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ABSTRACT OF iii 

APPLICATIONS OF MODEL THEORY TO 

COMPLEX ANALYSIS 

by 

Keith Duncan Stroyan 

We use a nonstandard model of analysis to study two main topics 

in complex analysis. 

UNIFORM CONTIN'UITY AND RATES OF GROWTH OF MERO-

MORPHIC FUNG TIONS is a unified nonstandard approach to several 

theories; the Julia-Milloux theorem and Julia exceptional functions, 

Yosida's class (A), normal meromorphic functions, and Gavrilov's 

W classes. All of these theories are reduced to the study of uniform 
p 

continuity in an appropriate metric by means of S-continuity in the non-

standard model (which was introduced by A. Robinson). 

The connection with the classical Picard theorem is made 

through a generalization of a result of A. Robinson on S-continuous 

:J!!.holomorphic functions. 

S-continuity offers considerable simplification over the standard 

sequential approach and permits a new characterization of these growth 

requirements. 

BOUNDED ANALYTIC FUNCTIONS AS THE DUAL OF A 

BANACH SPACE is a nonstandard approach to the pre-dual Banach 

00 

space for H (D) which was introduced by Rubel and Shields. 

A new characterization of the pre-dual by means of the non-

standard hull of a space of contour integrals infinitesimally near the 

boundary of an arbitrary region is given. 
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A new characterization of the strict topology is given in terms 

of the infinitesimal relation: "h g k provided II h-k !I is fini te and 

h( z) ~ k( z) for z E (*D) ". 

A new proof of the noncoincidence of the strict and Mackey 

topologies is given in the case of a smooth finitely connected region. 

The idea of the proof is that the infinitesimal relation: "h ~ k provided 

lfh-k!I is finite and h(z) ~ k(z) on nearly all of the boundary", gives 

rise to a compatible topology finer than the strict topology. 
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I. UNIFORM CONTil\!UITY AND RATES OF GROWTH 

OF MEROMORPHIC FUNCTIONS 

1. Introduction: 

The purpose of this section is to show that several theories of 

the rate of growth of meromorphic functions can be treated in a uni-

fied fashion. Introducing appropriate metrics we see that they all 

amount to a study of uniform continuity (or uniform equicontinuity). In 

the case of Julia-Milloux's theorem and Gavrilov's W classes (5. 6) p 

the introduction of the metric is new. 

The connection between these theories and the classical Picard 

theorem is made through Theorem (3. 1) via the mechanism of S-

continuity. (This generalizes a result of Robinson [19 J who introduced 

S-continuity). In standard terms this relates exceptional values and 

non-uniformity, but the use of nonstandard analysis and S-continuity 

results in c_onsiderable simplification because non-uniformity and 

sequences of Milloux circles are reflected in a single S-discontinuity 

at a remote point. In part, this a ls o extends Robinson's treatment of 

the holomorphic Julia-Milloux theorem to the meromorphic case. 

The nonstandard approach can greatly simplify a number of 

proofs of known results, particularily in the extens.ive theory of nor-

mal meromorphic functions (4. 8). We offer a few simpl e examples. 

The original motivation for this work was the study of normal functions, 

unfortunately a search of the literature revealed that most of our 

early applications were done during the 1960's by various authors. 
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Some remarks about our setting are in order . Smooth convex 

metrics are emphasized because then we have a mean value theorem 

with which to measure S-continuity. (In this generality even this 

simple result seems to be new.) A more general discussion (without 

magnification operators) in terms of uniform continuity or S-continuity 

is possible. 

The domains of functions are viewed as Riemann surfaces for 

the sake of simplicity. Even in the case of a planar region we wish to 

emphasize a preferred metric and not be confused with others. This 

is important since different metrics have different infinitesimals and 

infinite galaxies. Moreover, some care is needed to apply Theorem 

(3. 1) at remote points, for example, in the plane metric near the 

boundary of the unit disk the infinitesimals are cut off by the unit 

circle, whereas Theorem (3. 1) applies with respect to the hyperbolic 

metric. We feel therefore that even in the case of studying boundary 

behavior of a function defined on the unit disk it is easier to think in 

terms of a Riemann surface. We hope that this will not cause con-

£ us ion; the primary examples are the punctured plane, the plane, the 

unit disk and hyperbolic surfaces (the punctured disk in specific). 

We shall use a leisurely elementary style in ___ this section. In 

effect the point is that some of the known work is more elementary 

than it might appear because of complicated sequential arguments 

which our approach avoids. 

2. A Mean Value Theorem in Metric Spaces: 

A metric space (X, d) is said to be convex if for each A, B EX, 
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there exists C EX, different from A and B, for which d{A, B) = 

d(A, C) + d{C, B). When a metric space is complete and convex any 

tvvo points can be connected by a segment, that is, an isometric image 

of the interval [O, d(A, B)]. (The segment need not be unique, of 

course.) In what follows (X, d) will be a complete convex metric space. 

We give an adaptation to metric spaces of a proof of W. A. J. 

Luxemburg for a mean value theorem in Euclidean n-space. We begin 

with a lemma following a theorm of P. Levy. 

Let (Y, 6) be an arbitrary metric space. Let A, B EX and let 

[A, B] be a segment betvveen A and B. 

(2. 1) LEMMA: 

If f: (X, d) -> (Y, 6) is continuous, then for each natural number 

n ~ 3 there exist points A , B E {A, B) such that 
n n 

PROOF: 

(1) 

( 2) 

{3) 

d(A, A ) < d( B , A) 
n n 

d(A , B ) = d(A , B) /n 
n n 

6 (f(A), f(B)) 6 (f(An), f(Bn)) 
s 

d(A, B ) 

Let ~: [O, d(A, B)] _. [A, B] be the isomorphism from the 

interval in R onto [A, B] in X. Normalize to 

co(t) = ~(d(A, B) · t) , t E [O, 1 ] 

Define 

g ( t) = !!. ~( <p( t + ~) ) ' £( <p( t) )) 



for fixed but arbitrary n ~ 3. Then by the triangle inequality 

and 

n-1 

.6( £ (A), f ( B) ) ~ 6 a( k) 
o n 

6( f (A) , f ( B) ) 
d(A, B) 

k=O 

n-1 
~ 1 6 g(k / n) 

n k=O [ d(A~ B)) 

Since the terms in the sum are non-negative, either 

(1) for every k, 

or 

(2) for some k
0 

, 

L(f (A), f (B) ) 
d(A, B) 

.6( f (A), f ( B) ) 
---ci(A, B) 

g(k/n) = d{A, B) /n 

g( k
0 

/n) 
< 

d(A, B) /n 

In case (1) pick k
0 

f:. 0 or n-1 or in case (2) when k
0 

f:. 0 or 

n-1 we take An= '10(k0 / n) and Bn = <P(k0+1/n). 

In case (2) when k
0 

= 0 or n-1 we do the following. By con­

tinuity of g(t) we may move t away from the appropriate endpoint 

while still maintaining the strict inequality in the expression (2). In 

1 
this case take An= <P(t) and Bn = cp(t+n). 

This proves the lemma. 

The magnification or metric derivative of a function f: X - Y 

can be described as follows. >'' Let C be a standard point of ··x whose 

monad is non-degenerate (i.e., a non-isolated point). Provided that 

for every pair of.points A and B within an infinitesimal of C, 

.6(f(A), f(C)) /d(A, C) is finite and infinitesimally close to 

4 
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.6(f(B), f(C)) /d(B, C) we say the magnification of f at C is 

where st denotes the standard part homomorphism. In other words, 

as long as the standard part exists and is independent of the particular 

A within an infinitesimal of C, this expression is the magnification. 

We describe the operator M(.6/d) in the standard model by 

applying this definition at each standard point. As an operator M{.6/d) 

can be extended to the nonstandard model, though the above description 

does not apply for internal functions. We leave the limit definition to 

the reader since we shall not have any need of it. 

(2. 2) A Mean Value Theorem: 

Let (X, d) be a complete convex metric space, let (Y, .6) be a 

metric space, and let f: X ~ Y have a magnification everywhere on X. 

Then for every segment [A, BJ in X, there exists C E (A, B) such that 

PROOF: 

·6(f(A),f(B)) s; M(6/d)f(C) .. 
d(A, B) 

f is continuous since d(x, y) ~ 0 implies .6(f(x), f(y)) ~ O. Thus 

we may apply the lemma as followso 

Pick A
3

, B
3 

E (A, B) satisfying the conditions of the lemma, 

next pick A
4

, B 
4 

E (A
3

, B
3

) and proceed by induction. 

Take the nonstandard extension of th_e sequences (An) n EN and 

(Bn) n EN. Let w be an infinite ~:~-natural number and let 



C = std(A w) = std(B w), the standard point C such th~t Cg Aw g Bw. 

(A segment is an isometric image of a real compact interval.) 

Now we conclude by examining the following inequality. 

6(f(A),f(B)) ~ 6(f(Aw),f(Bw)) 

d(A, B) d(Aw, B w) 

6 

d{A , C) [6(f(A ), f(C)) + o] 
w w d ( C , B ) [ 6( f ( C), f ( B } ) + e J w w 

~ --d ..... (A.,...-, B~--) d~{A...,._-, --c-) --
w w w d(Aw, B w)d(C, B w) 

~ M(6/d)f(C) + s 

where o, € and s are infinitesimal. 

We use continuity to see that 6(f(Aw}, f(C)) ~ L{f(Aw}, f(B w}), 

that is, that 6 and €are.infinitesimal. We use property {l) of the 

lemma and convexity to combine d(Aw, C) + d_(C, B w) = d{Aw, B w). 

This completes the proof of the theorem. 

REMARKS: 

A non-convex example where the theorem fails is provided by 

f(x) = x on the interval [O, 1] where the chordal metric of stereographic 

projection is taken in the domain space and the spherical arc length is 

taken in the range. Then M(s/x)f{x) = 1 and s(f(O),f(l) >/x(O, 1) = 

TI I 2 I 2 I ./2 = TI /2 I 4. > 1. 

