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ABSTRACT 
 

An important characteristic for life is the ability to persist – to reproduce and defend 

oneself against different stresses. The ability of a species to persist from one generation to 

the next heavily depends on the integrity of the genetic material being passed down, and 

thus organisms have developed strategies to ensure the integrity of their genomes remain in 

tact. In Metazoan germlines, piwi proteins and their associated piwi-interacting RNAs 

(piRNAs) provide a RNA-interference (RNAi) based defense system against the expression 

of transposable elements (TEs).  TE expression is detrimental to an organism’s genome – 

resulting in disruption of genes, double-stranded DNA breaks, and germ cell death – 

ultimately leading to the sterility of the organism. In Drosophila melanogaster, the piRNA 

pathway is composed of two cytoplasmic piwi clade Argonuate proteins, Aubergine (Aub) 

and Argonaute3 (Ago3), and a single nuclear piwi clade Argonuate protein, Piwi. The piwi 

clade Argonaute proteins bind piRNAs to form effector complexes that repress TE 

sequences. 

The work presented in this thesis examines the role of the nuclear piwi clade 

Argonaute – Piwi – and the mechanisms by which Piwi accomplishes its functions. Chapter 

Two presents how Piwi/piRNA complexes identify genomic loci expressing TEs and direct 

the establishment of a repressive chromatin state to transcriptionally silence the loci. In 

Chapter Three, we explore the piRNA-induced transcriptional silencing (piRITS) pathway 

using a heterologous reporter based tethering system in vivo. We discuss how the 

recruitment of Piwi alone to a locus is not sufficient to induce repression, and establish a 

model for the connection bridging the Piwi/piRNA complex and effector silencing complex 

in the piRITS pathway. In Chapter Four, we employ our heterologous reporter based 

tethering system to explore the mechanism of piRNA precursor selection in the two cell 

types that make up Drosophila ovaries. We uncover a common mechanism of piRNA 

biogenesis in the two cell types and establish a unifying model of piRNA substrate 

selection. Finally, in Chapter Five, as essential step to understanding how Piwi achieves its 

nuclear function, we developed a heterologous two-hybrid system to identify factors that 

directly interact with Piwi. Overall, the work presented in this thesis provides a piece of the 

groundwork in understanding the mechanisms of transcriptional silencing of TEs in germ 

cells by Piwi. The work proposes that Piwi has dual functions in the nucleus. First, upon 
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target recognition, Piwi recruits the piRITS complex to target loci to accomplish Piwi-

mediated transcriptional silencing by deposition of H3K9me3. Then, Piwi recruits the RDC 

complex to specifically bind H3K9me3 at target loci to allow piRNA-production from the 

locus. 
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C h a p t e r  I  

INTRODUCTION 
The integrity of the genome that is passed from one generation to the next is of vital 

importance. Transposable elements (TEs) are selfish, mobile genetic elements that threaten 

the stability and integrity of the germline genome in all animals. If active, transposable 

elements can cause detrimental mutations, double stranded DNA breaks, and ultimately 

lead to sterility of the organism (Slotkin and Martienssen 2007). Organisms have evolved 

various mechanisms to defend the integrity of their genomes from active transposons. One 

mechanism that metazoans have developed for controlling the activity of transposable 

elements in the germline is the piRNA pathway (Siomi et al. 2011). 

The piRNA pathway is a RNA silencing mechanism that acts specifically in the 

germline to repress the expression of transposable elements. The central components of the 

piRNA pathway are the Piwi-clade Argonautes and their associated small RNAs, termed 

piRNAs (Piwi-interacting RNAs). piRNAs are loaded into the Piwi-clade Argonautes to 

form an effector complex called pi-RISC (piRNA-induced silencing complex). The 

Argonaute protein provides the effector function, while the loaded small RNA provides the 

specific recognition of targets through sequence complementarity (Lin and Spradling 1997; 

Cox et al. 1998; Kuramochi-Miyagawa et al. 2001; Carmell et al. 2002; Houwing et al. 

2007).  

Piwi-clade Argonautes in Drosophila melanogaster 

In Drosophila melanogaster, the model system used in our laboratory, there are 

three Piwi-clade Argonaute proteins – Piwi, Aubergine (Aub), and Argonaute3 (Ago3).  

The piwi proteins have a structure composed of four domains that is similar to other 

Argonaute proteins (Song et al. 2004; Wang et al. 2008). The mid domain anchors the 5’ 

end of the small RNA while the PAZ domain anchors the 3’ end of the small RNA. In 

addition, the PIWI domain provides the catalytic function of the piwi protein, allowing for 

cleavage of target transcripts. Piwi-clade Argonautes have a unique N-terminal domain that 

contains Arginine-rich motifs that can be symmetrically dimethylated. The symmetrically 

dimethylated Arginines (sDMAs) facilitate interactions between piwi proteins and Tudor-

domain containing piRNA pathway components (Kirino et al. 2009; Nishida et al. 2009; 

Vagin et al. 2009; Liu et al. 2010). In Drosophila, the interactions between piwi proteins 
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and Tudor-domain containing proteins, which can act as scaffolds, generate distinct 

membraneless, perinuclear granules termed “nuage” (Brennecke et al. 2007a; Aravin et al. 

2008; Malone et al. 2009). 

Aub and Ago3 are expressed exclusively in the germ cells of Drosophila ovaries 

and localize within nuage in the cytoplasm. The endonucleolytic activity of Aub and Ago3 

is essential for their function – Aub and Ago3 work together to post-transcriptionally 

repress transposable elements through cleavage of TE transcripts complementary to their 

associated piRNA (Vagin et al. 2006; Agger et al. 2007; Brennecke et al. 2007b; 

Gunawardane et al. 2007). In mammals and Drosophila, there is one Piwi-clade Argonaute 

that localizes to the nucleus. In Drosophila, this is the namesake of the Piwi-clade 

Argonautes – Piwi, which stands for P-element induced wimpy testis (Lin and Spradling 

1997; Cox et al. 1998). Unlike Aub and Ago3 that are expressed exclusively in the nurse 

cells of the ovary, Piwi is expressed in the nurse cells as well as the somatic follicular cells 

that support the nurse cells (Cox et al. 2000; Harris and Macdonald 2001; Saito et al. 2006; 

Brennecke et al. 2007b; Gunawardane et al. 2007).When I began my thesis project, the role 

of Piwi in the nucleus was unknown.  

The role of nuclear Piwi-piRNA complexes in regulating transposon loci  

The chromatin structure of a locus’ environment plays a role in determining the 

transcriptional status of the locus. In Drosophila melanogaster, the properties of chromatin 

are largely defined by different histone modifications. Previous studies had shown that 

some TE loci are transcriptionally silenced by repressive chromatin marks (Bozzetti et al. 

1995; Schmidt et al. 1999; Aravin et al. 2001; Aravin et al. 2004; Vagin et al. 2006). 

Furthermore, it had been indicated that loss of Piwi from the nucleus results in a change in 

histone modification marks over sites of TEs (Klenov et al. 2011; Pöyhönen et al. 2012). 

However, a genome wide analysis on the effect of Piwi on histone modifications and 

transcription of TEs had been lacking.  

In Chapter Two of my thesis, we aimed to determine the function of nuclear Piwi in 

silencing transposable elements. We performed a genome-wide analysis of the effect of 

knocking down Piwi expression in the Drosophila germ cells. Transcriptionally silenced 

TE loci are marked with tri-methylated histone 3 lysine 9 (H3K9me3). Upon knockdown of 

Piwi, we found the repressive chromatin mark H3K9me3 at the loci of transposons is lost 
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and expression levels of transposons are increased. We showed that piRNAs are the 

essential guides for Piwi to recognize its targets, and that loading of Piwi with piRNAs is 

required for Piwi function whereas its endonucleolytic cleavage ability is not. Furthermore, 

we showed that Piwi interacts with RNA-associated factors in a RNA-dependent manner 

rather than with, as previously thought, chromatin-associated factors. Ultimately, we 

showed that Piwi functions in the nucleus to initiate Piwi-mediated transcriptional silencing 

of target loci by deposition of the repressive H3K9me3 chromatin mark (Le Thomas et al. 

2013). Piwi-mediated transcriptional repression of TE loci by deposition of H3K9me3 was 

corroborated in two other independent studies (Sienski et al. 2012; Rozhkov et al. 2013). 

Components of the piRNA pathway involved in Piwi-mediated transcriptional 

silencing 

Piwi proteins are not capable of inducing chromatin modifications and 

transcriptional silencing by themselves, implying they must interact with other factors to 

successfully repress targets. As Piwi cannot “write” repressive chromatin marks at target 

loci itself, a fundamental question is what factors act downstream of Piwi-target 

recognition in establishing a repressive chromatin state. Previously, a handful of factors had 

been implicated in acting downstream of Piwi in the effector function of the piRITS 

(piRNA-induced transcriptional silencing) complex. One factor, Maelstrom (Mael), is a 

conserved factor implicated in TE silencing in both Drosophila and mice (Megosh et al. 

2006; Aravin et al. 2009; Sienski et al. 2012). Similar to knockdown of Piwi, loss of Mael 

results in increased Pol II occupancy at TE transcriptional start sites (Sienski et al. 2012). 

However, knockdown of Mael results in only a minor reduction in H3K9me3 at TE loci, 

compared to loss of Piwi, implying that Mael is not involved in the establishment of 

H3K9me3 at Piwi-targeted loci (Sienski et al. 2012).  

Two factors of unknown function, Panoramix (Panx) and Asterix (Arx), were found 

to be necessary for Piwi-mediated establishment of H3K9me3 at TE loci targets (Donertas 

et al. 2013; Muerdter et al. 2013; Sienski et al. 2015; Yu et al. 2015). piRNA-independent 

recruitment of Panx to a reporter construct is sufficient to transcriptionally silence the 

reporter loci by establishment of H3K9me3 (Sienski et al. 2015; Yu et al. 2015). 

Establishment of H3K9me3 by Panx requires the histone methyltransferase Eggless (Egg), 

also known as SetDB1 (Sienski et al. 2015; Yu et al. 2015). Egg “writes” the H3K9me3 
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mark and has been previously implicated in Piwi-mediated transcriptional silencing 

(Rangan et al. 2011; Sienski et al. 2015; Yu et al. 2015). While some of the players had 

been identified, the manner in which the piRITS complex factors associate with each other 

remains unclear. 

In Chapter Three, we aimed to elucidate factors that act downstream of Piwi in 

establishing a repressive chromatin state. To study this, we utilized the RNA-binding 

domain of the lambdaN protein to piRNA-independently recruit factors to a heterologous 

reporter in Drosophila germ cells. Our laboratory had identified Su(Var)2-10 as a novel 

piRNA pathway component potentially involved in the piRITS complex (data 

unpublished). We found that recruitment of Piwi alone to the reporter transcript was not 

sufficient to induce a change in the transcriptional status of the locus – this was 

corroborated by two independent laboratories (Sienski et al. 2015; Yu et al. 2015). 

However, recruitment of Su(Var)2-10 or Panoramix to the reporter transcript resulted in a 

change in the chromatin state of the reporter locus. From the set of factors identified to be 

involved in the piRITs complex – Panoramix, Asterix, Su(Var)2-10, and the histone 

methyltransferase Eggless – we performed epistasis experiments to determine how these 

factors work together in Piwi-mediated transcriptional silencing. We found that repression 

by recruitment of Panoramix depended on Su(Var)2-10. Furthermore, we found that 

Su(Var)2-10 depends on Eggless to provide its repressive function.  

piRNA biogenesis in Drosophila melanogaster 

piRNA biogenesis is a multi-step process starting with transcription and early 

processing of precursor RNA in the nucleus, export, precursor cleavage followed by 

processing to mature piRNAs and loading into piwi proteins. There are two distinct 

mechansims of piRNA biogenesis in Drosophila: primary (also known as Zucchini-

dependent) and secondary (also known as ping-pong-dependent) (Brennecke et al. 2007b; 

Gunawardane et al. 2007; Malone et al. 2009). Mature piRNAs are processed from longer 

transcripts, piRNA precursors (pre-piRNAs). The majority of pre-piRNAs are derived from 

piRNA clusters – long, discrete genomic regions with a high density of transposon 

sequences (Brennecke et al. 2007b; Gunawardane et al. 2007). In Drosophila ovaries, 

piRNA clusters are expressed in two cell types: germline cells and somatic follicular cells. 

The structure of piRNA clusters is largely dependent on the cell type it is expressed in. 
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Clusters that can be transcribed bi-directionally (dual stranded clusters) are found 

predominantly in the germline cells; whereas somatic clusters are largely uni-directionally 

transcribed (Brennecke et al. 2007a). Ultimately, the cluster structure dictates how a pre-

piRNA is processed.  

Pre-piRNAs derived from dual stranded clusters are predominantly processed by 

the ping-pong cycle. In the ping-pong cycle, processing of pre-piRNAs is initiated by the 

endonucleolytic (slicer) activity of cytoplasmic piwi proteins, Aub or Ago3, loaded with 

complementary piRNAs (Brennecke et al. 2007b; Gunawardane et al. 2007). The 

characteristic features of ping-pong biogenesis are the presence of complementary piRNA 

pairs whose 5’ ends are separated by 10nt, and the generation of piRNAs with a bias for U 

at position 1 and for A at position 10 of their sequence (Wang et al. 2014).  

Uni-strand cluster derived pre-piRNAs cannot undergo ping-pong processing. 

Instead, these pre-piRNAs must rely on the Zucchini-dependent biogenesis machinery for 

processing. In Zucchini-dependent biogenesis, endonucleolytic cleavage of pre-piRNAs by 

Zuc generates the 5’, and in part the 3’, ends of piRNAs. This process does not depend on 

the slicer activity of piwi proteins, nor the presence of complementary piRNAs (Malone et 

al. 2009). piRNAs generated through Zuc-dependent biogenesis show a bias for U at their 

5’ end but lack a bias for A at position 10.  

Many of the cytoplasmic piRNA biogenesis factors, including Aub and Ago3 as 

well as numerous factors that were genetically identified to act in the pathway such as 

Vasa, Armitage (Armi), and Krimper, localize to membraneless perinuclear structures 

called nuage in germ cells and Yb bodies in the surrounding somatic follicular cells, 

leading to the assumption that these structures are the sites of piRNA biogenesis (Hay et al. 

1988; Lasko and Ashburner 1990; Lim and Kai 2007; Kirino et al. 2009; Malone et al. 

2009; Qi et al. 2011; Ipsaro et al. 2012; Nishimasu et al. 2012; Ohtani et al. 2013; Webster 

et al. 2015).  

How piRNA precursors are identified by the biogenesis machinery remained 

unresolved. Other RNA processing events, such as miRNA or CRISPR RNA biogenesis, 

splicing, or polyadenylation, require specific sequence and/or structure motifs in 

precursor RNA that are recognized by the processing machinery (Zeng et al. 2005; Park 

et al. 2011; Barrangou and Marraffini 2014; Li and Patel 2016; Tsai and Joung 2016). 
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Despite efforts, common sequence or structural motifs that are shared by all piRNA 

precursors have not been identified (Muerdter et al. 2012). In lack of sequence motifs, 

two mutually non-exclusive models have been proposed to explain precursor selection in 

the germline, which we call the “persistent nuclear mark model” and the “selection by 

pre-existing piRNA model”.  

The	 “persistent	 nuclear	 mark	 model”	 proposes	 that	 specific	 proteins	

associate	 with	 piRNA	 precursors	 in	 the	 nucleus	 and	 remain	 associated	 with	 the	

transcripts	in	the	cytoplasm,	where	they	interact	with	the	processing	machinery.	In	

the	germline,	genomic	regions	that	give	rise	to	the	majority	of	piRNAs,	called	piRNA	

clusters,	are	marked	by	the	histone	3	lysine	9	trimethylation	(H3K9me3)	mark	and	

by	the	RDC	complex.	The	RDC	complex	consists	of	the	HP1	homolog,	Rhino,	and	two	

additional	proteins,	Cutoff	(Cuff)	and	Deadlock,	and	is	required	for	transcription	and	

early	processing	of	cluster	transcripts	(Klattenhoff	et	al.	2009;	Pane	et	al.	2011;	Le	

Thomas	et	al.	2014;	Mohn	et	al.	2014;	Zhang	et	al.	2014;	Chen	et	al.	2016).	The	well-

conserved	transcription	export	(TREX)	complex	is	also	enriched	at	cluster	loci	and	

binds	piRNA	precursors	co-transcriptionally	in	an	RDC-dependent	fashion	(Zhang	et	

al.	2012;	Hur	and	Chung	2016;	Hur	et	al.	2016).	Components	of	either	the	RDC	or	the	

TREX	complex	were	proposed	to	constitute	the	mark	that	triggers	processing	in	the	

cytoplasm.	However,	the	nature	of	the	mark	and	the	mechanism	by	which	it	engages	

the	 processing	 machinery	 remain	 unclear.	 Evidence	 for	 RDC	 or	 TREX	 remaining	

associated	 with	 piRNA	 precursors	 after	 nuclear	 export	 is	 also	 lacking.	 Finally,	

tethering	of	Rhino	to	a	single-stranded	transgene	(without	its	concomitant	tethering	

to	a	complementary	antisense	transgene)	does	not	trigger	piRNA	biogenesis	(Zhang	

et	 al.	 2014),	 arguing	 against	 the	 idea	 that	 binding	 of	 RDC	 by	 itself	 is	 sufficient	 to	

specify	piRNA	precursors.	

The	 “selection	 by	 pre-existing	 piRNA”	 model	 suggests	 that	 precursors	 are	

specified	 in	 the	 cytoplasm	 by	 complementary	 piRNAs	 associated	 with	 the	

cytoplasmic	piwi	proteins.	Existing	piRNAs	can	target	pre-piRNAs	and	induce	their	

processing	 via	 the	 ping-pong	 cycle	 (Brennecke	 et	 al.	 2007b;	 Gunawardane	 et	 al.	

2007).	piRNA-dependent	cleavage	not	only	generates	complementary	piRNAs	(ping-

pong	partners)	but	also	leads	to	phased	processing	of	the	precursor	downstream	of	
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the	initial	cleavage	(Han	et	al.	2015;	Homolka	et	al.	2015;	Mohn	et	al.	2015;	Senti	et	

al.	2015;	Wang	et	al.	2015).	This	process	generates	Piwi-loaded	piRNAs.	Mutation	of	

the	 two	 piwi	 proteins	 involved	 in	 the	 ping-pong	 cycle,	 Aub	 and	 Ago3,	 greatly	

reduces	 Piwi-bound	 piRNAs	 in	 the	 germline,	 leading	 to	 the	 suggestion	 that	 Zuc-

mediated	piRNA	biogenesis	in	germ	cells	is	triggered	by	the	ping-pong	cycle	(Han	et	

al.	2015;	Homolka	et	al.	2015;	Mohn	et	al.	2015;	Senti	et	al.	2015;	Wang	et	al.	2015). 

Follicular cells of the fly ovary lack ping-pong biogenesis factors as well as the 

RDC complex; yet produce piRNAs, suggesting an alternative precursor selection 

mechanism. In Chapter Four,	 our	piRNA-independent	 tethering	 assay	 allowed	us	 to	

address	 the	 longstanding	 question	 of	 how	 piRNA	 precursors	 are	 recognized	 and	

channeled	 into	 the	 piRNA	 processing	 machinery.	 We	 used	 our	 in	 vivo	 piRNA-

independent	tethering	assay	to	recruit	piRNA	pathway	components	to	the	reporter	

transcript	in	both	cell	types	to	probe	reporter-derived	piRNA	production.	We	found	

that	 reporter-derived	 piRNAs	 could	 be	made	 in	 both	 cell	 types	 by	 recruitment	 of	

Piwi	 and	 other	 piRNA	 biogenesis	 factors.	 By	 tethering	 different	 piRNA	 pathway	

components,	 we	 were	 able	 to	 determine	 which	 factors	 are	 sufficient	 to	 trigger	

reporter-derived	 piRNAs.	We	were	 also	 able	 to	 determine	 which	 piRNA	 pathway	

components	 are	 necessary	 for	 production	 of	 piRNAs	 from	 the	 reporter.	

Furthermore,	 we	 showed	 that	 upon	 Piwi	 tethering,	 the	 reporter	 transcript	 is	

sequestered	in	nuage,	and	that	compartmentalization	of	the	transcript	is	necessary	

and	sufficient	 to	place	 it	within	spatial	proximity	to	 the	processing	machinery	and	

trigger	 piRNA	 production.	 Overall,	 this	 work	 provided	 a	 single	 unified	 model	 for	

piRNA	precursor	selection	in	both	cell	types	of	Drosophila	ovaries.		

Cytoplasmic loading of Piwi and translocation of the Piwi-piRNA complex to the 

nucleus 

In steady-state, Piwi is found in the nucleus of both cell types of Drosophila (Cox 

et al. 2000; Harris and Macdonald 2001; Saito et al. 2006; Brennecke et al. 2007b; 

Gunawardane et al. 2007), but unloaded Piwi resides within the cytoplasmic nuage prior to 

translocation to the nucleus (Le Thomas et al. 2013). In nuage, Piwi is loaded with piRNA 

and then the Piwi-piRNA complex is translocated to the nucleus where Piwi functions. To 
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accomplish its function, Piwi must engage in many interactions with a distinct set of, 

mostly unidentified, proteins within the cytoplasmic and nuclear compartments.  

In nuage Piwi must interact with the piRNA biogenesis machinery to be loaded. 

Currently, piRNA pathway components involved in loading of piwi proteins are not fully 

known. Nuage localized Tudor-domain containing factors Shutdown, Vreteno, Brother-of-

Yb, and Sister-of-Yb have been identified as necessary for loading Piwi and Aub with 

piRNAs (Olivieri et al. 2010; Handler et al. 2013). In addition, loading of Piwi within 

nuage seems to require Armitage and Zucchini, while Yb is required for Piwi-loading in the 

Yb bodies of somatic cells (Szakmary et al. 2009; Olivieri et al. 2010).  

After being loaded into Piwi, the pre-piRNA is further processed into a mature 

piRNA. The Tudor-domain containing factor, Papi, trims a subset of Piwi-loaded pre-

piRNA at their 3’ end to their mature length – 25 nucleotides (Hayashi et al. 2016). 

Another factor implicated in trimming the 3’ end of Piwi-loaded pre-piRNAs is Nibbler 

(Hayashi et al. 2016; Wang et al. 2016). After trimming, Hen1, a methytransferase, 

catalyzes the characteristic 2’-O-methylation found at the 3’ terminal nucleotide of the 

Piwi-loaded piRNA (Horwich et al. 2007; Saito et al. 2007; Kawaoka et al. 2011). It 

remains to be seen if more factors involved in pre-piRNA processing into mature piRNA 

will be identified. 

While many factors have been genetically identified as part of the piRNA pathway, 

it is unclear what role many of these factors serve in the pathway. Currently, factors 

involved in the translocation of loaded Piwi to the nucleus, if any, are unknown. As 

discussed in Chapters Two, Three, and Four of this thesis, there have been several factors 

implicated in piRNA biogenesis as well as in the piRITS complex. However, to date, only a 

few of the piRNA pathway factors have been biochemically dissected. Further, the ability 

to dissect the interactome is complicated by the complexity of the interactions. While 

studies have been carried out to determine whether the factors that interact with Piwi are 

involved in loading Piwi with piRNA in nuage or recruiting the silencing machinery to 

target loci, it is still unclear exactly whether Piwi engages in direct or indirect biochemical 

interactions with these factors. The ability to discern direct biochemical interactions with 

Piwi would provide important insights into understanding the sequence of events that must 

occur for Piwi to be loaded in the cytoplasm, translocated to the nucleus, and accomplish 
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its function in the nucleus. In Chapter Five, we aimed to identify novel interactions with 

Piwi and determine which interactions were most likely occurring directly. To probe the 

Piwi interactome, we developed a heterologous cell culture assay to tether lacI-mKate2-

tagged Piwi to lacO arrays inserted in the genome of a mammalian cell line (U2OS). 

