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Abstract

We perform a measurement of R(D(∗)) for B → D(∗)τντ using semileptonic tagging and τ decays to hadrons
on the 429 fb−1 of data that BABAR collected at the Υ (4S) resonance. This is the first measurement of
R(D(∗)) using the specified reconstruction channels. Candidate selection was performed with supervised
learning, where the training labels were obtained by solving an instance of subgraph isomorphism. The
signal extraction was performed by solving an optimization problem whose objective function required the
evaluation of kernel density estimates that were accelerated by a branch-and-bound algorithm as well as
with a GPU. The training data for the density estimates were themselves the output of two classifier scores.
We present a 68% and 95% confidence regions of R(D(∗)), which do not show enough evidence to reject the
standard model prediction.
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Chapter 1

Introduction

This chapter tells the high level backstory of this project. It is meant to motivate the questions that we
are primarily interested in without going into the details that experts might be attentive to. Any relevant
details that are skipped in this fashion will be addressed in the appropriate chapter later in this document,
and we direct the expert reader to the appropriate place whenever possible.

1.1 Background

This section introduces some of the elementary terminology and concepts that might be useful for those with-
out much background in the field. It aims to give just enough information for the purpose of understanding
the motivation, the methods, and the results of this project.

1.1.1 The Standard Model

The Standard Model (SM) is a mathematical model that physicists have constructed to describe the funda-
mental laws of nature. Actually, it is more appropriate to say that it is our best description of subatomic
particles, consistent with all of our experimental observations known to date. Indeed, the goal of a typical
high energy physicist is often to find ways to reveal deficiencies within the Standard Model, leading to,
hopefully, hints of the unknown.

It might be unconvincing, and at best surprising, that all complicated entities and phenomena in nature
can be reduced to just the Standard Model. Indeed, just as in civil planning, understanding how a brick is
manufactured does not necessarily imply an understanding of how they can be assembled into an entire city.
Nonetheless, a typical high energy physicist tends to be interested in this type of reductionism, and it just
so happens that many of them agree that the Standard Model is, at present, the inner most layer of their
understanding.

While there is only one equation that describes the Standard Model, there are various ways in which one
can focus their descriptions and introductions. In the present context, it is useful to consider the Standard
Model as a model that describes nature entirely in terms of matter and their interactions. More than that, all
matter, and even interactions themselves, are modelled as the creation and annihilation of certain elementary
particles. These particles are listed below for completeness:

• Quarks: u, d, s, c, b, and t.

• Leptons: e (electron), µ (muon), τ , νe, νµ, and ντ
1.

• Gauge Bosons: γ (photon), g (gluon), W , and Z.

• H (Higgs boson).
1The ν particles are also referred to as neutrinos.
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1.1.2 Particle physics

The myriad of particle names can sometimes be perplexing, since the nomenclature might not seem to follow
any rhyme or reason. This is due to the historical development of the field, and one can view it as simply
that. Unfortunately, we are not quite done with nomenclature yet. The elementary particles above can form
composite particles, too. At one point in time, these composite particles were themselves thought to be
elementary, and so many of them were given different names. Luckily for us, we “only” need to remember
the following for the purposes of this project:

• Mesons: Υ , B, D, K, π (pion), ρ, a.

• Baryons: p (proton), n (neutron).

Occassionally, some embellishments to the symbols might also be present. Each type of embellishment
indicates a different particle, but those particles sharing the same letter are closely related to each other.
The following are examples that we will encounter in this project:

• Υ (4S).

• B+, B−, B0, and B0.

• D+, D−, D∗0, D∗0, D∗∗, D1, D′1, D∗2 , and D∗0 .

• K+, K−, K0, K0, K0
S , and K0

L.

• π+, π−, π0, ρ+, ρ−, ρ0, and a1.

• e+, e−, µ+, µ−, τ+, τ−, νe, νe, νµ, νµ, ντ , and ντ .

Sometimes we might use the shorthand D(∗) to mean that a given expression is valid when either D or D∗ is
substituted. Similarly, e± can mean that the expression is valid for either e+ or e−. When such shorthand
is used, the meaning should be evident from the context.

Effectively, all composite particles decay to more elementary constituents after some amount of time.
The decayed to particles can, of course, themselves be composite. The decay process continues until all final
products are stable. In this project, we consider the following set of final state particles to be stable:

e±, µ±, π±, K±, KL, p, n, γ, and ν.

Each composite particle can also decay in several different ways2. The mode in which a particle decays
is a probabilistic process, with some modes being decayed to more frequently than others. It is useful to
represent the set of possible decays of a given particle using the following chart3. The one shown below
represents a small set of possible decays of an Υ particle that we are interested in for this project:

Υ → BB

B → Dτν|Deν|DK|Kee
D → Kπ|Kπγ
τ → eν

Based on this chart, we can “derive” the following example sequence of Υ decays:

Υ ⇒ BB ⇒ DτνKee⇒ KπγeννKee (1.1)

The probability in which a particle decays into a certain mode is often referred to as the mode’s branching
fraction. This is often denoted as B(.); for instance, B(B0 → D−e+νe) = 0.0219± 0.0012.

2These are sometimes called the decay modes or channels of a particle.
3This is essentially a probabilistic context free grammar. The start symbol is the starting particle, the rules are the decay

modes, the non-terminal symbols are composite particles, and the terminal symbols are the final state particles
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1.1.3 Particle accelerators, detectors, and their simulations

Data from which physicists use to test the Standard Model are often obtained by operating a particle
accelerator. In our case, the accelerator was designed to repeatedly produce the Υ 4 particle by colliding e+

and e− particles against each other. The Υ particle then decays naturally into a set of final state particles,
which then fly off and strike the detector elements. Such particle hits get converted to electrical pulses by
the various components of the detector, and are eventually processed and stored into a database.

The data that we receive from operating such an experimental setup is organized as a set of records. By
and large, a single record corresponds to a single collision. The contents of the record consists of the hits
that were registered, plus any post processing information that were derived from it.

As is the case for many scientific and engineering endeavors, it is often not practical, and sometimes
even impossible to obtain the data sample that is required to carry out the statistical inference task of
interest. When this is the case, usually after having exhausted all other options, we opt for using a computer
to simulate the data sample of interest. The interpretation of our results, are therefore, more nuanced.
Throughout this document, we take special care to discuss these finer points whenever they are relevant.
Nevertheless, our computer simulated accelerator data is surprisingly accurate in many cases, and serves as
a testament to the physicist’s understanding of nature and their instruments.

1.2 Project Motivation

The physical quantity we measure is the following ratio of branching fractions:

R(D(∗)) =
B(B → D(∗)τντ )

B(B → D(∗)`ν`)
, (1.2)

where ` is either e or µ. Strictly speaking, we have defined two R(D(∗)) quantities that correspond to the
different lepton flavors of `. However, the difference between them is negligible for the purposes of this
analysis and we simply refer to the single quantity, R(D(∗)).

The initial motivation for performing this analysis is due to BABAR’s 2012 result[1]. At the time, this
result measured a 3.4σ deviation of R(D(∗)) from those predicted in the Standard Model (SM). Since then,
many others[2][3][4][5] have contributed their measurements towards a world average. As of summer 2017,
the average performed by the Heavy Flavor Averaging Group (HFAG) finds a deviation at 4.1σ relative to
the Standard Model calculations performed in [6] and [7]. A visual and tabular summary of these results are
shown in figure 1.1 and table 1.1, repectively.

The goal of our analysis is to provide additional evidence, either for or against, the Standard Model.
Perhaps it is worth at least one paragraph to muse about the possibilities for new laws of nature, if not

for the purpose of boosting morale and motivation, had the Standard Model been rejected in this particular
way. One idea that has been popular, though not as much so recently compared to a few years ago, is
that there could be additional Higgs bosons lurking around to be discovered. This possibility was attractive
because it is often a required ingredient for some of the following major areas of interest:

• Supersymmetry: from a particle content point of view, the presence of such a symmetry law will
necessitate every elementary particle to have a corresponding “super” partner. Of course, this idea
was not introduced for the purpose of making the Standard Model more complicated than it already
is, but rather, it was introduced as a possible solution to resolve several of its theoretical deficiencies.

• Quantum gravity: the desire for supersymmetry is also strengthened by the desire to build viable string
theories. These theories are one of the most promising avenues towards harmonizing relativity with
quantum mechanics, the two major pillars from which all contemporary physics are built.

The list above barely scratches the surface of what they are about and of what is possible. I highly encourage
the interested reader to find more information elsewhere.

4Actually, Υ (4S). But we try to minimize the nomenclature in this chapter.
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Figure 1.1: Visual summary of recent results. Image courtesy of HFAG.

R(D) R(D∗)
BABAR 2013 [1] 0.440± 0.058± 0.042 0.332± 0.024± 0.018
Belle 2015 [2] 0.375± 0.064± 0.026 0.293± 0.038± 0.015
LHCb 2015 [4] 0.336± 0.027± 0.03 -
Belle 2016 [3] 0.302± 0.03± 0.011 -
Belle 2017 [5] 0.270± 0.035± 0.028 -
LHCb 2017 [3] 0.285± 0.019± 0.029 -
Average (HFAG Summer 2017) 0.407± 0.039± 0.024 0.304± 0.013± 0.007
Standard Model 0.300± 0.008[6] 0.252± 0.003[7]

Table 1.1: Tabular summary of recent results. R(D) and R(D∗) exceed the SM predictions by 2.3σ and 3.4σ,
respectively. Note that we do not list the correlations between the two quantities for each listing, though
they are accounted for in the inference procedure. The final combination of the measurements conclude a
p-value of 4.13× 10−5 relative to the Standard Model, which corresponds to a 4.1σ deviation.
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Chapter 2

Phenomenology

This chapter discusses the basic phenomenology for B → D(∗)`ν` decays. The material presented here is
largely taken from [8], [6], [7], and [9]. We will be skipping over many details that are either technically
tricky and/or not particularly illuminating; however, the interested reader can find them in the references
given.

Even though the eventual goal of this discussion is to compute the Standard Model predictions for
R(D(∗)), the main purpose is actually to understand the origins of the theoretical uncertainties. It will turn
out that some of these uncertainties are closely related to the systematic uncertainties that enter into our
final result, and we pay special attention to point these out when they arise.

This chapter contains technical information intended for the domain expert. Others may safely skip this
material.

2.1 General comments

We copy the definition of R(D(∗)) below for convenience:

R(D(∗)) =
B(B → D(∗)τντ )

B(B → D(∗)`ν`)
, (2.1)

To compute its value using the Standard Model, it suffices to compute the branching fraction B(B →M`−ν̄`),
where M refers to either a D or a D∗ and where ` can refer to any of e, µ, or τ . To this end, we must
analyze the decay that is shown schematically in figure 2.1.

B̄
∼ ΛQCD
ξmuck(w)

M

W

q2

`

ν̄

Figure 2.1: B decay schematic.
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Before moving on with the calculations, we make some general comments about figure 2.1. The amplitude
of B → M`ν factorizes into two contributions. The first is a well understood electroweak process that
corresponds to the lepton production from the virtual W . The second contribution comes from having the
B meson convert into a M (D or D∗) meson, which is a process subject to QCD contributions. While much
of the QCD effects are well controlled under the heavy quark symmmetry, there are still remaining long
distance effects that are encapsulated in the so-called Isgur-Wise function, ξmuck(w). To understanding the
meaning of this function, we define the following kinematic variables:

q = pB − pM (2.2)

and

v = pB/mB , v′ = pM/mB , w = v · v′ =
m2
B +m2

M − q2

2mBmM
(2.3)

q is simply the momentum that is carried away by the leptons, while v and v′ are the 4-velocity of the
B and M mesons. When the B meson decays, the color neutral leptonic system carries away momentum,
causing the leftover meson to recoil. The recoil induces the meson system to change its velocity from v
to v′. The surrounding light quarks and gluon must then reassemble themselves to form the M meson,
which may or may not happen successfully. The Isgur-Wise function ξmuck(w) is the amplitude for such a
successful reassembly; the larger the recoil, the less likely that the meson reassembles into the desired target.
Such reassemblies proceed through strong interactions at energy scales of the order ΛQCD, and are therefore
not under theoretical control. Despite remarkable efforts in constraining the form of ξ, its uncertainty still
remains the primary bottleneck for making precise theoretical predictions for R(D(∗)).

2.2 Scattering amplitudes

We begin our calculations by writing down the relevant interaction terms in the Standard Model. These are
described by the following leading order effective Lagrangian:

Leff = −GF√
2
VcbJ

†µ
ν` Jcbµ + h.c. (2.4)

where

Jµν` := ψ̄νγ
µ(1− γ5)ψ` (2.5)

Jµcb := ψ̄cγ
µ(1− γ5)ψb (2.6)

This is actually the familiar 4-point Fermi interaction theory, where theW boson has been formally integrated
out. The error we make by focusing only on this term is on the order of mbm`/M

2
W , which is at worst ∼ 10−3.

We use λM , λ`, and λW to denote the helicities for the M , `, and the virtual W . Note that λM can take
on the values ±1 and 0 when M = D∗, and only 0 when M = D. To distinguish the helicity zero states, we
use λM = s to denote the case when M = D. This convention also applies to λW .

We can express the metric tensor as

− gµν =
∑
λW

ηλW ε
µ(λW )ε∗ν(λW ) (2.7)

where we have defined η and the conventions for the polarization tensor of the virtual W as

η± = η0 = −ηs = 1 (2.8)

ε(q,±)µ = ∓ 1√
2

(0, 1,∓i, 0) (2.9)

ε(q, 0)µ = ∓ 1√
q2

(pM , 0, 0,−q0) (2.10)

ε(q, s)µ = ∓ 1√
q2
qµ (2.11)
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and identified ε(λW ) as shorthand for ε(q, λW ).
The scattering amplitude for the decay process of figure 2.1 can now be written as

Mλ`
λM

(q2, cos θ`) =
GF√

2
Vcb
∑
λW

ηλWL
λ`
λW
HλM
λW

(2.12)

where θ` is the decay angle of the lepton in the W rest frame, and

HλM
λW

= ε∗µ(λW )〈M(pM , λM )|Jµcb|B(pB)〉 (2.13)

Lλ`λW = εµ(λW )〈`(p`, λ`)|J†µ`ν |0〉 (2.14)

describe the B →MW ∗ and W ∗ → `ν̄ decays, repectively.
The evaluation of the leptonic amplitudes is, in principle, straightforward. Following the coordinate and

phase conventions given in [8], we get

L−±(q2, cos θ`) =
√

2q2

√
1−m2

`/q
2(1± cos θ`) (2.15)

L−0 (q2, cos θ`) = −2
√
q2

√
1−m2

`/q
2 sin θ` (2.16)

L−s (q2, cos θ`) = 0 (2.17)

and

L+
±(q2, cos θ`) = ±

√
2m`

√
1−m2

`/q
2 sin θ` (2.18)

L+
0 (q2, cos θ`) = 2m`

√
1−m2

`/q
2 cos θ` (2.19)

L+
s (q2, cos θ`) = −2m`

√
1−m2

`/q
2 (2.20)

Note that the L+ amplitudes are helicity supressed by the factor m`, and L−0 vanishes by angular momentum
conservation.

The hadronic amplitudes are written in terms of a set of form factors. These are precisely the functions
that include the long distance QCD effects involved during hadronization.

2.2.1 Hadronic amplitudes for B → D`ν

The convention for expressing the B → D`ν transition is in terms of two form factors h±(w):

〈D(v′)|c̄γµb|B(v)〉 =
√
mBmD(h+(w)(v + v′)µ + h−(w)(v − v′)µ) (2.21)

This gives the following expressions for the hadronic amplitudes:

Hs
±(q2) = 0 (2.22)

Hs
0(q2) =

√
mBmD

1 + r√
1− 2rw + r2

√
w2 − 1V1(w) (2.23)

Hs
s (q2) =

√
mBmD

1− r√
1− 2rw + r2

(w + 1)S1(w) (2.24)

where r = mD/mB and

V1(w) = h+(w)− 1− r
1 + r

h−(w) (2.25)

S1(w) = h+(w)− 1 + r

1− r
w − 1

w + 1
h−(w) (2.26)
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Note that we liberally interchange between using q2 and w, and also between using p and v. These are
equivalent ways of expression, but one set of conventions is sometimes more convenient than another.

A popular way of parametrizing V1(w) and S1(w) is to use dispersion relation constraints in a QCD sum
rule [10]. This gives the following expressions:

V1(w) = V1(1)(1− 8ρ2
1z + (51ρ2

1 − 10)z2 − (252ρ2
1 − 84)z3) (2.27)

S1(w) = (1 + ∆(w))V1(w) (2.28)

where

∆(w) = −0.019 + 0.041(w − 1)− 0.015(w − 1)2 (2.29)

z =

√
w + 1−

√
2

√
w + 1 +

√
2

(2.30)

and the slope parameter ρ1 = 1.18± 0.04± 0.04 is determine using experimental data, which we obtain from
HFAG [11]. V1(1) is the term that encapsulate the degree for which heavy quark symmetry holds; in fact,
V (w) is the Isgur-Wise function disguised, and V (1) = 1 if the symmetry is exact. While we can use heavy
quark effective theory (HQET) to systematically determine any symmetry breaking contributions to V (1),
its exact value will not matter in predictions for R(D) since it will cancel in the ratio.

2.2.2 Hadronic amplitudes for B → D∗`ν

The convention for expressing the B → D∗`ν transition is in terms of four form factors V (q2), A0(q2),
A1(q2), and A2(q2):

〈D∗(pD∗ , λD∗)|c̄γµb|B(pB)〉 =
2iV (q2)

mB +mD∗
εµναβε

∗νpαBp
β
D∗ (2.31)

〈D∗(pD∗ , λD∗)|c̄γµγ5b|B(pB)〉 = 2mD∗A0(q2)
ε∗ · q
q2

qµ + (mB +mD∗)A1(q2)

(
ε∗µ −

ε∗ · q
q2

qµ

)
(2.32)

−A2(q2)
ε∗ · q

mB +mD∗

(
(pB + pD∗)µ −

m2
B −m2

D∗

q2
qµ

)
(2.33)

where the polarization tensor ε is shorthand for ε(λD∗).
The hadronic amplitudes are then expressed in terms of these form factors as

H±± (q2) = (mB +mD∗)A1(q2)∓ 2mB

mB +mD∗
|~pD∗ |V (q2) (2.34)

H0
0 (q2) =

1

2mD∗
√
q2

((m2
B −m2

D∗ − q2)(mB +mD∗)A1(q2)− 4m2
B |~pD∗ |2

mB +mD∗
A2(q2)) (2.35)

H0
s =

2mB |~pD∗ |√
q2

A0(q2) (2.36)

The most popular way to parametrize the form factors are those of reference [10]. They begin by
introducing a new set of form factors hA1

(w), R0(w), R1(w), and R2(w). They are related to the conventional
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form factors as follows:

hA1(w) := A1(q2)
1

RD∗

2

w + 1
(2.37)

A0(q2) =
R0(w)

RD∗
hA1(w) (2.38)

A2(q2) =
R2(w)

RD∗
hA1

(w) (2.39)

V (q2) =
R1(w)

RD∗
hA1

(w) (2.40)

(2.41)

where RD∗ = 2
√
mBmD∗/(mB + mD∗). They then apply analyticity constraints to deduce the following

parametrization of the form factors:

hA1(w) = hA1(1)(1− 8ρ2z + (53ρ2 − 15)z2 − (231ρ2 − 91)z3) (2.42)

R1(w) = R1(1)− 0.12(w − 1) + 0.05(w − 1)2 (2.43)

R2(w) = R2(1) + 0.11(w − 1)− 0.06(w − 1)2 (2.44)

R0(w) = R0(1)− 0.11(w − 1) + 0.01(w − 1)2 (2.45)

where hA1
(1), R1(1), R2(1), and ρ are taken from HFAG. Similar to V1(1), R0(1) is also a term that

encapsulates the degree to which heavy quark symmetry holds. Unlike V1(1), however, it neither cancels in
the ratio R(D∗), nor is it presently amenable to experimental determination. Its value is thus determined
systematically from HQET, which turns out to be 1.14 (see Appendix B of [7] for details).

