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SUMMARY

A method is presented for the determination of the stresses and de-
flections of unswept and swept, thin-walled beams of uniform closed cross
section. The cross section, loading distribution and boundary conditions
are assumed to be arbitrary. The method is based on the differential
equation governing the behavior of orthogonal elastic shells, The differ-
ential equation is transformed into a difference equation and the solution
obtained by the relaxation technique. A comparison of the theoretical
solution and experimental data for a swept back wing with a carry through
bay under symmetrical bending showed good agreement.

A tapered wing may be treated by approximating the variation by a
series of spanwise steps.

As the difference equations are a system of simultaneous algebraic
equations, they may be solved by automatic calculating equipment or by

electric analogue computers as well as by the relaxation technique.
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TABLE OF NOTATION

area of sheet element resisting normal stress - sq. in.
area of stiffener element - sq. in.
N

a_, *tag, = equivalent area of elements resisting normal
stress - sq. in.

area of monocoque cross section - sq. in.

horizontal shear resistant area - sq. in.

vertical shear resistant area - sq. in,

normal chord of the outer panel - in,

Young's modulus - psi.

E/(1 - £ ?) - psi.

shearing modulus of elasticity - psi.

horizontal section shear - 1b.

height of beam cross section - in.

central moment of inertia - in,,4
radius from origin of principal shear axis to a tangent
through the wall element - in.

tangential coordinate

wall thickness of monocoque section - in.

section torque - in. lb.

horizontal displacement - in.

vertical displacement - in,

vertical section shear - 1b,
axial displacement - in.
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TABLE OF NOTATION (Continued)

rectangular coordinates

N < M
S
i

o = angle between tangent to a wall element and the x axis - deg.
T = shearing strain " radians
£ = normal strain - in./in.

i

Poisson's ratio
angle of twist (rotation) of the cross section - radians

= angle of sweep back - deg.

»‘G‘%\
i

= angle of resolution of normal stress in the outer panel sheet
element - deg.

ﬁ = included angle between outer panel sheet élement and inner

longitudinal axis - deg,

tangential displacement - in.

H

‘f"
¢- = normal stress - psi.
T

= shearing stress - psi.

SUBSCRIPTS

inner panel of swept back wing with a carry through bay

o
i

o = outer panel of swept back wing with a carry through bay

j»n = qguantities on the shell surface defined by their values at the
stiffeners

R = quantities on the shell surface defined by their values over the
sheet

¢ = tangential coordinate

Z = rectangular (axial) coordinate
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I. INTRODUCTION

Since early in 1947, the structures group at GALCIT has been iﬁvesti—
gatiﬁg theoretically and experimentally the effect of sweep upon the stiress
and deflection distribution in aircraft wings. In 1950, Dr. E. E. Sechler
and ‘th’e author undertook the task.of reviewing the existing structural
analysis methods, experimental data, and aeroelastic effects for swept
wings with solid, thick-walled and thin-walled sections. This review
indicated that. no satisfactory solution is available for the stresses and
deflections-in a thin-walled, swept wing structure. The theoretical
determination of the stresses that exist in such a swept wing under static
load requires the analysis of a swept, redundant, cantilever structure of
variable cross section with an elastic support. The available theoretical

S
methods of treatment of this problem are the energy methods, the method
of consistent deformationsﬁ, and methods in which loads arevarbitrarily
assigned to various elements of the structure.

The energy methods are available to be used in those cases where
equilibrium conditions are not sufficient in themselves to specify the stress
distribution, and use is made of the fact that the- actual distribution corres-
- ponds to a minimum of the energy. The energy methods may use either
Castig.liano"s theorem, or a least (virtual) work analysis, Castigliano's
~theorem proceeds from the expression for the elastic energy U stored in
the structure by the application to the points 1, 2, . . . i of the forces Pi’

torques T, , and bending moments M, , and gives equations for the



displacements A ; in the direction of the loads Pi , the angles of twist
& ; in the direction of the torques Ti , and the angles of rotation & ; in

the direction of the moments M;. The equations are:

_ 2v o _ U
Sy ;= 37 G = o

The least work analysis applies the method of minimum complementary
energy and minimum potential energy. The principle of minimum comple-
mentary energy is a variational condition on the stresses, and the principle
of minimum potential energy is a variational condition on the displacements‘.
The former expresses a’condition which defines the correct state of stress
that satisfies the equilibrium conditions and the boundary conditions on the
stresses; whereas the latter deterinines the correct deformation configur-
ation consistent with the boundary conditions on the deflections.

The principle of the method of consistent deformations assumes that
the elements of the structure are considered as free bodies in equilibrium
under the action of forces and moments., At the joints., the elements have
the same translational and rotational displacements, or in other words, the
deformapions are consistent. If there are many elements, the method
inherently requires the solutioﬁ of a large number of simultaneous equations.
The concept of an elastic axis is not used in the method. The effects of
warping of the cross section and shear lag may be considered.

The methods in Which loads are arbitrarily assigned to various elements
of the structure usually use the elastic axis concept, and consider that one

group of elements resists the bending loads, and another group of elements



resists the torsion loads,

However, the knowledge of the structural behavior of swept wings with
thin-walled cross sections is not complete. There are no known e#isting
accurate solutions of the problem, and the approximate methods show
only fair agreement with experimental data. Therefore, there is a need
for a theoretical approach that will be as accurate as possible, and at the
same time provide a procedure to obtain an engineering solution.

As a resq.lt, a theoretical solution has been developed in which the
problem is formulated in terms of the differential equation from the theory
of orthogonal elastic shells, The assumption of the preservation of the
normal cross sectionvis relaxed in the neighborhood of the oblique support,
in order to account for the boundary conditions and fhe giffect Qf root ribs.
The solution of the differential equation is obtained by means of finite
difference methods. Although automatic calculating equipment and electric
analogue computers may be used to solve the différenee equations, the

relaxation method is used due to its flexibility for investigational purposes,

and its effectiveness as an engineering procedure.



II. FORMULATION OF THE DIFFERENTIAL EQUATION GOVERNING

THE ORTHOGONAL SHELL PROBLEM

Contributions to the formulation of the orthogonal shell problem have
" been made by a large number of authors. An excellent review of these
contributions, and additional extensions have been made by Benscoter
(Reference 1) The following formulation is taken from Benscoter‘s work,
and modified where necessary to permit the eventual use of numerical
calculation.

In this formulation, the following assumptions are made:

(1) The physical beam is replaced by a similar theoretical beam
having ribs, flanges, stiffeners, and sheets.

(2) The cross sections of the beam are uniform, and contain closely
spaced internal rigid diaphragms which stabilize the shell and preserve
the cross-sectional shape. The diaphragms are infinitely stiff in their
own planes but are completely free to warp out of their planes.

(3) The flangesv and stiffeners are straight and transmit only axial
loads.

(4) The sheet is sufficiently thin so that the stresses are uniformly
distributed over the thickness of the wall. The sheet transmits axial and
shear loads but does not transmit bending loads.

. (5) There are no cut outs.

(6) Hooke's Law is assumed.



In the derivation of the differential equation, it is assumed that the
beam has a thin-walled, unstiffened cross section, consisting of a single
cell without sharp corners or discontinuities in thickness,

The beam and coordinate system are shown in Figure 1, with a
point on the beam identified by the coordinate z along axis of the beam,
and the coordinate s measured ai‘ound the peripheral center line of the
beam. The idealized differential element of the shell is shown in
Figure 2. Thé element has variable thickness in the s direction and
constant thickness in the z direction.

Assuming that Hooke's law is applicable, and neglecting the normal

forces due to the diaphragms, the stress strain relationships are

- - - (1)
G - 4 O = £ &, O~ = L& z.= &7

SE sZ

where E = Young's modulus

G = shearing modulus of elasticity

€s, €z = normal strain along the tangential and axial
coordinate respectively
0, 0 = normal stress along the tangential and axial
cooi‘dinate respectively
M = Poisson's ratio
Tz = shearing stress in the sz plane
- = shearing strain in the sz plane

Due to.the assumption of stiff diaphragms, é:s' = 0. Therefore,



where P = (Z)
/"’/“2

The stress 6.; and strain €4 do not appear in Part II hence-
forth, and the subscripts of the rémaining stresses and strains will be

dropped with the following change of notation:

The strains at a point may be expressed in terms of the axial displace-

ment w and tangential displacement & by

Sw Ly E (3)
ST e— = e— -+ -
€ oz 7= 55 o=

The stresses may be expressed in terms of the displacements by

. v D
=4 3z - (4)

7 = & %" +# ;;
where s,z = tangential and axial coordinate respectively
£ W= tangential and axial displacement respectiYely.
The forces acting on the differential element are shown in Figure 2.
The stress components acting in the circumferential direction on the
faces of an element of the thin wall are balanced by the forces from the
diaphragms acting on the inner surface of the wall. Hence only the

equation of equilibrium of the element in the axial direction need be consi-

dered. The equation is

20 o I ot 205L)
5;/&" +2—;§ds)aédz * S ds oz =0

where t = wall thickness of monocoque section.



Assuming the changes in thickness are small, then

Sa 207t) . (5)
[ S5 7 T os =0

In order to obtain an equation for axial displacements, the strain compati-
bility equation is formed by substituting Equations (4) into Equation (5),
giving
R Ry ) 2 S | P& /
= L=<l = “ == = O
t62/§2)+a5[z‘6’(§5+a2)

or

£t Fw S oy, & Ly = o
, * o (2 55) + 55 (2 o

It is convenient to use the principal shear axes as the coordinate
axes of the cross section. The location of these axes may be computed
by the formulas given by Duberg (Reference 2), At any given point of the
wall, draw a tangent to the centerline as shown in Figure 3(a). The radius
from the origin of the principal shear axes to the tangent is r, while the
angle made by the tangent with the positive direction of the x axis is A& .
The location of the principal shear axes is defined in terms of r and o

by the condition that the following line integrals vanish around the cell,

f Ty cosa as = O

(7)
B T srd ofs =0
f ¢ wosat snrat s = O

The section properties associated with the principal shear axes are

defined by:
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1

- F trids

z
A, = f ? cos"a as
A, = f t swia IS (8)
where
I, = central moment of inertia (corresponds to

polar moment of inertia)

AH = horizontal shear resistant area
A v

-

= vertical shear resistant area

b

w = area of monocoque cross section
= & tds = A, * Ay

The tangential displacement & may be eliminated from Equation (6)
by further use of the assumption of rigid bulkheads. The horizontal dis-
placement u and vertical displacement v are parallel to the principal
shear axes and regarded as the translations of the origin of the shear axis,
The contributions that each of these displacements make to the tangential
displacement are illustrated in Figure 3.

If the displacements of the rigid body are small, the rotational and

translational contributions may be superimposed to give

L =IrP P UL F VX

and (9)
£ P o a’v
2L - pEL aZZ » s ar ZZ
oz Zz T gz T X

where ¢ = angle of twist (rotation) of the cross section.

