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ABSTRACT

We calculate the alignment of interstellar dust grains with
respect to the magnetic field of our galaxy. The alignment is found
for several values of magnetic field strength, internal grain temper-
ature, and grain shape. We treat in detail the following processes
which affect the alignment: (i) a dissipative magnetic torque due to
Davis and Greeﬂstein; (ii) the collisions of the grain with interstellar
hydrogen; (iii) the non-zero internal temperature of the grain.

We obtain a Fokker-Planck equation which takes account of
these processes, and the solution of this equation provides the proba-
bility distribution of grain orientations. The equation is solved for
these cases: (i) spherical grains in all fields; (ii) needles, prolate
spheroidal grains, nearly-spherical oblate grains, and disks in strong
magnetic fields; (iii) needles and nearly-spherical grains in weak
fields. Using the distribution of orientations, we calculate the degrees
of alignment.

Our results are in mixed agreement with those of E. M.
Purcell and in good agreement with the weak-field calculation of
C. R. Miller. We find that for the relatively strong magnetic field
of 10_5 gauss and grain temperature of 10°K, the measures of align-
ment are smaller than the values obtained from complete orientation

of the grains.
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CHAPTER 1

INTRODUCTION

Interstellar grains are the small particles of dust which exist
between the stars of our galaxy. Although these grains form but a
small part of the total mass of our galaxy, they have an important
place in astrophysics. For these particles play a role in many
interesting problems, which include: the formation of molecules

like OH, HZ’ or NH, on the grain surfaces; the temperature balance

3
of the interstellar gas; and the polarization of light from distant stars.
In their review articles, J. M. Greenberg(l) and N. H. Dieter and

W. M. Goss(z) provide a more complete list of these questions and
discuss several of them. In this paper, we will consider only a
portion of one of these problems. The main topic is the polarization
of light from distant sta.rs;' the portion which we will treat is the
orientation of the dust grains in space.

J. S. Ha11(3) and W. A. Hiltner(4) discovered the polarization
of starlight in 1949. At the time, their discovery was accepted as
giving strong evidence that the grains do exist. Indeed, two features
of their results were noteworthy: (i) a correlation between the degree
of polarization and the magnitude of the absorption of the starlight;

(ii) 2 uniformity of the directions of polarization over large areas of
the sky. Thus, (i) showed that absorbing grains of dust could polar-
ize the starlight; while (ii) made it difficult to conceive of anything
else which might. For most of the other possible sources of polar-
ization would involve a small region of space, and (ii) made them

unlikely prospects.
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To explain this polarization, in 1951 L. Davis, Jr., and

154 hereafter called DG, proceeded in the following

J. L. Greenstein,
manner. They first assumed that a magnetic field exists within our
galaxy. Using a model for the dust, in which the grains are bom-
barded by surrounding hydrogen atoms or ions, DG next proposed that
a dissipative magnetic torque acts on the particles. By means of this
torque, the magnetic field of our galaxy aligns the grains with respect
to the field direction. DG further calculated the distribution of grain
(6)

orientations which this aligning torque yields. Finally, they used

(7)

a classical theory of light scattering, due to R. Gans,' ' in order to
find the polarization which the partially oriented particles produce.
This calculation was one of the first to provide evidence that a mag-
netic field does exist in our galaxy, and many accepted the treatment
as giving a fair idea of the processes at work.

Yet the paper of DG was incomplete in several respects.
They made only a rough calculation of the distribution of grain orien-
tations; thus, it was difficult to estimate the field strength needed to
produce a given degree of alignment. In addition, the Rayleigh-Gans
scattering theory is correct only when dust grains are small compared
to the wavelength of the incident light. Since the particles are thought
to be of order 10"5 cm. in size, this scattering theory is incorrect
for visible light. Therefore, DG were unable to accurately predict
the polarization which would be produced once the size, composition,
and temperature of the grains were specified, together with the mag-

netic field strength. Thus, it was impossible to be sure if the DG

process was correct; neither could the observational data on polari-
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zation be used in order to limit the parameters of the grains or to
confidently estimate the field strength.

Since the original paper, a fair amount of work has been done.
In 1962 C. R. Miller treated the statistical mechanics of the DG pro-
cess in more detail. Using the same DG model for the grains and the
forces acting on them, Miller improved their rough estimate for the
distribution of grain orientations. He obtained a Fokker-Planck
equation for the alignment of the particles; and he solved this equation
for the case of nearly-spherical grains in weak magnetic fields.(8)

Independently of Miller, in 1967 R. V. Jones and L. Spitzer,
Jr. ,(9) hereafter called JS, obtained a Fokker-Planck equation for
the alignment of spheres having a positive internal temperature.

They treated this case because in 1956 C. Kittel(lo)

pointed out that
a positive internal temperature would generate fluctuations of mag-
netization in the grain, tending to disorient the particle. JS solved
their Fokker-Planck equation for spherical grains in an arbitrary
magnetic field; they gave a rough treatment of nearly-spherical
grains; and they treated in detail the possibility of new grain compo-
sitions in order to permit alignment in weak magnetic fields.

In 1968(“) and 1969(12) J. M. Greenberg published review
articles on the status of the interstellar grain problem. In both papers
he treated the case when the magnetic field has an irregular direction;
the result is that the qualitative effect on the polarization is the same
as the effect of incompletely aligned grains. He also summarized(13)

his microwave analogue experiments on the scattering produced by

particles of any size--especially particles of size equal to or larger
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than the wavelength of the incident radiation.

In 1969 E. M. Purce11(14) used a Monte-Carlo computer
calculation to simulate the history of a single grain. His computer
program generated random collisions of the grain with surrounding
gas molecules, random evaporation of atoms from the surface of the
grain, and the systematic DG alignment mechanism. Using this pro-
gram, he found the alignment for several grain s.hapes and grain
temperatures.

After 1950 the galactic field itself became an accepted fact.
The techniques of radio astronomy were used in order to measure the

field strength, and Greenberg(ls) :

quoted typical values of 2-5X10"
gauss. Both Greenberg and JS stated that the DG process may demand
magnetic fields an order of magnitude larger. The reason is that the
polarization data apparently require the grains to be substantially
aligned; this result would demand magnetic fields strong relative to
the effects of the gas collisions. Thus, the strong field case must be
considered in treating the grain alignment. However, the question of
how large a field is needed by the DG process remains unsettled.

This paper will extend Miller's work on alignment: it will
treat the strong field case, consider non-spherical grains, and deal
with the effect of positive grain temperature in a fashion somewhat
different from that of JS. Starting with Miller's Fokker-Planck
equation, we will add extra terms to describe the grain temperature.
The enlarged equation will be solved for the following cases: (i) an

exact solution for spherical grains in arbitrary magnetic fields; (ii)

an approximate solution for needles, disks, and nearly-spherical
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grains in strong magnetic fields; (iii) an approximate solution for
needles and nearly-spherical grains in weak fields. Finally, we will
compare results with those of JS and Purcell.
Our work will not calculate the polarization to be expected, nor
will it treat the observational data. In principle, once the scattering
properties and the alignment are known for the grain, then the polar-

(&) has described the procedure

ization can be found; Greenberg
elsewhere. In addition, we will not give a detailed discussion of the
galactic field strength, nor will we consider any grain composition
different from the one treated by DG.

The discussion proceeds as follows. In Chapter II, we first
introduce the variables which describe the orientation of the grain
in space. Next, in terms of these variables, we define a probability
density which provides the distribution of orientations for the grain.
Using this probability function, we obtain the parameters which meas-
ure the degree of alignment for the grain. In order to find a differ-
ential equation for the probability function, we introduce and briefly
discuss the Fokker-Planck equation of statistical mechanics.

Now, to each physical process which affects the grain's orien-
tation, there corresponds a set of terms in the Fokker-Planck equa-
tion. Therefore, each of these processes is treated in turn. To find
the terms due to the steady aligning torque, we discuss the DG mech-
anism. To find the terms due to collisions of the grain with surround-
ing gas atoms, we present Miller's results for these quantities. His

detailed derivation is given in an appendix.
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Our contribution to the alignment problem begins in the fifth

section of Chapter II, where we conclude the procedure of adding
terms to the Fokker-Planck equation. The effects of the grain's
internal temperature are discussed, and the relevant terms are
added so as to obtain the enlarged Fokker-Planck equation for align-
mént. In Chapter III this equation is solved for the various cases
mentioned. In Chapter IV the parameters which measure grain
alignment are calculated. Chapter V discusses all these results

and concludes our work.
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CHAPTER II

THE FOKKER PLANCK EQUATION FOR GRAIN ALIGNMENT

1. A Set of Variables to Characterize the Grain Alignment

We first introduce variables to describe the orientation of
the grain in space, which is shown in Figure 1:

A is the symmetry axis of the grain

A is a unit vector along A

B is the magnetic field

1  is the angular momentum of the grain
B is the angle between J and B

6  is the angle between J and A

® is the angle between B and A

~

Y  is the angle between the plane of B and J and the plane
of Aand J . (1)
All symbols used in this paper are listed in an appendix.

Let us briefly consider the free body motion of the grain. The
angular momentum, ,J,, remains constant. Since the particle has
rotational symmetry, the axis A rotates uniformly about J, the angle
between them staying fixed. Thus, B and 6 are constant, while Y
increases uniformly. Since the orientation of J about B is random,
we need no azimuthal angle for J; in addition, all calculations are
averaged over Y,

We next present variables to describe the alignment of the

grains:



Figure 1

The Orientation Angles

B 1is the magnetic field
d 1is the angular momentum of the grain

A 1is the symmetry axis of the grain



r = cosfP ,
p = cosb ,
-1 = (r,p) =1 . (2)

Let the probability density of orientations be

W(r,p) = W_(r,p) + W, (r, p) . (3)
In this equation W(r, p) is the fraction of the grains for which r lies
between r and r + dr and p lies between p and p + dp; We is the
equilibrium density in the absence of a magnetic field. In general,
W and W1 also depend upon the size of the grain, while We does not.
However, since we only treat the case for which the grains all have
the same dimensions, we do not include the particle size as a vari-
able in defining W. Moreover, W is not a function of Y because all
calculations are averaged over that angle.

Finally, to measure the grain alignment, we use the conven-

ient numbers

11
F = - [1_/1 W, (r, p) . (coszq)) dr dp , (4)
1 1
Q, = %[I_l [, W(r,p). (cos®®) dr dp]-% . (5)
3,1 1 _ 3
= glg-Fl~3 = ~3F,

[

-1 1
QJ = —g—\:f:l ]:1 W(r, p) . (0052(3) dr dp:\ - (6)

The quantity F was used by DG,(17)

and the quantities QA and QJ
were used by Purcell.(ls) Both QA and F measure the alignment
of the symmetry axis, while QJ measures the alignment of the angu-

lar momentum. The factor of -;— in equation (5) is the average value

of (cosZCp) when W is equal to We’ since We is a random distribution
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of orientations.

We note that if the Gans theory is valid, then F, Q,, and QJ
are the only quantities needed - along with the optical properties of
the grain - in order to compute the polarization. Any other scattering
theory requires the complete description of the grain orientations
contained in W. In Chapter IV we calculate the values of 'Q'A and QJ

for the various cases of interest after we obtain W.

2.  The Fokker-Planck Equation

In order to find W, we may apply the Fokker-Planck equation,
which is a parabolic, or diffusion, type of differential equation treated
in statistical mechanics. The Fokker-Planck equation is often used
for situations in which a probability function depends on variables
which are themselves subject to random changes. Such is the case
for the grain, for which the random changes arise from two main
sources: (i) the collisions of the particle with surrounding hydrogen
atoms or ions; (ii) the effects of its non-zero temperature, which are
discussed in a later section. There are extensive treatments of the

Fokker-Planck equation in the works of S. Chandrasekhar(lg)

and
N. Wax.(zo) We will briefly discuss the equation along the lines of
Chandrasekhar's presentation.

