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ABSTRACT 

We calculate the alignment of inter stellar dust grains with 

respect to the magnetic field of our galaxy. The alignment is found 

for several values of magnetic field strength, internal grain temper-

ature, and grain shape. We treat in detail the following processes 

which affect the aligrunent: (i) a dissipative magnetic torque due to 

Davis and Green stein; (ii) the collisions of the grain with inter stellar 

hydrogen; (iii) the non-zero internal temperature of the grain. 

We obtain a Fokker-Planck equation which takes account of 

these processes, and the solution of this equation provides the proba-

bility distribution of grain orientations. The equation is solved for 

these cases: (i) spherical grains in all fields; (ii) needles, prolate 

spheroidal grains, nearly- spherical oblate grains, and disks in strong 

magnetic fields; (iii) needles and nearly- spherical grains in weak 

fields. Using the distribution of orientations, we calculate the degrees 

of alignment. 

Our results are in mixed agreement with those of E. M. 

Purcell and in good agreement with the weak-field calculation of 

C .. R. Miller. We find that for the relatively strong magnetic field 

-5 0 
of 10 gauss and grain temperature of 10 K, the measures of align-

ment are smaller than the values obtained from complete orientation 

of the grains. 
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CHAPTER I 

INTRODUCTION 

Interstellar grains are the small particles of dust which exist 

between the stars of our galaxy. Although these grains form but a 

small part of the total mass of our galaxy, they have an important 

place in astrophysics. For these particles play a role in many 

interesting problems, which include: the formation of molecules 

like OH, H 2, or NH
3 

on the grain surfaces; the temperature balance 

of the interstellar gas; and the polarization of light from distant stars. 

In their review articles, J. M. Greenberg(!) and N. H. Dieter and 

W. M. Goss (Z) provide a more complete list of these questions and 

discuss several of them. In this paper, we will consider only a 

portion of one of these problems. The main topic is the polarization 

of light from distant stars; the portion which we will treat is the 

orientation of the dust grains in space. 

J. S. Hall(3 ) and W. A. Hiltner(4 ) discovered the polarization 

of starlight in 1949. At the time, their discovery was accepted as 

giving strong evidence that the grains do exist. Indeed, two features 

of their results were noteworthy: (i) a correlation between the degree 

of polarization and the magnitude of the absorption of the starlight; 

(ii) a uniformity of the directions of polarization over large areas of 

the sky. Thus, (i) showed that absorbing grains of dust could polar

ize the starlight; while (ii) made it difficult to conceive of anything 

else which might. For most of the other possible sources of polar

ization would involve a small region of space, and (ii) made them 

unlikely prospects. 



-2-

To explain this polarization, in 1951 L. Davis, Jr., and 

J. L. Greenstein, (5 ) hereafter called DG, proceeded in the following 

manner. They first assumed that a magnetic field exists within our 

galaxy. Using a model for the dust, in which the grains are bom

barded by surrounding hydrogen atoms or· ions, DG next proposed that 

a dissipative magnetic torque acts on the particles. By means of this 

torque, the magnetic field of our galaxy aligns the grains with respect 

to the field direction. DG further calculated the distribution of grain 

orientations which this aligning torque yields. Finally, they (b) used 

a classical theory of light scattering, due to R. Gans,(
7

) in order to 

find the polarization which the partially oriented particles produce. 

This calculation was one of the first to provide evidence that a mag-

netic field does exist in our galaxy, and many accepted the treatment 

as giving a fair idea of the process es at work. 

Yet the paper of DG was incomplete in several respects. 

They made only a rough calculation of the distribution of grain orien-

tations; thus, it was difficult to estimate the field strength needed to 

produce a given degree of alignment. In addition, the Rayleigh-Gans 

scattering theory is correct only when dust grains are small compared 

to the wavelength of the incident light. Since the particles are thought 

to be of order 10-
5 

cm. in size, this scattering theory is incorrect 

for visible light. Therefore, DG were unable to accurately predict 

the polarization which would be produced once the size, composition, 

and temperature of the grains were specified, together with the mag

netic field strength. Thus, it was impossible to be sure if the DG 

process was correct; neither could the observational data on polari-
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zation be used in order to limit the parameters of the grains or to 

confidently estimate the field strength. 

Since the original paper, a fair amount of work has been done. 

In 1962 C. R. Miller treated the statistical mechanics of the DG pro-

ces s in more detail. Using the same DG model for the grains and the 

forces acting on them, Miller improved their rough estimate for the 

distribution of grain orientations. He obtained a Fokker-Planck 

equation for the alignment of the particles; and he solved this equation 

for the case of nearly-spherical grains in weak magnetic fields. (3 ) 

Independently of Miller, in I 96 7 R. V. Jones and L. Spitzer, 

Jr., (9 ) hereafter called JS~ obtained a Fokker-Planck equation for 

the alignment of spheres having a positive internal temperature. 

They treated this case because in 1956 C. Kittel (l O) pointed out that 

a positive internal temperature would generate fluctuations of mag

netization in the grain, tending to disorient the particle. JS solved 

their Fokker-Planck equation for spherical grains in an arbitrary 

magnetic field; they gave a rough treatment of nearly-spherical 

grains; and they treated in detail the possibility of new grain compo-

sitions in order to permit alignment in weak magnetic fields. 

In 1968 (l l) and 196 9(l Z) J. M. Greenberg published review 

articles on the status of the interstellar grain problemo In both papers 

he treated the case when the magnetic field has an irregular direction; 

the result is that the qualitative effect on the polarization is the same 

as the effect of incompletely aligned grains. He also summarized (I 3) 

his microwave analogue experiments on the scattering produced by 

particles of any size- -especially particles of size equal to or larger 
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than the wavelength of the incident radiation. 

In 1969 E. M. Purcell (l 4 ) used a Monte-Carlo computer 

calculation to simulate the history of a single grain. His computer 

program generated random collisions of the grain with surrounding 

gas molecules, random evaporation of atoms from the surface of the 

grain, and the systematic DG alignment mechanism. Using this pro-

gram, he found the alignment for several grain shapes and grain 

temperatures. 

After 1950 the galactic field itself became an accepted fact. 

The techniques of radio astronomy were used in order to measure the 

field strength, and Greenberg (1 5 ) quoted typical values of 2-5X1 o-6 

gauss. Both Greenberg and JS stated that the DG process may demand 

magnetic fields an order of magnitude larger. The reason is that the 

polarization data apparently require the grains to be substantially 

aligned; this result would demand magnetic fields strong relative to 

the effects of the gas collisions. Thus, the strong field case must be 

considered in treating the grain alignment. However, the question of 

how large a field is needed by the DG process remains unsettled . 

This paper will extend Miller's work on alignment: it will 

treat the strong field case, consider non-spherical grains, and deal 

with the effect of positive grain temperature in a fashion somewhat 

different from that of JS. Starting with Miller 1 s Fokker -Planck 

equation, we will add extra terms to describe the grain temperature. 

The enlarged equation will be solved for the following cases: (i) an 

exact solution for spherical grains in arbitrary magnetic fields; (ii) 

an approximate solution for needles, disks, and nearly-spherical 
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grains in strong magnetic fields; (iii) an approximate solution for 

needles and nearly-spherical grains in weak fields. Finally, we will 

compare results with those of JS and Purcell. 

Our work will not calculate the polarization to be expected, nor 

will it treat the observational data. In principle, once the scattering 

properties and the alignment are known for the grain, then the polar

ization can be found; Greenberg{l b) has described the procedure 

elsewhere. In addition, we will not give a detailed discuss ion of the 

galactic field strength, nor will we consider any grain composition 

different from the one treated by DG. 

The discussion proceeds as follows. In Chapter II, we first 

introduce the variables vih ich describe the orientation of the grain 

in space. Next, in terms of these variables, we define a probability 

density which provides the distribution of orientations for the grain. 

Using this probability function, we obtain the parameters which meas -

ure the degree of alignment for the grain. In order to find a differ-

ential equation for the probability function, we introduce and briefly 

dis cuss the Fokker-Planck equation of statistical mechanics. 

Now, to each physical process which affects the grain's orien-

tation, there corresponds a set of terms in the Fokker-Planck equa-

tion. Therefore, each of these processes is treated in turn. To find 

the terms due to the steady aligning torque, we discuss the DG mech-

anism. To find the terms due to collisions of the grain with surround-

ing gas atoms, we present Miller's results for these quantities. His 

detailed derivation is given in an appendix. 
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Our contribution to the alignment problem begins in the fifth 

section of Chapter II, where we conclude the procedure of adding 

terms to the Fokker-Planck equation. The effects of the grain's 

internal temperature are dis cussed, and the relevant terms are 

added so as to obtain the enlarged Fokker-Planck equation for align

ment. In Chapter III this equation is solved for the various cases 

mentioned. In Chapter IV the parameters which measure grain 

alignment are calculated. Chapter V discusses all these results 

and concludes our work. 
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CHAPTER II 

THE FOKKER PLANCK EQUATION FOR GRAIN ALIGNMENT 

1. A Set of Variables to Characterize the Grain Alignment 

We first introduce variables to describe the orientation of 

the grain in space, which is shown in Figure 1: 

~ is the symmetry axis of the grain 

" A is a unit vector along ~ 

~ is the magnetic field 

>L is the angular momentum of the grain 

(3 is the angle between ,,Land£} 

e is the angle between r and h 

cp is the angle between ~ and fJ. 

'f is the angle between the plane of ,JJ and ..J and the plane 

of A and,J . ( 1 ) 

All symbols used in this paper are listed in an appendix. 

Let us briefly consider the free body motion o f the grain. The 

angular momentum, ,,L, remains constant. Since the particle has 

rotational symmetry, the axis ~rotates uniformly about ,l, the angle 

between them staying fixed. Thus, (3 and 8 are constant, while 'f 

increases uniformly. Since the orientation of J about B is random, 
~ -

we need no azimuthal angle for .J:,; in addition, all calculations are 

averaged over 'f. 

We next present variables to describe the alignment of the 

grains: 
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Figure 1 

The Orientation Angles 

~ is the magnetic field 

~ is the angular momentum of the grain 

A is the symmetry axis of the grain 
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r = cos '3 

P = cos e 

-1 :s (r, p) ;§ 1 (2) 

Let the probability density of orientations be 

W (r, p) = We (r, p) + W 
1 

(r, p) . ( 3) 

In this equation W (r, p) is the fraction of the grains for which r lies 

between r and r + dr and p lies between p and p + dp; W is the 
e 

equilibrium density in the absence of a magnetic field. In general, 

Wand W 
1 

also depend upon the size of the grain, while We does not. 

However, since we only treat the case for which the grains all have 

the same dimensions, we do not include the particle size as a vari-

able in defining W. Moreover, W is not a function of '¥ because all 

calculations are averaged over that angle. 

Finally, to measure the grain alignment, we use the conven-

ient numbers 

1 1 2 
F = - f 1 li W

1
(r, p). (cos cp) dr dp , 

3 [ 1 1 2 ap]-QA = 2 l1 f 1 W(r, p) (cos cp) dr 

3 1 1 3 = 2 ( 3 - F) - Z = - Z F ' 

3 [ l l 2 J = z / f W(r, p). (cos '3) dr dp -
-1 -1 

1 
2 

1 
2 . 

(4) 

(5) 

(6) 

The quantity F was used by DG, (l 
7

) and the quantities QA and QJ 

were used by Purcell. (l S) Both QA and F measure the alignment 

of the symmetry axis, while QJ measures the alignment of the angu

lar momentum. The factor of ~ in equation (5) is the average value 

2 
of (cos cp) when W is equal to W , since W is a random distribution 

e e 
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of orientations. 

We note that if the Gans theory is valid, then F, QA' and QJ 

are the only quantities needed - along with the optical properties of 

the grain - in order to compute the polarization. Any other scattering 

theory requires the complete description of the grain orientations 

contained in W. In Chapter IV we calculate the values of .QA and Q J 

for the various cases of interest after we obtain W. 

2 . . The Fokker-Planck Equation 

In order to find W, we may apply the Fokker-Planck equation, 

which is a parabolic, or diffusion, type of differential equation treated 

in statistical mechanics. The Fokker-Planck equation is often used 

for situations in which a probability function depends on variables 

which are themselves subject to random changes. Such is the case 

for the grain, for which the random changes arise from two main 

sources: (i) the collisions of the particle with surrounding hydrogen 

atoms or ions; (ii) the effects of its non-zero temperature, which are 

discussed in a later section. There are extensive treatments of the 

Fokker-Planck equation in the works of S .. Chandrasekhar(l 9) and 

N. Wax. (20) We will briefly discuss the equation along the lines of 

Chandrasekhar 1 s presentation .. 

Let (x
1

, .... , xn) be the set of variables of interest, and let 

W(x
1

, .•. , xn' t) be its probability distribution at time t. Thus, 

W dx
1 

dx
2 

dxn is the probability that the ith variable is in the 

range x. to x. + dx. at time t, for i = 1, .•• , n. During a small time 
1 l 1 

interval M, let the i th variable change by an amount ~x .• 
1 
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We now assume that the processes which cause this change 

!::ix. can be separated into two portions. One portion yields a "steady" 
1 

rate of change, x., which is due to some known external force which 
l 

may depend on x.. The change due to this process is 
l 

( 6x. } = x. 6 t. 
l l 

steady 

The other portion is written 

(/::ix.} 
1 

fluct 
= bx. 

1 

(7) 

(8) 

and is a fluctuating change for which we have only statistical knowledge. 

The total change in x. during the time interval 6t is 
l 

6x. = x. 6t + ox. 
l 1 1 

i = 1, .. • • , n. (9) 

This separation of x. 6t from ox. is justified under the following 
l l 

conditions: there must exist time intervals 6t during which ox. under-
1 

goes many fluctuations, while x. 6t is small. In other words, given 
l 

two successive times,, t
0 

and t
0 

+ M, the "steady" forces are strong

ly correlated at the two instants, while the "random" forces are un-

correlated. Such is the case for the grain. We will find that the 

steady DG alignment process requires time scales of order 10
6 

years; on the other hand, the average time between collisions of the 

particle with hydrogen atoms is of order 30 minutes .. 

We must next describe the ox. in equation (9) by some transition 
l 

probability (8). We will consider several possibilities. In the first 

instance, we assume that (8) is independent of x. because the x. have 
1 l 

been separated from the oxi.. Thus, let (8)(x 1, •••• , xn; oxl' .••• , oxn; 
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; M) d(ox
1

) ••• d(oxn) be the probability that a change will occur in 

x. by an amount between x. 6t + ox. and x. M + ox. + d(ox.), 
1 1 1 1 1 1 

i = 1, ••• , n, during time £lt if the current values of the variables 

Define the expectation values E. and E . . , in terms 
1 lJ 

of fir st and second moments of @: 

(ox.) = / .... /ox. @(x ;ox ;l'.lt) d(ox
1

) .... d(ox) 
1 1 m m n 

= E. M + O[(~t)2 J 
1 

( 10) 

< ox. o x. > = /. .. • I ox. ox. e( x ; ox ; M) 
1 J 1 J m m 

= E .. l'.lt + O[(M)
2

] 
lJ ' 

( 11) 

Our notation indicates that we expect these moments to be proportional 

to llt. 

Let the third moments and all higher ones be proportional to 

higher powers of 6t. The situation is now precisely the one treated 

by Chandrasekhar,( 2 l) and the Fokker-Planck equation for Wis 

aw ar- - -I 
i 

(12) 

The separation of l'.lx. into x. M and ox. is somewhat arbitrary. 
l 1 1 

For example, the terms in (12) resulting from the x. and cSx. contribu-
1 1 

tions may be combin~d into one E. (new), while still keeping @ inde-
1 

pendent of • x .• 
1 

We then find that 
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E.(new) 6t = ( 6x.) 
1 1 

= x. 6t + E~old) M 
1 1 

E.(new) 
1 = x. + E~old) 

1 1 
( 13) 

Thus, the first and last terms in equation (12) would be combined into 

one. For E .. we obtain 
lJ 

E .(.new) At = ( A A ) u ux.ux. 
lJ 1 J 

< •• ) 2 <. • ) < ) = x.x. (M) + ~t x. ox. + x. ox. + ox. ox. 
lJ 1 J J 1 1 J 

= (6t)2ix.x. +x E~old) + ~.E~old)J + E.(.old) lit. (14) 
~ 1 J i J J 1 lJ 

Since terms are only kept to order ~t, this yields 

E.(.new) 
lJ 

= . E.(.old) 
lJ 

and the second term of equation (12) remains unchanged. 

( 15) 

It is also possible to treat e as a "complete" transition proba-

bility, including both "steady" and "fluctuatior;i" effects. The result 

would be to separate E. and E .. into several contributions. Thus, 
1 lJ 

we would find that 

= E(.steady) + E(.collis ions)+ E(pos. temp. ) 
1 1 1 

( 16) 

and similarly for E. .. In equation (16) E~steady) is the portion due to 
lJ 1 

th DG E (collisions) . h t 'b t' d 11' · f e process; . is t e con .r1 u ion ue to co 1s ions o 
1 

the grain with surrounding hydrogen; and E~pos. temp.) is the part 
1 

due to the effects of the grain's positive internal temperature. The 

final equation for W would be the same as equation (12). 
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The terms E. and E .. in equations (12) and (13) are often 
l lJ 

expressed as diffusion coefficients, and we now turn to finding them. 

Each physical process affecting the grain's orientation in space will 

contribute its own set of diffusion coefficients to the right-hand side 

of equation (12). We will consider these processes in turn, starting 

with the Davis -Greenstein mechanism. We will then treat the effects 

of collisions and finally consider the grain's non-zero internal temper-

ature. 

3. Diffusion Coefficients Due to the Davis-Greenstein Process 

We will calculate the relevant terms in the Fokker-Planck 

equation after a brief discussion of the Davis-Greenstein mechanism._ 

Our work follows that of DG. 

We begin with the following assumptions: 

(i) A magnetic field exists within our galaxy. The field is 

essentially uniform and constant over distances of astronomical 

units and times on the order of dayso 

(ii) The grains are spheroids of revolution of order 10-S cm. 

in size. This form is chosen because it is the simplest non-spherical 

shape, which is needed in order to produce polarization. The size is 

obtained from the data on extinction of the starlight. 

