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ABSTRACT 

A shock model is developed that leads to an analytical expres-

sion for the Hugoniot of condensed media. In the analysis the final 

state is selected to coincide with the end of the shock transition so 

that the total energy' change across the shock front is evaluated from 

changes in conf igurational energy only using an n-6 pair potential 

(shown to be valid for all n > 0) and a given lattice structure. 

Thennal energy changes are ignored because the dwell time of the mole-

cules in the shock transition region is less than the thennal relaxa-

tion time. The total energy change is equated to the Hugoniot energy 

change in the Rankine-Hugoniot conservation relations. This together 

with the assumption of linear compression across the shock transition 

gives the desired expression for the Hugoniot. 

In the 11weak f onn" (WF) solution the Hugoniot depends on mole­

cular (atomic) weight . M and initial density p
0 

as well as the 

collision diameter cr , depth of the potential well € and repulsive 

exponent n of the pair potential. Extrapolation of this solution, 

under certain conditions, yields an expression for the sound velocity 

U dependent on M , t: and n . In the "strong fonn" (SF) solution 
0 

the Hugoniot depends only on U and n . 
0 

The shock data for 13 liquids and 23 metals are compiled and a 

selection process used to eliminate poor data and data affected by 

phase transitions. Using cr from the literature and t: from a melt-

ing point correlation, the WF solution Hugoniot is applied to the 
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liquids and the "best" values of n determined using numerical fit-

ting techniques. Excellent fits are obtained with values of n from 

6.2 to 11.7. A common value of 9.2 is found to fit the shock data for 

argon at four different initial states. Failure of the theory is 

noted only for (di-)ethyl ether and water. The results are generally 

concluded to support the validity of the shock model. Values of n 

for argon, mercury an<l nitrogen compare favorably with value s reported 

in the literature. The WF solution does not yield accurate values of 

u 
0 

The SF solution is expanded in a Taylor series to eliminate 

singularities and applied to the shock data for 10 f cc and 13 bee 

metals and the "best" values of n determined. For the fee metals 

excellent fits are found for values of n from 4.0 to 6.3. Based on 

the "pseudo-atom" conceptj it is concluded that metals have "softer" 

potentials than liquids. The results for the fee metals are concluded 

to generally support the validity of the shock model. For the bee 

metals excellent fits ate found for n = O .1 to 4 ~ 6 and it is concluded 

that bee metals are "softer" than f cc metals. Since cr is "not . 

def inedn for all n < 3 it is speculated that the Hugoniot might not 

be "well definedn in these cases. The theory is found to be not 

applicable to Cs and Ba. The values of n found for Cu, Al and Pb 

agree well with values in the literature. The n for metals are found 
.. 

to roughly correlate with the Gruneisen coefficient y . 

The major assumption of the theoryj that the transition region 

is "sufficiently thin~" is analyzed and found to be reasonable . The 
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mean number of molecular layers in the transition region is ~ 7 and 

the mean residence time ~ 2 x l0-12sec. In addition the n-6 potential 

is judged to be adequate for the present study. 

The SF solution Hugoniot is shown to be compatible with the 

classic linear U-µ relation (U = A + Bu) when x-1 << 1 . Values of 

the slope B from experimental data are found to agree closely with 

the derived relation .B ~ (n + 5)/6 for the corresponding metals. 

Reconunendations for further studies with liquids, fee and bee metals 

are made, including an ~valuation of an expl~cit expression generally 

relating the pair potential to the shock data. 

In several subsidiary studies a new method of computing tem­

peratures along the Hugoniot is found, two statistical approaches to 

the definition of "nearest neighbor distance1' and its use as a measure 

of liquid structure are developed and the effect of phase transitions 

on .the shock model is determined. 
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1. INTRODUCTION 

One of the fundamental properties of interest in the study 

of shock wave phenomena is the shock Hugoniot, i.e., the locus of 

states attainable by propagation of a shock wave through the medium 

of interest. If an explicit thermodynamic equation-of-state is avail­

able for the given material, the Hugoniot can be determined by simul­

taneous solution of this equation with the Rankine-Hugoniot relations 

which express conservation of mass, momentum and energy across the 

shock front. 

Since there is no completely satisfactory quantitative 

equation-of-state for conden~ed media, these materials are generally 

treated empirically, semi-empirically or numerically (i.e., statisti­

cally); explicit functional equations for the Hugoniot are not 

generally found. 

The primary objective of this study is to derive a relation 

which circumvents the problem of choosing a macroscopic equation-of­

state and leads to an analytical expression for the Hugoniot . This 

is done by developing a model of the shock transition process and 

evaluating the energy change across the (finite) shock front from 

configurational and structural considerations, without recourse to 

the final equilibrium state. 

The secondary objective of the study is to apply the 

derived Hugoniot to available experimental data .for several liquids 

and metals to help determine the validity of the theory. This is done 
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using standard (numerical) fitting techniques. 

An additional objective is to determine if the "classic" 

linear shock/particle veloc~ty relationship can be derived from the 

developed theory. 

This study differs from ·the large body of work on shock 

waves in that the thermodynamics of the shock transition is not 

required in the development and an analytical expression for the 

Hugoniot is sought. This somewhat different view of the nature of 

shock waves in condensed media is, in effect, evaluated in the course 

of the study. 
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II. THEORY 

A. CONSERVATION RELATIONS 

1. Definition of Shock Properties 

Consider a one-dimensional shock wave propagating at velocity 

U through a stationary medium of density p
0 

as pictured in Figure 

1. Behind the disturbance, which for present purposes may be consi-

dered "infinitely thin", the material is accelerated to velocity µ 

(the 19 particle" velocity) and compressed to density p • The other 

state parameters are the temperature, shock pressure and internal 

energy which rise from the initial state 
";~ 

T ,P ,E 
0 0 0 

to T, P and E * 

In defining these properties it has been assumed that a state 

of equilibrium exists both before and after passage of the "discon-

tinuity 11
• In this case, the variables p, P, T and E represent true 

thermodyn~mic properties and should be found on the general equation-

of-state surface of the medium in question. 

The particle velocity µ represents the gross (bulk) motion 

of the medium necessary for producing a shock. On the other hand, 

U ~ the shock propagational velocity, describes the motion of a geo-

metrical "line" (the discontinuity) in space and does not imply the 

motion of a mass. Neither U or µ can be considered "thermodynamic" 

variables although both~ through the conservation relations~ are 

intimately involved with all the others. 

* E and E have the units of energy per unit mass. 
0 
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E 

p 

~ u 
p 

T 

u = SHOCK VELOCITY 

µ = PARTICLE VELOCITY 

p = PRESSURE 

T = TEMPERATURE 

p = DENSITY 

E = INTERNAL ENERGY 

SUBSCRIPT o = 11
INITIAL

11 
STATE 

Figure 1¥ One-Dimensional Shock Propagating into a Stationary Medium 
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2. Conservation Equations-Per Unit Area/Unit Time 

Consider a unit square in the plane of the shock in Figure 1 

travelling with the wave at velocity U as pictured in Figure 2. If 

we choose this as our coordinate system, the relations for conserva­

* tion of mass, momentum and energy flux may be easily deduced from the 

fact that mass is flowing towards the unit area at velocity U and 

density p
0 

and leaving at velocity <u-µ) at density p • 

* 

ao Conservation of mass flux: 

p U = p(U-µ) 
0 

b. Conservation of momentum flux: 

(p U)U + P = [p(U-µ)](U-µ) + P 
0 0 

c. Conservation of energy flux: 

l(p U)U2 +UP. +Up E = l[p(U-µ)] (U-µ)
2 

2 0 0 0 0 2 

+ (U-µ)P + (U-µ)pE 

(1) 

(2) 

(3) 

Laboratory coordinates, where the unit area is fixed in space, may . 

also be used to derive the conservation relations. 



-6-

E 

Po 

p 

T 

UNIT SQUARE 

Figure. 2. Coordinate System 
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3. Conservation Relations 

Equations (1) - (3) may be combined and rearranged (Appendix A) 

to give the more familiar expressions: 

or: 

~E 

u 

p - p 
0 

µ 
1- p /p 

0 

p Uµ 
0 

P c--1:.. - l.) + l. µz 
0 p p 2 

0 

(Mass) 

(Mass + Momentum) 

(Mass + Momentum + Energy) 

(Mass + Momentum + Energy) 

Equations (4) - (6) are known as the Rankine-Hugoniot (R-H) 

(4) 

(5) 

(6) 

(7) 

relations, the first two of which were first derived in 1870 by 

Rankine(l) ~ The correct form of the energy equation was first derived 

by Hugoniot(Z) in 1889. Equation (7) is an alternate form of Equation 

(6) and is used in the following development. 

It may be noted that the temperature T does not appear expli-

citly in any of Equatioll:s (1) - (7). The changes in thermal energy 

across the shock wave ar.e accounted for in the internal energy change 

~E • From the basic laws governing thermodynamic systems it can be 

shown that (Appendix B): 

(8) 

where V = l/p 



-8-

Division by CVdV and rearrangement gives: 

dT [ (3P/3T)V .J + . T 
dV Cv 

[dE + P] 
dV 

(9) 

If the coefficient of T is nearly constant(3) and the right-

hand-side is a function of V only, this is an ordinary differential 

equation in T the solution of which is: 

b (V -V) v 
T T 

0 + e-bV I bV [dE + P] dV (10) = e e 
0 dV 

v 
0 

where T is the initial temperature and b = [ (OP ~:T) v J 
0 
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4. Specific Objective 

Equations (4), (5) and (7) contain the 5 unknowns u , µ , p , 

p and 6E • Assigning a thermodynamic equation-of-state for the 

material under consideration: 

E f(P,p) (11) 

provides a fourth relation in the same variables. Elimination of any 

three variables among these equations leads to a unique relation 

among the remaining pair~ When this is in the form: 

p f (p) (12) 

it is called the "Hugoniot curve"(4)or "Hugoniot". However, since any 

pair of variables (excluding T) can be transformed to any other pair 

from the conservation · relations, we shall use the term "Hugoniot" to 

ref er to any of such pairs developeda 

Unfortunately, for condensed media (dense gases, liquids and 

solids), the Hugoniot cannot be found directly because there is no 

satisfactory quantitative equation of state available for these sub­

stances. They are, generally, treated empirically, although a number 

of attempts have been made to solve the problem theoretically(s-9). 

Since the Hugoniot represents a "cut" on the equation-of-state 

surface of the medium, it is clear that in the derivation of Equations 

(1) - (12) thermodynamic equilibrium prevails. This is further empha­

sized by the assumption that (a) either the shock front is a 

"discontinuity" and therefore infinitely thin, or (b) the measurements 

of P, p, T and E are made sufficiently far from the front that such 
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an equilibrium state obtains. 

The specific objective of this study is to use a simple model 

to derive a relation which circumvents the need for a macroscopic · 

equation-of-state, and leads to an analytical expression for the 

Hugoni ot . Thi s i s done without r ecourse to t he equilibrium state and 

the applicability of Equ,ations (1) - (7) must be shown under these cir-

cumstances. 
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5. U vs. µ Linearity and Mass Conservation 

An empirical solution to the determination of the Hugoniot is 

expressed experimentally in the well established relation between U 

and µ in the form: 

u A+ Bµ (13) 

Here A represents the limiting shock velocity (U) in the medium 
0 

when the shock wave is infinitely weak (i.e., when µ = O). Although 
')"( 

Equation (13) seems to be generally valid , it was noted by Duvall and 

Fowles(lO) and Alder(ll) that no satisfactory theoretical explanation 

of this relation has been given. 

Part of the o~jective of this investigation is to determine if 

the proposed theory can explain the form of Equation (13). However, 

before doing this it is instructive to examine Equation (4), the con-

servation of mass flux, more closely: 

u 
µ 

= 
1- p /p 

0 

µ µ 

1 
1 

(14) = 
1 - [l/(p/p )] 

0 
x 

where x = p/p e It is. seen immediately that U and µ should be 
0 

linearly related when µ is sufficiently high. That is, as µ 

increases, U increases and thus P increases (see Equation (5)). This 

leads to an increase in x . Therefore as µ increases, the denominator 

* A number of exceptions to Equation (13) exist. In some cases a quad-

ratic fit (i.e., U =A+ Bµ + cµ 2) has been found to better express 

the experimental U-µ datae In others, a generalized power series 

or other equations are used to fit the data. 
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of Equation (14) eventually approaches a limiting value where further 

changes in µ yield only very small changes in x and 1 - l/x ~ 

constant. The linearity of , U and µ in these circumstances 'is 

apparent. This behavior is in accordance with Equation (13) only 

when Bµ » A . 

If radiation effects are neglected Zel'dovichand Raizer suggest 

the maximum compression ratio x (for P + 00) is ~ 4 (12) 

In this case x ~ 4 max ~ 
1 - l/x ~ 3/4 max and: 

u ~ 1.33µ 

Correspondence with Equation (13) (when Bµ >> A) 

B ~ 1. 33 

* implies that : 

which is reasonably close to values reported for a number of sub­

stances (lO). 

(15) 

(16) 

It appears that ·there is some theoretical justification for 

the form of Equation (13) based solely on conservation of mass flux 

considerations, at least in the limit of very high pressures. It is 

interesting that this justification does not allow for higher order 

(quadratic and above) terms in µ 

* 
This result was pointed out by Alder(ll) 0 
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6. Extrapolation to U0 

A further requirement of Equation (13) is that 
'V • 

A (= U ) should 
0 

be equal to the sound velocity 
.. ~ 

C of the medium • 
0 

From fits of many 

materials using this relation it has been shown that this approximation 

is valid to within rv 1.5% (at least for metals(l3)), although systema­

tic discrepancies have been found(l 4). 

Another.objective of this study is to determine if the pro-

posed theory can adequately describe the Hugoniot in the neighborhood 

of c 
0 

Again some insight can be gained by further examination of 

Equation (14)9 Since x + 1 (since p + p ) as µ + 0 , it is clear 
0 

that: 

u 
0 

lim U 
µ + 0 

lim 
µ + 0 1 

µ 
1 
x 

~ 0 
0 

(17) 

a clearly indeterminate form. Application of L'Ho~pital's rule(lS) 

gives (Appendix C): 

u lim 
dµ (18) 

0 x + 1 
dx 

Therefore it is clear that, if the quantity dµ/dx is finite at 

x = 1 ~ the behavior of Equations (13) and (14) are in accordance with 

each other 9 

*since an infinitely weak shock wave is a sound wave( 4) U = C and 
0 0 

the two notations can be used interchangeably. However, in this study 

U
0 

is used to represent the extrapolated value of U (i.e., 

in the theory while C is used for sound velocity data. 
0 

lim U) 
µ + 0 
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Part of the U-µ behavior in Equation (13) can be explained 

simply by examination of mass flux conservation. However, Equation 

(13) cannot be considered a true analytical representation of U vs. µ 

but only a convenient empirical form, since Equation (14) is clearly 

nonlinear between µ = 0 and the sufficiently large value of µ 

that makes it linear. 

In order to derive theoretically the form of the U-µ rela­

tion for comparison with Equation (13), it is necessary to develop a 

model for a shock wave. 
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B. DEVELOPMENT OF SHOCK MODEL 

From Equation (7) the energy change across the shock front is 

given by: 

Lrn = p (-1- - l) + l µ2 
0 p p 2 

0 

(7) 

Since the only states considered in this study are those which consi-

der relatively strong shocks and/or sonic conditions, it may be 

assumed that (Appendix D): 

l µ2 » p (-1- - l) 
2 o p

0 
p 

so that Equation (7) becomes: 

Lrn 
1 2 -µ 
2 

(19) 

(20) 

In combination with Equations (14) and (20) an independent expression 

for the internal energy change as a function of x would yield the 

Hugoniot. 

1. "Receding" Shock 

The model for a shock wave used in this study was inspired by 

the classic drawing shown in the first printing of Reference 4 and is 

reproduced in Figure 3. This "recedingtv shock may be visualized as 

* depicted in Figure 4 ~ Here a microscopic view of the followi~g 

process is depicted. A long slug of material of density p
0 

and 

characteristic spacing z has impacted a perfectly rigid wall at 
0 

*The current edition( 4) discusses models of this type on pp. 129-130. 
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[R Figure 3 eproduced . . . Receding Sh with permission f ock Wave--Skier 
rom Courant a s nd Friedr· h . J.C s, 1948.] 
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velocity v1 • The material compresses to density p and charac-

teristic spacing z(z < z ) 
0 

and a disturbance, measured at the last 

fully compacted layer, proceeds upward at vel?city v2 (in laboratory 

coordinates). The molecules decelerate in the "thin" shock transition 

region indicated in Figure 4 and come to rest in the compressed region. 

It is noteworthy that, in this picture, it is assumed that the mole-

cules compress linearly in the direction of motion (i.e., no trans-

verse motion) at least throughout the transition region. 
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z. Transformation Equivalence Conditions 

The model in Figure 4 can be made identical to the shock 

propagating in Figure 1 by making the physical conditions the same. 

For the conditions in Figure 1 the material ahead of the shock is not 

in motion. This is duplicated in Figure 4 if an observer is consi-

dered moving along with the original slug at v
1 

Q In this case the· 

velocity at which the disturbance propagates towards this observer 

should be the shock velocity U • From Figure 4 this is given by: 

u = (21) 

For this same observer the velocity of the particles behind the front 

in Figure 1 is µ and from Figure 4: 

µ = (22) 

Simultaneous solution of this with Equation (21) gives: 

u - µ (23) 

Equations (22) and (23) are the transformation relations between the 

shocks depicted in Figures 1 and 4. It is clear that if the initial 

slug velocity v1 is chosen equal to µ the two shocks are equivalent 

in all respects and are thus completely interchangeable. As a conse-

quence the change in internal energy across the shock transition is 

still given by Equation (20). 

Subsequent analyses may now be made in terms of the model in 

Figure 4 (with v = µ, v = U-µ) l 2 without loss of generality. 
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3. Energy Partitioning-Relaxation Effects 

In developing the model, we wish to consider the change in 

internal energy of a molecule initially in layer L (a state far 
0 

removed from the shock front) in Figure 4 (shaded circle) as it passes 

to the final state chosen as the first layer in the compressed zone 

and denoted by L
1 

(see Figure 4). It remains to be shown that if 

such a change is determined, (a) it is related to the 6E in Equation 

(20), and (b) it and the other R-H relations (Equations (4) - (7)) are 

valid for changes between layers L 
0 

It is assumed that the transition region is sufficiently thin 

that the molecules at L
1 

have not yet had time to relax to thermal 

equilibrium, and thus have had no net motion other than in the direc-

tion of the (one-dimensional) shock (i.e., linear compression). Under 

this assumption all of the energy change associated with the shock 

transition is accounted for by consideration of the difference in 

the configurational e~ergy only, in the two .states. This means that, 

at least for the change being considered, there is no temperature 

change across the shock front because the dwell time of the molecules 

in the transition zone is less than the thermal relaxation time (the 

pressure rise precedes the temperature rise!). 

Since all of the internal energy change is accounted for 

between 1
0 

and L
1 

, it is clear that the proposed change is identi­

cal to 6E (per .molecule) in Equation (20). Further, if mass, 

momentum and energy flux conservation is computed between layers L 
0 

and it is found that Equations (1)- (3) are (necessarily) repro-

ducede Thus it is claimed that the particular method proposed for 
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evaluation of the energy change across a shock front is generally in 

accord with the R-H relations, Equations (4) - (7) (although not with 

Equations (8) - (10) which assume thermal equilibrium). That the 

change is only conf igurational depends on the validity of the assump-

tion of a sufficiently thin transition region. 

We are not concerned here with relaxation phenomena beyond L
1 

and with how 6E is partitioned into thermal and potential energy in 

the eventual equilibrium state. The choice of the positions of L 
0 

and L
1 

and the assumption of "thinnessn of the transition zone 

allows a state (albeit a transient, non-equilibrium one) from which a 

sufficient evaluation of 6E can be made. 

This argument, fundamental to the propose.cl. model, may be seen 

more clearly by considering the change 6E as the sum of all changes 

taking place from L (the initial equilibrium state far removed from 
0 

the shock front) to L1 and from L1 to the equilibrium state. 

6E 

Each of these has a thermal and configurational part, and: 

6E(l) = 6E(l) + 6E(l) 
thermal conf igurational 

6E( 2) 6E( 2) + 6E( 2) 
thermal conf igurational 

Because the transition zone is assumed "thin": · 

6E(l) 
thermal 

and Equation (25) becomes: 

0 

(24) 

(25) 

(26) 

(27) 
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llE(l) llE (l) 
conf igurational 

(28) 

Also, since there are no pressure/density changes taking place 

between L
1 

and the equilibrium state and the process is adiabatic 

(i.e., no radiative, magnetic, etc. processes occurring): 

which implies that: 

llE ( 2) 

~E(2) 
thermal 

0 (29) 

~E(2) (30) 
conf igurational 

The observed temperature rise in the equilibrium state is due 

solely to a decrease in the abnormally high conf igurational energy 

existing at L1 . as the "fluid" compressed in one dimension redistri­

butes itself (i.e., relaxes) in three dimensions. The partition of 

energy between the thermal and conf igurational portions in the 

equilibrium state depends on the structure of the relaxed fiuid. This 

reasoning, together with Equation (30) and the subsequent developments, 

is suggestive of a new way to compute temperatures along the Hugoniot 

(Appendix E). 

Substitution of Equations (28) and (29) into Equation (24) 

leads to: 

llE llE (l) 
conf igurati?nal 

(31) 

which will now be considered. 
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4. Energy Eguation 

The conf igurational ~nergy difference required in Equation 

(31) may be computed by again considering the shaded molecule in 

Figure 4. The molecule in each of the states L
0 

and L1 interacts 

with each of the other molecules of the system according to some, as 

yet unspecified, inte~molecular potential function ¢ at the time 

the particular state exists. When these effects are integrated over 

all space, the total configurational energy for that state is 

obtained. Denoting this total energy by <I> Equation (31) becomes: 

Lrn = LlE (l) 
conf igurational 

(32) 

where the superscripts refer to layers in Figure 4 and the coeff i-

cient (N is Avogadro vs number and M is the molecular weight) 

reflects the fact that ~E is in the units of energy/mass, while <I> 

will be considered in units of energy/molecule. Each of the poten-

tials in Equation (32) may be further broken down into component 

parts by consideration of Figures Sa and Sb where the separate effect 
Lo Ll 

of each of the several regions in Figure 4 on <I> and <I> is 

showno 
L L L L 

I F · 5 fl\ 
0 

fl\ 
0 

fl\ 
0 and fl\ 

0 
• 1 n igure a ~1 ~ ~2 , ~3 ~4 represent, respective y, 

L 
the separate contributions of conf igurational energy to <I> 

0 of 

material above L , material below L but above the transition region, 
0 0 

material in the transition region and material below L
1 

• Similar 

Ll Ll Ll Ll 
definitions apply to <I>1 , <I>

2 
, <I>

3 
and <I>

4 
in Figure Sb. The 

di.stances R and R' reflect the fact that certain of the regions 
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are not adjacent to the molecule under consideration. Of course R 

and R' are the same in Figures Sa and Sb, which are "snapshots" in 

the progress of the shaded molecule taken at different times. 

Clearly then, by the principle of superposition: 

1 1 1 1 1 
¢ 0 = ¢ o + ¢ o + ¢ o(R') + ¢

4
o(R) 

1 2 3 

Considering Figure Sa, if R' (and R) are large (i.e., 

(33) 

(34) 

1 is 
0 

far removed from the shock front as previously assumed) then it is 

clear that: 

0 (35) 

L 
f\.J 

¢ o (R') = 0 
3 

(36) 

and: 

1 
f\.J 

1 
<P 0 = <P 0 

1 2 
(37) 

leading to: 

L 
'V 

1 
<P 0 = 2<P 0 

2 
(38) 

By the token, i . Figure Sb: same ·in 
I 

L 
<Pll(R) 

'V 
0 = (39) 

and: 

(40) 
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If it is now assllliled that (R-R') is very small (on the order 
Ll 

of a few molecular spacings) and/or that the effects of @
3 

on the 

molecule at L
1 

are not substantially different from those that 

would obtain if all the material in the transition region were at 

density P then: 
0 ' 

L 
:::::: ¢ 0 

1 
(41) 

That is, given the above assumption(s), the material above the mole-

cule in L
1 

is identical to that above the molecule in L 
0 

the net 

·configurational contribution will be the same in both cases. Substi-

tution of Equation (41) into Equation (40) gives: 

Ll 'V 
L Ll 

¢ = ¢ 0 + ¢4 1 
(42) 

Noting Eq~ation (37) this may be written: 

Ll 'V 
L Ll 

¢ = ¢ 0 + ¢4 2 
(43) 

Substitution of Equations (43) and (38) into Equation (32) 

gives: 

DiE = 
L L 

N [¢ 1 _ ¢ o J 
M 4 2 

(44) 

The chain of r~asoning leading to Equation (44) may be sum- · 

marized by reference to Figure 4, noting that(l6) "the molecule in 

L0 'sees' above it a medium of density p
0 

and characteristic spac-

ing z 
0 

this is also true of the molecule in L
1 

, except for the 

material in the shock transition region. However, if this region is 

sufficiently thin, its effect on the configurational energy may be 
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ignored. In this case, the contributions to the configurational 

integral for material above 1 
0 

and 1
1 

are the same, and will can-

eel in the difference. The determination of llE , therefore, requires 

only an evaluation of the configurationalenergy of all material below 

the molecule at 1
1 

minus that below the molecule at L 
0 

Since 

again, 1 is far removed from the shock front, we . may take this dif­
o 

ference as" ·in Equation (44). 

Because of the way in which the states 1 
0 

are 

picked, the errors in Equations (35), (36), and (39) can be made as 

small as desired by choosing R as large as needed, and the error in 

Equation (44) depends s~lely on the error in the assumptions leading 

to Equation (41). 

The terms in Equation (44) are more usefully defined by: 

11 
= \jJ(p,z) + ~ (z ) 

0 
. (45) 

1 
<P 0 

2 

1 
0 

\jJ(p ,z ) + l/J (z ) 
0 0 0 

where ~(p,z) is the configurational energy of a single isolated 

molecule positioned a distance z from a semi-infinite medium of 
1

1 
1 

(46) 

d · d ,,, ( ) ,,, 0 (z ) h f · · 1 ensity p ~ an ~ z
0 

, ~ 
0 

are t e con igurationa energy 

contributions of the other molecules in layers 1
1 

tively. Since these molecules remain at spacing z 
0 

and 1 , respec-
o . 

throughout the 

transition (see Figure 4, noting the earlier assumption of linear 

compression): 

1 
\jJ o (z ) 

.o 
= (47) 
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and the terms will cancel in Equation (44), which now becomes: 

N 
~E = M [~(p,z) - ~(po,zo)] (48) 

Based on the definitions of 
L1 L 

W · and W 0 and the sub-

sequent development, it should be clear that the ~(p,R) are com-

puted by summation of the interactions between the shaded molecule 

and each of the molecules in the half-space indicated in Figure 6. 

When this interaction is described by an intermolecular 

potential function ¢ , and this potential is assumed to be 

dependent only on the distance separating molecules 

* is a pair potential ) 

~(p,z) 

¢ = ¢(r.) and:(l7,18) 
1. 

cp(r.) ' 
1. 

r. > z 
1. -

r. (i.e., ¢ 
1. 

(49) 

where Nh is the number of molecules in the half-space and i is 

the index for counting each of the Nh interactions; on a per unit 

volume basis it is clear that Nh ~ p v 

Evaluation of Equation (49) is made difficult by. the fact 

that values for the r. are generally unknown since the structure 
1. 

depicted in Figure 6 is unrealistic (other than for perfect crystals). 

Furthermore, even if the :ri were known at any instant of time, they 

** would be changing continuously because of molecular fluctuations 

* 
** 

We ignore three-body (and higher) interactionsv 

Even for solids with a reasonably rigid lattice structure, vibra-

tional motion around the fixed position would result in variations 

in the r. • For liquids, of course, molecular mobility is great 
1. 

and large variations in the r. are expected. 
1. 
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Variations in molecular positions imply that r. = r.(t) 
l l 

and that ~ = ~(t) • To avoid this difficulty Nh is usually chosen 

23 large enough (on the order of 10 ; a mole) so that the sum of the . 

variations will be essentially constant in time. However, this still 

leaves the difficulty of assigning a set of positions to the molecules 

for evaluation of the summation and adds the further difficulty of 

requiring a very large number of calculations. Equation (49) is, 

instead, evaluated from statistical mechanics. 
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5. Integration of Pair· Potential --

Consider a cartesian coordinate system (x' ,y' ,z') centered at 

the shaded mol€cule in Figure 6. The average number of molecules at 

a distance between x' ~y' ,z' and x'+ dx', y'+ dy', z'+ dz' from 

that molecule (in the half-space) is (pN/M) g(r) dx'dy'dz' where 

g (r) is the "pair distribution function" (PDF) (l7) or "radial dis­

tribution function" (RDF)(l9 ,ZO) defined as the probability of find-

ing a molecule at r (i.e., in the volume element dx'dy'dz') if 

there is a molecule at the origin (g(r) is nonnalized to unity at 

large r) and r is generally a function of ' * x', y' and z . The · 

average potential energy of interaction with the molecules in the 

volume element is (pN/M) g(r) ¢(r) dx'dy'dz' and integration over 

the half-space gives the total configurational energy (i.e., ljJ(p,z) 

in Equation (49)): 

00 00 00 

~(p,z) = I I I (pN/M) g(r) ~(r) dx'dy'dz' 

z'=z y'=O x'=O 

For convenience the z' axis has been chosen colinear with z , 

"downward" being positive (see Figure 6). Since p (and p ) 
0 

by definition, independent of x', y' and z' (they are the mean 

(SO) 

are, 

continuum densities for the ,media) the tenns of Equation (48) become: 

* 

ljJ(p,z) 

00 00 00 

(pN/M) I I I g(r,p,T)~(r) dx'dy'dz' 

z'=z y'=O x'=O 

(p N/M) 
0 

00 00 00 

I I I 
z'=z y'=O x'=O 

0 

g(r,p ,T )¢(r)dx'dy'dz' 
0 0 

Note that the PDF is state-dependent, i.e., g(r,p,T). 

(51) 

(52) 
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It is assumed that· the effect of g (r) on the two integrals 

is small and/or approximately the same (numerically) and will there-

fore be unimportant and/or cancel in the difference in Equation (48). 

The above become: 

00 00 00 

1JJ (p ;z) (pN/M) I f I ¢(r) dx'dy'dz' (53) 

z'=z y'=O x'=O 

00 00 00 

1JJ(po,zo) = (p N/M) I I I cp(r) dx'dy'dzv (54) 
0 

z'=z y'=O x'=O 
0 

Integration of Equations (53) and (54) and further development 

of Equation (48) require the specification of the pair-potential func-

tion cp(r) • 
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c. PAIR POTENTIAL FUNCTIONS 

That there are attractive (cohesive) forces between molecules 

is demonstrated by the fact that all molecules tend to aggregate at 

(21,22) low temperatures . There must also be repulsive forces between 

molecules (at least at short distances) or matter could not exist in 

1 
(21,22) 

the first p ace • These facts suggest formation of an inter-

molecular function of the form: 

¢repulsion - ¢attraction (55) 

(21 5) 
although an equation of this type appears to be somewhat arbitrary ' . 

The forces leading to ¢ are called short-range 
repul$ion 

forces because they dominate at short distances. They are also known 

as valence forces or chemical forces(S) because they "arise when 

molecules come close enough together for their electron clouds to 

overlap"(~)This description is the source of the additional name for 

¢ 
1 

, viz. , 
repu sion 

(21) overlap energy · 

The forces leading to ¢ . are called long-range(S) 
attraction 

forces because they predominate at long distances (compared to the 

short-range forces; at · very long ranges, of course, ¢ = 0 
repulsion 

¢ ) They are also called van der Waals forces(21,23). 
attraction · 

Rigorous treatments of repulsive forces are apparently very 

difficult to generalize and in most cases only particular pairs of 

molecules are studied( 5) ~ However, it is known that this overlap 

energy can asymptotically be represented by an equation of the form: 

<I> repulsion P (r) 
-a.r 

e (56) 
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~here a is a molecular parameter and P(r) is a polynomial in both 

(5,17,21-23) 
positive and negative powers of r Unfortunately, it 

turns out that when Equation (56) is reasonably accurate r is so 

large that ¢attraction >> ¢repulsion and little use can be made of 

the results. Because of this, empirical functional forms have been 

used for the repulsive energy. The two most widely used are: 

¢repulsion 
-n ar 

-ar 
¢repulsion = ae 

where a, n, a are molecular parameters. Forms of this type are 

(57) 

(58) 

chosen for purposes of simplifying calculations and it appears that 

"there is no compelling theoretical reason to prefer any (other) 

simple form(s) · • · .. "( 2l) ~ 

The long-range attractive forces are amenable to fairly 

rigorous quantum mechanical treatment and are of four types; electro-

static, induction, dispersion and resonance. These contributions all 

vary inversely as powers of intermolecular separation 
(5) 

r . A full 

discussion of each of these four types of attractive forces may be 

found in Reference (5). Generally the attractive energy is written 

in the form: 

¢attraction (59) 

where b, c and d are molecular parameters. In the simplest cases 

c = d = = 0 -6 leaving the most ·common form, br • 

It has been shown( 24- 26 ' 17 ' 27- 31) that for metals the long-

range energy has a decreasing oscillatory form and that regions of • 
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repulsion and attraction both exist. This is substantively different 

from Equation (59), which is typically applied to non-metals (insula-

tors), in that only attractive forces are involved in that case. This 

difference will be seen more clearly in the following paragraphs. 

Egelstaff (l7) has suggested that for metals the "attractive" energy 

might have the form: 

<t>attraction = 
-3 -Sr br e cos yr (60) 

where b, B and y are molecular parameters. 

Equations (57) - (60) may be combined in Equation (55) in four 

ways to give "general" expressions for the pair-potential function. In 

each case the dependent variable is the center-to-center molecular 

separation r and, clearly, ct> = cp(r) only. Thus Equation (55) 

becomes: 

(r) -n (br- 6 + cr-8 + d~-lO) · (61) ar 

(r) -ar (br-6 + cr-8 + dr-lO) (62) ae -

<f>(r) 
-n -3 -Sr (63) = ar br e cos yr 

cp(r) 
-ar -3 -Br (64) = ae - br e cos yr 

Many of the more commonly used potential functions may be 

derived from these equations by appropriate choice of the parameters 

a, b, n, a, B, y o The functional difference between those with 

(Equations (63) and (64)),'and without (Equations (61) and (62)) long-

range oscillatory (LRO) behavior is shown in Figure 7. 
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WITHOUT LR 0 

~"SHORT RANGE" - DOM I NANCE 
/ OF REPULSIVE FORCES 

o--r--~;--r-~~=========-~~~~~r-

~ 
\_"LONG RANGE" - DOMINANCE 

OF ATTRACTIVE FORCES 

WITH LRO 

~"SHORT RANGE" - DOM I NANCE 
/ . OF REPULSIVE FORCES . · 

P(r) 

0---+--~-4---'----,J--4----.f.~~~~~~~--

___ _./ 

""" 
40NG RANGE" 

OSCILLATORY BEHAVIOR - BOTH 
ATTRACTIVE AND REPULSIVE 
FORCES 

Figure 7e LRO Behavior 
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1: List of Suggested Potential Functions 

Table 1 is a partial list of the many pair-potential functions 

* suggested over the past 40 y~ars . Some of these can be derived from· 

Equations (61) - (64) with appropriate choice of the parameters. 

Number 23, the numerical potential·, has no analytical form but con-

sists of a data set of potential energy vs. distance which purports 

to best represent the actual pair-interaction. 

* Angle-dependent pair potential functions have been excluded, but for 

working purposes they are usually averaged over all orientations to 

yield an angle-independent form similar to those in Table 1. 
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2. Choice for Work 

In this study the only forms of interest were numbers 4 and 7 

in Table 1 which are immediately derivable from Equation (61) (in the 

former case c = 0 = d). 

This choice was made on the basis of simplicity, since no a 

priori judgments could be made on the success or failure of the shock 

model. It was felt that more "realistic" potential functions could 

not be justified until the reasonableness of the model itself was 

demonstrated. 

It was (and is) recognized ·that a single exponent n could 

not completely describe repulsion over a wide region( 64 ,s3) and that, 

1 f 1 h . . h b . 1. . (7S) at east or meta s, t e attractive term mig t e very unrea istic • 

However, since most of the data being dealt with in this study are 

concerned with strong shock waves, pressures are generally high, 

rvlO - 100 Kbar, and we should be operating far "up" in the repulsive 

region in Figure 7. Examination of all equations with an exponential 

repulsive term (Equations (62) and (64) and numbers 12-18 in Table 1) 

show that a (spurious) maximum must be reached with these functions at 

small r (since e -a.r =9 1 as r =9 O). In order to assure that suf f i-

cient repulsion exists (under shock compression) in these equations a 

and a would have to be adjusted arbitrarily to avoid this maximum. 

On the other hand the repulsive form chosen has the desirable property 

that r -n ~oo as r =9 0 for any value of n (called the "repulsive 

exponentu). 

Furthermore, it was felt that the attractive form was reason-

ably justified because: (a) at the pressures mentioned, repulsion is 
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expected to dominate (i.e., ¢ 1 . >> ¢ ) and (b) the · · repu sion attraction 

LRO behavior of metals is not found in every determination of . the 

potential function for these materials( 76
) and should not therefore 

b~ considered as firmly established; in other instances the computed . 

potentials show only slight LRO behavior(30). 

The potential chosen for most of the calculations in this 

study · is the .n-6 potential (Number 4 in Table 1): 

¢(r) 
-n = ar -6 br (65) 

The parameters · a and b may be specified in terms of molecular 

quantities by consideration of Figure 8. Here a is the so-called( 23 ' 

5 , 22) "collision diameter" determined from the condition: 

¢(a) 0 (66) 

The ttdepth of the potential well"(5) E: is determined noting that: 

is the minimum value of ¢(r) . From elementary calculus: 

0 (68) 

at this point. Use of Equations (66) - (68) with Equation (65) leads 

to the usual form of the n-6 potential (see Appendix F). 

¢(r) = £ 

and: 

(n/ 6)n/n-6 
n/6 - 1 

(69) 
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cp(r) 

+1 ro 

0 0 r 

-i 

Figure 8. n-6 Potential 
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1 
n-6 r = (n/6) cr 

0 

f (n) 

n 

= (n/6)n-6 
n/6 - 1 

Equation (69) can be written: 

(70) 

(71) 

(72) 

Equation (72) is the pair potential function to be used in Equations 

(53) and (54) for determination of the configurational energy of the 

shaded molecule in Figure 6. 
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3. Special Properties of the n-6 Potential 

a. The 6-6 potential. At first glance it would appear that 

Equation ( 69) is valid only for n > 6; cp ( r) should be zero for n = 6 • 

That this is not so may be demonstrated by carrying out the limiting 

·process, as in Appendix G. The resulting equation is: 

(73) 

where e = 2.71728 ••. the base of natural logarithms and the subscript 

6 indicates n = 6 . Equation (73) reproduces all of the features of 

Equation (69) as expressed by Equations (66) - (68); i.e., 
dcp6 

¢
6

(cr) = 0 , ¢
6
(r

0
) = -s , and (~d) = 0 (see Appendix G). The 

r r=r 
0 

significance of Equation (73) will be discussed in later sections, but 

it is important to recognize such a potential exists and that it is 

compatible with the more familiar form in Equation (69). 

b. The n < 6 potential. Consideration of n = 6 leads directly 

to the question; can n be < 6 ? Again, at first glance it would seem 

that for small r in Equation (69): 

(74) 

for n < 6 and the potential would be negative (i.e., attractive!). 

However, this sign change is corrected for by the coefficient 

(l/(n/6 - 1)) in Equation (69) such that cp(r) > 0 for every value of 

* n > 0 when r < a Therefore it appears that Equation (69) is also 

* If n < 0 the leading term of Equation (69) would have an +n 
r 

dependence and ¢(r) would increase at very large values of r • 
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valid for all values of n from 0 to 6. In fact, at n 0 it has . 

the fonn (Appendix H) : 

(75) 

which also is compatible with Equations (66)-(68) although in a 

"degenerate" form (Appendix H). 

As the repulsive exponent n decreas~s, the potential is said 

to become "softer" in that the repulsive part of the potential curve 

(see Figure 7) is not as steep as with larger values of n . 

A key question in the application of Equation (69) for n < 6 

is: Is the n < 6 potential monotonically softer for all values of 

n between 6 and O? Stated another way the question may be phrased as: 

Is Equation (69) monotonically "harder" for all values of n from 

. n= 0 to n = ~ ? 

These questions are important, since careful examination of 

Equation (69) shows tpat for n < 6 it would more properly be written: 

<P (r) (76) 

The roles of the repulsive and attractive terms in Equations (55) and 

(65) have been reversed; the attractive term now depends on the 
.. ~ 

exponent n . This is unrealistic and Equation (76) is considered not 

as the sum of attractive and repulsive tenns, but simply as an overall 

expression describing ~(r) vs . r . This viewpoint is not unreason-

able considering the somewhat arbitrary assumption of superposition of 

attractive and· repulsive tenns in Equation (55) to begin with . Since 

*rn particular the attractive term no longer has the r-6 dependence 
of insulators. 
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It is no longer obvious that as n decreases the repulsive term gets 

softer (because the repulsive term cannot be identified); it will 

suffice to show that as n decreases, ~(r) decreases in the repul-

sive region (i.e., where r <a). This question is examined in 

Appendix I, where it is proven that Equation (69) (or Equation (76)) 

is monotonically increasing with n ("harder") for all values of n 

from 0 to 00 for (a/r) > 1 8 

Based on this discussion it is clea~ that the n-6 potential 

exists for all values of n ~ 0 and that Equation (69) may be use~ in . 

all cases except when n = 6 in which case Equation (73) applies. 

To compare these functions oYer a range of values of n , Figure 

9 has been prepared in the form: 

f (a/r) (77) 

for each of several values of n • It is notable that the variation in 

the (appearance of the) potential with n , over the whole range of n, 

is not extraordinary! 
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+3 
¢ (r) 1.(a- n (a-)6 J · 
-€- = f (n} ~ T) - T , 

0 ~ n<6, n>6 

t2 
cp ~rl = 6 e ( 0,°)6 In ( ';), 

n=6 

cp(r) 
-€-+I 

0 2 3 

( ci) 

Figure 9. Pair Potential Function for Various Values of n 
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4. Integration for Use in Model 

When Equation (72) is substituted into Equations (53) and (54) 

* and the integrations carried out (Appendix J), the result is : 

· [ n 6 J 
lJJ(p,z) = 2TIE::(pN/M) f(n) (n-Z~(n-3 ) !-3 - ~ 

z 12z 
(78) 

1/J (po' zo) = 2TrE (p oN/M) f (n) [ (n-2)~n-3) z~-3 - 1~:3 ] (79) 

0 0 

The type of problem leading to these·results appear as a problem 

in a textbook by Hill(l9) where the Lennard-Jones (LJ) 12-6 potential 

was considered~ This result exactly matches that of Equation (78) 

when n :: 12 and -1/6 a = 2 r (r = r * in Reference (19)) 
0 

as in 
0 

Equation (70)e 

Substitution of Equations (78) and (79) into Equation (48) and 

rearrangement (Appendix J) gives: 

_ N 2 [ on _Q__ _ ~ _ 0
6 _e_ _ Po J 

6E - Zns(M) f(n) (n-2)(n-3) ( n-3 n-3) 12 ( 3 3) 
z z z z 

(80) 

0 0 

The goal of an independent expression for 6E as a function of 

x (:: p/p ) is almost realizedo It is only necessary to determine the 
0 

relation between z 
0 

ahd for the medium under consideration, and 

to specify the functio~ z vs. p . The former is a function of the 

* Since the integrals in Equations (53) and (54) are independent of n, 

the form of the result for n = 6 may be found either from substi­

tution of Equation (73) into this pair or by finding the limits as 

n ::.:;:.6 of Equations (78) and (79). This will be considered in a later 
section. 
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"structure" of the substance, while the latter is related to the way 

in which compression takes place. 
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D. STRUCTURE. 

Since this study deals with condensed media, only liquids and 

solids will be considered. 

1. Liquids 

Th f 1 . .d h 1 . (21,s,18,37,22, e structure o iqui s as a vast iterature 

19,77,17,78,79) d 1 h h . . . d . l'f• an , a t oug it is recognize as a gross oversimp. i l"'."' 

cation, it is assumed that the molecules in the uncompressed state are 

arranged in the form of a ~ace-centered-cubic (fee) lattice(S,p. 286). 

Such an assumption is useful in providing a simple "average" rela-

tionship between z 
0 

and 

development of Equation (80). 

that can be used in the general 

Although it is known that such a lattice is inaccurate (unreal-

istic) in detail (i.e., at the molecular level) it is not clear, 

a priori, that it is inaccurate on a macroscopic ("on the average") 

scale. 

Assuming an fee structure, the nearest neighbor distance is 

fixed geometrically and 'depends only on density: 

(81) 

(Appendix K). Two ways to view this assumption in the context of a 

more "realistic" physical situation are discussed in detail in 

Ap.pendix L. The first, called the "snapshot" approach, is similar to . 

a geometric theory of liquid structure suggested by Bernal(BO). The 

second, called the "probability" approach, considers the pair distri-

bution function (PDF) previously mentioned and uses elementary 

probability theory. In both cases, a way of computing a 
0 

is 



-52-

* presented for comparison with Equation (81). Agreement would tend 

to support the macroscopic "accuracy" of the fee assumption. 

Without numerical determinations of a from either the 
0 

"snapshot" or "probability" approaches, it is of interest to know the 

greater of a and r (or r*) . 
0 0 

Examination of Figure 8 indicates that near the minimum, the 

probability of a molecule being <r or> r is approximately the same 
0 0 

but as distances further removed from r 
0 

are considered, the situa-

tion changes. The repulsiv~ forces remain steep << r but the 
0 

attractive forces slacken off >> r 
0 

This means that nearest 

neighbors at large r are possible (if comparatively unlikely) while 

~~-/~ 
·nearest neighbors at small r are essentially impossible There-

fore in determining the mean nearest 

the ·curve will be 

the right) and it 

Since r 
0 

weighted to larger 

is expected that 

is greater than 

a > r > r* 
0 0 

a 

neighbor distance (over all r) 

values of r (i.e. , skewed to 

is greater than r 
0 0 

r* (Appendix M), we may write: 

(82) 

Equation (82) may be used as a bound check of the assumption of an 

fee lattice. That is, a from Equation (81) should be larger than 
0 

r for the substance of interest in order that Equation (82) not be 
0 

violatedo It is, of course, recognized that just because Equation 

* Calculations of the type suggested are extensive and are beyond the 

scope of this study. 

** The same reasoning and result obtains when Figure L-2 and r* are 

considered. 
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(82) is satisfied does not imply that the fee lattice assumption is 

verified. 

F 1 . 'd b f . . (58,37,81-83,54) or some iqui s a num er o investigators . 

have proposed a tetrahedral or "diamond"-like rather than an f cc 

lattice. In this instance it can be shown (Appendix K) that the 

nearest neighbor distance is given by: 

31/2 
a = 

0 2 
(M/p N)l/3 

0 
(83) 

rather than by Equation (81). In such instances the arguments pre-

viously developed for determination of a would be the same except 
0 

that comparison would now be made with Equation (83). 

If the assumed structure for liquids is judged "macroscopi-

cally accurate", and the expression for a 
0 

is accepted (Equations 

(81) or (83)), the desired relation between z 
0 

and can be 

simply determined since z and a are geometrically related. This 
0 0 

is shown in Appendix K with the results: 

zo = (M/2 poN)l/3 

z 
0 

(M/8 p N) 1/3 
0 

f cc lattice 

diamond lattice 

(84) 

(85) 
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2. Solids 

The structure of solids, compared to liquids, is accurately 

assessed on the basis of equilibrium lattice positions for each atom. 

Although there is vibrational motion about these lattice points, a 

macroscopic nearest neighbor distance is easily visualized and consi-

dered physically accurate. In this study fee and body-centered cubic 

(bee) solids only were considered and in all cases they were metals.· 

As shown in Appendix K for a bee lattice: 

a 
0 

z 
0 

(M/4 p N)l/3 
A 0 

The equivalent equations for an f cc metal lattice are given by 

Equations (81) and (84). 

(86) 

(87) 
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3. Generalization of Structure 

The results in Appendix K are compiled in Figure 10 for the 

three structures of interest; fee, bee and "diamond" lattices. Both 

a and z decrease with the structure sequence fee + bee + diamond 
0 0 

for equal density conditions. It is interesting that the coefficients 

for the relationship of interest (z vs. p ) can ~e correlated by the 
0 0 

equation: 

z 
0 

.· M 1/3 
(, s ) 
2 p N 

0 

where s is defined as a "structure" factor. * For Figure 13 : 

s 1 corresponds to an f cc lattice 

s = 2 corresponds to a bee lattice 

(88) 

(89) 

(90) 

s 3 corresponds to a "diamond" lattice (91) 

Equation (88) is the "simple" relation sought for use in the general 

development of Equation (80}. It applies to both liquids and solids 

although in the former case it is considered an "average" relationship 

that is only macroscopically accurate. 

With regard to liquids, Equation (88) implies a generalization 

of structure not discussed previouslyo That is, . for solids, discrete 

values of s (i.e., 0, 1, 2, etc.) are expected on physical grounds, 

since the proposed structures apparently exist at the molecular (atomic) 

level. However, for liquids, there is really no (a prior i) physical/ 

theoretical reason to pick a discrete value of s and specify an 

* s = 0 corresponds to a simple cubic lattice. 
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fee, bee or other lattice. Although this was done in the numerical 

part of this study, it is conceivable that s should be considered a 

continuous variable. This might further be consistent with results 

of the determination of a 
0 

by molecular dynamic 'and/or statistical 

schemes in that the resultant values might (probably?) not match one 

of the coefficients in Figu~e 10 exactly. 

With s a continuous variable, a range of structures are 

* available that may or may ~ot make sense . Therefore limits and 

·restrictions on s would have to be established and the meaning of 

the structures elucidated. This will not be done in the currertt work, 

but the concept might be of interest. 

* (a) What is halfway between f ec and bee, i.e., s = 1.5 ? 
(b) What is the meaning of s > 3 ? 

(c) Can s be <· 0 ? 
' 

etc. 
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E. SHOCK HUGONIOT 

To complete the ·development of Equation (80) only the reiation 

between z and p is needed. 

1. Linear Compression 

In the shock model being developed we are considering a one­

* dimensional shock wave and the molecules are assumed to compress 

linearly in the direction of motion as in Figure 4. If it is again 

assumed that the shock transition region is sufficiently thin, no 

transverse motion will occur (in the transition region) and the mole-

cules in the compressed region will (at least initially) be a 

"squashed-only-in-the-direction-of-motion" version of that in the 

uncompressed region as pictured in Figure 4. 

It is clear that, independent of structure, the density 

increase across the transition results from a simple sandwiching of 

the molecular layers. Therefore: 

z/z = P /p 
0 0 

(92) 

Upon relaxation of the structure after the shock transition, 

the molecules will redistribute themselves to yield a new equilibrium 

stateo The characteristic spacing between layers would concurrently 

change from the value given by Equation (92) to some equilibrium 

value z 
e 

Since p and z are constants and p is assumed not 
-0 0 

to change between L
1 

and the equilibrium state, it is clear that 

* Indeed, the Rankine-Hugoniot equations are derived only for motion 

l.
·n d. . (4,84,5,85,86,10,87,88,16) one ll1lension • 
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Equation (92) can be valid only before relaxation has taken place. 

For the previous assumption of a sufficiently thin transition region, 

the relation will be valid (at least) at 1
1 

. This is all that is 

required~ since z in Equation (80) is (in effect) defined as the 

characteristic spacing for molecules at 1
1 

. 

Therefore Equation (92) is the desired relation between z 

and p except for the elimination of 

Equation (88) with the result: 

z = 

z 
0 

This is done using 

(93) 
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2. General Expression 

The appropriate relationships have been developed in Equations 

(88) and (93) and they may each be substituted into Equation (80) for 

the final step in finding an independent expression for 6E as a 

function of x(= p/p ) • Carrying out the associated manipulations 
0 

(Appendix N) yields: 

06 2 p N 2 4 s J 
12 ( Mo ) (x - 1) (94) 

Equation (94) is a unique relation between the internal energy change 

across a shock and the compression ratio x . It contains a single 

thermodynamic parameter (p ) , three molecular parameters (0, E: and n) 
0 

one structural parameter (s), and one atomic property (M)s 

Combining Equation (94) with Equation (20) yields a general 

expression for the Hugoniot: 

s 
2 4 (N TIE:) 

£ <n> [ <n-2(cn-3) 
2 p N n/3 n-2 

µ =- ( 0 ) (x - 1) 
2s M M 

6 2sP
0
N 2 

4 l)] - a_ ( M ) (x - (95) 
12 

Using Equation (95) the Hugoniot may be expressed by any pair of shock 

)~ 
parameters noting 

* It is interesting that the classical form of the Hugoniot (i.e., Equa-
tion (12)) can be found from Equations (5), (14) and (95) in analyti­
cal form. The result is (assuming P >> P0 ): 

4Po NTIE: x an 2sPoN n/3 n-2 0 6 28PoN 2 
p = -;;:- (M) f (n)(x-1)( (n-2)(n-3) ( M ) (x -l) -12< M ) 

x (x
4-l)] 
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f (n) (n/6)n/n- 6~(n/6 - 1) (71) 

u µ I (1 - l/x) (14) 

and: 

p - p p Uµ (5) 
0 0 

Equation (95), whose properties are examined in the next sec-

tion, is the sought-after analytical expression for the Hugoniot. It 

was developed without recourse to a post-shock equilibrium state. 
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F. PROPERTIES OF THE DEVELOPED FUNCTION (EQUATION (95)) 

Having obtained the Hugoniot in general-analytical form, it is 

desirable to examine the resulting function for certain properties 

of interest. 

1. Extrapolation to Sound Velocity 

From Equation (95) the Hugoniot may be written in functional 

form as: 

µ 2 a(xn-Z - 1) - S(x4- 1) (96) 

where: 

s 
4 (NTIS) 0n (2 poN)n/3 

a =-;_; M f(n) (n-2)(n-3) M (97) 

s 
s 

4 N 
~6 2 p N 2 = _ ( TIS) f (n) v ( o ) 

2
s M 12 M (98) 

The limiting process towards sound velocity is described by Equation 

(18): 

u 
0 

and for Equation (95): 

dµ 
dx 

= 1. dµ 
~im d 

x -+ 1 x 

n-3 3 
l [(n-2)ax - 4Bx ] 
2 µ 

)~ 

Substitution in Equation (18) leads to : 

* Examination of Eq. (95) shows that, as expected: 

lim µ 0 
x ->- 1 

(18) 

(99) 



1 
U = -

2 
lim 

0 x -+ 1 
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n-3 3 
[(n-2)ax - 46x] 

µ 

* 

=> (n-2)a - 46 => ± 00 

0 

which diverges! The limit can exist if and only if: 

(n-2)a - 46 - 0 

In this case Equation (100) becomes: 

u = 
0 

1 
2 

lim 
n-3 3 [(n-2)a x - 4Sx ] 

x -+ 1 
µ 

=> 0 
0 

(100) 

(101) 

(102) 

which implies another application of L'H~spital's rule. This can be 

shown to result in the relation (Appendix 0): 

u~ = ~ [(n-2)(n-3)a - 126] (103) 

Clearly, Equation (103) must be considered in light of the condition 

expressed in Equation (101). However, we may first consider Equation 

(103) alonev Substitution . . for a and (3 gives, after manipulation: 

u2 
0 

= 2 (N7TE:) f (n) 

2
s M 

2
8 p N 28 N 2 13 6 p [ 0 n ( o ) n _ 0 ( o ) ] 
M M (104) 

which is an expression for u 
0 

dependent only on the molecular param-

eters o, € and n . 

The "condition", Equation (101) , can be writ ten, after su.bs ti tu-

tion for a and 6 and rearrangement: 

* For certain values of a and 6 , µ = 0 at x = ~ (~ > 1) o In this 

case the limiting process in Equation (17) is not valid and Equation 

(18) does not obtain. In fact, in this case 

cussed in a later sectiono 

u = 0 . 
0 

This is dis-
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2SNP n-6 
0 n-6 ( M o) 3 = (105) 

For given values of a and n the magnitude of the difference between 

the sides of Equation (105) describes the accuracy with which the re-

quired "condition" for Equation (104) is met. Equations (104) and 

(105) are treated in this manner in the "weak" form (WF) solution 

discussed in a later section. On the other hand, a rearrangement of 

Equation (105) shows that: 

(106) 

The "condition19 therefore requires that a be fixed in terms of n 

only. Substitution of this into Equation (104) yields: 

u2 = _2_ 
0 s 

3·2 

which is an expression for 

6 
(Nm:) (n-6) f (n) (n-3) n-6 

M 3 

u 
0 

dependent on~y on and 

(107) 

n • 

For a given value of n, a may be computed from Equation (106) 

(and compared to values from the literature). For this n and a given 

value of e:: , u2 may be computed from Equation (107). 
0 

This approach 

called the "medium" form (MF) solution is discussed further in a 

later section. 

Although it is ordinarily not considered so, the sound velocity 

c of a medium is certainly a valid 
0 

data point in the set of shock 

data available(l4). Since C (=U ) is usually known with consider-
0 0 

able accuracy compared to the other shock data, it seems reasonable to 

nforce0 the theory through this point. This suggests using Equation 
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(107) to eliminate s in Equation (95). When Equation (106) is used 

to eliminate cr also in Equation (95), the condition for Equation 

(107) is exactly satisfied, and the Hugoniot becomes (Appendix P): 

µ2 = U2(~2~)[xn-Z_ 1 _ x
4
- l] 

o n-6 n - 2 4 
(108) 

This is an expression for the Hugoniot which depends on only one 

thermodynamic (macroscopic) parameter (U ) and only one molecular 
0 --

(microscopic) parameter (n) . It is significant that not only were 

O and s eliminated in the substitution, but p , M and s were 
o. 

also . Clearly~ all this information is contained in u 
0 

Use of Equation (108) only, instead of Equations (95), (104) 

and (105), represents the "strong" form (SF) solution discussed in a 

later section. 



-66-

2. U vs. µ Linearity 

To detennine if Equation (13) has any theoretical basis, it 

is necessary to cast the Hugoniot (Equations (95), (96) or (108))in 

the form of U vs.µ • From Equation (14): 

x 

';~ 
and Equation (108) becomes : 

= 

( U )n-2 
2 = u2 (-2-) [--u_-:µ __ -_

1 

µ o n-6 n - 2 

u 
u - µ (109) 

(llO) 

There is no obvious way in which Equation (110) can be made to match . 

** the form of Equation (13) except (perhaps) by Taylor series expansion • 

Ano~her simple way to compare Equations (108) and (13) is to 

reverse the procedure and put the latter into the form of µ vs. x • 

From Equation (13): 

'V 
Bµ = U -A U - U 

0 

and by using Equation (14): 

'V µ Bµ = 1 - l/x u 
0 

which leads to: 

'V 
u 

x-1 0 

[x µ = u B(x-1)] 1 - B 0 

1 
1 
x 

* This form was chosen for convenience, since 
tion~ 

u 
0 

**rt is not app~rent how even this should be done. 

(lll) 

(112) 

(113) 

appears in the equa-
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Comparing this to Equation (108) shows that, for the fonns to be com­

patible [x _ ;C.;-l)] must be identified with (2/ (n-6) )
1

/
2 

n-2 4 
X [ x - 1 x - l] 1/ 2 Th h. . · d · 1 n- 2 4 at t is is so is not rea i y apparent, 

* although later analyses show that, indeed, this is the case . In this 

case it appears that the theory, as developed, does provide a satisfac-

tory theoretical explanation of Equation (13). Of course, the latter 

must be considered only a first approximation to a function (U vs. µ) 

which has "gentle" or little ** curvature That Equations (96) (or 

Equation (108)) and (14) reproduce this property and give a better 

approximation to the function is shown in later sections. 

* See Part IV, DISCUSSION AND CONCLUSIONS 

** As confirmed by plotting experimental U vs. µ data. 
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3. Effects as n ~ 6 

In a prior section it was shown that the n-6 potential has a 

finite limit as n ~ 6 , Equation (73). The same limiting process can 

* be applied to Equation (95) resulting in (Appendix Q): 

Paralleling the development in Equations (96) to (113), the following 

results are obtained (Appendix R): 

µ 2 
= a'x4 in. x + S'(x4- 1) (115) 

where: 

s . 

aw 2e (Nm;) 
6 2 PON 2 

=- 0 ( M ) 
28 M 

(116) 

s s 
2e (NTIS) 

6 2 PON 2 2 PON 1/3 7 
13' =- 0 ( M ) (in 0( M ) - 12) 

28 M 
(117) 

The WF solution is given by: 

s 
4 6 2 p N z 

U2 = ~(NTIS) 0 ( o ) 
o 

2
s _ M M 

(118) 

and the ncondition" by: 

* Of course, this result could be obtained directly by using Equation 

(73) instead of Equation (72) in the general development of Equation 

(95). 
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e (119) ' 

The MF solution is given by: 

cr = 1/3 e (M/2s N)l/3 Po (120) 

and: 

u2 4e3 
(Nm:) = 

0 2s M (121) 

The SF solution is given by: 

µ2 l U2[x 4 tn x 1 4 = - - (x - 1)] 2 0 4 (122) 

To detennine if Equations (114), (115) or (122) provide a 

basis for the fonn of Equation (13), it can easily be shown that 

x-1 
2
-1/2 [x4 on x _ x 

4

4
-l] 1/2 [ ] must be identified with N x - B (x-1) 

* As before~ the correspondence can be demonstrated and the Hugoniot 

with n = 6 supports the prior conclusion. 

* See Part IV. DISCUSSION AND CONCLUSIONS 
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III. APPLICATION OF THEORY 

A. AVAILABLE EXPERIMENTAL DATA 

As previously discussed, measurement or knowledge of any two 

shock parameters allows determination of all the others by use of 

Equations (4) - (6) and (10). In the majority of cases the two vari-

ables measured are U and µ . Although there are techniques for 

measuring P and µ also, ·they are indirect and the experiments are 

usually difficult to perform. 

1. Shock Experiments 

The two sources of energy for the production of "strong" shock 

waves are high explosives and nguns". 

When a high explosive is properly initiated, a steady-state 

detonation wave is propagated throughout the mass of the material at a 

characteristic velocity D ,. The wave consists of a leading shock 

wave (shock "front") followed by a zone of chemical reaction which 

releases large quantities of heat, light and gaseous reaction products. 

Further, energy transfer from the reaction zone back to the shock front 

supports the continued propagation of the wave at velocity D (thus a 

steady-state phenomenon)~ The detonation wave is a "strong" shock and 

is capable of transferring strong shocks into other (inert) materials. 

Furtherj the overall detonation process can be used to accelerate 

sample (inert) materials to high velocity. 

Guns are used to accelerate selected projectiles to high speed 

• ic 
using the gases from the deflagration of propellants. No extreme 

* As opposed to detonation. 
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shocks are involved. Strong shocks are produced when the projectile 

impacts another object. 

The most common methods of carrying out the experiments to 

measure shock-wave parameters are sketched in Figure 11. Methods 1, 2 

and 3a use high explosives, while the last, 3b, uses a gun. 

In the first method (called the "free-surface", "break-away" 

or "split-off" method)(lZ) a block of high explosive is detonated in 

direct contact with the sample. Upon reaching the interface between 

the two, the detonation wave (at velocity D) is transformed into two 

shock waves; one passes back into the explosion products, while the 

other propagates through the sample at some characteristic (shock) 

* velocity U When this wave reaches the free-surface (at the right 

of the sample in Figure 11) it is reflected back into the sample as a 

rarefaction wave, satisfying the boundary conditions of continuity of 

d . 1 1 •t (85,90,86,91,92,89,10,11,87,93,64,94,12) pressure an partic e ve oci y . 

As a consequence, the surface of th~ sample is accelerated to µfs , 

the free surface velocityQ In general: 

where µ and 

µ + µ 
r 

(123) 

are the particle velocity behind the shock wave and 

rarefaction wave respectively. To an excellent approximation over a 

* Since the detonation is compressive (i.e., not a rarefaction wav~), it 

it can be shown<89) that the wave in the sample is also compressive 

irrespective of the nature of the wave passing back into the detona­

tion products~ 

It is assumed that the distance t is small enough so that the shock 

velocity does not vary (attenuate) in the sample,· dU ~ o 
d.Q, - • 
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HIGH 

SAMPLE 

I) ~.....------~~ ~ - fLts 

!.-~~ 

.HIGH EXPLOSIVE /REFERENCE MATERIAL 

DETONATOR 7 SAMPLE 

2) ~>~ ~ 
~,tr-+-,t--i 

HIGH EXPLOSIVE7/FLYER PLATE 
(REFERENCE DSAMPLE 

DETONATO~ OR SAMPLE) · 

3al ~ 1~11 . . 
~ ~ ~ rSAMPLE 

. 11~1 
0 ~,t-..J 

r-"GUN" /1-f · / PROJECTILE 
ZZZZZZZZZZJ ~ r SAMPLE 

3b) ~~~m I u p.' 
7zzzzzzzzz1 j 1--,t-I 

SABOT 

Figure 11. Shock Wave Production 
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. 1 (3,85;90,91,86,13,89,10,87,64, 
wide range of conditions and materia s 

95,96,12) . . 
'V 

µr = µ 

and from the above: 

'V 
µf/2 µ = 

Measurement of U and µf s for a single experiment and use of 

Equation (125) gives one set of U-µ data. 

