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ABSTRACT

Computational modeling of metallic materials across various length and time scales
has been on the rise since the advent of efficient, fast computing machines. From
atomistic methods like molecular statics and dynamics at the nanoscale to con-
tinuum mechanics modeled by finite element methods at the macroscale, various
techniques have been established that describe and predict the mechanics of ma-
terials. Many recent technologies, however, fall into a gap between length scales
(referred to as mesoscales), with microstructural features on the order of nanome-
ters (thereby requiring full atomistic resolution) but large representative volumes
on the order of micrometers (beyond the scope of molecular dynamics). There is
an urgent need to predict material behavior using scale-bridging techniques that
build up from the atomic level and reach larger length and time scales. To this end,
there is extensive ongoing research in building hierarchical and concurrent scale-
bridging techniques to master the gap between atomistics and the continuum, but
robust, adaptive schemes with finite-temperature modeling at realistic length and
time scales are still missing.

In this thesis, we use the quasicontinuum (QC) method, a concurrent scale-bridging
technique that extends atomistic accuracy to significantly larger length scales by
reducing the full atomic ensemble to a small set of representative atoms, and using
interpolation to recover the motion of all lattice sites where full atomistic resolution
is not necessary. We develop automatic model adaptivity by adding mesh refine-
ment and adaptive neighborhood updates to the new fully nonlocal energy-based
3D QC framework, which allows for automatic resolution to full atomistics around
regions of interest such as nanovoids and moving lattice defects. By comparison to
molecular dynamics (MD), we show that these additions allow for a successful and
computationally efficient coarse-graining of atomistic ensembles while maintaining
the same atomistic accuracy.

We further extend the fully nonlocal QC formulation to finite temperature (termed
hotQC) using the principle of maximum entropy in statistical mechanics and aver-
aging the thermal motion of atoms to obtain a temperature-dependent free energy
using numerical quadrature. This hotQC formulation implements recently devel-
oped optimal summation rules and successfully captures temperature-dependent
elastic constants and thermal expansion. We report for the first time the influence of
temperature on force artifacts and conclude that our novel finite-temperature adap-
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tive nonlocal QC shows minimal force artifacts and outperforms existing formula-
tions. We also highlight the influence of quadrature in phase space on simulation
outcomes.

We study 3D grain boundaries in the nonlocal hotQC framework (previously lim-
ited to single-crystals) by modeling coarse-grained symmetric-tilt grain boundaries
in coincidence site lattice (CSL) based bicrystals. We predict relaxed energy states
of various Σ-boundaries with reasonable accuracy by comparing grain boundary
energies to MD simulations and outline a framework to model polycrystalline ma-
terials that surpasses both spatial and temporal limitations of traditional MD.
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C h a p t e r 1

INTRODUCTION

When it comes to the behavior of materials and structures, there is always more
than meets the eye. All the macrostructural phenomena that we observe in our ev-
eryday lives stem from various mechanisms occurring across multiple length and
time scales. There are examples of structural hierarchy of scales all around us, as
seen in both natural and artificial structures, an example of each is shown in Figure
1.1. The Eiffel tower is about 324m in height and 135m in width, but consists of
thousands of individual truss links that have dimensions on the order of centime-
ters, spanning two orders of magnitude in length. The bamboo structure, at about
5mm thick, is made up of various structural links that span down to individual cel-
lulose molecules that are about 3nm in size. Any structural response observed at the
largest length scale in these structures depends on how each of the structural links
at the lower scales behave in response to external events. Thus, understanding, pre-
dicting, and ultimately designing macroscopic behavior requires looking deep into
the structure across many scales.

Similarly, there is a hierarchy in material response. In simple terms, the behavior of
a material can be categorized differently when observed across various length and
time scales. If we consider metallic materials, we can broadly classify the hierarchy
as follows.

Figure 1.1: Examples of structural hierarchy in man-made structures (Eiffel tower
on the left) and in nature [126] (bone and bamboo structure on the right).
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Figure 1.2: A broad categorization of different kinds of material behavior and
the computational and experimental techniques used to simulate and observe the
material for a variety of length and time scales. From left to right, abbrevia-
tions stand for Transmission Electron Microscopy (TEM), Density Functional The-
ory (DFT), Electron Channeling Contrast Imaging (ECCI), Scanning Electron Mi-
croscopy (SEM), Electron Back-Scatter Diffraction (EBSD), Digital Image Corre-
lation (DIC).

The atomic scale: At the atomic scale, metals are composed of individual atoms
that arrange into crystals defined by a unit cell (e.g. bcc, fcc, hcp). Material behav-
ior is at the length scale of Å and atomic phenomenon, e.g. thermal vibrations, take
place on orders of femtoseconds.

The microscopic scale: At this scale, the perfect crystalline nature of metals is
broken up by lattice defects, giving rise to grain boundaries and polycrystals. The
interaction of these defects with each other and with the grain boundaries signif-
icantly defines the material behavior at the microscopic scale, and subsequently
macroscopic inelastic behavior at the macroscopic scales. Typical grain sizes range
from a few nanometers up to micrometers, and the duration of plastic deformation
at the atomic scale typically spans nanoseconds to a few microseconds.

The macroscopic scale: Here, the metallic material is treated as a continuous
medium and the physical behavior is modeled by continuum theories. We no longer
identify the crystal structure and individual grains of the metal and instead observe
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and model the continuous macroscopic behavior. Systems having sizes above mil-
limeters fall under this category, and the time scale used to observe various phe-
nomena in continuous media starts around milliseconds.

Figure 1.2 shows the different categories of material behavior across the scales,
including the commonly used experimental and computational techniques used to
observe, simulate, and predict this behavior.

1.1 Need for multiscale modeling
Recently, the area of nanotechnology and nanoelectromechanical systems (NEMS)
has progressed rapidly, resulting in manufacturing capabilities that allow for ef-
forts to design structures and materials spanning multiple length scales. Figure
1.3 shows a system of nanotrusses spanning length scales from a few nanometers
(thickness of individual truss members) to micrometers (outer dimensions of the en-
tire truss network). Such structures fall into a gap between length scales (referred to
as mesoscales) and simply picking one characterization of material behavior from
the ones described above is not sufficient. There is an urgent need of predicting ma-
terial behavior of such multiscale systems and requires in-situ experimental obser-
vation or scale-bridging computational techniques. Experimental studies, however,
are often limited by resolution in both space and time as observations are generally
carried out in time scales of seconds and in-situ observation of nanoscale mecha-
nisms is usually a rare find. We therefore seek a computational technique that builds
up from the atomic level, and reaches larger length and time scales.

Figure 1.3: Hierarchical structures at the nanometer length scale: the structure is on
the order of micrometers while the wall thickness of an individual truss link is on
the order of a few nanometers[41].
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1.2 Computational Modeling
1.2.1 Evolution of atomistics
Although the real beginning of atomistics can be traced back to the hard-sphere
models of the 1950s, one can consider Richard Feynman’s evaluation of the quan-
tum mechanical forces on molecules as the beginning of the justification of the
use of classical mechanics and electrostatics to approximate systems at a molecular
state (using interatomic potentials, with classical equations of motion [37]). Since
then, equation of state calculations using modified Monte Carlo (MC) integration
using computers was proposed by Metropolis et al. [70], who studied interactions
of a few hundreds of 2D spheres. The first known use of the term “Molecular Dy-
namics” (MD) was by Alder and Wainwright [2], who studied the interactions of
hard spheres using many-body interactions. However, the first major advancement
of using an interatomic potential to model atomic interactions was in 1964, when
Rahman used the Lennard-Jones potential [79] to study a system of 864 liquid argon
particles [90], and Stillinger followed with a study on liquid water [107]. Most of
these approaches involved periodic boundaries, and it was Ryckaert, Ciccotti, and
Berendsen [99] who first introduced a molecular dynamics system with constraints.
Since then, the field has evolved exponentially with notable advancements being
that of MD at constant temperature and/or pressure by Andersen [7] and unified
MD and Density-Functional Theory(DFT) approaches by Car and Parrinello [19].

Figure 1.4: Time evolution of the positions of 32 particles using the hard-sphere
model. On the left, using periodic boundary conditions. On the right, using free
boundaries [2].
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The atomic interactions used in molecular dynamics are nowadays modeled for
a wide variety of materials, including but not limited to gasses, metals, metallic
alloys, ceramics, organic substances, etc., and fast computing has increased the
ability to model from trillions of atoms today. Atomistic simulations have paved
the way for an unprecedented understanding of molecular and material behavior at
the atomic scale [100]. LAMMPS [101] is one of the most widely used resources
to run efficient MD simulations.

1.2.2 Limitations
One of the major limitations of MD methods is their inherent requirement to model
the degrees of freedom of each and every atom in the system. Computational re-
sources have come a long way since the inception of MD in the 1950s and the
community has upgraded from 32 hard spheres in 1959 to billions, and more re-
cently, a trillion atoms [40]. To model a magnitude of atoms, Germann and Kadau
[40] used a simple Lennard-Jones (LJ) potential [79], which only models gases, and
stored values to a single precision. However, to model a metallic cube of side 1µm

using a fcc lattice, one needs to consider approximately 1020 atoms and use atomic
interactions that are more complex than the simple pairwise interactions modeled
by the LJ potential. This makes it impossible to use MD to model structures that
span multiple length scales like those in Fig. 1.3. Thus, there is an urgent need for
scale-bridging techniques that use accuracy of the atomistic simulations but scale
up in length and time, by developing with efficient, smart models paired with a
smart use of computational resources.

1.2.3 Review of concurrent scale-bridging models
There have been various approaches in the past and newer methods continue to be
proposed that attempt to bridge the gap of computational modeling across various
length scales. To study structures traversing multiple scales such as the ones de-
scribed in Fig. 1.3, one needs the fully-atomistic resolution at the nanometer scale,
while still being able to traverse to the actual length scales of these structures (µm).
We briefly describe prominent methods used in computational solid mechanics to
bridge this gap and state their salient features to provide a brief introduction to
the state of the art in multiscale modeling of materials. Scale-bridging methodolo-
gies can be broadly classified into two types : hierarchical and concurrent scale-

bridging methods. Hierarchical schemes refer to a clear separation of scales in
which representative simulations at lower scales are used to extract effective consti-
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tutive response at the macroscale. Some examples of these techniques are multiple-
level finite-element analysis (also known as FEn) [36, 71] and homogenization of
atomistic ensembles used for material-point calculations in macroscale finite ele-
ment simulations [24, 25]. Concurrent scale-bridging methods, on the other hand,
integrate different constitutive descriptions into a single model by spatially sepa-
rating domains and a handshake region for these descriptions to interact with each
other. For this review and for the remainder of this thesis, we will focus on concur-
rent scale-bridging techniques.

This review follows the work of R. E. Miller and E. B. Tadmor [89] and Wernik
and Meguid [128] with recent additions in scale-bridging methods included for an
up-to-date state of the art. R. E. Miller and E. B. Tadmor [89] define a “multiscale
model” as any model that unambiguously divides the system under consideration
into two regions, the atomistic region and the continuum region. One of the main
distinctions between these methods is that some are “energy-based” while others are
“force-based”. The energy-based methods develop a well-defined energy functional
and minimize this energy as a solution to the problem. The force-based methods
develop a set of physically meaningful forces on every degree of freedom, and drive
these forces to zero as a solution to the problem.

Figure 1.5: The general partitions of a concurrent multiscale model. The interface
between the atomistic and continuum regions can vary based on different models.
The general design is such that a bulk of the material is modeled using a continuum,
whereas atomistics is localized to the relevant parts of the domain, thereby saving
computational cost. The right pane shows the transition from full atomistics to
coarse-grained region for a nonlocal quasicontinuum method.
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The Coupling of Length Scales (CLS) method

The CLS method [97], [98] has three concurrent regimes ,as it also includes a
coupling between atomistics and quantum mechanics in addition to the atomistic-
continuum coupling. This is an energy-based method, with the continuum region
modeled using finite elements with a continuum material model. This necessitates a
form of “handshaking” between the two regions, which takes place in the interfacial
region. This is done by writing the energy functional as a sum of two components,
the atomistic part and the continuum part and the weights of the interfacial region
are suitably modified to account for double-counting.

The Bridging Domain (BD) method

Figure 1.6: On the left: A 2D sample showing the coupling of various domains
in the BD method. On the right: A domain model for a nanotube using the BD
method. Atoms are represented by white spheres, solid lines represent the finite
elements, and the black spheres represent the nodes. The atomistic, interfacial, and
continuum regions are marked by ΩM

0 ,Ωint
0 , and ΩC

0 respectively[130].

Xiao and Belytschko [130] introduced the BD method with the idea of an overlap

of the atomistic and continuum regions in the interfacial region. This is an energy-
based method which handles the energy in the overlapping region by taking a linear
combination of the continuum and molecular Hamiltonians, and enforces compati-
bility of the two regions by using Lagrange multipliers. The main difference of this
Lagrange multiplier approach from the CLS method is that the strong compatibil-
ity needed at the interface is reduced to weak compatibility, which makes handling
of mesh generation at the interface easier but reduces the accuracy. Similar ap-
proaches have also been discussed within the quasicontinuum (QC) framework (see
e.g. Blended-QC [63]).
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The Bridging Scale Method (BSM)

Like the CLS and BD methods, the BSM, first introduced in [123], models the con-
tinuum region using finite elements. However, unlike the others, the finite element
region extends to the entire domain, and there is no interfacial region. Instead, the
method posits that atoms exist throughout the entire domain, but they are only ex-
plicitly tracked in the atomistic region, while they exist in the continuum region as
the manifestation of heat. This requires the subtraction of the energy contribution
by finite elements in the atomistic region to avoid double-counting, which is often
accomplished by introducing “impedance forces” [128]. A major advantage of this
method is that the atomistic and Finite Element (FE) equations of motion can be
modeled at different time steps, as the continuum method exists everywhere.

Finite Element-Atomistic method (FEAt)

One of the earliest coupling methods is the FEAt which, as suggested, uses a FE
description to model the continuum region, and enforces strong compatibility at the
boundary of the atomistic and continuum regions, like the CLS method. However,
the main difference lies in the formulation, which is force-based. FEAt uses a
non-local continuum formulation in the interfacial region to provide the coupling
between the atomistic and continuum domains. It was first introduced in [56].

Coupled Atomistic and Discrete Dislocations (CADD)

The CADD, introduced by Shilkrot, Miller, and Curtin [106], is similar to FEAt
in that the continuum region modeled by FE methods is coupled to an atomistic
region, modeled by MD. Like FEAt, it is a force-based model with no well defined
energy functional. In addition, the model has the ability to accommodate discrete
dislocations as they move in from the atomistic to the continuum region, where they
are modeled using discrete dislocation (DD) techniques [58]. This model has strong
compatibility, which means there is a displacement boundary condition on the finite
element nodes at the interface of the atomistic and continuum region. One of the
main limitations is that CADD has been formulated so far for 2D problems, and 3D
extensions are a current area of research (see e.g. [64]).

Atomistic-to-Continuum (AtC) method

The AtC method [38] is essentially a force-based counterpart of the BD method.
Like the BD method, the energy in the interfacial region is considered as a linear
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Figure 1.7: A model used to study model crack growth showing the various re-
gions of a CADD model. The atomistic region is shown using the black atoms and
the white atoms form the interfacial region that pads the atomistic and continuum
regions[106].

Figure 1.8: An example of the different domains in the AtC method for a void
growth simulation [38].

combination of the atomistic and continuum regions. The AtC method achieves its
atomistic-continuum coupling by blending at the level of forces. The motivation
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comes from relating the stress in finite elements with the virial stress [135] at the
atomistic level. The atomistic forces are gradually weakened along the interfacial
region by using a weight function that goes from 1 to 0, while the finite element
nodal forces are weakened similarly in the opposite direction.

Course Grained Molecular Dynamics (CGMD)

CGMD, outlined in multiple papers including [96], is another energy-based method
that models the continuum region using the same MD principles that are used in the
atomistic region like in the QC method. The difference from QC arises from the
fact that the energy functional for the coarse-grained region (which is the contin-
uum region) is defined as a constrained ensemble average of the atomistic energy
under fixed thermodynamic relations. Also, the mesh formulation differs from all
the other methods in the requirement that the finite element mesh must slowly re-
fine down to the size of the atomistic simulation near the interface of the atomistic
and continuum region. This helps it provide a seamless coupling between the two
domains.

Concurrent Atomistic-Continuum (CAC) Method

The CAC method, developed by Chen et al. [21] reduces the degrees of freedom
in the complete atomistic ensemble by reformulating a unified atomistic-continuum
formulation of the conversation laws using classical statistical mechanics. It de-
scribes a crystalline material as a continuous medium containing lattice cells at the
material-point level and embeds a group of discrete atoms (in case lattice unit cells
containing more than one atom) within each lattice cell. CAC uses a single set of
equations of motion that govern both the atomic and the continuum domains thereby
eliminating the need of any interfacial region. As the complete field (atomistic and
continuum) is represented in the governing equations, the CAC formulation can
be solved efficiently using the finite element method and simulates nucleation and
propagation of cracks via element separation and sliding.

The Quasicontinuum (QC) method

The QC method was first introduced in [111] can be either energy-based [10] and
force-based [54]. It reduces the full atomic ensemble to a set of representative
atoms and introduces kinematic constraints to described the motion of the entire
atomic ensemble. This allows the use of full atomistic resolution only at places
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with rapidly changing neighborhoods thereby allowing the modeling of signifi-
cantly larger length scales than traditional MD. The main advantage of this method
is that the entire domain in Fig. 1.5 is modeled using coarse-grained atomistics.
There are two main flavors: local and nonlocal QC. Local-QC needs the interfacial
region to connect the coarse-grained part with the fully atomistic part, whereas this
coupling is completely seamless in nonlocal QC. A detailed formulation of a fully
nonlocal energy-based QC method is provided in Chapter 2.

1.2.4 Finite temperature atomistic-to-continuum coupling
Most of the methods discussed so far (except CGMD) were developed for modeling
materials at 0K, neglecting the energy associated with the thermal fluctuations of
atoms. Extension to finite-temperature is essential to model real-life materials as
those shown in Fig. 1.3. A variety of such extensions have been postulated so far,
e.g. [30, 33, 53, 60, 67, 87, 103, 113, 114, 121, 125], and are clubbed into three
general approaches outlined below. As the multiscale modeling method of choice
for this thesis is the QC method, the finite-temperature extensions presented below
are designed specifically with the QC formulation as their basis.

Langevin dynamics

This method uses the Lagrange equations for dissipative systems [67, 88] with an
additional noise term that dissipates the thermal energy in the atomistic-continuum
coupling through a suitable force at the nodal level. This helps avoid the local heat-
ing of the atomistic domain due to reflection of phonons at the interface by damping
them in accordance with the imposed force (which is a form of thermostat). This
is a fully anhormonic method that can be used to study non-equilibrium, thermally-
activated processes, but underestimates thermal properties (e.g. specific heat) which
are quantified using criteria like reflection coefficients [17, 96].

Local harmonic approximation

Equilibrium Molecular Dynamics (EMD) is the study of equilibrium properties of
a system at finite temperature using molecular dynamics. In this case, one assumes
that the boundary conditions change infinitely slowly on the atomic scale, so the
equations of motions are modified to simulate the effect of a heat bath or thermo-
stat. HotQC1 is a method developed by Tadmor et al. [113] which uses the local

1HotQC has been used as a name for multiple finite-temperature QC formulations, even though
they differ in their finite-temperature realization. [113] is one such example.
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harmonic approximation [61] to account for the loss of entropy in the continuum
region of the QC domain and develops an effective Hamiltonian which is mini-
mized to obtain the equilibrium equations. This method is designed to reproduce
the equilibrium phase averages of systems that only depend on the atomistic region,
or systems where equilibrium conditions are localized around the regions that can
be treated atomistically (e.g. sharp cracks under nanoindenters).

1.2.5 Maximum-entropy (Max-ent) formulation

Figure 1.9: A model of nanovoid with the max-ent approach by Ariza et al. [9].
Left pane: The initial mesh before the simulation. Center pane: The mesh at the
end of the simulation. Right pane: Dislocation emissions from the void at 300K.

Developed by Kulkarni, Knap, and Ortiz [60], this methods uses a variational ap-
proach and maximizes the entropy of the statistical-mechanics probability distri-
bution in phase space to obtain the phase averages and equilibrium configuration
of the system. The local nature of the probability distribution functions enables
the modeling of non-equilibrium finite- temperature phenomena. More recently,
this approach has been extended to non-equilibrium thermodynamics, allowing for
mass and heat transport by introducing atomic-level kinetic transport relations and
equipping each atom with its own temperature [87, 121]. We use this formulation
to extend our fully non-local QC method to finite temperature, and the method is
described in full detail in Chapter 4.

1.3 Current Shortcomings
Section 1.2 describes the current state of the art in scale-bridging techniques based
on atomistics. However many of them still have multiple shortcomings that need
to be addressed before they can be effectively used to model large-scale systems at
finite temperature.

Most of the methods described in Section 1.2 have a static interfacial region and
currently lack adaptive tracking down of full resolution wherever needed. This
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necessitates the construction of a large initial atomistic region. With most of the
techniques, a constitutive model for the continuum region needs to be specified
(e.g. dislocation dynamics, linear elasticity, plasticity). This calls for parameter
fitting at the interfacial region to match atomistics and in addition, prevents the
technique from modeling the entire system using interatomic potentials. Methods
like BD, BSM, CADD and CLS require special handling of the interfacial region by
requiring special tricks to account for double-counting of energy (for energy-based
methods) and removal of spurious force artifacts (for force-based methods). Once
again, this results in little or no possibility of model adaptivity on the fly. Some
of the techniques do not have finite-temperature modeling capabilities (e.g. QC by
[111], BD, BSM), which severely limits the ability to predict and simulate the effect
of temperature on the system. CADD and local-QC are limited to 2D scenarios.
Finally, most of the work in scale-bridging models has been demonstrated for small
examples and massively parallel, high-performance computing implementations are
currently lacking.

These shortcomings show the continuing need to advance these techniques till a
robust, adaptive, scale-bridging method that accurately models large-scale systems
by combining spatial and temporal upscaling is established. The recent progress on
the nonlocal QC front by Amelang, Venturini, and Kochmann [5] shows promising
advances to address above limitations. Combining nonlocal QC with model adap-
tivity and the ability to model finite-temperature will bring us closer to efficiently
model large-scale multiscale problems.

1.4 Organization of the thesis
The goal of my research is to develop a 3D fully nonlocal finite-temperature energy-
based quasicontinuum framework with model adaptivity. To this end this thesis
shows the development of a variety of theoretical and numerical tools to accom-
plish the above objectives and is structured in the following way. Chapter 2 dis-
cusses the formulation of a 3D fully nonlocal quasicontinuum method with optimal
summation rules, which show improved efficiency and performance when com-
pared to any other coarse-grained atomistic methods in the literature. In order to
study large deformations using coarse-graining, an efficient and automatic way of
updating and expanding the neighborhoods of sampling atoms used in the opti-
mal summation is needed. Chapter 3 shows this need and provides an automatic
adaptivity scheme which captures extremely highly deformed neighborhoods and
demonstrates good agreement with fully atomistic simulations. The efficiency and
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accuracy of this scheme is shown by discussion of void growth and indentation
examples. In Chapter 4, the maximum-entropy principle is used to derive a finite-
temperature extension for the fully nonlocal formulation from Chapter 2. Thermal
expansion results for the fcc materials copper and aluminum are provided and elas-
tic benchmark tests are conducted that validate this formulation. The chapter ends
with a discussion of physical and thermal spurious force artifacts at finite tempera-
ture with a comparison of various summation rules and comments on their perfor-
mance. In Chapter 5 the construction of 3D coincidence site lattice based bi-crystal
symmetric-tilt grain boundaries using the new fully nonlocal finite temperature QC
framework is discussed. Relaxed grain boundary energies of various symmetric tilt
grain boundaries using the nonlocal scheme are compared to existing literature to
show good agreement. The influence of temperature on grain boundary energy and
relaxed grain boundary shapes is observed to close the chapter. As a final contri-
bution to nonlocal QC, we discuss a proof of concept in the appendix for a second
level of automatic adaptivity essential for studying plastic deformation: the local
3D adaptive mesh refinement. Appendix C discusses the theory and implementa-
tion of a constrained advancing front algorithm. Finally, we conclude in Chapter
6 by discussing the key highlights of this thesis and presenting avenues for future
investigations using the developed techniques.
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C h a p t e r 2

THE FULLY-NONLOCAL QUASICONTINUUM METHOD

This chapter covers the basic derivation of the quasicontinuum (QC) method used
for all the simulations in this thesis. We use a novel, fully nonlocal energy-based
quasicontinuum formulation, which is described in detail in [3] and [5], but a brief
derivation is carried out here to establish the formulation which will help us extend
the method to finite temperature, as outlined in Chapter 4. We start from the Hamil-
tonian of the atomistic system, then derive the governing equations of motion for
a reduced set of atoms, introduce energy-based optimal sampling rules to further
improve computational efficiency, and end the chapter with a brief overview of the
computational implementation of the method.

