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ABSTRACT

The present dissertation discusses aspects of supersymmetric quantum field the-
ory, whose main themes are two-folded. First, we explore connections between
superconformal theories in various dimensions and geometric invariants. Such
correspondence arises from compactification of string theory or M-theory, which
encodes geometric quantities into physical observables. Second, we study in de-
tail the chiral rings and their quantum corrections in certain supersymmetric gauge
theory. The goal is to shed some light on the hitherto mysterious electric-magnetic
dualities.

We first consider M5 brane on the product manifold L(k, 1) × M3, where M3 =

L(p, 1). Compactification on L(p, 1) gives rise to three dimensional theoryT[L(p, 1)]
whose partition function, according to 3d-3d correspondence, is equivalent toChern-
Simons invariants with complex gauge group on L(p, 1). We test the statement in
Chapter 2 by taking k = 0 and calculating the supersymmetric index. We find a full
agreement between two seemingly distinct quantities. In particular, when p = 1, we
see the familiar S3 partition function of Chern-Simons theory arises from the index
of a free theory.

We thenmove on in Chapter 3 to consider M3 = S1×Σ, and twisted compactification
on general Riemann surface Σ with tame punctures. The twisted partition function
of lens space theory T[L(k, 1)] on S1 × Σ computes the graded dimension of the
Hilbert space after geometrically quantizing Hitchin moduli spaceMH , dubbed as
“tame Hitchin characters” or “equivariant Verlinde formula”. We show that this
quantity can be computed from the “Coulomb branch index” of the class S theory
T[Σ] on L(k, 1)×S1. The gauge groups on two sides of the equivalence are naturally
G and the Langlands dual group LG. We check explicitly the relation for G = SU(2)
or SO(3). We also consider more general case where G is SU(N) or PSU(N) and
show that the SU(N) equivariant Verlinde formula can be derived using field theory
via (generalized) Argyres-Seiberg duality.

As a further application, in Chapter 4 we use Coulomb branch indices of Argyres-
Douglas theories on S1 × L(k, 1) to quantize moduli spacesMH of wild/irregular
Hitchin systems. We obtain the “wild Hitchin characters”, and observe that the
characters can always be written as a sum over fixed points inMH under the U(1)
Hitchin action, and a limit of them can be identified with matrix elements of the
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modular transform ST k S in certain vertex operator algebras. The appearance of
vertex operator algebras, which was known previously to be associated with Schur
operators but not Coulomb branch operators, is somewhat surprising.

The BPS spectrum of superconformal theories probe the geometry of Hitchinmoduli
space. Conversely, physical data of superconformal theories can be read off from
Hitchin moduli space as well. We study this dictionary in Chapter 5 for general
Argyres-Douglas theories and obtain a refined classification. We also discuss the
S-duality of these theories, and find that the weakly coupled descriptions are given
by the degeneration limit of auxiliary Riemann sphere with marked points.

Finally, in Chapter 6, we analyze classical and quantum chiral ring relations of four
dimensionalN = 1 adjoint SQCDwith superpotential turned on for the adjoint field.
In particular, for the mass deformed theory we obtain the complete on-shell vacuum
expectation value for various gauge invariant chiral operators and find non-trivial
gaugino condensations. We argue that the solution of the chiral ring is in one-to-one
correspondence with supersymmetric vacua, provided that an additional Konishi
anomaly equation is included.
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C h a p t e r 1

INTRODUCTION

M5-bane compactifications provide a natural framework for constructing low di-
mensional quantum field theories. In such construction, the world volume usually
consists of internal compact manifold M , in the form of Rd × M , and the effective
dimensions are reduced in the infrared. In most of the cases, preservation of super-
symmetry is required (in my own views, this is for the purpose of simplification),
which imposes strong constraints on M . It is then conjectured that geometric data
of M characterizes the effective theory T[M; G] on Rd with G having Lie algebra
of ADE type.

One then wishes to establish a precise dictionary between physical observables and
the geometry. On the physics side, the most inclusive quantities is the partition
function, Z(T[M]). This is computed by replacing flat, non-compact Euclidean
spacetime Rd with a compact curved manifold C. The spectrum of T[M3] is
discretized, and the power of supersymmetric localization enables exact calculation
of Z . On the geometry side, the problem of identifying the proper geometric
quantities on M that can be associated to Z(T[M]) gets harder. Such quantities are
often expressible in terms of partition functions of yet another quantum field theory
T[C] on M , which may or may not depend on the metric of M . The equality

ZC(T[M]) = ZM(T[C]) (1.1)

follows from reversing orders of compactification.

Progress has been made in the past decade in searching for concrete examples of
(1.1). The work of Alday, Gaiotto and Tachikawa [1] discovered what was later
known as AGT relation, where M is taken to be an arbitrary Riemann surface Σ
with tame (regular) punctures, and C is the four sphere S4. The corresponding T[Σ]

is the N = 2 superconformal theories (SCFTs) of class S introduced in [2], and
T[S4] is equivalent to the Toda theory [3]. Replacing S4 by S3 × S1, one essentially
replaces Nekrasov partition function by the superconformal index. The latter is
independent of marginal couplings of T[Σ], so we could tune these couplings to
zero and enumerate letters of a free theory. This implies that the theory on Σ
does not rely on the complex structure, hence a topological theory (TQFT). The
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associativity of TQFT is verified in [4], and in the special case of Schur limit the
TQFT is explicitly identified to be q-deformed 2d Yang-Mills theory [5].

If we take M to be three-dimensional manifolds instead of Riemann surfaces, then
we enter the realm of 3d-3d correspondence, first developed in [6–9]. It is generally
believed that the theory T[M3] does not depend on the metric of M3, and is com-
pletely specified by the topology and the Lie algebra g = Lie(G). One conjectures
that the partition function of 3d N = 2 theory T[M3; G] is the same as the partition
function of GC Chern-Simons theory on M3, which, as a TQFT, computes topo-
logical invariants of the three manifold. In particular, the supersymmetric vacua of
T[M3; G] shall match the GC flat connections on M3.

Unlike M = Σ, where several examples have been found, the 3d-3d correspondence
has suffered from inconsistencies since its birth and not many examples are known.
The theory TDGG[M3] proposed in [8] systematically misses branches of flat GC
connections. The problem was partially rectified in [10]; however, even the very
first example for S3 partition function for SU(2) Chern-Simons theory [11]

ZCS[S3; SU(2), k] =

√
2

k + 2
sin

( π

k + 2

)
(1.2)

is not reproduced in the 3d-3d dictionary.

Moreover, when M3 is the simplest Seifert manifold S1 × Σ, little work is done
that relates 3d-3d correspondence to the better established story in class S theories.
Specifically, if the Chern-Simons partition functions are produced on S1 × Σ, how
do they arise from the four dimensional superconformal theories?

Settling the above two questions has several important consequences. Technically
speaking, it provides a physical way of computing and studying Chern-Simons
invariants. Mathematically speaking, Chern-Simons theory on S1 × Σ is equivalent
to geometrically quantizing Hitchin moduli space MH on Σ, which is the space
of solutions modulo gauge transformation to the partial differential equations on Σ
[12]:

FA +
[
ϕ, ϕ†

]
= 0,

∂̄Aϕ = 0.
(1.3)

Here FA is the curvature two-form of A = Azdz + Az̄dz̄ valued in the adjoint bundle
of the principle G-bundle P, and ∂̄A is the (0, 1) part of the covariant derivative
dA. Finally, ϕ ∈ Γ(Σ, ad(P) ⊗C K) is called the Higgs field. One could then use
the correspondence to understand the geometry and topology of the moduli space.
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Finally, on the physical level the geometry can be conveniently used to describe
dynamics of 3d N = 2 theories.

The first theme of the present dissertation is to summarize the attempts made to fill
in the gap mentioned above. The strategy is to consider the M5 brane geometry

L(k, 1) × M3 , (1.4)

for M3 = L(p, 1) or S1 × Σ for various Riemann surfaces Σ with punctures. Here
L(k, 1) is the r = 1 specialization of the lens space L(k, r), defined by a quotient of
S3:

(z1, z2) → (e2πi/k · z1, e2πir/k · z2), |z1 |
2 + |z2 |

2 = 1. (1.5)

In Chapter 2 (based on [13]), we take k = 0 and compute the partition function
ZS1×S2(T[L(p, 1)]), which is also known as the superconformal index. We show that
it correctly produces Chern-Simons invariants on L(p, 1), and in particular when
p = 1, how the familiar S3 partition (1.2) (more precisely, two copies of it) is
obtained through a free theory. For large p, we find that the index of T[L(p, 1)]
becomes a constant independent of p. In addition, we study T[L(p, 1)] on the
squashed three-sphere S3

b . This enables us to see clearly, at the level of partition
function, to what extent GC complex Chern-Simons theory can be thought of as two
copies of Chern-Simons theory with compact gauge group G.

On general M3 other than S3, there is no way to preserve supersymmetry by simply
deforming the supersymmetry algebra. Therefore, one needs to topologically twist
the theory. The twisted partition function of T[L(k, 1); G] on M3 = S1 × Σ in fact
computes an extension of the celebrated Verlinde formula [14], which is called
“equivariant Verlinde formula” in [15]. It is an index formula on the Hitchin moduli
spaceMH that is organized as U(1) character, and thus throughout later chapters
we will sometimes also call it the “Hitchin character”. It can be thought of as the
graded dimension formula for the Hilbert space after geometrically quantizingMH ,
or as the partition function of a TQFT on Σ — the G/G WZW model with adjoint
chiral multiplet. In Chapter 3 (based on [16]), we show that the equivariant Verlinde
formula with tame punctures on Σ is identical to the Coulomb branch limit of the
superconformal index of classS theoryT[Σ; G]. A subtlety here is that the Coulomb
branch index calculates LG equivariant Verlinde formula. When G is not simply
connected, we provide a recipe of computing the index of T[Σ,G] as a summation
over the indices of T[Σ, G̃] with non-trivial background ’t Hooft fluxes, where G̃ is
the universal cover of G. This is a powerful relation, as the superconformal index is
much easier to compute with punctures, and is straightforward to generalize.
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Then, in Chapter 4 (based on [17]) we adopt the above relation and consider Riemann
sphere S2 withwild/irregular punctures. Physically, it engineers the generalArgyres-
Douglas theories [18], a class of strongly coupled, non-Lagrangian superconformal
theories in four dimensions. We expect that the Coulomb branch index computes a
graded dimension of the Hilbert space after quantizing wild Hitchin moduli space.
Mathematically, the wild moduli spaces are extremely hard to define, and their
precise geometric structures are evenmore difficult to analyze. The Coulomb branch
index manifests these structures in an incredibly simple way, and allows one to see
the fixed points under U(1) Hitchin action inMH . As a bi-product, we observe that
the fixed points onMH are in one-to-one correspondence with the highest weight
representation of certain vertex operator algebras (VOAs). These non-unitary VOAs
were introduced in [19], and initially related Higgs branch of the four dimensional
SCFT.What is surprising here is that the Coulomb branch operators also know these
VOAs at the level of representation.

Physical spectrum can be utilized to understand MH with wild punctures, and
conversely one may use the wild punctures to classify the theory. The idea was first
systematically explored in [20]. In particular, the spectral curve of the Higgs field in
Hitchin system is identified with the Seiberg-Witten curve of the N = 2 theory. In
Chapter 5 (based on [21]), we use algebraic techniques to classify irregular punctures
of g = ADE type, which in turn classify the general Argyres-Douglas theory. We
then proceed to analyze the S-duality of these strongly coupled theories and find
that, similar to class S theories, the S-duality may be represented by the various
degeneration limits of an auxiliary Riemann sphere with marked points on it.

Chapter 3 to Chapter 5 focus on four-dimensional N = 2 theories, and because of
the larger amount of supersymmetry, many physical observables such as branches
of vacua and BPS spectrum can be computed exactly. Allowed interactions between
supermultiplets are highly constrained, thus restricting the space of theories. For
theories with a lower amount of supercharges, for instance N = 1 theories in four
dimensions, much richer dynamics are expected. Due to its intrinsic complication,
previous studies rely mostly on semi-classical analysis, and sometimes produce
suspicious results such as a-theorem violation. Even for slightly more involved
matter content beyond SQCD studied by Seiberg [22], the conjectured electric-
magnetic dualities are problematic and are not rigorously tested.

Most of the confusion boils down to the question of quantum chiral rings. For
instance, the change of chiral rings under renormalization group (RG) flow may
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count for the violation of a-theorem; electric-magnetic dualities could be verified
once the quantum vacua are taken into consideration on both sides.

Therefore, the second theme of the present dissertation is to initiate a systematic
study on quantum chiral rings of four dimensionalN = 1 SQCD with adjoint chiral
multiplet (ASQCD). The theory falls into Arnold’s ADE classification [23], and is
the simplest generalization to the ordinary SQCD. In Chapter 6 (based on [24]), we
discuss the AN−1 series, and write down six Konishi anomaly equations that give a
set of recursion relations for mass deformed theory. We prove that the solution to
these chiral ring relation is in one-to-one correspondence with the supersymmetric
vacua. Massless limit is also examined.

Finally, in Chapter 7, open questions and potential future works are discussed.
Although string theory and supersymmetry do not find its residence in connecting
with real world experiment, in my own opinion their significance lies in the formal
aspects of mathematics and physics. For the former, they provide a new, profound
framework in unifying distinct realms of mathematics and conveying new insights
into algebra and geometry; for the latter, they set up playgrounds of toy models that
help in understanding the structures of quantum field theory and gravity beyond
perturbation theory. It will be my everlasting pleasure that the current dissertation
may contribute at least a little to either aspect.
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C h a p t e r 2

CHERN-SIMONS INVARIANTS AND 3D-3D
CORRESPONDENCE

2.1 The statement of the correspondence
Let us recall the Chern-Simons theory with complexified gauge group GC [25]. Let
A be a one form valued in gC. The action is given by

S =
τ

8π

∫
Tr

(
A ∧ dA +

2
3
A ∧A ∧A

)
+
τ

8π

∫
Tr

(
A ∧ dA +

2
3
A ∧A ∧A

)
,

(2.1)

where A is the complex conjugate of A. τ and τ are holomorphic and anti-
holomorphic couplings, and are expanded as

τ = k + σ, τ = k − σ, k ∈ Z. (2.2)

As mentioned in the introduction, the 3d-3d correspondence is an elegant relation
between 3-manifolds and three-dimensional field theories [6–9]. The general spirit
is that one can associate a 3-manifold M3 with a 3d N = 2 superconformal field
theory T[M3; G], obtained by compactifying the 6d (2,0) theory on M3

6d (2,0) theory on M3

{

3d N = 2 theory T[M3].

(2.3)

In this procedure, the 6d theory is topologically twisted along M3 to preserveN = 2
supersymmetry. As a consequence, the 3d N = 2 theory T[M3; G] only depends
on the topology of M3 and the simply-laced Lie algebra g = LieG that labels the 6d
theory1.

There are two very fundamental relations between M3 and T[M3]. Firstly, the
moduli space of supersymmetric vacua of T[M3; G] on R2 × S1 is expected to be

1The theory doesn’t depend on small deformations of the metric, but could, in principle, depend
on a set of discrete variables, and we already know that a choice of “framing” will change T[M3]. In
fact, based on current evidence, it is tempting to conjecture that the topology of cM3 and the choice
of framing completely determine T[M3].
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homeomorphic to the moduli space of flat GC-connections on M3:

MSUSY(T[M3; G]) ' Mflat(M3; GC). (2.4)

Second, the partition function of T[M3] on lens space L(k, 1) should be equal to the
partition function of complex Chern-Simons theory on M3 at level k [26, 27]:

ZT[M3;G][L(k, 1)b] = Z (k,σ)CS [M3; GC]. (2.5)

The level of complex Chern-Simons theory has a real part k and an “imaginary part”
σ, and σ is related to the squashing parameter b of lens space L(k, 1)b = S3

b/Zk by

σ = k ·
1 − b2

1 + b2 .
(2.6)

For k = 0, L(k, 1) = S1 × S2, and the equation (2.5) maps the superconformal index
of T[M3] to partition function of complex Chern-Simons theory at level (0, σ) [9]

IndexT[M3;G](q) = Tr (−1)Fq
E+j3

2 = Z (0,σ)CS [M3; GC]. (2.7)

In [15], a candidate for the 3d theory T[L(p, 1)] was proposed and studied2,3:

T[L(p, 1); G] =
3d N = 2 G super-Chern-Simons theory at level p

+ adjoint chiral multiplet Φ
. (2.8)

This theory was used to produce Verlinde formula, the partition function of Chern-
Simons theory on S1 × Σ, along with its “complexification” — the “equivariant
Verlinde formula” or “Hitchin character”. Therefore, one may wonder whether this
theory could also give the correct partition function of Chern-Simons theory on S3

in (1.2) and its complex analog:

ZCS[S3; SL(2,C), τ, τ̄] =
√

4
ττ̄

sin
(
2π
τ

)
sin

(
2π
τ̄

)
. (2.9)

2More precisely, the Chern-Simons-adjoint theory is the UV CFT that can flow to numerous
different IR theories labelled by different relevant deformations, and T[L(p, 1)] is expected to be one
of them. The brane system giving rise to T[L(p, 1)] only allows deformations that is compatible with
R(Φ) = 2. The UV description, together with this assignment of R-charge for Φ, is adequate for
computing any SUSY-protected quantities associated with T[L(p, 1)]. Therefore, to avoid clutter, we
will not distinguish the IR SCFT T[L(p, 1)] and its UV description. Still, it is an interesting question
to determine the exact relevant deformation that leads to the correct IR theory. One expects that
accidental symmetries will play an important role in the RG flow.

3As lens space L(p, 1) has trivial cotangent bundles, T[L(p, 1)] is the same regardless of whether
one twists along L(p, 1).
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Indeed, according to the general statement of the 3d-3d correspondence, T[L(p, 1)]
needs to satisfy

ZT[L(p,1);G][L(k, 1)b] = Z (k,σ)CS [L(p, 1); GC] (2.10)

and
IndexT[L(p,1);G](q) = Tr (−1)Fq

E+j3
2 = Z (0,σ)CS [L(p, 1); GC]. (2.11)

And if we take p = 1, the above relation states that the index of T[S3] should give
the S3 partition function of complex Chern-Simons theory. Even better, as there is a
conjectured duality [28, 29] relating this theory to free chiral multiplets, one should
be able to obtain (1.2) and (2.9) by simply computing the index of a free theory!
This relation, summarized in diagrammatic form below,

Chern-Simons
theory on S3

3d-3d
←→

Index of
T[S3]

duality
←→

free chiral
multiplets

(2.12)

will be the subject of section 2.2. We start section 2.2 by proving the duality (at the
level of superconformal index) in (2.12) for G = U(N) and then “rediscover” the
S3 partition function of U(N) Chern-Simons theory from the index of N free chiral
multiplets. Then in section 2.3 we go beyond p = 1 and study theories T[L(p, 1)]
with higher p. We check that the index of T[L(p, 1)] gives precisely the partition
function of complex Chern-Simons theory on L(p, 1) at level k = 0. In addition,
we discover that index of T[L(p, 1)] has some interesting properties. For example,
when p is large,

IndexT[L(p,1);U(N)] = (2N − 1)!! (2.13)

is a constant that only depends on the choice of the gauge group. In the rest of
section 2.3, we study T[L(p, 1)] on S3

b and use the 3d-3d correspondence to give
predictions for the partition function of complex Chern-Simons theory on L(p, 1) at
level k = 1.

2.2 Chern-Simons theory on S3 and free chiral multiplets
According to the proposal (2.8), the theory T[S3] is N = 2 super-Chern-Simons
theory at level p = 1 with an adjoint chiral multiplet. If one takes the gauge group to
be SU(2), this theory was conjectured by Jafferis and Yin to be dual to a freeN = 2
chiral multiplet [28]. The Jafferis-Yin duality has been generalized to higher rank
groups by Kapustin, Kim and Park [29]. For G = U(N), the statement of the duality
is:

T[S3] =
U(N)1 super-Chern-Simons theory

+ adjoint chiral multiplet
duality
←→

N free chiral
multiplets

. (2.14)
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In [15], a similar duality was discovered4:

T[L(p, 1)] =
U(N)p super-Chern-Simons theory

+ adjoint chiral multiplet
duality
←→

sigma model to
vortex moduli spaceVN,p

.

(2.15)
Here,

VN,p �
{
(q, ϕ)

��ζ · Id = qq† + [ϕ, ϕ†]
}
/U(N), (2.16)

with q being an N × p matrix, ϕ an N × N matrix and ζ ∈ R+ the “size parameter,”
was conjectured to be the moduli space of N vortices in a U(p) gauge theory [30].
For p = 1, it is a well known fact that (see, e.g. [31])

VN,1 ' SymN (C) ' CN . (2.17)

And a power-counting argument implies that, in the IR of the 3d sigma model, the
Kähler metric on VN,1 will flow to the flat one. This completes the proof of the
“appetizer duality” and its U(N) generalizations proposed in [28] and [29].

In particular, at the level of the superconformal index, one has

index of T[S3; U(N)] = index of N free chirals. (2.18)

Combining (2.18) with the 3d-3d correspondence, one concludes that the index of
the free theory equals the S3 partition function of Chern-Simons theory. This is
what we will explicitly verify in this section.

Chern-Simons theory on the three-sphere. The partition function ofU(N)Chern-
Simons theory on S3 is

ZCS

(
S3; U(N), k

)
=

1
(k + N)N/2

N−1∏
j=1

[
sin

π j
k + N

]N− j

. (2.19)

For N = 2, this gives back (1.2) for SU(2) (modulo a factor coming from the
additional U(1)). It is convenient to introduce

q = e
2πi
k+N , (2.20)

the variable commonly used for the Jones polynomial, and express (2.19) as (mostly)
a polynomial in q1/2 and q−1/2:

ZCS

(
S3; U(N), k

)
= C · (ln q)N/2

N−1∏
j

[
q j/2 − q− j/2

]N− j
. (2.21)

4In [15], the adjoint chiral is usually assumed to be massive, which introduces an interesting
“equivariant parameter” β. Here we are more concerned with the limit where that parameter is zero.
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Here C is a normalization factor that does not depend on q and such factors will be
dropped in many later expressions without comment.

One can easily obtain the partition function for GL(N,C) Chern-Simons theory by
noticing that it factorizes into two copies of (2.19) at level k1 = τ/2 and k2 = τ/2

ZCS

(
S3; GL(N,C)

)
= (ln q ln q̄)N/2

N−1∏
j=1

[
q j/2 − q− j/2

]N− j [
q̄− j/2 − q̄ j/2

]N− j
.

(2.22)
Here, in slightly abusive use of notation (cf. (2.20)),

q = e
4πi
τ , q̄ = e

4πi
τ . (2.23)

Notice that the quantum shift of the level k → k + N in U(N) Chern-Simons theory
is absent in the complex theory [25, 32, 33]. Although (2.22) is almost a polynomial,
it contains “ln q” factors. So, at this stage, it is still somewhat mysterious how (2.22)
can be obtained as the index of any supersymmetric field theory.

In (2.22) the level is arbitrary and the k = 0 case is naturally related to superconfor-
mal index of T[S3] (2.11). For k = 0,

q = e
4πi
σ , q̄ = e−

4πi
σ = q−1, (2.24)

and

Z (0,σ)CS

(
S3; GL(N,C)

)
= (ln q)N

N−1∏
j=1

[
(1 − q j)(1 − q− j)

]N− j
. (2.25)

This is the very expression that we want to reproduce from the index of free chiral
multiplets.

Index of a free theory. The superconformal index of a 3d N = 2 free chiral
multiplet only receives contributions from the scalar component X , the fermionic
component ψ and their ∂+ derivatives. If we assume the R-charge of X to be r , then
the R-charge of ψ is 1 − r and the superconformal index of this free chiral is given
by

Ir(q) =
∞∏

j=0

1 − q1−r/2+ j

1 − qr/2+ j
. (2.26)

In the j-th factor of the expression above, the numerator comes from fermionic field
∂ jψ while the denominator comes from bosonic field ∂ j X . Here q is a fugacity
variable that counts the charge under E+ j3

2 = R/2+ j3, and it is the expectation of the
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3d-3d correspondence [9] that this q is mapped to the “q” in (2.25), which justifies
our usage of the same notation for two seemingly different variables. Now the only
remaining problem is to decide what the R-charges for the N free chiral multiplets
are.

The UV description of theory T[L(p, 1)] has an adjoint chiral multiplet Φ and in
general one has the freedom of choosing the R-charge of Φ. Different choices give
different IR fix points which form an interesting family of theories. As was argued
in [15] using brane construction, the natural choice — namely the choice that one
should use for the 3d-3d correspondence — is R(Φ) = 2. For example, in order
to obtain the Verlinde formula, it is necessary to choose R(Φ) = 2 while other
choices give closely related yet different formulae. As the N free chirals in the dual
of T[S3; U(N)] are directly related to TrΦ, TrΦ2, . . . , TrΦN , the choice of their
R-charges should be

rm = R(Xm) = 2m, for m = 1, 2, . . . , N . (2.27)

The index for this assignment of R-charges— out of the unitarity bound— contains
negative powers of q. However, this is not a problem at all because the UVR-charges
are mixed with the U(N) flavor symmetries, and q counts a combination of R- and
flavor charges.

One interesting property of the index of a free chiral multiplet (2.26) is that it will
vanish due to the numerator of the (m − 1)-th factor:

1 − qm−rm/2 = 0. (2.28)

However, there is a very natural way of regularizing it and obtaining a finite result.
Namely, we multiply the q-independent normalization coefficient (rm/2 − m)−1 to
the whole expression and turn the vanishing term above into

lim
rm→2m

1 − qm−rm/2

rm/2 − m
= ln q. (2.29)

And this is exactly how the “ln q” factors on the Chern-Simons theory side arise.
With this regularization

I2m(q) = ln q
m−1∏
j=1

[(
1 − q− j

) (
1 − q j

)]
, (2.30)

and the 2m− 1 factors come from the fermionic fields ψm, ∂ ψm,. . . , ∂2m−2 ψm. The
contribution of ∂2m−1+l ψm will cancel with the bosonic field ∂l X as they have the
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same quantum number. The special log term comes from the field ∂m−1ψm, which
has exactly R + 2 j3 = 0.

Then it is obvious that

IndexT[S3;U(N)] =

N∏
m=1
I2m(q) = (ln q)N

N−1∏
j=1

[
(1 − q j)(1 − q− j)

]N− j
(2.31)

is exactly the partition function of complex Chern-Simons theory on S3 (2.25). For
example, if N = 1,

IndexT[S3;U(1)] = I2(q) = ln q. (2.32)

For N = 2,

IndexT[S3;U(2)] = I2(q) · I4(q) = (ln q)2 (1 − q−1)(1 − q). (2.33)

To get the renowned S3 partition function of the SU(2) Chern-Simons theory, we
just need to divide the N = 2 index by the N = 1 index and take the square root:√

IndexT[S3;U(2)]

IndexT[S3;U(1)]
=

√
I4(q) = −i · (ln q)1/2

(
q1/2 − q−1/2

)
. (2.34)

For compact gauge group SU(2), we substitute in

q = e
2πi
k+2 (2.35)

and up to an unimportant normalization factor, (2.34) is exactly

ZCS(S3; SU(2), k) =

√
2

k + 2
sin

π

k + 2
. (2.36)

As almost anything in a free theory can be easily computed, one can go beyond
index and check the following relation

ZN free chirals(L(k, 1)b) = Z (k,σ)CS (S
3; U(N)). (2.37)

The left-hand side can be expressed as a product of double sine functions [34] and
with the right choice of R-charges it becomes exactly the right-hand side, given by
(2.19). As this computation is almost identical for what we did with index, we omit
it here to avoid repetition.

Before ending this section, we comment on deforming the relation (2.12). In the
formulation of T[L(p, 1)] in (2.8), there is a manifest U(1) flavor symmetry that can
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be weakly gauged to give an “equivariant parameter” β. And the partition function
of T[L(p, 1); β] should be related to β-deformed complex Chern-Simons theory
studied in [15]:

ZT[L(p,1);β](L(k, 1)) = Zβ-CS(L(p, 1); k). (2.38)

When p = 1, this U(1) flavor symmetry of T[S3; U(N)] is expected to be enhanced
to a U(N) flavor symmetry (or at least U(1)N—the part that is compatible with
the choice of R-symmetry) that is only visible in the dual description with N free
chiral multiplets. Then one can deform T[S3] by adding N equivariant parameters
β1, β2, . . . , βN . It is interesting to ask whether the Chern-Simons theory on S3

naturally admits such an N-parameter deformation and whether one can have a
more general relation,

IndexT[S3](q; β1, β2, . . . , βN ) = ZCS(S3; q, β1, β2, . . . , βN ). (2.39)

As Chern-Simons theory on S3 is dual to closed string on the resolved conifold [35,
36], it would also be interesting to understand whether similar deformation of the
closed string amplitudes Fg exists.

In the next section, wewill be considering L(p, 1)with p > 1. Notice that, analogous
to the p = 1 case,VN,p has SU(p)×U(1) isometry with the SU(p) part being hidden
in the Chern-Simons-matter description of T[L(p, 1)]. It is also interesting to see
what the role played by the fugacities of the SU(p) is.

On a separate issue, the existence of hidden symmetries, either U(N) for p = 1 or
SU(p) for p > 1, shows that accidental symmetries will arise and affect the RG flow
of the Chern-Simons-adjoint theory. Therefore, understanding the flow and its IR
fixed point will pose an interesting challenge.

2.3 3d-3d correspondence for lens spaces
In the previous section, we focused onT[S3] and found that it fits perfectly inside the
3d-3d correspondence. This theory is the special p = 1 limit of a general class (2.8)
of theoriesT[L(p, 1)] proposed in [15]. In this section, we will test this proposal and
see whether it stands well with various predictions of the 3d-3d correspondence.
There are several tests to run on the proposed lens space theories (2.8). The most
basic one is the correspondence between moduli spaces (2.4) that one can formulate
classically without doing a path integral:

MSUSY (T[L(p, 1); U(N)]) ' Mflat (L(p, 1); GL(N,C)) . (2.40)

And our first task in this section is to verify that this is indeed an equality.
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MSUSY vs. Mflat

The moduli space of flat H-connections on a three manifold M3 can be identified
with the character variety:

Mflat (M3; H) ' Hom(π1(M3),H)/H. (2.41)

As π1(L(p, 1)) = Zp, this character variety is particularly simple. For example, if
we take H = U(N) or H = GL(N,C)— the choice betweenU(N) or GL(N,C) does
not even matter — this space is a collection of points labelled by Young tableaux
with size smaller than N × p. This is in perfect harmony with the other side of the
3d-3d relation where the supersymmetric vacua of T[L(p, 1); U(N)] on S1 × R2 are
also labelled by Young tableaux with the same constraint [15]. We will now make
this matching more explicit.

If we take the holonomy along the S1 Hopf fiber of L(p, 1) to be A, then

Mflat (L(p, 1); GL(N,C)) ' {A ∈ GL(N,C)|Ap = Id}/GL(N,C). (2.42)

First we can use the GL(N,C) action to cast A into Jordan normal form. But in
order to satisfy Ak = Id, A has to be diagonal, and each of its diagonal entries al has
to be one of the p-th roots of unity:

ap
l = 1, for all l = 1, 2, . . . , N . (2.43)

One can readily identify this set of equations with the t → 1 limit of the Bethe
ansatz equations that determine the supersymmetric vacua of T[L(p, 1); U(N)] on
S1 × R2 [15]:

e2πipσl
∏
m,l

(
e2πiσl − te2πiσm

te2πiσl − e2πiσm

)
= 1, for all of l = 1, 2, . . . , N . (2.44)

For t = 1, this equation is simply

e2πipσl = 1, for l = 1, 2, . . . , N . (2.45)

And this is exactly (2.43) if one makes the following identification:

al = e2πiσl . (2.46)

Of course this relation between al and σl is more than just a convenient choice. It
can be derived using the brane construction of T[L(p, 1)]. In fact, it just comes from
the familiar relation in string theory between holonomy along a circle and positions
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of D-branes after T-duality. Indeed, in the above expression, the al’s on the left-hand
side label the U(N)-holonomy along the Hopf fiber, while the σl’s on the right-hand
side are coordinates on the Coulomb branch of T[L(p, 1)] after reduction to 2d,
which exactly correspond to positions of N D2-branes.

GC Chern-Simons theory from G Chern-Simons theory. The fact thatMflat is a
collection of points is important for us to compute the partition function of complex
Chern-Simons theory. Although there have been many works on complex Chern-
Simons theory and its partition functions, starting from [25, 37] to perturbative
invariant in [32, 38], state integral models in [27, 39, 40] and mathematically
rigorous treatment in [41–43], what usually appear are certain subsectors of complex
Chern-Simons theory, obtained from some consistent truncation of the full theory.
In general, the full partition function of complex Chern-Simons theory is difficult
to obtain, and requires proper normalization to make sense of. Some progress
has been made toward understanding the full theory on Seifert manifolds in [15]
using topologically twisted supersymmetric theories. However, if Mflat(M3; GC)

is discrete and happens to be the same as Mflat(M3; G), then one can attempt to
construct the full partition function of the GC Chern-Simons theory on M3 from
the G Chern-Simons theory. The procedure is the following. One first writes the
partition function of the G Chern-Simons theory as a sum over flat connections:

Z full =
∑
α∈M

Zα. (2.47)

And because the action of the GC Chern-Simons theory (2.1) is simply two copies
of the G Chern-Simons theory action at level k1 = τ/2 and k2 = τ/2, one would
have

Zα(GC; τ, τ) = Zα
(
G;

τ

2

)
Zα

(
G;

τ

2

)
, (2.48)

if A and A were independent fields. So, one would naively expect

Z full(GC; τ, τ) =
∑
α∈M

Zα
(
G;

τ

2

)
Zα

(
G;

τ

2

)
. (2.49)

But as A and A are not truly independent, (2.49) is in general incorrect and one
needs to modify it in a number of ways. For example, as mentioned before, the
quantum shift of the level τ and τ in GC Chern-Simons theory is zero, so for Zα(G)

on the right-hand side, one needs to at least remove the quantum shift k → k + ȟ

in G Chern-Simons theory, where ȟ is the dual Coxeter number of g. There may be
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other effects that lead to relative coefficients between contributions from different
flat connections α, and the best one could hope for is

Z full(GC; τ, τ) =
∑
α∈M

eiCαZ′α
(
G;

τ

2

)
Z′α

(
G;

τ

2

)
, (2.50)

where
Z′α

(
G;

τ

2

)
= Zα

(
G;

τ

2
− ȟ

)
. (2.51)

One way to see that (2.49) is very tenuous, even after taking care of the level shift, is
by noticing that the left-hand side and the right-hand side behave differently under
a change of framing. If the framing of the three-manifold is changed by s units, the
left-hand side will pick up a phase factor

exp
[
ϕfr.C · s

]
= exp

[
πi(cL − cR)

12
· s

]
. (2.52)

Here cL and cR are the left- and right-moving central charges of the hypothetical
conformal field theory that lives on the boundary of the complex Chern-Simons
theory [25]:

(cL, cR) = dim G ·
(
1 −

2ȟ
τ
, 1 +

2ȟ
τ

)
. (2.53)

The right-hand side of (2.49) consists of two copies of the Chern-Simons theory
with compact gauge group G, so the phase from change of framing is

exp
[
ϕfr. · s

]
= exp

[
πi
12

(
τ/2 − ȟ
τ/2

+
τ/2 − ȟ
τ/2

)
dim G · s

]
. (2.54)

The two phases are in general different:

ϕfr.C − ϕ
fr. =

2πi dim G
12

. (2.55)

So (2.49) has no chance of being correct at all and the minimal way of improving it
is to add the phases, Cα, as in (2.50), which also transform under change of framing.

It may appear that the expression (2.50) is not useful unless one can find the values
of the Cα’s. However, as it turns out, for k = 0 (or equivalently τ = −τ), all of the
Cα’s are constant, and (2.50) without the Cα’s gives the correct partition function5.
This may be closely related to the fact that for k = 0,

cL − cR = −2ȟ dim G
(

1
τ
+

1
τ̄

)
= 0. (2.56)

5“Correct” in the sense that it matches the index of T[L(p, 1)].
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Superconformal index
We have shown that the proposal (2.8) for T[L(p, 1)] gives the right supersymmetric
vacua and we shall now move to the quantum level and check the relation between
the partition functions:

IndexT[L(p,1);U(N)](q) = ZCS (L(p, 1); GL(N,C), q) . (2.57)

We have already verified this for p = 1 in the previous section. Now we consider
the more general case with p ≥ 1.

The superconformal index of a 3d N = 2 SCFT is given by [44]

I(q, ti) = Tr
[
(−1)Fe−γ(E−R− j3)q

E+j3
2 t fi

]
. (2.58)

Here, the trace is taken over the Hilbert space of the theory on R × S2. Because of
supersymmetry, only BPS states with

E − R − j3 = 0 (2.59)

will contribute. As a consequence, the index is independent of γ and only depends
on q and the flavor fugacities, ti. For T[L(p, 1)], there is always a U(1) flavor
symmetry and we can introduce at least one parameter t. When this parameter is
turned on, on the other side of the 3d-3d correspondence, complex Chern-Simons
theory will become the “deformed complex Chern-Simons theory”. This deformed
version of Chern-Simons theory was studied on geometry Σ × S1 in [15] and will
be studied on more general Seifert manifolds in [45]. However, because in this
chapter our goal is to test the 3d-3d relation (as opposed to using it to study the
deformed Chern-Simons theory), we will usually turn off this parameter by setting
t = 1, and compare the index I(q) with the partition function of the undeformed
Chern-Simons theory, which is only a function of q, as in (2.25).

Viewing the index as the partition function on S1×q S2 and using localization, (2.58)
can be expressed as an integral over the Cartan T of the gauge group G [46]:

I =
1
|W|

∑
m

∫ ∏
j

dz j

2πiz j
e−SCS(m)qε0/2eib0(h)t f0 exp

[
+∞∑
n=1

1
n
Ind(zn

j ,m j ; tn, qn)

]
.

(2.60)
Here h,m ∈ t are valued in the Cartan subalgebra. Physically, eih is the holonomy
along S1 and is parametrized by zi, which are coordinates on T.

m =
i

2π

∫
S2

F (2.61)
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is the monopole number on S2 and takes value in the weight lattice of the Langlands
dual group LG. |W| is the order of the Weyl group and the other quantities are

b0(h) = −
1
2

∑
ρ∈RΦ

|ρ(m)| ρ(h),

f0 = −
1
2

∑
ρ∈RΦ

|ρ(m)| f ,

ε0 =
1
2

∑
ρ∈RΦ

(1 − r) |ρ(m)| −
1
2

∑
α∈ad(G)

|α(m)| ,

SCS = ip tr (mh),

(2.62)

and

Ind (eihj = z j,m j ; t; q) = −
∑

α∈ad(G)

eiα(h)q |α(m)|

+
∑
ρ∈RΦ

[
eiρ(h)t

q |ρ(m)|/2+r/2

1 − q
− e−iρ(h)t−1 q |ρ(m)|/2+1−r/2

1 − q

]
(2.63)

is the “single particle" index. RΦ is the gauge group representation for all matter
fields. Using this general expression, the index ofT[L(p, 1); U(N)] can be expressed
in the following form:

I(q, t) =
∑

m1>···>mN∈Z

1
|Wm |

∫ ∏
j

dz j

2πiz j

N∏
i

(zi)
pmi

N∏
i, j

t−|mi−mj |/2q−R|mi−mj |/4
(
1 − q |mi−mj |/2 zi

z j

)
N∏

i, j

(
zj
zi

t−1q |mi−mj |/2+1−R/2; q
)
∞(

zi
zj

tq |mi−mj |/2+R/2; q
)
∞

×

[
(t−1q1−R/2; q)∞
(tqR/2; q)∞

]N

.

(2.64)
Here we used the q-Pochhammer symbol (z; q)n =

∏n−1
j=0(1− zq j).Wm ⊂ W is the

stabilizer subgroup of the Weyl group that fixes m ∈ t and R stands for the R-charge
of the adjoint chiral multiplet and will be set to R = 2 — the choice that gives the
correct IR theory.

In the previous section, we have found the index for T[S3] to be exactly equal to the
S3 partition function of Chern-Simons theory. There, we used an entirely different
method by working with the dual description of T[L(p, 1); U(N)], which is a sigma
model to the vortex moduli spaceVN,p. For p = 1, this moduli space is topologically
CN and the index of the sigma model is just that of a free theory. For p ≥ 2, such
a simplification will not occur and the index of the sigma model is much harder
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to compute6. In contrast, the integral expression (2.64) is easier to compute with
larger p than with p = 1, because fewer topological sectors labelled by the monopole
number m contribute. As we will see later, when p is sufficiently large, only the
sector m = (0, 0, . . . , 0) gives non-vanishing contribution. So the two approaches of
computing the index have their individual strengths and are complementary to each
other.

Now, one can readily compute the index for any T[L(p, 1); G] and then compare
I(q, t = 1) with the partition function of the complex Chern-Simons theory on
L(p, 1). We will first do a simple example with G = SU(2), to illustrate some
general features of the index computation.

Index of T[L(p, 1); SU(2)]. We will start with p = 1 and see how the answer from
section 2.2 arises from the integral expression (2.64). In this case, (2.64) becomes

I =
∑
m∈Z

∫
dz

4πiz
eihmq−2|m|

(
1 − q |m|eih

)2 (
1 − q |m|e−ih

)2 +∞∏
k=0

1 − qk+1−R/2

1 − qk+R/2

=
∑
m∈Z

∫
dz

4πiz
zmq−2|m|

(
1 + q2|m| − zq |m| − z−1q |m|

)2
[(R − 2) ln q]

=
∑
m∈Z

∫
dz

4πiz
zm

(
q2|m| + q−2|m| + 4 − 2

(
z +

1
z

) (
q |m| +

1
q |m|

)
+

(
z2 +

1
z2

))
× [(R/2 − 1) ln q] .

(2.65)
As in section 2.2, the index will be zero if we naively take R = 2 because of the
1 − q1−r/2 factor in the infinite product. When R→ 2, the zero factor becomes

1 − q1−R/2 = 1 − exp [(1 − R/2) ln q] ≈ (R/2 − 1) ln q. (2.66)

As in section 2.2, we can introduce a normalization factor (R/2 − 1)−1 in the index
to cancel the zero, making the index expression finite.

The integral in (2.65) is very easy to do and the index receives contributions from
three different monopole number sectors

I =
1
2

ln q (Im=0 + Im=±1 + Im=±2), (2.67)
6In general, it can bewritten as an integral of a characteristic class overVN,p that one can evaluate

using the Atiyah-Bott localization formula. Similar computations were done in two dimensions in,
e.g., [6] and [47].
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with

Im=0 =

∫
dz

2πiz

(
q0 + q−0 + 4

)
= 6, (2.68)

Im=±1 = −2
∑

m=±1

∫
dz

2πiz
zm

(
q |m| + q−|m|

) (
z +

1
z

)
= −4(q + q−1), (2.69)

and
Im=±2 =

∑
m=±2

∫
dz

2πiz
zm

(
z2 +

1
z2

)
= 2. (2.70)

So the index is
I =

1
2

ln q
(
6 − 4(q + q−1) + 2

)
= −2 ln q

(
q1/2 − q−1/2

)2
.

(2.71)

Modulo a normalization constant, this is in perfect agreement with results in section
2.2. Indeed, the square root of (2.71) is identical to (2.34) and reproduces the S3

partition function of the SU(2) Chern-Simons theory,

ZCS(S3; SU(2), k) =

√
2

k + 2
sin

π

k + 2
, (2.72)

once we set
q = e

2πi
k+2 . (2.73)

It is very easy to generalize the result (2.71) to arbitrary p. For general p, the index
is given by

I =
1
2

ln q
∑
m∈Z

∫
dz

2πiz
zpm

×

(
q2|m| + q−2|m| + 4 − 2

(
q |m| + q−|m|

) (
z +

1
z

)
+

(
z2 +

1
z2

))
.

(2.74)

The only effect of p is to select monopole numbers that contribute. For example, if
p = 2, only m = 0 and m = ±1 contribute to the index and we have

Ip=2 =
1
2

ln q (Im=0 + I
p=2

m=±1) =
1
2

ln q (6 + 2) = 4 ln q. (2.75)

If p > 2, only the trivial sector is selected, and

I(p > 2) =
1
2

ln q Im=0 = 3 ln q. (2.76)

This is a general feature of indices of the “lens space theory”, and we will soon
encounter this phenomenon with higher rank gauge groups.
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p = 1 p = 2 p = 3 p = 4 p = 5 p = 6

U(2) 2(1 − q)(1 − q−1) 4 3 3 3 3

U(3)
6(1 − q)2(1 − q2)

(1 − q−1)2(1 − q−2)

28 − 6q−2

−8q−1 − 8q

−6q2

23 + 2q−1 + 2q 16 15 15

U(4)

24(1 − q)3(1 − q2)2

(1 − q3)(1 − q−1)3

(1 − q−2)2(1 − q−3)

504+

84q−4 − 96q−3

−80q−2 − 160q−1

−160q − 80q2

−96q3 + 84q4

204 − 30q−3

−48q−2 − 24q−1

−24q − 48q2

−30q3

188 + 10q−2

+24q−1 + 24q

+10q2

121+

2q−1 + 2q

108

U(5)

120(1 − q)4(1 − q2)3

(1 − q3)2(1 − q4)

(1 − q−1)4(1 − q−2)3

(1 − q−3)2(1 − q−4)

12336+

120q−10 + 192q−9

−1080q−8 + 48q−7

+120q−6 + 3792q−5

−2016q−4 − 1296q−3

−3312q−2 − 2736q−1

−2736q − 3312q2

−1296q3 − 2016q4

+3792q5 + 120q6

+48q7 − 1080q8

+192q9 + 120q10

3988+

180q−6 + 388q−5

−294q−4 − 932q−3

−584q−2 − 752q−1

−752q − 584q2

−932q3 − 294q4

+388q5 + 180q6

2144−

240q−4 − 320q−3

−320q−2 − 192q−1

−192q − 320q2

−320q3 − 240q4

1897+

70q−3 + 192q−2

352q−1 + 352q

+192q2 + 70q3

1188+

14q−2 + 40q−1

40q + 14q2

Table 2.1: The superconformal index of the “lens space theory” T[L(p, 1),U(N)],
which agrees with the partition function of GL(N,C) Chern-Simons theory at level
k = 0 on lens space L(p, 1).

The test for 3d-3d correspondence. We list the index ofT[L(p, 1); U(N)], obtained
using Mathematica, in table 2.1. Due to limitation of space and computational
power, it contains results up to N = 5 and p = 6. The omnipresent (ln q)N factors
are dropped to avoid clutter, and after this every entry in table 2.1 is a Laurent
polynomial in q with integer coefficients. Also, when the gauge group is U(N),
monopole number sectors are labeled by an N-tuple of integersm = (m1,m2, . . . ,mN )

and a given sector can only contribute to the index if
∑

mi = 0.

From the table, one may be able to recognize the large p behavior for U(3) and U(4)
similar to (2.75) and (2.76). Indeed, it is a general feature of the index IT[L(p,1);U(N)]
that fewer monopole number sectors contribute when p increases. In order for a
monopole number m = (m1, . . . ,mN ) to contribute,

|pmi | ≤ 2N − 2 (2.77)
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needs to be satisfied for all mi. For large p > 2N − 2, I only receives a contribution
from the m = 0 sector and becomes a constant:

I(U(N), p > 2N − 2) = Im=(0,0,0,...,0) = (2N − 1)!! . (2.78)

For p = 2N − 2, the index receives contributions from two sectors7:

I(U(N), p = 2N − 2) = Im=(0,0,0,...,0) + Im=(1,0,...,0,−1) = [(2N − 1)!! + (2N − 5)!!] .
(2.79)

While the ln q factors (that we have omitted) are artifacts of our scheme of removing
zeros in I, the constant coefficient (2N −1)!! in (2.78) is counting BPS states. Then
one can ask a series of questions: 1) What are the states or local operators that are
being counted? 2) Why is the number of such operators independent of p when p is
large?

Partition functions ZCS of the complex Chern-Simons theory on Lens spaces can
also be computed systematically. Please see appendix A for details of the method
we use. For k = 0, GC = GL(N,C), the partition functions on L(p, 1) only depend
on q = e4πi/τ as q = e4πi/τ = q−1. After dropping a (ln q)N factor as in the index
case, it is again a polynomial. We have computed this partition function up to N = 5
and p = 6 and found a perfect agreement with the index in table 2.1.

From the point of view of the complex Chern-Simons theory, this large p behavior
(2.78) seems to be even more surprising — it predicts that the partition functions
of the complex Chern-Simons theory on L(p, 1) at level k = 0 are constant when p

is greater than twice the rank of the gauge group. One can then ask 1) why is this
happening? And 2) what is the geometric meaning of this (2N − 1)!! constant?

T[L(p, 1)] on S3
b

In previous sections, we have seen that the superconformal index ofT[L(p, 1)] agrees
completely with the partition function of the complex Chern-Simons theory at level
k = 0 given by (2.50) with trivial relative phases Cα = 0:

Z(GC; τ, τ) =
∑
α∈M

Z′α
(
G;

τ

2

)
Z′α

(
G;

τ

2

)
, (2.80)

for G = U(N). But for more general k, one can no longer expect this to be true.
We will now consider the S3

b partition function of T[L(p, 1)], which will give the
7Here, double factorial of a negative number is taken to be 1.
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partition function of the complex Chern-Simons theory at level [26]

(k, σ) =
(
1,

1 − b2

1 + b2

)
. (2.81)

And we will examine for which choices of N and p that setting all phases Cα = 0
becomes a mistake, by comparing the S3

b partition function of T[L(p, 1)] to the
“naive” partition function (2.80) of the complex Chern-Simons theory at level k = 1
on L(p, 1).

There are two kinds of squashed three-spheres breaking the SO(4) isometry of the
round S3: the first one preserves SU(2) × U(1) isometry while the second one
preserves U(1) × U(1) [48]. However, despite the geometry being different, the
partition functions of 3dN = 2 theories that one gets are the same [48–51]. In fact,
as was shown in [52, 53], three-sphere partition functions of N = 2 theories only
admit a one-parameter deformation. We will choose the “ellipsoid” geometry with
the metric

ds2
3 = f (θ)2dθ2 + cos2 θdφ2

1 +
1
b4 sin2 θdφ2

2, (2.82)

where f (θ) is arbitrary and does not affect the partition function of the supersym-
metric theory.

Using localization, partition function of a N = 2 gauge theory on such an ellipsoid
can be written as an integral over the Cartan of the gauge group [48, 50]. Consider
an N = 2 Chern-Simons-matter theory with gauge group being U(N). A classical
Chern-Simons term with level k contributes

ZCS = exp

(
i

b2
k

4π

N∑
i=1

λ2
i

)
(2.83)

to the integrand. The one-loop determinant of U(N) vector multiplet, combined
with the Vandermonde determinant, gives

Zgauge =

N∏
i< j

(
2 sinh

λi − λ j

2

) (
2 sinh

λi − λ j

2b2

)
. (2.84)

A chiral multiplet in the representation R gives a product of double sine functions:

Zmatter =
∏
ρ∈R

sb

(
iQ
2
(1 − R) −

ρ(λ)

2πb

)
, (2.85)

where Q = b + 1/b, R is the R-charge of the multiplet and the double sine function
is defined as

sb(x) =
+∞∏

p,q=0

pb + qb−1 + Q
2 − ix

pb−1 + qb + Q
2 + ix

. (2.86)
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Then we can express the S3
b partition function ofT[L(p, 1)] using the UV description

in (2.8) as

Z(T[L(p, 1),U(N)], b) =
1

N!

∫ N∏
i

dλi

2π
exp

(
−

i
b2

p
4π

N∑
i=1

λ2
i

)
×

N∏
i< j

4
π2

(
sinh

λi − λ j

2

)2 (
sinh

λi − λ j

2b2

)2
,

(2.87)

which is a Gaussian integral. We list our results in table 2.2 and 2.3. A universal
factor (

b
ip

)N/2
π−N(N−1) (2.88)

is dropped in making these two tables.

If one compares results in table 2.2 and 2.3 with partition functions of complex
Chern-Simons theory naively computed using (2.49), one will find a perfect agree-
ment for p = 1 once the phase factor

exp
[
πi(cL − cR)

12
· (3 − p)

]
(2.89)

from the change of framing is added8. This agreement is not unexpected because
for p = 1,Mflat consists of just a single point and there are no such things as relative
phases between contributions from different flat connections. Even for p = 2, the
naive way (2.49) of computing partition function of complex Chern-Simons theory
seems to be still valid modulo an overall factor. However, starting from p = 3, the
two sides start to differ significantly. See table 2.4 for a comparison between the
S3

b partition function of T[L(p, 1)] and the “naive” partition function of the complex
Chern-Simons theory on L(p, 1) for G = U(2). Recently, Blau and Thompson
studied partition functions of complex Chern-Simons theory on general Seifert
manifolds [55], and it is a very interesting problem to check whether their results,
when specialized to L(p, 1), agree with the prediction of the 3d-3d correspondence
using T[L(p, 1)].

8The complex Chern-Simons theory obtained from the 3d-3d correspondence is naturally in
“Seifert framing”, as the T[L(p, 1)] we used is obtained by reducing M5-brane on the Seifeit S1 fiber
of L(p, 1) in [15]. However, the computation in appendix A is in “canonical framing” and differs
from Seifert framing by (3 − p) units [54].
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p U(2) U(3) U(4)

1
2e
−2iπb2− 2iπ

b2(
1 − e

2iπ
b2

) (
1 − e2iπb2 ) 6e

−8iπb2− 8iπ
b2

(
1 − e

2iπ
b2

)3 (
1 + e

2iπ
b2

)
(
1 − e2iπb2 )3 (

1 + e2iπb2 )
24e
−20iπb2− 20iπ

b2
(
1 − e

2iπ
b2

)6 (
1 + e

2iπ
b2

)2

(
1 + e

2iπ
b2 + e

4iπ
b2

) (
1 − e2iπb2 )6

(
1 + e2iπb2 )2 (

1 + e2iπb2
+ e4iπb2 )

2
2 − 2e

− iπ
b2 − 2e−iπb

2

+2e
−iπb2− iπ

b2

2e−4iπ(b2+b−2)(
1 − e

2iπ
b2

) (
1 − e2iπb2 )

(
−6e

iπ
b2 + 3e

2iπ
b2 − 6eiπb

2
+ 3e2iπb2

−4eiπ(b
2+b−2) + 3e2iπ(b2+b−2)

−6e
iπ

(
b2+2b−2

)
− 6e

iπ
(
2b2+b−2

)
+ 3

)

8e
−10iπ

(
b2+b−2

) (
1 − e

2iπ
b2

)2 (
1 − e2ib2π

)2

(
3 − 9e

iπ
b2 + 9e

2iπ
b2 − 6e

3iπ
b2 + 9e

4iπ
b2 − 9e

5iπ
b2

+3e
6iπ
b2 − 9eib

2π + 9e2ib2π − 6e3ib2π

+9e4ib2π − 9e5ib2π + 3e6ib2π − 9e
iπ

(
b2+b−2

)
+27e

2iπ
(
b2+b−2

)
− 4e

3iπ
(
b2+b−2

)
+ 27e

4iπ
(
b2+b−2

)
−9e

5iπ
(
b2+b−2

)
+ 3e

6iπ
(
b2+b−2

)
− 27e

iπ
(
b2+2b−2

)
+27e

2iπ
(
b2+2b−2

)
− 6e

3iπ
(
b2+2b−2

)
− 6e

iπ
(
b2+3b−2

)
+9e

2iπ
(
b2+3b−2

)
− 27e

iπ
(
b2+4b−2

)
− 9e

iπ
(
b2+5b−2

)
−9e

iπ
(
b2+6b−2

)
− 18e

iπ
(
2b2+3b−2

)
+ 9e

2iπ
(
2b2+3b−2

)
−27e

iπ
(
2b2+5b−2

)
− 18e

iπ
(
3b2+2b−2

)
+ 9e

2iπ
(
3b2+2b−2

)
−18e

iπ
(
3b2+4b−2

)
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(
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)
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−6e
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)
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(
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)
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iπ
(
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3
2 − 2e

− 2iπ
3b2 − 2e−

2
3 iπb2

−e
− 2iπ

3 (b
2+b−2)

−3e
− 8iπ

3
(
b2+b−2

)
×(

4e
2iπ
3b2 + 2e

2iπ
b2 + 2e

8iπ
3b2

+4e
2
3 iπb2

+ 2e2iπb2
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8
3 iπb2

−8e
2iπ

3
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)
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2iπ
(
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)
+ 1

)

−6e
− 20iπ

3
(
b2+b−2

) (
1 − e

2iπ
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2
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3
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3

(
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3

(
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)
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3

(
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)
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3

(
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)
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3

(
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)
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)
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)
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)
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(
5b2+2b−2
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(
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)
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(
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)
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(
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) )

Table 2.2: The S3
b partition function of T[L(p, 1),U(N)]. In this table p ranges from

1 to 3.
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p U(2) U(3)

4 2 − 2e
− iπ

2b2 − 2e−
1
2 iπb2

− 2e
− iπ

2
(
b2+b−2

)
−2e
−2iπ

(
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−3 − 2e
iπ
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3iπ
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3iπ
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iπ
2

(
4b2+3b−2
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5
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2
5 iπb2

+ 2 cos 4π
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5
(
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)

6 − 12e
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− 6iπ
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− 8iπ
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2
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6
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8
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− 2iπ
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5

(
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)
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5

(
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)
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5
(
4b2+3b−2
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5

(
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− 2iπ
5
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1
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e
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3
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)
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4iπ
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1
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− 6eiπb
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4
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− 8e
iπ
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)

+4e
iπ
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4iπ
3

(
b2+b−2
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iπ
3
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)
+ 12e

iπ
3
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)
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iπ
3

(
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iπ
3
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3
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)

Table 2.3: The S3
b partition function of T[L(p, 1),U(N)]. This table, with p ranging

from 4 to 6, is the continuation of the previous table 2.2. Due to the limitation of
space, only partition functions for U(2) and U(3) are given.
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p S3
b
partition function of T [L(p, 1);U(2)] “naive” partition function ofGL(2, γ) Chern-Simons theory

1 2 − 2q−1 − 2q−1 + 2(qq)−1 2 − 2q−1 − 2q−1 + 2(qq)−1

2 2 + 2q−
1
2 + 2q−
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√
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√

3i
)
q
− 1

3 + 1
2

(
1 +
√
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√
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√
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√
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√
3)q

1
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√
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Table 2.4: The comparison between the S3
b partition function of T[L(p, 1),U(2)]

and the “naive” partition function of the GL(2,C) Chern-Simons theory, obtained
by putting together two copies of the U(2) Chern-Simons theory using (2.80), on
lens space L(p, 1) in “Seifert framing.” Notice that when p increases, the difference
between the two columns becomes larger and larger.
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C h a p t e r 3

THE COULOMB BRANCH INDEX AND THE EQUIVARIANT
VERLINDE FORMULA

3.1 Connection to four dimensional SCFTs
In this chapter, we pick M3 = Σ×S1 for Σ a Riemann surface with punctures. Recall
the general M5 brane configuration introduced in Chapter 2,

space-time: L(k, 1)b × T∗M3 × R
2

∪

N fivebranes: L(k, 1)b × M3

(3.1)

If one reduces along the squashed lens space L(k, 1)b, one obtains complex Chern-
Simons theory at level k on M3 [26]. In this simple case where M3 = S1 × Σ, the
system is extremely interesting and can be used to gain a lot of insight into complex
Chern-Simons theory. For example, the partition function of the 6d (2, 0)-theory on
this geometry gives the “equivariant Verlinde formula”, which can be identified with
the dimension of the Hilbert space of the complex Chern-Simons theory at level k

on Σ:
ZM5(L(k, 1) × Σ × S1, β) = dimβHCS(Σ, k). (3.2)

Here β is an “equivariant parameter” associated with a geometric U(1)β action
whose precise definition will be reviewed in section 3.2. The left-hand side of (3.2)
has been computed in several ways in [15] and [13], and each gives unique insight
into the equivariant Verlinde formula, the complex Chern-Simons theory, and the
3d-3d correspondence in general. In this chapter, we will add to the list yet another
method of computing the partition of the system of M5-branes by relating it to
superconformal indices of class S theories.

The starting point is the following observation. For M3 = Σ × S1, the setup (3.1)
looks like:

N fivebranes: L(k, 1)b × Σ × S1

∩

space-time: L(k, 1)b × T∗Σ × S1 × R3 ,

(3.3)
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which is already very reminiscent of the setting of lens space superconformal indices
of class S theories [56–60]:

N fivebranes: L(k, 1) × S1 × Σ

∩

space-time: L(k, 1) × S1 × T∗Σ × R3

� � �

symmetries: SO(4)E U(1)N SU(2)R

. (3.4)

In this geometry, one can turn on holonomies of the symmetries along the S1 circle in
a supersymmetric way and introduce three “universal fugacities” (p, q, t). Then the
partition function of M5-branes in this geometry is the lens space superconformal
index of the 4d N = 2 theory T[Σ] of class S:

ZM5(L(k, 1) × S1 × Σ, p, q, t) = I(T[Σ], p, q, t), (3.5)

where we have adopted the following convention for the index1:

I(p, q, t) = Tr (−1)F p
1
2 δ1+q

1
2 δ1−tR+r e−β

′′δ̃1 Û− . (3.6)

As the left-hand sides of (3.2) and (3.5) are closely related, it is very tempting to ask
whether the equivariant Verlinde formula for a Riemann surface Σ, parametrized
by β ∈ R, can actually be embedded as a one-parameter family inside the three-
parameter space of superconformal indices of the theory T[Σ]. The goal of this
chapter is to give strong evidence for the following proposal:

equivariant Verlinde formula
at level k on Σ for group G

=
Coulomb branch index

of T[Σ,LG] on L(k, 1) × S1 , (3.7)

where the Coulomb branch index is the one-parameter family obtained by taking
p, q, t → 0 while keeping t = pq/t fixed.

To clarify the proposed relation (3.7), we first give a few remarks:

1. When we fixed Σ, G and k ∈ Z, both sides depend on a real parameter and the
identification between them is given by t = e−β.

1In the literature there are several other conventions in use. The other two most commonly used
conventions for universal fugacities are (ρ, σ, τ) which are related to our convention via p = στ, q =
ρτ, t = τ2, and (t, y, v) with t = σ

1
6 ρ

1
6 τ

1
3 , y = σ

1
2 ρ−

1
2 , v = σ

2
3 ρ

2
3 τ−

2
3 .
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2. We will assume g = Lie G is of type ADE (modulo possible abelian factors),
as T[Σ,LG], with LG being the Langlands dual group of G, is not yet defined
in the literature when g is not simply-laced. Then we have g = Lg.

3. When G is simple but not simply-connected, the left-hand side of (3.7) is only
defined when k annihilates π1(G) (under the natural Z-action on this abelian
group), and the proposal is meant for these values of k.

4. When LG is simple but not simply-connected, the theory T[Σ,LG] is not
yet defined. Denote the universal cover of LG (which equals the universal
cover of G as g is of type ADE) as G̃. We will interpret the Coulomb
index of T[Σ,LG] as a summation of indices of T[Σ, G̃] with insertion of
all possible ’t Hooft fluxes valued in π1(

LG). The insertion is along the 2d
surface S1 × S1

Hopf ⊂ S1 × L(k, 1), where S1
Hopf is the Hopf fiber of the lens

space L(k, 1).2 We will give a concrete argument using string theory for the
AN−1 series by starting with g = u(N), and show that this summation naturally
arises when we decouple the abelian u(1) factor.

5. Conceptually, the reason why G appears on the left of (3.7) while LG appears
on the right can be understood as follows. The left-hand side of (3.7) can
be viewed as certain B-model partition function of the Hitchin moduli space
MH(Σ,G) [12] (see also (1.3)). Mirror symmetry will produce the Hitchin
moduli space associated with the dual groupMH(Σ,

LG) [61, 62], and as we
will argue in later sections, the corresponding A-model partition function of
MH(Σ,

LG) can be identified with the right-hand side of (3.7).

To further illustrate (3.7), we will present the simplest example where k = 1 and
G is simply connected. The equivariant Verlinde formula formula can be obtained
using the TQFT structure studied in [63]

dimβHCS(Σ,GC, k = 1) =
|Z(G)|g[∏rank G

i=1 (1 − tdi )hi
]g−1 , (3.8)

where |Z(G)| is the order of the center of groupG, di’s are degrees of the fundamen-
tal invariants of g = Lie G, and hi’s are the dimension of the space of di-differentials
on Σ. The reader may have already recognized that (3.8) is exactly the Coulomb

2Another natural definition of the partition function of T[Σ,LG] is as the summation over only
fluxes valued in H2(L(k, 1), π1(

LG)) = Zk ⊗ π1(
LG), which is a subgroup of π1(

LG). If one takes this
as the definition, then (3.7) is correct when k also annihilates π1(

LG).



31

branch index of T[Σ,G] on L(k = 1, 1) = S3 times |Z(G)|g. As we will explain in
great detail later, the |Z(G)|g factor comes from summation over ’t Hooft fluxes,
which are labeled precisely by elements in Z(G) ' π1(

LG). The g power morally
originates from the fact that there are g “independent gauge nodes” in the theory
T[Σ,G] (i.e. one copy of G for each handle of Σ). So (3.8) agrees with the Coulomb
index of T[Σ,LG].