Tethering of Piwi to three distinct foci in the cell allowed us to screen fifty-five CFP-

tagged factors to look for colocalization between the mKate2 and CFP signal, indicating a 

possible direct interaction. We found several new Piwi interactors and identified fourteen 

possible direct interactions.  
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PIWI INDUCES PIRNA-GUIDED TRANSCRIPTIONAL SILENCING 
AND ESTABLISHMENT OF A REPRESSIVE CHROMATIN STATE 

 
This work was first published as:  

Le Thomas, A. et al. (2013). “Piwi induces piRNA-guided transcriptional silencing and 
establishment of a repressive chromatin state”. In: Genes & Development 27: 390-399. doi: 
10.1101/gad.209841.112. 
 

Abstract 

In the Metazoan germline, piwi proteins and associated piwi-interacting RNAs (piRNAs) 

provide a defense system against the expression of transposable elements. In the cytoplasm, 

piRNA sequences guide piwi complexes to destroy complementary transposon transcripts 

by endonucleolytic cleavage. However, some piwi family members are nuclear, raising the 

possibility of alternative pathways for piRNA-mediated regulation of gene expression. We 

found that Drosophila Piwi is recruited to chromatin, co-localizing with RNA polymerase 

II on polytene chromosomes. Knockdown of Piwi in the germline increases expression of 

transposable elements that are targeted by piRNAs, whereas protein-coding genes remain 

largely unaffected. De-repression of transposons upon Piwi depletion correlates with 

increased occupancy of RNA polymerase II on their promoters. Expression of piRNAs that 

target a reporter construct results in a decrease in Pol II occupancy and an increase in 

repressive H3K9me3 marks and HP1 on the reporter locus. Our results indicate that Piwi 

identifies targets complementary to the associated piRNA and induces transcriptional 

repression by establishing a repressive chromatin state when correct targets are found.  
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Introduction 

Diverse small RNA pathways function in all kingdoms of life, from bacteria to 

higher eukaryotes. In eukaryotes, several classes of small RNA associate with members 

of the Argonaute protein family forming effector complexes in which the RNA provides 

target recognition by sequence complementarity, and the Argonaute provides the 

repressive function. Argonaute-small RNA complexes have been shown to regulate gene 

expression both transcriptionally and post-transcriptionally. Post-transcriptional 

repression involves either cleavage of target RNA through the endonucleolytic activity of 

Argonautes, or through sequestering targets into cytoplasmic ribonucleoprotein (RNP) 

granules (Hutvagner and Simard 2008).  

The mechanism of transcriptional repression by small RNAs has been extensively 

studied in fission yeast and plants. Several studies showed that Argonaute-small RNA 

complexes induce transcriptional repression by tethering chromatin modifiers to target 

loci. In fission yeast, the effector complex containing the Argonaute and the bound small 

interfering (si)RNA associates with the histone H3K9 methyltransferase, Clr4, to install 

repressive H3K9-dimethyl marks at target sites (Nakayama et al. 2001; Maison and 

Almouzni 2004; Sugiyama et al. 2005; Grewal and Jia 2007). Methylation of histone H3 

lysine 9 (H3K9) leads to recruitment of the heterochromatin protein 1 (HP1) homolog, 

Swi6, enhancing silencing and further promoting interaction with the Argonaute complex. 

The initial association of Ago with chromatin, however, requires active transcription 

(Ameyar-Zazoua et al. 2012; Keller et al. 2012). Plants also utilize siRNAs to establish 

repressive chromatin at repetitive regions. Contrary to yeast, heterochromatin in plants is 

marked by DNA methylation, although repression also depends on histone methylation 

by a Clr4 homolog (Soppe et al. 2002; Onodera et al. 2005). Although siRNA-mediated 

gene silencing is predominant on repetitive sequences, it is not limited to these sites. 

Constitutive expression of double-stranded RNA mapping to promoter regions results in 

production of corresponding siRNAs, de novo DNA methylation, and gene silencing 

(Mette et al. 2000; Matzke et al. 2004).  

In metazoans, small RNA pathways are predominantly associated with post-

transcriptional silencing. One class of small RNA, microRNA, regulates expression of a 
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large fraction of protein-coding genes (Friedman et al. 2009). In Drosophila, siRNAs 

silence expression of transposable elements in somatic cells (Chung et al. 2008; Ghildiyal 

et al. 2008) and target viral genes upon infection (Galiana-Arnoux et al. 2006; Wang et al. 

2006; Zambon et al. 2006). Another class of small RNAs, Piwi-interacting RNAs 

(piRNAs), associates with the Piwi clade of Argonautes and acts to repress mobile 

genetic elements in the germline of both Drosophila and mammals (Siomi et al. 2011). 

Analysis of piRNA sequences in Drosophila revealed a very diverse population of small 

RNAs that primarily maps to transposon sequences and is derived from a number of 

heterochromatic loci called piRNA clusters, which serve as master regulators of 

transposon repression (Brennecke et al. 2007). Additionally, a small fraction of piRNAs 

seems to be processed from the mRNA of several host protein-coding genes (Robine et al. 

2009; Saito et al. 2009). The Drosophila genome encodes three piwi proteins: Piwi, 

Aubergine (AUB) and Argonaute3 (AGO3). In the cytoplasm, AUB and AGO3 work 

together to repress transposons through cleavage of transposon transcripts, which are 

recognized through sequence complementarity by the associated piRNAs (Vagin et al. 

2006; Agger et al. 2007; Brennecke et al. 2007; Gunawardane et al. 2007).  

In both Drosophila and mammals, one member of the Piwi clade proteins localizes 

to the nucleus. Analogously to small RNA pathways in plants, the mouse piRNA 

pathway is required for de novo DNA methylation and silencing of transposable elements 

(TEs) (Carmell et al. 2007; Aravin et al. 2008; Kuramochi-Miyagawa et al. 2008), 

however, the exact mechanism of this process is unknown. In Drosophila, DNA 

methylation is absent; however several studies indicate that elimination of Piwi from the 

nucleus causes changes in histone marks on transposable elements (Klenov et al. 2011; 

Pöyhönen et al. 2012), yet a genome-wide analysis of Piwi’s effect on chromatin marks 

and transcription is lacking.  

Here we show that Piwi interacts with chromatin on polytene chromosomes in nurse cell 

nuclei. We found that Piwi exclusively represses loci that are targeted by piRNAs. We 

show that Piwi-mediated silencing occurs through repression of transcription and correlates 

with installment of repressive chromatin marks at targeted loci.
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Results 

To analyze the role of Piwi in the nucleus, we generated transgenic flies expressing a 

GFP-tagged Piwi protein (GFP-Piwi) under the control of its native regulatory region. 

GFP-Piwi was expressed in the ovary and testis in a pattern indistinguishable from the 

localization of native Piwi and was able to rescue the piwi null phenotype as indicated by 

ovarian morphology, fertility, transposon expression, and piRNA levels. GFP-Piwi was 

deposited into the mature egg and localized to the pole plasm; however, contrary to a 

previous observation (Brower-Toland et al. 2007) we did not detect Piwi expression 

outside of the ovary and testis in third instar larvae or adult flies. We also did not observe 

association of Piwi with polytene chromosomes in salivary gland cells of third instar 

larvae. In both follicular and germline cells of the Drosophila ovary, GFP-Piwi localized 

exclusively in the nucleus with slightly higher concentrations apparent in regions 

enriched for DAPI, indicating a possible interaction with chromatin. To gain further 

insight into Piwi localization in the nucleus, we took advantage of the fact that nurse cell 

chromosomes are polytenized and can be visualized on the otu mutant background 

(Mal'ceva et al. 1997). Analysis of polytene chromosomes from nurse cells demonstrated 

that GFP-Piwi associates with chromatin in a specific banding pattern. Interestingly, co-

immunostaining showed that GFP-Piwi signal on polytene chromosomes generally 

overlaps with RNA polymerase II signal, which marks sites of active transcription (Fig. 

1A). 

In order to identify factors that might be responsible for targeting Piwi to chromatin, 

we immunoprecipitated Piwi complexes from the Drosophila ovary and analyzed Piwi 

interaction partners by mass spectrometry. We have purified Piwi complexes from 

ovaries of three different transgenic lines expressing GFP-Piwi, myc-Piwi, or FLAG-Piwi, 

using antibodies against each respective tag. As a control we used flies expressing free 

GFP in the ovary. We have identified over fifty factors that showed significant 

enrichment in all three Piwi purifications but were absent in the control. We were unable 

to identify chromatin-associated factors that directly associate with Piwi, but identified 

several RNA-binding proteins that associate with nascent transcripts such as splicing 

(Rm62, Pep, Ref1, Yps, CG9684, CG31368, CG5728, Mago) and nuclear export (Tho2, 
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Hpr1) factors (Fig 1B). Upon RNase A treatment prior to immunoprecipitation, the 

presence of most of these RNA-binding proteins in purified Piwi complexes was 

eliminated. 

Piwi proteins are believed to find their targets through sequence complementarity of 

the associated piRNA. In fact, it has been proposed that lack of the associated piRNA 

leads to destabilization of piwi proteins and to Piwi’s inability to localize to the nucleus 

(Saito et al. 2009; Haase et al. 2010; Olivieri et al. 2010; Handler et al. 2011; Ishizu et al. 

2011). On the other hand, Piwi has been proposed to have functions that are independent 

of its role in transposon control by regulating stem-cell niche development (Cox et al. 

1998; Klenov et al. 2011). To address the role of piRNA in translocation of Piwi into the 

nucleus and its function, we generated transgenic flies expressing a point-mutant Piwi, 

referenced as Piwi-YK, that is deficient in piRNA binding due to a substitution of two 

conserved amino acid residues (Y551L, K555E) in the 5’ phosphate-binding pocket 

(Kiriakidou et al. 2007; Djuranovic et al. 2010). The Piwi-YK mutant was expressed in 

Drosophila follicular and germ cells at levels similar to wild-type Piwi, but was 

completely devoid of associated piRNA (Fig. 2A). In contrast to wild-type Piwi, Piwi-

YK could be found in the cytoplasm, supporting the existence of a quality-control 

mechanism that prevents entrance of unloaded Piwi into the nucleus (Ishizu et al. 2011). 

Nevertheless, a significant amount of piRNA-deficient Piwi localized to the nucleus (Fig. 

2B). Similar to wild-type Piwi, Piwi-YK seemed to associate with chromatin, as indicated 

by its localization in DAPI-stained regions of the nuclei, and this is consistent with 

fluorescence loss in photobleaching (FLIP) experiments that demonstrated reduced 

nuclear mobility compared to free diffusion (Fig. S1). Based on sterility and ovarian 

morphology, the Piwi-YK transgene was unable to rescue the piwi null phenotype, 

despite its nuclear localization (Fig 2C), indicating that while piRNA binding is not 

absolutely essential for stability and nuclear localization of Piwi, it is required for Piwi 

function. 

To directly test the function of Piwi in the nucleus, we analyzed the effect of Piwi 

deficiency on gene expression and chromatin state on a genome-wide scale. Piwi mutant 

females have atrophic ovaries caused by Piwi deficiency in somatic follicular cells (Lin 

and Spradling 1997; Cox et al. 1998), which precludes analysis of Piwi function in null 
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mutants. Instead, we used RNAi knockdown to deplete Piwi in germ cells, while leaving 

it functionally intact in somatic follicular cells. The Piwi knockdown flies did not exhibit 

gross morphological defects in the ovary; however, they showed drastic reduction in 

GFP-Piwi expression in germ cells and were sterile (Fig. 3A-B). To analyze the effect of 

Piwi deficiency on the steady-state transcriptome, as well as the transcription machinery, 

we performed RNA-seq and Pol II ChIP-seq experiments from Piwi knockdown and 

control flies.  

In agreement with previous observations that implicated Piwi in transposon 

repression (Saito et al. 2006; Aravin et al. 2007; Brennecke et al. 2007), we found that 

steady-state transcript levels of several transposable elements were increased upon Piwi 

knockdown in germ cells (Fig. 3C, 3D, S2). We found little to no change of RNA levels 

for transposons whose activity is restricted to follicular cells of the ovary, indicating that 

the observed changes are indeed due to loss of Piwi in the germline (Fig. S2). The 

analysis of Pol II ChIP-seq showed that Pol II occupancy increased over promoters of 

multiple transposable elements (Fig. 3D-F, Fig. S3). Indeed, the change in steady-state 

levels of transposon transcripts upon Piwi depletion correlated with changes of RNA 

polymerase II occupancy (Fig. 3F). This result demonstrates that Piwi ensures low level 

of transposon transcripts through a repressive effect on the transcription machinery. 

To test if Piwi-mediated transcriptional repression is accompanied by a 

corresponding change in chromatin state, we used ChIP-seq to analyze the genome-wide 

distribution of the repressive H3K9me3 mark in the ovary upon Piwi knockdown. We 

identified 705 genomic loci at which the level of H3K9me3 significantly decreased. More 

than 90% of regions that show a decrease in the H3K9me3 mark upon Piwi depletion 

overlapped transposable element sequences, compared to 33% that is expected from 

random genome sampling (Fig. 4A). Furthermore, these regions tend to be located in the 

heterochromatic portions of the genome that are not assembled on the main chromosomes 

(Fig. 4B). Only twenty of the identified regions localized to the euchromatic parts of the 

genome. Of these, fifteen (75%) contained potentially active annotated copies of 

transposons. Taken together, our results indicate that Piwi is required for installment of 

repressive H3K9me3 chromatin marks on transposable element sequences of the genome. 
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While the vast majority of protein-coding host genes did not show significant 

changes in transcript level or RNA polymerase II occupancy upon Piwi knockdown, 

expression of a small set of protein coding genes (150 genes with a p-value <0.05), was 

significantly increased (Fig.5A, Supplementary Table 1). There are several possible 

explanations for Piwi’s effect on host gene expression. First, failure in the piRNA 

pathway might cause upregulation of several genes that generate piRNAs in wild-type 

ovaries (Robine et al. 2009; Saito et al. 2009). However, the genes upregulated in Piwi-

deficient ovaries were not enriched in piRNAs compared to other genes. Second, 

H3K9me3 marks installed on transposable element sequences in a Piwi-dependent 

manner might spread into neighboring host genes and repress their transcription, as was 

recently demonstrated in a follicular cell culture model (Sienski et al. 2012). To address 

this possibility we analyzed genomic positions of the genes whose expression was 

increased upon Piwi knockdown relative to genomic regions that showed a decrease in 

H3K9me3 marks. We found that upregulated genes did not show a significant change in 

the H3K9me3 mark (fig 5B, Fig. S4). Furthermore, the few genes located close to the 

regions that show decrease in H3K9me3 signal had unaltered expression levels upon Piwi 

knockdown. Next, we analyzed the functions of upregulated genes using GO term 

classifications and found significant enrichment for proteins involved in protein turnover 

and stress- and DNA-damage response pathways (Fig. 5C). Particularly, we found that 

thirty-one subunits of the proteasome complex were overexpressed. Therefore, our 

analysis indicates that upregulation of specific host genes is likely a secondary response 

to elevated transposon levels and genomic damage.  

In contrast to host genes, transcripts of transposable elements are targeted by piRNA. To 

directly address the role of piRNA in Piwi-mediated transcriptional silencing, we took 

advantage of a fly strain that expresses artificial piRNAs against the lacZ gene, which are 

loaded into Piwi complexes and are able to repress lacZ reporter expression in germ cells 

(Fig. 6A)(Josse et al. 2007; Muerdter et al. 2012). Expression of piRNAs that are antisense 

to the reporter gene caused transcriptional silencing of the lacZ gene as measured by Pol II 

occupancy (Fig. 6B). Furthermore, we found that piRNA-induced silencing of the reporter 

gene was associated with an increase in the repressive H3K9me3 mark and HP1 

occupancy, and a decrease in the abundance of the active H3K4me2/3 marks at the reporter 
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locus (Fig. 6C). This result is in good agreement with the genome-wide effect of Piwi 

depletion on distribution of the H3K9me3 mark and suggests that transcriptional silencing 

correlates with the establishment of a repressive chromatin structure and is mediated by 

piRNAs that match the target locus. 

 

Discussion 

Little is known about the function of nuclear piwi proteins. The nuclear piwi in 

mouse (Miwi2) affects DNA methylation of transposable elements (Carmell et al. 2007; 

Aravin et al. 2008; Kuramochi-Miyagawa et al. 2008). Several recent reports implicate 

Drosophila Piwi in regulation of chromatin marks on transposon sequences (Lin and Yin 

2008; Klenov et al. 2011; Wang and Elgin 2011; Sienski et al. 2012). The mechanism of 

these processes is unknown in both organisms. Previously, Piwi was shown to associate 

with polytene chromosomes in salivary gland cells and to co-localize with HP1, a 

chromodomain protein that binds to heterochromatin and a few loci in euchromatin, 

suggesting that HP1 mediates Piwi’s interaction with chromatin (Brower-Toland et al. 

2007). However, recent results showed that the putative HP1 binding site on Piwi is 

dispensable for Piwi-mediated transposon silencing (Wang and Elgin 2011). 

We did not detect Piwi expression outside of the ovary and testis, including in 

salivary gland cells, using a GFP-Piwi transgene expressed under native regulatory 

elements. We detected GFP-Piwi on polytene chromosomes in ovarian nurse cells that 

have a germline origin, however, it localizes in a pattern that largely does not overlap 

with HP1. FLIP experiments with GFP-Piwi indicated a relatively fast rate of 

fluorescence redistribution as compared to histone H2A (Fig. S1), implying a transient 

interaction of Piwi with chromatin. Our proteomic analysis of Piwi complexes isolated 

from Drosophila ovary did not identify chromatin-associated factors but revealed several 

RNA-binding proteins such as splicing and nuclear export factors that bind nascent RNA 

transcripts (Fig 1B). Importantly, the interaction of most of these RNA-binding proteins 

with Piwi was dependent on RNA, indicating that Piwi associates with nascent transcripts. 

As Piwi itself lacks DNA and RNA-binding domains (beyond the piRNA binding 

domain) it is likely that the recruitment of Piwi to chromatin is through interactions with 
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other RNA-binding proteins or through sequence-specific interactions between Piwi-

bound piRNA and nascent transcripts.  

Using specific Piwi knockdown in germ cells of the Drosophila ovary, we analyzed 

the effect of Piwi depletion on gene expression, the transcription machinery and 

H3K9me3 chromatin marks genome-wide. In agreement with previous results (Klenov et 

al. 2011) we found upregulation of several transposable elements upon Piwi knockdown 

(Fig. 3C). The transposable elements that did not change their expression upon germline 

knockdown of Piwi might be expressed exclusively in somatic follicular cells of the 

ovary, such as the gypsy retrotransposon. Alternatively, some elements present in the 

genome might not have transcriptionally active copies, or the cytoplasmic AUB/AGO3 

proteins may efficiently silence them at the post-transcriptional level. 

The increase in steady-state levels of RNA upon Piwi depletion strongly correlates 

with an increase in Pol II occupancy on the promoters of transposons (Fig 3D, 3F, Fig 

S2). This result suggests that Piwi represses transposon expression at the transcriptional 

level, although we cannot completely exclude the possibility of an additional post-

transcriptional effect. It was shown previously that depletion or mutation of Piwi leads to 

depletion of the repressive H3K9me3 mark and an increase in the active H3K4me2/3 

marks on several transposon sequences (Klenov et al. 2011; Wang and Elgin 2011). Our 

ChIP-seq data extends these results to a genome-wide scale, proving that transposons are 

indeed the sole targets of Piwi, and demonstrates that changes in histone marks directly 

correlate with transcriptional repression. 

Piwi depletion in the germline does not affect expression of the majority of host genes, 

although a small fraction of genes change expression (Fig 5A). One possible mechanism of 

the effect Piwi has on host genes is spreading of repressive chromatin structure from 

transposon sequences to adjacent host genes. Indeed, such a spreading and resulting 

repression of host gene transcription was observed in an ovarian somatic cell (OSC) culture 

model (Sienski et al. 2012). However, we did not find significant changes in the H3K9me3 

mark for genes that are upregulated upon germline depletion of Piwi, arguing against this 

mechanism playing a major role in host gene regulation. Instead we found that the majority 

of host genes whose expression is increased as a result of Piwi depletion participate in 
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protein turnover (e.g., proteasome subunits) and stress- and DNA-damage response 

pathways, indicating that they might be activated as a secondary response to cellular 

damage induced by transposon activation. The different effect of Piwi depletion on host 

gene expression in ovary and cultured cells might be explained by the fact that silencing of 

host genes due to transposon insertion would likely have a strong negative effect on the 

fitness of the organism, but could be tolerated in cultured cells. Accordingly, new 

transposon insertions that cause repression of adjacent host genes should be eliminated 

from the fly population, but can be detected in cultured cells. In agreement with this 

explanation, the majority of cases of repressive chromatin spreading in OSC were observed 

for new transposon insertions that are absent in the sequenced Drosophila genome. Indeed, 

it was shown that the vast majority of new transposon insertions is present at a low 

frequency in the Drosophila population likely due to strong negative selection (Petrov et al. 

2003). Such selection was primarily attributed to the ability of TE sequences to cause 

recombination and genomic rearrangements.  We propose that in addition to the effects on 

recombination, the selection against transposons can be driven by their negative impact on 

host gene expression in the germline linked to Piwi-mediated chromatin silencing.  

How does Piwi discriminate its proper targets, transposons, from host genes? In the 

case of cytoplasmic Piwi proteins AUB and AGO3, recognition and post-transcriptional 

destruction of TE transcripts is guided by associated piRNAs. Our results indicate that 

piRNAs provide guidance for transcriptional silencing by the nuclear Piwi protein as well.  

First, in contrast to host genes that are not targeted by piRNAs, transposable element 

transcripts, which are regulated by Piwi, are recognized by antisense Piwi-bound piRNA 

(Brennecke et al. 2007). Second, a Piwi mutant that is unable to bind piRNA failed to 

rescue the piwi null mutation despite its ability to enter the nucleus.  Finally, expression of 

artificial piRNAs that target a reporter locus induced transcriptional silencing associated 

with an increase in repressive H3K9me3 and HP1 chromatin marks and decrease in the 

active H3K4me2/3 marks (Fig. 6B-C). In contrast, the tethering of Piwi to chromatin in a 

piRNA-independent fashion by fusing Piwi with the lacI DNA binding domain that 

recognizes lacO sequences inserted upstream of a reporter gene did not lead to silencing of 

the reporter (data not shown). Together, our results demonstrate that piRNAs are the 

essential guides of Piwi to recognize its targets for transcriptional repression. 
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It is tempting to propose that, similar to Argonautes in fission yeast, Drosophila Piwi 

directly recruits the enzymatic machinery that establishes the repressive H3K9me3 mark on 

its targets. Establishment of repressive marks can lead to stable chromatin-based 

transcriptional silencing that does not require further association of Piwi with target loci. 