The section torque and external shears are related to the internal shearing

stresses by the following equations,
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i

bfr YT rdas
fz‘ T cos o s

T
i

V = f T swror als
where :

H = horizontal section shear

T = section torque

V = wvertical section shear

If Equation (4) is substituted into Equation (10), then

T = c:g;fzﬂv N s A aféf"f/~ ‘%? s

(11)
A = c?J¢rzfazwvr Y ts + éijﬁhz‘czafér s
- S 2¢

14 <§;¢rz‘awvcr S5 v *'627{“‘”*“7‘595 s
Substituting Equation (9), and omitting the integrals which vanish by
Equations (7), then

r=eftr o » @ a/¢fz‘/"a’.5’

=6 Ftsa 22 a’*é’—ftcv&‘a‘a’.s

(12)
V= é‘fz‘a/ﬂa‘ a’&+6"-——fe‘.sw7a‘a/.s -
Introduction of principal shear axes permits the above equations to be
solved for the derivatives of ¢ , u and v independently, rather than as
a simultaneous system. Inserting the section constants given in Eq_dation

(8) into Equation (12), and solving for the displacement gives
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g _ 7 2
7L - L f tr 2 s
=424 A / onw

- - 7 2% s
o " o =, f teose S o
v vV / Pl
Y o — swrrat T ofs
Tz &A, #, &< 55

The assumption that the cross section is 2 single cell without sharp
corners implies that the functions t(s) and r(s), are continuous. Thus,
as it will be seen that Se s continuous, integration by parts transforms

the equations into the following form:

a4 _ 7 ’/W———Q;Zr)a/

g Z GZ

et v o/ (7 cosar)

oz G4, f"” ek (13)
v Vv / py G52 x)

dz = G Ay >3 f os

An expression for & which will permit its elimination from Equation (6) may

be obtained from Equation (9) by substituting in Equation (13) to give:

& 7 A cosa Vswra »r (Zr)
o2 &cZ, G Ay G 4y > 'f £ i (12)

c'o.s‘a‘ atcosx) swzat A sre)
+ j{ % s + 4, / W = as

This equation may be substituted into Equation (4) to give:

r S cosa V swret
T-¢/%% tez. YA, T 4, 7 15)
+ a’/l"/") ol - ('o.s'd‘ f"" L cosar) e
2z s

//7 x j(‘ c//Z‘J//?d‘) s /
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Equation (14) may be substituted into Equation (6) to obtain the following

expression governing the displacements:

£ % o I o 7 A cosa Vst
= {227 * 55 (35 )% 55 fczc* ca, oA T
r a’/ Zr) cos o o (tcose)
_._Z:,— d als /9// / w ————-—d‘; A -
Ssredt (s &) / -0
Simplifying,
£ 0’>2n/ (f )_ T ) " Mo Fltcosa)
& S E? GZ, ofs &Py s
6)
1 (s a) ; a//e‘,-) a’/a!'f') (1
e T T = / s
s a/fz‘ cosar‘) a’(Z‘c'oﬂr) s a’/f;/ﬂa‘ejf 4 /z‘.swm) a,/
Aﬂ oS V'

A similarvexpression méy be developed for the axial stress.
~ Equation (16) mayv be simplified if the cross section of the beam and

the corresponding ‘boundarir conditions are symmetrical about one or both
principal shear axes. In this event, all or part of the actions of torsion,
horizontal bending, and vertical bending become separated, and permit
the solution of a simple system of independent equations. The development
of like expressions is given in Reference 1.

In the case of a cross section and boundary conditions which are symm-
etrical about both principal shear axes, the equation becomes

/ 2
G‘Z‘ jz (ZL (axial forces)




or, £t w
G oz

or,

or,

-+~ .a_(z;i_"_/

12

4 aEr) 7-

= c/m)
S5 1 IS Z. o # Fr Dot ] (17)
- Md) a’/fc'd.sa)
B '9// 0/-9 f a/ ]

/ sweat) l'_/

7‘_}{'” dé’&‘/ﬁa‘)a/;/

In the case of a cross section and boundary conditions which are symme-

trical about the x axis, the equation becomes

£% %

& oF*

or,

2 o
o5 (t o5/ /?,, Nz

 _ _ dFcosa) a’/e’c‘a.s'd)
| o frr e “’] (18)

L AT c//z"/")
== "‘f”’ 5/

=4

_ . atsma) [y S sz
A, as /4—5' *f i os dgj

In the case of a cross section and boundary conditions which are symmetri-

cal about the y axis, the equation becomes

£Z a‘?h/' _ / dEsma) [y o (Cswr o)
LR (¢ 3= - 5 TR E e P LT ]
or, v (19)
- / lr) a’/c‘r)
= —Z:: 7 4 frr a/s_/

_t S5 cosa) ,y

y i fWM)a/f/
» s

as
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III, TRANSFORMATION OF THE DIFFERENTIAL EQUATIONS INTO

DIFFERENCE EQUATIONS

The solution of linear differential equations with known boundary
conditions may be obtained by finitevdifference methods. The differential
equation govef‘n}ng the unknown function is transférm_ed into a difference
equation énd the solution of the difference equation is obtained at a
finite number of points within the boundary. As the set of points at which
the desired function is sought méy be made arbitrarily dense, the solu-
tion of the difference equation approaches the solution of the differential -
equation to any desired degree of accuracy. The diffgrence problem may
be solved by Southwell's relaxation method (Reference 3), which is
defined as "a systematic sequence 'of localized changes of the wanted
functi(;n that steadily brings the 'residuals' toward their desired value."

The difference equatioﬂis obtained from the differential equation by
expressing the differentials and integrals in terms of finite differences.
The finite differences may be obtained by the procedurés given in Refer-
ence (4). -

Suppose a function f(u) is given for the values Bgs 8] ceee Ay of
its argument u. It is required to find the value of the function or its
derivatives at some point x(u) in which the intervals of the argument are
not constant. | This problem may be solved by the application of Newton's
formula fo’r unequal values of the argument. (Ref. Chapter II, Reference

(4).) In order to derive this formula, consider what are called differences
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of tabular values, The quantity

@) - F(as)
@ - a, |

Fa,, a) =

is called a divided difference of first order. In the same manner, divided

differences of second and third order are respectively:

@, a) - Fia, a,)
%~ A

Fla, &,a,) =

@, a a)y - £, %)
Gy -

o a, a a)=

The divided differences of higher orders are formed in the same way.
Let f(u) be a function whose divided differe.ncesﬂ of (say) order 4
vanish; and suppose that its values for the arguments a_, a;, a,, a3 are

known. The value of the function for any other argument x(u) may be
obtained in the following way: since the divided differences of order 4
vanish, it follows that the differences of order 3 are constant, or

f(u, ags ap, az) = f(a,, ays a,, a3)
By definition of the divided difference of order 3,

f(u, ags al) = f(ao, al,‘az) + (u - az)(f(u, a,, aj, az)
Again, by definition

f(u,a,) = {(ao, al) + (u —al)f(u, ag, al)

=t(a,a) +(u-a)) fag, a1, ay)+ (a-a,)(n, 20,2, a))

Also, by definition

f(u) = f(ao) + (u —ao)f(u, a.o)‘
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whence

Flu) = @) # Cear @) U, @) + (a-g)ler 2) Fla, @, 7)

* (&~ G- @)l ) F (G, 7, @, Ty)
Now let (u - a )= & ,» 2nd by induction

Fe) = //@)*a;ffdo"d/)* a, o, 7('/40}0"’%>,4... >

(20)
rOA, e, , Fq,Q, " ay) * Aemrareder

(-7 ]

where Remainder = 62;0‘, - a, Al a,, ._4”)

The derivatives of a function in terms of its divided differences may
be expressed by differentiating both sides of Newton's Equation (20), so

that

Fl)=Flaa) + (a,+x) Fla, o, 7:) (21)

* (GE * QN+ X 0y) F (T, @, Tz, Gp) ** " *

7 7

F) = Fla,a,q) + @+x+aq3) F(@, @,a, @)+

L
2

and so on.

In order to obtain any desired accuracy, the Newton Equation (20)
for the expansion of a function in terms of its divided differences should
include such orders of differences that the remainder term is less than
some pre-assigned amount. However, accuracy may also be obtained by
a reduction of the length of the intervals. In the following, the divided

differences of third and higher orders will be neglected, and the accuracy
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of the solution obtained by progressive reduction of the intervals.,
There are a number of methods of numerically evaluating a
definite integral. Among the most common are the Newton-Cotes

formulae, of which the simplest case is

a

which is known as the trapezoidal rule. It is exact when f(u) is a
function whose first differences are constant over the interval (2, a+w).
When f(u) is a function whose first differences are not constant, the

difference between the two sides of the above equation may be written

1_%_ wlF (e r On)
where 0 < & </

To apply the finite @ifferences procedure to the analysis of a swept
wing, it is necessary to form the differences of the value of the dependent
variable for unequal intervals of the independent variable, Consider the
particular case of the differential Equation (16) for elastic shells.

As surné that the solution of the equation is desired in the domain D of
the s, z plane bounded by a closed curve [  as shown in Figure 4.
Superimpose on the Domain D an arbitrary orthogonal mesh of lines
parallel to the s and z coordinate axes. The lines parallel to the z and
s axes are identified B‘y the nomenclature j -1, j, j+1, andn -1, n,
n+ 1, etc. reépectively, and the regions of the domain between the lines

parallel to the z and s axes are identified by 4, 4#/ and A, A#*/
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etc, respectively, The intervals between the lines parallel to the s axis
are constant and are equal to A . The intervals between the lines
parallel to the z axis are not constant and are equal to L, , L, , , etc.
This identifies the mesh nodes and intervals in the neighborhood of a
point (j(s), n(z) ).

In order to transform the differential equation into a difference
equation based on the mesh network illustrated in Figure 4, express the
terms in Equation (16) as a fu.nctiqn of the differences at a poin{ (j, n) as

follows. The second derivative of a function is given by Equation (21) to

be
53 Py = g, e, @) v -
" s 2 @) = Fl@) //4*) /’Kaz) /
7 o a-a, - g,

Recalling that third order differences are neglected, and that the inter-
vals in the directions parallel to the z and s coordinates are equal and un-

equal respectively, then the equation becomes

£z Fw _ £7 [ 2[%-,‘%_ ""ﬂ"%f-///
G 2 2% G 27 .y Z J

= Gt j'a / lcaads -/

- 2, )J-

and

£ Z >
6&( o5 /) - (%, f—,(/m) ( = "‘f M0 ( A;,.,)J(h‘; 4 Do

— 2 ékﬁl
= (4 f"‘”{f //zkﬂ 2 /,/ﬁ ( ) (W )qf

/
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where, for example the term ( w,,,, )j refers to the axial displacement
of the point (j, n +1 )and ( L, A)j refers to the interval in the dir-
ection parallel to the s coordinate in the neighborhood of the point j as
indicated in Figure 4.

The first derivative of a function is given by Equation (21) to be
Flewy=Fa,aq) +tcoro) Fla a,a)
Consider a function f [2‘ (u), rce, 0('/4()_] which is known at u = a_, ajees

a_ . It is desired to obtain the first derivative at a point X = (al + aZ)/Z.

Inserting u = x in Equation (21), then

Flaz) - F ) . (czvaz . a’+%-a)/
2 2 /

/.,(X): 2 —Q‘; a"’_a:e)x

(/'Ka’o) Fea,) _ /YG) f/%))

FCB)— £a)
a, — 4,

In terms of the mesh network, the values of the function are given at
the mid-points of each interval along the lines (n, n+ 1, ...) parallel to
the s axis as illustrated by Figure 4. The first derivative is desired at
the nodeﬁb point (j, n) of the mesh. Therefore

(77 x) £ 7o) 4
A rfre) res> we ] =L Al /
[ g ) ] /,(/”_/7“,{/()/2 J.