Let (Xl’ & B xn) be the set of variables of interest, and let
W(Xl’ sees X, t) be its probability distribution at time t. Thus,

w dx1 dx2 “eo dxrl is the probability that the ii:£ variable is in the

range x, to x, + dxi at time t, fori=1, ... ,n. During a small time

interval At, let the i-t-}-l- variable change by an amount Axi.
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We now assume that the processes which cause this change
Axi can be separated into two portions. One portion yields a ''steady"
rate of change, >'ci, which is due to some known external force which
may depend on X, The change due to this process is
(Ax,) = >’<i At. (7)
steady
The other portion is written
(8x,) = bx, (8)
fluct
and is a fluctuating change for which we have only statistical knowledge.

The total change in %, during the time interval At is
Ax, = x. At + 6x, , 1% 1, sas 41 (9)
i i i

This separation of ;{i At from ﬁxi is justified under the following
conditions: there must exist time intervals At during which 6xi under -
goes many fluctuations, while }'ci At is small. In other words, given
two successive times, ty and ty * At, the ''steady' forces are strong-
ly correlated at the two instants, while the '""random'' forces are un-
correlated. Such is the case for the grain. We will find that the
steady DG alignment process requires time scales of order 106
years; on the other hand, the average time between collisions of the
particle with hydrogen atoms is of order 30 minutes.

We must next describe the 6xi in equation (9) by some transition
probability @. We will consider several possibilities. In the first

instance, we assume that® is independent of :'ci because the }'ci have

been separated from the 6x,. Thus, let (X ,0000,X 3 00X , 0000, 0%X_;
i 1 n 1 n
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s At) d(6x1) o ere d(6xn) be the probability that a change will occur in
% by an amount between )'ci At + 6x, and :Ei At + <‘3xi + d(6xi),
i=1, ... ,n, during time At if the current values of the variables

are Xy, ceee, X o Define the expectation values Ei and Eij’ in terms

of first and second moments of ®:

(6%,) = [... [ 6%, ®(x_;6x_;At) d(6x;)...d(6x )
= E O+ o[(at)? ] ) (10)
(6%, 6xj> = [oo.f ox, 6xj O(x_; 6x_;At)

d(6x1) e s d(ﬁxn)

E,; Ot + o[(a)’] . (11)

Our notation indicates that we expect these moments to be proportional
to At.
Let the third moments and all higher ones be proportional to

higher powers of At. The situation is now precisely the one treated

by Chandrasekhar,(?“l) and the Fokker-Planck equation for W is
W
i, J

The separation of Ax].L into )'ci At and 6xi is somewhat arbitrary.
For example, the terms in (12) resulting from the }'ci and 6xi contribu-
tions may be combined into one E_(new), while still keeping ® inde-
i

pendent of >'ci. We then find that
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g mew) p o (Axi> = %0t + glold)

il i

gjoew) . s, glold) (13)
Tl 1 1

Thus, the first and last terms in equation (12) would be combined into

one. For Eij we obtain

E .(.new) At
1)

(Ax.Dx, )
1]

]

° °® 2 [ ] [ ]
(xixj>(At) + At(xiéxj +Xj 6Xi> + (6x16xj>

(At)zl}';.{c. + 2 glold) ;'{.E.("ld)] G VR PN
1771 i i

Since terms are only kept to order At, this yields

" (.new) - E.(_old)

i ij
and the second term of equation (12) remains unchanged.
It is also possible to treat ® as a '"complete'' transition proba-
bility, including both ''steady'' and ''fluctuation' effects. The result

would be to separate Ei and Eij into several contributions. Thus,

we would find that

E(inew) - E(isteady)+E(ic011isions)+ E(fos. temp. ) , (16)
(steady)

and similarly for Eij' In equation (16) Ei is the portion due to
the DG process; Ei(colhsmns) is the contribution due to collisions of

(pos. temp. )

the grain with surrounding hydrogen; and Ei

is the part
due to the effects of the grain's positive internal temperature. The

final equation for W would be the same as equation (12).
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The terms Ei and Eij in equations (12) and (13) are often

expressed as diffusion coefficients, and we now turn to finding them.
Each physical process affecting the grain's orientation in space will
contribute its own set of diffusion coefficients to the right-hand side

of equation (12). We will consider these processes in turn, starting
with the Davis-Greenstein mechanism. We will then treat the effects
of collisions and finally consider the grain's non-zero internal temper-

ature.

3. Diffusion Coefficients Due to the Davis-Greenstein Process

We will calculate the relevant terms in the Fokker-Planck
equation after a brief discussion of the Davis-Greenstein mechanism.
Our work follows that of DG.

We begin with the following assumptions:

(i) A magnetic field exists within our galaxy. The field is
essentially uniform and constant over distances of astronomical
units and times on the order of days,

(ii) The grains are spheroids of revolution of order 10-5 cm.
in size. This form is chosen because it is the simplest non-spherical
shape, which is needed in order to produce polarization. The size is
obtained from the data on extinction of the starlight.

(1ii) The particles are formed mainly of ice with enough
impurities to be weakly paramagnetic. Other authors have proposed
different compositions, but we only treat the 'dirty-ice' model.

(iv) Hydrogen surrounds and bombards the grains. The hydro-
gen temperature is 100°K for the gaseous H I regions and 104°K for

the ionized H II regions. For HI regions, and for a grain density of
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1 gm/cm3, these assumptions imply that the particle has an angular
speed of order 105 rad/sec.

Next, let us consider the motion of the grain in somewhat
more detail than was done at the beginning of this chapter. Assume
that the grain's angular velocity is @ and that the aligning torque is
weak. Therefore, during a time interval of duration 1/w, the rota-
tionally symmetric grain is almost a free body. If the grain were
truly free, it would behave as follows:

(i) The angular momentum would remain constant.

(ii) The symmetry axis A would rotate uniformly around J ,
taking Y through 2w radians in each cycle. One such cycle of ¥ is
called a nutation.

(iii) The angle 6 between J and A would remain constant.
Since the particle is not really free, the effect of the small aligning
torque is to change B, 6, and JZ by a small amount during each
nutation.

Consider the situation in the rest frame of the particle. From

this point of view, the magnetic field varies sinusoidally, so that

B = _]:?30 cos wt . (17)

This oscillating field induces a magnetization M in the grain, where
M = EO (x' cos wt + X” sin wt) . (18)

In this equation the particle's magnetic susceptibility is assumed to
be complex, with x' and " being its real and imaginary parts. The

term with X" measures the small amount by which M is out of phase
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with B. Now let an average of M be taken over one nutation. Follow-

(22)

ing DG, we find that one result of this averaging is a component

M _, which is normal to B, and which has the value

—~

M, = (x"/w)(wx B) . (19)

This component Mp generates a dissipative torque given by
al
" = V(Mpx_lé) s (20)
where V is the grain's volume and J is its angular momentum. This

torque is the aligning agent of DG,(23) for its effect is to tend to orient

J parallel to B. Both DG(24) and Purce11(25) considered the value of

-12

(x"/w) = (2.5 x 107°9)/T, (21)

where Ti is the internal temperature of the grain. From the extended
discussion of Greenberg(26) for Ti’ we find that typical values are
10°K.
Define, further, the variables
I = the moment of inertia of the grain about A
vI = the moment of inertia of the grain about an axis normal
to A

D= (x"/w(V/Iy) . (22)

If we consider the rates of change of B, 8 and Jz due to the aligning
torque, and if we average them over the grain's motion, then we find

from DG(Z 7) that

g'? = —DB2 sinP cosf (‘}’Cosze + sinze) s {23}
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%% = DBZ(-y - 1) sinf cosb (1 - ‘;‘ Sinzﬁ) ) (24)
2
d(th ) = _2 DB%J? sinp (ycos®8 + sin®0) . (25)

For a spherical grain of density 1 gm/cm3, Ti = IOOK, radius 10-5cm,

we find that D = 6 x 107> sec™? gauss-z. If B=107° gauss, then

DB’2 =6 X 10-13 sec-l, so that the characteristic time for the torque
to act is of order 105 yr.

There also is a rotation of J around B which is called pre-
cession. This precession is due to the X’ term in equation (18).
From DG,(ZB) we find that Xl ~ 104 X”, so that the precession is of
order 104 times faster than the alignment, yet still slower than the
nutation. In all of our calculations, we will average over the angle
Y and the orientation of J around B.

Finally, we turn to calculating the contribution of the DG

process to the right hand side of equation (12), the Fokker-Planck

equation. We use as our variables x, the same ones that Miller(zg)
did:

M= Jcos 0, -0 < <o0

n= JcosP, -0 <M <o0

¢ = J° ) 0 <C<w (26)

Miller used these quantities because they are convenient for treating
the effects of collisions of the grain with surrounding hydrogen atoms.

The DG process will contribute to the right hand side of

equation (12)
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r{PG) _ -Z Ta;{. (Wk,) . (27)
l 1

If we use equation (26) and the relation

I e (28)

and if we further use equations (23), (24), and (25), we find

jcose - Jé sinf

M =
2 3 ' 3
2(3 1
= DB {E(y-l)ﬂzz‘%- -5y - 1)%_
+ 1 -l(y-l)]ILZ-E -1 +—1-('y-l)]u,}
2 C 2 (29)
n = Jcosp-Jpsinp=0 |, (30)
d .2
‘: = HT(J)
2 2 I 2
= DB{-2( 1% - 2¢ + 2(y- 1) E e } (31)

Since m is the projection of J on B, and since the aligning torque
leaves this component constant, equation (30) is to be expected. Thus,

we obtain that

(DG) _ 0 ;. 9
R = ?)'LT'( W)-gg(CW) . (32)

4. Diffusion Coefficients Due to Collisions of the Grain with Hydrogen

Atoms or Ions

Miller found the diffusion coefficients due to collisions of the
grain with surrounding hydrogen atoms, or ions. These collisions
produce some of the random changes which affect the variables u, n

and , in addition to the systematic effects of the DG process. In this
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section we summarize Miller's argument and his results. We repeat
his detailed derivation in an appendix, and we add a section to treat
the positive internal temperature of the grain. The reader is invited
to consult this appendix.

The collision terms in equation (12) may be written

ri®) - -2—‘?—- [wxzfc) - .1_2_5?_. WEf‘?)}] , (33)
0 X i 2 [, 0x. ij

i j
where c represents ''collisions.'" If we write the term in brackets as

Lgc), then this equation becomes

gle) _ . 8 (e 8 (e)_ B (c) -

T T % w T ®mm TAC ¢
(c)

In order to obtain the coefficients Egc) and Eij , Miller pro-
ceeded as follows. He assumed that a single atom-grain collision
occurs quickly enough to produce an impulse § J of angular momentum.
This impulse is the 6xi term used in equations (10) and (11). The
effect of 6 J is to change :L B, and B, but not the particle's orienta-
tion space. The grain's reorientation follows from its nutation about
the new J.

Next, Miller found & i due to a single collision, considering
elastic and inelastic impacts. By assigning an effective mass m+ to
the hydrogen atom, both types of collision could be treated together.
Miller's '"elastic'' collision was one in which all components of the
atom's initial velocity are reversed. In a standard elastic collision,
only the velocity component normal to the grain surface is reversed,

while the component parallel to the grain surface is unchanged. This

standard collision is not treated because it is more difficult than
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Miller's version. Finally, we add a section to Miller's calculation
of mt for an inelastic collision in order to consider the grain's non-
zei'o internal temperature.

