concerns. A method has been developed to improve protein design in lattice 

model studies where enumeration of all possible sequences, and their ground state structures, is 

possible. The method maximizes a quantity known as the "Z-score," which compares the lowest 

energy sequence whose ground state structure is the target structure to an ensemble of random 

sequences. Here we show that, in certain circumstances, the technique can be applied to real 

proteins. The energy expression is then optimized using the assumption that the wildtype 

sequence is a low energy sequence (and its ground state is known to be the target structure). 

The new energy expression is used to design the β-sheet surfaces of two real proteins. We find 

experimentally that the resulting proteins are stable and well folded, and in one case, is even 

more thermostable than the wildtype. 
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Introduction 

Much effort in the field of computational protein design is directed towards developing a 

potential function to rank the compatibility of amino acid rotamer sequences with a target 

structure (Gordon et al., 1999). In a "protein design cycle" (Dahiyat & Mayo, 1996; Street & 

Mayo, 1999), the potential function is developed by cycling between experiment and simulation, 

so that the computational potential ideally approaches nature's "true" potential. This technique 

has had some remarkable recent successes (Dahiyat & Mayo, 1997a; Malakauskas & Mayo, 

1998). 

The approach nevertheless rests on a controversial assumption. Rotamer sequences are 

threaded onto the target structure, and the sequence with the lowest energy (as determined by 

the potential function) is reported as the best sequence for that structure. It is conceivable, 

though, that in some circumstances this sequence will not adopt the desired ground-state 

structure. An extreme example is provided by imagining that the true potential function is one 

that only benefits hydrophobic contacts (and hydrophobic-polar and polar-polar interactions 

contribute zero energy) (Lau & Dill, 1989). Then, for any target structure, an all-hydrophobic 

sequence must be one of the best sequences. This sequence, of course, is not likely to fold 

specifically to the target structure — some polar residues ought to be included to characterize 

the surface of the molecule. Overcoming this problem involves introducing non-thermodynamic 

considerations to the design procedure, collectively known as "negative design" (Hellinga, 

1997). 

There are a number of schemes proposed to implement negative design, often 

specifically to solve the problem of the example in the last paragraph (or variations on it based 

on the Ising model of ferromagnetism). Perhaps the simplest is to use a fixed sequence 
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composition, that is, to hold the total number of hydrophobic and polar residues constant 

(Shakhnovich & Gutin, 1993). Even with this constraint, however, designed sequences are 

frequently found to fold to alternative structures of lower energy than the target structure 

(Shakhnovich, 1994; Yue et al., 1995). Alternatively, instead of minimizing the potential 

function, it is possible to choose a sequence to maximize the occupation probability of the target 

structure (Micheletti et al., 1998b; Seno et al., 1998).  

Other approaches employed in lattice model studies involve adding non-thermodynamic 

terms to the potential function. One method is to introduce a "clamping potential" to force the 

molecule into the target structure, and then to minimize the difference between the clamping 

potential and the "true" potential (Kurosky & Deutsch, 1995; Deutsch & Kurosky, 1996). 

Another approach involves the addition of a penalty for exposing hydrophobic surface area 

(Sun et al., 1995). 

Negative design is thus clearly important, at least in lattice model studies with simple 

potential functions and a limited set of amino acids (Crippen, 1996; Micheletti et al., 1998a). 

For real proteins and more physical potential functions, negative design can be necessary to 

guarantee the correct multimeric state of designed proteins (Harbury et al., 1993). A penalty for 

exposing hydrophobic surface area has also been shown to improve the designability of real 

proteins (Dahiyat & Mayo, 1997b; Malakauskas & Mayo, 1998). 

We have taken yet another approach to determining the optimal potential function for 

protein design, in which we maximize the energy gap between a low energy sequence known to 

fold to the target structure, and the average energy of an ensemble of random sequences 

threaded onto a target structure (Chiu & Goldstein, 1998). In a cubic 3x3x3 lattice simulation, 

the desired "true" potential can be selected manually and the protein folding problem can be 
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solved. Thus a sequence S, whose ground state structure is the target structure, can be 

determined and its energy calculated. If the distribution of energies of the random sequences is 

assumed to be Gaussian, the success of the test potential for protein design is measured by the 

energy gap between the mean of the distribution and the energy of sequence S, normalized by 

the standard deviation of the distribution (Figure VII-1). This quantity is known as the Z-score 

of the sequence S on the target structure. The test potential is then adjusted to maximize the Z-

score. 

Chiu and Goldstein applied the method to a 3x3x3 lattice model, using statistically-

derived pair potentials (Miyazawa & Jernigan, 1985) as the "true" potential. They found that the 

potential generated by maximizing the Z-score across many structures led to significantly better 

success at solving the protein design problem than the true potential. Here we show that the 

technique does not transfer readily to real proteins in their entirety. Nevertheless, we show that 

the technique can be applied to certain subsections of proteins. In particular we use it to design 

the β-sheet surfaces of the B1 immunoglobulin-binding domain of streptococcal protein G 

(GB1) and of a variant of poplar apoplastocyanin with the metal-binding site removed (PCV). 

 

The Z-Score Applied to Real Proteins  

One of the key assumptions of the lattice model method of Chiu and Goldstein (Chiu & 

Goldstein, 1998) is that the energies of random sequences threaded onto the target structure 

form a Gaussian distribution. It would be surprising if this assumption were to hold for real 

proteins. In particular, one would expect that placing random amino acid side chains in the core 

of a protein would typically lead to unresolvable steric clashes, especially since the modeled 

backbone of the target structure is held rigid. Indeed, Figure VII-2a shows the distribution of 
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potential energies of random sequences threaded onto the core of GB1. The distribution is 

clearly not Gaussian, with most sequences yielding enormous energies. A Gaussian distribution 

may be achievable by using a statistically-derived pair potential instead of an atomistic van der 

Waals potential, but designs using pair potentials have not yielded uniquely characterizable 

folded states (Isogai et al., 1999). 

When only surface residues are considered, the situation is improved. For α-helix and 

β-sheet surface residues of GB1, the distribution of energies of random sequences is close to 

Gaussian, as shown in Figure VII-2b. Thus it appears that on the surface, even randomly 

selected amino acids are always able to find suitable rotamers that avoid severe steric 

interference. The Z-score analysis may therefore provide some insight into the appropriate 

potential function for α-helix and β-sheet surface design, provided one can find an appropriate 

sequence with which to calculate the Z-score. In lattice models, one knows the true potential 

function and can exhaustively search all conformations to solve the protein folding problem 

(Shakhnovich & Gutin, 1993). Hence the Z-score of a structure could be calculated using the 

lowest-energy sequence whose ground state is the target structure. 

In contrast, in the lattice model study of Chiu and Goldstein (Chiu & Goldstein, 1998), 

the Z-score is actually calculated without knowledge of this lowest-energy sequence. One 

thousand 27-residue random amino acid sequences are constructed, which are found to 

correspond to 992 unique ground state structures. Eight sequences are discarded to yield a 

one-to-one correspondence between structures and sequences. The Z-score is calculated for 

each sequence in its ground state structure, using the 992 sequences to determine the energy 

distribution. The potential function is then modified to maximize an appropriately formed average 
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of the Z-scores. Thus, the reference sequence used to calculated the Z-score is not necessarily 

the lowest-energy sequence whose ground state structure is the target structure, but instead an 

arbitrary sequence whose ground state structure is the target structure. Nevertheless, the 

resulting potential function is significantly better for protein design than the "true" potential. 

In our application of the theory to real proteins, we therefore expect that any arbitrary 

sequence known to fold to a target structure will suffice for calculating the Z-score of that 

structure. Given an experimentally determined structure, we can thus use the protein's wildtype 

sequence to calculate its Z-score. In essence, the method then chooses the potential function 

which locates the protein's wildtype sequence as far as possible down the tail of the distribution 

of energies. 

Since a number of successful computational redesigns of a-helical surfaces have been 

reported (Dahiyat et al., 1997; Morgan, 2000), we chose to examine the Z-score technique on 

the β-sheet surface, where there have been few successful computational protein design efforts. 

Negative design issues are also expected to play a larger role in β-sheet design (Hecht, 1994). 

Rather than maximizing the Z-score of a large number of structures, as a first step we consider 

just one structure, so that the resulting potential function is optimized for protein design on that 

structure. This method should increase the possibility of the technique being successful for at 

least the one selected structure. The resulting potential function may then be applied to other 

proteins to test its generality, or a new potential function may be calculated by considering more 

protein structures. In particular, we chose to apply the technique to the eight β-sheet surface 

residues of GB1 which are not involved in stabilizing interactions with neighboring turns (Figure 

VII-3a), and to the seven β-sheet surface residues on one face of PCV (Figure VII-3c). 
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The computational potential function, E, included van der Waals interactions, EvdW 

(Mayo et al., 1990; Dahiyat & Mayo, 1997b), electrostatics, Eelec, and a hydrogen bonding 

potential, EHB (Dahiyat, et al., 1997), a bias for secondary structure propensity, ESS (Dahiyat, 

et al., 1997), and solvation energies. The solvation energies were a benefit for burial of 

hydrophobic surface area,     Anp
buried , a penalty for burial of polar surface area,     Apolar

buried , and a 

penalty for exposure of hydrophobic surface area,     Anp
exposed  (Street & Mayo, 1998), and a 

further penalty for polar hydrogen burial, Ephb (Dahiyat, et al., 1997).  

 

    

E = vEvdW − σnp Anp
buried + ξnpAnp

exposed + σpApolar
buried +

1
ε

Eelec + DEHB + PEphb + ESS N( )
 (1) 

The magnitude of the van der Waals interactions, v, was held fixed and the relative 

magnitudes of the other seven energy terms (s np, s np, s p, e, D, P, and N as shown, where ESS 

is an exponential function of N) were allowed to vary individually until the Z-score was 

maximized. 

 

Results and Discussion 

The resulting potential functions are shown in Table 1. For GB1, the maximum Z-score 

is 2.6, i.e., the wildtype sequence is assigned an energy lower than 99.5% of all possible 

sequences. For PCV, the maximum Z-score is 2.2. Also shown in Table VII-1 is the potential 

function built up over many experiments using the protein design cycle, which has been 

successful in particular for core design and α-helix surface design (Street & Mayo, 1999). The 

Z-score optimized potential functions exhibit some interesting common features. The 
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hydrophobic burial benefit, which is the main embodiment of the hydrophobic effect (Wesson & 

Eisenberg, 1992), has disappeared. This reflects the relative lack of importance of hydrophobic 

burial on the surface of proteins (although there may be some role for small hydrophobic 

clusters on the surface of β-sheets (Tisi & Evans, 1995)). The other solvation parameters are 

broadly similar to the experimental potential function.  

The most dramatic difference from the protein design cycle potential is the increased 

importance of electrostatic interactions. The value of the dielectric constant used in the protein 

design cycle is similar to that of water, and leads to electrostatic interactions being de-

emphasized. This value was never experimentally tested, however. Although saltbridges are not 

encouraged, the hydrogen bonding potential from the protein design cycle is quite strong (an 

ideal hydrogen bond receives a benefit of 8.0 kcal/mol). The Z-score optimized dielectric 

constant is an order of magnitude smaller, closer to unity. This is justifiable because we are 

considering effects at the molecular level, where the assumptions behind the use of the dielectric 

constant break down. The screening effect of solvent is also approximated by using a distance 

attenuated Coulomb potential (Mayo, et al., 1990). 

To determine if the Z-score technique may be useful, this potential function must be 

used for real protein design. We used a combination of dead-end elimination (Desmet et al., 

1992; Gordon & Mayo, 1998) and branch-and-terminate (Gordon & Mayo, 1999) to find the 

lowest energy sequence for each β-sheet surface, using the new potential functions. (These 

minimization algorithms are guaranteed to produce the absolute lowest energy sequence, unlike 

stochastic algorithms such as Monte Carlo.) 
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The resulting GB1 variant, GB1-Z1, is a five-fold mutant of the wildtype protein. One 

can clearly see the impact of the electrostatic term in the potential function. The modeled side 

chain configurations are shown in Figure VII-3b, alongside those of the wildtype crystal 

structures (Gallagher et al., 1994). A cluster of threonines and an isoleucine have been replaced 

by two cross-strand saltbridges, Asp42 to Arg55, and Arg6 to Glu53. The wildtype saltbridge 

formed by Lys4 and Glu15 is maintained. Such cross-strand saltbridges might be expected to 

contribute to β-sheet formation and stability, and surface networks of saltbridges are postulated 

to be a stabilizing factor in hyperthermophilic proteins (Elcock, 1998; de Bakker et al., 1999). 

The resulting PCV variant, PCV-Z1, is a three-fold mutant of the wildtype protein. The 

modeled side chain configurations are shown in Figure VII-3d, alongside those of the 

apoplastocyanin wildtype crystal structure (Garrett et al., 1984). Again, the impact of the 

electrostatic term is clear, with a saltbridge network formed by Glu18, Lys95, Lys97 and 

Glu79.  

The designed proteins were made experimentally using standard molecular biology 

techniques and their properties measured. Their far UV circular dichroism spectra overlay those 

of the wildtype proteins. The melting temperature of GB1-Z1 was determined to be 71 °C 

(Figure VII-4a). The melting temperature of GB1 is 86 °C. Although the designed protein is not 

as stable as the wildtype protein, it appears to fold to the correct structure. Although the 

literature contains many examples of alterations to the β-sheet surface of GB1, we know of no 

instances resulting in greater than wildtype stability. This is the first example of a well formed, 

many-stranded β-sheet designed through purely computational means. 
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The results for PCV-Z1 were even more impressive. The melting temperature of PCV-

Z1 was determined to be 64 °C, compared to the melting temperature of PCV of 56 °C (Figure 

VII-4b). The designed protein is thus even more stable than the natural one. To our knowledge, 

this is the first time a natural protein's stability has been increased by redesigning its β-sheet 

surface. 

 

Materials and Methods  

Simulation: The core residues of GB1 are positions 3, 5, 7, 20, 26, 30, 34, 39, 52, and 54. 

The eight β-sheet surface positions of GB1 considered here are 4, 6, 15, 17, 42, 44, 53, and 

55. The α-helix surface positions of GB1 are 24, 27, 28, 31, 32, 35, and 36. The seven β-

sheet surface positions of PCV considered here are 18, 20, 79, 81, 93, 95, and 97. These 

follow from our residue classification algorithm (Dahiyat & Mayo, 1997a). The potential 

function used in Figure VII-1 is derived from the protein design cycle, shown in Table 1. 

The Z-score maximization algorithm searched along each potential function basis vector 

(that is, varying the scale factor for each energy term in Eq. 1) individually to maximize the Z-

score. The search was initiated at the potential function derived from the protein design cycle, 

from the van der Waals potential alone, and from other random potentials, and always 

converged to the same result. Further, the ordering of the search through basis vectors had no 

effect on the result. It was found that this optimization algorithm was sufficient to find the 

maximum Z-score. 

The Z-score was calculated using 4000 random sequences to determine the energy 

distribution of the potential function on the structure, resulting in an uncertainty in the Z-score of 
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±0.04. The random sequences were composed of the polar amino acids Ser, Thr, Asp, Asn, 

Glu, Gln, Lys and Arg, as well as the hydrophobic amino acids Ala, Val and Ile. The results 

were surprisingly robust to changes in the set of amino acids considered. In particular, the 

results were not significantly different if Ala was removed from consideration, or if His, Met and 

Gly were included. 

In contrast to the case in lattice models, real amino acids may adopt many different 

conformations, or rotamers. The energy of a given amino acid sequence on a structure is thus 

calculated by minimizing the energy across all possible rotamer configurations, using dead-end 

elimination. For this procedure a backbone-dependent rotamer library was used (Dunbrack & 

Karplus, 1993), in which the χ1 angles of all hydrophobic amino acid rotamers were expanded 

±1 standard deviation about the mean value (Dahiyat, et al., 1997). 

Experimental: A synthetic GB1 gene (Minor & Kim, 1994) was cloned into a pET11a vector 

(Novagen) and used as the template for QuikChange mutagenesis (Qiagen). A synthetic PCV 

gene was constructed by recursive PCR (Prodromou, et. al., 1994) The genes were confirmed 

by DNA sequencing. The expression and purification of the protein followed published 

procedures, and was verified by mass spectrometry. The 56-residue form of GB1 (with N-

terminal methionine processed) and the 100-residue form of PCV (including the N-terminal 

methionine) were used. PCV was derived from wildtype poplar apoplastocyanin (Garrett, et al., 

1984) by removing its metal-binding site through the mutations His37 to Val and Cys84 to Ala. 

These mutations are in the core of the molecule and are not expected to interact with changes to 

the surface of the protein. The melting temperature of PCV was observed to be 56 °C 

compared to 51 °C for unmodified apoplastocyanin.  
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Far UV circular dichroism spectra were measured on an Aviv 62DS spectrometer. The 

spectra of GB1 and GB1-Z1 were measured at pH 5.5, in 50 mM phosphate and 50 µM 

protein, using a 1 mm path length, with thermal melts performed at 218 nm using 2 °C 

temperature steps with an averaging time of 30 s and an equilibration time of 2 min. The spectra 

of PCV and PCV-Z1 were measured at pH 7.0, in 50 mM potassium phosphate, 0.5 M 

sodium sulfate, and 70 µM protein, with thermal melts performed at 210 nm. The melting 

temperatures were derived by evaluating the maximum of a dθ/dT versus T plot. Protein 

concentration was determined by UV spectrophotometry. 

Conclusion 

It is interesting that we have designed two stable protein β-sheet surfaces using different 

potential functions. Indeed, further application of the technique to other proteins suggests yet 

different potentials may be appropriate. This supports the belief that there may be alternative 

routes taken by nature to stabilize protein surfaces, and which may be taken in de novo design 

too (Cordes et al., 1996). Of course, one test of this proposal is to use the potential derived 

from one protein to design the β-sheet surface of another, and preliminary results in this regard 

appear promising (unpublished data). The potential derived for plastocyanin was applied to 

protein G and the mutant (PGPC) was 7 °C more stable than GB1-Z1. A further advantage of 

the approach outlined in this Letter is that it could lead to a faster turn-around time for protein 

design, since it optimizes the potential function with less frequent recourse to experiment.
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Energy term Design cycle PCV Range GB1 Range 

van der Waals v 1.0 1.0 n.a. 1.0 n.a. 

np burial σnp 
(kcal/mol/Å2) 

0.05 0.0 0.0 – 0.01 0.0 0.0 – 0.02 

np exposure σnp 
(kcal/mol/Å2) 

0.05 0.10 0.04 – 0.16 0.06 0.02 – 0.08 

polar burial σp 
(kcal/mol/Å2) 

0.0 0.0 0.0 – 0.04 0.03 0.01 – 0.06 

dielectric ε 40.0 4.0 2.0 – 6.0 4.0 2.0 – 6.0 

H-bond D  8.0 1.0 1.0 – 8.0 6.0 1.0 – 8.0 

polar H burial P  2.0 9.0 6.0 – 15.0 3.0 1.0 – 7.0 
 
secondary structure bias 
N 

n.a. 1.0 0.0 – 1.4 1.4 0.8 – 1.6 

 

 

Table VII-1. Potential functions determined through different methods. The energy terms considered are 
shown in Eq. 1. The van der Waals energy scale factor v was held fixed. A potential function has been 
developed using the protein design cycle (Street & Mayo, 1999), and has been successful for core and α-
helix surface design in particular. The Z-score method applied to the β-sheet surface of PCV and of GB1 
yield new potential functions. Also shown are the ranges over which each parameter may be changed while 
keeping the Z-score within 5% of its maximum (when the other parameters are kept fixed). 
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Figure VII-1. The assumed distribution of energies of sequences threaded onto the target 

structure. Sequence S0 is the lowest energy sequence whose ground state structure is the target 

structure. Note that there may be sequences of lower energy that do not fold to the target 

structure. By altering the energy function non-thermodynamically, negative design seeks to move 

these sequences above S0. 
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Figure VII-2. The actual distribution of energies of various subsets of the real protein GB1, 

using the potential function derived from the protein design cycle (Table 1). a) The core (only 

the 2.5% lowest-energy sequences are shown), b) the β-sheet surface. 
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Figure VII-3. Views of the eight designed positions on the β-sheet surface of GB1 and PCV. 

a) the crystographically-determined wildtype GB1 side chain orientations. b) the orientations 

modeled using the Z-score-derived potential function on GB1. c) the crystographically-

determined PCV wildtype side chain orientations. d) the orientations modeled using the Z-

score-derived potential function on PCV. 
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Figure VII-4. Thermal denaturation data. a) Circular dichroism measurements of PCV (black) 

and PCV-Z1 (red) with temperature at 210 nm. b) Circular dichroism measurements of GB1 

(blue), GB1-Z1 (red) and PGPC (black) with temperature at 218 nm. 
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Chapter 8 

Evaluation of the Energetic Contribution of an Ionic 

Network to Beta-Sheet Stability 

 

 

 

 

 

 

 

 

Adapted from Kirsten S. Lassila, Deepshikha Datta, and Stephen L. Mayo. Protein 

Sci. 2002 Mar;11(3):688-90. 
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Abstract 

We have evaluated the interaction energy of a three residue ionic network 

constructed on the beta-sheet surface of protein G using double mutant cycles.  