(124) 

(125) 

In the second method (called the "impedance-match"(lO), cali­

brated "reflection"(lZ) or Hugoniot "reflection" method( 97)) the high 

explosive charge is in contact with a reference material whose Hugoniot 

has been previously established. The sample is placed in contact with 

the reference material. · 

The shock wave from the detonation propagates through the ref er-

ence with a velocity u r and is incident upon the interface with the 

sample. Two waves are produced: one reflects back into the reference, 

* while the other propagates through the sample at velocity U ' e The 

relative strengths of the waves are governed by the requirement of con-

tinuity of pressure and particle velocity across the interface and the 

Hugoniot of the reference and sample. This is used in the Hugoniot 

"reflection" method from which the particle velocity (and/or pressure) 

in the sample µ ~ can be found. The method considers the Hugoniot of 

* As before, if the shock in the reference material is compressive, so 

is the wave in the sample irrespective of the reflected wave, which 

can be a compression or rarefaction wave, depending on conditions. 
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the reference material in the P-µ plane as shown in Figure 12. Iden-

tification of p 
r 

and can be made by knowing Ur and p
0 

(the 
r 

initial density) for the reference material considering Equation (5), 

the conservation of mass plus momentum flux. For strong shocks 

(P >> P ) this may be written: 
0 

(126) 

The intersection of the (straight) line through the origin with slope 

P U will intersect the reference Hugoniot at the o r 
r 

p -µ 
r r 

condition 

corresponding to u r This is the solid straight line in Figure 12. 

It can be shown( 4 , 86 ,lO) that the reflected wave in the refer-

ence material must lie on the curve formed by a 180° reflection of the 

original Hugoniot about a vertical line passing through the point 

P -µ o This is also shown in Figure l2o Because of the requirement 
r r 

of continuity of pressure and particle velocity at the interface, a 

point on this · "reflected" Hugoniot .also represents conditions behind 

the shock wave in the sample. This point is located by applying Equa-

tion (5) in the form: 

p = (p U) µ . 
0 

The intersection of the line through the o.rigin with slope p u 
0 

(127) 

* 

will intersect the reference Hugoniot at the P-µ condition corres-

ponding to 

Although 

* 

u 

p < p 
r 

This is shown as the dashed line in Figure 12. 

for the illustration in Figure 12, it is clear that 

It is assumed that the initial density of the sample p
0 

is known or 

measuredo 
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if p u > p u 
o o r 

(i.e., if the "impedance" of the sample was higher 
r 

than the "impedance" of the reference) then P would be greater than 

)~ 

p In general, both cases occur . Clearly, measurement of U and 
r 

u for a single experiment and application of the Hugoniot "ref lec­
r 

tion" method (which assumes knowledge of the Hugoniot of the reference 

material) yields one set of · U-µ data. 

In the· third method (called variously, the "collision", 

II If ff If II f II h d(l0,12)) h d impact , braking or momentum trans er met o t e etona-. 

tion of a high explosive (3a in Figure 11) or firing of a gun (3b in 

Figure 11) accelerates a flyer plate (or projectile) to flight velo-

city µf • Upon impact with the sample two shocks are produced. One 

propagates to the right in the sample at velocity U , while the other 

** moves to the left back into the flyer plate If the projectile and 

sample are composed of the same material, the shocks produced at 

impact are identical and it is easy to show that(l2
): 

µ 

*** 

(128) 

If the projectile is a reference material (known Hugoniot) the 

particle velocity can be computed by a variation of the Hugoniot 

"reflection" method. This is shown in the P-µ plot in Figure 13. 

* In the former case (P < P ) the reflected wave is a rarefaction. 
r . . ( 86 89 10 12) When P > P , the reflected wave is compressive ' ' ' 

** r Since it is the impact of the flyer plate on the sample that causes 

the desired shock, there is no difference in the analysis of cases 
3a and 3b, i.e., the method of acceleration of the projectile to 

µf is irrelevant to the subsequent events. 

*** This would be done because higher shock pressures can be produced 
with selected .reference materials at the same value of µf • 
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Consideration of the requirement of continuity of pressure and particle 

velocity at the interface shows that some point on the "reflected" 

Hugoniot of the reference material "centered" at the flight velocity 

* µf represents conditions in both the flyer plate and sample . As 

before, this point is located by the intersection of Equation (5): 

p (129) 

with the "reflected" Hugoniot as shown in Figure 13. 

Therefore measurement of U and µf for an experiment, along 

with Equation (128) or the procedure in Figure 13, leads to one set of 

u-µ datae 

In each of the three methods in Figure ll ·only velocity meas-

urements are required; shock velocity in the sample or reference, 

free-surface velocity of the sample and flight velocity of the projec-

tile (flyer plate). Generally these are accomplished by time-of-arrival 

(t.o~a.) techniques, · although continuous distance-time measure-

ments are also used. 

In the former case u and u are computed from: 
r 

Q, 
Q, 

u u r 
(130) =- =--

~t r ~t 
r 

where it is assumed that the reference and sample are both thin enough 

to preclude significant attenuation . Both ~t and ~t are determined 
r 

from "t.o.a." data. In the latter case of continuous distance-time 

* For the sample the initial condition is P = 0 = µ but for the proj ec-

tile the initial condition is P = 0 , µ = µf • 
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measurements U and u 
r 

are computed by numerical differentiation 

of the data. Free surface and projectile velocities (µfs and µf) 

are similarly determined. 

Techniques for determining the required "t.o.a." or distance-time 

measurements are briefly summarized in Table 2. While not being 

* . exhaustive or fully descriptive , the table does indicate the range of 

methods available and major features of each. Because of the short 

time associated with the events being considered, all electrical 

methods use a rasteroscillograph system to record the data, while all 

of the optical methods use a (high-speed: rv 10 mm/µsec writing rate) 

streak camera. 

Although almost all measurements of shock parameters involve 

U and µ , direct measurements of , P and p 
(10 96) have been made ' , 

usually with the set-up in Method 1 of Figure 11. The techniques used 

are summarized in Table 3, where again only the major features are 

indicated. At present these methods are not as accurate as those for 

U-µ measurements. 

* An excellent d~scription of these methods is given in Reference 10 . 

Other sources are References 96 and 86 

references are quoted. 

In each case the original 



~
 

1 2 3 4 5 6 7 .8
 9 10
 

11
 

12
 

C
la

ss
if

ic
a
ti

o
n

 
o

f 
T

ec
h

n
iq

u
e 

E
le

c
tr

ic
a
l­

P
in

 P
ro

b
e 

E
le

c
tr

ic
a
l­

P
in

 ·P
ro

b
e 

E
le

c
tr

ic
a
l­

R
e
si

st
a
n

c
e
 

W
ir

e 

E
le

c
tr

ic
a
l­

C
ap

ac
it

an
ce

 

E
le

c
tr

ic
a
l­

P
ie

z
o

e
le

c
tr

ic
 

O
p

ti
c
a
l­

F
la

sh
 

O
p

ti
c
a
l­

M
ir

ro
r 

O
p

ti
c
a
l­

L
ev

er
 

O
p

ti
c
a
l­

Im
ag

e 

O
p

ti
c
a
l­

D
ir

e
c
t 

O
p

ti
c
a
l­

D
ir

e
c
t 

O
p

ti
c
a
l­

D
ir

e
c
t 

S
en

si
n

g
 

P
he

no
m

en
on

 

S
w

it
ch

 
c
lo

su
re

 

S
w

it
ch

 
c
lo

su
re

 

R
e
si

st
a
n

c
e
 

v
s.

 
ti

m
e 

C
ap

ac
it

an
ce

 
v

s.
 

ti
m

e 

V
o

lt
ag

e 
P

u
ls

e
 

L
ig

h
t 

F
la

sh
 

L
o

ss
 

o
f 

R
e
fl

e
c
ti

v
it

y
 

S
h

if
t 

in
 

R
e
fl

e
c
ti

o
n

 

Im
ag

e
. 

M
ov

em
en

t 

S
ha

do
w

 
o

f 
W

av
e 

S
ha

do
w

 
o

f 
F

re
e
-S

u
rf

a
c
e
 

S
ha

do
w

 o
f 

P
ro

je
c
ti

le
 

~
 

TI
M

E-
O

F-
A

R
R

IV
A

L 
AN

D 
C
O
~
T
I
~
i
U
O
U
S
-
D
I
S
T
A
N
C
E
 

TI
M

E 
D

ET
ER

M
IN

A
TI

O
N

S 

K
ey

 
M

ea
su

re
m

en
t 

E
le

m
en

t 

M
ec

h
an

ic
al

 
p

in
 

p
ro

b
e 

B
ar

e 
w

ir
e 

P
a
ir

 o
f 

re
s
is

­
ta

n
ce

 w
ir

e
s.

 

P
a
ra

ll
e
l 

p
la

te
 

co
n

d
en

se
r 

P
ie

z
o

e
le

c
tr

ic
 

c
ry

st
a
l 

L
um

in
ou

s 
g

as
 

M
ir

ro
r 

P
o

li
sh

e
d

 
su

rf
a
c
e
 

P
o

li
sh

e
d

 
su

rf
a
c
e
 a

nd
 

w
ir

e 

P
h

o
to

g
ra

p
h

ic
 

F
il

m
 

P
h

o
to

g
ra

p
h

ic
 

F
il

m
 

P
h

o
to

g
ra

p
h

ic
 

F
il

m
 

R
ec

o
rd

in
g

 
In

st
 ru

.'1
cn

ta
 t 

io
n

 

R
a
st

e
r­

o
sc

il
lo

g
ra

p
h

 
a
~
d
 

c
ir

c
u

it
ry

 

R
a
st

c
r­

o
sc

il
lo

g
ra

p
h

 
an

d 
c
ir

c
u

it
ry

 

R
a
st

e
r-

o
sc

il
lo

z
ra

p
h

 
an

d 
c
ir

c
u

it
ry

 

R
a
st

e
r­

o
sc

il
lo

g
ra

p
h

 
an

d
 
c
ir

c
u

it
ry

 

R
a
st

e
r­

o
sc

il
lo

g
ra

p
h

 
an

d 
c
ir

c
u

it
ry

 

S
tr

e
a
k

 
C

am
er

a 

S
tr

e
a
k

 
C

a.
'1

er
a 

S
tr

e
a
k

 
C

am
er

a 

S
tr

e
a
k

 
C

am
er

a 

S
tr

e
a
k

 
C

a.
'll

er
a 

S
tr

e
a
k

 
C

am
er

a 

S
tr

e
a
k

 o
r 

F
ra

m
in

g 
C

am
er

a 

C
o

n
ti

n
u

o
u

s 
U

se
d 

fo
r 

o
r 

T
im

e
-o

f-
A

rr
iv

a
l 

U
,µ

fs
'o

r 
~
 

t.
o

.a
. 

t.
o

.a
. 

co
n

ti
n

u
o

u
s 

co
n

ti
n

u
o

u
s 

t.
o

.a
. 

t.
o

.a
. 

t.
o

.a
. 

co
n

ti
n

u
o

u
s 

-
co

n
ti

n
u

o
u

s 

co
n

ti
n

u
o

u
s 

co
n

ti
n

u
o

u
s 

co
n

ti
n

u
o

u
s 

co
n

ti
n

u
o

u
s 

U
,µ

fs
'µ

f 

U
,µ

fs
 

ll
f s

 

µ
fs

 

U
,µ

fs
 

U
,µ

fs
 

U
,µ

fs
 

lJ
fs

 

ll
fs

 

u ll
fs

 

lJ
f 

L
im

it
a
ti

o
n

s/
 

A
ss

um
pt

io
r:

s 

S
am

pl
e 

m
us

t 
b

e 
co

n
d

u
ct

in
g

 

N
ee

d 
c
o

n
st

a
n

t 
re

s
is

ta
n

c
e
/'

 
le

n
g

th
 

S
am

pl
e 

m
us

t 
b

e 
co

n
d

u
ct

in
g

 

P
la

n
a
ri

ty
 o

f 
sh

o
ck

 

S
e
n

si
ti

v
e
 

to
 

v
a
ri

a
ti

o
n

s 
in

 
lJ

fs
 

D
e
sc

ri
p

ti
o

n
 

P
ro

b
e 

c
o

n
ta

in
s 

b
o

th
 

le
a
d

s;
 

sh
o

rt
e
d

 b
y 

cr
u

sh
 

o
f 

sh
o

ck
 

O
ne

 
le

a
d

 
is

 
su

rf
a
c
e
 

o
f 

sa
m

p
le

 
(i

f 
co

n
d

u
ct

in
g

);
 

sh
o

ck
 c

lo
se

s 

W
ir

es
 

a
re

 
an

g
le

d
 

to
 

su
r­

f a
ce

 
so

 
th

a
t 
~
o
t
i
o
n
 

sh
o

rt
s 

th
em

 
p

ro
g

re
ss

iv
e
ly

 

S
u

rf
ac

e 
o

f 
sa

m
p

le
 
is

 
on

e 
p

la
te

 o
f 

co
n

d
en

se
r 

w
hi

ch
 

c
lo

se
s 

w
it

h
 m

o
ti

o
n

. 

S
ho

ck
 o

r 
fr

e
e
 

su
rf

 a
ce

 
ca

u
se

s 
c
o
~
p
r
e
s
s
i
o
n
 

an
d 

e
le

c
tr

ic
a
l 

p
u

ls
e 

S
ho

ck
 c

o
m

p
re

ss
es

 
an

d 
il

­
lu

m
in

at
es

 
g

as
 

in
 

p
re

p
ar

ed
 

g
ap

s 
in

 s
am

p
le

 

E
x

te
rn

a
l 

il
lu

m
in

a
ti

o
n

 
re

­
fl

e
c
te

d
 

in
to

 
ca

m
er

a 
is

 
c
u

t-
o

ff
 o

n 
sh

o
ck

 a
rr

iv
a
l 

P
o

li
sh

e
d

 
su

rf
a
c
e
 o

f 
s
a
~
p
l
e
 

s
h

if
ts

 
re

fl
e
c
ti

o
n

 
p

o
si

ti
o

n
 w

he
n 

sh
o

ck
 a

r­
ri

v
e
s 

o
b

li
q

u
e
ly

 

Im
ag

e 
o

f 
w

ir
e 

on
 

p
o

li
sh

e
d

 
sa

a
p

le
 s

u
rf

a
c
e
 

m
ov

es
 

w
it

h
 

fr
e
e
 

su
rf

a
c
e
 m

o
ti

o
n

 

S
ao

p
le

 m
u

st
 

b
e 

S
ho

ck
 w

av
e 

ca
u

se
s 

sh
ad

ow
 

tr
a
n

sp
a
re

n
t 

on
 b

a
c
k

li
g

h
te

d
 

sa
i;;

;:>
le

 

W
at

ch
 

fr
e
e
-s

u
rf

a
c
e
 

m
o

ti
o

n
 

(f
ro

m
 s

id
e
) 

b
lo

ck
 o

u
t 

b
a
c
k

li
g

h
ti

n
g

 

~
a
t
c
h
 

sh
ad

ow
 m

o
ti

o
n

 w
it

h
 

re
sp

e
c
t 

to
 b

a
c
k

li
g

h
ti

n
g

 
o

r 
b

u
lk

 m
o

ti
o

n
 

fr
a:

:i
e-

to
­

fr
am

e.
 

I co
 

0 I 



C
la

ss
if

ic
a
ti

o
n

 
o

f 
-~
 

T
ec

h
n

iq
u

e 

1 
E

le
c
tr

ic
a
l-

C
o

n
d

u
ct

iv
it

y
 

2 
E

le
c
tr

ic
a
l-

P
ie

z
o

e
le

c
tr

ic
 

3 
R

ad
io

g
ra

p
h

ic
 

S
en

si
n

g
 

P
he

no
m

en
on

 

C
ha

ng
e 

in
 

C
o

n
d

u
c
ti

v
it

y
 

V
o

lt
ag

e 
P

u
ls

e
 

A
b

so
rp

ti
o

n
 

o
f 

X
-r

ay
s 

K
ey

 
M

ea
su

re
m

en
t 

E
le

m
en

t 

S
u

lf
u

r 
W

af
er

 

Q
u

ar
tz

 
T

ra
n

sd
u

ce
r 

P
h

o
to

g
ra

p
h

ic
 

F
il

m
 

T
ab

le
 

3 

PR
ES

SU
RE

 
AN

D 
D

EN
SI

TY
 

D
ET

ER
M

IN
A

TI
O

N
S 

R
ec

o
rd

in
g

 
In

st
ru

m
e
n

ta
ti

o
n

 

R
a
st

e
r 

-
o

sc
il

lo
g

ra
p

h
 

an
d

 
c
ir

c
u

it
ry

 

R
a
st

e
r­

o
sc

il
lo

g
ra

p
h

 
an

d
 
c
ir

c
u

it
ry

 

F
il

m
 

P
la

te
 

U
se

d 
to

 
M

ea
su

re
 

p p p
 

L
im

it
at

io
n

s/
A

ss
u

m
p

ti
o

n
s 

N
ee

d 
H

u
g

o
n

io
t 

o
f 

sa
m

p
le

 
to

 
p

ro
p

e
rl

y
 a

d
ju

st
 

d
a
ta

 

C
u

rr
en

t 
fl

o
w

 
re

la
te

d
 

to
 

P
 

b
y

 w
ea

k 
th

e
o

ry
 

D
at

a 
re

d
u

c
ti

o
n

 d
if

f 
i­

c
u

lt
 

D
e
sc

ri
p

ti
o

n
 

L
ar

g
e 

ch
an

g
e 

in
 
re

s
is

ti
v

it
y

 
o

f 
su

lf
u

r 
u

n
d

er
 

sh
o

ck
 

co
m

­
p

re
ss

io
n

 

S
ho

ck
 

ca
u

se
s 

co
m

p
re

ss
io

n
 

an
d

 
e
le

c
tr

ic
a
l 

p
u

ls
e
 

~
~
f
i
y
s
 

th
ro

u
g

h
 

sh
o

ck
 s

ho
w

 
· 
fi

lm
 
d

e
n

si
ty

 
g

ra
d

ie
n

ts
 

p
ro

p
o

rt
io

n
a
l 

to
 
a
c
tu

a
l 

o
n

es
 

I co
 

I-
' I 



-82-

2. Compilation of Data 

Using the methods outlined in the previous section, a large 

body of shock wave (Hugoniot) data has been accumulated since the 

first investigations in 1945·( 36). The major portion of the work has 

been done in the United States, but significant contributions have 

been made in the U.S.S.R., France and England. 

Almost all this data, through 1966, is included in an excel-

lent compendium( 96 , 98) . edited by Van Thiel. * This compilation, plus 

the more recent work, was extensively used in forming the data set 

used in this study~ 

The substances considered in the current work are shown in 

** Table 4 which is divided into two parts, liquids and solids. 

For the liquids, the choice of materials to be studied was 

limited to those for whi.ch both shock data and reasonable values of 

the molecular parameters cr and were available. 

nary study(l6) of the shock model considered six of these liquids: 

A, Hg, N
2

, H
2

, cc1
4 

and c
6
H

6 
(benzene). This group was chosen because 

these molecules are simple and offered the best chance of obeying the 

(spherically symmetric; non-angle-dependent) n-6 potential con-

*** sidered , within "reasonable" bounds. The results of that study 

* Whenever possible the original papers were consulted for details of 

the experimen~s, accuracy of results, etc. 

** A, N2 and H
2 

which are "normally" gases at standard conditions were 

all studied in the liquid state under appropriate T ,P conditions. 
*** 0 0 

Equation (8) of Reference 16 which is equivalent to Equation (72) 

in this study .. 
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appeared to justify an attempt to apply the ideas to more complex 

molecules. This was done by considering the seven additional liquids 

shown in Table 4 where polar molecules (methanol, ethanol, .ether and 

water), longer linear molecules (carbon disulphide and hexane) and a 

perturbed ring structure (toluene) are included. In each case both 

shock and molecular parameter data are available • . The "original" six 

liquids were reinvestigated also because additional shock and/or 

* molecular parameter data were found , theoretical refinements had 

occurred, and new methods of treating the data were developed. 

As previously mentioned, the only sol·ids considered in this 

study were metals with an fee or bee lattice. Ten of the former and 

thirteen of the latter, for which shock data are available, are shown 

in Table 4. Since very little (if any) reliable data on cr and s 

for metals are available this was not considered limiting in choosing 

solids. For each lattice structure the metals are listed with 

respect to their positions in the periodic table. Several well-known 

"groups" are included. This is seen in Figure 14 which shows these 

and all the elements considered in the study superimposed on a 

periodic charto At least one element from each group (except Group 

VII) and period was studied. · 

The raw U-µ data for the 13 liquids and 23 solids are com-

')'(* 

piled in Appendix S where the (mean) initial conditions and sound 

* For argon, shock data for two additional initial states were found. 

** Also included are the (several) adjusted data sets discussed in the 

following paragraphs. 
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Table 4 

SUBSTANCES INCLUDED IN STUDY 

Substance 

Argon 

Mercury 

Nitrogen 

Hydrogen 

Carbon Disulphide 

Carbon Tetrachloride 

Methanol 

Ethanol 

Ethyl Ether 

Hexane 

Benzene 

Toluene 

Water 

LIQUIDS 

Structure 

A 

Hg 

N ::N 

1.1 -H 
s = c = s 

Cl 
I 

Cl-C-Cl 
J 
Cl 

1iI 
H-C-OH 

I 

H 

HH 
I I 

H-C-C-OH 
I I 
HH 

H H H H 
C l J... I 

H-C-C-O-c-C-H 
J~ I t t 
ti H H H 

H H H 1i1 H H 
H-c-c-c-c-c-c-H 

I I I I I I 
HHHHHH 

/'.CH 
HC "/ "cH 

l II 
HC" /CH 

"cH 
C-CH

3 
~- \ 

RC CH 
I II 

RC\\ /CH 
CH 

H-0-H 

Comments 

Monatomic; spherically 
symmetric * 
Monatomic; spherically 
symmetric 

Diatomic 

Diatomic 

Triatomic 

Tetrahedral; 1 carbon 
atom; symmetric 

Polar; 1 carbon atom; 
some .symmetry 

Polar; 2 carbon atoms 

Polar; 4 carbon atoms 

Long-Chain; 6 carbon 
atoms 

Ring structure 

Ring structure 

Polar 

* Data available at four different initial states 

** L = Liquid 
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Table 4 

SUBSTANCES INCLUDED IN STUDY 

fee lattice 

*** Code Substance 

Fl 

F2 

F3 

F4 

F5 

F6 

F7 

F8 

F9 

FlO 

Copper 

Silver 

Gold 

Cobalt 

Nickel 

Palladium 

Platinum 

Aluminum 

Calcium 

Lead 

bee lattice 

Bl 

B2 

B3 

B4 

BS 

B6 

B7 

BS 

B9 

BlO 

Ell 

Bl2 

Bl3 

*** 

Lithium 

Sodium 

Potassium 

Rubidium 

Cesium 

Vanadium 

Niobium 

Tantalum 

Chromium 

Molybdenum 

Tungsten 

Zirconium 

Barium 

SOLIDS 

Position in 
Periodic Table 

Symbol Group/Period 

Cu 

Ag 

Au 

Co 

Ni 

Pd 

Pt 

Al 

Ca 

Pb 

Li 

Na 

K 

Rb 

Cs 

v 
Nb 

Ta 

Cr 

Mo 

w 
Zr 

Ba 

IB/4 

IB/5 

IB/6 

VIII/4 

VIII/4 

VIII/5 

VIII/6 

IIIA/3 

IIA/4 

IVA/6 

IA/2 

IA/3 

IA/4 

IA/5 

IA/6 

VB/4 

VB/5 

VB/6 

VIB/4 

VIB/5 

VIB/6 

IVB/5 

IIA/6 

F = fee metal, B = bee metal 

Comments 

Noble Metals 

Ferromagnetic Metals 

Transition Metals 

Alkaline Earth Metal 

Alkali Metals 

Transition Metals 

Alkaline Earth Metal 
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Table 4 

SUBSTANCES INCLUDED IN STUDY 

fee lattice 

*** Code Substance 

Fl 

F2 

F3 

F4 

F5 

F6 

F7 

FB 

F9 

FlO 

Copper 

Silver 

Gold 

Cobalt 

Nickel 

Palladium 

Platinum 

Aluminum 

Calcium 

Lead 

bee lattice 

Bl 

B2 

B3 

B4 

B5 

B6 

B7 

BB 

B9 

BlO 

Bll 

Bl2 

Bl3 

*** 

Lithium 

Sodium 

Potassium 

Rubidium 

Cesium 

Vanadium 

Niobium 

Tantalum 

Chromium 

Molybdenum 

Tungsten 

Zirconium 

Barium 

Symbol 

Cu 

Ag 

Au 

Co 

Ni 

Pd 

Pt 

Al 

Ca 

Pb 

Li 

Na 

K 

Rb 

Cs 

v 
Nb 

Ta 

Cr 

Mo 

w 
Zr 

Ba 

SOLIDS 

Position in 
Periodic Table 

Group/Period 

IB/4 

IB/5 

IB/6 

VIII/ 4 

VIII/4 

VIII/5 

VIII/6 

IIIA/3 

IIA/4 

IVA/6 

IA/2 

IA/3 

IA/4 

IA/5 

IA/6 

VB/4 

VB/5 

VB/6 

VIB/4 

VIB/5 

VIB/6 

IVB/5 

IIA/6 

F = fee metal, B = bee metal 

Comments 

Noble Metals 

Ferromagnetic Metals 

Transition Metals 

Alkaline Earth Metal 

Alkali Metals 

Transition Metals 

Alkaline Earth Metal 
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for each substance are given< 64 , 96 , 9o, 4z, 60,99,l0l,94, 

100,98,102,85,92,103,104,13,105,95,106,93,107,108) These data are 

plotted in Figures 15-27, wHere liquids of similar structure and solids 

of the same periodic group have been, as far as possible, placed 

together. 

With no attempt at interpretation or significance, a smooth 

curve originating at C , was "faired" through the data for each 
0 

material, to help in the selection process discussed in the next sec-

tion. The general objective was to determine if a smooth (i.e., all 

derivatives continuous) continuous curve could be drawn through the 

combined datao It is notable that in some instances this could not be 

done and a "break" in the plotted data was indicated. 
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3. Selection Process 

A careful examination of Figures 15-27 shows that the data are 

not all of the same quality; in some cases considerable variations 

exist from investigator to investigator, even though most error esti~ 

mates for velocity determinations are claimed to be .:S.. 3% (see Table 

5). Furthermore, a number of phase transitions have been reported for 

various materials under shock loading (see Table 6) which in some 

* instances could affect the smoothness of the U-µ curve e Lastly, 

the ".fairing" process discussed previously shows clear "breaks" in the 

U-µ data indicating a change in behavior of the material. 

For these reasons, all data used in this study were put through 

a selection process designed to minimize problems due to "questionable" 

data. The guidelines were: 

(a) When data from a single source differed substantially from 

a number of other investigators, these data were eliminated. 

(b) When phase transitions were suspected because of a "break" in 

*ic 
the U-µ data , higher data were eliminated. 

(c) When first-order (FO) or second-order (SO) phase transitions 

were theoretically predicted, the data were carefully examined to see 

if any effects were evident on the U-µ datao If not, the prediction 

was ignoredo 

* A discussion of phase transitions and their effect on the theory 

developed in this work is included in Appendix T. 

** It is assumed that the U-µ curve is a smooth, well-behaved, con-

tinuous function with continuous derivatives. 
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Table 5 

REPORTED ERROR IN DATA 

% Error in % Error in 
Reference Substances u l:! 

64 A,A-II < 2 < 2 

96 A-III,A-IV 1. 5 1.5 

42 N2 1 - 2 1 - 2 

96 N2 3 3 

90 Hg,CC14,c6H6,Toluene,CS 2,Ethanol, 0.5 
Methanol,Ether,Hexane,Water 

60 H2 1 0.5 

100 cc14 ,c6H6,Toluene,Methanol 

96 CC1
4 

98 C6H6 
94 Ethanol,Hexane,Water 1.5 

98 Ether 

96 Water,Al 

102 Water,Cu,Al,Pb 

96 Water,Cu,Ni 

85 Cu,Pb,Cr,Co,Au,Mo,Ni,Ag,Nb, 0.7 
Pd,Pt,Ta,Zr 

92 Cu,Ag,Au,Pb 

103 Cu,Al,Pb < 1 < 1 

105 Cu 0.5 0.5 

104 Cu,Pb,Ni 1.5 

96 Cu 3 3 

13 Pb,Ag,Au,Go,Cu,Mg,Ni,V,W,Cr 0.5 

96 Pb,Ca,Mo,Li 

96 Pt,Pd,Nb,Zr,Ta 

96 Pd 

96 Al 

95 Cu,Pb,Al 

93 Li,Na,K,Rb,Cs 

107 Li,Na,K 1.0 - L5 1.0 - 1.5 

108 Mo,Ta 

106 Ca,Ba 
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(d) When FO or SO transitions were suggested by a 11 two-line" 

* fit , an examination of the combined data was used to determine if the 
. 

assumption of a transition was justified. If so, higher data were 

d H . 1 . t (104,11,64,109-112) i't eliminate e owever, in severa ins ances appears 

that whenever the U-µ data did not conform to a straight line 

(Equation (13)) a "two-line" fit was made and a transition at the inter-

section assumed! Since this procedure has no a priori justification 

(except to preserve the (unnecessary) notion of u-µ linearity)' it 

was simply assumed that, in these cases, the U-µ relation was curved. 

. 1 h f f d u 1 t' (105,113,92,86, There is a wea t o support or a curve -µ re a ion 

104,93,14,95,60,114,106) If the data could be fitted by a smooth 

curve the assumed "transitions" were ignored. 

(e) In a number of instances a decision could not be made on 

the basis of (a) to (d) above, and the data set with and without the 

11questionable" data was carried through the first calculations. This 

was usually sufficient to distinguish between the two sets and elimi-

nate "questionable" datao 

It is recognized. that this process was not carried out on any 

absolute basis and that the decisions to eliminate data were~ ulti-

mately, discretionary in natureo However, this is done without apology 

since more formal guidelines are at present unknown to the author. 

* Examination of Figure T-2 in Appendix T shows that FO and SO phase 

transitions can be characterized by "two-line" fits, especially if 

the mixed phase region for FO transitions is small. In many cases 

there are not sufficient data to characterize the mixed region and 

"two-lines" suffice to fit all the data. 
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The item~:;- 1.~urnddcrc<l in the selection process arc generally 

detailed in Figures 15-27 where the effects of each of the reported 

phase transitions (Table 6) on the data are seen. The selection 

resulted in an adjusted data set for N
2

, cs
2 

and H
2
o among the liquids; 

Ni and Al among the fee metals; and Li, Na, K, Rb, Ta and Zr among the 

* bee metalse 

* The adjusted data are listed in Appendix S on the page following the 

raw data for each of the substances indicatede 
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B. LIQUIDS 

Values of cr and s for a number of substances have been 

determined from viscosity(S), second virial coefficient(5), thennal 

conductivity< 74) and thermal diffusivity data< 74). Most of the 

available values are compiled in Reference 5. Because these data 

are considered to represent physically meaningful quantities, it is 

assumed that they can be used to reasonably accurately describe the 

"true" pair-potential function. Because cr,s data are available 

for all the liquids considered in this study, advantage was taken of 

this fact by using the solutions to the Hugoniot in WF (Equations 

(105)-(107), (113), (ll4), (124)-(128)) or MF (Equations (105)-(107), 

(115), (116), (124)-(126), (129), (130)). This allows full use of 

the a,s data available and establishes a more "realistic" base for 

* any conclusions drawn from the analysis . 

* Because advantage was taken of the cr,s data available does not 

mean that the values presented in the literature were accepted 

prima facie. In fact, a correlation of s with melting points 

eventually proved to give "better" results than the raw values. 
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1. Development of Parameters 

From Equations (105)-(107) it would appear that the best 

test of the theory would be to pick cr and £ (from available 

data) and compare the predicted Hugoniot with the available data 

for various values of n • However, a reconsideration of Equation 

(72) shows that this comparison can be done in more than one way. 

Equation (72) is: 

~(r) = (72) 

where f(n) is given by Equation (71). The quantities s and 

cr have physical meaning in that they are considered real measures 

of the pair interaction (see Figure 8) even if Equation (72) does 

not truly represent that interaction over the whole range of r 

Thus cr is considered the true minimum interaction energy and 

is the distance at whiGh the interaction energy is actually zero. 

The first suggested method of testing the theory is clearly logi-

cal~ 
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An examination of Equation (70) and Figure 8 shows that an 

equally logical pair of parameters to fix would be r 
0 

and s . That 

is, r is also a physical quantity (the position of the minimum) that 
0 

could be picked along with s * to describe the interaction • In this 

case the various values of n used to make the comparison would 

determine cr through Equation (70). Although this alternate mode of 

comparison is theoretically possible it was not pursued because 

data for liquids are not generally available in the literature. 

r 
0 

Another method of c~mparison may be seen by expansion of Equa-

tion (72) in the following form: 

cp(r) 
s f(n) crn 

n 
r 

s f (n) cr 6 

6 r 
(131) 

As previously mentioned, the second term, representing attrac-

tive forces, is amenable to fairly rigorous treatment (at least for 

insulators) and the coefficient of the r-6 term has been calculated 

b b Of h (21,36,23,115,58,5,116-121, 56,81,55,122) y a nurn er aut ors This 

** coefficient is called the "dispersion" constant and is usually 

denoted cab - Therefore: 

s f (n) cr 6 (132) 

may also be considered a "real" quantity that de9cribes the attractive 

* The fact that Equation (72) is written in terms of s and cr in-

stead of s and r is not inherently significant. Clearly, sub­
o 

stitution of Equation (70), solved for cr , into Equation (72) would 

yield 

for cr 

cp(r) as a function of s and r This same substitution 
0 

would be made in Equations (96)-(98), etce 

** For molecules without a dipole momenta 
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behavior of the molecules; the portion of the curve to the right of 

the minimum in Figure 8. Since Cab contains both s and 0 (as 

well as n) the pair of parameters to describe the interaction could be 

Cab and s or Cab and 0 . In general the latter pair was consi­

dered, since the available 0 data are believed to be more accurate 

than the available s data . In that instance 6 
€ = cab/f (n)0 and 

Equation (131) becomes (after substitution and rearrangement): 

¢(r) = (133) 

To help determine the pref erred parameter pair (0 and s 

or 0 and Cab) for making comparison of the theory with experiment, 

a number of preliminary computations were made using some of the 

available 0,s and Cab data which are compiled in Table 7. 

Equation (132) shows that if Cab' s and 0 are known for a 

given material f (n) and therefore n (see Equation (71)) is fixed, 

at least for the pair potential chdsen, Equation (72). Using the data 

in Table 7 such computations were made for A, Hg, N
2 

and H
2 

for 

* various combinations of_ the parameters • The results, shown in Table 

8, indicate the values of n that satisfy the particular set of "real" 

parameters 0 , s and Cab . That is, for these values of n , Equation 

(72) goes through the given values of 0 and s and exhibits the cor-

rect long-range attractive behavior. The question remains : Are these 

values consistent with the shock data which are in the strongly 

* The Cab data are determined independently of the 0,s pairs and can 

therefore be combined with any of them. 
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Table 7 

AVAILABLE C5' s ' Cab DATA -- LIQUIDS 

";~ c -
o-i £/k~K Reference Date 

ab '6 60 
Date Substance erg-cm x10 Reference 

A 3.405 124 5 
1942 52 36 193 7 1949 

3.30' 152 25 1964 55o4 5 1938 

3.44 110 25 1964 55.9 118 1961 

147.7 55 1967 65.16 119 1961 

3.38 134 71 1967 68.1 120 1963 

3.28 (138.2] 74 1969 61 56 1964 

63.85 121 1964 

61.3 55 1967 

65.9 122 1968 

Hg 2.898 851 5 1954 255 5 1930 

2.88 654 25 1964 

2086 195 25 1964 

N2 3. 71 95.9 5 1925 57.2 5 1938 

3. 72 96. 7 23 1944 62 23 1944 

3.73 [ 91. 5] 42 1962 57.5 118 1961 

*** 65.7 118 

H2 2~87 29.2 5 1941 11.4 5 1938 

2.92 31.0 23 1944 11.3 23 1944 

2.968 33.3 123 1950 11.4 118 1961 

*** 13.0 118 

12.7 120 1963 

cs
2 

4.438 488 5 1933 

CC1
4 

5.881 327 5 

5., 77 [378] 54 1967 

CH30H 3.666 452 ~~* 
5 1961 
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Table 7 - (continued) 

0 -Jc 
cab-

Substance a-R S/k- K Reference Date erg-cm6x1060 Reference Date --
c

2
H

5
0H 4.370 415 

*~'c 
:5 1961 

(C
2
H5) 2o 5.539 351 5*~'c 1961 

C6Hl4 5.916 423 5** 1962 

C6H6 5.270 440 5 

c
6
H

5
CH3 

12.0 185 5~'\-Jc 1958 

5.932 377 5** 1962 

H20 2.648 382.4 58 1951 57.0 58 1951 

2.725 355.8 124 1969 247 5 1952 

52.2 81 1965 

86.0 81 1965 

* 0 k = Boltzmann's constant = 1.38045 erg/ K 

** Reference 5, corrected, with notes added, 1964. 

*** A comparison of References 118 and 121 for the rare gases indi-
cates a (possible) systematic error in the former. This factor 
(1.142) was applied to cab for all of the reported values in 
Reference 118~ 
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repulsive region? 

For the a , Cab parameter combination this was tested by 

fitting the as$ociated theory (see Appendix U) to argon (o = 3.28g, 

-60 6 0 -60 
cab= 65.9XlQ erg-qn) and nitrogen (0 = 3 . 71A, Cab= 57.5Xl0 

6 erg-cm). The r esultant best fit values of n were 10 . 4 and 9.2 

respectively, which differ considerably from the values in Table 8. 

Resubstitution of these values into Equation (132) along with the 0 

and Cab values used, yields values of s 0 0 of 77 K and 25 K respec-

tively for argon and nitrogen; ru 1/2 and ru 1/4 of the "actual" values 

in Table 8. 

Thcs o res u.l t. :3 i nd i ca te t h nt f or t h e! n-6 po t.:e n u .n ·1, :.1 ~d ni-~ ·1 l~ 

value of n will not satisfy strong repulsion, a , € and long-range 

* attraction (Cab) simultaneously G Further, it appears that satisfac-

tion of strong repulsion, a ·and Cab leads to well depths E that 

** are too small 

Because of this, the 0,€ parameter pair was chosen for the 

*** comparison of the shock data and theory It is understood that 

Cab (the attraction region) will not be satisfied in this instance but 

*Th. h b . d · . l (125,64,53) is as een pointe out previous y . 

** An attempt was made to reduce the values of n in Table 8 by account-
ing for additional attract.ion implied by Equation (59). The results, 
shown in Appendix V, do not .materially affect the conclusions made. 

*** This intuitively makes more sense because the shock data are in the 
strongly repulsive region and it is sufficient to satisfy a and E 

(see Figure 8) which define all the compressive (repulsive) states . 

No advantage is gained by "jumping over" € to satisfy the attractive 
forces. 
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this is accepted as a limitation of the potential chosen. Of course, 

in many of the compressive states defined by the shock data, the 

attractive forces will be, by comparison, negligible and the error 

involved in this procedure will be small. 

Chapman(126) in a recent paper showed that the viscosity of 

several liquid metals co.uld be correlated with atomic (molecular) 

parameters such as s and a over a considerable temperature range. 

To establish a more fundamental footing for this correlation he showed 

that the energy parameter is independently correlatable with melting 

* points • He would have made this correlation with respect to critical 

temperatures, but found them unavailable for the materials being con-

sidered. 

Although Chapman considered only liquid metals, the ideas 

developed should apply generally and correlations should be possible 

for critical temperatures, boiling points as well as melting tempera­

**(23,5) tures . • The latter parameter was chosen for the correlation 

for this study, since it represented the only one for which values 

* Chapman used values of s 
by Ling( 76), to generate 

for Na and K taken incorrectly from a paper 

£ values for the other metals. Although 

his resulting correlation is numerically incorrect, his evidence for 

such a correlation remains valid. 

** Reference 5 gives as approximate relations s/k = 0.77 Tc= 1.15 Tb 

= 1.92 T Correspondingly, Reference 23 gives s/k = 0.75 T 
M c 

= 1.25 Tb which are not much different. When Chapman's correlation 

for liquid metals s/k = 5.20 TM is corrected for the erroneous data 

· read from Ling( 76 ) (a factor of~ 3.3), it becomes s/k = 1.57 TM 

which is in fair agreement with Reference 5. Considering that the 

former deals with liquid metals and the latter with spherical non­
polar molecules, the agreement is notablee 
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were available for all of the substances included in the study (see 

Table 4). 

The most reliable values of s/k for the liquids in Table 7 

are those in brackets for argon, nitrogen and cc14. The respective 

melting temperatures are 83.9°K, 63.2°K and 250.1°K. Based on this 

data set, a least-squares best-fit line was computed with the result 

(see Appendix W): 

s/k = 1.5 TM+ 4 °K (134) 

Using Equation (134) a new set of s values was computed for 

d t 
(101) 

all of the liquids studied based on available TM a a . The 

results are shown in. Table 9 and compared to the similar data in 

Table 7. It is .notable that this procedure leads to a large reduction 

reasonable agreement for H
2

, c6H
6 

and H
2
o . Although these reductions 

in s/k are not as substantial as those produced by using the cr , 

Cab parameter pair, they are significant changes and the matter of 

choosing between the· "original" data (Table 7) or "correlated" data 

(Table 9) must be decided by the relative success of each when fit-

ting the shock data. This is discussed in the following sections. 
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Table 9 

s/k vs. TM CORRELATION--LIQUIDS 

s/k = 1.5 TM+ 4 

From Table 7 

T -0 c T -°K ~ 
0 0 

Substance M M s/k -K s/k-K 

A -189.2 83.9 129.9 138.2 

Hg - 38.87 234.2 355.3 195-851 

N2 -209.86 63.2 98.8 91.5 

H2 -252.8 20.3 34.5 29.2-33.3 

cs
2 -108.6 164.5 250.8 488 

CC1
4 - 23.0 250.1 379.2 378 

CH
3

0H - 97.8 175.3 267.0 452 

c
2
H

5
0H -117.3 155.8 237.7 415 

(C2H5)20 -116.3 l.56.8 239.2 351 

C6H14 - 94.3 178.8 272. 2 423 

C6H6 5.51 278.6 421. 9 440 

c6H
5

cH
3 - 95~ 178.1 271. 2 377 

H2o o.o 273.1 413.7 355.8-382.4 
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2. Treatment of Data 

Equations (96)-(98) with specified values of a and £ (and 

s, p and M) are to be used to find the "best" value of n , the 
0 

repulsive·exponent, from the various sets of shock data. When this 

is done, the resultant value of n can, for the WF solution, be used 

in Equation (104) to determine u 
0 

and in Equation (105) to detennine 

if the "condition" previously described is met. The equivalent MF 

. * solution uses Equations (106) and (107) respectively . 

Substitution of Equations (97) and ·(98) in Equation (96) 

gives (back) Equation (95) which, noting Equation (71), may be written: 

s 
6 2 p N 2 4 ] 

- ~2 ( Mo ) (x - 1) (135) 

Letting: 

* Equations (115)-(121) apply only when n 7 6 . Since it was shown 

that n > 6 for all the liquids considered, these equations were 

not of interesto 
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4 
2s 

this becomes after rearrangement: 

Nn 
M 

n-6 n 

µ
2 6 (n/ 6) n/n-6 [ C5 c2 n-2 4 

= ClECJ. n/6 - 1 (n-2)(n-3) (x - l) - C3(x -

(136) 

(137) 

In Equation (137) the system molecular parameters CJ,E · and 

n have been separated out; cl, c2 and c3 are reliably fixed constants. 

For the data set U. - µ. , Equation (4) may be used to produce the 
1. l 

set µ.- x. and least-squares techniques may then be used'to fix n 
1. l. 

for given values of a and E ("one-parameter fit" = lPF). By the same 

token~ these same methods can be used to (a) fix n and a for a 

given value of E ("two,...parameter fit" = 2PF'); (b) fix n and E for a 

given value of C5 (2PF); or (c) fix n , C5 and s , none being given 
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("three-parameter fit"= 3PF). It is clear that such a progression 

is equivalent to "increasing the number of adjustable parameters" in 

the theory. Confidence in the physical reality of the model is pro-

portionally decreased. 

However this may be, the 2PF's were carried out in every 

~'c 

instance to provide cross-confirmation of the lPF , while the 3PF was 

computed to provide a measure of the best fit possible for the func-

tional form being considered, i.e., Equation (137). As confirmed in 

almost all cases, the 3PF was found to be essentiall y i ns ens i t i ve t o 

n ; a large range of values of n fit the data equally well with 

different sets of cr and E: • The general approach is summarized in 

Table 10. 

For a given data set µ. - x. 
J_ J_ 

the residuals R. 
J_ 

for Equation 

(137) may be expressed:. 

n-6 n 
2 6 (n/6)n-6 0 c2 n-2 4 

Ri = µi - Cl E:O (n/ 6 - 1) [ (n-2) (n-3) (xi - l) - C3 (xi - l)] 

n 

(138) 

Of interest are the equations: 

3 E R: 
i 

J_ 

3n 
0 (139) 

a E R: 
i 

J_ 

= 0 
d0 

(140) 

* That is, if the 2PF's reproduced the assumed values of cr and E:, and 

gave the minima at the same n as the lPF, the latter would be 

additionally confirmed . 
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Table 10 

FITTING OF DATA--LIQUIDS 

Parameter Fit Fix Seeking 

1 cr' e: n 

2 e: cr, n 

2 cr e: 'n 

3 cr,e:,n 



-122-

= 0 (141) 

which suffice to determine the values of a, E: and n which minimize 

the sum of the squares of the residuals according to the principle of · 

(15) 
least-squares . The derivations and resultant relations for the 

lPF, 2PF's and 3PF are shown in Appendix X. 

Because an equation as complex as the implicit relation defin-

ing the desired value of n (Appendix X, Equation (X7))might have many 

roots, the one of interest (i.e., the one that minimizes residuals) 

might be difficult to locate. For this reason it was decided to index 

. through the entire range of n desired, incrementing by 0.1 at each 

stepo For each value of n the corresponding values of C5 and E: 

for each of the lPF, 2PF's and 3PF can easily be found (Appendix X). 

Also, for each value of n the sum-of-the-squares of the residuals: 

L = l 
i 

R~ = 
l 

l (µ~ -
• l 
1. 

__g_ n-6 n 
6 (n/ 6) n-6 [ <J c2 n-2 

ClE:C5 {n/6 - 1) (n-2)(n-3) (xi - l) 

(142) 

was foundo Of course, the value of n sought is that which gives the 

minimum in L . 

In order to assess the quality of the "fit" for any substance 

and to compare the relative quality from one material to another, two 

parameters were computed. The first is related to the "standard error 

of estimate"(lZl) S 
2 

, defiried as the root-mean-square of · the resi­
µ 

duals (deviations) in µ
2 , or: 
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= j I R~/m = 
. l 
l 

(143) 

where i= 1,2, · · · ,m m is the number of data points. This accounts 

for variations in the amount of data for the different substances but 

does not account for the fact that the range of µi might be numeri-

-.·~ 
cally higher for some subst~nces than for others • This was accounted 

for by finding the mean-square of µ : 

2 
µ (144) 

and dividing this into S 
2 

~ The resultant parameter, called 'the 
µ 

"error of the fit" s', is then: 

(145) 

Clearly s ' is a quantity that can be used to compare the results of 

one substance to another and gives an overall measure of the quality 

of the fit for the particular set of data. It fails, however, to 

account for the fact that s might be large in a given instance 

because of a large spread in the data. To account for this effect, a 

second parameter, called the "figure of merit" f was defined by: 

s 2 . /µ 
2 

' IL Im /· E: • 

f 
min µ min min = m~n (146) - -,= = 

E: 
s 2 I µ2 ./I); 

µ 

where the subscript "min" refers to the "best" fit possible with the 

given function, Equation (137). As previously mentioned, this (Lmin) 

is taken from the re9ults of the 3PF. The parameter f gives an 

indication of . how well the given solution compares to the "best" the 

* s · / f · For argon µi varies from 0. 8 to 3. 6 x 10 cm sec, while or Hg the 
range is from 0.6 to 1.0 x105 cm/sec. 
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theory can do considering the particular set of data. The main dif-

f iculty in the use of f is that it is independent of m (see 

Equation (146)). Consequently, for substances for which m is small 

(say 2 or 3), L . << L and f ~ 0 , although L is certainly small 
min 

enough to be considered reasonable. This occurs when the 3PF almost 

exactly goes through · the 2 or 3 points for a given substance, while 

* the lPF comes reasonably close to the points • In these cases the 

value of f is ignored. 

An examination of Equation (135) shows that as x + 1 , 

µ + 0 since the two terms in square brackets each + 0 . However, it 

4 is also clear that, if the (x - 1) term is ever greater than the 

n-2 respective (x - 1) term, another root must exist for some value of 

x > 1 . In this instance 2 µ. < 0 for values of x between 1 and 

** ~ (the value at the root ) and µ is imaginary (and therefore 

*";~* meaningless) in this region (see Figure 28) The function should 

*In general a "good" value of L ~ 1018 to lo20cm4 I sec4. If L . ~ 1012 
min 

to iol5cm4 I sec.4, because the 3PF is almost exact 9 it is clear 

that f ~ lo-3 to lo-8. 

** At x=~, µ=O and from Equation (17): 

u lim u lim 
µ 0 

0 = - 1 1 0 µ + 0 µ + 0 1 1--
x ~ 

This is the case mentioned earlie~, i.e., the limit expressed in Equa­

tion (17) and thus Equation (100) does not occur ~ Clearly the theory 
does not extrapolate to a realistic U

0 
in this case. It should be 

noted that even if XR=l, the extrapolation may not yield a finite 
value of U0 o In facb, generally, U0 + ±oo • 

*** 2 It is interesting to note that for 0 ~n < 3, µ > 0 for all x > 1 
and therefore that there is no second root .(i.e., XR = 1). Equation 
(135) (or Equation (95)) thus "exists" for all n2:_ 0 except for n=3 
where there is a singularity and for all x < XR (XR > 1) when n > 3 . 
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µ2 
X= I 

x 

Figure 28~ Roots of 2 
µ vs. x 
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An analysis of the coefficients in Equation (135) (see 

Appendix Y) shows that, for all but three conditions for two of the 

liquids considered, such an additional root exists, although in some 

instances it lies close to x = 1 . The root was determined for each 

value of n , for each of the fits, using a Newton-Raphson iterative 

scheme. The resultant recursion relation developed is (Appendix Z): 

n-2 (_§.) x4 + (_§_ - 1) x -
R. a R. a 

x XR. 
1 1 

(147) = -
- 4(.§_)X3 .Ri+l (n-2)Xn-3 

1 R. a R. 
1 1 

where a and B are given by Equations (97) and (98). These give, 

after rearrangement: 

B/a = (148) 

To facilitate the computational procedures all of the pertinent 

equations were programmed for use on an IBM 360/75 digital computer 

using FORTRAN IV language. For liquids the main program was called 

* PUFI in which the input data were m~ M, p , cr, E:, s 
0 

and the shock 

Using Equation (4), a preliminary calculation estab-

lished the data set µ.-x. Q Following this, the following set of 
1 l. 

computations were performed for each value of n from 6.1 to 15.1 in 

increments of 0.1 . For each of the lPF, 2PF's and 3PF, Equations 

(147) and (148) were used to detennine XR . For the 2PF's and the 

3PF the appropriate values of cr and E: were computed from 

* A listing is available from the ~uthor on request. 
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Equations (Xl7), (X20), (X34) and (X36) in Appendix X. The input cr 

and £ and these values were used in Equation (X7), Appendix X (to 

* . 
help detennine the roots of this implicit relation for n ) and in 

Equation (142) to determine L for all the fits. To help visualize 

the minimum of L a line plot of L vs. n was found in each case. 

After this, n was again incremented in the same way and a set 

of values of r were calculated (Equation (70)) for each value of cr 
0 

for each fit. This was followed by (a) the WF calculation of the dif-

f erence in the two sides of Equation (105) and the value of u 
0 

from 

Equation (104) and (b) the MF calculation of u 
0 

from Equation (107). 

This set was repeated for each of the lPF, 2PF's and 3PF . The last 

calculation was the computation of the MF value of cr given by Equa­

** tion (106) 

Because the choice of the increment in n (O.l) was arbitrary, 

*** another program called PUSC was prepared which was identical to 

PUFI in all respects except that n was incremented in steps of 

**** 0.01 The range of n was left variable but the number of incre-

ments (i.e., 90 as in PUFI) was held the same. 

After evaluating the results of PUFI .for each substance (which 

includes determination of e' and f which were not included in PUFI) 

*A root in the relation is indicated when, for successive values of 
n, the sign of the computed value of Equation (X7), Appendix X, 
changes from + to - or from - to + ~ 

**This computation depends only on n and is the same for the lPF~ 
2PF's and 3PF. 

*** Available from the author on request. 

**** In a later section it is shown that the need for PUSC is limited at 
best~ 3£V3n is shown to be small for such small increments in n • 
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the best values of n , a and s for each fit were found. Using 

these values~ a set of x, µ and U data was tabulated, using 

Equation (135) and Equation (4). From this tabulation, line plots of 

U vs. µ and µ vs. x were superimposed on the corresponding U-µ 

and µ-x data to nsee" how well the theory fits the data. To 

visualize the potential, ~(r) vs. r was tabulated and plotted for 

. * each fit from Equation (69) using a program called PUMP . 

* Available from the author on requestg 
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3. Results 

In order to check the computer program PUFI, a series of pre-

liminary calculations were performed on the same group of substances 

and same set of data* previously publishedC 9o, 42 ,l00, 64 , 60). A 

tabulation of the results is shown in Table 11 in which only the lPF 

was included. The values of n that give the best fit in each case 

are (essentially) the same as those reported(l6). In the current study 

a separate computation was made for each of the two initial states for 

argon. The two values of n .compare favorably (within 4%) with each 

other and the single value that would fit both data sets well would be 

~ 
n = 8.5 • This agrees with ~he single value of n used for argon in 

Reference 16. 

Generally speaking, the values of € 1 and f in Table 11 indi-

cate excellent fits. This was borne out by using the results in Table 

11 in the PUMP program to produce U-µ and µ-x plots for each 

material. These essentially reproduced the results in Reference 16 

(Figures 6-16) where excellent fitting of the data was obtained. 

After completion of the preliminary computations PUFI was 

applied to all of the liquids shown in Table 4. Because there are 

four fits for each run and a number of runs for each material (since 

there are various parameter sets for each; see Tables 7 and 9), a 

large set of computed results was obtained. Instead of detailing all 

these results in this do9ument the major features· 'of the computations 

* Additional data for N
2

, cc1
4 

and c
6
H

6 
were used in the current study. 
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will be described .for a single substance and the remaining materials 

appropriately summarized. Argon was chosen as the "test" material. 

It is the substance of most interest because (a) there are shock data 

available at four different initial states (if the theory is valid it 

should give the same value of n for any initial state for.the same 

substance), (b) it is monatomic and is therefore spherically symmetric 

(which is, in effect, assumed throughout the development of the model; 

see Figures 4-9), and (c) the pair potential has been investigated 

extensively and is probably better known than for any other material 

(the cr,e: sets used are probably close to the "true" physical values). 

The 5 cr,s pairs for argon in Table 7, along with the appro-

priate input data (Appendix S), were used in PUFI to determine the 

wrbest 0 fit of the theory to the data in each case. The results are 

shown in Table 12. 

For each cr,e: pair in Table 12, comparing results for the lPF, 

2PF's and 3PF~ it is clear that e:v and f should correspondingly 

decrease and increase for this progression because the number of 

* adjustable parameters increases (see Table 10) . This general condi-

tion serves as a self-consistency check on the fitting equations 

* The two 2PF's both have two adjustable parameters and either might 

give a better "fit"e The ];Jarticular order seen in Table 12 is not 

significant. 
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(Appendix X). The condition is met for the results in Table 12, 

* although the magnitude of the changes in s' and f are small . 

The relative usefulness of the lPF, 2PF's and 3PF was inves-

tigated by examination of the L vs. n plots. The results were typi-

cal of almost all substances studied; the lPF curve was very steep in 

the region of the minimum, the 2PF curves both had distinct minima but 

were much less steep than the lPF, and the 3PF curve was nearly 

** *** flat ' ~ This means that, for lPF's a distinct value of. n can 

be considered as the "best" value without ambiguity. For 2PF's this 

must be modified in that any of a range of values of n will give 

equally "good" fits. Fo~ 3PF's almost any val4e of · n (within the "flat" 

range) will give an equally "good" fit. For the lPF, L changed sig-

nificantly as n passed through the "best" fit (e.g., at n = 9.2 

for the set € 3.2si, E/k = 138.2°K). For the 2PF's, L remained 

* Argon is an exception in this case. Significantly larger differ-

ences occur for other substances. 

** ~ A sudden rise in L for n > 10.5 was a computer derived numerical 

artifact. Actually this portion of the curve does not exist because 

O in Equation (X34) in Appendix X depends on the root of a negative 

number, for these values of n . The computer simply converts the 

negative quantity to a positive one and continues the computation. 

This sudden rise in L for the 3PF is typical and occurs for nearly 

all substances. 

*** For some materials the portion before the sudden rise in L is 

"very" flat; 1 varying < 1/2% in this region. 



-134-

the same (within 1/2%) for the ranges n = 9.0 to 9.6 and n = 9.3 to 

9.7 respectively and varied very slowly even outside this range. For 

the 3PF, L changed ver7 little over the whole range of n , although 

for this particular example,not less than the second 2PF. Because of 

this behavior it was concluded that a critical test of the theory would 

be accomplished only if lPF values were considered. The 2PF's and 3PF 

simply have too much latitude in, the choice of n . 

In some instances the 2PF's gave results very close to the lPF. 

This was considered significant in that it strongly supports the ,value 

of n found in the lPF; the data are "uniquely" satisfied by the 

theory with the given parameter set cr, s and n • The 2PF's were 

considered useful in this context only; when agreement did occur this 

was noted in, the lPF results. 

An excellent example of the agreement of the 2PF's with the lPF 

is shown in Table 12 for the set cr = 3.28R, s/k = 138.2°K • The best 

values of n were 9.2, 9.3 and 9.5 for the lPF and 2PF's respectively. 

Further, the best values of cr and s/k for the 2PF's, 3.26R and 

0 · 118.8 K~ agree closely with the particular lPF input values above. 

This kind of agreement for argon is notable. 0 It does not occur for 

most substances. In fact~ examination of Table 12 shows that this 

agreement is not nearly as good even for argon with other parameter 

sets~ 

The 3PF was used only to determine 

f for the lPF .. 

L . 
min 

for the computation of 

An examination of Table 12 shows that in all cases the predic-

tion of C (= U ) in the WF solution is much superior to that in the 
0 0 
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~·~ 
MF solution . ·The value of 0 detennined from the "condition", 

Equation (106), is in all cases higher than the 0 values from 

Table 7. This "unrealistically" high value makes u 
0 

too high in 

Equation (107). On the other hand, if the (lower) values of 0 in 

Table 7 are used directly in Equation (104), reasonably good values 

of U
0

. result. In this instance the error in not satisfyi,ng the 

"condition" is measured by the residual (RE in Table 12) defined by 

Equation (105). The failure to meet this condition with mathematical 

exactness is accepted as a limitation of the modeL and/or potential 

** in the low pressure region 

Because the MF solution · "forces" values of 0 that are too 

high, only the'WF solution was considered for the remainder of the 

study. 

The steepness of the L vs. n for the lPF led to a determina-

tion of the value in using PUSC where n is incremented in values of 

'lo'dc 
0.01 (instead of 0.1 as in PUFI) From the PUFI output, the 

change in Ei and f with n for values near the minimum in L can 

be estimated. This is done in Table 13. The effect of the uncer-

tainty in the µ.-x. 
1 l 

data (1-5%) plus that in 0 (l-3%)and E: (5-20%) 

is expected to lead to an uncertainty in L of up to 20%, since 

L rv µ~ (see Equation (142)). However, since 
1 

* 

'"· 11/2 (E . s v quations 

This conclusion applies to all of the liquids studied. 

** Of course, a number of assumptions of the model (e.g., a "thin" 
transition region) may not hold as U ~ U 

0 

*** . Since this curve is as steep for argon as any of the other liquids 
the conclusions drawn here are considered conservative. 
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Table 13 

VALUE IN USING PUSC 

Data from Appendix S 

n 

9.1 

9.2 

9.3 

Substance: 

p : 
0 

a: 

c./k: 
~ µ : 

L . : 
min 

Argon 

1. 405 g/ cc 

3.28i 

138. 2°K 

O. 504 x 1011cm2 /sec
2 

~ l.55E21 cm4/sec4 

4 4 L cm /sec s ' f 

l.65E21 0.185 ~0.969 

l.59E21 0.182 ~0~987 

1. 87E21 0.197 ~o. 910 

/:m 

+ 0.1 

+ 0.1 

!::.s' M 

-0.003 +0.028 

+0.015 -0. 077 
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(143)-(14S))and f ~ L-l/ 2 (Equation (146)) the propagated uncer-

tainty should be ~10%. For values of E'~ 0.2 and f ~ 1.0 the 

uncertainties ~E' and ~f would be ~ 0. 02 · and ~ 0 .1 res pee-

tively. These are sufficiently larger than the corresponding values 

in Table 13 to lead to the conclusion that PUSC is not necessary. The 

effect of a change in n of 0.1 on E' and f is less than the 

inherent variability in the computation of E' and f . 

A careful examination of the U-µ plots (and of Figures 7, 8, 

11, 12 and 14 of Reference 16) showed in most cases that, as µ ~ 0 , 

U drops very rapidly. In fact, in these cases U ~ 0 . This is con-

sistent with the existence of the spurious root of Equation (135) at 

* For those cases in which ~ = 1 (i.e., no spurious root) ~ > 1 

** This is required by Equation (100) when the U + -too as µ + 0 . 

"condition", Equation (101), is not exactly met. This difficulty is 

further aggravated by. the following . consideration. After comp~tation 

of µ for a given x from Equation (137), U is computed from 

Equation (4): 

u = 
µ 

1 
1 

(4) 

x 

As x ~ 1 and therefore µ + 0 , Equation (4) becomes numerically 

unstable in that either the numerator or denominator approaches the 

~~ 
It was shown previously that, in this instance, u 

0 
0 . 

** When there is no spurious root and n > 6 (see Table 14), it can be 

shown from Equation (~00) that only the+ sign obtains. 
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* limit faster. In the former case · U + 0 in the latter U + +co 

When U + +oo the U-µ curve exhibits a minimum at some small value 

of µ ; an example of this type of behavior has been previously 

observed(lZB). 

** The instability in the use of Equation (100) is accentuated 

by the fact that, unless the value of 0 specified in the MF solu-

tion is used (Equation (106)), µ and x do not approach 0 and 1 

respectively in Equation (137) at the rate necessary for U+U 
0 

Equation (4). That is .to say, the numerical instability in the 

in 

extrapolation aggravates the theoretical instability in the WF solution. 

For argon or for any other liquid, no solutions near n 6 

were found. Equations (115)-(121) were, consequently, not used. 

For some liquids the data selection process discussed pre-

viously was decided by comparison of the s' and f values with and 

without the "questionable" .data. This was usually sufficient to make 

a decision. 

Examination of the lPF'sin Table 12 shows that the last param-

eter set a = 3.28A, s/k = 138.2°K *** gives the best results (minimum 

sv and maximum f) although just barely. In fact all the lPF' ·s are so 

close it is difficult to distinguish between them; in light of the 

previously estimated 10% uncertainty in s' and f , the maximum 

* Note that this behavior is a numerical artifact. Even if the theory 
extrapolated to U exactly (i.e., the condition in Equation (101) was 

0 
met), small errors in the values of µ and x would eventually cause 

the same resulL 

**rn some instances the effects tend to counteract each other. 

***rt is notable that these are the latest (Table 7) and "best" <74 ) 

values of a and s • 
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variations in s' and f c~ 0.1% and ~ 1% respectively) are very 

small. However, because there is no reason not to take the best fit, 

the indicated parameter pair was chosen. The significance of this 

choice shows up in the WF determination of u 
0 

For the chosen pair 

this value is within 2% of C , while for the others the error varies 
0 

* These changes in s', f from 5 - 17% and U 
0 

occur for changes of 

5% and 38% in 0 and s/k respectively. ' Clearly, s and f are 

weak functions of 0 and (especially) s/k while 

function of (especially) cr and s/k . 

u 
0 

is a strong 

Based on this analysis of argon in Table 12, only the lPF, WF 

solutions for PUFI need be considered for the other liquids. Accord-

ingly, PUFI was run for all the materials in Table 7 and where a choice 

existed the "best" parameter pair ~as chosen. Because of the TM cor-

relation previously discussed (see Equation (134)), another set of 

independently determined s/k values exists (Table 9). The 0 values 

*~~ of the "best" pairs in Table 7 were combined with these values and 

PUFI was run for these values. The overall results appear in Table 14. 