For k > 1, the relation (3.7) becomes more non-trivial, and each flux sector gives
generally different contribution. Even if one sets t = 0, the identification of Verlinde
algebra with the algebra of allowed ’t Hooft fluxes in T[Σ,G] is novel.

This chapter is organized as follows. In section 3.2, we examine more closely the
two fivebranes systems (3.1) and (3.4), and give arguments supporting the relation
(3.7) between the equivariant Verlinde formula and the Coulomb branch index. In
section 3.3, after reviewing basic facts and ingredients of the index, we verify our
proposals by reproducing the already known SU(2) equivariant Verlinde algebra
from the Coulomb branch indices of class S theories on the lens space. We will
see that after an appropriate normalization, the TQFT algebras on both sides are
exactly identical, and so are the partition functions. In section 3.4, we will use the
proposed relation (3.7) to derive the SU(3) equivariant Verlinde algebra from the
index of T[Σ, SU(3)] computed via the Argyres-Seiberg duality. Careful analysis of
the results reveals interesting geometry of the Hitchin moduli spaceMH(Σ, SU(3)).

3.2 Equivariant Verlinde algebra and Coulomb branch index
One obvious difference between the two brane systems (3.1) and (3.4) is that the
S1 factor appears on different sides of the correspondence. From the geometry of
(3.1), one would expect that

equivariant Verlinde formula
at level k on Σ

=
Partition function of
T[Σ × S1] on L(k, 1)

. (3.9)

In particular, there should be no dependence on the size of the S1, so it is more
natural to use “3d variables”:

t = eLβ−(b+b−1)L/r, p = e−bL/r, q = e−b−1L/r . (3.10)

Here, L is the size of the S1 circle, b is the squashing parameter of L(k, 1)b, r

measures the size of the Seifert base S2, and β parametrizes the “canonical mass
deformation” of the 3d N = 4 theory (in our case T[Σ × S1]) into 3d N = 2. The
latter is defined as follows on flat space. The 3d N = 4 theory has R-symmetry
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SU(2)N × SU(2)R and we can view it as a 3d N = 2 theory with the R-symmetry
group being the diagonal subgroupU(1)N+R ⊂ U(1)N×U(1)R withU(1)N andU(1)R
being the Cartans of SU(2)N and SU(2)R respectively. The difference U(1)N−R =

U(1)N −U(1)R of the original R-symmetry group is now a flavor symmetry U(1)β
and we can weakly gauge it to introduce real masses proportional to β. It is exactly
how the “equivariant parameter” in [15], denoted by the same letter β, is defined.3

In [15], it was observed that much could be learned about the brane system (3.1) and
the Hilbert space of complex Chern-Simons theory by preserving supersymmetry
along the lens space L(k, 1) in a different way, namely by doing partial topological
twist instead of deforming the supersymmetry algebra. Geometrically, this cor-
responds to combining the last R3 factor in (3.3) with L(k, 1) to form T∗L(k, 1)
regarded as a local Calabi-Yau 3-fold with L(k, 1)b being a special Lagrangian
submanifold:

N fivebranes: L(k, 1)b × Σ × S1

∩ ∩

space-time: T∗L(k, 1)b × T∗Σ × S1

� �

symmetries: U(1)R U(1)N .

(3.11)

In this geometry, U(1)N acts by rotating the cotangent fiber of Σ, while U(1)R
rotates the cotangent fiber of the Seifert base S2 of the lens space.4 This point of
view enables one to derive the equivariant Verlinde formula as it is now the partition
function of the supersymmetric theory T[L(k, 1), β] on Σ × S1.

Although the geometric setting (3.11) appears to be different from the original
one (3.1), there is substantial evidence that they are related. For example, the
equivariant Verlinde formula can be defined and computed on both sides and they
agree. Namely, the partition function in the twisted background (3.11) is given
by the partition function of T[L(k, 1)] on Σ, while the partition function under

3More precisely, the dimensionless combination βL is used. And from now on, we will rename
βnew = βoldL and rnew = rold/L to make all 3d variables dimensionless.

4Note, U(1)N is always an isometry of the system whereas the U(1)R is only an isometry in
certain limits where the metric on L(k, 1) is singular (e.g.when L(k, 1) is viewed a small torus fibered
over a long interval). However, if we are only interested in questions that have no dependence on
the metric on L(k, 1), we can always assume the U(1)R symmetry to exist. For example, the theory
T[L(k, 1)], or in general T[M3] for any Seifert manifolds M3 should enjoy an extra flavor symmetry
U(1)β = U(1)N −U(1)R.
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the background (3.1) is given by an equivariant integral over the Hitchin moduli
space, and they are proven to be equal in [63]. Moreover, the modern viewpoint
on supersymmetry in curved backgrounds is that the deformed supersymmetry is
an extension of topological twisting; see e.g., [64]. Therefore, one should expect
that the equivariant Verlinde formula formula at level k could be identified with
a particular slice of the four-parameter family of 4d indices (k, p, q, t) (or in 3d
variables (k, β, b, r)). And this particular slice should have the property that the
index has no dependence on the geometry of L(k, 1)b. Since T[L(k, 1)] is derived
in the limit where L(k, 1) shrinks, one should naturally take the r → 0 limit for the
superconformal index. In terms of the 4d parameters, that corresponds to

p, q, t → 0. (3.12)

This is known as the Coulomb branch limit. In this particular limit, the only
combination of (k, p, q, t) independent of b and r that one could possibly construct
is

t =
pq
t
= e−β, (3.13)

and this is precisely the parameter used in the Coulomb branch index. Therefore,
one arrives at the following proposal:

Equivariant Verlinde formula
of U(N)k on Σ

=
Coulomb branch index

of T[Σ,U(N)] on L(k, 1) × S1 . (3.14)

This relation should be more accurately viewed as the natural isomorphism between
two TQFT functors:

ZEV = ZCB. (3.15)

At the level of partition function on a closed Riemann surface Σ, it is the equality
between the equivariant Verlinde formula and the Coulomb index of T[Σ]:

ZEV(Σ) = ZCB(Σ). (3.16)

Going one dimension lower, we also have an isomorphism between the Hilbert
spaces of the two TQFTs on a circle:

HEV = ZEV(S1) = HCB = ZCB(S1). (3.17)

As these underlying vector spaces set the stages for any interesting TQFT algebra,
the equality above is the most fundamental and needs to be established first. We now
show how one can canonically identify the two seemingly different Hilbert spaces
HEV andHCB.
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HEV vs.HCB

In the equivariant Verlinde TQFT, operator-state correspondence tells us that states
in HEV are in one-to-one correspondence with local operators. Since these local
operators come from codimension-2 “monodromy defects” [65] (see also [66] in
the context of 3d-3d correspondence) in T[L(k, 1)] supported on the circle fibers of
Σ × S1, they are labeled by

a = diag{a1, a2, a3, . . . , aN } ∈ u(N) (3.18)

together with a compatible choice of Levi subgroup L ⊂ U(N). In the equivariant
Verlinde TQFT, one only needs to consider maximal defects with L = U(1)N as they
are enough to span the finite-dimensional HEV. The set of continuous parameters
a is acted upon by the affine Weyl group Waff and therefore can be chosen to live in
the Weyl alcove:

1 > a1 ≥ a2 ≥ . . . ≥ aN ≥ 0. (3.19)

In the presence of a Chern-Simons term at level k, gauge invariance imposes the
following integrality condition:

e2πik a = 1. (3.20)

We can then define
h = ka (3.21)

whose elements are now integers in the range [0, k). The condition (3.20) is also the
condition for the adjoint orbit

Oh = {ghg−1 |g ∈ U(N)} (3.22)

to be quantizable. Via the Borel-Weil-Bott theorem, quantizing Oh gives a repre-
sentation of U(N) labeled by a Young tableau ®h = (h1, h2, . . . , hN ). So, we can also
label the states inHEV(S1) by representations ofU(N) or, more precisely, integrable
representations of the loop group of U(N) at level k. In other words, the Hilbert
space of the equivariant Verlinde TQFT is the same as that of the usual Verlinde
TQFT (better known as the G/G gaugedWZWmodel). This is, of course, what one
expects as the Verlinde algebra corresponds to the t = 0 limit of the equivariant Ver-
linde algebra, and the effect of t is to modify the algebra structure without changing
HEV. In particular, the dimension ofHEV is independent of the value of t.

One could also use the local operators from the dimensional reduction of Wilson
loops as the basis for HEV(S1). In pure Chern-Simons theory, the monodromy
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defects are the same as Wilson loops. In T[L(k, 1), β] with β turned on, these two
types of defects are still linearly related by a transformation matrix, which is no
longer diagonal. One of the many reasons that we prefer the maximal monodromy
defects is because, under the correspondence, they are mapped to more familiar
objects on the Coulomb index side. To see this, we first notice that the following
brane system

N fivebranes: L(k, 1)b × Σ × S1

∩

space-time: L(k, 1)b × T∗Σ × S1 × R3

∪

n × N “defect” fivebranes: L(k, 1)b × T∗ |piΣ × S1

(3.23)

gives nmaximal monodromy defects at (p1, p2, . . . , pn) ∈ Σ. If one first compactifies
the brane system above on Σ, one obtains the 4d N = 2 class S theory T[Σg,n] on
L(k, 1)b × S1. This theory has flavor symmetry U(N)n and one can consider sectors
of the theory with non-trivial flavor holonomies {exp[ai], i = 1, 2, . . . , n} of U(N)n

along the Hopf fiber. The L(k, 1)-Coulomb branch index of T[Σg,n] depends only
on {ai, i = 1, 2, . . . , n} and therefore states in the Hilbert spaceHCB of the Coulomb
branch index TQFT associated to a puncture on Σ are labeled by a U(N) holonomy
a. (Notice that, for other types of indices, the states are in general also labeled by a
continuous parameter corresponding to the holonomy along the S1 circle and the 2d
TQFT for them is in general infinite-dimensional). As the Hopf fiber is the generator
of π1(L(k, 1)) = Zk , one has

e2πika = Id. (3.24)

This is exactly the same as the condition (3.20). In fact, we have even used the same
letter a in both equations, anticipating the connection between the two. What we
have found is the canonical way of identifying the two sets of basis vectors in the
two Hilbert spaces

H⊗n
EV H⊗n

CB

∈ ∈

Monodromy defects on Σg,n × S1

in GL(N,C)k complex Chern-Simons theory
=

Flavor holonomy sectors
of T[Σg,n × S1,U(N)] on L(k, 1)

.

(3.25)
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And, of course, this relation is expected as both sides are labeled by flat connections
of the Chan-Paton bundle associated to the coincident N “defect” M5-branes in
(3.23). Using the relation (3.25), henceforth we identifyHEV andHCB.

The statement for a general group
The proposed relation (3.7) between the U(N) equivariant Verlinde formula and the
Coulomb branch index for T[Σ,U(N)] can be generalized to other groups. First, one
could consider decoupling the center of mass degree of freedom for all coincident
stacks of M5-branes. However, there are at least two different ways of achieving
this. Namely, one could get rid of the u(1) part of a by either

1. subtracting the trace part from a:

aSU = a −
1
N

tr a, (3.26)

2. or forcing a to be traceless by imposing

aN = −

N−1∑
i

ai (3.27)

to get

aPSU = diag(a1, a2, . . . , aN−1,−

N−1∑
i

ai). (3.28)

Naively, one may expect the two different approaches to be equivalent. However, as
we are considering lens space index, the global structure of the group comes into
play. Indeed, the integrality condition (3.20) becomes different:

e2πik ·aSU ∈ ZN = Z(SU(N)) (3.29)

while
e2πik ·aPSU = 1 = Z(PSU(N)). (3.30)

Here PSU(N) = SU(N)/ZN has trivial center but a non-trivial fundamental group.
As a consequence of having different integrality conditions, one can get either
Verlinde formula for SU(N) or PSU(N). In the first case, the claim is

Equivariant Verlinde formula
of SU(N)k on Σ

=
Coulomb branch index

of T[Σ, PSU(N)] on L(k, 1) × S1 .

(3.31)
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The meaning of T[Σ, PSU(N)] and the way to compute its Coulomb branch index
will be discussed shortly. On the other hand, if one employs the second method to
decouple the U(1) factor, one finds a similar relation with the role of SU(N) and
PSU(N) reversed:

Equivariant Verlinde formula
of PSU(N)k on Σ

=
Coulomb branch index

of T[Σ, SU(N)] on L(k, 1) × S1 . (3.32)

Before deriving these statements, we first remark that they are all compatible with
(3.7) for general G, which we record again below:

Equivariant Verlinde formula
of Gk on Σ

=
Coulomb branch index

of T[Σ,LG] on L(k, 1) × S1 , (3.33)

since LU(N) = U(N) and LSU(N) = PSU(N). This general proposal also gives
a geometric/physical interpretation of the Coulomb index of T[Σ,G] on L(k, 1) by
relating it to the quantization of the Hitchin moduli spaceMH(Σ,

LG). In fact, one
can make a even more general conjecture for all 4d N = 2 superconformal theories
(not necessarily of class S):

L(k, 1) Coulomb index
of a 4d N = 2 superconformal theory T

?
=

Graded dimension of Hilbert space
from quantization of (M̃T , kωI)

.

(3.34)
Here, M̃T is the SYZ mirror [67] of the Coulomb branchMT of T on R3 × S1.
Indeed,MT has the structure of a torus fibration:

T2d ↪→ MT

↓

B

. (3.35)

Here B is the d-(complex-)dimensional Coulomb branch of T on R4, T2d is the
2d-torus parametrized by the holomonies of the low energyU(1)d gauge group along
the spatial circle S1 and the expectation values of d dual photons. One can perform
T-duality on T2d to obtain the mirror manifold5 M̃T

T̃2d ↪→ M̃T

↓

B

. (3.36)

5In many cases, the mirror manifold M̃T =MT′ is also the 3d Coulomb branch of a theory T ′
obtained by replacing the gauge group of T with its Langlands dual. One can easily see that T ′
obtained this way always has same 4d Coulomb branch B as T .
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The dual torus T̃2d is a Kähler manifold equipped with a Kähler form ω, which
extends to ωI , one of the three Kähler forms (ωI, ωJ, ωK) of the hyper-Kähler
manifold M̃T . Part of the R-symmetry that corresponds to the U(1)N − U(1)R
subgroup inside the SU(2)R × U(1)N R-symmetry group of T becomes a U(1)β
symmetry of M̃T .

Quantizing M̃T with respect to the symplectic form kωI yields a Hilbert space
H(T , k). Because M̃T is non-compact, the resulting Hilbert space H(T , k) is
infinite-dimensional. However, because the fixed point set of U(1)β is compact
and is contained in the nilpotent cone (= the fiber of M̃T at the origin of B), the
following graded dimension is free of any divergences and can be computed with
the help of the equivariant index theorem

dimβH(T , k) =
∞∑

m=0
t
m dimHm(T , k) =

∫
M̃T

ch(L⊗k, β) ∧ Td(M̃T , β). (3.37)

Here t = e−β is identified with the parameter of the Coulomb branch index, L is
a line bundle whose curvature is ωI , and Hm(T , k) is the weight-m component of
H(T , k) with respect to the U(1)β action. In obtaining (3.37), we have used the
identificationH(T , k) = H∗(M̃T ,L⊗k) from geometric quantization.6

Now let us give a heuristic argument for why (3.37) computes the Coulomb branch
index. The lens space L(k, 1) can be viewed as a torus fibered over an interval.
Following [33, 69, 70] and [71], one can identify the Coulomb branch index with
the partition function of a topological A-model living on a strip, withMT as the
target space. The boundary condition at each end of the strip gives a certain brane
inMT . One can then apply mirror symmetry and turn the system into a B-model
with M̃T as the target space. Inside M̃T , there are two branesB1 andB2 specifying
the boundary conditions at the two endpoints of the spatial interval. The partition
function for this B-model computes the dimension of the Hom-space between the
two branes:

ZB-model = dim Hom(B1,B2). (3.38)

Now B1 and B2 are objects in the derived category of coherent sheaves on M̃T
and the quantity above can be computed using the index theorem. The equivariant
version is

ZB-model,β = dimβ Hom(B1,B2) =

∫
M̃T

ch(B∗1, β) ∧ ch(B2, β) ∧ Td(M̃T , β).

(3.39)
6One expects the higher cohomology groups to vanish, since L is ample on each generic fiber

T̃2d . For Hitchin moduli space, the vanishing of higher cohomology for L⊗k is proven in [63, 68].
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We can choose the duality frame such thatB1 = O is the structure sheaf. ThenB2 is
obtained by acting T k ∈ SL(2,Z) onB1. A simple calculation showsB2 = L

⊗k . So
the Coulomb branch index indeed equals (3.37), confirming the proposed relation
(3.34) (see also Chapter 4 for a test of this relation for many Argyres-Douglas
theories).

SU(N) vs. PSU(N). Now let us explain why (3.31) and (3.32) are expected. Both
orbits, OaSU and OaPSU , are quantizable and give rise to representations of su(N).
However, as the integrality conditions are different, there is a crucial difference
between the two classes of representations that one can obtain from aSU and aPSU.
Namely, one can get all representations of SU(N)k from OaSU but only representa-
tions7 of PSU(N)k from OaPSU . This can be directly verified as follows.

For either aSU or aPSU, quantizing Oa gives a representation of SU(N) with the
highest weight8

®µ = (h1 − hN, h2 − hN, . . . , hN−1 − hN ) ≡ k(a1 − aN, a2 − aN, . . . , aN−1 − aN ) (mod N).
(3.41)

The corresponding Young tableau consists of N − 1 rows with hi − hN boxes in
the i-th row. The integrality condition (3.29) simply says that ®µ is integral. With
no other constraints imposed, one can get all representations of SU(N) from aSU.
On the other hand, the condition (3.30) requires the total number of boxes to be a
multiple of N ,

N−1∑
i=1

µi = N ·
N−1∑
i=1

ai ≡ 0 (mod N), (3.42)

restricting us to these representations of SU(N) where the center ZN acts trivially.
These are precisely the representations of PSU(N).

What we have seen is that in the first way of decoupling U(1), one arrives at
the equivariant Verlinde algebra for SU(N)k , while the second option leads to the
PSU(N)k algebra. Then what happens on the lens space side?

7In our conventions, representations of PSU(N)k are those representations of SU(N)k invariant
under the action of the center. There exist different conventions in the literature and one is related
to ours by k ′ = bk/Nc. Strictly speaking, when N - k, the 3d Chern-Simons theory is not invariant
under large gauge transformation and doesn’t exist. Nonetheless, the 2d equivariant Verlinde algebra
is still well defined and matches the algebra from the Coulomb index side.

8Sometimes it is more convenient to use a different convention for the highest weight

®λ = (h1 − h2, h2 − h3, . . . , hN−1 − hN ) ≡ k · (a1 − a2, a2 − a3, . . . , aN−1 − aN ) (mod N). (3.40)
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T[Σ, SU(N)] vs. T[Σ, PSU(N)]. In the second approach of removing the center, the
flavorU(N)-bundles becomewell-defined SU(N)-bundles on L(k, 1) and decoupling
all the central U(1)’s on the lens space side simply means computing the lens space
Coulomb branch index of T[Σ, SU(N)]. So we arrive at the equivalence (3.32)
between PSU(N)k equivariant Verlinde algebra and the algebra of the Coulomb
index TQFT for SU(N). On the other hand, in the first way of decoupling the U(1),
the integrality condition

e2πik ·a = 1 (3.43)

is not satisfied for aSU. And as in (3.29), the right-hand side can be an arbitrary
element in the center ZN of SU(N). In other words, after using the first method of
decoupling the central U(1), the U(N)-bundle over L(k, 1) becomes a PSU(N) =

SU(N)/ZN -bundle. Another way to see this is by noticing that for exp[2πia] ∈
Z(SU(N)),

aSU = a −
1
N

tr a = 0. (3.44)

This tells us that the U(1) quotient done in this way has collapsed the ZN center of
U(N), giving us not a well-defined SU(N)-bundle but a PSU(N)-bundle. Therefore,
it is very natural to give the name “T[Σ, PSU(N)]” to the resulting theory living on
L(k, 1) × S1, as the class S theory T[Σ,G] doesn’t currently have proper definition
in the literature if G is not simply-connected.

For a general group G, one natural definition of the path integral of T[Σ,G] on
L(k, 1) × S1 is as the path integral of T[Σ, G̃] with summation over all possible ’t
Hooft fluxes labeled by π1(G) ⊂ Z(G̃) along L(k, 1), where G̃ is the universal cover
of G (see e.g. [72, Section 4.1] for nice explanation from the 6d viewpoint). This
amounts to summing over different topological types of G-bundles over L(k, 1),
classified by H2(L(k, 1), π1(G)) = π1(G) ⊗ Zk .

Although this is a valid definition, it is not the right one for (3.7) to work for general
k. This is clear from the quantization condition (3.29), which tells us that, in
order to get the SU(N) Verlinde algebra, the Lens index of T[Σ, PSU(N)] should be
interpreted in the following way: in the process of assembling Σ from pairs of pants
and cylinders, we should sum over ’t Hooft fluxes in the full fundamental group
π1(PSU(N)) = ZN , as opposed to ZN ⊗ Zk , in the T[Σ, SU(N)] theory for each
gauge group associated with a cylinder. But in general, ZN ⊗ Zk is only a proper
subgroup of ZN , unless N divides k.

However, general flux backgrounds can be realized by inserting surface opera-
tors (which we will refer to as “flux tubes”) with central monodromy whose
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Levi subgroup is the entire group [65]. In the spatial directions, the flux tube
lives on a S1 ⊂ L(k, 1) that has linking number 1 with the Hopf fiber. So
we can choose this S1 to be a particular Hopf fiber S1

Hopf . The amount of
flux is labeled by an element in π1(G) ⊂ Z(G̃). Geometrically, this construc-
tion amounts to removing a single Hopf fiber from L(k, 1), leading to compactly
supported cohomology H2

c (L(k, 1)\S1
Hopf ,Z) = Z that is freely generated. Then

H2
c

(
L(k, 1)\S1

Hopf , π1(G)
)
= π1(G), and the flux can take value on the whole π1(G).

When G is a group of adjoint type (i.e. Z(G) is trivial), we will call the index of
T[Σ,G] defined this way the “full Coulomb branch index” of T[Σ, G̃], which sums
over all elements of π1(G) = Z(G̃). As it contains the most information about
the field theory, it is also the most interesting in the whole family associated to
the Lie algebra g. This is not at all surprising as on the other side of the duality,
the G̃ equivariant Verlinde algebra involves all representations of g and is the most
interesting one among its cousins.

As for the AN−1 series that we will focus on in the rest of this chapter, we will
be studying the correspondence (3.31) between the SU(N) equivariant Verlinde
algebra and the Coulomb index of T[Σ, PSU(N)]. But before going any further,
we will first address a common concern that the reader may have. Namely, charge
quantization appears to be violated in the presence of these non-integral SU(N)

holonomies. Shouldn’t this suggest that the index is just zero with a non-trivial flux
background? Indeed, for a state transforming under the fundamental representation
of SU(N), translation along the Hopf fiber of L(k, 1) k times gives a non-abelian
Aharonov-Bohm phase

e2πikaSU . (3.45)

Since the loop is trivial in π1(L(k, 1)), one would expect this phase to be trivial.
However, in the presence of a non-trivial ’t Hooft flux, (3.45) is a non-trivial element
in the center of SU(N). Then the partition function with insertion of such an ’t Hooft
operator is automatically zero. However, this is actually what one must have in order
to recover even the usual Verlinde formula in the t = 0 limit. As we will explain
next, what is observed above in the SU(2) case is basically the “selection rule”
saying that in the decomposition of a tensor product

(half integer spin) ⊗ (integer spin) ⊗ . . . ⊗ (integer spin) (3.46)

there is no representation with integer spins! What we will do next is to use Dirac
quantization conditions in T[Σ, PSU(N)] to derive the selection rule above and
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analogous rules for the SU(N) Verlinde algebra.

Verlinde algebra and Dirac quantization
The Verlinde formula associates to a pair of pants a fusion coefficient fabc which
tells us how to decompose a tensor product of representations:

Ra ⊗ Rb =
⊕

c

f c
ab Rc. (3.47)

Equivalently, this coefficient gives the dimension of the invariant subspace of three-
fold tensor products

dim Inv(Ra ⊗ Rb ⊗ Rc) = fabc. (3.48)

Here, upper and lower indices are related by the “metric”

ηab = dim Inv(Ra ⊗ Rb) = δab̄, (3.49)

which is what the TQFT associates to a cylinder.

In the case of SU(N), the fusion coefficients fabc are zero whenever a selection rule is
not satisfied. For three representations labeled by the highest weights ®µ(1), ®µ(2), ®µ(3)

in (3.41) the selection rule is

N−1∑
i=1
(µ
(1)
i + µ

(2)
i + µ

(3)
i ) ≡ 0 (mod N). (3.50)

This is equivalent to the condition that ZN acts trivially on Ra ⊗ Rb ⊗ Rc. Of course,
when this action is non-trivial, it is easy to see that there can’t be any invariant
subspace.

Our job now is to reproduce this rule on the Coulomb index side via Dirac quantiza-
tion. We start with the familiar case of SU(2). The theory T2 = T[Σ0,3, SU(2)] con-
sists of eight 4d N = 2 half-hypermultiplets transforming in the tri-fundamental of
the SU(2)a×SU(2)b×SU(2)c flavor symmetry. The holonomy (Ha,Hb,Hc) ∈ U(1)3

of this flavor symmetry along the Hopf fiber is given by a triple(ma,mb,mc) with

HI = e2πimI/k, I = a, b, c. (3.51)

The Dirac quantization requires that the Aharonov-Bohm phase associated with a
trivial loop must be trivial. So, in the presence of the non-trivial holonomy along
the Hopf fiber, a physical state with charge (ea, eb, ec) needs to satisfy

Hkea
a Hkeb

b Hkec
c = e2πi

∑
I=a,b,c eImI = 1, (3.52)
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or, equivalently, ∑
I=a,b,c

eImI ∈ Z. (3.53)

When decomposed into representations ofU(1)3, the tri-fundamental hypermultiplet
splits into eight components:

(2, 2, 2) →
⊕
All ±
(±1,±1,±1). (3.54)

Therefore, one needs to satisfy eight equations

±ma ± mb ± mc ∈ Z. (3.55)

For individual mI , the condition is

mI ∈
Z

2
, (3.56)

which is the same as the relaxed integrality condition (3.29) for SU(2). This already
suggests that the condition (3.29) is the most general one and there is no need to
relax it further. Indeed, mi is the “spin” of the corresponding SU(2) representation
and we know that all allowed values for it are integers and half-integers.

Besides the individual constraint (3.56), there is an additional one:

ma + mb + mc ∈ Z , (3.57)

which is precisely the “selection rule” we mentioned before. Only when this rule is
satisfied could Rmc appear in the decomposition of Rma ⊗ Rmb

.

We then proceed to the case of SU(N). When N = 3 the theory T3 doesn’t have a
Lagrangian description but is conjectured to have E6 global symmetry [73]. And the
matter fields transform in the 78-dimensional adjoint representation of E6 [74–76]
which decomposes into SU(3)3 representations as follows

78 = (3, 3, 3) ⊕ (3̄, 3̄, 3̄) ⊕ (8, 1, 1) ⊕ (1, 8, 1) ⊕ (1, 1, 8). (3.58)

The 8 is the adjoint representation of su(3) and, being a representation for both
SU(3) and PSU(3), imposes no additional restriction on ’t Hooft fluxes. So we only
need to understand the quantization condition in the presence of a tri-fundamental
matter (3, 3, 3). A natural question, then, is whether it happens more generally, i.e.,

Dirac quantization condition
for the TN theory

=
Dirac quantization condition
for a tri-fundamental matter.

(3.59)
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This imposes on the TN theory an interesting condition, which is expected to be true
as it turns out to give the correct selection rule for SU(N) Verlinde algebra.

Now, we proceed to determine the quantization condition for the tri-fundamental of
SU(N)3. We assume the holonomy in SU(N)3 to be

(Ha,Hb,Hc), (3.60)

where
HI = exp

[
2πi
k

diag{mI1,mI2, . . . ,mIN }

]
. (3.61)

The tracelessness condition looks like

N∑
j=1

mI j = 0 for all I = a, b, c. (3.62)

We now have N3 constraints given by

ma j1 + mbj2 + mc j3 ∈ Z for all choices of j1, j2, and j3. (3.63)

Using (3.62), one can derive the individual constraint for each i = a, b, c9:

mI ≡

(
1
N
,

1
N
,

1
N
, . . . ,

1
N

)
· Z (mod Z). (3.64)

This is exactly the same as (3.29). There is only one additional “selection rule” that
needs to be satisfied: ∑

I=a,b,c

N−1∑
j=1
(mI j − mIN ) ≡ 0 (mod N), (3.65)

which coincides with (3.50). Therefore, we have demonstrated the equivalence
between the Dirac quantization condition of the tri-fundamental and the selection
rules in the SU(N)Verlinde algebra. Since the argument is independent of the value
of t, the same set of selection rules also applies to the equivariant Verlinde algebra.

Beside pairs of pants, one needs one more ingredient to build a 2d TQFT —
the cylinder. It can be used to glue punctures together to build general Riemann
surfaces. Each cylinder corresponds to a free 4d N = 2 vector multiplet. Since
all of its components transform under the adjoint representation, it does not alter

9In this chapter, bold letters like m are used to denote an element in the Cartan subalgebra of
g. They are sometimes viewed as a diagonal matrix and sometimes a multi-component vector. The
interpretation should be clear from the context.
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the individual constraints (3.64). However, the holonomies associated with the two
punctures need to be the inverse of each other as the two flavor symmetries are
identified and gauged. So the index of T[Σ0,2, SU(N)] gives a diagonal “metric”

ηab ∼ δab̄. (3.66)

The proportionality constant is t dependent and will be determined in later sections.

We can also derive the the Dirac quantization condition for T[Σg,n, PSU(N)]. We
use mI j to label the j-th component of the U(1)N holonomy associated to the I-th
puncture. Then the index or any kind of partition function of T[Σg,n, SU(N)] is zero
unless

1. each ®mI satisfies the individual constraint (3.64), and

2. an additional constraint analogous to (3.65),

n∑
I=1

N−1∑
j=1
(mI j − mIN ) ≡ 0 (mod N) , (3.67)

is also satisfied.

To end this section, we will explain how the additional numerical factor in (3.8) in
the introduction arises from non-trivial ’t Hooft fluxes. For G = SU(N), one has

ZEV(Σ, k = 1, t) = Ng ·

[
1∏rank G

i=1 (1 − ti+1)2i+1

]g−1

. (3.68)

Here we are only concerned with the first factor Ng which is the k = 1 Verlinde
formula for SU(N)

ZEV(Σ, k = 1, t = 0) = Ng . (3.69)

We now derive this result on the index side.

Consider the twice-punctured torus, obtained by gluing two pairs of pants. Let
(a1, a2, a3) and (b1, b2, b3) ∈ Z

3
N label the ’t Hooft fluxes corresponding to all six

punctures. We glue a2 with b2, and a3 with b3 to get Σ1,2. Then we have the
following set of constraints:

a2b2 = 1, a3b3 = 1, (3.70)

and
a1a2a3 = 1, b1b2b3 = 1. (3.71)
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From these constraints, we can first confirm that

a1b1 = 1, (3.72)

which is what the selection rule (3.67) predicts. Then there is a free parameter a2

that can take arbitrary values in ZN . So in the t = 0 limit, the Coulomb index TQFT
associates to Σ1,2

ZCB(Σ1,2, SU(N), t = 0) = Nδa1,b̄1
. (3.73)

We can now glue g − 1 twice-punctured tori to get

ZCB(Σg−1,2 , SU(N) , t = 0) = Ng−1δa1,b̄g−1
. (3.74)

Taking trace of this gives10

ZCB(Σg,0 , SU(N) , t = 0) = Ng . (3.75)

Combining this with the t dependent part of (3.8), we have proved that, for k = 1,
the equivariant Verlinde formula is the same as the full Coulomb branch index.

We will now move on to cases with more general k to perform stronger checks.

3.3 A check of the proposal
In this section, we perform explicit computation of the Coulomb branch index for
the theory T[Σg,n, PSU(2)] in the presence of ’t Hooft fluxes (or half-integral flavor
holonomies). We will see that after taking into account a proper normalization, the
full Coulomb branch index nicely reproduces the known SU(2) equivariant Verlinde
algebra. First, we introduce the necessary ingredients of 4d N = 2 superconformal
index on S1 × L(k, 1) for a theory with a Lagrangian description.

The lens space index and its Coulomb branch limit
The lens space index of 4d N = 2 theories is a generalization of the ordinary
superconformal index on S1 × S3, as S3 = L(1, 1) [78]. For k > 1, L(k, 1) has a
nontrivial fundamental group Zk , and a supersymmetric theory on L(k, 1) tends to
have a set of degenerate vacua labeled by holonomies along the Hopf fiber. This
feature renders the lens space index a refined tool to study the BPS spectra of the

10What we have verified is basically that the algebra of ZN ’t Hooft fluxes gives the SU(N)
Verlinde algebra at level k = 1, which is isomorphic to the group algebra of ZN . Another TQFT
whose Frobenius algebra is also related to the group algebra of ZN is the 2d ZN Dijkgraaf-Witten
theory [77]. However, the normalizations of the trace operator are different so the partition functions
are also different.
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superconformal theory; for instance it can distinguish between theories with gauge
groups that have the same Lie algebra but different topologies (e.g. SU(2) versus
SO(3) [79]). Moreover, as it involves not only continuous fugacities but also discrete
holonomies, lens space indices of class S theories lead to a very large family of
interesting and exotic 2d TQFTs [59, 60, 78].

The basic ingredients of the lens space index are indices of free supermultiplets,
each of which can be conveniently expressed as a integral over gauge group of the
plethystic exponential of the “single-letter index”, endowed with gauge and flavor
fugacities. This procedure corresponds to constructing all possible gauge invariant
multi-trace operators that are short with respect to the superconformal algebra.

In particular, for a gauge vector multiplet the single-letter index is

f V (p, q, t,m, k) =
1

1 − pq

(
pm

1 − pk +
qk−m

1 − qk

)
(pq +

pq
t
− 1 − t) + δm,0, (3.76)

wheremwill be related to holonomies of gauge symmetries. For a half-hypermultiplet,
one has

f H/2(p, q, t,m, k) =
1

1 − pq

(
pm

1 − pk +
qk−m

1 − qk

)
(
√

t −
pq
√

t
). (3.77)

In addition, there is also a “zero point energy” contribution for each type of field.
For a vector multiplet and a half hypermultiplet, they are given by

I0
V (p, q, t,m, k) =

∏
α∈∆+

( pq
t

)−[[α(m)]]k+ 1
k [[α(m)]]

2
k
,

I0
H/2(p, q, t,m, m̃, k) =

∏
ρ∈R

( pq
t

) 1
4 ([[ρ(m,m̃)]]k−

1
k [[ρ(m,m̃)]]

2
k)
,

(3.78)

where [[x]]k denotes remainder of x divided by k. The boldface letters m and m̃
label holonomies for, respectively, gauge symmetries and flavor symmetries11; they
are chosen to live in the Weyl alcove and can be viewed as a collection of integers
m1 ≥ m2 ≥ · · · ≥ mr .

Now the full index can be written as

I =
∑
m

I0
V (p, q, t,m)I

0
H/2(p, q, t,m, m̃)

∫ ∏
i

dzi

2πizi
∆(z)m

× exp

(
+∞∑
n=1

∑
α,ρ

1
n

[
f V (pn, qn, tn, α(m))α(z) + f H/2(pn, qn, tn, ρ(m, m̃))ρ(z, F)

] )
.

(3.79)
11As before, the holonomies are given by e2πim/k .
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Here, to avoid clutter, we only include one vectormultiplet and one half-hypermultiplet.
Of course, in general one should remember to include the entire field contents of the
theory. Here, F stands for the continuous flavor fugacities and the zi’s are the gauge
fugacities; for SU(N) theories one should impose the condition z1z2 . . . zN = 1.
The additional summation in the plethystic exponential is over all the weights in the
relevant representations. The integration measure is determined by m:

∆m(zi) =
∏

i, j;mi=mj

(
1 −

zi

z j

)
, (3.80)

since a nonzero holonomy would break the gauge group into its stabilizer.

In this chapter we are particularly interested in the Coulomb branch limit, i.e. (3.12)
and (3.13). From the single letter index (3.76) and (3.77) we immediately conclude
that f H/2 = 0 identically, so the hypermultiplets contributes to the index only
through the zero point energy. As for f V , the vector multiplet gives a non-zero
contribution pq/t = t for each root α that has α(m) = 0. So the zero roots (Cartan
generators) always contribute, and non-zero roots can only contribute when the
gauge symmetry is enhanced from U(1)r , i.e. when m is at the boundary of the
Weyl alcove. This closely resembles the behavior of the “metric” of the equivariant
Verlinde algebra, as we will see shortly.

More explicitly, for SU(2) theory, the index of a vector multiplet in the Coulomb
branch limit is

IV (t,m, k) = t−[[2m]]k+ 1
k [[2m]]2

k

(
1

1 − t

) (
1

1 + t

)δ[[2m]],0
, (3.81)

while for tri-fundamental hypermultiplet the contribution is

IH/2(t,m1,m2,m3, k) =
∏
si=±

(t)
1
4
∑3

i=1 ([[misi]]k− 1
k [[misi]]2k), (3.82)

where all holonomies take values from {0, 1/2, 1, 3/2, . . . k/2}.

Unsurprisingly, this limit fits the name of the “Coulomb branch index.” Indeed,
in the case of k = 1, the index receives only contributions from the Coulomb
branch operators, i.e. a collection of “Casimir operators” for the theory [58]
(e.g. Tr φ2, Tr φ3, . . . , Tr φN for SU(N), where φ is the scalar in the N = 2 vector
multiplet). We see here that a general lens space index also counts the Coulomb
branch operators, but the contribution from each operator is modified according to
the background holonomies.
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Another interesting feature of the Coulomb branch index is the complete disap-
pearance of continuous fugacities of flavor symmetries. Punctures are now only
parametrized by discrete holonomies along the Hopf fiber of L(k, 1). This property
ensures that we will obtain a finite-dimensional algebra.

Then, to make sure that the algebra defines a TQFT, one needs to check associativity,
especially because non-integral holonomies considered here are novel andmay cause
subtleties. We have checked by explicit computation in t that the structure constant
and metric defined by lens space index do satisfy associativity, confirming that the
“Coulomb branch index TQFT” is indeed well-defined. In fact, even with all p, q, t

turned on, the associativity still holds order by order in the expansion in terms of
fugacities.

Equivariant Verlinde algebra from Hitchin moduli space
As explained in greater detail in [15], the equivariant Verlinde TQFT computes an
equivariant integral overMH , the moduli space of Higgs bundles. In the case of
SU(2), the relevant moduli spaces are simple enough and one can deduce the TQFT
algebra from geometry ofMH . For example, one can obtain the fusion coefficients
fromMH(Σ0,3, α1, α2, α3; SU(2)). Here the αi’s are the ramification data specifying
the monodromies of the gauge field [65] and take discrete values in the presence of
a level k Chern-Simons term. Since in this case the moduli space is just a point or
empty, one can directly evaluate the integral. The result is as follows.

Define λ = 2kα whose value is quantized to be 0, 1, . . . , k. Let

d0 = λ1 + λ2 + λ3 − 2k,

d1 = λ1 − λ2 − λ3,

d2 = λ2 − λ3 − λ1,

d13 = λ3 − λ1 − λ2,

(3.83)

and moreover
∆λ = max(d0, d1, d2, d3), (3.84)

then

fλ1λ2λ3 =



1 if λ1 + λ2 + λ3 is even and ∆λ ≤ 0,

t−∆λ/2 if λ1 + λ2 + λ3 is even and ∆λ > 0,

0 if λ1 + λ2 + λ3 is odd.

(3.85)
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On the other hand, the cylinder gives the trace form (or “metric”) of the algebra

ηλ1λ2 = {1 − t
2, 1 − t, . . . , 1 − t, 1 − t2}. (3.86)

Via cutting-and-gluing, we can compute the partition function of the TQFT on a
general Riemann surface Σg,n.

Matching two TQFTs
So farwe have introduced twoTQFTs: the first one is given by equivariant integration
over Hitchin moduli space MH , the second one is given by the L(k, 1) Coulomb
branch index of the theory T[Σ, PSU(2)]. It is easy to see that the underlying vector
space of the two TQFTs are the same, confirming in the SU(2) case the more general
result we obtained previously:

ZEV(S1) = ZCB(S1). (3.87)

We can freely switch between two different descriptions of the same set of basis
vectors, by either viewing them as integrable highest weight representations of
ŝu(2)k or SU(2) holonomies along the Hopf fiber. In this section, we only use
highest weights λ as the labels for puncture data, and one can easily translate them
into holonomies via λ = 2m.

Then, one needs to compare the algebraic structure of the two TQFTs andmay notice
that there are apparent differences. Namely, if one compares IV and IH/2 with η
and f in (3.85) and (3.86), there are additional factors coming from the zero point
energy in the expressions on the index side. However, one can simply rescale states
in the Hilbert space on the Coulomb index side to absorb them.

The scaling required is
|λ〉 = t

1
2 ([[λ]]k−

1
k [[λ]]

2
k) |λ〉′. (3.88)

This makes IV exactly the same as ηλµ. After rescaling, the index of the half-
hypermultiplet becomes

IH/2 ⇒ f ′λ1λ2λ3
= t−

1
2
∑3

i=1([[λi]]k−
1
k [[λi]]

2
k)IH/2(t, λ1, λ2, λ3, k), (3.89)

and this is indeed identical to the fusion coefficient fλµν of the equivariant Verlinde



51

algebra, which we show as follows. If we define

g0 = m1 + m2 + m3 =
1
2
(λ1 + λ2 + λ3),

g1 = m1 − m2 − m3 =
1
2
(λ1 − λ2 − λ3),

g2 = m2 − m1 − m3 =
1
2
(λ2 − λ1 − λ3),

g3 = m3 − m1 − m2 =
1
2
(λ3 − λ1 − λ3),

(3.90)

then our pair of pants can be written as

f ′λ1λ2λ3
=t

1
2k ([[g0]]k [[−g0]]k+[[g1]]k [[−g1]]k+[[g2]]k [[−g2]]k+[[g2]]k [[−g2]]k )

× t−
1

2k (λ1(k−λ1)+λ2(k−λ2)+λ3(k−λ3)).

(3.91)

Now we can simplify the above equation further under various assumptions of each
gi. For instance if 0 < g0 < k and gi < 0 for i = 1, 2, 3, then

f ′λ1λ2λ3
= 1. (3.92)

If on the other hand, g0 > k and gi < 0 for i = 1, 2, 3, which means max(g0 −

k, g1, g2, g3) = g0 − k, then
f ′λ1λ2λ3

= tg0−k, (3.93)

this is precisely what we obtained by (3.85).

Therefore, we have shown that the building blocks of the two TQFTs are the same.
And by the TQFT axioms, we have proven the isomorphism of the two TQFTs. For
example, they both give t-deformation of the ŝu(2)k representation ring; at level
k = 10 a typical example is

|3〉 ⊗ |3〉 =
1

1 − t2
|0〉 ⊕

1
1 − t

|2〉 ⊕
1

1 − t
|4〉 ⊕

1
1 − t

|6〉 ⊕
t

1 − t
|8〉 ⊕

t2

1 − t2
|10〉.
(3.94)

For closed Riemann surfaces, we list partition functions for several low genera and
levels in table 3.1. And this concludes our discussion of the SU(2) case.

3.4 SU(3) equivariant Verlinde algebra from the Argyres-Seiberg duality
In the last section, we have tested the proposal about the equivalence between the
equivariant Verlinde algebra and the algebra from the Coulomb index of class S
theories. Then one would ask whether one can do more with such a correspondence
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k = 1 k = 2 k = 3 k = 4

g = 2 4
(1−t2)3

2
(1−t2)3 (5t

2 + 6t + 5) 4
(1−t2)3 (4t

3 + 9t2 + 9t + 5)
1

(1−t2)
3

(
16t4 + 49t3

+81t2 + 75t + 35
)

g = 3 8
(1−t2)6

4
(1−t2)

6

(
9t4 + 28t3

+54t2 + 28t + 9
)

8
(1−t2)

6

(
8t6 + 54t5 + 159t4

+238t3 + 183t2 + 72t + 15
)

1
(1−t2)

6

(
64t8 + 384t7 + 1793t6

+5250t5 + 8823t4 + 8828t3

+5407t2 + 1890t + 329
)

∀g 2
(

2
(1−t2)3

)g−1
(

2(1−t)2
(1−t2)3

)g−1

+2
(

2(1+t)2
(1−t2)3

)g−1

2
(

5+9t+9t2+4t3−
√

5+4t(1+5t+t2)
(1−t2)3

)g−1
+

2
(

5+9t+9t2+4t3+
√

5+4t(1+5t+t2)
(1−t2)3

)g−1

(
(3+t)(1−t)2
(1−t2)3

)g−1
+ 2

(
4

1−t2

)g−1

+
(

4(3+t)(1+t)3
(1−t2)3

)g−1

Table 3.1: The partition function ZEV(T[L(k, 1), SU(2)], t) = ZCB(T[Σg, PSU(2)], t)
for genus g = 2, 3 and level k = 1, 2, 3, 4.

and what are its applications. For example, can one use the Coulomb index as a
tool to access geometric and topological information about Hitchin moduli spaces?
Indeed, the study of the moduli space of Higgs bundles poses many interesting
and challenging problems. In particular, doing the equivariant integral directly on
MH quickly becomes impractical when one increases the rank of the gauge group.
However, our proposal states that the equivariant integral could be computed in a
completely different way by looking at the superconformal index of familiar SCFTs!
This is exactly what we will do in this section—we will put the correspondence to
good use and probe the geometry ofMH(Σ, SU(3)) with superconformal indices.

The natural starting point is still a pair of pants or, more precisely, a sphere with three
“maximal” punctures (for mathematicians, three punctures with full-flag parabolic
structure). The 4d theoryT[Σ0,3, SU(3)] is known as theT3 theory [80], which is first
identified as an N = 2 strongly coupled rank-1 SCFT with a global E6 symmetry12
[73]. In light of the proposed correspondence, one expects that the Coulomb branch
index of the T3 theory equals the fusion coefficients fλ1λ2λ3 of the SU(3) equivariant
Verlinde algebra.

Argyres-Seiberg duality and Coulomb branch index of T3 theory
A short review. As the T3 theory is an isolated SCFT, there is no Lagrangian
description, and currently no method of direct computation of its index is known
in the literature. However, there is a powerful duality proposed by Argyres and
Seiberg [76] that relates a superconformal theory with Lagrangian description at

12In the following we will use the name “T3 theory" and “E6 SCFT" interchangeably.
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infinite coupling to a weakly coupled gauge theory obtained by gauging an SU(2)
subgroup of the E6 flavor symmetry of the T3 SCFT.

To be more precise, one starts with an SU(3) theory with six hypermultiplets (call it
theory A) in the fundamental representation 3� ⊕ 3� of the gauge group. Unlike its
SU(2) counterpart, the SU(3) theory has the electric-magnetic duality group Γ0(2),
a subgroup of SL(2,Z). As a consequence, the fundamental domain of the gauge
coupling τ has a cusp and the theory has an infinite coupling limit. As argued by
Argyres and Seiberg through direct analysis of the Seiberg-Witten curve at strong
couplings, it was shown that the theory can be naturally identified as another theory
B obtained by weakly gauging the E6 SCFT coupled to an additional hypermultiplet
in fundamental representation of SU(2). There is much evidence supporting this
duality picture. For instance, the E6 SCFT has a Coulomb branch operator with
dimension 3, which could be identified as the second Casimir operator Tr φ3 of
the dual SU(3) gauge group. The E6 theory has a Higgs branch of dimCH = 22
parametrized by an operator X in adjoint representation of E6 with Joseph relation
[74]; after gauging SU(2) subgroup, two complex dimensions are removed, leaving
the correct dimension of the Higgs branch for the theory A. Finally, Higgsing this
SU(2) leaves an SU(6)×U(1) subgroup of the maximal E6 group, which is the same
as the U(6) = SU(6) ×U(1) flavor symmetry in the A frame.

In [2], the Argyres-Seiberg duality is given a nice geometric interpretation. To
obtain theory A, one starts with a 2-sphere with two SU(3) maximal punctures and
two U(1) simple punctures, corresponding to global symmetry SU(3)a × SU(3)b ×
U(1)a ×U(1)b, where two U(1) are baryonic symmetry. In this setup, the Argyres-
Seiberg duality relates different degeneration limits of this Riemann surface; see
figure 3.1 and 3.2.

The Argyres-Seiberg duality gives access to the superconformal index for the E6

SCFT [75]. The basic idea is to start with the index of theory A and, with the aid
of the inversion formula of elliptic beta integrals, one identifies two sets of flavor
fugacities and extracts the E6 SCFT index by integrating over a carefully chosen
kernel. It was later realized that the above procedure has a physical interpretation,
namely the E6 SCFT can be obtained by flowing to the IR from an N = 1 theory
which has Lagrangian description [81]. The index computation of theN = 1 theory
reproduces that of [75], and the authors also compute the Coulomb branch index in
the large k limit.

Here wewould like to obtain the index for general k. In principle, we could start with
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(a) (b)

Figure 3.1: Illustration of Argyres-Seiberg duality. (a) The theory A, which is an
SU(3) superconformal gauge theory with six hypermultiplets, with the SU(3)a ×
U(1)a × SU(3)b × U(1)b subgroup of the global U(6) flavor symmetry. (b) The
theory B, obtained by gauging an SU(2) subgroup of the E6 symmetry of T3. Note
that in the geometric realization the cylinder connecting both sides has a regular
puncture R on the left and an irregular puncture IR on the right.

(a) (b)

Figure 3.2: Illustration of geometric realization of Argyres-Seiberg duality for T3
theory. The dots represent simple punctures while circles are maximal punctures.
(a) The theory A, which is an SU(3) superconformal gauge theory with six hyper-
multiplets, is pictured as two spheres connected by a long tube. Each of them has
one simple and two maximal punctures. (b) The theory B, which is obtained by
gauging an SU(2) subgroup of the flavor symmetry of the theory T3. This gauge
group connects a regular puncture and an irregular puncture.
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theN = 1 theory described in [81] and compute the Coulomb branch index on lens
space directly. However, a direct inversion is more intuitive here due to simplicity
of the Coulomb branch limit, and can be generalized to arbitrary TN theories. In the
next subsection we outline the general procedure of computing the Coulomb branch
index of T3.

Computation of the index. To obtain a complete basis of the TQFT Hilbert
space, we need to turn on all possible flavor holonomies and determine when they
correspond to aweight in theWeyl alcove. For theT3 theory each puncture has SU(3)
flavor symmetry, so we can turn on holonomies as h∗ = (h∗1, h

∗
2, h
∗
3) for ∗ = a, b, c

with constraints h∗1 + h∗2 + h∗3 = 0. The Dirac quantization condition tells us that

hr
i + hs

j + ht
k ∈ Z (3.95)

for arbitrary r, s, t ∈ {a, b, c} and i, j, k = 1, 2, 3. This means there are only three
classes of choices modulo Z, namely(

1
3
,

1
3
,−

2
3

)
, or

(
2
3
,−

1
3
,−

1
3

)
, or (0, 0, 0) (mod Z). (3.96)

Furthermore, the three punctures either belong to the same class (for instance, all
are (1/3, 1/3,−2/3) (mod Z)) or to three distinct classes. Recall that the range of
the holonomy variables are also constrained by the level k, so we pick out the Weyl
alcove as the following:

D(k) = {(h1, h2, h3)|h1 ≥ h2, h1 ≥ −2h2, 2h1 + h2 ≤ k}, (3.97)

with a pictorial illustration in figure 3.3.

As we will later identify each holonomy as an integrable highest weight representa-
tion for the affine Lie algebra ŝu(3)k , it is more convenient to use the label (λ1, λ2)

defined as
λ1 = h2 − h3, λ2 = h1 − h2. (3.98)

They are integers with λ1 + λ2 ≤ k and (λ1, λ2) lives on the weight lattice of su(3).
The dimension of the representation with the highest weight (λ1, λ2) is

dim R(λ1,λ2) =
1
2
(λ1 + 1)(λ2 + 1)(λ1 + λ2 + 2). (3.99)

Next we proceed to compute the index in the Coulomb branch limit. As taking the
Coulomb branch limit simplifies the index computation dramatically, one can easily
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Figure 3.3: TheWeyl alcove for the choice of holonomy variables at level k = 3. The
red markers represent the allowed points. The coordinates beside each point denote
the corresponding highest weight representation. The transformation between flavor
holonomies and highest weight is given by (3.98).

write down the index for theory A13:

IA(t, m̃a, m̃b, na, nb)

=
∑
m

IH/2(t,m, m̃a, na)

∫ 2∏
i=1

dzi

2πizi
∆(z)mIV (t, z,m)IH/2(t,−m, m̃b, nb),

(3.100)
where ma,mb and na, nb denote the flavor holonomies for SU(3)a,b and U(1)a,b
respectively. It is illustrative to write down what the gauge integrals look like:

IV (t,m) =
∫ 2∏

i=1

dzi

2πizi
∆(z)mIV (t, z,m)

= I0
V (t,m) ×



1
(1−t2)(1−t3), m1 ≡ m2 ≡ m3 (mod k),

1
(1−t)(1−t2), mi ≡ m j , mk (mod k),

1
(1−t)2 , m1 , m2 , m3 (mod k).

(3.101)

Except for the zero point energy I0
V (t,m) the rest looks very much like our “metric"

13In [81] the authors try to compensate for the non-integral holonomies of na and nb by shifting
the gauge holonomies m. In contrast, our approach is free from such subtleties because we allow
non-integral holonomies for all flavor symmetries as long as the Dirac quantization condition is
obeyed.
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for the SU(3) equivariant Verlinde TQFT. Moreover,

IH/2(m, m̃a, na) =
∏
ψ∈RΦ

t
1
4 ([[ψ(m,m̃a,na)]]k− 1

k [[ψ(m,m̃a,na)]]2k), (3.102)

where for a half-hypermultiplet in the fundamental representation of SU(3)×SU(3)a
with positive U(1)a charge we have

ψi j(m, m̃a, na) = mi + m̃a, j + na. (3.103)

Now we write down the index for theory B. Take the SU(3)a × SU(3)b × SU(3)c
maximal subgroup of E6 and gauge SU(2) subgroup of the SU(3)c flavor symmetry.
This leads to the replacement

{hc,1, hc,2, hc,3} → {w + ny, ny − w,−2ny}, (3.104)

where ny denotes the fugacity for the remaining U(1)y symmetry, and ns is the
fugacity for U(1)s flavor symmetry rotating the single hypermultiplet. We then
write down the index of theory B as

IB(t, ha, hb, ny, ns) =
∑
w

CE6(ha, hb,w, ny)IV (t,w)IH/2(−w, ns) , (3.105)

where IV (t,w) is given by (3.81) with substitution m→ w, and w = 0, 1/2, . . . , k/2.
Argyres-Seiberg duality tells us that

IA(t, m̃a, m̃b, na, nb) = IB(t, ha, hb, ny, ns) , (3.106)

with the following identification of the holonomy variables:

m̃a = ha, m̃b = hb;

na =
1
3

ns − ny, nb = −
1
3

ns − ny .

(3.107)

On the right-hand side of the expression (3.105) we can view the summation as a
matrix multiplication with w and ns being the row and column indices respectively.
Then we can take the inverse of the matrix IH/2(−w, ns), I−1

H/2(ns,w
′), by restricting

the range14 of ns to be the same as w and multiply it to both sides of (3.105). This
moves the summation to the other side of the equation and gives:

CE6(t, ha, hb,w, ny, k) =
∑
ns

1
IV (t,w)

IA(t, ha, hb, na, nb, k)I−1
H/2(ns,w) . (3.108)

14As long as it satisfies the Dirac quantization condition, we do not have to know what the range
of ns should be. For example, ns = 0, 1/2, . . . , k/2 is a valid choice.
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We now regard CE6(t, ha, hb, hc, k) as the fusion coefficient of the 2d equivariant
Verlinde algebra, and have checked the associativity. Moreover, let us confirm that
the index obtained in this way is symmetric under permutations of the three SU(3)
flavor fugacities, and the flavor symmetry group is indeed enhanced to E6. First
of all, we have permutation symmetry for three SU(3) factors at, for instance, level
k = 2:

CE6

(
2
3
,

2
3
, 0, 0,

4
3
,−

2
3

)
= CE6

(
2
3
,

2
3
,

4
3
,−

2
3
, 0, 0

)
= · · · = CE6

(
4
3
,−

2
3
,

2
3
,

2
3
, 0, 0

)
=

1 + t4

1 − t3
.

(3.109)
To show that the index CE6 is invariant under the full E6 symmetry, one needs to
show that the two SU(3) factors, combined with the U(1)y symmetry, enhance to an
SU(6) symmetry. The five Cartan elements of this SU(6) group can be expressed as
the combination of the fluxes [81]:(

ha
1 − ny, ha

2 − ny,−ha
1 − ha

2 − ny, hb
1 + ny, hb

2 + ny

)
. (3.110)

Then the index should be invariant under the permutation of the five Cartans. Note
the computation is almost the same as in [81] except that not all permutations
necessarily exist—an allowed permutation should satisfy the charge quantization
condition. Restraining ourselves from the illegal permutations, we have verified that
the global symmetry is enlarged to E6.

Finally, at large k our results reproduce these of [81], as can be checked by analyzing
the large k limit of the matrix I−1

H/2(ns,w). Indeed, at large k the matrix IH/2(w, ns)

can be simplified as

IH/2 = t
1
2 (|w+ns |+|−w+ns |) =

©«

1 0 t 0 t2 0 . . .

0
√
t 0 t

3
2 0 t

5
2

t 0 t 0 t2 0

0 t
3
2 0 t

3
2 0 t

5
2

t2 0 t2 0 t2 0

0 t
5
2 0 t

5
2 0 t

5
2

...
. . .

ª®®®®®®®®®®®®®®®®®®®®¬

. (3.111)
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Upon inversion it gives

I−1
H/2 =

©«

1
1−t 0 − 1

1−t 0 0 0 . . .

0 1√
t(1−t)

0 − 1√
t(1−t)

0 0

− 1
1−t 0 1+t

t(1−t) 0 − 1
t(1−t) 0

0 − 1√
t(1−t)

0 1+t
t

3
2 (1−t)

0 − 1
t

3
2 (1−t)

0 0 − 1
t(1−t) 0 1+t

t2(1−t) 0

0 0 0 − 1
t

3
2 (1−t)

0 1+t
t

5
2 (1−t)

...
. . .

ª®®®®®®®®®®®®®®®®®®®®®®¬

. (3.112)

Here w goes from 0, 1/2, 1, 3/2, · · · . For a generic value of w only three elements
in a single column can contribute to the index15. For large k the index of vector
multiplet becomes

IV (w) = t
−2w

(
1

1 − t

)
, (3.113)

and we get

CE6(t, ha, hb,w, ny) = t
w

[
(1 + t)IA(t, ha, hb, ny,w, k)

−t IA(t, ha, hb, ny,w − 1, k) − IA(t, ha, hb, ny,w + 1, k)
]
,

(3.114)
which exactly agrees with [81].

SU(3) equivariant Verlinde algebra
Now with all the basic building blocks of the 2d TQFT at our disposal, we assemble
the pieces and see what interesting information could be extracted.

The metric of the TQFT is given by the Coulomb branch index of an SU(3) vec-
tor multiplet, with a possible normalization factor. Note that the conjugation of
representations acts on a highest weight state (λ1, λ2) via

(λ1, λ2) = (λ2, λ1), (3.115)
15By “generic” we mean the first and the second column are not reliable due to our choice of

domain for w. It is imaginable that if we take w to be a half integer from (−∞,+∞), then such
“boundary ambiguity" can be removed. But we refrain from doing this to have weights living in the
Weyl alcove.
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and the metric ηλµ is non-vanishing if and only if µ = λ̄. Let

N(λ1, λ2, k) = t−
1
k ([[λ1]]k [[−λ1]]k+[[λ2]]k [[−λ2]]k+[[λ1+λ2]]k [[−λ1−λ2]]k ), (3.116)

and we rescale our TQFT states as

(λ1, λ2)
′ = N(λ1, λ2, k)−

1
2 (λ1, λ2). (3.117)

Then the metric η takes a simple form (here we define λ3 = λ1 + λ2):

η(λ1,λ2)(λ1,λ2) =



1
(1−t2)(1−t3), if [[λ1]]k = [[λ2]]k = 0,

1
(1−t)(1−t2), if only one [[λi]]k = 0 for i = 1, 2, 3,

1
(1−t)2 , if all [[λi]]k , 0.

(3.118)

Next we find the “pair of pants” f(λ1,λ2)(µ1,µ2)(ν1,ν2), from the normalized Coulomb
branch index of E6 SCFT:

f(λ1,λ2)(µ1,µ2)(ν1,ν2) = (N(λ1, λ2, k)N(µ1, µ2, k)N(ν1, ν2, k))
1
2 CE6(t, λ1, λ2; µ1, µ2; ν1, ν2; k).

(3.119)
Along with the metric we already have, they define a t-deformation of the ŝu(3)k
fusion algebra. For instance we could write down at level k = 3:

(1, 0) ⊗ (1, 0) =
1 + t + t3

(1 − t)(1 − t2)(1 − t3)
(0, 1) ⊕

1 + 2t2

(1 − t)(1 − t2)(1 − t3)
(2, 0)

⊕
t(2 + t)

(1 − t)(1 − t2)(1 − t3)
(1, 2).

(3.120)

Using dimensions to denote representations, the above reads

3 × 3 =
1 + t + t3

(1 − t)(1 − t2)(1 − t3)
3̄ +

1 + 2t2

(1 − t)(1 − t2)(1 − t3)
6

+
t(2 + t)

(1 − t)(1 − t2)(1 − t3)
15.

(3.121)

When t = 0, it reproduces the fusion rules of the affine ŝu(3)k algebra, and fλµν
becomes the fusion coefficients N (k)λµν. These fusion coefficients are worked out
combinatorically in [82–84]. We review details of the results in appendix B.

With pairs of pants and cylinders, one can glue them together to get the partition
function on a closed Riemann surface, which gives the SU(3) equivariant Verlinde
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formula: a t-deformation of the SU(3) Verlinde formula. For genus g = 2, at large
k, one can obtain

dimβHCS(Σ2,0; SL(3,C), k)

=
1

20160
k8 +

1
840

k7 +
7

480
k6 +

9
80

k5 +
529
960

k4 +
133
80

k3 +
14789
5040

k2 +
572
210

k + 1

+

(
1

2520
k8 +

1
84

k7 +
17

120
k6 +

17
20

k5 +
319
120

k4 +
15
4

k3 +
503

2520
k2 −

1937
420

k − 3
)
t

+

(
1

560
k8 +

9
140

k7 +
31
40

k6 +
39
10

k5 +
727
80

k4 +
183
20

k3 +
369
140

k2 −
27
70

k + 1
)
t
2

+ . . . ,
(3.122)

and the reader can check that the degree zero piece in t is the usual SU(3) Verlinde
formula for g = 2 [85]:

dimH(Σg,0; SU(3), k)

=
(k + 3)2g−26g−1

27g−7

∑
λ1,λ2

(
sin

π(λ1 + 1)
k + 3

sin
π(λ2 + 1)

k + 3
sin

π(λ1 + λ2 + 2)
k + 3

)2−2g
,

(3.123)
expressed as a polynomial in k.

For a 2d TQFT, the state associated with the “cap” contains interesting information,
namely the “cap state” tells us how to close a puncture. Moreover, there are many
close cousins of the cap. There is one type which we call the “central cap” that has a
defect with central monodromy with the Levi subgroup being the entire gauge group
(there is no reduction of the gauge group when we approach the singularity). For
SU(3) equivariant Verlinde algebra, besides the “identity-cap” the central cap also
includes “ω-cap” and “ω2-cap,” and the corresponding TQFT states are denoted
by |φ〉1, |φ〉ω and |φ〉ω2 . One can also insert on the cap a minimal puncture (gauge
group only reduces to SU(2)×U(1) as opposed toU(1)3 for maximal punctures) and
the corresponding states can be expressed as linear combinations of the maximal
puncture states which we use as the basis vectors of the TQFT Hilbert space.

The cap state can be deduced from f and η written in (3.119) and (3.118), since
closing a puncture on a three-punctured sphere gives a cylinder. In algebraic
language,

fλµφ = ηλµ. (3.124)
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One can easily solve this equation, obtaining

|φ〉1 = |0, 0〉 − t(1 + t)|1, 1〉 + t2 |0, 3〉 + t2 |3, 0〉 − t3 |2, 2〉. (3.125)

For other two remaining caps, by multiplying16 ω and ω2 on the above equation
(3.125), we obtain

|φ〉ω = |k, 0〉 − t(1 + t)|k − 2, 1〉 + t2 |k − 3, 0〉 + t2 |k − 3, 3〉 − t3 |k − 4, 2〉,

|φ〉ω2 = |0, k〉 − t(1 + t)|1, k − 2〉 + t2 |0, k − 3〉 + t2 |3, k − 3〉 − t3 |2, k − 4〉.
(3.126)

When closing a maximal puncture using |φ〉ω, we have a “twisted metric” η′λµ which
is non-zero if and only if (µ1, µ2) = (λ1, k − λ1 − λ2). When closing a maximal
puncture using |φ〉ω2 , we have another twisted metric η′′λµ which is non-zero if and
only if (µ1, µ2) = (k−λ1−λ2, λ2). When there are insertions of central monodromies
on the Riemann surface, it is easier to incorporate them into twisted metrics instead
of using the expansion (3.126).

