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ABSTRACT 

A dual quark model is developed from the usual Veneziano model 

by explicitly including the Dirac spin of the quarks. Resonances 

appear without the parity doubling and new ghosts present in previous 

models with spin. This is accomplished by eliminating the contri-

butions of the negative parity components (MacDowell- twins) of the 

spin~ quarks through the introduction of fixed J-plane cuts. The 

resonances belong to an su6 symmetric spectrum identical, on-the 

leading trajectory, with that of the usual static symmetrical quark 

model. All resonances couple via su6 x o2 symmetric vertices 
w Lz 

and the model factorizes with essentially the same degeneracy as the 

usual Veneziano model. As a consequence of requiring these two 

features the model acquires further new structure which is studied 

in detail in terms of the asymptotic behavior of the model. This 

new structure leads to unavoidable "background" contributions to 

the imaginary parts of the amplitudes not present in previous dual 

models. This situation is examined and interpreted in the language 

of Finite Energy Sum Rules. 

In order to· test the basic features of the model explicit 

calculations are made for the case of pion-nucleon scattering in 

the Regge limit. To .make the numerical work easier a somewhat 

simplified version of the model is used. Although the results of 

the calculations · are suggestive of- reasonable J-plane structure for 

the various amplitudes, i.e., the location of Regge pole-fixed cut 
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interference is reasonable from the standpoint of the data, the 

overall kinematic behavior of the amplitudes is definitely not 

compatible with what is measured. However, it is noted that this 

kinematic behavior depends strongly on those details- of the model 

which were simplified in the present study. If such models are to 

be unambiguously and successfully tested against data, future studies 

must treat these details more completely and realistically, including 

both unitarity and symmetry breaking effects. 
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INTRODUCTION 

The research to be described in the following pages involves 

an effort to combine two of the most interesting concepts to appear 

in hadron physics in the last eight years. The first is the idea 

that hadrons can be thought of as composites of spin t, su
3 

triplet 

objects called quarks. (l) The second is the concept of duality. 

In the quark model we assume that mesons are composed of a 

quark and an anti-quark and that baryons are three quarks. If we 

then add some internal angular momentum as if, for example, the quarks 

are bound by a harmonic potential and require that only states totally 

symmetric in the quarks appear, we can reproduce much of the observed 

regularity of the particle spectrum. ( 2) If we further assume that the 

strong interactions are the same for all the quarks then the strong 

interactions must be invariant under the operators of the group su6. 

Thus we expect resonances to appear in mass degenerate multiplets 

which are representations of su6• This is at least approximately 

true in nature and we shall henceforth work in this limit as a first 

approximation. 

The su
6 

symmetry of the strong interactions can, of course, 

be studied independently of the quark model, but we shall retain the 

notion of quarks, although not requiring them to exist as free, 

asymptotic states. This will allow us to keep an "intuitive" picture 

of what is happening and is suggestive of how certain questions should 

be answered. In particular, the quark picture leads to quite definite 
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predictions as to how various objects should couple and recent work 

has stimulated new interest in this field. (3, 4) As pointed out in 

Ref. 4, the simplest sort of coupling that one can imagine for the 

three qq mesons shown in Fig. I-1 is that in the collinear frame (as 

shown all momenta are along the z axis) quarks a and d are unaffected 

While b and c annihilate in a 3p
0 

state to conserve angular momentum 

and parity. If we further assume that the transverse momenta of b 

and c are negligible, then the pair be has L =0 and thus S =0. It z z 

turns out that a vertex with this structure has a well defined-symmetry 

called SU6W X O~z' where the 02Lz reminds US that it is a collinear 

symmetry invariant under rotations about the z axis. This vertex 

symmetry has already been well studied and details, which are not 

required here, can be found in the literature. (5 ) We only note that 

the model we are studying does exhibit this symmetry and that many of 

its predictions are in reasonable agreement with data. There are 

certain glaring discrepancies, (s) however, which we shall return to 

later. 

The other major concept to understand is duality. This is 

a somewhat newer and less well understood idea and, although there 

are many excellent · reviews of the subject,(?) we shall discuss much 

of its basic development and emphasize the points which are of interest 

here. The basic question which duality seeks to answer can be illus-

trated by considering the two "Feynman" diagrams in Fig. I-2. The 

question is, how ·do we treat these two seemingly different diagrams? 

In Q.E.D. this might be e+e- scattering. Figure I-2a is an s channel 

bound state, the photon, and Fig. I-2b is a t channel photon exchange. 
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------~~--~c--a 
.. d 

)!;-Z 

Fig. I-1 Three . meson vertex. 



Fig. I-2 Feynman diagrams 

channel. 

4 

(a) 

(b) 

(a) direct channel; (b) exchange 



5 

In t his case, a perturbation approach is appropriate and it is clear 

that the first order diagrams, a and b, should be added. The next 

+ -level of complexity is to consider positronium, a real e e bound 

state. It no longer seems possible to say that it contributes only 

to diagram I-2a since it certainly contains some t channel photon 

exchanges. 

Finally, in hadron physics the wavy line in 2a now represents 

a sum of resonances in the direct channel and that in 2b is a Regge 

pole exchange (Which can also be thought of as a sum of resonances 

in the exchange channel). Perturbation theory does not seem applicable 

in this case, · and the situation is somewhat less transparent • . If one 

still wants to sum the two diagrams he gets the "interference model." 

However, the basic idea of duality is that the two diagrams are some-

how e~uivalent and that to add them would lead to double counting. 

Thus, duality .would say that the descriptio~ of a scattering amplitude 

by· its resonances and the description in terms of its Regge behavior 

are e~uivalent, the former being more generally useful at low energies 

and the latter at high energies. The Regge behavior is, of course, 

an asymptotic expansion and somehow less "physical" than a resonance 

description. The duality scheme says that we could ignore ~uestions 

about Regge poles if only we could completely specify the total 

resonance content of a given reaction in, say, the s and u channels. 

A more concise approach is offered by using Finite Energy 

Sum Rules (FESR). Consider a scattering amplitude A(v,t) which we 

shall assume ·to have the following expansion for v large, t fixed. 
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A(v,t) 
a. (t) 

J. 
v 

i.e., it has a Regge expansion. Here the ± sign depends on the 

(I-1) 

crossing properties (s · -H u, v f'V s-u) of the amplitude which we take 

to be well defined. Then if we use the contour shown in Fig. I-3, 

we find (A(v,t) is analytic in v except for ' the 2 cuts) 

f vn A(v,t) dv = 0 c 

(n integer) 

(I-2) 

If N, the rad~us of the semi-circle, is large, we can use Eq. I-1 to 

do the integral on the semi-circles. The result is the standard FESR 

form 

JN vn dv Im A(v,t) 
0 

a. (t) + n + 1 
N J. 

= ~ ~i(t) a.(t) + n + 1 
i J. 

where we have assumed that A(v;t) has the crossing behavior 

n+l · 
A(v,t) = (-) A(-v,t). The opposite behavior just gives 0 = 0 

(recall imaginary parts have opposite crossing behavior from real 

(I-3) 

parts). To get the FESR we used only analyticity, definite crossing 

behavior, and Regge asymptotic behavior, i.e., no strong "background 

integral" contribution. ( 8 ) Physics enters the problem when we try 

to determine 1) how large N must be? 2) which and how many Regge 

poles are needed on the right-hand side? 3) what should be included 

on the left-hand side? Note that although Eq. I-3 only involves 

imaginary parts, the real parts can be found, in principle, from dis-
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Fig. I-3 Contour for FESR integral. 
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persian relations. 

The first application of the FESR which led to answers to 

these questions was that of Dolen, Horn and Schmid. (g) They studied 

rtN charge exchange where p exchange is known to dominate the high 

energy data and a and ~ are well determined. They continued this 
p p 

Regge fit down to intermediate energies where they described the left-

hand side of Eq. I-3 with phase shift data (essentially pure reso-

nances). As shown in Fig. I-4, they found that the Regge fit was a 

good average to the resonance data. This led to the duality suggestion 

that the Regge description is equivalent to the resonance description, 

at least on the average. To get the local structure in the low energy 

resonance region one would have to include a large number of Regge 

exchanges. In the "interference model" the Regge poles would appear 

as a background at low energy on top of which would appear the reso-

nances. Thus another way to state duality is that in a FESR which 

has Regge poles on · the right, the left-hand side can be saturated 

simply by resonanc.es (resonance saturation). 

Another striking feature found by Dolen, Horn and Schmid was 

the t dependence of the FESR. Regge analysis of charge exchange 

indicates that the .B(-) amplitude, which is the I= 1, helicity non-

flip amplitude in the t channel center of mass and which dominates 

dcr/dt, has a zero near t ~ -0.6 as indicated by the dip in dcr/dt and 

- i1(a (t) 
predicted by the signature factor of the p (+1 - e P ) which 

vanishes for a =· 0. Similarly the cross over point where 
p 
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dcr ( -dt ~ N elastic) 

suggests that Im A'(-) (the nonflip amplitude) vanishes at t ~ -0.2. 

Dolen, Horn and Schmid found that not only .did the resonance saturated 

left-hand side exhibit these zeroes, but that each of the dominant 

resonances had them individually as shown in Fig. I-5. 

We have seen that in principle, since Regge poles are "dual" 

to resonances, the Regge parameters can be .determined from resonance 

data. We can also invert the process and discover direct channel 

resonances in the Regge exchanges. Th 1 .d (lO) . th t ~f e genera 1. ea 1.s a , ~ 

the Regge residue ~(t) has structure in t (e.g. zeroesJ, when . we do 

a partial wave projection in terms of P£(cos Gs) we will find definite 

structure in the partial wave amplitude, a(t;s). Further, since 

fixed t structure corresponds to varying G as we vary s, the partial 
s 

wave structure will vary with s and can reproduce s channel resonances. 

Thus the structure of the Regge residue function is "dual" to the 

direct channel resonances. 

This leads us to one of the most interesting and successful 

predictions of the duality sch~me: amplitudes with low energy 

resonances (pp, ~~ K-p) should have dips in the angular distribution 

which persist even at high energies (Regge region), whereas non

resonanting amplitudes (pp, K+p) should have smooth angular distri-

butions. These predictions are quite well satisfied in the data. 

In an interference model where the Regge behaved part of the amplitude 

is just a background contribution at low energies, the presence or 
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absence of resonances makes no statement about the angular structure 

of the Regge residue. Another point to note is that for fixed t 

structure the dominant partial -wave will have the dependence 

£dom ~~s as might be expected from a simple impact parameter picture 

Where the hadrons have a definite radius. (ll) 

Before proceeding we must consider the technical ~uestion as 

to what is a resonance. This is crucial since resonances play a 

dominant role in our study. Certainly resonances should have definite 

~uantum numbers, they should factorize and they should be observed in 

both production experiments (rtN ~iN*) and formation experiments 

( rcN ~ N* ~ rtN). However, the problem of separating resonances and 

background in the data when the widths become large is very difficult. 

It is so difficult in fact that all reasonable mathematical realiza-

tions of dual amplitudes presently in use (e.g. Veneziano) have had 

to avoid the problem by working in the narrow resonance limit where 

resonances are poles on the real s axis. Thus one must give up 

explicit unitarity. Then diffraction (Pomeron exchange), which is 

a direct channel unitarity effect, must play a special role in these 

models. We are led to the "two component" theory of Harari and 

Freund(l2) where the "Pomeron exchange" (vacuum ~uantum number 

exchange) is taken to be dual to the direct channel backgroun~ and 

the resonances give the ordinary Regge exchanges. 

A good example of the problem of resonance identification is 

the A
1

• The enhancement in the cross section near the predicted 

mass of the~ can ·also be explained in terms of threshold effects 
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for np production plus t he strong momentum dependence of the propagator 

f or the exchanged n (Deck ef fect). (l3) One would like to say that the 

t wo explanations are "dual" to · each other and therefore equivalent. 

Ho1~ver, a problem arises when we at tempt to single out an individual 

resonance. In terms of the FESR, we would want to change the range of 

integration form being 0 to N to t he range ~ - 6 to M~ + 6 (we could 

2 do this by subtracting 2 normal FESR' s with the endpoints N
1 

= MA - ~ 
2 l 

and N2 = MA ). The scheme which tries to utilize FESR's modified in 
1 

this way is called "local duality." Since only the imaginary part of 

a resonance is localized in s, one should only apply local duality to 

imaginary parts. Thus it is difficult to say anything about n exchange 

which is primarily real. The whole question of local duality is still 

poorly understood. 

Quarks now enter our duality picture. We wish to postulate 

as a general rule the observed fact that exotic resonances do not 

appear in strong interactions. The exotic' classification is most 

easily understood · in terms of quarks. Exotic mesons are those which 

cannot be made from qQ states whereas exotic baryons are those not 

contained in q q q states. This leads us into the exciting field of 

(14) 
exchange degenerac·ies, which we shall only dis cuss peripherally 

here in order to show the important role played by the quark picture 

in the application of duality as a predictive tool. The general idea 

is that if a given channel, say n+n+, is not allowed to resonate then 

the imaginary part of the amplitude given by the resonances must 

vani sh. From the duality principle it follows that the imaginary part 

of the Regge residue also must vanish. Since the imaginary part in 
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Eq. I-1 comes from the e-i~a(t) term in the signature factor 

-i~a(t)) (l ± e , the absence of an imaginary part results, in general, 

from the simultaneous exchange of two trajectories with opposite 

signature and the same a and ~' i.e., 

This is just exchange degeneracy. Studies in the meson-meson system 

lead to exchange degenerate multiplets of mesons, e.g. the pwfA
2 

system which is well satisfied in nature. Studies in the meson 

baryon system give somewhat less satisfactory results and the scheme 

faces serious difficulties for baryon-baryon scattering. In fact, 

recent studies in the Veneziano formalism suggest that maybe We should 

expect exotics to appear in the B B channel. (l5 ) 

For our purposes the essential point of this discussion is 

that all the important results (positive and negative) can be summa-

. (16) rized in terms of quark-duality diagrams. The rules for writing -

down such diagrams are simply: l) All baryons are made out of three 

quarks, 2) All mesons are made out of a quark and an antiquark 

(direction of arrow determines quarks and antiquarks), 3) The quark 

and antiquark from the same particle cannot annihilate ("Zweig's Rule 11
), 

4) Only standard meson or baryon (i.e., q q, q q q or q q q) channels 

are allowed to resonate. Such diagrams are illustrated in Fig. I-6 

where the usual channel labels aregiven. For example, Fig. I-6a 

might represent ~+~- scattering in the s channel. + -It is also ~ ~ 

in the t channel. However, in the u channel, this diagram looks as 

shown in Fig. I-6b, i.e., is exotic (q q q q) in the ~+~+ channel. 
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M 

{bJ 

M 

M 
u 

ldJ 

Fig. I-6 Quark diagrams for:(a) forward meson-meson scattering; 

(b) _ backward meson-meson scattering;(c) forward meson

baryon scattering;(d) backward meson-baryon scattering; 

(e) baryon-antibaryon scattering (illegal diagram). 
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Figures 6c and 6d give the expected MB system diagrams, i.e., in su
3 

notation 1 and ,§ in the t channel and 1,.§ and 10 in the s and u 
"' 

channels. Finally, Fig I-6e shows the illegal diagram, i.e., it 

contains one channel with q q q - -q, and another with q q q q q q, 

which appears in B B scattering and causes the problem mentioned 

above. 

We note that the question of exchange degeneracies is basically 

a question of finding a solution of the su3 crossing matrices. While 

the duality diagram is certainly a solution to this problem, it is 

not necessarily the most general. However, it is indeed very 

suggestive and our task henceforth will be to try to devise a . con-

sistent recipe for calculating these diagrams as scattering amplitudes 

as in a Feynman approach where the diagrams represent a first approx-

imation to hadron physics. 

To put ·this problem in perspective, recall that the dream of 

S-matrix theory is to derive, guess or buy a function that has the 

following properties: . 1) analyticity in s,t,u, 2) crossing syrmnetry, 

3) unitarity and 4) good asymptotic behavior, e.g. Regge behavior. 

Now we wish to add 5) duality, which means that with 1), 2) 

and 4) giving us FESR's we want the non-diffractive part of the 

amplitude to be saturated by resonances. By "non-diffractive" we 

mean an amplitude which involves exchange of non zero quantum numbers 

and gives rise to falling cross sections in the Regge limit. We find 

that we can in fact do this, but as suggested above, we must give up 

unitarity. However, the model does have a natural interpretation 



17 

which yields a sort of "pseudo unitarity11 as will be discussed later. 

We expect that when unitarity is rigorously included diffractive 

effects (the Pomeron) will appear in a natural way. 

The most widely used mathematical form for the dual amplitude 

is that first suggested by Veneziano(l?) which is essentially just a 

beta function, e.g. 