(iii) The particles are formed mainly of ice with enough 

impurities to be weakly paramagnetico Other authors have proposed 

different compositions, but we only treat the "dirty-ice" model. 

(iv) Hydrogen surrounds and bombards the grains. The hydro

gen temperature is 100°K for the gaseous H I regions and 1 o4
°K for 

the ionized H II regions. For H I regions, and for a grain density of 
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1 gm/cm3, these assumptions imply that the particle has an angular 

5 
speed of order 10 rad/sec. 

Next, let us consider the motion of the grain in somewhat 

more detail than was done at the beginning of this chapter. Assume 

that the grain 1 s angular velocity is ~ and that the aligning torque is 

weak. Therefore, during a time interval of duration 1 I w, the rota-

tionally symmetric grain is almost a free body. If the grain were 

truly free, it would behave as follows: 

(i) The angular momentum would remain constant. 

(ii) The symmetry axis A would rotate uniformly around J , 

taking 'i' through 21T radians in each cycle. One such cycle of 'i' is 

called a nutation. 

(iii) The angle 9 between J:_ and .f!: would remain constant. 

Since the particle is not really free, the effect of the small aligning 

2 
torque is to change f3, 9, and J by a small amount during each 

nutation. 

Consider the situation in the rest frame of the particle. From 

this point of view, the magnetic field varies sinusoidally, so that 

]? = ~ 0 cos wt ~ ( 1 7) 

This oscillating field induces a magnetization M in the grain, where 

~ = J2o ('X, I COS Wt + 'X,
11 

Sin Wt) • ( 18) 

In this equation the particle 1 s magnetic susceptibility is assumed to 

be complexll with 'X. / and x" being its real and imaginary parts. The 

term with 'X.N measures the small amount by which Mis out of phase 
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with B. Now let an average of M be taken over one nutation. Follovv

ing DG, (
22

) we find that one result of this averaging is a component 

M , which is normal to _B, and which has the value 
-p 

This component M generates a dissipative torque given by 
-p 

dJ 

d-t = V (M X B) -p ..... 

( 19) 

(20) 

where V is the grain's volume and J is its angular momentum. This 

torque is the aligning agent of DG, (23 ) for its effect is to tend to orient 

J parallel to ~" Both DG( 24) and Purcel1( 2 S) considered the value of 

(x"/w) = (z.s x lo-
12>/T. 

1 
(21) 

where T. is the internal temperature of the grain. From the extended 
1 

discussion of Greenberg( 26 ) for T., we find that typical values are 
1 

Define, further, the variables 

I= the moment of inertia of the grain about .f::: 

yI = the moment of inertia of the grain about an axis normal 

to A 

D = (x" /w)(V /Iy) • (22) 

2 
If we consider the rates of change of {3, 9 and J due to the aligning 

torque, and if we average them over the grain's motion, then we find 

from DG (2 ?) that 

df3 2 2 2 dt = -DB sinf3 cosf3 ( ycos 8 + sin 9) (23) 
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= DB
2
(y - 1) sin9 cos9 (1 - ~ sin

2f3) (24) 

2 D 2J2 . 2 ( 2 9 . 2 e) - B srn f3 ycos + srn (25) 

I 3 0 -5 
For a spherical grain of density l gm cm , T. = 10 K, radius 10 cm, 

1 

-3 -1 -2 -5 
we find that D = 6 X 10 sec gauss • If B = 10 gauss, then 

2 -13 -1 DB = 6 x 10 sec , so that the characteristic time for the torque 

to act is of order 10
5 

yr. 

The re also is a rotation of J around ~ which is called pre

cession. This precession is due to the x' term in equation (18). 

( 28) f. I 4 /1 • f From DG, we ind that 'X. - 10 'X. , so that the precession is o 

order 10
4 

times faster than the alignment, yet still slower than the 

nutation. In all of our calculations, we will average over the angle 

'¥ and the orientation of J around B • 

Finally, we turn to calculating the contribution of the DG 

process to the right hand side of equation (12), the Fokker-Planck 

equation. We use as our variables x. the same ones that Miller( 29 ) 
1 

did: 

µ = J cos e , -oo < µ < 00 

'l1 = J cos f3 -oo < 11 < 00 

c = J2 0 <' < 00 (26) 

Miller used these quantities because they are convenient for treating 

the effects of collisions of the grain with surrounding hydrogen atoms. 

The DG process will contribute to the right hand side of 

equation (12) 
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R(DG) = - \ 2-._ (Wx.) L ax. i 
(2 7) 

1 1 

If we use equation (26) and the relation 

J (28) 

and if we further use equations (23), (24), and (25), we find 

• . • µ = J cose - Je sin9 

= 
2{3 2 3 1 3 

DB -(y-1)~ --(y- l)!!._ 
2 c 2 c 

+ [1 - ~ ( y-1) J * -[ 1 + ~ ( y- 1 ) } } (29) 

• 
71 

• • 
= J cosj3 - J j3 sinj3 = 0 (30) 

= ~ {J2) 
dt 

= 2{ 2 
2 2 

2} DB -Z(y-1)µ, - 2C + 2(y- l) 71 t + 2ri (31) 

Since 71 is the projection of r on B, and since the aligning torque 

leaves this component constant, equation (30) is to be expected. Thus, 

we obtain that 

R(DG) = ~-(µW)- ~(CW) 
aµ ac (32) 

4. Diffusion Coefficients Due to Collisions of the Grain with Hydrogen 

Atoms or Ions 

Miller found the diffusion coefficients due to collisions of the 

grain with surrounding hydrogen atoms, or ions. These collisions 

produce some of the random changes which affect the variables µ, 71 

and C, in addition to the systematic effects of the DG process. In this 
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section we summarize Miller's argument and his results. We repeat 

his detailed derivation in an appendix, and we add a sec ti on to tr eat 

the positive internal temperature of the grain. The reader is invited 

to consult this appendix. 

The collision terms in equation ( 12) may be written 

_\_a rWE~c) - .!_ \ __£__ {wE~~)}] 
L a x. L i z L ax. iJ 
i 1 j J 

= (33) 

where c represents "collisions." If we write the term in brackets as 

L~c), then this equation becomes 
l 

= (34) 

In order to obtain the coefficients E~c) and E.(.c) , Miller pro-
1 lJ 

ceeded as follows. He assumed that a single atom-grain collision 

occurs quickly enough to produce an impulse o J of angular momentum. 

This impulse is the ox. term used in equations (10) and (11). The 
1 

effect of 0 J is to change J, 13, and e, but not the particle's orienta-

ti on space. The grain's reorientation follows from its nutation about 

the new J. 

Next, Miller found o ~ due to a single collision, considering 

elastic and inelastic impacts. By assigning an effective mass m + to 

the hydrogen atom, both types of collision could be treated together. 

Miller's "elastic" collision was one in which all components of the 

atom's initial velocity are reversed. In a standard elastic collision, 

only the velocity component normal to the grain surface is reversed, 

while the component parallel to the grain surface is unchanged. This 

standard collision is not treated because it is more difficult than 
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Miller's version. Finally, we add a section to Miller's calculation 

of m +for an inelastic collision in order to consider the grain's non-

zero internal temperature. 

Miller went on to assume that the surrounding gas atoms have 

a Maxwell distribution of velocities at temperature T, and that this 

distribution gives the transition probability (8). The relevant variables 

of integration were the surface of the grain and the velocities of the 

hydrogen atoms. By integrating the vector o J and the tensor (oJ)(oJ) 

over these variables and Gl, Miller found E~c) and E_(:) • 
l lJ 

We need the following quantities to express L~c): 
l 

m = mass of the hydrogen atom (35a) 

T 

T. 
1 

2 c 

nH 

+ m 

g 

2ae: 

= tern per atur e of the s urr oundi ng gas 

= internal temperature of the grain 

= (2kT/m) 

number of hydrogen atoms/cm 
3 

= 

= effective mass of a hydrogen atom in its 

collision with the grain 

= { m for an elastic collision· of Miller's type 

} m(l + JT/.T ) for an inelastic collision 

-1/2 + = 'IT nH m c 

= length of ~, the axis of symmetry of the grain 

2a = length of a diameter normal to~ 

h, c( = parameters depending on the grain shape and arising 

from the integrations over the surface of the particle 

(b) 

(c} 

(d) 

(e) 

(g) 

(h) 

(i) 
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-1 I. 

l 2 J € 4 (sin -l). I€ 2 -l I 2} +z+~z ·41· -
€ _ 1 I€ z _ 1 ti; z sinh e 

(j) 

(k) 

. -1 In these equations for hand ah, sin is used for a prolate spheroid 

(e > 1), and sinh-l is used for an oblate spheroid(€< 1). A plot of a 

is shown in Figure 2. For special grain shapes, a has the values 

a, a= 1 disk 

a= 1 

2 2 
a=:: l + 5 (e -1) 

1 z I a=ze +l 3 

sphere , 

nearly-spherical grain , 

needle 

(1) 

From the defining equation (22) y may be found for a grain of 

uniform density, so that 

'Y = (1/2)(1 + €
2

) {35m) 

If a subscript on W denotes a partial derivative. with respect 

to that variable, then the L terms in equation (34) are 

(36) 

(3 7) 
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Figure 2 

Plots of o( and Of - 0..) /ol.. 
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2 2 
Le= -ghm+c2{~+(1-a)T+ z(raJµ +za~w + µ w 

m c I y µ 

+[a !J+(l-a)µ~TJJwTJ + {ac + (l-a)µ
2
] w,} (38) 

5. Diffusion Coefficients Due to the Non-Zero Internal Temperature 

of the Grain 

If the grain's internal temperature, T., is non-zero, then 
1 

random changes are generated in the variables µ, ri,, and C. This 

source of random effects is independent both of the DG alignment 

process and of the grain-atom collisions. We will now discuss the 

effects of T. and then derive the corresponding diffusion coefficients 
1 

for the Fokker-Planck equation. 

(a) Quantitative Effects of the Internal Temperature 

(i) The T. Parameter and Its Effects 
1 

Let us first consider the quantity T. itself.. There are several 
1 

processes which may heat the grain and affect T., including: collisions 
1 

with gas atoms,, the dissipative torque of DG,, bombardment by low 

energy cosmic rays, and energy absorption from the interstellar radia

tion field.. According to Greenberg,, (
26

) the_ mechanism involving the 

interstellar radiation field dominates in fixing T .• Since this process 
1 

is largely independent of others affecting the grain, we may treat the 

quantity T. as a free parameter in our calculations. 
1 

Next,, consider the effects of T.. If T. is non-zero, then the 
1 1 

grain's magnetization,, ~, fluctuates--as Kittel(lO) first noted. We 
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assume that these fluctuations, 6 M, occur randomly, both in rnagni-

tude and direction. In particular, 6M 1 the fluctuating component ....... p 

normal to the field, generates a torque V(6 M X B); this torque pro
- p -

duces fluctuations o;I, in the angular momentum .l· 

We now assume - as in Section ( 4) - that the fluctuations o .[, 

due to T., are the ox. terms to be used in equations (10) and (11). We 
l l ' 

will next find yvhich components of o .[ have non-zero average values, 

showing whic~ diffusion coefficients are important. To find these 

expectation v~fµes, we consider a simple probl~m for which we know 

the probability .distribution of grain orientations·o We then write the 

Fokker-Planck equation for this problem: by working backwards 

from our known solution, we obtain the diffusion coefficients. In part 

(c), we transform these quantities to theµ, r), G coordinate system. 

(ii) The Non-Zero Moments of 5 J 

To find o J 1 let us suppose that X and Y are two orthogonal 

and equivalent directions in space normal to~ .. Let (6M)X and (6M)y 

be the components of ~M along X and .Y, so that these two components 

represent 6M • Since 6M is assumed random, the symmetry of the 
-p -p 

situation requires that the average values are 

(39) 

We also assume that (6M)X is uncorrelated with (6M)y, so that 

(40) 

Therefore, of the averages which determine the Fokker-Planck coeffi-

cients,, the only non-zero averages we expect to find are those for 
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2 2 
( (~M)X ) and ( (6M)y ) • Since the fluctuations, o !_, are propor-

tional to the torque, V(tiM x B), we find 
-p 

( 41) 

(42) 

2 2 
Since ((tiM)X) and ((~M)y) are the only relevant non-zero average 

2 2 
values of 61!'.!, ( (o J)X ) and ( (o J)y ) are the qnly non-zero average 

values of o J. In addition, these two quantities are equal because 

X and Y are equivalent directions in space. Thus, our problem of 

finding o I_ is reduced to obtaining ( (o J)X
2

) or ( ( 6 J)y 
2

) • 

(iii) A Simplified Physical Situation 

Let the grain be set spinning and assume that the gas is re-

moved. The only dominant processes left to work are the steady 

torque of DG and the thermal fluctuations. In addition, suppose that 

the particle is constrained to rotate about an· axis along X,, so that 

only non-zero component of!_ is JX. We may write a Fokker-Planck 

equation for this simplified system in which l becomes the variable 

of interest, x,, in equations (9) through (12). For the component JX,, 

equation (9) becomes 

(43) 

In this equation Mis a time interval during which many fluctuations 

(oJ)X occur; KX represents the effect of the steady torque of Davis 

and Greenstein; and (ti J)X is the total change in JX. 
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From the discusslon following equation (9), we may put the 

Fokker-Planck equation into the form 

aw 
at = 

a I a2 

i)Jx (WEX) + 2 aJ/ (WExx> 

In this equation, EX is given by equation (10) as 

and since ( (o J)X) = 0 for this case, we find 

From DG, ( 30) l<x for a spheroidal grain is given by 

H .L_ 2 
= K__ = _ .x_ VB2 _-x ( y cos 8 + 

--x w I 'Y 

II 2 Jx x.._ VB 
w 1X 

where 

I = I ( Y x 2 2 
ycos e +sin e 

In addition, EXX is given by equation ( 11) as 

Exx = lim (( o J)x
2
)/ M 

tit-.o 

. 28 sm ) , 

so that our problem of finding ((o J)X
2

) reduces to obtaining Exx· 

(iv) Determination of ((OJ)X
2

) .. 

Next, consider the situation at equilibrium. We have 

aw 
at = 0 

(44) 

(45) 

(46) 

(4 7) 

(48) 

(49) 

(50) 

(51) 
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and W must be the Maxwell-Boltzmann distribution for the tempera

ture, Ti' describing the system. Since the total energy is J~ /Ix' 

the Boltzmann distribution law gives, from DG, (
3 

l) 

Let us set 

Exx = Eo 

substitute equations (48), (51), and (52) into (44), and solve for E • 
0 

The result is 

where c
1 

and c
2 

are constants of integration. In order that E be 
0 

well behaved for large Jx,, for which wi is small, we set cl = o. 

(52) 

(53) 

(54) 

We may simplify equation (54) further by ·deducing from equation (52) 

that 

,, 
2 

aw. 
L VB kT. 1 w1. Ex= ~ w l OJX 

(55) 

and integrating equation (54) by parts. The result is 

E = 2kT.(L)vB2+w~ 1rcz-2kT.vi-Jw. a~(L)dJx] (56) 
o i w 1 L: i i o .,x w • 

H we define w_x. by the relation 

(57) 

where IX is given by equation (49), then we obtain 
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E = 2kT.(L)vB2+w~ 1 lc2-2kT.VB2Jw.;-(~)dWx] (58) 
o i w 1 L: 1 _1 Wx w 

In equation (58) we take c
2 

to be a constant of integration, and 

we define (o/awx)(x
0 /w) for negative Wx so as to give the correct 

symmetry properties to the indefinite integral. Equation (58) is the 

value of E
0 

in the case that ( x0 /w} is allowed to depend on Wx· For 

this case E depends on w through the first and second terms; it varies 
0 

with the grain shape through the W. factor in the second term. We 
l 

will not treat the problem of a more complicated dependence of (x"/w) 

on w. 

For our cases of interest,, (X6 /w) is independent of w1 as nd 24
) 

and Purcell(Z 5} noted,, so that the second term in equation (58) 

vanishes.. The result now is 

E = 2kT.(x" /w)VB
2 

0 1 
(59) 

which agrees with that of Jones and Spitzer for a spherical grain_( 3 Z) 

However 1 this equation is true for a grain of any shape, and not only 

for a sphere. Since JX is absent, we conclude that this value of E
0 

is correct even when the constraint on rotation about the X direction 

is removed. 

(b) Qualitative Effects of the Internal Temperature 

The orientation of (J) with respect to B is pictured schemati

cally in Figure 3.. Let (JX) be defined as in the last section, while 

(JB) is the average value of the component parallel to ~· If B is 

zero, then only the grain--atom collisions affect the orientation. These 
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collisions yield an isotropic distribution ·in space, so that there is no 

net alignment. In Figure 3(a), we represent this situation schemati-

cally by the, vector shown. Suppose that T. is zero and B is not; then, 
1 -

in addition to the gas collisions, the Davis-Greenstein mechanism is 

active1 removing energy from the rotational modes normal to~· The 

rate of this energy loss is,, from DG, (33 ) 

dR F = -V{x"/wH~ x B)
2 

{60) 

where R
0 

is the rotational energy of the grain. Thus,,, (JX) decreases, 

while (J B) does not, and (d:_) is aligned toward ~· 

Since the thermal fluctuations produce a mean square contri

bution, ({oJ);) 1 angular momentum is sent into the rotational modes 

normal to B. If the gas temperature, T, is equal to the grain temper-

ature, T ., the system of grains plus gas molecules must be in ther-
1 

modynamic equilibrium--yielding no net orientation. Thus, when 

T. = T, the DG alignment process is balanced by the thermal fluctua-
1 

tions. Because the orientation is known when T. = 0, we may con-
1 

elude that the DG process orients (d:_) toward~ so long as Ti< T. 