This model explains why we found that Piwi is relatively mobile in the nucleus, indicative 

of only a transient interaction with chromatin. The Piwi-mediated transcriptional silencing 

has an interesting parallel in C. elegans where the Piwi protein, PRG-1, and associated 21U 

RNAs are able to induce stable transgenerational repression that correlates with formation 

of silencing chromatin marks on target loci. Interestingly, PRG-1 and 21U RNAs are 

necessary only for initial establishment of silencing, while continuing repression depends 

on siRNA and the WAGO-group of Argonautes (Ashe et al. 2012; Bagijn et al. 2012; 

Buckley et al. 2012; Shirayama et al. 2012). Future studies should reveal the pathway that 

leads to transcriptional repression downstream of Piwi in Drosophila and the differences 

and similarities to other species. 

 

Materials and Methods 

Drosophila stocks: 

Nanos-Gal4-VP16 (BL4937); UASp-shWhite (BL33623); UASp-shPiwi (BL 

33724); Chr. I & II Balancer (BL7197) were purchased from the Bloomington Stock 

Center. GFP-Piwi expressing flies (see below) were backcrossed onto the piwi1/piwi2 

(available from Bloomington) background or the otu7/otu11 (available from 

Bloomington) background respectively. LacZ reporter lines were a generous gift from S. 

Ronsseray. 

Generation of Transgenic Fly Lines: 

The GFP-Piwi, 3xFLAG-HA-Piwi and myc-Piwi constructs were generated using 

bacterial recombineering (Gene Bridges Counter Selection Kit) to insert the respective 

tag after the start codon of the Piwi genomic region cloned in BAC clone BACN04M10. 

The KpnI-XbaI genomic fragment that contains the Piwi gene and flanking sequences 
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was transferred to corresponding sites of the pCasper4 vector to create pCasper4/tagged-

Piwi.  

The pCasper4/GFP-Piwi construct was used to generate pCasper4/GFP-Piwi-YK 

with two point mutations, Y551I and K555E.  Mutations were introduced by PCR, 

amplifying products corresponding to a 3.1kb upstream fragment and a 2.58kb 

downstream fragment. The upstream fragment included a unique XbaI site at the 5’ end 

of the amplicon and overlapped 39bp with the downstream fragment, which included a 

unique BamHI site at its 3’ end. The single XbaI-BamHI fragment was generated by 

overlap PCR with outside primers and cloned into corresponding sites of pCasper4/GFP-

Piwi to replace the wild-type fragment. Transgenic flies were generated by P-element 

mediated transformation (BestGene). 

IP of Piwi proteins and RNA gel of piRNA: 

Dissected ovaries were lysed in lysis buffer (20mM HEPES, pH 7.0; 150mM KCl; 

2.5mM MgCl; 0.5% Triton-X100; 0.5% Igepal; 100U/mL RNasin [Promega]; EDTA-free 

Complete Protease Inhibitor Cocktail [Roche]) and supernatant clarified by centrifugation. 

Supernatant was incubated with anti-eGFP polyclonal antibody (Covance) conjugated to 

Protein-G Dynabeads at 4°C. Beads were spiked with 5 pmol of synthesized 42 

nucleotide RNA oligomer to assess purification efficiency, proteinase-K digested and 

phenol extracted. Isolated RNA was CIP treated, radiolabeled using PNK and γ-P32 

labeled ATP, and run on a 15% urea-PAGE gel. Western blots of ovary lysate and anti-

eGFP immunoprecipitates were obtained from 8% SDS-PAGE gels and probed with 

polyclonal rabbit anti-eGFP antibody. 

Mass spectrometric analysis of Piwi interaction partners: 

Lysis and clarification of ovary samples were performed as described above, using 

lysis buffer with reduced detergent (0.1% Triton-X100; 0.1% Igepal). Piwi proteins with 

Flag, Myc, or GFP tag were purified from Drosophila ovaries using corresponding 

antibodies covalently coupled to M-270 epoxy Dynabeads (Invitrogen) (Cristea et al. 

2005). Immunoprecipitation of free GFP from GFP-expressing ovaries was used as a 

negative control. Immunoprecipitations were performed in the presence or absence of 

RNase A (100 ug/ml, 30 minutes at 25C). Piwi and co-purified interacting proteins were 
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resolved on NuPAGE Novex 4-12% Bis-Tris gels and stained with colloidal Coomassie 

blue. Gel fragments that contained protein bands were excised, in-gel trypsinized, and the 

peptides extracted, following the standard protocol of the Proteome Exploration Lab at 

Caltech. Peptide analyses were performed on an LTQ-FT Ultra (Thermo Fisher 

Scientific) equipped with a nanoelectrospray ion source (Thermo Fisher Scientific) 

connected to an EASY-nLC. Fractionation of peptides was performed on a 15 cm 

reversed phase analytical column (75 µm ID) in-house packed with 3 µm C18 beads 

(ReproSil-Pur C18-AQ medium; Dr. Maisch GmbH). Acquired spectra were searched 

against the Drosophila melanogaster proteome using the search engine Mascot (Matrix 

Science, v2.2.06) and protein inferences were performed using Scaffold (Proteome 

Software, v3).   

Chromatin Immunoprecipitation, ChIP-seq and RNA-seq: 

Chromatin immunoprecipitation was carried out using standard protocols 

(Moshkovich and Lei 2010). ChIP-seq and RNA-seq library construction and sequencing 

were carried out using standard protocols following the general principles described in 

(Johnson et al. 2007; Mortazavi et al. 2008) respectively. Data analysis was carried out 

using a combination of publicly available software tools and custom-written python 

scripts. Additional details regarding high-throughput data analysis are described in the 

supplementary methods section. For qPCR primers see Supplementary Table 2. GO term 

analysis of genes upregulated upon Piwi knockdown was performed using The Database 

for Annotation, Visualization and Integrated Discovery (DAVID) (Huang et al. 2009a; 

Huang et al. 2009b) and Flybase for additional assignment of GO terms. 

Antibodies: 

eGFP antibody (rabbit polyclonal serum, Covance) was affinity purified in our 

laboratory. Anti-myc (Millipore), anti-FLAG (Sigma), RNA polymerase II (Ab5408) and 

RNA polymerase II pSer5 (Ab5131) are commercially available. 

Imaging of Ovaries: 

Ovaries were fixed in 4% PFA in PBS for 20 minutes, permeabilized in 1% Triton-

X100 in PBS, DAPI stained (Sigma-Aldrich), washed, and mounted in 50% glycerol/PBS. 
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Images were captured using an AxioImager microscope; an Apotome structured 

illumination system was used for optical sections (Carl Zeiss). 

Fluorescence Loss In Photobleaching (FLIP): 

FLIP time series were captured on an LSM510 confocal microscope equipped with a 

40x/0.9 N.A. Imm Corr multi-immersion objective. Ovaries were dissected into 

halocarbon 700 oil (Sigma) and mounted under a 0.17 mm coverslip (Carl Zeiss) 

immediately before imaging. Two initial baseline images were captured, followed by 80 

to 100 iterations consisting of 2 bleach iterations at 100% laser power (488nm or 543nm 

for GFP and RFP tagged proteins, respectively) followed by 2 images with reduced 

illumination intensity. FLIP series were cropped and median filtered with a 2 pixel radius 

to reduce noise using FIJI (Schindelin et al. 2012) and the “Rigid Body” function of the 

StackReg plugin (Thévenaz et al. 1998) to correct drift when needed. Using MATLAB 

software (The Mathworks, Natick, MA), images were background-subtracted and 

corrected for acquisition bleaching. A value representing the true loss of intensity relative 

to the initial pre-bleach images, where 0 indicates no change in intensity and 1 represents 

complete photobleaching, was calculated for each pixel, for each bleach/capture cycle, 

and plotted with a color lookup table and calibration bar.  Scale bars and annotations 

were made in Inkscape (http://inkscape.org). 

Preparation of Polytene squashes for immunofluorescence: 

 Flies carrying the GFP-Piwi BAC construct were backcrossed onto the otu[7] and 

otu[11] background. Progeny from the cross of the two lines were grown at 18°C. Stages 

7-12 egg chambers were separated and transferred to a poly-lysine coated microscopic 

slide into PBST. From here the “smush” protocol was followed (Johansen et al. 2009) but 

PFA crosslinking was reduced to 10 minutes. Slides were imaged using an AxioImager 

microscope and a 63x oil immersion objective (Carl Zeiss, Thornwood, NY). 
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Figures and Figure Legends 

 

Figure 1. Piwi associates with chromatin and nuclear transcripts.  

(A) Polytene chromosomes from Drosophila nurse cells expressing GFP-Piwi on the 

otu[7]/otu[11] background. Piwi pattern on chromosomes correlates with RNA polymerase 

II staining. (B) Mass spectrometry analysis of Piwi interaction partners. Piwi complexes 

were precipitated in the presence and absence of RNase A. Outer circle represents 

classification of Piwi-associated proteins based on GO term analysis. Inner pies represent 

the fraction of each group whose association with Piwi depends on RNA (% indicated). 

Note that chromatin, splice, and mRNA export factors are virtually absent after RNase A 

treatment.  
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Figure 2. Piwi function, but not its nuclear localization, requires piRNA association.  

(A) The Piwi-YK mutant does not associate with piRNA. Immunoprecipitation of Piwi-

piRNA complexes was performed with GFP antibody on ovaries from GFP-Piwi and GFP-

Piwi-YK transgenic flies and a control strain. Small RNAs were isolated, 5’-labeled, and 

resolved on a denaturing gel. Same amount of 42 nt RNA oligonucleotides were spiked 

into all samples prior to RNA isolation to control for loss of RNA during isolation and 

labeling. piRNAs (red arrow) are absent in the Piwi-YK complex. (B) GFP-Piwi-YK is 

present in the nuclei of nurse cells and associates with chromatin (DAPI-stained areas). (C) 

Piwi-YK mutant does not rescue the morphological changes caused by the piwi null 

mutation. Dark field images of ovaries where either the wild-type piwi or the piwi-YK 

transgene has been backcrossed onto the piwi null background. 
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Figure 3. Piwi transcriptionally represses transposable elements. 

(A) Piwi knockdown is efficient and specific to ovarian germ cells, as indicated by GFP-

Piwi localization. GFP-Piwi; Nanos-Gal4-VP16 flies were crossed to control shRNA 

(shWhite) or shPiwi lines. Piwi is specifically depleted in germ cells and not in follicular 

cells consistent with expression of the Nanos-Gal4-VP16 driver. (B) Piwi expression as 

measured by RNA-seq in the Piwi knockdown and control lines. Note that Piwi expression 

is unaffected in follicular cells leading to relatively weak apparent knockdown in RNA-seq 

libraries from whole ovaries. (C) Effect of Piwi knockdown on the expression of 

transposable elements. Two biological replicate RNA-seq experiments were carried out and 

differential expression was assessed using DESeq. Transposons that show significant 

change (p < 0.05) are indicated by dark red circles. Out of 217 individual RepeatMasker-
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annotated transposable elements, 15 show significant increase in expression upon Piwi 

knockdown. (D) The change in the levels of transposable element transcripts and RNA 

polymerase II occupancy on their promoters upon Piwi knockdown. 20 upregulated and 10 

downregulated transposons with the most significant changes in expression level are 

shown. Note the low statistical significance for downregulated transposons. For a complete 

list of transposons see Fig S2. (E) RNA polymerase II signal over the Het-A 

retrotransposon in control flies (shWhite, red) and upon Piwi knockdown (shPiwi, blue). 

(F) Increased abundance of transposon transcripts upon Piwi depletion correlates with 

increased Pol II occupancy over their promoters (r2 = 0.21). Note that the majority of 

elements do not show significant change in either RNA abundance or Pol II occupancy. 
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Figure 4. Piwi-induced transcriptional repression correlates with establishment of a 
repressive chromatin state. 

(A) Overlap between genomic regions of H3K9me3 depletion upon Piwi knockdown and 

transposable elements. Two replicates of H3K9me3 ChIP-seq experiments were carried out 

on control and Piwi-depleted ovaries and enriched regions were identified using DESeq 

(see methods for details). A total of 705 regions show significant (p < 0.05) decrease in 

H3K9me3 occupancy upon Piwi knockdown, while only 30 regions showed a similarly 

significant increase. Out of the 705 regions that show a decrease in H3K9me3 mark upon 

Piwi knockdown, 91% (646) overlap with transposable element sequences compared to 

33% expected from random genome sampling. (B) Genomic positions of H3K9me3-

depleted regions upon Piwi depletion (outer circle) and RepeatMasker-annotated 

transposons (inner circle). Note that almost all regions are localized in heterochromatic and 

repeat-rich portions of the genome (‘Het’, chrU, and chrUExtra chromosomes). 
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Figure 5. Piwi does not directly repress protein-coding genes. 

(A) Effect of Piwi knockdown on the expression of genes. Two replicate RNA-seq 

experiments were carried out and differential expression was assessed using DESeq. Genes 

that show significant change (p < 0.05) are indicated by black circles. The vast majority of 

genes do not change significantly upon germline Piwi knockdown (shPiwi) compared to 

control (shWhite). (B) H3K9me3 mark density does not change over genes that show 

significant change in expression upon Piwi knockdown (see fig. 3C). Up- and 

downregulated genes are plotted separately. Signal indicated is after background 

subtraction. (C) Functional analysis of upregulated genes by DAVID reveals activation of 

the protein degradation and DNA-damage response pathways. Percentages of all 

upregulated genes are indicated.   
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Figure 6. piRNA-dependent targeting of Piwi to a reporter locus leads to establishment of 
repressive chromatin state and transcriptional silencing. 

(A) The mechanism of trans-silencing mediated by artificial piRNA and schematic 

representation of the repressor and reporter lacZ constructs. The repressor construct is 

inserted in a subtelomeric piRNA cluster leading to generation of piRNA from its 

sequence. Primers mapping to both constructs used for the RNA pol II and H3K4me2/3 

ChIP-qPCR are shown by red arrows, and primers specific to the reporter locus used for the 

H3K9me3, H3K9me2, and HP1 ChIP-qPCR are indicated by green arrows. (B) piRNAs 

induce transcriptional repression of the lacZ reporter. Pol II and H3K4me2/3 signals 

decreased on the lacZ promoter in the presence of artificial piRNAs as measured by ChIP-

qPCR. Shown is the fold depletion of signal in flies that carry both repressor and reporter 

constructs compared to control flies that have only the reporter construct. The signal was 

normalized to RP49. (C) piRNAs induce an increase in H3K9me3 and H3K9me2 marks, 

and HP1 binding as measured by ChIP-qPCR. Shown is the fold increase of corresponding 

ChIP signals downstream of the lacZ reporter in flies that carry both repressor and reporter 
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constructs compared to control flies that have only reporter construct. The signal was 

normalized to RP49. 
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C h a p t e r  I I I  

PIRNA-INDEPENDENT RECRUITMENT OF PIWI ALONE TO RNA IS 
NOT SUFFICIENT TO TRIGGER ESTABLIMENT OF A REPRESSIVE 

CHROMATIN STATE AND INDUCE TRANSCRIPTIONAL 
SILENCING 

 
Part of this work has been submitted for publication as: 
 
Chen, A. C. et al. “Su(Var)2-10, a novel component of the piRNA-induced transcriptional 
silencing complex, controls co-transcriptional repression of piRNA targets”. (Submitted). 
 

Introduction 

While the function of nuclear piwi proteins is not fully resolved, there have been 

several advances in our understanding of the role of Drosophila Piwi. The sole nuclear 

piwi protein in Drosophila has been implicated in the regulation of chromatin marks on 

transposon sequences (Lin and Yin 2008; Klenov et al. 2011; Wang and Elgin 2011; 

Sienski et al. 2012; Le Thomas et al. 2013; Rozhkov et al. 2013). However, the 

mechanism by which Piwi accomplishes deposition of repressive chromatin marks 

specifically on transposon sequences is unknown.  

Piwi proteins are not capable of inducing chromatin modifications and 

transcriptional silencing by themselves, implying they must interact with other factors to 

successfully repress targets. Furthermore, the only DNA or RNA-binding domains Piwi 

contains is a piRNA binding domain, suggesting two potential mechanisms for Piwi 

recruitment to target loci: (1) Piwi is recruited to chromatin through interactions with 

other factors and (2) Piwi is recruited to target loci via sequence-specific recognition by 

Piwi-loaded piRNA. Despite previous evidence that suggested that HP1 mediates Piwi’s 

interaction with chromatin (Brower-Toland et al. 2007), Piwi’s putative HP1 binding site 

was shown to be dispensable for Piwi-mediated transposon silencing (Wang and Elgin 

2011). Furthermore, we showed that GFP-Piwi does not localize in a pattern that overlaps 

with HP1 on polytene chromosomes in ovarian nurse cells (Le Thomas et al. 2013), 

suggesting that HP1 is does not mediate Piwi’s interaction with chromatin. In an attempt 

to identify chromatin-associated factors that interact with Piwi, we performed proteomic 

analysis of Piwi complexes isolated from Drosophila ovaries. Our analyses did not 
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identify chromatin-associated factors, but rather revealed Piwi interacts with RNA-

binding factors, that associate with nascent transcripts, in an RNA-dependent manner (Le 

Thomas et al. 2013). This data suggested that recruitment of Piwi to transposon loci is 

achieved by Piwi’s interactions with other RNA-binding factors or through the sequence-

specific recognition of nascent transcripts by Piwi-bound piRNAs.  

While genetically many factors have been implicated in the piRNA pathway, in vivo 

analysis is hindered because disruption of factors involved in the early processes of the 

pathway results in the inability to determine if these factors may also act further 

downstream. Previously, we established that piRNAs are the essential guides for 

recruitment of Piwi to loci that are targeted for transcriptional silencing (Le Thomas et al. 

2013). We showed that piRNA-recruitment of Piwi to a reporter sequence resulted in 

transcriptional silencing of the reporter, accompanied by the establishment of a repressive 

chromatin state at the reporter locus (Le Thomas et al. 2013). In an effort to reveal the 

pathway that leads to transcriptional repression of loci downstream of Piwi, we wanted to 

piRNA-independently recruit Piwi to a reporter locus. We reasoned that piRNA-

independent recruitment of Piwi to a reporter should result in the establishment of a 

repressive chromatin state along the reporter locus and transcriptional silencing of the 

reporter. This reporter system, in combination of systematic knockdown of piRNA 

pathway factors, would provide an in vivo tool to determine if factors act downstream of 

Piwi in the piRNA-induced transcriptional silencing complex (piRITS).  

 

Results 

Artificial tethering of Piwi to RNA does not lead to transcriptional repression of a reporter 
Previously, we determined that piRNA-independent recruitment of Piwi to chromatin, 

using the lacI DNA binding domain that recognizes lacO sequences inserted upstream of 

a reporter gene, did not result in establishment of a repressive chromatin state at the 

reporter (Le Thomas et al. 2013). This result is consistent with our data suggesting Piwi 

interacts with nascent transcripts rather than with chromatin. To determine if piRNA-

independent recruitment of Piwi via RNA is sufficient to induce transcriptional silencing 

of a reporter in vivo, we generated a heterologous tethering system to a reporter that does 
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not have sequence homology with the Drosophila genome (Fig. 1A). The sequence of the 

reporter mRNA contains a fluorophore (mKate2) followed by four BoxB sequences in its 

3’UTR, which are bound by the λN domain of antiterminator protein N fused to Piwi (Fig. 

1A). Expression of both λN-GFP-tagged Piwi and the reporter was driven in the germ 

cells of the fly ovary using a maternal tubulin-GAL4 driver. Like wild type Piwi, the 

majority of the λN-GFP-tagged Piwi is localized to the nucleus (Fig. 1B). Analysis of the 

reporter transcript level by RT-qPCR revealed recruitment of Piwi to the transcript does 

not significantly affect reporter mRNA levels compared to recruitment of the λN-GFP 

control (Fig. 1C). Furthermore, profiling of RNA polymerase II over the reporter locus by 

ChIP-qPCR indicated that Pol II occupancy is not affected upon Piwi tethering (Fig. 1D). 

Accordingly, analysis of the repressive H3K9me3 mark along the reporter locus by ChIP-

qPCR and ChIP-seq showed that H3K9me3 levels were unaffected by recruitment of 

Piwi (Fig. 1E-F). These results are consistent with previous findings (Sienski et al. 2015; 

Yu et al. 2015) that indicate artificial tethering of Piwi to RNA is not sufficient to induce 

transcriptional silencing and changes in chromatin state of the reporter. 

Recruitment of factors that are known to act downstream of Piwi to RNA is sufficient to 
induce silencing of the reporter at the transcript level  

Previously, genetic screens identified two factors of unknown function, Asterix 

(Arx) and Panoramix (Panx), which associate with Piwi and are necessary for 

transcriptional silencing of targets (Donertas et al. 2013; Muerdter et al. 2013; Sienski et al. 

2015; Yu et al. 2015).  Analysis of the reporter transcript level by RT-qPCR revealed 

recruitment of Panx to the transcript results in significant repression of reporter mRNA 

levels compared to recruitment of the λN-GFP control (Fig. 2A). This result is consistent 

with previous findings (Sienski et al. 2015; Yu et al. 2015). Reporter transcript levels are 

also significantly reduced upon tethering of Arx to the reporter mRNA (Fig. 2A).   

Eggless (Egg), a histone methyltransferase that deposits the H3K9me3 mark, has 

been implicated in Piwi-mediated transcriptional silencing (Rangan et al. 2011; Sienski et 

al. 2015; Yu et al. 2015). We recruited Egg to the reporter transcript and analyzed the 

transcript level by RT-qPCR. Our analysis showed that tethering of Egg to the reporter is 

also sufficient to significantly reduce the reporter transcript level (Fig. 2A).  
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Recruitment of Panx is sufficient to establish a repressive chromatin state at the reporter 
locus 

While recruitment of Panx, Arx, and Egg to the reporter showed reduced transcript 

levels, we wanted to determine if their recruitment established a repressive chromatin state 

at the locus of the reporter. Consistent with previous reports, ChIP-qPCR analysis of the 

H3K9me3 mark along the reporter locus revealed that recruitment of Panx, but not Arx, is 

sufficient to establish a repressive chromatin state (Sienski et al. 2015; Yu et al. 2015) (Fig. 

2B-C). Interestingly, ChIP-qPCR analysis revealed recruitment of the H3K9me3 “writer” 

Egg is not sufficient to induce a repressive chromatin state along the reporter (Fig. 2D). 

Recruitment of Su(Var)2-10, a novel component of the piRNA-induced transcriptional 
silencing complex, is sufficient to transcriptionally silence the reporter locus  

The molecular mechanism that connects Piwi and its associated factors involved in 

transcriptional silencing (Panx, Arx, and Egg) is unknown. Efforts in our lab identified 

Su(Var)2-10, a conserved protein whose homologs have been demonstrated to act as E3 

ligases for SUMOylation of substrates (Hari et al. 2001), as a candidate factor that links 

Piwi and the rest of the piRITS. We tethered λN-tagged Su(Var)2-10 to our reporter to 

study Su(Var)2-10’s role in the piRITS. Analysis of the reporter transcript level by RT-

qPCR revealed recruitment of Su(Var)2-10 to the transcript results in significant repression 

of reporter mRNA levels compared to recruitment of the λN-GFP control (Fig. 3A). 

Furthermore, ChIP-qPCR and ChIP-seq analysis showed recruitment of Su(Var)2-10 to the 

reporter transcript results in the establishment of the repressive H3K9me3 mark along the 

reporter transcript (Fig. 3B). To determine if transcriptional silencing by Su(Var)2-10 is 

dependent on the activity of Egg, we tethered Su(Var)2-10 to the reporter and 

concomitantly knocked-down Egg. RT-qPCR and ChIP-qPCR analyses revealed de-

repression of the reporter at the transcript level and a loss of H3K9me3 along the reporter 

locus (Fig. 3C-D), suggesting that transcriptional silencing of the reporter by Su(Var)2-10 

is Egg-dependent. 