Although the two individual ion pairs were each stabilizing by around 0.6 kcal/mol, 

the excess gain in stability for the triad was small (0.06 kcal/mol).   
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Introduction 

The β-sheet surface of the protein G immunoglobulin-binding domain B1 

(GB1) has been used as a model system for evaluating the β-sheet forming 

propensities of amino acids (Minor & Kim, 1994; Smith et al., 1994).  These studies, 

in combination with statistical surveys of known structures and theoretical models of 

β-sheet propensity provide some general guidelines for amino acid selection in β-

sheet design (Munoz & Serrano, 1994; Street & Mayo, 1999).   

An important next step in understanding β-sheet stability is to define the role 

of side chain interactions such as hydrogen bonding and ionic interactions.  In 

particular, the energetic effects of surface ionic interactions have been debated.  

Solvent exposed ion pairs have been found to stabilize folded proteins in a number of 

cases (Lyu et al., 1992; Horovitz et al, 1990; Spek et al, 1998; Takano et al, 2000; 

Serrano et al, 1990).  In the context of the β-sheet surface environment, ion pairs have 

been reported to stabilize folded proteins by 0.4 – 1 kcal/mol (Merkel et al, 1999; 

Blasie & Berg, 1997; Smith & Regan, 1995).  However, some surface ion pairs 

exhibit neutral or destabilizing effects (Strop & Mayo, 2000; Dao-pin et al, 1991).  

The high dielectric of the aqueous environment and the loss of side chain 

conformational freedom have been invoked to explain the marginal stabilizing effects 

of some pairwise electrostatic interactions.   

Networks of charged surface residues have been observed in 

hyperthermophile proteins and have been proposed to offer an energetic advantage 

over single ion pairs due to the reduced entropic cost of fixing a third residue (Yip et 

al, 1995; Dao-pin et al, 1991).  Indeed, two analyses of solvent exposed ionic triads in 
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α-helical regions have shown that three-residue networks offer a stabilizing effect 

greater than would be observed for the sum of the two individual pairwise 

interactions (Horovitz et al, 1990; Spek et al, 1998). 

To test the effect of an ionic triad in the context of the β-sheet surface, we 

have evaluated the energetic contribution of a three residue triad constructed on the β-

sheet surface of GB1.  The network consists of Arg 6, Glu 53, and Arg 44, residues 

which lie on three adjacent strands of the β-sheet surface (Figure 1a).  Double mutant 

cycle analysis was used to isolate the interaction energy of the triad (Horovitz & 

Fersht, 1990).  Eight GB1 variants were constructed which represent all permutations 

of Arg or Ile at position 6, Glu or Ala at position 53, and Arg or Ala at position 44.  In 

this three-residue thermodynamic cycle, the interaction energy of the ionic network is 

calculated as in equation 1. 

 

? ? ? GRER
interaction= {(?GRER-? GRAA)-[(? GREA-?GRAA)+(?GRAR-?GRAA)]}-                           

[1] 

                            {(?GIER-?GIAA)- [(? GIEA-?GIAA)+(?GIAR-?GIAA)]} 

 

?GXYZ is the free energy of unfolding for the GB1 mutant with amino acids X, Y, and 

Z at positions 6, 53, and 44, respectively.  The interaction energy of an Arg-Glu ion 

pair in the presence of another residue X is calculated as in equation 2.  

 

? ? GXER
interaction= (?GXER-?GXAA)-[(? GXEA-?GXAA)+(?GXAR-?GXAA)]                                

[2] 
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Free energies of unfolding (?G) were evaluated by two-state analysis of thermal 

denaturation curves monitored by circular dichroism (CD) (Figure 1b).   

 The variant containing both a single ion pair and isoleucine, I6E53R44, had the 

highest Tm and ?G of unfolding (Table 1) while the variant with the ionic triad, 

R6E53R44 was only slightly less stable.  It is interesting to note that the addition of the 

third charged residue almost fully compensates for the loss of the beta-branched (and 

therefore β–sheet stabilizing) amino acid. 

Interaction energies of the Arg6-Glu53 pair were 0.58 kcal/mol in the 

presence of Ala44 and  0.64 kcal/mol in the presence of Arg44 (Table 2).  The Arg44-

Glu53 pair had interaction energies of 0.51 kcal/mol (in the presence of Ile6) and 0.57 

kcal/mol (with Arg6).  This level of stabilization is consistent with other surface 

electrostatic interactions studied by double mutant cycles (Spek et al, 1998; Serrano 

et al, 1990; Merkel et al, 1999). 

Although the pairwise electrostatic interactions are clearly favorable, the ionic 

network does not appear to significantly enhance GB1 stability any more than the 

simple sum of the individual pairs.  As shown in Table 2, the interaction energy of 

unfolding for the ionic network, ? ? ? Ginteraction, determined at 75 °C (approximately 

the average Tm for the eight variants) was 0.06 kcal/mol.  This very low interaction 

energy suggests that the contributions of the ion pairs are additive; there is no 

additional stabilization of one ion pair in the presence of a third charged residue.  In 

contrast, previous studies of charged networks on α-helices using the double mutant 

cycle method showed stabilizing interaction energies of 0.77 kcal/mol for an Asp-
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Arg-Asp triad (Horovitz et al, 1990) and 0.65 kcal/mol for an Arg-Glu-Arg triad 

(Spek et al, 1998).  

The lack of a significant stabilizing interaction energy of the Arg6-Glu53-

Arg44 triad may be due to a variety of factors.  Previously reported factors such as 

desolvation, side chain entropy loss, and conformational strain may counteract the 

electrostatic benefits of the network.  However, the local environment of the triad, 

including secondary structure and neighboring residues, may also affect the 

magnitude of the interaction energy of the triad.  Further studies on β-sheet surface 

electrostatic interactions may help to clarify whether or not secondary structure 

influences the stabilizing effect of ionic networks.   

 

Methods 

Mutagenesis and protein expression 

GB1 variants were constructed by inverse PCR mutagenesis and expressed 

using the T7 promoter system as previously described (Su & Mayo, 1997).  

Purification of 57-residue GB1 variants containing an N-terminal methionine was 

accomplished by reverse phase HPLC and verified by mass spectrometry.  

 

Thermal denaturation 

The increase in CD signal at 218 nm was followed during thermal unfolding 

from 1 °C to 99 °C using 50 µM protein in 50 mM sodium phosphate, pH 5.5.  The 

midpoint of the thermal denaturation (Tm) and the enthalpy of unfolding (?H) were 

determined from a two-state analysis of each denaturation curve (Minor & Kim, 
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1994; Smith et al, 1994).  The change in heat capacity upon unfolding (? Cp) was held 

constant at 0.621 kcal/K•mol, a value previously reported for wild-type GB1 

(Alexander et al, 1992).  ?G values were assigned using the Gibbs-Helmholtz relation 

with ? Cp = 0.621 kcal/K•mol (Minor & Kim, 1994; Smith et al, 1994).  The average 

error in calculating ?G (as determined from curve fitting) was 0.06 kcal/mol.
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Table VIII-1  Stability data for GB1 variants 

 

                                      Tm1                           ?HTm
2              ?G (75 °C)3 

Variant                         (°C)                        (kcal/mol)           (kcal/mol) 

R6E53R44                    79.1 ± 0.5                  53.5 ± 2.0                 0.61 

R6E53A44                     76.1 ± 0.4                    52.3 ± 2.0                 

 0.16 

R6A53R44                     69.6 ± 0.3                   45.0 ± 1.6                

 -0.74 

R6A53A44                    70.6 ± 0.3                   46.6 ± 1.5                -0.62 

I6E53R44                      80.1 ± 0.6                    56.1 ± 2.5                 0.79 

I6E53A44                      77.2 ± 0.4                    54.1 ± 1.9                  0.34 

I6A53R44                      75.5 ± 0.3                   50.1 ± 1.5                 

 0.08 

I6A53A44                      76.0 ± 0.3                   51.4 ± 1.6                 

 0.14 

1Tm, midpoint of thermal denaturation transition  
2?HTm, enthalpy of unfolding at Tm  
3?G (75 °C), free energy of unfolding calculated at 75 °C  
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Table VIII-2.  Interaction energies for ion pairs and the three-residue network.  

 

                                                 ??G (75 °C)4                ???G (75 °C)5 

Interaction                                 Kcal/mol                       Kcal/mol 

R6E53   (A44)                                     0.58 

R6E53   (R44)                                      0.64 

E53R44   (I6)                                       0.51 

E53R44   (R6)                                      0.57 

R6E53R44                                                                                  0.06 

4??G (75 °C) interaction energy (calculated at 75 °C) of the ion pair in the presence 
of the residue indicated in parentheses  
5???G (75 °C) interaction energy (calculated at 75 °C) of the triad as described in the 
text 
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Figure 1.   The β-sheet surface of GB1 showing possible orientations for side chains 

Arg 6, Glu 53, and Arg 44.  In the positions shown, nitrogen-oxygen distances are 

2.92 Å  and 2.85 Å for residue pairs 6-53 and 44-53, respectively.  Side chains were 

positioned with a dead-end elimination algorithm (Voigt et al, 2000) and the figure 

was created with MOLSCRIPT (Kraulis, 1991).   
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Figure VIII-2  Thermal denaturation curves for GB1 variants.  From left to right (at 

50% unfolded):  R6A53R44, R6A53A44, I6A53R44, I6A53A44, R6E53A44, I6E53A44, 

R6E53R44, and I6E53R44. 
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Chapter 9 
 
 

Redesigning Aminoacyl-tRNA Synthetases for in vivo Incorporation of 
Non-natural Amino Acids 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Adapted from Datta D, Wang P, Carrico IS, Mayo SL, Tirrell DA. J Am Chem Soc 2002; 
124:5652-3 
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ABSTRACT 
 

We present here a computationally designed new mutant E. coli phenylalanyl-tRNA 

synthetase, which allows efficient incorporation of aryl ketone functionality into protein in 

vivo.   We demonstrate chemoselective modification of ketone-containing protein as a new 

means for selective modification of recombinant proteins.  Given the mild reaction 

conditions, we envision that this chemoselective formation of hydrazone linkage can be 

widely utilized to in vivo label proteins of interest and post-translational protein 

engineering.   

 This study also demonstrates the usefulness of computational protein design in 

manipulating tRNA synthetases for incorporation of non-natural aminoacids. It can be 

potentially used to design both the synthetase for the incorporation amino acid analog and 

also the protein in which we would like to incorporate the analog to enhance or modify its 

structural, catalytic and binding properties. This dual design approach, in which we are not 

limited to the 20 natural amino acids, could be used as a very powerful protein-engineering 

tool to design biomolecules with novel structures and functions. 
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Introduction 

Protein engineering, a powerful tool for structural and functional modification of 

proteins, relies on an efficient recognition mechanism for incorporating mutant amino acids 

in the desired protein sequences. Though this process has been very useful for designing 

new macromolecules with precise control of composition and architecture, a major 

limitation is that the mutagenesis is restricted to the 20 naturally occurring amino acids.  

For many applications of designed macromolecules, it would be desirable to develop 

methods for incorporating amino acids that have novel chemical functionality not 

possessed by the 20 natural amino acids. For example, the ability to synthesize large 

quantities of proteins containing heavy atoms would facilitate protein structure 

determination, and the ability to site specifically substitute fluorophores or photocleavable 

groups into proteins in living cells would provide powerful tools for studying protein 

functions in vivo. One might be able to enhance the properties of proteins by providing 

building blocks with new functional groups, such as an amino acid containing a keto-group. 

Incorporation of novel amino acids in macromolecules has been successful to an 

extent. Biosynthetic assimilation of non-canonical amino acids into proteins has been 

achieved largely by exploiting the capacity of the wild type synthesis apparatus to utilize 

analogs of naturally occurring amino acids [1-5]. Nevertheless, the number of amino acids 

shown conclusively to exhibit translational activity in vivo is small, and the chemical 

functionality that has been accessed by this method remains modest. In designing 

macromolecules with desired properties, this poses a limitation since such designs may 

require incorporation of complex analogs that differ significantly from the natural 

substrates in terms of both size and chemical properties and hence, are unable to 
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circumvent the specificity of the synthetases. To further expand the range of non-natural 

amino acids that can be incorporated, the activity of the aminoacyl tRNA synthetases 

(AARS) needs to be manipulated. 

The importance of the aminoacyl-tRNA synthetases (aaRS) in determining the 

success or failure of analogue incorporation has been recognized for decades. [5-16] Here, 

we report a computationally designed new variant of the E. coli phenylalanyl-tRNA 

synthetase (ePheRS), which allows efficient incorporation of aryl ketone functionality into 

protein in vivo.  In this study we demonstrate computational protein design to an extremely 

useful tool in predicting mutations in synthetases that will allow incorporation of new 

analogs that do not get incorporated by the natural synthetases.  

In 1991, Kast and coworkers [8, 10, 11] introduced a variant of ePheRS (termed 

ePheRS*), which bears an Ala294Gly mutation and which thereby acquires relaxed 

substrate specificity.  We have recently shown that ove r-expression of ePheRS* can be 

exploited to effect efficient incorporation of p-bromo-, p- iodo-, p-ethynyl-, p-cyano- and p-

azidophenylalanines into recombinant proteins in E. coli hosts[5, 7]. But similar 

experiments with p-acetylphenylalanine (DPA) failed (Figure IX-4); even in a host in 

which ePheRS* was over-expressed, phenylalanine-depleted cultures supplemented with 

DPA did not produce detectable yields of protein (Figure IX-5).  Our interest in DPA arises 

from the chemical versatility of the side-chain ketone function, which can be 

chemoselectively ligated with hydrazide, hydroxylamino, and thiosemicarbazide group 

under physiological conditions[17-22]. Cornish and coworkers have accomplished site-

specific incorporation of ketone functionality into recombinant proteins via in vitro 

translation; however, we are unaware of previous reports of in vivo methods of introducing 
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ketone functionality, Bertozzi and coworkers have reported that N-levulinoylmannosamine 

can be incorporated into cell surface oligosaccharides and that the associated ketone 

functionality can be captured through reaction with nitrogen nucleophiles [20, 22]. 

 

Methods 

Computational Modeling 

Model System 

Phenylalanine –tRNA synthetase (PheRS): We have selected the PheRS as our model for 

this study. PheRS is an (aß)2 enzyme with 350 amino acids in the a subunit and 785 in the 

ß subunit [23, 24].  The binding site for phenylalanine (Phe) is in the a subunit (Figure IX-

2).  There are a number of reasons for selecting this system. Although the crystal structure 

of E.coli PheRS is unavailable, the crystal structure of Thermus aquaticus PheRS (tPheRS) 

complexed with Phe is available [23]and there is 43% identity between ePheRS and 

tPheRS (Figure IX-1). An accurate description of the binding pocket is critical for the 

computational design approach since it depends on the crystal structure for the protein 

backbone descriptions. The crystal structure also defines the orientation of Phe in the 

binding pocket of the synthetase. The aromatic ring of Phe is buried in the hydrophobic 

pocket while the carbonyl and the amide groups of the backbone make extensive 

electrostatic contacts with the charged and polar residues at the mouth of the pocket. We 

attempted to design the binding pocket for the analogs so that they bind to PheRS in the 

same orientation as Phe since this orientation may be important for the adenylation step.   

Another reason for using this system is that the structure of PheRS does not 

undergo any significant structural rearrangement on substrate binding as indicated by the 
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crystal structures of free PheRS and the PheRS-Phe complex.  This makes the system well 

suited for our protein design algorithm which uses a fixed-backbone structure for side-

chain selection. PheRS is an extensively studied system for the assimilation of artificial 

amino acids and has been used successfully in incorporation of a few Phe analogs.  In fact, 

limited mutation analysis has also been done on this system to alter substrate specificity 

(Kast and Hennecke,1991). Moreover, molecular dynamics (MD) simulations have been 

performed in an effort to understand the binding behavior of PheRS towards various 

analogs. 

Analogs: The Phe analogs selected for the study are shown in Figure IX-4. These analogs 

have been experimentally tested to check if they are readily incorporated in proteins by the 

natural PheRS. MD simulations were performed using these analogs and significant 

correlation was achieved between the predicted binding energies and the in vivo 

incorporation rates exhibited by these analogs (Wang et al., 2001).  

Binding Site Design 

We used a protein design algorithm [25, 26], ORBIT, to predict the optimal amino 

acid sequences of the binding pocket for binding to the different analogs. Selection of 

amino acids is performed using a very efficient search algorithm that relies on a discrete set 

of allowed conformations for each side chain and empirical potential energy functions that 

are used to calculate pairwise interactions between side chains and the between the side 

chains and backbone.  

Surveys of protein structure database have shown that side chains exhibit marked 

conformational preferences, and that most side chains are limited to a small number of 

torsional angles. Thus, the torsional flexibility of most amino acids can be represented with 
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a discrete set of allowed conformations called rotamers. Rotameric preferences in side 

chains are observed that depend on the main-chain conformations. ORBIT accounts for the 

torsional flexibilities of side chains by providing rotamer libraries that are based on those 

developed by Dunbrack and Karplus [27, 28].  

  In our design, we performed optimization calculations by varying the torsional 

angles of the analogs and the side chains lining the pocket simultaneously.  This required 

generating rotamer libraries for the analogs, since they are not included in our standard 

rotamer libraries. For all the natural amino acids, the possible ?1 and ?2 angles are derived 

from database analysis. Since this was not feasible in the case of artificial amino acids, the 

closest approximation for ?1 and ?2 angles for Phe analogs were taken to be the same as 

those for Phe. Moreover, our goal was to select for conformations that were as close as 

possible to the orientation of Phe in the binding pocket. So allowing similar torsional 

angles for the analogs as of Phe seems logical.  

Since the residues in the pocket are buried in the protein structure, we used force 

field parameters similar to those used in previous protein core design calculations. The 

design algorithm uses energy terms based on a force field that includes van der Waals 

interactions, electrostatic interactions, hydrogen bonding, and solvation effects [29].  

We generated backbone independent rotamer libraries for all the analogs shown in 

Figure IX-4. Both the ?1 and ?2 torsional angles were varied to match those of Phe 

rotamers in our standard backbone independent rotamer library.  The torsional angles of 

Phe in the crystal structure  (?1: –101º, ?2: –104º) were also included in the new rotamer 

libraries for both Phe and the analogs. Charges were assigned only to the heavy atoms of 

the analogs to be consistent with the way charges for the natural amino acids are 
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represented in ORBIT.  The first analog selected for design was acetylphenylalanine 

(DPA).   