The degree of alignment decreases as T. approaches T. 
1 

For T. > T the fluctuations continue to send angular momentum 
l 

into the rotational modes normal to B. Thus, ({) is aligned away 

from B, and this tendency becomes more pronounced as the grain 

gets hotter.. The behavior of l fixes that of the symmetry axis~ 

since DG{Z 3 ) state that the long axis of the grain tends to become 

perpendicular to J. These ·qualitative features will be shown in more 

detail in the next chapter when we solve the Fokker-Planck equation. 
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Ti< T ' <J~<<.J B) 
Alignment by Davis-Greenstein process 

<Jx> 
(d) 

Ti)T, <J-£>><JBJ 
Orientation of l away from ;§, 

Ti= T ' <J ~ = <J B) 

No alignment 

Figure 3 

Alignment of i, 
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(c) The Diffusion Coefficients 

From the discussion in part (a) of this chapter, the only non-

zero moments due to the fluctuations are 

(61) 

We need only change these moments to Miller 1 s µ, ri, C coordinate 

system. Let the grain be oriented as in Figure 4 with the field ~ 

along the Z 
1 

axis and the plane of£ and ~ the Y-Z 
1 

plane. If B is a 
,. 

unit vector along ~, and A a unit vector along ~, then 

,. ,.. 
BX = By = 0 

,.. 
1 Bz = 

1 
(62) 

Jx = 0 

Jy = -J sin{3,, Jz = J cos{3 = 11 
l 

(63) 

.Ax = sin'Y sine 

,.. 
Ay = cos'±' sine cos{3 - cos e sin{3 

AZ~ = cos'¥ sine sin{3 + cos9 cos{3 (64) 
l 

Since 

µ = J.A 

11 = J.~ 

' = J. J (65) 
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y 

Figu~e 4 

Orientation of the X, Y, z1 Coordinate System 
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oµ = .Ax oJx + A.Y oJY + A.z oJz 
1 l 

ori = ~x cSJx + :BY a JY + Bz cSJ z 
1 1 

oC = (J + cSJ)2 - J2 - - -
= 2(Jx cSJx + JY oJY + Jz cSJz ) 

1 1 

+ (0J)x2 + (0J)y2 + (cSJ)z 2 (66) 
. 1 

where all second order terms have been kept. Thus, we find 

6 µ = sin'¥ sine 0 J x + ( c 0 s '¥ sine c 0s13- c 0 s e s i nj3) 6 J y 

+(cos'!' sin9 sinl3 + cose cos13)8Jz 
1 

ori = oJZ 
1 

oC = 2(-J sinl3 oJy + J cos13 oJz ) + (oJ).; 
1 

+ ( 6 J )~ + { 6 J) z ~ (67) 

If we take the expectation values of these quantities, we find that the 

only non-zero moments are 

E = 2E 

' 0 
1 . 1 2 l 2 . 3 2 2 

E = (- + - H._ + - !L - - µ t 
µµ 2 2 ' 2 ' 2 ' 

)E 
0 

2 
E = 4C ( l - 2L ) E cc . c 0 

2 

E µ.C = 2 µ ( 1 - 1- ) E 
0 

(68) 
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Thus, the extra terms due to the grain's temperature are 

2 2 2 2 
R (T) = E {w ( .!_ + 2:_ ~ + .!_ !)_ - ~ µ t ) 

0 µ,µ, 4 4 ' 4 ' 4 ' 
2 2 

+ W ( H - ~) + Z(C - ri
2

) W + (4-2 L)W 

µ ' ' cc ' ' 
ri

2 
1 1 

2 
} + 2µ(1 - T J wµC + W( zc + 2 Zz-l (69) 

6. Final Form of the Alignment Equation 

The Fokker-Planck equation for the alignment process now 

takes the form 

(70) 

where the terms in R are given by equations (32), (34), (36) -(38 ), and 

(69). We may check the algebra to this point by setting T. = T and 
1 

substituting 

W = const. xi exp{-[C+(y-l)u
2
J/(2Iyk T)} (70a) 

into equation (70). Since this W is the Maxwell-Boltzmann solution 

of DG (
3 

l) in the µ, ri, ' system, we do find that ~~ = 0, as expected. 

It has proven more convenient to solve this equation using a 

different set of variables from Miller'sµ,, ri, C set. We therefore 

introduce the variables 

r = c osf3 = _!}__ , -1 ~ r ~ 1 
JC 

(7 la) 

s = (Jcos9)/)m+c 2Iy -oo < s < 00 , (b} 

J + 2 = u/ m c Iy 
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2 . 2 I + 2 C-µ2 
z = ( J sm 9) (m c Iy) = + z · , 0 :§ z < oo 

m c Iy 

2 1/2 
'f = (z + s ) = 

J + 2 m c Iy 

2 
W = exp [ - ( z + ys ) J f ( r, s, z) 

b = DB
2(m; c~Iy) 

ghm c 

€ = 0 
E /{ghrn + c 2 ) 

0 

€0 + 
-r:-= T./(E2-)T 

o i m 

O~rr<oo 

, 

( c) 

(d) 

(e) 

(f) 

(g) 

(7 lh) 

The r, s, z coordinate system is useful for the case when the magnetic 

field is weak, and we regard r as a dependent variable. The pararn-

eter b compares the effects of the magnetic field with those of the gas 

collisions. The parameter E: compares the effects of the tempera
o 

ture fluctuations with those of the gas collisions.. In defining the 

function f, we have factored from W the Maxwell-Boltzmann solution 

of Davis and Greenstein.( 3 l) This solution is valid for the case in 

which B=O=E , or b = 0 = e • If we take equation (70), set (8W /ot)=O 
0 0 

for the steady-state solution, make ~he above changes of variable, 

and let a subscript on f mean a partial derivative with respect to that 

variable, we obtain 
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2 

[ {a+ 1 ) z + 2 as J • G 1 - r 2 )f - 2 r f J + .!_ f - ysf 
4

,. 4 ~ rr r 2 ss s 

+ 2a z f + 2a(l-z)f 
zz z 

. b - { 1 2 2 2 2 4 2 
+ 2 [ z-(y+3)z - 2z (1-r ) + (y+l)s - 2y s (1-r ) 

'T" 

22 1 2 2 2 2 22 
- ( y- 1 )r s + Z ( y-1 )r z-( y+ 1) s z-( y -6y+ 1 )r s z ]f 

-r(l-r
2

)(z+ys
2

)fr + ! sfs[2y(l-r
2

)s
2 + (y(l+r

2
)+(1-3r

2
}z] 

. 2 2 2 2 2} + z f z [ ys ( 1 - 3 r ) + s ( 1 + r ) + 2 ~ ( 1- r } J 

{ 
1 2 1 s

2 
2 ] [ s

2
z 2 2 J +e

0 
[ 4 (l+r ) + 4 -z{l-3r } fss + - ~l-3r ) + 2z(l-r ) fzz 

'T" ,. 

r
2 

2 rz 2 rs 2 
+ -

2 
2 (1-r }frr - 2 -z(l-r )frz - -z (1-r }f 

,. ,. ,. . rs 

sz 2 1 4. 2 2 
+ --z{l-3r )fsz + [ --z (l-3r )\z+ys }-y(l+r )]sfs 

'T" 'T" 

[ 3 1 2 1 s
2 

2 2 2 s
2

z J 
+ 2 - Z r - z -z { 1- 3 r )- 4 z ( 1 - r ) - 2 ( y- 1 )( 1- 3 r ) -y f z 

'T" ,. 

2 
[ 1 r 2 rs 2 2 J 

+ z Z ( 1- 3 r ) + 2 { y- 1 ) - 2- ( 1-r }. + 2 r ( 1 - r ) fr 
'T" 'T" 

1 1 2 2. 2 24 2 
+ 2 [- z-(y+3)z + 2z (1-r )-(y+l)s + 2y s (1-r ) 

'T 

22 1 2 22 2 22} 
+(y-l)r s - z:Cy-l)r z+(y+l) s z+(y -6y+l)r s z]f = 0 • 

(72) 

By direct substitution we see that f= 1,, which is the Maxwell-Boltzmann 

solution, satisfies this equation for the cases b = 0 = € and for 
+ 0 

b = e (or T. = ~ T). We shall solve this equation in the next 
o 1 m 

chapter for other values of the parameters. 
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In the coordinate system 

21- 2 21- J + 2 
T = {z+s )2 = (cr + \J )

2 = J /m c Iy , 

cr = Tr = T cosf) -oo < cr < oo 

2 .!_ 
\) = T ( 1 - r ) 2 = T s inf) -oo < \) < 00 

s 
cos9 -1 ~ p ~ 1 (74) p = - = T 

equation (72) becomes 

{ 
1 1 . 2 1 v 2 2 } 2 
- + -(a-1)[(1-p )- - - (l-3p )] £ -[l+(a-1)-(a-y)p ]crf 
2 2 2 2 crcr a . . T 

{ 
1 I 2 v

2 
2 } + z ( 1+e

0
) + 4 (a -1 ) [ (I+ p ) + l ( 1 -3 p ) J £\J\J 

T 

1 1 2 1 
+ [-2 (l+E: ) + -

4 
(a-1 )(l+p )} - £ 

0 v \) 

2 2 
+ [(b-2e -1) + (y-l)[(b-2E: )p - 1] - (a-y)(l-p )}vf 

0 0 v 

2 2 
+ ( 1 - P2) 11 + E: - ~ E: \J 2 + (a -1) p 2] £ 

2T ~ o o T pp 

{ 
1 v 2 

1 2 2 2 1 v2 
- 1 + E: 

0 
- z E: 

0 
z - z (a -1 )( 1 - 3 p ) - (b - 2 E: 

0 
) ( y- 1 ) . T ( 1 - p ) ( 1 - z z ) 

· T T 

- (a-y). T2(1-p2)} ~ £ 
T p 

1 O\J 2 . £e. 2 ~ 2 
+ 2 (a -1 ) 2 ( 1 -3 p )£ - (a -1 ) 2 ( 1 - p )£ - (a -1) --iz ( 1 - p )£ 

,. crv ,. a p T v p 

{ 
2 Ii 2 1 v 

2 
2 2 2 2 

+ (b-e
0

) 2(1-v )+ (y-l)l(l-p )- Z T 2 (l-3p )-2(y-l)T p (1-p) 

2 2 -2 2 Zl} + (y-l)v p (l-3p )-4v p J £= 0. 

(72i) 
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CHAPTER III 

SOLUTIONS OF THE ALIGNMENT EQUATION 

In this chapter we will solve equation (72 ). The only exact 

solution to be obtained is for spherical grains in an arbitrary mag-

netic field. The equation will next be solved approximately for needles 

nearly-spherical grains, and disks in strong magnetic fields. Finally, 

the equation will be solved approximately for needles and nearly-

spherical grains in weak fields. 

For all of these cases, we seek a solution to equation (72) 

such that 

W = {exp [ - ( z + ys 
2 

)] } f ( r, s, z ) ( 7 1 ) 

is a well-behaved probability function. This means that W is every-

where well-behaved, finite, positive, integrable, and that W ap-

proaches zero for z, s -oo. We expect that W may behave as a 

6-function for b or 8 -+ oo, but for finite band € , W should have no 
0 0 

singularities. The normalization is chosen so that the integral of W 

over all of phase space is unity. This normalization will be found in 

Chapter IV, where we calculate the measures of alignment. 

Finally, we note that it is possible to prove that the function 

W is unique. This means that if W satisfies the Fokker-Planck 

equation for ('OW I ot) = 0, and if w is a well-behaved probability 

function as defined above, then W is unique. The theorem of A. H. 

Gray is stated and proved elsewhere. (39 ) This uniqueness property 

allows us to solve each case by whatever method is most convenient 
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and to be sure that the solution obtained is correct. It eliminates 

the need to treat the general solutions of the various differential 

equations that will be considered; any solution which satisfies the 

previous requirements is the unique solution. 

1. The Sphere 

For the sphere, we find that 

a = y = 1 (73) 

We also will use the variables 

T = (z + s2)1/2 = J/(m+c2Iy)l/2 O<T<oo 

= ( 2 2) 1 /2 a + \J 

a = Tr = Tcosl3 -oo < a < oo 

\) = T(l-r2)1/2 = T sinl3 , -oo < \) < 00 

s = cos9 -1 :§ p :§ 1 (74) p = ,. 

when a, v, p will be regarded as independent variables and T as 

dependent. The T variable is dimensionless and represents J in units 

of)m + c
2
Iy, while a and\> are the components of T parallel and 

normal to B. This cr, \J, 1", p coordinate frame is convenient for the 

cases of the sphere in all fields and of the other shapes in strong 

field. If the above variables are substituted into equation (72i), the 

result is 
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.!_ f - of + 
2
1 f + [ 

2
1 + (b-1 )v]f + {2b-2bv

2
)f 

2 (J(J CJ \)\) \) \) 

+ _12[(l-p2)f - 2pf ]+eof21 f + (-1 - 2v)f 
2T pp p il_ W 2v V 

1 
2 

2 2 } +- (1 + 0
2 ) [(1-p )f - 2p £] + (-2+2v )f = 0 

4r 2 T pp p 
(7 5) 

In this equation, £ is defined by 

-1 [ 2 2 
f = W MB W = exp (a + v ) J W (76) 

where W MB is the Maxwell-Boltzmann solution, and a subscript on 

f means a partial derivative with respect to that variable. 

We note that the sphere has no dynamically defined symmetry 

axis. Thus, we may take the symmetry axis to be an arbitrary 

marking located anywhere on the sphere. All values of p = cos 9 are 

now expected to be equally probable, so that 

f = 0 
p 

In addition, W MB describes the distribution if the gas acts alone. 

(77) 

Now only the gas affects a - the component of~ parallel to ~· There-

fore, we expect that W MB gives the complete distribution of a, which 

would not occur in f. Thus, we test the assumption that 

f = 0 (78) 
(J 

With these assumptions, our equation for f becomes 

.!_ ( 1 + e ) f + 
2
1 

( 1 + e ) .!_ £ + (b - 2 e - 1 )v f 
2 0 \)\) 0 \) \) 0 \) 

2 + 2 {b - € )( 1 - \) )£ = 0 
0 

(7 9) 
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We now find a well-behaved solution consistent with these assumptions. 

It is 

f =exp {[-(b-e )/(l+e )]\J
2

} 
. 0 0 

(8 0) 

The unnor:IT?-alized probability is, therefore, 

{ 

2 2 (b - E: 0 ) 2 } 
W = exp -(o + \J ) - \J 

. (1 + E: ) 
0 

{ 
2 2 l+b } = exp - a - \J ( -- ) 1 +e 

(81) 
0 

For the case that b >> 1 and b >> e (or T >> T. ), W approaches 
0 l 

a 6-function in \J. This shows that for a strong field and a cold grain, 

~is aligned toward ~ since \J ..... 0 implies r3 ..... 0. As T. approaches 
l 

T, e - b, and the alignment in \J decreases. For T. = T(or e = b), 
0 1 0 

W = W MB' and there is no alignment in \J regardless of how strong 

is the magnetic field. For T. > T(or e > b), we find that the orien-
1 0 

tation reverses in \J. 

If all the constants are put in, then 

2 
cr 

2 
\) 

= 

= 

= 

= + m (ZkT /m)I 

1 + b = 1 + E: 
0 

J
2 

sin 
2 r3 

2 2 
J cos @ 

+ 2Ik(m T /m) 

J
2 

sin
2

@ 
+ 2Ik(m T /m) 

( 1 + b ) 
1 + E: 

0 

2Ik 1 ~ l+b J 
(m +TI m) 1 + b ( T~ ) ( m+ ) 

m 

(82) 

The distribution in cr is Maxwellian at a temperature T eff given by 

+ m 
T = (- )T 

eff m 
(83) 
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The (m + /m) factor measures the energy lost in heating the grain 

because the grain-atom collisions are inelastic. Thus, some of the 

energy transferred by the collisions does not go into the grain's 

rotational modes. From the discussion of the grain-atom collision 

given in the appendix, we have 

(84) 

When T. = T, m + = m, and the effective rotational temperature for 
1 

a is just T. 
1 

When Ti =O, Teff=Z T;forTi>T, Teff>T, so that 

the grain's rotational energy for a is transferred to the gas. 

The distribution in v is Maxwellian at a temperature 

+ 
(~)T 

m av 

= 

= 

+ (m /m)T + bT. 
1 

1 + b 

+ nH (m /m)T + b T. 
0 1 

nH + bo 
) 

1: . v 

+ For b = 0, T JI = (m /m)T = Teff; for nH = 0, corresponding to 

removal of the gas , TV = Ti' while T eff is undetermined because 

T is undefined. Equation (85) is the same result as was found by 

(85) 



-42a-

Jones and Spitzer, (
34

) except for the (m + /m) factor. If we let 

T - 0 with nH i 0, this means that a low-temperature ideal gas 

surrounds the grain and absorbs its energy, making T < T .. 
av i 

2. The Strong-Field Case 

(i) Prolate Grains 

In this section we will solve equation (72) for prolate grains 

in strong magnetic fields, starting with nearly-spherical particles 

and then treating needles. The parameter b, defined in equation (71 ), 

is much greater than unity, while e: is regarded as a free parameter 
0 

since it depends on the internal temperature, T.. The ratio of the 
l 

semiaxes, e:, is greater than unity: e is slightly larger than unity for 

a nearly spherical grain and much greater than unity for the needle. 

For a grain of uniform density, the ratio of the moments of 

inertia is 

(35) 

Let us define an additional parameter 

2 o = (e: - I) > 0 (86) 
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where 6 << 1 for nearly-spherical particles and 6 >> l for needles. 

We may obtain the shape factor a by expanding equation (35) in powers 

of 6 and keeping the dominant terms. The results are 

a~ l + ; 6 ~ 6 << 1, nearly-spherical grain (8 7) 

1 2 l 
a ~ z € + 3 , o >> 1 , needle (88) 

Equation (88) suggests that we try 

(89) 

for all prolate values of €. If we check this a ppr oxim at ion, we find 

that it is less accurate than equation (87) for 6 << l and equation (88) 

for 6 >> 1. However, the relative deviation of y from a is no greater 

than 5% for all values of € ~ l~ and neither of equations (8 7) and (88) 

has that accuracy over the whole range. Therefore, we will use 

equation (89) for all prolate grains. Figure 2 has a plot of (y-a)/a. 

