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ABSTRACT 

Over the past couple of decades, technological advancements in sequencing and imaging 

have unequivocally proven that the world of viruses is far bigger and more consequential 

than previously imagined. There are 1031 viruses estimated to inhabit our planet, 

outnumbering even bacteria. Despite their astronomical numbers and staggering sequence 

diversity, environmental viruses are poorly characterized. In this thesis we will demonstrate 

our three-pronged exploration of viruses through the lenses of energetics (Chapters 2 and 3), 

genomics (Chapter 4) and ecology (Chapter 5). We will first focus on one of the defining 

features of viruses, namely their reliance on their host for energy, and demonstrate the 

energetic cost of building a virus and mounting an infection.  In our second study, we 

present one of the largest surveys of complete viral genomes, providing a comprehensive 

and quantitative snapshot of viral genomic trends for thousands of viruses. In our third 

study, we shift our focus towards ecological questions surrounding the large number of 

commensal phages inhabiting the human body. We discovered that phage community 

composition could serve as a fingerprint, or a “phageprint” – highly personal and stable over 

time. To our knowledge, this study is one of the largest studies of human phages and the 

first to demonstrate the feasibility of human identification based on phage sequences.  
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C h a p t e r  I   

Introduction 

 
 

Over the past couple of decades, technological advancements in sequencing and 

imaging have unequivocally proven that the world of viruses is far bigger and more 

consequential than previously imagined (1-7). There are 1031 viruses estimated to inhabit our 

planet, outnumbering even bacteria (8, 9). Viruses have been shown to impact 

biogeochemical cycles (10-13) and evolution of host organisms (4, 14-16).  

Despite their astronomical numbers and staggering sequence diversity (17, 18), we 

have large gaps in our understanding of environmental viruses. This is in part due to the field 

being at its infancy. It is also due to the conceptual and technical challenges that are unique 

to the study of viruses. For example, in contrast to ribosomal RNA sequences that are 

conserved across cellular genomes and serve as the basis for taxonomic and evolutionary 

studies, there are no universally conserved sequences within viral genomes. As a result, we 

have not yet been able to develop a genomic classification for viruses. Moreover, our 

understanding of the deep-time evolutionary history of viruses remains limited. 

However, these alienating differences between viruses and cells can also serve to 

significantly broaden our understanding of biology and overturn what we may have accepted 

as dogma. Viruses, by virtue of encoding their genomes in double- and single-stranded 

versions of both RNA and DNA, provide us a window into an alternative biology. What I 

am alluding to is already a big part of biology’s recent history. For example, the central 

dogma was turned on its head by Baltimore (19) Temin and Mizutani (20) through their 
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discovery of viral reverse transcription. The future of biology will also likely be impacted by 

the study of viruses that are caught breaking biology’s perceived rules.  

Viruses have also offered us the platform and the tools for some of biology’s most 

infamous experiments. Hershey and Chase used a phage infection experiment to contest the 

popular assumption that proteins, rather than DNA, were responsible for inheritance (21). 

Luria and Delbruck also used a phage experiment to challenge Lamarckian evolution (22). 

Furthermore, Viruses have significantly contributed to our molecular biology toolbox (23). 

In lieu of recent technological advances, the study of viruses will inevitably result in even 

greater number of tools and insights.  

In this thesis we will demonstrate our three-pronged exploration of viruses through 

the lenses of energetics (Chapters 2 and 3), genomics (Chapter 4), and ecology (Chapter 5). 

We will first focus on one of the defining features of viruses, namely their reliance on their 

host for energy, and demonstrate the energetic cost of building a virus and mounting an 

infection. Although many experimental studies make it clear that viruses are parasitic entities 

that hijack the molecular resources of the host, a detailed estimate for the energetic cost of 

viral synthesis was largely lacking. To quantify the energetic cost of viruses to their hosts, we 

first had to develop a framework for describing cellular energetic costs and their evolutionary 

consequences (Chapter 2).  

With the energetic cost of molecular building blocks in hand, we then enumerated the 

costs associated with two very distinct but representative DNA and RNA viruses, namely, T4 

and influenza (Chapter 3). We found that for these viruses, translation of viral proteins is the 

most energetically expensive process. Interestingly, we found the cost of building a T4 phage 

and a single influenza virus were nearly the same. Due to influenza’s higher burst size, 

however, the overall cost of a T4 phage infection is only a small fraction of the cost of an 
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influenza infection. The costs of these infections relative to their host’s estimated energy 

budget during the infection reveal that a T4 infection consumes about a third of its host’s 

energy budget, whereas an influenza infection consumes only about 1%.  

Building on our estimates for T4, we show how the energetic costs of double-stranded 

DNA phages scale with the capsid size, revealing that the dominant cost of building a virus 

can switch from translation to genome replication above a critical size. Lastly, using our 

predictions for the energetic cost of viruses, we provide estimates for the strengths of selection 

and genetic drift acting on newly incorporated genetic elements in viral genomes, under 

conditions of energy limitation.  This novel, physical approach to the study of viruses provides 

a promising path towards a deeper understanding of factors governing viral burst sizes, life-

cycle strategies, and evolutionary trajectories.   

In our second study we turned to another hallmark feature of viruses, namely their 

genomic diversity. We developed one of the largest surveys of complete viral genomes, 

providing a comprehensive and quantitative snapshot of viral genomic trends for thousands 

of viruses (Chapter 4). We explored the diversity and biases of the NCBI viral database and 

provided distributions of viral genome length, gene length, gene density, noncoding DNA 

(or RNA) percentage, and abundances of functional gene categories across thousands of 

viral genomes. We also created a coarse-grained method for visualizing viral genome 

organization. Because existing viral classification systems were developed prior to the 

sequencing era, we present our analysis in light of different classification systems in order to 

assess the utility of each classification in capturing genomic trends.  

In our third study, we shifted our focus towards ecological questions surrounding 

viruses. Just as they are abundant in the oceans (24), viruses are abundant in the human 

body. For example, up to 108 viruses can be found in just a milliliter of human saliva (5). For 
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this reason, we chose to specifically target human oral phages to explore their communities 

as a function of space and time.  Considering the lack of universal phage markers, we aimed 

to discover environment-specific markers so that we could study previously unexplored 

phage families. As we will demonstrate, this marker-based approach reveals phage 

community composition with a resolution that cannot be achieved through typical 

metagenomic studies. We will further demonstrate that at this resolution, phage community 

composition can serve as a fingerprint, or a “phageprint” – highly unique to each individual 

and stable over at least 30 days.  

By creating sample collection kits and instructional videos, we crowd-sourced sample 

collection, thereby gathering ~700 samples from individuals living in different parts of the 

world, including samples from genetically related individuals and couples. To our knowledge, 

our study is one of the largest studies of human oral phages and the first to demonstrate the 

feasibility of human identification based on phage sequences. It highlights yet again the 

astounding viral sequence diversity that underlies the highly complex and personal phage 

communities.  

Whether it is through energetics, genomics, ecology, or any other lens, viruses offer 

us a unique view of biology, and one that perhaps deserves greater attention. We often look 

up at the night sky to be amazed and inspired by the possibility of life elsewhere. We have 

the desire to explore these uncharted territories in part because we want to know whether 

we, as life forms with a DNA-written history, are unique or simply one of the many 

possibilities. Yet, here on our own planet and even in our own bodies, there are just as 

equally amazing and unexplored worlds with strange and unfamiliar inhabitants. In this 

thesis, we hope to shed some light on these fascinating biological entities that have overrun 

our planet.   
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C h a p t e r  I I  !

A Quantitative Framework for Estimating Cellular 

Energetic Costs and their Evolutionary Consequences 

 
 
2.1 Introduction 

The possible interplay between the energetic cost of a cellular structure and its 

evolutionary fate is a subject that will become increasingly important as evolutionary cell 

biology matures as a science. All of biology starts at the level of the cell, which houses a myriad 

biochemical processes, information storage mechanisms, and physical substructures. To fully 

understand the mechanisms of evolution, it is ideal to start at the cellular level, where we can 

tease apart the ways in which complex molecular structures emerge from the assembly or 

transformation of building blocks such as amino acids, nucleotides, and lipid molecules. 

Thanks to the advances in biochemistry, much of the information to accomplish this task is 

either in hand or within reach. As a result, we argue it is time to outline a logical framework for 

quantifying the relationships between the energetic costs of cellular structures and their 

susceptibility to establishment and modification by the processes of evolution. Here, the 

phrase “cellular structure” will be used as an umbrella term broadly referring to any cellular 

entity built from building blocks, be that entity a few base pairs of DNA, an entire 

chromosome or an organelle.  

At the heart of this subject are two important concepts: 1) all cellular structures have 

strict energetic costs of construction and maintenance; and 2) the energetic costs and benefits 

of these cellular structures can translate into fitness differences that influence long-term 

evolutionary trajectories. Here, we attempt to provide a quantitative framework for addressing 
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these issues. We first aim to provide a clear depiction of the definitions and subtleties in 

performing energetic censuses of the cell. We then attempt to examine the evolutionary 

consequences of cellular structures based on their energetic cost. Finally, we highlight some of 

the remaining conceptual uncertainties in this area. 

 

2.2 The energetic cost of a cellular structure 

We start with the total cost of a simple cellular structure, e.g., a protein molecule or 

complex, an information-bearing molecule at the DNA or RNA level, or a membrane. The 

basic principle here is that all cellular structures, regardless of their fitness costs or benefits, 

entail some baseline energetic costs of construction and maintenance. In accounting for 

cellular energetic costs, we could report the costs using several different units, but the 

underlying premise is that the hydrolysis of ATP and ATP-equivalent molecules serves as the 

universal currency of bioenergetics across the different domains of life (1, 2). We could, for 

example, report energetic costs in units of Joules. Under physiological conditions, ATP 

hydrolysis and conversion into adenosine diphosphate (ADP) and orthophosphate (Pi) results 

in about -50 kJ/mol free energy change (1). However, the actual change in free energy depends 

on the exact concentrations of reactants and products. It is usually much more convenient to 

enumerate energetic costs in units of numbers of ATP hydrolyses (or their equivalent), which 

is also in keeping with previous efforts (3-8). To remain consistent, we will use the symbol P 

with different subscripts as a shorthand notation to represent an ATP (or an ATP-equivalent) 

hydrolysis event in the context of different energetic cost definitions (8-10). As will be 

discussed below, even with this seemingly straightforward approach, there still remain critical 

subtleties. 
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Cellular structures are assembled from molecular building blocks such as amino acids, 

nucleotides, lipids, and carbohydrates. If not provided by the outside environment, these 

building blocks must be synthesized within the cell by processes requiring carbon skeletons 

and the expenditure of energy. In fact, in the context of the metabolism of many bacteria, all 

building blocks as well as coenzymes and prosthetic groups can be synthesized from a small 

number of precursor metabolites (11). If some building blocks are available externally, the 

biosynthetic costs will be diminished, but there will still be costs of transformation to arrive at 

the full set of internal building blocks (the cost of converting one amino acid to another, for 

example). Here, we will assume that all molecular building blocks are derived from one carbon 

source, namely glucose, and further assume that sources of inorganic nitrogen and other trace 

elements are provided in excess within the growth media. These assumptions are especially 

applicable to growth conditions in the laboratory.  

Moreover, the assembly cost of a cellular structure is obtained by adding up the 

requirements for construction of that structure from its molecular building blocks, e.g., the 

necessities for polymerizing a protein from its constituent amino acids, adding post-

translational modifications, and folding the subsequent chain into the appropriate globular 

form. Finally, there will often be maintenance costs, e.g., accommodation of molecular 

turnover, and identification and elimination of cumulative errors.  

The sum of costs noted above represents the baseline investment that must be made in 

a cellular structure regardless of its benefit to the host cell (Figure 1). Given the near 

universality of many biosynthetic pathways and enzyme-reaction mechanisms, the assembly 

and maintenance costs can generally be calculated from information in the literature. The 

ability to make such calculations is a highly desirable complementary approach to laborious 

experimental approaches (12, 13), such as modifications of gene-expression levels, as these can 
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have additional side effects (e.g., promiscuous binding or aggregation) that are difficult to 

quantify and irrelevant to construction/maintenance costs. What has been summarized in the 

paragraphs above, however, are the direct costs of a cellular structure, which do not fully 

describe the energetic consequences for the cell. We use PD to symbolize the unit of direct 

cost. 

 

Figure 1.  The distinction between direct and opportunity costs associated with 

synthesizing molecular building blocks. As glucose is partially metabolized into 

precursor metabolites, the energy that could have been captured from the 

complete metabolism of glucose is referred to as the opportunity cost of 

precursor metabolites (light green arrow). As precursor metabolites get 

converted to molecular building blocks, the conversion consumes electron 

carrier molecules such as NADH. If not used during the synthesis of 

molecular building blocks, these electron carriers would result in the generation 

of ATP, and thus the conversion of precursor metabolites to building blocks 

incurs additional opportunity cost (dark green arrow). The conversion also 

consumes ATP, which we count as the direct cost of synthesis. The assembly 
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of macromolecules such as proteins from building blocks requires additional 

post-synthesis costs such as the cost of polymerization and maintenance. The 

polymerization costs per nucleotide or amino acid are denoted. Direct costs 

are shown by solid orange arrows, whereas the opportunity costs are denoted 

in shades of green and dotted lines. The same color scheme is used in Figure 2.  

 

The construction and maintenance of a cellular structure represents a drain on 

resources that could otherwise be allocated to other cellular functions. When metabolic 

precursors that can be fully metabolized for ATP production are instead allocated as carbon 

skeletons to the production/maintenance of a particular cellular structure, this diversion 

eliminates their availability for other purposes, a consequence that we refer to as the 

opportunity cost. We use PO to symbolize the unit of opportunity cost. 

Opportunity costs can also be calculated from basic cell-biological knowledge though a 

rigorous definition such as the one provided in the Supplementary Information does not seem 

to have been previously provided (4, 9, 14). Specifically, we estimate the opportunity cost of a 

precursor metabolite as the number of ATPs (or ATP equivalents) that could have been 

generated had the precursor metabolite not been diverted towards the synthesis of molecular 

building blocks (Figure 2A, SI). Figure 2B demonstrates the placement of metabolic precursors 

that are implicated in the synthesis of molecular building blocks across metabolic pathways. In 

arriving at cost estimates for molecular building blocks, we assumed glucose as the primary 

carbon source, so these cost estimates may need to be modified when considering another 

carbon source as input. The estimated opportunity costs for each precursor metabolite in the 

context of bacterial and eukaryotic metabolism are shown in Figure 2C. The difference in 

these costs between eukaryotic and bacterial metabolism stems from the higher efficiency of 

eukaryotic metabolism in producing ≈6 more ATPs per glucose than bacterial metabolism, 
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which generates about 26 ATPs per glucose (15, 16) (see SI). We hope that future studies will 

also reveal these costs in the context of the archaeal metabolism. 
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Figure 2. The energetic cost of molecular building blocks. A) The concept of 

opportunity cost is shown schematically for the situation in which glucose is 
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the sole carbon source. B) The metabolic pathways from which the 

opportunity cost of each precursor metabolite can be estimated. From 

dihydroxyacetone phosphate (dhap) onwards, there are two molecules of each 

precursor metabolite generated. Precursor metabolites that are not implicated 

in the synthesis of building blocks are shown as grey circles. Positive and 

negative signs indicate gains and losses in ATPs or electron carrier molecules 

from the conversion of one precursor metabolite to another. The names for 

each precursor metabolite denoted are as follows: ribose-5-phosphate (r5p), 

erythrose-4-phosphate (e4p, or eryP), alpha-ketoglutarate (αkg), 

dihydroxyacetone phosphate (dhap), 3-phosphoglycerate (3pg), oxaloacetate 

(oaa), phosphoenolpyruvate (pep), pyruvate (pyr), acetyl-CoA (acCoA). C) The 

opportunity cost of each precursor metabolite estimated in the context of both 

heterotrophic bacteria and eukaryotic cells as detailed in the SI. D) The 

opportunity cost of a molecular building block is equivalent to the number of 

precursor metabolites and electron carrier molecules used during its synthesis 

times their respective opportunity costs. The direct cost of synthesizing a 

molecular building block is the number of ATP (or ATP-equivalent) hydrolysis 

events required during the synthesis of each building block (orange). All costs 

shown are estimated in the context of a heterotrophic bacterial metabolism. 

The average direct cost provided for building blocks does not include post-

synthesis costs such as polymerization or maintenance. See SI Dataset 1 for 

further details.  

 

Another source of opportunity cost is the pool of electron carrier molecules used in 

the synthesis of molecular building blocks. If electron carriers such as NAD(P)H were to be 

preserved rather than used in the synthesis of molecular building blocks, they would result in 2 

and 2.5 ATP molecules within the bacterial and eukaryotic electron transport chain, 

respectively (16). To distinguish between these two sources of opportunity cost, we have 

denoted them in two shades of green in both Figures 1 and 2. However, unless denoted 
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otherwise, we will refer to the opportunity cost of a molecular building block as the sum of all 

opportunity costs.  

Moreover, the total cost of producing a trait and diverting structures from alternative 

usage to do so is then the sum of the direct and opportunity costs,  

!! = ! !! + !!!, [1] 

where all costs represent the cumulative expenditures over the entire lifespan of the cell. 

Whereas !! is expected to reflect ATP (and ATP-equivalent) hydrolysis reactions resulting in 

heat dissipation in the cell, !! will not be manifested in heat production, given that the ATP is 

not actually produced or consumed. We have used the symbol PT to denote the number of 

ATP formation/hydrolysis reactions associated with the total cost definition (Figure 2).   

 

2.3 Which is more biologically relevant, the direct or the total cost?   

Depending on the experimental context or question at hand, one of the two 

definitions can be more appropriate than the other. Under the direct cost definition, we 

simply account for the number of ATP hydrolysis events, and ignore the effects of diverting 

molecular building blocks from energy-producing pathways. This cost definition is useful 

when we are comparing direct cost estimates to calorimetric studies or attempting to 

estimate heat production and power generation of a cellular process. It is also of interest in 

scenarios where there is a constrained rate of ATP production, e.g. because of a limited 

amount of membrane real-estate for the respiration machinery (17) or a limitation on the 

amount of glycolytic enzymes. Most of the pioneering studies in bioenergetics have reported 

the costs of molecular building blocks in terms of their direct costs (11). More recent works 
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on cellular energetics, however, have implicitly adhered to the total cost definition, thereby 

including the opportunity costs of molecular building blocks (4, 9, 10, 14, 18).  

The total cost definition is useful when the overall carbon source availability is limiting. 

It also offers the advantage of comparison with results from chemostat experiments as a way 

of determining the cost of a particular biological structure relative to the collective costs of a 

cell at a given growth rate. During a chemostat experiment, the number of glucose molecules 

required per unit time to grow cells at a set growth rate is measured. This number can then be 

converted to an energetic value by assuming that every glucose molecule consumed by the cell 

is fully metabolized. However, not all glucose molecules are used for energy production. In 

fact, as we will briefly discuss in the following section, depending on the growth rate, the 

majority of glucose molecules consumed may be converted to biomass. As a result, the cost of 

a cell as measured through chemostat experiments includes both the direct and the 

opportunity costs of cellular processes, and is inherently a total cost estimate. Thus, when 

considering the energetic burden of a given process on a cell’s energy budget as measured by 

chemostat experiments, the total cost definition provides a more meaningful approach. 

 

2.4 What fraction of a cell’s total cost is direct cost?  

One approach to estimating the total cost of a bacterium is to consider its mass in 

carbon. With a doubling time of 30 minutes, an E. coli cell growing on glucose as its sole 

carbon source will be ≈50% carbon in dry weight which amounts to 0.1 pg (5 x 109 carbon 

molecules) for a cell with an approximate volume of 1 µm3 (19). Considering that every 

glucose molecule contributes 6 carbons, we can deduce that this bacterium’s energy and 

carbon demand is met by ≈109 glucose molecules. Because every glucose molecule can 

generate about 26 ATPs during aerobic respiration in E. coli, we can convert the number of 
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glucose molecules to a total energetic cost of ≈3 x 1010 PT. This estimate for the total cost of 

E. coli is similar to those obtained from growth experiments in chemostats (10).  

 To obtain the direct cost estimate of a bacterial cell, we can make use of the fact that 

translation incurs the greatest cost for cells (5, 9, 10, 14). An E. coli cell with a volume of 1 µm3 

(the size can range between ≈0.5 and 2 µm3 depending on growth rate) contains on the order 

of three million proteins (20). With an average protein length of 300 amino acids (21), an E. coli 

cell of this size will be comprised of 109 amino acids. The direct costs of polymerization (4 PD) 

and synthesis from precursor metabolites (2 PD) (Figure 2) are 6 ATPs per amino acid, and 

thus the direct cost of translation is about ≈6 x 109  PD. We can compare this cost to the direct 

cost of genome replication, ≈ 108  PD, for an E. coli genome that is comprised of 5 x 106  base 

pairs. This is because the direct cost of polymerization (2 PD) and synthesis of nucleotides 

from precursor metabolites (11 PD) amounts to 13 PD per nucleotide. As such, the direct cost 

of translation far outweighs the direct cost of genome replication. The cost of transcription in 

both cellular and viral contexts has also been shown to be lower than the cost of translation (8, 

10). Thus, we will take the direct cost of translation as a proxy for the sum of all direct costs. 

With that assumption, the ratio of direct cost of an E. coli cell (≈6 x 109  PD) to its total cost 

(≈3 x 1010 PT) is 0.2. This estimate suggests that the majority of glucose molecules consumed 

by an E. coli cell during rapid growth are not fully metabolized and instead are used to 

synthesize biomass. 

 

2.5 Energy as one of several possible limiting factors to growth 

Cellular fitness need not always be strongly limited by energy. For example, 

photosynthetic plankton populations often experience an overabundance of energy relative 

to some nutrient such as nitrogen or phosphorus. For microbes growing in laboratory 



II-12 
 

 

conditions on a defined medium with a single compound providing carbon and energy, the 

growth yield per carbon consumed increases linearly with the substrate heat of combustion 

(which is inversely related to the degree of oxidation) up until a threshold value, thereafter 

leveling off (Figure 3). This suggests that below a critical substrate value of ≈10 kcal/g 

carbon, growth in such conditions is limited by energy, whereas above this threshold the 

food supply contains excess energy relative to carbon content required for growth. Notably, 

the most common substrate used in growth experiments with microbes, glucose, has a heat 

of combustion of 9.3 kcal/g carbon, close to the threshold at which growth is equally limited 

by carbon and energy. Very few commonly used substrates have heats of combustion much 

beyond the apparent threshold (values being 11.0, 13.6, and 14.8 kcal/g carbon for glycerol, 

ethanol, and methanol, respectively).  
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Figure 3. Growth yields per unit carbon consumed as a function of the heats 

of combustion of the carbon substrate (which also serves as the source of 

energy). Results are taken from various sources in the literature; all results for 

eukaryotes involve fungi (mostly yeasts).  

 

Although analyses involving alternative limiting factors will not be pursued here, 

where deemed necessary, they could be implemented in a parallel fashion by altering the 

budgetary currency (e.g., to carbon, nitrogen or some other limiting nutrient). Consider, for 

example, an organism living in an environment plentiful in a carbon/energy source but 

limited by a micronutrient such as iron. In this case, depending on the internal regulatory 

structures of the cell, energy extracted from the food source may be in excess supply, 

resulting in under-utilization of ingested carbon and energy.  In such a case one can choose 

to adopt a framework as described here but define costs in terms of the iron atoms needed. 
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The energetic costs can still be evaluated as given here but their effect on growth will be 

diminished due to the greater impact of iron shortage on growth rate.  

Regardless of the substrates being consumed, all aspects of cellular maintenance and 

growth require energy. Although the yields of microbes (per unit carbon consumed) grown 

on alternative substrates vary substantially with the nature of the substrate, the direct costs 

necessary to build an offspring cell are relatively constant. This is consistent with the positive 

scaling in Figure 3 (except in the above mentioned case of highly reduced substrates such as 

some alcohols and methane), and provides at least partial justification for using ATP as a 

universal currency as opposed to carbon or some other micronutrient.  

 

2.6 The evolutionary implications of the energetic cost of a cellular structure  

Given a value for the total energetic cost of a cellular structure (or modification 

thereof), what are the overall evolutionary implications? To answer that question we need to 

consider two central issues: 1) what is the scaling of the cost of a cellular structure relative to 

the total cost of building and maintaining the cell? and 2) how do we convert the appropriately 

scaled measure of this energetic cost to a corresponding change in fitness. Supposing the cell 

has a baseline total energy budget per cell cycle of !! (which includes the costs of both growth 

and maintenance, with a capital ! denoting a whole-cell cost), the addition of an energetic 

burden to the trait under consideration alters the lifetime energy budget to !!! = !!! !+ !!! . 

Under the assumption that energy availability influences fitness, if the cell-division time is ! in 

the absence of the trait, then we qualitatively expect this additional energetic investment in the 

trait to alter the cell-division time to !!! > !!.  

To understand the total energetic investment in a cellular structure from a fitness 

perspective, we need to define its effects on the cell's reproductive rate relative to that for a cell 
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without such an additional energetic investment. From standard haploid selection theory, the 

selective disadvantage of building a cellular structure in an energy-limited environment is 

defined as 

! = ! !!!!!! !ln 2, [[2!] 

where ! = ln 2 /! denotes an exponential rate of growth. Assuming that!Δ! = !!′− !! ≪

!! which we suspect will be valid for most single-gene modifications, we can simplify the 

selective disadvantage to 

! ≃ ! !!!! ln 2. [[2!] 

If we assume that energy is the only limiting factor and further assume that !! ≪ !! so that 

the increment in cell-division time scales proportionally with the increased investment, we can 

write 

!! ≃ !! 1+ ! !!!! . [3] 

This then leads to the simple result that  

s ≃ ! !!!! ln 2,  [4] 

showing that the intrinsic selective disadvantage associated with the energetic cost of a trait 

under energy limited conditions scales directly with the proportional increase in the total 

energy demand per cell cycle.  

It is important to note that there are some caveats with respect to the preceding derivation. 

First, it is assumed that the addition of the trait does not somehow alter the cell's basic 

metabolic makeup in ways that would modify the total baseline energy budget !! . Even if this 

does occur, the result given in Equation 4 will be only slightly modified if the fractional 
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alteration to !! is small, which seems likely for cellular modifications involving just one or two 

genes. Second, we have focused entirely on the bioenergetic costs of producing a trait. There 

may be additional costly side effects, if for example a novel protein promiscuously interacts 

with inappropriate substrates, aggregates with other cellular structures, and/or excessively 

occupies cellular volume or membrane real estate.  

 

2.7 Supplementary Information 

2.7.A Opportunity cost of precursor metabolites in heterotrophic bacteria 

In this section we will use the units of P, without any subscripts, to refer to ATP (and 

ATP-equivalent) hydrolysis events (using the subscripts without having first derived the 

opportunity cost of a metabolite is meaningless). Once we have derived the opportunity cost 

of a precursor metabolite here in this section, we will accompany it with the symbol PO  in later 

figures and tables to clearly mark these costs as opportunity costs. We will estimate the 

opportunity cost of precursor metabolites,!!!""!#!"#$!%, by  

!!""!#$%&'$( = !!!"# − !!!"#$%"& , [1] 

where !!"#!represents the net energetic gain from the complete metabolism of a glucose 

molecule into water and carbon dioxide, and !!"#$%"& is the net energetic gain from the partial 

metabolism of a glucose molecule into a precursor metabolite. Under aerobic respiration, !!"# 

is ≈ 26 P in E. coli (15). In the event that there is a net energetic cost from the conversion of 

glucose into a precursor metabolite, !!"#$%"& will be a negative value.  

In the synthesis of lipids, dihydroxyacetone-phosphate (dhap) is used as a precursor. 

This precursor is generated during glycolysis (Figure 2). Each glucose molecule results in the 

production of two dihydroxyacetone-phosphate molecules, with this process having a net 
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energetic cost of 2 P (!!"#$%"& = −2). The opportunity cost of two dihydroxyacetone-

phosphate molecules is 2 P greater than that of glucose, or 28 P (SI Eq. 1). The opportunity 

cost of one dihydroxyacetone-phosphate molecule is therefore ≈ 14 P (Figure 2).  

To simplify the opportunity cost estimates further, we could employ a shortcut. Rather 

than estimating the opportunity cost of each precursor metabolite by calculating the !!"#$%"& 

from glucose as the starting point, we could obtain the opportunity cost of metabolite j, 

!!""!#$%&'$(! , from the opportunity cost of metabolite i, !!""!#$%&'$(! , by  

!!""!#$%&'$(! = !!!""!#$%&'$(! − !!!"#$%"&!→! , [2] 

where !!"#$%"&!→!  represents the net energetic gain from the conversion of metabolite i to 

metabolite j.  

For example, during glycolysis each molecule of dihydroxyacetone-phosphate is 

converted to a molecule of 3-phosphoglycerate (3pg), resulting in the production of 1 NADH 

molecule and 1 ATP. In E. coli, each NADH molecule results in the production of ≈ 2 ATP 

molecules under aerobic conditions (11); therefore the net energetic gain from this conversion 

is ≈ 3 P. Hence, the opportunity cost of each 3-phosphoglycerate molecule would be ≈ 11 P, 

which is 3 P less than the opportunity cost of a dihydroxyacetone-phosphate molecule (SI Eq. 

2).  

If not used as a precursor, 3-phosphoglycerate is converted to phosphoenolpyruvate 

(pep) in glycolysis (Figure 2). In this process, however, there is zero energy expenditure or 

gain. As such, the opportunity cost of a phosphoenolpyruvate molecule is the same as that of a 

3-phosphoglycerate molecule’s, which is ≈ 11 P. Both of these precursors come before 

pyruvate (pyr) in glycolysis. In converting a phosphoenolpyruvate molecule into a pyruvate 

molecule, there is a net energy gain of 1 P. The opportunity cost of a pyruvate molecule is 
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therefore ≈ 10 P (1 P less than a phosphoenolpyruvate opportunity cost) (Figure 2). Pyruvate 

can be converted to oxaloacetate (oaa) with the expenditure of 1 ATP. The opportunity cost of 

oxaloacetate is ≈ 11 P (10 P + 1 P) (Figure 2). 

Pyruvate is further converted to acetyl-CoA (acCoA), and in the process one molecule 

of NADH is generated, which is equivalent to 2 P (Figure 2). The opportunity cost of acetyl-

CoA is therefore ≈ 8 P (10 P - 2 P) (Figure 2).  One molecule of acetyl-CoA and one molecule 

of oxaloacetate are then eventually converted to alpha-ketoglutarate (αkg) (Figure 2). The sum 

of the opportunity costs of acetyl-CoA (8 P) and oxaloacetate (11 P) is 19 P, and because 1 

molecule of NADH is generated in their conversion to alpha-ketoglutarate, the opportunity 

cost of alpha-ketoglutarate is ≈ 17 P (or, 19 P – 2 P) (Figure 2).  Similarly, alpha-ketoglutarate 

is eventually converted to oxaloacetate, and 2 NADH, 1 GTP, and 1 FADH2 molecules are 

generated (Figure 2). This is a net gain of ≈ 6  (assuming 1 P from each FADH2), reducing the 

opportunity cost of oxaloacetate to ≈ 11 P (17 P – 6 P). Note, this is consistent with the 

opportunity cost of oxaloacetate derived from the anaplerotic pathway described earlier (the 

conversion of pyruvate to oxaloacetate via the pyruvate decarboxylase enzyme).  

Glucose can also be converted to ribose-5-phosphate (r5p) in the pentose phosphate 

pathway, and in the process 2 NADPH molecules are generated, which is equivalent to 4 P 

(Figure 2). We subtract 4 P from the possible 26 P that glucose would be converted to under 

respiratory conditions, and we arrive at 22 P as the opportunity cost of ribose-5-phosphate (SI 

Eq. 1) (Figure 2). The same calculation can be used for erythrose-4-phosphate (e4p), resulting 

in 22 P as its opportunity cost (Figure 2). 
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2.7.B Opportunity cost of precursor metabolites in heterotrophic eukaryotes 

To estimate the opportunity costs of precursor metabolites in heterotrophic 

eukaryotes, we can carry out very similar calculations to those performed for heterotrophic 

bacteria. For eukaryotes, !!!", or the total energetic gain from the complete metabolism of a 

glucose molecule into carbon dioxide and water is higher. This is because each NAD(P)H and 

FADH2 molecule results in a higher number of ATPs within the mitochondrial electron 

transport chain compared to the bacterial electron transport chain. Specifically, each 

NAD(P)H molecule is equivalent to ≈ 2.5 P and each FADH2 molecule corresponds to ≈ 1.5 

P ((16),(22) pages 517-518), resulting in 30-32 P per glucose molecule. Note, the theoretical 

yield of 38 P per glucose molecule has been shown to be an overestimate due to the outdated 

assumptions that each NAD(P)H molecule is equivalent to 3 P and that each FADH2 molecule 

generates 2 P (16). We will therefore use 32 P as !!"#.   

Each glucose molecule results in the production of two dihydroxyacetone-phosphate 

molecules, with this process having a net energetic cost of 2 P. The opportunity cost of two 

dihydroxyacetone-phosphate molecules is 2 P greater than that of glucose, or 34 P (SI Eq. 1). 

The opportunity cost of one dihydroxyacetone-phosphate molecule is therefore 17 P (Figure 

2). As described earlier, in the conversion of dihydroxyacetone-phosphate molecule into a 3-

phosphoglycerate molecule, 1 NADH and 1 ATP molecules are produced. This is equivalent 

to a net energetic gain of ≈ 3.5 P. The opportunity cost of a 3-phosphoglycerate molecule is 

therefore ≈ 13.5 P (17 P – 3.5 P) (SI Eq. 2) (Figure 2).  

The opportunity cost of a phosphoenolpyruvate is the same as that of a 3-

phosphoglycerate, which is ≈ 13.5 P. In converting phosphoenolpyruvate into pyruvate, there 

is a net energy gain of 1 P (1 ATP molecule is formed). The opportunity cost of pyruvate is 
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therefore ≈ 12.5 P. Pyruvate can be converted to oxaloacetate with the expenditure of 1 ATP. 

Hence, the opportunity cost of oxaloacetate will be ≈ 13.5 P. 