As the following example shows, a minimal growth condition is 

not possible. f(x} = Ix I on [-1, 1 ] has magnification 1 even at zero 

whereas f{±l) = 1 so nowhere is the mag~ification below the divided 

difference~ 

Applications to meromorphic functions follow. 



(2. 3) Some examples of complete convex metric spaces are: 

1. A Banach space with the metric ! I x-y II. 
2. The unit disk with the hyperbolic metric. 

3. The Riemann sphere with the great circle arc length 

metric (or any manifold with global geodesics). 

4. The complex plane with zero removed and !log~ I 
y 

(principal value -TI< arg(z) ::;.; TT) as a metric. 

The following result is an application of Theorem (2. 2). See 

section 3 for the definition of S-continuity and Robinson [19 ]for more 

details. 

(2. 4) COROLLARY: 
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If f: (X, d) - (Y, 6) is an internal map whose magnification exists 

and is finite at each point of the internal complete convex metric space 

(X, d), then f is uniformily S-continuous on X. 

PROOF: 

The set of bounds, B = [r E ~:~R +: I Mf(x) I < r for every x EX} is 

an internal set since it is . described by an internal statement. Since B 

contains all infinite positive nonstandard reals it must contain a finite 

uniform bound for the magnification of £. Now apply (2. 2). 

While we are on the subject of uniform continuity we give a 

result (which we use in (6. 1) below) that we hope gives the reader who 

is unfamiliar with nonstandard analysis an idea of the meaning of 

infinitesimals around a remot e point. Sequences without limits in X, 

but which tend together, play a role analogous to infinitesimals around 

a remote point. 



(2. 5) THEOREM: 

Let f: (X, d) - (Y, !::.) be a continuous standard function. The 

following are equivalent: 

(1) f is uniformly continuous on X. 

(2) >!'f is S-continuous on the remote points of >!'x, and hence 

'X everywhere on ·· X. 

(3) Every pair of sequences (x : n EN), (y : n EN) which 
n n 

satisfy d{x , y ) - 0 also satisfy l::.(f(x ) , f(y ) ) - O. In 
n n n n 

particular when Y is compact, if f is not uniformly con-

tinuous there are sequences (z : n EN), (w : n EN) such n n ~~ 

that d(z ,w) -o, f(z)-> a, and f(w) - b~a. 
-- n n n n 

PROOF: 

The equivalence of (1) and (2) follows from a --more general 

result of Robinson [ 1 9], but the fact that (1) implies (2) also follows 

automatically from interpreting the definition of uniform continuity in 

the nonstandard model and applying it at a remote point. 

That (2) implies (3) follows easily from the nonstandard inter­

pretation of d( zn' y n) - 0, namely, tha t when w E #N, d{xw, y w) ~ 0. 

By S-continuity C:.(f(x ) , f(y ) ) ~ 0 and (3) follows. w w 

8 

We can con.elude by showing that if f is n o t uniformly continuous 

(3) does not hold. There exists e > 0 such that for every n there are 

points x and y with d(x , y ) < 1 /n and .6(£(x ), f(y ) ) > E;, by the 
n n n n n n 

negation of uniform continuity. 
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3. Continuous ~:'-Meromorphic Functions: 

In this section we give a basic lemma on S-continuity for inter­

nal or >!<:-meromorphic functions. (The reader is referred to Appendix 

3 for the notion of a >!<-transform.) Since the theorem is local in nature 

and since we wish to consider different metrics even on familiar 

regions like the punctured plane and the unit disk it seems best to 

think in terms of coordinate patches on a Riemann surface. If Mer (0) 

denotes the standard space of meromorphic functions on a standard 

Riemann surface O, then >!<Mer is a function defined on >::_Riemann sur­

fa ces. No harm seems likely if we extend >!<Mer to external subsets of 

a surface by requiring that this means there is a >!<-region containing 

the set and a function >!<-meromorphic in tha t region. 

Let O be a >!<-R iemann surface with a · t opolog i cally compatible 

>!<-metric d. We will say f E >!<Mer (0) is S-continuous in d provided it 

is S-continuous in the sense of Robinson [19] as a map from (0, d) to 

(:cs, s), the >!<-Riemann sphere with the great circle metric. At a E 0 

this means that for every standard e > 0 ( e ER+) there exists a standard 

o > 0 such that d(z, a) < 6 implies s(f(z), f(a)) < e, or equival~ntly that 

z g a implies f(z) ~ f(a). Where the n o tation denotes the respective 

infinitesimal relations. 

Now let (0, d) be a standard Riemann surface. Robinson [19] 

has shown that the near-standard >!<-meromorphic functions on >!<O (with 

respect to uniform convergence on compact subsets) are those which 

are S-continuous .on the near-standard points of >:<O , ns(:'o). (This can 

also be shown by writing down the monad of the uniformity of compact 
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convergence in >:'Mer( O) x >:'Mer(O), namely, (f, g) E µ(u~ if and only if 

f(z) ~ g(z) for all z E ns(:'rL). We use the fact that 0 is locally com-

pact. See section II (4. 2) for more on monads of uniformities.) The 

standard part of a function can be taken pointwise (with respect to s) 

d df 
and dz ( s t(f) ) = st( dz). 

Now that we see the basic importance of S-continuity for 

~:'-meromorphic functions, we give the following local theorem. We 

state the result in terms of the plane metric, p(x, y) = lx-yj, of a 

coordinate disk. For this reason some care is necessary in applications 

at remote points or when several metrics are involved. 

Let f be an internal meromorphic function defined on the monad 

of zero and hence in some finite disk of the complex plane. Continuity 

refers to the plane metric p as above. Magnification refers to 

M(s/p). 

(3. 1) THEOREM: 

The following are equivalent: 

(1) f is S-continuous at zero. 

(2) There exist three values a, S, y E ~:'s, finitely separated in 

the spherical metric, which f does not attain in the 

infinitesimals, o. 

(3) The magnification of f, Mf(z), is finite on the infinitesimals, 

o. 

PROOF: 

The equivalence of (1) and (2) follows from a theorem of 
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Robinson [19, Theorem 6. 3. 1] and the following lemma: 

~·, 

The near standard transformations of the ·:.Mobius transfor-

mations are those specified by taking three finitely separated points 

on ~:~S onto three other finitely separated points on ~:~S. 

One way to see this is by first observing that the infinitesimal 

group is described by taking three finitely separated values to their 

~·, 

respective standard parts on S. Direct computation: a., S, y E .~S and 

* s a., y E C, then when a = a., etc. 

[w,a;b,c] = [z,a.;p,y] implies 

w-a z-a 
w-c = xz-y' where x ~ 1 . 

Then w = [ (a - xc) z + ( xac - a y) ] / [ ( 1 - x} z + ( xa- y) ] 

so that (1+6)z+ e 
w = 'r)z+ 1 

where 6, e, n are infinitesimal. 

A transformation of this last type changes finite values only by an 

infinitesimal and leaves infinite values infinite so it is within an in-

finitesimal of the identity. Conversely, an infinitesimal transformation 

moves each point at most ans-infinitesimal. The pre-images of 

0, 1, oo will therefore uniquely determine the transformation9 

One may now apply Robinson's theorem to the mapping g = w O f 

where w is the ~::Mobius transformation taking a, S, y of (2) into 0, 1, 00• 

Next we show that (1) implies (3). Assume f(O} = 0, otherwise 

work with w of where w is a ~::_Mobius rotation of the sphere taking 

f(O) to zero which is justified since M(s/p)f = M(s/p)wo £. [E.g., 

w(z) = z+f(0)/1-f(O)z.] By continuity and the fact that f is defined on 
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a standard disk around a, we know If I is smaller than 1 on a disk of 

standard positive radius, r, about a. Thus, integrating around 

lf'( b) I = I0/2 rri) J (f{z)/ (z-b)
2
)dzj ::;; l / (r / 2)

2
, for b ~ 0 , 

and M(s/p)f(b) is finite on o since Mf{b) = Ir' (b) I /(1+!f{b)j2). For 

z ~ b, 

The magnification M(s / p} is usually denoted by p and is called the 

spherical derivative. This shows (1) implies (3). 

We conclude by remarking that since the segment from 0 to b 

in o is internal, the set 

[K: pf( z) < K , z on the segment} 

is internal and contains all infinite numbers, so pf(z) is finitely bounded. 

By Theorem 2. 2, 

s(f(b),f(a) ) ::;; K
0

!b-a! ~ 0 , 

so f is S-continuous and (3) implies (1). 

We wish to deal with applications of this theorem at remote 

points of a given metrice In these cases it is necessary that .·~-.e 

>'' 
cl-infinitesimals 11 look11 like the monad of zero in .~C. The precise 

reformulation of '( 3.1) follows. 
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(3. 2) We begin with an example of the difficulties one may encounter 

(which also shows why we view domains as Riemann surfaces). Take 

the right half-plane [z EC :Re(z) > O} with the plane metric !x- y l and 

consider the function exp(l /z) in the part of the monad of zero which 

lies in the right half plane. The function omits the entire unit disk 

and still fails to be S-continuous. 

We take O a ~:~-Riemann surface, d a >!~-metric on O and b E O. 

~:~ •. , r >:~ I I } U is the -.~ unit disk, i. z E C : z < 1 • 

(3. 3) DEFINITION: 

We say b is the center of an S-disk of O with respect to d 

provided there exists an inte rnal conformal (1-1) mapping <p:>:~U - O 

satisfying: 

(1) co(O) = b, 

(2) cp( o) = od(b), 

{3) M{d/p)<p(z) exists, is finite and non-infinitesimal for z 

in the monad of zero. 

(3. 4) COROLLARY: 

The conditions of Theorem (3. 1) apply at the center b E 0 of 

~ S-disk with respect to 'd where S-continuity in (3. 1. 1) and the 

magnification in (3. 1. 3) are taken with respect to d. 

PROOF: 

f{<p(z)) is S-continuous at zero if and only if f(w) is d-S­

continuous at b and M(s/p)f ocp(z) = M(d/p)<p(z) · M(s/d)f(w). 