To illustrate the various aspects of the QC formulation, we show a two-void setup of
fcc copper in 2D. We study the high-deformation capabilities of this simulation later
in Chapter 3, but for the purposes of this chapter, this setup works as an illustrative
model. Some of the derivations in this chapter are taken from our recent publication
[115].

2.1 Introduction of Representative Atoms
In atomistics, an ensemble of N atoms is described by their positions qqq= {qqq1, . . . ,qqqN}
and momenta ppp = {ppp1, . . . , pppN} with pppi = miq̇qqi (mi being the mass of atom i, and
dots denoting material time derivatives). The system’s total Hamiltonian H consists
of the potential and kinetic energy, viz.

H(qqq, ppp) =V (qqq)+
N

∑
i=1

|pppi|2

2mi
, V (qqq) =

N

∑
i=1

Vi(qqq), (2.1)

with V denoting a suitable atomic interaction potential. In crystalline solids (includ-
ing metals, ceramics and organic materials), the interaction potential usually allows
for the above additive decomposition, where Vi is the energy contribution of atom i.
The time evolution of the system is governed by Hamilton’s equations, which yield
Newton’s equations of motion (for i = 1, . . . ,N), i.e.,

miq̈qqi = fff i(qqq) =−
∂V (qqq)

∂qqqi
, (2.2)

where fff i(qqq) represents the total (net) force acting on atom i (including external
force contributions). An example of such an ensemble is shown in Figure 2.1, in
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Figure 2.1: A two-void system modeled using atomistics. The material is Cu, the
domain spans 0.12µm×0.12µm, with void radius 4nm and the system is at 0K. The
top left panel shows the domain that needs to be modeled and the top right shows
the atomistic ensemble (using fcc copper). The lower panel shows a zoomed in
view of the individual atoms that make up part of the ensemble. All the undeformed
positions of these atoms are on lattice sites that correspond to [111] plane of fcc Cu.

which a two-void scenario is modeled using atomistics. For this specific illustrative
example, we use a setup of N = 302,003 atoms to represent the system.

It is generally not feasible to use the above framework to large systems (consisting
of over 1010 atoms), even for extremely short range interatomic potentials, due to
the limitations imposed by computational resources. The QC method addresses this
limitation by replacing the full atomic ensemble by a reduced set of Nh(�N) repre-
sentative atoms (often referred to as repatoms for short). The method postulates that
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except in the vicinity of flaws and lattice defects such as cracks and dislocations, re-
spectively, the local environment of each atom in a crystal lattice is almost identical
up to rigid body motion. This motivates the introduction of repatoms with current
positions xxx(t) = {xxx1(t), . . . ,xxxNh(t)} (in contrast to their initial positions in some
reference configuration, XXX(t) = {XXX1(t), . . . ,XXXNh(t)}). The approximate current po-
sitions qqqh

i and momenta ppph
i of all atoms i = 1, . . . ,N now follow from interpolation,

i.e.,

qqqi ≈ qqqh
i =

Nh

∑
a=1

Na(XXX i)xxxa, pppi ≈ ppph
i = mi

Nh

∑
a=1

Na(XXX i) ẋxxa, (2.3)

where Na(XXX i) denotes the shape function of repatom a evaluated at the reference
position of lattice site i. The reference configuration is usually chosen as the un-
deformed crystal ground state. Figure 2.2 shows the reduced set of atoms for the
two-void illustrative system presented in Figure 2.1. For this illustration, we choose
Nh = 3385 repatoms, which constitute ∼ 1% of the entire system. As one can ex-
pect the local environment around the voids to develop more lattice defects, or emit
dislocations, or generally show significant atomic-level motion, a higher density of
repatoms is chosen near the voids and this density is reduced away into the bulk,
where the local environment will not be expected to change as much.

By choosing an affine interpolation on a Delaunay triangulation T as in the origi-
nal QC method [54, 111, 118], we ensure that this coarse-graining scheme locally
recovers the exact atomic ensemble when all atoms are turned into repatoms due
to the Kronecker property Na(XXXb) = δab for all 1 ≤ a,b ≤ Nh, with δi j denoting
Kronecker’s delta (δi j = 1 if i = j and 0 else). With this interpolation, the re-
duced (and approximate) Hamiltonian of the coarse-grained system depends on the
positions and momenta of the repatoms through the approximate atomic positions
qqqh =

{
qqqh

1, . . . ,qqq
h
N
}

and momenta ppph =
{

ppph
1, . . . , ppph

N
}

, and can be written as

Hh = H(qqqh, ppph) = H(xxx, ẋxx) =
N

∑
i=1

|ppph
i |2

2mi
+V (qqqh). (2.4)

Therefore, instead of solving for the positions and momenta of all the N atoms,
this approximation allows us to only solve for the positions and momenta of the Nh

repatoms, and obtain the approximate positions of all the remaining atoms using
(2.3). This leads to a considerable and controllable reduction of the independent
degrees of freedom from d×N to d×Nh. The positions of the repatoms now evolve
from applying Hamilton’s equations to the approximate Hamiltonian, which yields
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Figure 2.2: Modeling the two-void system by a reduced set of atoms. Top left panel
shows the fully atomistic system as shown in Fig. 2.1 and the top right panel shows
the representative atoms in dark blue. The bottom panel shows a zoomed version
near the voids. The full set of atoms is shown in a faded color in the background.

the net force on repatom k as

FFFk(xxx) =−
∂H(xxx, ẋxx)

∂xxxk
=

N

∑
j=1

fff h
j(qqq

h)Nk(XXX j), (2.5)

with

fff h
j(qqq

h) =−∂V (qqqh)

∂qqqh
j

=−
N

∑
i=1

∂Vi(qqqh)

∂qqqh
j

, (2.6)

the total force (internal and external) acting on atom j. We note that in an infinite
Bravais lattice (i.e., in a defect-free single-crystal in the absence of external loading
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or free surfaces), the forces on all atoms vanish in the undeformed ground state, i.e.,
we have fff h

i (qqq
h) = 000, so that the net forces on all repatoms vanish as well (FFFk = 000).

In any QC simulation, the initial choice of repatoms is specific to the application,
and is made by the user. Our QC formulation constructs a simplicial mesh (similar
to finite elements) by using the undeformed repatom positions as the set of known
points. Figure 2.3 shows the formation of the mesh for our illustrative two-void
system. The elements formed by this mesh are used for various purposes, including
the implementation of the affine interpolation in (2.3) and determining locations
and weights of sampling atoms which are introduced to calculate thermodynamic
quantities like energy (see Section 2.2).

2.2 Approximating the Potential Energy using Sampling Atoms
Although the total number of degrees of freedom that are modeled has been re-
duced, the evaluation of (2.5) and (2.6) still requires summation over all N lattice
sites, which once again makes it prohibitively expensive. Therefore, summation or
sampling rules have been introduced which replace the sum over all atoms either
in the computation of the Hamiltonian (so-called energy-based QC) [10, 112] or
in the calculation of repatom forces (so-called force-based QC) [54] by a weighted
average over carefully selected sampling atoms (analogous to quadrature rules em-
ployed in finite element methods). We use an energy-based formulation which ap-
proximates the total potential energy by a weighted sum over Ns sampling atoms
and computes the kinetic energy based on the motion of the Nh repatoms. Thus, the
Hamiltonian Hh is further approximated by H̃h via

Hh(qqqh, ppph) =
N

∑
i=1

(
Vi(qqqh)+

|ppph
i |2

2mi

)

≈ H̃h(qqqh, ppph) =
Ns

∑
α=1

wαVα(qqqh)+
Nh

∑
β=1

ŵβ

|ppph
β
|2

2mβ

,

(2.7)

where wα is the weight of sampling atom α . Physically, wα denotes the number of
lattice sites represented by sampling atom α . Out of the various existing flavors of
the QC method, the main distinguishing factor is the way in which these Ns sam-
pling atoms are chosen. This selection of sampling atoms aims for a compromise
between maximum accuracy and maximum efficiency and gives rise to various sum-
mation rules. The summation rules must satisfy zeroth and first order consistency
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Figure 2.3: Formation of a simplicial mesh for the two-voids simulation with the
repatoms as the nodes of the simplices. As before, the top panels show the meshing
process for the entire simulation and the lower panel shows the zoomed in portion
around the voids.

for the rule to be exact up to first order. This means that we must have

Ns

∑
α=1

wα = N, (2.8a)

1
N

Ns

∑
α=1

wα XXXα = XXX s, (2.8b)

where

XXX s =
1
N

N

∑
i=1

XXX i
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is the location of the center of mass of all the N lattice sites. ŵβ denotes the weight
of repatom β , here determined from the cell volumes of a Voronoi tessellation over
the set of all repatoms [55], which guarantees the zeroth and first order consistency
of the weights required in (2.8a) and (2.8b). mβ is the mass of repatom β (in
case of a monatomic crystal with atomic mass m, we simply have mβ = m for
β = 1, . . . ,Nh).

Amelang, Venturini, and Kochmann [5] outline a comprehensive study of the state
of the art of these summation rules which determine the choice of the locations of
sampling atoms and the weights associated with them.

2.2.1 Force artifacts
Summation rules and the introduction of sampling atoms does reduce computational
complexity, but also gives rise to force artifacts. This can be simply observed by
writing an expression for the force on a repatom k by using the Hamiltonian from
(2.7) as follows:

F̃FFk(xxx) =−
∂ H̃h(qqqh, ppph)

∂xxxk
,

=−
Ns

∑
α=1

wα

N

∑
j=1

∂Vα(qqqh)

∂qqqh
j

Nk(XXX j),

=−
N

∑
j=1

(
Ns

∑
α=1

wα

∂Vα(qqqh)

∂qqqh
j

)
Nk(XXX j).

(2.9)

Comparing this form to (2.5) and (2.6), we notice that for a general choice of Ns and
wα , the term in paranthesis does not vanish, and so it is possible to have F̃FFk(xxx) 6= 0
even if fff h

j = 0. This is what is termed a spurious force artifact, and needs to be
addressed in order to minimize the error associated with energy-based sampling in
QC.

2.2.2 Optimal summation rule
For the remainder of this thesis, unless specifically mentioned otherwise, we use
the optimal sampling rules recently proposed in [5] which place sampling atoms at
all repatom locations (undergoing exact local neighborhood changes during defor-
mation) as well as Cauchy-Born-type sampling atoms within elements formed by
the simplicial mesh as shown in Figure 2.3, which has two flavors: the first and
the second order. The first-order rule adds one Cauchy-Born sampling atom in the
interior of each element; the second-order rule also adds one Cauchy-Born sam-
pling atom per element and additionally adds one Cauchy-Born sampling atom on
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relevant element edges (one per edge), see Figure 3.1. (We note that “exact neigh-
borhood changes” here refers to the atomic positions obtained from applying the
exact interpolation to all lattice sites within elements, as opposed to approximating
atomic positions by the Cauchy-Born rule.)

For both optimal sampling flavours, weights wα are obtained such as to minimize
spurious force artifacts described in Section 2.2.1. The summation rule guarantees
that there are no spurious force artifacts in any affinely-deformed non-uniform QC
mesh in one or two dimensions, and for three dimensions the effect is minimal. This
is achieved by giving all the sampling atoms which are placed at repatom locations
an identical weight wrep, and choosing the weights of the inner sampling atoms such
that the force in (2.9) vanishes. The actual value of wrep is identified by minimiz-
ing the energy approximation error. The complete derivation and analysis can be
found in [5], and is not included here. Figure 2.4 shows the formation of sampling
atoms for the illustrative two-void system using the optimal second-order summa-
tion rule. For the given setup, the summation rule constructs NS = 7037 sampling
atoms, which means that for this example, solving for (2.1) has been reduced from
O(302,003×302,003) computations to O(3385×7037) computations.

2.3 Governing Equations
Once the weights wα and ŵβ are determined, the equilibrium configurations of the
system can be solved for. Hamilton’s equation of motion for a repatom β is now
obtained by differentiation of (2.7) in analogy to (2.2) and (2.5):

ŵβ mβ ẍxxβ = F̃FFβ (xxx) =−
∂ H̃h

∂xxxβ

=−
Ns

∑
α=1

wα

N

∑
j=1

∂Vα

∂qqqh
j
(xxx)Nβ (XXX j). (2.10)

2.3.1 Example: Embedded Atom Method
A family of interatomic potentials for metals (which will be used for our entire
study) is the Embedded Atom Method (EAM) potentials, introduced by [66]. For
potentials of the embedded-atom type, the interatomic potential energy for a site α

is given as

Vα(qqq) =
1
2 ∑

j∈Iα , j 6=α

Φ(rα j)+F (ρα), ρα = ∑
j∈Iα

f (rα j). (2.11)

The pair potential Φ(rα j) represents the energy due to electrostatic interactions
between atom α and its neighbor j, whose distance is given by rα j = |rrrα j| and
rrrα j = qqqα−qqq j. ρα denotes the (approximated) effective electron density which atom
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Figure 2.4: Creation of sampling atoms for the two-void system using the second-
order optimal summation rule. The top left pane shows the mesh that is used in
creating all the sampling atoms which are shown on the top right, and a zoomed
version on the bottom pane. The colors represent the different types of sampling
atoms. Blue sampling atoms are located on the nodes of elements of the mesh, red
sampling atoms are internal to the element, and the cream colored ones represent
sampling atoms on the edge of the elements.

α senses due to its neighboring atoms. f (rα j) is the electron density at site α due
to atom j as a function of their distance rα j. F (ρα) accounts for the energy release
upon embedding atom α into the local electron density ρα . Iα(t) is the interatomic
sphere of interaction around sampling α at time t, defined by the interatomic cutoff
potential rcutoff, i.e.,

Iα(t) =
{

i ∈ {1, . . . ,N}
∣∣∣∣ ∥∥∥qqqh

i (t)− xxxα(t)
∥∥∥≤ rcutoff

}
. (2.12)
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Beyond this cutoff, the potential energy contributed to the site α is negligible, and
can be neglected. This means that for EAM potentials, the sum over j in (2.10) can
conveniently be reduced to Iα(t), which further simplifies the force on a repatom
β to be

ŵβ mβ ẍxxβ = F̃FFβ (xxx) =−
∂ H̃h

∂xxxβ

=−
Ns

∑
α=1

wα ∑
j∈Iα (t)

∂Vα

∂qqqh
j
(xxx)Nβ (XXX j). (2.13)

Using the form of potential given by (2.11), the force on a repatom β becomes

F̃FFβ (xxx)=−
Ns

∑
α=1

wα ∑
j∈Iα (t)

[
1
2

Φ
′(rh

α j)+F ′(ρh
α) f ′(rh

α j)

] rrrh
α j

rh
α j

[
Nβ (XXXα)−Nβ (XXX j)

]
.

(2.14)

2.4 Solver
We integrate (2.10) numerically by approximating the repatom accelerations by
a second-order central-difference scheme in an implicit fashion for constant time
steps ∆t = tn+1− tn, i.e., we solve

ŵβ mβ

xxxβ (tn+1)−2xxxβ (tn)+ xxxβ (tn−1)

(∆t)2 =−
Ns

∑
α=1

wα ∑
j∈Iα (t)

∂Eα

∂qqqh
j

(
xxx(tn+1)

)
Nβ (XXX j).

(2.15)
for repatom positions xxx(tn+1) in a matrix-less fashion, using the Fast Inertial Re-
laxation Engine (FIRE) [14]. This method blends well with the QC equilibrations
as they are computationally similar to molecular dynamics, which was what the
method was designed to optimize. In FIRE, the velocities are reset when the global
power of the system becomes negative (“uphill motion”), and the quantities like
the timestep and velocity for every repatom are dynamically adjusted to accelerate
progress towards the lowest energy, using the FIRE parameter α . The general steps
in solving a QC problem using the formulation developed in Section 2.3 using FIRE
are outlined in Algorithm 1. The implicit time discretization furnishes the scheme
with unconditional stability; sufficient accuracy is confirmed by a time step conver-
gence study (any suitable finite-difference scheme such as velocity-Verlet can be
used instead).

2.5 Computational Implementation
The goal of this section is to provide a rough map of the computational implemen-
tation that goes into successfully running a QC simulation using the formulation
provided in Sections 2.1, 2.2, and 2.3. Specifically we provide a brief overview of
the key data structures used in our in-house QC code.
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Algorithm 1 Algorithm for the QC solver
1: while Global forces are not equilibrated do
2: % perform velocity verlet on all repatoms
3: for each repatom do
4: aaai = FFF i

m , force obtained from (2.14)
5: vvvi = vvvi− 1

2 + 1
2ai∆t

6: end for
7: % perform FIRE algorithm
8: Ptotal = ∑

Nh
i=1 FFF i · vvvi, summing power of all repatoms

9: for each repatom do
10: vvvi = (1−α)vvvi +αF̂FF i|vvvi|, f̂fl denoting unit vector
11: end for
12: if Ptotal > 0 then
13: ∆t ↑, α ↓
14: else
15: ∆t ↓, α = αstart
16: for each repatom do
17: vvvi = 0, reset the repatom velocities
18: end for
19: end if
20: % perform verlet update on all repatoms
21: for each repatom do
22: aaai = FFF i

m ,
23: xxxi+1 = xxxi + vvvi∆t 1

2ai∆t2

24: vvvi+ 1
2 = vvvi + 1

2ai∆t
25: end for
26: end while

2.5.1 Repatom Container
To store the reduced degrees of freedom in the system as shown in Section 2.1,
we use a datastructure which we refer to as the repatom container. It contains
all the information pertaining to the repatoms like positions, weights, velocities,
forces, etc. In Chapter 4, we introduce a new mean-free parameter called ω , which
is also defined for every repatom, and is therefore handled by this container. In
any simulation, this is the first data structure that has to be populated based on the
application.

2.5.2 Mesh and Elements
The QC formulation uses linear interpolation to obtain the positions of lattice sites
which are not being modeled using the repatoms (if needed), and in addition, to
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calculate sampling atom and neighbor positions. This necessitates the use of a sim-
plicial mesh that connects the undeformed repatom positions. Once the initial set
of repatom are populated, the QC formulation uses an external mesher (CGAL) and
then a custom repairing process to form the final mesh that is used for subsequent
calculations. The constructed “simplices” or elements are used to store important
information of the system like the lattice structure (for possible multi-lattice appli-
cations), and orientation (for polycrystal applications).

2.5.3 Sampling Atoms
Once the user populates the initial entries of the repatom container, using the op-
timal summation rule briefly outlined in Section 2.2, the sampling atoms are auto-
matically populated by the QC formulation. The QC code stores the collection of
sampling atoms together by using an individual sample atom as a data structure.
Sample atom population is done by looping through the elements and depends on
the flavor of the summation rule (first-order or second-order), and all the differ-
ent properties of the sample atom like position, weight, and centrosymmetry [16]
are stored accordingly. It is important to note that while all repatoms locations are
also sampling atom locations (as required by the optimal summation rule), they are
stored separately, as computationally they perform different functional tasks. The
sampling atom is used to perform energy calculations and derive the repatom forces
derived in 2.14. Using this force and implementing it in the solver (ref. Section 2.4),
the equilibrium solution of the system is determined.

2.5.4 Neighborhood Container
This is perhaps the most important (and complicated) data structure of the entire
QC formulation. Its need arises from the fact that in order to calculate any property
related to a sampling atom (like energy or centrosymmetry) or repatom forces, a
complete representation of the neighborhood of every sampling atom is required.
For further illustration, we reconsider the expression of the force on a repatom as
shown in (2.14),

F̃FFβ (xxx)=−
Ns

∑
α=1

wα ∑
j∈Iα (t)

[
1
2

Φ
′(rh

α j)+F ′(ρh
α) f ′(rh

α j)

] rrrh
α j

rh
α j

[
Nβ (XXXα)−Nβ (XXX j)

]
.

The expression shows that at every sampling atom α , we need the knowledge of
the locations of all atoms j that lie in its neighborhood Iα . In traditional molecular
statics or dynamics, such knowledge is obtained by simply performing a distance
search, but in QC that cannot be done, as we are modeling a reduced system. Our
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formulation achieves it by storing the set of neighbors for every sampling atom in a
data structure that we term as the neighborhood container. A detailed description
of how our neighborhood storage achieves automatic adaptivity for high deforma-
tions is provided in Chapter 3.

2.6 Conclusions
This chapter shows a brief derivation of the general QC method and provides im-
plementation details of the fully nonlocal energy-based QC formulation that is used
throughout this thesis.
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C h a p t e r 3

AUTOMATIC ADAPTIVITY I: NEIGHBORHOOD UPDATES

Chapter 2 introduces the fully nonlocal QC method that seamlessly bridges across
scales without the need to differentiate between local and nonlocal domains and
does not have any notion of atomistic and continuum regions. If all atoms of the
ensemble are included in the reduced set of representative atoms (Nh → N), the
model recovers full atomistics in an adaptive manner in a numerically elegant fash-
ion. Therefore, in addition to the formulation presented in Chapter 2, automatic

adaptivity, in which one does not need to require a-priori knowledge about the res-
olution needed at specific regions of the simulation, will in principle, enable highly
efficient simulations. However, such an adaptive model refinement comes with a
set of challenges which need to be addressed before we can perform adaptive sim-
ulations. (i) Use of the Lagrangian QC formulation with a mesh defined in the
reference configuration becomes challenging in the atomistic regions where atomic
neighborhoods change continuously and thus must be updated during the simula-
tion (unlike in traditional QC, our formulation uses a mesh also in the atomistic
domain in order to maintain the complete nonlocal behavior). (ii) Similar to MD,
Verlet lists that store local atomic neighborhoods are required but the positions of
all atoms are not known a-priori but must be generated on demand by interpola-
tion (i.e., the positions of all atoms in the simulation are never explicitly known to
the model). (iii) As in any remeshing technique, refinement criteria and geometric
algorithms must be chosen to provide acceptable mesh quality. Poor mesh quality
results in substantial errors as has been reported by [3]. (iv) In order to seamlessly
refine down to full atomistics, every representative atom (i.e., every node in the
mesh) is required to coincide with an existing atomic site (identified, e.g., by the
aid of the discrete crystal lattice in the reference configuration). This chapter reports
the adaptive model that efficiently captures high-deformation neighborhoods on the
fly, and a 2D mesh refinement scheme which has enabled our QC formulation to
accurately perform simulations which are verified by comparison to full atomistics.

Research presented in this chapter was published in reference [115].
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3.1 Mesh Adaptivity: Refinement Criteria and Algorithms
3.1.1 Mesh Refinement in the Fully-Nonlocal QC Method
Model adaptivity enables us to efficiently deploy full atomistic resolution only
where it is indeed required, such as in the immediate vicinity of lattice defects.
Therefore, the initial configuration of all simulations contains as few representative
atoms as possible; i.e., defect-free regions use a significantly coarsened description
(assuming the crystal is in its equilibrium ground state) and full atomistic resolu-
tion is confined to the vicinity of pre-existing defects (if any). Subsequently, every
simulation step going from time tn to tn+1 = tn + ∆t involves (i) solving for the
new repatom positions xxx(tn+1) according to (2.15), (ii) identifying regions requir-
ing refinement and updating the triangulation T (tn), and (iii) updating all sam-
pling atom neighborhoods Iα based on the new repatom positions and the refined
mesh. Step (ii) will be discussed in the following, whereas step (iii) follows in
Section 3.2.1. We note that we restrict our attention to model refinement, i.e., the
addition of new repatoms to enrich the repatom set Nh. We do not consider model
coarsening (i.e., the elimination of repatoms). Of course, the latter is equally impor-
tant for efficiency but also conceptually more challenging (and not available in any
existing QC codes to the best of our knowledge). A discussion of mesh coarsening
within the fully nonlocal QC method can be found in Section 3.3.

3.1.2 Refinement Criterion
Since the interpolation is based on a mesh, it makes sense to adopt an element-wise
refinement criterion [54, 111]. Specifically, the chosen affine interpolation results
in constant deformation gradients within the ne elements. Therefore, we compute

Figure 3.1: Schematic view of the remeshing process: identification of elements
to refine, insertion of new repatoms (nodes) at lattice sites, update of the triangu-
lation T , and insertion of new sampling atoms and their associated local atomic
neighborhoods for the second-order optimal sampling rule [5].
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the second invariant of the right Cauchy-Green tensor CCC = FFFTFFF in each element
and identify an element e for refinement if

Ie Le ≥ bε with Ie =

√
1
2
|tr(CCCe)2− (tr CCCe)2| for e = 1, . . . ,ne.

(3.1)
b is the magnitude of the smallest Burgers’ vector of the crystal, ε represents a
tolerance threshold for refinement (in our examples chosen as ε = 0.1− 0.6), and
Le is the longest element edge. In contrast to [54] we choose the longest element
edge Le as the characteristic length and do not consider the element volume. We
note that this is, of course, only one possible choice for the refinement criterion.
One can alternatively define refinement criteria based on sampling atoms (replacing
the element-wise criterion), e.g., by defining thresholds for their centrosymmetry
parameter or energy per atom. Rigorous error estimators (but not for the fully-
nonlocal QC version) have also been proposed from a mathematical standpoint;
see, e.g., [1, 80]. In the following examples, we will use criterion (3.1) which, after
each solution step, results in a set of elements flagged for refinement.