2.3 Decay rates

The differential decay rate for B → D(∗)`ν is then expressed in terms of the scattering amplitude as follows

dΓ =
1

2mB

∑
λ`λM

|Mλ`
λM
|2dΦ3 (2.46)

where

dΦ3 =

√
Q+Q−

256π3m2
B

(
1− m2

`

q2

)
dq2d cos θ` (2.47)

and Q± = (mB ±mM )2 − q2.
Substituting the expressions for the scattering amplitudes, we get

d2Γ

dq2d cos θ
=
G2
F |Vcb|2|~pM |q2

256π3m2
B

(
1− m2

`

q2

)2

× (2.48)

((1− cos θ)2|H+
+ |2 + (1 + cos θ)2|H−− |2 + 2 sin2 θ|H0

0 |2+ (2.49)

m2
`

q2

(
sin2 θ(|H+

+ |2 + |H−− |2) + 2|H0
s −H0

0 cos θ|2
)
) (2.50)

Performing the integration over d cos θ, we obtain

dΓ

dq2
=
G2
F |Vcb|2|~pM |q2

96π3m2
B

(
1− m2

`

q2

)2(
(|H+

+ |2 + |H−− |2 + |H0
0 |2)

(
1 +

m2`

2q2

)
+

3

2

m2
`

q2
|H0

s |2
)

(2.51)

The differential decay rate formulae above are useful later on when we want to change form factor models
by “re-weighting”. For a full discussion on this topic, see reference [9].
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Finally, integrating over dq2 and substituting the appropriate masses for ` = e, τ gives the Standard
Model predictions for R(D(∗)):

R(D)SM = 0.302± 0.015 (2.52)

R(D∗)SM = 0.252± 0.003 (2.53)

The origins of these theoretical uncertainties is interesting. As one might have expected, the uncertainty in
the slope parameter ρ for the Isgur-Wise functions is indeed a major contributor, and is the main uncertainty
that dominates for R(D). For R(D∗), however, the parameter R0(1) is also a major contributor; the authors
of [7] claim that this is the main effect for the uncertainty in R(D∗), and can be improved by more precise
lattice QCD computations. It is also interesting to note that ρ is determined entirely from a single analysis
by Belle [12], so any mistakes and unaccounted systematics could also skew the results of these “theory”
predictions.
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Chapter 3

PEP-II and BABAR

In chapter 1, we discussed an analysts’ perspective of the data. While this level of abstraction is extremely
useful and perhaps sufficient for the purposes of our project, the actual data generation and collection is far
more complicated. If our abstraction were taken literally, it would be at least as outrageous as saying that
a computer is “just” a CPU and memory, and a car is “just” a peddle and a steering wheel.

For one, the Υ (4S) particles don’t just appear from thin air. It is produced by accelerating electrons and
positrons and colliding them under extreme, yet controlled conditions. The machine that generates these
collisions is called PEP-II.

The detection of the Υ (4S) and its decay products is not automatic, either. Sure, the detector is like a
camera, but what components are necessary to be installed and what are their design requirements? The
BABAR detector is what is used to actually collect the data. It has several major subsystems, all of which
are designed and optimized to collect data of the highest quality.

This chapter will only outline the key aspects that underlies the design and operation of PEP-II and
BABAR. For a full discussion, see [13].

3.1 The PEP-II accelerator

(a) Schematic. (b) Annotated aerial view.

Figure 3.1: PEP-II

The main component of PEP-II consists of two storage rings. The high energy storage ring (HER) delivers
9 GeV electrons while the low energy storage ring (LER) delivers 3.1 GeV electron. These settings were
decided such that the center of mass energy would be 10.58 GeV, corresponding to the mass of the Υ (4S).

You might wonder why the beam energies are asymmetric. The reason is that one of the primary goals of
BABAR was to make a precise measurement of sin 2β, which to a good approximation, quantifies the amount
of CP violation present in B0B0 mixing. In order to do so, there had to be sufficient position separation
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between the two B0 meson decays such that the detector could resolve their oscillation structure. The
asymmetric beam energy implements just that by causing a sufficiently large boost for the center of mass
frame. This leads to large B meson velocities in the lab frame, enough that the decay distances could be
resolved.

Figure 3.2: Integrated luminosity over time.

PEP-II was designed to operate at an instantaneous luminosity of 3 × 1033 cm−2s−1. However, the
instrument was designed so well that it was able to operate at 12 × 1033 cm−2s−1, which is 4 times the
design. Between the years of its operation (1999-2008), it delivered an integrated luminosity of 553.48 fb−1,
of which 432.89 fb−1 were recorded at the Υ (4S) resonance (“on-peak”), and 53.85 fb−1 was recorded in the
continuum (“off-peak”). Our project uses all of the off-peak data as well as 429.89 fb−1 of the on-peak data.
This corresponds to about 471× 106 BB pairs. Figure 3.2 shows the integrated luminosity over the years of
operation.

3.2 The BABAR detector

Many particle detectors, including BABAR, are interested in directly detecting the decay products caused by
the collision. Decay products can be grouped into two types: those that are stable (final state particles)
and those that are not (intermediate particles). Roughly speaking, the word “stable” refers to whether the
particle would decay before it reaches the detector, and so these are the only particles that are directly
detectable. The detection of unstable particles are done indirectly, by forming combinations of stable ones
and checkig whether the result satisfies characteristics of the target. Since all inference about the collision
relies on the detection of stable particles, it is no surprise that the detector is optimized for it.

Detecting a particle usually means that we measure its position of origination1, its energy, and its
momenta. These are measured by carefully inspecting its flight trajectory, which are observed directly from
its interaction with the various detector elements and pixels. Sometimes it is even possible to decide on the
species of a stable particle by observing the manner in which its trajectory has interacted with the detector.

Figure 3.3 shows the BABAR detector. It consists of several layers of subsystems; they are the silicon vertex
tracker (SVT), the drift chamber (DCH), the cherenkov detector (DIRC), the electromagnetic calorimeter
(EMC), a superconducting coil that provides 1.5 T of solenoidal magnetic field, and the instrumented flux

1This is sometimes referred to as the vertex. This usage is most common when discussing unstable particles.
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(a) Schematic. (b) In real life.

Figure 3.3: The BABAR detector.

return (IFR). We will discuss the functionality of many of these systems in the subsections below and its
primary role in the detection process.

The design of BABAR optimized on the following features:

1. Large solid angle coverage in the center of mass frame.

2. High vertex and 4-momenta resolution.

3. Particle identification.

3.2.1 Silicon vertex tracker (SVT)

(a) Schematic. (b) In real life.

Figure 3.4: Silicon vertex tracker.

The silicon vertex tracker is one of two components in BABAR responsible for detecting charged particle
trajectories. The idea is that a charged particle could interact with its layers so that the signals could be
used to accurately register the sequence of hit positions.
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It is organized as 5 layers of double sided silicon strips. The strips on opposite sides of the sensor are
orthogonal to each other: the φ measuring strip runs parallel to the beam pipe while the other measures the
z position.

Despite having seemingly few layers, the virtue of the SVT is that it is as close to the interaction point as
possible. The further one moves from the interaction point, the noisier the signal becomes since the particles
would have gone through more iterations of scattering. In fact, the SVT is what provides the bulk of the
resolution for B and D meson vertices.

3.2.2 Drift chamber (DCH)

(a) Schematic. (b) In real life.

Figure 3.5: Drift chamber.

The drift chamber is the other component in BABAR responsible for detecting charged particle trajectories.
It is located further away from the interaction point, but provides many more charged particle hits. Together
with hits registered in the SVT, the sequence of all hits are used to fit for the particle flight trajectory. Since
the solenoidal magnetic field is also known, the flight trajectory is also sufficient for determining the particle’s
three momenta.

The DCH consists of 40 layers of small hexagonal cells. The total number of drift cell is 7,104. Each cell
consists of 1 tungsten-rhenium sense wire and 6 aluminum field wires. The chamber is about 3m long and
filled with a mixture of 80% helium and 8-9.5% isobutane to minimize multiple scattering.

An additional functionality of the DCH is to observe dE/dx of charged particles. This is an additional
feature that is input towards particle identification.

3.2.3 Cherenkov detector (DIRC)

The purpose of the Detector of Internally Reflected Cherenkov light (DIRC) is to observe additional features
relevant for charged particle identification. It operates on the principle that when a charge particle travels
through a fused silica bar, it emits Cherenkov radiation. The opening cone angle (θc) is related to the
velocity in which the particle moves through the material.

The DIRC consists of thin synthetic fused silica bars with one end equipped with a mirror and the other
end connected to a photo multiplier tube (PMT) array viewing a water container.

3.2.4 Electromagnetic calorimeter (EMC)

The EMC consists of a cylindrical barrel and a conical forward endcap; the layout captures about 90% of
the total solid angle of the center of mass system. The barrel contains 5,760 thallium doped CsI crystals
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(a) Schematic. (b) In real life.

Figure 3.6: The DIRC.

(a) Schematic. (b) In real life.

Figure 3.7: The EMC.

arranged in 48 distinct rings with 120 crystals each. The endcap holds 820 crystals arranged in 8 rings. Each
crystal also has 2 PIN diodes attached at the end.

The primary purpose of the EMC is to measure the energy of photons and electrons. When a photon
or an electron travels through the crystal, it triggers a cascade of electromagnetic interactions that deposits
almost all of its energy to low energy phtons. The light is then reflected inside the crystal and collected
with the PIN diodes. The EMC also provides angular resolution for these particles as well. Achieving good
photon resolution is also very important for detecting π0’s since it decays to two photons.

3.2.5 Instrumented flux return (IFR)

The IFR serves a dual purpose as being the steel flux return for the magnet as well as being a muon and
long lived hadron filter. Its inputs are then used to in particle identification.

During the early phases of the experiment, resistive plate chambers (RPC) were installed between the
steel plates. Due to serious aging problems of the RPCs, the IFR underwent major upgrades. The original
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chambers in the forward endcap were replaced with RPCs of an improved design, while the barrel chambers
were replaced by limited streamer tubes (LST).

(a) Schematic. (b) In real life.

Figure 3.8: The IFR.
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Chapter 4

Analysis Strategy

4.1 Overview

The entry point to this analysis are the particle list primitives provided by the BABAR software framework.
We then proceed in the following steps to obtain the result:

1. Event reconstruction: For each event record, we use the particle list primitives to reconstruct a decay
prototype of interest. In particular, we reconstruct all possible decay sequences that proceeds through
a selected set of modes that a Υ (4S) could have taken to yield an event record consistent with the
particle list primitives.

2. Feature extraction: For each event as well as for each reconstructed Υ (4S) candidate, we compute
several features associated with them that are useful for distinguishing between signal and background
(to be defined in section 4.2).

3. Candidate selection: Event reconstruction can yield up to several Υ (4S) candidates for each event.
While it is possible to perform the analysis by pooling information over all candidates, we chose to
elect a single candidate to represent the event.

4. Signal classification: This stage uses the features extracted from each event to assign a score that
characterizes how similar it is to signal or to background.

5. Signal extraction: This steps estimates the number of events that are signal. As will be shown later,
the count obtained in this step divided by the efficiencies obtained in the next step will determine the
central value of the final result.

6. Efficiency estimation: This steps estimates the signal efficiency; that is, the probability that an event
passes all filters, given that it is a signal event.

7. Quantify systematic uncertainties.

8. Construct confidence regions.

In what follows, we begin with some definitions as well as a derivation of the main statistical quantity of
interest. We then proceed to describe how the main inference task is factorized and how each subproblem is
solved using the steps outlined above.
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4.1.1 Terminology

We must digress to discuss terminology that is not necessarily standard across physics analyses.
Particle physicists often refer to an accelerator collision as an “event”. This terminology is consistent

with the usage commonly encountered in relativity to refer to any single point in spacetime. Unfortunately,
the term “event” also has a special meaning in probability theory. In that discipline, it is defined to be any
subset of the sample space.

Since our analysis methodology relies heavily on probabilistic analysis, we use the following terminology
unless specifically stated otherwise:

Term Meaning
(collision) outcome a single accelerator collision
event subset of the sample space
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4.2 Event Categories

Before proceeding, we must define the probabilistic setting from which we are to perform statistical inference.
One can think of any single collision outcome at BABAR as a sample from the probability space (Ω,U ,P),

where Ω is the set of all possible outcomes, and U , P are suitably defined such that all outcomes are equally
likely.

We now define the set of event types as

C = {Dτh, D∗τh, D∗∗SL, Comb, Cont}, (4.1)

and a mapping T : Ω → C according to the decision tree shown in figure 4.1. In particular, for any ω ∈ Ω,
T (ω) is defined to be the leaf label that the decision tree assigns to ω.

Does some B decay as
B → D(∗)τν, τ → hadron?

Does some B decay as
B → Dτν?

Is this a BB event?

Does some B decay as
B → D∗∗`ν?

ContDτh D∗τh

D∗∗SL Comb

yes no

yes noyes no

yes no

Figure 4.1: The leaves of this decision tree define a partitioning of BABAR events.

Note that T defines a partition {Ei}i∈C over Ω1.
We can now define the following events and their corresponding aliases:

Event Definition Alias

EBB = ∪i∈C\{Cont}Ei BB
ES = EDτh ∪ ED∗τh signal
EB = EcS background

We may occassionally add a qualifier to isolate a specific type of signal or background; e.g. Dτh signal
refers specifically to EDτh , and BB background refers to EBB ∩ EB = ED∗∗SL ∪ EComb.

4.3 Estimating R(D(∗))

To measure R(D(∗)), it suffices to measure B(B → D(∗)τντ ) and divide by B(B → D(∗)`ν`) obtained from
other BABAR measurements[14][15][16][17] or the world average[18].

1That is, Ω = ∪i∈CEi and Ei ∩ Ej = ∅ for all i 6= j, i, j ∈ C.
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Define the following quantities:

P = P [EDτh |EBB ] (4.2)

Q = P [ED∗τh |EBB ] (4.3)

p = B(B → Dτν)× B(τ → hadrons) (4.4)

q = B(B → D∗τν)× B(τ → hadrons) (4.5)

By the elementary rules of probability, we have

P = P [EDτh |EBB ] (4.6)

= P
[
At least 1 B decays as B → Dτν|EBB

]
(4.7)

= p2 + 2p(1− p) (4.8)

⇒ p = 1−
√

1− P , (4.9)

hence

B(B → Dτν) =
1−
√

1− P
B(τ → hadrons)

(4.10)

Similarly,

Q = P [ED∗τh |EBB ] (4.11)

= P
[
At least 1 B decays as B → D∗τν, but neither decays as B → Dτν|EBB

]
(4.12)

= q2 + 2q(1− p− q) (4.13)

⇒ q = (1− p)

(
1−

√
1− Q

(1− p)2

)
, (4.14)

hence

B(B → D∗τν) =
1− p

B(τ → hadrons)

(
1−

√
1− Q

(1− p)2

)
(4.15)

Observe that the problem of estimating R(D(∗)) reduces to the problem of estimating P
[
ED(∗)τh |EBB

]
.

We do, however, require the additional quantities B(B → D(∗)`ν`) and B(τ → hadrons) to complete the
measurement. These values are derived from inputs taken from the PDG and HFAG as follows [18][11]:

B(B → D`ν`) = P
[
B → D`ν`|B = B±

]
P
[
B = B±

]
+ P

[
B → D`ν`|B = B0

]
P
[
B = B0

]
(4.16)

= 0.487× B(B0 → D0`ν`) + 0.513× B(B+ → D+`ν`) (4.17)

= (2.22± 0.10)% (4.18)

B(B → D∗`ν`) = P
[
B → D∗`ν`|B = B±

]
P
[
B = B±

]
+ P

[
B → D∗`ν`|B = B0

]
P
[
B = B0

]
(4.19)

= 0.487× B(B0 → D∗0`ν`) + 0.513× B(B+ → D∗+`ν`) (4.20)

= (5.13± 0.11)% (4.21)

B(τ → hadrons) = 1− B(τ → eν̄eντ )− B(τ → µν̄µντ )− B(τ → eν̄eντγ)− B(τ → µν̄µντγ) (4.22)

= (63± 0.18)% (4.23)
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where we have used the following PDG values:

B(B0 → D0`ν`) = (2.13± 0.095)%

B(B+ → D+`ν`) = (2.30± 0.10)%

B(B0 → D∗0`ν`) = (4.93± 0.11)%

B(B+ → D∗+`ν`) = (5.31± 0.12)%

B(τ− → eν̄eντ ) = (17.83± 0.04)%

B(τ− → eν̄eντγ) = (1.75± 0.18)%

B(τ− → µν̄µντ ) = (17.41± 0.04)%

B(τ− → µν̄µντ ) = (0.0036± 0.0004)%

4.4 Estimating P
[
ED(∗)τh|EBB

]
For reasons described in section 4.5, we will filter events by a set of criteria. Let U ⊆ Ω be the set of
outcomes that will pass this filter and define

Ui = U ∩ Ei, for all i ∈ C. (4.24)

Define the efficiency and sample proportion for i ∈ C to be, respectively,

εi := P [Ui|Ei] =
|Ui|
|Ei|

(4.25)

pi := P [Ui|U ] =
|Ui|
|U |

. (4.26)

We can now express P [Ei|EBB ] for i = Dτh, D
∗τh as follows:

P [Ei|EBB ] =
|Ei|
|EBB |

=
pi|U |
εi|EBB |

. (4.27)

The approach we take towards estimating P
[
ED(∗)τh |EBB

]
is to simply estimate each term in equation 4.27.

We can estimate |U |/|EBB | as follows. Let D be the data sample that we have collected after all filtering
criteria have been applied. That is, each datum corresponds to a single outcome in event U . Use N to
denote the size of this sample. BABAR has also provided an estimate of the number of BB events that
it has generated in total. Use NBB to denote this estimate. Given this information, we simply estimate
P [ED∗τh |EBB ] as follows:

P̂ [ED∗τh |EBB ] =
p̂D(∗)τhN

ε̂D(∗)τhNBB
(4.28)

where p̂D(∗)τh and ε̂D(∗)τh are the estimated quantities in sections 4.6 and 4.7.

4.5 Data filtering and feature extraction

Our exposition in this chapter has, thus far, not depended on the specific details of the data filter U and
what observations were recorded for each outcome. This section will define the data filtering criteria, i.e.
the rules that decide whether an outcome belongs to U ⊆ Ω, and discuss how observations are made as well
as how they are modelled in our probabilistic framework.
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4.5.1 Data filtering

While it is possible to use the dataset as is without applying any data filters, it is usually prudent and often
necessary for at least the following reasons:

1. A long established pattern in BABAR is to have several analyses measure the same physical quantity,
but each targetting a specific subset of the data that is mostly non-intersecting with the others. If the
goal of an analysis is, as is our case, to obtain an independent measurement, then it is crucial to design
a filter that removes subsets that were used in the other analyses.2

2. Most of the data records are noise, many of which can be easily identified and discarded. This sometimes
reduces the size of the dataset significantly, making it easier to work with computationally.

For the measurement of R(D(∗)), table 4.1 shows the 4 approximately independent subsets of the full
dataset that any single analysis can focus on. To choose amongst the samples, the analysts simply designs
the appropriate data filter that selects it.

Hadronic tagging Semileptonic tagging
τ → leptons BABAR 2012 [1] ongoing
τ → hadrons open this analysis

Table 4.1: The 4 approximately independent subsets of the full datasets available for measuring R(D).

Reconstruction

One of the central components of the data filter is a procedure known as reconstruction, which we will define
precisely in chapter 5. The key idea is that one can reconstruct almost any composite particle out of the
particle list primitives provided by the BABAR framework; however, the quality of such a reconstruction can
vary depending on whether the actual collision outcome ω ∈ Ω bears any semblance to the reconstruction
template. Once reconstruction has been performed, the analyst can choose a set of quality thresholds that
determine whether a particular record should be kept.

The 4 samples shown in table 4.1 are selected by choosing the reconstruction template of two B mesons.
The first B meson reconstruction, often termed the “tagging B”, can be of two types as indicated by the
columns of table 4.1. Semileptonic (hadronic) tagging targets those outcomes that have at least one B meson
decaying semileptonically (hadronically). The second B meson reconstruction, often termed the “signal B”,
can also be of two types as indicated by the rows of table 4.1. These target those outcomes that have a
B → Dτν decay, and subsequently, τ → hadrons (leptons).

Filter definition

Now that we have a set of thresholds that decides on the quality of a record, we can define the filter as a
function F : Ω → {“yes”, “no”}, where F(ω) = “yes” if ω passes the thresholds and “no” otherwise.

The set U ⊆ Ω is then defined to be {ω ∈ Ω|F(ω) = “yes”}.

4.5.2 Feature extraction

In order to make any inference from the data, we must first have some set of observations recorded for each
data record.

The observations that are directly available from the experiment are the electrical signals that are received
due to the interactions between the particle and each pixel of the detector. While one can attempt to
directly extract information out of these “images” using a few recently popular techniques, we take the more

2This is actually widespread across all particle physics experiments.
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traditional approach of engineering features out of the particle list primitives and the reconstructed particles.
As we will describe in chapter 5 we will extract a total of d = 50 features for each record.

The features encapsulate all the information that we could possibly extract from the experimental runs,
and it is now up to us to use it as efficiently as possible in the inference procedure. For the remainder of
this document, we will model the features as the d dimensional random vector X : Ω → Rd.

4.6 Estimating pD(∗)τh

Recall that pj for j ∈ C is defined to be the probability that an event was drawn from event type j, given
that it passed the selection criteria (see equation 4.26). Since this section is concerned with estimating pj ’s

from the data, we will work in the probability space (Ω̃, Ũ , P̃)3; that is, the sample space is defined to be
Ω̃ := U , and the probability measure is defined to be the conditional probability P̃ := P [.|U ].

Our data set consist of N independent realizations from some continuous random variable Z, which we
represent by writing D = {zi}Ni=1. Since the event types partition the sample space, it must be, by the law
of total probability, that the density function of Z is

f(z) =
∑
j∈C

P [Uj ] f(z|Uj) (4.29)

=
∑
j∈C

pjfj(z) (4.30)

where fj(z) denotes the conditional density function of Z, given that the event type is j. For reasons explained
in section 4.6.2, Z is not the extracted features described in section 4.5.2, but rather a transformation of the
features.