To determine if Su(Var)2-10 acts upstream or downstream of Panx in the piRITS, 

we concomitantly tethered Panx and knocked-down Su(Var)2-10. In this case, RT-qPCR 

analysis revealed a modest increase in reporter expression (Fig. 3E). Accordingly, ChIP-

qPCR analysis showed recruitment of Panx to our mKate2 reporter with concomitant 

knockdown of Su(Var)2-10 resulting in an insignificant loss of H3K9me3 along the 
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reporter locus (Fig. 3F). However, when Panx is recruited to a reporter that contains 10 

BoxB sequences (allowing for stronger recruitment of Panx) we are able to see a 

significant, but not complete, loss of H3K9me3 along the reporter locus by ChIP-qPCR 

(Fig. 3G). Importantly, in the converse situation – recruitment of Su(Var)2-10 with 

concomitant knockdown of Panx – RT-qPCR and ChIP-qPCR show no significant change 

in reporter transcript levels or H3K9me3 occupancy along the reporter locus (Fig. 3H-I). 

Taken together, these data suggest a model in which Su(Var)2-10 acts in the piRITS 

downstream of Panx (and accordingly Piwi and Arx) and upstream of Egg (Fig. 4). 

Discussion 

In Metazoa, the piRNA-induced transcriptional silencing complex (piRITS) plays 

an essential role in genome defense against transposable elements (TEs). In Drosophila, 

targeting of TE loci by Piwi/piRNA complexes is required for deposition of the repressive 

chromatin mark H3K9me3 at TE loci (Sienski et al. 2012; Le Thomas et al. 2013; Rozhkov 

et al. 2013). The existing model proposes that piRNA-loaded Piwi binds to nascent 

transcripts in search of complementary targets; however, how recognition of nascent RNA 

by Piwi/piRNA complexes recruits the machinery necessary for H3K9me3 deposition is 

unclear. With the intent of determining factors involved in the piRITS downstream of Piwi, 

we generated a heterologous tethering system expressed in Drosophila ovaries (Fig. 1A-B). 

Our tethering system consists of a fluorescent reporter (mKate2) followed by 4BoxB 

sequences, allowing for λN-GFP-tagged Piwi to be recruited in a piRNA-independent 

manner to reporter transcripts.  

Unfortunately, piRNA-independent recruitment of Piwi to a reporter transcript is 

not sufficient to induce transcriptional silencing or a change in the chromatin state of the 

reporter locus (Fig. 1C-F); however this data is corroborated by previous findings (Sienski 

et al. 2015; Yu et al. 2015). The fact that piRNA-independent tethering of Piwi alone is not 

sufficient to recruit the silencing effector complex implies that recognition of a target by 

the piRNA loaded within Piwi is essential. Upon loading or after target recognition a 

Piwi/piRNA complex may be modified or undergo a conformational change that permits 

the formation of the bridge between the Piwi/piRNA complex and the silencing effector 

complex.  
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Despite the heterologous tethering system not working as expected for Piwi, we 

were still able to use our heterologous tethering system to probe factors downstream of 

Piwi in the piRITS. Asterix (Arx) and Panoramix (Panx) were previously identified as 

piRITS factors that associate with Piwi and are necessary for transcriptional silencing of 

targets (Sienski et al. 2015; Yu et al. 2015).  Consistent with previous findings (Sienski et 

al. 2015; Yu et al. 2015), our assay revealed that recruitment of λN-Panx and, to a lesser 

extent, recruitment of λN-Arx results in repression of the reporter transcript (Fig. 2A). The 

histone methyltransferase Eggless (Egg) acts further downstream of Panx and Arx in the 

piRITS to deposit the H3K9me3 at the target locus (Rangan et al. 2011; Sienski et al. 2015; 

Yu et al. 2015). Similar to Panx and Arx, recruitment of λN-Egg resulted in repression of 

the reporter transcript (Fig. 2A). Taken together, this data illustrates that we can induce 

repression of our reporter by tethering factors that act downstream of Piwi in the piRITS, 

suggesting we can use this system to further probe the interactions between these factors.  

While the piRITS factors, known to act downstream of Piwi, tested were all able to 

induce repression of the reporter transcript, we found that only recruitment of Panx was 

able to alter the reporter chromatin state and establish occupancy of H3K9me3 along the 

reporter locus (Fig. 2B-D). The fact that recruitment of Egg, the H3K9me3 “writer”, was 

not sufficient to induce a repressive chromatin state along the reporter locus suggests that 

Egg may undergo modification prior to being able to deposit H3K9me3. Previous 

publications have shown that Egg is SUMOylated (Rosendorff et al. 2006; Koch et al. 

2009). Taken with our results, this implies that recruitment of non-SUMOylated Egg does 

not result in the establishment of a repressive chromatin state along the reporter.  

In our lab’s search to uncover the molecular mechanism that connects Piwi and the 

the rest of the piRITS, we identified Su(Var)2-10 – an E3 ligase for SUMOylation of 

substrates (Hari et al. 2001) – as a factor that may provide a link between Piwi and Egg. 

Recruitment of λN-Su(Var)2-10 to our reporter resulted in repression of the reporter 

transcript and H3K9me3 occupancy along the reporter locus (Fig. 3A-B). Furthermore, 

recruitment of λN-Su(Var)2-10 with concomitant knockdown of Egg indicated that 

repression by Su(Var)2-10 is dependent on Egg (Fig 3C-D). This data places Su(Var)2-10 

upstream of Egg in the piRITS.  
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Similar to Su(Var)2-10, previous studies have show that transcriptional silencing by 

Panx requires Egg  (Sienski et al. 2015; Yu et al. 2015).  In a modular fashion, we used our 

heterologous tethering assay to determine whether Su(Var)2-10 acted upstream or 

downstream of Panx in the piRITS. We tethered Panx with concomitant knockdown of 

Su(Var)2-10 and found a modest increase in reporter expression (Fig. 3E). To see a 

significant loss of H3K9me3 occupancy along the reporter locus, we had to tether Panx to a 

reporter with 10 BoxB sequences (Fig 3F-G). In the reciprocal experiment, knockdown of 

Panx did not affect repression of the reporter locus by Su(Var)2-10. Taken together, this 

data indicates that transcriptional repression by Panx is dependent on Su(Var)2-10, whereas 

repression by Su(Var)2-10 is not dependent on Panx.  

Our heterologous tethering system has allowed for the beginning steps of 

determining factors that act downstream of Piwi in the piRITS. Currently, the function of 

Su(Var)2-10 remains unknown; however, we were able to illustrate that Su(Var)2-10 can 

directly participate in co-transcriptional silencing. Previous studies have reported that Panx 

and Arx are able to form a complex with Piwi, but not with Egg (Sienski et al. 2015; Yu et 

al. 2015). Taken together with our data, this suggests a model in which Su(Var)2-10 

provides an essential link between the Piwi/piRNA complex and the silencing effector 

complex by acting downstream of Piwi (and its associated factors Panx and Arx) and 

upstream of Egg in the piRITS. Furthermore, the putative SUMO E3 ligase activity of 

Su(Var)2-10 may be essential for Egg’s ability to deposit H3K9me3 at target loci (Fig. 4). 

The next steps in further understanding the mechanisms of the piRITS will be to study the 

biochemical activities and physical interactions between all factors involved.  

 

Methods and Materials 

Drosophila stocks: 
The sh-Su(Var)2-10 and sh-White stocks were obtained from the Bloomington 

Stock Center (BDSC #32956 and BDSC #35182). The sh-Egg and sh-Panoramix lines 

were a generous gift from the Brennecke lab. The Luciferase-10xBoxB reporter line was a 

generous gift from the Hannon lab. The UASp-λN-eGFP-Piwi, UASp-λN-eGFP-GFP, 

UASp-λN-eGFP-Asterix, UASp-λN-eGFP-Panoramix, UASp-λN-eGFP-Egg, UASp-λN-

eGFP-Su(Var)2-10, and UASp-mKate2-4xBoxB-K10polyA lines were generated in lab as 
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previously described (Chen et al. 2016). The expression of all constructs was driven by 

maternal alpha-tubulin67C-Gal4 (MT-Gal4) obtained from the Bloomington Stock Center 

(BDSC #7063). Flies carrying the λN-transgenes and the alpha-tubulin67C-Gal4 driver 

were crossed to flies carrying the UASp-mKate2-4xBoxB-K10polyA reporter and where 

applicable the respective hairpin, to obtain flies that express all components of the system 

in the female germline. Flies were put on yeast for 3 to 4 days prior to dissection and were 

5-8 days old at the time of dissection. 

ChIP-qPCR and ChIP-seq: 

H3K9me3 ChIPs were carried out using anti-H3K9me3 from abcam (ab8898) and 

RNA Polymerase II ChIP was carried out using anti-RNA Pol II from abcam (ab5408) with 

the protocol described in (Le Thomas et al., 2014). One hundred pairs of ovaries were used 

for each ChIP experiment. qPCR was performed on a Mastercycler® ep realplex PCR 

thermal cycler machine (Eppendorf). ChIP-qPCR data for H3K9me3 and Pol II ChIPs was 

calculated as IP to input ratios of the target region, normalized to IP to input ratios for the 

rp49 locus. PCR primers are listed in Table S1.  

ChIP-seq library construction was done using the NEBNext ChIP-Seq Library Prep 

Master Mix Set (#E6240) and the NEBNext Multiplex Oligos for Illumina (#E7335S). 

Libraries were sequenced on the Illumina HiSeq 2500 (SE 50bp reads) platform. The 

resulting reads were mapped against the reporter sequence and against the DM3 genome 

using Bowtie 0.12.7 (Langmead et al. 2009) with the following settings: “ –v 0 --best –

strata”. Reads that specifically mapped to the reporter sequence and not to the DM3 

genome with zero mismatches were extracted from the libraries. The reads were plotted 

along the reporter sequence and normalized to number of reads mapping to the DM3 

genome using IGV 2.3.68 (Robinson et al. 2011). 

RT-qPCR: 

Total RNA was isolated from 20 ovaries with Ribozol (Amresco, N580), followed 

by DNAse treatment with Amplification grade DNAseI (Invitrogen, 18068-015) according 

to the manual. Reverse transcription was carried out using Superscript III (Invitrogen) with 

oligod(T)15. qPCR was performed on a Mastercycler® ep realplex PCR thermal cycler 

machine (Eppendorf). RT-qPCR data target expression was normalized to the rp49 locus 

expression. PCR primers are listed in Table S1. 
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Figures and Figure Legends 

Figure 1. Piwi recruitment to RNA does not change transcription or chromatin structure of 
the locus. 

(A) Schematic diagram of the reporter construct used to study the effect of Piwi recruitment 

to RNA. λN-GFP-Piwi	or	λN-GFP-eGFP	was	co-expressed	with	the	reporter	in	ovaries	

driven	by	MT-Gal4. (B)	Like	wildtype	Piwi,	in	steady-state,	λN-GFP-Piwi	is	nuclear	in	

localization.	Scale	bars	represent	10μM.	(C)	Piwi	tethering	does	not	lead	to	an	affect	

on	 reporter	 expression	 level	 compared	 to	 tethering	 of	 the	 control,	 λN-GFP-eGFP.	

Relative	expression	level	of	mKate2	was	measured	using	RT-qPCR	and	primer	pair	C.	

The	 error	 bars	 represent	 the	 standard	 deviation	 of	 ten	 biological	 replicates. (D) 

Tethering	 of	 Piwi	 results	 in	 no	 change	 in	 RNA	Pol	 II	 occupancy	 at	 the	 locus	 of	 the	

reporter	as	measured	by	ChIP-qPCR.	The	error	bars	represent	the	standard	deviation	

of	 two	biological	 replicates. (E) Tethering	of	Piwi	results	 in	no	change	 in	H3K9me3	



 53 

occupancy	 at	 the	 locus	 of	 the	 reporter	 as	measured	 by	 ChIP-qPCR.	 The	 error	 bars	

represent	the	standard	deviation	of	two	biological	replicates. (F)  H3K9me3	ChIP-seq	

indicates	 that	 tethering	of	Piwi	does	not	 result	 in	a	 change	 in	H3K9me3	occupancy	

across	 the	reporter	 locus.	 Input	 is	shown	 in	gray	and	H3K9me3	IP	 is	shown	 in	red.	

Shown	are	all	reads	mapped	to	the	reporter,	normalized	by	the	total	number	of	reads	

mapping	to	the	DM3	genome. 
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Figure 2. Recruitment of factors downstream of Piwi in the piRITS to the reporter 
transcript induces changes in transcription status of the locus, but only Panx induces 
changes in chromatin structure of the locus. 
 
(A)	 Tethering	 of	 Panx,	 Arx,	 and	Egg	 leads	 to	 an	 affect	 on	 reporter	 expression	 level	

compared	 to	 tethering	 of	 the	 control,	 λN-GFP-eGFP.	 Relative	 expression	 level	 of	

mKate2	was	measured	using	RT-qPCR	and	primer	pair	C.	The	error	bars	 represent	

the	standard	deviation	of	two	biological	replicates. (B) Tethering	of	Panx	results	in	a	

change	 in	 H3K9me3	 occupancy	 at	 the	 locus	 of	 the	 reporter	 as	measured	 by	 ChIP-

qPCR.	The	error	bars	represent	the	standard	deviation	of	two	biological	replicates.	(C) 

Tethering	 of	 Arx	 results	 in	 no	 change	 in	 H3K9me3	 occupancy	 at	 the	 locus	 of	 the	

reporter	as	measured	by	ChIP-qPCR.	The	error	bars	represent	the	standard	deviation	

of	 two	 biological	 replicates. (D) Tethering	 of	 Egg	 results	 in	 a	 change	 in	 H3K9me3	
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occupancy	 at	 the	 locus	 of	 the	 reporter	 as	measured	 by	 ChIP-qPCR.	 The	 error	 bars	

represent	the	standard	deviation	of	two	biological	replicates. 
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Figure 3. Su(Var)2-10 acts downstream of Piwi and Panx and upstream of Egg in the piRITS. 

(A)	 Tethering	 of	 Su(Var)2-10	 leads	 to	 repression	 of	 reporter	 expression	 level	

compared	 to	 tethering	 of	 the	 control,	 λN-GFP-eGFP.	 Relative	 expression	 level	 of	

mKate2	was	measured	using	RT-qPCR	and	primer	pair	C.	The	error	bars	 represent	

the	 standard	deviation	of	 two	biological	 replicates. (B) Recruitment	 of	 Su(Var)2-10	

results	in	an	increase	in	H3K9me3	occupancy	at	the	locus	of	the	reporter	as	measured	

by	 ChIP-qPCR.	 The	 error	 bars	 represent	 the	 standard	 deviation	 of	 two	 biological	

replicates.	(C) Tethering	of	Su(Var)2-10	results	in	no	change	in	H3K9me3	occupancy	

at	the	locus	of	the	reporter	as	measured	by	ChIP-qPCR.	The	error	bars	represent	the	
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standard	 deviation	 of	 two	 biological	 replicates. (D) Tethering	 of	 Egg	 results	 in	 a	

change	 in	 H3K9me3	 occupancy	 at	 the	 locus	 of	 the	 reporter	 as	measured	 by	 ChIP-

qPCR.	The	error	bars	represent	the	standard	deviation	of	two	biological	replicates.	
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Figure 4. Model of the piRNA-induced transcriptional silencing complex. 

Arx and Panx associate with piRNA-loaded Piwi and work to recognize RNA targets. 

Downstream, H3K9me3 is deposited on Piwi targets by the histone methyltransferase Egg, 

further recruiting silencing factors that induce transcriptional silencing. Su(Var)2-10 

interacts with Egg downstream of Piwi, providing a bridge between the piRNA-Piwi 

complex and the silencing effector complex. The biochemical link between Piwi and 

Su(Var)2-10 remains elusive. 
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C h a p t e r  I V  

ZUCCHINI-DEPENDENT PIRNA PROCESSING IS TRIGGERED BY 
RECRUITMENT TO THE CYTOPLASMIC PROCESSING 

MACHINERY 
 
This work was first published as:  

Rogers,	A.	K.	et	al.	(2017). “Zucchini-dependent piRNA processing is triggered by 
recruitment to the cytoplasmic processing machinery”. In: Genes & Development 31: 1-12. 
doi: 10.1101/gad.303214.117. 

 

Abstract 

The piRNA pathway represses transposable elements in the gonads and thereby plays a 

vital role in protecting the integrity of germline genomes of animals. Mature piRNAs are 

processed from longer transcripts, piRNA precursors (pre-piRNAs). In Drosophila, 

processing of pre-piRNAs is initiated by piRNA-guided Slicer cleavage, or by the 

endonuclease Zucchini (Zuc). As Zuc does not have any sequence or structure preferences 

in vitro, it is not known how piRNA precursors are selected and channeled into the Zuc-

dependent processing pathway. We show that a heterologous RNA that lacks 

complementary piRNAs is processed into piRNAs upon recruitment of several piRNA 

pathway factors. This processing requires Zuc and the helicase Armitage (Armi). 

Aubergine (Aub) and Argonaute 3 (Ago3), as well as components of the nuclear RDC 

complex, which are required for piRNA biogenesis in germ cells, are dispensable. Our 

approach allows discrimination of proteins involved in transcription and export of piRNA 

precursors from components required for the cytoplasmic processing steps. piRNA 

processing correlates with localization of the substrate RNA to nuage, a distinct 

membraneless cytoplasmic compartment, which surrounds the nucleus of germ cells, 

suggesting that sequestration of RNA to this subcellular compartment is both necessary and 

sufficient for selecting piRNA biogenesis substrates. 
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Introduction 

Mature piRNAs are processed from longer transcripts, piRNA precursors (pre-

piRNAs), most of which are derived from piRNA clusters – genomic regions with a high 

density of transposon sequences (Brennecke et al. 2007; Gunawardane et al. 2007). 

Insertion of a heterologous sequence in piRNA clusters leads to its processing into 

piRNAs, indicating that piRNAs can be processed from any sequence (Todeschini et al. 

2010; Muerdter et al. 2012). piRNA biogenesis is a multi-step process starting with 

transcription and early processing of precursor RNA in the nucleus, export, precursor 

cleavage followed by processing to mature piRNAs and loading into piwi proteins. In the 

cytoplasm, piRNA precursors are processed by two mechanisms: the ping-pong cycle and 

Zucchini-dependent piRNA biogenesis (Brennecke et al. 2007; Gunawardane et al. 2007; 

Malone et al. 2009). In the ping-pong cycle, processing of pre-piRNAs is initiated by the 

endonucleolytic (slicer) activity of cytoplasmic piwi proteins, Aubergine (Aub) or 

Argonaute3 (Ago3), loaded with complementary piRNAs (Brennecke et al. 2007; 

Gunawardane et al. 2007). The characteristic features of ping-pong biogenesis are the 

presence of complementary piRNA pairs whose 5’ ends are separated by 10nt, and the 

generation of piRNAs with a bias for U at position 1 and for A at position 10 of their 

sequence (Wang et al. 2014). Zucchini-dependent biogenesis, in which endonucleolytic 

cleavage of pre-piRNAs by Zuc generates the 5’, and in part the 3’, ends of piRNAs, 

neither depends on the slicer activity of piwi proteins, nor the presence of complementary 

piRNAs (Malone et al. 2009). piRNAs generated through Zuc-dependent biogenesis 

show a bias for U at their 5’ end but lack a bias for A at position 10. Many of the 

cytoplasmic piRNA biogenesis factors, including Aub and Ago3 as well as numerous 

factors that were genetically identified to act in the pathway such as Vasa, Armitage 

(Armi), and Krimper, localize to membraneless perinuclear structures called nuage in 

germ cells and Yb bodies in the surrounding somatic follicular cells, leading to the 

assumption that these structures are the site of piRNA biogenesis (Hay et al. 1988; Lasko 

and Ashburner 1990; Lim and Kai 2007; Kirino et al. 2009; Malone et al. 2009; Qi et al. 

2011; Ipsaro et al. 2012; Nishimasu et al. 2012; Ohtani et al. 2013; Webster et al. 2015).  
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How piRNA precursors are identified by the biogenesis machinery remains 

unresolved. Other RNA processing events, such as miRNA or CRISPR RNA biogenesis, 

splicing, or polyadenylation, require specific sequence and/or structure motifs in 

precursor RNA that are recognized by the processing machinery (Zeng et al. 2005; Park 

et al. 2011; Barrangou and Marraffini 2014; Li and Patel 2016; Tsai and Joung 2016). 

Common sequence or structural motifs that are shared by all piRNA precursors were not 

identified (Muerdter et al. 2012). In lack of sequence motifs, two mutually non-exclusive 

models have been proposed to explain precursor selection in the germline, which we call 

the “persistent nuclear mark model” and the “selection by pre-existing piRNA model”.  

The	 “persistent	 nuclear	 mark	 model”	 proposes	 that	 specific	 proteins	

associate	 with	 piRNA	 precursors	 in	 the	 nucleus	 and	 remain	 associated	 with	 the	

transcripts	in	the	cytoplasm,	where	they	interact	with	the	processing	machinery.	In	

the	germline,	genomic	regions	that	give	rise	to	the	majority	of	piRNAs,	called	piRNA	

clusters,	are	marked	by	the	histone	3	lysine	9	trimethylation	(H3K9me3)	mark	and	

by	 the	RDC	complex.	RDC	consists	of	 the	HP1	homolog,	Rhino,	and	 two	additional	

proteins,	 Cutoff	 (Cuff)	 and	 Deadlock,	 and	 is	 required	 for	 transcription	 and	 early	

processing	 of	 cluster	 transcripts	 (Klattenhoff	 et	 al.	 2009;	 Pane	 et	 al.	 2011;	 Le	

Thomas	et	al.	2014;	Mohn	et	al.	2014;	Zhang	et	al.	2014;	Chen	et	al.	2016).	The	well-

conserved	transcription	export	(TREX)	complex	is	also	enriched	at	cluster	loci	and	

binds	piRNA	precursors	co-transcriptionally	in	an	RDC-dependent	fashion	(Zhang	et	

al.	2012;	Hur	and	Chung	2016;	Hur	et	al.	2016).	Components	of	either	the	RDC	or	the	

TREX	complex	were	proposed	to	constitute	the	mark	that	triggers	processing	in	the	

cytoplasm.	However,	the	nature	of	the	mark	and	the	mechanism	by	which	it	engages	

the	 processing	 machinery	 remain	 unclear.	 Evidence	 for	 RDC	 or	 TREX	 remaining	

associated	 with	 piRNA	 precursors	 after	 nuclear	 export	 is	 also	 lacking.	 Finally,	

tethering	of	Rhino	to	a	single-stranded	transgene	(without	its	concomitant	tethering	

to	a	complementary	antisense	transgene)	does	not	trigger	piRNA	biogenesis	(Zhang	

et	 al.	 2014),	 arguing	 against	 the	 idea	 that	 binding	 of	 RDC	 by	 itself	 is	 sufficient	 to	

specify	piRNA	precursors.	

The	 “selection	 by	 pre-existing	 piRNA”	 model	 suggests	 that	 precursors	 are	

specified	 in	 the	 cytoplasm	 by	 complementary	 piRNAs	 associated	 with	 the	
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cytoplasmic	piwi	proteins.	Existing	piRNAs	can	target	pre-piRNAs	and	induce	their	

processing	 via	 the	 ping-pong	 cycle	 (Brennecke	 et	 al.	 2007;	 Gunawardane	 et	 al.	

