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ABSTRACT 

A method is described for the evaporation of ferromagnetic films 

onto a very thin water soluble polymer coating on glass substrates and 

their / subsequent removal onto a liquid glycerin film. Determination of 

the change in magnetic anisotropy on removal provides a measure of the 

substrate constraint contribution to the anisotropy energy. Data are 

given for both Ni-Fe and Ni-Co alloys in th~ entire range 0 to 100% Ni, 

deposited at 100°C. 

Significant changes in anisotropy upon ~emoval were observed for 

almost all Ni-Fe alloys and for Ni-Co alloys in the range 0 to 40% Co. 

However, essentially a zero percentage change was observed for pure Fe, 

83% Ni-Fe and the entire range 0 to 60% Ni in the Ni-Co alloys. These 

date are in disagreement with present theories of the constraint energy 

except for qualitative agreement in very limited composition ranges. 

It has been suggested that the discrepancy between experimental and 

theoretical predictions for the anisotropy energy in thin films may 

result from the use of bulk material magnetoelastic constants which are 

inappropriate for thin films. However~ this study of the magnetic 

properties of epitaxial films strongly suggests the equivalence of the 

magnetoelastic parameters in thin films and bulk materials. In this 

study a technique was developed for the preparation of step-free epi-

taxial films of Ni-Fe and Ni-Co alloys deposited at 400°C. The strain 
bHk 

sensitivity ~- has been measured by ferromagnetic resonance along the 
E 

[100] and [110] directions in the (001) plane for compositions ranging 

from 44 to 87% Ni in the Ni-Fe alloys and from 70 to 82% Ni in the Ni-Co 
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alloys. The data are in good agreement with the theoretical predictions 

J(Cll-Cl2)Al00 6C44Alll 
and along the [100] and [110] directions 

M M 
respectively, evaluated using bulk parameters. 

In addition, the strain sensitivity of polycrystalline films deposi-

ted at 100°C and 400°C for Ni-Fe alloys and 400°C for Ni-Co alloys has 

been measured. Contrary to previous investigations, a systematic temper-

ature dependence is found. Moreover, it is shown that the isotropic 

material model used previously by others to calculate the strain sensi-

tivity in polycrystalline films is incorrect. However, the apparent 

proper formulation does not predict the experimentally determined result. 

This discrepancy remains unexplained. 

New data for the crystalline anisotropy constant K1 in constrained 

epitaxial films of Ni-Fe and Ni-Co are presented. Significant devia-

tions from values in bulk material are observed. However, these devia-

tions are believed to result from the substrate constraint and not 

material differences inherent in thin films. 
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Chapter 1 

UNIAXIAL ANISOTROPY 

1.1 Introduction 

The term uniaxial anisotropy energy refers to an energy of the 

form K sin2e in which e is an angle between the magnetization M and a 
u 

fixed material axis determined by previous evaporation or annealing 

history. The anisotropy is sometimes characterized by the anisotropy 

field ~ = 2~ required to saturate the film in the hard direction. 

Films fabricated by vacuum evaporation, sputtering or electroplating 

exhibit this anisotropy. The anisotropy axis can be oriented to any 

direction in the plane of the film by application of a magnetic field 

during deposition, and is surprisingly independent of vacuum, rate of 

evaporation, film thickness, and substrate material. However, the 

anisotropy is strongly dependent on the ferromagnetic material, the 

deposition temperature and the measurement temperature. 

The anisotropy field ~may be measured by the torque magnetometer, 

ferromagnetic resonance, the method of Kobelev (1962), and the suscep-

tibility exhibited by the hard axis hysteresis loop. Only the first 

three methods have been used in this research. 

It is the purpose of this introduction to discuss the suggested 

mechanisms for the production of uniaxial anisotropy. Phenomena such as 

shape anisotropy, angle of incidence effects, and crystalline anisotropy 

are not included in this discussion, although each is an important 

aspect of magnetism in thin films. Only films made by evaporation onto 

smooth substrates at normal incidence are considered. 
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The anisotropy mechanisms discussed most often in the literature are 

magnetostrictive effects resulting from substrate constraint and direc-

tional ordering of atom pairs . In an attempt to explain the observed 

anisotropy in y-phase Ni-Fe films, Robinson (1961) suggested that the 

uniaxial anisotropy could be explained by the combination of the pair-

order and substraint constraint models. Using the strain calculation by 

West (1964) with bulk values for the magneto-elastic constants and the 

empirical relation for pair-ordering suggested by Ferguson (1958) with 

a single adjustable constant, good agreement with the experimental 

results of Wilts (1966) in y-phase Ni-Fe alloys for room temperature 

deposition and measurement was obtained. However, studies in the a-

a-phase Ni-Fe (Wilts (1965)) and y-phase Ni-Co alloys (Brownlow and Wilts 

(1968)) have0 cast some doubt on the validity of the two-component theory • . , 

1.2 Pair-Ordering Mechanism 

The pair-ordering mechanism of anisotropy in bulk Ni-Fe and Ni-Co 

alloys appears well established . Neel (1953, 1954) and Taniguchi (1955) 

have interpreted this mechanism as the creation of a short-range direc-

tional order . In the pair approximation, th~s mechanism arises from a 

hypothetical energy term arising from a magn~tic coupling between near-

est neighbors that depends on the nature of the neighbors and on the 

angle between the line joining them and the magnetization. During 

anneali ng or deposition at some temperature T' below the Curie tempera-

ture T , a slight preferential alignment of the various type of pairs 
c 

occurs by diffusion, and this state may be frozen into the lattice if 

the material is quenched to a lower temperature T where the diffusion 
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rate is negligible. The same interaction energy that gave rise to the 

preferential alignment of pairs at T' is responsible for the preferential 

alignment of the magnetization at the new temperature T. 