Our goal is to estimate pj for j = Dτ,D∗τ from the dataset D. To do so, we form the maximum likelihood
estimator p̂j for all j ∈ C. In particular, we solve the following optimization problem:

minimize
p∈R|C|

−
N∑
i=1

log

∑
j∈C

pjfj(zi)


subject to

∑
j∈C

pj = 1

(4.31)

Once we find the minimizer for this problem, p̂, we can use equation 4.28 to deduce the final result. The
solution of the optimation problem itself is, in principle, straightforward as it is convex in p, and we will
solve it using CVXOPT[19]. However, before solving it, we must address the following issues:

1. We have stated that the data set came from a set of observations distributed according to some random
variableX. We have not discussed what this observable is and whether there exists some transformation
that will result in a more precise estimation of p̂.

2. As it stands, the optimization problem 4.31 is posed in terms of the unknown densities fj(z)’s. To
make progress, we will estimate them from a different yet representative set of data and plug the result
into 4.31.

The remainder of this section addresses these points.

4.6.1 Estimating event type densities

In order to fully specify the optimization problem of 4.31, we propose to estimate the unknown densities fj
for all j ∈ C from some representative set of training data. As is typical in many other machine learning
and statistical inference tasks, we begin by specifying a generic model for the density and use the training
data to learn a specific instantiation.

3A suitable definition for Ũ can be constructed; e.g. Ũ := {T ∩ U |T ∈ U}.
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Training data

Ideally, one would obtain training data that is directly sampled from fj ; unfortunately, this is often not
possible in particle physics. Instead, we would choose a training set that is “sufficiently representative”
of the true sample, and assess how a reasonably comprehensive set of deviations could influence the final
result. The set of final result produced after applying these deviations are then publisehd as a systematic
uncertainty4. The hope is that some deviation from the set of those applied will in fact be the truth;
however, this is often impossible to prove. One avenue towards progress would be to at least use more
principled techniques such as those used in the field uncertainty quantification so that we can make rigorous
probabilistic statements that are based on a set of transparent assumptions.

To make progress, we use simulated data as the training set for learning the fj ’s. Chapter 11 will discuss
how we quantify uncertainties due to variations in the simulation model in greater detail.

Statistical model

For the task of learning the densities fj , we use the well known kernel density estimate [20]. While the method
has been known and applied for quite some time, its widespread use in large datasets5 is limited due to the
formidable computational complexity. Therefore, most implementations6 make significant compromises in
accuracy so that the computation completes in a reasonable amount of time. Of course, it is then unclear
whether such rough approximations still possess the attractive theoretical properties that prompted its use
in the first place.

In order to compute an accurate kernel density over our data sample5, we implement the dual-tree
algorithm proposed in [22]. To further speed up the computation, we use the GPU to accelerate the leaf
computations using an algorithm similar to the one proposed in [23]. For those familiar with astrophysical
N -body simulations, this is a generalization of the Barnes Hut algorithm[24] that applies to more than just
central potentials of charges and masses. In the end, our algorithm not only yields a 10,000 times speedup
over the naive algorithm on 2 million points, it also guarantees the accuracy to a pre-specified relative and
absolute tolerance.

Our implementation also extends the algorithms cited above to perform adaptive kernel densities as well
as least squares cross valdiation as presented in [20]. Without these extensions, the kernel density would not
be very useful as the bandwidth choice is critical in the overall estimator performance.

4.6.2 Optimizing information efficiency in observables

In order to make a precise determination of the sample proportions p, we should make use of the information
that was extracted from the data set as efficiently as possible. Specifically, we can define the random variable
Z of section 4.6 to be any function of the random variable X of section 4.5.2, such that the variance of p̂ is
minimized.

Design guidelines

One might ask why a transformation is necessary at all; naively, it would seem that setting Z = X would
capture all the information inherent in the observations. While this might be true, it is not recommended
for at least the following reasons:

1. Z should be in low dimensions. This is important so that the density function can be accurately
estimated7.

4In some fields, e.g. uncertainty quantification, this is termed epistemic uncertainty.
5Order of at least a million to 10’s of millions.
6The implementation in ROOT[21] uses a gridding algorithm. While this is a common technique, it is unfortunately very

approximate and generally yields large errors.
7The curse of dimensionality renders kernel density estimates inaccurate for high dimensions. See section 4.5 of [20] for a

demonstration.
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2. Z should be continuous. This is required, otherwise the density function is not well defined to begin
with.

Besides stating what characteristics Z are required to have, we now derive a simple principle for designing
Z. Suppose for the moment that we are interested in a modified version of the problem where there are only
two event type components: signal or background. The density function can be written as follows:

f(z; p) = pfS(z) + (1− p)fB(z) z, p ∈ R (4.32)

Now suppose that we seek an estimator p̂ for the parameter p. Such an estimator must satisfy the Cramer-Rao
lower bound [25]:

Var [p̂] ≥ 1

−E
[
∂2 log f(z;p)

∂p2

] (4.33)

where the expectation is taken over Z and the derivative is evaluated at the true value p. It is also proved
in [25] that the maximum likelihood estimator in fact achieves this lower bound asymptotically.

Taking derivatives we get

∂2 log f(z; p)

∂p2
= −

(
fS(z)− fB(z)

f(z)

)2

(4.34)

and therefore,

Var [p̂] ≥ 1

E
[(

fS(z)−fB(z)
f(z)

)2
] (4.35)

Since we are using the maximum likehood estimator in our analysis, the result in 4.35 has a very simple
interpretation: to minimize the variance of p̂, maximize the overall relative difference between the signal and
background densities.

To summarize, the following are characteristics that we seek in Z:

1. Low dimensions.

2. Continuous.

3. Large expected relative difference between signal and background densities.

Statistic engineering

Of course, the estimation problem of 4.29 is not as straightforward as our toy problem in 4.32, but we will
apply the principles derived from that exercise. In particular, we define Z : Ω → R2 such that

• Z1 = s1(X), where s1 : X → R is a regression function trained to distinguish signal from background
event types.

• Z2 = s2(X), where s2 : X → R is a regression function trained to distinguish Dτ from D∗τ event
types.

We will defer the details of learning s1 and s2 to chapter 8, but for now it is important to recognize how our
definition Z matches the intuition stated earlier:

1. Z has only 2 dimension.

2. Z is the output of regression functions. While this alone is far from guaranteeing continuity, this is at
least a steps towards something reasonable.

3. The 2 dimensions Z focuses directly on the problem at hand: it searches for summary statistics whose
primary purpose is to distinguish between signal categories from the others.

In general, finding a maximally efficient summary statistic is NP-hard. We are merely using a heuristic that
is guided by some intuition as well as implementation convenience, and we do not deny the possible existence
of better strategies.
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4.7 Estimating εD(∗)τh

First express εD(∗)τh in terms of quantities that we can observe or derive. For i = Dτh, D
∗τh, we have

εi = P [Ui|Ei] =
P [Ui ∩ Ei]

P [Ei]
=

P [Ui]

P [Ei]
(4.36)

=
P [Ui|EBB ]P [EBB ] + P

[
Ui|EcBB

]
P
[
Ec
BB

]
P [Ei]

=
P [Ui|EBB ]P [EBB ]

P [Ei]
(4.37)

and

P [Ei|EBB ] =
P [Ei ∩ EBB ]

P [EBB ]
=

P [Ei]

P [EBB ]
(4.38)

⇒ P [Ei] = P [Ei|EBB ]P [EBB ] (4.39)

The last equality of equations 4.36, 4.37, and 4.38 are true because we are considering i = Dτh, D
∗τh.

Finally, we get

εi =
P [Ui|EBB ]

P [Ei|EBB ]
for i = Dτh, D

∗τh (4.40)

On its own, equation 4.40 is not useful since we generally do not know the proportions of each event
category in real data. To make progress, we appeal to simulation where we can easily estimate the proportions
by simply counting the outcomes. The catch is that we must assess the systematic uncertainty associated with
the degree that the simulation represents reality. Chapter 11 will discuss how we quantify this uncertainty
in greater detail.
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Chapter 5

Data collection

We describe the data samples that are used in this analysis as well as how they were collected.

5.1 Data Taxonomy

There are two kinds of data. The first type are those collected by the actual running of the accelerator and
the detector1, and the second type are those produced by a computer simulation2

The purpose of the collider data is clear. Indeed, the whole point of our analysis is to apply a specially
tailored statistical inference procedure onto the collider data in order to make a statement about R(D(∗)).
The purpose of the simulated data, however, is merely to enable us to construct and design this specialized
inference procedure.

The following subsections describe each kind of data in greater detail.

5.1.1 Collider data

The collider data was collected by the operation of PEP-II and BABAR between the years of 2000-2008. As far
as this analysis is concerned, this data is divided into 6 runs, each of which consists of an “On-Peak” sample
and an “Off-Peak” sample. The “On-Peak” sample is the majority, and it is obtained by operating PEP-II
such that collisions happen at a center of mass energy that is equal to the Υ (4S) mass. The “Off-Peak”
sample is taken by operating PEP-II such that the center of mass energy is slightly away from the Υ (4S)
mass, so that the majority of collision events are continuum.

As the collider operates and deposits particles into the detector, the BABAR software system post processes
the raw signals and saves them into storage. Over the years, the software system matured and experienced
several stages of significant improvements. This lead to a proliferation of various versions of the postprocessed
data, which lead to a mildly complex nomenclature.

Table 5.1 and 5.2 shows the names of the post processed data samples that are used to perform this
analysis.

5.1.2 Simulated data

The simulated data is divided into two types. The first is what is referred to as the “generic” MC, and the
second type is referred to as the “signal” MC. For our purposes, the “generic” MC is generated such that
the weighted combination of all its events will reflect our best reproduction of what an On-Peak collider run
would have produced. The “signal” MC is generated to represent the outcomes of the signal event type.

1We will use the terms “real data” or “collider data” ta to refer to this.
2We will use the terms “MC” or “simulated data” to refer to this.
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Collider Dataset Name Luminosity (pb−1) NBB
AllEventsSkim-Run1-OnPeak-R24a1 20372± 91 22556256.9± 137695.3
AllEventsSkim-Run2-OnPeak-R24a1 61321.436± 257.528 68438426.0± 413011.4
AllEventsSkim-Run3-OnPeak-R24a1 32290.437± 132.361 35763257.9± 216993.3
AllEventsSkim-Run4-OnPeak-R24a1 99606.060± 418.245 111429669.4± 671074.9
AllEventsSkim-Run5-OnPeak-R24a1 132371.946± 582.313 147620363.4± 888260.1
AllEventsSkim-Run6-OnPeak-R24a1 78327.488± 352.439 85194672.2± 513624.4

Total 424289.367± 853.606 471002645.8± 1319007.981

Table 5.1: Collider On-Peak datasets. NBB is the estimated number of BB pairs contained in the specified
dataset; it includes both neutral and charged B pairs.

Collider Dataset Name Luminosity (pb−1) Multiplier

AllEventsSkim-Run1-OffPeak-R24a1 2563.970± 12.051 7.945
AllEventsSkim-Run2-OffPeak-R24a1 6869.144± 30.223 8.927
AllEventsSkim-Run3-OffPeak-R24a1 2443.569± 10.507 13.214
AllEventsSkim-Run4-OffPeak-R24a1 10015.990± 43.067 9.945
AllEventsSkim-Run5-OffPeak-R24a1 14276.771± 67.101 9.272
AllEventsSkim-Run6-OffPeak-R24a1 7752.558± 36.437 10.103

Total 43922.002± 94.096 9.660

Table 5.2: Collider Off-Peak datasets. Multiplier is the factor by which the corresponding On-Peak dataset
exceeds the given Off-Peak dataset.

Table 5.3 shows the set of modes that are generated for the generic MC, and table 5.4 show the actual
dataset name along with the numbers that were generated. The last column in table 5.4 shows the weight
that needs to be applied to each record in order to reflect the correct counts the real On-Peak data would
have had. These are computed by taking the ratio of the data luminosity to the equivalent luminosity of the
simulated sample.

The signal MC is divided into two types. Both types of samples h has one B meson decaying semilepton-
ically. The first type has the other B decaying to Dτ , and then τ → hadron, while the other type decays as
a D∗τ , and then τ → hadrons. Table 5.5 show the actual samples that were used. Additional details about
the signal MC can be found in the appendix.

SP Mode Mode type Cross section (pb)

1235 B+B− 525.0
1237 B0B0 525.0
1005 cc 1300.0
998 uds 2090.0

Table 5.3: Cross section used to convert the sizes generic simulated data to the equivalent On-Peak dataset.
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Simulated Dataset Name Mode Type Collisions Generated Multiplier

SP-1235-AllEventsSkim-Run1-R24a1 B+B− 34878000 0.306
SP-1235-AllEventsSkim-Run2-R24a1 B+B− 105561000 0.305
SP-1235-AllEventsSkim-Run3-R24a1 B+B− 56035000 0.303
SP-1235-AllEventsSkim-Run4-R24a1 B+B− 166784000 0.314
SP-1235-AllEventsSkim-Run5-R24a1 B+B− 215168000 0.323
SP-1235-AllEventsSkim-Run6-R24a1 B+B− 130336000 0.316

SP-1237-AllEventsSkim-Run1-R24a1 B0B0 34941000 0.306
SP-1237-AllEventsSkim-Run2-R24a1 B0B0 104188000 0.308
SP-1237-AllEventsSkim-Run3-R24a1 B0B0 57888000 0.292
SP-1237-AllEventsSkim-Run4-R24a1 B0B0 169801000 0.307
SP-1237-AllEventsSkim-Run5-R24a1 B0B0 215953000 0.321
SP-1237-AllEventsSkim-Run6-R24a1 B0B0 135224000 0.304
SP-1005-AllEventsSkim-Run1-R24a1 cc 55254000 0.479
SP-1005-AllEventsSkim-Run2-R24a1 cc 164722000 0.483
SP-1005-AllEventsSkim-Run3-R24a1 cc 88321000 0.475
SP-1005-AllEventsSkim-Run4-R24a1 cc 267308000 0.484
SP-1005-AllEventsSkim-Run5-R24a1 cc 344275000 0.499
SP-1005-AllEventsSkim-Run6-R24a1 cc 208664000 0.488
SP-998-AllEventsSkim-Run1-R24a1 uds 176404000 0.241
SP-998-AllEventsSkim-Run2-R24a1 uds 525504000 0.243
SP-998-AllEventsSkim-Run3-R24a1 uds 276381000 0.244
SP-998-AllEventsSkim-Run4-R24a1 uds 845899000 0.246
SP-998-AllEventsSkim-Run5-R24a1 uds 1110944000 0.249
SP-998-AllEventsSkim-Run6-R24a1 uds 655152000 0.250

Table 5.4: Generic simulated data. Multiplier is the factor by which the corresponding On-Peak dataset
exceeds the given simulated dataset.
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Simulated Dataset Name Mode Type Collisions Generated Multiplier

SP-11444-Run1-R24 B0 → D(∗)`ν, B0 → Dτ(had)ν 694000
SP-11444-Run2-R24 B0 → D(∗)`ν, B0 → Dτ(had)ν 2044000
SP-11444-Run3-R24 B0 → D(∗)`ν, B0 → Dτ(had)ν 1152000
SP-11444-Run4-R24 B0 → D(∗)`ν, B0 → Dτ(had)ν 3347000
SP-11444-Run5-R24 B0 → D(∗)`ν, B0 → Dτ(had)ν 4546000
SP-11444-Run6-R24 B0 → D(∗)`ν, B0 → Dτ(had)ν 2732000

SP-11445-Run1-R24 B0 → D(∗)`ν, B0 → D∗τ(had)ν 644000
SP-11445-Run2-R24 B0 → D(∗)`ν, B0 → D∗τ(had)ν 1937000
SP-11445-Run3-R24 B0 → D(∗)`ν, B0 → D∗τ(had)ν 955000
SP-11445-Run4-R24 B0 → D(∗)`ν, B0 → D∗τ(had)ν 3207000
SP-11445-Run5-R24 B0 → D(∗)`ν, B0 → D∗τ(had)ν 4627000
SP-11445-Run6-R24 B0 → D(∗)`ν, B0 → D∗τ(had)ν 2349000

SP-11446-Run1-R24 B+ → D(∗)`ν, B− → Dτ(had)ν 651000
SP-11446-Run2-R24 B+ → D(∗)`ν, B− → Dτ(had)ν 1919000
SP-11446-Run3-R24 B+ → D(∗)`ν, B− → Dτ(had)ν 1025000
SP-11446-Run4-R24 B+ → D(∗)`ν, B− → Dτ(had)ν 3402000
SP-11446-Run5-R24 B+ → D(∗)`ν, B− → Dτ(had)ν 4276000
SP-11446-Run6-R24 B+ → D(∗)`ν, B− → Dτ(had)ν 2685000

SP-11447-Run1-R24 B+ → D(∗)`ν, B− → D∗τ(had)ν 750000
SP-11447-Run2-R24 B+ → D(∗)`ν, B− → D∗τ(had)ν 1702000
SP-11447-Run3-R24 B+ → D(∗)`ν, B− → D∗τ(had)ν 901000
SP-11447-Run4-R24 B+ → D(∗)`ν, B− → D∗τ(had)ν 3120000
SP-11447-Run5-R24 B+ → D(∗)`ν, B− → D∗τ(had)ν 4637000
SP-11447-Run6-R24 B+ → D(∗)`ν, B− → D∗τ(had)ν 2505000

Table 5.5: Simulated signal data.
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5.2 Event pre-screening

The first stage of the analysis is to perform a crude, yet effective screening of the records. This is mainly
to reduce the computational load for the stages further downstream in the analysis, so the criteria applied
here are only to filter away records that we are essentially certain to be noise.

The pre-screening criteria are as follows:

• Size of ChargedTracks is at most 14.

• Size of GoodPhotonsLoose is at most 10.

• Total charge of the event must be between [−2, 2].

• Apply tag filter BGFMultiHadron.

• Apply tag filter TagL3.

5.3 Event Reconstruction

For each record in the dataset, be it real data or simulated, we perform what is referred to as “event
reconstruction”. This is the stage where we use the particle list primitives provided by the post processed
data to see if it is possible to assemble the decay process of an outcome belonging to the signal. Records for
which such a reconstruction is not possible are removed from the remainder of the analysis.

Reconstruction begins with lists of primitive particles. These are lists such as ChargedTracks and
ElectronKMLoose that represent final state particles. To reconstruct a composite particle, we simply specify
a particular mode from which that particle could decay along with lists of already reconstructed particles
that we would like to use to substitute as its daughter particles. The reconstruction will then create and
save all possible combinations of the daughters consistent with the mother hypothesis into a new list. This
hierarchical reconstruction process is repeated until the Υ (4S) list is constructed.

A very useful way to understand event reconstruction is to model it as a directed acyclic graph. The
vertices of the graph are the particles that are reconstructed, and an edge (u, v) exists if v is a daughter
particle of u.

Please note that a reconstructed particle is, after all, artificial. While a successful reconstruction of a
specific particle suggests that it is plausible for a true particle of said type to have actually occured during
the collision, it is actually neither necessary nor sufficient. In fact, reconstructed particles are often referred
to as reconstructed candidates, emphasizing that they are artificial.

The package that we use to perform reconstruction is SimpleComposition. We list below the recon-
structed composite particles and the modes that they were reconstructed in reverse topological order.

1. Final state particle lists.

• Electrons: eCombinedSuperLoose.

• Muons: muCombinedVeryLooseFakeRate.

• Pions: ChargedTracks and GoodTracksVeryLoose. Unless explicitly stated, the default is to use
the latter.

• Kaons: KCombinedSuperLoose.

• Photons: GoodPhotonLoose, but with 0.01 ≤ Lat ≤ 0.6.

2. Light meson lists.

• π0: pi0AllDefault and pi0SoftDefaultMass, after refining photon daughters using the photon
list above. Unless otherwise stated, the default is to use the latter.
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• ρ+ → π+π0: The π+ is refined such that it cannot be a member eKMTight or muBDTVeryTight.
It is also required to have mass between [0.45, 1.09] GeV and a χ2 of at least 0.001.

• KS : KsTight.

3. D meson lists. All reconstructed D mesons without π0 daughters are required to have masses within
0.06 GeV of the PDG value. For those with π0 daughters, the masses must be withint 0.1 GeV of the
PDG value.

• D+ → K−π+π+.

• D+ → K − π+π+π0.

• D+ → KSK
+.

• D+ → KSπ
+.

• D+ → KSπ
+π0.

• D+ → KSπ
+π−π+.

• D+ → K−K+π+.

• D0 → K−π+.

• D0 → K−π+π0.

• D0 → K−π+π−π+.

• D0 → K−π+π−π+π0.

• D0 → KSπ
+π−.

• D0 → KSπ
+π−π0.

• D0 → KSπ
0.

• D0 → K−K+.

4. D∗ meson lists. The soft pions used are required to have a center of mass 3-momentum magnitude
of at most 400 MeV. Charged pions are refined from GoodTracksVeryLoose while neutral pions are
refined from pi0SoftDefaultMass. Soft photons are refined from GoodPhotonLoose, but are required
to have Lat ≤ 0.8 and center of mass energy of at least 100 MeV and 3-momentum magnitude of at
most 400 MeV.

• D∗0 → D0π0. Require ∆m to be within [0.135, 0.175] GeV.