The line integrals may be evaluated by means of the trapezoidal

rule. The integral terms become
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B LSttra)as=Z/Ftna),, - £

The differential Equation (16) may be transformed into a difference
equation by expressing the differentials and integrals in terms of the

differences that have been derived. For the point (j, n), the equation

becomes

£ gt Wy = R, )

= —% _/k‘,e ) [(Z‘/cﬂ) ‘/ﬂ (/) /Z‘/c) /rr ,_,)”/
Ve~

2 Aot Acu )J/_
= - = 2. r, =2 ), W/
Al e o/
j;, /k,q"ék)./ & o kﬂ Va4
2 /2;( X ot~ e 5174 Ve di [ v
- o 2 l_ S, ~ & swrd.): w
Ay gy * L,‘) : o 12 e 57725 75
2 ( 'Zféﬂ “";kﬂ (”"a’” 14 [ el
—_ + b wsa, wosa, ). W/
By oy * 4)) Z; Cosy 5% 2 58y 7

Multiplying through by ( £, + L,()j /2 , and letting a; = t( 4Ly, + 4a )j/zy

the expression becomes:

£'a

; z Z
J . . s 14 - - 2L -
YL (ngyy, #vg,~20g ;7 (L/(ﬂ ‘)/ (ry,, ”c/,)/? (Ak ) g =7, D

/
2:@;/@{/_4’2?/[6' Z/é 14 K*/—.Z‘K/”"‘?/'W../
4 (23)
/é.’)‘/ Sn? a:e// f/&% r)/.[ G—‘ +ZJ- (ékf/‘r/”ﬂ/’(f /'QJ/O%Z/ M;]

L24

/ -
- A—”/fkﬂ &5, L. co5a,), [ s f[ 4 o5, ~4 cosa,l W]

where ay = equivalent area resisting the normal stresses

In the event that there is symmetry of the cross section and the

boundary conditions, the difference equation may be simplified. In the
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same manner as in Part II, symmetry about both principal shear

axes permits the equation to be written as

£ z
—= (# 7"14;;[“214;;) +/ Xf/)/r/#/ ”;)/?‘/j—z /’Vl—";;/)ﬂ
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In the case of symmetry about the x axis, the equation becomes
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In the case of symmetry about the y axis, the equation becomes
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The difference equation is written in terms of differences of’the
variable at a discrete set of points. In cases where there is a variation
of the variable between the points, it is necessary to approximate the
variation by some consistent procedure. Consider the wall of the shell
on which a mesh network has been superimposed. A curvéd element
of variable thickness in a mesh interval may be approximated by a
plane element of constant thickness. This implies that the values of
t, P , and o are constant in each mesh interval. In Equation (23)
the term a; was defined as equal to t( L., + L, )J/Z, where 2, is
the equivalent area resisting the normal stresses. This implies that
the area corresponding to the normal stress ¢ at the point (j, n) is
half of the area of the material in each interval neighboring the line j
containing the point.

The section properties associated with the principal shear axes
are given by Equation (8). The transformation of these equations into

difference form gives .

Z = L L Ly (27)
A, =2, 2y Ly cosH,

A, = 2, 2t Ly w7,

V.

The deflections and rotations of the principal shear axis of the
shell are given by Equation (13). The transformation of these equations

into difference form gives,
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The value of the total deflection or rotation is given by the summation of
the terms along the z axis of the shell. The summation is given by the

trapezoidal rule. For example the total rotation becomes

Y
7=/ Z 7
P
- FE) ), ]/

The displacements uj and Vj of the surface of the shell are
functions of the deflections and rotations of the principal shear axis, and

may be easily shown to be

L= u- Py
uJ u (29)

Vj = v+¢x

The transformation of the differential equation (15) gives the following

- difference equation for the shear stress,
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The tangential path of integration for determining the shear in the K, Rth
element (Figure 4) in Equation (30) may be either along the neighboring
(n-1) or (n) th line. If the length of the interval approach.es zero, the choice
of the path is immaterial. However, for finite intervals the choice of the
pat}; affects the result, and by definition, the path chosen is along the (n)th
line. In other words, the path is the line neighboring the shear element
in the direction of the positive z axis, It is to be noted that the shear stress
in each mesh interval is constant.

The normal stress along a line parallel to the z axis is given by

Equation (4). By application of Newton's Equatioﬁ (21) for the derivative,

the normal stresses are given by the following difference equations:

£l
(G, = 27 Cong,, » Frw, = 0hu),

_ £
(0 = 27 (Wouy ~ 5,0 - (31)
(G) =Ll Gn —2n £u )
led o4 2_[ lcd 74 ’? lrdadd d'

where the subscript notation is in accordance with the nomenclature in
Figure 4. It is to be noted, that as the shear stress in each mesh
interval is constant, the vaI.'iation of the normal stress along each line
parallel to the z axis is linear.

The formulation of the finite difference problem for unstiffened

shells may be applied to stiffened shells provided that two modifications
are made to Equation (23). First, the equivalent area of the material
resisting the normal stresses (aj) should include the stiffener area in
addition to the wall area, Second, the modulus of elasticity E should be

used in place of E'.
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In order that the solution of the difference equations in a given
domain D be unique, the location of the closed curve [~ bounding the
domain and the values of the function or its derivatives must be assigned
or determinable. In the cases to be considered, the location of the
boundaries are assigned, and intersect nodes of the mesh. The
boundary value problems to be considered are ""mixed”, as the values
of the functién are given over certain portions of the boundary, and the
value of the first derivatives over the remainder. The details of the

application of the boundary conditions are discussed in Parts IV and V.
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1IVv. THE RELAXATION PROCEDURE FOR THE SOLUTION OF THE

FINITE DIFFERENCE PROBLEM

An excellent introduction on the use of relaxation methods is given
by Shaw (Reference 5). This section can only hope to point out the
highlights of the procedure, as the serious user will have to master the
technique by study of the literature.

The relaxation mesh of the finite difference procedure for the
orthogonal shell is a right cylinder (since the displacements are a
singly periodic function) with boundary conditions imposed at the two
ends. Simplification of the mesh arises when the cross section of the
beam and corresponding boundary conditions are symmetrical about
one or both principal shear axes. In this case, the cylindrical mesh
may be cut along a line corresponding to the intersection of a principal
shear axis and the surfac»;e of the shell. The boundary condition along
the edges of the cut is that the vah:;e of either the displacement or its
derivative is zero. This is illustrated by Table 1. The cut cylindrical
mesh is then unwrapped, and the mesh becomes a rectangle in the
cartesian s, z plane. The boundary conditions along the ends of this
rectangle are dependent on the particular problem.

The size of the initial mesh is dependent on the rate of change of
the wanted function, the ease in ""advancing to finer mesh'', and the ease

of application of "line'" and "block' relaxation. The meshes used in
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Parts VI and VII are examples of the usable size.

The initial assumptions of the function in the domain D should be
made with care in order to avoid excessive labor. For the case of
orthogonal shells, much aidvmay. be obtained from simple bending and
torsion theory.

in order to briefly illustrate the techniques used, the simple
Poisson equation |

vigox, 4) =5 (32)
will be considered. The pfocedure fo»r the more complex integro-
differential equation for shells is identical. Consider a square domain
with square meshes of side h as shown in Figure 5(a) in which the
nearby mesh nodes are identified by a letter system. The transformation
of the differential Equation {32) gives the following difference equation

for the point (0),

2
Bt Pr B A =L, (33)
where
¢4, = the value of the '"wanted" function at point 0
Eo = error of the difference equation at point 0,

Consider that the boundary values are known for the mesh network shown
in Figure 5(b), and assume initial values of the function in the domain.

By the use of Equation (33), the errors are computed for each point

in the set not on the boundary. The purpose of the method is to reduce

the error to a value which will approach zero. This is done by the use

of relaxation operators.,
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An example will illustrate the procedure for obtaining a relaxation
operator. Assume a change in the value of the function at point ¢(0) of
¢ =1. The question arises, "What are the changes in the errors in
the domain?". Inspection of Equation (33) shows that E_ changes by
-4. The equations for the errors at the points a, b‘, c, d contain ¢, ,

and thus Ea’ E E

y Eeo Ed change by 1. The "point" relaxation operator is
diagra m,matiéally shown in Figure 5(c). In the calculations, only the
value of the total error should be recordéd, whereas usually the increment
is recqrded in the case of the function ¢ . Note that the value of the
function is written to the left of the vertical line, and the errors to the
right 6f it. At the boundary where the value of the function is specified,
—the errors are not recorded.

Lines of symmetry may be used with boundary conditions where the
derivative of the function is zero. With reference to Figure 5(d),
~consider that a solution of the problem is desired in the hatched region.
If a change in the value of the function is made at ‘a point (o) along a
line adjacent to the line of symmetry, then a change is necessary at the
correspoﬁding point (o') on the other side of the symmetry line.‘ The
difference equations are uncﬁanged except at the line of symmetry. For
example at the point ¢, the difference équation becomes

Bt FRB AR SS L,

The relaxation operators are unchanged except at the line adjacent to

the line of symmetry. The modified operator is diagrafnmatically

illustrated in Figure 5(e).
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The procedure for reducing an error is to alter the value of the
funcﬁon at the point in such a manner so as to reduce the error. Usually
the points with the largest errors are treated first. The totality of the
errors is only reduced by "pushing some of them over the boundary'.
Any other operation has the effect of distributing them over a larger area.
In order to speed up the process, '"line! and '"block' relaxation operators
are used. These are the superposition of a number of adjacent point
relaxation operators due to a simultaneous change of the function along a
portion of a line or in an area. Usually, they are computed for a unit
change of the function and the magnitude adjusted by a multiplier de-
pendent on the totality of the errors. In addition, the practice of "over
relaxation' is frequently used with relaxation operators. By these pro-
cedures, the errors may be reduced to nearly zero, and the approximate
difference equations solved for any given mesh.

In order to obtain increased accuracy, it is necessary to decrease
the size of the mesh. In practice, it seems best to commence the
problemn with a fairly coarse mesh, liquidate the errors everywhere, and
then from this first approximation derive a trial solution on a net of
finer mesh. As the mesh becoﬁnes finer, the resulting suyccessive
solutions give an indication of their convergence. The procedure is
indicated in Figure 5(f). Let the horizontal and vertical solid lines be
the net, of mésh size h, for which an approximate solution has been

obtained, Then the net with the next finer mesh will be that at 45°



29

formed by the broken lines. The mesh size will be h/]/ 2. Then for
the point O (for Poisson's equation) the difference equation is

ﬁ.a
L L FG L FB S =L,

Assume the error is zero (Eo = O), hence

L st 2%t R)

= _/
2= (-
This gives the trial points for the 45° mesh. This mesh may be

liquified, and the procedure repeated to give a new 90° mesh, of mesh

size h/2, and so on.
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V. GENERAL PROCEDURE FOR THE DETERMINATION OF

STRESSES AND DEFLECTIONS FOR THIN-WALLED BEAMS

1. Orthogonal Beams

The stresses and deflections of a thin-walled orthogonal beam of
uniform closed cross section may be determined by the application of
the theory of shells. The procedure may be simplified in the event of
symmetry of the cro.ss section and symmetry of the boundary conditions
of the beam about one or both of the principal shear axes. The beam is
orignted by the coordinate system shown in Figure 1. The relaxation
mesh corresponding to the beam is a right cylinder. In the .
event of symmetry, the simplification of the relaxation mesh and the
boundary conditions along the edges of the mesh parallel to the z axis
is illustrated by Table 1. The boundary conditions along the edges of
the mesh parallel to the s coordinate are dependent upon the particulér
problem, and in the cases to be considered, are either on the value of
the displacemén‘t ( W) or the first derivative of the displacement. The
value of the first derivative of the displacement is expressed in difference
form by Equation (31). The length of the intervals of the relaxation
mesh and the corresponding idealization of the beam cross section are
dependent upon the possibility of simplifying the difference equation,
the rate of change of the wanted function, the ease in advancing to finer
mesh, and the ease of application of line and block relaxation operators.

