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ABSTRACT

This thesis describes dynamicel calculations in dispersion
theory relating to meson states. The first part discusses the
bound state pseuvdoscalar mesons, uwtilizing & pole model represen-

tation of the binding forces.

In the one-channel pseudoscalar vector calculation, and
in & calculation coupling this to the baryon-antibaryon channel,
fairly modest forces suffice to produce a tightly bound state.
However, the output coupling constants are much larger than those
fed into the calculation, so that bootstrap self consistency is
not attained. It is also interesting that the baryon-antibaryon
channel seems to be & very significant contributor to the dynemi-

cal generation of bound steste psevdoscalar mesons.

The second part of this work considers electromsgnetic
mass splittings of mesons. In a dynamiesl scheme for generating
the mesons, mass splittings of the derived multiplets srise both
because of mass splittings of the particles participating in the
relevant scattering channels, and, becsuse of photon exchanges.
A crude inelastic bootstrap calculation of the p vector meson is
developed and then subject to electromagnetic perturbations. As
a corresponding pseudoscalar meson bootstrap is not availsble,

we can only relate pseudoscalar and vector mass differences here.



A rough estimate which results for the pmeson is M . - M |, 2

, 0 pt
* .
11 MeV. A yet cruder estimate of the K (885) mase difference is

* *
I"E(O- MK, v 5 MeV.
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. Part I. Dynamical Calculations of Psevdoscalar Meson Bound States

Intreduction

In recent years one approach to the problem of theoretically
predicting the observed spectrum of bound snd resonant states of
"fundamental"” particles has been that of dynamical calculations based

on utilization of unitarity and analyticity of the 8 matrix(l).

One
can employ knowledge of these principles to obtain dispersion rela-
tions for partial wave amplitudes, and one can employ a prescription
usually based on field theory, to guess at a plausible input force
for the calculation. Many calculations have been performed with

(2)

various approximations These calculations have been moderately
successful in obiaining a self-consistent solution for anguler
momentum one, negative parity, amplitudes possessing resonant states
closely corresponding to the observed vector mesons. It is of inter-

est therefore, to consider similar calculations of pseudoscalar mesons.

We shall discuss the dynamical calculation of & pseudoscalar
(BS) bound state in a pseudoscalar-vector (PS-V) channel and also
study the effects of including & baryon-antibaryon (B-ﬁ) channel.
A pole approximation to single particle exchange forces will be

employed.

One finds that plausible forces easily suffice to give adequate
binding for the low energy bound states in these channels. However,
self-consistency in the coupling constants is not achieved; the
output coupling constant from a calculation turns out to be consid-
erably lerger than the input coupling constant required to obtain

the desired bound state. Another interesting result is that in
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spite of its high threshold mass, the B-B state contributes significant-

1y to the origin of the O bound state.

" In Section 1 we define relevant amplitudes. Section 2 contains
reviews of the N/D dispersion theory and develops the pole-model
approximation. In Section 3 we consider in detail the PS-V channel
and obtain (mumerically) the results referred to above. In Section k4
we present several comments on aspects of the previous calculation.
Finally, in Section 5, we describe a coupled chammel (PS-V and B-ﬁ)

calculation.
1. Definitions

It is first necessary to define the amplitudes discussed in

(3)

subsequent sections. The conventional S matrix is related to a

T matrix as in Equaetion (1):
(2n)“51‘(z:1=f-mi) i
g 1
S =1+ . (1)
i Jegi 2E,
1,f

For two-particle elastic scatiering one then finds that the dif-
ferential scattering cross-section in the center of momentum frame

(c~m) 1is given by

%g = Ifle « :final (2)
initial

where

f=3?—:-03.



-3 -

Here P, p, q, k etc., will refer to 4-momenta, Ei to a single parti-

cle energy, ¢ to the total c.m. energy, s =tD2.

With the above convention, a positive T corresponds to &n
abtractive force. A state of angular momentum J, parity s, will be

denoted hy J'. The 0O partial wave amplitude is defined by (3)
1

A

AMA 7" *(s,cos 6)

t10o = l/Z[d(cos 6) - (3)
., -1

for helicities \',A.

It satisfies the (elestic) unitarity condition (4)

Im % (4)

AL _2p a2
J=0 o J=0

where p is the c.m. 3-momentum.

The O state in a PS-V channel occurs in only one amplitude
(only one "sense" smplitude, in the notation of M. Gell-Mann et algh)),
namely the helicity(s) zero, orbital P-wave emplitude. It can also
occur in the S wave, spin singlet B-B chennel (as well as in V-V

channels, etc.).

Before returning to specific details of calculeting the rele-
vant amplitwies, it is appropriate to discuss the equations to be
used in dynamical calculations, which are the subject of the next -

section.

2. N/D Equations

In this section we present a brief discussion of dispersion

relation equations for partial wave emplitudes. The discussion will
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briefly mention questions releting to the convergence of the integrals
occurring in dispersion relations, and then will present the

approximations to be employed in subsequent calculations.

To begin, then, let us consider some analytic properties of
a single channel partial wave amplitude which we call t when
normalized as in Section 1. Because 9f the unitarity of the
scattering matrix, t will have a cut along the positive real axis
of the complex 5 plane, running from some brench point £, to =.
Also, t possesses cuts on the left hand axis and off the real axis,

which are due to various exchanges of particles.

With the normalization of I, t corresponds to a unitary

elastic scattering amplitude of the form (5)

o id |
t = 3p ¢ oin 6 . (5)
At threshold, t(s) venishes like P2€ (5). One now can write

t = QN/D where ¢ is a factor chosen to ensure the proper threshold
behaviour of t, D has the unitary cuts of t, and N has the force
cuts ("left-hand cuts”) of t. Let p = 2p/w, and let B be a fumction
having the exact left-hand cuts of t; as a first approximation I
take B to be the sum of Born single-particle-exchange force dia-

grams as calculated from standard perturbation theory. ILet
B = B/t.
One can simply obtain the following dispersion relations

for ¥ ana D7) .
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-+-fac_[3( )_

s-85¢ of N
" (s‘-s)(s'—st) ?

]
i

B(s):] ds’ (6)

)
it
ot
]

or elternately,

N-BD+— —S--—ds
Sy

Because solubions of the integral N/D equetions are independent of

subtraction parameters(a), one cen normalize D to 1 at arbitrary St'
Bownd states correspond to zeros of D, i.e. to poles of t.

A bound state pole may be overlapped by a force cut, so that the

so-called determinantal approximation, N = B, could result in a

complex residue at the pole. However, when employing Eq. (6) we

see that Im N = O at D = O; we thus prefer to employ Eq. (6) for

bound state celculations.

We now consider the convergence of the integrals in Eq. (6),
with certain "model” assumptions ebout B, which give a B resembling
a reasonably modified field theory amplitude. The question of
convergence of the integrals depends on both the factors { and B.
For S-waves, a netural threshold factor { will not diverge at high
energies, so that a divergence can arise only if B grows too rapidly.
For higher partial weves, a typical threshold factor { will diverge
as some power of s, for s — =, and therefore, convergence will be

controlled more by the nature pf the threshold factor.
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We are, in fact, interested in a higher partial wave, the P-wave,
énd we shall now show that B vanishing monotonically as s — e does
not ensure convergence. This will have the consequence that if one
wishes to choose a simple, monotonic B, then one must choose {
appropriately so as to obtain convergent integrals. As an example of
the typical high-energy behaviour to be expected of partial wave
exchange amplitudes let us first consider the consequences of assumed

Regge behaviour on the asymptotic behaviour of ¢
alt)

7 One now would
have T b(t) 8 for large S, where ot) is the dominant Regge
trajectory, end t = - 2¢° (1-cos 9) for elestic scattering. There-

fore,

!
tJ a.fdx PJ(x) b(t) Sa’(t) (x = cos 9)

G

x==-1

(|
- (f;“(")ax P(x) B(t) "t (7)

[ f s{(t)ax L (n(t)P,(x))

J
As s Do, X = * 1 corresponds to t = 0, -». If we take a(t)
approximately constant as t - - «», and linear as t —» O, one then

obtuins from the Lirst term of Bg. (7):

SCL(O)

2q2 in s (%x;)
¢]

x const + SG«(-W) 1 4+ O(.__l__ .3 ]. (8)

tJ(S) ¥ 1ns

For a more specific exemple, consider

@« af-e) 1+ “t?.a"i‘;“] . (9)
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Assuming that a(0) - a(-=) > 0, and b(t) = constant, one may project

out a partial wave from s*) " one rinds

2
tog O 2s-=) [1 4 o -(-l-“-—%L] (10)
2q

+ 9—"—‘—'22'1 sq’(o) + terms vanishing more rapidly
2q as g -y,
For "pS exchange"; a(0) < O, so that the partial wave amplitudes should
vanish at least as fast as 1/ln s for s »o. It is important to note
that ¢ I =O(s) decreases smoothly at large S. Thus, one cannot invoke
high-~energy oscillations of ¢ I (when Regge behaviour is dominant) as
g mechanism ensuring convergence of the N/D equations. This has also
been pointed out recently in a more precise manner by Omnes(lo) .
Furthermore, application of an arbitrarily sharp monotonic cutoff
$0 B will not ensure convergence. For example, if B « 1/8¥, then

the kernel of the integral equetion for N becomes (teking s £ = 0)

p=2 1 O
sms.me

£ (11)

1f e " S
= g '(p-1) gp-2

Becauze one now has (for integer p) & sum of separable kernels, ome
can legitimately infer from the above expression that N — 0(1/s).
g —

(One can establish this even if B «~exp (- as).) One now finds

that the integrand of the N equation behaves asymptotically like

4 (s')x(N"‘l/s')x(l/s'Q). (12)
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This only gives a convergent integral if £(s')< O(s‘e).

cp/sP, then one can indeed choose Cp so that N v 1/s2, but B
p=2 8 - w
now will change sign at some intermediate energy.

:§: Another exsmple mey be enlightening. If B has the form

From such crude illustrations it becomes evident that the
convergence of the integrals enooﬁntered is not merely dependent on
asymptotic behaviour of B, but on delicate cancellations; B must be
exactly some non-monotonic fumction or the integrals diverge when
£ > §°. In this seuse , the N/D subtracted equations are "unstable",

as has been shown by Gatland et al.(ll)

who consider a form of the
N/D equations formulated in terms of integrals over the left hand
cuts. Because of these convergence difficulties, { will here be

chosen t0 have the asymptotic behaviour { < s.

Now let us consider useful approximations. One often finds
‘that the Born approximation to B may well be approximated by a
single pole form for s> threshold. Suppose that B = A/s-a for
s > sl , we may employ the fact of independence of subtraction
parameters to choose By = 8- One now obtains, for § = 8-8,, (in

a P wave prcblem)

N =;’_‘—5 53 s, (13a)
D= o(s'-s; (13b)
(s -a)2(s-s)
(s'-s,)
e . _—‘}_ Yo(s'-s

(s -s)%(s-2) (13c)
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Aaf"(s"sl) |
N .= = Afs- : (13d)
D0 a (s'—a)e(s'-s) /s a)D=O '

One can evaluate these integrals exactly (see Appendix Al), but the
results are long, messy expressions. If one is interested in bound
states, i.¢. 8 < 81> not near 8y it is a ressonsble approximation
to take p = B, constant (e.g. pw ﬂ/h say). The difference between

o and B is only significant near threshold, but the factor s'-s

1
reduces the contribution of this range to the integral.
With this further approximation one obtains
5-5 s,-a
A - 1 1 _l
D—-l--’-{p l+§—-é-—ln T;'EZT-J (lh&)
S.=8 s.~8
A- 1 1 1
I = = — -
D' = - Ry 1 oy in ls_s f (14b)
1
One can now obtain
(n/p)s-s
N/D' 1 (15)

D=0 " (s-a)-Lﬁézl(sl-a) D=0 ‘

In the next section we turn to specific details of the PS-V

channel.

%. The FS-V channel

In this section we mainly discuss the calculation of a bound
state pseudoscalar pole in & FS-V channel. This will be performed
using a single pole model spproximatlion Lo one-particle exchange

forces, and will turn out to give & bound state of appropriate mass,
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but with too large a coupling constant obtained as output.

A brief discussion is given concerning the situstion en-
countered for various pseuvdoscalar masses. The possibility of a
single channel dynamical origin for a recently discovered PS meson

at 960 MeV is also considered.

To begin the discussion then, we first note that the relevant
PS-V amplitude having J' = O  is the helicity-zero amplitude. We
approximate the forces in this amplitude by PS and V exchange
(in the U channel) as in Figure 1. We satisfy the requirements of
crossing symmetry of the amplitude to the extent that in a self-
consistent calculation we demend that the output coupling constant
ot a bound state should equal the input coupling constant for the

same state (contributing to the exchange channel).

It should be noted that if one were considering the scatiering
of mass-degenerste octets of mesons, one would again be performing
a dynamical calculation for & single channel. Thus the present
study can be considered to represent either scattering of two

specific particles, or of degenerste multiplets of particles.

In the present calculation, we adopt the policy of ignoring
possible V-V-V couplings. One motivation for this is the desire

for simplicity, and to avoid introducing additional parameters.