2007).	piRNA-dependent	cleavage	not	only	generates	complementary	piRNAs	(ping-

pong	partners)	but	also	leads	to	phased	processing	of	the	precursor	downstream	of	

the	initial	cleavage	(Han	et	al.	2015;	Homolka	et	al.	2015;	Mohn	et	al.	2015;	Senti	et	

al.	2015;	Wang	et	al.	2015).	This	process	generates	Piwi-loaded	piRNAs.	Mutation	of	

the	 two	 piwi	 proteins	 involved	 in	 the	 ping-pong	 cycle,	 Aub	 and	 Ago3,	 greatly	

reduces	 Piwi-bound	 piRNAs	 in	 the	 germline,	 leading	 to	 the	 suggestion	 that	 Zuc-

mediated	piRNA	biogenesis	in	germ	cells	is	triggered	by	the	ping-pong	cycle	(Han	et	

al.	2015;	Homolka	et	al.	2015;	Mohn	et	al.	2015;	Senti	et	al.	2015;	Wang	et	al.	2015). 

Follicular cells of the fly ovary lack ping-pong biogenesis factors as well as the 

RDC complex, yet produce piRNAs, suggesting an alternative precursor selection 

mechanism. Some piRNA precursors specific to follicular cells, such as the mRNA of 

traffic-jam (tj) and transcripts from the flamenco piRNA cluster, harbor sequences that 

are bound by the RNA binding protein Yb (Ishizu et al. 2015) and can trigger processing 

into piRNAs (Homolka et al. 2015; Ishizu et al. 2015). Whether other somatic piRNA 

precursors also harbor sequence motifs that are bound by Yb, and whether binding of Yb 

leads to piRNA processing, remains to be elucidated. 

Genetically many factors have been identified to be essential for piRNA 

biogenesis; however, a mechanistic dissection of which steps these factors are involved in 

(i.e., transcription, export, recognition or cytoplasmic processing) is largely missing. 

Assigning many of the identified factors to specific steps of the biogenesis pathway is 

hindered by the absence of an in vitro system that allows independent analysis of 

different stages of the pathway. In vivo analysis is impaired because disrupting proteins 

acting in early steps of the pathway, such as transcription of pre-piRNAs, eliminates 

piRNA precursors and thereby the possibility to test whether these factors also act in 

downstream steps of processing. 

The core of the cytoplasmic processing machinery, including the endonuclease 

Zuc, is shared by nurse and follicular cells, raising the question of how the same 

processing machinery has evolved to recognize its targets by two distinct – sequence-

specific in follicular cells and sequence-independent in nurse cells – mechanisms. We 
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show that direct recruitment of a heterologous sequence to the cytoplasmic piRNA 

processing machinery can bypass the necessity for sequence-specific recognition, as well 

as the need of both complementary piRNAs and a unique chromatin architecture. Our 

work reveals that sequestration of RNA to the cytoplasmic processing machinery is both 

necessary and sufficient for selecting substrates for piRNA biogenesis, leading to a 

unified model of piRNA specification in the two cell types. The described experimental 

approach bypasses nuclear biogenesis steps, enabling identification and functional 

dissection of factors that act in Zuc-mediated processing downstream of nuclear export. 

 

Results 

Recruitment of Yb and Piwi to RNA in follicular cells leads to piRNA processing 
Two transcripts that are processed into piRNAs in follicular cells, the mRNA of tj 

and transcripts from the flamenco piRNA cluster, were shown to harbor sequences that 

associate with the Yb protein and trigger piRNA processing when transferred to 

heterologous transcripts (Homolka et al. 2015; Ishizu et al. 2015). To determine if the 

interaction of a transcript with Yb is sufficient to induce processing, we tested whether 

we could trigger piRNA production in follicular cells by tethering a heterologous 

sequence that does not have sequence homology with natural piRNA substrates to Yb 

(Fig. 1A). The sequence of the reporter mRNA contains four BoxB sequences in its 

3’UTR, which are bound by the λN domain of antiterminator protein N fused to Yb (Fig. 

1A). We co-expressed λN-tagged Yb with the reporter in follicular cells of the fly ovary 

and sequenced ovarian small RNAs. Tethering of the transcript to Yb resulted in 

production of reporter-derived small RNAs, while small RNAs were absent upon 

recruitment of the control GFP protein (Fig. 1B-C). The majority of small RNAs 

produced from the reporter upon Yb tethering were 25-28nt long and had a U bias at the 

1st nucleotide (82.2% of all reporter-derived reads had a 5’U) consistent with these 

sequences being piRNAs (Fig. 1D-E). Thus, recruitment of Yb to a novel transcript is 

sufficient to trigger piRNA processing in follicular cells in the absence of any sequence 

or structure motifs in the RNA. 

In follicular cells, piRNAs are loaded into Piwi, the only member of the piwi 

clade expressed in these cells. Therefore we asked whether recruitment of Piwi itself to 
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RNA is sufficient to trigger processing. Tethering of Piwi also induced generation of 

piRNAs from the reporter (Fig. 1B-E). We note, that the piRNA profiles along the 

reporter differ depending on the factor recruited. Piwi recruitment leads to processing of 

the entire transcript, while Yb recruitment leads to piRNA biogenesis only downstream 

of the BoxB sites, which the Yb fusion protein binds to (Fig. 1C). This is similar to the 

piRNAs observed in the tj mRNA and when using the recognition sequence from 

flamenco, which both lead to processing only downstream of the recognition sequence 

(Homolka et al. 2015; Ishizu et al. 2015). Our data indicate that Yb binding not only 

identifies piRNA precursors but also specifies the entry site for processing. Thus, in 

follicular cells, recruitment of either Yb or Piwi is sufficient to trigger piRNA processing 

from a novel substrate and Yb might be responsible for specifying where processing 

initiates within the RNA. 

 Recruitment of the nuclear RDC and TREX complexes or Zucchini is not sufficient to 
trigger piRNA generation in germ cells 

In the germline piRNA biogenesis is more complex than in somatic follicular cells 

and depends on numerous nuclear and cytoplasmic factors. Two nuclear complexes, RDC 

and TREX, that localize to chromatin of piRNA loci and nascent pre-piRNA, 

respectively, were proposed to play a role in selecting piRNA precursors and guiding 

them to the processing machinery in germ cells. To test if the recruitment of the RDC or 

TREX to the heterologous transcript is sufficient to trigger piRNA processing in germ 

cells, we tethered the RDC component Cuff and the TREX component Thoc5 to the 

reporter in the female germline and profiled ovarian small RNAs. Tethering of these 

factors did not trigger piRNA generation (Fig. 2A-B), suggesting that recruitment of 

RDC or TREX is not sufficient to trigger biogenesis from novel RNA substrates in germ 

cells.  

Next we tested if recruitment of Zuc, the endonuclease responsible for generating 

the 5’ end and - to some extent - the 3’ end of piRNAs (Malone et al. 2009; Ipsaro et al. 

2012; Nishimasu et al. 2012; Han et al. 2015; Mohn et al. 2015) is sufficient to trigger 

piRNA biogenesis. Small RNA sequencing upon Zuc tethering revealed the presence of 

abundant small RNAs arising from the reporter transcript (Fig. 2A-B). However, small 

RNA sequences were predominantly 22-23nt in length (mostly from the 5’ region of the 
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reporter) (Fig. S1) and were depleted of 5’U reads (13.9% of all reporter-mapped reads 

had a 5’U; standard deviation (std) = 1.3; note that the reporter is depleted of uracils with 

an overall U content of 21.3%) (Fig. 2C-F). Small RNAs produced upon Zuc tethering 

were sensitive to NaIO4 treatment (Fig. 2A, F), further confirming that the majority of 

reporter-derived reads upon tethering Zuc are not bona fide piRNAs. Thus, Zuc tethering 

induces processing of the transcript, but not the efficient production of piRNAs. A closer 

look at the size profile revealed a smaller peak (27.4% of all reporter-derived reads; std = 

0.01) around the 25-28nt piRNA size range (Fig. 2C). This small RNA population had 

slightly more 5’U RNAs (28.4% had 5’U; std = 0.03) and was derived from the entire 

length of the reporter (Fig. 2E, Supplemental Fig. S1).  

To test whether any genuine piRNAs are formed upon recruitment of Zuc, we 

immunoprecipitated Piwi/piRNA complexes and cloned the isolated piRNAs. Analysis of 

Piwi-associated RNAs yielded reporter-derived small RNAs with a size profile and 5’U 

bias characteristic of piRNAs (41.8% had 5’U) (Fig. 2A, G-H). Thus, tethering of Zuc 

leads to reporter processing into small RNAs, however, only a small fraction of the 

formed small RNAs are genuine piRNAs. 

Recruitment of Piwi and cytoplasmic piRNA pathway components triggers piRNA 
biogenesis in germ cells 

Recent studies suggested that in germ cells both slicer-dependent and Zuc-

mediated processing is triggered by initial Aub- or Ago3-mediated cleavage guided by 

complementary piRNAs (Han et al. 2015; Mohn et al. 2015; Senti et al. 2015; Wang et al. 

2015). Our reporter lacks complementary piRNAs based on both bioinformatics analysis 

(Supplemental Fig. S2) and the fact that no processing of the reporter was detected in 

control flies upon recruitment of GFP. Thus, our inability to trigger piRNA biogenesis in 

germ cells might be due to the absence of piRNAs that are complementary to the reporter. 

We tested whether the recruitment of Piwi – which unlike Yb, is expressed in both cell 

types (Cox et al. 2000) – can trigger piRNA generation in the absence of cognate piRNAs 

in germ cells. Small RNA profiling revealed that – like in follicular cells – recruitment of 

Piwi in germ cells triggers small RNA processing from the reporter (Fig. 3A-B). Similar 

results were obtained with a reporter inserted in a different genomic location and 

containing a different sequence (except for the BoxB sites)(Sienski et al. 2015) 
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(Supplemental Fig. S3), indicating that neither the genomic location of the target, nor its 

sequence was crucial for processing.  

We tested if other components of the piRNA pathway can trigger processing in 

germ cells upon their recruitment to the reporter. Recruitment of nuclear proteins that 

work together with, or downstream of, Piwi to repress Piwi targets, Asterix (Arx), 

Panoramix (Panx) and the histone methyltransferase SetDB1/Egg, (Donertas et al. 2013; 

Muerdter et al. 2013; Sienski et al. 2015; Yu et al. 2015) did not trigger piRNA 

biogenesis (Fig. 3A-B). Recruitment of the cytoplasmic components Aub and Armi, two 

nuage components involved in pong-pong and Zuc-dependent processing respectively, 

resulted in small RNA biogenesis (Fig. 3A-B). Small RNAs generated upon Piwi, Aub or 

Armi tethering were resistant to NaIO4 treatment, confirming that they are generated by 

the canonincal piRNA biogenesis machinery (Supplemental Fig. S4A).  

The bulk of the reporter-mapped small RNAs upon Piwi, Aub, and Armi tethering 

was 25-28nt in length (Fig. 3C), and the majority (60.4% (std = 1.8), 55.9% and 78.4% 

(std = 0.06), respectively) had a strong bias for U at the first position (Fig. 3D, 

Supplemental Fig. S4B), both features of piRNAs. Cloning of small RNAs isolated from 

immunoprecipitated Piwi complex upon Piwi or Aub tethering confirmed that they are 

indeed bona-fide piRNAs (Fig. 3E-G). Reporter piRNAs are derived only from the sense 

strand of the reporter (99.4% (std = 0.001), 99.4% and 99.8% (std = 0.001), respectively) 

and lack a bias for A at position 10 (a feature of ping-pong piRNAs) (Fig. 3D, G). This, 

together with the lack of complementary piRNAs, suggests that these piRNAs are formed 

through a ping-pong-independent mechanism. We note that neither of our tethering 

experiments resulted in phased small RNAs from the reporter, although we did detect 

phasing in these libraries when we analyzed cluster 42AB (Supplemental Fig. S4C). We 

conclude that tethering of several different factors such as Piwi, Aub, and Armi to the 

reporter in germ cells triggers piRNA biogenesis. The mechanism by which reporter 

piRNAs are generated does not require complementary piRNAs and ping-pong 

processing, and thus seems similar, if not identical, to the mechanism observed in 

follicular cells. 
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Identification of factors required for piRNA processing in germ cells 
Having shown that tethering of Piwi, Aub or Armi is sufficient for piRNA 

biogenesis, we set out to identify factors that are required for piRNA processing of the 

reporter mRNA. We combined tethering of Piwi to the reporter with germline 

knockdown (Supplemental Fig. S5) of the respective gene, followed by  small RNA 

cloning.  

Factors that work with Piwi to induce transcriptional repression (Panx and Egg) 

(Donertas et al. 2013; Muerdter et al. 2013; Sienski et al. 2015; Yu et al. 2015) are not 

required for piRNA biogenesis upon Piwi tethering (Fig. 4A-B). Similarly, Cuff and 

Thoc5, components of the RDC and TREX complex, respectively, were dispensable for 

generation of reporter piRNAs (Fig. 4A-B). These results indicate that nuclear Piwi 

partners as well as RDC and TREX are not required for piRNA biogenesis triggered by 

Piwi recruitment.  

  In contrast, reporter piRNAs were strongly (7-fold) reduced upon knockdown of 

Zuc (Fig. 4A-B). Similarly, strong (14-fold) reduction of piRNA biogenesis was observed 

upon knockdown of Armi (a putative RNA helicase). These data confirm that reporter-

derived small RNAs are genuine piRNAs formed through the canonical Zuc-dependent 

biogenesis pathway. A somewhat weaker effect on piRNA biogenesis was seen upon 

knockdown of other cytoplasmic piRNA processing proteins, such as the nuage 

components Vasa, an RNA helicase, and the Tudor-domain protein Krimper, which 

reduced reporter piRNA levels ~2-fold (Fig. 4A-B). The cytoplasmic piwi proteins, Aub 

and Ago3, were dispensable for piRNA generation from the reporter upon Piwi tethering. 

This result further confirms that reporter piRNAs are generated independently of the 

ping-pong cycle (Fig. 4A-B).  Knockdown of Cuff and Ago3 resulted in an apparent 

increase in reporter-derived small RNAs when depicted as RPMs of all mapping reads 

(Fig. 4A-B), likely due to the massive loss of endogenous piRNAs mapping to the DM3 

genome. Overall, our results indicate that reporter RNA is processed by the canonical 

piRNA processing machinery, which includes Zuc and Armi, and that tethering bypasses 

the requirement of nuclear proteins. 
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Tethering to Piwi leads to transcript accumulation in nuage 
We used RNA-FISH to test if piRNA biogenesis triggered by tethering of Piwi 

leads to a change in the subcellular localization of the reporter RNA. Reporter RNA was 

uniformly distributed in the cytoplasm in control cells upon GFP tethering. Accumulation 

of the transcript in distinct perinuclear foci, which also show vasa enrichment, was 

observed upon Piwi tethering, indicating that Piwi recruits the bound RNA to nuage (Fig. 

5A). Thus, induction of piRNA biogenesis from a heterologous reporter correlates with 

sequestration of the reporter mRNA to nuage. 

 

Discussion 

Compared to the processing of other classes of small RNAs, piRNA biogenesis is 

very complex and requires numerous proteins with, to date, unspecified roles in piRNA 

processing. How the precursor RNAs are discriminated from other cellular RNA and 

directed to the processing machinery is also not clear. As standard genetic and 

biochemical approaches failed to provide clear answers to these questions we used an 

alternative approach, which is based on tethering of several piRNA pathway components 

to a heterologous reporter, to gain a better understanding of piRNA biogenesis. We found 

that tethering of several proteins – Piwi, Aub, and Armi – to an RNA that lacks homology 

to other piRNA precursors triggers its processing into piRNAs (Fig. 3A-B). The piRNAs 

produced by this approach have all features of canonical piRNAs: they have the correct 

size, a bias for U at the first nucleotide position, and they are loaded into Piwi (Fig. 3C-

G). Biogenesis of these piRNAs is mediated by the canonical processing machinery (Fig. 

4). 

Experimental approach to dissect the piRNA biogenesis pathway 
Most of the numerous proteins required for piRNA biogenesis were identified 

through genetic screens (Handler et al. 2011; Handler et al. 2013; Muerdter et al. 2013). 

Mutations in these genes diminish or eliminate mature piRNAs; however, it was difficult 

to assign specific molecular functions to these proteins, largely due to the fact that we do 

not know intermediate steps of piRNA processing that could be analyzed in these 

mutants. For example, the nuclear RDC and TREX complexes are required for piRNA 

biogenesis and were proposed to direct pre-piRNAs to the processing machinery 
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(Klattenhoff et al. 2009; Pane et al. 2011; Le Thomas et al. 2014; Mohn et al. 2014; 

Zhang et al. 2014; Chen et al. 2016; Hur and Chung 2016; Hur et al. 2016); however, the 

molecular mechanism by which these complexes might bring precursors to the 

cytoplasmic machinery remains unresolved. 

The approach employed in this study, tethering combined with knock-down of 

piRNA biogenesis factors, provides a valuable tool to dissect steps of the piRNA 

biogenesis pathway and discriminate proteins involved in processing and precursor 

localization per se from factors involved in upstream steps of biogenesis such as 

transcription and nuclear export of pre-piRNAs. As expected, processing absolutely 

requires Zuc, the endonuclease that mediates formation of both the 5’ and the 3’ end of 

piRNAs (Fig. 4) (Malone et al. 2009; Ipsaro et al. 2012; Nishimasu et al. 2012; Han et al. 

2015; Mohn et al. 2015). While recruitment of Zuc to RNA leads to processing of the 

transcript, the majority of the obtained small RNAs are not piRNAs, indicating that Zuc 

by itself is not sufficient for efficient piRNA processing (Fig. 2). We show that another 

factor that is required for piRNA biogenesis upon tethering is the putative RNA helicase 

Armi (Fig. 4). Thus, efficient piRNA processing requires the interaction between Zuc and 

other proteins such as Armi. 

We found that components of the nuclear RDC and TREX complexes, which 

associate with chromatin of piRNA clusters and nascent pre-piRNAs respectively, are not 

required for piRNA processing upon tethering (Fig. 4), suggesting that their requirement 

for piRNA biogenesis can be by-passed. Previous studies show that both RDC and TREX 

are required for transcription of pre-piRNAs (Klattenhoff et al. 2009; Pane et al. 2011; Le 

Thomas et al. 2014; Mohn et al. 2014; Zhang et al. 2014; Chen et al. 2016; Hur and 

Chung 2016; Hur et al. 2016). TREX is likely also involved in nuclear export of pre-

piRNAs. It is possible that RDC and TREX are only necessary in the nucleus for 

transcription and export of pre-piRNAs and they do not interact with the cytoplasmic 

processing machinery. Alternatively, these complexes might be required to channel 

natural precursors to the processing machinery, but this function can be effectively by-

passed by recruitment of several different proteins to the RNA. Either way, RDC and 

TREX are not part of the core processing machinery. The same approach can be used to 

assign roles to other – including yet unidentified – piRNA biogenesis factors. 
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Zucchini-dependent, ping-pong independent piRNA processing exists in germ cells 
Tethering of several proteins to an RNA that has no complementarity to mature 

piRNAs triggers its processing to piRNAs. This processing is observed in both follicular 

and germ cells (Fig. 1,3), and is independent of pre-existing piRNAs (Supplemental Fig. 

S2) and ping-pong. Historically, two types of piRNA biogenesis were proposed: the ping-

pong cycle, which relies on the catalytic (slicer) activity of Aub and Ago3 to generate the 

5’ end of new piRNAs (Brennecke et al. 2007; Gunawardane et al. 2007), and the so-

called primary processing, which was thought to be independent of ping-pong (Malone et 

al. 2009). Recent studies suggested that in germ cells ‘primary’ biogenesis is triggered by 

initial ping-pong processing (Han et al. 2015; Mohn et al. 2015; Senti et al. 2015; Wang 

et al. 2015). These results suggested that ‘primary’ piRNA biogenesis is actually 

downstream of ping-pong, or ‘secondary’ biogenesis, making these titles obsolete. Our 

data shows that piRNA biogenesis that is independent of the ping-pong machinery can be 

achieved – at least by the artificial tethering approach – in germ cells. Therefore, both 

germ cells and somatic follicular cells (which lack the ping-pong machinery (Malone et 

al. 2009)) possess the same machinery, which allows them to process piRNAs in a ping-

pong independent fashion. We propose that Aub and Ago3 might promote Zuc-dependent 

processing of piRNA precursors through sequestration of these RNA to a specific cellular 

compartment rather than through its slicing activity (see below).  

The sequestration to nuage might explain selection of substrates for piRNA processing 
How piRNA precursors are recognized by the piRNA processing machinery is 

still unresolved. The core piRNA processing machinery – composed of Zuc and Armi – is 

similar in both cell types, suggesting that a common principle for precursor selection 

should exist. piRNAs could be generated from artificial sequences inserted into piRNA 

clusters (Muerdter et al. 2012). piRNA processing from genic and tRNA transcripts was 

also observed – correlating with transcript abundance –  in Kc167 cells. Both of these 

observations argue against the need for specific sequence/structure motifs in precursor 

transcripts (Vrettos et al. 2017). We propose that sequestration of RNA into a distinct 

cellular compartment might be the central principle for precursor selection that is shared 

by germline and follicular cells. Based on our proposed model any RNA that is localized 
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to the processing compartment will be processed to piRNAs in a sequence-independent 

fashion (Fig. 5B). 

Several lines of evidence support this hypothesis. First, efficient piRNA 

biogenesis can be triggered by recruitment of several different proteins to RNA, which 

have little in common except for their localization to nuage. Some of these factors – such 

as Aub – localize to nuage in steady state, while others localize transiently – like Piwi on 

its way to the nucleus (Lim and Kai 2007; Le Thomas et al. 2013; Huang et al. 2014; 

Webster et al. 2015). The only compartment where both Aub and Piwi are present 

together is nuage (Malone et al. 2009). Recruitment of Zuc – the central player in the 

processing according to both previous results and our data – does not lead to efficient 

processing into piRNAs (Fig. 2). Zuc associates with mitochondria and therefore is 

localized throughout the cytoplasm and not exclusively to nuage (Handler et al. 2013). 

Second, we found that even though Zuc-dependent piRNA biogenesis does not require 

ping-pong, biogenesis is reduced upon knockdown of Vasa and Krimp, proteins that 

localize to nuage and previously were implicated in ping-pong (Fig. 4) (Xiol et al. 2014; 

Webster et al. 2015). Knockdown of Vasa disrupts the overall structure of nuage (Liang 

et al. 1994); this might be true for knockdown of Krimp as well, making biogenesis that 

relies on physical integrity of this compartment less efficient. Finally, we observe that 

reporter RNA – normally distributed throughout the cytoplasm – is localized to nuage 

upon tethering (Fig. 5A). A study published during the revision of this manuscript 

showed that artificial reporter tethering to Armitage in follicular cells, where Armi 

localizes to Yb bodies, leads to reporter processing into piRNAs. Mutating either the 

helicase or the ATP binding domain of Armi delocalizes it from Yb bodies and, 

consistent with our results, reporter tethering to these mutant (and thus delocialized) 

versions of Armi greatly reduced reporter processing into piRNAs (Pandey et al. 2017). 

Thus, it seems that processing directly correlates with localization of the substrate to 

nuage. 