The nodes and the intervals of the mesh are identified in accordance with
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Figure 4. The behavior of the beam is governed by the applicable
difference equation for the displacement { W ) given in Part III. The
point relaxation operators are determined from the difference equation
by the methods outlined in Part IV. The initial assumptions of the
function in the mesh may be obtained from simple bending and toréion
theory. The solution of the difference equations on the displacement
are obtained by the procedures in Part IV. The stresses and de-
flections of the beam are obtained from the equations given in Part III.
The boundary conditions along the edges of the mesh parallel to
the s coordinate are illustrated by considering the cases of the simply

supported and cantilever beams.

a. Simply Supported Beam

The boundary conditions along the edges of the mesh parallel to
the s coordinate are depe;ndent upon the conditions at the ends of the
actual beam. For the case of a simply supported beam with transverse
loads, the axial stresses at the ends of the beam are zero. In the case
of a simply supported beam with end moments, the axial stresses at
the ends of the beam are known. In both cases, the stress may be
expressed as a derivative of the displacement and transferred into

difference form.

b. Cantilever Beam with an Orthogonal Support

The boundary conditions along the edges of the mesh parallel to

the s coordinate are dependent upon the conditions at the ends of the
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actual beam. For the case of a cantilever beam Wﬁ.th transverse
loading, the axial stresses at the free ends of the beam are zero. The
boundary conditions for the fixed end of the beam are dependent upon
the type of support. For a rigid support, the boundary condition is that
the displacement is zero at the root. An example of this case is given
in Part VI. For an elastic support, the boundary conditions require
the compatibility of displacements and equilibrium of forces at the root.

An example of this case is given in Part VII.

2. Cantilever Beam with a Rigid Oblique Support

The stresses and deflections of a swept, cantilever beam of uniform,
thin-walled, closed cross section may be determined by the application
of the theory of shells. Consider the problem of a cantilever beam on a
rigid oblique supp'ort (AA'D'D) shown in Figure 6(a). The problem is
equivalent to a cantilever“ beam with an orthogonal support (AA'E'E)
shown in Figure 6(b), with the condition of no displacement
(uj =V =Wy s o) of the section AA'D'D.

The problem of the equivalent cantilever beam is the same as the
problem of the orthogonal cantilever beam discussed in Part 1 of this
section, with the following exceptions.

The first exception is that the boundary condition applied at the
fixed end becomes a condition applied along a line in the domain adjacent

to the boundary. In other words, it is required to distribute the values

of the function along the boundar‘y adjacent to the line in the domain such
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that the desired conditions of the function are achieved along the
specified line. The solution of the inverse problem may be obtained

by relaxation methods, and is unique. Therefore, the equivalent beam
problem may be treated in the same manner as before, with the dis-
placement (Wj) being the unknown function. It remains to discuss the
question, in the framework of the orthogonal shell theory, how closely
can the conditions along the section AA'D'D be satisfied? In answer

to the question, it is obvious that the conditions on the displacement

“;j may be exactly satisfied along the section AA'D'D. However, the
displacements uj and Vs are functions of the displacement Wj , the
orientation of the orthogonal support AA'E'E, and the beam and loading
conditions as shown by Equations (28) and (29). Consider the vertical
displacement Vs alqng the section AA'D'D. The assumption in the
formulation of the shell theory that the cross sections normal to the
beam are preserved implies that cross sections oblique to thé beam are
not preserved. It follows, in general, that the condition on the vertical
displacement along the section AA'D'D may only be satisfied at 2 poinfs
on the contour. In particular, for a wing of conventional box section,
the conditions on Vs may only be satisfied at the spars. Consider the
lateral displacement uy along the section AA'D'D. The condition may
be satisfied for a point along AA', but only by chance for any other
point along AA'D'D. Howevér, the effect of the error in uj is assumed

to be small, and is neglected in the analysis. Therefore, in the frame-
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work of the orthogonal shell theory the condition on the displacement
Wj is satisfied, and the condition on u; and Vj is approximately
sratisfied. The condition on Vj may be satisfied if the assumption on
the preservation of the cross section in the root region is relaxed.
Consider a finite number of normal forces applied along the lines AD
and A'D'. If the magnitudes of the normal forces are such that the
deflections (Vj) are zero, then the conditions on vj are satisfied.
However, it turns out that the deflections (vj) along the cross section
AA'D'D are small, and the effects may be neglected.

The second exception is that the deflections of the beam are
obtained in the same manner as in Part 1 of this séction, with the

addition of a solid body translation and rotation to satisfy the conditions

on the displacements uy and Vj at the spars.

3. Beam on Multiple Supports Representing a Sweptback Wing with

a Carry Through Bay.

The stresses and deflections of a beam on multiple supports
represénting a sweptback wing with a carry through bay may be de'-—
termined by the application of the theory of shells. Consider the
problem of the sweptback wing shown in Figure 7(a). The wing is
composed of an outer panel cantilevered obliquely to a simply supported
inner panel. The intérsection of the panels introduces a redundancy

that may be removed by making a cut along the intersection. As a

result, the problem is equivalent to consideri.ng the outer panel as a



35

cantilévered shell with an orthogonal support (AA'E E) and the inner
panel as a simply supported shell, as shown in Figure 7(b). The condi-
tions of compatibility of displacements and equilibrium of forces of the
shells are required to be satisfied along the section AA'D'D.

The problems of the equivalent wing comprising the equivalent
can‘tilever beam and the simply supported beam are the same as the
problems discussed in parts 1(a) and 2 of this section, with the exception
of the boundafyj conditions imposed on the equivalent wing, and the elasti-
city of the oblique suéport (AA.l D'D).

For the moment, consider.the boundary conditions on the wing,
assuming rigid wing supports. The boundary conditions on the wing are
dependent upon the load distribution. Any arbitrary load distribution
may be split up into its s‘ymmgtriéal and antisymmetrical parts. In the
symmetricé.l case, the ‘slope’ of the wing at the center ‘and the vertical
deflection at the wing suppgrts are zero. For the antisymmetrical case,
the vertical deflections of the wing at the center and at the wing supports
are zero. Thus, for both cases, the vertical deflection of the wing at
the supports is zero and for transverse loading the normal stresses at
the free ends are zero. The displacements ( #/ ) and normal stresses
( G ) are zero at the center of the wing for the symmetrical and anti-
symmetrical cases respectively.

Consider the elasticity of the oblique support (AA'D'D). The idealized
support structure is composed of a fuselage rib (AA'D'D), an inboard

orthogonal wing rib (HH'D'D), and the joints of the sheet and stiffeners
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between the inner and outer shglls as shown in Figure 7(a). In order
to investigate the effects of the Vribs the assumption of the préservation
of the cross sections of the shells in the support region is relaxed. It
is assumed that the fuselage rib is infinitely stiff in its own plane and |
free to warp out of its plane. In addition, it is assumed that the wing
rib is elastic, pin-ended at HH', and that the shear loads on the top and
bottom rib flanges may be neglected.

As the equations governing the behavior of the structure are linear,
the method of influence coefficients may be used to determine the

stresses and deflections at any point. The stresses and deflections are

given by
~ 6 F
Oy = 2= O
S (34)
” 3, F
gm = et Sﬂzn ”
where
G,, , 8, = stress and deflection at point m

GF O F ) ..
ag S = stress and deflection influence coefficients for
mre ). 7R

the behavior at m due to a unit load at point n .

N

load at point n

The influence coefficients are determined for the behavior of the equi-
valent wing with no wing rib under the action of external loads, and under
the action of loads imposed by the wing rib. The procedure for determin-

ing the influence coefficients for the external loading and the rib loading
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are discussed in the following.

Consider the behavior of the wing with no wing rib under the action of
external loads. Orient the equivalent cantilever beam (outer panel) and
the simply supported beam (inner panel) as shown in Figure 7(b). The
corresponding relaxation meshes divide up the surface of the wing into a
series of stiffener and sheet elements. Consider the compatibility of the
displacements of a point (j,n). The displacements (U‘j)o and (Wj)o of the
jth stringer of the outer panel along the outer panel éoordinate axes
(X)o and (z.)0 respectively, are resolved along the inner panel coordinate

axes (X)i and (Z)i as follows:

(ng); = (o) cos ¥ + (), w7
Caplp = Cefp)e COS Y — (g ), Sz Y
‘The assumption of a rigid fuselage rib (AA'D'D) ifnplies that (uj)i =0,
whence
nwyli = (ng), /co,s v (35)
This establishes the relationship between the displacements (WJ) of the
inner and outer panels.

The condition of equilibrium of forces must be satisfied at the joint
in order to uniquely determine the displacements. The forces acting at
the joints of the stiffener and sheet elements are shown in Figure 7(c).
The stresses in the outer panel sheet elements may be resolyed into

directions normal and parallel to the fuselage rib. The portion of the

force normal to the fuselage rib that is contributed by the sheet is pro-
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portional to the resolved normal stress Gy . The resolved normal

stress is given in Timoshenko (Chapter 1, Reference 6) to be

! 2 <2 - -
a} = 6:? cosTA + J, .:-7f7 A ,21“ SH? A DS A

where A = angle of resolution of the stress.

By Equation (1)
U = 4 Ty
whence

G}' = a0 (co5°A + sw2A) - Z o 7 ZA (36)

For a swept back wing with a carry through bay with a uniform cross
section in each panel, the angle of resolution is
A = w/cosa/
Where ¥ = angle of sweep
It follows that the portion of the force transmitted across the fuselage

rib by the outer panel sheet element is,
o L )
( £ gos A o
The force is resolved parallel to the (Z)i axis to give the following

contribution by the sheet element.

’ LZ
/ 0:3 cos A % 50'5’/6

where /3 = Y Jswe e f = included angle between outer sheet
element and (z); axis.
The force transmitted across the fuselage rib by the stiffeners is

( Ty = )j’ where - is the area of the stiffener element. The
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force is resolved parallel to the (z.)i axis to give the following contri-
bution by the stiffener element.

(T Fop do <05 ¥
Since it was assumed that half of the width of the sheet each side of the
stiffener acts with the stiffener, tifle following equation is obtained for the

equilibrium of forces at the point (j, n),

: ¢t LZ
[0;- a;); =/-(ojE qfr)./f,‘”’?” # z#[(a; Py "w/g)x»/ (37)

7 /a;cj:/\ c'os/d)kl
where 0:.; is given by Equation (36). The normal and shear stresses
may be written in terms of the displacements (WJ), the beam loading,
and geometrical characteristics by means of Equations (30) and (31).
It follows that by using the boundary conditions on the wing and the
equations of compatibility and equilibrium of the joint, the difference
equations for the displacements may be solved. The stresses and de-
flections of the beam are de‘termined, and the influence coefficients
given by Equation (34).