Let us begin with the nearly- spherical case. We might expect 

the behavior of the angular momentum alignment to be similar to that 

of the sphere. If we assume b >> 1 and b >> € (or T >> T.) - that is, 
0 1 

strong field and cold grain - then we find from equation (81) for the 

sphere that 

('J) - l/Jb (90) 

This means that W is small except where v ~ 1/ JT) . We will tenta-

ti vely assume the same properties for the solution to the nearly-

spherical case. 
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In addition, the Maxwell-Boltzmann solution is 

2 
= exp [ - ( z + y s } J 

2 2 2 2 
= exp[- cr - v - (y-1}-r cos 9] (91) 

For the case of the sphere, the function f is exp[-b v
2 J when bis 

non-zero. We therefore look for a term exp[-b(y-l}-r
2 

cos
2

9] in the 

function f for the nearly- spherical grain. Thus, define the scale 

changes 

N = ,fb v = ,fb ,- sinf3 -oo < N < ~ 

P = J b ( y- l > cos e = Jib o P , -Jf bo < P < Jf bo (92) 

where bo >> 1.. The coefficient ,fb is a scale factor for v , and the 

coefficient Jibo is a scale factor for p = cos e. we expect to find 

that 

(v)strong - l/ Jb ' 

( p >strong :s (cos e \tr ong ~ l/ Jb(y-l) (93) 

which are assumptions that must be justified by the solution. 

We now turn to solving equation (72). Set a:::::: y and change 

variables to cr, v, -r, and pas defined in equation (74}. The result is 

a long expression, equation {72a), which is given in the appendix. We 

have no need for it here because we only desire those terms which 

dominate in strong fields. The equation contains derivatives of the 

function f with respect to v and p, along with other variations. 
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If we change variables to N and P, then 

f = b fNN \)\) 

(94) 

Next, we substitute these derivatives into equation (72a), yielding 

terms of order b, bo, o, 1, l/b, and smaller quantities. We choose 

the terms of order band bo (bo >> 1) as the dominant ones and ignore 

the resL Although o << l for a nearly-spherical grain, the only 

assumption made here is that o << b. This procedure allows us to 

treat the needle so long as b >> o >> 1. The value of o only determines 

which of b and bo is larger. Thus, the dominant terms yield 

+ terms of order o, 1, l/b3 etc. = 0 (95) 

Although equation (95) is only accurate to order bo and b, we have kept 

smaller terms for convenience. As o -+ 0, we obtain equation (79) for 

the sphere. Since the variables in equation (95) have been separated, 

we may treat the two groups of terms in succession. The terms in-

volving N yield 
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An approximate solution 

[ 

1 - € /b 
f (N) = exp - ( 

0 l 
l+e: 0 + 4 0 

(97) 

when substituted into equation (96),, leaves a residual term 

1 o ( 1 
- 8 o/b ) 2 

- - N f 2 b l+e + ~ o 
0 4 

(97a) 

Since this quantity is much smaller than the terms of interest, we may 

take equation (97) as giving the N-dependence of £. 

The terms involving P yield 

1 1 €0 1 8 0 . 
- 2 ( 1 +e )f pp + z P( 1- 2 b )f p + Z ( 1 - 0 )f = 0 
41" 0 

(98) 

with the approximate solution 

(1-e: /b) 
f(P) = exp [- l+~ -r2 P

2
] 

0 

(99) 

Again if we substitute this back into equation (95), we find a residual 

term 

( 
1-€ /b ) 2 2 

€00 l+~ 'f p f 
0 

( 100) 

In the appendix we discuss this term and other residues in more detail, 

and we show that they are all smaller than the quantities of interest. 

Thus, our solution for f is 

f = f(P) . f(N) 

exp [-
(1-e /b) 

2 p2 
(1-e /b) N~ 0 0 = 'f - 1 l+e 

0 l+e
0

+ 4 o 

exp [-

{b-e ) 2 2 (b-e ) 2 . 213] 0 0 ( 101) = ( y- i > ,. cos e - 1 'f Sln 
l+e 

0 l+e
0

+ 
4

o 
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which yields for the probability distribution 

W = fexp[-T
2 2 2 

( y- 1 }T C o s 9] 

l+b 2 2 ) - ( y- 1 ){ rr- ) T co s 9 • 
€0 

( 102} 

Since the main,, approximation in our derivation is that b >> o, this 

solution is also valid for a needle in an extremely strong field 

(b >> o >> 1). We will also use this result for the case o >> b >> l, 

although the solution would not be rigorously correct. To solve this 

case would require that we keep all the terms of order o in equation 

(72a}, which would be difficult. We discuss this case of 6 >> b >> 1 

further in the appendix. 

We summarize below our detailed analysis of the accuracy of 

equation ( 101} given in the appendix: 

If e << b (T. << T} 
0 1 

or 

2 
b >> e >.> b 

0 

and ( b>>o} , then equation ( 10 l) 

1 
is numerically accurate to terms of order be 

On the other hand, if (i) e ~ b, (ii) e >> b
2

, or (iii) o >> b, 
0 0 

then the solution may be numerically inaccurate but is always quali-

tatively correct. The justifications for not finding more accurate 

solutions in these cases are the following: for cases (i) and (iii) the 

alignment is too small to justify further effort; and for case (ii) the 

grain is too hot to be of inter e sL 
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Finally, our solution for W does provide the alignment to be 

expected. As b _. oo and fore << b (T. << T), both ( sinl3) and (cose) 
0 l 

1T 
become small, so that (13) _. 0 and ( 9) _. 2. For a warm grain, 

€ >> b (T. >>TL so that (T sinl3) becomes large and (13) 
0 l 

1T _._ 
2 , 

reversing the orientation. 

(ii) Oblate Nearly-Spherical Grains 

For these particles the shape factors take the values 

( 103) 

We put 

01 = -o > 0 01 << 1 ( 104) 

and proceed to solve equation (72). Since the symmetry axis is ex-

pected to align toward ~, for large fields sine, rather than cose, 

becomes small. Thus we use 

A. = 2 ..!. 
sin 9 = (1- p ) i ( 105) 

as our angular variable in place of p = cose~ If equation {72i) is trans-

formed to the cr, v, T, 'A system, the result is a long expression, 

equation (72b), given in the appendixe In order to find the dominant 

terms in strong field, we use the variable 

q = Jb6f sine = ~A. ( 106) 

which is the analogue of P for the prolate case; in this equation bis 

large enough so that bo 
1 

>> 1. 
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If cr, N, .,-, and q are used in equation (72b), there results a 

set of terms of magnitude b, bo..t.,l, o
1

, and so forth. The equation 

becomes 

b { i ( l + 8 o - ~ o l )f NN + -} ( l + € o - ~ 0 1 ) ~ f N 

~ € 1 1 J E € 1 NZ € Q} + {l-2 __£ )(1- - o )- - Nf + 2 (1- ~)(1- - o )- -(1-~)f 
b 2 1 b N D 2 1 b b 

{
l 1 1 1 € €} 

+bo
1 

-:-'l(l+e )f + - 2{l+e ) -f + 2 (1-2 bo )q f + (1- bo )f 
2.,- 0 qq 2.,- 0 q q q 

1 
+ terms of order 1, o 

1
, b , etc. = 0 .. ( 107) 

As o 
1 

.... 0, the second group of terms vanishes, and we are again left 

with equation (79) for the sphere. Since bo 
1 

<<band the variables 

are separated, we consider the N and q variations in succession. 

The equation for the N dependence is 

with the approximate solution 

[ 
(1-eo/b) 1 2] 

f(N)=exp (l+e) (l- 2 o 1)N 
0 

( 109) 

If this solution is substituted back into equation (108), the residual term 

1 
is, for c 1 = (l -e

0
/b)(l - 2o

1 
)/ (l+e 

0
), 

{110) 

which is much smaller than the terms of interest. 
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For the q dependence the equation is 

1 2 € 2 
( 1 +e: )f + ( 1 +e ) - f + T ( 1-2 bo )q f + 2 T ( 1-e: /b)f = 0, 

0 qq 0 q q q 0 
( 111) 

with the approximate solution 

[ 1 (1-e o/b) 2 2] 
f(q) = exp - 2 l+e: T q 

0 

( 112) 

Again, there is a residual term if this solution is substituted into 

equation (111). In the appendix we discuss this residual term and 

others. The conclusions are quite similar to those obtained for prolate 

grains. Therefore, if e: << b (T. << T) or b
2 >.> e: >> b, our solution 

0 l 0 

in equation (113) below is numerically accurate to terms of order ; • 

Otherwise, our solution is qualitatively ~orrect but may be numerically 

inaccurate. Since the maximum value of o 
1 

is o 
1 

= 1 for a disk, we 

see that o
1 

<< b for all oblate grains. The requirement for grain 

alignment is that bo 1 >> L 

The solution for f is 

f = f(N). f(q) 

[ 
(l-eo/b) 1 2 1 {l-e:o/b) 2 2] 

= exp - l + ( 1- 2 o 1 )N - 2 1 +e: '1" q 
€0 0 

[ 
{b-e:o) 2 . 2 1 (b-eo) 2 2 J 

= exp - l + 'Y T sin f3 - z l + O l '1" sin 9 , 
8

0 
8

0 

( 113) 

and the distribution function is 

2 1 1 2 
W = f. exp ( - T [ ( 1 - - 0 ) + - 0 sin 9] } 2 l 2 l 

{ 
2 2 2 . . 2 l+b l 2 . 2 l+b } 

= exp - T 'Y cos f3 - '1" 'Y sm (3. ( l+ej- zOl '1" sm 9 ( l+e 
0

) • 

( 114) 
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Fore << b (T. << T) and b>> 1,, both (,-sinf3) and (T sine) decrease,, 
0 1 

meaning that (f3) and ( e) decrease for increasing b - as predicted by 

the Davis-Greenstein process. However,, we will find in Chapter IV 

and V that the alignment does not become perfect,, no matter how strong 

is the field. For e: >> b (T. >> T) and b >> 1,, (Tsinf3) increases for 
0 1 

increasing band the alignment is reversed. 

(iii) The Disk 

For the disk, the relevant shape factors are 

€ = 0, 
1 

'Y = 2 ,, 0 = 1 
1 a = 1 ( 115) 

If we substitute these values into equation (72i) and change the p depend-

ence to a variation with 

1 

A. = ( 1- p 
2

) a = sine ( 105) 

then the result is equation (72c) in the appendix. To find the dominant 

terms, we make the scale changes N = JTJ v and 

Q = JTJ A. = Jb sine 

In this equation Q is the analogue of q = /bo ~ A. for the case of 

oblate nearly- spherical grains.. The resulting equation is 

1 1 1 1 8
0 1 

b{2(l+eo)fNN + 2 (l+e:o) NfN +z(l- 2 b - b )N fN 

8 o l N
2 8 

o + 2(1-i;- )f - 2 b (1-i;-)f 

1 1 1 1 8
0 1 

+ 21"2 ( l+e:o)fQQ + 2T2 ( l+e:o) Q fQ + 2(1-2 b - b )Q fQ 

( 116) 

1 2Q2 e: 1 -z: T (1-T)f} +terms of order 1,, b" etc.::: O. (117) 
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In equation (117) we have kept all of the important terms of order € ; 
0 

the other terms of magnitude e are considered in the appendix. ·We 
0 

have also kept terms of order unity for convenience. Let us rewrite 

equation (117) as 

€0 } + 2( 1- b )f + ..• = 0 ( 118) 

We see from equation (118) that the variation off with N is quite 

similar to that off with Q. Thus, we consider 

( 119) 

which has the well- behaved solution 

{ 
1 · ( l- e o/b) 2} 

f(N) = exp - z 1 + N 
€0 

( 120) 

Thus, the solution for f is 

f { 
(l-e 0 /b) 2} { 1 (l-e

0
/b) 

= exp - -} l+e N . exp - 2 l+e 
0 0 

( 121) 

{ 
l ( b- € ) 2 2 2 } 

=exp -2 l+eo '1" (sin~+ sin 9) ( 122) 
0 . 

We consider the residual terms in the appendix and show that they may 

be neglected. 

Equation ( 122) is the same as equation (113) for the oblate 

nearly- spherical grain if we use the values y = -} and o 
1 

= 1 for the 

disk. Since equations (113) and (114) are valid for o 
1 

<< 1 and o 
1 

= 1, 
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we will use them for all of the other intermediate values of o1. Vte 

make no claim that this is the correct solution for all oblate spheroids 

- only that it should give the qualitative behavior. Thus, we use equa-

tion (114) for all oblate spheroids (0 < o 1 ~1). The orientation in 

strong fields is qualitatively the same as in the nearly-spherical 

case, although the alignment becomes more pronounced as the disk 

shape is approached. Finally, we show in the appendix that equation 

(122) is numerically accurate to order bl for e; << b (T. << T) and 
0 1 

e; >> b (T. >> T), and that it is qualitatively correct for e; "'.J b. 
0 1 0 

3. The Weak Field Case 

When the magnetic field is weak, then b << 1. Although e; 
0 

might, in principle, take on any values, we will only treat the cases 

for which e; ~ b. The reason is that if€ >> b, then we are unable to 
0 0 

make the approximations which allow us to solve equation (72) more 

easily. 

We expect the distribution function W to be close to the 

Maxwell-Boltzmann solution, meaning that f is near unity. For 

example, if equation (81) for the sphere is expanded with b << I, 

€ ·~ b, then the result is 
0 

f =:: l - (b - € )\J 
2 

0 

Let us therefore try to solve for fin a perturbation series using 

powers of b, so that 

f ~ l + b 'f + terms of higher order in b. 

(123) 

(124) 
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If this form for f is put into equation (72), the terms to first order 

in bare 

2 

[ (a+ 1 ) z + 2 as J r(l -r 2) 'f _ z r 'f ] + _!:. I _ 8 'f 
4 T 4 L rr r 2 'V ss i' s 

+ 2 a Z 'f + 2 a. ( 1- z ) \11 zz 'fz 

l so [I 2 2 2 2 4 2 + --z (1- 0 ) z-(yt3)z - 2z (1-r ) + (y+l)s - 2y s (1-r ) 
T 

22 1 2 22 2 22] 
- ( y- 1 ) r s + Z ( y- 1 ) r z - ( yt 1 ) s z - ( y - 6 yt l ) r s z = 0 

For convenience,, we will solve for 'f with s = 0,, since equation 
0 

( 125) indicates that 

e 
'f( Ti > 0) = ( 1 - i- ) e 'f( Ti = 0) 

Now the derivatives in r form the differential operator for the 

( 125) 

( 126) 

Legendre polynomials. Therefore, let us write the inhomogeneous 

portion of equation (125) in terms of the first two Legendre polynomials, 

which are 

P (r) = l 
0 

The result is 

[
(a+ 1 )z + 2a.s2 J f.( 1-r 2)\'' 2 ,,, ]+. 1 ,,, 2 

4-r 4 ~ 'f rr - r '!' r 2 '!' s s - ys ts + az t zz 

+ 2a.(l-z)tz + [~(yt-2) -j(z + y
2

s
2 )J. P

0 

( 127) 

1 [4 2 4 2 4 2 2 l 2 2 2 2 J . + 2 3 z + 3 i' s - 3(y- l) s + 3 ( y- 1 >~<3 'Y - 4y + 3) s z p 2 = 0. 
T 

( 128) 
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Having separated the r variable from s and z, we now 

assume that 

00 

'+' ( r, s, z ) = l Pl ( r )Q J, ( s, z ) 

.t=O 

(12 9) 

where the P .t are the Legendre polynomials. Not all of the Q.t will 

be needed in measuring the alignment of the grains. The degree of 

alignment will involve the quantities 

2 1 1 2 00 00 
(cos (3) = 2 /_ 1 dr. r /_

00 
ds /0 dz W(r, s, z) 

. 2 1 l 00 100 
3 2 2 1 2 1 2 

(cos q:>) = z [
1 

dr [
00 

ds 
0 

dz(z r p -2 r -z-p +l )W{r, s, z) 

(130) 

The r terms in these integrals will include only P 
0 

and P 2 inte

grated over the range of orthogonality for the Legendre polynomials. 

Therefore, only .the terms in P 
0 

and P 2 from equation (129) will yield 

non-zero integrals., so that only Q
0 

and 0 2 need be found. From the 

equation 

2 
(1-r )P,, 

.KJ, rr 

we obtain 

- Zr P .t, r 
= -J,(.t+ l )P 

J, 

0 . 

(131) 
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Since the Pl, are linearly independent in r, we may set this 

equation equal to zero for each l,. For l, = 0, the ·result is 

.!.. Q - ys Q + 2a[z Q + Q 2 o, s s o, s o, zz o, z 

+ ~ ( ~* 2 ) - i z -
4 #\i s 

2 = 0 3 ,. 3 3 ' 
( 132) 

An acceptable solution to this equation is the particular solution 

2 z 2 
= - 3 (a+ ys ) (133) 

The homogeneous solution diverges for large values of s and z faster 

than WMB converges. Since the particular solution does not have this 

problem, it is acceptable while the homogeneous solution is not. 

For l, = 2, the equation for Q
2 

is 

2 4 [-3(a+l)z - (6as )]Q
2

+,. [O_ -Zysn +4az0_ +4a(l-z)O_ ] 
--Z.11ss ---Z, s -Z,zz ---Z,z 

[
8 3 .. 2 2 2 2 4 2 4 2 2 

+ J z + '! ( y-1 )z - J( y-1) s z + (- 3' y + By + J ) s z 

4 2 . 4 4 4 . 4 8 2 6] 
+ ( 3 y + 8 y .. 3) s z - 3 ( y- 1 ) s . + 3 'Y s = 0 • ( 134) 

We will now solve equation {134) for the various geometries, that is, 

needles and nearly-spherical grains.. We do not treat th~ disk be-

cause we were unable to separate variables for that case. 

(i) The Needle 

For the needle, both a and y are large,, and a ~ y. From the 

Maxwell-Boltzmann solution 
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z z z ) WMB = exp[-(z+ys )] = exp(-T [l+(y-l)cos 9] 

we find that 

<cos e > - ( 1 I J y- 1 > << 1 

meaning that WMB is small except where cos0 ~ Cl/Jy-1), so that 

( 9) is nearly 90°. Therefore, we obtain for the needle 

s = ,. cos e _. ( i I fi> , 
2 . Z9 2 z = T sin ~ T ( 135) 

It will be convenient to solve equation (134) using sand z, but after · 

the solution is found, we will set z ~ T 2 
o Let us define 

s = JY s (136) 

substitute into equation (134), and choose the dominant terms in 'Y· 

The result is 

- 3Qz + z[Qz, SS-ZS 0 z, s + 4 z 0 2, zz + 4 (I-z)Qz, ZJ 

2 2 -1 + 3 z(l-28 ) + terms of order y or smaller = O • ( 137) 

Assume that 

and obtain 

-3C Zz + z[z 2( c58-z S C 5 )+C(4z zz, z~+4[1-z]z 2 j z)] 

1 2 - J z(-2 + 4 S ) = 0 ( 138) 
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The derivatives in S form the differential operator for the Hermite 

polynomials, and (-2 + 4 s2
) is the second Hermite polynomial. 