(9)

It has been shown that the Vzexchange force in the FS-V O

channel ror SU3 octets of particles is attractive; this therefore

ceuses a smaller V-PS-PS coupling to be required. Therefore, the
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diff'iculty in obtaining geout = gein would actually be increased by

such a force.

Let M, ¢ be the 1™ and O masses s respectively. One has then

the following expression for the 3-momentum (cm):
B = (s-(0 + 0)?) (s-(t - W) /8. (26)

The couplings employed are given below, in momentum space notation;

the L4 vector notation adopted here is a*b = a - &b, At the

0Po
PS-PS-V vertex, p', p are final, initial PS momenta; € is the

vecton polarization (see Fig. 2); one has a factor

ge - (p'+p). (17a)

At the V-V-PS vertex, q',q are final, initial V momenta, with

respective polarizations €', €, one has a factor

g :
(u) € o L W € &g (170)

Both coupling constants must be multiplied by appropriate isospin

factors. It is useful to note that for helicity zero,

o]

H -0 B M 8
)= * ~ w7 - (19)

Because of the antisymmetry of the V-V-PS coupling, when the external
vector helicity is zero, only the 5“ 0 ternm contributes at the
2

vertex.

One now obtains the following Born matrix elemen'ts(gb'):



2 2
_ 1 [: kp ]
t_ - , = C — |A+C1n |1+ (19a)
J=0 )PS exchange 1 %; 2M? B+m?-M?

t_ -
J=0 )V exchange

where me, Mixare the exchanged PS, V masses.

The expressions for A, C, etec., are given below, in terms of

p2, s, 80 that one can easily obtain the threshold behaviour.

e - (0-12)%/s

b=

p e +5+2u Mou® _ie (8 + 22 - )

B p (o B (R BE L o]
+38 (B +n° - 10)2 up" =0

E=1+pf20° + 0, - ¥)/2°

ﬁNFMg

]

G- (p+1E, - 2{2)(2+ )/up.

If one wishes ‘o have a conserved vector current theory then one
must include an extra "seagull" diagram (see Fig. 3) which is done

here. This simply increases A by another pg.

The factors Cl, 02 are crossing matrix elements, either for

SUé or SU, or whatever group is under consideration. For example,

3

if all states involved are SU, octets, then C) = - C, = + 1/2.

If PS,V states are x and p, then it turns out that again
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C, =-0Cy=+ 1/2. 1In these cases, not only V exchange(ll), but
also P8 exchange gives an attractive force. For the purpose of rela-

ting the residue of . .- at & pole to the coupling constant, one

J=0
wants to know the Born emplitude for the S-channel intermediate

atate
svate

L - ~

Wheu cousidering degenerate SU, octet scattering, one would

3
expect a PS-mass of perhaps 500 MeV compared to a V-mass of about

12)

800 MeV. From the decay rates of the ® and p mesons( one can

estimate ég, gg, and one then finds that PS exchange dominates(IB).
Subsequently, only the PS exchange force will be used to determine

approximate parameters in the pole model for the exchange force.

Finally, it should be noted that the one-particle exchange
terms have left hand cuts lying only on the axis; off axis cuts
arise from typical t-channel diagrems, which are neglected here

(because V-V-V couplings are omitted for simplicity).

Now we shall investigate some annoying sspects of an unequal
mass elastic channel. If one chooses the threshold factor { = pz,
then t = CN/D will, in practice, have a spurious pole et s = O,
since, in practice, the calculated N/D will not vanish at s = 0O
without a further subtraction being made in the N dispersion rela-

tion. Using Equation (21), one has the condition for self-consis-

tency of the dynamical calculation:



- 1l -

2 2
gin - gou’b _ 142 i (22)
= - 1
= e 5.0 | oo _

Since all dispersion relations should presumsbly be conbtinuous
functions of externel masses, pe would sppear a reasonable threshold
factor. However, Eq. (22) shows that, in practice, N will not have
a zero at s = 0, and so for small SB’ giut will tend to be large,

making selfe-consistency difficult to obtain.

‘ 2
One might consider using { = s - M+ ) = 85, - Now ome
would have
2 e N
%; =5 7} (23)
out sz (M=)
this has the disadvantage of not having a definite sign as M/u

varies.

Still another compromise, giving an amplitude with appro-
priate zeros, and no pole at s = O, would be { = spa. This would
give divergence problems, however, in any practical caleulation

(see the previous section).

It is thus not evident which choice of { offers the least
disadvantage. The policy to be adopted in the present approximete
congiderations is as follows. When u is appreciably greater than
M-u, P2 is approximately equel to (s-sl)/h (e.g. when u = 500 MeV,
M = 800 MeV) at the bound state energy. Therefore, for this range

of masses, we choose { = s-8 It will be found subsequently that

1’
the present approximation can give a low bound state mass but too
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large an output coupling constant:  these features also were obtained

in
1

computer calculations which the author has carried out. In subse-

for a considerable range of masses and for either { = p2 or §~S

quent discussion of numerical detail, we will illustrate these fea-
tures for the case W2 = 2, W = 2.56, in units of 500 MeV. This
choice corresponds to a heavy IS meson, and is employed here merely
to show that the features of the calculation mentioned above are not

peculiar to very low mass states such as the pion.

The D integral would converge if one retained the full Born
amplitude, but the author feels that the Born emplitude overestimates
the force grossly at high energies and therefore will employ a high
energy cutoff. Thus the Born emplitude, behaving like 3 as s -,
will be multiplied by a factor [1 + (s - sl/z )2] "L . For the
above masses, we choose Z to be 40, i.e. W, = 4 BeV. We cannot
dispute whether or not this is too high a cutoff without having at
our disposal information about high-energy behaviour of amplitudes.
However, moving the cutoff closer to threshold is equivalent to
moving the pole used to approximate the force towards s = 0O (on
the left hand real axis);this is not found to appreciably alter the
above-mentioned features of the results. One can also argue that
this cutoff is not an umreasonably low energy, as follows. Single

particle U-channel exchange involves - s < U< 0 as 8 —»»,

Now, with a typical Regge trajectory slope, if a{700 MeV) = O,
then o(0) is appreciably less than zero, so that Regge behaviowr

modifies +the effective spin of the exchanged particles, damping
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the exchange amplitudes even at fairly low energiles..

We are finally ready to complete our caleulation; fitting fhe
force roughly by a pole, one finds that a fairly good approximation

. _ .2
to tJ’-‘-O-.'/Cl is (G =g /let), for s > Sl,

.1 G
t0~/cl~» s . {2k)

Using Eas. (14) and (15), with c, = 1/2, one finds thet requiring
the output pole to occur at s = 2 leads to the following results:

(14)

i) @ a 7 compared to 3 from experiment

i
ii) ¢_,/e, _~ 6.
The second result is not sensitive to the location of the "pseudo-

pole" position in expression (24%) or to the location of the desired

bounmd state when it is well below threshold.

For very light masses, however, a new feature develops.
When u < 1/2 M, the vector meson is unsteble. If one still wishes
to discuss a two particle (ES-V) scattering channel as a reasonsable
approximation to actual three particle scattering, one encounters
singularities in the physical region, due to the contributions of
non~virtual PS exchange(lS). Some S-matrix theorists(l6) propose
that in such a case the object appropriate to describing the
lscattering is essenbially the residue of & three-particle scattering
amplitude at the pole in the relevant two-particle varisble (or in
the second sheet with respect to that variable). As shown by Hwa(17)

this amplitude possesses a complex unitarity cut, with a short
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portion of force cut occurring below the former cut; the separation
of these two cuts is related to the unstable particle width.

Figure 5a roughly indicates these properties: Figure 5b suggests

a crude approximation one might emplOy for the singularities or

Fig. 5a. A further approximation might be to neglect ImN on the
mitary cut due to the off axis short cut. This effectively gives
the usual N/D equetions, except that the singularities of the short
ewt are damped because of its displascement from the real axis. One
might expect such an effect from an appropriate resonance approxi-

mation to a three-particle amplitude(la).

At any rate, from the
point of view of these suggested approximetione, one finde (as is
verified by computer calculations) that the same qualitative

features of a dynemical calculation are cobtained as before.

In addition to peculiarities arising from unsteble vectors,
one also encounters inelastic behaviour of the amplitude in real
life.A One can consider the effect of inelasticity on a bound state
far from inelastic threshold in the following mammer. For example,
let the ratio of tobal to elastic cross-sections for two particle
scattering be constant, say = R. This has the chief effect of
increasing the strength of the input force and therefore decreases
the input G needed for fixed bound state energy. However, Gout/Gin
~is not substantially affected. This will be confirmed in a later
section. If Regge behaviour drastically reduces the strength of
the force, then one would require rather larger Gin to bind, but

again, one would expect Gout/Gin to be more or less as before.
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In summary then, one finds that the forces available are
quite_adequate to give rise to low energy bound states, but one
cannot achieve consistency in the coupling constant, Gbut/Gin being
> l. This sifuation has been encountered recently by other authors

seeking bound states in B-B scattering(lg)

, @nd in scalar-scalar
scattering. The large output coupling constant cbtained seems to be

due to several rfactors:

1. The (field theory) pole amplitude has a residue proportional to
G x hsp2, so that G_ . is proportional to [%N/DZ] /hspa. For equal

external masses, hpe is equal to s-s When 1 » (M&u)a ag in the

1.
numericel example cited earlier, 4p2 is again approximated well by

s-s,. Thus, for when s is less than s threshold, ¢ (hspe)-l is con~
siderably larger than for a heavy resonance, giving a large Gout'
This situation also occurs in the V-V and B-B 0° chamnels (which are

approximately "equal mass-scattering" channels).

2. At D = 0, the present model gives N =(}/s-a ( as a consequence
of solving the integral equations) which is much larger for bound
states then for resonances further from the force "pseudopole”.

This does not apply to theﬁﬁ'considered as an"Nr bound state because

"N"is quite close to the "Ni threshold.

In case the reader feels suspicious sbout the present approxi-

mations, several comments are next offered.

It might be noted that avplication of this pole approximation

to elastic n-n scattering gives a self-consistent resonance close %o
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threshold, in agreement with the results of many authors(el), so that
the present epproximations succeed where other more detailed calcula-
tions also succeed. Also an approximate B-B calculation carried out

was in very close agreement with the findings of the Reggeistic

calculation of reference (19).

Of course, one should be aware that 1f scalar mesons (s5)
exist, the F5-5 channel would be relevant. In this chennel the pole
residue is not proportional to s, so that some of the difficulties

referred o above might not occur.

When considering bound states of fairly high mess (say, near
threshold), the present difficulties seem to be much alleviated.

We discuss the question of higher mass pseudoscalarsin Appendix Bl.

Before tuming to a multichannel calculation, & section will

next be devoted to some obher interesting aspects of single channel

calculatiors.

4, Heuristic Arguments

In this section we present & crude non-relativistic argument
40 indicate thet a rather moderate meson-baryon interaction mey
suffice to bind a low mass O state in a heavy B-B channel. We also
give & possible mechanism whereby a self-consistent 0 dynamical
generation could occur, namely, the occurrence of & high mass O

meson (or a higher mass 803 0" multiplet).
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It is amusing to obtain a feeling for the strength of force
needed to bind even & B-B to give a PS bound state, in terms of some
familiar concepts. We note that the Born approximation for the
scattering amplitude from & square well of depth V and radius a,

for a particle of (effective) mass M, is

£(k) = 3%’ l:sin ke - ka cos ka] , (25)
X

where X is the momentum transfer. Therefore, at threshold,

£(0) = ¢

= 2 vad
s wave - 3 Ky . (26)

One can obtain the s wave J = O B-B scattering amplitude due to
vector exchange, with a crossing coefficient of 1/2, at threshold

in the Born approximetion; it turns out to be
2

2
e X (1)
My
We now adopt the notation of SchirelZh).
let & = & \/'}ZN— Vv-am,
nN=a J;g; N!ZMN .

We take the binding energy to equal EMﬁ, and the range = 2/Mﬁ (this
of course mskes the non-relativistic approximation bad). Then the

condition that the appropriate bound state occurs is:

al2

cot y = - — , | (28)

y
fv-z
vhere y = 2 -——ﬁﬂ .
¥
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This has the solution V = 3.25 M, which can be used in

Eqs. (26) and (27) to obtain

2
g —
S, 5 (29)

Thus, a not unreasonably large coupling strength gives very strong

binding.

One might also question the effect of the existence of
another state in the O channel. If it occurred for an energy higher
than the low-lying bound state of interest here, then D' has to change
sign as s varies from one zero to another of D, and simultaneously,
¥ would have to change sign in order that both states have real
couplings. If the zero of N were to occur near the lower eigenenergy,
then the output coupling constant could be reasonably small. In
practice, simple approximations for & one-channel calculation (as in
the next section) do not exhibit such behaviour. One can, however,
force the amplitude to possess a second pole by treating the second
state as though it were elementary, and thereby including the pole
diagram for the second state with the input forces. We therefore
want to solve the N/D integral equetions for a two pole model of the

force, which will now be performed.