Py(s,t) = B(l-a( s)' 1-a( t)) = r (1-a( s )) r (1-a( t )) 
r(2-a(s) - a(t)) 

(I-4) 

The actual amplitude used to describe a specific reaction is usually 

just a polynomial in s and t times such a function or more generally 

a sum of such functions where varying integers appear in the different 

gamma functions. In fact, one can show rather generally that every 

amplitude which satisfies our initial duality constraints can be 

written as such a sum. (lS) 

We shall reserve the mathematical details of the functionry 

for the next chapter and review just the basic properties of the 

Veneziano amplitude: 1) narrow resonances in the form of simple poles 

whenever a(s) or a(t) pass through positive integers except that the 

denominator eliminates the . possibility of double (simultaneous) poles; 

2) symmetry in its arguments, a property which can be used to build 

amplitudes with definite crossing properties, e.g. a function even in 

v-s-uisgiven by Av(s,t) + Av(u,t); 3) pole residues which are 

polynomials in the cross channel variable as long as the trajectory 

functions are linear, i.e., a(s) = a + bs; 4) Regge behavior, e.g. 
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( - s )a( t) 
as lsi ~oo, t fixed ~(s,t) ~ r(a(t)) sin ~a(t) as long as 

larg(s)l >E. This last point also requires that the slopes of the 

trajectory functions in all channels be the same. Whether this is 

taken as input or a prediction, i t is in remarkable agreement with 

nature. Since the Regge behavior requirement also excludes us from 

a tiny wedge around the positive real axis C!arg(s)! >E) where the 

poles are, we shall take the approach that this wedge somehow repre-

sents the elastic unitarity cut (pseudo unitarity). Thus the dis-

continuity across the wedge is the imaginary part of the amplitude 

and the interior of the wedge containing the poles becomes the second 

Riemann sheet ·of the complex s plane. Further, the distance from 

the poles to the wedge boundary goes like (sin E)• lsi and is taken 

to be the effective imaginary part of a(s) which is observed in data 

to grow approximately like the first power of s. 

Another . interesting feature is that this amplitude has · 

resonances in only two channels as suggested by the simple duality 

graphs which are always exotic in one channel (out of s, t, u). If 

there are no exotic channels then more than one quark graph will 

contribute (as in ~ scattering) and signature will reappear in a 

natural way, e.g. if A (s,. t, u) = A (s,t) + A (u,t) and we consider 

I s I , I u I ~ oo, t fixed then 

( · ) (l ( )) { ( )a(t)-1 (-u)a(t)-1} = A s,t,u - r -at -s + 

r(l~(t)) sa(t)-1 (1-e-i~a(t)) (I-5) 
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We also note that the Veneziano amplitude generalizes easily to the 

case of n external particles. (l9) 

Although this amplitude does have definite diseases (to be 

discussed in the next chapter) we shall assume that it is a reasonable 

way to calculate our quark diagrams in the limit that the quarks are 

scalars and su3 singlets. 

There remains, then, the task of introducing the su6 quantum 

numbers of the quarks. We certainly must include the su3 factors for 

the sake of exchange degeneracy studies and as one might expect this 

is fairly simple to do (as we shall see). The problem of introducing 

the Dirac spin of the quarks is considerably more troublesome and it 

is therefore useful to review again why we want to do it. Recall 

that when we discussed the quark model, it ·was suggested that nature 

behaves in many ways as if it were close to an su6 symmetric limit, 

e.g. particle .spectra which are approximately given by su
6

• A 

further suggestion comes from inelastic electron-proton ~cattering. (20) 

It has been found ·that much of the data can be simply explained in 

terms of a composite proton, i.e., a proton constructed out of several 

partons (quarks?). The data, in particular· the ratio 0 T/o
8 
~ 0 

where o8 is the cross section for scalar photons and aT is for trans

verse photons, are strongly in favor of spin! partons. 

Attempts have already been made to include su
6 

quarks in dual 

models(2l) but with the problem that the resonances produced were 

parity doubled and contained new ghosts (states with negative coupling 

constant squared). 
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The new feature of the present work is the appearance of cuts 

in the complex angular momentum plane Which allow us to introduce 

quark spin without also introducing parity doubling. Following the 

work of Garlitz and Kislinger, ( 22) we take the approach that linear 

trajectories and spin i quarks are compatible with non-parity doubled 

resonances only When there are fixed (Carlitz-Kislinger) cuts in the 

J-plane. We shall see that the usual factorization, analyticity, and 

crossing contraints for dual models require the amplitude to exhibit 

further new J-plane and s-plane structure. Our primary interest 

during this research will be to study the form and interpretation of 

all this new structure and to understand how it affects the behavior 

of the amplitude • . In particular, we shall need to restudy our 

requirements for an acceptable dual amplitude, e.g. that it should 

have pure Regge pole asymptotic behavior. Also the new forms of 

measureable q~antities such as differential cross sections will be 

discussed and compared to data. This new complexity is not unexpected 

and is probably desirable. Simple dual models such as discussed above 

have been markedly unsuccessful in describing processes involving 

spin i or even integer spin greater than one for the external particles. 

It has been postulated that the introduction of spin may be incompat

ible with the original strict duality constraints. ( 23 ) It is also 

worthWhile noting that Regge pole phenomenology shows a strong need 

for cuts in order to describe the data( 24 ) and that no truly con-

sistent model now exists for generating these cuts. 

Having discussed the general direction of the research in this 



thesis and explained why it is of interest let us proceed to look at 

the details. In the next chapter vre shall discuss the technical 

details and properties of the simple Veneziano amplitude. Chapter III 

will bring us to the introduction of quark spin for the simple case 

of meson-meson scattering Where we can study what functionry is 

required without t9o much kinematic complexity. In Chapters IV and V 

we shall study in detail the new structure in the J-plane and s-plane 

introduced by this model, the behavior of the related functionry, 

and the meaning of all this in relation to duality. After calculating 

meson-baryon amplitudes in Chapter VI, we shall attempt comparison 

with experiment, focusing our attention on those points which result 

from the inclusion of spin rather than details of the dual model. In 

the final chapter vre shall review the situation and abstract some 

conclusions about the model. 
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II. THE BASIC DUAL AMPLITUDE 

In this chapter we shall review some of the basic properties 

of the Veneziano amplitude. ( 25 ) Since we will eventually be interested 

only in results which are essentially independent of the details of 

the amplitude, the object here will be to establish a general famil-

iarity with the formalism. Indeed, if improved versions of the basic 

amplitude are developed (e.g. unitarized or without ghosts) with 

similar representations to those discussed here, then the present 

program for introducing the spin of the quark can be easily applied 

to these new versions. 

Recall that the basic Veneziano amplitude is given by: 

Ay(s,t) = B( -a(s), -a(t))- r ( -a{s )) r ( -a(t ~) 
- r (-a( s) -a( t) 

l 
= Jo dx x -a(s)-1 (1-x)-a(t)-1 

1 
= J dx x-a(t)-1 (1-x)-a(s)-1 

0 

(II-la) 

(II-lb) 

(II-lc) 

where the s ~ t symmetry is evident in the integral representation 

because of the x ~1-x symmetry of the integrand. The beta function 

is a particularily beautiful amplitude to study because we have not 

only the integral representation which is very useful for making 

generaliz~tions but also the explicit gamma function representation 

whose properties can be looked up in a book. 
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First let us look at the resonance structure. This is most 

easily obtained from the integral representation. Expanding the 

integrand in Eq. II-lb about x = 0 and doing the integral we have 

l -cx(s) -1 n E rfn+a~tt+ll l Ay(s,t) = J dx X X = 
0 n r n+l r cx(t)+l) n-a(s) 

(II-2a) 

Likewise from Eq. II-lc we get 

Av(s,t) E r fn+a~s )+lt l 
(II-2b) = n-a(t) n r n+l r(a s)+l) 

These two expansions illustrate several points. First, dual amplitudes 

can be alternately expressed as sums of resonances in either of the 

two channels which is an explicit illustration of the duality idea. 

Second, we see that the residue at the nth pole is a polynomial of 

nth order in the cross channel trajectory function. As long as we 

have linear. trajectories, it is also a polynomial of the nth order in 

the cross channel .variable. If we partial wave analyze this residue, 

we will in general find all angular momenta from 0 to n present. 

This is the well known fact that the Veneziano amplitude contains 

not only the leadipg trajectory, but also daughter (lower spin) 

trajectories. It should be noted that if the trajectory functions 

were in fact not linear, as happens when an ad hoc term ~sth-s is 

-
introduced to account for unitarity, then the residue is not a poly-

nomial in cos g ?-nd contains angular momenta greater than n (ances-

tors). It is also worthwhile realizing that this daughter structure 
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is not unexpected. We saw during our earlier discussion of the partial 

wave analysis of Regge poles that fixed t structure in the Regge residue 

required dominant s channel resonances whose angular momentum increased 

like~s. This is consistent with linear trajectories only if daughter 

trajectories with dominant coupling are present. This is exactly 

what happens in the Veneziano amplitude. 

The final point to notice about Eqs. II-2a and II-2b is that 

the two expansions actually converge in different kinematic regions; 

II-2a for a(t) < 0 and II-2b for a(s) < 0. The divergence of the sum 

is what gives the resonances in the cross channel. This explains how 

a sum of terms, each of which is regular in t, for example, can have 

poles in t. The integral representation is just the analytic contin-

uation of the function defined by the sums. 

Two related and important questions are factorization and 

degeneracy of the resonances. In the present language these problems 

are too technical to be discussed, and we shall just present the 

results of previous work. ( 26 ) Recall that our definition of a 

resonance specified that it should factorize. If we apply this to 

the original n-point amplitude (n external particles), we require 

that when we look at a resonance in any channel the n-point amplitude 

will factorize into an m-point amplitude and an n-m + 2-point amplitude. 

Further, these lower n amplitudes should be the same as if we had 

written them down directly with the appropriate external particles • . 

For example, in Fig. II-1 we illustrate the case for n = 6, m = 4. 

It turns out that in order to satisy these constraints the degeneracy 
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of the resonances must increase very rapidly with the mass of the 

resonance. For large values of the mass, m, the number of degenerate 

states grows like exp(cm) where c is a positive constant. It was also 

found that some of the states are ghosts, i.e., have negative coupling 

constant squared. At first sight such a degeneracy may seem untenable. 

However, similar results occur in statistical models( 2?) and it is 

really not surprising in a resonance saturation model Where all the 

channels which are opening up at high energies require resonances to 

saturate them. A further point which is worth noting is that when 

the model is made more complicated by adding together several beta 

functions with arguments which differ by integers (called satellites), 

in order to include spin for example, an even higher and probably 

unacceptable degeneracy rising like exp(cm2 ) 'is found. ( 2B) We shall 

return to this point later when we discuss how spin is to be intro-

duced in the present model. We will want to construct the model so 

that the degeneracy is changed from the single Veneziano amplitude 

only by an overall factor representing the various su
6 

states. 

The asymptotic behavior of Eq. II-1 is most easily studied in 

the gamma function representation using the Stirling approximation( 2
S) 

-z z...l r (z) -+ J2; e z 2 lzl-7 oo,larg(z)l <n: (II-3) 

and 

r(z) r(l-z) = sin n:z (II-4) 
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Using Eq. II-3 with jsj ~oo, jarg(s)j>E so that jarg(-s)j< ~-€ 

and t fixed, we find ( a(s) = a
0 

+a's) 
s 

~ @{ -a{s ~-Ci(s) -1-ecx( s) 
Ay(s,t)s ~ 00 r( -a(t)r;::::. ~(s)-a(t)-1- a(s) ~ 

t fixed ~ 2~(-a(s)J e 
r(-a(t))(-a's)a(t) 

X ( l + otfsr)) 

(II-5) 

To see what are the restrictions on € we consider the case j t I, Is 1~ oo 

u fixed, i.e., t--s. Again using Eqs. II-3 and II-4 with 

a(s) =a +a's and s + t + u = K, we find 
OS 

r( -a -
0 

a'K 

Ay(s,t) 
s 

= 
r( -a - ao ot 

a'u- a - a'K-1 0 . 
-,r( a' t) s 

r(-a -a + a'u- a'K) 
ot os 

s 

+ a'u + a't) -1 

+ a'u - a'K) r(l+a(t))sin ~a(t) 

2i 
i~a(t) -i~a(t) e -e 

(II-6) 

which decreases faster than any power of jsj,i.e., is smaller than 

Regge terms, as long as Imt grows faster than tn(t), e.g. 

arg(t) = const. > 0. Note that as mentioned above this is only true 

for equal slope trajectories in the two channels. Otherwise a factor 
- . 

(a' - a' )t (a't) s t appears. Since we cannot look at the asymptotic 

behavior out along the positive real axis we shall consider this 
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"wedge region" to be on the second Riemann sheet as mentioned in 

Chapter I. To summarize all this, we have as !s!~oo, ~-E>!arg(s)j> E, 

t fixed: 

1\(s,t) - r(-a(t))(-a's)a(t) 

Av(u,t) 
' cx(t) r(-cx(t))(cx s) 

1\r(s,u) -O(e -cl s I) 

The scale factor s
0 

of the usual Regge form appears naturally as 

1/cx' in this model. 

(II-7a) . 

(II-7b) 

(II-7c) 

In Chapter IV we will see that it is also possible to find the 

asymptotic behavior from the integral representation which must be 

used in the general case. However it is very handy to have the gamma 

function representation results as a check. 

For completeness and to be totally honest, this discussion of 

dual amplitudes must include a short treatment of attempts to unitarize 

the Veneziano amplitude. The most obvious procedure is to give the 

t fu t · ( ) · · t ( 30 ) H t d trajec ory nc lOn ex s an lmaglnary par • owever, as no e 

above, this leads to nonlinear trajectory functions, nonpolynomial 

residues, and high spin ancestors. Other programs include treating 

the Veneziano amplitude as a distribution function and using standard 

smearing te chniq_ ue s, ( 31) and tre·a t ing the Veneziano §IIIPli tude as a 

. I c 32) . < 33) Born term and applying N D methods or K matrix methods to it. 

The first of these procedures is extremely arbitrary and tends to 

ruin the Regge pole asymptotic behavior. The second and third 
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procedures, while possibly useful in phenomenology, destroy the 

crossing symmetry of the amplitude. 

Finally the most mathematically beautiful approach is that 

suggested by Kikkawa, Sakita, and Virasoro. (
34

) Again the Veneziano 

amplitude is treated as a Born term, but now in a field theoretic 

sense. Unitarization proceeds by including higher diagrams. The 

approach is fraught with extreme difficulties such as exponential 

divergences but has produced some technically beautiful results. 

In any case, no truly unitarized amplitude is presently available. 

This, coupled with the conjecture that the Veneziano form is already 

"partially unitary," i.e., the psuedo-unitarity mentioned above, 

makes the question of unitarization one of the most pressing problems 

in the field of dual models. 

Before closing this chapter on the "scalar quark" dual amplitude, 

we shall briefly revie"'iv the operatorial or "rubber band" formulation 

of dual amplitudes. (35 ) Although this approach has not as yet proved 

particularly useful for the problem of including spin, it is very 

suggestive of a simple intuitive picture of quark interactions and of 

relationships between dual models and other quark model work such as 

Feynman et al. (3) ·· It also gives simple interpretations of certain 

problems mentioned above and thus may be useful in seeking solutions. 

The essential ·assumption of this approach is that the quark and anti-

quark of a meson are bound via an infinite number of harmonic oscil-

lators (the modes of the "rubber band"). The quarks themselves do 

not carry energy, but · rather ca-rry the intrinsic quantum numbers, 
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i.e., they specify where on the "rubber band" other hadrons can 

couple. 

We can describe the "rubber band" in tenus of a wave function 

<I> ( ;, -r) which gives the 4-dimensional displacement of the "rubber 
~ 

band" at a point ; (2n: :::, ; :::, 0, we are thinking of a circular "rubber 

band") at a proper time -r, i.e., -r is the parameter which describes 

the evolution of <I> in time. For mesons in this model the quark and 
~ 

antiquark are at ; = 0, n:, whereas for baryons the three quarks are 

at s = 0, 2n:/3 and 4n:/3. <I> satisfies a Klein-Gordon equation 
~ 

(II-8) 

We can express <I> in terms of the creation arid annihilation operators 
~ 

for an infinite number of harmonic. oscillators as (in a more formal 

treatment one .would have to include the CM co-ordinates) 

= 

where 

[ a+ ] a ' = ~ vs 

r? { ir-r + -ir-r) ~ ...;~ (a~ e + a~ e cos r s 

[.b ,b+] 
~ vs - - J..LV urs' ~v - g ~ g = [+ ___ ] 

and all other commutators vanish. Likewise the total energy is 

(II-9) 

(II-10) 
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expressed as 

M
2 

= H + m 
2 

= - L: r (a+ a + b + b ) + m 2 
r r~ r~ rv rv 

(II-11) 

where m
2 

is the ground state mass (effectively this is what specifies 

the trajectory intercept). Physics enters the problem When we define 

a vertex which we shall take as 

r(k,~,-r) = 
ik <l> (~-r) 

:e ~ ~ (II-12) 

where the means normal ordering, i.e., annihilation operators 

to the right and creation operators to the left in order to avoid 

an overall factor of infinity. The picture we have in mind is shown 

in Fig. II-2a. Some external object (the wavy line) couples to the 

quark at ~ • Its only effect is to change the momentum by k, i.e., 

ik<l> . . t th d . 1 t t . t . it. • e ~s JUS e ~sp acemen opera or ~n momen um space s~nce ~ ~s 

a co-ordinate operator. The weakness in this picture is that we have 

treated the particle with moment k as being structureless whereas the 

other two particles are qq pairs. This is not unreasonable as long 

as all the external particles are in the ground state, but the 

generalization to more complicated cases is unclear. 