Miller went on to assume that the surrounding gas atoms have
a Maxwell distribution of velocities at temperature T, and that this
distribution gives the transition probability ® The relevant variables
of integration were the surface of the grain and the velocities of the
hydrogen atoms. By integrating the vector §J and the tensor (8§J)(8J)
over these variables and ®, Miller found Egc) and Ei(jc) .

We need the following quantities to express Lgc):

m = mass of the hydrogen atom (35a)
T = temperature of the surrounding gas (b)
Ti = internal temperature of the grain (c)
c? = (2kT/m) | (d)
ng = number of hydrogen atorns/cm3 (e)
m' = effective mass of a hydrogen atom in its

collision with the grain

m for an elastic collision of Miller's type

) % m(l + A/T;?T_') for an inelastic collision
g = 1\"1/2 Ny m? ¢ (g)
2ae = length of A, the axis of symmetry of the grain (h)
2a = length of a diameter normal fo A (i)
h,d = parameters depending on the grain shape and arising

from the integrations over the surface of the particle
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h=1ra4{1+%- ez (3)
e -1 1
> 2 sin" . v B 1T
+ 1o e y E: ( . -1>.l.§_;l_l__}
2 2 172 sinh €
e“-1- Jef-1]
4
ah:wa4{l+€2-l - (k)
4 2
e -1 1
2 4 sin~ 2 2.
€ 1 ¢ ( - ) le™-1] }
+[2+€z_1]' T 272 " \sinn )=

In these equations for h and ah, sin-l is used for a prolate spheroid
(e > 1), and sinh“l is used for an oblate spheroid (¢ < 1). A plot of a

is shown in Figure 2. For special grain shapes, a has the values

a,a=1 disk
a=1 sphere
> 2 (1)
a=1+ —5—(e -1) nearly-spherical grain ,
a=5c’+1/3 needle .

From the defining equation (22) ¢y may be found for a grain of
uniform density, so that

y = (1/2)(1 + %) . {35
If a subscript on W denotes a partial derivative with respect

to that variable, then the L terms in equation (34) are

+ 2 1 1 un
L, =-ghm'c [<;%1—T+_2HF_)W+ZWH+2 WL W ] (36)

c I
L, = hm* 2{[ | o
==-g (od —-(l G.) g +-—~_r——-2-——'r]
m.c Iy
{1 =2y, ot K1 1 un
m*czl C :]W * 2 C WLJ.

+[é—(a+l)+é—(a-l)(%—+%é-3 >]W +Eln+(1 G)H—-Il] } (37)
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2
L= -ghrn+c2{EL+(l-a)L+ Z(?"a)“ +ZQC3W tu W,
¢ ¢ m c Iy

+[a n+(l-a)E‘-§-n]Wn+ z[ag + (1-q) uz:l WC} (38)

5. Diffusion Coefficients Due to the Non-Zero Internal Temperature

of the Grain

If the grain's internal temperature, Ti’ is non-zero, then
random changes are generated in the variables y,n, and {. This
source of random effects is independent both of the DG alignment
process and of the grain-atom collisions. We will now discuss the
effects of Ti and then derive the corresponding diffusion coefficients

for the Fokker-Planck equation.
(a) Quantitative Effects of the Internal Temperature
(i) The Ti Parameter and Its Effects

Let us first consider the quantity ’I‘i itself. There are several
processes which may heat the grain and affect Ti’ including: collisions
with gas atoms, the dissipative torque of DG, bombardment by low
energy cosmic rays, and energy absorption from the interstellar radia-

(26)

tion field. According to Greenberg, the mechanism involving the
inter stellar radiation field dominates in fixing Ti' Since this process
is largely independent of others affecting the grain, we may treat the
quantity Ti as a free parameter in our calculations.

Next, consider the effects of Ti' If 'I‘i is non-zero, then the

(10

grain's magnetization, M, fluctuates--as Kittel ) first noted. We
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assume that these fluctuations, A M, occur randomly, both in magni-
tude and direction., In particular, AMP, the fluctuating component
normal to the field, generates a torque V(AMp X g);‘this torque pro-
duces fluctuations 6J in the angular momentum J,

We now assume - as in Section (4) - that the fluctuations 6 J,
du.e to Ti’ are the 6Xi terms to be used in equations (10) and (11). We
will next find which components of 6 J have non-zero average values,
showing which diffusion coefficients are important. To find these
expectation v;l,ues, we consider a simple problem for which we know
the probabilit}';' distribution of grain orientations. We then write the
Fokker-Planck equation for this problem: by working backwards
from our known solution, we obtain the diffusion coefficients. In part

(c), we transform these quantities to the y, n, { coordinate system.
(ii) The Non-Zero Moments of 6 J

To find 6 J, let us suppose that X and Y are two orthogonal
and equivalent directions in space normal to B. Let (AM)X and (AM)Y
be the components of AM along X and Y, so that these two components
represent Al\—ép' Since AMP is assumed random, the symmetry of the

situation requires that the average values are

We also assume that (AM)X is uncorrelated with (AM)Y, so that

Therefore, of the averages which determine the Fokker-Planck coeffi-

cients, the only non-zero averages we expect to find are those for
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((AM)XZ) and ((AM)Y2> o Since the fluctuations, 6 J, are propor-

tional to the torque, V(Aly_lp X B), we find
(6J)y = (AM)y (41)
(67)y = (AM)y . (42)

Since ((AM)XZ) and ((AM)Y2> are the only relevant non-zero average
values of AM, (6 J)XZ) and {(& J)YZ) are the only non-zero average
values of 6 J. In addition, these two quantities are equal because

X and Y are equivalent directions in space. Thus, our problem of

finding 6 J is reduced to obtaining (5 J)X2> or {(6 J)Yz> *
(iii) A Simplified Physical Situation

Let the grain be set spinning and assume that the gas is re-
moved. The only dominant processes left to work are the steady
torque of DG and the thermal fluctuations. In addition, suppose that
the particle is constrained to rotate about an axis along X, so that

only non-zero component of J is J We may write a Fokker-Planck

X.
equation for this simplified system in which J becomes the variable

of interest, x, in equations (9) through (12). For the component JX’

equation (9) becomes
(AJ)X = KX At + (6 J)X . (43)

In this equation At is a time interval during which many fluctuations

(6J)X occur; K, represents the effect of the steady torque of Davis

X

and Greenstein; and (A J)X is the total change in JX'
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From the discussion following equation (9), we may put the

Fokker-Planck equation into the form

2
oW 1 9
Bt - T aJ (WE) ¢ 5 g {WE ) " (R
X oJ
X
In this equation, Ey is given by equation (10) as
E, = lim {(AJ)y)/Aat (45)
X -0 A
and since {(6 J)X)= 0 for this case, we find
EX = K_X . (46)
(30) g B e oo
From DG, KX for a spheroidal grain is given by
B = - __X_VBZ‘IX(ycos e+s1ne) (47)
X I%( v 4
J
_ 4 2 X
Ey = -%VB = (48)
X
where
vcos B+ sin" B
In addition, EXX is given by equation (11) as
E = lim {{&J) 2)/At (50)
XX X ’
At=0
so that our problem of finding ((6 J)XZ) reduces to obtaining EXX‘
. e 2
(iv) Determination of ((6.]')X ) I
Next, consider the situation at equilibrium. We have
i o, (51)

ot
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and W must be the Maxwell-Boltzmann distribution for the tempera-

; 2
ture, T, describing the system. Since the total energy is J_ /IX,

1
the Boltzmann distribution law gives, from DG, )
¥
Wl = const . exp [" ZR,—-I,—.-I-—] . (52)
iX
Let us set
E = E s (53)

XX o
substitute equations (48), (51), and (52) into (44), and solve for Eo.

The result is

W, E_ = CIJX+CZ+ZJW1 E, dl, (54)

where Cl and C2 are constants of integration. In order that E0 be

well behaved for large J.,, for which Wi is small, we set C. = 0.

X’ L
We may simplify equation (54) further by deducing from equation (52)
that

ow,

n
- X 2 1,
Wi EX = VB kTi —37;( . (55)

and integrating equation (54) by parts. The result is

_ SR, | o %'
E = ZkTi(-}o-)VB +W, @Z-ZkTiVBZJWiﬁ;((Xd)dJX] . (56)

If we define Wy by the relation

(57)

where IX is given by equation (49), then we obtain



«28=
| 2
E_ = 2kT, (X—)VB +w [c -2kT, VB IW i 9y —’f;)dwxj (58)

In equation (58) we take C2 to be a constant of integration, and
we define (8/8wx)(x”/w) for negative Wy 80 as to give the correct
symmetry properties to the indefinite integral. Equation (58) is the
value of E0 in the case that (x”/w) is allowed to depend on Wy For
this case E0 depends on ) through the first and second terms; it varies
with the grain shape through the Wi factor in the second term. We
will not treat the problem of a more complicated dependence of (x"/w)
on

For our cases of interest, (X”/w) is independent of , as DG(Z4)

and Purcell(zs) noted, so that the second term in equation (58)

vanishes., The result now is
E = ZkTi(X”/w)VBZ , (59)

which agrees with that of Jones and Spitzer for a spherical grain.(32)
However, this equation is true for a grain of any shape, and not only
for a sphere. Since’JX is absent, we conclude that this value of Eo

is correct even when the constraint on rotation about the X direction

is removed.
(b) Qualitative Effects of the Internal Temperature

The orientation of (J) with respect to B is pictured schemati-
cally in Figure 3. Let (JX) be defined as in the last section, while
(JB) is the average value of the component parallel to B. If B is

—~

zero, then only the grain-atom collisions affect the orientation. These
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collisions yield an isotropic distribution in space, so that there is no
net alignment. In Figure 3(a), we represent this situation schemati-
cally by the vector shown. Suppose that Ti is zero and B is not; then,
in addition to the gas collisions, the Davis-Greenstein mechanism is

active,removing energy from the rotational modes normal to B. The

rate of this energy loss is, from DG,(33)
dRo P 2
I T -Vix /LO)(Q.} X B) s (60)

where R is the rotational energy of the grain, Thus, (JX) decreases,
while (JB) does not, and (J) is aligned toward B.

Since the thermal fluctuations produce a mean square contri-
bution, ((6[.T)X2 Y, angular momentum is sent into the rotational modes
normal to B. If the gas temperature, T, is equal to the grain temper-
ature, Ti’ the system of grains plus gas molecules must be in ther-
modynamic equilibrium-~yielding no net orientation. Thus, when
Ti = T, the DG alignment process is balanced by the thermal fluctua-
tions. Because the orientation is known when Ti = 0, we may con-
clude that the DG process orients (_J;) toward B so long as Ti< s
The degree of alignment decreases as Ti approaches T.

