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ABSTRACT

A shock model is developed that leads to an analytical expres-
sion for the Hugoniot of condensed media. In the analysis the final
state is selected to coincide with the end of the shock transition so
that the total energy change across the shock front is evaluated from
changes in configurational energy only using an n-6 pair potential
(shown to be valid for all n > 0) and a given lattice structure.
Thermal energy changes are ignored because the dwell time of the mole-
cules in the shock transition region is less than the thermal relaxa-
tion time. The total energy change is equated to the Hugoniot energy
change in the Rankine-Hugoniot conservation relations. This together
with the assumption of iinear compression across the shock transition
gives the desired expression for the Hugoniot.

In the "weak form'" (WF) solution the Hugoniot depends on mole-
cular (atomic) weight. M and initial density po as well as the
collision diameter O , depth of the potential well € and repulsive
exponent n of the pair potential. Extrapolation of this solution,
under certain conditions, yields an expression for the sound velocity
Uo dependent on M , € and n . In the "strong form" (SF) solution
the Hugoniot depends only on UO and n .

The shock data for 13 liquids and 23 metals are compiled and a
selection process used to eliminate poor data and data affected by
phase transitions. Using o0 from the literature and € from a melt-

ing point correlation, the WF solution Hugoniot is applied to the
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liquids and the "best" values of n determined using numerical fit-
ting techniques. Excellent fits are obtained with values of n from
6.2 to 11.7. A common value of 9.2 is found to fit the shock data for
argon at four different initial states. Failure of the theory is
noted only for (di-)ethyl ether and water. The results are generally
concluded to support the validity of the shock model. Values of' n
for argon, mercury and nitrogen compare favorably with values reported
in the literature. The WF solutian does not yield accurate values of
Uo .

The SF solution is expanded in a Taylor series to eliminate
singularities and applied to the shock data for 10 fcc and 13 bee
metals and the "best" values of n determined. For the fcc metals
excellent fits are found for values of n from 4.0 to 6.3. Based on
the "pseudo-atom' concept, it is concluded that metals have "softer"
potentials than liquids. The results for the fcc metals are concluded
to generally support the validity of the shock model. For the bcc
metals excellent fits ate found for n=0,1 to 4.6 and it is concluded
that bcc metals are "softer" than fcc metals. Since O is "not
defined” for all =n < 3 it is speculated that the Hugoniot might not
be "well defined" in these cases. The theory is found to be not
applicable to Cs and Ba. The values of n found for Cu, Al and Pb
agree well with values in the literature. The n for metals are found
to roughly correlate with the GrJneisen coefficient Yy .

The major assumption of the theory, that the transition region

is "sufficiently thin," is analyzed and found to be reasonable. The



V-

mean number of molecular layers in the transition region is v 7 and
the mean residence time Vv 2 X lO—lzsec. In addition the n-6 potential
is judged to be adequ;te for the present study.

The SF solution Hugoniot is shown to be compatible with the
classic linear U-U relation (U = A + Bu) when x-1 << 1 . Values of
the slope B from experimental data are found to agree closely with
the derived relation B = (n + 5)/6 for the corresponding metals.
Recommendations for further studies with liquids, fcc and bcc metals
are made, including an evaluation of an explicit expression generally
relating the pair potential to the shock data.

In several subsidiary studies a new method of computing tem-
peratures aloné the Hugoniot is found, two statistical approaches to
the definition of "nearest neighbor distance" and its use as a measure
of liquid structure are developed and the effect of phase transitions

on the shock model is determined.
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I. INTRODUCTION

One of the fundamental properties of interest in the study
of shock wave phenomena is the shock Hugoniot, i.e., the locus of
states attainable by propagation of a shock wave through the medium
of interest. If an explicit thermodynamic equation-of-state is avail-
able for the given matefial, the Hugoniot can be determined by simul-
taneous solution of this equation with the Rankine-Hugoniot relations
which express conservation of mass, momentum and energy across the
shock front.

Since there is no completely satisfactory quantitative
equation-of-state for condensed media, these materials are generally
treated empirically, semi-empirically or numerically (i.e., statisti-
cally); explicit functional equations for the Hugoniot are not
'generally found.

The primar? objective of this study is to derive a relation
which circumvents the problem of choosing a macroscopic equation-of-
state and leads to an analytical expression for the Hugoniot. This
is done by developing a model of the shock transition process and
evaluating the energy change across the (finite) shock front from
configurational and structural considerations, without recourse to
the final equilibrium state.

The secondary objective of the study is to apply the
derived Hugoniot to available experimental data .for several liquids

and metals to help determine the validity of the theory. This is done
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using standard (numerical) fitting techniques.
An additional objective is to determine if the "classic"
linear shock/particle velocity relationship can be derived from the

developed theory.

This study differs from ‘the large body of work on shock
waves in that the thermodynamics of the shock transition is not
required in the development and an analytical expression for the
Hugoniot is sought. This somewhat different view of the nature of

shock waves in condensed media is, in effect, evaluated in the course

of the study.
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II. THEORY
‘A. CONSERVATION RELATIONS

1. Definition of Shock Properties

Consider a one-dimensional shock wave propagating at velocity
U through a stationary medium of density po as pictured in Figure
1. Behind the disturbance, which for present purposes may be consi-
dered "infinitely thin", the material is accelerated to velocity U
(the "particle" velocity) and compressed to density p . The other
state parameters are the temperature, shock pressure and internal
energy which rise from thé initial state TO,PO,Ez to T, P and E *.

In defining these properties it has been'aSSumed that a state
of equilibrium exists béth before and after passage of the "discon-
tinuity"”. In this case, the variables p, P, T and E represent true
thermodynamic properties and should be found on the general equation-
of-state surface of the medium in question.

The particle velocity WU represents the gross (bulk) motion
of the medium necessary for producing a shock. On the other hand,
U , the shock propagational velocity, describes the motion of a geo-
metrical "line" (the discontinuity) in space and does not imply the
motion of a mass. Neither U or U can be considered "thermodynamic'
variables although both, through the conservation relations, are

intimately involved with all the others.

% .
Eo and E have the units of energy per unit mass.
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Figure 1. One-Dimensional Shock Propagating into a Stationary Medium



2.

-5-~

Conservation Equations—Per Unit Area/Unit Time

Consider a unit square in the plane of the shock in Figure 1

travelling with the wave at velocity U as pictured in Figure 2. If

we choose this as our coordinate system, the relations for conserva-

tion of mass, momentum and energy flux may be easily deduced& from the

fact that mass is flowing towards the unit area at velocity U and

density po and leaving at velocity (U—u) at density p .

aoe

Conservation of mass flux:

p U = o (U-w) (1)

Conservation of momentum flux:

(poU)U +P = [p(U-W)](U-W) + P (2)

Conservation of energy flux:

1 2 : _ 1 )2
-E(DOU)U + UP_ + UpE = 2[p(U-u)](U ) (3)

+ (U-u)P + (U-U)pPE

*

Laboratory coordinates, where the unit area is fixed in space, may .

also be used to derive the conservation relations.



E | E,
P U-,u._ gg'__u_- Lo
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T // To
UNIT SQUARE

Figure. 2. Coordinate System



3. Conservation Relations

Equations (1) - (3) may be combined and rearranged (Appendix A)

to give the more familiar expressions:

— M Ay
U <o 7o (Mass) (4)
o
P - Po = pOUu (Mass + Momentum) (5)
1 1 1
AE = E{PO+ P)(Er-~ B) (Mass + Momentum + Energy) (6)
0
or:
1 1 1 2
AE = PO(B— - 5) +5u (Mass + Momentum + Energy) (7
o

Equations (4) - (6) are known as the Rankine-Hugoniot (R-H)

relations, the first two of which were first derived in 1870 by

(1)

The correct form of the energy equation was first derived

(2)

Rankine
by Hugoniot in 1889. Equation (7) is an alternate form of Equation
(6) and is used in the following development.

It may be noted that the temperature T does not appear expli-
citly in any of Equations (1) - (7). The changes in thermal energy
across the shock wave are accounted for in the internal energy change

AE . From the basic laws governing thermodynamic systems it can be

shown that (Appendix B):
dE = T(2E) dV - P4V + C,dT (8)
oT’ v

where V =1/p .
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Division by CVdV and rearrangement gives:

(oP/9T)
dT . \

dE
Cy J'T = DEV + P] (9

If the coefficient of T is nearly constant(s) and the right-
hand-side is a function of V only, this is an ordinary differential
equation in T the solution of which is:

v

bV -V)
T=T e o 7 4 7PV f . [%% + P] av (10)

\
o

where ’TO is the initial temperature and b = [

(3P/3T) y J

Cy



4. Specific Objective

Equations (4), (5) and (7) contain the 5 unknowns U , u , p ,

P and AE . Assigning a thermodynamic equation-of-state for the

material under consideration:

E = f£(P,p) (11)

providés a fourth relation in the same variables. Elimination of any
three variables among these equations leads to a unique relation

among the remaining pair. When this is in the form:

P = £(p) (12)

n(4)

it is called the "Hugoniot curve or "Hugoniot'". However, since any
pair of variables (excluding T) can be transformed to any other pair
from the conservation relations, we shall use the term "Hugoniot" to
refer to any of such pairs developed.

Unfortunately, for condensed media (dense gases, liquids and
solids), the Hugoniot cannot be found directly because there is no
satisfactory qpantitative equation of state available for these sub-
stances. They are, generally, treated empirically, although a number

(5-9)

of attempts have been made to solve the problem theoretically .

Since the Hugoniot represents a "

cut" on the equation-of-state
surface of the medium, it is clear that in the derivation of Equations
(1) - (12) thermodynamic equilibrium prevails. This is further empha-
sized by the assumption that (a) either the shock front is a

"discontinuity" and therefore infinitely thin, or (b) the measurements

of P, p, T and E are made sufficiently far from the front that such
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an equilibrium state obtains.

The specific objective of this study is to use a simple model
to derive a relation which circumvents the need for a macroscopic
equation-of-state, and leads to an analytical expression for the
Hugoniot. This is done witho'ut recourse to the equilibrium state and
the applicability of Equations (1) - (7) must be shown under these cir-

cumstances.
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5, U vs. Y4 Linearity and Mass Conservation

An empirical solution to the determination of the Hugoniot is
expressed experimentally in the well established relation between U

and Y in the form:
U = A+ Bu (13)

Here A represents the limiting shock velocity (Ug in the medium

when the shock wave is infinitely weak (i.e., when U = 0). Although
*

Equation (13) seems to be generally valid , it was noted by Duvall and

Fowles'®) and alder (V)

that no satisfactory theoretical explanation
of this relation has been given.

Part of the objective of this investigation is to determine if -
the proposed theory can explain the form of Equation (13). However,

before doing this it is instructive to examine Equation (4), the con-

servation of mass flux, more closely:

= U 3 u
I-p /6  1-[/hy] ;.1 (14)
X

where x = p/pO . It is. seen immediately that U and u should be
linearly related whem u is sufficiently high. That is, as U
increases, U increases and thus P dincreases (see Equation (5)). This

leads to an increase in x . Therefore as | increases, the denominator

A number of exceptions to Equation (13) exist. In some cases a quad-
ratic fit (i.e., U= A + Bu + Cuz) has been found to better express
the experimental U-u data. In others, a generalized power series

or other equations are used to fit the data.
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of Equation (14) eventually approaches a limiting value where further
changes in W yield only very small changes in x and 1 - 1/x =
constant. The linearity of; U and U in these circumstances 1is
apparent. This behavior is in accordance with Equation (13) only
when BW >> A .

If radiation effects are neglected Zel'dovich and Raizer suggest

the maximum compression ratio x (for P -+ ©) is =~ 4 <12).

In this case X = 4, 1 - l/xmax ~ 3/4 and:

U = 1.33d (15)

%
Correspondence with Equation (13) (when By >> A) implies that :

B = 1.33 (16)

which is reasonably close -to values reported for a number of sub-
stances(lo).

It appears that there is some theoretical justification for
the form of Equation (13) based solely on conservation of mass flux
considerations, at least in the limit of very high pressures. It is

interesting that this justification does not allow for higher order

(quadratic and above) terms in W .

*

This result was pointed out by Alder(ll)°
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6. Extrapolation to Ug

A further requirement of Equation (13) is that A (2 Uof should
%

be equal to the sound velocity C0 of the medium . From fits of many
materials using this relation it has been shown that this approximation
is valid to within v 1.5% (at least for metals(lB)), although systema-—
‘ . ; (14)
tic discrepancies have been found 5

Another objective of this study is to determine if the pro-
4posed theory can adequately describe the Hugoniot in the neighborhood
of C_.

O i
Again some insight can be gained by further examination of

Equation (14). Since x > 1 (since p > po) as U >0 , it is clear

that:
U S lim U = lim —t= ~—=>% (17)
u->0 p+01==
X
o o . . e 3A o -1 (15)
a clearly indeterminate form. Application of L'Hospital's rule
gives (Appendix C):
. g, du
U, o= lim o (18)

x + 1

Therefore it is clear that, if the quantity du/dx is finite at
x = 1 , the behavior of Equations (13) and (14) are in accordance with

each other.

* (4)

Since an infinitely weak shock wave is a sound wave U =C_ and

o o
the two notations can be used interchangeably. However, in this study

UO is used to represent the extrapolated value of U (i.e., lim U)

in the theory while Co is used for sound velocity data. o



-

Part of the U-U behavior in Equation (13) can be explained
simply by examination of mass flux conservation. However, Equation
(13) cannot be considered a true analytical representation of U vs. U
but only a convenient empirical form, since Equation (14) is clearly
nonlinear between U = 0 and the sufficiently large value of U
that makes it linear.

In order to derive theoretically the form of the U-u rela-
tion for comparison with Equation (13), it is necessary to develop a

model for a shock wave.
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B. DEVELOPMENT OF SHOCK MODEL

From Equation (7) the energy change across the shock front is

given by:

1 i,
ME = P (= -3+
oo TP

T 7

N

Since the only states considered in this study are those which consi-
der relatively strong shocks and/or sonic conditions, it may be

assumed that (Appendix D):

1 2 1 1
5 U >> Po( o = p) (19)

so that Equation (7) becomes:

AE = %uz (20)

In combination with Equations (14) and (20) an independent expression
for the internal energy change as a function of x would yielé the

Hugoniot.

1. '"Receding" Shock

The model for a shock wave used in this study was inspired by
the classic drawing shown in the first printing of Reference 4 and is
reproduced in Figure 3. This '"receding" shock may be visualized as
depicted in Figure 4*m Here a microscopic view of the following
process is depicted. A long slug of material of density po and

characteristic spacing z has impacted a perfectly rigid wall at

(4)

The current edition discusses models of this type on pp. 129-130.