(Existence of the latter magnification is imposed by (3. 3. 3).) 
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4. Invariant Normal Families: 

The purpose of this section is to unify several theories of the 

rate of growth of meromorphic functions whose definitions involve 

normal families constructed from given functions. These theories are 

discussed and applications of the basic theorem are given at the end of 

the section. We feel that for a number of applications S-continuity 

applied directly is simpler than introducing normal families and this 

is justified by Corollary (4. 3). 

We shall discuss a basic setting which is less general than is 

possible, but which encompasses the three classical cases given in 

the applications. One generalization is mentioned in (4. 5). We feel 

that a number of results have been unnecessarily obscured in the 

classical theories and we feel that S-continuity can reveal their true 

simplicity. 

Our basic setting is as follows. 0 is a Riemann surface with 

a topologically compatible convex metric d. We assume that d is 

asymptotic to the plane metric of a coordinate disk D at its center 

a ED c 0. In terms of magnification operators this means 

M(d/p)id(a) = l, where id denotes the identity function and p the 

plane metric of n.· W is a group of conformal d-isometries of 0 

onto itself such that for every b E O there exists a w E W with w(a) = b. 

As a result of this, dis a smooth metric, M(d/d)w(z) = 1, for every 

w E W and z E 0, and the magnification of a meromorphic function 

M(s/d)f(z) exists· at each point of O (since d is asymptotic to p at a). 
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Let F be a subfamily of Mer(O). We say F is W-invariant 

provided FoW = [fow: fE F and wEW} = F. When W consists of 

all conformal automorphisms of O, we say F is conformally invariant. 

If F is an arbitrary family, F OW is invariant by the group property 

of W. 

(4. 2) THEOREM: 

The following are equivalent for a W-invariant family F: 

(1) F is a normal family. 

~ * ( 2) M ( s Id) f ( z) is a finite for eve r y z E ·· 0 and eve r y f E F. 

(3) M(s /d)f(z) < K (a standard constant) for every z E 0 and 

f E F. 

(4) Every f E ':'F is S-continuous on all of >:~O and hence uni-

formly S-continuous in the metric d. 

PROOF: 

(1==>2). '~ >~ Take f E ' F and z E 0. 
>'< 

Let w( a) = z, w E 'W. 

pg(a) = M(s/p)g(a) = M(s/d)g(a) is finite for every g E >!'F by Robinson's 

characterization of normal families [19, Theorem 6. 4. 1] and Theorem 

(3. 1). M(s/d)f(z) = [M(s/d)f(z)} [iv1(d/d)w(a)]=M(s/d) f ow (a), so (2) 

holds. 

(2=:>3). 
>!< 

Since the set of bounds of Mf(z) where f E F and 

>!< 
z E O is internal and contains all the infinite positive numbers there 

is a standard bound K. Condition (3) holds since its *-transform holds 

(with this K) in the nonstandard model. 

(3 =?4L Apply Corollary (2. 4). 



(4~1). S-continuity on the near standard points implies that 

Fis a normal family by Robinson [ 1 9, Theorem 6.4.1 ]. (The topo-

logical compatibility of d enters as st(x) = st(y) if and only if 
,,, 

d(x,y)~O, forx,yEns('o).) 

(4. 3) COROLLARY: 

When F = [£
1

, ••• , fk} OW the conditions of the theorem are 

equivalent to (standard) uniform continuity of the fk on all of O. 

In the setting of (4. 8) this is apparently due to Lappan [12]. 

(4. 4) REMARK: 
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Condition (3) is a generalization of results of Yosida, Noshiro 

and Lehto-Virtanen. 

( 4. 5) One generalization of this idea is to take W to be conformal 

mappings defined only on D and such that for every b E O there is a 

w E W with w(a) = b. M. F. Behrens has obtained some results in 

this case where O is a disk with holes removed. W consists of dila-

tion of a fixed disk translated within O. A function f for which 

f o W is normal is termed regular and our condition (3) states that 

dist(z, b 0) pf(z) is bounded. 

Examples: 

( 4. 6) Julia exceptional functions. Take O = C \. [O}, the punctured 

plane, W = [bz:bEO}, d(x,y) = llog~j where -rr<arg ~rranda= 1. 
y 

Ostrowski [18] discovered that Julia's theorem fails for meromorphic 

z-2n 
functions, e.g. , take f(z) = II -- , then f o W is normal. 

z+2n 



Marty [1 5] character i zed Jul i a exceptional functions as those 

for whi ch I z I pf I z I is bounded. ( p denotes the spherical derivative, 
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M(s/pL see the proof of (3.1).) This is condition (3) since M(s/d)f(z) = 

M'(p I d)w(l) pf( z) = I z r pf{ z) where w(l) = z. This is because when x ~ 1' 

M ( P Id) W ( 1 ', ::: : I z I I x - 1
1 :::-: I I J t 1 f . d t d d b :;:; :-;::; z , ana ne ar s1 es are s an ar num ers, I log x j 

hence equal. 

(4.7) Yosida's theory [20]. Take O= C, the complex plane, 

W = [z + b: b E O}, d(x, y) = I x-y I and a = O. (Doubly periodic functions 

arise in this context with 0 as the universal covering surface of the 

torus.) Yosida obtained condition (3) as necessary and sufficient for 

normality of f oW in the form pf(z) < K. (We showed in the proof of 

(3.1) that M(s/d)f(z) = pf(z) = jf'(z) I/ (1+jf(z)1
2
).) 

Yosida also observed that results similar to Julia-Milloux's 

theorem hold in case normality fails. His results follow from our 

work in section 5 below. 

Yosida also connects this growth requirement with the Nevanlinna 

characteristic by integrating pf(z) in the Ahlfors-Shimi.zu formula. 

(4. 8) Normal meromorphic functions: (Noshiro [16 ], Lehto-Virtanen 

[14 ].) Let O = U ~ [z E C : I z I < 1}, the unit disk, W = 

{ exp(iB) [( z-a) /(az-1) J: e E R' I a I < 1}' all conformal automorphisms 

of U, a= 0 and d(x, y) = n (x, y), the hyperbolic metric 

(= (1 /2) log[(jx-yl + lyx-11)/( !x-y! - lyz-1 I)]). A meromorphic 

function is called normal if f OW is a normal family. 
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When G is a hyperbolic surface so U is its universal covering 

/\ 

surface, a n1e r om or phic f unction on G is normal provided f = f OP is 

normal on U where P is the projection of U onto G. This definition 

is extrinsic to G but conditions (2), (3) and (4) apply directly by pro-

jecting the metric. The S-continuity approach on G could be applied 

directly. 

Noshiro [16] gave condition (3) in the form (1-zz) pf(z) < K. We 

know M(s/n)f(z) = M(s/n)fow(O) = [M(p/11)w(O)]pf(z) = (1-zz) pf(z), 

where w(O) = z. This is because M(p/ T) )w( 0) ""' [I ((x+z) /(Zx-1)) - z !/ 
T)(x,O)] = [(x+z-z(zx-1))/(zx-l)T)(x,O)] ~ (l-zz)(!xl/11(x,O)) ~ (1-zz), 

where x ~ O. Since the far sides are standard and within an infinitesi-

mal they are equal. (The hyperbolic metric is asymptotic to the plane 

metric at zero, so (!xi /n(x, O)) ~ 1.) 

Applications of a classical nature to the theory of normal func-

tions are possible and the author has given a number of simplified 

proofs of known results using the nonstandard theory of the metric 

space (U, n). We give a few examples of this nature which involve a 

minimum of function theory. 

If aE ~:<U, then-galaxy around a is the set of points a finite 

distance from a, G(a) = {z E >:<U: n(z, a) E O}. 

We begin with an observation of N oshiro [16] which the reader 

can easily generalize to other settings (see Yosida [20]). 

(4. 9} If <,0(t), 0 ~ t < 1, is a continuous curve in U with I <,0(t) I -> 1, 

and if the normal func tion f satisfies f(cp(t)) -> b as t __, 1, then f OW 

has the constant function b as a limit. 



Let a~ i and a,= <P(a) be fixed. Take w(z) = [(z+a) / (a,z-1)]. 

The function fow is S-continuous on ns(U) by (4. 2), hence st(f ow) 

is meromorphic. Since f(<p(t)) --> b, whenever t ~ 1 we have 

f(w(t)) g b, therefore st(f ow) = b on the points which map onto the 

points <P(t) which lie in G(a,). This means st(f ow) is constant on a 
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set with a (non-trivial) adherent point, hence identically constant. Also, 

f ow~ b on all of ns(:~U) = G(O) and f is near constant on G(a,). In 

fact we see that a necessary and sufficient condition that f o W has a 

>'~ 
constant limit is that f is near constant on a galaxy of · U. 

(4.10) Nonstandardizing the work of Hoffman [10], M. F. Behrens 

[2 J has shown that by identifying infinitesimally near-by points of 

infinite galaxies which contain points of interpolating sequences the 

00 

galaxies correspond to non-trivial Gleason parts of H (U). Moreover, 

the pseudo-hyperbolic metric I (x-y) /(yx-1) I is infinitesimally close 

to the parts metric. Now since a normal function is S-c ontinuous on 

the galaxies, identifying points infinitesimally near-by and taking the 

standard part of the function gives us a standard function, continuous 

in the parts metric, defined on the Gl e a son part. This proves a recent 

result of Brown-Gauthier [3] that normal {unctions can be extended to 

non-trivial parts. 

Many other applications could be given, but we refer the reader 

to the forthcoming monograph of A. J. Lohwater for m ore on normal 

functions. The bibliographies of N oshiro [l 7] and Collingwood-

Lohwater [4] contain many other interesting references to normal 

functions. 
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5. Milloux Circles and Points of Disc ontinuity: 

Milloux's theory of vcercles de remplissage' has seen recent 

interest with generalization in several directions (Lehto [13 ], Lange 

[11 ], Gavrilov [8], [9] and Gauthier [6], [7]). Robinson [19] 

"nonstandardized 11 the classical theory obtaining a new lemma for the 

existence of such circles. Robinson's lemma does not generalize 

directly the meromorphic functions because the >:~-sphere has only one 

S-component. The main idea of replacing sequences of circles with 

the monad of a discontinuity does extend to a very general setting as 

we show in this section. 