• D∗0 → D0γ. Require ∆m to be within [0.13, 0.155] GeV.

• D∗+ → D0π+. Require ∆m to be within [0.135, 0.165] GeV.

• D∗+ → D+π0. Require ∆m to be within [0.13, 0.15] GeV.

• D∗+ → D+γ. Not reconstructed, but we list it since it we only decided to remove it partway
through the analysis.

5. Btag meson list. Masses are required to be at most 5.2791 GeV, and the χ2 must be at least 0.001.
Furthermore, cos θBY must be between [−5, 1.0].

• B+ → D0e+.

• B+ → D0µ+.

• B0 → D−e+.

• B0 → D−µ+.

• B+ → D∗0e+.

• B+ → D∗0µ+.
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• B0 → D∗−e+.

• B0 → D∗−µ+.

6. Bsig meson list. Masses are required to be at most 5.2791 GeV, and the χ2 must be at least 0.001.

• B+ → D0π+.

• B+ → D0ρ+.

• B0 → D−π+.

• B0 → D−ρ+.

• B+ → D∗0π+.

• B+ → D∗0ρ+.

• B0 → D∗−π+.

• B0 → D∗−ρ+.

7. Υ (4S) → BtagBsig. The B daughters must conserve charge, and B’s are allowed “mix”. Of course,
the daughters can’t have overalapping final states.

Upsilon(4S)

B0anti-B0

Upsilon(4S)

anti-B0

Upsilon(4S)

anti-B0

Upsilon(4S)

B0 anti-B0

Upsilon(4S)

anti-B0

Upsilon(4S)

anti-B0

D- mu+D+

pi-

rho- rho- D*-

pi-

rho-rho-

pi0 K+

pi-K- pi+ pi+ anti-D0pi0pi0

gamma gamma

gamma gammagamma

Figure 5.1: Example of event reconstruction.

Figure 5.1 shows an example of event reconstruction on an arbitrary record. We note that, in general, a
reconstruction will yield many Υ (4S) candidates. We also emphasize again, that it is impossible to associate
any specific reconstructed candidate to a true particle of the same species that could have been produced.
In particular, it is impossible to declare that any specific Btag candidate is “the” B meson that decayed
into B → D`ν; such a meson need not even exist, let alone trace out the decay subtree of any particular B
candidate.

The records that are discarded at this stage are precisely those whose reconstructed graph is empty.
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Chapter 6

Candidate selection

Event reconstruction builds an entire graph of particle decays. The ultimate goal is to use this information
to help us distinguish between signal and background.

While there are many observables that we can extract from the graph, e.g. number of tracks, number of
π0 etc, it would be convenient to elect one of the Υ (4S) to represent the event and extract features from its
decay subtree for analysis stages further downstream.

We emphasize that we do not use this representative candidate to further reject records. Its purpose is
strictly to obtain observables. One could certaintly imagine a situation where we may no longer want to be
preferrential towards any candidate, but instead, apply a more democratic/global approach. Our current
methodology leaves this possibility open and encourages future analyses to come up with creative ideas to
capitalize on this potential.

6.1 Strategy overview

Since this single candidate will be very influential in the downstream analysis stages, we should choose a
representative judiciously. Before discussing how we actually pick such a candidate, we must first discuss
the criteria that renders certain candidates better than others.

Suppose a given record indeed originated from a signal collision event. Further suppose that the event
reconstruction also happened to reconstruct a Υ (4S) candidate whose decay is “matched exactly” to the
true Υ (4S) particle. In this case, it only makes intuitive sense that we elect this matched Υ (4S) candidate
to represent.

Of course, the ideal scenario just described is impossible to achieve in practice, since we don’t know
when such a special candidate exists, let alone choose it from amongst the alternatives. Therefore, it is only
practical to settle for choosing such a candidate as often as it is possible.

This naturally leads us to using supervised learning. The training data will be taken from signal MC,
since we know what the generated decay process is for the simulation. We then proceed as follows:

1. For every Υ (4S) candidate in the training set, decide if it is matched to the underlying decay process.
If it is, label it 1, and 0 otherwise.

2. Extract a set of features for the training data.

3. Learn a scoring function that indicates how likely a candidate matches.

4. Deploy the scoring function by evaluating it on every candidate in the dataset.

5. For each event, simply elect the candidate with the highest score.
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6.2 Graph matching

To label a candidate in the training set, we need to define exactly what is meant when we say that a
reconstructed candidate matches a true/generated particle. Before doing so, we digress briefly and introduce
some graph terminology.

Definition 1 A directed graph is a pair G = (V,E) where V is the set of vertices and E ⊆ V × V is the set
of edges. A graph G′ = (V ′, E′) is a subgraph of G if V ′ ⊆ V and E′ ⊆ E.

Definition 2 Let G = (V,E) and G′ = (E′, V ′) be two graphs. G is isomorphic to G′ if there exists a
bijection f : V → V ′ such that (u, v) ∈ E ⇔ (f(u), f(v)) ∈ E′.

The function f is only allowed to map vertices that have the same semantic information. In our application,
this is the particle identity; e.g. only B0’s can be associated with B0’s, etc.

Let the reconstruction graph be H = (VH , EH) and the true/generated decay graph be G = (VG, EG).
The subgraph of H that is isomorphic to G is the matched candidate that shall be labelled 1 for supervised
learning; all others are labelled 0.

It is now clear that labelling the training data reduces to solving the famous NP-complete problem known
as subgraph isomorphism. This is, at first glance, very discouraging news. Upon some reflection, however,
we notice that there is a lot of special structure in the decay graphs that we can exploit. The structure
is so constraining that we can, in fact, design algorithm 1 that solves this specific instance of subgraph
isomorphism in linear time1 by dynamic programming. It is easy to see that the algorithm runs in time
O(V + E), since each step runs either in-line with depth first search or can be computed with a single scan
over the vertex or edge sets. We will, however, prove that it is correct in appendix A.

Figure 6.1 shows an example of graph matching. Figure 6.1a is the generated decay graph, but with the
irrelevant particles removed; e.g. neutrinos, detector neutrons, etc. Figure 6.1b is the reconstruction graph
that is built for this record. Figure 6.1c shows the output of the graph matching. The highlighted vertices
are the candidates that matches to a particle in the generated decay graph.

It turns out that this algorithm is quite general and applies to most particle reconstruction matching
problems commonly encountered. The standard method in BABAR that addresses the same problem is to use
what is called “truth matching”. This methodology is pretty well defined for final state particles, but it was
not clear to me that the composite and unobservable particles were handled correctly for our application.

6.3 Feature selection

Starting from this section until the end of this chapter, we will refer to candidates that are matched as
“signal” and others as “noise” unless stated otherwise. This is not to be confused with the signal and
background event types referred to elsewhere in this document; we temporarily redefine this term since this
is more convenient terminology when discussing supervised learning.

To proceed with supervised learning, we must extract a set of features useful for differentiating signal
from noise. They are the following:

mmiss2prime, eextra, tag lp3, tag cosby, tag costhetadl, tag dmass,
tag deltam, tag costhetadsoft, tag softp3magcm, sig hp3, sig cosby,
sig costhetadtau, sig vtxb, sig dmass, sig deltam,
sig costhetadsoft, sig softp3magcm, sig hmass, sig vtxh, tag isbdstar,
sig isbdstar, tag dmode, tag dstarmode, sig dmode, sig dstarmode.
The features we listed above are a subset of what we will be discussing in much greater detail in chapter

7, and so we will defer their descriptions and issues such as how well simulation represents real data until
then. In the present context, we simply want to make the point that there is abundant information in the
dataset that we can utilize to better perform signal and noise differentiation. This can be seen in figure 6.2,
which shows the density functions for signal and noise for a select few features.

1Actually, we solve a special case that we call subtree isomorphism.
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Algorithm 1 Particle-Graph-Matching(G, H, M)

Input:

• G: Generated particle decay graph.

• H: Reconstructed particle decay graph.

• M : Array of length |VH |. M [u] = u′ if vertex u ∈ VH has no out-edges and has been pre-determined
to be matched to vertex u′ ∈ VG according to the detector deposition pattern. M [u] = null otherwise.

Output:

• Vertex u′ ∈ VH if the root vertex of G is tree-isomorphic to u′. If there isn’t such a vertex, return null.

Procedure:

1. Loop through VG and find the root vertex r. It is the one without any in-edges.

2. Run depth first search on H. Perform following checks when a non-terminal u′ ∈ VH is colored black:

(a) For each daughter v′ of u′, check that M [v′] is non-null.

(b) For each of M [v′], check that they correspond to the same mother. Denote this vertex as m.

(c) Check that m has the same out-degree as u′.

(d) Check that m has the same particle identity as u′.

(e) If all of the conditions above are met, set M [u′] = m, otherwise null.

3. Loop through all vertices u ∈ VH , and find whether any is such that M [u] = r. If so, return u, otherwise
return null.
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(a) Generated decay graph with irrelevant particles
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(b) The corresponding reconstruction graph over this
record.
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(c) The corresponding reconstruction graph over this record.

Figure 6.1: Graph matching example.
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Figure 6.2: Density functions for signal and noise in select features
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minimum Eextra maximum candidate score

total possible 5471 5471
number chosen 3102 4434

efficiency 0.57 0.81

Table 6.1: “Total possible” is the number of collision events that has a matched candidate that can be
chosen. “Number chosen” is the number of those collision events that the specified criteria was able to
correctly identify the matched candidate. “Efficiency” is simply the ratio between the rows above.

6.4 Supervised learning

Now that we have all the ingredients required for machine learning, we proceed to learn a scoring function
that maps a point in feature space to a real number in [0, 1] that estimates the probability that such a point
is signal.

As will be shown in the results section, the function that we learn by simply applying the standard
recommendations in data preporcessing as well as by applying a powerful yet easy to tune model would have
already gotten large improvements compared to the established methodology of choosing the lowest Eextra
candidate. Since the improvements are so large, we decided not to spend more time on performance tuning,
and simply move on to the next stage.

The training data consists of about 600K records, each containing about 19 numerical features and 6
categorical features.

For data preprocessing, we mean center each numerical feature, as well as scaling their variances to 1.
For each categorical feature, we simply convert it to the one-hot encoding.

For the training itself, we use the random forest [26] and take most of the default settings in scikit-learn
[27]. The only setting that differ from the defaults is to take the number of trees to 1000. This might sound
absurd at first glance, but we decided to do this because the way random forests determine a probability is
by voting among the trees. More trees give more precision, which implies less arbitrary tie breaking when
we choose a candidate. The only problem with such a large number of trees is the computation time and
the space resources; however, neither of these pose a big problem for our machines.

6.5 Results

After training the scoring function, we deploy it onto the test sample, which also consists of about 600K
records from the signal MC, where those labeled as noise are records that were not truth matched.

Figure 6.3 shows the density function for the score function for the signal and noise categories. It shows
clear differences between the two categories; furthermore, it visually has better separation compared to any
single feature shown in the plots of figure 6.2.

The comparison above alone is not enough to demonstrate the efficacy of our score function. To show
that we are actually doing better, we select the best candidate for the test sample with two methods. The
first chooses the candidate by using the lower Eextra candidate, while the second chooses the candidate that
scores the highest with our function. The result is shown in table 6.1, which shows that our scoring function
chooses 40% more matched candidates than the lowest Eextra criterion.
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Figure 6.3: Density of the score function for signal and noise categories.
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Chapter 7

Feature extraction

This chapter describes the features that we extract from each record of the data sample for the purpose of
signal detection (chapter 8).

The goal of this chapter is two-fold. The first is to visualize each feature so that we can check that they
are behaving correctly according to our physical intuition. The second is to check whether the features are
correctly modelled by the simulation; this is important since the later stages of the analysis relies heavily on
the simulation as input.

7.1 Feature description

The following is a list of the features that we extract from each event record. Each item is a single feature
that lists its name, alias (parenthesized), and a brief description of what it is.

• nΥ (ny): Number of Υ (4S) candidates.

• Ntrack (ntracks): Number of GoodTracksVeryLoose.

• R2 All (r2all): Second Fox-Wolfram moment.

• Candidate Score (cand score): Candidate score from chapter 6.

• M2
miss (mmiss2): Missing mass squared.

• Eextra (eextra): Leftover photon energy.

• cos θT (costhetat): cos of the angle between the thrust and the beam momentum (double check?).

• |~ptag` | (tag lp3): 3-momentum magnitude of the Btag’s lepton.

• cos θtagBY (tag cosby): cos of the angle between the 3-momentum of the Btag and the 3-momentum sum
of its D and lepton daughters.

• cos θtagD` (tag costhetadl): cos of the angle between the 3-momenta of the D and the lepton daughter
of the Btag.

• mtag
D (tag dmass): Mass of the Btag’s D meson daughter.

• ∆mtag (tag deltam): ∆m of the Btag’s D
∗ meson daughter if it exists.

• cos θtagDsoft (tag costhetadsoft): cos of the angle between the D∗ mesons’ daughters.

• |~ptagsoft| (tag softp3magcm): 3-momentum magnitude of the D∗’s soft daughter.

41



• |~psigh | (sig hp3): 3-momentum magnitude of the Bsig’s hadron daughter.

• cos θsigBY (sig cosby): cos of the angle between the 3-momentum of the Bsig and the 3-momentum sum
of its D and lepton daughters.

• cos θsigDτ (sig costhetadtau): cos of the angle between the 3-momentum of the Bsig and the 3-
momentum sum of its D and hadron daughters.

• χ2
sigB (sig vtxb): χ2 of the Bsig’s vertex fit.

• msig
D (sig dmass): Mass of the Bsig’s D meson daughter.

• ∆msig (sig deltam): ∆m of the Bsig’s D
∗ meson daughter if it exists.

• cos θsigDsoft (sig costhetadsoft): cos of the angle between the D∗ mesons’ daughters.

• |~psigsoft| (sig softp3magcm): 3-momentum magnitude of the D∗’s soft daughter.

• msig
h (sig hmass): Mass of the Bsig’s hadron daughter, if it exists.

• χ2
sigh (sig vtxh): χ2 of the Bsig’s composite hadron daughter, if it exists.

• tag D mode (tag dmode): The mode in which the Btag’s D daughter is reconstructed. The modes are
assigned an integer code in the same order listed in 5.3.

• tag D∗ mode (tag dstarmode): The mode in which the Btag’s D
∗ daughter is reconstructed. The

modes are assigned an integer code in the same order listed in 5.3.

• sig D mode (sig dmode): The mode in which the Bsig’s D daughter is reconstructed. The modes are
assigned an integer code in the same order listed in 5.3.

• sig D∗ mode (sig dstarmode): The mode in which the Bsig’s D
∗ daughter is reconstructed. The

modes are assigned an integer code in the same order listed in 5.3.

• tag ` electron PID (tag l epid): Btag’s lepton daughter’s electron PID level.

• tag ` muon PID (tag l mupid): Btag’s lepton daughter’s muon PID level.

• sig h electron PID (sig h epid): Bsig’s hadron daughter’s electron PID level.

• sig h muon PID, (sig h mupid): Bsig’s hadron daughter’s muon PID level.

• Is Btag → D∗? (tag isbdstar): Flag to indicate whether Btag is reconstructed as a semileptonic D
or D∗ decay.

• Is Bsig → D∗? (sig isbdstar): Flag to indicate whether Bsig is reconstructed as a semileptonic D or
D∗ decay.

7.2 Event type density functions

Figures 7.1, 7.2, 7.3, and 7.4 show the estimated density functions (based on a smoothing spline) of every
event type for each feature listed above. We note that all of the features seem to behave according to our
physical intuition, and most of them contain at least some information that can tell certain event types from
others.
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Figure 7.1: Feature density functions for each event type.
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Figure 7.2: Feature density functions for each event type.
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Figure 7.3: Feature density functions for each event type.
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Figure 7.4: Feature density functions for each event type.
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7.3 Simulation fidelity

Figures 7.5, 7.6, 7.7, and 7.8 show the comparisons between data and MC for each feature.
The black points are based on 1% of the On-Peak data that was sampled uniformly at random; they

reserved strictly for this comparison, and exclud them from the remainder of the analysis.
The colored histograms are based primarily on 4% of the generic MC, but scaled such that its luminosity

is equivalent to the black points. We also post processed the generic MC before making the histograms with
the following:

1. Remove the continuum component of generic MC and replace it with Off-Peak data that has been
scaled to the correct luminosity.

2. Reweighted the branching fractions of the most frequently occuring B decay modes to the most recent
PDG values. This will be discussed in more detail in section 11.3.

In addition, we also re-weight the branching fraction of the B semileptonic D ∗ ∗ modes by a few factors
to show the impact of its branching fraction uncertainty on the overall normalization. One might at first
think that scaling down the D∗∗ branching fraction by a factor of 0.8 may seem like a lot, but we note that
even the branching fractions of B semileptonic decay modes to D(∗) were 10% higher in DECAY.DEC than
those in the PDG.

Aside from the uncertainty in the MC normalization, we note that the overall shape of each feature seem
to agree reasonably well between data and MC.
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Figure 7.5: Comparisons between data and MC for each event type.
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Figure 7.6: Comparisons between data and MC for each event type.
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(g) Bsig D mode.
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Figure 7.7: Comparisons between data and MC for each event type.
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(c) Bsig’s hadron daugther electron PID level.
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(d) Bsig’s hadron daugther muon PID level.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
r2all

0

500

1000

1500

2000

2500

3000

Co
un

ts

MC with Offpeak
BF/FF/D** Corrected MC 0.8
BF/FF/D** Corrected MC 0.4
Data

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
r2all

0.4

0.2

0.0

0.2

0.4

Da
ta 

- M
C(

0.
8)

 / 
Da

ta

(e) R2.

6 7 8 9 10 11 12 13 14
ntracks

0

5000

10000

15000

20000

25000

Co
un

ts

MC with Offpeak
BF/FF/D** Corrected MC 0.8
BF/FF/D** Corrected MC 0.4
Data

6 7 8 9 10 11 12 13 14
ntracks

0.4

0.2

0.0

0.2

0.4

Da
ta 

- M
C(

0.
8)

 / 
Da

ta

(f) Ntracks.

0 10 20 30 40 50
ny

0

5000

10000

15000

20000

Co
un

ts

MC with Offpeak
BF/FF/D** Corrected MC 0.8
BF/FF/D** Corrected MC 0.4
Data

0 10 20 30 40 50
ny

0.4

0.2

0.0

0.2

0.4

Da
ta 

- M
C(

0.
8)

 / 
Da

ta

(g) nΥ .

Figure 7.8: Comparisons between data and MC for each event type.
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Chapter 8

Signal Detection

The discussion in section 4.6.2 justified the importance of finding a low dimensional representation of the
dataset in order to minimize the statistical uncertainty of the measurement. We have also decided to use
2 statistics to summarize the dataset: the first statistic (Z1) differentiates between signal from background
event types, and the second (Z2) statistic differentiates between Dτ and D∗τ signal.

This chapter describes how we actually obtain these two statistics using supervised learning. We also
assess their performances and demonstrate that what we have is very close to optimal given the resources
that are readily available.

We construct each of Z1 and Z2 in two steps:

1. Use supervised learning to train a set of models that solves the appropriate classification problem.

2. From amongst these models, choose one that is most suitable, and perform any final transformations.

The first two sections describe how we train various flavors of classifiers for designing Z1 and Z2 re-
spectively. The last section discusses our specific choice and how we transform those scores into Z1 and
Z2.

8.1 Signal detector

This learning problem is relevant to defining the statistic Z1, which concerns distinguishing between the
signal and background event types.

The training and testing data used both contain approximately 600K records, uniformly sampled from
the generic MC, and consists of the ∼ 34 features listed in chapter 7. The training labels are such that the
signal categories are labelled 1, and 0 otherwise.

8.1.1 Data preprocessing and learning models

The data was first preprocessed with the following steps:

1. Missing values are mean imputed, but their absence is indicated with a separate boolean feature.

2. Each feature is mean centered and scaled to unit variance.

3. Categorical features are one-hot encoded.

The preprocessed data is then used as input for training the learning models listed below in scikit-learn
[27]:
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Figure 8.1: ROC curve for the Z1 learners.

• Random forests: With the exception of taking the number of random trees to be 1000, we take the
default setting in scikit-learn. The reason for choosing such a large number of trees is the same as
those in candidate selection problem; that is, we want larger precision in the probability outputs.

• (Gradient) boosting: With the exception of taking the number of boosting iterations to 300, we take
the default settings. In this case, we had to take care that we were not overfitting.

• Logistic regression: Take all the defaults in scikit-learn.

As you can see, these models are all relatively easy to tune; in fact, they were chosen precisely for this
reason. The first two models are known to perform well on a wide range of problems while the last one is
less expressive but far easier to understand.

8.1.2 Analysis

Recall that equation 4.35 would have been our preferred metric from which to measure the performance of
each learner. However, it is not readily available for the learning algorithms to optimize directly; we thus
use the area under the ROC curve as an alternative since it measures similar effects on an intuitive level. Of
course, using such a proxy only estimates the actual performance. We are thus using it only as a device to
gain some insight into the problem and to help us make the final choice.