The difficult part of the pair-ordering theory is to calculate the 

dependence on the concentration of B atoms in an A lattice. For dilute 

2 
concentrations of B, the number of B-B pairs is proportional to CB , 

where CB is the concentration of the B component. The concept of a 

simple pair-interaction may not be valid at the higher concentration 

levels as more than pair-interactions become probable. Because of the dif­

ficulty of calculating this dependence, the simple form cA2cB
2 

for the 

concentration dependence is often assumed for calculation purposes. A 

useful form of the pair-ordering anisotropy energy K which provides a 
. p 

reasonable fit to bulk data is given by Ferguson (1958) as 

K ce (T -T') c 2c 2 
p c A B 

(1.1) 

for a two-component alloy. 

Although the behavior of bulk Ni-Fe and Ni-Co alloys can be approx-

imated by Eq. (1.1)~ the situation in thin films is more complicated. 

In particular the pure metals Ni, Fe, and Co have large values of aniso-

tropy where this model predicts none. In view of this fact, an addi-

tional mechanism involving magnetostrictive effects was introduced. 

1.3 Strain Mechanism 

The strain model has been discussed by Bozorth and Dillinger (1935), 

MacDonald (1957), Ignatchenko (1961), Robins~n (1961), and West (1964). 

It asstlllles that each crystallite forms during evaporation or annealing 
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at temperature T' under conditions of zero stress but magnetostrictively 

strained. For- an isotropic medium the strain is simply the magneto-

strictive extension A(T') parallel to M during evaporation and contrac­

tions -t A(T') perpendicular to M. The temperature is now changed to 

a new value of T and it is assumed that the strains induced at T' are 

frozen into the film by means of the substrate constraint. Since the 

crystallites are no longer free to deform under the rotation of M, a 

strain anisotropy energy K is developed given by 
s 

K 
s = 9 E A(T) A(T') 

4 (1 + v) 
(1.2) 

where E is Young's modulus, v is Poisson's ratio and A(T) is the magne-

tostriction constant at the new temperature T. Robinson first suggested 

the isotropic material model as an approximation to the constraint energy 

in thin films. In his derivation Robinson neglected the effects of the 

Poisson and transverse magnetostrictive contractions. 

West first pointed out the fact that the isotropic material approx-

imation to the constraint energy of a constrained, polycrystalline film 

was in principle not correct. West averaged the single-crystal magneto-

elastic energy over an ensemble of randomly oriented crystallites. 

Implicit in his averaging process are the assumptions that the strain 

within each crystallite is that associated with an isolated single-

crystal~ and that all components of the strain are frozen into the film 

at T' . West finds the strain anisotropy energy for this case to be 

for cubic crystallites. Here the C's and A1 s are the standard elastic 
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and magnetostriction constants. It is part~cularly important to note 

that K due to West is small only when the X's are small, if it is 
s 

assumed that sign changes with temperature are absent. The isotropic 

approximation predicts small magnitudes when the average magnetostric-

tion is small, which is possible even when the single crystal constants 

are large provided they are opposite in sign. 

The result of West reduces to the isotropic material model for the 

case of isotropic constants in the cubic case, i.e. 

E 
(1 + v) 

(1.4) 

The West calculation was reasonably successful in predicting the 

anisotropy energy at the pure metals . Here there is no possibility of 

pair-ordering~ so the comparison is particularly simple. As shown in 

Table (1.1), ilie anisotropy energy K measured by Wilts 
u 

(1965) and the 

predicted strain anisotropy K by West are in excellent 
s 

agreement, 

whereas K predicted by the isotropic material model is nearly an order 
s 

of magnitude lower than observed experimentally. The predictions of 

both models are nearly a factor of two greater than K observed in 
u 

this experiment . For the theoretical predictions the data of West were 

used . 



Ni 2.1 

Fe 1.5 

Co 18.3 ' 

6 

TABLE 1.1 

K isotropic 
s material 

3.8 

0.2 

32.0 

K s West 

3.7 

1.4 

38.0 

Table 1.1. Comparison of. the measured value of the anisotropy 
energy K with the predicted values K on the basis of the 
isotropig material model and that pro~osed by West. All. 
data are for films deposited at 100°C and measured at 
25°C. Units are in 103 erg/cc. 
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1.4 Removal of Constraint 

According to the two-component model, the substrate constraint 

should be removed if the film is detached from the substrate and 

supported in a relatively stress-free environment. The only 

remaining component would then be the pair-ordering mechanism. 

In pure Ni, Fe, and Co there is no possibility of atom pairs. Here 

it is expected that the anisotropy would vanish upon removal from 

the substrate. Contrary to this, Waka et al. (1963) found only a 
0 

small change in a 7000 A film of Ni removed from a glass substrate. 

Similarly Pugh et al. (1960) found little change in Fe films removed 

from NaCl substrates. More recently Krukover (1967) has reported 

little change in Co and Fe films removed from NaCl and NaCl-on-

glass substrates. However, for Ni films, Krukover found that the 

anisotropy vanished upon removal. Attempts to verify these 

experiments in this study proved difficult as the agreement be-

tween films on glass and NaCl before removal was poor. Moreover, 

no systematic results could be obtained from films removed from 

NaCl substrates. In particular the anisotropy of Ni films never 

decreased to zero. Individual .samples were widely scattered, but 

on the average the anisotropy decreased to about 25% of the 

original value. 

In view of these results, and because of their relevance in 

understanding anisotropy, a new systematic study was attempted. 