Iet the pole diagram for the second state (energy = Jo) ve
Bg/s-b, B a constant. One then obtains the following results (in

the approximation p w p):
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7= B B
B = == as before + =" (308)

n n
2
N = b

s-8
Svbtracting D at a, one finds that nl = A and
- - \
B-A l+bsllnsl-a
b-a -bl
n,=___ " | 180 ] (30¢)
a=-s 5 N
_B- 1 1-b
1 b e [l + a-b 1 sl-'a

(31p)
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fn, - S~-5 s.=b
+__£_2_§% |:1 * s-bl In (sl-s):l ’
1

Adopting the basic force (A/s-a) to be that used earller for BS excha-
nge in a PS-V channel, one finds that self consistency will be realiza-
ble when the second state is bound near threshold; it need only be
bound with a reasonable coupling constant. The coupling constant

for the derived state is also reasonably small, and one indeed finds
that N has a zero near the derived bound state energy. Under these
circumstances, we find that B < O near threshold, but > O for higher
energies, while N> O for = > s (these observations are based on
inserting numbers into Eqs. (30) and (31)). This still gives =
strong force but also gives a small N at the bound state because of

cancellation in the expression for N)DzO = l/srprN/s'-s ds).

In general, if one desires to have ND=O small, then a gign
change of BN at some energy is helpful to achieve this. If B were
of constant sign, but N changed sign, then there would be cancel-
lation in the D integrasl. The effective force would be rather small,
s0 it is preferable that B change sign, as happens in the above

sitvation.

To summaerize this two-state discussion, it is found that the
existence of a second higher energy state (0 ) could imply & more

favorable situation for a self consistent calculation of a low-lying

bound state.
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5. Two-Channel Celculation

In this section a crude epproximation t0 a dynamical calcu~
lation will be performed for coupled FS-V and B-B channels. First

though, the msterial of séction 2 will be extended to & multi-channel
case.

Tet tfi be a pertial wave amplitude from state i +to state f.
(states of definite parity, total isospin, strangeness, etc.); part
of the present approximation consists of restricting considerations
to two-particle states. In the present case, the B-B threshold is
considerably higher than some three-particle scattering thresholds;
the present discussion will only be intended to give some feeling

for the contribubion of a second, albeit high-mass, channel.

Unitarity imposes the condition

Im %, = £ Tpy Ty U85y shreshold) %%k (32)
where
20
e T TW

To ensure appropriate threshold behaviour of tfi’ we define a
threshold factor gfi possessing the desired threshold behaviour, and

define hfi by

Yor = Seiles- (33)

Decause the threshold factor is factorizable, one has

g

ey = Ne Ty s
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and therefore, Eq. {32) becomes

Y%
Im hey =§ ek P %k Pk Sk (34)

One similarly defines iij = BiJ/gij’Where Bij is & function possessing

the exact left hand cubs of tij' From now on it is more convenient to

avoid writing indices by employing matrix notation.

- > = - 0
et X = 45y = 0(s-8) 41 esnora’ P Skk ik (352)
el
h=h, = (n/D )ik (350)
B = iik . (35¢)

If one writes a once subtracted (at St) dispersion relation for D,

one obtains

g l=s
o' (B(a") - ok

% XN
D=1--3 f(S'-S)(s-st) ) (360)

As a model of multichannel effects we consider a two-channel single

2

i

it

o

+
Al
?

ﬁ(s)) XN (36a)
t

i
fas ]
m ﬂlk’
t_“__}

]

pole approximation. In order to connect this model of the forces to
field theory Born terms, the pble coefficients in the various
channels will be chosen to give forces at low energiles which are
roughly the same strength as the Born forces due to one-particle
exchange. To cimplify this procedure, let us consider equal mess

P and V states; this at least suffices to give a fairly representative
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illustration of the effect of the second channel. In the one-pole

model _
P51 BB?
S 1l c B
1 .
N vy } (37)
BR 2 E A

To ensure proper threshold behaviour, define

- ) -
all‘pl(':k'l)amiggg"l) (38)

where mits are employed such that MV2 = M%S = 1. This reflects the
fact that the O  state occurs in the PS-V P-wave amplitude and the
B-B S-wave amplitude. The approximation will be made that QqPV/W
and 29 /W can be approximated by & constant in all integrals, say
x/4. This is & very good approximation for the PV channel (as
discussed earlier) but possibly slightly overestimates the BB

contribution.

One now obtains the equivalent of Egs. (14) and (15)

(subtracting at a)

_ h«a _ c
Dy =1-3 [l temMEg | flow L
by “+g
D22 = [ + S’i‘& ( Mv )] 1l - & I
}"'MN +8 l‘%‘ -5 L" 2
- _ E E
D12 =- 3B Il and Ibl = - I 12 ] (39)

Analogously to the single channel case, a bound state here corresponds

to a zero of det (D) = D,,D,, = DDy - At this energy, the residue
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is given by (in this pole model, N=B)

Residueh-:g'-fBXN D (40)

x| {(s'-8) (det D) °

where D is defined by D":L = T)/det D. For example, in the one-pole

model, at det D = O, one can show that
2
Residue h,, = [CDEE - ED, D, + A DEI:] / I:(s+a)(de‘h D)j’]. (41)

Equations (39), (40) and (41) are the besis of the two-channel
ecalculation to be described. Pirst though one must obtain estimates

for the coefficients A,C,E.

A reasonable low energy numerical approximation to the (equal

mass) PS-V channel PS exchange (19a) is found to be

by = Oy 7 5325 (k2)

vhere y is a group theoretic ( e.g. isospin) crossing factor, and
G = ge/lm.

The forces from single particle exchenge in the BB channel

are, where o', o are crossing coefficients,
2 2
5-2) 2
30" = a' Gy -——-—“—Nb— 9 | 1+ Y (43a)
V exchange g -4

My -y

=i

0 l 2 2
B = g = 1l- 2.1 + .
PS exchange B - hi! 2 0 g- MINE il

(43b)
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With the strong interactions SUS symmetric, one finds o'> 0, a" > 0.
With typical strength of the forces the net force will be attractive
and somewhat stronger than ng(In the subsequent example, matching
A to (43a)), we take Sy = 2, G - 10, My = 2.) The V exchenge
force looks approximately as in Fig. 6, so that a pole approximation

- is a poor representation of this force, but probably suffices to
represent the strength of the force. In any case, metching a pole

o B, at s/lLMN2 = 2, one obtains

2
Av(9+6MN)ln(l+ ) aG (4h)
MV

where o is some effective crossing coefficient.

The Born force h,, is due to the diagrams exhibited in Fig. 7,

12
and is given below
o

T ko a
12 T P b

W PVMV llL"‘v PPV B “Poy Ppd

(b5)
B - )
* 5 /o e

Again B is a crossing coefficient. Note +hat 1/P 55 % ( ) is a real
function even for s < AMNE, so that this off-dlagonel force possesses
no peculiar kinematic cuts as sometimes occurs for off-diagonal
amplitudes. One can alsec verify that the sbove expression for t

12

indeed vanishes as PPV at s = k. This force, at low energies, tends

%o look like a pole force except for a narrow spike at P-V threshold

(for %)/, » not t),)- It is not cbvious where one should match
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pole force and field theory Born term. If the matching is done at
5 = MMN MV (the.geometric mean of the two thresholds), then one
finds that E is proportional to Mﬁ /GVNN GPNN’ which is annoying
for M - . This question of behaviour as M — = for a coupled
channel calculation in discussed in Appendix A; for now we shall

match et s = AMN MV'

To obtain a specification via dynamics of all the parameters
entering the above expressions for the forces would require simuls
taneous bootstrapping of several channels (more then 2). This is not
the intention here; this study, rather, aims to assess the importance

of the BB chanmel, which is nov done by fixing all but G t

pry &
reasonable values" and then considering the result of numerical
calculation. Accordingly, let us adopt the following parameters:
Gy = 2> Gpy©10, ¥ =2, a=p =7y = 1/2 {this is a typical
crossing coefficient). Employing Eqs. (39) and (41), one now finds

the following results:

i) Gppy» One-channel calculation with equel meson masses,

= 3.5
Gppy» COUPled ES-V, BB = 1.4
i1) Gout/Gin’ coupled FS-V, BB = 6.4 .

The qualitative feature of the second result is unchanged
even under appreciable variation of the strength of the inter-channel
coupling (although the megnitude of Gppy meturelly varies inversely

as the magnitude of vaﬁ when the latter provides attractive forces
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in the BB chanmel).

The author considers the relevance of the above caleulation |
to be that, in spite of the high threshold mass of the B-B, the
channel is probably essential to a dynamical understanding of (at

least) the pseudoscalar mesons.

Conclusion

In the previous sections, crudely approximate dynamical calcu-
lations have been performed to obtain a bound pseudoscaslar state, in
both PS-V and B-B chamnels. The author wishes to emphasize the fol-

lowing inferences to be obtained from these calculations:

1. The plausibility of the ides that even low lying bound states
are composite, demonstrated by the fact that only relatively modest
forces are required to give rise to bound states in model calcula-

tions.

2. There seems to be difficulty in obtaining a dynamical calcula~
+tion which is self-consistent in the coupling strengths for low

lying states.

3. High mass channels, contrary to commonly expressed opinion,
are quite likely to be importent conmtributors to the dynamical
generation of the observed particle spectrum. The importance
of the B-B channel in the present calculations is but a (re)-
confirmation of the relevance of the Fermi-Yang model for the

nesons (277,
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Appendix Al. Coupled channels with high threshold mess

This appendix discusses coupled channels in the approximation
and notation of Section 5. PFirst, a fev comments on the pole model
approximation are necessary. It should be realized that the inelastic
amplitﬁde IS:V«»B-B will proceed via fermion exchange and therefore
the higher the fermion mass, the further off the mass shell this
fermion will be. Consequently, one might expect that there will
be sppreciasble damping of the amplitude below the Born value.
Therefore, as ve let My —o (Mv = 1), we shall consider E to be non-
divergent, rather than proportional o some power of Mﬁ as results

from matching the Born term and a pole amplitude.

We now consider the exact pole model expression for

o0
b o_sm o[ % ds’
21 = W (s'-s)(s™4a)<
00
=
=82 g gg (be) 1 5 (A1.1)
n . {s'-s)(s'4a)

where

This, of course, is for the case where channel 2 is an S-wave channel

for which one customarily takes £ = 1.

This can be integrated examctly, giving the expression helow:
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Poy s+ |2
¢a+b 1 b a/“ ,/——a+
+ a |s+a + 2a(a+b) 1n (l b )(Al 2)
_ 1
a

As b » @ , this expression approsches

Dy = - % (o (%)1) —-E x O (—]-’5)2 (A1.3)

My

. 2
Thus with E less divergent than Mﬁ, one sees that D21 x D12 -0 as
MN - and so the high mass S-wave chennel does indeed decouple from
a low threshold mass channel. It isn't necessary to employ the exact

pole model expressions here because A2) vanishes the same (for

3N o) as the approximate expression in Eg. (39).

If a P-wave channel of high mass were coupled to the first
P-wave channel, then one would be dealing with the following lntegral

in Dy (taking ¢ = s-b for a threshold P-wave factor):

o

- (s'-0)° ALY
Fo ) | G ey .
) (s-?n)2 Ay 2\, e
v AL Gy
(AL.5)



As b - = one easily obtains from (Al.4) the result that I

is of the order 1/b. The channel coupling term D,, D, is

proportional to Ee/b in our pole model. Consequently, if E(b)
increases slower than\/g, we still have channel decoupling,

i.e., D. Note, however, that with our monotonic force

Dyp Doy 7
and the usual threshold factor, the high mass P-wave channel decouples

less rapidly than a high mass S-wave channel.
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Appendix Bl

In this appendix we discuss the possibility of a heavy

(> 1 BeV) PS meson arising in a single channel calculation.

In_the present epproximetion it appears that one could obtain
_a bound PS state near threshold with moderate input forces and with
a small ouwtput coupling constant (which is due to larger D' and SB)
if the relevant forces were attractive. In fact, it has recently
been established that another PS meson exists at 960 MeV, and with
quantum numbers I (JﬂG) C=0 (0~+) + () . It is therefore
interesting to consider how this state might arise dynamically in a

degenerate SU; symmetric situation.

A common essumption currently is that the X is an SUé singlet.

In this case, the requirement of charge conjugation invariance

forbids it to couple to the SU5 channels Eh-vs or Pl~ 1

that PbrVS-Pl coupling would necessarily include an interaction of

(Recall

the form ppuo X which violates C invariance.)

Next, let us consider the assumption that this state (call
it the X) is a member of an SUé octet Bj. It has the same quentum
nurbers as the 1(550), so Pé has all the same gquentium numbers as
PB (the original PSB). One therefore expects to find it as s
bound state in the EB-VB system,'which haes considerably lower thres-
hbld then the Pg~V8 channels. Indeed, from the above discussion,
no particular difficulty in achieving & bound state with small (output)

coupling is anticipated. Admittedly, this qualitative discussion
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does not consider whather self consistency for both octets could be
échieved. However, one cannot pass Judgement yet on this question
since one certainly does not see how to cobtain two bound states in
one channel with any hitherto exemined model of the relevant forces,
(it is quite poésible that when considering a more realistic multi-
channel situation one might obtein 2 bound states, but no evidence
for this is available). This difficulty is to be expected whenever
one adopts a model with a monotonic force, which is unlikely to give

several zeros in D.