We are now almost ready to calculate the 4-point amplitude of 

Fig. II -2b where · the ·· Mandelstam variables are defined to be 

2 2 2 2 2 
s=(ql+q2) =(-q3-q4) ' t=(q2+q3) =(-ql-q4) =2m+ 2q3.q2' (all momenta 

are incoming). There are, in fact, two ways to proceed. The first 

procedure, which is more formal and more difficult, involves keeping 

track of the -r dependence of the vertices Which appear and integrating 
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{a) 

(b) 

(c) . 

(d) q1---~~....A.--- q4 
----------~.~~-----------

Fig. II-2 Diagrams for calculating Veneziano amplitudes:(a) 

general vertexj(b) meson-meson processj(c),(d) meson

baryon process. 
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over the differences of these ~·s (essentially a Heisenberg approach). 

One must be very careful in this calculation to take account of the 

CM co-ordinates and momenta Which we have not discussed above. The 

second approach, _ which is much simpler and more transparent, involves 

evaluating all vertices at ~ = 0 and then putting in an explicit 

propagator by hand (a Schrodinger approach). We shall use this 

second procedure with the following propagator: 

2 f(a
0

,m ) 

~ ( 6 ) =. H-ex ( s ) (II-13) 

(f(cx0,m2) is; · at this level, an ad hoc factor to fix the inte~cepts). 

With the external ground state given by lo > , the 4-point meson 

amplitude becomes 

(II-14) 

We can easily evaluate this expression using the coherent state for-

malism. In the 1 dimensional case (easily generalized) .we define a 

coherent state as 

(z a complex number) (II-15a) 

which has the properties 
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+ * (z)a a!Y > = jyz > ' I 
z y < z y > = e , (II-15b) 

!z>=L: ~In> 
n G 

C!n >are occupation number states) 
"'n! 

1 . 2 !z!2 ;( f dz e- I z > < z I =Jl 

Applying all this to E~. II-14 gives 

1 2 
A (s,t) = f · dx x~(s)-l(l-x)-ao-2m -l < O! 

4 0 . 

1 2 
f -a(s) -1 ( ). -a -2m -1 = dx x 1-x 0 
0 

Jl -a( s) -1 ( ) -a( t) -1 = dx x 1-x . 
0 

m 

2 m 
( -t+2m ) ( -E ~) 

e m. m 

(da(t) = l) 
dt 

(II-16) 

where we have used ~ : = £n(l-x) and the fact that for mesons s = 0, 

i.e., the b type modes ·do not couple. Thus we get directly to the 

usual Veneziano amplitude. The weak point is the function f(a0,m2) 

which is introduced to fix the intercept in the cross channel. This 

can be formally handled by introducing a phony 5th dimension, but it 
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still remains a question mark. We note that this problem does not 

2 2 
arise form = -1 so that ao = 1 (recall that a(m ) = o). This is 

a well studied case in the lore of dual models because of the many 

simplifications which occur at the price of having a-tachyon ground 

state. The meaning of this is still unclear. 

What can be abstracted from this formalism? First, if we had 

only a single oscillator as in ref. 3, Eq. II-16 would become the 

nondual form 

1 2 
= f dx x-a(s)-l (l-x)~0-2m -l (II-17) 

0 

which again points out the need for .a high degeneracy in order to 

produce a dual amplitude. Also, since [ao ao+ J = -1, the presence r, . r 

of an odd number of time-like excitations is seen as the root of the 

ghost states mentioned before. These time-like excitations are 

difficult to i~terpret physically anyway( 3) and we would hope that 

a gauge condition can eventually be consistently defined so as to 

decouple them analogously to the case in Q.E.D. 

The final important point which we can learn from this formalism 

and which will be used later is the form of the s,u amplitude in 

meson-baryon scattering (see Fig. I-6d). From Fig. I-6 we see that 

in the s,t and u,t quark diagrams the external mesons both couple to 

the same quark of the baryon, i.e., ~ = 0 for both vertices and the 

calculation yields a beta function as above. However for the s, u 

diagram two of. the baryon quarks are involved, i.e., both~= 0 and 

~ = ~~ appear. The calculation yields a different result( 3S) because 



36 

the b type modes also appear. This is expected since in the three 

quark picture of a baryon there are two independent ways of intro-

ducing internal angular momentum. A priori we could put two quarks 

at the same ~ and reproduce the meson results. However, this does 

not seem as natural as the picture above and does not lead to quark 

model results. Proceeding to calculate the diagrams of Fig. II-2c 

we find (no f(a , m2) this time) 
0 

A (s,u) c 

A (s,u) 
c 

1 
= I dx x-a(s)-1 rr 

= 

= 

0 r,p 

I ld -a( s) -1 { 2 " ~ o x x exp q2. q3 L. r 
r 

21( 
3 

1 . 
= f dx x-a(s)-1 

0 

l 

I -a(s)-1 dx x . 

(t-~2) ~ (1 + x + x
2
)} 

- (t-~2) 
= (l + x + x

2
) 2 

0 
(II..,lBa) 

then use s + t + u = 2m
2 

+ 2~2, a 
0 

u 

.2 = -m 

A (s,u) c 
dx 

2 
1 +X+ X ( 

~a(s)-1 ( ~-a(u)-1 

.J 1 + x + x
2j .J 1 + x + x

2
} 
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To calculate Fig. II-2d we need only exchange q3 ~q2 and thus s ~u 

to give 

A (s,u) 
d 

= 
1 dx 
£ 2 

1 +X+ X 

(II-18b) 

In Eq. II-17a we use the substitution z = x/(l+x) and in Eq. II-17b 

z = 1/(l+x)· The result of these substitutions is 

\m(s, u) 
1 

= A +A = I c d 
0 

dz ( z 
1-z(l-z) ~1-z(l-z) )

-a(s)-1( l-z )-a(u)-1 _ 

~ 1-z(l-z) 

(II-19) 

which is similar to but clearly different fr~m the s,t and u,t forms 

of Eq. II-16. In particular, if we consider the leading trajectory in 

the s channel, i.e., we expand the integrand of Eq. II-19 about x = 0 

and keep only leading order terms in (a(u)x), we find 

L: {c~t l 
n -,- n-a(s) n. 

+ lower order in u J (II-20a) 

whereas the corresponding s,t term gives 

= L: f(an(t~))n l \m(s,t) n-a(s) 
n 

+ lower order in t} (II-20b) 

The remarkable aspect of these two equations is that When one considers 

the su
6 

content of the s channel resonances which result from adding 
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the s,u and s,t ~uark diagrams, one finds that the leading trajectory 

1 . 1 (37) (_
2
1)n looks ike the symmetrlc ~uark mode . The factor is just 

such that for n = 0 (L = o) there is only the ~6 multiplet, for 

n = 1 (L = 1) there is only the 72, and for higher n(L) there are 

both ~6's and 19's. We shall see this explicitly in Chapter VI when 

~ calculate meson-baryon scattering. 
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III. MESON -MESON SCATTERING WITH SPIN 

In this chapter we shal l discuss the introduction of the quark 

quantum numbers for t he specif ic case of meson-meson scattering. (3S) 

This example is chosen f or its relative simplicity so that various 

facets of the model can be more easily understood. It is also possible 

to make direct reference to previous work(2l) for this case. In 

Chapter VI we shall study meson-baryon where we can take up the 

question of comparing the model to data (bearing in mind the constraint 

that we are dealing with a totally su6 symmetric model which can be 

only approximately like the real world). In the present chapter we 

shall require of the model only a certain reasonableness and simplic-

ity. 

As discussed earlier, we assume that the usual Veneziano 

amplitude correctly describes the scattering process in the quark 

diagram of Fig. III-1 for the case of scalar quarks. Now -we include 

the spin of the quarks while still maintaining factorization and 

Regge asymptotic behavior, and without introducing any new ghosts or 

parity partners. We assume that all meson resonances can be described 

as qq composites of spin t, su
3 

triplet, positive parity quarks. The 

resonances appear in mass degenerate (6,6;L) representations of 

(39) SU
6 

X SU
6 

x0
3

• Their total Spin is given by the quark spin contri-

bution plus the orbital excitation of the Veneziano kernel. Thus we 

have a Russell-Saunders sort of description where the L·S coup~ing 

vanishes as is observed to be close to the truth, at least for the 
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Coupling of the mesons is assumed to occur via SU xO (40) 
6w 2Lz 

invariant vertices. The external particles are taken to be any of the 

nine 0 or nine 1- members of the ground state (6,6;0) represented by 

the matrix: ( 41 ) 

M(t3b) 
(aa) (III-1) 

The 3x3 matrices P and V represent the pseudoscalar and vector nonets, 

p is the meson's momentum, and m is its mass. Note further that M 

satisfies the Bargman-Wigner equations (p-m)7 Mt3 = 0 and M7 (p+m)t3 = ·0 a y a y 

as befits a matrix whose indices represent a Dirac spinor and . anti-

Dirac spinor respectively. TheM's also have the property that if 

we couple three of them at a vertex in the fashion Tr(MlM2M3), where 

Tr is a trace in both Dirac and su3 space, we are guaranteed that the 

vertex is su6wx02Lz invariant in the collinear frame where the symmetry 

is defined." 

Now we shall calculate the amplitude for Fig. III-la and 

determine the su6 quantum numbers of the resonances. In order to do 

this we use the following identitiesfoun~ for example, in ref. 21. 
8 

In the su
3 

wo_rld Tr(AB) = .L: Tr(A A.) Tr(B A.) (III-2) 
l=O l l 

where the Ai are ·the usual 3x3 su
3 

matrices appropriately normalized. 

In the space of Dirac spin 
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Tr(AB)-t {Tr(A)Tr(B)+Tr(Ay5 )Tr(y5B)+Tr(Ay~A)Tr(y~B) 
cAA cAB 

- Tr(A --)Tr(-- B) Tr(Ay5y ) Tr(y5y B) 
rnA Irl_s J.l.A ~ 

YsrAA cAB cr qA~ cr ~ qB~ 
+ Tr(A--) Tr(y

5
-) - Tr(A J.l.V ') Tr( If/\ 1\ B) 

mA ~ mA ~ 

(III-3) 

total momenta . coming into the two vertices A and B. The explicit 

factorization indicated in Eqs. III-2 and III-3 allows us to identify 

the su
6 

character of the resonances which appear, i.e., written as 

Tr(A 0 ) Tr(O B) the resonances have the quantum numbers of 0 • If 
'P 'P 1? 

we assume the _quark lines of Fig. III -la just represent 5 functions 

in su
3 

and Dirac s.pace then A is just M
3

·M2 and B is ~ ·M
4

• 

Thus, from ·Eq • . III-2 we learn that our resonances belong to 

su
3 

nonets as desired. By comparing Eq. III-3 with the usual couplings 

(21, 42) for scalar, pseudoscalar, vector, and axial vectors 

(III-4) 

and using -i ·gJ.l.V for the spin-1 propagator and +i for th~ _ ~pin 0 
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propagator, we note that Eq. III-3 implies the exchange of all four 

types of particles, each with both kinds of couplings. Further, the 

scalars and axial vectors are ghosts, i.e., have negative coupling 

constants squared. Now from the quark model we expect only 0 and 1 

particles since this is all one would expect from a "real" fermion -

antifermion pair. The extra states are effectively the contribution 

of the MacDowell (parity) partners of the quarks which are present 

whenever we propagate fermions without being careful. More explicitly, 

in order to have a Lorentz invariant program we have imbedded the 2 

component Pauli spinors in 4 component Dirac spinors and because we 

have not been careful to eliminate the contribution of the "small" 

(negative energy) components our resonances actually satisfy a 

sul2 X 03 -parity doubled symmetry (also c8lled U(6,6) or ul2) 

rather than the desired SU6 X 03 symmetry. 

The point of this model is that the unwanted ghostly, parity 

partner resonances can easily be eliminated by assuring that the 

propagators for resonating quarks carry projection operators (1 ± "P..) 
m 

just as for ordinary fermions. Here m is the mass of the appropriate 

-q q resonance. This will insure that resonance wave function will 

satisfy the Bargma·n-Wigner equations just as was required of the 

external wave functions. 

Of course in the context ·of a dual model the appearance of 

1 factors requires that new functionry be present to generate them. 
m 

Also, cuts are introduced in the complex angular momentum plane, a la 

Carlitz-Kislinger, ( 22) which influence the asymptotic behavior of the 
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amplitude. In the following we suggest a possible form of the 

"functionry" and study the corresponding effects on the asymptotic 

(Regge Region) amplitude and the interpretation of duality. 

Thus the 4 point amplitude which describes Fig. III-la may be 

written as: 

A(s, t) = g2 Jl dz z-£(s)-l (l-z)-£(t)-l 
0 

(.III-5) 

Here g is an overall coupling constant, £(s) is a linear 

trajectory function specifying the orbital excitations, andp is 
s 

2 the s-channel momentum (p = s). We write the dual projection 
s 

operator 6a r in the form 
~ 5 

6~ ~ (p, z) = 5~ 5~ + E1 (p, z) (p·y~ 5~ - 5~ p·r~ )- E2(p, z) p·)f~ p·y~ 

(III-6) 

Note that any function multiplying the 55 term could be absorbed into 

the basic vertex function which we have assumed here is given by 

Veneziano. 

At h f 'T-rhJ...ch n(p2) · ·t· · t · eac p · or y ~ J..S a _ pos~ J..Ve J..n eger we requJ..re 

that 6 satisfy the conditions 

0 
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= (l+A)a. 
~p 13 

2 n=l, 2, 3 ••• £(p .) 

(III-7a) 

(III-7b) 

Recall that ~ must consider Z=O since this is Where s-channel poles 

come from, e.g. in Eq. II-5. Condition III-7b is to insure that the 

daughter trajectories are also parity-partner free, although this 

constraint is somewhat questionable since the odd daughters, in general, 

already contain ghosts. 

Further, since the appearance of a ps factor bet~en ~ and M2 

when we are looking at a t channel resonance will destroy the 

su
6 

x of).,. w, ~Lz 
symmetry of the coupling of M1 and M2 to that resonance, . 

~ must also require 

· 
6

a r 
13 5 (p,l) = 5 a 5 l 

13 5 (III-8a) 

()n 
6 a r 

( p, z) I =0 n=l, 2 ••• dn 13 5 z Z=l 
(rrr~sb) 

Note that this constraint is also what is required to insure factor-

ization in the sense described in the previous chapter. 

Consider the case of the 6 point amplitude illustrated in 

Fig. II-1. We factor the amplitude by going to a pole in the indicated 

channel. Then Eq. III-8 guarantees that the quarks of the left-hand 

4 point amplitude will not have projection operators which corresponded 
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in the original 6 point amplitude to channels involving also quarks 

from the right-hand 4 point amplitude. This is just the condition 

that the two 4 point amplitudes we obtain by factorization are the 

same as we would write down directly. If this were not the case, 

this factorization requirement would, in general, lead to a degeneracy 

greater than in the simple Veneziano amplitude. 

We write E in the form (d£/ds = t') 

(III-9) 

so that the conditions of Eqs. III-7 and III-8 become 

<1>(0) = 0 <1>(1) = 1 

n = 1, 2 (III-10) 

Detailed questions about <I> will be discussed in Chapter v. For now 

we just accept the existence of a class of such functions, known as 

ven der Corput neutralizers. (43) We note in passing that for 4> equal 

to 1 and cr = 1, E1 .= erf (~n(l/z)) as expected from the work of 

Garlitz and Kislinger.<22) 

Now with our proj.ection operator appropriately def~J;led, we 

return to Eq. III-5 to study the s channel resonances, i.e., z ~ 0. 

For the nth resonance (t(s) ~ n) 
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l 
n- i(s) 

(III-11) 

£' 

2 n-£ (0) where m ; 
n 

and Tr denotes a trace on su
3 

and Dirac indices. 

The first factor of Eq. III-11 specifies the orbital excitation; it 

is just the nth pole o~ the usual Veneziano amplitude. Now we apply 

the factorization of Eqs. III-2 and III-3 to the trace of Eq. III-ll 

where A; M3M2 (l+ps/mn) and B; ~M4 (1-ps/mn). We see that at the 

+ . + 
pole the two 0 terms cancel as do the 1 terms and so do not resonate. 

2 2 2 2 
For example, with qB = ps' qA ; -ps' and ps = mn ; mA = ~' we have 

ps 
(l + -) m 

n 
m 

n 

. ps 
; - (1+-) m 

n 
and 

ps 
(l - -) 

m 
n 

m 
n 

ps 
(1 - -) 

m -- n 

+ Thus the first and fourth terms of Eq. III-3 cancel (both 0 ). 

Similarly the ·fifth and eighth (l+) terms also cancel at the pole. 

The remaining terms can be written as 

r (n+t(t)+l) 
A ~ r (n+l) r (.e(t)+l) 

l 
n-£ ( s) 

(III-12) 

As promised our amplitude explicitly contains resonances belonging to 

su
3 

nonets .Whose total spin corresponds to the orbital excitations of 
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of Veneziano plus a quark spin of either zero or one with the appro-

priate parity. Note that in general both parities are present but 

that the projection operators we have introduced allow only a single 

parity at the poles. Also note that unlike the usual Veneziano model 

for ~~ scattering, where the p trajectory could in principle have 

a particle at ex (t) = o 
p 

and t < 0, i.e., a tachyon, ex (t) = o 
~-

in 

this model corresponds to L = -1 and there is no question about the 

absence of a particle there. 