Figure 3. Receding Shock Wave--Skiers

[Reproduced with permission from Courant and Friedrichs, 1948.]
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velocity vy - The material compresses to density p and charac-
teristic spacing 'z(z < zo) and a disturbance, measured at the last
fully compacted layer, p?oceeds upward at velocity v, (in laboratory
coordinates). The molecules decelerate in the '"thin'" shock transition
region indicated in Figure 4 and come to rest in the compressed regioﬁ.
It is noteworthy that, in this picture, it is assumed that the mole-
cules compress linearly in the direction of motion (i.e., no trans-

verse motion) at least throughout the transition region.
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9. Transformation Equivalence Conditions

The model in Figure 4 can be made identical to the shock
propagating in Figure 1 by making the physical conditions the same.
For the conditions in Figure 1 the material ahead of the shock is not
in motion. This is duplicated in Figure 4 if an observer is consi-

dered moving along with the original slug at v In this case the

1 -
velocity at which the disturbance propagates towards this observer

should be the shock velocity U . From Figure 4 this is given by:

U = vy + v, (21)

For this same observer the velocity of the particles behind the front

in Figure 1 is u and from Figure 4:

u = v (22)
Simultaneous solution of this with Equation (21) gives:

U-puy = v, (23)

Equations (22) and (23) are the transformation relations between the
shocks depicted in Figures 1 and 4. It is clear that if the initial

slug velocity v is chosen equal to Y the two shocks are equivalent

1

in all respects and are thus completely interchangeable. As a conse-
quence the change in internal energy across the shock transition is
still given by Equation (20).

Subsequent analyses may now be made in terms of the model in

Figure 4 (with vy =My v, = U-y) without loss of generality.



=2 0=

3; Energy Partitioning-Relaxation Effects

In developing the model, we wish to consider the change in
internal energy of a molecule initially in layer Lo (a state far
removed from the shock front) in Figure 4 (shaded circle) as it passes
to the final state chosen as the first layer in the compressed zone
and denoted by Ll (see Figure 4). It remains to be shown that if
such a change is determined, (a) it is related to the AE in Equation
(20), and (b) it and the other R-H relations (Equations (4) - (7)) are
valid for changes between layers L0 and Ll'

It is assumed that the transition region is sufficiently thin

that the molecules at L, have not yet had time to relax to thermal

1
equilibrium, and thus have had no net motion other than in the direc-
tion of the (one—dimensional) shock (i.e., linear compression). Under
this assumption all of the energy change associated with the shock
transition is accounted for by consideration of the difference in
the configurational energy only, in the two states. This means that,
at least for the change being considered, there is no temperature
change across the shock front because the dwell time of the molecules
in the transition zone is less than the thermal relaxation time (the
pressure rise precedes the temperature risel!l).

Since all of the internal energy change is accounted for

between Lo and L, , it is clear that the proposed change is identi-

1
cal to AE (per molecule) in Equation (20). Further, if mass,
momentum and energy flux conservation is computed between layers Lo

and L1 it is found that Equations (1) - (3) are (necessarily) repro-

duced. Thus it is claimed that the particular method proposed for
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evaluation of the energy change across a shock front is generally in
accord with the R-H relations, Equations (4) - (7) (although not with
Equations (8) - (10) which assume thermal equilibrium). That the
change is only configﬁrational depends on the validity of the assump-
tion of a sufficiently thin transition region.

We are not concerned here with relaxation phenomena beyond Ll
and with how AE is partitioned into thermal and potential energy in
the eventual equilibrium state. The choice of the positions of Lo

and L and the assumption of '"thinness" of the transition zone

1
allows a state (albeit a transient, non-equilibrium one) from which a
sufficient evaluation of AE can be made.

This argument, fundamental to the proposed model, may be seen
more clearly by considering the change AE as the sum of all changes

taking place from Lo (the initial equilibrium state far removed from

the shock front) to Ll and from Ll to the equilibrium state.

AE = AE(l) i AE(Z) (24)

Each of these has a thermal and configurational part, and:

AN

AE(1> = AE(l) + AE (25)
thermal configurational
D - pp® + ap® (26)
thermal configurational :
Because the transition zone is assumed "thin":
petd - 0 (27)

thermal

and Equation (25) becomes:
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ar - pp (28)

' configurational
Also, since there are no pressure/density changes taking place
between Ll and the equilibrium state and the process is adiabatic

(i.e., no radiative, magnetic, etc. processes occurring):

AE(Z) = 0 (29)
which implies that:
pet® - @ (30)
thermal configurational

The obéerved temperature rise in the equilibrium state is due
solely to a decrease in the abnormally high configurational energy
existing at Ll as ;he "fluid" compressed in one dimension redistri-
butes itself (i.e., relaxes) in three dimensions. The partition of
energy between the thermal and configurational portions in the
equilibrium state depends on the structure of the relaxed fluid. This
reasoning, together with Equation (30) and the subsequent developments,
is suggestive of a new way to compute temperatures along the Hugoniot
(Appendix E).

Substitution of Equations (28) and (29) into Equation (24)

leads to:

rE = apD (31)
configurational

which will now be considered.
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4. Energy Equation

The configurational energy difference required in Equation
(31) may be computed by again considering the shaded molecule in
Figure 4. The molecule in each of the states Lo and Ll interacts
with each of the other molecules of the system according to some, as
iet unspecified, intermolecular potential function ¢ at the time
the particular state exists. When these effects are integrated over

all space, the total configurational energy for that state is

obtained. Denoting this total energy by ¢ Equation (31) becomes:

L L
(1) N [ 1 0]
= A == L0 -0 32
HE Econfigurational M (32)

where the superscripts refer to layers in Figure 4 and the coeffi-
cient (N is Avogadro's number and M is the molecular weight)
reflects the fact that AE is in the units of energy/mass, while &
will be considered in units of energy/molecule. Each of the poten-
tials in Equation (32) may be further broken down into component

parts by consideration of Figures 5a and 5b where the separate effect
L L
o)

of each of the several regions in Figure 4 on & and ¢ 1 is
shown.
Lo Lo Lo Lo
In Figure 5a &, , @2 s ¢3 and ®4 represent, respectively,
L

fo Eu : . o
the separate contributions of configurational energy to & of

material above Lo’ material below LO but above the tramsition region,

material in the transition region and material below Ll . Similar
o T A | L
definitions apply to @1 s o7 ®3 and ®4 in Figure 5b. The

distances R and R' reflect the fact that certain of the regions
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are not adjacent to the molecule under comnsideration. Of course R
and R' are the same in Figures 5a and 5b, which are '"snapshots" in
the progress of the shaded molecule taken at different times.

Clearly then, by the principle of superposition:

L L L L L

o 0, 4 o)
+ @2 + ®3 [R") + ®4 (R) (33)

Ll Ll L L L

1 i 1 1
@l (R) + @2 (R-R") + ®3 + ®4

S
I

(34)

Considering Figure 5a, if R' (and R) are large (i.e., LO is

far removed from the shock front as previously assumed) then it is

clear that:

LO Hig

®4 (R) = 0 (35)

L

2,°(R") 2 0 (36)
and:

L L

o o]

@l = @2 (37)
leading to:

L L

N
o9 = 2@20 (38)

By the same token,fin Figure 5b:

L

1 N
o t®) =

0 (39)

and:
L L L Ll

v 1, o 1
71 =. @2 (R-R") + ¢3 + ¢4 (40)
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If it is now assumed that (R-R') is very small (on the order

L
of a few molecular spacings) and/or that the effects of @3 on the
molecule at L are not substantially different from those that

1

would obtain if all the material in the transition region were at

density po , then:

L L L
o 1 4+ CDzl(R—R') ~ 0

3 (41)

That is, given the above assumption(s), the material above the mole-

cule in L is identical to that above the molecule in Lo s the net

1
‘configurational contribution will be the same in both cases. Substi-

tution of Equation (41) into Equation (40) gives:

+ @ (42)

+ ®4 (43)

Substitution of Equations (43) and (38) into Equation (32)

gives:
L L
AE = %[@41-@°] (44)

The chain of reasoning leading to Equation (44) may be sum--

(16) "

marized by reference to Figure 4, noting that the molecule in

Lo "sees' above it a medium of density po and characteristic spac-
ing Zo ; this is also true of the molecule in Ll , except for the

material in the shock transition region. However, if this region is

sufficiently thin, its effect on the configurational energy may be
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ignored. 1In this case, the contributions to the configurational
integral for material above L0 and Ll are the same, and will can-
cel in the difference. The determination of AE , therefore, requires
only an evaluation of the configurational energy of all material below

the molecule at L minus that below the molecule at Lo . Since

1
again, Lo is far removed from the shock front, we may take this dif-
ference as' 'in Equation (44).

Because of the way in which the states LO and Ll are
picked, the errors in Equations (35), (36), and (39) can be made as
small as desired by choosing R as large as needed, and the error in
Equation (44) depends so}ely on the error in the assumptions leading

to Equation (41).

The terms in Equation (44) are more usefully defined by:

L L

5,5 = W2 + ¥ Tz (45)
(o} LO )

2, = ¥loz) + ¥ °(z) (46)

where Y(p,z) is the configurational energy of a single isolated
molecule positioned a distance z from a semi-infinite medium of

| Ll Lo
density o , and Y (zo), Y (zo) are the configurational energy
contributions of the other molecules in layers L1 and LO , respec-
tively. Since these molecules remain at spacing z throughout the

transition (see Figure 4, noting the earlier assumption of linear

compression):

vz = ¥ (=) (47)
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and the terms will cancel in Equation (44), which now becomes:

AE =

==

[W(ps2) - V(P >z )] (48)

L L
Based on the definitions of o) L “and @ ° and the sub-

sequent development, it should be clear that the Y(pP,R) are com-
puted by summation of the interactions between the shaded molecule
and each of the molecules in the half-space indicated in Figure 6.
When this interaction is described by an intermolecular
potential function ¢ , and this potential is assumed to be

dependent only on the distance separating molecules ri (i.e., ¢

' *
is a pair potential ) ¢ = ¢(ri) and:(l7’l8)

N

Y(p,z) = .Z o(x) , T 2z (49)

i=1 *
where N is the number of molecules in the half-space and i is

h

the index for counting each of the N interactions; on a per unit

. h

volume basis it is clear that Nh Np
Evaluation of Equation (49) is made difficult by the fact

that values for the r, are generally unknown since the structure

depicted in Figure 6 is unrealistic (other than for perfect crystals).

Furthermore, even if the t; were known at any instant of time, they

b3S
would be changing continuously because of molecular fluctuations .

%
We ignore three-body (and higher) interactions.

*k
Even for solids with a reasonably rigid lattice structure, vibra-

tional motion around the fixed position would result in variations
in the r, . For liquids, of course, molecular mobility is great

and large variations in the r, are expected.
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Variations in molecular positions imply that r, = ri(t)

and that Y = YP(t) . To avoid this difficulty N is usually chosen

h
large enough (on the order of 1023; a mole) so that the sum of the .
variations Will be essentially constant in time. However, this still
leaves the difficulty of assigning a set of positions to the molecules
for evaluation of the summation and adds the further difficulty of

requiring a very large number of calculations. Equation (49) is,

instead, evaluated from statistical mechanics.
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5. Integration of Pair:Potential
,,-’—'-7

Consider a cartesian coordinate system (x',y',z') centered at
the shaded molecule in Figure 6. The average number of molecules at
a distance between x',y',z' and x'+ dx', y'+ dy', z'+ dz' from
that molecule (in the ha;f-space) is (PN/M) g(r) dx'dy'dz' where
g(r) 1is the "pair distribution function" (PDF)(17) or '"radial dis-

. (RDF)(lg’ZO) defined as the probability of find-

tribution function
ing a molecule at r (i.e., in the volume element dx'dy'dz') if
there is a molecule at the origin (g(r) is normalized to unity at
large r) and r is generally a function of x', y' and z' ¥ The
average potential energy of interaction with the molecules in the
volume element is (PN/M) g(r) ¢(r) dx'dy'dz' and integration over
the half-space gives the total configurational energy (i.e., Y(p,z)
in Equation (49)):

(oo} (o]

V(p,z) = J f ‘- J (oN/M) g(r) ¢(r) dx'dy'dz’ (50)

z'=z y'=0 x'=0

For convenience the z' axis has been chosen colinear with =z ,

"downward" being positive (see Figure 6). Since p (and po) are,

1

by definition, independent of x', y' and 2z' (they are the mean

continuum densities for the media) the terms of Equation (48) become:

V(p,z) = (pN/M)

J Jg(r,p,T)Mr) dx'dy'dz' (51)
z'=z y'=0 x'=

0

I ~—— 8§

g(r,po,TO)¢(r)dx'dy'dz' - (52)
0

| —— 8

Vogrzg) = G [ ]
z'=zO y'=0 x'

%*
Note that the PDF is state-dependent, i.e., g(r,0,T).
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It is assumed that the effect of g(r) on the two integrals

is small and/or approximately the same (numerically) and will there-
fore be unimportant and/or cancel in the differeﬁée in Equation (48).

The above become:

U(pyz) = (pN/M) f J J ¢(xr) dx'dy'dz' (53)
z'=z y'=0 x'=0
w(oo,zo) = (DON/M) J J J o(r) dx'dy'dz' (54)
z'=z y'=0 x'=0

Integration of Equations (53) and (54) and further development
of Equation (48) require the specification of the pair-potential func-

tion ¢(x) .
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c. PAIR POTENTIAL FUNCTIONS

That there are attractive (cohesive) forces between molecules

is demonstrated by the fact that all molecules tend to aggregate at

(21,22).

low temperatures There must also be repulsive forces between

molecules (at least at short distances) or matter could not exist in

the first place(?'l’zz)° These facts suggest formation of an inter-

molecular function of the form:

¢ =0 - ¢ (55)

repulsion attraction

(21,5)

although an equation of this type appears to be somewhat arbitrary i

The forces leading to ¢ are called short-range

repulsion
forces because they dominate at short distances. They are also known

(5)

because they "arise when

as valence forces or chemical forces

molecules come close enough together for their electron clouds to

n (5)

overlap' Y7/ This description is the source of the additional name for
. ' (21) '
¢repulsion’ viz., overlap energy 4
The forces leading to ¢ : are called long—range(S)
“attraction

forces because they predominate at long distances (compared to the

short-range forces; at very long ranges, of course . =0 =
g ; y g ges, , ¢repu181on
¢

). They are also called van der Waals forces(21’23)-

attraction

Rigorous treatments of repulsive forces are apparently very
difficult to generalize and in most cases only particular pairs of
(5)

molecules are studied . However, it is known that this overlap

eénergy can asymptotically be represented by an equation of the form:

) = P(r) e OF (56)

repulsion
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where © 1s a molecular parameter and P(r) is a polynomial in both

pOSitive and negative powers of r (5’17’21—23). Unfortunately, it

turns out that when Equation (56) is reasonably accurate r is so

large that ¢ > ¢ and little use can be made of

attraction repulsion

the results. Because of this, empirical functional forms have been
used for the repulsive energy. The two most widely used are:

|

ar (57)

¢

repulsion

¢repulsion ©oae (58)

where a, n, 0 are molecular parameters. Forms of this type are
chosen for purposes of simplifying calculations and it appears that
"there is no compelling theoretical reason to prefer any (other)
simple form(s)--~~"(21).

The long-range attractive forces are amenable to fairly
rigorous quantum mechanical treatment and are of four types; electro-
static, induction, dispersion and resonance. These contributions all
vary inversely as powers of intermolecular separation r (5). A full
discussion of each of these four types of attractive forces may be

found in Reference (5). Generally the attractive energy is written

in the form:

¢attraction = br + cr + dr + oo (59)

where b, ¢ and d are molecular parameters. In the simplest cases

¢c=d= -2 =0 leaving the most -common form, br—6 .

(24-26,17,27-31)

It has been shown that for metals the long-

range energy has a decreasing oscillatory form and that regions of .
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repulsion and attraction both exist. This 1s substantively different
from Equation (59), which is typically applied to non-metals (insula-
tors), in that only attractive forces are involved in that case. This
difference will be seen more clearly in the following paragraphs.

