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ABSTRACT

The conductance peaks at the cyclotron harmonics in a plasma-
filled cylindrical capacitor are investigated theoretically and
experimentally. A theoretical model is developed and is shown to
predict peak height variation with density, harmonic number, and
sheath thickness which is in agreement with experimental measurements
of the capacitor's complex admittance (susceptance and conductance)
and absorption coefficient. A harmonic conduction peak is found to
rise initially as density increases, only to fall to a minimum height
as the upper hybrid frequency passes through that harmonic. The
noise output of the capacitor is studied and is compared to the theo-
retical noise output at the harmonics which would be expected for a
thermal plasma.  The theoretical output is shown to be related to the
capacitor's conductance. The capacitor's internal noise oscillations
are found to be too intense for a thermal plasma, but the noise peaks
at the harmonics show structure and amplitude variation with density
in substantial agreement with the theoretical model. To test the
validity of the theoretical model which treats the capacitor’s center
wire sheath as a vacuum}region several Debye lengths thick, the con-
ductance change for small decreases in sheath size is investigated
both experimentally and theoretically. It is found that the amplitude
of the conductance peak within a harmonic passband is very sensitive
to small changes in sheath size. This fact leads to a new plasma
diagnostic, sheath modulated transmission. Sheath modulated trans-

mission experiments are found to enhance cyclotron harmonic wave



effects relative to the amplitude of the transmission peaks at har-
monics and to provide information as to the location of the second
harmonic band pass edge. Applications of this work to plasma diag-

nostics and suggestions for further work are made.
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Chapter 1

INTRODUCTION

In the past decade the warm magnetoplasma has been increasing-
ly studied primarily because of eventual fusion applications. A wide
variety of experimental hot plasma phenomena is now understood to
depend on the propagation of longitudinal electron waves propagating.
nearly perpendicularly to the magnetic field. These waves are called
cyclotron harmonic waves (CHW) because they propagate in passbands
adjacent to harmonics of the cyclotron frequency. Noise emission from
a plasma at the cyclotron harmonics, rf transmission through a plasma
perpendicular to the magnetic field, absorption of energy by a plasma,
plasma pilse response, resonance rectification effects at a probe
immersed in a magnetoplasma, and ionospheric resonances are all
thought to depend on CHW propagation [1,2,3] Numerous experiments
have verified the dispersion properties of CHW propagation [2,3];
however, comparatively little has been done toward understanding the
complex admittance of an rf antenna at the cyclotron harmonics or the
effect of the size of the antenna sheath on the propagation of cyclo-
tron harmonic waves. The conductance peaks associated with the
complex admittance at the cyclotron harmonics deserve particular
study. The conductance at the harmonics is related to the loss com-
ponent of the rf electric field. Hence, a study of the harmonic
conductance peaks directly relates to the plasma absorption and emis-
sion at the cyclotron harmonics. The coaxial capacitor was chosen
for these studies because the rf electric field exciting the cyclotron

harmonic waves is primarily perpendicular to the external magnetic
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field. This chapter reviews briefly, previous work on cyclotron har-
monic waves and then outlines the topics to be covered in the following

chapters.

1.1 Historical Background

Plasma phenomena at the cyclotron harmonics were first
observed in experiments measuring noise radiation from hot plasmas.

In 1959 Wharton reported observing noise radiation at the cyclotron
frequency and at the second and third cyclotron harmonics from various
fusion oriented plasma devices [4]. About a year later Landauer
observed noise emission peaks up to the 45th cyclotron harmonic in a
PIG discharge [5]. Early attempts to explain harmonic noise radiation
attributed the radiation to single particle radiation from electrons
moving in cyclotron motion. Classical EM theory predicts that a
single energetic electron gyrating in a magnetic field will emit radia-
tion at the cyclotron frequency w, and its harmonics ‘nwc [6].
However, this radiation should only be significant atfrelativistic
electron energies.

Early experiments seemed initially to agree with the assump-
tion of single pérticle emission. However, later experiments by
Bekefi et al in 1962 in'the positive columns of cathode produced dis-
charges also showed strong emission and absorption up to the 10th
cyclotron harmonic [7]. While streams of high temperature electrons
occur in PIG discharges, the electron temperature iﬁ the positive
column of a cathode produéca discharge is of the order of only several

electron volts. Single particle radiation theories could not account
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for these results with such low electron temperatures. This suggested
that the observed harmonic effects might be the result of collective
behavior of the plasma electrons. Tanaka et al [8] and Canobbio and
Croci [9] first proposed that cyclotron harmonic waves propagating
nearly perpendicularly to the magnetic field could account for observed
results. These waves had been previously investigated theoretically
by I. Bernstein in 1958 [10] and Stix in 1962 [11].

Comprehensive reviews of cyclotron harmonic wave phenomena
through 1965 have been done by Crawford [1] and Bekefi [43]. Since
1965 considerable work has gone into understanding cyclotron harmonic
wave propagatién between two probes in a plasma. Harp [2] has shown
that the rf transmission between two probeé can be explained in terms
of an interferencg between a fast direct coupled signal and a slow
cyclotron harmonic wave and has verified thé theoretical CHW disper-
sion characteristics for a high density Maxwellian plasma. Mantei [3]
later showed that the transmission between two probes could be
described in terms of the plasma admittance between the probes and
verified the dispersion relation over a wider density range. In
addition, his experimental results on pulse transmission through a
warm plasma confirmed that the ionospheric ringing observed in 1962
with the Alouette I satellite was a manifestation of cyclotron har-
monic wave propagation. A very complete theoretical treatment of
cyclotron harmonic wave phenomena has been done by Tataronis [12] who
considered CHW propagation and instabilities for various electron dis-
tribution functions, propagation angles to the magnetic field, and

collision frequencies.
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A theoretical treatment of the coaxial plasma in a magnetic
field was given by Crawford, Mantei and Tataronis in 1966 [13]. Their
theory predicted standing cyclotron harmonic wave resonances occurring
within the capacitor. Experiments performed in such a capacitor, both
by them and by this author, have failed to detect any standing cyclo-
tron harmonic wave resonances. The reason for the discrepancy between
experimental observations and theoretical predictions seems to lie in
their assumption that specular reflection of cyclotron harmonic waves

occurred at the capacitor's boundaries.

1.2 Scope of the Investigation

The following two chapters reformulate the coaxial plasma
capacitor problem in a different manner from that of Crawford, Mantei
and Tataronis. In Chapter 2, the complex admittance of a cgld plasma
coaxial capacitor is presented and the modifications to the admittance
caused by a density profile in the capacitor are discussed. Chapter 3
extends the theory of the plasma capacitor to the case where a warm
uniform plasma fills the capacitor. The primary difference in the -
theoretical formulation presented here and that of Crawford et al [13]
is that we assume the plasma to be infinite in extent but contained
within a transparent grid capacitor, whereas Crawford et al assumed
specularly reflecting capacitor walls which set up an infinite periodic
set of images of the initial rf current distribution. This formulation
allowed them to use the infinite plasma dielectric constant K, (w,k)
but also required that standing wave resonances be set up within the

capacitor.
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In Chapter 4 we present both direct and indirect experimental
measurements of the capacitor's complex admittance and compare the
results with the predictions from Chapter 3. The agreement obtained
between theory and experiment in Chapter 4 is sufficiently good to
allow the results of the theory to be applied to a study of noise out-
put of the plasma capacitor at the cyclotron harmonics. This is done
in Chapter 5 where the shape and character of the noise output are
found to be predictable in terms of the theory developed in Chapter 3.

In Chapter 6, the influence of the antenna sheath on the
launching and transmission of cyclotron harmonic waves is investigated
by modulating the antenna sheath between two diameters. The experi-
mental results of this modulation on the shape of both conductance
curves and two probe transmission measurements is compared with pre-
dictions made by the theory presented in Chapter 3. Sheath modulation
is found in certain cases to be a useful supplementary diagnostic
technique for transmission measurements.