Before proceeding to discuss details of the J-plane structure 

of this model a few words should be said about how the model can be 

extended from the 4-point case to the general n-point case, e.g. the 

5-point diagram shown in Fig. III-lb. Although we shall not explic-

itly study the n-point problem, one of the strengths of the model is 

its straightforward generalization. We label the channel 

(i+l, •••• , j) goes to (j+l, j+2, . . . . . ' i) by (i,j) where i+h = i • 

The corresponding momentum is 

pij = ki+l + +k. = -(k. 1 +k. 2 + ••••• +k.) 
J J+ J+ J. 

(III-13) 

where all external momentum are incoming and k. = k .• We note that 
J.+n J. 

each planar channel (i,j) has to have a "dual projection operator" 

which is "activated" or "deactivated" as explained above. The 

general form of the n-point amplitude is 



A 
n = 

1 
gN-2 f 

0 
TI dz .. 

lJ 
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z .. 
lJ 

2 
-£(p .. )-1 

lJ 

TI Aai,j+l aj,i+l ( ) 
urv rv p. •' z. • 

u. •• u.. • lJ lJ 
lJ Jl 

TI' 5 (zij + TI zk£ -1) 
ij 

(III-14) 

where TI means product over all planar channels (of course (i,j) = 

(j+l, i+l), so that if (i,j) is included, then (j+l, i-1) is to be 

omitted); IT' means product over all channels other than, say, the 

n-3 channels (1, 3), (1, 4), •••.. , (1, n-1); and IT. . means product 
lJ 

over all channels dual to (i,j), i.e., channels which cannot resonate 

simultaneously with (i,j). After the two products in the bracket are 

expanded, each spinor index appears exactly once up and once down and 

is to be summed over. The indexing of the l:::.'s and M's can be under-

stood by referring ~o the q_uark diagram, Fig. III-lb, where the solid 

lines indicate q_uarks, wavy lines indicate projection operators, and 

the Mi specify. the external meson matrices. Except for the spin 

factors, Eq_. III-14 is .just the usual n-point dual resonance ampli

tude. (l9 ) Just as in the 4-point case, the n-point function factors 

at all poles. 
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IV. ASYMPI'OTIC BEHAVIOR AND J -PLANE STRUCTURE 

From the preceding chapter we see that there are essentially 

two features appearing . in our model which are new and which make it 

different from previous models. The first of these is the presence 

of 1/m factors which appear because we · avoid parity doubling in the 
n 

manner suggested by Garlitz and Kislinger( 22) and which would appear 

in any Regge exchange model with quarks using an approach similar to 

ours, independent of duality. The second new feature is the neutral-

lizer function which appears solely because of our duality constraints. 

It is important to keep this distinction between the two new features 

in mind. 

In this chapter we shall study those facets of the asymptotic 

behavior and related J-plane structure of our model which are indepen-

dent of the specific form of the neutralizer. This will prepare us 

for the next chapter where the neutralizer is discussed in detail and 

all of the new structure is interpreted in terms of the FESR formalism. 

That part of the structure which appears also in the ordinary Veneziano 

amplitude, i.e., s and t channel moving Regge poles and the more subtle 

point of u channel. nonsense wrong signature fixed poles, will not be 

emphasized as it is well discussed in the literature. (45 ) 

If the amplitude that we .wish to study is expressed as a sum 

of, for example, s channel resonances as in Eq. II- 2, the easiest 

way to find the ~arge t behavior and the related singularity structure 

of the s channel partial wave amplitude is to apply a Sommerfeld-Watson 

transformation. Since we are studying asymptotic behavior in what 
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follows, we are not finding the actual partial wave amplitude, but 

rather a related amplitude which, to the extent that asymptotic 

behavior is determined by the singularities in the J-plane, has the 

same singularity structure as the actual partial wave amplitude. The 

Sommerfeld-Watson transformation proceeds by the replacement 

sin 1( i\ 

and n -+ A everywhere. The contour in the A plane starts at + oo, 

comes in along the top of the real axis, goes around the origin, and 

goes back to + oo along the bottom of the real axis. The sum 2:: 
n 

1 reappears if we shrink the contour in about the poles of sin 1( A 

The trick now is to move the contour out, away from the real axis to 

pick up the contributions from the other A singularities which arise 

from the form of the amplitude itself. We will be dealing with 

functions which are well enough behaved that the large circle at 

infinity does not contribute. These singularities which the integrand 

has in A are the same as the partial wave amplitude has in the variable 

£ as discussed above and we can study the integrand as if it were 

the partial wave amplitude. If we 

for large t, fixed s, so that 

Av(s,t) 
-1 

21( i 

A 
(-a' t * r ( -A) 

-a(s) 

' 
we find 

(IV-1) 
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where we used Now the integrand has 

only a simple (Regge) pole singularity and we can evaluate the 

integral to get the result r (~(s)) (-a't)a(s) which checks with 

our work with the gamma functions in Chapter II. If we now consider 

the factors l/m 
n 

2 and l/m 
n 

singularites of the form 

l 

,J(A-a ) /a' 
0 

which appear in Eq. III-11, we find that 

and a' 
1\-a 

0 

are introduced. Thus we expect the partial wave amplitude to ·have 

fixed cut and fixed pole contributions and the full amplitude to 

exhibit (-a't)ao asymptotic behavior. 

We will return to the Sommerfeld-Watson transform in Chapter VI 

when we numerically evaluate our model. Now it is useful -to turn to 

a more systematic approach which will allow us to inspect the behavior 

in all channel$ of an arbitrary amplitude. This formalism is called 

the modified Mellin transform. (46 ) This approach will reproduce the 

Sommerfeld-Watson ·result but does not require that the amplitude be 

initially expressed as a sum of partial wave amplitudes. In particular, 

it is more useful if the amplitude is expressed as an integral. The 

Mellin transformed -amplitude is essentially just the integrand which 

appears in the final Sommerfeld-Watson contour integral. It is the 

amplitude with the same singularity structure as the partial wave 

amplitude and, as we saw above, these singularities determine the 

asymptotic behavior. For simplicity we shall consider only the be-

havior of a single term of the projection operator and only in the £-

plane (we get to the J-plane by adding the quark spin). 
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We define the modified Mellin transform, in the case of large t, 

fixed s, as 

( t ( s ), A) = sin 

(IV-2) 

where the sin(~A) factor eliminates the extraneous poles at the positive 

integers. Notice the change in the sign of t to insure convergence. 

Actually, as will be seen in the next chapter, by changing the path of 

the z integration one can show that all that is needed for convergence 

is !arg tl > € as expected from Chapter II. Without changing the 

singularities · in A and to allow us to do the integral explicitly we 

change the t integral lower limit to . zero. Setting t' = 1 for con-

venience, we have 

1 ( ) - .e -1 
J d -t s -1 ( ) 0 z z 1-z 
0 

1 · 
1

(a/2)-l 
f dx xs-l (£n -) · ~ (1-z/x) 

X z 

1 ( ) -t -1 
J dz Z-t s -1 (l-z) o ( 1 )A 

tn (1-z) 
0 

1 1 (a/2)-l 
J dx xs-l (.en -) . ~ (1-z/ ) 
z . X X 

-~ 1 -.e -1 
= r(o'/2) r(l+A) f dx x 0 

0 

1 (a/2)-1 
( tn -) 

X 

1 . ( ) -t -1 . 
J dy y -t s -1 (l-xy) o (.en _l_)A ~(l-y) 

0 1-xy 
(IV-3) ~ 
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where the last step involves changing the order of integration and 

introducing the new variable y = z/x. The general approach is to 

look for the singularities in A coming from the region of integration 

where the argument of the logarithm goes to unity, i.e., Where x and 

y vanish. Expanding about x,y = 0, i.e., £n(l/(-xy)) ~ xy, ~(1-y) ~ 1 

which corresponds to ignoring the neutralizer and which will require 

further discussion later, we have 

1 (cr/2)-l 1 
(£n -) J d -t(s)-l+A 

X yy 
0 

= r (l+i\) (IV-4) 

(using 
1 1 1 b-1 b 

f dx xa- (£n -) = a- r (b) ) • · Thus we have a moving 
0 X 

Regge pole and a multiplicative fixed cut (cr = 1) or fixed pole 

(cr = 2). Further terms in the expansion of (1-xy)-to-l and 

1 A 
( £n -

1
-) . yield the usual daughter Regge poles and corresponding cuts. 
-xy 

The inverse transform is 

+ioo 

(£(s), t ~co) 
l I dA A ~ 

(£(s),A) A - 2;ri sin;ri\ ( -t) . Acr cr -ioo 

A -cr/2 1 " I dA (-t) r~-A) (A-t ) 
2;ri 

~ A-t(s 0 
(IV-5) 

which is the Sommerfeld-Watson result as advertised. 

Now we can proceed to study the more difficult case of large ~' 

fixed t, 
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A 
(J 
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00 1 
(A,£(t)) = sin(~A) f ds s -A -l J dz 

1 0 

1 -£ 1 J dx (~) sz o - (l-z)-£ (t) -1 
(£n ~) (cr/2) -1 

X 

X X z 

1 
J dy y 
0 

-£ 
0 

1 -£ -1 
f dx x 0 

0 

r(cr/2) 

1 (cr/2)-1 
(£n -) 

X 

-1 (l-xy)-£(t) -1 ~(1-y) (£n ~) 
y 

~(1- z/x) 

(y = z/x). (IV-6) 

This time the A singularities come f rom y 'V 1 which is exc~uded by 

the neutralizer, ~, i.e., 
'V 

A 
(J 

(A,£(t)) is an entire function of A. 

This means that for s ~oo in some region of .the s plane this amplitude 

will decrease faster than any power of s. The details depend on ~ 

and will be studied in the next chapter. For completeness we shall 

see what happens if ~ = 1, i.e., no neutralizer. For this case it 

is convenient to rewrite the above equation as: (with ~ = 1) 
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Ioo ds s-A -1 I1 dz z-t(t) -1 (1-z) -to -1 
0 0 

1 (cr/2)-l 
1 1 (tn -) 

I dx ( -z) x 
x x --~(....-cr_,./-::-o2)c--

1-z 

-1l 
1 ( ) -£ -1 I dz z-t t -l (1-z) 0 

= r(cr/2) r(l+A) 
0 

I
z dr 1 (cr/2)-1 

1-r (tn 1-r) 
0 

A 
(tn 1-r) 

1-z 

-1l 
1 ( ) . -t -1 

I dz z-t t (1-z) 0 

= r(cr/2) r(l+~) 
0 

1 dy 1 (cr/2)-1 
I -- (tn -

1
-) 1-yz -yz 

0 

A 
(tn 1-yz) 

1-z 

( r = 1 - x) 

(r = yz) 

Evidently the ·A singularities come from the two boundaries y = 1, 

(IV-7) 

z = 0. Expanding in the region where these boundaries intersect we 

find, to first order in z and v = 1 - y 

~A c~ n(t)) -1l I
1 

dz ZA-t(t)+(cr/2)-l I
1 

dv VA 
cr "'h · ~ r(cr/2) r(l+A) · 

0 0 

-1l l l ( ) 
= r(cr/2) r(l+A) A-t(t)+(cr/2) A+l + daughters (IV-8) 

Without the neutralizer we find two problems. The amplitude has both 

fixed poles at the negative integers (1/(l+A)) and moving poles which 

for cr = 1 are shifted by~ from the usual positions (called cousins 
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for the simple reason that the terms ancestors and daughters are already 

in use). This is another indication that some sort of neutralizer is 

required. By repeating the above analysis (Eqs. IV-6 to IV-8) with a 

neutralizer of the form ~(1-z) or ~(1-x) one can see that neither 

form is satisfactory since one of the above diseases will still persist 

in either case. We can exhibit the effects of both of the above terms 

on the asymptotic behavior if we consider a simple Carlitz-Kislinger( 22) 

type amplitude with a cut in the s channel, for large s. It is of the 

form 

ck . tim fl -t(s) -1 -t(t)-1 
A (s -+ oo, .Z(t)) = dx x (1-x) 

0'=1 ' s -+ 00 0 

erf(~ s tn !. ) 
X 

.fs 

~ f dx x-.Z(s) -1 (1-x)-t(t) -1 (is 
s 

s) 
X 

.J 1C .en! 
X 

t(t) 
jdy e-y (1-y)-t(t) -1 l -.8 -1 (l-x) -t(t) s f dx x 0 

.fs (x = e-y/s) 
s .J 1C.Zn !. 

X 

-1 

- ~ 
s 

(IV-9) 

We come now to the question of fixed u, large s,t behavior, 

i.e., u channel partial wave amplitudes. This is a much more complex 

and subtle problem and we shall not carry the discussion into any 

great detail. First we define the variables U = ~(s + t) and 

V = ~(s - t) . so that in the limit we are interested in U is fixed and 

V becomes large. Using the usual manipulations we have 



A (t(s), t (t)) 
(J 

1 
= r(cr/2) 
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1 -£ -1 
f dx x 0 

0 

1 (cr/2)-l 
(tn -) 

X 

l -£ -U -1 
J dy (y (1-xy)) o (1-xy) -v ~(1-y) --
o y 

To apply the Mellin transform we must separate the two cases 

1-xy/y > l (y < 1
1 

) and 1-xy/y < l (y > 1
1 ) and treat them 

+X +X 

(IV-10) 

separately to insure convergence of the transform, i.e., A(U,V) for 

case I and A(U,-V) for II. 

X 

l 
l -£ -1 

I dx x · 0 1 (cr/2)-l l+x -t(u) -1 
(£n -) f dy (y(l-xy)) 

X 
0 

A 
~(1-y) (tn (1 -xy) 

y 

0 

~ -n 
A cr ( t (U) 'A) ~ r-(-cr /-2-) -r (-1-+A-) 

II 

X 

1 ~£ -1 (cr/2) 1 1 -.e(u) -1 
I · dx x 0 (£n ~) - J dy (y(1-xy)) 

0 X l 

~(1-y) 
. A 

l 
(in (-1 -)) -xy 

l+X 

(IV-11a) 

(IV-llb) 
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Changing variables to y = (1-r)/(l+x) in Eq. IV-lla and y=(l+r)/(l+x) 

in Eq. IV-llb and keeping only first order terms in r, i.e., the A 

singularities come from y ~ 1/l+x, we get 

1 -2 -1 
I dx x 0 1 (cr/2)-1 1 A+22(U)+l 1 A 

(tn X) ~cl+X)(l+x) I dr r 
0 0 

= ·f(U;i\) 
~ (IV-12a) 

1 -t -1 1 (cr/2)-1 A+22(U)+l x A 
I dx x 0 (tn -) ~(1x )(l+x) I dr r 
0 X +X 0 

-'Jl 1 
= 1+/\ r ( cr /2)r (1+/\) 

1 A-2 
I dx x 0 

0 

1 (cr/2)-1 
(tn -) 

X 

A+2£(U)+l 
(lx )(l+x) +X 

(IV-12b) 

We notice two points: both amplitudes have fixed poles at · minus one 

and if it weren't for the fact that ~(1x ) 
+X vanishes at x = 0, 

would also have a singularity at A = t -1. To the extent that the 
0 

neutralizer causes most of the integral to come from x ~ 1, the two 

amplitudes are equal. When we invert this . transform we recall that 
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f or Acr we used +V and t hat f or Aa we used -v. Thus for 
I A II f(U) 

A a the i nversion integr al i s ! d"A V and the fixed poles gives 
I v 

For A 1.;e have !d"A ( -v)" with t he result !U!l So fixed poles 
crii -v 

at odd negative integers (nons ens e wrong signature fixed poles) do not 

contribute to the total amplitude if the residues at the poles are the 

same in A1 and AII. For the ordinary Veneziano amplitude (Aa=O) only 

odd integer poles appear and the amplitude decreases exponentially 

(for larg(s)j >E) as we saw i n Chapter II. In general, this is not 

true of our Aa's but one could, in principle, use the re~uirement of 

only odd integer fixed poles to determine the form of ~. However, 

since what is re~uired of u channel behavior is unclear, and since we 

are primarily interested in those facets of the model which are 

independent of the detailed behavior of ~, we shall not pursue this 

point further. , In the following chapters the assumption will be made 

that nothing exciting happens in the u channel. 

To summarize, we have found that A ·(s,t), which corresponds to 
(J 

the (1/m )a term in the s channel projection operator, has partial 
n 

wave amplitudes in the t and u channels which are essentially entire 

functions. Thus, for fixed t or u and large s,A
0
(s,t) decreases 

faster than any power of s with the details depending on ~. In the 

s channel the partial wave amplitude contains both a moving Regge pole 

and a fixed cut or fixed pole and A (s,t) contributes to the Regge a 

behavior. We shall find that again the details are affected by the 

neutralizer. Similar behavior holds for the other parts of the total 

amplitude with the corresponding structure in the other channels. 
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V. THE NEUTRALIZER FUNCTION AND THE FESR 

Although, as emphasized previously, we are primarily interested 

in results which are independent of the exact form of the neutralizer, 

it is still of value to study the general form of such functions( 43, 47 ) 

and to determine what freedom exists in our model for their definition. 

These considerations are important in order to be able to give a 

meaningful interpretation to the presence of the neutralizer and for 

making comparisons with data as in the next chapter. 