Pyruvate is converted to acetyl-CoA, and in the process one molecule of NADH is 

generated. As a result, the opportunity cost of acetyl-CoA is ≈ 10 P (12.5 P – 2.5 P). One 

molecule of acetyl-CoA and one molecule of oxaloacetate are converted to alpha-ketoglutarate 

in the TCA cycle. The sum of the opportunity costs of acetyl-CoA (10 P) and oxaloacetate 

(13.5 P) is 23.5 P, and because 1 molecule of NADH is generated in their conversion to alpha-

ketoglutarate, the opportunity cost of alpha-ketoglutarate is ≈ 21 P (23.5 P – 2.5 P). Alpha-

ketoglutarate is eventually converted to oxaloacetate, and 2 NADH, 1 GTP, and 1 FADH2 

molecules are generated. This is a net gain of ≈ 7.5 P (assuming 1.5 P from each FADH2), 

reducing the opportunity cost of oxaloacetate to ≈ 13.5 P (21 P – 7.5 P). Note, this is again 

consistent with the opportunity cost of oxaloacetate derived from the anaplerotic pathway.  

Glucose can also be converted to ribose-5-phosphate in the pentose phosphate 

pathway, and in the process 2 NADPH molecules are generated, which is equivalent to 5 P. 

The opportunity cost of ribose-5-phosphate is thus ≈ 27 P. The same calculation can be used 

for erythrose-4-phosphate, resulting in ≈ 27 P as its opportunity cost. 

 

SI Dataset 1. A detailed breakdown of the energetic cost of molecular building 

blocks depicted in Figure 2. Provided in a GitHub repository: 

https://github.com/gitamahm/thesis 
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C h a p t e r  I I I  !

Energetic Cost of Building a Virus  

!
 
3.1 Introduction 

Viruses are biological ‘entities’ at the boundary of life. Without cells to infect, viruses as we 

know them would cease to function, as they rely on their hosts to replicate. Though the 

extent of this reliance varies for different viruses, all viruses consume from the host’s energy 

budget in creating the next generation of viruses. There are many examples of viruses that 

actively subvert the host transcriptional and translational processes in favor of their own 

replication (1). This viral takeover of the host metabolism manifests itself in a variety of 

forms such as in the degradation of the host’s genome or the inhibition of the host’s mRNA 

translation (1). There are many other experimental studies (discussed in the SI) (2-6) that 

demonstrate viruses to be capable of rewiring the host metabolism. These examples also 

suggest that a viral infection requires a considerable amount of the host’s energetic supply. 

In support of this view are experiments on T4 (7), T7 (8), Pseudoalteromonas phage (9), and 

Paramecium bursaria chlorella virus-1 or PBCV-1 (10), demonstrating that the viral burst 

size correlates positively with the host growth rate. In the case of PBCV-1, the burst size is 

reduced by 50% when its photosynthetic host, a freshwater algae, is grown in the dark (10). 

Similarly, slow growing E. coli with a doubling time of 21 hours affords a T4 burst size of 

just one phage (11), as opposed to a burst size of 100-200 phages during optimal growth 

conditions.  

These fascinating observations led us to ask the following questions: what is the 

energetic cost of a viral infection, and what is the energetic burden of a viral infection on the 



  III-2 

host cell? To our knowledge, the first attempt to address these problems is provided through 

a kinetic model of the growth of Qß phage (12). A more recent study performed numerical 

simulations of the impact of a phage T7 infection on its E. coli host, yielding important 

insights into the time course of the metabolic demands of a viral infection (13). 

To further explore the energetic requirements of viral synthesis, we made careful 

estimates of the energetic costs for two viruses with very different characteristics, namely the 

T4 phage and the influenza A virus. T4 phage is a double-stranded DNA (dsDNA) virus 

with a 169 kb genome that infects E. coli. The influenza virus is a negative-sense, single-

stranded RNA virus (-ssRNA) with a segmented genome that is 10.6 kb in total length. The 

influenza virus is a eukaryotic virus infecting various animals, with an average burst size of 

6000, though note that the burst size depends upon growth conditions (14). Similar to many 

other dsDNA viruses, T4 phage infections yield a relatively modest burst size, with the 

majority of T4 phages resulting in a burst size of approximately 200 during optimal host 

growth conditions (15). To determine the energetic demand of viruses on their hosts, the 

cost estimate for building a single virus has to be multiplied by the viral burst size and placed 

in the context of the host’s energy budget during the viral infection.  

Concretely, the costs associated with building a virus can be broken down into the 

following processes that are common to the life-cycles of many viruses: 1) viral entry 2) 

intracellular transport, 3) genome replication, 4) transcription, 5) translation, 6) assembly and 

genome packaging, and 7) exit. Our strategy was to examine each of these processes for both 

viruses in parallel, comparing and contrasting the energetic burdens of each of the steps in 

the viral life-cycle.   
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3.2 Energetic cost units and definitions 

Given that the energetic processes of the cell take place in many different energy 

currencies ranging from ATP and GTP hydrolysis to the energy stored in membrane 

potentials, it is important to have a consistent scheme for reporting those energies. 

Adenosine triphosphate (ATP) serves as the most common energy currency of the cell, a 

function that is universally conserved across all known cellular life-forms (16, 17). Under 

physiological conditions, the hydrolysis of ATP usually releases about -50 kJ/mol (16, 18). In 

addition to ATP, which most commonly serves as the energy currency of the cell, there are 

other nucleoside triphosphates such as GTP that are approximately energetically equivalent 

to ATP. We will refer to these molecules as ATP-equivalent. 

We follow others in their reporting of cellular costs by using the number of ATP 

(and ATP-equivalent) hydrolysis events as a proxy for energetic cost. Similar to Lynch and 

Marinov (19), we will use the symbol P as a shorthand notation to represent an ATP (or an 

ATP-equivalent) hydrolysis event. We will additionally employ subscripts to clearly label the 

results obtained under different energetic cost definitions, which have already been  

introduced in Chapter II (e.g. opportunity cost denoted by PO, direct cost denoted by PD,  

and total cost denoted by PT). Lastly, in reporting some of our final cost estimates we will 

convert the number of ATP (or ATP-equivalent) hydrolysis events to units of Joules and kBT 

by assuming 50kJ of negative free energy change per mole of P at physiological conditions.  

As a reminder of topics discussed in Chapter 2, the distinction between total and 

direct cost definitions is that under the total cost definition, in addition to accounting for 

direct costs, we attribute an energetic cost to the building blocks that are usurped from the 

host during viral synthesis. Both energetic cost definitions have physical significance. For 
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example, the direct cost definition is the more appropriate choice when estimating heat 

production and power consumption of a viral infection (SI sections B, K). The total cost 

definition, on the other hand, is aligned with traditional energetic cost estimates made from 

growth experiments in chemostats, where substrate consumption and cell yield is monitored, 

and allows for a clear comparison between the cost of an infection and the cost of a cell. 

This is because the cost of a cell, derived through chemostat experiments, implicitly includes 

the opportunity cost component, which is the cost of diverting precursor metabolites from 

energy-producing pathways towards the synthesis of molecular building blocks. And while 

our approach would certainly benefit from detailed experimental studies that reveal the 

fluxes in the host metabolome during an infection, the assignment of an energetic value to 

each metabolite allows us to simplify the problem from reporting changes in the 

concentration of hundreds of metabolites to reporting a single energetic value associated 

with the viral infection. This value can then be compared to the cellular energy budget.  

We will generally estimate the cost of a certain viral process for a single virus, and 

then multiply this cost by the viral burst size to determine the infection cost of a given 

process. Subscript v will denote the cost estimates made for a single virus, and the subscript i 

will refer to a cost estimate made for an infection. We relegate the energetic cost estimates 

for all viral processes to the SI sections C through I. 

 

3.3 The energetic costs of T4 and Influenza  

By estimating the energetic costs of influenza and T4 life-cycles, we show that 

surprisingly the cost of synthesizing an influenza virus and a T4 phage are nearly the same 

(Table 1). The outcome of the analysis to be discussed in the remainder of the chapter is 

summarized pictorially in Figure 1 for bacteriophage T4 and Figure 2 for influenza. For both 
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viruses, the energetic cost of translation outweighs other costs (Table 1, Figures 1, 2, 3), 

though as we will show at the end of the chapter, since translation scales with the surface 

area of the viral capsid and replication scales as the volume of the virus, for double-stranded 

DNA phages larger than a critical size, the replication cost outpaces the translation cost. 

To get a sense for the numbers, here we provide order-of-magnitude estimates of 

both the costs of translation and replication and refer the interested reader to the SI sections 

C through I for full details. As detailed in the SI Tables 1 and 2, both T4 and influenza are 

comprised of about 106 amino acids. We can estimate the total cost of translation by 

appealing to a few simple facts. First, the average opportunity cost per amino acid is about 

30 PO. Second, the average direct cost to produce amino acids from precursor metabolites is 

2 PD per amino acid (SI Figure 1). Finally, each polypeptide bond incurs a direct cost of 4 PD. 

We can see that the total cost of an amino acid is approximately 36 PT (30 PO + 6 PD). As a 

result, the translational cost of an influenza virus and a T4 phage both fall between 107 to 108 

PT (Table 1).  

 

Table 1. The direct, opportunity and total energetic costs of viral processes 

for T4 and influenza. The T4 infection costs are estimated based on an 

average burst size of 200, and the influenza infection costs are based on an 

average burst size of 6000. Direct costs shown represent the number of 

phosphate bonds directly hydrolyzed during the viral lifecycle (PD), whereas 

the total costs (PT) include both direct costs (PD) as well as opportunity costs 

(PO) incurred during the viral life-cycle (See SI sections C through I). Empty 

entries correspond to viral processes that did not result in an energetic cost 

or were not applicable to the given virus. Note, to obtain the total cost 

estimates, the sum of opportunity and direct costs used exact numbers and 

was then rounded (this is why the sum of the rounded versions of direct and 
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opportunity costs do not exactly match up to the total costs presented in this 

table). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The cost of viral replication can be approximated in a similar fashion: we have to 

consider that the T4 genome is comprised of roughly 4x105 DNA bases and that the 

influenza genome is composed of an order of magnitude fewer RNA bases (≈104). The total 

costs of a DNA nucleotide and an RNA nucleotide, including the opportunity costs as well 
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as the direct costs of synthesis and polymerization, are approximately 50 PT (SI Figure 1, SI 

Dataset 3). As a result of T4’s longer genome length, its total cost of replication (≈107 PT) is 

about an order of magnitude higher than that of an influenza genome (Table 1, Figure 1, 

Figure 2, SI section E).  
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Figure 1. The energetics of a T4 phage infection. The direct and total costs of 

viral processes are denoted and can be distinguished by their units (PD and 

PT, respectively). The energetic requirements of transcription (step 3), 
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translation (step 4), genome replication (step 5), and genome packaging (step 

7) are shown. See SI sections C through I and Table 1.  

 

The cost estimates of different viral processes during T4 and influenza infections are 

summarized in Figures 1-3 and Table 1. The overall cost of a T4 infection is obtained by the 

sum of replication (!!"#/! ), transcription (!!"/!! ), translation (!!"/!! ), and genome 

packaging (!!"#$/!) costs required during the infection (SI sections C-I, Table 1, Figure 1, 

Figure 3). These costs together amount to ≈3 x 109 PD in direct cost and 1 x 1010 PT in total 

cost (SI sections C-I, Table 1, Figure 1, Figure 3, assuming a burst size of 6000). The total 

cost of a T4 infection is also equivalent to the aerobic respiration of ≈4 x 108 glucose 

molecules by E. coli (26 ATP per glucose (20)). Alternatively, it is equivalent to ≈2 x 1011 kBT 

(assuming 1 ATP ≈!20 kBT (21)).  
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Figure 2. The energetics of an influenza infection. The direct and total costs 

of viral processes are denoted and can be distinguished by their units (PD and 

PT, respectively). The energetic requirements of viral entry (steps 2,3), 

intracellular transport (steps 4,5,9), transcription (step 6), translation (step 7), 
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genome replication (step 8) and viral exit (step 10) are shown. See SI sections 

C through I and Table 1.  

 

Similarly, the cost of an influenza infection is obtained by adding up the costs of 

entry (!!"#$%), intracellular transport (!!"#$%&'/!), replication (!!"#/!), transcription (!!"/!), 

translation (!!"/!), and exit (!!"#$/!) required during the infection (SI sections C-I, Table 1, 

Figure 2, Figure 3). These processes have a cumulative cost of ≈8 x 1010 PD and 6 x 1011 PT , 

for the assumed burst size of 200. The sum of costs in an influenza infection (6 x 1011 PT) is 

equivalent to the aerobic respiration of ≈2 x 1010 glucose molecules by a eukaryotic cell (32 

ATP per glucose). It is also equivalent to ≈1013 kBT. It is interesting to note that for both 

viral infections the opportunity cost components are the dominant component of the total 

costs (Table 1).  
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Figure 3. A breakdown of the direct cost (top) and the total cost (bottom) of 

various viral processes during T4 (left) and influenza (right) viral infections 

(normalized to the sum of all costs during an infection, as shown in the 

center of each pie chart). The direct cost of a T4 phage infection is 

approximately 3 x 109 PD (top) while the total cost is 1010 PT (bottom). The 

direct and total costs of an influenza infection are approximately ~8 x 1010 PD 

and 6 x 1011 PT, respectively. Numbers are rounded to the nearest percent, 

and viral processes costing below 0.5% of the infection’s cost are not shown. 

See SI sections C through I for energetic cost estimates for viral entry, 

intracellular transport, transcription, viral assembly, and viral exit. 

 

Even though individually a T4 phage and an influenza virus have comparable 

energetic costs, because of their different burst sizes, the direct cost of a T4 phage infection 
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is only ≈3% of the direct cost of an influenza infection. Similarly, the total cost of a T4 

phage infection is ≈2% of the total cost of an influenza infection. To contextualize these 

numbers, the host energy budget (or the host energetic cost, depending on the viewpoint of 

a virus versus a cell) during the infection has to be taken into account. The total cost of a cell 

is experimentally tractable through growth experiments in chemostats, in which cultures are 

maintained at a constant growth rate. The number of glucose molecules taken up per cell per 

unit time can be determined. The number of glucose molecules can then be converted to an 

energetic supply by assuming typical conversion ratios of 26 or 32 ATPs per glucose 

molecule depending on the organism (20). This energetic cost estimate will be a total cost 

estimate because not all glucose molecules taken up by the cell are fully metabolized to 

carbon dioxide and water to generate ATPs and are used as building blocks for biomass 

components instead. During the cellular life-cycle, the cell has to double its number of 

building blocks prior to division, and to do so, a fraction of glucose molecules taken up is 

diverted away from energy production towards biosynthesis pathways. As such, cellular 

energetic cost estimates that are derived from chemostat experiments are total cost estimates 

because they report on the combined opportunity and direct costs of a cell.  

Based on chemostat growth experiments (19), the total energy used by a bacterium 

and a mammalian cell with volumes of 1 !"! and 2000 !"!, respectively, are ≈3 x 1010 PT 

and ≈5 x 1013 PT, during the course of their viral infections (SI section J). A simpler estimate 

for arriving at the total cost of E. coli with a 30-minute doubling time is by considering the 

dry weight of E. coli (≈0.6 pg at this growth rate) (22). Given that about half of the cell’s dry 

weight is composed of carbon (22), an E. coli is composed of ≈2 x 1010 carbons, supplied 

from ≈3 x 109 glucose molecules, since each glucose contributes 6 carbons. With the 26 

ATP per glucose conversion for E. coli, this is equivalent to a total cost of ≈7 x 1010 PT, 
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which is similar to the number obtained from chemostat growth experiments (19)(SI section 

J).  

Moreover, we estimate the fractional cost of a viral infection as the ratio of total cost 

of an infection, !!/! , to the total cost of the host during the infection, !!/!. For the T4 

infection with a burst size of 200 virions, !!/! ≈1 x 1010 PT (Table 1) and !!/! ≈3 x 1010 PT, 

therefore the fractional cost of the T4 infection is ≈0.3. Interestingly, a calorimetric study of 

a marine microbial community demonstrated that 25% of the heat released by microbes is 

due to phage activity. (23) If we assume that the majority of the direct cost of a cell is 

associated with translation (19, 21), these calorimetric studies square well with our estimate 

for the ratio of direct costs. In contrast, the influenza infection despite its larger burst size 

(6000 virions) leading to a higher !!/! (≈6 x 1011 PT) has a fractional cost of just 0.01 as the 

host cell is much bigger. Finally, we estimate that the heat release due to the T4 and 

influenza viral infections are approximately 0.2 nJ and 2 nJ, respectively (SI section K). While 

influenza infection results in an order of magnitude more heat, the average power of T4 and 

influenza infections are surprisingly very similar, on the order of 200 fW (SI section K). 

 

3.4 Scaling of viral energetics with size for phages 

While we have concluded that for the influenza virus and the T4 phage the 

translational cost outweighs the replication cost, the ratio of these two costs varies according 

to the dimensions of a virus. In the case of T4 and influenza, these two viruses have 

comparable dimensions and consequently were built from a similar number of amino acids 

(SI Tables 1 and 2). However, because for double-stranded DNA phages, the capsid is 

mostly composed of proteins whereas the virion interior is mostly dedicated to the genetic 

material (24), it follows that with the diminishing surface area to volume ratio of a spherical 



  III-15 

object as it grows in size, the ratio of translational cost to replication cost also diminishes 

with increasing radius of a spherical capsid. This simple rule governs not just the nucleotide 

or amino acid composition of a virus, but more fundamentally, it governs the elemental 

composition of viruses with spherical-like geometries (24).  
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Figure 4. Generalizing viral energetics. A plot of the genome replication cost 

(!!"#) to translational cost (!!") ratio as a function of the virus inner radius, 

r. The plot uses the geometric parameters of double-stranded DNA viruses 
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with icosahedral geometries (SI Dataset 1, SI section L). The predicted 

numbers of amino acids and nucleotides are derived in SI Dataset 1. Cost 

ratios are shown for both direct and total cost estimates. All viruses shown 

infect bacteria except Sputnik, which is a satellite virus of the giant 

Mimivirus. We have zoomed in on viruses Sputnik (r = 22 nm), P22 (r = 27.5 

nm), T7 (r = 27.5 nm), HK97 (r = 30 nm), and Epsilon15 (r = 31.2 nm). The 

capsid structures for these representative viruses were obtained from the 

VIPERdb (25) and image sizes were scaled based on radii shown in SI 

Dataset 1 to accurately represent the relative sizes of each capsid. The critical 

radii for the total cost (!!"#$!!"#) and the direct cost (!!"#$!!"#) estimates are 

shown. We have also included the mean (!!"#$= 25 nm) and standard 

deviation (gray vertical box, ±6.5 nm) of viral capsid inner radii from 2,600 

viruses collected by the Tara Oceans Expeditions (26). Note, here we have 

subtracted the mean capsid thickness (3 nm) from the mean capsid radius 

reported by Brum et al. to arrive at the mean inner capsid radius. 

 

The full derivation of replication and translational cost estimates as a function of 

viral capsid inner radius,!!, can be found in the SI section L. From these expressions, it is 

clear that the translational cost of a virus scales with !!, whereas the replication cost scales 

with !! (Figure 4). The critical radius at which replication will outweigh translation in cost is 

≈60 nm for total cost estimates, !!"#$!!"#  (Figure 4, SI section L). For the direct cost 

estimates, the critical radius, !!"#$!!"# , is ≈40 nm. Interestingly, a survey of structural 

diversity encompassing 2,600 viruses inhabiting the world’s oceans reveals that the average 

outer capsid radius is 28 nm (26) (25 nm inner radius), which is much smaller than the 

critical radii at which replication becomes the dominant cost (Figure 4). As such, for the 

majority of viruses, we predict translation is the dominant cost of a viral infection.  



  III-18 

Furthermore, we provide genome replication to translation cost ratios for about 30 

different double-stranded viruses, primarily phages (SI Dataset 1, Figure 4). While we have 

omitted calculations for the virus tails, they can be simply treated as hollow cylinders and will 

further decrease the expected replication to translation cost ratio for the tailed viruses. 

Although we have calculated these ratios for double-stranded DNA phages, similar 

principles can be applied to modeling the energetics of other viral groups.  

 

3.5 Forces of evolution operating on viral genomes.  

Inspired by efforts to consider the evolutionary implications of the cost of a gene to 

cells of different sizes (19, 27), we were curious whether similar considerations might be in 

play in the context of viruses. For example, we asked which evolutionary forces are 

prominently operating on neutral genetic elements that are incorporated into viral genomes, 

either by horizontal gene transfer, gene duplication or other similar types of events. We 

further asked whether the viral size is a parameter of interest in the tug of war between 

different forces of evolution. We will address these topics by assuming that the viral 

infection, consistent with our findings for T4, consumes a substantial portion of the host 

energy budget. We further assume that the energetic cost of a genetic element translates to a 

proportional fitness cost. We believe this assumption to be relevant when the host growth 

condition is energy or carbon substrate limited.     

For a genetic element to remain in the population, regardless of whether it is 

beneficial or not, it must face the consequences of genetic drift which scales with the viral 

effective population size, !! , as !!!!. We follow the treatment of Lynch and Marinov who 

argue that the net selective advantage of a genetic element is !! = ! !! − !!! , where !! and !! 

denote the selective advantage and disadvantage, respectively (Figure 5B). For a genetic 
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element within a viral genome that is non-transcribed and non-translated (Figure 5C), only 

the energetic cost of its replication poses a selective disadvantage. Assuming the genetic 

element provides no benefit to the virus (!! = 0), the net selective advantage can be stated 

as !! = !−!! , the absolute value of which must be much greater than !!!! for selection to 

operate effectively. Following Lynch and Marinov and others (27, 28), we make the 

simplifying assumption that a neutral genetic element’s selection coefficient, !! , is 

proportional to its fractional energetic cost, !!  (Figure 5C). This means that the viral 

infection is energy (or carbon source) limited. Because we assumed that the energetic cost of 

a viral infection is comparable to the total energy budget of a cell, any increase to the cost of 

a virus would necessitate a smaller burst size. Using the viral burst size as a proxy for the 

viral growth rate, we are then able to relate the additional fractional energetic cost of a 

neutral genetic element to a fitness cost.  
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Figure 5. Evolutionary forces acting on genetic elements within viral 

genomes. A) Schematic of a virus as a spherical object, with an inner radius, 

r, an outer radius, R, and a capsid thickness, t. The capsid is composed of 

viral proteins, while the inner volume holds the viral genome. B) Positive and 

negative selective forces (!! and !!) at a tug of war with the force of genetic 

drift, which scales as !!!!, where !! is the viral effective population size. C) 

A schematic of a genetic element within a viral genome. It is assumed to be 

non-functional (!!  = 0) and non-transcribed, resulting in |!!| = !!  = !! , 
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where !! corresponds to the net selection coefficient and !! corresponds to 

the fractional cost of a genetic element. D) The evolutionary forces acting on 

a genetic element within Virus A and Virus B genomes. The fractional cost 

of a genetic element in Virus B, !!_!"#$%& , is 8 times higher than the 

fractional cost of the same element in Virus A, !!_!"#$%&. Note, Virus A has 

twice the radius of Virus B, and therefore its genome is 8 times longer than 

that of Virus B (schematically represented by the number of genetic 

segments). Both viruses are assumed to have radii greater than critical 

radii,!!!"#$!!"# and !!"#$!!"# . E) Log10 !! estimates for non-transcribed and 

neutral genetic elements of different lengths (1 – 10,000 base pairs) within 

the context of 30 dsDNA viruses ranging from ~20 nm to 400 nm in radius 

(SI Dataset 2; viruses with R > 50 nm are hypothetical dsDNA viruses). 

Log10 !!  estimates derived from both direct and total cost estimates are 

included (there is minimal difference between these estimates, which is not 

visible in this figure, see SI Dataset 2). Assuming !! = 105, the region above 

the horizontal dashed line represents a selection-dominated regime, and the 

region below it represents a drift-dominated regime. For comparison, we 

have included the mean (vertical dashed line, 28 nm) and standard deviation 

(gray vertical box, ±6.5 nm) of viral capsid outer radii obtained from 2600 

viruses collected during the Tara Oceans Expeditions (26). 

 

In the case of a non-transcribed genetic element, !! = !
!!"#/!
!!

, where !!"#/! 

corresponds to its replication cost and !! is the sum of all costs of a virus (Figure 5C). 

Given that replication cost scales as !! the effects of selection relative to genetic drift could 

be different for viruses of different sizes. Consider two viruses with the same burst size, with 

Virus A, having a radius that is two times larger than that of Virus B (Figure 5D). Because 

both viruses are assumed to have radii larger than the critical radius, we imagine the scenario 

in which the cost of genome replication is the dominant cost of synthesizing these viruses. 
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The fractional cost of a genetic element in the smaller virus, !!_!"#$%!! is then equal to 

8!!_!"#$%!!, where !!_!"#$%!! is the fractional cost of the genetic element in the larger virus. 

This is because the length of the genome is proportional to !!, and consequently, !! is 

inversely proportional to !! (Figure 5D).  

Figure 5E and SI Dataset 2 provide !! estimates for genetic elements of different 

lengths (1 – 10,000 base pairs) within 30 dsDNA viruses. To illustrate the effect of scaling in 

the example provided above, we made the simplifying assumption that the viruses are large 

enough that their !! are approximately equal to their replication costs. However, for !! 

values in Figure 5E and SI Dataset 2, we provide more precise estimates, treating !! as the 

sum of both the replication cost and the translational cost of a virus. The cost of replicating 

a double-stranded genetic element can be obtained from SI Eq. 3. For a 1 kb element, which 

is about the average length of a bacterial gene, the direct and total costs of its replication per 

virus, !!"#/! ,!are 3 x 104 PD and 9 x 104 PT, respectively. Both direct and total cost estimates 

indicate that the strength of selection acting on a 1 kb, non-transcribed element ranges from 

2 x 10-2 - 7 x 10-6 (SI Dataset 2, Figure 5E) when considering viruses with radii ranging from 

≈20 nm to 400 nm. The difference between direct and total estimates of selection strength is 

minimal within this range of capsid radii and continues to diminish as the capsids grow in 

size.   

To examine whether selection or genetic drift will decide the fate of a genetic 

element we need to assess each virus’s effective population size. This is difficult because the 

effective population size of most viruses is unknown and subject to great variability due to 

several environmental factors (29). The current effective population size estimates regarding 

HIV, influenza, dengue, and measles fall within 101 to 105 (29-31). Based on the wide range 
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of variation in these effective population sizes, it is difficult to make conclusive statements. 

It is, however, apparent that the strength of selection on neutral genetic elements is a non-

linear function of the viral capsid radius and becomes much weaker as viruses get larger 

(Figure 5E). In fact, for giant viruses (with outer radius, R > 200 nm), assuming an !!!! = 

10-5, genetic drift could overpower selection, allowing for the persistence of neutral elements 

of lengths 100 bp or shorter in the population. For the majority of viruses (R = 28 ± 6.5 

nm) (26), however, selection is likely to be the dominant force and drift may only play a role 

for genetic elements that are just a few base pairs long (Figure 5E, SI Dataset 2).  

 

3.6 Discussion  

There have been several experiments that imply that a viral infection requires a 

significant portion of the host energy budget (3, 5, 10, 11, 32-34). Following these 

experimental hints, we enumerated the energetic requirements of two very different viruses 

on the basis of their life-cycles, and thereby estimated the energetic burdens of these viral 

infections on the host cells. According to our total cost estimates, a T4 infection with a burst 

size of 200 will consume a significant portion (about 30%) of the host energy supply. This 

result, demonstrating a significant fraction of the host energy used by an infection, supports 

the experimental findings that the T4 burst size is correlated positively with the host growth 

rate (7, 11). It also lends further credence to the hypothesis that auxiliary metabolic genes 

within phage genomes are not just evolutionary accidents; rather, they have come to serve a 

functional role in boosting the host’s metabolic capacity, which translates into larger viral 

burst sizes (3, 4, 34, 35). These calculations make it all the more interesting to develop high-

precision, single-cell calorimetric techniques to monitor energy usage during viral infections.

 Perhaps the most promising support for T4’s cost estimate is the observation that 
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the maximum T4 burst size is 1,000 virions (15). Using the total cost to make new viruses, at 

a burst size of 1,000, the viral infection would consume 170% of the host normal energy 

supply at a 30 min growth rate, consistent with the observed apparent upper limits on burst 

size. 

It is however important to note that in all of our estimates, we make the assumption 

that the sources of nitrogen, sulfur, phosphorus, and other trace elements are in excess, 

which is typical of culture conditions in the laboratory and from which most burst 

measurements are obtained (SI Section B), but this assumption may not be valid in certain 

natural environments as demonstrated by the phosphorus-limited environments of marine 

ecosystems (36). In such limited environments, phages are shown to carry auxiliary genes 

and to actively rewire the host metabolism (full discussion can be found in the SI Section A). 

It would be interesting to have additional experimental studies that go beyond the ideal 

conditions of a laboratory experiment to fully explore the range of possible limiting factors 

in a viral infection.  

While there are several fascinating studies that explore the link between the host 

metabolism and phage infections (3, 6, 12, 13), similar studies focusing on viruses of 

multicellular eukaryotes are largely lacking. To that end, we chose to estimate the energetic 

cost of a representative virus for this category, namely, the influenza virus. The influenza 

virus and T4 phage are functionally and evolutionarily very different viruses. Yet, they have a 

very similar per-virus cost, regardless of whether the total or the direct cost estimates are 

being considered. This is primarily due to the fact that they have a similar translational cost, 

which dominates all other costs. Their comparable cost of translation is due to the fact that 

these viruses have similar dimensions and are both composed of about a million amino acids. 
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Perhaps even more surprising is that both viral infections have very similar average power 

consumptions, on the order of 200 fW (SI Section K).  

    Even with its higher burst size, an influenza infection has a total cost that is just 1% 

of the total energetic budget of a eukaryotic cell over the characteristic time of the viral 

infection. This is because a typical eukaryotic cell is estimated to have much higher energy 

supply than a typical bacterium under the same growth conditions. So far in our estimates, 

we do not account for the possible inefficiencies at various stages of the viral infection, 

which may drain more of the host energy than we estimated. Specifically, burst sizes are 

typically reported from plaque assays, which count the number of infectious virions that 

create plaques. However, we don’t have a good estimate for the number of non-infectious 

viruses that arise from faulty genome replication, transcription, or viral assembly, for 

example. This point is especially important when considering RNA-based viruses such as 

influenza or HIV, which have higher mutation rates (10-4-10-6 mutations per base pair per 

generation; (37)) compared to dsDNA viruses such as T4 (10-6-10-8 mutations per base pair 

per generation; (37)). As a result of these higher error rates, RNA-based viruses may have 

greater hidden costs associated with aborted viral synthesis or a greater fraction of faulty and 

non-infectious virions.  

Even infectious viruses cannot all be guaranteed to enter the lytic cycle upon 

infecting a host cell. For example, only 10% of influenza-infected host cells have been 

shown to generate infectious virions (38), demonstrating the cumulative inefficiency of an 

influenza infection. Counting plaques to measure viral burst sizes likely underestimates the 

true burst size, and result in an underestimation of the infection cost. As such, single-cell 

studies of viral infection could provide a detailed breakdown of inefficiencies at various steps 

of the viral life-cycle and enable more exact cost estimates.  
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In addition to the energetics of viral synthesis, another burst-limiting metric to 

consider is a volumetric one, namely the fraction of the host volume occupied by viruses 

during an infection. Taking influenza and T4 as our representative viruses, it is clear that they 

both occupy a relatively small percentage of the total host volume (39). A T4 infection takes 

up less than 5% of its host’s total volume. An influenza infection takes up even less space 

(≈0.2% of its host volume). These estimates suggest that 1) for T4, the energy requirement 

is more likely a burst-limiting factor than the volumetric requirement, and 2) for influenza, 

neither energetic nor volumetric factors seem to be limiting the burst size.  

We have already considered several possible causes for the inefficiencies of an 

influenza infection, which have experimentally been shown to result in only one infectious 

virus out of every ten produced (38). Accounting for this inefficiency, boosts the total cost 

of an influenza infection to ≈10% of its host’s. A second consideration that could explain 

the relatively low energy uptake of an influenza infection is the growth state of its host cell. 

Our current estimate assumes that the host cell is under maximal growth conditions. When 

the host cell is not dividing, however, its energy supply could be as low as 1012 PT (estimated 

for a 12-hour infection period, SI section J). In considering both the 10% infection 

efficiency and assuming a slow-growing host cell, the influenza infection’s total cost could 

also be a significant fraction of its host’s total cost.  

Another consideration is that implicit in our original question is the assumption that 

all viruses must conform to producing the maximum burst size allowed by their host 

energetic supply. This assumption, while it appears compatible with our findings for phages, 

may simply not be true for viruses such as influenza. It may be that a eukaryotic virus within 

a multicellular setting has an entirely different growth strategy than a prokaryotic virus 

infecting a single-celled organism. The influenza virus burst size is not only under selection 
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pressure within its host cell, but also within the multicellular organism that serves as its 

secondary host. 

Finally, we will need future experimental studies to test the assumptions underlying 

the relationship between the fractional cost of a neutral genetic element and the strength of 

negative selection acting on the viral population. There is also a great need for estimates of 

the effective population sizes of different viruses within their natural environments. With 

current effective population size estimates for viruses it appears that selection likely 

determines the fate of genetic elements for the majority of viruses, which have on average 28 

nm radii (26) (Figure 5E, SI Dataset 2). However, for larger viruses (R > 200 nm), the 

diminishing, fractional cost of a gene may enable the interference of genetic drift to the 

extent that neutral genetic elements could persist in the viral population. The result of such a 

phenomenon could be genome expansions in the form of gene duplication events, cooption 

of previously noncoding, horizontally transferred elements into functional genes and 

regulatory domains, and perhaps even a trend towards greater autonomy over large 

evolutionary time-scales. This effect may explain the unusual number of duplication events 

in the genomes of giant viruses such as that of the Mimivirus (40, 41).  