8 

A major portion of this thesis is concerned with new experimental 

methods and results that permit detailed comparison with theory. 
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Chapter 2 

Measurement of Substrate Constraint Contributions 

to Uniaxial Anisotropy 

2.1 Introduction 

As indicated in the previous chapter, Robinson (1961) first sug­

gested that uniaxial anisotropy in thin films is composed of two prin­

cipal components; a magnetostrictive component resulting from substrate 

constraint should be removed if the film is detached from the substrate 

and supported in a relatively stress-free environment. In the present 

investigation, thin magnetic films of Ni-Fe and Ni-Co were evaporated 

onto a thin water soluble polymer coating on glass substrates and sub­

sequently removed onto liquid glycerin films. If one assumes that 

residual constraints among crystallites in the free film are negligible, 

the change in the anisotropy field upon removal should provide a measure 

of the anisotropy energy due to substrate constraint. For purposes of 

comparison, the prediction of constraint energy by West (1964) which 

accounts for the polycrystalline nature of the film is included. 

2.2 Experimental Method 

Films 7 mm in diameter were deposited by evaporation simultaneously 

on coated and uncoated glass substrates 0.5 mm thick and 12 mm square. 

The slides were coated with a 4% solution of polyvinyl pyrrolidone in 

ethanol and spun on a rotating table until the ethanol evaporated, leav­

ing a very thin uniform layer of the polymer covering the glass. 
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Films on coated substrates were floated off by means of a water drop 

placed on the edge of the slide which migrated under the film. The water 

was carefully replaced by glycerin by drawing off the water at one sub-

strate edge with an absorbent tissue and adding glycerin at the opposite 

edge. The glycerin provided sufficient viscosity to permit torquemeter 

measurements. 

The experimental results appear independent of magnetic film thick­

ness (300 to 1200 ~),pressure during evaporation (less than 10-6 Torr), 
0 

and rate of evaporation (10 to 100 A/sec). Although sensitivity to sub-

strate temperature is expected, substrate .temperature was limited by the 

stability of the organic polymer to below 150°C. A deposition tempera-

ture of 100°C was chosen to afford some measure of "bake-out". Addition-

ally, this also provided a slightly wider y-phase region in the Ni-Co 

alloys as can be seen from the crystal structure data by Suzuki (1969) 

in Figs. (2.1) and (2.2). Since the substrate temperature was close to 

room temperature, reliable estimates of the bulk magnetoelastic constants 

could be made from available data. 

The thickness and coercive force H of the samples were measured by 
c 

the hysteresis-looptracer. The anisotropy field Hk was measured for all 

samples before and after removal by the high-field torque method 

(Humphrey and Johnston (1963). ) • Measurements of the anisotropy and co-

ercive force for films on uncoated glass and polymer coated substrates 

were in excellent agreement for the hep and fee alloys. In these regions 

the mean deviation of ~ between films coevaporated onto coated and 

uncoated substrates were less than 1%. The reproducibility of He, ~' 

and 8Hk for films evaporated onto the polymer in the a-phase alloy 
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(O to 30% Ni in Fe) was poor, possibly because of the susceptibility of 

the bee lattice to absorb the small interstitial atoms of the polymer. 

The percentage change in ~ upon removal of the films from the substrate 

is given in Figs. (2.3) and (2.4) for Ni-Fe and Ni-Co respectively. 

2.3 Results and Discussion 

The degree of correlation between 6K , che anisotropy energy change 
u 

upon removal, and K , the predicted constraint energy by West, permits 
s 

assessment of the validity of the proposed model. Briefly, West assumes 

randomly oriented, non-interacting crystallites, which reach an equili-

brium condition during deposition or subsequent anneal at temperature T' 

where stress relief mechanisms are operative. The magnetostrictive 

strain in each crystallite is then supposed to be that associated with 

an unstressed single crystal at Tv with the same crystallographic orien-

tation. In addition, it is assumed that the crystallites are rigidly 

attached to the substrate at T' and that all components of strain are 

preserved after quenching to the measurement temperature T. Isotropic 

strains such as film-substrate thermal mismatch do not alter the West 

prediction. Since magnetoelastic data are not available for thin films, 

the assumption that bulk constants are appropriate for thin films will 

be made for purposes of comparison. 

If it is assumed that all constraints are removed when the film is 

detached from the substrate, the comparison becomes particularly simple 

at the pure metals where there is no possibility of pair ordering. 

Accordingly, it is expected that K is initially equal to K and that K u s u 

should vanish if the substrate constraint is removed. The comparison 
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TABLE 2.1 

(K) exp. (Kl)Bulk 

Ni 2.1 -1.6 3.7 52 

Fe 1.5 -0.06 1.4 400 

Co 18.3 -0.5 38.0 2,000 

Units are in 103 ergs/cc. 

Table 2.1. Comparison of the measured value of the aniso­
tropy energy K with the predicted values K on the 
basis of the iMotropic material model and tRat proposed 
by West. All data are for films deposited at 100°C 
and measured at 25°C. The crystalline anisotropy for 
bulk materials (Bozarth (1951)) is also tabulated . 
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between the theory and experimental data at the pure metals is given in 

Table (2.1). Although the values of K are in reasonable agreement with 
u 

the West theory, the values of ~K are not equal to -K • The anisotropy u u 

of Ni did not vanish, but decreased to about 20% of the original value. 

Furthermore, even worse agreement was observed at Co and Fe where only 

small changes were observed upon removal. For alloys the comparison is 

in Figs. (2.5) and (2.6). For the theoretical predictions the data of 

West were interpolated for the Ni-Fe alloys. For Co-Ni alloys the 

values of magnetostriction constants were obtained from Ref.37, and the 

elastic constants from Ref. :17. The most no~eworthy features are the 

very small values of ~K /K for the Co-Ni alloys between 0% and 60% Ni, 
u u 

the extreme disagreement with West for Co-Ni alloys, and the good quali-

tative agreement between West and the experimental results in the y-phase 

Ni-Fe . 