Several of the known results in the various settings reduce to 

the equivalence of (3. 1. 2) and {3. 1. 3) at a discontinuity for an 

appropriately chosen metric. Our method simplifies the previous 

approaches t o the theory and we hope also shows how nonstandard 

analysis can be useful when complicated quantification arises. This 

approach a ls o shows that ' 1Julia-sets 11 and 11Milloux-sets 11 amount to 

the same thing since they both reduce to a discontinuity. 

In a metric space (X,d) we shall use the notation 

and d(x, b} < 8} 

where B c X. ' . >:' We also use the >.~-transform in -X. Also 

-·~ o d( B) = [ x E .. X : 3 b E B and d ( x, b) R:J 0 } 

shall denote the infinitesimal neighborhood of B. 
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(5. 1) DEFil\HTIONS: 

We say A c O is a d-Julia-se t for f if for every (standard) 

positive e, 

f(D d(A; e) ) 2 S \[a, B} , 

for two values ex, BES, the sphere. (J-set.) 

We say A is a d-Milloux-set for f if for every positiver, o, 

€, there exist s
1

, s
2 

ES and y EA such that d{a, y) > r and 

(M-set.) 

The connection between discontinuities and standard J- and M-

sets is as follows. 

(5. 2) THEOREM: 

Let b be the center of an S-disk on O with respect to d. If b 

is an S-discontinuity in the metric d for a standard meromorphic 

''< 
function f defined on O and if b E od(' A), then A is a J-set. If b is 

in an infinite galaxy, then A is an M-set. 

PROOF: 

We may apply (3. 4) at the discontinuity to see that 

for at most two standard ex, 13 E S. 

...,, ~'--

We know that the set of standard points in ~. f( .~ [D d(A; e) ]) is 

f{Dd(A;e)). When e is standard od{b) E.. >!~Dd(A;e) = Dd(A;e) and 



therefore A is a J-set. 

If b is infinite the standard set B given below satisfies 

~:<B .2 o+ X (<:R \ o) x (:<:R \ o), that is the first component can be any 

finite positive real number and the next two any non-infinitesimal. 

0 ,1, + + ~ 
Then ('"B) = B = R X R X R' and A is an M-set. 

s • t. d ( y, a) > r 

(If r is finite and 6 and e non-infinitesimal we take 

''<: 
yE o,(b) n ''A and apply the reasoning in the first part of the proof.) 

Q 

(5. 3) REMARKS: 
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When we begin with a given remote S"'.'discontinuity of a standard 

function we may obtain a standard sequence which is a J-set or M-set 

by applying (2. 5). (This avoids the somewhat more delicate problem 

of approximation of a particular point by a standard sequence.) When 

w E #N, xw of the sequence in (2. 5. 3) is a (remote) S-discontinuity. 
. ''<: 

If d is finite exactly on ns( O), as is the case in (4. 6), (4. 7) 

and (4. 8) for example, then J-sets and M-sets coincide for standard 

~·-
functions since they are necessarily continuous on ns('~o). 

J-sets and M-sets have infinite discontinuities in their non-

standard extensions, so their non-existence in the examples (4. 6), 

(4. 7) and (4. 8) is equivalent to normality. 

Next we extend a result of M a. rty-Lehto to this setting. If 

Ac 0, let 



lim sup h( z) = inf [sup(h(z) : z E A 
z EA 

and d( z, a} > r) : r > 0] , 

for real valued functions h(z), where a E 0 is fixed. 

We shall also assume from now on that if d(z, a) > r 
0 

(z E >~O) 

for some fixed finite r
0

, then z is the center of an S-disk. 

(5. 4) THEOREM: 

If lim sup M(s / d)f(z) = oo, then >:'A contains an infinite S­
- zEA 

discontinuity of f, or A is an M-set. 

PROOF: 

The >:~-transform of lim sup says there is an infinite point 
....... . 

z E ···A for which M(s/d)f( z) is infinite since we have assumed od(z) 

i s an infinitesimal disk we may apply (3. 4) which says then that z is 

a point of discontinuity. 

As applications we now consider some of the known results. 
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(5. 5) Julia-Milloux theorem for meromorphic functions: Apply (5. 2) 

to the setting of example (4. 6). 
. d 

Observe that since x = y in that 

metric if and only if ! x-y j < 6 ! y I for some infinitesimal 6, w_e may 

substitute the J- and M-set conditions for standard disks I x-y I < o I y I 
which is the class:lcal form.. Thus we have the classical result that 

if lim sup I z I pf(z ) = oo then the sequence (z ) is an M-set for £. 
n n n---

We have already remarked that ! z j pf(z) can fail to be infinite 

in ( 4. 6). 



(5. 6) Gavril ov's classes W (p :2: 1) ( [8 ], [9 ]) : 0 is a punctured disk 
p 

around oo. The metric is given locally by the differential form 

M(s /d)f{z) = I z j 2-p pf(z). W is the class of 
p 

uniformly continuous meromorphic functions, which was introduced 

by the requirement that lim sup I z 1
2

-P pf(z) < oo. By examining 

infinitesimals, d-disks may be replaced by I x-y I < E: I y 1
2

-P. The 

theorem of Gavrilov which follows is immediate. 

If I zn 1
2

-P pf(zn) = oo, for a holomorphic function f defined in 

a ne ighborhood of oo, then for every r > 0 and e > 0 there exists a 

point z such that in the disk ! z-z I < s I z j 2-P, f takes on every 
n n n 
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value in the circle lw I < r with the exception of a set of diameter less 

than 2/r. 

( 5. 7) Lehto and Virtanen [14 J proved that no meromorphic function 

can be normal (in the sense of example ( 4. 8)) in the neighborhood of 

an isolated essential singularity. We put the hyperb.olic metric on a 

disk punctured at . oo and find M( s I il )£( z) = I z I log I z I pf( z) must be 

infinite near oo. Hence there are the corresponding J- and M-sets 

in the hyperbolic metric around any sequence on which 

lim sup M(s/n)f(z) = 00 • We contrast this with the case of (5. 5) where 

functions can fail to have these sets (see (4. 6) above). 

(5. 8) Functions in the unit disk: The study of M-sets (in the context 

of (4.8)) for the unit disk originated in Lange [11 J and has had many 

contributors. w ·e give one very simple example (which follows from 

more refined work of Bagemihl and Seidel [l ]; also see Collingwood-
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Loh.water's [4] bibliography) to indicate the 'flavor' of the theory. 

Let r and A be boundary paths in U and suppose f -+ a along 

:i'~ ....... r. If M(s/n)f is finite on a finite neighborhood of 'r, .,,D (r; e), 
n 

( e ER+), then f is near a on any sub-neighborhood of an infinite point 

of ~:~r. From this we see that if A lies in such a neighborhood of r, 
,1, 

either f -+a along A or .,,Dn (r; e) is an M-set. Hence, if r and A 

are finitely separated boundary curves and f -+a .£:2. r, then either 

f -+a .£:2. A or every mutual neighborhood of the curves is an M-set. 

In particular, if f is normal, f -+a along I\ . 

6.. A Note on Two Cluster Set Theorems 0£ Gauthier: 

In Gauthier [5 J a standard version of the following definition is 

given. U is the unit disk with n the hyperbolic metric. I is the set 
,,, 

of n-infinite points of ···u, (or the set [z: I z l ~ 1} ). Two standard 

~!< 
sets A

1 
and A

2 
_:::. U are equivalent if on (I n A

1
) 

We have immediately: 

(6. 1) THEOREM: . 

Let f : U -+ S be a continuous f unction. Then f is unif or ml y 

continuous on U if and only if for every pair of equivalent subsets of 

U, A
1 
~ A

2
, the cluster sets C(f;A

1
) and C(f;A

2
) are equal. 

The theorem is strictly standard, the proof is nonstandard. 

PROOF: 

( ~): The nonstandard characterization of the cluster set is: 



& ~ & 

c ( f ; A 1 ) = s t ( f ( I n '•'A 1 ) ) = s t ( f ( 0 ( I n •'A 1 ) ) = s t ( f ( 0 ( I n "'A 2) ) 
s s n s 11 

= C(f;A
2

). The step stf(I n ~:~A.) = st(f( o(I n ~:~A.) (j = 1, 2) requires 
J J 

uniform continuity. 

{<=:=): If f is not uniformly continuous there exist sequences 

(xn) n EN and (yn) n EN with n(xn' yn) - 0 and ri(O, xn) - oo, ri(O, yn) 

while f ( x ) - a f. S .-. f ( y ) • In this case [ x : n E N } "' [ y } , but n n n n 

C(f;[x }) -:/:. C(f; [y }). 
n n 

(6. 2) A corollary which contains Gauthier's Theorem 2 is: Amero-
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morphic function f is normal on U if and only if C(f;A
1

) = C(f~A2) for 

every pair of equivalent subsets of U. 

In order to establish his results Gauthier introduced the fol-

lowing cluster set in standard terms: 

A A 

Of course, if A
1 

,...., A
2 

we have C(f;A
1

) = C(f;A
2

). Now if f: u- S is 
.._t,.. A 

S-continuous on "'A we have C(f;A) = C(f;A) and iD: light of (5. 1) above, 

~ 

when f is meromorphic, either A is an M-set or C(f;A) = C(f;A). This 

sharpens his Corollary 1 and Theorem 1. 
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IL BOUNDED ANALYTIC FUNCTIONS AS THE 

DUAL OF A BANACH SPACE 

1. Introduction: 
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In this section we study a pre-dual for the Banach space of 

bounded analytic functions on a region which was introduced by Rubel 

and Shields [7 ]. Further introductory details are contained in 

section 2. We also recommend the expository paper of Rubel [5 J. 

In section 3 we give a characterization of the two spaces in 

terms of the nonstandard hulls of internal spaces of an approximating 

region. This allows us to approximate arbitrary regions by inter­

nally finitely connected ones for the study of the space of analytic 

functions and leads to a representation of the pre-dual as a quotient 

space of the internal space L 1 of the boundary. 

In section 4 we introduce the topologies of the dual pair and 

rephrase a number of results in terms of infinitesimal relationships 

in the nonstandard extension. We also give a new characterization of 

the strict topology. 