Figure 8.1 shows the ROC curves for each of the trained models. All curves corresponding to learned
models are reasonably close to each other with the boosted model having a slight edge. While there is good
evidence against the random forest model solely based on the output of this figure, we have actually more
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Figure 8.2: Learning curve for the logistic regression learner.

compelling reason to do so. The random forest’s probability output precision is only as high as the number
of trees allows; in particular, we get only 3 digits of precision with 1000 trees. This might not seem like a
very big problem from the standpoint of classification accuracy, but it matters a lot more when we try to
learn its density. The problem is that the discretization effect can prevent the kernel density cross validation
from finding the ideal bandwidth, thus compromising the quality of the maximum likelihood and thereby
signal extraction.

Figure 8.1 also includes the ROC curves for using some of the most powerful direct physics observables
as discriminators. One can see that, by simply using a learning model, we are doing at least 2x better than
the case of just using M2

miss. It is also interesting to note that using just Eextra turns out to be only slightly
better than random guessing.

Figure 8.1 shows that all of the learners have similar performances, which seems surprising at first since
the logistic regression is a far simpler model compared to the other two models; in fact, it even does better
than the random forest for this specific problem. This could happen for several reasons, but we suspect that
it is due to the abundance of the training data that makes even “simple” models perform well.

This is quantified by what is known as the VC bound [28][29] and we can actually check whether we are
in this regime by plotting the so-called learning curve. These curves are plotted for the logistic regression
learner and is shown in figure 8.2. It shows the training and testing error as a function of the number of
training points. Since the test error is upper bounded by the training error, the absence of a noticable
difference between the two curves when using the full training set indicates that we are indeed deriving a lot
of power by simply having a lot of training examples.

We are also interested in obtaining some insight as to which features are more “influential” in training
the models. This is assessed in figure 8.3 using two different metrics:

• Correlation with the output label: This is the “spearman” curve, which is simply the correlation
between the given feature with the output labels. Scoring high on this is similar to what analysts
typically associate with what constitutes a “powerful” variable: it should correlate strongly with the
label and show visible sepration between them.

• Mutual information: This is the amount of information gained by observing the given feature 1. More
important should score high.

It is interesting to note that while the general trend between the two scores are similar, they are drastically
different in certain features. It is not difficult to imagine a situation where the correlation scores low even

1Technically, it is the amount of information entropy that is lost.
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Figure 8.3: Relative importance of each feature for learning Z1.

though it is very important. Take for example the problem of distinguishing two categories using just
two features that happen to be Gaussian random vectors with the same mean, same variance, but with
opposite correlation coefficients between the two features. Any single feature will show no correlation with
the output, and indeed has no separation power on its own. However, the two taken together can be superb
in distinguishing the categories.

8.1.3 Results

Figure 8.4 show the density function as well as data MC comparison for each of the models using the same
plotting style as in chapter 7.

By visual inspection alone, the densities show that the three models are all somewhat similar. It can
also be seen that the shapes between data and MC agree reasonably well while the normalization is possibly
an effect due to branching fraction uncertainties. The random forest data MC comparison plot exhibits the
unfortunate binning effect due to the limited precision discussed earlier, but it otherwise shows the same
level of agreement as the others.

8.2 D∗τ detector

This learning problem is relevant to defining the statistic Z2, which concerns distinguishing between the Dτ
and D∗τ signal event types.

The training and testing data used both contain approximately 500K records, uniformly sampled from
the signal MC, and consists of the ∼ 34 features listed in chapter 7 plus the Z1 score. The training labels
are such that the Dτ signal categories are labelled 1, and 0 otherwise.

8.2.1 Data preprocessing and learning models

The data was preprocessed in the same way as in the signal detector, and the models attempted are also the
same.

8.2.2 Analysis

Figure 8.5 shows the ROC curves for each of the trained models. All of the models perform similarly, with
the logistic regression trailing slightly behind.
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(a) Random forest event type densities.

0.00 0.02 0.04 0.06 0.08 0.10 0.12
signal_score

0

2000

4000

6000

8000

10000

12000

Co
un

ts

MC with Offpeak
BF/FF/D** Corrected MC 0.8
BF/FF/D** Corrected MC 0.4
Data

0.00 0.02 0.04 0.06 0.08 0.10 0.12
signal_score

0.4

0.2

0.0

0.2

0.4

Da
ta 

- M
C(

0.
8)

 / 
Da

ta

(b) Random forest data-simulation agreement.
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(c) Gradient boosting event type densities.
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(d) Gradient boosting data-simulation agreement.
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(e) Logistic regression event type densities.
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(f) Logistic regression data-simulation agreement.

Figure 8.4: Density and data-MC agreement for the signal detectors.
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Figure 8.6: Learning curve for the logistic regression learner.
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Figure 8.7: Relative importance of each feature for learning Z2.

The learning curve for the logistic regression is shown in figure 8.6, which agains shows that it derives a
lot of power by simply having a lot of data. In this case, logistic regression is doing slightly worse compared
to the more complicated models. From this we conclude that the more sophisticated models really are finding
special structure that a simple model couldn’t.

Figure 8.7 shows the feature importances for this learning problem.

8.2.3 Results

Figure 8.8 show the density function as well as data MC comparison for each of the models using the same
plotting style as in chapter 7.

The densities show that the three models do indeed find ways to separate the Dτ and D∗τ categories,
although the variation of the non-signal densities suggest that they seem to do so by focusing on different
aspects of the dataset. It can also be seen that the shapes between data and MC agree reasonably well while
the normalization is possibly an effect due to branching fraction uncertainties. The random forest data MC
comparison plot exhibits the unfortunate binning effect due to the limited precision discussed earlier, but it
otherwise shows the same level of agreement as the others.

8.3 Choice of Z1 and Z2

We use the logistic regression models as the basis for forming both Z1 and Z2. We could have based our
decision purely on classification accuracy and chose gradient boosting trees for the D∗τ problem. However,
we refrain from doing so since figure 8.8d suggests that it show signs of special structure that might eventually
be more trouble than the marginal gain.

Let f1(X) and f2(X) be the output of the logistic regression models for the signal detector and D∗τ
detector problem, repectively. We then define Z1 and Z2 as follows:

Z1 = logit(f1(X)) (8.1)

Z2 = logit(f2(X)) (8.2)

where

logit(x) = log

(
x

1− x

)
(8.3)
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(a) Random forest event type densities.
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(b) Random forest data-simulation agreement.
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(c) Gradient boosting event type densities.
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(d) Gradient boosting data-simulation agreement.
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(e) Logistic regression event type densities.
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(f) Logistic regression data-simulation agreement.

Figure 8.8: Density and data-MC agreement for the D∗τ detectors.
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(a) Event type stacked histograms.
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(b) Data-Simulation comparison.
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(c) Event type densities.

Figure 8.9: Z1 score.

From a classification accuracy standpoint, applying these transformations are neutral since the logit is
monotonic. However, their applications softens drastic changes in the distribution, thereby improving the
quality of density estimation that we eventually obtain.

Figures 8.9 and 8.10 show the results for Z1 and Z2 respectively. The data and simulation agree reasonably
well in their shapes, and the densities clearly show separation between the various event type categories. We
also show the stacked event type histograms for reference.
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(a) Event type stacked histograms.
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(b) Data-Simulation comparison.
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(c) Event type densities.

Figure 8.10: Z2 score.
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Chapter 9

Signal Extraction

This chapter discusses our method for estimating the proportion of the signal category. As discussed in
chapter 4 this is equivalent to solving the optimization problem of equation 4.31, which we reproduce here
for convenience:

minimize
p∈R|C|

−
N∑
i=1

log

∑
j∈C

pjfj(zi)


subject to

∑
j∈C

pj = 1

(9.1)

where

• C: The set of event type categories. They are {Dτh, D∗τh, D∗∗SL, Comb, Cont}.

• N : Total number of On-Peak data records less those that are reserved for other purposes; e.g. data
MC comparisons.

• zi: Observed value of the signal detector score Z = (Z1, Z2) for record i. These are precisely the two
scores obtained by using the learners discussed in chapter 8.

• pj : The optimization variable. It represents the proportion of records that belong to event category j.

• fj : The (conditional) density function of Z for event type j.

Observe that the optimization problem 9.1 is convex, which means that we can reliably and efficiently
find its global minimum by using a convex solver such as CVXOPT [19]. What remains is to fully specify the
inputs1. Observe that the only items that remain unspecified in optimization problem 9.1 are the density
functions for each event type. These are generally unknown, and we must model them in order to make
progress.

For the moment, suppose that we had data sampled from a fixed event type. We would like to learn a
corresponding density function of Z for that event type. There are several ways to proceed, but most of
them fall in the following two categories:

• Parametric modelling: this approach assumes some parametrized functional form and uses the data
to estimate those parameters. One of the shortcomings of this approach is that it is often impossible
to know the exact functional form. Nonetheless, when applicable, this method is very effective and
requires far less computing time compared to non-parametric approaches.

1Referece [30] has an excellent coverage on convex optimization and explains why their solution are essentially automatic.
In fact, the hard part is really the ability to recognize and to frame the problem as a convex problem.

62



• Non-parametric modelling: this approach learns the density directly from the data without assuming
any particular functional form. Its accuracy and correctness in the large sample limit is based on the
law of large numbers2. The catch is that the computational complexity of the algorithms involved
are often far larger than those in parametric statistics. This can often lead to unacceptable tradeoffs
between running time and accuracy.

We will use a non-parametric approach known as the kernel density estimator to learn all of our event
type densities. While it is true that this specific statistical methodology has been in frequent use in particle
physics, we point out that the standard implementations are severely limited in terms of correctness. This
lead us to implement an improved algorithm that solves not only the correctness issues, but also improves
the running time drastically. The next section digresses from the physics analysis and focuses on how we
perform kernel density estimates with an emphasis on the statistical and algorithmic issues and solutions.

9.1 Fast Kernel Density Estimation

The kernel density estimator3 for the density function of a continuous random variable X over the dataset
D = {xi}Ni=1 is the following:

f̂(x) =
1

Nh

N∑
i=1

K

(
x− xi
h

)
(9.2)

where h is the bandwidth parameter that must be specified, and K is the kernel function which satisfies a
few regularity conditions. Popular choices for K include Gaussian, Epanechnikov, and the sphere. We will
sometimes refer to this dataset as the “training set” and denote it by T .

To evaluate the kernel density estimator at point q, one can simply evaluate 9.2. Often, one is interested
in evaluating over an entire set of queries, which we will refer to as the query set Q = {qi}Ni=1. It is now easy
to see the computational challenge involved: to evaluate a query set of size N will take time O(N2). This
runtime complexity essentially renders the naive evaluation unusable when dealing with datasets involving
millions of points4.

It turns out that the choice of K does not affect the accuracy of the estimator very much; however, the
choice of h is extremely important. We thus seek a criteria to to guide us in choosing the bandwidth. For
this purpose, a common criteria defined for the purpose of assessing the quality of a kernel density estimator
is to analyze its mean integrated squared error (MISE):

MISE :=

∫
(f̂ − f)2 =

∫
f̂2 − 2

∫
f̂f +

∫
f2 (9.3)

where f is the true density. The lower the MISE the better the estimator. Observing that the last term
of equation 9.3 is simply a constant, minimizing the following cross validation score over h is equivalent to
minimizing the MISE:

CV (h) =

∫
f̂2 − 2N−1

∑
i

f̂−i(xi) (9.4)

where f̂−i(xi) = 1
Nh

∑
i 6=j K

(
xi−xj
h

)
; that is, simply evaluate 9.2 but withold the contribution due to point

i itself. One of the attractive qualities of kernel density estimators is due to a theorem[31] which states that
the bandwidth minimizing CV (h) achieves the optimal MISE in the large sample limit.

Therefore, to achieve good statistical performance, we must cross validate. However, it is immediately
clear from equation 9.4 that naively evaluating the cross validation score for any single bandwidth h is
O(N2). This is, again, not feasible for common people when N is in the millions.

2Many standard results, including those of density estimation, are grounded in the Glivenko-Cantelli theorem.
3For a more detailed exposition, see [20].
4Well, unusable for technology accessable to normal people. Then again, it is impossible for anyone if we go up just a few

more factors.
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One might wonder why many applications of kernel density estimation in particle physics appear to not
run into any of the problems that we have discussed above. This is due largely to the following reasons:

1. Most commonly, evaluations of the kernel density is done only approximately. In fact, the algorithm
most commonly used in particle physics[21] uses a greedy binning approach; indeed, this is what many
other libraries outside of physics uses as well. Unfortunately, this algorithm has been shown to be very
approximate, with potential for very large errors [32].

2. The dataset is just not large enough. While it is true that the raw size and number of data points
collected at particle accelerators is unprecedented, the dataset that is actually derived for most analyses
is tiny. Sometimes the raw record counts do not even exceed several tens of thousands, and its entirety
can sometimes even fit in the memory of a reasonably powerful computer.

It turns out that there is, in fact, an efficient algorithm to evaluate both 9.2 and 9.4 that guarantees
accuracy out to a specified precision in time O(n) [22]. It is true that the hidden constants can be large and
depends on the size of the bandwidth; however, we can improve this algorithm further by parallelizing the
leaf computations on a graphics card [23]. The combination of these improvements led to a approximately
a 10,000x speedup on problem sizes of a few million points; on our machines, the actual running time is
just few seconds. We now turn to describing these two improvements and to presenting our performance
benchmarks.

9.1.1 Dual tree evaluation

It is worth taking a moment to think about why the direct method for evaluating 9.2 and its naive im-
provements fall short in terms of correctness and runtime. The following are some of the most interesting
observations that will lead to a more efficient algorithm:

1. The kernel function K(x)→ 0 as x→∞. In fact, the most efficient kernel has even a bounded support!
The direct method does not take advantage of the fact that points far away from the query contributes
little.

2. A naive way to take advantage of the distance information is to grid the data into aptly sized cells.
To evaluate a query point, simply sum over contributions from points that are in the same cell as the
query point. The shortcoming is obvious: if the query point is near the edge of the cell, it will simply
ignore the contributions from the neighboring cell. The problem with this hack is that the fixed grid
does not actually know where the data points are located.

Before writing down the dual-tree algorithm, we first consider the single-tree algorithm. This algorithm
evaluates the kernel density estimate for a single point in time O(log n). It works by taking advantage of the
finite extent of the kernel and by partitioning space adaptively into cells:

1. Use a space partition data structure such as the kd-tree [33] that automatically generates a grid that
adapts to the spatial location of the training set. We now have a grid that is aware of where the
training points are.

2. We can now take advantage of the limited extent of the kernel by branch and bound. The algorithm
proceeds as if it had to evaluate the query point using every training point, but it knows when it is
safe to neglect the contributions due to entire regions in feature space. The main stopping criteria are
as follows:

(a) If a region is sufficiently distant such that we can guarantee that collective contributions due to
all the points within will not be more than a user specified tolerance, then we do not need to
explore that region any further.

(b) If all points within a region contribute sufficiently similarly such that the relative error is less
than a user specified tolerance, then we do not need to explore that region any further.
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Notice that all of the above approximations are guaranteed to meet the user’s tolerance requirements.
Of course, setting the error tolerance to 0 will just reduce to the direct approach, but this is essentially
never the requirement since we are at least limited by the precision of floating point arithmetic. Ac-
tually, for kernels with bounded support, these “approxmiations” are actually not approximate at all
since the contributions sufficiently far away is exactly 0.

Now that we can efficiently evaluate a single point, we can consider the problem of evaluating over an
entire query set. We could just use the single-tree evaluation for each point in the query set; this approach
will give a O(n log n) algorithm, and is already a massive improvement over the naive approach. However,
we can do even better by partitioning the query set with a space partitioning data structure and by applying
the same bounding tricks. This yields an O(n) algorithm5, which we show a sketch of in algorithm 2.

Algorithm 2 Dual-Tree(Q, T )

Inputs:

• Q: Node of a kdtree built on the query set.

• T : Node of a kdtree built on the training set.

Procedure:

1: if Can-Approximate(Q, T ) then
2: Bound-Contributions(Q, T )
3: else
4: if Q and R are both leaf nodes then
5: Dual-Tree-Base(Q, T )
6: else
7: Dual-Tree(Q.left, T.left)
8: Dual-Tree(Q.left, T.right)
9: Dual-Tree(Q.right, T.left)

10: Dual-Tree(Q.right, T.right)
11: end if
12: end if

Notes:

• Each kdtree node has left and right attributes which point to its left and right subtrees.

• Can-Approximate is the function that decides whether points in Q are sufficently far from the points
in T , and Bound-Contributions actually applies the bounding outlined in the main text.

• Dual-Tree-Base performs the direct evaluation of equation 9.2.

9.1.2 GPU acceleration

While it is true that the dual-tree algorithm already runs far more efficiently compared to the naive evaluation
due to the improved computational complexity, the contants involved can still be large.

One can understand the running of algorithm 2 as two distinct phases:

1. Hierarchical tree traversal: this stage decides when it is possible to simply bound the contributions by
points in a given spatial region.

5For a detailed discussion, see [32].
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Figure 9.1: Runtime benchmark. N is the number of training and query points and log is in base 2. 1M is
approximately when logN = 20

2. Leaf evaluation: if the first phase can not justify making the approximations before reaching a leaf, it
will be forced to perform the naive evaluation over the points residing at a leaf node.

Even though it is guaranteed that the number of leaf evaluations will be bounded such that the runtime
complexity is O(n), the hidden constants will strongly depend on the actual number of leaf evaluations,
which can still be large when the extent of the kernel is large.

One way to speed this up is to observe that the direct evaluation lends itself very naturally to paral-
lelization. In fact, the naive way of performing these kinds of N -body problems is one of the canonical
ways in which GPU manufacturers measure and benchmark the improvements made between different chip
generations. This lead us to algorithm 3 [23], which performs the direct evaluation on NVIDIA GPUs.

One might notice that algorithm 3 does not perform the parallelization strategy that equation 9.2 most
directly suggests. That is, instead of creating O(n2) threads to parallelize each term in the computation
and then finally doing a parallel aggregation, we instead assign each thread the task of aggregating all
contributions for a single query point. This is due to the relative speeds of memory accesses on the GPU; it
turns out that the computational efficiency that we gain in taking advantage of all the available parallism is
overshadowed by the number of global memory accesses that it requires.

9.1.3 Results and benchmarks

Figure 9.1 benchmarks the runtime of each algorithmic improvement for kernel density estimation. The
direct (dual-tree) algorithm is represented by an open (closed) circle, while the CPU (GPU) evaluation is
represented using blue (green) circles.

We can clearly see the performance gain obtained by applying the various stages of algorithmic improve-
ments. By extrapolating the runtime out to logN = 20, we see that the total performance improvement
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Algorithm 3 GPU-Dual-Tree-Base(Q, T )

Inputs:

• Q: Array of the query points.

• T : Array of the training points.

Parameters:

• N : Size of both Q and T . We have assumed that they are equal for simplicity.

• M : Maximum number of threads. Assume that M divides N .

• t = 1, · · · ,M : Thread index.

Procedure:

1: for all i ∈ [1 . . . N/M ] do
2: Allocate array A[M ] on the GPU shared memory.
3: Each thread loads the query point q ← Q[(i− 1)M + t] from GPU global memory.
4: Each thread allocates its own accumulator accum← 0 in a register.
5: for all j ∈ [1 . . . N/M ] do
6: parallel
7: A[t]← T [(j − 1)M + t]
8: syncthreads
9: parallel

10: for all k ∈ [1 . . .M ] do
11: accum = accum+ Compute-Kernel(q,A[k])
12: end for
13: syncthreads
14: end for
15: Each thread writes result back to GPU global memory Q[(i− 1)M + t].value← accum
16: end for

Notes:

• Q and T were tree nodes in algorthm 2, but they are now viewed as arrays of points.

• Each point in Q has an attribute value that stores its evaluation result.

• Compute-Kernel evaluates the kernel function. This is a single term in the summation of equation
9.2.

• CUDA has the concept of grids, blocks, and threads. The pseudocode here sweeps a lot of these details
under the rug; it is, however, similar to having a single 1 dimensional block of M threads.
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between the open blue circles (the direct CPU evaluation) to the closed green circles (dual-tree with GPU
acceleration) is about x10,000.

9.1.4 Adaptive densities

One issue with 9.2 that can compromise the kernel density estimate’s performance is that it uses a fixed
bandwidth. It may be that certain areas of the feature space are far denser than others, so the optimal
local bandwidths differ from those regions with lower densities. To allow for the possibilities of varying
bandwidths over feature space, we can use the adaptive kernel density estimator6. It is defined according to
the following procedure:

1. Use a pilot estimate f̃(x), which can be the fixed bandwidth estimate of equation 9.2.

2. Define local bandwidth factors for each input data point xi as follows:

λi = (f̃(xi)/g)−α (9.5)

where g is the geometric mean over f̃(xi)’s:

log g =
1

N

N∑
i=0

log f̃(xi) (9.6)

and 0 ≤ α ≤ 1 is a sensitivity parameter that decides the degree in which the local bandwidths should
be sensitive to the local density. α = 0 is equivalent to using the fixed bandwidth estimator.

3. Define the adaptive kernel density as follows:

f̂(x) =
1

N

H∑
i

1

hλi
K

(
x− xi
hλi

)
(9.7)

where K is the kernel function and h is an overall bandwidth.

The parameters h and α must be specified. It has been shown empirically that setting α to 0.5 is a good
starting point, while opinions about setting h is more varied. One can of course choose these parameters by
cross validation, but unlike the fixed bandwidth situation, there are fewer theoretical guanrantees regarding
performance.