Chapter 7 provides a summary of some of the dAmportant results
and conclusions, as well as suggestions fof further work.

In the experiments and theory explained in the following
chapters, the recéiver frequency w 1s held fixed while.the cyclotron
frequency wc is varied by sweeping the magnetic field. The ratio
wc/w is a direct measure of the magnetic field strengﬁh. The elec-
tron plasma density is expressed in terms of the normalized plasma

frequency wi/wz .
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Chapter 2
COLD PLASMA THEORY OF THE ADMITTANCE OF A

COAXIAL MAGNETOPLASMA CAPACITOR

2.1 The Quasi-Static Approximation

In this chapter we consider the coaxial magnetocapacitor in the
quasi-static limit. Normally the quasi-static approximation corresponds
to setting [14,15]

dB

VXE=—E=O (2.1}

where E and B are the rf electric and magnetic fields respectively.
This approximation reduces the full set of Maxwell's equations to

Laplace's equation

V%% = 0 = €V « (V) = -V « 222

where € 1s the dielectric constant of the plasma. The assumption is
that the fielas vary sufficiently slowly in time so that the problem
can be treated as an electrostatics problem. The validity of this
approximation is considered by Vandenplas [14], who shows that the
proper criterion for wvalidity is that the solutions for the wave equa-

tion obtained from using the full set of Maxwell's equations
(7" +1DE = 0 - (2.3)

where ki = Suowz and the solutions obtained from taking the»gradignt

of Laplace's equation (equation 2.2)

VVE = 0 (2.4)
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should be asymptotically identical in the region of interest. This
occurs when €Uow2L2 << 1 where L is the characteristic dimension
of the system [14] . This is equivalent to saying that the rota-
tional part of the electric field is much less than the lamellar part
[VxE| / [v-E|] << 1 [15].
For the experiments to be discussed later /2T = 800 MHz,
Ky = E*/eo < 1 and the capacitor's radius is a maximum of 3.8 cm.
For these values €*ﬂow2L2 < .4 K, is usually sufficiently less than
1 for the quasi-static approximation to be wvalid for the direct coupled
signal. Near wc/w = 1 where K, > , the quasi-static approximation
is not wvalid. Because the wavelength of the direct coupled EM signal
within the cold plasma is much greater than the capacitor's diameter
the capacitor can be treated as a uniform dielectric without worrying
about standing wave resonances being set up between the capacitor's
electrodes.
The symmetry of the problem places a further réstriction on

the solutions that aquasi-static theory can yield. Since we assume

the capacitor is infinitely long and axially symmetric

d _d _
dz = do u
Thus
T LT = = dd
X = = e .
LR 0 Jparticle * dt (2,3
since both Jparticle and D must be radial by symmetry. This fact

is used in obtaining equation I.2 in Appendix I.
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Equation 2.2 possesses an additional set of solutions for
€0 . When € =0 longitudinal waves (k // E , electrostatic
oscillations) can propagate within the capacitor. For the hot plasma
theory discussed in Chapter 3, the azimuthal symmetry requires that
k be parallel to E for the longitudinal waves launched by the
center wire of the capacitor. Equation 2.2 thus contains valid solu-
tions both in the quasistatic limit for the direct coupled electro-

magnetic signal and in the electrostatic case for slowly moving

<< c) short wavelength logitudinal oscillations.

(

v
group

2,2 Cold, Uniform Plasma

Consider a long plasma filled coaxial capacitor with inside

wire radius = A and outside cylinder radius = B (Figure 2-1), axial

Figure 2.1 Plasma Capacitor with Uniform Plasma
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to a magnetic field Bo . The capacitor is assumed to be sufficiently
long so that fringing fields may be neglected.
For a cold plasma kTe = 0 the capacitor's admittance per

unit length at frequency w
Y = (ZWiweo/ln(B/A))Ki_ (2.6)

is shown in Appendix I to be proportional to the perpendicular di-

electric constant K, = 34/80 of the plasma where

W
Ke= (1 ____é_p_f) (2.7)
W= w

for a collisionless plasma [16].
Rewriting equation 2.6, Y = YoK* where YO is the capacitor's

vacuum admittance. The normalized admittance becomes

= K, = (B - iG)/lYo[ = K, - iK (2.8)

L
Y R I
(¢}

where B and G are the susceptance and conductance ‘of the capacitor.

The normalized susceptance B/[Yol = KR goes through zero at

the upper hybrid frequency wé = wi + wi where wp is the plasma fre-

quency, wc is the cyclotron frequency, and wH is the hybrid fre-

quency. The normalized conductance G/IYo[ = KI is zero except at

exactly wc/w = 1 where KI must have a delta function to satisfy the

Kramer-Kronig relation [17].

Loss mechanisms may be included in 2.6 by introducing an effec-

tive collision frequency V and by letting
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2 2
w * w (1 - 4iv
. p( iv/w)

w2 > (W - i\))2

in 2.2. This gives

wz(w2+ vz— wz)
Kg=1- 2p 2 22C 2 2
(w—v—wc) + 47w
(2.9)
2 (w2+ V2+ wi)
KI = wp(v/w)

2
(w™- vz- wc)2+ 4v2w2
The most significant change in K, 1is that collisions create

a Lorentzian peak in KI of half width A(wc/w) = 2V/w located at

R

1.

w /w
!

In Figure 2.2 K, is given for V/w =0 Xor severél

IR\
D

o e e e e e e e e e e e e e e e e o — - —— ]

3

Figure 2.2 K, vs. wc/w for a cold, collisionless plasma
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densities.

2.3 Nonuniform Cold Plasma

A completely uniform plasma is not physically obtainable in
the laboratory. Boundary conditions require that the plasma density
go to zero at both the center wire and outside wall, leading to
sheath regions. A shielded lead supporting the outer wire introduces
further density gradients. An axial magnetic field reduces drift
across the plasma column so that in the positive column of a cathode
produced discharge the radial and azimuthal density profile depends
primarily on the emission uniformity of the cathode's surface. As
wc is lowered, however, increased radial diffusion alters the large
field density profile.

The primary effect of a radial density profile is to add a
resistive component to the plasma admittance which is nonzero whenever
a layer of plasma is resonant at the upper hybrid frequency. In
Appendix I it is shown that the normalized admittance of a cylindrical

capacitor is

Y _ in(B/A)
3 = 3 (2.10)
& dr
r K, (r)
A

where B () =1 = wi(r)/(wz-— wi)

In the limit that the plasma is uniform, equation 2.10 reduces
to Equation 2.6. Depending on the choice of density profile,‘equation
2.10 can be either explicitly or numerically integrated if care is

taken to include the pole in the denominator that occurs when wc/w is
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in the upper hybrid range and satisfies (wc/w)2 =1 = wé(r)/wz [18].

Equation 2.10 was integrated for a parabolic density profile

2 2
% P (B°- A%)

and the results presented in Figure 2.3. In Figure 2.3 the peak den-
sity w;o equals that of the uniform plasma. The zero of susceptance
and the level of the susceptance curves is not altered greatly from the
uniform plasma case, although the average demsity for the nonuniform
plasma is only 50% that of the uniform plasma. These results show that
the susceptance primarily depends on the peak density (near the center
wire) rather than the average density. This is because the 1/r elec-
tric field variation emphasizes contributions to the admittance from

regions close to the center wire.

As seen in Figure 2.3, the parabolic density profile’ gives
rise to a far greater normalized cohductance than do collisions for
reasonable vaiues of V/w . In terms of an equivalent circuit model
for the plasma capacitor, it is seen that the presence of a hybrid
layer within the capacitor adds a series resistance to the plasma

impedance (see Appendix I).