 

3.7 Supplementary Information 

3.7.A Viral rewiring of the host metabolism 

Viruses rely entirely on their host as an energy source. Instead of passively exploiting 

the host’s metabolic energy, some viruses appear to augment it (2). A particularly compelling 

example is demonstrated by phages that infect cyanobacteria. Cyanophages carry genes for 

photosystem II, high-light inducible protein, transaldolase, and ribonucleotide reductase, 

which are all transcribed during an infection (3). Given the unprecedented presence of 
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photosynthetic genes in viral genomes and the active expression of these genes during an 

infection, it is proposed that cyanophages carry these genes to increase the host energy 

supply and deoxynucleotide production for their own replication (3). An analogous finding is 

the presence of sulfite reductase genes in genomes of phages that infect deep-sea bacteria, 

which use sulfur as their energy source (34). Here too, these phages are hypothesized to add 

to the host’s metabolic output. It was also shown that large DNA algal viruses encode 

deoxynucleotide synthesis enzymes. For example, PBCV-1 encodes 13 nucleotide 

metabolism enzymes and EsV-1 encodes an ATPase and both subunits of ribonucleotide 

reductase (32). The most recent study on this topic identified more than 200 virus-encoded 

auxiliary metabolic genes such as those used in nitrogen and sulfur metabolism in marine 

viral metagenomes (6).  

Adenoviruses have been shown to reprogram the host’s glutamine metabolism by 

up-regulating glutamine transporters and glutamine catabolism enzymes. Glutamine is a 

critical amino acid used in the synthesis and import of other amino acids. Interestingly, this 

viral rewiring of glutamine metabolism is shown to boost the concentration of certain amino 

acids as well as increase glutamine reductive carboxylation. Together these effects are 

required for optimal viral production not only during an adenovirus infection, but also 

during herpes and influenza viral infections (4). In addition to virus-infected cells, which 

have high demand for molecular building blocks and energy, cancer cells, immune cells, and 

other proliferating cells similarly rewire glutamine metabolism for energy production and 

biosynthesis (42).  

Moreover, several examples from the early years of virology have shown that viruses 

such as Rous sarcoma virus and Feline Leukemia Virus increase their hosts’ glycolytic rate 

upon infection (33). Similarly, the Vaccinia Virus was shown to upregulate mitochondrial 
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genes involved in the electron transport chain, thereby increasing the ATP production within 

its host (5). 

 

3.7.B Energetic cost definitions and assumptions 

Viral synthesis requires the expenditure of the host’s ATP-equivalent molecules as 

well as the usurpation of the host’s monomeric building blocks such as nucleotides, amino 

acids, and in the case of some viruses, lipids. To synthesize these monomeric building blocks 

and generate ATP-equivalent molecules, heterotrophic cells, such as the hosts of T4 or 

influenza, rely on reduced carbon sources from their environment. In calculating the 

energetic cost of a viral infection and its impact on the host energy supply, it is critical that 

we state several assumptions about the host growth conditions. First, we assume that the 

host is growing aerobically at 37°C, with glucose as the sole carbon source. Second, we 

assume that sources of nitrogen, sulfur, phosphorus, and other trace elements are in excess, 

which is typical of culture conditions in the laboratory, and from which burst size 

measurements are commonly obtained. Third, we assume that the growth media contains 

only inorganic sources of nitrogen, requiring cells to synthesize amino acids rather than 

salvaging them from a growth medium supplemented with peptides (although this 

assumption should be modified in the case of a mammalian host cell which cannot 

synthesize all amino acids).  

As the sole carbon source in the growth media, glucose will serve both as a source of 

energy and biomass. SI Figure 1 provides detailed estimates of the opportunity and direct 

costs of precursor metabolites in heterotrophic bacteria and eukaryotes, assuming glucose as 

the sole carbon source.  
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As discussed in Chapter II, in the synthesis of building blocks from precursor 

metabolites there is an additional source of opportunity cost, namely the oxidation of 

electron carrier molecules. Had these electron carriers been preserved for energy production 

rather than being oxidized during biosynthesis pathways, 2 ATP molecules could have been 

generated from each NAD(P)H molecule using the bacterial ETC (43) and 2.5 ATP 

molecules from the eukaryotic ETC (44). The combination of the opportunity cost of 

precursor metabolites and the opportunity cost of building block synthesis from precursor 

metabolites will be referred to as the opportunity cost of a building block, (SI Figure 1). To 

simplify, we will generally refer to the opportunity cost of a building block in our 

calculations.  

 

 

 



  III-31 

 
SI Figure 1. A breakdown of direct and opportunity costs associated with  

amino acids, DNA, RNA, and lipids in the context of A) bacterial and B) 

eukaryotic metabolism. Average cost values are reported in the table above 

the chart. See SI Dataset 3 for a detailed derivation of these costs 
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3.7.C Viral entry cost 

The process of viral entry varies extensively across different viral groups. While 

many animal viruses enter their host cell through clathrin-mediated endocytosis or fusion 

with the cell membrane (45), most phages inject their genetic material with the capsid 

remaining outside of the cell. In both cases, however, entry is mediated by the interaction 

between viral entry proteins and host receptors (45).  

For T4, it is the interactions between a minimum of 3 long tail fibers and cellular 

receptors that initiates a cascade of conformational changes (46) (Figure 1, step 1). After this 

preliminary interaction, the base plate is subsequently brought closer to the cell membrane, 

allowing the short tail fibers to interact with their host receptors. The tail sheath contracts, 

resulting in the tail tube puncturing the outer cell membrane (Figure 1, step 2). Then, 

conformational changes in gp5 phage protein activate its lysozyme domains, resulting in the 

digestion of the peptidoglycan layer (Figure 1, step 2). Effectively, the tail tube passes 

through the periplasm. At this point, the phage DNA is passed through the inner membrane 

via the tail tube and is then exposed to the intracellular environment (Figure 1, step 2). In 

general, viral entry proceeds through protein conformational changes and doesn’t rely on 

ATP expenditure (47). In the case of the T5 phage, this point has been explicitly 

demonstrated (48).  

The influenza virus is composed of a capsid that is enveloped by a lipid membrane 

(Figure 2). Inside the capsid reside the ribonucleoprotein complexes, which are composed of 

the segmented viral genome encapsidated by proteins. The viral membrane is decorated with 

hemagglutinin (HA) proteins, which bind to the host sialic acid receptors, thereby initiating 

clathrin-mediated endocytosis (Figure 2, step 1). During endocytosis, a self-assembled 

protein cage composed of clathrin triskelions forms around the inward budding vesicle. 
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Once the clathrin cage has formed, dynamins perform the last stage of endocytosis (Figure 2, 

step 2).  

Dynamin is a mechanochemical GTPase that self-assembles into multimeric spirals 

at the necks of clathrin-coated endocytic vesicles to catalyze membrane fission. The dynamin 

helix wrapped around the neck of an endocytic vesicle forms a protein-lipid tube with an 

inner diameter of 20 nm. In the presence of GTP, the dynamin helix undergoes structural 

changes that result in the reduction of the inner diameter (49). Because the dynamin helix is 

composed of at least 2 turns (35), each turn is composed of 13 dynamins, and each dynamin 

consumes 1 GTP, the energy requirement for vesicle fission can be approximated as 30-100 

PD (Figure 2, step 2).  

Once the vesicle is released from the cell membrane, the clathrin cage has to be 

disassembled. This process requires the expenditure of 3 ATPs per triskelion (50). For a 

clathrin cage composed of 36 triskelions, this is equivalent to about 100 PD (Figure 2, step 3). 

As the endosome matures, the endosomal lumen becomes more acidic. The influenza virus 

has exploited this feature for the uncoating of its lipid membrane as well as the disassembly 

of its capsid. The endosomal pH drop activates the viral transmembrane proton channel, 

M2. The influx of H+ ions from the endosome through M2 leads to the dissociation of the 

viral capsid proteins. The acidic environment also triggers conformational changes that 

expose the viral HA2 fusion peptide, which subsequently fuses the viral and endosomal 

membranes (51). These two events together enable the release of the viral ribonucleoprotein 

complexes into the host’s cytoplasm (52). To summarize, the cost of entry for influenza per 

virion, !!"#$%, falls within the range of 102 to 103 PD. It’s important to note that in our 

estimates we will generally not include the cost of host protein production, unless a protein 

is exclusively produced for viral synthesis. For example, the costs of producing the clathrin 
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cage and dynamin proteins are not included due to the fact that these proteins are recycled 

and produced for the host’s own functions.  

T4 efficiently exposes its genomic material to the host cytoplasm where it can be 

readily transcribed and translated. The influenza virus, however, due to the much larger 

volume and extensive compartmentalization of its eukaryotic host, faces additional obstacles 

in the way of reaching sites of transcription and translation. We will describe these obstacles 

in the next section.  

3.7.D Viral intracellular transport cost 

Replication and transcription of the influenza virus occur inside the nucleus. Like 

other cargo destined towards the nucleus from the plasma membrane, the endosome 

carrying the influenza virus is transported via the action of the dynein motor proteins along 

microtubule tracks (Figure 2, step 4). Unlike the kinesin motor protein, dynein is one that 

takes variable step sizes along the microtubule. As a result of having a hexameric ring of 

AAA+ ATPases (similar to Vps4, described later SI section I), dynein has multiple ATP 

binding sites. For the purposes of our estimates, we assume a step size of 8 nm and the 

expenditure of 1 ATP per step (53). If we assume that the nucleus resides roughly in the 

center of a cell ≈10 !" in diameter (18), this will require approximately 103 dynein steps in 

carrying the endosome. As a result, the cost of transport for the viral genome from the 

vicinity of the cell membrane to the nucleus is approximately 103 PD (Figure 2, step 4). 

The ribonucleoproteins are imported to and exported from the nucleus via nuclear 

localization signals (Figure 2, step 5). The nuclear import of influenza ribonucleoproteins has 

been experimentally demonstrated to be an energy-consuming process (54). To get access to 

the nucleus, these ribonucleoproteins have to pass through the nuclear pore complex. They 
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do so by binding to importins using nuclear localization signals. Each cargo imported into 

the nucleus will require the hydrolysis of one GTP. Whether ribonucleoproteins travel in and 

out of the nucleus separately or together is not definitely known, but there is recent evidence 

suggesting that the eight ribonucleoproteins travel as one cargo (55). As such, we estimate 

that the import of the viral genome will cost 1 PD per virus. 

Once inside the nucleus, the influenza genome is transcribed and replicated, the 

costs of which will be discussed in later sections. The production of the full 

ribonucleoprotein complex is a convoluted process, requiring the transcription of the viral 

genome (Figure 2, step 6), the nuclear export of the resulting transcripts (Figure 2, step 5), as 

well as the translation of viral mRNA transcripts (Figure 2, steps 7). Once the viral proteins 

are generated, some proteins travel back into the nucleus to encapsidate the viral -ssRNA 

genome and form the next generation of ribonucleoprotein complexes (PB1, PB2, NP, and 

PA proteins) (Figure 2, steps 5, 8). Other viral proteins are transported to the cell membrane, 

and together with ribonucleoprotein complexes, which are destined to the same site, bud off.  

Similar to the nuclear entrance, cargo exiting the nucleus must also pay a price. The 

nuclear export cost through the CRM1 export pathway, which is the one used by influenza, 

incurs 1 PD per cargo, similar to the import pathway (55). Considering that on average 6000 

influenza genomes have to leave the nucleus to eventually give rise to 6000 influenza virions, 

we estimate the export of ribonucleoproteins from the nucleus will cost ≈6 x 103 PD. The 

mechanism and energetics of viral mRNA export from the nucleus is not well understood 

(56) though there’s a growing body of evidence implicating the involvement of the nuclear 

RNA export factor 1. We suspect the cost of mRNA nuclear export is on par with the cost 

of ribonucleoprotein nuclear export and estimate the cost of nuclear import and export to be 

≈104 PD.  
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Upon exiting the nucleus, ribonucleoproteins have to be transported towards the cell 

membrane where they can co-assemble with other viral proteins and bud off. Their path to 

the cytoplasm starts at the Microtubule Organizing Center (MTOC) and proceeds via 

Recycling Endosomes bound to the RAB-11 GTPase (55). This endocytic transport is 

powered by kinesin motor proteins trekking along microtubules with a step size of 8 nm and 

the hydrolysis of 1 ATP per step (57) (Figure 2, step 9). Assuming the eight 

ribonucleoproteins travel as one cargo – consistent with the reported typical size of an 

endosome (200 nm in diameter) (58) – a 5 !" transport of 6000 ribonucleoproteins from 

the nucleus to the cytoplasm costs ≈3 x 106  PD. Under a similar assumption (i.e. each 

endosome carries the proteins required to build a single virus), the cost of protein transport 

to the apical cell surface is similar to the cost of ribonucleoprotein transport. Considering the 

sum of the costs from nuclear import and export as well as travel along the microtubules, the 

cost of intracellular transport for an influenza infection, !!"#$%&'/! , can be approximated as 6 

x 106  PD.  

The cost of GTPases mediating endosome docking and fusion is likely negligible 

compared to the heavy cost of motor proteins mobilizing the endosomes. This is because 

during endosome trafficking, there are far more steps taken by motor proteins than there are 

endosome fusion or docking events. Yet, each fusion or docking event incurs a similar cost 

to a step taken by a motor protein. More detailed estimates of endosomal trafficking are 

exceedingly difficult due to the unavailability of studies that shed light on 1) the average 

number of proteins carried per endosome, 2) the average number of GTPases needed per 

endosome, and 3) the average length that an endosome travels within the cell, among other 

topics.  
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3.7.E  Viral genome replication cost 

The direct cost. Genome replication is a complex phenomenon requiring many 

different steps, such as the unwinding of the parent helix, RNA primer synthesis, Okazaki 

fragment ligation, and proofreading. Though there are many facets of genome replication in 

cells that require energy expenditure, the direct cost of replication lies primarily in the direct 

synthesis cost of nucleotides from precursor metabolites as well as the polymerization of 

individual nucleotides. The energetic cost of genome replication for a virus with a double-

stranded DNA genome can be approximated as   

!!"#(!"#$%)/!! ≈ !2!!(!! + !!). [3] 

Here, !! corresponds to the genome length and is multiplied by two to account for T4’s 

double-stranded genome. The cost of each DNA nucleotide can be stated as the sum of !! , 

which represents the average direct cost of DNA synthesis from precursor metabolites, and 

!!, which denotes the cost of chain elongation per base (equivalent to 2 PD, (19)) (Figure 1, 

step 5). The energetic cost of replicating a -ssRNA genome is similarly 

!!"#(!!!"#$)/!! ≈ !2!!(!! + !!), [4] 

where !! represents the average direct cost of RNA synthesis from precursor metabolites. 

The factor of two stems from the fact that a -ssRNA has to first be converted to +ssRNA 

before a second copy of -ssRNA can be synthesized (Figure 2, step 8). !! in the context of 

bacterial metabolism is equivalent to 11 PD (SI Figure 1, SI Dataset 3). The average synthesis 

cost of an RNA base from a precursor metabolite in the context of eukaryotic metabolism is 

10 PD (SI Figure 1, SI Dataset 3). With these values in hand, we estimate the direct cost of T4 
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(!! ≈ 2 x 105) and influenza (!! ≈ 1 x 105) genome replication to be ≈4 x 106 PD and ≈3 x 

105 PD, respectively.  

The opportunity cost.  The opportunity cost of T4 phage replication can be 

estimated as 2!!!!" , where !!" corresponds to the average opportunity cost of a DNA base 

synthesized in bacteria and is approximately 34 PO (SI Figure 1, SI Dataset 3). Note, !!" 

represents the sum of the average opportunity cost of precursor metabolites required for 

DNA synthesis (33 PO) and the average opportunity cost of DNA synthesis from precursor 

metabolites (1 PO).  Under this estimate, the opportunity cost of genome replication for a T4 

phage is ≈1 x 107 PO. Similarly, the opportunity cost of genome replication for an influenza 

virus can be estimated as 2!!!!" , where !!" refers to the average opportunity cost of an 

RNA nucleotide synthesized in a eukaryotic organism, which is ≈!39 PO (SI Figure 1, SI 

Dataset 3). The opportunity cost of influenza genome replication is therefore ≈8 x 105 PO.  

The total cost.  The total cost of T4 phage replication is the sum of opportunity 

and direct costs: 2!!(!! + !! + !!"). Under this estimate, the cost of genome replication 

for a T4 phage is ≈2 x 107 PT. The same logic follows for influenza where the total cost of 

its genome replication can be estimated as 2!!(!! + !! + !!"). The total cost of influenza 

genome replication is therefore ≈1 x 106 PT.  

The replication cost component of an infection.  Further, the replication cost per 

infection is the cost of replication for a virus multiplied by its burst size, !, resulting in 

!!"#/!! ≈ !!!!"#/!. [5] 

The direct, opportunity and total costs of genome replication during a T4 infection with an 

average burst size of 200 are ≈9 x 108  PD, ≈!2 x 109 PO and ≈!3 x 109 PT (Figure 1, step 5). 
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The direct, opportunity and total costs of genome replication during an influenza infection 

with an average burst size of 6000 are ≈ 2 x 109 PD, ≈!5 x 109 PO and ≈!6 x 109 PT (Figure 2, 

step 8).  

3.7.F  Viral transcriptional cost  

As in the case of replication, transcription involves various energy-consuming 

processes, such as transcriptional activation, initiation and termination, as well as 

proofreading and mRNA splicing. However, the dominant cost in transcription is similar to 

that in replication, namely the investment in the synthesis of the nucleotides themselves (19). 

See Figure 1 (step 3) and Figure 2 (step 6).  

The direct cost. The direct cost of transcription is approximately  

!!"/!! ≈ (!!" + !!) !!"!!"!
!!! , [6] 

where !!" and !!" represent the length and the copy number of each viral mRNA transcript, 

respectively. The average direct cost of synthesizing an RNA base from precursor 

metabolites is denoted as !! , which is 10 PD (SI Figure 1, SI Dataset 3). The direct cost of 

polymerizing an RNA base is symbolized by !!" , which is equal to 2 PD (19). Because the 

mRNA copy number for each viral gene is largely an unknown parameter, we approximated 

the viral genome as one long gene. This allowed us to eliminate the !! and !! dependence, 

and replace them with constants, !! !and !! , such that 

!!"/!! ≈ ! (!!" + !!)!!!! . [7] 

The constant !! , corresponds to the length of the mRNA transcript, and thus is equal to the 

length of the genome. The average copy number of this transcript, !! , can be approximated 

by the observed ratio of 1 mRNA transcript per 1,000 resulting proteins both in prokaryotes 
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(18) as well as in mammalian cells (59). The average protein copy number of a virus, !!, can 

be related to its average transcript number according to !! ≈ !!
!""". 

To obtain !! we have used available data on viral protein copy numbers. For a T4 

phage, with a total estimated protein count of 5,000 representing 35 structural and 3 lysis 

genes (SI Table 1), the average protein copy number per virus is ≈130. Influenza’s total 

protein count is also approximately 5,000, representing the products of 9 proteins (SI Table 

2). This results in an estimate for the average protein copy number for an influenza virus of 

≈550. With these numbers in hand, we estimate !! to be approximately 0.13 for a single T4 

phage and 0.55 for an influenza virus. We note that generally mRNAs are relatively short-

lived and each individual mRNA on average produces between 10 and 100 proteins. 

However, the pool of such proteins is then used to synthesize all the virus particles that 

make up a given burst. 

While it is sufficient to consider only the synthesis and polymerization costs of 

nucleotides in the direct cost estimates for genome replication, the transcriptional cost 

should additionally encompass the cost of mRNA re-polymerization (19). This is because 

mRNA transcripts have a short lifespan and must be regenerated throughout the duration of 

the infection. This cost is perhaps more prominent in bacteria, where the lifetime of a 

transcript is about 3 minutes (18), whereas the lifetime of a mammalian cellular transcript is 

approximately 10 hours (18), and therefore comparable to the lifetime of the influenza 

infection itself. The first step in calculating the mRNA re-polymerization cost is to multiply 

the lifetime of the infection, !, by the mRNA degradation rate, !! .  

The second step is to take into account the average transcript copy number and its 

length to determine the number of RNA bases that have to be re-polymerized during the 
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course of an infection. Effectively, the assumption is that the RNA nucleotides are only 

being re-polymerized, not re-synthesized. The re-polymerization cost of transcription can be 

stated as the number of nucleotides to be re-polymerized, !!!!!!!, multiplied by !!" . The 

direct cost of transcription per virus can then be revised as such: 

!!"/! !≈ ! !!!!(!! + !!!"!!!). [8] 

The lifetime of a T4 infection is ≈30 minutes (60), and the lifetime of an influenza infection 

is roughly 12 hours (14). With these parameters in hand, the direct cost of transcription (per 

virus) for T4 and influenza are ≈7 x 105 PD and ≈7 x 104 PD, respectively (Table 1). 

The opportunity cost. The opportunity cost of transcription can be obtained by 

!!!!!!" , where !!"  represents the opportunity cost of an RNA nucleotide. !!"  is 

approximately 31 PO in bacteria and 39 PO in eukaryotes (SI Dataset 3, SI Figure 1). Note, 

that in this expression we don’t account for re-polymerization events as RNA nucleotides 

are assumed to be recycled rather than resynthesized. The opportunity costs of transcription 

for a single T4 phage and an influenza virus are thus ≈7 x 105 PO and ≈2 x 105 PO, 

respectively.  

The total cost.  The total cost of transcription can be obtained by !!!!(!!!" +

!!! + !!!"!!!), which represents the sum of opportunity and direct costs of transcription. 

According to this estimate, the total costs of transcription for a single T4 phage and an 

influenza virus are ≈1 x 106 PT and ≈3 x 105 PT, respectively (Table 1).  

The transcriptional cost of an infection. The transcriptional cost of an infection is 

the transcriptional cost of a virus multiplied by its burst size, namely,  

!!"/! !≈ !!!!"/!. [9] 
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For T4 with an average burst size of 200 and for influenza with an average burst size of 

6000, the direct cost of transcription at the level of an infection is ≈1 x 108  PD (Figure 1, 

step 3) and ≈4 x 108 PD, respectively (Figure 2, step 6). The opportunity cost of transcription 

for these two infections are ≈1 x 108 PO (T4, Figure 1, step 3) and ≈4 x 108 PO (influenza, 

Figure 2, step 6). Their total costs are ≈3 x 108 PT (T4, Figure 1, step 3) and ≈2 x 109 PT 

(influenza, Figure 2, step 6) (Table 1). 

3.7.G Viral translational cost 

There are important biosynthetic costs associated with proteins just as there are with 

nucleic acids. Here, we attempt to capture the most significant costs in the protein synthesis 

pathway while making some simplifying assumptions that neglect substantially smaller cost 

components such as the costs of translational initiation and termination and post-

translational modifications (19). The estimate for translational cost follows the same 

rationale as the cost calculation for transcription. 

The direct cost.  The direct cost of translating the viral proteome can be estimated 

as  

!!"/!! ≈ ! (!! + !!") !!"!!"!
!!! . [10] 

Here we have multiplied the total number of amino acids by the per-amino acid costs of 

synthesis from precursor metabolites, !! , and polymerization, !!" . The arrays !! and !! 

hold values for the length of each protein and its copy number per virus, respectively (SI 

table 1, SI table 2). We show that !!"!!"!
!!!  for the influenza virus and the T4 phage are 

about 1.7 and 1.2 million amino acids, respectively (SI table 1, SI table 2). In both bacteria 

and eukaryotes, !!, is on average equal to 2 PD (SI Figure 1, SI Dataset 3) and !!" is 4 PD 
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(21). Due to the relatively slow protein degradation rates for bacteria (!.!!! ) and human cells 

(!.!"!! ) (19, 22) compared to infection lifetimes, we have neglected costs associated with this 

process. Using this information, the direct cost of translation for a T4 phage and an 

influenza virus are ≈7 x 106 PD and ≈1 x 107 PD, respectively (Table 1). This finding stems 

mainly from the fact that both viruses are based on ≈106 amino acids.  
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SI Table 1. T4 bacteriophage structural proteins and their average copy 

numbers per virion. The number of amino acids comprising each virion is 

calculated by the product of the average protein copy number and the length 

of the corresponding protein.  

 

Table S1. T4 bacteriophage structural proteins and their average copy numbers per virion

T4 bacteriophage

Protein Protein length ðLpjÞ
Average protein copy

number ðNpjÞ
Total no. of amino acids in

protein j ðLpjNpjÞ

23* 521 930 484,530
20* 524 12 6,288
24* 427 55 23,485
soc* 80 840 67,200
hoc* 376 160 60,160
22* 269 576 154,944
21* 212 72 15,264
IPIII* 194 370 71,780
IPI* 95 360 34,200
IPII* 100 360 36,000
alt* 682 40 27,280
68* 141 240 33,840
67* 80 341 27,280
3† 176 6 1,056
53† 196 6 1,176
5† 575 3 1,725
6† 660 12 7,920
7† 1,032 6 6,192
8† 334 12 4,008
9† 288 18 5,184
10† 602 18 10,836
11† 219 18 3,942
12† 527 18 9,486
15† 272 6 1,632
18† 659 144 94,896
19† 163 144 23,472
25† 132 6 792
26† 208 Assumed 1 208
27† 391 3 1,173
28† 177 Assumed 1 177
29† 590 6 3,540
48† 364 6 2,184
54† 320 6 1,920
td† 286 3 858
frd† 193 6 1,158
holin‡ 218 20 4,360
endolysin‡ 164 20 3,280
spanin‡ 216 20 4,320
Totals

Pk
j=1Npj = 4,805 proteins

Pk
j=1LpjNpj = 1,225,786 aa

The number of amino acids comprising each virion is calculated by the product of the average protein copy
number and the length of the corresponding protein.
*These genes together compose the phage head.
†These genes are those that make up the tail tube, the tail sheath, and the base plate (table modified from ref.
85).
‡These genes are those that are involved in lysis (76).

Mahmoudabadi et al. www.pnas.org/cgi/content/short/1701670114 11 of 12
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SI Table 2. Influenza A virus proteins and their average copy numbers per 

virion. The number of amino acids comprising each virion is calculated by 

the product of the average protein copy number and the length of the 

corresponding protein (Table modified from (61)).  

 

 

The opportunity cost. The opportunity cost of viral translation is approximately 

!!" !!"!!"!
!!! , where !!" denotes the average opportunity cost of an amino acid, and 

corresponds to 25 PO in bacteria and 30 PO in eukaryotes (SI Figure 1, SI Dataset 3). The 

opportunity cost of viral translation for a T4 phage and an influenza virus are therefore ≈3 x 

107 PO and ≈5 x 107 PO, respectively.  

The total cost.  The total cost of viral translation is the sum of direct and 

opportunity costs of translation. The total cost of viral translation for a T4 phage and an 

influenza virus are therefore ≈4 x 107 PT and ≈6 x 107 PT, respectively (Table 1).  

The translational cost component of an infection.  The translational cost of an 

infection is simply the cost of translation per virion multiplied by its burst size, namely,  

!!"/! !≈ !!!!"/!. [11] 

Table S2. Influenza A virus proteins and their average copy numbers per virion

Influenza A virus

RNA segment lengths
(no. of nucleotides) Protein product

Protein
length ðLpjÞ

Average protein
copy number ðNpjÞ

Total no. of amino acids
in protein j ðLpjNpjÞ

1 (2,341) Polymerase PB2 759 45 34,155
2 (2,341) Polymerase PB1 757 45 34,065
3 (2,233) Polymerase PA 716 45 32,220
4 (1,778) Hemagglutinin 566 500 283,000
5 (1,565) Nucleoprotein 498 1,000 498,000
6 (1,413) Neuraminidase 454 100 45,400
7 (1,027) Matrix protein M1 252 3,000 756,000

Matrix protein M2 97 40 3,880
8 (890) NS1 230 0 0

NS2 121 165 19,965
Totals

Pk
j=1Npj = 4,940 proteins

Pk
j=1LpjNpj = 1,706,685 aa

The number of amino acids comprising each virion is calculated by the product of the average protein copy number and the length
of the corresponding protein (table modified from ref. 86).

Dataset S1. The detailed breakdown of opportunity and direct costs of building blocks across heterotrophic bacterial and eukaryotic
metabolisms (using glucose as the sole carbon source). All references are provided as notes in the Excel sheets

Dataset S1

Dataset S2. A list of viruses and their associated costs used to estimate replication to translation cost ratios shown in Fig. 4

Dataset S2

Dataset S3. A list of direct and total fractional cost estimates, Eg, for genetic elements of lengths 1, 10, 100, 1,000, and 10,000 bp across
30 dsDNA viruses (Fig. 5). Genetic elements are assumed to have no functional benefit to the virus and to be nontranscribed. Viruses A, B,
and C correspond to hypothetical viruses

Dataset S3

Mahmoudabadi et al. www.pnas.org/cgi/content/short/1701670114 12 of 12
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The direct, opportunity and total translational costs for a T4 infection with a burst size of 

200 are ≈1 x 109 PD, 6 x 109 PO and 8 x 109 PT (Figure 1, step 4). For an influenza infection 

with a burst size of 6000, these costs are ≈ 6 x 1010  PD, 3 x 1011 PO and 4 x 1011 PT (Figure 2, 

step 7)(Table 1). 

Protein folding and quality control.  Just as in any other biological process, 

protein folding is subject to errors. To correct for such errors and prevent the aggregation of 

misfolded proteins, cells from all three domains of life have evolved elaborate mechanisms 

for the detection of misfolded proteins. Through various ATP-dependent (e.g. Hsp90, 

Hsp70, and Hsp60) and ATP-independent processes, a triage is carried out in which some 

proteins are re-folded and others are degraded (62-64). From an energetic standpoint, 

protein quality control mechanisms are likely to cost substantially less than the cost of 

translation. As shown above, a protein with an average length of 300 amino acids (22) will 

have a direct translational cost of 1,800 PD and a total cost of 9,300 PT in bacteria and 10,800 

PT in eukaryotes, respectively. On the other hand, the energetic cost of various protein 

quality control pathways can range from a few ATPs (65) to a few hundred ATPs per 

protein (66), which is required for protein degradation. Thus, it is likely that protein quality 

control will be a fractional cost compared to the translational cost of a protein. A similar 

conclusion was drawn in the context of cellular protein cost (19). Because we were unable to 

ascertain the fraction of viral proteins that may be degraded, and because different proteins 

require different quality control pathways (67), any more detailed estimates are difficult to 

make. Future experimental studies would be needed to determine any substantial costs 

incurred by protein quality control or translation at large that may be missing from our 

estimates.  
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Another very interesting experimental avenue would be to explore the consequences 

of the quality control mechanisms as they are being partially recruited towards maintaining 

the viral proteome. Particularly in the context of a host cell that survives the infection, how 

the cell responds to the additional burden from viral protein production and maintenance 

would be a fascinating topic of study. Constructed from roughly 5000 proteins (SI Table 2), 

and with an average burst size of about 6000, the influenza infection will produce about 3 x 

107 viral proteins. Considering that a human cell will harbor more than 109 proteins (68), we 

would expect the extra load from viral proteins on the quality control machinery to be 

minimal. For a T4 phage, composed of roughly 5000 proteins (SI Table 1) and with a burst 

size of roughly 200, the total number of viral proteins during an infection would be 

approximately 106. This is comparable to the number of bacterial proteins, which is 

estimated to be 106 per cubic micron (69), or the approximate volume of an E. coli cell. As 

such, in the case of a T4 infection, the viral quality control pathways are likely to more 

heavily affected than in the case of an influenza infection.   

3.7.H Assembly and genome packaging cost 

Upon translation, the influenza viral proteins and ribonucleoproteins travel towards 

the cell membrane via Rab-bound endosomes that are carried by kinesins on microtubules. 

Interactions of the matrix protein M1 with ribonucleoproteins and the viral transmembrane 

proteins, namely HA, NA, and M2, result in the assembly of the influenza virus (70). 

Though the kinetics of the assembly steps remain to be delineated, influenza virus assembly 

and genome packaging are not regarded as energy-consuming processes. In general, virus 

assembly is described as an energetically favorable process, typically driven by the burial of 

hydrophobic surfaces (71, 72), and therefore independent of host energy expenditure. As an 
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example, the assembly of hepatitis B virus is shown to occur spontaneously through weak 

protein-protein interactions (73).  

While the assembly of the T4 capsid is spontaneous, the packaging of the genome 

inside the capsid is not (Figure 1, step 7). The cost of genome packaging for a T4 phage is 

!!"#$/! = !!!!, [12] 

where the cost to package a base pair, !!, is 2 PD (74). For the 169 kb genome of T4, this 

cost is ≈3 x 105 PD.  

Genome packaging cost of an infection. The packaging cost of a T4 infection is 

simply the cost of packaging for a single T4 phage multiplied by the T4 burst size: 

!!"#$/! = !!!"#$/!. [13] 

For T4, with a burst size of 200, the contribution of packaging to the total cost of infection 

is ≈7 x 107 PD (Figure 1, step 7) (Table 1).  

3.7.I Viral exit cost 

Viruses use two primary exit strategies. Generally, enveloped viruses such as 

influenza and HIV bud off from the host membrane. Phages, on the other hand, generally 

lyse their host cells. For T4, the cost of exit is primarily the production cost of proteins that 

together break down the cell wall. We have already included the cost of lysis proteins in our 

translational cost estimates. The lysis proteins include holin, endolysin, and spanin proteins. 

The holins create holes in the host inner membrane, enabling the endolysins to reach the 

peptidoglycan layer. The spanins fuse the inner and the outer membrane as a requirement 

for lysis of gram-negative bacteria (Figure 1, step 9, only holins and endolysins are shown). 

Considering that T4 holin, endolysin, and spanin proteins are 218, 164, and 216 amino acids 
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in length, respectively, and each have a copy number of about 4,000 per infection (or 

approximately 20 per virus considering a burst size of 200) (75), the contribution of lysis 

proteins to the translational cost of an infection is negligible.   

In the case of influenza, the exocytosis of virions is energy-consuming. However, the 

exact mechanism remains a mystery, with influenza M2 protein so far serving as the most 

likely agent for mediating exocytosis (76). Three separate costs exist: 1) the cost to locally 

bend the membrane outward, 2) the cost to scisse the budding virion from the cell 

membrane, and the cost of the cellular membrane that becomes part of the viral membrane 

(Figure 2, step 10). The cost to bend the membrane into the shape of a sphere of any size, is 

equivalent to 25 PD (21). One way to estimate the cost of scission is to assume that it incurs a 

comparable cost to the HIV scission process, which, similar to several other enveloped 

viruses, is mediated through the ESCRT-III (endosomal sorting complexes required for 

transport) assembly. ESCRT-III complex self-assembles into filaments around the neck of a 

budding vesicle (similar to dynamin), and its disassembly requires the expenditure of 6 PD via 

the Vps4 ATPase (77). The sum of these two costs results in the usage of 31 PD as one 

influenza virus leaves the cell. Because 6000 virions exit the cell on average, exocytosis costs 

approximately 2 x 105 PD.  