The values of s ' and f show that all the fits are excellent 

with the exception of ethyl ether and perhaps water. The theory fits 

the available data closely for adjustments in only one parameter, n • 

* Argon is exceptional here in that U is generally not as close to 
0 

C for most other liquids (see Table 14). 
0 

** Except for A-II and Hg~ 
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Based on E:' and f a choice between s/k determined from 

the literature (L) or from the melting point correlation (C) is dif-

ficult. Except for mercury and water the change from L to C 

results in changes in sr and f that are within the estimated 10% 

uncertainty in the determination of s' and f . Furthennore, no 

trends are apparent (i.e., the change from L to C does not always 

raise or lower Ev or f). -That the large changes in s/k do not 

greatly affect s' and f supports the previous conclusion that the 

latter are weak functions of the former. 

An examination of the sound velocity predictions (U ) in 
0 

Table 14 shows that the correlated values of s/k tend to yield u . 
0 

values closer to C giving a preference to this set. However, it 
0 

should be noted that both L and C 

except for argon, mercury and water. 

consistently give u > c 
0 0 

For L , U is, on the average, 
0 

30% greater than C ; for 
0 

c the figure is 20%. This occurs even 

though cr is lower than the value required by the MF solution (Equa-

tion (106) and the fact that RE < 0 , Equation (105)) and s' is 

* (generally) lowered by the s/k correlation ; both of these effects 

tend to lower U (see Equation (104)). It· is clear that U is not 
0 0 

lowered sufficiently. It is interesting to note that since u a: cr 3 
0 

(Equation (104)), a 20% reduction in U
0 

would be effected by only 

a. 6% reduction in cr Q However, no (physical) justification for such 

a reduction is apparent. 

Note that in going from L to C , n generally increases. This 

should lead to a decrease in cr for the MF solution which, in turn, 

leads to an increased negative value of RE • This effect is seen 

in Table 14. 
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Using the results for the correlated values, it is desirable to 

choose a single ("common") value· of n for argon and determine how 

well that value fits all the argon states. To do this, the ' results in 

Table 14 for argon were weighted by the number of points in each state 

as shown in Table 15. From the resultant "conunon" value (9.2) the 

fits for A, A-II, A-III and A-IV were re-evaluated. The resultant 

values of ~'and f , also shown in Table 15, do not indicate as good 

";~ 

a fit as the corresponding data in Table 14 • However, the fits are 

reasonable as demonstrated by Figures 29 and 30, where the theory with 

the common value of n is compared to the data for all four argon 

statesv 

To generally demonstrate the excellent fits in Table 14 for 

all the other liquids, the theory with the listed values of n (for 

the C results) is compared to the data,in Figures 31-34. 

* As indeed they should not, since the set in Table 14 represents the 

"best" fits. 
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F31 ARGON 
Di ARGON-IT 

0. I ~ (A - nI ) . 
8·~-(A) 

f!J ARGON-ill 

n = 9.2 
9.2 
9.2 
9.2 

(A-ill) 
E3 ARGON-nz 

(A-II) 

0.1 0.2 0.3 0.4 0.5 0.6 . 

µ CM/SEC x 10-6 

Figure 300 U vs. µ Fit of Theory for Common Value of n 

for Argon 



0.9 

0.8 

0.7 

~ 0.6 
0 

x 
u 
w 
zo.5 
~ 
u 

::> 0.4 

0.3 

0.2 

0.1 

~ 

DI 
(} 

[] 

. El 

e 

0.1 0.2 
µ, 

Figure 31. u vs. µ 

-147-

MERCURY n = 10.1 

NITROGEN 7.0 

HYDROGEN 6.5 

CARBON DISULPHIDE 10.6 

Co 

0.3 0.4 0.5 
CM/SEC X 10- 6 

Fit of Theory--Hg, N2 , H2 , cs 2 
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C. METALS 

Inasmuch as metals have been described as "ions in a bath of 

electrons''C37 ,l7 , 29 ,i2 ~>, it would be expected that the net inter-

molecular forces would differ from those of insulators such as were 

considered in the last section. This is evidenced by the long-range 

oscillatory (LRO) behavior of metals predicted theoretically (l30' 24 ' 17.' 

27 , 3o, 73> and deduced from experiment< 25 >. Nevertheless, a number of 

treatments either do not consider iRo behavior(lJl, 7G,llS) or find the 

oscillations to be of much lower amplitude(Z7 ,JO) and/or at much 

. (30) . . . (25 26 28 75 73 31 129) larger distances than is generally implied ' ' ' ' ' ' • 

Furthermore, the differences between the potentials with and without 

LRO behavior need not be large( 7S), especially in the repulsive region 

which is, of course, where most of the shock data considered in this 

study lie. 

On this basis the n-6 potential, Equation (65) or Equation 

(69) without LRO behavior was used in applying the theory to metals. 

* This is done without apology although it is recognized that this 

choice~ at best, only represents an effective (ion-ion) potential ·that 

is a reasonable approximation to the true state of affairs. 

Use of the same potential function as in the case of liquids 

leads to consideration of the WF or MF solutions as before~ Further, 

this approach leads to concern over the parameter pair preferred among 

(CT,€), (CT,r ), (CT,C b), etce for describing the potentiale o a 

* It is not clear that any other potential function would give better 

results, although an investigation of Equations (63) and (64) in 

this role are recommended in a later section. 
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1. Method of Approach 

Values of cr, r and s for a number of metals have been 
0 

f . f (76,25) 11 f deduced rom an analysis o X-ray measurements as we as rom 

several analytical methods including molecular dynamics techniques( 26 ' 

31), model pseudo-potential calculations( 24 ' 27 ' 132 , 73), and lattice 

dynamic calculations(30). In addition, Fontana(llS) predicted values 

of Cab for the .alkali metals using the theory of angular momentum. 

The available data of interest are compiled in Table 16. Note that 

data only exist for 7 of the 23 metals considered in this study. 

* The data in Table 16 show variations in cr of from 0-14% 

* (average~ 7%) and in s/k of from 21-48% (average~ 37%)! Since 

the theory is approximately proportional to cr6 and s (see Equa­

tion (95)) the propagated error in µ 2 could be~ (1.07) 6 (1.37) ~ 2.0. 

The associated error in µ would be ~ 40%. 

The implication is that, unless one or the other of the sets 

*~~ of data is shown to be superior , the choice of a·preferred parameter 

pair may be academic. There is no way to pick the best numerical 

values. 

* This did not include Reference 27 which "appears" to give somewhat 

unusual values of cr and s Inclusion of this data would amplify 

· the conclusions reached. 

** No such preference is immediately obvious from an examination· of the 

methods used in developing the data in Table 16. 
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In Table 16 it may be noted that, as opposed to the case of 

liquids (Table 7), r data are available. Examination of Equation 
• 0 

(70) shows that these values along with 0 fix n for the potential 

being considered. The results of preliminary computations of this 

type are shown in Table 17. The values of n in column 5 satisfy 

the set of parameters 0 and r 
0 

That is, for the given values of 

* n , Equation (72) goes through 0 ·and has a minimum at r 
0 

This 

minimum is not necessarily of depth € From Equation (132) it is 

clear that for this set (n, 0 and r ) the long-range attractive 
0 

behavior Cab and well-depth E are directly proportional to each 

other, neither being fixed. 

In line with the wide range of values of 0 and r , a wide 
0 

** range of values of n results As before, the question is: Are 

any of the values consistent with the shock data? This was tested by 

applying PUFI using the available 0,€ data (Table 16 and columns 2 

and 6 of Table 17). The results, shown in column 7, indicated that in 

all but two cases n .S. 6.1 and that there is no general agreement with 

the values in column 5. Potential agreement only occurs for those 

instances for Na and K where n < 6 (in column 5). However, in 

*** every case the fits were from poor to very poor (i.e., €'large, 

f small) for n = 6.1 , implying that the minima are not near n = 6 . 

* 

** 

In opposition to satisfying 0 and Cab (as was the case for 

liquids) this pair is ~ore desirable in that both o and r are 
0 

more nearly on the "repulsive" side of the potential. 

It is notable that for Na and K some of ~he parameter pairs lead 

to n < 6 This is discussed in a later section. 

*** Even for Pb where minima in L are found, the resultant fits are 
generally poor. 
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To test this, the WF solution for · n = 6 (Equations (115)-(119)) 

* was used in another computer program (called UNFI ) which parallels 

PUFI in essentially all respects except that there are one zero param-

** eter fit (OPF), two lPF's and one 2PF in this case Application of 

*** UNFI to selected cases gave poor fits in all cases except for Pb 

**** for the OPF (column 8, · Table 17) This confirmed the notion that 

the minima of PUFI were considerably < 6 . 

As in the case of liquids, values .of Cab' a and s fix n 

through Equation (132). Using the data in Table 16, n was compu t ed 

for the alkali metals. The results, shown in columns 11 and 14 of 

Table 17, satisfy the particular c b' a, s . a 
parameter set indicated. 

Although the variation in n for each substance is reduced consider­

***** ably the results must ultimately be compared to the shock data . 

This was done in a less restricted way than previously by using · the 

****** 2PF with Cab fixed (see Appendix U ; the program was called FIFI ), 

and finding ·both n and cr • The results are shown in columns 15 and 

* Available from the author on request. 

** The recursion relation (equivalent to Equation (147)) for the spurious 
root of Equation (115) at x= XR is shown in Note 1 of Appendix Z. 
The condition for existence of the root was indicated in Appendix Y. 

*** The fits in this case. were fair as would be expected from the values 
of n determined by PUFI (column 7, Table 17). 

**** The OPF in UNFI corresponds to the lPF in PUFI . 

***** The adjusted values of Cab (column 14) do not greatly affect n . 

****** Available from the author on request. 
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16 of Table 17. Except for some of the values for Na, the differences 

in n (compared to column 14) and (J (compared to column 2) are large. 

Substitution of these values into Equation .(132) along with the values 

of Cab from column 9 gives the values of s/ k shown in column 17. 

Comparison within the "actual" values (column 6) shows that, except for 

Rb, large differences exist. 

From these results it is clear that, as in the case of liquids, 

satisfaction of Cab' cr and € is not consistent with the shock data 

even when the value of cr in the latter case is not restricted. Because 

of this, attempts to satisfy long-range attractive behavior (i.e., Cab) 

were abandoned and the error in doing so was accepted as an inherent 

limitation of the n-6 potential. As before, for strong comP,ressive 

states, the effect of this will be small since the attractive forces 

will by comparison be small. 

The preliminary calculations show that (a) the cr , r 
0 

data are 

internally inconsistent and give values of n not consistent with the 

cr,s set and the shock data, (b) consideration should be given to 

n < 6 , (c) satisfying long-range attractive behavior (Cab)) cr and s 

simultaneously improve~ internal consistency .but does not improve the 

agreement with the shock data and (d) ignoring long-range attractive 

behavior may not introduce large errors. Considering these and noting 

.. ~ 
that, in any case cr)s data are available for only 7 metals (of 23 

being considered), it was concluded that although cr,s is probably the 

* Cab data are only available for 4 metals. 
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preferred pair the best numerical values to use are unknown. 

For liquids, a simple correlation of s/k with melting points 

was found following ChapmanC126)(see Equation (134)). Since the original· 

paper(126) dealt with liquid metals, it would appear that such a cor-

relation should also hold for present purposes, thus giving a reason-

ably consistent physical basis for (at least) one molecular parameter 

* for each material • As there is no reason why the correlation pre-

viously established in Equation (134) is not as accurate as any other,-

it was used to generate the data set in Table 18. For Al, Pb and the 

alkali metals, these are compared to the corresponding values from 

Table 16. It is notable that the correlated values fall generally 

** within the range of the "reported" values 

This correlation was tested using a modification of the PUFI pro­

*** gram described earlier. This program, called PUFF , differed only in 

that the index n **** ran from 3.1 to 12.1 instead of from 6.1 to 15.1 

***** This was done to investigate values of n < 6 as previously 

*As previously indicated cr,s data are available only for 7 metals. 
*~~ 0 0 For Na and K the correlated values 559.9 Kand 507.1 K fall very 

close to those reported by Ling(76), 563.6°K and 517 . 2°K. 

***Available from the author on request. 
***~'( 

Equation (147) was again used to determine the spurious root of 
Equation (135). The condition for the existence of the root for 
3 < n < 6 was indicated in Appendix Y. 

***** Although the potential function exists for all n > 0, examination 
of Equation (97) and Equation (96) shows a singularity at n = 3. 
Furthermore, Equation (105) for the WF solution and Equations (106) 
and (107) for the MF solution all have roots of negative numbers for 
n < 3. For these reasons only values of n > ~ . were considered in 
PUFF. (Actually, as previously noted, Equation (96) (or Equation 
(95)) "exists" for 0 ~ n < 3 and val ues in this region could have 
been considered. Although this proved to be unnecessary for the WF 
and MF solut i ons (see Table 19) this was not the case for the SF 
solution discussed in the following sections.) 
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Table 18 

c./k vs. T CORRELATION--METALS 
M 

From Table 16 
,/""... 

T -
0 c T-°K 

r \ 

Structure 0 0 
Substance M M t./k- K c./k- K 

Cu f cc 1083. 0 1356.1 2038.0 

Ag 960.8 1233.9 1855.0 

Au 1063. 0 1336 .1 2008.0 

Co 1495.0 1768.1 2656.0 

Ni 1455.0 1728 .1 2596. 0 

Pd 1549.4 1822.5 2738.0 

Pt 1773.5 2046.6 3074.0 

Al 659.7 9932.8 1403.0 733.3-1198.0 

Ca 842.0 1115.1 1678.0 

Pb 327.4 600.5 904.8 877. 2-1188. 2 

Li bee 186.0 459.1 692.7 392.7-2052.0 

Na 97.5 370.6 559.9 271. 6-599. 0 

K 62.3 335.4 507.1 320.0-580.2 

Rb 38.5 311. 6 471.4 241. 7-408. 4 

Cs 28.5 301. 6 456.4 236.7-707.8 

v 1710. 0 1983.1 2979.0 

Nb 2500.0 2773.1 4164.0 

Ta 2996. 0 3269.1 4908.0 

Cr 1890.0 2163.1 3249.0 

Mo 2620.0 2893.1 4344.0 

w 3370.0 3643.1 5469.0 

Zr 1857.0 2130.1 3199.0 

Ba 725.0 998.1 1501.0 
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suggested. Because an independent evaluation of 0 was not available, 

only the 2PF (with s fixed) was considered with PUFF (see Table 10). 

The results are shown in Table 19. 

As indicated by the preliminary calculations, solutions do 

exist for n < 6 (see column 3). Comparison of the corresponding 

values of £' and f (columns 13 and 14) with those determined in 

Table 14 shows that the fits are generally adequate, although not 

excellent; the low values of f indicate that the solutions are not · 

equal to the "best" the theory can do. 

For fee metal~ the values of 0 from the 2PF (column 5, 

Table 19) appear to be reasonable; for Al and Pb they generally agree 

with the available data in Table 16. The corresponding WF solution 

gives values of U in good agreement with C in all but one case 
0 0 

(calcium). The differences range from 0.2% (copper) to 13.4% (cobalt), 

the average being 6.3%. These are clearly superior to the MF solu­

tions which consistently give values of U that are too high. 
0 

On the other hand, for bee metals, the values of 0 given by 

the 2PF are low at least for the alkali metals (see Table 16), and the 

WF solution gives low values of U 
0 

Although the MF solution gives 

high values of U for the alkali metals, it gives values in very good 
0 

agreement with C
0 

for the remaining materials excepting barium. The 

differences range from 0.8% (chromium) to 10.1% (tungsten) with an 

average of 3.6%. 

These results are generally encouraging in that they indicate 

that the melting point correlation for € may well be physically 

reasonableo However, such a conclusion would be premature in light of 
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the previously discussed objection to the 2PF; i.e., it is not dis-

criminating enough in choosing a distinct "best" value of n . 

Examination of the L vs. n plots for the PUFF solutions in Table 19 

shows that indeed in every instance, a range of values of n will 

give equally "good" fits. 

Even with the (limited) success of the melting point correla-

tion, it was concluded that the preferred cr,c pair for metals is 

generally unknown. Further, since the objective with metals i~ 

limited to finding an "effective" potential only, it is not clear 

that real values of a and c are best. This difficulty is avoided 

by use of the SF solution discussed previously. In this instance, 

the sound velocity c (= u ) 
0 0 

is considered as a valid data point in 

the set of shock data available and the theory is "forced" through 

this point by eliminatiqn of a and c between Equations (96)-(98), 

(106) and (107). The resulting expression, Equation (108) , only. 

depends on one molecular parameter, n . Because of this only lPF's 

* are now possible and,. hopefully, an unambiguous distinct choice of 

n will result. This will~ of course, be determined by the success 

of Equation (108) in fitting the shock data. This is discussed in the 

following sections~ 

* Because of t~e mathematical development, Equation (108) intrinsi-

cally depends on only one molecular parameter (n) and one thermo­

dynamic parameter (U ); 2PF's and a 3PF are not possible. 
0 
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· 2. Treatment of Data 

Equation (108) with a specified value of u 
0 

is to be used to 

find the "best" value of n from the shock wave data. Since it is 

anticipated that values of n both greater and less than 6 will be 

examined, the SF solution for n = 6, Equation (122), will also be 

considered in the following developments. 

Equations (108) and (122) are both in the functional form pre-

viously considered for liquids, i.e.,µ vs. x . However, both contain 

U which suggests (temporary) consideration of the Hugoniot in the 
0 

form U vs. x . This · can be done by eliminating µ using Equation 

(4). Equations (108) and (122) become: 

u2 u2 (-2-) (~)2 
n-2 1 4 x - x - 1 

0 n-6 x-1 [ n- 2 4 ] (149) 

u2 U2(1_) (~)2 [x4 
4 

l] Q.n x - x -
o 2 x-1 4 

(150) 

Because of the SF development it is necessary that 

U +(exactly) U as x + 1 in Equations (149) and (150). Therefore 
0 

no theoretical instability occurs in the computation as x + 1 

However, since there are two singularities at x = 1 (one for each 

** (x-1) factor in the denominator) , it is clear that the numerical 

instabilities previously discussed with liquids, still exist. 

* Taking the limit of Equations (149) and (150) as x + 1 yields 

U = U in both cases. 
0 

** There is also a singularity at n = 6 in Equation (149). Of course 

Equation (150) is just the result of removing that singularity by 

finding the limit of Equation (149) as n + 6 . See Appendix R. 
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To assure computational accuracy to as low a value of x as 

desired, Equations (149) and (150) were expanded in a Taylor series in 

the interval 1 ..:S. x < 2 (see Appendix AA). The number of terms in the 

expansion was chosen to give accuracy to at least 5 decimal places. 

The resulting expressions for n # 6 are: 

* where : 

and: 

u2 = u2 
f (x,n) 

0 
l_:s.x<2 

+ (n-3) (n-4) (n-5) (x-l) 3 {l + (n-7) (x-l) (l + (n-8) (x-l) 
3 4 5 6 7 

n-16 }] 0 
• • (1 + <-r:s-)(x-1)))))))))) 

u2 
n-2 

U2(_L) (~) 2 [x - l 
o n-6 x-1 n - 2 . 

x
4- 1 

4 ] ' x > 2 

For n = 6 the equivalent expressions are: 

* 

u2 = u2 g(x) 
0 

1 < x < 2 

(151) 

(152) 

(153) 

(154) 

It may be noted that the singularity at n = 6 has also been (fqr-

tuitously) removed in the development of Equation (152). This 

implies that f(x,6) should be equal to g(x) in Equation (155), 

a limiting process not being necessary. 
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2 [ 5 11 2 1 3 g(x) = x 1 ·+ 3(x-l) + 12 (x-l) + 10 (x-l) 

{ 1 1 1 1 1 
x 1 + (x-1) (- 6" + (x-1) (21 + (x-1) (- 56+ (x-1) <126 + (x-1) (- 152 

1 
+ (x-l)(3003 + 

1 
(x-l)(- 4368 + 

1 -1 
(x-l) (6188 + (x-l) (8568 

1 
+ (x-l)(ll628 + 

-1 
(x-l)(l5504 + 

1 
(x-l)(20349 + 

-1 
(x-l)(26334 

1 
+ (x-l)(33649 + 

-1 
(x-l)(42504 + 

. 1 
(x- l) ( 53130 + 

-1 
(x-l)(65780) 

))))))))))))))))))))}] '(155) 

and: 

4 
x - l] ' 

4 x 2- 2 (156) 

Examination of Equations (152) and (155) shows that the singu-

larities have been removed and the computations should be stable near 

In order to be consistent with prior fits, Equation (4) was used 

in Equations (151), (153), (154) and (156) to recast the Hugoniot in 

* the µvs. x functional form. This resulted in, for n i · 6 : 

* Note that this step introduces no singularities since the denominator 

of Equations (157) and (159) cannot vanish (i.e., x ~ O). 
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2 u2(-1)2 f (x,n) l~x < 2 µ = 
0 x (157) 

µ2 U2(_2_) 
n-2 

1 4 x - x - 1 
x .2: 2 = [ .n - 2 4 ] o n-6 (158) 

and for n 6 

1 ~ x < 2 (159) 

x .2: 2 (160) 

Using least-squares fitting techniques Equations (157)-(160) can be used 

to find the "best" value of n from the U. - µ. data converted to 
l. 1. 

µ.- x. using Equation (4)Q For this data set the residuals R. are 
l. l. 1. 

for n i= 6 

R. 
1. 

x - 1 
µ z. _ u2 < i ) 2 f < ) --- x.,n 

1 0 x. l. 
1 < x. < 2 

- l 

and for n = 6 

2 R. = µ. -
1. l. 

2 R. = µ. 
l. ]. 

The equation of 

l 

n-2 _ 
1 

U2(_2_) [-xi_· __ 
o n-6 n - 2 

x - 1 
)2 U2( i g(x.) 

0 x. l. 
l. 

u2 (~)[x~ Q.n ;x .. -
0 l. l. 

interest is: 

d l: R~ 
i l 

dil 

4 
x. - 1 

l. ] 

4 

1 

4 
- 1 x. 

l. ] 
4 

= 0 

x. > 2 
l. -

< x. < 2 - l. -

x. > 2 
i-

(161) 

(162) 

(163) 

(164) 

(165) 



-169-

in which the appropriate equation for R. 
1 

is to be used. Equation 

(165) should fix the value of n which will minimize the sum of the 

squares of the residuals(lS). 

Formalization of this procedure with Equations (161)-(164) 

will lead to complex, implicit functions for n having many roots. 

The one of interest might be difficult to find. Therefore, as was 

* done previously for lPF's, n. was indexed from 0 to 15 in incre-

ments of 0.1 and the sum-of-the-squares of the residuals found from: 

L = I R2 = 
i i 

for n ':f 6 and: 

L = I R2 = 
i l 

x - 1 2 2 
\ {µ2. _ U2( i ) f( )} 1 < x. < 2 

- 1 
l -- x.,n 
. 1 0 x. 1 
1 1 

x -
I {µ: - U2( i 
• 1. 0 x. 

1 
2 2 

) g(x.)} 
]. 

1 1 

4 
x. - 1 2 

1 4 J} . x ~ 2 

1 < x. < 2 
- 1 

x. > 2 
1-

(166) 

(167) 

(168) 

(169) 

for n = 6 The desired value of n is clearly that which gives the 

lowest value of 1 ~ the appropriate equation being used . 

Following exactly the approach used in the assessment of 

liquids, the same two measures E' and f were used to measure the 

quality of the "fit". By definition (Equations (143)-(146)): 

* The possibility of solutions with n < 3 was anticipated. 
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-
e: ' /1/m I 2 

µ (170) 

and: 

f IL min /L (171) 

Although the first parameter can be determined directly from the com-

putations, the second cannot, since 1 . is 'unknown. 
min 

In the WF or 

MF solutions 1 . is taken from the 3PF (the "best" the theory can 
min 

do) but for the SF solution there is no counterpart 3PF. Therefore 

L . was (somewhat arbitrarily) taken as the minimum of the 3PF found 
min 

previously with PUFF. This should give a direct comparison (at least 

with regard to f) with the results in Table 19. 

The limitations and difficulties in the use of e:' and f 

discussed previously apply in this case also and care in interpreting 

results is required. 

In the case of liquids it was possible to show that a 

spurious root could exist in the µ
2 vs. x relation (Equation (135)) 

for all the materials of interest, and the function was "cut-off" at 

the value of the root XR . Examination of the SF solution equations 

in the present case (Equations (108) and (122)) indicates that the 

same behavior might occur near x = 1 . However, it was shown (Note 

1 of Appendix Y) that no second (spurious) root of these equations can 

* exist for all x > 1 , n .2:. 0 No computations of XR were 

* It is also shown that there are no singularities in the SF solution 

and therefore that it "exists" for all x > 1 , n .2:. 0 e 
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As in the case of liquids, a computer program was written to 

carry out the computations. For metals the main program was called 

** FIFO in which the input data were m, M, p , s, U 
0 0 

and the shock 

data U.-µ .. Preliminary calculations consisted of a computation 
l. l 

of x. (using Equation (4)) iand U./U for each U.-µ. pair. The 
l l. 0 l. 1. 

following computations were then made for each value of n from 

0.1 to 15.1 (in increments of 0.1). For n ~ 6 , cr was calculated 

from Equation (106), r from Equation (70), and s from a rearrange­
o 

ment of Equation (107) using the input value of u 
0 

For n = 6 the 

values of a , r and s were determined, respectively, from Equa­
o 

*** tion (120), the limit of Equation (70) and a rearrangement of 

* It may be noted that the Taylor series expansions, Equations (157) 

and (159), and not Equations (158) and (160) (the counterparts of 

Equations (108) and (122)) are used for computations for 1 < x < 2 . 

Although these equations are numerically (and theoretically) stable 

(the expansions can be shown to be· convergent for all n .?:_ O), and 

the associated pair for U must extrapolate to U (see Equations 
0 

(151) and (154)), the fact that no spurious root· exists in Equations 

(108) or (122) helps assure that Equations (157) and (159) have no 

anomalies (i.e., they are "well-behaved") in the neighborhood of 

x = 1 . 

** A listing is available from the author on request. 

*** 
lim 

n -+ 6 
r 

0 
= lim (n/6)l/n-6 

n -+ 6 

1/6 a= e a 1.18140 
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Equation (121). For general comparison a residual computation 

modeled on Equations (166)-(169) was made for U , using Equations 

(151)-(156). The appropriate equation was dependent on n and the 

particular value of x. . 
1. 

This was followed by a determination of the 

(more significant) residuals from Equations (166)-(169), the equation 

being used according as n ~ 6 or n = 6 and x. < 2 or x. >· 2 . 
1. - 1. 

The last two computations made were the standard error or estimate 

S 
2 

(see Equation (143~) and the "error of the fit" e: from Eqµation 
µ 

(170). 

To ·help visualize the minimum of the summed residuals squared 

* a line plot of L vs. n was determined for each substance • 

Based on the results obtained with liquids and the general 

"sharpness" of the L vs. n plots for the current materials, an 

increment finer than O.~ in n was not considered. 

After evaluating the results of FIFO for each material (includ-

ing f which was not included in the program) the best value of n 

and the corresponding values of a and e: were found. Using.the 

former in Equations (151)-(153) along with Equation (4), a set of 

x, U and µ data were tabulated. From this, line plots of U vs. µ 

and µ vs. x were superimposed on the corresponding raw data to 

visualize the fit. Using the cr and e: values, ¢(r) vs. r values 

were tabulated using Equation (69) and subsequently plotted using a 

";~* 
program called FOMP 

* For comparison, the .residuals in U were also plotted on the .same 

sheeto 

** Available from the author on request$ 
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3. Results 

FIFO was applied to all of the metals shown in Table 4 and 

the summarized results are listed in Table 20. 

The values of €' and f obtained show that, except for Ca, 

Cs and Ba, all of the fits are excellent and some are truly outstand­

ing. The SF theory fits the available data closely for adjustments 

in only one parameter, n . 

A comparison of these results with those in Table 19 for PUFF 

shows that FIFO generally gives a much better fit; f is considerably 

increased for all but two cases (Cs and Ba) and E' is decreased for 

all but these two cases and for Pd. Since FIFO uses a lPF the diffi­

culty in choosing a distinct value of n encountered with the 2PF in 

PUFF should not occur. Examination of the 1 vs. n plots for the 

solutions in Table 20 showed that .this was the case; the "best" values 

of n were sharply defined. 

For f cc metals the values of n are close to those found with 

PUFF (Table 19). That solutions exist for n < 6 is clearly reit­

erated. The values of cr found (column 3) appear reasonable, although 

they are generally higher than those found in Table 19. For Al and 

Pb the cr are notably higher than the "reported" values (Table 16). 

On the other hand the ·€/k values in Table 20 are consistently and 

considerably below botn those in Tables 18 and 16. They do not appear 

to be low by any single factor. The singular result for Ca is consi­

dered in the following discussion~ 

For bee metals the values of n are much . less than the cor­

responding values found with PUFF (Table 19). They are also generally 
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~·c 

below the values just found for the fee metals • It was previously 

shown (Appendix I) that the potential chosen for this study (Equation 

(69)) exists and is monotonically "harder" for all n from n = 0 

** to n 00 This should also be the case for the Hugoniot equation 

for the SF solution (Equation (108)) which, despite the apparent singu­

*** larity at n = 2 , wa~ shown to "exist" for all n > 0 • However, 

the condition for extrapolation to U (Equation (101)) leads to 
0 

Equation (106) for a which has roots of negative numbers for n < 3 

"lc*-lc* 
(as previously pointed out in the discussion of PUFF) Since this 

equation is used to eliminate a in the SF solution development, it 

may be speculated that Equation (108) is not "well defined" under 

****'J~ these conditions Although this point is moot, it is clear that 

a is "not defined" for all n < 3 arid values were not listed in 

* The bee metals have much "softer" potentials than the fee metals. 

*-le 
The only mathematical difficulty would appear to occur at n = 6. 

This was taken care of in the development of Equation (73). 

*** As shown in Appendix Y (Equations (Y49)~(Y53)) 
tion (108) becomes : 4 

µ2 = 1. UZ[x -1 _ ~n x] 
2 0 4 

when n = 2 Equa-

(Y53) 

It can be shown that the n-6 potential (strictly) exists for all 
n .?:_ 0 only when a and s are independently specified. If a 
is fixed by Equation (106) the potential is unrealistic when a is 
unrealistic, i.e., when 0 < n ..:s_ 3 . 

***'i<* Examination of Figures 37-39 and 41 shows that the U-µ Hugoniot 
curve has a decreasing slope as x + 1 (µ + O), when n ..:s_ 2 . As 
this contrasts with all prior results (which indicate an increasing or 
(at least) constant slope as x + 1) anomalous behavior might be 
indicated for n ..:_ 2 8 This occurred for Ca (for fee metals) and Li, 
K, V and Zr (for bee metals) as noted in Table 20. 
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~~ 
Table 20 • Since s depends directly on 0 (Equation (104)) it was 

"not defined" in these cases either. This affected Rb, Nb, Ta, Mo and 

W as indicated in Table 20. 

For the remaining metals (Na, Cs, Cr and Ba) the values of 0 

found are reasonable, although they are generally higher than those 

found in Table 19. For Na, 0 is somewhat higher than the "reported" 

values in Table 16, although the corresponding figures for Cs are 

fairly close. As was the case for the fee metals, the s/k values 

for Na, Cs, Cr and Ba are well below the corresponding values in 

Tables 18 and 16. Again they do not appear to be low by a connnon 

factor. 

To illustrate the excellent fits for the FIFO results in 

Table 20, the SF theor.y with the listed values of n is compared to 

the U-µ data in Figures 35-41. 

* Although the solution for Rb (n = 3 o 0 exactly) is on the borderline 

(i.e., the minimum might actually be at n > 3 or n < 3), the 

value of a (nominally+ 00 , see Equation (106)) was not listed in 

this case eithero 
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IV. DISCUSSION AND CONCLUSIONS 

A. THEORY 

1. Evaluation of Assumptions 

a. Shock front thickness. The most critical assumption made in 

the development of the theory concerns the thickness of the shock front 

or "transition region" between the two density zones shown in Figures 

4 and 5. Only if the front is "sufficiently thin" will the interval of 

time in which the molecules are in the transition region (the dwell 

time) be less than the thermal relaxation time. It is only under these 

circumstances that (a) the energy change across the transition region 

may be evaluated by consideration of the conf igurational energy change 

only (Equation (27) is.valid; there is no temperature rise across the 

shock front)j (b) the molecules respond solely in the direction of the 

shock (no (net) transverse motion) and compress linearly (Equation 

(92) is valid), and (c) the configurational energy of adjacent mole-

cules before and after the transition region remains constant (Equation 

(47) is valid). The rise in temperature and resumption of a more 

normal structure (relieving the abnormally high potential energy asso-

ciated with linear compression) takes place in the high density state 

after the layer of molecules of interest has reached the end of the 

transition region. Further, only if the front is sufficiently thin 

will Equation (41) be valid; i . e., will the contributions to the con-

f igurational integral for material above the layer of molecules of 

interest be the same both before and after the transition. 

Consider the shaded molecule (in layer L ) in Figure Sa. The 
0 

total configurational energy (for this molecule) in this state is 
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given by Equation (33): 

(33) 

If R (and R') are large the first two terms are approximately equal 

(Equation (37)) while the latter two are (comparatively) negligible 

(Equations (35) and (36)). Therefore (see Equations (35)-(37)): 

L L L 
¢20 + ¢3o(R') + i¢4o(R) 

I 

= 
L 

¢ 0 
1 

(172) 

The preservation of this relation (i.e., that the total configura-

tional energy above and below the shaded molecule are the same and 

identical to that at L ) may be used to define the shock front . 0 

thickness zf <=R- R') as follows. Consider the molecule (in layer 

L) as it approaches the compressed region; ¢~ decreases (since 

there is less mass below the molecule in the uncompressed region) 

while 

¢1 = 0 
2 

increases (since R' is decreasing). 

* and Equation (172) becomes 

L 
¢ 0 

1 

(R = z ) : 
f 

When R' = 0 

Since p > p
0 

a value of zf can always be found such that: 

(173) 

(174) 

and Equation (173) will be valid (meeting the required condition) if: 

* 
Note that 

L 
<PL = <P o 

1 1 
always. 
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0 (175) 

The terms in Equations (173)-(175) may be more usefully defined by 

(see Equations _(45) and (46)): 

L 
<P 0 

1 

L 
0 1J;(p ,z)+1J; (z) 

0 0 0 
(176) 

(177) 

(178) 

Here pV and z' are some density and spacing intermediate between 

and p and z 
0 

and z respectively; 1J;(p,z) is the configura-

tional energy of an isolated molecule a distance z from a medium of 
L 

d · d ,,, 0 (z
0

) and ','·1 (z
0

) h f. · 1 ens1ty p ; an o/ w are t e con igurat1ona energy 

"/~ 
contributions of the other molecules in L and L respectively 

0 

Since these others remain at spacing 

L 
1J; o (z ) 

0 

z (see Equation (47)): 
0 

(179) 

Substitution of Equations (176)-(179) into Equations (173)-(175) 

gives: 

. (180) 

'V il1(p' ,zv) . ::: il•(p ) 
'r o/ o' 2 o (181) 

*There are no "other" molecules for <P~(zf) since we are here only 

considering the shaded molecule at L and not at L
1 

Q 
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and: 

0 (182) 

the last of which serves to define zf • 

The approximation in Equation (182) may be expressed in 

Equation (180) by setting: 

= (183) 

where y is some (arbitrarily) small fraction. Substituting directly 

from Equations (78) and . (79) (with z = zf) gives',' after rearrangement: 

n-6 
n-6 n-3 y [ 12 _a _ _ l:._] 

2 f + 2 f x (n-2) (n-3) n-3 3 z z 

12 n-6 
(n-2)(n-3) a = 0 (184) 

0 0 

From Equation (88): 

(88) 

and Equation (184) becomes: 

n-6 2s N 
n-6 n-3 y 12 a po 12 n-6 

zf + 2 £ x [(n-2)(n-3) n-3 
- ( ) ]-

(n-2),(n-3) a = M 

(M/2sp N) 3 
0 (185) 

which is a transcendental equation in zf . depending functionally only 

on x and parametrically only on a and n and the arbitrary frac-

tion y • For a given substance (a, n, p , M) this can be solved for 
0 

zf using an iterative technique (such as Newton-Raphson) for a chosen 

value of y • This was done for several liquids with y = 0.05 for a 

range of values of x from 1.2 to 2.0. With little variation, the 

0 
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* at the lower compression ratios increas-

** ing only ~ 4~ over the whole compression range These values may be 

compared with predictions for several liquidq shown in Table 21. Con-

sidering (a) the general lack of agreement between the tabulated values 

(b) the need for extrapolating two of the results(lJ4 ,i33) from 17 and 

~ 
700 atm to 5 Kbar (=5000 atm), and (c) the fact that the pressure 

variation of is opposite to that of the current theory (see second 

footnote below), the values of zf predicted above would seem to be 

reasonable although perhaps conservatively large. 

* ~ ~ For x = 1.2, P = 5 Kbar for most of the liquids which is generally 

well below the lowest value for the data used in this study (see 

Appendix S). 

** The definition of . zf used here (Equation (175) leading to Equation 

(183)) requires that zf increase with x (or P) since as p in-

· creases, ~(p,zf) will be the same fraction of ~(p ,z ) at lower values 
0 0 

of zf (see Equations (78) and (79)), i.e., the dense region will have 

an equal effect on the shaded molecule at greater distances, as P 
increases. This increase (of zf with P) may be contrasted to a gen­

eral decrease predicted by Becker(lJS), Eyring, et a1( 84), Flook and 

Hornig(l34) and EisenmengerC133). It is believed that this differ­

ence is caused by a difference in (effective) definition; the 

developments in Equati~ns (172)-(185) are intended only to yield a 

gross estimate of zf (i.e., its order of magnitude as predicted 

by the theory) rather than as a definitive prediction of zf and 

its functionality~ 

the determination of 

The referenced studies had as their objective 
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Table . 21 

AVAILABLE SHOCK FRONT THICKNESS AND RELAXATION TIME DATA 

Substance(s) P-Kbar 
z -R 

f Reference Date Comments 

CC1
4 5 47.8 133 1964 Extrapolated to 5 Kbar 

from 700 atm 

CH
3

0H 5 3.5 133 1964 Extrapolated to 5 Kbar 
from 700 atm 

c2H
5

0H 5 4.0 134 1955 Extrapolated to 5 Kbar 
from 17 atm 

5 5.7 133 1964 Extrapolated to 5 Kbar 
from 700 atm 

(C2H5)20 0.1 520 84 1949 Quotes Becker (135) 

1.0 53 

10 6.5 

100 1.4 

5 0.3 134 1955 Extrapolated to 5 Kbar 
from 17 atm 

c
6
H

5
CH

3 5 14.8 133 1964 Extrapolated to 5 Kbar 
from 700 atm 

H2o 5 4.7 134 1955 Extrapolated to 5 Kbar 
from 17 atm 

H
2
o 5 14.4 133 1964 Extrapolated to 5 Kbar 

from 700 atm 

Liquids 100-1000 87 . 1948 



-191-

Table 21 (continued) 

Substance(s) 
12 TX10 -sec Reference Date Comments 

A 5.0 129 1970 Struct'ural relaxation time 

Hg '\J 1. 0 136 1965 Bulk viscosity relaxation time 

cs
2 

2830 137 1959 Average thermal relaxation time 

CC1
4 

126 137 1959 Average thermal relaxation time 

CH
3

0H 13.0 137 1959 Average thermal relaxation time 

0.2 136 1965 Bulk viscosity relaxation time 

C6Hl4 15.2 137 1959 Average thermal relaxation time 

'\J 3.0 136 1965 Bulk viscosity relaxation time · 

C6H6 270 137 1959 Average thermal relaxation time 

60 136 1965 Bulk viscosity relaxation time 

c
6
H

5
CH

3 
4.4 136 1965 Bulk viscosity relaxation time 

H
2
0 o. 7- 3.5 137 1959 Average thermal relaxation time 

1.0 77 1965 

'\J 0.1 82 1966 Structural relaxation time 

Liquids '\JlQ 36 1937 Viscosity relaxation time 

'\JlO 129 1970 Struct~ral relaxation time 

Condensed > 0 • l-O. 01 matter 77 1965 
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Using Equation (84), the data in Appendix Sand the results for 

zf , values of nL , the number of molecular layers in the transition 

region, were found from: 

(186) 

Again, little variation was 1 found from substance to substance; the 

* resultant mean value (~) was "v 7 layers in the low pressure region • 

Although this figure is somewhat larger than previously speculated(l6), 

it is believed that the actual (effective) thickness is < 7 layers 

(since the zf estimate is probably conservative; Table 21) and that, 

nevertheless, this figure satisfies the requirement of a "sufficiently 

thin" shock front. 

The residence (dwell) time of the molecules in the shock wave 

"l'c* 
is given approximately by 

t 
r 

From Equation (14) this becomes: 

Computatisms (at 

small variations; 

t = 
r 

x ~ 1. 2) 

the mean 

parison of this value with 

for several liquids 

value of t was "v 
r 

(several types of) 

(187) 

(188) 

(again) showed only 

-12 *-;'c* 
2 x 10 sec . Com-

relaxation times 

* 0 - "v Because zf increases "v 4A, ~ = 8 layers at the higher pressures. 

** Since µ (in laboratory coordinates) goes from zero (initially) to 
its full final value (at the end ~£ the transition region) the average 
velocity in the front is "v µ/2 ~ 

**-le 
Since tr decreases with x (as opposed to zf) this value is conser-

vative, i.e~, t <2x10-12sec. 
r 
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reported in the literature, shows . that t < "[ 
r 

in most instances and 

,·~ 

that gene.rally t << T when thermal relaxation times are considered 
r 

(see Table 21) . 
,~'"/~ 

It is concluded that, at least for liquids the assumption of 

a "sufficiently thin" shock front width is a reasonable approximation. 

b. Pair potential. In the development of the energy equation 

it is necessary to evaluate the interaction of a given molecule with 

those in a half-space such as in Figure 6. The expression used 

(Equation (49)) implies a basic assumption: "The potential energy iS 

equal to the sum of the potentials developed between pairs of mole­

(17) **,'c 
cules" • As this is identical to the assumption nearly always 

(17 18 20 etc·). . made in basic statistical mechanical developments ' ' ' it is 

made here without further discussion or justification except to quote 

Egelstaff (l7): "In any event this term (i.e., the pair potential) is 

likely to be the major term in the potential energy." 

In the integrati~n of the pair potential (Equations (51) and 

(52)) it is assumed that the effect of g(r) is small and/or will 

cancel in Equation (48). In their study of liquid argon Mikolaj and 

,~ 

A notable exception is H
2
0. 

;'c* 
A similar analysis for solids (metals) was not performed. However, 

because of the excellent agreement of the theory with the data (see 

Figures 35-41), a similar conclusion would be anticipated. 

*** That is, the potential between a pair of molecules is unaffected 
by the presence or absence of other moleculeso 
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Pings (l3S) determined g (r) for s·everal thennodynamic states. An 

examination of their data shows that g(r) ~ 1 for all r > 5~ . 

From Equation (84) and Appendix S, z ~ 2.9i and it is clear that at 
0 

least for the integration in Equation (52), which starts at z' ::: z 
0 ' 

' g(r) will only have an effect between the first and second layers 

(see Figure 6). Since the contributions of material up to~ 25R 

distant is expected to have an effect (see computations on shock wave 

thickness), the ultimate effect of g(r) on the integral should be 

small. Since 
~ 

x = 2 max 
~ 

z · = z /2 (see Equation (92)) and for the 
' min o 

integration in· Equation (51), which starts at z' = z, g (r) should 

only have an effect between the first and third layers. Again the 

ultimate effect is expected to be small. In any case, any residual 

effects of g(r) on either integral will tend to cancel when the dif-

ference of Equations (53) and (54) is found in Equation (48). 

This general conclusion is expected to hold for all the liquids 

studied. On the other hand, for metals, the LRO behavior in the pair 

potential might imply a pair distribution function for which g(r) # 1 

for r greater than some (small) value. In this case the residual 

terms of the integrals may not be small, although they may still cancel 

in Equation (48) . The adequacy of the assumption is, in this case, 

generally unkn·own. 

The choice of . the n-6 potential on p,hysical grounds is inde-

fensible since it is known to be inaccurate for nonconducting materials 

and unrealistic for metals (which exhibit LRO behavior). On the other 

hand, since we are only interested in the strongly repulsive region in 

this study (dealing with strong compression waves >10 Kbar), this 
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potential might well be adequate in this region. Of the many ways to 

"fit" the theory to the experimental data,use of the parameters on 

the "repulsive side" of the potential (i.e., 0 and E:) were eventually 

shown to be best. Advantages in the use of the n-6 potential 

include: (a) mathematical simplicity; all results are in simple expli-

cit fonn*, and (b) monotonicity; ¢(r) exists and is monotonically 

"harder" for all n from . n = 0 to n = 00 (r < 0), as well as the 

fact that (c) the resulting Hugoniot can be extrapolated to sound 

. ' 

velocity, and (d) U vs.µ linearity can be demonstrated from the theory 

(see later discussion). Disadvantages are: (a) inaccuracy and/or 

unrealism in the attractive region**, (b) theoretical*** and numerical 

instability in the developed Hugoniot as U + U , and (c) the lack of 
0 

definition of 0 and E: for the SF solution when n < 3 (Equations 

(106) and (107)) leading to a (possibly) not "well defined" Hugoniot 

in this region. 

It is concluded that, for ~he present study, the n-6 paten-

tial is probably adequate, although other potential functions may 

ultimately prove to be more accurate/realistic; 

* Also no spurious maxima occur at small values of r . 

** Also, additional attractive terms are ignored (see Appendix V). 

*** Extrapolation is possible only if Equation (105) holds r'exactly". 
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c. Structure. The use of ·a lattice-like structure in relating 

the distance between molecular layars z to density p (Equations 
0 0 

(84), (85) and (87)) and even the subsequent generalization of struc­

ture (Equation (88)) is a simple extension* of several well-known 

cell models of liquids(~,l9 ). As previously discussed, Equation (88) 

is considered microscopically accurate for solids (for discrete values 

of s) and macroscopically accurate for liquids** (for, perhaps, a 

continuous range of values of s ). 

d. Extrapolation to sound velocity. One of the strongest 

points of the theory is that it can be extrapolated to sound velocity. 

However, to do this (exattly) a subsidiary condition (Equation (106)) 

is developed that fixes a in terms of n (only). Although no assump-

tions are required for this development it is clear that the 

"condition" reduces the number of independent parameters of the system 

from 3 to 2 (i.e., from a , E: and n to s and n). It is assumed 

that this reduction is compatible with known values of a (at least 

for liquids) where n is fixed by the shock data. Generally this is 

only roughly true (see discussion below) but as previously discussed 

this is consid~red a limitation of the particular potential used and 

( · 1 ) f h h . lf *** not necessari y o t e t eory itse • It is concluded that 

* This may not be the case for the "snapshot" and "probability" 

approaches to the determination of a ~ the nearest neighbor 
0 

as a measure of liquid structure. 

dis-

tance, and the use of a 
0 

** (16) In a previous study a ±10% variation in z from (the equi-
o 

valent of) Equation (84) was shown not to materially affect the 

Hugoniot prediction for argon at two initial states. 
**1~ 

For example, if a four parameter potential were used, extrapola-
tion to U could be used to relate one of the parameters to the other 3 •. 

0 
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extrapolation to sound velocity is· a desirable feature of the theory 

but is too restrictive in that it leads to a (possibly) unrealistic 

relation among system parameters. Of course, for metals, where O 

and £ are poorly defined and the SF solution is used, extrapolation 

to sound velocity is highly significant in that it leads to a unique 

and (dramatically) simplified expression for the Hugoniot in terms of 

a single microscopic parameter (Equation (108)). 

e. U vs. µ linearity. One of the original motivations in 

developing the current theory was a desire to explain the form of 

Equation (13), the linear U-µ relation. In Equations (109)-(113) it 

was shown that, to do this, two diverse functions must be identified 

with each other. As the correspondence between the functions is not 

obvious, consider the following. The SF solution of the Hugoniot is 

given by Equation (108): 

(108) 

Expansion in a Taylor series gives: 

1 ~ x < 2 (157) 

where f (x,n) is given by Equation (152). For x -1 « 1 (x « 2), 

f (x,n) becomes, to a good approximation: 

rv 2 n-1 f(x,n) = x [l + (~3~)(x-l)] , x << 2 (189) 

and substitution into Equation (157) gives: 

x << 2 (190) 
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[l+ (n;l)(x-1)] - . (-1-)2 
1-·q 

(_1 __ )2 1 2 3q2 + 4q3 + ... ' 1-q = + q + 

If q << 1, Equation (192) reduces to: 

(_l __ ) 2 '\, 1 2 + q 1-q 

and combination with Equation (191) yields: 

In this case: 

n-1 • 
[l + C3Hx-1) J = 1 + 2q 

q = n-1 (-) (x-1) 
6 

(191) 

(192) 

(193) 

(194) 

(195) 

n-1 Since x - 1 << 1 (and -
6
- < 2 generally), q « 1 and Equation (193) 

is justified. Substituting Equation (195) in Equation (191) gives: 

[l + n-1 ( 1 ) 2 (-)(x-1)] n-1 3 1 - (-) (x-1) 
6 

Substitution into Equation (190) gives: 

2 u2 (x-1) 2 ( 1 ) 2 x << 2 µ = 
0 n-1 1 - (-) (x-1) 

6 

Taking roots and rearranging gives: 

[( 1 ) _ (n-1)] 
µ x-1 6 

From Equation (14}: 

u 
0 

x << 2 

(196) 

(197) 

(198) 
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(199) 

and Equation (198) becomes, 
1

with rearrangement: 

U = U + (n+S)µ 
0 6 

x « 2 (200) 

which is the desired relation; it may be compared directly to Equation 

(13) from which it is noted that: 

B 
n+S 

= 
6 

(201) 

Thus it is clear that, indeed, the linear U-µ relation is derivable 

* from the developed theory o The development elucidates the conditions 

under which the derivation is valid, i.e., that x << 2 . This implies 

that the linear relation should only be valid near sound velocity 

(i.e., at small values of x) and that, generally, higher order terms 

in µ should be required as x increases to 2 and beyond. This, of 

course, explains the great success of the linear form for metals. In 

these cases (see Reference 13 for example) x is generally somewhat 

less than 2. 

If the linear relation is valid near sound velocity then, from 

Equation (13): 

* 

lim 
µ -+ 0 

dU 
dµ 

B (202) 

The correspondence of the "diverse" relations following Equation (113) 
can be shown in a manner similar to the development in Equations 
(189)-(201). In fact,- the form in Equation (191) was actually chosen 

on the basis of the square of Equation (113) rather than on an arbi­

trary basisg 
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even if there are other terms in the expression. If the development 

leading to Equation (201) is valid, the same result should be produced 

when the condition expressed by Equation (202) is applied to the 

theoryo This can be done by direct differentiation of Equation (108) 

(without Taylor series expansion) as follows: 

dU 
dµ = 

dU 
dx 

dx 
dµ = 

dU/dx 
dµ/dx = 

2UdU/dx 
2Udµ/dx 

and noting Equation (14)~ 

dU 
dµ 

_2_U_d_U""-/d_x __ = (x-1) dU
2

/dx 

( x ) 2 d /d x dµ 2/dx x-1 µ µ x 

(203) 

(204) 

The numerator and denominator may be determined directly from Equations 

(149) and (108) yielding: 

dU 
dµ 

= 

xn-2-1 x4-l 

( 
n-2 - -4 ~ 

x (x-1) - 2 -n---
3
--

3
---J 

x - x 
2 

(x-1) 
(205) 

Taking the limit of Equation (205) as x + 1 (i.e., as µ + 0) gives, 

after repeated applic~tion of L'Hospital's rule: 

dU 
lim d = 

x + 1 µ 

dU 
lim d 

µ + 0 µ 
= 

which, noting Equation (202),is the same as Equation (201). 

(206) 

It is 

concluded that the proposed theory explains the form of Equation (13) 

and furthermore, relates the slope B to the repulsive exponent n . 

The accuracy of Equation (201) may be assessed by comparing the 

predicted values of B ; based on the values of n in Tables 14 (for 

the C solution) and 20, with values found by fitting available data 
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to Equation (13). This is done in Table 22. The results are as 

generally expected: For liquids the value of B from the theory 

(Equation (201)) is high because the range of x in the experimental 

data is large (the condition in Equation (200) is not fulfilled) and 

the U-µ slope should decrease as µ increases (i.e., the linear fit 

would tend to reduce B); for solids the value of B from the theory 

is much closer to the fitted values (within ~10%) although it is still 

on the high side. It is conc.luded that when x « 2 , Equation ( 201) 

is a reasonable estimate of the slope of the linear U-µ relation, 

* i.e., of B 

*The estimate of B in Equation (16), when used in Equation (201), 

leads to n = 3 • It is interesting that this value is close to 

those determined for many of the bee metals which have "soft" paten-.-. 

tials. 
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2. Adequacy of Theory 

Equation (95), the sought-after expression for the Hugoniot, 

embodies all the essential features of the theory; most of the other 

relationships of interest (e.g., Equations (104), (106), (108), etc.)· 

can be derived directly from it. This expression was derived by 

combining a model of the shock transition process with a (particula~) 

intermolecular potential function and a lattice-like structure. It 

provides a generalized functionality of two macroscopic properties 

(µ and x) in terms of three microscopic (molecular/atomic) proper-

ties (cr, €, and n) for a given substance (M) in a given initial 

state (p ). By thus connecting observed experimental results with 
0 

properties of matter at the molecular level, the theory fulfills one 

of the objectives of statistical mechanics(l9) as well as its . (the 

author's) intended "mission". In this sense (at least) the (formalism 

of the) theory may be considered adequate. 

The degree to which the theory is self-consistent and in accord 

with the generally known properties of shock waves is another measure 

of its adequacy. The following features may be enumerated: (a) the 

theory will extrapolate to u 
0 

although the process is theoretically 

unstable and requires a subsidiary condition that reduces the number 

of independent parameters of the system, (b) all theoretical and 

numerical instabilities of the theory can be removed by expanding the 

SF solution in a Taylor series of arbitrary number of terms, (c) the 

theory is applicable to all n > 0 except n = 3 where Equation (95) 
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has a singularity~~ and for all x > X.R (XR > 1) when n > 3, (d) the 

linear U-µ relation can be derived from the theory when it is extrapo-

lated to U and expanded in a Taylor series, and (e) the slope of 
0 

the U-µ · Hugoniot near u 
0 

can be derived and evaluated from the 

theory in terms of a single molecular parameter. 

Besides the accuracy of the assumptions of the shock model 

itself, the adequacy of the theory depends on the applicability of the 

potential function (Equation (72)) and structure equation (Equation 

(88)) to the shock phenomena under consideration. Since, as previously 

discussed, the potential used might be unrealistic (if convenient), 

its use is considered a (possibly very significant) weakness of the 

theory. The structure equation, alth,ough adequate. for metals, may or 

may not be theoretically sound for liquids. Whether this represents 

a significant weakness in the theory is therefore dependent on the 

success in justifying this relation by methods such as those pre-

sented in Appendix L. 

When dealing with gases the dwell time of the molecules in the 

transition region may be evaluated as follows: Zel'dovich and 

Raizer(l2) give the approximate expression: 

* 

7rL 
.Q,o · 2 ?n -1 

(207) 

Although Equation (108) ex~sts for n = 3, cr ~ oo, 8 = Q from Equa-

tions (106) and (107)e Further, when 0 ~ n < 3 the latter equations 

contain roots of negative numberso 
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where i is the mean-free path length at initial conditions and: 
0 

'flL= U/C = Mach number 
0 

* The appropriate velocity differential can be shown to be : 

1 '\Jl lr 
U - - µ = - U = - {j1 C 2 · 2 2 L o 

and from Equation (187): 

t 
r 

i 
0 

=-c 
0 

(-2-) 
I} 2 171 -1 

(208) 

(209) 

(210) 

For moderate to strong shocks C'rr/.= 2 to 10) in gases originally at 

* Generally: 

U - ~ µ = ~(ZU-µ) = . ~(U+U-µ) 
For gases(SS): 

U-µ = 

and therefore: 

1 u - -;:;11 
2 

y = ratio of specific heats 

For y = 1.1 to 1.6:1 y/y+ 1 Q •• 52 to Q.62 or: 

1 u - -;j1 
2 

'\J l u 
2 
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(approximately) standard conditions* (£ ~ l0-5cm (5) 
0 

C ~ 0.3X 105 
0 

cm/ sec), this gives: . 

t r 
6 x 10-lO to 6 x l0-12sec (211) 

Comparison of these dwell times with typical relaxation times T for 

gases and vapors given by Herzfeld and Litovitz(l37) (which ~ange from 

10-7 to l0-9sec) showi that generally t << T e 

r 
It appears then 

that, even for gases (at approximately standard conditions), the 

pressure rise runs in advance of the temperature rise for moderate to 

*ic 
strong shocks Although the shock front widths for gases are 

2 3 
~ 10 -10 larg~r than for liquids, the corresponding relaxation times 

2 3 are ~ 10 -10 longer. The net effect is . that, in both cases the 

relaxation times exceed the residence times. This result does not (in 

itself) imply that the theory can be applied to gases. It does show, 

however, that one of the major assumptions of the theory (apparently) 

applies as well · to gases as to condensed media. 

To further demonstrate the applicability of the theory to gases 

would require justification of the structure relation, Equation (88). 

* Since 

Thus 

by a 

** 

(5) £ a: 1/ p 
0 0 

even if Popo 
factor of 10. 

and C ex: P112 p-l/Z , the ratio £ /C o:: .(P p )-112• 
0 0 0 0 0 00 . 

decreases by a factor of 100, £ /C only increases 
0 0 

It is assumed that in the Mach number range of interest there are no 

radiation effects. 
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~~ 
There is no obvious way to do this and the question remains moot. On 

the other hand, it is instructive to assume that Equation (88) is valid 

and determine ·1\ , the number of layers in the transition region . 

Since po /po f'\J 350 (l37)' z 
0 gas 

~ 7 z 
0 liquid 

from Equation 
liquid gas 

(88)0 Noting Equations (186) and (207): 

,Q, 
0 

7z 
0 liquid 

(212) 

From the data in Appendix S (for z ) and the prior value of ,Q, 
0 0 

'\ = 40 ( 71} ) (213) m -1 

For 'lrL = 2 to 10, 1\ goes from 25 to 4. Therefore, depending on Mach 

number, the number of molecular layers in the transition region for 

gases is from 1/2 to 5 times that for liquids. The criterion of "suf-

ficient thinness" would, in some cases, apparently be satisfied! The 

flaw in the argument is that the absolute distances involved are much 

larger for gases than for liquids. Since, generally z 
0 1· 'd 

;; 3.6i 
~ iqui 

2si; the average distance between 
~ 

(Appendix S) z 7 z 
0 gas 0 liquid 

** layers for gases is equal to the entire front width in liquids · 

* Except, perhaps, by the methods described in Appendix L where an 
interesting structure relation for perfec·t gases is derived. 

** That is , the distance between layers in a gas is as large as the 
maximum range of the integrated effect of the entire compressed 
region on a given molecule , in liquids. 

At 
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these ranges the potential ¢(r), which functionally depends only 

* on r , will be relatively weak and it would be expected that ef fec-

tive interactions for any given layer would only take place with 

immediately adjacent layers. In this case a key approximation 

(Equation (41)) in the development of the energy equation (Equation 

(48)) fails and the remaining developments a~e invalid. It is for 

this reason (and the applicability of the structure equation) that 

** the model is not applicable to gases 

From the ~hove discussions it is concluded that the theory is 

probably adequate for condensed media only, but that even so, a final 

judgment in the matter should await the results of further investi-

gations of the accuracy of key assumptions (e.g., shock front thick-

ness) and relationships (e.g., pair-potential and structure equation) 

used in the theoretical development. 

*For N2 with s/k = 98.8°K, l¢(25R)/kl ~ 0.02°K Q For c
6
H

6 
with 

s/k = 421.9°K, j¢(25R)/kj = 0.63°K. 

** It is of course possible that the approach to structure in Appendix 

L will provide the appropriate z - p relation and that the error 
0 0 

in Equation (41) can be accounted for. In this case the theory might 

be applied to gases also~ 
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3. Recommendations 

Based on all prior developments, the following are recommended 

(generally without comment) for further study and investigation of the 

theory. The significance of each has been previously discussed. 

(a) If the shock model is accurate it should be possible to 

work "backward" through the theory and predict the pair potential from 

a set of (accurate) shock data for a given material. To assure that 

no other assumptions/approximations of the theory would affect the 

accuracy of this test the substance chosen should (ideally) be con-

<lensed, preferably solid (of known structure*), monatomic (for radial 

symmetry of the molecule (atom) and applicability of the central force 

• ~'cic) assumption and have a known or calculable radial distribution func-

tion. 

Such a test of the model has recently become possible with the 

publication of reasonably accurate shock data for solid argon(l39) ~ As 

all of the above requirements are met for this substance (i.e., s = 1, 

radial symmetry, etc.) the test would be particularly meaningful. 

Working "backward" in the theory might be accomplished as 

follows. Consider Equation (48) (the energy equation) and eliminate 

~E using Equation (20) and the configurational energy terms using 

Equations (51) and (52). This gives: 

* This would eliminate any errors in Equation (88), the generalized 

structure relation. 

** That is, forces between molecul~s act from the geometric center of 
the molecules. This has been implicitly assumed in all prior devel-

opments, but there is evidence(54) that for some (fairly complicated) 
molecules it may not be valid. 



-211-

00 00 00 

µ2 = 2(*) 2 [ p J J J g(r,p,T)$(r)dx'dy'dz' 
z'=z y'=O x'=O 

00 00 00 

- p 
0 I J f g(r,p0~T0)<f>(r)dx'dy'dz~ 

z'=z y'=O x'=O ~14) 
0 

From Equations (J9) and (JlO) in Appendix J these integrals may be par-

tially evaluated and the result substituted into Equation (214) to give: 

µ
2 

= 411(~) 2( P z L [ 3z 
1 

g(r ,p ,T)<f> (r)rdr] dz 1 

- P0 f [ f g(r,p
0

,T0 )<f>(r)rdr] dz'} 
z'=z r=z' 

0 

(215) 

Noting that the second .term is a definite int,egral (there are no func-

tional terms) and thus a constant, Equation (215) may be written: 

where: 

00 

[ J g(r,p,T)<f>(r)rd1dz' -:
0 r

0
} 

r=z' 

00 00 . 

10 =z,[z [ r[z
1

g(r,p0 ,T0 )<f>(r)rdr]dz' 

0 

From the linear compression assumption, Equation (92) (z/z 
0 

this becomes: 

and differentiation with respect to z gives: 

(216) 

(217) 
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2 

dt> = 4n(~) 2{ ~\.IJ I.g<r,p,r)~(r)rdr] dz' - :: } (219) 

From the general equation for differentiating improper integrals(lS): 

d 
dz J [ f g(r,p,T)~(r)rdr] 

z'=z r=z' 

and Equation (219) becomes: 

2 

00 

dz' = J g(r,p,T)~(r)rdr 
r=z 

d(L) { oo I } 
d~ = 4n(~) 2 

- J g(r,p,T)~(r)rdr - . z: 

r=z 

Differentiating again gives: 

2 
d2(.L) 
_ __,_P_ = 

dz 2 

which may be written: 

<P (z) 

Since: 

and: 

= (M)2 1 
N 41T zg(z,p,T) 

z = z p /p 
0 0 

z 
0 

(220) 

(221) 

(222) 

(223) 

(92) 

(88) 

it is possible to generate <P(z) vso z points from the shock data 

(U-µ converted to µ-p using Equation (14)) if g(z,p,T) is known or 

* calculable e Of course, since the distance at which the potential (or 

radial distribution function) is evaluated is z it may be replaced 

with r • Whether the raw data are sufficiently accurate to give an 

accurate value of the second derivative in Equation (223) remains to 

be determined. 

*As is the case for solid argon, since it is known to have an fee lat­
ticeo 
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Since shock data generally -represent strongly compressive 

states, the resultant ¢(~) vs. r points may be restricted to the 

strongly repulsive region far from the potent+al well. An estimate 

of a and € from the data might then not be possible. The only 

means of testing the theory would be to compare the results obtained 

to measurements of ¢(r) from an independent source (e.g., molecular 

beam experiments, etc.). 

(b) Continue the investigation of shock wave thickness. 

Use the results in Table 14 for a, E and n and obtain 

more exact values of zf for liquids. 

Substitute Equations (106) and (107) (used in the SF solution) 

into Equation (185) and obtain values of zf for metals. 

Reconsider the definition of zf implicit in Equations (182) 

,,, ( ' ' * and (183) and try to determine each of o/(p
0

,z
0
), 1/J p ,z) and 

~(p,zf) as the (shaded) molecule approaches the compressed region. Use 

the failure of Equation (180) (which implies failure of Equations (173) 

and (172) and thus of Equation (38)) to define zf . 

(c) Consider other pair potential functions in the develop-

ment of the theory in place of the n-6 potential (Equation (72)) used 

in this study. 

For liquids use the "Quantum-Mechanical" potential (No. 24 in 

Table 1): 

* In this case the integrations in Appendix J would be carried out over 

finite limits (z
0 

to zf) and p' would be approximated by (say) 

(p +p)/2 ~ 
0 
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00 

P(r) e-a.r + l 
i=O 

-i 
a.r 

]. 
(224) 

where P(r) = polynomial in positive and negative powers of r . 