Consider the behavior of the wing under the action of loads imposed
by the wing rib. To account f;r the effects of the wing rib, cut the rib
at HH', and apply an equal and opposite redundant load P to the rib and
to the spar as shown in Figurg 7(d). The load P on the rib at HH'
applies a moment at DD' to the rear spar of the inner panel equal to

M =P c sin W

where c = normal chord of the outer panel. The load P on the outer
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panel is equivalent to a vertical and a torque load applied at the cross
section HH'D'D., The boundary conditions on the displacements and on
the forces at the joint are the same as for the case of the external loads
(Equations (35) and (37)), with the exception of the force equation for the
rear spar flange. For this case, Equation (37) for the equilibrium of
forces includes an additional term in the right hand side to account for

the moment applied by the rib. The expression becomes

Pc swe Yy . o
(G a;) =——€/7—/—— *‘[(d; q,,_)d._/oco.sgu ' (38)

/Al‘
2 [(f cv.s‘A €os, fo/ Z cos A t's/g)k_/

where h = depth of beam cross section at root of rear spar. It follows
that the stresses and deflections of the beam may be determined for a
given load P, whence the influence coefficients may be obtained by
Equation (34).

The value of the redundant load P imposed by the wing rib is
determined by considering the compatibility of deflections at the cut.
The deflection of the outer panel front spar must be equal to the de-

flection of the wing rib at the point H. This is given by

8 F LS

S = 5/45,(1;’/47-) L WA T) 7 cg//;f,(V//,Z‘j

somrmy B9

where f_(V, H, T), F_(V, H, T), etc., represent the loading conditions.
The deflection of the wing rib at the point H is a function of the rota-
tion of the rear spar of the inner panel and the elasticity of the rib. The

deflection is given by
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8, F : s F
Sy = %&Kvmr)/‘;’nf/’%f) f%MM/cesmy/
. L P27 | (40)
T ED, o e \ .
S8, F v
where 9”?” = rotation influence coefficient for the behavior at m

due to a unit moment at point n.
The value of P may be determined by equating Equations (39) and (40).
Tﬁe stresses and deflections of the wing under external load including
the effects of the wing rib are given by Equation (34). An example is

given in Part VII.
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VI. COMPARISON OF THE FINITE DIFFERENCE METHOD AND THE
ANALYTICAL SOLUTIONS FOR A CANTILEVER BEAM WITH A

RIGID ORTHOGONAL SUPPORT

The problem of determining the stresses and deflections of a thin-
walled beam of uniform thickness subject to variable twist has been
formulated by von Karman and Chien (Reference 7). From the formu-
lation, an analytical solution was developed for a beam with a doubly
symmetric cross section, and in particular, an example was worked out
for a semi-infinite beam of rectangular cross section on a rigid support
subject to end twist.

The formulation of the problem given in Part Il is in agreement with
the formulation by Karman and Chien. Therefore, it is of interest to
compare the finite difference and analytical solutions for a representative
beam. Consider the tube of rectangular cross section shown in Figure
8(a). The tube has a length of 25.4 in., a cross section 2 in. x 8 in.,
and a wall thickness of one-eighth inch. The tube is loaded by an end
torque of 29, 600 inch-pounds. The cross section and boundary conditions
are symmetrical about both principal shear axes, and therefore permit
maximum simplification of the procedures. The tube is oriented by the
coordinate system shown in Figure 8(a) and the simplified relaxation
mesh for this case is given by Table 1. As a result the mesh corresponds
to the ﬁpper left hand quadrant of the cross section. The boundary condi-

tion along the edges of the mesh parallel to the z axis is that the dis-
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placement (w) is zero. The boundary conditions along the edges Qf the
mesh parallel to the s coordinate corresponding to the fixed and free ends
of the beam are that the displacement (w) and the derivative of the dis-
placement ( @ ) are zero respectively. This is illustrated in Figure

8(b) The length of the intervals of the relaxation mesh and idealization

of the cross secfion may be chosen so as to simplify the difference
Equation (24); It will be seen that it is desirable to let Ly, =L, = L, and

4

£24L _ o (41)
cl°t

Assuming,/u. = .3, and since aj = Lit, the relationship between the

intervals is given by

£ =1.690L

In this problem, it is relatively easy to advance to finer mesh and
employ line and block relaxation techniques. As a result, the interval
L = 1 in. is chosen for the initial mesh for the entire domain. Subse-
quently, the mesh size is advanced to L = 1/2 inch for the half of the
domain corresponding to the root region, and to L = 1/4: inch for the
domain Cvorresponding to the corner of the cross section in the root
region. The advance to finer mesh employs the procedures outlined in
Part IV, and is illustrated in Figure 8(b). The nodes and intervals of
the mesh are identified in accordance with Figure 4.

The difference equation for a beam under torsion with doubly symme -

trical cross section and boundary condition is



44

J - z # - - Z -
R N ) /z,’?/ﬁy ), (24

]

/ 7
h Zﬁi’ﬂ //;*/_Z/:’/"V)[F 7‘2 /491 wenr ,' 2/ Mj]
The equation is simplified by the choice of the mesh intervals. Applying

Equation (41), the result is

/%‘l-/*W ./' +(I‘¢7J/*2{-/)/? - 4‘45, V4 (42)

L -
= —.Z_? ///:;‘/ l(.//;' *Z‘Z/k*’ ,;)J‘%_/

For every region in the domain except the region corresponding to the

cormers of the tube, the equation reduces to the Liaplace equation,

- = 43
(Vosy * W5 ). * Oy + 00, Jy— #00,, = O (43)

’

For the region in the domain corresponding to the corner of the tube,

Equation (42) becomes

2.3/ (44)
- - #
fhf‘,ﬂfh,/?/) 7"(14'//*/ ’:;-/) ‘A//a'? d"z!%ﬂ)
where the numerical calculations are given in Appendix A, The relaxa-

tion technique is facilitated if decimal values of the variabie are avoided,

so let

w'=wx 106. Whence Equation (44) becomes

('’

’ ’ / — _ [
v en 2, 7‘-(;5;‘/4- i ) (% 0,4-5)%,? 23/0 L (45)
The difference equations corresponding to the mesh sizes are obtained
by inserting the value of the interval (L) into Equation (45). The

equation becomes,

, Yy (46)
/hf?f-/ %‘/) /hjv‘-/ S~ /)ﬂ A,'%
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where Kl = 3.55, 3,775, 3.8875 and K, = 2310, 1155, 577 for L =1,
1/2 and 1/4 inches respectively.

The point relaﬁation operators are determined by the procedures
outlined in Part IV. Diagrammatically, the relaxation operators are
shown in Figure 8(c). By the simple torsion theory, the initial dis-
placements (w) were assumed to be zero for the coarse mesh. The solu-
tions of the difference Equations (43) and (46) in the domain corresponding
to the upper left hand quadrant of the cross section with the applicable
boundary conditions are obtained by the procedures i.n Parts IV and V.

The final values of the displacement (w) for the rectangular tube
under torsion are shown in Figure 9. The values of i:khe normal stress
are calculated from the displacements by Equation (31), and are shown
in Figure 9. The values of displacement and stress determined with
the fine mesh (L = IAZ in.) are plotted as a function of the tangential
coordinate in Figures 10 and 11 respectively. The normal stresses
along the corner of the tube are plotted as a function of the axial co-
ordinate ip Figure 12. The normal stresses at the support for various
mesh sizes are compared to the results of the analytical solution by
von Karman and Chien by plotting the stresses as a function of the mesh
size in Figure 13,

The comparison of the stresses determined analytically and by the
finite differences method show good agreement, with a possible exception

of the region in the neighborhood of the corner of the tube at the support.
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" In this region, the large gradients of the normal stress, both in the
axial and tangential directions, probably account for the discrepancy.
An additional advance to a finer mesh would undoubtedly improve the
agreement, but in view of the fact that the mesh interval is already
within 5 percent of the width of the tube, it does not appear to be of
practical importance to do éo. This example illustrates the distri-
bution of the ""bending stresses due to torsion' in the support region of
the tube, and points out the necessity of an accurate knowledge of the

support conditions if precise stress data are desired.
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ViI. COMPARISON OF THE THEORETICAL SOLUTIONS AND
EXPERIMENTAL DATA FOR A SWEPT BACK WING WITH A

CARRY THROUGH BAY UNDER SYMMETRICAL BENDING

The National Advisory Committee for Aeronautics has conducted
a series of experimental investigations on the behavior of an untapered
box beam, representing the main structural component of a full span,
two spar, 45° swept wing with a carry through bay. The investigation
was reported in references (8) and (9) for the cases of symmetrical and
antisymmetrical bending and torsion respectively. The full span model
was carefully constructed, and included complete instrumentation to
record the normal and shear stresses, in addition to the distortions of
the structure. As a result, the NACA experimental data is considered
to be unusually reliable, and is compared to the theoretical difference
solution for symmetrical brending in order to establish the validity of the
theoretical assumptions.

The experimental wing was constructed of aluminum alloy with the
swept-back parts consisting of two boxes with their longitudinal axes at
. right angles, joined by and continuous with a short rectangular carry
through bay representing that part of the wing inside the fuselage. The
details of the experimental swept-back box beam are shown in Figure 14.
The wing was loaded in symmetrical bending with a downward end shear

of 2500 pounds acting through the principal shear axes of the tip cross

section.
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The procedure for theoretically determining the stresses and
deflections of the swept wing follow the methods given in Part 3 of
Part V. The swept wing is equivalent to a cantilevered shell with an
orthogonal support and a shell on a simple support. The beams are
oriented by the coordinate system éhOWn in Figure 7(b). The cross
section and boundary conditions are symmetrical about the x axis, and
therefore permit a simplification of the procedures. The simplified
relaxation mesh for this case is given by Table 1. As a result, the mesh
corresponds to the upper half of the cross section. Since the purpose of
this investigation is to establish a satisfactory minimum idealization of
the swept wing in addition to establishing the validity c;f the theoretical
assumptions, the cross section is idealized into four, six, and ten
stiffener or flange elements.

The relaxation mesh for the inner and outer panels are shown in
Figure 15(a), (b), and (c) for the four, six and ten element beams
respectively. The mesh lines (j) parallel to the z axis correspond to the
boundaries, the flanges (Fl, FZ) or to the stringers (S). The intervals
between the lines corresponding to the flanges and stringers are constant.
The mesh lines parallel to the s coordinate are located by virtue of the
desired intervals between the mesh lines. For instance, there are three
mesh lines (n) of equal interval in the inner panel in order that the
difference equations for stresses (31) may be used, and the intervals

between the mesh lines (n) in the outer panel are equal to the interval
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between the stiffeners and flanges. As it will be seen later, it is
desirable to adopt two methods of identifying the modes and intervals

of the mesh. For the d%.fference equation, the mesh is identified in
accordance with Figure (4) with the addition that the mesh lines parallel
to the z axis are annotated Fis FZ, S, etc. corresponding to the flanges
and stringers. For the equations of equilibrium and compatibility, the
mesh nodes in the neighborhood of the joint are identified by numbers.
The identification of the meshes is illustrated in Figures 15(a), (b) and
(c).