We also implement adaptive kernel densities; it turns out that it is relatively easy to generalize the branch
and bound algorithm of 2 to accomodate for this case. Instead of deciding distance based on the overall
bandwidth, decide it based on the largest bandwidth in a given cell.

9.1.5 Additional features

The following are some additional features implemented for our kernel density estimator. We will no go into
further detail, and refer you to the project webpage.

• Can use arbitrary kernels. By default, we have implemented the Epanechnikov and Gaussian kernels.

• Arbitrary dimensions for CPU evaluation. 1D and 2D available for GPU, but can generalize to more.

• Support for weighted importance of the training points. This is especially useful for systematics that
require re-weighting.

• Cross validation in 3-flavors: likelihood cross validation, least squares cross validation with convolution
kernels, and least squares cross validation using numerical integration.

6See [20] for more details.
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• Grid search for 2D training sets.

• Support for sampling from the estimated density.

• Marginal density projections.

9.2 Data samples for learning event type densities

The ideal data sample from which to learn the event type densities is to base it on real data that we know
corresponds it exactly. This is clearly not achievable since it is in contradiction with the need for using our
current analysis methodology; suppose we had some mechanism of isolating out a large and pure sample of
the Dτ category, then we could have just exploited this mechanism itself to extract the result.

Since it is impossible to achieve the ideal, we can try to learn the densities based on the following
alternatives, each of which have their own strengths and weaknesses:

• Real data sufficiently similar to the specified event type: this is what is known as a “control sample”. It
is any sample of real data that is readily isolated, but also has the virtue of being similar to the the exact
sample. It turns out that the presence of a high quality control sample is also not guaranteed. When
this is the case, one should be especially careful about its role in the analysis and avoid unwarranted
reliance simply because it is based on real data.

• Simulated data: the shortcoming for this is obvious. However, it has the virtue that it is possible to
specify and to explictly state the input parameters and models based on our best knoweldge of physics.
We can then assess how variations of that knowledge could affect the final result, leading to a more
parametrized and controlled approach over the unknown.

The following lists the event types and the corresponding data sample from which we will learn the
densities:

• Dτ : Generic MC.

• D∗τ : Generic MC.

• D∗∗SL: Generic MC.

• Comb: Generic MC. We will use a sideband control sample to assess what the result could have been
assuming it were a good representation of the exact sample.

• Cont: Off-Peak data. We consider this to be a good control sample

9.3 Estimated densities

Figures 9.2, 9.3, 9.4, 9.5, and 9.6 show the estimated densities for each event type. Each figure contains 4
subfigures ordered from left to right, and then top to bottom. They show the following:

1. The 2D density that was estimated. This is what we will substitute for the fj ’s into the optimization
problem 9.1.

2. The least square cross validation score was evaluated over a grid for the purpose of finding the optimal
bandwidth. In particular, we simply use the local minimum found here for the optimal bandwidth.
These are then used for the bandwidths for 2D densities shown.

3. The 1D marginal density in Z1. A histogram of the training points are also shown; this is done as a
cross check that the learned density is behaving as expected.

4. The 1D marginal in Z2.

The estimated densities all appear to behave as expected.
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Figure 9.2: Kernel density estimates for the Dτ event type.
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Figure 9.3: Kernel density estimates for the Dτ event type.

71



3.5 3.0 2.5 2.0 1.5 1.0 0.5
Z1

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Z 2

0.1
5

0.30

0.45

0.60

0.750.901.051.20

Event type 3

(a) Estimated 2D density.

0.06 0.08 0.10 0.12 0.14
h1

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

h 2 -0.62

-0.62
-0.62

-0.62
-0.62

-0.62

-0.62

-0.62 -0.62
-0.62

least squares cross validation score

0.000314

0.000280

0.000246

0.000212

0.000178

0.000144

0.000110

0.000076

0.000042

0.0000086.234e 1

(b) Least square cross validation scores.

3.5 3.0 2.5 2.0 1.5 1.0 0.5
Z1

0.0

0.2

0.4

0.6

0.8

1.0

1.2 Event type 3

(c) Marginal density in Z1.

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
Z2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4 event type 3

(d) Marginal density in Z2.

Figure 9.4: Kernel density estimates for the Dτ event type.
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Figure 9.5: Kernel density estimates for the Dτ event type.
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Figure 9.6: Kernel density estimates for the Dτ event type.
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9.4 Bias Correction of Extracted Signal Proportions

This chapter has, thus far, only prescribed a procedure to obtain the estimator p̂i for each pi. In practice,
these estimators can have large biases that must be corrected or be accounted for directly as a systematic
uncertainty. Our analysis takes the approach to correct for them, and we outline the procedure in this
section. Since the measurement is ultimately regarding the signal components, we only need to be concerned
with the biases of ˆpDτ and ˆpD∗τ .

The approach we take is to approximate two mappings. The first maps the pair ( ˆpDτ , ˆpD∗τ ) to bDτ , and
the second maps the pair to bD∗τ , where bD(∗)τ is the bias of the estimator ˆpD(∗)τ . For concreteness, we
focus our discussion on approximating the first mapping, which we denote T . The procedure for the second
mapping proceeds analogously.

We will approximate T by estimating its value at a set of grid points, and interpolate between them as
needed during the analysis. We will frequently refer to this set of evaluations of T as the “bias lookup table”.

Before describing how we might obtain a single entry of this table, we remind the reader of two mutually
exclusive samples of simulated data that we have pre-allocated. The first is the sample in which the KDE’s
are learned, and the second a hold out (“test”) set.

To obtain one entry, pick a pair of values (pDτ , pD∗τ ). We resample the test set 40 times, with replacement,
such that each sample containes exactly pD(∗)τ worth of the D(∗)τ component while scaling the others
components accordingly. For each sample, we solve 9.1. Once all of the 40 ˆpDτ are computed, we average
them and less the input pDτ to estimate the bias. The pair of averages of ( ˆpDτ , ˆpD∗τ ) and the corresponding
bias value will then serve as an entry in this lookup table. After using 45 pairs of initial (pDτ , pD∗τ ) pairs,
we obtain the bias table shown in Figure 9.7.

The look-up table as described above assumes that the biases only depend on the differences of signal
proportions. The effects of the differences between the background proportions are explored as a systematic
uncertainty in Chapter 11.
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(a) Bias in extracted Dτ proportion.

(b) Bias in extracted D∗τ proportion.

Figure 9.7: Biases of the signal proportions as a function of the extracted signal proportions. The points are
linearly interpolated to better showcase the overall shape.
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Chapter 10

Solving for p̂j and ε̂j on simulated data

This chapter solves for the p̂j ’s by solving the optimization problem 9.1 on simulated data. The goal of
this is mainly two fold. The first is to check that the procedure is self consistent and exhibits the statistical
properties that are expected of the algorithms used; in other words, this is for debugging. To make this toy
example easier to work with, we have fine tuned the bandwidths manually so that the estimated values on
the simulated data is unbiased.

We will also derive the values for ε̂j and compute its statistical uncertainties. These will be used as-is
when we derive the final result from the detector data.

10.1 Solving for p̂j

To obtain the central value as well as the standard error for p̂j , we bootstrap the data sample 1200 times
and solve the optimization problem of 9.1 on each of these instances.

The results are shown in figure 10.1. We note that the sampling distribution for the p̂j ’s are approximately
Gaussian, as we would have expected of maximum likelihood estimates.

Figure 10.2 show the marginal distributions when the central values of the p̂j ’s are substituted for the
joint density of Z1 and Z2. The results look consistent on visual inspection.

The results in figure 10.1 show that the statistical errors for the Dτ and D∗τ categories, are respectively,
0.0007 and 0.0005 .

Looking up the bias correction as described in Section 9.4 leads us to make correction of −0.0025 and
−0.0063 for the p̂Dτ and p̂D∗τ , respectively. When bias-corrected, the extracted proportions agree well with
the known values of the signal proportions.

10.2 Solving for ε̂j

For each signal category j, we estimate the efficiency as follows:

ε̂j =

∑N(j)

i=1 wi∑M(j)

i=1 wi
(10.1)

where we have defined the following quanitites:

• N (j): number of records belonging to category j that is in the sample that has passed all of our data
filtering criteria.

• M (j): number of records belonging to category j that was generated in the simulation.
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Figure 10.1: Bootstrapped results

• wi: the weight of the record.

Applying the formula above, we obtain efficiencies of 1.29% and 1.06% , for the Dτ and D∗τ categories,
respectively. The statistical errors are negligible.
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Figure 10.2: Stacked event types.

79



Chapter 11

Systematic Uncertainties

11.1 Overview

The systematic uncertainties associated with this analysis are primarily due to our dependency on the
simulated data. In particular, the following steps rely on the efficacy of the simulation to represent reality:

1. To estimate pj in equation 4.27, we solved the optimization problem of equation 4.31. This optimization

problem required simulation input to specify the distribution shapes f̂j ; hence, the uncertainty in the

simulation manifests as an uncertainty in the estimated distribution f̂j .

2. To estimate εj in equation 4.27, we used simulated data to evaluate each term in equation 4.40.

This chapter will discuss, in sequence, factors that affect the simulation. For each factor, we discuss
how it affects each item mentioned in the list above and quantify the uncertainty it introduces into the final
result. The last section will summarize the results derived in this chapter and collect them into table 11.14.

We begin by defining a numeric quantity that we will be using to quantify any given systematic uncer-
tainty. First, denote the actual physical model that generated the detector data to be β. Recall that we
also have some reference physical model, encoded in simulation, that we will use to obtain our final result
by fitting it to the data. We use α to denote this “central” model. Consider a systematic variation away
from this “central” model that captures our ignorance. We us α′ to denote this model.

We will denote the bias of p̂ when using model α to fit to the data generated from model β to be b(α,β).
It is by definition,

b(α,β) = E
[
p̂(α,β)

]
− p(β) (11.1)

We use the notation p̂(α,β) to make it clear that the estimator is obtained when fitting β with model α, and
use the notation p(β) to emphasize that the true proportions are those in model β. Quantities that denote
the case when we use model α′ to fit to model β are defined analogously.

We make the assumption1 that the b(α,β) can be decomposed as

b(α,β) = b
(α)
KDE + b

(α,β)
model + bother (11.2)

where

• b(α)
KDE is the bias contributed purely from the KDE’s failure to represent model α.

• b(α,β)
model is the bias contributed purely from the fact that model α differs from model β. In particular,

b
(α,α)
model = 0, and similarly for α′.

1One can certainly challenge this, but we observe some empirical evidence that suggest that this is not so bad.
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• bother is the remaining bias, which we assume to be negligible. This will included terms such as the
MLE’s inherent bias, which we assume to be small for large sample sizes. We will be omitting this
term in what follows.

We define the systematic uncertainty due to the variation α′ from α when fitting to data β to be

∆(α′,α,β) = b
(α′,β)
model − b

(α,β)
model (11.3)

Observing that b(α,α) = b
(α)
KDE , and analgously for α′, we can rewrite equation 11.3 as

∆(α′,α,β) =
(
E
[
p̂(α′,β)

]
− E

[
p̂(α,β)

])
−
(
E
[
p̂(α′,α′)

]
− E

[
p̂(α,α)

])
+ (p(α′) − p(α)) (11.4)

We obtain the first quantity on the RHS by taking the difference between the estimator values for when
using model α′ vs using model α to fit to the real data. To obtain the second quantity, we simply using
model α(′) to fit to data generated using model α(′). The third quantity is known since both α and α′ are
models dialed into the simulation.

All of the systematic uncertainties in the following sections will be obtained by computing the quantity
defined in equation 11.4. Note that the model β in the forgoing discussion is the actual model underlying the
true physical mechanism, but in what follows, we also quote systematic uncertainties for when β represents
the model of data generated from simulation. The purpose of the latter is for debugging and done before we
were unblinded.

11.2 Form factors

Whether our estimated density functions accurately represents those that would have been observed under
the Standard Model depends on how well we can simulate its dynamics. The difficulty of this task is almost
entirely due to our general lack of knowledge for how QCD behaves at low energies. Since this problem is
manifest in all levels of the simulation, we focus only on what we believe are the most consequential aspects.

Specifically, we explore how different hadronization models can influence the semileptonic B decay sim-
ulation, which indirectly influence the estimated density functions f̂j and hence p̂j . We do not specifically
consider their impact on ε̂j , since such variations only manifest through variations in detector efficiencies,
for which we believe have already been conservatively upper bounded in section 11.5.

Obviously, it is not practical to simulate an entirely new set of data for each model that we care to
explore; instead, we apply a set of weights to each record of the simulated data that was generated based
on the default settings. Suppose we would like to assess the impact of using model A. Denoting the default
model by O, we derive a weight for an arbitrary record in the default simulated dataset as follows:

1. Identify a set of variables x, often kinematic in nature (e.g. q2, E`, etc.), whose possible variations in
its distribution are considered important when changing to the model A.

2. Let dΓA/dx be the differential decay rate under model A and define ΓA =
∫
dΓA/dx dx. Similarly,

define dΓO/dx and ΓO.

3. For the given record, compute x and its differential decay rates.

4. Define the weight for this record to be

w(x) =
1

ΓA
dΓA
dx (x)

1
ΓO

dΓO
dx (x)

(11.5)

5. Use the weighted data points to re-estimate the densities and to extract the results.
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This procedure is widespread in physics analyses. The only improvement that I made in this procedure
is in the computation of Γ; people have, in the past, used surprisingly cumbersome methods to compute
the integral. The code base has seen everything from Monte Carlo integration to integrating hard coded
polynomial approximations. While such methods are useful and sometimes required in certain situations,
they are not necessary in this use case; in fact, they are less accurate and are far more prone to numerical
errors than simply using a deterministic integration algorithm. Therefore, all we did is reduce this to a one
liner by making a call to a well known gaussian quadrature code2.

In the following sections, we discuss each form factor model that were considered and quantify their
impact as systematic uncertainties. We will cite and credit the original authors of these models in the
appropriate sections, but I take the moment now to specifically mention work done by Michael Mazur and
Jeff Richman (BAD 1111) and work done by Kenji Hamano and Bob Kowalewski (BAD 1586), who have
consolidated the garden variety of form factor parameterizations into a handful that are directly useful in
performing the re-weighting. We also credit Art Snyder, whose kinematic computing code is borrowed by
many others.

11.2.1 Uncertainties due to B → D(∗)`ν` form factors

We consider the impact of form factor models on the following kinematic variables for semileptonic B decays
to D(∗) mesons:

• q2: Momentum transfer from the B meson to the virtual W boson. This sets the energy scale for which
hadronization of the D(∗) meson takes place; dynamics at higher q2 are better understood than those
at lower values.

• θ`: Angle of the three momentum of the ` in the virtual W ’s rest frame.

• θV : Angle of the three momentum of the D in the D∗’s rest frame. Applicable only to B → D∗ decays.

• χ: Angle between the decay planes of the W and the D∗. Applicable only to B → D∗ decays.

Given a specific form factor model, we compute the differential decay rates in these kinematic variables
using the formulas provided by Korner and Schuler[9]. It remains to identify and specify the form factor
model settings that are used in this analysis. They are as follows:

• Settings used to generate the simulated data:

– B → D`ν, ` = e, µ, τ : ISGW2[34].

– B → D∗`ν, ` = e, µ: Linear q2[35]. The parameter settings are

∗ ρ2 = 0.77

∗ R1 = 1.33

∗ R2 = 0.92

– B → D∗τν: ISGW2.

• Settings re-weighted to in obtaining the central value:

– B → D`ν, ` = e, µ, τ : CLN[10]. The parameter settings are

∗ ρ2 = 1.186

∗ V1 = 1.0816

∗ ∆ = 1.0

– B → D∗`ν, ` = e, µ, τ : CLN[10]. The parameter settings are

2This is the same code used in the GNU scientific library as well as those in MATLAB. It is by Pavel Hodolborodko. See
http://www.holoborodko.com/pavel/numerical-methods/numerical-integration/
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∗ F1 = 0.921

∗ ρ2 = 1.207

∗ R0 = 1.14

∗ R1 = 1.401

∗ R2 = 0.854

• Settings re-weighted to in obtaining the systematic uncertainty:

– B → D`ν, ` = e, µ, τ : CLN[10]. The parameter settings are

∗ ρ2 = 1.186± 0.054

∗ V1 = 1.0816

∗ ∆ = 1.0

– B → D∗`ν, ` = e, µ, τ : CLN[35]. The parameter settings are3

∗ F1 = 0.921

∗ ρ2 = 1.207± 0.026

∗ R0 = 1.14

∗ R1 = 1.401± 0.033

∗ R2 = 0.854± 0.02

Figures 11.1 and 11.2 show the generated simulated data overlayed with the form factor settings that
they are generated from. The agreement is quite good as we might have expected, except for the light leptons
at low q2. This effect is due to the failure of the plotted model curve to account for the mass widths of the
B and D mesons. When the generated mass values are fixed to their central values, the agreement becomes
effectively perfect.

Figures 11.3 and 11.4 show the different form factor models that are considered for B → D(∗) decays.
Notice that ISGW2 is quite different from those that are derived from HQET; even within HQET, different
assumptions applied within the QCD sum rules still lead to slight differences.

Figures 11.5 and 11.6 show the q2 spectra for the variations of the B → D`ν and B → D∗`ν CLN
parameters, respectively. The effects of the slight change in the shapes are assessed as the form factor
systematics.

To obtain the central value, we re-weight the default simulated points to the “central value” settings
specified above. These weights are then used as input to learn the densities, which are then used as input to
extract the (bias-corrected) result from detector data. To obtain the systematic uncertainty, we extract the
result in the same way except that we re-weight to the “systematic” settings above. The difference between
the value obtained this way and the central value is then listed as the systematic. The results are shown in
table 11.1. As a cross check, we also perform this procedure on the simulated data.

Signal Type Simulated data Detector data

Dτ 0.0005 0.0030
D∗τ 0.0014 0.0024

Table 11.1: Systematic uncertainties on p̂j due to B → D(∗) form factors’ influence on f̂j . The first column
is the event type, the second column is the systematic derived from simulated data, while the last column is
the systematic derived from the detector data.

3Note that the variations of the B → D∗`ν form factors were along the principal axis from taking the correlations into
account.
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Figure 11.1: The default generated simulation data overlayed with the purported form factor model for
B → D`ν`.
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Figure 11.2: The default generated simulation data overlayed with the purported form factor model for
B → D∗`ν`.
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Figure 11.3: The differential decay rates for the B → D form factors considered in this analysis.
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Figure 11.4: The differential decay rates for the B → D∗ form factors considered in this analysis.
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Figure 11.5: The differential decay rates for the variations of B → D form factors considered in this analysis.
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Figure 11.6: The differential decay rates for the variations of B → D∗ form factors considered in this analysis.
pi, where i = 0, 1, 2, refer to the principal axes of the covariance matrix for (ρ2, R1, R2) along which the
variations are performed.
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11.2.2 Uncertainties due to B → D∗∗`ν` form factors

We consider the impact of form factor models for semileptonic B decays to the lightest as well as the most
abundant D∗∗ mesons: D∗0 , D1, D′1, and D∗2 . We consider re-weighting in the following kinematic variables:

• w: The four-velocity product between the B meson and the D∗∗ meson. Like q2, this sets the energy
scale for which hadronization of the D∗∗ meson takes place; dynamics at lower w are better understood
than those at higher values.

• θ`: Angle of the three momentum of the ` in the virtual W ’s rest frame.

Obtaining the differential decay rates are, in principle, similar to those for B → D(∗). However, the
models that we re-weight to are more complicated and have far more parameters. Therefore, we largely take
the settings specified in BAD (1586). The following are the form factor model settings used in this analysis:

• Settings used to generate the simulated data:

– B → D∗∗`ν, ` = e, µ, τ : ISGW2[34].

• Settings re-weighted to in obtaining the central value:

– B → D∗∗`ν, ` = e, µ, τ : LLSW B1 [36].

• Settings re-weighted to in obtaining the systematic uncertainty:

– B → D∗∗`ν, ` = e, µ, τ : LLSW B2 [36].

Figures 11.7 show the different form factor models that are considered for B → D∗∗ decays.
The method that we use to obtain the central value and systematic uncertainty is the same as those in

B → D(∗)`ν decays. The results are shown in table 11.2

Signal Type Simulated data Detector data

Dτ 0.0001 0.0056
D∗τ 0.00004 0.0030

Table 11.2: Systematic uncertainties on p̂j due to B → D∗∗ form factors’ influence on f̂j . The first column
is the event type, the second column is the systematic derived from simulated data, while the last column is
the systematic derived from the detector data.
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Figure 11.7: The differential decay rates for the B → D∗∗ form factors considered in this analysis.
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11.3 Branching fractions

The simulated data is generated based on a fixed set of branching fractions that are set to values consistent
with the best knowledge at the time. Their settings influence our results in two ways:

1. Different decay modes generally have different distributions in Z1 and Z2. Changing their relative
compositions can thus influence f̂j , which then affect the extraction of p̂j .

2. Different decay modes generally have different efficiencies. Changing their relative compositions can
thus influence the overall event type efficiency ε̂j .