Therefore, we choose 

2 c = -2 + 4 s (139) 

which allows us to factor the S-dependence from equation (138). We 

obtain for z
2 

the equation 

2 z z 2 + z(l-z)Z 2 , zz , z (
. 3 l 

- .z + 4 ) z 2 - IT z = o {140) 

If we set 

. '372 z
2

(z) = z"'~ 1 u
1 

(z} ( 141) 

then we find for u
1 

(z) the equation 

t?- rr i -J3/2 
z u 1, z z + [ (v J + 1 )- z J u 1, z - ( 7 + 1 ) u 1 = IT z • ( 142) 

Let us write the parameters of this. equation in the form 

a 1 = j+l, b
1 

= 2j+l , j = ff/2. ( 143) 

Now consider the homogeneous terms in equation (142). They form 

the confluent hypergeometric equation, which has two linearly 

independent solutions. One solutioJ 35) is M(a
1

, b
1

, z) which is well

behaved at the origin and diverges as z -+ oo. The other solution is 

U(a 1, b 1, z) which is well-behaved as z -+ oo. but has a singularity at the 

origin.. Thus.P we see th_at both homogeneous solutions to equation 

(142) are unacceptable .. 

To solve the inhomogeneous equation, we will use a Green's 
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function method. Equation ( 142) may be written in the form 

d r: (J3 + 1) -z J ( rr + l) -z J3 _ 1 ,JT /2 -z 
dzf.: e ul, z - T e z ul - 12 z e • 

(144) 

Thus, the equation for the Green's function G(z, z 1
) is 

... ~.J~ (,j3 +l)e -z ~~ J ... ( J"f +l)e -z zJ3 G = li(z-z 
1

) ; 

dzl: . 
( 145) 

if z :/- z 1
, this is the confluent hypergeometric equation with solutions 

M(al" bi'z) and U(a
1
,b

1
, z). Let us write Gin the form 

1 
{-A1 M(a 1, bp z) U(a 1, b 1, z') 0 < z < z

1 

G(z,z) = _A
1 

M(a
1

, bpz') U{a
1
,b

1
,z) z'<z <oo .. 

If we integrate equation ( 145) over a small region near 

z', z 1 -e
1 

< z < z 1 + e
1 

with e 1 small, then we obtain 

- dz I 
dG\ 

z -€ 1 

= A 1 · ··Wronskian (M, U) I z, 

If the Wronskian is evaluated, <35 ) then the result for A
1 

is 

_ ru+1) = 
Al - - f' (2jtl) 

ro+£312) 
r(1+,j3) 

Therefore, the solution for u 1 is 

_ l r {j+ l ) { /z ' I - Z I ( Z I )j 
u 1 - - IT T(Zj+ I) U(al' bp z) 

0 
dz M(a1, bl" z )e 

+ M(a
1

, b
1

, z) /'"dz' U(a
1

, b
1

, z 1 )e-z
1

(z'J.l} 
z 

( 146) 

( 14 7) 

( 148) 

( 149) 
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and thus~ 

( 149a) 

(ii) Nearly-Spherical Grains 

In this section we will treat both the prolate and oblate shapes 

because the alignment is small in weak fields,, · so that the two cases 

are quite similar. Our procedure is different from that of Miller,, 

and we wi 11 discuss these differences in detail in an appendix. The 

shape factors are given by 

( 150) 

If o = 0, then we are back to the sphere and 

2 2 
(Qz) sphere = 3 (z+s ) 0 { 151) 

Thus.11 we set 

2 2 
Q 2 = 3' (z+s } + oK (152) 

Substitute all ··E>f the parameters into equation ( 134),, and collect the 

terms of first order in o. The result is 

,.
4

[K - Zs K + 4z K + 4(1-z)K . ]-6'1"
2 

K 
SS S ZZ Z 

16 3 3 2 4 2 2 3 2 6 4 8 4 4 6 . - 15 z + 5 z - 5 s z - 5 s z - 5 s . + 5 s z+ 3 s = O. (153) 

Next,, choose 

4 1 2 
K = - 15 z + 3 s + A(sJ>z) ( 154) 
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and substitute this into equation ( 153 ). The equation for /\is 

2 9 2 
'T' [/\ -Zs/\ + 4z /\ + 4(1-z)/\ ] - 6/\ +'7(z-2s ) = O. 

SS S ZZ Z :> 

If we change variables to 

2 .! 
'T' = (z + s ) 3 p = s = cose , 

'T' 

then we obtain 

Let 

so that 

NI ['T' 2 N + 2 'T' ( 1- 'T' 2 )N ] + Rl r( 1- p 2 )R l - 2 p R I' p J 
0 1 'T'T O,T l~ ,pp 

0 . 

(155) 

( 156) 

9 2 2 1 
- 6 + 5 'T' (l-3p ) 8 N1r = 0 (157) 

0 l 

The derivatives in p form the differential operator for the Legendre 

polynomials, and the factor {l-3p
2

) is -2 P
2

(p) ~ Thus, we try 

substitute into equation (157), and obtain 

,.z N + 2'T'(l-'T' 2 )N . .. 12N
0 

-
1
5
8 

'Tz = 0 
o, 'T''T' o, 'T 

( 158) 

so .that this procedure allows us to factor out the p-dependence. H 

we set 
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1 

is 
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2 
p=T 

p X + ( 2 - p)Xl - 2 X = 190 p-3/2 
1,, pp 2 'p 2 1 

( 159) 

{160) 

The homogeneous terms yield the confluent hypergeometric 

equation, and neither homogeneous solution. is acceptable for the same 

reasons as give~ in the analysis for the needle. We solve for the 

inhomogeneous solution by the same Green's function method as before 

and find that 

( 12 { 3 9 /p 3 9 I I Z -p
1 

dp
1 

Xl p) = - 175 U(2.? Z' p) M(z, 2' P )•(p ) e 
0 

3 9 /OO 3 9 I . 2 -p' '} +M(z.92' p) U(z'z'P )•(p') e dp 
p 

" 
3 1 2 . 2 . 2 .! s 

= T X 1 (p) 0 '!(3p -1),, p = T ., T = (z+s ) 3
, p = T 

( 161) 
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CHAPTER IV 

MEASURES OF GRAIN ALIGNMENT 

We will now use the distribution functions · calculated in 

Chapter Ill in order to find the degree of grain alignment. The 

measures of grain orientation will be found analytically for the case 

of strong magnetic field and numerically for the case of weak field. 

The alignment in strong field will be determined for prolate and 

oblate spheroids at all temperatures. 

The measures of alignment will be PurcelP s quantities 

Q = ~ (cos2A) - .!. J 2 p 2 

3 2 l 
QA = 2 (cos cp) - 2 

where the averages are taken over the distribution function W. The 

function W is normalized so that its integral over all of phase space 

is unity Q Thus,, we require that 

where 

food z /1
(2irdr )/

1
(2irdp)•W ( r)- 1 .. 

'1" Q '1" 41T 411' norm '1"' P" - ' 
0 -1 -1 

w 
norm = 

w 
N 

(162) 

is the normalized distribution, W is one of the distributions we have 

found in Chapter III,, and N is the normalization. In equation ( 162) 

Wis averaged over the solid angles corresponding tor = cosj3 and 

p = cos9.. In addition,, we have, .after integrating over T, that 
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2 
1 

1 2 1 1 
(cos (3) = / l dr or / l dp~ ·W norm(r, p) (162a) 

-1 -1 , 

2 11 1 1 112123 22 
(cos (f))= !12 dr !l z dpo(z-- 2 r - 2 p +2 r p )Wnorm(r,p). 

1. The Sphere in all Fields 

Equation (81) for the sphere may be written 

{ 
2 2 1 .2} J 2 2 l 2} W = exp - T [cos p + 2 s 1 n 13 J = i - :r [ r + :-z ( 1- r ) ] , 

~ e ~ J 

where 

l+b(T ./T) T. 
l+~ ~ ; for large b 

If W is integrated over 'l", the normalized distribution in '3 is 

1 2 2 . 2 -3/2 • 
W '3((3.) = 4iT ~[~ cos f3+s1n f3] 1 

when Q J is evaluated, the result is 

As expected, QA= 0 for all ~ , and QJ = 0 for ~ = L 

2. The Strong-Field Case 

(i) Prolate Grains 

The distribution function for a prolate grain is given by 

( 162b) 

( 163) 

( 164) 

( 165) 

( 166) 
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W =exp 

Although this distribution is inaccurate for weak fields, it does pro-

vide an answer for the weak field case. Thus, we will assume that 

equation {l 02} gives some qualitative · idea of the distribution for 

intermediate and weaker fields, although we make no claim that it 

is accurate in these cases. 

Let us define the quantities 

l 

~2 
l +~o + 4 o 

= 
l +b + ! 0 

0 

A2 = (~2 - l) 1 0 

B2 
s2 

= ~(y-1) I s 
and integrate W over ,. ; the result is 

00 2 
Wnorm(r, p) = f Wnorm T dT 

0 

1 [ 2 2 2 2 - 3 /
2 

= N. A 1 r + B 1 p + l] 
l 

l = N. W(r, p) 
1 

Here.I> W(r, p) is the distribution over angles.I> with r = cosf3 and 

(167) 

(168) 

p = cos e, and N. is the normalization constant. To find N, we con-
1 

sider two cases: s < 1 and s > l. Therefore, we obtain 
0 0 
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(169) 

and similarly we find 

(170) 

~ > 1 (or T. > T) j 

0 1 

Equation (168) is different from the distribution Jones and 

Spitzer (
36 ) assumed for a non-spherical grain. In their distribution 

r and p are completely uncoupled, so that 

3 1 3 
. .L 2 2 - 2 2: 2 -2 

WJ
8

(r, p) = 4 TT [(i; -l)r +l] 11 ~ [(y-l)p +l] . (171) 

Equation (168) permits such a separation only for s and y close to 

unity. The integration over T is what couples the variation of r with 

. 2 
that of p. The values of (cos '3) are found to be 

2 
Finally, the values of (cos cp) are 

(174) 



-67-

The quantities QJ and QA may be found from these equations, and we 

plot QA in Figure 5 of Chapter V. 

(ii) Oblate Grains 

The distribution function for an oblate grain is 

The distribution over angles is 

. 00 2 
W (r, p) = J dr~ r . W (r, r, ·p) norm norm 

0 

(177) 

where the normalization constants are 

N 3 = t-. -1
- tan-

1 [s3 ~ ], s < I, s: = y(I-s
2
), (178) 

3~ ~ 

_ 1, I {Js: + 'Y +S4Jf:'Y} 2 z 
N 4 - S:- o -- ln J , i;>l, i;, 4 = y(S -1) . 

4 Jf:'Y YO +s42 ·> 
(1 79) 

2 
The values of (cos f3) are 



2 I l 
(cos p) =- / 

N. 1 
1 -

2 1 
(cos P) = - -

3 ;2 
3 
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1 2 1 l 
z-dr.r I zdp W(r,p) 

-1 

l 1 . -1 ~3 
N :3 sm - , ; < 1 

3 ~3 fi 
( 180) 

(cos
2

13 >4 = --t; + ~4 • s} ln{Jy (i;4+ )yi-s:>}, i; > 1 (181) 

Finally, the expressions for (cos 2cp) are 

2 l 1 1 1 1 l l 212 3 22 
(cos cp) = - / -dr / -dp(--- r --p + - r p )W(r, p) 

Ni - l 2 - I 2 2 2 2 2 

( 182) 

(cos2qi)3 = 8~ h1~ >.:-HJ,,- s; -N3y<H;;1J}, i; <I 
3 y ~ ·. 

3 ( 18 3) 

(cos
2

qi)4 = 8~4 {(f-,,r i;~ [Jyi-s1 -N4y<i+s:1J}, S > 1 • 

4 . (184) 

The quantity QA corresponding to these equations is plotted in Figure 6 

of Chapter V .. 

3. The Weak-Field Case 

For weak fields (b << 1),, the distribution function is 

W = f exp[- (z + ys2
)] 

2 l 2 = f exp{-'1" [l + 2 op ] } j ' 

( 185) 
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and Q 2 was found in Chapter III. We will use both the { 'T", p) and the 

(s, z) coordinate systems for the nec·essary integrations; the relation 

between their differentials is 

2 
ds dz = 2 'f d,-dp ( 186) 

Thus, the normalization for W becomes 

l 
N = 2 J dr dsdz W(r.9 s.9 z) 

limits 

1 r' 00 00 
2 = -zJdr / ds / dz. (exp[-(z+ys )]} .. [l+{b-e )'f] 

-1 -oo 0 0 

= .!. ii:_ ( 1 - .!. ( b- € )( ~ + l} 
2fi 3 00. 

1 ~ z JY {I + .!. (b-e )( ~ + l)} 
N JTr 3 9 a 

( 187) 

The factor involving Q
2

(s.9 z} in N vanishes when we integrate over 

r. In addition, we assume that b << l and e ~ b .. 
0 

Let us now find (cos
2

(3 ). The integral is 

2 l l 1 1 ZOO OO 2 
(cos (3) = N .. Z J Z dr. r / ds / dz. {exp[-(z+ys )]}. {l+(b-eJt} 

-1 -oo 0 

1 25_ 00 00 2 
= 3 +TS a__(b-e 

0
) f ds f dz. (exp[-(z+ys )] }. Q 2 ( s, z) • ( 188) 

Jrr -oo -oo 

The factor of ~ is the value obtained from a totally random orientation 

of the grains.. We see that the deviation from randomness only involves 

the function a
2

.. Thus.9 

3 2 . l 
QJ = 2 (cos (3) - Z 

lJY 00 00 . 2 
= 5 ':1:L (b-e ) f ds/(exp[-(z+ys )}. Q

2
(s, z)dz 

Jrr 0 -oo 0 

( 189) 
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For (cos
2cp) the result is 

2 1 1 1 1 00 00 3 2 2 1 2 1 2 1 
(cos cp) = N • Z / Z d r / d s / dz. ( Z r p - 2 r - 2 p + 2) W ( r, s, z) 

-1 -oo 0 

l 1 00 00 2 2 22 2 = BN /dr /ds /dz (1-r -p +3r p ). {exp[-(z+ys )]}.fl+(b-e
0

}'1r} 
-1 -co 0 

1 1 2 = 2 - 2 (cos (3) 

1 r::;- 00 00 2 2 
+ 5 ~(b-€0) /ds f dz. p • (exp[-(z+ys )]}. 0

2
(s, z) , (190) 

Jrr -oo 0 

so that 

3 2 l 
QA= 2 (cos cp) - 2 

1 3 r:::- 0000 2 2 . 
= - z QJ + 20 "LL._(b-e

0
)/ /dz·. p • (exp[-(z+ys )]}. Q2 (s, z)ds. 

F -oo o 
( 191) 

It now remains to evaluate these quantities by using the functions 0 2 

found in Chapter Ill. 

(i) Nearly-Spherical Grains 

For these particles Q
2 

is given by equation (161): 

2 2 [ 4 l 2 1l o2 = 3 (z+s ) + o - IT z + 3 s + /\j 

1o1 << I, 
2 2 .l s 

p = ,. , 'j" = (z+ s ) ~ ; p = T = c OS e ' 

( 161) 
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We evaluate QJ and QA by integrating over (T, p) space. Let us write 

00 2 1 2 
I(p,o) = f dp.p .x1(p).exp{-p[1+ 2 op JJ , (192) 

0 

so that QJ and QA become 

{ l 4 l 0 /
1 

2 } = (b - e: 
0

) 5 - 75 o + fO - d p. ( 3 p -1 ) . I ( p, o ) , 
if« -1 

(193) 

. { 7 l 6 l 2 = (b-e: 0) - 7 5 0 0 - 2 0 - I d p. ( 3 p -1 ) . I ( p, 6) 
Ji -1 

3 0 11 
2 2 } +25- dp.p .(3p -1).I(p,6) 

~ -1 
(194) 

The factor of ~ in Q J is the contribution due to a spherical grain. 

These integrals must be evaluated numerically, and we will treat in 

the next chapter the quantity 

Q ( 1 ) = Q I (b - e: ) 
A A o 

(ii) The Needle 

For the needle a 2 is given by equation (149): 

2 /3/2 a 2 = (-2 + 4y s ) z u 1 (z) , 

l f(al) { 00 1 l -z1 l j 
IT f(b ) U(a 1, b 1, z) f dz M(ap b 1, z )e (z ) 

l 0 

00 
l l -z 

1 
1 j } +M(al' b 1, z) ~dz U{a 1, b 1, z )e (z ) , 

j !I__ - . 1 b - 2·+1 = 2 ' a 1 - J+ ' I - J 

(195) 

(149) 

We now change variables to the (T, p) coordinate system and make the 

approximations of equation (135) for the needle: 

z = 2 . 29 2 
T sin ~ 'T' = p (135) 
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Further, define 

0 >> 1 , (19 6) 

so that 

2 8 2 2 2 2 
(-2+4ys ) = -2 + (4+ [) )T pl ~ -2 + 4T pl (197) 

(198) 

Equation (189) for QJ now becomes 

l l Jf5 00 2 2 2 
QJ = 5 - (b-e: ) J dp 1 f 2T dT. o2. exp[-T (l+p1 )], (199) 

JTr 0 -Jfb 0 

_and equation (191) for QA becomes 

(200) 

Since the second term is of order ! times the first, we obtain 

(201) 

If we substitute for Q 2 from equation (149), then 

QJ l 1 Jf5 00 .!. (l+ 2 ) 2 Jf/2 - - f dp f dp. pa e-p P1. (-2+4p
1 

p). P'-' u
1 

(p), 
(b -€ 0) - 5 JIT :.;f6 1 0 

(202) 

and this integral must be evaluated numerically. 
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CHAPTER V 

DISCUSSION AND CONCLUSION 

We now possess the measures of alignment for the various 

cases. In this chapter we discuss these results» noting their features. 

We next compare our conclusions with those of Miller and Purcell. 