Design calculations were run by fixing the identity of the substrate to be DPA and 

varying 11 other positions on PheRS (137, 184, 187, 222, 258, 260, 261, 286, 290, 294, 

314). Positions 137, 184, 258, 260, 261, 286, 290, 294, 314 were allowed to be any of the 

20 natural amino acids except proline, methionine and cysteine.  Methionine was allowed 

at position 187 because its wild-type identity is Met and only hydrophobic amino acids 

were allowed at position 222. Most of these positions are buried in the core and a number 

of them pack against Phe in the crystal structure.  Mutation analysis at position 294 has 

been shown to alter substrate specificity.  The anchor residues (Glu 128, Glu 130, Trp 149, 

His 178, Ser 180, Gln 183, Arg 204) were held fixed both in identity and conformation in 

all the calculations. These make very important electrostatic interactions with the substrate 

and this interaction is probably equally critical for the analogs.  From the crystal structure it 

appears that the anchor residues hold the Phe zwitterion in a way that the carbonyl group of 

the zwitterion is close to the ATP binding site. This proximity may be important for the 

aminoadenylation reaction. The aminoadenylation step is required for the incorporation of 

all the amino acids and hence, it seems important to make sure that the carbonyl and the 

amide groups of the analog zwitterions are also anchored the same way as the natural 

substrate at this site. 

In the first design attempt we allowed all the DPA rotamers that were generated in 

the rotamer library. The DPA rotamer selected in the structure generated was not buried in 

the binding pocket and most of it is solvent-exposed. A second calculation was run 

allowing only those DPA rotamers that would pack into the binding pocket.  These are the 
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rotamers with all possible combinations of ?1 of  –101 (±20°) and ?2 of  -104  (±20°) in 

increments of 5°. The structure generated in this calculation has the aromatic ring of DPA 

buried in the pocket and is almost completely superimposable with the Phe in the PheRS 

crystal structure.  

Gene construction, protein expression and analysis of designed PheRS activity 

E. coli PheRS* was amplified by the polymerase chain reaction (PCR) from vector 

pQE-FS [5] The amplified ePheRS* was subjected to PCR mutagenesis to create the  

desired Thr251Gly mutant, which we designate ePheRS**.  To allow constitutive 

expression of the synthetase, a tac promoter with an abolished lac repressor binding site 

was inserted upstream of the start codon of the ePheRS** gene[30]. The constitutive 

expression cassette was then cloned into pQE15 (Qiagen), which encodes the marker 

protein mouse dihydrofolate reductase (mDHFR).  The resulting plasmid was designated 

pQE-FS**.   As a control, plasmid pQE-FS* containing ePheRS* under control of tac 

constitutive promoter was constructed similarly.  AF-IQ, a phenylalanine auxotrophic cell 

strain carrying the repressor plasmid pLysS-IQ[5], was transformed with pQE15, pQE-FS*, 

or pQE-FS** to generate expression systems AF-IQ[pQE15], AF-IQ[pQE-FS*], and AF-

IQ[pQE-FS**], respectively.  The capacity of DPA to support protein synthesis in each 

expression system was determined by induction of mDHFR expression in phenylalanine-

free minimal media supplemented with DPA.  The histidine-tagged protein isolated from 

the latter culture (mDHFR-DPA) was purified by nickel-affinity chromatography. The 

isolated protein yield was about 20 mg/L, approximately 60% of that obtained from 

cultures supplemented with Phe.  Incorporation of DPA was confirmed by MALDI-TOF 

mass spectrometry analysis and tryptic peptide digestion analysis of purified mDHFR  
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With ketone-modified mDHFR, we also investigated the reactivity of hydrazide 

with this protein.   Purified mDHFR-wt and mDHFR-2 was dissoved in PBS buffer 

(pH=6.0) and treated with 5 mM biotin hydrazide (BH) or PBS buffer alone as a negative 

control.  The reaction products were analyzed by western blot after being seperated by 

SDS-PAGE and stained with streptavidin HRP conjugate (Figure IX-7).  The products were 

also examined for the presence of 6xHis tag of mDHFR to ensure existence of proteins and 

no degradation occuring after reaction.   

Results and Discussion 

The structure generated in the design calculation has the aromatic ring of DPA 

buried in the pocket and is almost completely superimposable with the Phe in the PheRS 

crystal structure. We also ran a control calculation where we fixed Phe as the substrate.  In 

all calculations, with DPA, position 258 is mutated from Phe to Tyr. This position is 

slightly exposed and is not in direct contact with DPA. Position 258 is very close to the 

anchor residues so mutating it may affect the transfer of the amino acid to its RNA and 

therefore, we did not include this mutation. We also ignored mutations V184I (this position 

is far enough from the substrate binding site and therefore, may not affect binding) and 

L222A  (this mutation was predicted because of a potential clash between methionine 

rotamer at 187 and leucine at 184 in the calculation). 

We compared the sequence predicted for Phe and DPA and observed that most 

significant difference between the two sequences was the prediction of two important 

cavity-forming mutations in the case of DPA: Val261 (Thr251 in E. coli) to Gly and 

Ala314 (Ala294 in E. coli) to Gly (Figure IX-3).  
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These predictions are consistent with the findings of Reshetnikova and coworkers 

[23] who pointed out that Ala314 and Val261 provide steric hindrance to the binding of 

larger amino acids (e.g., tyrosine) into the active site of tPheRS. Further confidence in the 

prediction was engendered by the fact that Ala294Gly allows incorporation of an 

interesting set of para-substituted analogues of Phe.  We were encouraged to test whether 

the additional Thr251Gly mutation would relax the specificity of ePheRS sufficiently to 

allow incorporation of DPA into protein in vivo.  

As shown in SDS-PAGE analysis of whole cell lysates (Figure IX-5), neither AF-

IQ[pQE15] nor AF-IQ[pQE-FS*] yields mDHFR in the negative control cultures (-phe) or 

in the cultures containing DPA.  On the other hand, expression of mDHFR is evident in the 

AF-IQ[pQE-FS**] culture supplemented with DPA.  

MALDI-TOF mass spectrometry analysis showed that molecular weight of 

mDHFR-2 was increased 307.65 kDa, indicating 81.4% substitution of Phe residues by 

DPA (mDHFR contains 9 Phe residues).  Incorporation of DPA was also confirmed by 

tryptic peptide digestion analysis of purified mDHFR (Figure IX-6).  For mDHFR-wt, two 

peptides within mass range from 1550 to 1750 Da was observed, which can be assigned to 

residues 34-47 and 93-106, respectively (Figure IX-6a, both fragments contain 1 phe 

residue).  The corresponding peptides containing analogue 2 (Figure IX-6b) showed 

additional mass of 42 Da, which is consistent to increased mass of DPA relative to Phe.   

The chemoselective ligation of hydrazide with ketone-containing protein proceeded 

sucessfully and western blot using anti-His antibody confirmed that no side reactions 

occured (Figure IX-7b).    

RBIAS – for enhancing protein-substrate interactions 
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The sequence generated in the first calculation has two important cavity forming 

mutations which are Val261 to glycine and Ala314 to glycine. Mutation to glycine at 

position 314 has been previously reported to have enhanced the incorporation of larger Phe 

analogs that are not incorporated by the wild type synthetase. All the mutations predicted in 

this calculation gear towards making enough space in the binding pocket for 

accommodating DPA, but besides van der Waals interactions, we do not see any specific 

interaction between DPA and the protein.  

In an attempt to design specificity in protein-substrate interaction, we developed a 

program, RBIAS, which enhances the interactions between the substrate and the protein 

positions. This was achieved by scaling up the pairwise energies between the substrate and 

the amino acids allowed at the design positions on the protein in the energy calculations. In 

an optimization calculation where the protein-substrate interactions are scaled up compared 

to the intra-protein interactions, sequence selection will be biased toward selecting amino 

acids to be those that have favorable interaction with the substrate.  

We performed multiple calculations by scaling up the substrate-protein interactions 

by factors of 2.0 to 20.0 in increments of 2.0. A scale factor of 4.0 generated an interesting 

mutation, Val 286 to Gln, which makes a hydrogen bond with the acetyl group at the distal 

end of DPA. The interaction between DPA and the PheRS in this sequence was enhanced 

by 2.12 kcal/mol although the complex is destabilized by 12.96 kcal/mol as indicated by 

the total energy. A bias scale factor of 18.0 generated a new mutation, Val 290 to lysine. 

We believe this mutation is not important for specificity since lysine at this position is not 

making significant interactions with DPA. Moreover, polar groups in the core, especially 

those that are not involved in a salt-bridge or a hydrogen bond may significantly destabilize 
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proteins. Therefore, we can trade off only some amount of overall protein stability in order 

to gain specificity between the protein and the substrate. 
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       Sequence 128 130 137 149 178 180 183 184 187 204 222 258 260 261 286 290 294 314 

    Ligand    
E  Energy 

 

Total 
Energy 

WT_phe E E L W H S Q V M R L F F V V V V A -16.91 -240.71 
No bias_phe E E L W H S Q I M R A Y F V L I I A -16.87 -242.14 

WT_dpa E E L W H S Q V M R L F F V V V V A -103314 51669.81 
No bias_dpa E E L W H S Q I M R L Y F G L I V G -21.40 -225.13 

Bias2.0 E E L W H S Q I M R L Y F G L I V G -21.40 -225.13 
Bias4.0 E E L W H S Q I M R A Y F G Q L V G -23.52 -212.17 
Bias6.0 E E L W H S Q I M R A Y F G Q L V G -23.52 -212.17 

Bias8.0 E E L W H S Q I M R A Y F G Q L V G -23.52 -212.17 
Bias10.0 E E L W H S Q I M R A Y F G Q L V G -23.52 -212.17 
Bias12.0 E E L W H S Q I M R A Y F G Q L V G -23.52 -212.17 
Bias14.0 E E L W H S Q I M R L Y F G Q L V G -23.63 -209.34 
Bias16.0 E E L W H S Q I M R L Y F G Q L V G -23.63 -209.34 

Bias18.0 E E L W H S Q I M R A Y F G Q K V G -23.96 -198.83 
Bias20.0 E E L W H S Q I M R A Y F G Q K V G -23.96 -198.83 

Table IX-1. RBIAS calculations for DPA. A big energy clash between DPA and the binding pocket in the wild type sequence (WT_dpa) 
indicates why DPA is not incorporated by the wild type synthetase 
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Figure IX-1. Sequence alignment between E.coli and T. thermophilus PheRS a 

subunits. Conserved residues are colored in red and conservative 

replacements are indicated by blue + symbol. 
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Query:    61 
XXXXXXXXXXXXXXXXXXXXXXXXXVDVSLPGASLFSGGLHPITLMERELVEIFRALGYQ 120 
                         +DVSLPG  + +GGLHP+T     +   F  LG+  
Sbjct:    71 
VQQALNAAKAELESAALNARLAAETIDVSLPGRRIENGGLHPVTRTIDRIESFFGELGFT 130 
 
Query:   121 
AVEGPEVESEFFNFDALNIPEHHPARDMWDTFWLTGEGFXXXXXXXXXXXXXXXXXTHTS 180 
   GPE+E ++ NFDALNIP HHPAR   DTFW                       T TS 
Sbjct:   131  
VATGPEIEDDYHNFDALNIPGHHPARADHDTFWFD---------------TTRLLRTQTS 175 
 
Query:   181 
PMQVRYMVAHTPPFRIVVPGRVFRFEQTDATHEAVFHQLEGLVVGEGIAMAHLKGAIYEL 240 
 +Q+R M A  PP RI+ PGRV+R +  D TH  +FHQ+EGL+V   I+  +LKG +++  
Sbjct:   176 
GVQIRTMKAQQPPIRIIAPGRVYRNDYDQTHTPMFHQMEGLIVDTNISFTNLKGTLHDF 234 
 
Query:   241 AQALFGPDSKVRFQPVYFPFVEPGAQFAVWWPEG 274 
              +  F  D ++RF+P YFPF EP A+  V    G 
Sbjct:   235 LRNFFEEDLQIRFRPSYFPFTEPSAEVDVMGKNG 268 
 

 

 

 

 

 

 



 IX - 19 

  

 

 

 

 

 

 

 

 

 

 

Figure IX-2.  Residues involved in the binding site of PheRS. Phenylalanine in 

shown in magenta and the anchor residues are labeled in bold. 
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Figure IX-3. The redesigned binding site of PheRS showing the orientation of 

DPA in bound conformations and the two cavity forming mutations. 
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Figure IX-4. Phenylalanine analogs considered as interesting because of their 

unique  chemical functionalities. 
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Figure IX-5.  SDS-PAGE of cell lysates of different expression systems with 4 hr 

post-induction with 1 mM IPTG demonstrated ePheRS** allows incorporation of 

2 into protein in vivo.  Concentration of Phe(1)=20mg/l; DPA(2)=250mg/l. 
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Figure IX-6. MALDI TOF mass spectra of tryptic peptides digested from 

mDHFR expressed in media supplemented with Phe (a) or DPA (b).  
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Figure IX-7.  Western blot for the detection of chemoselective formation of hydrazone linkage. (a) 

Modified protein was treated with biotin hydrazide (BH), stained with HRP conjugated streptavidin 

and analyzed by western blot. (b) Western blot analysis of the products. Lane 1: mDHFR-wt + 

buffer; Lane 2: mDHFR-DPA + buffer; Lane 3: mDHFR-wt + BH; Lane 4: mDHFR-DPA + BH. 
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Chapter 10 
 

An Experimental and Computational Approach for Designing 
          a Conformation Switch in Proteins 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

The entropy profile calculations in this study were generated by Christopher 
Voigt.  
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Abstract 

In this study we have combined methods from mean-field theory (derived from statistical 

mechanics) and computational protein design to understand protein sequence space and 

eventually design a protein sequence capable of switching between two completely 

different protein folds – a ß-sheet fold to an a-helical fold.  It has been suggested that 

switch sequences are evolutionary bridges that serve as intermediates in the pathway for 

the evolution of new folds, as evolutionary end points in the development of allosteric 

systems, or as hazardous dead ends, as in protein misfolding diseases. An important 

determinant for switching conformation in proteins/peptides is the external perturbation 

that induces the switch. In our study, we are attempting to achieve this by using metal 

binding as an external force to direct the sequence towards the a-helical conformation 

over the ß-sheet conformation. To design an amino acid sequence capable of adopting 

both the conformations, we have used a strategy of first determining positions on both the 

proteins (protein G and engrailed homeodomain) that are highly tolerant to substitutions 

to common residues.  This was done by using a mean-field approach to identify the 

conserved and mutable amino acids on the two proteins. In the next step, the mutable 

positions on both the folds were designed using a protein design algorithm to select for 

identical amino acids and consequently, to bring the two conformations closer in 

sequence space.  

 

 

 

 



 X-3 

      

 

Introduction 

Localized conformation changes in secondary structure are physiologically 

important for the correct functioning of many proteins.  The native forms of such proteins 

are metastable and this property is often critical to their biological function.  Mutational 

analysis and structural examination of metastable proteins have revealed unusual 

interactions, such as side-chain over-packing, buried polar groups, and cavities (Bullough 

et al., 1994; Chen et al,. 1998).  These structural defects are likely to be the design 

principle of metastable native proteins to regulate conformation changes.  Some examples 

of such metastable proteins are the plasma serpins (serine protease inhibitors) (Huber et 

al., 1989), the spring- loaded structure of the membrane fusion protein of influenza virus 

(Bullough et al., 1994; Carr et al., 1993), heat shock transcription factors (Orosz et al., 

1996), and G-protein EF-Tu complex (Abel et al., 1996).  It has been suggested that the 

conformational switches exhibited by these structures may represent a general 

mechanism to mediate activation in metastable proteins.   

An important determinant for switching conformation in proteins/peptides is the 

external environment that induces the switch.  For example, up to heptapeptide long 

sequences have been identified that adopt either a a-helical or ß-sheet conformation, 

depending on the protein in which they are found (Mezei et al., 1998).  The secondary 

structure of such chameleon sequences is determined by their tertiary environment.  The 

dual nature of an 11-residue switch peptide was experimentally demonstrated (Minor and 

Kim, 1996) by placing it in two different regions within a small molecule, the ß1 domain 

of Protein G (Gronenborn et al., 1991).  This indicated that context is an important factor 

governing the secondary structures of stretches of amino acid sequences in a protein.   
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The structure adopted by peptides and proteins also depends on external 

environmental conditions such as pH, temperature, and the ionic strength of the solvent.  

Two 17-residue peptides display switching between a-helix and ß-sheet conformations 

when these solvent conditions are varied (Cerpa et al., 1996).  In another example, a 

designed variant of Rop protein converts from a-helical to a fibrillar ß-sheet form when 

the pH of the solution is changed (Dalal and Regan, 2000). 

Conformation changes in proteins are also seen when proteins bind to other 

molecules.  A segment of MATa2, a DNA binding protein, converts from a-helical to ß-

sheet conformation when it binds to DNA (Tan and Richmond, 1998).  The folding state 

of an artificially designed peptide has been shown to be regulated by cofactor binding.  A 

17-amino acid peptide can be prevented from forming ß-sheet aggregates by binding 

heme to it, which facilitates the formation of an a-helix tetramer (Sakamoto et al., 1999).  

In calmodulin, a peptide binding protein, the structural flexibility of the central a-helical 

tether is believed to be an essential element in the calcium-dependent recognition of 

target peptides (Yap et al., 1999).  An interesting example of a designed conformation 

switch has been demonstrated by introducing a single mutation on a surface position of 

the arc repressor protein (Cordes et al., 2000).  The designed arc repressor protein is able 

to adopt both the ß-sheet and a-helical folds with the ß-sheet form being stabilized by 

DNA binding.   

Conformation switching has been proposed to occur during protein folding.  A 

transient population of a non-native a-helical intermediate has been observed in the 

folding pathway of a predominantly ß-sheet protein, ß- lactalbumin (Hamada et al., 1996).  

A number of protein misfolding diseases are associated with protein conformation 

change.  In amyloid diseases, fibril formation is a result of the conversion of soluble 
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protein into regular ß-sheet aggregates (Cohen et al., 1999; Harrison et al., 1997).  It has 

been proposed that all proteins have the potential to convert to such misfolded and 

aggregated assemblies under appropriate conditions (Chiti et al., 1999; Gross et al., 

1999). 

It has been suggested that switch sequences are evolutionary bridges that serve as 

intermediates in the pathway for the evolution of new folds, as evolutionary end points in 

the development of allosteric systems, or as hazardous dead ends, as in protein 

misfolding diseases.  Predictions of such bridges have also emerged from theoretical 

lattice models of protein folding (Bornberg-Bauer et al., 1997; Bornberg-Bauer and 

Chan, 1999).  Besides providing an insight into some fundamental protein evolution 

questions and sequence-structure relationships, understanding and designing a protein 

conformation switch can have a tremendous impact in the biotechnology industry for 

creating genetically engineered protein biosensors. 

In this study, we have attempted to design a sequence capable of switching 

conformation between two completely different structures – the fold adopted by protein 

G (PG) and that seen in engrailed homeodomain.  We have tried to achieve this by using 

metal binding as the external perturbation to direct the sequence towards the a-helical 

(engrailed homeodomain) conformation over the ß-sheet (PG) conformation.  To design 

an amino acid sequence capable of adopting both the conformations, we have used a 

strategy of first determining positions on both the proteins that are highly tolerant to 

substitutions to common residues.  Using a mean-field approach, the conserved and 

mutable amino acids on the two proteins were identified.  Several positions on the 

proteins were mutated to histidines; these were selected such that they would collectively 

coordinate a metal ligand in the engrailed structure but not in the PG structure. The 
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mutable positions were designed using our protein design algorithm, ORBIT, to select for 

common amino acids and consequently, to bring the two conformations closer in 

sequence space.   The design strategy is based on the assumption that if a designed 

protein sequence that folds spontaneously into PG is close in energy to the engrailed 

structure, then addition of metal could facilitate a conformation switch to the engrailed 

fold. 