* Consider initially : 

P(r) n. a/r , (225) 

a6 -b 
' a. 0 for all i =I= 6 

]. 
(226) 

to give: 
-a.r 

b 
cp(r) 

e a--
6 n (227) 

r r 

which is a four-parameter potential (a, b, n, a.). Since this is one 

more than in the n-6 potential used in the current study, extrapola-

tion of the (resultant)Hugoniot to U might, in this case, be used 
0 

to relate the parameter of least physical significance to (one or 

more of) the other three. This would eliminate the difficulty of the 

subsidiary "condition" previously discussed that (perhaps unrealisti-

cally) relates system parameters. 

* 

For metals use No. 22 in Table 1: 

cp(r) = ar-n + br-3 e-a.r cos Br (228) 

The simpler case of P(r) = a, which leads to the "Exponential-6" or 

"Modified Buckingham" potential, is considered undesirable because of 

the spurious maximum at r = r
1 

(see No . 13 in Table 1). The form 

chosen (Equation (225)) should eliminate this difficulty. 
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and determine if the attempt to account for LRO behavior in the second 

term has a significant effect on the resultant values of n . Although 

this is a five parameter potential (a, b, n, a, (3), the U · extrapo­
o 

lation should eliminate one of them, and another, S , is known from(l 7): 

(3 = = 2(37T2 Z P N/M)l/3 
0 

(229) 

where kf is the radius of the "Fermi sphere" and Z is chemical 

valence. 

(d) In order to utilize Equation (88) for liquids, it is 

necessary to determine s , the structure factor. In the current study 

this was done for liquids by simply assuming s = 1 (an fee lattice). 

Such an assumption is generally unsatisfactory, since there is no 

a priori reason why liquids should (macroscopically) be structured 

exactly as an fee lattice or why, furthermore, this would be true for 

all liquids. 

The essential features of the structural properties of 

liquids are contained in the PDF. It would be useful if s could be 

correlated with this empirically determined function. In Appendix L, 

in the probability approach to nearest neighbor distance, it was 

shown that r in Equation (19) depends solely on g(r) (the PDF) and 

that it might be approximately equal to a , the nearest neighbor 
0 

distance. Also in Note 5 of Appendix 1, the use of a as a measure 
0 

of liquid structure was developed in terms of a correlation of 

a
0

(p
0

N/M) 113 with first coordination numbers N
1 

. The correlation 

was developed from and is consistent with the known values of 
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a (p N/M)l/ 3 and N
1 

for fee, bee, sc (simple cubic) and diamond 
0 0 

lattices. The next step in the determination of s (from the PDF) 

would be to correlate a 
0 

directly, for various 

lattices. This would give the desired correlation in either of the 

alternate forms: 

PDF----> a 
Equation 

(19) 

0 
> N l ---~ z 

0 
------> s 

Figure Equation 
(230) 

14 (88) 

It is recommended that the possibility of developing these correlations 

be investigated. One known pitfall should be considered in doing this. 

Examination of Figure 10 indicates that a (p N/M) 113 and 
0 0 

z (p N/M)l/J are both decreasing with the indicated sequence of lat­
o 0 

tice types. In addition N
1 

decreases for the same sequence (see 

Table 11). The results for sc lattices appear to contradict the corre­

lation. In this case a (p N/M)l/J = 1.0, N
1 0 0 

6 and sc should 

fall between bee and diamond; on the other hand it appears that 

z (p N/M)l/J is not in the corresponding interval 0.500 to 0.630 (see 
0 0 

* Figure 10) • Of course, monotonicity of this kind is not necessary to 

establish a correlation but ·an explanation of this deviation and an 

examination of other structure types would be required to justify the 

correlation. 

(e) In conjunction with the above, continue the investigation 

of the "snapshot11 and "probability" approaches to the nearest neighbor 

* The definition of z for sc lattices is open to some interpreta-

tion; values of z (~ · N/M) 113 of from (at least) 0.707 to 1.000 are 
0 0 

possible. The range of results is, however, still not in the desired 

interval. 
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distance concept. 

In the former case consider a computerized routine for deter-

mination of: 

1 k k mi 
(;:--) = k l (a ) = l l l a .. /m. 

0 i=l 0 ti ki=l j=l Jl. J. 

(231) 

where mi is the number of space sectors required to make (a
0

) t. 
l. 

essentially constant and k is the number of repetitions of the 

process (i.e., time intervals) necessary to make (a
0

) essentially 

constant. Two-dimensional data might be generated by photographing 

spheres in a shallow, "jiggling" box or by purely mathematical 

(e.g., random walk) techniques. Three-dimensional data might be 

generated by (physical) models such as those used by Bernal(SO) or 

by mathematical methods. 

For the "probability" approach a direct application of theory 

is possible using the PDF data of Mikolaj and Pings(l3B) for argon. 

For each thermodynamic state, p and g(r) can be used in Equation 
. 0 

(19) to determine r . The result might be compared to the equiva-

lent value of a computed from Equation (81), which assumes an fee 
0 

lattice. Similar calculations can be made for arty substance for 

which g(r) is available. 

It is also recommended that the adequacy and development of 

the "probability" approach itself be further investigated for paten-

tial value in developing a quantitative measure of liquid structure. 

(£) The assumption that the effect of g(r) on the integra-

tions in Equations (51) and (52) is small and/or will cancel in 
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Equation (48) can be checked using the (same) g(r) data of Mikolaj 

and Pings(lJB) for argon. It is recommended that this be done using 

the n-6 potential to determine if Equations (78) and (79) and/or 

Equation (80) are justified. 

It is further recommended that the same determination be made 

for one or more metals for which LRO behavior is known to occur and 

for which g(r) is available. 

(g) Complete the method for computing temperatures along the 

Hugoniot in Appendix E by developing the required two-dimensional 
L 

counterparts of Equation (50) for evaluation of ·w e(z) and 
L e 

w0 0
(z ) • Compute and compare temperatures using this method to cal­

o 
·. (105 85) 

culations using current methods ' for several substances. 
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B. APPLICATION OF THEORY 

1. Data 

The (raw) shock data considered for use in this study are com-

piled in Appendix S, plotted in Figures 15-27 and summarized in 

Table 23 which outlines the motivation and . results of the (previously 

mentioned) selection process. 

Considering the wide range of substances and initial condi-

* ** tions and the number of different sources of data (20) ' · the quality 

*** of the data, as judged by the scatter (column 5 in Table 23), is 

considered typical of shock experiments. The overall average scatter 

is ~ 3.8%. 

It may be noted that this figure does not compare with the 

relatively low _error reported for individual velocity measurements 

(0.5-3%, see Table 5). This indicates that the observed data varia-

tions are caµsed by inaccuracies in the test set-up, sample (state) 

variations, etc., rather than by imprecision in the measurements. 

This would imply that, in order to judge data quality in each case, 

an analysis of the source and magnitude of these types of error in 

each of the referenced studies (based on the details of the particular 

* 13 liquids, 10 fee metals, 13 bee metals (columns 1 and 2 in Table 

·23); M from 2(H
2

) to 207 (Pb) g/mole, P
0 

from 0.07 (H
2

) to 21 (Pt) 

g/cc, T
0 
f~m ~O (H2) to 306 (cs2) °K, C

0 
from 0.04 (~III) to 

0.52 (Al) x 10 cm/sec. 

** . . . Including the compendium, References 96 and 98. 

*** . Mean maximum variation in U for a given value of µ not includ-

ing regions where a transition is indicated. 
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methods employed) would have to be performed. This was considered 

* impractical well beyond the scope of the current study. Instead it 

was concluded that the data should be considered 11 as is" and that 

statistical self-consistency and agreement with other investigators 

would be sufficient measures of raw data quality. 

An examination of individual substances in Table 23 shows that 

** *** a considerable range in scatter (i.e., data quality) exists ; from 

**** ***** essentially nil to > 7% In the latter cases (N
2

, H
2
o, Cu, 

Ni and Al) alteration of the data was considered. 

The large value of scatter for N
2 

(Figure 16) was due to a 

single data point and, since overall consistency and agreement between 

sources was generally maintained, no alterations (due to scatter) were 

made in this case. For each of H
2
o, Cu, Ni and Al (Figures 20-23) a 

* Does the author describe his technique and procedures in detail?, etc. 
'lo'< 

Between and (sometimes) within, data sources. 

**'" The observation that the average scatter for liquids (~ 4.9%) is 

siderably greater than that for metals c~ 3.2%) is not considered 

significant. This is expected because of ~he greater handling dif­

ficulties in carrying out the shock experiments and the higher pre­

cision required to maintain constant initial conditions from test to 

test. 

*•'<** 
~ 0.1%; cs

2
, Rb and Ba. 

***** In some cases (A-IV, Hg, N
2

, c
6
H

5
CH

3
) no judgment was made because 

of a paucity of data (1-3 points). 
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* set of "poor" data was identified • However, only for the latter two 

were the data in question eliminated (see Columns 6 and 10 in Table 

23). For Cu this was found not be be numerically justified; for H20 

the questionable data were too close to a presumed transition to con-

sider the effects separately. 

For both cc1
4 

and Mo (Figures 17 and 26), "poor" data were 

identified even though the scatter in these cases was "reasonable (6.4 

and 5.7% respectively). In both cases it was shown that alterations 

to the data were not numerically justified (see Table 23). 

It was concluded that, based on scatter alone, only alterations 

in the Ni and Al data were justified but that in these cases a consi-

derable improvement resulted (see columns 11 and 12 in Table 23). 

In Appendix T it was shown that if .a phase transition occurs at 

a certain shock ·state the model will, in general, only be valid for 

weaker shock states. Because of this and the large number of reported 

transitions (Table 6) the data were carefully scrutinized for evidence 

of this type of behavior. . On the other hand, recognizing that the only 

actual (experimental)° ~vidence of a transition is the fonnation of a 

** two-wave structure (see Appendix T), and that this was reported only 

for c
6
H

6 
and cs

2 
(l09) (Table 6), the reported transitions were not 

accepted without further evidence. In this study, "further evidence" 

was a clear "break" in the plotted U-µ data. 

* Although all are from Reference 96 (the compendium) two separate 

sources are involved. 

**opacity measurements (observations)C90,llO) have also been cited(llO) 

as evidence of (fusion) transitions but there is some doubt( 90) about 

the interpretation of the phenomenon. 
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Following Table 6 the transitions suggested( 64) for A and A-II 

based on a two-line fit and . curvature of the U-µ relation were consi-

dered unwarranted based on the plotted data (Figure 15). For N2 

(Figure 16) the data show a break at essentially the point suggested 

by a two-line fit(l0 9) . A transition was assumed in this case and 

data 

23). 

U > 0.5 x io6cm/sec · were eliminated (columns ·7, 8 and 10 in Table 

Similar results were obtained with CS (l09) (Figure 16) while 
2 

f eel h d · · (l09) · b 11 h d (F. 19) or 
4 

t e reporte transition is a ove a t e ata 1gure 

and no alterations were made. 

A careful examination of all the n2o data (Figure 20), in light 

of the "poor" data previously identified, indicates that the transition 

reported(llO) might well exist. This was assumed to be the case in the 

current study and data U > 0. 5 x 106 cm/ sec were eliminated. 

D . . h . . d(l64,lll,106,104,85) f c espite t e transitions suggeste or u, 

Ni, Al, Ca and Pb (Table 6) no evidence for these, or any of the fee 

metals (Figures 21-23) was found in the plotted data . None of the 

data were altered in these cases. 

For the alkali metals melting transitions at low pressure are 

predicted for Li, Na, Kand Rb <93), while electronic transitions(l07) 

.... (93) 
and perhaps another (unknown ) type are suggested for each of Rb 

and Cs (Table 6). Breaks in the data do occur (for all but Cs; Figure 

24) but generally at pressures considerably above those calculated for 

the melting transitions. Because of this t he latter were ignored in 

altering the data (Table 23). On the other hand it is interesting that 

* Based on static test results. Of course these may be the ·electronic 

transitions in Reference 107. 
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for Rb the "other" transition (whether electronic or otherwise) 

appears to occur at the "break". Similar behavior for Cs suggests 

that the transition indicated below the data (Figure 24) might be 

real. Such an instance would generally preclude application of the 

theory although no (real, experimental) knowledge of the transition 

existed. This could unwittingly lead to serious errors in judging 

the validity of the shock model. However, if a transition does not 

exist, the plotted data should extrapolate, in a smooth way, to (or 

near) C , the sound velocity. As this is not the case for Cs, the 
0 

* existence of the transition is inferred . This tentative conclusion 

and one of the alternatives are indicated in columns 13 and 9 of 

Table 23. The observation generally suggests a means of avoiding the 

inherent difficulty with low pressure transitions; if the data extrapo-

late to C the transition does not exist, . but if not the transition 
0 

might occur. Although such an inferred conclusion would be weak, at 

best, the observation would at least suggest caution in applying the 

theory to the particular set of data. For Cs the results obtained 

were viewed in this regard. 

For V (Figure 25) behavior similar to Cs is observed, although 

no transitions are reported in the literature. It is suspected that 

* Two alternative interpretations suggest themselves. The C value is 
0 

too high and/or the Hugoniot curve has a decreasing slope as µ + 0 

and a "smooth" curve should be drawn "the other way". The first case 

. . 'f. d< 93 , 96 ) h'l h d . 11 is unJusti 1e , w 1 e t e secon is genera y not true 
. (14) 

although there. may be some exceptions • 
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"J~ 
in this case the value of C is simply too high (see columns 9 and 13 

0 

of Table 23). The data for Nb do not suggest a transition and none is · 

reported. However, for Ta a "break" in the data is observed (Figure 

25) and the data were appropriately altered (column 10, Table 23). For 

Cr, Mo and W no transitions are reported (Table 6) or suggested by the 

data (Figure 26). 

For .Zr a definite "break" is seen in the data (Figure 27) 

1 d 
. . (96) c ose to a reporte transition • It was assumed that the transition 

exists in this case and the data were altered as in Table 23. 

The case for Ba is similar to that for Cs; the data do not 

** extrapolate to C (Figure 27) and a transition below the data is 
0 

reported (Table 6). With the same reservations (i.e., the U-µ curve 

has a decreasing slope as µ ~ 0) the same conclusion was drawn 

(i.e., a transition is inferred and the application of the theory is 

viewed with caution). 

Column 10 of Table 23 describes, iri each case, the action 

**"~ taken in altering the data as a result of the selection process. 

For the substances involved, the remaining number of points (i.e., the 

* For some materials (including V) C
0 

was determined solely from 

Bridgman's static data(l4 , 96 ) which appears to give values that are 

(generally) rv5z higher than other sources. A downward correc:tion of . 

approximately this amount would correct the noted discrepancy (Figure 

25). 

**For Ba, C was not determined from Bridgman's data and the 5% reduc-
o --

tion (as for V} would not apply. Further the extrapolated value is 

considerably ·less than 0.95 C (see Figure 27). 
*** 0 Overall, 135 of 688 data points were eliminated; rv 20% of the origi-

nal set. 



-227-

.,~ 

adjusted data) and associated scatter are shown in columns 11 and 12. 

For these and the unadjusted data, the overall average scatter dropped 

to 3.2%. 

The adjusted data sets and associated initial parameters are 

listed in Appendix S on the page following the original data for each 

substance affected. All subsequent analyses and plots (iee., Figures 

29-41) used these adjusted data. 

* Since regions with (suspected) transitions were not originally 

included in the scatter, these values only change when "poor" 

data were eliminated (see column 12). 
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2. Liquids 

In applying the theory to liquids only the WF and MF forms 

of the Hugoniot were considered. This was done to take advantage 

of the "realistic" 0,€ data available. 

a. Preliminary conclusions. Several alternate schemes 

for determining the applicability of the theory to (the available 

shock data for) liquids were considered. To decide among them, 

various calculations were performed (see Part III. APPLICATION OF 

THEORY) ·and from the results the following set .of preliminary con-

clusions were reached. 

A singl.e value of n will not simu.ltaneously satisfy strong 

repulsion (i.e., the shock data), cr,s and long-range attraction 

(i.e., Cb). a . 

The cr,£· parameter pair is preferred over the others because 

such data are available and the prior limitation will be minimized*. 

The above conclusions are not affected if additional attrac-

tive terms are considered in the potential (Appendix V). 

'j( 

The shock data are all compressive and thus in the repulsive region 

of the potential. The parameters cr and € are on the repulsive 

"side" of the potential. 
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Chapman's correlation of s with T , although numerically 
M 

incorrect, was concluded to be sufficiently founded (physically) to 

~" warrant application to all the liquids. The (simple) correlation 

developed was: 

£/k = 1.5 T + 4 , °K 
M 

(134) 

A spurious root in the µ2 vs. x relation (Equation (135)) 

· near the (µ = 0,' x = 1) origin, was shown to exist for all liquids 

** except Hg and c
6
H

5
CH

3 
(Appendix Y). When x = XR (the value at the 

root) µ2 = 0, µ = O, and u = 0 
0 

. For l~ x < ~' 
µ2 < o· and µ 

is imaginary (not defined). It concluded that the 2 x (and was µ VS. 

U vs. µ) relation should be "cut-off" for x<rvx • . - . R 

The computer programs developed in this study were concluded 

to be adequate since the results in Reference 16 were (essentially) 

reproduced when common values of cr and € were used (Table 11). 

Only the lPF will provide a critical test of the theory; the 

2PF~ and 3PF have too many adjustable parameters and a single 11best 11 

value of n cannot be identified. The 2PF 1 s were occasionally useful 

in supporting lPF results. The 3PF was used only to determine f for 

the lPF. 

* The uncorrelated values were also considered. 

** For Hg this occurred for both the original and correlated values of 

s while for c6H
5

CH
3 

the spurious root is absent only for the corre­

lated value 6f s • 
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The WF solution is pref erred to the MF solution because the 

prediction of C is better in this instance (Table 12). It was con­
o 

eluded that the error in not satisfying the associated "condition" 

'(Equation (105)) is a limitation of the model and/or potential. 

An analysis of the effect of the uncertainty in the :µ.-x. · 
]. ]. 

data, a and c on£' and f (the measures of the fit) showed that 

increments < 0.1 in n were not meaningfu~. 

The U-µ plots showed that as µ + O, either U + 0 (when 

x > 1) or U +;-co (when there is no spurious ~oot). This behavior 
R 

was concluded to be a consequence of the theoretical instability of 

the WF solution and, in the latter case, the numerical instability in 

the computation of U • 

b. Argon. The results of application of the theory to argon 

is of especial interest because many of the (implicit and/or explicit) 

assumptions of the model are satisfied (e.g., it is monatomic and thus 

spherically synunetric, etc.) and the pair potential (i.e., a and E) 

is presumably well known. · Therefore, if the theory is valid it should 

* give meaningful results for argon . 

Argon is of further interest because there are shock data at 

1o~ 
four different initial states (Appendix S) and, as stated previously, 

if the theory is valid it should give the same value of n for any 

* This may be restated in the negative as: If the theory doesn't work 

for argon, it probably is not valid. 

** Argon is the only material for which shock data at various initial 

states were available. 
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* initial state for the same material • The Hugoniot in Equation (135) 

clearly accounts for state variations through the single thermodynamic 

parameter p • 
0 

The theory can thus be meaningfully tested by deter-

mining if, for a given set rr , £ and n , Equation (135) reproduces 

the Hugoniot for various initial states (i.e., values of p ) or ·, 
0 

alternatively, by determining if the values of n that "best" fit 

given shock (Hugoniot) data for several initial states are (essen-

tially) the same. 

This was, in effect, done when the WF solution was applied to 

all the liquids; the (lPF) results for A, A-II, A~III and A-IV appear 

as the first four entries in Table 14. For the C (correlated) 

** results the values of n that "best" fit . the data are, respectively, 

*** 9.3, 8.9, 9.4 and 8.8 

Considering the scatter in the data and the paucity of points 

**** for A-IV (see Table 23) the agreement between values is striking; 

the maximum percent difference is ~ 7%! From this result (alone) it 

was concluded that the shock model might well be fundamentally sound 

and that perhaps the theory is limited mainly by the accuracy of the 

potential function and the structure relation. 

*since the "true" .pair potential is state independent( 7l), the molecu­
lar parameters a , £ and n (ideally) depend only on molecular con ... 
stitution; they are fixed constants for a given substance. 

** Later shown to be preferable .to the L (literature, i.e., uncorre-

lated) results. 

*** The first two values are somewhat higher than the corresponding ones 
found in the p~ior study(lG) (see Table 11) primarily .because of the 

smaller value of a used in the current work. 

**** Of course, each determination was independent of the others. 
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Assuming the differences in n to be statistical, a conunon 

* value of n is desired • This was found by weighting the above 

values by the number of points in each state (Table 15). The resultant 

value was 9.2. 

Comparison of the values of e' and f in Tables 14 and 15 

indicate that, except for A a nontrivial reduction in the quality 

of the fit has resulted. However, examination of Figures 29 and 30 

shows that they are, nevertheless, quite reasonable. It was concluded 

that the best (single) value of n for argon is 9.2 and that the 

** theory adequately fits all the data 

Except for A the prediction of C in both Tables 14 . . and 15 
0 

is poor. Correspondingly the values of XR and RE in these cases 

are relatively high although for RE this is also true for A . 

Although the possibility exists that these results can be accounted 

for by a low pressure transition and/or poor C
0 

data it was felt that 

this was not ' the case. Instead it was concluded that the WF solution 

does· not always adequately predict (i.e., Equation (104)) C whether 
0 

the associated "condition" (i.e., Equation (105)) is satisfied 

closely or not. The excellent agreement of U and C for A (within 
0 0 

5%) must be considered somewhat fortuitous. 

The resultant values of £'and f can be compared to the "best" 

values in Table 14 to see if the common value materially affects the 

quality of the fit. 

**The recently published shock data for solid argon<139) (p =l.75g/cc) 
0 

suggest a test of the connnon value of n determined in this study. 

Preliminary calculations show that, with n = 9. 2, a= 3. 28g, 

£/k = 129. 9°K (see Table 15), the theory very closely fit's the data! 
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c. Other liquids. The results of application of the lPF, WF 

solution to all the liquids included in this study (see Table 4) is 

shown in Table 14 for both the (L) uncorrelated (i.e., literature) and 

(C) correlated (i.e., Equation (134)) values of £ • Because the U 
0 

predictions for the C results were generally closer to C , they 0 . . 

were preferred over the L results. However, considering the prior 

discussion of the adequacy of the WF solution in predicting c 
0 

and 

the fact that the U for the C results were generally 20% higher 
0 

than C , this choice is considered a convenience only. There is no 
0 

substantial (e.g., physical) justification for considering one set 

* "superior" to the other . 

The values of s' and f in Table 14 indicate generally 

excellent fits as seen in Figures 31-34 and discussed in the follow-

ing paragraphs. · 

Monatomics - Hg Because there are only three data points 

for mercury (the other monatomic liquid besides argon), and there is 

essentially no scatter in them, the values of 4 4 L (cm /sec ) and thus 

s' in Table 14 (for the C results) are very small. The corresponding 

fit for n = 11.7 in Figure 31 is excellent. Because L is so small 

there are several values of n that will also give excellent fits 

and acceptable (although larger) values of e' . Therefore the "best" 

* Although the quality of the fits, as measured by E:' and f 
' 

is 

about the same for the L and c results, a slight (average) im-

provement is noted for the latter set; °£' decreases from 0.13 to 0.12, 

f. increases from 0. 71 to 0. 7 4 and . XR decreases from 1.18 to 1.15 

for the liquids (excluding argon) in Table 14. 
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* value (n= 11.7) may be somewhat ambiguous. Because of this and the 

fact that small errors in any of the three data points will have a 

relatively large effect on the choice of n , it was concluded that 

more shock data are needed before n for Hg can be fixed with cer-

tainty. 

It is noted (without comment) that for Hg, U and C in · 
0 0 

Table 14 agree withi~ ~ 13% for the given value of n . 

Diatomics - N2_Lli2..!.. The fit for nitrogen shown in Figure 31 

** is quite reasonable considering the scatter in the data For 

*** n = 7.0 the values of £'and f in Table 14 are comparable to the 

results for A • In this case U and C agree within ~ 14%. 
0 0 

Because there is only one data point for H2, the resultant 

**** fit (with n = 6.5) in Figure 31 is excellent but no conclusions 

are drawn. It is noteworthy that in this case XR is large <~ 1.6) 

* This value is larger than the one previously found for the same 

data(l6) (see Table 11) mainly because of the much smaller value of 

c/k used in the current work. 

** A comparison of r . (Table 14) and a (Appendix S) shows that, 
0 0 

strictly speaking, nitrogen does not conform to Equation (82), i.e., 

a ~ r However, because the values are within < 1% of each other 
0 0 

no physical significance was . attached to this observation. The dif-

f erences are easily within the error in determining 

~lly r 
0 

a and especi­o 

***This agrees with the value previously determined(l6) (Table 11) for 

N
2 

although in the current study more data were utilized. 

**** (16) · This is smaller than the previous value (Table . 11) because of 

the larger value of s/k used in this study. 



and the u 
0 

-235-

determination was not meaningful. 

Triatomics - cs
2

...:.. The results for carbon disulphide are very 

similar to those for Hg; few data points and an excellent fit (Table 

14 and Figure 31). For the same reasons, it was concluded that the 

"best" value of n (10.6) might be somewhat ambiguous. More shock 

data in this region (i.e., below the presumed transition; see Table 23) 

are needed. 

Tetrahedral - CC14...:.. 

C agree within ~ 12%. 
0 

Because of its synunetry, carbon tetra-

chloride would appear to conform to most of the assumptions of the 

model and reasonable results were expected. Considering the scatter 

* in the data, the fit in Figure 32 is quite good. For n = 6.2 , the 

values of s ' and f in Table 14 are comparable to those for A and 

In this case, however, U > C by ~ .4~%. 
0 0 

A comparison of r (Table 14) and a (Appendix S) shows 
0 0 

that, contrary to Equation (82), r >a 
0 0 

Since the difference is 

not ascribable to errors in the determination of these parameters, the 

assumption of an f cc lattice must be called into question for cc1
4 

and 

** the above result considered potentially unrealistic 

Polar - CH30H, C~50H, (C 2H_sl~ The results for the two 

alcohols are notab;I.y similar, as seen in Figure 32 and Table 14. In 

bo~h cases n = 8.0; s' and · f are comparable and indicate very 

*This value of n is close to that determined previously(l6) (Table 
11). The small decrease is due to the increased value of s/k used 
in this study. 

*-Jc (54) 
Narten, Danford and Levy conclude that the structure of cc14 is 

not of the simple f cc type (interactions between Cl atoms being sig­
nificant) · and that, further, the assumption of central force inter­
actions may not be valid. 
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good fits. For methyl and ethyl alcohol U and 
0 

C agree within 
0 

rv1% and 'Vl0% respectively. 

The results for (di-)ethyl ether given in Table 14 and Figure 

"\; 
33 indicate a much poorer fit than for the other liquids; £ = 0.44 

(>2 times any other value in Table 14). Because the scatter in the 

data is not exceptional (see Table 23) it was (tentatively) concluded 

* ** that the theory fails for this substance ' 

C in this instance agree within "v 9%. 
0 

Interestingly, U and 
0 

Long Chain - c6H14-=.. The results for hexane are shown in 

Table 14 and Figure 33. Although there are few data and little varia-

tion in them (three of the four points are closely bunched) it appears 

** that the fit for n = 7.8 is quite good 

c by 'V 17%. 
0 

In this case U exceeds 
0 

Ring Structure - c
6
n

6
, c

6
n

5
cn

3
_:_ Benzene was one of the · 

liquids considered in the previous study (lG.) and because of its 

(reasonable) symm.etry it should conform to most of the assumptions of 

* A reconsideration of the data for (C
2
H

5
)

2
o in Figure 18 (and the fit 

in Figure 33) suggests the possibility of a transition in the region 

U > 0. 7 5 x 10 6 cm/ sec. This could explain the large value of E: found. 

** Although r > a for this substance (Table 14 and Appendix S) this 
0 ·O 

was not considered significant (as in case for N2), since the differ-

ence between these values (<4%) is within the error of their peter-

mination. 
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* the model. Indeed, as seen in Figure 33, the fit for n = 7.1 is 

very good. The corresponding values of s' and f in Table 14 are 

superior to those for argon, nitrogen and carbon tetrachloride. For 

benzene U is ~ 24% greater than 
0 

c 
0 

Because there are only two data points for toluene, results 

similar to those for mercury and carbon disulphide were expected; i.e., 

very small values of 4 4 L (cm /sec ) and E ' and a correspondingly 

excellent fit. However, the results in Table 14 and Figure 33 

(although indicating a very good fit) clearly do not support this 

.,,* 
expectation ; the plotted result misses one of the points completely, . 

indicating that the theory does not conform to the data. It was 

(tentatively) concluded that either the theory fails for this sub-

stance , or at least one of the data points represents an extremum 

in the 11normal 11 variation of shock data. Further examination of 

Table 14 and Appendix S shows that for c
6
H

5
CH

3
, r

0 
> a

0 
by a signi­

ficant amount. This implies failure of the assumption of an fee 

lattice and furth.er indicates the (possible) inapplicability of the 

theory to this substance. On the other hand, these conclusions must 

be considered preliminary .because there are only two data points and 

the results could _(alternatively) stem from the (relatively) high 

value of cr . (compared to c
6
H

6
) given in Table 7. Pending additional 

data, the applicability of the theory is considered moot. For toluene 

U exceeds C by ~ 30%. 
0 0 

*This value is slightly higher than that determined previously(l6) 
because of a small decrease in the value of E/k used. 

** It was also noted that the "best" fit value · of n for toluene was un-
ambiguously defined by the data. This was not the case for Hg and cs 2• 
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Water - H~ Because of its unique properties, water was 

considered separately from the other liquids. The results of appli-

cation of the theory in Table 14 show that the "error of the fit" e:' 

is comparable to that for A but that the "figure of merit" f is 

quite poor (< 1/2 that of A). This is reflected in Figure 34; the 

fit is poor compared to some of the other substances for which a sub­

* s tantial amount of data was available • .Further, the values of XR 

and RE in Table 14 are generally higher than most of the other 

** liquids It was concluded that the theory fails for water because 

*** it does not satisfactorily fit the "form" of the shock data 

Although the pair potential for water is sometimes used in a 

(simple) form similar to Equation (72) (Sl), orientatio~ depe~dent 

terms representing electrostatic contributi~ns are generally added(SS, 

5 ' 124) for th' d 1 b is an most po ar su stances. In fact, both pairs of 

values of cr and e:/k given in Table 7 for water were derived from 

angle-dependent potentials(SB,S,lZ4). Since in the current study no 

such terms were added to .the potential, the use of the given param-

eters in Equation (72) must be considered generally inconsistent. 

Under these circumstances difficulties would be expected in applying 

**** the theory to water 

* e.g., H, N2 , CC1
4

, c6H
6

• 

** On the other hand, in this case a > r in conformance to Equation 
(82). 0 0 

***The shock data for water are not dissimilar to most liquids(90). 

**** Although the results for the (polar) alcohols are reasonable, it 
is noteworthy that in both cases f is generally lower than for the 
other liquids .. 
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Although Barker and Watts used a cubic lattice for water(124 ~ 

a tetrahedral (di&~ond) structure (due to hydrogen bonds) is generally 

d (58,81,82,83,140,141) f 0 l' h (82) h assume . . In act rent ic er states t at 

analyses of the dielectric, thermodynamic, spectroscopic and transport 

properties of water support this hypothesis. Since an fee lattice was 

assumed in this study (s = l; see Equations (88)-(91)); additional 

* difficulties with water would be anticipated . o 

Considering that both the potential and structure used for 

water are inadequate, the poor fit in Figure 34 (for the potential 

parameters considered; see Table 14) is not surprising. In fact this 

result might be considered (weak) indirect support for the model; it 

** fails when it should fail 

For water U and C agree within 8%. 
0 0 

* An attempt was made to consider a diamond lattice (s = 3) by compar- . 

ing the results (using the first parameter pair in Table 7) with an 

fee lattice (s = 1). A considerable decrease in the quality of the 

fit resulted. Of course, in this comparison, the potential was not 

corrected for el~ctrostatic contributions. 

** It is interesting that application of the SF solution to water 

(with s = 1) gives an excellent fit (e:'·= 0. 087). For this solution 

n = 8.5, a = 3.141A and e:/k = 54.2°K which may be compared to the 

results in Table 14. Although the latter value is much lower than 

the "realistic" value (as was the case for most of the liquids fitted 

with the SF solution) the result shows that the Hugoniot can be 

reproduced with an "effective" pair potential of the type considered. 
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~ d. General conclusion. From the results in Table 14 and 

Figures 29-34 it was generally concluded that the WF solution ade-

quately reproduces the Hugoniot of the liquids studied. Excellent · 

fits were obtained for (four states of) argon, nitrogen, benzene, 

mercury and carbon disulphide, although in the latter two cases suf-

f icient shock data were not available to unambiguously fix n • Very 

good fits were found for methyl and ethyl alcohol and hexane. For 

hydrogen and toluene too few data were available to adequately judge 

the applicability of the theory. The fit for carbon tetrachloride 

was generally excellent but the assumption of an f cc structure for 

this material appears questionable. Failure of the theory was noted 

for (di-)ethyl ether and water. In the former case a previously un-

suspected transition in the data could explain the result. For water 

the potential and structure used were known, a priori, to be inade-

quate and the result was anticipated. Considering the range in the 

properties and structures of the liquids studied (see Table 4) these 

results tend to support the general validity of the shock model. 

From the results in Table 14 it was concluded that the WF 

solution does not give an accurate estimate of C although several 
o . 

exceptions exist. Generally U exceeds C by ~20%. 
0 0 

It may be noted that for all liquids 6 < n < 12. This was 

considered significant because there is no restriction on . n in the 

theoretical development. It was concluded that, in the region of the 

shock data, liquids have potentia).s that are "softer" than · the 

traditional 12-6 Lennard-Jones pair potential (Table 1, No. 5; n:: 12) 

but"harder" than the potentials for metals (considered in the · following 
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sections). 

(64) (142) Van Thiel and Alder and Jordan et al calculated 

values of n for argon of 5.6-13 and 8.46 respectively. Based on 

molecular beam measurements Amdur and Mason(S9) obtained a corres-

ponding value of 8.33. These are all in reasonable agreement with 

the (common) value found in the current study (n = 9.2, Table 15). 

Using (in effect) the bireciprocal (or Mie-Lennard-Jones or 

n-m) potential function (see Table 1, No. 3) Moelwyn-Hughes<37) 

computes (from compressibility data) mn ~ 54.3 and m+n ~ 15.5 

for mercury. Since m = 6 in the current study these give values of 

n of 9.1 and 9.5 respectively. These compare favorably with the 

value of n = 11.7 found in the current work, considering the pos-

sible ambiguity in this figure. 

For nitrogen Zubarev and Telegin(4Z) calculate a value of n 

of 9 while Herzfeld and Litovitz<49 ) (quoting Amdur and Pearlman)(l43-

145) give a value of 7.48. More recently Jordan et al(l4Z) give 

n = 7.4 (taken from the measurements of Belyaev and Leonas) while 

Dick(i47 ) shows that values of 7, 9 and 12 have been used in various. 

calculations. These results compare favorably with the value deter-

mined in the current study (Table 14), n: 7.0. 

For hydrogen we find that n = 6.5 (Table 14) which is some­

what below the value calculated by Van Thiel and Alder( 60) (8.5). 

Kamb(Bl) gives values of n for water of from 8.9 to 10.2 for 

* a repulsive potential similar in form to that used in this study • 

* The repulsion is treated as spherically symmetric. 
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Although these values are reasonably close to that shown in Table 14 

(n = 7.6), this was not considered significant because of the poor 

fit obtaining for water. The comparison might be more meaningful if 

electrostatic contributions were included in the potential used to 

determine n • 

To detennine if the n found in Table 14 were related to the 

type or structure of the molecules being considered, they were plotted 

against the number of atoms per molecule and molecular (atomic) 

weights of the corresponding substances. In both cases no correlation 

was founde It was concluded that the speculation suggested in the 

prior study(l6) (i.e., that n is related to structure) is not justi­

* fied by the current results • 

e. Recommendations. Based on the. prior results and conclu-

sions the following are recommended for the liquids studied. 

*rt is interesting that a plot of n vs. cr (28 p N/M) 113 shows a 
0 

crude inverse correlation when Hg, H
2 

and cs
2 

are neglected . . Howev_er, 

an examination of Equation (106) shows that this is expected; the 
1 

function (n;3)n-6 (or any multiple of it) decreases with increasing 

n . Therefore if the rrcondition" in Equation (105) is reasonably 

accurately met (or deviated from by approximately the same amount for 

each substance) Equation (105) would be met also, and the (im~erse) 

correlation would follow (see column 8 of Table 14). 
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Using the conunon value of n = 9.2 for argon, compute the 

* ** Hugoniot (Equation (135)) of the solid ' at an initial density 

p = 1.65 g/cc, using a= 3 . 28~ and E/k = 129.9°K (Table 14). 
0 

Assess the quality of the prediction by comparing the result to the 

recently published(l39) shock data for the solid at the same initial 

condition. Because the prediction is "absolute" (i.e., a "zero-

parameter fit") the comparison represents an excellent test of the 

theory. 

For those liquids well-characterized by existing da~a (N2 , 

CH
3
0H, c

2
H

5
0H, c

6
H

6 
and perhaps c

6
H

14
) shock experiments should be 

performed at (several) other initial states (as in the case of argon) 

and the theory tested on the same ("absolute")basis as above. 

Assuming the crystal structure of .the corresponding solids is known, 

shock data under these conditions would also be desirable. 

Several liquids are poorly characterized by the existing data 

that additional shock data be obtained at the same initial conditions 

(see Appendix S); for Hg and cs
2 

this might eliminate the ambiguities 

in the determination of n • For the remaining substances this would 

lead to a more meaningful evaluation of the theory. 

* ~he theory (Equation (135)) makes no distinction between solids and 
liquids except in terms of structure. For liquids Equation (88) is 
assumed to hold "on-the-average" while for solids it is assumed to 
be "accurate" (and therefore appropriate for solid argon). In 
either case the same equation is used and the same Hugoniot function 
results, i.e., Equation (135). 

**The solid is .known to have an fee structure (l4s,i49 ,l39). 
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For the difficulties experienced with cc1
4

, (C
2
H5)

2
o and H

2
0 

(and perhaps the alcohols) it is reconnnended that an angle-dependent 

potential* (e.g., Stockmayer(S), Rowlinson(SB), etc.) be considered in 
the derivation of the Hugoniot to account for electrostatic contribu-

tions. A (successful) refit of the shock data using this function 

(consideration being given to various possible structures; 1 < s < 3) 

would provide additional support for the validity of the shock model. 

As pointed out earlier in this study, the Hugoniot of condensed 

media are difficult to determine because a satisfactory quantitative 

equation-of-state is not generally avai~able for these substancese On 

the other hand, numerous calculations of this type have been made with 

varying degrees of success. Generally, the Lennard-Jones and 

Devonshire (LJD) cell model equation-of-state(123) is used with either 

the Lennard-Jones (12-6) or exponential-6 intermolecular potential 

** . (47) (see Table 1, Nos. 5 and 13) In this way Fickett and Wood , 

David and Hamann(lSO), Van Thiel and Alder( 64), Ross and Alder(Sl), 

Hamann(lSl), and Dick et a1<139) computed the Hugoni~t for liquid and, 

in the last two instances, solid argon. Using the same equation-of­

state, Zubarev and Telegin( 4Z) and Dick(l47 ) computed the Hugoniot for 

(liquid) nitrogen***. In s.ome of the above instances<47 , 64 ,s3) for 

argon, calculations were also made with the Monte Carlo (statistical) 

equation-of-state. In more recent studies Ross and Alder( 6S) and 

*or at least one containing an additional term (e.g., Kamb(Sl)). 
** In some cases the Morse potential (No. 12, Table 1) is considered. 
*** . 

In the latter case it is interesting to note that the author assumes 

an fee lattice (i.e., 12 nearest neighbors) for the calculations. 
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Ross( 6S) used the Thomas-Fermi-Dirac model for calculations with 

(100) 
argon and xenon. On the other hand, Cook and Rogers used the 

Tait and Murnaghan(S) equation-of-state in an investigation of the 

Because . the goal of each of these computations is essentially 

the same as the main objective of the current study, it is recom-

mended that a comprehensive comparison between methods be made and 

their relative merits determined. 
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3. Metals 

In applying the theory to metals only the SF solution for 

the Hugoniot was found to be useful because meaningful cr,s data 

were not generally available. 

a. Preliminary conclusions. To decide again among several 

possible alternative methods of applying the theory to the data for 

metals, a set of preliminary calculations were performed. From 

these results the following conclusions were reached. 

The a,£ parameter pair is probably preferred over· the 

others but the best numerical values are unknown because of the 

variability in values from source to source. 

Neither the n satisfying the (few) available cr,r param­
o 

eter pairs nor those satisfying long-range attraction (Cab) and the 

a,£ parameter pairs are consistent with the shock data. 

The shock data imply values of n < 6 • 

A 2PF with e: · determined from the melting point correla­

tion (Equation (134)) gives reasonably good fits to the shock data. 

Solutions exist for n < 6, and the WF solution (at least for fee 

metals) yields reasonable values of a and U pred·ictions in very 
0 
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good agreement with c 
0 

However, the validity of this approach is 

questionable since the values of f found are generally low and the 

inherent lack of discrimination of the 2PF did not allow a distinct 

"best" value of n to be determined. 

The SF solution, which depends only on n and (the measured 

value of) * U0 , should be used to apply the theory to metals, since 

the preferred cr,e ** pair is generally unknown 

b. Taylor expansion of SF solution. In applying the SF 

solution the given functional relation (µ vs. x) was first cast in 

**'* the form of U vs. x and then expanded in a Taylor series in the 

**** interval 1 ~ x < 2 This led to the removal of all numerical 

*'le*** instabilities in the Hugoniot equation and it was concluded 

that computations could be made as accurately as desired to as low 

* "Real" values of a and s are not needed, the U prediction is 
0 

eliminated and XR ::: 0 since the theory. is "forced" through U 
0 

** And perhaps of little value if it was known. Since the n-6 poten-
tial (without LRO) is used as an effective ion-ion potential in the 
strongly repulsive (shock) region, "real" values of a and s may 
not give the best results. 

*** The effect of .expanding the WF (and MF) solutions in a Taylor 
.series was not investigated in this study. 

**** The resulting equation when truncated after two terms was pre-
viously used to show that the "classic" linear U-µ relation is 
derivable from the theory. 

***** The SF solution has no theoretical instability as x + 1 since 
U + U (and µ + O) exactly. 0 . 
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The (expanded) Hugoniot was then recast in the µ vs. x 

functional form and the "best" value of n found from the shock data 

in much the same manner as for liquids~ The only differences were 

** that in the determination of f , L . was taken from the 3PF of the 
min 

prior WF solution (the SF solution has no counterpart 3PF) and the 

"cut-off" at the spurious root was ignored since it was shown that such 

a root does not exist in the SF solution. To test the "reasonableness" 

of the fit the "effective" potential parameters CJ and e: were found 

from Equations (106) and (107), using the "best" value of n. 

c. fee metals. The results of application of the SF solu-

tion to the fee metals included in this study (Table 4) are shown in 

Table 20. The values of e:' and f indicate excellent fits (in all 

but one case) as confirmed in Figures 35-37. Comparing these results 

to those (for e:' and f) in Table 19, shows that the SF solution gives 

a much superior fit to (even) the 2PF of the WF solution. Since an 

examination of the L vs. n plots in the current instance also showed 

that the "best'' values of n were sharply defined, it was concluded 

that the SF solution was (at least functionally) adequate for f cc 

metals. 

It is notable in Table 20 that in all but one instance, n < 6. 

This is in line with prior tren.ds (in the preliminary calculations) and 

* The (apparent) singularity at n = 6 in the SF solution was also 
(fortuitously) removed. 

** See Equation (171). 
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speculations and is fully acceptable from the mathematical development 

of both the potential and Hugoniot function. The question remains: 

Are values of n < 6 (physically) reasonable? 

By assuming that the n-6 (pair) potential represents an 

effective ion-ion potential in metals we have, in effect, introduced 

the concept of the neutral "pseudo-atom" described by Egelstaff (l7): 

"The conduction electrons distribute themselves around each ion to form 

screening clouds and a 'pseudo-atom' is the ion plus its screening 

* charge." S . d t · t t weakly(129) (compared to ince pseu o-a oms in erac 

"finite" ions(lS 2)) the repulsive exponent would be expected to be 

11 d 1 f 6 .d d 1 . . (153) sma an va ues o n < are consi ere egitl.Illate • 

The pseudo-atom concept also explains why the repulsive 

** exponents for solids are less than those for liquids (see Table 14); 

the liquids are generally insulators and therefore have no "electron 

bath" and associated screening effect. 

* Although this viewpoint is generally discussed in the context of 
liquid metals, we apply it to solid metals as well, since all con­
densed media appear to behave similarly under strong shock loading. 
March(152) also suggests that the concept might apply to both solids 
and liquids. Moelwyn-Hughes(37) applies the .n-m potential d°irectly 
to solid metals although he concludes that it is probably inadequate 
in this instance. 

** . To show that the values of n < 6 found with metals were not for-

tuitously imposed by the form of the SF solution, all the prior 
liquids were fit with the SF solution. Contrary to the current case 

it was found that in every case n > 6 • The values generally 
matched those in Table 14 (i.e., the WF solution) within ~ ±15%. 
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It was concluded that for the SF solution the repulsive poten-

tial for metals should be generally "softer" than for liquids and that 

values of n < 6 are acceptable. 

The potential parameters predicted for the f cc metals (Table 

20) differ considerably from both the reported (Table 16) and corre-

lated (s only; see Table 18) values; the a are high and the 

£/k low. The . predicted a exceed not only the reported values of 

both a and r (Table 16) but generally match (and often exceed) the 
0 

values of a 
0 

in Appendix S; in every case (except one) the r 
0 

Table 20 exceed the corresponding a 
0 

* Although this clearly 

in 

violates Equation (82) this is overlooked because we are concerned only 

with an effective potential. Further, large a are (reasonably) con-

sistent with the pseudo-atom concept which is presumed to lead to 

large, "fluffy" atoms. 

The predicted s/k are not only less -than the reported and 

correlated values, but are also generally below the corresponding 

*'I'< **)'< 
melting points (Table 18) ' Because of the inverse dependency on 

a (see Equation (104)) this would also be explained in terms of the 

pseudo-atom concepto 

*This suggests ove:rlapping "electron clouds" but in light of the sub­
sequent discussion this is not (necessarily) considered to be 
physically meaningful. 

** In only one case (Au) s/k > TM . In two others (Pt and Pb) c,/k 
agrees with T within~ 0.1 -0.3%! The significance of this 
(notable) agreeMent is unknown. 

*** Although c/k_< TM is unexpected, most of the existing correla-
tions(5,26) _o"f this type are empirically derived and no theoretical 
objections to this result are apparent. 
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It was concluded that the potential parameters predicted in 

the SF solution are probably reasonable but not necessarily physically 

si;:;nificant. 

The individual fits seen in Figures 35-37 are discussed in the 

following paragraphs. 

Noble Metals (Group IB) - Cu, Ag, Au. The fit for copper in 

Figure 35 is reasonable, but not as good as might have been expected 

(compare s' and f in Table 20 with the other fee metals). It is 

clear that the predicted Hugoniot (n = 5.3) falls above much of the 

data although the functional form (shape o~ the curve) appears to be 

correct. Since the theory is "forced" .through c 
0 

one explanation 

considered was that the sound velocity used (Appendix S) was too high. 

. . (92 85 103 13 14 96 95) . 
A recheck of the literature ' ' ' , ' ' showed that this 

was not the case. Considering the scatter in the data previously 

noted (Table 23) and the fact that one particular source was consi­

* dered poor , bias in the data (see Figure 35) could (at least 

partially) account for the observed results. Since it is also pos-

sible that the result represents a failure in the theory, it was 

concluded that a further investigation of copper is required before 

the adequacy of the theory and the appropriate value of n can be 

determined with certainty. 

* Although these data were not previously eliminated on numerical 

grounds, the possibility of doing so for other reasons cannot be 

discounted. A further investigation was recommended in Table 23. 
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The results for silver and gold are also shown in Figure 35 

and Table 20. For n = 6.3 and 5.8 respectively, the values of s' and 

f and the plots indicate outstanding fits. 

Ferromagnetic Metals (Group VIII) - Co, Ni. Although the 

values of £' and f in Table 20 would indicate a better fit for cobalt 

than for silver or gold, this does not appear to be the case in Figure 

* 36; the curve falls (slightly) below one group of points • Nevertheless 

the fit, for n = 3.7 , is considered very good. 

The fit for nickel in Figure 36 is quite good considering the 

scatter in the data. For n = 5.0 the values of g' and f in Table 

20 are reasonable. 

Transition Metals (Group VIII) - Ni, Pd, Pt. Ni was considered 

** in th~ previous paragraph 

The results for palladium and platinum are similar to each other 

and to the noble metals silver and gold. For n = 5.6 in both cases, 

the values of £'and f indicate excellent to outstanding fits. This 

is borne out by the plots in Figure 36. 

* If the value of C used (Appendix S) were (arbitrarily) raised by 
0 

~ 5% the fit would be considerably improved. Unfortunately no (known) 

ju~tificatiori exists for doing this. 

** ' See Table 4 and Figure 14 . . Nickel is both a ferromagnetic and tran-

sition metal. 
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Group IIIA - Al. Aluminum was considered separately because 

it is the only metal from Group III (see Table 4 and Figure 14) consi-

dered in this study. Notwithstanding the scatter in (even) the 

* altered data the fit for n = 4.0 in Figure 37 is quite good. The 

values of e' and f in Table 20 are comparable to most of the other 

metals with excellent fits. 

Alkaline Earth Metals (Group IIA) - Ca. The results for 

calcium are unique among the fee metals; see Table 20 and Figure 37. 

Because the exhibited behavior is similar to some of the bee metals 

and the counterpart alkaline earth metal (Ba) is a bee metal, it was 

consiqered in a later section. 

Group IVA - Pb. Since lead was the only fee metal from 

Group IV studied; it was considered separately. The values for e' and 

f in Table 20 indicate a very good fit for n = 5.2. This is supported 

by the plot in Figure 37. 

d. bee metals. The results of application of the SF solution 

to the bee metals considered in this study (Table 4) are shown in 

Table 20. The values of e' and f imply excellent fits (in all but 

two cases) as evidenced by the plots in Figures 38-41. Comparison with 

the results in Table 19 shows that the SF solution is much superior to 

the 2PF of the WF solution in all but two cases: Cs and Ba. Since the 

L vs. n plots again sharply defined "best" values of n it was con-

eluded that the SF solution, at least from this point of view, was 

* See Table 23. 
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adequate for bee metals. 

It is noted in Table 20 that the values of n are generally 

much less than for fee metals. This is consistent with the known 

11 softness" of the bee metals as evidenced by the shock wave data 

itself (Figures 21-27), the slope B of the linear U-µ relation 

(Table 22), and the greater compressibility of the bee metals(lS4), 

especially sodium( 6l) and the other alkali metals(lOl, 3l). 

The low values of n in Table 20 for bee metals are inter-

preted in terms of the weakly interacting "pseudo-atoms" described 

earlier and from this point of view the "softness" of the potentials 

is considered acceptable. 

It is noted that in all but four cases n < 3 and in several 

n < 2 • In the former case (2 < n ~ 3) the resultant fits (Rb in 

Figure 36; Nb and Ta in Figure 39; Mo and W in Figure 40) appear to be 

reasonable, but since the Hugoniot can be considered not "well 

* . defined" , the legitimacy of the result is considered moot. In the 

')'(* 
latter case (O < n < 2) the fits (Ca (fee metal) in Figure 37; Li 

and K in Figure 38; v· in Figure 39; Zr in Figure 41) appear to 

decrease in slope as x ~ l! This is unusual (possibly anomalous) 

behavior, although there appears to be no theoretical reason why it is 

not possible. Pa~tine and Piacesi(l4) indicate this is the case for 

The associated potential parameters CJ and c:: are clearly "not 
defined" in this instance (see Equations (106) and (107)) and the 
resultant pair potential is unrealistic. 

** Of course, in ·these cases also, the Hugoniot is possibly not "well 
defined" and · cr and e:· are "not defined". 
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sodium although this is not confirmed in the current calculations 

(Table 20 and Figure 38). Since the SF theory is "forced" through 

C the very low values of n and (consequent) decreasing slope as 
0 

x + 1 might result from an erroneously high value of c 
0 

As in-

dicated in the discussion of Table 23, this might explain the result 

for V (only)o A third explanation of these very "soft" potentials 

is the occurrence of a low pressure transition to a less compressive 

state. Although this is not indicated in Table 23 for the metals of 

interest, recent information indicates it might be the case for 

Ca(lS4). Of course, the fourth "explanation" of the results for 

0 < n < 2 is failure of the theory because the Hugoniot is not "well 

defined" in this region. 

It was concluded that for the bee metals the low values of n 

for the SF solution should be treated with caution and investigated 

in greater depth before being accepted. 

Since . there are only four solutions with n > 3 in Table 20 

(Na, Ca, Cr and Ba) it is only in these cases that finite values of 

the potential parameters are predicted. In every case (except for 

a for Cs) these values differ considerably from both the reported 

(Table 16, Na and Cs only) and correlated (€ only, Table 18) values; 

the a are (generally) high and the t./k * low • The predicted a 

for Na not only exceeds the reported values of a and r but also 
0 

the value of a in Appendix s. For Cs the predicted cr lies in 
0 

the range of reported values given in Table 16 but the corresponding 

* As was the case for the fee metals. 
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r (fable 20) exceeds a in Appendix S • . As discussed previously for 
0 0 

fee metals these "violations" of Equation (82) are accepted because we 

are considering effective (not necessarily "real") potentials based on 

the pseudo-atom concept. 

As expected, the predicted E/k for the four solutions with 

n > 3 in Table 20 are below the corresponding melting points given in 

Table 18. Because £ is inversely proportional to a (see Equation 

(104)) these values are also explained on the basis of the pseudo-atom 

concept. 

It was concluded that insufficient data are available to assess 

the reasonableness or physical significance of the predicted potential 

parameters for the bee metals. 

The individual fits seen in Figures 38-41 and Figure 37 

(calcium) are discussed in the following paragraphs. 

Alkali Metals (Group (IA) - Li, Na, K, Rb, Cs. Although the 

properties of the alkali metals are generally found to be monotonic 

* in the sequence Li-Cs this is certainly not the case for the results 

in Table 20. 

Considering the scatter in the (altered) data (Table 23) the 

fit for Li (n = 0. 7) is ·reasonably good as seen in Figure 38 and the 

values of £' and f in Table 20. However, since n < 2 , the pos-

sible difficulties enumerated in the prior paragraphs should be 

investigated before a definitive conclusion is made. 

*For example, the cohesive energ/lSS), the Hugoniot data< 93), ·and the 

( 1 1 d) . . . 1 (30) ca cu ate pair potentia s • 
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The results for sodium are shown in Figure 38 and in Table 20. 

For n = 3.6 the values of s' and f indicate a very good fit 

although it is noted on the plot that several points lie (just) above 

the curve. 

The results for potassium are similar to those for lithium, 

n < 2 , _decreasing slope as x + 1, etc. The values of £' and f in 

Table 20 and the plot in Figure 38 for n = 1.2 indicate an excellent 

fit. Again, the previously discussed difficulties with n < 2 should 

be investigated before a firm conclusion is reached.. 

Because the altered data for rubidium contain only five points 

with essentially no scatter in them (Table 23) the value of L in 

Table 20 is the lowest among the alkalis. The corresponding · s• and 

* f indicate an excellent fit as confirmed by the results in Figure 38 

for n = 3.0. For this borderline condition (i.e., to the range 

2 < n ~ 3) the possibility that the Hugoniot is not "well defined" must 

be considered before a definitive conclusion can be made. 

The _results for cesium are shown in Table 20 where the given 

values of s' and f ' indicate a poor fit. This is confirmed in Figure 

38 where much of the data is seen to fall (considerably) below the 

curve. However, it was noted in a previous section that the data for 

cesium do not smoothly extrapolate to C and a .low pressure transi­
o 

** tion was inferred (Table 23) On this basis it was concluded that 

* Note that the s' and f for rubidium are not, respectively, the 
lowest and highest among the alkalis. 

** Such a transition is independently suggested in the literature (see 

Table 6). 
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the transition is (probably) real and that the theory is not appli-

cable to the given data set. In this case the values of n , a , r 
0 

etc. given in Table 20 are not considered meaningful. 

It is noteworthy that for all the alkalis except cesium a low 

pressure melting transition is predicted below or nearly below (for 

lithium) the given data set<93). Since such a transition should not 

affect the Hugoniot greatly it would not be obvious from the shock 

data even though the effect on n was significant. On the other 

hand, for Cs an electronic transition is indicated(lO]) which should 

have a relatively large effect on the Hugoniot and thus be quite 

* apparent from the plotted data . Since both hypotheses are consistent 

with observation (see Figure 38) they might explain both the non-

monotonicity in the results for the sequence Li-Rb and the disparate 

result for Cs. · Of course this reasoning is considered speculative at 

best. Accurate shock data in the low pressure region are needed 

before any definitive conclusions can be made. 

Transition Metals (Group VB) - V, Nb~ The results for 

vanadium are shown in Table 30 and Figure 39. For n = 1.9 the 

values of €' and f and the plot indicate a very good fit although 

the difficulties previously discussed for n < 2 place the legitimacy 

of the result in question. However, it was previously noted that the 

value of C might be erroneously high for vanadium, and i f so this 
0 

* The observed "break" in the plotted data for Li-Rb (Table 23) might 

represent the -electronic transitions corresponding to that suggested 

for Cs. 
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* would be expected to increase n It was concluded that an accurate 

value of C is needed before the "correct" value of n can be . 
0 

determined with certainty. 

The results for niobium and tantaltnn are also shown in Figure 

39 and in Table 20. For n = 2.5 and 2.3 respectively, the values of 

s and f and the plots indicate excellent to outstanding fits. Of 

course, since 2 < n < 3 the possibility that the Hugoniot is not 

"well defined" mitigates the certainty of this conclusion. 

Transition Metals (Group VIB) - Cr, Mo, W. The results for 

chromium are somewhat unusual in that they more closely resemble those 

for the fee rather than bee metals. As seen in Table 20, n > 3 , cr 

is comparatively small and €/k is comparatively large. The corres-

ponding values of s' and f and the plot in Figure 40 show that the 

fit for n = 4.6 is very good and since transitions (of any kind) are 

neither indicated (Table 23) nor reported (Table 6), the result is 

considered valid. The observed behavior (similarity to fee results) 

might be related .to the electronic configuration of chromium which 

leads to the smallest molar volume among the bee metals considered 

(7.33 cc/mole). This low value approaches those of the closest 4th 

period neighbors (Figure 14) cobalt (6.66 cc/mole) and nickel (6.5? . 

cc/mole), which are both fee metals, and might account for the rela-

tively high value of n . found. It was concluded that chromium is an 

exception to the general rule of the "softness" of bee metals (at least 

when compared t~ the fee metals). 

*Probably to a value -close to those found for Nb and Ta discussed 

in the following paragraphs. 
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The results for molybdenum and tungsten are similar to each 

other and to the Group VB transition metals niobium and tantalum. 

For n = 2.5 in both cases the values of s' and f indicate excel-

* lent fits . This is confirmed by the plots in Figure 40. Of course, 

the difficulties with 2 < n < 3 previously noted apply in these 

cases also. 

Group IVB - Zr. Zirconium was considered separately because 

it is the only metal from Group IV considered in this study (see 

Table 4 and Figure 14). Although the values of £'and f in Table 

20 indicate a fair fit as evidenced by the plot in Figure 41, the 

value of n obtained ~ 0.1) must be considered extraordinary 

(although not necessarily anomalous). Because of the previously dis-

cussed difficulties when n < 2 , the possible effects of the paucity 

of data (5 points below the "break" in the raw data; see Table 23) 

and/or a (possibly) high value of C , a further investigation should 
0 

be made before a definite conclusion is reached. 

Alkaline Earth Metals (Group IIA) - Ca, Ba. Although the fit 

for calcium in Figure 37 (n = 0.5) appears to be similar to that for 

lithium in Figure 38 (n = 0.7) the values of s' and f in Table 20 

indicate a substantial difference. In fact, as previously noted, the 

vary "soft 0 potential in this case may be due to a low pressure tran­

sition (l54). Considering the s.catter in the data and the difficulties 

with n < 2 no definite conclusion was reached. 

* The potentially "poor" data for Mo noted in Table 23,which cause the 

(fairly large) scatter indicated, appear to have not greatly affected 

the res u1 ts • 
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Calcium appears to be to the fee metals what chromium was to 

the bee metals; a substance whose "softness" is opposite to that of 

the respective group. The observed behavior (i.e., n < ·2) might 

therefore again be related to the molar volume which for calcium is 

the largest (by far) among the fee metal·s (26.33 cc/mole) and 

reasonably close to its Group IIA neighbor Ba (37.77 cc/mole), a bee 

metal. It was concluded that barium is probably an exception to the 

general rule of the relative "hardness" of the fee metals. 

The results for baritnn shown in Table 20 and Figure 41 are 

similar to those for cesium (Figure 38); the values of £' and f 

and the plots indicate a poor fit. Since, as with cesium, the data 

also do not extrapolate to C a low pressure transition was · (pre­
o 

viously) inferred (Table 23). This is independently suggested in 

literature (Table 6). On this basis the transition is considered 

"real" and the theory thus inapplicable to the data. The values of 

n, <5, r , etc a · in Table 20 are not considered valid. 
0 

e. General conclusion. From the results in Table 20 and 

Figures 35-37 it was generally concluded that the SF solution with 

n < 6 quite adequately describes the Hugoniot of the fee metals (with 

one possible exception) . . The associated potential parameters are con-

sidered reasonable although not necessarily physically meaningful. 

Excellent or outstanding fits were obtained for silver, gold, 

palladium and platinum. Very good fits were found for cobalt, nickel, 

aluminum and lead. The fit for copper was reasonably good, but a 

further investigation of "questionable" data is required before the 

applicability of the theory can be judged. 
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From the results in Table 20 and Figures 38-41 it was con­

cluded that the SF solution adequately describes the Hugoniot of (most 

of) the bee metals al though it may not be "well defined" when n < 3 • 

The associated potential parameters are "not defined" when n < 3 • 

Excellent or outstanding fits were found for potassium, rubidium, 

niobium, tantalum, molybdenum and tungsten. Very good fits were 

found for sodium, vanadium and chromium. Fair to reasonably good fits 

were found for zirconium and lithium. The theory was considered 

inapplicable to cesium and barium because of a (inferred) low 

pressure electronic transition. No definite conclusion was reached 

for the fit for calcium. Several pertinent observations possibly 

affecting these conclusions were, that the results for the first four 

alkalis (Li, Na, K, Rb) may be influenced by a possible low pressure 

melting transiti.on, the C 
0 

for v may be 'too high, and the value 

of . n for Cr (Ca) is higher (lower) than expected for bee (fee) 

metals. 

Considering the number of metals studied and the wide range 

of properties involved (Table 4) the results for the fee metals are 

believed to generally support ·the validity of the shock model. Whether 

this is also true for the bee metals requires further investigation. 

It may be ·noted that for all but one metal n < 6 and that, 

ge·nerally, the values for bee metals are less than those for fee 

metals. These results are considered significant in that n is not 

restricted in the theoretical development. It was concluded that 

metals have potentials "softer" than those for liquids . (see Table 
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* ** 14) and that fee metals are softer than bee metals The first 

conclusion is considered reasonable based on the "pseudo-atom" con-

cept, while the second one might be explained by arguments similar 

to those given by Mott and Jones(J). 

Using the Mie-Lennard-Jones (or m-n or bireciprocal) potential 

(103) . 
function (Table 1, No. 3) Al'tshuler et al computed values of n 

*** of 4.3, 3.5 and 5.0 for copper, aluminlllll and lead respectively 

These are in notable agreement with the results in Table 20 which 

indicate values of 5.3, 4.0 and 5.2 respectively for the three metals. 

Also using the bireciprocal potential, Moelywn-Hughes< 37) 

**** computes (from compressibility data ) mn ~ 24.2, 19.5 and 29.3 

and m+n ~ 10.0, 17.4 and 10.2 respectively for copper, silver and 

aluminum. Setting · m :: 6 as in the current stud·y, these lead to 

values of n · of 4.0 for copper, 4.9 -11.4 for silver and 4.2 -4.9 for 

* . Although the .WF solution was used with liquids it was previously noted 

that application of the SF solution resulted in very similar results · 

(Le., n > 6). 

** The restrictions and limitations associated with n < 3 for the bee 

metals (e.g., the potential parameters are "not defined") limits the 

surety of this conclusion. 

*** In Reference 103 the nomenclature for m and n are the reverse 

of that used in this study. Also it should be noted that for Pb (the 

"attractive" exponent) m = 7.0, not .6.0, as is the case for Al and 

Cu (and all cases) in the current study. 

**** Actually from values of Grl.ineisen 's number. This is discussed in 

a following paragraph. 
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aluminum. These compare favorably with the respective values in 

Table 20 or 5.3, 6.3 and 4.0. 

To determine if the n found in Table 20 were related to an 

independently measured property of the metals being considered, 

several correlations were attempted as described in the following 

paragraphs. 