There are two ways in which the default settings err. They are the following:

1. The default settings were set some number of years ago, and many of them inevitably become outdated.
For instance, even the B → D∗(e|µ)ν branching fraction, which we have always thought to be well
understood, was set to approximately 15% higher than what we find in the PDG today.

2. Even if the central values were set correctly, they are still, all known only to within some precision.
Their potential variations from the nominal value must also be considered.

Of course, studying how every possible branching fraction can influence our results is neither practical
nor necessary. Instead, we focus primarily on B decay modes4 and consider only the following two types of
decays:

1. B semileptonic D∗∗ decays: among the resonant D∗∗ decays, consider only decays to the 4 lightest D∗∗

mesons, which are D∗0 , D1, D′1, and D∗2 . Among non-resonant D∗∗ decays, consider only those that
satisfy the criteria in the next item. These cover the great majority of all B semileptonic D∗∗ decays.

2. Among the most abundant B decays that pass to the final simulated data sample, consider only as
many as is necessary to cover 50% of all records. Operationally, we rank the abundance of each mode
in the simulated sample, and compute a cumulative proportion starting from the most abundant mode;
all modes with a cumulative proportion less than 50% are considered.

Tables 11.3 and 11.4 list all the modes that we consider and their branching fractions from PDG, HFAG,
and predictions[18][11][37], which we presume are considered as the most precise values by the community,
along with the DECAY.DEC values. More specifically, we’d like to note to the readers that the branching
fractions we correct to assume isospin symmetry, which result in lower uncertainties. We note that modes
that are not well determined (i.e. uncertainty on the branching fraction is large) consist mostly of B
semileptonic decays to resonant D∗∗ mesons.

For the modes listed in tables 11.3 and 11.4, we update each record from those in DECAY.DEC to the
present day PDG values by re-weighting. These weights are derived for each default simulated record as
follows:

1. Traverse the simulated particle graph in search for modes listed in 11.3 and 11.4.

2. For each mode found, assign a weight w = wPDG/wDECAY.DEC.

3. The correction for the record is the product of all such computed weights.

To obtain the central value of our result, we use these re-weighted records to learn the estimated densities
and to derive the signal efficiencies.

In addition, we correct for the asymmetry in production rate of B+ vs. B0 from decays of Υ (4S), based
on the latest value from HFAG, by simply re-weighting the luminosity weight, which were initially calculated
assuming equal production rate, as follows:

4We actually also assess the systematic uncertainty due to the D decay mode branching fractions, denoting it as a cross-check
and will be discussed in later sections
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Let ω+ be the initial luminosity weight of a B± event, which is defined as ω+ = Ldata/LMC,B+, where L
refers to luminosity. Since initially LMC,B+ = 0.5×LMC,B, where B refers to both charged and neutral B’s,
and it clear that the corrected luminosity weight for charged and neutral B events should be:

ω′+ =
ω+

2× 0.513
(11.6)

and
ω′0 =

ω0

2× 0.487
, (11.7)

where the production rate of neutral B’s used is 0.487± 0.0065.
To quantify systematic uncertainties due to variations in the estimated densities, we proceed as follows:

1. Decide on a set of variations on the branching fractions (e.g. D`ν and D∗`ν decays are varied simul-
taneously based on their correlations).

2. For each record, re-compute the weights due to these variations and re-estimate the event type densities.

3. Use these densities to extract the result, and quote its difference from the central value as a systematic
uncertainty.

To quantify systematic uncertainties due to variations in the signal efficiencies, we proceed as follows:

1. Decide on a set of variations on the branching fractions.

2. For each record, re-compute the weights due to these variations.

3. Compute the efficiency as usual, this time applying the new weights. Quote the difference between
this and the central value as a systematic uncertainty.

The following sections will apply the procedures above for several variations of the branching fractions.

5It should be noted that there is indeed an uncertainty on the production rate, which provides another source of systematic
uncertainty on the final result. Nevertheless, since the uncertainty is quite small, we assess the impact of varying the production
rate but do not include in our final set of systematics. This is discussed further in Section 11.7
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Decay Mode DECAY.DEC Value Corrected Value Correction Uncertainty Group

B+ → D∗0µ+νµ 0.0617 0.0531 0.0012 A6

B+ → D∗0e+νe 0.0617 0.0531 0.0012 A
B+ → D0µ+νµ 0.0224 0.0230 0.0010 A
B+ → D0e+νe 0.0224 0.0230 0.0010 A
B+ → D∗+s D∗0 0.0278 0.0171 0.0024 B
B+ → D+

s D
0 0.0129 0.009 0.0009 B

B+ → D+
s D
∗0 0.0124 0.0082 0.0017 B

B+ → D0ρ+ 0.0134 0.0134 0.0018 C
B+ → D∗0a+

1 0.01597 0.019 0.005 D

B+ → D
0

1e
+νe 0.0056 0.0096 0.001 E

B+ → D
∗0
0 e

+νe 0.0049 0.0044 0.0008 E

B+ → D
∗0
2 e

+νe 0.003 0.003 0.0004 E

B+ → D
′0

1 e
+νe 0.009 0.002 0.0005 E

B+ → D∗−π+e+νe 0.0006 0.006 0.0006 E
B+ → D−π+e+νe 0.0019 0.0042 0.0006 E

B+ → D
0

1µ
+νµ 0.0056 0.0096 0.001 E

B+ → D
∗0
0 µ

+νµ 0.0049 0.0044 0.0008 E

B+ → D
∗0
2 µ

+νµ 0.003 0.003 0.0004 E

B+ → D
′0

1 µ
+νµ 0.009 0.002 0.0005 E

B+ → D∗−π+µ+νµ 0.0006 0.006 0.0006 E
B+ → D−π+µ+νµ 0.0019 0.0042 0.0005 E

B+ → D
0

1τ
+ντ 0.0013 0.001 0.00014 E

B+ → D
∗0
0 τ

+ντ 0.0013 0.0004 0.00015 E

B+ → D
′0

1 τ
+ντ 0.002 0.00012 0.00005 E

B+ → D
∗0
2 τ

+ντ 0.002 0.00021 0.00004 E

Table 11.3: Dominant B+ decay modes having reasonably well determined values.

11.3.1 Uncertainties due to varying B branching fractions

The branching fraction variations we consider here are those listed in tables 11.3 and 11.4.
We group these modes into five classes. Group A are the semileptonic B decays varied with correlations

taken into account (A0 and A1 are variations along the two principal axes), group B are B decays to strange
flavored mesons, group C(D) consists of B decays to Dρ(D∗a), and group E are B decays to D∗∗`ν and
non-resonant D`νπ. Since their values and uncertainties are reasonably well understood, we consider the set
of variations consisting of increasing and decreasing, separately for each group, their central values by one
standard deviation.

Uncertainties in p̂j due to variations in f̂j

The resulting systematic uncertainties are listed in table 11.5.

Uncertainties in ε̂j

The resulting systematic uncertainties are listed in table 11.6.

6Group A is varied along the principal axis based on correlations used for the world average. Thus two variations is
performed for this group, rather than just one for other groups.
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Decay Mode DECAY.DEC Value Corrected Value Correction Uncertainty Group

B0 → D∗−µ+νµ 0.057 0.0493 0.0011 A
B0 → D∗−e+νe 0.057 0.0493 0.0011 A
B0 → D−µ+νµ 0.0207 0.0213 0.0010 A
B0 → D−e+νe 0.0207 0.0213 0.0010 A
B0 → D∗+s D∗− 0.024 0.0177 0.0014 B
B0 → D+

s D
∗− 0.0126 0.008 0.0011 B

B0 → D∗−D∗0K+ 0.01 0.0106 0.0009 B
B0 → D∗+s D− 0.009 0.0074 0.0016 B
B0 → D+

s D
− 0.009 0.0072 0.0008 B

B0 → D−D∗0K+ 0.0049 0.0035 0.0004 B
B0 → D∗−D∗+K0 0.007 0.0081 0.0007 B
B0 → D+

s1D
− 0.0098 0.0005 0.00014 B

B0 → D+ρ− 0.0077 0.0078 0.0013 C
B0 → D∗+a−1 0.012 0.013 0.0027 D
B0 → D∗−2 e+νe 0.0023 0.0028 0.0004 E

B0 → D
′−
1 e+νe 0.0083 0.0019 0.00046 E

B0 → D∗−0 e+νe 0.0045 0.00408 0.00074 E
B0 → D−1 e

+νe 0.0052 0.0089 0.000911 E
B0 → D∗0π−e+νe 0.0007 0.0048 0.0008 E
B0 → D0π−e+νe 0.002 0.0042 0.0006 E
B0 → D−1 µ

+νµ 0.0052 0.0089 0.000911 E
B0 → D∗−0 µ+νµ 0.0045 0.00408 0.00074 E

B0 → D
′−
1 µ+νµ 0.0083 0.0019 0.00046 E

B0 → D∗−2 µ+νµ 0.0023 0.0028 0.0004 E
B0 → D∗0π−µ+νµ 0.0007 0.0048 0.0008 E
B0 → D0π−µ+νµ 0.002 0.0042 0.0006 E
B0 → D−1 τ

+ντ 0.0013 0.0009 0.00013 E
B0 → D∗−0 τ+ντ 0.0013 0.0003 0.00014 E

B0 → D
′−
1 τ+ντ 0.002 0.00017 0.00005 E

B0 → D∗−2 τ+ντ 0.002 0.00013 0.00004 E

Table 11.4: Dominant B0 decay modes having reasonably well determined values.
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Signal Type BF variation type Simulated data Detector data

Dτ A0 + 1σ -0.0003 0.0008
D∗τ A0 + 1σ 0.0007 -0.0006
Dτ A0 − 1σ 0.0003 0.0004
D∗τ A0 − 1σ -0.0007 0.0
Dτ A1 + 1σ 0.0 -0.0023
D∗τ A1 + 1σ 0.0001 0.0037
Dτ A1 − 1σ -0.0002 0.0017
D∗τ A1 − 1σ -0.0002 -0.0017
Dτ B +1σ 0.0001 0.0036
D∗τ B +1σ 0.0002 -0.0022
Dτ B −1σ -0.0002 0.0017
D∗τ B −1σ -0.0002 -0.0017
Dτ C +1σ 0.0 0.0015
D∗τ C +1σ 0.0006 -0.0017
Dτ C −1σ -0.0002 -0.0021
D∗τ C −1σ -0.0003 0.0025
Dτ D +1σ 0.0003 0.0020
D∗τ D +1σ 0.0009 -0.0009
Dτ D −1σ -0.0003 -0.0004
D∗τ D −1σ -0.0009 0.0004
Dτ E +1σ -0.0001 0.0015
D∗τ E +1σ 0.0001 -0.0010
Dτ E −1σ 0.0003 0.0013
D∗τ E −1σ 0.0 -0.0008

Table 11.5: Systematic uncertainties on p̂j due to varying well determined B decay branching fractions. The
first column is the event type, the second column indicates the kind of branching fraction variation, the third
column is the systematic derived from simulated data, while the last column is the systematic derived from
the detector data. Note that groups A0 and A1 roughly correspond to D`ν and D∗`ν branching fractions,
respectively.

11.3.2 Uncertainties due to difference between exclusive and inclusive branch-
ing fractions of B → Xc`ν

It is well-known [38] that there is a discrepancy of ∼ 1.5% between the inclusive branching fraction of
semileptonic B decays and the sum of exclusive branching fractions. This motivated a previous BABAR
analysis (BAD 2593) to ”fill” the gap with B decays to D∗∗ (Dππ) `ν decays.

To assess the uncertainty due to the discrepancy, the D∗∗ (Dππ) `ν signal MC samples generated for the
previous analysis are first re-weighted to make up 1.5% of the training set prior to any reconstruction and
data filtering has been applied. Then the records go through the same pipeline as all the other records and
incorporated into the final training set, which are again re-weighted to keep the total number of training
data points the same. The samples used are summarized in Table 11.7, where we mix the three D∗∗ decays
modes in equal proportions.

The new dataset with these decays added are then used to assess the change in the result in p̂j in the
same procedure as the assessments of the B branching fraction systematic uncertainties: Table 11.8 shows
the results.
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Signal Type BF variation type Simulated data Detector data

Dτ A0 + 1σ 0.00003

same as simulation

D∗τ A0 + 1σ 0.00004
Dτ A0 − 1σ 0.00003
D∗τ A0 − 1σ 0.00004
Dτ A1 + 1σ 0.00004
D∗τ A1 + 1σ 0.00004
Dτ A1 − 1σ 0.00004
D∗τ A1 − 1σ 0.00004
Dτ B +1σ 0.00002
D∗τ B +1σ 0.00001
Dτ B −1σ 0.00002
D∗τ B −1σ 0.00001
Dτ C +1σ 0.00001
D∗τ C +1σ 0.00001
Dτ C −1σ 0.00001
D∗τ C −1σ 0.00001
Dτ D +1σ 0.00003
D∗τ D +1σ 0.00003
Dτ D −1σ 0.00003
D∗τ D −1σ 0.00003
Dτ E +1σ 0.00012
D∗τ E +1σ 0.00012
Dτ E −1σ 0.00012
D∗τ E −1σ 0.00012

Table 11.6: Systematic uncertainties in ε̂j due to varying poorly determined B decay branching fractions.
The first column is the event type, the second column indicates the kind of branching fraction variation, the
third column is the systematic derived from simulated data, while the last column is the systematic derived
from the detector data.

11.3.3 Uncertainties due to D branching fractions

The effect of the branching fractions of D decay modes are also studied. Rather than performing fluctuations
of the branching fractions as we have done for the B decays, we perform a cross-check by making a correction
on the most common decay of D to Kππ.

More explicitly, we re-weight the events by, for each D decays to Kππ, w = wPDG/wDECAY.DEC = 0.992.
Since the branching fractions of D decays are well-measured, we deemed fluctuation by its measurement
error unnecessary.

Table 11.9 shows the resulting systematic uncertainties on p̂j .

11.4 BB background validation

No matter how realistically we try to simulate the various event types, it is impossible to be certain of
its accuracy without validating against a sample of detector data. However, the lack of such a sample is
precisely the reason we appeal to simulation in the first place.

Despite this conundrum, it is perhaps not unreasonable to compare against a sample of detector data
that is closely related to, and/or behaves similarly. Such a cross check will provide qualitative validation to
the extent that we trust the similarities of such a “control sample” to an authentic sample.

In this analysis, all event type distributions other than those of continuum are taken from simulated data.
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Decay Type # event [106] BABAR Dataset Name

B+ → D1(Dππ)`ν 6.642 SP-11459-R24
B0 → D1(Dππ)`ν 7.100 SP-11465-R24
B+ → D1(D∗ππ)`ν 6.480 SP-11460-R24
B0 → D1(D∗ππ)`ν 6.870 SP-11466-R24
B+ → D(2S)(Dππ)`ν 6.776 SP-11461-R24
B0 → D(2S)(Dππ)`ν 6.826 SP-11467-R24
B+ → D(2S)(D∗ππ)`ν 6.530 SP-11462-R24
B0 → D(2S)(D∗ππ)`ν 6.769 SP-11468-R24
B+ → D(2S)∗(Dππ)`ν 6.369 SP-11463-R24
B0 → D(2S)∗(Dππ)`ν 6.552 SP-11469-R24
B+ → D(2S)∗(D∗ππ)`ν 6.425 SP-11464-R24
B0 → D(2S)∗(D∗ππ)`ν 6.616 SP-11470-R24

Table 11.7: Signal MC samples used for assessing the gap between inclusive and sum of exclusive B → Xc`ν
braching fractions.

Signal Type Simulated data Detector data

Dτ 0.0001 0.0006
D∗τ 0.0003 0.0007

Table 11.8: Systematic uncertainties in p̂j due to the discrepancy between inclusive and the sum of exclusive
branching fractions of B decays to Xc`ν. The first column is the event type, the second column is the
systematic derived from simulated data, while the last column is the systematic derived from the detector
data.

Although we concede the absence of a control sample for Dτ and D∗τ event types, we propose using records
that satisfies at least one of the following conditions to be the “sideband control sample” for the BB event
types:

S1. Eextra ≥ 3 GeV.

S2. |~psigh | ≥ 2.3 GeV.

Figures 11.8, and 11.9 show that this sample consists almost entirely of event types BB and continuum.
Furthermore, compared to those records not in the sideband sample, the proportion of the signal types
contribution is at least an order of magnitude less.

11.4.1 Qualitative validation

Figure 11.10 shows the Z1 and Z2 comparisons for data points belonging to the sideband. Overall, the
distribution shape for the on peak data points (black) and the stacked histograms agree reasonably well.
One could argue, however, that the residuals of the Z2 score is possibly showing signs of a slight upward
trend. The normalization is slightly different, but this not as much a concern since they are afloat in the
optimization.

We show the sideband comparisons for the raw features used to train Z1 and Z2 in appendix C; they
generally show good distribution shape agreement as well.
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Figure 11.8: Sideband sample in Eextra.
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Figure 11.9: Sideband sample in |~psigh |.
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Figure 11.10: Sideband comparison for Z1 and Z2. All data points used to produce these figures belong to
the sideband sample. The black points are on-peak detector data, the pink filled histograms are luminosity
scaled off-peak data, and the yellow and green filled histograms are the simulated BB background.
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Signal Type Simulated data Detector data

Dτ 0.0 0.0008
D∗τ 0.0001 0.0001

Table 11.9: Systematic uncertainties in p̂j due to corrections to branching fraction of D → Kππ. The first
column is the event type, the second column is the systematic derived from simulated data, while the last
column is the systematic derived from the detector data.

11.4.2 Quantitative validation and its uncertainty

We can attempt to quantify, by using the sideband samples, a systematic uncertainty on p̂j due to possible

simulation misrepresentations of the f̂j ’s in BB background event types by making the following assumptions:

A1. The off-peak data is a good representation of the continuum event type. “Good” in this case roughly
means that any discrepancies is sub-dominant compared to discrepancies seen in the sideband samples.

A2. The signal event types are negligible in the sideband. Together with the point above, all discrepancies
in the sideband are assumed to be due to the BB background.

A3. The discrepancy in Z1 and Z2 is the same independent of whether a record is in the sideband or not.

We define a weight function w(z1, z2) that rectifies the discrepancy of the BB component in the sideband
sample as follows:

1. Let g(z1, z2) be the density function in Z1 and Z2 for the on-peak sideband. By assumption A2., we
can decompose this into two components: contributions from continuum and contributions from BB
background. We write this as

g(z1, z2) = (1− pcont)gBB(z1, z2) + pcontgcont(z1, z2) (11.8)

2. Let fBB(z1, z2) be the density function in Z1 and Z2 for the simulated BB background that is also in
the sideband.

3. Define the weight function as follows:

w(z1, z2) =
g(z1, z2)− pcontgcont(z1, z2)

(1− pcont)fBB(z1, z2)
(11.9)

Finally, we form the estimate ŵ(z1, z2) by estimating each quantity in equation 11.9 as follows:

• Estimate g(z1, z2) using a kernel density estimate trained on the on-peak sideband sample.

• By assumption A1., we estimate gcont(z1, z2) using a kernel density estimate trained on the off-peak
sideband sample.

• Estimate fBB(z1, z2) using the simulated sideband BB background.

• There is no firm basis from which to estimate pcont. We can, in principle, derive a family of weight
functions that are parameterized by a range of reasonable settings for pcont. However, for simplicity,
we set pcont to those derived in the simulation as an initial guess.

By assumption A3., we use ŵ(z1, z2) to quantify a systematic uncertainty as follows:

1. Apply a weight w(z1, z2) for each simulated BB background data point.

2. Use these weighted points to update the estimated density functions input into the signal extraction.

3. Quote the difference between the updated optimized value and the central value as the systematic
uncertainty.
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11.4.3 Results

Signal Type Simulated data Detector data

Dτ 0.0024 0.0017
D∗τ 0.0001 0.0003

Table 11.10: Systematic uncertainties on p̂j due possible misrepresentations of f̂j by the simulated BB
background. The first column is the event type, the second column is the systematic derived from simulated
data, while the last column is the systematic derived from the detector data.

Table 11.10 show the systematic uncertainties quantified using the procedure discussed above. While
this approach may seem plausible, we recommend taking its results with a grain of salt. The most brittle
assumption, in our opinion, is A3.; this alone is enough to make us feel more comfortable had we only
proceeded with the qualitative comparisons. Even more than that, we have avoided discussing the subtle
numerical issues involved with estimating w(z1, z2) when the densities are nearly zero. The origin of this
difficulty is statistical: sideband statistics are limited, especially in regions rich in signal. It is, therefore, not
surprising that such estimations are approximate at best.

11.5 Detector efficiencies

Another factor that influences efficiencies is the detector response. Since we estimate ε̂j ’s entirely from
simulation, we must quantify the uncertainties due to its misrepresentation of the real detector.

It is not difficult to imagine the numerous places that a simulated detector could misrepresent a real
detector. However, knowing where all such errors could occur is, once again, neither practical or neces-
sary. Like many analyses before us, we focus only on the net effect of these misrepresentations. The two
aspects that we believe summarizes the influence of such effects come in the form of an uncertainty on the
reconstruction efficiency. They are the following:

1. Tracking efficiency: the probability that a track is reconstructed is different in a real detector. The
uncertainty on the reconstruction efficiency of a physics event is, therefore, related to the cumulative
uncertainty on the reconstruction efficiency of its tracks.