Recall that the neutralizer first appeared in Chapter III where 

it had to satisfy the following constraints: 

~(0) = o, ~(1) = 1, n = 1, 2, 3 

(III-10) 

In this chapter we study the further restrictions placed on ~ in order 

to guarantee the asymptotic behavior we anticipate from our work in 

the previous chapter. · For example, Eq. III-10 is satisfied by 

~(z) G(z 
1 

G(z) = - y-)' 1 < 1 < oo where is the usual step function: 

G(z) = 0 Rez < 0, G(z) = 1, Rez > 0. However, it will turn out 

that this function is too singular (not very surprisingly) to yield 

the required behavior in the entire s plane. Instead we shall need 

a smoother function ·. such as that suggested .by ~uzuki ( 43
) 
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1 z 
( l l l £n~} ~ (z) = J dx exp -(.en .en -) .en - ( .en .en 1-x) c 

0 
X X 1-x 

1 f(£n £n ~) l l l } c = J dxexp .en - (.en .en 1-x) .en-
0 X 1-x 

(V-1) 

However, the step function does have the advantage of calculational 

simpli city and will be used as an approximation to ~ in the next 

chapter. We should also keep in mind the possibility of relaxing 

some of the constraints of Eq. III-9, for example those at z = 1, 

since this corresponds to allowing the daughter trajectories to have 

ghostly parity partners and, as mentioned in Chapter II, the daughters 

in the Veneziano amplitude already contain some ghosts. 

As a warm up let us consider why it is, in terms of its integral 

representation, that the ordinary Veneziano amplitude, 

A (s,t) = v 
1 

J dz z-.e(s)-1 (1-z)-.e(t)-l 
0 

(V-2) 

has Regge behavior for Is! ~oo , jarg s! > E, t fixed. First change 

variables to 
-r z = e to get · 

AJ.s,t) = J
oo dr e+ri(s) -.e(t)-1 

(1-e -r) (V-3) 
0 

It is immediately obvious that, for ~ > !arg s! > ~/2 , the integral 

is at least well defined since Re(rs) < 0. This is in fact the case 

studied earlier with the Mellin transform. · The contributions to the 



63 

integral from all finite r, i.e., r > ~ , will vanish exponentially 

as lsi ~oo • The interesting contribution comes from small r (again 

let £' = 1). 

Av (s,t) 'V f dr 
0 lsi ~ oo 

rs 
e r 

-t(t)-1 
(set y = -rs) 

00 

- J dy e-y y-t(t)-l (-s)£(t) = r(-£.(t))(-s)£(t). (V-4) 
0 

To find just the basic power behavior we can use the method of steepest 

descent. ( 4s) 

lsi (-r + ~ £n!) 
A ( s ~ oo, t) 'V f dr e - Js-J- -- · r 
v (V-5) 

f -~t +1) The maximum of the function in the exponent . is or r 'V 

s 

(we are assuming £(t)+l < o), and we find 

(V-6) 

which has the (-s)t(t) correctly, but the t dependence, i.e., the 

r(-£(t)) , is somewhat hard to pi ck out. However, since we are 

interested only in the gross s dependence we shall continue to use 

this method (which gives us the first term in an asymptotic expansion 

in 1/s). 

Now, how do we define the integral for I arg s I ~ ~ ? We know . 
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that it is well defined from our study of the gamma function form in 

Chapter II. This is done by rotating the ray in the r plane along 

which we do the integral so as to maintain Re(sr) < 0. Defining 

we require cos (G + ~) < 0 , i.e., 

jG + ~~ > ~. We can make this rotation because the integrand vanishes 

exponentially for p ~ oo, I~ I < ~ , at least when I G I > % , and is 

entire in the right-hand r plane so that all rays are equivalent. Once 

the rotation is made we can easily define the analytic continuation of 

the integral for o < !GI < 
1( 

The real s axis, G = O, is excluded 2• -
because the second factor in the integrand is poorly behaved for 

1~1 > 
1( 

and for 1~1 
1( the whole integral is poorly defined. = 2 2 

This is to be expected because the positive real axis contains all our 

narrow resonances. The results obtained this way agree with those of 

Chapter II. 

As we learned in the previous chapter, the behavior of the 

s channel projection operator for jsl ~ oo should depend on the 

explicit form of the neutralizer and that is the case we shall study 

here. Recall that this term should decrease faster than any power of 

s. We define again 

A (s,t) 
(J 

1 ( ) ( ) l dx xs-1 1 (cr/2)-l 
.f dz z-£ s -1 (1-z)-£ t -1 f (n ) ~(1 y) 
o z _ r(a/2) .Kin x . ~ -

(V-7) 

where we use the following general form 



l 
~(1-y) = f dv f(v) = 

y 
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£n !. 
f y -r g(r) dr e e (V-8) 
0 

To simplify matters we do all but the r integral in the usual way to 

get 

rfn+t~t)+lt l -cr/2 
A (s, t) = i: 

n-£(s) (n-.eo) 
(J r n+l r(.e t)+l) n 

()() 

d -r(n-£(s)+l) g(r) 
X J r e e (V-9) 

0 

For large Is I we recall from the previous chapter that with ~ equal 

one the sum without the integral has only power behavior in s for 

~ > jarg sl > % and the continuation to € < larg sl < % goes 

through as above. Thus we can study the pro1?erties of just 

F(s) = e 
g(r) 

(F(-1) = ~(l) = 1) (V-10) 

If it decreases faster than any power of s as lsi ~oo, I arg sl > € 

then the whole sum decreases faster than any power, i.e., does not 

contribute to Regge behavior (the term n in the exponent only helps 

the convergence). This is consistent with our constraint that the 

part of the amplitude represented by Eq. V-9, which is multiplied by p 
. s 

in the s channel projection operator, should not contribute to t 

channel resonances • . Recall that t channel resonances come from a 

"controlled" divergence of the sum of s channel resonances. If the 

factor F(£(s) -n -1) in Eq. V-9 decreases faster than any power of 

n as n ~ oo, as the above statement about F(s) implies, then the sum 
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will not diverge for any finite .e(t). We have, so to speak, pushed 

all the t channel poles out to infinity. 

For convenience we shall consider breaking g(r) into two terms, 

g(r) = g1 (r) + g2(r), such that for r ~ O, g (r) 
1 

is well behaved 

(where well behaved means has a well defined, noninfinite limit) and 

g
2
(r) goes to -oo ; whereas for !rl --) oo, g

1
(r) goes to -oo and 

g2(r) is well behaved. In the variable v we have f(v) = f
1

(v) f
2

(v) 

and,in Eq. V-1, f
1

(v) = f 2(1-v) • We see that such properties are 

exactly what are required for ~ to satisfy Eq. III-10. Furthermore, 

g
1 

and g2 serve different purposes and in this formulation we can 

study them separately. Since g
1

(r) (f
1

(v)) governs the behavior for 

!rl -) oo (v ~ 0), it tells us about the s channel, i.e., nonparity 

doubled daughters. Thus it is related to the asymptotic behavior 

ins for s positive real. Likewise, g2(r) (f2(v)) governs the 

r ~o (v -)1) region and determines whether there will be any t channel 

resonances. So it gives the asymptotic s behavior, jarg sl > €. Also, 

the restrictions on and (and thus and g2) are in general 

different. Since a path in the r plane along a ray of finite angle 

1l < 2 maps into a path in the v plane which always approaches 1 from 

belowbut spirals in to the origin, f 2 and its derivatives need only 

vanish for v approaching 1 from below, whereas f
1 

must vanish 

uniformly for v ~ 0 • 

As with the Veneziano amplitude the integral in Eq. V-10 has 

the property that contributions from finite r will vanish exponentially 

as lsi -) oo for jarg s! > ~. If g1 (f
1

) satisfies the constraint 
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mentioned above (in fact, we only need that Re g
1

(r) < -Re rs as 

lrl ~oo, larg rl ~ ~)then we can continue F(s) over the entire 

s plane excluding some region about the positive real axis as before 

and all the interesting contribution comes from r near o. Then we 

iQ i'l') have (s = ~e , r = pe 

F(s) 

n -+ oo, Q * 0 

oo iQ g2(r) 
f dr e~(re + ~ ) 
0 

Applying the method of steepest descent as before yields 

F(s) 
l 

n ~ oo, g * 0 

where r is the solution of g2(ro) = -s. For example, 
0 

if 

(V-ll) 

(V-12) 

g2(r) ( -n l ) = tn 1-e ) .in .in( as suggested by Eq. V-1 so that for 
1-e -r 

l l small r we have g2(r) "' tn r £n £n - then p "' so that 
r ' f1!n tn~ 

2 
(g"(r ) "' -~ £n £n 11) 2 0 

1 .in tn 11 + 1 
IF(s)l"' (T)) 

0 

(V-13) 

where we have assumed cos(G + 'l') "' -1. This falls faster than any 

power of 11 and since it appears in a sum (Eq. V-9) which already 

d t t bl t R t · ~t(t), ~ need ecreases a a rae compara e o egge erms, l.e., .1 ., 

not be too large _before this term is negligible. Another example is 

1 in which case 1 
p "' -

0 ,[~ 
and we have = ~-

r 
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I F(s) I 
(V-14) 

which is convergent for any [9[ > 0. Actually, this is. a limiting 

case for if we take 

I F(s) I 
n ~ oo, 9 * 0 

n+2 _
1 

(n)2(n+l) 
n+2 

2(n+l) 

for large n we find 

1 n 

(cos (lt~:~) n .n+l Tl n+l ) 
e 

Thus for n very large we have FIVe-( )~ but only for 

(V-15) 

I('\ I > nrc cn+21. -1) -· _rc2 , . t h t. 1 d ~ ·~ l.e., we canna ave an exponen la ecrease 

- in the entire s plane. What is happening is that g
2

(r) no longer 

goes to - oo as r ~ 0 except for a very narrow range in 'l' so that we 

cannot rotate the r contour freely. An explicit example is the step 

function mentioned earlier. For !1>(1-y) 
1 = 9(- -y) . y we have 

f(v) = 5(~ -v) and F(s) = ys which is exponentially decaying 

for 1t > 191 > ~· but divergent for . j9j < ~ In summary we hav~ 

seen that we can certainly define a g2(r) so that F(s) decreases 

faster than any power as lsi ~oo, jarg s[ > € • 

The next point to consider is the role of g
1

(r) • We see that 

if g
1

(r) ~- oo as [rl ~oo fast enough the r integral is will 

defined even for 9 = 0, Re(sr) . ~ 0. In this case, the dominant 

contribution is for large r and we can apply the method of steepest 

descent to 



F(s) 

'11 ~ oo, g = 0 

1 

.Jg" (r ) 
1 0 
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(V-16) 

where gl ( r 
0

) = -s • Again ~taking Eq. 1 as an example g1 ( r) = -r .en r , 

s-1 r = e and 
0 

F(s) e 

'11 ~ oo, g = 0 

s-1 
2 

e 

s 
e 

This is true as long as Re(es) > 0, i.e., cos(ljsir9) > 0 or 

(V-17) 

sin 9 < so that the angular region where this is true becomes 

vanishing small as 11 ~ 00 • Outside of this region the large r 

contribution is again decreasing exponentially and the dominant 

contribution comes from small r as discussed earlier. Note that in 

this example Re g
1 

(r) ~ - oo as p -7 oo for all I ':I.' I< % so that it 

is consistent that the large r contribution goes away exponentially 

in 11 everywhere except right on the positive real s axis. If we 

2 I F(s) I , 2 cos 29 I I 1t' take g
1 

= -r then e 'I as long as 9 __ :=: '4 , 

i.e., F is very large in a finite wedge about the positive real s 

axis. This is simply because g (r) ~ + oo if 
1 1'¥1 > 

0 cannot rotate in the r plane throught more than ± 45 

1t' 

4 
so that we 

This corre-

sponds to the earlier statement that f
1

(v) must vanish uniformly 

as v ~o (whic~ it doesn't here) in order to be able to rotate the 

contour in the r plane freely. Finally, if we take g1 (r) = 0 
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(f(v) = 1) F(s) has poles along the positive real axis in the s 

plane. 

Summarizing again, we have that g2(r) determines the asymptotic 

behavior of F(s) except in a region about the positive real s axis. 

The size of this region and the behavior of F(s) within it is 

determined by g
1

(r) • This whole ~uestion can be placed in a more 

' mathematical framework by consulting a theorem of Phragmen and 

" (49) Lindelof. For our purposes this theorem states that if the function 

F(s) (s = ~ eiQ) is regular in the region between and on the two rays 

f3 
g = ± ~ , is bounded by M on the two rays, and is of order e ~ 

f3 <a , as ~ · ~ oo uniformly in the region between the two rays, then 

F(s) is bounded by M everywhere in the region. Thus, if we pick g2(r) 

so that M = 0, and pick g1 . and g2 so that we may take a arbi-

trarily large, then,for g = O,F(~) must be larger than e~f3 f3 

arbitrarily large but fixed, as ~ ~ oo. This is just what we saw, 

either 
e~ ~f3 

1) F(~) ~ e > e 2) F(s) was not regular for s real 

(had poles); or 3) we were not allowed to make a arbitrarily large. 

It is also worthwhile to point out how the neutralizer affects 

the large t, fixed s behavior. Recall that when we found -the Mellin 

transform for this · case in the previous chapter (E~. IV-4), we 

effectively ignored the neutralizer. Using E~s. V-8 and V-10 we can 

redo that calculation to find 

~ 

A 
. (1 

(a(s); A) 
-1( 

r(l+'X) 

-cr/2 
(A - 101 F(l(s) - A - 1) 
A - a(s (V-18) 
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We see that the behavior of this amplitude in the A plane is affected 

by the neutralizer and so the asymptotic behavior of the total amplitude 

is also affected as we shall see explicitly in the next chapter. 

Now let us consider what all this means in terms of the usual 

duality-FESR picture. We have shown that, for an amplitude involving 

s and t channel resonances, we have Regge asymptotic behavior, with 

cuts as well as poles, for lsi ~ oo, fixed t provided jarg sl > € 

and Is I ~ oo, fixed u provided 1r - € > I arg s I > e similarly to the 

usual Veneziano amplitude. Consider the contour integral shown in 

Fig. V-1 from which FESR's are derived 

J ds' A(s' ,t) = 0 
c 

(V-19) 

where C = ~l + ~2 • In . the limit R ~ oo, where R is the radius of 

the ring C"
1 

, f ds' A(s',t) has an asymptotic expansion in terms 
C'l 

of t channel poles and cuts in the usual way. The integral over ~2 , 

i.e., the left-hand side of the usual FESR (see Eq. I-3), is equal to 

the integral over a
3 

plus the contribution of the poles contained 

inside the contour ~2 - c
3 

In the ordinary Veneziano model the 

contribution of a
3 

can be made negligibly small by making € small 

and choosing the path of c
3 

appropriately. This is possible because 

the beta function is well behaved in between the poles on the real 

axis. In fact, it vanishes at one point on the real s axis between 

each pair of pol~s because of the gamma function in the denominator. 

Under these conditions the imaginary part of the amplitude, i.e., the 

left-hand side of the FESR, is saturated by the resonances. However, 
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Fig. V-1 Integration contour for A(s,t) in Eq.V-19. 
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in the present model, including spin, the contribution of c3 cannot 

be neglected. Hence the integral of A(s,t) over d
2 

is no longer 

simply the sum of the poles inside the wedge but contains also an 

additional "background" contribution, i.e., the integral over cr
3 

• 

Since the presence of this background term is an essential 

feature of this model and is important for an understanding of what 

"duality" means when spin is included, at least as in this model, let 

us review why the background term is there. We have seen that, in 

order to avoid parity doubling and new ghosts at the resonances when 

we include spin, we have introduced projection operators. Additionally 

we have required that all vertices exhibit su6 x o2L symmetric 
w z 

couplings and that factorization proceed as in the usual Veneziano 

amplitude. This means that, for example, terms in the t channel 

projection operator which involve pt (see Eq. III-5) cannot contri-

bute to s channel resonances. 

cut, fixed pole and singular 

So these terms, which yield the fixed 

1 l 
(~ or t) part of the t channel Regge 

pole, appear as a ·background contribution in the s channel and account 

for part of the integral over a
3 

• Recall this is the part of the 

amplitude which has had all its s channel poles "pushed" out to 

infinity. We hav·e also seen that those parts of the s channel pro-

jection operator which · involve ps cannot contribute to t channel 

resonances (for the same reasons as above) and hence cannot contribute 

to the Regge asymptotic behavior. Recall that outside of c2 these 

ps terms, which· contain an s channel neutralizer, decrease faster 

than any power of s as · Is I ~ oo • Inside of the wedge they are 
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growing very rapidly. Thus there is a contribution to the c3 
integral which, except for a remainder which decreases faster than 

any power of R as R -+ oo, just cancels the c·ontribution to the pole 

residues that arises from the ~ terms. 
s 

To interpret all of this we first notice that the "barei' 

resonances in the various channels, i.e., those parts of the pole 

residues which were present in the ordinary VenezianQ without spin, 

are still dual to each other ·in the usual sense. To avoid parity 

doubling when spin is added fixed cuts, fixed poles and Regge ~oles 

with singular residues appear in the complex angular momentum plane. 