(17)

Egelstaff has suggested that for metals the "attractive" energy

might have the form:

- =3 G
¢attraction = ¢ i (60)

where b, B and Y are molecular parameters.

Equations (57) - (60) may be combined in Equation (55) in four
ways to give ''general" expressions for the pair-potential function. In
each case the dependent variable is the center-to-center molecular

separation r and, clearly, ¢ = ¢(r) only. Thus Equation (55)

becomes:
(r) = ar—‘n - (br—6 + cr_8 + dn_lo)' (61)
) = ae ™ - mr %+ er® 4 710 (62)
o(r) = ar T - br—3 e_Br cos Yr (63)
o(xr) = gm0 br—3 e--Br cos Yr (64)

Many of the more commonly used potential functions may be
derived from these equations by appropriate choice of the parameters
a, b, n, o, B, Y . The functional difference between those with
(Equations (63) and (64)),'and without (Equations (61) and (62)) long-

range oscillatory (LRO) behavior is shown in Figure 7.
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1. List of Suggested Potential Functions
1. List

Table 1 is a partial list of the many pair-potential functions
suggested over the past 40 ycars*. Some of these can be derived from-
Equations (61) - (64) with appropriate choice of the parameters.

Number 23, the numerical potential, has no analytical form but con-
sists of a data set of potential energy vs. distance which purports

to best represent the actual pair-interaction.

%
Angle-dependent pair potential functions have been excluded, but for
working purposes they are usually averaged over all orientations to

yield an angle-independent form similar to those in Table 1.
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2., Choice for Work

In this study the only forms of interest were numbers 4 and 7
in Table 1 which are immediately derivable from Equation (61) (in the
former case c¢ = 0 = d).

T@is choice was made on the basis of simplicity, since no a
priori judgments could be made on the success or failure of the shock
model. It was felt that more '"realistic'" potential functions could
not be justified until the reasonableness of the model itself was
demonstrated.

It was (and is) recognized that a single exponent n could

(64,53)

not completely describe repulsion over a wide region and that,

at least for metals, tbe attractive term might be very unrealistic(75>.
However, since most of the data being dealt with in this study are
concerned with strong shock waves, pressures are generally high,

n10 - 100 Kbar, and we should be operating far "up" in the repulsive
region in Figure 7. Examination of all equations with an exponential
repulsive term (Equations (62) and (64) and numbers 12-18 in Table 1)
show that a (spurious) maximum must be reached with these functions at
small r (since e =1 as r =(0). In order to assure that suffi-
cient repulsion‘exiSts (under shock compression) in these equations a
and O would have to Be adjusted arbitrarily to avoid this maximum.
On the other hand the repulsive form chosen has the desirable prope;ty
that r " =>w as r =0 for any value of n (called the "repulsive
exponent').

Furthermore, it was felt that the attractive form was reason-

ably justified because: (a) at the pressures mentioned, repulsion is
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expected to dominate (i.e., ¢ ) and (b) the

X >> ¢ .
repulsion attraction

LRO behavior of metals is not found in every determination of.the

(76)

potential function for these materials and should not therefore

be considered as firmly established; in other instances the computed .
potentials show only slight LRO behavior<30).

The potential chosen for most of the calculations in this

study is the n-6 potential (Number 4 in Table 1):

o(r) = ar - br"6 (65)

The parameters a and b may be specified in terms of molecular

quantities by consideration of Figure 8. Here o is the so—called(23’
5,22) "collision diameter'" determined from the condition:

9() = 0 (66)
The "depth of the potential well"(s) € 1is determined noting that:

o(r) = -¢ (67)
is the minimum value of ¢(r) . From elementary calculus:

[QQXEL] = 0 . (68)

r ro

at this point. Use of Equations (66) - (68) with Equation (65) leads

to the usual form of the n-6 potential (see Appendix F).

n/n-6

o) = e B (& - & (69)

and:



-

I
-

Figure 8. n-6 Potential



L
r = (n/'6)n_6 o] (70)
Letting
~n_
n-6
£(n) = 200 (71)
Equation (69) can be written:
00 = £ (D™ - &% (72)

Equation (72) is the pair potential function to be used in Equations
(53) and (54) for determination of the configurational energy of the

shaded molecule in Figure 6.
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3. Special Properties of the n-6 Potential

a. The 6-6 potential. At first glance it would appear that

Equation (69) is valid only for n > 6; ¢(xr) should be zero for n=6.
That this is not so may be demonstrated by carrying out the limiting

' process, as in Appendix G. The resulting equation is:
_ 0,6 , O
¢6(r) = 6 e(r) Qn(r) (73)

where e = 2.71728... the base of natural logarithms and the subscript
6 indicates n = 6 . Equation (73) reproduces all of the features of
Equation (69) as expressed by Equations (66) - (68); i.e.,
d¢

¢,() =0, ¢, (r) =-e , and G—ié = 0 (see Appendix G). The

6 60 driy_p

o

significance of Equation (73) will be discussed in later sectiomns, but

it is important to recognize such a potential exists and that it is

compatible with the more familiar form in Equation (69).

b. The n < 6 potential. Consideration of n = 6 leads directly

to the question; can n be < 6 ? Again, at first glance it would seem

that for small r in Equation (69):

|6/0) < |/ (74)

for n < 6 and the potential would be negative (i.e., attractive!).
However, this sign change is corrected for by the coefficient
(1/(n/6 - 1)) in Equation (69) such that ¢(r) > 0 for every value of

: %
n>0 when r <o . Therefore it appears that Equation (69) is also

*
If n < 0 the leading term of Equation (69) would have an r+n

dependence and ¢(r) would increase at very large values of r .
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valid for all values of n from O to 6. In fact, at n =0 it has.

the form (Appendix H):
b, =€ [D° - 1] ‘ (75)

which also is compatible with Equations (66)—(68) although in a

"degenerate'" form (Appendix H).

As the repulsive exponent n decreases, the potential is said
to become '"softer" in that the repulsive part of the potential curve
(see Figure 7) is not as steep as with larger values of n .

A key question in the application of Equation (69) for n < 6

is: Is the n < 6 potential monotonically softer for all values of

n between 6 and 0? Stated another way the question may be phrased as:
Is Equation (69) monotonically "harder" for all values of n from
n=0 to n= »?

These questions are important, since careful examination of

Equation (69) shows that for n < 6 it would more properly be written:

n/n-6
o) = e BO—— [ - N (76)

The roles of the repulsive and attractive terms in Equations (55) and
(65) have been reversed; the attractive term now depends on the
exponent n . This ié unrealistic*and Equation (76) is considered not
as the sum of attractive and repulsive terms, but simply as an overall
expression describing ¢(r) vs. r . This viewpoint is not unreason-—

able considering the somewhat arbitrary assumption of superposition of

attractive and repulsive terms in Equation (55) to begin with. Since

* . & -
In particular the attractive term no longer has the r 6 dependence

of insulators.
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It is no longer obvious that as n decreases the repulsive term gets
gofter (because the repulsive term cannot be identified); it will
suffice to show that as n decreases, ¢(r) decreases in the repul-
give region (i.e., where r < 0). This question is examined in
Appendix I, where it is proven that Equation (69) (or Equation (76))
is monotonically increaéing with n (“harder") for all values of n |
from 0 to o« for (o/r) > 1 .

Based on this discussion it is clear that the n-6 potential
exists for all values of n > 0 and that Equation (69) may be used in.
all cases except when n = 6 in which case Equation (73) applies.

To compare these functions over a range of values of n , Figure

9 has been prepared in the form:

ié-r—l = 2o/ (77)
for each of several values of n . It is notable that the variation in

the (appearance of the) potential with n , over the whole range of n,

is not extraordinary!
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4. Integration for Use in Model

When Equation (72) is substituted into Equations (53) and (54)

: *
and the integrations carried out (Appendix J), the result is :

: n 6
(0,z) = 2me (pN/M) f(n)[ o ___ L ¢ J (78)
vl (@=2)(a-3) _n-3 ~ 1,3
Gn 1 06 ,
V(p,s2,) = 2me(p N/M) £(n) @2) @3 3 - N (79)

(0]

The type of problem leading to these results appear as a problem

(19)

in a textbook by Hill where the Lennard-Jones (LJ) 12-6 potential

was considered. This result exactly matches that of Equation (78)

-1/6 _
)

when n =12 and ¢ = 2 (rO = r* in Reference (19)) as in
Equation (70).
Substitution of Equations (78) and (79) into Equation (48) and

rearrangement (Appendix J) gives:

N2 o o Po 0% o _Po
AE = 2me () £(n) [ (o~2) (a~3) (zn_3 - zn-3>‘ 12 (23 - 23) a0
o (o]

The goal of an independent expression for AE as a function of
x (= p/po) is almost realized. It is only necessary to determine the
relation between z and P for the medium under consideration, and

to specify the function z vs. p . The former is a function of the

Since the integrals in Equations (53) and (54) are independent of n,
the form of the result for n = 6 may be found either from substi-
tution of Equation (73) into this pair or by finding the limits as

n =6 of Equations (78) and (79). This will be considered in a later
section. :
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o 1 ;
structure' of the substance, while the latter is related to the way

in which compression takes place.
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D. STRUCTURE

Since this study deals with condensed media, only liquids and

solids will be considered.

1. Liquids
The structure of liquids has a vast literature

19,77:17,78,79)

£21:5,18,37 322,

and, although it is recognized as a gross oversimplifi-
cation, it is assumed that the molecules in the uncompressed state are
arranged in the form of a face-centered-cubic (fcc) lattice(s’p'286).
Such an assumption is useful in providing a simple "average' rela-
tionship between z, and s that can be used in the general
development of Equation (80).

Although it is known that such a lattice is inaccurate (unreal-
istic) in détail (i.e., at the molecular level) it is not clear,
a priori, that it is inaccurate on a macroscopic ("on the average')
scale.

Assuming an fcc structure, the nearest neighbor distance is

fixed geometrically and ‘depends only on density:

_ /6 /3

a, (/o 0t (81)
(Appendix K). Two ways to view this assumption in the context of a
more "realistic" physical situation are discussed in detail in
Appendix L. The first, called the "snapshot" approach, is similar to.
a geometric theory of liquid structure suggested by Bernal(8o). The

second, called the '

'probability" approach, considers the pair distri-
bution function (PDF) previously mentioned and uses elementary

probability theory. In both cases, a way of computing a, is
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* 3 o o

presented for comparison with Equation (81). Agreement would tend
. 1" 4] .
to support the macroscopic "accuracy'" of the fcc assumption.

Without numerical determinations of a, from either the

"snapshot'" or "probability" approaches, it is of interest to know the
of a and r_ (or r*) .
greater . o ( )

Examination of Figure 8 indicates that near the minimum, the
probability of a molecule being <rO or> T, is approximately the same
but as distances further removed from r, are considered, the situa-
tion changes. The repulsiv¢ forces remain steep << r, but the
attractive forces slacken off »>> L This means that nearest
neighbors at large r are possible (if comparatively unlikely) while
. . o o o *7’(
nearest neighbors at small r are essentially impossible . There-
fore in determining the mean nearest neighbor distance (over all 1)
the curve will be weighted to larger values of r (i.e., skewed to

the right) and it is expected that a is greater than r, -

Since r is greater than tr* (Appendix M), we may write:
a >r > r% (82)

Equation (82) may be used as a bound check of the assumption of an
fce lattice. That is, a from Equation (81l) should be larger than
r, for the substance of interest in order that Equation (82) not be

violated. It is, of course, recognized that just because Equation

%
Calculations of the type suggested are extensive and are beyond the

scope of this study.

%o
The same reasoning and result obtains when Figure L-2 and % are

considered.
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(82) is satisfied does not imply that the fcc lattice assumption is
verified.

For some liquids a number of investigators(58’37’81783’54)
have proposed a tetrahedral or "diamond'"-like rather than an fcc

lattice. In this instance it can be shown (Appendix K) that the

nearest neighbor distance is given by:

1/2
a = -35—— (M/pON)l/3 (83)

rather than by Equation (8l). 1In such instances the arguments pre-
viously developed for determination of a, would be the same except
that comparison would now be made with Equation (83).

If the assumed structure for liquids is judged ''macroscopi-
cally accurate', and the expression for a, is accepted (Equations
(81) or (83)), the desired relation between z and p, can be
simply determined since z and a, are geometrically related. This

is shown in Appendix K with the results:

M/2 pON)l/3 , fcc lattice ' (84) .

/8 poN)l/3 ,  dfemond Tabiles (85)

N
]

N
[
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2. Solids

The structure of solids, compared to liquids, is accurately
assessed on the basis of equilibrium lattice positions for each étom.
Although there is vibrational motion about these lattice points, a
macroscopic nearest neighbor distance is easily visualized and consi-
dered physically accurate. In this study fcc and body-centered cubic
(becce) solidé only were considered and in all cases they were metals.

As shown in Appendix K for a becc lattice:

3l/2 4—1/3

ar/p 3 (86)

2 = /4 p W3 (87)

o)
The equivalent equations for an fcc metal lattice are given by

Equations (81) and (84).
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3. Generalization of Structure

e

The results in Appendix K are compiled in Figure 10 for the
three structures of intérest; fce, bee and "diamond" lattices. Both
a, and z, decrease with the structure sequence £fcc = bce = diamond
for equal density conditions. It is interesting that the coefficients
for the relationship of interest (zo VS. po) can be correlated by the

equation:

M )1/3 (88)

z = (-
™
2 pON

%
where s 1s defined as a '"structure" factor. For Figure 13 :
g

s = 1 corresponds to an fcc lattice (89)
s = 2 corresponds to a becec lattice (90)
s = 3 corresponds to a "diamond" lattice (91)

Equation (88) is the "simple'' relation sought for use in the general
development of Equation (80). It applies to both liquids and solids
although in the former case it is considered an '"average" relationship
that is only macroscopically accurate.

With regard to 1iqﬁids, Equation (88) implies a generalization
of structure not discussed previously. That is,. for solids, discrete
values of s (i.e., 0, 1, 2, etc.) are expected on physical grounds,
since the proposed structures apparently exist at the molecular (atomic)

level. However, for liquids, there is really no (a priori) physical/

theoretical reason to pick a discrete value of s and specify an

%
s = 0 corresponds to a simple cubic lattice.
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fcc, bee or other lattice. Although this was done in the numerical
part of this study, it is conceivable ;hat s should be considered a
continuous variable. This might further be consistent with results
of the determination of a, by molecular dynamic and/or statistical
schemes in that the resultant values might (probably?) not match one
of the coefficients in Figure 10 exactly.

With s a continuous variable, a range of structures are
available that may or may not make sense*. Therefore limits and
‘restrictions on s would have to be established and the meaning of
the structures elucidated. This will not be done in the current work,

but the concept might be of interest.

(a) What is halfway between fcc and bec, i.e., s = 1.5 ?
(b) What is the meaning of s > 3 ?

(¢) Can s be <0 ? , etc.
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E. SHOCK HUGONIOT

To complete the development of Equation (80) only the relation

between =z and Q 1is needed.

1. Linear Compression

In the shock model being developed we are considering a one-
dimensional shock wave* and the molecules are assumed to compress
linearly in the direction of motion as in Figure 4. 1If it is again
assumed that the shock transition region is sufficiently thin, no
transverse motion will occur (in the transition region) and the mole-
cules in the compressed region will (at least initially) be a
"squashed—only—in-the-direction—of—motion" version of that in the
uncompressed region as pictured in Figure 4.