3.1.3 Refinement Algorithm
Refinement necessitates two steps: (i) insertion of new nodes (i.e., the introduction
of new repatoms) and (ii) their integration into the existing mesh while retaining
all existing nodes. As a special difficulty of the nonlocal QC method, newly-added
nodes must lie on exact lattice sites to ensure the correct, seamless refinement down
to exact atomistics. We assume that the atomic crystal defines a discrete set B of
Bravais lattice sites so that in d dimensions

B =

{
XXX ∈ Rd

∣∣∣∣ ∃ n1, . . . ,nd ∈ Z s.t. XXX =
d

∑
i=1

ni AAAi

}
(3.2)

with lattice unit vectors AAAi (i = 1, . . . ,d). In case of polycrystals, several such lat-
tices coexist spatially and each element is assigned to one underlying lattice (or a
non-crystalline region that requires full resolution). All remeshing is performed in
the reference configuration (actual atomic positions qqqh are obtained via the interpo-
lation (2.3). This guarantees that new repatoms are inserted at physically reasonable
locations and that the number of repatoms Nh cannot exceed the number of discrete
lattice sites N (i.e., full refinement implies Nh =B). We thus require that each new
node Nh+1 be placed on a valid lattice site in the respective lattice, i.e., XXXNh+1 ∈B.
Meshing on a discrete point set creates a challenge because – unlike in FE codes
– standard techniques like mesh smoothing are not applicable and new nodes may



31

not be inserted anywhere in space for mesh improvement (see, e.g., [13, 52] for FE
examples). Especially when approaching atomistic resolution, a proper mapping
of ideal new nodal locations onto members of B is essential to avoid inverted or
badly-shaped elements.

Here, we pursue a simple refinement strategy based on longest-edge bisection. El-
ements requiring refinement are bisected by the median of the longest edge, which
is a common strategy used in refinement algorithms. If two or more edges are
similar in length, all are bisected. For each considered edge, we identify (in the
reference configuration) the lattice site XXX ∈B nearest to the edge’s midpoint that
is not already a node, which will be added as a new repatom. In case of several
equidistant sites, we make a random selection. This procedure is applied to all ele-
ments requiring refinement in arbitrary order, resulting in a list N ∗

h (tn) of repatom
positions in the reference configuration that must be added to the model, so that
Nh(tn+1) = Nh(tn)∪N ∗

h (tn) at the end of each completed time step. Next, the
mesh T is updated based on the new set of repatoms Nh(tn+1) using the open-
source Computational Geometry Algorithms Library (CGAL) [116]; the same li-
brary is used for generating the initial mesh. Finally, new sampling atoms (required
for all newly-created elements) and their local atomic neighborhoods Iα (required
for all new sampling atoms and those whose element connectivity has changed)
are identified in the reference configuration, as shown in Fig. 3.1, and their current
positions and moments are obtained from (2.3).

3.1.4 Example
The above refinement algorithm for the nonlocal QC method is illustrated in Fig. 3.2
for the example of nano-void growth and coalescence. Two voids of initial radius
4 nm are placed at a distance of 4 nm in a copper single-crystal modeled by the
Finnis-Sinclair potential of [29] at zero temperature. The body (constrained to un-
dergo in-plane atomic motion) is loaded uniaxially in the vertical direction at a
loading rate of 2.5 · 1011 s−1 in tension. The snapshots show the gradual mesh re-
finement with increasing deformation. Dislocations nucleate at the void surfaces
and propagate into the crystal on the three primary slip systems (in 2D), so that
remeshing accumulates atomistic resolution in the vicinity of these moving lattice
defects. This leads to localized regions of full atomistic resolution, leaving the
remainder of the crystal coarse-grained.

We note that the shown mesh loses its physical meaning in highly-deformed re-
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(a) (b)

(c) (d)

(e) (f)

Figure 3.2: Application of the remeshing scheme to a Cu single-crystal containing
two nano-voids under uniaxial extension. Shown is the reference mesh mapped into
the deformed configuration at applied vertical strains of (a) 0%, (b) 4%, (c) 5%,
(d) 6%, and (e) 7% with a magnified view shown in (f)

gions (shown are the element connectivities of the reference mesh mapped into the
deformed final configuration, i.e., elements link atoms that were initially close but
may have drifted apart). For example, the two voids in Fig. 3.2(c-f) have long co-
alesced, but drawing the connectivities of the reference mesh seemingly keeps a
spurious ligament of elements between the voids. This becomes obvious when in-
specting the actual repatom locations (to be discussed in Fig. 3.7). The mesh’s only
purpose is thus to enable the recovery of all underlying lattice sites, as required,
e.g., for new repatoms, sampling atoms, and lattice neighbors. All equations of
motion are solved in the current configuration with current neighbors.

3.2 Atomic Neighborhoods and Update Requirements
Fig. 3.2 showed an example of how the element connectivities (and thus the atomic
neighborhoods) established in the reference mesh lose their physical meaning dur-
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ing large atomic rearrangements, particularly because locality in the reference con-
figuration may deviate significantly from locality in the current configuration, like
in any particle method. However, eq. (2.15) requires an accurate account of all lat-
tice sites within Iα , i.e., within the radius of interaction of each sampling atom, and
the sets Iα (α = 1, . . . ,Ns) can change considerably during deformation. Therefore,
it is imperative to keep track of all neighbors entering any given sampling atom’s
radius of interaction (especially those that are not close to the sampling atom in
the reference configuration). An alternative would be an updated-Lagrangian de-
scription, see, e.g., [62]; that, however, may lead to incorrect atomistic ensembles
and break the basis of the QC approximation (viz., that atomic positions within el-
ements are uniquely defined by a deformed lattice); see Section 3.3. Therefore,
we choose the Lagrangian description with a reference mesh (as in all prior QC
versions except for meshless max-ent QC [55]) and introduce a scheme to identify
atomic neighborhoods based on locality in the current configuration.

3.2.1 Neighborhood Update Scheme and Frequency

Figure 3.3: Schematic illustration of neighborhood updates: identification of can-
didate neighbors (green) around a sampling atom α (red) within distance Rcand,α
in the reference configuration (set C ′α ); identification of actual neighbors (orange)
within radius rcrit in the current configuration (set Cα ); and the complete actual
neighborhood mapped back into the reference configuration (orange) with the max-
imum distance Rcrit,α used to update Rcand,α .

In MD, up-to-date atomic neighborhoods are obtained by performing frequent neigh-
bor searches among all atoms in the simulation. In the QC formulation, no such
neighbor searches can be performed directly because we do not keep track of the
positions of all atoms in the simulation (this would defeat the purpose of QC). We
therefore generate and store only the local atomic neighborhoods Cα(t) for all sam-
pling atoms (both in atomistic and coarse-grained regions), analogous to Verlet lists
in MD [122]. Specifically, each sampling atom stores only those lattice sites whose
positions at time t are located within a critical radius rcrit ≥ rcutoff in the current

configuration (with rcutoff the cutoff radius of the atomic potential V , see Fig. 3.3),
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i.e.,

Cα(t) =
{

XXX ∈B

∣∣∣∣ ∥∥∥qqqh(XXX , t)− xxxα(t)
∥∥∥≤ rcrit

}
with qqqh(XXX , t) = ∑

β∈Nh

Nβ (XXX)xxxβ (t).
(3.3)

Choosing rcrit = rcutoff yields the minimally required neighborhood sets Iα(t).
However, as repatom positions xxx(t) change continuously, that choice would ne-
cessitate continuous updates of the neighborhood sets. To reduce the frequency of
neighborhood updates, rcrit is chosen sufficiently large so that dover = rcrit−rcutoff >

nvmax ∆t, where n is the number of time increments ∆t after which a neighborhood
update is anticipated, and vmax denotes the maximum atomic velocity within Cα(t).
Numerical experiments have shown that dover = 0.1Å is sufficient for numerical
convergence for all subsequent examples. Note that we will not fix n but instead
define a motion-based automatic trigger mechanism for neighborhood rebuilds.

In order to identify the neighborhood sets Cα(t) ∈B at time t without knowing the
current positions of all lattice sites, we generate candidate neighborhoods

C ′α(t) =
{

XXX ∈B

∣∣∣∣ ‖XXX−XXXα‖ ≤ Rcand,α(t)
}

(3.4)

and then find Cα(t)⊂ C ′α(t) for α = 1, . . . ,Ns. To find the complete neighborhood
we must choose Rcand,α(t) in the reference configuration such that

Rcand,α(t)≥ Rcrit,α(t) with

Rcrit,α(t) = max
XXX∈B

{
‖XXX−XXXα‖

∣∣∣∣ ∥∥∥qqqh(XXX , t)− xxxα(t)
∥∥∥≤ rcrit

}
,

(3.5)

i.e., Rcrit,α(t) is the radius that includes all neighbors in the reference configuration
which at time t have entered radius rcrit of sampling atom α in the current configura-
tion; see Fig. 3.3 for a schematic view. For efficiency, we assign a unique Rcand,α(t)

to each sampling atom. Specifically, we choose Rcand,α(t) = Rcrit,α(t)+D, where
D≥ 0 is an overshoot parameter. Our numerical examples use D≈ 2.3rcutoff as an
inexpensive, conservative choice. Note that such a choice hardly affects the com-
putational costs because it does not effect the expenses of time stepping; it only
affects the neighborhood generation, which is rare compared to force calculations
and position updates. Since rcrit is defined in the current configuration, Rcrit,α(t) and
Rcand,α(t) in the reference configuration change with time (shown in the examples
below).
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Efficiency demands that neighborhoods are not updated at each time step but only
as required. To this end, we do not define a fixed update frequency but assume
that a new lattice site can move into the neighborhood Cα(t) of sampling atom α

only if the already existing atomic neighbors in Cα(t) have experienced sufficient
movement since the last update at time t∗ < t, i.e., if

∃ XXX i ∈ Cα(t) s.t.
∥∥∥qqqh(XXX i, t)−qqqh(XXX i, t∗)

∥∥∥> qmax. (3.6)

Our choice dover = rdef− rcutoff > 0 makes sure that we keep track of more neigh-
bors than strictly required; we monitor their relative movements to estimate when
an update is required, and perform the neighborhood update when any neighbor’s
movement exceeds the tolerance qmax. Numerical experiments indicate that efficient
convergence is achieved if qmax ≈ 3dover for time steps in the range of ∆t = 1−5 fs.
We note that because neighborhood updates are triggered based on relative motion
of a sampling atom’s current neighbors, in the highly unlikely event that a distant
atom approaches without sufficiently displacing the current neighbors, the present
algorithm would fail [3]. However, after each neighborhood rebuild the code checks
whether or not new neighbors had to be added without moving the existing ones,
and for all of the following examples the check never failed. This neighborhood
update scheme applies equally to 2D and 3D.

Algorithm 2 Neighborhood update algorithm
1: for each sampling atom α = 1, . . . ,Ns do
2: if update criterion (3.6) is violated for sampling atom α then
3: Rcand,α(t) = 1.01×

[
Rcrit,α(t)+D

]
4: identify candidate neighborhood C ′α(t) according to (3.4) in the refer-

ence configuration
5: for each candidate neighbor XXXβ ∈ C ′α(t) do
6: map candidate to the current configuration: qqqh

β
= ∑i xxxi Ni(XXXβ )

7: if
∥∥∥qqqh

β
(t)− xxxα(t)

∥∥∥≤ rcrit = rcutoff +dover in the
8: deformed configuration then
9: add candidate XXXβ to the neighborhood Cα(t)

10: end if
11: end for
12: update Rcrit,α(t) = maxβ

∥∥XXXβ −XXXα

∥∥
13: end if
14: end for
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3.2.2 Examples
We present two examples of the neighborhood updates which demonstrate signif-
icant neighborhood changes due to inelastic deformation and defect movement in
the atomistic region. First, we revisit the void growth example already discussed in
Section 3.1 (two identical nano-voids in a Cu single-crystal are loaded in uniaxial
extension up to coalescence). Second, we simulate nanoindentation by a circular in-
denter of radius 5 nm penetrating into a Cu single-crystal [29] in 2D (at 2 ·104 m/s),
using an indenter potential [16]. The potential’s cutoff radius rcutoff is such that each
atom interacts with only six nearest neighbors in a defect-free 2D single-crystal. For
each of the two scenarios, we select a few illustrative sampling atoms and follow
their atomic neighborhoods during the course of the simulation.

Figure 3.4: Illustration of the atomic neighborhoods of seven selected sampling
atoms during nanoindentation shown in the current configuration as well as mapped
back into the reference configuration; for comparison the atomic neighborhoods in
the initial state (before indentation) are also shown. The magnification illustrates
the same final atomic neighborhood shown both in the current and in the reference
configurations.

For the indentation scenario, Fig. 3.4 shows seven sampling atoms with their re-
spective atomic neighborhoods in the current configuration and the same atoms in
the reference configuration. It becomes apparent that, with increasing plastic de-
formation and associated dislocation activity, neighborhoods change significantly
and the distances Rcrit,α(t) in the reference configuration increase for all shown
sampling atoms. Similarly, Fig. 3.5 shows the changes of seven sampling atom
neighborhoods for the void growth example of Fig. 3.2. While some of the atomic
neighborhoods remain fairly localized, others (e.g., those in the ligament between
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Figure 3.5: Illustration of the atomic neighborhoods of seven selected sampling
atoms during void growth and coalescence shown in the current configuration as
well as mapped back into the reference configuration; for comparison the atomic
neighborhoods in the initial state (before extension) are also shown.

the two voids) experience considerable neighborhood changes, resulting in large
distances between current neighbors when viewed in the reference mesh. The cho-
sen update scheme accounts for this increase by gradually increasing Rcrit,α(t) and
updating the associated neighbors of all sampling atoms.

Figure 3.6: Distribution of Rcrit,α (in angstroms) across all sampling atoms at an
indentation depth of 8 nm, shown in the deformed configuration (left) and mapped
into the reference configuration (right). Note that sampling atoms are color-coded
and elements left color-less (because Rcrit,α is defined on sampling atoms).

Fig. 3.6 summarizes the distribution of Rcrit for all sampling atoms at an indenta-
tion depth of 8 nm, shown both in the current configuration and in the reference
configuration. Obviously, large fractions of atoms right underneath the indenter un-
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dergo significant plastic deformation and participate in defect nucleation and mo-
tion. Consequently, atomic neighborhoods change and Rcrit increases considerably.
As can be expected, atomic neighborhoods away from the indentation region remain
intact and require only minor increases of Rcrit. Fig. 3.7 shows the analogous map
of Rcrit for all sampling atoms in the void growth simulation. Although one might
be concerned about the extra neighbors incurred by the overshoot distance dover, in
this simulation with the potential of [29] the average number of neighbors within
interaction radius rcutoff is 14, whereas the average number of neighbors within ra-
dius rcrit = rcutoff + dover is 18; therefore, the extra atoms considered within each
neighborhood amount to about 29%.

Figure 3.7: Distribution of Rcrit,α (in angstroms) for all sampling atoms in a void
growth simulation at an applied strain of 2.5 ·109 s−1 shown in the current config-
uration (left) and mapped into the reference configuration (right).

Note that since each sampling atom is assigned an individual radius Rcrit , we only
enlarge the search radius of those sampling atoms that indeed participate in large
neighborhood distortions. As shown, e.g., in Fig. 3.6, most of the sampling atoms
retain the initial value of Rcrit = 4.95Å throughout the simulation, as they are suf-
ficiently far away from defects. The number of those sampling atoms whose Rcrit

grows significantly (e.g., up to 50Å) is shown to be fairly small. Out of the to-
tal of 600,680 sampling atoms in this simulation, 74% retain Rcrit = 4.95Å un-
til the end of the simulation, 17.7% have 4.96 ≤ Rcrit ≤ 7.55, another 7.3% have
7.55 ≤ Rcrit ≤ 12, and only 1% of all sampling atoms reach a value of Rcrit > 12.
While neighborhood updates do add computational expenses, we deliberately chose
to vary Rcrit from atom to atom to keep the added costs as low as possible. As a
matter of fact, if defects remain localized as shown here, then costs are comparable
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to standard Verlet algorithms used in atomistics where the neighbors of all atoms
are frequently updated.

This example illustrates not only how dislocation motion results in large local
neighborhood changes but it also demonstrates how the reference mesh loses phys-
ical meaning, especially in the ligament between the two voids (showing the mesh
in the current configuration completely misses the fact that the voids have long co-
alesced). Rcrit serves as a metric for the local deformation history. The centrosym-
metry parameter [16], e.g., returns to 0 after a dislocation has passed in 2D (in 3D
a stacking fault can be left behind), although atomic neighborhoods have changed
significantly, which is reflected by the Rcrit map. This is also why the neighborhood
update scheme described above is essential for the accuracy of fully-nonlocal QC
simulations.

R [A]crit 

5.1 6.6 8.1 9.6 11.1

(a) (c)

(b) (d)

Figure 3.8: 3D indentation example using a spherical nanoindenter (diameter
10 nm, shown at a depth of 1.35 nm) into single-crystalline copper (using the
neighborhood update scheme but avoiding mesh refinement). Shown are (a) the
undeformed QC mesh and sampling atom distribution, (b) the deformed distribu-
tion of sampling atoms color-coded by Rcrit, and (c) and (d) magnified views of the
deformed mesh and sampling atoms with Rcrit in the indentation region.

The last example, shown in Fig. 3.8, presents results of a 3D nanoindentation sim-
ulation. Due to the aforementioned challenges with geometric mesh refinement in
3D, we chose a configuration with a sufficiently large initial atomistic region so no
refinement is necessary (the domain is coarse-grained in five steps by coarsening
factors of 2). The described neighborhood update scheme applies equally in 3D, re-
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sulting in the shown distribution of Rcrit. As before, notice that the number of sam-
pling atoms with significant neighborhood increases (large values of Rcrit) is fairly
small. The simulation contains ca. 1.17 · 106 repatoms and 1.75 million sampling
atoms, compared to 2.26 · 108 atoms in the fully-atomistic case. As another ben-
efit of the QC coarse-graining, boundary conditions (here, allowing only in-plane
motion on the vertical faces with the bottom fixed) can be applied at significant
distance from the indentation side without any artificial effects on the simulation
outcomes in the atomistic region (and without the need for, e.g., periodic boundary
conditions).

3.2.3 Benchmark Tests
The examples of nanoindentation and void growth are ideal candidates for the adap-
tive, fully-nonlocal QC method, since atomistic resolution can be restricted to small
regions of interest. We note that the optimal second-order summation rule used here
captures surface relaxation effects in an approximate sense and therefore does not
require full resolution on free surfaces [5]. Let us revisit the examples of indentation
and void growth, using the adaptive remeshing and neighborhood update schemes
outlined in previous sections, and investigate results with respect to qualitative and
quantitative errors.

Figs. 3.9 and 3.10 demonstrate the defect distribution in the two deformed Cu
single-crystals undergoing nanoindentation and void growth during uniaxial exten-
sion, respectively. Edge dislocations spreading from the indentation site and from
the voids, respectively, into the uniform crystals on the three primary slip systems
(in the 2D close-packed crystal) are visible. Moving defects carry fully-resolved
mesh fronts into initially coarse-grained regions, resulting in the shown QC repre-
sentations. Dislocation slip systems, core sizes, and distributions are comparable
to MD results using the same parameters. Note that white regions simply indi-
cate coarse-grained regions that are by definition defect-free and undergo affine
deformation according to the chosen interpolation scheme. The overall number of
representative atoms in the final deformed state shown is considerably lower than
the total number of atoms that would have to be simulated in a comparable fully-
atomistic simulation (we present a quantitative comparison later).

Of course, these results encourage the development of a mesh coarsening algorithm,
so that fully-refined meshes can be coarsened once a defect has passed through (viz.,
all blue regions in Figs. 3.9 and 3.10). However, as discussed in Section 3.3.3, mesh
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Figure 3.9: Visualization of the defect distribution during nanoindentation (at a
loading rate of 2 ·104 m/s); shown is the centrosymmetry parameter on an arbitrary
scale, highlighting dislocations on the three primary slip systems underneath the
indenter at indentation depths of (a) 0.8 nm, (b) 2 nm, (c) 4 nm, and (d) 6.8 nm. The
shown centrosymmetry parameter visualizes dislocations in red, whereas a pristine
single crystal appears in dark blue.

Figure 3.10: Visualization of the defect distribution during void growth and coales-
cence (at a loading rate of 2.5 · 109 s−1); shown is the centrosymmetry parameter
on an arbitrary scale, highlighting dislocations around the voids at vertical strains
of (a) 4%, (b) 5%, and (c) 9%. The shown centrosymmetry parameter visualizes
dislocations in red, whereas a pristine single crystal appears in dark blue.

coarsening is a challenge in itself due to, among other factors, the need to identify
a unique Bravais lattice for each element (including elements that are created by
merging existing smaller elements with different underlying deformed lattices).

Fig. 3.11 offers a quantitative error estimate based on a one-to-one comparison with
an MD calculation. We perform the above void growth simulation using the fully-
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Figure 3.11: Void growth and coalescence simulated by both nonlocal QC (right
images) and MD (left images) at the four strain levels A–D marked in the total
force vs. strain plots for a vertical extension test (atoms or sampling atoms are
color-coded by centrosymmetry on an arbitrary scale to visualize lattice defects,
primarily dislocations). Curves indicate the average and standard deviations for a
total of 20 QC and 20 MD simulations (strain rate is 2.5 ·1010 s−1).

nonlocal QC method and full atomistics (using the same time step size of 5 fs, the
same boundary and initial conditions, and the same dynamic solver). Fig. 3.11 com-
pares both the defect distributions and the total force vs. vertical extension curves.
Due to floating point errors, exact results are generally not reproducible necause of
the high symmetry of the problem and resulting equivalent energy minimizers. For
a reasonable comparison, the shown curves were thus obtained by repeating each
simulation 20 times and averaging the results (shown are both the mean values and
standard deviations of QC and MD); see also the discussion in [5]. The differences
up to about 3.25% strain can be attributed mainly to dynamic effects: unlike in MD,
elastic waves in the QC sample cannot be represented exactly by the non-uniform
QC mesh. However, deviations are small and the mean force–strain curves agree
well into the inelastic regimes exhibiting dislocation plasticity and void growth and
coalescence. The centrosymmetry plots confirm that defect distributions and de-
formed void shapes are also in qualitative agreement (we note that the unrefined
boundary layers are due to the application of boundary conditions).

The remeshing and neighborhood update scheme introduces a few parameters that
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are expected to affect the accuracy and efficiency of simulations. First, the remesh-
ing criterion (3.1) introduces a tolerance ε . Second, neighborhood updates intro-
duce the overshoot radius dover = rcrit− rcutoff for the current Verlet neighborhoods,
and the overshoot radius D = Rcand−Rcrit for the generation of candidate neigh-
borhoods in the reference configuration, see Fig. 3.3. Third, neighborhoods are
updated if atomic movements exceed the threshold qmax. Finally, time step ∆t af-
fects the simulated results. Of those, the chosen overshoot radii (dover = 0.1Å,
D ≈ 6− 10Å) and update threshold (qmax = 0.3Å) were verified to be sufficient
by – on the fly – considering larger neighborhoods and checking whether or not
neighboring atoms were missed at any time during the simulation, which was never
the case. Once a time step ∆t is selected for a particular simulation, the only ad-
justable parameter is then the remeshing tolerance ε , which affects the frequency of
remeshing (obviously, the frequency of remeshing increases with decreasing ε).

The influence of ε is demonstrated in Fig. 3.12, which repeats the void growth
simulation of Fig. 3.11 using six different values of ε (for a time step of ∆t = 4 fs).
Although no clear trend emerges, the low thresholds ε = 0.1−0.2 indicate lower er-
rors than larger values of ε , as can be expected. Further, notice the spikes appearing
in the QC simulation at increasing strains with increasing ε , indicating a remeshing
event that causes instantaneous relaxation (those spikes have only marginal influ-
ence on the overall response). For comparison, we have included in Fig. 3.12 the
time evolution of the total number of repatoms in the QC simulation (normalized
by the number of atoms in the MD simulation). It becomes apparent that the spikes
correspond to early remeshing events, and that the number of repatoms decreases
with increasing remeshing tolerance ε (as could have been expected).

It is difficult to derive quantitative rules for the selection of ,ε but for applications
in metal plasticity – one can state quantitative guidelines. We followed the strategy
of Knap and Ortiz [54] and Tadmor, Ortiz, and Phillips [111], who chose the sec-
ond invariant of the deformation gradient as remeshing indicator, as in (3.1). Then,
√

Ie ·Le is compared to the length b of the smallest Burgers’ vector of the crystal
lattice (i.e., we compare the maximum shear displacement in the element to the slip
distance required to form a dislocation). In order to trigger dislocation motion ap-
propriately such that dislocation motion is not inhibited in a coarse mesh, remeshing
must be triggered before the maximum shear distance reaches b, and thus we choose
fractions of b as the remeshing tolerance and therefore ε < 1. The specific values
chosen here for ε were the result of numerical experiments. Results in Fig. 3.12
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Figure 3.12: Variation of the mechanical response for the void growth example for
different values of the remeshing tolerance ε: (a) ε = 0.1, (b) ε = 0.2, (c) ε = 0.3,
(d) ε = 0.4, (e) ε = 0.5, and (f) ε = 0.6. The thin solid lines indicate the fraction of
all lattice sites used as repatoms (on the right axes).

show that the chosen values yield results comparable to full atomistics, which re-
inforces that the chosen values provide a good balance of accuracy and efficiency
(decreasing ε below the chosen values severely increases costs but hardly affects re-
sults as shown in Fig. 3.12; increasing ε reduces costs but leads to large errors). For
comparison, the force-based QC method of [54] used significantly smaller values
for ε (at least a factor of 10 smaller); however, we chose the longest element edge
Le as the characteristic element length and do not consider the simplex volume as
in [54]. Ultimately, the choice of ε depends on the application and is a compromise
between accuracy and efficiency.