2. Particle identification (PID) efficiency: the probability that a given particle is identified as a certain
species is also different in a real detector. Since reconstruction relies on the presence of identified parti-
cles, the cumulative efficiency of successfully identifying each required particle affects the reconstruction
efficiency of the given physics event.

The following subsections will describe how we obtain estimates for both types of efficiencies listed above.
We will discover that these uncertainties are far smaller than those discovered in section 11.3, and so we do
not pursue more detailed studies at this time.

11.5.1 Tracking efficiency uncertainty

The tracking group recommends that we assign an uncertainty of 0.2% for every track that is present in a
physics event. This convenience is possible due to the significant improvements in the tracking algorithms
used since release 24 of the BABAR framework software. Prior to these improvements, analysts would have
to lookup a set of tables to obtain the correct uncertainties for every track in an event.

For event type j, we assign the systematic uncertainty on ε̂j due to tracking as follows:

σtrkε̂j =

∑N(j)

i=1 w
(j)
i n

(j)
i 0.2%∑N(j)

i=1 w
(j)
i

(11.10)
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where we have defined the following:

• N (j): number of records in the data sample belonging to event type j.

• w(j)
i : the weight of record i for records in the data sample belonging to event type j.

• n(j)
i : the number of tracks of record i for records in the data sample belonging to event type j.

In other words, we simply take the weighted average of the recommended total tracking uncertainty over

records of a specified event type. It turns out that the uncertainties for both signal event types are 2.3% .

11.5.2 PID efficiency uncertainty

The PID group recommends applying a per particle uncertainty by looking up a set of PID lookup tables
for each identified particle that is also used in the reconstruction of a record. They also suggest, in lieu of
the lookup table approach, the approximate uncertainties listed in table 11.11.

Particle Uncertainty

e 0.7%
µ 1.3%
K 1.1%

Table 11.11: Per particle PID efficiency uncertainty for each particle species.

A typical reconstruction of our records consists of the following identified particles:

• Two leptons. One for the semileptonic reconstruction of the Btag and another for the leptonic veto of
the reconstructed τ daughter. For an average case estimate, we simply take 1 electron and 1 muon for
a total uncertainty of 2.0%.

• Two kaons, one for each D meson reconstruction. This gives a total uncertainty of 2.2%.

The estimates above totals to a 4.4% uncertainty on the PID efficiency uncertainty for each event type.

11.6 Systematic Uncertainty on the Bias Correction

The bias correction procedure as outlined in Section 9.4 has an associated systematic uncertainty stemming
from our limited knowledge of the background proportions (i.e. pi where i = D∗∗SL(3), Comb(4), Cont(5)).

As stated before, the mc.central simulated data represents our best educated guess of the detector data.
The bias correction attempts to rectify the effect of the difference in signal proportions, and in this section
we aim to quantify the effects of differing background proportions by making the following assumptions:

1. The uncertainty in the background proportions are dominated by branching fraction measurement
uncertainty.

2. Uncertainty in the proportion of continuum component is negligible since we use the off-peak data,
which can be assumed to be identical to the continuum component of the real data.

The systematic uncertainty due to the branching fractions can be quantified as before by fluctuating the
background proportion of D∗∗SL and Comb, and measuring the bias as before. The changes in the bias
from these flucations will used to upper bound the systematic uncertainty. The next few sections aims to
quantify how much we trust the values generated by the mc.central model.
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(a) Event type 3, D∗∗SL. (b) Event type 4, Comb.

Figure 11.11: Ranking of the McBTypes in 10000 records of event types 3 and 4, or D∗∗SL and Comb.

11.6.1 Branching Fraction Uncertainty in Background Components

To quantify the total uncertainty in p3 and p4 due to branching fraction measurement errors, we rank the
most common decay modes for each event type. More specifically, we draw a random sample of 10000 records
for each event type, then categorize each B into one of 9 possible McBTypes, or categories:

• NoB: Not a B decay.

• Dtau: B → Dτν.

• Dstartau: B → D∗τν.

• Dl: B → D`ν.

• Dstarl: B → D∗`ν.

• Dstarstar res: B → D∗∗`ν.

• Dstarstar nonres: B → D∗∗`nπν.

• SL: All other semileptonic decays of B.

• Had: Hadronic decays of B.

Figure 11.11 shows the breakdown of the background event types, and Table 11.12 shows the upper
bounds of relative measurement errors for each McBType based on Tables 11.3 and 11.4.

McBType Relative Measurement Error

Dl 1%
Dstarl 1%

Dstarstar res 7 15%
Dstarstar nonres 10%

SL 2%
Had 10%

Table 11.12: Summary of relative uncertainties on the most common decay modes in the background event
types.

7It should be noted that other anaylses, for instance [2], assign much more conservative uncertainties on the branching
fractions of B into D∗∗ decay modes, up to 100%.
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From these values, we can proceed to bound the relative uncertainty on p3 and p4 by considering them
as a weighted sum of the 9 McBTypes. This results in 6.3% and 5.7% uncertainty on pD∗∗SL and pComb,
respectively.

The following recipe is used to assign systematic uncertainties due to the choice of background propor-
tions:

1. Calculate the bias for a grid of points in true (Dτ , D∗τ) space.

2. For each grid point (i.e. choice of true signal proportions), we vary the background proportions up and
down based on the values given above.

3. Assign the systematic uncertainty as the maximum difference between the biases calculated from the
four variations and the default bias.

When we performed the above procedure for 15 grid points ranging from (0, 0) to (0.02, 0.01) in step sizes
of 0.0005, we found that the systematic uncertainty is rather uniform as a function of the true proportions.
Thus, we assign as the systematic uncertainty the average of those 15 measurements.

Signal Type Systematic Uncertainty

Dτ 0.0008
D∗τ 0.0005

Table 11.13: Systematic uncertainties on the bias correction. The first column is the event type, the second
column is the systematic uncertainty. There is no differentiating between simulated and detector data since
all estimations are performed in simulation.

11.7 Additional sources of systematic uncertainty

11.7.1 Charged vs. neutral B production rate at Υ (4S)

As discussed in a footnote previous, there is an uncertainty on the B0 production rate of 0.006. We assess the
systematic uncertainty due to raising and lowering of the production rate (i.e. 0.493 and 0.481) following the

same steps as assessing systematic uncertainty due to branching fractions. This results in 0.0001(0.0017)

and 0.0004(0.0024) uncertainty on p̂Dτ and p̂D∗τ , respectively for simulated(detector) test dataset.

11.7.2 Possible discrepancy of R(D∗∗)

The main motivation behind this analysis is the tension between measured and predicted value of R(D(∗))
of around 30%. We assess a possible systematic uncertainty arising from discrepancy in the R(D∗∗) system
of a similar magnitude.

We increase the branching fractions of semitauonic decays of B to D∗∗ (i.e. the last 4 decays listed in

Tables 11.3 and 11.4) by 30%. This results in -0.0002(-0.0003) and -0.0004(0.0007) uncertainty on p̂Dτ

and p̂D∗τ , respectively for simulated(detector) test dataset.

104



11.8 Summary

Table 11.14 collects all the systematic uncertainties derived in this chapter.

Simulation Detector Data
Dτ D∗τ Dτ D∗τ

p̂ uncertainties

D(∗)τ form factors 0.0005 0.0014 0.0030 0.0024
D∗∗τ form factors 0.0001 0.00004 0.0056 0.0030

Semileptonic D∗∗ branching fractions 0.0003 0.00005 0.0015 0.0010
Semileptonic D(∗) branching fractions 0.0004 0.0007 0.0031 0.0043

Strange decay branching fractions 0.0002 0.0002 0.0036 0.0022
B → D(∗)ρ branching fractions 0.0002 0.0006 0.0021 0.0025
B → D(∗)a1 branching fractions 0.0003 0.0009 0.0020 0.0009
BB background shape validation 0.0024 0.0001 0.0017 0.0003

D decay branching fraction cross-check 0.00004 0.0001 0.0008 0.0001
Gap sample for B → Xc`ν branching fractions 0.0001 0.0003 0.0006 0.0007

Background proportions on bias correction 0.0008 0.0005 same as simulation

ε̂ uncertainties

Semileptonic D∗∗ branching fractions 0.00012 0.00012

same as simulation

Semileptonic D(∗) branching fractions 0.00005 0.00005
Strange decay branching fractions 0.00002 0.00001
B → D(∗)ρ branching fractions 0.00001 0.00001
B → D(∗)a1 branching fractions 0.00003 0.00003

Tracking efficiency 0.0003 0.0002
PID efficiency 0.0006 0.0005

Table 11.14: Summary of systematic uncertainties on p̂j and ε̂j .

An immediate observation is that the systematic uncertainties computed using the detector data are
much larger than those computed using the simulated data. In fact, the error size of the detector data is
consistently larger by around a factor of 5. We will postpone a discussion regarding this difference to section
12.2. It is also interesting to note that the largest sources of systematic uncertainties are not due to D∗∗’s
but due to the uncertainty in the branching fractions of non-D∗∗’s.

We suspect the reason that we are so susceptible to systematic variations is simply due to having very
little signal. Small signals do not just pose challenges in distinguishing it from the stochasticity of the
background, but also easily drowned out by systematic variations. One way to improve this analysis is to
try to combine signal categories so that it is more robust against systematic variations in the background;
for example, measuring the sum of Dτ and D∗τ branching fractions. The challenge in this suggestion is to
derive a quantity from the sum that still says something meaningful about R(D(∗)).
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Chapter 12

Results and Discussions

This chapter presents the final result. We will first present the unblinded result in the form of a confidence
region, and conclude by some followup discussions.

12.1 Unblinded Results

The value of R(D(∗)) can be calculated by plugging in the values of p̂D(∗)τ and ε̂D(∗)τ into equations 4.10
and 4.15. The value of ε̂D(∗)τ is computed using the prescription presented in 4.7; we find that they are

εDτ = 0.0129± 0.0007(sys.) (12.1)

εD∗τ = 0.0106± 0.0005(sys.). (12.2)

What remains is to compute p̂D(∗)τ by applying the procedure outlined in chapter 9 on the detector data
and using the combined statistical and systematic uncertainties to construct a confidence region on R(D(∗)).
The prescription is summarized in these steps:

S1 Solve the optimization problem of equation 9.1, but this time plugging in the detector data into the
objective.

S2 Now that p̂D(∗) are computed, lookup the bias correction required in the table constructed in section
9.4. We can then compute the central value of R(D(∗)) using the bias corrected p̂D(∗) and ε̂D(∗)τ .

S3 Construct the confidence interval/region using the combined statistical and systematic uncertainty.
We will outline how this is done below.

12.1.1 Results for p̂D(∗)τ

We begin by applying step S1. The signal proportions obtained directly from the solution of equation 9.1,
i.e. before bias correction, are

p̂Dτ = 0.0051± 0.0005(stat.)± 0.0085(sys.)

p̂D∗τ = 0.0009± 0.0001(stat.)± 0.0066(sys.) (12.3)

ρp̂Dτ ,p̂D∗τ = −0.21 (12.4)

We now turn to applying step S2; figure 12.1 shows the bias table overlayed with the result that was
obtained in step S1. Since the bias table covers the range of physical signal proportions, it is clear that we
have obtained an unphysical value. This is actually not a problem in frequentist statistics, but we do give
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up quoting a central value for R(D(∗))1. This does not preclude us from constructing a confidence region,
so we turn now to applying step S3.

Figure 12.1: Black dots are p̂sig of MC datasets with varying signal proportions with uncertainties as described
in Sec. 11.6, and represents the bias table. Orange cross is the p̂sig of the detector data with statistical and
systematic uncertainties.

12.1.2 Confidence Region

To construct a confidence region over R(D(∗)), first construct a confidence region over each grid point of
the bias table. Once the confidence region is constructed for p̂, simply apply the bias correction at each grid
point and apply equations 4.10 and 4.15.

We apply the following procedure to obtain the confidence region over each grid point of the bias table.
Denote the uncorrected fit result of step S1 to be p̂. For the ith grid point pi,

1. Form the chi-squared statistic
χ2
i = (pi − p̂)TM−1(pi − p̂) (12.5)

where M is the covariance matrix between pi and p̂.

1One could attempt to extrapolate a central value, but we thought this to be unreliable given the overall shape of the bias
table.
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2. Calculate the p-value as

p-valuei = 1− F (χ2
i ; 2), (12.6)

where F (x; k) is the CDF of the chi-squared distribution with k degrees of freedom.

Once all the p-values are computed, we simply mark a grid point as belonging to the 68% (95%) confidence
region if its p-value exceeds 0.32 (0.05). Figure 12.2 shows p-valuei for all points of the bias table while
figure 12.3 shows the resulting confidence regions of pD(∗)τ . Finally, we transform the confidence regions in
pD(∗)τ to R(D(∗))’s. The result is shown in figure 12.4, and we overlay the results from other measurements
in figure 12.5. It is clear that our result is not sufficiently sensitive to provide any evidence for or against
the existing discrepancies.

Figure 12.2: Points of the bias tables with their p-values as labels.

12.2 Discussions

We now discuss the sources of the large uncertainties that are observed and suggest some improvements. It
is clear that we are, by far, systemtics dominated. This section will therefore focus the discussion on the
large systematic uncertainties.
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Figure 12.3: Confidence regions of pD(∗)τ

The most glaring problem is that the systematic uncertainties are far larger when applied to data than
when they are applied to simulation. In fact, the detector data column in table 11.14 is consistently 5x
larger than those in the simulated data. Such a large asymmetry between the two columns suggest that the
simulation could be a rather poor representation of the data. If this were the case, then an analysis such as
ours that optimizes aggressively on simulation might in fact adversely impact performance in real data. It is
of course unrealistic for an analysis to take no inputs from simulation, but one could be more active about
avoiding the aspects of simulation that are likely to be poorly simulated.

Another observation is that our signal is a lot smaller than the background compared to similar analyses
[1][2][3][4], which suggests that we are potentially more sensitive to systematic variations in the background.
We were optimisitic early on in our analysis because we have achieved great suppression in statistical errors;
but in the end, the systematics proved to be the more difficult to control and cannot be tamed purely by
statistical techniques.

One can also argue that we might not have done enough to improve the signal to background ratio. While
it is true that we have already done a reasonable job in separating the signal from background by using the
classifiers, it is quite possible that we could’ve benefit from courser cuts further upstream in the analysis
that might have given us a cleaner sample to work with; e.g. cleaning the construction of the tag side B
more carefully.
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Figure 12.4: Confidence regions of R(D(∗))
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Figure 12.5: Confidence regions of R(D(∗)) with world-average and SM prediction overlaid.
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Chapter 13

Conclusions

We performed the first measurement of R(D(∗)) using semileptonic tags and τ decays to hadrons and quote
68% and 95% confidence intervals. Unfortunately, we do not observe enough evidence to distinguish the
Standard Model predictions from the current deviations in the world average.

Nevertheless, we have demonstrated that the low signal to background ratio in the τ to hadron channel
poses its greatest difficulty not in statistical noise, but in systematic variations. Therefore, it is perhaps
worth revisiting this channel only when systematic variations get suppressed; unfortunately, this suppression
can only happen gradually over time as the community accumulates more knowledge about the underlying
physical mechanisms.

We also learned that our analysis consumes characteristics of the simulated data that very poorly reflect
those in the detector. Even though this was expected of the hadronic τ decays, one could argue that future
iterations of this analysis could use more care in deciding which aspects of the simulated data to be used.

Despite the difficulties in obtaining a sensitive physics result, we have created a novel analysis toolchain
that is highly robust and reusable. It has already been adopted by several child analyses, and has been
running reliably for the last 2 years and counting. The primary value add of this toolchain are the highly
performant statistical algorithms that were implemented; they were the reason for the negligible statistcal
uncertainties. The additional value add, which is arguably more important, is that this toolchain has
automated and offloaded the tedious and time consuming bookkeeping that analysts typically had to do,
freeing them up to focus on the physics problem at hand.
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Appendix A

Graph Matching

Let G = (VG, EG) and H = (VH , EH) be directed graphs representing, respectively, true particle decays
and reconstructed particle decays. The graphs are defined such that a vertex is inserted for each particle
participating in the decay, and an edge (u, v) is inserted if v is a daughter particle of u.

Each vertex contains the following attributes:

A1 id: particle species identifier.

A2 hit: detector deposit pattern. Non-null only for vertices with no out-edges.

Definition 3 Let u ∈ VH and u′ ∈ VH . We say that u and u′ are semantically equivalent if u.id = u′.id and
u.hit = u′.hit. Denote this with u ∼ u′. (Note: we take the convention that NULL compares equal only to
NULL.)

G and H further satisfies following properties:

P1 A set of vertices in G or H can have at most 1 common mother.

P2 Let u ∈ VG be a vertex with no out edges. There is at most one u′ ∈ VH such that u ∼ u′.

P3 G has exactly one vertex with no in-edges. We refer to this vertex as the root of G.

Definition 4 The subtree rooted at u ∈ VG is the subgraph induced by all vertices that are reachable from
u. That is, it is the subgraph G′ = (V ′, E′) with V ′ = {v ∈ VG| v reachable from u. } and E′ = {(u, v) ∈
E|u, v ∈ V ′}.

Define the subtree rooted at u′ ∈ VH similarly.

Let u be a vertex in G or in H. Denote D(u) to be the set of all neighbors of u. By construction, D(u) is
the set that contains only vertices corresponding to daughters particles of u. We can now define, recursively,
what it means for two decays trees from G and H to be “the same”.

Definition 5 The subtree rooted at u ∈ VG is isomorphic to the subtree rooted at u′ ∈ VH if the following
hold:

1. u ∼ u′.

2. There exists a bijection f : D(u)→ D(u′) such that for any v ∈ D(u), v is tree-isomorphic to f(v).

We sometimes will simply say that u is tree-isomorphic to u′ and denote it as u ∼= u′.

Proposition 1 Vertices in G with no out-edges are tree-isomorphic to at most one vertex in H, and vice
versa.
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Proof: Immediate by property P2 and definiton 5.

Lemma 1 Let u be any vertex in G. There is at most 1 vertex in u′ ∈ H such that u ∼= u′.

Proof: By induction on the height of the subtree rooted at u.

• Base case: true by proposition 1.

• Inductive case: Suppose u is tree-isomorphic to at least two distinct vertices in VH ; pick any two such
vertices s′, t′ ∈ VH . Since all subtrees rooted at vertices in D(u) have lesser height, they are each
tree-isomorphic to exactly 1 vertex in VH . Denote this set of vertices as S. It follows that u must be
tree-isomorphic to a common mother of S; however, property P1 states that there can be at most 1
such mother. Contradiction.

Lemma 2 Let u′ ∈ VH and suppose each of its daughters are tree-isomorphic to some vertex in VG; denote
the set of these vertices as S ⊆ VG. If u′ is tree-isomorphic to any vertex in VG, it must be that u′ ∼= m
where m is the common mother of S.

Proof: Immediate by applying definition 5 and property P1.
Lemma 1 allows us to formally state the particle graph matching problem:

• Input: Graphs G and H.

• Output: Decide if the root vertex in G is tree-isomorphic to any vertex in H. If so, return it.

Theorem 3 Algorithm 1 solves the particle graph matching problem correctly and runs in time O(V + E).

Proof: Algorithm 1 actually decides, for every vertex u′ ∈ VH , whether it is tree-isomorphic to any vertex
in VG, and if so finds it. It is correct by lemma 2 because it does so in depth first order.
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Appendix B

Consistency Test

In order to validate the analysis procedure, especially the home-brewed software like the kernel density
estimation, we perform a self-consistency test.

Suppose we have fixed component densities for the five event types and a set of proportions. While the
exact values of the proportions and bandwidths used for the KDE’s are not important, we use the proportions
expected from SM prediction, ~p = (0.008, 0.0129, 0.125, 0.444, 0.410).

We can generate test datasets (of size N = 8.7 million) as follows:

1. Draw x ∼ unif(0, 1).

2. Determine the event type x correpsonds to based on ~p, then generate a point from the corresponding
event type KDE.

3. Repeat until we have N points.

This effectively removes all possible external discrepancies between the training data, used to construc
the KDE’s, and the test data, from which we attempt to extract ~p.

We generate 300 such test datasets, and estimate the signal proportions for all datasets. Figure B.1
shows the distribution of difference between expected and extracted signal proportions, and we observe the
clear unbiasedness of our estimation of the signal proportions.

This test also demonstrates the validity of using the bootstrap to estimate the variance of the extracted
signal proportions: The standard deviation estimated based on the sample variance of the 300 test datasets
agree well with the bootstrap estimation of the standard deviation (B.1).

Dτ D∗τ
Bootstrap S.D. 0.000895 0.000812

Sample S.D. 0.000887 0.000826

Table B.1: Validation of bootstrap estimation of the variance by comparison to the sample variance of the
results of the 300 simulated datasets.
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Figure B.1: Runtime benchmark. N is the number of training and query points and log is in base 2. 1M is
approximately when logN = 20
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Appendix C

Sideband comparisons

We show data and simulation comparisons in the sideband. This is an extension of the discussion in section
11.4.
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Figure C.1: Comparisons between data and MC for each event type in the sideband.
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Figure C.2: Comparisons between data and MC for each event type in the sideband.
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