In section 5 we give a new proof of a theorem of Rubel and 

Ryff [6] that the strict and Mackey topologies are noncoincident. We 

feel that this approach together with the approximations of section 3 

may lead to a solution of Rubel's conjecture [5 J that these topologies 

are always noncoincident when a region supports nonconstant bounded 

analytic functions. This will be taken up in another place. 
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2. Introduction to H(D) and its Pre-dual P(D): 

In what follows D will denote an open connected subset of the 

Riemann sphere S (i.e. , D is a domai n or region .) We will assume 

that D supports non-constant bounded analytic functions. The space 

co 
H (D) of all bounded holomorphic functions on D with the norm 

11h 11 = sup( I h(z) I : z ED) is thus an infinite dimensional Banach space 

00 

over the complex numbers, C. (For short we denote H (D) by H(D).) 

We wish to study the pre-dual of H(D) introduced by Rubel and 

Shields [7] from the point of view of nonstandard analysis. This leads 

to a new characterization of the pre-dual when D is infinitely connected 

though our opening remarks apply to the general case. The basic idea 

is to replace D by a region bounded by a >:<-finite number of smooth 

curves infinitesimally close to the boundary of D. We represent the 

pre-dual in terms of boundary integrals on the approximating region. 

A brief explanation of the >:~-transform of a concept is given in 

Appendix 3. We will use this idea freely to extend our vocabulary to a 

nonstandard model. 

1 
A smooth curve is a non-degenerate C -curve, meaning that if 

y is a parametrization, yr is a non-zero continuous function from an 

interval of positive length. A >:<-smooth curve is the corresponding 

internal notion. 

( 2. 1) We shall say a >:<-region G approximates D provided that G is 

>!<-finitely connected, has a >:<-smooth boundary, and satisfies 

ns(<D) ~ G .:::_ ~:<D.· (nsC:<D) is the set of near-standard points of >:CD). 

It is always possible to approximate a standard region in this sense, 
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since, f or exa mple, we may t a k e an i nf ini te l y subscripted member of 

the n onstandard e x tension of an exhaus t ion of D. For these prelim-

inaries, further assump t i ons w ill not be made about G, though we 

expect judicious choices to yie l d more information about the standard 

spaces. 

We denote the internal space of all internal bounded holomorphic 

... ,,,. ....... 

functions on G by H(G) and similarily '''(H(D) ) by H("'D). This is con-

sistent with the usual notation if we view H as a function defined on 

regions. Since >:~D ~ G, functions in H(~D) are mapped into H (G) by 

/".... 
restriction and the standard functions (elements of H(D)) suffer at 

most an infinitesimal reduction in norm. 

Complex Borel measures with support in D, denoted M(D) , are 

in duality with H(D) by the pairing 

(µ, h) = J h(z)dµ.(z) • 

D 

The measures which annihilate H(D) are denoted by N(D) = 

[ µ E M(D) : ( µ., h) = 0 for all h E H(D) }. M(D) with total variation Iµ I (D) 

as norm is a Banach space and N (D) is a closed linear subspacee 

Rubel and Shields [ 7] have shown that the continuous dual of 

M(D) /N(D) is H(D). Their proof cons i sts of showing that an arbitrary 

measure has a represent ative which is absolutely continuous with 

respect to two-dimensional Lebesgue measure and of decreased total 

var i ation. As a consequence L 1 (D) /N
1 

(D) is also isomorphic to 

M(D)/N(D) as a pre-dual for H (D), where L
1

(D) is the Lebesgue L
1

-

space and N
1 

(D) is the set of null functions for H (D), 



[f E L
1 (D): J f(z)h(z)dm(z) = 0 for all h E H(D)}. This also show r;; 

D 
that the pre-dual is separable. 

Rubel and Shields [7] also show, in the case of the unit disk, 

that measures can be swept to the boundary. Their argument is 
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extended to finite l y connected regions, G, with smooth boundary, bG, 

in Appendix 2. In this case we have the Banach-isomorphisms 

We shall refer to the pre-dual as P(G) in any of these three 

roles when G is finitely connected and has smooth boundary, and P(D) 

for arbitrary regions in the latter two roles. As a function defined . 

on regions P extends to ~:~-regions in the nonstandard model via the 

~:~-transform of its standard characterizations. As a result when G 

approximates ~:~D we have the above three internal characterizations 

of P(G) as either ~:~-Borel measures in G, or ~:'-L1 -functions in G, 

or ~:'-L 1 -functions on bG. The last of these has no standard analog in 

D, generally speaking, and allows us to apply the Cauchy formula, 

etc. to these situations. We connect the internal spaces P(G) and 

H(G) with the standard spaces P(D) and H(D) by means of a nonstandard 

hull of the internal_ spaces. The general construction and the fact that 

the construction is consistent with the duality is contained in Appendix 

1. The next section contains some basic results in the specific case. 

3. Embedding (P(D), H(D)) in the Nonstandard Hulls (P 
0

(G), H
0

(G}): 

We form the nonstandard hulls of P(G) and H(G), which we 
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denote by P 
0

(G) and H
0

{G), respectively. These are standard Banach 

spaces and the dual of P 
0

(G) contains H
0

(G) by the general results of 

Appendix 1. 

(3. 1) THEOREM: 

The standard space H(D) is properly norm embedded in H
0

(G). 

PROOF: 

The standard space H(D) is norm embedded in H
0

(G), since a 

standard function, extended via >:~ to >:~D, is only infinitesima~ly 

reduced in norm by restriction to G. 

An example of a function in H
0

(G) which does not correspond 

to any standard function is zA, where A is an infinite natural number. 

,,~ ,,, A 
and G = '• D = '•'-unit disk. The function z ha.s norm one, but point-

wise standard part zero. 

Since we have chosen G with an internal non-degenerate smooth 

boundary, every H
0

(G) will contain such functions (even if H(D) = C). 

To see this we only need to consider the Riemann mapping of the inside 

of one boundary component of G onto >:~U. Specifically, let a E ns(:~D) 

and p: G -+ >:~U be a conformal mapping of the inside of one boundary 

f'.J ,,,.. >'c 
component of G, G .2 ns("'D), onto 'U such that p(a) = 0. The function 

g(z) = p\z) has all its derivatives of order less than A equal to zero 

at a. Since g is S-continuous, being bounded, and since derivative 

commutes with standard part, g ~ 0 on ns(:~D). (Cf. Robinson [4].) 

we als 0 know that I g ( s) I = 1 on bG' s 0 11 g II = 1. This proves ( 3. 1). 

Our next result shows that remote elements of finite norm, 
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such as those above, play a role in determining the standard elements 

of the pre-dual P 
0

(G). (A function which is non-near-standard in a 

cer tain topology is termed remote.) 

(3. 2) THEOREM: 

The standard space P(D) is norm-embedded in the nonstandard 

hull P 
0

(G) of the approximating region G as the classes of those 

norm-finite elements p E P(G), 11p11 E O, which satisfy: (p, h) ~ 0 for 

all norm-finite h E H(G), II~ 11 E 0, such that st(h) = O. 

PROOF: 

We first show that the natural embedding of P(D) into P
0

(G) 

induced by restriction of standard measures has the desired properties. 

/'.. 
Let µ E M(D)' (µI G) (B) = µ (B n G) denotes the restriction 

which is in M(G). Since D is cr-compact, Iµ I is a regular Borel 

measure and consequently Iµ I GI (G) = Iµ! (G) ~ Iµ I (D), because 

G .2 nsC:'D) and ns(:'D) is the union monad of the compact subsets of D. 

Now let e ER+ be a positive standard number. There exists 

K, a standard compact subset of D, for which 

Now 

I I hdµ I ,;; 11 h II I d I µI + 
G G\:'K 

~ .Z + Iµ! (D) sup( !h(z) I: z E ~:'K) 



when 11h11 is finite. If st (h) == 0, the second term is infinitesimal, 

making I(µ I G, h) I < e for any standard e ER+. 
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The fact that the norm is reduced at most an infinitesimal can 

/'. 
be seen as follows using the fact that M(D) is norm-embedded in 

As a measure in MC:'D), µI G is norm-infinitesimally-near µ,, 

since Iµ, - (µ,I G) I (:'D) ~ 0. If V is equivalent to µ,I G for H(G) as an 

element of M(G), by extending it to be zero off G we have the equi­

valence of \) and µ,I G in MC:'D) for HC:'D). Taking nonstandard hulls 

this simply means 11 [µ,I G] II in P 
0

(G) equals 11 [µ,] 11 in P(D), because 

11 µ, + A II ~ 11 µ l G + A II £or all A E N c:' D). 

Now we focus our attention on the converse: if p E P (G) w ith 

finite norm and satisfying the property of the theorem, then p cor-

responds to a standard pre-dual element. 

Fix e ER_+, a standard positive real number. Consider the 

internal family J of subsets F £ M('D) defined by the internal state­

ment: 11F E J< provided F is a >:'-finite subset of MC:'D) and if for each 

f E F we have I(£, h) I !5: 1 and 11 h II !5: 1, then I (p, h) I < e. 11 Every 
/'.... 

~:'-finite set F for which °F ~ M(D), or F .2. M(D), is in d by the 

hypothesis of the theorem. 
/'.... 

To see this observe that r o E M(D) for 
x 

A A 

each r ER and o equal to unit point mass at a standard point x ED, 
x 

whence I (£, h) I ~ 1 for all f E F onl y if h is infinitesimal on D. 
Since 11h11 E 0 implies h is S-continuous on ns('D) we have that h 

is infinitesimal o·n ns(:'D) or st(h) = 0. 

A result of Luxemburg [2, Theorem 2. 7. 11 J states that in 



sufficiently saturated models (see Appendix 3) ~ must contain a 

standard set whenever ~ is internal and contains all ~:~-finite sets 

·""-
which contain M(D). This means there are finitely many pre-dual 

./"... 

elements p
1

, •.• , pn E P(D) such that whenever I (pi' h) I ~ 1 for 

i = 1,2, .•. ,n and !lhl/ ~ 1 then I (p,h)! < e:. For convenience we 

assume the p. are linearly independento 
l 

The remainder of the argument follows Luxemburg [2, p. 84, 

part (c) => (a)]. 