Results and Discussion 

Model system 

The two proteins that we have chosen for this study are the ß1 domain of PG and 

a variant of engrailed homeodomain, SC1.  SC1 is a redesigned variant of engrailed 

homeodomain with 29 core and surface positions mutated from the wild type protein 

(Morgan, 2000).  Both are compact globular proteins and are small enough to attempt 

experimental characterization of a number of hybrid sequences and to monitor the change 

in the structural properties of the sequences as they diverge from their native sequences 

towards a mutual sequence.  Both proteins follow a simple two-state folding transition 

and are easy to express in vivo.  The sizes of the proteins are comparable ?  PG has 56 

amino acids, while the engrailed homeodomain variant (SC1) has 51 amino acids.  SC1 

has a Tm of 91 ºC that is in the same range as that of PG  (86 °C).  Regardless of these 

similarities, the conformations of the two proteins are very different.  SC1 is an all-helical 

protein, while PG has a well-structured ß-sheet with a central helix packed against it.  

The circular dichroism (CD) signals of both the structures are very distinct and changes 

in the structures can be easily followed by observing the changes in their CD signals.    
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Designing metal binding sites 

Metal binding sites are often formed from amino acids that are distant in the 

primary sequence but are brought into spatial proximity in the folded protein structure.  

Identifying key features for metal recognition and modeling the scaffold provided by the 

protein for metal site design is difficult and complicated.  Instead, we have adopted a 

simpler approach where protein secondary structure provides the rigid framework 

necessary for metal recognition.  This approach has been used in constructing metal 

binding sites by placing two histidines as His-X3-His on exposed positions on the helices 

(Todd et al., 1991).  This motif forms part of the metal coordination site in a number of 

metalloproteins, including zinc-finger proteins (Berg, 1988), thermolysin (Holmes and  

Matthews, 1982), and hemocyanin (Volbeda and Hol, 1989).  The His-X3-His metal-

binding site engineered into the surface of the protein confers a unique affinity for 

forming complexes of metals bound to solid supports or soluble polymers (Suh et al., 

1991).  In this orientation, the e-nitrogens of the imidazole groups from both histidines 

can coordinate a single metal.  Using this simple geometric consideration, surface i, i+4 

positions of the helices on SC1 can be selected to study the effect of metal binding.   

Six metal binding sites were designed on SC1 on the surface positions of the 

C-terminal and the N-terminal helices.  Histidines were substituted on the surface 

residues in i and i+4 positions to get His-X3-His geometry that is capable of chelating 

metal.  Three such sites were created on the C-terminal helix (SCCH1, SCCH2, SCCH3) 

and three more on the N-terminal helix (SCNH1, SCNH2, SCNH3) (Figure X-1).  A total 

of six proteins were created and tested for a change in stability in the presence of NiCl2 

(Figure X-2).  SC1 was used as a control since it does not have a His-X3-His designed 
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site.  Five of the six His-X3-His proteins showed a gain in stability in the presence of 

metal (Table X-1).  Variants that showed the maximum gain in stability are SCNH1 and 

SCCH3 with a stabilization of greater than 1.0 kcal mol-1 in the presence of nickel.  This 

result can be explained by the fact that in these two proteins the metal binding occurs 

near the C and N termini of the protein.  The termini of proteins are generally more 

disordered than the internal positions.  Metal binding increases the stability of these 

molecules by stabilizing the frayed ends of the protein to a well-defined helical structure.  

We selected positions 5 and 9 (SCNH1 metal-binding site) and positions 46 and 50 

(SCCH3 metal-binding site) to be the sites that we expected would trigger the 

conformation switch on chelating metal. 

 

Sequence alignment 

To make the design strategy simpler, we aligned the sequences of the two 

molecules so that their existing similarities were maximized.  The simplest similarities to 

look for are sequence identity and binary pattern.  There are six possible ungapped 

alignments between SC1 and PG.  Selection of the best frame can be determined by 

minimizing binary pattern mismatches and maximizing identical residues.  Binary pattern 

is an important consideration because it is a key determinant in defining the topology of a 

protein fold (Dill et al., 1995).  Based on the best alignment, positions on PG that 

correspond to the selected histidine positions of SC1 need to be analyzed.  This analysis 

is important because the corresponding histidine positions on the PG structure must be 

solvent accessible and mutating them to histidines should not significantly destabilize 

PG.   
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SC1 has 51 residues while PG has 56.  Hence, there are six possible ways SC1 and PG 

can be aligned with each other in an ungapped manual alignment (Figure X-3a).  Every 

position on both the proteins was classified as core, surface or boundary using a residue 

classification program as described previously (Dahiyat and Mayo, 1997).  The boundary 

positions were further reclassified as core and surface.  The wild type binary pattern was 

used to reclassify PG and the binary pattern of the B7 molecule (a boundary redesigned 

variant of SC1) was used to reclassify SC1 (Marshall and Mayo, 2001).  The number of 

identical residues and the number of binary pattern mismatches between the two 

sequences were noted for each alignment.  Alignment 1 was selected as the best 

alignment since it has the least number of binary pattern mismatches and the highest 

number of identical residues (Figure X-3a).  In this alignment, the histidine positions of 

SCNH1 and SCCH3 correspond to positions 10 and 14, and positions 51 and 55, 

respectively, on the PG sequence.  All four positions are solvent-accessible surface 

positions.  Positions 14, 51 and 55 are on the ß-strands and position 10 is on the ß-turn 

between strand 1 and strand 2 (Figure X-4).  In this alignment, the central helix of PG can 

be almost completely aligned with the central helix of SC1 so that the conformation 

switch is designed primarily to occur in the ß-sheet region, converting the two ß-hairpins 

(two anti-parallel ß-strands connected by a turn) to two a-helices (Figure X-3b). 

Position 10 is a glycine in the native sequence of PG and we were concerned that 

replacing it with a histidine may be highly unfavorable for the molecule because a 

histidine may not be compatible with the torsional angles of the backbone at this site (phi 

177.87º, psi 178.41º).  A point mutant, G14H, shows that replacing glycine with a 

histidine is a neutral mutation and the mutant has the same thermal stability as the wild 

type (Figure X-5).  A PG variant (PG4H) was made that has histidines at positions 10, 14, 
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51 and 55, and this molecule was tested for thermal stability (Figure X-5).  Another 

molecule (SC4H) that has the histidine mutations of both SCCH3 and SCNH1 was also 

created and tested for stability.  CD analysis indicates that SC4H is a well- folded and 

stable molecule (experimental data not shown). 

SC4H and PG4H became our starting molecules that we have used to generate the 

first two entropy profiles.  In both calculations, the identities of positions 10, 14, 51 and 

55 on PG, and, positions 5, 9, 46 and 50 on SC1, are fixed to be histidines.  The identities 

of five other residues that are identical in alignment1 (positions 12, 13, 19, 42 and 47 on 

PG and positions 7, 8, 14, 37, and 42 on SC1) were held fixed to wild type identities in 

further calculations.  Residues 1 to 5 in PG were also fixed as wild type identities since 

there are no corresponding amino acids for them in SC1 in alignment 1.   

 

Selecting mutable paired positions on PG and SC1 

Many proteins maintain their native structures while undergoing single and 

double mutations at many different sites.  The sequences that fold into a particular native 

fold form neutral networks that percolate through the sequence space.  A neutral net is 

defined as a collection of unique sequences that are interconnected by single-point 

mutants and encode for the same native structure (Bornberg-Bauer and Chan, 1999).  An 

important question asked in understanding sequence-structure relationships is how close 

do the neutral networks of the two structures come towards each other.  In other words, 

how similar can sequences be that fold into different structures?  As a “rule of thumb”, if 

two natural proteins have 30% or greater sequence identity, one has confidence that they 

share the same fold (Sander and Schneider, 1991).  On the other hand, this assumption is 

challenged in designed proteins, where it has been shown that two sequences with 50% 
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sequence identity fold to two completely different structures (Dalal et al., 1997).  

Computational simulations support an even stronger claim that sequences that fold into 

two completely different native structures need not differ by more than a few crucial 

amino acids (Babajide et al., 2001).  This indicates that neutral sets form extensive 

neutral networks that make them suitable for efficient protein evolution.  Empirical 

evidence for functional neutrality in protein space is indeed observed (Martinez et al., 

1996).  In some cases seemingly unrelated sequences have essentially the same fold 

(Holm and Sander, 1997; Murzin et al., 1996).  In fact, it is proposed that only some 

information in a protein sequence is necessary to specify a fold, with the rest just 

stabilizing that specified structure (Lattman and Rose, 1993; Rose and Creamer, 1994).   

In this study, we have tried to explore the possibility of to designing a single 

sequence to have more than one conformation.  It has been proposed that a sequence 

folds to a single unique conformation if there exists an energy gap between the native 

state and any other possible conformation, including the unfolded state (Karplus and Sali 

et al., 1995); (Bryngelson et al., 1995).  This theory suggests that a particular sequence 

specifies a single fold.  However, examples of sequences that can adopt multiple 

conformations described earlier indicate that distinct protein folds need not be isolated 

islands in a sequence space but can be linked by evolutionary bridges where multiple 

native conformations coexist (Cordes et al., 2000).   

In designing a sequence that can convert from PG to the SC1 conformation on 

binding to metal, we attempted to converge the sequences as much as possible towards a 

common sequence. At the same time, we wanted make sure that the native structures of 

both the proteins were maintained.  This is possible if we design only the positions that 

are tolerant to mutations while keeping the critical residues the same as the starting 
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sequence.  The critical residues are expected to maintain the correct fold of the protein.  

The rationale for our design is that if we have a sequence that is highly biased towards a 

metal binding variant of SC1, but folds to the PG structure due to the presence of only a 

few conserved residues that maintain the PG structure, the molecule is going to be 

unstable enough that in the presence of metal it will change to the SC1 structure.  We 

expect that metal binding will increase the propensity of the sequence to adopt a helical 

conformation since metal bound SC1 variants have been shown to stabilize the helical 

structure (described later in the chapter).  Our design strategy includes the following 

steps:  

1. Identifying the two sets of  positions: those that are highly mutable and those 

that are highly conserved on both structures. 

2. Redesigning as many positions as possible on both structures, starting with the 

most mutable positions and changing  to mutually acceptable amino acids, 

while making sure that the redesigned proteins fold to their native structures. 

The tolerance of protein structures to mutations can be calculated using a 

mean-field approach for recognizing the high entropy positions or sites (Voigt et al., 

2001).  These sites are classified as highly tolerant to amino acid substitutions.  The site 

entropy is determined by the variability of the amino acid identity at a given site among 

the sequences that fold to the native conformation.  The amino acid probabilities are 

calculated as the sum of the amino acid’s rotamer probabilities, as determined by the 

mean-field theory.  The probabilities of the existence of all allowed amino acids at all 

positions are tabulated and condensed into site entropy.  Therefore, site entropy is a 

measure of the number of amino acid substitutions that can be made at each position 

without disrupting the overall protein structure.  Sites with low entropy are intolerant to 
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mutations and are classified as conserved residues, whereas the positions with high 

entropy are tolerant to mutations and are selected for design.  A tabulation of the entropy 

at each position produces an entropy profile for the protein.  By comparing the entropy 

profiles of PG and SC1, we can determine the positions that can be selected for design.  

We are using the entropy profiles as a guide for designing the switch sequence.  The 

entropy profile is dependent on the force field used for energy calculations and the amino 

acids allowed at each site.   

 

 Generating entropy profiles 

Entropy profile I.  To select high entropy positions for design, we generated entropy 

profiles of PG and SC1.  In our first try, we generated profiles by allowing only two 

amino acids at each position on both the molecules, one from the PG sequence and one 

from the SC1 sequence.  The positions showing the highest entropy on both the structures 

were the common surface positions.  The positions with the lowest entropy were the 

positions that showed binary pattern mismatches in the sequence alignment.  Since we 

wanted to bias the sequence as much as possible towards SC1, we selected only the high 

entropy positions on PG and mutated them to amino acids on the SC1 sequence in two 

sets; these were SW2 and SW4 (Figure X-6).   

We were unable to express both SW2 and SW4.  Looking at the structures 

closely, it was obvious why these molecules were probably destabilized to a point that 

they could not be expressed.  The sites on PG that show the highest entropy are 

predominantly the ß-sheet surface positions and the helix capping positions (Figure X-7).  

The force field used to generate the entropy profile does not capture helix capping unless 

we set it to do so.  This can be achieved by scaling up a term in the force field that selects 
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for hydrogen bonds between the side chain and the backbone.  Also, the force field does 

not take secondary structure propensity of the amino acids into consideration unless this 

term is turned on.  As a result, all the ß-sheet surface positions on PG that are 

predominantly made of high ß-sheet propensity residues were selected as high entropy 

positions, indicating that these residues could be substituted by the corresponding 

residues from SC1.   

Entropy profile II – using secondary structure propensity and scaling up the remote 

backbone H-bond scale factor. To overcome the problems in the first entropy profile, a 

new profile was generated by including a secondary structure propensity term and a term 

to accentuate hydrogen bonds between the side chain and the backbone in the force field.  

Some of the helix capping positions and ß sheet surface positions were now calculated to 

be low entropy positions (Figure X-8). 

Entropy profile III – allowing more than two amino acids.  One of the biggest concerns in 

designing the two structures towards a mutual sequence is that allowing only two amino 

acids at a given position is an extremely limited search of the sequence space between the 

two structures.  And, as a result, we may not be able to capture the “switch” sequence.  

An easy way to overcome this would be to allow all amino acids at each position to 

generate the entropy profile.  However, a simple entropy profile generated by allowing all 

amino acids at each position will give us the high entropy positions on both molecules 

but will not give any information on the possibility that the two linked positions can be 

mutated to a common amino acid (Figure X-9a and X-9b).  Also, some corresponding 

positions that have high entropies may have tolerance for very different sets of amino 

acids.  For example, a high entropy core position in one molecule corresponding to a high 
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entropy surface position on the other molecule will have a very low probability of 

tolerating common amino acids.   

  The tolerance of the paired positions on the two structures to substitution by common 

amino acids can be extracted from the probabilities calculated using mean-field theory.  

The probabilities of all amino acids, except for histidine, proline and cysteine, at each 

paired position were calculated and tabulated (Figure X-11).  This tabulation along with 

the joint entropy profile (Figure X-10) provides us with the essential information we need 

to run the design calculations.  First, it gives us information on which positions have high 

entropy in both structures.  Second, we can now choose from paired positions on both 

structures that not only have high entropy, but more specifically, a higher probability for 

tolerating a common amino acid mutation (Figure X-10).  Third, it gives us a set of amino 

acids that are allowed at each paired position.  This information is ve ry useful for 

subsequent design calculations because reducing the number of allowed amino acids at 

each linked position will make the calculations run much faster.   

Experimental analysis of the designed SC1 and PG variants:  Using the information from 

the joint entropy profile four variants of PG (PG50, PG45, PG40 and PG35) and four 

variants of SC1 (SC50, SC45, SC40 and SC35) were designed using ORBIT. They were 

tested for secondary structure content and stability in the presence and absence of NiCl2 

and copper iminodiacetic acid (Cu(II)IDA).  Metals with vacant coordination sites bind to 

ligating atoms exposed on protein surfaces. However, since nickel has six vacant 

coordination sites and the nickel binding sites on the proteins are designed as di-histidine 

binding sites, NiCl2 in the solution caused most of the variants to aggregate because of 

non-specific chelation of the metal. To address this issue, we used Cu(II)IDA as the 

chelating agent.  We expected it to limit non-specific binding since it has only two vacant 
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coordination sites. Moreover, it is a five-membered ring that has been shown to have a 

very large chelating effect mainly attributed to a low entropic cost on bi-dentate binding 

(Kellis, 1991; Suh, 1991).  

While none of the engrailed mutants (SC50, SC45, SC40 andSC35) showed a 

significant change in structure on binding to Cu(II)IDA as indicated by their wavelength 

spectra,  dramatic changes were observed in the spectra of the PG mutants (PG50, PG45, 

PG40 and PG35) in the presence of metal (Figures X-15 to X-18).  Moreover, binding to 

Cu(II)IDA also increased the thermal stabilities of the engrailed mutants, while it appears 

to have  to destabilized the PG mutants. PGWT and SC1, the starting structures, do not 

have any designed histidines and therefore, did not show a change in structure or stability 

in the presence of metal (Figure X-13).  However, when the divalent histidine sites were 

engineered into these structures to form PG4H and SC4H56, binding to copper increased 

the stability of one (SC4H56) and decrease the stability of the other (PG4H). These 

changes are marginal, and based on the wavelength spectra, indicate that metal binding 

does not cause a structural change in either molecule. This implies that designing the 

divalent histidines on the ß-sheet surface of PG is not sufficient to cause a structural 

change. The striking changes that we observe in the PG variants are because these 

sequences are designed to be closer in sequence space to SC1 fold.  

PG50 shows reduced ß-sheet content in the presence of copper; however, it still 

appears folded. Conversely, PG45 and PG35 both appear to unfold on adding copper. 

PG40 is unfolded without the metal, but on adding copper, it appears to be partially 

folded.  PG35 has a 41% sequence identity with SC35 (Table X-2). At such high 

sequence identities, one would expect them to have the same structure. But their response 

metal binding indicates otherwise. PG35 completely unfolds on binding to metal, while 
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SC35 gains stability.  Further characterization of these molecules with NMR could be 

useful in understanding these characteristics better.  

1D NMR spectra of PG50, PG45, PG35, SC50, SC45, SC40, and SC35 were 

obtained without metal at pH 7.6 and at  a temperature of 5° C.  PG35 is folded but 

indicates molten globule-like features.  This is not surprising since, as we link more 

positions on both the molecules to be identical, we are moving them closer in sequence 

space and thereby, moving them further away from their own global minima. 

Materials and Method 

Gene construction, protein expression, and purification: Genes for the metal binding variants 

of SC1 (SCCH1, SCCH2, SCCH3, SCNH1, SCNH2, SCNH3, SC4H) were constructed by 

inverse PCR on the SC1 gene, which was cloned in the pET-11a (Novagen) vector.  The two 

PG variants (G14H and PG4H) were also made by inverse PCR on the wild type PG gene, 

which was also cloned into the pET-11a vector.  SW2, SW4, SC50, SC45, SC40, SC35, 

PG50, PG45, PG40 and PG35 genes were synthetically constructed using recursive PCR and 

cloned into a pET-11a variant.  Sequences for all constructs were confirmed by DNA 

sequencing.  All proteins were expressed in E. coli BL21 (DE3) hosts (Stratagene) by IPTG 

induction and proteins were isolated from the cells using a freeze-thaw protocol followed by 

purification by HPLC on a reverse phase column.  Protein masses were determined by mass 

spectrometry. 

 

Circular dichroism (CD): CD data were obtained on an Aviv 62A DS spectropolarimeter 

equipped with a thermoelectric cell holder and an autotitrator.  Gain in stability (??G) on 

metal binding was experimentally measured for SC1 and all the mutants of SC1 

containing the His-X3-His site by measuring the difference in the free energy of 
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unfolding (?Gu) of the proteins in the presence and absence of NiCl2.  ? Gu was measured 

by guanidinium chloride denaturation of protein samples at pH 7.5 at 25 °C (Figure X-2 

2).  The protein concentrations were 5 µM in 10 mM HEPES buffer.  A 1:100 ratio of 

protein to NiCl2 was used for denaturations done in the presence of metal.  Data was 

acquired at a wavelength of 222 nm every 0.2 M from 0.0 M to 6.0 M GdmCl using a 

mixing time of nine minutes and averaging time of 100 seconds.  ?Gu was obtained from 

the chemical denaturation data assuming a two-state transition and using the linear 

extrapolation model.  Wavelength scans and thermal denaturation data for the PG and 

SC1 variants were also obtained in the presence of 1 mM copper(II)iminodiacetic acid 

(Cu(II)IDA). Cu(II)IDA crystals were obtained by following a procedure decribed by 

Roman-Alpiste and coworkers. (Roman-Alpiste et al., 1999). 

Thermal denaturation data for G14H and PG4H mutants were obtained using 

samples containing 50 µM protein in 50 mM potassium phosphate buffer at pH 5.5.  

Thermal denaturations were performed by increasing the temperature from 1 °C to 99 °C 

with a step size of 2 °C, an equilibration time of 90 seconds, and an averaging time of 30 

seconds.  Melting temperatures were calculated by evaluating the maximum of a d?/dT 

versus T plot. 