From the arguments above we identify these terms as being dual to 

background. As mentioned in the Introduction, it is not unexpected 

that such new features should accompany the inclusion of spin. In 

order to give some interpretation to the neutralizer we sha.ll have to 

become s-omewhat speculative. Recall that we chose to interpret the 

wedge, larg sl > E (c
2 

in Fig. V-1) forced on us in the usual 

Veneziano model, as being essentially the elastic unitarity cut such 

that the imaginary part of the amplitude is given by the discontinuity 

across the wedge which is saturated by the resonances. 

f ds' Im A = v f ds ' A ( s ' , t) 
(f 

2 

= .E poles (V-20) 

Now we interpret the new wedge requirements arising from the s channel 

neutralizer as also representing a cut. In this case the head of the 

cut, i.e., the -point where the argument of F(A(-s) - A-1) passes 
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through -1 (see Eq. V-18), depends on both A(£ ) and s. 
s 

Thus it 

is a moving Regge cut, i.e., cut in both A and s. If we write a 

part of the amplitude which contains a neutralizer in terms of a sum 

over s channel resonances as in Eqs. V-9 and V-10, we get 

A (s,t) = 
r{n+£(t)+l) 

E r(n+l) r(£(t)+l) • 
n 

-cr/2 
~ ~) F(£(s)-n-l) 

Then the above interpretation of the function F leads "naturally" 

to the idea that the imaginary part of such an amplitude comes not 

(:V-21) 

only from the usual "elastic unitarity" cut (wedge) required by the 

poles on the ~eal axis (l/(n-£(s)), but also includes contributions 

from a series of cuts (F(£(s) -n -1)) which start near each of the 

poles. This is suggestive of inelastic effects, i.e., the cuts 

"represent" the opening of the inelastic channels. Recall that the 

contribution of the neutralizer terms to the c3 integral was such 

as to subtract from the resonance contribution to the imaginary part 

of the amplitude, again reminiscent of inelastic effects. So now we 

must write 

f ds' Im A f Ads' 
cf2 

= · E poles+ f Ads' 
c!3 

where the first term on the right is "related" to elastic effects 

(V-22) 

(i.e., gives the elastic width) and the second term is "related" to 

inelastic effects (i.e., gives the difference between the total width 

of a resonance and its elastic width). 
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This picture of the neutralizer as giving the inelastic 

unitarity cuts is admittedly speculative. However, it is important 

to recognize that we have not given a dynamical reason for why any of 

the new structure, i.e., fixed cut, fixed pole, or moving cut, should 

be present. We have only postulated that it must be present in order 

to avoid parity doubling and ghosts. So maybe it is not surprising 

that the structure that appears is suggestive of unitarity corrections 

which is the usual way that Regge cuts appear in models of hadrons. 

It is also reasonable that such cuts should re~uire that we change 

our basic concept of dual amplitudes. (50) We can no longer re~uire 

that the imaginary part in the FESR should be given purely by _reso-

nances. However, for a specific reaction where Regge cuts make only _ 

a small contribution and in an energy range where inelasticity effects 

are small, we can still expect that the simple duality of Dolen, Horn 

and Schmid will be approximately true. As we shall see in the next 

chapter the A' amplitude in rtN charge exchange studied by Dolen, 

Horn and Schmid, has in fact no Regge cut contribution at t = 0. 

Further, since the resonances contribute with varying sign, neutralizer 

effects can be expected to cancel, especially at the low energies in-

volved, and the present model may still be consistent with the data. 

In any case, the ~uestion of separating resonance effects from 

neutralizer effects in anything other than our narrow resonance model 

(e.g. the data) would seem to be very difficult to answer. 

To pursue ·these ideas further we will need a model exhibiting 

some ,degree of rigorous unitarity. Since such a model does not at 
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present exist we shall stop here while suggesting that this is an 

interesting topic for future study. In the next chapter we shall 

calculate rtN charge exchange with the model in its present form. 
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VI. MESON-BARYON SCATTERING 

Now that we have a dual model of strong interactions which 

includes spin it is both feasible and useful to attempt comparison 

with the large amounts of data available for meson-baryon scattering. 

It is also important to decide beforehand which features of the data 

we can reasonably expect the model to exhibit. By construction the 

model should exhibit the correct resonance spectrum to the extent 

that nature islikeasymmetric quark model. Detailed questions of 

breaking this degeneracy must be left for future studies. Similar 

considerations apply to the study of the coupling at resonances which 

are su6 symmetric by construction. We shall limit ourselves to 
w 

a consideration of the general structure of angular distributions in 

the Regge limit. In particular, we want to study ~~ for iN charge 

exchange. There is a good deal of structure in this cross section 

and the related amplitudes, and as a result it has been ·one of the 

most critical tests of various Regge models. (24 ) We might expect that 

our dual quark model will give reasonable results for this reaction 

since the exchange degeneracy of the vector and tensor mesons, which 

our model exhibits ' by construction, is well established as discussed 

in Chapter I. Also the ~, which is the su6 partner of the p and 

is clearly not degenerate in mass, cannot contribute to the t channel 

resonances because it cannot couple to two other ~'s • . We shall also 

look briefly at the backward direction, i.e., baryon exchange, in 

order to determine the general form. However, numerical comparisons 
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are not appropriate here s ince the predicted exchange degeneracies 

are observed to be badly broken. Comparisons with data for baryon 

exchange will have to awai t a more complete model. 

Before discussing the most characteristic features of the forward 

scattering data let us review the structure of the iN charge exchange 

scattering amplitude •. ( Sl) We define the usual kinematic variables 

2 (q' 
2 p' + q' s = (p + q) = + p') ' ps = p + q = ' 

(p-p')2 (q' 2 
- p' q' t = = - q) ' pt = p = - q 

2 
(q - p' )2 ' - q' p' and u = (p - q,) = Pu = p = - ·q ' 

where p and q are the momenta of the incoming nucleon and pion 

respectively, and p' and q' refer to the outgoing states (see Fig. 

VI-1 Where the. appropriate quark graphs are shown). The actual 

scattering amplitude has the form 

T(s,t) = + 
(q+q')·r () } ~....;:;.......,2-~ B - (s,t) u(p) • (VI-1) 

Here the superscript (-) specifies the crossing symmetry s Bu 

which is odd for the case of charge exchange. Also, the amplitude 

corresponds to pure isospin one in the t channel.. The A' amplitude, 

defined by 

A' (s,t) = A(s,t) + 
m(s u) 

4m
2 

- t 
B (VI-2) 



la) s,t 

(b) u,t . 

(c) S,U 
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P H, _ /K q 
G- L 

~) 
A} 
P 8c7,o~ 

PI 

~) 
} 
p 

q' 

Fig. VI-1 Quark diagrams for meson-baryon scattering. A,B,C, 
· etc., are indices as they appear in Eq.VI-8. 
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where m is the nucleon mass c~ = ~mass), is the helicity nonflip 

amplitude in the t channel center of mass. Similarly, the t channel 

helicity flip amplitude is given by B(s,t) except for kinematic 

fa.ctors. The differential cross section is given by 

2 
dcr 1 ( ..E!..) 
dt = ~s 4k 

- 2 

2 

lA' I (VI-3) 

(s t!2L where m w = 2m 
is the laboratory energy of the pion and 

2 2 2 2 -k2 (s - 4m2 ~ m L ~ 
= 4s 

The polarization of the recoil -

nucleon is given by 

dcr 
P(t) dt = 

sin g 

16~ ~s 
Im (A'B*) 

where G is the scattering angle in the s channel center of mass. 

The s imples.t features of the data which we might hope to 

(VI-4) 

explain in . termsof the present model are: 1) a slight dip in the 

forward direction (t = 0) indicating that. the B(-) (helicity flip) 

l ·t d · d · t 2) d" · dcr t t 0 6 h" h 1 t amp l u e lS omlnan ; a lp ln dt a ~ - • w lC corre a es 

with the zero in ImB(-) at t = - 0.5 found in the FESR' s discussed 

in Chapter I, and with the zero in the signature factor of the p 

trajectory which is thought to dominate in this reaction; 3) a zero 

in ImA'(-) at t ~ -0.15 also found in FESR's and correlated with the 
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zero in da ( -dt ~ p elastic) - ~~ c~+p elastic) (cross over zero) at 

about the same t; 4) a polar.ization of approximately 15% or larger for 

t in the range -0.2 to -0.4. It is interesting to note that the 

last two features do not readily appear in simple Regge or Veneziano 

models. 

To begin the calculation for the present m~del, we define the 

wave function of the nucleon as(52 ) 

E N D + cyclic permutations} ABD c,C 

(VI-5) 

where m is the 56 multiplet mass, a b c are Dirac indices, A B C are 

su
3 

indices, and Nc,~ is a Dirac spinor times the standard SU
3 

matrix describing the nucleons: 

N D = 
c,.c 

u (p) 
.c 

1 r,O + _!. 1\ 0 

,[2 .f6 

..... -
-,!:!. "E.o 

C · 4 4 t · · th th t · cT = -c = c+ = c -l, lS a x ma rlx Wl e proper les 

(VI-6) 

-1 ( )T -1 T 
c ru c = - ru , c r 5 c = r 5 and c = c • €.ABC is antisymmetric 

in all its indices. 

To study t channel Regge exchanges we need to calculate 
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Fig. VI-la, i.e., the s,t diagram, in the large s, fixed t limit. 

Recall this means that the pro jection operator for the s channel 

the terms like 1 resonances becomes just the unit operator, i.e., 

1 
2 

ms 
are decreasing faster t han any power of s. 

ms 
Al~o, the u,t diagram 

will give a similar contribution but with s replaced by 

-s(u = - s +canst.). In fact, this is just what gives us signature. 

Finally, as described above the s, u diagram does not contribute to 

the large s and fixed t Regge behavior. Note that what we are really 

calculating is just the contribution of the s,t diagram to the t 

channel resonances and we find the Regge behavior in the s channel by 

the usual Sommerfeld-Watson techniques. Thus the simplest way to 

think about the calculation is that the scattering amplitude T(s,t) 

is given by 

s -? 00 

. g2 L: (£'s)n 
r(n+l)(n-£(t)) 

n 
~G(n,s,t) (the s,t contribution) T(s,t) 

t fixed 

-i1(n ~l + e G(n,-s,t) (the u,t contribution)_! (VI-7) 

where so that .e(t) = a (t) -1 • 
p 

Now we calculate 



G(n, s ,t) from 

( 

..PtF )c 
1+

m 
n d 
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(m = J n - lo ) 
n £ ' 

b 
(1) 

g 

(VI-8) 

where we have used the pseudoscalar wave functions from Chapter III. 

Recall P is the su
3 

wave function for the pseudoscalar mesons. 

= 

1 0 1 0 
--1{ +-- T} 
.f2 .f6 

1 0 
- -- 1{ 

.f2 

+ 
1{ 

1 
+ --

.f6 

if 

T} 
0 Ko 

2 --
.f6 

T}o 

The evaluation of Eq. VI-8 is straightforward but extremely tedious. 

Details can be found in the appendix and we shall only present the 

results here. In the following equation all extraneous overall 

constants are set equal to unity since they get absorbed into the 

unknown overall coupling constant 2 g anyway. Also, the traces over 

su
3 

indices which occur are explicitly exhibited using the notation 
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< > = Tr 

G( n, s, t) = U [ s {< BPPB > [ ( l + :~ ) ( 40 m 
2 

+ l6 m ~ - 6 t) 

+ 
F 

m 
n 

( l60 m 
2 ~ + l6 mt - 24 ~t) J + ( < BBPP > - < BB > < PP > ) . 

x [ (l + :!) (8 m
2 

+ 32m~ + 6 t)+~ (32m2~+ 32 mt + 24 ~t ) J} 
- 4 (i ~ i') (4m

2
- t) [(m + ~)(l + :~) + ~n (4 m~ + t)J (5 < BPPB > 

n 

+ <BBPP> - < BB > < PP > (VI-10) 

To evaluate the u, t contribution we need only change s to -s 

and P to P (P to P) in the above expression. F is the remnant of 

the neutralizer function discussed in Chapter V, i.e, 

F = F(J(t) -n -1) = /IJ dr .: e-r ( n+ 1 - £ ( t ) ) e g ( r ) = 
0 ' 

1 : 
J dv vn-J(t) 
0 

where F(-1)= 1, and F(z)decreases faster than any power of lzl 

f(v) 

(VI-11) 

as lzl ~oo, larg zl >E. Note that in our simple treatment of the 

neutralizer we have essentially taken F2 = F, i.e., the neutralizer 

with the .l term is the same as that with the ~ term. 
IDu mn 

From Eq. VI-10 we can pick off the f/d ratio for the coupling 

of the vector me~on trajectory to nucleon-antinucleon. If the coupling 

has the form · 



then f/d = a - b 
a+b 
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(VI-12a) 

(VI-12b) 

Thus for the B amplitude (~he coefficient of i ~ i' ) we 

have (r/d) B = 

value of f/d 

5-l 
6 = 2/3 which is the usual su6 

w 
for the A amplitude involves m and F 

n 

value. The 

and thus is 

strongly model dependent. Using the calculations which will be dis-

cussed below, we find f/dl ~=O = 12/21~ Note that the usual su6w 

(53) . It 
result is f/djA = 2/3 - 2m , whereas the experimental observation 

that the f meson seems to decouple from the A amplitude suggests 

f/djA = 1/3 (the value such that the su3 c~upling for the f meson 

is zero). The usual su6 result gives approximately this value at 
. w 

2 
t = m but, of course, not at other values of t. This problem of 

p 

decoupling the f meson would be interesting to pursue in the present 

model, but .it has not yet ·been studied. 

The A' amplitude can be calculated by using Eq. VI-2 and we 

find 

A' 6g2 (£'s)n+l 
= 7' 2: r(n+l) (n-t(t) 

n 
{ [ (l+ t;) (4 m~ + t) + !tF (m+~)] 

. m n 
n 

x [ - < BPPB > + < BBPP > - < BB > < PP >] + ( s ~ -s, P. ~ P) } 

(VI-13) 

so that f/d = oo as expected from the SU6 symmetry. In order to 
w 
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put the above amplitude in a form easy to understand and evaluate, we 

perform a Sommerfeld-Watson transform to get, for the case of charge 

exchang~ (let £' = 1) 

6 2s A A 
A, (-) ~ g f dA [ ( -s) + ( s) J r (-A) 

J2 21l i ? A - l ( t) ~l tF(l(t) -A -1))(4 t) 
+ A - £ m~+ 

+ 
4t 

.JA- l 
0 

0 

F (.e(t) -A -1) (m + ~)] 

The contour defining this integral includes the moving pole 

1 
(A _ £ (t) ) and the fixed singularities given by 

1 For the B amplitude we get !\ - l 
0 

2 A A 
B(-) ~ 20 g (4m2- t) fdA [(-s) + s J r(-A) 

'- ~ A - £(t) 
·"' 2 21li 

+ F(l(t) ·-A -1) 

.J A - £ 
0 

1 and 

( 4111j.! + t ~ 

(VI-14) 

(VI-15) 

By studying these formulae, several points can be learned even before 

we attempt to numerically evaluate the formulae. First ·we see that 

just because of the numerical coefficients we can expect that the flip 

amplitude, B, will dominate for t =/: 0 in qualitative agreement with -

the data. 

Next note that there are in general three contributions to 

•· 
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each amplitude: 1) the Regge pole part coming from the 

factor whose s dependence is st(t) (recall we set s 
0 

1 
i\ - t(t) 
1 

= l' = 1 

everywhere) and whose phase is given by -i e 1(/2 t(t) 1 = - 2 

for the p trajectory); 2) the fixed cut contribution ( 1 ) 
..JI\ - to 

which is dominated by the singularity at the head of the cut and has 

slo 
s dependence essentially and phase varying rather slowly but 

~s 
in the same direction as the Regge term; 3) the fixed pole part 

which goes like s 
t 

0 with phase given by 
-i 2!. t 

e 2 o 

Since the fixed pole and fixed cut terms resulted from terms containing 

~t in the t channel projection operator, we can expect that they are 

multiplied by coefficients wh~ch vanish as ~t -t 0, i.e., t ~ 0. 

For the B (flip) amplitude this is not a constraint since an explicit 
2 

t factor appears in front of IBI in 
dcr 
dt (see Eq. VI-3) just from 

kinematics. However, for the A' (nonflip) amplitude we know that a 

t factor must multiply both the fixed pole and fixed cut as is seen 

explicitly in Eq. VI-14. Thus, for t < 0 both of these contributions 

will be approximately 180° out of phase with the Regge pole term and 

we can expect cancellations, i.e., zeroes in both the real and imaginary 

parts of A' for fairly small t. We will see this explicitly shortly. 

For the B amplitude (Eq. VI-15), it turns.out that the fixed pole is 

still multiplied by t .whereas the fixed cut has no factor t. Then 

for some range of t we can expect approximate cancellation between the 

two fixed contributions. In summary, we can expect a strong fixed cut 
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contribution for the non flip amplitude A' and possible cancellation 

with the Regge term at small t; whereas we can expect cancellation 

between the fixed terms in the flip amplitude B and thus possible 

domination by the Regge term. This is just the sort of behavior we 

need if we expect to fit the qualitative aspects of the data, i.e., 

the zero in Im A' at small t and the zero in B which occurs 

naturally in the Regge term due to the nonsense wrong signature zero 

This last fact is just a result of the 

factor which appears in the Regge residue from 

at t(t) = -1 

cos (~ .e(t)) 

(1 + e-i1r£(t)) = 2 e-i ~ £(t) cos (~ £(t)). We also see in Eq. VI-14 

explicit verification of the statement made at the end of the . last 

chapter that the fixed singularities do not contribute to A' at 

t = o. 