2.4 Effect of the Probe Sheath on the Cold Plasma Admittance

As previously mentioned, boundary conditions requiring that the
plasma density go to nearly zero at the walls and probes lead to
sheath regions near the center wire and outside capacitor wall. It
has been shown [19] that the rf properties of the sheath can be

approximated by assuming that the sheath is a vacuum region = 5 Debye
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—NONUNIFORM PLASMA
- -—UNIFORM PLASMA

1 1 1 1 1 I

0 2 4 (S
We /W

NONUNIFORM PLASMA, v/w =0
UNIFORM PLASMA, v/w = 007

We /W

Figure 2.3 Normalized conductance and susceptance for a coaxial

plasma capacitor with a parabolic density profile

lengths thick.

The capacitor's impedance is now modified by the presence of
a series sheath capacitance whose primary effect on the susceptance
will be to lower fhe average plasma density in the capacitor.‘ Also,.
Harp, Kino, and Pavkovich [20] and Gould [21] have shown that electron
transit time effects in the sheath contribute to the dissipative com-
ponent of the plasma admittance.

In Figufe 2.4 is shown the model of the plasma capacitor with

a vacuum sheath around the center wire (radius = Ro). A sheath at the



Figure 2.4 TUniform plasma capacitor with vacuum sheath around

center wire

outside boundary is not irncluded because B >> A so that small changes

in B would have only slight effect on the admittance.

e, 41
=T~ “sheath

i
.,__.ﬁrfmmg
5 ] b 8
rotai 7 =L
Y|

s

o |

Figure 2.5 Equivalent circuit model for probe sheath
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It is easily shown that (Figure 2.5)

Z Y/Y
O

Z Zn(A/RO) (2.1
1+ m (Y/YO)

Referring to equations 2.10 and 2.11 and Figure 2.3, the con-
ductance of a plasma capacitor with a radial density profile and a
vacuum sheath around the center wire will not maximize at wc/w 3
Instead it will maximize at the series resonance occurring between the
sheath capacitance and the plasma inductance (the plasma admittance is
negative in the hybrid range), and be smali at wc/w = 1 where

2,2
Y/YO + o , TFor wp/w = 0 the conductance maximum will occur just

max
below wc/w = 1 . As the maximum plasma frequency increases in the

capacitor, the location of the maximum of conductance shifts, towards

lower values of wc/w.

2.5 Effect of Losses on the Measured Admittance

In a very long coaxial capacitor fiiled with a spatially uni-
form cold plasma, the only loss mechanism in our model is collisiomns.
In an experiment we would measure Y/YO = Keff(wio) where Keff is
the effective longitudinal dielectric constant.

Additional losses can come from a hybrid lajer, from sheath
transit time effects, and from electromagnetic dipole radiation out of
the plasma. For the case in which density inhomogeneities are present,
Appendix I showsAa series resistance R 1s added to the plasma

2
impedance. If the inhomogeneities are such that <mp> = wio then the

admittance measured is



~16=

) K
Y eff (2.12)

R |
o (l+—zo Ke )

R

£f

From 2.12 we find that B/IYOI decreases for wc/w in the hybrid

range just as if the actual density were higher than it is.
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hapter 3

HOT PLASMA THEORY OF THE ADMITTANCE OF A COAXIAL PLASMA CAPACITOR

3.1 Introduction

Computing the admittance of a plasma capacitdr becomes far
more complex if the electron temperature is no longer assumed to be
zero. For Te > 0 the dielectric tensor K becomes a complex func-
tion of the wave vector k and the frequency w . I. B. Bernstein
was among the first to correctly use inversion techniques to find the
dispersion relation Kxx = 0 for longitudinal oscillations propagating
perpendicularly to an external magnetic field in the x~direction [10].
These oscillations, cyclotron harmonic waves, have been the subject of
intensi&e study during the past decade [1] and will be shown in this
chapter to produce striking differences between the admittance of a
cold plasma and the admittance of a hot plasma. Because the electric
field in the capacitor is everywhere radial to the center wire, only
the perpendicular component of the hot plasma dielectric constant is
needed to describe the propagation of cyclotron harmonic waves. It has
been shown [22,12] that the perpendicular dielectric constant for
propagation in cylindrical geometry is identical with the Kxx element
of the dielectric temsor for Cartesian geometry with the substitution
of the perpendicular wave number k for kx , the wave number for

propagation in the x direction.

3.2 The Perpendicular Dielectric Constant K, (w,k)

For a Maxwellian electron velocity distribution, the perpendic~

ular dielectric constant is
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2
. -\ @ I (D)
(LL) —-l\)) wp e n
K (w,k) =1 - — - (3.1)
w 2 B Vi
) (A/2) n=1 (9__1..\1) - 1
c nw
c
where A = (k vth/w)2 and Vep = VKT /m = the mean square electron
e

velocity for 1 degree of freedom and V is a phenomenological colli-
sion frequency [23]. The derivation of equation 3.1 is outlined in
Appendix II. |

If the admittance of an infinitely long cylindrical capacitor
in a collisionless plasma could be measured at one value of k , the
normalized susceptance B/|YO| = Re(K,) would behave as shown in
Fig. 3.1 where Re[K (w,k)] 1is plotted up to the 5th harmonic for
various values of k with KTe = 5ev, and wi/wz = ,5. For k=20
K. (w,k) reduces to the cold plasma value. As k dincreases from
zero, discontinuities appear at each harmonic. Between the higher
harmonics for low k , the average level of the curves initially falls
below the cold plasma level. As k increases yet further, the size
of the discontinuities at first grows, reaches a maximum near k= 30cm_l
and then decreases until at k= | K, =1 . If k were held fixed
and the electron temperature varied, similar curves would result, since
the relevant parameter is A . Only for a cold plasma (A = 0) , does
ReIKL] = 0 mark the location of the upper hybrid frequency (UHF) where
w = wp + wi .

In the quasi-static approximation, two types of signals can

propagate perpendicular to the magnetic field for wc/w <1. The



-19-

first is a direcﬁ coupled signal in which the electric field obeys the
relation D = EOK E where V * D = real charge density. A second
signal propagates as a slow longitudinal wave called a cyclotron har-
monic wave (CHW). These waves satisfy the dispersion relation K, = O
which is plotted in Fig. 3.2 for a Maxwellian velociﬁy distribution
with Vv/w = 0 . These waves propagate without damping since the solu-
tions to K, = 0 are purely real k for real w .

Connected with each harmonic is a passband in which longitu-
dinal waves can propagate. Resonances (k = ©) occur on the low
wc/w side of each harmonic while cutoffs (k - 0) approach each har-

monic from both sides. As the density is increased from zero, the

location of the UHF (at k = 0) moves up the w/wC axis. When its

i { ] I I I I |

(ug/cu2 =.5

k =100 cm™!

RN

PLASMA) O

W,/ w

Figure 3.1. Hot glasma dielectric constant Re(K,) for various k with
2
wp/w = .5 and kT, = 5 eV.
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| l I
. 05 l 1.5 20

Figure 3.2 The dispersion relation K, = 0 for CHW propagating at
right angles to the magnetic field in a plasma with a
Maxwellian electron velocity distribution ‘
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location crosses each harmonic above the first, the dispersion rela-
tion changes from having two real solutions to having just one solution.
The curves satisfying K, = 0 become a more rapidly changing function
of k as wé/wz increases from zero.

Collisions round out the resonances in Re[K,], producing at
each harmonic N; peaks in Im[K,] of half width 2v/N displaced
slightly below the harmonic whose height scales as wi/v for a given

A . At a harmonic Im[K,] varies with k as shown in Figure 3.3.
For kTe = 5eV, V/w = .02 the maximum value occurs for k " 30 cm—l.
This curve shows that the departures from cold plasma theory are

greatest for a certain range of k largely independent of harmonic

number.
w/wg =2
IO -
8r -
Im (K, ®
27 2
(wg/w®)
4
2

1.0 2.0 3.0

Figure 3.3 Im(K,) at the‘harmonics VS. kvth/m for v/w = .02
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3.3 The Transparent Cylinder Admittance Model

The admittance of a plasma capacitor will be some average over
k of KL(w,k) . The discuésion of the previous section predicts dis-
continuities in the normalized susceptance and peaks in the normalized
conductance, but cannot predict detailed behavior as either wi or
wc is wvaried.