An alternative, order-of-magnitude estimate could be made with the assumption that 

the cost of membrane scission during endocytosis equals the cost of membrane scission 

during exocytosis. In estimating the influenza entry cost, we showed that the cost of 

membrane scission during influenza endocytosis via the dynamin polymer is ≈30 PD. 

Together with the cost of membrane bending, ≈25 PD, this exit estimate is slightly higher (55 

PD per virus) than the previous (31 PD per virus). Under this estimate, the cost of exocytosis 

for all 6000 influenza virions amounts to ≈3 x 105 PD.  
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The primary cost of viral exit for influenza, however, is the cost of lipids that are 

taken from the host cell to form the viral membrane. The cost of lipids per virus can be 

estimated by the number of lipid molecules needed per virion multiplied by the cost of a 

lipid molecule, !! : 

!!"#$/! = !!!!
! !!! . [14] 

In SI Eq. 14 the numerator represents twice the viral surface area (accounting for the bilayer) 

and the denominator, s, denotes the surface area of a lipid head group, which is 

approximately 0.5 nm2 (22, 78). With an average radius of 50 nm, the influenza virus is 

comprised of ≈ 105 lipid molecules. The direct, opportunity and total cost of a lipid molecule 

in a eukaryotic cell are 18 PD, 264 PO and 282 PT, respectively (SI Dataset 3, SI Figure 1). As 

a result, the direct, opportunity and total costs of lipids per influenza virus are 2 x 106 PD, 3 x 

107 PO and 4 x 107 PT, respectively.  The exit costs of an influenza infection can be derived by 

!!"#$/! = !!!"#$/!,  [15] 

and are approximately 1 x 1010  PD, 2 x 1011  PO and 2 x 1011 PT for an infection with a burst 

size of 6000 (Table 1).  

3.7.J Estimating the total host energy budget  

The total basal and growth metabolic requirements of various organisms have been 

shown to correlate with the cellular volume (19). We have used SI Eqs. 16-18 presented by 

Lynch and Marinov (19) to estimate the energetic budget of hosts considered in this study. 

Basal metabolic requirement of a cell scales with the cell volume according to 

!! = 0.39!!.!!, [16] 
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where !, represents the cell volume in units of !"!, and !! is in the units of 109 ATP per 

cell per hour. The growth metabolic requirement of a cell similarly scales with the cell 

volume according to  

!! = 27!!.!", [17] 

where !!  is in the units of 109 ATP per cell.  The total energy requirement of a cell is simply 

the sum of the basal and growth energy requirements, 

!! = !! + !!!! , [18] 

where ! is the cell-division time in the units of hours.   

 

For a bacterial cell with a volume of 1 !"!, the maintenance metabolic cost is ≈108 PT in 

the duration of a T4 phage infection which lasts about 30 minutes. A mammalian cell, on the 

other hand, with a characteristic volume of 2000 !"!, has a basal metabolic cost of ≈1012 PT 

over the course of a 12-hour influenza infection. The total energetic cost of a cell should also 

encompass the cost of cellular growth. The total energetic cost of a bacterium and a 

mammalian cell with the dimensions highlighted above are therefore ≈3 x 1010 PT and ≈5 x 

1013 PT, respectively, during the course of their viral infection. The correlation between 

cellular volume and metabolic capacity is supported by the observation that larger E. coli cells 

produce higher T4 burst sizes (79). 

3.7.K Heat production and power consumption of a viral infection 

In our estimates for heat production and power consumption of a viral infection, we 

will not consider the total cost of an infection as it contains the opportunity costs; by 

definition, these opportunity costs do not represent direct usage of ATP (and ATP-
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equivalent) molecules; rather, they represent the ATP (and ATP-equivalent) molecules that 

could have been generated in the absence of a viral infection. For these estimates we will rely 

on the direct costs. 

To estimate the amount of heat that is generated due to a viral infection, we have to 

consider the inefficiency of aerobic metabolism. The burning of glucose results in the 

production of approximately 2800 kJ/mol of heat (80). The same reaction takes place inside 

our cells, with the difference being that cells are capable of harnessing a fraction of the free 

energy that would otherwise be liberated as heat. When glucose is aerobically metabolized 

into water and carbon dioxide, a fraction of the free energy is used to convert ADP into 

ATP, while the remaining free energy is dissipated as heat. By assuming physiological 

conditions, the free energy change of ATP hydrolysis can be approximated as -50kJ/mol 

(16). In bacterial metabolism, 26 ATPs are generated from each glucose molecule; hence the 

free energy captured by the conversion of ADP into ATP is approximately -1300 kJ/mol of 

glucose. As a result, in this simple estimate, we consider that about 50% of the energy from 

the aerobic metabolism of glucose is dissipated as heat: 1− !"## !"
!"#

!"## !"
!"#

!×!100% . For 

eukaryotic cells, with 32 ATPs generated per glucose molecule, about 40% of the energy 

stored in glucose is dissipated as heat. 

The T4 infection has a direct cost of 3 x 109 PD (Table 1). Because each glucose 

molecule results in 26 ATPs in the bacterial metabolism, T4 infection’s direct cost would 

require the complete metabolism of 108 glucose molecules. The influenza infection’s direct 

cost is about an order of magnitude higher than that of T4 (Table 1), and is equivalent to the 

aerobic metabolism of approximately 109 glucose molecules. Based on the number of glucose 

molecules required to cover the direct costs of each infection, the free energy stored in 
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glucose (-2800 kJ/mol), and the percentage of the energy released as heat during the aerobic 

metabolism of glucose (≈ 40-50%), we can conclude that the heat generated during T4 and 

influenza infections are approximately 0.2 nJ and 2 nJ, respectively.  

In half an hour, the T4 infection results in the hydrolysis of ATP-equivalent 

molecules at an average rate of 2 x 106 PD per second. In half a day, an influenza infection 

also has an average ATP-hydrolysis rate of 2 x 106 PD per second. Put in terms of the more 

familiar units of Watts (by assuming -50kJ/mol of free energy change per PD), the power of 

both viral infections is on the order of 200 fW. 

3.7.L Generalizing viral energetics for double-stranded DNA phages 

Figure 5A.1 shows how we can generalize the estimates presented here by thinking 

of dsDNA phages as approximately spherical objects with an outer layer of thickness, t. In 

this model, the inner volume of a virus containing the viral genome is given by !!!
!

! , which 

can be used to estimate the viral genome length (24). The total cost of genome replication 

for a double-stranded DNA genome can be obtained from SI Eq. 3 (Figure 4). However, 

instead of using the viral genome length directly, we can divide the capsid inner volume by 

the volume of a base pair, !! (approximately 1 nm3 ) (22):  

!!"#(!"#$%)/!! ≈
4!!!
3!!

! !! + !!!+!!!" . [19] 

Because for many dsDNA phages only about half of the capsid is filled with the viral 

genome (24), the cost of a DNA base was not multiplied by a factor of 2 (even though the 

genome is double stranded) as the two multipliers cancel each other out. The direct cost of 

replication can be obtained similarly by the exclusion of the opportunity cost of a DNA base 

or !!"  (in bacteria) from SI Eq. 19. Moreover, the translational cost of a virus can be 
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obtained from a modification of !! + !!" + !!!" !!"!!"!
!!! ,  derived previously (SI 

section G). The total cost of viral translation,  

!!"/! ≈ ! !!(!
!!!!)
!!!

! !! + !!" + !!" , [20] 

can be obtained from multiplying the total number of amino acids by the total cost of an 

amino acid. The number of amino acids is estimated by dividing the outer capsid volume 

(denoted by the shaded blue region in Figure 5A), !!(!
!!!!)
! , by the volume of an amino 

acid, !!, which can be approximate as 0.1 nm3 (81). This expression can be further simplified 

by replacing the outer radius, !, with ! + ! (Figure 4): 

!!"/! ≈ !
4!((! + !)! − !!)

3!!
! !! + !!" + !!!" ≈ !4!!

!!
!!

! !! + !!" + !!" . 
[[21] 

The direct translation cost of a virus can be similarly obtained from Eq. 21 by 

excluding the average opportunity cost of an amino acid, !!". The critical radius, !!"#$, at 

which translation and replication will have equal cost can be obtained by setting Eqs. 19 and 

21 equal and solving for ! (Figure 4). Because capsid shell thickness is relatively conserved 

across icosahedral viruses studied to date, it can be treated as a constant equal to 3 nm (82). 

The critical radius for total cost estimates, !!"#$!!"#, is 59 nm. For the direct cost estimates, 

the critical radius, !!"#$!!"# , is 42 nm (Figure 4). 
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SI Dataset 1. A list of viruses and their associated costs used to estimate replication to 

translation cost ratios shown in Figure 4.  Provided in a GitHub repository: 

https://github.com/gitamahm/thesis 

 

 

SI Dataset 2. A list of direct and total fractional cost estimates, !!, for genetic elements of 

lengths 1, 10, 100, 1000, and 10,000 base pairs across 30 dsDNA viruses (Figure 5). Genetic 

elements are assumed to have no functional benefit to the virus and to be non-transcribed. 

Virus A, B, and C correspond to hypothetical viruses. Provided in a GitHub repository: 

https://github.com/gitamahm/thesis 

 

 

SI Dataset 3. A detailed breakdown of opportunity and direct costs of building blocks across 

heterotrophic bacterial and eukaryotic metabolisms (using glucose as the sole carbon source). 

Provided in a GitHub repository: https://github.com/gitamahm/thesis 
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C h a p t e r  I V   

A Comprehensive and Quantitative Exploration of 

Thousands of Viral Genomes 

 
 
4.1 Introduction 

There are an estimated 1031 virus-like particles inhabiting our planet, outnumbering 

all cellular life forms (1, 2). Despite their presence in astonishing numbers and their impact 

on the population dynamics and evolutionary trajectories of their hosts, our quantitative 

knowledge of trends in the genomic properties of viruses remains largely limited with many 

of the key quantities used to characterize these genomes either scattered across the literature 

or unavailable altogether. This is in contrast to the growing ability exhibited in resources 

such as the BioNumbers database (3) to assemble in one curated collection the key numbers 

that characterize cellular life forms. Our goal has been to complement these databases of key 

numbers of cell biology (3-6) with corresponding data from viruses. With the advent of high-

throughput sequencing technologies, recent studies have enabled genomic and metagenomic 

surveys of numerous natural habitats, untethering us from the organisms we know and love 

and giving us access to a sea of genomic data from novel organisms (7). Such advances allow 

us to appreciate the genomic diversity that is a hallmark of viral genomes (7-12) and now 

make it possible to assemble some of the key numbers of virology.  

In contrast to cellular genomes, which are universally coded in the language of 

double-stranded DNA (dsDNA), genomes of viruses are remarkably versatile. Viral genomes 

can be found as single or double-stranded versions of DNA and RNA, packaged in 

segments or as one piece, and present in both linear and circular forms. Additionally, based 
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on their rapid infectious cycles, large burst sizes, and often highly error-prone replication, 

viruses collectively survey a large genomic sequence space, and comprise a great portion of 

the total genomic diversity hosted by our planet (13, 14). Recently, through a large study of 

metagenomic sequences, the known viral sequence space was increased by an order of 

magnitude (7), and much more of the viral “dark matter” likely remains unexplored (15).   

In analyzing an increasing spectrum of sequence data, we are faced with a 

considerable challenge that is unique to viruses, namely, how to find those features within 

viral genomes that might reveal hidden aspects of their evolutionary history. To put this 

challenge in perspective, when analyzing non-viral data, universal markers from the 

ribosomal RNA such as 16S sequences are used to classify newly discovered organisms and 

to locate them on the evolutionary tree of life (16). Virus genomes on the other hand are 

highly divergent and possess no such universally shared sequences (17). 

In the absence of universal genomic markers, viruses have historically been classified 

based on a variety of attributes, perhaps most notably morphological characteristics, 

proposed in 1962 by the International Committee on Taxonomy of Viruses or ICTV (18), or 

based on the different ways by which they produce mRNA, proposed by David Baltimore in 

1971 (19) (see SI and Figure 1 for a detailed description of the ICTV and the Baltimore 

classification categories). Given the prevalence of these viral classification systems in the 

categorization of viruses today, it is worth remembering that their inception predates the 

sequencing of the first genome in 1976. With the fastest and cheapest rates of sequencing 

available to date, we live at an opportune moment to explore viral genomic properties and 

evaluate these existing classification systems in light of the growing body of sequence 

information.  
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Figure 1. Schematics of several viral classification systems explored in this 

study. A) The Baltimore classification divides all viruses into seven groups 

based on how the viral mRNA is produced. DNA strands are denoted in red 

(+ssDNA in darker shade of red than -ssDNA). Similarly RNA strands are 

denoted in green (+ssRNA in darker shade of green than -ssRNA). In the 

case of Baltimore groups 1, 2, 6, and 7, the genome either is or is converted 

to dsDNA, which is then converted to mRNA through the action of DNA-

dependent RNA polymerase. In the case of Baltimore groups 3, 4, and 5, the 
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genome is or is converted to +ssRNA, which is mRNA, through the action 

of RNA-dependent RNA polymerase. B) Nucleotide type classification 

divides viruses based on their genomic material into DNA and RNA viruses. 

Baltimore viral groups 1, 2, and 7 are all considered DNA viruses, and the 

remaining viral groups are considered RNA viruses. C) Host Domain 

classification groups viruses based on the host domain that they infect. Three 

groups are formed: eukaryotic, bacterial and archaeal viruses. 

 

In addition to the ICTV and the Baltimore classifications (see SI) we used a simple 

classification system based on the host domain information, and divided viruses into 

bacterial, archaeal and eukaryotic viruses (Figure 1). The underpinning motivation behind 

this kind of classification is the Coevolution Hypothesis (20, 21). Viruses are obligate 

organisms unable to survive without their host, and as a corollary it is hypothesized that they 

have coevolved with their hosts as the hosts diverged over billions of years to form the three 

domains of life (20, 21). A possible piece of supporting evidence for this hypothesis is that 

there are to date no reported infections of hosts from one domain by viruses of another 

observed. We also explored a minimal classification system that divides the virus world into 

two groups based on their nucleotide type (RNA and DNA), here termed “Nucleotide 

Type” classification (Figure 1). This classification is introduced as a simplified version of the 

Baltimore classification system. In practice, we have assigned Baltimore groups 1, 2, and 7 to 

the DNA viral category, and the remaining Baltimore groups to the RNA viral category. 

Although many viruses are uncharacterized, at the time of the analysis of the data 

presented here, there were 4,378 completed genomes available from the NCBI viral genomes 

resource (22) (data acquired in August, 2015). However, large-scale analyses of genomic 

properties for these viruses are generally unavailable. This stands in stark contrast to the in-

depth analyses performed on partially assembled viral genomes or viral contigs derived from 
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metagenomic studies (7, 23). Although these studies have uncovered many important aspects 

of viral ecology with relatively little bias in sampling, they are limited by the fact that 

metagenomic studies typically do not result in the full assembly of genomes. An interesting 

example that illustrates the difficulty of complete genome assembly from metagenomic 

studies is the crAssphage genome, which despite taking prominent fractions of reads across 

various metagenomic datasets, had gone undetected and remained unassembled (24).  

Without complete viral genomes, it is difficult to develop systematic understanding 

of key aspects of viral genomic architecture. To address this problem at least in part, we set 

out to provide a large-scale analysis of various genomic metrics measured from complete 

viral genomes. To perform a comprehensive analysis on complete viral genomes, we first 

explored the diversity of known viruses and their hosts within the NCBI database (see 

Methods). We then created distributions on a number of metrics, namely genome length, 

gene length, gene density, percentage of noncoding DNA (or RNA), functional gene 

category abundances, and gene order. We have provided brief introductions to these metrics 

in the following subsections.   

Viral genome length, gene length and gene density. Genomes are replete with 

information about an organism’s past and present. A central and revealing piece of 

information is the genome length. As more and more complete genomes have become 

available, we have learned that genome lengths of cellular organisms vary quite extensively, 

specifically by six orders of magnitude (4, 25). Because these studies focused on cellular 

organisms, and because genome length information is generally inaccessible through 

metagenomic studies, large-scale analyses that systematically capture viral genome length 

distributions in light of different classification systems and in relation to other genomic 

parameters are lacking. One such genomic parameter is the number of genes that are 
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encoded per genome, also referred to as gene density (26, 27). Another set of missing 

distributions involves gene lengths, and here too, it is important to see how they vary across 

different viral classification categories.  

The noncoding percentages of viral genomes. One of the most surprising 

discoveries of the past several decades was the rich and enormous diversity of noncoding 

DNA in the human genome (28). Though originally thought of as “junk DNA”, the 

noncoding regions of our genomes were later shown to be of great functional importance. 

Noncoding DNA is an umbrella term for very different elements, for example functional 

RNAs such as micro RNAs (miRNA), regulatory elements such as promoters and enhancers, 

and also transposons and pseudogenes.  

Moreover, genomes vary widely in their noncoding percentages. While multicellular 

eukaryotic genomes such as plants and vertebrates have 50% or more of their genomes filled 

with noncoding regions, single-cell eukaryotic genomes have 25-50% of their genomes 

present as noncoding regions and prokaryotic genomes have even lower percentages of 

noncoding DNA, generally 15 to 20% (29-31). As such, the noncoding percentage of the 

genome is thought to correlate with the phenotypic complexity of the organism, and 

consequently, much of the investigation into noncoding fractions of genomes has been 

focused on higher eukaryotes. However, the discovery of the bacterial immunity against 

phages and other sources of foreign DNA, otherwise known as CRISPR/Cas system 

(Clustered Regularly Interspaced Short Palindromic Repeats), as well as the discovery of a 

new class of antibiotics targeting bacterial noncoding DNA (32) demonstrate the level of 

biotechnological impact and scientific insight that the study of noncoding elements in 

bacteria can provide. Even less is known about the noncoding fraction of viral genomes.  
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The literature on viral noncoding DNA or RNA is relatively sparse but highly 

intriguing. The first viral noncoding RNAs were discovered in adenoviruses, dsDNA viruses 

that infect humans, and were ~160 base pairs long (33-35). These sequences were shown 

responsible for viral evasion of host immunity by inhibition of protein kinase R- a cellular 

protein responsible for the inactivation of viral protein synthesis (36). In ovine herpesvirus, 

miRNAs have been shown to maintain viral latency (37). These are just several examples in 

which viral noncoding elements have been shown to enable viral escape from host 

immunity, as well as regulate viral life-cycle and viral persistence (34). Despite many 

interesting studies exploring the topic of cellular noncoding DNA (29-31), there are no 

studies, to our knowledge, that reveal the statistics of noncoding percentage of viral 

genomes. 

Viral functional gene categories. There are detailed studies on the counts of 

cellular genes belonging to each broad functional category (38, 39). These studies have 

helped us better understand the scaling of functional categories across different clades of 

organisms. In fact there was an intriguing conclusion that for prokaryotic genomes, there 

exists a universal organization which governs the relative number of genes in each category 

(38). Such depictions of viral genomes, however, are largely lacking. Thus, we set out to 

better understand how viral genes are distributed across different functional categories and 

how these distributions might differ across various viral groups.  

Viral genome organization. Viral genome organization is a topic that has great 

depth but limited breadth. There exist highly detailed genome-wide diagrams that illustrate 

the location, direction, and predicted function of viral genes, which are then compared to 

similar illustrations from a small number of viral genomes (40-43). While this highly detailed 

approach is indispensible for studying individual viruses, a simplified illustration of genome 
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organization is a requirement of any high-throughput visualization and comparison of 

genomes. The latter approach could help us uncover general rules governing genomic 

organization, in the same way that synteny, or conserved gene order, has been used to 

compare animal genomes (44, 45). 

 

4.2 Exploring the NCBI viral database 

 We used the largest available dataset of completed viral genomes available from the 

National Center for Biotechnology Information (NCBI) viral genomes resource (22), 

containing a total of 4,378 complete viral genomes at the time of data acquisition (August, 

2015). After implementing several manual and programmed steps towards curating the data, 

a total of 2,399 viruses (excluding satellite viruses) could be associated with a host using 

NCBI’s documentation (see Methods). These viruses were included for further analysis, and 

unless noted otherwise, will constitute our dataset in this study. By examining these viruses 

through different classifications (Figure 2), it is clear that they are largely DNA viruses 

(Figure 2.B4), and more specifically, they are primarily double-stranded DNA (dsDNA) 

viruses (Figure 2.C4). This is in contrast to the RNA viruses, which are mostly single-

stranded (Figure 2.B4 and Figure 2.C4).  
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Figure 2. A census of all viruses with complete genomes reported to NCBI 

that were matched to a host (N= 2399). A) Percentage of viruses infecting 

hosts from the three domains of life. 1) Eukaryotic, 2) bacterial, and 3) 

archaeal viromes are further classified according to the B) Nucleotide Type, 
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C) Baltimore, and D) ICTV classification systems. E) Distributions of host 

phyla (or supergroups) infected by the 1) eukaryotic, 2) bacterial, and 3) 

archaeal viruses is shown. As in the case panel F, the host taxonomic 

identification is derived from the NCBI Taxonomy database (see Methods). 

F) Histograms of the number of known viruses infecting host species. 

Median and mean number of viruses infecting a host species is provided in 

each plot. The full-range of x-values for the bacterial and eukaryotic 

histograms extends beyond n=20 (see virusHostHistograms.ipynb).            

 

We further observed that eukaryotes host nearly an equal number of DNA and RNA 

viruses (Figure 2.B1). In contrast to prokaryotes, which are predominantly host to viruses 

with double-stranded genomes, eukaryotes are host to a higher number of viruses with 

single-stranded genomes. Why are double-stranded DNA viruses, despite their high 

prevalence in the bacterial and archaeal world, only the third largest group of viruses in 

eukaryotes? One explanation proposed is the physical separation of transcriptional processes 

from the cytoplasm by way of the eukaryotic nucleus (46). This physical separation is 

thought to impose an additional barrier for DNA viruses in gaining access to the host’s 

transcriptional environment.  

 More than half of viruses with complete genomes have not been assigned to any viral 

orders under the ICTV classification (Figure 2.D4). About one third of all known viruses are 

assigned to the Caudovirales order, while the other orders are in the minority. The vast 

majority of the bacterial viruses are categorized as part of the Cauodvirales order (Figure 

2.D2), but the majority of archaeal and eukaryotic viruses remain unassigned to any order.  

Before any further exploration of this dataset, we aimed to assess its diversity and 

possible sources of bias (Figure 2.E-F, SI Figure 1). It was immediately clear, for example, 

that archaeal viruses were heavily undersampled. In contrast, bacterial viruses infect hosts 
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from a diverse array of bacterial phyla (Figure 2.E2). However, even for bacterial viruses, 

there are host phyla whose viruses are entirely missing from the database, for example 

Synergistes and Acidobacteria, whose members are typically unculturable soil bacteria. Given 

that the isolation and characterization of archaeal and bacterial viruses has traditionally been 

dependent on the culturing of their hosts, the majority of viruses with unculturable hosts 

remain unexplored. Moreover, the eukaryotic viruses in the database infect hosts primarily 

from the Viridiplantae or the Opisthokonta supergroups (Figure 2.E1). Among Viridiplantae, the 

majority of hosts belong to the Streptophytina group (land plants), and within the Opisthokonta 

supergroup, the majority of viruses are metazoan. We further examine the distribution of 

viruses from the Opisthokonta supergroup in SI Figure 1.  

We continued to explore host diversity at a finer resolution and mapped out the 

number of viruses that infect each host species (Figure 2.F). As expected, organisms such as 

Staphylococcus aureus, Escherichia coli, and Solanum lycopersicum, which are host species with either 

medical, research or agricultural relevance, have many known viruses and are outliers in the 

skewed distributions shown in Figure 2.F. However, the median number of viruses known 

to infect a eukaryotic or a prokaryotic host species is approximately 1 (Figure 2.F). This 

signifies that even for host species that are already represented in our collection, the number 

of known viruses is likely an underestimate considering the larger numbers of viruses known 

to infect the more heavily studied host species.  

 

4.3 Viral genome lengths, gene lengths and gene densities 

Genome lengths for all fully sequenced viral genomes varied widely by three orders 

of magnitude (Figure 3.A, Table 1). According to the Host Domain classification, 

prokaryotic viruses tend to have longer genomes than eukaryotic viruses (SI Table 1, SI 
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Figure 2). However, this difference can be better explained by the Nucleotide Type 

classification, as the median RNA virus genome length is four times shorter than the median 

DNA virus genome length. Thus, the comparison between prokaryotic and eukaryotic viral 

genome lengths is confounded by the fact that the prokaryotic virome is primarily composed 

of DNA viruses, whereas the eukaryotic virome is only half composed of DNA viruses 

(Figure 2.C4).  

With respect to viral genome lengths, the Baltimore classification seems to offer the 

most explanatory power. Knowing whether a viral genome is DNA- or RNA-based already 

provides a strong indication about viral genome length, especially for RNA viruses where the 

standard deviation is just a few kilobases (SI Table 1). However, by distinguishing between 

ssDNA, dsDNA and dsDNA-RT viruses, the Baltimore classification offers a more 

complete view of genome length distributions compared to the binary Nucleotide Type 

classification (Figure 3.A). Across all Baltimore groups, dsDNA viruses have genome lengths 

that have the largest standard deviation, however considering the limited range of genome 

lengths associated with other Baltimore groups, it is very likely that a larger viral genome will 

be composed of dsDNA (Figure 3.A). We provide a more detailed view of genome length 

distributions by layering different classification systems, first applying the Baltimore 

classification, followed by the Host Domain and the ICTV family classifications (Figure 3.B, 

SI Table 1).  
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Figure 3. Describing viral genomes through distributions of genome length, 

gene length and gene density. A) Box plots of genome lengths (Log10) across 

all viruses included in our dataset (top), further partitioned based on the 

Baltimore classification categories (bottom). The number of viruses included 

in each group is denoted by N. B) A closer examination of dsDNA and 

ssDNA viral genome lengths through the overlay of Host Domain and ICTV 

classification systems. Distributions of genome lengths associated with 

eukaryotic, bacterial and archaeal viruses are shown in salmon, blue, and teal, 

respectively. ICTV viral families with only a few members are omitted. 

Distributions of genome lengths across different classification systems along 

with various statistics are shown in SI Figure 2 and SI Table 1. Note that the 

bimodal distribution of eukaryotic ssDNA viruses, which also appears in the 

next figure, arises from the Begomoviruses, which are plant viruses with 

circularized monopartite and bipartite genomes (47). C) Median gene length 

is plotted against the number of genes for each genome for all genomes in 

our dataset, color-coded according to different classification systems. D) 

Number of genes per genome length (gene density) for dsDNA viruses based 

on the overlay of Host Domain (bottom) and ICTV family classification 

categories (top) (Pearson correlations and their statistical significance are 

denoted).  
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Table 1. Viral genomic statistics based upon different classification systems. 

Only median values are reported in this table. A more complete version of 

these statistics can be found in SI Table 1- SI Table 3. Genome length data is 

rounded to the nearest kilobase. N corresponds to the number of viruses 

from which data is obtained.  

 

 

In viewing the relationship between median gene length and number of genes per 

viral genome (Figure 3.C), two different coding strategies become apparent. Namely, 

N
Genome'

length'(kb)

Percent'
noncoding'
(DNA/RNA)

Median'gene'
length'
(bases)

Eukaryota)Viruses) 1384 8 10 1055

Bacteria)Viruses) 969 43 9 408

Archaea)Viruses) 46 24 10 400

Group)I)(dsDNA)) 1211 44 9 429

Group)II)(ssDNA)) 431 3 14 588

Group)III)(dsRNA) 123 8 8 2291

Group)IV)(+ssRNA) 482 9 5 2366

Group)V)(EssRNA)) 101 12 7 1353

Group)VI)(ssRNAERT)) 14 8 16 1799

Group)VII)(dsDNAERT) 37 8 11 558

DNA)Viruses) 1679 38 10 444

RNA)Viruses) 720 9 6 2072

Caudovirales) 879 44 9 408

Herpesvirales) 55 159 19 1107

Ligamenvirales) 11 37 12 372

Mononegavirales) 71 12 8 1266

Nidovirales) 35 27 3 672

Picornavirales) 89 8 11 7056

Tymovirales) 73 8 4 693

All)Eukaryotic)dsDNA)viruses 271 33 11 990

All)Bacterial)dsDNA)viruses) 899 44 9 408

All)Archaeal)dsDNA)viruses) 41 28 10 396

All)Eukaryotic)ssDNA)viruses) 375 3 14 732

All)Bacterial)ssDNA)viruses) 51 7 14 348

Classification

ICTV'(orders)

Combinations'of'
different'
classifications

Host'Domain

Baltimore

Nucleotide'Type
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compared to DNA viruses, RNA viruses exhibit a large range of gene lengths. This trend is 

at least in part reflective of the challenges faced by RNA viruses when encountering the 

requirements of their host’s translational machinery (48). For example, many of the RNA 

genomes we examined closely contained genes that encode polyproteins, ribosomal slippage 

(frame-shifting) or codon read-through events, among other non-canonical translational 

mechanisms.  

As in the case of genome lengths, by examining only the ICTV or the Host Domain 

classifications it would be difficult to draw meaningful conclusions about the observed 

patterns, and in the case of the Host Domain classification, our conclusions would be 

confounded by the disproportionate ratio of RNA to DNA viruses that are known to infect 

each host domain. However, the layering of these classification systems offers new insights, 

which we will discuss in the following paragraphs.   

We follow others (26, 27) in defining the gene density of a genome as the number of 

genes divided by the genome length (Figure 3.D). We further partitioned dsDNA viruses 

according to the Host Domain and subsequently the ICTV (family) classifications. We 

observed a strong linear correlation between dsDNA viral genome lengths and the number 

of genes encoded by these genomes (Figure 3.D). The mean (and median) gene densities for 

bacterial, archaeal and eukaryotic dsDNA viral genomes are approximately 1.4, 1.6 and 0.9 

genes per kilo basepairs. As illustrated by the slopes of the regression lines, as well as 

through a nonparametric statistical test performed on eukaryotic and bacterial dsDNA viral 

gene densities (one-sided Mann-Whitney U test, P < 0.001), bacterial dsDNA viruses have 

significantly higher gene densities than their eukaryotic counterparts.   

A closer examination of median gene lengths more clearly reveals the significantly 

longer gene lengths of RNA viruses compared to DNA viruses (one-sided Mann-Whitney U 
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test, P < 0.001) (Figure 4, Table 1). By focusing on DNA viruses, and further dividing these 

viruses based on Baltimore, Host Domain and ICTV (family) classifications, we arrive at an 

interesting trend. Namely, eukaryotic viruses, whether dsDNA or ssDNA, have significantly 

longer gene lengths compared to bacterial viruses from the same Baltimore classification 

category (Figure 4, SI Table 2) (one-sided Mann-Whitney U test, P < 0.001). This trend 

follows what we see across cellular genomes, since prokaryotic genes and proteins are shown 

to be significantly shorter than eukaryotic ones (5, 49).  

 

Figure 4. Normalized histograms of median gene lengths (log10) across all 

complete viral genomes associated with a host. Instead of showing absolute 

viral counts on y-axes, the counts are normalized by the total number of 
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viruses in each viral category (denoted as N inside each plot). The mean of 

each distribution is denoted as a dot on the boxplot. For all histograms, bin 

numbers and bin widths are systematically decided by the Freedman-

Diaconis rule (35). Viral schematics are modified from ViralZone (38). Key 

statistics describing these distributions can be found in Table 1 and SI Table 

2. 

 

4.4 Noncoding percentages of viral genomes 

So far we have primarily focused on the coding fractions of viral genomes. Thus, we 

created distributions of noncoding percentage of viral genomes (see Methods, Figure 5, 

Table 1, SI Table 3). In general, DNA viral genomes contain about 10% noncoding regions 

which is even lower than the noncoding percentage of bacterial genomes (29, 30). With a 

median noncoding percentage of just 6%, RNA viral genomes have significantly lower 

noncoding percentage compared to DNA viruses (one-sided Mann-Whitney U Test, P < 

0.001). A notable exception to the RNA viral group is the ssRNA-RT with a median 

noncoding percentage of 16%. Interestingly, both retroviral groups had relatively high 

noncoding DNA percentages. This is likely due to the presence of defunct retroviral genes. 

For example, the Xenopus laevis endogenous retrovirus (NCBI taxon ID 204873) belonging to 

the ssRNA-RT group has a noncoding percentage of 93%. This high noncoding percentage 

can be explained by the fact that this virus genome contains three pseudogenes previously 

coding for env, pol, and gag proteins.  
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Figure 5. Normalized histograms of noncoding DNA/RNA percentage 

across all complete viral genomes associated with a host. The counts of 

viruses are normalized by the total number of viruses in each viral category 

(denoted as N inside each plot). The mean of each distribution is denoted as 

a dot on the boxplot. For all histograms, bin numbers and bin widths are 

systematically decided by the Freedman-Diaconis rule (35). Viral schematics 

are modified from ViralZone (38). Key statistics describing these 

distributions can be found in Table 1 and SI Table 3.  

 

4.5 Viral functional gene categories  

We categorized viral genes according to several major functional categories, 

including structural genes such as capsid and tail genes, metabolic genes, informational 
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genes, which we define as those involved in replication, transcription or translation of the 

viral genetic code, among other categories (Figure 6, see Methods). In addition to the 

fraction of viral genes that we were able to assign to these functional categories, there still 

remains what we will refer to as an “unlabeled” fraction that contains hypothetical genes or 

genes with poor annotation (see Methods). When reporting the relative abundance of 

different functional gene categories, we will normalize the number of genes belonging to 

each functional category by the total number of labeled genes.  