Note that the structure of the two amplitudes is actually more 

systematic than discussed above since only the factors tF 
(1 + /\ - £ ) 

0 
and F 

J""A - £ 
appear. Also, the coefficients are effectively either 

0 

(4 m~ + t) or (m + ~) and the two just switch in .going from A' 

to B. 

The expressions in Eqs. VI-14 and VI-15 have actually been 

evaluated and used to calculate 
dcr and P(t). For consistency we 
dt 

have used approximate su6 
values for the masses, i.e, ~2 = 0. 6 GeV 

2 and m = 1.0 GeV. We have also used £ = -0.5 • 
0 

The Regge pole 

and fixed pole terms can be done analytically while the fixed cut 

requires numerical evaluation . . The actual numerical work was done 

by Geoffrey C. Fox. The neutralizer form F (t(t) - A-1) was 



approximated as 

F (£(t) -A -1) = 

90 

£(t) -A 
I (VI-16) 

which corresponds to ~(1-y) being a step function with the step at 

1 
I 

as discussed in Chapter v. We have already seen that this expression 

is not too good an approximation. In particular, it ignores our 

interpretation of F as a Regge cut. However, it does make the 

calculation simple which is all we desire for our present qualitative 

study. Note that this will not affect the Regge pole term which comes 

from A= £(t) but does introduce a factor t 
I in the fixed terms 

which come mostly from In Fig. VI-2 we see the result of 

al 1 t . dcr "th c cu a lng dt Wl 1 = 1, i.e., no neutralizer. Also shown are 

idealized data points which show the general structure of the actual 

experimental data (from ref. 24). It is evident that our amplitudes 

need some strongly t dependent factor, e.g. t 
1 for large 1, in order 

for dcr dt to have a t dependence similar to the data. Thus it is 

unfortunately the ·case that any attempts to fit the data must depend 

crucially on the form of the neutralizer which is, as yet, poorly 

defined. 

In Figures VI-3 and VI-4 we see the results of calculations 

with 1 = 10. There are two important points to notice. 1) The 

structure of the B amplitude is reasonable, i.e., zeroes in both 

the real and imaginary parts near t = -0.6 which result from the 

signature zero . in the Regge pole term plus a cancellation of the 

fixed pole and fixed cut terms in the same t region. The t region 



91 

/ 
1.0 CEX 

-
.J I 

-t 
.0010~---.~2----.~4----~.6-----.8~---1~.0. 

Fig. VI-2 Calculated differential cross section with no 

neutralizer,i.e., r=l~ PL is 5.9 Gev/c. Some 

data points are shown for comparison. _ 
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1.0 rr CEX 

~.1 contribution of B 
> 
Q) 

~ 
E 
~ 

+J 

~ 
cc.01 

_... 

I 
I 

contribution of It 
-t 

.001~----._----------~----~----~~ 
0 .2 .4 .6 .8 1.0 

Fig. VI-3 Calculated differential cross section for r=lu, 

P1=5.9 Gev/c, ~2=0.6 . Gev2, m2=l.O Gev2, and ·£
0
=-0.5. 

Some data . are shown for comparison. Contributions j 

· of individual amplitudes are also shown. 
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5 tr N CEX 

4 

3 
l~-lmB · 

2 

Cl) 1 
..... 
r.: 

:::J 

~0~~~~----~~----~~----~~----~ 
'-ca 
~ . 

~ ·- . .c· 
'-

<C -1 

-2 

Al e"" . \_,-1m A' 

Fig. VI -4 . Calculated values of amplitudes A •· and B for i=lO, 

PL =5. 9 Gev I c' J..12=0. 6. Gev2' , m2:~~~1. 0 ~v2' and £0;;-0.5. 
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of t his cancel l ation depends on the val ues of the masses used, e.g. 

for a smaller value of ~ t he cancellation occurs at smaller t, but 

it depends only slightly on the value of y. 2) The structure of 

the A' amplitude i s als o r easonable in that it has a zero i n its 

imag inary part at t ~ -0.1 • However, lA' 1
2 

is much too large for . 

t < -0.3 and in f act fills i n the dip in IBI 2 
at t = -0.6 to 

make dcr 
dt quite smooth. Also, the data indicate that the zero in 

Im A' should occur at t ~ -0.2 , not -0.1 • Both of these problems 

could be remedied by stronger neutralizer effects, e.g. larger r , 

but at this point it is clear that the simplified fashion in which we 

have treated the neutralizer is not sufficient. If we just increase 

r the A integrals soon become poorly defined and, in any case, we 

saw that the step function form of the neutralizer was not consistent 

with Regge _behavior. Without doing further calculations with a more 

complicated form of the neutralizer which would, for example, treat 

it as a Regge cut; we shall take the attitude that the model is 

basically consistent with the zero structure of the data. 

However, there is one more piece of data which is much more 

restrictive. This is the fact that for t in the range -.15 to -.4 

there is a fairly sizable POSITIVE polarization of 15 to 4o%. The 

present model shows this fairly large polarization but with NEGATIVE 

sign. Recall that if ~A' is the phase of the A' amplitude and 

~B is the phase of the B amplitude, then Eq. VI-4 tells us that 

the sign of the polarization is given by the sign of sin (~B- ~A,)' 

which is positive if ~ > ~B - ~A' > 0 • FTom Fig. VI-4 we see that 



<I> A' is approximately 

is close to 
1( '2 so that 
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3rc 
4 

for the t range of interest while 

5rc 
<I>B - <l> "' -A' 4 

and the polarization is 

negative. However, changes in the neutralizer may strongly affect 

the result since, if <l>B were slightly smaller and <!>A' slightly less 

negative, <I>B - <!>A' could be less than ~ rather than greater than 

rc • This question can only be answered by a more detailed numerical 

study; but the polarization data are certainly an important question 

and at present the model is inconsistent with the data. 

We can also calculate backward( 54) scattering in the Regge 

region in the present model. In this case we are looking at the 

resonance structure in the u channel with u fixed and Jsl ~ oo • 

The interesting amplitudes are those corresponding to I = 3/2 and 

I=~ in the u channel which are easily separated by considering 

elastic scattering (pure I = 3/2) and + elastic scattering 1( p u 1( p 

(a mixture of . I 1 and I 3/2). The question of comparing u=2 = u 

the model to the data is clouded by the absence of much structure in 

dcr du, and the fact .that the predicted exchange degeneracies are poorly 

satisfied for nonstrange baryons, as mentioned above. Note that, 

since the present model has degenerate ~6' s and 7,.9' s at all L except 

L = 0 (pure ~6) and L = 1 (pure I9), it cannot have any signature 

and thus cannot have wrong signature zeroes. Another pressing problem 

is that our model will consider ·the quark spin 3/2 particles as the 

leading trajectory, whereas in nature su6 is badly enough broken 

that the actual quark spin~ trajectories, which are allowed ·to 

contribute in general (unlike the rc for meson exchange above), lie . 
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almost as high on a Chew-Frautschi plot as the quark spin 3/2 

trajectories. Thus 1re should not a priori expect to explain the one 

clear feature in dcr 
du which is a dip at u = -0.2 in + 

1C p backward 

scattering. This dip is often attributed to a nonsense wrong signature 

zero in the quark spin t, I = t trajectory (ordinary nucleon) Which 

appears because the I = t trajectories are not in fact exchange 

degenerate as we would predict from our model (recall exchange 

degenerate trajectories yield exchanges with no signature and thus no 

zeroes). This trajectory is also not the leading contribution in our 

model so its affect is ignored to leading order in s. 

However, we did notice structure for meson exchange which had 

nothing to do with signature zeroes, i.e., the Regge pole - fixed cut 

and pole interference in the A' amplitude'at small t. We can take 

the attitude that some structure will result just because of the spin 

content of a certain amplitude, e.g. because of the relative sign of 

the Regge term and the fixed cut-fixed pole terms. This is similar 

to an optical picture .where dips in differential cross-sections occur 

at the zeroes of J n ( J'-(~)b) where n is the amount of spin flip 

and b ~ 1 fermi. For example, the spin nonflip amplitude is given 

by a J 
0 

and has a dip near t 
u 

2 = -0.2 GeV • Thus any dip in 
dcr 
du 

in our model would result from a pole-cut interference in the dominant 

amplitude rather than a signature zero. 

The amplitudes which we shall calculate are A + m B, which is 

proportional, in .the Regge region, to the s channel helicity .flip 

amplitude, and B, which is proportional to the s channel helicity 
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nonflip amplitude. For u near zero (g ~ 180°) these amplitudes 
s 

are also approximately the spin nonflip and spin flip amplitudes 

respectively. We shall present the results as an integral in the A 

plane as in the meson exchange example above. Recall that there are 

two contributions, one from the u, t diagram which goes like A 
s 

( -s)A and one from the s, u diagram which goes like :2 as we discussed 

in Chapter II (see E~. II-19a). For I = 3/2 we have 
u 

£' = 1) 

I~ 3/2 
(A + mB)h~l 

flip 

2 
g s 

= 2rci 

+ 2 a u (.7 + A _u t ) 
0 

+ 2 au (13 + 3u ) 
A - t 

0 

F(t(u) -A -1~ 
.J A £ 

0 

2 
(u + a ) 

( a = m + j.J., 

(VI-17a) 
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I = 3/2 2 u -g s 
Bhel "" 2rci 
_ nonflip 

+ (~)A (3 + 13 u F (t(u) -A -1) ) 2 cr 
2 ~ - t 

0 

2 5u 
+ ( u + ct' ) (11 + ) A - t 

F (£ (u) -/\ -1)] }
-.) A - t 

I= 3/2 
(A + mB) u 

hel 
flip 

J dAr(-A) 
'=' i\ - t(u) 

+ 2 C1 u 
( 8 _ 12u ) 

~ - t 
0 

0 
0 

F (,e(u) -A -1)1} 
-J A - t 

0 

(VI-17b) 

(VI-18a) 



I = 1/2 
u 

Bhel 
non flip 

J 

= 
2 

fL_ 
2ni 

2 15 u 
+ (u + cr ) (11 - A _ t ) 

0 
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17 u F (£(u) -A -1) ) 
A - t 

0 

F (£ (u) -A -1) J 
-J A - t 

0 

+ 
A 

c;) [<12 - 8 u F (t(u) -A -1) ) 2 cr 
A - t 

+ (u + cr2) (14 - 10 u 
A - t 

0 

) 

0 

F (£(u) -A 
-J A - t 

0 

2 cr 

(VI-18b) 

One of the first things to notice about these equations is the 

explicit realization of a point made earlier about the symmetric 

quark model resonance spectrum. The u-channel resonances in the 

above equations come from t(u) =A= 0, 1, 2 •••• For A= 0, 

i.e., internal orbital angular momentum zero, we expect only a ~6 

and no I = t , quark spin 3/2, nonstrange particle. We see that in 

Eqs. VI-18a and b the part of the integrand in brackets vanishes at 

A = t(u) = 0 as required. Likewise for A = 1, orbital angular 

momentum equal to one, we expect only a 7~ and thus no I = 3/2, 

quark spin 3/2, resonances, i.e., in Eqs. VI-17a and b the quantity 

in brackets vanishes for A = t(u) = 1 • For all higher A (L ) we 
u 

expect both ~6's · and lO's, i.e., resonances in both I spin channels 

as is observed in Eqs. VI-17 and 18. 
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As in t he meson exchange case, we observe that these baryon 

exchange amplitudes exhibit a certain degree of regularity in their 

structure. Specifically, t he fixed pole term always appears multi-

plied by u and with a coeff icient similar to the pure Regge term (the 

1 
term with no F factor). Also, the two terms with appear 

~A -to 
together in similar fashion. Aside from the various integers, only 

two coefficients appear, i.e., 
2 u + cr and 2cr, and again they change 

roles in going from the nonflip to the flip amplitude. Since all the 

terms involving A - £ 
0 

were multiplied by ~ 
k'u in the original 

projector operator we expect them to be multiplied by a coefficient 

which vanishes as p ~ 0, 
u 

u~o (of course p = 0 u 
also requires 

m = ~). This is not a constraint for the helicity nonflip amplitude 

which is also spin flip near u = 0 and thus automatically has a 

kinematic factor which vanishes at G = 180° to conserve angular 

momentum, i.e., u = 0 to first order in s. However, for the 

helicity flip amplitude (A + mB), wh±ch is also spin nonflip near 

u = 0, the fixed cut terms pick up an extra u factor and we can 

expect strong interference with the Regge term. Such interference 

effects are actually observed when Eqs. VI-17 and VI-18 are evaluated 

by the same methods as we used in the meson exchange case. The 

helicity flip amplitude (A + mB) does exhibit zeroes in both the 

real and imaginary parts in the range -0.35 < u < -0.05, whereas 

the helicity nonflip amplitude (B) in general does not show such 

structure. However, the location of the ze'roes depends strongly on 

the intercepts chosen for the various trajectories which, of course, 
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determine t he phase of t he f i xed A singularities. For example, to 

obtain the zeroes mentioned above, intercepts suggested by the data 

were us ed, i .e., £ (I = 3/2) = -1.3, 
0 u 

£ (I = l/2) = -0.8, which 
0 u 

already break t he su6 symmetry. Also, in order to obtain even 

dcr 
qualitative agreement with the data on du 

tude (A + mB) would have to dominate the 

the helicity flip ampli

I = 1/2 exchange and u 

not the I = 3/2 (to obtain a dip in ~+p and not ~-p). In the 
u 

present model the helicity nonflip amplitude (B) is always large and 

~~ shows little structure. As in the meson exchange case the cross 

section does not fall fast enough as lui increases indicating a 

need for stronger neutralizer effects so that a detailed comparison 

with data is not meaningful at present. 

We can try to abstract from all this certain systematics of 

quark spin amplitudes which result essentially from the p structure 

of the projection operators. In amplitudes which are not required 

by kinematics to vanish at G = 0 or ~, i.e., amplitudes which 

are essentially spin nonflip amplitudes in these .kinematic regions, 

we expect strong cancellation between the Regge pole term and the 

fixed cut term and between the fixed pole (A _1£ ) and the 

(A _1l )3/ 2 terms ' if the latter is present. For
0
amplitudes which 

0 

vanish automatically we can expect the fixed cut to have the same sign 

as the Regge pole and cancel instead with the other fixed A singu-

larities. As we have seen these systematics are suggestive of 

structure which is in qualitative agreement with the data. However, 

when it comes to actual comparison with the data including the 
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question of overall t or u dependence, i.e., decreasing fas t 

enough as It!, lui increases , the question of exact relative 

phases as exhibited i n polarizations, and the question of relative 

sizes of flip and nonflip amplitudes,the model fares quite poorly. 

We can explain these difficulties in terms of requiring a better 

treatment of the neutralizer and of su6 breaking, but our original 

hope of checking the model against data independently of such details 

has certaintly not been realized. The model, as it stands, is only 

suggestive of reasonable structure for the various amplitudes and is 

of little value for actually fitting the data. 

For the sake of completeness it should be pointed out that the 

detailed structure of the amplitudes obtained in the present model is 

considerably more complex than that suggested. by the original work of 

Carlitz and Kislinger, ( 22 ) although the general conclusions, about 

Where strong cut effects can be expected, are quite similar. This 

difference arises not only from the fact that we are now studying a 

dual model, but also from a basic difference in the way in Which the 

two models are constructed. In the second paper of Carlitz and 

Kislinger, where meson exchange is discussed, the primary emphasis 

is on ·constructing·nonsingular, su6 symmetric vertices. The total 
w 

amplitude is obtained by using these vertices to couple the external 

particles to the exchanged resonances and then summing the resonances 

a la Van Hove. Due to the explicit factorization of the amplitude, 

even away from the resonances, much of the initial complexity of the 

vertices can be and is absorbed into the overall coupling constant 
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leaving a fairly simple result. In the present model the primary 

interest is in constructing a dual 4-point function involving explicit 

quarks and their propagators. We have seen that in order to avoid 

contributions to the resonances from what are effectively the 

MacDowell (parity) partners of the quarks we have introduced pro

jection operators. This guarantees that at the poles we have the same 

structure as Carlitz and Kislinger, but away from the poles the 

MacDowell partners still contribute to the amplitude, i.e., although 

only the ~ = 1- and 0 channels are allowed to resonate there is 

still a nonzero 1+ and 0+ amplit~de present. Even in the resonant 

channels the coupling away from the poles is more complicated than in 

Carlitz and Kislinger. As a result, our total amplitude does not 

factorize except at the poles and the simplifications of Carlitz and 

Kislinger are not possible. This problem is related to the usual 

ambiguity about how to continue an amplitude away from its poles. The 

model of Carlitz and Kislinger simply suggests a different program for 

this continuation ·than in the present model. 
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VII. SUMMARY 

Let us briefly review what it is that we have accomplished in 

the work discussed above. We have succeeded in writing down a "dual 

quark model" which explicitly exhibits the Dirac spin of the quarks. 

The model has the spectrum of the static symffietric quark model and 

has vertices which are symmetric under su6 x o2 • In order to 
w Lz 

avoid parity doubling of the resonances we have introduced fixed 

J-plane cuts and poles. To maintain the symmetry of the vertices 

and to insure the usual factorization properties we have introduced 

further new functionry, i.e., the neutralizer, which we have suggested 

should be interpreted as a moving Hegge cut possibly related ta in-

elastic effects. This new structure has led to unavoidable background 

contributions to the FESH's and hence to a modified interpretation of 

duality. This . new complexity was, however, not unexpected. 