For Ti > T the fluctuations continue to send angular momentum
into the rotational modes normal to B. Thus, (:I) is aligned away
from B, and this tendency becomes more pronounced as the grain
gets hotter. The behavior of J fixes that of the symmetry axis A,
since DG(Z3) state that the long axis of the grain tends to become
perpendicular to J. These qualitative features will be shown in more

detail in the next chapter when we solve the Fokker-Planck equation.
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| A B

{Ix>
(a) (b)
B=0 T, < T, {Ip<dp
No net alignment Alignment by Davis-Greenstein process
B A
4 4
A
Y <L
Y
I> T <
(c) (d)
L,>T, Ip>dp n=T, Jpdp
Orientation of J away from B No alignment
Figure 3

Alignment of
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(c) The Diffusion Coefficients

From the discussion in part (a) of this chapter, the only non-

zero moments due to the fluctuations are

2
Eyx = Byy E = ZkTi(X”/w)VB . (61)

We need only change these moments to Miller's {, m, { coordinate
system. Let the grain be oriented as in Figure 4 with the field B

along the Z, axis and the plane of J and B the Y-Z, plane. If Bis a

1

unit vector along B, and A a unit vector along A, then

By = By =0
ﬁzl= 1 , (62)
JX = 0 .
JY = -J sinf, le = JcosBp=mn , (63)
AX = sinY sin
AY = cosY sinf cosp - cosB sinP
AZ- = cosY sinf sinf + cosf cosp . (64)
i
Since
= J.A
n= I8

)
1

1=

1<

(65)
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Orientation of the X, Y, Zl Coordinate System
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o = A 8T, +AL 8T +A, 67,

fl

]

&n BX 87y + B, 8, + B, 67,

(2+8)° - 3°

6C

= 2(Jy 8Ty + Ty 8T, + JZ1 a;rzl)

+(80), 0 + (87)y° + (6.]')212 , (66)
where all second order terms have been kept. Thus, we find
o = sin¥ sinf 6JX + (cos¥ sinB cosPB-cosb sin{3)6JY
+ (cosY sinf sinp + cosf c:osB)SJ'Z1
on = 6JZ

1

. 2
&8C = 2(-J sinf 6J'Y + J cosp 6le) + (GJ)X

y o 2
2 (GJ)Y“+ (6J)Zl . (67)

If we take the expectation values of these quantities, we find that the

only non-zero moments are

E€=2E0
Z, 2 2 2
1,1y 1 3
SRLAS 2 A R b
2
cac -0
B =4 (-0 B,

2

- _n '
Ep=22(1-3-)E . (68)
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Thus, the extra terms due to the grain's temperature are
2 2

S

g
+ (4-2

y =
+

N

AP

2

Loy

+ W (H-E-”Z-)+2(g-n2)w :

VIR c 2
2 1 1 n?
+zu(1-ﬂg_)wug+W(—z-z+2-€7)} (69)

¢

6. Final Form of the Alignment Equation

The Fokker-Planck equation for the alignment process now

takes the form

W - riPD gl gD (70)
where the terms in R are given by equations (32), (34), (36)~-(38), and

(69). We may check the algebra to this point by setting Ti = T and

substituting

W = const. xg= exp{-[¢ Fly-1)"1/(21y K T)) (70a)

into equation (70). Since this W is the Maxwell-Boltzmann solution

of DG(31) in the y, mn, { system, we do find that %TW= 0, as expected.

It has proven more convenient to solve this equation using a

different set of variables from Miller's y, 1, { set. We therefore

introduce the variables

r = cosP =—-n-—, -lsr =1l R (71a)
JT
s = (Jcosb)/ /m+c2I-y s =00<s5<o0 , (b)

u/Jm" 1y :



~36a

2
Zz = (stinze)/(m+czly)=—§1-:11-z-sm, 0=2z<w , (c)
m c Iy
= atsHy2 o T osr<w (d)
Sty
m c Ly
W= expl-(z + ys9)] f(r, 5,2) , (e)
b = DBZ(m+c2Iy) - _X:.I VBZ ()
ghmq‘ cZ w B
e = E [ghm™ %) | (g)
e +
o _ m
-= Ti/(F)T . (71h)

The r, s, z coordinate system is useful for the case when the magnetic
field is weak, and we regard T as a dependent variable. The param-
eter b compares the effects of the magnetic field with those of the gas
collisions. The parameter €, compares the effects of the tempera-
ture fluctuations with those of the gas collisions. In defining the
function f, we have factored from W the Maxwell-Boltzmann solution

(

of Davis and Greenstein. L) This solution is valid for the case in
which B=O=Eo,' or b=0=¢_. If wetake equation (70), set (6W/ot)=0
for the steady-state solution, make the above changes of variable,

and let a subscript on f mean a partial derivative with respect to that

variable, we obtain
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[(a+l)z+2as ] l:(l " )f _er] : Ss_ .

+2azf + 2a(l-z)f
ZZ z

+‘$2-{[ %(‘y‘lﬁ)z - Zzz(l-rz) : 2 ('y+l)sz - 2-}/254(1_1.2)
-(')'-1)r28‘2 + —;—(y-l):rzz-(yﬂ)z szz-(yz-éwl)rzszz]f

-r(l-rz)(z+‘ysz)fr + 2]1- sfs[jz'y(l-rz')s2 + {y(l+r2)+(l-3r2}z]
+zf [ys?(1-3r%0s% (L4 %) 2z (1-r2)]}

1 2 1 s2 2 szz 2 2
te, {[Z(H—r ) +Z:Z<1‘3r I+ [- —Tz-(1-3r ) + 2z(1-r7)]f
2

T rz 2 rs 2
+ —, (1t )f - 222 (1-r0)E - S5 (1-r )
ZT T T

22 (1-3c%) + [“T‘IZ (1-3rz)(z+ysz)--y(1+r2)]sfs

2
+[-2--—r -%—f—z(l -3z )-4z(l-r ) ~2(y-1)(1- 31‘Z)S—ZZ']f

2
+[%—~—% (1-31'2) + 2(y-1) E—SZ— (l-rz) + Zr(l-rz)jfr
T T

+:17 (- ‘;:(7+3)z + zlv,z(l-:rz)‘-('yﬂ)s'2 + 27254(142)

+('y-1)rzs2 - %—('y—l)rzz+(y+l)zszz +(72-6'y+l)rzszz:|f} = 0
(72)

By direct substitution we see that f=1, which is the Maxwell-Boltzmann
solution, satisfies this equation for the cases b= 0= €5 and for

+
b= €, (or Ti = Enr; T). We shall solve this equation in the next

chapter for other values of the parameters.
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In the coordinate system

i 1
T = (z+s2)a = (02+v }¢ = /A/m+c Iy, 0s1<0w
0 = Tr = T cosP , -0 <0 <o0
3 L
v = T(l-r )% =7 sinp , -0 <V <o
p :-ST—:Cose s -1 <p<l 5 (74)
equation (72) becomes
{3 +Fe-Dla-pH- 3 . ?)1 }e, o~ (1 (@-1)-(@-)p® Jot
2 2 2 TZ P (ofe) ye o

2

2 Vv 2
) + = (1-3p7)]} £
TZ } oY)

+{-é— (I+e ) + %(a-l) [(1+p

(-1)(1+p7) S £

NP

+ {%(Heo) +

+ {(b-Zeo—l) + (-y-l)[(b-ZE: o -1] - (a-y)(1- p }\)f

1 =) 1. 4° 2
+ ——&2— 1 + e -ze —2—+ (a-l)p ]f
2T & © PP

2 2
] {1fe0- se 32— - 2 @-1)(1-3p%)-(b-2¢ )(y-1). T2 (1-p°)(1- & \’T—Z)

SR S

+é—(a-1)9q_—\)2(1-3p2)fov (- 1):8(1 o LGS 1)—% (1-p° ),
2

v b-c ) {209 -0 (1-07)- 3 Y5 (1-36%)-205- 107767 (1-57)
T

+ ('}"1)\)292(1-3#2)-4\)2pr_l}f 0.

(721)
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CHAPTER III

SOLUTIONS OF THE ALIGNMENT EQUATION

In this chapter we will solve equation (72). The only exact
solution to be obtained is for spherical grains in an arbitrary mag-
netic field. The equation will next be solved approximately for needles
nearly-spherical grains, and disks in strong magnetic fields. Finally,
the equation will be solved approximately for needles and nearly-
spherical grains in weak fields.

For all of these cases, we seek a solution to equation (72)

such that

W = {exp[-(z + ysz)]}f(r, s, z) (71)

is a well-behaved probability function. This means that W is every-
where well-behaved, finite, positive, integrable, and that W ap-
proaches zero for z, s 0. We expect that W may behave as a
6-function for b or €, " o, but for finite b and €, > W should have no
singularities. The normalization is chosen so that the integral of W
over all of phase space is unity. This normalization will be found in
Chapter IV, where we calculate the measures of alignment.

Finally, we note that it is possible to prove that the function
W is unique. This means that if W satisfies the Fokker-Planck
equation for (O8W/9t) = 0, and if W is a well-behaved probability
function as defined above, then W is unique. The theorem of A. H.

(

Gray is stated and proved elsewhere. 39) This uniqueness property

allows us to solve each case by whatever method is most convenient
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and to be sure that the solution obtained is correct. It eliminates
the need to treat the general solutions of the various differential
equations that will be considered; any solution which satisfies the
previous requirements is the unique solution.

1. The Sphere
For the sphere, we find that

a:y:l . (73)

We also will use the variables

T =(z+s2)1/2=J/(m+<:21'y)l/2 , 0<7<o
- (02+\)2)1/2-
0o =1Tr = TcosP -0 <0<
\)=T(1-r2)1/2='rsinﬁ . -0 <V <o0
p=$—=cos6 -l=p=1 (74)

when 0, Vv, p will be regarded as independent variables and T as
dependent. The T variable is dimensionless and represents J in units
ofs/ m+c21‘y, while ¢ and v are the components of T parallel and
normal to B. This g, v, T, p coordinate frame is convenient for the
cases of the sphere in all fields and of the other shapes in strong
field. If the above variables are substituted into equation (72i), the

result is
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1 1 1 2
> foc - ofo + Z'f\)\) + [-z-\—) + (b-l)v]f\) + (2b-2bv )f

1 Z 1 1

i T4 - - - =~ 2

=600t 20t Ttef 7 Ey * (35 - 2V,

2
L+ ta-pd), -2pf ]+ (-2+2\)2)f} =0. (75
47 T PP P

In this equation, f is defined by

E= WM; W = [exp (02 - \)2)] w o, (76)

where WMB is the Maxwell-Boltzmann solution, and a subscript on
f means a partial derivative with respect to that variable.

We note that the sphere has no dynamically defined symmetry
axis. Thus, we may take the symmetry axis to be an arbitrary

marking located anywhere on the sphere. All values of p = cosf are

now expected to be equally probable, so that
f =0 . (77)

In addition, W describes the distribution if the gas acts alone.

MB
Now only the gas affects 0 - the component of J parallel to B. There-
fore, we expect that WMB gives the complete distribution of 0, which

would not occur in f. Thus, we test the assumption that
f =0 . , (78)

With these assumptions, our equation for f becomes

1

1 I
2—(1 + €0)f\)\) +2'(1 +€o); f\) + (b - 260 - 1)Vf\)

F2 (b - e )l - vie=o0 . (79)
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We now find a well-behaved solution consistent with these assumptions.

It is
£ = exp {[-(o-c )/ (1+e )TV} . (80)

The unnormalized probability is, therefore,

b -¢)
W = exp {—(02+v2) - —-9-\)2} .
(L =+ eo)

2,1+b } (81)

2
= exp {-0 =~V (-13;'5-')
(o]

For the case that b >> 1 and b >> €, (or T >> Ti)’ W approaches
a &-function in v. This shows that for a strong field and a cold grain,
J is aligned toward B, since v = 0 implies f = 0. As Ti approaches
T, €, " b, and the alignment in v decreases. For Ti = Tl{or e, = b),
W = WMB’ and there is no alignment in v regardless of how strong
is the magnetic field. For Ti > T(or €, > b), we find that the orien-
tation reverses in v.