For minimal punctures, the holonomy is of the form (u, u,−2u), modulo the action
of the affine Weyl group, where u takes value 0, 1/3, 2/3, . . . , k − 2/3, k − 1/3. We
can use index computation to expand the corresponding state |u〉U(1) in terms of
maximal punctures. After scaling by a normalization constant

t
1
2 ([[3u]]k− 1

k [[3u]]2
k), (3.127)

the decomposition is given by the following:

(1). 〈0, 0〉 − t2〈1, 1〉, if k = u or u = 0;

(2). 〈3u, 0〉 − t〈3u − 1, 2〉, if k > 3u > 0;

(3). 〈3u, 0〉 − t2〈3u − 2, 1〉, if k = 3u;

(4). 〈2k − 3u, 3u − k〉 − t〈2k − 3u − 1, 3u − k − 1〉, if 3u/2 < k < 3u;

(5). 〈0, 3u/2〉 − t2〈1, 3u/2 − 2〉, if k = 3u/2;

(6). 〈0, 3k − 3u〉 − t〈2, 3k − 3u − 1〉, if u < k < 3u/2.
16More precisely, we multiply holonomies with these central elements and translate the new

holonomies back to weights.
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The above formulae have a natural Z2-symmetry of the form C ◦ ψ, where

ψ : (u, k) → (k − u, k), (3.128)

and C is the conjugation operator that acts linearly on Hilbert space:

C : (λ1, λ2) → (λ2, λ1), (λ1, λ2) ∈ H . (3.129)

This Z2 action sends each state in the above list to itself. Moreover, it is interesting
to observe that when t = 0, increasing u from 0 to k corresponds to moving along
the edges of theWeyl alcove (c. f . figure 3.3) a full cycle. This may not be a surprise
because closing a maximal puncture actually implies that one only considers states
whose SU(3) holonomy (h1, h2, h3) preserves at least SU(2) ⊂ SU(3) symmetry,
which are precisely the states lying on the edges of the Weyl alcove.

From algebra to geometry
This TQFT structure reveals a lot of interesting geometric properties of moduli
spaces of rank 3 Higgs bundles. But as the current chapter is a physics one, we only
look at a one example — but arguably the most interesting one—the moduli space
MH(Σ0,3, SU(3)). In particular this moduli space was studied in [86, 87] and [88]
from the point of view of differential equations. Here, from index computation, we
can recover some of the results in the mathematical literature and reveal some new
features for this moduli space. In particular, we propose the following formula for
the fusion coefficient fλµν:

f(λ1,λ2)(µ1,µ2)(ν1,ν2) = t
kη0

(
kVol(M) + 1

1 − t
+

2t
(1 − t)2

)
+

Q1(t)

(1 − t−1)(1 − t2)
+

Q2(t)

(1 − t−2)(1 − t3)
.

(3.130)
This ansatz comes from Atiyah-Bott localization of the equivariant integral done in
similar fashion as in [15]. The localization formula enables us to write the fusion
coefficient f in (3.119) as a summation over fixed points of theU(1)H Hitchin action.
In (3.130), η0 is the moment map17 for the lowest critical manifoldM. When the
undeformed fusion coefficients N (k)λµν , 0, one has

kVol(M) + 1 = N (k)λµν, η0 = 0. (3.131)
17Recall the U(1)H Hitchin action is generated by a Hamiltonian, which we call η—not to be

confused with the metric, which will make no appearance from now on. η is also the norm squared
of the Higgs field.
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Numerical computation shows that Q1,2(t) are individually a sum of three terms of
the form

Q1(t) =

3∑
i=1

t
kηi, Q2(t) =

6∑
j=4

t
kηj, (3.132)

where ηi are interpreted as the moment maps at each of the six higher fixed points
of U(1)H .

Themoduli spaceM of SU(3) flat connections on Σ0,3 is either empty, a point orCP1

depending on the choice of (λ, µ, ν) [89], and when it is empty, the lowest critical
manifold of η is aCP1 with η0 > 0 and wewill still useM to denote it. The fixed loci
ofMH(Σ0,3, SU(3)) under U(1) action consist ofM and the six additional points,
and there are Morse flow lines traveling between them. The downward Morse flow
coincides with the nilpotent cone [90]—the singular fiber of the Hitchin fibration,
and its geometry is depicted in figure 3.4. The Morse flow carves out six spheres
that can be divided into two classes. Intersections of D(1)i

⋂
D(2)i are denoted as

P(1)1,2,3, and at the top of these D(2)i ’s there are P(2)1,2,3. We also use P1, . . . , P6 and
D1, . . . ,D6 sometimes to avoid clutter. The nilpotent cone can be decomposed into

N =M ∪ D(1)i ∪ D(2)j , (3.133)

which gives an affine E6 singularity (IV∗ in Kodaira’s classification) of the Hitchin
fibration. Knowing the singular fiber structure, we can immediately read off the
Poincaré polynomial forMH(Σ0,3, SU(3)):

Pr = 1 + 7r2, (3.134)

which is the same as that given in [87].

To use the Atiyah-Bott localization formula, we also need to understand the normal
bundle to the critical manifolds. For the base, the normal bundle is the cotangent
bundle with U(1)H weight 1. Its contribution to the fusion coefficient is given by

tkη0

∫
M

Td(CP1) ∧ ekω

1 − e−β+2ω′ = t
kη0

(
kVol(M) + 1

1 − t
+

2t
(1 − t)2

)
. (3.135)

For the higher fixed points, the first class P(1) has normal bundle C[−1] ⊕ C[2] with
respect to U(1)H , which gives a factor

1
(1 − t−1)(1 − t2)

(3.136)
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multiplying ekη1,2,3 . For the second class P(2), the normal bundle is C[−2] ⊕ C[3]
and we instead have a factor

1
(1 − t−2)(1 − t3)

. (3.137)

In this chapter, we won’t give the analytic expression for the seven moment maps
and will leave (3.130) as it is. Instead, we will give a relation between them:

2k = 6(N (k)λµν − 1) + 3k(η1 + η2 + η3) + k(η4 + η5 + η6)

= 6kVol(M) + 3k(η1 + η2 + η3) + k(η4 + η5 + η6).

(3.138)

This is verified numerically and can be explained from geometry. Noticing that the
moment maps are related to the volume of the D’s:

Vol(D1) = η1, Vol(D2) = η2, Vol(D3) = η3,

Vol(D4) =
η4 − η1

2
, Vol(D5) =

η5 − η2

2
, Vol(D6) =

η6 − η3

2
.

(3.139)

The factor 2 in the second line of (3.139) is related to the fact that U(1)H rotates
the D(2)’s twice as fast as it rotates the D(1)’s. Then we get the following relation
between the volume of the components of N :

Vol(F) = 6Vol(M) + 4
3∑

i=1
Vol(Di) + 2

6∑
i=4

Vol(D j). (3.140)

Here F is a generic fiber of the Hitchin fibration and has volume

Vol(F) = 2. (3.141)

The intersection form of different components in the nilpotent cone gives the Cartan
matrix of affine E6. Figure 3.5 is the Dynkin diagram of Ê6, and coefficients in
(3.140) are Dynkin labels on the corresponding node. These numbers tell us the
combination of D’s andM that give a null vector F of Ê6.

Comments on TN theories
The above procedure can be generalized to arbitrary rank, for all TN theories, if we
employ the generalized Argyres-Seiberg dualities. There are in fact several ways
to generalized Argyres-Seiberg duality [2, 80, 91]. For our purposes, we want no
punctures of the TN to be closed under dualities, so we need the following setup [2].



66

Figure 3.4: The illustration of the nilpotent cone inMH(Σ0,3, SU(3)). HereM is
the base CP1, D1,2,3 consist of downward Morse flows from P1,2,3 to the base, while
D4,5,6 include the flows from P4,5,6 to P1,2,3.

Figure 3.5: The affine Ê6 extended Dynkin diagram. The Dynkin label gives the
multiplicity of each node in the decomposition of the null vector.
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We start with a linear quiver gauge theory A’ with N − 2 nodes of SU(N) gauge
groups, and at each end of the quiver we associate N hypermultiplets in the fun-
damental representation of SU(N). One sees immediately that each gauge node is
automatically superconformal. Geometrically, we actually start with a punctured
Riemann sphere with two full SU(N) punctures and N − 1 simple punctures. Then,
the N − 1 simple punctures are brought together and a hidden SU(N − 1) gauge
group becomes very weak. In our original quiver diagram, such a procedure of
colliding N − 1 simple punctures corresponds to attaching a quiver tail of the form
SU(N−1)−SU(N−2)− · · ·−SU(2)with a single hypermultiplet attached to the last
SU(2) node. See figure 3.6 for the quiver diagrams and figure 3.7 for the geometric
realization.

(a) (b)

Figure 3.6: Illustration of generalized Argyres-Seiberg duality for the TN theories.
(a) The theory A’, which is a linear quiver gauge theory with N − 2 SU(N) vector
multiplets. Between each gauge node there is a bi-fundamental hypermultiplet, and
at each end of the quiver there are N fundamental hypermultiplets. In the quiver
diagram we omit the U(1)N−1 baryonic symmetries. (b) The theory B’ is obtained
by gauging an SU(N − 1) subgroup of the SU(N)3 flavor symmetry of TN , giving
rise to a quiver tail. Again the U(1) symmetries are implicit in the diagram.

Here we summarize briefly how to obtain the lens space Coulomb index of TN . Let
IN

A′ be the index of the linear quiver theory, which depends on two SU(N) flavor
holonomies ha and hb (here we use the same notation as that of SU(3)) and N − 1
U(1)-holonomies ni where i = 1, 2, . . . , N − 1. In the infinite coupling limit, the
dual weakly coupled theory B’ emerges. One first splits the SU(N)c subgroup of
the full SU(N)3 flavor symmetry group into SU(N − 1) ×U(1) and then gauges the
SU(N − 1) part with the first gauge node in the quiver tail. As in the T3 case there
is a transformation: (

hc
1, h

c
2, · · · , h

c
N
)
→ (w1,w2, · · ·wN−2, ñ0). (3.142)
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(a) (b)

Figure 3.7: Illustration of the geometric realization of generalized Argyres-Seiberg
duality for TN theories. (a) The theory A’ is obtained by compactifying 6d (2, 0)
theory on a Riemann sphere with two maximal SU(N) punctures and N − 1 simple
punctures. (b) The theory B’, obtained by colliding N − 1 simple punctures, is then
the theory that arises from gauging a SU(N − 1) flavor subgroup of TN by a quiver
tail.

After the SU(N − 1) node, there are N − 2 more U(1) symmetries, and we will
call those associated holonomies ñ j with j = 1, 2, . . . , N − 2. Again there exists a
correspondence as in the T3 case:

(n1, n2, . . . , nN−1) → (ñ0, ñ1, . . . , ñN−2). (3.143)

Then the Coulomb branch index of the theory B’ is

IN
B′ (h

a, hb, ñ0, ñ1, . . . , ñN−2) =
∑
{wi}

CTN (ha, hb,w1,w2, · · ·wN−2, ñ0)IT (wi; ñ1, . . . , ñN−2),

(3.144)
where IT is the index of the quiver tail:

IT (wi; ñ1, . . . , ñN−2) =
∑
{w
(N−2)
i }

∑
{w
(N−3)
i }

· · ·
∑
{w
(2)
i }

IV
N−1(wi)IH

N−1,N−2(wi,w
(N−2)
j , ñ1)IV

N−2(w
(N−2)
i )

× IH
N−2,N−3(w

(N−2)
i ,w

(N−3)
j , ñ2)IV

N−3(w
(N−3)
i ) × . . .

× IV
2 (w

(2)
i )I

H
2,1(w

(2)
i , ñN−2).

(3.145)

Now we can view IT as a large matrix M{wi},{ñj }, and in fact it is a square matrix.
Although the set {ñ j} appears to be bigger, there is an affineWeyl group ÂN−2 acting
on it. From the geometric picture, one can directly see the AN−2 = SN−2 permuting
the N − 2; and the shift ni → ni + k, which gives the same holonomy in U(1)i,
enlarges the symmetry to that of ÂN−2. After taking quotient by this symmetry, one
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requires {ñ j} to live in the Weyl alcove of su(N − 1), reducing the cardinality of the
set {ñ j} to that of {wi}. Then one can invert the matrix M{wi},{ñj } and obtain the
index CTN , which in turn gives the fusion coefficients and the algebra structure of
the SU(N) equivariant TQFT.

The metric of the TQFT coming from the cylinder is also straightforward even in
the SU(N) case. It is always diagonal and only depends on the symmetry reserved
by the holonomy labeled by the highest weight λ. For instance, if the holonomy is
such that SU(N) → U(1)n × SU(N1) × SU(N2) × SU(Nl), we have

ηλλ̄ =
1

(1 − t)n
l∏

j=1

1
(1 − t2)(1 − t3) . . . (1 − tNj )

. (3.146)

This can be generalized to arbitrary group G. If the holonomy given by λ has
stabilizer G′ ⊂ G, the norm square of λ in the Gk equivariant Verlinde algebra is

ηλλ̄ = P(BG′, t). (3.147)

Here P(BG′, t) is the Poincaré polynomial18 of the infinite-dimensional classifying
space of G′. In the “maximal” case of G′ = U(1)r , we indeed get

P (BU(1)r, t) = P
(
(CP∞)r , t

)
=

1
(1 − t)r

. (3.148)

18More precisely, it is the Poincaré polynomial in variable t1/2. But as H∗(BG,C) is zero in odd
degrees, this Poincaré polynomial is also a series in t with integer powers.
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C h a p t e r 4

ARGYRES-DOUGLAS THEORIES, WILD HITCHIN
CHARACTERS AND VERTEX OPERATOR ALGEBRAS

4.1 Generalization to wild punctures
In Chapter 3, we have proposed a relation linking the quantization of a large class
of hyper-Kähler manifolds and BPS spectra of superconformal theories1

Space of Coulomb BPS states of
4d N = 2 SCFT T on L(k, 1)

=
Hilbert space from

quantization of (LMT , kωI)
. (4.1)

Here, the hyper-Kähler space LMT is themirror of the Coulomb branchMT ofT on
R3×S1, withωI being one of the three real symplectic structures, and “CoulombBPS
states” refer to those which contribute to the superconformal index in the Coulomb
branch limit [58]. Each side of (4.1) admits a natural grading, coming from the
U(1)r ⊂ SU(2)R×U(1)r R-symmetry of the 4dN = 2 SCFT, and the proposal (4.1)
is a highly non-trivial isomorphism between two graded vector spaces.

This relation was studied in Chapter 3 [16] for theories of classS [2, 20]. For a given
Riemann surface Σ, possibly with regular singularities (or “tame ramifications”),
and a compact simple Lie group G, the Coulomb branchMT of the theory T[Σ,G]

compactified on S1 is the Hitchin moduli spacesMH(Σ,G) [92–94], whose mirror
LMT is given by MH(Σ,

LG) associated with the Langlands dual group LG via
the geometric Langlands correspondence [61, 65, 95, 96], and the U(1)r action
on it becomes the so-called Hitchin action [12]. Quantizing the Hitchin moduli
space gives the Hilbert space of complex Chern-Simons theoryH(Σ,LGC; k), whose
graded dimension— theHitchin character2— is given by the “equivariant Verlinde
formula” proposed in [15] and later proved in [63, 68]. We have verified relation
(4.1) by matching the lens space Coulomb index of class S theories and the Hitchin
characters,

ICoulomb(T[Σ,G]; L(k, 1) × S1) = dimtH(Σ,
LGC; k). (4.2)

In the present chapter, we further explore the connection in (4.1) for a wider class of
4dN = 2 theories including the A1 Argyres-Douglas (AD) theories. In the process,

1See (3.34). We have stated the proposal here at the categorified level.
2The graded dimension (see (4.39)) is the same as the character of the U(1)Hitchin action, lifted

fromMH to acting onH , and hence the name “Hitchin character.”
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we introduce another player into the story, making (4.1) a triangle,

Coulomb index of T ←→ quantization of LMT

←
→

←
→

vertex operator algebra χT

(4.3)

where the vertex operator algebra χT is associated with the 4d N = 2 theory T
à la [19]. We observe that fixed points on MT under U(1)r are in bijection with
highest-weight representations of χT 3 , and in addition the t → exp(2πi) limit of
the Hitchin character can be expressed in terms modular transformation matrix of
those representations. The appearance of the VOA is anticipated from the geometric
Langlands program, as the triangle above can be understood as an analogue of the
“geometric Langlands triangle” formed by A-model, B-model and D-modules for
generalMT . However, the role of the VOA χT in the counting of Coulomb branch
BPS states is somewhat unexpected, since the VOA is related to the Schur operators
of T [19, 97–99], which contains the Higgs branch operators but not the Coulomb
branch operators at all! The current chapter shows that, the Coulomb branch index
is related to χT through modular transformations.

Argyres-Douglas theories form a class of very interesting 4d N = 2 strongly-
interacting, “non-Lagrangian” SCFTs. They were originally discovered by studying
singular loci in the Coulomb branch of N = 2 gauge theories [100–102], where
mutually non-local dyons become simultaneously massless. The hallmarks of this
class of theories are the fixed values of coupling constants and the fractional scaling
dimensions of their Coulomb branch operators. Like the class S theories, Argyres-
Douglas theories can also be engineered by compactifyingM5-branes on a Riemann
sphere Σ = CP1, but now with irregular singularities — or “wild ramifications” [18,
103, 104]. Their Coulomb branchMH(Σ,G) onR3×S1 and theirmirrorsMH(Σ,

L G)

are sometimes called wild Hitchin moduli spaces. The study of these spaces and
their role in the geometric Langlands correspondence (see e.g. [105] and references

3In the physics literature — and also in this chapter — “chiral algebra” and “vertex operator
algebra” (VOA) are often used interchangeably, while in the math literature, the two have different
emphasis on, respectively, geometry and representation theory. The “highest-weight representations
of χT” here denotes a suitable subcategory, closed under modular transform, of the full category of
modules of vertex operator algebra. The precise statement will be clear in Section 4.5.
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therein) is a very interesting subject and under active development. Over the past few
years, much effort has been made to give a precise definition of the moduli space,
and analogues for many well-known theorems in the unramified or tamely ramified
cases were only established recently (see [106–108], as well as the short survey [88]
and references therein). In this chapter, relation (4.1) enables us to obtain the wild
Hitchin characters for many moduli spaces. Just like their cousins in the unramified
or tamely ramified cases [15], wild Hitchin characters encode rich algebraic and
geometric information aboutMH , with some of the invariantsMH being able to be
directly read off from the formulae. This enables us to make concrete predictions
about the moduli space.

For instance, the L(k, 1) Coulomb index of the original Argyres-Douglas theory
[100], which in the notation of [18] will be called the (A1, A2) theory, is given by

I(A1,A2) =
1 − t−

1
5 − t

1
5 + t

k
5

(1 − t
6
5 )(1 − t−

1
5 )
, (4.4)

and it is easy to verify that it agrees with the wild Hitchin character of the mirror of
the Coulomb branch LM(A1,A2) =

LM2,3 (the precise meaning of this notation will
be clarified shortly),

dimtH(
LM2,3) =

1

(1 − t
2
5 )(1 − t

3
5 )
+

t
k
5

(1 − t
6
5 )(1 − t−

1
5 )
, (4.5)

with the two terms coming from the two U(1) fixed points. And the two fixed
points correspond to the two highest weight representations of the non-unitary (2, 5)
Virasorominimalmodel— famously known as the Lee-Yangmodel—via a detailed
dictionary which will be provided in later sections.

This chapter is organized as follows: In Section 4.2, we first briefly recall how the
wild Hitchin moduli spaceMH arises from brane geometry and how it is related to
general Argyres-Douglas theories. We then proceed to describeMH , introduce the
U(1) Hitchin action on it and discuss its geometric quantization.

In Section 4.3, we obtain the Coulomb branch indices of Argyres-Douglas theories,
expressed as integral formulae. We follow the prescription in [109–111] by starting
with N = 1 Lagrangian theories that flow to Argyres-Douglas theories in the IR.
The TQFT structure for the index is presented in Appendix C.1.

In Section 4.4, we present the wild Hitchin characters, decomposed into summations
over the fixed points. Using the character formulae we explore the geometric prop-
erties of the moduli space. Confirmation from direct mathematical computation is
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given in Appendix E.We then study the large-k limits of the wild Hitchin characters,
giving a physical interpretation of some fixed points in MH as massive vacua on
the Higgs branch of the 3d mirror theory. We also study the symmetry mixing upon
dimensional reduction, following [112]. Further details are given in Appendix C.2
and D.

In Section 4.5, we study the relation between Hitchin characters and VOAs, and
demonstrate that a limit of wild Hitchin characters can be identified with matrix
elements of the modular transformation ST k S. Further, we check the correspon-
dence between the fixed points onMH and the highest-weight modules for various
examples.

4.2 Wild Hitchin moduli space and Argyres-Douglas theories
We recall that in Chapter 3 and [15, 16], the problem of quantizing the Hitchin
moduli space was studied using the following brane set-up

fivebranes: L(k, 1) × S1 × Σ

∩

space-time: L(k, 1) × S1 × T∗Σ × R3

� � �

symmetries: SO(4)E U(1)N SU(2)R

(4.6)

We will first review how the Hitchin moduli space arises from this geometry, and
how adding irregular singularities to Σ leads to a relation between the general
Argyres-Douglas theories and wild Hitchin systems.

Hitchin equations from six dimensions
Hitchin moduli spaces were first introduced to physics in the context of string theory
and its dimensional reduction in the pioneering work of [92–94] in the past century,
and were highlighted in the gauge theory approach to geometric Langlands program
[65, 96, 105]. In our brane setting (4.6), which is closely related to the system
studied in detail in [20], one can first reduce the M5-branes on the S1 to obtain
D4-branes, whose world-volume theory is given by the 5d N = 2 super-Yang-Mills
theory. We consider theories with gauge group G of type ADE. In addition to
the gauge fields, this theory also contains five real scalars Y I with I = 1, 2, . . . , 5,
corresponding to the motion of the branes in the five transverse directions. Further
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topological twisting along Σ enables us to identify ϕ(z) = Y1+iY2 as a (1, 0)-form on
Σ with respect to the complex structure of Σ. As a consequence, the BPS equations
in the remaining three space-time dimensions are precisely the Hitchin equations
(1.3). Regarded as a sigma model, the target space of the three-dimensional theory
is identified with the Hitchin moduli space MH(Σ,G) — solutions to the Hitchin
equations modulo gauge transformations.

One can allow the Riemann surface Σ to have a finite number of marked points
{p1, p2, . . . , ps} for s ≥ 0. In the neighborhood of each marked point pi, the gauge
connection and the Higgs field take the asymptotic form:

A ∼ αdθ,

ϕ ∼

(
un

zn +
un−1

zn−1 + . . .
u1

z
+ regular

)
dz.

(4.7)

Here α ∈ g and ui ∈ gC are collectively called the ramification data,4 and they are
fixed in definingMH to ensure that the moduli space is symplectic (more precisely,
gauge-invariant combinations of them are fixed). When the order of the pole is
n = 1, we call the puncture tame or regular. From the M-theory geometry, adding a
regular puncture corresponds to the insertion of a set of defect M5-branes placed at
the point pi of Σ, occupying the four spacetime dimensions as well as the cotangent
space at pi ∈ Σ. Set-up (4.6) becomes

fivebranes: L(k, 1)b × Σ × S1

∩

space-time: L(k, 1)b × T∗Σ × S1 × R3

∪

“defect” fivebranes: L(k, 1)b × T∗ |piΣ × S1 .

(4.8)

The defect fivebranes give rise to a codimension-two singularity in the 6d (2,0)
theory and introduce a flavor symmetry of the effective 4d theory T[Σ,G] [2, 113].
If u1 is nilpotent, then the flavor symmetry is given by the commutant subgroup
of the nilpotent embedding su(2) → g; if u1 is semi-simple, the flavor symmetry
is explicitly broken by mass deformations [2, 114]. The ramification data α and
u1 is acted upon by the affine Weyl group of G, and the conjugacy class of the

4We use the convention that elements in g = Lie G are anti-Hermitian.
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monodromy in the complexified gauge connection Az = Az + iϕ is an invariant of
the ramification data.

When n > 1 the puncture will be called wild or irregular, which will play a central
role in the present chapter. The leading coefficient matrix un is allowed to be either
semi-simple or nilpotent as in the tame case. However, now the monodromy of
Az around pi needs to be supplemented by more sophisticated data — the Stokes
matrices — to fully characterize the irregular puncture [115] (see e.g. [105] for
more detail and explicit examples).

The Hitchin moduli space MH(Σ,G) with fixed local ramification data is hyper-
Kähler, admitting a family of complex structures parametrized by an entire CP1.
There are three distinguished ones (I, J,K), and the corresponding symplectic forms
are denoted as ωI, ωJ, ωK . The complex structure I is inherited from the complex
structure of the Riemann surface Σ, over which ∂̄A defines a holomorphic structure
on E , and the triple (E, ∂̄A, ϕ) parametrizes a Higgs bundle on Σ. This is usually
referred to as the holomorphic or algebraic perspective. Alternatively, one can also
employ the differential geometric point of view, identifyingMH as the moduli space
of flat GC-connections on Σ with the prescribed singularity near the puncture, and
the complex structure J comes from the complex structure of GC. There is also
the topological perspective, viewing MH as the character variety Hom(π1Σ,GC),
with boundary holonomies in given conjugacy classes (and with inclusion of Stokes
matrices in the wildly ramified case). Non-abelian Hodge theory states that the
three constructions give canonically isomorphic moduli spaces [12, 116–118]. In
the wild case, the isomorphism between the Hitchin moduli spaceMH and moduli
space of flat GC-connections was proved in [106, 119], while [106] proved the
isomorphism between MH and moduli space of Higgs bundles, thus establishing
the equivalence of first two perspectives. The wild character variety was later
constructed and studied in [107, 108, 120, 121]. In this chapter, we will mainly
adopt the holomorphic perspective but will occasionally switch between the three
viewpoints as each offers unique insights intoMH .5

For later convenience, we shall use below a different but equivalent formulation of
Hitchin equations (1.3). Fix a Riemann surface Σ and a complex vector bundle E .

5In general, physical quantities know about the full moduli stack, where all Higgs bundles
including the unstable ones are taken into account, as the path integral sums over all configurations.
However, for co-dimension reasons, all wild Hitchin characters we will consider are the same for
stacks and for spaces. In the tame or unramified cases, there can be differences, and working over
the stack is usually preferable. See [63, Sec. 5] for more details.
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Given a Higgs bundle (∂̄E, ϕ), i.e. a holomorphic structure on E and a Higgs field,
we additionally equip E with a Hermitianmetric h. Then there exists a uniqueChern
connection D compatible with the Hermitian metric whose (0, 1) part coincides with
∂̄E . The Hitchin equations are then equations for the Hermitian metric h:

FD +
[
ϕ, ϕ†h

]
= 0,

∂̄E ϕ = 0,
(4.9)

where ϕ†h = h−1ϕ†h is the Hermitian conjugation of the Higgs field. The previous
version of Hitchin equations, (1.3), is in the “unitary gauge” where the Hermitian
metric is identity. The two conventions are related by a gauge transformation g ∈ GC
such that

g−1 ◦ ∂̄E ◦ g = ∂̄Au, g−1 · ϕ · g = ϕu, g† · h · g = Idu , (4.10)

where the subscript u indicates unitary gauge.

The moduli spaceMH admits a natural map known as the Hitchin fibration [122],

MH → B,

(E, ϕ) 7→ det(xdz − ϕ),
(4.11)

where B is commonly referred to as the Hitchin base and generic fibers are abelian
varieties. As explained in [20], B can be identified with the Coulomb branch of the
theory T[Σ,G] on R4, and the curve det(xdz− ϕ) = 0 with the Seiberg-Witten curve
of T[Σ,G].

The Hitchin action. There is a U(1) action on the Hitchin moduli spaceMH . As
emphasized in [15] and Chapter 3, the existence of the U(1) Hitchin action gives us
control over the infinite-dimensional Hilbert space arising from quantizingMH in
both the unramified or tamely ramified case,6 and we will also focus in this chapter
on the wild Hitchin moduli spacesMH that admit similar U(1) actions.

We first recall that in the unramified case, the Hitchin action on the moduli space is
given by

(A, ϕ) 7→ (A, eiθϕ). (4.12)

On the physics side, it coincides with the U(1)r symmetry of the 4d N = 2 SCFT
T[Σ,G]. A similar action also exists for Σ with tame ramifications, provided the

6Occasionally, it is also useful to talk about the complexified C∗-action, and we will refer to both
as the “Hitchin action.”
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singularities are given by
A ∼ αdθ,

ϕ ∼ nilpotent.
(4.13)

However, near an irregular singularity, ϕ acquires an higher order pole (4.7) and
the action (4.12) has to rotate the ui’s. As the definition of the MH depends on
ramification data, this U(1) action does not act on the moduli space — it will
transform it into different ones. One can attempt to partially avoid this problem by
setting u1, u2, . . . , un−1 to be zero7 — similar to the case with tame ramifications —
but un has to be non-zero in order for the singularity to be irregular.

The way out is to modify (4.12) such that it also rotates the z coordinate by, e.g.,

z 7→ e
iθ
n−1 z. (4.14)

To have this action well-defined globally on Σ highly constrains the topology of the
Riemann surface, only allowing CP1 with one wild singularity, or one wild and one
tame singularities.8 Interestingly, the U(1) Hitchin action onMH exists whenever
T[Σ,G] is superconformal,

MH(Σ,G) admits
U(1) Hitchin action

←→
T[Σ,G] is a

4d N = 2 SCFT
. (4.15)

This is because superconformal invariance for T[Σ,G] implies the existence of
U(1)r symmetry which define a U(1) action onMH . All possible choices for wild
punctures of ADE type on the Riemann sphere are classified in [18, 104], and the
resulting theories T[Σ,G] are called “general Argyres-Douglas theories”, which we
will review in the next subsection. In Section 4.2, we will get back to geometry again
to give a definition of the wild Hitchin moduli space and describe more precisely
the U(1) action on it.

General Argyres-Douglas theories
In this sectionwe takeG = SU(2), andmoreover assume that the irregular singularity
lies at z = ∞ (the north pole) on the Riemann sphere. Another regular puncture can
also be added at z = 0 (the south pole).

7More generally, we should choose their values such that the U(1)-action on them can be
cancelled by gauge tranformations.

8We will focus on such Σ and the moduli spaces MH associated with them. Henceforth, by
“wild Hitchin moduli space”, we will be usually referring to these particularMH , where the U(1)
action exists.
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Near z = ∞, there can be two types of singular behaviors for the Higgs field ϕ; the
leading coefficient can be either semisimple or nilpotent.9 A semisimple pole looks
like

ϕ(z) ∼ zn−2dz
©«

a 0

0 −a

ª®®®¬ + · · · (4.16)

with n > 1 an integer. For a nilpotent pole, it cannot be cast into this form by usual
gauge transformations. But if we are allowed to use a local gauge transformation
that has a branch cut on Σ, we can still diagonalize it into (4.16), but now with
n ∈ Z+ 1/2. We will not allow such gauge transformation globally in the definition
of the moduli spaceMH since it creates extra poles at z = 0, but (4.16) is still useful
conceptually in local classifications. For example, one can read off the correct U(1)
action on z,

z 7→ e−
iθ
n−1 . (4.17)

In [18], a puncture is called type I if n is integral, and type II if n half-odd. We will
use the notation I2,K for the singularity with K = 2(n − 2) and the subscript “2” is
referring to the SL(2,C) gauge group.

The (A1, AK−1) series. If there is only one irregular singularity I2,K at the north pole,
(4.16) will only have non-negative powers of z. This kind of solution describes the
(A1, AK−1)Argyres-Douglas theory in the notation of [18]. Historically, this class of
theories was discovered from the maximally singular point on the Coulomb branch
of N = 2 SU(K) pure Yang-Mills theory [100, 102]. The Seiberg-Witten curve (or
the spectral curve from the Higgs bundle point of view) takes the form

x2 = zK + v2zK−2 + · · · + vK−1z + vK . (4.18)

The Seiberg-Witten differential λ = xdz has scaling dimension 1, from which we
can derive the scaling dimensions for vi,

[vi] =
2i

K + 2
. (4.19)

For i > (K + 2)/2, the scaling dimensions of the vi’s are greater than 1, and they
are the expectation values of Coulomb branch operators. When K is even, there is

9If the leading coefficient is not nilpotent, it can always be made semisimple by a gauge trans-
formation. Also, notice that an semisimple element of sl(2,C) is automatically regular.
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a mass parameter at i = (K + 2)/2. The rest with i < (K + 2)/2 are the coupling
constants that give rise to N = 2 preserving deformations

∆W ∼ vi

∫
d4x Q̃4Oi (4.20)

for Coulomb branch operator Oi associated to vK+2−i, where Q̃4 denotes the product
of the four supercharges that do not annihilate Oi. Such deformation terms are also
consistent with the pairing [vi] + [vK+2−i] = 2. If we promote all the couplings to
the background chiral superfields, one can assign a U(1)r charge to them, which is
equal to their scaling dimensions.10

The coupling constants and mass term parametrize deformations ofMH , thus not
all vi’s are part of the moduli. Moreover, to have a genuine U(1) action on MH

itself, the vi’s with i ≤ (K + 2)/2 ought to be set zero in the spectral curve in (4.18).
On the other hand, those vi’s with i > (K + 2)/2 are allowed to be non-zero, and
in fact they parametrize the Hitchin base B. In what follows we denote this wild
Hitchin moduli space asM2,K , and its Langlands dual as LM2,K . The parameter
a in (4.16) can be scaled away but the parameter α ∈ Lie(T) corresponding to the
monodromy of the gauge connection at the singularity enters as part of the definition
of the moduli spaceM2,K(α). As argued in [105, Sec. 6], this monodromy has to
vanish for odd K , but can be non-zero when K is even.11 On the physics side, this
agrees with the fact that the (A1, AK−1) theory has no flavor symmetry when K is
odd, and generically a U(1) symmetry when K is even [123]. This phenomenon is
quite general, and works in the case with tame ramifications as well,

Monodromy parameters
for the moduli spaceMH(Σ)

←→
flavor symmetries
for the theory T[Σ]

. (4.21)

The (A1,DK+2) series. If Σ also has a regular puncture on the south pole in addition
to the irregular I2,K at the north pole, we will get the (A1,DK+2) Argyres-Douglas
theory in the notation of [18]. Originally, this class of theories was discovered at the
“maximal singular point” on the Coulomb branch of the SO(2K + 4) super-Yang-
Mills theory [102].

10Our convention here for the U(1)r charge differs from the usual one as rusual = −r . In our
convention, U(1)r charge for chiral BPS operators will be the same as scaling dimensions. Notice
that one can formally assign U(1)r charge to z as well; the value will turn out to be minus the scaling
dimension −[z].

11Had the puncture been tame, such monodromy would be required to the zero to have a non-
empty moduli space. However, in the wild case, due to Stokes phenomenon, α can take non-zero
values. Now, eα is a “formal monodromy,” and the real monodromy, which is required to be the
identity, is a product of eα with Stokes matrices.
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AD theory order of pole of ϕ at z = ∞, 0 moduli spaceMH dimCMH

(A1, A2N ) (2N + 1)/2, 0 M2,2N+1 2N

(A1, A2N−1) N, 0 M2,2N 2N − 2

(A1,D2N+1) (2N − 1)/2, 1 M̃2,2N−1 2N

(A1,D2N ) N − 1, 1 M̃2,2N−2 2N − 2

Table 4.1: Summary of A1 Argyres-Douglas theories, the order of singularities of
theHiggs fields, the correspondingwildHitchinmoduli spaces and their dimensions.

To accommodate the regular puncture, the Higgs field should behave as

ϕ(z) ∼ zn−2dz
©«

a 0

0 −a

ª®®®¬ + · · · +
dz
z

©«
m 0

0 −m

ª®®®¬ . (4.22)

Consequently, the Seiberg-Witten curve is

x2 = zK + v1zK−1 + · · · + vK−1z + vK +
vK+1

z
+

m2

z2
(4.23)

with the same expression for the scaling dimensions in (4.19) except that i now takes
value from 1 up to K + 1. The parameter m has the scaling dimension of mass, and
it is identified as a mass parameter for the SU(2) flavor symmetry associated with
the regular puncture. Once again, we will turn off all the coupling constants and
masses in the spectral curve since they describe deformations of the Coulomb branch
moduli. Around the irregular puncture, the monodromy parameter α1 ∈ Lie(T) of
the gauge connection A can be non-trivial. Moreover, it may not agree with the
monodromy α2 around the regular puncture. Similar to the (A1, AK−1) case, α1 = 0
when K is odd, and can be turned on when K is even. The corresponding moduli
spaces, denoted as M̃2,K(α1, α2), and their Langlands dual LM̃2,K(α1, α2) depend
on those α’s.

Geometry of the wild Hitchin moduli space
We have argued that the wild Hitchin moduli space can be realized as the Coulomb
branch vacua of certain Argyres-Douglas theories compactified on a circle. They
are summarized in Table 4.1. In accordance with the physics construction, we will
now turn to a pure mathematical description of the moduli space.

A mathematical definition of these moduli spaces depends on the singular behavior
of the Higgs field ϕ near irregular singularities, as in [105, 106]. When K is even,
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the moduli spacesM2,K and M̃2,K are described in [106]. Consequently, we turn to
the case where K = 2N + 1 is odd. The corresponding Higgs bundle moduli space
is described in [124], and we here describe the corresponding Hitchin moduli space.
To motivate the definition ofM2,2N+1, note that in this case, the leading coefficient
matrix (4.7) is nilpotent, which slightly differs from that of [106]. However, one
can diagonalize the Higgs field near the irregular singularity by going to the double
cover of the disk centered at infinity (a “lift"), so that locally the Higgs field looks
like

ϕ ∼ u′N zN+ 1
2 + . . . (4.24)

with u′N regular semi-simple. This polar part of the Higgs field is not single-valued,
so we futher impose a gauge transformation across the branch cut [105]

ge =

©«
0 1

−1 0

ª®®®¬ (4.25)

In our definition ofM2,2N+1, the local picture at the infinity follows from an equiv-
ariant version of the local picture of [106] on the ramified disk with respect to the
Z2-change of coordinate w → −w for w2 = z. The ramification “untwists” the
twisted Cartan so the local model is still diagonal, as in [106].

Two perspectives on solutions of Hitchin’s equations appear in Section 4.2, and we
use both in the following definition. A solution of Hitchin equations is a triple of
(∂̄E, ϕ, h) consisting of a holomorphic structure, Higgs field, and Hermitian metric
satisfying (4.9). Alternatively, a solution of Hitchin equations in unitary gauge
(i.e. h = Id) is a pair (A, ϕ) consisting of a unitary connection dA and Higgs field ϕ
satisfying (1.3). We use the notation ϕ for the Higgs field in both perspectives for
simplicity.

Next we describe the relevant data needed to specify the moduli spaceM2,2N+1.

Fixed Data: Take CP1 with a marked point at ∞. Fix a complex vector bundle
E → CP1 of degree 0 with a trivialization of DetE , the determinant bundle. Let ∂̄E

be a holomorphic structure on E which induces a fixed holomorphic structure on
DetE . Let h be a Hermitian metric on E which induces a fixed Hermitian structure
on DetE .

At∞, we allow an irregular singularity, and fix the following data:

Dmodel = d + ϕmodel + ϕ
†

model, (4.26)
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where

ϕmodel =
©«
−2 0

0 2

ª®®®¬
du

uK+3 . (4.27)

(To explain the power appearing, note that if u is the holomorphic coordinate on the
ramified double cover of the disk at 0, i.e. u−2 = z, then u−(2N+4)du = zN+ 1

2 dz.)

Definition of the moduli space,M2,2N+1: Given a triple (∂̄E, ϕ, h), denote the lift of
the unitary pair (A, ϕ) by

(Ã, ϕ̃) = l · (A, ϕ). (4.28)

A triple (∂̄E, ϕ, h) is inM2,2N+1 if it is a solution of Hitchin equations on CP1 and
on a neighborhood of∞ the associated flat connection D̃ = Ã+ ϕ̃ + ϕ̃† differs from
the local model in (4.26) by a deformation allowed by [106]. Moreover, we say
that (∂̄E, ϕ, h) and (∂̄′E, ϕ

′, h′) are gauge equivalent if there is some unitary gauge
transformation g by which (A, ϕ) and (A′, ϕ′) are gauge equivalent, and g lifts to
an allowed gauge transformation on the ramified disk around ∞. More precisely,
the lift g̃ = l′ ◦ g ◦ l−1 must be an allowed unitary gauge transformation, in the
perspective of [106], from l · (A, ϕ) to l′ · (A′, ϕ′) on the ramified disk around ∞.
The moduli space M̃2,2N−1 can be defined similarly.

With the above definitions, it is expected that the symplectic form ωI onM2,K and
M̃2,K can be expressed just as that in [12]:

ωI =
i
π

∫
Tr

(
δAz ∧ δAz̄ − δϕ ∧ δϕ

†
)
. (4.29)

There is a U(1) action on the moduli space M2,K and M̃2,K , by composing the
rotation of Higgs field with a rotation of the Riemann sphere. It is defined as:

z
ρθ
−−→ e−i 2

2+K θz,

ϕ → eiθρ∗θϕ,

A → ρ∗θA.

(4.30)

We say (A, ϕ) is fixed by the U(1) action if for all θ, the rotated solution is gauge
equivalent to the unrotated one. This U(1) action is expected to be Hamiltonian
with moment map µ such that

dµ = ιVωI, (4.31)
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where V is the vector field generated by the U(1) action. At the fixed points of
the U(1) action, there is evidence that this moment map agrees with the following
quantity [124]:

µ =
i

2π

∫
Tr

(
ϕ ∧ ϕ† − Id · |z |K dz ∧ dz̄

)
. (4.32)

In Appendix E, we compute the weights of the U(1) action at the fixed points.
Practically, rather than working with the Hitchin moduli space, we may instead
work with the Higgs bundle moduli space diffeomorphic toM2,K or M̃2,K . In the
caseM2,2N+1, the corresponding Higgs bundle moduli spaceMHiggs

2,2N+1 is rigorously
described in [124]. For the other moduli spaces, we provide a general set-up of
the definition for the Higgs bundle moduli space, and leave a rigorous treatment to
future work. Unsurprisingly, the fixed data for the Higgs bundle moduli space is the
same as the fixed data for the Hitchin moduli space. On the ramified double cover
of the disk at∞ with coordinate u = z−1/2, the local model for the Higgs field is

ϕmodel =
©«
−2 0

0 2

ª®®®¬
du

uK+3 =
©«
1 0

0 −1

ª®®®¬ zK/2dz, (4.33)

as in (4.26). Additionally, the monodromy at ∞ on the ramified double cover at
∞ is trivial when K is odd, but otherwise a free parameter. The monodromy is
algebraically encoded in the data of a filtration structure of the holomorphic vector
bundle E = (E, ∂̄E ) at∞. The filtered vector bundle of E and the filtration structure
at∞ are denoted as P•E.

A pair (P•E, ϕ) consisting a filtered bundle P•E and meromorphic Higgs field ϕ
with pole at∞ (with no additional compatibility conditions) is in the Higgs bundle
moduli space MHiggs

2,K if there is a holomorphic lift to the ramified disk in which
ψ∗(P•E, ϕ) is “unramifiedly good” (in the sense of [125]), i.e.,

ψ∗ϕ = ϕmodel + holomorphic terms (4.34)

andψ∗(P•E) is the trivial filtration. InM
Higgs
2,K , (P•E, ϕ) and (P•E′, ϕ′) are identified

if there is a isomorphism η : P•E → P•E′ of P•E and P•E′ as filtered vector
bundles such that ϕ′ = η−1 ◦ ϕ ◦ η.

Quantization ofMH

One of the major goals of this chapter is to study the quantization of wild Hitchin
moduli spaces,

(MH(Σ,G), kωI) { H(Σ,G, k). (4.35)
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The quantization problem takes as input the symplectic manifold (MH(Σ,G), kωI)

— the “phase space,” and aims to produce a space of quantum states — the “Hilbert
space.” In this particular case, the resulting space H(Σ,G, k) can be interpreted as
the Hilbert space of complex Chern-Simons theory at real level k on Σ, with the
complex connection developing singularities near the punctures.

Using the standard machinery of geometric quantization of Kähler manifolds, one
can identify the Hilbert space with holomorphic sections of a “prequantum line
bundle”

H(MH(Σ,G), kωI) = H0(MH,L
⊗k). (4.36)

Here L denotes the determinant line bundle overMH whose curvature is cohomol-
ogous to ωI ,

c1(L) = [ωI]. (4.37)

For all quantization problems, a very interesting question is to find the dimension of
the resulting Hilbert space. In the present case, the dimension ofH can be formally
written as an integral overMH ,12

dim H0(MH,L
⊗k) = χ(MH,L

⊗k) =

∫
MH

ekωI ∧ Td(MH). (4.38)

In the above expression, we used the vanishing of higher cohomology groups13 to
rewrite the dimension as an Euler characteristic, and then used index theorem to
express it as an integral over the moduli space.

Just like their unramified or tamely ramified cousins, the wild Hitchin moduli spaces
are also non-compact andwould give rise to infinite-dimensional Hilbert spaces after
quantization. This is seen quite clearly from the integral in (4.38), which diverges
due to the non-compactness ofMH .

However, as the U(1) Hitchin action is Hamitonian (in particular it preserves ωI), it
also acts on the Hilbert space H . Then the dimension of H can be refined to the
graded dimension, defined as the character of the U(1) action,

dimtH =
∑

n

dimHnt
n. (4.39)

12We use integrals for pedagogical reasons. MH generically is not a manifold, and should be
viewed as a stack.

13The vanishing theorem for unramified and tamely ramified cases was proved in [68] and [63],
and the vanishing is expected to hold also in the wild case — morally, because of the Kodaira
vanishing along the fibers of the Hitchin map.
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Here t is the fundamental character of U(1), and Hn is the subspace of H where
U(1) acts with eigenvalue n. In [15], this Hitchin character was computed in the
unramified or tamely ramified case, and was found to be given by a Verlinde-like
formula, known as the “equivariant Verlinde formula.” The word “equivariant”
comes from the fact that the Hitchin character can also be written as an integral,
similar to (4.38), but now in the U(1)-equivariant cohomology ofMH ,

dimtH(Σ,G, k) = χU(1)(MH,L
⊗k) =

∫
MH

ec1(L
⊗k, β) ∧ Td(MH, β). (4.40)

Here, the second quantity is the equivariant Euler characteristic of L⊗k which is
then expressed as an integral over MH via the equivariant index theorem. This
integral will actually converge, but we will need to first briefly review the basics of
equivariant cohomology and introduce necessary notation. We will be very concise
and readers unfamiliar with this subject may refer to [126] for a more pedagogical
account.

Let V be the vector field on MH generated by the U(1) action; we pick β to be
the degree-2 generator of the equivariant cohomology of H•U(1)(pt) and is related to
t by t = e−β. Using the Cartan model for equivariant cohomology, we define the
equivariant exterior derivative as

δ̂ = δ + βιV (4.41)

with δ̂ 2 = 0 over equivariant differential forms. One can then define the equivariant
cohomology as

H•G(MH) = ker δ̂/im δ̂. (4.42)

For an equivariant vector bundle, one can also define the equivariant characteristic
classes. For example, the equivariant first Chern class of L is now

c1(L, β) = ω̃I := ωI − βµ. (4.43)

And one can verify that it is equivariantly closed

δ̂ ω̃I = 0. (4.44)

Similarly, one can define the equivariant Todd classTd(MH, β) of the tangent bundle
ofMH .

Nowwe can see that the integral in (4.40) has a very good chance of being convergent
as ec1(L, β) contains a factor e−βµ which suppresses the contribution from large Higgs
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fields. Further, one can use the Atiyah-Bott localization formula to write (4.40) as
a summation over fixed points of the Hitchin action,∫
MH

ec1(L
⊗k, β) ∧ Td(MH, β) =

∑
Fd

e−βkµ(Fd)

∫
Fd

Td(Fd) ∧ ekωI∏codimCFd

i (1 − e−xi−βni )
, (4.45)

where Fd is a component of the fixed points, and xi + βni are the equivariant Chern
roots of the normal bundle of Fd with ni being the eigenvalues under theU(1) action.
For a Hitchin moduli space, there is finitely many Fd’s and each of them is compact,
so the localization formula provides a way to compute the Hitchin character. To
use the above expression, one must understand the fixed points and their ambient
geometry — something that is typically challenging. This makes the relation (4.1)
very useful, since it suggests that the Hitchin character, along with all the non-trivial
geometric information aboutMH that it encodes, can be obtained in a completely
different (and in many senses simpler) way from the Coulomb index of the 4d SCFT
T[Σ,G]! This is precisely the approach taken in Chapter 3 and [16] for tamely
ramified Σ. We now proceed to study the Coulomb branch index of the general
Argyres-Douglas theories to uncover the wild Hitchin characters.

We end this section with two remarks. The first is about the large-k limit of the
Hitchin character. In this limit, it is related to another interesting invariant ofMH

called the “equivariant volume” studied in [127]

Volβ(MH) =

∫
MH

exp(kω̃I) =
∑
Fd

e−βµ(Fd)

∫
Fd

eωI

euβ(Fd)
(4.46)

where euβ(Fd) is the equivariant Euler class of the normal bundle of Fd ,

euβ(Fd) =

codimCFd∏
i=1

(xi + βni). (4.47)

The second remark is about the quantization of the monodromy parameter α (and
also the α1 and α2). In the definition of the moduli spaceMH , this parameter can
take arbitrary values inside the Weyl alcove Lie(T)/Waff subject to no restrictions.
However, only for discrete values of the monodromy parameter, MH is quantiz-
able. The allowed values are given by the characters of G modulo Waff action (or
equivalently integrable representations of G at level k.)

kα ∈ Λchar(G)/Waff = Hom(G,U(1))/Waff, (4.48)
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which ensures the prequantum line bundle L⊗k has integral periods overMH (see
Chapter 3 for completely parallel discussion of this phenomenon in the tame case.)
For G = SU(2), we often use the integral parameter

λ = 2kα ∈ {0, 1, . . . , k}. (4.49)

The discretization of α can also be understood from the SCFT side. For a quantum
field theory with flavor symmetry LG on M3 ×R, one can deform the system— and
also its Coulomb branch— by turning on a flavor holonomy in Hom(π1M3,

LG)/LG.
When M3 = L(k, 1), the homomorphism π1 = Zk →

L G up to conjugation is
precisely classified by elements in

Λcochar(
LG) = Λchar(G) (4.50)

modulo affine Weyl symmetry.14

4.3 The Coulomb branch index of AD theories from N = 1 Lagrangian
Now our task is to compute the Coulomb branch index of Argyres-Douglas theories
on the lens space L(k, 1). This is, however, a rather nontrivial problem, since these
theories are generically strongly-interacting, non-Lagrangian SCFTs. Their original
construction using singular loci of the Coulomb branch ofN = 2 super Yang-Mills
theory is not of much use: the IR R-symmetries are emergent, the Seiberg-Witten
curves are derived from a subtle scaling limits (see e.g. [128] for discussion of this
issue), and the Higgs branches are intrinsic to the superconformal point itself [123].
Also, no known dualities can relate them to Lagrangian theories. For example,
in Chapter 3 the generalized Argyres-Seiberg duality is very powerful for study of
Coulomb index of class S theories, but its analogue for Argyres-Douglas theories
is not good enough to enable the computation of superconformal indices, since the
two S-duality frames in general both consist of non-Lagrangian theories [129–132].

Recently, the author of [109–111] discovered that a certain class of four-dimensional
N = 1 Lagrangian theories exhibit supersymmetry enhancement under RG flow.
In particular, some of them flow to N = 2 Argyres-Douglas theories. The N = 1

14In Chapter 3, the importance of distinguishing between G and LG was emphasized. However,
for the wild Hitchin moduli space that we study, the difference is not as prominent, because Σ is now
restricted to be CP1, making the Hitchin character insensitive to global structure of the gauge group.
In fact, the wild Hitchin characters we will consider are complete determined by the Lie algebra g,
provided that we analytically continuate kα to be a weight of g. Because of this, we will use the
simply-connected group — SU(2) in the rank-2 case — for both the gauge group of the SCFT and
the moduli space.
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description allows one to track down the flow of R-charges and identify the flavor
symmetry from the UV, making the computation of the full superconformal index
possible.

In this sectionwewill use their prescription to calculate the Coulomb branch index of
Argyres-Douglas theories on S1× L(k, 1). Investigation of their properties, which is
somewhat independent of themain subject of the chapter, is presented inAppendixC,
which consists of two subsections. The TQFT properties of the Coulomb branch
indices make up Appendix C.1. When there is only tame ramifications, the lens
space Coulomb branch index of T[Σ] gives rise to a very interesting 2D TQFT
on Σ [16]. In the presence of irregular singularities, the geometry of Σ is highly
constrained, and only a remnant of the TQFT cutting-and-gluing rules is present,
which tells us how to close the regular puncture on the south pole to go from the
(A1,DK+1) theory to (A1, AK−2).

In Appendix C.2, we consider the dimensional reduction of Argyres-Douglas theo-
ries, which will be relevant later when we discuss the large-k behavior of the Hitchin
character. Themainmotivation is to resolve an apparent puzzle: any fractionalU(1)r
charges in four dimensions should disappear upon dimensional reduction, since it
is impossible to have fractional R-charges in the resulting three-dimensionalN = 4
theory, whose R-symmetry is enhanced to SU(2)C × SU(2)H . The solution lies in
the mixing between the topological symmetry and the R-symmetry, similar to what
was first discussed in [112] using Schur index. Here we shall confirm the statement
from Coulomb branch point of view directly.

In the following we begin with a brief review of the construction [109–111] and
present an integral formula for the Coulomb branch index on lens spaces.

The construction
In the flavor-current multiplet of a 4dN = 2 SCFT, the lowest component is known
as the “moment map operator”, which we will denote as µ̂. It is valued in f∗, the
dual of the Lie algebra of the flavor symmetry F, and transforms in the 30 of the
SU(2)R × U(1)r R-symmetry. In other words, if the Cartan generators of SU(2)R
and U(1)r is I3 and r , then

I3(µ̂) = 1, and r(µ̂) = 0. (4.51)

The idea of [109–111] is to couple the moment map operator µ̂ with an additional
N = 1 “meson” chiral multiplet M in the adjoint representation f of F via the



89

superpotential
W = 〈µ̂, M〉 (4.52)

and give M a nilpotent vev 〈M〉. If theN = 2 theory we start with has a Lagrangian
description (the case that we will be mainly interested in below), such deformation
will give mass to some components of quarks, which would be integrated out during
the RG flow.

The Jacobson-Morozov theorem states that a nilpotent vev 〈M〉 ∈ f+ specifies a
Lie algebra homomorphism ρ : su(2) → f. The commutant of the image of ρ
is a Lie subalgebra h ⊂ f. This subalgebra h is the Lie algebra of the residual
flavor symmetry H. In the presence of the nilpotent vev, f (and similarly f∗) can be
decomposed into representations of su(2) × h as

f =
∑

j

Vj ⊗ Rj, (4.53)

where the summation runs over all possible spin- j representations Vj of su(2), and
Rj carries a representation of h. Both M and µ̂ can be similarly decomposed

M =
∑
j, j3

M̃j, j3, µ̂ =
∑
j, j3

µ̂ j, j3, (4.54)

where Mj, j3 also carries the Rj representation of h that we omitted. Here ( j, j3) is
the quantum number for the su(2) representationVj . Among them, M1,1 will acquire
a vev v, and we re-define M to the fluctuation M − 〈M〉. Then, the superpotential
(4.52) decomposes as

W = vµ1,−1 +
∑

j

〈Mj,− j, µ̂ j, j〉. (4.55)

Note that only the − j component of the spin- j representation of su(2) for the M’s
remains coupled in the theory, as the other components giving rise to irrelevant
deformations [110].

Next, we examine the R-charge of the deformed theory. In the original theory, we
denote (J+, J−) = (2I3, 2r) and a combination of them will be the genuine U(1)R
charge of theN = 1 theory, leaving the other as the flavor symmetryF = (J+−J−)/2.
Upon RG flow to the infrared SCFT, the flavor symmetry would generally mix with
the naive assignment of U(1)R charge:

R =
1
2
(J+ + J−) +

ε

2
(J+ − J−). (4.56)
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matter Sp(N) (J+, J−)

q � (1, 0)

q′ � (1,−4N − 2)

φ adj (0, 2)

Mj , j = 1, 3, . . . 4N + 1 1 (0, 2 j + 2)

M′2N+1 1 (0, 4N + 4)

Table 4.2: The N = 1 matter content for the Sp(N) gauge theory that flows to
(A1, A2N ) Argyres-Douglas theory. ρ is given by the principal embedding, and
j takes values in the exponents of f. For f = so(4N + 4), the exponents are
{2N + 1; 1, 3, . . . , 4N + 1}.

The exact value of the mixing parameter ε can be determined via a-maximization
[133] and its modification to accommodate decoupled free fields along the RG
flow [134]. In the following, we summarize the N = 1 Lagrangian theory and the
embedding ρ found in [110, 111] that are conjectured to give rise toArgyres-Douglas
theories relevant for this chapter.

Lagrangian for (A1, A2N ) theory. The N = 1 Lagrangian is obtained by starting
withN = 2 SQCDwith Sp(N) gauge group15 plus 2N+2 flavors of hypermultiplets.
The initial flavor symmetry is F = SO(4N+4) and we pick the principal embedding,
given by the partition [4N + 3, 1]. The resultingN = 1 matter contents are listed in
Table 4.2. Under the RG flow the Casimir operators Tr φ2i with i = 1, 2, . . . , N and
Mj with j = 1, 3, . . . , 2N + 1 and M′2N+1 decouple. The mixing parameter in (4.56)
is

ε =
7 + 6N
9 + 6N

. (4.57)

Lagrangian for (A1, A2N−1) theory. Similarly one starts with N = 2 SQCD with
SU(N) gauge group and 2N fundamental hypermultiplets with SU(2N) × U(1)B
flavor symmetry. We again take the principal embedding. The matter content is
summarized in Table 4.3. Using a-maximizationwe see that Mj with j = 1, 2, . . . , N ,
alongwith all Casimir operators, become free and decoupled. Themixing parameter
in (4.56) is

ε =
3N + 1
3N + 3

. (4.58)

15We adopt the convention that Sp(1) ' SU(2).
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matter SU(N) U(1)B (J+, J−)

q � 1 (1,−2N+1)

q̃ � −1 (1,−2N+1)

φ adj 0 (0, 2)

Mj , j = 1, 2, . . . 2N − 1 1 0 (0, 2 j + 2)

Table 4.3: The N = 1 matter content for the SU(N) gauge theory that flows to
(A1, A2N−1) Argyres-Douglas theory. ρ is again the principal embedding, and j
ranges over the exponents of su(2N).

It is worthwhile to emphasize that the extra U(1)B symmetry would become the
flavor symmetry of the Argyres-Douglas theory. In particular, when N = 2, it is
enhanced to SU(2)B. This U(1)B symmetry is the physical origin of the gauge
monodromy α in Section 4.2.

Lagrangian for (A1,D2N+1) theory. Just as the (A1, A2N ) theories, the starting point
is theN = 2SCFTwith Sp(N) gauge group and 2N+2 fundamental hypermultiplets.
However, the nilpotent embedding ρ is no longer the principal one; rather it is now
given by the partition [4N + 1, 13], whose commutant subgroup is SO(3) [111].
The Lagrangian of the theory is given in Table 4.4. Among mesons and Casimir
operators Tr φi, only Mj for j = 2N +1, 2N +3, . . . , 4N −1 remain interacting. The
mixing parameter in (4.56) is found to be

ε =
6N + 1
6N + 3

. (4.59)

In this case, the UV SO(3) residual flavor symmetry group is identified as the IR
SU(2) flavor symmetry coming from the simple puncture.

Lagrangian for (A1,D2N ) theory. Similar to the (A1, A2N−1) case, we start with
the SU(N) gauge theory with 2N fundamental hypermultiplets, but choose ρ to
be the embedding given by the partition [2N − 1, 1]. This leaves a U(1)a × U(1)b
residual flavor symmetry, the first of which is the baryonic symmetry that we started
with. The Lagrangian is summarized in Table 4.5. Under RG flow, the decoupled
gauge invariant operators are Casimir operators Tr φi, i = 2, 3, . . . , N , Mj with
j = 0, 1, . . . , N − 1 and (M, M̃). The a-maximization gives the mixing parameter

ε = 1 −
2

3N
. (4.60)



92

matter Sp(N) SO(3) (J+, J−)

q � 3 (1, 0)

q′ � 1 (1,−4N)

φ adj 1 (0, 2)

Mj , j = 1, 3, . . . 4N − 1 1 1 (0, 2 j + 2)

M′2N 1 3 (0, 4N + 2)

M′0 1 3 (0, 2)

Table 4.4: The N = 1 matter content for the Sp(N) gauge theory that flows to
(A1,D2N+1) Argyres-Douglas theory.

matter SU(N) U(1)a U(1)b (J+, J−)

q � 1 2N − 1 (1, 0)

q̃ � −1 −2N + 1 (1, 0)

q′ � 1 −1 (1, 2 − 2N)

q̃′ � −1 +1 (1, 2 − 2N)

φ adj 0 0 (0, 2)

Mj , j = 0, 1, . . . 2N − 2 1 0 0 (0, 2 j + 2)

M 1 0 2N (0, 2N)

M̃ 1 0 −2N (0, 2N)

Table 4.5: The N = 1 matter content for the SU(N) gauge theory that flows to
(A1,D2N ) Argyres-Douglas theory.

In the IR, one combination of U(1)a and U(1)b would become the Cartan of the
enhanced SU(2) flavor symmetry.

Coulomb branch index on lens spaces
The N = 1 constructions of the generalized Argyres-Douglas theories enable one
to compute their N = 2 superconformal index by identifying the additional R-
symmetry with a flavor symmetry of the N = 1 theory. As the ordinary supercon-
formal index on S1 × S3, the N = 1 lens space index can be defined in terms of the
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trace over Hilbert space on L(k, 1) [79, 135]

IN=1(p, q) = Tr (−1)F p j1+ j2+R/2q j2− j1+R/2ξF
∏

i

a fi
i exp(−β′δ′), (4.61)

where j1,2 are the Cartans of the SO(4)E ' SU(2)1 × SU(2)2 rotation group, R

counts the superconformal U(1)R charge of the states. We also introduce the flavor
fugacity ξ for the symmetry F = (J+− J−)/2 inherited from theN = 2 R-symmetry.
Finally, δ′ is the commutator of a particular supercharge Q chosen in defining the
index. It is given by

δ′ = {Q,Q†} = E − 2 j1 +
3R
2
, (4.62)

where E the conformal dimension. Supersymmetry ensures that only states annihi-
lated by Q contribute in (4.61); hence the results are independent of β′ and one can
restrict the trace to be taken over the space of BPS states.

One advantage of the lens space index comes from the non-trivial fundamental
group of L(k, 1), making it sensitive to the global structure of the gauge group
[79]. Also, the gauge theory living on L(k, 1) has degenerate vacua labelled by
holonomies around the Hopf fiber, so the Hilbert space will be decomposed into
different holonomy sectors. All of these make the lens index a richer invariant than
the ordinary superconformal index.

For a theory with a Lagrangian, the lens space index can be computed by first multi-
plying contributions from freematter multiplets afterZk-projection, then integrating
over the (unbroken) gauge group determined by a given holonomy sector, and finally
summing over all inequivalent sectors. We introduce the elliptic Gamma function

Γ(z; p, q) =
+∞∏

j,k=0

1 − z−1p j+1qk+1

1 − zp jqk . (4.63)

Then, for a chiral superfield with gauge or flavor fugacity/holonomy (b,m) we have

Iχ(m, b) = I χ0 (m, b) · Γ
(
(pq)

R
2 qk−mb; qk, pq

)
Γ

(
(pq)

R
2 pmb; pk, pq

)
(4.64)

with the prefactor related to the Casimir energy

I χ0 (m, b) =
(
(pq)

1−R
2 b−1

) m(k−m)
2k

(
p
q

) m(k−m)(k−2m)
12k

. (4.65)

For a vector multiplet the contribution is

IV (m, b) =
IV
0 (m, b)

Γ
(
qmb−1; qk, pq

)
Γ
(
pk−mb−1; pk, pq

) (4.66)
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with

IV
0 (m, b) =

(
(pq)

1
2 b−1

)−m(k−m)
2k

(
q
p

) m(k−m)(k−2m)
12k

. (4.67)

Notice that we will not turn on flavor holonomy for the U(1) flavor symmetry F
along the Hopf fiber. This is because it is part of the N = 2 R-symmetry; turning
on background holonomy for it will break the N = 2 supersymmetry.