On the internal space K £ H(G) given by 

K = [k: (p., k) = 0; j = 1, .•. , n} 
J 

we have that the norm of the functional (p, · ) is less than e:. By the 

~:~-transform of the Hahn-Banach-Bohnenblu.s.t-Sobczyk theorem we 

may extend this to a functional (in H(G)') (cp, · ) on all of H(G) with 

norm less than e:. For k EK, (p-cp , k) = 0. 

A simple induction argument shows that 

p-cp 

Thus, 

n 

= ~ 
i=l 

c.p. • 
l l 

II P -~ c . P . II = 11 <P II < e: • 
l 1 

Another induction argument shows that c. are finite since 11p11 and 
l 

!!Pill arefinite(i=l, ... ,n). Let q = ~ st(c.)p., then 11p-q11 < e: 
l l 

36 

and p is norm-n·ear a standard element of P(D) since we may approx-

imate it to within a standard e: by a standard q. 
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(3. 3) COROLLARY: 

f E L 1 (bG) with finite norm corresponds to a standard pre-dual 

e.lement provided that whenever 11 h ! I E 0 and st(h) = 0, then 

J f(z)h(z) !dzj ~ 0. 

bG 

There is a connection between this theorem and the completeness 

theorem of Grothendieck. Also, in case G is standard, the result 

specializes to a consequence of Luxemburg [2, Theorem 3. 1 7. 2] by 

the characterization of the weak star infinitesimals given in the next 

section. 

4. The Weak-Star, Strict and Mackey Topol og ies: 

In this section we introduce the topologies of interest to us in 

addition to the norm topology for H(D). The Mackey topology also 

involves the weak topology on P(D). Much of the work of Rubel and 

Shields [ 7] and Rubel and R yff [ 6] involves the study of these topologies 

and their relation to a number of classical problems in function theory. 

A survey of the standard theory can be found in Rubel [5 ]. 

We shall give a nonstandard account of various known results 

mixed with a few new results. Our point of view is that of a uniform 

space in the sense of Bourbaki [l ]. Luxemburg [2] has given the 

basic nonstandard treatment. If (X, u) is a uniform space with uni­

formity u, then the intersection monad of u, µ(u) = nu= n(:~U: U Eu), 

is an external equivalence relation. Conversely, if µ
0 

is a monad 

in >:~X X ~:~X and an equivalence relation, it determines a uniformity _ 

for X. We shall write x g. y for x is within au-infinitesimal of y 
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which means (x, y) E µ(u). Also, the set of u-infinitesimals around x, 

µ(u)[x] = [yE ~:~X:{x,y) E µ(u)} = ou(x) . We caution the reader that 

o (x) is not necessar ily a monad, which by definition must be the inter­
u 

A 
section of the standard sets in a standard family of sets, n J. 

If X is a vector space, u is a compatible uniformity if and only 
A 

if o (x) + o (y) c o (x+y) for every x, y E X and o( A) o {x) c o (Ax) for u u-u u-u 
A A 

every A EC and x EX. We have in fact: o (x) + o (y) = o (x+y) and 
u u u 

AO (x) = o (Ax) for every x, y E ~:~X and finite A. The uniformity is 
u u 

Hausdorff if no two standard elements are within an infinitesimal and 

locally convex if o (x) is (externally) convex. 
u 

If the pseudo-metrics ( 'Y: 'YE r) characterize u in X, then 

U A 
x = y if and only if 'Y(x, y) ~ 0 for every 'YE r. The following charac-

terization of weak-star infinitesimals follows from this statement. 

(4. 1) THEOREM: 

In H(:~D), h is within a weak-star infinitesimal of k, h g k, if 
/'. 

and only if (µ, h) ~ (µ , k) for every standard µ E M(D). 

/'.. 
Since the point masses are in M(D) for standard points of D, 

if h ~ k, then h( z) ~ k( z) for z E D. if in addition 11h-k11 is finite, 

then h(z) ~ k(z) for z E nsC:~D) by Robinson's result that finitely 

bounded function s are S-continuous. 

(4. 2) THEOREM: 

There are S-discontinuous a-infinitesimals. 
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PROOF: 

We construct an S-discontinuous a-infinitesimal as follows. 

Let P
1 

be a >!<-finite set which contains all the standard pre-dual ele-

/".. -·~ 
ments P(D} .:::_P

1 
c P(''D). Let q be a near standard point for which 

q =/. st(q). If 6 denotes the point mass at q we see that 
q 

/'. 
[o ] ¢ P(D), since there are standard functions which are one-to-one 

q 

at st( q). Now a function h E H(:'D) such that (p
1

, h) = 0 for every 

p
1 

E P 
1 

and ( [oq], h) = 1 is a a-infinitesimal, h g 0, and S­

discontinuous at st(q). 

Let J be a family of complex valued functions defined on a 

set X. Let 6 be a collection of subsets of X. 

(4. 3) THEOREM: 

The uniformity of uniform convergence on the sets of 6 is 

characterized by its infinitesimal relation as follows: f ~ q if and 
A 

only if f(s} ~ g(s} for all s E v(6) = u6, the union monad of 6. 

The easy proof is left to the reader. (See Bourbaki [l] for 

the standard versiong) 

(4. 4) COROLLARY: 

In the space H(:'D), the infinitesimal relation for uniform con­

ver gence on compact subsets is: h ~ k if and only if h(z) ~ k(z) for 

every z E ns(:'D). 

PROOF: 

The union monad of the compact subsets is ns(>!'D) by local 

compactness of D. 
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Now we can see that a agrees with compact convergence on 

finitely bounded sets. This was first observed by Rubel and Shields 

[7 J. 

(4. 5) SUMMARY OF RESULTS ON THE STRICT TOPOLOGY: 

The strict topology which is the topology induced on H(D) by 

the notion of bounded sequential convergence (h -> h if I !h 11 ~ M and n n 

hn -+ h pointwise) is also the finest t opology which agrees with a ~ 

bounded sets. We denote the uniformity by ~ and then the following 

are equivalent: (Rubel, R yff, and Schields [6 ], [7 J) 

a. 

b. 

c. 

d. 

h ~ k. 

(p, h) ~ (p, k) for every p E cmpN(P(~D)), the norm-compact 

points of PC:~D) = u c~:<K: K is a standard norm-compact sub-

set of P(D) ]. 

(p , h) ~ (p , k) for every standard norm-null sequence. 
n n 

>'< /'... 
f(z)h(z) ~ f(z)k(z) for every z E 'D and every f E C

0
(-D) = 

standard continuous functions vanishing off compact sub-

sets of D. 

In particular, if 11 h- k II is finite and h( z) ~ k( z) for z E ns(<D) 

then d holds. A partial converse is possible, namely d implies that 

h(z) ~ k(z) for z E ns(:<D) since we may take a standard c
0

-function 

which is one at a given near standard point. This proves: 

(4. 6) THEOREM: 

All p-infi_nitesimals are S-continuous on ns(:<D). 
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We contrast this t o the weak-star infinitesimals, Theorem (4. 2). 

The external equivalence relation 11 h g k provided ! I h- k 11 is 

f ini te and h(z) ~ k(z) for z E ns(~D) 11 is compatible with the linear 

structure in the sense that if h g h' and kg k', then h+h' g k+k' and 

for finite /..., /...h g Ah'. Moreover, the equivalence classes are convex. 

This is not a monadic equivalence relation however and there are 

norm-infinite (3-infinitesimals. The relation g is particularly natural 

and in light of the model-theoretic significance of discrete monads (as 

the best approximation by standard sets) we feel our next result is not 

without interest. 

(4. 7) THEOREM: 

The discrete monad of the set of g -equivalent pairs of elements 

of H(~D) equals the set of S-infinitesimals; 

µ( S) = µD( [(h, k): kg k}) = nC:~E: E is standard and ~:~E ~ g ] . 

In other words, g determines the strict topology. 

PROOF: 

b b 
The above remarks state that = £ µ ( (3), so µD( =) £ µ( B) and we 

need only show that µD( g_) .2 µ((3). 

~:~ b "" 
Suppose that E ::::i = and that n EN, a standard natural number. 

In the nonstandard model the sentence 11 there exists f E c 0 (~D) such 

that 11h-k11 < n and I f(zi( h( z)-k(z~ I < 1 implies (h, k) E ~'E," holds 

since we may take f(z) infinitely large on K a >:~-compact set containing 



ns('D). The same sentence without~:< on D and E must hold in the 

standard model and this means 6 agrees with the filter of µD(g) on 

bounded sets. Since S is the finest topology which agrees with a 

on bounded sets, the proof is complete. 

Perhaps it is worthwhile to examine the monad of zero. We 

b b 
have that µD( [h: h = 0 }) = µD( =) [O] = o(3(0). This follows from the 

compatibility of g with the linear structur.e. 

( 4. 8) The final topology for this section is the Mackey topology on 

H(D) which is the finest whose dual is P(D). We denote it by 

m 
m(H(D), P(D)) or just m. The Mackey-Arnes theorem states h = k 

if and only if (p, h) ~ (p, k) for every p E cmp (PC:~D)), the weakly 
w 

compact points of PC:~D). 

m = (3 if and only if cmpN(P(D)) = cmp (P(:~D)), that is, if 
w 

and only if P(D) has the "Schur property" that weak and norm com-

pactness coincide~ Rubel [5] conjectures that m =f. (3 so long as 

H(D) f; C. 

We always have m finer than 6, so one only needs to show 

s triC t incl us ion. 

5. Noncoincidence of the Strict and Mackey Topologies: 

In this section we give a new approach to a theorem of Rubel 

and Ryff [6] that states that p(H(G),P(G))-:/. m(H(G),P(G)) when G 

is a (standard) finitely connected region with smooth boundary, bGe 

42 
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We do this by introducing the infinitesimal equlvalence relation that 

two functions are finitely bounded in difference and infinitesimally 

close on most of the boundary. This relation give$ rise to a standard 

topology strictly finer than \3 and coarser than m. We do not know 

if this new topology equals the Mackey topology and the generalization 

of these results to the nonstandard hull of H(G) where G approximates 

~:~D remains to be done. 