Crawford, Mantei and Tataronis [13] treated the plasma capacitor
as a boundary value problem but their theoretical results for Y/lYol
predicted standing wave resonances which do not occur experimentally
[24]. The primary difficulty with their formulation is the assumption
of specular reflection of the electrons at the outer capacitor wall.
If specular reflection of the electrons in the outward propagéting
cyclotron harmonic waves 1s assumed, then standing waves would natur-
ally be set up within the volume of the capacitor. In real/
experiments, however, the physical properties of a plasma discharge
and its behavior in a magnetic field such as collisions; transit time
effects, instabilities, an unsymmetric density inhomoéeneity, all
would tend to decrease the coherent specular reflection of cyclotron
harmonic waves.

In formulating our model, the following considerations were
thought to be important. We consider an axial wire surrounded by a
sheath. Harp [18] has shown that the rf sheath properties can be
approximated by a vacuum region about 5 Debye lengths thick. Since
longitudinal waves do not propagate through a vacuum sheath, the sheath
itself is taken to be the launch site for the waves. Numerous experi-

ments have demonstrated the presence of propagating waves in regions
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near the center wire [25,26,2]. Since the electrostatic field falls
off as 1/r , the main contribution to the admittance comes from
regions close to the center wire. Collisions, transit time effects,
damping of the wave in the outside sheath, turbulence at the outer
boundary, and conversion of the cyclotron harmonic waves in a hybrid
layer into transverse electromagnetic waves all would tend to
decrease the outside capacitor walls' influence on the standing wave
contributions to the admittance [27,28].

A radial density profile can lead to standing longitudinal
oscillations set up between the hybrid layers in the column [29].
However, this effect only seems prominent.when transverse e.m. waves
are scattered from the outside of a plasma column. Using rf probes
several authors have investigated the interior of a plasma column
excited by an outside dipole source [26,30]. Their studies indicate
that the major component of the rf signal picked up by the probe
represents the sum of a traveling wave and a direct coupled signal.

As a reasonable theoretical approximation, we assume the
plasma to be infinite in size and measure the admittance between the
cylindric sheath at r = A and a transparent cylindrical grid
located at the wall of the physical capacitor r = B (see Figure
2.4). This grid samples the outside potential, leaves the electrons
free to move, and draws no current from the plasma. The sheath size
affects the upper limit on k values averaged over in the admittance,
while the outer radius affects the lower limit. The spacing of CHW
interference oscillations in the admittance will depend linearly on

the outside radius of the grid, but the amplitude of the admittance
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is insensitive to the exact value of B . Because the potential varies
as An(B/A), the amplitude of the admittance changes slowly as B
changes. A change in (B/A) by a factor of e = 2.72 changes
2n(B/A) by less than 25% for the present experiment.

In the electrostatic approximation the rf potential in cylin-

drical coordinates set up by an oscillating cylindrical sheath of

*
radius A 1is described by the Hankel transform of Poisson's equation
2 A (k) |
= '2
K600 = T | (3.2
where an e *F time dependence is assumed and the Hankel transform of
the charge per unit length on the sheath is given by
Ak) = (AO/ZW) Jo(kA). ki 33
Solving for ¢(k)
(A /2m) I (kA)
(k) = —3 (3.4)
k 80K¢(w,k)
Taking the inverse Hankel transform Hnl(¢(k)) of 3.4 to find the
radial potential distribution
A J (kA)
KoY = o= k >2—— J () S5 (3.5)

kzeoKL(w,k)

o O 38

Using equation 3.5 AV = ¢(A) - ¢(B), and from charge conservation,

the radial rf current per unit length is I = iwko . Thus,

f(xr) = J kF(kj Jo(kr) dk
0
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o5 1 =]
f dk JO(&A) [Jo(kA> - JO<kB)]
0

n (B/A) =

(3.6)

- Keff - KR - iKI

At high densities equation 3.6 also predicts an oscillating
series of maxima and minima below the harmonics. If k is such that
an integral number of half wavelengths fit between the probe sheath
and the grid at the same time that K, (w,k) becomes small, then the
admittance will show maxima and minima as wc is varied. The spacing
of these oscillations depends primarily on the outside radius B of
the capacitor.

The integral in 3.6 must be evaluated numerically, but it is
first possible to infer some of its properties by inspection. Since
the term F(k) = JO(kA) [JO(kA) - JO(kB)] weights low values of k
heavily for the values of A and B employed in the experiment to be
discussed in the next chapter, the normalized susceptance plots are
expected to have their B/IYO[ = 0 point close to the location of the
cold plasma upper hybrid frequency. Because F(k) oscillates with a
fast and slow frequency component determined by A and B respec-
tively, the integral's behavior is more sensitive to changes in A

than in B .

3.4 Low Density Expansion for the Normalized Conductance

At low density (wi/wz << 1) a simple expression for K G/[Y f
may be found by .assuming K, (w,k) ~ 1 - A(k) for all k . For

v/w > 0 , Fig. 3.3 shows this is valid for wc/w <1 since Im(K,)
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maximizes for (kvth/w) " .5 at each harmonic. Since the maximum
value of Im(K,) decreases with increasing harmonic number, this
approximation improves with increasing harmonic number. Expanding

equation 3.6

[ee]

Sy = il J{ S 3 G [T (k) - J_(kBY] L+ DG +4% (k)
0 -1

+ --j) (3.7)

Using the integral A&n(B/A) = J dk[Jo(kA) - JO(kB)] JO(kA)/k ’
0

dk

(=} - =1
Y/Y_ = n(B/A) {2n(B/A) + j"ﬁ I (ka) [T_(ka) -Jo(kB)]A(k)}.

0
If A(k) is small, the integral is itself small since it must be
less than A<k)lnax fn(B/A) . Expanding once more and using 3.1 for

A(k) = 1 - K, (w,k)

) (1 - ii—) wé ozo Fﬂ(wc)
Y/Y =K N *_ : (3.8)
° . eff m(s/8) w07l (————“nwcl\’>2- 1
where

o -\

dk e In(x>
Fn(wc) i f —'1'{“ —Z‘m)-— JO(RA) [JO(kA) - JO(RB)]
0

At the nth harmonic only the nth term contributes appreciably, so

writing K in partial fractions we obtain

2 2
n\)uj2 Fn(wc) {: 1 . 1
4 (B/A) (w—nwc)2+ Vv (w+nwc)2+ Nz
(3.9)

I

S/l = %y = 55

Since the second term is negligibly small, for low densities we

expect Lorentzian shaped peaks whose height varies linearly with wi/v 5
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3.5 The Admittance for Two~Probe Transmission

Mantei has shown that the transmitted signal between two
probes can be expressed in terms of the plasma admittance between the
probes [3]. In the limit that the rf voltage on the transmitting probe
is held constant and the plasma impedance between the probes is much
greater than the input impedance of the receiving probe and detector
(Figure 3.4), the detected signal (using a square law detector) is
proportional to |Y(t-r) /Yo(t--*r)l2 where Y(t-=r) is the admit-
tance between transmitting and receiving probes and Yo(t-*r) is the
vacuum admittance between the probes.