West,in noting that K at Ni was bounded above by the predicted K , 
u s 

has suggested that incomplete adherence of the film to the substrate may 

exist. It is expected that this would simply scale down the value of K s 

predicted on basis of the theory by roughly the percentage of the film 

that is not constrained. Although this concept would be consistent with 

the y-phase Ni-Fe data where qualitative agreement exists with Westvs 

theory, the extreme disagreement between the theory and the y-phase Ni-Co 

alloy data does not support this hypothesis. 

While the likely origin of constraint was thought 'to have been film-

· substrate adhesion, West suggested the possibility that part of the 

constraint arises from local stresses among adjacent crystal grains of a 

continuous film in a manner similar to that proposed by Bozarth and 
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Dillinger (1935) for bulk material. If the constraint were due in part 

to interactions among crystallites, the anisotropy due to strain would 

not be expected to entirely disappear upon removal of the film from the 

substrate. This is consistent with the observation that ~K is less 
u 

than K • However, it does not seem reasonable that Ni should differ so 
s 

greatly from Fe, Co 9 and Ni-Co alloys. 

One would expect this same mechanism to be operative in bulk mater-

ial, particularly at pure Ni or Fe. The expected effect was not obser-

ved in earlier work, and the idea was rejected by Bozorth (1956) for 

bulk materials. In any case, the argument cannot be made independent of 

alloys for thin films and appears inconsistent with the experimental 

results. 

Small amounts of preferential alignment among crystallites in the 

film plane would provide a large component of anisotropy through the 

mechanism of the crystalline anisotropy (in which case K would correlate 
u 

with K
1
). However, removal of the film from the substrate would not 

affect that component, and the change in anisotropy ~K would still be 
u 

expected to correlate with K while the residual (K + ~K ) might corre-
s u u 

late with K1 • Examination of Table (2.1) shows that neither of these 

correlations is found. Moreover, such preferential alignment has not 

been observed in many careful studies by transmission electron dif frac-

tion. 

The assumption that the film is deposited in equilibrium, magneto-

strictively strained but not stressed is strongly challenged by the 

observation that large isotropic stresses not related to substrate-film 

thermal expansion mismatch and as yet not adequately explained are known · 
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to exist even in films deposited at room temperature. In a recent inves-

tigation by Johnson and Wilts (1970), utilizing the film removal tech-

nique described here, they found that this stress increases roughly 

linearly with thickness to a maximum of 1010 dynes/cm
2 

at 600 ~ and that 

it remains constant for further increasing thickness. Although the micro-

stresses within crystallites may not strictly mirror the magnitude of the 

macrostress measured in their experiment, it is known that Hk is surpris-
0 

ingly constant down to 100 A. It appears then that no correlation exists 

between the isotropic stress and the deviation of the constraint theory 

from the experimental observations. 
0 

The small crystallite size (100 A) in room temperature films resul-

ting in a large fraction of the atoms to be near surfaces and the high 

density of defects known to exist in thin films may result in elastic' 

and magnetostriction constants substantially different from bulk material. 

If in fact this were the case 9 it is difficult to imagine what form the 

deviation might take. The expected zero in 6K on the basis of bulk data 
u 

near 80-20% Ni-Fe was observed. However, particularly near Co the expec-

ted change was large but the experimental value was near zero. Since no 

systematic assumption can be made for the change in the magnetoelastic 

constants independent of alloy, the only alternative for this theory is 

to shown' the magnetostriction and elastic constants are different for 

thin films. It is the purpose of the remainder of this thesis to deter-

mine if in fact the magnetoelastic constants of a single crystallite in 

a thin film resemble those of a large single crystal. 
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Chapter 3 

Measurement of the Magnetoelastic Constants in Thin Films 

3.1 Introduction 

As discussed in the last chapter, it is of practical as well as 

theoretical interest to determine the magnetoelastic constants for thin 

films. In particular the theory of .west (1964) cannot be correct if in 

fact the magnetostriction and elastic constants are in reasonable agree-

ment with bulk data. Although these constants are readily measured in 

bulk crystals, the techniques used do not appear immediately applicable 

to the thin films constrained by substrates . However, the magnetic prop-

erties of most ferromagnetic materials change with the application of 

stress to such an extent that stress may be ranked with field strength 

and temperature as a primary factor affecting magnetic change. It has 

been predicted and indirectly verified that the induced anisotropy in 

bulk polycrystalline material due to a uniaxial stress a when applied at 

angle cf> with respect to the magnetization M in the single domain state 

can be represented by 

K 
a 

= 1. . ~ a . 2 ,i, 

2 /\s sin "' 

where A. is the saturation magnetostriction constant . 
s 

(3.1) 

If a thin film of isotropic material is rigidly attached to a sub-

strate, a uniaxial strain may be applied in the plane of the film by 

bending the substrate. For thin enough substrates, the lateral strain 

is negligible compared to the lonf£itudinal strain and it is only 

necessary to account . for the fact that the magnetic material has zero 
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additional strain in the transverse directions and zero stress in the 

direction perpendicular to the film plane. Under these conditions the 

additional stresses induced into the films are 

a = x 

E E x 

1 + v2 

v E E x a = ~~~ 
Y 1 - v 2 

(3.2) 

where E is Young's modulus, v is the Poisson's ratio, and E is the applied 
~ 

strain. The anisotropy energy induced by the strain e is therefore x 

K 
E 

= 3 
2 

E A 
s 

1 + v 
. 2 ~ 

E sin ~· x 
(3.3) 

~H 

Among those who have investigated the strain sensitivity ___l of 
E 

thin fi l ms are Smith (1959), Mitchell et al. (1963), Monnier (1967), 

Krukover (1967), Reekstin (1969), and Tolman (1967). In general 

qualitative agreement with the isotropic material approximation is 

reported, except by Krukover . at pure Co where the average magneto-

striction cons·tant is known to be large in bulk materials but the strain 

sensitivity was small. Smith and Mitchell reported the strain sensi-

tivity to be independent of deposition temperature. This result is not 

confirmed in the present investigation. 