Finally, we briefly consider the field strength and grain temperature. 

1. Discussion of Results 

Let us fir st recall sorn e of the quantities of interest .. any 

other symbols needed may be found in the appendix. Thus, 

QA = a measure of axial alignment for the grain 

3 2 1 = Z (cos cp) - 2 
3 = - 2 F (5) 

cp = angle between the grain symmetry axis and the magnetic 

field 

T = temperature of the gas 

T. = internal temperature of the grain 
1 

e = ratio of the grain semi axes 

e > l for a prolate spheroid . 

e < 1 for an oblate spheroid 

e = l for a sphere 

0 = e:
2
-I 

b = a parameter which compares the effects of the magnetic 

field with those of the gas collisions 

= ~ VB
2 

w gh 
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b P = Purcell 
~o0 

b-.oo 

b = 1 

~ 

b = 0.1 

~ 
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-:--

Figures 5&6 

Plots of QA 
vs. 
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e
0 

= a parameter which compares the effects of the internal 

temperature with those of the gas collisions 
+ 

= b T./(~) T 
i m 

Since QA is directly related to the polarization only if the Rayleigh

Gans scattering theory is correct,, we wi 11 regard QA as simply a 

convenient measure of the grain's axial alignment with the magnetic 

field. 

Figures 5 and 6 present a plot of QA as a function of e for 

several values of Band {T./T). All numerical values were calculated 
1 

by computer .. The interesting cases are for (T./T) < 1, and they are 
1 

treated in Figure Sa for prolate grains and Figure 6a for oblate grains. 

Figures Sb and 6b treat only the case (T./T) = 3 in order to show that 
1 

the alignment reverses for T. >To The points marked "P'' are the 
1 

values calculated by Purcell,, together with his claimed uncertainties; 

they are discussed later.. We note that 1 QAt increases as b increases 

and that QA _. 0 as e: -+ 1.. 

Now consider Figure Sa, which shows the alignment for prolate 

grains and (T./T) < L For b = 0. 1, L. 0,, and 10. 0, the graphs of 
1 

1 QAI rise to a maximum at e ~ 2 and then decrease as e becomes 

largero This behavior is caused by the factor of 
1 . 

{ 
2 2 ( l + b+ 4 0 )} 

exp -1" sin J3. I in equation {102). If bis fixed and o in-
l+e +4 o 

0 l 1 
creases, then the term (l+b+ 4 o)/(l+e

0
+ 4 o) decreases - thus,- sinJ3 

increases on the average,, and JaAI ultimately decreases .. 

Physically,, as e increases,, so do the particle's volume and 

surface area. The volume effect increases the magnetic torque,, while 

the surface effect allows more collisions with gas atoms to occur. 
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These two processes compete and apparently yield the curious graph 

of I oAt for finite b. If bis extremely large, then o/b is small, and 

the graphs show only a monotonic increase of f QAI withe. In our 

calculation, we took b = 1040 as our Hinfinitere value;· we see that the 

maximum value of J QAI for b = 10 is roughly i the value for b-+ oo. 

The temperature effect is also interestingo The increase of 

internal temperature from (T./T) = O. 01 to (T./T) = 
9
1 

substantially 
l l 

affects \QA\ only for b-+ oo; the finite values of b show just a small . 

decline in J QAI. However, the increase from (Ti/T) = ~ to (Ti/T) = ~ 
is quite substantial in its effect on 1 oAI.. Thus,, these graphs seem to 

favor (T./T) E;; O. 1 in order to retain a fair degree of alignment. 
1 

Finally, the ultimate value. of QA for complete alignment is -0. 5 .. 

This number is only approached for extremely large band extremely 

( I ) 40 ( /T) -8 .. l small T. To For example" b = 10 and T. = 10 y1e d 
l l 

QA~ -0 .. 42, and we find that 10A+ ! I is proportional to [log(b/e
0

)]-
1 

.. 

Next, consider Figure 6a, which shows the alignment for 

oblate grains and (T ./T) < L Here JI the graphs all increase mono-
1 

tonical_ly as e ~ O" which is a different behavior from that of the pro-

late grains.. The reason is that for oblate grains the relevant factor 

in equation (114) is exp{-rr
2 

sin
2

(3. (f !~ >} ,, and the term (I+b)/(l+e
0

) 

0 

has no dependence on shapeo Apparently" the competition between 

surface and volume effects in the oblate case has different results 

from those of the prolate case .. 

We also note that the temperature effects are the same for the 

oblate as for the prolate grains. For finite b the values of ( QAI for 
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the two grain types are comparable at all of tle temperatures given. 

Finally, we observe that for b-+ oo and (Ti/T)-+ 0, the maximum value 

of QA is ·o. 250 This is less than the value of QA= 1. 0 which would 

be expected from complete alignment of the disks.. We will not try to 

explain this surprising behavior on physical grounds: we only will 

note that this result follows from the mathematical solution.. However, 

we again state that for finite values of b, oblate and prolate grains are 

comparably aligned. 

2.. Comparison with Purcell 9 s Results 

E .. M. Purcell( 14) wrote a computer program which simulates 

the history of a single grain. He assumed that a hydrogen atom 

which strikes the grain remains there,, and that other atoms evaporate 

from the grain surface randomly. He considered two possibilities: 

(i) evaporation of the atoms at the temperature of the grain; (ii) evap-

oration at temperature of the gas.. The first case is expected to be 

a more realistic assumption.P while the second case applies if the gas 

atoms collide elastically with the grain - which Jones and Spitzer 

assumed in their article. 

Purcell vs calculation seems valid for the strong field case .. 

He called his measure of the field strength 6
11 

and we find that 

cS - b. ( -::-TI-ah ) Purcell - av (203) 

= Zb for spheres. 

For convenience,, we will assume f>p ll = b. Purcell found that urce 

for f> = I.I) the value of QA reaches saturation, and this occurs for our 
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1 2 3 4 5 6 7 8 9 
QA QJ 

8 
Ti 

JS 
Ti T Ti T 

rr- p MG p MG p MG p MG 

1 1 -o. 061 1-0.ll~ -0.11~ ,_0.149 -0.13E ft0.257 0.242 H-0.31E 
.... 5.0 9 f+-0.00E +0.009 ft-0.018 +0.02( 0.291 

2 B ff-Oe 72 ftO .U41 0.045 +0.06E 0.061 ,_0.139 
~0.107 

-0.21] -0.147 4-0.004 H-0.004 ft-0.014 +0.012 

3 1 +0.016 0.077 0.061 0.097 
-J.2 9 ±_0.007 

4 3 -0.017 -0.02C -0.023 -0.026 +0.003 
5iO. f-0. T3C ,_0.087 ~o.1oe 

+U. ~br{ 0.177 0.220 H-0.012 ft-0.024 
I-

'65.0 ... o.086 
-0.08~ -0.105 f+-0. H)6 0.181 0.224 

N 
~0.009 t0.021 

17~.5 (]) 
1.-0.06? -o. 073 -0.093 ftU.l'fb 0.194 0.239 1+0.006 +0.014 

d 
I-

ft:"o .1,,c; 
8J.4 H-0.032 0.050 +0.065 0.165 0.198 tt_0.005 +0.011 

9J.l +0.057 0.055 +0 .. 072 +0.19? 0.152 0.181 +0.008 ~0.014 

Table 1 

A Comparison With Purcell 11 s CB.lculated Values 

The JS column contains QA values which Purcell calculated 

based on the analysis of Jones and Spitzer 

The Ti columns contain values calculated for evaporation 

at the grain temperature 

The T columns contain values calculated for evaporation 

at the gas temperature 

Purcell's values (P)' are for his J' = 1. Our values (MG) 

are for b ___,.,... oo 
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b ... oo. If we compare Purcell's results with our own, we find the 

values in Table 1. We have numbered the rows and columns; the 

empty spaces are quantities which Purcell did not calculate. The 

other columns are as described below the tablec For the T. columns 
1 

we calculated QA and QJ assuming that the atom-grain collisions are 

inelastic; for the T columns we calculated these quantities assuming 

elastic collisions. The differences between the two cases are seen 

to be quite substantial, and these contrasts exist for the following 

reason. From equations (35) and (71) we obtain 

+ { l for an elastic collision 

mm = -} (l + JT/T ) for an inelastic collision • 

Thus 9 the values of € for the two cases can be fairly different. 
0 

(71) 

(35) 

Since the distribution functions found in . Chapter III depend exponen-

tially on €
0

, the effect on QA can be substantial. 

Our rough treatment - in the appendix - of an inelastic atom-

grain collision should be equivalent to Purcell's case (i). The only 

difference is that we assume the same atom to collide with the grain 

and evaporate from its surface.? while Purcell assumed that different 

atoms take part in each eventQ We assume that when an average is 

taken over all collisions and evaporations 1 the two viewpoints should 

yield the same resultsQ 

If we compare our answers with Purcell's, the agreement is 

mixed.. Consider first the T values of QA in columns 4 and 5, which 

are also plotted in Figures 5 and 60 The numbers in rows 16 · 21 and 4 
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agree quite well, while the pair in row 3 disagree. The two T. pairs 
1 

in rows 1 and 2, columns 2 and 3 agree well - yet in columns 6 and 7 

the pair[(l, 6),, (1, 7)] agree and the pair -[(2, 6), (2, 7)] disagree. Sim

ilarlyJl the pair [(l, 8), (1. 9)] agree while [(2. 8), (2 .. 9)] disagree.. For 

rows 5-9, columns 2 and 3, three of the pairs agree and two disagree. 

Similar remarks hold for rows 5-9, columns 6 and 7. 

Thus, from 20 pairs of values,, 8 of the 11 QA pairs and 4 of 

the 9 QJ pairs show good agreement within Fur.cell's claimed uncer

tainties. The remainder show varying amounts of disagreement.. In 

addition, the trends of the QJ values disagree. Purcell's QJ values 

decrease as e .... 1, while our values increase - reaching a maximum 

at e = 1 for the sphere. Since we do not know the details of Purcell's 

calculation.? we are unable to account for the curious disagreements. 

However, we can explain the discrepancies between the values 

found by Jones and Spitzer, listed in column. l, and those of Purcell. 

The distribution function of Jones and Spitzer is equation ( 171 ).. If 

we believe that our equation (168) is the more accurate one, then we 

see that the two equations are similar only for € ~ 1 and (
1
1:b) ~ 1. 

€0 

Since the numbers in column l were found for cases which violate 

these condition~, they are in disagreement with other results .. 

We may conclude that Purcell w s computer program seems to 

enhance the effect of the magnetic field. The reasons are the following: 

(i) 12 out of 20 of his results for o = 1 agree with ours for b .... oo; 

(ii} the order of magnitude of his other 8 values corresponds to that 

for large b; (iii} he obtained saturation effects for 6 = l - that is, 

if he took 6 larger than unity, QA did not increase .. · Finally; although 
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the disagreements are puzzling, it is of some comfort that there is 

fair agreement on the QA values - since the methods of solution are 

so different. 

3. Results for Nearly-Spherical Grains in Weak Fields: A Com-

parison with Miller 

When we evaluate QA numerically on Caltech's IBM 360-75 

computer, using equations (161), (192), and (194) for this case, we 

obtain the following values in Table 2 for € = 0: 
0 

Table 2 

Q /b 2 
0 

A - 3 QA/bo = (F/bo) 

0.03 7. 148xlO -4 
0.0159 

0.06 6 -3 l. 41 xlO 0.0157 

0.09 2. 103xIO -3 0.0156 

0. 12 2.717xIO -3 0.0154 

o. 15 3.440xlO -3 0.0153 

In his thesis C. R. Miller found the alignment for zero tern-

perature, nearly-spherical grains in weak magnetic fields. Though 

his analysis contains an error~ its numerical effect is small for this 

case; the details are in the appendix. Using a different method from 

our own, Miller(3
?) obtained the result that 

(F Miller)/bo = o. 0161 (203a) 

The agreement between our values and Miller's result is noteworthy-
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especially as 6 approaches zero, the value for a sphere. Our result 

for F shows an interesting drift as o increases; thus, F seems to have 

a small non-linear dependence on 6 even when we ignore terms of 

order o2 
in our solution of equation (134). 

4. Remarks on the Field Strength and Grain Temperature 

Our measure for the field strength is the parameter b. If 

all the constants are substituted, then for a sphere we obtain 

B
2 

(
VII )0 = (1 o. 3) 

0 + ~ 
o o rn r::::o w a T. nH ( - )v T -o 1 m 

In this equation, the parameters have the values 

-5 B = (B x 10 ) gauss, 
0 

T. = (T .0 
X 10) °K 

1 1 

-5 
a = (a x l 0 ) cm. 

0 

n = H 
0 

(nH x l) 
3 

Hatom/cm , 

T = (T 0 x 100) °K 

~ = [< ~ )o x (2. 5xl0~ 1 2)]. i-i 

(204) 

(205) 

Th 1
.£ B o -5 us, = T. = .. . = 1, then a field of I 0 gauss may be 

0 1 

considered "strong" since b ~ 10, while a field of 10-
6 

gauss may be 

considered "weak 11 since b ~ 0. l. 
2 

Because b depends on B , b is 

sensitive to changes in the field strength. 
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For the case of a spheroid, the only factor in equation (204) 

which changes is (V /h). We find that 

( v) 1 0.5 
= 2a = --h a sphere 

(206) 

( v) 16 1 0.567 
= 91T ·a = h a needle 

(207) 

( v) 4 l 
-t 0 0 = ( 3 € ). - as e -t 

h disk a 
(208) 

Thus~ for a mathematical disk,, ( ·t-> ... O. However, from Table 3,, 

we see that € = j , or certainly e = } , is close enough to a true disk 

for the purpose of finding QA .. 

Table 3 

QA 

(T./T) = 0 • . 01 ('r./T) = 1/9 (T./T)= Oo5 
l 1 . . 1 

e b = 1 b= 10 b = l b = 10 b = 1 b-. - 10 

·o. os ·-2 
2.6zx10 -2 

10 .. 38xl0 
-2 

2.22xl 0 -2 7.18xl0 
-2 

l.02xl0 2.29xl 0 -2 

0.2 Z!54 10. 21 2. 15 7. 03 0.99 2.22 

Oe35 2. 36 9.82 l. 99 6.68 o. 91 2.06 

0.5 2.07 9. 15 l. 74 6.08 0.78 I. 80 

v 4 1 
Thus, ( h) . ~ TS - , so that all of the geometrical factors in b 

disk a 
are reasonably close together. 

Most estimates of the grain's internal temperature do not 

allow T. to become much smaller than 10 °K. Of course, (T./T) is 
1 l 

just as important as T. itself. We see from Figures Sa and 6a that 
1 
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(T ifr) = O. 1 is about as large as the ratio can get before f QA f de

creases substantially. Therefore, if the gas temperature, T, may 

increase for any reason, then T. can increase as well. However, the 
1 

parameter b would then decrease according to equation (204). It is 

also interesting to note that for prolate grains the best alignment 

occurs for e ~ 2.9 while for oblate grains substantial alignment still 

1 may occur for e = 3 Q Thus, extreme spheroidal grain shapes are 

unnecessary. 

Our approximations in Chapter III are adequate for b = 10, 

(T ./T) = O. L If we accept the corresponding values of the other 
l 

parameters (B .9 a , etc .. all equal to unity), then the problem is 
0 0 

whether the polarization data are consistent with values of I QAI ~ O. 1. 

If the polarization data demand much greater values of I QA I, there 

are severe problems with the alignment mechanism of Davis and 

Greenstein. If the data permit values of )OAl ~.I, then some of the 

parameters in equation (205) could be determined more accurately. 

It will be of interest to see how this question is ultimately settled. 
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APPENDIX 

A. Detail of Prolate Grains in Strong Field 

We set a:! y = l + ~ o in equation (72i) and obtain 

{
1 i rl 2 i v

2 
2 J} i 

2 + 4 o L( 1- p ) - 2 -z ( 1- 3 p ) f crcr - ( 1+ 2 o )cr f 
0 

'T' . 

{ 
1 1 ri 2 ,} 2 ]} + 2 ( i +€ 

0 
> + 8 o L( I+ p > + ;z ( i - 3 p > r vv 

1 1 2 I 
+ f-2 (1+€ > + -

8 
o(l+p )} - £ 

0 'J \) 

l 2 + {( b-2e -1) + -
2 

o [ (b-Ze )p -1]} v f 
0 0 \) 

1 2 [ l v
2 

l 2] 
+ z,.z{l-p ) l+eo - 2 eo? + 2 o P f PP 

[ 
. l v2 

l 2 l 2 2 1 v2 
] _...£... I+e -- e -.,. - A o(l-3p )- -o(b-2e ) • .,.. (I-p )(I---.,-) f 

2 OZOG~ 2 0 2 G p 
'l" T 'i 

1 O"\J 2 l ~ 2 1 \Jp 2 + - 0 -.ir ( 1- 3 p )f - - 0 ( l - p )f - - 0 -.,- ( 1 - p )f 4 G crv z cr p 2 G v p 
T 'T' 'T' 

{ 
2 [I 2 l ,/ 2 l 2 2 2 +(b-e

0
) 2(1-v ) + o 2 (1-p )- ;4 --z{l-3p )- 2 o T p (1-p ) 

T 

l 2 2 2 2 2]} + 4 o v p { 1- 3 p )- Zv p f = o (72a) 

We make the scale changes N = ,fb \J:J P = Jb( y-1) p = Jjbo p , and 

find that the dominant terms are 
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This equation is different from equation (95) of the main text because 

here we have kept all terms of order e and e 6. Thus, it is valid 
0 0 

for all values of e • 
0 

The discussion for the N dependence proceeds as in the text 

and needs no elaboration. It remains to consider the terms in P. 

We may write the P dependence in the form 

If we set 

2 2 f(P) = exp(-A 'f P ) A = 
1- € /b 

0 

l+e 
0 

(209) 

then the fir st group of terms vanishes$ and the second group yields as 

its residue 

(210) 

Thus,, the terms in the second group are of order 

2 2 
e A, e 6 A, e A , e 

0 
6 A :1 

0 0 0 

while those in the first group, for which the solution is exact~ are of 

magnitude 

2 2 
bo,, e bo; A bf>,, A b cS, A e bcS; e o, e o A 

0 0 0 0 

Now suppose e; << b, which includes e << 1 and e ~ 1. Then 
0 0 0 
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we find that A -1, and the largest terms in the first group are of 

order bo and e ho. The terms in the second group are of order 
0 

€ and e 6, and since bo >> 1, these residues are much smaller 
0 0 

than the dominant terms in the first group. 