If all the constants are put in, then

2 Jz cos _ JZ cos
°c T - T
m (2kT/m)I 2Ik(m T/m)
2 ,i4b . _ T sin’p 1+b
vio= (g3 = T S
o 2Ik(m T/m) o
T sinB 1 1 +b (82)
- 21k + T.
T/l 4 pad) (2
T +
m

The distribution in 0 is Maxwellian at a temperature Teff given by

+
_ ,m
Teff = ( -y T ; (83)
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The (m+/rn) factor measures the energy lost in heating the grain
because the grain-atom collisions are inelastic. Thus, some of the
energy transferred by the collisions does not go into the grain's
rotational modes. From the discussion of the grain-atom collision

given in the appendix, we have

m” j = & <1+\/Ei > (84)
=) = 3 T :

When 'I‘i = T, m' = m, and the effective rotational temperature for

0 is just T. WhenTi=O, Te =-1—T;forTi>T, Te > T, so that

ff 2 ff

the grain's rotational energy for o is transferred to the gas.

The distribution in v is Maxwellian at a temperature Ty .

+ + 1+ b(Ti/T)(m/m+)

m . m
(m)Ta.v—(:m)T 1+b v

(et Joa}T 3 bT,
76

+
o (m /m)T + boTi

- J
nH+b0

n

+ .
For b =0, T?l = (m /m)T = Togp for ng = 0, corresponding to
removal of the gas, T‘V = Ti’ while Teff is undetermined because

T is undefined. Equation (85) is the same result as was found by
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(34

Jones and Spitzer, except for the (m+/m) factor. If we let

T - 0 with Ny # 0, this means that a low-temperature ideal gas

surrounds the grain and absorbs its energy, making T < T,.
av i

2. The Strong-Field Case

(i) Prolate Grains

In this section we will solve equation (72) for prolate grains
in strong magnetic fields, starting with nearly-spherical particles
and then treating needles. The parameter b, defined in equation (71),
is much greater than unity, while €, is regarded as a free parameter
since it depends on the internal temperature, Ti' The ratio of the
semiaxes, €, is greater than unity: € is slightly larger than unity for
a nearly spherical grain and much greater than unity for the needle.

For a grain of uniform density, the ratio of the moments of

inertia is

1+ ey . (35)

<
I
N~

Let us define an additional parameter

5= 2-1>0 (86)
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where 6§ << 1 for nearly-spherical particles and 6 >> 1 for needles.
We may obtain the shape factor a by expanding equation (35) in powers

of & and keeping the dominant terms. The results are
a=1+ &+ 6 ;, 6<<1, nearly-spherical grain (87)
1 1
e € +-3~, 6 >> 1, needle . (88)

Equation (88) suggests that we try

1 1 2

o.&-y=1+~26=-z-€ +é— (89)

for all prolate values of €. If we check this approximation, we find
that it is less accurate than equation (87) for 6§ << 1 and equation (88)
for 6 >> 1. However, the relative deviation of y from a is no greater
than 5% for all values of € = 1, and neither of equations (87) and (88)
has that accuracy over the whole range. Therefore, we will use
equation (89) for all prolate grains. Figure 2 has a plot of (y-a)/a.
Let us begin with the nearly-spherical case. We might expect

the behavior of the angular momentum alignment to be similar to that
of the sphere. If we assume b >>1 and b >> €s (or T >> Ti) - that is,
strong field and cold grain - then we find from equation (81) for the

sphere that

(V) ~1/JB . (90)

This means that W is small except where v €1//5 . We will tenta-
tively assume the same properties for the solution to the nearly-

spherical case,



=44

In addition, the Maxwell-Boltzmann solution is

2
WMB exp[-(z + ys”)]

exp[ - 02 - \)Z - ('y-l)'r2 cosze:l . (91)

For the case of the sphere, the function f is exp[-b \)2] when b is
non-zero., We therefore look for a term exp[-'b(»y-l)'r2 00329] in the
function f for the nearly-spherical grain. Thus, define the scale

changes
N=,b v=.b 7T sinp r -0 <N <o

P= /b(y-1) cosB = ,/5b5 p , -V5bs <P <JIps , (92)

where bd >> 1. The coefficient ,/b is a scale factor for v, and the
coefficient A/EIbﬁ is a scale factor for p = cosfB. We expect to find

that

(V> &l 1/A/T)_ 9

strong

() = (cosb)

~ 1/J/bly-1) , (93)

strong strong

which are assumptions that must be justified by the solution.

We now turn to solving equation (72). Set a =+ and change
variables to g, v, T, and p as defined in equation (74). The result is
a long expression, equation (72a), which is given in the appendix., We
have no need for it here because we only desire those terms which
dominate in strong fields. The equation contains derivatives of the

function f with respect to v and p, along with other variations.
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If we change variables to N and P, then

f\) = /b fN s f\)\) = beN
— 1 1
fp = JIbs fs s fpp = (ab8)fpp - . (94)

Next, we substitute these derivatives into equation (72a), yielding
terms of order b, b5, &, 1, 1/b, and smaller quantities. We choose
the terms of order b and b6 (bé >> 1) as the dominant ones and ignore
the rest. Although & << 1 for a nearly-spherical grain, the only
assumption made here is that 6 << b, This procedure allows us to
treat the needle so long as b >> % >> 1. The value of § only determines

which of b and bd is larger. Thus, the dominant terms yield

1 1
b{3 (14 3 6+ 6 My + 3 (15 6+e ) = £ + (1- 2.5_ DINE
€ 2
o N }

1 e E:o
+b6 —;——Z(Heo)fp SP-2-2)i, + 5 La -_b_)f}

T
+ terms of order 6, 1, 1/b, etc. = 0 . (95)

Although equation (95) is only accurate to order b6 and b, we have kept
smaller terms for convenience. As 6 » 0, we obtain equation (79) for
the sphere. Since the variables in equation (95) have been separated,
we may treat the two groups of terms in succession. The terms in-

volving N yield

1 (-:0 1
N N + (1-2 — - = )N{

1 1

e A
+2(1-—%)(1--1}-Ib-)f =0 . (96)

N
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An approximate solution

b s €:o/b 2

f(N) = exp |~ (————-———1—-—)N (97)
I+e + =6

o 4
when substituted into equation (96), leaves a residual term
21 Lo/t JESSE: (97a)
2 b 1 °
1+eo+ Y )

Since this quantity is much smaller than the terms of interest, we may
take equation (97) as giving the N-dependence of f.
The terms involving P yield

1 €

e .
—-1—2(1+e0)fPP+2-P(1-2-.-g—’)fP+-;-(1 -2)i=0 , (98)

4T

with the approximate solution

(1-¢ /b)
R PZJ (99)

f(P) = exp [- -——ﬁg—-—'—-
o
Again if we substitute this back into equation (95), we find a residual
term

l-¢ /b
ees(—-—?-——)rrzpzf ) (100)
o 1+E:o

In the appendix we discuss this term and other residues in more detail,
and we show that they are all smaller than the quantities of interest.

Thus, our solution for f is

f = £(P). f(N)

(1-¢_/b) (1-¢_/b)
exp| - X — 72 PP - — O N°

e o 1+e +-4-6
™ (b e, ) 2 (b-¢ )
= exp| - (y-1)T cos 6 - —-———-—I—- T sin (3 s (101)

| %o 1+e +46



.

which yields for the probability distribution

W = fexp[- 'rz - ('y-l)'r2 cosze]
1
(1+b+26)
2 2
= expy - 'Tz coszﬁ-'r sin P 2 -(y-l)(—?_i_—::-)- )T cos B}.
(l+eo+:1-6) o

(102)

Since the main approximation in our derivation is that b >> §, this
solution is also valid for a needle in an extremely strong field
(b>>8 >>1). We will also use this result for the case § >> b >> 1,
although the solution would not be rigorously correct. To solve this
case would require that we keep all the terms of order § in equation
(72a), which would be difficult. We discuss this case of 8 >> b>>1
further in the appendix.

We summarize below our detailed analysis of the accuracy of

equation (101) given in the appendix:

If e <<b (T, <<T)
o i
or and {b>>6}, then equation (101)

b2>>e >> b
o

is numerically accurate to terms of order -%)—
On the other hand, if (i) €™ b, (ii) €, >> bz, or (iii) 6 >> b,
then the solution may be numerically inaccurate but is always quali-
tatively correét. The justifications for not finding more accurate
solutions in these cases are the following: for cases (i) and (iii) the

alignment is too small to justify further effort; and for case (ii) the

grain is too hot to be of interest.
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Finally, our solution for W does provide the alignment to be

expected. As b = o and for e, <<b (Ti << T), both (sinB) and {(cos8d)

™

become small, so that () =+ 0 and (6) - 5. For a warm grain,
e, >> b (T, >> T), so that (T sinB) becomes large and (B) —°-121 s

reversing the orientation.
(ii) Oblate Nearly-Spherical Grains

For these particles the shape factors take the values

2

e<1, 6=(€2-1)<0,QE1+5

1
6,y-l+—2-6 . (103)
We put

6,=-6>0 , §, <1 (104)

and proceed to solve equation (72). Since the symmetry axis is ex-
pected to align toward B, for large fields sin@, rather than cos®,

becomes small. Thus we use

A = sinf = (1-p") (105)

as our angular variable in place of p = cosf. If equation (72i) is trans-
formed to the g, v, T, \ system, the result is a long expression,
equation (72b), given in the appendix. In order to find the dominant

terms in strong field, we use the variable

q = J/BE, sind = JBS L (106)

which is the analogue of P for the prolate case; in this equation b is

large enough so that b61 >> 1.
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If 5, N, T, and q are used in equation (72b), there results a
set of terms of magnitude b, béi,l, 61, and so forth. The equation

becomes

L
Z

2 1
(1te -58)5f

€ € 2 €
+[(1-z 2 )(1-35,)- %]NfN+ ZEI-_EC-’)(I-%- 51)-.1\15_(1-_]30){}}

e €
l o o }

1 2
b{2(1+€o'§61)fNN+ N

+ terms of order 1, 61, %, etc. = 0 . (107)

As 61 = 0, the second group of terms vanishes, and we are again left
with equation (79) for the sphere. Since b(S1 << b and the variables

are separated, we consider the N and q variations in succession.

The equation for the N dependence is

%—(He --—6 )f —i—(l+€o-§6 [1 2_5_)( - 5 )= .._]Nf
€ €
+2[:(1-1,9)(1-%61%155(1-?9)}:0 , (108)

with the approximate solution

(1-¢ /b)
(N)-exp[—(——-———y- 1-_5 )N] (109)

If this solution is substituted back into equation (108), the residual term

is, for c¢; = (l-¢_/b) (l-—-—6 )/ (L+e ),

. _ Z 2 2 1 }
residue = 261 c'{-s- - N [-S- ¢+ -2—-6—(1+2 eo):] f, (110)

which is much smaller than the terms of interest.
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For the q dependence the equation is

1 2 B 2
l4e )+ (l4e ) =f +7%(1-2-2)qf + 2 7%1-¢ /b)f=0, 111
(1+e ) o ( o)q . ( =)a , ( eo/) (111)

with the approximate solution

fq) = exp|- 2 (-1;—-"/b) “q ] . | (112)
+€0

Again, there is a residual term if this solution is substituted into
equation (111). In the appendix we discuss this residual term and
others. The conclusions are quite similar to those obtained for prolate
grains., Therefore, if €5 << b (Ti << T) or b2 >> €, >> b, our solution
in equation (113) below is numerically accurate to terms of order -}15
Otherwise, our solution is qualitatively correct but may be num erically
inaccurate. Since the maximum value of 61 is 61 = 1 for a disk, we
see that 61 << b for all oblate grains. The requirement for grain

alignment is that b61 >> 1.