The distribution of material for the idealized cross section is
governed by the assumptions made in Parts II and III.;‘ The total areas
of the idealized and actual stiffeners and flanges are equal, with the
exception\tha.t the idealized flanges contain the equivalent spar web
material and the sheet material attached to the flange. The equivalent
spar web material is that equivalent area representing the moment
carrying capacity of the webs, and for each flange is equal to one sixth
of the crass sectional area of the actual web. The areas of the idealized
and actual sheet are equal. The concept of effective width has not been
introduced, primarily to avoid inconsistencies at the oblique boundary.
The numerical calculations for the idealization are carried out in
Appendix B. 1, and the idealized cross sections are illustrated in
Figure 16.

The idealized support structure discussed in Part 3 of Part V is

composed of a fuselage rib, an inboard orthogonal wing rib, and the
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joints of the sheet and stiffeners between the inner and outer shells as
shown in Figure 7(a).

It is now desirable to consider the boundary conditions. From
Table 1, the boundary condition along the edges of the mesh parallel to
the z axis is that the displacement (w) is zero. The boundary conditions
along the edges of the mesh parallel to the s coordinate are dependent
upon the boundary conditions on the wing and the conditions at the inter-
section of the inner and outer shells.

The boundary conditions for the wing loaded in symmetrical bending
are that the displacements are zero at the center of the carry through
bay and the stresses are zero at the tip of the wing. This is illustrated
in Figure 15. With regard to the boundary condition applied at the tip
of the wing, there is one important point to be brought up. In thin-walled
beams, the '"disturbances'' due to the oblique support are nearly
"damped" out in about one (normal) chord length from the support. As
a result, the final convergence of the solution of the difference equations
is greatly speeded up if the boundary conditions are initially applied at a
cross section one chord length from the support. The boundary conditions
afe determined by elementary beam theory. The resulting wing is called
a '"clipped" wing, and this procedure is used for the six and ten element
beams. The ‘numerical calculations for this boundary condition are

carried out in Appendix B. 2.

Boundary conditions are imposed on the compatibility of displacements
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and equilibrium of forces at the intersection of the inner and outer shells.
The compatibility of displacements is given by Equation (35). In the

wing with an angle of sweep of 459, the equation becomes
(wj)i =1.414 (wj)o (47)

As discussed in Part 3 of Part V, the conditions on the equilibrium of
forces, énd in addition, the difference equation are dependent upon
whether the behavior of the wing under the action of external loads or
rib loads is being considered. As a result, these equations are obtained
for a general loading, with the treatment of the particular loading condi-
tions discussed as required. Hence, the equation of equilibrium of

forces at the point (j, n) is

G q) = Legm¥ 4 [ a.,,gl-]o cos ¥

% (38)
Y Py
where @' = @ (ws®A # o o Q) = Ty swr 2A
A= y Jfcosa/ (37)

/8 = fsmwea/

In the idealized cross section, the spar web does not transmit normal
stress. Thus, only the elements in the idealized cover of the box
contribute to the equilibrium equation. Hence substituting Equation (37)

into Equation (38), the result is
(7 ay); = 3P+ o7 [(d; q,,l,-/a (48)

24 f

* a03525 f[ﬂéfea; ;E)A_/ »[fle56 0~ T,
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.312 (Ref. Appendix 3. 3)

1

where M

\
t = 0.050 in. (Ref. Figure 15)

A = ¥ = 45 deg.

P

By Equation (30), the shear stress ( 7., ) for the upper cover sheet of

0

the outer panel becomes

6 7 3,5T
=4x10° ] = (w, - o=
sz * [/.,( (WJ Wj—l) 4 x 100 x 277.2

3.5 . :
+m( 1,966(WF1 WFZ) )]

E = 10.5x 106 psi

where G = 4x10° psi (Ref. Appendix B. 3)
1. =277.2 in?
c

Zd. (t v Taes ™ f/c/‘fc)'wj = -1.966 (% /':2)
ro= 3.5 in. (Ref. Figure 15)

The relaxation technique is facilitated if decimal values of the variable are

avoided, solet w’' = w x 105, whence

: Lo ’ - ¢ 4 ]
= 7 pt e - A 4 -
z"sz co2eR 7 Z, n/ by #0248 Ly /h,/f- /4,{2—) (49)

The difference equation for a beam under vertical shear and torsion

with the cross section and boundary conditions symmetrical about the
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X axis is

£ ay Zss Z
6‘/; /“77"/* 'EW) + / « ,)/:ﬁf/ J')ﬂ‘ (47&‘/ (h‘?—%")” (25

o
=~ ey G~ Y [F AL ) ]

Vol
Kts I<H

/4 -
/m/ J/maﬁ,ﬁ—- z‘k;/ma;‘)/. [G‘ +Z’ﬁ‘kﬂ.s7/7d;eﬂ 2‘ ;//;a‘ /; /

The additional section properties associated with the principal shear

axes, and the summation terms are evaluated in Appendix B. 3 to give

IC = 528.2 in. 4 inner panel

A, = 1.092 in.% inner and outer panels
2 (%, {;%/—; L r ) mg = m2T (’,"; ""’é) inner panel

inner and
),,' Wy =—ase /n;l, # 14% ) outer panels

A =7.5in. inner panel
substituting into Equation (25), and recalling that s’ = w x 102, the

expression for the inner panel is

, ’ ’ , Z #
. 04?6 3 ( . * v ~2wy); +/ % ’/)(w/ J) /2",«) Cr ,),7
s29.2

/ - 7 4 ’
=~ oo (fl(f/ Tenr é/{’/‘r?f /;7 -2.7/0//4/{7 -.M'/’z)”] (50)

~ 4o ome); [ S5 - osse Oy +%27]

T o 9,_: Al K4/

similarly Equation (25) for the outer panel becomes
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2.62 @ / '__ / z‘,(+/ ’ _ / —_éﬂ ‘ .
_/‘2 {%w* - 2, 2/7‘ LK,,)J(M;H %)/7 /LK)J-(%"“;./)”

/

= - . (51)
= = 5773 Cws G~ L) 4—0- ~/766 (- *3)"/

/,aze /z‘kﬂ;//mf - 4, w0 ) Zo_ - 2./56 (ng! * b 5’)”]
Now that the equations of equilibrium of forces and the difference
equations for. the géneral loading condition for the swept wing have been
derived, the particular loading conditions may be investigated. As
indicated in part 3, Part V, the behavior of the wing with an elastic
wing rib may be determined by the method of influence coefficients. The
influence coefficients are determined for the behavior of the equivalent
wing with no wing rib under the action of external loadg and under ther
action of loads imposéd by the wing rib. The case of the four-element
beam is discussed in detail in this section, and the details for the six
and tep‘el_em:e-n‘t cases are given in the appendices.
Consider the behavior of the wing with no wing rib under the action
of external loads. The compatibility of displacements of the joint are
-given by Equation (47) to be
W, =1.414 w
(52)
w, =1.414 wp
The equilibrium of the joint is governed by Equations (48) and (49). For

this case P =T = 0 and the section dimensions are given in Flgure 15(a).

Inserting Equation (49) into (48), the expression becomes
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2.156 (@ ), =.707(1L.111)( @5 ), +.03535(29.7) [.656( T )
40 v ’ ’ ;
v 2L [y -y #0298 ez n)ivg - w )] (53)

1
(q); =.684( G5 ) + 1.137 (wg, ~w-F£)

substitute the expressions for displacements in terms of the stresses

given by Equation (31) into Equation (53), and obtain for f lange Fls

10.5 x 10° 10.5 x 10°
X (3w', - 4w') = . 684 x = (-3w's+ 4wl - w))
2x7.5x% 102 3 2x29.7x 105

+ 1.137 (w'y - wg)

Inserting the compatibility relationship for w'; given by Equation (52)
into the above equation gives

-w's +.8403wh + . 1793wl - .()3628*\:&7'9 - .03412 w'8 =0 (54)
Similarly, the expression for the flange FZ is

‘wig +.9082w', + .03921 (w'o - w'é) + ,03688w'7 =0 . (55)

The difference equations for the inner and outer panels are givea by

Equations (50) and (51) respectively. The section dimensions are given

in Figure 15(a). For the inner panel, V = T = 0, and the equation for

~ flange F1 becomes

(: . 050 .078

(.0466)(2. 156)(w' ,; +w'y _ 1 ?;w‘n)j + iR 8)(W F,~W Fl) -
1

= - 5355 (-050x3.5-.078 x20.9)( -2.910)(wg, -wg, )

n

1
1.092

(-.078)(-.156)(wi + wgl )

3, 3. 5"i)n
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Simplifying, and as (Wl’l-l)j = 0 by boundary conditions,

‘/n/g’),, * . 02/0 ///v/,z’ ), *.9E7 (o), I =0 (56)
Similarly for flange F,,
(57)

A ) #0200 (W ), *.4287 TR

For the outer panel, the equation for flange F'; becomes

.62 X f.B53F ’ ‘ e O50 ’ » 078
S0 i * - ‘) e -anl ) - ——
T (ng, * by~ ), oyl =g ) =22 g

; 7 ’,_ .
== s Covras .azyx/fz.y;)/;d 1766 (v~ ”/

/
L0092

p 4 ¢
-, 7 — S~

Simplifying
. , L _(58)
(wl ), * . IFE (np]) #. a6 (hgﬂvm;?.,)/;_ 0SBV — 00525 T =0
Similarly for flange FZ
(59)

- (;,4_’) . F4E /n;,’)”v‘ G2 (w F ' ) LB Y A .ovses T=0
2 V4

/2 12¢4 '7-//_—
The loading condition for the outer panel is V = 2500 pounds and T = 0.
Inserting the loading conditions, the equations for flange F1 and FZ

- become respectively
— ’ ’ ’ ’ -
), *e 576 (“;‘a)” 7. 226 (v * n;r_/)/_; + 265 =0 (60)

=

L4

/ 4 ¢ 4 -
— /44/5 ), T FFE (o) +.526 (nr) # h’f"')‘} * 265 =0

Likewise the equations for the six and ten-element beams may be

derived. These equations are given in Appendix B. 4,
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The relaxation operators are determined from the difference
equ.ation by the procedures outlined in Part IV, Diagrammatically, the
point relaxation operators for the inner and outer panels are shown in
Figure 17. The initial displacements (w) for the mesh were obtained by
simple bending theory. The soluﬁons of the difference equations in the
domain corresponding to the upper half of the cross section with the
applicable boundary conditions on the value and derivative of the dis-
placement are obtained by the procedures in Parts IV and V. The final
values of displacement for the swept wing with no wing rib under
symmetrical bendiﬁg are shown in Figure 18, The values of the normal
stress are calculated from the displacements by Eqdation (31), and are
shown in Figure 18. The deflection and rotation of the beam are
calculated by Equation (28), with uy = vj = 0 at AA' and DD', and are
given in Table 2.

Consider the behavior of the wing under loads imposed by the wing
rib. With reference to Part 3, Part V, the action of the wing rib is
to apply a vertical load P at HH' and a moment (M = Pc¢ sin wy ) at DD'.
The vertical load P at HH' is equivalent to a vertical and a torque load
applied at the cross section HH'D'D. The loading of the inner panel is
V =T =0, Since the experimental value for P is approximately 1000
pounds, let the loading of the outer panel be P = V = 1000 pouﬁds,

T = 14,850 in., pounds for the cross section HH'D'D and inboard, and

V =T = 0 outboard of section HH'D'D, The compatibility of displacements
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of the joint are unaffected by the loading, and are given by Equation (52).
The equilibrium of the joint is governed by Equations (48) and (49).