To define a simple error metric, Fig. 3.13(a) reports the average relative errors of
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Figure 3.13: (a) Total relative error eavg of the load–strain curve of the void growth
example vs. the remeshing tolerance ε (with a logarithmic regression fit); (b) total
simulation run time vs. remeshing tolerance ε for various time steps ∆t with fitted
curves.

each load–strain curve comprising nstep load steps, i.e.,

eavg =
1

nstep

∥∥∥∥FQC−FMD

FMD

∥∥∥∥ , (3.7)

where F is the total vertical force applied to the sample in either QC or MD simu-
lation. The results confirm that low values of ε ≤ 0.2 result in low average errors
(below 2.5%), but even larger values of ε keep the total average error below 3.8%.

It is worth pointing out that the agreement between QC and MD results is remark-
able for the following reasons. Not only does the QC simulation arrive at qualita-
tively and quantitatively comparable results in terms of the microstructural defect
distribution as well as in terms of the macroscopic stress-strain response. QC also
performs well in capturing the elastodynamic response of the sample loaded dynam-
ically at a high rate (comparable to typical MD simulations) despite the significantly
coarsened and non-uniform mesh. The chosen remeshing and neighborhood update
protocol along with the fully-nonlocal QC formulation enables us to tie full atom-
istic resolution to defects and thereby reduce computational expenses. In regions
that are fully-atomistically resolved, the presented adaptive nonlocal QC method
recovers molecular dynamics exactly, i.e., one can expect MD and QC results to
agree locally in regions of full resolution.

Increasing ε implies less remeshing and thus is expected to decrease the simulation
run time (as seen in the number of repatoms visualized in Fig. 3.12). As a further
confirmation, Fig. 3.13(b) compares the average run times of QC simulations for the
shown values of ε and ∆t. Obviously, the simulation time increases with decreasing
time steps for the same applied strain rate. Run times scale as trun ∝ εc (with c
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neighborhood update computational cost mesh refinement computational cost QC time /

(% of total simulation time) (% of total simulation time) fully-refined time
aaaaaaaa

ε

∆t 10 fs 5 fs 4 fs 2 fs 10 fs 5 fs 4 fs 2 fs 4 fs

0.2 35.14 37.18 36.51 35.38 5.48 4.57 4.70 4.20 3.21
0.3 33.35 33.53 34.69 33.04 7.86 6.44 6.24 5.34 1.96
0.5 32.59 32.37 31.58 29.51 11.02 9.55 9.83 8.08 0.80
0.6 33.39 32.10 31.78 28.64 12.29 10.34 10.60 8.96 0.47
0.7 32.72 32.66 31.61 28.67 15.00 11.43 11.51 10.20 0.39

Table 3.1: Overview of computational costs for the void growth simulation: per-
centages of total simulation time spent on neighborhood updates and mesh refine-
ment, and a comparison of the QC simulation time and the analogous time spent on
a fully-refined model for different values of the refinement tolerance ε and the time
step ∆t.

monotonically decreasing from c = −1.47 for ∆t = 10 fs to c = −2.98 for ∆t =

1 fs). Table 3.1 (right column) shows the efficiency of simulations by computing
the ratio of the QC run times and the time spent on a comparable fully-refined
simulation for the example case of ∆t = 4 fs. For low refinement tolerance (e.g., ε =

0.2), the QC simulation is more than three times as expensive than the fully-refined
calculation due to adaptivity overhead. By contrast, higher refinement tolerances
(e.g., ε = 0.7) lead to more efficient simulations that take less than 40% of the
fully-refined time (note that significantly higher efficiency can be gained in more
aggressively coarse-grained systems). Table 3.1 also includes the relative costs
of neighborhood updates and mesh refinement (as fractions of the total simulation
time). With increasing refinement tolerance ε , the relative refinement costs increase
(mainly because the overall simulation time decreases at steady refinement costs).
By contrast, the relative cost associated with neighborhood updates shows little
variation (since these are performed independently of refinement, and their cost is
proportional to the number of sampling atoms in the simulation as is the overall
cost).

3.3 Alternative routes to mesh refinement
3.3.1 Discrete lattice site constraint
The nonlocal QC method outlined in Chapter 2 places all repatoms onto atomic
sites of the underlying lattice, which presents a strong constraint. Some com-
peting schemes relax this constraint in the coarse-grained region to reduce com-
plexity (e.g., to avoid the geometric refinement difficulties mentioned above), see
Fig. 3.14(a) and (b) for a schematic comparison. Unfortunately, relaxing the con-
straint necessitates a small, well-defined transition region between atomistic and
coarse-grained domains, in which repatoms lie on lattice sites (so that atoms in the
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Figure 3.14: Examples of QC representations using (a) our fully nonlocal QC
method with repatoms coinciding with lattice sites, and (b) an alternative formu-
lation whose repatoms do not fall onto lattice sites in the coarse-grained region
(gray), requiring a transition layer (purple) between both. (c) Shown is an actual
mesh from our void growth simulations with adaptive remeshing (blue dots de-
note sampling atoms; the centrosymmetry color code highlights four edge disloca-
tions). The transition from atomistic to coarse-grained is seamless, i.e., there is no
sharp, well-defined interface between those. (d) A schematic illustration of mesh
refinement with repatoms placed on lattice sites, starting with an element a few re-
finement steps away from atomistics. Placing nodes not on lattice sites can cause
serious problems when passing to full atomistics, as shown in (e) where refinement
is performed for the same element using non-lattice sites (crosses) and some ad-hoc
method is required to transition to a feasible atomistic representation.

atomistic domain possess physically-sensible atomic neighborhoods). As shown in
Fig. 3.14(c), the fully-nonlocal QC formulation does not require strict interfaces nor
transition regions, so the automatic remeshing scheme can arbitrarily create atom-
istic and coarse-grained regions throughout the entire simulation domain (i.e., there
is no clear interface between the two but the transition is seamless). This is possible
only if nodes fall onto lattice sites, as shown in the schematic remeshing sequence
in Fig. 3.14(d). If instead the lattice site constraint is relaxed, (see Fig. 3.14(e)),
passing to the atomistic limit becomes impossible or requires ad-hoc assumptions.
Thus, one may reformulate the method without the discrete lattice site constraint,
but this significantly reduces the adaptive flexibility that was one of the key objec-
tives of the fully nonlocal formulation.
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3.3.2 Lagrangian vs. updated-Lagrangian QC formulation
Like almost all prior QC techniques, our nonlocal QC formulation uses a Lagrangian
reference mesh, which necessitates the neighborhood updates and geometrically
complicated remeshing algorithms introduced in Sections 3.1 and 3.2. To cir-
cumvent the associated difficulties, one could reformulate the technique using an
updated-Lagrangian formulation, as described, e.g., in [15, 55]. Then, the reference
configuration of each isoparametric element and the corresponding shape function
values for all atomic locations are updated after each step. To retain all information
required to reproduce the underlying atomic lattice (required, e.g., for atomic force
calculations but also for the insertion of new repatoms), each element must store
and frequently update its local deformation gradient FFF and/or the deformed Bra-
vais lattice basis. This scenario, however, runs into the following severe conceptual
problem near the atomistic limit.

The QC method’s main paradigm is that atomic positions within elements do not
have to be tracked individually but can be computed uniquely from the underlying
lattice (e.g., if the deformation gradient or deformed Bravais vectors are known). In
addition, as discussed in Section 3.3.1, we require repatoms locations to coincide
with lattice sites. However, if adjacent elements carry different deformation histo-
ries, their underlying lattices can vastly differ, as shown in the example in Fig. 3.15.

In this example, mesh refinement cannot place the new repatom to be inserted on a
valid lattice site, so that either choice of the new repatom (see (d) and (e)) results in
elements whose nodes do not lie on the same lattice anymore. Further refinement
leads to even more severe cases (see (f) and (g)), where small elements after re-
finement would not have all contained atoms on the same lattice. Thus, it becomes
impossible to recover all underlying lattice sites and, ultimately, each atomic posi-
tions would have to be stored instead of only the Bravais vectors or the deformation
gradient. This defeats the purpose of the QC method and becomes prohibitively
expensive in large simulations as those shown in Section 3.2.3. One may argue that
this problem primarily arises near atomistics; however, adaptive refinement can
lead to atomistic resolution anywhere in the simulation domain, and the elegance of
the nonlocal formulation lies in not having to specify where such atomistic regions
emerge nor having to make a conceptual difference between atomistics and coarse
regions. Besides, the above example is highly idealized; in reality repatoms move
continuously so that changes in deformation gradients across element boundaries
amplify significantly over time.
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By contrast, if all atomic sites are defined in a reference configuration and refine-
ment is performed on a reference mesh, as discussed in Sections 3.1 and 3.2, atomic
positions are uniquely defined and can always be recovered (see Fig. 3.15).

a1

a2

b1

b2

(c)
F1

F2

(d)

(e) (g)

(f)

two different
refinements

after further
refinement

a1

a2

b1

b2

(b)
F1

F2

(a)

reference mesh,
lattice sites

and repatoms

deformed elements and
deformed Bravais bases

attempting refinement
by bisection in the 

current configuration

(h)

remeshing in the
reference mesh

Figure 3.15: Mesh refinement with an updated-Lagrangian formulation: (a) starting
from a uniform lattice in the initial/reference configuration, repatom motion leads to
each element carrying its deformation history via deformation gradient FFF i and the
associated deformed Bravais bases, shown in (b). (c) The two deformed adjacent
elements shall refine by bisection but no unique, common repatom location exists
(the ideal location of the new node is marked by a cross, and all nearby lattice
sites fall onto only one of the two adjacent lattices). (d) and (e) show the result
of refinement if one of the two nearby lattice sites is chosen as the new repatom.
Further refinement leads to (f) and (g) where the same problem arises due to a lattice
mismatch; (h) shows remeshing in the reference configuration for comparison.

As an alternative, Biyikli and To [15] recently proposed an updated-Lagrangian
MMM formulation that circumvents some of the above problems by tracking the
exact positions of all lattice sites within an element when required (e.g., when an
atomistic region is adaptively coarsened). Then, the QC approximation interpo-
lates atomic positions, but to compute repatom forces the position of every atom
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contained within the element is computed based on their exact deformed positions
(those no longer lie on a lattice). This comes with increased computational costs
and memory requirements since, effectively, no approximating sampling/summa-
tion rule is applied in those elements.

3.3.3 Mesh coarsening
Although the adaptivity techniques for rebuilding atomic neighborhoods apply gen-
erally to all (atomistic and coarse-grained) sampling atoms as well as to mesh re-
finement and coarsening, adaptivity of the mesh is limited to refinement here. Mesh
coarsening is – in principle – a logical extension to increase efficiency (e.g., to revert
back to a coarse description after defects have passed through an atomistic region).
However, mesh coarsening comes with a crucial problem, and one may individually
consider mesh coarsening in the coarse-grained regions as opposed to starting from
full atomistic resolution.

First, in the coarse-grained domain, the QC description resembles the finite element
method with a special quadrature rule (viz., a specific sampling rule) and material
model (e.g., Cauchy-Born continuum). Here, if elements are not severely distorted,
coarsening can be performed even against a Lagrangian mesh, which was described,
e.g., in [104]. However, caution is required if anything but a local Cauchy-Born
description is used (as here) since – upon coarsening – the merging of adjacent el-
ements with slightly different deformed lattices can lead to sampling atoms with
incorrect local neighborhoods that may produce spurious force artifacts. Second,
coarsening from full atomistics generally requires an updated-Lagrangian descrip-
tion as discussed in [15, 55]. In our fully nonlocal QC formulation we refrained
from the latter for reasons of efficiency (this avoids storing element-wise Bravais
vectors, recomputing shape function values, etc.)

Adaptive mesh coarsening only in the coarse-grained regions, as mentioned above,
can be readily applied in our method. However, coarsening only in the coarse re-
gions is hardly sufficient to provide superior efficiency: if the atomistic region is
not coarsened and mesh quality must be preserved, coarse regions cannot be ef-
fectively coarsened. Mesh coarsening from atomistics can, in principle, be applied
analogous to [15] but is not considered in the present work since it challenges the
fully-nonlocal paradigm: it requires having special elements in which sampling
rules are replaced by summing over all atomic sites, which will have to be investi-
gated separately.
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3.4 Conclusions
We have discussed strategies for automatic model adaptivity (specifically, neigh-
borhood updates and mesh refinement) in the fully-nonlocal QC method, which
leads to full atomistic resolution being tied to evolving regions of interest such as
moving lattice defects. Unlike all previous QC formulations, the chosen framework
does not fundamentally differentiate between atomistic and coarse-grained regions
and therefore enables a truly seamless bridging across scales, from atomistics to
the continuum, solely based on interatomic potentials. Drawbacks are complicated
remeshing and neighborhood update protocols that must be performed against a La-
grangian mesh. We have shown that an element-based constrained bisection algo-
rithm (with mesh nodes restricted to the underlying crystal lattice) in combination
with a neighborhood update algorithm for restructuring the Verlet neighborhood
lists (that involves mapping atomic positions and distances between the current
and the reference configuration) allows for a successful coarse-graining of atom-
istic ensembles that shows controllable, acceptable errors as compared to MD for
the examples of nanoindentation and nanovoid growth. The neighborhood update
scheme has been successfully deployed in both 2D and 3D simulations, while the
mesh adaptation is currently limited to two dimensions (the 3D extension is, in
principle, straight-forward but requires a constrained 3D mesh generator that is the
subject of ongoing research, ref. Appendix C).
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C h a p t e r 4

FINITE TEMPERATURE EXTENSION USING THE MAX-ENT
APPROACH

Chapters 2 and 3 develop the fully nonlocal QC method for 0K as the formula-
tion assumes that at any point of time the exact positions and momenta of all the
repatoms in the system can be calculated without considering thermal vibrations.
However, the modeling of thermal and temperature-varying properties of materials
using QC necessitates the modeling of the energy associated with the thermal vi-
bration of atoms, which brings the requirement of a finite temperature extension.
Section 1.2.4 reviews the current state of the art modeling techniques used to ex-
tend a coarse-grained formulation at finite temperature. For this thesis, we use the
maximum entropy (abbreviated as max-ent approach) to extend our QC formula-
tion to finite-temperature, and this chapter details our implementation as follows.
First, we devlop the governing equations for finite temperature QC using the max-
ent approach previously shown in [9, 60, 87, 120]. We then validate our model
by comparing thermal expansion results with both experiments from [76] and data
presented in [59], and by predicting the elastic constants of pure copper at finite
temperatures. Finally, we calculate spurious force artifacts for physical and thermal
forces at finite temperatures and show that the optimal summation rules, used here
for the first time in connection with finite-temperature QC, minimize these ghost
forces more effectively than all others.

Note that the mex-ent finite-temperature QC concept has been derived previously
[60]. Here, we show derivations to the extent necessary for subsequent discussions,
and we show details of importance for the implementation that are not shown in
previous publications.

4.1 Phase Space Average and the Principle of Maximum Entropy
Like in Chapter 2, we start the formulation with an ensemble of N atoms with
positions qqq = {qqq1, . . . ,qqqN} ,qqq ∈ R3N and momenta ppp = {ppp1, . . . , pppN} , ppp ∈ R3N ,
and the Hamiltonian H (qqq, ppp) given by (2.1). Considering the phase space of all
positions and momenta

(
R3N×R3N), a point in this phase space will be denoted

by (qqq, ppp), and any function that can be determined as a function of positions and
momenta at any instant of time (e.g. (2.1)) will be termed a phase function. This
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motivates the definition of phase space average for any phase function A(qqq, ppp) as:

〈A〉= 1
h3n

∫ ∫
︸︷︷︸

R3N×R3N

A(qqq, ppp) ρ (qqq, ppp) dqqq dppp, where dqqq dqqq =
N

∏
i=1

3

∏
a=1

dqiad pia.

(4.1)
In (4.1), h is Planck’s constant, and the phase function ρ (qqq, ppp) is the probability
density function, which provides the probability that the system is at a point (qqq, ppp) in
phase space. Thus, by definition, ρ (qqq, ppp)≥ 0. The pre-factor

(
h3N)−1 comes from

the the requirement that entropy is extensive in classical statistical thermodynamics.
Following the convention presented in [59], we define the entire phase space as
Γ =

(
R3N×R3N). To determine this probability density function, we will use the

principle of maximum entropy from statistical mechanics in the next section. To
that end, as shown in [59] for an atom a, we assume that it moves in the vicinity
of a position qqqa with standard deviation

√
3τa and it has a momentum of pppa with

standard deviation
√

3σa. From the definition of the probability density function,
these mean positions and momenta for every atom a are

qqqa = 〈qqqa〉, pppa = 〈pppa〉 ∀a = 1,2, ...N. (4.2)

We can physically interpret qqqa and pppa as variables that are used to solve the dynam-
ics of the system at the macroscopic time scale. In other words, at any instant of
time (on the macroscopic scale), we solve for the phase average of positions and
momenta instead of the actual values1. From these, we obtain N new constraints,
which are

〈|qqqa−qqqa|2〉= 3τ
2
a ,

〈|pppa− pppa|2〉= 3σ
2
a , ∀a = 1,2, ...N.

(4.3)

As seen in [60], in order to obtain a physical interpretation and for simplifying
expressions, we define another quantity2

ωa =
σa

τa
. (4.4)

Rearranging (4.3) to eliminate τa we rewrite our constraints as

〈|pppa− pppa|2〉+ω
2
a 〈|qqqa−qqqa|2〉= 6σ

2
a , ∀a = 1,2, ...N. (4.5)

1It is easy to observe that at 0K the QC formulation from Chapter 2 is a special case of (4.2)
where ρ (qqq, ppp) is a Direc δ function.

2The ratio of the standard deviations of position and momentum, ωa, has a physical meaning
and interpretation only at finite temperatures. At 0K, qqqa = qqqa and pppa = pppa, resulting in both τa and
σa being 0. In that case, ωa is undefined.
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To derive the governing equations of motion and solve for qqqa and pppa at the macro-
scopic time scale, the expression for the probability density function ρ (qqq, ppp) is
needed, which is obtained by using the principle of maximum entropy [60] by
Jaynes [49], which states that the probability distribution that best represents the
current state of knowledge is the one with the largest entropy. Therefore, in the set
of all trial probability distributions, the one with the maximum entropy is the proper
distribution. The expression for the global entropy is given by Boltzmann as

S [ρ] =−kB〈logρ (qqq, ppp)〉, (4.6)

where kB is the Boltzmann constant. We solve for the probability distribution func-
tion which maximizes this entropy with the additional constraints

〈1〉= 1,

〈|pppa− pppa|2〉+ω
2
a 〈|qqqa−qqqa|2〉= 6σ

2
a ∀a = 1,2, ...N,

where the second set of constraints comes from (4.5), and the first constraint comes
from the requirement that the system always has a solution in phase space at any
instant of time. Using Lagrange multipliers λ and βa, the expression to maximize
becomes3

L [ρ] = S [ρ]−λ 〈1〉−∑
a

βa
[
〈|pa− pa|2〉+ω

2
a 〈|qa−qa|2〉

]
, (4.7)

and by taking the variation of (4.7) with respect to ρ , we obtain∫
Γ

[
−kB (1+ logρ)−λ −∑

a
βa
[
|pppa− pppa|2 +ω

2
a |qqqa−qqqa|2

]]
δρ dqqqdppp = 0. (4.8)

For the above equation to be satisfied for every variation δρ , we conclude

− kB (1+ logρ)−λ −∑
a

ρβa
[
|pppa− pppa|2 +ω

2
a |qqqa−qqqa|2

]
= 0, (4.9)

which gives the probability density function as

ρ (qqq, ppp) =
1

e1+λ
e−(∑a βa[|pppa−pppa|2+ω2

a |qqqa−qqqa|2]). (4.10)

Once an expression for ρ is obtained, the quantity Z = exp(1+λ )−1 (also known
as the partition function of the system) is obtained as

Z =
1

h3N

N

∏
i

[(
π

βiωi

)3
]
. (4.11)

3The constants λ and 6β 2
a σ2

a are not included because they vanish upon differentiation.
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With this expression for the partition function, we obtain the remaining N Lagrange
multipliers by substituting the probability density expression in (4.2), which sim-
plifies to

βa =
1

2σ2
a

∀a = 1,2, ...N. (4.12)

Once all Lagrange multiplies have been obtained, the final expression for the max-

ent probability distribution function is

ρ (qqq, ppp) =
1
Z

exp
(
−∑

a

|pppa− pppa|2 +ω2
a |qqqa−qqqa|2

2σ2
a

)
, where

Z =
1

h3N

N

∏
i

[(
2πσ2

i
ωi

)3
]
.

(4.13)

4.2 Thermodynamic Potentials
It is worthwhile to note that because of the form of (4.13), the latter can be decom-
posed into a product of exponentials, each depending on the terms associated with
each atom. This form is obtained because of the nature of the imposed constraints,
which are local in nature. Such a form implicitly assumes the local-equilibrium

hypothesis, which states that as long as the system can be divided into different
subsystems, each of which are close to equilibrium, we can solve a non-equilibrium
macroscopic problem by looking at equilibrium relations at the microscopic level.
For this formulation, one considers every atom as a subsystem. In other words,
there will be two kinds of “relaxation times”, one for establishing local equilibrium
at every subsystem, and one for the entire system. The local equilibrium hypothesis
allows the definition of thermodynamic properties like entropy and temperature for
every atom locally. Using the probability function derived in (4.13), we proceed to
calculate different thermodynamic potentials, and in particular, their local forms.

4.2.1 Entropy
Recalling the expression of entropy from (4.6) and using (4.13), we obtain the en-
tropy of the system as

S = kB

(
3N +3

N

∑
a

log
[

σ2
a

h̄ωa

])
. (4.14)

Using the local equilibrium hypothesis outlined above, we decompose this ex-
pression into a summation of entropies of the local subsystems having the form
S = ∑

N
a Sa, which gives us an expression of the local entropy for every atom to be

Sa = 3kB log
σ2

a
h̄ωa

+3kB. (4.15)
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For the purposes of evaluating the expressions for different thermodynamic quanti-
ties, we have made the assumption that the standard deviations of atomic positions
and momenta σa and ωa are known quantities. Subsequent sections elaborate on
ways to determine these parameters. For that purpose, it is useful to rewrite (4.15)
to obtain an explicit expression for σa as

σa =
√

h̄ωa exp
[

1
3

(
Sa

kB
−3
)]

. (4.16)

4.2.2 Internal energy
To obtain the expression for the internal energy, we start with the Hamiltonian of
the system (2.1). Expressing the Hamiltonian of the system as a summation of local
Hamiltonians,

H =
N

∑
a

Ha, (4.17)

gives the Hamiltonian for every atom as

Ha =
1
2
|pa|2

ma
+Va(qqq). (4.18)

We observe that the kinetic energy in (4.18) is obtained locally; however, the poten-
tial energy requires the positions of all atoms in the system, and is hence nonlocal.
In statistical mechanics, internal energy is defined as the phase average of the total
Hamiltonian of the system:

E =
1

h3N

∫
Γ

H(qqq, ppp)ρ(qqq, ppp)dqqqdppp. (4.19)

Using (4.13), the additive nature of the Hamiltonian (4.17) and (4.18), the integral
to evaluate simplifies to

E =
1

h3N ∑
a

∫
Γ

[
1
2
|pa|2

ma

]
ρ(qqq, ppp)dqqqdppp+

1
h3N ∑

a

∫
Γ

[Va(qqq)]ρ(qqq, ppp)dqqqdppp.

= ∑
a

[
1

2ma
〈|pa|2〉+ 〈Va(qqq)〉

]
.