It is clear that, independent of structufe, the density
increase across the transition results from a simple sandwiching of

the molecular layers. Therefore:
zlz = p/p (92)

Upon relaxation of the structure after the shock tramsition,
the molecules will redistribute themselves to yield a new equilibrium
state. The characteristic spacing between layers would concurrently
change from the value given by Equation (92) to some equilibrium

value z, - Since QO and ‘4, are constants and p 1is assumed not

to change between Ll and the equilibrium state, it is clear that

*
Indeed, the Rankine-Hugoniot equations are derived only for motion

i oue dimenSion(4’84’5’85’86’10’87’88’16).
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Equation (92) can be valid only before relaxation has taken place.
For the previous assumption of a sufficiently thin transition region,

the relation will be valid (at least) at L This is all that is

1
required, since» z in Equation (80) is (in effect) defined as the
characteristic spacing for molecules at Ll .
Therefore Equation (92) is the desired relation between z
and p except for the elimination of z, - This is done using

Equation (88) with the result:

2 = Q2% Y2 o /o (93)
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2. General Expression

The appropriate relationships have been developed in Equations
(88) and (93) and they may each be substituted into Equation (80) for
the final step in finding an independent expression for AE as a

function of x(= p/po) . Carrying out the associated manipulations

(Appendix N) yields:

s
_ 2 Nme g" ) poN n/3 n-2
AE = _2; C_M‘—) f(n)[ (n_z) (1’1"3) ( M ) (X _l)
6 Zsp N 2
-5 5" - 1)} D

Equation (94) is a unique relation between the internal energy change
across a shock and the compression ratio x . It contains a single
thermodynamic parameter (po), three molecular parameters (0, € and n)
one structural parameter (s), and one atomic property (M).

Combining Equation (94) with Equation (20) yields a general

expression for the Hugoniot:

S
2 .4 (Mmgy g @ ZPNn/3 a2y
L. 5 M M @=2) (n=3) M *
6 2°p N 2
- () - 1)J (95)

Using Equation (95) the Hugoniot may be expressed by any pair of shock

. %
parameters noting

%
It is interesting that the classical form of the Hugoniot (i.e., Equa-
tion (12)) can be found from Equations (5), (14) and (95) in analyti-
cal form. The result is (assuming P >> Pg):

n 250 N n/3 - 6 25, N
P = =2 A8 e (0) (D) [y ) G 2D -2

ZS
X (x*-1)]
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£ = Gl 0 tals ~ 1) (71)
U = u/@ - 1/x) (14)

and ¢
P-P = pUu (5]

Equation (95), whose properties are examined in the next sec-
tion, is the sought-after analytical expression for the Hugoniot. It

was developed without recourse to a post—shock equilibrium state.
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F. PROPERTIES OF THE DEVELOPED FUNCTION (EQUATION (95))
Having obtained the Hugoniot in general-analytical form, it is

desirable to examine the resulting function for certain propertiés

of interest.

1. Extrapolation to Sound Velocity

From Equation (95) the Hugoniot may be written in functional

form as:
w2 = a2 - 1) - ™ 1) (96)
where:
S
4L Nme g~ 2PN a/3
o T SRR s vy ol u vauy) (37)
6 2°p N ,
B = ? &St & D) (98)

The limiting process‘towards sound velocity is described by Equation
(18):

U = lim — (18)

and for Equation (95):

n-3 3
gg_ _ 1 [(n-2)ax . - 4Bx7] (99)

—

N

%
Substitution in Equation (18) leads to’:

*
Examination of Eq. (95) shows that, as expected:

lim u = 0
% = 1
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5 =3 iim [-20x™ - 4gx°) | (n-2)0 - 48

< x> 1 H 0

= * o (100)
%
which diverges! The limit can exist if and only if:
(n-2)a - 48 = 0 (101)

In this case Equation (100) becomes:

U = 1 1im [(n-2)a xn—3 - 4Bx3]

° 2 x > 1 H

(102)

olo

which implies another application of L'Haspital's rule. This can be

shown to result in the relation (Appendix 0):

Ug ='-% [(n-2) (n-3)a — 128] (103)

Clearly, Equation (103) must be considered in light of the condition
expressed in Equation (10l). However, we may first consider Equation
(103) alone. Substitution. for o and B gives, after manipulation:

s

2°p N
2= 28t o"5-

s
n/3 6 2PN 2
o 9 M ) -o

0
=) ] (104)
which is an expression for UO' dependent only on the molecular param—
eters 0, € and n .
The "condition'", Equation (101), can be written, after substitu-

tion for o and B and rearrangement:

%

For certain values of o and B , =0 at x = XR (XR:>1)° In this
case the limiting process in Equation (17) is not valid and Equation
(18) does not obtain. In fact, in this case U0 = 0 . This is dis-

cussed in a later section.



) = (—'3—) (105)

For given values of 0 and n the magnitude of the difference between
the sides of Equation (105) describes the accuracy with which the re-
quired "condition" for Equation (104) is met. Equations (104) and
(105) are treated in this manner in the "weak" form (WF) solution
discussed in a later section. On the other hand, a rearrangement of

Equation (105) shows that:

(106)

The "condition" therefore requires that 0 be fixed in terms of n

only. Substitution of this into Equation (104) yields:

6

== B @-6) £ EH™

a
[e]
I

(107)
32

which is an expression ﬁor U0 dependent only on € and n .

For a given value of n, O may be computed from Equation (106)
(and compared to values from the literature). For this n and a given
value of € , Ug may be computed from Equation (107). This approach
called the "medium" form (MF) solution is discussed further in a
later section.

Although it is ordinarily not considered so, the sound velocity
C0 of a medium is certainly a valid data point in the set of shock
data available(l4)u Since C0(=UO) is usually known with consider-

able accuracy compared to the other shock data, it seems reasonable to

"force" the theory through this point. This suggests using Equation
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(107) to eliminate € in Equation (95). When Equation (106) is used
to eliminate O also in Equation (95), the condition for Equation

(107) is exactly satisfied, and the Hugoniot becomes (Appendix P):

= (n—6 n-2 4

2 _ 2,2 )[xn‘z— 1 x*- 1} (108)
(@]

This is an expression for the Hugoniot which depends on only one
thermodynamic (macroscopic) parameter (UO) and only one molecular
(microscopic) parameter (n) . It is significant that not only were
0 and € eliminated in the substitution, but po? M and s were

also. Clearly, all this information is contained in UO .

Use of Equation (108) only, instead of Equations (95), (104)
and (105), represents the "strong" form (SF) solution discussed in a

later section.



-66—

2. Uwvs. u Linearity

To determine if Equation (13) has any theoretical basis, it
is necessary to cast the Hugoniot (Equations (95), (96) or (108))in

the form of U vs. y . From Equation (14):

U
B = e T (109)
and Equation (108) becomes*
U, n=2 U . 4
2=U2(2)(U31) —1_(U—u) =&
H o 'n-6 n- 2 4 (110)

There is no obvious way in which Equation (110) can be made to match

. £
the form of Equation (13) except (perhaps) by Taylor series expansion .
Another simple way to compare Equations (108) and (13) is to

reverse the procedure and put the latter into the form of Y vs. x .

From Equation (13):

v
Bu = U-A = U - UO (111)

and by using Equation (1%):

A S
Bp = = 1/x L (L12)
which leads to:
U
L N o x=1
T 1 B Y% [x = B(x-l)] (113)
.y !
X

* o . ) 3
This form was chosen for convenience, since UO appears in the equa-
tion.

**It is not apparent how even this should be done.
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Comparing this to Equation (108) shows that, for the forms to be com-

patible [;;:—é%ftis] st be identified with (2/(a=6))' 2

Ll - 1,1/2
n-2 4 :

*
although later analyses show that, indeed, this is the case . In this

X [X That this is so is not readily apparent,

case it appears that‘the theory, as developed, does provide a satisfac-
tory theoretical explanation of Equation (13). Of course, the latter
must be considered only a first approximation to a function (U vs. W)
which has "gentle'" or little curvature**. That Equations (96) (or
Equation (108)) and (1l4) reproduce this property and give a better

approximation to the function is shown in later sections.

*
See Part IV, DISCUSSION AND CONCLUSIONS

ek
As confirmed by plotting experimental U vs. u data.
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3. Effects as n = 6

In a prior section it was shown that the n-6 potential has a
finite limit as n > 6 , Equation (73). The same limiting process can

*
be applied to Equation (95) resulting in (Appendix Q):

2 e wre. 6 20N 2 2°0N 15 7,
U =';S-(T) o ( n ) [x &nx + (%n Cf(——M—") -'i"z-)(x—l)]

(114)

Paralleling the development in Equations (96) to (113), the following

" results are obtained (Appendix R):

W= a'x® tmx+ gD ©(115)
where :
s .
2°p N
v _ 2e Nme, 6 0,2
@' =2 G ) (116)
s s
2°p N 2°p N 1/3
¢ _ 2e Nme, 6 0 o2 ) _ 7
8= S G T ) o ) @
The WF solution is given by:
s
2%p N
2 _ be Nme, .6 0,2
Ug = 2D 00— (118)

2.

and the "condition'" by:

*
Of course, this result could be obtained directly by using Equation
(73) instead of Equation (72) in the general development of Equation
(95).
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The MF solution is given by:

1
o= el/3 (M/ZSQON) /3
and:
UZ - 4e3 (Nﬂs)
o) s M
2
The SF solution is given by:
2 _ 1.2 4, 1 4
uo o= 5 Uo[x 2n x A (x D]

(119).

(120)

(121)

(122)

To determine if Equations (114), (115) or (122) provide a

basis for the form of Equation (13), it can easily be shown that
' 4-1
x 1/2

x-1 . s , -1/2
[x-B(x~l)] must be identified with 2

[x4 n x -

Z

]

%
As before, the correspondence can be demonstrated and the Hugoniot

with n=6 supports the prior conclusion.

®
See Part IV, DISCUSSION AND CONCLUSIONS
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IITI. APPLICATION OF THEORY
A. AVAILABLE EXPERIMENTAL DATA

As previously discussed, measurement or knowledge of any two
shock parameters allows determination of all the others by use of
Equations (4) - (6) and (10). In the majority of cases the two vari-
ables measured are U and Md. Although there are techniques for
measuring P and W also, they are indirect and the experiments are

usually difficult to perform.

1. Shock Experiments

The two sources of energy for the production of "

strong' shock
waves are high explosives and "guns".

When a high explosive is properly initiated, a steady-state
detonation wave is propagated throughout the mass of the material at a
characteristic velocity D L_ The wave consists of a leading shock
wave (shock "front") followed by a zone of chemical reaction which
releases large quantities of heat, light and gaseous reaction products.
Further, energy transfer from the reaction zone back to the shock front
supports the continuéd propagation of the wave at velocity D (thus a
steady-state phenomenon). The detonation wave is a ''strong" shock and
is capable of transferring strong shocks into other (inert) materials.

Further, the overall detonation process can be used to accelerate

sample (inert) materials to high velocity.
Guns are used to accelerate selected projectiles to high speed

*
using the gases from the deflagrationc of propellants. No extreme

*
As opposed to detonation.
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shocks are involved. Strong shocks are produced when the projectile
impacts another object.

The most common methods of carrying out the experiments to
measure shock-wave parameters are sketched in Figure 11. Methods 1, 2
and 3a use high explosives, while the last, 3b, uses a gun.

In the firsf method (called the "free-surface'", "break-away'

or "split-off" method)(lz)

.a block of high explosive is detonated in
direct contact with the sample. Upon reaching the interface between
the two, the detonation wave (at velocity D) is transformed into two
shock waves; one passes back into the explosion products, while the
other propagates through the sample at some characteristic (shock)
velocity U *a When this wave reaches the free-surface (at the right
of the sample in Figure 11) it is reflected back into the sample as a
rarefaction wave, satisfying the boundary conditions of continuity of
pressure and particle velocity(85’9o’86’91’92’89’10’11’87’93’64’94’12).

As a consequence, the surface of the sample is accelerated to “fs 5

the free surface velocity. In general:

Meg = BT UL (123)

where u and u. are the particle velocity behind the shock wave and

rarefaction wave respectively. To an excellent approximation over a

Since the detonation is compressive (i.e., not a rarefaction wave), it
it can be shown<89) that the wave in the sample is also compressive
irrespective of the nature of the wave passing back into the detona-

tion products.

It is assumed that the distance § is small enough so that the shock
velocity does not vary (attenuate) in the sample; %% ~ 0
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Figure 11. Shock Wave Production
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wide range of conditions and materials(3’85’90’91’86’13’89’10’87’64’

95,96,12) .

e

u (124)

and from the above:

=
]

ufs/z (125)

Measurement of U and Meo for a single experiment and use of

Equation (125) gives one set of U-U data.

In the second method (called the ”impedance—match”(lo)

n(12)

» cali-
brated "reflection or Hugoniot "reflection" method(97)) the high
explosive charge is in contact with a reference material whose Hugoniot
has been previously established. The sample is placed in contact with
the reference material.-

The shock wave from the detonation propagates through the refer-
ence with a velocity Ur and is incident upon the interface with the
sample. Two waves are produced: one reflects back into the reference,
while the other propagates through the sample at ﬁelocity U *. The
relative strengths of the waves are governed by the requirement of con-
tinuity of pressure and particle velocity across the interface and the
Hugoniot of the reference and sample. This is used in the Hugoniot

"reflection'" method from which the particle velocity (and/or pressure)

in the sample W , can be found. The method considers the Hugoniot of

%
As before, if the shock in the reference material is compressive, so
is the wave in the sample irrespective of the reflected wave, which

can be a compression or rarefaction wave, depending on conditions.
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the reference material in the P-U plane as shown in Figure 12. Iden-
tification of Pr and ur can be made by knowing Ur and po (the
initial density) for the reference material considering Equatizn (5),
the conservation of mass plus momentum flux. For strong shocks
(P >> Po) this may be written:
Po=(p, U) W, (126)

-Tr
The intersection of the (straight) line through the origin with slope
p0 Ur will intersect the reference Hugoniot at the Pr—ur condition

iy
corresponding to Ur . This is the solid straight line in Figure 12.

(4,86,10) that the reflected wave in the refer-

It can be shown
ence material must lie on the curve formed by a 180° reflection of the
original Hugoniot about a vertical line passing through the point
Pr—ur . This is also shown in Figure 12. Because of the requirement
of continuity of pressure and particle velocity at the interface, a
point on this "reflected" Hugoniot .also represents conditions behind

the shock wave in the sample. This point is located by applying Equa—

tion (5) in the form:

P o= (o) (127)

%
The intersection of the line through the origin with slope pOU
will intersect the reference Hugoniot at the P-u condition corres-
ponding to U . This is shown as the dashed line in Figure 12.

Although P < Pr for the illustration in Figure 12, it is clear that

®
It is assumed that the initial density of the sample Py is known or

measured.
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if pU >0, U% (i.e., if the "impedance' of the sample was higher
than the "im;edance" of the reference) then P would be greater than
Pr . In general, both cases occur*. Clearly, measurement of U and
Ur for a single experiment and application of the Hugoniot ''reflec-
tion'" method (which assumes knowledge of the Hugoniot of the reference
material) yields one set of U-u data.