Equation (3.3) is often given incorrectly in the literature with 

the Poisson term omitted. Moreover, the uniform stress approximation 

that has been used is incorrect in principle for polycrystalline films 

where the constraint exists at the crystallite level. The apparent 

proper formulation would subject each crystallite to a ' uniform uniaxial 

strain in the plane of the film. Although the two methods agree 

qualitatively· in their predict ions, the quantitative results do not. 
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A simpler problem to treat theoretically, although much more dif-

ficult to achieve experimentally is the thin film single-crystal case, 

approximated by epitaxial films grown on single crystal substrates. 

Particularly useful is the (001) plane of the film grown parallel to 

the (001) plane of the substrate. Under this condition, the thermal 

mismatch which exists between the film and substrate is isotropic and 

cannot contribute to any components of anisotropy in the film plane 

according to the first order theory. The (001) plane offers the pos-

sibility of determining the quantities (c11-c12)A
100 

and c
44

A
111 

by 

independent measurement, where the C's and A1 s are the elastic and 

magnetostrictive constants respectively. Although the C's are in gen-

eral slow functions of composition, the A1 s are usually rapidly varying 

with frequent sign changes. This should permit a rapid assessment of 

the similarity of thin film and bulk constants. 

3.2 Cubic Symmetry 

It is the purpose of this section to ca~culate the expected aniso-

tropy field resulting from a uniaxial strain' in the plane of a thin 

film. The case of cubic crystallites will be considered first. 

Following Kittel (1949)t the contributions to the anisotropy energy 

density due to deformation from cubic symmetry is given by the approx-

imation 

(3.4) 
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In this expression the a's are the direction cosines of the magnetiza-

tion relative to the cubic axes and £ 1 s are components of the strain 

tensor defined by Love. This result follows from a Taylor series expan-

sion of the anisotropy energy linear in strain and quadratic in the 

direction cosines and includes the lowest order terms consistent with 

cubic synnnetry. A brief outline of this derivation is included in 

Appendix 1. 

If a uniform strain e exists with direction cosines Si measured 

from the cubic axes, then the tensor components of strain are given by 

i\ 2 
i j £ .. = e = 

l.l. 

£ij = 2e sisj i :/: j (3.5) 

Substituting (3.5) intp (3.4), the induced anisotropy resulting from a 

uniform strain in a single cubic crystal is given by 

K 
e 

3.2.1 Single Crystal; Thin Film Geometry 

(3.6) 

In this case, it is assumed that the strain induced by the substrate 

is uniform throughout the thickness of the film and that the film is 

rigidly attached to the substrate . Further, it is assumed that the 

magnetization is confined to the plane of the film by the shape aniso-

tropy inherent in this geometry. Consider first a single-crystal thin-

film with the [001] direction perpendicular to the film plane and a 
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uniform strain e parallel to the [100] direction. In this case 

82 = 8
3 

= a 3 = O, so Eq. (3.6) reduces to 

(3.7) 

where ~ is the angle between the magnetization and the applied strain. 

Next, consider a strain applied parallel to [110] axis in the (001) plane. 

1 
=--

Ii 
Eq. (3.6) yields 

KllO = 3 c44Alll e sin2 ~. (3.8) 

It can be seen that application of a unidirectional strain in [100] 

and [110] directions in the (001) plane induces a uniaxial anisotropy 

aligned with these directions and involving simple products of the 

single crystal elastic and magnetostriction constants. 

3.2.2 Polycrystalline; .Thin Film Geometry 

This case will first be considered under the assumptions that the 

crystallites are non-interacting and of such aspec~ r~tios that the 

strain induced by the substrate is nearly uniform throughout the thick-

ness of the crystallite . As before it is assumed that all components 

of strain in the plane of the substrates are fixed by the substrate and 

that the magnetization is confined to the film plane. 

The total strain in each crystallite is the combination of a uni-

form strain in the plane imposed by bending the substrate, a Poisson 

contraction perpendicular to the film due to the in-plane strain through 

elastic effects and a variable component perpendicular to the film plane 

sensitive to the position of M in the plane due to rnagnetostrictive 



26 

effects . To the order of approximation in this analysis, the magneto-

strictive elongations perpendicular to the film plane are due only to 

the presence of the substrate constraint and are independent of the 

in-plane strain. Therefore, if only the change in the anisotropy as a 

function of applied strain is desired, the magnetostriction component 

may be neglected. 

The Poisson contraction perpendicular to the plane cannot contrib-

ute to the in-plane anisotropy because its axis of symmetry is perpen-

dicular to the film plane . For any particular crystallite orientation 

the induced anisotropy due to the Poisson contraction perpendicular to 

the film plane is not necessarily parallel to the Poisson strain axis. 

However, in a random film there will exist another crystallite with 

its easy axis in the plane determined by the strain and easy axis of 

the first crystallite which cancels any in-plane component of aniso-

tropy. The net contribution to the anisotropy due to the Poisson strain 

can only be a perpendicular anisotropy . Hence, the Poisson contractions 

may be neglected if only the magnitude of the in-plane strain-sensitivity 

is of interest. 

In order to calculate K K (a., B.) must be averaged over all poly' e 1 1 

possible directions of the saturation magnetization and induced strain 

relative to the axes of an individual crystallite and subject to the 

constraint that the angle between the strain and magnetization is ~ . 

These directions are assumed randomly distributed. The averages of the 

terms in ai and Bi have been given by Birss (1960) as 
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= 2 cos2 $ + l 
5 5 

Substituting (3.9) into (3 . 6), the result is 

K 3 
poly = 10 e 

2 3 2 
= ( S KlOO + S KlOO ) sin $ 

3 
10 

2 
cos $ 

where the terms independent of $ have been dropped. 