To connect (4.61) with N = 2 lens space index, recall the definition of the latter is
[60, 78]

IN=2(p, q, t) = Tr (−1)F p j1+ j2+r q j2− j1+r tR−r
∏

i

a fi
i exp(−β′′δ′′), (4.68)

where the index counts states with SU(2)R ×U(1)r charge (R, r) that are BPS with
respect to δ′′ = E − 2 j2 − 2R − r . To recover the above N = 2 index from (4.61),
we make the substitution

ξ →
(
t(pq)−

2
3

)γ
(4.69)

for some constant γ depending on how U(1)F is embedded inside SU(2)R ×U(1)r .

Finally, we take the “Coulomb branch limit" of the N = 2 lens space index,

p, q, t → 0,
pq
t
= t fixed. (4.70)

The trace formula (4.68) then reduces to

IC
N=2 = TrC(−1)Ftr−R

∏
i

a fi
i , (4.71)

where the trace is taken over BPS states annihilated by both Q̃1 Û− and Q̃2 Û+ (i.e., sat-
isfying E − 2 j2 − 2R + r = E + 2 j2 + 2R + r = 0.) Notice that, in our convention,
L(k, 1) is a quotient of S3 by Zk ⊂ U(1)Hopf ⊂ SU(2)1. Since both Q̃1 Û− and Q̃2 Û+

transform trivially under SU(2)1, they are preserved after the Zk quotient. Hence
the trace formula (4.71) is well-defined.

For all known examples the Coulomb branch operators have R = 0, so the above
limit effectively counts U(1)r charge. For a Lagrangian theory, when k = 1 this
limit counts the short multiplet Er,(0,0) [58], whose lowest component parametrizes
the Coulomb branch vacua of the SCFT.

Below we will list the integral formulae for the Coulomb branch indices of Argyres-
Douglas theories that we are interested in throughout this chapter. In computing the
lens space index we have removed contributions from the decoupled fields.
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(A1, A2N ) theories. We have

I(A1,A2N ) =

N∏
i=1

1

1 − t
2(N+i+1)

2N+3

N∏
i=1

1 − t
2i

2N+3

1 − t
1

2N+3

×
∑
mi

∏
α>0

(
t

2
2N+3

)− 1
2 ([[α(m)]]−

1
k [[α(m)]]

2) N∏
i=1

(
t

4(N+1)
2N+3

) 1
2 ([[mi]]−

1
k [[mi]]

2)

×
1
|Wm |

∮
[dz]

∏
[[α(m)]]=0

1 − zα

1 − t
1

2N+3 zα
,

(4.72)

where the integral is taken over the unbroken subgroup of Sp(N) with respect to a
given set of holonomies {mi}. Here, |Wm | is the order ofWeyl group for the residual
gauge symmetry. The constant γ (4.69) is γ = 1/(2N + 3). We use the notation [[x]]
to denote the remainder of x modulo k.

(A1, A2N−1) theories. After taking γ = 1/(N + 1) and the Coulomb branch limit,
we have

I(A1,A2N−1) =

N−1∏
i=1

1

1 − t
2N+1−i
N+1

N−1∏
i=1

1 − t
i+1
N+1

1 − t
1

N+1

×
∑
mi

∏
α>0

(
t

2
N+1

)− 1
2 ([[α(m)]]−

1
k [[α(m)]]

2) N∏
i=1

(
t

2N
N+1

) 1
2 ([[mi+n]]− 1

k [[mi+n]]2)

×
1
|Wm |

∮
[dz]

∏
[[α(m)]]=0

1 − zi/z j

1 − t
1

N+1 zi/z j

,

(4.73)

where we have introduced U(1) flavor holonomy n and the integral is taken over the
(unbroken subgroup of) SU(N). Specifically, suppose the gauge holonomy breaks
the gauge group SU(N) as

SU(N) → SU(N1) × SU(N2) × . . . SU(Nl) ×U(1)r , (4.74)

where N − 1 = (N1 − 1) + (N2 − 1) + · · · + (Nl − 1) + r then we have

1
|Wm |

∮
[dz]

∏
[[α(m)]]=0

1 − zi/z j

1 − t
1

N+1 zi/z j

=

l∏
i=1

Nl−1∏
j=1

1 − t
1

N+1

1 − t
j+1
N+1

. (4.75)

To derive the general formula, we assume the U(1) flavor holonomy n is an integer.
In fact, we will see in Section 4.4 that n is allowed to take value in Z/N . In fact, n

is the quantization of the monodromy around irregular puncture. Its allowed values
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differ from λ in (4.49) since they are identified respectively in the UV and IR. Their
relation is λ = [[Nn]] = 2kα. The index takes the following form:

t
1

N+1 ([[Nn]]− 1
k [[Nn]]2)(1 + . . .), (4.76)

where the ellipsis stands for terms with only positive powers of t.

(A1,D2N+1) theories. We have

I(A1,D2N+1) =

N∏
j=1

1

1 − t
4N+2−2j

2N+1

N∏
j=1

1 − t
2j

2N+1

1 − t
1

2N+1

×
∑
mi

∏
α>0

(
t

2
2N+1

)− [[α(m)]](k−[[α(m)]])2k
∏

i

(
t
2
) [[mi ]](k−[[mi ]])

2k
(
t

1
2N+1

) [[mi±2n]](k−[[mi±2n]])
2k

×
1
|Wm |

∮
[dz]

∏
[[α(m)]]=0

1 − zα

1 − t
1

2N+1 zα
,

(4.77)
where n is regarded as the holonomy for SU(2) symmetry in the IR,16 which is
related to the quantized monodromy around the regular puncture at the south pole
by λ = [[2n]] = 2kα. The constant γ here is 1/(2N + 1). As in (A1, A2N ) case, the
integral is taken over the unbroken subgroup of Sp(N). Note that here we allow
n to a half-integer. This fact also plays an important role when we discuss TQFT
structure in Appendix C.1. As before, the closed expression of the index contains a
normalization factor

t
N

2N+1 ([[2n]]− 1
k [[2n]]2). (4.78)

16The factor of 2 in front of n is due to the fact that the quarks q in the UV transform in the triplet
3 of SU(2).
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(A1,D2N ) theories. Similarly, the index formula is

I(A1,D2N ) =

2N−1∏
j=N+1

1

1 − t
j
N

N−1∏
j=1

1 − t
j+1
N

1 − t
1
N

×
∑
mi

∏
α>0

(
t

2
N

)− [[α(m)]](k−[[α(m)]])2k
∏

i

(
t

1
N

) [[mi+n1+(2N−1)n2]](k−[[mi+n1+(2N−1)n2]])
2k

×
∏

i

(
t

2N−1
N

) [[mi+n1−n2]](k−[[mi+n1−n2]])
2k

×
1
|Wm |

∮
[dz]

∏
[[α(m)]]=0

1 − zi/z j

1 − t
1
N zi/z j

,

(4.79)
where we have introduced (n1, n2) to represent the (U(1)a,U(1)b) flavor holonomy
repsectively. The constant γ = 1/N , and the integral is over the (unbroken subgroup
of) SU(N). Its precise value is given in (4.75) by substituting t1/(N+1) with t1/N . In
(4.79) the computation was done assuming n1,2 ∈ Z so that the gauge holonomies
mi are all integers. However, the allowed set of values are in fact larger. We will
return to this issue in Section 4.4. The relations to monodromies around wild and
simple punctures are given by, respectively,

λ1 = [[Nn1]] = 2kα1, λ2 = [[2Nn2]] = 2kα2. (4.80)

Again, the evaluation of (4.79) gives a normalization factor

(t)
N−1
2N ([[2Nn2]]−

1
k [[2Nn2]]

2)+ 1
2N ([[Nn1+Nn2]]−

1
k [[Nn1+Nn2]]

2)+ 1
2N ([[Nn1−Nn2]]−

1
k [[Nn1−Nn2]]

2).

(4.81)

4.4 Wild Hitchin characters
Now that we have the integral expressions for the Coulomb branch indices of
Argyres-Douglas theories (4.72), (4.73), (4.77) and (4.79), we will evaluate them
explicitly in this section.

Before presenting the results, we remark that the Coulomb indices have several
highly non-trivial properties. Anticipating the equality between the index and wild
Hitchin characters, we can often understand these properties from geometry.

1. Positivity. The Coulomb branch index as a series in t always has positive
coefficients. This phenomenon is not obvious from the integral expression.
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From the geometric side, this is a simple corollary of the “vanishing theorem”
for the wild Hitchin moduli space

Hi(MH,L
⊗k) = 0 for i > 0. (4.82)

This further implies that, on the physics side, all Coulomb BPS states on
L(k, 1) are bosonic. This positivity phenomenon is the analogue of those
observed in [136] and [137] with wild ramifications.

2. Splitting. The indices always turn out to be rational functions. Further,
they split as a sum over fixed points — a form predicted by the Atiyah-Bott
localization formula from the geometry side (4.40). This will allow us to
extract geometric data for moduli spaces directly. However, the interpretation
of this decomposition is not clear at the level of the BPS Hilbert spaces
HCoulomb. It is not even clear that theHCoulomb can be decomposed in similar
ways, as the individual contributions from some fixed points do not have
positivity.

3. Fractional dimensions. One notable feature of Argyres-Douglas theories is
the fractional scaling dimensions of their Coulomb branch operators. From
the point of view of the Hitchin action, this comes from the fractional action
on the z coordinate. For example, the U(1) action on M2,2N+1 involves a
rotation of the base curve CP1 with coordinate z by

ρθ : z 7→ e−i 2
2N+3 θz. (4.83)

Therefore only the (2N + 3)-fold cover of the U(1) defines a (genuine non-
projective) group action, and the Hitchin character will be a power series in
t

1
2N+3 . In all four families of moduli spaces (M2,K versus M̃2,K ; K either even
or odd) K + 2 is always the number of Stokes rays centered at the irregular
singularity, and the Hitchin character will be a power series in t

1
K+2 . When K

is even, one can check that the (K + 2)/2-fold cover of the U(1) given by ρθ
defines a group action, and the Hitchin character will contain integral powers
of t

2
K+2 as a consequence.

We will start this section by giving formulae for the wild Hitchin characters in
Section 4.4. In Section 4.4, the large-k limit of the wild Hitchin character is
discussed. This limit effectively reduces the theory to three dimensions; by taking
the mirror symmetryMH is realized as the Higgs branch of a 3dN = 4 quiver gauge
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theory. This is in accordance with the mathematical work [138]. By comparing 3d
index and 4d index, we will see how good this approximation is on the nilpotent
cone. As a byproduct, we give a physical interpretation of the fixed points from the
3d mirror point of view.

In Appendix E, we will present mathematical calculations that directly confirm the
physical prediction: the Coulomb branch index of Argyres-Douglas theory indeed
computes the wild Hitchin character forMH(Σ, PSL(2,C)) := LMH .

As we have explained — and we will soon offer another explanation from the
physics perspective — the Hitchin character is not sensitive to the difference be-
tween MH(Σ, SL(2,C)) and MH(Σ, PSL(2,C)) when Σ is a sphere with at most
two punctures. In fact, one can directly check that the fixed points are exactly the
same with identical ambient geometry. As a consequence, the Hitchin character
forMH(Σ, SL(2,C)) can be obtained via “analytic continuation” of λ, λ1 and λ2 by
allowing them to take odd values. So we will not emphasize the difference between
MH and LMH in this section, unless specified.

The wild Hitchin character as a fixed-point sum
The moduli space M2,2N+1. A nice illustrative example to start is the (A1, A2)

theory with no flavor symmetry at all. The Coulomb branch index is

I(A1,A2) =
1

(1 − t
2
5 )(1 − t

3
5 )
+

t
k
5

(1 − t
6
5 )(1 − t−

1
5 )
. (4.84)

On the other hand, the moduli space M2,3 has two complex dimensions, and we
have the fixed points and the associated eigenvalues of the circle action on normal
bundles obtained in Appendix E:

ϕ∗0 =
©«

0 z

z2 0

ª®®®¬ dz, ϕ∗1 =
©«

0 1

z3 0

ª®®®¬ dz, (4.85)

with moment maps µ = 1/40 and 9/40 respectively. After shifting the two moment
maps simultaneously by 1/40,17 we get µ1 = 0 and µ2 = 1/5. These are precisely
the power entering the numerator of each term in (4.84)! Furthermore, from the
denominator of each term, we are able to read off the weights of the circle action

17We normalize the Hitchin character such that the t = 0 limit gives 1. The ambiguity of
multiplying a monomial t∆µ to the Hitchin character corresponds to redefining the U(1) action such
that it rotates the fiber of the line bundle L as well.
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on the two-dimensional normal bundle of each fixed points — they are respectively
(2/5, 3/5) and (6/5,−1/5). This is directly checked in Appendix E from geometry,
providing strong evidence for our proposal (4.1). Also, notice the ubiquity of number
“5” — the number of Stokes rays associated with the irregular singularity.

The formula (4.84) encodes various interesting information about the geometry and
topology of the moduli space. As in the tame case, the moment map (which agrees
with (4.32) at fixed points) is expected to be a perfect Morse function on MH .
The fixed points are critical points of µ, and the positive- (negative-)eigenvalue
subspaces of the normal bundle correspond to the upward (downward) Morse flows.
In particular, we know that the top fixed point inM2,3 has Morse index 2 and the
downward flow from it coincides with the nilpotent cone — the singular fiber of the
Hitchin fibration with Kodaira type II [139]. Then the Poincaré polynomial ofM2,3

is
P(M2,3) = 1 + r2. (4.86)

Another important quantity is the equivariant volume ofM2,3 as given in (4.46)

Volβ(M2,3) =
25

6β2 (1 − e−
1
5 β). (4.87)

Note that as β → +∞, the volume scale as β−2, with the negative power of β
being the complex dimension ofM2,3. This is unlike the tame situation, where β
scales according to half the dimension of MH . Intuitively, this is because, while
Higgs field is responsible for half of the dimensions ofMH in tame case, they are
responsible for all dimensions in the wild Hitchin moduli space, as a G-bundle has
no moduli over Σ in the cases that we consider.

We now give a general formula of the wild Hitchin character forM2,2N+1, predicted
by the Coulomb index and proved in Appendix E. There are N + 1 fixed points in
the moduli space P0, P1, . . . , PN . They have moment maps given by

µi =
i(i + 1)

2(2N + 3)
, i = 0, 1, 2, . . . , N, (4.88)

where we have already shifted a universal constant so that P0 as moment map 0.
The weights are given in (E.22), and the wild Hitchin character reads

I(M2,2N+1) =

N∑
i=0

t
i(i+1)

2(2N+3) k∏i
l=1

(
1 − t

2(N+l+1)
2N+3

) (
1 − t−

2l−1
2N+3

) ∏N
l=i+1

(
1 − t

2l+1
2N+3

) (
1 − t

2(N−l+1)
2N+3

) .
(4.89)
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The Morse index of Pi is 2i, so the Poincaré polynomial ofM2,2N+1 is

P(M2,2N+1) = 1 + r2 + r4 + · · · + r2N =
1 − r2N+2

1 − r2 . (4.90)

The moduli space M̃2,2N−1. A closely related moduli space is M̃2,2N−1, which
has regular puncture at the south pole of Σ in addition to the irregular puncture
I2,2N−1 at the north pole. Then the gauge connection has monodromy A ∼ αdθ

around the regular puncture, and λ = 2kα = {0, 1, . . . , k} is quantized and are
integrable weights of ŝu(2)k .18 Again we will absorb the normalization constant
(4.78) appearing in the superconformal index so that the index as a series in t will
start with 1.

Next we present the wild Hitchin character for the moduli space M̃2,2N−1. We
begin with the example M̃2,1, or Argyres-Douglas theory of type (A1,D3). Denote
λ := 2kα = 2n valued in {0, 1, . . . , k}. Then, we have

I(A1,D3) =
1

(1 − t
1
3 )(1 − t

2
3 )
+

t
λ
3 + t

k−λ
3

(1 − t−
1
3 )(1 − t

4
3 )
. (4.91)

This formula tells us that M̃2,1 has three fixed points under the Hitchin action. One
of them has the lowest moment map 0 with weights on the normal bundle (1/2, 2/3),
while the other two have moment maps µ(1)1 = 2α/3 and µ(2)1 = (1 − 2α)/3. These
results are also confirmed bymathematical calculations in Appendix E. UsingMorse
theory, we get the Poincaré polynomial of M̃2,1

P(M̃2,1) = 1 + 2r2. (4.92)
18λ starts life as a weight of SO(3), since the physical set-up computes the Hitchin character

of LM̃SU(2) = M̃SO(3) according to (4.1). As we have explained, from the geometric side, the
difference between M̃SU(2) and M̃SO(3) is almost negligible for the purpose of studying wild Hitchin
characters—one only needs to analytically continuate λ to go from onemoduli space to another. This
phenomenon has a counterpart in the index computation as well. Being an SU(2) flavor holonomy,
a natural set of values for λ without violating charge quantization condition is 0, 2, . . . , 2bk/2c [16].
However, in the expression (4.77), there is no problem with simply allowing λ = 2n to take odd
values. This can be understood from the perspective of theN = 1 Lagrangian theories listed in Table
4.4. There all the matter contents are assembled either in the trivial or the vector representation of
the global SO(3) symmetry, and these two representations cannot distinguish SU(2) from SO(3); as
a consequence if we expand the full superconformal index and look at the BPS spectrum of Argyres-
Douglas theory, only representations for SO(3) will appear. This means odd λ does not violate the
charge quantization condition, and can be allowed. Furthermore, since the superconformal index
of (A1, A2N ) can be obtained from (A1,D2N+3) by closing the regular puncture through (C.8), one
immediately concludes that the Hitchin characters forM2,2N+1 and for the Langlands dual LM2,2N+1
are exactly the same.
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And the equivariant volume is given by

Volβ(M̃2,1) =
9

4β2 (2 − e−
2α
3 β − e−

1−2α
3 β). (4.93)

As M̃2,1 has hyper-Kähler dimension one, it is an elliptic surface in complex struc-
ture I. The only singular fiber is the nilpotent cone with Kodaira type III [139]
(i.e. labeled by the affine A1 Dynkin diagram, see Figure 4.1). It consists of two
CP1 with the intersection matrix given by

©«
−2 2

2 −2

ª®®®¬ . (4.94)

The null vector of the intersection matrix should be identified with the homology
class of the Hitchin fiber,

[F] = 2 [D1] + 2 [D2] . (4.95)

This relation translates into (see [69] and Chapter 3 [16] for review of this relation

Figure 4.1: Left: the affine A1 Dynkin diagram. Right: the nilpotent cone of Hitchin
fibration for M̃2,1, consisting of two CP1 intersecting at O with intersection number
2. Together with P1, P2, they comprise the three fixed points of the Hitchin moduli
space M̃2,1.

as well as examples with tame ramifications)

Vol(F) = 2Vol(D1) + 2Vol(D2), (4.96)

which is indeed visible from the Hitchin character. It is not hard to see that for
each CP1, the volumes are Vol(D1) = 3µ(1)1 = 2α and Vol(D2) = 3µ(2)1 = 1 − 2α
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respectively. (The factor “3” is due to the weights −1/3 that corresponds to the
downwardMorse flow.) Consequently, we see (4.96) is exactly true, with Vol(F) = 2
in our normalization.

We now give a general statement for the wild moduli space M̃2,2N−1. There are
2N+1fixed points, divided into N+1 groups. We label them as P(1,2)i , i = 0, 1, . . . , N .
The i-th group contains two fixed points for i > 0 and one fixed points for i = 0.
The U(1) weights on the 2N-dimensional normal bundle to Pi is given by

εl = −
2l − 1
2N + 1

, ε̃l =
2N + 2l
2N + 1

, l = 1, 2, . . . , i

εl =
2l − 1
2N + 1

, ε̃l =
2N + 2 − 2l

2N + 1
, l = i + 1, i + 2, . . . N .

(4.97)

The normal bundle can be decomposed into the tangent space to the nilpotent cone
plus its orthogonal complement, and εl and ε̃l correspond respectively to the former
and the latter.

For the 0-th fixed point the moment map is 0, while for the i-th group with i > 0,
the two moment map values are

µ
(1)
i =

i(i + 1)
2(2N + 1)

−
i

2N + 1
(2α), µ

(2)
i =

(i − 1)i
2(2N + 1)

+
i

2N + 1
(2α) (4.98)

where α is again the monodromy around the simple puncture. Then the wild Hitchin
character is

I

(
M̃2,2N−1

)
=

1∏N
l=1

(
1 − t

2l−1
2N+1

) (
1 − t

2N+2−2l
2N+1

)
+

N∑
i=1

tkµ
(1)
i + tkµ

(2)
i∏i

l=1

(
1 − t

2N+2l
2N+1

) (
1 − t−

2l−1
2N+1

) ∏N
l=i+1

(
1 − t

2l−1
2N+1

) (
1 − t

2N+2−2l
2N+1

) ,
(4.99)

which precisely agrees with the mathematical calculation in Appendix E. TheMorse
index of Pi is again 2i, giving the Poincaré polynomial of the moduli space

P(M̃2,2N−1) = 1 + 2r2 + 2r4 + . . . 2r2N . (4.100)

Themoduli spaceM2,2N . Compared to its cousinM2,2N+1, themoduli spaceM2,2N

depends on an additional parameter α giving the formal monodromy of the gauge
field around the irregular singularity, again subject to the quantization condition
2kα = 0, 1, . . . , k. On the physics side, it is identified with the holonomy of the
U(1)B flavor symmetry of the (A1, A2N−1) theory.
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From this point forward, the level of difficulty in finding fixed points via geometry
increases significantly; on the contrary, the physical computation is still tractable,
yielding many predictions for the moduli space.

When N = 1 the physical theory is a single hypermultiplet, and the index is just a
multiplicative factor (4.76). When N = 2 the moduli space is isomorphic to M̃2,1;
and two Argyes-Douglas theories (A1, A3) and (A1,D3) are identical [18]. Hence
in this section we begin with the next simplest example M2,6. After absorbing
the normalization constant (4.76) similar to previous examples, we arrive at the
expression

I(A1,A5) =
t
k−λ

2 + t
λ
2 + t

k
2

(1 − t
6
4 )(1 − t

5
4 )(1 − t−

2
4 )(1 − t−

1
4 )
+

t
k−λ

4 + t
λ
4

(1 − t
3
4 )(1 − t

5
4 )(1 − t

1
4 )(1 − t−

1
4 )

+
1

(1 − t
3
4 )(1 − t

2
4 )(1 − t

2
4 )(1 − t

1
4 )
.

(4.101)

The index formula predicts that there are six fixed points under the Hitchin action,
with their weights on the normal bundle manifest in the denominators. The Poincaré
polynomial is then

P(M2,6) = 1 + 2r2 + 3r4. (4.102)

And the equivariant volume is

Volβ(M2,6) =
64

15β4

(
e−

1−2α
2 β + e−

2α
2 β + e−

1
2 β − 4e−

1−2α
4 β − 4e−

2α
4 β + 5

)
. (4.103)

We now write down the general formula for the Hitchin character ofM2,2N . The
moduli space has N groups of fixed points. We label the group by i = 0, 1, . . . , N −1
with increasing Morse indices. The i-th group contains i + 1 isolated fixed points
P( j)i with j = 0, 1, . . . , i. The weights on the normal bundle for each group are as
follows:

εl =
N + 1 + l

N + 1
, ε̃l = −

l
N + 1

, l = 1, 2, . . . , i

εl =
N − l
N + 1

, ε̃l =
l + 1
N + 1

, l = i + 1, i + 2, . . . , N − 1.
(4.104)
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Within the group the moment maps are organized in a specific pattern:

j odd: µ
( j)
i =

(2i − j + 1)( j + 1)
4(N + 1)

−
i − j + 1

N + 1
(2α)

j even: µ
( j)
i =

(2i − j + 2) j
4(N + 1)

+
i − j
N + 1

(2α). (4.105)

Then the wild Hitchin character is

I(M2,2N ) =

N−1∑
i=0

∑i
j=0 t

kµ(j)i∏i
l=1

(
1 − t

N+1+l
N+1

) (
1 − t−

l
N+1

) ∏N−1
l=i+1

(
1 − t

N−l
N+1

) (
1 − t

l+1
N+1

)
(4.106)

and from it we can write down immediately the Poincaré polynomial

P(M2,2N ) = 1 + 2r2 + 3r4 + 4r6 + · · · + Nr2(N−1). (4.107)

In the large-k limit, some of the moment maps µ( j)i in the numerator of (4.106)
will stay at O(1) and become large after multiplied by k, even when λ = 2kα is
fixed, and the contribution from the corresponding fixed points will be exponentially
suppressed. We see that for each group in (4.105) only one fixed point survives,
namely the one with j = 0. These fixed points are the only ones visible in the three-
dimensional reduction of Argyres-Douglas theories. We will revisit this problem in
Section 4.4.

The moduli space M̃2,2N−2. We now turn to the last of the four families of wild
Hitchin moduli spaces, M̃2,2N−2, which is arguably also the most complicated. It
is the moduli space associated with Riemann sphere with one irregular singularity
I2,2N−2 and one regular singularity, with monodromy parameters α1 and α2. The
corresponding Argyres-Douglas theory (A1,D2N ) generically has U(1) × SU(2)
flavor symmetry, and λ1 = 2kα1 and λ2 = 2kα2 in (4.80) label their holonomies
along the Hopf fiber of L(k, 1).

Let us again start from the simplest example: M̃2,2 or (A1,D4) Argyres-Douglas
theory. The hyper-Kähler dimension of this moduli space is again one; we thus ex-
pect to understand the geometric picture more concretely. Modulo the normalization
constant, (4.81), we have

I(A1,D4) =
tkµ

(0)
1 + tkµ

(1)
1 + tkµ

(2)
1

(1 − t
3
2 )(1 − t−

1
2 )
+

1

(1 − t
1
2 )(1 − t

1
2 )
. (4.108)



106

The moment map values are

µ
(0)
1 =

1
2
−

1
2k

max
(
[[λ1 +

λ2

2
]], λ2

)
µ
(1)
1 =

1
2k

min
(
[[λ1 +

λ2

2
]], λ2

)
µ
(2)
1 =

1
2k

max
(
[[λ1 +

λ2

2
]], λ2

)
−

1
2k

min
(
[[λ1 +

λ2

2
]], λ2

)
.

(4.109)

Here, when (λ1 + λ2/2) < Z, the character formula (4.108) shall be set to zero.

From the wild Hitchin character (4.108), we know the Poincaré polynomial is

P(M̃2,2) = 1 + 3r2. (4.110)

M̃2,2 is another elliptic surface, and the nilpotent cone is of Kodaira type IV [139],
labeled by the affine A2 Dynkin diagram. It contains three CP1’s, which we denote
as D1,2,3, and the intersection matrix is given by

©«
−2 1 1

1 −2 1

1 1 −2

ª®®®®®®¬
. (4.111)

D1,2,3 each contains one of the three fixed points with Morse index 2, see Figure 4.2
for illustration. The null vector of the intersection matrix gives the homology class
of the Hitchin fiber,

[F] = 2 [D1] + 2 [D2] + 2 [D3] , (4.112)

which can be translated into a relation about the volumes

Vol(F) = 2Vol(D1) + 2Vol(D2) + 2Vol(D3). (4.113)

Indeed, the three moment map values (4.109) satisfy

4µ(0)1 + 4µ(1)1 + 4µ(2)1 = 2 = Vol(F). (4.114)

We nowwrite down the general wildHitchin character for themoduli space M̃2,2N−2.
There are N groups of fixed points, we label them as i = 0, 1, . . . , N − 1. The i-th
group contains 2i + 1 fixed points with Morse index i. The expression looks like

I(M̃2,2N−2) =

N−1∑
i=0

∑2i
j=0 t

kµ(j)i∏i
l=1

(
1 − t

l+N
N

) (
1 − t−

l
N

) ∏N−1
l=i+1

(
1 − t

l
N

) (
1 − t

N−l
N

) .
(4.115)
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Figure 4.2: Left: the affine A2 Dynkin diagram, with Dynkin label indicated at
each node. Right: the nilpotent cone of singular fibration, consisting of three CP1

intersecting at O. The spheres are distorted a little to accommodate the common
intersection. Together with P1, P2 and P3, they comprise the four fixed points of the
Hitchin moduli space M̃2,2.

Explicit formulae for the moment map µ( j)i when λ1 and λ2 are zero are given after
(4.156). In general, they are functions of [[λ1 + λ2/2]] and λ2, with the quantization
condition of (λ1 + λ2/2) being an integer. Moreover, for the i-th group of fixed
points, the sum of the moment map values,

2i∑
j=0

µ
( j)
i =

1
6N

i(i + 1)(2i + 1), (4.116)

is independent of the monodromy parameters.

We can similarly obtain the Poincaré polynomial for this moduli space,

P(M̃2,2N−2) = 1 + 3r2 + 5r4 + · · · + (2N − 1)r2N−2. (4.117)

Fixed points from the three-dimensional mirror theory
One interesting limit of the superconformal index on S1 × L(k, 1) is the large-k
limit, where the Hopf fiber shrinks and the spacetime geometry effectively becomes
S1×S2. In this limit, the 4dN = 2 theory becomes a three-dimensionalN = 4 theory
T3d[Σ,G]. Its 3dmirrorTmir.

3d [Σ,G] sometimes admits a Lagrangian description [140,
141]. The original Coulomb branch vacua of T3d[Σ,G] becomes the Higgs branch
vacua in the mirror frame. What is the relation between the Hitchin moduli space
MH and the Coulomb branch M∗ of T3d[Σ,G]? Intuitively, we expect that the
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latter is an “approximation” of the former because some degrees of freedom become
massive and integrated out. More precisely, under the RG flow to the IR, we zoom in
onto a small neighborhood of the origin of the Coulomb branch. As a consequence,
the Coulomb branchM∗ of T3d[Σ] is a linearized version ofMH , given by a finite-
dimensional hyper-Kähler quotient of vector spaces— in other word,M∗ is a quiver
variety consisting of holomorphically trivial GC-bundle over Σ.

This precisely agreeswith the discovery of [138]: there it was provedmathematically
that the wild Hitchin moduli space MH contains the quiver variety M∗ as an
open dense subset, parametrizing irregular connections on a trivial bundle on CP1.
Furthermore, M∗ contains a subset of the U(1) fixed points in MH . These fixed
points can be identified with massive vacua of Tmir.

3d [Σ,G] on the Higgs branch,
giving much easier access to them compared with the rest.19 To recap, we have the
following relations:

Hitchin moduli spaceMH { quiver varietyM∗

Coulomb branch of T[Σ] on S1 { Higgs branch of Tmir.
3d [Σ]

“lowest” fixed points onMH { massive Higgs branch vacua

. (4.118)

These relations also suggest that there is a relation between the Hitchin character
and the Higgs branch index of Tmir.

3d [Σ], as we will show below. Recall that the 3d
N = 4 index is given by [142]

I3d
N=4 = TrH (−1)Fq j2+ 1

2 (RH+RC )v
RH−RC e−2β(Ẽ−RH−RC− j2), (4.119)

where j2 is the angular momentum with respect to the Cartan of the SO(3) Lorentz
group and RC,H are respectively the Cartans of SU(2)C×SU(2)H R-symmetry. There
are two interesting limits:

Coulomb limit : q, v→ 0,
q

1
2

v
= t fixed,

Higgs limit : q, v−1 → 0, q
1
2 v = t′ fixed.

(4.120)

As we will work with Tmir.
3d [Σ] in the mirror frame, the Higgs branch limit is that one

that interests us.
19Note that no analogue exists in four dimensions, simply because Coulomb branch cannot be

lifted without breaking supersymmetry.
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3d mirror of (A1, A2N−1) theory. To begin with, let us first turn to (A1, A2N−1)

theory whose three-dimensional mirror is N = 4 SQED with N fundamental hy-
permutiplets. The Higgs branch has an SU(N) flavor symmetry while the Coulomb
branch has U(1)J topological symmetry that can be identified with the flavor sym-
metry of the initial (A1, A2N−1) theory. Let (zi,mi) be the fugacities and monopole
numbers for the SU(N) flavor symmetry and let (b, n) be the fugacity and monopole
number for the U(1)J topological symmetry. The fugacities zi are subject to the
constraint

∏
i zi = 1, while mi will all be zero. The Higgs branch index is given by

I3d
H = (1 − t

′)

N∏
i=1

δmi,0

∮
dw

2πiw
wNn

N∏
i=1

1

(1 − t′
1
2wzi)(1 − t′

1
2w−1z−1

i )

=

(
N∏

i=1
δmi,0

)
N∑

i=1
t
′
|Nn |

2 z−|Nn|
i

∏
j,i

1
1 − t′z j/zi

1
1 − zi/z j

.

(4.121)

To recover the k → +∞ limit of the (A1, A2N−1) Coulomb branch index (4.106), we
make the following substitution:

zi → t
′(N+1−2i)/(2N+2), i = 1, 2, . . . , N . (4.122)

This substitution (4.122) can be interpreted as the mixing between topological
symmetry and SU(2)C symmetry on the Coulomb branch of T3d[Σ], which is further
examined in Appendix C.2. After the substitution, the index can be written as

I3d
H = t

′ 1
N+1 |Nn|

N∑
i=1

t′
i−1
N+1 |Nn|∏

j,i

(
1 − t′

N+1+i−j
N+1

) (
1 − t′

j−i
N+1

) , (4.123)

where each term in the summation is the residue at a massive vacuum. Comparing
to the Hitchin character (4.106), one finds that only a subset of fixed points inMH

contribute to I3d
H . Namely, these are fixed points that live inM∗ ⊂ MH .

For pedagogy, we describe these massive supersymmetric vacua explicitly. Our
description is again in the mirror frame and one can easily interpret them in the
original frame. First we turn on the real FI parameter tR, and the Higgs branch
(which is a hyper-Kähler cone) gets resolved to be T∗CPN−1. The SU(N) flavor
symmetry and SU(2)H acts on T∗CPN−1, and the U(1) Hitchin action is embedded
into the Cartan of SU(N)×SU(2)H , with the embedding given by (4.122). Then, one
can study the fixed points under this U(1) subgroup. It turns out that there are N of
them, computed in Appendix D. As the equivariant parameters of the SU(N) flavor
symmetry are the masses of hypermultiplets, these fixed points can be interpreted
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as massive vacua of the theory when mass parameters are turned on according to
the mixing (4.122).

On the other hand, from the perspective ofMH , the contributing fixed points are
also straightforward to identify: they are precisely the ones whose moment map
values multiplied by k remain finite in the large-k limit, and there are precisely N

of them. Summing up their contributions gives back (4.123).

3d mirror of (A1,D2N ) theory. Now we turn to Argyres-Douglas theories of type
(A1,D2N ), which are also known to have three-dimensional mirrors with Lagrangian
descriptions [18]. The mirror theory of (A1,D2N ) is given by a quiver U(1) ×
U(1) gauge theory, with N − 1 charged hypermultiplets between two gauge nodes.
These hypermultiplets enjoy an SU(N − 1) flavor symmetry. Moreover, there is
one hypermultiplet only charged under the first U(1) gauge group while another
hypermultiplet is charged only under the second U(1) gauge group. There is also
an additional U(1) flavor symmetry that rotates N + 1 hypermultiplets together with
charge 1/2. See the quiver diagram in Figure 4.3.

Figure 4.3: The 3d mirror of (A1,D2N ) theories. There are N − 1 hypermultiplet
between two U(1) gauge nodes, and there are additional one hypermultiplet charged
under each node.

The index computation is similar. We will use N(n2 − n1) and N(n1 + n2) to denote
monopole numbers for the U(1) × U(1) topological symmetry on the Coulomb
branch. They come from the combination of flavor holonomies of the parent
Argyres-Douglas theory. Besides the fugacity z for U(1) flavor symmetry, we
also include ai, i = 1, . . . , N − 1 as the fugacities for the extra SU(N − 1) flavor
symmetry, subject to the constraint

∏
ai = 1. The associated background flavor

monopole numbers all vanish, similar to the previous case. Then we have the index
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formula:

I
3d,D2N

H = (1 − t′)2
∮

dw1

2πiw1

dw2

2πiw2
w

N(n2−n1)
1 w

N(n1+n2)
2

×
1

1 − t′
1
2 (w1z

1
2 )±

1

1 − t′
1
2 (w2z

1
2 )±

N−1∏
i=1

1

1 − t′
1
2 (w1w

−1
2 aiz

1
2 )±

.

(4.124)
In the computation we have set z = 1 as it will not mix with the R-symmetry (see
Appendix C.2 for more details). To evaluate the integral, we can assume without
loss of generality that n2 > n1 > 0. Then summing over residues gives

I
3d,D2N

H = t′
Nn2

N−1∏
i=1

1

(1 − t′
1
2 ai)(1 − t′

1
2 a−1

i )

+

N−1∑
j=1

(t′a j)
N(n1+n2)t′

N
2 (n2−n1)

(1 − t′
3
2 a j)(1 − t′−

1
2 a−1

j )

∏
i, j

1
(1 − t′a j/ai)(1 − ai/a j)

+

N−1∑
j=1

t′
Nn2

(
t′

1
2 a−1

j

)N(n2−n1)

(1 − t′
3
2 a−1

j )(1 − t′
− 1

2 a j)

∏
i, j

1
(1 − t′ai/a j)(1 − a j/ai)

.

(4.125)

It is not hard to see that the following substitution would recover the parent Hitchin
character (4.115) at k → +∞:

a j → t
′

j
N −

1
2 . (4.126)

Similarly, the residue sums in (4.125) are in one to one correspondence with massive
vacua of the 3d mirror theory, which are also identified with the fixed points under
the U(1) ⊂ SU(N − 1) × SU(2)H action on the Higgs branch. Explicit calculations
done in Appendix D show that there are precisely 2N + 1 fixed points, which, from
Hitchin moduli space point of view, are exactly those with vanishing moment map
in the large-k limit.

In summary, considering the three-dimensional mirror theory gives physical inter-
pretation to the fixed points inM∗ as discrete vacua of the mass-deformed theory.
The fixed-point sum can be thought of as a sum of residues in the Higgs branch
localization [143].

4.5 Vertex operator algebras
In previous sections, we have given a very strong test of the proposed isomorphism
(4.1) for Argyres-Douglas theories. In this section, we enrich this correspondence
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to the triangle (4.3) by introducing another player into the story — vertex operator
algebras (VOAs).

VOA from geometric Langlands correspondence
One motivation for incorporating VOAs is the celebrated geometric Langlands
correspondence (see [144] and [145] for pedagogical reviews on this subject), which
conjectures the equivalence of two derived categories,

D-modules on BunGC = coherent sheaves on LocLGC . (4.127)

The gauge theory approach to the geometric Langlands program, started by [96],
suggests that the above relation naturally fits inside a triangle,

A-branes in (MH, ωK)
1
←→ B-branes in (LMH, J)

2
←
→

←
→ 3

D-modules on BunGC .

(4.128)

The geometric Langlands correspondence (4.127) now becomes the arrow 3 on
the bottom-right of (4.128), as the B-brane category of LMH is closely related to
the derived category of coherent sheaves on LocLGC . The arrow 1 on the top is the
homological mirror symmetry (or S-duality from the 4d guage theory viewpoint).
The arrow 2 , a new relation, was proposed in Section 11 of [96] and is related to
the “brane quantization” of BunGC [33] (see also [146] for more examples and [147,
148] for an alternative way to establish the equivalence).

Now let us return to the diagram

Coulomb index of T ←→ quantization of LMT

←
→

←
→

VOA χT

. (4.129)
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The top arrow for class S theories explained in Chapter 3 is in fact the result of
1 in (4.128) as we review below. Then one expects there is a VOA that fits into
the diagram, giving rise to D-modules via the conformal block construction (see
e.g. part III of [144]).

To understand the top arrow from homological mirror symmetry, one first rewrites
the Coulomb BPS states on L(k, 1), view as T2 fibered over an interval,20 in the
categorical language

HCoulomb = HomCA(A0, ST k S · A0). (4.130)

Here CA is the category of boundary conditions on T2 (or “A-branes” in MH) of
the Argyres-Douglas theory, and A0 ∈ CA is the boundary condition given by the
solid torus D2 × S1, and ST k S is an element of SL(2,Z) that acts on CA via the
modular group action on T2. Suppressing one S1 circle and the time direction, the
geometry near the endpoint of the interval is given by the tip of a cigar, and the
brane A0 associated with this geometry is conjectured to be the “oper brane.” The
generator S ∈ SL(2,Z) acts as homological mirror symmetry, transforming CA into
CB — the category of B-branes in LMH , and the mirror of A0 is expected to be
S · A0 = B0 = O, the structure sheaf of LMH . Then acting on (4.130) by S gives

HomCA(A0, ST k S · A0) = HomCB(B0,T k · B0). (4.131)

As T ∈ SL(2,Z) acts on objects in CB by tensoring with the determinant line bundle
L, the right-hand side is precisely the geometric quantization of LMH ,

H(Σ,LG, k) = H•
(

LMH,L
⊗k

)
= HomCB(B0,T k · B0). (4.132)

If a VOA fits into the triangle (4.129) via the correspondence between A-branes and
D-modules, there should be a modular tensor category Cχ of representations of the
VOA, and there is a similar vector space

HomCχ(χ0, ST k S · χ0). (4.133)

The module χ0 corresponding to the oper brane A0 is expected to be the vacuum
module, and ST k S acts by modular transform. The “geometric Langlands triangle”

20As observed in [16] and [15], the Coulomb index is the same as a topologically twisted partition
function. This enables us to treat the physical theory as if it is a TQFT and freely deform the metric
on L(k, 1).
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(4.128) states that all the above three vector spaces are isomorphic, which implies,
at the level of dimensions,

dimH(MH) = ICoulomb = (ST k S)0,0. (4.134)

As the first two quantities can be refined by t, one expects the S- and T-matrices for
the VOA should also be refined. However, for the VOAs that will appear (such as
Virasoro minimal models), the refinement is not known, and we will only check the
relation (4.134) at a root of unity t = e2πi.21

With flavor holonomy. Moreover, with flavor symmetry G from the singularities of
the Riemann surface, we also consider the Coulomb index on L(k, 1) in the presence
of a flavor holonomy along the Hopf fiber labeled by λ ∈ Λcochar(G)/kΛcochar(G).
This is equivalent to inserting a surface defect at the core of a solid torus in the
decomposition of L(k, 1), carrying a monodromy determined by λ. It will change
(4.130) into

HCoulomb(λ) = HomCA(A0, ST k S · Aλ), (4.135)

where
Aλ = LλA0 (4.136)

with Lλ representing the action of the surface defect on boundary conditions. These
defects are analogous to the ’t Hooft line operators — in fact, they are constantly
referred to as “’t Hooft-like operators” in [65] — and change the parabolic weights
at the singularities on Σ. Then, the relation between A-branes and D-modules
predicts that there exists a corresponding operator (which we again denote as Lλ) in
the category Cχ. Now, the VOA has ĝ affine Kac-Moody symmetry, whose modules
are labeled by the weights λ of ĝ, and one expects the action of Lλ on the vacuum
module is given by

Lλ · χ0 = χ−λ. (4.137)

Then, in the presence of flavor holonomies, one expects the following relation:

dimH(MH, λ) = ICoulomb,λ = (ST k S)0,−λ. (4.138)

At this stage we do not know a priori what is the right VOA whenMH is a wild
Hitchin moduli space, but we conjecture that it is given by the VOA under the

21As the wild Hitchin character involves fractional powers of t, such limit is different from t → 1
and is in fact associated with a non-trivial root of unity. Also, the ambiguity of normalizing the
Hitchin character by a monomial in t now becomes the ambiguity of a phase factor in matching
(4.134).
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“SCFT/VOA correspondence” discovered in [19, 97–99, 149, 150]. Indeed, for
theories of class S, this correspondence gives, for each maximal tame puncture,
an affine Kac-Moody symmetry at the critical level — the one that gives rise to a
specific type of D-modules central to the geometric Langlands program known as
Hecke eigensheaves. In the rest of this section, we will review this correspondence
and check that the above relations (4.134) and (4.138) hold for wild Hitchin moduli
spaces. It will be an interesting problem to explain why this construction gives the
correct D-modules relevant for this particular problem.

Moreover, as shown in [151], general characters of certain 2d VOAs can be expressed
by the Schur indices with line operator insertion of corresponding 4d theory. Our
results can be interpreted as a relation between the Coulomb branch indices and
the modular transformation of Schur indices with line operator insertion of AD
theories. The modular properties of indices without any operator insertion of 4d

theories are studied in [152, 153] and their modular properties are related to the ’t
Hooft anomalies of the theory. It is interesting to further study the 4d interpretation
ofmodular S transformations on indiceswith line operator insertion and their relation
with Coulomb branch indices.

2d VOAs from 4d SCFTs
As was first discovered in [19], every four-dimensional N = 2 superconformal
theory contains a protected subsector of BPS operators, given by the cohomology
of certain nilpotent supercharge Q , when these operators lie on a complex plane
inside R4. These BPS operators are precisely the ones that enter into the Schur
limit of the 4d N = 2 superconformal index [58]. Moreover, the operator product
expansion (OPE) of these operators are meromorphic, and they can be assembled
into a two-dimensional vertex operator algebra. The central charges of the 4d SCFT
and the 2d VOA are related by

c2d = −12c4d, (4.139)

which implies that all VOAs obtained in this way are necessarily non-unitary. If
the parent four-dimensional theory enjoys a global symmetry given by a Lie group,
then it will be enhanced to an affine Lie symmetry on the VOA side. The relation
between the flavor central charge and the level for the affine symmetry is given by

k2d = −
1
2

k4d . (4.140)
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AD theory VOA

(A1, A2N ) (2, 2N + 3) minimal model

(A1, A2N−1) BN+1 algebra

(A1,D2N+1) ŝl(2)k at level k = − 4N
2N+1

(A1,D2N ) WN algebra

Table 4.6: Examples of Argyres-Douglas theories and corresponding VOAs. To
be more precise, in the (A1, A2N−1) case, it is the subregular quantum Hamiltonian
reduction of ŝl(N)k at level k = −N2/(N + 1) [154, 155]. In the (A1,D2N ) case, it is
the non-regular quantumHamiltonian reduction of ŝl(N+1)k with k = −(N−1)2/N
[154]. For details about quantum Hamiltonian reduction, see [156].

Examples of these VOAs are identified on a case-by-case basis [97–99, 149, 150].
We listed some examples of Argyres-Douglas theories in Table 4.6. For the case of
(A1, A2N−1) and (A1,D2N ), the VOAs are identified very recently in [154].

As was mentioned, the VOA has a very close relationship with the Schur operators.
In particular, the Schur limit of the superconformal index is equal to the vacuum
character of the VOA.22 In contrast, Coulomb branch operators do not enter into
the Q-cohomology and are not counted by the Schur index. However, it turns out
that the Coulomb branch index is related to the VOA in a quite surprising manner
— the modular transformation property of the latter is captured by the Coulomb
branch index, as we have motivated using the geometric Langlands correspondence
in (4.134) and (4.138).

To check these relations explicitly, we need to identify the relevant representation
categories Cχ of the VOAs listed in Table 4.6 that are closed under modular trans-
forms. For the (A1, A2N ) series, the answer is clear— the (2, 2N +3)minimal model
specifies a category of highest-weight modules of the Virasoro algebra. For the rest,
we will also give the relevant category later in this section. But what about a more
general theory T ? Once we obtain the VOA χT , how is the category CχT that is
relevant for the Coulomb index of T constructed?

An obvious candidate would be the category of all representations of χT , but it
cannot be the right answer as it is too large and there are many non-highest-weight
modules whose conformal dimensions are not bounded from below nor above.

22On the other hand, the Schur index that incorporates line defects maybe used to probe non-
vacuum modules, see [151].
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Nonetheless, there is a natural procedure, called “semi-simplification” [157], that
gives precisely the category we are interested in. Specifically, one forms a new
quotient category, denoted as Os

χT
, by modding out the negligible morphisms [158,

159] and keeping only simple objects with non-zero categorical dimensions. This
category is believed to be a modular tensor category [157], and in each class of
modules there is at least one module with bounded conformal dimensions (the
“highest-weight” module). And we conjecture that

Os
χT
= CχT (4.141)

is the category fitting in the triangle (4.3).

This conjecture will be verified in the four series of Argyres-Douglas theories that
we study in this chapter. In the following we show that the wild Hitchin character
(or Coulomb branch index) at t → e2πi is indeed given by a matrix element of the
modular transformation ST k S in Cχ. In fact, in order for the relation (4.134) to be
correct for all k, it is necessary to have a one-to-one correspondence between fixed
points inMH and modules in the category Cχ.

VOAs of Argyres-Douglas theories
(A1, A2N ) theories and Virasoro minimal models. The observation of [99], by
comparing the central charge (4.139), indicates that the associatedVOA for (A1, A2N )

Argyres-Douglas theory is the (2, 2N + 3) Virasoro minimal model. (Recall that
2N + 3 is also the number of Stokes rays centered at the irregular singularity.) The
minimal model contains a finite number of highest-weight representations labeled
by the conformal dimension hr,s, where s = 0 and 1 ≤ r + 1 ≤ 2N + 2.23 Among
these representations, there are N + 1 independent ones given by r = 0, 1, . . . , N
— exactly the same as the number of fixed points in the wild Hitchin moduli space
M2,2N+1!

In [124], the one-to-one correspondence between the fixed points inM2,2N+1 and
representations in the Virasoro minimal model is spelled out. Namely, if one defines
the effective central charge

ceff = c − 24hr,s, (4.142)

then there is a simple relation between ceff and the moment map µ

µ =
1

24
(1 − ceff) . (4.143)

23Unlike the usual convention in the literature here we shift r and s by 1 so that the vacuum
corresponds to (r, s) = (0, 0).
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Here the moment map values are calculated around (E.5), without the further shift
wemade in the last section. Later, we extend this observation to all the other types of
wild rank-two Hitchin moduli spaces, with emphasis on the perspective of modular
transformations, where this correspondence finds its natural home.

To see the relation between the wild Hitchin character (4.89) of M2,2N+1 and the
modular transformation of (2, 2N +3)minimal model, recall that characters of these
N + 1 modules form an N + 1-dimensional representation of SL(2,Z), with the S-
and T-matrices given by

Sr,ρ =
2

√
2N + 3

(−1)N+r+ρ sin
(
2π(r + 1)(ρ + 1)

2N + 3

)
,

Tr,ρ = δrρe2πi(hr,ρ−c/24),

(4.144)

where r and ρ run from 0 to N . With the help of (4.144) one can show that

I(M2,2N+1) = t
k

8(2N+3)I(A1,A2N ) |t→e2πi = e
πik
12

(
ST kS

)
0,0
. (4.145)

(A1,D2N+1) theories and Kac-Moody algebras. It was conjectured in [99, 150]
that the corresponding VOA is the affine Kac-Moody algebra ŝu(2)kF for which

kF = −2 +
2

2N + 1
. (4.146)

which is a boundary admissible level [160]. Notice that −2 is the critical level for
ŝu(2), while 2N + 1 is again the number of Stokes rays on Σ. There is a notion
of “admissible representations” for the Kac-Moody algebra, which is the analogue
of integrable representations for Kac-Moody algebra at positive integer level (see
e.g. [161, Sec. 18]). These representations are highest-weight modules, and are
objects in the quotient category Os

χ. Their fusion rules and representation theory
remained controversial for years, and were completely solved and understood (in the
case of N = 1 for instance) recently in [162, 163] (see also the reference therein).

Let ω̂0 and ω̂1 be the fundamental weights of ŝu(2). A highest-weight representation
for ŝu(2)κ is called admissible, if the highest weight λ̂ = [λ0, λ1] := λ0ω̂0 + λ1ω̂1,
can be decomposed as

λ̂ = λ̂I − (κ + 2)λ̂F . (4.147)

Here, if we write κ = t/u with t ∈ Z\{0}, then u ∈ Z+ and (t, u) = 1. In our case
t = −4N and u = 2N + 1. λ̂I and λ̂F are integrable representations for ŝu(2) at
level k I = u(κ + 2) − 2 and kF = u − 1, respectively. Specializing to our case, we
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see that λ̂I = 0 and λ̂F = 2N , so the admissible representations are in one-to-one
correspondence with the 2N +1 integrable representations of ŝu(2)2N . This is again
the same number as the fixed points of the moduli space M̃2,2N−1! Let us see if
there is a similar relation for the moment maps.

For each admissible module, the conformal dimension is given by

hλ̂ =
λ1(λ1 + 2)
4(κ + 2)

. (4.148)

If we denote the highest weight of the i-th integrable representation of ŝu(2)2N as
[2N − i, i] for i = 0, 1, . . . , 2N , then we have

λi
1 = −

2i
2N + 1

, hi
λ̂
= −

i(2N + 1 − i)
2(2N + 1)

. (4.149)

In order to see the relation between (4.149) with the values of the moment map in
(4.98), we relabel the indices. Additionally, to get rid of overall phase factors, we
shift the moment map

µ→ µ +
1

8(2N + 1)
+

2N
2N + 1

α. (4.150)

Such a shift is not as ad hoc as it appears — the second term is the minimal
moment map value computed in (E.28) for α = 0, while the third term comes from
the linear piece of the normalization factor (4.78). Then, we have the following
correspondence:

µ =

(
hλ̂ −

c
24
+

1
8

)
− λ1α . (4.151)

Hence the moment maps in (4.99) are in one-to-one correspondence with admissible
representations of the Kac-Moody algebra ŝu(2)kF . This also explains why the fixed
points are assembled into groups — the two fixed points in each group are precisely
the ones that are related by an outer-automorphism of the Kac-Moody algebra (recall
that the outer-automorphism group is Z2, the same as the center of SU(2)).

The characters of admissible modules of ŝu(2)κ also form a representation of the
modular group and the S- and T-matrices are

Sλ̂,µ̂ =

√
2

u2(κ + 2)
(−1)µ

F
1 (λ

I
1+1)+λF1 (µ

I
1+1)

× e−iπµF1 λ
F
1 (κ+2) sin

[
π(λI

1 + 1)(µI
1 + 1)

κ + 2

]
,

T̂λ,µ̂ = δλ̂ µ̂ e2πi(hλ̂−c/24),

(4.152)
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with κ = t/u being the level of the affine ŝu(2). Using (4.152) we have

I(M̃2,2N−1)(t → e2πi, λ = 0) = e
kπi

4

(
ST kS

)
0,0
. (4.153)

When the monodromy is non-zero, the moment map changes accordingly. In fact
we have

I(M̃2,2N−1)(t → e2πi, λ) = e
kπi

4

(
ST kS

)
0,(2N+1−λ)

. (4.154)

(A1,D2N ) theories andWN algebra. As we have seen in Table 4.6, the VOA in
this case is given by theWN algebra, which is a non-regular quantum Hamiltonian
reduction of affine Kac-Moody algebra ŝl(N + 1)k at level k = −(N − 1)2/N . The
set of modules generated by spectral flow are considered in [154]. For a given VOA
χ, in general there are two types of modules: the “local” modules and the “twisted”
modules. A local module [164] in the braided category Os

χ (cf. Section 4.5) is a
module M of χ with no non-trivial monodromy. A twisted module is attached to the
automorphism of χ [165], similar to the twisted sectors in string theory on orbifolds.
For ourWN algebra, the precise details of the modules depend on whether N is even
or odd. For simplicity, we will focus in this section on the even case where all local
modules are closed under modular transformations [154]. They are parametrized
by the set

(s, s′) ∈ {−N ≤ s ≤ N − 1, 0 ≤ s′ ≤ N − 1, s + s′ ∈ 2Z}. (4.155)

It is not hard to see that the number of local modules is N2 — exactly the same as
the number of fixed points on Hitchin moduli space M̃2,2N−2.

By picking suitable representatives of local modules, their conformal dimensions
are bounded from below and given by

h(s,s′) =
s2 − s′2

4N
−
|s |
2
+



0, for |s + s′| ≤ N and |s − s′| ≤ N,

(s + s′)/2 − N/2, for s + s′ > N,

(s′ − s)/2 − N/2, for s − s′ < −N .

(4.156)

Then, we find that for vanishing flavor holonomies, there is the relation

µ(λ1 = λ2 = 0) = h −
c

24
+

1
6
, (4.157)
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where the central charge ofWN algebra is given by c = 4 − 6N . We also have the
modular transformation data among those N2 modules [154],

T(`,`′),(s,s′) = δ`,sδ`′,s′ exp
[
2πi

(
h(s,s′) −

c
24

)]
,

S(`,`′),(s,s′) =
1
N

exp
[
−
πi
N
(s` − s′`′)

]
.

(4.158)

It can be verified that

I(M̃2,2N−2)(t → e2πi, λ1 = λ2 = 0) = e
kπi

3

(
ST kS

)
00
. (4.159)

We note that the above matching becomes subtle when N is odd, where modular
transformation turns local modules into twisted modules. Moreover, the vacuum
module (which is local), is half-integer graded and thus have “wrong statistics”
[166]. On the contrary, our index formula for the Hitchin moduli space M̃2,2N−2

does not exhibit drastic difference between odd and even N . It will be interesting to
understand the precise relation here.

(A1, A2N−3) theories and BN algebra. Finally, we remark on the last type of
Argyres-Douglas theory. We will be very brief here. As the (A1, A2N−3) theory
is related to the (A1,D2N ) theory via Higgsing, the VOA BN in Table 4.6 can
be similarly constructed via quantum Hamiltonian reduction of the WN algebra
introduced above. As in previous case, the representation theory of the VOA again
depends on the parity of N . For N odd, local modules are preserved under modular
transformation [154, 167]. By carefully picking a set of basis, it is clear that the
modules are in one-to-one correspondence with fixed points (the total number is
N(N − 1)/2), and the moment map values match with effective central charges.
When N is even, much less is known about the relevant categorical property. It will
be interesting to understand this situation further.

Other examples
In fact, the correspondence between fixed manifolds on the Hitchin moduli space
under the circle action and modules in Os

χ of VOAs is much more general. To
supplement our previous discussion focused on Argyres-Douglas theories, here we
list such correspondence for other T[Σ]’s where the VOAs are known. For a tame
puncture decorated by a parabolic subgroup of GC (usually in the AN−1 series), we
will use [s1, s2, . . . , sl] to denote the associated Young tableau with each column of
heights s1, . . . , sl . If for a given Young tableau there are ns columns with height
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s, then the flavor symmetry associated with the puncture is S(
∏

s U(ns)). In this
notation the maximal puncture is [1, 1, . . . , 1].

• (A1,D4) Argyres-Douglas theory. The VOA is ŝu(3)− 3
2
. The Hitchin moduli

spaceM̃2,2 has four fixed points, corresponding to the four admissiblemodules
of the affine Kac-Moody algebra. The relation between effective central
charge and moment maps are checked with the help of (4.156), but one can
also check directly using results from the Kac-Moody algebra. One again sees
that µ(λ1 = λ2 = 0) = −ceff/24 + 1/6.

• SU(2) gauge theory with four hypermultiplets. The Hitchin moduli space
has SU(2) gauge group, defined on S2 with four tame punctures. There are
five fixed manifolds — one CP1 plus four points, and they all lie on the
nilpotent cone of Kodaira type I∗0. When the holonomies are set to zero,
the moment map values are {0, 0, 0, 0, 1}. The VOA is ŝo(8)−2. There are
five highest-weight modules belonging to the category Os

χ, which for Kac-
Moody algebras always coincide with Bernstein-Gelfand-Gelfand’s category
O [168]. The corresponding highest weights are {−2ω1,−2ω3,−2ω4,−ω2, 0}
with conformal dimensions {−1,−1,−1,−1, 0} [169]. Then we see that
µ(λ1,2,3,4 = 0) = −ceff/24 + 5/12.

• T3 theory [73]. The Hitchin moduli space is associated with S2 with three
maximal tame punctures, with gauge group SU(3). The moduli space has
seven fixed manifolds: one CP1 plus six fixed points lying on the nilpotent
cone of Kodaira type IV∗ [16]. The associated VOA is the affine Kac-Moody
algebra ê6 at level−3 [97, 98]. There are exactly seven highest-weightmodules
in the categoryO [168]. The highestweights are, respectively, {0,−ω4,−2ω2+

ω3 −ω4, ω2 − 2ω3,−2ω1 +ω2 − 2ω3 +ω4,−2ω5 +ω6,−3ω6} with conformal
dimension {0,−2,−2,−2,−2,−2,−2}. It is not hard to check from the results
of [16] that the relation between moment maps and effective central charges
with zero holonomy is given by µ = −ceff/24 + 11/12.

• E7 SCFT [170]. The associated Hitchin system has G = SU(4), and Σ is a
sphere with three tame punctures. Two of them are maximal punctures, while
the third one is a next-to-minimal puncture [2, 2] [91]. By comparing the
central charges, it is not hard to see that the VOA should be the affine Kac-
Moody algebra ê7 at level −4. Although [16] did not present the calculation
of Hitchin character in this case, the steps of calculation were outlined using



123

generalized Argyres-Seiberg duality. The fixed manifolds consist of one CP1

plus seven points, all of which stay on the nilpotent cone of Kodaira type III∗.
Again there are in total eight highest-weight modules of the VOA [168].

• E8 SCFT [170]. Now G = SU(6) and Σ is a three-punctured sphere, with one
maximal puncture, one [2, 2, 2] puncture and one [3, 3] puncture. The moduli
space contains nine fixedmanifolds— oneCP1 and eight fixed points all lying
on the nilpotent cone of Kodaira type II∗. One finds the VOA is the affine
Kac-Moody algebra ê8 at level −6, which has exactly nine highest-weight
modules in the category O [168].

It is also quite curious to note that in all cases, the vacuum module corresponds
to the top fixed point with largest moment map. This is in line with the relation
between the vacuum module and the oper brane — the support of the latter is on the
Hitchin section, which intersects the nilpotent cone at the top.

Based on the above observations, we formulate the general conjecture that relates
the Coulomb branch vacua and the representation of VOA as follows.

Conjecture. Given a four-dimensional N = 2 SCFT T , the fixed points on the
Coulomb branchMT on S1 × R3 under the U(1)r action are in one-to-one corre-
spondence with the highest-weight modules of the VOA χT associated with T , in
the modular tensor category Os

χT
obtained from semi-simplification,

U(1)r fixed points inMT ←→ objects in Os
χT

. (4.160)

One may also wish to formulate the correspondence on the categorical level, not
just on the level of objects. For this one needs to find the replacement on the
left-hand side, and a natural candidate is the following. Consider the theory T on
Rtime×D2×S1, then weakly gaugingU(1)r−R (a subgroup of the R-symmetry group
SU(2)R ×U(1)r generated by jr − j3,R) will break half of the supersymmetries. The
resulting theory T ′ will have vacua given by connected components of U(1) fixed
points in MT . Then we have the category of boundary conditions at the spacial
infinity ∂(D2 × S1) = T2, which we denote as T ′(T2). This is a modular tensor
category, on which the modular group acts via the mapping class group action of
the spacial boundary T2. Then the above conjecture may be formulated as the
equivalence between two modular tensor categories — the “categorical SCFT/VOA
correspondence” — as

T ′
(
T2

)
= Os

χT
. (4.161)
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C h a p t e r 5

CLASSIFICATION OF ARGYRES-DOUGLAS THEORIES AND
S-DUALITY

In previous chapters, we have used supersymmetric quantum field theory to under-
stand the geometry, such as Chern-Simons invariants and Hitchin moduli spaces.
Conversely, we may use the geometry to understand the field theory side and this is
precisely what we do in this chapter.

5.1 S-duality for Argyres-Douglas theories
Given a four dimensionalN = 2 superconformal field theory (SCFT) with marginal
deformations, it is interesting to write down its weakly coupled gauge theory de-
scriptions. In such descriptions, gauge couplings take the role of the coordinate on
the conformal manifold and the gauge theory is interpreted as conformal gauging of
various strongly coupled isolated SCFTs [76]. It is quite common to find more than
one weakly coupled descriptions, and they are S-dual to each other as the gauge
couplings are often related by, e.g., τ ∝ −1

τ . Finding all weakly coupled gauge
theory descriptions is often very difficult for a generic strongly coupled N = 2
SCFT.

The above questions are solved for class S theory where the Coulomb branch spec-
trum has integral scaling dimensions: one represents our theory by a Riemann
surface Σ with regular singularity so that S-duality is interpreted as different degen-
eration limits of Σ into three punctured sphere [2]; once a degeneration is given, the
remaining task is to identify the theory corresponding to a three punctured sphere, as
well as the gauge group associated to the cylinder connecting those three punctured
spheres. In class S theory framework, Σ appears naturally as the manifold on which
we compactify 6d (2, 0) theory. Certain N = 2 SCFTs and their S-duality can be
studied via geometric engineering, see [171].

There is a different type of N = 2 SCFT called Argyres-Douglas (AD) theories
[18, 100]. The Coulomb branch spectrum of these theories has fractional scaling
dimension and they also admit marginal deformations. Again, one can engineer
such AD theories by using (2, 0) theory on Riemann spheres Σg=0 with irregular



125

singularity1. Since we can not interpret the exact marginal deformations as the geo-
metric moduli of Σ, there is no clue how weakly coupled gauge theory descriptions
can be written down in general, besides some simple cases where one can analyze
the Seiberg-Witten curve directly [129].