Another possibility is that a unitary singlet X could occur
in the VS-VB channel. YHowever, the V-V channel Born terms from FS
exchange {ignoring possible V-V-V couplings), are much too small to
producé a singlet bound state ( if one employs a "reasonable" cutoff

in the calculation) with a reasonable input coupling constant.

It is of incidental interest to consider the C = - unitary
singlét PS channel. One finds that the octet exchange forces in the
PBy-Vg channel are repulsive (and the singlet exchange force is very
small because of a small SU3 crossing coefficient (1/8) ), thus no
(bownd) C = - singlet is expected unless the higher threshold
channel consisting of V,-P {¢ = +) can bootstrap a Pi(c = -).

One would thus have to consider the possibility of Pl(c = -) and
_Pl(c = +) being bootstrapped in the vl(-) - Pl(+) and vl(-) - Pl(-)

channels.

Finally, returning to the dynamics of the Pi(c=+) one finds

that it can indeed occur in a Baryon-antibaryon channel. Even in the
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present approximation the output coupling constant would be
reasonable for M «~ 1 BeV. Agaiq)since the forces would come mainly
from the P8 ) V8 exchanges, one cannot meke any assertions about

self consistency from only single channel considerations.
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Part II. On Meson Flectromagnetic Mass Splitting Calculations

Introduction

In this study we investigete the calculation of electromagnetic
mass differences of mesons. The mesons are to be considered as com-
posite states in the sense that these particle states are 1n a one
t0 one correspondence with 3§ matrix poles having a dynamical origin.
Electromagnetic effects are thus to be considered as perturbations
upon a system of strongly interacting particles, and will be studied
by examining perturbations of a strong interaction dymamical calcula-

tion.

In the present approach we want to study two effects causing
mass splittings among the members of a strong interaction isospin
multiplet of particles. The first effect is that of the electro-
magnetic mass splittings of the particle multiplets which participate
as axternal and exchanged particles in a scattering channel. The
second effect is thet of exchanged photons modifying the basie
strong interaction forces, and is understood physically from the
following example. Consider a neutral composite particle occurring
mainly in a single channel comprising one positive and one negative
strongly interacting particle (SIP). Photon exchange is here expec-
ted to provide an extra attractive force supplementing the strong

interactions.

Since the present investigation requires a strong interasction

dynamical calculation to pertwrb, it is appropriate to comment on



-~ 4O -

the strong interaction calculations which have appeared to date in

the literature; Many authors(l) have performed calculations in the
channels possessing the quantum numbers of the known vector mesons.
Approximate methods of“dispersixmfwere generally employed. The
binding forces were either represented in terms of single particle
exchange forces due to vector exchange, or a model was constructed
without explicit vector exchange but utilizing crossing symmetry

of the scattering amplitudes. Because the latter case is dirfrficult

to perturb in an algebraically simple manner, the one particle exchange
medel of two-particle scattering will be adopted here.

The calculations found in the literature demonstrated the
exlotence of self-consistent bootstrapped vector resonant states,
although multichannel calculations were often essentisl. However, it
is not clear that a self-consistent vector bootstrap is achieved when
one employs more realistic forces and the full integral eguations

(2)

determining a partial wave amplitude Rather, in Part I of this

work it was seen that no simple approximation is likely to lead to a

3,4)

self-consistent bootstrap of the psewloscalar mesons The policy
adopted here is that the vector mesoms presently come closest to
having been dynmamicelly generated in a consistent calculetion.

Consequently, this study will be restricted to a specific example

_of the electromagnetic mass splittings of a vector multiplet.

A brief outline of the succeeding sections is now presented .
In Section 1 and 2 we will discuss, in general, techniques for

studying perturbations of a dynamical calculation. In Sections 3
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and 4 we specialize these techniques to & "pole-model" approximation.
In Section 5 we then numerically apply all derived methods to the
example of the p meson. In Sections 7, 8, and 9 we consider in
general and specifically for the p case, the effects of inelasticity.

*
In Sectlion 10 we consider the pand X in an sus degenerate model.

The results are summarized briefly by two statements for the

specific example of the p in & n-n channel.

1. The p mass splittings are primarily determined by the mass
splittings of the participating particles in the x~n channel. The
effects of exchanged photons appear to be less important. One

estimates from & one-channel calculation that Mdo - Mp#g 11 MeV.

2. The above nmentioned results are not qualitatively changed when
one includes inelastic effects. In fact, the mass splititing

probably becomes even larger.

1. General Considerations on Mass Shifts

In general, a composite model for & particle is characterized
by a function whose argument depends on energy and on the various
messes and couplings of those particleé involved in the forces
contributing to a given channel. Some condition on this function
specifies the location of the desired composite state; the energy
satisfying this appropriate condition is thus dependent on various
masses, etc., of relévant particles. The first decision one faces is

that of choosing the function appropriately, from the point of view
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of calculstional simplicity.

~In several recent papers(s) an S matrix dispersion theory
method for calculating mass shifts within particle multiplets has
been proposed. This method involves dispersion relations for the
change in a scattering amplituvde due to a perturbing force. The
relevant equations in turn involve integrals whose integrand
depends on the square of the conventional D function of scattering
theory {for a specified angular momentum, parity, etc.). When it
was applied to baryon meson interactions with a static model approxi-
mation to the exchange forces, this method has had considerable

(5)

success In sueh a case, however, the nature of the approximation
made it possible to obtain simple D functions whieh did not greatly
complicate the necessary integrations. One reason for this was that
in such static model calculations one only needed knowledge of D over

a relatively small region of the real axis, and therefore, could

employ linear approximations to D.

In meson-meson channels, the kinetic energies of the mesons are
much greater than in the static mcdel meson baryon cese, i.e. the
kinematics is fully relaetivistic. Consequently, a somewhat different
approach would be desirasble. We now proceed to outline such an
approach. Iet us first consider a onc-chemnel calculation of the
amplitudes for elastic scattering of particles.A,B (in appropriate
charge states) with the forces dominated by exchange of particle C,
and with electromagnetic "driving forces" due to 7y exchange, etc.

We let the scattering amplitude in a channel of given J, and parity,
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with appropriate threshold factor divided out, be written in the
form £ = N/D where

D=D(S, M 2 Mﬂe, M 2, "y, G,) . (1)
A ° C J

Here, S is the square of the centre of mass total energy and "y"
symbolically represents the y exchange forces, ete. Gj is the squere
of the conventional strong coupling constaent divided by Un. For
simplicity let us assume that the desired composite state is C
itself ( otherwise one need only sum over various exchange forces).
For different charge states of the composite state C, D will depend
on different charge states of the external and exchanged masses. The
condition that a composite state exists as a consequence of the
forces present is that

D(s=M2, ..... y=0 {2)

(for a resonant state we require that Re D(s = Mbe, .. ) = 0)

One 2lso requires that the amplitude setisfy crossing symmetry
or, at 1east, that the output residue at the composite state pole
(or at Re D = O) should be equal to the input coupling constant, to

within kinematic factors.
This gives an equation of the form
={N} 1
G nput (Df) k (3)

where G = ge/hn, g a dimensionless coupling constant, D' = dD/Js and

. K is a kinematical factor.

Now, suppose that a particle laebelled by 1 belongs to an
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isospin multiplet. For simplicity, let us here assume that the mass

splittings within the multiplet can be characterized by only one

mmber, which we shall call 8 mj? . This will be the case for an

T = 1 meson multiplet, for instance, where charge conjugation invari-
~ance requires that the two charged states have equal mass. In a one-
particle exchange model of a force, there asre four external particles
and one exchanged particle labelled by i =1 ...5. The ith typre of
particle participating in the scattering in a channel called C here,
will be in & charge stete appropriate to the over-all charge state of
C. 'The masses of the ith particles participating in scattering

for two different C charge states may differ; the difference can be

written as Ci Gmi: C, will be either O oril {depending on whether

i
the same, or differently charged i states contribute).

We require condition (2) for two different charge states of

C; this gives the equation

aD

L
jg:c, Sm.e-*§2§ +c On 2 =
E ex ‘e
=1 i exchange=C
(%)

’ BD aD 2 a:D ] "
+:E: 56; éGi t 35 Cs 6mb + 3 oy" =0,
i
In addition to the sbove conditions, one can simplify
calculations by explicitly requiring that the bootstrap equstions be
scale invariant. BScale invariance is the statement that if all

input (masses)2 are increased by a common factor B and all G's are
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m_lcha:aged , then a bootstrap solution originally giving mess mc
becomes a consistent solution for (m;asss)2 = 8 mc2 with the same G.

' This yields the eguation, in the case of only C exchanged,

i
2 oD 2] op oD
Zmi ‘—"—-amg‘*‘mc {ame +3§)=0- (5)
i=1 i ex

Similarly, if in Eq. (3), we write h = N/D'K = G;,» then one obtains

two equations for the changes in h analogous to Egs. (4) and (5):

namely
2 oh oh oh 2
6G=Zciémi 2+cexamz + € 55 | om, (6)
1 i c
a n 11
+§- éy" + GGi terms
and
2 On 2( - )
—~5 +m (7)
:%; i ami c am 2 3-

Equations (4) - (7) are the anslogues of the equations of reference 5.

In a multichannel problem, one writes § = N u];:'l where "."
denotes a matrix. The occurrence of a composite state is related to

']3 , = O (determinant D = 0).

One now has equations exactly like (4) and (5) with D re-

placed by IQ and with more indices required to describe the ad-

diltional channels.
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If we write 9-1

)
then
1=30/Ppf. (8a)

The analogue of equation (2) is

(¥ D),
E - i - - 8
Kig Gy =85 VGE ;(nglj)- ()

The analogue of equation (6) is (o now labels particles external

and exchanged); mno ij summation is implied

ij 2
oG = C ém

P & I N (- S QPR o @ e
G 2 “om % 1j D) iJ

S - B
Tr z(——a-é—g Q+%§-@— et ora,
&

2
- Om,, O , om,” ) 1 (9)
™ (50)
i3 2
_Z aKij C 51:1@
2
S amm Kij

As in reference (5) one can employ not only scale invariance, but
group theory to simplify the complexity of the coefficients of the

5m§ in these equations.

2. Photon Driving Forces

In order to illustrate the photon forces which can arise, we

employ a specific example here. The x-x channel with p exchange is
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therefore illustrated in Fig. 1, vhich presents the various pertur-
bation theory photon corrections which occur in the different possible

total charge states of the isospin one channel.

If one adopts the input force for a dynamical calculation
to be oné photon exchenge (Fig. la), and if one solves the usual N/D
equations Por the J=1, negetive parity, J=1 partial wave amplitude,
then one's final amplitude should include the effects of y-p
"adaders"1). Figure lg is such a y-p "ladder" in the U channel.
This type of diagram, however, (with charged vecton exchange ) will

have a non-renormelizable ultraviolet divergence.

In Dashen's(a) calculation of the n-p mass difference, static
model kinematics and the re-normelizability of the U channel y-N
exchanges permitted him to argue that such exchanges were unimportant.
These situations do not pertein here, though, and the author cannot
present comparable arguments. It should be pointed out, however,
that the t-channel y-p exchanges will turn out to be smsll, so one
is hopefully not omitting any large effects if one omits U channel.
¥-p exchanges. Consequently, motivated meinly by the desire for a
simple model of photon exchange forces, the author will omit U channel
exchanges. (This is stated in the language of the Mandelstam repre-

sentation as omitting the 3rd or u-t double spectral fumction.)

Photons mcdifying a vertex (Figs. le and 1f) can be
considered to modify the effective coupling constant of the strong

ot iunteraction (although the modification constitutes a somewhat
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energy-dependent form factor), these modifications will therefore

be considered +to be included in the coupling constant perturbations 0G.
The photon intermediate state (Fig. h) is unlikely to be & dynamically
bound x-x state, and therefore the photon pole Born term (Fig. 1h)
must be added separately to the input Born perturbing terms. However,
one can check that its effect is small compared to photon exchange

effects.