Next, suppose that e
0 

>> b. Then we find that A"""! , and the 

largest terms in the first group are now of order e 6, ho, and e ho. 
. 0 ~ 0 

. € € u 

The largest terms in the second group are of order ~ and+ o 

Unless e becomes extremely large, i.e .. e >> h
2

, these residues 
0 0 

may still be ignored. If e is so large, then the grain is extremely 
0 

hot. If the grain does not evaporate altogether at such tern perature s, 

then we know that it will be strongly ·aligned.. This qualitative behavior 

is already predicted by our solution in the text. We will use this solu- · 

tion for the case of extremely hot grains, even though the solution may 

be numerically inaccurateo 

If€ 
0 

rw b, then we find again that A,_-~ • However, our original 

assumption that (v),..,, -
1
- and (p) ~ -

1
- fails since actually 

Jb ~ 
(v) ---1/~ and <p>,_ l/J(b-e )6 o Thus, as e ~ b, other terms in 

0 0 0 

equation (72a) become important. These other terms cannot change 

the qualitative behavior of the solution, since we know that 

f::: 1 for b = € 
0 

and our solution for f does have this correct behavior. Since the 

alignment is quite weak for e """b, we will not try to obtain a more 
0 

accurate solution .. 

Therefore.11 we may swnmarize the results as follows: 
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2 
For € << b (T. << T} and for b >> e >> b our solution for 

0 1 0 , 

f - equation ( 101) - is quite accurate. Thus, 

[ 

(1-eo/b) 2 2 (1-eo/b) 2] j. 
f = exp - 1 +e T P - 1 N . 11 + terms 

0 l + €0 + 4 0 
of order ~ + ... I . 

(211) 

2 
For e ""b and for € >> b , our solution is qualitatively 

0 0 

correct. We have not improved its accuracy because for e >> b 2 the 
0 

grain is too hot for the problem to be of further interest. 

Let us finally obtain some idea of how accurate equation (101) 

is for o >> b >> 1. Suppose, first, that b = 0 and o >> 1: then equation 

(95) takes the form 

(terms of order o) + (terms of order 1) + . . . = 0 (I 02a) 

We know that the solution to this equation for b = 0 is £ = I. 

Next, suppose that e = 0 - for simplicity - and that b << 1, 
0 

bo >> l: then equation (95) becomes 

(terms of order&)+ (terms of order b6) +(terms of order 1) 

+ (terms of order b) + . . . = 0 (102b) 

In this equation, the terms of order ho and of b are the same as in 

equation (95) withe: = O; only their size relative to the otherterms is 
0 

smaller. The terms of order bo provide the alignment in pas before: 

more importantly, however.11 the terms in b provide again the align-

ment in \J - since the alignment disappears without them. We may 

divide equation (l 02b) by 6 and obtain that 

b 
f (v) :! l + terms of order 6 + ... (102c) 

which shows that the alignment is quite weak. 
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Finally, suppose that o >> b >> L The only change is that in 

equation ( 102b) the terms of order b become larger than those of 

order 1. The solution sti 11 has the same form as equation ( 102c) 

b 
because I) << 1. 

Now consider equation (97): we observe that it has the correct 

qualitative behavior in all cases, even though it may be numerically 

inaccurate for o >> b. Since the alignment is small for this case, we 

will not attempt to find a more accurate solution. Thus, we use equa-

tion (102) for all cases although it may be numerically inaccurate for 

If€ (; 0, we obtain the summary of results given in the main 
0 

text of the thesis o 

B. Detail of Oblate, Nearly-Spherical Grains in Strong Field. 

2 
We seta~1+ 5 o,, o

1 
= -o>O, . l 1 

I\/= i +-o =I --o 
I 2 2 1 

in equation (72i) and change the p-dependence to a dependence on A., 

with 
1 

'A = ( 1- p 
2

) 3 = sine ( 105) 

The resulting equation, with o
1 

<< 1,, is 
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the dominant terms are 

( 107b) 

This equation is different from equation (107) of the main text because 
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he re we have kept all terms of order e and e o 
1

• 
0 0 

If equation ( 107b) is compared with its counterpart, equation 

(95a) in the previous appendix for prolate grains, it is seen that the 

two equations are quite similar. Therefore, we can expect that the 

residual terms are similar - though not identical ... and that the conclu-

sions regarding the accuracy of equation (113) are the same.. The 

important point is that the order of magnitude of the residues compared 

to that of the dominant terms is the same in this case as in the prolate 

case. Thus, we may conclude that: 

(i) for e << b (T. << T) and for b
2 >> e >> b, our solution 

0 l 0 

for f - equation (113) - is accurate to terms of order~; 
2 

(ii) for e; ,..., b and for e >> b , our solution is only qualitatively 
0 0 

correct,. 

Since 8 1 = l - e
2 

·and the smallest value of e is e = 0, the 

large st possible value for o 
1 

is o 
1 

= 1.. Thus, o 
1 

<< b and we do not 

have the same situation with the prolate grains in which o >> b can 

occur. 

C. Detail of Disk in Strong Field 

We set a= l~ y = ~ in equation (72i) and change the p depend-

ance to a variation with 'A, where 

2 .! 
A. = (l- p )z = sine ( 105) 

The resulting equation for f is 
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1 1 2 
-2 f - -2 ( 1 +A. )cr f crcr cr 

We make the scale changes N = Jb v, Q = JbA. = Jb sin9 and find 

that the dominant terms are 

( 11 7c) 

Equation ( l l 7c) is different from equation ( 117) of the text because it 

contains all terms of order e ., 
0 

If we set 

_f 1 (1- € o/b) 2 2 2 } 1 ( 1 - 8 o /b) 
f = ex1l - Z 1 + ) (N +rr Q ) , A = 2 1 +e , ( 122) 

€0 0 

then the fir st group of terms vanishes, and the second group of terms 

leaves a residue given by 



We find that the order of magnitude of terms in the fir st group is 

while the order of magnitude of terms in the second group is 

2 
A, e A, € A 

0 0 

Thus, the "dominant" terms in the first group are always larger by a 

factor of b than those in the second group for all values of e • 
0 

If € - b, however,, other terms in equation (72c) may become 
0 

· important and equation ( l l 7c) might no longer be an accurate approxi

mation. Equation (122) does have the correct qualitative behavior 

that f = 1 for e = b, and we will use it even though it may be numerio 

cally inaccurate for e l'V b .. 
0 

Therefore, we may conclude the following: 

Fore: <<bore >> b, equation (122) is accurate to terms of 
0 0 

1 
order b .. 

Fore: -b, equation (122) is qualitatively correct but may be 
0 

numerically inaccurate. 

Since o 
1 

= 1 for the disk, we do not have the complications 

involving this parameter which we have in the prolate case. 

D. Detail of Miller's Calculation for Weak Field 

In his thesis C. R. Miller obtained the Fokker-Planck equa

tion (70) without the terms R (T). In the second part of his work, 
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Miller solved this equation for nearly- spherical grains in weak mag-

netic fields. His procedure was to first change variables frofn the 

original µ, ,.,, C set to 

1 

p = cos9 = µ C '-'"5 

{213) 

The variables r, p, and p are the same quantities used elsewhere in 

our work. For purposes of comparison, we note that 

our p - cos9 = Millervs ns" , 

2 + 2 
our p = J /(m c I y) = Miller's "q" , (214) 

while r = cosf3 is the same in both worksa 

If the terms R (T) are removed from equation {70), a;::_ is set 

equal to zero, the above changes of variable are made, and a sub-

script on f means a partial derivative with respect to that variable, 

then the resulting equation is 
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.!_ {(l+a) (1- z)f - (l+a) z f + (l+a) (1-rz)f - (l;aa) Zr f 
p Za P pp 2a P p 2a rr r 

+ 4 2 f + Z( 1 +2a) f + ~( .'l + Z) _ 2 J f} 
p PP a p p ~ a p p 

. {4 2 . l 2 4 [3p
3 

Zp J 
+ (1-a) a p(l-p )fpp +Zap (l-3p +Zp )fpp + ap - ap . fp 

2 2 2 
Z ( 1- r ) f + £...2:. f + 4 PP f } 

-p Zap rr ap r a pp 

2 z 
+ PP (1 - ~)£ 

a 

2 {[ 1 z z 4 z 2 2 4 2 2 + a b - 2 ( y- 1 ) ( p + p )( r + 1) p + z ( y- 1 ) r p p + p( r - 1 )( 1+2 ( y- 1 ) p ) 

l 2 2 2 2 J + 2 ( y- 1 )( r + 1 )( p + 1 ) - Z { y- l ) r p + 2 f 

z z 2 z + 2(1-r ) [l+(y-l)p ]pfp -; (1-r )[l+(y-l)p ] rfr 

1 2 2 } + 2 ( y- 1 )( 1 +r )( 1- p ) p f p = O ·( Z 15) 

When Miller obtained this equation, he made an error in finding the 

coefficient of ( 1- a)f • Instead of 
p 

[
3p

3 
- Zp] 

ap ap 

Miller obtained 

3 
_P_ 
ap 

Although this error may be serious for other cases - such as 

non-spherical grains - for nearly- spherical grains this error was not 

serious for reasons to be given shortly. Miller solved this equation 

as a problem in perturbation theory, regardi~g the fir st group of 
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terms as his "unperturbed" equation. All the other terms in this 

equation are small for weak fields and nearly-spherical grains. 

The terms in the first group contain the differential operators 

for Legendre polynomials in p and r and for Laguerre polynomials in 

p. Miller used these functions as a complete orthonormal set of 

eigenfunctions and expanded his solution in terms of them. Thus, 

he wrote f in the form 

f =I {216) 

L, m, n 

obtainedy (p) in terms of Laguerre polynomials, and then solved for 
n 

the contribution which each perturbing term in equation (215) would 

make. He found that only L = m = 2 was needed to find the contribu-

tion to F, and we came to the same conclusion in deriving equation 

(194) for QA. Miller then evaluated numerically the contribution 

from the p variables and obtained 

where 

DB
2 

F = 0 .Ol 61 { y-1 ) 0--

Miller's Q-l = ~ b. - 1-
a {DB2) 

= ~b 
a 

The reason that Miller's error was harmless is that the 

(21 7) 

(215) 

(1-a)f term is independent of b; hence, to the accuracy of Miller's 
p 

approximation~ its contribution to F is negligible. Miller 1 s eigen-

function expansion is equivalent to a Green 1 s function method of s olu-

tion because the infinite sum over the eigenfunctions can be written 
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as a Green's function. Since our solution was substantially different 

in algebraic detail from Miller's, the agreement of the final results 

is encouraging. Miller 1 s thesis may be consulted for further details 

about his solution. 

E. Miller's Derivation of the Diffusion Coefficients 

Due to Collisions 

We will obtain equations (34)-(38) as follows: First, we will 

recall the variables µ, fl, C used by Miller. Next, we will find 5 J 

due to a single collision, using a coordinate system suited to the 

grain. We will then find ®, the transition probability to be used. 

After that, the moments E. and E .. of 6 J will be found. Finally, 
1 lJ -

these moments will be transformed from the grain coordinates to the 

µ, fl, C coordinates by using 

µ = 
,. 

J.A 

fl = ([. :~)/B 

c = J.J (65) 

which are scalar equations and true in any coordinate system. Only 

terms to lowest order in the ratio (atom mass/grain mass) will be 

kept. Our treatment follows Miller's work very closely. 

l. A Set of Variables 

We must choose a set of variables x. and ox. to use in the 

Fokker-Planck equation (12). 

·1 ·1 

For our variables x., we use the same 
1 
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ones that Miller did: 

µ = J case -oo < µ < 00 

Tl = J cosj3 -oo < Tl < 00 

c = J2 o<c<oo (26) 

Now consider a single atom-grain collision: the event occurs 

quickly enough to produce an impulse 6 [of angular momentum. 

This impulse is the ox. which Miller used in equation (12); 6J will 
1 -

change [, 13, and 9, but not the particle's orientation in space. The 

grain 1 s reorientation follows from its nutation about the new J. 

2. Effect of a Single Collision 

Let U = velocity of hydrogen atom before impact (21 9a) 

"Q. 1 = velocity of hydrogen atom after impact 

m = mass of the atom 

m. = mass of the grain 
1 

fg = angular velocity of the grain 

R = position vector from the origin of the grain's 

coordinates to the point of impact 

(b) 

(c) 

(d) 

(e) 

then the angular momentum lost by the atom is that delivered to the 

grain9 or 

6J = m Rx (U - U ) 
- - -1 

(220) 

For an elastic collision, Miller assumed that the atom re-

verses all components of its velocity relative to the grain surface. 

In a standard elastic collision, only the velocity component normal 

to the grain surface is reversed - while the parallel component is 

unchanged. Miller's type of elastic collision is much easier to treat 

than the standard one. 
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Therefore, let us define two frames of reference: (i) the 

rest frame of the grain surface, which is the primed frame; (ii) the 

rest frame of the grain center of mass, which is unprimed. The 

incoming atom velocity is 

(U') 1 t' = U-(wXR), 
- e as 1c - - -

(221) 

and the outgoing atom velocity is 

(U I) = - (U ') . 
-1 elastic - elastic 

(222) 

Thus, we find in the unprimed frame that 

(u ) = (U') + ( x R) 
-1 elastic -I elastic ~ -

(223) 

( 6 J) = 2 mR X (U - w X R) 
- elastic - - -

(224) 

Now consider an inelastic collision and suppose that the grain 

is at zero temperature. We assume that the atom hits, sticks, and 

then is thrown off with the local velocity of the grain surface. Or, 

we assume that for T. = 0, the ·case Miller treated, 
1 

(!;! { \nelastic = 0 

so that 

(225) 
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Next, suppose that the grain temperature equals the gas 

temperature. From the second law of thermodynamics, we know that 

no net flow of energy can occur between the gas and the grain. One 

easy way to fulfill this requirement is simply to set the outgoing 

velocity equal and opposite to the incoming velocity - or, for T. = T, 
1 

I ) I 

(!:!1 inelastic = +(!!1 )elastic · (226) 

Although this assumption is unrealistic, we ~s sume that when an 

average is taken over all atom-grain collisions, then the final results 

will be qualitatively correct. 

Let us now consider the case for T. f:. T~ Suppose that in the 
1 

primed frame the atom strikes the grain with an average energy of 

1 z kT, so that 

.!_ m ( ( U' ) 
2 

) = -
2
1 k T ( 2 2 7) 

2 -

We will discuss this assumption shortly. Next, we assume that the 

atom leaves the grain, in exactly the opposite direction, with an 

1 
average energy of 2 kT i' so that 

(228) 

and, if we take root mean square valuesJ) then 

(229) 

Equation (22 7) is only approximately correct since we should 

write 



However, we find that 

WR 
u 

m 
m. 

1 
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= !.m([U'+ {wXR)J
2

) 
2 - - -

(230) 

(231) 

... 
where m. is the grain mass, so that we may ignore this small effect. 

1 

Equation (229) is also unrealistic, but it appears to have some of the 

correct qualitative foatures. The equation is consistent with our 

previous assumptions for T. = 0 and T. = T, and it has the_proper 
l 1 . 

temperature dependence. We only regard equation (229) as a rough 

estimate which we hope will yield the ·correct qualitative behavior. 

Therefore, we may write 

(U{linelastic = -~ U' (22 9) 

t . 
= - - 1 

(U - W XR) T ...... - ...... 

so that 

( U 1 ) . 1 t. = ( u'l ) . l t. + ( w x R) - ine as ic - 1ne as 1c - -

(U- Ul). 1 t" = (l+ /T:T) (U-wxR) , 
- - ine as ic V rf" - - - (232) 

(o Dinelastic = m( 1 + JT/T) ~ X (Q - ~XE). (233) 

We may combine equations (224) and (233) by writing 

+ o J = Zm RX (!:! - ~ X ~) (234) 

where rn + is an effective mass for the collision model, so that 



+ rn 

-103-

= { m for an elastic collision 

} m (l + ~ ) for an inelastic collision 

3. The Transition Probability 

(35£) 

Let an element dl:: of the grain's surface during a time dt 

collide with N d U d l:: dt hydrogen atoms with velocities between U 
. - -

and U + d U • If dt << (average time between collisions),, then 

® = N d Q d l:: dt also gives the probability of a collision during dt. 

Although equations (7)-(12) use a time M >> (average time during 

collisions) >> dt,. Miller( 3B) showed that using dt to find E. and E .. 
1 lJ 

is equally correct.. Thus, 

E.dt = dt/(oJ.)NdUd~ 
1 1 -

i = x,, y, z (235) 

E .. dt = dt /(o J.)(oJ.)NdUd~, i,j= x,y,Z,, 
~ 1 J -

(236) 

where the x,, y,, Z coordinate system is fixed in the grain, with its ori-

entation to be specified later; d U = d U d U d u
2

; and the integra-
~ x y 

tions are taken over all of the grain surface and atom velocities. 

Relative to a point on the grain surface.? the atom velocity 

is U - (~ X ~ ). For a collision to occur, the normal component of 

this velocity must be toward the grain. If this requirement is com-

bined with a Maxwell distribution of atom velocities, then 

2 
-A e-mU /ZkTn .. [U-(wXR)]dUdr! dt --- ................ -... ~ 

® = N dU d~ dt = for !:· [Q- (~X!~)J ~ 0 

0 for n. [Q- (~x~) > O (237) 
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x 

Figure 7 

The u, v, w components of 11 which are used ,..._, 

in the integrations over velocity 



-105-

Here,, ~ is a unit vector outward and normal to the grain surface, 

and A is a constant to normalize the atom density to nH/cm 
3

, or 

A -3/2 -3 
= ir nH c (238) 

In addition,, c is the hydrogen atom characteristic velocity, given by 

1 

c = (2kT/m)a (239) 

4. Orders of Magnitude of Terms and Velocity Integrations 

To estimate the order of magnitude of terms in equations 

(235) and (236), we may expect that a term involving ~and R will be 

l 2 l 2 2 
of order wR/c.. Then kT - 2 I .W ,...., 2 mi R w , so that 

(wR/c),...., (ZKT/m.)a (2kT/m)2 "-' (m/m. )2 Yi 
1 1 

1 1 
(240) 

and only terms of lowest order in this ratio will be kept. 