It came as quite a surprise that one can still interpret S-duality of AN−1-type AD
theory in terms of an auxiliary punctured Riemann surface [132]. The main idea of
[132] is giving a map from Σ with irregular singularities to a punctured Riemann
sphere Σ′, and then find weakly coupled gauge theory as the degeneration limit of
Σ
′ into three punctured sphere.

The main purpose of this chapter is to generalize the idea of [132] to AD theories
engineered using general 6d (2, 0) theory of type g. The major results of this chapter
are

• We revisit the classification of irregular singularity of class (k, b) in [18, 104]:

Φ ∼
Tk

z2+ k
b

+
∑
−b≤l<k

Tl

z2+ l
b

(5.1)

and find new irregular singularity which gives SCFT in four dimensions.
Briefly, they are the configuration for which

(i) Tk is regular-semisimple, whose classification was studied in [104].

(ii) The new cases are that Tk is semisimple.

(iii) Fix a pair (k, b) and type Tk , we can consider the degeneration of Tk and
the crucial constraint is that the corresponding Levi subalgebra has to be
the same for Tl , l > −b.

• We successfully represent our theory by an auxiliary punctured sphere from
the data defining our theory from 6d (2,0) SCFT framework, and we then find
weakly coupled gauge theory descriptions by studying degeneration limit of
new punctured sphere.

For instance, we find that for g = DN , b = 1 and large k and all coefficient matrices
regular semisimple, one typical duality frame looks like

TN−1,
SO(2N − 2)

TN−2

. . . . . .

T3

SO(6)
T2

SO(4)
T1

1We will henceforth drop the subscript g = 0 in what follows to denote the Riemann sphere.
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where Ti is given by Di+1 theory
(
I I I[1;2i]×(k+1),[1i+1;0]

k,1 , [12i+2]
)
. The notation we use

to label the AD theories is (
I I I{li}k,b , Q

)
, (5.2)

where I I I means type-III singularity in the sense of [18], and {li} are Levi subalgebra
for each coefficient matrix Ti and Q is the label for regular puncture. Each notation
will be explained in the main text.

The same theory has a second duality frame, given by

T̂ ′N ,
SU(N)

T̂N−1

. . . . . .

T̂3

SU(3)
T̂2

SU(2)
T̂1

where T̂i, 1 ≤ i ≤ N − 1 is given by
(
I I I[i,1]

×(k+1),[1i+1]
k,1 , [1i+1]

)
, and T̂ ′N is given by(

I I I[N;0]×(k+1),[12N ;0]
k,1 ,Q

)
. An unexpected corollary is that the quiver with SO(2n)

gauge groups are dual to quivers with SU(n) gauge groups, and each intermediate
matter content does not have to be engineered from the same g-type in 6d. Similar
feature appears when g = E6,7,8, as will be demonstrated in this work.

The chapter is organized as follows. In section 5.2 we briefly review regular
punctures and their associated local data, and then proceed to classify (untwisted)
irregular punctures for g = DN and g = E6,7,8 theories. We give relevant Coulomb
branch spectrum. The map from Σ to Σ′ is described in Section 5.3. Section 5.4 is
devoted to study the duality frames for DN theories. We consider both untwisted
and twisted theories. Finally, we study S-duality frame for E6,7,8 theories in section
5.5.

5.2 SCFTs from M5 branes
M5 brane compactifications on Riemann surface Σ provide a large class of N = 2
superconformal theories in four dimensions. To characterize the theory, one needs
to specify a Lie algebra g of ADE type, the genus g of the Riemann surface, and
the punctures on Σ. Regular punctures are the loci where the Higgs field Φ has at
most simple poles; while irregular punctures are those with Φ having higher order
poles. The class S theories developed in [2] are SCFTs with Σ of arbitrary genus
and arbitrary number of regular punctures, but no irregular puncture. Later, it was
realized that one may construct much larger class of theories by utilizing irregular
punctures [18, 103, 172]. However, in this case the Riemann surface is highly
constrained. One may use either
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• A Riemann sphere with only one irregular puncture at the north pole;

• A Riemann sphere with one irregular puncture at the north pole and one
regular puncture at the south pole,

where the genus g = 0 condition is to ensure the C∗ action on the Hitchin system,
which guarantees U(1)r R-symmetry and superconformality. This reduces classi-
fication of theories into classification of punctures. In this section we revisit the
classification and find new irregular singularity which will produce new SCFTs.

Classification of punctures
Regular punctures. Near the regular puncture, the Higgs field takes the form

Φ ∼
Λ

z
+ M, (5.3)

and classification of regular puncture is essentially classification of nilpotent orbits.
The puncture itself is associated with the Nahm label, while Λ is given by the
Hitchin label. They are related by the Spaltenstein map. We now briefly review the
classification.

Lie algebra g = AN−1. The nilpotent orbit is classified by the partition Y =[
nh1

1 , . . . , n
hr
r

]
, where ni are column heights, and the flavor symmetry is [2, 91]

Gflavor = S

(
r∏

i=1
U(hi)

)
. (5.4)

The spectral curve is

det(x − Φ(z)) = 0→ xN +

N∑
i=2

φi(z)xN−i = 0. (5.5)

Each φi is the meromorphic differentials on the Riemann surface, living in the space
H0(Σ,K⊗i). The order of pole pi of the regular puncture at φi determines the local
dimension of Coulomb branch spectrum with scaling dimension ∆ = i. It is given
by pi = i − si, where si is the height of i-th box of the Young Tableaux Y ; here the
labeling is row by row starting from bottom left corner.

Lie algebra g = DN . We now review classification of regular punctures of DN

algebra. For a more elaborated study, the readers may consult [113, 173].
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A regular puncture of type g = DN is labelled by a partition of 2N , but not every
partition is valid. It is a requirement that the even integers appear even times,
which we will call a D-partition. Moreover, if all the entries of the partition are
even, we call it very even D-partition. The very even partition corresponds to two
nilpotent orbit, which we will label as O I

[·]
and O I I

[·]
. We again use a Young tableau

with decreasing column heights to represent such a partition, and we call it a Nahm
partition. Given a Nahm partition, the residual flavor symmetry is given by

Gflavor =
∏
h odd

Spin(nh) ×
∏

h even
Sp

(
nh

)
. (5.6)

We are interested in the contribution to the Coulomb branch dimension from each
puncture. When g = AN−1 case we simply take transpose and obtain a Hitchin
partition [91]. However, for g = DN the transpose does not guarantee a valid Young
tableaux. Instead it must be followed by what is called D-collapse, denoted as (·)D,
which is described as follows:

(i) Given a partition of 2N , take the longest even entry n, which occurs with odd
multiplicity (if the multiplicity is greater than 1, take the last entry of that
value), then picking the largest integer m which is smaller than n− 1 and then
change the two entries to be (n,m) → (n − 1,m + 1).

(ii) Repeat the process for the next longest even integer with odd multiplicity.

The Spaltenstein mapS of a given partition d is given by (dT)D and we obtain the
resulting Hitchin partition or Hitchin diagram2.

The Spaltenstein map is neither one-to-one nor onto; it is not an involution as the
ordinary transpose either. The set of Young diagram where S is an involution is
called special. More generally, we haveS3 =S.

Given a regular puncture data, one wishes to calculate its local contribution to the
Coulomb branch. We begin with the special diagram.

Using the convention in [173], we can construct the local singularity of Higgs field
in the Hitchin system as (5.3) where Λ is an so(2N) nilpotent matrix associated to
the Hitchin diagram and M is a generic so(2N) matrix. Then, the spectral curve is

2Unlike [173], here we define the Hitchin diagram to be the one after transpose, so that when
reading Young diagram one always reads column heights.
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identified as the SW curve of the theory, which takes the form

det(x − Φ(z)) = x2N +

N−1∑
i=1

x2(N−i)φ2i(z) + φ̃(z)2. (5.7)

We call φ̃ the Pfaffian. This also determines the order of poles for each coefficient
φ2i and φ̃. We will use pα2i to label the order of poles for the former, and p̃α to label
the order of poles for the latter. The superscript α denotes the α-th puncture.

The coefficient for the leading order singularity for those φ’s and φ̃ are not indepen-
dent, but satisfy complicated relations [173, 174]. Note that the Coulomb branch
dimensions of DN class S theory are not just the degrees for the differentials; in fact
the Coulomb branch is the subvariety of

VC =

N−1⊕
k=1

H0(Σ,K2k) ⊕

N−1⊕
k=3

Wk ⊕ H0(Σ,KN ), (5.8)

where Wk’s are vector spaces of degree k. If we take c(k)l to be the coefficients for
the l-th order pole of φk , then the relation will be either polynomial relations in
c(k)l or involving both c(k)l and a(k), where a(k) is a basis for Wk . For most of the
punctures, the constraints are of the form

c(k)l = . . . , (5.9)

while for certain very even punctures, as φ̃ and φN may share the same order of
poles, the constraints would become

c(N)l ± 2c̃l = . . . . (5.10)

For examples of these constraints, see [173].

When the Nahm partition d is non-special, one needs to be more careful. The pole
structure of such a puncture is precisely the same as taking ds =S

2(d), but some of
the constraints imposed on ds should be relaxed. In order to distinguish two Nahm
partitions with the same Hitchin partition, one associates with the latter a discrete
group, and the map

dNahm → (S(dNahm), C(dNahm)) (5.11)

makes the Spaltenstein dual one-to-one. This is studied by Sommers and Achar
[175–177] and introduced in the physical context in [113].
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Now we proceed to compute the number of dimension k operators on the Coulomb
branch, denoted as dk . We have

d2k = (1 − 4k)(1 − g) +
∑
α

(pα2k − sα2k + tα2k), (5.12)

where g is the genus of Riemann surface, sα2k is the number of constraints of
homogeneous degree 2k, and tα2k is the number of a(2k) parameters that give the

constraints c(4k)
l =

(
a(2k)

)2
. For d2k+1, since there are no odd degree differentials,

the numbers are
d2k+1 =

∑
α

tα2k+1, (5.13)

which is independent of genus. Finally, we take special care for dN . When N is
even, it receives contributions from both φN and the Pfaffian φ̃. We have

dN = 2(1 − 2N)(1 − g) +
∑
α

(pαN − sαN ) +
∑
α

p̃α. (5.14)

When N is odd, it only receives contribution from the Pfaffian:

dN = (1 − 2N)(1 − g) +
∑
α

p̃α. (5.15)

Lie algebra g = E6,7,8. Unlike classical algebras, Young tableau are no longer
suitable for labelling those elements in exceptional algebras. So we need to intro-
duce some more mathematical notions. Let l be a Levi subalgebra, and Ole is the
distinguished nilpotent orbit in l. We have

Theorem [178]. There is one-to-one correspondence between nilpotent orbits of g
and conjugacy classes of pairs (l,Ole) under adjoint action of G.

The theorem provides a way to label nilpotent orbits. For a given pair (l,Ole), let XN

denote the Cartan type of semi-simple part of l. Ole in l gives a weighted Dynkin
diagram, in which there are i zero labels. Then the nilpotent orbit is labelled as
XN (ai). In case there are two orbits with same XN and i, we will denote one as
XN (ai) and the other as XN (bi). Furthermore if g has two root lengths and one
simple component of l involves short roots, then we put a tilde over it. An exception
of above is E7, where it has one root length, but it turns out to have three pairs of
nonconjugate isomorphic Levi-subalgebras. We will use a prime for one in a given
pair, but a double prime for the other one. Such labels are Bala-Carter labels.

The complete list of nilpotent orbits for E6 and E7 theory is given in [179, 180]. We
will examine them in more detail later in this section and in section 5.5.
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Irregular puncture
Grading of the Lie algebra. We now classify irregular punctures of type g. We
adopt the Lie-algebraic techniques reviewed in the following. Recall that for an
irregular puncture at z ∼ 0, the asymptotic solution for the Higgs field Φ looks like
[18, 103, 104, 172]

Φ ∼
Tk

z2+ k
b

+
∑
−b≤l<k

Tl

z2+ l
b

, (5.16)

where all Tl’s are semisimple elements in Lie algebra g, and we also require that
(k, b) are coprime. The Higgs field shall be singled valued when z circles around
complex plane, z → ze2πi, which means the resulting scalar multiplication of Tl

comes from gauge transformation:

Tl → e
2πil
b Tl = σ Tl σ

−1 (5.17)

for σ a G-gauge transformation. This condition can be satisfied provided that there
is a finite order automorphism (torsion automorphism) that gives grading to the Lie
algebra:

g =
⊕
j∈Zb

g
j . (5.18)

All such torsion automorphisms are classified in [181–183], and they admit a con-
venient graphical representation called Kac diagrams. A Kac diagram D for g is an
extended Dynkin diagram of g with labels (s0, s1, . . . sr) on each nodes, called Kac
coordinates, where r is the rank of g. Here s0 is always set to be 2. Let (α1, . . . , αr)

be simple roots, together with the highest root −α0 =
∑r

i=1 aiαi where (a1, . . . , ar)

are the mark. We also define the zeroth mark a0 to be 1. Then the torsion automor-
phism associated with D has order m =

∑r
i=0 aisi and acts on an element associated

with simple root αi as

σ : gαi → ε sigαi, i = 1, 2, . . . r, (5.19)

and extend to the whole algebra g via multiplication. Here ε is the mth primitive
root of unity. It is a mathematical theorem [184] that all si can only be 0, 1 or 2. We
call D even if all its Kac coordinates are even, otherwise D is called odd. For even
diagrams, we may divide the coordinate and the order m by 2 since the odd grading
never shows up in (5.18). We will adopt this convention in what follows implicitly3.

3This convention would not cause any confusion because if even diagrams are encountered, the
label s0 would be reduced to 1; for odd diagrams this label remains to be 2, so no confusion would
arise.
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There are two quantities in the grading of special physical importance. The rank of
the G0 module g j , denoted as rank(G0 |g j), is defined as the dimension of a maximal
abelian subspace of g j , consisting of semisimple elements [185]. We are interested
in the case where g1 has positive rank: r = rank(G0 |g1) > 0. Another quantity is
the intersection of centralizer of semi-simple part of g1 with g0, and this will give
the maximal possible flavor symmetry.

As we get matrix Tj out of g j , we are interested in the case where g j generically
contains regular semisimple element. We call such grading regular semisimple. A
natural way to generate regular semisimple grading is to use nilpotent orbits. For
g = AN−1 it is given in [132]. We give the details of DN and E6,7,8 in Appendix G.
Note when coefficient matrices are all regular semisimple, the AD theory with only
irregular singularity can be mapped to type IIB string probing three-fold compound
Du Val (cDV) singularities [186], which we review in Appendix F. We list the final
results in table 5.1. This is a refinement and generalization of the classification
done in [104, 132]. We emphasize here that the grading when g j generically contain
semisimple elements are also crucial for obtaining SCFTs; here b may be more
arbitrary. Such grading will be called semisimple.

In classical Lie algebra, semisimple element Ti can be represented by the matrices.
In order for the spectral curve det(x − Φ(z)) to have integral power for monomials,
the matrices for leading coefficient Tk is highly constrained. In particular, when
g = AN−1, we have

T =

©«

a1Ξ

. . .

arΞ

0(N−rb)

ª®®®®®®®®®®¬
. (5.20)

Here Ξ is a b× b diagonal matrix with entries {1, ω, ω2, . . . , ωb−1} for ω a b-th root
of unity exp (2πi/b). For g = DN , things are more subtle and T depends on whether
b is even or odd. A representative of Cartan subalgebra is

©«
Z 0

0 −ZT

ª®®®¬ , (5.21)
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g Singularity b

AN−1 x2
1 + x2

2 + xN
3 + zkN/b = 0 b|N

x2
1 + x2

2 + xN
3 + x3zk(N−1)/b = 0 b|(N − 1)

DN x2
1 + xN−1

2 + x2x2
3 + zk(2N−2)/b = 0 b|(2N − 2)

x2
1 + xN−1

2 + x2x2
3 + zkN/bx3 = 0 b|N

E6 x2
1 + x3

2 + x4
3 + z12k/b = 0 b|12

x2
1 + x3

2 + x4
3 + z9k/bx3 = 0 b|9

x2
1 + x3

2 + x4
3 + z8k/bx2 = 0 b|8

E7 x2
1 + x3

2 + x2x3
3 + z18k/b = 0 b|18

x2
1 + x3

2 + x2x3
3 + z14k/bx3 = 0 b|14

E8 x2
1 + x3

2 + x5
3 + z30k/b = 0 b|30

x2
1 + x3

2 + x5
3 + z24k/bx3 = 0 b|24

x2
1 + x3

2 + x5
3 + z20k/bx2 = 0 b|20

Table 5.1: Classification of irregular singularities with regular semisimple coeffi-
cient matrices and the 3-fold singularities corresponding to them. In the table, b|N
means that b is a divisor of N .

where Z ∈ MatN×N (C). When b is odd, we have

Z =

©«

0N−br

a1Ξ

. . .

arΞ

ª®®®®®®®®®¬
. (5.22)

When b is even, we define Ξ′ = {1, ω2, ω4, . . . , ωb−2}, then Ξ = Ξ′ ∪ (−Ξ′). Then
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order of singularity b mass parameter exact marginal deformations

b|N N/b − 1 N/b − 1

b|(N − 1) (N − 1)/b (N − 1)/b − 1

Table 5.2: Summary ofmass parameters and number of exact marginal deformations
in AN−1.

the coefficient matrix takes the form

Z =

©«

0N−rb/2

a1Ξ
′

. . .

arΞ
′

ª®®®®®®®®®¬
. (5.23)

Counting of physical parameters in two cases are different, as we will see mo-
mentarily. In particular, the allowed mass parameters are different for these two
situations.

From irregular puncture to parameters in SCFT.We have classified the allowed
order of poles for Higgs field in (5.16), and write down in classical algebras the
coefficient matrix Ti. The free parameters in Ti encode exact marginal deformations
and number of mass parameters.

Based on the discussion above and the coefficient matrix, we conclude that the
number of mass parameters is equal to rank(g0) and the number of exact marginal
deformation is given by rank(G0 |gk)−1 if the leadingmatrix is in gk . Wemay list the
maximal number of exact marginal deformations and number of mass parameters
in tables 5.2 - 5.6. We focus here only in the case when T’s are regular semisimple,
while for semisimple situation the counting is similar.

• Argyres-Douglas matter. We call the AD theory without any marginal defor-
mations the Argyres-Douglas matter. They are isolated SCFTs and thus are the
fundamental building blocks in S-duality. In the weakly coupled description, we
should be able to decompose the theory into Argyres-Douglas matter connected by
gauge groups.

Degeneration and graded Coulomb branch dimension. Our previous discussion
focused on the case where we choose a generic regular semisimple element for a
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order of singularity b mass parameter exact marginal deformations

odd, b|N N/b N/b − 1

even, b|N 0 2N/b − 1

odd, b|(2N − 2) (N − 1)/b + 1 (N − 1)/b − 1

even, b|(2N − 2) 1 or 0 (2N − 2)/b − 1

Table 5.3: Summary ofmass parameters and number of exact marginal deformations
in DN . Note when b is even divisor of 2N − 2 but not a divisor of N − 1, the number
of mass parameter is zero, otherwise it is one.

order of singularity b mass parameter exact marginal deformations

12 0 0

9 0 0

8 1 0

6 0 1

4 2 1

3 0 2

2 2 3

Table 5.4: Summary ofmass parameters and number of exact marginal deformations
in E6.

order of singularity b mass parameter exact marginal deformations

18 0 0

14 0 0

9 1 0

7 1 0

6 0 2

3 1 2

2 0 6

Table 5.5: Summary ofmass parameters and number of exact marginal deformations
in E7.
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order of singularity b mass parameter exact marginal deformations

30 0 0

24 0 0

20 0 0

15 0 0

12 0 1

10 0 1

8 0 1

6 0 3

5 0 1

4 0 3

3 0 3

2 0 7

Table 5.6: Summary ofmass parameters and number of exact marginal deformations
in E8.

given positive rank grading. More generally, we may consider Tk semisimple. We
first examine the singularity where b = 1:

Φ ∼
T`
z`
+

T`−1

z`−1 + · · · +
T1

z1 , (5.24)

with T` ⊂ · · · ⊂ T2 ⊂ T1 [105]. For this type of singularity, the local contribution to
the dimension of Coulomb branch is

dimρ
C
Coulomb =

1
2

∑̀
i=1

dim(OTi ). (5.25)

This formula indicates that the Coulomb branch dimensions are summation of each
semisimple orbit in the irregular singularity. It is reminiscent of the regular puncture
case, where the local contribution to Coulomb branch of each puncture is given by
half-dimension of the nilpotent orbits, dimρ

C
Coulomb = 1

2 dimS(Oρ) [113].

To label the degenerate irregular puncture, one may specify the centralizer for each
T`. Given a semisimple element x ∈ g, the centralizer gx is called a Levi subalgebra,
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denoted as l. In general, it may be expressed by

l = h ⊕
∑
∆′⊂∆

gα, (5.26)

where h is a Cartan subalgebra and ∆′ is a subset of the simple root ∆ of g. We care
about its semisimple part, which is the commutator [l, l].

The classification of the Levi subalgebra is known. For g of ADE type, we have

• g = AN−1: l = Ai1 ⊕ Ai2 ⊕ . . . Aik , with (i1 + 1) + · · · + (ik + 1) = N .

• g = DN : l = Ai1 ⊕ Ai2 ⊕ . . . Aik ⊕ D j , with (i1 + 1) + · · · + (ik + 1) + j = N .

• g = E6: l = E6, D5, A5, A4 + A1, 2A2 + A1, D4, A4, A3 + A1, 2A2, A2 +

2A1, A3, A2 + A1, 3A1, A2, 2A1, A1, 0.

• g = E7: E7, E6, D6, D5 + A1, A6, A5 + A1, A4 + A2, A3 + A2 + A1, D5, D4 +

A1, A
′

5, A
′′

5, A4 + A1, A3 + A2, A3 + 2A1, 2A2 + A1, A2 + 3A1, D4, A4, (A3 +

A1)
′

, (A3+A1)
′′

, 2A2, A2+2A1, 4A1, A3, A2+A1, (3A1)
′

, (3A1)
′′

, A2, 2A1, A1, 0.

• g = E8: E8, E7, E6 + A1, D7, D5 + A2, A7, A6 + A1, A4 + A3, A4 + A2 +

A1, E6, D6, D5+A1, D4+A2, A6, A5+A1, A4+A2, A4+2A1, 2A3, A3+A2+

A1, 2A2+2A1, D5, D4+ A1, A5, A4+ A1, A3+ A2, A3+2A1, 2A2+ A1, A2+

A1, D4, A4, A3+ A1, 2A2, A2+2A1, 4A1, A3, A2+ A1, 3A1, A2, 2A1, A1, 0.

Fixing the Levi subalgebra for Ti, the corresponding dimension for the semisimple
orbit is given by

dim(OTi ) = dim G − dim Li . (5.27)

We emphasize here that Levi subalgebra itself completely specify the irregular
puncture. However, they may share the semisimple part [l, l]. The SCFTs defined
by them can be very different. Motivated by the similarity between (5.25) and that
of regular punctures, we wish to use nilpotent orbit to label the semisimple orbit
OTi , so that one can calculate the graded Coulomb branch spectrum.

The correspondence lies in the theorem we introduced before: there is a one-to-one
correspondence between the nilpotent orbit Ogρ and the pair (l,Ole). Moreover, we
only consider those nilpotent orbit with principal Ole. For g = AN−1, principal orbit
is labelled by partition [N], while for DN , it is the partition [2N − 1, 1]. Then, given
a Nahm label whose Ole is principal, we take the Levi subalgebra piece l out of the
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pair (l,Ole); we use the Nahm label ρ as the tag such Ti. We conjecture that this fully
characterize the coefficients Ti.

To check the validity, we recall orbit induction [187, 188]. Let Olē be an arbitrary
nilpotent orbit in l. Take a generic element m in the center z of l. We define

Indg
l
Olē := lim

m→0
Om+ē, (5.28)

which is a nilpotent orbit in g. It is a theorem that the induction preserves codimen-
sion:

dim G − dimC Indg
l
Olē = dim L − dimC Olē. (5.29)

In particular, when Olē is zero orbit in l, from (5.29) we immediately conclude that

dimOT = dim G − dim L = dimC Indg
l
Ol0, (5.30)

for T the semisimple orbit fixed by L. The Bala-Carter theory is related to orbit
induction via [178]

dimS(Oρ) = dimC Indg
l
S(Olprincipal) = dimC Indg

l
Ol0 = dimOT . (5.31)

Therefore, treating each semisimple orbit OT as a nilpotent orbit Oρ, their local
contribution to Coulomb branch is exactly the same.

In the AN−1 case, Levi subalgebra contains only Ai pieces; the distinguished nilpotent
orbit in it is unique, which is [i+1]. Therefore, we have a one-to-one correspondence
between Nahm partitions and Levi subalgebra. More specifically, a semisimple
element of the form

x = diag(a1, . . . , a1, a2, . . . , a2, . . . , ak, . . . , ak), (5.32)

where ai appears ri times, has Levi subgroup

L = S[U(r1) ×U(r2) × · · · ×U(rk)], (5.33)

whose Nahm label is precisely [r1, r2, . . . , rk].

For DN case, if the semisimple element we take looks like

x = diag(a1, . . . , a1, . . . , ak, . . . , ak,−a1, . . . ,−a1, . . . ,−ak, . . . ,−ak, 0, . . . , 0),
(5.34)

where ai appears ri times and 0 appears r̃ times with
∑

2ri+ r̃ = 0, the Levi subgroup
is given by

L =
∏

i

U(ri) × SO(r̃). (5.35)
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We call L of type [r1, . . . , rk ; r̃]. Here we see clearly the ambiguity in labelling the
coefficient Ti using Levi subalgebra. For instance, when g = D4, we have [1; 6] and
[4; 0] having the same Levi subalgebra, but clearly they are different type of matrices
and the SCFT associated with them have distinct symmetries and spectrum. We
will examine them in more detail in section 5.4.

With Nahm labels for each Ti, we are now able to compute the graded Coulomb
branch spectrum. For each Nahm label, we have a collection of the pole structure
{pαi1, . . . , pαir } for ik the degrees of differentials. There are also constraints that
reduce or modifies the moduli. Then we conjecture that, at differential of degree k

the number of graded moduli is given by

dk =
∑
α

(
pαk − sαk + tαk

)
− 2k + 1. (5.36)

They come from the term ui in (u0 + u1z + . . . + udk−1zdk−1)xh∨−k , with h∨ the dual
Coxeter number.

However, it might happen that there are constraints of the form c(2k) =
(
a(k)

)2
in

which k is not a degree for the differentials. In this case, tk should be added to the
some k′ > k such that dlocal

k ′ < k′ − 1.

When a regular puncture with some Nahm label is added to the south pole, one may
use the same procedure to determine the contributions of each differential to the
Coulomb branch moduli. We denote them as {d(reg)k }. Then, we simply extend the
power of zβx2(N−k) to −d(reg)k < β < dk .

• Example: let us consider an E6 irregular puncture of class (k, 1) where k is very
large. Take T` = · · · = T2 with Levi subalgebra D5, and T1 with Levi subalgebra 0.
We associate to Ti with i ≥ 2 Nahm label D5. As a regular puncture, it has pole
structure {1, 2, 3, 4, 4, 6} with complicated relations [179]:

c(6)3 =
3
2

c(2)1 a(4)2 , c(8)4 = 3
(
a(4)2

)2
,

c(9)4 = −
1
4

c(5)2 a(4)2 , c(12)
6 =

3
2

(
a(4)2

)3
,

c(12)
5 =

3
4

c(8)3 a(4)2 .

(5.37)

After subtracting it we have pole structure {1, 2, 2, 3, 3, 4}. There is one new moduli
a(4), and we add it to φ5. The Nahm label 0 has pole structure {1, 4, 5, 7, 8, 11}. Then
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we have the Coulomb branch spectrum from such irregular puncture as

φ2 :
2k

k + 1
, . . . ,

k + 2
k + 1

, φ5 :
5k

k + 1
, . . . ,

2k + 3
k + 1

,

φ6 :
6k

k + 1
, . . . ,

4k + 5
k + 1

, φ8 :
8k

k + 1
, . . . ,

5k + 6
k + 1

,

φ9 :
9k

k + 1
, . . . ,

6k + 7
k + 1

, φ12 :
12k
k + 1

, . . . ,
8k + 9
k + 1

.

(5.38)

One can carry out similar analysis for general irregular singularity of class (k, b). The
idea is to define a cover coordinateω and reduce the problem to integral order of pole.
Consider an irregular singularity defined by the following data Φ = T/z2+ k

b + . . .;
we define a cover coordinate z = ωb and the Higgs field is reduced to

Φ =
T ′

ωk+b+1 + . . . (5.39)

Here T ′ is another semisimple element deduced from T , see examples in section
5.4. Once we go to this cover coordinate, we can use above study of degeneration
of irregular singularity with integral order of pole. We emphasize here that not all
degeneration are allowed due to the specific form of T .

Constraint from conformal invariance. As we mentioned, not all choices of
semisimple coefficient Ti define SCFTs. Consider the case b = 1, and the irregular
singularity is captured by by a sequence of Levi subgroup l` ⊃ l`−1 ⊃ . . . ⊃ l1. The
necessary condition is that the number of parameters in the leading order matrix
Tk should be no less than the number of exact marginal deformations. As will be
shown later, it turns out that this condition imposes the constraint that

l` = l`−1 . . . = l2 = l, (5.40)

with l1 arbitrary. Then we have following simple counting rule of our SCFT:

• The maximal number of exact marginal deformation is equal to r − rl − 1,
where r the rank of g and rl the rank of semi-simple part of l. The extra minus
one comes from scaling of coordinates.

• The maximal flavor symmetry is Gl ×U(1)r−rl , and here Gl is the semi-simple
part of l.
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Similarly, for b , 1, the conformal invariance implies that all the coefficients except
T1 should have the same Levi subalgebra. This is automatic when the grading is
regular semisimple, but it is an extra restriction on general semi-simple grading.
For example, consider AN−1 type (2, 0) theory with following irregular singularity
whose leading order matrix takes the form:

T =

©«

a1Ξ

. . .

arΞ

0(N−rb)

ª®®®®®®®®®¬
. (5.41)

When the subleading term in (5.16) has integral order, the corresponding matrix
can take the following general form:

T
′

=

©«

a′1Ib
. . .

a′rIb

K(N−rb)

ª®®®®®®®®®¬
. (5.42)

Here Ib is the identify matrix with size b, and KN−rb is a generic diagonal matrix.
However, due to the constraints, only for KN−rb = κ IN−rb, T

′ has the same Levi-
subalgebra as T . This situation is missed in previous studies [132].

SW curve and Newton polygon
Recall that the SW curve is identified as the spectral curve det(x − Φ(z)) in the
Hitchin system. For regular semisimple coefficient Ti without regular puncture, we
may map the curve to the mini-versal deformation of three fold singularity in type
IIB construction. For given Lie algebra g, we have the deformed singularity:

AN−1 : x2
1 + x2

2 + xN
3 + φ2(z)xN−2

3 + . . . + φN−1(z)x3 + φN (z) = 0,

DN : x2
1 + xN−1

2 + x2x2
3 + φ2(z)xN−2

2 + . . . + φ2N−4(z)x2 + φ2N−2(z) + φ̃N (z)x3 = 0,

E6 : x2
1 + x3

2 + x4
3 + φ2(z)x2x2

3 + φ5(z)x2x3 + φ6(z)x2
3 + φ8(z)x2 + φ9(z)x3 + φ12(z) = 0,

E7 : x2
1 + x3

2 + x2x3
3 + φ2(z)x2

2 x3 + φ6(z)x2
2 + φ8(z)x2x3 + φ10(z)x2

3

+ φ12(z)x2 + φ14(z)x3 + φ18(z) = 0,

E8 : x2
1 + x3

2 + x5
3 + φ2(z)x2x3

3 + φ8(z)x2x2
3 + φ12(z)x3

3+

φ14(z)x2x3 + φ18(z)x2
3 + φ20(z)x2 + φ24(z)x3 + φ30(z) = 0, (5.43)
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and φi is the degree i differential on Riemann surface.

A useful diagrammatic approach to represent SW curve is to use Newton polygon.
When irregular singularity degenerates, the spectrum is a subset of that in regular
semisimple Ti’s, so understanding Newton polygon in regular semisimple case is
enough.

The rules for drawing and reading off scaling dimensions for Coulomb branch
spectrum is explained in [18, 104]. In particular, the curve at the conformal point
determines the scaling dimension for x and z, by requiring that the SW differential
λ = xdz has scaling dimension 1.

• g = AN−1. The Newton polygon for regular semisimple coefficient matrices is
already given in [18] and we do not repeat here. Here we draw the polygon when
T is semisimple for some semisimple grading, in the form (5.41). We give one
example; see Figure 5.1.

Figure 5.1: An example of Newton polygon for A5 theory with semisimple grading.
Each black dot represents a monomial in SW curve. The white dots mean that the
monomials are omitted. The letters have scaling dimension [x] = 3/5, [z] = 2/5.
In general, if the vertex at the top has coordinate (a, b), then we have the relation
(N − a)[x] = b[z] and [x] + [z] = 1.
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• g = DN . There are two types of Newton polygon, associated with Higgs field

Φ ∼
T

z2+ k
N

, Φ ∼
T

z2+ k
2N−2

, (5.44)

We denote two types and their SW curves at conformal point as

D(N)N [k] : x2N + z2k = 0,

D(2N−2)
N [k] : x2N + x2zk = 0.

(5.45)

The full curve away from conformal point, and with various couplings turned on, is
given by (5.7). In Figure 5.2, we list examples of such a Newton polygon.

• g = E6,7,8. We can consider Newton polygon from the 3-fold singularities. In this
way we may draw the independent differentials unambiguously. We give the case
for E6 with b = 8, 9, 12 in Figure 5.3. The other two exceptional algebras are similar.

5.3 Mapping to a punctured Riemann surface
As we mentioned in section 5.1, to generate S-duality we construct an auxiliary
Riemann sphere Σ′ from the initial Riemann sphere Σ with irregular punctures.
We now describe the rules. The motivation for such construction comes from 3d
mirror in class S theory [130, 140, 141]. To recapitulate the idea, from 3d mirror
perspective we may interpret the Gaiotto duality as splitting out the quiver theories
with three quiver legs. Each quiver leg carries a corresponding flavor symmetry
on the Coulomb branch and can be gauged. The 3d mirror of AN−1 type Argyres-
Douglas theories are know and they are also constructed out of quiver legs. We then
regard each quiver leg as a “marked point” on the Riemann sphere Σ′. Unlike the
class S counterpart, now there will be more types of marked points with different
rank.

Recall our setup is that the initial Riemann sphere Σ is given by one irregular
singularity of class (k, b), with coefficient satisfying

T` = T`−1 = · · · = T3 = T2, T1 arbitrary, ` = k + b + 1, (5.46)

possibly with a regular puncture Q. We denote it as
(
I I I
{li}

`
i=1

k,b , Q
)
, where li is the

Levi subalgebra for the semisimple element Ti. We now describe the construction
of Σ′.
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Figure 5.2: A collection of Newton polygon for examples of SCFT with g = DN .
Each black dot represents a monomial in SW curve in the form of xαzβ; except
that for the x0 axis, each term represents the Pfaffian φ̃, so we shall read it as

√
zβ.

The white dots mean that the monomials are omitted. The upper left diagram gives
D(4)4 [3] theory, while the upper right diagram gives D(6)4 [5]. The two lower diagrams
represent the same irregular puncture, but with an additional regular puncture (e.g.
maximal) at the south pole. We denote them as (D(4)4 [3], F) and (D

(6)
4 [5], F) theory,

respectively.
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Figure 5.3: A collection of Newton polygons for examples of SCFT with g = E6.
Each black dot represents a monomial in SW curve in the three fold form. The white
dots mean that the monomials are omitted. The upper left diagram gives b = 12,
k = 6 theory, while the upper middle diagram gives b = 9, k = 6 theory and the
upper right gives b = 8, k = 6 theory. The three lower diagrams represent the same
irregular puncture, but with an additional regular puncture (e.g. maximal) at south
pole.

• Lie algebra g = AN−1. A generic matrix looks like

Ti = diag
©«a1Ξb, . . . , a1Ξb︸             ︷︷             ︸

r1

, . . . , asΞb, . . . , asΞb︸            ︷︷            ︸
rs

, 0, . . . , 0︸  ︷︷  ︸
N−(

∑
rj )b

ª®®®¬, 2 ≤ i ≤ `, (5.47)

The theory is represented by a sphere with one red marked point (denoted as a cross
×) representing regular singularity; one blue marked point (denoted as a square )
representing 0’s in Ti, which is further associated with a Young tableaux with size
N − (

∑
r j)b to specify its partition in T1. There are s black marked points (denoted

as black dots •) with size r j , j = 1, . . . , s and each marked point carrying a Young
tableaux of size r j . Notice that there are s−1 exact marginal deformations which are
the same as the dimensions of the complex structure moduli of punctured sphere.

There are two exceptions: if b = 1, the blue marked point is just the same as the
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black marked point. If k = 1, b = 1, the red marked point is the same as the black
marked point as well [132].

• Lie algebra g = DN . We have the representative of Cartan subalgebra as (5.21)
and when b is odd,

Z = diag(a1Ξb, . . . , a1Ξb︸             ︷︷             ︸
r1

, . . . , asΞb, . . . , asΞb︸            ︷︷            ︸
rs

, 0, . . . , 0︸  ︷︷  ︸
N−(

∑
rj )b

),
(5.48)

while when b is even,

Z = diag(a1Ξ
′
b/2, . . . , a1Ξ

′
b/2︸                 ︷︷                 ︸

r1

, . . . , asΞ
′
b/2, . . . , asΞ

′
b/2︸                 ︷︷                 ︸

rs

, 0, . . . , 0︸  ︷︷  ︸
N−(

∑
rj )b/2

).
(5.49)

The theory is represented by a Riemann sphere with one red cross representing
regular singularity, one blue puncture representing 0’s in Ti; we also have a D-
partition of 2

[
N − (

∑
r j)b

]
to specify further partition in T1. Moreover, there are

s black marked point with size r j , j = 1, . . . , s and each marked point carrying a
Young tableaux of size r j (no requirement on the parity of entries).

• Lie algebra g = E6,7,8: Let us start with the case b = 1, and the irregular puncture
is labelled by Levi-subalgebra Ll = . . . = L2 = l and a trivial Levi-subalgebra L1.
We note that there is at most one non-A type Lie algebra for l: l = Ai1 + . . .+ Aik +h;
Let’s define a = rank(g) − rank(h) −

∑k
j=1(i j + 1), we have the following situations:

• a ≥ 0: we have k black punctureswith flavor symmetryU(i j+1), j = 1, . . . , k,
and a more black marked point with U(1) flavor symmetry; we have a blue
puncture with H favor symmetry (h = Lie(H)), and finally a red puncture
representing the regular singularity.

• a < 0: When there is a 2A1 factor in l, we regard it as D2 group and use a
blue puncture for it; when the rank of l is rank(g) − 1, we put all A-type factor
of l in a single black marked point.

The b , 1 case can be worked out similarly.

AD matter and S-duality
We now discuss in more detail about the AD matter for b = 1. Recall that the
number of exact marginal deformations is equal to r − rl −1, where r = rank(g), and
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Lie algebra g Levi subalgebra associated to AD matter

AN−1 An + Am, (n + 1) + (m + 1) = N

DN An + Dm, n + 1 + m = N

E6 D5, A5, A4 + A1, 2A2 + A1

E7 E6, D6, D5 + A1, A6, A5 + A1, A4 + A2, A3 + A2 + A1

E8 E7, E6 + A1, D7, D5 + A2, A7, A6 + A1, A4 + A3, A4 + A2 + A1

Table 5.7: Possible Levi subalgebra for T` that corresponds to AD matter without
exact marginal deformations.

rl = rank(l). The AD matter is then given by the Levi subalgebra with rank r − 1.
We can list all the possible Levi subalgebra for AD matters in table 5.7.

S-duality frames. With the auxiliary Riemann sphere Σ′, we conjecture that the
S-duality frame is given by different degeneration limit of Σ′; the quiver theory is
given by gauge groups connecting Argyres-Douglas matter without exact marginal
deformations. For AD theories of type g, the AD matter is given by three punctured
sphere Σ′: one red cross, one blue square, and one black dot. The rank of black dot
plus the rank of blue square should equal to the rank of the red cross. See figure 5.4
for an illustration. Each marked points carry a flavor symmetry. Their flavor central
charge is given by [132, 189]

kred
G = h∨ −

b
k + b

, kblack/blue
G = h∨ +

b
k + b

, (5.50)

where h∨ is the dual Coxeter number of G. This constraints the configuration such
that one can only connect black dot and red cross, or blue square with red cross to
cancel one-loop beta function.

Central charges
The central charges a and c can be computed as follows [189, 190]:

2a − c =
1
4

∑
(2[ui] − 1), a − c = −

1
24

dimHHiggs. (5.51)

This formula is valid for the theory admits a Lagrangian 3d mirror. We know how
to compute the Coulomb branch spectrum, and so the only remaining piece is the
dimension of the Higgs branch, which can be read from the mirror.
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Figure 5.4: An example of Argyres-Douglas matter of type g. The theory has no
exact marginal deformations, and in the meantime the punctured Riemann sphere
Σ′ has no complex structure moduli.

For theories with b = 1, the local contribution to the Higgs branch dimension with
flavor symmetry G for red marked point is

dimred
H Higgs =

1
2
(dim G − rank(G)), (5.52)

while for blue and black marked point, we have

dimblue/black
H Higgs =

1
2
(dim G + rank(G)). (5.53)

The total contribution to the Higgs branch is the summation of them, except that for
AN−1, we need to subtract one.

5.4 S-duality for DN theory
Class (k, 1)
In this section we first consider g = DN , and the irregular singularity we take to be

Φ =
T`
z`
+

T`−1

z`−1 + · · · +
T1

z
+ Treg, (5.54)

where Treg is the regular terms. This amounts to take k = ` − 2, b = 14. We settle
the questions raised in previous sections: (i) we show which choices of Ti’s give
legitimate deformation for SCFT, (ii) we illustrate how to count graded Coulomb
branch spectrum, and (iii) how to obtain its S-dual theory. In dealing with these
questions, we first utilize the case D3 ' A3, where we already know the results
[132].

4Careful readers may wonder whether n1 = 1 comes from D(N )N [k
′] or D(2N−2)

N [k ′], as their
relevant coefficient matrices are different. However, in the case n1 = 1, leaving two diagonal entries
to be zero has the same Levi subgroup (SO(2)) as that of leaving it to be diag(a,−a), which is U(1).
So two cases actually coincide.
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Coulomb branch spectrum. Recall that when irregular puncture degenerates, one
maps each semisimple orbit OTi to a nilpotent orbit with the same dimension. We
may use the recipe of regular punctures to calculate the Coulomb branch spectrum.
Let us see how this works.

Example 1: non-degenerating D4 theory of class (1, 1). As we have ` = 3, there are
three regular punctures whose labels are

[
18] . For such amaximal puncture, the pole

structure for the differential is {p2, p4, p6; p̃} = {1, 3, 5; 3} and there are no relations.
Then, the total contributions to the moduli are {d2, d4, d6; d̃4} = {0, 2, 4; 2}. This is
consistent with the Newton polygon of D(4)4 [4].

Example 2: degenerating D4 theory of class (1, 1). In this example we take T3

and T2 to be labelled by Levi subalgebra of type [1, 1, 1; 2], while T1 is still of type
[1, 1, 1, 1; 0]. For the former, we see that it is the same as the Levi subalgebra
[1, 1, 1, 1; 0]. Then we are back to the previous example. This is indeed the same
spectrum as indicated by Newton polygon of D(6)4 [6].

Example 3: degenerating D3 theory of class (1, 1). We take T3 and T2 to have Levi
subalgebra of type [2, 1; 0], giving a regular puncture labelled by Nahm partition
[2, 2, 1, 1]. In terms of Nahm partition for A3, they are equivalent to [2, 1, 1]. We
also take T1 to be maximal. From A3, the algorithm in [18] determines the set
of Coulomb branch operators to be {3/2}. In the language of D3, the partition
[2, 2, 1, 1] gives the pole structure {1, 2; 2}, while the maximal puncture has pole
structure {1, 3; 2}; both of them have no constraints. Then, {d2, d4; d̃3} = {0, 0; 1},
giving a Coulomb branch moduli with dimension 3/2. So we see two approaches
agree.

Constraints on coefficient matrices. As we mentioned before, not every choice of
{T`,T`−1, . . . ,T1} is allowed for the SCFT to exist. Those which are allowed must
have T` = · · · = T2, and T1 is a further partition of them. In this section we show
why this is so.

The idea of our approach is that the total number of exact marginal deformations
shall not exceed the maximum determined by the leading matrix T`. We examine it
on a case by case basis.

D3. In this case we may directly use the results of [132]. Our claim holds.

D4. First of all we list the correspondence between the Nahm label of the regular
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Levi subalgebra matrix Z regular puncture pole structure constraints flavor symmetry

[1, 1, 1, 1; 0] diag(a, b, c, d) [18] {1, 3, 5; 3} − −

[2, 1, 1; 0] diag(a, a, b, c)
[
22, 14] {1, 3, 4; 3} − SU(2)

[1, 1; 4] diag(0, 0, b, c)
[
3, 15] {1, 3, 4; 2} − SO(4)

[2, 2; 0] diag(a, a, b, ±b)
[
24] I , I I {1, 3, 4; 3} c

(4)
3 ± 2c̃3 = 0 SU(2) × SU(2)

[3, 1; 0] diag(a, a, a, b) [3, 3, 1, 1] {1, 2, 4; 2} c
(6)
4 = (a3)

2 SU(3)

[2; 4] diag(a, a, 0, 0) [3, 2, 2, 1]∗ {1, 2, 4; 2} − SU(2) × SO(4)

[1; 6] diag(0, 0, 0, a) [5, 1, 1, 1] {1, 2, 2; 1} − SO(6)

[4; 0] diag(a, a, a, ±a) [4, 4]I , I I {1, 2, 3; 2}
c
(4)
2 ± 2c̃2 = (c

(2)
1 )

2/4,

c
(6)
3 = ∓c̃2c

(2)
1

SU(4)

Table 5.8: Association of a nilpotent orbit to a Levi subalgebra for D4. Here Z
follows the convention in (5.21). The partition [3, 2, 2, 1] is non-special, and we
use the * to mark it. In the last column we list the semisimple part of maximal
possible flavor symmetry. The partition [5, 3] and [7, 1] are excluded; the first one
is non-principal in so(8) while the second gives trivial zero matrix.

puncture and the Levi subalgebra in table 5.8. The regular puncture data are taken
from [173]. There are several remarks. For very even partitions, we have two
matrix representation for two nilpotent orbits; they cannot be related by Weyl group
actions5. Moreover, we also see that there are multiple coefficient matrices sharing
the same Levi subalgebra; e.g. [4; 0] and [1; 6]. Therefore, we do need regular
puncture and Nahm label to distinguish them. Finally, we need to exclude orbit
which is itself distinguished in D4, as their Levi subalgebra is maximal, meaning
we have zero matrix.

Now consider ` = 3, and T3 has the Levi subalgebra [1, 1; 4], with one exact
marginal deformation. One can further partition it into the orbit with Levi subalgebra
[2, 1, 1; 0] and [1, 1, 1, 1; 0]. If we pick T2 to be [2, 1, 1; 0], then no matter what we
choose for T1, there will be two dimension-2 operators; this is a contradiction. So
T2 must be equal to T3.

The second example has ` = 3, but T3 now is associated with [3, 3, 1, 1]. This
puncture has a relation c(6)4 = (a

(3))2, so we remove one moduli from φ6, and add
one moduli to φ4. The possible subpartitions are [22, 14], [18]. If T2 , T3 then there

5TheWeyl group acts on entries of Z = diag(a1, a2, . . . , aN ) by permuting themor simultaneously
flip signs of even number of elements.
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will be two exact marginal deformations from φ4 and φ̃. This is a contradiction, so
we must have T2 = T3.

As a third example, we may take ` = 4 andT4 corresponding to the regular punctures
[24], whose pole structure is {1, 3, 4; 3}, with one constraints c(4)3 ± 2c̃3 = 0. Then
each of the local contribution to Coulomb moduli is {d2, d4, d6; d3} = {1, 2, 4; 3}.
From the matrix representation we know there is one exact marginal coupling. If we
pick T3 to be [22, 14], then by simple calculation we see that there are two dimension
2 operators. So we have to pick T3 = T4. Similarly, we have to pick T2 = T3 = T4.
Therefore, we again conclude that we must have T4 = T3 = T2, while T1 can be
arbitrary.

D5. We now check the constraints for the Lie algebra D5. To begin with, we list
the type of Levi-subgroup and its associated regular puncture in table 5.9. Now
we examine the constraints on coefficient matrices. We first take ` = 3, and pick
T3 to be of the type [3, 2; 0] whose associated regular puncture is [3, 3, 2, 2]. There

is a constraint c(8)6 =
(
c(4)3

)2
/4, so the local contribution to Coulomb branch is

{d2, d4, d6, d8; d5} = {1, 3, 4, 5; 3}. If we take T2 to be e.g., [24, 12], then the moduli
from φ̃ contribute one more exact marginal deformations other than φ4, which is
a contradiction. Therefore, we again conclude that we must have T3 = T2, with
arbitrary subpartition T1.

Based on the above examples and analogous test for other examples, we are now
ready to make a conjecture about the classification of SCFT for degenerating irreg-
ular singularities:

• Conjecture. In order for the maximal irregular singularity (5.54) of type D to
define a viable SCFT in four dimensions, wemust haveT` = T`−1 = · · · = T2 (` ≥ 3),
while T1 can be arbitrary subpartition of Ti.

We emphasize at last that when ` = 2, the scaling for x in SW curve is zero.
Therefore, we may have arbitrary partition T2 and T1, so that OT2 ⊂ OT1 .

Generating S-duality frame. With the above ingredients in hand, we are now
ready to present an algorithm that generates S-duality for various Argyres-Douglas
theories of D type. This may subject to various consistency checks. For example,
the collection of the Coulomb branch spectrum should match on both sides; the
conformal anomaly coefficients (central charges) (a, c) should be identical. The
latter may be computed from (5.51).
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Levi subalgebra matrix Z regular puncture pole structure constraints flavor symmetry

[1, 1, 1, 1, 1; 0] diag(a, b, c, d, e) [110] {1, 3, 5, 7; 4} − −

[2, 1, 1, 1; 0] diag(a, a, b, c, d)
[
22, 16] {1, 3, 5, 6; 4} − SU(2)

[1, 1, 1; 4] diag(0, 0, a, b, c)
[
3, 17] {1, 3, 5, 6; 3} − SO(4)

[2, 2, 1; 0] diag(a, a, b, b, c)
[
24, 12] {1, 3, 4, 6; 4} − SU(2) × SU(2)

[3, 1, 1; 0] diag(a, a, a, b, c)
[
32, 14] {1, 3, 4, 6; 3} c

(8)
6 =

(
a(4)

)2
SU(3)

[2, 1; 4] diag(a, a, b, 0, 0)
[
3, 22, 13]∗ {1, 3, 4, 6; 3} − SU(2) × SO(4)

[3, 2; 0] diag(a, a, a, b, b) [3, 3, 2, 2] {1, 3, 4, 6; 3} c
(8)
6 =

(
c
(4)
3

)2
/4 SU(3) × SU(2)

[3; 4] diag(0, 0, a, a, a) [3, 3, 3, 1] {1, 2, 4, 5; 3} − SU(3) × SO(4)

[1, 1; 6] diag(0, 0, 0, a, b)
[
5, 15] {1, 3, 4, 4; 2} − SO(6)

[4, 1; 0] diag(a, a, a, a, b) [4, 4, 1, 1] {1, 2, 4, 5; 3}
c
(6)
4 = (a

(3))2,

c
(8)
5 = 2a(3) c̃3

SU(4)

[2; 6] diag(0, 0, 0, a, a) [5, 2, 2, 1]∗ {1, 2, 4, 4; 2} − SU(2) × SO(6)

[5; 0] diag(a, a, a, a, a) [5, 5] {1, 2, 3, 4; 2}

c′
(4)
2 ≡ c

(4)
2 − (c

(2)
1 )

2/4,

c
(6)
3 = c

(2)
1 c′

(4)
2 /2,

c
(8)
4 =

(
c′
(4)
2

)2

SU(5)

[1; 8] diag(0, 0, 0, 0, a) [7, 1, 1, 1] {1, 2, 2, 2; 1} − SO(8)

Table 5.9: Association of a nilpotent orbit to a Levi subalgebra for D5. Z is
the convention taken in (5.21). the Nahm partition [5, 3, 1, 1], [7, 3] and [9, 1] are
excluded.

Duality at large k. For such theories with ` = k + 2, if we take the Levi subalgebra
of T` = · · · = T2 to be of type [r1, . . . rn; r̃], then there are n − 1 exact marginal
couplings. For each ri, 1 ≤ i ≤ n as well as r̃ there is further partition of it in T1:

[ri; 0] →
[
m(i)1 , . . . ,m

(i)
si

]
,

si∑
j=1

m(i)j = ri,

[0; r̃] → [m̃1, . . . , m̃s; r̃′], 2
s∑

j=1
m̃ j + r̃′ = r̃ .

(5.55)

The Argyres-Douglas matter is given by Z in (5.21) of the leading coefficient matrix
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T`:

Z1 =

©«

a

. . .

a

0
. . .

0

ª®®®®®®®®®®®®®®®®®¬

. (5.56)

They are given by a three-punctured sphere with one black dot of type [r1, . . . , rm]

with
∑

ri = n for n being the number of a’s, one blue square which is degeneration
of [0; 2N − 2n] and one red cross. However, we note the exception when N = 2:
in this case, since the theory is in fact given by two copies of SU(2) group, so the
Argyres-Douglas matter is represented differently. We will see this momentarily.

Example 1: D3 ' A3. This case can be analyzed from either Lie algebra perspective.
Let us take T` to be regular semisimple. We also add a regular puncture labelled by
a red cross. One duality frame is given in the first line of figure 5.5.

We can perform various checks for this duality. First of all, (A1,D2k+2) theory has
Coulomb branch spectrum

∆(Oi) = 2 −
i

k + 1
, i = 1, 2, . . . , k . (5.57)

For the middle theory, for simplicity we focus on the case where the regular puncture
is maximal, but replacing it with any regular puncture does not affect the result. The
Coulomb branch spectrum for this theory is

∆(O) =
2k + 3
k + 1

,
2k + 4
k + 1

, . . . ,
4k + 4
k + 1

,

2k + 3
k + 1

,
2k + 4
k + 1

, . . . ,
3k + 3
k + 1

,

k + 2
k + 1

,
k + 3
k + 1

, . . . ,
2k + 2
k + 1

.

(5.58)

We see that along with two SU(2) gauge groups, the combined Coulomb branch
spectrum nicely reproduces all the operators of the initial theory. Secondly, we may
calculate the central charge. We know the central charges for (A1,D2k+2) theory are

a =
k
2
+

1
12
, c =

k
2
+

1
6
. (5.59)
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Figure 5.5: Comparison of S-duality from A3 (upper half) and D3 (lower half)
perspective. From the A3 point of view, each black dot is given by [1], and the
new red marked point after degeneration is given by SU(2) puncture [1, 1]. The two
theories on the left and right sides are (A1,D2k+2) theory, which is given by irregular
puncture whose Tk+2, . . . ,T1 = [1, 1], and one regular puncture. The theory in the
middle is (I I I[2,2]

×(k+1),[1,1,1,1]
k,1 , F) theory. Here F denotes maximal puncture. From

the D3 point of view, two (A1,D2k+2) theories combine together and form a D2 type
theory. The theory on the right is (I I I[1;4]×(k+1),[13;0]

k,1 , F).

The central charges for the initial theory are, with the help of (5.51) and three
dimensional mirror,

a = 5k +
55
8
, c = 5k +

58
8
. (5.60)

The central charges for the middle theory are obtained similarly:

a = 4k +
131
24

, c = 4k +
142
24

. (5.61)

We find that

a(I4,4k,F) = 2aV
SU(2) + 2a(A1,D2k+2) + a

(I I I[2,2]
×(k+1),[1,1,1,1]

k,1 ,F)
,

c(I4,4k,F) = 2cV
SU(2) + 2c(A1,D2k+2) + c

(I I I[2,2]
×(k+1),[1,1,1,1]

k,1 ,F)
.

(5.62)

Here aV and cV denote the contribution from vector multiplet. Finally, we may
check the flavor central charge and beta functions for the gauge group. The flavor
central charge for SU(2) symmetry of (A1,D2k+2) theory is (2k + 1)/(k + 1). The
middle theory has flavor symmetry SU(2)2 × SU(4). Each SU(2) factor has flavor
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central charge 2 + 1/(k + 1), so we have a total of 4, which exactly cancels with the
beta function of the gauge group.

Now we use D3 perspective to analyze the S-duality. See the second line of figure
5.5 for illustration. It is not hard to figure out the correct puncture after degeneration
of the Riemann sphere. To compare the Coulomb branch spectrum, we assume
maximal regular puncture. For the theory on the left hand side, using Newton
polygon we have

∆(O) =
k + 2
k + 1

,
k + 3
k + 1

, . . . ,
2k + 1
k + 1

,

k + 2
k + 1

,
k + 3
k + 1

, . . . ,
2k + 1
k + 1

.

(5.63)

We see it is nothing but the two copy of (A1,D2k+2) theories. For the the-
ory on the right hand side, the spectrum is exactly the same as the A3 theory
(I I I[2,2]

×(k+1),[1,1,1,1]
k,1 , F). We thus conjecture that

a
(I I I[1;4]×(k+1),[13;0]

k,1 ,F)
= 4k +

131
24

, c
(I I I[1;4]×(k+1),[13;0]

k,1 ,F)
= 4k +

142
24

. (5.64)

This is the same as computed by the recipe in section 5.3.

There is another duality frame described in figure 5.6. From D3 perspective, we get
another type of Argyres-Douglas matter and the flavor symmetry is now carried by
a black dot, which is in fact SU(3). It connects to the left to an A2 theory with all
Ti’s regular semisimple. This theory can further degenerate according to the rules
of AN−1 theories, and we do not picture it. We conjecture that the central charges
for the theory

(
I I I[3;0]×(k+1),[1,1,1;0]

k,1 , F
)
are

a(
I I I[3;0]×(k+1),[1,1,1;0]

k,1 ,F
) = 3k +

17
4
, c(

I I I[3;0]×(k+1),[1,1,1;0]
k,1 ,F

) = 3k +
19
4
. (5.65)

Example 2: D4. Now we consider a more complicated example. Let us take
a generic large ` > 3 and all the coefficient matrices to be regular semisimple,
T` = · · · = T1 = [14; 0]. There are several ways to get weakly coupled duality frame,
which is described in figure 5.7. The regular puncture can be arbitrary. We have
checked that their Coulomb branch spectrum matches with the initial theory, as well
as the fact that all gauge couplings are conformal.

For (a) in figure 5.7, we can compute the central charges for the theory
(
I I I[1;6]×(k+1),[14;0]

k,1 ,Q
)

when Q is a trivial regular puncture. Recall that the initial theory may be mapped



156

Figure 5.6: Another S-duality frame. The upper one is from A3 perspective. Here
in the weakly coupled description, the rightmost theory is still (A1,D2k+2), the
middle theory is given by

(
I I I[2,1]

×(k+1),[1,1,1]
k,1 , F

)
, and the leftmost theory is given

by
(
I I I[3,1]

×(k+1),[1,1,1,1]
k,1 , F

)
. The lower one is from the D3 perspective. The left

theory without blue marked points should be understood as A2 theory. The right
hand theory is given by

(
I I I[3;0]×(k+1),[1,1,1;0]

k,1 , F
)
. All the computation can be done

similarly by replacing full puncture F to be other arbitrary regular puncture Q.

to hypersurface singularity in type IIB construction:

a(
I I I[1

4;0]×(k+2)
k,1 , S

) = 84k2 − 5k − 5
6(k + 1)

, c(
I I I[1

4;0]×(k+2)
k,1 , S

) = 42k2 − 2k − 2
3(k + 1)

, (5.66)

while we already know the central charges for (A1,D2k+2) and
(
I I I[1;4]×(k+1),[13;0]

k,1 , F
)

theory in (5.64). Therefore we have

a(
I I I[1;6]×(k+1),[14;0]

k,1 , S
) = 54k2 − 95k − 65

6(k + 1)
, c(

I I I[1;6]×(k+1),[14;0]
k,1 , S

) = 108k2 − 185k − 125
12(k + 1)

.

(5.67)
This is the same as computed from (5.51).

Notice that in (a) of figure 5.7, the leftmost andmiddle theorymay combine together,
which is nothing but the theory

(
I I I[1

3;0]×(k+2)

k,1 , F
)
. We can obtain another duality

frame by using an SU(3) gauge group. See (b) of figure 5.7.

We can try to split another kind of Argyres-Douglas matter, and use the black dot
to carry flavor symmetry. The duality frames are depicted in (c) and (d) in figure
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Figure 5.7: The weakly coupled duality frame for D4 theory of class (k, 1). For
(a), the leftmost theory is two copies of (A1,D2k+2), the middle theory is given
by

(
I I I[1;4]×(k+1),[13;0]

k,1 , F
)
, and the rightmost theory is given by

(
I I I[1;6]×(k+1),[14;0]

k,1 ,Q
)

where Q is any D4 regular puncture.
For (b), the leftmost theory is (A1,D2k+2), followed by the theory(
I I I[2,1]

×(k+1),[13]
k,1 , F

)
. This is then followed by

(
I I I[3,1]

×(k+1),[14;0]
k,1 , F

)
, and the right-

most theory is still
(
I I I[1;6]×(k+1),[14;0]

k,1 ,Q
)
.

For (c) and (d), the rightmost theory is given by
(
I I I[4;0]×(k+1),[14;0]

k,1 ,Q
)
. Then there

are two different ways the theory
(
I I I[1

4]×(k+2)

k,1 , F
)
can be further degenerated.

Finally for (e), the leftmost theory is again two copies of (A1,D2k+2) theory. The
middle theory is D4 theory

(
I I I[2;4]×(k+1),[14]

k,1 , F
)
, and the rightmost theory is given

by (A1,D2k+2).
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5.7. Again, we can compute the central charges for the Argyres-Douglas matter(
I I I[4;0]×(k+1),[14;0]

k,1 , S
)
:

a(
I I I[4;0]×(k+1),[14;0]

k,1 , S
) = 108k2 − 145k − 85

12(k + 1)
, c(

I I I[4;0]×(k+1),[14;0]
k,1 , S

) = 27k2 − 35k − 20
3(k + 1)

,

(5.68)
same as computed from (5.51).

By comparing the duality frames, we see a surprising fact in four dimensional quiver
gauge theory. In particular, (a) in figure 5.7 has SO(2n) gauge groups while (c) in
figure 5.7 has SU(n) gauge groups. The Argyres-Douglas matter they couple to are
completely different, and our prescription says they are the same theory!

General DN . Based on the above two examples, we may conjecture the S-duality
for DN theories of class (k, 1) for large. The weakly coupled description can
be obtained recursively, by splitting Argyres-Douglas matter one by one. See
figure 5.8 for illustration of two examples of such splitting. In the first way we
get the Argyres-Douglas matter

(
I I I[1;2N−2]×(k+1),[1N ;0]

k,1 ,Q
)
, with remaining theory(

I I I[1
N−1;0]×(k+2)

k,1 , F
)
. The gauge group in between is SO(2N −2). In the second way,

we get the Argyres-Douglas matter
(
I I I[N;0]×(k+1),[1N ;0]

k,1 ,Q
)
, with remaining theory(

I I I[1
N ]×(k+1)

k,1 , F
)
. The gauge group is SU(N). The central charges (a, c) for special

cases of regular puncture can be computed similarly.

Duality at small k. We see previously that when k is large enough, new punctures
appearing in the degeneration limit are all full punctures. We argue here that when
k is small, this does not have to be so. In this section, we focus on D5 theory, with
coefficient matrices T` = · · · = T1 = [1, . . . , 1; 0] and one trivial regular puncture.
The auxiliary Riemann sphere is given by five black dots of type [1], one trivial blue
square and one trivial red cross. We will focus on the linear quiver only.

D5 theory. The linear quivers we consider are depicted in figure 5.9.

After some lengthy calculations, we find that, for the first quiver (where red crosses
are all connected with blue squares), when k = 1, the quiver theory is

(
I I I[1;8]×2,[12;6]

1,1 , [9, 1]
)
.

SO(3)(
I I I[1;6]×2,[14;0]

1,1 , [5, 13]
)SO(5)(

I I I[1;4]×2,[13;0]
1,1 , [16]

)SO(4)(
I I I[1

2;0]×3

1,1 , [14]
)
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Figure 5.8: The weakly coupled duality frame for DN theory of class (k, 1). One
startswithmaximal irregular puncture and a regular puncture, and recursively degen-
erate a sequence of Argyres-Douglas matter. The first line gives Argyres-Douglas
matter

(
I I I[1;2N−2]×(k+1),[1N ;0]

k,1 ,Q
)
and the second line gives

(
I I I[N;0]×(k+1),[1N ;0]

k,1 ,Q
)
.

We get in general a quiver with SU and SO gauge groups.