Because the photon has zero mass, there will also be problems
arising from infrared divergences. In particular, a one-photon exchange
amplitude will be proportional {in the ¢ chanmel) to Q¢ (1 + x/2q2)
which diverges as the fictitious photon mass A goes to zero(a), Unless
one accounts for brehmsstrahlung properly, the S matrix acquires an
infinite phase proportional to the above factor on the wmitary cut
{extending from hmhz to®). The D function consequently also acquires
an infinite phase. If one calculates N and D with the above one y
exchange amplitude as input force, one obtains finite terms (as A=0)

+ terms proportional to 9g {1 + )\./qu). All such divergent terms can
be interpreted as coming from an expansion of the divergent S matrix
phase factor and can then be discarded. To be more precise, in this

calculation, vhenever a term diverges like 1n A, the part of the
expression diverging as 9, (1 + k/2q2) was dropped. This is equiva-
lent to dropping the part of any expression diverging like

In (JXE/aq), e = 2.718..., which is the same prescription as adopted
in reference (8). This infinite phase factor occurring in the 8§ matrix

does not affect physical scattering predictions and in that seunse is
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of no physical significance except that it is the momentum space
equivalent of the infinite phase shift proportional to 1n (2kr)
appearing in outgoing Coulomb scattered waves. To see that the
infinite phase.will diverge as Q1(1 + x/2q2) we calculate the diver-
gent Born epproximation to the Coulomb partial wave phase chift. For
P-wave scattering, we observe that the relevant scattering amplitude
from photon exchange is proportional to (t - k)—l. This corresponds

"\]i I‘/r.

t0 a co-ordinate space potential V(r)v e Now we have {in

NR theory)
. 2 2
8, proportional to ‘/Tjﬁ (ar)v(r) r" ar (102)
(e.g. see reference 21 of part I,this thesis)

For P waves, this gives §p proportional to

]

2 - i T
fJ3/2 (gr) RV , (10b)
0
. . 14)
which in turn is proportional to

A
Q 1+ =5 ) . (10c)

29

The lowest order estimate of the contribution to the non-
Coulomb divergent part of D from one y exchange would be obtained from
a determinantal approximetion 6yN = By- If we employ subscript f
to denote the "finite part" of a Coulomb divergent quantity, we have

for a once subtracted D function
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% Y
8-84 ds' p(s') B (s')
8,D), = - ('T ) Pf (s,,s)(szso) (11a)
8

1

p is a phase space factor.
In this "determinantal" approximation one also has in Eq. (6)

6 Q 6N), ©6D')
% "oy = £ = L. et (11v)

Here however, N = Bf and so (§N) g = 0- If one solved the full
integral equations for N end D, 9N, would no longer be zero. We

shall retuwrn to this point later.

3, Pole Model P Wave Single Channel Bootstrap

The next problem is to obtain reasonably simple approximations
for N and D which in some way exhibit a dependence of external and
exchanged masses. A reasonable mocdel consists of approximating the
forces involved by poles. We first must define precisely what ampli-
tude we wish to caleculate. In the present cese of equal external
messes (toc order¢ 2) let us write a dispersion relation for the

amplitude T given by

116
3 l;qa e” sin & , (12)

ld

t =

hyl

(Note that hqa =g = )-l»pe to order 82).

We write T = N/D, with N and D, respectively, possessing the

left hand and right hand cuts of . Henceforth let threshold be



- 51 -

denoted by s, (= 4u®) and 1let p = 2a//5 .

We shall now adopt as input force the p exchange Born
diagram B. The Born amplitude, near threshold, is approximately
constant after removal of a "threshold factor” pa; since it needs to
be "éut off" to have the correct high-energy behaviour, a2 reasonable
approximation %o B/hpe should be a pole term(1G/s-a, with "a" quite
far out on the negative resl s axis, i.e., this amplitude corresponds

to

2
B = bpac . (12)

s-a ’

which no longer has the umphysical logarithm divergence, at high

energies, of the perturbation theory Born term.

In solving the full integrel equations for N and D we note that
the solution is independent of subtraction point, and so subtract at
s = a. This then gives the solutions below, equations (13) to (15),

which sre also set forth in the first part of this thesis,

N =%—?§ » 8> 8 (13a)
' * ofst-s.)
D=1-5'—9-ac-1>f 21 : (13b)
“ J, (s'-8)(s'-s)
8

It is a very good approximetion to take p = 1 here. When p (= 29//3)
tends towards to zero as\ﬁ§T:§i,the integrand is already vanishing as
(s‘-sl), so'little error is introduced. It is easy enough to explicit-
ly evaluate the above integral, but the expressions obtained are

much simpler when one makes the approximation p = 1.
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One then obtains, from (13b),

S~8 s, -8
Re D 1_ ~ l+gz In = . (14)
At Re D = 0, one also has
n(s-5,)
%T = nl = _.%- Gout (15)
(s-a) - da (Sl-a)
In this epproximation, one has (B = B/hpz),
=68 + L Bfat -8 .8 N(s')
6N = 68 + ﬂv/o 0B(s') - o 0B(s) o el (16)

If one sdopts a determinemtal approach for calculating photon
driving forces (i.e. if one takes N = Born term B) then Eq. (10)
describes the change in D. If, however, one wishes to solve the
integral equation for N, one finds that for & pole model strong

interaction force, one obtains (A =QG),

6eN)f = -2 x [ESD)f of equation (lOB‘J . (17)

s-a

Unfortunately, to obtain 6D)f one now has to calculate the
"finite part" of a dispersion integral whose integrand includes
6N = 6eN)f + 69N)divergent' In order to select the "finite part"
of these integrals one must be able to evalumate the integrals analyt-
ically which is not feasible except in the determinantal approxi- -
mation. Therefore, only determinantal calculations are carried out

numerically here. The errors involved in this approximation are

discussed later.
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In Egs. (8) one considers the parameters of D(sl,Cl, a) as
functions of all the messes involved. One can estimate the quantities
aO/aMei , aa/amei by metching the mess derivatives of Eq. (12a) with
those of the actual Boin term, at two energies. Of course, the mass
deri#atives of the actual forces vary with energy, but one may hope that
if the important contribution to the dispersion integrals comes from
a finite energy range, then the approximation of constant mass
" derivatives of the pole model parameters should not give misleading
results. The only alternative to a simple role model is a numerical
integration procedure for integrals of the mass derivatives of Born
"Porce™ amplitudes. Since the Born amplitudes need to be demped at
high energies to be realistic, one is then faced with the problem of
mass dependent parametrization of the damping factor. That procedure
is even less appealing than a pole mcdel approximation to this author.
We now have decided to adopt a pole model with constant mass deriva-
tives of the pole model parameters. Based on this idea we proceed to

utilize equations (14) and (15), the bootstrap equations.

Jf one writes

d o) (u

2 ‘
aygx a ay

then from all the above equations one can establish the following,

after some tedious algebra (Appendix B),



(18a)

S_ =

E}---+<56DQ0=¢':'aMe-f-—2-;L—§ 6|u2 x
4 -@ MQ_a 3 :ELM
(l n s]_'a) ( Mz-a
_(l
Q
56 x.«(sl-me) 5813;30 %Npo
G o(f-a) DY, N
- (o 25.5 8?) s
_ 1 ] ) .
m [(G n(l)aM (X!t + G):l
::(sl-a) (1
-QG (NF-&) (L

4. The Born Amplitude and Photon Force

magnetic mass differences.

B )
(-a) (-3, )

(18b)

Equations (18a) and (18b) comes respectively from (8a) and (6b).

In the previous sections we presented general discussion and

set up the general formalism necessary for a calculation of electro-

We proceed in this section with calcula-
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tion of the Born amplitude and the 5D.due to photon exchange in the
strong interaction pole mecdel. Numerical calculation is carried out
in the next section. Our first task is to write down the Born ampli-
tudes for the exchange forces in thef = 1 channel. As we shall later
perform numerical calculation only for the I = 1 wx~mx channel with p
{and y) exchange forces, the ensuing Born expressions are for this
case. Taking account of eppropriate boson symmetrization of states,

one obtains for the sn channel, p exchange force,

_ G sme yF
tp exchange ;ﬁi? (4 ) Q1 (1 + .2 (29)

2 2
Here Gpm g pnﬂ/hﬁ = by pﬁn/kﬂ of reference la).

g = cm 3-momentum

Ql 1s the Tegendre function of the second kind of order one.

The pole diagram (p intermediate state in the S channel) is

- Ggpt . (20)

lE(s-M?)
o’
The y exchange contribution may be obtained easily from Eq. (19).
For the po channel, the photon exchange diagram contributes Just
the expression of Eq. (18) with M2 replaced by A, the square of the
fictitious photon mass, and with gepﬂﬂ/hn replaced by ea/ux = 1/137.
The contribution of the photon exchange force to 0D, is most easily
calculated from the total Born term for photon exchange, rather than

from a partiel wave projection of the Born photon term. The pro-
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cedure employed follows:

We have in the po channel (with phase space factor = 1)

2 2,2
_ | e _ 284) -l
+ U channel contribution

In the determinantal approximation this contributes to D{'El

1 2 /s-s ® (2s'-5.)
0 ds' 1
= - 1/éjp By (x) fg; ( - )~f~(s,_s)fs,_so) G (22)
1 S

- 1

where

2\
o o= 8 -

1 1-x
g s.--s1 230—51:'
(e [ 52

(1-x) 2g-s 2s_-s
1

1 - _0 1
T T s-q In (sl-sl) *+ 59~ n (slqso)

-

!

(23)

Now, we must consider certain integrals: First
1

Py 1 1 A
/2 | 4= —— = ———xQq,(1+ )
fl X s-a - 8-8, ¥4 2q2
-1

which is to be discarded, as it is Jjust the Coulomb divergent phese

referred to earlier. Also, one has
1

1/2[P£(X) ln(sl-a.)

l-x S~a
-1

(24)
P‘e(x) In{1-x)

;3—5) - x:l (s-sl)

1
=}MQ 1 4+ -12f
5-81 e( +2q2) / 1 [(1+



The 2nd term is equal to

2

1 du 1n u (1-u) A
‘g—éj +u ’7’1—?
q A 7q q
2 Ly
= - —igvfjdu n yl—=2 - l) (25)
8q A 7q+u

it

(mz-e)--—%fdulnu

Similarly, one will have an integral like that of the second term

0 %1’
These two integrals are evaluated in Appendix 1. Finally, removing

in Bg. (25), but with Ty = 2A,/Sl+s, replaced by 7, = 2z/s -

all terms divergent in A, in particular, removing a term Qz(l + k/2q2)
wherever 1n A divergence occurs, one obtains the "finite part" of

aeD as given in Eq. (26), where WZ - - 8. + o

1 0’
o ). - e2 [:f2s0~sl) 1n (sl-so) . Ef
o0’f 8.2 812 2 (26)
2
(2s-s. )x 5
+ _45;'21—- - (2s-s) £ (a ,ke)]
O 2
£,(a%,x1y =_._[._53£_.+1nk
L;.k 24 qe
(26a)

(1 - 12 2,40 ";2/‘12! +1/2 (1n 8q2-2))

From Eq. (26) one also obtains



2 2 2s--s1 sl-aa 8,8
oD = = S | Fy (1= = ) + 221n(2>.(27)
' 8x" | 2uq 8q 32kq hq

Actually, in Eq. (21) 137 should be multiplied by Fe(t), where F is
the pion (isovector) electromagnetic form factor. This is

diséussad in Appendix D.

Before proceeding any further, it should be stated that an
elastic wx-x calculation is only able to bootstrap a p which lies very
close to nn threshold and which requires a very largé G, and & pole
close to 8 = 0(9). This is so mrealistic that 1t is pointless +o
carry out the full mass shift calculation for this hootstrap. Instead,
the pole parameters will be adjusted so as to give a p at 750 MeV
(the width will be far too large as calculated from Eq. (2) ).

Certain salient features which the author feels will be present in

any 'real bootstrap“(lo)

will be discussed, employing Eq. (18).
Equation (18b) comes from the condition (Gout a N/D' = Gin) which
cannot be satisfied in & simple bootstrap here, bul for reasonable
forces one can get Re D = 0 at 750 MeV, and so one expects Eq. (18a)
to retain some significance. Thus, the following calculation of an
elastic nn channel is not a proper bootstrep. However it will indeed
be found that when inelasticity is added, & bootstrap is possible, and

the features of the electromagnetic mass splitting are little different

from those to be obtained in the elastic case

5. Elastic g Calculation

In this section we consider the dynamically generated p in a nn
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channel . The section is organized in the following mammer  First

we consider some genersl aspects of the wx-x channel and rederive our
expression for the p mass shift, ignoring photon driving forces. Then
we consider the effect of the photon exchange force by itself, pre-
tending that the scattering and exchanged psrticles possess no electro-
magnetic mass splittings. Finally, we consider both types of pertur-

bation together.

The p+ occurs in n+n° channel in which p+ exchange provides the
binding force. The py oceurs in the n+x~channel with Py exchange
providing the binding force. This is illustrated in Fig. 4.

Evaluating all expressions in Egs. (4) - (7) at s = Mz, we
2 2

2 2 2
obtain Eqs. (4a) - (7a). Here 6u = woF-wg o oM = Mi'_ Moo ,
and 6G = GpO:t-l-n:" - Gp-!-n—hto . Again we symbolically write the
perturbation due to photon forces as "gy" 3/dy.
&
%-D "Gy - 25° --- +6 M2 —-g- =0 (4a)
a BM?