The solution for f is

f = {(N).f(q)
(1-€O/b) 1 Z 1 (1'€o/b) 2 2
= exp[— -——-—-———-l+€ (l— 2’ 61)N - ~2- -———-—-————l+e T q
o o
(b-¢ ) (b-¢ )
_ o .l 1 o 2 . 2
= exp[- Ti:E_(;YT sin ﬁ--z-—l-—_FE-(;-ﬁlT sin 9], (113)

and the distribution function is

W = foexp{- t°[(1-356)+55, sin°0]]
2 2 2 i e 1+ 1 2 . 2 +
= exp{- T ycos B-T ysin B.(FGE)--Z-GIT sin 8(%—;_—;—?— )} .
o o

(114)
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For €, <<b (Ti << T) and b >> 1, both {TsinB) and (T sinf) decrease,
meaning that () and (8) decrease for increasing b - as predicted by
the Davis-Greenstein process. However, we will find in Chapter IV
and V that the alignment does not become perfect, no matter how strong
is the field. For ¢ _>>b (T, >> T) and b >> 1, {TsinB) increases for

increasing b and the alignment is reversed.
(iii) The Disk
For the disk, the relevant shape factors are
c=0, y=3, 8,=1 , a=1 . (115)

If we substitute these values into equation (72i) and change the p depend-

ence to a variation with

2,5 i
A = (l-p7)° = sinf , (105)

then the result is equation (72c) in the appendix. To find the dominant

terms, we make the scale changes N = Jb v and

Jb A = Jb sinf . (116)

In this equation Q is the analogue of q = /b6 4 A\ for the case of

oblate nearly-spherical grains. The resulting equation is

b{%(1+eo)fN E(He ) (1 z.b_ )N £y
E:o 1 N2 G:o

2

--I-TQZ (1 €°)f}+ter f order 1, &, etc. = 0. (117)
> -—-—B—— —T ms OI oraer ,sE, ¢« = .
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In equation (117) we have kept all of the important terms of order €o
the other terms of magnitude €, are considered in the appendix. We

have also kept terms of order unity for convenience. Let us rewrite

equation (117) as

1 1

1 1

Dl'-‘

fa
+ 10 ze"-l)(Nf +Qf) - 21 iﬂ)(N 20l
2V b N Q' "2 " h
€
+2(1--b£)f} +... =0 . (118)

We see from equation (118) that the variation of f with N is quite

similar to that of f with Q. Thus, we consider

1 1 1 €5 1 €, N?
FlHe Mgy + 3 I + 30172 22 - INf + (1- 201 - Jo)e=0,  (119)

which has the well-behaved solution

; (120)

(1 -€ /b) 2}

f(N) = exp{- 5

Thus, the solution for f is

exp{ e /b) 2} exp{ (1 c /b) } (121)

(b €, )
exp{ 5 ——-_-§_—50— Tz(sinzﬁ o sinZQ)} (122)

Hﬁ
I

We consider the residual terms in the appendix and show that they may

be neglected.
Equation (122) is the same as equation (113) for the oblate

nearly-spherical grain if we use the values y = —é— and 6., =1 for the

1

disk. Since equations (113) and (114) are valid for 6, << 1 and 61 =1

L]

1
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we will use them for all of the other intermediate values of 6. We
make no claim that this is the correct solution for all oblate spheroids
- only that it should give the qualitative behavior. Thus, we use equa-
tion (114) for all oblate spheroids (0 < 61 < 1). The orientation in
strong fields is qualitatively the same as in the nearly-spherical

case, although the alignment becomes more pronounced as the disk
shape is approached. Finally, we show in the appendix that equation

(122) is numerically accurate to order ¢ for ¢_<< b (T, << T) and

€, >> b (Ti >> T), and that it is qualitatively correct for €™ b.

3. The Weak Field Case

When the magnetic field is weak,then b << 1. Although €5
might, in principle, take on any values, we will only treat the cases
for which € < b. The reason is that if eo>> b, then we are unable to
make the approximations which allow us to solve equation (72) more
easily.

We expect the distribution function W to be close to the
Maxwell-Boltzmann solution, meaning that f is near unity. For
example, if equation (81) for the sphere is expanded with b << 1,

€o € b, then the result is
2
f=1- (b-eo)\) : (123)

Let us therefore try to solve for f in a perturbation series using

powers of b, so that

f = 1+by+terms of higher order in b. (124)
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If this form for f is put into equation (72), the terms to first order

in b are

2
1
[(a+4):4+ 2as ][(l_rzwrr . “’r] +%‘1’ss p—

t2azy, + Zo;(l-z)\yz
e
+ 5 (1- 2 [F(y3)z - 225(1-2%) + (y+1)s%- 2976 (117
'r

22 1 A 2 2 2 zZ 2z
- (y-1)r"s +~Z('y-l)r z -(y+l) s z-(y -bytl)r’s z] = 0 .,
(125)
For convenience, we will solve for § with f, S 0, since equation

(125) indicates that
€o
\y(Ti>0)=(1-—5-). \]/(Ti=0) . (126)

Now the derivatives in r form the differential operator for the
Legendre polynomials. Therefore, let us write the inhomogeneous
portion of equation (125) in terms of the first two Legendre polynomials,

which are
P (r) =1 P,(r) = +(3r%-1) (127)
o o 2 b °

The result is

[(0.+1)z + Zas

" [(l—r )\y - 2r \yr]-l-% «yss- Vs \j/s+2az \erz
+ 2a(l-z)y, + [5(y+2) - 5o + 'yzsz)]. P

4 2 4 2 4 2 1 2 2 2, 2
—g'y - —('y-l)s -g(y-l)z-(:;;y -4‘y+-3-)s Z]P2= 0.

(128)
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Having separated the r variable from s and z, we now

assume that

r,s,2) = ) P,(rQs,2) (129)
£4=0
where the P, are the Legendre polynomials. Not all of the QE will

be needed in measuring the alignment of the grains. The degree of

alignment will involve the quantities

2 1 1 2 2 - !
(cosBY =3 [ 1 dr.r” [ ds [, dz w(r, s, z)
- -00 0
i 0 00
(cosch) =1 '/1 dr [ ds ,gdz(-g—rzpz érz- 3p +1)Wr, s, z)
- -0

(130)
The r terms in these integrals will include only P0 and P, inte-
grated over the range of orthogonality for the Legendre polynomials.
Therefore, only the terms in Po and P, from equation (129) will yield

non-zero integrals, so that only Qo and QZ need be found. From the

equation
(l-rz)P -2r P = —4(L+1)P
L, rr L, r L’
we obtain
(a'+1)z+2¢1's2 1
. — || -2(s+] = -
z P,% U: 4T4 :H: (4 )QJ?,:] * 2 Qﬂ,, ss V® Qf,, s

)

2 4 2 2
+ 2aiall, zz+Q;z,z"ZQz,z} il ['3'(7+2)'§(z+7 : ﬂ
P

2 4 2 4 2 4 2 1 2 2 2
— [543y S0 S e (5 e 3)] = 0

(131)
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Since the P, are linearly independent in r, we may set this

4

equation equal to zero for each 4. For £ = 0, the result is

1
Z%,5s 7%, st Zal-_ZQo, 2zt 2,2 7% %, ;
+Z(p2)-a-5y50 = 0 (132)

An acceptable solution to this equation is the particular solution

_ 2,z 2
QO = -g(a'i‘ ys ) o (133)

The homogeneous solution diverges for large values of s and z faster
than WMB converges. Since the particular solution does not have this
problem, it is acceptable while the homogeneous solution is not.

is

For 4 = 2, the equation for QZ

[-3(at1)z - (ba s Q2+T4[QZ£SS-2-ysQZ FhozQ, | tea(l-2)Q, ]

g 3+3f('y-1)z -—('y-l)s z+(--—'y +87+‘)s 252

+
+(3'y + 8y & --)s . -—(-y-l) 8 ¥ 6] (134)

We will now solve equation (134) for the varioﬁ.s geometries, that is,
needles and nearly-spherical grains. We do not treat the disk be-

cause we were unable to separate variables for that case.
(i) The Needle

For the needle, both a and ¥ are large, and a =+y. From the

Maxwell-Boltzmann solution
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Wy g = exp[-(z+'ysz)] = exp{-'rz[ 1+(y—1)coszej} 5

we find that

(cosB) ~ (1/Jy-1) << 1 ,

meaning that W is small except where cos® £ (1//y-1), so that

MB

(®) is nearly 90°. Therefore, we obtain for the needle

s = Tcosb~(1/y) ,

2 = & gincpEma® | (135)

It will be convenient to solve equation (134) using s and z, but after

the solution is found, we will set z =« 'rz . Let us define

S = A/_'}'—S . (136)

substitute into equation (134), and choose the dominant terms in y.

The result is

-3Q, +2[Q, §5-25Q, g+ 42 Q, , +4(1-2)Q, ]

2 2 -1
: 2 3 z{(1-257) + terms of order v = or smaller = 0 . (137)

Assume that

Q, = Cl8)Z,(z),
and obtain

-3C 7, + z[Zz( Cgg-2 8 CghtClazZ, , +4(1-2]Z, )]

1

-za-2+48%) =0 | (138)
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The derivatives in S form the differential operator for the Hermite
polynomials, and (-2 + 4 SZ) is the second Hermite polynomial.

Therefore, we choose

C = -2+458% (139)

which allows us to factor the S-dependence from equation (138). We

obtain for Z, the equation

2
227 t2(l-2)Z,  -(z+3)2. - L z=z0 (140)
2, zz 2,z 4’72 12 : '
If we set
z,(z) = 2372 u (z) , (141)

then we find for ul(z) the equation
e 3 _ 1 _-J3/2
zul,zz+[( 3 +1)-z]u1,z-('[;+l)u1-—l—zz ‘ (142)
Let us write the parameters of this equation in the form
a; = Jti, b1 =2j+l , j=.3/2 . (143)

Now consider the homogeneous terms in equation (142). They form
the confluent hypergeometric equation, which has two linearly

independent solutions. One solution(35) is M(al, b., z) which is well-

1,
behaved at the origin and diverges as z = o0o. The other solution is
U(al, bl, z) which is well-behaved as z = o0 but has a singularity at the
origin. Thus, we see that both homogeneous solutions to equation

(142) are unacceptable.

To solve the inhomogeneous equation, we will use a Green's
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function method. Equation (142) may be written in the form

a%-[z("/j & 1)e-'zul’ z]- (“g—-+ l)e"z z“/-j-ul = 112 z“/?/z e”? .