1 
10 (3.9) 

(3.10) 

Alternatively, it might be assumed that as before all components of 

strain in the plane of the film are fixed by the substrate and that M is 

confined to the film plane. However, because of the interactions among 

crystallites and their small size, it is possible that the Poisson con-

traction normal to the film would be roughly constant throughout the 

film. If this is the case, the Poisson terms cannot contribute to the 

strain sensitivity in the plane. The result is again Eq. (3.10). 

These assumptions are made in order to simplify the problem, but 

are certainly open to question. In very thin films made at high tempera-

tures, the approximation of noninteracting particles may be valid. In 

thick films the assumption of a uniform contraction may be better . It 

is interesting that both pictures yield the same result which is sup-

ported by the experimental observation that the strain induced anisotropy 
0 

is independent of film thickness (200 to 2000 A). 
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3.3 Hexagonal Symmetry 

The case of a polycrystalline sample composed of crystallites 

having hexagonal symmetry is somewhat more complex. However, the cal-

culation, details of which are given in Appendix 2, proceeds in the 

same manner as for the cubic case. The result for the strain sensitivity 

is 

(3.11) 

where Aa' Ab' Ac' and Ad are the four magnetostriction constants and 

c11 , c12 ~ c13 , c33 , and c44 the five elastic constants which are nee-

essary to describe the hexagonal case. As for the cubic case, an aniso-

tropy is induced by application of a uniaxial strain. 

3.4 Experimental Methods 

·Films 7 mm in diameter were deposited by evaporation simultaneously 

onto 12 mm square substrates of glass 0.6 mm thick and single-crystal 

MgO, 0.4 mm thick, at 400°C. The reasons for using MgO substrates are 

discussed later. The MgO substrates had [001] directions perpendicular 

to the large surfaces and edges parallel to [100] or [110] directions 

depending on the particular strain axis desired. The MgO substrates 

were supplied commercially (Semi-Elements, Inc.) with one of the large 

surfaces finished to lµ. This surface was further polished by dilute 
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solutions of .3µ Al2o3 particles in water over silk and .05µ, Al
2
o

3 

particles over felt and finally in water over felt. The duration of 

each operation in this sequence was approximately .15 minutes. The last 

trace of visible scratches was eliminated by annealing the substrates 

in triple distilled water at 35° to 45°C for 1 hour. For temperatures 

below this range the scratches persisted ; for temperatures above this 

range new defect structures developed and the scratches were enhanced . 

The substrates were then rinsed in electronic grade acetone and placed 

immediately in vacuum for deposition. Substrates were re-used by 

lapping off the deposited film in the . 3µ solution (this was necessary 

to maintain the surface flatness) and repeating the cycle. 

Films were deposited with the applied field in the direction of the 

strain axis. The induced uniaxial anisotropy field was then parallel to 

the strain axis during the resonance measure~ent. 

A sensitive indication of the quality of epitaxy is the magnitude 

of K1 , the crystalline anisotropy. The general behavior of K1 of Ni as 

a function of substrate temperature is shown in Fig. (3.1) as measured 

by the high-field torque method . At low temperatures the interaction 

between the substrate and film is weak. However, beyond a critical 

temperature, epitaxial growth occurs which under suitable conditions 

can cause the deposited material to assume a single-crystal structure 

generally with the same orientation as the substrate . Neither the 

crystal structure nor the lattice constants of the substrate or deposited 

material need be the same . In this experiment the fee Ni-Fe and Ni-Co 

alloys were deposited on MgO which has a NaCl structure and lattice 
0 0 

constant of 4.20 A compared to Ni, 3.52 A. The choice of MgO is a 
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logical one because it nearly matches the thermal expansion properties 

of Ni and is not hygroscopic at room temperature. A lower bound on 

substrate temperature was 350°C required for reliable epitaxy and an 

upper bound was 450°C set by contamination of substrate surf aces by 

Cu evaporated from the cavity used to determine the substrate tempera-

ture. 

The strain sensitivity can be obtained experimentally from ferro-

magnetic resonance measurements of the induced anisotropy field. The 

dispersion relation for parallel resonance (DC magnetic field parallel 

to film plane) is given by Bozorth (1951) for the case of a thin cubi'c 

crystal cut parallel to the (001) plane in the presence of crystalline 

anisotropy as 

2 Kl K2 w 
{H + = 4nM + ZM (3 + cos 4$ ) + 4M (1 - cos 4$ ) 2 

y 
K 

+ .~ 
M 

[l + cos 2(<j> - ijJ)]} 

2K
1 

2K 
x { 4 $ u 2($"- ijJ)} (3 .12) H + M cos + T cos 

Here lj> is the angle between the magnetization M and the crystallographic 

[100) axis, H is the applied field, and ijJ is the angle between the easy 

axis of a uniaxial anisotropy K , and the same [110] axis. The first 
u 

and second order crystalline anisotropy constants are K1 and K2 respec­

tively. 

The only experimental situations of interest here are resonance 

with M and the strain axis in the [100] direction in which the resonance 

condition is 
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2K1 2Ku 2K 2K 
[H + 41TM + - + - ] x [H + _l + ~ 

M M M M (3 .13) 

and the case with M and the strain axis in the [110] direction for which 

resonance occurs with 

2 K1 K2 2Ku 2K1 2Ku 
w = [H + 41TM + - + - + - ] x [H - - + - ] · 2 M M M M M 

(3.14) 
y 

For all Ni-Fe-Co 
2K 

2K1 K
2 

alloys, 41TM >> ~and ZM' in this experiment 41TM >> H, 

u and ~ , and the resonance frequency is fixed at w, so the shift in the 

resonance field l6HI is very nearly equal to the shift in the anisotropy 
UK 

field, I 6Hk I = 1-f"I . 
A stripline for the resonance measurements was constructed that 

permitted strains to be introduced by simply supporting the substrates 

along two parallel edges and deflecting it by means of a wide plunger 

which contacted the substrate near the edges of the deposited film. 