How are pre-piRNAs recruited to nuage in germ cells and to Yb bodies in 

follicular cells? In our experiments, artificial tethering of the heterologous RNA to Piwi 

was sufficient to sequester it to nuage. Natural piRNA substrates might be recruited to Yb 

bodies through RNA-binding proteins that recognize specific motifs in RNA sequences, 
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such as the sequences identified in traffic-jam or Flamenco (Homolka et al. 2015; Ishizu 

et al. 2015). In germ cells, pre-piRNAs might be recruited to nuage through interaction 

with Aub and Ago3 loaded with complementary piRNAs. Piwi-loaded piRNAs are 

substantially reduced in the Aub/Ago3 double mutant, which was interpreted as a 

requirement for slicer cleavage to trigger Zuc-dependent processing (Han et al. 2015; 

Mohn et al. 2015; Senti et al. 2015; Wang et al. 2015). We propose that these results can 

be explained by failure to sequester pre-piRNAs to nuage in the Aub/Ago3 double 

mutant. Expression of catalytically-impaired Ago3 and Aub, which cannot cleave 

precursor, but are likely able to bind and recruit it to nuage, can partially rescue Zuc-

dependent processing of Piwi-associated piRNAs (Wang et al. 2015). 

 Compartmentalization is important for many RNA processing pathways such as 

splicing, rRNA maturation, etc. (Zhang et al. 1994; Henras et al. 2015). However, our 

hypothesized model of piRNA precursor selection goes beyond stating that 

compartmentalization is important for piRNA processing: while in all other pathways 

RNA sequence motifs are still required for processing (Zeng et al. 2005; Park et al. 2011; 

Barrangou and Marraffini 2014; Li and Patel 2016; Tsai and Joung 2016), indicating that 

localization of substrates to the processing compartments is necessary but not sufficient 

to trigger processing, we propose that for the piRNA pathway localization of RNA into 

nuage/Yb granules is both necessary and sufficient to initiate piRNA processing. 

 Our model of piRNA biogenesis allows unification of two seemingly different 

mechanisms for selection of piRNA precursors operating in germ and follicular cells. 

Processing induced by artificial recruitment enables separation of proteins involved in 

upstream steps of piRNA biogenesis from factors involved in Zuc-mediated processing. 

Finally, selection of piRNA precursors through recruitment to the processing machinery 

enables the design of artificial sequences that can be efficiently processed into piRNAs, 

and thus opens possibilities to use the piRNA pathway as a tool for both transcriptional 

and posttranscriptional gene regulation.  



 73 

Methods and Materials 

Fly stocks: 

 The sh-White, sh-AGO3, sh-Armitage, sh-Aubergine, sh-Cutoff, sh-Krimper, sh-

Vasa, and sh-Zucchini lines were obtained from the Bloomington stocks center (BDSC 

#33623, BDSC #35232, BDSC #34789, BDSC #33728, BDSC #35182, BDSC #35230, 

BDSC #32434, and BDSC #35227). The GFP-Piwi line was a generous gift from the 

Hannon lab. The sh-SetDB1, sh-Panoramix, λN-FLAG-Piwi, λN-FLAG, and Tubulin-

GFP-BoxB lines were generous gifts from the Brennecke lab. The TJ-Gal4 line was 

obtained from the Kyoto DGGR stocks center (DGRC # 104055). To obtain the sh-Thoc5 

line, the short hairpin sequences were ligated into the pValium20 vector (Ni et al. 2011) 

using T4 DNA ligase from NEB (M0202), according to the manual, and then integrated 

into the attP2 landing site (BDSC #25710). Hairpin sequences are listed in 

Supplementary Table S2. UASp-λN-eGFP-Piwi, UASp-λN-eGFP-Aubergine, UASp-

Armitage-HA-λN, UASp-Zucchini-HA-λN, UASp-λN-eGFP-GFP, UASp-λN-HA-Yb, 

UASp-λN-eGFP-Thoc5, UASp-λN-eGFP-Cutoff, UASp-λN-eGFP-Asterix, UASp-λN-

eGFP-Panoramix, UASp-λN-eGFP-Egg, and UASp-mKate2-4xBoxB-K10polyA were 

generated in lab as previously described (Chen et al. 2016). These constructs were 

generated by P-element integration and driven by maternal alpha-tubulin67C-Gal4 

(BDSC #7063). 

Flies carrying the λN-transgenes and the alpha-tubulin67C-Gal4 driver were 

crossed to flies carrying the UASp-mKate2-4xBoxB-K10polyA reporter, and where 

applicable the respective hairpin, to obtain flies that express all components of the system 

in the female germline. For expression in follicular cells flies carrying the λN-transgenes 

and the TJ-gal4 driver were crossed to flies carrying the UASp-mKate2-4xBoxB-

K10polyA reporter. Flies were put on yeast for 3 to 4 days prior to dissection and were 5-

8 days old at the time of dissection. 

RT-qPCR: 

Total RNA was isolated from 20 ovaries with Ribozol (Amresco, N580), followed 

by DNase treatment with Amplification grade DNaseI (Invitrogen, 18068-015) according 

to the manual. Reverse transcription was carried out using Superscript III (Invitrogen) 

with oligo d(T)15. qPCR was performed on a Mastercycler® ep Realplex PCR thermal 
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cycler machine (Eppendorf). RT-qPCR data target expression was normalized to the rp49 

locus expression. PCR primers are listed in Table S2. 

Small RNA-seq: 

Ovaries were dissected and total RNA was isolated with Ribozol (Amresco, 

N580). Small RNAs within a 19-nt to 29-nt window were isolated from 15% 

polyacrylamide gels from 4 µg of ovarian total RNA. For samples that were NaIO4 

treated, 5x Borate Buffer pH 8.6 (150mM borax, 150mM boric acid) and 200mM sodium 

periodate were added to the size selected small RNA, then the samples were incubated at 

25C for 30 minutes. The NaIO4-treated small RNA was then ethanol precipitated before 

proceeding to library construction. The small RNA libraries were constructed using the 

NEBNext Small RNA Library Prep Set for Illumina (#E7330S), according to the protocol 

using NEBNext Multiplex Oligos for Illumina (#E7335S). Libraries were sequenced on 

the Illumina HiSeq 2500 (SE 50bp reads) platform. The resulting reads were mapped 

against the reporter sequence and against the DM3 genome using Bowtie 0.12.7 

(Langmead et al. 2009) with the following settings: “ –v 0 –m 10000 --best –strata”, 

retaining reads that map with zero mismatches. The reads were also mapped to RepBase 

using Bowtie 0.12.7 (Langmead et al. 2009) with the following settings: “-v 3 --best --

strata".  Reads that specifically mapped to the reporter sequence and not to the DM3 

genome with zero mismatches were extracted from the libraries. Where applicable, 22-

23nt reads or 25-28nt reads were extracted from the reads mapping exclusively to the 

reporter. All four sets of reads (all reads, all reads specific, 22-23nt reads specific, and 

25-28nt reads specific) were plotted along the reporter sequence normalized to the 

number of total reads or 25-28nt reads mapping to the DM3 genome respectively using 

IGV 2.3.68 (Robinson et al. 2011). Reads that specifically mapped to the 42AB locus 

(chr2R: 2144349-2386719), and not to the rest of the DM3 genome, were extracted from 

the libraries. Weblogos were generated using an R script that utilizes the seqLogo library 

(Bembom 2016) to display the nucleotide frequency occurring at each position of the 

inputted reads calculated within a homemade bash script. Sequencing data is summarized 

in Table S1.  High-throughput sequencing data for small RNA-seq experiments are 

available through Gene Expression Omnibus: GSE102961. 
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IP Small RNA-Seq: 

Ovaries (~100/IP) from flies expressing UASp-λN-eGFP-Piwi, UASp-λN-eGFP-

Aubergine, or UASp-Zucchini-HA-λN with UASp-GFP-Piwi, and the UASp-mKate2-

4xBoxB-K10polyA reporter line driven by maternal alpha-tubulin67C-Gal4 were 

dissected and lysed on ice in 250µl lysis buffer (30mM Hepes-KOH pH7.4, 100mM 

KOAc, 2mM Mg(OAc)2, 5mM DTT, 0.5% [v/v] NP40, proteinase inhibitor (Roche, 

11836170001), RNasin Plus (Promega, N2611). Lysate was dounced and clarified by 

centrifugation at 4C at max speed. The supernatant was incubated with protein A/G 

agarose beads (Thermo fisher, 20421) pre-conjugated with rabbit polyclonal anti-GFP 

(Covance, affinity-purified in our laboratory) or anti-Piwi (Brennecke et al. 2007) at 4C 

for 2 hours. The immunoprecipitation and RNA isolation was carried out as previously 

described (Vagin et al. 2006). A fifth of the RNA was CIP (NEB, M0290S) treated in 

NEB Buffer #3 (NEB, B7003S) for 30’ at 37C and then ethanol precipitated after 

phenol:chloroform and chloroform extraction. The CIP-treated RNA was then PNK 

treated with 1µl 10x T4 Polynucleotide Kinase Buffer (NEB, B0201S), 2µl γ-P32 ATP 

(PerkinElmer, BLU502A250UC), and 1µl T4 Polynucleotide Kinase (NEB, M0201S) for 

45’ at 37C. The CIP-and-PNK-treated RNA was added back to the remainder of the RNA 

isolated from the IP. Size selection, library preparation, and analysis were performed as 

described above, except that fragments were gel extracted based on labeled IP material. 

RNA-FISH and Immunofluorescence: 

 Probes specific to the mKate2 transcript were designed and ordered from Stellaris 

(Biosearch Technologies) and resuspended in 200µl DEPC-treated TE buffer (10mM 

Tris-HCl, 1mM EDTA, pH 8.0) and stored at -20C as stock. FISH was performed from 

30-50 pairs of ovaries that were dissected and washed with ice cold DEPC-treated PBS. 

Prior to fixation, the ovaries were exposed to blue light for 15 minutes to quench GFP 

fluorescence from the tethering construct (UASp-λN-eGFP-Piwi and UASp-λN-eGFP-

GFP). The ovaries were fixed with 300µl fixation solution (4% paraformaldehyde, 0.15% 

Triton X-100 in DEPC-treated PBS) at room temp (RT), shaking at 300 rpm and washed 

3x with PBX (DEPC-treated PBS, 0.3% Triton X-100) at RT for 10 minutes each. 

Samples were dehydrated in 500µl 70% Ethanol (in DEPC-treated water) and 

permeabilized overnight at 4C on a nutator. Stock probes were diluted 100x in 
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hybridization buffer (DEPC-treated 2x SSC, with 10% [w/v] Dextran sulfate and 10% 

[v/v] formamide). Following rehydration of ovaries in 500µl wash buffer (DEPC-treated 

2x SSC, 10% [v/v] Formamide) for 5 minutes the diluted probe was added to the samples 

for overnight incubation at 37C in a hybridization chamber. Samples were washed twice 

with wash buffer and incubated in wash buffer twice at 37C for 30 minutes. Samples 

were blocked with SBX buffer (DEPC-treated 2x SSC, 1% [w/v] BSA, 0.3% Triton X-

100) at RT for 2 hours and incubated with 1:100 diluted anti-Vasa (DSHB, Spradling, 

A.C. & Williams, D.) overnight at 4C followed by five washes with SBX buffer for 10 

minutes at RT and incubation with 1:400 diluted Chicken anti-Rat IgG secondary 

antibody, Alexa Fluor 647 (Thermo Fisher, A21472) in SBX buffer for 4 hours at RT in 

the dark without agitation. Ovaries were washed 5x for 10 minutes with SSCT buffer 

(DEPC-treated 2xSSC, 0.1% Triton X-100) at RT and incubated with 1:5000 diluted 

DAPI in 2xSSC buffer for 10 minutes at RT on a nutator. Ovaries were washed 2x with 

2xSSC buffer and then mounted on a glass slide using Prolong Gold antifade reagent 

(Thermo Fisher, P36934).  
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Figures and Figure Legends 

 

 
Figure 1. Yb and Piwi recruitment to RNA in follicular cells triggers piRNA production 
from reporter mRNA.  

A) Schematic diagram of the reporter construct used to study the effect of piRNA 

pathway component recruitment to RNA. (PAS) PolyA signal. B) Recruitment of Yb and 

Piwi, but not GFP, to a reporter results in small RNA reads mapping to the reporter 

sequence. Shown are small RNA-seq reads from 19-30nt total ovarian RNA. RPMs were 

calculated for reads mapping exclusively to the reporter normalized to total reads 

mapping to the DM3 genome. Error bars indicate standard deviation between replicates 

(n=2). C) The small RNA reads produced upon tethering Yb or Piwi map to the reporter. 

Shown are profiles for all reads (black) and reporter-specific reads (red) mapping to the 

reporter normalized to all reads mapping to the DM3. D) Tethering of Yb or Piwi results 

in production of piRNA-length reads from the reporter. Shown are size profiles of all 
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reads mapping to the reporter. Error bars indicate standard deviation between replicates 

(n=2). E) Reporter-derived sequences upon Yb or Piwi tethering exhibit a 1U bias. The 

weblogos were generated from all reads mapping to the reporter.  
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Figure 2. Recruitment of the nuclear RDC and TREX complexes, or Zucchini is not 
sufficient to trigger piRNA processing in germ cells. 

A) Recruitment of Zuc, but not Cuff, Thoc5, or GFP to the reporter results in small RNA 

production. However, upon NaIO4-treatment reporter-derived small RNAs generated 

upon Zuc tethering are lost. Shown are profiles for all reads (black) and reporter-specific 
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reads (red) mapping to the reporter, normalized to all reads mapping to the DM3. B) 

Normalized small RNA-seq reads (cumulative RPMs) upon germline tethering of GFP, 

Cuff, Thoc5, or Zuc. RPMs were calculated for 19-30nt total ovarian RNA reads 

mapping exclusively to the reporter normalized to total reads mapping to the DM3 

genome. Error bars indicate standard deviation between replicates (n=2). C) Zuc 

tethering leads to production of two classes of small RNAs. Shown is the size profile of 

all reads mapping to the reporter. Error bars indicate standard deviation between 

replicates (n=2). D) Reporter-derived sequences upon Zuc tethering do not show any 

nucleotide bias. The web logo was generated from all reads mapping to the reporter. E) 

25-28nt (piRNA-sized) reporter sequences produced upon Zuc tethering exhibit a slight 

1U bias. The web logo was generated from all 25-28nt reads mapping to the reporter. F) 

Web logo of NaIO4-treated reporter-derived small RNAs upon Zuc tethering indicates 

moderate 1U bias but very few reads. G) Piwi-loaded small RNAs upon Zuc tethering are 

piRNA-length. Shown is the size profile of all reads mapping to the reporter. Error bars 

indicate standard deviation between replicates (n=2). H) Reporter-derived sequences 

upon Zuc tethering that are loaded into Piwi show a 1U bias, indicating they are bona-

fide piRNAs. The web logo was generated from all reads mapping to the reporter.  
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Figure 3. In germ cells, recruitment of Piwi and cytoplasmic piRNA pathway components 
triggers piRNA production from the reporter. 

A) Tethering of Piwi, Aub, or Armi in the germline produces piRNA from the reporter, 

whereas tethering of the chromatin factors, Arx, Egg, and Panx does not. Shown are 

profiles for all reads (black) and reporter-specific reads (red) mapping to the reporter 

normalized to all reads mapping to the DM3. B) Shown are cumulative RPMs from 19-

30nt total ovarian RNA. RPMs were calculated for reads mapping exclusively to the 
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reporter normalized to total reads mapping to the DM3 genome. Error bars indicate 

standard deviation between replicates (n=2). C) Tethering of Piwi, Aub, or Armi leads to 

piRNA-length reads from the reporter. Shown are size profiles of all reads mapping to the 

reporter (top) and – as a size selection control – to the DM3 genome (bottom) upon 

tethering Piwi, Aub, or Armi. Error bars indicate standard deviation between replicates 

(n=2). D) Upon recruitment of Piwi, Aub, or Armi, reporter-derived sequences show a 

1U bias. The web logos were generated from all reads mapping to the reporter. E) Upon 

tethering of Piwi or Aub, small RNA sequences derived from the reporter are loaded into 

Piwi. Shown are profiles for all reads (black) and reporter-specific reads (red) mapping to 

the reporter, normalized to all reads mapping to the DM3. F) Piwi-loaded reporter small 

RNA sequences obtained upon Piwi or Aub tethering are piRNA-length. Shown are size 

profiles of all reads mapping to the reporter. Error bars indicate standard deviation 

between replicates (n=2). G) Piwi-loaded reporter small RNA sequences show a 1U bias. 

The web logos were generated from all reads mapping to the reporter.  
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Figure 4. Chromatin factors are dispensable, but primary biogenesis factors are required for 
piRNA generation upon Piwi tethering.  

A) Knockdown of piRNA factors concomitantly to Piwi tethering leads to loss of piRNA, 

only if Zuc-mediated cytoplasmic biogenesis factors are affected. Shown are small RNA 

profiles along the reporter for 25-28nt reads mapping exclusively to the reporter normalized 

to 25-28nt reads mapping to the DM3. B) Shown are cumulative RPMs of small RNA from 

25-28nt total ovarian RNA calculated for all reads mapping to the reporter (top) and total 

reads uniquely mapping to cluster 42AB (bottom) normalized to total reads mapping to the 

DM3 genome. Knockdown of White is used as a control.  
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Figure 5. Tethering to Piwi leads to transcript sequestration in nuage. 

A) Artificial tethering of RNA to Piwi leads to its accumulation in perinuclear granules. 

RNA-FISH experiments detect dispersed mKate-4BoxB reporter mRNA upon tethering to 

GFP (control) and perinuclear colocalization of the RNA with Vasa upon Piwi tethering. 

Higher magnification of the boxed-in section is shown in the 3rd row. Scale bars indicate 

10µm. B) An overarching model of precursor selection for primary piRNA biogenesis.  
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Abstract 

The piRNA pathway acts as a safeguard against transposable elements for the germline 

genomes of all animals. In Drosophila melanogaster, the piRNA pathway is composed of 

three piwi clade Argonuate proteins – Aubergine (Aub), Argonaute3 (Ago3), and Piwi – 

and their associated piwi-interacting RNAs (piRNAs). Piwi differs from Aub and Ago3 in 

subcellular localization and its role in the piRNA pathway. However, the exact method by 

which Piwi accomplishes its function remains unresolved. An essential step to 

understanding how Piwi achieves its function is establishing an interactome map. While a 

complete list of all proteins that interact with Piwi has not been established, there are many 

factors that have been identified genetically to act within the piRNA pathway. We 

developed a novel strategy to distinguish between direct and indirect interactions with Piwi 

and employed our strategy on a candidate list of factors. Our approach identifies direct 

protein interactions with Piwi using a microscopy-based assay in a heterologous cell 

culture system in which Piwi is stably tethered to DNA. By performing our assay in a 

heterologous cell culture system, we limit the possibility of identifying false positives. Our 

assay allowed us to discern from previously identified Piwi interactors those that directly 

interact with Piwi – thus further elucidating their roles within the piRNA pathway. We also 

utilized our approach to identify novel direct protein interactions with Piwi from a list of 

factors genetically identified to participate in the piRNA pathway. 



 90 

Introduction 

Members of the Argonaute protein family associate with distinct classes of small 

RNAs to transcriptionally or post-transcriptionally silence targets. The small RNA loaded 

provides specificity for a target, while the Argonaute protein provides the effector function 

to silence the target. In the germline of metazoans, the piwi clade of Argonuate proteins 

associates with piwi interacting RNAs (piRNAs) to form effector complexes that recognize 

and silence selfish mobile genetic elements called transposable elements (TEs). In 

Drosophila melanogaster, the genome encodes three piwi clade Argonaute proteins: Piwi, 

Aubergine (Aub), and Argonaute3 (Ago3).  

All three piwi clade proteins are expressed in germline cells of D. melanogaster 

ovaries, while in the somatic follicular cells only Piwi is present (Cox et al. 2000; Harris 

and Macdonald 2001; Saito et al. 2006; Brennecke et al. 2007; Gunawardane et al. 2007). 

Piwi is loaded with piRNA in cytoplasmic, perinuclear granules termed nuage, and then the 

Piwi-piRNA complex is translocated to the nucleus where Piwi functions. In the nucleus, 

Piwi scans transcripts for a complementary target to its piRNA. Once a target has been 

identified, Piwi recruits the silencing machinery necessary to establish the H3K9me3 

silencing mark at the site of the target (Saito et al. 2009; Olivieri et al. 2010; Handler et al. 

2011; Ishizu et al. 2011; Klenov et al. 2011; Shpiz et al. 2011; Sienski et al. 2012; Gu and 

Elgin 2013; Le Thomas et al. 2013; Rozhkov et al. 2013). To accomplish its function, Piwi 

must engage in many interactions with a distinct set of, mostly unidentified, proteins within 

the cytoplasmic and nuclear compartments.  

In nuage Piwi must interact with the piRNA biogenesis machinery to be loaded, and 

once in the nucleus Piwi must interact with the silencing effector complex. Many additional 

factors have been genetically identified as part of the piRNA pathway. To date, only a few 

of the piRNA pathway factors have been biochemically dissected, with the majority of 

interactions demonstrated predominantly through the use of coimmunoprecipitation 

followed by western blotting. Further, the ability to dissect the interactome is complicated 

by the complexity of the interactions. While studies have been carried out to determine 

whether the factors that interact with Piwi are involved in loading Piwi with piRNA in 

nuage or recruiting the silencing machinery to target loci, it is still unclear exactly whether 

Piwi engages in direct or indirect biochemical interactions with these factors. The ability to 
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discern direct biochemical interactions with Piwi would provide important insights into 

understanding the sequence of events that must occur for Piwi to be loaded in the 

cytoplasm, translocated to the nucleus, and accomplish its function in the nucleus. 

To detect protein-protein interactions, two commonly used techniques are yeast 

two-hybrid screening and affinity purification of complexes in vitro followed by mass 

spectrometry. Both techniques have weaknesses that must be considered before utilizing 

them to identify protein interactions. Previously, we performed immunoprecipitation 

followed by mass spectrometry of tagged-Piwi in the presence and absence of RNAse A 

treatment, and found that Piwi predominantly interacted with RNA-binding proteins in an 

RNA-dependent manner (Le Thomas et al. 2013). However, due to the bias of affinity 

purification (AP) or coimmunoprecipitation (co-IP) towards high affinity or highly 

abundant proteins, we suspect that the list of interactors we obtained may be missing less 

abundant factors as well as any weak or transient interactions. Since we were unable to fix 

our samples prior to mass spectrometry, we also suspect that the list of interactors we 

obtained contains unspecific hits. Furthermore, we cannot discriminate between direct and 

indirect protein interactions based off the mass spectrometry data. Based on FLIP data, we 

expect that Piwi interacts very transiently with chromatin at the site of targets (Le Thomas 

et al. 2013). Piwi’s transient interaction with chromatin suggests that factors downstream of 

Piwi recognition of a target could be interacting transiently as well, resulting in the inability 

to capture these interactions with co-IP followed by mass spectrometry.  

Yeast two-hybrid (Y2H) systems, which identify defined, direct binary interactions, 

are relatively inexpensive and do not rely on specialized or large equipment. When looking 

for direct interactions with D. melanogaster Piwi, both AP/MS using D. melanogaster 

ovary lysate and traditional Y2H systems are plagued with false positives – indirect 

interactions – generated by interactions mediated by other proteins in the piRNA pathway. 

We developed a fluorescence based optimized two-hybrid (2H) approach to identify 

biochemical interactions of Piwi. Our method is capable of detecting transient or weak 

protein-protein interactions in vivo and allows for discrimination between direct and 

indirect interactions with D. melanogaster Piwi. Our work establishes a technique that 

allowed us to take a candidate list of factors and discern between factors that most likely 

directly interact with Piwi and those that indirectly interact with Piwi (possibly mediated by 
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RNA or other D. melanogaster proteins). Furthermore, our method allowed us to identify 

novel direct Piwi interactors amongst factors implicated in the piRNA pathway, which we 

confirmed by co-IP experiments in S2 cells. 