Al'tshuler et al (S6) (referring to several fee metals) and 

Bakanova et al (lO]) (referring to the alkali (bee) metals) indicate 

that the elements with the largest (initial) atomic volume are com-

pressed the most. This was tested by plotting n (from Table 20) 

against atomic volumes (from Appendix S) for all the metals considered 

in this study. Although several fee metals (Ni, Co, Pd, Au and per­

* haps Ag) appear to fall on a single line the points are generally 

widely scattered and it was concluded that the current results do not 

justify a correlation between n and atomic volume. 

To .determine if n was related to an energy parameter of the 

. (131 155) metals it was plotted against the cohesive energy ' (per mole) 

for the available data(lSS). As in the prior case no correlation was 

found and it was concluded that these parameters were not functionally 

related. 

. (131) 
In discussing cohesive forces Mott and Jones suggest that 

*-;'< 
Gruneisen's coefficient (y) might be a useful measure of the 

,'< 
The slope of this line has the opposite slope to that expected; n 
increases (rather than decreases) with an increase in atomic volume. 

**Defined by(56): 
y = d in V 

- d in V 
where v is the vibrational frequency of the atoms and V is volume. 



-265-

repulsive "exchange" forces between ions. Accordingly n was plotted 

against y* for several of the metals studied(SS,l3 , 93). For the fee 

** metals (y ~ 2. 0 - 3. 0) two (crude but distinct) linear relations of 

equal slope were identified; one correlated Cu, Ag, Ni and Pd, while 

the other passes through Au, Co, Pt, Al, a~d Pb. For the bee metals 

(y ~ 0. 8 - 1. 6) a line was found to pass th rough Li, Na and Rb while 

another of different slope passed through Nb, Ta; Mo, Zr and perhaps 

V and W • Only K and Cr deviate considerably from any of the lines. 

From this it was concluded that a (real) correlation pr9bably exists 

*** between n and · y but that more data and a more extensive analy-

sis are needed before a realistic assessment can be made. 

* To be sure that the values of Y did not depend on the shock data (as 

does n) and thus that they represented a (t,ruly) "independently meas­

ured property" 'of the metal, the correlation was made with Y 
0

, 

defined as the value of Y when P = O, determined from static pres­

sure measurements. 

** The slope of the line has the appropriate sign; n increases with an 

increase in y • 

*** Actually the form of the relation between n and y is well known 

and was (in reality) used by ~oelwyn-Hughes(37) in the prior deter­

mination of values of n for Cu, Ag and Al. The general form is: 

1 
y =. 6 (n + m + a) 

where m is the attractive exponent <= 6 in this study) and a is 

e·ither 1 or 3 (l03). This certainly confirms the linear relation 

observed but does not explain the four fits found (implying four 

intercepts) with at least two different slopes. 
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To determine if the n found in Table 20 was related to the 

type of metal being considered they were 11plotted11 on the periodic 

table (Figure 14) in the appropriate position. Except for some simi-

larity in the n for the 3 fee transition metals, the 5 bee transi-

tion metals (not including Cr) and (perhaps) the 3 noble metals, no 

substantial correlation was found. It was concluded that, at least 

within the accuracy of the detennination of n , a relation between 

n and the position of the metal in the periodic table is not justi-

fied by the current results. 

£. Recommendations. Based on the prior results and conclu-

sions the following are recorrrrnended for the metals studied. 

Expand the WF (and MF) solutions in a Taylor series and 

determine the applicability of the resultant equations to metals 

assuming that adequate values of cr and €/k can be defined. 

Refit the copper _data using the SF solution without the data 

from Reference 96 to determine if an improved fit can be obtained. 

Several bee metals are poorly or (perhaps) insufficiently 

characterized by the existing data (Li, Na, K, Rb, Cs, V, Zr, Ba and 

Ca (fee)). Additional shock data in selective regions of the U-µ 

curve would be highly desirable; for the alkali metals this might 

help determine the existence and effect of the "predicted" low pres-

sure melting transition (Li-Rb) and the inferred "electronic" 

transition for Cs. For V an accurate value of C and additional 
0 

low pressure shock data would help determine a more meaningful value 

of n e Additional low pressure data would also be useful for Zr (to 

assess the very low value of n found), Ba (to evaluate the inferred 
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"electronic" transition) and Ca (to reduce the scatter and determine 

the reality of a transition). In each case the additional data would 

lead to a more meaningful assessment of the theory. 

The correlation of n with Grlliieisen's coefficient y should 

be investigated empirically to determine if an accurate, independent 

(a priori) determination is possible from static pressure measurements. 

This should be done in conjunction with redetennination of the analy-

tical relationship between n and y using the current theory (i.e., 

Equations (95) or (108)) and Slater's relation(lS6) or the modifica­

tion proposed by Dugdale and MacDonald(S6). 

Although the n-6 potential appears to be adequate for the fee 

* metals the (generally mathematical ) difficulties with the low values 

of n for the bee metals casts doubt on the applicability of the theory 

for these materials. Further, there appear · to be physical reasons why 

a potential of this type would not yield good results for the bee struc-

** ture This point should be investigated and a determination made if 

a separate· potential function for bee metals is necessary. 

To .determine the effect of accounting for LRO behavior on both 

the values .of n and on the difficulties experienced with the bee 

metals, it is recommended that the theory developed using the previou$ly 

recommended potential function (Equation (228)) be applied to all the 

metals. A successful refit would provide additional support for the 

* For n < 3 the Hugoniot is not "well defined" and the potential 
parameters are "not defined". For n < 2 the slope of the U-µ curve 
decreases as x + 1 . 

** (21) Fowler reports that the n-6 potential will lead to an fee struc-
ture in preference to a bee structure. March(l52) also indicates that 

the form of the "force law" (i.e., potential) leads to a particular 
stable structure. 
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validity of the shock model. 

Although the pair potential approximation may be justified for 

1 ( 7 5 , 152) . . 1 h ( d . h meta s it is not c ear t at two terms as use in t e current 

study and by Egelstaff(ll), etc.) can sufficiently describe the inter-

action even if LRO behavior is taken into account. This "deficiency" 

* could be handled most conveniently by considering the n-6 potential 

with an added term (to account for electrostatic interactions) in the 

f 
(21,115,37) . 

orm : 

(232) 

where c is a constant and p is a small integer (1 < p < 3). It 

. is reconnnended that Equation (232) be considered in the development of 

the theory and the resultant Hugoniot applied to all the metals. It 

may be noted that (at least) one additional potential parameter (c) 

has been added and that it must be fixed independently or by the . shock 

data. 

As previously discussed with liquids it would be interesting to 

work "backward" through the theory and use the shock data to predict 

** the (effective) intermolecular pair potential Noting the derivation 

of Equation (223) this can be accomplished directly from the data if 

*In pseudopotential theory the total interaction is usually given as 
the sum of several (> 2) terms<i 3o,z4 ,z7 ,i57 ,lJZ) but not in an 

analytical form suitable for use with the current theory. 

** . (114) It is notable that Tsai and Beckett also suggest this in their 

study of shock wave propagation .in cubic lattices. 
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g(r) is known. However, for metals g(r) can be (roughly) computed 

from simple geometrical considerations (g(r) may be defined as the 

ratio of local to bulk density(l9))given the particular lattice struc-

ture (fee, bee, etc.). It is recommended that calculations of this 

type be performed to detennine if meaningful (effective) potential 

functions can be obtained for metals. 

As pointed out earlier in this study and discussed with liquids 

a satisfactory equation-of-state is generally needed before the 

Hugoniot of condensed media can be determined. For metals, n\.llllerous 

calculations of this type have been made that (almost exclusively) 

.. . (86 10) 
start with the Mie-Gruneisen .equation-of-state ' • Using this and 

a Morse potential, Pastine(6l) determined the Hugoniots for Al, Cu, 

Ag, Zr and Mg with mixed results. In a similar manner, using a Born­

Mayer lattice potential, Huang(9) computed the Hugoniots for Ag, Cu, 

and Pb and determined a "general" equation-of-state for metals. In 

later studies Pastine (l4 , 67) used an n-m potential (Table 1, No. 3) 

to compute several (hypothetical) Hugoniots and a detailed evalua-

tion of the cohesive energy to determine the Hugoniot of Na. 

Ruoff (lSS) used a prev~ously derived P-x relationship to determine 

the Hugoniot for KBr, CsI and Na and, 1 using ann-m potential, Xe. In 

(85,91,102,13) . .. . . h several cases the Mie-Gruneisen equation-of-state as 

been used with experimental data and/or analytical fits of that data, 

to compute thermodynamic properties of several metals, including y 

and T etc., instead of the Hugoniot itself~ Munson and Barker(9S) 

obtained the isentropic and isothermal hydrostats of Cu, Al and Pb in 

. (103 104) a similar manner. Al'tshuler et al ' supplemented the 
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Mie-Grtineisen equation-of-state with terms that take into account the 

electronic components of the energy and pressure and used the shock 

data to determine T , y , etc. for several metals. In a later study 

. (108) 
Krupnikov et al performed similar calculations for Ti, Mo, Ta and 

Fe. A single exception to the use of the Mie-Gr\ineisen equation-of­

state for metals is the study by Tsai and Beckett(ll4) in which lattice 

dynamics was applied to wave propagation in cubic lattices using 

several "interaction" potential functions. Numerical solutions to the 

equations of motion yielded the Hugoniot for several lattice-type, 

* potential-function combinations • 

Because the general goal of each of these computations is 

(essentially) the same as the objectives of the current study, it is 

reconunended that, as in the case with liquids, a comprehensive compari-

son between the several methods be made to determine the relationship(s) 

between them and their relative merits. 

In a recent pair of papers Barker(40) and Broadhurst and 

Mopsik (lS9) computed the Griineisen numbers for polymeric solids and 

linear polymers using a 11bundle-of-chains" model. It is recommended· 

that the applicability of the current shock model to. materials of this 

type be investigated. 

* It is notable that Tsai and Beckett's approach is the only one (other 

than the current study) in which the Hugoniot calculations do not 

depend on the thermodynamics of the shock transition. 
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Appendix A 

Derivation of Equations (4) - (7) 

Equations (1), (2) and (3) are: 

p U = p(U - µ) 
0 

(1) 

(p U)U + P = [p(U - µ)] (U - µ) + P 
0 0 

(2) 

1
2(p U)U2+ UP + Up E 

0 0 0 0 

1 2 = 2( P (U - µ) ](U - µ) + (U - µ) P + (U - µ) pE 

(3) 

Equation (1) may be directly solved for U to give: 

u = ]::! 

po 
1--

p 

(4) 

which is Equation (4). 

Rearrangement of .Equation (2) gives: 

p - p 2 p(U - µ)2 = p u -
0 0 

(Al) 

Substitution ·of p(U - µ) from Equation (1) gives: 

P - P = p
0

U2 - p U(U - µ) = o,,.-U~ - o .. --i)"~ + p Uµ (A2) 
O o ...... ro 70 o · 

p - p = p Uµ 
0 0 

(5) 

which is Equation (5). 

F:f:'.'om Equation (1): 

u - µ 
po 

= - . u p (A3) 

Substitution into Equation (3) and rearranging gives: 

p J1E - .p .l:1E 
0 0 0 

(A4} 
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or: 
l U2(1 - (po/p)2] 

p 
0 p 

6E - E - E = +-'""'.-
0 2 po p 

l U2(1 
p 

0 p 
6E = - p /p)(l + p /p) +- - -

2 0 0 po p 

Substitution of µ in Equation (4) into Equation (5) gives: 

or: 

P - P = p u2(1 - p /p) 
0 0 0 

u2 = 
p - p 

0 0 

p (1- p /p) 
0 0 

Substitution above gives: 

(AS) 

(A6) 

(A7) 

(A8) 

1 (P - p ) po P 
6E = z(L-~--p- · - /p) (1 + p /p) o + - - - (A9) 

0 0 p {L-:i- p - f(S) po p 
0 0 

. 1 P 1 P 1 po 1 Po Po P 
6E = 2 p + z p - 2 p - 2 p + p - p (AlO) 

0 0 0 

1 (P +Po) 

2 p 

' 1 1 1 
6E = - (P + P ) (- - -) 2 ' 0 p p 

0 

which is Equation (6). 

Substituting Equation (4) into Equation (5) gives: 

p - p 
0 

2 = p µ /(1 - p /p) 
0 ,0 

p = p + p µ2/(1 - p /p) 
0 0 0 

Substituting this into Equation (6) gives: 

2 ' p µ 
LiE = l(2P + o )(_L - l) 

2 o (1-p/p) po p 
0 

or: 

(All) 

(6) 

(Al2) 

(A.13) 
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1 p ~ 2 
~E = P (- - 1.) + 1. -.~ o µ 

o po p 2~ 
0 

(Al4) 

~E = p ( L - 1.) + 1. µ 2 
o po p 2 

(7) 

which is Equation (7). 
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Appendix B 

Derivation of Equation (8) 

The equation of state of any material can be written in the 

form: 

E = f(V,T) (Bl) 

Since dE is an exact differential (l
6
0)(based on the first law of 

thermodynamics) it may be written: 

dE = dE (()E) dT <av)T dv + ()T V 
(B2) 

Now: 

CV =: 
3E 

(()T) V (B3) 

and the above becomes: 

3E 
dV + CV dT dE = <av)T (B4) 

The first law of thermodynamics may be written: 

dE = q - w (BS) 

For a reversible change: 

= T dS (B6) 

w = Pd V rev 
(B7) 

and: 

dE = T dS - Pd V ; reversible change (BB) 

Since each of. these quantities is a function of ·state only, the equa-

tion is general and may be written: 
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dE = T dS - Pd V 

Dividing through by dV gives: 

dE 
dV 

dS = T- - p 
dV 

For constant temperature processes this becomes: 

= T(~) - p 
av T 

Dividing Equation (B9) through by dT gives: 

dE = T dS _ p dV 
dT dT dT 

and for constant volume processes this gives: 

Taking the 

· (3E) 
()T V 

= T(~) 
()T V 

partial derivative of 

Equation (Bl3)with respect to T 

Equation 

gives: 

<1
2E a2s (~) 

(3V3T = T avaT + av T 

32
E a2s 

aTav = T aTav 

(Bll) with 

8P 
<aT>v 

(B9) 

(BIO) 

(Bll) 

(B12) 

(Bl3) 

respect to v and 

(Bl4) 

(BlS) 

Since E and S · are continuous functions the mixed derivatives are 

equal in the above and subtraction yields: 

(~) av T 
= 

Substituting Equation (Bl6) into Equation (Bll) gives: 

(Bl6) 
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(~) = T(~) - p av T aT v (Bl7) 

Substitution into Equation (B4) gives: 

(8) 

which is Equation (8). 
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Appendix C 

Derivation of Equation (18) 

Equation (17) is: 

u 
0 

lim U 
µ -+ 0 

= l-irn _.._lJ_ ,...,_ ..... ,. 1 = ..... 
µ-+ 0 1 

x 

0 
0 

(17) 

~ (15) 
Applying L'Hospital's rule by differentiating numerator and denom-

inator with respect to µ gives: 

or: 

u 
0 

u 
0 

= lim 
1 

-<- L) dx 
2 dµ x 

= 

µ -+ 0 

1 . 2 dµ 
].Ill x -

µ -+ 0 dx 

Since x -+ l as µ -+ 0 this may be written: 

or: 

u 
0 

u 
0 

= lim x
2 ~ 

x -+ l 

= 1 . ~ 
im dx 

x -+ 1 

which is. Equation (18). 

(Cl) 

(C2) 

(C3) 

(18) 
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Appendix D 

Validity of Equation (19) 

Equation (19) is: 

.!. µ2 >> p (l:_ - .!.) 
2 0 p p 

0 

(19) 

Since 
x (Dl) 

this becomes: 

p 
1. µ2 >> ~(l - ..!.) 
2 ' p x 

0 

(D2) 

which is to be shown. Clearly, the maximum value of the right-hand-

side (rhs) of Equation (D2) will occur when x ~ oo, 

Equation (19) will be satisfied if: 

(1 - .!.) 7 1 • Thus x 

(D3) 

The minimum value of the left-hand-side (lbs) of Equation (D3) will 

occur when µ = µ . .which may be found for each substance from the 
min 

compiled raw data (Appendix S). Equation (19) will be satisfied if: 

or if: 

1 2 Po 
- µ ·· >> - (D4) 
2 min p 

R -

0 

1 2 -µ 
2 .min>> 1 
p /p 

0 0 

(DS) 

From the data in Appendix S, rough calculations of R were· made for 

all the substances considered in this study. The results are shown in 

Table Dl. 
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Table Dl 

VALIDITY OF EQUATION (19) 

2 2 2 
rvµ . -cm/ 'VP Ip-cm I 'V ll . /2-cm I 

'Vp -g/cc 'VP-atm. 
min _

6 
o o. _

6 
min 

Substance o o sec x 10 sec2x . 10 sec2 x 10-6 R 

A 1.4 2 0.03 1.4 450 321 

A-II 0.9 69 0.15 76.7 11250 147 

A-III 1.0 1050 0.14 1070 9800 9.2 

A-IV 1.1 1600 0.25 1455 31250 21 

Hg 13.5 1 0.06 0.07 ·1800 25714 

NZ 0.8 1 0.06 1.3 1800 1385 

H2 0.07 2 0.60 28.8 180000 6250 

cs2 1.3 1 0.02 0.77 200 260 

CC1 4 1.6 1 0.04 0.63 800 1270 

CH30H o. 79 . 1 0.15 1.27 11250 8860 

c
2
H50H 0.78 · l 0.13 1.28 8450 6600 

(C2H5)20 o. 7i 1 0.15 1.41 11250 7979 

C6H14 0.67 . l 0.15 1.49 11250 7550 

C6H6 0.88 1 0.03 1.14 450 395 

c
6
H

5
cH

3 
0.88 1 0.14 1.14 9800 8596 

H
2

0 1.0 1 0.095 1.0 4513 4513 

Cu 8.9 1 0.01 0.112 50 446 

Ag ·10.5 1 0.05 0.095 1250 13150 

Au 19. 3 . 1 0.04 0.052 800 15380 

Co .8.8 1 0.05 0.113 1250 11060 

Ni 8.9 1 0.03 0.112 450 4020 

Pd 12.0 1 0.045 0.083 1013 . 12200 

Pt 21.4 1 0.03 0.047 450 9570 

Al 2.7 1 0.0004 0.37 0.08 0.22 

Ca 1.5 1 0.10 0.67 5000 7460 

Pb 11.3 . . 1 0.002 0.088 2 22.7 

.Li .0.53 1 0.11 1.9 6050 3184 

Na 1.0 1 0.13 1.0 8450 8450 
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Table Dl (continued) 

. 2 
rvµ -cm/ rvp IP -<:..m2 I rv~. /z-cm I 

rvp -gj cc rvp -a tm. min _
6 0 o in 

0 0 2 -6 2 -6 R Substance sec x 10 sec x 10 sec x 10 

K 0.86 1 0.12 1.16 7200 6207 

Rb 1.5 l · 0.13· 0.67 8450 12600 

Cs 1.8 1 0.14 0.56 9800 17500 

v 6.1 1 0.06 0.16 1800 11250 

Nb 8.6 1 o.os 0.12 1250 10400 

Ta 16.6 1 0.04 0.06 800 13333 

Cr 7.1 1 o.os 0.14 1250 8930 

Mo 10.2 1 0.04 0.10 800 8000 

w 19.2 1 0.045 o.os 1013 20260 

Zr 6.5 1 0.07 0.15 2450 16300 

Ba 3.6 1 0.09 0.28 4050 14460 
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In all but four cases (A-III, A-IV, Al and Pb) R > 100 and 

Equation (D5) (and thus Equation (19)) is satisfied to at least 1% * 

For the four exceptions it may be noted that in using Equation 

(D5) the most stringent conditions were assumed, i.e., in Equation 

(D2) the lhs was a minimum while the rhs was a maximum. A less severe 

but equally satisfactory condition may be developed as follows. From 

Equation (14): 

1 1 = µ 
x u 

and substituting into Equation (D2) gives: 

p 
l µ2 >> -2. J! 
2 p u 

0 

or: 

Equation (19) .will clearly be satisfied if: 

** or if : 

* 

p 
1 ( U) >> __9.. 
2 µ min p . 0 

R' -
l( U) 
2 µ min 

p /p 
0 0 

>> 1 

(D6) . 

(D7) 

(DB) 

(D9) 

(DlO) 

In most cases R >> 100; Equation (19) is thereby an excellent assump-
tion. 

**Since U > µ, generally, Equation (D9) is clearly less stringent than 
Equation (D5) in satisfying Equation (19). 
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Using Equation (DlO) calculations of R' were made for A-III, A-IV, 

Al and Pb. The results appear in Table D2. 

Since R' > 100 for Al and Pb, Equation (19) is satisfied to 1% 

in these two cases. The values of R' for A-III and A-IV in Table 

D2 indicate that Equation (19) is considerab~y less well satisfied for . 

these substances than for any of the others. However, even in these 

cases the assumption is valid within~ 5% and~2%, respectively. 



-293-

Table D2 

VALIDITY OF EQUATION (19) USING EQUATION (DlO) 

'VP /p-cm2/sec2 x10-6 'Vl/2(Uµ) .-cm2/sec2 xio-6 
Substance o o min R' 

A-III 1070 20400 19 

A-IV 1455 62600 43 

Al 0.37 98 265 

Pb 0.088 183 2080 
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Appendix E 

New Way to Compute Temperatures along the Hugoniot 

Consider the shaded molecule in Figure 4 in the final equilibrium 

state at L , a layer far removed from the shock front. 
e 

The structure 

has relaxed from the (abnormal) state at 1
1 

and the molecules have 

redistributed themselves to new equilibrium positions with character-

istic spacing z . e 

From Equation (30): 

Lrn ( 2) 
thermal 

= - 6E( 2) 
conf igurational 

and following the development of Equation (32): 

N Le L ~E(2) = _ (<I> _ <I> 1] 
conf igurational M 

(30) 

(El) 

Each of the potentials in Equation (El) may be further broken down by 

consideration of Figures Ela and Elb (see Figures Sa and Sb) where the 

effect of each of the several regions is shown. From superposition: 

L 
<I> e 

L L L L L 
=<I> e(R"+R) +<I> e(R"+R-R') +<I> e(R") +<I> e +<I> e 

1 2 3 4 5 

(E2) 

(E3) 

Since R" is large (i.e., L is far removed from the shock front) it 
e 

is clear that: 

L 
<I> 1 (R") 

5 

and from Equations (39) - (43): 

0 (E4) 
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Figure Ela 

L­o 

.L1-

L­e 

R" 
COMPRESSED 

REGION 

DENSITY• p 

--~ 7------cl>L' l COMPRESSED 
5 REGION 

· · · DENSITY• p 

Figure Elb 

Lo-

L,-

J 
UNCOMPRE SSEO 

REGION 
___ ..__________ _ ____ DENSITY11:p

0 

] 

UNCOMPRESSED 

R"+R ~ REGION 
. <P

2
Le . DENSITY • p0 

--- ---- -----

R
11
+R-R

1 

. ~ REGION 
. . J TRANSITION 

_f _:!_i~-~- - - - - _Po< DENSITY <p 

R" 
COMPRESSED 

REGION 

DENSITY• p 

Figure El. Potentials for Shaded Molecule 
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By the same reasoning in Figure Elb: 

and: 

leading to: 

L L L 
<I> e (R"+R) rv <I> e (R"+R-R') ~ <I> e (R") 'V 0 

1 2 3 

L L 
<I> e ~ <I> e 

4 5 

L 
<I> e ;: 

L 
2<I> e 

5 

Substituting Equations (ES) and (EB) into Equation (El) gives: 

The reasoning leading to Equation (E9) may be summarized as 

follows. The molecule at L "sees" above it a medium of density 
1 

(except for the transition region which is assumed small) at a dis-

(ES) 

(E6) 

(E7) 

(E8) 

(E9) 

tance z • Below it is a medium . of density · p .. at a distance .z • The 
0 

molecule in L "sees" above · and below it a medium of density p but 
e 

at a distance z (instead of e . 

* 
Thus 

L L 
<I> l(= <I> e) 

5 4 

* z) ~ 
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Following Equations (45) and (46): 

L 
cp 0 

2 

L 
cp e 

5 

L 
= ~(p,z) + ~ 1

(z ) 
0 

L 
= ~(po,zo) + ljJ o(zo) 

L 
= ~(p,ze) + ~ e(ze) 

(45) 

(46) 

(ElO) 

where ~(p,z) is the configurational energy of a single isolated 

molecule positioned a distance z from a semi-infinite medium of 
L L1 L 

density p , and ~ (z0),~ 
0

(z
0

) and ,,, e(z ) h f. o/ are t e con igura-
e 

tional energy contributions of the other molecules in layers L1,L
0 

* and L respectively • Noting Equation (47) substitution of Equa-
e 

tions (45), (46.) and (ElO) into Equation (E.9) gives: 

flE (2) N [ zir.( ) ii•( ) ii•( ) configurational = M o/ p' ze - o/ P 'z - o/ Po ,zo 

L L 
+ 2~ e(z ) - 2~ 0 (z )] 

e o 
(Ell) 

The second and third terms of Equation (Ell) are given directly 

by Equations (78) and (79) for the pair potential in Equation (72). 

The first term of Equation (Ell) is given by Equation (78) with 

z· = z 
e 

The last two terms of Equation (Ell) may be evaluated from 

the two-dimensional counterpart of Equation (50) and the assumed pair 

* Note that in L1 the adjacent molecules remain at z
0 

throughout the 

transition. This is not true in Le where relaxation has taken 

place. · In this case the adjacent molecules are at z 
e 
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potential, Equation (72). 

In order to completely define the right-hand-side of Equation 

(Ell) the relations z vs. p , z vs. p and z vs. p 
o o e must be 

specified. The first two relationships are given by Equations (88) and 

(92) respectively and are: 

z = 
0 

(88) 

(92) 

If it is assumed that the structure factor s is a constant (i.e., 

that the structure in the equilibrium state is the same as in the 

uncompressed state) then 

* 
z 

e 
is given directly by the ~ounterpart of 

Equation (88) : 

z = (M/26 pN)l/3 (El2) 
e 

Therefore for a given shock state (i.e., for given values of p) 

all the terms in Equation . (Ell) may be evaluated and ~E(Z) 
conf igurational 

determinede From Equation (30) this determines ~E~~~rmale 

From Appendix B : 

(B4) 

where V = l/p • Since there are no pressure/density changes taking 

place between L
1 

* 

and L , dV = 0 
e and Equation (B4) 

Of course, since Equation (El2) is generally applicable it may be used 

even if s changes, if the new value is known. 



* becomes : 

dE 

** and integration gives 

Equating bE with 

T 

bE( 2) 
thermal 
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= 

gives: 

I = bE(Z) 
thermal 

= - bE(2) . 
conf igurational 

T 
0 

(El3) 

(El4) 

(Eis) 

which, along with Equations (Ell), (78), (79), (88), (92), (E12) and 

the two-dimensional counterpart of Equation (50), uniquely defines the 

temperature T for a given value of p • 

*' Considering the non-equilibrium state at L1 the applicability of 
Equation (84) (derived from basic thermodynamics) to changes taking 
place from L1 to Le is not assured. 

** Since there is no temperature change across the shock front, 
T = T 

0 
at . L.l • 
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Appendix F 

Derivation of Equations (69) and (70) 

Equations (65) - (68) are: 

<f>(a) = o 

<f>(r ) = -E 
0 

Use of Equation (66) in Equation (65) gives: 

or: 

-n -6 
<P ( cr) · = o = aa - ba 

n-6 cr 

Differentiating Equation (65) gives: 

dcp(r) 
dr 

= - nar-n-l + 6br-7 

and applying Equation (68) gives: 

0 = - nar-n-l + 6br-7 
0 0 

or: 

n-6 (n) (~) r = 
0 6 b 

1 1 

r = (n)n-6 (a) n-6 
0 6 b 

Using Equation (F2) gives: 

(65) 

(66) 

(67) 

(68) 

(Fl) 

(F2) . 

(F3) 

(F4) 

(FS) 

(F6) 



which is Equation (70). 

r = 
0 
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1 
(n) n-6 0 

6 

Use of Equation (67) in Equation (65) gives: 

-n -6 
- e: = ar - br 

0 0 

(70) 

(F7) 

Substituting for a from Equation (F2) and for · r from Equation · 
0 

(70) gives: 

n 6 
_ 8 = bcrn-6(~}- n-6 cr-n _ b(~}- n-6 cr-6 (F8) 

(F9) 

Now: 
n 6 n 

[1-
6 

(~/6] (n) - n-6 (n) - n-6 t) - n-6 (n) - n-6 - = 
6 6 6 6 

(FlO) 

or: 
n 6 n 

(.!!) 
- n-6 (.!!) - n-6 (n) - n-6 

(1 - n] - = 
6 6 6 6 

(Fll) 

and Equation (F9) becomes: 

n 
__ bl"'\"-6(n)- n-6 n - e: v (1 :- -6] ' 6 (Fl2) 

so that: 
n 

b = 
e: <v~ 0'6 . 

n (6 - 1) 
(Fl3) 

From Equation (F2): n 
e: (n)n-6 crn 

n-6 · 6 
a = bO' = ------

(~ - 1) 
(Fl4) 
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Substituting Equations (Fl3) and (Fl4) into Equation (65) gives: 

or: 

cp (r) = 

n 
n n-6 n -n 

£ (6) a r 

(.!l - 1) 
6 

n 

e: <%) n-6 
cp (r) = 

(~ - 1) 

which is Equation (69). 

(FlS) 

(69) 
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Appendix G 

Derivation of Equation (73) 

Equation (69) is: 

n 
(n)n-6 

<f>(r) = g _6 __ 
(n -1) 
6 

which may be written in the form: 

<f>{r) 

Taking the limit as n + 6 gives: 

(69) 

(Gl) 

(G2) 

(161) 
Since the limit of a product is the product of the limits this may 

be written: 

n 
n n-6 

<t> 6(r) = g lim (6) 
n + 6 

Therefore: 

n 

(G3) 

<f>6(r) ==9 E: lim (n)n-6 0 (G4) 
n + 6 6 0 

which is an indeterminate form. The first limit may be evaluated as 

follows: 
n 

lim(~) n-6 > loo (GS) 



Let: 

Then: 

n 

(n)n-6 
6 
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(G6) 

n 

lim £
1

(n) = lim. (n)n-6 = lim 
( n ) R, (n) lim (n~6) in(~) 
n-6 n 6 n+6 

or: 

n-+6 n-+6
6 

n-+6 

= e 

n(n) 
lim --

6
-

n-+6 (n-6) 
· n 

~ e 

0 
0 

e = e 

(G7) 

(GS) 

which is an indeterminate form for which L'H~spital's rule(lS) applies. 

Differentiating numerator and denominator with respect to n gives: 

lim £
1 

(n) 
n-+ 6 

= e 

lim l/n 
n-+6 6;n2 

lim ~ 
n-+ 6 9 

= e = e 

Clearly the first limit exists and Equation (G4) becomes: 

0 
i:> ·e: e -

0 

Therefore from Equation (G3) and L'H~spital's rule: 

or: 

= e: e lim 
n-+ 6 

which is Equation (73) • 

(a)n Q.n(o'> 
r r 

1/6 

(G9) 

(GlO) . 

(Gll) 

(73) 



Equation (70) is: 

r = 
0 
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l 

(n)n-6 <J 
6 

As n + 6 this becomes: 

1 

r = lim (E_)n-6 <J 
o r + 6 6 

or: 

00 

r /a ~ 1 
0 

Let: 

Therefore: 

"' Applying L.'Hospital' s rule gives: 

1 

lim (n)n-6 
n + 6 6 

l ~ l/n 
1lll -

n+ 6 
1 

1/6 = e = e 

Equation (Gl2) becomes: 

' 1/6 
r = e a 

0 
air = e-116 

0 

Therefore from Equation (73): 

(J 6 (J $
6
(r ) = 6E e(~) in(~) o r r 

0 0 

or using Equation (Gl7): 

n-6 = e 

-;;> 

0 
0 e 

(70) 

(Gl2) 

(Gl3) . 

(Gl4) 

(Gl5) . 

(Gl6) 

(G17) 

(Gl8) 
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<P (r ) = - e; 6 0 
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which was to be shown. · Also from Equation (73): 

[ 
a 6 r a a 5 a a~ · (-) (-) (- -) + 6(-) (- -) in(-) 
r O' 2 r 2 r r r 

or: 

= -

Therefore: 

6Ee(Q_) 6 (]:_) (1 + 6 in(Q:_)] 
r r r 

0 0 0 

From Equation (Gl7) this becomes: 

[ d<J>6(r)~ ~1/6 6 1 -1/6 
dr = - 6Ee(e ) ( 116 )(1 + 6 in(e )] 

r=r e O' 
0 

[
d<P 6 (r)J -- - 6£ 

-- (1 - l] 
dr r=r . el/60 . 0 . 

= 0 

which was to be shown. Also from Equation (73): 

which was to be shown. 

(G20) 

(G21) 

(G22) 

(G23) 
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The long range behavior of Equation (73) may be determined from: 

or: 

= lim cp
6
(r) 

r -+ oo 

6 = -6e:ecr 

r 
.Q.n(I"\') 

lim v 
6 r -+ oo r 

00 
~ 

00 

Applying L'Hospital's rule gives: 

or: 

6 . l/r 6 1 
<P 

6 
(00) = -6e:ecr lim - = -e:ecr lim 

r -+ oo 6r5 r ~ oo r 6 

<f> (oo) = - 0 
6 . 

which matches the behavior of Equation (69) (see Figure 8). 

(G24) 

(G25) 

(G26) 

(G27) 
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Appendix H 

Derivation of Equation (75) 

Equation (69) is: 
n 

(69) 

Taking the limit as n + 0 gives: 

$
0

(r) = lim $(r) = lim E 
n+O n+O 

.(Hl) 

Since the limit of a product is the product of the limits(161)this 

becomes: 

or: 

$ (r) = e: 
0 

n 

lim (n)n-6 lim 
6 n+O n+O 

n 

$o(r) = E[(a)6 - 1] lim (n)n-6 
r n + 0 6 

The remaining limit may be evaluated as follows. 

Let: 

lim 
n+O 

n 
(n)n-6 
6 = e 

n 
.Q.n(n)n-6 

6 

Therefore: 

n 

l~ . (n) n-6 = lim 
n+O 6 n+O 

00 

=.e 

lim 
n + 0 

(H2) 

(H3) 

(H4) 

(HS) 

n n (-) .Q.n(-) 
n-6 6 (H6) 
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lim 
n + 0 

n 

(n)n-6 
6 
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£n(_§.) 
lim n 

n + 0 (6-n) = e n 

Applying L'Hospitalvs rule gives: 

l . -1/n 
n im 

2 
lim (~)n-6= en+ 0 -6/n = 

n + 0 

00 

00 
> ·e 

lim n 
n + 0 6 

e 
0 = e = · 1 

Substituting Equation (HS) into Equation (H3)gives: 

which is Equation (75). 

Equation (70) is: 

r = 
0 

n 
(n) n-6 a 
6 

As n + 0 this becomes: 

or: 

r = 
0 

r = 
0 

lim 
n + 0 

n 1 

(~) n-6 a = (O) 0-6 a ;= (0)-1/ 6 a 

(H7) 

(HS) 

(75) 

(70) 

(H9) 

(HlO) 

This implies that <f> (r) has no minimum and is thus "degenerate" in 
0 

form. However, from Equation (75): 

<f> (r ) = <f> (oo) = E[O - l] = - €. 
0 0 0 

(Hll) 

which is compatible with Equation (67). Also from Equation (75): 



and: 

d¢ (r) 
_o __ = e:cr6(-6) 

dr 
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6' 
6ccr . -7 

r =-7 (Hl2) 

(Hl3) 

which is compatible with Equation (68). Also from Equation (75): 

¢ (cr) = e:[(
0

)
6 - l] = o o cr (Hl4) 

which is compatible with Equation (66). The long range behavior of 

Equation (75) may be determined from: 

(Hl5) 

which confirms that ¢ 
0 
(r) has no minimum ~i.e., r 

0 
~oo) • A plot of 

¢ (r) is shown in Figure Hl. 
0 
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¢o<r) 

0----+------+-------------------------------------1~ 0 

-1 
-E -----------------

Figure Hl. <I> (r) vs o r 
0 

r 
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Appendix I 

Proof of Monotonicity of $(r) 

Equation (69) is: 

<j>(r) = 

w = cr/r 

and note that since we are considering the repulsive region: 

(69) 

(Il) 

w > 1 (12) 

Noting Equation (Il) and dividing through by € gives: 

(I3) . 

Clearly if $(r)/€ is monotonically increasing with n , <j>(r) is 

also, and we may define: 

~(w) = ~ = flE2. 
€ 

Equation (I4) becomes: 

n · 

(E.) n-6 
6 
n (- - 1) 
6 

n 6 (w - w ) 

(I4) 

(IS) 

Consider first the question: Is ~ monotonically increasing in the 

interval from n = 0 to n = 6? 
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Noting that, . in this case, (n/6 - 1) ~ 0 and n 6 (w - w ) ~ O 

(since w > 1), Equation (15) may be rearranged to: 

n n 
(n)n-6 

(w6 
(..§.) 6-n 

6 n 
\/; 

6 n n = - w ) = 6 (6 - n) (w - w ) n 
(1 - -) 

6 

(I6) 

or: 

-1L 6 n 
\/; 6 [ ci) 6-n ] [w - w = n 6 - n 

(I7) 

If both factors of Equation (I7) are monotonically increasing with n 

from 0 to 6, then W is also. This can be examined by finding a lower 

limit of each factor at n = 0 and an upper limit at n = 6 and then 

proving monotonicity between these limits. 

Consider first factor 
6 n I 6-n 

The lower limit is given the (-) . 
n 

by: 

n n 

lim (.§.)6-n = lim (n)n-6 (18) 
n + .Q n n + 0 6 

and from Equation (H8): 

n 

lim c.2.) 6-n = 1 (I9) 
n+O n 

The upper limit is. given by: 

n n 

lim (.§.)6-n = lim (n)n-6 (IlO) 
n+6 n n+ 6 6 

and from Equations (G6) - (G9): 



lim 
n + 6 
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= e (Ill) 

If the factor is monotonic a/an is always > 0 in the interval. 

or: 

n 

a(.2..)6-n n 
n = (-1-)(.§.) 6-n [ (-6-) in(.§.) _ 1 ] 
an 6-n n 6-n n 

6 ] 
2 

(6-n) 
(I13) 

(Il4) 

Since (for n < 6) the first two factors must be > 0 it is only 

necessary to $how that: 

( 6 . 6) 
6-n) in(n > 1 

* to meet the requirement (i.e., that a/an> O) 

* For n=6 Equatio_n (114) becomes: 

n 

a(_§.)n-6 n 
n = lim (_l_) (_§.) 6-n [ (6-6n) in(.§.) - l] 
an 6-n n . n 

n + 6 

= lim 
n+6 

n 

__..!!_ [ in(_§.) 
6
-n - 1] = lim (_§.) 6-n lim __ n ___ _ 

n-+6 n n+6 6- n 

_JL [6 in(!) - (6-n)J 00 0 (.§.) 6-n lim =i> [l ]•(-] 
n n + 6 ( 6-n) 2 0 

(IlS) 

(continued) 



Equation (IlS) may be written: 

6 in(-) > 
n 

6-n 
6 
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T 1 . . (127) f From a ay or series expansion o R,n u 

+ ... , 1 u>-
2 

(!16) 

(!17) 

If u is set equal to 6/n then the condition on Equation (117) is 

met over the whole range of n since 6 u=->l .. 
n 

Further, since 

u > 1 each of the terms of Equation '(Il7) is > 0 and the expansion 

may be written: 

in u = u-1 + R 
u 

Since u = 6/n this becomes: 

or: 

* (continued) 

6 in(-) = 
n 

6 
1 

_n __ + R 
6 
n 

From Equation (Ill) and L'Hospital's rule: 

lim -6/n + 1 
n + .6 2(6-n)(-l) 

0 ::;:. e • [-] 
0 

2 
= e • lim ~~(-l) = e/12 > 0 

n + 6 

which meets the requirement. 

R > 0 (Il8) 

. (119) 

(I20) 
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Substituting Equation (I20) into Equation (Il6) gives: 

6-n + R 
6 

6-n > --
6 

and the requirement is clearly met. Therefore the first factor, 
n 

(.§.) 6-n is monotonically increasing with 
n 

n • 

(I21) 

Consider. the second factor 
6 n w - w . 

( 
6 

_ n) o The lower and upper 

limits are given by: 

lim 
n + 0 

6 n 6 
((JJ - (JJ ) = (JJ - 1 

6 - n 6 

and: 

6 n 
0 wn 9..n w 

lim ((JJ - (JJ ) => - = lim -
n + 6 6-n 0 n + 6 -1 

It is first necessary to show that : . 

. 6 .Q, 
6 

1 > w -w nw 
6 

Rearrangement gives: 

6 
6 

1 R,nw > w -
w6 

(I22) 

6 = (JJ '. in w (!23) 

(I24) 

(125) 

From Equation (117) we may set 6 u = w and, noting that w > 1 , 

write: 

R > 0 (126) 

Substituting this into Equation (125) gives: 

6 
w - 1 

006 
(127) 

which demonstrates the validity of Equation (I24) (i.e., the upper 
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limit exceeds the lower limit). If the (second) factor is monotonic, 

a/an is always > 0 in the interval. 

6 n 
6 n a(w - w ) n 

6-n (6-n)(-l)w inw - (w - w )(-1) 

an = 
(6-n) 2 

or: 

6 n 
6 n a(w - w ) (w - w ) - (6-n) wninw 

6-n 
an = 

(6-n) 2 

In this case (for n < 6) it is necessary to show 

6 n n w - w > (6-n) w inw 

or: 

* 

w6-n - 1 > in w6-n 

For n = 6 Equation (I29) becomes: 

6 n 
,.... (w - w ) 
0 6-n · 

an = lim 
n + 6 

From L'Hospital's rule: 

(w6- wn) - (6-n) wn2nw 

(6-n) 2 

* that . . 

0 
0 

6 n 
d(w - w ) 

6-n 
n n 2 n 

JJ.L.--tn-cO- ( 6-n)w (.Q.n w) - (-l)_w.::R,-nuf 
----= an n + 6 2(6-n)(-l) 

lim 
n + 6 

which meets the .requirement. 

1 n 2 1 6 2 2 w (.Q.n w) = 2 w (.Q.n w) > 0 

(I28) 

(!29) . 

(I30) . 

(I31) 



-318-

Exponentiating both sides gives: 

w6-n_ l 
e > 6-n w 

The Taylor series expansion of 
u 

e is (127): 

2 3 
eu=l+u+~ 1 +~ 1 + 

Letting: 

6-n 
u = w - 1 

this becomes: 

6-n 
w - 1 1 + 6-n 1 + R 6-n + R e = w - = w 

(I32) 

(I33) 

(I34) 

(I35) 

where R > 0 since w > 1 and thus u > 0 • Substituting Equation 

(135) into Equation (132) gives: 

w6-n + R > 6-n w 

and the requirement is met for the second factor. 

(I36) 

Since both the first and second factors of Equation (I7) are 

monotonically increasing, w and therefore $(r) are monotonically 

increasing with · n from n = 0 to n = 6 • 

The second question to address is: Is ~ monotonically 

increasing when n > 6 (i.e., to n ~ 00)? 

In this case consider Equation (IS) in the form given. Re-

arrangement gives: 

lJJ. - (137) 
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For the first factor the limits are: 

-1L 

lim (n)n-6 = e 
n + 6 6 

(I38) 

from Equations (G6) - (G9) and: 
l 

n --6 

(n)n-6 
1--

lim lim (n) n ==i> 00 = 
n +co 

6 n + oo 
6 

(139) 

As before, if the factor is monotonic, a/an > 0 • 

n 

a (n) n-6 n 1 -1!_ 
6 =2-(.!!_)n-6 - (l) + (n)n-6 i (n) (n-6) - n 

an n-6 6 6 6 n 6 . 2 
(n-6) 

(I40) 

or: 

(I41) 

(142) 

Since (for n > 6) the first two factors must be > 0 it remains to 

show that: 

or: 

1 > ~6~ in(n6) 
n-6 

Exponentiating poth sides: 

(143) 
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~ - 1 
e > E. 

6 

From Equation (I33) this ·becomes: 

n 
6 

where R > 0 (since (~ - 1) > O) • Therefore: 

n+R > n 
6 6 

and the requirement is met for the first factor. 

For the second factor the limits are: 

n 6 
0 w6tnw (w - w ) ~ = lim wntnw = lim n-6 0 n -+ 6 n-+ 6 

and: 

n 6 
(w - uJ ) 00 n lim => - = lim w inw -> 00 

n-6 00 
n -+ oo n -+ oo 

If the factor is monotonic, a/an > 0 . 

n 6 
a(w - w ) 

n-6 
an = 

(n-6)wn in w - (wn- w6) 

(n-6) 2 

In this case (for· n > 6) it is necessary to show that: 

or: 

1 6-n - w 

Since n > 6 and w > 1 , wn-6 > 1 and from Equation (!17): 

(I44) 

(!45) 

(!46) 

(I47) 

(!48) 

(!49) 

(ISO) 

(!51) 
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n-6 
w - 1 + R 

n-6 w 
R > 0 (!52) 

Substituting into Equation (151) gives: 

1 - w6-n + R > 1 - w6-n (153) 

which meets the requirement. 

Since both the first and second factors of Equation (I37) are 

monotonically increasing, W and therefore $(r) are monotonically 

increasing with n for all n > 6 • 

From this and the prior conclusion it is clear that $(r) is 

monotonically increasing for all values of n from 0 to oo for 

(a/r) > 1 • · 
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Appendix J 

Derivation of Equations (78) - (80) 

Equations (53), (54) and (72) are: 

00 00 00 

W(p,z) = (pN/M) J J f $(r) dx'dy'dz' 
z'=z y'=O x'=O 

00 00 00 

tji(p
0

, z
0

) = (p
0

N/M) f J J- $(r) dx 'dy' dz' 
z'=z y'=O x'=O 

0 

(53) 

(54) 

(72) 

Transforming the Cartesian coordinate system (x' ,y' ,z') into a cylin-

drical coordinate system (pv ,9' ,z') (still centered at the shaded 

molecule in Figure 6) gives for Equations (53) and (54):(167) 

00 00 00 

W(p,z) = (pN/M) J J J $(r) p'd9'dp'dz' (Jl) 

z'=z p'=O 9'=0 

00 00 00 

tji(p
0

,z
0

) = (p
0

N/J>!-) J J f $(r) p'd9'dp'dz' (J2) 
z'=z p'=O 9'=0 

0 

The interaction of the shaded molecule with the (cylindrical) volume 

element p'd9'dp'dz' is pictured in Figure Jl in the (p' ,z') plane. 

* Since <f>(r) is generally independent of 9' Equations (Jl) and (J2) 

* By definition (and notational fonn) <f>(r) depends only on r , the 

distance between molecules, and not on spatial orientation. There­

fore at a given value of r in Figure Jl, $(r) would be a constant 

for all values of 9 1 
• 
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/

SHADED MOLECULE· 
N FIGURE 6 

p 

INTERACTION WITH 
VOLUME ELEMENT 

)//// 
SEMl-INFIN ITE (HALF-SPACE) 

MEDIUM OF DENSITY p OR p0 

Figure Jl. . Interactions of ,the Shaded Molecule 

in the (p' ,z') Plane 
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may be integrated directly to give: 

00 00 

.(p,z) = 2W(pN/M) J J •(r) p'dp'dz' 
z'=z p'=O 

00 00 

~(p ,z ) = 2~(p N/M) J J ~(r) p'dp'dz' 
0 0 0 

z'=z p'=O 
0 

From Figure Jl: 

r2 = p'2 + z'2 

or: 

Therefore, holding z' (temporarily) constant: 

2p'dp' = 2rdr 

or: 

p'dp' = rdr 

(J3) 

(J4) 

(JS) 

(J6) 

(J7) 

(JS) 

From Equation (JS) it is clear that when p' = 0, r = z' and when 

p' = 00 , r = 00 • Noting these limits and Equation (J8), Equations (J3) 

and (J4) become: 

00 00 

~(p,z) = 27r(pN/M) )JL ~(r) rdr] dz' (J9) 

00 00 

~(po,zo) = 27r(p N/M) 
z.L [ L. cjl(r) rdr] dz' 

0 
(JlO) 

0 

Considering Equation (72) the bracketed term in both equations becomes: 
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00 00 

[ J 4>(r) 

r=z' 
rdrJ = f 

r=z' 

(Jll) 

or: 

[ I 
r=z' 

00 

4>(r) rdr] = e: f (n) [ Cin f 
r=zv 

00 

r-n+ldr - cr6 J r-5 dr] 

r=z' 
(J12) 

[ I 
r=z' 

J [ 
-n+2

1

00 

~(r)rdr = £ f (n) crn ~n+Z 
r=z' 

-4 
00 J 6 r -a -

-4 I r=z' 
(J13) 

[ I 
r=z' 

] [ 
n 6 ] cr -n+2 cr -4 

~(r) rdr = £ f(n) (n-Z) z' - --;; z' (Jl4) 

Substitution in Equations (J9) and (JlO) gives: 

or: 

or: 

l/J (p 'z) 

00 

= 2'IT(pN/M) f e: 
z'=z 

00 

= 2rr(p
0
N/M) J 

z'=z 
0 

crn -n+2 cr6 -4 
f (n) [ (n-Z) z' - 4 z' ] dz' 

(JlS) 

6 
,-n+2 cr .. -4]d , z -- z z 4 

(Jl6) 

[ 
an z,-n+3/oo a6 z'-'3/oo ] 

l/J(p,z) = 2'ITE(pN/M) f(n) (n-Z) · -n+3 , - ~~ , 
. . z =z z =z 

(Jl7) 

[ 
an z,-n+3/oo _ 0 6 .C/oo J 

l/J(po,zo) = 2'ITt:.(poN/M) f(n) (n-2) -n+3 - z'=z 4 -3 z'=z 
0 0 

(Jl8) 
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VJ(p, z) 
on 1 0

6 1 = 27rt:(pN/M) f(n) [ -- - --] (n-2)(n-3) n-3 12 3 z z 
(78) 

an 1 cr6 1 
lJJ (p ,z ) = 2m; (p N/M) f (n) [ -- - - -- ] (79) 

o o o (n-2) (n-3) n-3 12 3 z z 
0 0 

which are Equations (78) and (79). Equation (48) is: 

and substitution from Equations (78) and (79) gives: 

or: 

N( an 1 a6 1 
~ = ; 2m: (pN/M) f (n) [ (n-2) (n-3) n-3 · - 12 3] 

z z 

an 
- 2m: (p 0 N/M) f (n) [ (n-Z) (n-3) 

1 
n-3 

zo. 

an po a6 po ] 
(n-2) (n-3) n-3 + 12 3 z z 

0 0 

which becomes: 

(48) 

(Jl9) 

(J20) 

N 2 crn ~ po cr6 P · po 
~E = Z7rs (~ f (n) [ (n-2)(n-3) ( n-3 - n-3) - 12 (3 - 3)] (BO) 

z z z z 
0 0 

which is Equation (80). 
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Appendix K 

Nearest Neighbor Distance; Distance between Molecular Layers 

Sketches showing the definitions for the nearest neighbor dis-

tance a and the distance between layers z are shown in Figure 
0 0 

Kl for fee, bee and diamond lattices. 

fee lattice 

po~ number of molecules --= M unit volume 
= 

( 6) <%) + (8) (~) 

(2z ) 3 
0 

or: 

3 M z =-~-
0 2p N 

0 

( M )1/3 
z = 2p N 

0 0 

which is Equation (84). 

This may be written: 

z (p N/M)l/3 
= 

0 0 
2-113 = 0.7937 

From the shaded plane in Figure Kl: 

2 2 2 
2z

2 a = z + z = 
0 0 0 0 

a = 21/2 z 
0 0 

and from Equation (84) 

a = 21/2 2-1/3 (M/p N)l/3 
0 0 

4 
= 8z3 

0 

(Kl) 

(K2) 

(84) 

(K3) · 

(K4) 

(KS) 

(K6) 
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0o= NEAREST NEl·GHBOR DISTANCE 

Z0 • DISTANCE BETWEEN LAYERS 

SKETCH 
SHADED PLANE 
PROJECTION 

Zo 

(I) 

(2) 

(I) 

(2) 

Figure Kl. Definition of a and z 
0 0 
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or: 

which is Equation (81). 

This may be written: 

a (p N/M)l/J = 2116 = 1.1225 
0 0 

bee lattice 

poN number of molecules 1 + (8)(1) 
--= = M unit volume (2z ) 3 

0 

or: 
z = ( M )1/3 

o 4p N 
0 

which is Equation (87). 

This may be written: 

2 
= 8z3 

0 

. z (p N/M)l/3 = 4-l/J = 0.6300 
0 0 

From the shaded planes in Figure Kl: 

x2 = (2z ) 2 + (2z ) 2 = 8z2 
0 0 0 

a2 = z2 + (x/2)2 
0 0 

2 x2 = z +-
0 4 

Substituting Equation (KlO) into Equation (Kll) gives: 

or: 

(81) 

(K7) 

(KS) 

(87) 

(K9) 

(KlO) 

(Kll) 

(Kl2) 
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a = 3112 z 
0 0 

(Kl3) 

and from Equation (87): 

(86) 

which is Equation (86). This may be written: 

a (p N/M)l/3 = 3l/Z 4-l/3 = 1.0911 (K14) 
0 0 

diamond lattice 

poN number of molecules 
-= 

M 
unit volume = 

4 + (6)(%) + (8) <%) 

(4z ) 3 
0 

or: 

z = (-M-)1/3 
o 8p N 

0 

which is Equation (85). This may be written: 

. z (p N/M) l/3 = 8-l/3 = O. 5000 
0 0 

From the shaded planes in Figure Kl: 

2 (2z ) 
2 + (2z

2
) 8z2 

x = = 
0 0 0 

2 z2 + 2 z2 + x2/4 a ·(x/2) = 
0 0 0 

Substituting Equation (Kl7) into Equation (Kl8) gives: 

2 z2 + (l) 8z2 3z2 
a = = 

0 0 4 0 0 

or: 

a = 31/2 z 
0 0 

8 

= 64z3 
0 

(Kl5) 

(85) 

(Kl6) 

(K17) 

(K18) 

(Kl9) 

(K20) 
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and from Equation (85) : 

(K21) 

1/2 
a = _3_ (M/p N)l/3 

0 2 0 
(83) 

which is Equation (83). This may be written: 

a (p N/M) l/3 = 3
112 

0 0 2 = 0.8660 (K22) 

Equations (84), (K3), (81), (K7), (87), (K9), (86), (K14), (85), 

(Kl6), (83) and (K22) appear in Figure 10. 
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Appendix L 

"Snapshot" and "Probability" Approach--Nearest Neighbor Distance · · 

"Snapshot" Approach 

Consider the reasonably realistic (chaotic) molecular view in 

Figure Lla, which is assumed to be a "snapshot" of a liquid at some 

time t 1 • Picking one molecule at random (say the dark one) we may 

arbitrarily divide the space around it into m
1 

sectors of equal 

* 0 angle (in Figure Lla, m1 = 8 the angle being 45 ). For each sector 

** a "nearest" neighbor can be identified and the distance a. 
]. 

from it 

to the dark molecule recorded. The mean value of these measurements 
ml 

«a
0
)t E ai/m1; Figure Lla) would be the mean nearest neighbor 

1 i=l 
distance at time *** of the snapshot The .value of is fixed 

by the minimum number of sectors that produces no significant change 

in (a
0
)t

1 
with an increase in m1 • 

Figure Llb represents a snapshot of the same liquid at some 

**** (reasonably large) time later t
2 

• We repeat the above process 

for a new, randomly chosen, molecule (with m2 . sections) and obtain 

another mean value of the nearest neighbor distance (-;-) • This 
0 t2 

is then repeated a sufficient number of times k such that the mean 

* .In the "real" case this would be done in three dimensions; radial 
sectors. 

** Molecules that fall in two sectors can be arbitrarily assigned to 
the one in which most of its volume lies. 

*** This evaluation could certainly be carried out for more than one of 
the molecules . in Figure Lla and an overall average found. This would 
eliminate the effects of "clustering" i· 

**** Of course, all thermodynamic properties (i.e., P, T, etc.) remain 
the same in Figures Lla and Llb. 
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Figure Lla . 

Figure Llb 

0 
m2 

~,01 ~+02+03+04+05+os+o7+oa 
(ao)t~ m2 = 8 

Figure Ll. Nearest Neighbor 
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value of each of the individual means (a
0
)ti does not change signifi­

cantly with additional measurements and: 

(a)= 
0 

(11) 

By taking m1 , m2 , ••• mk and k large enough, space and time varia­

tions in the "nearest" neighbor distance are (arbitrarily)minimized. 

Equation (11) identifies a mean quantity which may be compared to a 
0 

in Equation (81). If the two values are reasonably close the use of 

Equation (81) appears justified, i.e., the assumption of an fee struc-

ture leads to an "accurate" macroscopic relationship. 

Although such an approach must necessarily be considered a 

"thought" experiment, it does elucidate the nature of the assumption of 

a lattice structure for a liquid, at least with regard to its use in 

the theory being developed. On the other h.and, since several molecular 

d . h h bl f h fl' 'd (31,129) . ynamic approac es to t e pro em o t e structure o iqui s 

consider molecular .models of the type pictured in· Figure 11 (using com-

puter techniques to handle the many possible configurations) a calcula-

tion of the type indicated in Equation (Ll) might be possible. 

Probability Approach 

Another way .to view the assumption of an fee lattice (i.e., 

Equation (81)) is to consider the pair (or radial) distribution func-

tion (PDF) g(r) mentioned earlier. This is sketched in Figure 12 for 

liquid argon(lJB~ At low values of r, g(r) ~ 0 because of the strong 

repulsive forces. in this region. As r increases g(r) increases 

rapidly to a · first peak representing the shell of nearest neighbors. 
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This occurs at a value of r (denoted r*) close to r in Figure 8, 
0 

i.e., at the position corresponding to the "depth of the potential 

well" in the . . 1(19,17) pair potentia . In general r* is slightly 

less than r (Appendix M). At higher values of r the subsequent 
0 

peaks represent more distant neighbors*. 

From Equation (11) it is clear that a 
0 

in Equation (81) does 

not correspond to the most probable location (the one of highest 

probability) but rather to the mean location and is therefore not 

equal to r or r* This is clear since r for the true pair 
0 0 

potenti~l function is state independent(7l) while a depends on den­
o 

sity. Consideration of the data of Mikolaj and Pings(lJB)shows that 

the variation with p of r* is essentially nil. 

For a fluid described by the g(r) in Figure 12 consider a dif-

ferential spherical shell located a distance r from the central 

molecule as shown in Figure 13. Assuming the particles are distributed · 

in accordance with a Poisson distribution(163) the probability of find­

ing exactly n molecules in the sphere of radius r is(
163): 

* 

P{n;V} = e 

v 
-J p' (r)dV 

0 

v 

[ J p' (r)df 

0 
n! 

(12) 

It is because of these peaks (of descending probability) that the 

liquid is considered ·to have "short-range" order compared to the 

"long-range" order of a solid .whose g(r) is periodic (lg ,l62) • . 
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·· Figure L3. Spherical Shell 
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where V is the sphere volume 4 3 
(V = -::1fr 

3 
2 dV = 47fr dr) and p' (r) 

is the average number of particles per unit volume at r and the 

integral is necessary to establish an "average" particle density in 

* the sphere • Differentiating Equation (12), with respect to V gives 

(see Note · 1 at the end of this appendix): 

P{n;dV} = P{n;V} [ V n - 1] P' (r)dV 

f P'(r)dV 
0 

(13) 

From these it is possible to show that (Note 2 at end of this appendix): 

v 
-J p' (r)dV 

P{O;V} 0 {14) = e 
v 

-J p'(r)dV 

P{~.l;dV} 0 p' (r)dV (LS) = e 

where P{O;V} is the probability of not having a molecule in the volume 

V and P{L l;dV} is the probability of having one or more molecules 

in the element dV The joint probability of Equations {14) and (15) 

exactly expresses the condition necessary for a nearest neighbor in 

Figure 13. 

Therefore: 

* It is assumed that the Poisson distribution is valid even though 

there is a gradient . in . p'(r) The equation is exact when 

p'(r) = p' =constant (i.e., perfect gases) in which caseC163): 

P{n;V} 
-p'V [p'V]n 

= e 
nl 
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v 

P .. tdV JOl.n 
= P{O;V} • P{2.l;dV} 

-2f p' (r)dV 
0 = e p' (r)dV (16) 

* The mean value of the nearest neighbor is defined by : 

r Pj . dV oint 
-oo 

and, using Equation (16): 

¥> -2 f p' (r)dV 

r = 2 f e O p'(r)~ 
-00 

Since generally 4 3 
V = - 7f r 

3 
and, by definition p'(r) = p' g(r), 

0 

(17) 

(18) 

Equation (18) may be wr~tten (noting that r goes from 0 ·to 00 and 
P0 N 

that P~ = M): 

p N r 
2 00 0 J p N 

f 
-871"(-) g(r)r dr 

3 
87f ( ~ ) 

M 0 (19) r = e g(r)r dr 

0 

** The integrations may be carried out when the g(r) is known 

It is not clear from this development that r is, in fact, 

identical to (a-) in Equation (11) but it certainly is a similar 
0 

quantity and the general approach to the actual numerical detennina-

tion of a is indicated. That r (or a ) is intimately connected 
0 0 

* 

** 

The factor of 2 is necessary to make P. . a true probability 
JOl.nt 

density function (see Note 3 at end of this appendix). 

See Note 4 at end of this appendix for an interesting example (i.e., 

g(r) = 1). The g(r) data of Mikolaj and Pings<138)could be used to . 

determine r for argon at the given states. 
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to g(r) and thus density dependent is manifest from Equation (L9). 

As before the numerical comparison of r with a 
0 

in Equation (81) 

would help determine the justification of assuming an fee lat.tice for 

* macroscopic purposes • 

Note 1: Derivation of Equation (L3) 

Equation (L2) is: 

v v -l p'(r)dV [b p'(r)dV]n 
= e P{n;V} 

nl 

Differentiating with respect to V gives: 

v v 
- J p' (r)dV · n(j p' (r)dV]n-l 

P{n;dV} = e 
0 _o.;:;..______ p ' ( r) dV 

nl 

v v 
[f p' ( r) dV] n 
0 + nl 

e 

- f p'(r)dV 
0 • (-l)p'(r)dV 

or: 

P{n;dV} 

v 
·- f p'(r)dV 

0 = e 

v 
[l p' (r)dV]n ( 

n! V 
J 

n - 1\ p ' ( r) dV 

p' (r) dV ) 
0 

and noting Equation (12): 

* If the method developed for the determination of a 
0 

is verified 

this quantity might be used as a quantitative measure of liquid 

structure (see Note 5 at the end of this appendix). 
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P{n;dV} = P{n;V} ( f n 1) p' (r)dV 

p' (r) dV 
0 

which is Equation (13). 

Note 2: Derivation of Equations (14) and (15) 

From Equation (12) with n = 0 

p{Q;V} = e 

which is Equation (L4). 

By definition: 
co 

I P{n;V} 
n=O 

and since: 
co 

l P{n;V} 

v 
- f p' (r)dV 

0 

= 1 

= P{O;V} + 
co 

l 
n=O n=l 

co 

l P{n;V} = 1 - P{O;V} 
n=l 

Differentiating with respect to V gives: 

co 

l P{n;dV} = - P{O;dV} 
n=l 

P{n;V} 

(13) 

(L4) 

The right-hand-side may be determined by differentiating Equation (L4) 

with respect to V 

P{O;dV} = - e 

v 
-f p' (r)dV 

0 p'(r)dV 
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giving: 

v 
00 - J p' (r)dV 

l · P{n;dV} 0 p' (r)dV = e 
. n=l 

Since by definition: 

00 

P~ 1 ;dV} - l P{n;dV} 
n=l 

v 
- J p'(r)dV 

P{L.. 1 ;dV} = 
0 p' (r)dV (LS) e 

which is Equation (LS). 

Note 3: Conversion of P. . to a Probability Density Function-­Joint 
Derivation of Equation (17) 

For a function f (x) to be a probability density function (pdf) 

i b d f . . . h h . (164) t must, y e 1n1t1on, ave t e properties : 

If 

f (x) 2. 0 

+oo 

f f (x) dx 1 

P. . in Equation (16) is a pdf it must conform to these condi­JOJ.nt 

tions. From Equation (L6): 

p .. 
Joint = e 

v 
-2f p'(r)dV 

0 p' (r) (L6) 
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and clearly the first condition is met since p'(r) L; 0 • The second 

condition may be tested by finding the integral: 

v 
+oo - 2 f p ' ( r) dV I e o 

-t-0> 

I 
Since v 

where 

P .. Joint dV = 
-00 

is defined from v = 0 to 

+ 00 

I P .. JOl.nt 
- 00 

+oo 

dV = I e- 2u du 

0 

v 
u = f p' (r)dV 

0 

Integration gives: 

-t-0> 

J 
-oo 

P. i dV 
JO. nt 

= e-2u]+oo = 
-2 

0 

p'(r)dV 

v = 00 , this 

; [O - l] = 

becomes: 

+l 
2 

Clearly this does not satisfy the condition; P .. t is, bX itself,. not JOl.n 

a pdf. 

to 1 

However, multiplying P. . by Joint 2 normalizes the integration 

satisfying the condition. Therefore 2P . is a pdf. 
j of._nt 

The mean value of the variable of a ·pdf is defined by<164): 

+oo 

x = J xf (x) dx 
-00 

Therefore the mean value of r for the pdf 2P. . is given by: 
JOJ.nt 

-t-0> 

r = 2 f r P •• t dV J OJ.n 
(L7) 
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which is Equation (17). 