(5. 1) DEFINITIONS: 

a denotes the uniformity associated with the L 1 
(bG)-norm of 

the non-tangential boundary values of functions h E H(G), I h I = a 

s = sup( a., p)' the uniformity generated by the entourages u n v' 

where U E a and V E \3. 

r is the uniformity associated with the finest topology which 

agrees with the topology of s on bounded sets. 

~is the ex.ternal equivalence relation on H(~G) given by 

[{h, k) : II h-k 11 E 0 and h(z) ~ k(z) on most of bG}, precisely h ~ k 

provided 11 h-kl I E 0 and there exists T an internally measurable 

subset of ~:~bG for which h(t) ~ k(t), t E T and such that 

f I dz I ~ f I dz 1. 
T bG 

The motivation to study a., s and r actually came from an 

attempt to understand~ which is a natural refinement of g (and in 

fact a strict refinement as is easily seen). An understanding of ~ 



seemed desirable from the beginning since ~-continuous linear 

functionals satisfy a dominated convergence theorem by a direct 

nonstandard argument. This hints at an integral representation and 

compatibility with the dual pair. We were unable to give direct 

extension procedures for such functionals to integrals, however. We 

have the following result. 

(5. 2) THEOREM: 

If II h- k II is finite, then h g, k if and only if h ~ k. Moreover, 

h g k and h g, k if and only if h ~ k. 

PROOF: 

If h ~ k then 
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s I h( z) - k( z) I I dz I ~ J I h( z) - k ( z) ! I dz I + ' II h- k II J I dz I ~ 0 . 

~:'bG T ~~bG \ T 

Observe that there is an infinitesimal e such that for all t E T, 

I h(t)-k(t.) I < e since T is internal. 
. a 

This proves h = k. 

Next, if ! I h- k II E 0 and if J I h( z) ~ k( z) I I dz I = 6 ~ 0, then 

jh(t)-k(t) I > r ~ 0 on T with finite positive measure leads to a con­

tradiction, hence h@: k and 11 h-kj I E 0 implies h ~ k. 

h 
Next, if h = k then I !h-k! I E 0 and if in addition h g k then 

h ~ k by the first part of the theorem. 

Finally, we use Cauchy's formula to show that if h- "± k then 

h(z) ~ k(z) for z E ns(:'G). When z E ns(:'G), 1 I I z-w I is finite for 

'~ all w E • bG and 



ih(z)-k(z) I ~ J ! hj:~~tll l<lwl + J I :~=~: l<lwl ""0 . 
T *bG\T 

(5. 3) THEOREM: 

µD(J') = µ( r ), that is ~ determines r, the finest topology 

which agrees with s on bounded sets. Moreover, if h f k and 

PROOF: 

b 
The first part is proved the same way that µD( =) = µ( S) was 

proved, namely by showing µD( ~) = inf(F n) where F n is the filter 

generated by the sets w n [{h, k) : 11h-k11 :5: n}' w E s. 
The second statement follows from the last theorem since if 

hr k then h ~ k and since l lh-k!I E 0, h g k. 

(5. 4) THEOREM: 

The strict t opology S(H(G), P(G)) is strictly coarser than i; 

which is coarser than r which in turn is coarser than the Mackey 

topology m(H( G), P( G)). In particular, S ~ m. 

PROOF: 

We prove S is strictly coarser than s by showing that a is 

not coarser than [3. Recall the example given above of an infinite 

power of the Riemann mapping of the inside of one boundary compo-

nent of G. That function is a S-infin itesimal with modulus one on 

one whole boundary component, hence not an a-infinitesimal. Thus 

(PA., O) E µ( S) and ( p\ 0) r/: µ(a) n µ( S) and ~ is strictly finer than S. 

45 
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r is finer than s by definition. 

a is coarser than the Mackey topology since any a-continuous 

functional has a representation as an integral: cp(h) = f h(z)g(z) I dz j, 
oo bG 

g E L (bG) and hence we may view a as a polar topology on a 

restricted collection of subsets of P(G) making a coarser than m. 

This means that s is coarser than m since both a and \3 are. More-

over, s and \3 have the same closed convex sets since they are both 

compatible with the duality (H, P ). 

Finally, we show that r is compatible with the duality (H, P) 

and hence coarser than m. Let L be a r-closed convex subset of 

H(G).. We shall show that L is $-closed which implies r and \3 have 

the same continuous linear functionals. By the characterization of \3 

as the topology of bounded sequential convergence it is enough to show 

that if (h : n EN) c L and h B? h, then h E L. Since (h : n EN) is 
n - n n 

bounded the s-closed convex hull and the r-closed convex hull coin-

cide. Moreover, the r-closed convex hull is contained in L. Now 

since s and \3 have the same closed convex sets, having the same 

dual spaces, the \3-closed convex hull equals the r-closed convex hull 

and h E L. This completes the proof of the theorem. 

(5. 5) THEOREM:. 

h g. k implies h ~ k, that is the a-uniformity is finer than uni-

form convergence on compact subsets of G. 

PROOF: 

Take z E ns(:~G) so that (1 I I z-w I ::; ME 0, for all w E >:~bG. By 

the Cauchy formula h(z) ~ k(z), and the proof is finished. 
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APPENDIX 1 

THE NONSTANDARD HULL .AJ.'JD DUALITY 

Robinson [ 4] constructed the completion of a metric space by 

a nonstandard construction based on the extended metric. Luxemburg 

[2, Theorem 3. 15. 1 J extended Robinson's construction by showing 

that it applied to standard uniform spaces and that (in saturated ultra-

power models) it gives rise to a larger complete space, the~-

standard hull, in which the completion is contained.. Also, Machover 

and Hirschfeld [3] later extended Robinson's construction to standard 

uniform spaces using entourages. 

The ffrst result of this appendix shows that Luxemburg's con-

struction applies to internal or ~:~-uniform spaces. The motivation for 

this is not abstract generality, but rather to obtain H(D) from 

hull (H(G)) where G approximates >:~D as in section II. 3 above. We 

are sure there are other applications as well. The reader should 

consult Luxemburg's paper [2] for details not contained in this 

appendix. 

We remark that in [8] the author showed that the nonstandard 

hull of a standard precompact uniform space is complete for non-

standard models which are only enlargements. The use of saturation 

seems essential in the general case. However, we remind the reader 

that 6-incomplete ultrapowers (the simplest of all nonstandard models!) 

r 
are f\! 

1 
-saturated (Luxemberg [2, Theorem 1. 6. 4 ]). The outcome 

of this l.ast rema·rk is that nonstandard hulls of >!~-metric spaces are 

complete. 
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(Al. l) CONSTRUCTION OF THE 1fr.JTERNAL 1 NONSTANDARD HULL. 

Let X be an internal set and A = [d: d EA} a (possibly exter-

nal) set of >!'-pseudometrics on X, that is, each d EA is a map 

d: X XX --. >!<R + satisfying d(x, x) = 0, d(x, y) = d(y, x), and d(x, z) ~ 

d(x, y) + d( y, z). 

Let 0 A (a) be the A-galaxy of a, that is, the set of points a 

finite distance from a, [x EX: for each d EA, d(x, a) E O}. Let 

oA(x) = [y EX: d(x, y) ~ 0 for each d EA}. On the set OA(a) / oA' the 

points of 0 A (a) which have been identified if they are infinitesimally 

close for each d EA, the mappings st(d(x, y)) are pseudometrics. We 

denote the resulting uniform space by 

hull(X, a;A) , 

which we refer to as the nonstandard hull of X at a with respect to A. 

In the case of H(G) in section II, we take a to be the zero 

function and A the single element 11x-y11. 

(Al. 2) THEOREM: 

Let X be a >!<-uniform space in a nonstandard x-saturated ultra­

power model >!<JC. Let a EX and J\ be a family of >!<-pseudometrics on 

X. If x > max(D[
0

, card (A)), then hull(X, a;A) is a complete uniform 

space. 

The proof in Luxemburg [2, pp. 80 and 81 J applies with more 

work to extend the Cauchy set. We omit the details. The simpler 

case of the hull of a >!<-metric space is all we shall use and this is 



done as follows. Let ( o(a ) : p EN) be a Cauchy sequence in 
p 

hull(X, a; [d}). Extend a: ~:'N ~ ~:)C to an internal sequence. Since 

-1 A -1 
a (X) 2 N we know a (X) contains an initial segment [l,. e. , w} 

with w E #N. o(a ) is the limit . 
. W 

Now we shall consider the hulls of a ~:~-Banach space E and 

its internal continuous dual E'. We assume throughout"that we are 
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working in a saturated ultra power model. Let E 0 = hull (E, O; [ 11x-y11 }) 

and (E') 0 = hull (E' , 0; [II cp- V 11 }) • 

We may also consider the external continuous dual of the 

ordinary Banach space E 
0 

which we .denote by (E 0)'. 

(Al. 3) THEOREM: 

(E')o is a closed subspace of (E 0)' which separates points of E 0 • 

PROOF: 

If Cf) EE' has finite norm, then stcp(x), xEE
0 

is well defined, 

linear, and 11 st <P II ~ 11 cp I!. Now if 11 ~-cp II ~ 0, then st(~ (x)) = 
st(cp(x)) for x E E

0
, so we may view (E') 

0 
as norm embedded in (E

0
)'. 

It is closed since it is complete. 

If 0 -:/; x, y EE with 11x-y11 ~ 0 so that they give rise to distinct 

elements of E
0

, we define <P as follows~ 

cp(x/llx!I) = 1, cp(y/!IY!!) = 0 and Cf)([a/llxllJx+ [b/llYll ]y) = 

a and then extend cp internally to all E subject to the condition that 

11cp11 :::= 1. Now st( co) separates x and y in E
0

. 