RNA, dsDNA, and ssDNA viruses, despite differences in the detailed categorization 

of their genes (Figure 6.B) share similar general features (Figure 6.A). For example, across all 

three viral groups, roughly half of all genes are structural. Similarly, dsDNA viruses of 

eukaryotes and bacteria, in contrast to having different genomic properties and 

morphologies surprisingly have very similar distribution of gene functional category and 

subcategory abundances. The major difference between these two viral groups, as expected 

from our knowledge of viral morphologies, is that a larger portion of eukaryotic dsDNA 

viral genes are envelope and matrix genes, whereas a greater portion of bacterial dsDNA 

genes are portal and tail-associated genes. By further zooming in on bacterial dsDNA 

viruses, it is again interesting to see that Myoviridae, Siphoviridae, and Podoviridae viral groups, 

with their different morphologies and wide range of hosts, having very similar functional 

gene category abundances even at the level of subcategories.  
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Figure 6. Normalized abundance of functional gene categories across 

different viral groups. A) Abundances of functional gene categories across 8 

viral groups normalized to the number of labeled genes in each viral group 

(the number of labeled genes in each viral group is shown above the panel). 

B) Abundances of functional gene subcategories across 8 viral groups: RNA, 
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ssDNA, and dsDNA viral groups (top plot); eukaryotic and bacterial dsDNA 

viral groups (middle); Siphoviridae, Myoviridae, and Podoviridae viral groups 

(bottom). A few examples of the types of genes contained as part of each 

functional subcategory are provided.  

 

4.6 Viral genome organization  

To explore viral genome organization we developed a coarse-grained method for 

visualizing a large number of genomes in one snapshot. We first defined genome 

organization as the order in which genes appear across a genome. We then symbolized each 

gene by a letter, indifferent to the gene’s length or its orientation on the genome. Genes with 

similar functions are grouped and are represented by the same letter (Figure 7). Therefore 

each viral genome, analogous to a nucleotide sequence, is compactly described by a sequence 

of letters that represent its gene order (Figure 7), which we will refer to as the gene order 

sequence. Because we aimed to study gene order sequences across different viral groups, we 

focused on genes whose functions are universally required, namely structural genes. SI text 

file 1 provides the structural gene order sequences for all viruses (see Methods for filters 

applied), though the script developed can be easily modified to visualize the placement of 

any number of genes or user-defined gene groups.   

Furthermore, by focusing on bacterial dsDNA viruses, we were able to identify the 

most common gene order patterns across this virome (see Methods). One particular gene 

order pattern and its variations exist across various types of dsDNA bacterial viruses. We 

will refer to it as gene order pattern A, or pattern A for short (Figure 7.A). In pattern A, gene 

packaging, portal and capsid-related genes are mostly tightly clustered and are followed by 

tail-associated genes. Interestingly, this pattern occurs at the beginning of the genome for 

some viruses, and for others it seems to have been shifted further down on the genome. 
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Pattern A occurs across viruses from five different host phyla. The other two most common 

gene order patterns (patterns B and C) occur across viruses with more limited host range and 

morphologies.  

To further examine the extent to which gene order sequences in a given pattern may 

be related at the sequence level, we used BLASTN to identify genomes in pattern C that 

share any regions of homology. We have shown examples of genomes (see SI) with very 

little sequence similarity, which due to having similar gene order sequence were grouped into 

the same gene order pattern, suggesting that at least for some viral genomes the gene order 

can remain conserved in time.   
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Figure 7. Alignment of the most common gene order patterns for dsDNA 

bacterial viruses. Each genome is summarized by a sequence of letters, with 

each letter corresponding to a gene, positioned in the order that it appears on 

the genome. As an example, the gene order sequence for Salmonella phage FSL 

SP-004 is shown. Note the letters shown serve to only denote genes with 

similar functions. Structural genes are assigned colors, whereas other genes 

are denoted in black. Across all three panels, each row corresponds to the 

gene order sequence for a given virus, and thus, the length of the sequence 

denotes the number of genes within a given genome. The left two columns 

accompanying each panel provide further information on hosts and viral 

morphologies. Panel A, B, and C, represent gene order patterns A, B, and C, 

respectively. Geneious global alignment (37) was used to align gene order 

sequences (see Methods). 

 

4.7 Discussion  

The motivation for conducting a large-scale study of viral genomes was above all to 

provide the distributions of key numbers that characterize viral genomes. Furthermore, 

implicit in this aim was to compare different viral classification systems. Because viral 

classification systems were constructed prior to the emergence of sequencing, we were 

interested to see how well they can describe genomic trends. Based on a comparison of 

classification systems across various genomic metrics, the Baltimore classification and in 

some cases its more minimal form (Nucleotide Type classification) seem to provide the 

clearest explanation for the observed trends. We suspect that this is due to the Baltimore 

classification’s discernment of RNA, ssDNA, and dsDNA genomes, which have striking 

physical differences.  

The greater stability of dsDNA compared to RNA (50) and ssDNA is thought to be 

an important factor in the observed variations in genome lengths. The 2’-hydroxyl group in 
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RNA makes it more susceptible to hydrolysis events and cleavage of the backbone compared 

to DNA. It has been shown that for bacteria and viruses, the mutation rate and the genome 

length are inversely correlated (51, 52), and it is therefore hypothesized that the lack of 

proofreading mechanisms in RNA replication and the resulting higher mutation rates 

compared to DNA replication (52) imposes length limits on RNA viral genomes. In support 

of the suspected link between mutation rates and genome length, it has been shown that 

long RNA viruses (above 20 kb) contain 3’-5’ exonuclease, which is a homolog of the DNA-

proofreading enzymes (53).  

Similarly, the hydrolysis of cytosine into uracil occurs two orders of magnitude faster 

in ssDNA genomes than in dsDNA genomes (54). This may explain the high mutation rates 

of ssDNA viruses, which is within the range of RNA viral mutation rates, despite using 

error-correcting host polymerases to replicate. In contrast to genome length in which 

ssDNA and RNA viruses have similar distributions, it was interesting to see that ssDNA 

viruses are actually more similar to dsDNA viruses in terms of their gene lengths and 

noncoding percentages.  

While the Baltimore classification serves as a meaningful coarse-grained classification 

system, it can be expanded by the addition of subcategories. As is shown by gene length 

distributions (Figure 4), the additional layer of categorization provided by the Host Domain 

classification offers new insight. For example, dsDNA and ssDNA viruses of eukaryotes 

have much longer gene lengths compared to their prokaryotic counterparts, an observation 

that may be hinting at the coevolution of host and viral genomes and proteomes since the 

eukaryotic genes and proteins are also shown to be significantly longer than prokaryotic ones 

(49, 55, 56). It is well known that certain eukaryotic viral genomes, similar to their hosts’ 

genomes, contain genes with introns (57-59), which may explain the longer median gene 
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length for eukaryotic viruses. In fact mRNA splicing was discovered for the first time in a 

study of adenovirus mRNA expression (60). Virus proteomes are also shown to be tuned to 

their hosts’ proteomes by having similar codon usage and amino acid preferences (61). 

However, future studies are needed to further ascertain the mechanisms responsible for the 

differences in eukaryotic and prokaryotic viral gene lengths.  

The ICTV classification also offers some supporting data (e.g. viral morphology or in 

some cases host information), perhaps as the final layer of classification, but it is limited by 

the fact that it leaves many viruses unclassified and, more importantly, that it lacks truly 

systematic classification criteria. As our exploration of viruses shifts its basis from culturing 

of viruses to sequencing of viruses from their natural habitats, morphological data is likely to 

become more and more scarce. As a result, ICTV will need to adapt its classification system 

to operate exclusively on genomic data, a viewpoint that is broadly shared by many experts 

in the field (10).  

In this work, we have described our attempt at providing a comprehensive and 

quantitative view of fully sequenced viral genomes. Similar to earlier work on biological 

numeracy, as exemplified by the BioNumbers database (3), we have identified a number of 

interesting trends associated with viral genomes that will be helpful in gaining a broad 

overview of vastly different viral groups.  

 

4.8 Materials and Methods 

Data acquisition and curation. All genomic data was retrieved from the NCBI 

Genome FTP server (retrieved July 2015) (Brister, 2015). Matching viruses to their hosts was 

done by parsing ASN files from the NCBI Genome FTP server while searching for the term 

“nat-host”. All other taxonomic data, including host and viral lineages, was retrieved from 
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NCBI’s Taxonomy database using the NCBI Taxa class of the ETE Toolkit (62). Once we 

had the “nat-host” name of organisms in English, we retrieved their taxids using ETE 

Toolkit. These were in turn used to identify the host’s taxonomic lineage. Hosts with 

complete genomes were identified by searching the assembly reports of the NCBI Genome 

FTP server for assemblies labeled “Complete Genome”, then using the associated FTP 

address to download the _assembly_stats.txt files and _protein.faa files. Only viruses that 

could be matched to a host were included for further analysis. Additionally, various quality 

checks were manually performed to ensure that viruses with improper annotations were 

excluded from further analysis. For example, we found viruses and hosts with incomplete or 

incorrect taxonomic information which we excluded from further analysis. The list of 

excluded viruses can be found in our code (see next section).   

Data and code availability. We have compiled all scripts (in the format of Jupyter 

Notebooks) used to write this manuscript in a GitHub repository 

(https://github.com/gitamahm/VirologyByTheNumbers), and invite others to explore our 

methods. viromePieChartsVF.ipynb and virusHostHistogramsVF.ipynb were used to create 

Figure 2. The code for Figure 3 through Figure 5 can be found in genomeLengthsVF.ipynb, 

geneLengthsVF.ipynb, and percentNoncodingVF.ipynb, respectively. Finally, the code for 

Figure 6 and Figure 7 is provided in geneOrderAndGeneAbundanceVF.ipynb. SI text files 1 

through 6 can also be found in this repository.  

Genome length and gene densities. Genome lengths were extracted from .ptt files 

and _assembly_stats.txt files for viruses. The .ptt files were parsed to find “complete genome 

- 1..” which is followed by the length of the genome. The _assembly_stats.txt files were 

parsed to find the first instance of “total-length”, which is followed by the length of the 

genome. For segmented genomes, the total length of the segments is reported as the genome 
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length. The number of protein-coding genes, which was used in calculating gene densities, 

was found by parsing .faa files using the BioPython Seq class. For gene length histograms, 

we first obtained the gene lengths for each virus, and then create a histogram based on the 

median gene length associated with each virus. To have a systematic scheme for determining 

the number of bins needed for each histogram, we employ the Freedman-Diaconis' rule (63) 

for all histograms shown in this paper. 

Noncoding DNA/RNA percentages. To extract the percent of the genome that 

is noncoding, we could not merely subtract the lengths of the genes from the length of the 

genome, as this would not take overlapping genes into account. Instead, we used the .ptt 

files to identify where each gene began and ended in the genome, then added all indices 

between protein-coding genes to a set. We then could subtract the size of this set from the 

genome length to arrive at the number of noncoding bases, which is then turned into a 

percentage. 

Decomposition of Viral Genes into Functional Categories. To obtain the 

abundance of various gene functional categories, we collected the COG product annotations 

(64) accompanying each gene from .ptt file(s) provided for each virus. Based on the most 

frequent COG product names, we constructed a dictionary of search terms to query viral 

genes and measure the abundance of various functional categories (by measuring abundance, 

we are referring to the number of genes that belong to a given functional category). To 

determine the most common search terms, we derived the unique set of COG product 

annotations for different viromes. We used the annotations shared between viromes to 

exclude problematic search terms with multiple meanings. As a result we avoided search 

terms with multiple functional associations such as “gp41”, which in the context of HIV 
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signifies a transmembrane glycoprotein, and in the context of Mycobacterium phage Bxb1 

denotes a 3’-5’ exonuclease involved in DNA replication. 

While the dictionary constructed contains many key words that capture essential 

gene functional categories common to many viruses, it does not account for COG 

annotations that are non-descriptive (e.g. “phage protein” or “Z protein”). Additionally, 

there is typically a large number of genes that code for “hypothetical proteins”. Together, 

these two fractions make up the unlabeled component, which we do not include for further 

analysis. Despite the limitations introduced by these unlabeled genes, there are still a large 

number of genes (~105) that are included in our analysis. In constructing the relative 

abundances of different gene functional categories (Figure 6), we divide the abundance of a 

gene functional category by the total number of labeled genes (denoted at the top of Figure 

6.A for each viral group).    

Gene Order. In visualizing gene order we employed a similar search strategy to the 

one explained in the previous section. To detect potentially conserved patterns in gene order 

across vastly different viral genomes, we searched only structural genes as they are essential 

to any virus. We used .ptt files to determine gene order since they contain the beginning and 

end indices of genes. The code developed uses .ptt files as input, and outputs a string of 

characters per viral genome, which we have referred to as the gene order sequence. Each 

character represents a viral gene in the order that it appears on the genome (without 

distinguishing between the strand of DNA on which the gene is located).  All genes 

belonging to the same functional category, for example all tail-related genes, are represented 

by the same character. All unlabeled genes (i.e. non-structural, hypothetical, or poorly 

annotated genes) are also represented by the same character. Each gene order sequence, 
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analogous to a nucleotide sequence, can be aligned against other gene order sequences by 

existing alignment software.  

Though it would be ideal to calculate a pairwise distance matrix between gene order 

sequences and to quantitatively define a gene order pattern based on gene order sequence 

similarity (akin to defining an Operational Taxonomic Unit), this effort would require the 

development of appropriate alignment algorithms and inference methods fit to process gene 

order sequences. In the meantime, we used existing alignment software as a guide and 

grouped gene order sequences based on generally shared features 

We used Geneious software (65) to align gene order sequences using global 

alignment with free end gaps and identity cost matrix (with default gap open and extension 

penalties). Using Geneious global alignment as a guide, we further manually improved the 

alignment by aligning similar characters, without introducing any gaps. This step was 

necessary because any alignment algorithm will aim to maximize the alignment between 

unlabeled genes, unable to distinguish between these characters and the more meaningful 

characters corresponding to labeled structural genes. Moreover, because of the high fraction 

of genes that have “hypothetical protein” COG annotation, we had to impose filters to 

extract gene order sequences that are not entirely composed of unlabeled genes. To generate 

the alignments shown in Figure 7, we imposed that at least 15% of characters in a gene order 

sequence have to correspond to labeled genes, and that the gene order sequence has to be at 

least 40 characters long. For the gene order sequences shown in SI text file 1 the sequence 

order length limit was not imposed.  

To further explore gene order pattern C, we used BLASTN and accession numbers 

shown in SI Figure 3 to BLAST all genomes in pattern C against each other. We have 

summarized these results in SI Figure 3.A, wherein orange boxes correspond to homologous 
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relationships (E values < 10-5). All non-homologous relationships are shown in blue. We 

then used protein-protein BLAST to identify relationships between genomes that had no 

homology to any other genomes in pattern C. We targeted tail tube A, tail tube B, capsid, tail 

fiber, and large terminase proteins (SI Figure 3.B). The BLASTP reports are provided as SI 

text file 2- SI text file 6. 

  

4.9 Supplementary Information  

Virus classifications. The ICTV classifies viruses into seven orders: Herpesvirales, 

large eukaryotic double-stranded DNA viruses; Caudovirales, tailed double-stranded DNA 

viruses typically infecting bacteria; Ligamenvirales, linear double-stranded viruses infecting 

archaea; Mononegavirales, nonsegmented negative (or antisense) strand single-stranded RNA 

viruses of plants and animals; Nidovirales, positive (or sense) strand single-stranded RNA 

viruses of vertebrates; Picornavirales, small positive strand single-stranded RNA viruses 

infecting plants, insects, and animals; and finally, the Tymovirales, monopartite positive single-

stranded RNA viruses of plants. In addition to these orders, there are ICTV families, some 

of which have not been assigned to an ICTV order. Only those ICTV viral families with 

more than a few members present in our dataset are explored.  

The Baltimore classification groups viruses into seven categories (Figure 1): double-

stranded DNA viruses (Group I); single-stranded DNA viruses (Group II); double-stranded 

RNA viruses (Group III); positive single-stranded RNA viruses (Group IV); negative single-

stranded RNA viruses (Group V); positive single-stranded RNA viruses with DNA 

intermediates (Group VI), commonly known as retroviruses; and the double-stranded DNA 

retroviruses (Group VII).  
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Comparing the sequence similarity of genomes found in Gene Order Pattern 

C. We wanted to examine the extent to which gene order sequences in a given pattern may 

be related at the sequence level, so we used BLASTN to identify genomes in pattern C that 

share any regions of homology. While the majority of sequences share at least a small degree 

of homology across their genomes (see Methods, SI Figure 3), genomes of Acinetobacter phage 

Petty, Lelliottia phage phD2B, and Synechococcus phage S-CBP4 do not share any significant 

homology at the nucleotide level with any other genome in pattern C (SI Figure 3). When we 

examined several structural proteins from these viruses using protein-protein BLAST, we 

found that they have homologous large terminase and tail tube B proteins. However, they 

have weak to nonexistent homology across their capsid, tail fiber, and tail tube A proteins 

(see Methods, SI Figure 3, SI text file 2- SI text file 6). This finding demonstrates that at least 

for some viruses despite limited homology across their nucleotide sequences, genome 

organization could still be detectably similar.  

 

 

SI Figure 1. Further exploration of the largest fraction of the eukaryotic 

virome: viruses of Opisthokonta supergroup (animals). The x-axis 

corresponds to the number of viruses infecting each host group. In a 
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recursive fashion, the host group with the largest number of known viruses is 

further zoomed in on (host groups infected by only a few known viruses are 

not shown). The host classification was obtained from the NCBI taxonomic 

database. 

 

SI Figure 2. Histograms of genome length (Log10) across all complete viral 

genomes associated with a host. Histograms are grouped according to four 

viral classification systems: A) Baltimore classification, B) Nucleotide type 

classification, C) Host Domain Classification, and D) ICTV classification. 

Instead of showing absolute viral counts on the y-axis, the counts are 

normalized by the total number of viruses in each viral category (the total 

counts of viruses in each category is denoted as N inside the plots). The 

mean of each distribution is denoted as a dot on the boxplots. The relevant 

statistics for each distribution is provided in SI Table 1. In each histogram 

the number of bins and their width is set by Freedman-Diaconis rule (35).  
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SI Figure 3. Exploring homology across genomes and proteins in gene order 

pattern C. A) Qualitative depiction of BLASTN results, wherein orange 

boxes correspond to homologous genomes (E value < 10-5), and blue denote 

non-homologous genomes. The genome number can be used to identify the 

genome name and its NCBI accession number. B) Gene order sequences for 

Acinetobacter phage Petty, Lelliottia phage phD2B, and Synechococcus phage S-CBP4, 

which are viruses with genomes that have no homology to any other 

genomes in pattern C. We compared their tail tube A, tail tube B, capsid, tail 

fiber, and large terminase proteins using protein-protein BLAST. SI text file 

2- SI text file 6 provide the BLASTP results. 
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SI Table 1. Genome length statistics for viral groups across different 

classification systems (rounded to the nearest kilobase).  

           

 

 

 

 

 

 

Classification Classification+Categories Min Max 25th+
Percentile

Median 75th+
Percentile

Mean Stdev.

Eukaryota)Viruses)(N)=)1384) 1.3 2473.9 4.9 7.5 11.1 27.7 110.5

Bacteria)Viruses)(N)=)969) 2.9 617.5 37.3 43.4 65.8 63.4 55.7

Archaea)Viruses)(N)=)46) 7.0 95.7 15.7 24.4 40.9 31.7 21.9

Group)I)(dsDNA))(N)=)1211) 4.8 2473.9 35.5 43.6 77.7 75.9 121.4

Group)II)(ssDNA))(N)=)431) 1.3 11.7 2.7 2.8 5.3 4.0 1.8

Group)III)(dsRNA))(N)=)123) 1.8 29.1 4.8 8.1 14.0 10.6 7.0

Group)IV)(+ssRNA))(N)=)482) 2.6 33.5 6.6 8.5 10.1 9.6 5.5

Group)V)(HssRNA))(N)=)101) 8.9 19.2 11.1 11.9 15.4 13.0 2.6

Group)VI)(ssRNAHRT))(N)=)14) 4.3 10.3 7.5 8.4 9.5 8.3 1.5

Group)VII)(dsDNAHRT))(N)=)37) 3.0 8.8 7.3 7.5 7.8 6.8 1.8

DNA)Viruses)(N)=)1679) 1.3 2473.9 5.5 38.3 56.6 55.9 108.0

RNA)Viruses)(N)=)720) 1.8 33.5 6.6 9.3 11.5 10.2 5.5

Caudovirales)(N)=)879) 11.6 358.7 39.1 44.5 70.2 67.9 52.5

Herpesvirales)(N)=)55) 119.5 295.1 144.9 159.2 211.5 177.0 45.1

Ligamenvirales)(N)=)11) 20.9 41.2 31.8 36.9 40.4 34.7 6.5

Mononegavirales)(N)=)71) 8.9 19.2 11.4 12.0 15.5 13.4 2.5

Nidovirales)(N)=)35) 12.1 33.5 20.1 26.7 31.0 25.8 5.6

Picornavirales)(N)=)89) 6.6 14.3 7.8 8.4 9.8 8.9 1.4

Tymovirales)(N)=)73) 5.5 9.4 6.7 7.9 8.5 7.6 1.0

All)Eukaryotic)dsDNA)viruses)(N)=)271) 4.8 2473.9 7.3 33.0 152.7 109.0 232.5

Baculoviridae)(N)=)22) 84.3 176.7 108.6 127.6 151.1 127.2 23.9

Poxviridae)(N)=)12) 150.0 307.7 170.6 237.2 282.9 233.1 56.2

Herpesvirales)(N)=)55) 119.5 295.1 144.9 159.2 211.5 177.0 45.1

Papillomaviridae)(N)=)73) 7.0 8.3 7.3 7.6 7.7 7.6 0.3

Adenoviridae)(N)=)31) 26.3 45.8 31.6 35.1 43.4 36.1 6.0

Polyomaviridae)(N)=)51) 4.8 6.2 5.0 5.1 5.3 5.1 0.2

All)Bacterial)dsDNA)viruses)(N)=)899) 10.1 617.5 39.0 44.4 69.8 67.8 55.5

Siphoviridae)(N)=)435) 14.3 280.0 38.0 43.1 53.1 50.5 30.5

Podoviridae)(N)=)200) 11.7 145.9 39.2 42.5 50.4 47.2 19.5

Myoviridae)(N)=)232) 11.6 358.7 47.4 136.4 164.0 118.1 69.2

All)Archaeal)dsDNA)viruses)(N)=)41) 8.1 95.7 17.4 28.3 41.2 34.5 21.6

All)Eukaryotic)ssDNA)viruses)(N)=)375) 1.3 8.1 2.7 2.8 5.2 3.5 1.4

All)Bacterial)ssDNA)viruses)(N)=)51) 4.4 11.7 5.8 6.8 7.8 6.8 1.5

Combinations+
of+different+
classifications

Host+Domain

Baltimore

Nucleotide+
Type

ICTV+(orders)

Genome+Length+Statistics+(kb)
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SI Table 2. Median gene length statistics for viral groups across different 

classification systems (rounded to the nearest base). It is important to clarify 

that the median values of this table represents the median of median gene 

lengths.   

    

 

 

 

 

 

Classification Classification+Categories
Min Max

25th+
Percentile

Median
75th+

Percentile
Mean Stdev.

Eukaryota)Viruses)(N)=)1384) 272 22173 702 1055 2129 2192 2770

Bacteria)Viruses)(N)=)969) 204 5100 366 408 456 429 192

Archaea)Viruses)(N)=)46) 195 762 324 400 462 412 119

Group)I)(dsDNA))(N)=)1211) 195 1577 380 429 555 539 269

Group)II)(ssDNA))(N)=)431) 204 2777 404 588 774 692 419

Group)III)(dsRNA))(N)=)123) 453 22173 1638 2291 3978 4148 4409

Group)IV)(+ssRNA))(N)=)482) 297 17715 828 2366 6372 3742 3266

Group)V)(GssRNA))(N)=)101) 648 5052 1167 1353 1568 1448 633

Group)VI)(ssRNAGRT))(N)=)14) 362 3530 1154 1799 2103 1805 921

Group)VII)(dsDNAGRT))(N)=)37) 368 6537 477 558 915 873 998

DNA)Viruses)(N)=)1679) 195 6537 393 444 708 586 354

RNA)Viruses)(N)=)720) 297 22173 1014 2072 4812 3452 3360

Caudovirales)(N)=)879) 224 972 369 408 456 419 76

Herpesvirales)(N)=)55) 669 1382 978 1107 1200 1092 151

Ligamenvirales)(N)=)11) 315 462 342 372 429 384 45

Mononegavirales)(N)=)71) 648 1896 1055 1266 1367 1218 275

Nidovirales)(N)=)35) 297 4920 537 672 1056 1045 1007

Picornavirales)(N)=)89) 3375 10041 6372 7056 8232 6963 1580

Tymovirales)(N)=)73) 402 5103 554 693 1014 1183 1138

All)Eukaryotic)dsDNA)viruses)(N)=)271) 272 1577 714 990 1179 958 271

Baculoviridae)(N)=)22) 582 843 647 672 711 680 57

Poxviridae)(N)=)12) 614 762 650 695 729 691 45

Herpesvirales)(N)=)55) 669 1382 978 1107 1200 1092 151

Papillomaviridae)(N)=)73) 272 1577 1170 1209 1338 1231 187

Adenoviridae)(N)=)31) 510 999 636 681 771 706 104

Polyomaviridae)(N)=)51) 639 1320 797 990 1055 930 158

All)Bacterial)dsDNA)viruses)(N)=)899) 224 972 369 408 456 419 78

Siphoviridae)(N)=)435) 248 644 366 401 429 402 57

Podoviridae)(N)=)200) 231 972 378 426 480 438 100

Myoviridae)(N)=)232) 224 678 372 419 483 431 76

All)Archaeal)dsDNA)viruses)(N)=)41) 195 762 315 396 459 405 120

All)Eukaryotic)ssDNA)viruses)(N)=)375) 300 2777 404 732 806 741 426

All)Bacterial)ssDNA)viruses)(N)=)51) 204 653 303 348 404 352 84

Combinations+
of+different+
classifications

Median+Gene+Length+Statistics+(bases)

Host+Domain

Baltimore

Nucleotide+
Type

ICTV+(orders)
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SI Table 3. Percent noncoding DNA (or RNA) for viral groups across 

different classification systems (rounded to the nearest percentage). 

     

 

 

 

 

 

Classification Classification+Categories
Min Max 25th+

Percentile
Median 75th+

Percentile
Mean Stdev.

Eukaryota)Viruses)(N)=)1384) 0 93 5 10 15 11 9

Bacteria)Viruses)(N)=)969) 3 92 7 9 11 10 6

Archaea)Viruses)(N)=)46) 3 21 7 10 13 10 4

Group)I)(dsDNA))(N)=)1211) 2 92 7 9 12 11 7

Group)II)(ssDNA))(N)=)431) 1 91 10 14 24 17 10

Group)III)(dsRNA))(N)=)123) 0 47 5 8 12 9 8

Group)IV)(+ssRNA))(N)=)482) 0 43 3 5 9 7 5

Group)V)(GssRNA))(N)=)101) 2 20 4 7 10 8 4

Group)VI)(ssRNAGRT))(N)=)14) 7 93 15 16 19 24 23

Group)VII)(dsDNAGRT))(N)=)37) 0 31 9 11 14 11 6

DNA)Viruses)(N)=)1679) 0 92 8 10 14 12 8

RNA)Viruses)(N)=)720) 0 93 4 6 10 8 7

Caudovirales)(N)=)879) 3 92 7 9 11 10 5

Herpesvirales)(N)=)55) 2 38 16 19 22 19 6

Ligamenvirales)(N)=)11) 8 21 9 12 17 13 4

Mononegavirales)(N)=)71) 2 20 4 8 10 8 4

Nidovirales)(N)=)35) 1 8 2 3 5 4 2

Picornavirales)(N)=)89) 2 23 9 11 12 11 4

Tymovirales)(N)=)73) 2 13 3 4 4 4 2

All)Eukaryotic)dsDNA)viruses)(N)=)271) 2 86 8 11 16 14 9

Baculoviridae)(N)=)22) 6 24 8 10 12 11 4

Poxviridae)(N)=)12) 6 22 7 10 13 11 5

Herpesvirales)(N)=)55) 2 38 16 19 22 19 6

Papillomaviridae)(N)=)73) 5 51 8 9 12 11 8

Adenoviridae)(N)=)31) 4 18 6 7 11 8 3

Polyomaviridae)(N)=)51) 4 31 9 11 14 12 5

All)Bacterial)dsDNA)viruses)(N)=)899) 3 92 7 9 11 10 5

Siphoviridae)(N)=)435) 3 39 7 9 11 10 5

Podoviridae)(N)=)200) 3 55 7 9 10 10 6

Myoviridae)(N)=)232) 3 92 7 9 11 10 6

All)Archaeal)dsDNA)viruses)(N)=)41) 3 21 7 10 13 10 4

All)Eukaryotic)ssDNA)viruses)(N)=)375) 1 80 10 14 24 17 10

All)Bacterial)ssDNA)viruses)(N)=)51) 4 91 8 14 19 16 14

Percent+Noncoding+(DNA/RNA)

Host+Domain

Baltimore

Nucleotide+
Type

ICTV+(orders)

Combinations+
of+different+
classifications
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SI text files  

SI text files are included as part the SI Text Files folder at the following GitHub repository:  

https://github.com/gitamahm/VirologyByTheNumbers 

 

SI text file 1. Gene order sequences for all viruses whose genomes contained 

at least 15% labeled genes. Letters I, C, E, and Q correspond to capsid-

related, portal-related, tail-related, and genome packaging-related genes, 

respectively. All other genes are denoted by the letter A.  

 

SI text file 2. BLASTP report for the tail tube A protein found in Acinetobacter 

phage Petty, Lelliottia phage phD2B, and Synechococcus phage S-CBP4 genomes.  

 

SI text file 3. BLASTP report for the tail tube B protein found in Acinetobacter 

phage Petty, Lelliottia phage phD2B, and Synechococcus phage S-CBP4 genomes.  

 

SI text file 4. BLASTP report for the tail fiber protein found in Acinetobacter 

phage Petty, Lelliottia phage phD2B, and Synechococcus phage S-CBP4 genomes.  

 

SI text file 5. BLASTP report for the capsid protein found in Acinetobacter 

phage Petty, Lelliottia phage phD2B, and Synechococcus phage S-CBP4 genomes.  

 

SI text file 6. BLASTP report for the large terminase protein found in 

Acinetobacter phage Petty, Lelliottia phage phD2B, and Synechococcus phage S-CBP4 

genomes.  
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C h a p t e r  V   

Human Phageprints: Commensal phage communities reveal 

individual-specific and temporally-stable signatures 

 
 
5.1 Introduction 

The study of bacteriophages (phages) often relies on culturing the bacterial hosts. 

Because the vast majority of microbes are currently unculturable, we have only recently 

become aware of the overwhelming presence of phages in natural environments through 

metagenomic and imaging studies (1, 2). These recent studies collectively paint phages not 

only as the most numerous and diverse biological entities on our planet, but also as 

regulators of microbial ecosystems through rapid infection cycles and horizontal gene 

transfer events (3-7). Yet, compared to their bacterial hosts, and despite their medical, 

biogeochemical and agricultural importance, environmental phages remain largely under-

sampled and poorly characterized (8-12).      

One of the defining features of phage genomes (and viruses in general) is the lack of 

the ribosomal RNA sequence that has remained highly conserved across cellular genomes. 

The 16S ribosomal RNA sequence (18S in eukaryotic genomes) is used as a universal 

marker, and its sequence variation across genomes can be used to draw conclusions about 

cellular classification and evolution (13-15), as well as geographical distribution and 

community composition (16, 17). This marker-based approach to microbiology is 

indispensible, as it enables a high coverage depth of the 16S region via PCR-amplification 

and high-throughput sequencing. This depth of coverage provides a precise and 

reproducible depiction of bacterial community composition across space and time (18-20). 



 

 

V-2 

Given current sequencing technology, the trade-off for coverage depth is the coverage 

breadth, as only a small region in the genome can be sequenced (Figure 1). 

 

Figure 1. Comparison of A) metagenomic sequencing and B) targeted 

sequencing approaches. A) Metagenomic sequencing offers high breadth of 

coverage, spanning genomes from many different organisms, however it 

suffers from low depth of coverage (shown here by the incomplete assembly 

of phage genomes). B) Targeted sequencing approaches, such as 16S 
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sequencing, which use PCR to amplify a specific genomic region, exchange 

breadth of coverage for depth. Targeted sequencing studies, due to their 

greater depth of coverage, provide much higher resolution for constructing 

the community composition by equating coverage depth with relative 

abundance of species or strains.   

 

In comparison to the targeted marker-based approach, metagenomic studies provide 

much greater breadth in coverage (Figure 1). Typically, these studies obtain genomic 

sequences from many different organisms, but the coverage depth remains comparatively 

low. Assuming an equal distribution of species or variants within a sample, coverage depth 

can be estimated as ! = ! !"! , where ! represents sequencing read length, ! represents the 

total number of reads, and ! represents the total length of genome(s) or genetic segment(s) 

of interest (21). For example, using 100 million, 150-bp Illumina HiSeq reads to sequence a 

marker of length 150 bp, would provide a coverage depth of  !"#!!×!!"
!

!"#  or 108x. This would 

mean that each base pair along the makrer’s length would be sequenced 108 times. On the 

other hand, if the same sequencing conditions are used for metagenomic sequencing of a 

sample hypothetically composed of 100 different bacterial genomes (assuming an average 

bacterial genome length of 106 bp (22)) the coverage depth would drop to just !"#!!×!!"
!

!""!×!!"!  = 

150x. Natural environments are often far more complex, containing many different species 

and strains of organisms with varying abundances (23). One of the manifestations of this 

problem is that de novo assembly of genomes from natural environments through current 

metagenomic techniques remains a significant challenge (24), even for the most abundant 

members of an environment with relatively short genome lengths (25).  
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 Moreover, the coverage depth of a genome through metagenomics varies greatly 

across the length of the genome. Even for complete genome assemblies from metagenomic 

samples, the assemblies represent consensus genomes (average representation of highly 

similar genomes within an environment). In these studies, it is typical to see genomic 

segments with ~100x coverage depth that are islands in the sea of low coverage depth 

regions (< 10x) (26-28). However, when a variant appears 1 in 1000 sequences, 100x 

coverage does not provide adequate resolution needed to assess the sequence diversity of 

this genomic region. Because of this limitation of metagenomics, the marker-based 

exploration of microbial community composition often provides a more reliable and 

accurate approach (29-31).  