The phase average of the kinetic energy is simplified by manipulating (4.2), which
reduces to

〈|pppa|2〉=
(
3σ

2
a + |pppa|2

)
. (4.20)

Using (4.20) and (4.16), the final expression of the internal energy is obtained as

E = ∑
a

[
3

2ma
h̄ωa exp

(
Sa

3kB
−1
)
+

1
2
|pppa|2

ma
+ 〈Va(qqq)〉

]
. (4.21)



57

4.2.3 Helmholtz free energy
The Helmholtz free energy is defined as a Legendre transform of the internal energy
with respect to entropy:

F (qqq,ωωω,θθθ) = inf
SSS

{
E (qqq,ωωω,SSS)−∑

a
θaSa

}
,

and the local equilibrium relation for every particle is:

θa =
∂E
∂Sa

, (4.22)

where θa is the local temperature of atom a. The dependent variables for the
Helmholtz free energy will be the variables which we solve for in the macroscopic
equilibrium equations. We restrict our analysis to quasistatics and so pa = 0 for
every atom. Due to the nonlocal nature of the potential energy Va(qqq), we invoke
another fundamental result of statistical mechanics to obtain the equilibrium rela-
tion (4.22) without solving for the phase average, called equipartition of energy. It
states that the quadratic term in the Hamiltonian (which is the kinetic energy for our
system) contributes kBθ

2 to the internal energy of the system. In addition, because
of the local equilibrium hypothesis, we enforce this locally as〈

|pppa|2

2ma

〉
=

3
2

kBθa. (4.23)

Comparing (4.23) to (4.20) lets us relate σa to the local temperature as

σ
2
a = kBθama. (4.24)

Finally, using (4.14) and (4.24), the equilibrium relation between local entropy and
local temperature is

Sa = 3kB log
(

kBmaθa

h̄ωa

)
+3kb, (4.25)

which along with (4.25), gives

F(qqq,ωωω,θθθ) =
N

∑
a=1

[
3kBθa log

h̄ωa

kbmaθa
+ 〈Va(qqq, ppp,ωωω)〉

]
. (4.26)

Once we have calculated the internal energy of the system, the problem of find-
ing equilibrium configurations becomes a minimization problem with respect to
the mean positions. In the following sections and for the rest of this work, we re-
strict our studies to isothermal conditions, for which the Helmholtz free energy is a
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suitable energy functional. Using variational mean field theory [59], for an isother-

mal, quasistatic process, the equilibrium configurations of a system are obtained by
solving

inf
qqq

inf
ωωω

F (qqq,ωωω,θθθ) . (4.27)

However, before we proceed to obtain equilibrium expressions by performing this
minimization, we simplify the phase average of the potential energy in the next
section.

4.3 Potential Phase Average
In (4.26), the phase average for the potential cannot be evaluated analytically. This
arises due to the nonlocal nature of the potential for atomistics. In order to be able
to get equilibrium configurations of the system, the phase average has to be approx-
imated numerically. The Gaussian nature of the probability distribution function
(4.13) motivates the use of numerical Gaussian quadrature.

Consider any general potential at an atomic site i. Its phase average is given (from
(4.1)) as:

〈Vi (qqq)〉=
1

h3N

∫
Γ

Vi(qqq)ρ(qqq, ppp,ωωω)dqqq dppp,

=
1

Zh3N

∫
Γ

Vi(qqq)exp
(
−∑

a

|pa− pa|2 +ω2
a |qa−qa|2

2σ2
a

)
dqqq dppp,

using (4.13). Noting that the potential only depends on positions, performing the
integral over the ppp space independently gives

〈Vi〉=
1

Zh3N

N

∏
j=1

[√
2σ2

j π

]3 ∫
qqq

Vi(qqq)exp
(
−∑

a

ω2
a |qa−qa|2

2σ2
a

)
dqqq.

Recognizing that Z = 1
h3N ∏

N
i

[(
2σ2

i π

ωi

)3
]

, and expressing the potential as a function

of positions of all the atoms in the system, we are left with

〈Vi〉=
1

(2π)
3N
2

N

∏
j=1

ω3
j

σ3
j

∫
qqq

Vi(qqq1,qqq2, ...qqqN)exp
(
−∑

a

ω2
a |qa−qa|2

2σ2
a

)
dqqq1 dqqq2...dqqqN .

We only consider potentials of the embedded-atom type so to obtain the potential
at an atomic site i, only those atoms that lie in the interaction distance (qqqJ ∈Si) of
atomic site i are considered. The phase average now is re-expressed as

〈Vi〉=
1

(2π)
3N
2

(
N

∏
k=1

ω3
k

σ3
k

)∫
qqq

Vi(qqq j : qqq j ∈Si)exp
(
−∑

a

ω2
a |qa−qa|2

2σ2
a

)
dqqq1...dqqqN .
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Noting that the atomic positions that lie outside the interaction distance can be
integrated independently, we are left with

〈Vi〉=
1

(2π)
3nN

2

(
∏

k∈Si

ω3
k

σ3
k

)
∏
j∈Si

∫
Vi(qqq j : qqq j ∈Si)exp

(
−

ω2
j |q j−q j|2

2σ2
j

)
dqqq j,

(4.28)
where nN is the number of neighbors in the interaction distance for atomic site i.
Before we numerically solve (4.28), we define a change of variables for each of the
coordinates, viz. for a = 1,2,3

ω2
j

2σ2
j
(q j,a−q j,a)

2 = x2
j,a ⇔ q j,a(x j,a,q j,a) =

√√√√2σ2
j

ω2
j

x j,a +q j,a, (4.29)

so that

dq j,a =

√√√√2σ2
j

ω2
j

dx j,a.

The simplified expression of the phase average of the potential energy becomes

〈Vi〉=
(

1√
π

)3nN

∏
j∈Si

∫
∞

−∞

Vi(qqq j
(
xxx j,qqq j

)
: qqq j ∈Si)

3

∏
a=1

exp
(
−x2

j,a
)

dx j,a. (4.30)

4.3.1 Numerical quadrature
At this point, numerical quadrature is required to solve (4.30). Hermite-Gauss
quadratures are integral approximations of the type∫

∞

−∞

. . .
∫

∞

−∞

f (x1, . . . ,xn) exp(−x2
1) · . . . · exp(−x2

n) dx1 · . . . · dxn ≈
nQP

∑
p=1

f (xxxp)Wp,

for n scalar independent variables. nQP represent the number of quadrature points
chosen, Wp is the weight at every point and xxxp = {x1,p,x2,p, ...xnP} is the set of
quadrature values at sampling p. Equation (4.30) fits into this description, and so
our exact phase average expression for the potential energy of an atom at a site i

turns into the approximation

〈Vi〉 ≈
(

1√
π

)3nN nQP

∑
p=1

Wp Ṽi
[
xxx1,p, . . . ,xxxnN ,p

]
. (4.31)

The actual sampling values and weights are chosen based on quadrature rules given
by A.H. Stroud [108]. Based on different degrees of quadrature, xxxP and WP have to
be determined. To avoid computational overhead, our emphasis is to seek quadra-
ture rules that use the least number of quadrature points for a given degree.
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Third-Degree Quadrature

For n scalar variables, this third degree-quadrature contains nQP = 2n samples.
These are obtained by requiring that the summation integrates all monomials of
degree ≤ 3 exactly. The nQP samples are shown in Table 4.1. For the implementa-

p WP x1 x2 ... xn

1 V
2n r 0 ... 0

2 V
2n 0 r ... 0

... ...

n ... 0 0 ... r

n+1 ... −r 0 ... 0

n+2 0 −r ... 0

...

2n V
2n 0 0 ... −r

where V = I(1) = π
n
2 , r =

√
n
2
.

Table 4.1: Quadrature weights and values for each of the 2n samples

tion of this quadrature rule, we note that if a site i has nN nearest neighbors which
interact for the potential, then n = Spatial Dimension× (nN + 1) as the potential
also depends on the position of the site in question, and for every involved position,
the number of scalar variables is equal to the spatial dimension of the simulation.
Thus, for 3D simulations, n = 3(nN +1). This makes the total number of quadra-
ture points to be nQP = 2n = 6nN + 6. This also means that for every quadrature
sample p, as shown in Table 4.1, we update one coordinate of one of the positions
by the quadrature shift ±r.
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Fifth-Degree Quadrature

For n scalar variables, the general fifth-degree quadrature contains nQP = 2n2 + 1
samples. The general form of the approximation of the integral is written as

I ( f (xxx))≈ Q( f ) =B0 f (0)+

B1

[
∑

permutations of r
(r,0, ...,0)+(−r,0, ...,0)

]

+B2

[
∑

permutations of r
(r,r, ...,0)+ ∑

permutations of r
(r,−r, ...,0)

]
+

B2

[
∑

permutations of r
(−r,r, ...,0)+ ∑

permutations of r
(−r,−r, ...,0)

]
,

where

r =

√
3
5
, V = I(1) = π

n
2 ,

B0 =
25n2−115n+162

162
V,

B1 =
70−25n

162
V,

B2 =
25
324

V.

Similar to our observation for the third-degree case, for a 3D simulation and for nN

number of neighbors, here we obtain n = 3(nN + 1), which gives nQP = 18(nN +

1)2+1 samples. For the EAM Johnson potential [51] for Cu, we have 18 neighbors
in the interaction distance, which gives nQP = 6499. This is the number of quadra-
ture sampling we perform for every site where the potential is evaluated, which
makes the fifth-degree quadrature prohibitively expensive.

4.4 Equilibrium Configurations
After obtaining an approximate expression for the potential energy at an atomic site
using Gaussian quadrature in Section 4.3, we proceed to perform the minimization
in (4.27) in order to solve for the mean positions and mean-field parameters ω . We
once again note that we restrict this study to isothermal cases at known temperature,
so the temperature at every atomic site θa is known. Thus, for the system to be in
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equilibrium, we need

∂

∂qqqi
F(qqq,ωωω,θ) = 0, (4.32)

∂

∂ωi
F(qqq,ωωω,θθθ) = 0. ∀i = 1,2,3...N. (4.33)

4.4.1 Position minimization
We solve for the time evolution of the positions by minimizing the free energy with
respect to the position. From (4.26) and (4.33),

0 =
∂

∂qqqi

N

∑
a=1

[
3kBθa log

h̄ωa

kbmaθa
+ 〈Va(qqq)〉

]
,

and using the phase average approximation (4.31), we obtain

0 =
N

∑
a=1

[
∂

∂qqqi

(
1√
π

)3nN nQP

∑
p=1

Wp Ṽa
[
xxx1,p, . . . ,xxxnN ,p

]]

=

(
1√
π

)3nN N

∑
a=1

nQP

∑
p=1

Wp

[
∂

∂qqqi
Va
[
qqq1(xxx1,p,qqq1), . . . ,qqqnN

(xxxnN ,p,qqqnN
)
]]

,

where, for every quadrature sample,

Ṽa
[
xxx1, . . . ,xxxnN

]
=Va

[
qqq1(xxx1,qqq1), . . . ,qqqnN

(xxxnN ,qqqnN
)
]
, qqq j(xxx j,qqq j)=

√
2

σ j

ω j
xxx j+qqq j.

We also observe that qqqi and qqqi are linearly related, so

∂

∂qqqi
V (qqq1, . . . ,qqqnN

) =
∂

∂qqqi
V (qqq1, . . . ,qqqnN

).

So the governing equation of motion becomes

0 =

(
1√
π

)3nN N

∑
a=1

nQP

∑
p=1

Wp

[
∂

∂qqqi
Va
[
qqq1(xxx1,qqq1), . . . ,qqqnN

(xxxnN ,qqqnN
)
]]

,

=−
(

1√
π

)3nN N

∑
a=1

nQP

∑
p=1

Wp fff ai
[
qqq1(xxx1,qqq1), . . . ,qqqnN

(xxxnN ,qqqnN
)
]
,

(4.34)

where fff ai =−∂Va
∂qqqi

is the atomic force between sites a and i as defined in (2.2).

4.4.2 ω minimization
Solving for the equilibrium values of the free parameter ω follows similar steps as
in Section 4.4.1. Minimizing with respect to ω gives

0 =
∂

∂ωi

N

∑
a=1

[
3kBθa log

h̄ωa

kbmaθa
+ 〈Va(qqq)〉

]
.
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Once again, using (4.26) and (4.30), the expression reduces to

−3kBθi

ωi
=

(
1√
π

)3nN N

∑
a=1

nQP

∑
p=1

Wp
∂

∂ωi
Va
[
qqq1(xxx1,p,qqq1), . . . ,qqqnN

(xxxnN ,p,qqqnN
)
]
.

To obtain the partial derivative of the potential with respect to ω , we use

∂

∂ωi
=

∂

∂qqqi
· ∂qqqi
∂ωi

=
∂

∂qqqi
· ∂

∂ωi

(√
2

σi

ωi
xxxi +qqqi

)
=−
√

2
σi

ω2
i

xxxi ·
∂

∂qqqi
=−
√

2
σi

ω2
i

xxxi ·
∂

∂qqqi
,

which turns the second set of governing equations into

3kBθi

ωi
=

(
1√
π

)3nN N

∑
a=1

nQP

∑
p=1

Wp
√

2
σi

ω2
i

xxxi,p ·
∂

∂qqqi
Va
[
qqq1(xxx1,p,qqq1), . . . ,qqqnN

(xxxnN ,p,qqqnN
)
]
.

(4.35)
Using (4.24) and following steps from Section 4.4.1, the governing equation for the
time evolution of ω is given as

0=
3kBθi

ωi
+

(
1√
π

)3nN N

∑
a=1

nQP

∑
p=1

Wp

√
2kBθimi

ω2
i

xxxi,p · fff ai
[
qqq1(xxx1,qqq1), . . . ,qqqnN

(xxxnN ,qqqnN
)
]
.

(4.36)
Thus (4.34) and (4.36) are the equations that we solve for every atomic site i in order
to obtain the equilibrium configurations of the system. These undergo modifications
once coarse-graining is introduced similarly to Chapter 2 for the finite temperature
case. The coarse-grained equations are derived in Section 4.6.

4.5 Recovering 0K behavior
An essential check in any finite-temperature formulation is the recovery of the gov-
erning equation (2.6) if we set the temperature to zero. As noted before, the mean-
field parameter ω is meaningless for this case and therefore should not evolve with
time. From (4.29), the position shifts for Gaussian quadrature (xxx j) are defined for
every quadrature sample and they relate qqq j and qqq j as

qqq j,a(xxx j,a,qqq j,a) =

√√√√2σ2
j

ω2
j

xxx j,a +qqq j,a,

but for θ j = 0, we have σ j = 0 from (4.24). So each of the quadrature samples are
identical and we have

〈Va〉=Va
[
qqq1,qqq2 . . . ,qqqnN

]( 1√
π

)3nN nQP

∑
p=1

Wp.
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For both the third- and fifth-degree quadratures from Section 4.3.1, we have

nQP

∑
p=1

Wp =
√

π
3nN = I(1),

which simplifies the phase average of the potential to

〈Va〉=Va
[
qqq1,qqq2 . . . ,qqqnN

]
.

Substituting this in (4.34), we indeed recover (2.6).

4.6 Quasicontinuum Formulation
As shown in Chapter 2, in QC we coarse-grain the system into repatoms and sam-
pling atoms. After obtaining (4.34) and (4.36), we proceed to apply this coarse-
graining method for the finite-temperature extension of our QC formulation. To
this end, we recall that the approximate current (mean) position qqqi

h and (mean)
momentum pppi

h of atom i are obtained by interpolation:

qqqi ≈ qqqi
h =

Nh

∑
a=1

Na(XXX i)xxxa,

pppi ≈ pppi
h = mi ẋxxh

i = mi

Nh

∑
a=1

Na(XXX i) ẋxxa for i = 1, . . . ,N.

(4.37)

Na(XXX i) is the shape function of repatom a evaluated at the position XXX i of lattice
site i in the reference configuration. Using the same affine interpolation as a natural
extension for the new mean-free parameter ωi allows us write the approximate value
for an atom i as

ωi ≈ ω
h
i =

Nh

∑
a=1

Na(XXX i)sa, for i = 1, . . . ,N. (4.38)

Here, we have introduced the notation of {xxx1,xxx2...xxxNH} as the repatom positions and
{s1,s2...sNH} as the repatom mean-free parameters corresponding to ω . Analogous
to (2.5), we re-evaluate the expressions for the net force on a repatom k to obtain
the evolution of the positions and ω of the repatoms. For ease of notation, we refer
to the “force” exerted on the mean-free parameter ω as the thermal force4.

4This is a misnomer, as we do not calculate a force that evolves the temperature, but rather one
that evolves ω . However, noting that our study is restricted to isothermal cases, and that this is a
convenient notation that distinguishes the two forces, we stick to this terminology.
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4.6.1 Physical force on a repatom
We combine our approaches from Chapter 2 and Section 4.4.1 to obtain the physical
force on a repatom k. For the isothermal, quasistatic finite temperature problem, the
expression is given by

FFFk(xxx) =−
∂

∂xxxk
F
(

qqqh,ωωωh,θθθ h
)
.

Using (4.26) and noting that only the potential remains after differentiation, the
force expression simplifies to

FFFk(xxx) =−
N

∑
a=1

∂

∂xxxk
〈Va(qqqh)〉.

As only the positions qqqh depend on the repatom positions xxxk, using the chain rule
gives

FFFk(xxx) =−
N

∑
a=1

[
N

∑
j=1

∂

∂qqqh
j
〈Va(qqqh)〉

]
∂

∂xxxk

(
qqqh

j +

√
2σ j

ω j
xxx j

)
,

where (4.29) is used to write qqqh in terms of the mean position qqqh. Now applying the
interpolation from (2.3) results in

FFFk(xxx) =−
N

∑
a=1

[
N

∑
j=1

∂

∂qqqh
j
〈Va(qqqh)〉

]
Nk(XXX j).

Introducing the energy-based formulation from (2.7) and restricting the potentials
to be of the EAM type, we further approximate the expression by performing the
potential calculation only at a set of Ns sampling atoms. Thus, the summation of all
lattice sites over index a, is replaced with a reduced summation of sampling atoms
over index α , as shown in Section 2.2. Rewriting the force expression with this
reduced summation gives

FFFk(xxx) =−
Ns

∑
α=1

wα ∑
j∈Sα

∂

∂qqqh
j
〈Vα(qqqh)〉Nk(XXX j).

Using numerical quadrature from Section 4.3, the final expression for the force on
a repatom k becomes

FFFk(xxx) =−
Ns

∑
α=1

wα ∑
j∈Sα

nQP

∑
p=1

Wp
∂

∂qqq j
Vα

[
qqq1(xxx1,qqq1), . . . ,qqqnN

(xxxnN ,qqqnN
)
]
Nk(XXX j),

(4.39)
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where we have absorbed the term
(

1√
π

)3nN
into the weight W̃p by defining the new

quadrature weight as W̃p =Wp/
(

1√
π

)3nN
. In the following, we assume that for the

quasicontinuum formulation, we deal with a reduced set of atoms, and will drop
the superscript h from atomic positions for conciseness. As all of our studies are
performed by EAM-based potentials, computational implementations require us to
evaluate

∂

∂qqql
Vi =

∂

∂qqql

(
1
2 ∑

j∈Si

Φ(ri j)+F (ρi)

)
,

which gives the force on a site l for the EAM potential as

∂

∂qqql
Vi = ∑

j∈Si

[
1
2

Φ
′
(ri j)+F

′
(ρi)ρ

′
(ri j)

]
1
ri j

(
δil−δ jl

)
·
(
qqqi−qqq j

)
. (4.40)

Substituting (4.40) back into (4.39), the force on a repatom for an EAM potential
becomes

FFFk(xxx) =−
nQP

∑
p=1

Wp

Ns

∑
α=1

wα ∑
m∈Sα

[
1
2

Φ
′
(rαm)+

F
′
(ρα)ρ

′
(rαm)

] (qqqα −qqqm)

rαm
[Nk(XXXα)−Nk(XXXm)].

(4.41)

4.6.2 Thermal force on a repatom
Analogous to the derivation of the physical force on the repatom, we evaluate the
expression for the thermal force on a repatom k as

Tk(s) =−
∂

∂ sk
F(qqqh,ωωωh,θθθ h),

=−
N

∑
a=1

[
3kBθa

∂

∂ sk
log

h̄ωa

kbmaθa
+

∂

∂ sk
〈Va(qqq)〉

]
.

Considering the summation rules as before and using (4.38), the expression simpli-
fies to

Tk(s) =−
Ns

∑
α=1

wα

[
3kBθα

ωα

Nk(XXXα)+
∂

∂ sk
〈Vα(qqq)〉

]
.

To express the partial derivative with respect to s in a form that allows us to use
(2.6), we consider the term

∂

∂ sk
〈Vα(qqq)〉=

N

∑
j=1

∂

∂qqq j
〈Vα(qqq)〉 ·

∂qqq j

∂ sk
,
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where we use the fact that the dependence on sk comes implicitly from the positions
q j. Further evaluation gives

∂

∂ sk
〈Vα(qqq)〉=−

N

∑
j=1

√
2

σ j

ω2
j

∂

∂qqq j
〈Vα(qqq)〉 ·xjNk(XXX j).

Invoking the numerical quadrature from Section 4.3, the expression for the thermal
force for EAM potentials on a repatom k becomes

Tk(s) =−
Ns

∑
α=1

wα

[
3kBθα

ωα

Nk(XXXα)

]
+

nQP

∑
p=1

Wp

Ns

∑
α=1

wα ∑
j∈Sα

√
2

σ j

ω2
j

∂

∂qqq j
Vα

[
qqq1(xxx1,qqq1), . . . ,qqqnN

(xxxnN ,qqqnN
)
]
·xjNk(XXX j).

(4.42)

Like in the case of the physical force, we evaluate (4.42) further for the case of
EAM potentials. Recalling the general form of EAM potentials given by (2.11), a
substitution into (4.42) gives the thermal force on a repatom k as

Tk(s) =−
Ns

∑
α=1

wα

[
3kBθα

ωα

Nk(XXXα)

]
+

nQP

∑
p=1

Wp

Ns

∑
α=1

wα

(
√

2
σα

ω2
α

∑
m∈Sα

[
1
2

Φ
′
(rαm)+

F
′
(ρα)ρ

′
(rαm)

] (qqqα −qqqm)

rαm
·xαNk(XXXα)+

∑
m∈Sα

√
2

σm

ω2
m

[
1
2

Φ
′
(rαm)+

F
′
(ρα)ρ

′
(rαm)

]−(qqqα −qqqm)

rαm
·xmNk(XXXm),

)
.

(4.43)

We note that while (4.43) appears more involved, its form is similar to (4.41).

4.7 Uniform Thermal Expansion
We now present the results from numerical simulations that were performed with
the finite-temperature QC framework derived in the previous sections. We begin
with a fundamental yet important test of the finite-temperature implementation, the
uniform thermal expansion test. Here, we model the change in the relaxed config-
uration of a system, when it is subjected to uniform temperature. Such a study has
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already been performed by Kulkarni [59] and Venturini et al. [120] for the force-
based max-ent hot-QC formulation, but we perform it for the first time for a fully
non-local energy-based formulation at finite temperature. In addition, we use sum-
mation rules introduced by Amelang, Venturini, and Kochmann [5], and also model
our hot-QC formulation using both third- and fifth-degree quadrature, whereas pre-
vious studies have been restricted to the third-degree quadrature. This study is also
performed using a variety of interatomic potentials listed in Table 4.2, providing an
extensive comparison of the performance of these potentials that has previously not
been reported.

We perform thermal expansion tests on FCC copper and aluminum, and we ob-
serve the linear thermal expansion, which we will do by plotting the relative lattice
parameter as a function of temperature. We note that the thermal expansion coeffi-
cient α is the instantaneous slope of this curve, but we restrict our observations to
the curve itself. Thus, we plot ε as a function of temperature T , where ε is given as

ε =
a
a0
−1, (4.44)

where a0 is the lattice parameter at a given temperature T0 and a is the lattice pa-
rameter at temperature T . This is consistent with [60] and allows us to compare our
results with previous results. As noted before, the thermal expansion coefficient is

α(T ) =
∂ε

∂T
.

Here, we show the effects of uniform thermal expansion using two types of simula-
tions.

4.7.1 Infinite crystal simulation
In this simulation, we assume that the atoms lie in an infinite FCC single crystal,
which means every atom sees the exact same neighborhood. This setting is identical
to the full-periodic simulations shown in [60], [120]. However, we formulate our
system differently from those by modeling the neighborhood of exactly one atom.
This changes the governing equations, as the only mechanical degree of freedom in
the system is the lattice parameter for an FCC system. A detailed derivation of the
new set of equilibrium equations that we obtain is shown in Appendix A.

4.7.2 Finite large-scale simulation
In addition to the approach in Section 4.7.1, we observe thermal expansion with-
out changing the governing equations as done in Appendix A.1. Another way to
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Name rcuto f f a0 Reference
Copper
Johnson 3.249 A 3.609 A Johnson [50]

EFS 4.320 A 3.609 A Dai et al. [29]
Sutton Chen 3.249 A 3.610 A Sutton and Chen [109]

Mishin 5.507 A 3.615 A Mishin et al. [73]
Mendelev 6.000 A 3.636 A Mendelev and King [68]

Aluminum
Winey Kubota Gupta 6.365 A 4.025 A Winey, Kubota, and Gupta [129]

Zhou 6.404 A 4.050 A Zhou, Johnson, and Wadley [136]
Mishin 6.287 A 4.050 A Zope and Mishin [137]

Mendelev 6.500 A 4.045 A Mendelev et al. [69]

Table 4.2: List of the interatomic potentials for Cu and Al used for all simulations
with their cut-off radius and the lattice parameter provided to construct an FCC
lattice.

approximate the same response as the infinite case but by modeling a finite set of
atoms is to model a large system of atoms and measure the response away from
the surfaces, thereby mitigating the errors introduced by surface effects. For this
set of simulations, we model an 8×8×8 cube of an FCC material which consists
of 2,547 atoms. After setting a uniform temperature, we let the system relax and
measure the volumetric expansion of a small subset of this cube, and take a cube
root of this volume to obtain the linear expansion. We use this measure instead of a

in (4.44) and plot the results.