To treat the limits which equation (237) sets on the velocity 

integration, introduce the velocity n, where 

0 = U/c (241) 

At each point on the grain surface, attach a coordinate system for g 

as shown in Figure 7. The components u, v, and w of 0 are oriented 

so that the u-axis is along~; the v-axis is normal to the ~l Z plane and 

is parallel to the x-y plane; and the w axis is in the ~ Z planeo With 

these coordinates, ~· Q = c u, so that the limits on U are 

-oo < v, w < oo and -oo < u ~ n. (w x R )/ c - ...... -
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We denote the vector for the first three moments by 

= (E , E , Ez) 
x y 

= / (o_[) N d Q d~ 

(242) 

(243) 

If we substitute N from equation (237) and (o I) from equation (234)., 

then 
00 0 

d ~ J dv dw J (I) du 

. surface v, w=-oo 
00 u 

u=-oo 

surface v 1 w= -oo 

0 J dv dw J (I) du 
0 

(244) 

where u = n. (w X R)/c.ll and the integrand (I) is 
0 - - -

(I)= [u(RxO) + (l/cXu )[Rx (w x R)] - u (R x 0) 
-- 0 - - - o- -

2 2 2 
- ( l / c) u ~ X ( ~ X ~)} exp [ - ( u + v + w ) J (Z45) 

Consider the fir st integral in equation (244). If the fir st term in (I) 

is integrated over velocity space,, the result will be 

00 0 

JJ dv dw J du u (~ x 0) exp[-(u
2 

+ v
2 

+ w
2
)] 

u=-oo 

= R x I u n d 0 exp [ - ( u 
2 + v 2 + w 

2
) J - -

The integrals for the v and w components here will give zero. Only 

the u component will be left,, giving a constant times B XE· But, 

rf-h d~ (~ X n) = 
suiface 

- srs dV(~X~) = 0 
votume 
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since V'X~ = 0, so that the first term gives no contribution. As the 

second term is of higher order in (m/m.) than the third or fourth 
1 

terms, we neglect it and are left with, if o2 = u
2

+ v
2

+w
2

, 

00 0 

1st integral ·= - JJ dl: {u0(~X~)g:jdv dw J du u exp(-0
2

) 

surface v,w=-oo u=-oo 
00 0 

+ (l/c) ~ X (~XR) JJ dv dw J du u exp(-0
2

)} 

v, w= - oo u= - oo 

= 2: <fJ di: [(~xn)@x~. ~+~ x (~x~)J (246) 

surface 

Now consider the second integral of equation (244). In it 
1 

the maximum value of lul is 1u I,...., (m/m.)~ << 1, so that exp{-u
2

) = 1 
0 1 

+ second-order terms. If the terms in the integrand (I) are now 

treated, we see that the second integral only contributes to third 

order in ( wR/c) and may therefore be neglected. Thus, 

-rr
3/z E J/(2m + nff c

2
) is given by equation (246). 

The integrand for equation (246) may be wr.itten in terms of 

a dyadic. Thus, if U 
1 

is the unit dyad, 

as may be seen by expanding in the u, v, w system. If ~ is the grain 1 s 

inertia tensor, and ~ - l its inve.r se, then ~= ~ - l !!_. - . If G and g are 

defined by 

G = # di: [ R 
2 

U l + ( ~ X ~)(~ X ~) - (~ )(~)] (248) 

surface 



g = 
.!. + 

'IT-~ nH m c 

then we obtain 

-1 
.. g G ~ J 

6. The Second Moments E . . 
lJ 
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(249) 

(250) 

We denote the symmetric matrix of the six second moments 

by 

E E E 
xx xy xZ 

EJJ = E E EyZ yx yy 
(251) 

Ezx EZy Ezz 

= I ( 0 !!_)( 0 .J) N d Q di: (252) 

where (o J)(o J) is the dyadic or its matrix representation. IT equations - - . 

(237) and (234) are substituted into equation (252Lthere results 

3/2 I 3 + 2 I · 
-1T EI_ J [ 4 nH c (m ) J = I1 du dv dw di: , (253) 

where the region of integration is the same as for E J , and 

I = {(RxO)(RxO) + (l/c
2

)[Rx(wxR)][Rx(wxR)] 1 ~ ................ --.... ......... __ ,....,,,_ ................... --

- (l/c)(~ xO)[~ x (Ci!JX~)]- (l/c)[g x(~xg)J(g x.Q.)} 

2 2 2 
[ u - ( 1 / c )!2;: ( ~ X ~) } exp [ - ( u + v +w ) J (254) 

The term of lowest order is u(~ X QH~ X D_)exp(-0
2
). Any terms 

which are odd functions of v or w will integrate to zero. If such odd 
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terms are left out, the matrix which represents this dyadic is 

2 2 2 2 2 
(R w + R v ) -R R w v w u v 

2 
(R x O)(R X 0) = - R R w 
- - - - u v 

2 
-R R v v w 

2 
-RR v u w 

where R , R , and R are the components of R along the u,, v, w axes. 
u v w -

If this expression is multiplied b~ u exp[-(u
2
+v

2
+w

2
)] and integrated 

over the range of velocity variables -oo < v, w < oo, -oo < u ~ 0,, the 

result is 

/I l du d v d w = - ~ (R
2

+R
2
)-R R -RR 

v w u v u w 

-R R (ZR 
2

+R 
2

) -ZR R 
v u w u v w 

(256) 

-R R -ZR R {2R
2

+R 
2

) 
w u w v v u 

For the same reasons as given with E J , the integral over the region 

I . - 3/2 I 3 + 2 
. 0 < u < u

0 
= ~· (~X ~) c may be neglected; thus -ir EJJ' [4nHc (m) J 

is given by the integral of equation (256) over the surface of the grain. 

By expanding in the u, v,, w coordinate system, we may show 

that equation (256) equals the dyadic -(ir/4)[R 
2u 1 '+(~ X!:J(~Xn)-{EH!3)]. 

Therefore, 

+ 2 = g:i;n c G (257) 

where g and G are defined in equations (248) and (249). 

?. The Moments E. and E .. for Spheroids 
1 lJ 

Equations (250) and {257) are valid for an arbitrarily shaped 
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particle. To treat spheroids, we may take the Z-axis as the axis of 

rotational symmetry for the grain. By considering the off-diagonal 

terms, we find that G is diagonal in this frame. Thus, 

ah 0 0 

G = 0 ah 0 ) (258) 

0 0 h 

where we have written the two equal terms as ah , and G is deter-

mined by the two constants a and h. 

This coordinate system will also diagonalize the inertia tensor, 

which may be written 

yI 0 0 

0 yI 0 

0 0 I 

~ -1 = 

l/yI 0 0 

0 

0 

l/yI 0 

0 I/I 

(259) 

If we now put equations (258) and (259) into (250) and (257), we obtain 

E 
h a 

J = -g r -x 'Y x 

E h a J = -g r -y i' y 

EZ = -g h J 
I z 

(260) 

and 

E + 2. h = gm c ··a xx 

E 
.. 2 

ah = gm c yy .. 2 
Ezz= gm c h 

E = E xZ = E = 0 xy yZ (261) 
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We may now perform the surface integrals of equation (248). 

If the spheroid diameter along its rotation axis is 2ae:, and its perpen-

dicular diameter is 2a, then we find 

(262) 

1 

+ rz + €2 ][.!. €4 .!.] ( sin-1 )(le:2-1la)}. (263) 
L 2 1 4 I 2 1 I i . h- 1 € € - e - sin 

In these equations, sinh - l is to be used for an oblate spheroid,, e < l, 

-1 
and sin for a prolate spheroid, € > 1. A plot of a is shown in Figure 

2. For the nearly-spherical case, when e e: 1, we have 

h ~,,. a
4 

[8/3 + (16/15)(e
2
-l)] 

ah ~ 1T a
4 

[8/3 + (32/15)(e
2
-l)] 

2 2 
a ~ 1 + S (e -1) 

For the disk and sphere, a= 1; for the needle 

a ~ {l/2)e
2 + {1/3) 

(35.t) 

( 3 5 .t) 

The moments of inertia can be found if the grain is of uniform 

density. They are 

I = (2/5) M a
2 

yI = (1/5) M a
2 

(l+e
2

) (264) 

y = ~ (l+e
2

) (35m) 
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Thus, for the needle, 

8. The Moments E. and E .. for the Fokker Planck Equation 
1 1 

To express the moments in equations (55) and (56) in terms 

of the orientation variables µ.171, and C, we use equation (25) , 

,.. 
µ. = J .. A 

,., = J. ~ 

c = J. J (65) 

where B is a unit vector in the direction of B. Since A and 13 re-

main fixed in a collision and only r changes, 

,.. 
+A. oJ 

,. 
oµ = A. oJ y +AZ oJZ x x y 

0_11 = ~ oJ +~ Y oJY + ~z cSJz x x 

oC = (I_+ oJ)z _ J2 

= 2(J oJ + J oJ + J2 oJz) x x y y 

+ (cSJ )2 + (oJ )2 + (0Jz)2 
x y 

(265) 

To find the components of A, ~, and .:!_ in terms of µ, ,.,, and 

,. 
(, orient the grain as shown in Figure 8: the symmetry axis A is 

,. 
along Z, as previously; and now the y-axis is in the J, A plane.. To 

fix the direction of ~, we need 'It, the nutational angle, and all 

quantities will be averaged over 'It· Thus, 
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y . 

Figu-re 8 

Ori en tat· ion of th ex · ' y, Z Coordi . nate Sy t s em in S pace 
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,. 
A = A. = 0 

x y 
,. 

1 Az = (266) 

J = 0 
x 

J = Jsin9 
y 

Jz = Jcos9 = U (267) 

j3 = sin'f sinp 
x 

~ = cost sinl3 cos e - cosl3 sine 
y 

I\ 

cost sinj3 sin9 + cosl3 cos9 Bz = (268) 

From equation (55), we obtain 

E = 0 
x 

E = *a J sin9 y 

Ez = g_!! 
I \..1 (269) 

and from equation (265) 

6C = 2J(-sin9 oJY + cose oJ2 } 

+ (oJ )z + (oJ )2 + (6Jz)2 
x y 

(2 70) 

We may now obtain the moments in the µ, ri.9 C coordinate 

system. Equation (68) provides ou. O'fl, oC,9 (6µ)
2

, (6'fl) 2, (oC)2, 
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(oµor,), (µoC), and (onoC); by using equations (260), (261), (268), and 

(269), we find 

E = 
gh 

-- µ 
µ I 

2 2 
E = -~ n[~-~1!....+l:L] n I 'Y 'Y C C 

2 

EC = g
1
h [ m + cl I( l+la) _ 2µ (y;n) + 2aC J 

E ghm + 2 
= c 

µµ 

+ 2 2 
ECC = 4ghm c [aC+(l-a)µ J 

E + 2~ = gh m c C µr, 

EµC 2 gh m + 2 
= c µ 

E = ,.,, + 2G 2 J 2ghm c an+(l-a)T (2 71) 

These are the moments due to collis_ions which must be put into equa-

tion (33). When this substitution is done, we obtain equations (36), 

(37), and (38)., 

F. Effects of Fluctuations in the Galactic Field 

According to arguments by J. R., Jokipii and E. No Parker,( 4 0) 

the galactic field itself fluctuates~ Theyproposed a stochastic model of 

the field in order to explain the escape of cosmic rays from the galaxy. 

In their model, the lines of force do a random walk, and the length 



-116-

scale of these fluctuations is of order 100 pc. To obtain a time scale, 

we may use the Alfv~n velocity ,_ ( B/ J'P) for a characteristic speed. 

When B,...., 10-S gauss and p,..., 1 H atom/cm 3, we find a time scale of 

order 10 13 -10
14 

sec - which is about the same order as the time re-

quired to align the grain. 

However, this time scale will not adversely affect the grain 

dynamics. The aligning torque is obtained by aver~ing over a single 

nutation of the grain - 10-S sec; thus, the field fluctuations here have 

no effect~ The particle's precession is altered very little, since it 

occurs_. 104 times faster than the alignment - as was shown in the 

discussion following equation {25)e Thus, these field fluctuations 

affect the particle only in its long-term alignment. The grain is 

oriented with respect to the field and follows the field direction. 

(11 12) 
Greenberg ' treated the case when the field fluctuates 

more rapidly than the alignment takes place. The result is that the 

qualitative effect on the polarization is the same as the effect of in-

completely aligned grains. At present, it is unclear if such field 

fluctuations do occur. 

G. A Summary of Coordinate Systems and Changes 

of Variable 

( 1) The µ,, 11,, C system was used for treating the effects of 

collisions of the grain with surrounding hydrogen. 

µ. = J case -oo < µ < 00 

11 = J cosp -oo < 11 < 00 

c = J2 0 < c < 00 (26) 
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(Z) The X, Y, Z 
1 

system was used for treating the effects of 

non-zero T. . 
l 

X and Y are axes fixed in space with X and Y .1.. ~, X .1.. Y, 

and Z 1 \\ ~· See Figure 4 .. 

(3) The r,, s, z system was used for treating the effects of weak 

fields. We transformed (U., r), C) _. {r, s, z) with 'f a dependent vari-

able. 

-1~r~1 

s = J cose =-.._.µ __ -oo < s < 00 

Jm + cz Iy J;D + cz Iy 

z = 
Jz . z 9 ,.. z 

--+,..._s-2 .... n __ = --~-+---,,i¥,__-
m c Iy m c Iy 

O~z<oo 

z .!. 
(z+ s ) a 'f = , . (71) 

(4) The cr, \J, p; T, A. system was used for treating the strong 

field case. We transformed (r, s, z) _. (cr, \J, p) with T a dependent 

variable. 

(J = 'f cosl3 = Tr -oo < O' < 00 

z .!. 
\) = 'f sin{) = rr(l-r ) 3 -oo < \) < 00 

cose s p = = -
'f 

-1,Sp~ 1 

1 

'f = (crz + \Jz) "i 0 ~'f < 00 (74) 

We transformed p _. A. for oblate grains 

z .!. 
A. = (1-p ) 3 = sine -1<A..s1 ( 105) 
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(5) The x, y, Z frame was used in order to orient the grain in 

space while treating the effects of collisions. Thus, 

x, y, and Z are axes fixed in the grain as shown in Figure 8. 

(6) The u, v, w coordinate system was used for the velocity 

integrations. See Figure 7 and the discussion following equation (241). 
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LIST OF SYMBOLS 

shape factor 

angle between J and B 

ratio of moments of inertia 

+ 2 
m c I y 

2 

{
(€ -1) 
increment notation 

2 ( 1-e; ) 

increment notation 

ratio of grain semiaxe s 

€ > 1 prolate grain 

€ < 1 -oblate grain 

e = l sphere 

E /(ghm + c 2 ) = b(T./T)(m/m +) 
0 l 

Jz 

J cosf3 

angle between !.. and ~ 

transition probability 

sin9 

a function of s and z 

J cos9 

J sinf3/ ff = 'f sinf3 

jT /T = j( l+e )/( l+b) 
av o 

,Ai +e: 
0 
+ to)/( 1 +b+i o) 

cose 

z z.!. z.!. 
( cr +v ) ;! = ( z+ s ) a = J /Jr 
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B 
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LIST OF SYMBOLS (Continued) 

angle between B and A 

inertia tensor of grain 

magnetic susceptibility 

real part of X 

imaginary part of X 

(f-1 )/b for weak fields 

angle between!_, Ai and J,, ~planes 

angular velocity of grain 

.speed= U/c 

J cosj3/ ff = 'f cosj3 

surface of grain 

unit vector 

grain symmetry axis 

magnetic field of galaxy 

a function of S in weak field 

(X "/ w)(V /Iy) 

{
expectation values 
moments of ~J 

2 k T .(x"/w}VB
2 

1 

distribution integral 

shape factor matrix 

{
hydrogen 
Hermite polynomial 

longitudinal moment of inertia 

transverse moment of inertia 

angular momentum of grain 
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LIST OF SYMBOLS (Continued} 

K a function of s and z 

KX steady effects of DG torque 

L probability current 

M magnetization 

M(a
1

, b
1

, z} confluent hypergeometric function 

N {Jb\J 
number of atoms striking grain 

N 
0 

N. 
1 

p 

s 

T 

·T. 
1 

T av 

Teff 

u 

a function of 'T' 

normalizations for cases i 

Jb( y- 1) p = Jf bo p 

Jb" sin9 

measure . of axial alignment 

measure of ·!, alignment 

radius vector 

right-hand side of equation 

rotational kinetic energy 

JYs 
temperature of gas 

internal temperature of grain 

T ( 1 + e ) / ( 1 +b) 
0 

+ T(m /m} 

velocity of H atom 

U(a
1

, h
1

, z) confluent hypergeometric function 

U 
1 

unit dyad 

V volume of grain 

W distribution function 
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w 
0 

x 
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LIST OF SYMBOLS (Continued) 

Maxwell-Boltzmann distribution 

W MB for no gas 

an axis fixed in space .1. B 

an axis fixed in space J. B 

a function of p 

an axis fixed in the grain 

Z 1 an axis fixed in space \I ~ 

a 

ae 

b 
0 

c 

f 

g 

h 

i 

j 

k 

m 

m. 
1 

a function of z 

transverse semiaxis 

semiaxis of symmetry 

j+l = ,/3/2 + 1 

Zj+l = ff+ 1 

(x"/w) vB
2 
/gh 

nH b 

J2kT/m 

-1 
WMB W 

-1- + 
ir ... nH m c 

shape factor 

subscript 

ff /2, subscript 

Boltzmann's constant 

subscript 

mass of H atom, subscript 

mass of grain 



n 

p 

q 

r 

s 

t 

u, v, w 

x. 
1 

x, y 

z 
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LIST OF SYMBOLS (Continued) 

unit vector 

rfF H atoms/cm
3 

2 
T 

JbfJ; A. = Jb6i sine 

cos{3 

J cos8/ ff= T cos8 

time 

velocity integration coordinates 

variables used in defining Fokker Planck equation 

axes fixed in grain 

-2.2/ 2 .2 J- sm e r = 'T sm e 
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