Due to the lack of a 16S-analog within viral genomes, the study of environmental 

phages has typically relied on metagenomic studies (5, 32-34). While these studies have 

unveiled intriguing facets of environmental phage biology, insufficient coverage depth fails 

to provide a detailed view of phage community composition. Thus, to explore 

environmental phage communities at a higher resolution than is typically offered through 

metagenomics, we decided to take a targeted, marker-based approach. We hypothesized that 

due to the immense sequence diversity of phage genomes (35-37), a high-resolution view of 

their communities could provide novel insights.  

Considering the lack of universal markers for phages, we aimed to discover 

environment-specific phage markers so that we could study previously unexplored phage 

families (we will provide a more precise description of this term later in this section). As we 

will demonstrate, this marker-based approach reveals phage community composition with a 

resolution that cannot be achieved through typical metagenomic approaches. Specifically, we 

will follow others (38, 39) in using the term “community composition” to refer to the 
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relative abundance profile of members within a phage family. We will further demonstrate 

that at this resolution, phage community composition can serve as a fingerprint, or a 

“phageprint” – highly unique to an environment and apparently stable over time.  

In our search for candidate phage markers, we combined the advantages of 

metagenomic and marker-based approaches. Namely, to study previously unexplored phage 

families, we first used existing metagenomic datasets to identify candidate phage families, 

and then by targeting these families using degenerate primers and PCR, we were able to 

explore them with high coverage depth (see Methods). We limited our bioinformatic and 

later experimental search for ubiquitous phage families to those inhabiting the human oral 

cavity. Our motivation to study phages within the human oral environment was rooted in 

this environment’s diversity of microbial inhabitants, key role in human health and disease, 

feasibility of sample collection, and the wealth of existing oral metagenomic datasets (40-43).  

Briefly, to arrive at markers representing ubiquitous oral phage families, we imposed 

several guidelines: 1) candidate marker sequences should be unique to phages; 2) candidate 

phage markers should be present across different metagenomic datasets so to increase the 

likelihood that the markers will represent core (though not necessarily abundant) members 

of the human oral environment; and 3) candidate markers representing different phage 

families should not share any significant sequence similarity.  

To meet the first criterion, we focused our search on the terminase large subunit 

(TerL) sequences, which are shown to be unique to phages (44, 45). To meet the second 

criterion, we used two metagenomic datasets, the Xie (46) and the Mira (47) datasets, to 

identify potentially ubiquitous phage makers based on their presence in both datasets. Using 

two larger metagenomic projects, namely the HOMD (43) and the HMP (48), we confirmed 

the presence of candidate phage markers across a greater number of human oral samples. In 
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meeting the third criterion, pairwise sequence similarity analysis was performed to exclude 

markers that share any sequence similarity to each other (see Methods). Finally, by designing 

degenerate primers for the candidate phage markers, we experimentally confirmed marker 

presence in human oral samples, and developed a marker-based survey of phage 

communities with high resolution. In the absence of a taxonomic convention for viral 

genomic data, we use the term “phage family” to refer to phages that share homologous 

TerL sequences.  

 For the bulk of our sample collection, we took a citizen science approach. By 

creating instructional videos and sample collection kits (see Methods), volunteers collected 

~700 oral samples (representing ~100 individuals). Using this large collection of samples, we 

were able to explore phage communities as a function of space (Figure 3, Figure 5, Figure 6, 

Figure 12) and time (Figure 9, Figure 10, Figure 11). By examining phage communities at 6 

different oral sites, and by comparing phage communities of individuals living across the 

globe, we were able to study the effect of spatial separation, ranging from several millimeters 

to thousands of kilometers. We found that the spatial separation of just a few centimeters 

(the distance between the gingival sites and the hard palate, for example) can already result in 

highly distinct phage communities. For larger distances, spanning the phage communities of 

different individuals, we did not observe any correlation between spatial distance and phage 

community composition. In other words, individuals residing in the same city did not have 

any more similar phage communities than individuals living on different continents.  

Additionally, we found that neither genetics nor cohabitation played a role in the 

relatedness of phage communities across individuals. Cohabitating siblings and even identical 

twins did not have phage communities that were any more similar than those of unrelated 

individuals (Figure 12). The only factor we observed that contributes to phage community 
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relatedness is direct exchange of saliva between individuals, as is demonstrated by the 

similarity between phage communities of couples (Figure 11, Figure 12).  

By exploring phage communities across the span of a month, we observed highly 

stable communities (Figure 8, Figure 9, Figure 10, Figure 11). These studies consistently 

point to the existence of remarkably diverse and personal phage families that are stable in 

time.  

 

5.2 Results 

5.2.A Discovery of phage families ubiquitous across humans  

To test our bioinformatics predictions regarding the presence of ubiquitous phage 

families, we designed degenerate primers (see Methods). We then tested to see if the primers 

would be able to amplify the candidate phage marker sequences from oral samples 

previously collected from 10 individuals and 6 oral sites (40). We found that many samples 

were positive for the phage families that were targeted via four of the primer sets (Figure 2). 

To further explore these phage families, we developed instructional videos and collection 

kits to recruit volunteers for our study (see Methods). 700 additional oral samples from 100 

different individuals were collected, the results of which will be discussed in later sections. 

We will focus our discussions on the most ubiquitous phage families, namely HA, HB1 and 

PCA2.  
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Figure 2. A qualitative depiction of phage family presence in oral samples 

collected from 10 healthy individuals and 6 different oral sites. Filled-in 

circles indicate presence of a phage family, and blank circles correspond to 

absence of that phage family.  

 

5.2.B An exploration of three phage families reveal the presence of highly personal 

phage communities with varying degrees of conservation across different oral 

sites 

 As previously defined in the introduction, due to the high depth of coverage 

afforded through targeted sequencing, the relative abundance of OTUs provides a highly 

reproducible snapshot of the phage community composition (see SI). As shown in Figure 3 

and Figure 4, phage community composition is highly skewed towards one or two dominant 

OTUs. However, there are also many other OTUs with abundance values that are consistent 

across space (different oral sites) and time. Generally, the dominant OTUs are not the same 

across different individuals, and the presence of numerous other OTUs with stable relative 
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abundances, gives rise to phage community compositions that appear highly personal. 

Therefore, we sometimes use “phageprint” as shorthand to refer to a community 

composition plot.  

 

Figure 3. HA phage community compositions (phageprints) across 4 

different oral sites in subject 16. Each phageprint is derived from the analysis 

of 4000 sequences (see SI). OTUs are defined at 98% sequence similarity and 

OTUs with less than or equal to 0.1% relative abundance across all 

phageprints were filtered out (see SI). 
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Figure 4. HA Phage community compositions (phageprints) from subject 37 

at two different time points. Samples were collected from the tongue 

dorsum.  A) Subject 37’s phageprint at 0th time point, collected right after 

brushing tongue dorsal and teeth surfaces. B) Subject 37’s phageprint 24 

hours after the initial time point (no brushing in between time points). Each 

phageprint is derived from the analysis of 4000 sequences (see SI). OTUs are 

defined at 98% sequence similarity. 

 

To further quantify the differences between phage community compositions, we 

depict each pairwise comparison of community compositions by their Pearson correlation 
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coefficient (r-value). In comparing any pair of communities, there were ! OTUs. Pearson 

correlation coefficient of community compositions ! and !, was calculated according to 

(!!!!!
!!! !)(!!!!!)

(!!!
!!! !!)! (!!!

!!! !!)!
. Here, !! ! and !! ! are relative abundance values of !"#!  in 

community compositions !  and ! , respectively, and !  and !  are average OTU relative 

abundances for community compositions ! and !. A ! by ! matrix of Pearson correlation 

coefficients was created and shown as a heatmap for each phage family, with ! representing 

the number of phage community compositions.  

 Figure 5 summarizes the Pearson correlation matrix for the HB1 phage family 

across 9 individuals and 4 different oral sites. An immediately recognizable pattern is that the 

phage community compositions of an individual are highly correlated. In stark contrast are 

the correlations between the phage community compositions of different individuals. 
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Figure 5. Pearson correlation coefficient matrix of HB1 phage community 

compositions spanning 9 subjects and four oral sites. Each community 

composition is derived from the analysis of 4000 sequences associated with 

an individual and a particular oral site. OTUs are defined at 98% sequence 

similarity and OTUs with less than or equal to 0.1% relative abundance 

across all phageprints were filtered out (see SI). Phageprints are color-coded 

based on the individual they originate from. Community compositions that 

have been replicated at least twice and averaged have an asterisk next to them 

(see SI).  

 

As in the case of the HB1 phage family, there is low to non-existing 

correlation between the HA phage community compositions of different individuals 

(Figure 6), reinforcing the notion of highly personal phage communities. However, 
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unlike HB1, not all oral sites within the same subject are highly or even moderately 

correlated (see subjects 3, 12, and 17).  In subject 12 for example, the tongue dorsum 

has a correlation close to zero with supra-gingiva and sub-gingiva sites, which are 

nearly perfectly correlated. Similarly, in subject 3, the hard palate and the tongue 

ventral surface have nearly identical phage community compositions while they have 

a very low correlation with the community at the tongue dorsum. However, unlike 

subject 12, the tongue dorsum in subject 3 seems to be an intermediate community, 

having a moderate correlation with all other sites that are distinct from each other. In 

subject 17 as well, buccal mucosa serves as the intermediate community, having a 

moderate correlation with the disparate communities of sub-gingiva and the hard 

palate.  

 

 



 

 

V-14 

 

Figure 6. Pearson correlation coefficient matrix of HA community 

compositions encompassing 11 subjects and six oral sites. Each community 

composition is derived from the analysis of 4000 sequences associated with 

an individual and a particular oral site. Samples are color-coded based on the 

individual they originate from. Oral sites shown are the tongue dorsum (TD), 

buccal mucosa (BM), supra-gingiva (SP), sub-gingiva (SB), hard palate (HP), 

and ventral surface of the tongue (TV). Samples whose community 

composition has been replicated at least twice and averaged have an asterisk 

next to them (see SI).  

 

 SI Figure 1 represents yet another phage family’s Pearson correlation coefficient 

matrix. As with the HA and HB1 phage families, PCA2 phage community compositions 

appear specific to individuals, and in some cases they are even specific to an individual’s oral 
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site. While subject 16 and subject 25 have highly correlated phage community compositions 

across different oral sites, subjects 10 and 12 have uncorrelated phage communities 

separated by intermediate communities similar to subjects 3 and 17’s HA phage communities 

(Figure 6).  

In contrast to the other phage families, which were found across all oral sites, the 

HB1 phage family is absent from the hard palate and the tongue ventral surfaces. The HB1 

communities at the gingival sites and the buccal mucosa tend to be highly correlated, and the 

buccal mucosa community is moderately correlated with the tongue dorsum community (SI 

Figure 2). Similarly, the HA phage communities at the gingival sites are highly correlated (SI 

Figure 2).  

Using bipartite network diagrams (Figure 7, SI Figure 3, SI Figure 4, SI Figure 5) we 

can further examine phage communities. For example, the HB1 phage family network 

degree distribution appears to fit a power-law model, with the majority of OTUs occurring 

only in one subject. Using these networks we can begin to see the differences between the 

community compositions at different oral sites that were identified as only moderately 

correlated using the Pearson correlation matrices. In viewing the HB1 phage family network 

(SI Figure 5), we can see that in subject 16, in addition to OTU 5, which is abundant on the 

tongue dorsum and the buccal mucosa, OTU 8 has exclusively thrived on the buccal 

mucosa, while OTU 11 is only pervasive on the tongue dorsum. Similarly, subjects 17 and 3 

each have a second-abundant OTU that is exclusive to the buccal mucosa surface, 

distinguishing this site from the phage communities at gingival sites, which they are 

moderately correlated to.  
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Figure 7. HB1 phage-host network and degree distribution. A) Two types of 

nodes exist: OTU nodes (purple), and subject nodes. Subject nodes and 
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edges are color-coded based on the individual they represent. Each directed 

edge connects an individual to a phage OTU that he/she harbors, and the 

edge weight is proportional to the relative abundance of the OTU in that 

individual’s oral community. OTU node sizes and labels are proportional to 

the number of individuals the OTU is present in. For OTU nodes, the node 

ID is the OTU ID, which can be matched to IDs in SI Table 1 and SI Table 

2 for obtaining taxonomic information regarding each OTU’s representative 

sequence. Refer to SI Figure 5 to see a similar network that shows OTUs 

present at different oral sites. B) The degree distribution of HB1 phage 

network. This distribution was obtained by making a histogram of OTU in-

degrees, or the number of individuals that each OTU is present in. C) 

Maximum Likelihood phylogenetic tree of OTU representative sequences 

(see SI Figure 7 for their nucleotide alignment) for the HB1 phage family. 

Red circles are placed next to OTUs that are prevalent (appear in multiple 

samples). Branches are color-coded based on the organism in whose genome 

the closest homolog of the OTU representative sequence was found (see SI 

Table 1, SI Table 2).  

 

In all of our analysis so far, we have used the Pearson correlation because it allows 

for a coarse-grained depiction of differences between phage communities, as it is dominated 

by the most abundant OTUs. We will also use other distance metrics to explore different 

facets of phage communities in later sections. Moreover, we have carefully explored the 

effects of sequence similarity thresholds when defining OTUs, and we discovered that the 

phage community compositions, as represented by pairwise Pearson correlation coefficients, 

are highly robust to sequence similarity thresholds used for defining OTUs (see SI). 
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5.2.C A bioinformatic search for the bacterial hosts 

Because we aimed to study previously uncharacterized phages, the bacterial 

hosts for the phage families in this study have not yet been cultured or 

identified. However, using homology search we can identify candidate host 

species. Figure 7 (right panel) demonstrates organisms that were found to 

have terminase sequences homologous to HB1 sequences found in the 

human mouth. Each OTU’s most abundant sequence served as its 

representative sequence and was used as a query for BLASTx homology 

search. With the exception of a few sequences tagged as “putative proteins”, 

all resulting homologs were terminase sequences with very low E-values (less 

than 10-19) (SI Table 1). This was true for the HA and the PCA2 marker 

sequences as well (SI Table 3 and SI Table 5  

SI Table 5).  

The majority of HB1 homologs belonged to ReqiPepy6 phage isolated from 

Rhodococcus equi, a member of the Actinobacteria phylum. Recognized as a major pathogen in 

foals and an emerging pathogen in immunocompromised humans, R. equi inhabits soil as 

well as a diverse range of organisms such as cattle and pigs (49). Other OTU homologs were 

matched to ReqiPoco6, another R. equi phage, and six species spread across two different 

families of the Firmicutes phylum.  

In the phylogenetic tree composed of HB1 OTU representative sequences (Figure 

7), two major clades have formed. The first clade is entirely composed of sequences that are 

ReqiPepy6 phage terminase homologs. The second clade contains a mixture of sequences 

with homologs captured from phages of two different host phyla and three different 

families. Despite the great diversity and host range observed in sequences from the second 

clade, red circles placed next to prevalent OTUs (those that appear in multiple individuals) 

(Figure 7) reveal that the majority of these OTUs belong to the first clade. Moreover, the 
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HA phage family infects only a single genus of Firmicutes (Streptococcus), but appears 

embedded in the genomes of many different species within this genus (SI Table 4). 

 

5.2.D Oral phage community temporal dynamics in the span of 30 days 

We have so far demonstrated the highly personal nature of phage communities 

residing in the human mouth. To better understand the temporal stability of these phage 

communities, 10 subjects collected one sample per day (from tongue dorsum) for 30 days. 

The HB1 community composition as it evolved over 30 days inside subject 1 is depicted in 

Figure 8. Here, to provide a more detailed view of this community, we cluster the reads into 

OTUs based on 100% similarity (hence the 10,000 OTUs that are listed). These OTUs are 

shown in Figure 8 ordered based on their phylogenetic distance.  
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Figure 8. A 3D surface plot depicting the HB1 phage community 

composition as it evolves over 30 days on subject 1’s tongue dorsum. The x-

axis contains ~10,000 OTUs ordered according to the depicted phylogenetic 

tree of the OTU sequences (the phylogenetic tree is provided largely to serve 

as a schematic since it is hard to visualize the details of this tree). Each OTU 

is composed of identical sequences (i.e. 100% sequence similarity threshold). 

The y-axis depicts the relative abundance of each OTU, and the z-axis shows 

the fluctuations in relative abundance of each OTU in time. (Note, the colors 

shown correspond to an abundance-based heatmap, which provides 

redundant information since the y-axis provides this information, however 

the colors are kept because they allow for a better visualization of 

fluctuations in low-abundant OTUs.)   
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Surprisingly, over 30 days, the main features of the HB1 community composition is 

preserved, though there are also interesting fluctuations that are well above the experimental 

error and detection threshold (see SI). Figure 9 demonstrates different degrees of temporal 

stability and phylogenetic diversity across individuals. However, a global trend is that the 

dominant OTUs remain dominant over the span of 30 days in all subjects.  

 

Figure 9. Depictions of HB1 phage community evolution in different 

subjects over 30 days. The format of the plots is the same as that of Figure 8, 

and the order of OTUs is based on their phylogenetic distance and identical 

across all plots. All samples are collected from the tongue dorsum. Note that 

subject 2 and 4 are a couple, and their phage community compositions share 

some main features. 
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To further examine the phage community dynamics, we used several distance metrics 

to create pairwise comparisons within and between phage community compositions (Figure 

10).  The first metric explored is binary Jaccard distance, which is equal to one minus the 

ratio of the intersection to the union of two samples’ OTUs: 1− ! |!∩!|
! ! ! !|!∩!|. Here, ! and 

! represent the OTUs that are present in sample 1 and 2, respectively. This is a binary 

method of comparing samples simply based on the presence/absence of the OTUs. In 

addition to the Pearson distance (1- Pearson correlation), we chose two other abundance-

based distance metrics, namely abundance-weighted Jaccard and Bray-Curtis. Abundance-

weighted Jaccard, which is equal to 1− ! !"
!!!!!" (50), is similar to Jaccard but here ! and ! 

represent the sum of relative abundances of OTUs shared between samples 1 and 2, 

respectively. Bray-Curtis dissimilarity (51) is defined as  
|!!"!!!!"|
!!"!!!!"

, where !!"  and !!" 

correspond to the relative abundance of OTU ! in samples ! and !.  

Lastly, we explored unweighted Unifrac, a phylogenetic distance metric (52). The 

Unifrac algorithm operates on a phylogenetic tree containing sequences from all samples. It 

proceeds to create pairwise comparisons between samples by identifying the branch lengths 

that are shared between two samples, as well as the branch lengths that are unique to each 

sample. The Unifrac distance is then defined as the unshared branch lengths divided by the 

total branch lengths, where total branch lengths is the sum of shared and unshared branch 

lengths. If two samples are identical, the fraction of the tree’s branch lengths that is unique 

to one sample or the other will be zero, and thus, the Unifrac distance will be zero.  
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Figure 10. HB1 phage community temporal dynamics (previously shown 

graphically in Figure 9) depicted here by pairwise distance metrics: A) 

Peason, B) Binary Jaccard, Abundance Jaccard, Bray Curtis and unweighted 

Unifrac. The heatmap scale applies to all heatmaps shown. Subjects 02 and 

04 are a couple. Samples from each subject are chronologically ordered.  

 

All distance metrics explored paint similar pictures of the HB1 phage communities, 

depicting them as highly personal and stable over time. Because phage communities in 

different individuals have such distinct composition (Figure 9) abundance-based metrics are 

especially suitable for describing them. However, even the binary Jaccard and weighted 

Unifrac distance metrics demonstrate a similar message, which is consistent with HB1 

network’s degree distribution (Figure 7). Figure 11 further demonstrates the intra-and -

interpersonal distances as measured through these various distance metrics. As is expected 

from the heatmaps shown in Figure 10, the intra-personal distances are markedly different 

from the inter-personal, with the notable exception being subject 2 and 4, who are the 

couple in the study.  
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Figure 11. Intra-and inter-personal distances between HB1 phage 

communities from 10 subjects, over the span of 30 days (further quantifying 

the heatmaps from Figure 10). Box-plots depict distances from pairwise 

comparisons made using the following metrics: A) Binary Jaccard, B) 

Abundance Jaccard, C) Bray-Curtis, D) Pearson, and E) unweighted Unifrac. 

The outliers defined as those outside of the 1.5 x IQR (inter-quartile range) 

are denoted by “+”. The box-plots corresponding to the comparisons 

between the couple in this study are highlighted.  

 

5.2.E Phage community comparisons across siblings, couples, and non-related 

individuals residing across the globe 

 Given the ubiquitous presence of the phage families across subjects residing in the 

U.S. we wondered whether phage families (HA and HB1, specifically) are globally 

distributed, and whether subjects residing in the same country would have more similar 

phage communities. We discovered that phage families were in fact found in individuals 

from various ethnicities, nationalities, and ages. Surprisingly, neither from abundance-based 

nor phylogenetic distance comparisons did we find an indication that people residing in the 

same country share more similar phage communities (Figure 12). We found individuals 

typically have highly unique phage communities.  

 Even siblings who were either living in the same household or had previously, do not 

have any more similar phage communities than unrelated individuals. In fact, one of the four 

sibling groups with uncorrelated phageprints are identical twins (Figure 12). However, 3 out 

of 4 couples in this study exhibited highly similar phage communities. These results suggest 

that genetics and cohabitation do not significantly impact a person’s oral phage community. 

The more impactful factor appears to be direct oral contact with another person. To further 
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test these trends, larger studies encompassing a greater number of individuals and regions in 

the world are required. 
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Figure 12. HB1 phage community across 61 individuals residing across 

different parts of the globe. Samples are obtained from the tongue dorsum. 

A) Pearson distance (1 – Pearson correlation) is shown as a heatmap. A 

subset of individuals residing in the U.S. are either couples or siblings. Green 

and red boxes are drawn around samples from each sibling group and 

couple, respectively. B) Intra- and inter-country distances from pairwise 

comparisons made using Bray-Curtis and unweighted Unifrac distance 

metrics. The outliers are denoted as points outside of the 1.5 x IQR (inter-

quartile range). Siblings and couples are excluded from this analysis.  

 

5.3 Discussion 

Our method for finding ubiquitous human oral phages relied on a relatively small  

metagenomic dataset, which contained sequences from 6 individuals residing in Spain (47). 

Yet, on the basis of markers designed from this small dataset we were able to identify the 

same phage families in at least 10 times as many individuals from across the globe. This 

finding seems to suggest that despite the great sequence diversity that has been revealed 

through viral metagenomic surveys, there exist certain phage families that are a stable feature 

of the human oral microbiome. Studies of phages from various natural environments (e.g. 

marine, soil, lakes) also report the finding of phage families that are distributed across similar 

types of habitats despite vast geographical distances and barriers that exist between these 

habitats (9, 53, 54). The discovery of core bacterial members within the human microbiome 

(40, 55, 56) that are present globally (42) further support our discovery of globally distributed 

phage families. Similar to our findings for phages, the oral bacteria of individuals from the 

same part of the world was as different from each other as they were to individuals from 

other parts of the world (42).  
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The ubiquitous presence of the identified phage families in individuals, together with 

their temporal stability, seems to suggest that they likely play important roles in this 

environment. The observed temporal stability of these phage families over the span of a 

month is supported through metagenomic studies of oral phages (57, 58) as well as 16S 

sequencing of bacterial communities inhabiting various sites in the human body (55, 59, 60). 

Our study represents one of the largest studies of human oral phages. As a comparison, the 

most recent version of the Human Microbiome Project, contains samples from 265 

individuals (61). However, future studies are required to more systematically account for diet, 

ethnicity, and other parameters across tens of thousands of individuals across the globe.  

A particularly important aspect of our study is that it combined the advantages of 

metagenomics with targeted sequencing to not only identify core phage families inhabiting 

the human oral cavity, but to also characterize their communities with a resolution that is 

unavailable through metagenomic studies of phages. This detailed view allowed us to clearly 

observe the highly complex, and personal nature of phage community compositions. 

Moreover, the emergence of phageprints is directly the result of the remarkable phage 

sequence diversity that we were able to capture via targeted sequencing. For example, we 

observed a few hundred HB1 OTUs (defined at 97% sequence similarity). This is a 

staggering number when considering that this is about the same number as the total number 

of bacterial OTUs (defined at 97% sequence similarity) in the human mouth (47, 55). Even 

though the HB1 phage family is only one of many oral phage families, it by itself contains 

the same level of sequence diversity as the entire bacterial population in the human mouth. 

This perhaps explains the need to use highly elaborate algorithms applied onto 16S and 

metagenomic sequences from all bacterial strains to be able to identify a person based on 
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his/her microbiome with a similar level of accuracy as our method, which only employs 

sequences from one phage family (62).  

Because of the great diversity of sequences associated with just one phage family, in 

our study of about 60 individuals we found only one case where unrelated individuals whose 

phageprints had similar correlation coefficients. This may be due to experimental error or 

due to the course-graining associated with Pearson correlation matrices. However, if we 

conservatively assume that each phage family can provide only 50 unique patterns, then the 

combination of phageprints from just 6 phage families would already provide a greater 

number of possible patterns than the size of the current human population. This is assuming 

that these phage families will be physiologically independent of each other. Future studies 

are needed to test the long-term stability of the human phageprints especially with regard to 

perturbations such as exposure to antibiotics. To our knowledge, this is the first study that 

demonstrates the potential application of phage sequences for human identification.  

 

Figure 13. An estimate for the number of additional globally-distributed 

phage families needed to achieve the number of possible phageprint patterns 

that surpass the current human population. Assuming that phageprints from 

each phage family can provide 50 unique patterns, there would only be 3 

additional globally distributed phage families needed.  
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5.4 Materials and Methods 

Materials and Methods (an overview).  This section will comprise a condensed 

description of phage marker discovery, experimental methods such as sample collection, 

barcoded PCR, sequencing, and experimental reproducibility analysis, as well as 

bioinformatic methods such as sequence quality control measures, sequence demultiplexing 

and clustering. Figure 14 provides a schematic summary of some of the main experimental 

and bioinformatic methods employed.  

 

 

Figure 14. A schematic summary of the main experimental and bioinformatic 

methodologies presented in this chapter: 1) Discovery of ubiquitous phage 

families by examining large terminase sequences that occur across different 

metagenomic datasets, 2) sampling, 3) DNA extraction from oral biofilm 

samples, 4) PCR using barcoded primers followed by PCR clean-up, 5) 

paired-end Next Generation Sequencing, 6) joining paired-end reads to 
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eliminate sequencing errors, 7) various additional quality control steps to 

further eliminate errors, 8) demultiplexing of reads based on their barcode 

sequence and tagging sequence names by the sample they originate from, 9) 

gathering reads from all samples and clustering them based on sequence 

similarity (OTUs), 10) counting the number of sequences belonging to each 

OTU from each sample (i.e. constructing an OTU table), and rarefying the 

table so that each sample is represented by the same total number of 

sequences, and 11) performing various down-stream diversity analysis (e.g. 

community composition plots or phageprints) using the constructed OTU 

table as the basis.  

 

 Phage marker discovery. Focusing on the oral cavity, we applied a metagenome 

clustering program called MetaCAT (63) to eight oral metagenomes obtained from six 

human subjects with varying degrees of oral hygiene (47). MetaCAT reports the most 

abundant genes in a metagenome based on an annotated reference library provided by the 

user. As a reference library we used the viral RefSeq database (v48) (64) containing 2727 

distinct viral taxonomic IDs, spanning 96713 viral gene records. Applying MetaCAT to the 

eight Mira metagenomes yielded 8757 known RefSeq viral genes. This list was manually 

screened for RefSeq genes containing the case insensitive keywords “terL”, “terminase”, or 

“packa” in the definition of the known reference gene or in the features field of the GenPept 

file provided by MetaCAT. From the 1.9×106 contigs, 119 contained TerL genes, which 

when cross-BLASTed against a second oral metagenomic dataset obtained from a healthy 

individual (46), reduced to eleven candidate markers.  

After removing redundant markers using additional alleles recovered from public 

genomic oral datasets we found seven full length TerL genes representing unrelated lineages 

(maximum percent identity < ~30%), labeled HA, HB1, HB2, PCA1, PCA2, AB1, and AB2, 
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all present in a context of phage-related genes. The labels were made according to the 

database from which each marker was identified (H=healthy, PC=past caries, A=active 

caries, C=cavities), followed by the patient index (patient A or B for the given dental 

category), and a counter of the TerL solution found in the given metagenome. Moreover, in 

order to derive markers that span the full length of the TerL gene we applied a 

bootstrapping approach in which the seven TerL+ contigs were used as hooks to recover 

additional alleles from several datasets. This was achieved by BLASTing the amino acid 

sequence of the seven representative contigs against the Xie, Mira, HOMD (Human Oral 

Microbiome Database)(43) and the HMP (Human Microbiome Project) (48) datasets. After 

identifying markers and designing degenerate primers against them, we began to test for their 

presence in a variety of samples.  

Measures against contamination. A common source of contamination in PCR 

originates from previously amplified template sequences that enter new PCR reactions. To 

prevent contamination this type of contamination, four physically separated workstations 

were developed for DNA extraction (station A1), PCR preparation (station A2), PCR 

and gel electrophoresis (station B1), and PCR cleanup (station B2). A and B specify two 

different buildings at Caltech while 1 and 2 refer to two different rooms within the same 

building. The flow of materials was from building A to B and never the vice-versa. Every 

station had its own set of lab equipment, materials, and storage space. Disposable lab coats 

(Sigma-Aldrich®) were worn and disposed of at the end of every procedure to ensure that 

DNA was not carried between stations via clothing. Facemasks (Fisher Scientific) were also 

worn at all times to prevent any oral or nasal droplets from entering reactions. Prior to the 

start of every DNA extraction, lab equipment and bench tops were cleaned using sterile 

wipes and DNA AWAY™ (Thermo Scientific), a surface decontaminant that eliminates 
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DNA and DNAses. PCR preparations and aliquoting of reagents were carried out in a PCR 

flowhood (AirClean® Systems) equipped with a UV light and laminar airflow capabilities. 

Lab equipment required for PCR preparation was designated to the PCR preparation 

flowhood. At the end of every experimental session and when introducing new equipment 

into the flowhood, all surfaces were first wiped with DNA AWAY™ solution and then 

exposed to UV radiation for 60 minutes. Prepackaged, sterile gloves were used for PCR 

preparation. To prevent sample-to-sample contamination during DNA extraction, PCR 

preparation, and PCR cleanup, gloves were frequently exchanged. Most importantly, 5 No 

Template Control (NTC) reactions accompanied every PCR run. Similarly, to test the 

presence of contaminants in extraction reagents, for every extraction experiment, 3 reactions 

were carried out without the addition of any sample. PCR using phage primers was 

performed on these extraction control reactions.  

DNA Extraction (Station A1). DNA extraction of human oral samples was done 

according to the manual from MoBio PowerBiofilm® DNA Isolation Kit. The advantage to 

using this kit for DNA extraction and purification is that it combines the use of chemical 

and mechanical (bead-beating) treatments for an increased efficiency in biofilm disruption, 

lysis, and removal of inhibitors such as humic acid. The final concentrations of DNA were 

measured using Nanodrop. The concentration range of the total extracted genomic DNA 

was typically between 5 to 50 ng/µL.  

PCR preparation (Station A2) and PCR (Station B1). Each PCR reaction 

contained 12.5 µL of PerfeCTa® qPCR SuperMix, ROX™ (Quanta Biosciences), a premix 

containing AccuStart™ Taq DNA polymerase, MgCl2, dNTPs, and ROX reference dye for 

qPCR applications. Additionally, each reaction contained 10.5 µL of RT-PCR Grade Water 

(Ambion®) which is free of nucleic acids and nucleases, 1 µL of extracted DNA at 1 ng/µL, 
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0.5 µL of forward and 0.5 µL of reverse primers, each at 50 ng/µL (synthesized by IDT). A 

higher than recommended primer concentration was used because the phage primers used 

are 32-64 fold degenerate. The thermocycling protocol was made according to PerfeCTa 

qPCR SuperMix recommendations: 1) a 10-minute activation of AccuStart™ Taq DNA 

polymerase at 95°C, 2) 10 seconds of DNA denaturation at 95°C, 3) 20 seconds of annealing 

at 60°C, and 4) 30 seconds of extension at 72°C, 40 cycles repeating steps 2 to 4, followed by 

5 minutes of final extension at 72°C.  

Gel electrophoresis (Station B1) and PCR cleanup (Station B2). Phage PCR 

products were visualized using 2% agarose in TAE buffer. After gels were cast, 5 µL of each 

PCR product was mixed with 1 µL of 6X loading dye and loaded into a well. 5 µL of 100 

base-pair ladder was used, and the gel electrophoresis instrument was set to run for 30 

minutes at 100V. Phage PCR positive hits were purified using the QIAquick PCR 

Purification Kit (QIAGEN). 20µL of PCR products were used and purified according to the 

QIAquick PCR Purification manual. 

Illumina sequencing. Upon PCR cleanup, double stranded DNA concentration in 

each sample was measured using Qubit instrument. Qubit measurements were performed in 

Building C due to practical considerations rather than a necessary treatment for preventing 

contamination. Samples were combined into one reaction (~2 µg dsDNA) and submitted to 

GENEWIZ, Inc for library preparation and MiSeq 2x300bp Paired-End sequencing.   

DNA barcodes for multiplexed sequencing. To enable multiplexing, unique 

DNA barcodes (Table 1) were appended onto the forward primer sequences (Table 3) used 

to amplify each phage marker. These barcoded primer sequences were synthesized by IDT. 

Using this scheme, ~100 samples were submitted per MiSeq sequencing run (Table 1) and 
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by matching the barcode sequence to the sample ID, information about who and where the 

sample came from was accessible. More specifically, Hamady error-correcting 8-letter 

barcodes (65) were used. Hamady DNA barcodes are an example of Hamming code wherein 

the addition of parity bits allow for detection and correction of errors within the barcode 

sequence. In the case of Hamady barcodes, up to 2 errors in the barcode sequence can be 

detected and one error can be corrected.  

Error-detecting barcode design. Because we were unable to use Hamady barcodes 

to amplify PCA2 marker sequences under various PCR conditions, 4-letter error-detecting 

DNA barcodes were designed. The general scheme used is that the last letter of the barcode 

sequence (Table 4) serves as a parity base and contains information about the preceding 

letters, enabling a check on single-base sequencing errors occurring in the barcode sequence. 