Figure 5.9: The linear quiver that we will examine for k small, when g = D5.
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In particular, we have checked the central charge and confirm that the middle gauge
group is indeed SO(5). Moreover, its left regular puncture is superficially [16] but
only SO(5) symmetry remains, similar to the right blue marked points [; 6]6.

For k = 2, we have the quiver

(
I I I[1;8]×3,[13;4]

2,1 , [9, 1]
)
.

SO(5)(
I I I[1;6]×3,[14;0]

2,1 , [3, 15]
)SO(6)(

I I I[1;4]×3,[13;0]
2,1 , [16]

)SO(4)(
I I I[1

2;0]×4

2,1 , [14]
)

For k = 3, we have the quiver

(
I I I[1;8]×4,[15;0]

3,1 , [9, 1]
)
.

SO(8)(
I I I[1;6]×4,[14;0]

3,1 , [18]
)SO(6)(

I I I[1;4]×4,[13;0]
3,1 , [16]

)SO(4)(
I I I[1

2;0]×5

3,1 , [14]
)

Finally, for k > 3 we reduce to the case in previous section. It is curious to
see that some of the gauge group becomes smaller and smaller when k decreases,
due to appearance of next-to-maximal puncture. Moreover, there are theories (i.e.(
I I I[1;8]×2,[12;6]

1,1 , [9, 1]
)
) whose Coulomb branch spectrum is empty. When this hap-

pens, the theory is in fact a collection of free hypermultiplets.

The same situation happens for the second type of D5 quiver. When k starts
decreasing, the sizes of some gauge groups for the quiver theory decrease. When
k = 1 we get:

(
I I I[5;0]×2,[2,2,1;0]

1,1 , [9, 1]
)
.

SU(2)(
I I I[4,1]

×2,[15]
1,1 , [2, 2, 1]

)SU(4)(
I I I[3,1]

×2,[14]
1,1 , [14]

)SU(3)(
I I I[2,1]

×2,[13]
1,1 , [13]

)SU(2)(
I I I[1,1]

×3

1,1 , [12]
)

When k = 2, we have the quiver

(
I I I[5;0]×3,[15;0]

2,1 , [9, 1]
)
.

SU(5)(
I I I[4,1]

×3,[15]
2,1 , [15]

)SU(4)(
I I I[3,1]

×3,[14]
2,1 , [14]

)SU(3)(
I I I[2,1]

×3,[13]
2,1 , [13]

)SU(2)(
I I I[1,1]

×4

2,1 , [12]
)
6We could imagine a similar situation of three hypermultiplets with SO(6) symmetry for six

half-hypermultiplets. We then only gauge five of them with SO(5) gauge group. In this way, one
mass parameter is frozen, so we get a total of two mass parameters.
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Finally when k > 2, all the gauge groups do not change anymore and stay as those
in previous section.

We can carry out similar analysis for all DN theory when k is small. This indicates
that as we vary the external data, the new punctures appearing in the degeneration
limit vary as well.

Class (k, b)
For general b > 1 and (k, b) coprime, we need to classify which irregular punctures
engineer superconformal theories, and study its duality as before. One subtlety that
appears here is that, unlike b = 1 case in previous section, here we need to carefully
distinguish between whether b is an odd/even divisor of N/2N − 2, as their numbers
of exact marginal deformations are different.

Coulomb branch spectrum and degenerating coefficient matrices. We elaborate
here the procedure how to count graded Coulomb branch dimension for general
b > 1.

(i) b is an odd divisor of N . We may label the degenerating matrices similar to
labelling the Levi subgroup: [r1, . . . , rn; r̃], where

∑
2bri + r̃ = 2N , and there are

n − 1 exact marginal deformations. To calculate the Coulomb branch spectrum, we
first introduce a covering coordinate z = wb, such that the pole structure becomes

T`

z2+ k
b

→
T ′
`

wk+b+1 , (5.69)

and T ′
`
is given by Levi subgroup of type [r1, . . . , r1, . . . , rn, . . . rn; r̃], where ri is

repeated b times. Then we are back to the case b = 1. This would give the maximal
degree d2i in the monomial wd2i x2N−2i that gives Coulomb branch moduli. The
monomial corresponds to the degree 2i differential φ2i, and after converting back to
coordinate z, we have the degree of z in zd ′2i x2N−2i as

d′2i ≤

⌊
d2i − 2i(b − 1)

b

⌋
, (5.70)

and similar for the Pfaffian φ̃.

(ii) b is an even divisor of N . We can label the matrix T` as [r1, r2, . . . , rn; r̃] such
that

∑
bri + r̃ = 2N . Then, we take the change of variables z = wb, and T ′

`
is given

by repeating each ri (b/2) times, while r̃ is the same. This reduces to the class (k, 1)
theories.
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(iii) b is an odd divisor of 2N − 2. We use [r1, . . . , rn; r̃] to label the Levi subgroup,
which satisfies 2b

∑
ri + r̃ = 2N −2. To get the Coulomb branch spectrum, we again

change the coordinates z = wb, and the new coefficient matrix T ′
`
is now given by

Levi subgroup of type [r1, . . . , r1, . . . , rn, . . . , rn; r̃], where each ri appears b times.
This again reduces to the class (k, 1) theories.

(iv) b is an even divisor of 2N − 2. This case is similar once we know the procedure
in cases (ii) and (iii). We omit the details.

The above prescription also indicates the constraints on coefficient matrices in
order for the resulting 4d theory is a SCFT. We conclude that Ti should satisfy
T` = · · · = T2, T1 is arbitrary.

To see our prescription is the right one, we can check the case D4. As an example,
we can consider the Higgs field

Φ ∼
T`

z2+ 1
4
+ . . . , ` = 6, (5.71)

and all Ti to be [1, 1; 0]. Using the above procedure, we know that at φ6 there is a
nontrivial moduli whose scaling dimension is 6/5. This is exactly the same as that
given by hypersurface singularity in type IIB construction. Similarly, we may take
D5 theory:

Φ ∼
T`

z2+ 1
4
+ . . . , ` = 6, (5.72)

and all Ti’s given by [1, 1; 2]. After changing variables we have T ′i given by
[1, 1, 1, 1; 2], which is the same as [15; 0]. Then we have two Coulomb branch
moduli with scaling dimension {6/5, 8/5}, same as predicted by type IIB construc-
tion.

Duality frames. Now we study the S-duality for these theories. As one example,
we may consider D4 theory of class (k, b) = (3, 2), and T` is given by [1, 1, 1, 1; 0].
We put an extra trivial regular puncture at the south pole. This theory has Coulomb
branch spectrum

∆(O) =

{(
6
5

)×4
,

(
8
5

)×3
, (2)×3,

(
12
5

)×3
,

14
5
,

16
5
,

18
5

}
. (5.73)

In the degeneration limit, we get three theories, described in figure 5.10. The middle
theory

(
I I I[1;4]×5,[1,1,1;0]

3,2 , [3, 1, 1, 1]
)
gets further twisted in the sense mentioned in the

next subsection, and hasCoulombbranch spectrum {6/5, 8/5, 12/5, 12/5, 14/5, 16/5, 18/5}.
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Besides it, the far left theory is two copies of (A1,D5) theory with Coulomb branch
spectrum {8/5, 6/5} each. The far right theory is an untwisted theory, given by(
I I I[1;6]×5,[1,1;4]

3,2 , S
)
, giving spectrum {12/5, 6/5}. Along with the SO(4) and SU(2)

gauge group, we see that the Coulomb branch spectrum nicely matches together. We
conjecture that this is the weakly coupled description for the initial Argyres-Douglas
theory.

Figure 5.10: S-duality for D4 theory of class (3, 2). Here we pick the coefficient
matrices to be of type [1, 1, 1, 1; 0], with a trivial regular puncture (this setup can
be relaxed to general D4 regular punctures). In the degeneration limit, we get
SO(4) × SU(2) gauge group plus three Argyes-Douglas matter. The leftmost theory
is in fact two copies of (A1,D5) theory, while the middle theory is given by twisted
D3 theory, given by twisting the theory

(
I I I[1;4]×5,[1,1,1;0]

3,2 , [3, 1, 1, 1]
)
. The rightmost

theory is
(
I I I[1;6]×5,[1,1;4]

3,2 , S
)
theory.

In this example, each gauge coupling is exactly conformal as well.

As a second example, we consider D3 theory of class (3, 2). The coefficient matrices
are given by T6 = · · · = T2 = T1 = [1, 1; 2]. We put a trivial regular puncture at the
south pole. This theory has Coulomb branch spectrum

∆(O) =

{
6
5
,

6
5
,

7
5
,

8
5
,

9
5
, 2,

12
5

}
, (5.74)

and is represented by an auxiliary Riemann sphere with two black dots of type
[1], one blue square of size 2 and one trivial red cross. See figure 5.11. After
degeneration, we get two theories. We compute that the first theory is a twisting
of

(
I I I[1;2]×5,[1,1;0], [14]

)
, having spectrum {6/5, 7/5, 8/5, 9/5}. The second theory(

I I I[1;4]×5,[1,1,1;0]
3,2 , S

)
has spectrum {12/5, 6/5}. The middle gauge group is SO(3),

although the two sides superficially have SO(4) symmetry.
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Figure 5.11: S-duality for D3 theory of class (3, 2). Here we pick the coefficient
matrices to be of type [1, 1; 2], with a trivial regular puncture (this setup can be
relaxed to general D3 regular punctures).

Z2-twisted theory
If the Lie algebra g has a nontrivial automorphism group Out(g), then one may
consider twisted punctures. This means that as one goes around the puncture, the
Higgs field undergoes an action of nontrivial element o ∈ Out(g):

Φ(e2πiz) = h[o(Φ(z))]h−1, (5.75)

where h ∈ g/j∨ with j∨ the invariant subalgebra under Out(g). Let us denote j the
Langlands dual of j∨.

In this section we solely consider DN theory with automorphism group Z2. It has
invariant subalgebra j∨ = BN−1 whose Langlands dual is j = CN−1. For more
details of other Lie algebra g, see [113, 191–195]. We review some background
for twisted regular punctures as in [192], and then proceed to understand twisted
irregular punctures and their S-duality. For previous study of S-duality for twisted
theory, see [196, 197].

Twisted regular punctures. Following [192], a regular twisted DN punctures
are labelled by nilpotent orbit of CN−1, or a C-partition d of 2N − 2, where all
odd parts appear with even multiplicity. To fix the local Higgs field, note that Z2

automorphism group split the Lie algebra g as g = j1 ⊕ j−1, with eigenvalue ±1
respectively. Apparently, j1 = BN−1. The Higgs field behaves as

Φ ∼
Λ

z
+
Λ′

z1/2 + M, (5.76)

where Λ′ is a generic element of j−1 and M is a generic element of j1. Λ is an
element residing in the nilpotent orbit of BN−1, which is given by a B-partition



165

of 2N − 1, where all even parts appear with even multiplicity. It is again related
to the C-partition d via the Spaltenstein map S. To be more specific, we have
S(d) =

(
d+T)

B:

• First, “+” means one add an entry 1 to the C-partition d;

• Then, perform transpose of d+, corresponding to the superscript T;

• Finally, (·)B denotes the B-collapse. The procedure is the same as D-collapse
in section 5.2.

For later use we will also introduce the action S on a B-partition d′. This should
give a C-partition. Concretely, we haveS(d′) = (d′T−)C:

• First, “T” means one take transpose of d′;

• Then, perform reduction of d′T, corresponding to subtract the last entry of d′T

by 1;

• Finally, (·)C denotes the C-collapse. The procedure is the same as B- and
D-collapse except that it now operates on the odd part which appears even
multiplicity.

Given a regular puncture with a C-partition, we may read off its residual flavor
symmetry as

Gflavor =
∏

h even
SO(nh) ×

∏
h odd

Sp
(
nh

)
. (5.77)

We may also calculate the pole structure of each differential φ2i and the Pfaffian φ̃
in the Seiberg-Witten curve (5.7). We denote them as {p2, p4, . . . , p2N−2; p̃}; in the
twisted case, the pole order of the Pfaffian φ̃ is always half-integer.

As in the untwisted case, the coefficient for the leading singularity of each differential
may not be independent from each other. There are constraints for c(2k)

l , which we
adopt the same notation as for the untwisted regular puncture. The constraints of
the form

c(2k)
l =

(
a(k)l/2

)2
(5.78)

effectively remove one Coulomb branch moduli at degree 2k and increase one
Coulomb branch moduli at degree k, while the constraints of the form

c(2k)
l = . . . (5.79)
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only remove one moduli at degree 2k. For the algorithm of counting constraints for
each differentials and complete list for the pole structures, see reference [192]. After
knowing all the pole structures and constraints on their coefficients, we can now
compute the graded Coulomb branch dimensions exactly as those done in section
5.2. We can also express the local contribution to the Coulomb branch moduli as

dimρ
C
Coulomb =

1
2
[
dimCS(Oρ) + dim g/j∨

]
, (5.80)

here Oρ is a nilpotent orbit in CN−1 andS(Oρ) is a nilpotent orbit in BN−1.

Twisted irregular puncture. Now we turn to twisted irregular puncture. We only
consider the “maximal twisted irregular singularities”. The form of the Higgs field
is, in our Z2 twisting,

Φ ∼
T`
z`
+

U`

z`−1/2 +
T`−1

z`−1 +
U`−1

z`−3/2 + · · · +
T1

z
+ . . . . (5.81)

Here all the Ti’s are in the invariant subalgebra so(2N − 1) and all Ui’s are in its
complement j−1. To get the Coulomb branch dimension, note that the nontrivial
element o ∈ Out(g) acts on the differentials in the SW curve as

o : φ2i → φ2i for 1 ≤ i ≤ N − 1,

φ̃N → −φ̃N .
(5.82)

Then, theCoulombbranch dimension coming from the twisted irregular singularities
can be written as [104]:

dimρ
C
Coulomb =

1
2

[∑̀
i=1

dim Ti +
∑̀
i=2
(dim g/j∨ − 1) + dim g/j∨

]
. (5.83)

In the above formula, the −1 term in the middle summand comes from treating
Ui, 2 ≤ i ≤ ` as parameter instead of moduli of the theory. It corresponds to the
Pfaffian φ̃N which switches sign under o ∈ Out(g).

As in the untwisted case, we are also interested in the degeneration of Ti and the
graded Coulomb branch dimension. First of all, we know that as an so(2N − 1)
matrix, Ti can be written down as

©«

0 u v

−vT Z1 Z2

−uT Z3 −Z1

ª®®®®®®®®¬
, (5.84)
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with Z1,2,3 (N−1)×(N−1)matrices, and Z2,3 are skew symmetric; while u, v are row
vectors of size N − 1. After appropriate diagonalization, only Z1 is nonvanishing.
So a Levi subalgebra can be labelled by [r1, . . . , rn; r̃ + 1], with r̃ + 1 always an odd
number. The associated Levi subgroup is

L =
∏

i

U(ri) × SO(r̃ + 1). (5.85)

Now we state our proposal for whether a given twisted irregular puncture defines a
SCFT in four dimensions. Similar to untwisted case, we require that T` = T`−1 =

· · · = T2 and T1 can be further arbitrary partition of Ti≥2. When all the Ti’s are
regular semisimple, we can draw Newton polygon for these theories. They are the
same as untwisted case, except that the monomials living in the Pfaffian φ̃N get shift
down one half unit [104].

Example: D4 maximal twisted irregular puncture with ` = 3. We consider all
Ti to be regular semisimple so(7) element [1, 1, 1; 1], plus a trivial twisted regular
puncture. From the Newton polygon, we know the spectrum for this theory is
{2, 3/2, 3, 5/2, 2, 3/2, 7/4, 5/4}.

S-duality for twisted DN theory of class (k, 1). Having all the necessary techniques
at hand, we are now ready to apply the algorithm previously developed and generate
S-duality frame. We state our rules as follows for theory of class (k, 1)with k = `−2.

• Given coefficient matrices T` = · · · = T2 = [r1, . . . , rn; r̃ + 1], and T1 being
further partition ofTi, we represent the theory on an auxiliary Riemann sphere
with n black dots with size ri, 1 ≤ i ≤ n, a blue square with size r̃ , and a red
cross representing the regular puncture, labelled by a C-partition of 2N − 2.

• Different S-duality frames are given by different degeneration limit of the
auxiliary Riemann sphere.

• Finally, one needs to figure out the newly appeared punctures. The gauge
group can only connect a red cross and a blue square (Sp gauge group). This
is different from the untwisted case we considered before.

Let us proceed to examine the examples. We first give a comprehensive discussion
of D4 theory.
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Duality at large k. We have initially three black dots of type [1], a trivial blue
square and an arbitrary red cross representing a regular puncture. This theory has a
part of the Coulomb branch spectrum coming from irregular puncture:

∆(O) =
k + 2
k + 1

, . . . ,
2k

k + 1
,

=
k + 2
k + 1

, . . . ,
4k

k + 1
,

=
k + 2
k + 1

, . . . ,
6k

k + 1
,

=
k + 3/2
k + 1

, . . . ,
4k − 1/2

k + 1
.

(5.86)

The S-duality frame for this theory is given in figure 5.12.

Figure 5.12: S-duality for twisted D4 theory of class (k, 1) with large k. Each
Argyres-Douglas matter is connected with Sp gauge group. Assembling the black
dot and the blue square we can read off the data for the irregular puncture and thus
identify the theory.

The duality frame in figure 5.12 tells us the Coulomb branch spectrum of each piece.
The leftmost theory

(
I I I[1;1]×(k+2)

k,1 , F
)
has the spectrum

∆1(O) =
k + 2
k + 1

, . . . ,
2k + 1
k + 1

,

=
k + 3/2
k + 1

, . . . ,
2k + 3/2

k + 1
.

(5.87)
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The rightmost theory is given by
(
I I I[1;5]×(k+1),[1,1,1;1]

k,1 ,Q
)
whose spectrum comes

from the irregular part is

∆2(O) =
k + 2
k + 1

, . . . ,
2k

k + 1
,

=
2k + 3
k + 1

, . . . ,
4k

k + 1
,

=
4k + 5
k + 1

, . . . ,
6k

k + 1
,

=
3k + 7/2

k + 1
, . . . ,

4k − 1/2
k + 1

.

(5.88)

Finally, the middle theory is
(
I I I[1;3]×(k+1),[1,1;1]

k,1 , F
)
. It contributes to the Coulomb

branch spectrum coming from the irregular puncture

∆3(O) =
k + 2
k + 1

, . . . ,
2k + 1
k + 1

,

=
2k + 3
k + 1

, . . . ,
4k + 3
k + 1

,

=
2k + 5/2

k + 1
, . . . ,

3k + 5/2
k + 1

.

(5.89)

These three pieces nicely assemble together and form the total spectrum of original
theory. We thus have Sp(2) × Sp(4) gauge groups.

Duality at small k. Similar to the untwisted case, we expect that some of the gauge
group would be smaller. We now focus on a trivial twisted regular puncture in figure
5.12. Analysis for other twisted regular punctures are analogous.

We find that for k = 1,

(
I I I[1;5]×2,[1,1;3]

1,1 , [6]
)
.

Sp(2)(
I I I[1;3]×2,[1,1;1]

1,1 , [2, 1, 1]
)Sp(2)(

I I I[1;1]×3

1,1 , [1, 1]
)

When k ≥ 2, the second Sp(2) gauge group becomes Sp(4) and we reduce to the
large k calculations.

S-duality of DN theory. When k is large, the intermediate gauge group in the
degeneration limit does not depend on which twisted regular puncture one puts, and
they are all full punctures. To obtain the duality frames, we can again follow the
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recursive procedure by splitting the Argyres-Douglas matter one by one. See the
example of such splitting in figure 5.13. Again, due to twisting things become more
constraining, and all matter should have a blue square on its auxiliary Riemann
sphere.

Figure 5.13: S-duality for twisted DN theory of class (k, 1) with large k. Here we
present the duality frame recursively by splitting the Argyres-Douglas matter. In
the first line we split a theory

(
I I I[1;1]×(k+2)

k,1 , F
)
with F a full D2 twisted puncture;

in the second line we split a theory
(
I I I[1;2N−3]×(k+1),[1N−1;1]

k,1 ,Q
)
with original regular

puncture Q.

When k is small, some of the intermediate puncture would be smaller. One needs
to figure out those punctures carefully. We leave the details to interested readers.

5.5 Comments on S-duality for E-type theories
Finally, we turn to the duality frames for g = e6,7,8. We focus on the Lie algebra e6

while state our conjecture for e7 and e8 case.

A complete list of all the relevant data for regular punctures can be found in [179,
180, 194]. We will use some of their results here for studying irregular puncture.
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Levi subalgebra l Nahm Bala-Carter label

0 0

A1 A1

2A1 2A1

3A1 (3A1)
∗

A2 A2

A2 + A1 A2 + A1

2A2 2A2

A3 A3

2A2 + A1 (2A2 + A1)
∗

A2 + 2A1 A2 + 2A1

A3 + A1 (A3 + A1)
∗

D4 D4

A4 A4

A4 + A1 A4 + A1

A5 (A5)
∗

D5 D5

Table 5.10: The correspondence between Nahm label and the Levi subalgebra. The
Levi subalgebra E6 is omitted as it does not give any irregular puncture. We use
∗ to denote the non-special nilpotent orbit. The pole structure and constraints can
be found in [179]. Again, we exclude those with non-principal orbit in the Levi
subalgebra.

Irregular puncture and S-duality for E6 theory
We focus on the irregular singularity (5.54). The first task is to characterize the de-
generation of coefficient matrices. Those matrices Ti, 1 ≤ i ≤ ` shall be represented
by a Levi subalgebra l. See section 5.2 for the list of conjugacy classes. For each
Levi subalgebra l, we associate a nilpotent orbit with Nahm label. Since we are
already using Bala-Carter’s notation, we can directly read of l. See table 5.10. Here
we exclude Bala-Carter label of the form E6(·), as it gives maximal Levi subalgebra
so the irregular puncture is trivial.
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We are now ready to count the Coulomb branch spectrum for a given E6 irregular
puncture of class (k, 1), were ` = k + 2. We use the SW curve from type IIB
construction, whose isolated singularity has the form7

x2
1 + x3

2 + x4
3 + z12k = 0, (5.90)

whose deformation looks like

x2
1 + x3

2 + x4
3 + φ2(z)x2x2

3 + φ5(z)x2x3 + φ6(z)x2
3 + φ8(z)x2 + φ9(z)x3 + φ12(z) = 0,

(5.91)
where at the singularity φ12 = z12k . The Coulomb branch spectrum is encoded in
these Casimirs. For example, when k = 1 and regular semisimple coefficients, we
know the scaling dimensions for each letter are

[x1] = 3, [x2] = 2, [x3] =
3
2
, [z] =

1
2
. (5.92)

By enumerating the quotient algebra generator of this hypersurface singularity we
know that the number of moduli for each differential is {d2, d5, d6, d8, d9, d12} =

{0, 3, 4, 6, 7, 10}. This is consistent with adding pole structures and subtract global
contribution of three maximal E6 regular punctures.

S-duality for E6 theory. We now study the S-duality for E6 theory of class (k, 1),
with coefficient all regular semisimple. From the DN S-duality, we know that the
Levi subalgebra directly relates to the flavor symmetry. If we take the coefficient
matrix to be regular semisimple, then our initial theory is given by a sphere with
six black dots, one trivial blue square and one red cross (which is an arbitrary E6

regular puncture.

We only consider large k situation. In type IIB construction (5.91), the scaling
dimensions for each letter are

[x1] =
6k

k + 1
, [x2] =

4k
k + 1

, [x3] =
3k

k + 1
, [z] =

1
k + 1

. (5.93)

So we have the spectrum of initial theory coming from irregular puncture as

φ2 :
2k

k + 1
, . . . ,

k + 2
k + 1

, φ5 :
5k

k + 1
, . . . ,

k + 2
k + 1

,

φ6 :
6k

k + 1
, . . . ,

k + 2
k + 1

, φ8 :
8k

k + 1
, . . . ,

k + 2
k + 1

,

φ9 :
9k

k + 1
, . . . ,

k + 2
k + 1

, φ12 :
12k
k + 1

, . . . ,
k + 2
k + 1

.

(5.94)

7As we consider (k, 1) theory, there is no distinction between whether it comes from b = 8, 9 or
12. We can simply pick anyone of them.
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There are several ways to split Argyres-Douglas matter. For example, we may pop
out two black dots and one trivial blue square. We get the duality frame

(
I I I[1,1;0]×k+2

k,1 , [14]
)
,

SO(4)(
I I I(2A1)

×(k+1),0
k,1 ,QE6

)
and here the right hand side theory is two copies of (A1,D2k+2) theory. This duality
frame persists to k = 1. We have checked that the central charge matches.

The second way is to pop out a trivial black dot and the E6 regular puncture. This
results in D5 gauge group:

(
I I I(D5)

×(k+1),0
k,1 ,Q

)
,

SO(10)(
I I I[1

5;0]×(k+2)

k,1 , [110]
)

where the theory
(
I I I[1

5;0]×(k+2)

k,1 , [110]
)
can be further degenerate according to DN

type rules. The spectrum counting is explained in the example in section 5.2. We
see it correctly reproduces SO(10) flavor symmetry. We have also checked that the
central charge matches.

Another way is to give SU(6) gauge group in the degeneration limit, by poping out
a trivial blue puncture and red cross.

(
I I I(A5)

×(k+1),0
k,1 ,QE6

)
.

SU(6)(
I I I[1

6]×(k+2)

k,1 , [16]
)

We find that the central charges match as well.

E7 and E8 theory
Finally, we turn to E7 and E8 Argyres-Douglas theories. Tinkertoys for E7 theories
have been worked out in [180]. Similar ideas go through and we will outline the
steps here. The key ingredient is to use type IIB construction to count the moduli.
For E7 theory, the deformed singularity has the form

x2
1 + x3

2 + x2x3
3 + φ2(z)x2

2 x3 + φ6(z)x2
2 + φ8(z)x2x3

+ φ10(z)x2
3 + φ12(z)x2 + φ14(z)x3 + φ18(z) = 0,

(5.95)
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where {φ2, φ6, φ8, φ10, φ12, φ14, φ18} are independent differentials. For E8 theory,
the deformed hypersurface singularity has the form:

x2
1 + x3

2 + x5
3 + φ2(z)x2x3

3 + φ8(z)x2x2
3 + φ12(z)x3

3

+ φ14(z)x2x3 + φ18(z)x2
3 + φ20(z)x2 + φ24(z)x3 + φ30(z) = 0,

(5.96)

where {φ2, φ8, φ12, φ14, φ18, φ20, φ24, φ30} are independent differentials.

The regular puncture for these two exceptional algebras are again given the Bala-
Carter label. One can read off the Levi subalgebra similar as before. This then
provides the way of counting Coulomb branch spectrum. The duality frame can
then be inferred by comparing the spectrum in the degeneration limit, and checked
with central charge computation (5.51).

For example, we have in e7 theory one duality frame which looks like

(
I I I(E6)

×(k+1),0
k,1 ,Q

)
,

E6(
I I I(0)

×(k+2)

k,1 , Fe6

)
where Fe6 is the full E6 regular puncture. Another duality frame is

(
I I I(A6)

×(k+1),0
k,1 ,Q

)
.

SU(7)(
I I I[1

7]×(k+2)

k,1 , [17]
)

For e8 theory, we have the duality frames

(
I I I(E7)

×(k+1),0
k,1 ,Q

)
,

E7(
I I I(0)

×(k+2)

k,1 , Fe7

)
and

(
I I I(A7)

×(k+1),0
k,1 ,Q

)
.

SU(8)(
I I I(0)

×(k+2)

k,1 , [18]
)

Wehave checked that the central charges and the Coulomb branch spectrummatches.
The left hand theory of each duality frames can be further degenerated according to
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known rules for lower rank ADE Lie algebras, and we do not picture them anymore.
Here we see the interesting duality appears again: the quivers with EN type gauge
group are dual to quivers with AN−1 type quivers.
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C h a p t e r 6

QUANTUM CHIRAL RINGS IN FOUR DIMENSIONAL N = 1
ADJOINT SQCD

6.1 Overview of N = 1 theories
In this chapter, we study theories with less supersymmetry in four dimensions. The
realm ofN = 1 theories in four dimensions exhibits various interesting phenomena,
among which electric magnetic dualities play an important role. The pioneering
work of Seiberg [22] demonstrated the IR equivalence of two seemingly distinct
gauge theories, in which he showed several exact matchings between operators,
moduli space of vacua, and massless excitations near singularities. This provides
many insights into the non-abelian gauge dynamics of N = 1 theories.

Soon it was realized that such dualities are generic for N = 1 theories [198, 199].
In [200, 201], an attempt was made by Kutasov to analyze the dynamics of N = 1
SQCD with fundamental matter plus one adjoint chiral multiplet (ASQCD)1. He
showed that by properly adding a superpotential term for adjoint chiral multiplet
that truncates the chiral ring of the theory, a generalized version of Seiberg duality
also exists. This duality undergoes various semi-classical consistency checks [202],
and it also sheds light on the quantum chiral ring relations in the original electric
theory: a quantum chiral ring relation for Coulomb operators are in fact classical
combinatoric constraints in the dual theory. The duality was further explored by
[203, 204] to understand the spectra of the confining theory; the corresponding
effective superpotential was written down. It was shown there that the effective
superpotential is generated by multi-instanton effects in the dual theory.

Meanwhile, another important progress was achieved by the seminal work of Dijk-
graaf andVafa [205] in probingN = 1 dynamics. They conjectured that the effective
superpotential of a wide class ofN = 1 supersymmetric gauge theories can actually
be calculated perturbatively in a closely related matrix model, whose potential is
just the classical superpotential of the gauge theory. A striking conclusion was
that only planar diagrams in the matrix model suffice. Later, Cachazo et al [206]
provided a purely field-theoretic proof of the correspondence proposed by Dijkgraaf

1In the rest of the chapter, we will call the ASQCD with tree level superpotential considered in
[201] for adjoint superfield “Kutasov model”.
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and Vafa, by analyzing Konishi anomalies and chiral rings of U(N) gauge theory
with one adjoint chiral multiplet. The powerful conjecture of [205] makes many
exact computation inN = 1 theories (with or without adjoint superfield) accessible;
to name several but not all of them, see for instance, [207–217].

However, even with the proposal of duality and the tools from matrix model, there
are many other peculiar phenomena in ASQCD that escape precise understanding.
For instance, with the aid of a-maximization [133, 218, 219], one discovers that for
Kutasov model at large N , some chiral operators decouple and become free under
RG flow, introducing in the IR so-called “accidential symmetry”[134]. Moreover,
in [220] the author found that in such class of theories there are UV irrelevant
operators whose scaling dimensions cross marginality under the flow, and hence
are “dangerously irrelevant” [221]. The appearance of such operators are quite
counter-intuitive in the sense that in the Morse theory interpretation, RG flow is
usually triggered by relevant operators; in other words, the relevant operators are
“consumed” along the RG trajectory, and its number should thus decrease along
the flow. This “marginality crossing” behavior is in fact special only to N = 1
theories in four dimensions; indeed, as shown in [139],N = 2 theories do not admit
dangerously irrelevant operators.

Resolving these peculiarities in N = 1 ASQCD often requires a more precise
understanding of vacuum structure, and it is our main motivation of this chapter.
We will focus on chiral rings of Kutasov model as well as its mass deformed
counterpart. The chiral ring probes the vacua of the theory, and tells us about the
quantitative behavior at low energies: e.g., chiral symmetry breaking, confinement,
and electric-magnetic duality. The complete chiral ring relation forU(N) theorywith
one adjoint chiral superfield is obtained in [222], and our work is a generalization
of that.

We remark that Kutasov model falls into an ADE classification of SQCD with
adjoints [23]. This series are revisited recently in [223], where some puzzles are
found. We hope that the full analysis of the quantum chiral ring would resolve
these puzzles and eventually help to understand the entire ADE series2 or ASQCD
without superpotentials.

2See, for instance, [224] on some related work.
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Background and summary
In this chapter we analyze the chiral ring of four-dimensionalN = 1 supersymmetric
U(Nc) gauge theory with one chiral multiplet Φ in the adjoint representation of
U(Nc), and N f fundamental as well as antifundamental chiral multiplets Q̃ f̃ and Q f

where f , f̃ = 1, 2, . . . , N f . We consider asymptotic free theories, namely 2Nc > N f .
The Lagrangian of the theory is

L =
1
g2

[∫
d4θ Q†i eVQi + Q̃ĩe

−VQ̃†ĩ + Φ†e[V,·]Φ
]
+

1
4g2

(∫
d2θ WαWα + c.c.

)
,

(6.1)
where for simplicity we do not distinguish between theU(1) couplings inU(Nc) and
SU(Nc) couplings, unlike that of [225]. We also think of U(Nc) Kutasov model as
coming from SU(Nc)model by gauging the U(1) baryon symmetry. Kutasov model
also requires a superpotential of Φ labelled by a positive integer k,

W(Φ) =
h

k + 1
TrΦk+1, (6.2)

and the UV theory enjoys an SU(N f )L×SU(N f )R×U(1)r symmetry. In this chapter,
we mostly focus on k = 2.

For kN f < Nc, the theory does not have a quantum vacua; for kN f = Nc the vacua
is modified quantum mechanically; for kN f = Nc + 1 the theory is s-confining, and
the effective potential is given by a set of composite degrees of freedom with an
irrelevant potential. For kN f > Nc the theory admits a dual magnetic description
with gauge group U(kN f − Nc).

Kutasov model in general has nontrivial moduli spaces, to understand its quantum
chiral ring/quantum vacua, one adds proper deformations to the tree level potential
(6.2) to collapse the flat directions. The most general single trace deformation we
can add is [208, 209]

Wtree = Tr W̃(Φ) + Q̃ f̃ m f̃
f (Φ)Q

f , (6.3)

where

W̃(z) =
k∑

n=0

1
n + 1

gnzn+1, (6.4a)

m f̃
f (z) =

l+1∑
n=1

m f̃
f ,nzn−1. (6.4b)

Also we define L = lN f .
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We will call such theory with deformed superpotential (6.3) the “mass deformed”
version or “deformed cousin” of Kutasov model. In the bulk of the chapter we will
be frequently comparing massive and massless theories.

The chapter is organized as follows. In section 6.2 we review some well-known facts
about the chiral ring for U(Nc) ASQCD. We classify chiral operators and describe
their relations, with special emphasis on two equivalent descriptions: the algebraic
description in terms of generators and relations, as well as the geometric description
in terms of expectation values for various composite fields.

In section 6.3we calculate the the classical chiral ring and describe different branches
of the moduli space.

After that, section 6.4 is devoted to understand the quantum corrections to the chiral
ring. We will list the complete Konishi anomaly equations that give the perturbative
chiral ring. The nonperturbative corrections come from certain resolvent operators,
whose periods over one cycles of some auxilliary Riemann surface should be integer
[209]. It has also been known how to solve the off-shell vacuum expectation values
for mass deformed theory [209]; and in this chapter we solve them on-shell. In
the mass deformed theory, the classical vacua are shifted by quantum effects and
there are nonvanishing gaugino condensations. With the inclusion of a new Konishi
anomaly equation, we are able to prove that the solutions of the chiral ring are
in one-to-one correspondence of the supersymmetric vacua. Then, we focus on
massless Kutasov model itself. The difficulty of understanding the flat direction of
the moduli, unlike that of SQCD, is that the theory has more possible deformations.
We will examine a special massless limit and its implications.

Finally, section 6.5 applies the established framework to some examples of massless
model. We will see the existence of quantum corrections directly.

6.2 Chiral rings in N = 1 theories
Following the notation of [206, 208] we review some basics of chiral rings of four
dimensionalN = 1 theories, with fundamental plus adjoint matter. An operatorO is
chiral if it is annihilated by a pair of supercharges of the same chirality: [Q Ûα,O} = 0.
One readily checks that a product of two chiral operators is again a chiral operator,
and therefore chiral operators form a ring.

In the chiral ring, one defines an equivalence relation, namely two chiral operators
are equivalent if they differ by a Q Ûα-exact term. Modulo this equivalence relation,
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a chiral operator is independent of the position since

∂

∂xµ
O(x) = [Pµ,O(x)] = {Q

Ûα
, [Qα,O(x)]}. (6.5)

Therefore, the correlation function of the form 〈O(1)(x1)O
(2)(x2) . . .O

(n)(xn)〉 is
independent of each coordinate x1, x2, . . . xn. It is then possible to move each
operator insertion to be mutually far away, such that the expectation value factorizes:

〈O(1)(x1)O
(2)(x2) . . .O

(n)(xn)〉 = 〈O
(1)〉〈O(2)〉 . . . 〈O(n)〉. (6.6)

For ASQCD, we need to classify all the possible chiral operators modulo Q Ûα-exact
terms. A crucial fact used in [206, 226] is that, for an adjoint valued chiral superfield
O, [

Q Ûα,Dα ÛαO

}
= [Wα,O}, (6.7)

which implies the adjoint superfield Φ commutes with vector superfield Wα while
Wα anti-commutes with Wβ. For fundamentals, WαQ f as well as Q̃ f̃ Wα is not in the
chiral ring [208]. Therefore the possible candidates for the ring are

uk = TrΦk, (6.8a)

wα,k =
1

4π
TrΦkWα, (6.8b)

rk = −
1

32π
TrΦkWαWα, (6.8c)

v
f
f̃ ,k
= Q̃ f̃Φ

kQ f . (6.8d)

We name uk the Casimir operators, rk the generalized glueballs, wα,k the generalized
photinos, and vk the generalized mesons3. Their form suggests to define resolvent
operators as the generating function of these chiral operators

T(z) = Tr
1

z − Φ
, (6.9a)

wα(z) =
1

4π
Tr

Wα

z − Φ
, (6.9b)

R(z) = −
1

32π2Tr
WαWα

z − Φ
, (6.9c)

M f
f̃
(z) = Q̃ f̃

1
z − Φ

Q f . (6.9d)

3There is a slight notation difference between here and what people usually call “generalized
mesons” in the literature. What we mean by vk is often denoted as Mk+1.



181

We will be mostly interested in the resolvent T(z), R(z) and M(z). For supersym-
metric vacua, the chiral operators wα,k are zero [222]. Although there are nontrivial
ring relations among wα,k , for solving the vacua we can temporarily neglect them,
see section 6.4. For U(Nc) theories, the single baryon B[i1,...,ik ][ik+1,...,iNc ] formed by
dressed quark is not gauge invariant; but the composite B̃B is. However, such oper-
ators are not in the chiral ring since they can be expressed in terms of generalized
mesons, and thus are not independent.

In general, whether at classical or quantum level, the chiral ring of a theory T is a
quotient of polynomial ring by some ideal, S:

R(T ) = C[uk,wα,k, rk, v
f
f̃ ,k
]/S. (6.10)

We call the ideal S the chiral ring relation. Such notation provides two interpre-
tations of the chiral rings. First, the solution satisfying the relation given by S
parametrize the supersymmetric vacua. Hence one thinks of the moduli space of
vacua as an algebraic variety defined by ideal S in the polynomial ring. Second, the
chiral ring is the coordinate ring defined on the variety. These two interpretations
establish an algebraic and geometric connections between chiral rings and vacua of
the theory, similar to the stories in classical algebraic geometry.

Specifically, let V(·) denote the operation of taking algebraic varieties of an ideal,
I(·) the operation of taking polynomials vanishes on the algebraic variety, then by
Hilbert’s Nullstellensatz,

I(V(S)) =
√
S, (6.11)

with
√
S the radical ideal. Inmodern language of schemes, we haveV(S) := SpecR.

A remark is in order. Unlike (twisted) chiral ring in two dimensions, in four
dimensions the N = 1 chiral ring cannot be formulated in term of cohomology
[227]. The intuitive reason for that is the supercharges (of the same chirality) as part
of the definition in the cochain complex carries Lorentz indices, which are rotated
into each other under SO(4) Lorentz group. Since one may construct an example
that cohomological description fails for a particular supercharge Q Û1, one sees that it
fails for all linear combination of two supercharges a ÛαQ Ûα.

In what follows, we denote Ŝ as the quantum relations of Kutasov model, and
correspondingly R̂ for quantum chiral rings.
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6.3 Classical chiral rings of Kutasov model
Generalities
In this subsection we mainly focus on the massless model with superpotential (6.2).
We will briefly comment on its relation to the mass deformed counterpart at the end.

From the Lagrangian of the theory we know that the corresponding D-term equation
reads

[Φ†,Φ] + (QiQ†i − Q̃†ĩQ̃ĩ) = 0, (6.12)

while the F-term constraint is
Φ

k = 0, (6.13)

so Φ is nilpotent4 with degree k. The nilpotent matrix always has degree no bigger
than its order, so for simplicity we only discuss k ≤ Nc in this paper5. The only
nilpotent matrix which is diagonalizable is zero matrix; others can only be put into
Jordan normal form:

Φ =

©«

J1

J2

. . .

Jn

ª®®®®®®®®®¬
, (6.14)

where the Jordan block Ji is

Ji =

©«

λi 1

λi 1
. . . 1

λi

ª®®®®®®®®®¬
. (6.15)

The nilpotency implies that λ1 = λ2 = · · · = λn = 0. A Jordan block Ji is uniquely
determined by its order Ni. Thus a nilpotent matrix can be labelled by a partition of
Nc, [N1, N2, . . . , Nn], characterizing the size of Jordan blocks : N1+N2+· · ·+Nn = Nc

with k ≥ N1 ≥ N2 ≥ · · · ≥ Nn. We use the symbol Y as a Young tableau with i-th
4This is not true for SU(Nc) theories, where a traceless condition should be imposed. This

additional constraint makes Φ either diagonalizable or nilpotent. See [203, 204] for more details.
5Strictly speaking, k = Nc case is in fact a double trace superpotential, as Tr XNc+1 is not

independent.
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row of length Ni. It is a Young tableau for partition of Nc into integers no larger
than k.

For nilpotent matrix, we always have

TrΦ j = 0, j > 0, (6.16)

which means that classically the vevs of Casimir operators u j in (6.8a) are always
zero. Note this does not mean u j = 0 in the chiral ring6. In the meantime, the
vevs of generalized glueballs r j are in general proportional to the strong coupling
scale Λ2Nc−Nf , and are constrained by fermionic statistics. Since they can only be
formulated using adjoint Φ and vector superfield Wα as in (6.8), the constraints
are exactly the same as that in [222] and we will not include them in current
analysis. Therefore, modulo generalized glueballs and photinos, the classical chiral
ring of U(Nc) Kutasov model is a quotient ring of the polynomial ring generated by
generalized mesons and Casimir operators:

RNc,Nf ,k = C
[
u1, u2, . . . , uk−1, v

f
0, f̃
, v

f
0, f̃
, . . . , v

f
k−1, f̃

]
/S(u1, u2, . . . , uk−1, v0, v1, . . . , vk−1).

(6.17)

The constraint S(u1, u2, . . . , uk−1, v0, v1, . . . , vk−1) is hard to compute in general. A
powerful tool that helps is from computational algebraic geometry. To be more
specific, classically we can form a quotient ring using microscopic fields:

Rmicro = C
[
Q̃α

f̃
,Q f

α,Φ
α
β

]
/SF, (6.18)

where SF comes from F-term equations of the superpotential. We do not have
to consider the D-term once we complexify the gauge group [228]. The vacuum
is parameterized by gauge invariant data, c. f . equation (6.10). The natural map
arising from composing microscopic field into gauge invariant ones extends to a
map between rings:

ψ : C
[
uk, v

f
k, f̃

]
→ Rmicro. (6.19)

Then by definition
S = kerψ. (6.20)

Computation of this kernel is standard in the theory of Gröbner basis [229, 230].
This method has already been adopted in understanding the vacua and computing

6In mathematical language, the two coordinate ring may define the same classical algebraic
varieties, but they do not define the same scheme.
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Hilbert series of the vacuum moduli, see e.g. [231, 232]. In section 6.3, we will
explicitly see how this works.

The above algebraic construction is quite abstract. We now turn to concrete de-
scription in terms of the moduli space of vacua. As we already know, the Coulomb
branch vev 〈Φ〉 is parametrized by Young tableau [N1, N2, . . . , Nn]. There are two
cases to consider:

(1) When all Ni = 1. The D-term equation becomes that of SQCD with funda-
mental matter, and there is nontrivial Higgs branch. For kN f > Nc + 1, at
the root of the Higgs branch the theory is conjectured to be in non-abelian
Coulomb phase [202].

(2) Ni > 1 for some i. Since nontrivial Jordan block does not commute with its
conjugate, in general the vevs of quark superfields 〈Q〉 and 〈Q̃〉 are not zero.
We will call it the mixed branch.

In (6.16) we see the vevs of gauge invariant Casimir operators are always zero.
However the above two cases reveal there are distinct branches in the vacuummoduli.
Then the natural question is how can one distinguish between them. Classically, we
might tell which branch we are in by looking at the flat directions of generalized
mesons. In the branch [1, 1, . . . , 1] only v0 is nontrivial, but for other branches more
non-trivial generalized mesons appear. However, we will not use such descriptions
because such flat directions receive quantum corrections.

Alternatively one can try to study the branch when the deformation (6.4a) is turned
on. Moreover we require the deformation is sufficiently generic and g0 , 0 in (6.4a).
It is not hard to see that now Φ must be diagonalizable, with entries the roots of
polynomial

W̃′(z) =
k∑

n=0
gnzn =

k∏
j=1
(z − a j). (6.21)

Then the Coulomb branch vev 〈Φ〉 is labelled by integers s1 ≥ s2 ≥ · · · ≥ sk , the
number of each root of (6.21). Therefore we can label this in in terms of another
Young diagramY ′: [s1, s2, . . . , sk], the partition of Nc into no more than k integers7.
It is a standard fact that

Y ′ = Y D, (6.22)
7We use an underline to remind the reader that they are Young tableau for mass deformed theory.
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whereY D is the dualYoung diagramofY . This is also frequently used in the literature
as the mapping between nilpotent element and semisimple element. Careful readers
now may worry that the mapping is not one-to-one; one can permute the roots
{ai} corresponding to the integer {si}. However, there is a natural way to make
this mapping one-to-one, due to the fact that their semi-classical unbroken gauge
group for a given set of si are uniquely fixed regardless of permutation of roots:
U(s1) ×U(s2) × · · ·U(sk). Therefore we may define our map from a nilpotent 〈Φ〉
to the image taking the rank of unbroken subgroup of U(Nc). In figure 6.1 we give
an example of the correspondence of the Young diagrams.

(a) (b)

Figure 6.1: The deformation of nilpotent matrix in the group U(10)C ' GL(10). In
(a) the nilpotent matrix is labelled by Y = [3, 3, 2, 1, 1], while the deformed matrix
is given by Y ′ = [5, 3, 2], with low energy gauge group U(5) ×U(3) ×U(2).

This identification is more robust than the previous one in the sense that patterns of
unbroken gauge group are rigid against quantum corrections. We will see that it is
indeed the case in section 6.4.

As we have seen that the deformation (6.4a) is important to distinguish between
different branches, it is illustrative to summarize what the vacua look like if the full
deformation (6.3) is turned on [209]. In this case, the vacua consist of Coulomb
branch (pseudo-confining branch) and Higgs branch. For Coulomb branch, we have

〈Φ〉 = diag(a1, . . . , a1, a2, . . . , a2, . . . , ak, . . . ak), 〈Q̃ f̃ 〉 = 〈Q
f 〉 = 0. (6.23)
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For Higgs branch we have

〈Φ〉 = diag(b, a1, . . . , a1, a2, . . . , a2, . . . , ak, . . . ak), (6.24a)

〈Q̃β

f̃
〉 = 〈Q f

β〉 = 0, β = 2, 3, . . . Nc, (6.24b)

Q f
1

(
l+1∑
n=1
(n − 1)bn−2m f̃

f ,n

)
Q̃1

f̃
+ W̃′(b) = 0, (6.24c)

where b is the root of B(z) = det
[
m f̃

f (z)
]
= 0. Similar reasoning to that of [209]

reveals that root b can only appear in 〈Φ〉 once. The solution can also be elegantly
packaged as

M(z) = −
lNf∑
I=1

rIW̃′(bI)

z − bI

1
2πi

∮
bI

1
m(x)

dx, (6.25)

where rI = 0, 1 is the number of bI in the diagonal of 〈Φ〉. This solution of classical
Higgs branch will be important in section 6.4.

Example: U(2) theory with k = 2
Having discussed generalities, it is time to get refreshed by a couple of examples.
In this subsection we will be illustrating the case Nc = 2, k = 2 with N f = 1, 2.
We have two choices of Young tableau for 〈Φ〉: [1, 1] or [2]. Upon deformations
by (6.4a), [1, 1] corresponds to the dual vacua [2] where the gauge group remains
unbroken as U(2), but [2] corresponds to the dual vacua [1, 1] where gauge group is
broken down to U(1)2. For [1, 1] branch, v1 = 0 but it is nonzero for [2]. Since Φ2

vanishes, one concludes that v j = 0 for j ≥ 2. Therefore we know classically,

R2,Nf ,2 = C [u1, v0, v1] /S(u1, v0, v1). (6.26)

Next we turn to the classical relation S. A nice computer program that produces the
kernel of the map ψ in (6.19) is Macaulay 2 [233, 234]. In the following we list
the relations S(u1, v0, v1) for N f = 1, 2:

• N f = 1.
R2,1,2 = C [u1, v0, v1] /〈u3

1, u
2
1v1, u1v

2
1, u

2
1v0 − 2u1v1〉. (6.27)

Notice that u1 is nilpotent in the chiral ring; the classical relation implies that u1 = 0
as an algebraic variety, and the rest constraints in the relations are trivially satisfied.
So v0, v1 take arbitrary complex values.
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• N f = 2. It turns out that the relation can be compactly cast as

S2,2,2 = 〈u3
1, u

2
1v1, v1 det v1, u1 det v0 − det(v0 + v1) + det v0 + det v1,

u1v
j
1,iv

l
1,k, u

2
1v0 − 2u1v1, u1(v

j
0,iv

l
1,k − v

l
0,kv

j
1,i), v1 det(v0 + v1) − v1 det v0 − v0 det v1〉.

(6.28)
In solving the chiral ring, we see again that the nilpotent element u1 = 0. What
remains are det v1 = 0, following from the fact 〈Φ〉 has rank 1, and det(v0 + v1) −

det v0 = 0.

Examples: U(3) theory with k = 2
Our next example is U(3) theory with k = 2. Here we only analyze N f = 1.
For large numbers of flavors, the relations quickly become very complicated. The
adjoint chiral multiplet has two choices of vevs:

〈Φ〉[1,1,1] =

©«
0 0 0

0 0 0

0 0 0

ª®®®®®®¬
, 〈Φ〉[2,1] =

©«
0 1 0

0 0 0

0 0 0

ª®®®®®®¬
. (6.29)

For N f = 1, we again see the chiral ring is generated by u1, v0 and v1 as:

R3,1,2 = C [u1, v0, v1] /〈u4
1, u

3
1v1, u2

1v
2
1, u

3
1v0 − 3u2

1v1〉. (6.30)

The Casimir operator u1 is again nilpotent in the chiral ring.

General U(Nc) theory with k = 2
Motivated by our study of U(2) and U(3) theories with k = 2, we conjecture the
classical constraints for general U(Nc) theory with N f fundamental flavors, with
k = 2 as follows. The superpotential (6.2) forces the nilpotent matrix 〈Φ〉 to be

YNc,Nf ,2 = [2, 2, . . . , 2, 1, 1, . . . 1], (6.31)

where we denote n2 as number of order 2 Jordan block, then the trivial Jordan block
has number Nc − 2n2. Apparently, the chiral ring relation should not depend on the
choice of n2. For N f = 1, we can write down the complete relations S, but for other
numbers of flavors, we only write down relations in

√
S. They may not necessarily

be the true chiral ring relation, as the chiral ring contains nilpotent elements.

• N f = 1:

RNc,1,2 = C[u1, v0, v1]/〈u
Nc+1
1 , uNc

1 v1, u
Nc−1
1 v2

1, u
Nc

1 v0 − NcuNc−1
1 v1〉. (6.32)
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• N f ≤ bNc/2c. The solutions to S do not constrain v0 and v1, they can take
arbitrary complex values. This may be confirmed in the N f = 1 case above
when taking u1 = 0. We thus have

√
S = 〈u1〉.

• bNc/2c < N f < Nc. Since the adjoint chiral superfield is built from rank
≤ bNc/2c data, the second generalized meson becomes degenerate. The
solution for v1 satisfies:

v
[i1
1, j1

vi2
1, j2
· · · v

i bNc/2c+1]

1, j bNc/2c+1
= 0, (6.33)

and there are no additional constraints on v0.

• Nc ≤ N f . We define ṽ = v0 + v1. In addition to (6.33), we have

ṽ
[i1
j1
ṽi2

j2
· · · ṽ

iNc ]

jNc
− v
[i1
0, j1

vi2
0, j2
· · · v

iNc ]

0, jNc
= 0. (6.34)

When Nc < N f we have yet another relation coming from the degeneration of
first generalized meson v0:

v
[i1
0, j1

vi2
0, j2
· · · v

iNc+1]

0, jNc+1
= 0. (6.35)

6.4 Quantum chiral rings
In this section we analyze quantum chiral rings. When dealing with the quantum
vacua with nontrivial flat directions, the usual way is to deform the theory, endowing
all the matter with a mass and then taking appropriate limit [235]. We thus introduce
the deformation (6.3) first and study the resulting vacuumexpectation values of gauge
invariant chiral operators; by taking the limit one ends up with some particular point
on the vacuum moduli.

We emphasize that such a way recovers vacua as an algebraic variety (or the radical
ideal), but not the true chiral ring, by Hilbert’s Nullstellensatz (6.11).

Perturbative corrections
The F-term constraint from the superpotential is obtained via chiral rotations X →

X + δX where X is some chiral superfield in the Lagrangian. It can also be viewed
as conservation law of the current

J = Tr X̄eVδX (6.36)

with a source term, which is subjected to Konishi anomaly [236, 237] and its
generalized versions [206, 238]. If we pick δX = f (Q̃,Q,Φ,Wα), where f is a
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holomorphic function of its arguments, the conservation equation can be written as

D
2
J = Tr f (Q̃,Q,Φ,Wα)

∂Wtree

∂X
+ anomaly + D.(. . . ) . (6.37)

Here we may drop the D̄(. . . ) term and set to zero the left hand side of (6.37)
since it is a Q Ûα commutator, therefore zero in the chiral ring. In the Dijkgraaf-Vafa
conjecture, the Konishi anomaly equations are identified as the loop equations of
the matrix model [239].

The one-loop anomaly can be computed as that in [206]. For instance, given an
adjoint superfield X and its variation as above, we have

anomaly =
∑
i j kl

Ai j,kl
∂ f (Q̃,Q,Φ,Wα) ji

∂Φkl
, (6.38)

where the coefficient Ai j,kl is

Ai j,kl =
1

32π2

[
(WαWα)ilδ j k + (WαWα) j kδil − 2(Wα)il(Wα) j k

]
. (6.39)

For the mass-deformed ASQCD, the five independent Konishi anomaly equations
are [208, 209]:

Tr
W̃′(Φ)
z − Φ

+ Q̃ f̃

m′ f̃f (Φ)

z − Φ
Q f = 2R(z)T(z) + wα(z)wα(z), (6.40a)

1
4π

Tr
W̃′(Φ)Wα

z − Φ
= 2R(z)wα(z), (6.40b)

−
1

32π2Tr
W̃′(Φ)WαWα

z − Φ
= R(z)2, (6.40c)

λ
f
f ′Q̃ f̃

m f̃
f (Φ)

z − Φ
Q f ′ = λ

f
f R(z), (6.40d)

λ̃
f̃ ′

f̃
Q̃ f̃ ′

m f̃
f (Φ)

z − Φ
Q f = λ̃

f̃
f̃
R(z). (6.40e)

The right hand side of equation (6.40a) - (6.40e) is the anomaly at one loop;
Setting them to zero reduces to classical F-term equations. Expanding both sides of
(6.40) around z → +∞, and comparing coefficients with the same power of z give
perturbative corrections to the chiral ring of the massive theory.

There is one more Konishi anomaly. For an arbitrary matrix hg̃
g , we take our chiral

rotation to be
δΦ =

1
z − Φ

Q̃g̃hg̃
gQg 1

z − Φ
. (6.41)
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Then we can write down the sixth Konishi anomaly equation:

Q̃g̃
W′(Φ)
(z − Φ)2

Qg +

l+1∑
n=1

n−2∑
m=0

Q̃ f̃
Φm

z − Φ
Qgm f̃

f ,nQ̃g̃
Φn−2−m

z − Φ
Q f = 2R(z)Q̃g̃

1
(z − Φ)2

Qg,

(6.42)
where we have removed hg̃

g on both sides. We have also dropped terms that contain
WαQ f or Q̃ f̃ Wα since they are not in the chiral ring.

The off-shell quantumCoulomb branch vacua have been solved by Cachazo, Seiberg
and Witten as [209] using the anomaly equations (6.40):

2R(z) = W̃′(z) −
√

W̃′(z)2 + f (z), (6.43a)

M(z) = −
n∑

i=1

1
2πi

∮
Ai

R(x)
x − z

1
m(x)

dx, (6.43b)

T(z) =
B′(z)
2B(z)

−

L∑
I=1

y(qI)

2y(z)(z − zI)
+
g(z)
y(z)

, (6.43c)

where m(x) is the abbreviation for m f̃
f (z) in (6.4b) and y(z)2 = W̃′(z)2 + f (z).

Because of y(z), the solution is defined on a genus k − 1 Riemann surface Σ. Ai

are the cycles that surrounds the i-th cut, smearing of the classical Coulomb branch
singularity, and qI’s are the point corresponding to Higgs branch in the first sheet of
Σ as a double cover of complex plane. Finally,

f (z) =
1

8π2Tr
(W̃′(z) − W̃′(Φ))WαWα

z − Φ
(6.44a)

g(z) =

〈
Tr

W̃′(z) − W̃′(Φ)
z − Φ

〉
−

1
2

L∑
I=1

W̃′(z) − W̃′(zI)

z − zI
. (6.44b)

In solving these equations, it is required that when z approaches to qI , the residue
of T(z) should be at most one [209]. We conjecture that this condition is encoded
in the sixth anomaly equation (6.42), which will be clear in section 6.4 and 6.4.
Note the above solutions are off-shell, with f (z) being some generic degree k − 1
polynomial. We will solve these equation on-shell later.

Exactness of Konishi anomaly. A natural question to ask is if the Konishi anomaly
receives further quantum corrections. Consider first the perturbative higher loop
corrections. The UV coupling τUV is replaced by dynamical scale Λ. To use
holomorphy we write down the symmetry when all the couplings as well as scale Λ
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∆ SU(Nf )L SU(Nf )R U(1)A U(1)R U(1)Φ U(1)θ

Φ 1 1 1 0 2
3 1 0

Q 1 � 1 1 2
3 0 2

3

Q̃ 1 1 � 1 2
3 0 2

3

gn 2 − n 1 1 0 2
3 (2 − n) −n − 1 2

m f̃
f ,n

2 − n � � −2 2
3 (2 − n) 1 − n 2

3

Wα
3
2 1 1 0 1 0 1

Λ2N−N f 2N − Nf 1 1 2Nf
2
3 (2N − Nf ) 2N − 2

3 Nf

Table 6.1: Summary of charge assignments for operators and couplings. Note these
charges are chosen so that there are no quantum anomalies.

are treated as background superfields. Following [206], the combination U(1)θ =
−2U(1)Φ/3 +U(1)R is defined for convenience.

Consider first f = δΦ ∝ Φ. This variation is considered in [206] and is the
coefficient of z−2 in the expansion of (6.40a). The difference between our case and
[206] is we need to worry about the appearance of m f̃

f ,n. The right hand side in
the expansion (6.40a) has terms proportional to W2

α, so it is charged (0, 0, 2) under
U(1)A ×U(1)Φ ×U(1)θ . Acceptable corrections should not depend on the negative
power of couplings since they should vanish if couplings are zero. The only possible
terms are gnΦ

n+1, W2
α and m f̃

f ,nQ̃ f̃Φ
n−1Q f , but they are already present in one loop.

The general case when δΦ ∝ Φm is similar, where the charge underU(1)A×U(1)Φ×
U(1)θ becomes (0,m−1, 2). The terms already presented in the one-loop expression
are gnΦ

n+m, m f̃
f ,nQ̃ f̃Φ

n+m−2Q f and
∑m−1

l=0 TrW2
αΦ

m−l−1TrΦl , all of which have the
right charge.

Likewise we can consider δQ f ∝ ΦmQ f which is the z−m−1 coefficient in the
expansion of (6.40d). As a result similar to previous argument, we see no higher
loop correction is possible which is in accordance with symmetry and holomorphy.

Finally, we can consider δΦ ∝ ΦmQghg̃
gQ̃g̃Φ

n in (6.42). For simplicity we il-
lustrate m = n = 0 only. This is the z−2 coefficient in the expansion. It is
charged (2,−1, 10/3) under U(1)A×U(1)Φ ×U(1)θ . Once again, the allowable term
Q̃ f̃Φ

mQgm f̃
f ,nQ̃g̃Φ

n−2−mQ f is already there at one-loop.
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Nonperturbatively we should study the algebra of chiral rotations and the Wess-
Zumino consistency condition on the anomaly [240], following the line of [241].
We define the generators of the algebra as

Ln = Φ
n+1 δ

δΦ
, (6.45a)

Qn,α =
1

4π
WαΦ

n+1 δ

δΦ
, (6.45b)

Rn = −
1

32π2 WαWα
Φ

n+1 δ

δΦ
, (6.45c)

M f
f ′,n = Φ

nQ f δ

δQ f ′ , (6.45d)

M̃ f̃ ′

f̃ ,n
= Q̃ f̃Φ

n δ

δQ̃ f̃ ′
. (6.45e)

Classically they satisfy commutation relations which are an extension of Virasoro
algebra:

[Lm, Ln] = (n − m)Lm+n, [Lm,Qn,α] = (n − m)Qn+m,α,

[Lm, Rn] = (n − m)Rm+n, {Qm,α,Qn,α} = −εαβ(n − m)Rn+m,

[Qm,α, Rn] = 0, [Rm, Rn] = 0,

[M f
f ′,n, Mg

g′,m] = δ
g

f ′M
f
g′,n+m − δ

f
g′M

g

f ′,n+m,

[M̃ f̃ ′

f̃ ,n
, M̃ g̃′

g̃,m] = δ
f̃ ′

g̃ M̃ g̃′

f̃ ,n+m
− δ

g̃′

f̃
M̃ f̃ ′

g̃,n+m,

[M f
f ′,n, M̃ g̃′

g̃,m] = 0,

[Ln, M f
f ′,m] = mM f

f ′,n+m, [Ln, M̃ f̃ ′

f̃ ,m
] = mM̃ f̃ ′

f̃ ,m+n
,

[Qn,α, M f
f ′,m] = 0, [Qn,α, M̃ f̃ ′

f̃ ,m
] = 0,

[Rn, M f
f ′,m] = 0, [Rn, M̃ f̃ ′

f̃ ,m
] = 0.

(6.46)

One can in principle include the generator

Ks,t = Φ
sQ̃g̃hg̃

gQg
Φ

t δ

δΦ
; (6.47)

here we do not consider the algebra involving Ks,t , since when acting on generalized
mesons the transformation is not linear anymore. Note due to the presence of
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fundamentals, there is no U(1) shift symmetry, unlike the case with adjoint only. In
terms of these operators, the Konishi anomaly can be expressed as a representation
of the algebra:

LnWeff = Ln, M f
f ′,nWeff =M

f
f ′,n,

Qn,αWeff = Qn,α, M̃ f̃ ′

f̃ ,n
Weff = M̃

f̃ ′

f̃ ,n
,

RnWeff = Rn.

(6.48)

It is not hard to check that these perturbative anomalies L, Q, R,M, and M̃ satisfy
theWess-Zumino consistency conditions and thus form a representation of the chiral
rotation algebra.

Now we are ready to check the nonperturbative corrections both to the algebra and
the Konishi anomalies. Our theory has an axial U(1)A symmetry. The generators
L, Q, R, M and M̃ all have charge 0 under the U(1)A. Then the correction to the
commutation relations should not carry U(1)A charge as well. But the scale Λ2N−Nf

has charge 2N f . The only way to cancel it is to use powers of m f̃
f ,k . To extract

singlet from the flavor symmetry, we have to antisymmetrize the indices:

ε ĩ1ĩ2...ĩNf
ε

i1i2...iNf mĩ1
i1,n1

mĩ2
i2,n2

. . .m
ĩNf

iNf
,nNf

. (6.49)

When those m’s are finite, one expects that all the non-perturbative corrections can
be absorbed into redefinition of the elements in the algebra [242, 243]. We leave
the detailed proof to the future work.

Nonperturbative corrections
There are other relations in the chiral ring of nonperturbative origin, and typically
involving strong coupling scale. Recall that our gauge group is of finite rank, the
Casimir operators {ui = TrΦi}+∞i=0 are not all independent. The constraint comes
from the characteristic polynomial of matrix Φ:

uNc+p = F (u1, u2, . . . , uNc−1, uNc ), p ∈ Z+. (6.50)

Classically, if we denote P(z) = det(z −Φ) = zNc + p1zNc−1 + · · · + pNc−1z + pNc as
the characteristic polynomial, then the above relation can be packaged as

P′(z)
P(z)

= T(z). (6.51)
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The left hand side of (6.51) depends on finite number of parameters p1, . . . , pNc

while the right hand side of (6.51) contains all the Casimir operators. This implies
the classical constraint (6.50).