4.7.3 Interatomic potentials
To test the performance of the interatomic EAM potentials with finite temperature,
we chose a variety of potentials from the Interatomic Potentials Repository Project
(IPR) [75]. Our studies are performed with FCC metals Al and Cu, and Table 4.2
lists the various potentials used for the simulations discussed in this chapter.

4.7.4 Results
We show the results from simulations described in Sections 4.7.1 and 4.7.2. The
plots show ε as a function of temperature (4.44) by comparing a variety of cases
: (i) Experimental data for single-crystal Al and Cu from Nix and MacNair [76],
(ii) infinite crystal simulation using both third- and fifth-degree Gaussian quadra-
ture, (iii) finite large-scale simulations with volume calculations using a 1×1×1
cell, a 2×2×2 cell and a 4×4×4 cell extracted from the center of the simulation
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cube, (iv) results from [59] for the Johnson potential [50], (v) results from MD
simulations performed using the LAMMPS [101] with the OpenKim database [34].
We use a T0 = 273K as the reference temperature to match the experimental data.
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Kulkarni et. al (2008)

Figure 4.1: Uniform thermal expansion of single crystal FCC copper using the EFS
potential [29] to the left and the Johnson potential [50] to the right. Experimental
data from [76].
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Figure 4.2: Uniform thermal expansion of single crystal FCC copper using the
Mendelev potential [68] to the left and the Mishin potential [73] to the right. Ex-
perimental data from [76].
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Figure 4.3: Uniform thermal expansion for a single crystal FCC lattice. Left panel:
Cu using the Sutton Chen potential [109]. Right panel: Al using the Mishin poten-
tial [137]. Experimental data from [76].
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Figure 4.4: Uniform thermal expansion of single crystal FCC aluminum using
the Mendelev potential [69] on the left and Winey Kubota Gupta[129] on the
right.Experimental data from [76].

Infinite vs finite: We observe in Figures 4.1, 4.2, and 4.4 that both the infinite-
and finite-crystal simulations provide similar trends for all the copper potentials.
This shows that despite solving a completely different formulation, the relaxed
value of the lattice parameter increases at the same rate for both. In addition, for the
finite-crystal simulation, the results for the (1×1×1), (2×2×2), and (4×4×4)
are almost identical, which shows that the interior of the cube expands uniformly
and does not encounter surface effects.

Third- and fifth-degree quadrature: An important comparison to observe is the
one between the two types of numerical quadrature implemented. As the fifth-
degree quadrature is computational intensive, this study is performed only with
the infinite-crystal simulation. Figures 4.1, 4.2, 4.3, and 4.4 all show the com-
parison between the third- (quad3) and fifth-degree (quad5) quadrature for various
potentials. We observe that quad3 generally under-predicts the value of thermal
expansion for all the cases; however, for EFS, Johnson and Mishin potentials in
copper, the difference between the two quadrature rules is negligible. However,
in aluminum, the quad5 performs significantly better for the Sutten-Chen, Mishin,
Mendelev and Winey Kubota Gupta. It better matches the experiments and also the
MD calculations. This shows that despite the computational overhead associated
with fifth-degree quadrature, depending on the choice of potential, it is better to use
quad5 over quad3 for correctness.

Comparison to LAMMPS: To compare the effectiveness of the max-ent formu-
lation with actual MD results, we use LAMMPS with the OpenKim database [34].
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Comparisons are only made for the exact same potential files used in both [34] and
our hot-QC formulation. The MD results are performed using the tests provided by
Wen [127]. Figures 4.2, 4.3, and 4.4 show the comparisons of the MD data with hot-
QC. We observe that while our quad3 results do not agree well with the LAMMPS
data (with the notable exception of the Mishin potential [137]), the quad5 results
match well for every potential that is compared. This shows that the approximation
introduced by considering phase averages and the max-ent formulation to solve the
governing equations of motion, performs well only if the phase averages are com-
puted with higher degree quadrature. Other possible sources of deviation from MD
results include differences in the MD solver and QC solver and convergence criteria
for the simulation.

Comparison to Experiments: For most potentials, the thermal expansion results
match experimental data from [76], with the exception of Sutton Chen for copper.
Some deviations are expected due to the difficulty in manufacturing pure metals for
experimental purposes. In addition to experimental data, we obtain a good compar-
ison with Kulkarni [59] for the Johnson potential for copper.

The above results show the importance of higher order quadrature and a good choice
of potential in order to accurately model a system using hot-QC. Looking at the
overall comparisons with both experiments and MD, we conclude that this hot-QC
formulation captures lower-temperature thermal expansion better, and the third-
degree quadrature rule deviates at higher temperatures. These thermal expansion
results provide a basis for selection of a temperature range while choosing a po-
tential for future applications. Despite a close match of the fifth-order quadrature
hot-QC with MD, the increasing mismatch at higher temperatures for some poten-
tials suggests limitations for this model to replicate results from atomistics.

4.8 Finite Temperature Elastic Constants
After the promising results of thermal expansion tests, we test our finite-temperature
QC formulation in its ability to approximate long-range elastic fields by using
coarse-graining.

4.8.1 Theory
Phillips [86] and Venturini [119] give a comprehensive overview of the theory be-
hind elastic constants calculations using a microscopic approach, so a short para-
graph is provided here.
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If we restrict the deformation in the system to small deformations, then linear elas-
ticity theory says that the strain energy stored in the system undergoing a strain ε

can be expressed using the elastic energy density w as

w(ε) =
1
2 ∑

i, j,k,l
Ci jklεi jεkl. (4.45)

We note that (4.45) is a continuum expression, but can also be transformed into the
atomistic degrees of freedom by writing the strain energy in the form

w(ε) =
1
V
(F(qqq,ε)−F(qqq,0)) , (4.46)

where F(qqq,ε) is the Helmholtz free energy in the deformed state of a unit cell and
F(qqq,0) is the free energy of a perfect unit cell. The justification of equating (4.45)
and (4.46) is that both represent the energy per unit volume. By expanding the
Helmholtz free energy about the reference state (εεε = 000), only considering terms up
to the second order, and noting that the linear term vanishes about the reference
state, one obtains [86, 119]

Ci jkl =
1
V

∂ 2F
∂εi j∂εkl

∣∣∣∣
εεε=000

=
∂ 2w

∂εi j∂εkl

∣∣∣∣
εεε=000

. (4.47)

Writing the strain tensor εεε = γξ , where γ is a scalar measure of the applied strain
and ξ is a symmetric transformation matrix pertaining to a given mode of deforma-
tion, (4.47) simplifies to

1
V

∂ 2F
∂γ2

∣∣∣∣
γ=0

=
∂ 2w
∂γ2

∣∣∣∣
γ=0

. (4.48)

Venturini [119] showed that by using thermodynamic relations at constant temper-
ature, and applying appropriate transformation matrices, one can recover the three
fundamental elastic constants of a fcc material: bulk modulus κ , uniaxial modulus
C11, and shear modulus µ =C44. The expressions for these moduli are given as

κ =
1

9V
∂ 2F
∂γ2

∣∣∣∣
γ=0

with ξ =

1 0 0
0 1 0
0 0 1

 (4.49)

for the bulk modulus,

µ =
1

4V
∂ 2F
∂γ2

∣∣∣∣
γ=0

with ξ =

0 1 0
1 0 0
0 0 0

 (4.50)
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for the shear modulus, and

C11 =
1
V

∂ 2F
∂γ2

∣∣∣∣
γ=0

with ξ =

1 0 0
0 0 0
0 0 0

 (4.51)

for the uniaxial modulus.

4.8.2 Scenario setup

Figure 4.5: The initial setup of the ElasticConstants scenario for single-crystal fcc
Cu. The left panel shows the fully atomistic case containing 25357 atoms. The
center panel shows the coarse-grained scenario with 5% repatom density with a
total of 1274 atoms used to simulate the entire region. The right panel shows the
mesh formed by this coarse set of atoms.

This simulation achieves two main goals. We identify the errors associated with
coarse-graining as a function of temperature. To this end, we will evaluate the
elastic constants of single-crystal copper at various temperatures for two sets of
systems: a fully resolved system where we model all degrees of freedom, and a
coarse-grained system where we heavily reduce the number of degrees of freedom.
Considering the fully resolved values as the “exact solution”, we compare them
to the coarse-grained results at various temperatures and plot the relative errors
associated with each of the elastic constants. The other goal is to compare the
calculated values of elastic constants to experimental observations, which aims for
a validation of the finite-temperature nonlocal QC formulation. To this end, we plot
the elastic constants obtained by our hot-QC model as a function of temperature
and compare them to experimental observations for single-crystal Cu.

The scenario is set up is as follows. A three-dimensional QC representation of
single-crystal fcc Cu, using the Finnis-Sinclair potential of [29], is set up and affine
boundary conditions are applied remotely to a large crystalline ensemble. The re-
duced set of repatom locations is chosen randomly, which provides an extremely
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robust test to the capabilities of the QC formulation. As a representative example,
we choose a repatom density of 5%, where repatom density is defined as the ratio of
the number of repatoms to the total number of lattice sites contained in the sample.
This represents a rather coarse setup, as shown in Figure 4.5. The random choice
of repatoms affects the results, and so 20 different realizations for the same value
of repatom density are performed, and an average is taken. Finally, the same sim-
ulation is performed using a density of 100% (representing the exact solution) and
the elastic constants obtained from this simulation are used to calculate the errors
shown by the coarse simulations.

4.8.3 Results
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Figure 4.6: Results of the elastic constant simulations: (a) relative error in the bulk
modulus (b) relative error in the shear modulus (c) relative error in the uniaxial
modulus, plotted for a range of temperatures, for a repatom density of 5%. The
relative error is measured with respect to the exact values obtained by full atomistics
(repatom density 100%).

Figure 4.6 shows the results of the elastic constants simulations. Our coarse-grained
QC model shows low errors (less than 1%) for all three elastic constants. It is also
worth noting that the errors do not change as we increase the temperature in the
simulations. As mentioned in Section 4.8.2, the exact values are determined by
using the fully-resolved atomistic ensemble to obtain the values of elastic constants.
Figure 4.7 shows the comparison of our calculated elastic constants with known
experimental values, and other atomistic simulations using MD. The experimental
data is obtained from Overton and Gaffney [81] and Chang and Himmel [20]. We
notice a slight offset in the values compared to the experiments, but overall we
capture the expected softening with increase in temperature quite well. For both
the bulk modulus and the uniaxial modulus, the offset is maintained throughout the
temperature range. [29] provide values for elastic constants, which we reproduce
exactly for 0K. It is interesting to note that the elastic constants of [29] also have the
offset that we observe in our coarse-grained QC simulations. This can be attributed
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Figure 4.7: Results of the elastic constant simulations on copper: Comparison of
the bulk modulus, shear modulus, and uniaxial modulus to various experimental
results plotted at a range of temperatures. Experimental results from [81], [20]

to the effect of fitting parameters while designing the potential, such that quantities
like elastic constants match actual experiments at room temperature. So, the reason
we maintain this offset could be due to the fact that the 0K simulations performed
by coarse-grained QC, while correctly reproducing MD, assume that the parameters
provided by the potential are for 0K.
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4.9 Finite Temperature Force Artifacts
In Section 1.2 we describe the various approaches to multiscale modeling and one
of the main challenges faced during scale bridging are spurious force artifacts [5],
[10], [89]. Section 2.2.1 outlines this problem for the energy-based QC method
when we evaluate the expression for the force on a repatom. Force artifacts are non-
physical forces which change the behavior of the system and give erroneous results.
Depending on the choice of sampling atoms and weights, different summation rules
in QC give rise to different magnitudes of force artifacts. Amelang, Venturini, and
Kochmann [5] have studied various summation rules in detail to quantify the ghost
force errors at 0K. Their results show conclusively that the optimal summation
rules outperform all others in their ability to greatly minimize errors due to force
artifacts. While the errors due to physical forces at 0K have been quantified, force
artifacts due to physical and thermal forces at higher temperatures have not been
studied before. We perform a study similar to [5] to investigate force artifacts at
finite temperatures.

Figure 4.8: The initial setup to observe force artifacts across interfaces in fcc Cu
single-crystal modeled using the EAM potential by Dai et al. [29]. The domain
is coarsened in four layers and contains 24 million atoms that are represented by
16528 repatoms. The left panel shows all repatoms used in this simulation. The
center panel shows the mesh constructed by these repatoms. The right panel shows
a zoomed view of a clip of this mesh that shows the four interfaces formed by the
four layers of coarsening.

4.9.1 Scenario setup
The main goal we achieve in this study is to quantify the errors produced by physi-
cal force artifacts and force artifacts on the mean-free parameter ω , which we have
termed thermal forces, at finite temperatures, due to the effect of coarse-graining
of the domain of study. In addition, we also test the effectiveness of the optimal
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summation rule to minimize these force artifacts, and form comparisons with other
summation rules used in other QC formulations. To this end, we construct a cube of
fcc Cu having sharp and diffused interfaces due to rapid coarse-graining from full
atomistic resolution to a coarse region in factors of 2 in a unified setting that tests all
the summation rules with every other setting being identical. We use the EAM po-
tential by [29], and the study is performed at 100K as a representative example. The
summation rules used for the comparative study are as follows: (i) nodal summa-

tion rules where the sampling atom locations coincide with the repatom locations,
(ii) quadrature-type summation [43, 132], (iii) node based cluster summation [54,
47], and (iv) optimal summation [5]. For each of these summation rules, we use
both the third- and fifth-degree quadrature from Section 4.3.1.

To effectively calculate force artifacts, no boundary conditions are applied to the
cube, and all representative atoms of the cube are constructed using the equilibrium
lattice spacing and equilibrium ω for an infinite crystal obtained from results of
Section 4.7. In the absence of any force artifacts, any force calculation with this
setting should yield no net physical or thermal force on the repatoms, except at
the surfaces. Therefore, performing a force calculation and plotting the results at
repatom locations shows the force artifacts for an undeformed, non-equilibrated

sample. As the aim of this study is to observe force artifacts arising purely due to
coarse-graining, force artifacts on the surface are not considered.

4.9.2 Results
For the third-degree quadrature, Figure 4.9 shows the comparison of the physical
forces and thermal forces for all the summation rules considered for sharp inter-
faces, and Figure 4.11 shows the same for the diffuse interfaces. We note that the
thermal force is a scalar quantity, but to show a visual comparison, a vector in the y

direction is shown with its magnitude equal to the magnitude of the thermal force.

For both the physical and thermal force artifacts, we define a summation rule to be
effective if the magnitude of force artifacts at interfaces is small and if these artifacts
are observed at fewer repatom locations. Thus, a summation rule is considered to be
more effective than another if it has a lower average magnitude of spurious forces
and has these artifacts at fewer locations than the other. We use the > sign with
the definition above for comparing effectiveness of the summation rules that are
studied.

For the physical forces, our results at 100K show the same trends as those seen in
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Figure 4.9: Results showing the physical and thermal force artifacts on all repatoms
from the system shown in Figure 4.8. The labels above the box indicate the force
that is observed and the summation rule used for that simulation. The nodal sum-
mation rules are labeled as “nodal”, the cluster-based summation rules are “clus-
ter”, and the “qp1” and “qp4” labels represent the quadrature-type summation with
1 and 4 quadrature points respectively. This figure shows the results using sharp
interfaces and by using the third-degree gaussian quadrature to approximate the
potential energy.

[5] for 0K. The optimal summation rules outperform all the other rules and the
general order of the effectiveness of the summation rules is: optimal second-order

> optimal first-order > cluster summation > quadrature summation with 4 points

> quadrature summation with 1 point > nodal summation. This order mirrors
the results from [5] and shows that the hot-QC formulation does not contribute
any additional force artifacts to the physical forces. The thermal forces follow a
similar pattern, with in general the diffuse interfaces showing a higher magnitude
than the sharp interfaces. This is expected as the sharp interfaces provide a certain
amount of symmetry that helps mitigate the spurious artifacts. However, for the
thermal forces the order of effectiveness of the summation rules is slightly different
from the physical forces: optimal first-order > optimal second-order > quadrature

summation with 4 points > cluster summation > quadrature summation with 1

point > nodal summation.
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Figure 4.10: Results showing the physical and thermal force artifacts on all
repatoms from the system shown in Figure 4.8. The labels above the box indi-
cate the force that is observed and the summation rule used for that simulation. The
nodal summation rules are labeled as “nodal”, the cluster-based summation rules
are “cluster” and the “qp1” and “qp4” labels represent the quadrature-type summa-
tion with 1 and 4 quadrature points respectively. This figure shows the results using
sharp interfaces and by using the fifth-degree gaussian quadrature to approximate
the potential energy.

Figures 4.10 and 4.12 show the results of the ghost force calculations for the fifth-
degree quadrature. For better comparing and showing how effective the optimal
summation rules are, the scale on the physical force and the thermal force is kept
the same for both the third and fifth-degree quadrature plots. The results look sim-
ilar to those of the third-degree quadrature, however the optimal first-order and
second-order force artifacts are much closer for the fifth-degree quadrature than the
third-degree. The other summation rules show nearly similar magnitudes for the
different quadratures. The two non-intuitive results from this simulation are (i) the
better performance of the optimal first-order as compared to the second-order for
the thermal force artifacts, and (ii) the relatively poor performance of cluster-based
summation for the thermal ghost forces.

One possible explanation for this behavior is the assignment of weights and the
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Figure 4.11: Results showing the physical and thermal force artifacts on all
repatoms from the system shown in Figure 4.8. The labels above the box indi-
cate the force that is observed and the summation rule used for that simulation.
The nodal summation rules are labeled as “nodal”, the cluster-based summation
rules are “cluster” and the “qp1” and “qp4” labels represent the quadrature-type
summation with 1 and 4 quadrature points, respectively. This figure shows the re-
sults using diffuse interfaces and by using the third-degree Gaussian quadrature to
approximate the potential energy.

sensitivity of the thermal forces to the exact value of ω . We expect the thermal force
to be zero only if the given value of ω of the repatom is exact. Any deviation will
result in the right side of (4.36) to not be zero and give rise to a spurious force. As
sampling atoms on the edge of elements for the optimal second-order summation
rule have significantly higher weights as compared to the first-order (see [5] for
details), a small deviation from the correct ω causes a larger force for second-order
sampling atoms than the first-order ones, which is what we observe in our results.

4.10 Conclusions
In this chapter, we have formulated a finite temperature extension of the nonlocal
quasicontinuum method outlined in Chapter 2 using the max-ent approach. We
first derived the governing equations of motion for a fully atomistic ensemble,
then formed the energy-based QC approximation by introducing repatoms and sam-
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Figure 4.12: Results showing the physical and thermal force artifacts on all
repatoms from the system shown in Figure 4.8. The labels above the box indi-
cate the force that is observed and the summation rule used for that simulation. The
nodal summation rules are labeled as “nodal”, the cluster-based summation rules
are “cluster” and the “qp1” and “qp4” labels represent the quadrature-type summa-
tion with 1 and 4 quadrature points, respectively. This figure shows the results using
diffuse interfaces and by using the fifth-degree Gaussian quadrature to approximate
the potential energy.

pling atoms, and approximating the potential energy by using third- and fifth-degree
Gaussian quadrature. This hot-QC formulation is validated by performing uniform
thermal expansion tests by constructing simulations modeling both large-finite and
infinite single-crystal fcc lattices of Cu and Al. The results show good agreement
with previous reports and also with MD calculations using LAMMPS. We then
show that our QC formulation recovers the elastic constants of pure Cu almost ex-
actly by using only 5% repatoms from the total atomistic ensemble. These elastic
constants also match experimental trends by showing softening with temperature,
and having a similar dependence on temperature. The small discrepancy in the val-
ues can be attributed to parameter fitting of the potential used [29] in which they
match the values of elastic constants at room temperature for a 0K atomistics model.
Lastly, we analyze spurious forces in various summation rules from QC literature
at finite temperatures. We observe that, like the physical forces, coarse-graining
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results in spurious force artifacts on the mean-free parameter ω . We quantify these
forces and compare their magnitudes for various summation rules and show that
the optimal summation rules introduced by Amelang, Venturini, and Kochmann [5]
minimize the artifacts more effectively than the cluster-based and quadrature based
summations.
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C h a p t e r 5

INVESTIGATION OF SYMMETRIC TILT GRAIN
BOUNDARIES

All the steps presented in Chapters 2, 3, and 4 have been taken to enable the study
of severely deforming, finite-temperature polycrystalline materials. In this chapter,
we focus on the most fundamental building block of polycrystals, viz. grain bound-
aries. Instead of modeling large networks of grains, we aim to demonstrate the ap-
plicability of the techniques introduced above for the most fundamental example:
symmetric-tilt grain boundaries. First, we provide a brief background and motiva-
tion for atomistic modeling of grain boundaries. We then discuss the construction
of several fully 3D symmetric-tilt grain boundaries and calculate their relaxed en-
ergies at 0K. Next, we extend this study to finite temperature using our approach
from Chapter 4 and comment on the trends of the relaxed structures and energy as a
function of temperature. We finally close the chapter with a future outlook towards
potential applications of our grain boundary modeling framework.

5.1 Background
As introduced in Chapter 1, some of the main influences of mechanical properties
at the microscale of crystalline materials are material defects like grain boundaries,
dislocations, vacancies, voids, etc. One of the most prominent relations showing
the influence of grain size on material strength is the Hall-Petch relation [44, 85]
given as

σy = σ0 +
ky√

d
, (5.1)

where σy is the yield stress of the material, σ0 is the starting stress for dislocation
motion (material constant), ky is the strengthening coefficient (material constant),
and d is the average grain size. The Hall-Petch relation predicts that a decrease
in grain size increases the yield stress (a measure of strength) of a material and
generally works until the average grain size reaches about 10 nm, after which a
reverse effect is observed (also termed as the “inverse Hall-Petch relation” [28, 65,
74]). The two relations are qualitatively shown in Figure 5.1.

Grain boundaries and dislocations play a very important role in characterizing the
microstructure of a material, which influences the material strength, deformation
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Figure 5.1: A diagram showing the Hall-Petch and inverse Hall-Petch effect in poly-
crystalline materials, including the commonly accepted deformation mechanisms
explaining the two regimes [42].

mechanisms [8, 131], toughness, and other properties of importance. This has re-
sulted in a lot of active studies in the modeling of grain boundaries of pure met-
als and metal alloys, as it is extremely difficult to synthesize them experimentally
without contamination, and because of the advent of microstructure modeling using
extremely accurate atomistic simulations (see e.g. [22]).

5.1.1 Crystallographic description
In basic terms, a grain boundary in a solid crystalline material is a region separating
two crystals (grains) of the same phase where the grains differ in crystallographic
orientation. The grain boundary of a bicrystal (a sample containing two grains
with a planar separating interface) can be fully characterized by five independent

parameters or macroscopic degrees of freedom (DOF). The first three specify the
mutual misorientation of the adjoining grains, which is represented by a rotation
described by (i) a rotation axis o (2DOF), and (ii) a rotation angle θ (1DOF). The
last two DOFs are the orientation of the grain boundary inbetween these misoriented
grains (e.g., described by the normal to the grain boundary plane n). The different
degrees of freedom are shown in Figure 5.2.
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Figure 5.2: The variables that define a grain boundary [83].

Grain Boundaries (GB) are categorized into different groups according to the rela-
tionships among different DOFs: (i) tilt GB: o⊥ n, (ii) twist GB: o ‖ n, (iii) mixed

GB: o is neither parallel nor perpendicular to n, (iv) symmetric GB: the boundary
plane represents the plane of mirror symmetry, and (v) asymmetrical GB: a GB that
is not symmetrical. The different types of GBs are shown in Figure 5.3. In this
work, we restrict our attention to symmetric tilt GBs, so the grain boundary plane
will form the plan of symmetry and the grain boundary normal will be perpendicu-
lar to the axis of rotation between the two grains.

5.1.2 Coincidence-site lattice model
Proposed in 1949 by Kronberg and Wilson [57], the assumption of this model is
that the grain boundary energy is low when the coincidence of atomic positions
in both adjoining grains is high because the number of bonds broken across the
boundary is small. If we construct a bicrystal where the grains are misoriented by
an angle θ around an axis o by superimposing them such that some atomic sites
coincide, then such sites are called coincident sites. If these coincident sites are
spread uniformly throughout the entire superposition such that they form a crystal
lattice of their own, then such an arrangement is termed Coincident-Site Lattice

(CSL). An important quantity for such sites is the density (or rather its reciprocal)
of the coincident sites, denoted by Σ.

Σ =
number of coincident sites in an elementary cell

total number of all lattice sites in an elementary cell
or (5.2)

Σ =
volume of an elementary cell of CSL

volume of an elementary cell of the crystal lattice
. (5.3)
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Figure 5.3: Schematic depictions of a) a twist grain boundary, b) an asymmetric tilt
grain boundary, c) a symmetric tilt grain boundary [83].

If the purely geometric character of a CSL is considered, then atoms from the two
grains need to be matching exactly for the grain boundary to have a coincident
form as any small change of grain misorientation from the grain boundary, results
in big change in coincidence. Thus, in practice, a range of existence of Σ CSL
can be considered with small deviations from true coincidence. An example of a
construction of a CSL is shown in Figure 5.4. A detailed implementation of the
construction of the of a CSL grain boundary is provided in the next section.