2 an Me[ <0 (52)

6C = - 26_;;2 % + 5M2|:%}sl + oh + g—h; "oy (6a)
2 oh ) 3
hu 52 [h 25 |=0. (72)
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These equations have the solutions

6G _OD s ow _ ! M 2 oD | an
T 3 ay" = kéMg + eue ou ) (8a)
Sh y.o W _ dh ah
ﬁG-g?; 67'5(6M2+——- )[ il (8b)
x

Tn general, the square bracket factors of Eqs (8a) and (8b) are not
equal. Consequently one has, in the absence of photon driving

forces, the solution found in reference (5),

oG =
(28)

GM? + MEQ 6u2 =0 .
2u
We shall now begin numerical calculations. First, we observe that in
order to produce a resonance at s = 29 (in units of ue) with a
reasonable coupling constant, one needs to represent the force by a

pole quite far out on the negative real S axis.
With the approximation

'E"".BM'GJ (29)
s+200

which gives the correct strength of the Born force near threshold, one
requires ¢ = 7;5. This "pseudopole” is much further out on the nego-
tive real axis than was the case for the PS-V O celculation of

part I of this thesis. TIn the latter case, however, the Born ampli-
tude exhibited a marked decrease as the energy increased above

threshold (that is, Born/p2 decreased). In the n-x-p case, however,
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‘the Born amplitude shows no indication of decreasing above threshold,

and so corresponds to a force pseudopole much further from threshold.

One now finds that (s0 = - 200)

2
8P0); = - (5 ) x (13). (308)

In addition, one obtains for this case,
dD/ds = - .003 . | (30D)

From these nuwbers, one finds that, neglecting all effects except

the photon exchange force

6D ) -
of Pl 31 (300

i (3/3s) o

This corresponds o0 about a 40 MeV mass shift which is umreasonably
large. However, sound arguments will now be presented which consi-

derably lower this number.

One might hope to approximste y exchange by a pole on the
negative real S axis, but closerto threshold than the shorter range
p exchange pole. (The shorter the range of a force, the more its
contribution persists up to high energies. This is equivalent to
saying that a pseuvdopole representing the force should be at more
negative energy for a shorter range force since then the pole force

drops off slower at high energies.)

If one exsmines a two-pole model of the force with the second

pole representing y exchange being closer to s = O and with a residue
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of order eE, one can easily solve the integral equation for N. One
finds bypically that for the second pole located at - 25 or - 50

(xué) the strength of 6_N is only sbout half the strength of the input
2nd pole. This indicates that the determinantal approximation
overestimates the photon exchange contribution to 6D by perhaps a

factor of 2.

In addition, tsking into account ymn form factors, one
finds another reduction by a factor of 2, bringing the purely photon

exchange mass splitting down to about 10 MeV.

In view of these comments, it is not unmreasonsble to take

instead of (30a),

2
6D o -6 (’?&') . (31)

Taking inbto account the y-g-n form factor would further reduce the

size of the RHS of Eq. (31).

From Eo. (31) and the known value of 8D/ds in our model,
we would estimate M £ 18 MeV from this Coulomb binding. Form
factors at the y-n-n vertices would substantially reduce this, say to
12 MeV. That this is reasonsble can be argued via semi-classical
considerations. A priori, we expect that 1f p exchange ls the
deminant force, the range of forces binding the n's is less than
l/Mp, or about 1/5 fermi. One estimates now that the Coulomb binding
energy should be v eg/(range), or about 7 MeV. One should realize

that the elastic s-n-p bootstrap fails to give a heavy p; OD/0s is
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too small, at large energies, to give a small output ge/hn. This

*ends to give too large an 6M.

Now that we have examined the effect of photon exchange, let
us proceed to the effects of the mass splittings of the participating
particles. One first wanis to obtain estimates for the mass deri-
vatives of the pole model parameters. One can do so by the methed

referred to in Section 3. Using

ot _ .1 (h . s+§?

)63

2 2
oM 32p P 2p”/ 2p )
32
1 ‘ W )
+ 1+ =
2 Y ( og?

(9 (=) = %’Q ) > (33)

one can estimate that (), = - .06

LIS 28.5 .

Tis is an averzge of whet one obtains by matching derivatives of
t, and t pole at (a) s = 8 and 16, and

{(b) at s = 16 and 2L.

Employing these numbers in Eq. (18&) one is struck by the fact that
51)/51"1&}{2 » 3p/ds. (In the language of reference (5), the A matrix |
elements are » l.)i This is quite different from the situation in
static model meson baryon calcula‘bions(S), The reason for this is

that here the forces are fairly short range; changing the exchange
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mess corresponds to changing the sampling of the P wave centrifugal
repulsive barrier between the two plons. At shorbt ranges, the
centrifugal barrier varies rapidly with radius, and hence the force

is very sensitive to the exchange mass.

The result of putting the above numbers into Eq. (18e) is

*;JME 62 oG
-—-+1/2 =-.6(——) =,
( M2 u Ly G, (34)
or, using aﬂg/ 2 .+ .06
oG . 2
= - . 6(e“/ux)
2l P - (35)
W 4.5

Thus, with any reasonsbly smell §G/G (e.g.{v14}/) one sees
that esm?‘/M2 = - .02 to0 - . 03, or

W - M~ 4 7.5 to~ + 11 Mev. (36)

The important features ere that 1) the exchange mass depen-
dence is very important; if the derivative JD/Os were somewhat
larger (as could arise from inelasticity) the number 4.5 might be
decreased, bat only slightiy. 2) The electromagnetic driving term
does not appear to have a large effect again because of the dominant
effect of changing the exchangé mass compared to changing the pole
position. These features seem likely to remain when improved
dynamical calculations are undertaken. The magnitude ofléG/G
cannot be estimated without actually having & bootstrap. However,

o
as long as 6G/G is of the same size as 6Mf/M?, 6u2/p2, one expects
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from the above diséussion, that 6M will certainly remain negative and

of order 8 or more MeV.

6. Inelasticity

The coupling of additional channels to a given chennel can
seriocusly alter the dynamics of a resonance. One can examine this
gituation partially without even performing a multichannel calcule-
tion (which for the present type of mass shift calculation would be
very messy) by introducing inelasticity semi-phenomenologically into
a single chennel calculation. Denoting the ratio of total cross-
section to elastic cross-section by R, we have

R °T°T=1+ZEE—E“—1[—2 (37)
nFElL

el qi ‘t

2
1|

where t, )1/2 e16

corresponds tocn/e(qixqj sin §.

J
A simple model for R is expressed by

R=R 68(s-c), (38)
R constant .

For a P wave pole model, one has corresponding to equations (1k)

and (15), the following:

A

N S=-8

i

, 8 815 A =06, (39)
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8=S s, .~ s8-8
A 1 1 _(m - 1 c-8
Re D =1 - 1+o3= Ino (R - 1) oy a
- Sl-»a

I‘ A Sl"a (Sl—a) - S‘Sl Sl c—s\
D= 1G=) [l T s ® 5-8,/ ~ (R-195% - 5= ln(c—a/

Near (below) the inelastic threshold, there is a strong attractive
force. Also in this region, as S approaches C, one finds that

/G ﬁ 0. Thus there is a tendency to have a resonance below

(12).

out
an inelastic threshold The main problem with present bootstraps,
that of G ut/Gin being > 1, is also alleviated. Of course, in the
present case, non-S wave inelasticity does not really commence

abruptly et an inelastic threshold. Nevertheless, for a steeply

rising R, the above features should still be menifested.

The inelasticity also depends on external and exchanged
messes and hence contributes to Eq. (4a) an extra term, which for

constant R, can be written as

ch oM. -:-fég o | . (k1)

Similarly, scale invariance implies

0= z Mig é]l. + M (%SD + BiDQ) + driving force term
ex

Z Mf -g-gi’ . (42)
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However, scale invariance is really nothing more than & gtatement
thét a function is dimensiouless. R is dimensionless and indepen-
dently scale invarient, so that the lest term of (42) is indepen-
dently zero. Thus, in the present n-x example, including inelas-

tieity, Eqa. (8a) is replaced by

%Q - driving = (6M? +-§£1- Gu?)( %g + oD }+ éQ OR. (43)

forces 2p2 BMéi 3R

Of course, the S and M derivatives depend on R now.

In the x-n problem, Balasz has considered inelasticity in a
Reggeistic ceslculation, and round it to® be quite large (R > 4) for
s well sbove threshold. From a survey of works on n~-n scattering
calculations one ohtains the impression that most authors come close
to bootstrapping the p, or actually succeed, when sufficient
inelasticity is taken into aceownt. Most approaches characterize R
in a manner which is not susceptible, however, ‘o providing the

mase derivatives of R which one requires for a mass shift calculation.

Those who have performed multichannel calculations have found
that the n-® channel is 2nd most important in determining the p
position, after the w-n channel. One could obtain some feeling for
the mass derivatives of R by examination of the off-diagonal sim le
parbicle exchange force diagrams connectbing the x-x and x-® channels,
but this might not a% all adequetely represent the inelastic

emplitudes dependence on the particle masses. The details are left
to Appendix C.
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The nw inelastic threshold is, in units of ue, at s « 45; since
the mw channel is a P wave channel for J = l-, the inelassticity rises
ac pl" .

f1uiM]
A step function R therefore overestimates the tendency
for inelasticity to give & consistent resonance nearby.

For C = 45, R = 4, =

i
i

200, one finds Gout/Gin = 1.5

i
it

For C = 40, R = 4, a = 200, Gout/Gin““ 1.95.

This latter case further exaggerates the actual effect of
inelasticity by moving the inelastic threshold and the resonance

closer together.

= Rl g= i v 1, so ve
For ¢ = 45, R = 4, a = 100, one finds Gout/Gin »

cshall adopt this as a model for our mass shift ealeulation. The
simplest approach would be to omit the msss dependences of R, and

see what happens.

The next section deals in more detail with this calculation.

7) 1Inelastic Bootstrap end Mass Shifts

In the above section we have obtained a crude inelastic
model giving a consistent bootstrapped p. Iet us now initially
neglect the mass dependences of R, and exem ine a model where R

is independent of energy. One cen then easily establish Eq. (uk)
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- (R-1) (c}a ) (:a)2) '

2,(s)

Also, one has

: N
G =~ 12 =
D a=M 2

o]

in which the factor (] cancels out. Using (40) to write G in the

form - lEn/fE(s), one has

©. | ot5(e) )
’ e (45)
= (6N12 + -2—2—5 5u2) fh(s)/(ﬂ%ﬂ D*) +
3
M 88, §,-8 s-s, i 5,-
£,(s) = == (- -—=1In =y + (R - 1)1:8 = 1In 2_2 = )
(6a)
. 8,8 Sl-a sl-a
) (s-2)2 1o (S_S ) " (s-2)(s-5,)

_ 1 s -a §-8, 5,8 omg
+ (R - 1) [c-s (1 + == ) + . + =Y ln(c-—a){"
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and
h = (6N 51)')
D (X D'
Electromagnetic
{L46c)
= - (Q.IE . 6..D')
H
N D oO, Electromagnetic -

With the model referred to above, & = - 100, (] = .18, R =4, ¢ = 3.7 3
one Pinds by matching mass derivetives with the field theory Borm

term at s = 8, 16, that

O’M = - .0%6 and aM =+ 17.0 . (¥7)

Using Eqs. (44) and (40) one finds now that

<D+ . 197
oM 2
ex
(48)
%g = - .016 .

Note that, as asserted earlier, the calculation is very sensitive

t0 the exchanged mass, compared to the position of the resonance.

One also finds ‘that

GDpO)f = (- 1.1 ﬁ;) (49)

plus an inelastic term. This would lead tc a Coulomb binding energy

given by 5M2 dp/ds $-1a ee/lm, or

oM = + 6.4 MeV (50)
+ gn inelastic contribution -
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in the determinantal approximetion. One might estimate that the
inelastic contribution {coming from fz R etc.) would increase this

estimate to 20 MeV.

However, one finds that the form factor comtributiona to the
force reduce the elastic contributions to 6D from - 1.1 ee/hn to
only - .6 ee/hw, using the formulae of Appendix D. Thus, one might
estimate that including the inelastic contributions, one would have
6D € - 2.0 e2/lhx, corresponding to gM = 11.5 MeV. Correcting for
determinantal overestimation of the forces would further reduce ¢M
(due to only photon exchange) tc a very reascneble value.

This is exactly what one.expects from arguments given earliery a

non-determinantal caleulation would give a somewhet smaller result.

Using the above equations, one finds from Eqs. (8a) afd (Bb)

2
[le S = éf_ op_
o éDpcO = 5.2 (Ma, + eug ) (51a)
Y 2
gg'*(fﬁf-%-f—) =+.2(9-’£+~‘-5—“—-é) : (51p)
o0 M2 2u
Thus
o N G
D! 6 bu )
— . £ .5 =5 ("""‘ + ——
B n + Dp:O M2 2u2 (523_)
and
o D!
oG oN
5o m)
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If one solves the integral equation for N and D one finds now that

oN
_£)
¥ 0= 9P

determinantal

+ .04

AXso, in the determinantal approximation, 6D'/D') o 1§ only sbout
+ .00l and will be less in the exact solution. Thus one obtains

66/G < + 1% .