Quantum mechanically (6.50) gets modified by instanton effects, turning into

uNc+p = F̂ (u1, u2, . . . , uNc−1, uNc ;Λ2Nc−Nf ), p ∈ Z+. (6.52)

This can be deduced based on the fact that the resolvent T(z) has quantized periods.
Indeed, if we focus on the classical Coulomb branch solution (6.23), then T(z) has a
pole when z approaches to one of the root ai with residue equal to number of entries
of ai. Integrate around small cycle around ai we have

1
2πi

∮
ai

T(z)dz = Ni ∈ Z. (6.53)

Quantum mechanically the poles ai are smeared into cuts Ai, and the complex plane
becomes a Riemann surfaces Σ : y(z)2 = W′(z)2 + f (z) (6.43), but the quantization
condition is the same [209]:

1
2πi

∮
Ai

T(z)dz = Ni ∈ Z, (6.54)

still giving the rank of unbroken gauge group. Hence the rank is robust against
quantum corrections, in accordance with what we mentioned in section 6.3. See
figure 6.2 for illustration.

Moreover there are other quantization conditions. Pick the compact cycle Bi of the
Riemann surface whose intersection number with Ai is δi j . The field equation of
T(z) implies that

1
2πi

∮
Bi

T(z)dz = −N′i ∈ Z. (6.55)

This is proved by computing the effective superpotential and studying its field
equations; so this relation is on shell [209]. Quantization condition of the resolvent
T(z) over cycles of Σ implies that T(z) = d log ξ(z) for some function ξ(z) on
Riemann surface Σ.

Another way of understanding the quantization condition forT(z) is as follows. Once
we expand the anomaly equations (6.40) and impose (6.52), the set of equations are
overdetermined; there are more equations than variables. In order for the recursion
relation to admit solutions, it is necessary and sufficient that the periods of T(z) are
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(a) (b)

Figure 6.2: The classical (a) and quantum (b) picture of describing resolvent T(z).
Classically, T(z) takes value on a complex plane, with poles located at the root
of (6.21). Quantum mechanically, the complex plane becomes a Riemann surface
described by y(z)2 = W̃′(z)2 + f (z); the poles ai becomes cuts Ai. We also choose
Bi that intersects only Ai. The quantization condition is around the cycle Ai and B j .

quantized. This statement is proved by Ferrari and collaborators [243, 244]. If one
defines T(z) = F′(z)/F(z) then [244] concludes that

F(z) +
γB(z)
F(z)

= P(z) (6.56)

with degree N polynomial P(z). Then

F(z) =
1
2

(
P(z) +

√
P2(z) − 4γB(z)

)
, (6.57)

and
T(z) =

d
dz

log
(
P(z) +

√
P2(z) − 4γB(z)

)
. (6.58)

The factor γ can be chosen so that when m(z) = (M + z)δ f̃
f , in the square root

of (6.58) P(z)2 − 4γB(z) should reduce to standard Seiberg-Witten curve; when
m(z) = m f̃

f it should reduce to that of [206]. Therefore it is natural that γ = Λ
2N−Nf .

This is consistent with [209]. By setting Λ = 0 one can get back to the classical
results:

T(z) =
F′(z)
F(z)

=
P′(z)
P(z)

(6.59)
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so the degree N polynomial P(z) can actually be identified as det(z−Φ), that is why
we used the same symbol as that of (6.51). Note that the expression in the square
root of (6.58) is precisely what is conjectured by Kapustin [245] to be the N = 1
analogue of Seiberg-Witten curve.

The quantumcorrected formula (6.58) is a chiral ring relation, since (6.58) is satisfied
on all supersymmetric vacua of the theory.

The photino wα will be corrected as well. (6.56) holds for arbitrary Φ, so it holds
for Φ + εM for arbitrary small ε and any matrix M . Taking derivative with respect
to ε in T(z) = F′(z)/F(z), we have

Tr
M

(z − Φ)2
= −∂z

(
F(ε)(z)
F(z)

)
, (6.60)

where we have introduced

F(ε) = −∂εF(z; ε) = −∂ε
[
1
2

(
P(z; ε) +

√
P2(z; ε) − 4γB(z)

)]
(6.61)

with P(z; ε) = det(z − Φ − εM). Take M = Wα and integrate over (6.60), we get

wα =
1

4π
−∂εP(z; ε)√

P2(z) − 4γB(z)

�����
ε→0

. (6.62)

This is a new relation. However, as wα has trivial expectation value for supersym-
metric vacua, we will not need this relation in the future.

Comparison with perturbative chiral ring. After nonperturbative analysis, let us
take a quick look at how perturbative ring looks like. By perturbative chiral ring we
mean the strong coupling scale Λ → 0, and the chiral ring relation is governed by
one-loop Konishi anomaly alone.

First we show that perturbatively there is no gaugino condensations. Recall our
theory is governed by Riemann surfaces parametrized by y(z)2 = W̃′(z)2 + f (z).
The nonperturbative formula (6.58) gives another parametrization of the Riemann
surface Σ: P2(z) − 4Λ2N−Nf B(z). Requiring consistency of the theory means the
Riemann surfaces must factorize properly [209]:

P2(z) − 4Λ2N−Nf B(z) = H2(z)C(z),

W̃′(z)2 + f (z) = G(z)2C(z),
(6.63)

where G(z) and H(z) are some polynomials. Perturbatively Λ = 0, so we see
W̃′(z)2 + f (z) is a perfect square. However since W̃′(z) has degree k while f (z) has
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degree k − 1, this is impossible unless f (z) = 0. Plug into (6.43a), we see we must
have R(z) = 0. Plug into (6.40d), we go back to the classical F-term for the Higgs
branch. Therefore, perturbation theory does not alter the classical Higgs branch
vacua.

Examples of chiral ring solution
We have introduced the gadgets to compute the quantum chiral ring of the massive
theory in previous subsections, c. f . equations (6.40) and (6.58). In this section we
explicitly see how chiral ring solutions give supersymmetric quantum vacua, in a
one-to-one manner.

Let us consider a massive U(2) theory with one flavor, and k = 2. This model is
considered in section 6.3; here we assume the tree level superpotential to be

Wtree =
1
3
TrΦ3 −

1
2
TrΦ2 + Q̃(1 + Φ)Q, (6.64)

where we pick all the coupling to be ±1 for simplicity. Let us focus first on classical
chiral ring. The expectation value of Φ can have either pseudo-confining vacua or
Higgs vacua (modulo Weyl equivalence):

〈Φ〉 =
©«

0 0

0 0

ª®®¬ ,
©«

0 0

0 1

ª®®¬ ,
©«

1 0

0 1

ª®®¬ ,
©«
−1 0

0 0

ª®®¬ ,
©«
−1 0

0 1

ª®®¬ . (6.65)

This can be computed using entirely the chiral ring. Our strategy is to solve (6.40)
and then rule out certain solution using (6.42). Classically there is no gaugino
condensation so R(z) = 0. Expanding with respect to large z we have

un+2 − un+1 + vn = 0,

vn+1 + vn = 0.
(6.66)

These equations give u1 = u3 = u5 = . . . , and u2 = u4 = u6 = . . . . There are also
chiral ring relations for the adjoints. We know from (6.51):

P(z) = det(z − Φ) =
N∑

i=0
pizN−i . (6.67)

The coefficients pi of P(z) are related to u j by Newton’s identity

pn = −
1
n

n∑
i=1

ui pn−i, (6.68)
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so we obtain two equations on the generators u1 and u2:

u2 − u2
1 −

u2
2

2
+

u2
1u2

2
= 0,

u1 +
u3

1
2
−

3
2

u1u2 = 0.

(6.69)

These two equations actually contain six solutions, which are

(u1, u2) = (0, 0), (1, 1), (2, 2), (−1, 1), (0, 2), (−2, 2). (6.70)

Here the first five solutions are exactly listed in (6.65), including both Coulomb and
Higgs vacua; the last one is not a physical solution, which corresponds to putting
two −1 (the root of 1 + z) in the diagonal of 〈Φ〉.

Remember that we still have one extra Konishi anomaly equation (6.42), which
imposes additional constraint on generalized mesons. The recursion relation reads:

(n + 1)(vn+2 − vn+1) +

n∑
i=0

vivn−i = 0. (6.71)

Notice that this equation is satisfied for all Coulomb branch vacua; the recurrence
is also satisfied for the vacua (u1, u2) = (−1, 1) and (0, 2). However (−2, 2) is ruled
out. Therefore, our classical chiral ring relation gives a complete solution which is
identical to solving the F-term equations.

In [209] the first five Konishi anomaly equations are used. There the way to make
the solution physically sensible is to impose by hand that the residue of the resolvent
T(z) at the Higgs branch singularity should be at most 1; this extra condition is valid
both at classical and quantum level. We conjecture that this residue condition is
equivalent to imposing another Konishi anomaly (6.42). We prove it in section 6.4.

Next we would like to analyze the quantum chiral ring of the model (6.64). Quantum
mechanically the anomaly equations read:

un+2 − un+1 + vn = 2
n−1∑
i=0

riun−i−1,

vn+1 + vn = rn,

rn+2 − rn+1 =

n−1∑
i=0

rirn−i−1,

(n + 1)(vn+2 − vn+1) +

n∑
i=0

vivn−i = 2
n−1∑
i=0
(n − i)rivn−i−1.

(6.72)
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Likewise we read off the constraints of Casimir operators by expanding

T(z) =
P′(z)√

P2(z) − 4Λ3(1 + z)
−

2Λ3√
P2(z) − 4Λ3(1 + z)

1

P(z) +
√

P2(z) − 4Λ3(1 + z)
(6.73)

with P(z) = p0z2 + p1z + p2. Then we obtain the following relations on ui:

u3 = 3Λ3 −
1
2

u3
1 +

3
2

u1u2,

u4 = 4Λ3(1 + 2u1) −
1
2

u4
1 + u2

1u2 +
1
2

u2
2,

u5 = 10Λ3
(
u2

1 + u1 +
1
2

u2

)
−

1
4

u5
1 +

5
4

u1u2
2,

u6 = 9Λ6 −
3
4

u4
1u2 + 18Λ3

(
1
3

u3
1 +

2
3

u2
1 + u1u2 +

1
3

u2

)
+

3
2

u2
1u2

2 +
1
4

u3
2,

· · ·

(6.74)

To the order of u6 we can completely determine the expectation value of u1 and u2

and get rid of any unphysical solutions. One can use the elimination theory to get
the final equation for u1:

(u1 − 1)
(
u3

1(u1 + 1)(u1 − 2)2 − 9u1(8u2
1 + 9u1 + 4)Λ3 − 27Λ6

)
= 0. (6.75)

Note that the vacua are corrected by instantons. When setting Λ → 0 we get back
to the classical solutions. In particular we recognize one vacuum in the solution
with eigenvalue diag(0, 1) for 〈Φ〉. When u1 = 1, we can solve that u2 = 1, thus
determining the characteristic polynomial P(z) = z2 − z. For generalized glueballs
we have 2r0 = r1 = 2Λ3. Therefore we can package it as

T(z) =
d
dz

log
[
z2 − z +

√
(z2 − z)2 − 4Λ3(1 + z)

]
,

R(z) =
1
2

(
z2 − z −

√
(z2 − z)2 − 4Λ3(z − 1) − 8Λ3

)
,

M(z) =
R(z)
1 + z

.

(6.76)

For this solution, the two Riemann surfaces defined by y(z)2 = W̃′(z)2 + f (z) and
ỹ(z)2 = P(z)2 − 4Λ3B(z) match exactly. The reason that u1 = 1 is not quantum
corrected by instantons is that this vacua corresponds to residual U(1) ×U(1) gauge
symmetry; Coulomb branch vevs leave both monopoles massive, so in the low
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energy there are still two independent photons. Moreover from the expression of
T(z)we know in this case instanton corrections begin to enter only for superpotential
with k ≥ 3.

Isomorphism of Coulomb branch vacua. In writing down the quantum chiral ring
associated to (6.3), we see that the only quantity that enters into the formula is
B(z) = det

[
m f̃

f (z)
]
, which is a degree lN f polynomial. This means for various

choices of l and N f , one can pick distinct l and N f such that B(z) is identical. It
is natural to conjecture that for these choices the Coulomb branch vevs are exactly
the same. This is confirmed by explicit examples (for one example, see appendix J),
thus prove the claim of [245].

Solution of the chiral ring and supersymmetric vacua
We now turn to the proof that solutions of the chiral ring in themass deformed theory
are in one to one correspondence with supersymmetric vacua. We also show that
the extra anomaly equation (6.42) implies residue constraint on the Higgs branch,
proposed by [209].

We begin by proving that the one-to-one correspondence holds for Coulomb branch
vacua. Classically, it is obvious that those vacua are exactly contained in the chiral
ring by setting 〈Q〉 = 〈Q̃〉 = 0 and R(z) = 0 in the Konishi anomaly (6.40):

Tr
W̃′(Φ)
z − Φ

= 0, (6.77)

since this is just a gauge invariant way of writing F-term equations.

Conversely, we show the solution of Konishi anomaly is contained in F-term solu-
tion. For Coulomb branch vacua, the proof is very similar to that of [222]. One can
write

0 = Tr
W̃′(Φ) − W̃′(z) + W̃′(z)

z − Φ
= −ζ(z) + W̃′(z)T(z), (6.78)

where ζ(z) is a degree k − 1 polynomial. Therefore we have an equality:

T(z) =
P′(z)
P(z)

=
ζ(z)

W̃′(z)
, (6.79)

or in the product form P′(z)W̃′(z) = ζ(z)P(z). Over complex fieldC the polynomials
can be factorized, so the general solution is of the form

ζ(z) = E(z)ζ̃(z), P(z) = F(z)H(z),

W̃′(z) = E(z)F(z), P′(z) = ζ̃(z)H(z).
(6.80)
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Then we have T(z) = ζ̃(z)/F(z). But the root of F(z) =
∏n

i=1(z − λi) is the subset
of root of W̃′(z), and since ζ̃(z) is of degree n − 1, so we obtain:

T(z) =
n∑

i=1

νi

z − λi
. (6.81)

By definition of T(z) one concludes that all νi are integers, labelling the number of
entries of λi in the diagonal of 〈Φ〉. So this solution can be obtained by solving
F-term.

Next we turn to the classical Higgs branch. This part of the proof is new. Again it
is obvious that the F-term equations admit solutions that are all solutions of chiral
ring relations. Conversely, suppose the fractional decomposition of resolvent T(z)

is
T(z) =

∑
I

rI

z − bI
+ . . . , (6.82)

where the dots represent the terms coming from roots of W̃′(z) as in (6.81). Moreover
we also claim [209] the solution of M(z) classically is given by (6.25). Plug into
(6.40d) we examine the singular part in z while ignoring the regular part and obtain:

m f̃
f (z)M

f
f̃
(z) = 0. (6.83)

We integrate this formula around bI and notice the singularity comes from M(z)

while m(z) is a polynomial, and we conclude that m f̃
f (bI) is a degenerate matrix,

namely
B(bI) = det m f̃

f (bI) = 0, (6.84)

so b must be a root of B(z). However, straightforward computation shows that the
Konishi anomaly equations (6.40a) - (6.40e) even admits solution of T(z) and M(z)

with rI > 1. This is exactly what happens in section 6.4. We now show that the
sixth anomaly equation (6.42) imposes the condition rI = 0 or 1.

For simplicity and avoiding clutter of notation, we assume the superpotential to be
WQ = m1Q̃Q + m2Q̃ΦQ but we keep W̃Φ generic. Moreover, to linearize (6.42) we
restrict our chiral rotation to be

δΦ =
1

z − Φ
Q̃g̃hg̃

gQg, (6.85)

then it is not hard to see that the singular part of (6.42) becomes

W′(z)M(z)gg̃ + v
f
0,g̃m f̃

2, f M(z)g
f̃
= 0 (6.86)
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with M(z) being substituted with explicit expression we arrive at −rI + r2
I = 0,

namely it can only take value 0 and 1. In proving this we use the following fact:

1
(2πi)2

∮
bI

∮
bJ

(
1

m(x)

) f

g̃

m f̃
2, f

(
1

m(y)

)g
f̃
dxdy =

δI J

2πi

∮
bI

(
1

m(x)

)g
g̃

dx. (6.87)

The conclusion with rI = 0, 1 is exactly the same as the residue condition proposed
in [209]. Therefore we conclude that the solution of chiral ring is in one to one
correspondence with the supersymmetric vacua at the classical level.

We now comment on the correspondence at the quantum level. We again divide our
vacua into Coulomb branch and Higgs branch. Note first that the residue condition
rI = 0, 1 cannot be modified at the quantum level. Otherwise if one turns off the
strong coupling scale Λ and perturbative anomaly, then the residue condition at
classical level is violated. Put another way, an integral constraint is robust against
quantum corrections.

On the Coulomb branch, the low energy behavior is determined by factorization of
the matrix model curve y(z)2 = W̃′(z)2+ f (z). If there are k−nmassless monopoles,
then we have

W̃′(z)2 + f (z) = H2
k−n(z)F(z),

P(z)2 − 4Λ2Nc−Nf B(z) = Q2
N−n(z)F(z),

(6.88)

so that F(z) is a degree 2n polynomial, giving a genus n − 1 Riemann surface.
The number of independent photinos is n. The period of the resolvent T(z) around
cycles of Riemann surface give the unbroken rank of the gauge group. These vacua
degenerates in a one-to-one manner to the classical supersymmetric vacua.

Massless limit and Kutasov model
We have seen how to calculate the classical and quantum chiral ring of the mass
deformed theory by means of solving the recursion relations. In this subsection we
will approach the massless limit by setting

gn → 0, (n < k) and m f̃
f (z) → 0, (6.89)

and obtain the moduli space of vacua for massless Kutasov model. Again, we
emphasize that in this way we only recover the radical of the ring relations as an
ideal.

How many parameters are enough? Unlike ordinary SQCD [235] where TrmM

is the only choice of single trace operator deformation, for Kutasov model there are
many more deformation parameters. Just as is written in (6.3), we may add
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(1) Casimir deformations: gnTrΦn+1 for n < k;

(2) Generalized meson deformations: Trmnvn for nN f < 2Nc [209, 245]8.

Generally, it is required to add all deformations and take various allowed limits.
Unfortunately, it would be a cumbersome task. We would like to examine their
physical significance and whether their number could be reduced.

Let us begin by Casimir deformations, (6.4a). For k > 1, these deformations are
used to resolve the nilpotent matrix Φ into a semisimple matrix, c. f . section 6.3.
Let there be s1 of a1 in the diagonal of 〈Φ〉. The low energy gauge group contains
a factor U(s1) and some W-bosons become massive, with mass

MW = |a1 − ai | , i , 1, (6.90)

and Φ acquires mass which is a function of ai’s as well. So tuning gi’s is essentially
tuning physical mass parameters. Therefore we have to at least keep themass generic
and distinct; hence the most general (6.4a) is required.

Next we turn to generalized meson deformation (6.4b) with lN f < 2Nc. The claim is
that if one takes generic limit9, only the first meson deformation, Trmv0 is sufficient.
We expect such limit probes a subset of true quantum moduli space.

To understand this, we compare themost general deformation (6.4b) and deformation
using only Trmv0 = m f̃

f Q̃ f̃ Q f . It is quite obvious that two cases share identical
Coulomb branch vacua. For the latter, there is no Higgs branch vacua classically;
while for the former case, it is given by (6.24).

Now we take the generic limit. From (6.24c) we learn that the second term in left
hand side approaches to a finite quantity while the terms in the bracket goes to zero
as m f̃

f ,n → 0. To have solutions we must require at least one of 〈Q f
1 〉 and 〈Q̃

1
f̃
〉 goes

to infinity, which is a run-away vacua. Therefore, we conclude that the extra Higgs
branch vacua are absent; the two kinds of deformation are equivalent.

Quantum mechanically, the solution of M(z) for arbitrary vacuum is given by [209]:

M(z) = R(z)
1

m(z)
−

L∑
I=1

rIW̃′(zI) + (1 − 2rI)R(qI)

z − zI

1
2πi

∮
zI

1
m(x)

dx, (6.91)

8The reason for this requirement is that (1) the generalized meson deformations are all relevant;
(2) the metric of the Coulomb branch is positive definite; (3) the N = 2 theory whose curve is
isomorphic to that in the square root of (6.58) is asymptotically free.

9By generic limit we mean that the roots of W̃ ′(z) and B(z) are kept distinct.
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where zI for I = 1, . . . L = lN f is the roots of B(z). When rI = 1, poles of T(z)

around zI is on the first sheet, while rI = 0 the second sheet. When all rI = 0,
we return to the Coulomb branch vacua, (6.43b). A fact that we will prove in the
Appendix I is R(z) = 0 in the final limit, so if there exists some rJ = 1 we see that
the second term of M(z) is infinite, assuming no accidental cancellation appears.

However, in the classical expression (6.24c), we see a flat direction opens up if
b happens to be the root of W̃′(z). These would recover some missing Higgs
branches. Therefore, to completely reproduce the flat directions in the quantum
vacua, B(z) = det

[
m f̃

f (z)
]
should have at least many roots as W̃′(z). Therefore, we

conjecture that the sufficient number of meson deformations should satisfy:

k − 1 ≤ lN f < 2Nc. (6.92)

Here we write k − 1 instead of k, as an overall U(1) factor in the gauge group does
not affect the result.

Even for l = 1, the computation of chiral ring is quite challenging. Relegating
detailed study for future, here we only focus on the potential with l = 0:

Wtree =

k∑
n=0

gn

n + 1
TrΦn+1 + m f̃

f Q̃ f̃ Q f (6.93)

to probe a subset of vacuum structure. We will see in certain cases it already
has very nontrivial consequences. For convenience, we will take gk = 1 in later
examples. Note that k = 2 is special. We know the most general deformation is
W̃′(z) = z2 + θz + ν. No matter which root one picks, we always get the mass���W̃′′(z1,2)

��� = ∆2 =
√
θ2 − 4ν (6.94)

sowhatmatters is the discriminant. We can thus set θ = 0 for a further simplification.

With the deformation Trmv0 only, the six Konishi anomaly equations are no longer
mutually independent. In fact, the anomaly (6.42) can be deduced from (6.40c)
and (6.40d). We have seen that this is true classically in section 6.4. Quantum
mechanically we can expand (6.42) in terms of z →∞:

(n + 1)
k∑

i=0
givn+i = 2

n−1∑
i=0
(n − i)rivn−i−1, (6.95)

where we omitted the flavor indices. Now multiplying both sides by mass matrix
mg̃
g , using (6.40d), and massage the dummy indices a little we get

2(n + 1)
k∑

i=0
girn+i = 2(n + 1)

n−1∑
i=0

rirn−i−1. (6.96)
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We see this is exactly the recursion relation given by (6.40c). Therefore in the
following computation we will ignore (6.42) unless stated.

In Appendix I, we examine some general properties of the vacuum expectation
values in the massless limit, from the recursion relations.

6.5 Examples of quantum chiral rings
In this section we study examples of massless Ŝ. These various examples also give
further confirmation on the statements we made previously in section 6.4.

k = 1: the vacua of U(Nc) SQCD
We begin with k = 1, the superpotential (6.2) is essentially a mass term. When
the scale Λ of the theory is smaller than the mass scale of the adjoint, Φ can be
integrated out in the IR and the theory is effectively given by U(Nc) SQCD. This
RG flow has been analyzed in [246, 247], while U(Nc) SQCD was studied in [248,
249]. Since Φ is invisible in the IR, there is no need to add Casimir deformation
(6.4a), in consistent with (6.92).

U(Nc) SQCD with N f fundamental flavors can be thought of as gauging the baryon
symmetry of SU(Nc) theory, under which the quark and anti-quark have charge ±1
respectively. When Nc ≥ N f the classical chiral ring is generated by mesons Q̃ f̃ Q f

freely; while for Nc < N f there are nontrivial relations among mesons [248]:

M [i1j1
M i2

j2
. . . M

iNc+1]
jNc+1

= 0. (6.97)

This relation arises since mesons of order N f are built from rank Nc data; and in
particular for N f = Nc + 1 the relation becomes det M = 0.

In the following we scale the mass g1 in (6.2) to be 1, and its dependence can be
easily recovered. The superpotential we use is

Wtree =
1
2
TrΦ2 + m f̃

f Q̃ f̃ Q f . (6.98)

A short cut to analyze the quantum vacua is to directly apply (6.43c). However we
will try a more elaborated way by solving the recursion relation directly. This will
be helpful later.

First, the recursion relation for generalized glueball in (6.40c) can be solved explic-
itly:

rn+1 =

n−1∑
i=0

rirn−i−1, (6.99)
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which is actually a recursion relation for binomial coefficients in (1 + x)1/2. By
induction,

r2 j =
2 j(2 j − 1)!!
( j + 1)!

r j+1
0 , r2 j+1 = 0. (6.100)

Next we focus on the recursion relation (6.40a):

un+1 = 2
n−1∑
i=0

riun−i−1. (6.101)

Similar induction tells us that

u2 j =
2 j(2 j − 1)!!

j!
r j

0u0, u2 j+1 = 0, (6.102)

with initial condition u0 = Nc. We can plug them into the series of T(z) and get

T(z) =
+∞∑
n=0

u2n

z2n+1

=
u0

z

+∞∑
n=0

©«
−1

2

n

ª®®¬
(
−

4r0

z2

)n

=
Nc

z

(
1 −

4r0

z2

)− 1
2

(6.103)

which is exactly the same as given by (6.43c).

We define Λ̃2Nc = (det m)Λ2Nc−Nf by scale matching condition. In the meanwhile
there is a degree Nc-polynomial P(z) with leading coefficient 1 such that

T(z) =
Nc

z

(
1 −

4r0

z2

)− 1
2

=
P′(z)√

P(z)2 − 4Λ̃2Nc

. (6.104)

Integrate both sides and note that the only way that P(z) is a polynomial with leading
coefficient 1 is that

r0 ∼ Λ̃
2 = (det m)

1
NcΛ

2Nc−Nf
Nc . (6.105)

Hence,

〈Q̃Q〉 = v0 =

(
1
m

)
r0 = Λ

2Nc−Nf
Nc (det m)

1
Nc

(
1
m

)
. (6.106)

However, we should remember the scale Λ appeared here is not the scale ΛL of low
energy effective SQCD. They are related by scale matching condition

Λ
3Nc−Nf

L = Λ2Nc−Nf . (6.107)
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Substituting into (6.105) and (6.106) we see the results for vevs of mesons and
gaugino condensation is exactly given by that of [22, 235].

Now we can list the quantum chiral ring for above cases.

(1) Nc > N f . There is no supersymmetric ground state; which means the ideal Ŝ
contains unit, so R̂ is empty;

(2) Nc = N f . It is easy to see det v0 = Λ
Nc . Therefore the quantum moduli space

is smoothed out.

(3) Nc < N f . The quantum moduli space is the same as the classical one, thus

R̂Nc,Nf ,1 = RNc,Nf ,1. (6.108)

U(2) theory with k = 2 revisited
In this section we analyze the quantum chiral ring of the examples given in 6.3.
As mentioned before we will use the superpotential (6.93) to deform the Kutasov
model:

Wtree =
1
3
TrΦ3 − τ2TrΦ + m f̃

f Q̃ f̃ Q f , (6.109)

where we define τ2 = −g0. We can use (6.40a) and (6.40c) to solve for the Casimir
u j and generalized glueball r j first. There are two types of solution:

• 1st Solution10:

u1 = −

[
4τ2 − 8(det m)

1
2Λ

4−Nf
2

] 1
2

,

r0 = −(det m)
1
2 Λ

4−Nf
2

[
4τ2 − 8(det m)

1
2Λ

4−Nf
2

] 1
2

,

r1 = (det m)
1
2 Λ

4−Nf
2

[
2τ2 − 3(det m)

1
2Λ

4−Nf
2

]
.

(6.110)

• 2nd Solution:

u1 = 0, u2 = 2τ2, r0 = 0, r1 = (det m)Λ4−Nf . (6.111)
10In writing a solution like this, we assume the convention (x) 1

2 = ±
√

x, namely one can flip
simultaneously the sign for the square root. So the above solution has in fact four independent
solutions. We do not apply this rule to the strong coupling scale x = Λ.
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Higher order operators are zero in the limit. These two solutions are in fact the
quantum deformed version of the classical vacua [1, 1] and [2] in section 6.3. Indeed,
the classical Coulomb vacua for themassive theory is either diag(τ, τ) or diag(τ,−τ).
The correspondingYoung tableau is [2] and [1, 1], which is dual to theYoung tableau
of nilpotent matrix [1, 1] and [2].

The vevs of generalized meson is related to glueballs by (6.40d) as v j = r jm−1.
The resulting quotient is an indeterminate, whose value depend on how τ and m f̃

f

approach to zero.

• N f = 1. For the vacuum [2], we see in the massless limit:

u1 = 0, u2 = 0, v0 = 0, v1 = Λ
3. (6.112)

This vacuum is quantum mechanically modified, as we have kN f = Nc. Going back
to table 6.1, we see immediately that the charge of Λ3 is exactly the same as the
charge of v1. This is consistent with holomorphy. However, we fail to produce flat
direction for v0 in this particular limit.

For the vacua [1, 1] we see that

v0 = −2m−
1
2Λ

3
2

[
τ2 − 2m

1
2Λ

3
2

] 1
2
,

v1 = m−
1
2Λ

3
2

[
2τ2 − 3m

1
2Λ

3
2

]
.

(6.113)

Here we have the freedom to tune parameters τ and m simultaneously. Consider

τ2 − 2m
1
2Λ

3
2 ≈ η2mα

Λ. (6.114)

For (6.113) not to diverge in the limit, we must have α ≥ 1. To the leading order we
may pick α = 1. Plug this in, and we see

v0 = −ηΛ
2 ∈ C, v1 = Λ

3, (6.115)

so v1 is again corrected by one-instanton effect, although it has zero classical moduli.
We conjecture v1 = Λ3 holds for the entire vacua from all possible limit. Note
because of this that the Higgs branch of Kutasov model is smoothed out, so there are
no singularities on the moduli space. This is the k = 2 analogue of smooth moduli
space for Nc = N f in SQCD.

Herewe see a qualitative difference betweenKutasovmodel and its deformed cousin.
If we keep the deformation parameter τ finite, then taking m → 0 gives divergent
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v0 and v1. This is in accordance with [201, 202]; the finite τ endows adjoint chiral
multiplet a mass, so the low energy effective theory is just U(2) SQCD with one
flavor. It is a well-known fact that ADS superpotential lift the vacuum and the theory
does not have a ground state [22, 235, 250]. But this will not happen in Kutasov
model where we have seen that simultaneous parameter-tuning still preserves the
flat direction.

• N f = 2. This is the simplest case when the theory is in conformal window [134,
220]. Now m f̃

f is a 2 × 2 matrix. For simplicity we will take it to be diagonal,
m = diag(µ1, µ2).

Consider vacuum [2] first. Everything remains the same except there is no instanton
correction anymore: v1 = 0. For vacuum [1, 1], the expressions are similar:

v0 = −2(det m)
1
2 Λ

[
τ2 − 2(det m)

1
2Λ

] 1
2
(

1
m

)
,

v1 = (det m)
1
2 Λ

[
2τ2 − 3(det m)

1
2Λ

] (
1
m

)
.

(6.116)

We see no matter how one tunes the parameter, v1 is always zero in the limit11.
We conclude that generic massless limit could not recover flat directions for v1.
However, it is possible to give flat direction to v0.

The origin of Higgs branch v0 = 0 remains. This means that at the singularity, the
SU(2)L × SU(2)R chiral symmetry is unbroken, and the theory is in non-abelian
Coulomb phase. The IR behavior exhibits Kutasov duality.

Here we can also see the difference between Kutasovmodel and its deformed cousin.
When τ is finite, we have det v0 = 4τ2Λ2. Since the adjoint superfield Φ is massive
with mass 2τ, we see 4τ2Λ2 is nothing but the low energy scale Λ4

L of SQCD. This
is precisely the quantum modified moduli space of SQCD.

11For instance, we can consider the tuning

τ2 − 2(µ1µ2)
1
2Λ ≈ ηµα1 µ

β
2Λ

2, 0 < α, β < 1, (6.117)

where we choose α, β < 1 for the reason that v0 does not diverge. One sees that

v1 ∝ µ
α
2

1 µ
β
2
2 v0 (6.118)

after dropping factors which is zero in the limit. Since µ1,2 → 0 and α, β are positive, we see v1 → 0
in the limit.
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U(3) theory with k = 2 revisited
Next we turn to the U(3) theory whose classical chiral ring is analyzed in section
6.3. The superpotential deformation used is again (6.109).

• 1st Solution. This is the one corresponding to [2, 1] vacuum:

u1 = −τ, u2 = 3τ2,

r0 = −(det m)
1
2Λ

6−Nf
2 ,

r1 = (det m)
1
2Λ

6−Nf
2 τ.

(6.119)

• 2nd Solution. This is the one corresponding to [1, 1, 1] vacuum:

u1 = −3
√
τ2 − 2(Λ6−Nf det m)

1
3 ,

u2 = 3τ2,

r0 = −2(Λ6−Nf det m)
1
3

√
τ2 − 2(Λ6−Nf det m)

1
3 ,

r1 = 2(Λ6−Nf det m)
1
3

[
τ2 −

3
2
(Λ6−Nf det m)

1
3

]
.

(6.120)

To get the vevs of generalized mesons v0 and v1 we again divide r0 and r1 by mass
matrix m.

We mainly focus on N f = 1 and this is the region for kN f < Nc. We immediately
see [2, 1] vacua is non-existent. For [1, 1, 1] vacuum, we have to be more careful
since there is a possibility of tuning parameters. However, to make v0 finite we need
to set:

τ2 − 2(Λ6−Nf det m)
1
3 ∝ m

4
3 + higher order terms. (6.121)

But this makes v1 divergent. Therefore, the vacua is quantum mechanically erased,
and the chiral ring is empty:

R̂3,1,2 = �. (6.122)

This is consistent with the semi-classical analysis of [200, 202].

Chiral ring relation from magnetic dual
In [202], Kutasov, Schwimmer and Seiberg conjectured a quantum chiral ring re-
lation for the Casimir operators TrΦn. Classically these operators are constrained
by the superpotential terms as well as the characteristic polynomial of Φ; however,



211

quantum mechanically the characteristic polynomial coming from the adjoint Ψ in
the magnetic theory should also be added to the electric theory, via duality maps
that send TrΨn to the combination of TrΦm. In this way the quantum Coulomb
vacua on both sides match.

Here we would like to check this statement explicitly. We considerU(4) theory with
N f = 3 and k = 2 with mass deformation only for adjoint field Φ:

WΦ =
1
3
TrΦ3 −

1
2
TrΦ2. (6.123)

Classically, the theory has five vacua that are labelled by diagonal entries of 〈Φ〉 =
diag(0, 0, 0, 0), diag(0, 0, 0, 1), diag(0, 0, 1, 1), diag(0, 1, 1, 1), diag(1, 1, 1, 1). This can
be packaged into two equations obtained from characteristic polynomial as follows.
From Konishi anomaly equation (6.40), we set the right hand side of (6.40a) to zero
and get the recursion relation:

un+2 − un+1 = 0. (6.124)

Moreover, the fact that T(z) = P′(z)/P(z) where P(z) is a degree 4 polynomial
implies that ui for i > 4 can be expressed by u1,2,3,4. Using above recursion relation
we can easily obtain:

u2

(
u4

2 − 10u3
2 + 35u2

2 − 50u2 + 24
)
= 0, (6.125)

which is the classical relation coming from “electric" characteristic polynomial12.

Let us now see what happens quantum mechanically. To compute quantum correc-
tions we endow all quarks with mass by deforming the superpotential as13

W =
1
3
TrΦ3 −

1
2
TrΦ2 + m f̃

f Q̃ f̃ Q f (6.126)

and we expect some of the vacua would be erased when m f̃
f → 0. Indeed such

vacuum has two types of solutions. For the first one, it is a deformation of 〈Φ〉 =
diag(0, 0, 0, 0):

u1 = 2 − 2
[
1 − 8

(
det mΛ5

) 1
4
] 1

2

,

v0 = −(det mΛ5)
1
4

(
1
m

)
.

(6.127)

12Our results are slightly different from that of [202] in the sense that there are more vacua
because the gauge group is unitary. For special unitary gauge group the traceless condition reduces
the number of allowed vacua by about one half. Therefore, we would have Nc/2 when Nc is even as
in [202].

13Because Φ is massive now, deforming by Trmv0 is enough.
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Moreover, since N f = 3 we learned that det v0 is infinite. Therefore this vacuum
is not present at quantum level. Similar reasoning shows that the vacuum which is
the deformation of 〈Φ〉 = diag(1, 1, 1, 1) is also absent. The total number is reduced
from 5 to 3, corresponding to u1 = 1, 2, 3.

Physically, these two run-away vacua precisely correspond to the parameter regime
where ADS superpotential is generated at low energies (N f < Nc) after Φ is in-
tegrated out. The idea of [202] is that such elimination is equivalent to including
the characteristic polynomial from magnetic dual via operator mapping. We now
demonstrate that this is true.

First of all, it is straightforward to check that as m f̃
f → 0 the vevs of Casimir

operators are not quantum shifted. Following [202] we define

Φ̂ = Φ −
1
2
I, (6.128)

where I is the unit matrix. Then the superpotential becomes:

WΦ =
1
3
Tr Φ̂3 −

1
4
Tr Φ̂ −

1
3
. (6.129)

Kutasov duality proposes that the magnetic dual is a U(2) gauge theory with N f = 3
flavors of quarks and generalized mesons, plus an adjoint fieldΨwith superpotential

Ŵ = ŴΨ + Ŵq =

2∑
i=0

ĝi

i + 1
TrΨi +

1∑
j=0

v j q̃ Ψ1− jq. (6.130)

When focusing on Coulomb branch, we can perform a similar trick and turn the
superpotential of Ψ part into

ŴΨ =
t̂0
3
Tr Ψ̂3 + t̂2Tr Ψ̂ + α̂, (6.131)

where α̂ is some constant. The coupling and operator mappings given in [202] tell
us that

t̂0 = 1, t̂2 = −
1
4
. (6.132)

Then it is not hard to see that for dual theory, the Coulomb branch has three allowed
choices:

〈Ψ̂〉 =
©«

1/2 0

0 1/2

ª®®¬ ,
©«
−1/2 0

0 1/2

ª®®¬ ,
©«
−1/2 0

0 −1/2

ª®®¬ , (6.133)
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and one can deduce the magnetic characteristic polynomial following the same
procedure as before:

û3
1 − û1 = 0, û2 =

1
2

(6.134)

with ûi = Tr Ψ̂i. Applying the operator mapping derived in [202] we have

Tr Ψ̂ = −Tr Φ̂ = −TrΦ + 2, (6.135)

so we need to add to the electric theory one more constraint, which is

0 = (−u1 + 2)3 − (−u1 + 2)

= −u3
1 + 6u2

1 − 11u1 + 6,
(6.136)

the solution of which is restricted to u1 = 1, 2, 3, exactly as that computed directly
from chiral rings of electric theory.
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C h a p t e r 7

EPILOGUE

In this dissertation we have discussed topics regarding physical and mathematical
aspects of supersymmetric quantumfield theory in various dimensions. In particular,
we calculated generating functions of BPS spectrum and showed that they are in fact
equivalent to various geometric invariants. For three-dimensional N = 2 theories,
the 3d-3d correspondence allows one to reproduce GC Chern-Simons partition
functions; for four dimensional N = 2 theories, the index/TQFT correspondence
realizes geometric quantization of Hitchin moduli space. Geometric setup of M5
brane compactification connects 3d and 4d partition functions, and nicely illustrates
how partition functions for distinct theories and invariants are closely related.

On the other hand, M5 brane configuration makes it possible to understand physical
theories and their dynamics directly from geometry. We classified the Argyres-
Douglas theory of DN and E6,7,8 type based on classification of irregular punctures
in the Hitchin system. We also developed a systematic way of counting graded
dimension. Generalizing the construction in [132], we obtained duality frames for
these AD theories, and found a novel duality between quivers with SO/EN gauge
groups and quivers with SU gauge groups.

There are many further questions that are potentially interesting based on the results
in this dissertation. The first question is whether we can understand more general
Hitchin moduli space (for instance, withoutU(1)Hitchin action in wild ramification
case) from physics. An arbitrary Riemann surface with arbitrary irregular punctures
usually engineers asymptotic free theories; one may ask if properties of the theory
on the Coulomb branch can be related to wild Hitchin moduli space; this may help
understand how to geometrically quantizeMH when there is no Hamiltonian U(1)
action. A more involved question is to understand why fixed points on MH are
mapped to representations of VOAs: Are there string theory interpretations? what
do they imply on the mathematical side?

In Chapter 4 we saw that the Coulomb index at t → e2πi produces modular trans-
formations. It is further observed in [251] that the modular matrices admit one
parameter deformation that gives the full Coulomb branch index. Recall that the
character of a given highest weight representation of VOA is calculated by Schur
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index, and the Macdonald index is the one parameter deformation of it as well.
One then wonders what are the precise relation between Macdonald index and the
Coulomb branch index. Are modular transformations of the former given by the
latter?

As for the Argyres-Douglas theories themselves, there are also further open ques-
tions. For instance, it will be nice to provide further interpretation of the auxiliary
Riemann sphere. In other words, can one engineer weakly coupled quiver theories in
string theory, and the duality is interpreted as operations on the geometry side? On
the other hand, calculation of superconformal index for DN and E6,7,8 type theories
would be interesting as well, as it probes more exotic type of Hitchin moduli space
and four manifold invariants [252], as well as characters of VOAs.

The reason andmathematical rigor behind all the above connections between physics
and geometry are hitherto unknown. This is largely due to the fact that no satisfying
definition of quantum field theory exists, or more specifically, no rigorous formula-
tion of path integrals. When there is supersymmetry, the tool of localization reduces
the infinite dimensional integral to a finite one, and this is where mathematicians
begin their work. Nonetheless, an establishment of the framework would perhaps re-
veal insights even more profound than one could naively expect. In this framework,
(supersymmetric) quantum field theory serves as a bridge spanning across distinct
mathematical branches, and becomes itself as a novel object to study. Moreover,
such framework would inevitably benefit the physics side of quantum field theory,
where our daily observations of elementary particles and universe are relied upon.

We also studied the vacuum structure of certain N = 1 supersymmetric gauge
theories in four dimensions. As the number of supercharges is lowered, we saw
that the observables are less protected by supersymmetry, and the calculation be-
comes harder and harder while the quantum corrections become more and more
complicated. For general N = 1 theories, both Coulomb branch and Higgs branch
receive corrections. However, many exact calculations are still available, and there
is a long history in exploring electric-magnetic dualities. One could ask whether
a generalization of the calculation in Chapter 6 is possible to study general adjoint
SQCD of ADE type.

For non-supersymmetric theories, there are only limited techniques such as per-
turbative expansion and anomalies. Progress has been made on using anomalies
to understand the non-perturbative phase diagrams [253–257], as well as dualities
[258–261]. Note that the phases and dualities put forward in the literature are
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still conjectural in nature, and direct analytical confirmation is lacking. However,
many of those ideas are either inspired, or can be verified by the techniques in
supersymmetry, for example see [262, 263].

Although supersymmetry is not realized in Nature, from my own perspective, I tend
to view it not only as a potential mathematical framework, powerful but not yet full-
fledged, but as a playground for developing formal methodologies and deepening
structural understandings of quantum field theories in general. It is a symphony that
shall never end.
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A p p e n d i x A

COMPLEX CHERN-SIMONS THEORY ON LENS SPACES

Lens space L(p, q) can be obtained by gluing two solid tori S1 × D2 along their
boundary T2’s using an element in MCG(T2) = SL(2,Z):

©«
−q ∗

p ∗

ª®®¬
©«

m

l

ª®®¬ =
©«

m′

l′

ª®®¬ . (A.1)

Here (m, l) and (m′, l′) are meridian and longitude circles of the two copies of
T2 = ∂(S1 × D2). So the meridian m′ of one torus is mapped to −qm + pl of the
other torus. As for l, we do not need to track what it is mapped into as the choice
only affects the framing of L(p, q). A canonical choice of an SL(2,Z) element in
(A.1) is given by

ST c1 ST c2 S . . .T cnS, (A.2)

where (c1, c2, . . . , cn) are coefficients in continued fraction expansion of p/q. For
q = 1, the element that gives L(p, 1) is

ST pS. (A.3)

As SL(2,Z) naturally acts on the Hilbert space HCS(T2; G) of the Chern-Simons
theory on the two-torus, one has

ZCS(L(p, q); G) = 〈0|ST c1ST c2S . . . T cnS|0〉. (A.4)

Here |0〉 ∈ H is the state associated to the solid torus while S and T give the
action of S,T ∈ SL(2,Z) on H . When G is compact, S and T are known from
the study of the 2D WZW model and affine Lie algebra [264] and can be directly
used to evaluate (A.4). Partition functions of Chern-Simons theory on lens spaces
were first obtained precisely in this manner in [265] for SU(2) and in [266, 267] for
higher rank gauge groups. Define k̂ = k + ȟ, and then the partition function of the



218

G Chern-Simons theory on L(p, q) is given by

Z(L(p, q), k̂) =
1

(k̂ |p|)N/2
exp

(
iπ

k̂
s(q, p)|ρ|2

)
×

∑
w∈W

det(w) exp
(
−

2πi

pk̂
〈ρ,w(ρ)〉

)
×

∑
m∈Y∨/pY∨

exp
(
iπ

q
p

k̂ |m|2
)

exp
(
2πi

1
p
〈m, qρ − w(ρ)〉

)
.

(A.5)

Here s(q, p) is the Dedekind sum:

s(q, p) =
1

4p

p−1∑
n=1

cot
(
πn
p

)
cot

(
πqn

p

)
, (A.6)

ρ the Weyl vector of the Lie algebra g, W the Weyl group, Y∨ the coroot lattice, N

the rank of the gauge group, and the inner product, 〈·, ·〉, is taken with respect to the
standard Killing form of g.

Now we start computing the partition function of complex Chern-Simons theory
using (2.50) forGC = GL(N,C). The first step is to separate (A.5) into contributions
from different flat connections. As discussed in section 2.3, the moduli space
Mflat of U(N) flat connections of L(p, q) — whose foundamental group is Zp —
consists of discrete points. Each point can be labelled by (a1, a2, . . . , aN ), where the
a j’s are the p-th roots of unity. For convenience we use a different set of labels,
α = (α1, α2, . . . , αN ) ∈ g

∗, with the α j’s being integers between 0 and p − 1 that
satisfy

e2πiαj/p = a j . (A.7)

Then (A.5) can be rewritten as [268]:

Z(L(p, q), k̂) =
1

N!

∑
α

Zα(L(p, q), k̂),

Zα(L(p, q), k̂) =
1

(k̂ |p|)l/2
exp

(
iπ

k̂
N(N2 − 1)s(q, p)

)
exp

(
iπ

q
p

k̂ |α |2
)

∑
w,w̃∈SN

det(w) exp
(
−

2πi

pk̂
〈ρ,w(ρ)〉

)
exp

(
2πi

1
p
〈w̃(α), qρ − w(ρ)〉

)
.

(A.8)
The set {α} is redundant for labelling flat connections in Mflat because the Weyl
groupW = SN ⊂ U(N) acts on {α} by permuting the α j’s. We will use α̃ to denote
equivalence classes of α under Weyl group action and each α̃ corresponds to one
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flat connection modulo gauge transformations. A canonical representative of α̃ is
given by (α1, α2, . . . , αN ) with α1 ≥ α2 ≥ . . . ≥ αN . Using α̃, (A.5) can be written
as

Z(L(p, q), k̂) =
∑̃
α

1
|Wα̃ |

Zα̃(L(p, q), k̂), (A.9)

whereWα̃ ⊂ W is the stabilizer subgroup of α̃ ∈ g∗.

Using the naive way (2.49) of computing the partition function of complex Chern-
Simons theory whenMflat is zero-dimensional, one has

Z(GC; τ, τ) =
1

N!

∑
α

Zα
(
G;

τ

2
− ȟ

)
Zα

(
G;

τ

2
− ȟ

)
. (A.10)

Notice that using α̃ labels, this is

Z(GC; τ, τ) =
∑
α̃

1
|Wα̃ |

Zα̃
(
G;

τ

2
− ȟ

)
Zα̃

(
G;

τ

2
− ȟ

)
, (A.11)

and the 1
|Wα̃ |

factor should not be squared. This is because GC and G have the same
Weyl groupW and in complex Chern-Simons theoryW acts simultaneously onA
and A.

(A.11), together with (A.8), is the equation we use to compute the partition function
of the complex Chern-Simons theory. In the making of the table 2.1, we have
dropped a universal factor (

4
ττ

)N/2
∝ (ln q)N . (A.12)

This matches the factor that is also omitted on the supersymmetric index side.
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A p p e n d i x B

ANALYTIC FORMULA OF ŜU(3)K FUSION COEFFICIENTS

The notation of this section is from [84]. Specifically, we define the following
quantities:

kmin
0 = max(λ1 + λ2, µ1 + µ2, ν1 + ν2, a −min(λ1, µ1, ν1), b −min(λ2, µ2, ν2)),

kmax
0 = min(a, b),

(B.1)
where

a =
1
3
(2(λ1 + µ1 + ν1) + λ2 + µ2 + ν2),

b =
1
3
(λ1 + µ1 + ν1 + 2(λ2 + µ2 + ν2)).

(B.2)

Moreover we introduce

δ =


1 if kmax

0 ≥ kmin
0 and a, b > 0, a, b ∈ Z,

0 otherwise.
(B.3)

With these definition we can compactly write our ordinary su(3) representation ring
and its fusion coefficient as

Nλµν = (kmax
0 − kmin

0 + 1)δ, (B.4)

and we also define a list of Nλµν integers:

ki
0 = {k

min
0 , kmin

0 + 1, . . . , kmax
0 }. (B.5)

Then the ŝu(3)k fusion coefficients can be written as

fλµν(t = 0) ≡ N (k)λµν =


max(i) such that k > ki

0 and Nλµν , 0,

0 if Nλµν = 0 or k < k1
0 .

(B.6)
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A p p e n d i x C

PROPERTIES OF THE COULOMB BRANCH INDEX

C.1 TQFT structure
As the N = 2 superconformal index of the class S theories T[Σg,s; G] does not
depend on complex moduli of Σ, it has a TQFT structure [58]. This further implies
that the index can be computed by cutting and gluing the Riemann surface. As all
Riemann surfaces can be reduced to cylinders and pairs of pants, one should be able
to recast the superconformal index into the form

I(T[Σg,s; G]; a1, . . . , as) =
∑
α

(Cααα)
2g−2+s

s∏
i=1

ψα(ai) (C.1)

by choosing a basis in the TQFT Hilbert space to make the “fusion coefficients”
Cαβγ associated with a pair of pants diagonal, and the “metric” ηαβ associated with
a cylinder proportional to the identity matrix δαβ. Here Cααα is also known as the
“structure constant,” ψα(ai) is called the “wave function" with flavor fugacity ai at
the puncture.1

Now let us specialize to the Coulomb branch index for classS theories on S1×L(k, 1)
and recall the TQFT structure studied in [16]. Unlike the usual lens space index
where the holonomies take integral values, in [16] the authors defined the “full
index" by summing over ’t Hooft fluxes, allowing fractional holonomies as long as
charge quantization condition is satisfied. In the case of theories of type g = su(2),
this means that the holonomy mi at each puncture takes value in {0, 1/2, 1, . . . , k/2}.
These holonomies form the Hilbert space of the TQFT, and are essentially the set of
integrable representations of ŝu(2)k . After appropriate normalization of the states,
(C.1) has the following form [15, 16]:

I(T[Σg,s; ŝu(2)]; m1, . . . ,ms) =

k∑
l=0

C2g−2+s
l

s∏
i=1

ψl(mi), (C.2)

where

Cl =
L−1

l
√

1 − t sin θl |1 − t e2iθl |2
(C.3)

1The diagonalizability of the TQFT structure constant is not a guaranteed property when the
TQFT Hilbert space is infinite-dimensional (e.g., for Schur limit of lens space index, it seems that
one could not simultaneously diagonalize flavor fugacity variable and flavor holonomy variable [59]).
But the cutting and gluing rules still apply.
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and

ψl(m) =
√

1 − t Ll ×



(1 + t) sin θl, m = 0,

sin 2θl, m = 1/2,

sin 3θl − t sin θl, m = 1,

sin 4θl − t sin 2θl, m = 3/2,

...

sin kθl − t sin(k − 2)θl, m = (k − 1)/2,

sin(k + 1)θl − t sin(k − 1)θl, m = k/2.

(C.4)

Here the normalization constant is

L−2
l =

k + 2
2
|1 − t e2iθl |2 + 2t cos 2θl − 2t2 (C.5)

and those θl’s are the k + 1 solutions in (0, π) to the Bethe ansatz equation,

e2ikθ
(

eiθ − t e−iθ

t eiθ − e−iθ

)2

= 1. (C.6)

Moreover the metric in this basis is given by ηλλ = (1 − t2, 1 − t, . . . , 1 − t, 1 − t2).

What happens when irregular punctures are present? It may not even make sense
to talk about TQFT structure, because for a Riemann surface Σg,`,{nα} with arbitrary
genus g plus ` regular punctures and an arbitrary number of irregular ones labeled
by {nα}, the U(1)r symmetry is broken and the resulting theory is generically
asymptotically free [103, 172] instead of superconformal. For instance, consider
gauging the diagonal SU(2) group of (A1,DK) and (A1,DM) theory by an SU(2)
vector multiplet. Each side has a flavor central charge kSU(2) = 4(K − 1)/K and
k′SU(2) = 4(M − 1)/M; the gauging would contribute to the one-loop running of
gauge coupling as

b0 = 2
(

1
K
+

1
M

)
> 0. (C.7)

If one tries to extend the superconformal index of Argyres-Douglas theory to an
arbitrary Riemann surface Σg,`,{nα} by cutting and gluing, the interpretation of the
“index” obtained at the end it is not obvious. In the case of the Schur index and the
Macdonald index, it turns out that the cutting-and-gluing procedure computes the
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index of the UV fixed point, consisting of free multiplets with canonical choice of
scaling dimensions [269].

Let us now examine the Coulomb branch limit. In order to define a viable TQFT
structure as (C.1), a necessary condition is that one has to be able to consistently
close the regular puncture. This means we should be able to reduce (A1,DK+1)

to (A1, AK−2) theory since the Riemann sphere associated with the two theories
differ only by an extra regular puncture. On the field theory side, one observes the
Coulomb branch scaling dimensions of (A1,DK+1) and (A1, AK−2) theories are very
similar, giving further evidence that these two theories are related.

In the language of TQFT, there is a natural “cap state” that tells us how to close a
regular puncture. Let us begin with (A1,D2N+1) and (A1, A2N−2) theories. Recall
that the lens space index (4.77) of (A1,D2N+1) contains a normalization factor (4.78)
which can be absorbed in the redefinition of the states (labeled by the holonomy n)
inserted in the regular puncture. Then it is not hard to check that if we define

〈φ′| = 〈0′| − t
2N

2N+1 〈1′| (C.8)

then this is precisely the cap that reduces the index of (A1,D2N+1) theories into
(A1, A2N−2) theories. Recall that in the equivariant Verlinde TQFT, the cap state is
decomposed as

〈φ| = 〈0| − t〈1|. (C.9)

The only difference is the t here is replaced with t
2N

2N+1 in (C.8). This is due to the
fact that, in the presence of an irregular singularity, theU(1)Hitchin action will also
rotate the Σ, and the neighborhood of south pole (at z = 0) is also rotated,

ρθ : z 7→ e−i 2
2N+1 θz. (C.10)

So the state 〈φ′| is no longer associated with the ordinary cap, but with the “rotating
cap”, and similarly for 〈0′| and 〈1′|.

From the cap states (C.8), it is not hard to argue that the structure constants and
wavefunctions associated with regular puncture cannot remain simultaneously the
same as those in (C.3) and (C.4). This is simply because the cap state is given by∑

l C−1
l ηnnψ

l(n) which should depend on N .

Let us now turn to the (A1,D2N+2) and (A1, A2N−1) case. Unlike the previous
situation, the latter theory contains an additional U(1) flavor symmetry so that the
existence of the cap state 〈φ′| is more non-trivial. Similarly, there is a normalization
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constant for each theory that needs to be absorbed. For the (A1, A2N−1) theory, the
normalization constant is (4.76) which shall be absorbed in the definition of irregular
puncture wavefunction ψ̂l

2N ; while for (A1,D2N ) theory, the quantity is (4.81). Note
that there is “entanglement" between the two factors of the U(1) × SU(2) flavor
symmetry, and one cannot split it into a product of two functions that depend on n1

and n2 separately.

In order to go from (A1,D2N+2) to (A1, A2N−1), we should properly identify the
residual U(1) symmetry and which combination of n1 and n2 is enhanced to SU(2)
in the IR. In fact, [111] shows that the mixing to SU(2) is given by (1/2N +2)U(1)b.
Therefore, we identify (N+1)n2 as the SU(2) holonomy, while the residual symmetry
is identified as

n ∼
N + 1

N
n1. (C.11)

Then it is a straightforward computation to see that the cap state for the regular
puncture of (A1,D2N+2) can be defined as

〈φ′| = 〈0′| −
〈(

1
N + 1

)′���� ×

t, for n1 = 0

t
N

N+1 , for n1 > 0

(C.12)

Here, the value inside the bra is for n2. Note the following peculiar behavior: when
n1 (the holonomy for U(1) symmetry carried by the irregular puncture) is zero, then
the cap state becomes the ordinary one in the tame case [15, 16], while for non-zero
n1 the irregular puncture starts to affect in a non-local way the regular puncture
on the other side. Similar to the previous case, one can argue that the structure
constants and the wave function for the regular puncture cannot be made identical
to the tame case (C.3) and (C.4) simultaneously.

We do not yet know what this quantity computes for arbitrary Σg,`,{nα} wild quiver
gauge theories via cutting and gluing. What we have found above is a consistent
way to define the TQFT structure (C.1) solely for Argyres-Douglas theories. A clear
picture may be achieved once the irregular states in TQFT are better understood, as
was studied in CFT [270–272].

C.2 Symmetry mixing on the Coulomb branch
In Section 4.4, we mentioned that (4.122) and (4.126) can be interpreted as the
mixing betweenU(1)r symmetry and topological symmetry on the Coulomb branch.
We now explain why this is so. We focus on the T3d[Σ] side instead of its mirror
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Tmir.
3d [Σ], and the fugacities assigned on the Higgs branch of Tmir.

3d [Σ] become those
for the topological symmetry on the Coulomb branch of T3d[Σ]. The trace formula
(4.119) in the Coulomb limit becomes

I3d
C = TrHC

t
RC−RH zfJ (C.13)

with the BPS Hilbert space HC containing those states satisfying Ẽ = RC and
RH = − j2. Here fJ is the charge under topological symmetry. To further simplify
(C.13), we claim RH = 0. To see this, let us go back to 4dN = 2 index and ask what
type of short multiplets are counted by Coulomb branch limit. In general, two types
will enter [58]: they are of type Er,( j1,0) and D0,( j1,0). It was shown in [273] that for
Argyres-Douglas theories considered in this chapter, no short multiplet of above two
types with j1 > 0 occur. Since D0,(0,0) is a subclass of Er,(0,0) it suffices to say that
the Coulomb branch index only counts the Er,(0,0) multiplet for Argyres-Douglas
theories. After dimensional reduction, it becomes clear that RH = 0 in (C.13) since
Er,(0,0) carries the trivial representation of SU(2)R.

Therefore, the substitution we havemade in (4.122) and (4.126) onlymixes topologi-
cal symmetry with SU(2)C symmetry. Under mirror symmetry, SU(2)C and SU(2)H
are exchanged, and the topological symmetry becomes the flavor symmetry in the
mirror frame. To see explicitly the operator mapping, consider (A1, A2N−1) theories
with a rank-(N − 1) Coulomb branch, for which the mixing is given by (4.122) and
(4.123). After comparing with (4.106), we see that the 4d N = 2 Coulomb branch
operators come from the t′z j/zi term with i = N and j = 1, 2, . . . , N − 1. They are
precisely the Higgs branch operators X jY1, where (X i,Yi) are twoN = 2 chiral fields
in the i-th hypermultiplet.2

We now turn to the (A1,D2N ) Argyres-Douglas theory, whose three-dimensional
mirror is given in Figure 4.3 [18]. The Higgs branch index is given by (4.125) and
the substitution made there is (4.126). Note that we set the U(1) fugacity to be 1,
implying that this symmetry does not mix with the R-symmetry. In particular, when
N = 2, the non-abelian part of the topological symmetry is trivial, so we have no
mixing at all! This is actually quite reasonable, because the U(1)r charge (1/2) of
the Coulomb branch operator of (A1,D4) theory automatically satisfies the SU(2)C
quantization condition.

2The results here differ slightly from that of [112] due to a different choice of matrix represen-
tations of Cartan element. The two conventions can be mapped to each other. We thank Matthew
Buican for discussion and clarification.
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For general (A1,D2N ) theories with N > 2 the Coulomb branch operators no longer
have half-integral scaling dimensions, so the symmetry mixing (4.126) should be
non-trivial. It is not hard to single out the term in the denominator of (4.125) that
gives rise to those Coulomb branch operators.

Unfortunately, it is not known in the current literature what is the three-dimensional
mirror of (A1, A2N ) and (A1,D2N+1) Argyres-Douglas theories. The absence of
Higgs branch in the (A1, A2N ) theories indicates that their 3d mirror cannot be given
by quiver theory. The computation of Coulomb branch index and k → +∞ limit
shows that the T3d[Σ] must have topological symmetry.
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A p p e n d i x D

MASSIVE VACUA OF THREE-DIMENSIONAL QUIVER
THEORY

In this appendix we give explicit steps in solving the massive vacua for certain
three-dimensional N = 4 quiver gauge theories. These are the mirrors of three-
dimensional reduction of Argyres-Douglas theories. As mentioned in Section 4.4,
the problem of finding the U(1) fixed points is equivalent to the problem of finding
the massive vacua with masses turned on according to the embedding U(1) ⊂
GR-sym × Gflavor. More precisely, this embedding will specify a one-dimensional
subspace of the Lie algebra of gR-sym ⊕ gflavor and its dual, where mass parameters
lives.1 However, as the number of massive vacua are the same for a generic
embedding and U(1)Hitchin is generic (in the sense that fixed points are isolated), we
will work with a generic choice of mass parameters to simplify the notation, which
will still lead to the right number of vacua.

D.1 (A1, A2N−1) Argyres-Douglas theory
The three dimensional mirror is N = 4 SQED with N flavors of hypermultiplets.
Let us denote (Xi,Yi) where i = 1, 2, . . . , N as the chiral component for the N

hypermultiplets, andΦ (σ) as the complex (real) scalar in the U(1) vector multiplet.
We turn on complexmasses mi

C
and real FI parameter tR < 0, and denote the induced

action (C∗)m. The BPS equations are

X · Y = 0, |X |2 − |Y |2 + tR = 0,

(Φ + mC) · X = 0, σ · X = 0,

(Φ + mC) · Y = 0, σ · Y = 0.

(D.1)

The solution is easy to describe, given by

σ = 0, Φ = −mi
C, Y = 0, X = (0, . . . , 0,

√
−tR, 0, . . . , 0), (D.2)

for i = 1, 2, . . . , N . So there are N fixed points under (C∗)m action.
1Turning on mass parameters associated with R-symmetry will in general break supersymmetry.

For us, it will break 3d N = 4 to 3d N = 2.



228

D.2 (A1,D2N ) Argyres-Douglas theory
The three dimensional mirror is a U(1) ×U(1) quiver gauge theory with N − 1 hy-
permultiplets (Xi,Yi) stretching between two gauge nodes, one single hypermultiplet
(A1, B1) only charged under the first U(1), and another single hypermultiplet only
charged under the second U(1). The superpotential of the theory is

W =
N−1∑
i=1
(Φ1 − Φ2 + mi

C)XiYi + (Φ1 + M1)A1B1 + (Φ2 + M2)A2B2, (D.3)

where mi
C
, M1,2 are the complex masses. We have the following constraints on the

space of allowed vacua:

(Φ1 − Φ2 + mi
C)Xi = 0, (Φ1 − Φ2 + mi

C)Yi = 0,

(Φ1 + M1)A1 = 0, (Φ1 + M1)B1 = 0,

(Φ2 + M2)A2 = 0, (Φ2 + M2)B2 = 0,

N−1∑
i=1

XiYi + A1B1 = 0, −
N−1∑
i=1

XiYi + A2B2 = 0,

(D.4)

where Φ1,2 are the complex scalar in the gauge group. Since we have set the real
mass to be zero, the vevs of real scalarsσ1,2 in the vector multiplet will automatically
be zero. We also must impose the D-term equation,

N−1∑
i=1
(|Xi |

2 − |Yi |
2) + |A1 |

2 − |B1 |
2 = t1

R,

N−1∑
i=1
(|Xi |

2 − |Yi |
2) + |A2 |

2 − |B2 |
2 = t2

R.