More specifically, in designing four-letter barcodes the first three letters in the barcode 

sequence together are set to represent a number between 1 and 64 written in base 4, and 

converted to DNA bases using the following assignments: 0 = A, 1 = C, 2 = G, and 3 = T. 

For example, to generate a barcode representing the number 60, we re-write 60 as 3 × 42 + 3 

×!41 + 0 × 40, and convert the coefficients to DNA bases. As such, 60 can be coded as 

TTA. To enable error detection, the fourth letter in a barcode represents 

!"#$$%!%#&'(!!!"#!4, which is the remainder of the sum of the coefficients divided by 4. 

The full sequence of barcode #60 is TTAG. Although using 4 letters and 3 positions 64 

barcode sequences are possible, certain barcode sequences were excluded due to repetition 

of bases and/or high GC content, for example barcode #42 (GGGG) and barcode #41 

(GGCC). Note that barcode numbers 1 through 21, 24, 32, 33, 36, and 48, 

!"#$$%!%#&'(!!!"#!4 result in fractions, and had more barcodes been necessary for our 
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experiments it would be simple to include additional assignments for conversion of fractions 

into DNA bases.   

Barcode verification. To verify the efficacy of all barcodes used in the experiments, 

PCR was once performed on each sample using non-barcoded primers (Table 1), and once 

again using barcoded primers. We were unable to use Hamady barcoded primers to amplify 

the PCA2 marker; therefore shorter, 4-letter error-detecting barcodes were designed and 

experimentally verified (Table 2).  

The sample collection kit and measures against sampling contamination. To 

obtain samples, we developed a sample collection kit and prepared kit contents within the 

PCR flowhood. Before and after every kit preparation session, the flowhood surfaces and 

pipettes were wiped using sterile wipes, DNA AWAY™, and 95% ethanol. At the end of 

each session the surfaces were also UV-sterilized (60 minutes). Each kit contains plastic 

tongue scrapers (Yellow CeraSpoon Safe Ear Curettes, Bionix) that were first autoclaved and 

then UV-sterilized for 60 minutes, 1.5 mL gamma-sterilized and pre-packaged collection 

tubes certified as pyrogen- RNase- DNA- and ATP-free (VWR), each containing 200 uL 

sterile 1X PBS buffer (VWR), along with pre-packaged sterile gloves (VWR). Each collection 

tube and tongue scraper pair was placed inside a sterile bag and the bags were placed in 

another bag. The next steps were performed outside of the flowhood. Each collection bag 

was put inside a Styrofoam box along with ice gel packs. Ice gel packs and Styrofoam boxes 

were not reused to prevent cross contamination between individuals in case of a spill, which 

would already be highly unlikely due to multiple layers of packaging. Upon arrival of 

samples, collection tubes were taken out of their original bags, wiped with 95% ethanol and 

DNA AWAY™ using sterile wipes and placed into a new sterile bag. Gloves were frequently 

exchanged both during this step and before proceeding to the next collection tube to 
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prevent cross contamination. In addition to standard lab attire such as gloves and lab coat, a 

facemask was worn to prevent contamination during kit preparation and sample storage.   

Subject recruitment and sample collection. We made an educational video to 

introduce a diverse audience to the fascinating world of phages, explain our study and to 

recruit volunteers. We also created an instructional video for prospective volunteers on 

subject disqualifying criteria and subject rights, and to provide a step-by-step demonstration 

of sample collection, storage, and shipment. Among other exclusion criteria, subjects could 

not have taken antibiotics for the preceding 3 months and subjects could not have active 

cavities or gum disease. Qualified subjects were sent a kit and were asked not to brush their 

teeth or tongue for a minimum of 8 hours prior to sample collection to allow for a 

substantial build up of plaque on the tongue dorsum. Put simply, subjects were instructed to 

1) wear gloves, 2) scrape their tongue (dorsal surface) several times using the tongue scraper, 

3) deposit their sample into the collection tube, 4) place the tube back into the bag, and 5) 

store the bag in their freezer along with ice gel packs prior to an over-night shipment of their 

samples. They were also instructed to report any sources of error that occurred at any step, 

and to send their samples along with their signed consent form and questionnaire. Our 

sample collection and processing protocols were approved by Caltech Institutional Review 

Board (IRB protocol 14-0430) and Institutional Biosafety Committee (IBC protocol 13-198).  

Subject recruitment and sample collection (Bik e t  a l . samples). 10 subjects 

included in this study are those included in a previous study of oral microbial diversity by Bik 

et al. (40). Briefly, samples were collected from 10 individuals by a dentist who examined 

subjects for their oral health, thereby excluding subjects with active cavities, gingivitis, or 

periodontal disease. For each of the 10 individuals, samples from 6 different oral sites were 

collected using sterile curettes and deposited separately in 1.5 mL collection tubes containing 
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PBS buffer. The 6 oral sites sampled include plaque from tongue dorsum, tongue ventral, 

buccal mucosa, hard palate, supra-gingiva, and sub-gingiva.  
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Table 1. List of non-barcoded phage primer sequences used to amplify 

markers HB1, PCA2, HA, and PCA1.  

Markers 
Forward Primer Sequence        

(5' to 3') 

Reverse Primer Sequence              

(5' to 3') 
HB1 CCGATCTGTCICARGGIGAYGA GTTACGAACTCTTTGGCRTTRTAIGGRTC 

PCA2 GTGCGGCAACWAARCARGAICA CTGATTATTTGGGTGTGCRTGWARYTCRTC 

HA CGTGATGGCTGYCTWGARTTYGAYGA CGTAAGGAGTGCTYTCRTCCARCATIGG 

PCA1 CCTTTGYTTGGCITGGTTYGARGA CAGCRACICCCCAYTCRCC 

 

 

Table 2. A list of 4-letter error-detecting barcodes designed for multiplexed 

sequencing of PCA2 marker sequences from various samples.  The barcode 

number dictates the first three letters in the barcode sequence according to 

base 4 arithmetic. The last letter in the barcode sequence is a parity letter and 

allows for detection of errors within the barcode sequence (See Error-

detecting Barcode Design). 

Barcode 

Number 

Barcode Sequence  

(5' to 3') 

63 TTTC 

62 TTGA 

61 TTCT 

60 TTAG 

59 TGTA 

58 TGGT 

57 TGCG 

56 TGAC 

55 TCTT 

54 TCGG 

53 TCCC 

52 TCAA 

51 TATG 

50 TAGC 
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Quality control steps to eliminate sequencing errors. We used Illumina MiSeq’s 

2x300bp paired-end configuration (GENEWIZ, Inc). Each sequencing run produced about 

20-25 Million paired-end reads. Paired-end reads were joined using join_paired_ends.py script 

from QIIME (Quantitative Insights Into Microbial Ecology) package, and unless noted 

otherwise scripts used in this chapter are part of QIIME (66). When a base is confirmed by 

both reads, higher Phred score is increased by up to 3 points. If paired reads had any 

mismatches across their overlapping bases, the paired reads was eliminated from any further 

analysis (QC step #1). Taking one of the sequencing runs as an example, this step reduced 

the number of paired reads from ~21Million to ~6.3Million joined reads (Figure 1), but it 

also likely reduced the probability of sequencing error in the surviving reads. For markers 

49 TACA 

47 GTTA 

45 GTCG 

44 GTAC 

43 GGTT 

40 GGAA 

39 GCTG 

37 GCCA 

35 GATC 

31 CTTT 

30 CTGG 

29 CTCC 

28 CTAA 

27 CGTG 

25 CGCA 

23 CCTC 

22 CCGA 
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HB1, PCA2, and HA the overlap between the paired reads entirely covers the marker 

sequence, hence eliminating many sequencing errors.  

Upon joining reads and eliminating those with mismatches in the region of overlap 

seqQualityFilters.py, an in-house script, was used to preform QC step #2: taking joined reads 

from QC step #1, and eliminating any sequences that have one or more bases marked by a 

Phred score below 30. At this step the number of sequences was reduced from ~6.3Million 

to ~6.0 Million, reflecting the fact that QC step #1 already ensures that the majority of 

surviving reads have high Phred scores across their bases (Figure 1). Excluded from QC step 

#2 were the first two bases in the beginning and end of each sequence, which for majority of 

reads have much lower quality scores.  

Using seqQualityFilters.py, sequences were placed in 4 different bins according to their 

primer sequences, and any sequence that did not have the correct barcode length, or the 

correct primer sequences at the expected positions, was eliminated (QC step #3). 

Additionally, nearly half of remaining sequences had to be reverse complemented so that all 

sequences were oriented in the 5’ to 3’ direction. Using the same script, primer and barcode 

sequences were removed, and barcode sequences were written to a separate file (to be used 

as input to split_libraries_fastq.py). At this point sequences that did not have the correct length 

were filtered out (QC step #3). Sequences were demultiplexd using split_libraries_fastq.py and 

reads with errors in the barcode sequence were eliminated (QC step #4).  

Phage community composition plots (“Phageprints”). After demultiplexing 

quality-controlled reads, sequences were clustered according to a specified sequence 

similarity threshold using UCLUST de novo clustering algorithm (67) used in pick_otus.py 

script. Using make_otu_table.py, OTU tables were generated. An OTU table summarizes 

counts of sequences assigned to each OTU across each sample. We refer to this per-sample 
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sequence count as the OTU size. As long as an OTU of size 1 or greater exists in at least one 

sample, it is included in the OTU table. In this way, the counts of OTUs for samples 

containing the same marker remains the same, though their size could vary widely across 

different samples. Later we will demonstrate the effects of noise filters applied to the OTU 

table. The relative abundance of each OTU within each sample was calculated via 

processOtuTable.py, another in-house script. In plotting the relative OTU abundance values for 

different samples, we arrived at complex, individual-specific patterns. We dubbed these 

phage community composition plots as “phageprints”.  

Examining the effect of OTU sequence similarity threshold on Pearson 

correlation coefficient matrices. In analyzing 16S sequences, clusters or Operational 

Taxonomic Units (OTUs) are conventionally defined at 97% sequence similarity threshold. 

To examine the effect of sequence similarity threshold for phage OTU formation, we tested 

OTU sequence similarity thresholds of 98%, 97%, 95%, 90%, and 80%. Figure 15 is a matrix 

of Pearson correlation coefficients calculated during the pairwise comparison of HB1 

community compositions using different sequence similarity thresholds for defining OTUs. 

Very similar Pearson correlation matrices are obtained as the sequence similarity threshold is 

lowered from 98% to 80%. However, because the number of cluster is reduced as we reduce 

the sequence similarity threshold, with lower sequence similarity thresholds, the chance that 

individual-specific variations are lumped into the same cluster is increased. If noise-induced 

sequence variations are effectively accounted for, higher sequence similarity thresholds for 

defining OTUs can enable a more accurate and detailed depiction of a person’s phage 

community composition. For this reason, we used a sequence similarity threshold of 98% for 

the study of different oral sites, and later we used a 100% sequence similarity threshold for 

the temporal and the global study.   
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Figure 15. Pairwise Pearson correlation coefficient values calculated for HB1 

phage community compositions as a function of A) 98%, B) 97%, C) 95%, 

D) 90%, and E) 80% sequence similarity thresholds for OTU formation. 

Sample IDs can be decoded as before: subject ID precedes oral site ID. Oral 

sites 1-6 correspond to tongue dorsum, hard palate, buccal mucosa, ventral 

tongue, supra-gingiva, and sub-gingiva respectively (e.g. 3.3 corresponds to 

subject 3 community composition derived from the buccal mucosa, and 3.5 

is subject 3 supra-gingiva community composition). The number of OTUs 

generated at 98%, 97%, 95%, 90%, and 80% sequence similarity thresholds 

are 210, 181, 172, 170, and 80, respectively.  

 

Rarefaction. One common observation when analyzing sequence diversity is that it 

is dependent on the number of sequences analyzed. Rarefaction is typically performed to 
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illustrate the minimum number of sequences needed to entirely capture sequence diversity in 

a given environment. Because both PCR and sequencing are error-prone processes, they 

contribute noise-induced sequence variation and result in an over-estimation of natural 

sequence diversity. To resolve this issue, we present a comparison of rarefaction plots in 

Figure 16 and Figure 17.  

 

Figure 16. Rarefaction plot for HB1 marker using data from 3 samples, 

belonging to subject 6 supra-gingiva (red), subject 12 buccal mucosa (purple), 

and subject 17 sub-gingiva (blue). The y-axis contains the number of OTUs 

(defined at 98% sequence similarity) that contain one or more sequences. 

The x-axis demonstrates the number of sequences analyzed per sample. 

Trend lines demonstrate a logarithmic relationship between number of 

OTUs and the number of sequences analyzed per sample. 

 

Figure 16 is a rarefaction plot of HB1 marker present in three different 

environments: subject 6 supra-gingiva (red), subject 12 buccal mucosa (purple), and subject 

17 sub-gingiva (blue). By randomly selecting x number of sequences from each environment 

and plotting the number of observed OTUs, y, at each value of x, the relationship can be 
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modeled as y=ln(x). From this plot, one might conclude that even 10,000 sequences are 

insufficient to entirely capture sequence diversity within each environments. This result 

would place significant limits on the number of samples that reads from a sequencing run 

can be divided into. It also provides no insight for identifying OTUs that are either noise-

induced or so naturally low in abundance that practically they would not be reproducible 

using current sequencing technologies. However, if we stratify OTUs based on their relative 

abundance, we arrive at a more meaningful picture.  

Figure 17 shows HB1 rarefaction plots of the same subjects as in Figure 16: subject 6 

supra-gingiva (panel A), subject 12 buccal mucosa (panel B), and subject 17 sub-gingiva 

(panel C). As in Figure 16, OTUs are defined at 98% sequence similarity threshold. In Figure 

17.A OTUs have been binned into 5 categories: Empty OTUs, which are present in other 

samples or are non-empty at higher values of x, but have zero sequences associated with 

them in this sample; below-threshold OTUs that are present in less than 0.1% of population 

x; rare OTUs which are present in 0.1-1%; common OTUs with 1%-10% presence; and 

finally, abundant OTUs which take up anywhere from 10% to 100% of reads.  

As we increase x from 500 to 10,000, the number of abundant OTUs remains 

constant. The number of common OTUs fluctuates between 6 and 7, and the number of 

rare OTUs decreases from 32 to 25. At x =1500, OTUs below 0.1% of population emerge 

and they are OTUs defined by a single sequence. As x increases previously empty OTUs 

transform into below-threshold OTUs defined by 1 to 10 sequences. However, as the 

number of below-threshold OTUs continues to increase the rare, common, and abundant 

OTU counts begin to stabilize and have nearly exact values at x=4000 as they do at 

x=10,000.  
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In Figure 17.B and C, we have combined counts of rare, common, and abundant 

OTUs and together call them above-threshold OTUs. Below-threshold OTU counts 

continue to increase as a function of x while above-threshold OTU counts have the same 

value at x=4000 as they have at x=10,000. We have limited our analysis to a maximum of 

10,000 sequences because only a few samples are represented by more than 10,000 

sequences. By rarifying the OTU table multiple times and creating an average OTU table at 

different values of x, the count of above-threshold OTUs could stabilize at even a smaller 

value of x. While it’s possible that some below-threshold OTUs are highly rare species in the 

population, they are more likely OTUs that arose as a result of sequencing and/or PCR 

errors. From this exercise we have taken away two useful parameters: the minimum number 

of sequences to analyze per sample, and the relative abundance threshold for detection, 

which we will further demonstrate in the following subsections. 
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Figure 17. Rarefaction plots of HB1 marker segmented based on OTU 

relative abundance. Samples are analyzed at rarefaction intervals ranging 

from 500 to 10,000 sequences. A) Subject 6 supra-gingiva rarefaction plot. 

OTUs that are present in other samples but have zero sequences associated 

with them in this sample are shown in light pink, below threshold OTUs 

with a relative abundance of less than 0.1% but greater than zero are in 

darker pink, Rare OTUs (0.1%-1%) are in blue, followed by Common OTUs 

(1%-10%) in green, and Abundant OTUs ( >10%) in purple. The count of 

OTUs for rare, common, and abundant OTUs are depicted. Rarefaction 

plots for B) subject 12 buccal mucosa and C) subject 17 sub-gingiva. The 
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count of Rare, Common and Abundant OTUs are summed and shown in 

yellow as above-threshold OTUs (0.1%-100% relative abundance). The 

counts of above-threshold OTUs are shown. 

 

Quantifying experimental noise. How reproducible is a phage community 

composition plot? Figure 18 summarizes the sources of noise from all experimental 

processes performed during this study. First, it’s important to capture sampling variation. 

How consistently can we capture a phage community from an individual’s oral site given that 

we are sampling different clumps of biofilm each time? Another factor that could contribute 

to sampling variation are the personal differences in the rate of biofilm mass accumulation 

on the tongue dorsum. Secondly, we need to ask whether processes of lysis and DNA 

extraction allow for the availability of the same template DNA sequences in the same relative 

abundances across different extraction runs.  

Third, we need to evaluate the OTU abundance variations that could result in PCR 

due to both errors as well as other stochastic events. For example, it’s possible that very rare 

template sequences are left out of the initial cycles of PCR and their relative abundance at 

the end of PCR is lower than their relative abundance prior to PCR. In this hypothetical 

scenario PCR could serve as a biased amplifier. PCR purification is similar to extraction and 

sampling in that it does not introduce sequence errors; however it is unlike these processes 

because after PCR billions of template copies are created and it’s unlikely that the loss of a 

fraction of templates during PCR purification will dramatically change OTU relative 

abundances. Finally, Illumina MiSeq sequencing is another error-prone process not only at 

the level of base-calling, but at the level of bridge amplification which like PCR could 

introduce errors that propagate exponentially. Refer to Figure 18 for a summary of processes 

that could result in irreproducible OTUs or variation in OTU relative abundances.  
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Figure 18. Sources of error and variation in experimental processes used in 

this study. A) Sampling of the same oral site in the same individual could 

result in collection of different microbial communities, which could 

introduce new OTUs or change relative abundance of existing OTUs. B) 

DNA extraction is not 100% efficient and the fraction of DNA extracted 

from an environment could serve as a source of variation across different 

samples.  C) PCR introduces errors that could present themselves as novel 

OTUs or cause variation in abundance of genuine OTUs. D) Sequencing also 

introduces errors both at the level of base-calling and bridge amplification. 

 

To quantify how reproducible a given phage community composition is, we obtained 

3 different samples from subject 37 tongue dorsum. We then performed DNA extraction 

and PCR separately on each sample and sent samples for sequencing (sequencing run #2). 

The logic behind this experiment was to capture a lumped measure of noise arising from 

various processes depicted in Figure 18. After performing quality control steps 1-4, 
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demultiplexing reads based on their barcode sequences, clustering reads based on 98% 

sequence similarity threshold for OTU formation, rarefying the OTU table to 4000 reads per 

sample, and calculating the relative abundances of OTUs, we measured the standard 

deviation in the relative abundance of each OTU across these three samples (Figure 19). 

Remarkably, relative abundance values across these three samples were highly consistent, 

with the majority of OTUs having standard deviations below 0.2% and the maximum 

standard deviation observed was less than 0.7% relative abundance. 

 

Figure 19. Standard deviations of OTU relative abundances calculated for all 

experimental processes. Three data points per OTU are used for standard 

deviation calculations. These three data points correspond to measurements 

of OTU relative abundances obtained for three different samples obtained 

from subject 37 tongue dorsum (HB1 marker) which underwent separate 

sampling, DNA extraction, PCR and PCR cleanup procedures. The 

maximum standard deviation observed is less than 0.007 relative abundance, 

and majority are close to 0. 

 

  Identifying non-reproducible OTUs. To identify OTUs that were non-

reproducible across the three samples from subject 37’s tongue dorsum (HB1 marker), we 

flagged OTUs that had appeared in only one or two samples out of three. We then plotted 

the histogram of non-reproducible OTUs as a function of their relative abundance (for those 
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OTUs appearing in 2 out 3 samples, the higher relative abundance value was used). The 

thresholds defining each bin, b, were selected to be the following: 0>b1≥0.00025 (OTU of 

size 1 sequence since the total number of sequences per sample is 4000), 0.00025>b2≥0.0005 

(2 sequences), 0.0005>b3≥0.00075 (3 sequences), 0.00075>b4≥0.001 (4 sequences), and 

0.001<b5 (5 or more sequences).  

Figure 20 demonstrates the number of non-reproducible OTUs drops as a function 

of OTU relative abundance, and all OTUs with more than 4 sequences (0.001 relative 

abundance) are reproducible. This result is consistent with previously established OTU noise 

threshold of 0.001 relative abundance, obtained during the rarefaction study (see 

Rarefaction). To conclude, using two different approaches and across two different 

sequencing runs, we arrived at 0.001 relative abundance as the detection threshold for 

OTUs.   

 

Figure 20. Number of non-reproducible OTUs across three samples 

obtained from subject 37 tongue dorsum (HB1 marker), presented as a 

function of OTU relative abundance. A total of 30 OTUs appear in one or 

two samples out of three, and therefore are considered non-reproducible. 21 

out of 30 OTUs are defined by a single sequence which translates into 

0.00025 relative abundance since samples are rarefied to 4000 sequences. The 
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number of non-reproducible OTUs drops as a function of OTU relative 

abundance, and all OTUs with more than 4 sequences (0.001 relative 

abundance) are reproducible across three samples. This relative abundance 

threshold for noise-induced OTUs was previously obtained using a different 

approach, different set of samples, and a different sequencing run (Figure 

17). 

 

In addition to capturing a lumped sum of noise across all experimental processes for 

subject 37 tongue dorsum sample (Figure 19,Figure 20), for samples from subjects 3, 6, 10, 

16, and 17, we performed a second set of PCR on previously extracted DNA samples, and 

submitted those samples for sequencing (Figure 21). In addition to these replicates, we 

acquired new samples from the tongue dorsum for subjects 31, 35, 37, and 38, and 

submitted these samples for the second sequencing run. In obtaining replicate phageprints, 

we were able to demonstrate that with proper quality filtration steps phageprints are highly 

reproducible even when they are generated from two separate PCR and sequencing steps 

(Figure 21).  
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Figure 21. Panel A is the Pearson correlation matrix of all HB1 phageprints. 

Each phageprint is derived from the analysis of 4000 sequences associated 

with an individual and a particular oral site. OTUs are defined at 98% 

sequence similarity and OTUs with less than or equal to 0.1% relative 

abundance across all phageprints were filtered out. Phageprints are color-

coded based on the individual they originate from. Oral sites shown to be 

positive for the HB1 marker are the tongue dorsum (TD), buccal mucosa 

(BM), supra-gingiva (SP), and sub-gingiva (SB). Phageprints that were 

acquired from sequencing run #1, are those marked as replicate #1. Panel B 

shows that to confirm reproducibility of phageprints, a second set of PCR 

was performed on previously extracted DNA from all samples included in 

sequencing run #1 and those PCR products were included in sequencing run 

#2. Phageprints derived from the second sequencing run are marked as 

replicate #2. 

 

Identifying phage marker homologs and phylogenetic tree construction. The 

most abundant sequence from each OTU was retrieved using pick_rep_set.py to serve as a 
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representative sequence. BLASTx function was used to detect the closest homolog to each 

OTU’s representative sequence from within the NCBI’s non-redundant protein database. 

The output of BLASTx for each marker is summarized in SI Table 1 and SI Table 3. These 

tables summarize the amino acid percent identity between each OTU representative and its 

closest homolog, as well as the E-value associated with the match.  

HB1 representative sequences were aligned using Geneious (68), using a gap open 

penalty of 30 and gap extension penalty of 15 and a 65% similarity cost matrix. No gaps 

were introduced. The alignment is shown in SI Figure 7. SeaView was used to create a 

PhyML maximum likelihood phylogenetic tree from the alignment. General Time Reversible 

model was used with empirical nucleotide equilibrium frequencies.  

Phage networks. OTU tables were input to createNetwork.py, an in-house script that 

creates node and edge tables. The nodes represent samples and phage OTUs, and a directed 

edge connects samples to the OTUs that they host. The weight of this connection is based 

on the relative abundance of the OTU in that sample. Gephi software (69) was used to 

visualize the resulting networks, and to obtain the degree distribution.  

Averaged phage biogeography patterns. Given 6 oral sites, there are up to 15 

pairwise interactions possible. For each possible interaction, i, the number of subjects 

positive for the interaction was divided by the total number of subjects, while still accounting 

for the missing oral samples. The shorthand for this fraction is Ei.  Moreover, the Pearson 

correlation coefficients  associated with each interaction were averaged across the subjects 

positive for the interaction (ri). The edges in SI Figure 2.B are weighted based on the product 

of Ei and ri.; however, edges with low ri (<0.35) are not shown. 
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5.5 SI 

 

SI Figure 1. Pearson correlation matrix of PCA2 phage family. Samples that 

have an asterisk are those that are used in error analysis (see Methods) and 

have been replicated experimentally at least twice.  
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SI Figure 2. Phage biogeography patterns in the human mouth. Six different 

oral sites were tested for presence of phage families HA, HB1, and PCA2. A) 

Each hexagon summarizes the community composition of a particular phage 

family across different oral sites within a given individual. Each vertex of a 

hexagon symbolizes an oral site, and the presence of a marker is signified by 

a filled-in vertex. The marker is considered present at an oral site if at least 

4000 high-quality sequences (see Methods) belonging to a terminase family 

are found at that oral site. The unfilled vertices are those samples that did not 

harbor phage markers. The missing vertices, correspond to samples that were 

unavailable and consequently were not tested for presence/absence of phage 

makers. The edges connecting different vertices represent the similarity of 

the phage community at one oral site to another. The thicker the edge, the 

more similar are the phageprints of the two connected oral sites. Here, the 

measure of similarity is the Pearson correlation value obtained by the pair-

wise comparison of phageprints from different oral sites. B) The average 

biogeography patter for each phage family is denoted. The edge weight is a 

product of f and ravg, where f represents the fraction of individuals that 
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harbor the connection and ravg is the average of Pearson correlation value for 

that connection across all individuals who harbor the connection.  

 

 

SI Figure 3. HA phage family network. Two types of nodes exist: OTU 

nodes (purple), and subject nodes. Subject nodes and edges are color-coded 

based on the individual they represent. Each directed edge connects an 

individual to a phage OTU that he/she harbors, and the edge weight is 

proportional to the relative abundance of the OTU in that individual’s oral 

community. OTU node sizes and labels are proportional to the number of 

individuals the OTU is present in. For OTU nodes, the node ID is the OTU 

Subject(nodes(

Subject(node(ID(and(color1code(
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ID, which can be matched to IDs in SI Table 3 for obtaining taxonomic 

information regarding each OTU’s representative sequence. See SI Figure 4 

to see a similar network that shows OTUs present at different oral sites.  

 

 
SI Figure 4. HA phage-host network (expanded version of SI Figure 3, 

showing each oral site). Purple nodes are the OTU nodes and all other nodes 

represent samples. Sample nodes and edges are color-coded based on the 

Subject(nodes(

Subject(node(color/code(
Oral(sites!

TD:!Tongue!Dorsum!(top!surface)!
TV:!Tongue!Ventral!(bo7om!surface)!
BM:!Buccal!Mucosa!(cheek!lining)!
SP:!Supra>gingiva!(above!gum!surface)!!
SB:!Sub>gingiva!(below!gum!surface)!
HP:!Hard!Palate!(roof!of!the!mouth)!!

!
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individual they originate from. Subject node color code, ID, and the oral sites 

are displayed above sample nodes. Each edge connects an OTU a sample it 

exists in, and the edge weight is proportional to the relative abundance of the 

OTU in that sample. Node IDs are displayed. For OTU nodes, the node ID 

is the OTU ID which can be matched to IDs in SI Table 3 for identifying 

taxonomic information regarding each OTU. For sample nodes, the nodes 

IDs are simply the subjects’ IDs.  
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SI Figure 5. HB1 phage family network (expanded version of Figure 7). 

Purple nodes are the OTU nodes and all other nodes represent samples. 

Sample nodes and edges are color-coded based on the individual they 

Subject(node(ID(and(color1code!

Subject!nodes!

(
TD:!Tongue!Dorsum!(top!surface)!
BM:!Buccal!Mucosa!(cheek!lining)!
SP:!Supra>gingiva!(above!gum!surface)!!
SB:!Sub>gingiva!(below!gum!surface)!

!
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originate from. The oral site associated with each sample is abbreviated next 

to the sample’s node. Each edge connects an OTU a sample it exists in, and 

the edge weight is proportional to the relative abundance of the OTU in that 

sample. Node IDs are displayed. For OTU nodes, the node ID is the OTU 

ID which can be matched to IDs in SI Table 2 for identifying taxonomic 

information regarding each OTU. For sample nodes, the nodes IDs are 

simply the subjects’ IDs.  

 

 

SI Table 1. Closest homolog to each OTU’s representative sequence (HB1 

phage family). Each OTU’s representative sequence was used as a query for 

NCBI’s BLASTx homology search against the non-redundant protein 

database. The table summarizes the E-value and the percent amino acid 

identity across the query sequence and the closest homolog, as well as the 

closest homolog’s name, sequence ID, and taxon ID.  The taxon ID is color 

coded, and the taxonomic classification corresponding to each taxon ID can 

be retrieved from the following table. Note with the exception of a few 

“putative uncharacterized” homolog names that most are identified as 

terminases or TerLs (terminase large subunits). 
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Query&
Sequence&
ID&(OTU&

ID)

Percent&
Identity

E&
value Closest&Homolog Closest&Homolog&

Sequence&ID

Closest&
Homolog&
Taxon&ID

0 71.6 2.00E(33 TerL.[Rhodococcus.phage.ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965
1 71.6 2.00E(33 TerL.[Rhodococcus.phage.ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965
10 67.9 3.00E(30 terminase.[[Clostridium].symbiosum] gi|489596073|ref|WP_003500516.1| 1512
103 69.14 5.00E(30 terminase.[[Clostridium].scindens] gi|639772655|ref|WP_024738760.1| 29347
104 71.6 2.00E(33 TerL.[Rhodococcus.phage.ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965
106 71.6 2.00E(33 TerL.[Rhodococcus.phage.ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965
109 71.6 2.00E(33 TerL.[Rhodococcus.phage.ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965
11 72.84 1.00E(34 TerL.[Rhodococcus.phage.ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965
112 71.6 2.00E(33 TerL.[Rhodococcus.phage.ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965
117 71.6 2.00E(33 TerL.[Rhodococcus.phage.ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965
118 71.6 2.00E(33 TerL.[Rhodococcus.phage.ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965
12 71.6 2.00E(33 TerL.[Rhodococcus.phage.ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965
122 70.37 2.00E(19 TerL.[Rhodococcus.phage.ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965
123 71.6 2.00E(33 TerL.[Rhodococcus.phage.ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965
128 71.6 2.00E(33 TerL.[Rhodococcus.phage.ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965
13 70.37 6.00E(33 TerL.[Rhodococcus.phage.ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965
132 70.37 4.00E(33 TerL.[Rhodococcus.phage.ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965
134 67.9 3.00E(30 terminase.[[Clostridium].symbiosum] gi|489596073|ref|WP_003500516.1| 1512
14 67.9 3.00E(30 terminase.[[Clostridium].symbiosum] gi|489596073|ref|WP_003500516.1| 1512
140 71.6 2.00E(33 TerL.[Rhodococcus.phage.ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965
142 71.6 2.00E(33 TerL.[Rhodococcus.phage.ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965
149 71.6 2.00E(33 TerL.[Rhodococcus.phage.ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965
15 71.6 5.00E(33 TerL.[Rhodococcus.phage.ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965
161 71.6 2.00E(33 TerL.[Rhodococcus.phage.ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965
162 71.6 2.00E(33 TerL.[Rhodococcus.phage.ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965
164 72.84 2.00E(32 TerL.[Rhodococcus.phage.ReqiPoco6] gi|593774729|ref|YP_009012597.1| 691964
165 71.6 2.00E(33 TerL.[Rhodococcus.phage.ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965
166 71.6 5.00E(33 TerL.[Rhodococcus.phage.ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965
17 71.6 2.00E(33 TerL.[Rhodococcus.phage.ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965
170 71.6 2.00E(33 TerL.[Rhodococcus.phage.ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965
176 71.6 3.00E(33 TerL.[Rhodococcus.phage.ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965
178 71.6 2.00E(33 TerL.[Rhodococcus.phage.ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965
18 71.6 2.00E(33 TerL.[Rhodococcus.phage.ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965
183 66.67 7.00E(30 terminase.[[Clostridium].symbiosum] gi|489596073|ref|WP_003500516.1| 1512
184 71.6 2.00E(33 TerL.[Rhodococcus.phage.ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965
189 71.6 4.00E(33 TerL.[Rhodococcus.phage.ReqiPoco6] gi|593774729|ref|YP_009012597.1| 691964
19 72.84 1.00E(34 TerL.[Rhodococcus.phage.ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965
195 71.6 2.00E(33 TerL.[Rhodococcus.phage.ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965
196 71.6 2.00E(33 TerL.[Rhodococcus.phage.ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965
197 71.6 2.00E(33 TerL.[Rhodococcus.phage.ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965
2 66.67 7.00E(30 terminase.[[Clostridium].symbiosum] gi|489596073|ref|WP_003500516.1| 1512
202 67.9 3.00E(30 terminase.[[Clostridium].symbiosum] gi|489596073|ref|WP_003500516.1| 1512
203 65.43 2.00E(28 TerL.[Rhodococcus.phage.ReqiPoco6] gi|593774729|ref|YP_009012597.1| 691964
206 70.37 2.00E(32 TerL.[Rhodococcus.phage.ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965
207 71.6 5.00E(33 TerL.[Rhodococcus.phage.ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965
208 71.6 2.00E(33 TerL.[Rhodococcus.phage.ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965
21 67.9 3.00E(30 terminase.[[Clostridium].symbiosum] gi|489596073|ref|WP_003500516.1| 1512
210 71.6 2.00E(31 TerL.[Rhodococcus.phage.ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965
213 69.14 2.00E(29 TerL.[Rhodococcus.phage.ReqiPoco6] gi|593774729|ref|YP_009012597.1| 691964
216 71.6 2.00E(33 TerL.[Rhodococcus.phage.ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965
218 71.6 2.00E(33 TerL.[Rhodococcus.phage.ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965
22 71.6 2.00E(33 TerL.[Rhodococcus.phage.ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965
220 71.6 2.00E(33 TerL.[Rhodococcus.phage.ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965
221 71.6 2.00E(33 TerL.[Rhodococcus.phage.ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965
222 71.6 2.00E(33 TerL.[Rhodococcus.phage.ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965
225 71.6 2.00E(33 TerL.[Rhodococcus.phage.ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965
227 66.67 7.00E(30 terminase.[[Clostridium].symbiosum] gi|489596073|ref|WP_003500516.1| 1512
229 71.6 2.00E(33 TerL.[Rhodococcus.phage.ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965
231 71.6 2.00E(33 TerL.[Rhodococcus.phage.ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965
233 71.6 2.00E(33 TerL.[Rhodococcus.phage.ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965
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236 70.37 2.00E(32 TerL-[Rhodococcus-phage-ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965