Finally, we have attempted comparison with data for iN 

scattering using a: simplified version of the neutralizer function with 

the hope of testing the general form of the model independent of the 

details of the neutralizer. The amplitudes calculated are in fact 

suggestive of systematic structure which is in qualitative agreement 

with nature, i.e., that spin flip amplitudes should be dominated by 

pure Hegge poles, whereas spin nonflip amplitudes should exhibit 

strong· interference between poles and cuts. However, the actual 

calculational results are in poor agreement with the data and the 

form of the disagreement suggests that the details of the neutralizer 
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cannot be ignored if the model is to succeed at all. In its present 

simplified form the model is definitely unsatisfactory for para-

meterizing the data. 

Before considering discarding this model there are several 

areas which deserve further study. First is an effort to make a 

numerical study using a more satisfactory form for the neutralizer, 

including the constraints of full Regge behavior as discussed in 

Chapter V, and possibly trying to relate the form to some model for 

the cut structure arising from unitarization. It would also be 

interesting to use this model as a vehicle to study schemes for 

breaking both the su6 coupling symmetry and the 
w 

resonance 

symmetry. We can expect that when these two problems are studied 

within the framework of a dual model there will exist contraints 

which relate the two effects. It is interesting to note that the 

pt terms, for example, which we eliminated from s channel resonance 

couplings via the neutralizer in order to maintain su6 symmetry 
w 

are quite similar . to the su6 breaking terms used by Colglazier 
w 

and Rosner(S) to study the decays of the A
1 

and B mesons. This 

suggests that in a more complete model such terms should contribute 

to at least some o·f the resonance couplings and could give the 

observed symmetry breaking. Another interesting suggestion, which 

has not yet been thoroughly or consistently studied, is that of Humble, 

Vaughn and Zia. (55 ) They want to physically interpret the trajectories 

which appear, in· the absence of the neutralizer, at a position in the 

Chew-Frautschi plot shifted by ~ from the input trajectories. These 
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trajectories were mentioned in Chapter IV, where they were called 

cousins, and are suppressed in our model. Although such trajectories 

are difficult to interpret in a model with quarks (not a part of the 

model of Humble, Vaughn and Zia), the t shift is very suggestive of 

the observed size of su6 breaking. Since both of these studies 

bear on the structure of the neutralizer, their successful completion 

might lead to a model which realizes the good features suggested by 

the present model while not exhibiting its difficulties. 
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APPENDIX 

In this appendix we wish to give an illustrative example of 

how the su
6 

calculations were carried out for the quark diagrams 

for meson-baryon scattering. In particular, we shall look at the s,t 

diagram (Fig. VI-la) in the limit of_large sand fixed t so that only 

the t channel projection operator contributes factors other than the 

unity operator. What follows then is an explicit evaluation of Eq. 

VI-8. 

G(n,s,t,) i {FGH} 5K (1 -
pt F k 

= -) fgh · H mn h 

{h (l + t_ )J Pi} (l)e 5E 
1-L k £ L 

{[<1 + ~)r5]! . P~} (l)a 
f 

(l)b 5B 
pt F c oc ~{ABC} (VI-8) g G (l + m )d D abc n 

Recall that A,B,C are su3 indices and a, b, c are Dirac indices. 

Repeated indices (~) imply summation. The nucleon is defined 

by(S2) (from Eq. VI-5) 
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'l'(p) {:~} = 

l 
( [<1 + * ) c J: u (p) BJ 

.f6 ~'s . €ABJ . c c 

+ [<1 + i) ~'s cJ: €BCJ ua(p) BJ 
m A 

+ [<1 + * ) r5 cJ: €CAJ '\ (p) Bi} (A-1) 

The outgoing state, momentum ~· , is defined as 

'f(p') i~~r =- }6 ([c 75 (1 + !' )J: FGR € uh(p') -H 
BR 

[c r5 (1 +! )r GHR -f ) -F + € u (p' BR 
. g 

[c r5 (1 + !') J: HFR ug(p') -G} (A-2) + € B · R 

The properties· of the matrix c CT -C c+ -1 are = = = c ' 
l T -1 T c- )'~ c = -(r~) ' c 's c = l's ' and c = c. The tensor 

ABC € is antisymmetric in all of its indices. As mentioned in the 

text, we henceforth drop all of the overall constants since there is 

some unknown coupling constant anyway. 

When we substitute Eqs. A-1 and A-2 into Eq. VI-8, there will 

be nine distinct terms coming from the three incoming nucleon terms 

times the three outgoing nucleon terms. For simplicity we shall work 

them out one at a time. The first term has the form 
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G = FGR B- H 0K p L 0 E PD 0 C 0A 0B BJ 
l € R H K L E D F G €ABJ C 

(A-3) 

To work out the su3 part of G1 and the terms given below, the 

following identities are useful. 

ABC 
€ ~D 

(A-4a) 

(A-4b) 

!ffiC € = 0 A 0 B 0 C . + 0 A 0 B 0 C 0A 0 B 0 C _ 0A 0B 0 C 
DFG D . FG FGD+GDF FDG 

(A-4c) 

Thus the su
3 

factor in G
1 

becomes 

H LDJABR H LDJR 
BR ~H PL BDE EABJ=2BR PH PL BD oJ = 2<BPPB> 

(A-5) 

with the notation < > = Tr. In order to write the Dirac spin part 
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of G
1 

in the usual matrix multiplication form we must take the 

transpose of one of the nucleon factors to get the indices in the 

correct position. Working on the incoming nucleon we have 

= [-c -1-p ~a c-1 rs c (1 - c c) 
m b = -~1 + ~ ) y 5 c J : (A ... s) 

where we have used the properties of C given above.- Now we can write 

G1 as (using (l)~ . = (1)! ) 

G
1 

= 2 < BPPB > U(p') 1(1- :t F) r5 (l + ))'_• )(1 + ))'_) r
5 

(1 + :t F~ u(p) ll n . IJ. IJ. n 

= 2 < BPPB > u ( p' ) [c 1 - "j> t F)( l - ))'_ 
1 

) ( 1 - ))'_ )( 1 + p t F ~ u ( p) 
mn IJ. IJ. mn ~ 

(A-7) 

Let us proceed by evaluating the trace factor which we shall label 

2K(t). 



lll 

2 K (t) Tr [ ( 1 + f ) ( 1 + * ~ = Tr [1 + p ~ .pt + 9'] -
m 

4 ( 1 + p . p') (1 + 
2m2 - t ) t 

= = 4 
2m2 

= 2 (4 - 2) 2 
m m 

To simplify the rest of G
1 

we need to work out the form of 

u(p') g u(p) 
p 

for the various operators 9 which appear. 
p 

We 

(A-8) 

expect on general principles that the result can always be expressed 

as u(p') 9 u(p) = u (a+~ b) u where ~ = ~(i + i') . 
p 

In 

the following table we present the general results which can easily 

be verified by the reader ·(see e.g. ref. 51). Recall that 

s = (p + q_)2 = (p' + Cl' )2' t =(p- p')2 = (q'- q)2; pt = (p -p')= (q'-q), 

u = (p- q')2 = (p' - q_)2 
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Using the table we find 

U (1 - pt F) (1 - i ) ( 1 - i ) (1 + pt F) u 
m ~ ~ m n n 

- -pt F + -pt F - i.'- i_ + ptq'F + ptq F + Pt1\ F + ti- i'i>t F 
m m ~ ~ m ~ m ~ 2 2 ~m n n n n m ~ n 

n 

' 2 2 2 2 t 2 2 2 
-u + m + ~ F + s - m - fl F + _ F + s - m +. s - m - !l F 

m ~ m fl m fl 2 ~ ·m n n n fl n 

+ ~ {- ~ - !m ~ F - ~ - !m ~. F - t 2 F - ~ ·. F - 2t F - 22m. - ~ . F}J u 
,... n II . n ID II m fl II m II ID ,... n,... n ,... n ,... n 

[ s 
2 2 

~(s t F 2 - - m - fl - u) -= u 2 + (u - m ) m .~ 2 2 
~ n j.l m 

n 

- si { 2 ~m + ~L 2 F 
(4 m ~ + t) + 

2t F (~ + m1 J u 2 + 2 2 2 
j.l m n fl ~ m n 

(A-9) 

2 Note that in our simplified treatment of the neutralizer F = F. 

Since we are interested in the large lsi , lui , fixed t limit 

( u- -s), we can further simplify G
1 

by defining the functions 
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g (s,t) ~~+4flF + :}J - 2 m 
~ n n 

(A-lOa) 

h (s,t) -2 
[em + fll (l + t F ) F 

(4m fl+t)J - 2 +-2 m 
~ m n n 

(A-lOb) 

So, using Eqs. A-7, A-8, and A-10 we have 

G l ( n, s, t) ~ 4 < BPPB > K ( t) u ( g + ~ h) u (A-ll) 

With the above calculation as practice ;we can proceed to 

evaluate the other eight terms in fairly short order. The ordering 

used in the following is to successively look at each term in W for 

a fixed term in ~. 

x [c r5 
i' r :f' pt k [ i.' J p, e (1 + ) u (p')(l-- F) r5(1 + ) (1) 

. m g mn h Jl k £ ~1{) r5J: 
a b -p c 

[c1 + ~ l r5 c J: X (1) (1) (1 + _!F) u (p) 
f mn d c g 

= [< B > < PPB > - <BPPB ~ ii { (1 + ~ ) r5 c c r5 

x (1 + E_') (1 - pt F) ')' 
5 

(1 + i_• ) (1 + i_) ')' 
5 

(1 + pt F)} u 
m mn Jl · Jl mn 

= [ < BPPB > - < B > < PPB > J ii { (1 + ~ ) (1 + ~I ) (1 - :: F) 

x (1- i') · (1- i_) (1 + pt F)} u 
~· ~ m 

. n 
(A-12) 



115 

(Recall that C C = -1) 

To evaluate this expression we note that 

= u (2 + ~- i + 2 P • p') = K(t) u(p') 
m m m (A-13) 

where we have used Eq. A-8. The remainder of the expression between 

u(p') and u(p) is just what we had in Eq. A-9, so that 

G2(n,s,t) = [ < BPPB > - < B > <PPB >] K(t)' ii (g + \lh) u (A-14) 

The next term is 

a b . pt c ~ . .J. J b 
X (1) (1) (1 '+ m F) L(l + ~) rs c uc(p) 

· f g n d a 

= [< B > <PPB > - < BPPB > J ii {< -1 )( 1 + ~) 'Y 5 c ( -1) c 'Y 5 

.P• Pt rlr rl Pt } 
x (1 +- )(l ---F) r5 (l + ~ )(1 + ~) r5 (1 +--F) u 

. l1l . mn J..1 J..1 mn 

= r< BPPB . > .... < B > < PPB >]. ii f (1 + i ) (1 + E_• )(1 - p t F) ·L L m m mn 

rlr . rl . Pt } 
x (1 ~ ! ) (1 - !) (1 + ~n F) U (A-15) 
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'vhere we have used E~. A-6 and the corresponding form for 

~ r5 (1 + ~)J: . Inspection shows that Eq. A-15 is identical to 

E~. A-12. 

G 3 = G 2 = < BPPB > - < B > < PPB > K ( t) u ( g + ~h) u 

Next we have 

G = FGR -B H 0K -p L 0E PD 0C 0A 0B BJ 
4 € R H K L E D F G e:.BCJ A 

[ 
-.1.. Jg Pt k [ l' ]£ e C r5 (l+mt:...') f uh(p') (1- ·-F) -y' (1+ ) (1) 

mn h 5 IJ. e £ 
- - -

(A-16) 

,./ Jd a b pt c ~ ..1. J c x [(1 + ti) -y5 (1) (1) (1 + -F) (1 + ~) -y5 C u (p) 
ll f m d m b a e g n . 

~ - - . - J -Jr pt ,./r ,./ 
= L< BPP> < B > - < BPPB > u t 1 - mn F) ·-y 5 ( 1 + ! ) ( 1 + ~) r 5 

x (1 + pt F) (-1) (1 ·+ t) r5 c (-1) c r5 (1 + i'>} u m . m m 
n 

= [< BPPB > - < BPP > < B > J U ~- =: F) (1 - f) (1 - ~) 

x (1 + pt F) (1 + t) (1 + t' )} u 
m m m 

n 

Similarly to E~. A-13 we find 

(A-17) · 

(1 +. ~) (1 + ~~) u(p) = (1 +~+!-'+if-') u(p) = K(t) u(p). (A-18) 
m 
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So again we have just Eq.A-9 and we find 

G 4 = [ < BPPB > - < BPP > < B > J K ( t) ii. ( g + ~h) u 

The fifth term has the form 

G
5 

= GHR -B F 0K p L 0E PD 0 C 0A 0B 
€ R H K LED F G 

= [< BB > < PP > - < BBPP >] -u u 

x (1 + i') (1 + i) 15 (l + tt F) (-l) (l + i) r
5 

c] 
1-L 1-L m m n 

[< BB > < PP > - <IiBPP > J G i· .p - Tr (1 + ) (1 - ~ F) = u u 
m m 

n 

!' . . ! pt 
(l + ~ ~ X (1 - ) (1 - ) (1 +-F) 

1-L 1-L m 
n 

(A-19) 

(A-20) 

Using the fact that (1 +~')acting to the right and (1 + ~) acting 
m m 

to the left are, for our purposes, just like u(p') u(p), i.e, 

(1 + i')~' = (1 + i')m and p(l + i) = m(l + i ), the trace 
m . m m m 

factor. is easily simplified to give Tr[(l + ~1 )(g + Q/h)(l + ~ )] 
s-u This is straightforward to evaluate using p • Q = p' • Q = ~ • 
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To leading order in s we obtain 

G6 

-u u (A-21) 

The last term which 1ve shall calculate explicitly is 

HFR B G OK p L 5E PD 5C 5A 5B BJ = € ~CJ R H K L E D F G A 

x [c r5 (l + li)r -pt k ~5 (l + i,_·)r e 
ug(p') (1 - -F) (1) 

m h mn h ' J..L k £ 

a b . -p c 

[<l + ~) r5J: [<l + !) r5 ci X .(l)f (1) (1 + __!F) u (p) 
mn d a 

g 

= [< BPPB > + < PP > < B > < B > + < BBPP > - < PP ><BB > 

-<BP'P><B> -<BPP><B>] 

c-1 -p c c-1 ~ c 
t ) -1 YJ. ) 

- m F c r5 c (1 - J..L 

n 

= [ < PP > < BB > + < BPP > < B > + < BPP > < B > - < BPPB > 

- < PP > < B > < B > - < BBPP· > J 
f/ .J. . p t rf A I p t .J. I } 

u tl + !) (1 + mn F) (1 - ! ) (1 - ! ) (1- ·mn F) (1 + ! ) u • 

(A-22) 
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We can simplify the Dirac portion of this expression by noticing that 

the quantity in the brackets is just like the expression appearing in 

the trace of Eq. A-20 except that we must interchange q ~q' , 

p ~p' , and pt ~ -pt • Of course these changes do not affect the 

variables s, t, and Q so that g + ~ h appears as before and we 

obtain 

G6 = [ < pP > <BB > + < Bi?P > < B > + < BPP > ,< B > - < BPPB > 

- < PP > < B > < B > - < ii"BPP >] 

x u {c1 + !l (g +. sl h) c1 + !' l } u 

= [< PP > < BE > + < BPP > < B > + < BPP > < B > - < BPPB > 

- < PP > < B > < B > - < BBPP >] 

x ii {g ( 4 - m~ ) + ~ (s-u) h - \l h ( 4 - m~ ) } u (A-23) 

Finally, to leading order in s, we have 

G6 - [< PP > < BB > + < BPP > < B > + < BPP > < B > - < BPPB > 

- < pp > < B > < B > - < BBPP >] 

.x ii { g K ( t) - )l h K ( t) + 
4 
m 

5 
h } u (A-24) 

To complete these calculations, the Teader can easily verify 
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that the following equations are true. 

G7 = G4 (A-25a) 

G8 = G6 (A-25b) 

G9 = G5 (A-25c) 

Adding up all of these contributions and noting that < B > = < B > = 0 

(see Eq. VI-6), we arrive at the result shown•in Eq. VI-10 (to get to 

that result we must also remove the inessential overall factor 

l 
2 2 ) • 

1..1. m 

22q 22-{- [ s J G ( n, s, t) = 1..1. m i:l = ( 1..1. m ) u < BPPB > ~ g K ( t) - 8 m_ ~ + 10 ~ K ( t) h -

+ ( < BE > < PP > - < BBPP >) [ 6 g K ( t) + 8 ; h - 2 ~ K( t )hJ} u 

= U {s t BPPB > {c1 + !J)(40 m
2 

+ 16 mj.l - 6 t) + ~ 
(16ci m

2
1-! + 16 mt - 24 1-(t)}t(< BBP'P>- < BE > < i?P > ) 

x t1 + !n~)(a m
2 

+ 32 mj.l + 6 t) + ~ (32 m
2

1-!+ 32mt + 241-!t~ 

r1. 2 [ t F F J 4 'It ( 4 m - t) ( m + 1..1.) ( 1 + mn 2) + mn ( 4 m 1..1. +. t) 

X (5 < BPPB > + < BBPP > - < BB > < pP >)} u • (VI-10) 

The other quark diagrams of Fig. VI-1 and the other kinematic 

limits are all calculated in similar fashion. 
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