(144)

Thus, the equation for the Green's function G(z, z’) is

:id—[z‘ﬁ‘me'z E1- ¢ e 23 G=b(az’) ; (145)
z .

if z #z’, this is the confluent hypergeometric equation with solutions
M(al, bi,z) and U(al’bl’ z). Let us write G in the form

2 R 4 /
Al M(al, bl,z) U(al, b.,z') 0<z<z

Glz,z') ={ , .1’ , (146)
.‘Al M(al, bl’ z") U(al, bl’ z) z'<z<o00 .
If we integrate equation (145) over a small region near
z’, z’-e:1 <z<z’ ¢ €4 with €; small, then we obtain
(_1.9. = Ei-g. = eZ’(z’)-zj-l
dz e dz 2’ e -
1 1
= A, -Wronskian (M, U)| I (147)
(35)

If the Wronskian is evaluated, then the result for Al is

_ _ TG+l _  r(+/3/2)
A, = - M = - (148)
i rizi) T(1+./3)

Therefore, the solution for u, is

1 T(j+1) -z’ (z")

z
_ ’ ’
u; = -5y oD {U(a,l, bl’ z)/(; dz IvI(al, bl’ z')e

0 ’ )
+ M(al,bl,z) [ az’ U(al,bl,z')e-z (z')‘]}
Z

j= J3/2, a; = Jt1, b, = 2jtl, {149)
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and thus,

Q2 = (-2+4y SZ) zV 37/2 ul(z) . (149a)
(ii) Nearly-Spherical Grains

In this section we will treat both the prolate and oblate shapes
because the alignment is small in weak fields, so that the two cases
are quite similar. Our procedure is different from that of Miller,
and we will discuss these differences in detail in an appendix. The

shape factors are given by

a=1+%5, 6=c%1, |o|<<l, y=1t35, y =145,
(150)
If $ =0, then we are back to the sphere and
_ 2 2
(QZ)sphere = g(z-i-s ) . (151)
Thus, we set
Q, = -g-(z+sz)+6K ) (152)

Substitute all-of the parameters into equation (134), and collect the

terms of first order in 6. The result is

74[1{ 25K +4zK +4(1-z)K_:|-6'r2K
SS S 44 Z

16 3,3 2 4 22 3 2 6 4 8 4 4 6
-—1-3-2 +~§-Z --gSZ -gsz-gs +§s Z+-§S = 0 . (153)
Next, choose
4 1 2
K= - -1-§z+3-s + A(s,2) (154)
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and substitute this into equation (153). The equation for Ais
'1‘2[/\ -2sA_+ 4z A+ 4(1-z)A_] - 6A +2(z-252) = 0. (155)
Ss s z2Z z 5
If we change variables to
kY
2

T:(z-i-sz) s p=;-= cosf ,

then we obtain

2 2 2 9 2 2
+27(1- + {1- -2pA =-6A + 1-3p°)=0 .
T B T{1-T)AL + p)/\pp p/\p At g7 (1-3p)
(156)
Let
A = NO(T)Rl(p) "
so that
112 2 1 [ 2 ]
x [Ny, pramierhing g [0 R, o -2pR.p
o 1
9 2 2,, 1 _
- 6+-5" T (1-3p ) -N-—K = 0 ° (157)

o1
The derivatives in p form the differential operator for the Legendre

polynomials, and the factor (1-3pz) is -2 Pz(p) Thus, we try
R;=P,p) ,

substitute into equation (157), and obtain

2 2 18 2 _
TNy op ¥ 2T-T9)N, - 12N -5 17=0 (158)

so that this procedure allows us to factor out the p-dependence. If

we set
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3 2
Ny =7"X,p) , p=71 , (159)
then the equation for X1 is
pX s (2opx, -3x =232 (160)
l,pp "2 LLp 271 10

The homogeneous terms yield the confluent hypergeometric
equation, and neither homogeneous solution is acceptable for the same
reasons as given in the analysis for the needle. We solve for the
inhomogeneous solution by the same Green's function method as before

and find that

2 P . S ’ I4
X,(0) = - $={U(3, 2, P [ M(Z. Jo 00 (p") 7P 4P

3 © 3 2 -p’
+ M3, 2, p){) U3, 2. p") (e e P dp'}
3 1,, .2 2 2,3
A= T X (R)ex(3p%-1), p= T, T= (2457)%, p= 2
2 2 4 1 2
Q, = (-3f)(z+s)+6[-ﬁz+-§sv+/\] . (161)
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CHAPTER IV

MEASURES OF GRAIN ALIGNMENT

We will now use the distribution functions calculated in
Chapter III in order to find the degree of grain alignment. The
measures of grain orientation will be found analytically for the case
of strong magnetic field and numerically for the case of weak field.
The alignment in strong field will be determined for prolate and
oblate spheroids at all tempei'atures.

The measures of alignment will be Purcell's quantities
_ 3 Z 1

QJ‘ = '2" (COS 5> = z 9
_ 3 2 1

QA = '2' <COS Cp> = 2’ )

where the averages are taken over the distribution function W. The
function W is normalized so that its integral over all of phase space

is unity. Thus, we require that

norm

[arer? I (2" i M (2“’@9 (T,por) =1 , (162)
(o] .

where

W

norm = N
is the normalized distribution, W is one of the distributions we have
found in Chapter III, and N is the normalization. In equation (162)
W is averaged over the solid angles corresponding to r = cosf and

p = cosf. In addition, we have, after integrating over T, that



1 2 1
(cos®) = [ garer® [ zdp: Wogem(rop) (162a)
1
2 13 1 2 1 3 2 2
(cos“p) = _fl 5 dr _fl 5 dpe(z =571 =-5p +Zr pIW. . (r.p)
(162b)

1. The Sphere in all Fields

Equation (81) for the sphere may be written

W= exp{ T [cos p+ sin ﬁ]} { [r +—2-(1 -r )]} (163)

where

l+e T 1+b(T./T) T,
2 _ o _ Tav _ i ~ 1
g° = T T IS = —T-for large b . (164)

If W is integrated over T, the normalized distribution in § is

Wp(ﬁ) = 411? g[gz coszﬁ-l-sinz[ﬂ-?’/z ; (165)

when QJ is evaluated, the result is

. [2+§2 - —-ig——tan-l(—lcg)],§<l

2(1'§ ) "/l-gz
Q, - 1 (166)
2 38 Y
Fre i EEX -—:—l—tnm 1)), 8>,

As expected, QA= 0 for all €, and QJ= 0 for €= 1.

2. The Strong-Field Case

(i) Prolate Grains

The distribution function for a prolate grain is given by
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1
14b+>- 6
W = exp -Tz[coszﬁ + sinzp( ____f*__i._ )+00829'(’}’-1)(11:: )] ‘ .

1+€0+:1-6 [o]

(102)

Although this distribution is inaccurate for weak fields, it does pro-
vide an answer for the weak field case. Thus, we will assume that
equation (102) gives some qualitative idea of the distribution for

intermediate and weaker fields, although we make no claim that it

is accurate in these cases.

Let us define the quantities

2 l+€o+-zll_:-6
o - 1+b+-}fa ’
a2 = (g2 :
: |
B = —ggz(y-l) , (167)

and integrate W over T; the result is

0
2
Wnorm(r’ p) =/ Wnorm T dr

-3/2
17,22 .2 2
"N A r“+B] p +1:|

Nl—i Wir,p) . (168)

Here, W(r, p) is the distribution over angles, with r = cosf and
p = cosf, and Ni is the normalization constant. To find N, we con-

sider two cases: Es <1 and go > 1. Therefore, we obtain
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1 1
_ 2wdr 2wdp
A A P)
. (1-A12+Bf)3+ AB,
A B,
L «/<1-Af)(1+1312)
e <1 (or T,<T), A2=1-8° ; (169)
o i g 1 o '’
and similarly we find
N = ————1 ta.n-'l AZB]‘
2 AyB [1 +A22+B12]E
(170)
B >1 (or T, > T) Ao = p® o
o i ’ 2 c

Equation (168) is different from the distribution Jones and

(36)

Spitzer assumed for a non-spherical grain. In their distribution

r and p are completely uncoupled, so that
3 1 3
' 2 2., 2 iy )
Wiglrp) = 2 [E°-1r%41] “0 - T-0e“11% . a7
Equation (168) permits such a separation only for € and vy close to
unity. The integration over T is what couples the variation of r with

that of p. The values of (coszﬁ) are found to be

A

(cos’P), = - tan | ——— |, T.<T (172)
L A% wna2 [ 2.2 i
p Myphy 1-A+B/ 1
A, +(L+A2+B2)?

(cosZB)z = i.z +__l.._3, in 2 2 1 | 1.5,
1
Ay Nyhs 1+B 2
1 (173)

Finally, the values of (cosch) are
1

ZNIA

2,23 2 2
5 |(1-A+B[)2-N, (1-A[)(1+B; ):l, T, <T
1

2
(cos cp}l = >
1 B
(174)
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2 . -1 2 2 2 2
(cos“p), = —-—————g-z—[Nz(HAz)(HBl )-(1+A, +B] )], T, >T.
1

7
2N, A, (175)

The quantities QJ and QA may be found from these equations, and we

plot QA in Figure 5 of Chapter V.
(ii) Oblate Grains

The distribution function for an oblate grain is

W = exp{-'rz[ycoszﬁ ¥ sinzﬁ(-é—z) +28, sinze(-é-i)]} (114)

2
= exp{- = [yg?-10e%- (1-y)e®+11} (176)
1+b(T,/T)
%s-ysl , §2= 1+b1 e-%forlargeb,

The distribution over angles is

- o0
Worra(t ) = / A oW (r,r,p)
= & [y D-eppia1 177)
1

where the normalization constants are

1 1 -1 A 1-52 2 2
N, = =—.— tan E ' » g < ls g = 7(1"€ ) s (178)
R 3 r_—y-g_f 3

. 2+‘y
11 V8, TEW 1y 2 2
N, = p—. In E>1, € =y(E"-1).
4%, * 2700 2y
* Ly Vgl 179)

The values of (coszﬁ) are



1 1
<cos?'[3) = -Nl; _f]_ -;—dr.lr2 .'./1 —;—dp W(r, p)
g
(00326)3 = —1—2- - -Nl— —%sin-l = , <1 (180)
€3 3 85 Y
(cos’p>a= -2 +T\11" én{__ .+ /(y+g4 } E>1  (181)
€4 4 §4

Finally, the expressions for {cos cp} are

1
2 1 1 1 i1 21 2,3 22

{cos cp)=-N-T flidr[ sdp(s-5r -5p +5T p YW(zr, p)

1-

(182)
(coszc\o)3 =811\I3 {- (14_’,). giz [,/.}l- €3 -N3‘)’(l-§§)] }, E<1

(cos’0),, = 37, {115 T[A/wgf N}, g
(184)

(183)

The quantity QA corresponding to these equations is plotted in Figure 6

of Chapter V.

3. The Weak-Field Case

For weak fields {b << 1), the distribution function is
W = fexp[-(z+ ‘ysz)]

= f exp{-'rzfl + (y-l)cosze]}

= texp{-t[1+360%1)
f =1+ (b-eo)\y

Vv = -g‘-(%+‘ysz)+-21-(3r2-1).Q2(s,z) , (185)
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and Q2 was found in Chapter III. We will use both the (T, p) and the
(s, z) coordinate systems for the necessary integrations; the relation

between their differentials is
&
ds dz =2 v drdp . (186)
Thus, the normalization for W becomes

N = % / dr dsdz W(r, s, z)
limits

-Z-fdr f ds f dz. {exp[-({z+ys )]} [1+(b-e )\y]

=00

1 T i 2
= > % {l - ~3-(b—€o)(-a + 1}

_}\I.a 2Ny {1+ (b-e ) 5 +1)} (187)
NE
The factor involving Qz(s, z) in N vanishes when we integrate over

r. In addition, we assume that b << 1 and €, £b .