237 71.6 2.00E(33 TerL-[Rhodococcus-phage-ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965

238 71.6 2.00E(33 TerL-[Rhodococcus-phage-ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965

24 71.6 5.00E(33 TerL-[Rhodococcus-phage-ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965

241 71.6 2.00E(33 TerL-[Rhodococcus-phage-ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965

242 71.6 2.00E(33 TerL-[Rhodococcus-phage-ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965

245 71.6 2.00E(33 TerL-[Rhodococcus-phage-ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965

249 71.6 2.00E(33 TerL-[Rhodococcus-phage-ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965

25 71.6 3.00E(33 TerL-[Rhodococcus-phage-ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965

250 71.6 2.00E(33 TerL-[Rhodococcus-phage-ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965

255 71.6 2.00E(33 TerL-[Rhodococcus-phage-ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965

256 72.84 4.00E(34 TerL-[Rhodococcus-phage-ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965

257 66.67 7.00E(30 terminase-[[Clostridium]-symbiosum] gi|489596073|ref|WP_003500516.1| 1512

259 71.6 2.00E(33 TerL-[Rhodococcus-phage-ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965

26 71.6 5.00E(33 TerL-[Rhodococcus-phage-ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965

260 71.6 2.00E(33 TerL-[Rhodococcus-phage-ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965

261 71.6 2.00E(33 TerL-[Rhodococcus-phage-ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965

262 71.6 2.00E(33 TerL-[Rhodococcus-phage-ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965

264 71.6 3.00E(32 TerL-[Rhodococcus-phage-ReqiPoco6] gi|593774729|ref|YP_009012597.1| 691964

265 71.6 2.00E(33 TerL-[Rhodococcus-phage-ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965

27 62.96 2.00E(26 TerL-[Rhodococcus-phage-ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965

272 70.37 3.00E(32 TerL-[Rhodococcus-phage-ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965

273 67.9 2.00E(30 TerL-[Rhodococcus-phage-ReqiPoco6] gi|593774729|ref|YP_009012597.1| 691964

274 71.6 2.00E(33 TerL-[Rhodococcus-phage-ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965

29 74.07 2.00E(35 TerL-[Rhodococcus-phage-ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965

3 67.9 3.00E(29

terminase-[Clostridiales-bacterium-VE202(

03] gi|639707411|ref|WP_024723669.1| 1232439

30 64.2 2.00E(28

putative-uncharacterized-protein-

[Ruminococcus-sp.-CAG:17] gi|547240587|ref|WP_021976510.1| 1262951

32 67.9 3.00E(30 terminase-[[Clostridium]-symbiosum] gi|489596073|ref|WP_003500516.1| 1512

33 67.9 3.00E(31 TerL-[Rhodococcus-phage-ReqiPoco6] gi|593774729|ref|YP_009012597.1| 691964

34 71.6 2.00E(33 TerL-[Rhodococcus-phage-ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965

36 76.54 2.00E(35 TerL-[Rhodococcus-phage-ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965

37 67.9 3.00E(30 terminase-[[Clostridium]-symbiosum] gi|489596073|ref|WP_003500516.1| 1512

38 66.67 2.00E(29 TerL-[Rhodococcus-phage-ReqiPoco6] gi|593774729|ref|YP_009012597.1| 691964

4 71.6 2.00E(33 TerL-[Rhodococcus-phage-ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965

40 66.67 3.00E(32

putative-uncharacterized-protein-

[Ruminococcus-sp.-CAG:17] gi|547240587|ref|WP_021976510.1| 1262951

42 64.2 3.00E(26 terminase-[[Clostridium]-symbiosum] gi|489596073|ref|WP_003500516.1| 1512

44 66.67 5.00E(19 terminase-[[Ruminococcus]-torques] gi|490985259|ref|WP_004846995.1| 33039

46 67.9 3.00E(30 terminase-[[Clostridium]-symbiosum] gi|489596073|ref|WP_003500516.1| 1512

48 71.6 9.00E(34 TerL-[Rhodococcus-phage-ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965

5 71.6 2.00E(33 TerL-[Rhodococcus-phage-ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965

50 86.42 3.00E(44 TerL-[Rhodococcus-phage-ReqiPoco6] gi|593774729|ref|YP_009012597.1| 691964

51 67.9 3.00E(30 terminase-[[Clostridium]-symbiosum] gi|489596073|ref|WP_003500516.1| 1512

54 65.43 6.00E(31 terminase-[[Clostridium]-symbiosum] gi|489596073|ref|WP_003500516.1| 1512

59 71.6 2.00E(33 TerL-[Rhodococcus-phage-ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965

6 71.6 2.00E(33 TerL-[Rhodococcus-phage-ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965

60 71.6 2.00E(33 TerL-[Rhodococcus-phage-ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965

62 69.14 2.00E(30 TerL-[Rhodococcus-phage-ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965

67 71.6 2.00E(33 TerL-[Rhodococcus-phage-ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965

68 74.07 1.00E(34 TerL-[Rhodococcus-phage-ReqiPoco6] gi|593774729|ref|YP_009012597.1| 691964

7 71.6 2.00E(33 TerL-[Rhodococcus-phage-ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965

71 70.37 2.00E(31 TerL-[Rhodococcus-phage-ReqiPoco6] gi|593774729|ref|YP_009012597.1| 691964

72 62.96 4.00E(27 TerL-[Rhodococcus-phage-ReqiPoco6] gi|593774729|ref|YP_009012597.1| 691964

75 70.37 8.00E(33 TerL-[Rhodococcus-phage-ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965

77 71.6 2.00E(33 TerL-[Rhodococcus-phage-ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965

8 56.79 9.00E(26 TerL-[Rhodococcus-phage-ReqiPoco6] gi|593774729|ref|YP_009012597.1| 691964

80 69.14 3.00E(31 TerL-[Rhodococcus-phage-ReqiPoco6] gi|593774729|ref|YP_009012597.1| 691964

81 74.07 7.00E(33

putative-uncharacterized-protein-

[Ruminococcus-sp.-CAG:17] gi|547240587|ref|WP_021976510.1| 1262951

82 71.6 2.00E(33 TerL-[Rhodococcus-phage-ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965

86 71.6 2.00E(33 TerL-[Rhodococcus-phage-ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965

87 67.9 1.00E(27 terminase-[[Clostridium]-hathewayi] gi|493833739|ref|WP_006781000.1| 154046

89 74.07 1.00E(34 TerL-[Rhodococcus-phage-ReqiPoco6] gi|593774729|ref|YP_009012597.1| 691964

9 71.6 2.00E(33 TerL-[Rhodococcus-phage-ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965
90 71.6 2.00E(33 TerL-[Rhodococcus-phage-ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965
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SI Table 2. Taxonomic classification of closest homologs (HB1 phage 

family). Majority of OTUs (86 out of 123) have the closest match to 

ReqiPoco6 terminase large subunit, whereas 15 OTUs have closest homologs 

belonging to ReqiPepy6.  

 

 

SI Table 3. Closest homolog to each OTU’s representative sequence (HA 

phage family). Each OTU’s representative sequence was used as a query for 

NCBI’s BLASTx homology search against the non-redundant protein 

database. The table summarizes the E-value and the percent amino acid 

identity across the query sequence and the closest homolog, as well as the 

closest homolog’s name, sequence ID, and taxon ID.  The taxon ID is color 

coded, and the taxonomic classification corresponding to each taxon ID can 

be retrieved from the following table. Note with the exception of a few 

“putative uncharacterized” homolog names that most are identified as 

terminases or TerLs (terminase large subunits). 

Closest'
Homolog'
Taxon'ID

Kingdom Phylum Class Order Family Genus Species

1262951 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcus
Ruminococcus7
sp.7CAG:17

691964 Viruses
dsDNA7viruses,7
no7RNA7stage Caudovirales Siphoviridae

unclassified7
Siphoviridae

Rhodococcus7
phage7 ReqiPoco6

691965 Viruses
dsDNA7viruses,7
no7RNA7stage Caudovirales Siphoviridae

unclassified7
Siphoviridae

Rhodococcus7
phage7 ReqiPepy6

1512 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Lachnoclostridium
Clostridium7
symbiosum7

29347 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Lachnoclostridium
Clostridium7
scindens7

33039 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Blautia
Ruminococcus7

torques7

1232439 Bacteria Firmicutes Clostridia Clostridiales
unclassified7
Clostridiales

unclassified7
Clostridiales

Clostridiales7
bacterium7VE202P

03

154046 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Lachnoclostridium
Clostridium7
hathewayi
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Query&
Sequence&ID&
(OTU&ID)

Percent&
Identity E&value Closest&Homolog Closest&Homolog&

Sequence&ID

Closest&
Homolog&
Taxon&ID

0 97.56 4.00E)49 hypothetical4protein4[Streptococcus4sp.4F0442] gi|497418421|ref|WP_009732619.1| 999425
1 100 1.00E)49 terminase4[Streptococcus4pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
10 100 9.00E)50 terminase4[Streptococcus4sp.4SR1] gi|726981126|ref|WP_033585808.1| 1161416
100 98.78 4.00E)49 terminase4[Streptococcus4sp.4SR1] gi|726981126|ref|WP_033585808.1| 1161416
101 100 9.00E)50 terminase4[Streptococcus4sp.4SR1] gi|726981126|ref|WP_033585808.1| 1161416
102 100 2.00E)49 terminase4[Streptococcus4infantis] gi|493136448|ref|WP_006154887.1| 68892
103 100 1.00E)49 terminase4[Streptococcus4pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
104 100 1.00E)49 terminase4[Streptococcus4pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
106 100 2.00E)49 terminase4[Streptococcus4infantis] gi|493136448|ref|WP_006154887.1| 68892
107 100 2.00E)49 terminase4[Streptococcus4infantis] gi|493136448|ref|WP_006154887.1| 68892
108 100 1.00E)49 terminase4[Streptococcus4pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
109 100 1.00E)49 terminase4[Streptococcus4pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
11 98.78 1.00E)48 terminase4[Streptococcus4oralis] gi|446545997|ref|WP_000623343.1| 1303
110 100 9.00E)50 terminase4[Streptococcus4sp.4SR1] gi|726981126|ref|WP_033585808.1| 1161416
111 100 9.00E)50 terminase4[Streptococcus4sp.4SR1] gi|726981126|ref|WP_033585808.1| 1161416
112 100 1.00E)49 terminase4[Streptococcus4pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
113 100 1.00E)49 terminase4[Streptococcus4pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
114 100 1.00E)49 terminase4[Streptococcus4pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
117 100 1.00E)49 terminase4[Streptococcus4pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
118 100 9.00E)50 terminase4[Streptococcus4sp.4SR1] gi|726981126|ref|WP_033585808.1| 1161416
119 98.78 3.00E)49 terminase4[Streptococcus4oralis] gi|446545997|ref|WP_000623343.1| 1303
12 100 2.00E)49 terminase4[Streptococcus4infantis] gi|493136448|ref|WP_006154887.1| 68892
120 100 9.00E)50 terminase4[Streptococcus4sp.4SR1] gi|726981126|ref|WP_033585808.1| 1161416
121 100 1.00E)49 terminase4[Streptococcus4pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
122 100 9.00E)50 terminase4[Streptococcus4sp.4SR1] gi|726981126|ref|WP_033585808.1| 1161416
123 98.78 3.00E)49 terminase4[Streptococcus4sp.4SR1] gi|726981126|ref|WP_033585808.1| 1161416
125 100 9.00E)50 terminase4[Streptococcus4sp.4SR1] gi|726981126|ref|WP_033585808.1| 1161416
126 98.78 3.00E)49 terminase4[Streptococcus4sp.4SR1] gi|726981126|ref|WP_033585808.1| 1161416
127 98.78 3.00E)49 terminase4[Streptococcus4pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
128 100 1.00E)49 terminase4[Streptococcus4pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
129 98.78 1.00E)48 terminase4[Streptococcus4pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
13 98.78 1.00E)49 hypothetical4protein4[Streptococcus4sp.4F0442] gi|497418421|ref|WP_009732619.1| 999425
130 98.78 2.00E)49 terminase4[Streptococcus4oralis] gi|446545997|ref|WP_000623343.1| 1303
131 98.78 6.00E)48 terminase4[Streptococcus4pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
132 98.78 1.00E)48 terminase4[Streptococcus4oralis] gi|446545997|ref|WP_000623343.1| 1303
133 98.78 7.00E)49 terminase4[Streptococcus4infantis] gi|493136448|ref|WP_006154887.1| 68892
134 98.78 6.00E)49 terminase4[Streptococcus4pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
135 100 1.00E)49 terminase4[Streptococcus4pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
136 98.78 5.00E)49 terminase4[Streptococcus4oralis] gi|446545997|ref|WP_000623343.1| 1303
137 100 9.00E)50 terminase4[Streptococcus4sp.4SR1] gi|726981126|ref|WP_033585808.1| 1161416
138 98.78 3.00E)49 terminase4[Streptococcus4sp.4SR1] gi|726981126|ref|WP_033585808.1| 1161416
139 98.78 1.00E)48 terminase4[Streptococcus4sp.4SR1] gi|726981126|ref|WP_033585808.1| 1161416
140 100 9.00E)50 terminase4[Streptococcus4sp.4SR1] gi|726981126|ref|WP_033585808.1| 1161416
141 98.78 1.00E)48 terminase4[Streptococcus4pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
142 97.56 4.00E)48 terminase4[Streptococcus4sp.4SR1] gi|726981126|ref|WP_033585808.1| 1161416
143 100 1.00E)49 terminase4[Streptococcus4pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
145 100 1.00E)49 terminase4[Streptococcus4pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
146 100 1.00E)49 terminase4[Streptococcus4pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
147 100 9.00E)50 terminase4[Streptococcus4sp.4SR1] gi|726981126|ref|WP_033585808.1| 1161416
148 98.78 2.00E)48 terminase4[Streptococcus4pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
15 100 1.00E)49 terminase4[Streptococcus4pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
150 98.78 9.00E)49 terminase4[Streptococcus4pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
151 100 1.00E)49 terminase4[Streptococcus4pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
152 98.78 3.00E)49 terminase4[Streptococcus4sp.4SR1] gi|726981126|ref|WP_033585808.1| 1161416
153 100 1.00E)49 terminase4[Streptococcus4pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
154 97.56 1.00E)48 terminase4[Streptococcus4sp.4SR1] gi|726981126|ref|WP_033585808.1| 1161416
155 100 1.00E)49 terminase4[Streptococcus4pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
156 100 1.00E)49 terminase4[Streptococcus4pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
157 98.78 3.00E)49 terminase4[Streptococcus4pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
158 97.56 1.00E)48 terminase4[Streptococcus4sp.4SR1] gi|726981126|ref|WP_033585808.1| 1161416
159 98.78 9.00E)49 terminase4[Streptococcus4sp.4SR1] gi|726981126|ref|WP_033585808.1| 1161416
16 100 1.00E)49 terminase4[Streptococcus4pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
160 98.78 4.00E)49 terminase4[Streptococcus4sp.4SR1] gi|726981126|ref|WP_033585808.1| 1161416
161 100 9.00E)50 terminase4[Streptococcus4sp.4SR1] gi|726981126|ref|WP_033585808.1| 1161416
162 98.78 3.00E)49 terminase4[Streptococcus4sp.4SR1] gi|726981126|ref|WP_033585808.1| 1161416
164 100 1.00E)49 terminase4[Streptococcus4pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
165 100 1.00E)49 terminase4[Streptococcus4pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
166 97.56 1.00E)48 terminase4[Streptococcus4oralis] gi|446545997|ref|WP_000623343.1| 1303
167 100 2.00E)49 terminase4[Streptococcus4infantis] gi|493136448|ref|WP_006154887.1| 68892
168 100 1.00E)49 terminase4[Streptococcus4pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
169 100 1.00E)49 terminase4[Streptococcus4pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
17 100 9.00E)50 terminase4[Streptococcus4sp.4SR1] gi|726981126|ref|WP_033585808.1| 1161416
170 100 1.00E)49 terminase4[Streptococcus4pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
171 98.78 3.00E)49 terminase4[Streptococcus4sp.4SR1] gi|726981126|ref|WP_033585808.1| 1161416
172 100 1.00E)49 terminase4[Streptococcus4pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
173 100 2.00E)49 terminase4[Streptococcus4infantis] gi|493136448|ref|WP_006154887.1| 68892
174 100 1.00E)49 terminase4[Streptococcus4pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
175 100 1.00E)49 terminase4[Streptococcus4pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
176 100 9.00E)50 terminase4[Streptococcus4sp.4SR1] gi|726981126|ref|WP_033585808.1| 1161416
177 97.56 1.00E)48 terminase4[Streptococcus4oralis] gi|446545997|ref|WP_000623343.1| 1303
178 98.78 4.00E)49 terminase4[Streptococcus4sp.4SR1] gi|726981126|ref|WP_033585808.1| 1161416
179 100 9.00E)50 terminase4[Streptococcus4sp.4SR1] gi|726981126|ref|WP_033585808.1| 1161416
18 100 2.00E)49 terminase4[Streptococcus4infantis] gi|493136448|ref|WP_006154887.1| 68892
180 100 1.00E)49 terminase4[Streptococcus4pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
181 100 9.00E)50 terminase4[Streptococcus4sp.4SR1] gi|726981126|ref|WP_033585808.1| 1161416
182 100 9.00E)50 terminase4[Streptococcus4sp.4SR1] gi|726981126|ref|WP_033585808.1| 1161416
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183 100 1.00E'49 terminase2[Streptococcus2pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
184 100 1.00E'49 terminase2[Streptococcus2pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
185 100 1.00E'49 terminase2[Streptococcus2pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
186 100 9.00E'50 terminase2[Streptococcus2sp.2SR1] gi|726981126|ref|WP_033585808.1| 1161416
19 98.78 3.00E'49 terminase2[Streptococcus2parasanguinis] gi|671602035|ref|WP_031575397.1| 1318
2 100 1.00E'49 terminase2[Streptococcus2pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
20 96.34 2.00E'48 terminase2[Streptococcus2pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
21 100 9.00E'50 terminase2[Streptococcus2sp.2SR1] gi|726981126|ref|WP_033585808.1| 1161416
22 91.46 8.00E'46 hypothetical2protein2[Streptococcus2sp.2F0442] gi|497418421|ref|WP_009732619.1| 999425
23 100 1.00E'49 terminase2[Streptococcus2pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
24 100 1.00E'49 terminase2[Streptococcus2pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
25 100 9.00E'50 terminase2[Streptococcus2sp.2SR1] gi|726981126|ref|WP_033585808.1| 1161416
26 98.78 3.00E'49 terminase2[Streptococcus2sp.2SR1] gi|726981126|ref|WP_033585808.1| 1161416
27 100 1.00E'49 terminase2[Streptococcus2pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
28 98.78 7.00E'50 terminase2[Streptococcus2parasanguinis] gi|671602035|ref|WP_031575397.1| 1318
29 98.78 7.00E'49 terminase2[Streptococcus2infantis] gi|493136448|ref|WP_006154887.1| 68892
3 100 1.00E'49 terminase2[Streptococcus2pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
30 100 2.00E'49 terminase2[Streptococcus2infantis] gi|493136448|ref|WP_006154887.1| 68892
31 98.78 6.00E'49 terminase2[Streptococcus2pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
32 98.78 4.00E'49 terminase2[Streptococcus2sp.2SR1] gi|726981126|ref|WP_033585808.1| 1161416
33 100 1.00E'49 terminase2[Streptococcus2pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
34 100 1.00E'49 terminase2[Streptococcus2pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
35 98.78 1.00E'49 hypothetical2protein2[Streptococcus2sp.2F0442] gi|497418421|ref|WP_009732619.1| 999425
36 100 1.00E'49 terminase2[Streptococcus2pseudopneumoniae] gi|565851306|ref|WP_023933954.1| 257758
37 100 9.00E'50 terminase2[Streptococcus2sp.2SR1] gi|726981126|ref|WP_033585808.1| 1161416
38 98.78 7.00E'50 terminase2[Streptococcus2parasanguinis] gi|671602035|ref|WP_031575397.1| 1318
39 100 1.00E'49 terminase2[Streptococcus2pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
4 98.78 4.00E'49 terminase2[Streptococcus2sp.2SR1] gi|726981126|ref|WP_033585808.1| 1161416
40 98.78 2.00E'49 hypothetical2protein2[Streptococcus2sp.2F0442] gi|497418421|ref|WP_009732619.1| 999425
42 100 9.00E'50 terminase2[Streptococcus2sp.2SR1] gi|726981126|ref|WP_033585808.1| 1161416
43 100 1.00E'49 terminase2[Streptococcus2pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
44 100 1.00E'49 terminase2[Streptococcus2pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
45 98.78 9.00E'49 terminase2[Streptococcus2sp.2SR1] gi|726981126|ref|WP_033585808.1| 1161416
47 98.78 7.00E'49 terminase2[Streptococcus2pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
48 98.78 3.00E'49 terminase2[Streptococcus2sp.2SR1] gi|726981126|ref|WP_033585808.1| 1161416
49 100 1.00E'49 terminase2[Streptococcus2pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
5 100 1.00E'49 terminase2[Streptococcus2pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
50 100 1.00E'49 terminase2[Streptococcus2pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
51 100 9.00E'50 terminase2[Streptococcus2sp.2SR1] gi|726981126|ref|WP_033585808.1| 1161416
52 98.78 3.00E'49 terminase2[Streptococcus2oralis] gi|446545997|ref|WP_000623343.1| 1303
53 100 1.00E'49 terminase2[Streptococcus2pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
54 100 1.00E'49 terminase2[Streptococcus2pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
56 100 1.00E'49 terminase2[Streptococcus2pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
57 100 1.00E'49 terminase2[Streptococcus2pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
59 100 1.00E'49 terminase2[Streptococcus2pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
6 100 9.00E'50 terminase2[Streptococcus2sp.2SR1] gi|726981126|ref|WP_033585808.1| 1161416
60 100 1.00E'49 terminase2[Streptococcus2pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
61 100 1.00E'49 terminase2[Streptococcus2pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
62 98.78 4.00E'49 terminase2[Streptococcus2sp.2SR1] gi|726981126|ref|WP_033585808.1| 1161416
63 100 1.00E'49 terminase2[Streptococcus2pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
64 98.78 3.00E'49 terminase2[Streptococcus2sp.2SR1] gi|726981126|ref|WP_033585808.1| 1161416
65 100 1.00E'49 terminase2[Streptococcus2pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
66 100 1.00E'49 terminase2[Streptococcus2pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
68 100 9.00E'50 terminase2[Streptococcus2sp.2SR1] gi|726981126|ref|WP_033585808.1| 1161416
69 98.78 4.00E'49 terminase2[Streptococcus2sp.2SR1] gi|726981126|ref|WP_033585808.1| 1161416
7 100 1.00E'49 terminase2[Streptococcus2pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
71 100 1.00E'49 terminase2[Streptococcus2pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
72 100 1.00E'49 putative2phage2terminase,2large2subunit2[Streptococcus2tigurinus] gi|494783687|ref|WP_007519095.1| 1077464
73 100 1.00E'49 terminase2[Streptococcus2pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
74 98.78 3.00E'49 terminase2[Streptococcus2pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
76 100 1.00E'49 terminase2[Streptococcus2pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
77 98.78 3.00E'49 terminase2[Streptococcus2oralis] gi|446545997|ref|WP_000623343.1| 1303
78 98.78 3.00E'49 terminase2[Streptococcus2sp.2SR1] gi|726981126|ref|WP_033585808.1| 1161416
79 100 9.00E'50 terminase2[Streptococcus2sp.2SR1] gi|726981126|ref|WP_033585808.1| 1161416
8 100 9.00E'50 terminase2[Streptococcus2sp.2SR1] gi|726981126|ref|WP_033585808.1| 1161416
80 98.78 3.00E'49 terminase2[Streptococcus2oralis] gi|446545997|ref|WP_000623343.1| 1303
82 100 1.00E'49 terminase2[Streptococcus2pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
83 97.56 1.00E'48 terminase2[Streptococcus2oralis] gi|446545997|ref|WP_000623343.1| 1303
84 100 9.00E'50 terminase2[Streptococcus2sp.2SR1] gi|726981126|ref|WP_033585808.1| 1161416
85 100 9.00E'50 terminase2[Streptococcus2sp.2SR1] gi|726981126|ref|WP_033585808.1| 1161416
86 95.12 3.00E'48 terminase2[Streptococcus2oralis] gi|446545997|ref|WP_000623343.1| 1303
87 98.78 3.00E'49 terminase2[Streptococcus2oralis] gi|446545997|ref|WP_000623343.1| 1303
88 100 9.00E'50 terminase2[Streptococcus2sp.2SR1] gi|726981126|ref|WP_033585808.1| 1161416
89 98.78 2.00E'48 terminase2[Streptococcus2pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
9 98.78 3.00E'49 terminase2[Streptococcus2sp.2SR1] gi|726981126|ref|WP_033585808.1| 1161416
90 98.78 4.00E'49 terminase2[Streptococcus2sp.2SR1] gi|726981126|ref|WP_033585808.1| 1161416
93 100 1.00E'49 terminase2[Streptococcus2pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
95 100 9.00E'50 terminase2[Streptococcus2sp.2SR1] gi|726981126|ref|WP_033585808.1| 1161416
96 98.78 4.00E'49 terminase2[Streptococcus2sp.2SR1] gi|726981126|ref|WP_033585808.1| 1161416
97 100 1.00E'49 terminase2[Streptococcus2pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
98 100 9.00E'50 terminase2[Streptococcus2sp.2SR1] gi|726981126|ref|WP_033585808.1| 1161416
99 97.56 1.00E'48 terminase2[Streptococcus2sp.2SR1] gi|726981126|ref|WP_033585808.1| 1161416
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SI Table 4. Taxonomic classification of closest homologs to each OTU’s 

representative sequence (HA phage family).   

 

 

SI Table 5. Closest homolog to each OTU’s representative sequence (PCA2 

phage family). Each OTU’s representative sequence was used as a query for 

NCBI’s BLASTx homology search against the non-redundant protein 

database. The table summarizes the E-value and the percent amino acid 

identity across the query sequence and the closest homolog, as well as the 

closest homolog’s name, sequence ID, and taxon ID.  The taxon ID is color 

coded, and the taxonomic classification corresponding to each taxon ID can 

be retrieved from the following table. Note with the exception of a few 

“putative uncharacterized” homolog names, most are identified as terminases 

or TerLs (terminase large subunits). 

Closest'
Homolog'
Taxon'ID

Kingdom Phylum Class Order Family Genus Species

1318 Bacteria +Firmicutes +Bacilli +Lactobacillales +Streptococcaceae +Streptococcus+ +Streptococcus+parasanguinis
1077464 Bacteria +Firmicutes +Bacilli +Lactobacillales +Streptococcaceae +Streptococcus+ +Streptococcus+tigurinus
257758 Bacteria +Firmicutes +Bacilli +Lactobacillales +Streptococcaceae +Streptococcus+ +Streptococcus+pseudopneumoniae
999425 Bacteria +Firmicutes +Bacilli +Lactobacillales +Streptococcaceae +Streptococcus+ +Streptococcus+sp.+F0442
1161416 Bacteria +Firmicutes +Bacilli +Lactobacillales +Streptococcaceae +Streptococcus+ +Streptococcus+sp.+SR1
1303 Bacteria +Firmicutes +Bacilli +Lactobacillales +Streptococcaceae +Streptococcus+ +Streptococcus+oralis
68892 Bacteria +Firmicutes +Bacilli +Lactobacillales +Streptococcaceae +Streptococcus +Streptococcus+infantis
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Query&
Sequence&
ID&(OTU&
ID)

Percent&
Identity

E&
value Closest&Homolog Closest&Homolog&

Sequence&ID

Closest&
Homolog&
Taxon&ID

0 100 7.00E&32 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
10 90 2.00E&28 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
100 76.27 4.00E&21 terminase0[Peptostreptococcaceae0bacterium0CM2] gi|497213446|ref|WP_009527708.1| 796939
101 98.33 1.00E&30 terminase0[Fusobacterium0nucleatum] gi|495968206|ref|WP_008692785.1| 851
103 98.33 2.00E&30 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
104 75 1.00E&21 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
107 98.33 1.00E&31 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
108 100 7.00E&32 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
109 75 1.00E&21 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
11 93.33 3.00E&30 terminase0[Fusobacterium0periodonticum] gi|496096975|ref|WP_008821482.1| 860
110 75 1.00E&21 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
111 98.33 3.00E&31 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
112 100 7.00E&32 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
113 98.33 6.00E&31 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
115 73.33 4.00E&21 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
116 73.33 5.00E&21 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
117 100 7.00E&32 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
12 100 7.00E&32 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
120 100 7.00E&32 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
123 83.33 6.00E&25 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
124 100 7.00E&32 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
126 98.33 1.00E&30 terminase0[Fusobacterium0nucleatum] gi|495968206|ref|WP_008692785.1| 851
127 100 7.00E&32 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
128 100 7.00E&32 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
129 100 7.00E&32 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
13 35.59 4.00E&04 terminase0[Bacillus0bogoriensis] gi|651939129|ref|WP_026673624.1| 246272
132 98.33 1.00E&30 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
135 100 7.00E&32 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
136 100 7.00E&32 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
137 100 7.00E&32 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
138 75 1.00E&21 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
139 96.67 4.00E&31 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
14 96.67 5.00E&30 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
140 100 7.00E&32 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
141 100 7.00E&32 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
142 100 7.00E&32 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
143 91.67 1.00E&29 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
144 98.33 4.00E&31 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
146 98.33 2.00E&31 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
147 98.33 6.00E&31 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
149 100 7.00E&32 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
15 73.33 2.00E&21 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
150 98.33 2.00E&31 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
151 98.33 3.00E&31 terminase0[Fusobacterium0periodonticum] gi|496096975|ref|WP_008821482.1| 860
152 98.33 1.00E&30 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
153 98.33 2.00E&31 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
154 100 7.00E&32 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
155 98.33 6.00E&31 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
156 98.33 5.00E&31 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
16 98.33 1.00E&31 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
2 91.67 1.00E&29 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
21 73.33 7.00E&21 terminase0[Fusobacterium0nucleatum] gi|495968206|ref|WP_008692785.1| 851
22 75 1.00E&21 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
23 73.33 5.00E&21 terminase0[Fusobacterium0nucleatum] gi|495968206|ref|WP_008692785.1| 851
24 100 7.00E&32 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
25 98.33 4.00E&31 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
26 98.33 1.00E&30 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
27 75 1.00E&21 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
29 98.33 2.00E&31 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
3 100 7.00E&32 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
32 98.33 3.00E&31 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
33 100 7.00E&32 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
34 98.33 4.00E&31 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
36 96.67 1.00E&29 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
4 96.67 1.00E&30 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
40 75 1.00E&21 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
41 98.33 3.00E&31 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
45 100 7.00E&32 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
47 73.33 1.00E&21 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
5 75 1.00E&21 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
50 100 7.00E&32 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
51 98.33 2.00E&31 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
54 100 7.00E&32 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
56 100 7.00E&32 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
60 100 7.00E&32 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
62 100 7.00E&32 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
63 100 7.00E&32 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
64 93.33 3.00E&29 terminase0[Fusobacterium0periodonticum] gi|496096975|ref|WP_008821482.1| 860
65 100 7.00E&32 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
66 98.33 3.00E&31 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
67 100 7.00E&32 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
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SI Table 6. Taxonomic classification of closest homologs to each OTU’s 

representative sequence (PCA2 phage family).   

 

 

 

70 100 7.00E&32 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
72 98.33 3.00E&31 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
73 100 7.00E&32 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
75 96.67 2.00E&30 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
77 100 7.00E&32 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
78 90 5.00E&29 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
79 100 7.00E&32 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
8 95 5.00E&30 terminase0[Fusobacterium0periodonticum] gi|496096975|ref|WP_008821482.1| 860
80 100 7.00E&32 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
81 100 7.00E&32 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
82 100 7.00E&32 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
83 100 7.00E&32 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
84 98.33 1.00E&30 terminase0[Fusobacterium0nucleatum] gi|495968206|ref|WP_008692785.1| 851
86 100 7.00E&32 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
89 90 5.00E&29 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
90 98.33 3.00E&31 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
91 98.33 3.00E&31 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
92 98.33 8.00E&31 terminase0[Fusobacterium0nucleatum] gi|495968206|ref|WP_008692785.1| 851
93 96.67 9.00E&31 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
94 96.67 4.00E&31 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
95 100 7.00E&32 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
96 100 7.00E&32 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
97 98.33 3.00E&31 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
99 98.33 3.00E&31 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900

Closest'
Homolog'
Taxon'ID

Kingdom Phylum Class Order Family Genus Species

860 Bacteria Fusobacteria Fusobacteria Fusobacteriales Fusobacteriaceae Fusobacterium gonidiaformans
851 Bacteria Fusobacteria Fusobacteria Fusobacteriales Fusobacteriaceae Fusobacterium Fusobacterium8nucleatum

796939 Bacteria Firmicutes Clostridia Clostridiales Peptostreptococcaceae
unclassified8

Peptostreptococcaceae

unclassified8
Peptostreptococcaceae8

(CM2)

246272 Bacteria Firmicutes Bacilli Bacillales Bacillaceae Bacillus
Bacillus8bogoriensis8(ATCC8

BAAF922)
1262900 Bacteria Fusobacteria Fusobacteriia Fusobacteriales Fusobacteriaceae Fusobacterium Fusobacterium8sp.8CAG:649
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SI Figure 6. Percentage of HB1, PCA2 and HA phage family OTUs 

belonging to each taxonomic group identified in SI Figure 4, SI Figure 5, and 

SI Table 3.  
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SI Figure 7. The nucleotide alignment of HB1 phage family OTU 

representative sequences. Sequences were aligned using Geneious (68). No 

gaps were introduced. Each base is color-coded according to its relative 

abundance within a column in the alignment. Conserved bases are black and 

highly variable sites are denoted in white.
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