Although based on a slightly different set of assumptions, the
expression for this admittance is identical to equation 3.6 if B 1is
considered to be the separation of the probes immersed in an infinite
plasma and if thé launch site of the cyclotron harmonic waves is taken
to be the sheath at r = A . If the probes are far apart, the receiv=~
ing probe is a negligibly small perturbation on the rf field around
the transmitting probe which should be purely radial if the plasma
boundaries are far away. Under these conditions the receiving probe
acts to sample the radial rf field as if it were part of a cylindric
concentric grid around the sending probe. The received signal will
thus be proportional to the admittance between the center probe and
the outer concentric shell of radius B . Equation 3.6 can thus be

used to calculate the normalized admittance between two probes.
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Figure 3.4, Admittance Model for Two-Probe Transmission

3.6 Limitations of the Admittance Model

In addition to neglecting the finite capacitor length, stray
admittance to the insulated coax supportinglthe center wire, or
radiation, this admittance model neglects the effects of a density
profile.

In most cases, the effect.of the experimental density profile
will be sufficieﬁtly small that we may still expect reasonable agree-
ment with theory. The plasma density remains essentially uniform over
a distance R in which the potential difference ¢(A) = ¢(R) reaches
greater than 80% of its value at the outside cylinder (éee Section
4.,2).

CHW interference effects will be modified by the nonuniformity.
As 'a cyclotron harmonic wave propagates outward thfough a density pro-
file, its k wvalue changes and the wave can be reflected by a hybrid
layer before reaching the outside wall. The primary hot plasma effect
of a density profile on the admittance will be to average out some of

the cyclotron harmonic dinterference effects that depend most strongly
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on density uniformity. Only as the density becomes large and the dis-
persion relation insensitive to changing density will interference
effects appear strongly.

At w = nwc the integral weights values of k close fo zZero
most heavily. Because the dispersion relation is roughly independent

of density at w = nwc near k =0 the agreement between experiment

>
and theory is expected to be good at the harmonic conduction peaks.
Also, since waves generated just above the harmonics have low group
velocity for low density, they are attenuated by collisions in regions
close to the center wire before either the outer boundary or density
gradient can influence propagation.

The effect of the sheath on the plasma admittance can be
approximated by including a vacuum sheath explicitly in the formulation

for the admittance in a manner identical to that done for tpe cold

plasma model discussed in Section 2.3.

3.7 Numerical Computations

Equation 3f6 was integrated numerically for values of wﬁ/w2

from .05 to 1.1 and for wc/w from .1 to 1. The perpendicular elec-
tron temperature was taken to be 5 eV to compare with experimental
conditions. v/w‘ was chosen to be .005 for the computer plbts of the
no;malized admittance and conductance shown. Other values of V/w
were investigated to study harmonic line shape and peak height varia-
tion. The value of B was taken to be the outside radius of the
experimental capacitor and the effective sheath radius A = .06 cm
approximates the expected sheath thickness for wi/sz% .3 . The

value of A was not adjusted to vary with density in the calculation
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because the computation time would have increased substantially.

The integration routine for evaluating equation 3.6 was
optimized to minimize computation time (2-3 seconds per value of
wc/w on an IBM 360/75). When the first value of wc/w was called
by the program, the value of JO(kA)[JO(kA) - JO(kB)]/k was computed
once for each value of k wused in the Simpson's rule integration
subroutine and stored for later use when other values of Qc/w were

called. K, (w,k) was evaluated by setting

Ko Gl = 1 -8 gy 7y 12 arg(u k)
and
I (A)
arg (w,k) = =5dted 2
(A/2) ) ((L)n—wl\))z_ 1
Cc

2
where A = (kvth/wc) "

The quantity arg(w,k) was evaluatéd once for each value of
mc/w used fof each value of k called for in the integration routine.
arg(w,k) was stored and used to calculate K (w,k) for each value
of wﬁ/wz wanted. This allowed the admittance for twelve densities

to be calculated in only slightly more time than would have beén
required to calculate the admittance for one density. arg(w,k) was
evaluated by computing the two highest n values of In(X) needed
for accuracy and computing all other In(k) using a backwards recur-

sion relation.
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Chapter &4
EXPERIMENTAL MEASUREMENT OF THE COMPLEX ADMITTANCE

OF ‘A CYLINDRIC PLASMA CAPACITOR

4.1 The Plasma

The experiments were carried out in the positive column of a
hot cathode argon DC discharge (Fig. 4.1). The plasma column (26 cm
in length) was produced in a 7.5 in. ID discharge tube constructed
from Pyrex glass pipe. The cathode had a 6 cm diameter flat nickel
surface which was oxide coated. It was uniformly heated from behind
by helical bifilar filaments. The cathode was cleaned, rebuilt (when
needed), coated with oxide and activated by procedures which are
described by Rosebury [31].

The discharge tube was connected to a vacuum system which was
capable of producing ultimate pressures of < 5><lO_7 torr. Initially
activated cathodes poisoned (emission dropped) after only several
days' use. This was found to be caused by the silicon diffusion pump
oil (DC705). DC705 diffusing into the discharge volume left an
insulating silicon monoxide coating on the cathode surface. . This
problem was remedied by changing to an organic diffusion pump oil and
by placing an absorption baffle between the diffusion pump and the dis-
charge volume.

The plasma discharge had a cathode-anode ﬁoltage drop of
14-18 volts when properly activated. Under ideal conditions the dis-
charge voltage remained constant within several volts as the magnetic

field was varied or as the discharge current changed. At low discharge
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Figure 4.1 Experimental Apparatus and Probe Assembly



-33=
voltages the plasma was relatively quiet as measured by the level of
the probe open circuit voltage. At higher voltage drops the plasma
became noisy and generally unstable. Discharge currents from
V10 milliamps to 2 amps were used to produce plasma electron aensities

8 10 3 . . .
from 10~ - 107 "/em™. The plasma density is measured in terms of the
normalized plasma frequency wi/mz . The neutral gas pressure as

. oo s ; -3
measured with a nude ionization gauge was V10 ~ torr and was chosen

to minimize the discharge voltage and the plasma noise.

4.2 Plasma Uniformity

The plasma radial density profile depended largely on the
uniformity of emission of the oxide cathode. Under the best condi-
tions radial density profiles existed in the column which vafied with
discharge current and magnetic field. The radial density profile was
measured using a Langmuir probe, 3 mm long, oriented perpeﬁdicular to
the magnetic field. The theory for a Langmuir probe in a magnetic
field is excéedingly complicated [32], but it is possible to get a
relative measure of density from the ion saturation éurrent at a given
bias voltage and a measure of the electron temperature from the slope
of the V-I characteristics when the probe draws electron current.

Typical radial density plots are shown in Fig. 4.2. The ion
saturation current is shown as a function of radius for various dis-
charge currents (ID) and magnetic fields (IB = magnet current). In
most cases the discharge is essentially uniform (less than 107% den-
sity variation) out to 2 cm and then falls off toward the capacitor's

wall. The radial density profiles obtained are typical of what can be

expected for the positive column of an argon arc in a magnetic



-3

Figure 4.2 Langmuir probe ion saturation current I, for various

‘magnet currents I and discharge currents I . Neutral
gas pressure = 1.3 x10~3 torr argon. wc = 812 MHz

Iz = 100 amps.

for
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Figure 4,3 Fraction of full potential difference between. the
center wire (R = A) and the capacitor's outer radius

(R = B) that is reached at radius R

field [33]. 1In Fig. 4.3 is shown a plot vs. radius of the fraction
of full potential reached in a cylindrical capacitor. ,For a capacitor
with a 3.8 cm radius, about 857 of the full potential difference is
reached at a radius of = 2 cm from the column center.

Langmuir probe temperature measurements were also made and it
was found that the electron temperature was constant out to about
2 cm. At larger radii the electron temperature slowly decreased toward
the capacitor wall. Electron temperature data from the Langmuir probe

indicated that kTe ~ 4-5 eV.

4.3 The Magnetic Field

The plaéma discharge was axial to a pair of Helmholtz coils.