Nuclear magnetic resonance studies: 

1D 1H NMR spectra were obtained on a Varian 600 MHz spectrometer using a Varian 

triple resonance probe.  All samples except PG35 and SC35 contained 250 µM protein and 

50 mM sodium phosphate in a 10% 2H2O buffer at pH 7.6.  PG35 and SC35 were not 

soluble at high concentrations; therefore, lower protein concentrations were used for their 

analysis. 
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Structural entropy calculations:   

Force field and rotamer library:  The energy term used in ORBIT consists of two 

contributions – the rotamer-backbone energies e(ir) and the rotamer-rotamer energies 

e(ir,js),                      
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where N is the number of residues and ir is rotamer r at position i.  The total energy for a 

rotamer is the sum of the van der Waals, hydrogen bonding, electrostatic, secondary 

structure propensity and atomic solvation energies (Dahiyat and Mayo, 1996,1997).  The 

parameters for these potentials are described in previous work.  We use Dreiding force 

field parameters for the atomic radii and internal coordinate parameters (Mayo et al., 

1990).  The van der Waals energies are modeled using a 6-12 Leonard-Jones potential 

with an additional 0.9 scale factor applied to the atomic radii to soften the lack of 

flexibility implied by using a fixed backbone model.  All rotamer-rotamer and rotamer-

backbone energies are calculated and stored prior to mean-field calculations. 

The rotamer library used in mean field calculations is our expanded version of the 

backbone dependant library described by Dunbrack and Karplus (1993, 1994).  Rotamers 

that interact with the backbone with energies greater than 20 kcal mol-1 are eliminated 

from the calculation.   

Mean-field theory: The mean field solution for equation (1) is  
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where emf(ir) is the mean-field energy felt by rotamer r at position i and Kj is the total 

number of rotamers at residue j (Koehl and Delarue, 1994, 1996; Lee et al., 1994).  The 

probability vector p(js) is calculated at some temperature T using Gibbs equation 
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where ß = 1/kBT, where kB is the Boltzmann constant.  The algorithm iterates between 

equations (2) and (3) until self-consistency is achieved. 

Entropy profiles: The entropy can be calculated from the probability distribution of 

allowed amino acid substitutions (Voigt et al., 2001).  The site entropy is calculated by 

determining the variability of amino acid identity among sequences consistent with an 

energy.  It is calculated from the probability pi(a) that an amino acid identity ia exists at 

site i, 
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where A is the total number of amino acids and kb is chosen to be 1.  The amino acid 

probability, pi(a) is calculated as the sum of amino acid’s rotamer probabilities as 

determined by the mean-field theory. 

Design calculations using ORBIT based on joint entropy profile:  The joint entropy 

profile was used to select positions for design on both PG and SC1. We used cutoffs   

(0.5, 0.45, 0.40 and 0.35) as indicated by the dotted lines in Figure X-10 to select for 

design positions. All the positions that are above the cutoff were selected on both the 

molecules and were forced in the design protocol to be identical amino acids. The 

positions that were not designed were allowed to maintain their wild type identities but 

were varied in their rotameric conformations. The designed histidine sites, positions 10, 

(3) 
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14, 51 and 55 on SC4H56 and PG4H were fixed to be histidine in all calculations. The 

amino acids allowed at the paired design positions were based on the combined amino 

acids probabilities calculated for those positions. As the cutoff was lowered from 0.5 to 

0.35, the number of identical amino acids on both the structures increased. The SC1 

variants made by this method were SC50, SC45, SC40 and SC35 and the PG variants 

were PG50, PG45, PG40 and PG35.  

Selecting common amino acids at the high entropy positions: Design calculations were 

run so that the corresponding high entropy positions on the two structures are forced to 

have the same amino acid identity.  This is achieved by specifying these positions and 

linking them in our protein design algorithm, ORBIT.  As the optimization calculation 

runs, the linked positions can be forced to maintain amino acid symmetry by setting a 

high penalty energy for pairs of amino acid combinations that break the symmetry at the 

linked positions.  Typically, the penalty energy is set at 100 kcal/mol.  If this penalty 

energy is set to zero, the design calculation will run as two independent calculations on 

the two structures.   

When the two positions are linked in a calculation, the selection of a common 

amino acid is based on the sum of the interaction energies for the amino acids at these 

two sites.  If position A on SC1 is linked to position B on PG, the linked energy of having 

a residue i at these two positions (EiAB) is given by the sum of the total ene rgy of residue 

i in the SC1 structure at position A (EiSC1A) and the total energy of residue i in the PG 

structure at position B (EiPG B):  

EiAB = EiSC1A  +  EiPG B 

If there exists another amino acid, j, that has a more favorable linked energy at these two 

positions than residue i, i.e., if 
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     EjAB < EiAB  

j will be selected as the common amino acid.   

 

Conclusions  

We have developed a procedure that is potentially useful in characterizing protein 

sequence-structure relationships.  Using this method we are able to generate PG variants 

that showed significant changes in structure on binding to metal. Most of the 

conformation changes were from folded to unfolded structures and vice versa. However, 

none of the changes caused a complete switch to a a-helical fold from the ß-sheet fold, as 

we had hoped. The primary reason for not obtaining a distinct structural switch could be 

that the model systems we selected for this study are not close enough in sequence space 

to allow it. It is also possible that the energy contributed through binding Cu(II)IDA is 

not enough to completely tip the energy balance towards the helical structure. Future 

efforts using this procedure with more appropriate model systems and a more effective 

external perturbation to facilitate the switch could be potentially useful understanding and 

designing ligand- induced conformation changes in proteins. 
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Mutants ?Gu   
(kcal mol-1)a 

m value b 

(kcal mol-1 M-1) 
??G 

(kcal mol-1)c 

SCCH1 (-) 2.471 1.455 
SCCH1 (+) 2.537 1.289 

0.07 

    
SCCH2(-) 3.088 1.575 
SCCH2(+) 3.816 1.259 

0.728 

    
SCCH3(-) 2.580 1.530 
SCCH3(+) 4.130 1.481 

1.55 

    
SNH1(-) 2.814 1.670 

SNCH1(+) 3.920 1.807 
1.106 

    
SNH2(-) 3.596 1.885 
SNH2(+) 2.934 1.7164 

-0.662 

    
SNH3(-) 2.820 1.587 
SNH3+) 3.292 1.619 

0.472 

    
SC1(-) 3.428 1.749 
SC1(+) 3.628 1.739 

0.20 

          aFree energy of unfolding at 25 °C 
          bSlope of ?Gu   versus denaturant concentration. 
          cChange in ?Gu in the presence of 500 µM NiCl2 

 
 
 
 
 

Table X-1. Guanidinium chloride denaturation data. (+) indicates that chemical 
denaturation was performed in the presence of 500µM NiCl2, and (-) indicates the 
absence of NiCl2.   

 



 X-28 

      

 
 
 

 

 

 

 

 

 
 

  

Protein Tm Without 
Cu(II)IDA (° C) 

Tm 1mM 
Cu(II)IDA (° C) 

Sequence 
Identity (%) 

SC1 87 85 
PGWT 81 79 

8.9 

 
SC4H 

 
71 

 
83 

 

 
SC4H56 

 
79 

 
91 

PG4H 57 47 
25 

 
PG50 

 
49 

 
31 

SC50 65 77 
31 

 
PG45 

 
41 

 
Unfolded 

SC45 67 79 
33 

 
PG40 

 
Unfolded 

 
33 

SC40 77 85 
37.5 

 
PG35 

 
25 

 
Unfolded 

SC35 61 71 
41 

 
 

 

 

Table X-2:  Thermal denaturation data of all the relevant protein G and engrailed 
homeodomain mutants constructed using joint entropy profiles. For comparison, the 
stabilities of the starting sequences of both the structures, PGWT and SC1, were also 
measured in the presence and absence of Cu(II)IDA. Sequence identities between pairs 
of molecules are also noted. 
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Figure X-1: SC1 structure showing the designed metal binding sites.  The amino acids 

labeled represent the helical surface positions that were considered for metal site design.  

i, i+4  combinations of these positions were tested for gain in stability on chelating 

nickel.  SCCH1, SCCH2, and SCCH3 were three such combinations for the C-terminal 

helix, and SCNH1, SCNH2 and SCNH3 were the combinations for the N-terminal helix. 
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Figure X-2: Chemical denaturation curves monitored at 222 nm to study the effect of 

metal binding in metal site designed mutants of SC1. Guanidinium chloride denaturation 

was performed at 25 °C in the presence (shown in red) and absence of nickel (shown in 

blue).  Maximum gain in stability is seen for SCCH3 and SCNH1.  SC1 was used as a 

control since it does not have histidines on the helix surface positions that can chelate 

metals.  The denaturation curves show that its stability is not affected by the presence of 

metal.   
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Figure X-3: Sequence alignment between PG and SC1.  (a) There are six possible 

alignment frames.  “s” indicates surface positions and “c” indicates the core positions.  

Alignment 1 was selected as the most favorable because this has the least number of 

binary pattern mismatches and has five residues with common identities.  (b) The 

secondary structure alignment corresponding to Alignment1 shows that the Helix2 of 

SC1 overlaps with the central helix of PG. 
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1   5   10   15   20   25   30   35   40   45   50   55  
TTYKLILNGKTLKGETTTEAVDAATAEKVFKQYANDNGVDGEWTYDDATKTFTVTE   
sscscscscsscssssssscssbsscssccssccsssscscscscsssssscscss 
     sscssscssscssccssssscssscsssccsscscsssccssccsscssss 

       TKFDEQLKRRLEEEFKRDRRLTNQRRHDLSQKLGINEELIEDWFRRKEQQI 23   5 Alignment1 
    sscssscssscssccssssscssscsssccsscscsssccssccsscssss 
    TKFDEQLKRRLEEEFKRDRRLTNQRRHDLSQKLGINEELIEDWFRRKEQQI  20 3 Alignment2 
   sscssscssscssccssssscssscsssccsscscsssccssccsscssss 
   TKFDEQLKRRLEEEFKRDRRLTNQRRHDLSQKLGINEELIEDWFRRKEQQI   28 2 Alignment3 
  sscssscssscssccssssscssscsssccsscscsssccssccsscssss 
  TKFDEQLKRRLEEEFKRDRRLTNQRRHDLSQKLGINEELIEDWFRRKEQQI    22 2 Alignment4 
 sscssscssscssccssssscssscsssccsscscsssccssccsscssss 
 TKFDEQLKRRLEEEFKRDRRLTNQRRHDLSQKLGINEELIEDWFRRKEQQI     19 4 Alignment5 
sscssscssscssccssssscssscsssccsscscsssccssccsscssss  
TKFDEQLKRRLEEEFKRDRRLTNQRRHDLSQKLGINEELIEDWFRRKEQQI      17 3 Alignment6 
                
     
 
 
 
 
 
 
2    Strand1       8                    13     Strand2      19             23               Helix                       36                   42   Strand3    46            51  Strand4     55 
   
 
 
                                  9         Helix1                      21                 27          Helix2                 36                  41            Helix3                               55 
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PG 

SC1 

             (a) 
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Figure X-4: The four histidine mutations on the surface of SC1 and PG are shown. The 

positions on PG correspond to the i, i+4 histidine positions of SCCH3 and SCNH1 metal 

chelating mutants of SC1. 
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Figure X-5:  Thermal denaturation of PG mutants monitored by CD at 218 nm.  G14H 

mutant is represented by red closed circles and PG4H by blue triangles.   
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Figure X-6: Entropy profile I.  A comparison of site entropies is based on allowing 

only the two corresponding amino acids from Alignment 1 (Figure X-3a) at each 

position.  The dotted lines represent the mean of the distribution for the entropies of both 

the molecules and the solid lines represent the standard deviations.  Positions close to the 

Y-axis have a low tolerance for substitution in the SC1 structure and those close to the 

X-axis have a low mutability in the PG structure.  The positions on the upper right 

quadrant of the graph have high entropies on both the molecules and can be substituted 

with each other’s corresponding amino acids.  The sequences at the bottom are of 

mutants constructed based on this profile. Molecule SW2 is a PG mutant that has 

mutations presented in the graph (in blue) up to the standard deviation line of the PG 

distribution.  SW4 has additional mutations, marked in green in the graph, that are 

between the average line and the standard deviation line of PG entropy distribution in the 

graph. 
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Figure X-7:  Mutation distribution of SW2 and SW4 on PG.  (a) SW2 mutations are 

predominantly clustered on the ß-sheet surface.  (b) The additional mutations of SW4 are 

clustered on the helical surface. 
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Figure X-8: Entropy profile II:  Some of the high entropy positions from entropy 

profile I are now reclassified as low entropy positions. 



 X-44 

  

 
 
 
 
 
 
 
                   

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8
 

      
 
 
 
 
      
 
 
 
 
 
 

             SC1 entropy 

   
   

   
   

   
 P

G
 e

nt
ro

py
       

37NàK 

50KàR 
31 KàR               53 TàE 

              36DàQ 

          15 EàR     46 DàE 

    22 DàR 

    6IàT 



 X-45 

  

 
 
 
 

 

 

 

 

 

 

 

 

Figure X-9: Entropy profile III. (a) Comparison of the site entropies of all the positions on 

the two structures when all 20 amino acids are considered in the entropy profile calculations.  

(b) The entropy profiles of SC1 (red) and PG (black).   
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Figure X-10: Joint entropy profile of both the molecules derived from the 

combined probabilities of having common amino acids at the corresponding 

positions. The amino acid probabilities, pi(a) are the combined probabilities 

calculated as the sum of the amino acids rotamer probabilities at the paired 

positions on PG and SC.                  

 pi(a) = pi(a) PG pi(a) SC 

The dotted lines represent the cutoffs used to select for design positions. 
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Figure X-11:  Probability grid for determining common amino acids at the linked positions.  

The rows are the linked positions on the two structures and the columns are the 17 amino 

acids used in the study.  An “X” in a box indicates that it may be possible to substitute the 

linked positions with the amino acid corresponding to that box. Positions considered for 

design upto a cutoff of 0.35 are highlighted 
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SC1 PG G A V L I M F Y W S T D E N Q K R 

1 6                X  
2 7                  
3 8   X X X      X       
4 9                  
5 10 X X  X X X X X X X X X X X X X X 
6 11      X    X X X X X X X X 
7 12               X   
8 13                X X 
9 14      X     X     X  
10 15   X X X X    X X X X X X X X 
11 16    X X        X  X  X 
12 17    X  X X X X X X X  X  X  
13 18                  
14 19             X  X   
15 20                  
16 21      X        X X X X 
17 22            X  X    
18 23                  
19 24          X  X  X X  X 
20 25             X     
21 26                  
22 27                  
23 28  X X  X X X X X X X X X X X X X 
24 29            X X X X X X 
25 30                  
26 31  X        X X X  X    
27 32  X  X  X X X X X X X X X X X X 
28 33             X X X   
29 34                  
30 35          X        
31 36  X X X  X X X X X X X X X X X X 
32 37    X          X    
33 38    X              
34 39           X       
35 40    X              
36 41                  
37 42   X   X X   X X  X X X X X 
38 43          X X X X X X  X 
39 44               X   
40 45                  
41 46   X X X X    X X X X X X X X 
42 47   X  X X    X X X X X X X X 
43 48      X      X X  X X  
44 49          X    X    
45 50               X  X 
46 51      X    X X X X X X X X 
47 52                  
48 53              X    
49 54    X X             
50 55          X X       
51 56          X X X X X X   
  G A V L I M F Y W S T D E N Q K R 
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Figure X-12:  Structure of  copper(II)iminodiacetic acid is shown with a di-histidine site 

chelating the copper center. The geometry of i, i+4 positions on a helix is ideal for maximum 

chelating effect. 
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Figure X-13: (a) and (c) are the wavelength scans and (b) and (d) are the thermal 

denaturation plots of PGWT and SC1. In all plots, red indicates measurements taken in the 

absence of Cu(II)IDA, and blue represents those taken in the presence on Cu(II)IDA. The 

wavelength scans indicate that the structures of the molecules do not undergo any significant 

conformational change in the presence of metal. These molecules do not have designed di-

histidine sites and are not able to chelate metal ions. 
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Figure X-14: (a) and (c) are the wavelength scans and (b) and (d) are the thermal 

denaturation plots of PG4H and S4H56. In all plots red indicates measurements taken in the 

absence in Cu(II)IDA and blue indicates those taken in the presence on Cu(II)IDA. 

Wavelength scans indicate no significant structural changes. PG4H destabilizes by 10 °C in 

the presence of copper while SC4H56 gains 12 °C in thermostability. 
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Figure X-15: (a) and (c) are the wavelength scans and (b) and (d) are the thermal 

denaturation plots of PG50 and SC50. In all plots, red indicates measurements taken in the 

absence of Cu(II)IDA and blue indicates those taken in the presence of Cu(II)IDA.  PG50 

shows a significant shift in wavelength spectrum in the presence of Cu(II)IDA and also a loss 

in thermostability of 18 °C. Wavelength spectra of SC50 in the presence and absence of 

metal are identical, but a 12 °C gain in thermostability is observed on binding to metal. (e) 

represents the amino acid sequences of the two molecules. The identical amino acids are 

colored in red. 
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Figure X-16: (a) and (c) are the wavelength scans and (b) and (d) are the thermal 

denaturation plots of PG45 and SC45. In all plots, red indicates measurements taken in the 

absence of Cu(II)IDA and blue indicates those taken in the presence of Cu(II)IDA.  In the 

presence of copper PG45, undergoes a structural change from a folded to an unfolded 

protein. (e) represents the amino acid sequences of the two molecules. The identical amino 

acids are colored in red. 
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Figure X-17: (a) and (c) are the wavelength scans and (b) and (d) are the thermal 

denaturation plots of PG40 and SC40. In all plots, red indicates measurements taken in the 

absence of Cu(II)IDA and blue indicates those taken in the presence of Cu(II)IDA.  In the 

absence of copper, PG40 is unfolded but gets partially folded in the presence of copper. (e) 

represents the amino acid sequences of the two molecules. The identical amino acids are 

colored in red. 
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Figure X-18: (a) and (c) are the wavelength scans and (b) and (d) are the thermal 

denaturation plots of PG40 and SC40. In all plots, red indicates measurements taken in the 

absence of Cu(II)IDA and blue indicates those taken in the presence of Cu(II)IDA.  In the 

presence of copper, PG35 undergoes a structural change from a folded to an unfolded 

protein. (e) represents the amino acid sequences of the two molecules. The identical amino 

acids are colored in red. 
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Figure X-19: 1-D NMR spectra of engrailed homeodomain mutants. Spectra of all variants 

except SC35 indicate folded structures. 
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            Figure X-20: 1-D NMR spectra of Protien G variants. PG50 and PG45 are folded 

proteins while PG35 appears more like a molten globule.  
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Appendix A 

 

Repacking the Core of T4 Lysozyme by Automated Design 

 

 

 

 

 

 

 

 

This appendix is adapted from an unpublished manuscript that was coauthored with Blaine 

H. M. Mooers, Walter A. Baase, Professor Stephen L. Mayo and Professor Brian W. 

Matthews.  This was a collaborative effort between Caltech and University of Oregon. D. 

D. did the computational part of this study. 
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ABSTRACT 

Automated protein redesign, as implemented in the program ORBIT, was used to 

redesign the core of T4 lysozyme.  Twenty-six buried or partially buried sites in the C-

terminal domain were allowed to vary both their sequence and side-chain conformation 

while the backbone and non-selected side-chains remained fixed.  A variant with seven 

substitutions ("Core-7") was identified as having the most favorable energy.  The redesign 

experiment was repeated with a penalty for the presence of methionines.  In this case the 

redesigned protein ("Core-10") had ten amino acid changes.  The two designed proteins, as 

well as the constituent single mutants, and several single-site revertants were over-

expressed in E. coli, purified, and subjected to crystallographic and thermal analyses.  The 

thermodynamic and structural data show that some repacking was achieved although 

neither redesigned protein was more stable than the wildtype protein.  The use of the 

methionine penalty was shown to be effective.  Several of the side-chain rotamers in the 

predicted structure of Core-10 differ from those observed.  Rather than changing to new 

rotamers predicted by the design process, side-chains tend to maintain conformations 

similar to those seen in the native molecule.  In contrast, parts of the backbone change by 

up to 2.8 Å relative to both the designed structure and wildtype. 