Inserting the proper constants, Equation (49) becomes

T2 =187 - 2.34(w'p -wi,) (61)

Equation (61) may be substituted into Equation (48) to obtain the equation
of 'equilibrium of forces
2.156 ( a; ')i = 3P+ ,707 (1.11)( 0;-)0 +.03535(29.7)
[656 ( o), - 187+ 2.34 (Wi, = Wi, )_] (62)

€0;); = 1.393P + .684 ( G ), + 1.137 (wp - wg ) - 91

The term including P is only applicable to.the equilibrium equations for
the rear flange. Substitute the expressions for displacements in terms
of the stresses given by Equation (31) into Equation (62), and obtain for

flange Fl

10,5 x 106

10.5 x 106 Ve D X 4V
2%x29.7x10°

2x7.5x% 102

(Z‘BW'3 - 4w')=.684x (-3w's + dw'y -W'g)
[ 1 -
+1.137 (w7 wg) 91
Inserting the compatibility relationship for w's given by Equation (52)

into the above equation gives

-wly +.8403 w' + .1793w!; -. 03628 wly -.03412w'g - 3 =0, (63)

Similarly, the expression for the flange F,is

~wlg + . 9082w, + . 03921 (w' - w) +.03688 w'; + 42 = 0 (64)



59

The difference equations for the inner and outer panels are given by
Equations (50) and (51) respectively. For the inner panel, V=T = 0,
and the equations for flanges Fl and FZ are given by Equations (56) and
(57). For the outer panel, there are two loading conditions. In the
cross section HH'D'D and inboarcvl,'the loading is V = 1000 pounds and
T = 14, 500 inch-pounds., Inserting the loading conditions into Equations

(58) and (59), the equations for flanges F; and F, become respectively

— ’ ’ , ’ s’ - _
(), #3796 CnL ), #.326 (), r iyl ) ~re2=0

(65)
), FSREWL ), P 526 (0, F H, ), — 280
Outboard of section HH'D'D, the loading is V = T = 0. Inserting the
loading conditions into Equations (58) and (59), the equations for the
flanges ¥ | and FZ become respectively
._(/4//';_/)”:‘-..;?¢6 /M/,__;),? 7. 326/14;'?;_, +”;:/)"7 =0 (66)
Tngl), v Ite ), + .S2e ), * h;’_/%g: o

Likewise the equations for the six-element beam may be derived. These
equations are given in Appendix B. 5.

The relaxation operators are unaffected by the loading, and are shown
in Figﬁre 17. The solutions of the difference equations in the domain
cc;rresponding to the upper half of the cross section with the applicable
boundary conditions on the value and the derivative of the displacement

are obtained by the procedures in Parts IV and V. The final values of the
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dispfacemem for the swept wing under Iﬂ.oa(ﬁs imposed by the wing rib are
sh.own in Figure 19. The values of the normal stress are calculated from
the displacements by Equati§n (31), and shown in Figure 19,
The deflection and rotation of the beam are calculated by Equation (28),
with u; = v; =0 at AA' and DD‘,i‘ and are given in Table 2.

The value of the redundant load P imposed by the wing rib is deter-
mined by considering the compatib‘ﬂity of deflections at the cut. The
deflection of the outer panel front spar must be equal to the deflection of

the wing rib at the point H. The deflection of the outer panel front spar

at the point H is given by Equation (39) to be

SH = -.043+14,85(-.00295) + {,012 + 14985(00078)}]“0};0 (67)

where the incremental deflections are given by Equation (29) and Table 2.
Similarly, the deflection of the wing rib at the point H is given by

Equation (40) to be » (68)

SH'=(29,7)(.707)["1244 1 30 1 P }_ P(29.7°)

105 (3.5) 105 (3.5)10004 3(6,63)(30x100)

where the rotations are obtained from the displacements given in
Figures 18 and 19, The value of P = 167 pounds is obtained by equating
EQuations (67) and (68). Likewise the value of the redundant load P may

be determined for the six-element beam. This is computed in Appendix

- B.6.

The stresses and deflections of the wing under external load includi'ng

| the effects of the wing rib are given by application of Equation (34). The
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final values of normal stresses and deformations for the swept wing with
a wing rib are shown in Figure 20 and Table 2 respectively.

/ The axial distribution of the normal stresses for the four, six and
ten-element beams for the normal and 'clipped' cases is shown in
Figure 21(a), (b) and (c). The normal stresses at various cross sections
are compared to the experimental data in Figure 22. The deflection and
rotation deformétions are compared to the experimental data in Figure 23.

The stresses as theoretically determined by the use of an idealized
six-element beam show good agreement with experimental data. The
stresses determined using a four-element beam do not show the effects
of shear lag, and therefore do not have the desired characteristics.
However it is to be pointed out that the maximum stresses are closely
approximated by this simple idealization. The stresses determined by
using a ten-element beam are in close agreement with the stresses
given by the six-element beam with the exception of the low stress region
in the neighborhood of the front flange joint.

The comparison of the deformations determined by the method of
finite differences with the experimental data shows good agreement for
the deflections and fair agreement for the rotations. The less accurate
solution for the beam rotations is probably due to the assumption of a
rigid fuselage rib. A preliminary investigation revealed that the

assumption of an elastic fuselage rib improves the agreement. The

procedure for taking into account the elasticity of the fuselage rib is
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identical to the methods outlined in Part V, with the exception that the
equations of equilibrium of forces and compatibility of displacements in
the transverse direction are not eliminated, and require the consideration
of the elasticity of the fuselage rib. Since the bending loads in the
fuselage rib are high, the problem of approximating the rib loads by a

number of concentrated forces is important.
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VIII. CONCLUSION

The method is a rational engineering approach to the problem of
determining the stresses and deflections of unswept and swept, thin-
walled beams of uniform closed cross section. The cross section,
loading distribution, and boundary conditions are assumed to be arbi-
trary., The method is based on the differential equation governing the
behavior of orthogonal elastic shells. The differential equation is
transformed into a difference equation, and the solution is obtained by
the relaxation technique, The comparison of the theoretical solution
and experimental data for a swept back wing with a carry through bay
under symmetrical bending ‘showed good agreement,

As a result of the investigation, it is apparent that the swept wing
with a carry through bay may be idealized by intersecting orthogonal
shel_ls, with elastic fuselage and inboard wing ribs. In the event that
there is sufficient interest, it would be desirable to conduct further
investigations in order to broaden the field of applicability of this method.
The effects; of symmetrical and antisymmetrical loading, taper of the
cross section, and the influence of rib rigidity on rotational deformations
have not been investigated with any completeness. For these conditions,

it would be desirable to indicate the relationship between the idealization

of the beam and the accufacy of the solution. In addition, there is the
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possibility that cut outs and temperature effects may be studied by
modification of the theory. In conclusion, it is believed that the method
provides a more accurate and rapid means of investigating the behavior

of thin-walled beams than was previously available.
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APPENDIX A

NUMERICAL DATA FOR RECTANGULAR TUBE UNDER TORSION

The difference equation governing the behavior of the rectangular
tube is given by Equation (42). The equation is

(Wn+1 +W ) +(WJ+1 J l)n = 4Wj’n A-1

= £ - i
ST I T )[6' +f2/"7«/-”x)./’"§'/

The constants in the equation may be evaluated as follows. By

Equation (27)

4

I.= Z t, ry Ly (8 x 1+2x 4%) = 10 in.

oo|tv

The cross section of the tube and the boundary conditions are doubly

symmetric. Therefore under torsion, the displacements (wj) at the
corners are doubly antisymmetric. Hence

2y (P =1y g, = (=D, = 12Hy,

, 7
where w. is the displacement of the corner of the upper left hand quad=
rant of the tube. The external torque applied to the cross section is
29, 600 inch-pounds. Let E=10" psi, s=.3 whence G=E/2(1+m)=1072.6.
Inserting the numerical values, Equation (42) becomes |

L4 29, 600)(2.6) 4 1
L ) [22.0002:0 1 L (), |

-Ll: .31 + °45WJ n]
103 | ’

i

This corresponds to Equation (44) in Part VI,
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APPENDIX B
NUMERICAL DATA FOR SWEPT BOX BEAM UNDER

SYMMETRICAL BENDING

B.1 Idealized Cross Sections of Swept Beam

The details of the NACA swept box beam are shown in Figure 14,
The numerical calculations for idealizing the cross sections of the
swept beam are carried out in the following

Quter Panel

The idealized outer shell has a length of 118-3/4 inches and a
7 inch by 29.7 inch rectangular cross section. The choice fortuitously
makes the length equal to four times the chord. The cross-sectional
area of the elements are as follows:

Area of each cover sheet (normal to z axis)=29.7x.050=1, 485 sq.in,

Area of each spar web = 7x.078 = 0,546 sq. in.

| Total stiffener area per cover =14(1-1/2 x 1/16) = 1.312 sq. in.

Area of each idealized flange = actual flange area +vequivalent spar

web area + area of sheet effectively attached to flange
/ O5O

/ / J P52
23 Xz T .st6X & */3/7'27.7)/ 2

[

0.455 sq. in.

i

Also, moment of inertia of section

=2(2x .455+ 1.312 + .050 x 29. 7)(3. 5)Z

= 90.8 :i_n‘,4
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Inner Panel

The idealized inner panel is composed of one half of the carry thrbugh
bay, and has a length of 15 inches and a 7 inch x 41. 8 inch rectangular
cross section. (Ref. NACA Langley Field Drawing No. LD-14839. The
distance between the outside edges of flange angles = #J3 ;7! inches.
Whence #3 g—/a/;{ -29.7) = 41.8 in. . The cross sectional areas
of the elemenﬁs are as follows:

Area of each cover sheet(normal to z axis)= 41.8 x.050=2.090 sq.in.

‘Area of each spar web = 0,546 sq. in.

Total stiffener area per cover = 1.312 sq. in.

Area of each idealized flange = 0.455 sq. in.

The idealized cross section of the beam contains s{iffener‘s and
flanges that transmit axial loads, cover sheets that transmit axial and
shear loads, and spar webs that transmit only shear loads. The cross-
sectional areas may be essentially divided into the areés resisting the
axial loads, and the areas resisting the shear loads. The areas
resisting the axial loads are made up of equivalent areas of elements
(aj) which are composed of the area of the stiffener element (a g, )
and the area of the cover sheet element ( a sy ) resisting the normal
stress, The areas resisting the shear loads are the actual areas of the
sheet. As a result, the idealized cross section is made up of equivalent

areas of elements resisting the normal stress, and the sheet areas

resisting the shear stress. In actuality, the resulting section is the
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same as would be obtained by the effective width concept, except that
the effective width concept would be incoﬁsistent at an oblique boundary
where the sheet stresses are resolved as shown in Figure 7(c).

The following example illustrates the idealization into a six-
element beam. Assume that the distribution of the stiffener area
across ‘the cover is uniform. As indicated in Part III, assume that the
area of the cover sheet acting in conjunction with the stiffener area is
half of the area of the sheet material in each interval neighboring the

stiffener. Thus the flange and stiffener areas become for the outer

panel,
. 1.312 1.485
2flange ~ (0.455 + 2 )+( 7 )
= .783+ .371 = 1.154 sq. in.
1.312 - 1.485
dsr = 2 + 2

.656 + .742 = 1.398 sq. in.