The plasma capacitor was situated between the two coils (Fig. 4.1) in
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a region in which the field uniformity over the capacitor volume was
~N .1%Z  as measured with an NMR gaussmeter. The magnet current passed
through a shunt to provide a voltage for an X-Y recorder proportional
to the magnetic field. The magnet current could be slowly swept from
its maximum to a preset minimum value. The magnetic field was cali-

brated in terms of the normalized cyclotron frequency wc/w .

4.4 The Plasma Capacitor

The plasma capacitor was én aluminum ring through which probes
were inserted via rotating vacuum seals. The initial capacitor had
an inside diameter of 7.6 cm and a length of 2.5 cm. A subsequent
version of 6 cm diameter and 5 cm length was also used in an attempt
to decrease fringing fields and increasevdensity uniformity. No
major changes resulted in changing the capacitor dimensions--a fact
which gives credence to the assertion that the plasma close to the
center probe has the preaominant effect on the adﬁittance.

Two rf probe assemblies and a Langmuir probe could be posi-
tioned radially to a precision of 1 mm in the capacitor. In trans-
mission experiments both rf probes were used, while for admittance
measurements the probe not in use was withdrawn into the outer plasma
region. For general use, a carefully straightened tungsten wire
probe Vv .2 mm diameter, 5 cm long, was attached to a glass sheathed
.086 cm semirigid coax (Figure 4.1) and aligned axial to the magnetic
field. The semirigid coax, in turn, was vacuum sealed into a 1/4-inch

piece of tubing.which fed through the rotary vacuum seal in the

aluminum ring. The probe wires were so built as to clip onto the
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center conductor of the semirigid coax. A carefully matched rf con-
nector was connected to the semirigid coax 1/4-inch tubing assembly
outside of the plasma.

In an attempt to reduce the probe's influence to a minimum,
probes made with .008-inch diameter semirigid coax were also used.
This coax was sheathed in v ,015-inch outside diameter capillary glass
tubing for rigidity and connected to .002-inch diameter tungsten wire
probes. The .002-inch diameter 5 cm long tungsten probes were held
parallel and straight by tension supplied from v .0l-inch glass fibers
cemented to the capacitor wall. The small size of the wire probe
also made it possible to excite cyclotron harmonic waves more strongly
and to decrease the size of the probe sheath. It had the diéadvantage

that the probes could not be moved radially.

LOCAL
GSCILLATOR
]
800 WMHz .
ATOR -
?SE‘C(::;L Mﬁ(;OD AMPLIFIE
] < - E
7
o |
DCPOWER & | | oaen
SUPPLY < ___RECORDER AMPLIFIER
C 4

Figure 4.4 Experimental set-up for two-probe transmission
measurements



=3B

4.5 Two-Probe Transmission for Determining wg/wz and kTg

Transmission between two probes immersed in a plasma can be
used to determipe both the plasma density -wg/wz and the electron
temperature kT [2,30]. The experimental transmission set-up is
shown in Figure 4.4. The minimum of transmission as the magnetic
field (wc/w) is swept marks the location of the upper hybrid fre-
quency wﬁ = wi i wi = wz where Wy is the upper hybrid frequency,
w 1is the transmitted frequency, wp = plasma ffequency, and
w, = electron cyclotron frequency. The discharge can thus be cali-
brated in terms of wi/wz as found from transmission minima. The
electron temperature is found from the spacing of the CHW oscillations
in transmission which gives the wave number k at a given Q/wC .

With the aid of a dispersion diagram (Figure 3.2), v and thus kTe,

th ’

can be found.

4.6 Experimental Methods of Measuring the Capacitor's Admittance

A. Direct Measurement of a Hot Plasma's Admittance at the Cyclotron

Harmonics

In the first experiment the coax was connected to a phase sen-
sitive admittance measuring system consisting of a GR 1602B admittance
meter, a Relcom double‘balanced mixer, and a lock-in detector ampli-
fier (Figure 4.5). The output junction voltage of the 1602B admit=—
tance meter is proportional to the total admittance, so by adjusting
the reference phase either the conductance or susceptance could be
measured and plotted directly on an X-Y recorder versus magnetic field

(wc/w). The y axis was calibrated using the known normalized vacuum
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Figure 4.5 Phase sensitive admittance measuring system

susceptance B/lYo[ = 1 . The electrical length of the probe assembly
was adjusted to be. an integral number of half anelengﬁhS from the
junction of the admittance meter by slightly varying the frequency of
the oscillator (freq. ~ 800 MHz). The rf voltage at the bridge junc-
tion was held constant using a GR1263C amplitude regulating power
supply. The plasma density was calibrated as a function of discharge
current using the location of the upper hybrid frequency found in two-
probe transmission measurements [2] and from the location of the zero
susceptance point on susceptance records. The pressure was

.9 x 10_3torr argon as measured with an ion gauge operating at reduced
emission current. The perpendicular electron temperature was found

using the spacing between oscillations in the two-probe transmission
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records [2]. Depending on the discharge conditions and the magnetic
field, kTe was found to vary between 2 and 5 eV with the average
value in the range 4-5 eV. Langmuir probe measurements produced
similar results and showed that the electron temperature was essen-
tially uniform out to the edge of the discharge. Using collision

data from Brown's Basic Data of Plasma Physics, 1966 [34], the

electron-neutral collision frequency was estimated to be V/w = .004 .

B. Absorption of a Hot Plasma at the Cyclotron Harmonics

An indirect, but in certain limits valid, method of measuring
the normalized conductance KI = G/lYOl at the cyclotron harmonics is
to measure the absorption coefficient of the plasma. This method was

used to see 1f the conductance peaks could be used as a diagnostic

tool when measured by a simpler method.

foomcemrmge

T
O
w

Figure 4.6 50 ohm rf generator connected through 50 ohm trans-
mission line to the plasma capacitor's admittance
(enclosed in dashed box).
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Consider a transmission line (Figure 4.6) where Y = G + iB
is the plasma admittance and yO is the characteristic admittance of
the transmission line (20 mmhos). The power absorbed by the plasma

Pabs is given by

2
P = 7 = P .. N
i iE y, * G+ iB G

abs

The absorption coefficient is defined as the ratio of the absorbed

power in the plasma to the power incident on a matched load.
Pabs - 4G/y0
Fong [1 + L iB/y [2
Y o

absorption coefficient = A =

(4.2)

From the direct measurement of the plasma admittance we know that

G <B and B << Yo - In this limit 4.2 becomes
4G/yo
AR ———p = 4G/y0 (4.3)
(1 +¢/y)

The last approximation in 4.3 is good to 14% for the largest conduc-
tion peak measured and to 5% in general.

Absorption experiments were performed using the same geometry
as used in the direct measurement of the capacitor admittance. The
experimental set-up is shown in Figure 4.7. The HP ratio meter used
with square law crystal detectors measures the ratio of reflected to
incident Rf voltage in the 50 ohm coaxial system. Using an external
recorder bias, a =1 - Irl was measured where {rl is the reflection
/v

coefficient (|r| = |V ) . Now A=1- [r]z, so

reflected’ incident
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Figure 4.7 Experimental set-up for measuring the harmonic
absorption peaks
A=1-|r|?= 2a-a% = 2a (4.4)

if the reflected power is small. Hence, ‘G/yo = A4 = (2a - az)/4 .

The absorption coefficient was measured and plotted on an
X-Y recorder as a function of magnetic field. The plasma denmsity was
again inferred from the location of the upper hybrid’ frequency in
transmission expériments. The ﬁressure was 1.3 X lO_3torr argon and
the electron teﬁperature the same as in the previously discussed

experiment. The collision frequency was estimated to be Vv/w & .006 .