 Water molecules that are present within the lysozyme molecule were removed during the 

design process.  In the redesigned protein the resultant cavities were, to some degree, 

reoccupied by side-chain atoms.  In the observed structure, however, water molecules were 

still bound at or near their original sites.  This suggests that it may be preferable to leave 

such water molecules in place during the design procedure.  The results emphasize the 

specificity of the packing that occurs within the core of a typical protein.  While point 

substitutions within the core are tolerated they almost always result in a loss of stability.  

Likewise, combinations of substitutions may also be tolerated but usually destabilize the 

protein.  Experience with T4 lysozyme suggests that genuine core repacking with retention 

or enhancement of stability is difficult if not impossible to achieve without provision for 
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shifts in the backbone. 

 

INTRODUCTION 

 The cores of proteins are generally well-packed (Richards, 1986; Richards & Lim, 1994).  

They have shown a remarkable ability to accommodate changes in buried hydrophobic 

residues although generally with some loss of stability (Baldwin et al., 1993, 1996; Gassner 

et al., 1996).  It has been suggested that protein core packing is not like a jigsaw puzzle.  

Rather, it is more like nuts and bolts in a jar (Liang & Dill, 2001).  If this is the case there 

may be opportunities to improve the stability of native proteins by optimizing the packing 

of buried amino acids.  An early test with T4 lysozyme showed that the effectiveness of 

doing so by single amino acid substitutions seemed limited (Karpusas et al., 1989).  A more 

general and possibly more powerful approach is by using automated design procedures that 

permit the consideration of multiple substitutions with alternative side-chain packing 

arrangements.   

 Several side-chain packing algorithms have been developed in which core redesign has 

been simplified by placing the side-chains on a rigid template.  The side-chain 

conformations are usually varied by selecting from a library of rotamers, which are defined 

as statistically significant combinations of dihedral angles of a side-chain (Janin et al., 

1978).  One of the earliest attempts at automated side-chain repacking was implemented in 

the program, known as propack, developed by Ponder and Richards (1987).  Hurley et al. 

(1992) used a modification of this program to redesign the C-terminal domain of T4 

lysozyme.  They considered several hundred promising sequences and energy minimized 

the best candidates.  These redesigned proteins folded into native- like structures, but their 

stabilities were lower than that of the wildtype protein.   

 Programs such as propack make a direct attack on the combinatorial problem of 

finding the globally optimal arrangement of side-chains on a fixed template.  The 

astronomical number of possible rotamer combinations limits the size of the rotamer library 
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and the number of positions that are allowed to vary in sequence.  In addition, these 

algorithms have no guarantee of finding the structure with the lowest energy. 

 A different approach that has been developed recently is to iteratively eliminate the so-

called dead-ending rotamers, i.e. those rotamers that cannot be part of the lowest energy 

structure (Desmet et al., 1992; Goldstein, 1994).  This improvement allowed the extremely 

rapid testing of the 1040 to 1060 possible rotamer sequences in a reasonable amount of time, 

thereby permitting the use of more detailed rotamer libraries and the consideration of larger 

numbers of sites for repacking. 

 The ORBIT (Optimization of Rotamers By Iterative Techniques) protein redesign 

program allows use of several alternative versions of the dead end elimination theorem 

(Dahiyat & Mayo, 1996, 1997a, 1997b; Dahiyat et al., 1997).  Several optional terms in the 

forcefield and alternative design strategies were developed using feedback from the 

redesign of two small proteins:  the 56 residue β1 domain of streptococcal protein G 

(Dahiyat & Mayo, 1997a, 1997b; Su & Mayo, 1997) and 33 residue peptides that form 

homodimeric coiled-coils based on GCN4-p1 (Dahiyat & Mayo, 1996).  By implementing 

these strategies, the β1 domain of streptococcal protein G was successfully redesigned with 

substantially enhanced thermal stability.  One variant had a melting temperature in excess 

of 100 °C and an increase in thermal stability of 4.3 kcal mol-1 at 50 °C (Malakauskas & 

Mayo, 1998).   

 For several reasons, it was unclear whether the success of ORBIT with small proteins 

would be directly transferable to larger ones.  For example, the change in exposed surface 

area on unfolding, as well as the change in heat capacity on unfolding both increase 

essentially linearly with protein size (Myers et al., 1995).  Thus a given number of 

substitutions is likely to have a larger effect on stability when the total number of residues 

is small.  Also, a larger proportion of residues are buried in larger proteins compared to 

smaller ones (Janin, 1979; Miller et al., 1987).  This may require the design process to be 

more stringent.  
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 To test the applicability of ORBIT to a larger protein, we used it to redesign the C-

terminal domain of T4 lysozyme.  Two designs were developed:  one without and one with 

a penalty for the incorporation of methionine.  The proteins were constructed, their thermal 

stabilities measured and their crystal structures determined.  To determine the contributions 

made by individual substitutions, we studied proteins with constituent single mutations as 

well as proteins with the designed sequences but with a single site changed back to the 

wildtype sequence. 

 

RESULTS 

Redesigned T4-Lysozyme 

 The coordinates of the starting model were from the atomic resolution crystal structure of 

the cysteine-free pseudo-wildtype T4 lysozyme, referred to as WT* (Matsumura & 

Matthews, 1989).  To obtain the highest possible accuracy the X-ray diffraction data were 

collected to 1.05Å resolution at 100K (Eriksson et al., 1993; B.H.M.M. & B.W.M., 

unpublished).  After removal from the coordinate file of the solvent molecules and the 

alternative side-chain conformations, the crystal structure was energy minimized to relieve 

possible van der Waals clashes and steric strain before its use as the starting model in the 

redesign exercise.  The discrepancy between the backbone atom positions in the crystal 

structure and in the energy minimized structure was 0.21 Å which is less than that between 

the 100K and 293K crystal structures (0.30 Å) (data not shown).  Thus the energy 

minimization resulted in only small changes in the crystal structure.   

 T4 lysozyme has a N-terminal and a C-terminal domain.  The latter is composed of a 

tightly packed α-helical bundle and includes residues 1-11 plus 70-164.  It includes the 

most extensive and well-defined hydrophobic core and the redesign was in this part of the 

molecule.  Twenty-six buried or largely buried residues were selected as contributing to the  

core (Figure A-1(a)).  The amino acids at these positions were allowed to vary with regard 

to both their amino acid identity and their side-chain conformation while the remaining 
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residues were held fixed.  The amino acids allowed at each site were those with 

hydrophobic side-chains, namely alanine, isoleucine, leucine, methionine, phenylalanine, 

tyrosine, tryptophan, and valine.  Proline, glycine and cysteine were omitted from 

consideration to avoid possible disruption of secondary structure and the formation of 

disulfide bonds.  This resulted in about 6 x 1026 amino acid sequences.  By also allowing 

for different side-chain conformations the overall number of possible combinations 

increased to about 4 x 1059.  Based on the most favorable calculated energy the optimal 

design selected by ORBIT had seven substitutions (I78V, V87M, L118I, M120Y, V149I 

and T152V).  It is referred to as Core-7. 

 This design protocol has been found to lead to an over-representation of methionines 

compared to the occurrence of methionine in natural protein cores [unpublished results].  

The larger number of possible rotameric states for methionine leads to a proportionately 

over-representation of methionine in the rotamer library in comparison to other amino 

acids.  It is also known that methionine-to- leucine substitutions at geometrically 

appropriate sites can enhance stability (Lipscomb et al., 1998).  To take these factors into 

account, the design procedure was repeated with a penalty of 10 kcal/mol for each 

methionine included.  With this penalty in place, ORBIT selected the ten-fold mutant 

("Core-10") which has the mutations shown in Figure A-1(b).  In the present instance the 

effect of the penalty was to both prevent the selection of new methionines and eliminate 

methionines present in the wildtype protein. 

 In order to obtain calculated energies for the various single, double and other mutants that 

had been constructed, the same procedure was applied without allowing amino acid 

sequence variation at the 26 sites.  Energies were determined in the presence and absence 

of the methionine penalty (Table A-1). 

 

Thermal Stability 

 Table A-1 includes the thermodynamic data for Core-7, Core-10, and the other variants.  
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Neither Core-7, Core-10, nor any of the revertants is as stable as WT*.  The pH of 

maximum stability for both Core-7 and Core-10 is between pH 5 and 5.5 (data not shown).  

This is similar to WT* (Anderson et al., 1990) and suggests that the strong salt bridges, 

especially that between His31 and Asp70, are not significantly perturbed by either set of 

mutations. 

 

Crystal Structures 

 Structures were determined for almost all of the proteins that had not been analyzed 

previously (Table A-2).  Most crystallized isomorphously with WT* in space group P3221.  

Diffraction data were generally to high resolution with an estimated uncertainty in the 

main-chain atom positions of 0.1 Å.  Although the diffraction data were collected at 100K, 

the crystal structures are assumed to be accurate representations of the structure at room 

temperature.  This is supported by comparisons of pairs of 100K and 293K crystal 

structures for the wildtype protein, WT*, and several mutants not included in this study 

(B.H.M.M. & B.W.M., unpublished results).   

 Core-7 crystallized in space group F222 with two or three molecules in the 

asymmetric unit and diffracted to 2.4 Å resolution, but it has not been possible to use 

molecular replacement to solve the structure.  Crystals of M87V/Core-7 were also non-

isomorphous with WT*.  In this case there were three molecules per asymmetric unit and it 

was possible to determine the structure to 1.56 Å resolution.  Crystals of the single-site 

revertant I118L/Core-7 were isomorphous with WT* and the structure was determined to 

high resolution (Table A-2).  As will be apparent from the behavior of Core-10 revertants, 

however, the structure of M87V/Core-7 and I118L/Core-7 cannot be reliably used to infer 

the structure of Core-7 itself. 

 The redesigned protein Core-10 crystallized isomorphously with WT* and its structure 

was determined to 1.65 Å resolution.  The structure is generally similar to WT* but also 

has some distinct differences in both the backbone structure and the side-chain 
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conformations (Figure A-2(a)).  The average discrepancy between the main-chain atoms of 

residues 81-161 in Core-10 and WT* is 0.49 Å (Table A-4) which is about three times the 

combined uncertainty in the positions of the backbone atoms in each structure.  When sites 

106-123 are excluded from the least-squares superimposition to avoid incorporating the 

effect of the shifts in helices F and G, the discrepancy is 0.21 Å (Table A-3).  This shows 

that the backbone structure of most of the C-terminal domain is well conserved, but within 

helices F and G some atoms move substantially (up to about 2.8 Å) (Figure A-3 (a)).  The 

shift in helix F is associated with the breaking of the hydrogen bond between Thr109 O and 

Gly113 N.  This distance increases from 3.0 Å to 4.2 Å.  The breaking of this hydrogen 

bond was also observed in the crystal structure of the single mutant Val1116Ile (Hurley et 

al., 1992).  The outward shift of helix F creates a cavity to which a water, HOH310, binds 

and is within hydrogen bonding distance of Ala111 O (2.9 Å with a C—O...HOH angle of 

100°). 

 The temperature factors for the side-chain atoms at the ten sites of mutation in the crystal 

structures of Core-10 and of WT* are quite similar, indicating that these side-chains are not 

disordered; nor is there any indication of a molten globular state (Table A-4). 

 Comparison of the crystal structures of WT* and Core-10 reveals that the side-chain 

rotameric states are completely conserved at all of the non-substituted sites (Table A-5).  

Conservation also occurred at all but one of the substitution sites, the single exception 

being Met1026Leu, where both χ1 and χ2 changed (Table A-5; Figure A-5(a)). 

 

DISCUSSION 

The overall objective of the present experiments was to use ORBIT to identify 

variants of T4 lysozyme that had repacked cores and were more stable than wildtype.  The 

most promising variant identified by the design process, Core-7, was found to be a 

functional lysozyme but with melting temperature reduced by 9.8°C, which corresponds to 

a destabilization of 3.5 kcal/mol relative to WT*.  Change of the design procedure to 
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include a penalty for methionine residues led to a modified design, Core-10, which was 1.1 

kcal/mol more stable than Core-10 but still not equal to WT*.  In the following sections we 

discuss these findings in more detail with their implications for future design initiatives. 

 

Energetics of the Designed Variants 

 As noted above, neither of the designed variants was as stable as wildtype lysozyme.  This 

is at variance with the success of ORBIT in predicting stabilized variants of the β1 domain 

of protein G and coiled-coils based on GCN4 (Dahiyat & Mayo, 1996, 1997a, 1997b; Su & 

Mayo, 1997).  It is, however, in agreement with earlier experiments on T4 lysozyme.  

Hurley et al. (1992) used a computational procedure to identify combinations of amino 

acids that would repack the core.  Some possible combinations were suggested but their 

stability was, at best, slightly less than the native molecule.  Also Baldwin et al. (1993) 

used a genetic approach to select variants that had repacked cores.  Again, a large number 

of variants were identified, but none had stability greater than that of WT*. 

 One possible inference of these results is that it may be energetically more costly to 

repack larger proteins than smaller ones.  In a very small protein most side-chains may be 

at least partly in contact with solvent.  This may allow them freedom to be substituted, or to 

adjust their positions in response to substitutions at nearby sites.  Within the core of a 

larger protein the side-chains tend to be tightly packed by their neighbors and it is more 

difficult for the structure to relax in response to introduced changes. 

 

Calculated and Observed Stabilities 

 The stabilities of the various T4 lysozymes predicted by ORBIT are compared with those 

determined experimentally in Table A-1 and Figure A-4.  These two energy terms do not 

have the same definition, but they are expected to correlate.  For T4 lysozyme the 

experimental ∆∆G is traditionally defined to be the free energy of unfolding relative to the 

WT* protein (Elwell & Schellman, 1975; Grütter et al., 1987).  ∆∆G refers to the free 
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energy of unfolding and a positive value indicates that the protein is more stable than WT*.  

The ORBIT score is the sum of the calculated energies of interactions for the side-chains 

that are allowed to vary.  The energetically more favorable ORBIT scores are in the 

negative direction.  For the individual mutations, excluding sites 102 and 103, there is a 

possible correlation between the calculated and observed energies (Figs. 4(c), 4(d)).  This is 

equally apparent whether or not the ORBIT score includes the methionine penalty.  

However, when all sites and all constructs are considered no clear-cut correlation emerges 

(Figs. 4(a), 4(b)).  This lack of agreement between the experimental and the predicted 

energies could be due to a number of factors including the following.  (1) Some of the 

mutant proteins experience significant changes in the main-chain (see below).  These may 

invalidate the rigid template assumption.  (2) The rotameric states of some of the side-

chains in the calculated structures (in particular, in Core-10) do not agree with those in the 

actual proteins leading to inaccurate energies.  (3) The forcefield, which was based in part 

on experience with smaller proteins, may not be appropriate for proteins of the size of T4 

lysozyme. 

 

Predicted and Observed Structure of Core -10 

 Figure A-2(b) compares the backbone of the predicted and observed structure of Core-10.  

For residues 81-105 plus 124-161 the backbone agreement is generally good but in the 

remaining region there are shifts up to 2.8 Å.  Likewise, some but not all of the side-chain 

conformations are correctly predicted.  Eight of the ten modified side-chains adopt the 

rotameric state that was predicted (Table A-5).  The two exceptions are Ile87 and Ile149 in 

which cases the differences are restricted to the χ2 torsion angle.  At another site 

(Val1036Ile) the χ2 angle differs from the predicted structure more than 30°.  Of the ten 

non-alanine residues that were included in the design process but did not change identity 

nine had correctly-predicted rotamers.  The three incorrect predictions plus the prediction 

that is somewhat in error are discussed briefly below. 
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(a) Val876Ile (∆χ1 = 25°, ∆χ2 = -96°) 

 With reference to the crystal structure of WT*, the introduction of the CD1 carbon atom 

of Ile87 is associated with the outward movement of the side-chains of Leu118 and Glu122 

as well as other shifts (Figure A-5(a)).  Notwithstanding these shifts, potential steric 

clashes appear to cause the CD1 methyl of Ile87 to adopt a rotameric state that is fairly 

uncommon (frequency of 14%; Blaber et al., 1994).  Before the design process, the starting 

model was energy minimized.  Comparison of the design to the crystal structure of WT* 

shows that the distal part of the side-chain of Gln122 has moved outward in the designed 

structure.  At least in part this suggested that an isoleucine in a common rotameric state 

could be accommodated at this site.  (Gln122 is a surface residue that was held fixed during 

the design process.  Thus, its outward movement is the result of the energy minimization 

step and not the rotamer selection step.) 

 

(b) Leu91 (∆χ1 = 24°, ∆χ2 = 139°) 

 Leu91 was included in the design process but its identity remained unchanged.  It was 

predicted, however, that the two methyl groups at the end of the leucine side-chain would 

flip by about 180°.  This change is not observed.  Rather, the conformation of Leu91 in 

Core-10 is essentia lly identical to WT*.  The change in conformation in the designed 

structure presumably occurs in concert with the introduction of an isoleucine at site 87.  As 

mentioned above, Ile87 is predicted to have an altered conformation in Core-10.  To avoid 

close contact with this residue Leu91 in the designed structure Ile87 adopts a different 

rotamer.  Thus the error in prediction at the two sites seems to be coupled. 

 

(c) Val1036Ile (∆χ1 = 1°, ∆χ2 = -32°)  

 The side-chain of Ile103 adopts a rotameric state which has a frequency of only 3% 

among proteins in general.  This is essentially as predicted although the observed χ2 is 32° 
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from that anticipated.  The distal methyl groups of the side-chain adopt positions that are 

close to those predicted (Figure A-5(b)).  This coincidence occurs in spite of the change in 

the side-chain torsion angle and extensive shifts in several of the surrounding residues 

(especially 106-111).  The superimposition of the crystal structure of WT* on the crystal 

structure of Core-10 suggests that these shifts may be caused in part by the need for Val111 

to avoid a close contact with the CD atom of Ile103.  Since the design process assumes a 

rigid framework such backbone shifts are not anticipated. 

 

(d) Val1496Ile (∆χ1 = -2°, ∆χ2 = 111°) 

 Ile149 was predicted to adopt the most common rotameric state for leucine which has a 

frequency of 57%.  Instead, it adopts a rotameric state which has a frequency of 14%.  The 

design procedure deleted the four water molecules that are bound within the T4 lysozyme 

molecule (Weaver & Matthews, 1987).  The removal of one of these resulted in a cavity 

into which the CD methyl group of Ile149 was predicted to occupy.  In actuality, the water 

molecule remains bound to Core-10 and forces the isoleucine to adopt an alternative 

rotamer.  [The water HOH197 shifts by 0.7 Å but retains its hydrogen bonding partners 

(Figure A-5(c)).] 

 

Internal Water Molecules 

Four buried waters occupy three cavities in WT* (Weaver & Matthews, 1987; Xu et al., 

2001).  These four waters were removed from the coordinate file during the design process.  

Two of the cavities are in the C-terminal domain and were therefore available for repacking 

by side-chain atoms.  The first of these two cavities is next to site 149 and has already been 

discussed.  The second cavity decreases slightly in the designed structure following the 

replacement of Thr152 with a valine.  In the crystal structure, however, the water molecule 

(HOH173) still appears in the cavity although it is displaced towards the surface of the 

protein by about 1 Å. 
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Core-10 Revertants 

Selected single-site revertants were constructed to address, both energetically and 

structurally, how the different sites interact with each other.  The sites chosen for reversion 

were those where the point mutant had the largest effect on the stability of WT* (Table A-

1).  The single-site revertants of Core-10 are discussed briefly below. 

 

 (a) Leucine1026Methionine/Core-10 

 In the revertant L102M/Core-10, the leucine at site 102 in Core-10 was changed back to a 

methionine as in the wild-type sequence.  The structure, however, remains very similar to 

that of Core-10 (rmsd of 0.14 Å).  Thus, the amino acid change at site 102 back to that of 

the wildtype sequence does not recover the backbone atoms positions of the WT* structure.  