This induced a nearly uniform, uniaxial strain in the deposited film. 

The deflection was related to the induced strain by means of strain 

gages applied to dummy substrates of each type. The maximum strain in 

the MgO substrates was 2 x 10-4 ; in the glass substrates 4 x 10-4 • The 

resonance frequency was held fixed at 3.5 or 5.5GHz. The shift in the 

resonance field when the induced strain was parallel to the applied 

field along [100] or [110] direction gave the strain sensitivity 

directly. Photographs of the stripline are in Fig. (3.2). 

Although the measurement of K1 ,the crystalline anisotropy,was pri­

marily used to establish the existence of epitaxy, the actual values 

are of some interest because it is believed that these data are the 

first systematic studies of K1 in constrained, epitaxial films deposited 
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by evaporation. Experimental values of K
1 

in Ni-Fe and Ni-Co films 

are shown in Figs. (3 . 3) and (3.4). Bulk datia for unconstrained film 

are given from Refs. 7 and 28. 

3.5 Experimental Measurement of Crystalline Anisotropy 

Previous work in ferromagnetic films has centered on materials with 

large K1 grown on cleaved NaCl. However, some work has been done on 

alloys with low K1 after the films were removed from substrates . The 

limited use of epitaxial films in the investigation of thin film prop­

erties is believed to result from inconsistent data resulting from sub­

strate imperfections such as oriented cleavage steps resulting in shape 

anisotropies, the high thermal mismatch inherent with metal films on 

NaCl or the susceptibility of NaCl to water vapor. 

In general, the reported magnitude of K1 for Ni films on substrates 

is significantly higher than that of bulk crystals, while most workers 

report near bulk values for Ni films floated off NaCl. Part of this 

difference arises from the conditions of measurement. Films deposited 

on substrates are measured at constant strain while bulk samples are 

generally measured under conditions best approximated by zero stress. 

The presence of magnetostriction gives rise to an apparent contribution 

to the anisotropy energy as the lattice is allowed to deform under the 

action of magnetoelastic forces. This contribution is easily calculated 

for a cubic crystal by substitution of the magnetostrictive strains 

measured under conditions of ;constant stress into the expression for the 

total energy density found in . the Appendix 1, Eq . (A-1.5) . This result 

may be written 
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where K
1
° is the apparent anisotropy energy measured at constant stress, 

K
1 

is the anisotropy energy at constant strain and ~ is given by 

where constant terms and uniaxial components that may exist are neglec­

ted. For Ni, ~ = +2 x 103 erg/cc which is negligible compared to the 

observed discrepancy 4 of 6 x 10 erg/cc between bulk and epitaxial films 

evaporated onto MgO at 400°C . 

Freedman has ascribed this large discrepancy to magnetoelastic 

effects resulting from thermal mismatch between the film and substrate. 

These effects result from higher order terms in the approximation for 

the magnetoelastic energy which include products of strain and fourth 

order angular dependence on the magnetization. Thermal mismatch then 

gives rise to strai ns which give energy t erms that have the same form 

as the anisotropy energy. This theory is difficult to test as the 

higher order magnetostriction constants are unknown. In any case, the 

view that the substrate constraint is responsible for the abnormal K1 

observed rather than material differences between thin films and bulk 

is consistent with the near bulk values observed for unconstrained 

films and the magnetoelastic data discussed later. 

3.6 Strain Sensitivity - Experiment vs . Theory 

The theoretical predictions given in Eqs. (3.?-8) and experimental 

results for the strain sensitivity of .epitaxial films of Ni-Fe alloys 
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for both the [100] and [110] directions of applied strain are given in 

Figs. (3.5) and (3.6). The data for epitaxial films of Ni-Co are in 

Figs. (3.7) and (3.8). In general the agreement is good with the pre-
1 

dictions of section (3 . 2.1), and it is reasonable to conclude that thin, 

epitaxial films deposited at 400°C onto MgO substrates have magneto-

elastic constants in good agreement with bulk data. 

The data for polycrystalline films evaporated at 100°C and 400°C 

and the results from the calculation of the strain sensitivity of 

polycrystalline films given in Eq. (3.10) are included in Figs. (3.9) for 

the Ni-Fe alloys. For comparison, the data by Mitchell for Ni-Fe are 

also plotted in Fig. (3.8). The results for 400°C Ni-Co films are in 

Fig. (3 .10). Contrary to earlier workers a significant, systematic 

temperature dependence is found in the Ni-Fe alloys. The magnitude of 

the strain sensitivity of films deposited at 100°C was approximately 

35% lower than in films deposited at 400°C. This was also confirmed for 

one composition in the Ni~Co alloys (82% Ni). At neither temperature 

do the experimental data agree with theoretical predictions, although 

the discrepancy is smaller for the higher temperature deposition. 

Nevertheless, the dependence on alloy composition is qualitatively 

correct except for room temperature films of hexagonal Co. 

A number bf possible mechanisms suggest themselves as sources for 

the discrepancy between the experimental and calculated strain sensi-

tivity. Stresses which result in deformations into the nonlinear 

region would seriously alter the prediction of section (3.2) for the 

strain sensitivity. Large isotropic stresses are known to exist in 
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films deposited at room temperature. In order to evaluate this effect 
0 

a single film (51% Ni~Fe; 450 A thick) was deposited onto a polymer 

coated substrate at 25°C by methods described in section (2.2). The 

film was then floated off the substrate with water which was then 

allowed to evaporate with the result that the film was again attached to 

the substrate. It was observed that an isotropic strain of 6 x 10-3 

existed originally in the film due to the substrate constraint 

(Johnson and Wilts (1970)). The strain sensitivity was measured before 

and after the film had been floated with less than 3% difference between 

the two measurements. This isotropic stress (1.6 x 1010 dynes/cm2) 

apparently does not result in nonlinear or plastic deformation and is 

not responsible for the disagreement between the predicted strain sen-

sitivity and that experimentally determined for polycrystalline films 

near room temperature. 