This last result leads us to ask whether (E' )
0 

is all of (E
0
)' 

and on the basis of the compatibility of nonstandard models with 
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linked algebraic and topological properties, we might expect this to be 

the case. On the other hand, the construction of nonstandard hulls is 

external and since E
0 

may be quite large it also seems possible that 

(E
0
)' may be strictly larger. We do not know the answer to this 

question. 
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APPENDIX 2 

SWEEPING MEASURES TO THE BOUNDARY 

OF SMOOTH REGIONS 

In this appendix we extend a result of Rubel and Shields from 

the unit disk to finitely connected regions with smooth boundary. 

The ~:~-transform of this result is used in section II. 3 on the approx-

imating region to represent the pre-dual as internal integrals 

infinitesimally near the boundary of an arbitrary region. Since the 

techniques of Rubel and Shields [7] are scarcely changed we ·have put 

the result in an appendix. 

(A2. 1) THEOREM: 

Let G be a finitely connected region with smooth boundary bG. 

1 1 
Then M(G) /N(G) and L (bG) /N (bG) are isomorphic pre-dual Banach 

spaces for H(G). 

Specifically, for µ E M(G) there is an f E L 1 
(bG) such that 

r hdµ = J f(z)h(z) I dz I for all h E H(G). Moreover' the norm in the 
G bG 
quotient spaces is preserved under this assignment and the assignment 

is onto. 

We begin by stating the lemmas we shall need in order to apply 

the techniques of Rubel and Shields. 

LEMMA 1: 

Each h E H(G) determines a bounded measurable function on bG 

by the non-tangential limits of h. Moreover, the C a uchy formula 

holds on bG: 



h(z) = (1 /2 TTi} J (h(w) /(w-z) }dw , 

bG 

z E G • 

The smooth simply connected case follows from the fact that 

the inverse of the Riemann mapping is angle preserving to the 

boundary and absolutely continuous on the circle. The finitely con-

nected case can be reduced to this by dividing the region with non-
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overlapping smooth simply connected curves tangent to the successive 

boundary components. In this way you reduce the region to the study 

of two simply connected ones which overlap on the interiors of the 

dividing curves. The boundary integral
1 

n 
r = s + J 6 J J i=O 

bG c1 c2 r. 
1 

and the Cauchy formula follows. 

LEMMA 2: 

00 

H (G} viewed as the non-tangential limit functions on bG is a 

00 00 

closed subspace of L (bG), in fact, the L -norm of the non-tangential 

00 

limit function equals the H -norm of the analytic function. 

This follows from the simply connected case by the same pro-

cedure as in Lemma 1. The simply connected case follows from the 

fact that sets of measure zero correspond under the Riemann mapping. 

The importance of Lemma 2 is that L 
1 

(bG} /N1 {bG} is a pre -

00 

dual for H (G). 
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LEMMA 3: 

In the weak-star topolog ies cr(H, M) and cr(H, L 1) a linear space · 

is closed if and only if it is sequentially closed. 

This well-known result appears in Banach's ·treatise. 

LEMMA 4: 

A sequence (hn) S. H(G) converges in cr(H, M) to a limit h if and 

only if (h ) converges boundedly to h. 
n 

This result appears in the paper of Rubel and Shields [7 ]. (See 

section II. 4 for the definition of bounded convergence.) 

PROOF OF THE THEOREM: 

Suppose first that we are given a function f E L 1
(bG). We show 

that L(h) = f f(z)h(z) !dz! is a-continuous by showing that its kernel 

bG 
is a-sequentially closed. (Lemma 3.) 

Assume h ~ h and L(h ) = 0 for each n. We wish to show 
n n 

L(h) = 0. Now h ~h by Lemma 4 so !!h II ::;;;; B and for convenience 
n n 

assume ~l. 
CX) 1 1 

By Alaoglu's theorem h has a a(H , L /N )-convergent 
n 

subsequence k ~ k. This means 
n 

1 z dz 
for each f E L (bG). By the Cauchy formula, substituting z::w ld.Zf 

= f(z), we see that k(z) = h(z). Since L is by definition cr(H
00

, L
1 

/N
1
)­

continuous L(k) = 0 and therefore L(h) = 0 which shows L 1 /N 1 is 

contained in M/N. 



Conversely, if K(h} = J h(z)dµ(z) for µ E M(G) we must show 

that the kernel of K is a(H
00

, L
1 /N 1

)- sequentially closed. (Lemma 2 

and 3.} So we assume h o-(Hro, Ll / Nl) h, with K(h ) = 0 for all n. 
n n 

We must show K(h) = O. 

By the uniform boundedness principle the h are uniformly 
n 

essentially bounded on bG and hence within G. They converge point-

wise by the Cauchy formula. 

K(h) = O. 

By Lemma 4 therefore h ~h and 
n 
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APPENDIX 3 

NONSTANDARD MODELS 

In abstract algebra one often studies the properties of a map-

ping necessary to preserve the structure in question, that is, 

monomorphisms. The image under such a map is indistinguishable 

from the original for the sake of the structure in question. (The reals 

embedded in the complex plane, for example.) 

We wish to inject "ordinary mathematics'' into a larger theory 

in a way which preserves its structure, much as the real numbers are 

embedded in the complex numbers. The reader is no doubt familiar 

with examples of properties of the real numbers which can be more 

easily obtained by first embedding R in C. This is analogous to the 

way one may view applications of nonstandard analysis--we enlarge 

to simplify. 

For our purposes "ordinary mathematics" is the study. of the 

following set 'Y} called the superstructure based on the natural num­

bers, N. Let N
0 

= N, Nk = Jk:;} N
1
), k = 1,2, ... , we take 

... ~ 1=0 
co 

'J = U Nk. (P denotes power set, the set of all subsets.) 
k=O 

The structure we are interested in is the membership relation, 

e, restricted to7( No doubt the reader "believes" that we may base 

mathematics on set theory--calling ~ a (standard) model for "ordinary 

mathematics" is no more than that ''belief". This set is sufficiently 

large to suit our purposes, for example, the real numbers are in 

as Dedekind cuts of rationals, which are ordered pairs of integers, 

which are ordered pairs of natural numbers. (We view (a, b) as 



(a , [a, b} }. ) Functions are sets of ordered pairs, so H
00 

(D) E ?'/. 
Riemann surfaces can be embedded in Euclidean space, so they too 

can be viewed in 7/. (The reader can convince himself of these 

statements with a little effort.) 

Now we give the essential properties of a nonstandard exten­

sion map, >:', which is defined on 'I/. 
,,, 
., .... is an injection, it is one-to-one. 

>:' pre serves E: if a EA E /7, then >:ca E >:'A. 

>~ preserves equality: >:' [(x, x): x EA E'r/} = [(y, y): y E >:cA}~ 
,t, 

··· preserves finite sets: if a
1

, a
2

, .•• , an E 'lj, then -

>:c f } r>!< >:~ } ta
1

, ••. ,a = t a 1 , .•• , a . n . n 
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>:c preserves basic set operations: >:c¢ = ¢, >:<(A U B) = >!<A U >!<B, 

>:c preserves domains and ranges of n-ary relations and com-

mutes with permutations of n-ary relations. This allows us to extend 

functions to the extension of their domains and ranges for example. 

''c 
·· pre serves atomic standard definitions of sets: 

>:c [ ( x, y) : x E y E A E J? } = [ ( z, w) : z E w E >:'A } • 

>!c produces a proper extension, that is a NONstandard model: 

if A E 'l[ is an infinite set, then C'x: x E A} which is denoted A, is 

properly contained in >:cA. This means >:cR contains infinitesimals, 

but we remind the reader that it also means that the set of standard 

~ ~ ~ 
subsets of ···R, P(R) is a proper subset of the internal subsets of '"R, 

The image of >!' is a nonstandard model of ordinary ma the-

matics in the sense that a theorem phrased in terms of sets of 'Y( is 
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true if and only if its >:~-transform is true, where the >:'-transform is 

the sarne statement with a >:' on each constant. For example, the 

nonstandard reals, >:'R, are >:'-complete and yet externally incomplete. 

This means every bounded set A E >!'P(R) has a least upper bound, 

nonetheless, the set of infinitesimals o E P('R) does not have a 

supremum. In particular, the set of internal subsets of >!'R, >!'P(R), is 

properly contained in the set of (all or) external subsets, P(:'R). Dis-

tinguishing between internal and external objects is what allows us to 

enlarge "f/ and still preserve all of its properties so far as they can 

be expressed in terms of the extensions of sets in 'Y/. 
The >!~-transform of a statement from ordinary mathematics is 

the internal notion one obtains in the nonstandard model by first 

writing the statement in terms of E and sets . of'}(, being careful to 

only quantify over elements of~, and then placing a >:' on each con-

stant in the sentence. A >:'-continuous function is necessarily internal 

and satisfies the B- o definition where 
~·, 

B and 6 range over 'R. An 

S-continuous function may be external and it satisfies the E;- o definition 

with standard € and o, that is e, o ER+ --being able to work with both 

internal and external concepts like these makes the theory useful. 

It is usually difficult to tell whether a given set is internal, but . 

one case is easy--when the set is described by a sentence which 

involves only internal constants. We call this the IN"TERNAL DEFIN"I-

TION PRIN"CIPLE and use it extensively above. A special case of 

this is when the sentence is the >:'-transform of a sentence from 6YJ, 

then the set is the image under >!' of the correspondingly defined set 
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One way to exhibit ~:<-mappings is by means of the ultrapower 

construction. Nonstandard ultrapower models have extension proper­

ties for mappings as well as additional saturation, most important for 

applications, they will seem quite concrete to many mathematicians 

while an appeal to the compactness principle may not. We shall not 

give this construction since it can be found in many places. 

In order to work more freely with internal sets we assume our 

nonstandard model is x-saturated up to some infinite cardinal, usually 

card(~)+. 

Many interesting properties of x-saturated ultrapower models 

can be found in the paper, A General Theory of Monads by W . . A. J~ 

Luxemburg. The above axioms for the >:<-mapping appear in A Set­

Theoretical Characterization of Enlargements by A. Robinson and 

E. Zakon. Both papers are in the volume Applications of Model 

Theory to Algebra, Analysis and Probability, edited by W. A. J. 

Luxemburg. 

For our purposes the properties of x-saturated ultrapower 

needed are Luxemburg's Theorems 2. 7. 11 and 2. 7. 12. 