5.2 Grain Boundary Construction for QC
As mentioned before, we restrict our analysis to symmetric tilt grain boundaries.
One of the main challenges in atomistics is to construct a physically intuitive initial
setup of atoms to perform simulations. For single-crystal simulations, we set our
initial geometry such that the atoms lie on lattice sites corresponding to linear com-
binations of Bravias vectors for a given crystallographic lattice. However, while
modeling grain boundaries, we model multiple grains, which necessitates keeping
track of the orientation (the rotation of the grain with respect to the global coordi-



88

Figure 5.4: An example of a Σ3 CSL and a Σ3[111] grain boundary. The xz-plane
is the grain boundary plane and the boundary normal is along the y-axis. The left
pane shows a 2D schematic of the construction of the CSL in the yz-plane. The left
and right lattices have different orientations and the black sites are the coincident
sites. The value of Σ comes from the ratio of the volumes of the elementary cells
of the CSL (shown as a black square) and the actual lattice (shown in red or green
squares). The right pane shows the bicrystal formed by choosing one of the multiple
planes of coincidence and the colors of the atoms indicate different orientations.

nate system) of every grain as its initial geometry is set up. In addition, in order
to take advantage of coarse-graining, we keep the region around the grain bound-
ary fully resolved and chose a coarse set of repatoms in the interior of each grain.
While the interior of every grain might have a well-defined set of atoms located
at sites represented by Bravais lattice vectors multiplied by a suitable rotation, the
atoms along the grain boundary are not part of any specific lattice. One can, in prin-
ciple, model atoms using suitable Bravias sites in every grain and simply remove
atoms that are placed too close to each other on the grain boundary [77]. However,
the meshes that are generated by such arbitrary selections of orientation and atom
placements result in poorly shaped elements, which results in erroneous results. For
this purpose, all bicrystals in our work are modeled using a careful construction of
the simulation box as described in the following section.

5.2.1 Bicrystal using CSL
We set the following requirements to accurately model a CSL grain boundary: (i) a
bicrystal with the grain boundary along the plane y = 0, (ii) the y-axis as the grain
boundary normal, (iii) the grain boundary plane only consists of sites constructed
by the CSL formed by a suitable misorientation between the two grains forming
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the bicrystal, (iv) the grain boundary is fully resolved by choosing all lattice sites
around it as repatoms and coarse-graining in both crystals away from the boundary
plane, and (v) the repatoms that are chosen, form a well constructed mesh that does
not produce poorly shaped elements.

Banadaki and Patala [11] have developed an efficient tool to construct simulation
boxes for a CSL bicrystal to run an atomistic grain boundary simulation. The tool
GBpy [82] helps calculate rotation matrices that construct the grain boundary sim-
ulation box with requirements mentioned above. Table B.1 shows the various grain
boundaries that we use for our study, with the relevant rotation matrices. It should
be noted that this tool generates boxes for atomistic simulations, so suitable mod-
ifications have to be made to construct a coarse-grained grain boundary box. The
relevant steps required for this process are provided in Algorithm 3 and a brief de-
scription is given in Appendix B. The algorithm allows for generation of arbitrarily
sized coarse-grained grain boundaries for any CSL bicrystal.

5.3 Relaxed Grain Boundary Energy at 0K

One of the most commonly studied properties of grain boundaries is the grain
boundary energy. Simply put, it is the excess free energy associated with the pres-
ence of a grain boundary with the reference being a perfect single-crystal lattice.
Read and Shockley [92] provide a theoretical model that studies grain boundary en-
ergies for low-angle grain boundaries. In addition, there have been several studies
performed using theory, experiments, and atomistic simulations (e.g. [26, 46, 78]
among others) to observe the effect of various geometric parameters on properties
like the grain boundary energy and mobility, which in turn determine grain bound-
ary mechanics (involving GB-defect interactions, GB mibration and grain growth,
e.g. during recrystallization or recovery). The GB energy is also of importance in
determining a material’s fracture properties, as it affects the tendency to form inter-
vs intragranular cracks. This makes it important to be able to model the relaxed
energy state of a grain boundary accurately. Here, we use the fully non-local QC
method to determine the relaxed energy state of CSL bicrystals in order to validate
the method’s ability to accurately measure relaxed energy. We compare our results
to the database provided by Olmsted, Foiles, and Holm [78] to quantify the errors
occurring due to coarse-graining of the grain boundary.
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periodic 

periodic 

periodic 

periodic 

Figure 5.5: The setup of the a sample CSL bicrystal modeled with fcc Au using
the Mishin potential [137] for calculating the relaxed grain boundary energy. The
left pane shows meshes of coarse and fully atomistic configurations that are used
for comparison along with the boundary conditions. The center pane shows a 2D
perspective of the various configurations studied (sizes are to scale for compar-
ison). Configurations 1 and 2 are coarse-grained and modeled using 12849 and
49361 repatoms respectively. Configuration 3 contains 21929 repatoms. The right
pane shows the initial and relaxed state of the system for the Σ5(012) boundary,
with a zoomed view at the bottom. The atoms are colored by the centrosymmetry
parameter [16].

5.3.1 Scenario setup
The scenario is set up as follows. We model 14 CSL bicrystals shown in B.1 for
fcc Al using the EAM-based Mishin potential [137] at 0K. For each of these sys-
tems, we use Algorithm 3 to generate the grain boundary box. To test the effects
of coarse-graining, we model three configurations: a fully resolved configuration
that acts as the exact solution, and two coarse-grained bicrystals with varied lev-
els of coarsening. We model an infinite grain boundary plane by setting periodic
boundary conditions along the yz- and the xy-planes. This system is allowed to relax
by solving for the equilibrium configuration using quasistatics. Once equilibrated
using the FIRE scheme [14], the relaxed grain boundary energy is calculated by
evaluating the excess energy of the sampling atoms around the grain boundary and
comparing it to the energy of a perfect single-crystal.
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Figure 5.6: Results of the relaxed grain boundary energy for various Σ boundaries
in a fcc Al bicrystal modeled with the Mishin potential [137]. The configurations
are as shown in Figure 5.5. The results from Olmsted, Foiles, and Holm [78] were
obtained using the potential by Ercolessi and Adams [35]. The results by Banadaki
and Patala were obtained by using the Mishin potential [137].

Ten repeats are run for every configuration and results are averaged to account for
various configurations possible for the equilibrium states [78]. The schematics of
the scenario are shown in Figure 5.5.

5.3.2 Results
Figure 5.6 shows the results of the relaxed energy values for the different grain
boundaries studied for this scenario. We observe that for most grain boundaries, all
three configurations yield an identical result, so the coarse configurations have the
same relaxed energy as the fully resolved one. This indicates that coarse graining
does not introduce errors in the simulation. In comparison with [78], the fully non-
local QC formulation overpredicts the relaxed energy value for most grain bound-
aries. However, out of the fourteen boundaries studied, the error introduced is
less than 10% for ten of them. The high errors occur the high-Σ boundaries, e.g.
Σ25(017), with the exception of Σ9(112). In case of the Σ3(221) boundary, the QC
formulation predicts a lower value for the relaxed energy.

Some of the reasons for these discrepancies in energy values are anticipated as fol-
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lows. Olmsted, Foiles, and Holm [78] used the EAM potential by Ercolessi and
Adams [35] for their calculations, which result in different values for the value of
the energy of a perfect single-crystal. Banadaki and Patala have rerun the simu-
lations from [78] using MD and the EAM Mishin potential [137] and their results
are also included in Figure 5.6. We see that the errors between MD and QC drop
considerably when the same potential is used, which addresses one of the possible
sources of discrepancies. Another difference may stem from the offset vectors used
in [78] as a part of their initial configuration, where they laterally translate one grain
with respect to other using predetermined vectors. One of the reasons for this is to
try and capture the multiplicity in the equilibrium configurations [124]. In addi-
tion, [78] uses a variable cutoff distance to remove atoms near the grain boundary
that are too close to each other in the initial configuration, while our QC formula-
tion uses a fixed distance of 2Å. This indicates that even while modeling a fully
resolved system using QC, the initial set of atoms near the grain boundary is not
the same. Finally, performing an exhaustive search of a global energy minimum
for a grain boundary cannot be guaranteed [78, 124], and since a reasonable match
of energy was obtained after ten repeats for most cases, that was set as a cap for
further simulations.

Thus we see that the hot-QC formulation acts as an effective method to reproduce
GB energies for various systems. It allows for simple and computationally inex-
pensive studies while saving on the degrees of freedom of the system and allowing
for real quasistatic relaxations that do not require resolving the thermal vibrations
of every single atom in the system.

5.4 Relaxed Grain Boundaries at Finite Temperature
As mentioned earlier, the GB energy study in Section 5.3 is modeled at 0K. This has
largely been the case for most of the computational studies performed in literature,
e.g. [12, 78, 117]. The aim of these studies is to get an insight into the influence
of GB-energy on material properties and to characterize the energy as a continuous
function of the macroscopic degrees of freedom that define the boundary. How-
ever, most real life applications and experiments that observe grain boundaries are
performed at finite temperature, e.g. High Resolution Transmission Electron Mi-
croscopy (HRTEM) observations on Σ-boundaries are conducted at room tempera-
ture [6, 32, 72]. It is therefore imperative that atomistic simulations used to observe
the effect of GB energy be performed at finite temperature.
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Figure 5.7: The setup of a Σ3(221) CSL-based bicrystal of fcc Au modeled with
the Mishin potential [137]. The left pane shows the initial mesh constructed for
the bicrystal having dimensions of 9.2nm× 11.2nm× 15.8nm. The center pane
shows the outline of the simulation box to be modeled along containing 17,521
repatoms. The right pane shows the subset of the atoms that are selected for energy
calculations, selected using dimensions of 4.8nm×5.6nm×7.9nm.

To this end, we use our hotQC formulation from Chapter 4 to perform finite-
temperature simulations and re-evaluate GB energy for a few of the boundaries
modeled in Section 5.3.

5.4.1 Scenario setup
The scenario is set up as follows. We model Σ5(012), Σ5(021) and Σ3(221)
boundaries for fcc Al using the Mishin potential [137] as before, at temperature
values of 0K, 50K, 100K, 150K, 200K, 250K and 300K, using Algorithm 3. Third-
degree gaussian quadrature is used from Section 4.3.1 as it is sufficient to capture
thermal expansion accurately for the temperature ranges chosen (see Fig. 4.3).
Isothermal conditions are maintained throughout the system for each individual
temperature case. To allow for free expansion at finite temperature, no boundary
conditions are applied to the outer surfaces of the simulation box. Optimal sum-
mation rules [5] are used that allow for accurate energy calculations at coarse free
surfaces [4]. A small section in the interior of the grain boundary is used for en-
ergy calculations to negate surface effects. Equilibration and energy calculations
are performed similar to the approach from Section 5.3.

5.4.2 Results
The evolution of relaxed energy of the boundaries with temperature is shown in Fig-
ure 5.8. We note that the 0K energy values for these boundaries are higher than the
results from Figure 5.6 on account of the lack of periodicity in the system, thereby
introducing a length scale into the observations. We observe that the energy of the
Σ3(221) remains more or less the same throughout the temperature range, which
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Figure 5.8: Results of the relaxed grain boundary energy for three Σ boundaries in
a fcc Al bicrystal modeled with the Mishin potential [137] as a function of temper-
ature.

can be attributed to the highly stable twin structure of the boundary. Σ5(012) and
Σ5(021) show a gradual decrease in energy with temperature, with Σ5(021) show-
ing a considerable dip near room temperature. The energy values for most of the
temperature measurements lie within 20% of the predicted 0K values. One reason
for the relatively low values of energy for some cases at 300K could be due to the
finite nature of the grain boundary, allowing for free surface interactions. However,
overall the results indicate that the data obtained from MD studies at 0K (e.g [78])
can be suitably used while making room temperature predictions. Figure 5.9 shows
the relaxed shapes of the grain boundaries at some representative temperature val-
ues. We observe that the relaxed GB shape for the Σ5(012) and Σ5(021) bound-
aries is significantly different compared to the initial shape generated by Algorithm
3. As can be expected from energy calculations shown in Figure 5.8, the relaxed
GB shapes do not show any appreciable geometric change over temperature. This
is another indication of validity of 0K results at room temperature.

5.5 Conclusions
In this chapter, we extend the fully nonlocal, finite-temperature, adaptive QC frame-
work developed throughout the coarse of this thesis to model coarse-grained 3D
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Figure 5.9: Showing the relaxed energy shapes of grain boundaries modeled in 5.4
at different temperatures. The boundaries are viewed in 2-D perspective along the
yz-plane. The left pane shows the Σ5(012) boundary. The center pane shows the
Σ5(021) boundary. The right pane shows the Σ3(221) boundary.

polycrystalline systems at finite temperature. We focus on symmetric-tilt GBs, and
constructed an algorithm to generate coarse-grained bicrystals using CSL based
grain boundaries. Using FIRE to equilibrate the system, we predict and match the
relaxed energies at 0K of fourteen bicrystals with MD data, providing with a simple
and efficient way to calculate energies for other CSL based grain boundaries.

We further use the hotQC formulation to observe the evolution of relaxed energies
of grain boundaries as a function of temperature, a novel study that has not been
performed before. For the boundaries that are observed, the relaxed energy change
shows a small dip as at room temperatures, providing additional validity to MD
simulations. The relaxed GB shapes for these boundaries are consistent with the
expected energy results and show little change from 0K to room temperature.



96

C h a p t e r 6

CONCLUSIONS, DISCUSSION, AND OUTLOOK

Since its inception in 1996, the QC method has emerged as an effective scale-
bridging technique and continues to improve with an active community of researchers
adding new contributions every year [110]. Amelang [3] introduced the energy-
based fully nonlocal QC method that had the advantage of seamlessly transitioning
from the atomistic to the coarse-grained region (unlike most previous QC formula-
tions) and vastly reduced spurious force artifacts by introducing the optimal sum-
mation rules [5]. This thesis has used the fully nonlocal QC formulation as a basis
to advance the method in a number of directions, as outlined in the previous chap-
ters. In this chapter, the important contributions provided by this thesis towards the
advancement of the fully nonlocal QC method towards modeling of large-scale sys-
tems using automatic adaptivity at finite temperature are summarized. In addition,
the current limitations of the method are also highlighted and future directions to
be pursued are discussed.

6.1 Automatic Adaptivity
6.1.1 Highlights
Automatic model adaptivity has been implemented on two separate fronts, (i) neigh-
borhood updates and (ii) mesh refinement. The novel algorithm for automatically
updating the neighborhoods of sampling atoms enables simulations with large plas-
tic deformation while guaranteeing accurate energy calculations. This algorithm
has been successfully deployed in both 2D and 3D simulations and allows for
coarse-graining of large-scale atomistic ensembles with low errors compared to
MD, as shown from nanoindentation and nanovoid growth examples. Mesh re-
finement using an element-based constrained bisection algorithm has been imple-
mented and fully captures the microstructure in simulations with severe deforma-
tion. Going beyond most prior QC techniques, this formulation is fully nonlocal and
seamless. The reference mesh exists even in the fully refined domain and therefore
enables seamless coarse-graining where needed.
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6.1.2 Limitations
The limitations of the refinement algorithm due to the underlying Lagrangian for-
mulation have been discussed, including the inability to undergo mesh coarsening
once a defect has passed through the atomistic domain. Another limitation is that
mesh refinement takes place on the global mesh consisting of all repatoms, and
prevents massive parallelization of simulations as global communication has to be
frequently conducted if repatoms are stored on distributed memory in a computer
cluster. Currently, an urgent need for a 3D local mesh refinement algorithm (per-
forming remeshing only where necessary without disturbing the remaining mesh)
exists and we have attempted to solve it by implementing a Contrained Advancing

Front (CAF) algorithm, described in Appendix C. However, the current implemen-
tation results in meshes of poor quality, and further work is needed before it can be
suitably deployed in the QC formulation. A sample simulation is shown in Figure
6.1.

Figure 6.1: A simulation box containing 137,313 underlying lattice points corre-
sponding to the fcc lattice. At every refinement step, 0.1% of the total elements
are chosen at random and refined to full atomistic resolution. The left pane shows
the initial state of a mesh to be refined using the CAF algorithm. The initial mesh
consists of 365 vertices and 1536 elements. The right pane shows the mesh after
95% of the total volume has been refined, which then contains 92,236 vertices and
511,323 elements.

6.2 Finite-temperature extension
6.2.1 Highlights
One of the highlights of this thesis is the extension of the fully nonlocal QC method
to finite temperature. Temperature plays a key role in determining material behav-
ior and a hotQC framework has been implemented by using the maximum entropy
approach and averaging the thermal vibrations of atoms and evaluating mean po-
sitions and momenta using numerical quadrature. While previous max-ent hotQC
formulations have restricted their analysis to numerical quadrature accurate up to
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third-degree polynomials, we extend ours to fifth-degree polynomials. The thermal
response of fcc metals to uniform thermal expansion has been demonstrated using
a variety of EAM-based interatomic potentials that have not been previously re-
ported, and our formulation is validated by comparisons to experimental behavior
and LAMMPS based MD simulations. This data acts as a reference for a choice of
interatomic potential for future finite-temperature applications and shows that the
fifth-degree quadrature is essential for certain potentials to accurately simulate the
system at higher temperatures.

The material response to temperature is also observed, viz. thermal softening. Us-
ing the optimal summation rules, it is shown that even with low repatom density
(5%), accurate predictions of the bulk modulus, shear modulus, and uniaxial mod-
ulus of fcc copper as functions of temperature can be obtained, and validate the
results with experimental data.

Finally, an important unknown in the QC method has been addressed, the temper-
ature dependence of spurious force artifacts. Using a representative temperature of
100K, the spurious artifacts have been evaluated along sharp and diffuse mesh in-
terfaces, for both physical and thermal forces. The optimal summation rules show
the lowest magnitudes of spurious forces (both physical and thermal) when com-
pared to existing summation rules in other QC formulations. This implies that those
summation rules are indeed optimal, even in a finite-temperature setting, which is
of paramount importance for future simulations.

6.2.2 Limitations
The presented hotQC formulation has been deliberately limited to isothermal con-
ditions in order to investigate and validate this important scenario. As has been
done within the hotQC context, this model can be extended to account for mass and
heat transport [120] as well as various other directions. However, this thesis seeks
to prove that those extensions can rely on the fully nonlocal QC method. While
the temperature is localized so that every repatom is assigned its own independent
temperature, the temperature evolution is not solved for, and therefore the model
is currently unable to analyze the influence of non-equilibrium heat flux occurring,
e.g., during severe deformation or high-rate loading. This thesis lays the necessary
groundwork to characterize the evolution of the discrete temperature field as has
been done in [59], [87], and [120], and these avenues of research may be pursued
in the future, leveraging its accomplishments.
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6.3 Grain Boundaries
6.3.1 Highlights
The 3D fully nonlocal QC framework has been extended to general polycrystals.
Most of the studies performed with the QC method since 1996 have been with
single-crystal materials, with the polycrystalline studies limited to local QC (see
e.g. [133, 134] ) or quasi-2D grains (for e.g. [84, 102]). The 3D grains in this thesis
have been constructed with seamless transition between the atomistic and coarse
regions (as expected from a fully nonlocal method) and allow for coarse-graining
within each grain.

Symmetry and coincidence sites have been used to solve meshing issues and con-
struct stable coarse-grained CSL based bicrystals. While results of only fourteen
such bicrystals have been shown, a foundation has been laid that allows construc-
tion of arbitrary boundaries based on appropriate GB features (required as inputs in
Algorithm 3).

The optimal summation rules [5] have been implemented, allowing for the modeling
of grain boundaries using free surfaces with significantly lower surface effects as
compared to other QC formulations [4].

The hotQC formulation in this thesis allows for the evaluation of the grain bound-
ary energy as well as the observation of the evolution of relaxed shapes of grain
boundaries at finite temperature, which has not been reported by any other QC for-
mulation in the literature.

6.3.2 Limitations
While the current hotQC formulation matches MD results, the computational over-
head associated with the maintenance and updates of neighborhood verlet lists can
act as a barrier in choosing QC over MD. QC excels when coarse-graining of the
domain makes grain sizes go beyond the scope of MD, such as when calculating
GB energies that require full resolution only near the boundary and do not require
adaptive remeshing to provide atomistic resolution far away from the boundary.
More is required (as discussed below) to extend this method to full adaptivity in
3D so that defect-GB interactions can be calculated effectively. We note that the
finite-temperature extension presented here improves over MD simulations, as it is
truly quasistatic without the need to resolve individual atomic thermal fluctuations.
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6.4 Outlook
6.4.1 Dislocation-grain boundary interactions
Upon the successful implementation of the local 3D remeshing algorithm, one can
put it to test by attempting to capture dislocation motion through grain boundaries.
Our QC formulation is already equipped with distributed-memory parallel algo-
rithms, allowing us to model nanoindentation in the presence of large-scale grain
boundaries. Preliminary results are shown in Figure 6.2 and show dislocation loops
interacting with the grain boundary. Local remeshing will significantly improve the

Figure 6.2: Nanoindentation using a pyramidal indenter of CSL based bicrystals of
fcc Al modeled with the Mishin potential [137]. The left pane shows the formation
of dislocation loops for a Σ11(113) boundary using a indenter force constant of
200ev/Å. The simulation contains 1,700,175 repatoms. The right pane shows
the formation of dislocation loops for a Σ3(221) boundary using a indenter force
constant of 500ev/Å. The simulation contains 493,633 repatoms.

ability to increase grain sizes from the current limit of hundreds of nanometers by
a few orders of magnitude (thereby approaching experimentally observed values).

6.4.2 Multi lattices using QC
So far we have limited our study to fcc metals, whereas the computational imple-
mentation is sufficiently general to model any crystalline system that can be de-
scribed by a simple Bravais lattice. Morever, the nonlocal QC framework does not
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come with a limitation to simple Bravais lattices and only requires that the initial set
of atoms be defined on discrete lattice sites. Therefore, in principle, an extension to
more complex Bravais lattices (including multi-lattices) such as the hcp lattice or
even systems consisting of different materials is possible in our current framework.

An elementary implementation of a hcp-based QC formulation has been completed
but needs significant testing and additions before it can be successfully deployed. A
multi-lattice nonlocal QC formulation will be useful for modeling organic crystals,
ferroelectrics, and phase transformations along with deformation mechanisms such
as twinning, etc.

6.5 Final Comments
Overall, this thesis has contributed to the advancement of the 3D nonlocal QC
method from a rather theoretical tool to a practically useful computational frame-
work. This transformation has converted a method limited to single-crystals and
zero temperature into a high-performance framework with the ability to model poly-
crystals at finite temperature. Multiple advances have been made towards automatic
adaptivity, allowing QC to operate at length scales that were previously unattain-
able. There remain significant questions to be answered and improvements to be
made, but the present work has improved the state-of-the-art in multiscale modeling
and laid the foundation for various areas to be advanced by the scientific community
in the future.
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A p p e n d i x A

FINITE TEMPERATURE QUASICONTINUUM
MISCELLANEOUS

A.1 Full Periodic Crystal Formulation
To validate the finite temperature QC model, we subject an infinite crystal to uni-
form thermal expansion, e.g. if we uniformly expand a fcc lattice, we expect the
equilibrium configuration to depend on two scalar unknowns, the lattice parameter
a and ω . This greatly simplifies the problem, and as every atom in the system is
identical, we solve for the equilibrium configuration of exactly one atom. In the fol-
lowing, we formulate the simplified governing equations to be solved. The general
minimization problem to be solved is (4.27), where we recall that the Helmholtz
free energy is given as

F(qqq,ω,θ) =
N

∑
a=1

[
3kBθa log

h̄ωa

kbmaθa
+ 〈Va(qqq)〉

]
.

For an infinite crystal at uniform temperature θ , each term in the summation is
equal, so removing the index a gives

F(a,ω) = 3NkBθ log
h̄ω

kbmθ
+N〈V (qqq)〉,

which motivates the term energy per atom given by

F̃(a,ω) =
F(a,ω)

N
= 3kBθ log

h̄ω

kbmθ
+ 〈V (qqq(a))〉.

〈V (qqq)〉 is the phase average of the potential, and the dependence of the position qqq

of the atom on the lattice parameter a comes from the fact that for a fcc lattice, the
position of every atom can be obtained as the linear combination of the Bdravias
lattice vectors which depend on the lattice parameter. From here, the equilibrium
configuration can be obtained by solving the two scalar equations

∂ F̃
∂a

= 0,
∂ F̃
∂ω

= 0.

A.1.1 Minimizing with respect to lattice parameter
We use numerical Gaussian quadrature to calculate the phase average (Section 4.3).
For the sake of clarity, we denote the quadrature sample p to be a dependent vari-
able, as the atomic position qqq also depends on the quadrature sample (in addition to
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a). This results in

∂ F̃
∂a

=
∂

∂a

NQP

∑
p=1

WpV (qqq(a, p),ω).

Using (2.11) for the potential and introducing the dependence of the lattice param-
eter and the quadrature sample, we write, for any site i,

Vi(qqq(a, p)) = ∑
k∈Si

Φ(rik(a, p))+F (ρi) with ρi = ∑
k 6=i

f (rik(a, p)),

and rik = |qqqi(a, p)−qqqk(a, p)|.
(A.1)

Substituting this form of the potential in the equilibrium equation gives

∂ F̃
∂a

=
NQP

∑
p=1

Wp

[
∑

k∈Si

(
Φ
′
(rik(a, p))+F

′
(ρi) f

′
(r jk(a, p))

)
∂ rik(a, p)

∂a

]
, (A.2)

where
∂ rik(a, p,ω)

∂a
=

∂

∂a
|qqqi(a, p)−qqqk(a, p)|.