 

Results 

A heterologous cell culture assay utilizing lacO tethering to detect direct protein 
interactions  

To determine if factors previously identified to interact with Piwi were directly or 

indirectly interacting with Piwi, we employed a new method capable of detecting direct 

protein-protein interactions in vivo. Our approach utilizes fusion of a bait protein to the 

DNA-binding domain of lacI and a fluorescent tag (mKate2). The lacI-mKate2 fused bait 

protein is stably expressed in cells that contain 3 genomic loci with arrays of the lacO 

sequence (Jegou et al. 2009), resulting in the recruitment of the bait protein to the lacO loci 

which can be visualized using fluorescent microscopy as three distinct nuclear dots. Cells 

stably expressing the tethered bait protein are transiently transfected with prey proteins 

fused with a different fluorescent tag (CFP). If the bait and prey proteins interact, the prey 

is recruited to the nuclear lacO loci, resulting in co-localization of the mKate2 and CFP 

signals (Fig 1A). Tethering of the bait protein to lacO foci allows for weak or transient 

interactions, which may be missed by other techniques, to be identified. We utilized our 

system with Piwi as bait in human U2OS cells which lack other Drosophila germline 

proteins – thus favoring detection of direct interactions between Piwi and the prey proteins. 

When we stably express lacI-mKate2-Piwi in U2OS cells containing lacO arrays, Piwi 

localizes to nuclear dots, whereas transiently transfected CFP (control) is evenly distributed 

throughout the cell and is not enriched at lacO arrays (p-value=0.234; std=0.193; n=5) (Fig 

1B). We composed a list of candidate interaction partners from factors previously identified 

to interact with Piwi (Fig 1C) and the top hits identified from at least two out of three RNAi 

screens aimed to identify proteins that are involved in transposon repression (Czech et al. 

2013; Handler et al. 2013; Muerdter et al. 2013). We used our heterologous cell culture 

system to determine whether factors on our candidate list engaged in direct interactions 

with Piwi. We quantified our images using a homemade script that employs the Costes 

method on the nuclei, deemed regions of interest (ROI), of cells expressing both the lacI-
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mKate2-Piwi dots and CFP-tagged candidates where a p-value greater than or equal to 0.95 

indicates colocalization (Table S1) (Costes et al. 2004; Schindelin et al. 2012).  

Piwi directly interacts with some nuage-localized factors, but does not directly interact 
with the core components of the piRNA processing machinery 

Prior to being translocated to the nucleus, Piwi is loaded with piRNA in nuage. 

Using our heterologous cell culture system, we tested for biochemical interactions between 

Piwi and factors known to localize to nuage. CFP-tagged Hen1 (p-value=0.096; std=0.124; 

n=5), Gasz (p-value=0.154; std=0.344; n=5), Nibbler (Nbr) (p-value=0.00; std=0.00; n=5), 

Minotaur (Mino) (p-value= 0.018; std=0.040; n=5), Vreteno (Vret) (p-value=0.212; 

std=0.172; n=5), and BoYb (p-value=0.062; std=0.139; n=5) were not recruited to lacI-

mKate2-Piwi dots (Fig S1). Furthermore, the core cytoplasmic components of the primary 

processing machinery, including the helicase Armitage (Armi) (p-value=0.296; std=0.362; 

n=5) and the endonuclease Zucchini (Zuc) (p-value=0.196; std = 0.210; n=5) were not 

recruited by Piwi to the lacO foci (Fig 2A, S1). In steady state, Zuc is localized to the 

mitochondrial membrane (Malone et al. 2009; Haase et al. 2010). We generated Zuc with a 

mutated predicted mitochondrial localization signal (ΔMLS-Zuc) to test whether the 

subcellular localization of Zuc affected the result of our assay. We found that ΔMLS-Zuc 

was also not recruited to the lacI-mKate2-Piwi foci (p-value=0.098; std=0.197; n=5) (Fig 

2A). Previously, other labs concluded that Armi interacts with Piwi in an RNA-

independent manner (Olivieri et al. 2010; Ilyin et al. 2017). We performed co-IP of Armi-

HA and FLAG-Piwi from S2 cells in the presence and absence of RNAse A treatment. 

While Armi and Piwi are pulled down together, the majority of the interaction between 

Piwi and Armi is lost upon RNase A treatment (Fig 2B). Based on this result, we believe 

the majority of stable interactions between Armi and Piwi are mediated by RNA.  

Previously identified as Piwi interactors, CFP-tagged Vasa (p-value= 0.996; 

std=0.009; n=5), Shutdown (Shu) (p-value=0.994; std=0.013; n=5) and Papi (p-value=1.00; 

std=0.00; n=5) were recruited by Piwi to lacO foci, indicating a direct biochemical 

interaction (Fig 2C). Squash (Squ) (p-value=0.968; std=0.066;n=5), a RNase HII-related 

protein involved in the effector step of the piRNA pathway (Pane et al. 2007; Haase et al. 

2010), and Qin (p-value=0.986; std=0.031; n=5), which is required for heterotypic ping-
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pong amplification (Zhang et al. 2011; Zhang et al. 2014a) were also found to directly 

interact with Piwi (Fig 2C). 

We identified the RNA helicase Spindle-E (Spn-E) (p-value=0.996; std=0.005; 

n=5), but not the Vasa paralog Belle (Bel) (p-value=0.028; std=0.063; n=5), to be a novel 

interactor with Piwi (Fig 2C, S1). We used co-immunoprecipitation of tagged Piwi and 

Spn-E proteins in S2 cells to confirm this interaction (Fig 2D). Immunoprecipitation of 

FLAG-tagged Piwi readily pulled-down HA-tagged Spn-E in an RNA-independent 

manner.  

We tested for recruitment of components of the ping-pong piRNA processing (4P) 

complex to lacO foci and identified Aubergine (Aub) (p-value=0.990; std=0.010; n=5), but 

not Argonaute3 (Ago3) (p-value=0.010; std=0.017; n=5) or Krimper (p-value=0.00; 

std=0.00; n=5), as a novel interactor with Piwi (Fig 2C, S1). We also tested whether CFP-

tagged Piwi could be recruited to the lacI-mKate2-Piwi foci and found that Piwi (p-value= 

0.162; std=0.362) could not form dimers with itself in our assay (Fig S1). We used co-

immunoprecipitation of tagged Piwi, Aub, and Ago3 proteins in S2 cells to confirm their 

interaction (Fig 2E). Immunoprecipitation of FLAG-tagged Piwi readily pulled-down HA-

tagged Aub but not HA-tagged Ago3; as a control, immunoprecipitated FLAG-tagged 

Ago3 pulled-down HA-tagged Aub in a predominantly RNA-dependent manner. 

Importantly, the interaction between Piwi and Aub is not mediated by RNA as it was also 

observed upon treatment of the lysate with RNase A. Overall, the heterologous cell culture 

assay, with novel interactions validated by co-IP, suggests that Piwi directly interacts with 

nuage components – Vasa, Papi, Shu, Squash, Qin, Spn-E, and Aub. 

Piwi directly interacts with the exon junction complex (EJC) component Mago 
The mechanism by which RNA transcripts are translocated from the nucleus to 

the piRNA processing machinery remains elusive. Within the list of potential direct Piwi 

interacting partners were several core components of the exon junction complex (EJC) 

and EJC accessory proteins. Nxt1 (p-value=0.024; std=0.054; n=5), RnpS1 (p-

value=0.268; std=0.343; n=5), and Acinus (Acn) (p-value=0.122; std=0.267; n=5) have 

previously been implicated in the piRNA pathway, but did not colocalize with Piwi (Fig 

3A). Mago (p-value=1.00; std=0.00; n=5) was identified as a novel, direct Piwi 

interacting factor (Fig 3A). We confirmed the interaction of Mago and Piwi by co-IP 
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followed by western blot using overexpression of FLAG-tagged Piwi and HA-tagged 

Mago in S2 cells. We found that the interaction is not affected upon RNAse A treatment, 

indicating it is not mediated by RNA (Fig 3B). Interestingly, we were also able to co-IP 

FLAG-tagged Piwi and HA-tagged Nxt1 in the presence and absence of RNase A 

treatment (Fig 3C). These results suggest that Piwi interacts with multiple components of 

the EJC, but, of the factors tested, only directly interacts with Mago.  

We tested other factors that affect the translation, surveillance, and localization of 

mRNAs. Of these factors, we found that Fmr1 (p-value=0.00; std=0.00; n=5), Karyβ3 (p-

value=0.154; std=0.238; n=5) and Zn72D (p-value=0.00; std=0.00; n=5) were not 

recruited to lacI-mKate2-Piwi foci (Fig S2). Furthermore, Piwi failed to recruit the 

components of the transcription export (TREX) complex, UAP56 (p-value=0.002; 

std=0.004; n=5) and THOC5 (p-value=0.030; std=0.051; n=5) (Fig S2). 

Piwi interacts with the transcriptional silencing machinery in the nucleus through Arx and 
HP1a 

Since in steady-state Piwi is nuclear in localization, it is not surprising that many 

factors previously identified as Piwi interactors are also nuclear in localization. Several of 

these nuclear factors are known to be involved in chromatin remodeling and establishment 

of repressive chromatin modifications, thus potentially functioning in Piwi-mediated 

transcriptional silencing. The histone methyltransferases Su(Var)3-9 (p-value=0.00; 

std=0.00; n=5)  and Eggless (Egg) (p-value=0.060; std=0.129; n=5),  – the proposed 

“writer” of Piwi-guided H3K9me3 at sites of transposons (Sienski et al. 2015) – were not 

recruited  to lacO foci by Piwi (Fig S3). Su(Var)2-10 (p-value= 0.006; std=0.005; n=5) was 

also not recruited by lacI-mKate2-Piwi (Fig S3). Maelstrom  (Mael) (p-value=0.056; 

std=0.114; n=5) and Panoramix (Panx) (p-value=0.222; std=0.361; n=5) were also not 

recruited to lacO foci (Fig S3). We found that Piwi directly interacts with Asterix (Arx) (p-

value=1.00; std=0.00; n=5), a nuclear protein of yet unknown function in piRNA-mediated 

transcriptional repression (Donertas et al. 2013; Ohtani et al. 2013) (Fig 4). Piwi further 

failed to recruit the linker histone H1 (p-value=0.092; std=0.200; n=5), His2AV (p-

value=0.00; std=0.00; n=5), YL-1 (p-value=0.008; std=0.018; n=5), or chromatin assembly 

factor 1 p105 subunit (Caf1-105) (p-value=0.136; std=0.266; n=5) to lacO foci (Fig S3). 

Piwi did however recruit HP1a to lacO foci (p-value=1.00; std=0.00; n=5) (Fig 4). This 
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data suggests there are two identified direct biochemical interactions, Arx and HP1a, which 

could provide potential RNA-independent “bridges” between Piwi and the effector 

silencing complexes involved in H3K9me3 deposition at target loci.  

Another major mechanism of histone modification is mediated by Polycomb group 

(PcG) protein complexes. We found that Piwi does not directly interact with E(z) (p-

value=0.338; std=0.368; n=5) or the core Polycomb Repressive Complex 2 (PRC2) subunit 

Esc (p-value=0.00; std=0.00; n=5) (Fig S3). Corto (p-value=0.486; std=0.459; n=5), which 

physically interacts with PcG factors (Kodjabachian et al. 1998; Lopez et al. 2001; 

Salvaing et al. 2003) and the PcG gene Cramped (Crm) (p-value=0.608; std= 0.380; n=5) 

were also not recruited to lacO foci (Fig S3). We were unable to test the interaction 

between Piwi and Su(z)12, another component of PRC2, due to low expression levels in 

Drosophila ovaries impeding our ability  to generate an entry vector. Interestingly, Cp190 – 

a component of many Drosophila chromatin insulator complexes – directly interacts with 

Piwi in our assay (p-value=0.964; std=0.050; n=5) (Fig 4). The complex interplay between 

chromatin insulator complexes and PcG proteins has yet to be fully elucidated, but our data 

suggests Piwi may mediate interactions between the PcG proteins and chromatin insulators 

by directly interacting with Cp190.  

Exclusive recruitment of the Rhino-Deadlock-Cutoff (RDC) complex to piRNA clusters may 
be mediated by Piwi’s direct interactions with Cutoff and a novel interactor – Arp6 

We tested for direct interactions between Piwi and the factors that comprise the 

Rhino-Deadlock-Cutoff (RDC) complex, which exclusively binds H3K9me3 marks along 

piRNA clusters and is required for pre-piRNA transcription (Klattenhoff et al. 2009; Pane 

et al. 2011; Le Thomas et al. 2014; Mohn et al. 2014; Zhang et al. 2014b; Chen et al. 2016). 

Rhino was not recruited to lacO foci (p-value=0.018; std=0.040; n=5) (Fig 5A). However, 

another RDC component, Cutoff (Cuff) (p-value=1.00; std=0.00; n=5), was recruited by 

Piwi (Fig 5A). Not much is known about the actin-related protein 6 (Arp6), which 

colocalizes with HP1 on centric heterochromatin (Kato et al. 2001), however our assay 

identified Arp6 as a novel direct interactor with Piwi (p-value=1.00; std=0.00; n=5) (Fig 

5A). We were able to confirm this interaction by co-IP of tagged Arp6 and Piwi expressed 

in S2 cells in the presence and absence of RNAse A treatment (Fig 5B). Furthermore, we 

were able to show in S2 cells Arp6 RNA-independently co-IPs with Rhino, but does not 
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co-IP with HP1a (Fig 5C). This data suggests that the exclusive recruitment of the RDC 

complex to piRNA clusters is mediated by direct interactions between Piwi and the factors 

Arp6 and Cuff. 

Previously, our lab showed Cuff plays an important role in the protection of pre-

piRNA transcripts from degradation by the exonuclease Rat1 (Chen et al. 2016). We found 

that Piwi directly interacts with Rat1 (p-value=0.998; std=0.004; n=5) but not with its 

binding partner, Rai1 (p-value=0.438; std=0.267; n=5) (Fig 5D). This data suggests that 

Piwi may play a role in determining whether piRNA cluster derived transcripts will be 

protected for transport to nuage or will be degraded by exonucleases. 

Piwi does not directly interact with factors involved in its regulation and phosphorylation 
From our list of candidates, one factor had been shown previously to 

antagonistically regulate Piwi at the genetic and molecular levels – Tudor-SN (TSN) (Ku et 

al. 2016). We found that TSN (p-value=0.044; std=0.062; n=5) wasn’t recruited to lacI-

mKate2-Piwi foci in our assay (Fig 6). Previously, it was shown that Piwi interacts with 

HOP and Hsp83 in the process of canalization (Gangaraju et al. 2011). While Hsp83 was 

shown to be involved in phosphorylation of Piwi (Gangaraju et al. 2011), it was not 

recruited to lacO foci in our assay (p-value=0.00; std=0.00; n=5) (Fig 6). Furthermore, 

HOP, which was shown to post-translationally regulate Piwi with Hsp83(Gangaraju et al. 

2011) did not colocalize with lacI-mKate2-Piwi (p-value=0.006; std=0.013; n=5) (Fig 6).  

It seems surprising that neither the chaperone Hsp83, nor its cofactor HOP directly 

interacted with Piwi in our assay; however, this data suggests that Piwi may need to 

undergo a conformational change – by binding a piRNA or some other mechanism – before 

it can be phosphorylated.  

Discussion 

Due to its complexity, a biochemical dissection of the piRNA pathway’s interactome has 

been limited. In this study, we focused on elucidating the interactome of Piwi – the nuclear 

piwi protein responsible for identifying targets and recruiting the silencing machinery 

necessary to establish a repressive chromatin state at target loci (Saito et al. 2009; Olivieri 

et al. 2010; Handler et al. 2011; Ishizu et al. 2011; Klenov et al. 2011; Shpiz et al. 2011; 

Sienski et al. 2012; Gu and Elgin 2013; Le Thomas et al. 2013; Rozhkov et al. 2013). We 
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employed an optimized two-hybrid (2H) system to discriminate between direct and indirect 

interactions with Piwi. 

Experimental approach to discriminate between direct and indirect interactions with Piwi 
Previously, many factors were identified genetically to be involved in the piRNA 

pathway. Some of these factors were determined to engage in biochemical interactions with 

Piwi via co-IP followed by western blot. However, such experiments do not distinguish 

between direct biochemical interactions and indirect interactions. In addition, traditional 

techniques such as affinity purification followed by mass spectrometry (AP/MS) can be 

plagued with unspecific hits and miss detection of transient or weak interactions. We 

developed a heterologous cell culture system capable of detecting transient or weak direct 

protein-protein interactions. The read-out of our assay is observed using colocalization of 

fluorescently labeled candidate proteins and lacI-mKate2-Piwi dots (Fig 1A-B). At the time 

of our study, there were 24 factors previously identified to interact with Piwi (Fig 1C). We 

generated a list of candidates from these factors, as well as factors previously identified as 

potential piRNA pathway components in genetic screens (Czech et al. 2013; Handler et al. 

2013; Muerdter et al. 2013). Interestingly, Piwi did not recruit the majority of our candidate 

factors to the lacO foci, suggesting that at each step of Piwi function only a small number 

of proteins directly interact with Piwi, while other factors’ interactions with Piwi are 

mediated by a complex or RNA (Fig 7, Table S1). It should be noted, that while our 

heterologous cell culture assay does not produce false positive results due to the low likely-

hood of mammalian somatic proteins mediating interactions with Piwi, we acknowledge 

that our assay is susceptible to false negatives. False negative results could be due to (1) the 

necessity of a modification made on the prey protein in D. melanogaster to interact with 

Piwi that is not made in the mammalian cells, (2) a conformational change that is made 

when Piwi is loaded with piRNAs or (3) the prey protein is bound to a structure that cannot 

enter the nucleus. 

Piwi does not colocalize with core cytoplasmic components of the primary processing 
machinery 

There are three classifications of factors involved in piRNA biogenesis: (I) factors 

required for primary piRNA biogenesis, (II) factors specifically involved in the ping-pong 

amplification cycle, and (III) factors that are necessary for all piRNA biogenesis (Olivieri 
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et al. 2012). Despite previously being identified as Piwi interactors, we saw that Piwi does 

not colocalize with the core cytoplasmic components of the primary processing machinery 

Zucchini (Zuc) and Armitage (Armi) (Fig 2A, S1). It has been previously accepted that 

Armi interacts with Piwi in an RNA-independent manner (Olivieri et al. 2010; Ilyin et al. 

2017); however, we find that the majority of the interaction between Piwi and Armi, 

detected by co-IP of tagged proteins from S2 cells followed by western blot, is lost upon 

RNase A treatment, indicating their interaction is mediated by RNA (Fig 2B). We 

acknowledge that Zuc is anchored to the mitochondrial membrane (Malone et al. 2009; 

Haase et al. 2010) and thus will not enter into the nucleus; however our ΔMLS-Zuc was 

also unable to be recruited to the lacO foci (Fig 2A). As Gasz is predicted to recruit piRNA 

precursors, as well as piRNA biogenesis factors, to the mitochondrial surface for cleavage 

by Zuc (Cook et al. 2004; Ma et al. 2009; Haase et al. 2010; Olivieri et al. 2010; Saito et al. 

2010; Handler et al. 2013; Vrettos et al. 2017), it is possible that the inability of Gasz to be 

recruited to lacO foci (Fig S1) could be a false negative. To completely address whether 

factors that localize in subcellular regions other than the nucleus directly interact with Piwi, 

our assay could be utilized with mutants that allow these factors to enter the nucleus to 

reassess their recruitment to lacO foci by lacI-mKate2-Piwi. Overall, the lack of a direct 

interaction between Piwi and core components of the primary piRNA processing 

machinery suggests that these interactions are typically RNA-mediated. 

Piwi directly interacts with core components of nuage structure  
While the majority of Piwi exhibits nuclear localization in steady-state, it has been 

proposed that Piwi is loaded with piRNA within nuage, or Yb granules in follicular cells 

(Saito et al. 2009; Haase et al. 2010; Olivieri et al. 2010; Handler et al. 2011; Ishizu et al. 

2011; Klenov et al. 2011; Qi et al. 2011). We found the core architectural component of 

nuage and piRNA biogenesis group II factor, Vasa (Lim and Kai 2007; Li et al. 2009; 

Malone et al. 2009; Patil and Kai 2010; Kibanov et al. 2011), directly interacts with Piwi 

(Fig 2C).  Our assay also revealed direct interactions occur between Piwi and Qin (Fig 2C), 

which is required for nuage assembly (Anand and Kai 2012). Furthermore, the RNA 

helicase and piRNA biogenesis group II factor, Spindle-E (Spn-E), was identified as a 

novel interactor of Piwi (Fig 2C-D). Recently, it has been shown that in the absence of 

Spn-E, the nuage components Aub, Ago3, and Vasa are mislocalized (Lo et al. 2016). This 
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implies that Spn-E is essential for proper nuage structure. In addition, it has been shown 

that Spn-E and Aub or Ago3 mutually depend on each other to enter nuage, whereas Spn-E 

and Qin mutually depend on each other for their exit of nuage, resulting in cycling of Spn-

E in and out of nuage (Andress et al. 2016). The direct Piwi/Qin and Piwi/Spn-E 

interactions could imply that Piwi’s localization to nuage, like Aub and Ago3’s 

localization, is dependent on the proper cycling of Spn-E.  

Piwi directly interacts with Papi, Shutdown and Aubergine potentially to initiate loading of 
piRNAs into PIWI proteins 

Interestingly, we identified the piwi clade argonaute Aub, which is essential for 

ping-pong (Brennecke et al. 2007; Gunawardane et al. 2007), as a novel interactor of Piwi 

(Fig 2C, 2E). The other essential components of the ping-pong piRNA processing (4P) 

complex, Krimper and Ago3, were not recruited to lacO foci by Piwi (Fig 2E, S1). Recent 

studies have shown that piRNA-dependent processing of precursors via ping-pong also 

leads to phased processing of the transcript downstream of the initial cleavage site (Han et 

al. 2015; Mohn et al. 2015; Wang et al. 2015), thus Piwi’s direct interaction with Aub 

might be responsible for recruiting unloaded Piwi to the ping-pong machinery within nuage 

to initiate phased processing and loading of piRNAs into Piwi.  

Shutdown (Shu) is a group III factor as is it is required for all piRNA biogenesis 

(Olivieri et al. 2012). We found that Shu directly interacts with Piwi (Fig 2C), supporting 

the hypothesis that unloaded Piwi recruits Shu to nuage, downstream of primary and 

secondary piRNA biogenesis, to participate in loading of piRNAs into Piwi proteins 

(Olivieri et al. 2012). 

Once a piRNA is loaded into Piwi, it will be trimmed and modified to form a 

mature piRNA. Despite group III factor Vreteno (Vret) affecting Piwi protein stability and 

primary piRNA biogenesis in the soma and germline (Handler et al. 2011; Zamparini et al. 

2011), it was not recruited to lacO foci in our assay (Fig S1). We also found the 

methyltransferase Hen1, which is responsible for methylating the terminal 2’ hydroxyl 

group of piRNAs (Horwich et al. 2007; Saito et al. 2007) as well as other factors 

downstream of piRNA biogenesis did not directly interact with Piwi in our assay (Fig S1). 