(D.5)

For simplicity and without loss of generality, we will assume that the real FI param-
eters t1,2

R > 0. Let us try to solve the above equations.

(a) Suppose Φ1 − Φ2 + mi
C
, 0 for all i.

This means that Xi = Yi = 0 for all i. Then we get A1B1 = A2B2 = 0. But
they cannot be simultaneously zero, otherwise the D-term condition would
be violated. Therefore we see that only B1 = B2 = 0, and |A1 | =

√
t1
R,

|A2 | =
√

t2
R. This fixes Φ1 = −M1 and Φ2 = −M2. This gives one solution.
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(b) There exists one i such that Φ1 − Φ2 + mi
C
= 0.

This implies that X j = Yj = 0 whenever j , i since the mi
C
’s are kept generic.

Now if we assume neither Φ1 +M1 and Φ2 +M2 is zero, then we should have
A1 = A2 = B1 = B2 = 0. Then we see that |Xi |

2 − |Yi |
2 equals both to t1

R and
t2
R, which is impossible since the real FI parameters are also generic.

We conclude thatΦ1 = −M1 orΦ2 = −M2 (they cannot simultaneously hold).
If the former is true, then A2 = B2 = 0, and XiYi = A1B1 = 0. We then see
thatYi = 0 and |Xi | =

√
t2
R, and |A1 |

2− |B1 |
2 = t1

R− t2
R. Depending on whether

t1
R > t2

R or t1
R < t2

R we can solve for A1 and B1. In this way we get N − 1
solutions.

Similarly, if the latter is true, we also get N − 1 solutions. So in total, we have
2N − 1 solutions, which is exactly what we want.
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A p p e n d i x E

FIXED POINTS UNDER U(1) HITCHIN ACTION

In this appendix we give the explicit form of fixed points by solving the Hitchin
equations. We only consider moduli spaces M2,2N+1 and M̃2,2N−1. In the case
M2,2N+1, the fixed points and corresponding values of µ are described in [124].
We check in detail the weights on the normal bundle for each fixed point and argue
that they agree precisely with physical interpretations. In the case M̃2,2N−1, we
generalize the methods in [124] to describe the fixed points, and then check the
weights. Throughout this section, we adopt the convention specified around (4.9).

E.1 Fixed points onM2,2N+1

For given N , the U(1) fixed points are labeled by an integer ` = 0, 1, . . . , N up to
gauge equivalence. In terms of the triple (∂̄E, h, ϕ), they are given by

∂̄E = ∂̄,

ϕ∗` =
©«

0 zN−`

zN+1+` 0

ª®®¬ dz,

h =
©«
|z |

1+2`
2 eU

|z |−
1+2`

2 e−U

ª®®¬ ,
(E.1)

where U = U(|z |) is the unique solution of the ordinary differential equation [274](
d2

d |z |2
+

1
|z |

d
d |z |

)
U = 8|z |2N+1 sinh(2U) (E.2)

satisfying the following boundary conditions:

U(|z |) ∼ −
1 + 2`

2
ln |z | + . . . |z | → 0,

U(|z |) ∼ 0, |z | → ∞.
(E.3)

The boundary condition at |z | = 0 guarantees that the Hermitian metric h is smooth
there; therefore the Chern connection D = ∂ + ∂̄ + h−1∂h has trivial monodromy.
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The gauge transformation gθ which undoes the U(1) action (4.30) on (E.1) is

gθ =
©«
e

1+2`
2(2N+3) iθ

e−
1+2`

2(2N+3) iθ

ª®®¬ . (E.4)

The moment map (4.32) can be interpreted as a regularized L2-norm of the Higgs
field. Consequently, at the U(1) fixed point labeled by the integer `, we have from
(4.32):

µ` =
i
π

∫
|z |2N+1(cosh 2U − 1)dz ∧ dz̄

=
(1 + 2`)2

8(2N + 3)
.

(E.5)

The U(1) action also acts on the tangent space T(∂̄,ϕ,h)M2,2N+1 to each fixed point.
Let Ûϕ ∈ Ω(1,0)(CP1;EndE) be the variation of the Higgs field. We say that the U(1)
action acts on Ûϕ with weight $ if

eiθρ∗θ Ûϕ = ei$θg−1
θ Ûϕ gθ, (E.6)

where gθ is given in (E.4).

As in [12, 86], one can define the complex symplectic form on the tangent space
( ÛA, Ûϕ) as

ω′(( ÛA1, Ûϕ1), ( ÛA2, Ûϕ2)) =

∫
Tr ( Ûϕ2 ∧ Ψ1 − Ûϕ1 ∧ Ψ2), (E.7)

whereΨ is the image of the identification fromΩ1(CP1, ad(P)) toΩ(0,1)(CP1, ad(P)⊗
C). Then it is immediate that the complex symplectic form ω′ has charge 1 under
the circle action. The existence of such form implies that the weights are paired on
the tangent space: if there is a weight $ on the tangent space, there is also a weight
1 −$. This statement will be confirmed in examples shortly.

Our strategy in determining theseweights relies heavily on permissible deformations
of Higgs field and (E.6). By the word “permissible” we mean that, (i) its spectral
curvemust be that of (4.18)withK = 2N+1with vanishing coupling constants; (ii) it
does not originate from infinitesimal meromorphic gauge transformation Ûϕ = [ϕ, <]
for < ∈ sl(2,C), and (iii) it does not introduce extra singularities; (iv) it does not alter
leading nilpotent coefficientmatrix. The goal is then to enumerate these inequivalent
permissible deformations. Moreover, it suffices to consider the deformation to the
linear order and ignore all higher order terms.
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Let us begin with the caseM2,3, pick a small parameter υ and focus on the first fixed
points

ϕ∗1 =
©«

0 1

z3 0

ª®®¬ dz. (E.8)

To preserve the spectral curve (4.18), there are two simple linear deformations one
could write down:

Ûϕ1 =
©«

0 0

υ 0

ª®®¬ dz,
©«
υ 0

0 −υ

ª®®¬ dz. (E.9)

However, the second deformation is a gauge artifact, while the first one is legitimate
with the weight being 6/5. We then conclude that the other paired weight must be
−1/5. Indeed one could find the corresponding deformation as

Ûϕ1 =
©«
υz2 0

0 −υz2

ª®®¬ dz + o(υ). (E.10)

The determinant of ϕ∗1 + Ûϕ1 equals to −z3dz2 up to quadratic terms in υ, so such
deformation stays on the nilpotent cone.

On the other hand, we have another fixed point

ϕ∗0 =
©«

0 z

z2 0

ª®®¬ dz. (E.11)

We see that the diagonal deformation is allowed at this time, since gauge transfor-
mation with essential singularity is forbidden. This deformation has weight 3/5,
whose paired weight is 2/5. The associated deformation for the latter weight is then

Ûϕ0 =
©«

0 −υ

υz 0

ª®®¬ dz + o(υ). (E.12)

Now we generalize the above procedure to wild Hitchin moduli spaceM2,2N+1 with
N > 1. Let us consider the `-th fixed point in (E.1). For j = 0, · · · , ` − 1, the
following family of deformations come from infinitesimal deformations Ûϕ of the
lower-left entry of the Higgs field:

Ûϕ
( j)
`
=

©«
0 0

υz j 0

ª®®¬ dz. (E.13)



233

The associated determinant that enters spectral curve is

− det(ϕ( j)
`
) = (z2N+1 + υzN−`+ j)dz2. (E.14)

So (E.13) is a permissible deformation. The associated series of weights are

$j =
2(N + ` + 1 − j)

2N + 3
> 1, j = 0, . . . , ` − 1. (E.15)

The moment map is largest at the fixed point ` = N . There are N such deformations,
and this family of deformations at ` = N should be thought of as (the analogue of)
the Hitchin section.

Because of the complex symplectic form ω′ in (E.7), there are weights that are
paired with those in (E.15):

$j =
−1 − 2 j
2N + 3

< 0, j = 0, . . . , ` − 1, (E.16)

where we have relabeled the indices. They are downward Morse flows, so must stay
on the nilpotent cone. In other words, the corresponding family of deformations
ϕ
( j)
`

preserves the spectral curve − det(ϕ( j)
`
) = z2N+1dz2:

Ûϕ
( j)
`
=

©«
υzN+ j+1 0

0 −υzN+ j+1

ª®®¬ dz + o(υ). (E.17)

This particular type of deformation, (E.17) also appears in [275].

The remaining 2(N − `) weights are between 0 and 1. Let us consider one family of
deformations labeled by j = 0, . . . , N − ` − 1, which is the diagonal deformation:

Ûϕ
( j)
`
=

©«
υz j 0

0 −υz j

ª®®¬ dz, (E.18)

and the determinant is − det(ϕ( j)
`
) = z2N+1dz2, meaning such deformation stays on

the nilpotent cone. The associated series of weights are

$j =
2N + 1 − 2 j

2N + 3
, j = 0, . . . , N − ` − 1. (E.19)

The rest weights correspond to deformations Ûϕ which involve both the upper-right
and lower-left entries. They can be written as

Ûϕ
( j)
`
=

©«
0 −υz j

υz1+2`+ j 0

ª®®¬ dz + o(υ), (E.20)
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whose determinant can be verified to lie in the Hitchin base B. The associated
weights are

$j =
2(N − ` − j)

2N + 3
, j = 0, . . . , N − ` − 1. (E.21)

These weights, after a reordering of indices, pair with the weights in (E.19). In
summary, we have the following weights for the `-th fixed points on the tangent
space:

$j =
2(N + 1 + j)

2N + 3
, j = 1, 2, . . . , `, (E.22a)

$j = −
2 j − 1
2N + 3

, j = 1, 2, . . . , `, (E.22b)

$j =
2 j + 1
2N + 3

, j = ` + 1, ` + 2, . . . , N, (E.22c)

$j =
2(N − j + 1)

2N + 3
, j = ` + 1, ` + 2, . . . , N . (E.22d)

These weights are precisely matched with the wild Hitchin character forM2,2N+1

in Section 4.4.

E.2 Fixed points on M̃2,2N−1

The fixed points on M̃2,2N−1 are quite straightforward to obtain: one merely allows
a regular singularity at z = 0, whose monodromy for gauge connection is denoted
as α. Expressed in terms of a triple (∂̄E, h, ϕ) these fixed points are

∂̄E = ∂̄,

ϕ =
©«

0 z`

z2N−1−` 0

ª®®¬ dz,

h =
©«
|z |

2N−1−2`
2 eU 0

0 |z |−
2N−1−2`

2 e−U

ª®®¬ ,
(E.23)

where the index ` is an integer such that −1 < ` + 2α < 2N [274]. The function
U(|z |) is the unique solution of(

d2

d |z |2
+

1
|z |

d
d |z |

)
U = 8|z |2N−1 sinh(2U) (E.24)
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satisfying the following boundary conditions:

U(|z |) ∼
(
−

2N − 1 − 2`
2

+ 2α
)

ln |z | + . . . |z | → 0,

U(|z |) ∼ 0, |z | → ∞.

(E.25)

The asymptotics of U(|z |) guarantees that near z ∼ 0, the harmonic metrics all
satisfy

h ∼
©«
|z |2α 0

0 |z |−2α

ª®®¬ (E.26)

so that the gauge connection indeed has monodromy A ∼ αdθ. Computing the
regularized value of the moment map (4.32) at each of these U(1) fixed points, we
get

µ′(`) =
1

2(2N + 1)

(
−

2N − 1 − 2`
2

+ 2α
)2
. (E.27)

In our case, 2α ∈ (0, 1), these 2N + 1 fixed points are unique up to gauge transfor-
mation and are labeled by ` = −1, · · · , 2N − 1. As in previous case, to match the
physical predication we usually need to subtract the lowest moment map value. The
minimal value, µ′min occurs at ` = N − 1:

µ′min =
1

2(2N + 1)

(
−

1
2
+ 2α

)2
. (E.28)

Letting
µ = µ′ − µ′min, (E.29)

the values of µ are

µ =
i(i + 1)

2(2N + 1)
−

i
2N + 1

(2α), i = N, N − 1, . . . ,−N + 1,−N, (E.30)

where we have relabeled the indices by setting i = N − ` − 1. Note that these are
precisely the values of the moment map appearing in (4.98).

Now we turn to the weights on the normal bundle of these fixed points. Notice
that we do not have to compute everything from scratch, because the fixed points in
(E.23), except ` = −1, are automatically fixed points for the moduli spaceM2,2N−1,
cf. (E.1). However, we are missing two weights since

dimC M̃2,2N−1 = dimCM2,2N−1 + 2. (E.31)
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These two additional weights are very easy to obtain, since the associated deforma-
tions of the Higgs fields involve z−1. We then have:

εN =
2N − 1
2N + 1

, ε̃N =
2

2N + 1
. (E.32)

The weights for ` = −1 are new, but they are computed in a similar way and we omit
the details.
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A p p e n d i x F

TYPE IIB CONSTRUCTION FOR AD THEORIES

Consider type IIB string theory on isolated hypersurface singularity in C4:

W(x1, x2, x3, x4) = 0, W(λqi xi) = λW(xi), (F.1)

where the condition of isolation at xi = 0 means dW = 0 if and only if xi = 0. The
quasi-homogeneity in above formula plus the constraint

∑
qi > 1 guarantees that

the theory has U(1)r symmetry, i.e it is superconformal.

The Coulomb branch of resulting four dimensional N = 2 SCFT is encoded in the
mini-versal deformation of the singularity:

F(xi, λa) = W(xi) +

µ∑
a=1

λaφa, (F.2)

where {φa} are a monomial basis of the quotient algebra

AW = C[x1, x2, x3, x4]

/〈
∂W
∂x1

,
∂W
∂x2

,
∂W
∂x3

,
∂W
∂x4

〉
. (F.3)

The dimension µ of the algebra as a vector space is the Minor number, given by

µ =

4∏
i=1

(
1
qi − 1

)
. (F.4)

The mini-versal deformation can be identified with the SW curve of the theory.

BPS particles in the SCFT can be thought of as D3 brane wrapping special La-
grangian cycles in the deformed geometry. The integration of the holomorphic
three form,

Ω =
dx1 ∧ dx2 ∧ dx3 ∧ dx4

dF
(F.5)

on the three cycles gives the BPS mass of the theory. Thus, we require thatΩ should
have mass dimension 1. This determines the scaling dimension of the parameter λa:

[λa] = α(1 − [φa]), (F.6)

where α = 1/(
∑

qi − 1).
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The central charges of the theory is given by [190]:

a =
R(A)

4
+

R(B)
6
+

5r
24
+

h
24
, c =

R(B)
3
+

r
6
+

h
12
. (F.7)

Here R(A) is given by summation of Coulomb branch spectrum:

R(A) =
∑
[ui]>1

([ui] − 1), (F.8)

and r , h are number of free vector multiplets and hypermultiplets of the theory at
generic point of the Coulomb branch. In our cases, r equals the rank of Coulomb
branch and h is zero. Finally, we have [276]

R(B) =
µα

4
. (F.9)
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A p p e n d i x G

GRADING OF LIE ALGEBRA FROM NILPOTENT ORBIT

A natural way of generating torsion automorphism is to use nilpotent orbit in g. Let
e be a nilpotent element, which may be included in an sl2 triple {e, h, f } such that
[e, f ] = h, [h, e] = 2e, [h, f ] = −2 f . With respect to the adjoint action ad h, g
decompose into eigenspaces:

g =

d⊕
i=−d

gi, (G.1)

where d is called the depth. Proper re-assembling of gi gives (5.18), hence fixes a
torsion automorphism σe of order m. We call the nilpotent element e even (odd)
if the corresponding Kac diagram De is even (odd). In fact De is identical to the
weighted Dynkin diagram D̂e [178]. Moreover, we have the relation m = d + 2 and
g2 = g2 + g−d .

A cyclic element of the semisimple Lie algebra g associated with nilpotent element
e is the one of the form e+F, for F ∈ g−d . We say e is of nilpotent (resp. semisimple
or regular semisimple) type if any cyclic element associated with e is nilpotent (resp.
any generic cyclic element associated with e is semisimple or regular semisimple).
Otherwise, e is called mixed type [185]. A theorem of [185] is that e is of nilpotent
type if and only if the depth d is odd. We see that T2 precisely corresponds to the
cyclic element. In order to get regular semisimple coefficient matrices, it is clear
that one needs e of regular semisimple type. In fact, except for g = AN−1 case, all
nilpotent elements of regular semi-simple type generate even Kac diagram De1.

However, nilpotents e of regular semisimple type do not exhaust all the torsion
automorphism we are interested in. To complete the list, we examine the problem
from another point of view. When a cyclic element e + F is regular semisimple, its
centralizer h′ is a Cartan subalgebra. σe leaves h′ invariant, thus induces a regular
element we in the Weyl group. When e gives even De, we and σe have the same
order, called the regular number of we. The regular element and its regular number
are classified in [277], and nilpotents of regular semisimple type do not cover all of
them.

1By this wemean that the nilpotents with partition [n, n, . . . , n, 1] for g = AN−1, though of regular
semisimple type, are not even.
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The remaining regular numbers, fortunately, are all divisors of those of σe. Hence,
we can obtain the Kac diagrams from taking appropriate power of some σe. Their
Kac coordinates are determined from the following algorithm [182, 183]. Suppose
we start with automorphism σe of order m and Kac coordinates (s0, s1, . . . , sr) and
we wish to construct automorphism of order n < m by taking σm/n. We first replace
the label s0 by

s0 → n −
N∑

i=1
aisi . (G.2)

Now s0 will be necessarily negative. After that, we pick one negative label s j at
each time for j = 0, 1, . . . , N , and change the label into (s′0, s

′
1, . . . , s

′
r) such that

s′i = si − 〈αi, α
∨
j 〉s j, i = 0, 1, . . . , r, (G.3)

where α∨ is the coroot. One repeats the procedure until finally all (s0, . . . , sr) are
positive. This gives the Kac diagram that corresponds to the automorphism with
order n. The Kac diagram obtained is unambiguous, independent of which element
e we start with.

We now use nilpotent elements to obtain the grading. For g = AN−1, this is done in
[132]. We mainly examine the classification when g = DN and E6,7,8.

• The Lie algebra g = DN . Nilpotent element e is of semi-simple type if and only
if

(i) The embedding is [n1, . . . , n1, 1, . . . , 1] where n1 has even multiplicity;

(ii) [2m + 1, 2m − 1, 1, . . . , 1] with m ≥ 1;

(iii) [n1, 1, . . . , 1] for n1 ≥ 5.

In particular, e is of regular semi-simple type if and only if in (i) n1 is odd and 1
occurs at most twice; in (ii) p ≤ 4; in (iii) p ≤ 2. In each case we can compute
b = d + 2 where d is the depth. They are (i) d = 2n1 − 2; (ii) d = 2n1 − 4 = 4m − 2;
(iii) d = 2n1 − 4 [185]. As is known, these nilpotent elements are all even. Next we
examine each case of regular semi-simple type in more detail.

Nilpotent embedding of case (i). When the partition is [n1, n1, . . . , n1], we see n1

must be a divisor of N . Therefore we have the Higgs field

Φ ∼
T

z2+ k
n1

(G.4)
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with (k, n1) = 1. Note that when N is even, the partition [N, N] is not allowed. This
case will be recovered in case (ii).

When the partition is [n1, . . . , n1, 1], then we know n1 divides 2N − 1. But n1 must
have even multiplicity, so this case is excluded.

When the partition is [n1, . . . , n1, 1, 1], then n1, being an odd number, must divide
N − 1. Then we get (G.4) as well (but the matrix T is different).

Nilpotent embedding of case (ii). There can only be no 1 or two 1’s in the Young
tableaux. For the former, we have 4m = 2N . So this case exists only when N is
even number. The Higgs field is

Φ ∼
T

z2+ k
N

(G.5)

with (k, N) = 1. For the latter, we have 4m = 2N − 2 (which means N − 1 must be
even), and the Higgs field is

Φ ∼
T

z2+ k
N−1

(G.6)

for (k, N − 1) = 1.

Nilpotent embedding of case (iii). When p = 1, we have the partition [2N]. This
violates the rule for D-partition.

When p = 2 we have n1 = 2N − 1, so the order of ε is 4N − 4. We get the Higgs
field

Φ ∼
T

z2+ k
2N−2

. (G.7)

In summary, with classification of nilpotent orbit of regular semi-simple type, for
N odd, we have recovered b = N and all its divisors b = n1 (no even divisors). For
N even, we can recover b = N as well and all its odd divisor. But we could not
recover its even divisors using the above technique. Similarly, we have recovered
b = 2N − 2 and b = N − 1 as well as all odd divisors of N − 1, but we missed all the
even divisors of 2N − 2 except N − 1 itself.

The recovery of the missing cases can be achieved with the prescription introduced
around (G.2) and (G.3). We give some examples in appendix H. Here we only
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nilpotent orbit depth order Higgs field

D4(a1) 6 4 Φ ∼ T/z2+ k
4

E6(a3) 10 6 Φ ∼ T/z2+ k
6

D5 14 8 Φ ∼ T/z2+ k
8

E6(a1) 16 9 Φ ∼ T/z2+ k
9

E6 22 12 Φ ∼ T/z2+ k
12

Table G.1: Summary of nilpotent elements of regular semi-simple type in E6.

nilpotent orbit depth order Higgs field

E7(a5) 10 6 Φ ∼ T/z2+ k
6

A6 12 7 Φ ∼ T/z2+ k
7

E6(a1) 16 9 Φ ∼ T/z2+ k
9

E7(a1) 26 14 Φ ∼ T/z2+ k
14

E7 34 18 Φ ∼ T/z2+ k
18

Table G.2: Summary of nilpotent elements of regular semi-simple type in E7.

mention that such procedure is unambiguous, i.e. the resulting Kac diagram is the
same regardless of which parent torsion automorphism we use2.

• The Lie algebra g = E6,7,8. As in the previous case, we would like to first find all
nilpotent elements of regular semi-simple type. They are listed in table G.1 - table
G.3, along with their order and the singular Higgs field behavior. One can also use
the pole data to read off the 3-fold singularity.

Again, the above classification does not exhaust the possibility of the order of poles.
We expect that we should be able to get all divisors for the denominator. We still can
use the same algorithm to generate them, and they are unambiguous. We recover
the missing Kac diagram in appendix H.

2More specifically, they should descend from the same “parent”. For instance, fix DN , if n1
and n2 are both divisors of N and n1 |n2, then the torsion automorphism of σ1 of order n1 is the
same whether we start with σ[2m+1,2m−1] by taking N/n1-th power, or with σ2 of order n2 by taking
n2/n1-th power. See appendix H for more detail.
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nilpotent orbit depth order Higgs field

E8(a7) 10 6 Φ ∼ T/z2+ k
6

E8(a6) 18 10 Φ ∼ T/z2+ k
10

E8(a5) 22 12 Φ ∼ T/z2+ k
12

E8(a4) 28 15 Φ ∼ T/z2+ k
15

E8(a2) 38 20 Φ ∼ T/z2+ k
20

E8(a1) 46 24 Φ ∼ T/z2+ k
24

E8 58 30 Φ ∼ T/z2+ k
30

Table G.3: Summary of nilpotent elements of regular semi-simple type in E8.
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A p p e n d i x H

RECOVER MISSING KAC DIAGRAMS

Here we shall give examples of how to generate those Kac diagrams of torsion auto-
morphisms that are missing from considering nilpotent embedding, as in appendix
G. To begin with, we first explain in g = DN case how to write down the weighted
Dynkin diagrams for automorphisms of the form σe. For a thorough mathematical
treatment, the readers may consult [178].

Assume that e is represented by a Young tableauY =
[
n1, n2, . . . , np

]
, and n1+ · · ·+

np = 2N . Moreover we assume Y is not very even1, which is what we concern.
For each ni we get a sequence {ni − 1, ni − 3, . . . ,−ni + 3,−ni + 1}. Combining
the sequences for all i, we may arrange them in a decreasing order and the first N

elements are apparently non-negative, and we denote them as {h1, h2, . . . , hN }. Now
the Kac coordinate on the Dynkin diagram of DN is given as follows:

σY : .

h1 − h2 h2 − h3 hN−2 − hN−1

hN−1 − hN

hN−1 + hN

Then, we add the highest root α0 and make it an extended Dynkin diagram, and put
the label s0 = 2 for it. If in addition the Kac diagram is even, by our convention we
divide each label by 2.

Now we present examples showing the unambiguity of generating Kac diagrams.
We take N = 12. The order 12 torsion automorphism is obtained by the nilpotent
element with partition [13, 11], so its affine weighted Dynkin diagram is

σ[13,11] : .

1 0

1

1 0 1 0 1 0 1 0

1

1

1For weighted Dynkin diagrams of very even element, see [178].
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where we used dashed line to indicate the affine root. We may use the algorithm
from (G.2) and (G.3) to generate an order 6 torsion automorphism. It is given by:

σ{6} : .

0 1

0

0 0 0 1 0 0 0 1

0

0

Since this diagram does not come from any nilpotent element e, we just use a
subscript {6} to indicate its order. With this diagram, we can further generate an
order 3 nilpotent element by taking a twice power of σ{6}. The same algorithm
gives a Kac diagram:

σ{3} : .

0 0

1

0 0 0 0 0 1 0 0

0

0

This Kac diagram is precisely the same as the affine weighted Dynkin diagram of
the nilpotent element

[
38] . So we see there is no ambiguity.

As a second example, we take N = 9. The same argument as above shows that the
Kac diagram for order 8 torsion automorphism constructed from nilpotent element
of partition [9, 7, 1, 1], is exactly identical to the one obtained by square of the torsion
automorphism from the element [17, 1].

For g = E6,7,8 case, the Kac diagrams for nilpotent elements of regular semisimple
type are given in [185]. With the same procedure, we can recover missing Kac
diagrams as follows.

For g = E6, we missed order 2 and order 3 element, their Kac diagrams are,
respectively:

σE6
{2} : , σE6

{3} : .

0

0

1

0 0 0 0

0

0

0

0 1 0 0

For g = E7 we also missed the order 2 and order 3 torsion automorphisms. The Kac
diagram can also be obtained:
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σE7
{2} :

0 0

1

0 0 0 0 0

σE7
{3} :

.

0 0

0

0 0 1 0 0

Finally, for g = E8, we have missed the torsion automorphisms of order 2, 3, 4, 5, 8.
They can be recovered byweightedDynkin diagrams of nilpotent elements of regular
semi-simple type. We list them as follows:

σE8
{2} :

0 0 0 0 0 0 0 1

0

σE8
{3} :

0 0 0 0 0 0 0 0

1

σE8
{4} :

0 0 0 1 0 0 0 0

0

σE8
{5} :

0 0 0 0 1 0 0 0

0

σE8
{8} :

.

0 1 0 0 0 1 0 0

0



247

A p p e n d i x I

GENERAL PROPERTIES OF THE RECURSION RELATIONS

In this appendix we wish to extract some universal properties of the vacua for all
Nc, N f , and k with deformation (6.93), and the massless limit.

Before diving into technical proof, we may imagine how the vacuum looks like by
physical argument. First, we know Φ is classically nilpotent, labelled by a set of
discrete integers. In other words, Φ is already “quantized” at the classical level, and
quantum corrections cannot modify it. So we expect u j = 0 quantum mechanically
as well. Moreover, the superpotential (6.2) truncates the chiral ring, and we expect
this is also true at quantum level. Specifically, we expect there exists an integer k0

such that for j ≥ k0 all v j = 0. Classically k0 = k.

We prove the following claims. Some claims can be proven even for most general
deformations (6.3). We will use a * notation to indicate this situation.

Claim 1*. All generalized glueball has trivial vevs r j = 0, implying R(z) = 0. Thus
U(Nc) Kutasov model does not have non-trivial gaugino condensations.

Proof. From Konishi anomaly (6.40d), we can expand around z → +∞ and look at
coefficients of z−n−1. It reads

l+1∑
j=1

m f̃
f , jv

f ′

f̃ ,n+ j−1
= δ

f ′

f rn. (I.1)

A physically sensible solution of the quantum chiral ring should have all the elements
un, rn and vn as functions of parameters {gi,m

f̃
f ,l}, and they must be finite when

the parameters approach zero. Therefore taking the limit of both sides of above
equations, and picking f = f ′, we immediately see

rn = 0. (I.2)

In particular, r0 ∝ TrWαWα ∼ 〈λλ〉 = 0. �

Claim 2. There exists k0 such that for all j ≥ k0, v j = 0 in the chiral ring.

Proof. Here we assume superpotential (6.93). Then Konishi anomaly (6.40d) and
(6.40e) tell us that

[m.vn]
f ′

f = δ
f ′

f rn, [vn.m]
f̃
f̃ ′
= δ

f̃
f̃ ′

rn, (I.3)
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which means m and vn commute and the product is a diagonal matrix, proportional
to rn times the identity. Then from the Konishi anomaly (6.40c)

k∑
i=0

girn+i =

n−1∑
i=0

rirn−i−1. (I.4)

One can think of it as a matrix equation, and substitute each rn by m.vn and multiply
m−1 on both sides. Taking limit on both sides we see vk+n = 0 for all n ≥ 0. Thus
the truncation is at least as far as in classical case. �

Claim 3*. uk+n = 0 for all n ≥ 0.

Proof. This time we use Konishi anomaly (6.40a). One obtains

0∑
i=k

giun+i +

l+1∑
j=1
( j − 1)m f̃

f , jv
f
f̃ ,n+ j−2

= 2
n−1∑
i=0

riun−i−1. (I.5)

Again taking the limit on both sides and use the condition that rn = 0 of claim 1,
and all parameters except gk is infinitesimally small, we see that uk+n = 0 for any
non-negative integer n. �

Claim 4. u1 = u2 = · · · = uk−1 = 0.

Proof. We will use induction. Notice first that

T(z)2
(
P(z)2 − Λ̃2N

)
= P′(z)2, (I.6)

where Λ̃2N = (det m)Λ2N−Nf and P(z) = pN + pN−1z + . . . p1zN−1 + zN . It is now
safe to take massless limits on both side1, and because of claim 3, we obtain an
equality:(

uk−1

zk + · · · +
N
z

) (
pN + pN−1z + · · · + p1zN−1 + zN

)
= pN−1 + 2pN−2z + · · · + (N − 1)p1zN−2 + NzN−1.

(I.7)

Now suppose k = 2. The comparing coefficients on both sides tells us u1pN = 0.
Then we must have pN = 0, otherwise we are done. Then by iterating the procedure
we see p1 = p2 = · · · = pN = 0; then u1 = 0 so the claim is valid for k = 2. Suppose

1Here one should first show that pi are all finite in the limit. Indeed, with deformation (6.93) pi
can be expressed by polynomial of u1, . . . uN and no instanton factor would enter. In other words the
expressions are the same as classical case.
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the claim is true for k − 1, now we proceed to the case of k. Again by comparing
the coefficients of (I.7), under the condition uk−1 , 0 (otherwise we are done by
assumption), we see all pi’s vanish. Therefore, uk−1 must vanish as well. So the
proof is complete. �

Although expectation values of Casimir operators and generalized mesons are zero,
they may not be trivial in the chiral ring. We conclude that quantum mechanically,
in general the chiral ring of Kutasov model can still be written as

R̂Nc,Nf ,k = C[u1, u2, . . . , uk−1, v0, v1, . . . , vk−1]/Ŝ(u1, u2, . . . , uk−1, v0, v1, . . . , vk−1),

(I.8)
where we have omitted the generalized glueball and photinos wα,k .
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A p p e n d i x J

ISOMORPHISM OF COULOMB BRANCH VACUA

In this appendix, we consider two examples that the quantum Coulomb branch
receive exactly the same corrections. We take the gauge group to be U(2).

J.1 N f = 1, l = 2
We pick the superpotential to be

W =
1
3
TrΦ3 −

1
2
TrΦ2 + Q̃(2 + 3Φ + Φ2)Q. (J.1)

The recursion relation becomes

un+2 − un+1 + 2vn+1 + 3vn = 2
n−1∑
i=0

riun−i−1,

rn+2 − rn+1 =

n−1∑
i=0

rirn−i−1,

vn+2 + 3vn+1 + 2vn = rn,

(n + 1)(vn+2 − vn+1) + 3
n∑

i=0
vivn−i+2

n∑
i=0

vivn−i+1 = 2
n−1∑
i=0
(n − i)rivn−i−1.

(J.2)

Classical vacua. At classical level one can set the right hand side of above recurrence
formulae to be zero and only consider the first, third and fourth equations. Then one
can first solve the generalized mesons:

vn = (−2)nC1 + (−1)nC2, (J.3)

where C1,2 are two parameters that determine the initial condition. Then we can
further plug the expression in the first equation of (J.2) and eliminate additional
variables. So the classical chiral ring relation for u1 is

(u1 − 2)(u1 − 1)u1(u1 + 1)(u1 + 2)(u1 + 3) = 0. (J.4)

This precisely corresponds to 3 Coulomb branch vacua and 5 Higgs branch vacua.

Quantum vacua. The quantum recursion relation can be solved leaving single
generator u1 as usual. We expect that the quantum moduli space is a deformation
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of the classical one in the sense that if we take the strong coupling scale Λ → 0,
we should recover classical chiral ring, possibly with increased multiplicities of the
roots. Indeed in this case we have

(u1 − 1)(u1 + 3)
(
u8

1 − (7 + 52Λ3)u6
1 − (2 + 376Λ3)u5

1 + (12 − 926Λ3 − 204Λ6)u4
1

+(8 − 1000Λ3 − 976Λ6)u3
1 − (498Λ3 + 1552Λ6 + 160Λ9)u2

1

−(100Λ3 + 1120Λ6 + 448Λ9)u1 − 275Λ6 − 160Λ9 + 64Λ12
)
= 0.
(J.5)

J.2 N f = 2, l = 1
We take the superpotential to be

W =
1
3
TrΦ3 −

1
2
TrΦ2 + m f̃

1, f Q̃ f̃ Q f + m f̃
2, f Q̃ f̃ΦQ f , (J.6)

and we use the chiral symmetry to cast m1 into diagonal form and assume it to be

m f̃
1, f =

©«
1 0

0 2

ª®®®¬ , (J.7)

while in principle m2 does not have to be diagonal, but we require it to be invertible.
To make things simple we set

m f̃
2, f =

©«
1 0

0 1

ª®®®¬ . (J.8)

Classical vacua. The recursion relation is

un+2 − un+1 + Tr m2.vn = 0,

m f̃
1, f v

f ′

n, f̃
+ m f̃

2, f v
f ′

n+1, f̃
= 0,

(n + 1)(vn+2 − vn+1)
g
g̃ +

n∑
i=0

v
f

i,g̃m f̃
2, f v

g

n−i, f̃
= 0.

(J.9)

From the second equation we see vn = −m1.vn−1 = (−m1)
nv0 = v0(−m1)

n. This fact
means v0 must be a diagonal matrix, and so are all generalized mesons. Then one
can again eliminate variables and obtain the relation for the generator u1, so that we
arrive at

(u1 − 2)(u1 − 1)u1(u1 + 1)(u1 + 2)(u1 + 3) = 0, (J.10)
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and also the recursion relation could uniquely determine the vevs of generalized
mesons.

Quantum vacua. The right hand side of recursion relations should be supplemented
by the anomalies. Since one also has vn.m1 = m1.vn so generalized mesons are still
diagonal. The nonperturbative corrections to Casimir operators:

T(z) =
d
dz

log
(
P(z)2 +

√
P(z)2 − 4(1 + z)(2 + z)Λ2

)
(J.11)

is in fact the same as N f = 1, l = 2 case, except the substitution Λ3 → Λ2. After
some lengthy calculation we obtain the relation for the generator u1:

(u1 − 1)(u1 + 3)
(
u8

1 − (7 + 52Λ2)u6
1 − (2 + 376Λ2)u5

1 + (12 − 926Λ2 − 204Λ4)u4
1

+(8 − 1000Λ2 − 976Λ4)u3
1 − (498Λ2 + 1552Λ4 + 160Λ6)u2

1

−(100Λ2 + 1120Λ4 + 448Λ6)u1 − 275Λ4 − 160Λ6 + 64Λ8
)
= 0.
(J.12)

It is not surprising to see that the expression is isomorphic to (J.5), and the quantum
shift to the chiral ring generator u1 is exactly the same. This isomorphism can
be attribute to the fact that the curve P(z)2 − 4Λ2Nc−Nf B(z) is isomorphic on the
Coulomb branch.



253

BIBLIOGRAPHY

[1] Luis F. Alday, Davide Gaiotto, and Yuji Tachikawa. “Liouville Correla-
tion Functions from Four-dimensional Gauge Theories”. Lett.Math.Phys.
91 (2010), pp. 167–197. doi: 10.1007/s11005-010-0369-5. arXiv:
0906.3219 [hep-th].

[2] Davide Gaiotto. “N = 2 dualities”. JHEP 08 (2012), p. 034. doi: 10.1007/
JHEP08(2012)034. arXiv: 0904.2715 [hep-th].

[3] Clay Cordova and Daniel L. Jafferis. “Toda Theory From Six Dimensions”.
JHEP 12 (2017), p. 106. doi: 10.1007/JHEP12(2017)106. arXiv: 1605.
03997 [hep-th].

[4] Abhijit Gadde, Elli Pomoni, Leonardo Rastelli, and Shlomo S. Razamat.
“S-duality and 2d Topological QFT”. JHEP 03 (2010), p. 032. doi: 10.
1007/JHEP03(2010)032. arXiv: 0910.2225 [hep-th].

[5] Abhijit Gadde, Leonardo Rastelli, Shlomo S. Razamat, and Wenbin Yan.
“The 4d Superconformal Index from q-deformed 2dYang-Mills”.Phys. Rev.
Lett. 106 (2011), p. 241602. doi: 10.1103/PhysRevLett.106.241602.
arXiv: 1104.3850 [hep-th].

[6] Tudor Dimofte, Sergei Gukov, and Lotte Hollands. “Vortex Counting and
Lagrangian 3-manifolds”. Lett.Math.Phys. 98 (2011), pp. 225–287. doi:
10.1007/s11005-011-0531-8. arXiv: 1006.0977 [hep-th].

[7] Yuji Terashima and Masahito Yamazaki. “SL(2,R) Chern-Simons, Liou-
ville, and Gauge Theory on Duality Walls”. JHEP 1108 (2011), p. 135. doi:
10.1007/JHEP08(2011)135. arXiv: 1103.5748 [hep-th].

[8] Tudor Dimofte, Davide Gaiotto, and Sergei Gukov. “Gauge Theories La-
belled by Three-Manifolds”.Commun.Math.Phys. 325 (2014), pp. 367–419.
doi: 10.1007/s00220-013-1863-2. arXiv: 1108.4389 [hep-th].

[9] Tudor Dimofte, Davide Gaiotto, and Sergei Gukov. “3-Manifolds and 3d
Indices”. Adv.Theor.Math.Phys. 17 (2013), pp. 975–1076. doi: 10.4310/
ATMP.2013.v17.n5.a3. arXiv: 1112.5179 [hep-th].

[10] Hee-Joong Chung, Tudor Dimofte, Sergei Gukov, and Piotr Sułkowski. “3d-
3d Correspondence Revisited”. JHEP 04 (2016), p. 140. doi: 10.1007/
JHEP04(2016)140. arXiv: 1405.3663 [hep-th].

[11] Edward Witten. “Quantum Field Theory and the Jones Polynomial”. Com-
mun.Math.Phys. 121 (1989), p. 351. doi: 10.1007/BF01217730.

[12] Nigel J Hitchin. “The self-duality equations on a Riemann surface”. Proc.
London Math. Soc 55.3 (1987), pp. 59–126.

https://doi.org/10.1007/s11005-010-0369-5
http://arxiv.org/abs/0906.3219
https://doi.org/10.1007/JHEP08(2012)034
https://doi.org/10.1007/JHEP08(2012)034
http://arxiv.org/abs/0904.2715
https://doi.org/10.1007/JHEP12(2017)106
http://arxiv.org/abs/1605.03997
http://arxiv.org/abs/1605.03997
https://doi.org/10.1007/JHEP03(2010)032
https://doi.org/10.1007/JHEP03(2010)032
http://arxiv.org/abs/0910.2225
https://doi.org/10.1103/PhysRevLett.106.241602
http://arxiv.org/abs/1104.3850
https://doi.org/10.1007/s11005-011-0531-8
http://arxiv.org/abs/1006.0977
https://doi.org/10.1007/JHEP08(2011)135
http://arxiv.org/abs/1103.5748
https://doi.org/10.1007/s00220-013-1863-2
http://arxiv.org/abs/1108.4389
https://doi.org/10.4310/ATMP.2013.v17.n5.a3
https://doi.org/10.4310/ATMP.2013.v17.n5.a3
http://arxiv.org/abs/1112.5179
https://doi.org/10.1007/JHEP04(2016)140
https://doi.org/10.1007/JHEP04(2016)140
http://arxiv.org/abs/1405.3663
https://doi.org/10.1007/BF01217730


254

[13] Du Pei and Ke Ye. “A 3d-3d appetizer”. JHEP 11 (2016), p. 008. doi:
10.1007/JHEP11(2016)008. arXiv: 1503.04809 [hep-th].

[14] Erik P. Verlinde. “Fusion Rules andModular Transformations in 2D Confor-
mal Field Theory”. Nucl.Phys. B300 (1988), p. 360. doi: 10.1016/0550-
3213(88)90603-7.

[15] Sergei Gukov and Du Pei. “Equivariant Verlinde formula from fivebranes
and vortices”.Commun.Math. Phys. 355.1 (2017), pp. 1–50. doi: 10.1007/
s00220-017-2931-9. arXiv: 1501.01310 [hep-th].

[16] Sergei Gukov, Du Pei, Wenbin Yan, and Ke Ye. “Equivariant Verlinde Al-
gebra from Superconformal Index and Argyres–Seiberg Duality”. Commun.
Math. Phys. 357.3 (2018), pp. 1215–1251. doi: 10.1007/s00220-017-
3074-8. arXiv: 1605.06528 [hep-th].

[17] Laura Fredrickson, Du Pei, Wenbin Yan, and Ke Ye. “Argyres-Douglas
Theories, Chiral Algebras and Wild Hitchin Characters”. JHEP 01 (2018),
p. 150. doi: 10.1007/JHEP01(2018)150. arXiv: 1701.08782 [hep-th].

[18] Dan Xie. “General Argyres-Douglas Theory”. JHEP 01 (2013), p. 100. doi:
10.1007/JHEP01(2013)100. arXiv: 1204.2270 [hep-th].

[19] ChristopherBeem,MadalenaLemos, PedroLiendo,Wolfger Peelaers, Leonardo
Rastelli, and Balt C. van Rees. “Infinite Chiral Symmetry in Four Dimen-
sions”. Commun. Math. Phys. 336.3 (2015), pp. 1359–1433. doi: 10.1007/
s00220-014-2272-x. arXiv: 1312.5344 [hep-th].

[20] Davide Gaiotto, Gregory W. Moore, and Andrew Neitzke. “Wall-crossing,
Hitchin Systems, and the WKB Approximation” (2009). arXiv: 0907.3987
[hep-th].

[21] Dan Xie and Ke Ye. “Argyres-Douglas matter and S-duality: Part II”. JHEP
03 (2018), p. 186. doi: 10.1007/JHEP03(2018)186. arXiv: 1711.06684
[hep-th].

[22] N. Seiberg. “Electric - magnetic duality in supersymmetric nonAbelian
gauge theories”. Nucl. Phys. B435 (1995), pp. 129–146. doi: 10.1016/
0550-3213(94)00023-8. arXiv: hep-th/9411149 [hep-th].

[23] Kenneth A. Intriligator and Brian Wecht. “RG fixed points and flows in
SQCD with adjoints”. Nucl. Phys. B677 (2004), pp. 223–272. doi: 10.
1016/j.nuclphysb.2003.10.033. arXiv: hep-th/0309201 [hep-th].

[24] Ke Ye. “On the Chiral Ring and Vacua of N = 1 Adjoint SQCD” (2017).
arXiv: 1706.02723 [hep-th].

[25] Edward Witten. “Quantization of Chern-Simons Gauge Theory With Com-
plex Gauge Group”. Commun.Math.Phys. 137 (1991), pp. 29–66. doi: 10.
1007/BF02099116.

https://doi.org/10.1007/JHEP11(2016)008
http://arxiv.org/abs/1503.04809
https://doi.org/10.1016/0550-3213(88)90603-7
https://doi.org/10.1016/0550-3213(88)90603-7
https://doi.org/10.1007/s00220-017-2931-9
https://doi.org/10.1007/s00220-017-2931-9
http://arxiv.org/abs/1501.01310
https://doi.org/10.1007/s00220-017-3074-8
https://doi.org/10.1007/s00220-017-3074-8
http://arxiv.org/abs/1605.06528
https://doi.org/10.1007/JHEP01(2018)150
http://arxiv.org/abs/1701.08782
https://doi.org/10.1007/JHEP01(2013)100
http://arxiv.org/abs/1204.2270
https://doi.org/10.1007/s00220-014-2272-x
https://doi.org/10.1007/s00220-014-2272-x
http://arxiv.org/abs/1312.5344
http://arxiv.org/abs/0907.3987
http://arxiv.org/abs/0907.3987
https://doi.org/10.1007/JHEP03(2018)186
http://arxiv.org/abs/1711.06684
http://arxiv.org/abs/1711.06684
https://doi.org/10.1016/0550-3213(94)00023-8
https://doi.org/10.1016/0550-3213(94)00023-8
http://arxiv.org/abs/hep-th/9411149
https://doi.org/10.1016/j.nuclphysb.2003.10.033
https://doi.org/10.1016/j.nuclphysb.2003.10.033
http://arxiv.org/abs/hep-th/0309201
http://arxiv.org/abs/1706.02723
https://doi.org/10.1007/BF02099116
https://doi.org/10.1007/BF02099116


255

[26] Clay Cordova and Daniel L. Jafferis. “Complex Chern-Simons from M5-
branes on the SquashedThree-Sphere” (2013). arXiv:1305.2891[hep-th].

[27] Tudor Dimofte. “Complex Chern-Simons theory at level k via the 3d-3d
correspondence” (2014). arXiv: 1409.0857 [hep-th].

[28] Daniel Jafferis andXiYin. “ADualityAppetizer” (2011). arXiv:1103.5700
[hep-th].

[29] Anton Kapustin, Hyungchul Kim, and Jaemo Park. “Dualities for 3d The-
ories with Tensor Matter”. JHEP 1112 (2011), p. 087. doi: 10.1007/
JHEP12(2011)087. arXiv: 1110.2547 [hep-th].

[30] Amihay Hanany and David Tong. “Vortices, instantons and branes”. JHEP
0307 (2003), p. 037. doi: 10.1088/1126-6708/2003/07/037. arXiv:
hep-th/0306150 [hep-th].

[31] Arthur Jaffe and Clifford Taubes.Vortices andmonopoles: structure of static
gauge theories. Vol. 2. Birkhäuser, 1980.

[32] Dror Bar-Natan and Edward Witten. “Perturbative expansion of Chern-
Simons theory with noncompact gauge group”. Comm. Math. Phys. 141.2
(1991), pp. 423–440. url: http://projecteuclid.org/euclid.cmp/
1104248307.

[33] SergeiGukov andEdwardWitten. “Branes andQuantization”.Adv.Theor.Math.Phys.
13 (2009), p. 1. doi: 10.4310/ATMP.2009.v13.n5.a5. arXiv: 0809.0305
[hep-th].

[34] Yosuke Imamura, Hiroki Matsuno, and Daisuke Yokoyama. “Factorization
of the S3/Zn partition function”. Phys.Rev. D89.8 (2014), p. 085003. doi:
10.1103/PhysRevD.89.085003. arXiv: 1311.2371 [hep-th].

[35] EdwardWitten. “Chern-Simons gauge theory as a string theory”.Prog.Math.
133 (1995), pp. 637–678. arXiv: hep-th/9207094 [hep-th].

[36] Robbert Dijkgraaf and Cumrun Vafa. “Matrix models, topological strings,
and supersymmetric gauge theories”. Nucl.Phys. B644 (2002), pp. 3–20.
doi: 10.1016/S0550- 3213(02)00766- 6. arXiv: hep- th/0206255
[hep-th].

[37] EdwardWitten. “(2+1)-Dimensional Gravity as an Exactly Soluble System”.
Nucl.Phys. B311 (1988), p. 46. doi: 10.1016/0550-3213(88)90143-5.

[38] Sergei Gukov. “Three-Dimensional Quantum Gravity, Chern-Simons The-
ory, and the A-Polynomial”. Commun. Math. Phys. 255.3 (2005), pp. 577–
627. eprint: hep-th/0306165. url: http://arxiv.org/abs/hep-
th/0306165v1.

http://arxiv.org/abs/1305.2891
http://arxiv.org/abs/1409.0857
http://arxiv.org/abs/1103.5700
http://arxiv.org/abs/1103.5700
https://doi.org/10.1007/JHEP12(2011)087
https://doi.org/10.1007/JHEP12(2011)087
http://arxiv.org/abs/1110.2547
https://doi.org/10.1088/1126-6708/2003/07/037
http://arxiv.org/abs/hep-th/0306150
http://projecteuclid.org/euclid.cmp/1104248307
http://projecteuclid.org/euclid.cmp/1104248307
https://doi.org/10.4310/ATMP.2009.v13.n5.a5
http://arxiv.org/abs/0809.0305
http://arxiv.org/abs/0809.0305
https://doi.org/10.1103/PhysRevD.89.085003
http://arxiv.org/abs/1311.2371
http://arxiv.org/abs/hep-th/9207094
https://doi.org/10.1016/S0550-3213(02)00766-6
http://arxiv.org/abs/hep-th/0206255
http://arxiv.org/abs/hep-th/0206255
https://doi.org/10.1016/0550-3213(88)90143-5
hep-th/0306165
http://arxiv.org/abs/hep-th/0306165v1
http://arxiv.org/abs/hep-th/0306165v1


256

[39] K. Hikami. “Generalized volume conjecture and the A-polynomials: The
Neumann Zagier potential function as a classical limit of the partition func-
tion”. Journal of Geometry and Physics 57 (Aug. 2007), pp. 1895–1940.
doi: 10.1016/j.geomphys.2007.03.008. eprint: math/0604094.

[40] Tudor Dimofte, Sergei Gukov, Jonatan Lenells, and Don Zagier. “Exact Re-
sults for Perturbative Chern-Simons Theory with Complex Gauge Group”.
Commun.Num.Theor.Phys. 3 (2009), pp. 363–443. doi: 10.4310/CNTP.
2009.v3.n2.a4. arXiv: 0903.2472 [hep-th].

[41] J. Ellegaard Andersen and R. Kashaev. “A TQFT from quantumTeichmüller
theory”. ArXiv e-prints (Sept. 2011). arXiv: 1109.6295 [math.QA].

[42] J. Ellegaard Andersen and R. Kashaev. “A new formulation of the Teich-
müller TQFT”. ArXiv e-prints (May 2013). arXiv: 1305.4291 [math.GT].

[43] J. EllegaardAndersen andR. Kashaev. “ComplexQuantumChern-Simons”.
ArXiv e-prints (Sept. 2014). arXiv: 1409.1208 [math.QA].

[44] Jyotirmoy Bhattacharya, Sayantani Bhattacharyya, Shiraz Minwalla, and
Suvrat Raju. “Indices for Superconformal Field Theories in 3,5 and 6 Di-
mensions”. JHEP 0802 (2008), p. 064. doi: 10.1088/1126-6708/2008/
02/064. arXiv: 0801.1435 [hep-th].

[45] Daniel Jafferis, Sergei Gukov, Monica Kang, and Du Pei. “Chern Simons
theory at fractional level”. Work in progress.

[46] Yosuke Imamura andShuichiYokoyama. “Index for three dimensional super-
conformal field theories with general R-charge assignments”. JHEP 1104
(2011), p. 007. doi: 10.1007/JHEP04(2011)007. arXiv: 1101.0557
[hep-th].

[47] Giulio Bonelli, Alessandro Tanzini, and Jian Zhao. “Vertices, Vortices and
Interacting Surface Operators”. JHEP 1206 (2012), p. 178. doi: 10.1007/
JHEP06(2012)178. arXiv: 1102.0184 [hep-th].

[48] Naofumi Hama, Kazuo Hosomichi, and Sungjay Lee. “SUSY Gauge The-
ories on Squashed Three-Spheres”. JHEP 1105 (2011), p. 014. doi: 10.
1007/JHEP05(2011)014. arXiv: 1102.4716 [hep-th].

[49] Yosuke Imamura and Daisuke Yokoyama. “N = 2 supersymmetric theories
on squashed three-sphere”. Phys.Rev. D85 (2012), p. 025015. doi: 10.
1103/PhysRevD.85.025015. arXiv: 1109.4734 [hep-th].

[50] Dario Martelli, Achilleas Passias, and James Sparks. “The gravity dual of
supersymmetric gauge theories on a squashed three-sphere”. Nucl.Phys.
B864 (2012), pp. 840–868. doi: 10.1016/j.nuclphysb.2012.07.019.
arXiv: 1110.6400 [hep-th].

https://doi.org/10.1016/j.geomphys.2007.03.008
math/0604094
https://doi.org/10.4310/CNTP.2009.v3.n2.a4
https://doi.org/10.4310/CNTP.2009.v3.n2.a4
http://arxiv.org/abs/0903.2472
http://arxiv.org/abs/1109.6295
http://arxiv.org/abs/1305.4291
http://arxiv.org/abs/1409.1208
https://doi.org/10.1088/1126-6708/2008/02/064
https://doi.org/10.1088/1126-6708/2008/02/064
http://arxiv.org/abs/0801.1435
https://doi.org/10.1007/JHEP04(2011)007
http://arxiv.org/abs/1101.0557
http://arxiv.org/abs/1101.0557
https://doi.org/10.1007/JHEP06(2012)178
https://doi.org/10.1007/JHEP06(2012)178
http://arxiv.org/abs/1102.0184
https://doi.org/10.1007/JHEP05(2011)014
https://doi.org/10.1007/JHEP05(2011)014
http://arxiv.org/abs/1102.4716
https://doi.org/10.1103/PhysRevD.85.025015
https://doi.org/10.1103/PhysRevD.85.025015
http://arxiv.org/abs/1109.4734
https://doi.org/10.1016/j.nuclphysb.2012.07.019
http://arxiv.org/abs/1110.6400


257

[51] Dario Martelli and James Sparks. “The gravity dual of supersymmetric
gauge theories on a biaxially squashed three-sphere”. Nucl.Phys. B866
(2013), pp. 72–85. doi: 10.1016/j.nuclphysb.2012.08.015. arXiv:
1111.6930 [hep-th].

[52] Luis F. Alday, Dario Martelli, Paul Richmond, and James Sparks. “Local-
ization on Three-Manifolds”. JHEP 10 (2013), p. 095. doi: 10.1007/
JHEP10(2013)095. arXiv: 1307.6848 [hep-th].

[53] Cyril Closset, Thomas T. Dumitrescu, Guido Festuccia, and Zohar Ko-
margodski. “The Geometry of Supersymmetric Partition Functions”. JHEP
1401 (2014), p. 124. doi: 10.1007/JHEP01(2014)124. arXiv: 1309.5876
[hep-th].

[54] Chris Beasley and Edward Witten. “Non-Abelian localization for Chern-
Simons theory”. J.Diff.Geom. 70 (2005), pp. 183–323. arXiv: hep-th/
0503126 [hep-th].

[55] Matthias Blau and George Thompson. “Chern-Simons Theory with Com-
plex Gauge Group on Seifert Fibred 3-Manifolds” (2016). arXiv: 1603.
01149 [hep-th].

[56] Christian Romelsberger. “Counting chiral primaries in N = 1, d = 4 su-
perconformal field theories”. Nucl. Phys. B747 (2006), pp. 329–353. doi:
10 . 1016 / j . nuclphysb . 2006 . 03 . 037. arXiv: hep - th / 0510060
[hep-th].

[57] Justin Kinney, Juan Martin Maldacena, Shiraz Minwalla, and Suvrat Raju.
“An Index for 4 dimensional super conformal theories”. Commun. Math.
Phys. 275 (2007), pp. 209–254. doi: 10.1007/s00220-007-0258-7.
arXiv: hep-th/0510251 [hep-th].

[58] Abhijit Gadde, Leonardo Rastelli, Shlomo S. Razamat, and Wenbin Yan.
“Gauge Theories and Macdonald Polynomials”. Commun. Math. Phys. 319
(2013), pp. 147–193. doi: 10.1007/s00220-012-1607-8. arXiv: 1110.
3740 [hep-th].

[59] Luis F. Alday, Mathew Bullimore, and Martin Fluder. “On S-duality of the
Superconformal Index on Lens Spaces and 2d TQFT”. JHEP 1305 (2013),
p. 122. doi: 10.1007/JHEP05(2013)122. arXiv: 1301.7486 [hep-th].

[60] Shlomo S. Razamat andMasahito Yamazaki. “S-duality and theN = 2 Lens
Space Index”. JHEP 10 (2013), p. 048. doi: 10.1007/JHEP10(2013)048.
arXiv: 1306.1543 [hep-th].

[61] TamásHausel andMichael Thaddeus. “Mirror symmetry, Langlands duality,
and the Hitchin system”. Inventiones mathematicae 153.1 (2003), pp. 197–
229.

[62] Ron Donagi and Tony Pantev. “Langlands duality for Hitchin systems”
(2006). arXiv: math/0604617 [math.AG].

https://doi.org/10.1016/j.nuclphysb.2012.08.015
http://arxiv.org/abs/1111.6930
https://doi.org/10.1007/JHEP10(2013)095
https://doi.org/10.1007/JHEP10(2013)095
http://arxiv.org/abs/1307.6848
https://doi.org/10.1007/JHEP01(2014)124
http://arxiv.org/abs/1309.5876
http://arxiv.org/abs/1309.5876
http://arxiv.org/abs/hep-th/0503126
http://arxiv.org/abs/hep-th/0503126
http://arxiv.org/abs/1603.01149
http://arxiv.org/abs/1603.01149
https://doi.org/10.1016/j.nuclphysb.2006.03.037
http://arxiv.org/abs/hep-th/0510060
http://arxiv.org/abs/hep-th/0510060
https://doi.org/10.1007/s00220-007-0258-7
http://arxiv.org/abs/hep-th/0510251
https://doi.org/10.1007/s00220-012-1607-8
http://arxiv.org/abs/1110.3740
http://arxiv.org/abs/1110.3740
https://doi.org/10.1007/JHEP05(2013)122
http://arxiv.org/abs/1301.7486
https://doi.org/10.1007/JHEP10(2013)048
http://arxiv.org/abs/1306.1543
http://arxiv.org/abs/math/0604617


258

[63] Jørgen Ellegaard Andersen, Sergei Gukov, and Du Pei. “The Verlinde for-
mula for Higgs bundles” (2016). arXiv: 1608.01761 [math.AG].

[64] Cyril Closset, Thomas T. Dumitrescu, Guido Festuccia, and Zohar Komar-
godski. “From Rigid Supersymmetry to Twisted Holomorphic Theories”.
Phys. Rev.D90.8 (2014), p. 085006.doi: 10.1103/PhysRevD.90.085006.
arXiv: 1407.2598 [hep-th].

[65] Sergei Gukov and Edward Witten. “Gauge Theory, Ramification, And The
Geometric Langlands Program” (2006). arXiv:hep-th/0612073[hep-th].

[66] Dongmin Gang, Nakwoo Kim, Mauricio Romo, and Masahito Yamazaki.
“Aspects of Defects in 3d-3d Correspondence” (2015). arXiv: 1510.05011
[hep-th].

[67] Andrew Strominger, Shing-Tung Yau, and Eric Zaslow. “Mirror symmetry
is T duality”. Nucl. Phys. B479 (1996), pp. 243–259. doi: 10.1016/0550-
3213(96)00434-8. arXiv: hep-th/9606040 [hep-th].

[68] D. Halpern-Leistner. “The equivariant Verlinde formula on the moduli of
Higgs bundles” (Aug. 2016). arXiv: 1608.01754 [math.AG].

[69] Sergei Gukov. “Quantization via Mirror Symmetry” (2010). arXiv: 1011.
2218 [hep-th].

[70] Nikita Nekrasov and Edward Witten. “The Omega Deformation, Branes,
Integrability, and Liouville Theory”. JHEP 1009 (2010), p. 092. doi: 10.
1007/JHEP09(2010)092. arXiv: 1002.0888 [hep-th].

[71] Tudor Dimofte and Sergei Gukov. “Chern-Simons Theory and S-duality”.
JHEP 05 (2013), p. 109. doi: 10.1007/JHEP05(2013)109. arXiv: 1106.
4550 [hep-th].

[72] Edward Witten. “Geometric Langlands From Six Dimensions” (2009).
arXiv: 0905.2720 [hep-th].

[73] Joseph A. Minahan and Dennis Nemeschansky. “An N=2 superconformal
fixed point with E6 global symmetry”. Nucl. Phys. B482 (1996), pp. 142–
152. doi: 10.1016/S0550-3213(96)00552-4. arXiv: hep-th/9608047
[hep-th].

[74] Davide Gaiotto, Andrew Neitzke, and Yuji Tachikawa. “Argyres-Seiberg
duality and the Higgs branch”. Commun. Math. Phys. 294 (2010), pp. 389–
410. doi: 10.1007/s00220-009-0938-6. arXiv: 0810.4541 [hep-th].

[75] Abhijit Gadde, Leonardo Rastelli, Shlomo S. Razamat, and Wenbin Yan.
“The Superconformal Index of the E6 SCFT”. JHEP 08 (2010), p. 107. doi:
10.1007/JHEP08(2010)107. arXiv: 1003.4244 [hep-th].

[76] Philip C. Argyres and Nathan Seiberg. “S-duality in N=2 supersymmetric
gauge theories”. JHEP 12 (2007), p. 088. doi: 10.1088/1126-6708/
2007/12/088. arXiv: 0711.0054 [hep-th].

http://arxiv.org/abs/1608.01761
https://doi.org/10.1103/PhysRevD.90.085006
http://arxiv.org/abs/1407.2598
http://arxiv.org/abs/hep-th/0612073
http://arxiv.org/abs/1510.05011
http://arxiv.org/abs/1510.05011
https://doi.org/10.1016/0550-3213(96)00434-8
https://doi.org/10.1016/0550-3213(96)00434-8
http://arxiv.org/abs/hep-th/9606040
http://arxiv.org/abs/1608.01754
http://arxiv.org/abs/1011.2218
http://arxiv.org/abs/1011.2218
https://doi.org/10.1007/JHEP09(2010)092
https://doi.org/10.1007/JHEP09(2010)092
http://arxiv.org/abs/1002.0888
https://doi.org/10.1007/JHEP05(2013)109
http://arxiv.org/abs/1106.4550
http://arxiv.org/abs/1106.4550
http://arxiv.org/abs/0905.2720
https://doi.org/10.1016/S0550-3213(96)00552-4
http://arxiv.org/abs/hep-th/9608047
http://arxiv.org/abs/hep-th/9608047
https://doi.org/10.1007/s00220-009-0938-6
http://arxiv.org/abs/0810.4541
https://doi.org/10.1007/JHEP08(2010)107
http://arxiv.org/abs/1003.4244
https://doi.org/10.1088/1126-6708/2007/12/088
https://doi.org/10.1088/1126-6708/2007/12/088
http://arxiv.org/abs/0711.0054


259

[77] Robbert Dijkgraaf and Edward Witten. “Topological gauge theories and
group cohomology”. Comm. Math. Phys. 129.2 (1990), pp. 393–429. url:
http://projecteuclid.org/euclid.cmp/1104180750.

[78] Francesco Benini, Tatsuma Nishioka, and Masahito Yamazaki. “4d Index to
3d Index and 2d TQFT”. Phys. Rev. D86 (2012), p. 065015. doi: 10.1103/
PhysRevD.86.065015. arXiv: 1109.0283 [hep-th].

[79] Shlomo S. Razamat and Brian Willett. “Global Properties of Supersym-
metric Theories and the Lens Space”. Commun. Math. Phys. 334.2 (2015),
pp. 661–696. doi: 10.1007/s00220-014-2111-0. arXiv: 1307.4381
[hep-th].

[80] Yuji Tachikawa. “A review of the TN theory and its cousins”. PTEP 2015.11
(2015), 11B102. doi: 10 . 1093 / ptep / ptv098. arXiv: 1504 . 01481
[hep-th].

[81] Abhijit Gadde, Shlomo S. Razamat, and Brian Willett. “"Lagrangian" for a
Non-Lagrangian Field TheorywithN = 2 Supersymmetry”.Phys. Rev. Lett.
115.17 (2015), p. 171604. doi: 10.1103/PhysRevLett.115.171604.
arXiv: 1505.05834 [hep-th].

[82] Doron Gepner and Edward Witten. “String Theory on Group Manifolds”.
Nucl. Phys. B278 (1986), p. 493. doi: 10.1016/0550-3213(86)90051-9.

[83] A. N. Kirillov, P. Mathieu, D. Senechal, and M. A. Walton. “Can fusion
coefficients be calculated from the depth rule?” Nucl. Phys. B391 (1993),
pp. 651–674. doi: 10.1016/0550- 3213(93)90087- 6. arXiv: hep-
th/9203004 [hep-th].

[84] L. Begin, P. Mathieu, and M. A. Walton. “ŝu(3)k fusion coefficients”.Mod.
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