In the third method (called variously, the 'collision",
"impact', "braking" or "momentum transfer" method(lo’lz)) the detona--
tion of a high explosive (3a in Figure 11) or firing of a gun (3b in
Figure 11) accelerates a flyer plate (or projectile) to flight velo-
city uf . Upon impact with the sample two shocks are produced. One
propagates to the right in the sample at velocity U , while the other

*%
moves to the left back into the flyer plate . If the projectile and

sample are composed of the same material, the shocks produced at
(12) .

impact are identical and it is easy to show that
Moo= u/2 (128)
Sk '

If the projectile is a reference material (known Hugoniot) the

particle velocity can be computed by a variation of the Hugoniot

"reflection'" method. This is shown in the 'P—u plot in Figure 13.

*
In the former case (P< Pr) the reflected wave is a rarefaction.

When P > Pr ,» the reflected wave is compressive(86’89’lo’12),

&%
Since it is the impact of the flyer plate on the sample that causes

the desired shock, there is no difference in the analysis of cases
3a and 3b, i.e., the method of acceleration of the projectile to
Uf is irrelevant to the subsequent events.

Fokk
This would be done because higher shock pressures can be produced

with selected reference materials at the same value of Ug o
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Consideration of the requirement of continuity of pressure and particle
velocity at the interface shows that some point on the "reflected"
Hugoniot of the reference material '"centered" at the flight velocity

%

uf represents conditions in both the flyer plate and sample. As

before, this point is located by the intersection of Equation (5):

P o= (pU) ¥ (129)

with the "reflected" Hugoniot as shown in Figure 13.

- Therefore measurement of U and Mg for an experiment, along
with Equation (128) or the procedure in Figure 13, leads to one set of
U-u data.

In each of the three methods in Figure 11 only velocity meas-
urements are required; shock velocity in the sample or reference,
free-surface velocity of the sample and flight velocity of the projeé—
tile (flyer pléte). Generally these are accomplished by time-of-arrival
(t.o0.a.) techniques, " although continuous distance-time measure-
ments are also used.

In the former case U and Ur are computed from:

2 zr

U = yry 3 Ur = —A—t?; (130)

where it 1s assumed that the reference and sample are both thin enough
to preclude significant attenuation. Both At and Atr are determined

from "t.o.a." data. In the latter case of continuous distance-time

For the sample the initial condition is P=0=u but for the projec-

tile the initial condition is P=0 , g = “f .
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measurements U and Ur are computed by numerical differentiation
of the data. Free surface and projectile velocities (Ufs and ﬂf)
are similarly determined.

Techniques for determining the required "t.o.a." or distance-time
measurements are briefly summarized in Table 2. While not being
exhaustive or fully descriptive*, the table does‘indicate the range of
methods available and major features of each. Because of the short
time associated with the events being considered, all electrical
methods u;e a rasteroscillograph system to record the data, while all
of the optical methods use a (high-speed: V10 mm/Usec writing rate)
streak camera.

Although almost all measurements of shock parameters involve
U and W , direct measurements of P and p have been made(lo’96),
usually with the set—-up in Method 1 of Figure 11. The techniques used
are summarized in Table 3, where again only the major features are

indicated. At present these methods are not as accurate as those for

U-U measurements.

An excellent description of these methods is given in Reference 10
Other sources are References 96 and 86 . 1In each case the original

references are quoted.
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2. Compilation of Data

Using the methods outlined in the previous section, a large
body of shock wave (Hugoniot) data has been accumulated since the
first investigations in 1945(86). The major portion of the work has
been done in the United States, but significant contributions have
been made in the U.S.S.R., France and England.

Almost all this data, through 1966, is included in an excel-

(96’98)_edited by Van Thiel. This compilationf plus

lent compendium
the more recent work, was extensively used in forming the data set
used in this study.

The substances considered in the current work are shown in
Table 4 which is divided into two parts, liquids** and solids.

For the liquids, the choice of materials to be studied was
limited to those for which both shock data and reasonable values of
the molecular parameters 0 and € were available. A prelimi-

(16)

nary study of the shock model considered six of these liquids:

A, Hg, NZ’ H2, CCl4 and C6H6 (benzene). This group was chosen because
these molecules are simple and offered the best chance of obeying the

(spherically symmetric; non-angle-dependent) n-6 potential con-

Kok
sidered , within "reasonable" bounds. The results of that study

%
Whenever possible the original papers were consulted for details of

the experiments, accuracy of results, etc.

%k
A, N2 and H2 which are '"mormally' gases at standard conditions were

all studied in the liquid state under appropriate TO,PO conditions.

ek .
Equation (8) of Reference 16 which is equivalent to Equation (72)

in this study.
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appeared to justify an attempt to apply the ideas to more complex
molecules. This was done by considering the seven additional liquids
shown in Table 4 where polar molecules (methanol, ethanol, ether and
water), longer linear molecules (carbon disulphide and hexane) and a
perturbed ring structure (toluene) are included. In each case both
shock and molecular parameter data are available.. The '"original' six
liquids were reinvestigéted also because additional shock and/or
molecular parameter data were found*, theoretical refinements had
occurred, and new methods of treating the data were developed.

As previously mentioned, the only solids considered in this
study were metals with an fcc or bce lattice. Ten of the former and
thirteen of the latter, for which shock data are available, are shown
in Table 4. Since very little (if any) reliable data on ¢ and ¢
for metals are available this was not comnsidered limiting in choosing
solids. For each lattice structure the metals are listed with
respect to their positions in the periodic table. Several well-known
"groups" are included. This is seen in Figure 14 which shows these
and all the elements considered in the study superimposed on a
periodic chart. At least one element from each group (except Group
VII) and period was studied.

The raw U-py data for the 13 liquids and 23 solids are com-

T
piled in Appendix S ’ where the (mean) initial conditions and sound

*
For argon, shock data for two additional initial states were found.

%k
Also included are the (several) adjusted data sets discussed in the

following paragraphs.
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Table 4

SUBSTANCES INCLUDED IN STUDY

Code®* Substance
Ll Argon
L2 Mercury
L3 Nitrogen
L4 Hydrogen
L5 Carbon Disulphide
L6 Carbon Tetrachloride
L7 Methanol
L8 Ethanol
L9 Ethyl Ether
L10 Hexane
L1l Benzene
L12 Toluene
L13 Water

LIQUIDS
Structure Comments
A Monatomic; spherically
symmetric *
Hg Monatomic; spherically
symmetric '
N = Diatomic
o Diatomic
S=EC=S Triatomic
Ql Tetrahedral; 1 carbon
Cl—?—Cl atom; symmetric
G1
i : .
H-C—OH Polar, 1 carbon atom;
ﬁ some symmetry
i E
H-C-C-OH Polar; 2 carbon atoms
HH
HE
H—g—g—O—¢-Q—H " Polar; 4 carbon atoms
H HH
HHHHHEH .
H-¢—¢-¢—g—¢—¢-H L:gg Chain; 6 carbon
HEHHHBEER 200
CH
7N
H? SH Ring structure
HC. CH
\CH/
C--CH3
7'\
HC CH .
| Il Ring structure
HC CH
W
CH
H-0-H Polar

* :
Data available at

%k

L = Liquid

four different initial states
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fec lattice
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Table 4

SOLIDS

Position in

Periodic Table

Code*** Substance  Symbol Group/Period Comments
Fl Copper Cu IB/4
F2 Silver Ag IB/5 Noble Metals
F3 Gold - Au IB/6
B Gethelt Go VII1/4 ‘} Ferromagnetic Metals
F5 Nickel Ni VIII/4
F6 Palladium Pd VIILI/5 Transition Metals
F7 Platinum Pt VIII/6
F8 Aluminum Al I11A/3
F9 Calcium Ca IIA/4 Alkaline Earth Metal
F10 Lead Pb IVA/6
bcc lattice
Bl Lithium i 4 IA/2 w
B2 Sodium Na IA/3
B3 Potassium K IA/4 > Alkali Metals
B4 Rubidium Rb IA/5
B5 Cesium Cs IA/6 J
B6 Vanadium \4 VB/4 h
B7 Niobium Nb VB/5
B8 Tantalum Ta VB/6 > Transition Metals
B9 Chromium G VIB/4
B10 Molybdenum Mo VIB/5
Bl1l Tungsten W VIB/6 J
B12 Zirconium Z¥ IVB/5
B13 Barium Ba IIA/6 Alkaline Earth Metal
Kk

F = fcc metal, B = bec metal
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Table 4
SUBSTANCES INCLUDED IN STUDY

SOLIDS

fece lattice

BT 1

Position in
Periodic Table

Code Substance  Symbol Group/Period Comments
F1 Copper Cu . IB/4
F2 Silver Ag IB/5 Noble Metals
F3 Gold Au IB/6
F4 HPbaTE o VIII/4 ‘} Ferromagnetic Metals
F5 Nickel Ni VIII/4
F6 Palladium Pd VIII/5 Transition Metals
F7 Platinum g VIII/6
F8 Aluminum Al IIIA/3
F9 Calcium Ca IIA/4 Alkaline Earth Metal
F10 Lead Pb IVA/6
bce lattice '
Bl Lithium Li IA/2 )
B2 Sodium Na IA/3
B3 Potassium K IA/4 > Alkali Metals
B4 Rubidium Rb IA/5 ‘
B5 Cesium Cs 1A/6 )
B6 Vanadium Y VB/4 —W
B7 Niobium Nb VB/5
B8 Tantalum Ta VB/6 Transition Metals
B9 Chromium Cr VIB/4
B10O Molybdenum Mo VIB/5
B1l1l Tungsten W VIB/6 J
B12 Zirconium Zr IVB/5
B13  Barium Ba  IIA/6 Alkaline Earth Metal
Kk

F = fcc metal, B = bec metal
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velocity Co for each substance are given(64’96’90’42’60’99’101’94’

100,98,102,85,92,103,104,13,105,95,106,93,107,108). These data are
plotted in Figures 15-27, where liquids of similar structure and solids
of the same periodic group have been, as far as possible, placed
together.

| With no attempt at interpretation or significance, a smooth
curve originating at Co , was '"faired" through the data for each
material, to help in the selection process discussed in the next sec-
tion. The general objective was to determine if a smooth (i.e., all
derivatives continuous) continuous curve could be drawn through the

combined data. It is notable that in some instances this could not be

done and a "break" in the plotted data was indicated.
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3. Selection Process

A careful examination of Figures 15-27 shows that the data are
not all of the same quality; in some cases considerable variations
exist from investigator to investigator, even though most error esti-
mates for velocity determinations are claimed to be < 3% (see Table
5). Furthermore, a number of phase transitions have been reported for
various materials under shock loading (see Table 6) which in some
instances could affect the smoothness of the U-u curve*. Lastly,
the "fairing" process discussed previously shows clear "breaks' in the
U~y data indicating a change in behavior of the material.

For these reasons, all data used in this study were put through'
a selection process designed to minimize problems'due to "questionable"
data. The guidelines were:

(a) When data from a single source differed substantially from

a number of other investigators, these data were eliminated.

(b) When phase transitions were suspected because of a "break" in

*%k
the U-u data <’ higher data were eliminated.

(¢) When first-order (FO) or second-order (SO) phase transitions
were theoretically predicted, the data were carefully examined to see
if any effects were evident on the U-y data. If not, the prediction

was ignored.

A discussion of phase transitions and their effect on the theory

developed in this work is included in Appendix T.

%%k
It is assumed that the U-u curve is a smooth, well-behaved, con-

tinuous function with continuous derivatives.
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Table 5

REPORTED ERROR IN DATA

% Error in % Error in
Reference Substances U u
64 AA-TIT < 2 < 2
96 A-III,A-IV 1.5 1.5
42 N2 1~ 2 1-2
96 N2 3 3
90 Hg,CClA,C6H6,Toluene,CSz,Ethanol, 0.5 =
Methanol ,Ether,Hexane,Water
60 H2 _ 1 0.5
100 CC14,C6H6,Toluene,Methanol - -
96 CCl4 _
98 C6H6 - -
94 Ethanol,Hexane,Water 1.5 -
98 Ether - -
96 Water,Al - -
102 Water,Cu,Al,Pb - —
96 Water,Cu,Ni - -
85 Cu,Pb,Cr,Co,Au,Mo,Ni,Ag,Nb, 0.7 -
Pd,Pt,Ta,Zr
92 Cu,Ag,Au,Pb - -
103 Cu,Al,Pb <1 < 1
105 Cu 0.5 0.5
104 Cu,Pb,Ni 1.5 -
96 Cu 3 3
13 Pb,Ag,Au,Co,Cu,Mg,Ni,V,W,Cr 0.5 -
96 Pb,Ca,Mo,Li - -
96 Pt,Pd,Nb,Zr,Ta - -
96 Pd = -
96 Al - -
95 Cu,Pb,Al - -
93 Li,Na,K,Rb,Cs = =
107 Li,Na,K 1.0 - 1.5 1.0 - 1.5
108 Mo,Ta - -

106 Ca,Ba - -
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(d) When FO or SO transitions were suggested by a ''two-line"
*
fit , an examination of the combined data was used to determine if the
assumption of a transition was justified. If so, higher data were

(104,11,64,109,112) it appeats

eliminated. However, in several instances
that whenever the U-u data did not conform to a straight line
(Equation (13)) a "twofline" fit was made and a transition at the inter-
section assumed! Since this procedure has no a priori justification
(except to preserve the (unnecessary) notion of U-U linearity), it

was simply assumed that, in these cases, the U-U relation was curved.

There is a wealth of support for a curved U-U relation(los’ll3’92’86’

104’93’14’95’60’114’106). If the data could be fitted by a smooth

curve the assumed "transitions' were ignored.

(e) In a number of instances a decision could not be made on
the basis of (a) to (d) above, and the data set with and without the
"questionable" data was carried through the first calculations. This
was usually sufficient to distinguish between the two sets and elimi-

nate "questionable" data.

It is recognized. that this process was not carried out on any
absolute basis and that the decisions to eliminate data were, ulti-
mately, discretionary in nature. However, this is done without apology

since more formal guidelines are at present unknown to the author.

%
Examination of Figure T-2 in Appendix T shows that FO and SO phase

transitions can be characterized by 'two-line" fits, especially if
the mixed phase region for FO transitions is small. In many cases
there are not sufficient data to characterize the mixed region and

"two-lines" suffice to fit all the data.
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The dtems considered in the selection process are gencrally
detailed in Figures 15-27 where the effects of each of the reported
phase transitioms (Table 6) on the data are seen. The selection
resulted in an adjusted data set for N2’ CS2 and H20 among the liquids;
Ni and Al among the fcc metals; and Li, Na, K, Rb, Ta and Zr among the

%
becc metals.

%
The adjusted data are listed in Appendix S on the page following the

raw data for each of the substances indicated.
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B. LIQUIDS

Values of ¢ and € for a number of substances have been

(5) (5)

, second virial coefficient , thermal

and thermal diffusivity data(74). Most of the

determined from viscosity
conductivity(74)
available values are compiled in Reference 5. Because these data
are considered to represent physically meaningful quantities, it is
assumed that they can be used to reasonably accurately describe the
"true" pair—potential function. Because 0,e data are available
for all the liquids considered in this study, advantage was taken of
this fact by using the solutions to the Hugoniot in WF (Equations
(105)-(107), (113), (114), (124)-(128)) or MF (Equations (105)~(107j,
(115), (116), (124)-(126), (129), (130)). This allows full use of

the 0,e data available and establishes a more "realistic" base for

%
any conclusions drawn from the analysis .