Met102 in the revertant adopts a side-chain conformation that is very similar to that of 

Met102 in WT* but that differs from that of Leu102 in Core-10 by a rotation of 85° about 

the χ1 torsion angle. 

In the L102M/Core-10 revertant the sum of the ∆∆G's of the remaining nine 

constituent mutants is essentially the same as the measured ∆∆G for the revertant (Table A-

1, Figure A-6).  This suggests that each of these nine sites is acting independently and that 

there is no interaction between them. 

 

 (b) Isoleucine1036Valine/Core-10 

 The discrepancy between revertant I103V/Core-10 and Core-10 for the main-chain atoms 

from sites 81-161 is 0.47 Å while it is only 0.22 Å relative to WT*.  Thus the change of 

this single site back to the wildtype sequence is sufficient to revert the Cα positions in 

Core-10 essentially back to those of WT* (Figure A-3(b)).  [It should be noted that the 

discrepancy between Core-10 and V103I is 0.68 Å, showing that the introduction of this 

single mutation is not sufficient to cause all the structural changes seen in Core-10.  At the 
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same time, the single mutant V103I crystallized in a different space group and has a hinge-

bending motion relative to WT*.  This results in shifts in the C-terminus of helix C which 

makes detailed structure comparison more difficult.] 

The change back to a valine from an isoleucine at site 103 removes a buried methyl 

group.  This is correlated with Ala111 moving into a position similar to that occupied by 

Val111 in WT* and with helix F reverting to its wildtype conformation.  It appears that the 

potential clash between the Ile103 CD1 methyl group and the CB methyl of Ala111 causes 

helix F to move outwards.  The I103V revertant resulted in an 0.8 kcal/mol increase in 

stability relative to Core-10.  This is notwithstanding the decrease in hydrophobicity 

resulting from the Ile6Val substitution and clearly suggests that the original V103I 

replacement introduces strain in the Core-10 structure. 

The I103V/Core-10 revertant shows the largest non-additivity in ∆∆G of all the variants 

studied (Figure A-6).  This also suggests that the remaining nine sites have the greatest 

degree of repacking and synergistic interaction. 

 

 (c) Revertant Protein, Alanine1116Valine/Core-10 

 In the Core-10 revertant A111V/Core-10, the alanine at position 111 in the Core-10 

background is changed back to a valine as in the wildtype sequence.  If the vicinity of site 

111 in Core-10 was tightly packed, it would be expected that the introduction of two 

methyl groups would result in large structural changes.  This, however, is not the case.  The 

observed changes are actually modest.  Val111 moves closer to the core by about 0.3 Å 

compared to Ala111 in Core-10, and atoms surrounding the reintroduced valine side-chain 

move by at most a few tenths of an Angstrom (Figure A-7(a)).  The two methyl groups of 

the valine essentially refill the cavity that was created by the Val1116Ala substitution in 

Core-10.  The most dramatic change in atomic position in the revertant is a 2 Å movement 

of the CD1 atom in the side-chain of Ile103.  This movement occurs largely by a rotation of 

about the χ2 angle to an energetically unfavorable rotameric state which places the CD1 
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atom at a distance of 2.7 Å from Ile103 CG2 atom (as opposed to 3.8 Å in Core-10). 

The A111V reversion increases the stability of Core-10 by 0.6 kcal/mol (Table A-

1).  The fact that this is an increase rather than a decrease also suggests that the valine side-

chain occupies a preformed cavity and does not introduce any serious steric clashes. 

 

Evidence for Synergy Between the Mutation Sites 

One can ask whether the ORBIT procedure results in genuine repacking of the core 

or, conversely, the individual substitutions act independently.  In the case of Core-10 none 

of the constituent point mutations causes a large change in stability.  Six of the ten 

mutations change the melting temperature by less than 1.0°C and the largest effect is for 

V111A for which the change is 2.9°C (Table A-1).  If there were to be large synergistic 

effects one would anticipate that at least some of the point mutations would be quite 

destabilizing and that these effects would be compensated in the multiple mutant.  This is 

not obviously the case.  The hallmark of synergistic interaction is non-additivity of the 

∆∆G's.  If each of the substitutions acts independently of the others the change in stability 

of the multiple mutant should equal the sum of the ∆∆G's of its single-site constituents.  As 

can be seen in Table A-1 and Figure A-6, the sum of the ∆∆G's for Core-10 is numerically 

1.0 kcal/mol greater than the observed ∆∆G.  This shows that there is some favorable 

interaction among the redesigned sites, although the effect is modest.  By way of 

comparison, in the "size switch" mutant in which the sizes of adjacent residues were 

switched by the substitutions Leu216Ala and Ala1296Leu, the thermodynamic 

compensation was substantially larger (2.5 kcal/mol) (Baldwin et al., 1996). 

Cooperativity between substitutions at different sites can also be evaluated 

structurally.  Using a cut-off distance of 4.0 Å the average number of residues among the 

26-residue set that are in contact or almost in contact with any given residue is 2.4 (or 1.4 

residue-residue contacts if the threshold is reduced to 3.5 Å).  Thus, even though the 26 

residues are all within the most pronounced hydrophobic core of T4 lysozyme there do not 
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tend to be multiple close contacts between each residue and a multitude of neighbors.  This 

separation of the sites may make cooperativity difficult to achieve.  In the present case the 

design algorithm assumes that selected variants will retain the same backbone structure as 

the parent molecule.  As noted above this is true for much of the C-terminal domain of 

Core-10, but not in the vicinity of the F and G helices. 

In this context it is instructive to contrast the behavior of the Core-10 revertant 

L102M/Core-10 with that of I103V/Core-10.  When the single-site reversion I103V is 

made in Core-10 the structure reverts much closer to that of WT* (Figure A-3(b)).  Also 

the stability of the protein is increased by 0.8 kcal/mol and, in addition, the non-additivity 

of the ∆∆G's increases by 0.3 kcal/mol (Table A-1, Figure A-A-6).  Thus, the I103V/Core-

10 revertant is, in all respects, a more superior design than Core-10 itself (it is more stable, 

more synergistic and has a structure more like WT*).  When the V103I mutation is 

included in the full Core-10 construct, the addition of the CD1 methyl group introduces a 

steric clash which is not compensated by the other replacements and, therefore, leads to a 

relatively large change in the structure. 

In contrast, the behavior of the L102M/Core-10 revertant is quite different.  Here 

the reversion of Leu102 to Met causes almost no change in the Core-10 structure.  At the 

same time (as judged by the equivalence of the ∆∆G's; Figure A-6), it eliminates any 

synergistic interaction between the remaining nine sites.  The L102M/Core-10 structure 

seems "poised" to accept the M102L substitution without structural perturbation, and, in so 

doing, the Leu102 side-chain contributes to the synergistic interaction that is observed in 

Core-10. 

Since the L102M revertant in Core-10 eliminates synergistic interaction between 

the remaining nine sites it implies that the M102L substitution does contribute to 

cooperativity in Core-10.  There is some structural evidence for this.  When the M102L 

mutation is made in WT* it results in a rotation of the side-chain of Phe114 by almost 70° 

into a strained conformation.  (This rotation appears to be mediated indirectly via Trp138 
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and possibly other residues as well) In Core-10 (and in M102L/Core-10), however, the 

combination of substitutions allows the side-chain of Phe114 to revert to the angle seen in 

WT* (Figure A-7(b)), relaxing the strain that had been introduced. 

 

Success of the Methionine Penalty 

Because of their conformational adaptability methionine side-chains tend to be 

more readily accommodated within a designed protein.  At the same time incorporation of 

multiple methionines can result in a loss of stability (Gassner et al., 1996).  Conversely, 

under favorable circumstances substitutions from methionine to leucine can increase 

stability (Lipscomb et al. 1998).  For these reasons it would seem desirable to avoid the 

introduction of methionines into the designed protein. 

In the present case the imposition of a methionine penalty resulted in four positions in 

Core-7 being retained in Core-10 while I78V and I118L were lost and V87M was replaced 

with V87I.  Meanwhile, five new positions were added, resulting in the loss of two 

methionines:  I100V, M102L, V103I, M106I, and V111A.  In total, Core-10 has three 

fewer methionines than Core-7.  The M102L substitution is known to introduce steric 

clashes (Hurley et al., 1992) and it could be that the additional sites of substitution in Core-

10 arise from the need to minimize this steric interference.  In any event, the incorporation 

of the methionine penalty did increase the stability of the protein by 1.1 kcal/mol. 

 

Conclusions  

One of the main findings of this work is that the introduction of the designed core-

repacking mutations resulted in changes of the backbone up to 2.8 Å.  Also both of the 

designed variants were less stable than the wildtype protein.  Taken together these results 

suggest that genuine core repacking with retention or enhancement of stability may be 

difficult if not impossible to achieve without provision for shifts in the backbone. 

A second finding is that the rotamer angles that occur in WT* are strongly conserved in the 
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mutant.  For the substituted and non-substituted sites in Core-10 there is only one case 

(Met102 -> Leu) where there is a change of rotamer (Table A-5, Figures A-2(a), A-5(c)).  

Conservation of rotamers was also observed in genetically selected core-repacking variants 

of T4 lysozyme (Baldwin et al., 1993).  This suggests that core redesign might be improved 

by favoring models that maintain the side-chain rotamers present in the reference structure. 

If, as was the case with the Core-10 design, a total of 26 sites were allowed to vary, 

the overall number of possibilities is astronomical.  At a given site, however, the packing is 

typically determined by the side-chain itself plus two or three neighbors.  Here the number 

of choices is more limited.  Also since the number of hydrophobic amino acids is fairly 

small, and each amino acid is restricted to distinct rotamers, the choice of substitutions is 

"quantized" (Karpusas et al., 1989).  On the other hand, if the backbone were allowed to 

move it would allow a wider range of substitutions to be considered. 

 

MATERIALS AND METHODS  

Redesign by ORBIT 
All residues of cysteine-free pseudo-wildtype T-4 lysozyme, referred to as WT*, 

were classified as surface, core, or boundary, using a residue classification program, 

RESCLASS (Dahiyat and Mayo 1997) RESCLASS classifies the residues based on their 

Ca and Cß distances from a solvent accessible surface, which is the calculated using the 

Connolly algorithm (Connolly, 1983).  

 We selected 26 core positions located in the C-terminal domain of WT* for design. 

The selected positions were I3, M6, A74, I78, L84, V87, Y88, L91, A97, A98, L99, I100, 

M102, V103, M106, V111, I118, Y120, L121, A129, L133, A146, V149, I150, T152 and 

F153. Positions 3 and 91 were classified as boundary residues but were nevertheless 

included in the core calculations as visual inspection showed them to be significantly 

buried. Position 6 and 3 belong to the N-terminal domain but were considered for design 
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because of their close proximity to the C-terminal core residues. The hydrophobic amino 

acids allowed at all 26 positions were Ala, Val, Phe, Leu, Ile, Phe, Tyr, Trp and Met. An 

expanded version of the backbone dependent rotamer library of Dunbrack and Karplus was 

used for the calculations (Dunbrack R. L. and Karplus M., 1993). For aromatic residues, 

the expansions included the mean χ values ± 1 standard deviation about χ1 and χ2 

torsional angles. For other hydrophobic groups, a similar expansion was performed, but 

was limited only to the χ1 torsional angle. Energies for the point mutants were calculated 

by fixing the identities of amino acids at all 26 positions while allowing their rotameric 

conformations to vary based on the rotamer library. The design calculations were run using 

an optimization procedure based on Dead-End Elimination algorithm (Desmet 1992,  

Pierce 2000).  

 

Mutagenesis, protein expression, and purification 

The two redesigns of the C-terminal core of bacteriophage T4 lysozyme, Core-7 

and Core-10, were made by iterative two stage PCR (Landt et al., 1990) using the gene for 

the cysteine-free (C54T/C97A) pseudo-wildtype (WT*) T4 lysozyme as the template.  The 

BamHI/HindIII digested PCR products were ligated into the vector PH1403.  The single 

(where they did not previously exist), double, and revertant mutants were made by the 

inverse PCR (Hemsley et al., 1989).  The gene for WT*, Core-10, or Core-7 in the vector 

PH1403 was used as the template.  The individual single site mutants (relative to WT*) 

were drawn from existing stocks except for I78V, V87I, I100V, V103I, M106I, L118I, 

M120Y, and L133F.  The double mutant V149/T152V was made in the WT* background.  

The DNA sequences of the new constructs were confirmed by automated methods 

incorporating the polymerase chain reaction (Perkin-Elmer ABI PRISM 377 DNA 

sequencer).  The vectors were transformed into E. coli RR1 cells for over-expression.  The 

mutant proteins were over-expressed and purified by standard methods (Alber & Matthews, 

1987; Muchmore et al., 1989; Poteete et al., 1991).  The molecular mass of the mutant 
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proteins were checked with a Perspective Biosystems Voyager-DE MALDI/TOF mass 

spectrometer.  The buffer used for protein storage was 0.1 M sodium phosphate pH 6.5, 

0.55 M NaCl, and 0.02% NaN3.  As judged by the fact that each lysozyme caused cell lysis 

and behaved similarly during purification we assume that all have activity similar to that of 

WT*. 

 

Thermal Unfolding 

Circular dichroism monitored thermal stability data were collected at 223 nm using 

a JASCO model J-600 spectropolarimeter and the Hewlett-Packard model HP89101 

thermal control system (Eriksson et al., 1993).  The buffer was 0.10 M sodium chloride, 1.4 

mM acetic acid, 8.6 mM sodium acetate, pH 5.35, with protein concentrations of 0.01 to 

0.03 mg/ml as determined from optical density at 280 nm (Elwell & Schellman, 1975).  

Unfolding profiles were analyzed by means of the two-state model to determine the 

temperature of melting (Tm) and the van’t Hoff enthalpy at the melting temperature (∆H) 

(Zhang et al., 1995).  At least three independent trials were done for each mutant.  

Averaged values of Tm and ∆H were used to calculate ∆G° at 61°C by means of an 

integrated form of the Gibbs-Helmholtz equation (Hawkes et al., 1984) assuming a ∆Cp of 

2.5 kcal/mol-K.  ∆∆G values were computed as ∆G°(mutant) - ∆G°(WT*). 

 

Crystallization 

It was possible to crystallize both of the two designed proteins, selected single 

mutant back revertant proteins, and the previously unpublished single mutants.  Thirteen of 

the fifteen new proteins were crystallized in space group P3221 isomorphously with the 

wildtype protein in 2 M K/Na phosphate buffers as previous described (Eriksson et al., 

1993).  Core-7 crystallized in space group C2  in 100 mM Na/K phosphate buffer pH 6.7 

and 20% MPD.  V103I crystallized in space group P212121 in solutions of 0.1 M Hepes pH 

7.5, 20% PEG3400, and 5% isopropanol.  M87V/Core-7 crystallized in space group C2 in 
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25% PEG3400, 5% PEG600, 200 mM NaCl, 100 mM Na/K phosphate, pH 6.7 and Fos-

choline 12 at its critical micelle concentration. 

 

X-ray Data Collection 

Since the 100 K structure of the pseudo wildtype had been used as the template in 

the design process, X-ray data of the new proteins were collected at 100 K.  Crystals of 

proteins grown from the high salt solutions were mounted in paratone and flash cooled.  

Crystals of Core-7 and of V103I were flash cooled in rayon loops containing cryogenic 

reservoir solutions.  X-ray data for Core-7 and I103V/Core-10 were collected at beamline 

7-1 at SSRL with monochromatic radiation having a wavelength of 1.06 Å and a MAR 

image plate.  X-ray data for the remaining structures were collected in-house with 1.54 Å 

radiation and a Rigaku RAXIS4 image plate.  The data were integrated with Mosflm and 

scaled with Scala (Leslie, 1992; Evans, 1994 ) 

 

Structure Determination 

The structures of V103I and M87V/Core-7 were solved by molecular replacement 

using the program EPMR (Kissinger et al., 1999) while the remaining structures were 

determined by molecular substitution using the coordinates of WT* (Table A-2) as the 

starting model.   

Structure Refinement 

The crystal structures were refined using the refinement package TNT (Tronrud et al., 

1987; Tronrud, 1997) following the procedures described previously (Eriksson et al., 

1993).  The Xfit molecular graphics module of XtalView was used for model rebuilding 

(MacRee ,1992).   
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Table A-1.  Stabilities of mutant lysozymes. The first two columns give the score calculated by 
ORBIT, respectively, without and with a penalty for incorporation of methionines (see text).  ∆Tm 
is the change in melting temperature relative to WT* which is 65.5°C under these conditions.  ∆H 
is the enthalpy of unfolding at Tm.  ∆∆G is the change in the free energy of unfolding relative to 
WT*.  "Non-additivity of ∆∆G" is the difference between ∆∆G measured for the multiple construct 
and the sum of the ∆∆G's for the constituent single mutants.  Uncertainties in ∆Tm are about 
+0.2°C, in ∆H about +5% and in ∆∆G about 0.15 to 0.4 kcal/mol (increasing from the more -stable 
to the least-stable mutants).  As is also explained in the text more negative ORBIT scores 
correspond to proteins that are predicted to be more stable whereas more negative ∆∆G values 
correspond to proteins that are of lower stability.  

                                                                                                                                                        
  ORBIT    Non 
  score with                                                           additivity 
 Score penalty ∆Tm      ∆H     ∆∆G     of ∆∆G 
           Mutant  (kcal/mol) (kcal/mol) (°C) (kcal/mol) (kcal/mol)   (kcal/mol) 
                                                                                                                                                            
 

I78V -364 -322 -2.1 127 -0.8 -- 
V87M -349 -299 -6.3a 113a -2.3a -- 
L118I -352 -321 -3.1 123 -1.2 -- 
V87I -362 -330 -0.8 127 -0.3 -- 
I100V -365 -333 -1.1 129 -0.4 -- 
M102L -316 -292 -2.3 118 -1.0 -- 
V103I -295 -263 -1.5 130 -0.5 -- 
M106I -362 -338 0.6 132 0.2 -- 
V111A -354 -322 -2.9 121 -1.1 -- 
M120Y -365 -335 -0.1 126 -0.1 -- 
L133F -368 -336 -0.7 130 -0.3 -- 
V149I -362 -323 -0.3 128 0.0 -- 
T152V -365 -333 0.8b 127b 0.2b -- 
Core-7 -382 -341 -9.8 103 -3.5 1.0 
M87V/Core-7-368 -344 -5.0 117 -3.0 -0.8 
I118L/Core-7 -381 -350 -9.5 103 -3.3 0.0 
Core-10 -371 -363 -6.4 97 -2.4 1.1 
L102M/Core-10-372 -356 -7.2 101 -2.6 -0.1 
I103V/Core-10-370 -363 -4.0 110 -1.6 1.3 
A111V/Core-10-269 -261 -4.8 106 -1.8 0.5 
WT* -345 -305 0.0 132 0.0 -- 
                                                                                                                                                           

 
aFrom Gassner et al. (1999). 
bFrom Xu et al. (2001).  Note that ∆H is a corrected value.
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Table A-2.  Crystal and refinement statistics. 
                                                                                                                                                                                                                       
 
  Cell dimensions  
 a,b   c Resolution Rmerge Completeness R-factor ∆bonds ∆angles 
Protein (Å) (Å)      (Å)  (%)        (%)    (%)  (Å)   (°) 
 
WT* 60.1 95.5 1.05 3.4 95.3 (88) 12.85 0.019 2.7 
I78V 60.0 95.23 1.58 4.6 94.6 (88) 19.6 0.017 2.5 
V87I 59.6 95.3 1.58 5.5 94.1 (77) 17.2 0.016 2.3 
I100V 59.8 95.6 1.45 6.0 97.9 (86) 19.1 0.015 2.4 
V103I (a) (a) 1.5 5.6 95.3 (78) 19.0 0.018 2.6 
M106I 60.1 95.6 1.67 4.6 96.9 (84) 18.5 0.018 2.5 
L118I 60.2 95.9 1.65 4.9 94.0 (91) 20.1 0.017 2.6 
M120Y 60.3 95.3 1.54 5.1 97.7 (96) 18.7 0.017 2.5 
L133F 60.1 96.2 1.62 4.4 96.5 (79) 18.9 0.016 2.3 
V149I/T152V 59.8 95.4 1.52 5.8 93.5 (71) 17.6 0.016 2.5 
M87V/Core-7 (b) (b) 1.56 5.2 96.0 (91) 18.6 0.020 2.9 
I118L/Core-7 60.0 95.6 1.56 4.9 91.1 (91) 19.8 0.016 2.7 
Core-10 60.0 96.6 1.65 7.6 96.9 (85) 17.8 0.016 2.7 
L102M/Core-10 59.5 96.2 1.57 6.1 90.6 (75) 17.7 0.018 2.5 
I103V/Core-10 60.0 95.9 1.55 6.0 96.7 (97) 18.7 0.015 2.3 
A111V/Core-10 59.5 95.5 1.90 6.1 99.0 (100) 18.8 0.016 2.6 
                                                                                                                                                                                                                       
 
(a) V103I crystallized in space group P212121 with cell dimensions a = 30.8 Å, b = 54.9 Å and c = 88.4 Å 
(b) M87V/Core-7 crystallized in space group C2 with cell dimensions a = 156.5 Å, b = 61.9 Å, c = 67.4 Å, β  = 112.3°. 
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Table A-3.  Backbone shifts in designed and mutant T4 lysozymes.Each entry in the table gives the 
root-mean-square difference between the main-chain atoms of the specified structure and WT*.  The 
column labeled "C-terminal domain" gives the rms shift for essentially the whole C-terminal domain 
(i.e. for residues 81-161).  The column labeled "C-terminal domain without helices F and G" gives the 
rms shifts for residues 81-105 plus 124-161.  Superpositions were carried out using EDPDB (Zhang 
& Matthews, 1995). 