The left hand side of Eq. (52a) is similarly estimated to be of

order - .07, and one therefore chtains

One sees that the electromagnetic driving forces do not appear very
important and that the resultant answer is essentially group
theoretical. Finally, let us write down this estimate for the mass

shift:

M. =M =+11 MeV . (53)

0 Tt
When taking into account the mass dependence of R, 1n the

R = constant model, we have %o employ Eq. (43) and the equation

corresponding to (8b). Here

oD A 1

. 4 A c-s _ 1 -
I in S-8 c-a (54)

which in the present case

il
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- From Appendix C, discussing 6R, we therefore see that there will be
added on to the right hend side of Eq. (51c) a term of the form

2
(6M?) (<0) + (6u )(>O). This tends to produce a further negative mass

splitting of the p+ and 0.

8. Two Channel Approach to Inelasticity

In this section we discuss briefly a genuine two channel
approach to the p dynemical generation and its relevance to the p
mess splittings. The discussion will concentrate on the mass
splittings of the participating particles and will not consider the
photon exchange forces. The general trend of expected results (if
such a2 calculation were executed in detail) will be found to agree

with the results of Section 8 for non-diagonal forces.

Iet us consider the coupled chammels nxx (called "1") and
70 (called "2"). The relevant matrix expression of the coupled
channel partial wave amplitudes is described in Egs. (8), All the
amplitudes will possess resonances due to their common factor
det D lcl. This determinant is simply D..D,, - D..D here, ve

11722 12721
asgume thet owr multichannel model of the forces is such that Ni

J
and Dij depend only ¢n the i j channel forces. The n-w channel is

attractive for J = 17, I = 1, but D,, will be greater than + 0
above threshold. We also assime that purely elastie foreces in ‘the
x-x chammel are insufficient to bind the p, this was the case, too,

in the previous 1nelastic model for the p. This Dll(MdQ
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is positive (and less than 1).

Next, we carry out the type of enalysis employed previously,

ubilizing the idea of scale invariance of the individual D1 3 when

this is useful. (This is possible because the Dij are each separa-

tely dimensionless.) As before, we obtain

= ol - -8 -
oD = 0 lfet D} 6Dy1Ppp * DyfPpp = ODygDyy - Pyp®Dpy,s  (55)

and

on

H

1 (5M2 +§'—’2—- 6,12> (?%-1}- + aDll ) . (56)

2 3 2

2 Mex

In the n» channel, both external n and exchanged p heve the same
charge as the over-all charge of the channel. This gives as a

consequence (where 5‘—:]=[ ]-i- state - [] 0 state),

; OD oD
6Dy = 2 ﬁ%‘apa + (—Eg—e + 5»{22 ) 5M2 . (572)
“ox

Scale invariance gives the relation

3D 3D 9D, op
2 2
22 —2.om? B, |22,-2) L., (570)
= 5Mw M o

Equations (57a) and (57b) then imply equation (58) below:

' oD, oD
_ 2 _M_E_ 22, 22
0Dy = o - o 2 -
2 o (58)
_ &xz _%_D__ D22
2 342
u My

We can vwrite symbolically



Dyy 6Dyp = Dyy ™

5}12) + small ou> term |- (59)

1
ol o
= {9
rofro
]
ol

2
As uswal, Dy, aDlE/aMex ¢ 0 and therefore Eq. (59) has the form

6M2 x (> 0) + small 6;12 term. (59a)

Tn Eq. (56a) we observe that for M, < Mp+ M, the 2-2 force
is attractive. As earlier, let us assume that aDij/aMexz are the

largest derivatives. We then have
2
8D,y < () x (> 0) - 8" x (> 0) . (58)
Combining these egquations, we have:

s[p| = (0,0, > 0) x (& +—Z—L—2-2-6u2) x (> 0)

+ (03, > 0) x (& x (> 0) - &> 0)) (60)

2
- o .
ESME x (> 0) +small Oy tern_l‘_] from D), Dy

These two opposing changes in the GNF ceefficient, and the 6;;,2
term from D, are difficult to ascertain, therefore, any over-
all change is obscure. However, the off-diagonal term
decreases the ratio of the coefficients of 6M2 and 6u2 , in

agreement with previous statements.
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It is amusing to slso consider what can be learned about the
p mass splitting by considering the dynamical generation of the = |
in & np channel, ﬁlthough no simple calculation seems likely to
succeed in this case. If one tekes the dominant exchange force %o be
due to n exchange, then the no occurs in the amplitude connecting
a p + nstate to a p n' state, with O exchange. The n* occure in the
amplitude which=1/2 the sum of the x* o° — n* o0 and x0 ot 20 o
emplitudes, with n+ exchange. This is illustrated in Fig. 5. Assuming
+hat one has 8 model of the farces in whieh D is just proportional to

an integral over the sum of Born exchange terms, one obtains:

as usual, which implies
d o 2 d 29
Do+ Q) g - o B - By +1/2% -0 (61)
o oM Su
ex ex
Scale invariance imposes the condition
aD2+%312 u2+2M2"§']1§+2M2"§§=0- (612)
du oM A

ex 8]

From this , one obtains finally, (neglecting y exchange effects)

oG 23D . 2¥° 3 d
1/2-6-.:5“- [;]2) + ue aDME:| +5M2-a-f-€—n (62)

From an exemination of the field theory Born exchange amplitudes and

their mass derivatives, it is very plausible that
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oD

- 32« (62a)

F ol B

@
Y

&

Thus, one obtains,

1/2—-+—;2-( ) € azf 2:}-‘ : (63)
U.

This predicts (for BG/EG small) a negative mass difference, as was
cbtained too, from consideration of the p bootstrap. It is likely
SN
of v+2 &u° /p in the xO calculation. At the same time we have seen

ome/f‘

from the x-n caleulation value of Su /al . All indicetions thus

that additional channels would reduce from the above value

that an sdditional channel in the p bootstrap will increase
oint toM . - M ~ 10 MeV.
b o0 {)+ >

9. SU3 Degenerate PBB - PSB Model for Vectons

In previous section we have considered two approaches to an
inelastic dynamical description of the p. In the present section
we consider yet another model and its implications for electro-
magnetic mass splittings. The assumptions of the model now to be
considered are:

1. The relevant strong interactions are SU5 invariant. This
implies that the ISg are mass degenerate, with mass u, and the Vg
are mass degenerate, with mass M. This degeneracy evidently
violates the facts of life about PS strong mass splittings. It is
assumed here simply to get a feeling for electromagetic mass shifts

without being forced to carry out a perturbation on a non-degenerate
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(2-) coupled channel problem; such & calculation would be discoursg-
iogly messy;
2. The VS are dynamically generated solely in the PSS—PSS

scattering channels.

3. The forces in these clannels come entirely from Vg exchange .

We are thus ignoring the complications of the existence of & Vi in

fres)

order to retain simplicity.

The idea of only the PSg - PSg channels sufficing to dyna-
mically predict VB resonances was successfully employed by other

(14, 15)

authors who took into account the observed physical PBS
masses. Therefore, the present degenerate model may not be too
remote from current calculatlions 1n the literature when used to

give electromagnetic mass differences.

We dbserve that there are two different ways to approach
perturbations of a degenerate coupled channel problem. The first
approach is to consider the degenerste problem in terms of a single
channel calculation resulting from diasgonalization of a multi-

channel matrix calculation. A vector state B can be expressed in
terms of two particle (PS-PS) states which we lebel by a single
index i,j (where C, are appropriate coefficients, specified by SU3

here)

lB)sz”i)a (64)

One then is dealing with a single chammel calculation (for each
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member B of the V octet) in which the force coming from one-V exchange

is given by the "t matrix":

2 My By Y5 - (65)

In Eg. (65), t j is the t- matrix partial wave amplitude conmecting
two-particle states 1 and j, and giJ is &n appropriate product of

coupling constants for a one-particle exchange amplitude. We now have

D.,=1=~4d, =1~ integral over ¢t

8 5 (66)

8"
Therefore, one can consider electromegnetic perturbastions as below:

B = B+(M? DBO(Mgo), the difference between

D for two charge states (+) and (0), (67)

- J,B
s :E: Xikj gij 6tlj + 531 terms.

This is just the seme as Eq. (5), with detailed attention being paid
to the fact that a sum over various two-particle amplitudes is

involved.

If we define

Of = 7,1
external

of = 1,2 (68)
exchanged

of

T = f,8

for any function f, then Eq. (67) gives the equation below:
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N\ — B a [ o
6D -iz My &y A l:dg,a:l e (69)

+ 68 terms

where o = 1,2,8 and

Bags is a set of coefficients analogous to the Ci of Eq. (4).
dB is the degenerate maess 4 function.

Because we are dealing with a diagonalized one channel calculation, we

also have the corresponding equations for the perturbations of output

pole residues:

S [: xixj gigj x (possible kinematic facto

]
13 conveniently set = 1 channel B

t t '

— — BA& By _ B

< > P [ 2. Lo ay | (o)
£, ul (DB)

In both Egs. (69) and (70), one can employ the scale invariance of
appropriate quantities to relate derivatives with respect to external
mass to derivatives with repsect to exchanged mass and energy.
Furthermore, it might be the case that the "exchange-mess derivatives”
of the relevant quantitiec would be the dominant terms in (69) and
(70) as a consequence of dynamical peculiarities. This was seen to
occur earlier in the n-w-p exchange calculation. In this case,
because the came coefficients "A" appear in equations (69) end (70),

one finds the same dependence of both equations on the 5M?“ (to
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within an over-all proportionality factor). Although the "sg" terms
will not generally be the same in (69) snd (70), one might suppose
them to be relatively small compared to the (SMQCL terms, as. occurred
in the n-n-p calculation of preceding sections. One then might
obhtain é erude estimate of the solution by setting the 6M2d' terms

separately equal to zero.

All of this discussion has really been to provide partial
justification for the following plan of procedure: we will examine
only the 5M£ * terms , ignoring the hopefully small, and certainly
complicated, ﬁgi terms, in the perturbation equations. Actually,
we will now use a simple two~ channel approach to the p and K*
calculation since we can then simply refer the reader to the
current literature for well-known results about the Born

amplitude t-matrices.

The p occurs in the nx and KK channels, while the K* occurs
in the coupled Kn and K?l channels. Neglecting electromagnetic mess
splittings, let £ be the PS-FS, V exchange, JW = 1  amplitude
multiplied by an appropriate coupling constant squered. Then one
obtains the following t-matrix, where the SU3 values of various coup-
lings have been employed (see reference 17):

» -~

k514
tBORN ="nst hp /EK*
P x f (71a)
\/_éK* -1 ;{IE "
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" Here the subscripts refer to the exchanged particles providing the

forces. One also has:

” »

Kn
1—.11223“ ="Kn | bp - * K\ oxf (710)
3K* K" [ "k
" Kn-l

One needs to know details of the charge states contributing to these
forces. In order to obtain this informetion the following assorted

facts are relevant:

* - K+ﬁo - JEKOn+

iK">1=1/2 G (722)

0 00 + -

_X'n +/ 2K n
‘KT{>I=1/2 = /5 (72b)

0
|m<>1=1/2 = 1//2 (IKx™> - IXK9RO>) (72¢)
e'gppK+K+l = lgppﬁ+ﬁ' a gpﬁn*no-'= 1 in appropriate
units (in an SU3 scheme )
oot | = [ecno, | = 2

(72a)

€ *kn I= lgom I =\/g

= 1.

& *0g 0,0
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We now introduce a pictorizl representation of the matrix elements

a b '
The symbol :>_§-<( represents the amplitude without coupling
< d '

constants , or signs, for particles a,b,c,d,e in their obvious
roles. One now finds the following charge state decompositions of

the { metrices

T3a)
™ 1m°

K K
K
+
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We now use the Pact that the matrix D is related to t by
D =1 - integral over % (74)

in & determinantal approximation (or in a one-pole approximation,
etc.) This permits us to write D=1 - 4, where 4 has the form of
the sbove t's. Finally, to find the difference between (determinent
D) for different charge states we adopt the following convenient
artifice. We find the difference between D(+) (and D(O)) and a
hypothetical DO for which all particles have the neutral charged
state mass as a simple "counting" procedure, and then easily obtain
éldetlD : thus, we have, using the previously esteblished notation
for derivetives of d:

DF)(dezzizizte )=1- e

0 J& 2

l"‘6dp

i}

d (74)

|

. _
2a. (6™+5 )

oo ) = x o B

D" (s=M",) = D - hEéd +5(d+d] -—1-

7 (758)

" K p
3 2d15 msa:\

- 2% a4, - 4.0°

1

8
where 5“ = p2ﬁ+ - pzﬁo s 6K = U K+ - p?KO and similarly for 5K, sP.
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CO _ - 14 \/é [ b1 K
D (S-Mio) =D, -/ 1640 5 | (% 6 +20 )ay

*
7 " o
; 3 X
5 X Lo dl (75v)
- K P
2(asa; +ofa,)
+ % x hdl GK.
. T P T _ P
6D = + [8a8" - ko' (a,4a,) J8 (a,6" - 6" a)
(75¢)
T P - R
.,/5 (dlﬁ 5 ds) 6 (2d, + Eds)
"From Egs. (75), we obtain
5(&9‘[:,13 = Trace (co-factor matrix of D x 6D)
(76)
- T P
o =8 d, & 5 (6:1S + 10/3&2)
when celculated at o = ﬂi , where 4 = 1/6,
Using the scale inveriance of d at s = 1«12,
2
ugdl+}.12(d2+ds)—0 {11)
and so, finally, one cbtains, neglecting ¥ 6g " terms
M [
5"[—% d,, + jd,s] + 8 2 |:d,2 * a,sj =0 . (78)

*
Now, let us counsider the X channels. By the same technique

employed for the p channel, we find that



* %
K _ 25 K oK
_ - 2d16 + 3 d26 gdl
¥
+ 30 0% + (34 - a )6k
* *
K K K
2d15 6d15 + 3( Ay )6

(79a)
whereas
K* masses 5 3
D. (degenerate) =1 - 21la. (79v)
0 3 3
|p|=1 - 6éa
Equations (79a,b) now provide us with
5 .
a|det DK l as in Equation (76) .
Therefore, setting this equal to zero, we obtain
K K., .2 8
0 =246 +6 (3ds+-5-d2) (80)
Again using the scale invariance of 4, we cbtain from (80)
E 3
X*re K M
o [-3' d2 + 35.8] -6 "2—‘:5 [de + ds:] = 0. (81)

We note now that from Egs. (78) and (81)

20K _ _ o° (Ldﬂ et /3 d.@) : (82)

p T T ox
0 3a_ +2/3 4,
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In our model, we dropped the "531" terms and photon force in this

study of electromagnetic perturbations, the reader should recall.