Because advantage was taken of the 0, data available does not
mean that the values presented in the literature were accepted
prima facie. 1In fact, a correlation of € with melting points

eventually proved to give "better" results than the raw values.
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1. Development of Parameters

From Equations (105)-(107) it would appear that the best
test of the theory would be to pick o and € (from available
data) and compare the predicted Hugoniot with the available data
for various values of n . However, a reconsideration of Equation
(72) shows that this comparison can be done in more than one way.

Equation (72) is:

00y = e £ (A" - DY (72)

where f(n) is>given by Equation (71). The quantities € and
0 have physical meaning in that they are considered real measures
of the pair interaction (see Figure 8) even if Equation (72) does
not truly represent that interaction over the whole range of r .
Thus © is considered the true minimum interaction energy and

is the distance at whidh the interaction energy is actually zero.
The first suggested method of testing the theory is clearly logi-

cal.



=109~

An examination of Equation (70) and Figure 8 shows that an
equally logical pair of parameters to fix would be r and € . That
is, 1 is also a physical quantity (the position of the minimum) that
could be picked along with € to describe the interaction*. In this
case the various values of n used to make the comparison would
determine O through Equation (70). Although this alternate mode of
comparison is theoretically possible it was not pursued because T,
data for liquids are not generally available in the literature.

Another method of camparison may be seen by expansion of Equa-

tion (72) in the following form:

n 6
o(r) = E f(nzlc __E f(néc (131)

r r

As previously mentioned, the second term, representing attrac-
tive forces, is amenable to fairly rigorous treatment (at least for

insulators) and the coefficient of the r—6 term has been calculated

(21,36,23,115,58,5,116-121, 56,81,55,122)

by a number of authors This
ek
coefficient is called the "dispersion' constant and is usually
denoted C . Therefore:
ab
C.. = e f(m o° (132)
ab

may also be considered a '"real" quantity that describes the attractive

*

The fact that Equation (72) is written in terms of € and ¢ in-
stead of ¢ and r, is not inherently significant. Clearly, sub-
stitution of Equation (70), solved for o , into Equation (72) would

yield ¢(r) as a function of € and roo- This same substitution
for ¢ would be made in Equations (96)-(98), etc.

For molecules without a dipole moment.
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behavior of the molecules; the portion of the curve to the right of

the minimum in Figure 8. Since Cab contains both € and ¢ (as

well as n) the pair of parameters to describe the interaction could be

Cab and € or Cab and O . In general the latter pair was consi-

dered, since the available ¢ data are believed to be more accurate
than the available € data. In that instance € = Cab/f(n)o‘6 and

Equation (131) becomes (after substitution and rearrangement):

c
b = 2 (S-S - (133)
)

To help determine the preferred parameter pair (0 and €
or O and Cab) for making comparison of the theory with experiment,
a number of preliminary computations were made using some of the

available 0, and Ca data which are compiled in Table 7.

b

Equation (132) shows that if C and o0 are known for a

ab® ©

given material £f(n) and therefore n (see Equation (71)) is fixed,
at least for the pair potential chosen, Equation (72). Using the data

in Table 7 such computations were made for A, Hg, N2 and H2 for

5 .
various combinations of the parameters . The results, shown in Table

3]

8, indicate the values of n that satisfy the particular set of "real"

parameters O, € and Ca . That is, for these values of n , Equation

b
(72) goes through the given values of 0 and € and exhibits the cor-

rect long-range attractive behavior. The question remains: Are these

values consistent with the shock data which are in the strongly

*
The data are determined independently of the o, pairs and can

C
ab
therefore be combined with any of them.
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Table 7
AVAILABLE o, € , C,, DATA -- LIQUIDS
% C b’".
Substance O—X €/'k9K Reference Date ergécm6><1060 Reference Date
1942
A 3.405 124 5 1949 52 36 1937
3.30° 152 25 1964 595 g 1938
3.44 110 25 1964 55.9 118 1961
- 147.7 55 1967 65.16 119 1961
3.38 134 71 1967 68.1 120 1963
3.28 [138.2] 74 1969 61 56 1964
63.85 121 1964
61.3 55 1967
65.9 122 1968
Hg 2.898 851 5 1954 255 5 1930
2.88 654 25 1964
2.86 195 25 1964
N, 3.71  95.9 5 1925 572 5 1938
3.72  96.7 23 1944 62 23 1944
3.73 [91.5] 42 1962 57.5 118 1961
Khk
65.7 118 -
By 2.87 29.2 5 1941 11.4 5 1938
2.92  31.0 23 1944 11.3 23 1944
2.968  33.3 123 1950 11.4 118 1961
kkk
13.0 118 -=
12.7 120 1963
cs, 4.438 488 5 1933
ccl, 5.881 327 5 -
5.77  [378] 54 1967
CH.,OH  3.666 452 5* 1961



*
Substance o-R E/k-PK Reference Date erg—-cm
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Table 7 - (continued)

Cab—
><lO60 Reference Date

6

C2HSOH 4.370
(CZHS)ZO 5.539
C6H14 5.916
C6H6 5.270
C6H5CH3 12.0
5.932
Hzo 2.648
2,725

415

351

423

440

185
377

382.4
355.8

*k
5

b3

ok

&%

5*7‘:

58
124

1961

1961

1962

1958
1962

1851
1969

57.0
247

52.2

86.0

58

81
81

1951
1952
1965
1965

*
k = Boltzmann's constant = 1.38045 erg/°K

Rk
Reference 5, corrected, with notes added, 1964.

Kk

A comparison of References 118 and 121 for the rare gases indi-

cates a (possible) systematic error in the former.
(1.142) was applied to
Reference 118.

S

This factor
for all of the reported values in
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repulsive region?

For the o0 , Cab parameter combination this was tested by
fitting the associated theory (see Appendix U) to argon (0 = 3.282,
Cab = 65.9X 10—60erg—cm6) and nitrogen (0 = 3.71&, Cab = 57.5><10—60
erg—cm6). The resultant best fit values of n were 10.4 and 9.2
respectively, which differ considerably from the values in Table 8.
Resubstitution of these values into Equation (132) along with the o

and Ca values used, yields values of € of 77°K and 25°K respec-

b
tively for argon and nitrogen; v 1/2 and v 1/4 of the "actual" values
in Table 8.

These results Indicate that for the n-6 potential, a single
value of n will not satisfy strong repulsion, 0, € and long-range -
attraction (Cab) simultaneously*° Further, it appears that satisfac-

tion of strong repulsion, O -and Ca leads to well depths € that

b
%%
are too small .

Because of this, the 0,e parameter pair was chosen for the
. Kok .
comparison of the shock data and theory . It is understood that

Cab (the attraction region) will not be satisfied in this instance but

This has been pointed out previously(125’64’53),

&%
An attempt was made to reduce the values of n 1in Table 8 by account-

ing for additional attraction implied by Equation (59). The results,

shown in Appendix V, do not materially affect the conclusions made.

ki
This intuitively makes more sense because the shock data are in the

strongly repulsive region and it is sufficient to satisfy ¢ and ¢
{see Figure 8) which define all the compressive (repulsive) states.

No advantage is gained by "jumping over" g to satisfy the attractive
forces.
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this is accepted as a limitation of the potential chosen. Of course,
in many of the compressive states defined by the shock data, the
attractive forces will be, by comparison, negligible and the error
involved in this procedure will be small.

(126)

Chaﬁman in a recent paper showed that the viscosity of
several liquid metals could be correlated with atomic (molecular)
parameters such as € and O over a considerable temperature range.
To establish a more fundamental footing for this correlation he showed
that the ehergy“parameter is independently correlatable with melting

*
points . He would have made this correlation with respect to critical
temperatures, but found them unavailable for the materials being con-

sidered.

Although Chapman considered only liquid metals, the ideas
developed should apply generally and correlations should be possible
for critical temperatures, boiling points as well as melting tempera-

*%(23,5)

tures . The latter parameter was chosen for the correlation

for this study, since it represented the only one for which values

*
Chapman used values of € for Na and K taken incorrectly from a paper

by Ling(76), to generate ¢ values for the other metals. Although
his resulting correlation is numerically incorrect, his evidence for

such a correlation remains wvalid.

g ’
Reference 5 gives as approximate relations e/k = 0.77 Tc =1.15 Tb

= 1.92 TM . Correspondingly, Reference 23 gives ¢/k = 0.75 TC

1.25 Tb which are not much different. When Chapman's correlation

for liquid metals g/k = 5.20 TM is corrected for the erroneous data
"read from Ling(76) (a factor of ~ 3.3), it becomes g/k = 1.57 Ty

which is in fair agreement with Reference 5. Considering that the
former deals with liquid metals and the latter with spherical non-
polar molecules, the agreement is notable.
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were available for all of the substances included in the study (see
Table 4).

The most reliable values of €/k for the liquids in Table 7
are those in brackets for argon, nitrogen and CC14. The respective
melting temperatures are 83.9°K, 63.2°K and 250.1°K. Based on this
data set, a least-squares best~fit line was computed with the_result

(éee Appendix W):
e/k = 1.5T, +4 °k (134)

Using Equation (134) a new set of € wvalues was computed for

all of the liquids studied based on available T data(lOl).

M The

results are shown in Table 9 and compared to the similar data in
Table 7. Tt is notable that this procedure leads to a large reduction

in e€/k for CS., CH,0H, C.H_OH, (C

2* ™3 275

reasonable agreement for H

2H5)20, C6Hl4 and C6H5CH3 but

23 C6H6 and HZO . Although these reductions

in €/k are not as substantial as those produced by using the o ,
Cab parameter pair, they are significant changes and the matter of
choosing between the "original' data (Table 7) or "correlated'" data

(Table 9) must be decided by the relative success of each when fit-

ting the shock data. This is discussed in the following sectioms.
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Table 9
e/k vs. TM CORRELATION--LIQUIDS

e/k = 1.5 TM+4

From Table 7

lo -
o]

&gt ance by G Iy~ K e/k Ok Ty
A ~189.2 83.9 129.9 138.2
Hg - 38.87 234.2 355.3 195-851
N, ~209. 86 63.2 98.8 91.5
H, ~252.8 20.3 34.5 29.2-33.3
s, -108.6 164.5 250.8 488
cc, - 23.0 250.1 379.2 378
CH,0H - 97.8 175.3 267.0 452
C,H 0H -117.3 155.8 237.7 415
(C,H),0  -116.3 156.8 239.2 351
C.H,, - 94.3 178.8 272.2 423
Celg 5,51 278.6 421.9 440
GG CH, - 95, 178.1 271.2 377

H,O 0.0 273.1 413.7 355.8-382.4
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2. Treatment of Data

Equations (96)-(98) with specified values of ¢ and € (and
s, P, and M) are to be used to find the '"best' value of n , the
repulsive *exponent, from the various sets of shock data. When this
is done, the resultant value of n can, for the WF solution, be used
in Equation (104) to determine UO and in Equation (105) to determine
if the "condition" previously described is met. The equivalent MF

: *
solution uses Equations (106) and (107) respectively .

Substitution of Equations (97) and (98) in Equation (96)

gives (back) Equation (95) which, noting Equation (71), may be written:

/06 n 2%0 N /3
2 _ 4  Nme (n/6)n o] o\ n-2 _
W e O TaieeD [m—z) 3 U o)
6 Zsp N
o] 032 4
-1 )t - 1)] M
Letting:

%
Equations (115)-(121) apply only when n ~> 6 . Since it was shown

that n > 6 for all the liquids considered, these equations were

not of interest.
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. N

Nm
c, = — —

1 5S M .

. ZspN g
c, = (=2 i (136)

S

c - __1_(2 poNZ

3 12 M o

this becomes after rearrangement:

2 6 (n/6)™/ 06 0" c) n-2 4
us = Clsc 2/6 - 1 [(n-—Z) ) (x -1 - CB(X - 1) (137)

In Equation (137) the system molecular parameters o,c and
n have been separated out; Cl’ C.’Z and C3 are reliably fixed constants.

For the data set Ui =My Equation (4) may be used to produce the

set u'i- X, and least-squares techniques may then be used to fix n

for given values of ¢ and € ("one-parameter fit" = 1PF). By the same
token, these same methods can be used to (a) fix n and o for a

given value of € ("two-parameter fit" = 2PF); (b) fix n and € for a

given value of 0 (2PF); or (¢) fix n, 0 and € , none being given
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("three-parameter fit'" = 3PF). It is clear that such a progression
is equivalent to "increasing the number of adjustable parameters' in
the theory. Confidende in the physical reality of the model is pro-
portionally decreased.

However this may be, the 2PF's were carried out in every
instance to provide cross-confirmation of the lPF*, while the 3PF was
computed to provide a measure of the best fit possible for the func-
tional form being considered, i.e., Equation (137). As confirmed in
almost all cases, the 3PF was found to be essentially insensitive to
n ; a large range of values of n fit the data equally»well with
different sets of ¢ and ¢ . The general approach is summarized in
Table 10.

For a given data set.'ui--xi the residuals Ri for Equation

(137) may be expressed:.
. -6 n
& {nfay> 2 9 )

159 (/6 = D as2) (am3)

2 -2 4
R, =pf = C (xril ~ 1= Colz, = 1)1

i
(138)

Of interest are the equations:

me——m——= (139)

—————== (140)

%
That is, if the 2PF's reproduced the assumed values of ¢ and €, and
gave the minima at the same n as the 1PF, the latter would be

additionally confirmed.
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Table 10

FITTING OF DATA--LIQUIDS

Parameter Fit Fix Seeking
1 g,€ n
2 € O,n
2 (o] €,n
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5 T RZ
P
oA

= D (141)

which suffice to determine the values of 0, € and n which minimize
the sum of the squares of the residuals according to the principle of -

(15)

least=-squares Thé derivations and resultant relations for the
~1PF, 2PF's and 3PF are shown in Appendix X.

Because an equation as complex as the implicit relation defin-
ing the desired value of n (Appendix X, Equation (X7)) might have many
roots, the one of interest (i.e., the one thaﬁ minimizes residuals)
might be difficult to locate. For this reason it was decided to index
through the entire range of n desired, incrementing by 0.1 at each
step. For each value of n the corresponding values of ¢ and ¢

for each of the 1PF, 2PF's and 3PF can easily be found (Appendix X).

Also, for each value of n the sum-of-the-squares of the residuals:

2 n-6 _n
e 2 2 6 ey ® [ @ G -
L= g Ry = g{“i = G189 (afe - 1)[ D@3y Fi - D
2
4
- C3(xi - l)} } (142)

was found. Of'course, the value of n sought is that which gives the
minimum in L .