Note 4: Integration of Equation (L9) for g(r) = 1 

Equation (19) is: 
p N r 

p N 00 -8n( ~ ) J g(r)r
2
dr 

r = 8~( ~ ) J e O g(r)r
3
dr (L9) 

0 

For the case of no intermolecular forces, corresponding to a perfect 

gas, g(r) = 1 and: 

p N 
r = 8TI( ~ ). 

or: 

p N 
r = 8TI( ~ ) 

Let: 

and: 

Therefore: 

* and : 

* 

r3 = y 
a 

p N r 
r 2dr 0 I 00 -8rr(-) 

I 
M 

0 3 e r dr 

0 

p N 
00 _ Brr (-o-) r3 

J 

3 M 
r 3dr e 

0 

· snPoN 
a. = -(-) 

3 M 

y = a.r3 

1/3 
r 

_y__ 
~ 1/3 

a 

1 1 -2/3 
dr = 1/3 3 y dy 

a 

When r = 0, y = 0 and when r = oo, y = oo. 



00 

r= -3a-J 
0 

00 
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e-y z 1 1 -2/3 dy 
ft" 1/3 z y 

a. 

- __ l_ J 1/3 e -y dy 
r - 1/3 Y 

a, 0 

The integral is the gamma function (127 ) with m - 1 = 1/3 or m = 4/3 Q 

Therefore: 

and: 

00 

f y1' 3 e-y dy = r(4/3) 

0 

r = 

r = 

r = 

r(!!.) 
3 

81T PON 1/3 
[-(-· -)] 

3 M 

0.440 (-1L) 113 
p N 

0 

Comparison of this to Equation (81) (noting that 2116 ~ lel) shows 

that, as expected, the mean nearest neighbor for a perfect gas would be 

much less (a factor of "v 3) than for a liquid of the same density where 

strong repulsion occurs at the smaller distances. 
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Note 5: Use of a as a Measure of Liquid Structure 
0 

The structure factor a (P N/M) 113 and first coordination number 
0 0 

(i.e., number of nearest neighbors) N
1 

for various specific crystal 

structures are shown in Table Ll. These entries are exact in that they 

are uniquely determined by the structure type (see Figure 10). Noting 

that a (p N/M) 113 and N1 generally appear correlated in Table Ll, 
0 0 

it is possible to conceive of intermediate (or mixed) structures by 

joining the discrete points of an a (p N/M)l/3 vs. Nl/J 
0 0 1 

plot with a 

smooth curve. This is shown in Figure L4 where the curve has-been 

extrapolated (dashed line) to small values of N1 . 

Although developed with solids, Figure L4 should be applicable to 

liquids (and perhaps gases) at least for appropriate time averaged 

values of a
0 

and N
1 

• For an appropriate calculation of a (assum­o 

ing P
0 

is known) N1 can be found from the curve and the liquid 

. * structure sharply defined • 

Equation (19) is: 

r 
00

/ ~8n(p0N/M) f g(r)r
2
dr 3 r = 8n(p N/M) e 0 g(r) r dr 

0 
(L9) 

0 

Assuming that -~ r ·= a 
0 

and multiplying both sides by (p N/M) 113 gives: 
0 

* It may be noted that this procedure overcomes the difficulty with 

liquids that, knowing g(r) (and p ) alone, "there is no unique 
0 

manner of computing ·the (first) coordination number(s)". (ZO) 
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Table 11 

STRUCTURE FOR VARIOUS CRYSTAL LATTICES(3?) 

Structure 
Name 

fee 
* hep 

bee 

** SC 

diamond 

* 

a (p N/M)l/J 
0 0 

2116 
= 1.1225 

1.0000 

3112 2-1 = 0.8660 

hep = hexagonal close-packed 

** sc = simple cubic 

First Coordination Number 
= Number of Nearest 

Neighbors N
1 

12 

8 

6 

4 
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r 
00 -8n(p N/M) J g(r)r2dr 

a (p N/M) 113 ~ 8n(p N/M) 413 J e 
0 

O g(r)r3dr 
0 0 0 

Therefore knowing g(r) and 

0 

for a given liquid, a 
0 

and 

a (p N/M)l/J can be numerically determined. Using the latter value ·in 
0 0 

Figure 14 a unique value of N
1 

can be determined; e.g., if 

a (p N/M)l/3 = 1.05, 
0 0 

'V 
N1 = 7 and the structure would be said to be 

either part-way between a sc and bee lattice or a mixture of the two. 

In either case a quantitative measure of the liquid structure would 

* result • 

* It is interesting to note that 

perfect gas in Note 4 leads to . 

to the extrapolation in Figure 

of rvl.02 • 

- 'V if r = a , the calculation for a 

a (p N/M)113 ~ 0.44 which, according 
0 0 

L4, gives a first coordination number 
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Appendix M 

Relation of r* to r 
0 

In general it has been shown that(l7): 

g(r) = e 

p(r) + w(r) 
kT 

where g(r) is the pair distribution function ¢(r) is the pair 

potential function and w(r) accounts for the effect of all other 

* 

(Ml) 

molecules on the first of the pair • Clearly then, g(r) is a meas-

ure of the real system since it includes three-body and higher inter-

actions. Since ¢(r) accounts only for the "pair" interaction, it is 

clear that the minimum energy position for such a pair (i.e.~ r ) is 
0 

not the same as the minimum energy position of the pair in the presence 

f th 1 1. (' *)· r ~ r* o o er mo ecu es i.e., r , r • 
0 

However, in the limit as 

p + 0 , W(r) + 0 and(lB,l7): 

- ¢(r) 
g(r) = e kT (M2) 

In this case it is easy to show that the maximum in g(r) corresponds 

exactly to the minimum in ¢(r) ; r* = r 
0 

Clearly this special case 

implies an interaction of two otherwise isolated molecules (no three-

body forces) which is exactly the assumption of ¢(r) . 

* Since it is certainly possible that the introduction of a third mole-

cule' into the system might affect the potential between a given pair 

(e.g., consider dispersion forces), ~(r) may be considered as a sum 

of the necessary correction to cp(r) and the direct effect of the 

third molecule on the first. 
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To determine the effect of three-body forces on the relation 

between r,~ and r 
0 

consider the potential function in Figure Ml. 

This shows an isolated pair with the "first molecule" at the origin 

and the "second molecule" at the "bottom of the potential well" (at 

r ) which is the equilibrium position. 
0 

A third molecule is then brought along the r axis from oo ~ r 

as in Figure M2o 

Define: 

0 = the first molecule (M3) 

® = the second molecule (M4) 

0 = the third molecule . (MS) 

as ® approaches Q) and @ there is a net attraction for both until 

@ is < r 
- 0 

trom @ . At this point Q) is still attracted to @ 

but begins to act repulsively on ® which acts repulsively on @ . · · 

When these forces balance a new equilibrium has been obtained. The 

repulsive force of @ on ® requires that @ must move to the left. 

The final distance between @ and @ and between @ and Q) will 

each be < r 
0 

Therefore the actual minimum energy position r* 

should be less than r 
0 

Egelstaff (l~) has evaluated w(r) for argon and shows that when 

it. is added to ¢(r) , . the actual g(r) can be reasonably well repro-

duced. Comparison of g(r) from ¢(r) alone and g(r) from 

¢(r) + w(r) 

conclusion. 

shows clearly that r* < r 
0 

In general it may be concluded that: 

thus supporting the above 
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Figure Ml. Isolated Pair of Molecules 

o-~ 

0 

FIRST MOLECULE 

SECOND 
MOLECULE 

r 

Figure M2. Effect of Third Molecule 

.0--

-l 
0 

FIRST MOLECULE 

THIRD 
MOLECULE 

SECOND 
MOLECULE 

Figure Ml. Three-Body Interaction 
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(M6) 

Although this conclusion may be considered generally valid, it 

is expected that * r and r will not differ greatly because two-
o 

body forces are expected to dominate the CD- (] interaction. This 

is supported by Egelstaff 's result(l7) where r ~ 3.8~ and 
0 

r* ~ 3.1K • 
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Appendix N 

Derivation of Equation (94) 

Equation (80) is: 

N 2 an _Q__ po 0 6 .f?_ po 
LiE = 2~€(M) f(n) [ (n-2)(n-3) ( n-3 - n-3) - 12 ( 3 - ~)] (80) 

z z z z 

and Equations (88) and (93) are: 

z = 
0 

z = 

0 0 

(88) 

(93) 

Dividing and multiplying Equation (80) by p
0 

and rearranging 

the z terms gives: 
0 

Now: 

x = p/p 
0 

z 
1 (2-(2) n-3 - 1) 

n-3 p z z 0 
0 

and from Equation (92) (or Equations (88) and (93)): 

z/z = p /p = 1/x 
0 0 

(Nl) 

(N2) 

(92) 

Substituting Equations (88), (N2) and (92) into Equation (Nl) gives: 
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25 p N 
Multiplying and dividing by ( Mo ) gives: 

(N3) 

N ---2' s s 
27Tt: (-M) ,,-p/ f (N) [ crn 2 p N n/3 n-2 0 6 2 P0 N 2 4 1 

/::,.E = 
0 

( 
0 

) (x - 1) - -( ) (x -1) 
( 2~N-f-M) (n-2)(n-3) M 12 M 

0 
(N4) 

or: 

(94) 

which is Equation (94). 
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Appendix 0 

Derivation of Equation (103) 

Equation (102) is: 

U 1 l' = -2 l.ID 
0 x -+ 1 

=> 
µ 

Application of L'Hospital's rule(lS) gives: 

U = 1:. lim 
0 2 x + 1 

(n-2)(n-3)axn-4 - 128x2 

dµ/dx 

or: 

[(n-2)(n-3)a - 128] 

lim EJ:l.. ·dx 
x + 1 

But from Equation (18): 

l' Ell. = u 
im dx o 

x + 1 

and the above becomes: 

u2 = l[(n-2)(n-3)a - 128] 
0 2 

which is Equation (103). 

0 
0 

(102) 

(01) 

(02) 

(18) 

(103) 

Note: Equation (103) can be derived more conveniently in the following 

way. By definition: 

and therefore : 

u 
0 

lim U 
µ + 0 

(17) 



From Equation (4): 

and: 

Therefore: 
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u2 = 
0 

lim u2 

µ -+ 0 

u = 
µ 

1 1--
x 

.2S..L 
x-1 

2 2 
u2 = x µ 

(x-1) 
2 

u2 = 
0 

lim 
µ -+ 0 

2 2 x µ 
2 

(x-1) 

Since x -+ 1 · as µ -+ 0 this may also be written: 

u2 = 
0 

lim · 
x -+ 1 
µ -+ 0 

2 2 
x µ 

2 (x-1) 
= lim 

x -+ 1 
µ -+ 0 

µ2 ' -~ 
(x-1) 

2 

Applying L'Hospital's rule gives: 

From Equation (96): 

and: 

u2 1 = 
0 2 

which will yield 0 
0 

u2 = 
0 

~2 = 

dx 

lim 
x-+ 1 

lim 
x-+ 1 

~ 
dx 

2(x-l) 

n-3 3 (n-2)ax - 4Sx 

(n-2)ax n-3 - 4(3x 

x-1 

if) and only if . . 

3 

0 
0 

(03) 

(04) 

(05) 

(06) 

(07) 

(08) . 

(09) 

(010) 



For this case: 

u2 = 
0 

1 l' 2 J.ffi 
x ~ 1 
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(n-2)a - 4$ = 0 

(n-2)axn-3 - 4Sx3 

x-1 

and L'Hospital's rule gives: 

-:> 0 
0 

n-4 2 
2 1 . [ (n-2) (n-3)ax - 12$x ] 

u = - lJ.m 
0 2 1 1 

x~ 

or: 

u2 
0 

which is Equation (103). 

~ [(n-2)(n-3)a - 12$] 

(101) 

(011) 

(012) 

(103) 
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Appendix P 

Derivation of Equation (108) 

Equation (95) is: 

2 4 crn 2s p N n/3 2 
µ = 2s (N~e:) f (n) [ (n-2) (n-3) ( Mo ) (xn- - 1) 

6 zsp N 2 4 
CT o J - IT ( M ) (x - 1) 

(95) 

and Equations (106) and (107) are: 

(106) 

(107) 

Solving Equation (107) for E and substituting it and Equation (106) 

into Equation (95) gives: 

6 
2 _ !:!__ rB.li) u2 3·/2'5~ (~ 1 (-3-) n-6 ,f.{rr)-

µ - z YM . 0 ~,2" ->'NTI' (n-6)..fkn) n-3 

n 
n-3 n-6 

[ (-) 

x (n-~) (n-3) 

(Pl) 
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n 

6U2 _6_ (n-3) n-6 
µ2 = o (-3-)n-6 [ 3 ( n-2 

(n-6) n-3 (n-2) (n-3) x - 1) -

n 6 

6U2 (n-3) n-6 - n-6 4 
µ2 = o [ 3 ( n-2 x - 1 J 

(n-6) (n-2)(n-3) x - l) - 12 (P3) 

6U
2 

4 
µ 2 = o [ ( n-3) ( n-2 ) _ x -' 1 J · 

(n-6) 3(n-2)(n-3) x - 1 12 (P4) 

or: 

2 
µ = 2 2 

n-2 
U ( )[x -1 

o n-6 n-2 

4 
x - 1 J 

4 
(108) 

which is Equation (108). 
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Appendix Q 

Derivation of Equation (114) 

Equation (95) is: 

s s 
2 4 N [ n 2 p N n/ 3 n-1 0

6 2 p oN 2 4 J 
µ = -;s< ~E:) f (n) (n-2~ (n-3) ( Mo ) (x -1) - IT ( M ) (x -1) 

where: 

f (n) = 
(n/ 6)n/n-6 

(n/6 - 1) 

Taking the limit as n-+ 6 gives: 

s 

{ [ 

n 2 p N n/3 
µ 2 = !!_(Nm:) 1 f ( ) cr ( o ) (xn-2 _ l) 

2
s M n !m

6 
n (n-2)(n-3) M 

(95) 

(71) 

(Ql) 

Si h 1 . f d . h d f h l' . <161> h. nee t e imit a· a pro uct is t e pro uct o t e imits t is may 

be written, considering Equation (71), as: 

n 

µ2 = !!__(N7rt:) lim (n/6) n-6 
28 M · n -+ 6 

x lim 
n -+ 6 n/6 - 1 

From Equations (G6)-(G9): 

(Q2) 



lim 
n -r 6 
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n 

(.£) n-6 = e 
6 

The second factor is: 

lim 
n -r 6 

s s 
n 2 p N n/3 n- 2 0 6 2 p

0
N 2 4 [ a ( Mo ) (x - 1) - 12 ( M ) (x - 1) ] (n-2) (n-3) 

n/6 - 1 

(Q3) 

(Q4) 

which on careful examination clearly 

rule(lS) gives: 

0 => -0 . Applying L'Hospital's 

= lim 
n -r 6 

s 
an 2 poN n/3 n-2 

(n-2)(n-3)( M ) x inx + 
s s 

on 2 poN n/3 2 poN 1/3 
(n-2) (n-3) ( M ) in a ( M ) (xn-2 -1) 

n-2 
(x - 1)(2n-5) 

2 2 
(n-2) (n-3) 

1/6 

2n - 5 )] 
- (n-2) (n-3) 

6 2 22 . 
a 2 p N 2 4 4 poN 1/3 7 

= 2 ( M 
0 

) [ x in x + (x - 1) (in 0 ( M ) - 12) ] 

Substituting for the two limits (Equations (Q3) and (Q7)) in the 

(QS) 

(Q6) 

(Q7) 
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2 
expression for µ (Equation (Q2)) gives: 

s s 
2 4 06 2 p N 2 4 4 2 p N 1/3 

µ = 2s (N~c) e 2 ( Mo ) [ x fox+ (x - l)(h a( Mo ) - l;)](Q8) 

or: 

s s 
2 2 N 6 2 poN 2 4 2 poN 1/3 7 4 

µ =___§.(~£)0 ( M) [xtnx+(tno( M) - 12)(x-l)] (114) 
2s 

which is Equation (114). 
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Appendix R 

Derivation of Equations (115) - (122) 

Equation (114) is: 

s . s 
2 2 NTIS 6 2 PON 2 4 2 PON 1/3 7 4 

µ = 
2
:cM) a ( M ) [x 2nx+ (2n er( M ) - 12)(x - 1)] 

Letting: 

this becomes : 

. 2 4 4 
µ = a' x tn x + $'(x - 1) 

which are Equations (115) - (117). From Equation (18): 

U = lim dµ 
o x -+ 1 dx 

and Equation (115) becomes: · 

2µ d µ = a' x 4 • 1 + 4a 'x 3 in x + 4 S ' x 3 
dx x 

or: 

El! -
dx -

Therefore: 

3 a'(l + 4.Q.n x) + 4S' x 
2 

µ 

(114) 

(116) 

(117) 

(115) 

(18) 

(Rl) 

(R2) 



1 U = -
2 

lim 
0 x + 1 

µ + 0 
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3 ar(l + 4in x)+ 46' 
x 

µ 
=> 1. Cl ' + 413 ' 

2 0 
=> 

which diverges. The limit can exist if, and only if: 

a' + 4B 0 

in which case: 

u = 1 
lim 

0 2 x + 1 
µ + 0 

a' (1 + 4tn x) + 413' 
µ 

Applying L'Hospital's rule(lS) again gives: 

and using 

or: 

u 1 lim 
4a'/x 2a' = = 

0 2 x + 1 ~ lim ~ dx x + 1 dx 

Equation (18): 

u2 = 
0 

u2 2a' 
0 

s 
4e N 6 2 poN 2 

( TIE:) ( ) 

2
s M 0 M -

0 
=> 0 

00 

which is Equation (118). The ucondition", Equation (R4), can be 

written, after substitution of a' and S' 

s s s 

(R3) 

(R4) 

(RS) 

(R6) 

(R7) 

(118) 

2 N 6 2 2 N-~ 2 N~2 -N-2 2 p N 1/ 3 7 ~(' 7TE:)_--cr---(--- o ) + 4 ~( TIS o ) (Q.n c; ( 0 ) --) = O 
-zs----M-- _ M -~ M M 12 

(R8) 
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or: 

(R9) 

s 
3 

2 p N 
O'( o) = e (119) 

M 

Solution of Equation (119) for O' gives: 

which is Equation (120). This fixes O' and substitution into Equation 

(118) gives: 

(RlO) 

(121) 

which is Equation (121). 

Substitution of Equations (120) and (121) (solved for s ) into 

Equation (114) gives: 

. l/3~fj (.Q,n e ( 
,..,. p N 

o . 

which is Equation (122). 

(Rll) 

(122) 
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Appendix S 

Compilation of Raw and Adjusted U-µ Data 

Notes: 

1) Symbol, Group-Period Numbers (in Periodic Table) and Atomic Number 

follow each element name. For compounds the atomic formula follows 

the name. 

2) M = molecular weight -g/g mole 

m = number of data points 

s = "structure" constant - s=l, fee; s=2, bee; s=3, diamond 

ml,m2 ,etc. = number of data points for succeeding references 

po = initial density 

v = initial specific volume 
0 

T initial temperature 
0 

p = initial pressure 
0 

c = sound speed 
0 

3) u and µ ar.e given in units of cm/sec 

4) 
2 mean-squared-particle velocity L: 2 µ = = µ./m 

i ]. . 

1 1 --
po = mean initial density = - L: p . m . = - l: m. /V . m i Ol. l. m i l. Ol. 

v initial specific volume 1 L: v 1 
L: m./p . = mean = - .m. = -

0 m i 01. J. m i 1. _Ol. 

T = mean initial temperature 
0 

p mean initial pressure 
0 

c = mean sound speed 
0 



5) 

6) 

7) 
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CB - sound speed from P. N. Bridgman data as quoted; used when 

c is not available. 
0 

(5 cl I (poi 
- p)2)1/2 

- n i 0 
Po 

(5 = cl 2: (V . _ v)2)112 

Vo 
n i 01. 0 

In both cases these are the standard deviation of the data from 

reference-to-reference and do not represent the accuracy of the 

data itself. The result is presented as: 

s=l; 

s=2; 

s=3; 

where 

a = 
0 

a 
0 

a 
0 

v 
0 

= v + (5 o- v 
0 

l.12246(M/p N)l/J 
0 

l.09112(M/p N)l/ 3 
0 

.Q.86603(M/p N)l/3 
. 0 

- fee 

- bee 

- diamond 

a = nearest neighbor distance 
0 
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ARGON 

A 

0-3 ; z = 18 

M = 39.944 

m = 19 

s = 1 

u µ Reference Initial Conditions 

Q.544 E 06 0.252 E 06 ml= 19 64 
0.340 E 06 0.123 E 06 
0.541 E 06 0.257 E 06 
0.526 E 06 0.254 E 06 p = 1.405 ± 0.002g/cc 
0.518 E 06 0.258 E 06 0 

0.715 E 06 0.365 E 06 
T =86°K 

0.636 E 06 0.320 E 06 0 

0.676 E 06 0 .340 E 06 p = 2 bar 
0.270 E 06 0.088 E 06 0 

0.498 E 06 0.232 E 06 6 C = 0. 0848 x.10 cm/ sec* 
0.152 E 06 0.0301 E 06 0 

0.219 E 06 0.0674 E 06 
0.644 E 06 0.330 E 06 
0.540 E 06 0.258 E 06 
0.334 E 06 0.134 E 06 
0.345 E 06 0.135 E 06 
0.338 E 06 0.133 E 06 
0.334 E 06 0.132 E 06 
0.334 E 06 0.133 E 06 

2 11 2 2** 0.0848 6* 
µ = 0.504 x10 cm /sec c 10 cm(sec 

0 

p = 1. 405 ± 0. 002g/ cc a = 4.057.R 
0 0 

*ic* cc/g v = o. 7117 ± o. 0011 
0 

T = 86°K 
0 

.---
p = 1. 97 atm 

0 

* Reference 96 

** 2 0. 050444 77 x 1012 ; Hand Calc.(Monroe): µ computer output: 

*** 1 1 
µ 2 = 0.05044476x1012 

Found from and_ 
P0 + 0. 002 P0 - 0.002 



u µ 

0.3700 E 06 0.1923 E 
0.5424 E 06 0.3188 E 
0.6497 E 06 0.404 E 
0.3183 E 06 0 .1592 E 
0.4934 E 06 0.2876 E 
0.654 E 06 0.4005 E 

2 11 2 2 
µ = 0 . 9 5 0 x 10 · cm Is e c 

p = 
0 

0.919 ± O.Og/cc 

v = 1. 088 ± 0. Og/ cc 
0 

T = 148.2°K 
0 

p = 69.2 atm 
0 

6 * c 0. 035 x 10 cm/ sec 
0 

a 4.673i 
0 

* Reference 96 

06 
06 
06 
06 
06 
06 

-370-
ARGON 
A- II 

0-3 ; z = 18 

M = 39.944 

m = 19 

s = 1 

ml= 6 

Reference 

64 

Initial Conditions 

p = 0.919± O.Og/cc 
0 . 

T = 148.2°K 
0 

p = 70 bar 
0 

6 I * C = 0 . 0 3 5 x 10 cm sec 
0 



u 

0.287 E 06 
0.385 E 06 
0.472 E 06 
0.484 E 06 
0.6873 E 06 

µ 

0.142 
0.186 
0.253 
0.266 
0.410 

E 06 
E 06 
E 06 
E 06 
E 06 

2 11 2 2 0. 715 x 10 cm /sec µ = 

po 0.982 ± 0.009 g/cc 

v = 1.018±0.010 cc/g 
0 

T 302. 9°K 
0 

p 1054.0 atm 
0 

6 c = 0 . 0 77 x 10 cm/sec . 
0 

a = 4.5711 
0 

-371-
ARGON 
A-III 

0-3 ; z = 18 

M = 39.944 

m = 19 

s = 1 

Ref. 

ml= 5 96 

Initial Conditions 

p-g/ cc T -°K P -K bar 
0 0 0 

0 .971 302.2 1.034 
0.994 299.0 1.074 
o. 972 303.0 1.040 
0.988 302.7 1.081 
0.986 307.7 1.110 

c xio-6-
0 

cm/sec 

0.075 
0.077 
0.0775 
0 .0772 
0.0775 



u µ 

-372-

ARGON 
A- IV 

0-3 ; z = 18 

M = 39.944 

m = 2 

s = 1 

Ref. 

Initial Conditions 

C x10-6-
p-g/ cc T-°K P-Kbar o 

o o o cm/sec 

0.4968 E 06 
0.6779 E 06 

0.252 E 06 ml= 2 96 1.138 305.4 1.662 0.091 
0.397 E 06 1.135 298.3 1.586 0.091 

µ2 0.111 x 
12 2 2 

10 cm /sec 

po 1.137 ± 0.002 g/cc 

v 0.8799 ± 0.0012 cc/g 
0 

T 301.9°K 
0 

p 1602. 7 atm 
0 

0.091 x 
6 c = 10 cm/sec 

0 

a = 4.353R 
0 



u 

0.2752 E 
0.3101 E 
0.3504 E 

µ2 = 

po = 

v = 
0 

T = 
0 

c 
0 

a = 
0 

* 

-373-

MERCURY 
Hg 

II-6; 2=80 

M = 200.61 

m::::: 3 

s = 1 

µ Ref. 

06 0.0608 E 06 ml= 3 90 
06 o. 0772 E 06 
06 0.0978 E 06 

0.641 10 2 x 10 cm /sec 2 

13.53 ± 0.0 g/cc 

0.0739 ± o.o cc/g 

22°C 

. 0 .1451 x 
6 10 cm/sec 

3.26sR 

Reference 96 

Initial Condi~i9ns 

V -cc/g T-
0 c 

0 0 

0.0739 25 c = 0 .145 x 
0.0739 17 0 

6 * 0.0739 24 10 cm/sec 



u µ 

0.314 E 06 0.117 E 06 
0.374 E 06 0.157 E 06 
0.500 E 06 0.250 E 06 
0.745 E 06 0.427 E 06 
0.905 E 06 0.552 E 06 
0.379 E 06 0.172 E 06 
0.381 E 06 0.144 E 06 
0.297 E 06 O.llO E 06 
0.411 ' E 06 0.174 E 06 
0.492 E 06 0.232 E 06 
0.220 E 06 0.064 E 06 
0.568 E 06 0.274 E 06 
0.566 E 06 0 .• 270 E 06 
0.647 E 06 0.326 E 06 

p
0 

= 0.808 ± 0.0 g/cc 

V = 1.238 ± 0.0 cc/g 
0 

T 
0 

c 
0 

a = 
0 

. 6 
0. 0853 x 10 cm/ sec 

4.334R 

-374-
"J'; 

NITROGEN 
N2 

V-2 ; Z = 7 

H = 28.016 

m = 14 

s = 1 

Reference 

ml= 5 42 

m2 = 9 96 

Initial Conditions 

p = o. sos g I cc 
0 

T = 77 .4°K 
0 

6 I ** C = 0 • 08 4 9 x 10 cm sec 
0 

po = 0. 808 g/cc 

v = 1. 238 cc/g 
0 

T = 77°K 
0 

6 C = 0 • 08 5 7 x 10 cm/sec 
0 

* These raw data were adjusted (see following page) in the selection pro-
cess (see text). 

** Reference 96 · 



u 

0.314 E 06 
0.374 E 06 
0.500 E 06 

0.379 E 06 
0.381 E 06 
0.297 E 06 
0.411 E 06 
0.492 E 06 
0.220 E 06 

2 
µ 

po = 

v = 
0 

T = 
0 

c 
0 

a 
0 

)'( . 

µ 

0.117 E 
0.157 E 
0.250 E 

0.172 E 
0.144 E 
0.110 E 
0.174 E 
0.232 E 
0.064 E 

06 
06 
06 

06 
06 
06 
06 
06 
06 

-375-

NITROGEN'~ 

N2 

V-2 ; Z = 7 
M = 28.016 

m = 9 

s = 1 

Reference 

ml= 3 42 

m2 = 6 96 

11 2 2 0.279 x10 cm /sec 

0.808 ± 0.0 g/cc 

1. 238 ± o.o cc/g 

77 .1°K 

0.0854 x 6 10 cm/sec 

4.334R 

Adjusted data 

** Reference 96 

Initial Conditions 

p = o. 808 g I cc 
0 

T = 77 .4°K 
0 6 

C
0

=0.0849x10 cm/sec ** 

po = 0 .808 g/cc 

v = 1.238 cc/g 
0 

T = 77°K 
0 6 

C =0.0857x10 cm/sec 
0 



u 

0.940 E 06 

2 · 
µ = 

po = 

v = 
0 

T = 
0 

p = 
0 

c = 
0 

a = 
0 

~~ 

-376-

HYDROGEN 
H2 

I-1 ; Z = 1 

M = 2.0160 

m = 1 

s = 1 

µ 

0.592 E 06 ml= 1 

12 2 2 0.350 x 10 cm /sec 

0.0709 ± O.O g/cc 

14.1 ± o.o cc/g 

20.45°K 

1. 78 atm 

0.11193 x 
6 10 cm/sec 

4.os1R 

Reference 99 

Initial Conditions 

C x10-6-
Ref. V-cc/g T-°K P-bar 

0 

0 0 0 cm/sec* 

60 14.1 20.45 1.8 0.11193 



u 

0.432 E 
0.337 E 

0.270 E 
0.191 E 
0.190 E 
0.165 E 

2 
11 = 

p = 
0 

v = 
0 

T = 
0 

p = 
0 

c = 
0 

a 
0 

11 

06 0.2412 E 
06 0.1415 E 

06 0.063 E 
06 0.030 E 
06 0.028 E 
06 0.019 E 

06 
06 

06 
06 
06 
06 

-377-

CARBON DI SULPHXDE 
cs2 

M 76.143 

m = 6 

s = 1 

Reference 

ml= 2 90 

m2 =4 100 

0.140 x 
11 2 10 cm /sec 

2 

0.0 g/cc 
~'c ~·~ 

1.255 ± 
io'o'c o. 7968 ± 0.0 cc/g 

25.0°C . 

1 atm 

0.115 6 x 10 cm/sec 

5.223~ 

)'-c 

T-
0 c 

0 

33 
17 

-;-
'These raw data .were adjusted (see following page) 
cess (see text). p

0
-g/cc 

** Estimated from Reference 101: 1.2628 
1.293 

Initial Conditions 

.C XlQ- 6-
0 
cm/sec 

0.112 p = 1 atm 0.117 0 

in the selection pro-

T-0 C Page 
20 911 

0 ' 2139 

• •• p 
0 

@ 25°C is ·given by: po- 1 · 293 25-0 5 
-0.030Z = 2() ; P

0 
= 1.293 - (4) (0.0302) 

*** - -v = l/p 
0 0 

= 1.255 g/cc 



u 

0.270 E 06 
0.191 E 06 
Q.190 E 06 
Q.165 E 06 

2 µ 

p = 
0 

v 
0 

T = 
0 

p = 
0 

c = 
0 

a = 
0 

* 

µ 

0.063 E 
0.030 E 
0.028 E 
0.019 E 

-378-

CARBON DISULPHIDE 

06 
06 
06. 
06 

cs
2

. 

M 76.143 

m 4 

s = 1 

Reference 

ml= 4 100 

0.150 10 2 2 x 10 cm /sec 

0.0 g/cc 
*)'< 

1.255 ± 

*ic o. 7968 ± 0.0 cc/g 

0 *,'< 
25.0 c 

*-l" 1 atm 

6 0.115 x 10 cm/sec ** 

s.223)( 

Adjusted data 

ic* 

,.,. 

Initial Conditions 

Estimated to be the sa.~e as Reference 90 since no data given in 
Reference 100. ·See previous page. 
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u 

0.551 E 06 
0.395 E 06 

0.550 E 06 
0.530 E 06 
0.534 E 06 

2 
µ = 

p = 
0 

v = 
0 

T = 
0 

p = 
0 

c 
0 

a = 
0 

* 

µ 

0.2525 E 06 
0.1483 E 06 

0.246 E 06 
0.230 E 06 
0.242 E 06 

0.515 x 1011 

0.7918 ± 0.0050 

-380-

HETlliu"t-\OL 
CH

3
0H 

H = 32.043'0 

Ill = 5 

s = 1 

Reference 

ml= 2 90 

m2 = 3 100 

g/cc 

1. 263 ± 0. 008. cc/ g 

19.5°C 

1 atm 

0.1125 x 6 10 cm/s ec 

4.563i 

From Reference 98 

Initial Conditions 

V-cc/cr T-
0 c 0 0 0 

1.271 24 p = 1 atm 
1.255 15 0 

c = 0.1125 
0 * x106@20°c 
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WATER''( 

H2o 

H = 18.0160 

m = 52 
s = 1,3 

u µ Reference Initial Conditions 

0.3354 E 06 0.0952 E 06 ml= 16 90 
0.4093 E 06 0.1392 E 06 
0.4126 E 06 0. 1411 E 06 v::: 1.0018 cc/g 
0.4536 E 06 0.1655 E 06 0 

T = 20°C 0.4813 E 06 0.1829 E 06 0 

0.4777 E 06 0.1806 E 06 p = 1 atm 
0.4757 E 06 0.1798 E 06 0 

c = 0.14829 0.5626 E 06 0.2385 E 06 0 
6 ** 0.5626 E 06 0.2370 E 06 x 10 cm/sec 

0.5601 E 06 0.2335 E 06 
0.807 E 06 0.413 E 06 
0.807 E 06 0.424 E 06 
0.845 E 06 0.460 E 06 
0.849 E 06 0.472 E 06 
0.859 E 06 0.472 E 06 
0.874 E 06 0.481 E 06 

0. 706 E 06 0.332 E 06 m2 = 7 96 
0.705 E 06 0.339 E 06 p = 1.00 g/cc 
0.689 E 06 0.344 E 06 0 

0.826 E 06 0.453 E 06 v = 1.002 cc/ g 
0 6 1.285 E 06 0.809 E 06 c = 0.15Xl0 cm/sec 

1.269 E 06 0.843 E 06 0 

1.309 E 06 0.871 E 06 

0.442 E 06 0.152 E 06 m3= 1 102 p . = 1. 00 g/ cc 
0 

0.5835 E 06 0. 2365 E 06 m4 =26 96 
0.5900 E 06 0.2270 E 06 
0. 5725 E 06 0.2140 E 06 
0.5625 E 06 0. 2115 E 06 
0.5555 E 06 0.2125 E 06 p = 1. 00 

.· 0 
g/cc 

0.5545 E 06 0.2110 E 06 V= i.oo cc/g 
0.5460 E 06 0. 2180 E 06 0 

0.5395 E 06 0.2120 E 06 
0.5260 E 06 0.2185 E 06 
0.5235 E 06 0.2140 E 06 
0.5160 E 06 0.2005 E 06 
0.5225 E 06 0.1980 E 06 
0.5185 E 06 0 .1975 E 06 
0.4830 E 06 0.1915 E 06 
0.4730 E 06 0.1840 E 06 



u µ 

0.4570 E 06 0.1675 E 06 
0.4165 E 06 0.1465 E 06 
0.4280 E 06 0 .1390 E 06 
0.4075 E 06 0.1340 E 06 
0.3885 E 06 0.1300 E 06 
0.3635 E 06 O.llOO E 06 
0. 3465 E 06 0.1110 E 06 
0.3625 E 06 0.1060 E 06 
0.3480 E 06 0.1080 E 06 
0.3240 E 06 0.0970 E 06 
0.3205 E 06 0.0970 E 06 

0.387 E 06 0.1245 E 06 
0.409 E 06 0.140 E 06 

2 . 11 2 2 
µ = 0.989 x 10 cm /sec 

* 

p =0.999±0.00lg/cc 
0 

V = 1.001 ± 0.0005 cc/g 
0 

T = 21°C . 
0 

P = 1 atm 
0 

C 0.15 x 106cm/sec 
0 

a 3.485R (s=l) 
0 

a = 2.689R (s=3) 
0 

-387-

WATER;1; 

Reference Initial Conditions 

m5 = 2 94 p = 0. 99626 g/cc ;~*-le 
0 

v = 1.0037 5 
0 

I *** cc g 

T = 28°C 
0 

These raw data were adjusted (see following page) in the selection 
process (see text). 

;';* 
From Reference 96 

*** From Reference 101, p. 2143 @ T 28°C 



u µ 

0.3354 E 06 0.0952 E 06 
0.4093 E 06 0 .1392 E 06 
0.4126 E 06 0.1411 E 06 
0. 4536 E 06 0.1655 E 06 
0. 4813 E 06 0.1829 E 06 
0.4777 E 06 0.1806 E 06 
0.4757 E 06 0.1798 E 06 

0.442 E 06 0.152 E 06 

0.4830 E 06 0.1915 E 06 
0.4730 E 06 0.1840 E 06 
0.4570 E 06 0.1675 E 06 
0.4165 E 06 0.1465 E 06 
0.4280 E 06 0 .1390 E 06 
0.4075 E 06 0.1340 E 06 
0.3885 E 06 0.1300 E 06 
0.3635 E 06 0.1100 E 06 
0.3465 E 06 0 .1110 E 06 
0.3625 E 06 0.1060 E 06 
0.3480 E 06 0.1080 E 06 
0.3240 E 06 0.0970 E 06 
0.3205 E 06 0.0970 E 06 

0.387 E 06 0.1245 E 06 
0.409 E 06 0.140 E 06 

µ
2 = 0.206 x l011cm2/sec2 

p = 0.999 ± O.DOl g/ cc 
0 

V · = 1. 001 ± 0. 001 cc/ g 
. 0 

T = 22°C 
0 

P 1 atm 
0 

"'Adj usted data 
•k;'c 

Reference 96 

-388-

WATER* 
H20 

M = 18.0160 

m = 23 

s = 1,3 

Reference Initial Conditions 

ml= 7 90 v = 1.0018 cc/g 
0 

T = 20°C 
0 

p = 1 atm 
0 6 c = 0 .14829 x 10 cm/ sec 
0 

m2=1 102 p = 1.00 g/cc 
0 

m3=13 96 

p = 
0 . 

1.00 g/cc 

V= 1.00 cc/g 
0 

m4= 2 94 0.99626 g/cc ** p = 
0 

v = 1. 0037 5 cc/ g*-;'c 
0 

T = 28°C 
0 

c 0.14829 x 
6 10 cm/sec 

0 

a 3.485~ (s=l) 
0 

a 2.689~ (s=3) 
0 

*'k;'c 
From Reference 101 , p.2143 @ T 28°C 

* 
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COPPER 

Cu 

I-4 ; 2=29 

M = 63.54 

m = 98 

s = 1 

u µ Reference Initial Conditions 

0.4744 E 06 0.0511 E 06 ml= 5 85 
p = 8.90 g/cc 0.4768 E 06 0.0570 E 06 

0 6 * 0.5070 E 06 0.0711 E 06 C = 0.392 x 10 cm/sec 
0.5015 E 06 0.0731 E 06 

0 

0.5508 E 06 0.1032 E 06 

0.536 E 06 0.094 E 06 m2= 3 92 p = 8.93 g/cc 
o. 713 E 06 0.229 E 06 0 

C = 0.395x106cm/sec 1.016 E' 06 0.419 E 06 0 

0.664 E 06 0.182 E 06 m3 = 4 103 
0.806 E 06 0.271 E 06 
1.012 E 06 0.414 E 06 
1.058 E 06 0.443 E 06 

1.420 E 06 0.715 E 06 m4=1 104 p = 8.93 g/cc 
0 

0.668 E 06 0.210 E 06 mS = 9 96 
0.619 E 06 0.176 E 06 p = 8.97 g/cc 
0.649 E 06 0.175 E 06 

0 

V = 0.111 cc/g 0.618 E 06 0.175 E 06 0 

0.683 E 06 0.208 E 06 
0.616 E 06 0.135 E 06 
0.622 E 06 0.168 E 06 
0.590 E 06 0.136 E 06 
0.623 E 06 0 .169 . E 06 

0.524 E 06 0.087 E 06 m6= 10 102 
0.669 E 06 0.182 E 06 

p = 8.93 g/cc ** 0.592 E 06 0.131 E 06 0 ~'(* 
0.554 E 06 0.106 E 06 V = 0.112 cc/g 
0.811 E 06 0 .. 277 E 06 0 

0.767 E 06 0.247 E 06 
0 .. 714 E 06 0.212 E 06 
0.662 E 06 0.177 E 06 
1.02 E 06 0.418 E 06 
0.943 . E 06 0.370 E 06 

0.633 E 06 0.157 E 06 m7 = 6 13 
0.623 E 06 0.158 E 06 p = 8.90 g/cc 
0.626 E 06 ·0.157 E 06 0 6 
0.726 E 06 0.220 E 06 CB= 0.398 xlO cm/sec 

0.729 E 06 0.221 E 06 
0.732 E 06 0.222 E 06 



-390-
COPPER 

u µ Reference Initial Conditions 

0. 7150 E 06 0.2290 E 06 m8= 45 96 
0.7120 E 06 0.223 E 06 
0.7540 E 06 0.243 E 06 

p = 8.93 g/cc 0.6925 E 06 0.212 E 06 0 

0.7235 E 06 0.232 E 06 V = 0.112 cc/g 
0.6790 E 06 0.2035 E 06 0 

0. 72 40 E 06 0.2215 E 06 
0.7090 E 06 0.2210 E 06 
0.7225 E 06 0.2310 E 06 
0.6830 E 06 0.1960 E 06 
0.66 40 E 06 0.1780 E 06 
0.6490 ' E 06 0.1730 E 06 
0.7160 E 06 0.2195 E 06 
0.6910 E 06 0.2020 E 06 
0.6700 E 06 0.1910 E 06 
0.644 E 06 0.1790 E 06 
0.688 E 06 0.1930 E 06 
0.679 E 06 0.200 E 06 
0.666 E 06 0.173 E 06 
0.662 E 06 0.1795 E. 06 
0.6845 E 06 0.205 E 06 
o. 7230 E 06 0.233 E 06 
0.7260 E 06 0.231 E 06 
0.7050 E 06 0.218 E 06 
0.6890 E 06 0. 213 E 06 
0.685 E 06 0.202 E 06 
0.686 E 06 0.199 E 06 
0.691 E 06 . 0.208 E 06 
0.6775 E 06 0.182 E. 06 
0.675 E 06 0.1835 E 06 
0 . 668 E 06 0.185 E. 06 
0.654 E 06 0 . 190 . E 06 
0 . 6555 E 06 0.173 E 06 
0.650 E 06 0.171 E 06 
0.652 E 06 0.174 E 06 
0.626 E 06 0. 170 E 06 
0.620 E 06 0.146 E 06 
0 . 627 E 06 0.'153 E 06 
0.650 E 06 0.1815 E 06 
o~ 655 E 06 0 . 1820 E 06 
0.639 E 06 0.1720 E 06 
0.6445 E 06 0.1646 E 06 
0.640 E 06 0.178 E 06 
0.588 E 06 0.142 E 06 
0.584 E 06 0.144 E 06 



u µ 

0.4556 E 06 0.0Lf60 E 06 
0.4525 r.. 06 0.04595 E 06 
0.4768 E 06 0.05Li- 7 E 06 
0. 4769 E 06 0.05495 E 06 
0.494 E 06 0.06715 E 06 
0.4913 E 06 0.06835 E 06 
0.5258 E 06 0.08225 E 06 
0.5128 E 06 0.0780 E 06 
0.5240 E 06 0.0835 E 06 
0.5285 E 06 0.0855 E 06 
0.5391 E 06 0.09635 E 06 
0.5397 E 06 0.09685 E 06 

0.4086 E 06 0.01181 E 06 
0.4191 E 06 0.01475 E 06 
0.4426 E 06 0.02921 E 06 

2 0.420 x io11cm2/sec µ = 

p = 
0 

8.93 ± 0.02 g/ cc 

v = 0.112 ± 0.0003 cc/g 
0 

c 0.394 x 
6 10 cm/sec 

0 

a 2.5562i: 
0 

*Reference 96 

** From Reference 96 

-391-

COPPER 

Re.f e.rence Initial Conditions 

m9 = 12 105 

p = 8.903 g/cc 
0 

mlO = 3 95 P' = 8.939 g/cc 
0 6 

C = 0 .3894 x 10 cm/ sec 
0 

2 



u µ 

0. 4065 E 06 0.0504 E 06 
0. 4113 E 06 0.0527 E 06 
0.4378 E 06 0.0717 E 06 
0.4846 E 06 0.0985 E 06 
0.4848 E 06 0.1010 E 06 

0.598 E 06 0.177 E 06 
0.596 E 06 0.178 E 06 
0.673 E 06 0.214 E 06 
0 . 663 E 06 0.217 E 06 
0.668 E 06 0.216 E 06 
0.672 E 06 0.217 E 06 

0.469 E 06 0.093 E 06 
0.676 E 06 0.219 E 06 
0.945 E 06 0.405 E 06 

p = 10.49 ± 0.0 g/cc 
0 

•k • 

V = 0.09533 ± 0.0 cc/g 
0 

c 
0 

a 
0 

0.313 x 106cm/sec 

2.s90R 

Reference 96 

-392-
SI LVER 

Ag 

I -5 ; z =47 

M ;:;: 107.880 

m = 14 

s = 1 

Refer ence Initial Conditions 

ml= 5 85 

10.49 g/cc p = 
0 

0.309 x106cm/sec* c = 
0 

m2= 6 13 

p = 10.49 g/cc 
0 

6 c = 0 .319 x 10 cm/ sec 
B 

m3 = 3 92 p = 10.49 g/cc 
0 

6 c = 0. 308 x 10 cm/ sec 
0 



u 

0.3679 E 
0.3864 E 
0.4130 E 

0.525 E 
0.521 E 
0.580 E 
0.578 E 
0.578 E 
0.579 E 

0.427 E 
0.570 E 
0.806 E 

2 
µ 

po 

v 
0 

c 
0 

a 
0 

* 

-393-

GOLD 
Au 

I-6 ; Z=79 

M = 197.0 

m = 12 

s :::: 1 

µ References 

06 0.0380 p 06 ml= 3 85 J.-1 

06 0.0505 E 06 
06 0.0 666 E 06 

06 0.137 E 06 m2 = 6 13 
06 0.141 E 06 
06 0.173 E 06 
06 0.174 E 06 
06 0.174 E 06 
06 0.174 E 06 

06 0.071 E 06 m3= 3 92 
06 0.178 E 06 
06 0.330 E 06 

= 0.261 x 11 2 2 10 cm /sec 

= 19.26 ± 0.03 g/cc 

= 0.05193 ± 0.00007 cc/g 

0.298 x 6 10 cm/sec 

= 2.885.R 

Reference 96 

Initial Conditions 

p = 19.24 g/cc 
0 

6 * c = 
0 

0 • 2 8 4 x 10 cm/sec 

p = 19.24 g/cc 
0 . 6 

c = 0 .305 x 10 cm/ sec 
B 

p = 19.30 g/cc 
0 . 6 

c = 
0 

0 . 2 9 8 x 10 cm/sec 



0.5445 
0. 5696 
0.5632 
0.6019 
0.6052 

o. 715 
0.715 
o. 712 
0.750 
0.745 
0.743 
0.781 
o. 779 
o. 777 
0.788 
0.783 

-394-

COBALT 
Co 

VIII-4; 2=27 

M = 58.94 

m = 16 

s = 1 

u µ References 

E 06 0.0502 E 06 ml= 5 
E 06 0.0683 E 06 
E 06 0.0653 E 06 
E 06 0.0901 E 06 
E 06 0.0955 E 06 

E 06 0.179 E 06 m2=11 
E 06 0.180 E 06 
E 06 0.183 E 06 
E 06 0.206 E 06 
E 06 0.207 E 06 
E 06 0.207 E 06 
E 06 0.230 E 06 
E 06 0.230 E 06 
E 06 0.230 E 06 
E 06 0.231 E 06 
E 06 0.232 E 06 

µ
2 = 0.325 x l011cm2sec2 

P-- = 8.82 ± 0.0 g/cc 
0 . 

V- = 0.113 ± 0.0 cc/g 
0 

C = 0.463 x 106cm/sec 
0 

a = 2.503~ 
0 

85 

13 

Initial Conditions 

p = 8.82 g/cc 
0 

p = 8.82 g/cc 
0 6 

CB= 0.463 x 10 cm/sec 
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NICKEL* 

Ni 

VIII-4;2=28 

M = 58.69 

m = 63 
s = 1 

u 1J Reference Initial Conditions 

0.5417 E 06 0.0490 E 06 ml= 6 85 
0.5653 E 06 0.0678 E 06 

p = 8.86 g/cc 0.5620 E 06 0.0687 E 06 
0 6 ** 0.6031 E 06 0.0957 E 06 C = 0.447 x 10 cm/sec 

0. 5969 E 06 0.0982 E 06 0 

0.5952 E 06 0.0887 E 06 

0.695 E 06 0.164 E 06 m2 = 6 13 
0.699 E 06 0.164 E 06 

p = 8.86 g/cc o. 711 E 06 0.162 E 06 0 6 o. 778 E 06 0.215 E 06 CB= 0.463 x 10 cm/sec 
o. 776 E 06 0.217 E 06 
0.780 E 06 0.216 E 06 

o. 728 E 06 0.172 E 06 m3 = 4 104 p = 8.87 g/cc 0.872 E 06 0.263 E 06 0 6 ;'o'~* 
1.120 E 06 0.435 E 06 C = 0 • 4 5 7 3 x 10 cm Is ec 
1.460 E 06 0.709 E 06 0 

0.5682 E 06 0.0935 E 06 m4= 47 96 
0.5834 E 06 0.0910 E 06 
0.5675 E 06 0.0898 E 06 

p = 8.905 g/cc 0.5643 E 06 0.0910 E 06 · o 
0.5598 E 06 0.0835 E 06 V = 0.1123 cc/g 
0.5549 E 06 0.0815 E 06 0 

0.5586 E 06 0.0845 E 06 
0.5624 E 06 0.0840 E 06 
0.5668 E 06 0.0823 E 06 
0.5668 E 06 0.0810 E 06 
0.5624 E 06 0.0815 E 06 
0.5518 E 06 0.0805 E 06 
0.5488 E 06 0.0733 E 06 
0.5488 E 06 0.0733 E 06 
0 .. 5296 E 06 0. 0780 . E 06 
0.5230 E 06 0.0785 E 06 
0.5411 E 06 0.0715 E 06 
0.5506 E 06 0.0715 E 06 
0.5524 E 06 0.0725 E 06 
0.5393 E 06 0. 0725 E 06 
0.5387 E 06 0.0657 E 06 
0.5422 E 06 0.0642 E 06 



u µ 

0.5549 E 06 0.0635 E 06 
0.5512 E 06 0.0635 E 06 
0.5593 E 06 0.0610 E 06 
0.5330 E 06 0.0620 E 06 
0.5175 E 06 0.0635 E 06 
0.5202 E 06 0.0635 E 06 
0.5000 E 06 0.0529 E 06 
0.4970 E 06 0.0534 E 06 
0.5170 E 06 0.0520 E 06 
0.5112 E 06 0.0525 E 06 
0.4931 '!'..' .w 06 0.0405 E 06 
0.5097 E 06 0.0401 E 06 
0.5092 E 06 0.0406 E 06 
0.4496 E 06 0.0370 E 06 
0.4634 E 06 0.0363 E 06 
0.4617 E 06 0.0360 E 06 
0.4570 E 06 0.0365 E 06 
0.4604 E 06 0.0413 E 06 
0.4673 E 06 0.0409 E 06 
0.4960 E 06 0.0403 E 06 
0.4936 E 06 0.0402 E 06 
0.4840 E 06 0.0375 E 06 
0.4892 E 06 0. 0370 E 06 
0. 4 713 E 06 0.0349 E 06 
0.4638 E 06 0.0354 E 06 

2 ' 11 2 2 
µ = 0.198 x 10 cm /sec 

* 

p = 8.89 ± 0.02 g/cc 
0 

V ·= 0.112 ± 0.0006 cc/g 
0 

c 
0 

a = 
0 

0.456 x 106cm/sec 

2.493~ 

-396-

NICKEL * 

Reference Initial Conditions 

These raw data were adjusted (see following page) in the selection 
process (see text). 

*;~ 
Reference 96 

·}'** Reference 96 



0.5417 
0.5653 
0.5620 
0.6031 
0. 5969 
0.5952 

0.695 
0.699 
0.711 
o. 778 
o. 776 
0.780 

0. 728 
0.872 
1.120 
1.460 

u µ 

E 06 0.0490 E 06 
E 06 0.0678 E 06 
E 06 0.0687 E 06 
E 06 0.0957 E 06 
E 06 0.0982 E 06 
E 06 0.0887 E 06 

E 06 0.164 E 06 
E 06 0.164 E 06 
E 06 0.162 E 06 
E 06 0.215 E 06 
E 06 0.217 E 06 
E 06 0.216 E 06 

E 06 0.172 E 06 
E 06 0.263 E 06 . 

E 06 0.435 E 06 
E 06 o·. 709 E 06 

p = 8 . 86 ± 0 . 005 g/cc 
0 

-397-
* NI CKEL 

Ni 

VIII-4; Z=28 

M = 58.69 

m = 16 

s = 1 

Reference 

ml= 6 85 

m2 = 6 13 

m3 = 4 104 

V = 0.113 ± 0.0007 cc/g 
0 

*'" 

C = 0.456 x 106cm/sec 
0 

a 
0 

2 . 496.R 

Adjusted data 
*.;(;" 

Reference 96 

Initial Conditions 

8.86 g/cc p == 
0 

0 .447 x 106cm/sec ** c == 
0 

p = 8.86 g/cc 
0 6 

CB= 0.463Xl0 cm/sec 

p = 8.87 g/cc 
0 . 6 *** C = 0 . 4 5 7 3 x 10 cm Is e c 
0 



o.4673 
0.5004 
0.5374 

0.4737 
0.4992 
o. 5396 
0.5522 
o. 6271 
0.6305 
0.6304 
0.6981 
0. 7294 
0.7398 
0.7691 

0.608 
0.622 
0.671 

µ 

u 

2 

E 06 
E 06 
E 06 

E 06 
E 06 
E 06 
E 06 
E 06 
E 06 
E 06 
E 06 
E 06 
E 06 
E 06 

E 06 
E 06 
E 06 

µ 

- 398-
PALLADilM 

P d 

VIII-5 ; Z =4 6 

N = 106.7 

m = 17 

s = 1 

0.04728 E 06 ml= 3 
0.06200 E 06 
0.08219 

0.0467 
0.0619 
0.0856 
0. 0927 
0.1435 
0.1435 
0.1440 
0.1885 
0.2108 
0. 2196 
0.2361 

0.144 
0.143 
0.181 

E 06 

E 06 
E 06 
E 06 
E 06 
E 06 
E 06 
E 06 
E 06 
E 06 
E 06 
E 06 

E 06 
E 06 
E 06 

m2=11 

m3 = 3 

0.209 x 11 2 2 = 10 cm /sec 

p = 12.00 ± 0.02 g/cc 
0 

v = 0.0833 ± 0.0002 cc/g 
0 

0.390 x 6 c 10 cm/sec 
0 

a 2.7s4R 
0 

Ref. p g/cc Initial Conditions 
0 

85 

96 

96 

12.00 
12.00 
12.00 
12.01 
12.00 
12.00 
12.00 
12.00 
12.00 
12.00 
12.00 

p = 11. 95 g/cc 
0 

V = 0.0833 cc/g 
0 

C = 0.390x106
cm/sec 

0 

p = 12.02 g/cc 
0 

V = 0.0832 cc/g 
0 



u 

0.4199 E 06 
0.4306 E 06 
0.4495 E 06 

0.4179 E 06 
0.4365 E 06 
0.4402 E 06 
0.4682 E 06 
0.4778 E 06 
0.5420 E 06 
0.5465 E 06 
0.5442 E 06 
0.6014 E 06 
0.6316 E 06 
0.6367 E 06 
0.6548 E 06 

µ 

0.0329 E 

-399-
PLATII>iUM 

Pt 

VIII-6; Z=78 

M = 195.23 

m::: 15 

s = 1 

06 ml= 3 
0.04450 E 06 
0.06102 E 06 

0.0360 E 06 m2= 12 
0.0483 E 06 
0.0488 E 06 
0.0675 E 06 
0.0738 E 06 
0.1150 E 06 
0.1152 E 06 
0.1180 E 06 
0.1526 E 06 
0.1700 E 06 
0.1787 E 06 
0.1937 E 06 

p = 21.42 ± 0.02 g/cc 
0 

V = 0.0469 ± 0.00005 cc/g 
0 

C 0.351 x 106cm/sec 
0 

a = 2.776~ 
0 

Reference Initial Conditions 

85 p = 21.37 g/cc 
0 

96 

p = 
0 

21.43 g/cc 

V = 0.0469 cc/g 
0 

C = 0 .351 x 106cm/ sec 
0 



- 400-
ALUMINUM* 

Al 

III-3 ; 2=13 

M = 26 . 98 

m == 40 

s == 1 

u µ Reference Initial Conditions 

0.874 E 06 0.270 E 06 ml= 11 96 
0.920 E 06 0.258 E 06 
0.948 E 06 0.260 E 06 

p = 2.70 g/cc 1.014 E 06 0.353 E 06 0 

1.004 E 06 0.358 E 06 V = 0.370 cc/g 
1.024 E 06 0.345 E 06 0 

1.067 E 06 0.356 E 06 
1.195 E 06 0.513 E 06 
1.309 E 06 0.638 E 06 
1.326 E 06 0.673 E 06 
1.367 E 06 0.702 E 06 

1.913 E 06 0.280 E ·06 m2 = 3 103 
2.71 g/cc 1.039 E 06 0.370 E 06 p = 

0 

1. 294 E 06 .0. 562 E 06 

0. 913 E 06 0.280 E 06 m3 = 7 102. 2.71 g/cc 
~'\"'/~ 

0.852 E 06 o·. 236 E 06 p = 
0 

i"* 0.792 E 06 0.192 E 06 v = 0.369 cc/g . · 
1. 05 E 06 0.377 E 06 0 

1.02 E 06 0.354 E 06 
1. 29 E 06 0.559 E 06 
1.20 E 06 0.493 E 06 

0.731 E 06 0.145 E 06 m4= 8 96 
o. 775 E 06 0.180 E 06 p = 2.70 g/cc 
0.877 E 06 0.246 E 06 0 

v = 0.370 cc/g 0.906 E 06 0.258 E 06 0 

0.913 E 06 0.271 E 06 T = 17°C 
0.876 E 06 0.277 E 06 0 

0.877 E 06 0.270 E 06 
0.814 E 06 0.221 E 06 

0.5216 E 06 0.0003756 E 06 m5= 11 95 
0.5249 E 06 0.001527 E 06 
0.5235 E 06 0.001722 E 06 p = 2.706 g/cc 
0.5259 E 06 0.003050 E 06 0 6 
0.5285 E 06 0.004439 E 06 C = 0. 5240 x 10 cm/ sec 

0 

0.5379 E 06 0.007853 E 06 
0.5464 E 06 0.01055 E 06 
0.5535 . E 06 0.01472 E 06 



0.5598 
0.5662 
0.5652 

u 

E 06 
E 06 
E 06 

0.01959 E 06 
0.02355 E 06 
0.02549 E 06 

-401-
AL illfINUM* 

Reference 

p = 
0 

2.70 ± 0.006 g/cc 

v = 0.370 ± 0.0006 cc/g 
0 

T = 17°C 
0 

0.5240 x 6 c = 10 cm/sec 
0 

a = 2.863R 
. o 

Initial Conditions 

* These raw data were adjusted (see following page) in the selection 
process (see text). 

i~*Ref erence 96 



-402-
* ALUMINUM 

Al 

III-3; Z=l3 

M == 26.98 
m = 29 
s = 1 

u µ 

0.913 E 06 0.280 E 06 ml= 3 
1.039 E 06 0.370 E 06 
1.294 E 06 0.562 E 06 

0.913 E 06 0.280 E 06 m2 = 7 
0.852 E 06 0.236 E 06 
0.792 E 06 0.192 E 06 
1.05 E 06 0.377 E 06 
1.02 E 06 0.354 E 06 
1.29 E 06 0.559 E 06 
1. 20 E 06 0.493 E 06 

o. 731 E 06 0.145 E 06 m3 = 8 
o. 775 E 06 0.180 E 06 
0.877 E 06 0.246 E 06 
0.906 E 06 0.258 E 06 
0.913 E 06 0.271 E 06 
0.876 E 06 0.277 E 06 
0.882 E 06 0.270 E 06 
0.814 E 06 0.221 E 06 

0.5216 E 06 . 0.0003756 E 06 m4= 11 
0.5249 E 06 0.001527 E 06 
0.5235 E 06 0.001722 E 06 
0.5259 E 06 0.003050 E 06 
0.5285 E 06 0 ~ 004439 E 06 
0.5379 E 06 0.007853 E 06 
0.5464 E 06 0.01055 E 06 
0.5535 E 06 0.01472 E 06 
0.5598 E 06 0.01959 E 06 
0.566.Z E 06 0.02355 E 06 
0.5652 E 06 0.02549 E 06 

µ
2 = 0.683 x l011cm2/sec2 

o = 2.71 ± 0.006 g/cc ·o 

;'<: 

V = 0.369 ± 0.006 cc/g 
0 

Adjusted data 

** Reference 96 

Reference 

103 

102 

96 

95 

T = 17°C 
0 

Initial Conditions 

p = 2.71 g/cc 
0 

p = 2.71 g/cc 
0 

** v = 0.369 cc/g 
0 

p = 
0 

2.70 g/ cc 

v = 0.370 cc/g 
0 

T = 17°C 
0 

2.706 g/cc p = 
0 

0.5240x106 c = 
0 cm/sec 

6 . 
C = 0.5240 x 10 cm/sec 

0 

a 
0 

2.ss9i 



0.561 
0.547 
0.464 
0.673 
0.709 

0.45 
0.55 
0.58 
0.63 
0.70 

-403-
CALCIUM 

Ca 

II-4 ; 2=20 

M = 40.08 

m = 10 

s = 1 

u ·µ Reference p g/cc 
0 

E 06 0.215 E 06 ml= 5 
E 06 0.216 E 06 
E 06 0.115 E 06 
E 06 0.344 E 06 
E 06 0.345 E 06 

E 06 0.095 E 06 m2 = 5 
E 06 0.205 E 06 
E 06 0.245 E 06 
E 06 0.285 E 06 
E 06 0.375 E 06 

2 . 11 2 2 
µ = 0.676 x 10 cm /sec 

p = 1.52 ± 0.003 g/cc 
0 . 

v = 0.657 ± 0.001 cc/g 
0 

0.335 x 
6 c = 10 cm/sec 

0 

a 3.9s6R 
0 

96 

106 

1.523 
1.523 
1.527 
1.526 
1.524 

Initial 
Conditions 

V = 0.656 cc/g 
0 

p = l.52'g/cc 
0 

c = 0.335x106 
0 cm/sec 



-404-

LEAD 
Pb 

IV-6 ; Z=82 

M = 207.21 

m = 37 

s = 1 

Initial Conditions 

u µ Reference P g/cc 
0 

0.2914 E 06 0.0590 E 06 ml= 4 85 p = 11.34 g/cc 
0.3268 E 06 0.0819 E 06 0 

0.3250 E 06 0.0802 E 06 c = 0.200 x 106 

0.3724 E 06 0.1118 E 06 0 
cm/sec* 

0.452 E 06 0.164 E 06 m2 = 4 13 p = 11. 34 g/ cc 
0.452 E 06 0.164 E 06 0 

CB= 0.202 x 10
6 

0.544 E 06 0.225 E 06 
0.542 E 06 0.225 E 06 cm/sec 

0.352 E 06 0.097 E 06 m3 = 3 92 p = 11.34 g/cc 
0.533 E 06 0.234 E 06 0 

C=0.19lx106 
0.765 E 06 0.426 E 06 0 

cm/ sec 

0.492 E 06 0.188 E 06 m4 = 4 103 
0.607 E 06 0.276 E 06 

p = 11.34 g/cc 0.774 E 06 0.418 E 06 0 

0.826 E 06 0.445 E 06 

1.136 E 06 0.700 E 06 m5 =l 104 p = 11. 35 g/ cc 
0 

0.491 E 06 0.189 E 06 m6 = 9 102 
0.416 E 06 0.·120 E 06 

** 0.372 E 06 0.110 E 06 p = 11. 34 g I cc . 
0.617 E 06 0.282 E 06 0 

v = 0.08826 0.553 E 06 0.234 E 06 0 cc/g** 0.483 E 06 0.184 E 06 
0.441 E 06 0.156 E 06 
0.792 E 06 0.428 E 06 
0.701 E 06 0.351 E 06 

0 . . 466 E 06 0.174 E 06 m7 = 5 96 11.35 
0.291 E 06 0.059 E 06 11.35 v = 0.08811 cc/g 0.370 E 06 0.109 E 06 11.35 0 

0.263 E 06 0.040 E 06 11.35 
0.245 E 06 0.030 E 06 11.34 



-405-

LEAD 

u µ Reference Initial Conditions 

0.1921 E 06 0.001902 E 06 m8 = 7 95 
0.1930 E 06 0.002837 E 06 
0.1980 E 06 0.005227 E 06 p = 11.355 g/cc 

0.01144 06 
0 

0.2143 E 06 E c = 0.1972 x 106 
0.2265 E 06 0.01832 E 06 0 cm/sec 
0.2369 E 06 0.02544 E 06 
0.2435 E 06 0.02820 E 06 

2 0.545 x 11 2 2 µ = 10 cm /sec 

po = 11.34 ± 0.007 g/cc 

v = 0.08817 ± 0.00007 cc/g 
0 

c 0.198 x 6 10 cm/sec 
0 

a = 3.soiR 
0 

* From Reference 96 
*~~ From Reference 96 



-406-
LITHIUM* 

Li 
I-2 ; Z=3 

M = 6. 940 

m = 29 
s = 2 

Initial Conditions 

u µ Reference P g/cc 
0 

0.6329 E 06 0.1425 E 06 ml= 10 93 p = 0.530 g/cc 
0.6382 E 06 0.1457 E 06 0 

0.6734 E 06 0.1941 E 06 T = 20°C 
06 0.2554 06 

0 
0.7433 E E P = 1 atm 
0.7449 E 06 0.2553 E 06 0 

0.8251 E 06 0.3231 E 06 c = 0.469 x io6 

06 0.3679 06 
0 cm/sec.;~* 0.8893 E E 

0. 8929 E 06 0.3727 E 06 
1.0192 E 06 0.4908 E 06 
1.0335 E 06 0.4887 E 06 

0.586 E 06 0.114 E 06 m2:;:: 11 107 
0.643 E 06 0.187 E 06 
0. 725 E 06 0.259 E 06 0.53 g/cc 0.932 E 06 0.445 E 06 

p = 
0 

1. 075 E 06 0.554 E 06 T = 300°K 
1.164 E 06 0.642 E 06 0 

1 .210 E 06 0.681 E 06 
1.243 E 06 0.715 E 06 
1. 240 E 06 0. 723 E 06 
1.314 E 06 ' 0. 797 E 06 
1. 439 E 06 0.915 E 06 

0.971 E 06 0.477 E 06 m3 = 8 96 0.537 
0.704 E 06 0. 214 E 06 0.533 
0.625 E 06 0.129 E 06 0.531 
1.126 E 06 0.568 E 06 0.534 v = 1.87 cc/g 
0.845 E 06 0.348 E 06 0 .533 0 

0.866 E 06 0. 372 E 06 0.533 
0.997 E 06 0.487 E 06 0.533 
0.931 E 06 0.433 E 06 0.533 

2 12 2 2 
µ 0.220 x 10 cm /sec p = 1 atm 

0 
6 

po 0.531 ± 0.002 g/cc c = 0.469 x 10 cm/sec 
0 

v 1.88 ± 0.01 cc/g a 3.043i 
0 0 

T 24°C 
0 

*These raw data were adjusted (see following page) in the selection pro-
cess (see text). 