As mentioned previously, · the strain sensitivity was found to be 
0 

independent of film thickness (200-2000 A). This result tends to 

diminish the importance of surface phenomena which would be a strong 

function of film thickness. 

Crystallite size may be responsible for the observed temperature 

dependence of the strain sensitivity in polycrystalline films . with 

larger deviations from the calculated result expected for the smaller 

crystallites. Crystallite size is known to be a strong function of 

substrate temperature and is reported to be independent of the occur-

rence of epitaxy at least for films deposited on NaCl substrates 

(Suzuki (1969)). The observation that polycrystalline films deposited 
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at 400°C are in better agreement with the predicted value of strain sen-

sitivity than are films deposited near room temperature may seem to 

support this hypothesis. However~ it does not explain the difference 

between epitaxial films deposited at 400°C which agree with the predicted 

result and polycrystalline films deposited at 400°C which do not. 

The role of lattice defects is not easily evaluated. H~wever, the 

5 -10 relative insensitivity of film properties to vacuum (10- to 10 Torr) 

and the smooth variation in f i lm properties with small changes in alloy 

do not support this argument unless the defect density is very high and 

large decreases in defect density occur with the development of epitaxy ~ 

Such data for these films are unavailable . 

In summary, no explanation has been found for the discrepancy 

between the experimental and calculated strain sensitivity in poly-

crystalline films. Nevertheless, the excellent agreement found for 

epitaxial films demonstrates the essential validity of the theory for 

strain sensitivity in cubic crystals, and that the elastic and magneto-
0 

striction constants of thin films (200 to 2000 A) deposited at 400°C 

-7 in good vacuum (10 Torr) are in good agreement with values found in 

bulk materials. 
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Appendix 1 

Magnetoelastic Energy 

Following Kittel (1949), the elastic energy density in a cubic 

crystal is 

(A-1.1) 

where C,. are the elastic constants and e .. are strains as defined by 
iJ iJ 

Love (1944) and are all zero for the unstressed, unmagnetized crystal. 

This relation is assumed to hold for a magnetized crystal. However~ 

the strain is not zero in the absence of applied stresses but the crystal 

is deformed from cubic symmetry by internal magnetoelastic stresses 

which result in magnetostriction, e.g. 

.!.) 
3 

(A-1.2) 

where A1 s are the magnetostriction constants, o's are the applied stress, 

a's are the direction cosines of the magnetization referred to the cubic 

axes, and the [S) matrix is the inverse of the [C] matrix. The two-

constant approximation for the magnetostriction in cubic crystals is 

usually found to be satisfactory although higher order constants consis-

tent with the symmetry requirements of the crystals are sometimes 

required. Here it is assumed that there is no volume change in the 

crystal as it proceeds from a hypothetical unmagnetized to a magnetized 
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state, and that the volume of the crystal is unaffected by the position 

of the magnetization. 

The magnetic anisotropy energy density in an unstrained cubic 

crystal is to terms of the 6th order 

where the lowest order anisotropy constants are K
1 

and K
2

• To express 

the dependence of the anisotropy energy on strain, the energy is expan-

ded in a Taylor series in the strains. Keeping only lowest order terms 

dependent on orientation yields 

(A-1.4) 

where B
1 

and B
2 

are the magnetoelastic coupling constants. 

The equilibrium configuration of the crystal, i.e. the stable state 

of strain when magnetized in the direction ~ in the absence of external 

stresses, may be found by minimizing the total energy density . 

(A-1.5) 

with respect to e ..• 
1J 

The solutions are: 

-B 2 !) 1 
(a. e .. = 

11 c11-c12 1 - 3 

-B 2 (i ~ j eij = --C-- aia. 
44 J 

(A-1.6) 
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fhe magnetoelastic constants are found to be 

(A-1.7) 

Thus the magnetoelastic energy is 

(A-1.8) 

Eor cubic crystals, consistent with the two constant approximation for 

the magnetostriction. 
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Appendix 2 

Strain Sensitivity, Polycrystalline Film, Hexagonal Crystallites 

Following Mason (1954), the contributions to the anisotropy energy 

due to deformation from hexagonal symmetry is given by the approximation 

(A-2.1) 

In this expression the CL' s are the dir'ection cosines of the magnetization 

with the 3 axis coinciding with the c hexagonai axis and e's are compo-

nents of the strain tensor. The A1 s and C's are the magnetostriction 

and elastic constants respectively. 

If a uniform strain e exists with direction cosines S., the result­
l. 

ing induced anisotropy is 

2 

Ke= - (Cll-Cl2)(Aa-Ab) e (alSl + azSz) 

(A-2. 2) 
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To determine K 1 , k (a.,S.) must be averaged over all possible po y e 1 1 

directions of the magnetization and strain relative to the axes of an 

individual crystallite and subject to the constraint that angle between 

the strain and magnetization is S• The average for the first term has 

been given by West: 

2 

<(alSl + a282) > = 
1 7 2 
15 + 15 cos s 

The average for the remaining terms have been given by Birss: 

2 2 
<(l - a 3 )(1 - s3 )> 

2 2 2 
= 5 + 15 cos ~ 

1 1 2 = - 15 + 5 cos s· 

(A-2. 3) 

(A-2. 4) 

Substituting the averages (A-2.3) and (A-2.4) into (A-2.2) gives 

the result 

7 2 
Kpoly = {15 (Cll-C12)(A.a-A.b) - 15 [C13(Aa+A.b) + C33Ac] 

2 
+ .lS [Cl2Aa + CllAb + Cl3A.c] 

(A-2.5) 

where constant terms have been dropped. 
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