In order to assess the quality of the "fit" for any substance
and to compare the relative quality from one material to another, two

parameters were computed. The first is related to the '"standard error

n(127)

of estimate defined as the root-mean-square of -the resi-

S 9 0
o2
duals (deviations) in U~ , or:
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s, = [IR/m = Vil (143)

where i=1,2,°**,m ; m is the number of data points. This accounts
for variations in the amount of data for the different substances but
does not account for the fact that the range of My might be numeri-

: ®
cally higher for some substances than for others . This was accounted

for by finding the mean-square of U :

=
1

) uﬁ/m (144)
i

and dividing this into S 95 " The resultant parameter, called the

u
"error of the fit" €', is then:

. 3
2t B suz/u (145)

Clearly ¢' is a quantity that can be used to compare the results of
one substance to another and gives an overall measure of the quality
of the fit for the particular set of data. It fails, however, to
account for the fact that €' might be large in a given instance
because of a large spread in the data. To account for this effect, a

second parameter, called the "figure of merit" f was defined by:

- min U min
£ = = =

% Su2 / u2 VL/m

2
€ ° . / ’ Lmin/m Lmin
= (146)
L
where the subscript "min'" refers to the '"best'" fit possible with the
given function, Equation (137). As previously mentioned, this (Lmin)
is taken from the results of the 3PF. The parameter £ gives an

indication of how well the given solution compares to the "best' the

*For argon My varies from 0.8 to 3.6x 107 cm/sec, while for Hg the
range is from 0.6 to 1.0 X102 cm/sec.
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theory can do considering the particular set of data. The main dif-
ficulty in the use of £ is that it is independent of m (see
Equation (146)). Consequently, for substances for which m is small
(say 2 or 3), Lmin << L and f = 0 , although L 1is certainly small
enough to be considered reasonable. This occurs when the 3PF almost
exactly goes through the 2 or 3 points for a given substance, while
the 1PF comes reasonably close to the points*. In these cases the
value of £ 1is ignored.

An examination of Equation (135) shows that as x o 5
U > 0 since the two terms in square brackets each - 0 . However, it
is also clear that, if the (xa— 1) term is ever greater than the
respective (xn—z- 1) term, another root must exist for some value of
x > 1 . In this instance uz < 0 for values of x Dbetween 1 and
X (the value at the root**) and | is imaginary (and therefore

- B
meaningless) in this region (see Figure 28) .« The function should

*In general a "good" value of L = 1018 to 1020cm4/seck. 1If Lminz 1012
to 1015cm4/sec4, because the 3PF is almost exact, it is clear
that £ = 10™3 to 1078, '

*ae x=XR, u=0 and from Equation (17):

u 0o _,

'UO = lim U = lim > i
u-—->0 u—>01—§ L =

%R

This is the case mentioned earlier, i.e., the limit expressed in Equa-

tion (17) and thus Equation (100) does not occur. Clearly the theory
does not extrapolate to a realistic U, in this case. It should be
noted that even if Xp=1, the extrapolation may not yield a finite

value of U, . In fact, generally, Uy > = .

Kk
It is interesting to note that for 0<n<3, u2>>0 for all x > 1

and therefore that there is no second root (i.e., XR_=1)' Equation
(135) (or Equation (95)) thus "exists" for all n>0 except for n=3
where there is a singularity and for all x<ZXR (XR>-1) when n>3 .
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A

X =|

Figure 28. Roots of ,1.12 vVsS. X

\
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be "cut-off" for x gfva.

An analysis of the coefficients in Equation (135) (see
Appendix Y) shows that, for all but three conditions for two of the
liquids considered, such an additional root exists, although in some
instances it lies close to x = 1 . The root was determined for each
.value of n , for each of the fits, using a Newton-Raphson iterative

scheme. The resultant recursion relation developed is (Appendix Z):

n-2_ B, x4, B _
XRi - XR1+ G- D
X =% = (147)
R, R. N3 5 B3
i+l i (n—Z)XRi 4<G)XRi

where 0 and B are given by Equations (97) and (98). These give,

after rearrangement:

3 l _
12 M ) /3/O]n6

(n=2) (o=3) [(Zsp .
(o]

B/o = (148)

To facilitate the computational procedures all of the pertinent
equations were programmed for use on an IBM 360/75 digital computer
using FORTRAN IV language. For liquids the main program was called
PUFI* in which the input data were m, M, po, 0, €, s and the shock
data 'Ui—“i' . Using Equation (4), a preliminary calculation estab-
lished the data set My Xy Following this, the following set of
computations were performed for each value of n from 6.1 to 15.1 in
increments of 0.1 . TFor each of the‘lPF, 2PF's and 3PF, Equations
(147) and (148) were used to determine X_. . For the 2PF's and the

R

3PF the appropriate values of ¢ and € were computed from

%
A listing is available from the author on request.
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Equations (X17), (X20), (X34) and (X36) in Appendix X. The input o
and € and these values were used in Equation (X7), Appendix X (to
help determine the roots of this implicit relation for n*5 and in
Equation (142) to determine L for all the fits. To help visualize
the minimum of L a line plot of L vs. n was found in each case.

After this, n was again incremented in the same way and a set
of values of r =~ were calculated (Equation (70)) for each value of d
for each fit. This was followed by (a) the WF calculation of the dif-
ference in the two sides of Equatién (105) and the value of UO from
Equation (104) and (b) the MF calculation of U, from Equation (107).
This set was reﬁeated for each of the 1PF, 2PF's and 3PF . The.last
calculation was the coﬁputation of the MF value of ¢ given by Equa-
tion (106)**a

Because the choice of the increment in n (0.l) was arbitrary,
another program called PUSC*** was prepared which was identical to
PUFI in all respects except that n was incremented in steps of
0.0l****. The range of n was left variable but the number of incre-
ments (i.e., 90 as in PUFI) was held the same.

After evaluating the results of PUFI for each substance (which

includes determination of €' and f which were not included in PUFI)

*A root in the relation is indicated when, for successive values of
n, the sign of the computed value of Equation (X7), Appendix X,
changes from + to - or from - to + .

**This computation depends only on n and is the same for the 1PF,
2PF's and 3PF.

%%k .
"Available from the author on request.

kkkk
In a later section it is shown that the need for PUSC is limited at

best, 9€¥/9n is shown to be small for such small increments in n .
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the best values of n , 0 and € for each fit were found. Using
these values, a set of x, U and U data was tabulated, using
Equation (135) and Equation (4). From this tabulation, line plots of
Uvs. U and u vs. x were superimposed on the corresponding U-pv |
and u-x data to "see" how well the theory fits the data. To
visualize the potential, ¢(r) vs. r was tabulated and plotted for

. *
each fit from Equation (69) using a program called PUMP .

*
Available from the author on request.



-129-

3. Results

In order to check the computer program PUFI, a series of pre-
liminary calculations were performed on the same group of substances

(90,42,100,64,60) A

and same set of data* previoﬁsly published
tabulation of the results is shown in Table 11 in which only the 1PF
was included. The valués of n that give the best fit in each case
are (essentially) the same as those reported(l6). In the current study
a separate computation was made for each of the two initial states for
argon. The two values of n compare favorably (within 4%) with each
other and the single value that would fit both data sets well would be
n < 8.5 . This agrees with the single value of n wused for argon in
Reference 16. |

Generally speaking, the values of €' and f in Table 11 indi-
cate excellent fits. This was borne out by using the results in Table
11 in the PUMP program to produce U-M and UW-x plots for each

material. These essentially reproduced the results in Reference 16

(Figures 6-16) where excellent fitting of the data was obtained.

After completion of the preliminary computations PUFI was
applied to all of the liquids shown in Table 4. Because there are

four fits for each run and a number of runs for each material (since
there are various parameter sets for each; see Tables 7 and 9), a
large set of computed results was obtained. Instead of detailing all

these results in this document the major features of the computations

*
Additional data for N_, CCl, and C,H, were used in the current study.

2’ 4 66
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will be described for a single substance and the remaining materials
appropriately summarized. Argon was chosen as the "test' material.
It is the substance of ﬁost interest because (a) there are shock data
available at four different initial states (if the theory is valid it
should give the same value of n for any initial state for the same
substance), (b) it is monatomic and is therefore spherically symmetric
(which is, in effect, assumed throughout the development of the model;
see Figures 4-9), and (c) the pair potential has been investigated
extensively and is probably better knmown than for any other material

(the 0,e sets used are probably close to the "true" physical values).

The 5 0, pairs for argon in Table 7, along with the appro-
priate input data (Appendix S), were used in PUFI to determine the
"best" fit of the theory to the data in each case. The results are

shown in Table 12.

For each O, pair in Table 12, comparing results for the 1PF,

2PF's and 3PF, it is cléar that €' and £ should correspondingly
decrease and increase for this progression because the number of

%
adjustable parameters increases (see Table 10) . This general condi-

tion serves as a self-consistency check on the fitting equations

= ;
The two 2PF's both have two adjustable parameters and either might
give a better "fit". The particular order seen in Table 12 is not

significant.
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(Appendix X). The condition is met for the results in Table 12,

%
although the magnitude of the changes in €' and f are small .

The relative usefulness of the 1PF, 2PF's and 3PF was inves-
tigated by examination of the L vs. n plots. The results were typi-
cal of almost all substances studied; the 1PF curve was very steep in
the region of the minimum, the 2PF curves both had distinct minima but
were much less steep than the 1PF, and the 3PF curve was nearly

Kk Sk
flat ° . This means that, for 1PF's a distinct value of n can

be considered as the 'best" value without ambiguity. For 2PF's this
must be modified in that any of a range of values of n will give
equally "good" fits. For 3PF's almost any valye of n (within the "flat"
range) will give an equally "good" fit. For the 1PF, L changed sig-
nificantly as n passed through the "best" fit (e.g., at n = 9.2 |

for the set € = 3.28R, €/k = 138.2°K). TFor the 2PF's, L remained

*
Argon is an exception in this case. Significantly larger differ-

ences occur for other substances.

%k " .
A sudden rise in L for =n > 10.5 was a computer derived numerical

artifact. Actually this portion of the curve does not exist because
0 in Equation (X34) in Appendix X depends on the root of a negative
number, for these values of n . The computer simply converts the
negative quantity to a positive one and continues the computation.
This sudden rise in L for the 3PF is typical and occurs for nearly

all substances.

*%k
For some materials the portion before the sudden rise in L is

"very" flat; 1 varying < 1/2% in this region.
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the same (within 1/2%) for the ranges n = 9.0 to 9.6 and n = 9.3 to
9.7 respectively and varied very slowly even outside this range. For
the 3PF, L changed very little over the whole range of n., although
for this particular example,not less than the second 2PF. Because of
this behavior it was concluded that a critical test of the theory would
be accomplished only if 1PF values were considered. The 2PF's and 3PF
simply have too much latitude in the choice of n .

In some instances the 2PF's gave results very close to the 1PF.
This was considered significant in that it strongly supports the value
of n found in the 1PF; the data are '"uniquely" satisfied by the
theory with the-given parameter set ¢, € and n . The 2PF's were
considered useful in this context only; when agreement did occur this
was noted in. the 1PF results.

An excellent example of the agreement of the 2PF's with the 1PF
is shown in Table 12 for the set o = 3.28R, €/k = 138.2°K . The best
values of n were 9.2, 9.3 and 9.5 for the 1PF and 2PF's respectively.
Further, the best values of 0 and &/k for the 2PF's, 3.26R and
118.80K, agree closely with the particular 1PF input values above.
This kind of agreement for argon is notable. It does not occur for
most substances. In fact, examination of Table 12 shows that this
agreement is not nearly as good even for argon with other parameter
sets.

The 3PF was used only to determine Lmin for the computation of
f for the 1PF.

An examination of Table 12 shows that in all cases the predic-

tion of CO(= Uo) in the WF solution is much superior to that in the
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MF solution*. "The value of O determined from the "condition",
Equation (106), is in all cases higher than the 0 values from

Table 7. This "unredlistically'" high value makes U, too high in
Equation (107). On the other hand, if the (lower) values of ¢ in
Table 7 are used directly in Equation (104), reasonably good values
of Uo result. In this instance the error in not satisfying the
"condition'" is measured by the residual (RE in Table 12) defined by
Equation (105). The failure to meet this condition with mathematical
exactness is accepted as a limitation of the model and/or potential

L k%
in the low pressure region .

' values of O that are too

Because the MF solution ' "forces'
high, only the WF solution was considered for the remainder of the
study.

The steepness of the L vs. n for the 1IPF led to a determina-
tion of the value in using PUSC where n is incremented in values of
0.01 (instead of 0.1 as in PUFI)***. From the PUFI output, the
change in €' and f with n for values near the minimum in L can
be estimated. This is done in Table 13. The effect of the uncer-
tainty in the W, =X data (1-5%) plus that in 0 (1-3%)and € (5-20%)
is expected to lead to an uncertainty in L of up to 20%, since

172

L ui (see Equation (142)). However, since €'V 1L (Equations

%
This conclusion applies to all of the liquids studied.
*k
Of course, a number of assumptions of the model (e.g., a "thin"
transition region) may not hold as U -+ Uo :
Fekk ,

Since this curve is as steep for argon as any of the other liquids

the conclusions drawn here are considered conservative.
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Table 13

VALUE IN USING PUSC

Data from Appendix S

Substance: Argon
p,:  1.405 g/cc
o: 3.28R
e/k:  138.2°k
u?‘: 0.504 x 10 L em? /sec2
L . : < 1.55E21 cm4/sec4
min
n L cm4/sec4 g £ An Ae' Af
9.1 1.65E21 0.185 <0.969
+ 0.1 -0.003 +0.028
9.2 1.59E21 0.182 <0.987
+ 0.1 +0.015 -0.077

9.3 1.87E21 0.197 <0.910
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1/2 (Equation (146)) the propagated uncer-

(143)-(145)jand £ L
tainty should be "~ 10%. For values of ¢e'= 0.2 and f = 1.0 the
uncertainties Ac' and Af would be v0.02 -and V0.1 respec-
tively. These are sufficiently larger than the corresponding values
in Table 13 to lead to the conclusion that PUSC is not necessary. The
effect of a change in n of 0.1 on €' and f is less than the
inherent variability in the computation of €' and £ .

A careful examination of the U-u plots (and of Figures 7, 8,
11, 12 and 14 of Reference 16) showed in most cases that, as Y ~ 0 4
U >drops very rapidly. In fact, in these cases U > 0 . This is con-
sistent with the existence of the spurious root of Equation (135) at
XR > 1 *. For those cases in which XR =1 (i.e., no spurious root)
U > oo o as U > 0 . This is required by Equation (100) when the
"condition", Equation (101),is not exactly met. This difficulty is
further aggravated by. the following consideration. .After computation

of U for a given x from Equation (137), U dis computed from

Equation (4):

U = ‘_—H—I (4)
;-1 .
x

As x + 1 and therefore u - 0 , Equation (4) becomes numerically

unstable in that either the numerator or denominator approaches the

*
It was shown previously that, in this instance, U = 0 .
o

% .
When there is no spurious root and n > 6 (see Table 14), it can be

shown from Equation (100) that only the + sign obtains.
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limit faster. 1In the former case U =~ 0 , in the latter U - -+ *.
When U = 4+ the U-U curve exhibits a minimum at some small value
of 1y ; an example of this type of behavior has been previously
observed(lZS).

The instability in the use of Equation (100) is accentuated**
by the fact that, unless the value of 0 specified in the MF solu-
tion is used (Equation (106)), U and x do not approach O and 1
respectively in Equation (137) at the rate necessary for U = U0 in
Equation (4). That is to say, the numerical instability in the
extrapolation aggravates the theoretical instability in the WF solution.

For argon or for any other liquid, no solutions near n = 6
were found. Equations (115)-(121) were, consequently, not used.

For some liquids the data selection process discussed pre-
viously was decided by comparison of the €' and f wvalues with and
without the '"questionable" data. This was usually sufficient to make
a decision.