The idealized cross sections are illustrated in Figure 16.

B.2 '"Clipped" Wing Boundary Conditions for Six and Ten-Element

Beams

The outer panel is clipped a distance of 59.6 in:. from the actual
tip as illustrated in Figures 15(b) and (c). The boundary condition on
the stress at the tip of the clipped wing is determined by elementary

beam theory. For a vertical shear of 2500 pounds applied at the tip of
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the actual wing, the normal stress at the tip of the clipped wing is

- o Ly 59.6x2500x3.5 _ 5o
z . 90, 8

Let the mesh line corresponding to the tip of the clipped wing be (n).

Then by Equation (31)

. V= — So5 v - ’ -
C, = 55 (i, ) = 55 (e, Tl )y = ST
5724 x 2./ ,
Thus g, = 1ot (L)

i

109.7 + (V)
This condition is substituted in the differeﬁce eguations corresponding

to the tip of the clipped wing. The p.roced’ure then follows the methods

outlined in Part IV,

B.3 Evaluation of Section Constants

In order that the comparison between the theory and experiment
may be made on the same basis, let E = 10..5 x 106 psAi, G =.4x 106psi,
and A4 = %— -1= 0 312. It is to be noted that this m_oduius (E) is
different from the modulus used in Appendix A. |

The section properties associated with the principal shear axes are
given by Equation (27). Ewaluation of the constants for the inner and
outer panels gives,

- N 2
T = 2l LK

2 (.050 x 41.8x3,52+.078x7x20,9%) = 528. 2in.# (inner panel)

i

i

2 (.040 x29.7x 3. 524 .078x7x14. 852)= 277.2 it (outer panel)

>
S
]

2, Ly Ly s
2%.078x 7=1.,092 in. % (inner and outer panel)

H
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For the NACA sx.;vept wing under vertical shear and torsion, the
displacements are antisymmetrical about the x axis. Therefore,
evaluation of the summation terms in the difference equation for the
inner and outer panels -givés

2l Py ™ L P D) w; =2(.050 x 3.5 -.078 x 20, 9)(WF1 —WFZ)
= -2, 910(WF1 - WFZ) (inner panel)

=2(.050x3.5-.078x 14, 85)(wFl 'WFZ)

—1.»966(WF1 - WE, (outer panel)

i

Z; fz‘m./ s, - J'/r/d‘,()‘/- w;

2(-. 078)(WF1 + sz)

il

-.156 (WFI + WFZ) (inner and outer
panel)

Z; (2, cosag,, ~ § cosa), w, 0 (inner and outer panel)

B.4 Boundary Conditions and Difference Equations for the Behavior

of the Wing With No Wing Rib Under External Loads for the Six

and Ten-Element Beams

The boundary conditions and difference equations for the behavior

of the wing for the six and ten-element beams are obtained by the

procedureé in Part VII. The notation is given in Figures 15(b) and {c).
For the six-element beam, the compatibility of displacements of
the joint are given by Equation (47) to be
1 - {
Wi, = 1.414 w 7
W'5 =1.414 W'y

w', = 1.414 w'
6 15
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The equations of equilibrium are governed by Equations (48) and (49),

and become

4 ’ 7 _ o /7
—wy + 75EF o, F. F03/ vy, ~.OE5TE sy, = PRIRF 1! — 00078 v = O

’ 4 — ’ [ A
=, FIINY #0057 w L . 07EF vy L 05726 (i -] ) #0002 (Y )=0

4 4 / 4 /' =
- W - ETE ]+ 0780 (Wp—tyy ) F- TIFTE N, F.HR2T7 M, =0

The difference equations for the inner and outer panels are given by
Equations (50) and (51) respectively. For the inner panel, the

expressions are

=y, *ORIE () #0585y T AT (], )p =0

— ’ ’ ’ -
(), +.orf64 (n;/. # WQ ), *FEE (], )5 = O

- /w{; Yy 1 ORFE (W), F OB (WG )y * 478 (b ),.._:2 =0

Ved 24

Similarly, for the outer panel

= (0 )y #0076 (gl £ T52 (WL, # 00) )e FNFR (VL) # 128 =0

o

4 / —
(), f.o&%?/ngf*wé) *HE (K F W ) =

1244

- (,,7»::'2)” ¥ ,a?g(n;’)” #, 792 (5., * ”’l’")",é * o HTR (,,,;;_/),? * SRE =0

For the ten-element beam, the compatibility of displacements at

the joint are given by Equation (47) to be

w'6 = 1.414 W'y
wio = 1.414 w'iq
wi'g = 1.414 w'sa
w'9 = 1. 4’14 W’Z9

WllO = 1.414 w'35
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The equations of equilibrium are governed by Equations (48) and (49),

and become

_ 4 / /- /- ’/ /o
W #6300 W FEIT WL — . HOF by —.OFER WL - 2067 W] =O

r V4 7 /
-, # E73 vy #.R05F vy, . BRE NG F 0628 5y, T FEF Mg,

s

4 [4 —
74,/07;/—%0,4%/ %5) =

—_ 4 r - 4 7 _ 4
W, *+. 8w # R0ST wyy, —/SRE vy, # o535 (0 )

’ ’ -
#LO0FE (W, - m F L~ Pap ) O

- / ’ ’/ ’ r 4
Woo +.575/ wy ‘ROST Myy ,/fza’n:M OS5I Wop T OERFT IV

’ ’ ’ 4 —
#.0078 (ovg  ~ vy W, J=0o

T W *.886T W +. /547 (bigy - by ) S OSOF bl 0P vy, = O
The difference equations for the inner and outer panels are given by
Equations (50) and (51) respectively. For the inner panel, the

expressions are

—(wl), + .0348 (), #.o5320m), A AE (VS ,, 0 = O
4 2 4 P4
(g, ot 0538 (hgl A evl), FAH6 (W5, )5 = O

=), Tt 05938 Ongl kg )y 2 HPE (], )5 =0

—eng ), * 0538 hz o+ ), * . 996 Pigss D5, =0

- (‘”’é ), + .0348 (n;e.’)” a4 /W-{; Dy F. REC (V.

ﬂfI)F:e =d

Similarl’yﬁ, for the outer panel

’ e
=l ), t L0411 (#l), 07670 ), £ 258 C oty *Hois ) 75T =9

’ ’ y ’ _
—(Wé)'? + ,0842 /”’3:27“/’";/)/, ’"-4/;{/”’;7*,*””-/).5; o

4 4
— ), t L0842 (N At EC ] ), <o
: ’ / /
—ew! ), + .0842 KIV%+&G2)” Ll ol A o e
3

r2sl -/ )52 =0

“(W;;),? t o .0477 (";;/);7*'”757(/’%/),? ""4'?;(”/;#""‘771,)5*;/ =0
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'B.5 Boundary Conditions and Difference Equations for the Behavior

of the Wing Under Loads Imposed by the Wing Rib for the Six-

Element Beam

The boundary conditions and difference equations for the behavior
of the wing for the six-element beam are obtained by the procedures in
Part VII. The notation is given in Figure 15(b). The compatibility of

displacements of the joint are given by Equation (47) to be

é—-
it

1.414 w',

2‘
1

1.414 W'

1
1.414 w 15

é—
[ep}
1)

The equations of equilibrium are governed by Equations (48) and (49),

and become

—_ ! 4 -
Wy *.7567 W' +. 3031w |~ . 06575 vy ] —. 225 W] — HoTE e — R O

—w] F Ty *. 257 v, ‘; —I7EE p * 03725 (W~ M, L ). HNCOR (n;;- Wl y-4£=0

4

— W[ H 898 Wy #0080 (b7~ W ) # LORTE L A HRIF I A TR = O

'The difference equations for the inner and outer panels are given by
Equations (50) and (51) respectively. For the inner panel, the
expressions are

T ),y 4 ORIE (VL) A OIEE W Dy #4978 (Vs ) =0

=D # 01367 (W P 1L ) F LA (W), )5 =O

4 4 .
- (n/‘é ), 7 oR%6 //4;_”),7 #O/88 (W), F 478 (W5, ),—2 =0



However, for the outer panel, the loading condition is not constant, and
two systems of equations are required. In the cross section HH'D'D

and inboard, the equations are

’ 7 I -
= (W, Dy F 076 (W Dy # 572 WY, h;?'_,)ﬁl_ *HRR (v ), — 87 =0
2=/

— (W), #0BRR (e ny Dy o HE (W, F ) =O

’ ’ / ’ 7y - =
= (W), T 076 (NG )y # L IPR (b, I D L HPR ) /3 =0

QOutboard of the cross section HH'D'D, the equations are the same as

above with the exception that the constant terms are omitted.

B.6 Determination of Redundant Rib Load (P) for the Six-Element Beam

The value of the redundant load P imposed by thé wing rib is
determined by considering the compatibility of the deflections of the
rib and the spar at point H, The deflection of the outer panel front

spar at the point H is given by Equation (39) to be

(8.1
S, = -.0351 + 14.85(-.00237)+ |.009 + 14.85( .00061)]_;8__
H 1000
where the incremental deflections are given by Equation (29) and
Table 2, Similarly the deflection of the wing rib at the point H is
given by Equation (40) to be
‘ (B.2)

S, =(29.7) (.707) | ~1328 - 157 P | P(29.73)
| 105 (3.5)  105(3.5) 1000| 3(6.63)(30x10°)
where the rotations are obtained from the displacements given in

Figures (18) and (19). The value of P = -135 pounds is obtained by

equatihg Equations (B. 1) and (B. 2).
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TABLE 1

Morphology of Single Cell Relaxation Meshes

The relaxation mesh for the general orthogonal shell with
arbitrary boundary conditions is a right cylinder. The mesh may
be simplified if the cross section and boundary conditions are
symmetric about one or both of the principal shear axes of the
shell. This is illustrated by the following table. The regions
corresponding to the simplified mesh are cross hatched, and the
boundary conditions for the edges of the mesh parallel to the z axis

are shown,
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Cross sectional End Boundary conditions along the edge of
shape constraint the mesh parallel to the =z axis
Edge Loading
Torsion | Vertical Horizontal
shear shear
Symmetric about . Symmetric
x axis about
’ x a, b | w=20 w=0 ow =0
g oo axis os
=
o=
G /)b X
Symmetric about Symmetric
y axis about
, b =0 Qw =0 =0
E y » bl w03 ”
; axis
i |
[0
b
Doubly Symmetric Symmetric
I R about
: dw .
J X a, b w=20 w=0 ¥ =0
: , 3s ,
% = axis
el g nd
(8 b X
'3 Symmetric
= > about
< 1 y a, b w=0 dw =0 w=0
’ . ds
> *\s—"; axis
ez
1y , | Doubly dw
symmetric a 3s =0 w =0
Q
w = 0
b = dw
X . b w =0 s 0
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TABLE 2
DEFLECTION AND ROTATION OF OUTER PANEL OF

THE SWEPT WING

The deflections and rotations of the outer panel of the swept wing
are obtained for the four and six element beams by the procedures in
Part II, with the boundary conditions (U’j = Vj = 0 at AA' and DD!)
satisfied at the supports. The results are shown in tabular form in the

following.
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CANTILEVER BEAM ON AN OBLIQUE SUPPORT
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(a) Rectangular Tube
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