However, one factor involved in trimming some pre-piRNA transcripts, Papi (Hayashi et 

al. 2016), directly interacts with Piwi (Fig 2C). Piwi’s direct interaction with Papi might be 
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responsible for recruiting other factors necessary for the trimming, and modification, of 

Zuc-generated pre-piRNA loaded into Piwi. 

Taken together, this data suggests that unloaded Piwi may interact directly with 

Aub to initiate phasing of piRNA precursors and the subsequent loading of Piwi, aided by 

direct interactions with Shu. Then, loaded Piwi directly interacts with Papi to trim and 

recruit other group III factors needed to modify the loaded pre-piRNA.  

Mago, a component of the exon junction complex (EJC), provides the connection between 
Piwi and the EJC to facilitate the export of piRNA precursors to nuage 

The mechanism by which RNA transcripts are translocated from the nucleus to 

nuage, the site of piRNA precursor selection (Pandey et al. 2017; Rogers et al. 2017), for 

processing into piRNAs is still not understood. Previously, it had been proposed that the 

transcript export (TREX) complex component UAP56, along with Rhino, may bind piRNA 

precursor transcripts and facilitate their release into nuage by the nuclear pore complex 

(Zhang et al. 2012; Zhang et al. 2014b). When we tested the THO/TREX complex 

components UAP56 and THOC5, we did not find any direct interactions with Piwi (Fig 

S2). Our candidate list contained several components of the exon junction complex (EJC) 

and EJC accessory proteins. Despite previously being shown to be important for proper 

localization of flam piRNA precursors outside of the nucleus (Dennis et al. 2016), Nxt1 did 

not directly interact with Piwi in our assay (Fig 3A). However, Nxt1 can be pulled down 

with Piwi in an RNA-independent manner (Fig 3C), suggesting that Piwi interacts with 

Nxt1 via interactions with other EJC components. While RnpS1 and Acinus (Acn) have 

been implicated in mRNA quality control, pre-mRNA splicing, and transcriptional 

regulation (Schwerk et al. 2003), they only affect flam transcript intranuclear localization 

(Dennis et al. 2016) and did not directly interact with Piwi (Fig 3A). We did, however, 

identify the EJC component Mago as a novel direct Piwi interactor (Fig 3A-B). Mago was 

also previously shown to affect flam transcript export from the nucleus, but not flam 

piRNA production (Dennis et al. 2016). Taken together, this data suggests that Mago 

directly interacts with Piwi, allowing for the EJC to associate with bound target transcripts 

to be channeled into nuage for piRNA processing.  
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The silencing machinery is directed to target loci by Piwi via biochemical interactions with 
Arx and HP1a 

After Piwi is loaded with a piRNA, the Piwi/piRNA-complex is translocated to the 

nucleus and searches for a complimentary target. Once a target has been identified, Piwi 

must recruit the silencing machinery necessary to establish a repressive H3K9me3 mark at 

the site of the target (Saito et al. 2009; Olivieri et al. 2010; Handler et al. 2011; Ishizu et al. 

2011; Klenov et al. 2011; Shpiz et al. 2011; Sienski et al. 2012; Gu and Elgin 2013; Le 

Thomas et al. 2013; Rozhkov et al. 2013). Many factors have been implicated in Piwi-

mediated transcriptional silencing, but exactly how Piwi and these factors coordinate the 

establishment of a repressive mark at the sites of targets is unclear. Several nuclear factors 

we tested are involved in chromatin remodeling and establishment of repressive chromatin 

modifications, thus potentially functioning in Piwi-mediated transcriptional silencing.  

The histone methyltransferases Su(Var)3-9 and Eggless (Egg) – the proposed 

“writers” of Piwi-guided H3K9me3 at sites of transposons (Sienski et al. 2015) – were not 

recruited to lacO foci by Piwi (Fig S3). Based on previous results (chapter II), we believe 

Su(Var)2-10 may be part of the missing link between the general silencing machinery and 

Piwi/piRNA complex in establishing H3K9me3 at target loci. In our 2H assay, Su(Var)2-

10 failed to be recruited by lacI-mKate2-Piwi (Fig S3), indicating it is not a direct link. It 

has been proposed that Panoramix (Panx), a protein of unknown function, acts as a scaffold 

between the Piwi/piRNA effector complex and the general silencing machinery at 

transposon loci (Sienski et al. 2015; Yu et al. 2015).  However, Panx did not directly 

interact with Piwi in our assay (Fig S3). Interestingly, we identified another protein of yet 

unknown function, Asterix (Arx), which interacts with Panx (Donertas et al. 2013; Ohtani 

et al. 2013), to be directly interacting with Piwi (Fig 4). Taken together with data from 

Chapter II, this suggests that in the piRNA-induced transcriptional silencing (piRITS) 

complex the Piwi/piRNA complex connects with the effector silencing complex via direct 

interactions with Arx.   

Notably, the transcriptional repressor HP1a that was previously identified to 

interact with Piwi using several techniques – nuclear magnetic resonance (NMR), co-IP 

followed by western blot, and Y2H (Brower-Toland et al. 2007; Mendez et al. 2011; 

Mendez et al. 2013) – did interact with Piwi in our assay (Fig 4). The factors His2AV, 

required for H3K9 methylation and HP1a binding of chromatin (Verni and Cenci 2015), 
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and YL-1, proposed to interact with His2AV (Liang et al. 2016) did not directly interact 

with Piwi (Fig S3). Furthermore, chromatin assembly factor 1, p105 subunit (Caf1-105) – 

the medium subunit of the CAF-1 that interacts with HP1a (Roelens et al. 2017), was also 

not recruited to lacO foci by Piwi (Fig S3). Linker histone H1, whose localization at the site 

of transposon loci chromatin is potentially regulated by Piwi/piRNA effector complexes 

and plays an interdependent role in Piwi-mediated transcriptional silencing with HP1a 

(Iwasaki et al. 2016), also failed to be recruited to lacO foci by Piwi (Fig S3). While 

His2AV, YL-1, and Caf1-105 may be important for HP1a function, it seems Piwi directly 

interacts with HP1a and not with its co-factors. 

Another factor essential to Piwi-mediated transcriptional repression of transposons 

(Sienski et al. 2012; Iwasaki et al. 2016), but poorly understood, Maelstrom (Mael) did not 

directly interact with Piwi (Fig S3). The lack of Mael localizing to the lacO foci supports 

the hypothesis that Mael functions downstream of Piwi-guided deposition of H3K9me3 to 

increase chromatin compaction as the penultimate Piwi-piRNA silencing mechanism 

(Sienski et al. 2012; Iwasaki et al. 2016).  

Changes in histone modifications can also be mediated by Polcomb group (PcG) 

protein complexes. We probed for direct interactions between Piwi and several PcG 

factors. We did not find direct interactions between Piwi and E(z) (Fig S3), the catalytic 

component of the Polycomb Repressive Complex 2 (PCR2) methyltransferase that 

methylates H3K27. Nor did Piwi directly interact with the core PRC2 component Esc or 

PcG factor Cramped (Crm) (Fig S3). Piwi’s interactions with PcG complexes were also not 

mediated by direct interactions with Corto, which physically interacts with PcG factors 

(Kodjabachian et al. 1998; Lopez et al. 2001; Salvaing et al. 2003) (Fig S3). However, we 

identified direct interactions between Piwi and Cp190 – a core component of many 

Drosophila chromatin insulator complexes that was previously shown to interact with Piwi 

in an RNA-independent manner (Moshkovich et al. 2011). Currently, there is a shroud of 

mystery around the complex interplay between chromatin insulators and PcG complexes. It 

has been proposed that Piwi plays a role in inhibiting H3K37 trimethylation by preventing 

PcG proteins from binding their genomic targets by sequestration of the PcG complexes in 

the nucleoplasm (Peng et al. 2016).  Peng et al. proposes that this sequestration is 

accomplished by Piwi binding to the Su(z)12 and Esc subunits of the PRC2 in a piRNA-



 104 

independent manner. Unfortunately, we were unable to test the direct interaction between 

Piwi and Su(z)12; however, our data indicates that Piwi’s role in regulating genomic target 

binding by PRC2 may be mediated by Piwi’s direct interaction with Cp190. 

Piwi interacts with the Rhino-Deadlock-Cutoff (RDC) complex component Cutoff and a 
novel interactor – Arp6 

Discreet genomic regions that give rise to piRNA precursors, termed piRNA 

clusters, require the RDC complex to bind H3K9me3 marks to allow for the clusters’ 

transcription (Klattenhoff et al. 2009; Pane et al. 2011; Le Thomas et al. 2014; Mohn et al. 

2014; Zhang et al. 2014b; Chen et al. 2016). A major question in the field is how the RDC 

complex exclusively binds the H3K9me3 deposited on piRNA clusters. We found that Piwi 

directly interacts with the RDC component Cutoff (Cuff) but not Rhino (Fig 5A). In 

addition, we identified Arp6 as a novel direct interactor of Piwi in our system (Fig 5A-B). 

We showed that Arp6 interacts with Piwi in an RNA-independent manner and can be 

pulled down with Rhino in an RNA-independent manner (Fig 5B-C). It was previously 

shown that Arp6 colocalized with HP1a (Kato et al. 2001); however, we were able to pull 

down Arp6 specifically with Rhino (HP1d) and not with HP1a (Fig 5C). This data suggests 

a direct biochemical “bridge” between Piwi and the RDC complex at piRNA clusters that is 

mediated by interactions with Cuff and Arp6. We propose that when Piwi/piRNA 

complexes recognize nascent pre-piRNA transcripts, Piwi biochemically interacts with 

Cuff and Arp6 resulting in the exclusive recruitment and binding of RDC complexes to the 

H3K9me3 deposited on piRNA clusters. This would expand the RDC complex to the 

PARDC complex, where Arp6 and Rhino interact and Piwi guides the ARDC complex to 

target binding sites via its interactions with Cuff and Arp6. 

Cuff has been shown to be essential in the protection of piRNA precursor 

transcripts from degradation before their transportation to nuage (Chen et al. 2016). Chen et 

al. showed that Cuff and the exonuclease Rat1, and its binding partner Rai1, play 

antagonistic roles in the processing of piRNA precursor transcripts. We found that Piwi 

directly interacts with Rat1, but not Rai1 (Fig 5D). We previously showed that Piwi can 

sequester a transcript in nuage, resulting in the processing of the transcript by the piRNA 

processing machinery (Rogers et al. 2017). It is tempting to suggest that Piwi’s interaction 

with Rat1 implies that after directing the RDC complex to piRNA clusters, Piwi is 
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“handed” nascent precursor transcripts and ultimately determines the transcript’s fate. 

Piwi’s interactions with Rat1 and the EJC means it could channel the transcript for 

degradation by Rat1 or protect the transcript and channel it ultimately to be exported to 

nuage for processing into piRNAs. 

 

Our optimized 2H system in mammalian cell culture allows for detection of weak 

or transient direct protein-protein interactions in vivo. This approach utilizes fluorescent 

detection of recruitment of the prey protein to the lacO tethered prey protein.  Our approach 

can be employed in a modular fashion, switching the cell type containing the lacO arrays 

(as necessary) and the lacI-tagged bait protein, to identify direct protein-protein interactions 

for any factor. We utilized our technique in two ways: (1) determining whether previously 

identified interactions with Piwi are direct and (2) screening candidates for potential novel 

direct interactions with Piwi. Our approach has allowed for elaboration of the Piwi 

interactome by discerning direct interactions (Fig 7), proving it to be a useful tool for 

extending our understanding of the piRNA pathway. Furthermore, we believe this approach 

will prove useful for a wide audience screening for and establishing verified direct protein-

protein interactions for factors in a variety of complex pathways. 

 

Methods and Materials 

Piwi-tethering assay in U2OS cells: 

The lacO U2OS cells were a generous gift from the Rippe lab (Jegou et al. 2009), 

and were grown in complete DMEM media (DMEM high glucose GlutaMAX supplement 

pyruvate (ThermoFisher, 10569010), 10% heat inactivated FBS (Gemini Bio-Products, 

100-106), 1% Penicillin-Streptomycin (ThermoFisher, 15140122)). The lacI-mKate2-Piwi 

vector was created using pcDNA6.2/N-EmGFP-DEST (Invitrogen, V32620) and lacI and 

mKate2 overlap PCR products. All primers are listed in Table S2. lacO U2OS cells 

expressing lacI-mKate2-Piwi were selected using 5µg/mL blasticidin (Invitrogen, A11139-

03). A stable cell line was established by colony picking and cells positive for mKate2 

expression were sorted by the Caltech Sorting Facility, using their recommended protocol 

based on mKate2 expression. The CFP-destination vector was constructed by ligation of 

the CFP sequence from the pPCW vector (DGRC#1085) into the XbaI and NotI restriction 
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sites of the backbone of pcDNA6.2/N-EmGFP-DEST (Invitrogen, V32620) using T4 

Ligase (NEB, M0202) according to the manual. Entry vectors containing Asterix, RnpS1, 

Mago, Arp6, Nxt1, His2AV, Panoramix, Caf1-105, H1, Acn, and YL-1 were generated by 

PCR amplification of the respective cDNA and Topo cloning into the pENTR-D-TOPO 

vector according to the manufacturer’s suggestion (Invitrogen K240020). Expression 

vectors for CFP-tagged candidates were generated from the CFP-destination vector and 

entry vectors using LR clonase (Invitrogen, 11791100) according to the manual. LacI-

mKate2-Piwi LacO U2OS cells were transfected with 2.5µg of the CFP or CFP-tagged 

constructs using TransIT-LT1 transfection reagent (Mirus, MIR 2305) according to the 

manual. 48 hours after transfection, cells were fixed with 4% paraformaldehyde in PBS at 

room temperature (RT) for 20 minutes then washed 3x in PBS. Cells were incubated in 1% 

Triton X-100 for 10 minutes at RT then stained with 1:1000 diluted 5mg/ml DAPI at RT 

for 5 minutes. Then the cells were washed 3x in PBS and mounted with a coverslip using 

Prolong Gold antifade reagent before imaging on a confocal microscope. Quantification of 

colocalization was done with in-house script to determine the Costes p-value (Costes et al. 

2004). A region of interest (ROI) for each cell was defined by where DAPI signal 

overlapped with CFP and/or mKate2 signals. The Costes p-value is based off 10,000 

iterations of scrambling the ROI for the channels, where a Costes p-value ≥ 0.95 indicates 

positive colocalization (Costes et al. 2004). For each factor, an N of 5 images was used and 

the average p-value and standard deviation was calculated (Table S1).  

 

Co-immunoprecipitation with Piwi from S2 cells: 

Schneider S2 cells were cultured in complete Schneider’s Drosophilia medium 

(Schneider’s Drosophilia medium (ThermoFisher, 21720024), 10% heat inactivated FBS 

(Gemini Bio-Products, 100-106), 1% Penicillin-Streptomycin (ThermoFisher, 15140122)). 

Plasmids were generated using LR clonase (Invitrogen, 11791100) according to the manual 

using entry vectors created in the lab (see above) and Drosophila Gateway Vector 

Collection (DGVC) destination vectors – pAGW (DGRC#1071), pAFW (DGRC#1111), 

pAHW (DGRC#1095), pAWH (DGRC#1096)  – expressed by the Actin5c promoter. Cells 

were transfected using TransIT-LT1 transfection reagent (Mirus, MIR 2305) according to 

the manual with 3µg of total plasmid. For co-immunoprecipitation of proteins expressed in 
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S2 cells, a 3.5mm culture plate of transfected S2 cells was mechanically lysed and 

incubated for 20min on ice in 150µL S2 lysis buffer (20mM Tris pH7.4, 150mM KCL, 

0.1% Tween-20, 0.1% NP-40 Igepal, EDTA-free Complete Protease Inhibitor Cocktail 

(Roche, 11836170001), 100µg/mL RNAse A). Supernatant was cleared by centrifugation 

at 4,000g for 20 minutes at 4°C. 10% Input sample was collected from the supernatant at 

concentrations of 1-3µg/µL. Anti-FLAG M2 beads (Sigma Aldrich, M8823) were blocked 

in 5mg/ml BSA for 10 minutes at 4°C, followed by washing in S2 lysis buffer. Blocked 

beads were added to the supernatant and rotated at 4°C overnight. Beads were washed three 

times in PBS + 0.05% Tween-20 and eluted by boiling in reducing SDS loading buffer. 

Antibodies used for western blots were mouse monoclonal anti-FLAG M2 (Sigma Aldrich, 

F3165) and mouse monoclonal anti-HA (Sigma Aldrich, H3663) at 1:10000 in 5% milk in 

PBST. Homemade Anti-GFP rabbit polyclonal antibody was used at 1:2000 in 5% milk in 

PBST. 
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 Figures and Figure Legends 

 
Figure 1. A heterologous cell culture assay to distinguish between direct and indirect 
protein-protein interactions with Drosophila melanogaster Piwi. 

A) Schema of a heterologous cell culture assay to identify weak or transient interactions 

with Piwi. Human U2OS cells have three arrays composed of lacO repeats inserted in their 

genome. The bait protein, a fusion of the DNA binding domain of lacI with a fluorescent 

protein (mKate2) and Piwi, is tethered to the lacO arrays, resulting in distinct nuclear dots. 

The cells are transfected with CFP-tagged prey proteins. Colocalization of the CFP and 

mKate2 signals indicates a direct interaction between the bait and prey proteins. B) CFP 

alone does not colocalize with lacI-mKate2-Piwi. Representative confocal images of lacI-



 115 

mKate2-Piwi U2OS cells transfected with CFP (p-value=0.234; std=0.193; n=5). Scale bar 

represents 10µm. C) A map of factors previously identified to interact with D. 

melanogaster Piwi in the piRNA pathway. It is not known which of these interactions with 

Piwi are direct or indirect (mediated by RNA or other proteins). The techniques by which 

these interactions have been determined are marked according to the legend. 
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Figure 2. Piwi directly interacts with nuage components Vasa, Shutdown, Papi, Squash, 
Qin, Spindle-E, and Aubergine. 

A) Piwi does not directly interact with core components of the primary piRNA processing 

machinery. Armitage (Armi) is not recruited by lacI-mKate2-Piwi (p-value=0.296; 

std=0.362; n=5). In steady state, Zucchini (Zuc) is localized to the mitochondrial 

membrane. Zuc with a mutated predicted mitochondrial localization signal (ΔMLS-Zuc) is 

not recruited to lacO foci by Piwi (p-value=0.098; std=0.197; n=5). Representative images 

are shown. Scale bar represents 10µm. B) Piwi and Armi interactions are RNA-dependent. 
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Co-immunoprecipitation (Co-IP) of HA-tagged Armi and FLAG-tagged Piwi in S2 cells 

indicates that the Piwi/Armi interaction is depleted upon RNAse A treatment.  C) Piwi does 

interact with some nuage localized factors. Vasa (p-value= 0.996; std=0.009; n=5), 

Shutdown (Shu) (p-value=0.994; std=0.013; n=5), Papi (p-value=1.00; std=0.00; n=5), 

Squash (Squ) (p-value=0.968; std=0.066; n=5), Qin (p-value=0.986; std=0.031; n=5), 

Spindle-E (Spn-E) (p-value=0.996; std=0.005; n=5), and Aubergine (Aub) (p-value=0.990; 

std=0.01; n=5) were recruited by lacI-mKate2-Piwi. Representative images are shown. 

White arrows indicate sites of recruitment of CFP-tagged candidates to lacI-mKate2-Piwi 

foci. Scale bars represent 10µm. D) Piwi and Spn-E interactions are RNA-independent. Co-

IP of HA-tagged Spn-E and FLAG-tagged Piwi in S2 cells indicates that the Piwi/Spn-E 

interaction is unaffected by RNAse A treatment.  E) Co-IP of Aub with Piwi from S2 cells 

is RNA-independent. The third D.melanogaster piwi clade Argonaute protein, Argonuate3 

(Ago3), does not co-IP with Piwi, but does co-IP with Aub in an RNA-dependent manner. 
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Figure 3. Piwi directly interacts with the exon junction complex (EJC) component Mago. 

A) Exportin Nxt1 (p-value=0.024 ; std=0.054 ; n=5) and EJC components RnpS1 (p-

value=0.268 ; std=0.343 ; n=5) and Acinus (Acn) (p-value=0.122 ; std=0.267 ; n=5) were 

not recruited to lacI-mKate2-Piwi foci. Piwi interacts with the EJC component Mago (p-

value=1.00; std=0.00 ; n=5). Representative confocal images are shown. White arrows 

indicate colocalization. Scale bars represent 10µm. B) Piwi and Mago interactions are 

RNA-independent. Co-IP of HA-tagged Mago and FLAG-tagged Piwi in S2 cells indicates 

that the Piwi/Mago interaction is unaffected by RNAse A treatment. C) Piwi’s interaction 
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with Nxt1 is likely mediated by a protein complex. Piwi and Nxt1 interactions are RNA-

independent. Co-IP of HA-tagged Nxt1 and FLAG-tagged Piwi in S2 cells indicates that 

the Piwi/Nxt1 interaction is unaffected by RNAse A treatment. 

 

 

 
Figure 4. Piwi directly interacts with Asterix, HP1a, and Cp190 in the nucleus. 

Piwi directly interacts with the protein of unknown function, Asterix (Arx) (p-value=1.00; 

std=0.00; n=5) and HP1a (p-value=1.00; std=0.00; n=5). CFP-tagged Cp190 (p-

value=0.964 ; std=0.048 ; n=5) was also recruited to lacO foci by lacI-mKate2-Piwi. 

Representative images are shown. White arrows indicate sites of colocalization. Scale bars 

represent 10µm.   
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Figure 5. Piwi directly interacts with the Rhino-Deadlock-Cutoff (RDC) complex 
component Cutoff and the novel interactor Arp6. 

A) Piwi directly interacts with the RDC component Cutoff (Cuff) (p-value=1.00; std=0.00; 

n=5), but not with Rhino (p-value=0.018; std=0.040; n=5). Arp6 (p-value=1.00; std=0.00; 

n=5)  was identified as a novel interactor of Piwi. Representative images are shown. White 

arrows indicate sites of colocalization. Scale bars represent 10µm. B) Piwi and Arp6 

interactions are RNA-independent. Co-IP of HA-tagged Arp6 and FLAG-tagged Piwi in S2 

cells indicates that the Piwi/Arp6 interaction is unaffected by RNAse A treatment. C) Arp6 

can be pulled down with Rhino, but not with HP1a. Co-IP of HA-tagged Arp6 and FLAG-

tagged Rhino in S2 cells indicates that the Arp6/Rhino interaction is unaffected by RNAse 

A treatment. D) Piwi directly interacts with the exonuclease Rat1 (p-value=0.998; 

std=0.004; n=5), but not with its binding partner Rai1 (p-value=0.438; std=0.267; n=5). 
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Representative images are shown. White arrows indicate sites of colocalization. Scale bars 

represent 10µm. 
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Figure 6. Interactions between Piwi and factors that modify Piwi are indirect.  

LacI-mKate2-Piwi did not recruit Tudor-SN (TSN) (p-value=0.044; std=0.062; n=5), 

Hsp83 (p-value=0.00; std=0.00; n=5), or HOP (p-value=0.006; std=0.013; n=5). 

Representative images are shown. Scale bars represent 10µm. 
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Figure 7. A map of the Piwi interactome with direct and indirect interactions indicated.  

An updated map of factors identified to interact with D. melanogaster Piwi in the piRNA 

pathway. Direct protein-protein interactions are indicated (bolded lines). Newly identified 

factors have been added. Factors Dicer-1 (Dcr-1) and Su(z)12 were previously identified as 

interacting with Piwi, but we were unable to test whether these interactions were direct or 

indirect (dark gray circles).  

 
 