 
 

  Shift, C-terminal domain 
 Shift, C-terminal domain without helices F and G 
               Protein                 (Å)                 (Å) 

                                                                                                                                                            
 
Core-10 design 0.19 0.23 
Core-10 crystal 0.49 0.21 
L102M/Core-10 0.49 0.22 
I103V/Core-10 0.22 0.18 
A111V/Core-10 0.55 0.26 
M87V/Core-7 
     Molecule A 0.40 0.36 
     Molecule B 0.49 0.50 
     Molecule C 0.44 0.46 
I118L/Core-7 0.28 0.25 
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TableA- 4.  Comparison of temperature factors at mutated sites in WT* and Core-10.  The Wilson B-
value is 14.4 Å² for WT* and 17.9 Å² for Core-10. 

 
                                                                                                                                                            
 
          Main-chain B (Å²)                   Side-chain B (Å²)        
 
          Residue WT* Core-10 WT* Core-10 
                                                                                                                                                          

 
87 13.1 20.0 17.7 26.0 
100 11.6 17.2 13.0 15.4 
102 12.3 17.0 13.5 17.3 
103 13.5 19.9 15.7 23.3 
106 17.6 21.4 16.6 21.5 
111 18.1 33.5 16.7 27.8 
120 12.1 15.9 16.4 19.4 
133 11.1 13.9 12.3 14.4 
149 10.2 16.3 11.4 15.1 
152 11.3 19.2 11.4 14.1 
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Table A-5.  Comparison of the side-chain torsion angles at the 26 sites open to modification in T4 
lysozyme. The torsion angles are listed for the crystal structure of WT*, the energy minimized model of 
WT* used in the design process, the predicted structure of Core -10, and the observed crystal structure.  
The five sites that started as alanine and remained alanine (sites 74, 97, 98, 129, 146) are not shown.  The 
IUPAC conventions for determining χ1 and χ2 were followed except for the following two changes 
which were made to simplify comparison of unlike side-chains.  (1) Following Blaber et al. (1994) the χ1  
torsion angle of valine was measured using the CG2 carbon atom rather than CG1 as in the standard 
IUPAC nomenclature.  This is about the same as increasing χ1 by 120° and makes the gauche-, trans and 
gauche+ conformations for valine the same as for the other amino acids.  (2) For the phenylalanine and 
tyrosine side-chains marked with an asteris k the χ2 value was decreased by 180°.  This change essentially 
corresponds to a renaming of the ring atoms.  χ3 values are not shown but in general agree fairly well at 
any given site.  At sites 6, 102, 106 and 120 the maximum discrepancy in χ3 among the structures being 
compared is, respectively, 21°, 2°, 19° and 3°. 
                                                                                                                                                           

                                             Energy 
                                                      minimized     Core-10             Core-10 crystal 

             WT*         WT*                         design       structure  
           (χ1,χ2)       (χ1,χ2)       (χ1,χ2)        (χ1,χ2) 

                                                                                                                                                            
3 Ile (183, 57)              Ile (186, 52) Ile (185, 62) Ile (186, 60) 
6    Met (184, 201)   Met (188, 197) Met (185, 191) Met (191, 213) 
78   Ile (285, 163) Ile (290, 161) Ile (285, 168) Ile (277, 163) 
84    Leu (302, 175)   Leu (305, 175) Leu (300, 174) Leu (304, 173) 
87   Val (307, --)                 Val (309, --) Ile (282, 49) Ile (307, 313) 
88   Tyr (184, 82)              Tyr (185, 82) Tyr (178, 93) Tyr (186, 85) 
91    Leu (297, 168.5)     Leu (291, 173.1) Leu (268, 32.1) Leu (292, 170.8) 
100  Ile (296, 163) Ile (305, 158) Val (303, --) Val (292, --) 
102  Met (293, 186)  Met (297, 186) Leu (193, 63) Leu (178, 68) 
103 Val (293, --)              Val (293, --) Ile (282, 49) Ile (283, 17) 
106  Met (76, 182)           Met (72, 179) Ile (65, 172) Ile (78, 183) 
111 Val (303, --)               Val (305, --) Ala (--, --) Ala (--, --) 
118  Leu (293, 169)  Leu (288, 167) Leu (289, 176) Leu (291, 167) 
120 Met (300, 175)  Met (294, 171) Tyr (276, 153*) Tyr (283, 124*) 
121 Leu (290, 172)  Leu (295, 170) Leu (282, 174) Leu (289, 177) 
133 Leu (282, 164)  Leu (286, 161) Phe (271, 104*) Phe (267, 114*) 
149 Val (296, --)               Val (299, --) Ile (298, 169) Ile (296, 280) 
150 Ile (292, 171)              Ile (289, 168) Ile (286, 169) Ile (288, 176 
152 Thr (307, --)               Thr (311, --) Val (296, --) Val (297, --) 
153 Phe (280, 303)   Phe (280, 299) Phe (275, 324) Phe (282, 308) 
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Figure A-1.  (a) Cα trace of the WT* T4 lysozyme backbone showing, in red, the 26 

sites that were allowed to vary during the design process.  The sites are identified at the 

left. 
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Figure A-1(b) Structure of T4 lysozyme showing the ten sites that were substituted in Core-10. 
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Figure A-2.  (a) Stereo view showing the superposition of the crystal structure of Core-

10 (open bonds) on the crystal structure of WT* (solid bonds).  For clarity only the 

side-chains of the ten substituted residues are shown. (b) Superposition of designed 

Core-10 (solid bonds) on to the observed crystal structure (open bonds). 
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Figure A-3.  Plots showing differences in Cα-Cα separation in different crystal 

structures.  The contours start at +0.5 Å and have 0.5 Å intervals.  The red contours 

correspond to decreased separation and the blue contours correspond to an increase in 

distance.  (a) Core-10 versus WT*.  (b) I103V/Core-10 versus WT*. 
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Figure A-4.  Comparison of the energies calculated using ORBIT with the observed 

protein stability (Table A-1).  (a) Comparison of single and multiple mutants with the 

ORBIT score determined without a penalty for incorporation of methionine.  (b) 

Comparison of single and multiple mutants with the ORBIT score determined with a 

penalty for incorporation of methionine.  (c) Comparison of single mutants with the 

ORBIT score determined without a penalty for incorporation of methionine.  The 

straight line is the best fit to the data excluding M102L, V103I and WT*.  (d) 

Comparison of single mutants with the ORBIT score determined with a penalty for 

incorporation of methionine.  The straight line is the best fit to the data excluding 

M102L, V103I and WT*.   
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Figure A-5.  Stereo views of the sites of discrepancies between the predicted and 

observed structure of Core-10.  (a) Crystal structure of WT* (open bonds) 

superimposed on the crystal structure of Core-10 (closed bonds) in the vicinity of site 

87.  (b) Design of Core-10 (open bonds) superimposed on the crystal structure of Core-

10 (closed bonds) in the vicinity of site 102.  (c) Crystal structure of WT* (open bonds) 

superimposed on the crystal structure of Core-10 (closed bonds) in the vicinity of site 

149. 
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Figure A-6.  Comparison of the observed stabilities of the multiple mutants (∆∆G, 

Table A-1, red bars) with the sums of the ∆∆G's of the constituent single mutants 

(purple bars.) 

 

 

 

 

 

 

 

 

 

 

 



   
 A-46 

 

 

 

 

 

 

 

                                                                        

-5000

-4500

-4000

-3500

-3000

-2500

-2000

-1500

-1000

-500

0
Core 10

L102M/Core 10

I103V/Core10

A111V/Core10

Core 7
M87V/Core 7

I118L/Core 7

Stability of multiple mutants
Sum of stabilities of individual mutants

 

 

 

 

 

 

 

 



   
 A-47 

 

 

 

 

 

 

 

 

 

 

 

Figure A-7.  (a) Stereo diagram showing the superposition of the single-site revertant 

A111V/Core-10 (solid bonds) on Core-10 (open bonds).  (b) Superposition of the 

structure of the single mutant, M102L (Hurley et al., 1992) (open bonds) on Core-10 

(solid bonds). 
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Appendix B 

Using Positional Bias for Minimizing Surface Charge of Ubiquitin 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This work was done in collaboration with Andy Robertson’s group in University of Iowa, 
The predicted ubiquitin variants are being made and tested in his group. 
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Our principal interest in minimizing charge on ubiquitin is to reduce or remove 

the effects of coulombic interactions on pKs.  The idea is that we could explore ionization 

behavior of isolated residues in a protein background where we could ident ify how 

factors such as hydrogen-bonding and solvation affect the properties of ionizable side 

chains. In "normal" proteins, charge-charge interactions probably dominate ionization 

behavior and it is thus difficult to identify the other effects with confidence.  The broader 

significance of all this is gaining a better understanding of the chemical and physical 

properties of protein surfaces. 

Ubiquitin residues were classified as core, surface and boundary using a residue 

classification program, RESCLASS. We considered only the 12 charged surface positions 

(6, 16, 18, 24, 39, 51, 52, 63, 64, 68, 72, 74) for design (Figure B-1). Amino acids 

allowed at each design position were Thr, Ser, Gln, Asn, Ala and the wild type charged 

amino acid. The non-design surface residues were fixed to have the wild type amino acid 

identity but were allowed to vary in their rotameric conformations. We used our most 

expanded rotamer library for all calculations. A Secondary structure propensity term was 

applied  to beta sheet surface positions (4, 16, 64, 68, 72) and calculations were run with 

propensity scale factors of 0.0, 1.0 and 2.0. Using this term in our calculations helps in 

selection of good ß-sheet forming residues. We used a sequence bias program (SBIAS) to 

rank order the mutations predicted in our calculations. This program can be used to direct 

the amino selection towards the wild type sequence or force the amino acid to be 

different from the wild type. This is accomplished by adding a bias energy to the design 

positions. A charged position that requires a very high bias energy to select for the wild 
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type identity is considered less important for the structural stability of the molecule than a 

position that requires a very low energy and hence, a predicted neutral residue can 

replace it more easily. We have ranked all the 12 charged positions considered in the 

calculations by varying the bias energy from high to low. The mutations predicted in 

calculations run with different secondary structure propensity scale factors are listed in 

tables B-2, B-3 and B4. Table B-1 represents the minimum number of changes suggested 

by the calculations to neutralize the charged residues on the protein surface. It is possible 

that the protein may tend lose stability after a few mutations. At that point, it may be 

necessary to redesign some of the other surface positions that could help to accommodate 

more charged to neutral mutations. 
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Secondary structure  Secondary structure  Secondary structure  
propensity 0.0 propensity 1.0 propensity 2.0 
 
H68Q H68Q  H68T 
E18N E18N E16T 
E16N E16N E64Q 
D39T E64Q E18N 
E64Q R72T R72T 
R72Q E24Q K6T 
R74Q D39T, K63Q, R74Q E24Q 
K6N, E24Q K6Q K63Q 
K63Q D52Q D39N, R74Q 
D52Q E51N D52Q 
E51N  E51N 
 

  
 
 

 
 
 
 

Table B-1. Mutations predicted by SBIAS. The mutations are cumulative as we go down each 
column. Mutations predicted by using scale factors of 1.0 and 2.0 seem to be more interesting 
than those predicted with scale factor of 0.0 since there is a higher selection of threonines on the 
ß-sheet surface positions. 
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Table B-2. Sequences predicted from calculations with varying bias energies.  A secondary structure propensity scale factor of 
0.0 was used for the charged positions.   

 
 
 

2 4 6 8 9 12 14 16 18 20 22 24 39 49 51 52 57 60 62 63 64 66 68 70 71 72 73 74 

Wi ld type Q F K L T T T E E S T E D Q E D S N Q K E T H V L R L R 
Bias10 .0  Q F K L T T T E E S T E D Q E D S N Q K E T Q V L R L R 
Bias9.0  Q F K L T T T E E S T E D Q E D S N Q K E T Q V L R L R 
Bias8.0  Q F K L T T T E E S T E D Q E D S N Q K E T Q V L R L R 
Bias7.0  Q F K L T T T E E S T E D Q E D S N Q K E T Q V L R L R 
Bias6.0  Q F K L T T T E E S T E D Q E D S N Q K E T Q V L R L R 
Bias5.0  Q F K L T T T E E S T E D Q E D S N Q K E T Q V L R L R 
Bias4.0  Q F K L T T T E E S T E D Q E D S N Q K E T Q V L R L R 
Bias3.0  Q F K L T T T N E S T E D Q E D S N Q K E T Q V L R L R 
Bias2.0  Q F K L T T T N N S T E D Q E D S N Q K E T Q V L R L R 
Bias1.0  Q F K L T T T N N S T Q T Q E D S N Q Q E T Q V L Q L R 
N O B I A S  Q F Q L T T T N N S T Q T Q E D S N Q Q E T Q V L Q L Q 
Bias -1 .0  Q F Q L T T T N N S T Q T Q E D S N Q Q Q T Q V L Q L Q 
Bias -2 .0  Q F Q L T T T N N S T Q T Q E D S N Q Q Q T Q V L Q L Q 
Bias -3 .0  Q F Q L T T T N N S T Q T Q E D S N Q Q Q T Q V L Q L Q 
Bias -4 .0  Q F Q L T T T N N S T Q T Q E D S N Q Q Q T Q V L Q L Q 
Bias -5 . 0  Q F Q L T T T N N S T Q T Q E D S N Q Q Q T Q V L Q L Q 
Bias -6 .0  Q F Q L T T T N N S T Q T Q E Q S N Q Q Q T Q V L Q L Q 
Bias -7 .0  Q F Q L T T T N N S T Q T Q N Q S N Q Q Q T Q V L Q L Q 
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Table B-3. Sequences predicted from calculations with varying bias energies.  A secondary structure propensity scale factor of 
1.0 was used for the charged positions.   

 
 
 

2 4 6 8 9 12 14 16 18 20 22 24 39 49 51 52 57 60 62 63 64 66 68 70 71 72 73 74 

Wild  type  Q F K L T T T E E S T E D Q E D S N Q K E T H V L R L R 
Bias10 .0  Q F K L T T T E E S T E D Q E D S N Q K E T Q V L R L R 
Bias9.0  Q F K L T T T E E S T E D Q E D S N Q K E T Q V L R L R 
Bias8.0  Q F K L T T T E E S T E D Q E D S N Q K E T Q V L R L R 
Bias7.0  Q F K L T T T E E S T E D Q E D S N Q K E T Q V L R L R 
Bias6.0  Q F K L T T T E E S T E D Q E D S N Q K E T Q V L R L R 
Bias5.0  Q F K L T T T E E S T E D Q E D S N Q K E T Q V L R L R 
Bias4.0  Q F K L T T T N E S T E D Q E D S N Q K E T Q V L R L R 
Bias3.0  Q F K L T T T N E S T E D Q E D S N Q K E T Q V L R L R 
Bias2.0  Q F K L T T T N E S T E D Q E D S N Q K E T Q V L R L R 
Bias1.0  Q F K L T T T N E S T E D Q E D S N Q Q E T Q V L T L R 
NO BIAS  Q F Q L T T T N N S T Q D Q E D S N Q Q Q T Q V L T L R 
Bias -1 .0  Q F Q L T T T N N S T Q T Q E D S N Q Q Q T Q V L Q L Q 
Bias -2 .0  Q F Q L T T T N N S T Q T Q E D S N Q Q Q T Q V L Q L Q 
Bias -3 .0  Q F Q L T T T N N S T Q T Q E D S N Q Q Q T Q V L Q L Q 
Bias -4 .0  Q F Q L T T T N N S T Q T Q E D S N Q Q Q T Q V L Q L Q 
Bias -5 .0  Q F Q L T T T N N S T Q T Q E D S N Q Q Q T Q V L Q L Q 
Bias -6 .0  Q F Q L T T T N N S T Q T Q E D S N Q Q Q T Q V L Q L Q 
Bias -7 .0  Q F Q L T T T N N S T Q T Q N Q S N Q Q Q T Q V L Q L Q 
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Table B-4. Sequences predicted from calculations with varying bias energies.  A secondary structure propensity scale factor of 
2.0 was used for the charged positions.   

 
 
 

2 4 6 8 9 12 14 16 18 20 22 24 39 49 51 52 57 60 62 63 64 66 68 70 71 72 73 74 

Wild  type  Q F K L T T T E E S T E D Q E D S N Q K E T H V L R L R 
Bias10 .0  T F K L T T T E E S T E D Q E D S N Q K E T T V L R L R 
Bias9.0  T F K L T T T E E S T E D Q E D S N Q K E T T V L R L R 
Bias8.0  T F K L T T T E E S T E D Q E D S N Q K E T T V L R L R 
Bias7.0  T F K L T T T E E S T E D Q E D S N Q K E T T V L R L R 
Bias6.0  T F K L T T T T E S T E D Q E D S N Q K T T T V L R L R 
Bias5.0  T F K L T T T T E S T E D Q E D S N Q K T T T V L R L R 
Bias4.0  T F K L T T T T E S T E D Q E D S N Q K T T T V L R L R 
Bias3.0  T F K L T T T T E S T E D Q E D S N Q K T T T V L T L R 
Bias2.0  T F K L T T T T E S T E D Q E D S N Q K T T T V L T L R 
Bias1.0  T F T L T T T T E S T E D Q E D S N Q K T T T V L T L R 
NO BIAS  T F T L T T T T N S T Q D Q E D S N Q K T T T V L T L R 
Bias -1 .0  T F T L T T T T N S T Q N Q E D S N Q Q T T T V L T L Q 
Bias -2 .0  T F T L T T T T N S T Q N Q E D S N Q Q T T T V L T L Q 
Bias -3 .0  T F T L T T T T N S T Q N Q E D S N Q Q T T T V L T L Q 
Bias -4 .0  T F T L T T T T N S T Q N Q E D S N Q Q T T T V L T L Q 
Bias -5 .0  T F T L T T T T N S T Q N Q E D S N Q Q T T T V L T L Q 
Bias -6 .0  T F T L T T T T N S T Q N Q E D S N Q Q T T T V L T L Q 
Bias -7 .0  T F T L T T T T N S T Q N Q N Q S N Q Q T T T V L T L Q 
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Figure B-1: The twelve charged residues on Ubiquitin surface considered for 
design are shown 
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