Let us now find (coszﬁ Y. The integral is

2 2 ® 2
(cos BY f‘i > dr.r [ ds [ dz.{exp[-(z+ys“)]}. {1+(b-eo)\1/}
- =00 (o}
00
= %+% E—(b-eo) fds [ dz. {exp[—(z+'ysz)]}.Q2(s, z) . (188)
NCE -0 =00

The factor of?l,; is the value obtained from a totally random orientation

of the grains. We see that the deviation from randomness only involves

the function QZ. Thus,

3 00 200 1
Qp = z(cos™®) -3

£ 2L (b-c) fdsf{expt -(ztys9)}Qyls, 2z . (189)

=00

?H?!
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For (cosch) the result is

A 1 1 3 ZZ 1. 2 1 2,1
{(cos ) = N.-z-fl L/'o:,isfdz( -zT =3P +2-)W(r,s,z)

-
NI'-

1 o0 00
= '8—11_\-1 fldr [ ds [ dz (l-rz—pz+3r2p2). {exp[-(z-i--ysz)]}.{1+(b€o)\y}
- -0 ©

RFRFRER
00 00
+ $ L (bcy) [ds [ da.p®. fexpl-(z+ysT)1}.Qy(5,2) ,  (190)
& O o

so that

Q= 3 (cos’®) - 3

1 3 TR 2 2 |
= “EQJ+’ZT)[£( ffd -p". {expl-(z+ys”)]}. Q, (s, z)ds.
,}15' 00 (o]
(191)
It now remains to evaluate these quantities by using the functions QZ

found in Chapter III.
(i) Nearly-Spherical Grains
For these particles QZ is given by equation (161):

_ 2 2 4 1 2
Q, = s’y o[- frat gty

16!<<1, p='rz, T:(z-i-sz) s p=’-T_-= cosfB ,

W=

k= X (p)»l(3pz-1) )

|34 2 1
12 3 1 i - 1
X,(p) = - P {UC3 %p){)M(z,{g-,p).(p) P ap
3 9 © 3 &
PMzL g P L UG, ZL el el e P et e
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We evaluate Q; and Q, by integrating over (r, p) space. Let us write
® 2 1 2
I(p, 8) = [ dp.p .X (p).exp{-p[l+z6p"]} , (192)
o

so that QJ and QA become

[

_ 1 4 1 6 2
QJ (b-€ ){g- .-7—5-;6 +r6‘ —1;— -fldp (3p -l)oI(P, 6)}: (193)
- 7 1 6 1 2
Q, = tb-¢){-75 6 "B / ap. (3p°-1)-1 (5, 9)
1
3 6 2 .2
+ == — [ dp. p”. (3p°-1).1(p, 8) . (194)
20/ -1 }

The factor Of']é' in QJ. is the contribution due to a spherical grain.
These integrals must be evaluated numerically, and we will treat in

the next chapter the quantity

el =q,/b-c) . (195)

(ii) The Needle

For the needle Q2 is given by equation (149):

Q’Z = (-2 + 4y sz) z"/?:/2 ul(z) "

=]

g Lt

_ 1
wz)=- 17 p

) 0 1 .
: {Ue,. b2/ dz' Mg, by, 2" )e™® (2!
1 o

© 1 _1 1.
+M(a,b,z)fdz U(a.,b,z)ez(z )J},
1° 71 7, 1’71
. 3 . .
j = 'Cz_ s a1=J+l’ bl=2J+1 . (149)

We now change variables to the (T, p) coordinate system and make the

approximations of equation (135) for the needle:

z = 'rz sinzea"r2=p . (135)
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Further, define

p1=mp=J'§Tp, §>>1 , (196)
so that

(-2+ays?) = -2+ 4+ 8)rPpl e 2 v arp (197)

Jy dp 3"dp1 (198)

Equation (189) for QJ now becomes

N 00
2
Q; = 3 —=(b-c )/ _dp [21°dr.Q, expl-r2(1+p])], (199)
Ve -Vzb o
and equation (191) for QA becomes
N56 00 1 2
1 1 3 1 2 2 z p(l+p,)
Q, = -5Q.+5+ == (b-e ) [ dp,.p, [dp.p3. e 1'Q
A 2 J 6 5«/7_7_ (o] _A/%-g 1 1 o 2
' (200)
Since the second term is of order %— times the first, we obtain
Q, = -+ 0 (201)
A~ 277

If we substitute for Q2 from equation (149), then

Q JES 00 i 2
g 1 1 Ve L _5(14p°) 2 . J3/2
2y A alia dp, [ dp.p? e P 1.(-2+4p P)-{ u, (p),
(b—eo) 5 ,\/1_1'- f[_!a 1 o 1 1
: (202)

and this integral must be evaluated numerically.
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CHAPTER V

DISCUSSION AND CONCLUSION

We now possess the measures of alignment for the various
cases. In this chapter we discuss these results, noting their features.
We next compare our conclusions with those of Miller and Purcell.

Finally, we briefly consider the field strength and grain temperature.

1. Discussion of Results

Let us first recall some of the quantities of interest - any

other symbols needed may be found in the appendix. Thus,

QA = a measure of axial alignment for the grain
= % (cosch) --21-
= --%:F (5)
@ = angle between the grain symmetry axis and the magnetic
field |
T = temperature of the gas
T, = internal temperature of the grain

€ = ratio of the grain semi axes
e > 1 for a prolate spheroid
e <1 for an oblate spheroid
e = 1 for a sphere

5 = e’-1

b = a parameter which compares the effects of the magnetic

field with those of the gas collisions
_ ¥ VB
W gh
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a parameter which compares the effects of the internal

™
1

temperature with those of the gas collisions

m+
b T,/(Zo) T

Since QA is directly related to the polarization only if the Rayleigh-
Gans scattering theory is correct, we will regard QA as simply a
convenient measure of the grain's axial alignment with the magnetic
field.

Figures 5 and 6 present a plot of QA as a function of ¢ for
several values of B and (Ti/T)’ All numerical values were calculated
by computer. The interesting cases are for (Ti/T) <1, and they are
treated in Figure 5a for prolate grains and Figure 6a for oblate grains.
Figures 5b and 6b treat only the case (Ti/T) = 3 in order to show that
the alignment reverses for Ti > T. The points marked "P'" are the
‘values calculated by Purcell, together with his claimed uncertainties;
they are discussed later. We note that lQAI increases as b increases
and that QA—'O as € - 1,

Now consider Figure 5a, which shows the alignment for prolate
grains and (Ti/T) <1l. For b=0.1, 1.0, and 10.0, the graphs of
|QA| rise to a maximum at ¢ = 2 and then decrease as ¢ becomes

larger. This behavior is caused by the factor of

s gz ,ltbErs |
exp {-’r sin B. (————1-—>} in equation (102). If b is fixed and § in-

l+e O+Z:- o

creases, then the term (1+b+% 6)/(1+eo+-£1¥6) decreases - thus T sinp
increases on the average, and ‘QA‘ ultimately decreases.

Physically, as ¢ increases, so do the particle's volume and
surface area. The volume effect increases the magnetic torque, while

the surface effect allows more collisions with gas atoms to occur.
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These two processes compete and apparently yield the curious graph
of ‘QA‘ for finite b. If b is extremely large, then 6/b is small, and
the graphs show only a monotonic increase of IQAI with ¢. In our
calculation, we took b = 1040 as our "infinite' value; we see that the
maximum value of ]QA‘ for b= 10 is roughly % the value for b - w0,

The temperature effect is also interesting. The increase of
internal temperature from (Ti/T) = 0.01 to (Ti/T) = é— substantially
affects ‘QA‘ only for b = o; the finite values of b show just a small
decline in IQAI . However, the increase from (Ti/T) = éto (Ti/T) = -;—
is quite substantial in its effect on ‘QA] . Thus, these graphs seem to
favor (Ti/T) € 0.1 in order to retain a fair degree of alignment.
Finally, the ultimate value. of QA for complete alignment is -0.5.
This number is only approached for extremely large b and extremely
small (T,/T). For example, b= 10" and (T,/T) = 107 sield
QA 2= -0.42, and we find that IQA+ %l is proportional to [1og(b/eo)]~1.

Next, consider Figure 6a, which shows the alignment for
oblate grains and (Ti/T) < 1. Here, the graphs all increase mono-
tonically as ¢ = 0, which is a different behavior from that of the pro-
late grains. The reason is that for oblate grains the relevant factor
in equation (114) is exp{ 'y'r sin (3 (H-b )} , and the term (1+b)/(1+e: )
has no dependence on shape. Apparently, the competition between
surface and volume effects in the oblate case has different results
from those of the prolate case.

We also note that the temperature effects are the same for the

oblate as for the prolate grains. For finite b the values of [QAI for
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the two grain types are comparable at all of tle temperatures given.
Finally, we observe that for b + w0 and (Ti/T) - 0, the maximum value
of QA is ‘0.25. This is less than the value of QA = 1.0 which would
be expected from complete alignment of the disks. We will not try to
explain this surprising behavior on physical grounds: we only will
nofe that this result follows from the mathematical solution. However,
we again state that for finite values of b, oblate and prolate grains are

comparably aligned.

2. Comparison with Purcell's Results

E. M. Purce11(14) wrote a computer program which simulates
the history of a single grain. He assumed that a hydrogen atom
which strikes the grain remains there, and that other atoms evaporate
from the grain surface randomly. He considered two possibilities:
(i) evaporation of the atoms at the temperature of the grain; (ii) evap-
oration at temperature of the gas. The first case is expected to be
a more realistic assumption, while the second case applies if the gas
atoms collide elastically with the grain - which Jones and Spitzer
assumed in their article.

Purcell's calculation seems valid for the strong field case.

He called his measure of the field strength §, and we find that

- (B
Spurcenr = P+ (39! (203)
= 2b for spheres.

For convenience, we will assume § b. Purcell found that

Purcell =

for 6 = 1, the value of QA reaches saturation, and this occurs for our
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Table 1

A Comparison With Purcell’s (alculated Values

The JS column contains QA values which Purcell calculated

based on the analysis of Jones and Spitzer

The Ti columns contain values calculated for evaporation

at the grain temperature

The T columns contain values calculated for evaporation

at the gas temperature

Purcell's values (P) are for his J' = 1. Our values (MG)

are for b— 00O
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b - w. If we compare Purcell's results with our own, we find the
values in Table 1. We have numbered the rows and columns; the
empty spaces are quantities which Purcell did not calculate. The
other columns are as described below the table. For the Ti columns
we calculated QA and QJ assuming that the atom-grain collisions are
inelastic; for the T columns we calculated these quantities assuming
elastic collisions. The differences between the two cases are seen
to be quite substantial, and these contrasts exist for the following

reason., From equations (35) and (71) we obtain

€o Ti m

i ~ule (T)(;-nj) s (71)
m-l- 1 for an elastic collision

m -{% (1 + JT,7T) for an inelastic collision . (35)

Thus, the values of € for the two cases can be fairly different.
Since the distribution functions found in Chapter III depend exponen-
tially on €, the effect on QA can be substantial.

Our rough treatment - in the appendix - of an inelastic atom-
grain collision should be equivalent to Purcell's case (i). The only
difference is that we assurﬁe the same atom to collide with the grain
and evaporate from its surface, while Purcell assumed that different
atoms take part in each event. We assume that when an average is
taken over all collisions and evaporations, the two viewpoints should
yieid the same results.

If we compare; our answers with Purcell's, the agreement is
mixed. Consider first the T values of QA in columns 4 and 5, which

are also plotted in Figures 5 and 6. The numbers in rows 1, 2, and 4
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agree quite well, while the pair in row 3 disagree. The two Ti pairs
in rows 1 and 2, columns 2 and 3 agree well - yet in columns 6 and 7
the pair[(1, 6), (1,7)] agree and the pair [(2, 6), (2, 7)] disagree. Sim-
ilarly, the pair [(1, 8), (1.9)] agree while [(2.8), (2. 9)] disagree. For
rows 5-9, columns 2 and 3, three of the pairs agree and two disagree.
Similar remarks hold for rows 5-9, columns 6 and 7.

Thus, from 20 pairs of values, 8 of the 11 QA pairs and 4 of
the 9 QJ pairs show good agreement within Pu<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>