Examination of the 1PF sin Table 12 shows that the last param-
eter set g = 3.28A, ¢/k = 138.2°K gives the best results*** (minimum
¢' and maximum f) aithough just barely. In fact all the 1PF's are so

close it is difficult to distinguish between them; in light of the

previously estimated 10% uncertainty in &' and £ , the maximum

*Note that this behavior is a numerical artifact. Even if the theory
extrapolated to UO exactly (i.e., the condition in Equation (101) was
met), small errors in the values of u and x would eventually cause
the same result.

sk "
In some instances the effects tend to counteract each other.

Kk i w(74)
It is notable that these are the latest (Table 7) and '"best

values of ¢ and ¢ .
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variations in €' and £ (Vv 0.1% and v 1% respectively) are very
small. However, because there is no reason not to take the best fit,
the indicated parameter pair was chosen. The significance of this
choice shows up in the WF determination of UO . For the chosen pair
this value is within 27 of CO , while for the others the error varies
from 5-17% *. These changes in ¢', £ and Uo occur for changes of
5% and 38% in o and ¢€/k respectively. Clearly, €' and f are
weak functions of 0 and (especially) €/k while Uo is a strong
function of (especially) ¢ and ¢e/k .

Based on this analysis of argon in Table 12, only the 1PF, WF
solutions for PUFI need be considered for the other liquids. Accord-
ingly, PUFI was run for all the materials in Table 7 and where a choice
existed the "best" parameter pair was chosen. Because of the Ty cor-
relation previously discussed (see Equation (134)), another set of
independently determined €/k values exists (Table 9). The © values
of the "best" pairs in Table 7 were combined with these values** and
PUFI was run for these valueé. The overall results appear in Table 14.

The values of €' and £ show that all the fits are excellent

with the exception of ethyl ether and perhaps water. The theory fits -

the available data closely for adjustments in only one parameter, n .

* -
Argon is exceptional here in that Uo is generally not as close to

CO for most other liquids (see Table 14).

Kok
Except for A-II and Hg.
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Based on €' and f a choice between ¢€/k determined from
the literature (L) or from the melting point correlation (C) is dif-
ficult. Except for mercury and water the change from L to C
results in changes in €' and f that are within the estimated 10%
uncertainty in the determination of €' and f . Furthermore, no
trends are apparent (i.e., the change from L to C does not always
raise or lower €' or £). -That the large changes in €/k do not
greatly affect €' and £ supports the previous conclusion that the
latter are weak functions of the former.

An examination of the sound velocity predictions (UO) in
Table 14 shows that the correlated values of e/k tend to yield an
values closer to Co ‘giving a preference to this set. However, it
should be noted that both L and C consistently give UO > Co "
except for argon, mercury and water. For L , Uo is, on the average,
307 greater than Co s for C the figure is 20%. This occurs even
though 0 is lower than the value required By the MF solution (Equa-
tion (106) and the fact that RE < 0 , Equation (105)) and €' is
(generally) lowered by the e/k correlation*; both of these effects
tend to lower UO (see Equation (104)). 1It'is clear that Uo is not
lowered sufficiently. It is interesting to note that since UO o« 03
(Equation (104)), a 20% reduction in U, would be effected b§ only
a 6% reduction in O . However, no (physical) justification for such

a reduction is apparent.

Note that in going from L to C , n generally increases. This
should lead to a decrease in O for the MF solution which, in turn,
leads to an increased negative value of RE . This effect is seen

in Table 14.



~143-

Using the results for the correlated values, it is desirable to
choose a single ("common') value of n for argon and determine how
well that value fits all the argon states. To do this, the results in
Table 14 for argon were weighted by the number of points in each state
as shown in Table.15. From the resultant "common" value (9.2) the
fits for A, A-II, A-III and A-IV were re—evaluated. The resultant
values of €' and f , also shown in Table 15, do not indicate as good
a fit as the corresponding data in Table 14*. However, the fits are
reasonable as demonstrated by Figures 29 and 30, where the theory with
the common value of n 1is compared to the data for all four argon
states.

To generally demonstrate the excellent fits in Table 14 for
all the other liquids, the theory with the listed values of n (for

the C results) is compared to the data, in Figures 31-34.

*
As indeed they should not, since the set in Table 14 represents the

"best" fits.
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C. METALS

Inasmuch as metals have been described as "ions in a bath of

n{37,17%,29,129}

electrons , it would be expected that the net inter-

molecular forces would differ from those of insulators such as were

considered in the last section. This is evidenced by the long-range

oscillatory (LRO) behavior of metals predicted theoretically(l30’24’l7f

27,30,73) and deduced from experiment(zs). Nevertheless, a number of

(131,76,118)

treatments either do not consider LRO behavior or find the

{27 ,30)

oscillations to be of much lower amplitude and/or at much

(30) (25,26,28,75,75,81,199)

larger distances than is generally implied

Furthermore, the differences between the potentials with and without

(75)

LRO behavior need not be large , especially in the repulsive region
which is, of‘course, where most of the shock data considered in this
study lie.

On this basis the n~6 potential, Equation (65) or Equation
(69) without LRO behavior was used in applying the theory to metals.
This 1s done without apology* although it is recognized that this
choice, at best, only represents an effective (ion-ion) potential that
is a reasonable approximation to the true state of affairs.

Use of the same potential function as in the case of liquids
leads to consideration of the WF or MF solutions as before. Further,

this approach leads to concern over the parameter pair preferred among

(o,€), (G,ro), (O,Cab), etc. for describing the potential.

%
It is not clear that any other potential function would give better
results, although an investigation of Equations (63) and (64) in

this role are recommended in a later section.
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1. Method of Approach’

Values of O, r, and € for a number of metals have been

(76,25) as well as from

(26,

deduced from an analysis of X-ray measurements

several analytical methods including molecular dynamics techniques

31) (24.,27,132,73)

, model pseudo-potential calculations , and lattice

(30)

dynamic calculations . In addition, Fontana

(118)

predicted values
of Cab for the alkali metals using the theory of angular momentum.
The available data of interest are compiled in Table 16. Note that
data only exist for 7 of the 23 metals considered in this study.

The data in Table l6_show variations in 0 of from* 0-14%
(average = 7%) and in &/k of from* 21-487% (average = 37%)! Since
the theory is approximately proportional to 06 and € (see Equa-

2 could be v (1.07)% (1.37) = 2.0.

tion (95)) the propagated error in U
The associated error in Y would be Vv 407%.

The implication is that, unless one or the other of the sets
of data is shown to be superior**, the choice of a'preferred parameter

pair may be academic. There is no way to pick the best numerical

values.

%
This did not include Reference 27 which "appears'" to give somewhat
unusual values of ¢ and € . Inclusion of this data would amplify

- the conclusions reached.

Fek ;
No such preference is immediately obvious from an examination of the

methods used in developing the data in Table 16.
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In Table 16 it may be noted that, as opposed to the case of
liquids (?able 7)s r data are available. Examination of Equation
(70) shows that these values along with 0 fix n for the potential
being considered. The results of preliminary computations of this
type are‘shown in Table 17. The values of n in column 5 satisfy
the set of parameters O and r o That is, for the given values of
n , Equation (72) goes through 0 ‘and has a minimum at ro*. This
minimum is not necessarily of depth € . From Equation (132) it is
clear that for this set (n, 0 and ro) the long-range attfactive

behavior Ca and well-depth € are directly proportional to each

b
other, neither being fixed.

In line with the wide range of values of 0 and r, o, a wide
range of values of n results**. As before, the question is: Are
any of the values consistent with the shock data? This was tested by
applying PUFI using the available 0, data (Table 16 and columns 2
and 6 of Table 17). The results, shown in column 7, indicated that in
all but two casés n < 6.1 and that there is no general agreement with
the values in column 5; Potential agreement only occurs for those
instances for Na and K where n < 6 (in column 5). However, in_

Fokk

every case the fits were from poor to very poor (i.e., €' large,

f small) for n = 6.1 , implying that the minima are not near n = 6 .

*

In opposition to satisfying ¢ and Ca (as was the case for

b
liquids) this pair is more desirable in that both ¢ and r  are

more nearly on the "repulsive" side of the potential.

%k
It is notable that for Na and K some of the parameter pairs lead

to n < 6 . This is discussed in a later section.

kkk - . .
Even for Pb where minima in L are found, the resultant fits are

generally poor.
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To test this, the WF solution for n = 6 (Equations (115)-(119))

was used in another computer program (called UNFI*) which parallels
PUFI in essentiallylall respects except that there are one zero param-
eter fit (OPf), two 1PF's and one ZPF in this case**. Application of
UNFI to selected cases gave poor fits in all cases except for Pb***
for the OPF (column 8, Table 17)****. This confirmed the notion thét
the minima of PUFI were considerably < 6 .

As in the case of liquids, values of Cab’ 0 and € fix n
through Equation (132). Using the data in Table 16, n was computed
for the alkali metals. The fesults, shown in columns 11 and 14 of
Table 17, satisfy the particular Pab’ 0O, € parameter set indicated.
Although the variation in n for each substance is reduced consider-
ably***** the results must ultimately be compared to the shock data.
This was done in a less restricted way than previously by using the

BEE R

*
2PF with Ca fixed (see Appendix U ; the program was called FIFI ),

b

and finding both n and ¢ . The results are shown in columns 15 and

%
Available from the author on request.

%%k
The recursion relation (equivalent to Equation (147)) for the spurious

root of Equation (115) at x= Xx is shown in Note 1 of Appendix Z.

The condition for existence of the root was indicated in Appendix Y.

EE
The fits in this case. were fair as would be expected from the values

of n determined by PUFI (column 7, Table 17).

**%* 'he OPF in UNFI corresponds to the 1PF in PUFI.

*****The adjusted values of Cab.(column 14) do not greatly affect n .

Kook .
Available from the author on request.
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16 of Table 17. Except for some of the values for Na, the differences
in n (compared to column 14) and O (compared to column 2) are large.
Substitution of these values into Equation (132) along with the values
of Cab from column 9 gives the values of €/k shown in column 17.
Comparison within the "actual" values (column 6) shows that, except for
Rb, large differences exist.

From these results it is clear that, as in the case of liquids,
satisfaction of Cab’ 0 and € 1is not consistent with the shock data
even when the value of O in the latter case is not restricted. Because
of this, attempts to satisfy long-range attractive behavior (i.e., Cab)
were abandoned and the error in doing so was accepted as an inherent
limitation of the n-6 potential. As before, for strong compressive
states, the effect of this will be small since the attractive forces
will by comparison be émall.

The preliminary calculations show that (a) the o , ro data are
internally inconsistent and give values of n not consistent with the
0,e set and the shock data, (b) consideration should be given to
n <6 , (c) satisfying long-range attractive behavior (Cab), 0 and ¢
simultaneously improves internal consistency but does not improve the
agreement with the shock data and (d) ignoring long-range attractive
behavior may not introduce large errors. Considering these and noting

that, in any case 0, data are available for only 7 metalsh (of 23

being considered), it was concluded that although 0,e is probably the

Cab data are only available for 4 metals.
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preferred pair the best numerical values to use are unknown.

For liquids, a simple correlation of €/k with melting points
was found following Chapman(126)(see Equation (134))., Since the original’
paper(126> dealt with liquid.metals, it would appear that such a cor-
relation should also hold for present purposes, thus giving a reason-
ably consistent physical basis for (at least) one molecular parameter
for each material*. As there is no reason why the correlation pre-
viously established in Equation (134) is not as accurate as any other,
it was used to generate the data set in Table 18. TFor Al, Pb and the
alkali metals, these are compared to the corresponding values from
Table 16. It is notable that the correlated values fall generally
within the range of the "reported" values**.

This correlation was tested using a modification of the PUFI pro-
gram described earlier. This program, called PUFF***, differed only in

. Kdedk
that the index n ran from 3.1 to 12.1 instead of from 6.1 to 15.1 5

‘ EETTTS
This was done to investigate values of n < 6 as previously

* As previously indicated 0,e data are available only for 7 metals.

*%
For Na and K the correlated values 559.9°K and 507.1°K fall very

close to those reported by Ling(76), 563.6°K and 517.2°K.

Fokk s
Available from the author on request.

kkkd
Equation (147) was again used to determine the spurious root of

Equation (135). The condition for the existence of the root for
3 <n< 6 was indicated in Appendix Y.

Fkekk
Although the potential function exists for all n > 0, examination

of Equation (97) and Equation (96) shows a singularity at n = 3.
Furthermore, Equation (105) for the WF solution and Equations (106)
and (107) for the MF solution all have roots of negative numbers for
n < 3. For these reasons only values of n > 3 were considered in
PUFF. (Actually, as previously noted, Equation (96) (or Equation
(95)) "exists" for 0 < m < 3 and values in this region could have
been considered. Although this proved to be unnecessary for the WF
and MF solutions (see Table 19) this was not the case for the SF
solution discussed in the following sections.)
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Table 18

e/k vs. TM CORRELATION--METALS

From Table 16

" o - S’
Substance Structure Tﬁ-c Ta = e/k="K e/k-°K

Cu fec 1083.0 1356.1  2038.0

Ag 960.8 1233.9  1855.0

Au 1063.0 1336.1  2008.0

Co 1495.0 1768.1  2656.0

Ni 1455.0 1728.1  2596.0

Pd 1549.4 1822.5  2738.0

Pt 1773.5 2046.6  3074.0

Al 659.7 9932.8  1403.0  733.3-1198.0
Ca 842.0 1115.1  1678.0

Pb 327.4  600.5 904.8  877.2-1188.2
Li bee 186.0  459.1 692.7  392.7-2052.0
Na 97.5 370.6 559.9  271.6-599.0
K 62.3  335.4 507.1  320.0-580.2
Rb 38.5 311.6 471.4  241.7-408.4
Cs 28.5  301.6 456.4  236.7-707.8
v 1710.0 1983.1  2979.0

Nb 2500.0 2773.1  4164.0

Ta 2996.0 3269.1  4908.0

cr 1890.0 2163.1  3249.0

Mo 2620.0 2893.1  4344.0

W 3370.0 3643.1  5469.0

Zr 1857.0 2130.1  3199.0

Ba | 725.0 998.1  1501.0
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suggested. Because an independent evaluation of G was not available,
only the 2PF (with € fixed) was considered with PUFF (see Table 10).
The results are shown in Table 19.

As indicated by the preliminary calculations, solutions do
exist for n < 6 -(seé column 3). Comparison of the corresponding
values of €' and £ (columns 13 and 14) with those determined in
Table 14 shows that the.fits are generally adequate, although not
excellent; the low values of f dindicate that the solutions are not
equal to the '"best" the theory can do.

For fcc metals the values of ¢ from the 2PF (column 5,

Table 19) appear to be reasonable; for Al and Pb they generally agree
with the available data in Table 16. The corresponding WF solution
gives values of Uo in good agreement with CO in all but one case
(calcium). The differences range from 0.27% (copper) to 13.4% (cobalt),
the average being 6.37%. These are clearly superior to the MF solu-
tions which consistently give values of U0 that are too high.

On the other hand, for becc metals, the values of ¢ given by
the 2PF are low at least for the alkali metals (see Table 16), and the
WF solution gives low values of UO . Although the MF solution gives
high values of 'Uo for fhe alkali metals, it gives values in very good
agreement with Co for the remaining materials excepting barium. The
differences range from 6.82 (chromium) to 10.1% (tungsten) with an
average of 3.6%.

These results are <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>