**Reference 96 



u µ 

0.6329 E 06 0.1425 E 06 
0.6382 E 06 0.1457 E 06 
0.6734 E 06 0.1941 E 06 
0.7433 E 06 0.2554 E 06 
0.7449 E 06 0.2553 E 06 
0.8251 E 06 0.3231 E 06 
0. 8893 E 06 0.3679 E 06 
o. 8929 E 06 0.3727 E 06 

0.586 E 06 0.114 E 06 
0.643 E 06 0.187 E 06 
o. 725 E 06 0.259 E 06 
o. 932 E 06 0.445 E 06 

0.704 E 06 o. 214 E 06 
0.625 E 06 0.129 E 06 
0.845 E 06 0.348 E 06 
0.866 E 06 0 ." 372 E 06 
0. 931 E 06 0.433 E 06 

-2- 11 2 2 
µ = 0.830 x 10 cm /sec 

,'( 

p = 0.531 ± 0.001 g/cc 
0 

V = 1.88 ± 0.01 cc/g 
0 

T = 22°C 
0 

P = 1 atm 
0 

c 
0 

. 6 
0.469 x 10 cm/sec 

a = 3.o43R 
0 

Adjusted data 
,'(* 

Reference 96 

- 407-

LITHI UM7
' 

Li 

I -2 ; Z=3 

N = 6.940 

m = 17 
s = 2 

Initial Conditions 

Reference p g/ cc 
0 

ml= 8 93 p = 0.530 g/cc 
0 

T = 20°C 
0 

p = 1 atm 
0 

6 c = 0. 469 x 10 
0 cm/sec ** 

m2 = 4 107 
0.53 g/cc p = 

0 

T = 300°K 
0 

m3 = 5 96 0.533 
0.531 v = 1.87 cc/g 0.533 0 

0.533 
0.533 



-408-

sonnrx* 
Na 

I-3; Z=ll 

}1 = 22.991 

m = 25 
s ::::; 2 

u µ Reference Initial Conditions 

0.4336 E 06 0.1417 E 06 ml= 18 93 
0.4229 E 06 0.1335 E 06 
0.4238 E 06 0.1347 E 06 0.968 g/cc 
0.4913 E 06 0.1842 E 06 

p = 
0 

0.4883 E 06 0.1869 E 06 T = 20°C 
0.4914 E 06 0.1849 E 06 0 

P = 1 atm 0.5521 E 06 0.2407 E 06 0 

0.5529 E 06 0.2404 E 06 c = 0.233 x io6 

0.5540 E 06 0.2419 E 06 0 cm/sec ** 
0.5505 E 06 0.2375 E 06 
0.5561 E 06 0.2423 E 06 
0.6245 E 06 0.2998 E 06 
0.6225 E 06 0. 2996 E 06 
0.6925 E 06 0.3518 E 06 
0.6911 E 06 0.3547 E 06 
0.7942 E 06 0.4300 E 06 
0.8036 E 06 0.4392 E 06 
0.8076 E 06 0.4392 E 06 

0.391 E 06 0.110 E 06 m2 = 7 107 
0. 472 E 06 · 0.177 E 06 p = 0.97 g/cc 
0.553 E 06 0.243 E 06 0 

T = 300°K 
0.770 E 06 0.409 E 06 0 

0.926 E 06 0.525 E 06 
1.057 E 06 o·. 632 E 06 
1.252 E 06 0.796 E 06 

2 12 2 2 
µ = 0.121 x 10 cm / sec p = 1 atm 

0 

0.97 0.002 g/cc 0.233 x 6 
p = ± c 10 cm/sec 

0 0 

v = 1.03 ± 0.003 cc/g a 3. 71~ 
0 0 

T 22°C 
0 

'I• 
These data were adjusted (see following page) in the selection pro-
cess (see text). 

*-1' Reference 96 



-409-

SODIUM* 
Na 

I-3; Z=ll 

H = 22.991 

m = 18 

s = 2 

u µ Reference Initial Conditions 

0.4336 E 06 0.1417 E 06 ml= 15 93 
0.4229 E 06 0.1335 E 06 

p = 0.968 g/cc 0.4238 E 06 0.1347 E 06 0 

0.4918 E 06 0.1842 E 06 T = 20°C 
0.4883 E 06 0.1869 E 06 0 

p = 1 atm 0.4914 E 06 0.1849 E 06 0 

0.233Xl06 0.5521 E 06 0.2407 E 06 c = 
* 0.5529 E 06 0.2404 E 06 0 cm/sec 

0.5540 E 06 0.2419 E 06 
0.5505 E 06 0.2375 E 06 
0.5561 E 06 0.2423 E 06 
0.6245 E 06 0.2998 E 06 
0.6225 E 06 0.2996 E 06 
0.6925 E 06 0.3518 E 06 
0.6911 E 06 0.3547 E 06 

0.391 E 06 0 .. 110 E 06 m2 = 3 107 p = 0.97 g/cc 
0.472 E 06 0.177 E 06 0 

T = 300°K 
0.553 E 06 0.243 E 06 0 

2- 11 2 2 
µ = 0.545 x 10 cm /sec 

p = 0.97 ± 0.002 g/cc 
0 

v = 1.03 ± 0.003 cc/g 
0 

T = 21°C 
0 

p ::;: 1 atm 
0 

c 0.233 x 
0 

6 10 cm/sec 

a 3. 711~ 
0 

* Adjusted data 

** Reference 96 



-410-

POTASSIUM''-
K 

I-4 ; Z = 19 

M = 39.110 

m = 23 

s = 2 

u µ Reference Initial Conditions 

0.3641 E 06 0.1391 E 06 ml =18 93 
0.3633 E 06 0.1402 E 06 p = 0.860 g/cc 
0.4198 E 06 0.1882 E 06 0 

0.4187 E 06 0.1928 E 06 T = 20°C 
0.4258 E 06 0.1917 E 06 0 

P = 1 atm 
o.4864 E 06 0. 2513 E 06 

0 6 ** o.4874 E 06 0.2532 E .06 C = 0. 206 x 10 cm/ sec 
0.4921 E 06 0.2522 E 06 

0 

0.4943 E 06 0.2561 E 06 
0.4949 E 06 0.2561 E 06 
0.5489 E 06 0.2993 E 06 
0.5641 E 06 0.3149 E 06 
0.5683 E 06 0.3174 E 06 
0.5747 E 06 0.3183 E 06 
0.5845 E 06 0.3318 E 06 
0. 7108 E 06 0.4324 E 06 
0.7258 E 06 o·. 4468 E 06 
o. 7392 E 06 0.4573 E 06 

0.337 E 06 0.115 E 06 m2= 5 107 p = 0.86 g/cc 
0.486 E 06 0.238 E 06 

0 

T = 300°K 
0.699 E 06 0.429 E 06 0 

0.939 E 06 0.632 E 06 
1.187 E 06 0.841 E 06 

2 12 2 2 
µ = 0.127 x 10 cm /sec p = 1 atm 

0 

-
= 0.86 g/cc 6 

po ± o.o c = 0.206 x 10 cm/sec 
0 

v = 1.16 ± o.o cc/g a = 4.612i 
0 0 

T 22°C 
0 

* These data were adjusted (see following page) in the selection pro-
cess (see text). 

*i~ 
Reference 96 



-411-
POTASSIUM;" 

K 

I-4 ; z =19 

M = 39.110 

m = 17 

s = 2 

u µ Reference 

0.3641 E 06 0.1391 E 06 ml= 15 93 
0.3633 E 06 0.1402 E 06 
0.4198 E 06 0.1882 E 06 
0.4187 E 06 0.1928 E 06 
0.4258 E 06 0.1917 E 06 
0.4864 E 06 0.2513 E 06 
0.4874 E 06 0.2532 E 06 
o. 4921 E 06 0.2522 E 06 
0.4943 E 06 0.2561 E 06 
0.4949 E 06 0.2561 E 06 
0.5489 E 06 0.2993 E 06 
0.5641 E 06 0.3149 E 06 
0.5683 E 06 0.3174 E 06 
0.5747 E 06 0.3183 E 06 
0.5845 E 06 0.3318 E 06 

0.337 E 06 0.115 E 06 m2= 2 107 
0.486 E 06 0.238 E 06 

µ2 = 0.612 x io11crn2/sec2 

"" 

, 

P- = 0.86 ± 0.0 g/cc 
0 

V = 1.16 ± 0.0 cc/g 
0 

T = 22°C 
0 

P = 1 atm 
0 

C-- = 0.206 x 106cm/sec 
0 

a = 4.612~ 
0 

Adjusted data 

** Reference 96 

Initial Conditions 

p = 0.860 g/cc 
0 

T = 20°C 
0 

p = 1 atm 
0 

0.206Xl06 c = 
*"'~ 0 cm/sec 

p = 0.86 g/cc 
0 

T = 300°K 
0 



0.2786 
0.2820 
0.3412 
0.4032 
0.4050 
0.4988 
0.5187 
0.5574 
0.6256 
0.6349 

-412-

RUB IDIUW~ 
Rb 

I-5;2==37 

M = 85.48 

m = 10 

s = 2 

u µ Reference 

E 06 0.1289 E 06 ml= 10 
E 06 0.1312 E 06 
E 06 0.1814 E 06 
E 06 0~2320 E 06 
E 06 0.2373 E 06 
E 06 0.3085 E 06 
E 06 0.3220 E 06 
E 06 0.3563 E 06 
E 06 0.4001 · E 06 
E 06 0.4043 E 06 

2 11 2 2 µ = 0.826 x 10 cm /sec 

p = 1.530 ± 0.0 g/cc 
0 

V = 0~6536 ± 0.0 cc/g 
0 

T == 20°C 
0 

P = 1 atm 
0 

C = 0.113 x 106cm/sec 
0 

a 
0 

4.939.2. 

93 

Initial Conditions 

p = 1.530 g/cc 
0 

T = 20°C 
0 

P = 1 atm 
0 

.c = 0 .113 x 10 6 
0 cm/sec ** 

* These data were adjusted (see following page) in the selection pro-
cess (see text). 

)~-;~ 

Reference 96 
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RUBIDIUH* 
Rb 

I-S ;z=37 

H = 85.48 

m = 5 

s = 2 

u µ Reference 

0.2786 E 06 0.1289 E 06 ml =5 
0.2820 E 06 0.1312 E 06 
0.3412 E 06 0.1814 E 06 
0.4032 E 06 0.2320 E 06 
0.4050 E 06 0.2373 E 06 

µ 2 
= 0.354 x l011cm2/sec2 

P- = 1.530 ± 0.0 g/cc 
0 

* 

V = 0.6536 ± 0.0 cc/g 
0 

T = 20°C 
0 

p 1 atm 
0 

c = 0.113 x 
0 

a = 4.939~ 
0 

6 10 cm/sec 

Adjusted da t a 

*~" Reference 96 

93 

Initial Conditions 

1.530 g/cc p = 
0 

T = 20°C 
0 

p = 1 atm 
0 

6 ** c ::.: 0.113 x 10 cm/sec 
0 



u µ 

0.2489 E 06 0.1402 E 06 
0.2493 E 06 0.1395 E 06 
0.2994 E 06 0.1758 E 06 
0.2998 E 06 0 .1770 E 06 
0.3695 E 06 012239 E 06 
0.3719 E 06 0.2268 E 06 
0.4953 E 06 0.3202 E 06 
0.5822 E 06 0.3894 E 06 
0.5847 E 06 . 0.3919 E 06 

2 0.679 11 ·2; µ = x .10 cm sec 

- = 1. 826 0.0 g/cc po ± 

v = 0.5476 ± 0.0 cc/g 
0 

T = 20°C 
0 

p 1 atm 
0 

c 0.087 x 106cm/sec 
0 

a s.39sR 
0 

* Reference 96 

- 414-

CESIUM 
Cs 

I-6 ;Z=SS 

N = 132.91 

m = 9 

s = 2 

Reference 

ml= 9 93 

2 

Initial Conditions 

p = 
0 

1.826 g/cc 

T = 20°C 
0 

p = 1 atm 
0 6 c = 0. 087 x .10 cm/ sec* 
0 



0.578 
0.573 
0.616 
0.607 
0.608 
0.605 
0.608 
0.649 
0.650 
0.646 
o. 729 
o. 728 
0.732 
0.734 
0.820 
0.817 

u µ 

E 06 0.058 E 06 
E 06 0.058 E 06 
E 06 0.080 E 06 
E 06 0.081 E 06 
E 06 0.081 E 06 
E 06 0.082 E 06 
E 06 0.081 E 06 
E 06 0.112 E 06 
E 06 0.111 E 06 
E 06 0.112 E 06 
E 06 0.186 E 06 
E 06 0.186 E 06 
E 06 0.185 E 06 
E 06 0.185 E 06 
E 06 0.259 ·E 06 
E 06 0.249 E 06 

p = 6.1 ± 0 . 0 g/cc 
0 

V = 0.16 ± 0.0 cc/g 
0 

C = 0.518 x 106cm/sec 
0 

a 
0 

2.62~ 

- 415-
V ... .\.i\JAD I UM 

v 
V-4 ;Z=23 

}1 = 50 . 95 

m = lLr 

s = 2 

Reference Initial Conditions 

ml = 14 13 

6.1 g/cc p = 
0 

0.518 x 106cm/sec c = 
B 
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NIOBilJH 

V-5 ; Z=41 

M = 92.91 

m = 14 

s = 2 

u µ Reference 

0. 5177 E 06 0.05489 E 06 
0. 5311 E 06 0.07434 E 06 
0.5642 E 06 0.09929 E 06 

0.5195 E 06 0.0527 E 06 
0.5335 E 06 0.0706 E 06 
0.5687 E 06 0.0978 E 06 
0.5793 E 06 0.1061 E 06 
0.6449 E 06 0.1643 E 06 
0.6432 E 06 0.1650 E 06 
0.6471 E 06 0.1651 E 06 
0. 7114 E 06 0.2158 E 06 
0.7417 E 06 0.2450 E 06 
o. 7 518 E 06 0.2508 E 06 
0. 7734 E 06 0.2705 E 06 

µ 2 = 0.265 x l011cm2/sec2 

P- = 8.588 ± 0.009 g/cc 
0 

V = 0.1164 ± 0.0003 cc/g 
0 

c 
0 

a 
0 

0.439 x io6cm/sec 

2.85~ 

ml= 3 85 

m2=11 96 

Initial Conditions 

p = 8.604 g/cc 
0 

p = 8.583 g/cc 
0 

V = 0.1165 cc/g 
0 6 

C = 0 . 4 3 9 x 10 cm/sec 
0 



0.3811 
0.4010 
0.4323 

0.3981 
0.4134 
0.4395 
0.4495 
0. 5092 
0.5061 
0.5621 
0.5889 
0.5967 
0.6103 

0.524 
0.645 
0.836 

* 
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* TANTALUM 
Ta 

V-6 ; Z=73 

M = 180.95 

u µ 

E 06 0.04327 E 06 ' 
E 06 0.05800 E 06 
E 06 0.07685 E 06 

E 06 0.0429 E 06 
E 06 0.0576 E 06 
E 06 0.0804 . E 06 
E 06 0. 0872 E 06 
E 06 0.1358 E 06 
E 06 0.1359 E 06 
E 06 0.1790 E 06 
E 06 0.2003 E 06 
E 06 0.2087 E 06 
E 06 0 .·2262 E 06 

E 06 0.145 E 06 
E 06 0.228 E 06 
E 06 0.374 E 06 

p = 16.6 ± 0.08 g/cc 
0 

m = 16 

s = 2 

ml= 3 

m2 =10 

m3 = 3 

V = 0.0602 ± 0.0003 cc/g 
0 

a 
0 

0.339 x ·106cm/sec 

2.s65R 

Reference Initial Conditions 

85 16.46 g/cc p = 
0 

96 16.66 g/cc p = 
0 

V = 0.0600 cc/g 
0 6 

C = 0.339x10 cm/sec 
0 

108 
p = 16.6 g/cc 

0 

These data were adjusted (see following page) in the selection pro-
cess (see text). 



* 
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TANTALUM* 
Ta 

V-6;Z=73 

M = 180.95 

m = 14 

s = 2 

u µ Reference 

0.3811 
0.4010 
0.4323 

0.3981 
0.4134 
0.4395 
0.4495 
0.5092 
0.5061 
0.5621 
0.5889 
0. 5967 
0.6103 

0.524 

E 06 0.04327 E 06 ml= 3 
E 06 0.05800 E 06 
E 06 0.07685 E 06 

E 06 0.0429 E 06 m2=10 
E 06 0.0576 E 06 
E 06 0.0804 E 06 
E 06 0.0872 E 06 
E 06 0.1358 E .. 06 
E 06 0.1359 E .06 

E 06 0.1790 E 06 
E 06 0.2003 E 06 
E 06 0.2087 E 06 
E 06 0.2262 E 06 

E 06 0.145 E 06 m3=1 

2 11 2 2 
µ = 0.182 x 10 cm /sec 

p = 16.6 ± 0.08 g/cc 
0 

V = 0.0602 ±0.0003 cc/g 
0 

C = 0.339 x io6cm/sec 
0 

a = 2.865~ · 
0 

Adjusted data 

85 

96 

108. 

Initial Conditions 

p = 16.46 g/cc 
0 

p = 16.66 g/cc 
0 

V = 0.0600 cc/g 
0 6 

C = 0.339X 10 cm/sec 
0 

p = 16.6 g/cc 
0 



u µ 

0.6043 E 06 0.05448 E 06 
0.5923 E 06 0.05395 E 06 
0.6381 E 06 0.07436 E 06 
0.6370 E 06 0.07449 E 06 
0.6355 E 06 0.07407 E 06 
0.6357 E 06 0.07403 E 06 
0.6660 E 06 0.1007 E 06 
0.6674 E 06 0.1008 E .06 •.. 
0.763 E 06 0.171 E 06 
0.759 E 06 0.171 E 06 
0.844 E 06 0.225 E 06 
0.857 E 06 0.227 E 06 
0.863 E 06 0.225 E 06 

2 11 2 
µ = 0.200 x 10 cm /sec 

p = 
0 

7.11 ± 0.01 g/cc 

v = 0.141 ± 0.0006 cc/g 
0 

6 c ::;; 0.515 x 10 cm/sec 
0 

a = 2.sosP: 
0 

* Reference 96 
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CI-IROMIUM 
Cr 

VI-4; Z=24 

M = 52.01 

m = 13 

s = 2 

Reference 

ml= 8 13 

m2= 5 85 

2 

Initial Conditions 

p = 7.10 g/cc 
0 

6 c = 0.515 x 10 cm/sec 
B 

p = 7.13 g/cc 
0 6 * 

C = 0 • 515 x 10 cm/sec 
0 



0.5699 
0.5647 
0.5955 
0.5861 
0.6210 
0.6124 

o. 729 
o. 720 
o. 729 
0.765 
o. 771 
o. 775 

0.721 
0.839 
1.016 
1.035 

0.585 
0.538 
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MOLYBDENUM 
Mo 

VI-5 ; Z =42 

M = 95.95 

m = 18 

s = 2 

u µ Reference 

E 06 0.0437 E 06 ml= 6 85 
E 06 0.0444 E 06 
E 06 0.0591 E 06 
E 06 0.0606 E 06 
E 06 0.0850 E 06 
E 06 0.0792 E 06 

E 06 . 0 .169 E 06 m2 = 6 13 
E 06 0.170 E 06 
E 06 0.168 E 06 
E 06 0.206 E 06 
E 06 0.206 E 06 
E 06 0.207 E 06 

E 06 0.160 E 06 m3 = 4 108 
E 06 0.252 E 06 
E 06 0.392 E 06 
E 06 0.424 E 06 

E 06 0.079 E 06 m4= 2 96 
E 06 0.050 E 06 

2 . 11 2 2 
µ = 0.372 x 10 cm /sec 

P- = 10.2 ± 0.02 g/cc 
0 

V-- = 0.0981 ± 0.0002 cc/g 0 . . 

c 
0 

a 
0 

0.519 x 106cm/sec 

2. 72/J,. 

Initial Conditions 

p = 10.20 g/cc 
0 

10.20 g/cc p = 
0 

6 c = 0 . 519 x 10 cm Is e c 
B 

P = 10.2 g/cc 
0 

P = 10.13 g/cc 
0 

v = 0.0987 cc/-g 
0 



u µ 

0.456 E 06 0.045 E 06 
0.455 E 06 0.045 E 06 
0.478 E 06 0.064 E 06 
0.482 E 06 0.064 E 06 
0.547 E 06 0.117 E 06 
0.549 E 06 0.117 E 06 
0.621 E 06 0.173 E 06 
0.619 E 06 0.173 E 06 
0.624 E 06 0.173 . E 06 

P- = 19.17 ± 0.0 g/cc 
0 

V- = 0.05216 ± 0.0 cc/g 
0 

C- 0.405 x io6cm/sec 
0 

a = 2.14sR 
0 

-421-

TUNGSTEN 
w 

VI-6;Z=74 

M = 183. 92 

m = 9 

s = 2 

Reference 

ml= 9 13 

Initial Conditions 

p = 19.17 g/cc 
0 

V = 0.05216 cc/g 
0 6 

CB= 0.405x10 cm/sec 



0.4494 
0.4674 
0. 4920 

0.4440 
0.4609 
0.4661 
0.4804 
0.4938 
o. 5720 
0.5758 
0.5753 
0.6467 
0.6867 
o. 7211 

i~ 

u µ 

E 06 0.07117 E 06 
E 06 0.09563 E 06 
E 06 0.1275 E 06 

E 06 0.0634 E 06 
E 06 0.0841 E 06 
E 06 0.0850 E 06 
E 06 0.1168 E 06 
E 06 0.1267 E 06 
E 06 0.1911 E 06 
E 06 0.1917 E 06 
E 06 0.1956 E 06 
E 06 0.2476 E 06 
E 06 0.2732 E 06 
E 06 0.3065 E 06 

p = 6.50 ± 0.007 g/cc 
0 

-422-

ZIRCONIUM* 
Zr 

IV-5 ; Z=40 

M = 91.22 

m = 14 

s = 2 

Reference 

ml= 3 85 

m2 =11 96 

v = 0.154 ± 0.0003 cc/g 
0 

0.388 x 6 c = 10 cm/sec 
0 

a = 3.116R 
0 

Initial Conditions 

p g/cc 
0 

p = 
0 

6.49 g/cc 

6.506 V = 0.1537 cc/g 
6.506 0 

6.509 c = 0.388 x 106 

6.503 
0 

cm/sec 
6.505 
6.505 
6.512 
6.505 
6.506 
6.506 
6.505 

These data were adjusted (see following page) in the selection process 
(see text). · 



u µ 

0.4494 E 06 0.07117 E 06 
0.4674 E 06 0.09563 E 06 

0.4440 E 06 0.0634 E 06 
0.4609 E 06 0.0841 E 06 
0.4661 E 06 0.0850 E 06 

P- = 6.50 ± 0.008 g/cc 
0 . 

-423-
ZIRCONIUMi' 

Zr 

IV-5 ; Z=40 

M=91.22 

m = 5 

s = 2 

Initial Conditions 

Reference p g/cc 
0 

ml= 2 85 

m2 = 3 96 

p = 6.49 g/cc 
0 

6 · 506 V = 0.1537 cc/g 6.506 0 . 

6.509 C = 0.388X 106 
0 

. cm/sec 

V = 0.154 ± 0.0005 cc/g 
0 

* 

C = 0.388 x 106cm/sec 
0 

a = 3.116R 
0 

Adjusted data 



u 

0.230 E 
0.355 E 
0.535 E 
0.940 E 

2 
µ = 

p = 
0 

v = 
0 

c 
0 

a 
0 

µ 

06 0.091 E 06 
06 0.179 E 06 
06 0.312 E 06 
06 0.600 E 06 

-424-

BARIUM 
Ba 

II-6;2=56 

M=l37.36 

m = 4 
s = 2 

Reference 

ml= 4 106 

12 2 0.124 x 10 cm /sec 2 

3.63 ± 0.0 g/cc 

0.275 ± 0.0 cc/g 

0.161 x 6 10 cm/sec 

4.338~ 

Initial Conditions 

p = 3.63 g/cc 
0 6 

C = 0 .161 x 10 cm/ sec 
0 
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Appendix T 

Phase Transitions and the Shock Model 

(165) 
Huang has shown from statistical mechanical considerations 

* that a reasonable description of phase transitions can be made in 

-I~* 
terms of the pressure-fugacity behavior of the material of concern 

When converted to the P - (1/ p) plane his examples of first-order 

(FO) and second-order (SO) transitions may be pictured(165) as in 

Figure Tl. 

The particular example chosen for the FO transition is an iso-

therm passing through the coexistence region between two phases. Under 

shock loading, isothermal conditions will not prevail and the 

P - (l/p) behavior should look more like the dashed line in Figure 

~"*-le 
Tl On the other hand the SO transition would look much the same 

as that shown. 

'ic 
Reasonable in the sense that it cannot be (easily) shown that the 
scheme is unique; there may be other descriptions of transitions 
that work equally well(l65). 

** If, for a given value of fugacity f = f , P(f) is continuous but 
0 

8P/3f is discontinuous, this corresponds to a first-order transition. 
If both P(f) and 3P/3£ are continuous but 32p/3£2 is discon­
tinuous, this corresponds to a second-order transition. 

*** From Equations (4) and (5), eliminating µ 

and the slope becomes: 

a c11 p) 

Clearly, the slope < 0 in all cases. Since p > 0 and U > 0 
0 

it is clear that for shock loading, even the case aP/8(1/p) = 0 
cannot occur. 

This justifi~s the dashed line in Figure Tl. 
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Phases Connected by a First-Order Transition 

p 
PHASE 

PHASE 2 

Phases Connected by a Second-Order Transition 

p 
PHASE 

PHASE 2 

Figure Tl. First- and Second-Order Phase Transitions 

[F p (165, p.319)., rom rtuang J 

i/p 
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For the FO transition, compression is "normal11 for phase 1 up to 

point A, and the ordinary U-µ behavior for phase l obtains. This is 

shown in Figure T2. For compressions between points A and C (found by 

connecting l/P and A with a straight line) "the shock wave is 
0 

split into two independent waves moving at different"velocities 
(12) 

The velocity of the leading wave is given by the shock in phase 1 at 

point A and is constant for compressions through point C. This is 

shown as the horizontal dashed line in Figure T2. The trailing wave 

* starts at some low velocity at point A which gradually increases 

through the two-phase region to point B where the last of phase 1 dis-

appears. For increased compression between points ff and C the trailing 

wave speed increases along the characteristic phase 2 U-µ curve. These 

are shown as the dotted lines in Figure T2. At point C the trailing 

wave catches up to the leading wave and coalesces with it. Further 

compression takes place in a "normal" fashion along the phase 2 U-JJ 

curve. From the FO transition diagram in Figure T2 it is clear that 

the trailing wave never overtakes the leading wave (until point C is 

reached), since the velocity of the latter is always higher. 

From this it is clear that, for FO transitions, observation of 

the first wave arrival will yield a U-µ curve similar to the upper part 

of the FO transition curve in Figure T2; the dotted curves representing 

the trailing wave will not be seen. 

For the SO transition in Figure Tl, similar behavior occurs 

except that there is no coexistence region. 11Normal" compression in 

* The sound velocity of the material behind the shock at point A . 



FO TRANSITION 

u 

SOUND 
VELOCITY 
IN 7 

PHASE 1..../ 

PHASE I 
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SOUND VELOCITY OF MATERIAL 
BEHIND SHOCK AT POINT A 

~~ REGION OF 
11
SPUT

11 
WAVE 

PHASE 2 

LEADING WAVE 

TRAILING WAVE 

,µ 

SO TRANSIT ION 1 
~REGION OF 
I "SPLITIC WAVE 

I 

PHASE 

PHASE 2 
u 

TRAILi NG WAVE 
SOUND 
VELOCITY 
IN _j 

PHASE 2 

SOUND VELOCf TY OF MATER IAL 
BEH1ND SHOCK AT POINT . D --..Jo. 

Figure T2. U-µ Behavior Corresponding to . FO and SO Transitions 
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phase 1 takes place from l/p 
0 

to point D where the transition takes 

place (suddenly) and the new phase is formed. Again the shock wave 

splits for compressions between states D and E in which the leading 

wave propagates at constant velocity. This and the trailing wave are 

shown as the dashed and dotted lines in the SO transition curve of 

Figure T2. Continued compression takes place along the normal U-µ 

curve for phase 2. 

If points D and E for SO transitions are close together (Figure 

T2), the split wave region would be very small and the U-µ curve would 

appear (essentially) simply as the intersection of the U-µ curves for 

phases 1 and 2 respectively with no (apparent) horizontal region. 

If, correspondingly, points B and C for FO transitions are close 

together, the horizontal region indicated in Figure T2 is shortened 

proportionately but remains nevertheless because of the coexistence 

region. 

For either FO or SO transitions the region of phase 1 compression 

corresponds to the case of rrnormalrr propagation of a shock wave through 

the material. The shock structure is "normal" and the shock model 

developed in this study applies as such. 

When the shock wave splits for FO (point A) or SO (point D) 

transitions, the pressure distribution in the two waves can be pictured 

as in Figure T3 which is taken from Zel'dovich and Raizer(l2). The 

initial pressure rise is sharp fronted and characteristic of "ordinary" 

shock waves; the transition region is "small". The phase transition 

* itself takes place in the second wave ; i.e., conditions behind the 

*For FO transitions the second wave could end in the 2-phase .region 
(between A and B) or in the phase 2 region (between Band C). 
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f irst wave are at point A (or D) which is in phase 1. Because the 

waves are separated it is assumed that the full equilibrium state is 

reached behind the first wave and thus that the model can be applied 

without alteration. Considering conditions behind this wave as a new 

* set of "initial" conditions the theory could again be applied to the 

second wave to predict the Hugoniot from point A (or D) to point C (or 

E). However, since it appears that FO transitions take much longer 

h h . d h ·1·b . (lOS,l2) h d · 11 t an t at require to reac equi i rium t e secon wave wi . 

not be sharp fronted (see Figure T3) and one of the fundamental assump-

tions of the theory (i.e., the transition zone is "thin") is violated. 

In this case Equation (27) cannot be justified and Equation (31) is 

*'k 
incorrect Therefore the model does not apply and cannot be used to 

predict the Hugoniot in the "split wave" region. For SO transitions it 

is not known if the trailing wave rise time is sufficiently rapid to 

satisfy Equation (27) and thus to justify application of the shock 

model. An investigation of this point would be worthwhile. 

When the compression is such that the phase 2 region is reached 

directly (past point C for FO transitions and point E for SO transi-

tions) a single wave is formed. The initial shock state is along an 

extension of the phase ~. Hugoniot (point F for FO and point H for SO 

transitions; see Figure T3). After this the transition begins, relax-

ing to the final state at points G and I for FO and SO transitions~ 

•k 
Clearly, in this case, P would not be negligible (i.e., P =pressure 

0 0 
at point A (or D)) and Equations (1)-(3) would have to be rederived 
considering tha~ the second wave moves into a moving (not stationary) 
medium moving at the particle velocity associated with P 

0 

** Thermal effects cannot be neglected. 
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* respectively . Since the former case has a relaxation time known to 

be large compared to equilibrium times, the pressure rise for the 

transition will not be steep. As before the speed for SO transitions 

is unknown and the steepness of the second pressure rise is, conse-

quently, unkno·wn. 

If the initial compression is found along the extension of the 

phase 1 Hugoniot, there must be a finite time interval between this 

event and the start of relaxation in the phase transition. If thermal 

equilibrium is established in this interval, all the assumptions of 

the model hold and it may be applied to predict the "extended" 

Hugoniot for phase 1 material. Using the conditions behind this wave 

the model may again be applied to the second pressure rise if the 

assumptions of the model (i.e., Equation (27)) are satisfied. As 

before, for FO transitions they are not, while for SO transitions the 

question is moot. 

From this discussion it may be concluded that for both FO and SO 

transitions the model should not be applied past the phase 1 region. 

*~·· Therefore whenever the U-µ behavior in Figure T2 is manifest the 

data outside of the phase 1 region should not be considered. The one 

exception would be a FO transition in which the coexistence region is 

very small and the transition is so slow that all measurements corres-

porid to the extension of the phase 1 Hugoniot. In that instance, of 

* In this case, of course, the second pressure rise is propagating at 

the same shock velocity as the initial rise and therefore does not 

detach from it. 
*-1( 

A determination of the type of transition occurring (FO or SO) might 
be made by comparing the U-µ data with the two curves in Fig~re T2. 
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course, no transition would be evident from the data and its existence 

(say in the ensuing expansion to P ) could be ignored. 
0 

S 1 . . * . . (12) d tructura transitions are FO phase transitions an are 

f b 
(91,86,13,ll,10,12,109) h known to occur in a number o su stances . T e 

two-wave structure predicted in Figure T3 is, in fact, observed. Some 

. . b h 1 (105) transitions may not appear ecause t ey are too s ow . 

Melting transitions are FO phase transitions and have been 

inferred from calculations for many substances (SS,lJ,l03 ,io4 ,lll,9J, 

60, 64 , 96 ,l2,·· ,··)(see Table 6). However, no direct experimental evi-

dence of melting has been presented. Apparently there is doubt that 

h 1 . · 11 . h . 1 . (13'105) d t e me ting wi appear in t e experimenta region an conse-

1. h h . d 1 . . h . 1 1 . (SS) 93 ) quent y most aut ors ave ignore me ting in t eir ca cu ations · . 

In an interesting study of melting under shock compression, Urlin and 

(111) *i• 
Ivanov computed the pressure required ·for melting of four metals 

although "the published experimental results ... does not permit us to 

speak with certainty concerning the absence of discontinuities in the 

slope of the shock adiabatics." 

*c 11 a 1 h · · · · C 12 ) a e po ymorp ic transitions . 

'le* 
It is also interesting that they found that the slope of the 

(P - (l/p)) Hugoniot in the mixed phase region was generally greater 

than that in phase 1 (see Figure Tl), and that therefore the melt-

ing process cannot result in split waves; i.e., no trailing wave 

appears. This follows from an examination of Figure Tl for the con­

dition specified. 
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Fusion transitions are FO phase transitions and have been 

reported (see Table 6) based on an examination of the U-µ data(llO, 

109) d (90 110) an on opacity measurements ' . However, the fusion process 

might be too slow to be recorded in shock experiments(90) and the 

effect on the U-µ function is questionable. 

El . . . (107,106,68) h ff (10) ectronic transitions , amongst ot er e ects , 

might be examples of SO phase transitions, although this is not alto-

* gether clear . In general the transition seems to involve demotion of 

an s-level electron to the next lowest d-level. As previously men-

tioned the nature and speed of these transitions is unknown, but it 

is notable that the U-µ behavior for SO transitions postulated in 

Figure T2 is matched by data presented in Reference (106). 

* In Reference (107) the transitions are referred to as FO, since a 

sudden volume change is assumed (see Figure Tl). 
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Appendix U 

Fit of Theory Using a and Cab 

The pair .potential in terrns of a and Cab is given by Equa-

tion (133): 

(133) 

which can be derived from Equation (72) noting that: 

cab = sf (n) a
6 (132) 

The Hugoniot is given (generally) by Equation (95): 

s 
2 4 Nrrc- [ rrn (2 poN)n/3 2 

( c-) £ ( ) v (xn- - 1) 
µ = ~~ n (n-2)(n-3) M 

s 
a6 2 poN 2 4 ] 
12 ( M ) (x - l) (95) 

Multiplying numerator and denominator by 0
6 and using Equation (132) 

this becomes (with rearrangement): 

(Ul) 

which is the Hugoniot in terms of the desired parameters. Letting: 

L NTf 
cl = _. (-) 

2s M 
(U2) 

s 
2 p N 1/3 

c2 ( 0 ) 
M 

(U3) 

s 
1 2 poN 2 

C3 = -( ) 12 M 
(U4) 
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µ 
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Following Equations (138) - (141), the residuals R. become: 
l 

R. 
l 

(x~- 2 - 1) 
l 4 J 

(n-2)(n-3) - C3(xi - l) 

and the equations of interest are: 

d L: R: 
i l 

an = 0 

d L: R~ 
i l 

d0 
0 

d L: R~ 
i l 

a cab 
0 

(US) 

(U6) 

(U7) 

(US) 

(U9) 

which fix the values of 0, Cab and n which minimize the sum of the 

squares of the residuals R . • 
l 

Some or all of Equations (U7)- (U9) are used depending on which 

of 0, Cab and n are considered fixed (i.e., known). This leads to 

the general scheme shown in Table Ul. For a one-parameter fit (lPF) 

0 and Cab are f{xed and only Equation (U7) is considered. Substi­

tuting Equation (U6) into Equation (U7) gives: 

x + 



Parameter Fit 
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2 

3 
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Table Ul 

FITTING OF DATA USING a 

Al~D cab--LIQUIDS 

Fix Seeking 

a ,cab n 

cab a,n 

a cab'n 

(J, cab, n 
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rv .n-2 D-76---::P." n-2 } Yz ( x . - 1) --6" JJ' G 2 ( x . - 1) ] 
+ c 2x _ .. 37 Y'1;: in cr - r 1 z-- c2n - s) =_ o cu10) 

- n-- -- n- (n-2)" (n-3;' 

or 

l (µ~ -
. l. 
l. 

( 
n-2 

x x. 
l. 

C~(x~-2 - 1) 

(n-2) (n-3) 

n-2 2n - 5 } 
£n xi + (xi - 1) (£n c2a - (n-Z) (n-J)) = 0 

(Ull) 

Equation (Ull) is an implicit relation for the desired value of n • 

However, because Equation (Ull) is complex it might have many roots and 

the one .of interest might be difficult to locate. Therefore, instead, 

n was indexed (by 0.1) throughout the entire range of values of 

* interest and the sum-of-the-squares of the residuals computed from : 

L 
c~ (x~- 2 

- 1) 

(n-2) (n-3) l~ } (Ul2) 

at each step. The desired (best fit) value of n was that which gave 

a minimum in L . 

Computations were performed on an IBM 360/75 digital computer 

** using a program called FIFI The resultant values of n for argon 

and nitrogen were 10.4 and 9.2 respectively. The (µ. -x.) data and 
1. ]_ 

P M and s o' (and thus c
1

, c
2 

and c
3 

from Equations (U2) -(U4))were 

taken from Appendix S, while a and Cab were chosen from Table 7. 

;'c 
This follows the discussion leading to Equation (142). 

*-i• Available from the author on request. 
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Appendix V 

Effect of Added Attraction 

Equation (59) is: 

-6 -8 -10 
¢ . = br + er + dr + · · · attraction 

(59) 

Considering only two additional tenns (compared to Equation (65)) and 

substituting along with Equation (57) into Equation (55) gives: 

<j>(r) = -n ar (br - 6 + er -S + dr-lO) 

which is Equation (61). This can be written: 

Noting the discussion following Equation (131) it is clear that: 

b 

and for convenience we may define: 

·c' ab 

C" 
ab 

c 

d 

Substituting Equations (V2) - (V4) into Equation (Vl) gives: 

ar-n- C r- 6- C' r- 8- C" r-lO 
ab . ab ab 

Equations (66) - (68) are: 

¢(0) 0 

(61) 

(Vl) 

(V2) 

(V3) 

(V4) 

(VS) 

(66) 
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¢ ( r ) = -E: 
0 

Use of Equation (66) in Equation (VS) gives: 

-n 
¢ (a ) = O = aa C" 0 -10 

ab 

and from Equation (67): 

¢(r ) = -s = 
0 

-n ar 
0 

-6 
C br a o 

Differentiating Equation (VS) gi ves: 

d cp (r) 
dr 

and using Equation (68): 

C' r-8 
ab o 

C" r-10 
ab o 

0 -n-l + 6C - 7 + 8C' r-9 + lOC" r-ll 
-nar 0 ab r o ab o ab o 

Multiplying by r gives: 
0 

0 -nar-n + 6C - 6 + 8C' r- 8 + lOC" r-lO 
o ab r o ab o ab o 

From Equation (V6): 

0 n ( c a""' 6 + c , - 8 + c 11 a -10) 
a = . ab ab a ab 

or: 
a=an- 6 (c · +C' - 2 +c"a-4) 

ab ab0 ab 

From Equation (V7): 

. -6 2 4 
ar-n = -s + R (C b + C' r- + C11 r - ) 

o o a ab o ab o 

(67) 

(68) 

(V6) 

(V7) 

(V8) 

(V9) 

(VlO) 

(Vll) 

(Vl2) 

(Vl3) 
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and from Equation (VlO): 

nar-n 2r- 6 (3C b + 4C'br- 2 + SC" r-4) 
o o a a o ab o 

or: 

(E..)ar-n = -6(C 4 C' -2 + 2 c•• r-4) 
6 o ro ab + 3 abro 3 ab o 

Letting: 

C(a) cab + C' a -2 
ab + c'• 

ab 0 
-4 

C(r ) cab + C' r- 2 + C'' r-4 
0 ab o ab o 

Cl(ro) 
4 -2 + 2 C" r-4 = cab + 3 c~bro 3 ab o 

Equations (Vll), (Vl3) and (Vl5) become: 

a = an- 6 C (0) 

n -n (-)ar = 
6 .o 

-6 
r c

1
(r ) 

0 0 

Substituting Equation (Vl9) into Equations (V20) and (V21) gives: 

Taking a ratio gives: 

-0-n-6_ l -n ctaJ 
0 -------= 

(E.)~C(cr} 
6 0 

-6 -e: + r C(r ) 
0 0 

= r - 6 c
1 
(r ) 

0 0 

- e: + r -
6 C (r ) 

0 0 

r- 6 c
1

(r ) 
0 0 

(Vl4) 

(Vl5) 

(Vl6) 

(Vl7) 

(Vl8) 

(Vl9) 

(V20) 

(V21) 

(V22) 

(V23) 

(V24) 
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n = 

or 

Substituting into Equation (V22), after rearrangement, gives: 

or: 

(_q_) 
r 

0 

C (r ) 
6[ 1 0 -1] 

6 C(r) -Er 
0 0 

[ c1 (r ) 
- l] 

0 
6 0 .Q,n(-) 

r . 6 0 C(r ) - sr 
0 0 

which may be written: 

[ c1 (r ) 
- l] 

0 6 0 .Q,n(-) 
C(r ) - sr6 r 

0 
\... 0 0 

~ "' 

A 

6 sr + C(r ) 
0 0 

C(o) 

6 C (r ) - r 
J [ 0 0 

.Q,n C(o) 

[ Cl(ro) • c (a) J + tn 
6 cl (ro) C(r )-sr 

0 0 

B 

(V25) 

(V26) 

(V27) 

(V28) 

= 0 

(V29) 

Knowing O and £· , r may be found by trial and error from Equation 
0 

(V29) noting Equations (Vl6) - (Vl8) if Cab' C~b and C~b are known. 

This value may be used in Equation (V26) to determine n • 

From Table 8, for argon: 

a = 3.2sR 

s/k 138.2°K 

(V30) 

(V31) 
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c = ab 
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-60 6 65.9 x 10 erg-cm (V32) 

Values of C' 
ab and C" 

ab 
(118) 

are given by Fontana but they 

are believed to be in error, since his corresponding value of Cab 

-60 6 (122) (55.9 x 10 erg-cm ) is low compared to the more recent value in 

Equation (V32). Assuming the error in Cab propagates ·linearly to C' 
ab 

and C" a correction factor of 1.179 (i.e., 65.9/55.9) can be 
ab ' 

applied to Fontana's values to give: 

C' = (121 x l0- 76)(1.179) ab 
-76 8 143 x 10 erg-cm 

C" = 
ab (320 x lo-92 )(1.179) -92 10 = 377 x 10 erg-cm 

Therefore from Equation (Vl6): 

or: 

-60 6 C(a) = 82.5 x 10 erg-cm 

Trial and error solution using Equations (V29) and (V26): 

6 C(a)/ 
r C(r ) cl (ro) Sr n 0/r cl (ro) A B 

0 0 0 0 

4.0 76.31 80.27 78.14 <o 
3.7 78.36 83.18 48. 9.5 16.97 0.886 0.992 -1. 328 +1.033 
3.4 81.09 87. 09· 29.47 10.12 0.965 0.947 -0.147 +0.470 
3.5 80.08 85.64 35.07 11.42 0.937 0.963 -0.353 +0.604 
3~6 79.17 84.34 41.53 13.44 0.911 0.978 -0.693 +0.784 
3.65 78.75 83.74 45.11 14.94 0.899 0. 985 -0.951 +0.896 
3.63 78.92 83.99 43.65 14.29 0.904 0.982 -0.837 +0.850 

which is close enough. Interpolation gives: 

rv 
n = 14.4 

(V33) 

(V34) 

(V35) 

(V36) 

A+B 

-0.295 
+0.323 
+0.251 
+0.091 
-0.055 
+0.013 

(V37) 
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which is not substantially less than the value of n given in Table 8 

(i.e. , n = 16. 7) . 

The form of the potential with the two attractive terms added may 

be compared to Equation (133) to see why the reduction in n is small. 

Substitution of Equation (Vl2) into Equation (VS) gives: 

rt.. (r) = n- 6 -n ( ' - 2 C" a-4) - r- 6 (C + Ca' br - 2 + C" r - 4) ( 38) 
'+' 0 r Cab+ Cab a + ab ab ab V 

or: 

(V39) 

which is the form of the potential desired. Note that when C' = C" = ab ab 

0 , Equation (V39) reduces to Equation (133)o Note also that the use of 

the extra terms affects both the repulsive ((o/r)n) and attractive 

( (cr /r) 6) terms in Equation (133). . It is because the coefficients of 

the two terms in Equation (V39) are similar (and that 

vs. 3.63i)) that only a small reduction in n occurs. 

a ~ r (3.28i 
0 
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Appendix W 

T - Linear Least Squares 
M 

From the bracketed values in Table 7 and Reference [101]: 

Substance 0 
s/k- K 

Argon 138.2 

Nitrogen 91.5 

Carbon Tetrachloride 378. 

Letting: 

y s/ k °K 

the assumed form .of the correlation is: 

y = a + bx 

where a and b are constants. The residuals 

R. = y, - a - bx. 
l. l. l. 

The least-squares - best-fit 

8 l: R~ 
i l 

aa 

Substituting Equation (W4) 

"' I . 2 o R. 

R2 (y. or 
l. l. 

values of a and 

d l: R~ 
i l 

0 db 

into Equations (WS) 

i l 

aa L 2(y. - a - bx.)(-1) 
l ::.L 

i 

T -°K 
M 

83.9 

63.2 

250.1 

(Wl) 

(W2) 

(W3) 

are given by: 

2 (W4) - a - bx.) 
l. 

b are given from (lS): 

(W5) 

gives: 

= 0 (W6) 
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I y. 
. l 
l 

I y.x. 
. l l 
l 
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l 2(y. - a - bx.)(-x.) 
l l l 

i 

an + b l x. 
0 . l 

l 

a I x. + b l x~ 
. l . J_ 
l l 

0 (W7) 

(W8) 

(W9) 

where n = I = number of points. The determinant of the coefficient 
0 . 

l 

is given by: 

D = 

and: 

aD = 

bD = 

n I x. 
0 

i 
l 

l x. l 2 
x. 

• 1. 
.i 

1. 
l 

l y. I x. 
i 1. i 1. 

l I 2 
x.y. x. 

i 
l l 

i 
l 

n I y. 
0 . l 

l 

l x. 
. l 
l 

l x.y. 
• 1. 1. 
1. 

From the above data: 

n 
0 3 ' l x. = 397.2 

. l 
1. 

n I x~ - cI x.)
2 

0 . 1. • l. 
l l. 

l Y. l x~ - l x. 
• J. . J. • J. 
l. J. J. 

n l x.y. - l x. o. 11. J. 
J. J. 

l x.y. 
. l l 
l 

I y. 
• 1. 
l. 

(WlO) 

(Wll) 

(Wl2) 

l y. = 607 .7 ' 
. l 
l 

l x~ = 73583.46 
. l 
1. 

(Wl3) 

I x.y. = i11915.5a , 
. l l 

cI x.)
2 = 157767.84 

1. 
(Wl4) 

1. 
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From Equation (WlO): 

D = 62982.54 

and from Equations (Wll) and (Wl2): 

a = 4.188 

As a reasonable approximation: 

'V 
a = 

b 

b 'V 

1.498 

1.5 

and Equation (W3) becomes (noting Equations (Wl) and (W2)): 

which is Equation (134). 

(Wl5) 

(Wl6) 

(Wl7) 

(134) 



R. 
1 
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Appendix X 

Derivation of 1, 2 and 3 Parameter Fit Equations 

The residuals R. are given by Equation (138): 
l 

__n_ n-6 n 
2 6 (n/ 6) n-6 r 0 c2 n-2 4 J 

}.l. - c E: 0 l (x - 1) - c3 (xl. - 1) 
J. 1 cE. - 1) (n-2)(n-3) i 

6 

(138) 

where c1 , c
2 

and c
3 

are given by Equations (136). Of interest are 

the equations: 

d I R~ 
• 1. 
l 

dn 
0 (139) 

d \ R2 
L i 
i 
d0 

0 (140) 

d l R~ 
. 1 
l 

dE: 
0 (141) 

Substituting Equation (138) into Equations (139) - ·(141) gives: 

d I R~ 
• 1. 
l 

Cln 
_ . { ,_ A (n/6)~ [ 0n-6C~ . n-2 

= . 0 - t Z[Ri] ;,:i;ya . (~ - 1) (n-2) (n-3) xi in xi 

n-6 
0 (x~-2 - 1) cn2 (xnl. -2 - 1) 

+ l en i c + 0n-6 £n 0 
(n-2)(n-3) 2 n 2 (n-2)(n-3) 

(x~-2 - 1) 
J. 

x 



d l R: 
. l. 

1. 

....E:_-

{ 

nyB~6 n-1 n n-2 } ~; na C 2 (xi -:- 1) 5 4 
= 0 = ~ ,ztRi) r~~ [ (n-Z) (n-3) - 6a c3 (xi - l)] 

(X2) 

d I R: 
. l. 

_1. __ = 0 
dS 

Noting Equation (71), these may be written: 

n-6 . n . (n 1) ( 1 1/ 6 m (n)) l~ 

[
a c2 n- 2 4 J[ 6- ~-(nf6-1)2 6 -6/ 

+ _.f-{-rr} (n-2) (n-3) (xi ~ l) - c3 (xi - l~ - J 
cE. - 1) 
6 (X4) 

0 (XS) 

n-6 n 

~ ra C2 (x~-2 - 1) - C3(x4i· - l)} = 0 I Ri \. (n-2)(n-3) J. 
(X6) 

or: 
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( 0n-6 en 
( 2 [ n-2 

x l(n-Z)(n-3) xi 
2n-5 n-2 

£n xi + (£n c2 ° - (n-2) (n-3)) (xi 

0 (X7) 

0 (X8) 

{ 

0n-6 en 
x 2 (x~-2 - 1) C ( 4 

(n-2)(n-3) i · - 3 xi 0 (X9) 

For the fitting scheme outlined in Table 10, Equation (X7) 

defines the best fit value of n for the lPF. Equations (X7) and (X8) 

jointly define the best fit values of n and c when 0 is fixed 

for the 2PF, while Equations (X7) and (X9) define n and c when 0 

is fixed for the other 2PF. For the 3PF Equations (X7) - (X9) jointly 

define n , 0 and c . 

Expansion of Equation (XS) (for which 0 is the parameter 

of interest) gives: 



-451-

0n-6 en 
(E.) 2 \ 2( n-2 l) C \ 2( 4 l) 
6 (n-2) (n-3) ~ µi xi - - 3 ~ 1\ xi -

1. J. 

0n-6 en )2 
6 n ( 2 \ n-2 2 

- cl E:0 f (n) (6) (n-2) (n-3) i (xi - 1) 

n-6 n 
6 ° c2 \ n-2 4 

+ cl E:0 f (n) (n-2) (n-3) c3 ~(xi -1) (xi - 1) 
1. 

n-6 n 
6 n ° c2 4 n-2 

+ cl E:O £ (n) (6) (n-2) (n-3) c3 ~ (xi - l) (xi - l) 

- Cls0
6 

f (n) c2 I (x ~ - 1) 
2 

3 . 1. 
1. 

Letting: , 

s = I 2 n-2 µ. (x. - 1) 
1 . l 1. 

J. 

I 2 4 s = µ. (x. - 1) 
2 • . 1. l 

l 

I n-2 1) 2 , s3 = (x. -
i 

l 

I 4 1)2 s = (x. -
4 

i 
1. 

s = l ( 4 ' l)(x1:- 2 -x. -
5 

i 
1. ]. 

0 

1) 

Equation (XlO) becomes, after rearrangement: 

(XlO) 

(Xll) 

(Xl2) 

(Xl3) 

(Xl4) 

(Xl5) 
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en s f ( ) 2n J 
0n-6 [c_g6) 2 1 J - e s - 02n-6 lr (_g6) els n e2 s3 

(n-2)(n-3) 3 2 (n-Z)2 (n-J)2 

[ 
c1s f(n) cn2 c3s5] 6 [ 2 J 

+ 0n cE-6 + 1) . c f ( ) c s (n-2)(n-3) - 0 . ls n 3 4 

Solving for 2n-6 
0 and finding the root gives: 

0 = 
(n) C1s f (n) e~n S3 
6 

(n-2) 2 (n-3) 2 

from which an iterative solution for 0 can be found. 

1 
2n-6 

0 (Xl6) 

(Xl7) 

Expansion of Equation (X9) (for which s is the parameter of 

interest) gives: 

n-6 en 
n-2 2 6 ° 2 n-2 4 

x f (xi - 1) + cl w f (n) (n-2) (n-3) c3 f (xi -1) (xi -1) 

n-6 n 
6 . 0 c2 4 n-2 

. + cl £0 f (n) c3 (n-2) (n-3) f (xi - 1) (xi - 1) 

(Xl8) 

Using Equations (Xll) - (Xl5) this becomes: 
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n-6 en 2 
6 r lo 2 · } s C 10 f ( n) l- S ) ·· 3 (n-2 (n~3) 

20n-
6 c~ c3 ] 

+ ss - c32 s4 (n-2)(n-3) (Xl9) 

or: 

1 
E: = ----

6 c
1

cr f (n) 

n-6 n 
0 c 

[~~~<n_-_2~)~(n_:_3~)_8_1 __ -_c_3_
8

_2 __ ~--~---- J 
lon-6 c~ )2 on-6 c~ c3 2 
\(n-2)(n-3) S3- 2 -(n---2-)-(n---3-) 85 + C3 84 

(X20) 

which determines E: directly. 

When O' and s are both parameters of interest, Equations (Xl6) 

and (Xl9) may be considered jointly. They are, with some rearrangement: 

+ 0 (X21) 

(X22) 

or: 
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0n-6 en 

(~) (n-2)(n=3) 81 - c3s2 

Letting: 

these become: 

n - (- + 1) 
6 

2 3 2 0n-6 en c J 
- 2 -(-n--2-)-(n ___ 3_)_ s 5 + c3 s 4 

n-6 n 
0 c

2 
(n-2)(n-3) 

Taking the ratio of Equations (X26) and (X27) gives: 

(~)os 1 - c3s2 
os1 - c

3
s2 

(~)o 2s 3 - c~+l)oc3s 5 + c; s4 

o2s3 - 2oc3s5 + c; s4 

Cross-multiplication gives: 

(X23) 

(X24) 

(X25) 

(X27) 

(X28) 
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c 3 I}---tJ- Cs 2 s 5 - s 1 s 4) 

.c.--g----r:rcs 2s3 - s1s5) 

and from Equation (X25): 

or 

n-6 n 
0 c

2 
(n-2)(n-3) 

(S2S5 - SlS4) 

c3 cs2s3 - s1ss) 

(X29) 

(X32) 

(X33) 

(X34) 

which determines 0 . Substituting Equation (X33) into Equation (X20) 

gives: 
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1 I- -
Si~- sls4 

1 
( ~ S S ) ff3 S 1 - Z3 S 2 

£ = 
s2s3- 1 5 

(X35) 
c o6f (n) i 

528s s1sLi. 2 .-z- s2ss- 8154 -2" ,z- J 1 . L <s s - ' ) c3 83 - 2 Cs s - s s )C3 55- c3 s4 
2 3 s1ss 2 3 1 5 

s2ss- slsLl 
( ') s - s 

1 s 2s
3

- s
1

s
5 

1 2 
s = 6 s2ss- sls4 s2ss- sls4 . c

1
c

3
cr f (n) ( ) s - 2 (s S - S S )S5 - s 

s2s3- s1ss 3 2 3 1 5 

which determines s . 

* Summarizing : 

One Parameter Fit (lPF)-- a and s fixed 

n n-6 n 
2n-5 · n-2 1 £n(6) [ a c2 

(,\1,n C2cr - (n-2) (n-3)) (xi - l) }-6 n 2 (n-2) (n-3) 
(--1) 
6 

- c3 (xi -l)]} 
which f i xes n . 

Two Parameter Fit (2PF)-- s fixed 

* 

4 
(X36) 

(x~-2 - 1) 
l. 

= 0 (X 7) 

c
1

, c
2 

and c
3 

are given by Equations (136), s1 , s2 , s
3

, s
4 

and s
5 

are 

given by Equations (Xll) - (Xl5), and f(n) is given by Equation (71). 
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(J = 

1 
2n-6 

(Xl7) 

which iteratively fixes a for given values of n. Equation (Xl7), 

along with Equation (X7) fix a and n . 

Two Parameter Fit (2PF)-- a fixed 

E: = 

which fixes s . This value and Equation (X7) fix n . 

Three Parameter Fit (3PF)--no parameters fixed 

l /zss- s1s4) sl - s2 
1 . s2s3- s1ss 

E: = 6 Cs2ss- s1s4)2 s - s2ss- sls4 c1 c3
a f (n) 2 <s s - S S )SS - 54 s 2s

3
- s1s

5 
3 

2 3 1 5 

] 

l 
J 

which fix a and s . These value.s and Equation (X7) fix n . 

(X20) 

(X34) 

(X36) 
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App endix Y 

Demonstration of Additional Root of Equation (135) 

Equation (135) is: 

n 

(_g_) n-6 s 
~n 2 p N n/3 2 6 [ 

n 
(- - 1) 
6 

v ( o ) (xn- _ l) J 
(n-2)(n-3) M 

s 
06 2 p N 2 4 

- 12 . ( Mo ) (x - 1) 

Expansion gives (noting Equation (71)): 

s 
n 2 p N n/3 2 . 2 = [ !:!__ (NTIS) f (n) 0 ( o ) J (xn- _ l) 

µ 
2

s M (n-2)(n-3) M 

s . 
. [ 4 N'Tic- ~6 2 p N 2 4 

- (-c-) f (n) v ( 
0 

) ] (x - 1) 
2
s M 12 M 

(135) 

(Yl) 

Clearly, if the second term is ever greater than the first, for some 

value of x (sufficiently small but> 1), µ2 < 0 and there will be 

two roots to Equation (135); the other root occurs at x = 1 . This 

is seen in Figure 28. The additional root occurs at x = XR . 

An evaluation of the relative magnitude of the two terms in 

Equation (135) can be made by considering their ratio. This may be 

written: 

6 2sp N 
~ di{-)- -f-fnT Q_ ( o ) 2 (x 4_ 1 ) 

--2s- 12 M 
R = 

s 
4 . n 2 p N n/ 3 
~ ~)--ftrr) 0 ( o ) (xn-2 _ l) 
~ 1·J. (n-2) (n-3) M 

(Y2) 



or: 

R 

R 

Letting 
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s 6-

[ 
2 P N 1/3] 4 

(n-2)(n-3) 0 ( M
0

) (x - l) 
2 s n 

[ 
2 p N 1/ 3 l ( n-2 ~ 1) 

(n-2)(n-3) 
12 

0( 0 ) J x 
M 

1 

s n-2 

[ 
2 p 

0 
N 1I 3] n-6 ( - 1] 

0 ( M ) x4 - 1 

s 
2 P N 1/3 

0 
0( M . ) 

this may be written: 

Clearly when R > 1 the second root at XR occurs. 

(Y3) 

(Y4) 

(YS) 

(Y6) 

Although the second factor in the denominator of Equation (Y6) 

increases with x (for any n > 6) and will eventually assure that 

R < 1 , it is necessary to determine if R > 1 for any value of x 

Therefore, consider the value of x giving the smallest value of the 

factor and thus the largest value of R . Let: 

f (x) 
n-2 

x - 1 

x
4 - 1 

(Y7) 

Since 1 ~ x ~ co 
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n-2 1 0 x -
lim f (x) lim => 

4 0 
x + 1 x + 1 x - 1 

Using L'Hospital's rule: 

(n-2)x n-3 
(n-2) lim f (x) lim = 

4x
3 4 

x + 1 x + 1 

Also: 

n-2 
1 x - 00 lim f (x) = lim 4 x + 00 x + 00 x - 1 

If f (x) increases monotonically with an increase in x 

From Equation (Y7): 

df (x) 
dx 

> 0 

df (x) 
. dx 

4 n-3 n-2 3 (x - l)(n~2) x - (x - 1) 4x 

(x4 - 1)2 

Equation (Yll) is satisfied if: 

(x4 - l)(n-2)xn-3 > n-2 4 (x - 1)4x 

Multiplying both sides by x and rearranging gives: 

1 x
4 - 1 

4 4 
x 

> _l_ xn-2 - 1 
n-2 n-2 

x 

Since n > 6 , n-2 > 4 and Equation (Yl4) will be satisfied if: 

(Y8) 

(Y9) 

(YlO) . 

(Yll) 

(Yl2) 

(Yl3) 

(Yl4) 
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< 0 
dn 

This becomes: 

n-2 n,,-Z n-2 n.---2"' IJ.···Z"" 
(n-2)x x--- £n x - (x - 1) [ (n-2).;x< £n x + x · ] < 

0 
(Yl6 ) 

I 'l_J. _ _2.(-n-2)-

or: 

or: 

-\·.n- ·c-; x 

e 
n-2 

x 
, 
..L. 

> 

> n-2 
x 

< 0 

< 0 

Expanding the left-hand side in a Taylor series(127) gives: 

...J:' + (xn-Z - >l) + Rem n-2 > x 

n-2 n-2 
x + Rem > x 

(Yl7) 

(Yl8) 

(Yl9) 

(Y20) 

(Y21) 

(Y22) 

which satisfies the condition. Therefore Equation (YlS) is satisfied 

and thus Equations (Yl4) and (Yll) are satisfied. Clearly f (x) 

increases monotonically with x ; the minimum value is given by 

Equation (Y9) (where x ~ 1): 

[ f (x)] . 
min 

n-2 
4 

Using Equation (Y23) in Equation (Y6) gives: 

(Y23) 
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R = [_(n - 2} (n-3) 
12 (Y24) 

(Y25) 

The numerator of Equation (Y25) increases monotonically with n for 

all n > 6 • The smallest value is given by: 

lim 
n ~ 6 

(n-3) 
3 

= 1 (Y26) 

The denominator of Equation (Y25) increases (decreases) monotonically 

with n for all n > 6 if c > 1 ( cS < 1) . The smallest (largest) 

val ue is given by: 

lim on-6 1 (Y27) 
. n ~ 6 

independent of o . 