From (4.29),

qqqi(a, p) = qqqi(a)+

√
2σ

ω
xxxi(p), qqqk(a, p) = qqqk(a)+

√
2σ

ω
xxxk(p),

which gives

∂ rik(a, p,ω)

∂a
=

1
rik

(
(qqqi−qqqk) · ((qqq

′
i−qqq

′
k))
)
. (A.3)

The qqq
′
i stands for the partial derivative of the position with respect to the lattice

parameter. Here, the assumption is that the position of any atom can be described
as the linear combination of the Bdravais lattice vectors which depend on the lat-
tice parameter. Substituting (A.3) back into (A.2), we obtain the final minimized
expression with respect to a.

A.1.2 Minimization with respect to ω

Proceeding like the case of the lattice parameter a using (A.1) and noting that the
dependence on ω in the potential term comes from the phase averaging, we write1

∂ F̃
∂ω

=
3kBθ

ω
+

NQP

∑
p=1

Wp

[
∑

k∈Si

(
Φ
′
(rik(p,ω))+F

′
(ρi) f

′
(r jk(p,ω))

)
∂ rik(p,ω)

∂ω

]
,

(A.4)

1The positions still depend on the lattice parameter, but it is not explicitly shown because here
we want to minimize with respect to ω .
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where

∂ rik(p,ω)

∂ω
=

1
2rik

∂

∂ω
(qqqi(p,ω)−qqqk(p,ω)) · (qqqi(p,ω)−qqqk(p,ω)).

Once again from (4.29), we write,

qqqi(p,ω) = qqqi +

√
2σ

ω
xxxi(p), qqqk(p,ω) = qqqk +

√
2σ

ω
xxxk(p),

which gives

∂qqqi(p,ω)

∂ω
=−
√

2σ

ω2 xxxi(p),
∂qqqk(p,ω)

∂ω
=−
√

2σ

ω2 xxxk(p).

This gives the required partial derivative as

∂ rik(a, p,ω)

∂ω
=
−1
rik

(
(qqqi−qqqk) ·

(√
2σ

ω2 xxxi−
√

2σ

ω2 xxxk

))
. (A.5)

As in the case of the lattice parameter, substituting (A.5) into (A.4) yields the re-
quired minimized expression with respect to ω .

A.2 Units for parameters
Chapter 4 derives the governing equations to find equilibrium configurations in
finite-temperature atomistics. In the numerical implementation of these equations,
however, one must be careful to make sure that proper units of various quantities
are used and we do not incur numerical errors. One example of such errors is when
dividing two quantities which are orders of magnitude different. This section deals
with the definition of various quantities used for the derivation of (4.33) and the
different units that we use for our numerical implementation. Specifically, the goal
of the section is to show that these units ensure that all quantities used in the hot-
QC formulation make physical sense in a wide range of temperatures (0−1000K).
For the purpose of illustration, we use fcc copper as our material and the Extended
Finnis Sinclair potential [29].

A.2.1 Basic units
• ma - mass of an atom in atomic mass units. For copper, we have

m = 63.546a.m.u.

= 63.546×1.6726×10−27kg,

= 63.546×103.642641 = 6586.0572
eV f s2

Å2
.
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• θ - temperature of an atom in Kelvin.

• q - position of an atom is in Å.

• kB - Boltzmann constant It can be expressed in different units as follows:

kB = 1.380648×10−23 J
K
,

= 8.6173303×10−5 eV
K

.

For our applications, we will use the expression in electron volts.

A.2.2 Derived units
• (Derived unit) σ - The standard deviation of the momentum of an atom.

From (4.24), we obtain the required units for σ . For a room temperature
application, the value of σ is roughly:

σ =
√

kBθm,

=

√
8.6173303×10−5 eV

K
×300K×6586.0572

eV f s2

Å2
,

= 13.0485
eV f s

Å
.

• ω - The ratio of the standard deviations of the momentum to the position.
Using the obtained units for σ , we use (4.29) to obtain the units of ωa:

qqq(xxx,qqq)︸ ︷︷ ︸
units of Å

=

√
2σ

ω
xxx︸︷︷︸

unitless

+ qqq︸︷︷︸
units of Å.

This means that the factor in front of the shift xxx has the unit of Å. Further
simplification gives

(unit of)ω = (units of )σ × Å−1,

=
eV f s

Å
× Å−1,

=
eV f s

Å2
.

To obtain a more physical interpretation for this quantity, [60] and [119] relate
it to the thermal vibrations of atoms. This motivates the need to express ω in
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units of frequency. If we design a new quantity ω̃ having units of frequency,
we can relate it to ω as follows:

ω̃ =
ω

m
,

(units of)ω̃ =

eV f s

Å2

eV f s2

Å2

=
1
f s
.

As we solve for ω in (4.33), it helps to have some intuition of what a typical
value of ω is expected, specifically for solver convergence. In general, the
frequencies of atomic vibrations are on the order of terahertz. Assuming a
value of around 30tHz = 0.03PHz around room temperature, for copper,

ω = 6586.0572×0.03 = 197.58
eV f s

Å2
.

In our uniform thermal expansion studies from Section 4.7, we keep our ini-
tial guess for ω to be around this value for fcc copper and can similarly obtain
values for aluminum to precondition the numerical solver.



107

A p p e n d i x B

CONSTRUCTING CSL-BASED GRAIN BOUNDARIES

We present supplemental material that explains the design and implementation of
grain boundaries used in Chapter 5. In particular, in Table B.1 we list the vari-
ous grain boundaries used for the study along with the rotation matrices used for
formulating the initial simulation box to perform calculations. In addition, Algo-
rithm 3 outlines the steps used to generate a bicrystal simulation box for every grain
boundary in Table B.1. The various notations used in the algorithm are explained
below.

• PPPfcc is the set of points constructed to lie on the sites for a fcc crystal lattice
without any rotation. From a reference point (usually taken as the origin),
points are constructed lying in integer multiples of vectors a0[0 1

2
1
2 ], a0[

1
2 0 1

2 ]

and a0[
1
2

1
2 0], where a0 is the lattice parameter of the fcc material being con-

structed at 0K.

• RRRmisorient is the 3× 3 rotation matrix that rotates one grain relative to the
other and forms a CSL with the required Σ-value and the grain boundary
normal. Table B.1 lists RRRmisorient for every boundary that we model. As we
eventually choose the y = 0 plane as the grain boundary plane, we call the
grain with a positive y-coordinate the “upper grain” and negative y-coordinate
the “lower grain”. This is the convention followed throughout Algorithm 3
and in Chapter 5. For a specific grain boundary, RRRmisorient is obtained from
GBpy [82].

• [PPPu,PPPl] are the sets of points obtained after the misorient function is applied
to PPPfcc. As only the upper grain is misoriented, the points of the lower grain
are the same as those already constructed in the global coordinate system, i.e.
PPPl = PPPfcc. The points for the upper grain are obtained by rotating PPPfcc with
the misorientation rotation matrix, which is normalized column-wise first.
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So, we first calculate

RRRnorm(:,1) = RRRmisorient(:,1)/‖RRRmisorient(:,1)‖ ,

RRRnorm(:,2) = RRRmisorient(:,2)/‖RRRmisorient(:,2)‖ ,

RRRnorm(:,3) = RRRmisorient(:,3)/‖RRRmisorient(:,3)‖ ,

which then gives PPPu = RRRnormPPPfcc.

• RRRbasis change is the 3×3 rotation matrix that rotates points from both the grains
which converts the grain boundary plane to y = 0, and the grain boundary
normal to the y-axis. Table B.1 lists RRRbasis change for every boundary that is
modeled, and is obtained from GBpy [82].

•
[
PPPu,rot,PPPl,rot

]
are the sets of points obtained after the function global rotation

is applied to [PPPu,PPPl]. In the function, we first evaluate the actual transforma-
tion matrix RRRtransform = RRR−1

basis change. Then the new set of points is obtained
by

PPPu,rot = RRRtransformPPPu,

PPPl,rot = RRRtransformPPPl.

No further rotations are performed on the points.

• The final bicrystal is designed to be a convex box that contains two grains
which are also convex boxes sharing a plan (the grain boundary plane). In
order to allow a variety of sizes for every grain boundary, the global x,y,

and z dimensions of this bicrystal-box are variables that need to be chosen
carefully. In particular, these dimensions depend on the number of CSL cells
in every dimension. n1, n2, and n3 are the number of CSL cells in the x, y,
and z dimension respectively.

• RRRedge cut, l and RRRedge cut, u are the 3×3 rotation matrices required for calcula-
tions of the final bicrystal-box dimensions. These are the effective rotations
that points in the two grains have undergone from the initial state. They are
obtained as

RRRedge cut,l = RRRbasis change,

RRRedge cut,u = RRRmisorientRRRbasis change.
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• The final step in the box construction is to perform the edge cut on points in
both the grains to remove points that lie outside the intended final domain.
We obtain x, y, and z limits for both grains, and only points belonging to the
region between these limits are considered for the final bicrystal box con-
struction. If a0 is the lattice parameter of the material being modeled, the
limits for both grains are as follows. For the lower grain:

xlims,l =
[
−a0n1

∥∥RRRedge cut,l(:,1)
∥∥ ,a0n1

∥∥RRRedge cut,l(:,1)
∥∥] ,

ylims,l =
[
−a0n2

∥∥RRRedge cut,l(:,2)
∥∥ ,0] ,

zlims,l =
[
−a0n3

∥∥RRRedge cut,l(:,3)
∥∥ ,a0n3

∥∥RRRedge cut,l(:,3)
∥∥] .

Once these limits are set, the final set of points chosen for the lower grain
are obtained as the subset of PPPl,rot that lie in between these limits. This is
expressed as

PPPl,final = PPPl,rot ∈
[
xlims,l,ylims,l,zlims,l

]
.

Similarly, the limits for the upper grain are

xlims,u =
[
−a0n1

∥∥RRRedge cut,u(:,1)
∥∥ ,a0n1

∥∥RRRedge cut,u(:,1)
∥∥] ,

ylims,u =
[
0,a0n2

∥∥RRRedge cut,u(:,2)
∥∥] ,

zlims,u =
[
−a0n3

∥∥RRRedge cut,u(:,3)
∥∥ ,a0n3

∥∥RRRedge cut,u(:,3)
∥∥] ,

and the final upper grain points are chosen as a subset of PPPu,rot as

PPPu,final = PPPu,rot ∈
[
xlims,u,ylims,u,zlims,u

]
.

This gives the final set of points
[
PPPl,finalPPPu,final

]
that are used to construct a bicrystal

box of n1× n2× n3 CSL unit cells. To generate a coarse bicrystal, we start with
coarse set of points PPPfcc, coarse that are generated in multiples of the lattice parameter
a0, and the rest of the procedure follows in exactly the same way.
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Case Representation Rmisorient Rbasis change

1 Σ5(01̄2̄)

1 0 0
0 −1 −2
0 3 −1

 1
5

5 0 0
0 4 3
0 −3 4


2 Σ5(3̄01̄)

 0 1 0
−3 0 −1
−1 0 3

 1
5

5 0 0
0 4 3
0 −3 4


3 Σ5(02̄1̄)

−1 0 0
0 −2 −1
0 1 2

 1
5

5 0 0
0 4 3
0 −3 4


4 Σ13(015̄)

1 0 0
0 1 −5
0 5 1

 1
13

13 0 0
0 12 5
0 −5 12


5 Σ13(5̄01̄)

 0 1 0
−5 0 −1
−1 0 5

 1
13

13 0 0
0 12 5
0 −5 12


6 Σ15(2̄2̄1̄)

 1 1 −2
−2 −2 −1
−1 5 0

 1
15

14 2 −5
2 11 10
5 −10 10


7 Σ15(2̄1̄2)

 1 −2 −1
−2 −1 2
−1 0 −5

 1
15

14 2 −5
2 11 10
5 −10 10


8 Σ17(05̄3̄)

1 0 0
0 −5 −3
0 3 −5

 1
17

17 0 0
0 15 8
0 −8 15


9 Σ17(305)

0 1 0
3 0 5
5 0 −3

 1
17

17 0 0
0 15 8
0 −8 15


10 Σ9(1̄2̄1̄)

−1 2 1
−1 −2 −1
0 −1 4

 1
9

8 1 −4
1 8 4
4 −4 7


11 Σ9(1̄1̄2)

−1 1 2
−1 −1 2
0 4 1

 1
9

8 1 −4
1 8 4
4 −4 7


12 Σ11(1̄1̄3)

−1 1 −3
−1 −1 3
0 3 2

 1
11

9 2 −6
2 9 6
6 −6 7


13 Σ25(01̄7̄)

1 0 0
0 −1 −7
0 7 −1

 1
25

25 0 0
0 24 7
0 −7 25


14 Σ3(221̄)

 2 −1 2
2 2 −1
−1 2 2

 1
3

 0 1 2
1 1 −1
−1 1 −1


Table B.1: The different configurations constructed in this study. The second col-
umn shows the representation of the grain boundary in the bicrystal including the
Σ-value and the grain boundary normal. RRRmisorient is the rotation needed to trans-
form one of the grains with respect to other (in the global coordinate system) to
form a CSL. RRRbasis change is the rotation that both grains go through so that the grain
boundary plane becomes the plane y = 0 and the y axis becomes the boundary nor-
mal.
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Algorithm 3 Box Construction for a CSL Bicrystal
1: function box construction
2: Choose a grain boundary to construct
3: Obtain RRRmisorient and RRRbasis change from Table B.1 for this boundary
4: Generate PPPfcc : fcc lattice points in global coordinate system
5: [PPPu,PPPl] = misorient(PPPfcc,RRRmisorient)
6:

[
PPPu,rot,PPPl,rot

]
= global rotation

(
PPPu,PPPl,RRRbasis change

)
7: Choose integers n1,n2,n3 for the number of cells of the CSL in the x,y and

z directions respectively
8: RRRedge cut,l = RRRbasis change,
9: RRRedge cut,u = RRRmisorient×RRRbasis change,

10:
[
PPPu,final,PPPl,final

]
= edge cut

(
PPPu,rot,PPPl,rot,n1,n2,n3,RRRedge cut,l,RRRedge cut,u

)
11: return
12: end function
Applying misorientations to grains

13: function misorient(PPPfcc, RRRmisorient)
14: PPPl = PPPfcc (leave lower grain unchanged)
15: RRRnorm = normalize (RRRmisorient)
16: PPPu = RRRnorm×PPP f cc (rotate the upper grain points)
17: return [PPPu,PPPl]
18: end function
Rotating both crystals to change GB normal

19: function global rotation(PPPu,PPPl,RRRbasis change)
20: RRRtransform = inv (RRRbasis change)
21: PPPu,rot = RRRtransform×PPPu
22: PPPl,rot = RRRtransform×PPPl
23: return

[
PPPu,rot,PPPl,rot

]
24: end function
Applying edge cuts to complete the box

25: function edge cut(PPPu,rot,PPPl,rot,n1,n2,n3,RRRedge cut,l,RRRedge cut,u)
26: a0 = Lattice Parameter of the fcc material
27: xlims,u =±a0n1×

∥∥RRRedge cut,u(:,1)
∥∥

28: ylims,u =+a0n2×
∥∥RRRedge cut,u(:,2)

∥∥
29: zlims,u =±a0n3×

∥∥RRRedge cut,u(:,3)
∥∥

30: PPPu,final = PPPu,rot ∈
[
xlims,u,ylims,u,zlims,u

]
31: xlims,l =±a0n1×

∥∥RRRedge cut,l(:,1)
∥∥

32: ylims,l =−a0n2×
∥∥RRRedge cut,l(:,2)

∥∥
33: zlims,l =±a0n3×

∥∥RRRedge cut,l(:,3)
∥∥

34: PPPl,final = PPPl,rot ∈
[
xlims,l,ylims,l,zlims,l

]
35: return

[
PPPu,final,PPPl,final

]
36: end function
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A p p e n d i x C

AUTOMATIC ADAPTIVITY II. CONSTRAINED ADVANCING
FRONT ALGORITHM

Chapter 2 discusses the formulation of our fully nonlocal QC method. As men-
tioned in earlier sections, when combined with automatic mesh adaptation tech-
niques, this method does not require a-priori knowledge about where atomistic res-
olution will be needed during a simulation, since mesh refinement ensures that full
atomistic resolution is deployed around evolving microstructural defects. However,
going beyond all previous QC realizations, the fully-nonlocal scheme has intro-
duced a number of significant challenges specifically associated with its adaptive
remeshing capabilities: (i) in order to seamlessly refine down to the atomistic limit,
every representative atom (i.e., every vertex in the mesh) is required to coincide
with an atomic site of the underlying discrete crystal lattice; we will refer to this
as the discrete location constraint (DLC). (ii) Existing vertices must be retained
at their exact same location during remeshing (to guarantee the survival of lattice
defects during remeshing). (iii) Massive parallelism of the implementation calls
for remeshing schemes that can be performed locally, i.e., the geometric algorithm
must offer control to remesh only small (well-defined) subdomains of the total sim-
ulation domain (thus avoiding refinement propagation). (iv) As in any remeshing
technique, refinement criteria and geometric algorithms must be chosen to ensure
sufficient mesh quality. (v) The special features of the nonlocal QC method re-
quire a careful updating/resampling procedure to define nodal and element data
after remeshing. Chapter 3 of this thesis addresses points (iv) and (v) in a general
three-dimensional (3D) setting [115]. However, all applications there are limited
to 2D due to the lack of a suitable 3D remeshing algorithm that satisfies all of the
above constraints. To this end, we have performed some elementary advances to
close this gap by introducing the Constrained Advancing Front (CAF) algorithm
for 3D mesh refinement in the nonlocal QC method. Various remeshing techniques
and a myriad of implementations exist and find frequent use in computational solid
mechanics, primarily in conjunction with the finite element (FE) method. Unfor-
tunately, many of the above challenges do not exist in the FE framework: nodes
do not have to lie on a discrete grid (the DLC is removed) and thus can be placed
and moved to maximize mesh quality and to ensure local refinement. Also, the



113

principle of local action (unless in meshless or particle methods) makes paralleliza-
tion more readily available than in the QC method, where long-range inter-element
interactions cause complications (see [115]). For these reasons, traditional mesh
refinement strategies are difficult to apply in our scenario.

For example, we aim to avoid algorithms that propagate remeshing into the sur-
roundings in an uncontrollable manner, as seen, e.g., with the Longest Edge Prop-

agation Path (LEPP) algorithm [94, 93, 95]. LEPP recursively searches for the
longest edge within elements on the propagation path and can lead to a cascade
of element refinements over large distances. An efficient, massively-parallel im-
plementation, however, must avoid such uncontrolled cascading remeshing, since
propagation paths will inevitably cross rank domain boundaries [48]. Introducing a
simple cutoff in the propagation path has proven problematic, since the mesh qual-
ity suffers considerably. Furthermore, LEPP does not offer a choice in the number
of new nodes being inserted, which may corrupt the one major advantage of the
QC method, viz. the capability to locally confine costly atomistic resolution around
defects benefits and to aggressively coarsen away from those defects. This, how-
ever, produces high gradients of element size away from the fully-resolved region,
which is why LEPP is better suited in the FE context where a smooth element size
distribution is preferred.

A local, greedy, hill-climbing algorithm was implemented previously as an alterna-
tive refinement scheme for the nonlocal QC method [3]. It localizes remeshing to
only a few elements per refinement and aims to compensate for the imminent loss
in mesh quality due to the extreme locality by considering all possible vertex inser-
tions and bisections of which it chooses only the best option. While the algorithm is
extremely fast, locality and the enforcement of the DLC decrease the mesh quality
to an unacceptable level [3].

Delaunay Refinement [105] and Constrained Delaunay Triangulation (CDT) [23,
31] are further viable options that are both based on Delaunay triangulations. Here,
for each element that must be refined, a small cavity is constructed, leaving the outer
surface of the cavity as a set of faces to be preserved by the CDT. Unfortunately,
common CDT algorithms presume the ability to insert so-called Steiner points in
arbitrary locations on the constraining entities [27], which violates the DLC, affects
locality, and requires special tools to re-establish the conformity of the mesh.

To overcome all of the above limitations, we introduce the CAF algorithm, which
follows the original Advancing Front (AF) strategy of [39]. The remeshing scheme
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is local (thus allowing for parallelization) and complies with all of the above geo-
metric constraints; in particular, atoms must have conformal connectivity and fulfill
the DLC. This new scheme deletes elements around the element to be refined and
defines the thus-created inner surface of the surrounding mesh as the advancing
front. After the insertion of new nodes, the key challenge is to rebuild the mesh
by starting from the advancing front and completely closing the cavity that was
created by deleting the previously existing elements. In essence, for a given set of
nodes, a tetrahedral mesh is created based on the discrete underlying point set and
the connectivity of the surrounding mesh.

The following work was done in collaboration with Lukas Munk as a part of his
master’s thesis. The description of the method and the algorithm are kept brief and
serve as a summary of the implementation, and to complement Chapter 3 in the the-
sis. The complete details of the algorithm with applications to the quasicontinuum
method will be published elsewhere.

C.1 Constraint Advancing Front Algorithm
Mesh refinement requires two main steps: (i) the insertion of new nodes, and (ii)

their integration into the existing mesh. Both steps are severely constrained by the
requirements of the nonlocal QC method. First, as explained in Section 3.3.1, every
node must satisfy the discrete lattice constraint (DLC), i.e., for any nodal position
XXX in the undeformed reference mesh we must ensure that

∃ i, j,k ∈ Z s.t. XXX = iaaa1 + j aaa2 + k aaa3 (C.1)

for given Bravais basis vectors {aaa1,aaa2,aaa3}. Consequently, as opposed to FEM
codes, techniques like mesh smoothing in standard forms [18] are not applicable.
This is particularly challenging when approaching full atomistic resolution. At this
scale, discrete lattice sites can be relatively far apart from the ideal location that
a traditional mesher would choose for a new node. In addition, the simple snap-
ping of nodes to nearest lattice sites creates unacceptable inverted or zero-volume
elements [3]. Second, for the sake of parallelization, mesh adaption in a body B

must be confined to a small subdomain Ω ⊂B, and existing nodes at XXX ∈ Ω must
be retained at their exact prior locations. Finally, the newly-created meshes must
conform with the existing nodes and element connectivities on the boundary ∂Ω.

Our new CAF algorithm, which is schematically shown in Fig. C.1 and whose over-
all structure is summarized in Algorithm 4, consists of three principal steps that
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ensure compliance with the above requirements. For a given element to be refined,
we

I. define a cavity Ω and delete all elements within Ω while retaining all existing
nodes,

II. insert admissible new nodes in Ω for refinement,

III. rebuild element connectivities within Ω while recovering the connectivity of
the enclosing mesh on ∂Ω.

Figure C.1: Schematic illustrating the remeshing process in 2D: (a) original mesh
with a highlighted element that requires refinement; surrounding elements are
deleted. (b) The deleted elements form the cavity Ω and the advancing front (AF);
all nodes are retained and new nodes are inserted. (c) For each face in the AF, can-
didate tetrahedra are identified and several checks are executed to identify the best
one. (d) New elements are added and the AF is updated.

C.2 Last resort algorithm
If the above scheme does not succeed at rebuilding the mesh within the cavity in a
conforming fashion, we apply a brute-force, lastResort algorithm to the remaining
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Algorithm 4 Constrained Advancing Front
1: for elementToRefine ∈ elementsToRefine do
2: create the cavity Ω around elementToRefine
3: insert new nodes on lattice sites
4: initialize the advancing front: AF = ∂Ω\ (∂Ω∩∂B)
5: while AF 6= /0 do
6: take random baseFace∈ AF
7: find candidate vertices ∈Ω near baseFace
8: initialize set of candidateTets= /0
9: for each candidate vertex do

10: if resulting candidateTet is Delaunay then
11: if resulting candidateTet is conformal then
12: add candidateTet to candidateTets
13: end if
14: end if
15: end for
16: if candidateTets 6= /0 then
17: from all candidateTets find the locally-optimal one;
18: build optimal tet, update front, goto next baseFace
19: else if |AF |> nfew faces then
20: delete all created elements connected to baseFace
21: else
22: call lastResort algorithm
23: if lastResort succeeds then
24: build tet, update front, goto next baseFace
25: end if
26: end if
27: start over with this elementToRefine with a reduced cavity size
28: end while
29: end for

front [45]. The recursive procedure, systematically tests a well-chosen subset of all
possible meshing paths until it finds a valid tetrahedralization. This may involve
deleting elements that have already been added within the cavity, leading to a less
constrained cavity [91]. It is important to note that deletion will never target ele-
ments that did not belong to the initial cavity so the conformity with the surrounding
mesh is preserved. As can be expected, this algorithm scales poorly with the num-
ber of faces in the AF and elements in the mesh. However, given a small remaining
cavity, the algorithm will terminate whenever there exists a valid tetrahedralization
in the subset. For further information the reader is referred to [45].
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