If we make a further dymamical assumption, which at least

appeared warranted in the earlier x-w-p calculations, that d2 » ds’

we obtain, finally,

% 5 M? X
8K~ = + I; ::é- Po)
(83)
P _ _ 3 ﬁE &%
(7] 5 u2

Although pert 1 of this thesis indicates that a ESB—VB model of the
PSB states probably cannot give & self-consistent bootstrap, it is
still amusing t0 consider the consequences of such en assumed model
on predicted mass splittings. Without a strong interaction calcula~
tion available, one cannot actually cbtain the PS and Vg electro-
magnetic mass differences. However, one can investigate the mass
dependence of the perturbation equations in this model to see if

it is roughly compatible with the sbove results of the EBB-Pﬁe
model of the vector mesons. It will indeed be found that the
expected signs of the vecton mess differences are unchanged from the

signs in Egs. (83), while the megnitude of the splittings are a
little different.

First, we present the charge state decomposed t matrices

in Eq. (84):
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These two t metrices enable us to calculate 6Dﬂ: However, ve

s - -~ 2
first need an additional definition: let d, = ad/aufs external

and let d ad/au As before, let d, Bd/ "

V external. exchanged .

Then we obtain
],

- ﬂ -
o= u[(a«a) o, 51

/ (85)

8, .« o
5 (-6 - 67d +26ds) 26 (d2+ds)

1

As before, the "edjoint" matrix of D is

2 J2
J2 1

(86)

W=

One now obtains

= 5|det Dﬂ' = (— u[ s, + a"a]] + 65" (a, + ds)) (87)
8

n
3 o d2 .

Scale invariasunce implies that at s = pz,

(a, + ds)ue + 2(M?&l + gedl) = 0. (88)

Therefore, again considering only GM? terms and ignoring 5gi terms

in the order e2 perturbation, we obtain:

6%, = - &" [_% (;M;)al +-§- (a, + dszl : (89)
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If, as wes the cese in previous x-p calculations, c'il> 0, while
dl,d < 0, then we cbtain the estimate
8> - " x2 (%) (892)

A

Notice that again this implies 5p< 0, and as in the discussion of
Section 8, this PS-V model of the PS octet gives a larger mass
splitting than the PS-PS model of the V octet. The latter (V octet)
estimate is probably closer to the truth, because the dynamieal
calculation, self consistently, of the P88 seems less likely in owr
PS-V model than the bootstrap of the V8 in the PS-PFS mcdel.

For the sake of completeness, we include the calculation of
6K* from the PS-V model for BSg- In the case of the K we now have the

t matrices telow:

4 (¢ ¢ { -
R0 )

ko P Kﬁo T+ K}‘-i— 1-[0 K 0
+4 KD f’* N 9 + o
t 3 b —2 AN 4 LK
i 3 M T Ko
KXo K«* ko Pt Ko Tt K“
+% t pe
K+ B Xt />
I e P Kt

(«}k*'q\("'r



x
s = K :
/ AN A ¢ W
3\ [ p—— I .
K* T Ke e
+ 4 T N Ko K° })" e e f"’ o
‘q‘z 3 T - K..g. “+ W + 0 .7
W p- o W+ pm K =T
gy K*"

e g g0
Y s :
6( 7!<°< * 7"‘<«o > + N

o ¥ /00 y°
/ < i/

One obtains § det DK from the above equations:

+

o W K" @0 b)

*
0—§detDK~—6(d +3d+ )+5 d, . (o1)

Using the condition of scale invariance of & referred to previously,

this condition becomes:

R T T PR YY) B

From this we estimate that

&K - +£f. & . (92a)
5 2
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This estimate is again slightly larger than that obtained from the

PSB"PSB model of V8.

We have presented only & crude approximation to the calcula-
tions required in an SUg degenerate octet model, neglecting the
effects of coupling constant shifts and photon forces. However,
we consider it significant that both VS and less reliable ESS models
make reasonable similar predictions about the vecton mass diffe-
rences. Presumably, if one had proper models for these J“ channels
and if one included the actual physical masses of particles as
input, then the present scheme could be extended to provide the
absolute scale of mass splittings as well as relations of the above

type. Such a programme unfortunately sppears to be very complicated,

and beyond the scope of the present study.

Summary

We have adopted a pole model characterization of the sirong
interaction force in the w-n channel, and have examined order e2
perturbations of the resultant dynemical equations which desecribe
the composite p vector meson. For both elastic and inelastic
calculations, the exchange mass dependence of the perturbstions is
guite sensitive, and more important than the photon exchange pertur-

bations.

From the inelastic calculation, in particular, one cbtains

the estimate that Mpp - Mb+.2 11 MeV. This general feature is ex-
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pected, as was shown fram a genuine two channel p calculation, and

also, roughly, from a g calculatlon.

A caleculation based on a SUj degenerate mass PSB'PSB model
of the vector mesons also gave & rough estimate for 5M2°/Mgp which

agrees well with the above estimates. The estimate for 5K 18

k™ - K0 = - 5.5 Mev.
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Appendix A

Here we wili examine two integrals occurring in the calcula-

tion of 6eD) £ First

2
0 u+7q

24y
qln(x-y
= — 9 ax, 7q> 0
“f

q x
(11)

This can be found to be

2
(1 2)° (1n 7,) i

2 2 6

+ 0(7(1) ’

taking into account that 7q—a 0 as A - 0.

Next, we consider

2
f auin8 o I,
w]

0

where the principle value of the integral is umderstood
2|y, | 2
=[ ka_'du-——-—.lnu + ay —2-2
40 u- |7 | % | w7y

The first term of (Ak4)

217
f I Inj7,| i ! (u- 7 2

lykl |7k|2

|

(1)

(a2)

(a3)

(AL)

(85)
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Also
2 2
f Inu _ f 'ykl ln(x+l7kl) o
: “'l"kl x
2|7l ‘71:‘
2
IS C P o o 4 LIPS (46)
2 2 6
+ 0(%)
as A — 0
2 2
{ ma _5 2 (%))
A “‘Vkl 12 5
, (1n(2))°



Appendix B.

In this appendix Wwe sketch the derivaetion of equations (18a).

Using the condition that at s = Mpe, Re D = 0, one easily

obtains
d_ 1 [ag _ sl'a]
ds Mes, Lo 2
(B1)
_925 = - gg?-+iim [} ; + (e :] ,
aMei a M -a :t(sl-a)

which substituted into (8a) gives (18a). From Eq. (15) one has

- Xﬁ(sl—ME) + néz(sl-a)
M-a (B2)

. ﬁ(sl-M?) A

+ Ma-a

where A contains the effect of the electromagnetic driving force,

i.e.,
§.=(E_) (1+8)
1 1
D D strong en
and .°
6N 6p
— e f T
A—(-—-ﬁ--—_._ﬁ_’_.), (33)

To zeroth order in the electromegnetic interactions



-G8 -

B 3
- G
——55 5 = 30 QM t=la

M
ex
a w{s,-2)
( CI/) Me-a a,(ME-a) Qa
6 _ _ Xx_ _ G
aF W-a M-a ’ (Bie)

Substituting these results into Eq. (8b) gives Eq. (18b).
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Appendix C

In this appendix we consider the diagram x-w — n ® via
p exchange in order to get some feeling for the inelasticity mess

dependence.

The amplitude 9=t corresponding to elginﬁﬁz is given by

[2 2
YU
t =§it g‘:“ g‘t“ [QEGG-) - 9,044»)] < o, (c1)

2 2 2 2 2, 2 2\ 2
gt uy M) ¥ lug -y Muy - M )M s

where

- = S2 - S(ula +

bs Pr T
(cla)

The lebelling of particles 1s given in Fig. 2.

The amplitude (Cl) is the I = 1 amplitude and comes from the
sums of graphs with different x.p charge states. This 1is indicated

in Fig. 3.

The Mp dependence is already clear from this: the charged
eohannel has an pt exchange, i.e. is "lighter" by amount 6M?;
therefore, it'? charged will be "bigger" by amount proportional to

GM?, i.e., expect that

R o x (> 0).

e

If we write 3 = Qe(e-) - Qo(g), then
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2 2 .
S A2 || Tomw || Tonn | 39/ (-oM%). (c2)
M2 3w [\ bx [\ kx| bppr p
Now
' 2
q K1
R = i i ald + 1
Lo lt'a
"N AT
6t 8|t 6(q Ja )
.‘,+Rp+ ~Ro=oR= 2(r-1) ’ el | l el! ¢ 2 | (p3)
' Itinel Itell (qnw/qnn)
From (C2), using fact t < O, we have
s/tl = - ot

a8 asserted above,

i

-—:—:—P— mieé (5M§)x(>o),
o]

Also note that in elastic w-n scattering via p echange

6Itell

«(-ampa)xoo),

since the charged channel has the heavier exchange mass and therefore

contributes weaker force.

oR= (&) x (> 0) .

One concludes then that

(ck)

After tedious algebra, one can eveluste the effects of all the mass

shifts in the diagrams of Fig 3.

One then obtains
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8R = R(+) - R(-)

hpﬂme 2sp, |

2 2
- k; 5 (f:’Mp - sz + u2) ou
Tt
- o
S— p o]
+ §G terms (c5)

+ terms from (x-n)

= 5u2x (<o) + 5M02 x (> 0) .

One can understand this result (for 6u2) as follows. The n-w
momentum is always less than the s-n momentum and is therefore
more sensitive to mass chenges. In the charged channel, there 1is
a heavier n in n® channel, this decreases the s+ momentum and
hence decreases the size of the amplitude {which must bes pﬁme near
threshold). Similarly, in the n-x channel, the charged channel has
the lighter x's and hence contributes a larger amplitude, which
contributes a term - (éug) x (< 0) to 6R. Similarly, 6(qﬂw/qm)
is proportionél to 6u2 x (< 0). So finally, from examining the

mass dependences of the p exchange diagrams, we guess that

6R < (8u°)(< 0) + (8¥)(> 0). (c6)
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Appendix D

This sectlon discusses the effect of the pion electromagnetic
form factér on the determinantal estimate for aDe. A reasonable
approximation to the form factor is (when t < 0)

-MP

F(t) = —B— . (p1)
T t-MpE

With this, the force term equivalent to the square bracket of

Eq. (21) becomes

y 2
M [y, 2s=l® ], 2z
(£-16)2 |:.+ e J =M
(D)
-2

First, consider the l/’c-—M2 term. As in Section 5, it is easiest
to caleculate the contribubtion to D by first integrating w.r %t s'
and then projecting out the relevant partial wave (heref = 1). No
new problem arises for the 1/t-M2 term, and one obtains its contri-
bution to D to be (Iql k are defined in Appendix 1) as in Eq. (D3),

vhere

ey =l £/2d®, o =1 +16/a"

e2 Es—sl

= + :
85{2 i th

1n ( EM?

2s-sl

)y

28578, ( oM )
- 5 in
4x 8

2 (2,)

1720
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e2 Es--s:L ?_‘1
—5 | —% (1L-In2a+ = I )

82
© L ha . (13)
s _-S a
-._.9.....3:(1_11124...}51]{)}

Lk 2

Proceeding similarly with the 1/ ('t‘.-M2 )2 terms one obtains

8> L 1g° 29° B2 o2

i e2 2S+M2-sl Ql (1 . _M_2__) i 280+M2-sl 2 (1 . _ME__)]

ak-l 2k 16k
) EEME 250+Me—s:L i 2s+M2-sl
8;f2 161(]" 16q;
y | [ . (k)
X Ik ) b4 Iq
d 4
+a, —™ 1T +a =TI
k d k d
7% q 7q q—l

In obtaining thls, one employs the fact that

Inudu _ 4 f in u du
2 =-__ A — L4
(uty) @ (uty)
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