4.7 Experimental Results

A. Susceptance

Both experimental (Figure 4.8) and theoretical (Figure 4.9)
results computed using equation 3.6 exhibit similar behavior as den-
sity and magnetic field are varied. On the theoretical plots the

susceptance zero closely follows the location of the upper hybrid
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Figure 4.8. Experimental susceptance records for the plasma
capacitor. The dashed line is the cold plasma
normalized susceptance. The capacitor radius = 3.8 cm.

frequency. Experimentally it was found that the upper hybrid fre-
quency obtained from the susceptance zero agreed with that found in
transmission measurements only at low discharge currents. This
indicates that the plasma density became more inhomogeneous as the
discharge current increased.
2, 2 - ,
For wp/w < .1 the theoretical and experimental curves follow

the general shape of K, for a cold plasma. The actual sheath

thickness at low density (Vv .3 cm for w;/wz = .05) is considerably
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Figure 4.9 Computed normalized susceptance for the cylindrical
plasma capacitor with kT, = 5 eV, V/w = .005,
sheath radius = .06 cm, outside radius = 3.8 cm.
The dashed line is the cold plasma normalized

susceptance.



—45=

larger than the value for the sheath thickness A = .06 cm wused for
the computed curves. If a larger value for A were used on the low
density theoretical plots, the size of the.discontinuities at each
harmonic would be much smaller bringing the theoretical curves into
closer agreement with experiment.

As wi/wz increases, at first the harmonic resonances become
greater in amplitude for both experiment and theory, only to decrease
in size above wé/w ~ ,3 . As the density increases, oscillations
appear to the right of the harmonics and the resonances become shallow
dips.

In general, the experimental curves lie lower than the theo-
retical curves.. This is thought to be caused by stray capacitances,
by a nonuniform density, and by radiation losses. The finite capaci-
tor length causes fringing fields which introduce stray caﬁacitances
between the probe body, the anode, the cathode, and the center wire.
Density nonuniformities are expected to be the more important effect.
The average density could be higher than that measured in transmis-
sion. Moreover, as previously shown, the presence of a density
profile adds a series resistance to the plasma.impedance that can lower
the susceptance curves.: The susceptance curves would be further
lowered by radiation losses as discussed in Section 2.5. Evidence in
support of this interpretation comes from the behavior of the experi-
mental curves at wc/w v .1 where B/|YOI is seen to drop abruptly.
As the magnetic field decreases, it reaches a value at which the arc

is no longer constrained by the field. The arc then expands to fill

the entire volume of the vacuum vessel, causing the arc voltage to
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increase sharply. A radial gradient develops which causes the suscep-
tance to drop initially, only to rise at a still lower magnetic field
when the average density becomes significantly less than the peak den-
sity. At the same time that the susceptance falls, the conductance
rises and the harmonic peaks are seen superimposed on a background con-
ductance. Making allowances for these effects, the experimental |

results for the susceptance curves are consistent with the theory.

B. Conductance

Strong similarities are also evident between tﬁe experimental
conductance records (admittaﬁce measurement) in Figure 4.10 and the
theoretical plots in Figure 4.11, both in the general shape of the
peaks and the peak amplitude, as the density is wvaried. Conductance
curves obtained_from the absorption measurement are essentially iden-
tical to the admittance measurement curves. At low densit; the peaks
are Lorentzian and peak height increases with increasing density, but
as the density increases the peaks widen on the low magnetic field
side and begin to show structure. The experimental éurves_show less
structure at the top of the peaks than the theoretical curves. This
is attributed to a radial density profile and possible a slight mis-
alignment of the center wire. Both would wipe out all but the
strongest cyclotron harmonic wave intereference effects. In additionm,
in Chapter 6 it will be seen that passband structure could be decreased
by fluctuations in the probe sheath radius. As density increases the
harmonic peaks first increase in amplitude and then decrease to a

minimum as the upper hybrid frequency passes under the harmonic. The
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Figure 4.10. Experimental conductance records for the plasma
capacitor measured with the phase sensitive admittance
measuring system
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Figure 4.11. Computed conductance for the cylindrical plasma
capacitor with kTe =5 eV, V/w = .005, sheath
radius = .06 cm, outside radius = 3.8 cm.
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peaks now become sﬁarp on the low wc/w side and wide on the high
side.

Although peak shape changes with density, one méy obtain a
reasonable value for the effective collision frequency from the peak
half width. The low density expansion predicts that as density goes
to zero the peaks' half widths approach 2(v/w)/N, N being the har-
monic number. Using this relation, and extrapolating the peak half
widths to zero density, the normalized collision frequency was calcu-
lated. For the admittance measurement this method gave V/w ™V .005
while for the absorption coefficient measurement it gave V/w v .008 .
Both values are in agreement with the estimate based on the pressure
and collision data in Brown [34].

One test of the theory developed in Chapter 3 is to see if one
choice of parameters kTe, A , and V/w matches the experiﬁental peak
height variation with density for both the second and third harmonic.
Using the experimental values for kTe and V/w , the’sheath thickness
A was adjusted until the maximum peak height at the éecond harmonic
agreed reasonably with experiment. As is shown in Figure 4.12, this
choice for A also matches the peak height wvariation with density at
the third harmonic for the admittance measurement. Allowing the sheath
radius to vary with the Debye length in the integral for the conduc-
tance would bring the theoretical curves for wz/wz < .3 closer to the
experimental results. As predicted by equation 3.9, peak height varies
linearly with density up to wi/wz N .1 for the second harmonic, and

N .2 for the third harmonic.
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Figure 4.12. Comparison of the experimental values from the admit-
tance measurement with theoretical values for harmonic
conductance peak height as density is varied.
kTe =5 eV, vV/w= .005, B = 3.8 cm.
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In Figure 4.2 the theoretical peak height increases linearly
with density above the minimum point at the upper hybrid frequenéy.
The direct admittance measurement did not show this effect, possibly
because of plasma nonuniformity. This effect was observed in the
absorption coefficient measurement (Figure 4.13) of peak height.
However, the peak height increases more gradually with density than
theory predicts. For wl?;/w2 above the upper hybrid frequency, the
peak height is influenced by the amplitude and sbacing of the CHW
oscillations which strongly depend on the density being uniform until
the density becomes high enough that the dispersion relation becomes
insensitive to the density. Thus, the more gradual increase with
density found in the reflection coefficient measurement is not unex-
pected.

In Figufe 4-13 the overall fit of the theoretical curve to the
experimental points is much better for the second harmonic than for
the third harmonic peak. This may be caused by the peék plasma den-
sity increasing as wc/w' decreases from the second t; third harmonic.

The theory also predicts the variation with density of the
location of the low wc/w harmonic peak's base edge. To a first
approximation, the edge of base of the harmonic peak is determined
by the maximum width of the CHW passband at that density. Both com-
puted and experimental peak base widths (measured from the harmonic)
are slightly gre;ter than that given by the passband width for a
collisionless plasma with a Maxwellian electron velocity distribution
(see Figure 3.2). Adding collisions widens the effective passband

width [3,23]. This is shown in Figure 4.14 where the agreement between
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theory and experiment is seen to be good. The results presented are
for the absorption coefficient measurement. Peak base widths for
2,2 . .

wp/w > .1 are not very sensitive to collision frequency, so the ex-

perimental results could be compared with theoretical results for a

slightly lower value of Vv/w .
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Figure 4.15. Harmonic peak height variation with

harmonic number

The theory can account for peak height variation with harmonic
number. In Figure 4.15 the experimental harmonic peak height normal-
ized to the heighﬁ of the second harmonic for the admittance measure-
ment is compared with the height variation for two choices of
parameters V/w and sheath thickness A . Both pairs of parameters
match the theoretical second harmonic peak height at Qé/wz = .3 to

the experimental conduction peak height. By choosing V/w a bit less

than .005, and the sheath radius A slightly greater than .06 cm, a
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closer fit to peék height variation could be obtained.