Therefore from Equations (Y26) and (Y27) the starting value 

for R in Equation (Y25) is unity and when c ..:s_ 1 the numerator in-

creases with n while the denominator decreases or remains constant. 

CJearly, R > 1 for all n > 6 in this instance and the second root 

exists. 

When cS > 1 the starting value of R is still unity but 

both numerator and denominator increase with n . The relative magni-

tude of each is determined directly from E·quation (Y25) assuming cS is 

known. 

Initially the greater of the numerator or denominator will be 

determined by their rates of change with n at n = 6 • These are 
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determined from: 

d[numerator) 
d[n-3] 

1 3 
dn dn 3 

(Y28) 

d(denominator] d[on-6] on-6 .Q,n cS 
dn dn 

(Y29) 

and: 

[ d [numerator)] 1 
dn 

6 3 n= 
(Y30) 

[ d [denominator J l 
dn Jn=6 

= .Q,n o (Y31) 

The numerator will therefore exceed the denominator(in the neighborhood 

of n = 6) when: 

,Q,n o < 

< 

< 

1 
3 

e 
1/3 

1.40 

(Y32) 

(Y33) 

(Y34) 

This condition is satisfied for all the liquids considered in this 

* study and R > 1 initially. 

In the 11.mit of large n the behavior. of Equation (Y25) may 

be determined from: 

lim R = lim [n-3) /[0n-6] 

3 / · 
=> 

00 
(Y35) 

n + oo n + oo 

* See Table Yl. For A-II and H
2 

cS < 1 and the second root must 

exist. 
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assuming o > 1 . Using L'Hospital's rule: 

lim R = (Y36) 
n -r oo 

or: 

lim R = 0 (Y37) 
n ..,.. oo 

Clearly, in all cases R < 1 eventually. 

The value of n (denoted n
1

) at which R crosses from < 1 

to > 1 can be fol.llld from Equation (Y25) by setting R = 1 . This 

gives: 

1 (Y38) 

Since the numerator is larger initially, it will stay larger longer 

(i.e., for higher values of n) for smaller values of . o(> 1). That 

is, the denominator will increase least rapidly with n for the 

smallest value of o(>l) . and will therefore catch up to the numerator 

at the highest values of n • Conversely the largest value of o 

will cause the denominator to increase most rapidly with n and will 

equal the denominator at the lowest value of n Values of o for 

all the liquids considered in this study are shown in Table Yl. The 

corresponding values of n
1 

from a solution of (a rearrangement of) 

Equation (Y38) are also shown. Clearly, R > 1 (i.e., there is a 

second root) for: 

6 < n < (Y39) 
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The resultant values of n determined for all the liquids are 

shown in Table 14. Since in all but three instances the C results 

~~ 

for c6H
5

CH
3 

and the C and L results for Hg , n < ni , Equation (Y39) is 

satisfied and the second root at ~ must occur. 

The demonstration of the additional root of Equation (135) was 

carried out assuming n > 6 which was the case for all the liquids 

considered in Table 14. A similar analysis for n = 6, 3 < n < 6 , 

n = 3 , 2 < n < 3 n = 2 and 0 .:S. n < 2 was performed and it was 

shown that for n = 6 and 3 < n < 6 R > 1 for all n if o < e1/ 3 

(see Equation (Y33)) and therefore that the second root must exist. 

Since Equation (135) has a singularity at n = 3 the existence of a 

second root in this instance is academic. For 2 < n < 3 , n · a 2 and 

0 ~ n < 2 it was shown that the second root cannot exist. 

Note 1: Additional Roots of Equations (108) and (122) 

Equation (108) is: 

(108) 

To determine if the first term exceeds the second, consider the func-

tion: 

f (m) (Y40) 

If f (m) is monotonically increasing with an increase in m , then: 

df (m) 
dm 

> 0 (Y41) 

*Indeed in these cases the computed value of ~= 1.000 (see Table 14). 



For Equation (40): 

df (m) 
elm 
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mxm £n x - (xm- 1) 
2 

m 

and Equation (Y41) will be satisfied if: 

m 
.Q.n xm > x - 1 

m 
x 

From Equation (Il8) it is clear that: 

m n m ( m ) X Nil X -x - 1 
2 

m 

m 
.Q.n xm = x - 1 + Remainder 

m 
x 

(Y42) 

(Y43) 

(Y44) 

(Y45) 

and therefore that Equation (Y44) is valid for all x > 1 . Clearly, 

f(m) (Equation (J40)) increases (decreases) with an increase (decrease) 

of m • 

When . n > 6 , n - 2 > 4 and : 

for all x > 1 . 

xn-2 - 1 

n-2 > 
4 

x - 1 
4 

Th f ,,2 > 0 ere ore I"" 

(Y46) 

and no second root exists. 

When 2 < n < 6 , Equation (108) should more properly be writ-

ten: 

2 
µ U2(_2_) 

o 6 -n 

n-2 J x - 1 
n-2 (Y47) 

Since in this case 4 > n - 2 , it is clear from Equations (Y40) - (Y45) 

that: 

4 
x - 1 

4 
> 

xn-2 - 1 
n-2 

(Y48) 
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for all x > 1 . Therefore µ
2 > 0 and no second root exists. 

When n = 2 Equation (108) becomes: 

2 µ 

or: 

µ2 

Since: 

u2 2 - n-2 1 l x -lim (-) 
0 n + 2 n-6 n-2 

- 4 n-2 
uz (.!) l x - 1 _ lim x 

0 2 4 n + 2 n -2 

lim 
n + 2 

n-2 - 1 0 x =9 
n- 2 0 

L'Hospital's rule may be used to give: 

4 x -
4 

i] 

lim 
n + 2 

n-2 x - . 1 lim 
n + 2 

n-2 
x .Q,n x ---'-- = 

n -2 1 

and Equation (YSO) becomes: 

4 
µ 2 = l u2 [ x - 1 - ,Q,n x] 
. 2 0 4 

which may be written: . 

I h . µ2 >' 0 n t is case if: 

4 
x - 1 > 

or: 
4 

ex - 1 > 4 x 

1 J 

= R,n x 

Expanding the left-hand side in a Taylor series(127) gives: 

- (Y49) 

(YSO) 

(Y51) 

(Y52) 

(Y53) 

(Y54) 

(Y55) 

(Y56) 
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4 ....-Y+ (x - ,..1 ) + Rem. 

4 
x + Rem > x 

> 

4 

4 
x 

Since Equation (Y55) is satis f ied, µ
2 

> 0 for all 

x > 1 and no second root exists. 

When 0 ~ n < 2 ) Equation (108) should be written: 

1 

2 u2 (-2-) [ x
4
- 1 

- 1- x2-n] 
µ = 

0 6-n 4 2- n 

or: 

2 = u2 c-2-) [ x 
4 

- 1 
µ o 6-n 4 

The condition for which µ
2 

> 0 is: 

4 
x -

4 
1 > 1 

(2-n) l, x2-n - 1) 
2-n x 

(Y57) 

(Y58) 

(Y59) 

(Y60) 

(Y61) 

Since x > 1 , x 2-n > 1 (since 2 - n > O) and Equation (Y61) is satisfied 

if: 

4 
x - 1 

4 
> 

2-n 
1 x 

2-n 

Since 4 > 2-n this is clearly valid from Equations (Y40) - (Y45). 

Therefore µ
2 > 0 . and no second root exists. 

(Y62) 

Therefore, for all x > 1, for any 2 
n .?.. 0 (except n = 6) , µ > 0 

and Equation (108) has no additional roots. 

Equation (122) is: 

2 = l u2 
µ 2 0 

4 1 4 [x in x - 4Cx - l)] (122) 



Cl 1 µ 2 > 0 ear y, 

or: 

if: 

x
4 

.Q,n x > 

.Q,n x
4 > 
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1 4 
- (x - 1) 
4 

x4 - 1 
4 

x 

(Y63) 

(Y64) 

Since this is generally valid (Equat ion (118)), µ2 > 0 for all x > 1 

and Equation (122) has no second root. 
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Appendix Z 

Derivation of Equation (147) 

Equation (95) or its equivalent, Equation (135), may be written 

in functional form as in Equat ion (96): 

2 n-2 4 
µ = a(x - 1) - S(x - 1) (96) 

where a and S are given by Equations (97) and (98). One root of 

Equation (96) occurs at x = 1, another at x = ~ . In the latter 

2 case the above becomes (µ = 0): 

n-2 4 O = a(XR - 1) - S(XR_ - 1) (Zl) 

Rearranging gives: 

~-2 
- a - sx~ + s 0 (22) 

xn-2 - Ji x4 + ell - 1) = 0 
R a R a (Z3) 

which is a transcendental equation in ~(if n . is non-integer), 

which must be solved by an iterative technique. For the Newton­

Raphson method, the recursion relation is given by(l66): 

~i+l 

where f(~) is found from Equation (23): 
i 

f(~.) X__ n-2 - Ji ~ + ell - 1) 
-~. a -~. a 

l. l. l. 

and: 

(24) 

(ZS) 



From Equation (ZS): 

f' (X ) = R. 
J. 
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Substituting Equations (ZS) and (27) into Equation (24) gives: 

(n-2)Xn-3 - 4 .§_ x3 
R. a R. 

J. J. 

which is Equation (147). 

Note 1: ~ when n = 6 

(26) 

(27) 

(147) 

When n = 6, Equation (95) becomes Equation (114). This may be 

written as in Equation (115): 

µ
2 a'x4 2n x + S'Cx4- 1) (115) 

where a' and S' are given by Equations (116) and (117). Again, one 

root of Equation (115) occurs at x = 1, another at x = ~ . In the 

latter case the above becomes (µ
2 = O): 

0 = a'x; 2n ~ + S'(x; - 1) (Z8) 

Rearrangement g~ves: 
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~ in ~ + ~: (~ - 1) 0 (29) . 

which is a transcendental equation in ~ . Using the Newton-Raphson 

method (Equation (24)): 

4 6' 4 
f (~ ) = XR_ in xR. +Ci' CJCR. - 1) 

i i l l 

(210) 

and: 

f ' (~ . ) = x~. • -
1
- + 4xi. tn xR. + 4 ~: ~. 

l l ~. ]. l ]. 

(Zll) 

l or: 

3 S' 
f ' (X ) = XR. ( 1 + 4 tn XR . + (t') 

Ri i i 

(212) 

Substituting Equations (210) and (Zl2) into Equation (Z4) gives: 

4 s' 4 X tn XR. + - (X - 1) 
R. a' R. 

~i+l = 

l l l 
(Z13) ~. - t x + L) 

i xi.Cl+ 4 n R~ a' 
l ]. 

which is the recursion relation for ~ when n = 6 . From Equations 

(116) and (117): 

6' 
at= 

s 
2 PON 1/3 7 

tn cr( M ) 12 (214) 
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Appendix AA 

Removal of Singularities 

Equation (149) is: 

2 2 2 2 n-2 1 U = U ( ) (_E_) [x -
o n-6 x-1 n- 2 

f (x) = 
xn-2 - 1 

n-2 

4 x - 1 
4 

4 
x - 1 ] 

4 
(149) 

(AAl) 

the Taylor series expansion (with remainder) around x = 1 is given 

by <12 7): 

2 
f (x) = f (1) + (~~l) f' (1) + (x;~) 

where: 

(x-l)m m 
f 

11 
( 1) + · · · + m ~ f ( 1) + Rm+ 1 

.(AA2) 

fm+l[l + e(x - 1) J (x-l)m+l, 
Rm+l = (m+ 1) ! o < e < 1 (AA3) 

From Equation (AAl): 

n-2 
1 

4 
1 

f (x) x - x -= n-2 4 
f (1) 0 (AA4) 

f' (x) n-3 3 = x - x. f' (1) 0 (AAS) 

f"(x) = n-4 2 (n-3)x - 3x f" (1) = (n-3) - 3 n-6 (AA6) 

n-5 
f"' (x) = (n-3) (n-:-4)x - 6x 2 £"' (1) = (n-3) (n-4) - 6 = n - 7x + 6 

= (n-6)(n-l) (AA7) 
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fiv(x) = (n-3)(n-4)(n-5)xn-6- 6 iv 
f (1) = (n-3) (n-4) (n-5) - 6 

= (n-6) (n 2- 6n + 11) (M8) 

fv(x) = (n-3)(n-4)(n-5)(n-6)xn-7 v 
, f (1) = (n-3) (n-4) (n-5) (n-6) (M9) 

vi n-8 vi 
f (x) = (n-3) (n-4) (n-5) (n-6) (n-7)x , f (1) = (n-3) (n-4) (n-5) (n-6) (n-7) 

n n-m-2 f (x) = (n-3) (n-4) · • • (n-m-1) x 
\.. """' ../ 

·m-1 tenns 

m+l f (x)= (n-3)(n-4)···(n-m-l)(n-m-2) 

m terms 

Substituting Equations (AA.4) - (AAll) 

, fm(l) = (n-3) (n-4) · · • (n-m-1) 

n-m-3 x 

\.. '-""" ../ 

m-1 terms 

into Equation (M2) gives: 

2 (n-6) 3 
~n-62 (n-1) 

f (x) = 0 + 0 + (x-1) + (x-1) 
1 2 1 2 3 

4 (n-62 2 5 (n-6) (n-52 ~n-42 + (x-12 (n - 6n + 11) + (x-1) 
1 2 12 1 2 3 4 

6 (n-4) (n-3) (n-72 + (x-1) (n-.§l (n-5) 
1 2 3 4 5 6 

7 (n-62 ~n-5) ~ n-Li.) (n-32 (n-72 (n-82 + (x-1) 
1 . 2 3 4 5 6 7 

8 (n-6) ~n-5) ~n-42 (n-32 ~n-n (n-8) (n-9) + (x-12 
1 2 3 4 5 6 7 8 

m (n-6) (n-5) ~n-4) (n-3) (n-7) {n-82 (n-m-1) + ... + (x-1) 
1 2 3 4 5 6 7 m 

which may be written: 

(MlO) 

(AAll) 

(AA12) 

(n-3) 
5 

+ Rm+l 

(AA13) 
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(x) 	_(n6 ) 2 [ 1+  ( 	
1
, (n-1) j_ (X1 )2 (n2- 6n + 11) 
 3 	 12 

(x_i) 3 (n- 5)  (n-4) (n- 3)  + (x_i  \ 4 (n,-5 ) ( T1-4 ) (n- 3) (n- 7)  
3 	4 	 1 	3 	4 	5 	6 

(x_i) 5 	,(n-4 )  
3 	4 

+ (x-1)
6 (n-5) (n-4) 

3 	4 

(n- 3) 
5 

5 
(n-3)  	 

(n-7 )  
6 

6 

(n-8 )  
7 

7 8 

(x-1) m -2 (n-5)  .s12.thi 	_LILL (n-8) (n-9I 	(n -m -1) 
5 	6 

2 	1  1 
2 

2 

7 	8 

2 
(
n -6n + 11 \ 

	

12 	1  

in 

(AA14) 
(n-6) (x-1) 

(n-3
1 ) + (x-1) 

( 
1 	

1)  
▪ 3 	4 	5 	 6 	7 

•(n-67 )(1138„n-8 9 ) (x-1) 3  + 	
+ (n--67)(n-;8)(n-89)..Q(n-:-1)(x-1)m-5) 

(AA15) , 2 \ 	1  
R I 

2 m+-L n-6 (x-1) 

The remainder term can be written, noting Equations (AA3) and (AAl2): 

m terms 

2 \ 	1 	Spi-3)(n-4)...(n-m-1)(n-m-2)_(  1 + (x-1) )11-111-3 (x1)m+1 
Rem ' = 1/4 n-6 1  (x-1) 2 	(m+1) ! 

(LA16) 

where 0 < 0 < 1 . This can be written: 

3 	4 

R
m+1 

or: 

1 (x) = (-n-
2
6 ) (x-1) 2 [ 1 + (x-1) 
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R _ [ (n-3) (n-4) (n-5) _(-n-6}] [ (n-7) (n-8) 
em- 1 Z 3 4 5 6 

(n-2-(m-l) (n-~-m)J 
m-1 

x [ l + G(x-1) ]n-4-(m-l) 
(x-l)m-1 -2-

( m+ 1) -n-U- (AA.17) 

or: 

[ 
(n-2) - (m-l)J[ (n-2) - mJ [l+ G(x-1) ]n-4 

[ x-1 Jm-l 
(m-1) m 2(m+l) l+ G(x-1) (Ml8) 

If n > 2 , n-2 > 0 and letting 

k = n-2 (AA.19) 

Equation (Ml8) may be written: 

Rem = [<k-1) (k-2) (k-3)] [<k-5) (k-6)... k-m-1 k-m J [ [l+ G(x-l)]k-
2
] 

1 2 3 5 6 ( m-1 ) <--;--) 2 (m+ 1) 

x [ 1 JID-l 
_L + eJ 
x-1 

(M20) 

When m > k the coefficient terms will become negative for all further 

values of m ; Rem will alternate sign for each additional term. For 

any given m the sign will be determined by the number of terms past 

the one where m > k . Equation (AA.20) may be written: 

Rem=± [<l-k)(2-k)(3-k)J [c5-k)(6-k)···(m-l-k)(m-k)J[ [l+G(x-l)]k-
2

] 
1 2 3 5 6 m-1 m 2(m+l) 

x [ 1 ] m-1 
_1_ + e 
x-1 

(AA.21) 
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For the series (Equation (AA15)) to converge: 

lim Rem 
m -+ oo 

0 (AA22) 

This will be satisfied if at least one of the (four) factors -+ 0 as 

m -+ 00 and none of the rest increase without limit. 

For a given value of k(> O) the first factor will be constant. 

The second factor will also approach a constant since: 

lim lim 
m -+ oo m -+ oo 

1 
( = 1 (AA23) 

Since, for a given value of x and k , the third factor has a constant 

nUi~erator, it -+ 0 as m-+ 00 • The fourth factor will not increase 

without limit (in fact it will-+ O) if: 

1 
1 + e > 1 

x -

This may be written: 

1 > 1 - e 
x - 1 

which is the condition for convergence. If 1 > 1 
x - 1 

(AA24) 

(AA25) 

then, clearly, 

1 
x - 1 

> i - e and Equation (AA.25) may (conservatively) be written 

(G = O): 

1 > 1 
x - 1 

(AA.26) 

or: 

1 > x - 1 (AA27) 

x < 2 (AA.28) 
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Since, by definition: 

x > 1 (AA29) 

the range of convergence of Equation (AA15) is: 

1 ~ x < 2 (AA30) 

Noting the conservative value of e (i.e., e O), Equation (AA21) 

becomes: 

[ m-1 
Rem = + f (1-k) (2-k) (3-k)J [<5-k) (6-k) ... (m-1-k) (m-k)J x-1] 

L 1 2 3 5 6 m-1 m 2(m+l) (AA31) 

To determine the value of m that gives an arbitrarily small value of 

Rem, consider the (reasonable) values of k and x that will maximize 

Rem. Letting n = 15.5 (k = 13.5) 
max ' max 

and x = 1. 9 5 (x -1 = max max 

0.95), Equation (AA31) becomes (ignoring the .negative signs in the first 

two factors): 

m 13 5 (o. 95 )m-l 
( - . ) ] 

m 2(m+l) 

For various values of m 

m ±Rem 

12 0.0371 
13 0.00126 
14 0.00004 
15 0.000002 
16 0.0000003 

(AA32) 

To get accuracy to 5 decimal places (in f(x); see Equation (AAl)), 

choose m = 15. Therefore Equation (AA15), neglecting the remainder 
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term becomes: 

2 
n-6 2 n-1 2 (n - 6n + 11) f (x) (-

2
-) (x-1) [ 1 + (x-1) (-

3
-) + (x-1) 12 

+ (n-3) (n-4) (n-5) (x-l) 3 {i + (n- 7) (x-l) + (n-7) (n-8) (x-l) 2 + 
3 4 5 6 6 7 

+ (n-7)(n-8)···(n-16)(x-l)l0} 1 ~ x < 2 (AA33) 
6 7 15 ) 

which by repeated factoring may be written: 

n-6 2 [ n-1 2 n
2

- 6n+ll) f (x) = (-
2
-) (x-1) 1 + (x-1) (-

3
-) + (x-1) ( 12 

+ (n-3)(n-4)(n-5)(x-l)3 
3 4 5 

{ 
n-7 · n-8 n-16 } ] 

x l+ (-Xx-1) (l+ (-) (x-1) · · · (l+ (--) (x-1)))))))))) · 
6 7 15 

1 .:5.. x < 2 (AA34) 

Substitution into Equation (149), noting Equation (AAl) gives: 

x r 1 + (n-7) (x-1) (1 + (n-3) (x-1) 
\. 6 7 

(1 + (n~;6 ) (x-1))))))))))} J 

1 < x < 2 (AA35) 

It should be noted that both singularities at x = 1 (see Equation (149)) 
.... 

have been removed (which was desired) and the computation of U can be 

made using a (convergent) series expansion. Defining: 

ic 

. u2 = u2 
f (x,n) 

0 

As has the one at n = 6 . 

1 ~ x < 2 (151) 



-481-

f (x,n) can be written, using Equation (AA35),as: 

f (x,n) x2[1 + (n-
3

1) (x-l) + (n 
2

- 6n + 11) (x-l) 2 + (n-3) (n-4) (n-S)(x-1) 3 
12 3 4 5 

x { 1 + (n~ 7) (x-1) (1 + (n;S) (x-1) • • • (1 + (n~;6) (x-1))))))))) )} J (152) 

which is Equation (152). For x 2: 2 , Equation (149) is used. 

As indicated prior to Equation (AA19) the evaluation of Rem 

assumes that n > 2 (k > 0). When 0 ~ n < 2 (-2 ~ k ~ O), Rem can be 

evaluated as follows. From Equation (AA21): 

Rem 

x [[1+8(x-l)k-2]][ · 1 ]m-1 
2(m+l) __ l~ + e 

x-1 

(AA21) 

When k < 0 ·the numerator of each factor will be> k (in the prior 

case when k > 0 , the numerator was always < k) and a larger value of 

m is required for an equal value of Rem for the interval 1 < x < 2 . 

Another approach is to consider the same values of m and Rem and 

restrict the range of x over which the expansion is made. 

As . before, ·the most conservative estimate of Rem in Equation 

(AA21) occurs when e = 0 . This gives: 

Rem 

Assuming Rem ~ ± 0. 000002, m 15 (as before) this may be written: 
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± 0.000002 L 

Consider the extreme values of k for the interval of interest 

(-2 ~ k ~ O). When k = 0 : 

4 
0.000002 2. [(1)(1)(1)][(1)(1)···(1)(1)] (x;~) 

4 (x-1) ~ 32(0.000002) 

or: 

x ~ 1. 50 

When k = -2 

(AA.37) 

(AA.38) 

(AA.39) 

(AA40) 

o. 000002 .?.. [ <~) ~) c~ J [ <?:.) c&) c:2:) c10) cl4) c-12 ) c1-8·) <.i4) cl-5') c.16) clZ.) 
1 :;: .3 g 6 /r z ;:r :itr :J--t J.---2 J.·B :,14 J.-5 

4 6 (x-1) ~ 17 (0.000002) 

or: 

x ..'.S. 1. 36 

x (x-1)4 
..3-2" 

(AA.41) 

(AA.42) 

(AA.43) 

Since Rem is monotonically decreasing with a decrease in k , it is 

clear that the latter case (i.e~, k = -2, n = O) is most conservative. 

That is, five decimal place accuracy can be obtained with Equation 

(AA.33) if the interval is restricted to 1 ~ x ~ 1. 36 . Therefore, 

Equations (151) and (152) apply with equal accuracy when 0 :S_ n :S_ 2 

if 1 ~ x < 1.36 . For x > 1.36, Equation (149) is used. 
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Equation (150) is: 

4 
u2 = u2 l (~)2 [x4 2n x - x - l] 

o 2 x-1 4 
(150) 

Letting: 

f (x) 
4 

x4 2n x - x : 1 (AA44) 

the Taylor series expansion (with remainder) around x = 1 is given by 

Equation (AA2). The remainder term is given by Equation (AA3). From 

Equation (AA44): 

f (x) 

f' (x) 

f" (x) . 

4 
= x4 2n x - x - 1 

4 

2 1 8x + 12x - + 24x 2n x 
x 

20x + 24x 2nx 

= 20 + 24x l+ 24 2n x = 44 + 24 2n x 
x 

fvi(x) = (24)(-l)x~ 2 

fvii(x) = (24)(-l)(-2)x-3 

f (l) = 0 (AA45) 

f' (1) 0 (AA46) 

;, f"(l) = 4 (AA47) 

f"' ( 1) 20 (AA48) 

fiv (1) = 44 (AA49) 

, fv(l) = 24 (AA50) 

fvi(l) -24 (AA51) 

, fvii(l) = (24) (2) (AA52) 

, fm(x) = (24) (~l)m+l(m-5) ! 
(AA53) 

(AA54) 
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)ubstituting Equations (AA.45) - (AA.53) into Equation (AA.2) gives: 

7 m 
+ (x-l) (24)(2) + ··· + (x-l) (24)(-l)m+l (m-5)! + Rm+l (AA.55) 

71 m! 

f(x) = 2(x-1)
2 

[l+ ;cx-1) + ~~(x-1) 2+ 12(x-1)
3 

{ ~i - ~i (x-1) 

+ 2!( l)2 3!( l)3 ···+(-l)m+l (m-5)!(x-l)m-5}+ 1 R ] -7.' x- --8! x- + -
ml 2(x-l)2 m+l 

(AA.56) 

which may be written: 

f(x) = 2(x-1)2 [ 1+2(x-l) + ll(x-1)2+ 12(x-1)3 { 0!5! - 1!5! (x-1) 
. 3 12 5 ! 5 ! 6 

+ 5
? R }l 

24 (x-1) 5 m+l .. 
(AA.57) 

The remainder term can be written, noting Equation (AA.3) and (AA54): 

5! , m+2 [l + e(x-l)]-(m-3) m+l 
Rem = . . 5 ,(2--4) (-1) · (m-4) ! (m+l) 1 (x-1) 

.24(x-l) (AA5 8) 

where 0 < 9 < 1 . This can be written: 

rn-4 rn+2 
Rem = 120 (-l) rn+2 (rn-4) ! (x-1) = [ 120 ( -1) ][ (rn-4) ! J 

(rn+ 1) ! [ 1 + e (x-1)] m-3 (x-1) (rn+ 1) ! 

x [ 1 Jrn-3 
_1_ + e 
x-1 

(AA.59) 
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Noting that (-l)m+2 alternates the sign of Rem and: 

(m+l)! (m+l)(m)(m-l)(m-2)(m-3)(m-4)! (AA60) 

this becomes : 

Rem = 
120 1 1 m- 3 

± [ (x-1) J [ (m+l)(m) (m-l)(m-2) (m-3) J [_l_+ G J (AA6l) 
x-1 

For the series to converge, Equation (AA22) must be satisfied; at 

least one of the factors must -r 0 as m -r 00 while none of the rest 

increase without limit. 

For a given value of x(> 1) the first factor is constant. The 

second factor will clearly ->- 0 as m -r 00 • The third factor will not 

increase without .limit if: 

-
1
- + G > 1 (AA62) 

x-1 

which is the same as Equation (AA24). This leads to (following Equa­

* tions (AA25) - (AA29)) the range of convergence of Equation (AA5 7): 

1 ~ x < 2 (AA63) 

Noting the conservative value of G (i.e., G 0), Equation (AA61) 

becomes: 

* ' The apparent singularity in Equation (AA61) at x = 1 is removed 

when Rem is substituted into Equation (AA57) and multiplied by the 

coefficient of the inner bracketed term, 

12(x-1) 3 

5! 
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Rem = ± [ 120 ][ l]m-4 
(m+l)(m)(m-l)(m-2)(m-3) x- . (M64) 

To determine the value of m that gives an arbitrarily small value of 

Rem, consider x = 1.95 (x - 1 = 0.95). The above becomes: max max 

Rem = ± [ 120 ](O 95)m-4 
(m+l)(m)(m-l)(m-2)(m-3) · (AA65) 

For various values of m 

m ± Rem 

10 0.00167 

12 0.00052 

16 0.000087 

20 0.000022 

24 0.0000067 

25 0.0000052 

26 0.0000040 

To get 5 decimal place accuracy choose m = 26. Therefore, Equation 

(AA57), neglecting the remainder term, becomes: 

1!5 ! ( 1) + 2 ! 5 ! ( 1) 2 3 ! 5 ! ( 1) 3 - -- x- -- x- - -- x-6 ! 7~ 8! 

(M66) 

Substitution into Equation (150), noting Equation (AA44) gives: 
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u2 
= u2 x 2 [l + 1cx-l) +Q(x-1) 2 + l:_(x-1) 3 {O!S! - 1 ~ 5 ! (x-1) 

0 3 12 10 5 ! 6 ! 

(AA67) 

Both singularities at x = 1 (see Equation (150)) have been removed 

(which was desired) and the computation of U can be made using a 

(convergent) series expansion. Defining: 

u2 = u2 
g (x) 

0 
1 .:5.. x < 2 

g(x) can be written, using Equation (AA66) as: 

1 3 1 4 1 5 1 6 1 7-
- 56(x-l) + 126 (x-l) - 252 (x-l) + 462_(x-l) - 792 (x-l) 

(154) 

1 ' 8 1 9 1 10 1 11 1 12 
+ 1287 (x- l ) - 2002 (x-l) + 3003 (x-l) - 4368 (x-l) + 6188 (x-l) 

1 ' 13 1 14 1 15 1 16 
- 8568 (x-l) + 11628 (x-l) + 15504 (x-l) + 20349 (x-l) 

1 17 1 18 1 19 1 20 
26334 (x-l) + 33649 (x-l) - 42504 (x-l) + 53130 (x-l) 

1 21 }] 
65780(x-l) 

or: 

g(x) = x
2 

[l + 1cx-l) + i~cx-1) 2 + l~(x-1) 3 
{1 + (x-1) (- i+ (x-1) c;l 

1 1 1 1 1 
+ (x-l) (- 56"+ (x-l) (126 + (x-l) (- 252 + (x-l) (462 + (x-l) (- 792 

1. 1 1' 1 1 
+ (x-l) (1287 + (x-l) (- 2002 + (x-l) (3003 '(x-l) (- 4368 + (x-l) (6188 
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1 1 1 1 
+ (x-l) (- 8568 + (x-l) (11628 + (x-l) (- 15504 + (x-l) (20349 

1 1 1 1 
+ (x-l) (- 26334 + (x-l) (33649 + (x-l) (- 42504 + (x-l) (53130 

+ (x-l)(- 65~80)))))))))))))))))))))} J (155) 

which is Equation (155). For x .2:. 2 Equation (150) is used. 
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PROPOSITION 1 

OPTIMIZATION OF CHEMICAL REACTIONS 
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-;'o'o'dc·k 

The initial reactant composition and time of reaction that will 

maximize the yield of a given reaction in a multiple reaction system 

not at equilibrium, can be determined from a generalized rate 

expression using mathematical methods. 

INTRODUCTION 

DeDonder and Van Lerberghe(l), Prigogine and Defay(2
), Pings<3- 7) 

and Lu(B) have considered the problem of finding the initial reactant 

mixture that will maximize the yield (or other desired result) of 

single or multiple reaction systems at equilibrium. Results have 

been obtained for a variety of situations and are usually expressed 

as the classic scilution of stoichiometric ra~ios(l, 2 ) plus other 

terms. This proposition is concerned with essentially the same 

problem for the non-equilibrium (i.e., kinetic) situation where the 

additional parameter, "time of reaction" is to be considered. 

GENERALIZED RATE EXPRESSION 

Consider the set of r chemical reactions: 

mp 
~ v. A. = o 

i=l . l.,p l.,P 
p 1) 2' r (1) 

where A. is the chemical symbol for species i in reaction p, vi p 
l.,P ' 

is the stoichiometric coefficient of component i in reaction p (taken 

as negative for reactants, positive for products and zero for non-

participants) and m is the number of components in the pth reaction. p 

In general, the extent of reaction~ · is defined by(~): 
p 
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P = 1, 2, · • • , r (2) 

where n, is the symbol for the number of moles of component i at 
l. 

time t and the symbol dPni represents the change in the number of 

moles n , of component i in the time dt, due to the pth reaction. 
l. 

Adding the n, for all reactions and integrating there is found from 
l. 

Equation (2): 

0 where n. denotes the total initial moles of component i. 
1. 

(3) 

It is assumed that the reaction rate of each of the r reactions 

is expressible as the difference of two terms (exceptions are 

possible(9)) containing products of concentrations and rate constants. 

In this case, the· most general form of the rate expression may, 

using Equations (2) and (3), be written: · 

r 
0 i: v i,p~p) f 'p d~p 

(n. + 
kf P mp~ 1 r 

v --= P=l dV + TI o + ~ v. ; .-
i,P dt v dt (mp) i=l ni p=l l. ,p p 

ex -1 
v p 

i 

kbP 
mp 

~~ 
r r·p .II + ~ vi ,p~.p p = 1, 2, ... , r (4) 

iCmp) i=l p=l CXp -1 
v 

where kf P and kbP are the forward and backward rate constants 

(both > 0) of the pth reaction, a. P and a~ p are constants of the 
l.' 1, 

pth reaction, V is the system volume and: 
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(mp) 
m 

(mp) mp p 
~ ~ I a = Ci. p and a' = QI. p p i=l l., p i=l l.' 

THERMODYNAMIC RESTRICTIONS ON THE GENERALIZED RATE EXPRESSION 

Any set of chemical reactions will approach equilibrium given 

sufficient time (i.e., as t - oo). At equilibrium, by definition, 

d~p 
-= 0 
dt 

dV =-
dt and the ratio kf P/kbP is related to the equilibrium 

(5) 

constant Kp· These conditions, when substituted into Equation (4), 

lead to lO 

(m ) (mp) 
a P - a 1 mp 

V p p TI 
e i=l 

r a 1 -a 
( o + """ v. t ) i,P i,P n. ~ s 

i. p=l i,p pe 

=¢p f i;; /i,p] ;P=l, 2,···, r (6) 
li=l ie 

where the subscript e refers to equilibrium conditions, f. is the 
· ie 

equilibrium fugacity of component i (a standard state of unit 

fugacity and pure material has been chosen) and ¢p is an unspecified 

function (lO). Equations (6) are r equations for each of the r reactions 

which, because of the thermodynamic nature of equilibrium, must be 

obeyed. These relations serve to restrict the unspecified parameters 

of the system a. and a~ p· As the nature of the ¢p are unknown i,p l., 

the nature of the restrictions on these parameters cannot be 

generalized. However, in particular cases the ¢ can be reasonably . p 

assumed and more definitive relations for the ai,P and a~,p determined. 

Because the ·¢p in Equations (6) are generally unspecified it 

should be noted that "the restrictions on the permissible form of 
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the kinetic equations are rather less stringent than it is often 

(9) 
supposed" • 

MAXIMIZATION PROCEDURE 

The specific objective of this proposition is to determine the 

0 initial composition of reactants n. and time of reaction (and any 
l. 

other necessary conditions) that will maximize a desired result 

with the restraints that the initial quantity of material remains 

constant and the rate expressions are obeyed. In this case the 

m 
restraint relations are k 

i=l 

0 0 
n. = n 

l. 
(where m is the number of unique 

components) and the r (differential) rate equations; Equations · (4). 

Any function: 

0 
g = g(ni' ~p' V (or P), T, t) (7) 

can be the "des ired result 11 to be maximized. Here T is added since 

kf P and kbP are functions of T. V and P are alternates since together 

with T, ~P and n~ one or the other is fixed through the equation of 

state of the system. 

The problem of maximizing g with the restraints indicated is a 

classic problem that can be treated rigorously using Lagrange 

. (11) 
multipliers • There are obtained m + 2r + 4 equations in 

m + 2r + 4 unknowns that can be solved simultaneously for the m 

0 I t J ni s, r ~p s, V (or P), T, t and the (r + 1) multipliers. Subs ti-

tution of these into Equation (7) yields the maximum (or minimum) 

f 
(10) 

0 g • 
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Since this general solution gives r ~p's, V (or P) and T besides 

the primary desired quantities (i.e., them n~'s and t), it is clear 
l. 

that these specific values are the "other necessary conditions" for 

a maximum, referred to earlier. When certain simplifications of the 

system are made, some or all of these conditions may be eliminated. 

We consider the simple case: 

g = ~ (8) 
x 

where ~ is one of the reaction extents in Equation (7). This results x 

in a substantial simplification of the maximization equations when 

the rate equations are considered as defining equations for the ~p 

instead of as restraint relations. This is equivalent to setting r 

Lagrangian multipliers equal to zero and eliminating all derivatives 

with respect to the~ (p # x) (lO). This yields the maximization . p 

equations: 

1, 2,·.-~, m 
x 

a~ 
~= 0 at 

where A is a single Lagrangian multiplier. The initial moles 
0 

restraint relation. and Equations (9) represent m + 3 equations in 

m + 3 unknowns which may be simultaneously solved for them ni's, 

(9) 

V (or P), T, t and A . Substitution of these into the rate equation 
0 

defining ~ gives an implicit relation for the maximum (or minimum) 
x 

of ~ when the ~ (P # x) are eliminated through simultaneous solution 
x p 

of the other rate equations (which gives the ~p (p # x) in terms of ;x). 
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The "other necessary conditions" for a maximum in this case are the 

specific values of V (or P) and T found from the solutions of the 

initial moles restraint relation and Equations (9). 

The following sample solutions illustrate the use of the maxi-

mization procedure for reactions proceeding for a fixed time under 

* idealized conditions. For a single reaction it is shown that the 

"classic solutfon" obtains(l,Z), independent of reaction time. For 

two competitive reactions the solution contains the "classic solution" 

plus other terms that are dependent on reaction time. In both cases 

the solutions are shown to be compatible with the independently 

determined equilibrium solutions. 

*To additionally determine the time of reaction that will maximize 

yield requires use of the last of Equations (9)(lO). 
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S.AMPLE SOLUTIONS 

For the following examples we assume that the system is closed, 

there is no flow, a single phase is present, and the initial moles 

of all products is zero. Further, in each case, the conditions to 

be ·determined are the n~ to give a maximum in ~l' when the process 

involved is carried out with perfect gases under isothermal, 

isochoric conditions, for a fixed time. 

Solution 1 

Consider a single reaction (r = 1) occurring for a fixed time 

(t = constant) when the rate equations obey the "simplified standard 

(10) "}, 
fOrm. 11 

• 

Thermodynamic Restrictions 

For a perfect gas mixture: 

f. = p. = xiP = x.nRT/V = (n./V)RT 
~ l. l. l. . 

(10) 

where p. is the partial pressure of the ith component, x. is the 
l. l. 

mole fraction of the ith component and n is the total number of moles. 

Noting Equation (3), Equations (6) become (for r = 1 and equilibrium 

conditions): ml 
- ~ v 

[ RTVe i=l i m l 1 vi 
IT (n oi + v. ~ 1 ) 
. 1 l. e i= 

(ml) (ml) ml a' -a 
V

a -a~ o t i i 
IT (n

1 
+ v. s

1 
) = </J

1 e i=l l. e 

*Defined as the case when the a. p for all products are zero in the 
. l.' 

forward reaction and the a~ p for all reactants are zero in the 
J..) 

backward reaction; see Equations (4). 

(11) 
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This equality will be satisfied for all possible values of 

(n ~ + v. ~ 
1 

) if: 
l. l. e 

ml 
- ~ V, 

¢1 = [Ve i=l l. (12) 

where s > 0 (g) and if: 

svi' i = 1, 2, (13) 

If the index i is so ordered that the species 1 through h
1 

represent 

reactants and the species (h
1 

+ 1) through m
1 

represent products, 

the choice of the simplified standard form of the rate equations 

imp lies that: 

1, 2' h and a = 0, i = h1 + 1, h1 + 2, 
1 i 

and from Equation (13) that: 

a i = -s vi, · i = 1, 2 , · • • , h1 and a'= sv 
i i' 

Therefore from Equations (Sh (14) and (15): 

(ml) (hl) . (ml) (ml) 
a = -sv a' = s [v 

where: 

(ml) ml (hl) hl 
v = ~ vi, v = ~ 

i=l i=l 

(hl) 
- v ] 

vi 

(14) 

(15) 

(16) 

(17) 
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Form of the Generalized Rate Expression 

Considering a single reaction (r = 1), isoch6ric conditions 

(dV = O), Equations (15) and (16), and the fact that n~ = 0 for 
l. 

products, Equations (4) become: 

The restraint relation is: 

Optimization Equations 

-s·v 
( o+v~) i 
ni i 1 

0 0 
n. = n 

J. 

(18) 

(19) 

Considering that the function to be maximized is ~l' Equation (8) 

applies and g = ~x = ~ 1 . Equations (9) then become (for isothermal, 

isochoric, fixed time conditions, noting Equation (19)): 

a~1 
- + 'A = O, i = 1, 2, 
t:I 0 0 un. 

(20) 

J. 

Solution 

Equations (18) - (20) define the complete solution. Consider the 

reaction: 

(21) 
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where A
3 

is clearly the "desired" product. In this case m
1 

= 3, 

h
1 

= 2 and Equations (18) - (20) become: 

d~l 
v -- = 

3 dt 

a~ 
_l +A. 
a 0 0 

nl 

a~1 . 
=Oand--+A. 

a 0 0 
n2 

= 0 

By taking the difference, in Equations (24) (to eliminate A. ) and 
0 

(22) 

(23) 

(24) 

0 0 implicitly differentiating Equation (22) with respect to n
1 

and n2 , 

there is obtained upon combining these results: 

(25) 

Simultaneous solution with Equation (23) gfves: 

(26) 

which are the desired solutions. It is noteworthy that Equations (25) 

are· independent of time t, extent of reaction ~l' s and the rate 

constants kfl and kbl. The maximum value of ~l may be found by 

integrating Equation (22) and substituting the values of n~ and n~ 

from Equations (26). 
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Check on Solut ion 

Since Equations (25) are independent of time t, they represent 

the solution for all time and thus also for the equilibrium case. 

This is the classic problem considered by DeDonder and Van Lerberghe(l) 

(2) 
and Prigogine and Defay • They showed that, for any number of 

reactants and products the maximum yield is obtained when: 

0 n. = 
l. 

(27) 

Equations (26) are certainly consistent with this result for the 

limited number of reactants and products considered and it is 

expected that Equations (27) would be obtained if Equations (20) were 

applied to Equation (18) and the result solved simultaneously with 

Equation (19). 

Solution 2 

Consider two competitive reactions (r 2) occurring for a fixed 

time (t = constant) when the rate equations obey the "simplified 

standard form" (lO). 

Thermodynamic Restrictions 

Since conditions for both reactions are identical to those in 

Solution 1, the same results (Equations (15) - (17)) are obtained 

for each reaction. That is: 



-}( 

where s
1 

> 0, s 2 > 0. 
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Therefore from these and Equation (5): 

and 

and 

(m2) . (h2) (ml) (hl) 
and Q!l = -slvl 0!2 = -s2V2 

(m ) _ [ (ml) (hl)] (m2) . [ (mz) (hz)] a' 1 - s, vl - v and Q! I = S v2 - v2 1 L 1 2 2 

where: 
hl (m ) ml (hl) 1 

~ ~ Vil vl = Vil' vl :::: 

i=l i=l 

(m2) m2 ~h2) h2 

v2 ~ vi2' V · = ~ v i2 
i=l 

2 
i==l 

(28) 

(29) 

(30) 

and h
1 

and h
2 

and m
1 

and m
2 

are the number of reactants and products 

in reactions 1 and 2 respectively . 

Form of the General Rate Expressions 

Considering two reactions (r = 2), isochoric conditiol).s (dV = O), 

Equations (28) and (29), and the fact that n~ = 0 for products, 
1 

Equations (4) become: 

*A different s (such as defined in Equation (12)) might obtain for 
each reaction. 
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and: 

a~2 
v . --= 
i2 dt 

where h
1 

and h2 have been so ordered that common reactants are 

considered first. The restraint relation becomes: 

h 
0 0 

~ ni = n 
i=l 

where h is either h
1 

or h2 , whichever is the larger. 

Optimization Equations 

(31) 

(32) 

(J3) 

As conditions are again identical to those in Solution 1 (i.e., 

g = ~x = ~ 1 ), Equations (20) again apply. 
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Solu t ion 

Equations (20), (31) - (33) defi ne the complete solution to the 

problem. Consider the competing reactions: 

- = 1) (34) 

(35) 

Since ~l is to be maximized it is clear that compound A3 is the 

"desired" product while A
4 

is "undesirable." 

m
2 

= 4, h
2 

= 2 and h = h
1 

= h
2 

= 2 and Equations (31) - (33) and (20) 

become: 

d~ k -s v -s v 
v 31 _l = fl (no+ v ~ + v ~ ) 1 11 (no+ v ~ + v ~ ) 1 21 

dt -s,fv +v 1-1 1 11 1 12 2 2 21 1 22 2 
v-i .11 21 

k s v 
bl (v ~ ) 1 31 

s
1

v
31

-l 31 1 
v 

(36) 

*To allow consistent (sequential) and general use of the index i in 
Equations (31) and (32), A3 and A4 are considered products of 

reactions 1 and 2 respectively although, in this example, the 
associated coefficients v

32 
= v

41 
= 0. Thus, formally, m

1 
,_=. m2 = 4 

(not 3). 
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and: · 

a~1 
= 0 and - + A. = 0 

".l 0 0 vn
2 

By taking the difference of Equations (39) (to eliminate A. ) and 
0 
0 . 0 

implicitly differentiating Equation (36) with respect to n
1 

and n2 

there is obtained upon combining these results: 

where: 

Simultaneous solution of (40) with (38) gives: 

(37) 

(38) 

(39) 

(40) 

(41) 
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The solution is, as yet, incomplete since Q has not yet been 

evaluated. However, the other rate equation (i.e., Equation (37)) 

may be considered as the defining equation for ~ 2 and therefore used 

to find this quantity. Implicit differentiation of Equation (37) 

with respect to n~ and n~ and finding the difference in the results 

gives: 

-sv -1 -sv -1 
( 0 + v t + v ~ ) 12 ( 0 + v l: + v ~ ) 12 
nl 11~1 12 2 n2 21~1 22 2 

1142 

(43) 

an ordinary differential equation in Q the solution of which gives 

this quantity for substituyion into Equation (42). The constant 

of integration of Equation (43) can be evaluated by noting that when 

t = 0, ~l = ~ 2 = 0 and from Equation (40): 

(44) 

Equation (42) is the desired solution with Q defined by Equations (43) 

and (44). It is noteworthy that the solution again gives the classic 

solution (for the first reaction) plus another term which depends on 

both reactions (i.e., on ~l and ~ 2 (and therefore on the fixed time t), 

s, kfl and kbl' kf2 and kb 2). Further, since the correction terms 
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0 0 t depend on n
1 

and n2 as well as ~l' s 2 and Q (which are functions of 

0 0 n
1 

and n
2 

through Equations (36), (37), and (43) respectively) the 

solutions obtained are clearly implicit. The numerical values of 

0 0 n
1 

and n
2 

must be determined by an iterative process (as must Q in 

Equation (43) since this is an implicit ordinary differential equation 

in Q) in which the maximum in ~l is also found. 

Check on Solution 

The equilibrium solution to this problem has been determined 

independently(S) and may be compared to the present case in the 

following manner. 

As t-oo, . d~1/dt-O, d~2 /dt-O and Equations (36) and (37) 

yield the familiar equilibrium.forms which define ~le and ~ 2 e in 

0 0 terms of n
1 

and n 2 . From the definition of Q it is clear that 

(dQ/dt) = O. Substitution of this into Equation (43) and simul­
e 

taneous solution of the result with the equilibrium forms yields, 

after rearrangement: 

(45) 

which can be substituted into Equation (42) to give the equilibrium 

solutiono 
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By careful comparison of this result with that of Lu(S), for the 

(12) . .,.. 
more general case, it can be shown that they are identical. 

Another check on the general solution (Equation (42)) can be 

made by simply letting ~2 = 0 for all time (i.e., Solution 1). In 

this case Q = 0 and Equation (42) reduces directly to Equation (26). 

The solution is consistent with the less general, previously 

determined, case. 

·k It is noteworthy that, in this case, the general equilibrium solution 
does not yield the classic solution. 
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NOViEN CLATURE 

A. p 
l. ' 

chemical species i in reaction P 

fugacity of component i 

g objective function 

number of reactants in reaction p 

equilibrium constant of reaction p 

backward rate constant of reaction p 

forward rate constant of reaction p 

m number of unique components 

number of components in reaction p 

n total number of moles 

number of moles of component i 

p pressure 

partial ~ressure of component i 

Equation (41) 

R universal gas constant 

r number of chemical reactions 

s constant > 0 for reaction p 

T temperature 

t time 

v volume 

mole fraction of component i 



Greek 

a. p 
l.' 

I 
a. p l.) 

A. 
0 

<l>p 

~i,P 

~p 

Subscripts 

b 

e 

f 

i 

x 

p 
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constant of reaction P 

constant of reaction p 

Equation (5) 

Equation (5) 

Lagrangian multiplier 

unspecified function for reaction P 

stoichiometric coefficient of component i in reaction p 

Equation (17) 

Equation (17) 

Equation (30) 

Equation (30) . 

extent of reaction p 

backward 

equilibrium 

forward 

index for components 

any value of p 

index for reactions 



Superscripts 

0 

Operators 

d 

d 
dt 

0 
a 

n 
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initial state 

differential 

time derivative 

partial derivative 

product 

summation 
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PROPOSITION 2 

DETE&~INATION OF THE MAXIMUM 
TRANSMITTED SHOCK AT THE 

INTERFACE BETWEEN TWO 
CONDENSED MEDIA 
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The maximum transmitted shock at the interface between two condensed 

media is incorrectly given by the "impedance-mismatch." approximation 

but may be estimated from the Hugoniot "reflection" i'uethod~ 

Determination of the Maximum 
Transmitted Shock at the Interface 

between Two Condensed Media 

P. K. SALZ~CAN* 
Acrojet-Gcncral Corporalio1~, Downey, Calif. 

WIIE~ a shock wa\'c is normally incident upon the inter­
face between ~wo meriia, two shock wnves arc formed. 

0111' is trnnsmittcd to the 1<econd medium while the other is 
reflected bark into the orii:?;innl medium. The ratio of the 
transmitted shock prc:<rnrc (P,) to the incident shock pressure 
(P,) is often computed• - 3 from the "impedance-mismatch" 
approximation 

P, 2p,U, 
P°i ::::::: p,U, + p,U, 

(1) 

which is strictly valid only for acoustic waves. In Eq. (1) 
p,U, and p,U, are the shock impcd:rnccs (density times ~hock 
wlocity) of the tran1<mittc<l and incident media, rc1<pcctively. 
From Eq. (1), for p,U, » p, U,, it has been as.-umed that the 
maximum value of P./ P, is two. However, examination of 
the true "impedance-mismatch" relation 

P, + (p,U,/p,U,) 
I'. = i + (p,U,/p,U,) 

(2) 

shmrs that if p,U, » p,U, » p;U;, (P,/P,) may be greater 
than two. Unfortunatd:-· , the maximum value oi (P,/ P,) 
cannot be deduced from Eq. (2). 

l"sin!!' the graphical Hugoniot "reflection" mcthor:!'--s an 
estimate of (P.f P,)rn .. may be made. In this method, the 
incident medium Hu!;oniot i;; plotted on the pres~urc-particle 
\'elocity (P-u) pbne and rcf1ectcd 180° around a wrtical line 
dr:mn throu gh the point of intr r:<cct ion oi the incident pres­
sure (P,) and t.he incicknt medi11m Hugoniot. The tr.'.rns­
mit tcd pressure (P,) is then detcrmincd by the intcr~cction of 
this " refl('ct<.'d" IIugoniot \Yith the Ifui.;oniot of the nccept<>r 
material. Idc:-ill:-·, the maximum rnl11c oi P, for the given 
\':due of P, will O('C'llr when the acceptor mat.crial hns as its 
II11goniot a \'rrli ral line al the orii.;in (i.e.; p, - <»). This is 
, · i ~11:llizcd in Fip:. 1. From :-;ymmctry, the "reflected" 
lfogoniot is :-cm to i!)tcr:<cl't the ah:<ri:;~'l at 2u,. 

In mnny r.'l~cs, the .inl'ident mcdi11m IIugoniot may be 
wrilkn in quadmtic form 2• 6• M; 

P = au2 +bu (3) 

where a and b a rc con~tant,;. Since the "reflccteJ" Hugoniot 
is simply a reflection of Eq. (3), it may nlso be written in 
quadratic form. IIoweYcr, since the "reflected" Hugoniot 
docs not pass through the origin it must be written more 
generally as 

(-! ) 

where c, d, and c arc constants. The boundary conditions 
pertaining to Eqs. (3) and (·!) can be u~cd to rchtc c, d, and 
e to a and b. These conditions may be d educed from Fig. 1 
and arc: 1) when u = 0, Pr.11cmd = P at (u = 211,); 2) 

Recrivcd July 22, l'JG3. 
• &nior Hescnrch Engineer, Ordnnnce Division. 

when u = 1•;, P,.11 •• ,.J = P; and 3) when u = 2u;, P,.11.ucd = 
0. Applying these conditions gives 

e = a.(2u;) 2 + b(2u.;) (5) 

c(u,') + d(u,) + e = a(u,2) + b(u;) (6) 

c(2u,) 2 + d(2u,) + e = 0 (7) 

which arc simultaneous equations in c, d, and e. 
The solutions are 

c = a (8) 

d = -4au, - b (9) 

e = 4au;2 + 2 Im, (IO) 

Substituting these into Eq. (4) and rearranging gives 

P,.11.<:ted = a(2u, - t,) 2 + b(2u; - u) (11) 

From the diagram it is r.lrar that P, mu. is given by P .• 11 .. Ud 

when u = 0. Thus 

P,.,,..... = 4au;2 + 2bu; 

Also, P, is found from Eq. (3) when u = 1•;, and thus 

P; = cm, 2 + bu, 

Forming the ratio of Eqs. (12) and (13) gives 

(12) 

(13) 

P, mu 4rrn,2 + 2bu, 4au, + 2b 
--p~- = au, 2 +~ = au, + b (l4) 

This represents the maximum value of P./ P, for a given 
value of u;. However, it is desired to compute the maximum 
oi P ,/ P, for any value of i.,. Since u, can ha\·e any \'aluc on 
the abscissa, it may be replaced by u. Eq. (14) becomes 

P,/P; = (fou + 2b)/(au + b) (15) 

The maximum value of this function is found by determin­
ing the derirnti\'e with respect to 11 and selling the resulting 
cxpres,.ion equal to zero; therefore, 

d(P_.I_!_~ = -~- = O 
du (au + b)2 

(16) 

from which it may be deduced that as u - ro, (P,/P,) _,. 
maximum (the second dcrivati\'e is negati\'e). Therefore, 

(!:.!) = li:n (~±g) = lim ( 4a + (lj:._i2) 
p, mu ,,_., au + b .. -.. a + (b/u) 

or 

4a 
a 

(17) 

(18) 

It should be noted thn.t this re,;ult depends directly on the 
fact t.h:-.t the IIugoniot of the incident mcdium (in this case 
Plexiid:is) ran be cxpres~ed as n quadratic in 11. This in turn 
depends on the assumption (empirically supported)2· 6· 3 that 
the U-1• Cllr\·c of the medium is linear. Because it is not 
knO\\·n if thi~ rrlation stays linear n.s u becomes very large, 
the rc;;u]t in Eq. (IS) may be con~idcred scmiempirical in 
nature. llowc\'er, if the "true" IIugoniot can be expressed 
in a polynomial of any dcr:;rcc, (P ,/ P,),,,IU can always be found 
in a manner similar to that shown herein. For materials 
with 11. IIugoniot cxprcs..,ible as a cubic equation,• the fore-

Hr.prin ter! fro111 AIAA JOUH:\AL 
Copyright, Hlfi4, by the Ameri1•;in lnHtitute of Acrona11tirs and Ast.ronautics, and rrprinted by permiM:iion of the copyright owner 
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mentioned approach gives (l',/P,)rnu = S. It slioul<l abo be 
pointed out that the result nbo depends on the inherent ac­
curacy of the IIu!!:oniot "r('flrrtion" method it:;elf. 

In or<ler to illustrate some of the foregoin!!: r('marks, (I', / P,) 
was compute<l for :-;hock tran~mis.-; ion from Plexigb~~ to iron 10 

nnd Plexiglas to platinurn•0 usin!!: both the "imped:mce-rnis­
mntrh" approximation [Eq.(1) J and the Hug;oniot "reflection" 
method. The results arc shown in columns 1-5 of Table 1. 
It is seen that Eq. (I) l!;ivcs quite low values in this region and 
that the ratio can, as indiratl'd, be greater th::rn two nt finite 
pre~surrs in real materials. Columns 6 and 7 in Table 1 show 
the \'aluc:; of (P, mu./P;) as computed from Eq. {!-!) compared 
to the ma:-imum \'Ulue from Eq. (1). Clearly, increases in p, 
give increases in (P, rn •• / P1), approaching the limiting value . 
of 4 computed in Eq. (18). 

Hcfcrcnce .. 
1 Cook, M. A. an<l Udy, L. L., "Calibrations of the card-gap 

teat," AIIB J. 31, 52-57 {l!JGI). 
s JafTe, I., Beauregar<l, Il.., an<l Amster, A., "Determination 

of tho shock pressure required to initia.w detonation of an ac-

Tul.lt• I Con1pari,;u11 of n1lut•,; of (l'i/I',) for 1<hock trurn•• 
1nissiu11 front l'lcxiglu~ lo iron untl pl11li1111n1 co111p11tcd hy 
lhc "i111pctl1111cc-111is11111ld1" 11pproxi111utio11 11111! the 

Hui:;oniol "rl'llcclion'' nu-lhod 
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PROPOSITION 3 

THE THEORY OF CRITICAL GEOMETRY 
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The critical dimensions for steady detonation of a long uniform 

charge of any constant cross-se ctional shape (i.e., the "critical 

geometry") may be determined from the critical diameter of the same 

material using geometric reasoning. 

The purpose of this proposition is to develop a geometric 

theory (called the "theory of critical geometry") that will predict 

the dimensions of .a long, uniform non-cylindrical charge that will 

allow sustainment of detonation, as a function of the critical 

diameter of a cylindrical charge of the same material. 

Consider a long uniform acceptor charge of any constant, cross-

* sectional shape~ It is assumed that regardless of shape, there are 

certain charge geometries that will support a unique steady-state 

detonation t6 infinite length. Further, for those geometries capable 

of supporting detonation, there is, at some distance from the point 

of initiation, a point at which the detonation characteristics will 

be independent of the mode of initiation (although this initiation 

must be strong enough to start detonation in the first place). For 

such geometries, the ability to support detonation becomes purely a 

property of the acceptor material without regard to the donor, and 

for a given acceptor material, becomes purely a property of acceptor , 

*The following definitions are used when discussing the acceptor~ 
shape= form of the cross-section (e.g., square, rectangle, circle, 
etc.). geometry= the size or magnitude of a given shape. 
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geometry. Therefore, sustainment of detonation can be analyzed as 

a function of acceptor geometry only. 

The critical diameter of a particular material is known to 

depend on the relative energy gains and loses in the region of the 

detonatl·on react1·on zone(l,Z, 3 , 4 ). Th i d d ti e ga ns epen upon reac on 

zone length, which is a function of both the kinetics of the 

detonation reaction and the velocity of the detonation wave, while 

the losses depend solely on the rarefaction waves moving in from 

the lateral portions of the charge. 

Therefore, in the case of a right-solid cylinder, the two 

factors affecting the distribution of energy gains and losses are: 

(a) detonation reaction zone length (i.e., kinetics and wave .velocity) 

and (b) charge diameter (i.e., rarefaction waves). 

In the general case, the critical dimensions of a given shape 

will also be dependent on the relative energy gains and losses in the 

region of the· reaction zone. Again the gains will depend on the 

reaction zone length, and thus on the kinetics and wave velocity. 

Energy losses will be, dependent solely on the lateral rarefaction 

waves, and thus on charge shape. 

That is, in the general case, the two factors that affect the 

distribution of energy gains and losses are (a) detonation reaction 

zone length, and (b) charge shape. 

Since the kinetics in the reaction zone are dependent only on 

the material properties and wave velocity, they will be the same for 

any shape at the same velocity. Thus energy gains will be affected 

by charge shape only insofar as the detonation velocity is affected. 
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If it is assumed that the detonation velocity is approximately the 

sa.~e for any shape at the critical dimensions of the shape, 

reaction zone length will be the same for every shape of the same 

material, energy gains will be the same, and the only factor 

affecting the energy balance (and thus the critical dimensions) 

will be charge geometry. 

The "theory of critical geometry," when based on an extension 

of the critical diameter concept, may then be formulated on a purely 

geometrical basis, since the particular kinetics and wave velocity 

of the system are already accounted for in the critical diameter 

evaluation. Also, since charge composition, particle size, density, 

and temperature affect the reaction zone length (but not the · rare-

faction waves) the effect of changes in these quantities on critical 

geometry will be accounted for by their effect on critical diameter. 

The theory is developed for a given material (i.e., unconfined, 

fixed composition, density, particle size, etc.) by finding a 

function, based on the parameters that describe the charge geometry, 

that can -be made the critical criterion. 

It is assumed that: (a) there is one critical criterion for 

any given shape, and (b) this same criterion holds for all shapes. 

Therefore, for criticality in any case, the parameters used m~st 

combine in such a way as to give the critical diameter d , for a 
c 

solid cylinder, since criticality for the cylindrical case is 

specified in terms of only one parameter, namely the charge diameter. 

In terms . of energy gains and losses, the important features of 

charge geometry for any shape would be: 



-519-

(a) Reactive volume (proportional to total energy output, 

and thus to energy gains). 

(b) Surface area of reactive volume (proportional to losses 

by rarefaction waves). 

For long, unifonn charges of constant cross-section: 

Reactive volume cc (cross-sectional area) (reaction zone length) 

(1) 

and: 

Surface area ~(cross-sectional perimeter) (reaction zone length) 

(2) 

However, since it has been assumed that the reaction zone length is 

approximately constant for any shape, the pertinent parameters of 

charge shape are clearly cross-sectional area and cross-sectional 

perimetero If these are the important features in determining the 

critical condition for detonation of any shape, they must also be 

applicable t6 cylinders. As noted above, since it is known that 

for cylinders only one shape parameter (i.e., charge diameter) is 

necessary to do this; these features must, in the cylindrical case, 

combine to give charge diameter d. For a cylinder, the cross-

sectional area A is given by: 

2 
A = 7rd /4 (3) 

and the cross-sectional perimeter P by: 

p = 7rd (4) 
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The proper combination must be (4A/P), since: 

(4A/P] = 4 Cr.i I 4) = d 
7fd 

The refore, the critical ~ondition for the cylinder becomes: 

[4A/P] 
c 

d 
c 

(5) 

(6) 

as expected. Because the proper combination of parameters has been 

found in the particular case, Equation (6) may be generalized using 

the first assumption on page 518 to define the critical 

criterion in the general case as: 

[4A/P] = a 
c 

where: 

a = the "critical geometry" 

Based on the second assumption this may be further generalized by 

observing that, if d is the critical geometry for the cylindrical 
c 

(7) 

(8) 

case (Equation (6)), it must be the critical geometry for all shapes. 

Thus, it is clear that: 

(] = d 
c 

and Equation (6) can be assumed applicable to all shapes. 

(9) 

To use Equation (6) for determining the critical values of the 

parameters that describe a given shape, the area and perimeter of 

that shape are written in terms of these parameters, and (4A/P) is 

found. Criticality results when this becomes equal to d . Solving 
c 

the resultant equation for the parameters, gives their critical values 
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in terms of de. This has been done for a variety of non-perforated 

and perforated shapes &1d the results are shown in Table 1. Although 

the perimeter used for the perforated shapes is the sum of the out- . 

side and inside perimeters, it should be noted that the lateral 

expansion waves in the perforated sections may affect one another 

(i.e., interact) in such a way as to delay the rarefaction waves 

and thus reduce the loss of energy. Accordingly, the results for 

perforated shapes shown in Table 1 may be considered conservative 

in that the critical dimensions may be smaller than those indicated. 
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Table 1 

CRITICAL DIMENSIONS FOR VARIOUS SHAPES 
Shape and Characterizing Dimensions Critical Value of Characterizing Dimensions 

Circle 

Square 

Equilateral Triangle 

Ellipse 

0 
or 

..L 
I 
I 
I 

T 
-- -- - -- +- - --- --

where x > 1 

Rectangle 

where x > l 

Isosceles Triangle 

where x > 1 

1 b 

I 
xb 

J_ 
--j 

DI 
t-- xl 4 

T 
Circular Core Cylinder 

.· -@+ where x > 1 
xd 

J_ 

Square Core Cylinder 

where x > 1 

Equilateral Triangle 
Core Cylinder 

where x > 1 

Cross Core Cylinder 

where x > 1 

-t 
:x:l 

J_ 

T 
xl 

J_ 

d - d c c 

l ... d 
c c 

b = Jjld or h ... (3/2)d 
c c c c 

[~12 . 2 I 

be~ [ J x -1 2 
- - 2- sin</' 

x 

b = lim b = d /-ir 
c 00 c c 

x-oo 

1 = ((x+l)/2x)d 
c c 

1 = lim 1 Q d /2 
coo x-oo c . c 

b = Jc2x+1)/(2x-1) 1 d c c 

b = lim b ==d 
coo x-oo c c 

d~J 

d = (l/(x-l))d or t • d /2 
c c c c 

(d /rr) 
c 
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