CHW structure (the oscillating maxima and minima) appears below
each harmonic in both conductance and susceptance records when the den-
sity becomes large enough. At very high densities where the dispersion
relation is insensitive to density, the spacing of the oscillations
could be used to determine the electron temperature of the plasma. In
this experiment, however, the spacing of the oscillations was ﬁot a
useful diagnostic and did not agree well with theory, since we were
concerned primarily with wﬁ/wz £ 1 where the column density profile

is expected to affect the spacing of these oscillations strongly.

4.8 Discussion and Summary

In this chapter we have presented both an experimental measure-
ment of the admittance of an antenna in a hot magnetoplasma filled
capacitor and a theoretical model for the measurement. The qualitative
agreement between theory and experiment is, in genefal,vreasonable, and
at the harmonics the quantitative agreement is good. ?he theoretical
model can account for changes in the shape of the conductance peaks as
density is varied and can predict peak height variation with density
and harmonic number. The model predicts more pronounced cyclotron
harmonic wave intereference effects than are observed experimentally.
The observed differences are attributed in part to plasma non-uniformity.

These results indicate that the conductance peaks have potential
as a diagnostic tool. From an extrapolation of the half-width of the
conduction peaks to zero density, a value for the collision frequency is

simply obtained which is in close agreement with that calculated by
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other means. At both low and high density the height of the conduc-
tance peaks varies linearly with density. It is possible then to use
peak height to measure relative density, or if the peak height for a
given density is known, to measure the absolute density. At higher
harmonics, higher densities can be measured. This method might be
useful in studying density fluctuations caused by plasma instabilities
or in measuring the density changes in a transient hot magnetoplasma,
since the method is able to respond to rapid density changes. Another
possible use would be in a space probe experiment used to measure low
density interstellar plasmas.

The base width of the conduction peaks gives an absolute method
of measuring the peak plasma density in a region near the probe. If
only a rough estimate of the density is needed, the density may easily
be found from a plot of maximum CHW passband edge location vs. density
for a collisionless plasma. This will give densities 20-30% higher than
the true density. If greater accuracy is desired, equation 3.6 can be
integrated and a ﬁlot of peak width vs. density constructed. When this
is done, the density may be accurately obtained. This method possesses
the advantage that only one probe need be inserted in the plasma. As
was demonstrated with the reflection coefficient experiment, conductance
records are simple-to obtain and contain considerable information on

the plasma parameters.
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Chapter 5
NOISE OSCILLATIONS ON THE CENTER CONDUCTOR OF

A CYLINDRIC PLASMA CAPACITOR AT THE CYCLOTRON HARMONICS

5.1 . Introduction

Phenomena at the cyclotron harmonics were first observed by
Wharton while studying the noise emission from fusion oriented plasma
devices [1,4]. He found noise emission peaks at the cyclotron fre-
quency and the second and third harmonics. About a year later
Landauer [5] reported observing noise radiation in a PIG discharge
occurring up to the 45th cyclotron harmonic. In order to account for
the intensity of the observed radiation, Tanaka et al [8] and Canobbio
and Croci [9,24] proposed that fast electrons moving through a thermal
plasma excite longitudinal waves (cyclotron harmonic waves) which in
turn couple to the transverse EM waves observed ou;side the plasma.

In the past decade numerous additional workers have studied
noise emission at the cycloﬁron harmonics and have dgmonstrated quali-
tative agreement between experimental observations and predictiong
made by assuming the radiation to be caused by cyclotron Harmonic waves
excited by suprathermal electrons. Dreicer [36,37] repeated and
extended the work of Laﬁdauer with PIG discharges and demonstrated that
the existence of an upper hybrid layer was necessary for harmonic noise
emission to occur in his discharge. Lustig [38], Tanaka et al [8], and
Ikegami and Crawford [39,40] were among those who observed CHW noise
radiation from hot cathode discharges, thereby showing that having sub-

stantial numbers of high energy electrons (several hundred eV) is not
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necessary for producing harmonic noise radiation. Stone and Auer [41]
calculated the internal electrostatic fields associated with the
energy loss of monoenergetic fast electrons moving through an essen-
tially Maxwellian plasma. Their results assume only_one value of the
wave number k contributes to the observed radiation. Lustig [38]
used Stone and Auer's theory to interpret his results, but the~agree-
ment between theory and experiment for harmonic peak width vs. density
and harmonic peak shape was not good.

Experiments to date do not lend themselves to simple inter-
pretation and comparison to theory. Because the experiments are
performed in geometries for which theoretical calculations are very
difficult, it is generally assumed that longitudinal oscillations
exist and couple to transverse EM waves [28], Usually no attempt is
made to describe-analytically the noise output as a summatién (or
integral) over the wave numbers k of the internal longitudinal
oscillations.v Consequently, past experiments on harmonic noise radia-
tion outside a plasma have not predicted successfully'ﬁoise peak shape
and height as the density or harmonic number is varied. As a case in
point, Lustig [38], Ikegami and Crawford [39,40] and Tetenbaum [42]
observed that the noise power emitted at a harmonic first increased
and then decreased as the plasma density was increased. This effect
is not predicted by simple considerations of the CHW dispersion rela-
tion K (w,k) = 0 , or by Stone and Auer's theory.

Experiments on noise emission from a plasma are further ham-
pered because théy measure external noise produced by internal noise

oscillations which have not been studied and compared with theoretical
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predictions. In this chapter we consider the problem of longitudinal
noise oscillations inside the plasma. The cylindric plasma capacitor
is a good system for this because we already have a theoretical model
for the admittance (Chapter 3) which was shown (Chapter 4) to be valid
within experimental limitations. As will be seen in Section 5.2, the
noise output measured on the center wire of the capacitor is related
to the conductance of the capacitor for a plasma in thermal equilib-
rium. By comparing the noise output that our theoretical model pre-
dicts with experiment, we can estimate the regions in which noise
radiation can be considered as coming from an essentially thermal

plasma.

5.2 Longitudinal Noise Oscillations in a Thermal Plasma Capacitor

For a device in thermal equilibrium at absolute temperature
T , Nyquist's theorem [43] gives the mean square short circuit cur-

rent fluctuation as

<il> = 4T Af G (5.1)

where Af 1is the bandwidth of the noise receiver and G 1is the con-
ductance of the device. If we consider the plasma as the noise

: : 2 . . -
source in our device, then <1n> is a current source in parallel with-
the plasma admittance. The equivalent circuit for measuring the noise
on the center wire of the cylindric capacitor is shown in Figure 5.1
where GL , the receiver's conductance (20 mmhos), and Y , the capac-

itor's admittance, are both in parallel with the noise current source

in . The voltage at the receiver is
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Figure 5.1 Equivalent circuit for measuring the noise of
the plasma capacitor

v,oo= i /G +Y) - (5.2)

The noise power dissipated in the receiver is thus

, G <i> e KT Af
P =G V = - (5.3)

|6, +Y| i IGL+Y12

In equation 5.3 we have replaced the device temperature with the plasma
electron temperature. Although for a DC arc discharge Telectron #

Tion’ because the electrons are much lighter than the ions, they dominate
the noise output sufficiently so that corrections for ion temperature
are insignificant at 800 MHz.

Equation 5.3 can be simplified further by comparing the size of

Y to G, = 20 mmhos. At its largest the capacitor vacuum admittance

vacuum - iu)Zwso/zn(B/A) (5.4)
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For a 5 cm long capacitor with A = .0025 cm, B = 3.0 cm, and

w/2m = 800 MHz, lvacuuml = 1.3 mmhos, which is much less than

GL = 20 mmhos. Using this, equation 5.2 reduces to
P = 4 Sier
o = 4G(T_ AP /6 (5.5)

If Te is constant we expect to observe changes in the plasma
noise output from two sources: noise from the hybrid layer's finite
conductance as discussed in Section 2.2, and noise associated with
cyclotron harmonic waves propagating in the capacitor. Because the
plasma has a radial density profile, a hybrid layer will exist between
the inner conductor and the outer cap<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>